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Preface

We study K-theoretical aspects of the braid groups BnðS2Þ on n strings of the
2-sphere, which by results of the second two authors are known to satisfy the
Farrell–Jones fibred isomorphism conjecture [1]. In light of this, in order to
determine the algebraic K-theory of the group ring Z½BnðS2Þ�, one should first
compute that of its virtually cyclic subgroups, which were classified by
D. L. Gonçalves and the first author [2]. We calculate the Whitehead and
K�1-groups of the group rings of the finite subgroups (dicyclic and binary polyhedral)
of BnðS2Þ for all 4� n� 11. Some new phenomena occur, such as the appearance of
torsion for the K�1-groups. We then go on to study the case n ¼ 4 in detail, which
is the smallest value of n for which BnðS2Þ is infinite. We show that B4ðS2Þ is an
amalgamated product of two finite groups, from which we are able to determine a
universal space for proper actions of the group B4ðS2Þ. We also calculate the
algebraic K-theory of the infinite virtually cyclic subgroups of B4ðS2Þ, including the
Nil groups of the quaternion group of order 8. This enables us to determine the
lower algebraic K-theory of Z½B4ðS2Þ�.

Caen, France John Guaschi
Morelia, Mexico Daniel Juan-Pineda
Tlaxcala, Mexico Silvia Millán López
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Chapter 1
Introduction

Given a group G, the K-theoretic fibred isomorphism conjecture of F. T. Farrell and
L. E. Jones asserts that the algebraic K-theory of its integral group ring Z[G] may
be computed from the knowledge of the algebraic K-theory groups of its virtually
cyclic subgroups (see [1] or Appendix A for the statement). This conjecture has been
verified for a number of classes of groups, such as discrete cocompact subgroups of
virtually connected Lie groups [1], finitely-generated Fuchsian groups [2], Bianchi
groups [3], pure braid groups of aspherical surfaces [4], braid groups of aspherical
surfaces [5] and for some classes of mapping class groups [6]. In [7], Lafont and
Ortiz presented explicit computations of the lower algebraic K-theory of hyperbolic
3-simplex reflection groups, and then together withMagurn, for that of certain reflec-
tion groups [8]. Similar calculations were performed for virtually free groups in [9].

Let n ∈ N, let M be a surface, and let Bn(M) (resp. Pn(M)) denote the n-string
braid group (resp. n-string pure braid group) of M [10, 11]. Some basic information
and facts about surface braid groups are given in Appendix B. The braid groups
of the 2-sphere S

2 were first studied by Zariski, and then later by Fadell and Van
Buskirk during the 1960s [12, 13]. If M either is the 2-sphere S2 or the projective
plane RP2, the results of [4, 5] do not apply to its braid groups, the principal reason
being that these groups possess torsion [12, 14]. The second two authors of this
book proved that the conjecture of Farrell and Jones holds also for the braid groups
of these two surfaces, which using the method prescribed by the conjecture, enabled
them to carry out complete computations of the lower algebraic K-groups for Pn(S2)
and Pn(RP2) [15]. One necessary ingredient in this process is the knowledge of
the virtually cyclic subgroups of Pn(M). For n ≥ 4, Pn(S2) has only one non-trivial
finite subgroup, generated by the ‘full twist’ braid, which is central and of order
2, and from this, it is straightforward to see that Pn(S2) has very few isomorphism
classes of virtually cyclic subgroups. The classification of the isomorphism classes

© The Author(s), under exclusive license to Springer Nature Switzerland AG,
part of Springer Nature 2018
J. Guaschi et al., The Lower Algebraic K-Theory of Virtually Cyclic Subgroups
of the Braid Groups of the Sphere and of Z[B4(S2)], SpringerBriefs
in Mathematics, https://doi.org/10.1007/978-3-319-99489-5_1
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2 1 Introduction

of the virtually cyclic subgroups of Pn(RP2), which was established in [16] and used
subsequently in [15] to compute the K-theory groups of Z[Pn(RP2)], is rather more
involved.

Our aim in this manuscript is to implement similar K-theoretical computations for
the group ring Z[Bn(S

2)] of the full braid groups of S2. In order to do so, one must
determine initially the virtually cyclic subgroups (finite, and then infinite) of Bn(S

2),
and then compute the K-groups of these subgroups. If n ≤ 3 then Bn(S

2) is finite, and
so we shall assume in much of this manuscript that n ≥ 4. The torsion of Bn(S

2)was
determined in [17], and its finite order elements were classified in [18]. It was shown
by D. L. Gonçalves in collaboration with the first author that up to isomorphism,
the finite subgroups of Bn(S

2) are cyclic, dicyclic or binary polyhedral (see [16] or
Theorem 2). As for the corresponding pure braid groups, one must then determine
the infinite virtually cyclic subgroups of Bn(S

2) with the aid of the characterisation
due to Epstein and Wall of infinite virtually cyclic groups [20–22]. Up to isomor-
phism and with a few exceptions in the case that n is a small even number, this was
achieved in [23]. A taste of the results is given in Theorem 4 when n is odd and in
Theorem 39 when n = 4.

In the ensuing quest to compute the lower algebraic K-theory of Z[Bn(S
2)], we

encountered a number of difficulties, among them:

(a) the family of virtually cyclic subgroups of Bn(S
2) is relatively large, and depends

on n, contrasting sharply with the case of the pure braid groups analysed in [15].
(b) the lower algebraic K-theory of even the finite subgroups of Bn(S

2) is poorly
understood, and the investigation of the K-groups of dicyclic and binary poly-
hedral groups presents additional technical obstacles compared to that of the
dihedral and polyhedral groups that appear in [7, 8] for example.

(c) in order to apply the method of calculation suggested by the fibred isomorphism
conjecture, one needs not only to compute the various Nil groups, but also to
discover a suitable universal space for the family of virtually cyclic subgroups
of Bn(S

2). In spite of the rich topological and geometric structures of the braid
groups and their associated configuration spaces, this space has thus far proved
to be elusive for n ≥ 5.

Chapter 2 is devoted to the second point, that of the computation of the lower
K-theory groups of many of the finite subgroups of Bn(S

2). In Sect. 2.1, we recall the
classification up to isomorphism of the finite subgroups of Bn(S

2), and of its virtually
cyclic subgroups when n is odd or n = 4. In Sect. 2.2, we compute the number of
different types of conjugacy classes of the binary polyhedral groups in Proposition 7.
These results are used later in the chapter, when we determine the lower algebraic
K-theory of the group rings of these groups. In Sects. 2.3 and 2.5, we calculate the
Whitehead and the K−1-groups respectively of the integral group rings of many of
the finite subgroups of Bn(S

2). To our knowledge, these sections contain a number
of original results, as well as some new phenomena, such as the existence of torsion
for some K−1-groups, that did not appear in previous work [7–9]. This necessitates
alternative techniques, notably the application of results of Yamada to determine
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local Schur indices [24, 25], which enables us to calculate the torsion of our K−1-
groups. We believe that the methods that we use to calculate these K-groups for
dicyclic groups of certain orders may be extended to dicyclic groups of other orders.
The Whitehead groups are given in Proposition 10. The main results concerning the
K−1-groups are Theorem 25 for dicyclic groups of order 4m, where m is an odd
prime, Proposition 27 for the generalised quaternions (the dicyclic groups of order a
power of 2), and Proposition 28 for the binary polyhedral groups. We also compute
the K−1-groups of the dicyclic groups of order 24, 36 and 40 in Proposition 29, and
of cyclic groups of order 2pq , 12 and 20, where p is prime and q ∈ N in Proposition
30. In Sect. 2.4, we recall briefly the work of Swan pertaining to the calculation of the
˜K0-groups of the group rings of the binary polyhedral groups, and of the dicyclic
groups of order 4m for m ≤ 11 [26], and in Theorem 14, we compute ˜K0(Z[G])
where G is a cyclic group of order 18, 20 or 22. For dicyclic groups of higher order,
the situation is complicated, and little seems to be known about the corresponding
˜K0-groups. In Sect. 2.6, we sum up the results of many of our computations in
Table 2.1, which lists the lower K-theory groups of the finite subgroups of Bn(S

2)

for all 4 ≤ n ≤ 11. From this table, we may also obtain the lower K-theory groups
of Bn(S

2) in the cases where Bn(S
2) is finite, namely for n ∈ {1, 2, 3}.

The aimof the remaining two chapters is to determine the lower algebraic K-theory
of Z[B4(S

2)]. We study the case of B4(S
2) in detail and show how the algebraic and

geometric features of this group interact, thus allowing us to compute its lower
K-groups. In preparation for the explicit computations in Chap. 4, in Chap.3, we
describe the ingredients for the corresponding computations in the case of infinite
virtually cyclic subgroups. We start by recalling some basic facts about the group
B4(S

2) in Sect. 3.1. One striking property, whichwas proved in [27, Theorem1.3(3)],
is that it possesses a finite normal subgroup isomorphic to the quaternion group of
order 8. This enables us to show in Proposition 37 that B4(S

2) is an amalgamated
product of the generalised quaternion group of order 16 and the binary tetrahedral
group, the amalgamation being along this normal subgroup, from which we deduce
in Remark 38 that it is hyperbolic in the sense of Gromov. In Sect. 3.2, we determine
the isomorphism classes of the maximal virtually cyclic subgroups of B4(S

2) in
Theorem 41, and in Sect. 3.3, we show that there are an infinite number of conjugacy
classes for each of the isomorphism classes of the infinite maximal virtually cyclic
subgroups. These properties aid greatly, not just in the computation of the K-groups
of the virtually cyclic subgroups of B4(S

2) and of the corresponding Nil groups, but
also to exhibit an appropriate universal space referred to in (c) above.

In Chap.4, we bring together the results of the previous chapters to compute
the lower K-groups of B4(S

2). In Sect. 4.1, we recall some facts and results about
the lower K-theory of infinite virtually cyclic groups. In Sect. 4.2, we determine the
lower K-groups of B4(S

2) up to the computations of the associated Nil groups, and in
Sect. 4.3, we determine these Nil groups. One result that is interesting is its own right
is Proposition 52 where we calculate the Bass Nil groups NKi (Z[Q8]) for i = 0, 1 of
the quaternion groupQ8 of order 8. Our calculations show that bothWh(B4(S

2)) and
˜K0(Z[B4(S

2)]) are infinitely-generated Abelian groups, and contain infinite direct
sums of Abelian 2-groups. In contrast, we shall see that K−1(Z[B4(S

2)]) ∼= Z ⊕ Z2.
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Compared with the families of groups considered in [7–9], the existence of torsion
here is once more a new phenomenon. We summarise these results as follows.

Theorem 1 The group B4(S
2) has the following lower algebraic K-groups:

Wh(B4(S
2)) ∼= Z ⊕ Nil1,

˜K0(Z[B4(S
2)]) ∼= Z2 ⊕ Nil0,

and K−1(Z[B4(S
2)]) ∼= Z2 ⊕ Z,

K−i (Z[B4(S
2)]) = 0 for all i ≥ 2,

where for i = 0, 1, the groups Nili are isomorphic to a countably-infinite direct sum
of Z2, Z4 or Z2 ⊕ Z4.

For n ≥ 5, we cannot expect the group Bn(S
2) to enjoy properties, such as hyper-

bolicity, similar to those of B4(S
2). Furthermore, we have not been able as yet to

determine an appropriate model for the universal space for the family of virtually
cyclic subgroups of Bn(S

2). There are some candidates suggested by the theory of
Brunnian braids, but the corresponding subgroups are of large index, and do not seem
to be terribly useful from a practical viewpoint. On the positive side, for small odd
values of n, the family of virtually cyclic subgroups of Bn(S

2) is relatively small,
and our techniques enable us to determine the corresponding K-groups of these sub-
groups. If we are able to find an appropriate universal space, we hope to be able to
determine the K-groups of Bn(S

2) for other values of n.
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Chapter 2
Lower Algebraic K -Theory of the Finite
Subgroups of Bn(S

2)

2.1 Classification of the Virtually Cyclic Subgroups
of Bn(S

2)

If G is a group that satisfies the Farrell-Jones fibred isomorphism conjecture, the
lower algebraic K-theory of the group ring Z[G] may be calculated in principle if
one knows the lower algebraic K-theory of the group rings of the virtually cyclic
subgroups of G (see Appendix A). Recall that a group is said to be virtually cyclic
if it possesses a cyclic subgroup of finite index. Clearly any finite group is virtually
cyclic. By results of Epstein andWall [1, 2], an infinite group is virtually cyclic if and
only if it has two ends. This allows us to show that any infinite virtually cyclic group
G is isomorphic either to F � Z or toG1 ˚ FG2, where F is a finite normal subgroup
of G, and in the second case, F is of index 2 in both G1 and G2. Consequently, in
order to determine the virtually cyclic subgroups of G, one must first discover its
finite subgroups. Let G = Bn(S

2), and if m � 2, let Dic4m denote the dicyclic group
of order 4m, with presentation:

Dic4m = 〈
x, y

∣∣ xm = y2, yxy−1 = x−1
〉
. (2.1)

If m is a power of 2, then we shall also say that Dic4m is a generalised quaternion
group, and denote it by Q4m . Using a presentation of Bn(S

2), such as that given in
Theorem 34, if n � 3, Bn(S

2) may be seen to be finite. The group B1(S
2) is trivial,

B2(S
2) is isomorphic to Z2, and B3(S

2) is isomorphic to Dic12, and its subgroups
may be obtained easily. So in most of what follows, we shall assume that n � 4, in
which case Bn(S

2) is infinite. The finite subgroups of Bn(S
2) were classified up to

isomorphism in [3] as follows.

Theorem 2 ([3, Theorem 1.3]) Let n � 4. The maximal finite subgroups of Bn(S
2)

are isomorphic to one of the following groups:

(a) Z2(n−1) if n � 5,
(b) Dic4n,

© The Author(s), under exclusive license to Springer Nature Switzerland AG,
part of Springer Nature 2018
J. Guaschi et al., The Lower Algebraic K-Theory of Virtually Cyclic Subgroups
of the Braid Groups of the Sphere and of Z[B4(S2)], SpringerBriefs
in Mathematics, https://doi.org/10.1007/978-3-319-99489-5_2
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(c) Dic4(n−2) if n = 5 or n � 7,
(d) the binary tetrahedral group, denoted by T∗, if n ≡ 4 (mod 6),
(e) the binary octahedral group, denoted by O∗, if n ≡ 0, 2 (mod 6),
(f) the binary icosahedral group, denoted by I∗, if n ≡ 0, 2, 12, 20 (mod 30).

More information on T∗,O∗ and I∗, to which we refer collectively as the binary
polyhedral groups, may be found in [4–7]. It is well known that the subgroups
of dicyclic and binary polyhedral groups are cyclic, dicyclic or binary polyhedral
(see [8, Proposition 85] for the binary polyhedral case). We recall from [3, page 759]
that the finite subgroups of Bn(S

2) are periodic of period 1, 2 or 4. Further, by
[3, Proposition 1.5], any two finite subgroups of Bn(S

2) that are isomorphic are also
conjugate, with the exception of those subgroups that are isomorphic toZ4 and Dic4r
if n is even and r divides n/2 or (n − 2)/2, in which case are two conjugacy classes
in each isomorphism class. Consequently, any such subgroup H of Bn(S

2) satisfies
the following three conditions (see [4] or [9, page 20]):

(a) the p2-condition: for any prime divisor p of |H | (|H | denotes the order of H ),
H contains no subgroup isomorphic to Zp × Zp.

(b) the 2p-condition: for any prime divisor p of |H |, any subgroup of H of order
2p is cyclic.

(c) the Milnor condition: if H has an element of order 2, this element is unique
(and so is central in H ).

Remark 3

(i) The p2-condition implies that the Sylow p-subgroups of H are either cyclic or
generalised quaternion, the latter case occurring only if p = 2.

(ii) If G is a dicyclic or binary polyhedral group, the centre Z(G) is generated by
the unique element of order 2.

The second step in the process is to classify the infinite virtually cyclic subgroups
of Bn(S

2). Up to isomorphism, and with a finite number of exceptions, this was
achieved in [8]. The statement of the main result of [8] is somewhat long to explain
here, but to give a flavour of the results, we state the classification when n is odd, in
which case the classification is complete for all values of n. We shall also recall the
case n = 4 later in Theorem 39.

Theorem 4 ([8, Theorem7])Let n � 3beodd. Thenup to isomorphism, the virtually
cyclic subgroups of Bn(S

2) are as follows.
(I) The isomorphism classes of the finite virtually cyclic subgroups of Bn(S

2) are:
(i) Dic4m, where m � 3 divides n or n − 2.
(ii) Zm, where m ∈ N divides 2n, 2(n − 1) or 2(n − 2).

(II) If in addition n � 5, the following groups are the isomorphism classes of the
infinite virtually cyclic subgroups of Bn(S

2).
(i) Zm �θ Z, where θ(1) ∈ {Id,−Id}, m is a strict divisor of 2(n − i), for

i ∈ {0, 2}, and m �= n − i .
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(ii) Zm × Z, where m is a strict divisor of 2(n − 1).
(iii) Dic4m × Z, where m � 3 is a strict divisor of n − i for i ∈ {0, 2}.
(iv) Z4q ˚ Z2qZ4q , where q divides (n − 1)/2.
(v) Dic4q ˚ Z2qDic4q , where q � 2 is a strict divisor of n − i , and i ∈ {0, 2}.

The aim of the rest of this chapter is to compute the lower algebraic K-theory
of the group rings of many of the finite groups of Bn(S

2). In Sect. 2.2, we start
by determining the number of different types of conjugacy classes in the binary
polyhedral groups. The main result of that section, Proposition 7, will be used in the
rest of the chapter to determine the lower algebraic K-theory of the group rings of
T∗, O∗ and I∗. In Sects. 2.3, 2.4 and 2.5, we calculate respectively the Whitehead,
K̃0- and K−1-groups of the group rings of many groups that appear in the statement
of Theorem 2. This allows us in Sect. 2.6 to determine the lower algebraic K-theory
of the group rings of the isomorphism classes of the finite groups of Bn(S

2) for all
4 � n � 11, the results being summarised in Table 2.1.

2.2 Conjugacy Classes of Binary Polyhedral Groups

In this section, we compute the number of certain types of conjugacy classes of
elements of the binary polyhedral groups. Some of these numbers will be used in the
calculations of the lower algebraic K-theory of the group rings of these groups. Recall
first that O∗ is generated by the elements X, P, Q and R, subject to the following
relations [7, page 198]:

{
X3 = 1, P2 = Q2 = R2, PQP−1 = Q−1, X PX−1 = Q, XQX−1 = PQ

RXR−1 = X−1, RPR−1 = QP, RQR−1 = Q−1.

(2.2)
It follows that O∗ contains T∗ as an index 2 subgroup generated by X , P and Q that
are subject to the relations given in the first line of (2.2). The subgroup 〈P, Q〉 is
isomorphic toQ8, and X is of order 3 and acts by conjugation on 〈P, Q〉 by permuting
P, Q and PQ cyclically, so that T∗ ∼= Q8 � Z3. Further, O∗ \T∗ is comprised of 12
elements of order 4 and twelve of order 8. We recall also that |I∗| = 120, that I∗ is
comprised of the trivial element, one element of order 2, thirty elements of order 4,
twenty elements of order 3 and twenty of order 6, twenty-four elements of order 5 and
twenty-four elements of order 10. The group I∗ also contains subgroups isomorphic
to T∗. The following lemma will be useful in some of our computations.

Lemma 5 Let G be a dicyclic or binary polyhedral group, and let g ∈ G be an
element of order greater than or equal to 3. Then the centraliser CG(g) of g in G is
cyclic.

Proof Let g ∈ G be of order at least 3. Then g ∈ Z(CG(g)), so |Z(CG(g))| � 3. The
subgroups of G are cyclic, dicyclic or binary polyhedral (see [8, Proposition 85] for
the binary polyhedral case). Then Z(CG(g)) is cyclic because the centre of a dicyclic
or binary polyhedral group is isomorphic to Z2 by Remarks 3(ii).
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If G is a finite group and d is a divisor of |G|, let ν(d) be the number of elements
of order d in G, let r0(d) be the number of conjugacy classes of elements of order
d in G, let r1(d) be the number of conjugacy classes of unordered pairs

{
g, g−1

}

of elements of order d in G, and let r2(d) be the number of conjugacy classes of
cyclic subgroups of G of order d in G. If g, g′ are elements of G of the same order d
such that

{
g, g−1

}
is conjugate to

{
g′, g′−1

}
, then there exists h ∈ G such that either

hgh−1 = g′ or hgh−1 = g′−1, so h 〈g〉 h−1 = 〈
g′〉 = 〈

g′−1
〉
, and thus r1(d) � r2(d).

It follows that:
ν(d) � r0(d) � r1(d) � r2(d). (2.3)

For small d, the inequality r1(d) � r2(d) is an equality.

Lemma 6 Let G be a finite group. Then r1(d) = r2(d) for all d ∈ {1, 2, 3, 4, 6}.
Proof If d ∈ {1, 2} and if g ∈ G is of order d then the pair

{
g, g−1

}
reduces to {g}

and then clearly r1(d) = r2(d). So assume that d ∈ {3, 4, 6}. From above, it suffices
to show that r1(d) � r2(d). Note that if g ∈ G is of order d then the elements of 〈g〉
of order d are precisely g and g−1. If g′ ∈ G is also of order d and 〈g〉 and 〈

g′〉 are
conjugate then g is conjugate to g′ or g′−1, so

{
g, g−1

}
is conjugate to

{
g′, g′−1

}
,

which completes the proof of the lemma. �
The following proposition summarises the values of ν(d), r0(d), r1(d) and r2(d)

for each of the three binary polyhedral groups. It will be used in the calculations of
Whitehead and K−1-groups in Propositions 10 and 28 respectively.

Proposition 7

(a) If G = T∗, ν(d), r0(d), r1(d) and r2(d) are given by:

If d ∈ {3, 6}, and g ∈ T∗ is of order d then g and g−1 are representatives of the
two conjugacy classes of elements of order g.

(b) If G = O∗, ν(d), r0(d), r1(d) and r2(d) are given by:
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If d = 4, and g1 and g2 are elements ofO∗ of order 4 such that g1 ∈ T∗ and g2 /∈
T∗ then g1 and g2 are representatives of the two conjugacy classes of elements
of order 4. If d = 8, and g ∈ T∗ is of order 8, g and g3 are representatives of the
two conjugacy classes of elements of order 8.

(c) If G = I∗, ν(d), r0(d), r1(d) and r2(d) are given by:

If d = 5 (resp. d = 10), and g ∈ T∗ is of order d, g and g2 (resp. g and g3) are
representatives of the two conjugacy classes of elements of order d.

Proof Since the binary polyhedral groups have exactly one element of order 1 and of
order 2, the elements of the columns for d ∈ {1, 2} are all equal to 1. So we suppose
that d � 3.

(a) Let G = T∗. We make use of the presentation of whose relations are given by
the first line of (2.2). Let d = 3. The subgroups of T∗ of order 3 are the Sylow
3-subgroups of T∗, so they are pairwise conjugate. Thus r2(3) = 1, and r1(3) = 1
by Lemma 6. We now compute r0(3). Let g ∈ T∗ be of order 3. Its centraliser
CT∗(g) contains g and the central element P2 of T∗ of order 2, soCT∗(g) contains
the cyclic subgroup

〈
gP2

〉
of order 6.NowT∗ contains no element of order greater

than 6, and CT∗(g) is cyclic by Lemma 5. It follows that CT∗(g) = 〈
gP2

〉
. By

the orbit-stabiliser theorem, the conjugacy class of g contains 4 elements, and
since T∗ possesses 8 elements of order 4, we deduce that r0(3) = 2. The fact
that r1(3) = 1 implies that g and g−1 belong to different conjugacy classes, so g
and g−1 are representatives of the two conjugacy classes of elements of order 3.
By adjoining P2 to g, we see that ri (6) = ri (3) for all i ∈ {0, 1, 2}.

Now let d = 4. The six elements of T∗ of order 4 are contained in the subgroup
〈P, Q〉 isomorphic to Q8. We have QPQ−1 = P−1, so P is conjugate to P−1.
Further, conjugation by X permutes P , Q and PQ, so T∗ contains a single
conjugacy class of elements of order 4, r0(4) = 1, and thus r1(4) = r2(4) = 1
by (2.3).

(b) LetG = O∗. First let d = 3. All of the elements of O∗ of order 3 are contained in
its subgroup T∗, and so r0(3) � 2. From (2.2), we have the relation RXR−1 =
X−1, where X is of order 3. Since X and X−1 are representatives of the two
conjugacy classes of elements of order 3 in T∗, it follows that there is a single
conjugacy class of elements of order 3 inO∗, so r0(3) = 1, and r1(3) = r2(3) = 1
by (2.3). Once more, the values for d = 6 are obtained by adjoining P2 to X .

Now let d = 4. From the caseG = T∗, the six elements of order 4 that belong
to the subgroup T∗ of O∗ are pairwise conjugate, and since T∗ is normal in O∗,
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they form a complete conjugacy class of elements of order 4. Now let U denote
the set of twelve elements of order 4 that belong to O∗ \T∗, and let g ∈ U . Since
CO∗(g) is cyclic by Lemma 5 and contains 〈g〉, it follows that |CO∗(g)| ∈ {4, 8}.
Suppose that |CO∗(g)| = 8. Then CO∗(g) ∼= Z8, and there exists h ∈ CO∗(g) of
order 8 such that g = h2. But since T∗ is of index 2 in O∗, it follows that h2 ∈ T∗,
which contradicts the fact that g /∈ T∗. So |CO∗(g)| = 4, and CO∗(g) = 〈g〉. The
orbit-stabiliser theorem implies that the conjugacy class of g contains twelve
elements, which must be the elements of U . We thus conclude that there are two
conjugacy classes in O∗ of elements of order 4, so r0(4) = 2. It also follows that
if g1 and g2 are elements of O∗ of order 4 such that g1 ∈ T∗ and g2 /∈ T∗ then g1
and g2 are representatives of these two conjugacy classes. If g ∈ O∗ is of order
4, then either it belongs to T∗, and then g−1 ∈ T∗, or it belongs to O∗ \T∗, and
then g−1 ∈ O∗ \T∗. In both cases, it follows that g and g−1 are conjugate in O∗.
Thus r1(4) = 2, and hence r2(4) = 2 by Lemma 6.

Finally, let d = 8, let g ∈ O∗ be of order 8, and let H be a Sylow 2-subgroup
that contains g. Then |H | = 16, and since O∗ has no element of order 16, it
follows fromRemark 3(i) that H ∼= Q16. The groupQ16 contains a unique cyclic
subgroup of order 8, and hence H is the only Sylow 2-subgroup that contains
g. Since the Sylow 2-subgroups are pairwise conjugate, it follows that the three
cyclic subgroups of order 8 are pairwise conjugate, and hence r2(8) = 1. The
centraliser CO∗(g) contains 〈g〉, and is cyclic by Lemma 5, and the fact that O∗
has no element of order greater than 8 implies that CO∗(g) = 〈g〉. The orbit-
stabiliser theorem implies the conjugacy class of g contains 6 elements, and
since O∗ contains 12 elements of order 8, we conclude that r0(8) = 2. Using the
presentation (2.1) ofQ16, we see that ygy−1 = g−1 for all y ∈ H \ 〈g〉, so g and
g−1 are conjugate, and it follows that r1(8) = 2 also. We also deduce that g and
g3 are representatives of the two conjugacy classes of elements of order 8.

(c) Let G = I∗. First suppose that d ∈ {3, 5}, and let g ∈ I∗ be an element of order
d. Then CO∗(g) contains 〈g〉 and the unique element ω of I∗ of order 2, and since
CO∗(g) is cyclic by Lemma 5,we see as in the previous cases thatCO∗(g) = 〈ωg〉,
and |CO∗(g)| = 2d. The orbit-stabiliser theorem then implies that the conjugacy
class of g contains 60/d elements. If d = 3, this conjugacy class is the set of
elements of order 3, so r0(3) = 1, and hence r1(3) = r2(3) = 1 by (2.3). If d = 5,
the conjugacy class of g contains 12 elements, from which we conclude that
there are two conjugacy classes C1 and C2 of elements of order 5, so r0(5) = 2.
The subgroups of I∗ of order 5 are its Sylow 5-subgroups, which are pairwise
conjugate, so r2(5) = 1. This also implies that each such subgroup contributes
two elements to each of C1 and C2. So if g ∈ O∗ is of order 5, it is conjugate
to exactly one element h of 〈g〉 \ {g}. Note that h �= g2 (resp. h �= g−2) for
otherwise g would be conjugate to g2 (resp. g−2), then g2 would be conjugate
to g−1 (resp. to g), and the conjugacy class of g would contain at least three
elements of 〈g〉, which is not possible. Hence g is conjugate to g−1 for every
element g ∈ I∗ of order 5, but is not conjugate to g2 or to g−2. This proves that
the conjugacy class of

{
g, g−1

}
is equal to that of g, and so r1(5) = 2, and that

g and g2 are representatives of the two conjugacy classes of elements of order
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5. Once more, if d ∈ {3, 5}, then ri (2d) = ri (d) for all i ∈ {0, 1, 2}.
It remains to study the case d = 4. Let g ∈ I∗ be an element of order 4. Using

once more the fact that CO∗(g) contains 〈g〉 and is cyclic, we see that CO∗(g) =
〈g〉, and then that the conjugacy class of g contains thirty elements, which is
the number of elements of I∗ of order 4. So r0(4) = 1, and r1(3) = r2(3) = 1
by (2.3). �

2.3 Whitehead Groups of the Finite Subgroups of Bn(S
2)

If G is a finite group, recall that its Whitehead group Wh(G) is a finitely-generated
Abelian group, and so may be written in the form:

Wh(G) = Z
r ⊕ SK1(Z[G]), (2.4)

where SK1(Z[G]) is isomorphic to the torsion subgroup of Wh(G) [10]. The fol-
lowing proposition implies that to determine Wh(G), where G is a finite subgroup
of Bn(S

2), it suffices to compute r .

Proposition 8 Let n ∈ N, and let G be a finite subgroup of Bn(S
2). Then SK1(Z[G])

is trivial.

Proof As we mentioned in Sect. 2.1, any finite subgroup G of Bn(S
2) is cyclic,

dicyclic or binary polyhedral. If G is cyclic, dicyclic of order 8m, m ∈ N, or binary
polyhedral the result follows from [11, Theorem A, parts (1), (3), (5), (6) and (7)].
The only other possibility is when G is dicyclic of order 4m, where m is odd. In
this case, the Sylow p-subgroups of G are cyclic, and from [9, page 20], G admits a
presentation of the Type I groups of [11, Appendix]. The result then follows from [11,
Theorem A, part (2)].

Remark 9 Proposition 8 may also be proved by applying [12, Theorem 14.2(i) and
Example 14.4].

Consequently, if G is a finite subgroup of Bn(S
2), then by Eq. (2.4), Wh(G) is

a free Abelian group, and it remains to calculate its rank. This is achieved in the
following proposition.

Proposition 10 Let n ∈ N, let G be a finite subgroup of Bn(S
2), and if q ∈ N, let

δ(q) denote the number of divisors of q. Then Wh(G) ∼= Z
r , where:

r =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⌊
m
2

⌋ + 1 − δ(m) if G ∼= Zm,m ∈ N

m + 1 − δ(2m) if G ∼= Dic4m,m � 2

0 if G ∼= T∗

1 if G ∼= O∗

2 if G ∼= I∗ .
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Proof Let G be isomorphic to a finite subgroup of Bn(S
2). We recall once more that

G is cyclic, dicyclic or binary polyhedral. Let r1 denote the number of conjugacy
classes of unordered pairs

{
g, g−1

}
in G, where g ∈ G, and let r2 be the number of

conjugacy classes of cyclic subgroups of G. By [13, page 39], the rank r of Wh(G)

is equal to r1 − r2, and so:

r =
∑

d||G|

(
r1(d) − r2(d)

)
. (2.5)

We treat the possibilities for G separately.

(a) G ∼= Zm , where m ∈ N. Since G is Abelian, r1 is just the number of unordered
pairs

{
g, g−1

}
in G, where g runs over the elements of G, and r2 is the number

of cyclic subgroups of G. Since g = g−1 if and only if |〈g〉| ∈ {1, 2}, we have
that r1 = m−1

2 + 1 ifm is odd, and r1 = m−2
2 + 2 ifm is even. So r1 = ⌊

m
2

⌋ + 1.
Since the subgroups of Zm are in bijection with the divisors of m, we have
r2 = δ(m), so r = r1 − r2 = ⌊

m
2

⌋ + 1 − δ(m) as required.
(b) G ∼= Dic4m , where m � 2. Let G = 〈x〉∐ 〈x〉y be given by Eq. (2.1). Since the

elements of 〈x〉y are of order 4, it follows from Lemma 6 and Eq. (2.5) that
they do not contribute to r . So we just need to consider the contributions of
the elements of 〈x〉 to r1 and r2. Using Eq. (2.1), the conjugacy classes of the
elements of 〈x〉 in G are

{
xi , x−i

}
, where 0 � i � m. Since 〈x〉 is of order 2m,

as in the cyclic case, its elements contribute m + 1 to the r1-term, and δ(2m) to
the r2-term, and thus r = m + 1 − δ(2m).

(c) If G is binary polyhedral, the rank of Wh(G) may be easily deduced using (2.5)
and the tables of Proposition 7. �

2.4 ˜K0(Z[G]) for the Finite Subgroups of Bn(S
2)

Let G be a finite group. The calculation of K̃0(Z[G]) is a difficult problem, even
when the order of G is small. It is known that K̃0(Z[G]) is isomorphic to the ideal
class group Cl(Z[G]) of Z[G] [14, Sect. 49.11]. The following theorems summarise
some results about K̃0(Z[G]) for certain finite groups.
Theorem 11 ([14, Corollary 50.17], [15]) If G is Abelian then K̃0(Z[G]) is trivial
if and only if G is either cyclic of order n, n ∈ {1, 2, . . . , 11, 13, 14, 17, 19}, or is
isomorphic toZ2 ⊕ Z2. If G is non Abelian and K̃0(Z[G]) = 1 then G is isomorphic
to one of Dih2q , q � 3, A4, S4 or A5, Dih2q being the dihedral group of order 2q.

Theorem 12 ([16, Theorems III and IV, Corollary 10.12])

(a) K̃0(Z[Dic4m]) ∼=

⎧
⎪⎨

⎪⎩

Z2 if m ∈ {2, 3, 4, 5, 7, 8, 11}
Z
2
2 if m = 9

Z
3
2 if m ∈ {6, 10} .
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(b) K̃0(Z[T∗]) ∼= Z2, K̃0(Z[O∗]) ∼= Z
2
2 and K̃0(Z[I∗]) ∼= Z

3
2.

In Sect. 2.6, wewill determine the lower algebraic K-theory of the finite subgroups
of Bn(S

2) for all 4 � n � 11.With this inmind, we now compute K̃0(Z[G]) for some
other finite cyclic groups. Before proving our results, we state the following result
concerning the Bass cyclic units of the group ring Z[Zn].
Theorem 13 ([17, p. 403]) Let G denote the cyclic group of order n. Let n, k ∈ N, let
g ∈ Zn be an element of order n, and let m be amultiple ofφ(n). Then km ≡ 1 mod n.
Further, the Bass cyclic units are defined by:

uk,m(g) = (
1 + g + · · · + gk−1)m + 1 − km

n
(1 + g + · · · + gn−1),

where k and n are relatively prime, and they generate all the units of infinite order
in Z[Zn].
Theorem 14 Let G = Zn, where n ∈ {18, 20, 22}. Then K̃0(Z[G]) ∼= Z3 if n ∈
{18, 22}, and K̃0(Z[G]) ∼= Z

5
2 if n = 20.

Proof LetG = Zn , where n ∈ {18, 20, 22}.Wemake use of an appropriate Cartesian
square and the associated Mayer-Vietoris sequence as follows. We begin with the
Rim square associated to Z2:

Z[Z2] −−−−→ Z
⏐⏐�

⏐⏐�

Z −−−−→ F2.

(2.6)

By (2.6), we obtain the following Cartesian square:

Z[G] −−−−→ Z[Zn/2]
⏐⏐�

⏐⏐�

Z[Zn/2] −−−−→ F2[Zn/2].
(2.7)

Proposition 8 and Theorem 11 imply that K̃0(Z[Zn/2]) = 0 and SK1(Z[Zn/2]) = 0,
hence the Mayer-Vietoris sequence associated with (2.7) becomes:

· · · → U (Z[Zn/2]) ⊕U (Z[Zn/2]) → U (F2[Zn/2]) → K̃0(Z[G]) → 0.

In the rest of this proof,U (R)will denote the group of Bass cyclic units of an integral
group ring R. We therefore need to understand the following homomorphism:

U (Z[Zn/2]) ⊕U (Z[Zn/2]) → U (F2[Zn/2]) (2.8)
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that is induced by reduction modulo 2. If n = 18 (resp. n = 22), the ring F2[Zn/2] is
semi-simple, and is isomorphic to F2 ⊕ F2(ξ

3) ⊕ F2(ξ) (resp. to F2 ⊕ F2(ξ)), where
ξ is a primitive (n/2)th root of unity, and is a root of the polynomial x6 + x3 + 1
(resp. of x10 + x9 + · · · + x2 + x + 1). Both of these polynomials are irreducible in
F2[x]. Recall that F2(ξ) is a field with 64 (resp. 1024) elements [18], and its group
of units is cyclic of order 63 (resp. of order 1023 = 31.11.3). Suppose that n = 18.
As we mentioned, we are taking U (Z[Z9]) to be generated by the Bass cyclic units
that are of infinite order in Z[Z9]. These cyclic units are described by Theorem 13,
and are u2,6, u4,6, u5,6, u7,6 and u8,6. The image of u7,6 in F2(ξ) is:

(1 + ξ + · · · + ξ6)6 = (ξ7 + ξ8)6 = ξ6(1 + ξ)6 = ξ6(1 + ξ2)3

= ξ6(1 + ξ2 + ξ4 + ξ6) = ξ6 + ξ8 + ξ + ξ3 = 1 + ξ + ξ8.

So the image of u27,6 in F2(ξ) is 1 + ξ2 + ξ7, the image of u67,6 in F2(ξ) is the image
of (u27,6)

2u27,6 in F2(ξ), which is equal to:

(1 + ξ4 + ξ5)(1 + ξ2 + ξ7) = 1 + ξ2 + ξ7 + ξ4 + ξ6 + ξ2 + ξ5 + ξ7 + ξ3 = ξ4 + ξ5.

Thus the image of u77,6 in F2(ξ) is the image of u67,6u7,6 in F2(ξ), which is equal to:

(ξ4 + ξ5)(1 + ξ + ξ8) = ξ4 + ξ5 + ξ3 + ξ5 + ξ6 + ξ4 = 1.

Hence the image of u7,6 in F2(ξ) is of order 7, and the image of u7,6u8,6 in F2(ξ) is
of order 21. We now show that the three other cyclic units are each of order 21.

(i) u2,6: its image in F2(ξ) is (1 + ξ)6 = (1 + ξ2)3 = 1 + ξ2 + ξ4 + ξ6. So the
image of u32,6 in F2(ξ) is equal to the image of u22,6u2,6 in F2(ξ), which in turn
is equal to:

(1 + ξ4 + ξ8 + ξ3)(1 + ξ2 + ξ4 + ξ6) = 1 + ξ2 + ξ4 + ξ6 + ξ4 + ξ6 + ξ8+
ξ + ξ8 + ξ + ξ3 + ξ5 + ξ3 + ξ5 + ξ7 + 1 = ξ2 + ξ7.

Hence the image of u62,6 in F2(ξ) is equal to the image of (u32,6)
2 in F2(ξ),

which is equal to ξ4 + ξ5, and the image of u72,6 in F2(ξ) is equal to the image
of (u62,6)u2,6 in F2(ξ), which in turn is equal to:

(1 + ξ2 + ξ4 + ξ6)(ξ4 + ξ5) = ξ4 + ξ6 + ξ8 + ξ + ξ5 + ξ7 + 1 + ξ2 = ξ3,

which is of order 3. It follows that the image of u2,6 in F2(ξ) is of order 21.
(ii) The image of u4,6 in F2(ξ) is:
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(1 + ξ + ξ2 + ξ3)6 = (1 + ξ2 + ξ4 + ξ6)3

= (1 + ξ2 + ξ4 + ξ6)2(1 + ξ2 + ξ4 + ξ6)

= (1 + ξ4 + ξ8 + ξ3)(1 + ξ2 + ξ4 + ξ6)

= (ξ2 + ξ3 + ξ4)2 = ξ4 + ξ6 + ξ8 = ξ4(1 + ξ2 + ξ4).

Then the image of u24,6 in F2(ξ) is ξ8(1 + ξ4 + ξ8) = ξ8 + ξ3 + ξ7 = ξ3(1 +
ξ4 + ξ5), and the image of u34,6 = u24,6u4,6 in F2(ξ) is:

ξ7(1 + ξ2 + ξ4)(1 + ξ4 + ξ5) = ξ7(1 + ξ4 + ξ5 + ξ2 + ξ6 + ξ7 + ξ4 + ξ8 + 1)

= ξ7(ξ5 + ξ2 + ξ6 + ξ7 + ξ8)

= ξ7(ξ6 + ξ7) = ξ4(1 + ξ).

Thus the image of u64,6 = (u34,6)
2 is ξ(1 + ξ7), and the image of u74,6 = u64,6u4,6

is:

ξ5(1 + ξ2 + ξ4)(1 + ξ7) = ξ5(1 + ξ2 + ξ4 + ξ7 + 1 + ξ2) = ξ6.

It follows that the image of u4,6 in F2(ξ) is of order 21.
(iii) The image of u5,6 in F2(ξ) is:

(1 + ξ + · · · + ξ4)6 = (1 + ξ2 + ξ4 + ξ6 + ξ8)3 = (ξ3 + ξ4 + ξ5)3 = (1 + ξ + ξ2)3

= (1 + ξ + ξ2)2(1 + ξ + ξ2) = (1 + ξ2 + ξ4)(1 + ξ + ξ2)

= (1 + ξ + ξ2 + ξ2 + ξ3 + ξ4 + ξ4 + ξ5 + ξ6) = ξ(1 + ξ4).

So the image of u35,6 in F2(ξ) is ξ3(1 + ξ4 + ξ8 + ξ3) = ξ3 + x7 + ξ2 + ξ6 =
1 + ξ2 + ξ7, and the image of u65,6 = (u35,6)

2 is 1 + ξ4 + ξ5. Hence the image
of u75,6 = u65,6u5,6 is:

(1 + ξ4 + ξ5)ξ(1 + ξ4) = ξ(1 + ξ4 + ξ5 + ξ4 + ξ8 + 1) = ξ(ξ5 + ξ8) = ξ3.

It follows that the image of u5,6 in F2(ξ) is of order 21.

We conclude that the image in F2(ξ) of the subgroup generated by the cyclic units is
of order 21. Hence the cokernel in (2.8) is of order 3, and from that equation we see
that K̃0(Z[Z18]) ∼= Z3, thus proving the result in the case n = 18. The proofs in the
cases n = 20 and n = 22 are similar. First suppose that n = 22. As above, we see that
the Bass cyclic units are of the form uk,10 for k = 2, 3, 4, . . . , 10, and making use
of a Mathematica [19] routine written by José Hernandez (CCM-UNAM), to whom
we are grateful, one may check that the image in F2(ξ) of the subgroup generated
by the cyclic units is of order 341, and that the cokernel of (2.8) is of order 3, so
once more, K̃0(Z[Z22]) ∼= Z3. Finally, suppose that n = 20. In this case, the ring
F2[Z10] is not semi-simple. It is isomorphic to F2[x]/(x5 − 1)2, and its group of
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units is isomorphic to the direct productU (F2[Z10]) = Z
5
2 × Z3 × Z5. Applying the

Mathematica routine once more to the cyclic units u3,4, u7,4 and u9,4, we see that the
image of the group generated by these units in (2.8) is of order 15, and hence the
cokernel of (2.8) is isomorphic to Z

5
2. This completes the proof of the theorem. �

2.5 K−1(Z[G]) for the Finite Subgroups of Bn(S
2)

Let G be a finite subgroup of Bn(S
2). In order to determine K−1(Z[G]), we shall use

the following special case of a result of Carter. Similar results have recently been
obtained independently by Magurn in [20] for generalised quaternion and binary
polyhedral groups.

First we recall that a simple Artinian ring A is isomorphic to Mn(D) for some
positive integer n and some skew field D. Further, D is finite dimensional over its
centre E , the dimension being a square [D : E], and the Schur index of A is equal
to

√[D:E] [21, Sect. 27].
Theorem 15 ([22, Theorem 1]) Let G be a finite group of order q. Then

K−1(Z[G]) ∼= Z
r ⊕ Z

s
2, (2.9)

where r is given by
r = 1 − rQ +

∑

p | |G|

(
rQp − rFp

)
, (2.10)

rQ (resp. rQp , rFp ) denotes the number of isomorphism classes of irreducibleQ- (resp.
Qp-, Fp-) representations of G, and s is equal to the number of simple components
of Q[G] that have even Schur index m but have odd local Schur indices mQ at every
finite prime Q of the centre which divides q.

So to calculate K−1(Z[G]), we must determine the quantities rF for the various
fields appearing in Eq. (2.10), as well as the number s. For the finite subgroups G
of Bn(S

2), we divide this calculation into two parts. In Sect. 2.5.1, we determine r ,
which yields the torsion of K−1(Z[G]). In Sect. 2.5.2, we compute s, which is the
rank of K−1(Z[G]). We then obtain K−1(Z[G]) from (2.9).

2.5.1 Torsion of K−1(Z[G]) for Finite Subgroups of Bn(S
2)

LetG be a finite subgroup of Bn(S
2), and let s be as defined in Eq. (2.9). As remarked

in [22, page 1928], a consequence of Theorem 15 is that K−1(Z[G]) is torsion free
if G is Abelian. In particular, if G is cyclic, then s = 0. If G is non cyclic, then as
we shall see, K−1(Z[G])may have torsion. Although Eq. (2.9) clearly allows for this
possibility, this appears to be a new phenomenon, and contrasts with the calculations
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given in [23, 24] for example.We thus require new techniques to calculate the torsion
of K−1(Z[G]). If G is dicyclic, we make use of results due to Yamada concerning
the computation of the (local) Schur indices of the simple components of Q[G] [25].
If G is binary polyhedral, then one may apply induction/restriction techniques and
the Mackey formula.

Assume first thatG ∼= Dic4m is dicyclic, wherem � 3 is odd. Ifm is an odd prime
then we determine K−1(Z[Dic4m]). In principle, our method should apply to any odd
value of m, not just for prime values. If m is odd, the Wedderburn decomposition
over Q of the algebra Q[Dic4m] is given in [21, Example 7.40]:

Q[Dic4m] ∼= Q[Dih2m] ⊕ Q(i) ⊕
( ⊕

d0|m, d0>1

H2d0

)

∼= Q
2 ⊕

( ⊕

d|m, d>2

M2
(
Q

(
ζd + ζ−1

d

))) ⊕ Q(i) ⊕
( ⊕

d0|m, d0>1

H2d0

)
,

(2.11)

where ζd is a primitive dth root of unity, and

Hd = Ed ⊕ Edi ⊕ Ed j ⊕ Edk (2.12)

is the quaternion skew field with centre Ed = Q
(
ζd + ζ−1

d

)
. In particular, if m = μ

is prime then
Q[Dic4μ] ∼= Q

2 ⊕ M2
(
Eμ

) ⊕ Q(i) ⊕ H2μ. (2.13)

Note that the number of components in Eq. (2.13) is equal to the number of conju-
gacy classes of cyclic subgroups of Dic4μ, and that the components are in one-to-one
correspondence with the irreducible Q-representations of Dic4μ. The first four com-
ponents of Eq. (2.13) are matrix rings over fields, and so their Schur index is equal
to one. By Eq. (2.9), the torsion of K−1(Z[Dic4μ]) is then either trivial or equal to Z2

depending on the Schur and local Schur indices of the remaining component H2μ.
We now determine precisely this torsion using results of Yamada [25, 26].

Proposition 16 If μ is an odd prime, the torsion of K−1(Z[Dic4μ]) is trivial if μ ≡
3 mod 4, and is equal to Z2 if μ ≡ 1 mod 4.

Proof We apply the results of [25, 26], and refer the reader to these papers for the
notation used in this proof. If n ∈ N and w ∈ Z is coprime with n, then wmod× n
will denote w as an element of the multiplicative group of integers modulo n. With
the notation of [25, Proposition 4], we have m = 2μ, r = 2μ − 1, s = 2, h = μ and
u is the order of 2μ − 1mod× 2μ, so u = s = 2. From [25, Example 3, Sect. 6], there
are representations of Dic4μ of the form U (2)

α,0, where 0 � α � 2μ − 1. Such repre-
sentations are defined in [25, Eq. (8), p. 214] and induced by linear characters. Using
[25, Proposition 5], the representation U (2)

1,0 gives rise to an irreducible representa-
tion of Q[Dic4μ], and the last part of [25, Example 3, Sect. 6] implies that its Schur
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index is equal to two. Since the Schur index of each of the first four components
of Eq. (2.13) is equal to one, it follows that the simple component H2μ of Q[Dic4μ]
corresponds to U (2)

1,0 .

We now apply [25, Proposition 9] to U (2)
1,0 . Within our framework, the envelop-

ing algebra envQ
(
U (2)

1,0

)
with respect to Q is isomorphic to the simple component

H2μ, and the centre E2μ of H2μ is isomorphic to Q

(
χ(2)
1,0

)
, χ(2)

1,0 being the charac-

ter of U (2)
1,0 [26, Introduction]. With the notation of [25, Proposition 9], we have

d1 = 2μ
gcd (2μ,1) = 2μ and v1 = 2μ

gcd (2μ,μ)
= 2. Let p be a finite prime of the centre

Eμ of H2μ that divides 4μ. Then p divides 2μ, and since μ is odd, p divides p,
where p ∈ {2,μ}. We distinguish these two possibilities, the notation being that of
[25, Proposition 9].

(a) Suppose that p divides 2. Then we have p = 2, b = z = 1, a = 1 and t ′ is the
order of 2μ − 1mod× μ, so t ′ = 2. Thus ep = 1, and hence cp = �p = 1.

(b) Suppose that p divides μ. Then p = μ, b = 0, z = 2, a = 1,
〈
2μ − 1mod× 2

〉 =〈
μmod× 2

〉 = {1}, f = f̃ = t ′ = 1, q = μ, ep = 2, cp = gcd (2,μ − 1) = 2
and

�p = 2

gcd
(
2, μ−1

2

) =
{
1 if μ ≡ 1 mod 4

2 if μ ≡ 3 mod 4

by [25, Proposition 9(II)].

Thus if μ ≡ 1 mod 4, the simple component H2μ of Q[G] whose Schur index is
equal to two satisfies the property that its local Schur indices at every finite prime of
the centre are odd. Hence the integer s of Eq. (2.9) is equal to one, so the torsion of
K−1(Z[G]) is Z2. If μ ≡ 3 mod 4 then �p = 2 for any finite prime p that divides μ,
so s = 0, and hence K−1(Z[G]) is torsion free. �

As another example, we calculate the torsion of K−1(Z[Dic4m]) in the case where
m is a power of 2 (so Dic4m is a generalised quaternion group).

Proposition 17 The torsion of K−1(Z[Q2k ]) is trivial if k = 3, and is equal to Z2 if
k � 4.

Proof Let k � 3. Then Dic2k = Q2k . From [21, Example 7.40, case 1],

Q[Q2k ] ∼= Q[Dih2k−1] ⊕ H2k−1 , (2.14)

where H2k−1 is the quaternion skew field defined by Eq. (2.12). Using [21, Exam-
ple 7.39], each simple component of Q[Dih2k−2 ] is a matrix ring over a field, and so
its Schur index is equal to one. As in the proof of Proposition 16, one may show that
the Schur index of the remaining simple component H2k−1 of Eq. (2.14) is equal to
two, and that this component corresponds to the irreducible representation U (2)

1,0 . To
study the local Schur index �p of each finite prime p dividing the centre E2k−1 of the
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simple componentH2k−1 , we again apply [26, Proposition 9].With the same notation,
we have m = 2k−1, r = 2k−1 − 1, u = s = 2, h = 2k−2, d1 = 2k−1 and v1 = 2. If p
does not divide 2k−1 then�p = 1 by [26, Proposition 9(I)]. So suppose that p divides
2k−1.With the notation of [26, Proposition 9(II)], b = z = 1 and p = 2. If k = 3 then
we are in the exceptional case of [26, Proposition 9(II)], so�p = 2. Thus there exists
a finite prime of the centre E2k−1 ofH2k−1 dividing 2k with even local Schur index, and
it follows from Theorem 15 that the torsion of K−1(Z[Q8]) is trivial. Assume then
that k � 4. So f = f̃ = t ′ = 1 and ep = q = 2, thus cp = �p = 1. Then the simple
component H2k−1 of Q[Q2k ] whose Schur index is equal to two satisfies the property
that its local Schur indices at every finite prime of the centre dividing 2k are odd.
Hence the integer s of Eq. (2.9) is equal to one, and thus the torsion of K−1(Z[Q2k ])
is equal to Z2 as required.

Now let G be a binary polyhedral group. We recall that a group is said to be
2-hyper-elementary if it is a semi-direct product of a cyclic normal subgroup of odd
order and a 2-group. Since G is not itself 2-hyper-elementary, induction/restriction
techniques may be used to calculate the torsion of K−1(Z[G]).
Proposition 18 The torsion of K−1(Z[G]) is trivial if G ∼= T∗, and is equal to Z2 if
G ∼= O∗ or G ∼= I∗.

Proof Let G be a binary polyhedral group. Applying [22, Theorem 3(iii) and
page 1936], we have the composition

⊕H K−1(Z[H ]) ind→ K−1(Z[G]) res→ ⊕H K−1(Z[H ]), (2.15)

where ind and res are the usual induction and restriction maps that are surjective
and injective respectively when restricted to the corresponding torsion subgroups,
and H runs over the conjugacy classes of the 2-hyper-elementary subgroups of
G [22, Theorem 3(iii) and p. 1936]. Restricting to these torsion subgroups, we see
that the torsion of K−1(Z[G]) injects into that of ⊕H K−1(Z[H ]). The non-trivial
2-hyper-elementary subgroups of T∗ are Z2, Z3, Z4, Z6 and Q8, those of O∗ are
Z2, Z3, Z4, Z6, Z8, Dic12, Q8 and Q16, and those of I∗ are Z2, Z4, Z6, Z10, Q8,
Dic12 and Dic20 (see [16, Lemma 14.3] and [8, Proposition 85]). Ifm ∈ N, the group
algebra Q[Zm] splits [21, Example 7.38], so the torsion of K−1(Z[Zm]) is trivial
[22, page 1928]. Further, by Propositions 16 and 17, the torsion of K−1(Z[Q8]) and
of K−1(Z[Dic12]) is also trivial, and setting L = Q16 (resp. L = Dic20) if G = O∗
(resp. G = I∗), the torsion of K−1(Z[L]) is Z2. The injectivity of res in Eq. (2.15)
implies that the torsion of K−1(Z[T∗]) is trivial, which gives the result in this case.

So let G = O∗ or I∗, and let L be as defined above. Now G possesses a single
conjugacy class of subgroups isomorphic to L [16, Lemma 14.3], and since L is the
only subgroup of G for which the torsion of K−1(Z[L]) is non trivial, we need only
to consider the restriction of Eq. (2.15) to the factor H = L:

K−1(Z[L]) ind→ K−1(Z[G]) res→ K−1(Z[L]). (2.16)
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It thus suffices to show that the restriction of (2.16) to the corresponding torsion
subgroups is the identity. Now K−1(·) is a Mackey functor [12, Theorem 11.2], so
we may apply Mackey’s formula that describes the composition (2.16) as the sum of
the maps:

K−1(Z[L]) res→ K−1(Z[x−1
i Lxi ∩ L]) cxi→ K−1(Z[L]), (2.17)

whereG = ∐
Lxi L is a double coset decomposition ofG, and themap cxi is induced

by the homomorphism x−1
i Lxi ∩ L → L defined by y �−→ xi yx

−1
i [12, Sect. 11a].

Let NG(L) denote the normaliser of L in G. If xi /∈ NG(L) then the torsion of
K−1(Z[x−1

i Lxi ∩ L]) is trivial, and the corresponding map (2.17) contributes zero
to the restriction of (2.16) to the torsion subgroups. If on the other hand, xi ∈ NG(L),
the corresponding map (2.17) is an isomorphism. Now L ⊂ NG(L) ⊂ G, and since
L is not normal in G and G has no proper subgroup that strictly contains L
[8, Proposition 85], it follows that NG(L) = L . So there is only one double coset
representative xi that belongs to NG(L), and for this xi , it follows that the restriction
of (2.16) to the torsion subgroups is equal to the restriction of the isomorphism (2.17)
to the torsion subgroups. Since the torsion of K−1(Z[L]) is Z2, the same conclusion
holds for K−1(Z[G]). ��
Remark 19

(a) The induction/restriction arguments in the proof of Proposition 18 were inspired
by those given in [16, Paragraph 14] for the K̃0-groups.

(b) Let G = O∗ or I∗. We sketch an alternative proof of the fact that K−1(Z[G]) has
non-trivial torsion that uses [16, Proposition 4.11]. The embedding of G in the
Hamilton quaternions H [5, Chap. 7] induces an algebra homomorphism
ψG : Q[G] → H. By [16, Proposition 4.11 and its proof], ψG(Z[G]) is a maxi-
mal order �G that is completely described in [16, page 79], from which one may
prove that Im(ψG) is equal to Hd , where d = 8 (resp. d = 5) if G = O∗ (resp.
G = I∗), in other words, Hd appears as a factor in the Wedderburn decomposi-
tion of Q[G]. On the other hand, from Eq. (2.14) (resp. Eq. 2.13), we know that
Hd also appears in the Wedderburn decomposition of Q[Q16] (resp. Q[Dic20]),
and from the proof of Proposition 17 (resp. Proposition 16), that it contributes
a Z2-term to the torsion of K−1(Z[Q16]) (resp. K−1(Z[Dic20])). It follows then
from [22, Theorem 1] that K−1(Z[G]) has non-trivial torsion.

(c) Using the GAP package Wedderga [27], one may obtain the complete Wed-
derburn decomposition for the binary polyhedral groups:

Q[T∗] ∼= Q ⊕ Q(ζ3) ⊕ M3(Q) ⊕ H4 ⊕ H(Q(ζ3)) (2.18)

Q[O∗] ∼= Q
2 ⊕ M2(Q) ⊕ 2M3(Q) ⊕ H8 ⊕ M2(Ĥ), and (2.19)

Q[I∗] ∼= Q ⊕ M4(Q) ⊕ H5 ⊕ M2(Ĥ) ⊕ M5(Q) ⊕ M3(H(Q)) ⊕M3(Q(
√
5)), (2.20)

where Ĥ is the quaternion algebra (−1,−3)/Q. This algebra admits a basis
{1, i, j, k} as a Q-vector space, and the algebra multiplication satisfies i j =
− j i = k, i2 = −1 and j2 = −3. Somewhat surprisingly, we were not able to
find the decompositions (2.18)–(2.20) in the literature.
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In order to prove Theorem 31 and to obtain Table 2.1, we will need to calculate
K−1(Z[G]) for some other dicyclic groups, namelyG = Dic4μ, whereμ ∈ {6, 9, 10}.
We now compute the torsion of K−1(Z[Dic4μ]) for μ = 9, as well as the case where
μ = 2τ , where τ is an odd prime, which includes the cases μ = 6 and μ = 10.

Proposition 20

(a) If μ = 2τ , where τ is an odd prime, then the torsion of K−1(Z[Dic4μ]) is Z2.
(b) The group K−1(Z[Dic36]) is torsion free.
Proof (a) Let μ = 2τ , where τ is an odd prime. From [21, Example 7.40] or [16,

pp. 75–76], and using (2.11) and the notation of Sect. 2.5.1, we have:

Q[Dic4μ] ∼= Q[Dic8τ ]
∼= Q

4 ⊕
( ⊕

d∈{τ ,2τ }
M2

(
Q

(
ζd + ζ−1

d

))) ⊕ H4 ⊕ H4τ . (2.21)

The first three factors of Eq. (2.21) are matrix rings over fields, so their Schur
index is equal to one. Further, the factor H4 appears in the Wedderburn decom-
position of the Q-algebra Q[T∗], and since K−1(Z[T∗]) is torsion free by Propo-
sition 18, H4 does not contribute to the torsion of K−1(Z[Dic4μ]). It remains to
determine the Schur and local Schur indices of the remaining factor H4τ . Once
more, we follow the proof of Proposition 16, and we use the results and nota-
tion of [25, 26], takingm = 4τ , r = 4τ − 1, h = 2τ , and u = s = 2. Using [25,
Proposition 5], the representationU (2)

1,0 gives rise to an irreducible representation
of Q[Dic4μ], and the last part of [25, Example 3, Sect. 6] implies that its Schur
index is equal to two. Since the Schur index of each of the first four compo-
nents of Eq. (2.21) is equal to one, it follows that the simple component H4τ of
Q[Dic4μ] corresponds toU (2)

1,0 . With the notation of [25, Proposition 9], we have
d1 = 4τ and v1 = 2. Let p be a finite prime of the centre of H4τ that divides
4τ . Then p divides 2 or τ . If p | 2, then p = 2. We are not in the exceptional
case of [25, Proposition 9(II)] since the order of r in Z

∗
τ is equal to 2. Further,

a = 2, and t ′ is equal to the order of 4τ − 1 inZ
∗
τ , so t

′ = 2. If p | τ , then p = τ ,
a = 1, and t ′ is equal to the order of 4τ − 1 in Z

∗
4, so t ′ = 2 also. So in both

cases ep = s/t ′ = 1, hence cp = �p = 1. Thus the simple component H4τ of
Q[Dic4μ] whose Schur index is equal to two satisfies the property that its local
Schur indices at every finite prime of the centre are odd. Hence the integer s of
Eq. (2.9) is equal to one, and therefore the torsion of K−1(Z[Dic4μ]) is Z2.

(b) By (2.11), the Wedderburn decomposition of the Q-algebra Q[Dic36] is given
by:

Q[Dic36] ∼= Q
2 ⊕ M2(E3) ⊕ M2(E9) ⊕ Q(i) ⊕ H6 ⊕ H18. (2.22)

The first four factors of Eq. (2.22) are matrix rings over fields, so their Schur
index is equal to one. Further, the factor H6 also appears in the Wedderburn
decomposition of the Q-algebra Q[Dic12], and since K−1(Z[Dic12]) is torsion
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free by Proposition 16, H6 does not contribute to the torsion of K−1(Z[Dic36]).
It thus suffices to determine the Schur and local Schur indices of the remaining
factor H18. Following the proof of Proposition 16, we obtain m = d1 = 18,
μ = h = 9, r = 17 and u = s = v1 = 2, and the representation U (2)

1,0 gives rise
to an irreducible representation of Q[Dic36] whose Schur index is equal to two.
Since the Schur index of each of the first four components of Eq. (2.13) is equal
to one, it follows that the simple component H18 of Q[Dic36] corresponds to
U (2)

1,0 . If p is a finite prime of the centre E9 of H18 that divides 36, then p divides
6, and hence p divides p, where p ∈ {2, 3}. If p | 3, then p = q = 3, b = 0,
z = a = ep = cp = 2, t ′ = f̃ = f = 1, and �p = 2. Thus the Schur index of
the simple component H18 of the decomposition (2.22) of Q[Dic36] is equal to
2, but its local Schur indices at every finite prime of the centre of H18 are not
always odd. It follows from Theorem 15 that K−1(Z[Dic36]) is torsion free. �

2.5.2 The Rank of K−1(Z[G]) for the Finite Subgroups
of Bn(S

2)

Let G be a finite subgroup of Bn(S
2). To calculate the rank of K−1(Z[G]), we

shall apply Eq. (2.10). In each case, we will thus need to calculate the number rF
of distinct irreducible F[G]-modules, where F is equal respectively to Q, Qp and
Fp. Before doing so, we recall the requisite theory (see [21, pages 492 and 508]
or [12, pages 25–26]).

Let F be a field of characteristic p � 0, where p is prime if p > 0. If G is a finite
group of exponent m, let:

m̂ =
{
m if p = 0

m/pa if p > 0, where a is the largest power of p that divides m.

Let F(ζm̂) be a field extension of F by a primitive m̂th root of unity, which we
denote by ζm̂ . Then F(ζm̂) is a Galois extension of F , whose Galois group, denoted
by Gal(F(ζm̂)/F), is given by:

Gal(F(ζm̂)/F)={φ : F(ζm̂) → F(ζm̂)|φ is an automorphism and φ(z) = z for all z ∈ F.}

Each automorphism σ ∈ Gal(F(ζm̂)/F) is uniquely determined by its action on ζm̂ ,
and is given by σ(ζm̂) = ζ tm̂ , where t is an integer that is uniquely defined modulo
m̂. Hence t corresponds to an element of the multiplicative group of units Z

∗̂
m , and

there is an injective group homomorphism:

{
φ : Gal(F(ζm̂)/F) → Z

∗
m̂

σ �−→ t,
(2.23)
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defined by φ(σ) = t . We now recall the definition of F-conjugacy class.

(a) If f, g are elements of G, we say that they are F-conjugate if there exists
t ∈ Im(φ) and α ∈ G such that f t = αgα−1. The F-conjugacy relation is an
equivalence relation onG, and the F-equivalence class of f inG will be denoted
by [ f ]F .

(b) Let
G ′

p = {g ∈ G | gcd (p, o(g)) = 1} ,

be the set of p-regular elements of G, where o(g) denotes the order of g ∈ G.
An F-conjugacy class of G is said to be p-regular if it is contained in G ′

p.

If f ∈ G then we denote its usual conjugacy class by [ f ].
Remark 21

(a) It follows from the definition that

[ f ]F =
⋃

t∈Im(φ)

[
f t
]
, (2.24)

in other words, an F-conjugacy class is a union of normal conjugacy classes. In
particular, [ f ]F ⊃ [ f ]. Further, the number of F-conjugacy classes of elements
of order n is bounded above by the number of usual conjugacy classes of elements
of order n.

(b) If F = Q then φ is an isomorphism [12, Theorem 1.5], and f, g ∈ G are
F-conjugate if and only if 〈 f 〉 and 〈g〉 are conjugate subgroups of G.

By the Witt-Berman Theorem, we have the following result that will be used to
compute rF for our groups.

Theorem 22 ([21, Theorems 21.5 and 21.25]) Let G be a finite group, and let F be
a field of characteristic p � 0, where p is prime if p > 0.

(a) If p = 0, then rF is equal to the number of F-conjugacy classes in G.
(b) If p > 0, then rF is equal to the number of p-regular F-conjugacy classes in G.

We also need the following results concerning the structure of the Galois groups.

Theorem 23 ([28]) Suppose that n is odd or divisible by 4. Then Qp(ζn)/Qp is a
Galois extension of Qp, and its Galois group G is as follows.

(a) If p does not divide n then G is cyclic, and there exists an element σ ∈ G,
the Frobenius element of the extension, satisfying σ(ζn) = ζ

p
n that generates G.

Further, the order of σ is the order of p considered as an element of Z
∗
n.

(b) If n = pm, m � 1, then G is of order pm−1(p − 1), and we have a group isomor-
phismG ∼= Z

∗
pm . Hence G is cyclic if p is odd or if p = m = 2, and is isomorphic

to the direct product of Z2 (generated by the class of −1) and Zpm−2 (generated
by the class of 5) if p = 2 and m � 3.
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(c) Suppose that n = pmn1, where n1 � 2 and p does not divide n1. Let ζ1 be a
primitive n1th root of unity, and let ρ be a primitive pm th root of unity. Then
G ∼= Gal(Qp(ζ1)/Qp) × Gal(Qp(ρ)/Qp).

Theorem 24 ([18]) Let k denote the order of p considered as an element of Z
∗
n.

Then Gal(Fp(ζn)/Fp) is isomorphic to Zk .

We suppose in what follows that G is dicyclic of order 4m. We first apply the
above results in order to determine the rank of K−1(Z[G]) where m is an odd prime.
We then go on to to study the case where m is a power of 2.

Theorem 25 Let m be an odd prime, and let λ be the number of Q2-conjugacy
classes (or equivalently F2-conjugacy classes) of the elements of Dic4m of order m.
Then

K−1(Z[Dic4m]) ∼=
{

Z
λ ⊕ Z2 if m ≡ 1 mod 4

Z
λ if m ≡ 3 mod 4.

Proof Let G = Dic4m be given by the presentation (2.1). By Proposition 16 and
Eq. (2.9), it suffices to show that the rank of K−1(Z[Dic4m]) is equal to λ. The
group G has one element each (e and xm respectively) of order 1 and 2, (m − 1)
elements of order 2m, of the form xi , i odd, 1 � i � 2m − 1, and i �= m, (m − 1)
elements of order m, of the form xi , i even, 2 � i � 2m − 2, and 2m elements
of order 4, of the form y, xy, . . . , x2m−1y. The elements of order 1 and 2 each
form a single (usual) conjugacy class, those of order 4 form 2 conjugacy classes,{
xi y | 0 � i � 2m − 2, i even

}
and

{
xi y | 1 � i � 2m − 1, i odd

}
, while those

of order m and 2m form (m − 1) conjugacy classes of the form
{
xi , x−i

}
for

i = 1, . . . ,m − 1. Since rQ is equal to the number of simple components in the
Wedderburn decomposition of Q[Dic4m], it follows from Eq. (2.13) that rQ = 5.
This may also be obtained by observing that the subgroups of Dic4m of order 4 are its
Sylow 2-subgroups, and so Dic4m possesses a single conjugacy class of subgroups
of order 4.

Wemust thus calculate rQp and rFp for p ∈ {2,m}, whichwe do usingTheorem22.
Since there is a unique conjugacy class of elements of order 1 and 2, these elements
contribute 1 to each of rQp and rFp , except in the case of rF2 , where the element of
order 2 is not 2-regular, so contributes zero. We thus focus on the elements of order
4,m and 2m. According to [12, page 26], it suffices to analyse the F-conjugacy
classes of the elements of order 4,m and 2m adjoining an nth root of unity to F for
n = 4,m, 2m, where F = Q2 or Qm .

• Q2-conjugacy classes of the order 4 elements: by Theorem 23(b), the monomor-
phism φ : Gal(Q2(ζ4)/Q2) → Z

∗
4 is an isomorphism and Im(φ) = {1, 3}. By

Eq. (2.24), [y]Q2 = [y] ∪ [y3] = [y] ∪ [xm y] as y3 = y2 · y = xm y, and so there
is a single Q2-class of order 4 elements because m is odd.

• Q2-conjugacy classes of the elements of orderm and 2m: by hypothesis, the num-
ber ofQ2-conjugacy classes of the elements of orderm is equal toλ. Theorem23(c)
implies that the number of Q2-conjugacy classes of the elements of order 2m is
also equal to λ.
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We conclude that rQ2 = 2λ + 3.

• Qm-conjugacy classes of the order 4 elements: by Theorem 23(a), we have a
monomorphism φ : Gal(Qm(ζ4)/Qm) → Z

∗
4, Gal(Qm(ζ4)/Qm) is cyclic, and its

order is equal to that of m considered as an element of Z
∗
4. If m ≡ 3 mod 4 then φ

is an isomorphism and Im(φ) = {1, 3}. By Eq. (2.24), [y]Qm = [y] ∪ [y3] = [y] ∪
[xm y] as y3 = y2 · y = xm y, and so there is a single Qm-class of order 4 elements
since m is odd. If m ≡ 1 mod 4 then Gal(Qm(ζ4)/Qm) is trivial and Im(φ) = {1}.
In this case, the Qm-conjugacy classes coincide with the usual conjugacy classes,
so there are two Qm-conjugacy classes of elements of order 4.

• Qm-conjugacy classes of the elements of order m: by Theorem 23(b), the
monomorphism φ : Gal(Qm(ζm)/Qm) → Z

∗
m is an isomorphism and Im(φ) =

{1, . . . ,m − 1}. By Eq. (2.24), [x2]Qm =
m−1⋃

i=1

[x2i ], so there is a single Qm-class

of order m elements.
• Qm-conjugacy classes of the elements of order 2m: as m is an odd prime, we have
that Qm(ζ2m) = Qm(ζm), so φ : Gal(Qm(ζm)/Qm) → Z

∗
m

∼= Zm−1 is an isomor-
phism, and we conclude that there is a single Qm-class of order 2m elements.

It thus follows that rQm = 6 if m ≡ 1 mod 4, and rQm = 5 if m ≡ 3 mod 4.

• 2-regular F2-conjugacy classes: we have G ′
2 = {

e, x2, x4, . . . , x2m−2
}
, which

splits as the disjoint union of (m + 1)/2 (usual) conjugacy classes in Dic4m , com-
prised of {e}, and {

x2i , x2(m−i)
}
for i = 1, . . . , (m − 1)/2. We thus need to study

the F2-conjugacy classes of the elements of order m. By Theorem 24, we have
φ : Gal(F2(ζm)/F2) → Z

∗
m , where Gal(F2(ζm)/F2) is cyclic, of order that of 2

considered as an element of Z
∗
m , and Im(φ) = 〈2〉.

We return for a moment to the Q2-conjugacy classes of the elements of order
m. Replacing φ by φ1 to distinguish it from the monomorphism φ of the pre-
vious paragraph, by Theorem 23(a), we have φ1 : Gal(Q2(ζm)/Q2) → Z

∗
m , and

Gal(Q2(ζm)/Q2) is cyclic, of order that of 2 considered as an element of Z
∗
m . Thus

Im(φ1) = 〈2〉 also. In particular, the F2-conjugacy class of an element of Dic4m of
order m is equal to its Q2-conjugacy class, and thus the number of F2-conjugacy
classes of elements of order m is equal to λ. We deduce that rF2 = λ + 1.

• m-regular Fm-conjugacy classes: we have

G ′
m = {

e, xm, y, xy, x2y, . . . , x2m−2y, x2m−1y
}
.

The four (usual) conjugacy classes in Dic4m are {e}, {xm}, {y, x2y, . . . , x2m−2y
}

and
{
xy, x3y, . . . , x2m−1y

}
. We thus need to study the Fm-conjugacy classes of

the latter two classes, which are those of the elements of order 4. By Theorem 24,
we have the monomorphism φ : Gal(Fm(ζ4)/Fm) → Z

∗
4, and Gal(Fm(ζ4)/Fm) is

cyclic, of order that of m considered as an element of Z
∗
4. As in the case of the

Qm-conjugacy classes of the order 4 elements, ifm ≡ 3 mod 4, there is a singleFm-
class of order 4 elements,while ifm ≡ 1 mod 4, theFm-conjugacy classes coincide
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with the usual conjugacy classes, and so there are two Fm-conjugacy classes of
order 4 elements. Hence rFm = 4 if m ≡ 1 mod 4 and rFm = 3 if m ≡ 3 mod 4.

So by Eq. (2.10), the rank r of K−1(Z[Dic4m]) is given by:

r = 1 − rQ + (rQ2 − rF2) + (rQm − rFm )

=
{
1 − 5 + (2λ + 3) − (λ + 1) + (6 − 4) if m ≡ 1 mod 4

1 − 5 + (2λ + 3) − (λ + 1) + (5 − 3) if m ≡ 3 mod 4

= λ. �

If m is an odd prime, the proof of Theorem 25 indicates that the number λ of
Q2-conjugacy classes of the elements of Dic4m of order m is related to the order of
the subgroup 〈2〉 inZ

∗
m . The question of when 2 generates Z

∗
m is open and constitutes

a special case of Artin’s primitive root conjecture. The following proposition shows
that it is also interesting for us to know whether −1 belongs to 〈2〉, and enables us
to determine the rank of K−1(Z[Dic4m]) solely in terms of |〈2〉|.
Proposition 26 Let m and λ be defined as in the statement of Theorem 25. Then

λ =
{

(m − 1)
/|〈2〉| if − 1 ∈ 〈2〉

(m − 1)
/
2 |〈2〉| if − 1 /∈ 〈2〉 .

Examples

(a) Suppose that m is a Fermat number, of the form 22
s + 1, where s ∈ N. Then

|〈2〉| = 2s+1 and−1 ∈ 〈2〉, so the rank of K−1(Z[Dic4m]) is equal toλ = 22
s−s−1.

For example, if m = 257 then λ = 16 and K−1(Z[Dic1 028]) ∼= Z2 ⊕ Z
16.

(b) Suppose thatm is a Mersenne prime, of the form 2p − 1, where p is prime. Then
|〈2〉| = p and −1 /∈ 〈2〉, so the rank of K−1(Z[Dic4m]) is equal to λ = 2p−2

2p =
2p−1−1

p . For example, if m = 127 then λ = 9 and K−1(Z[Dic508]) ∼= Z
9, and if

m = 8 191 then λ = 315 and K−1(Z[Dic32 728]) ∼= Z
315.

Proof of Proposition 26 Using Eq. (2.1), the elements of Dic4m of order m are of
the form x2i , 1 � i � m − 1, and [x2i ] = {

x2i , x−2i
}
, in particular, they form (m −

1)/2 distinct (usual) conjugacy classes in Dic4m . Let 1 � i � m − 1. Since m is
prime, there exist τ ,μ ∈ Z such that τ i + μm = 1. One may check easily that the
maps [x2]Q2 → [x2i ]Q2 and [x2i ]Q2 → [x2]Q2 , defined respectively byw �−→ wi and
z �−→ zτ , are mutual inverses, and hence [x2i ]Q2 has the same number of elements as
[x2]Q2 . Thus the number of Q2-conjugacy classes of the elements of order m, which
is equal to λ, is just (m − 1) divided by the cardinal of [x2]Q2 . Theorem 23(a) and
Eq. (2.24) imply that:
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[x2]Q2 =
⋃

t∈〈2〉
[x2t ] = {

x2i
∣∣ i ∈ 〈2〉} ∪ {

x−2i
∣∣ i ∈ 〈2〉}

= {
x2i

∣∣ i ∈ 〈2〉} ∪ {
x2i

∣∣ i ∈ − 〈2〉}.

Now−〈2〉 is the 〈2〉-coset of−1 inZ
∗
m , so

{
x2i

∣∣ i ∈ 〈2〉} and {x2i ∣∣ i ∈ − 〈2〉} have
the same cardinality |〈2〉|, and are either equal or disjoint. Since −1 ∈ − 〈2〉, they
are equal if and only if −1 ∈ 〈2〉. This being the case, the cardinality of [x2]Q2 is
equal to |〈2〉|, and λ = (m − 1)/ |〈2〉|. If −1 /∈ 〈2〉, the two cosets 〈2〉 and −〈2〉 are
disjoint, thus the cardinality of [x2]Q2 is equal to 2 |〈2〉|, and λ = (m − 1)/2 |〈2〉| as
required. �

The methods used above allow us in theory to calculate K−1(Z[Dic4m]) for any
m � 2, not just for m an odd prime. As another example, consider the case where m
is a power of 2, so G ∼= Q2k is the generalised quaternion group of order 2k , where
m = 2k−2.

Proposition 27 K−1(Z[Q2k ]) is trivial if k = 3, and is isomorphic to Z2 if k � 4.

Proof By Theorem 15 and Proposition 17, it suffices to show that for all k � 3, the
rank of K−1(Z[Q2k ]) is zero, which we do using Theorem 22. We must calculate rQ,
rQ2 and rF2 . Using the presentation (2.1) of Q2k , we see that Q2k = 〈x〉∐ 〈x〉y, and
that the elements of 〈x〉y are all of order 4. So G ′

2 consists of the identity element,
whence rF2 = 1.

Wenowdetermine the number rQ ofQ-conjugacy classes,which byRemark21(b),
is equal to the number of conjugacy classes of cyclic subgroups inQ2k . The elements
of Q2k are of order 2l , 0 � l � k − 1, and if l �= 2 then the elements of order 2l are
contained entirely within 〈x〉. Thus there is just one subgroup of order 2l for each
such l, and so these subgroups contribute k − 1 to rQ. Suppose then that l = 2. Using
the relations

y(xi y)y−1 = x−i y, x(xi y)x−1 = xi+2y and (xi y)−1 = xi+2k−2
y (2.25)

in Q2k , we see that there are at most three conjugacy classes of cyclic subgroups of
order 4, represented by the subgroups

〈
x2

k−3 〉
, 〈y〉 and 〈xy〉. Since 〈x2k−3 〉

is contained in
the normal subgroup 〈x〉ofQ2k , it cannot be conjugate to the twoother subgroups, and
using relations (2.25), we see that 〈y〉 and 〈xy〉 are non conjugate. We thus conclude
that rQ = k + 2. This numbermay also be obtained by counting the number of simple
components in the Wedderburn decomposition (2.11) of Q[Q2k ].

Finally we calculate rQ2 . Consider the elements of Q2k of order 2l , where
0 � l � k − 1. If l ∈ {0, 1} then there is just one element of order 2l , and so the con-
tribution to rQ2 is one in each case. If l = 2 then Gal(Q2(ζ22)/Q2) ∼= Z

∗
22 = {1, 3} by

Theorem 23(b). Hence for every element z of Q2k of order 4, [z]Q2 = [z] ∪ [z3] =
[z] ∪ [z−1] = [z] since in Q2k , every element is conjugate to its inverse. Thus the
elements of Q2k of order 4 contribute 3 to rQ2 . Suppose then that l � 3. The ele-
ments of order 2l are contained in 〈x〉, are elements of the subgroup

〈
x2

k−l−1 〉
of

the form x2
(k−l−1)r , where gcd (r, 2l) = 1, and so are of the form x2

(k−l−1)r , where



30 2 Lower Algebraic K -Theory of the Finite Subgroups of Bn(S
2)

r ∈ {
1, 3, . . . , 2l − 1

}
. On the other hand, applying Theorem 23(b), we see that

Gal(Q2(ζ2l )/Q2) ∼= Z
∗
2l . Now Z

∗
2l = {

1, 3, . . . , 2l − 1
}
, and thus

[
x2

k−l−1]
Q2

= [
x2

k−l−1] ∪ [
x3(2

k−l−1)
] ∪ · · · ∪ [

x (2l−1)(2k−l−1)
]
.

From above, this is precisely the set of all elements of order 2l , and hence for
each 3 � l � k − 1, the elements of order 2l contribute one to rQ2 . Summing over
all possible values of l yields rQ2 = k + 2, and applying Eq. (2.10), we obtain r =
1 − rQ + rQ2 − rF2 = 0, which proves the proposition. �

We now turn to the calculation of K−1(Z[G]), where G is a binary polyhedral
group.

Proposition 28 K−1(Z[T∗]) ∼= Z, K−1(Z[O∗]) ∼= Z2 ⊕ Z and K−1(Z[I∗]) ∼= Z2 ⊕
Z
2.

Proof Let G be a binary polyhedral group. By Proposition 18, it suffices to cal-
culate the rank of K−1(Z[G]), which we do using (2.10) and Theorem 22. From
Remark 21(b) and the notation of Sect. 2.2, rQ =

∑

d | |G|
r2(d), and it follows from

Proposition 7 that rQ = 5 if G = T∗, and rQ = 7 if G = O∗ or I∗. These values of
rQ may also be obtained from the corresponding Wedderburn decompositions given
in (2.18)–(2.20).

(a) We first calculate the rank of K−1(Z[T∗]), where a presentation of T∗ =
〈P, Q, X〉 is given by the first line of Eq. (2.2).

• The set G ′
3 consists of the union of the elements of T∗ of order 1, 2 and 4.

By Proposition 7(a), if m ∈ {1, 2, 4}, the elements of order m form a single
conjugacy class, and thus form a single Qp-conjugacy class for p ∈ {2, 3},
whence rF3 = 3.

• The set G ′
2 consists of the identity and the 8 elements of T∗ of order 3, and

by Proposition 7(a), there are two conjugacy classes of the elements of order
3, of which X and X−1 are representatives. By Theorem 24, we have an
isomorphism φ : Gal(F2(ζ3)/F2) → Z

∗
3, and Im(φ) = {1, 2}. Thus [X ]F2 =

[X ] ∪ [X2] = [X ] ∪ [X−1]. It follows that there is a single F2-conjugacy class
of elements of order 3, and so rF2 = 2.

• Since there is a single conjugacy class of elements of order d, where d ∈
{1, 2, 4}, it remains to determine the number of Qp-conjugacy classes, p ∈
{2, 3}, of the elements of T∗ of order 3 and 6. We first calculate the number of
Qp-conjugacy classes of the elements of order 3. By Theorem 23(a) and (b),
φ : Gal(Qp(ζ3)/Qp) → Z

∗
3 is an isomorphism, Im(φ) = {1, 2}, and [X ]Qp =

[X ] ∪ [X2] = [X ] ∪ [X−1], which is the union of the two (usual) conjugacy
classes of elements of order 3. We have the same result for the elements of
order 6 of T∗, since they are obtained from those of order 3 by adjoining the
central element of T∗ of order 2. So for all d ∈ {1, 2, 3, 4, 6} and p ∈ {2, 3},
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there is a single Qp-conjugacy class of the elements of order d, and hence
rQ2 = rQ3 = 5.

• By Eq. (2.10), the rank r of K−1(Z[T∗]) is equal to r = 1 − rQ + rQ2 − rF2 +
rQ3 − rF3 = 1, and thus K−1(Z[T∗]) ∼= Z.

(b) We now calculate the rank of K−1(Z[O∗]).
• Recall first that T∗ is a subgroup of O∗ of index 2, and that O∗ \T∗ consists of
twelve elements of order 4 and of order 8. So G ′

3 is contained in T
∗, and as in

case (a) we obtain rF2 = 2. Further, the elements of O∗ of order 1, 2, 3 and 6
each give rise to a single Qp-conjugacy class of O∗ for p ∈ {2, 3}. It remains
to calculate the number of Qp-conjugacy classes of the elements of order 4
and 8, as well as rF3 .

• To calculate the number of Qp-conjugacy classes of the elements of order 8,
recall from Proposition 7(b) that there are two conjugacy classes of elements
of order 8, for which representatives are g and g3, where g is any element of
O∗ of order 8. By Theorem 23(a) and (b), φ : Gal(Qp(ζ8)/Qp) → Z

∗
8 satisfies

Im(φ) ⊃ {1, 3}, hence [g]Qp ⊃ [g] ∪ [g3], and there is a single Qp-conjugacy
class of elements of order 8.

• To calculate the number of Qp-conjugacy classes of the elements of order
4, recall from Proposition 7(b) that there are two conjugacy classes of ele-
ments of order 4, C1 and C2, where C1 (resp. C2) is the intersection of
the set of elements of O∗ of order 4 with T∗ (resp. with O∗ \T∗). In par-
ticular, if g ∈ C1 ∪ C2 then g and g−1 are conjugate. By Theorem 23(a)
and (b), φ : Gal(Qp(ζ4)/Qp) → Z

∗
4 is an isomorphism, Im(φ) = {1, 3}, and

[g]Qp = [g] ∪ [g−1] = [g] for all g ∈ O∗ of order 4. So the number of Qp-
conjugacy classes of elements of order 4 is equal to 2.

• From the above computations, if d ∈ {1, 2, 3, 6, 8} and p ∈ {2, 3}, there is
a single Qp-conjugacy class of elements of order d, and there are two Qp-
conjugacy class of elements of order 4, whence rQp = 7.

• To calculate rF3 , first note that G
′
3 consists of the union of the elements of O∗

of order 1, 2, 4 and 8, and that there is a single conjugacy class of elements
of order 1 and 2. Let m ∈ {4, 8}. By Theorem 24, φ : Gal(F3(ζm)/F3) → Z

∗
m

satisfies Im(φ) = {1, 3}, and we see that the number of F3-conjugacy classes
of elements of order m is just the number of Qp-conjugacy classes of these
elements, i.e. there are two F3-conjugacy classes of elements of order 4, and
one F3-conjugacy class of elements of order 8. We conclude that rF3 = 5.

• By Eq. (2.10), the rank r of K−1(Z[O∗]) is equal to r = 1 − rQ + rQ2 − rF2 +
rQ3 − rF3 = 1, and thus K−1(Z[O∗]) ∼= Z2 ⊕ Z.

(c) Finally, we determine the rank of K−1(Z[I∗]).
• By Proposition 7(c), r2(l) = 1 for all l ∈ {1, 2, 3, 4, 6}, so there is a single
conjugacy class of elements of order l, and there are two conjugacy classes of
elements of order 5 and 10. Hence it suffices to study the various F-conjugacy
classes for the elements of order 5 and 10.
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• We compute the number of the elements Qp-conjugacy classes of elements of
order 5 for p ∈ {2, 3, 5}. By Proposition 7(c), if g ∈ I∗ is of order 5, g and g2

are representatives of the two conjugacy classes of elements of order 5. Using
Theorem 23(a) and (b), the homomorphism φ : Gal(Qp(ζ5)/Qp) → Z

∗
5 is an

isomorphism, and so there is a singleQp-conjugacy class of elements of order
5 in I∗ for all p ∈ {2, 3, 5}. By adjoining the central element of I∗ of order 2
to g, it follows that the same is true for the elements of order 10, from which
it follows that rQp = 7 for all p ∈ {2, 3, 5}.

• To compute the number of F2- and F3-conjugacy classes of I∗, note that G ′
2 is

the union of the elements of I∗ of order 1, 3 and 5, and G ′
3 is the union of the

elements of I∗ of order 1, 2, 4, 5 and 10. By Proposition 7(c), there is a single
conjugacy class in I∗ of elements of order 1, 2, 3 and 4. By Theorem 24, for
p ∈ {2, 3}, the homomorphismφ : Gal(Fp(ζ5)/Fp) → Z

∗
5 is an isomorphism,

and Im(φ) = {1, 2, 3, 4}. Thus there is a single Fp-conjugacy class of the 5-
regular elements of order 5. By adjoining the central element of I∗ of order 2
to g, it follows that the same is true for the elements of order 10 in the case
p = 3. We conclude that rF2 = 3 and rF3 = 5.

• To compute the number of F5-conjugacy classes of I∗, the set G ′
5 is the union

of the elements of I∗ of order 1, 2, 3, 4 and 6. Since there is a single conjugacy
class in I∗ of elements of each of these orders, it follows that rF5 = 5.

• By Eq. (2.10), the rank r of K−1(Z[I∗]) is equal to r = 1 − rQ + rQ2 − rF2 +
rQ3 − rF3 + rQ5 − rF5 = 2, and thus K−1(Z[I∗]) ∼= Z2 ⊕ Z

2. �

As we mentioned in Sect. 2.5.2, in order to prove Theorem 31 and to obtain
Table 2.1, we need to compute K−1(Z[Dic4μ]) for μ ∈ {6, 9, 10}. The torsion of
these groups was already determined in Proposition 20. To end this section, we
calculate their rank.

Proposition 29 If μ ∈ {6, 9, 10}, the rank of K−1(Z[Dic4μ]) is equal to 2.
Proof (a) We first consider the cases where μ ∈ {6, 10}, so μ/2 is an odd prime.

Making use of the presentation of the form (2.1) of Dic4μ, the following table
summarises the elements of each order of Dic4μ.

We compute the number of F-conjugacy classes for each of the fields F that
appear in (2.10).
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• From the above table, Dic4μ possesses a single cyclic subgroup of order r
for all r ∈ {1, 2,μ/2,μ, 2μ}, and using (2.1), it has three conjugacy classes
of elements of order 4, namely

{
xμ/2, x3μ/2

}
,
{
xi y

∣∣ i ∈ {1, 3, . . . , 2μ − 1}}
and

{
xi y

∣∣ i ∈ {0, 2, . . . , 2μ − 2}}. So Dic4μ has three conjugacy classes of
(cyclic) subgroups of order 4. We conclude that Dic4μ has eight conjugacy
classes of cyclic subgroups, hence rQ = 8.

• The set of 2-regular elements ofDic4μ consists of e and the (μ − 2)/2 elements
of order μ/2. Since the order of 2 in Z

∗
μ/2 is equal to (μ − 2)/2, which is the

order of Z
∗
μ/2, the injective homomorphism φ : Gal(F2(ζμ/2)/F2) → Z

∗
μ/2 is

an isomorphism. Using (2.24), it follows that the F2-conjugacy class of x4 is
equal to

{
x4, x8, . . . , x2(m−2)

}
, and thus rF2 = 2.

• The set of μ/2-regular elements of Dic4μ consists of e, xμ, which is of order 2,
and the 2μ + 2 elements of order 4. The image of the injective homomorphism
φ : Gal(Fμ/2(ζ4)/Fμ/2) → Z

∗
4 is contained in {1, 3}, and so is equal to {1}

or {1, 3}. But (xμ/2)3 = x3μ/2, and for all i ∈ {0, 1, . . . , 2μ − 1}, (xi y)3 =
(xi y)−1 = y−1x−i = y−1x−i y · y2 · y = xi+μy. It follows that if z ∈ Dic4μ is
of order 4, [z] = [z3], and by (2.24), we have [z] ⊂ [z]Fμ/2 ⊂ [z] ⊂ [z3] = [z],
so [z]Fμ/2 = [z]. Thus the F2-conjugacy classes of the μ/2-regular elements of
Dic4μ of order 4 coincide with the usual conjugacy classes, whence rFμ/2 = 5.

We now compute rQ2 . To do so, we need to determine the number of Q2-
conjugacy classes of the elements of order 4,μ/2,μ and 2μ.

• We calculate the number of Q2-conjugacy classes of the elements of order 4.
By Theorem 23(b), the injective homomorphism φ : Gal(Q2(ζ4)/Q2) → Z

∗
4

is an isomorphism, and Im(φ) = {
1, 3

}
. As in the analysis of the μ/2-regular

elements of order 4, it follows that [z]Q2 = [z] for every element z ∈ Dic4μ of
order 4, and so the Q2-conjugacy classes of the elements of order 4 coincide
with the usual conjugacy classes, and hence there are three Q2-conjugacy
classes of elements of order 4.

• We determine the number of Q2-conjugacy classes of the elements of order
μ/2, μ and 2μ. Let j ∈ {0, 1, 2}. Then the injective homomorphism
φ : Gal(Q2(ζ2 jμ/2)/Q2) → Z

∗
2 jμ/2 is an isomorphism using Theorem 23(b)

and (c) because Gal(Q2(ζ2)/Q2) is trivial and Gal(Q2(ζ4)/Q2) is of order 2.
Thus there is a single Q2-conjugacy class of elements of order 2 jμ/2 for all
j ∈ {0, 1, 2}.

• It follows from these calculations that there is a single Q2-conjugacy class
of elements of order r for all r ∈ {1, 2,μ/2,μ, 2μ}, and three Q2-conjugacy
classes of elements of order 4, so rQ2 = 8.

We now compute rQμ/2 . To do so, we need to determine the number of Qμ/2-
conjugacy classes of the elements of order 4,μ/2,μ and 2μ.

• Let us determine the number of Qμ/2-conjugacy classes of the elements of
order μ/2 and μ. If j ∈ {0, 1}, using Theorem 23(b) and (c), we see that
the injective homomorphism φ : Gal(Qμ/2(ζ2 jμ/2)/Qμ/2) → Z

∗
2 jμ/2 is an iso-

morphism because Gal(Qμ/2(ζ2)/Q2) is trivial. Thus there is a single Qμ/2-
conjugacy class of elements of order 2 jμ/2 for all j ∈ {0, 1}.
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• To calculate the number of Qμ/2-conjugacy classes of the elements of order
2μ, consider the injective homomorphism φ : Gal(Qμ/2(ζ2μ)/Qμ/2) → Z

∗
2μ.

By Theorem 23(c), Gal(Qμ/2(ζ2μ)/Qμ/2) is isomorphic to the direct product
Gal(Qμ/2(ζμ/2)/Qμ/2) × Gal(Qμ/2(ζ4)/Qμ/2), which by Theorem 23(b) is
isomorphic to Z

∗
μ/2 × Z2 (resp. Z

∗
μ/2) if μ/2 ≡ 3 mod 4 (resp. if μ/2 ≡

1 mod 4). We now distinguish the two cases μ = 6 and μ = 10.
– If μ = 6, φ is an isomorphism, and there is a single Q3-conjugacy class of
elements of order 12.

– If μ = 10, Gal(Q5(ζ20)/Q5) is isomorphic to Z4 by Theorem 23(b) and (c),
so the image of φ is a subgroup of Z

∗
20. Now Z

∗
20 is isomorphic to Z2 × Z4,

so it possesses two subgroups isomorphic to Z4. A calculation shows that
these two subgroups are of the form

{
1, 3, 7, 9

}
and

{
1, 9, 13, 17

}
. Using

the table given at the beginning of the proof and (2.24) and the fact that xk is
conjugate to x20−k for all k ∈ {1, 3, 7, 9, 11, 13, 17, 19} by (2.1), it follows
in either case that there is a single Q5-conjugacy class of elements of order
20.

• It follows from these calculations that there is a single Qμ/2-conjugacy class
of elements of order r for all r ∈ {1, 2,μ/2,μ, 2μ}, and threeQμ/2-conjugacy
classes of elements of order 4, so rQμ/2 = 8 for μ ∈ {6, 10}.

• Using (2.10), we conclude that r = 1 − rQ + rQ2 − rF2 + rQμ/2 − rFμ/2 = 1 −
8 + (8 − 2) + (8 − 5) = 2 as required.

(b) Now suppose that μ = 9. Using the presentation of the form (2.1) of Dic4μ, the
following table summarises the elements of each order of Dic4μ.

In order to apply (2.10), we compute the number of F-conjugacy classes for
each of the fields F that appear in that equation.

• Using (2.1), there are two conjugacy classes of the elements of order 4,{
xi y

∣∣ i ∈ {0, 2, . . . , 16}} and
{
xi y

∣∣ i ∈ {1, 3, . . . , 17}}, and the remaining
conjugacy classes are of the form

{
xi , x18−i

}
for i ∈ {0, 1, . . . , 9}. Recall

that rQ is given by the number of factors in Eq. (2.22), so rQ = 7 (this may
also by verifying that there is a single conjugacy class of cyclic subgroups of
order d for each d ∈ {1, 2, 3, 4, 6, 9, 18}).
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• If d ∈ {1, 2, 3, 6}, there is a single conjugacy class of elements of order d.
Thus there is a single Qp-conjugacy class of elements of order d by (2.24),
where p ∈ {2, 3}. Similiarly, if d ∈ {1, 2} (resp. d ∈ {1, 3}), there is a single
F3-conjugacy class (resp. F2-conjugacy class) of elements of order d. So it
suffices to determine:
(i) the number of F[2]-conjugacy classes of elements of order 9.
(ii) the number of F[3]-conjugacy classes of elements of order 4.
(iii) the number of Qp-conjugacy classes of elements of order d, where d ∈

{4, 9, 18}, and p ∈ {2, 3}.
We consider these cases in turn.

• By Theorem 24, the injective homomorphism φ : Gal(F2(ζ9)/F2) → Z
∗
9 is an

isomorphism, and so there is a single F2-conjugacy class of elements of order
9. Now the set G ′

2 of 2-regular elements of Dic36 is given by the union of the
elements of order 1, 3 and 9, and since there is a single (usual) conjugacy class
of elements of order 1 and 3, we conclude that rF2 = 3.

• By Theorem 24, the injective homomorphism φ : Gal(F3(ζ4)/F3) → Z
∗
4 is an

isomorphism, and so there is a single F3-conjugacy class of elements of order
4. Now the set G ′

3 of 3-regular elements of Dic36 is given by the union of the
elements of order 1, 2 and 4, and since there is a single (usual) conjugacy class
of elements of order 1 and 2, we conclude that rF3 = 3.

• Q2-conjugacy classes of elements of order 4: by Theorem 23(b), the injective
homomorphism φ : Gal(Q2(ζ4)/Q2) → Z

∗
4 is an isomorphism, and Im(φ) ={

1, 3
}
. Thus [y]Q2 = [y] ∪ [y3] = [y] ∪ [x9y], where y is the element ofDic36

appearing in (2.1), so [y]Q2 is the union of the two conjugacy classes of
elements of order 4. Consequently, there is a single Q2-conjugacy class of
elements of order 4.

• Q2-conjugacy classes of elements of order 9: by Theorem 23(a), the injective
homomorphism φ : Gal(Q2(ζ9)/Q2) → Z

∗
9 is an isomorphism, and Im(φ) ={

1, 2, 4, 5, 7, 8
}
. It follows from the above table of elements ofDic36 and (2.24)

that there is a single Q2-conjugacy class of elements of order 9.
• Q2-conjugacy classes of elements of order 18: by Theorem 23(c),

Gal(Q2(ζ18)/Q2) ∼= Gal(Q2(ζ9)/Q2) × Gal(Q2(ζ2)/Q2) ∼= Gal(Q2(ζ9)/Q2),

which is cyclic of order 6. Thus the injective homomorphism φ :
Gal(Q2(ζ18)/Q2)[Z∗

18] is an isomorphism, and Im(φ) = {
1, 5, 7, 11, 13, 17

}
.

We conclude from the above table of elements of Dic36 and (2.24) that there
is a single Q2-conjugacy class of elements of order 18.

• From the above computations, for all d ∈ {1, 2, 3, 4, 6, 9, 18}, there is a single
Q2-conjugacy class of elements of order d, and hence rQ2 = 7.

• Q3-conjugacy classes of elements of order 4: by Theorem 23(a), the injective
homomorphism φ : Gal(Q3(ζ4)/Q3) → Z

∗
4 is an isomorphism. As in the case
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of theQ2-conjugacy classes of elements of order 4, we see that there is a single
Q3-conjugacy class of elements of order 4.

• Q3-conjugacy classes of elements of order 9: by Theorem 23(b), the injective
homomorphism φ : Gal(Q3(ζ9)/Q3) → Z

∗
9 is an isomorphism (both groups

are of order 6), and Im(φ) = {
1, 2, 4, 5, 7, 8

}
. As in the case of the Q2-

conjugacy classes of elements of order 9, we see that there is a single Q3-
conjugacy class of elements of order 9.

• Q3-conjugacy classes of elements of order 18: by Theorem 23(c),

Gal(Q3(ζ18)/Q3) ∼= Gal(Q3(ζ9)/Q3) × Gal(Q3(ζ2)/Q3) ∼= Gal(Q3(ζ9)/Q3),

which as we saw above is cyclic of order 6. It follows that the injective homo-
morphism φ : Gal(Q3(ζ18)/Q3) → Z

∗
18 is an isomorphism. As in the case of

the Q2-conjugacy classes of elements of order 18, we see that there is a single
Q3-conjugacy class of elements of order 18.

• From the above computations, for all d ∈ {1, 2, 3, 4, 6, 9, 18}, there is a single
Q3-conjugacy class of elements of order d, and hence rQ3 = 7.

• Hence the rank of K−1(Z[Dic36]) is given by r = 1 − rQ + rQ2 − rF2 + rQ3 −
rF3 = 1 − 7 + 7 − 3 + 7 − 3 = 2 as required. �

We complete this section by computing K−1(Z[G]), where G is a cyclic group
of order pq or 2pq , where p is prime and q ∈ N, or of order 12 or 20. These results
will also be used in the proof of Theorem 31.

Proposition 30 Let q ∈ N, and let p be a prime number.

(a) The group K−1(Z[Zpq ]) is trivial.
(b) If p is odd then K−1(Z[Z2pq ]) ∼= Z

r , where r = ∑q
j=1

[
Z

∗
p j : 〈2〉

Z
∗
p j

]
, and where

〈
2
〉
Z

∗
p j
denotes the subgroup of Z

∗
p j generated by 2.

(c) The group K−1(Z[Z12]) is isomorphic to Z
2, and the group K−1(Z[Z20]) is

isomorphic to Z
3.

Proof Aswementioned at the beginning of Sect. 2.5.1, ifG is Abelian then the group
K−1(Z[G]) is torsion free. So if G is one of the given groups, by (2.9), it suffices to
calculate the rank r of K−1(Z[G]).
(a) Let p be prime, and let q ∈ N. Since Zpq is cyclic, rQ is equal to the number of

divisors of pq , hence rQ = q + 1. The elements ofZpq are of order p j , where j ∈
{0, 1, . . . , q}, and the set G ′

p of p-regular elements of Zpq is equal to {e}, hence
rFp = 1. We now determine the number of Qp-conjugacy classes. If 1 � j � q,
by Theorem 23(b), the injective homomorphism φ : Gal(Qp(ζp j )/Qp) → Z

∗
p j

is an isomorphism, so Zpq possesses a single Qp-conjugacy of elements of order
p j , and thus rQp = q + 1. Hence r = 1 − rQ + rQp − rFp = 0 by (2.10), and
K−1(Z[Zpq ]) is trivial.
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(b) Let p be an odd prime, let q ∈ N, and let x be a generator of Z2pq . In order to
apply (2.10), we compute rQ, rF2 , rFp , rQ2 and rQp .

• Since Z2pq is cyclic, we have rQ = 2(q + 1).
• The set G ′

p of p-regular elements of Z2pq is equal to
{
e, x pq

}
, thus rFp = 2.

• We now determine rQp . Since Z2pq possesses a single element of order
m, where m ∈ {1, 2}, it suffices to compute the number of Qp-conjugacy
class of elements of order 2ε p j , where ε ∈ {0, 1}, and 1 � j � q.
By Theorem 23(b), for all j ∈ {1, . . . , q}, the injective homomorphism
φ : Gal(Qp(ζp j )/Qp) → Z

∗
p j is an isomorphism, and so there is a

single Qp-conjugacy class of elements of order p j . By Theorem 23(c),

Gal(Qp(ζ2p j )/Qp) ∼= Gal(Qp(ζp j )/Qp) × Gal(Qp(ζ2)/Qp)

∼= Gal(Qp(ζp j )/Qp),

and by Theorem 23(b), the injective homomorphism
φ : Gal(Qp(ζ2p j )/Qp) → Z

∗
2p j is an isomorphism. Thus for all 1 � j � q,

there is a single Qp-conjugacy class of elements of order 2p j . It follows that
for every divisor m of 2pq , there is a single Qp-conjugacy class of elements
of order m, whence rQp = 2(q + 1).

• To compute rF , where F = Q2 or F2, we first make the following general
remark. Since Z2pq is Abelian, for all f ∈ Z2pq , the (usual) conjugacy class
[ f ] of f is equal to { f }. With the notation of Sect. 2.5.2, it follows from (2.24)
that the cardinality of the F-conjugacy class [ f ]F is equal to |Im(φ)|, where
φ is as defined in (2.23). Since the F-conjugacy classes are pairwise disjoint,
if f ∈ Z2pq we conclude that there are [Z∗̂

m : Im(φ)] F-conjugacy classes of
elements whose order is that of f . With this in mind, we compute rQ2 and rF2 .

• To calculate rQ2 , first observe that since Z2pq possesses a single element
of order m, where m ∈ {1, 2}, it suffices to compute the number of Q2-
conjugacy class of elements of order 2ε p j , where ε ∈ {0, 1}, and 1 � j �
q. Theorem 23(a) imples that the image of the injective homomorphism
φ : Gal(Q2(ζp j )/Q2) → Z

∗
p j is equal to

〈
2
〉
Z

∗
p j
. By the above remark, it fol-

lows that the number ofQ2-conjugacy classes of elements of order p j is equal

to
[
Z

∗
p j : 〈2〉

Z
∗
p j

]
. By Theorem 23(c),

Gal(Q2(ζ2p j )/Q2) ∼= Gal(Q2(ζp j )/Q2) × Gal(Q2(ζ2)/Q2)

∼= Gal(Q2(ζp j )/Q2)

So the image of the injective homomorphism φ : Gal(Q2(ζ2p j )/Q2) → Z
∗
p j

is of order
∣∣∣
〈
2
〉
Z

∗
p j

∣∣∣. Now
∣∣Z∗

2pq
∣∣ = ∣∣Z∗

pq
∣∣, and it follows from the above remark

that the number of Q2-conjugacy classes of elements of order 2p j is also
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equal to
[
Z

∗
p j : 〈2〉

Z
∗
p j

]
. Since the elements of Z2pq are of order 1, 2, p j or

2p j , where 1 � j � q, we deduce that rQ2 = 2 + 2
∑q

j=1

[
Z

∗
p j : 〈2〉

Z
∗
p j

]
.

• To calculate rF2 , observe that the set of 2-regular elements of Z2pq is equal
to the union of e with the elements of order p j , where j ∈ {1, . . . , q}. By
Theorem 24, for all j ∈ {1, . . . , q}, the image of the injective homomorphism
φ : Gal(F2(ζp j )/F2) → Z

∗
p j is equal to

〈
2
〉
Z

∗
p j
. Using the above remark once

more, we see that the number of 2-regularF2-conjugacy classes of elements of

order p j is given by
[
Z

∗
p j : 〈2〉

Z
∗
p j

]
, and thus rF2 = 1 + ∑q

j=1

[
Z

∗
p j : 〈2〉

Z
∗
p j

]
.

• Toconclude, by (2.10),we have r = 1 − rQ + rQ2 − rF2 + rQp − rFp = ∑q
j=1[

Z
∗
p j : 〈2〉

Z
∗
p j

]
as required.

(c) Let m = 4p, where p ∈ {3, 5}. In order to apply (2.10), we now proceed to
determine rQ, rF2 , rFp , rQ2 and rQp .

• Since Zm is cyclic, rQ is equal to the number of divisors of 4p, so rQ = 6.
• The set G ′

2 of the 2-regular elements of Z4p consists of the trivial ele-
ment and the elements of order p. By Theorem 24, the injective homomor-
phism φ : Gal(F2(ζp)/F2) → Z

∗
p is an isomorphism, so there is a single F2-

conjugacy class of elements of order p, and hence rF2 = 2.
• The setG ′

p of the p-regular elements ofZ4p consists of the trivial element, the
unique element of order 2, and the two elements of order 4. By Theorem 24,
the injective homomorphism φ : Gal(Fp(ζ4)/Fp) → Z

∗
4 is an isomorphism if

p = 3, and the image of φ is equal to
{
1
}
if p = 5. As in the remark regarding

the F-conjugacy classes used in part (b), we conclude that there is a single
Fp-conjugacy class of elements of order 4 if p = 3, and two Fp-conjugacy
classes of elements of order 4 if p = 5. It follows that rFp = 3 if p = 3 and
rFp = 4 if p = 5.

• We now compute rQ2 . Since there is a single element of order 1 and 2,
it suffices to determine the number of Q2-conjugacy classes of elements
of order 4 and of order 2i p, where i ∈ {0, 1, 2}. By Theorem 23(c) (resp.
Theorem 23(a)), the injective homomorphism φ : Gal(Q2(ζ4)/Q2) → Z

∗
4

(resp. φ : Gal(Q2(ζp)/Q2) → Z
∗
p) is an isomorphism, so there is a sin-

gle Q2-conjugacy class of elements of order 4 (resp. of order p). If i � 1
then Gal(Q2(ζ2i p)/Q2) ∼= Gal(Q2(ζp)/Q2) × Gal(Q2(ζ2i−1)/Q2), and so the
injective homomorphism φ : Gal(Q2(ζ2i p)/Q2) → Z

∗
2i p is an isomorphism

by Theorem 23(a) and (c). Hence there is a single Q2-conjugacy class of ele-
ments of order 2i p. So for any divisor d of 4p, there is a single Q2-conjugacy
class of elements of order d, hence rQ2 = 6.

• We now compute rQp . Since there is a single element of order 1 and 2,
it suffices to determine the number of Qp-conjugacy classes of elements
of order 4 and of order 2i p, where i ∈ {0, 1, 2}. By Theorem 23(a), the
injective homomorphism φ : Gal(Qp(ζ4)/Qp) → Z

∗
4 is an isomorphism if
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p = 3, and the image of φ is equal to
{
1
}
if p = 5. As in the remark

regarding the F-conjugacy classes used in part (b), we conclude that there
is a single Qp-conjugacy class of elements of order 4 if p = 3, and two
Qp-conjugacy classes of elements of order 4 if p = 5. Since the injec-
tive homomorphism φ : Gal(Qp(ζp)/Qp) → Z

∗
p is an isomorphism by The-

orem 23(b), there is a single Qp-conjugacy class of elements of order p.
Further, since Gal(Qp(ζ2p)/Qp) ∼= Gal(Qp(ζp)/Qp) by Theorem 23(c), it
follows from Theorem 23(b) that there is a single Qp-conjugacy class of ele-
ments of order 2p. Finally, by Theorem 23(c), since Gal(Qp(ζ4p)/Qp) ∼=
Gal(Qp(ζp)/Qp) × Gal(Qp(ζ4)/Qp), it follows from Theorem 23(a) and (b)
that the injective homomorphism φ : Gal(Qp(ζ4p)/Qp) → Z

∗
4p is an isomor-

phism if p = 3, and the image of φ is isomorphic to Z
∗
p if p = 5. As in the

remark regarding the F-conjugacy classes used in part (b), we conclude that
there is a single Qp-conjugacy class of elements of order 4p if p = 3, and
two Qp-conjugacy classes of elements of order 4p if p = 5. Hence rQp = 6
if p = 3, and rQp = 8 if p = 5.

• Using (2.10) and the above computations, the rank r of K−1(Z[Z4p]) is given
by r = 1 − rQ + rQ2 − rF2 + rQp − rFp , so r = 2 if p = 3 and r = 3 if p = 5
as required. �

2.6 The Lower Algebraic K -Theory of the Finite
Subgroups of Bn(S

2) for 4 � n � 11

In this section, we bring together the results of the previous sections to compute
the lower algebraic K-theory of the finite subgroups of Bn(S

2) for 4 � n � 11. The
results are summarised in the following theorem.

Theorem 31 For 4 � n � 11, the lower algebraic K-theory of the finite subgroups
of Bn(S

2) is as given in Table 2.1.

Remark 32 It was proved in [29, Theorem 3] that K−i (Z[G]) = 0 for any finite
group G and for all i � 2.

Remark 33 Although the results of Theorem 31 deal with the lower algebraic
K-theory of the finite subgroups of Bn(S

2) for 4 � n � 11, these groups also occur
as subgroups of Bn(S

2) for larger values of n. These values are given in the last
column of Table 2.1, and are obtained from Theorem 2.

Proof of Theorem 31 By Theorem 2, the isomorphism classes of the maximal finite
subgroups of Bn(S

2), where n runs over the elements of {4, . . . , 11}, are Dic4m ,
where m ∈ {3, 4, . . . , 11}, Z2q , where q ∈ {4, 5, . . . , 10}, T∗ and O∗. If we remove
the condition of maximality of these subgroups, then we must also add Q8 and Zr

to the list, where r ∈ {1, 2, . . . , 7, 9, 11, 22}. We thus obtain the groups of the first
column of Table 2.1 that are subgroups of Bn(S

2) for the values of n given in the last
column. We divide the proof into several parts.
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Table 2.1 The lower algebraic K-theory of the finite subgroups of Bn(S
2), n � 11

Finite group G Wh(G) K−1(Z[G]) K̃0(Z[G]) Values of n � 4 for which
G is realised in Bn(S

2)

Zm , m ∈ {1, 2, 3, 4} 0 0 0 all

Z5 Z 0 0 n ≡ 0, 1, 2 mod 5

Z6 0 Z 0 all

Z7 Z
2 0 0 n ≡ 0, 1, 2 mod 7

Z8 Z 0 0 n �≡ 3 mod 4

Z9 Z
2 0 0 n ≡ 0, 1, 2 mod 9

Z10 Z
2

Z 0 n ≡ 0, 1, 2 mod 5

Z11 Z
4 0 0 n ≡ 0, 1, 2 mod 11

Z12 Z Z
2

Z2 n ≡ 0, 1, 2 mod 6

Z14 Z
4

Z
2 0 n ≡ 0, 1, 2 mod 7

Z16 Z
4 0 Z2 n ≡ 0, 1, 2 mod 8

Z18 Z
4

Z
2

Z3 n ≡ 0, 1, 2 mod 9

Z20 Z
5

Z
3

Z
5
2 n ≡ 0, 1, 2 mod 10

Z22 Z
8

Z Z3 n ≡ 0, 1, 2 mod 11

Q8 0 0 Z2 n even

Dic12 0 Z Z2 n ≡ 0, 2 mod 3

Q16 Z Z2 Z2 n even

Dic20 Z
2

Z2 ⊕ Z Z2 n ≡ 0, 2 mod 5

Dic24 Z Z2 ⊕ Z
2

Z
3
2 n ≡ 0, 2 mod 6

T∗ 0 Z Z2 n even

Dic28 Z
4

Z Z2 n ≡ 0, 2 mod 7

Q32 Z
4

Z2 Z2 n ≡ 0, 2 mod 8

Dic36 Z
4

Z
2

Z
2
2 n ≡ 0, 2 mod 9

Dic40 Z
5

Z2 ⊕ Z
2

Z
3
2 n ≡ 0, 2 mod 10

Dic44 Z
8

Z Z2 n ≡ 0, 2 mod 11

O∗
Z Z2 ⊕ Z Z

2
2 n ≡ 0, 2 mod 6

(a) If G is one of the groups appearing in Table 2.1 then Wh(G) is obtained by
applying Proposition 10.

(b) We determine K̃0(Z[G]), where G is one of the groups appearing in Table 2.1.
By Theorem 11, K̃0(Z[G]) is trivial if G is isomorphic to Zn , where n ∈
{1, . . . , 11, 14}, and is non trivial if G is isomorphic to Zn , where n belongs
to {12, 16, 18, 20, 22}. By [16, page 126, line 16], if G is isomorphic to Z12

then K̃0(Z[Z12]) ∼= Z2. Suppose that G = Z16. From [30, Page 416], there is
a surjective homomorphism from K̃0(Z[Z16]) to ∏4

ν=1 K̃0(Z[ζν]), where ζν is
a primitive 2ν th root of unity, and whose kernel, denoted by W3 in [30], is
isomorphic to Z2. From Theorem 11, K̃ (Z[ζν]) is trivial for all n = 1, . . . , 4,
and so K̃0(Z[Z16]) ∼= Z2. By Theorem 14, K̃0(Z[Zn]) is isomorphic to Z3 if
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n ∈ {18, 22}, and to Z
5
2 if n = 20. If G = Dic4m , where 2 � m � 11, or if

G = T∗ or O∗ then K̃0(Z[G]) is given by Theorem 12.
(c) We determine K−1(Z[G]), where G is one of the groups appearing in Table 2.1.

We consider several cases.

(i) IfG = Zm ,wherem ∈ {1, 2, 3, 4, 5, 7, 8, 9, 11, 16}, then K−1(Z[G]) is triv-
ial by Proposition 30(a).

(ii) LetG = Zm , wherem ∈ {6, 10, 14, 18, 22}. Thenm is of the formm = 2pq ,
where q ∈ N and p is an odd prime. ByProposition 30(b), K−1(Z[G]) ∼= Z

r ,

where r = ∑q
j=1

[
Z

∗
p j : 〈2〉

Z
∗
p j

]
. A straightforward computation shows that

K−1(Z[Z6]) ∼= K−1(Z[Z10]) ∼= K−1(Z[Z22]) ∼= Z, and

K−1(Z[Z14]) ∼= K−1(Z[Z18]) ∼= Z
2.

(iii) If G = Zm , where m ∈ {12, 20}, the results for K−1(Z[G]) are obtained
from Proposition 30(c).

(iv) K−1(Z[G]) for G = Dic4m , where 2 � m � 11: we distinguish the follow-
ing cases.
• If m ∈ {2, 4, 8}, the results are a consequence of Proposition 27.
• If m ∈ {3, 5, 7, 11}, the results follow from Theorem 25 and Proposi-
tion 26 (observe that if m ∈ {3, 5, 11}, 2 generates Z

∗
m , so λ = 1, while if

m = 7, −1 /∈ 〈
2
〉
, but

∣∣〈2
〉∣∣ = 3, so λ = 1 also).

• If m ∈ {6, 9, 10}, by Propositions 20 and 29, we have K−1(Z[Dic36]) ∼=
Z
2, and K−1(Z[Dic4m]) ∼= Z2 ⊕ Z

2 if m ∈ {6, 10}.
(v) If G = T∗ or O∗ then the results follow from Proposition 28.

This completes the proof of the results given in Table 2.1. �
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Chapter 3
The Braid Group B4(S

2),
and the Conjugacy Classes of Its
Maximal Virtually Cyclic Subgroups

In this chapter, we focus our attention on the braid group B4(S
2) of the sphere on

four strings. The aim is to understand the structure of its maximal virtually cyclic
subgroups. These results will be used in Chap.4 to compute the lower algebraic
K-theory of B4(S

2), and to prove Theorem 1.
In Sect. 3.1, we start by recalling some properties of B4(S

2). We then study the
algebraic description of the finite subgroups of B4(S

2) given by Theorem 2, which
enables us to prove inProposition37 that B4(S

2)maybe expressed as an amalgamated
product of T∗ and Q16 along their common normal subgroup that is isomorphic to
Q8. This will alow us to show that B4(S

2) is hyperbolic in the sense of Gromov
(as we shall see in Proposition 49, B4(S

2) is virtually free). In order to do this, in
Sect. 3.2, we study the structure of the maximal virtually cyclic subgroups of B4(S

2),
our main result being Theorem 41. Using [1], in Sect. 3.3, we show that the maximal
infinite virtually cyclic subgroups of B4(S

2) possess an infinite number of conjugacy
classes.

3.1 Generalities about B4(S
2)

In this section, we state several results concerning B4(S
2). Some basic facts and

results about Artin (pure) braid groups and (pure) braid groups of surfaces may be
found in Appendix B. As we shall see, B4(S

2) is rather special, and possesses some
very interesting properties that will allow us to calculate its lower K -theoretical
groups. Unfortunately, if n ≥ 5, Bn(S

2) does not share these properties. We start by
recalling a presentation of B4(S

2).

© The Author(s), under exclusive license to Springer Nature Switzerland AG,
part of Springer Nature 2018
J. Guaschi et al., The Lower Algebraic K-Theory of Virtually Cyclic Subgroups
of the Braid Groups of the Sphere and of Z[B4(S2)], SpringerBriefs
in Mathematics, https://doi.org/10.1007/978-3-319-99489-5_3
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Theorem 34 ([2]) The group B4(S
2) admits the following presentation:

generators: σ1, σ2, σ3.
relations:

σ1σ3 = σ3σ1

σ1σ2σ1 = σ2σ1σ2

σ2σ3σ2 = σ3σ2σ3

σ1σ2σ
2
3σ2σ1 = 1. (3.1)

The first three ‘Artin relations’ (also known as braid relations) will be used
freely and without further comment in what follows. Since the given generators
together with these three relations constitute a presentation of the Artin braid group
B4 (see (B.1) and (B.2)), B4(S

2) is thus a quotient of B4.

Remark 35 It follows easily from Theorem 34 that the Abelianisation of B4(S
2)

is isomorphic to Z6, and that the Abelianisation homomorphism π : B4(S
2) → Z6

identifies the three generators to the single generator 1 of Z6.

We may determine generators of representatives of the conjugacy classes of the
finite subgroups of B4(S

2) in terms of the generators of Theorem 34 as follows.
First, according to Murasugi [3, Theorem A], any finite order element of B4(S

2) is
conjugate to a power of one of the following elements:

⎧
⎪⎨

⎪⎩

α0 = σ1σ2σ3 (of order 8)

α1 = σ1σ2σ
2
3 (of order 6)

α2 = σ1σ
2
2 (of order 4).

(3.2)

Let
�4 = σ1σ2σ3σ1σ2σ1 (3.3)

denote the ‘half twist’ braid on four strings. It is a square root of the full twist braid
�2

4 described in (B.3) (see also Figs. B.2(a) and (b) for illustrations of the half and
full twist braid on six strings). The braid �2

4 generates the centre of B4(S
2) and is

the unique element of B4(S
2) of order 2 (this is true in general, see [4]). Using (3.2),

this latter fact implies that:
�2

4 = α4
0 = α3

1 = α2
2. (3.4)

Let Q = 〈
α2
0,�4

〉
. By [5, Theorem 1.3(3)], Q is isomorphic to Q8, and is a normal

subgroup of B4(S
2). Further, it is well known (see [6, Lemma 29] for example) that:

α0σiα
−1
0 = σi+1 for i = 1, 2, andα2

0σ3α
−2
0 = σ1, (3.5)
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and that:
�4σi�

−1
4 = σ4−i for all i = 1, 2, 3. (3.6)

Note that relations (3.5) and (3.6) hold in B4, and are special cases of more general
relations in Bn(S

2).

Remark 36

(a) By Theorem 2, the isomorphism classes of the maximal finite subgroups of
B4(S

2) are T∗ and Q16.
(b) Within B4(S

2), there is a single conjugacy class of each isomorphism class of T∗
and Q16 [6, Proposition 1.5(1)]. These subgroups may be realised algebraically
as follows:

(i) Q16 may be realised in B4(S
2) as the subgroup 〈α0,�4〉 (α0 is of order 8

and �4 is of order 4) [7]. In particular,

�4α0�
−1
4 = α−1

0 and α4
0 = �2

4. (3.7)

(ii) By [6, Remark 3.2], T∗ may be realised in B4(S
2) as the subgroup〈

σ1σ
−1
3 ,�4

〉
�

〈
α2
1

〉 ∼= Q8 � Z3. Note that the first factor of the semi-direct
product is Q, since by Eqs. (3.2) and (3.3), we have:

α−2
0 �4 = σ−1

3 σ−1
2 σ−1

1 σ−1
3 σ−1

2 σ−1
1 · σ1σ2σ3σ1σ2σ1 = σ1σ

−1
3 . (3.8)

The action in the semi-direct product is given by α2
1�4α

−2
1 = σ1σ

−1
3 and

α2
1σ1σ

−1
3 α−2

1 = �4σ1σ
−1
3 = α−2

0 . The only other isomorphism class of finite
non-Abelian subgroups of B4(S

2) is that of Q8: the subgroups Q = 〈
α2
0,�4

〉

and Q′ = 〈
α2
0,α0�4

〉
of 〈α0,�4〉 are isomorphic toQ8 and realise the two con-

jugacy classes of Q8 in B4(S
2) [6, Proposition 1.5(2) and Theorem 1.6].

(c) By Theorem 2, the remaining finite subgroups are cyclic, and as we mentioned
previously, are realised up to conjugacy by powers of the αi , i ∈ {0, 1, 2}. For
each finite cyclic subgroup, there is a single conjugacy class, with the exception
of Z4, which is realised by both of the non-conjugate subgroups

〈
α2
0

〉
and 〈α2〉

[6, Proposition 1.5(2) and Theorem 1.6].

As we mentioned above, Q is a normal subgroup of B4(S
2). From this, we obtain

the following decomposition of B4(S
2) as an amalgamated product of two finite

groups.

Proposition 37 B4(S
2) ∼= Q16 ˚Q8 T

∗.

Proof Let � = B4(S
2)/Q. Since σ1σ

−1
3 ∈ Q and

〈
σ1σ

−1
3

〉
is not normal in B4(S

2) by
Remark 36(b)(ii), it follows that the normal closure of σ1σ

−1
3 in B4(S

2) is Q, and that
a presentation of� is obtained by adjoining the relationσ1 = σ3 to the presentation of
B4(S

2) given inTheorem34. Thus� is generated by elementsσ1 andσ2, subject to the
two relations σ1 σ2 σ1 = σ2 σ1 σ2 and (σ1 σ2 σ1)

2 = 1. Let � = 〈
a, b

∣
∣ a2 = b3 = 1

〉
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denote the free product Z2 ˚ Z3, and consider the map ϕ : � → � defined on the
generators of � by ϕ(a) = σ1 σ2 σ1 and ϕ(b) = σ1 σ2. Since (ϕ(b))3 = (σ1 σ2)

3 =
(σ1 σ2 σ1)

2 = (ϕ(a))2 = 1, ϕ extends to a homomorphism that is surjective since
ϕ(b−1a) = σ1 and ϕ(a−1b2) = σ2. Conversely, the map ψ : � → � defined on the
generators of � by ψ(σ1) = b−1a and ψ(σ2) = a−1b2 extends to a homomorphism
since:

ψ(σ1)ψ(σ2)ψ(σ1) = b−1aa−1b2b−1a = a

= a−1b2b−1aa−1b2 = ψ(σ2)ψ(σ1)ψ(σ2) and

(ψ(σ1)ψ(σ2)ψ(σ1))
2 = a2 = 1,

and is surjective because ψ(σ1 σ2 σ1) = a and ψ(σ1 σ2) = b. Hence ϕ is an isomor-
phism, and � ∼= Z2 ˚ Z3.

Let G = Q16 ˚Q8 T
∗, and consider the following presentation of G with genera-

tors u, v, p, q, r that are subject to the relations:

{
p2 = q2, qpq−1 = p−1, rpr−1 = q, rqr−1 = pq, r3 = 1

u4 = v2, vuv−1 = u−1, u2 = p, v = q,

so that 〈p, q, r〉 ∼= T∗, 〈u, v〉 ∼= Q16, and 〈p, q, r〉 ∩ 〈u, v〉 = H , where H =
〈p, q〉 ∼= Q8. It follows from this presentation that H is normal in G and G/H ∼=
Z2 ˚ Z3. Let f : G → B4(S

2) be the map defined on the generators of G by
f (u) = α−1

0 , f (p) = α−2
0 , f (v) = f (q) = �4 and f (r) = α2

1.UsingRemark36(b),
we see that f respects the relations of G, and so extends to a homomorphism that
sends H isomorphically onto Q. Further, α3

1 = �2
4 by Eq. (3.4). Thus α1 = �2

4α
−2
1 ,

and since B4(S
2) = 〈α0,α1〉 by [8, Theorem 3], we conclude that f is surjective.

We thus obtain the following commutative diagram of short exact sequences:

1 H

f |H∼=

G

f

G/H

f̂

1

1 Q B4(S
2) � 1,

where f̂ is the homomorphism induced by f on the quotients. Since f is surjective,
f̂ is too, and the isomorphisms G/H ∼= Z2 ˚ Z3

∼= � and the fact that Z2 ˚ Z3 is
Hopfian (see [9] for example) imply that f̂ is an isomorphism. The result is then a
consequence of the 5-Lemma. �

Remark 38 By Proposition 37, B4(S
2) is isomorphic to an amalgam of finite groups.

Using Bass-Serre theory of groups acting on trees, it follows that it is a virtually free
group, and so is hyperbolic in the sense of Gromov (see [10] and [1, Section1.1]).
This important fact will be crucial in the computation of the lower algebraic K -theory
of B4(S

2).
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3.2 Maximal Virtually Cyclic Subgroups of B4(S
2)

As we mentioned at the beginning of Sect. 2.1, an infinite virtually cyclic group � is
isomorphic to one of the following:

(I) a semi-direct product of the form � ∼= F �α Z, where F is a finite group and
α ∈ Hom(Z,Aut (F)). Such a group � surjects onto Z with finite kernel F .

(II) an amalgamated product of the form� ∼= G1 ˚F G2, whereG1 andG2 are finite
groups containing a common subgroup F of index 2 in both G1 and G2. Such
a group � surjects onto the infinite dihedral group Dih∞ with finite kernel F .

We shall say that these infinite virtually cyclic groups are of Type I or of Type II
respectively.

Recall from Remark 36(a) and (b) that up to isomorphism, the maximal finite
subgroups of B4(S

2) are Q16 and T∗, and that there exists a single conjugacy class
of each. Since Out(Q8) ∼= S3, there are three isomorphism classes of Type I groups
of the form Q8 � Z, and that we denote by Q8 � j Z, where j ∈ {1, 2, 3}, and for
which the action is of order j [6, Definition 4(1)(e)]. More precisely, if we take the
presentation of Q8 given by (2.1) and adjoin a new generator z:

(i) Q8 �1 Z is the group obtained by adding the relations [z, x] = [z, y] = 1,where
[u, v] = uvu−1v−1 denotes the commutator of the elements u and v and hence
Q8 �1 Z ∼= Q8 × Z.

(ii) Q8 �2 Z is the group obtained by adding the relations zxz−1 = y and zyz−1 = x
(so zxyz−1 = (xy)−1).

(iii) Q8 �3 Z is the group obtained by adding the relations zxz−1 = y and zyz−1 =
xy (so zxyz−1 = x).

Up to a finite number of exceptions, the isomorphism classes of the infinite virtually
cyclic subgroups of Bn(S

2) were classified in [6] for all n ≥ 4. In the case n = 4, the
classification is as follows.

Theorem 39 ([6, Theorem 5]) Every infinite virtually cyclic subgroups of B4(S
2) is

isomorphic to one of the following groups:

(a) subgroups of Type I: Zk × Z, k ∈ {1, 2, 4}; Z4 � Z for the non-trivial action;
and Q8 � j Z for j ∈ {1, 2, 3}.

(b) subgroups of Type II: Z4 ˚Z2 Z4, Z8 ˚Z4 Z8, Z8 ˚Z4 Q8,Q8 ˚Z4 Q8 and
Q16 ˚Q8 Q16.

For each of the Type II subgroups given in Theorem 39(b), abstractly there is a
single isomorphism class, with the exception of Q16 ˚Q8 Q16 for which there are
two isomorphism classes [6, Proposition 11]. In this exceptional case, we recall the
following result concerning the structure of the two classes, and their realisation in
B4(S

2).

Proposition 40 ([6, Propositions 11 and 78]) Abstractly, there are exactly two iso-
morphism classes of the amalgamated productQ16 ˚Q8 Q16, possessing the follow-
ing presentations:
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�1= 〈
a, b, x, y

∣
∣ a4=b2, x4= y2, bab−1=a−1, yxy−1= x−1, x2=a2, y=b

〉

(3.9)
and

�2= 〈
a, b, x, y

∣
∣ a4=b2, x4= y2, bab−1=a−1, yxy−1= x−1, x2=b, y=a2b

〉
.

(3.10)
Further, for i ∈ {1, 2}, B4(S

2) possesses a subgroup Gi isomorphic to �i .

WithChap.4 in view,most of the rest of this chapter will be devoted to the problem
of deciding which subgroups of B4(S

2) are maximal within the family of virtually
cyclic subgroups. In what follows, we refer to such a subgroup as amaximal virtually
cyclic group (thus the word ‘maximal’ will be used to qualify the notion of virtually
cyclic group).

Theorem 41

(a) Let G be a maximal infinite virtually cyclic subgroup of B4(S
2). Then G is

isomorphic to one of the following groups:Q8 � Z for one of the three possible
actions, or Q16 ˚Q8 Q16.

(b) If G is a subgroup of B4(S
2) isomorphic to T∗ then it is maximal as a virtually

cyclic subgroup.
(c) For each j ∈ {1, 2, 3}, there are subgroups of B4(S

2) isomorphic to Q8 � j Z

that are maximal as virtually cyclic subgroups, and others that are non maximal.
(d) There exist subgroups of B4(S

2) isomorphic to Q16 ˚Q8 Q16 that are maximal
as virtually cyclic subgroups, and others that are non maximal.

The proof of Theorem 41 is long, and will be split into three sections, Sect. 3.2.1,
where we shall prove parts (a) and (b), Sect. 3.2.2, where we shall prove parts (c)
and (d), with the exception of the case j = 1 in part (c), and Sect. 3.2.3, where we
prove part (c) in this exceptional case. As we mentioned in Remark 38, B4(S

2) is
hyperbolic in the sense of Gromov. The following proposition implies that there are
no infinite ascending chains of infinite virtually cyclic subgroup of B4(S

2).

Proposition 42 ([11, Propositions 5, 6 and Remark 7])Every infinite virtually cyclic
subgroup of a Gromov hyperbolic group is contained in a unique maximal virtually
cyclic subgroup.

3.2.1 Proof of Parts (a) and (b) of Theorem 41

The statement of the following proposition is that of parts (a) and (b) of Theorem 41.

Proposition 43

(a) Let G be a maximal virtually cyclic subgroup of B4(S
2). Then G is isomorphic

to one of the following groups: T∗,Q8 � Z for one of the three possible actions,
or Q16 ˚Q8 Q16.
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(b) If G is a subgroup of B4(S
2) isomorphic to T∗ then it is maximal as a virtually

cyclic subgroup.

Before proving Proposition 43, note that if G is infinite in part (a), we will prove
that G cannot be isomorphic to one of the other infinite virtually cyclic groups of
B4(S

2) given in Theorem 39. The question of whether there actually exist maximal
virtually cyclic subgroups of B4(S

2) isomorphic to Q8 � Z or to Q16 ˚Q8 Q16 will
be dealt with in Sect. 3.2.2.

Proof of Proposition 43. Suppose that G is a maximal virtually cyclic subgroup of
B4(S

2).

(a) (i) First assume thatG is finite. ThenG is a maximal finite subgroup of B4(S
2),

so is isomorphic to eitherQ16 or T∗ by Theorem 2. Suppose that G ∼= Q16.
Since B4(S

2) possesses a single conjugacy class of subgroups isomorphic to
Q16 by Remark 36(b), by Proposition 40, there exists a subgroup of B4(S

2)

isomorphic to the amalgamated product Q16 ˚Q8 Q16, of which one of the
factors is G, so G is not maximal as a virtually cyclic subgroup. So G must
be isomorphic to T∗.

(ii) Now assume that G is infinite. We separate the cases where G is of Type I
and Type II respectively.
(A) We first suppose that G is of Type I, so G = F � Z, for some action of

Z on F , where F is finite and is the torsion subgroup ofG. Suppose that
F is either trivial or is isomorphic to Z2 or Z4, and let u be a generator
of the Z-factor of G. Up to conjugation, we claim that F ⊂ 〈

α2
0

〉
. If F

is trivial or isomorphic to Z2 then F ⊂ 〈
�2

4

〉 ⊂ 〈
α2
0

〉
since α4

0 = �2
4. So

suppose that F ∼= Z4. By Remark 36(c), B4(S
2) admits two conjugacy

classes of subgroups isomorphic to Z4, generated respectively by α2
0

and α2. But since u normalises F and the normaliser of 〈α2〉 in B4(S
2)

is finite [6, Proposition 8(b)], it follows that F is conjugate to
〈
α2
0

〉
. This

proves the claim, and so conjugatingG if necessary,wemay suppose that
F ⊂ 〈

α2
0

〉
. Since Q = 〈

α2
0,�4

〉
is normal in B4(S

2) and Q ∼= Q8 by [5,
Theorem 1.3(3)], the subgroup

〈
α2
0,�4, u

〉
is isomorphic to one of the

three Type I groupsQ8 � j Z of Theorem 39(a), where j ∈ {1, 2, 3}, and
admits

〈
α2
0, u

〉
as a proper subgroup. Now G is a subgroup of

〈
α2
0, u

〉
, so

G is non maximal as a virtually cyclic subgroup of B4(S
2). The result

in this case is then a consequence of Theorem 39(a).
(B) Now suppose that G is a Type II subgroup of B4(S

2) that is non
isomorphic to Q16 ˚Q8 Q16. By Theorem 39(b), we may write G =
G1 ˚H G2, where either:
(1) G1 and G2 are subgroups of B4(S

2) isomorphic to Q8 or Z8, and
H = G1 ∩ G2 is isomorphic to Z4, or

(2) G1 and G2 are subgroups of B4(S
2) isomorphic to Z4, and H =

G1 ∩ G2 = 〈
�2

4

〉
.

Note that G1 and G2 are not necessarily isomorphic. By Remark 36, in
B4(S

2), there are two conjugacy classes of subgroups isomorphic toQ8
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represented by Q and Q′, one conjugacy class of subgroups isomorphic
to Z8, represented by 〈α0〉, and two conjugacy classes of subgroups
isomorphic to Z4, represented by

〈
α2
0

〉
and 〈α0�4〉 (this is because the

elements α0�4 and α2 generate conjugate subgroups of order 4). Con-
jugating G if necessary, we may suppose that G1 is equal to Q, Q′ or
〈α0〉 in case (1), and is equal to

〈
α2
0

〉
or 〈α0�4〉 in case (2). Furthermore,

there exists λ ∈ B4(S
2) such that G2 = λG ′

2λ
−1, where G ′

2 is equal to
Q, Q′ or 〈α0〉 in case (1), and is equal to

〈
α2
0

〉
or 〈α0�4〉 in case (2).

Set L = 〈α0,�4〉. Then G1 and G ′
2 are subgroups of L , and Q is a sub-

group of L that is normal in B4(S
2), so Q is a subgroup of L ∩ λLλ−1.

Since L ∼= λLλ−1 ∼= Q16 and G = 〈G1 ∪ G2〉 �
〈
L ∪ λLλ−1

〉
, it fol-

lows that
〈
L ∪ λLλ−1

〉
is infinite and L ∩ λLλ−1 = Q because Q is of

index 2 in both L and λLλ−1. We conclude from [12, Lemma 15] that〈
L ∪ λLλ−1

〉 ∼= L ˚Q L ∼= Q16 ˚Q8 Q16. ThusG is a non-maximal vir-
tually cyclic subgroup of B4(S

2), and it follows from Theorem 39(b)
that any maximal virtually cyclic subgroup of B4(S

2) of Type II must
be isomorphic to Q16 ˚Q8 Q16.

(b) By Theorem 39, none of the infinite virtually cyclic subgroups of B4(S
2) admit

subgroups isomorphic to T∗, so any subgroup of B4(S
2) isomorphic to T∗ is

maximal as a virtually cyclic subgroup. Combined with part (a)(i) of the proof,
this shows in fact that G is a finite maximal virtually cyclic subgroup if and only
if G ∼= T∗. �

This completes the proof of parts (a) and (b) of Theorem 41.

3.2.2 Proof of Parts (c) and (d) of Theorem 41

We now turn to parts (c) and (d) of Theorem 41, which may be regarded as a converse
of part (a) in the case that G is infinite. We first prove part (c) of Theorem 41 with
the exception of the existence of Q8 × Z as a maximal virtually cyclic subgroup of
B4(S

2), which will be dealt with in Sect. 3.2.3. Before doing so, we state and prove
the following lemma.

Lemma 44 Let π : B4(S
2) → Z6 denote the Abelianisation homomorphism

described in Remark 35.

(a) If H is a subgroup of B4(S
2) that is isomorphic to either Z8, Q8 or Q16 then

π(H) ⊂ 〈
3
〉
.

(b) If G is a subgroup of B4(S
2) that is isomorphic to an amalgamated product

of one of the groups Q16 ˚Q8 Q16,Q8 ˚Z4 Q8,Q8 ˚Z4 Z8 or Z8 ˚Z4 Z8 then
π(G) ⊂ 〈

3
〉
.
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Proof

(a) Consider the subgroup K = 〈α0,�4〉. As we mentioned in the proof of Proposi-
tion 43, K contains representatives of the conjugacy classes of all subgroups of
B4(S

2) that are isomorphic toZ8,Q8 orQ16. So there existsλ ∈ B4(S
2) such that

λHλ−1 ⊂ K . Now π(α0) = 3 and π(�4) = 0, thus π(K ) ⊂ 〈
3
〉
, which yields

the result.
(b) If G is a subgroup of B4(S

2) that is isomorphic to one of the given amalgamated
products then by Remark 36(c), the factors appearing in the amalgamation are
subgroups of conjugates of K , and thus π(G) ⊂ π(K ) ⊂ 〈

3
〉
by part (a). �

To prove Theorem 41(c), for each j ∈ {1, 2, 3}, we shall exhibit two subgroups of
B4(S

2) that are isomorphic Q8 � j Z, one of which is maximal as a virtually cyclic
subgroup of B4(S

2), and the other of which is non maximal. For the case j = 1,
the proof of the existence of a maximal virtually cyclic subgroup of B4(S

2) that is
isomorphic toQ8 × Z is long, and will be treated separately in Sect. 3.2.3. With the
exception of this case, the statement of the following proposition is that of parts (c)
and (d) of Theorem 41.

Proposition 45

(a) For each j ∈ {1, 2, 3}, there are subgroups of B4(S
2) isomorphic to Q8 � j Z

that are non maximal as virtually cyclic subgroups.
(b) For each j ∈ {2, 3}, there are subgroups of B4(S

2) isomorphic to Q8 � j Z that
are maximal as virtually cyclic subgroups.

(c) There exist subgroups of B4(S
2) isomorphic to Q16 ˚Q8 Q16 that are maximal

as virtually cyclic subgroups, and others that are non maximal.

Proof of Proposition 45.

(a) By Proposition 40, for i = 1, 2, B4(S
2) possesses a subgroup Gi that is isomor-

phic to the amalgamated product�i given by Eqs. (3.9) and (3.10), and so admits
a presentation given by the corresponding equation. The amalgamating subgroup
� = 〈

a2, b
〉 = 〈

x2, y
〉
is isomorphic toQ8, and the element a−1x is a product of

elements chosen alternately from the two sets 〈a, b〉 \ 〈
a2, b

〉
and 〈x, y〉 \ 〈

x2, y
〉
,

so is of infinite order by standard properties of amalgamated products. Consider
the subgroup Hi = 〈

�i ∪ {
a−1x

}〉
of Gi . One may check that

〈
a−1x

〉
acts by

conjugation on
〈
a2, b

〉
. If i = 1 then:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a−1x · a2 · x−1a = a2

a−1x · b · x−1a = a−1xyx−1a = a−1xyx−1y−1ya = a−1x2ya

= abab−1b = b

a−1x · a2b · x−1a = a2b,

(3.11)

and hence H1
∼= Q8 × Z. If i = 2, a similar computation shows that conjugation

by a−1x permutes cyclically a2, b−1 and a−2b−1, and thus H2
∼= Q8 �3 Z. In
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each case, Hi � Gi because [Gi : Hi ] = 2. Now Gi is isomorphic to Q16 ˚Q8

Q16, and so Hi is non maximal as a virtually cyclic subgroup of B4(S
2), which

proves the statement for j ∈ {1, 3}. It thus remains to treat the case j = 2. Using
Eq. (3.11), note that inG1, the action by conjugation of xa−1x on� is as follows:

⎧
⎪⎨

⎪⎩

xa−1x · a2 · x−1ax−1 = xa2x−1 = a2

xa−1x · b · x−1ax−1 = xyx−1 = xyx−1y−1y = x2y = a2b

xa−1x · a2b · x−1ax−1 = a4b = b−1.

(3.12)

Now xa−1x is of infinite order, so we conclude from Eq. (3.12) that the sub-
group

〈
� ∪ {

xa−1x
}〉

is isomorphic to Q8 �2 Z. Furthermore, this subgroup is
contained (strictly) in G1, so is non maximal.

(b) First let j = 2. Consider the subgroup H = 〈Q ∪ {σ1}〉 of B4(S
2). By Propo-

sition 42, H is contained in a maximal virtually cyclic subgroup M of B4(S
2).

Since Q is normal in B4(S
2) and σ1 is of infinite order, H must be isomorphic to

a semi-direct product of the formQ8 �k Z for some k ∈ {1, 2, 3}. To determine
k, we study the action by conjugation of σ1 on Q. Using Eq. (3.8), we have:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

σ1 · α2
0 · σ−1

1 = σ1α
2
0σ

−1
1 α−2

0 α2
0 = σ1σ

−1
3 α2

0 by Eq. (3.5)

= α−2
0 �4α

2
0 = α−4

0 �4 = �−1
4 by Eq. (3.7)

σ1 · �−1
4 · σ−1

1 = σ1�
−1
4 σ−1

1 �4�
−1
4 = σ1σ

−1
3 �−1

4 by Eq. (3.6)

= α−2
0 by Eq. (3.8)

σ1 · α2
0�4 · σ−1

1 = �−1
4 α2

0 = α2
0�4.

(3.13)

Since σ1 is of infinite order, H is thus isomorphic toQ8 �2 Z because the action
fixes the subgroup

〈
α2
0�4

〉
of order 4 of Q, and exchanges

〈
α2
0

〉
and �4. But

π(σ1) = 1 /∈ 〈
3
〉
, so H is not contained in any subgroup of the formQ8 ˚Z4 Q8,

Q8 ˚Z4 Z8 or Q16 ˚Q8 Q16 by Lemma 44(b). It cannot be contained either in a
subgroup isomorphic to Q8 × Z or Q8 �3 Z because the actions on Q are not
compatible. This implies thatM , which ismaximal in B4(S

2) as a virtually cyclic
subgroup, must also be isomorphic to Q8 �2 Z.
Now let j = 3. As in the case j = 2, if there exists a subgroup L of B4(S

2) that is
isomorphic toQ8 �3 Z, it cannot be contained in a subgroup of B4(S

2) isomor-
phic toQ8 × Z or toQ8 �2 Z. Moreover, by Lemma 44(b), if π(L)⊂/ 〈

3
〉
then L

is not contained in any subgroup of B4(S
2) isomorphic to Q8 ˚Z4 Q8, Z8 ˚Z4

Z8,Q8 ˚Z4 Z8 orQ16 ˚Q8 Q16. As in the previous paragraph,we conclude using
Proposition 42 that L is contained in a maximal virtually cyclic subgroup of
B4(S

2) that must also be isomorphic toQ8 �3 Z. To prove the result, we exhibit
such a subgroup L . Consider the action by conjugation of σ2 on Q:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ2 · α2
0 · σ−1

2 = α0 · α−1
0 σ2α0 · α0σ

−1
2 α−1

0 · α0

= α0σ1σ
−1
3 α0 by Eq. (3.5)

= α0α
−2
0 �4α0 by Eq. (3.8)

= α−2
0 �4 = (α2

0�4)
−1 by Eq. (3.7)

σ2 · �4 · σ−1
2 = σ2�4σ

−1
2 �−1

4 · �4 = �4

σ2 · α2
0�4 · σ−1

2 = α−2
0 �4 · �4 = α2

0.

(3.14)

In particular, σ4
2xσ

−4
2 = x for all x ∈ Q. This implies that the action by conjuga-

tion of z = σ7
2σ1 on the elements of Q is the same as that of σ3

2σ1. By Eqs. (3.13)
and (3.14), this action is as follows:

α2
0

σ1�−→ �−1
4

σ3
2�−→ �−1

4

�−1
4

σ1�−→ α−2
0

σ3
2�−→ (α2

0�4)
−1

(α2
0�4)

−1 σ3
2σ1�−→ �−1

4 α−2
0 �4 = α2

0.

Hence the action by conjugation of z on Q is of order 3. Further, π(z) = 2 /∈ 〈
3
〉
,

which shows that L = 〈Q ∪ {z}〉 is not contained in any subgroup isomorphic
to an amalgamated product of the form Q8 ˚Z4 Q8, Z8 ˚Z4 Z8,Q8 ˚Z4 Z8 or
Q16 ˚Q8 Q16 byLemma44(b).Observe that by (B.5), the permutation associated
to z is (1, 2, 3), and so z3 ∈ P4(S2). To prove that L ∼= Q8 �3 Z, it remains to
show that z is of infinite order. To achieve this, we shall write z3 in terms of the
direct product decomposition (B.10) of P4(S2), which comes down to expressing
z3 in terms of the basis (A1,4, A2,4) of the free group π1(S

2 \ {z1, z2, z3} , z4)
that is the kernel of the homomorphism (p4,3)∗ of (B.9). Geometrically, this
homomorphism is given by forgetting the last string (see (B.6) and (B.7)). As
mentioned inAppendixB, the group P4(S2) is generated by the set

{
Ai, j

}

1≤i< j≤4,

where Ai, j is defined by (B.4), Ai,i+1 = σ2
i for i ∈ {1, 2, 3}, and the Ai, j satisfy

the ‘surface relations’ (B.8) (the relations are not complete). For the convenience
of the reader, we write out these relations in full:

A1,2A1,3A1,4 = 1 (3.15)

A1,2A2,3A2,4 = 1 (3.16)

A1,3A2,3A3,4 = 1 (3.17)

A1,4A2,4A3,4 = 1. (3.18)

Using (B.3) and (B.4), one may also see that:

A1,2A1,3A1,4A2,3A2,4A3,4 = �2
4. (3.19)
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The reader may also convince himself or herself of the validity of this rela-
tion by drawing a picture similar to that of Fig. B.2(b). It follows from rela-
tions (3.15), (3.18) and (3.19) that

A2,3 = �2
4A

−1
3,4A

−1
2,4 = �2

4A1,4, (3.20)

from relations (3.17), (3.18) and (3.20) that

A1,3 = A−1
3,4A

−1
2,3 = A1,4A2,4A

−1
1,4�

2
4, (3.21)

and from relations (3.16) and (3.20) that

A1,2 = A−1
2,4A

−1
2,3 = A−1

2,4A
−1
1,4�

2
4. (3.22)

If i ∈ {1, 2}, it follows from the braid relations in B4(S
2) that σiσi+1σ

−1
i =

σ−1
i+1σiσi+1, and hence σiσ

k
i+1σ

−1
i = σ−1

i+1σ
k
i σi+1 for all k ∈ Z. We thus obtain:

z3 = (σ7
2σ1)

3 = A3
2,3σ2σ1σ

7
2σ

−1
1 · σ2

1σ
7
2σ1 = A3

2,3σ
7
1σ2σ

2
1σ

7
2σ1

= A3
2,3A

3
1,2σ1σ2σ

2
1σ

7
2σ1 = A3

2,3A
3
1,2σ1 · σ2σ

2
1σ

−1
2 · σ8

2σ1

= A3
2,3A

3
1,2A2,3σ1σ

8
2σ1 = A3

2,3A
3
1,2A2,3A1,2σ

−1
1 σ8

2σ1

= A3
2,3A

3
1,2A2,3A1,2σ2σ

8
1σ

−1
2 = A3

2,3A
3
1,2A2,3A1,2A

4
1,3

= (�2
4A1,4)

3(A−1
2,4A

−1
1,4�

2
4)

3�2
4A1,4A

−1
2,4A

−1
1,4�

2
4(A1,4A2,4A

−1
1,4�

2
4)

4

= A3
1,4A

−1
2,4A

−1
1,4A

−1
2,4A

−1
1,4A

2
2,4A

−1
1,4

by Eqs. (3.20), (3.21) and (3.22). But (A1,4, A2,4) is a basis of the free group
π1(S

2 \ {z1, z2, z3} , z4), so z3 �= 1, and since z3 ∈ 〈
A1,4, A2,4

〉
, it is of infinite

order. We conclude that L ∼= Q8 �3 Z, which completes the proof in this case.
(c) The existence of subgroups of B4(S

2) isomorphic to Q16 ˚Q8 Q16 that are non
maximal as virtually cyclic subgroups is actually a consequence of the structure
of the amalgamatedproduct. Indeed, consider the following short exact sequence:

1 → Q8 → Q16 ˚Q8 Q16
p→ Z2 ˚ Z2 → 1.

Now Z2 ˚ Z2 is isomorphic to the infinite dihedral group Dih∞ = Z � Z2. So
for all n ∈ N, n ≥ 2, the subgroup nZ � Z2 is abstractly isomorphic to Z � Z2

while being a proper subgroup (in other words, it is non co-Hopfian). Thus
p−1(nZ � Z) is isomorphic to Q16 ˚Q8 Q16 while being a proper subgroup (of
index n). In particular, since B4(S

2) contains a subgroup � that is isomorphic to
Q16 ˚Q8 Q16, � admits proper subgroups that are also isomorphic to Q16 ˚Q8

Q16, and any one of these subgroups is a non-maximal virtually cyclic subgroup
that is isomorphic to Q16 ˚Q8 Q16. Conversely, let G be a subgroup of B4(S

2)

that is isomorphic to Q16 ˚Q8 Q16. By Proposition 42, G is a contained in
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a subgroup M of B4(S
2) that is maximal as a virtually cyclic subgroup. But

Theorem 39 implies that the only isomorphism class of infinite virtually cyclic
subgroups of B4(S

2) that containsQ16 isQ16 ˚Q8 Q16, and so we conclude that
M ∼= Q16 ˚Q8 Q16, which completes the proof. �

This proves parts (c) and (d) of Theorem 41, with the exception of the statement
of part (c) that pertains to the existence of maximal virtually cyclic subgroups in the
case j = 1.

3.2.3 Proof of the Existence of Maximal SubgroupsQ8 × Z

in Part (c) of Theorem 41

We now complete the proof of Theorem 41(c) by proving the existence of maximal
virtually cyclic subgroups of B4(S

2) that are isomorphic to Q8 × Z.

Proposition 46 The group B4(S
2) contains maximal virtually cyclic subgroups that

are isomorphic to Q8 × Z.

In order to prove Proposition 46, we will first require two lemmas. As before, let
Q denote the normal subgroup

〈
α2
0,�4

〉
of B4(S

2), and let H1 = 〈�4〉, H2 = 〈
α2
0

〉

and H3 = 〈
α2
0�4

〉
be the three subgroups of Q isomorphic to Z4. Then B4(S

2) acts
transitively on the setH = {H1, H2, H3} by conjugation, and this action gives rise to
the permutation representationψ : B4(S

2) → S3 that satisfies the following relation:

for all 1 ≤ i, j ≤ 3, and for all β ∈ B4(S
2),

(
βHiβ

−1 = Hj
) ⇐⇒ (

ψ(β)(i) = j
)
.

Note that the homomorphism ψ is surjective, that ψ(σ1) = (1, 2) by Eq. (3.13), and
that ψ(σ2) = (2, 3) by Eq. (3.14). Since σ1σ

−1
3 ∈ Q by Eq. (3.8), and the action of

the elements of Q on H is trivial, it follows that ψ(σ3) = ψ(σ1). If β is of infinite
order then 〈Q ∪ {β}〉 ∼= Q8 � Z, and the order of the action of Z onQ8 is that of the
element ψ(β). The first step is to describe Ker (ψ) whose elements of infinite order
will give rise to subgroups of B4(S

2) isomorphic to Q8 × Z.

Lemma 47 Ker (ψ) is isomorphic to the direct product of Q with a free group
F2(x, y) of rank 2, for which a basis (x, y) is given by:

x = α2
0�4σ

2
1 and y = �4σ

2
2 . (3.23)

Proof By Remark 36(b) and Proposition 37, B4(S
2) is isomorphic to the group

T∗ ˚Q8 Q16, where the T∗-factor G1 of B4(S
2) is generated by Q and α2

1, and the
Q16-factor G2 of B4(S

2) is generated by Q and α0, so G1 ∩ G2 = Q. Consider the
canonical projection:

ρ : B4(S
2) → B4(S

2)/Q.
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As in the proof of Proposition 37, we identify the quotient B4(S
2)/Q with the free

product Z3 ˚ Z2, the Z3- (resp. Z2-) factor being generated by a = ρ(α1) (resp.
b = ρ(α0)). Consider the surjective homomorphism ψ̂ : Z3 ˚ Z2 → S3 defined by
ψ̂(a) = (1, 3, 2) and ψ̂(b) = (1, 3). Since

ψ(α0) = ψ(σ1σ2σ3) = (1, 2)(2, 3)(1, 2) = (1, 3),

ψ(α1) = ψ(σ1σ2σ
2
3) = (1, 2)(2, 3) = (1, 3, 2)

and B4(S
2) = 〈α0,α1〉 by [8, Theorem 3], it follows that ψ̂ ◦ ρ = ψ, so ρ induces a

homomorphism ρ̂ : Ker (ψ) → Ker(ψ̂) of the respective kernels. We thus obtain the
following commutative diagram of short exact sequences:

1 1

Ker(ρ̂ ) Q

1 Kerψ

ρ̂

B4(S
2)

ρ

ψ
S3 1

1 Ker(ψ̂) Z3 ˚ Z2
ψ̂

S3 1,

1 1

(3.24)

as well as the equality Ker (ρ̂ ) = Q. Taking
{
1, a, a2, b, ab, a2b

}
to be the Schreier

transversal for ψ̂ and applying the Reidemeister-Schreier rewriting process [13], we
see that Ker(ψ̂) is a free group of rank 2 with basis

(
(ab)2, (ba)2

)
, which implies that

Ker (ψ) ∼= Q8 � F2 by the commutative diagram (3.24). To determine the action of
Ker(ψ̂) on Q, note by (3.13) and (3.14) that σ2

1 and σ2
2 belong to Ker (ψ), and that:

ρ(σ2
1) = ρ(σ2

3) = (
ρ(α−1

0 α1)
)2 = (ba)2

ρ(σ2
2) = ρ(α0σ

2
1α

−1
0 ) = (ab)2,

so ρ̂(σ2
1) = (ba)2 and ρ̂(σ2

2) = (ab)2. The same equations imply that the actions by
conjugation of σ2

1 and σ2
2 on Q yield elements of Inn(Q), namely conjugation by

α2
0�4 and by�4 respectively. Let s : Ker(ψ̂) → Ker (ψ) be the section for ρ̂ defined

on the basis of Ker(ψ̂) by s
(
(ba)2

) = x and s
(
(ab)2

) = y. The action of these two
elements on Q is thus trivial, which shows that Ker (ψ) ∼= Q8 × F2 as required. �
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Using the definition of ψ, a transversal of Ker (ψ) in B4(S
2) is seen to be:

T = {e,σ1,σ2,σ1σ2σ1,σ1σ2,σ2σ1} . (3.25)

We now determine the action by conjugation of these coset representatives on
x and y.

Lemma 48 Let τ ∈ T \ {e}. Then

τ xτ−1 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x if τ = σ1

�2
4x

−1y−1 if τ = σ2

�2
4y if τ = σ1σ2σ1

�2
4y if τ = σ1σ2

�2
4x

−1y−1 if τ = σ2σ1

and τ yτ−1 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y−1x−1 if τ = σ1

y if τ = σ2

�2
4x if τ = σ1σ2σ1

y−1x−1 if τ = σ1σ2

�2
4x if τ = σ2σ1.

Proof The action by conjugation of σ1 and σ2 on σ2
1 and σ2

2 is given by:

σ1σ
2
1σ

−1
1 = σ2

1 and σ2σ
2
2σ

−1
2 = σ2

2

σ1σ
2
2σ

−1
1 = σ−1

2 σ2
1σ2 = σ−2

2 · σ2σ
2
1σ2 = σ−2

2 σ−2
3 by Eq. (3.1)

= σ−2
2 α2

0σ
−2
1 α−2

0 by Eq. (3.5)

= σ−2
2 σ−2

1 · σ2
1α

2
0σ

−2
1 α−2

0 = �2
4σ

−2
2 σ−2

1 by Eqs. (3.7) and (3.13)

σ2σ
2
1σ

−1
2 = σ2σ

2
1σ

−1
2 = σ2σ

2
1σ2 · σ−2

2 = �2
4σ

−2
1 σ−2

2 in a similar manner.

Using also Eqs. (3.13) and (3.14) as well as the fact that x and y commute with the
elements of Q, we see that:

σ1xσ
−1
1 = σ1α

2
0�4σ

2
1σ

−1
1 = α2

0�4σ
2
1 = x

σ1yσ
−1
1 = σ1�4σ

2
2σ

−1
1 = α2

0�
2
4σ

−2
2 σ−2

1 = α2
0�

2
4y

−1�4x
−1α2

0�4 = y−1x−1

σ2xσ
−1
2 = σ2α

2
0�4σ

2
1σ

−1
2 = α2

0�
2
4σ

−2
1 σ−2

2 = α2
0�

2
4x

−1α2
0�4y

−1�4 = �2
4x

−1y−1

σ2yσ
−1
2 = σ2�4σ

2
2σ

−1
2 = α2

0�
2
4σ

−2
2 σ−2

1 = �2
4σ

−2
2 = y,

from which we deduce that:

(σ1σ2σ1)x(σ1σ2σ1)
−1 = �2

4y, (σ1σ2)xσ
−1
2 σ−1

1 = �2
4y,

(σ1σ2σ1)y(σ1σ2σ1)
−1 = �2

4x, (σ1σ2)yσ
−1
2 σ−1

1 = y−1x−1,

(σ2σ1)xσ
−1
1 σ−1

2 = �2
4x

−1y−1, (σ2σ1)yσ
−1
1 σ−1

2 = �2
4x .

We thus obtain the relations given in the statement.

Proof of Proposition 46. To prove the proposition, we must show that there exists a
maximal virtually cyclic subgroup of B4(S

2) that is isomorphic to Q8 × Z. Let z ∈
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B4(S
2) be an element of infinite order, and suppose that � = 〈Q ∪ {z}〉 ∼= Q8 � j Z,

where j ∈ {2, 3}. Our aim is to obtain necessary conditions on the generators of
the infinite cyclic factor of those subgroups of � that are isomorphic to Q8 × Z.
Thus will enable us to construct subgroups of B4(S

2) that are isomorphic toQ8 × Z

but are not contained in any subgroup isomorphic to Q8 � j Z, where j ∈ {2, 3}.
With this in mind, let � be a subgroup of � that is isomorphic to Q8 × Z. Since
the finite-order elements of � are precisely the elements of Q, the subgroup of �

that is isomorphic to Q8 is Q. The remaining elements of �, of the form q · zk ,
where q ∈ Q and k ∈ Z \ {0}, are of infinite order. In order that such an element
belong to the centraliser of Q (and thus form a subgroup isomorphic toQ8 × Z), the
fact that the action of z on Q is of order j implies that k must be a multiple of j ,
and thus � = 〈

Q ∪ {
q · zλ j

}〉 = 〈
Q ∪ {

zλ j
}〉 ⊂ 〈

Q ∪ {
z j

}〉
for some λ ∈ Z \ {0}. In

particular,
〈
Q ∪ {

z j
}〉
is the maximal subgroup of � that is isomorphic to Q8 × Z.

Since the action by conjugation of z on Q is of order j , it follows from the
definition of ψ that z belongs to one of the cosets τ · Ker (ψ) of B4(S

2) where
τ ∈ T \ {e}, T being the transversal of Eq. (3.25). More precisely, z ∈ τ · Ker (ψ),
where τ ∈ {σ1,σ2,σ1σ2σ1} if j = 2, and τ ∈ {σ1σ2,σ2σ1} if j = 3. Further, by
Lemma 47 there exist v ∈ Ker (ψ), u ∈ F2(x, y) and q1 ∈ Q such that z = τv and
v = q1u. Let us write u = u(x, y) as a freely reduced word in F2(x, y):

u = x ε1 yδ1 · · · x εr yδr ,

where εi , δi ∈ Z for all i = 1, . . . , r , and δ1, ε2, . . . , δr−1, εr are non-zero. If v ∈
Ker (ψ), let v denote the image of v under projection onto the F2(x, y)-factor, fol-
lowed by Abelianisation of F2(x, y). We now compute z j . We have that:

z j = (τq1u) j

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τq1τ
−1

︸ ︷︷ ︸
∈Q

τuτq1τ
−1u−1τ−1

︸ ︷︷ ︸
∈Q

(τu)2 if j = 2

τq1τ
−1

︸ ︷︷ ︸
∈Q

τuτq1τ
−1u−1τ−1

︸ ︷︷ ︸
∈Q

τuτuτq1τ
−1u−1τ−1u−1τ−1

︸ ︷︷ ︸
∈Q

(τu)3 if j = 3

= q ′(τu) j , where q ′ ∈ Q.

Now

(τu) j =
{

τuτ−1 · τ 2 · u if j = 2

(τuτ−1)(τ 2uτ−2) · τ 3 · u if j = 3.

Applying Lemma 48, and using Eq. (3.23) as well as the fact that x and y
commute with the elements of Q, it follows that there exists q ′′ ∈ Q such that
(τu) j = q ′−1q ′′w, where w ∈ F2(x, y) is given by:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xε1 (y−1x−1)δ1 · · · xεr (y−1x−1)δr xxε1 yδ1 · · · xεr yδr if τ = σ1

(x−1y−1)ε1 yδ1 · · · (x−1y−1)εr yδr yxε1 yδ1 · · · xεr yδr if τ = σ2

yε1 xδ1 · · · yεr xδr xε1 yδ1 · · · xεr yδr if τ = σ1σ2σ1

yε1 (y−1x−1)δ1 · · · yεr (y−1x−1)δr (y−1x−1)ε1 xδ1 · · · (y−1x−1)εr xδr xε1 yδ1 · · · xεr yδr if τ = σ1σ2

(x−1y−1)ε1 xδ1 · · · (x−1y−1)εr xδr yε1 (x−1y−1)δ1 · · · yεr (x−1y−1)δr xε1 yδ1 · · · xεr yδr if τ = σ2σ1.

We have also used the fact that:

(σ1σ2σ1)
2 = (σ1σ2)

3 = (σ2σ1)
3 = (σ1σ

−1
3 )2 = �2

4

by Eqs. (3.1), (3.7) and (3.8). Since z j = q ′′w, and q ′′ commutes with w, relative to
the basis (x, y) of the Abelianisation Z

2 of F2(x, y), we obtain:

zλ j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ · (
2(ε1 + · · · + εr ) − (δ1 + · · · + δr ) + 1, 0

)
if τ = σ1

λ · (
0, 2(δ1 + · · · + δr ) − (ε1 + · · · + εr ) + 1

)
if τ = σ2

λ(ε1 + · · · + εr + δ1 + · · · + δr ) · (1, 1) if τ = σ1σ2σ1

(0, 0) if τ = σ1σ2 orτ = σ2σ1,

for all λ ∈ Z \ {0}. We conclude that if � is a subgroup of � = 〈Q ∪ {z}〉 ∼=
Q8 � j Z that is isomorphic to Q8 × Z then � = 〈

Q ∪ {
q · zλ j

}〉
, where zλ j ∈{

(a, b) ∈ Z
2
∣
∣ ab(a − b) = 0

}
relative to the basis (x, y) of the Abelianisation Z

2

of F2(x, y).
To complete the proof of the proposition, we shall exhibit an element w ∈ B4(S

2)

for which:

(a) w is a non-trivial element ofF2(x, y) such thatw = (c, d),where cd(c − d) �= 0.
(b) π(w) /∈ 〈

3
〉
.

Since F2(x, y) ⊂ Ker (ψ), the first condition implies that such an element w is a
suitable generator of the Z-factor of a subgroup of B4(S

2) that is isomorphic to
Q8 × Z, but which from the above discussion, is not contained in any subgroup
that is isomorphic toQ8 � j Z for j ∈ {2, 3}. By lemma 44(b), the second condition
implies that 〈Q ∪ {w}〉 is not contained in any subgroup of B4(S

2) that is isomorphic
to Q16 ˚Q8 Q16,Q8 ˚Z4 Q8, Z8 ˚Z4 Z8 or Q8 ˚Z4 Z8.

Take w = xy3, and let � = 〈Q ∪ {w}〉. Then � ∼= Q8 × Z since w ∈ Ker (ψ) is
an element of infinite order, and by Proposition 42, there exists a maximal infinite
virtually cyclic subgroup M of B4(S

2) that contains �. Clearly condition (a) above
holds, and Eq. (3.23) implies that condition (b) is also satisfied. It follows from
the previous paragraph and Theorem 39(b) that M ∼= Q8 × Z, which completes the
proof of Proposition 46. In conjunction with Proposition 45, this also proves parts (c)
and (d) of Theorem 41. �

This proves part (c) of Theorem 41 in the exceptional case, and bringing together
Propositions 43, 45 and 46, completes the proof of Theorem 41.
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3.3 Conjugacy Classes of Maximal Infinite Virtually Cyclic
Subgroups in B4(S

2)

In order to determine the number of conjugacy classes of maximal infinite vir-
tually cyclic subgroups, we follow the procedure given in [1, Section2.5] based
on the action of B4(S

2) on a suitable tree. Using the proof of Proposition 37, we
identify B4(S

2) withQ16 ˚Q8 T
∗, and the quotient group B4(S

2)/Q with the modu-
lar group PSL(2, Z) ∼= Z2 ˚ Z3 = 〈

a, b
∣
∣ a2 = b3 = 1

〉
. Thus we have the following

short exact sequence:

1 → Q → B4(S
2)

ρ→ Z2 ˚ Z3 → 1, (3.26)

ρ being the quotient map as in the proof of Proposition 37. There is a well-known
action of PSL(2, Z) on the tree T of Fig. (3.1), where the edge stabilisers are trivial
and the vertex stabilisers areZ2 andZ3. The quotient of T by this action is the graph:

Z2 • • Z3.

It follows from the short exact sequence (3.26) that B4(S
2) acts on T via ρ, and since

Ker (ρ) ∼= Q8, the quotient graph of this action is:

Q16 •
Q8

• T∗.

We now apply the Reidemeister-Schreier rewriting process to the Abelianisation
homomorphism π̃ : Z2 ˚ Z3 → Z6. A computation similar to that given in the proof
of Lemma 47 shows that the commutator subgroup �2(Z2 ˚ Z3) of Z2 ˚ Z3 is a free
group, which we denote by F2, of rank two with basis

([a, b], [a, b2]).
Proposition 49 Let F̃ = ρ−1(F2). Then there exists a (free) subgroup F̃k of F̃ of rank
k ≥ 2 that is normal and of finite index in B4(S

2).

Remark 50 The above construction gives rise to the following commutative diagram
of short exact sequences:
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1 1

1 Q F̃
ρ|F̃

F2 1

1 Q B4(S
2)

π

ρ
Z2 ˚ Z3

π̃

1.

Z6 Z6

1 1

We see that �2(B4(S
2)) = F̃ ∼= Q8 � F2, which yields an alternative proof of the

decomposition given in [5, Theorem 1.3(3)].

Proof of Proposition 49. By Remark 50, F̃ is isomorphic to a semi-direct product of
the formQ8 � F2. Let s : F2 → F̃ be a section for ρ

∣
∣
F̃ . Since s(F2) is of finite index

in B4(S
2), it suffices to take F̃k to be the intersection of the conjugates of s(F2) in

B4(S
2). �

The group F2 acts freely on T , the resulting quotient space being a graph �1 that
is homotopy equivalent to a wedge of two circles. The group F̃k also acts freely on T

Fig. 3.1 The tree T , showing the edge and vertex stabilisers under the action of PSL(2, Z)
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in the same way as its image ρ(̃Fk) in Z2 ˚ Z3, the quotient graph � = T/F̃k being
a finite-sheeted covering space of �1.

By [1, Section 2.3], there is a bijective correspondence between:

(a) the maximal infinite virtually subgroups of B4(S
2), and

(b) the stabilisers of geodesics in T with infinite stabiliser.

In order to determine the number of conjugacy classes of the maximal infinite virtu-
ally cyclic subgroups of B4(S

2), we observe that since the action ofQ8 on the quotient
T/F̃k is trivial, and it follows that π1((T/F̃k)

Q8) is free of rank k ≥ 2. Therefore,
there are infinitely many conjugacy classes of maximal infinite virtually cyclic sub-
groups of the form Q8 � j Z for j ∈ {1, 2, 3} and of the form Q16 ˚Q8 Q16, see [1,
Section 2.5] for more details.
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Chapter 4
Lower Algebraic K -Theory Groups
of the Group Ring Z[B4(S

2)]

As we mentioned in Sect. 2.1, Bn(S
2) is finite for all n ≤ 3. For these values of n,

the corresponding K -groups were given in Table 2.1. This chapter is devoted to the
computation of the lower K -groups of Z[B4(S

2)]. The aim is to prove Theorem 1,
whose statement we recall here.

Theorem 1 The group B4(S
2) has the following lower algebraic K -groups:

Wh(B4(S
2)) ∼= Z ⊕ Nil1,

˜K0(Z[B4(S
2)]) ∼= Z2 ⊕ Nil0, and

K−1(Z[B4(S
2)]) ∼= Z2 ⊕ Z,

K−i (Z[B4(S
2)]) = 0 for all i ≥ 2,

where for i = 0, 1, the groups Nili are isomorphic to a countably-infinite direct sum
of Z2, Z4 or Z2 ⊕ Z4.

The main fact that allows this computation is that B4(S
2) is hyperbolic in the

sense of Gromov (see Remark 38) because it is an amalgam of finite groups by
Proposition 37. Hence the Farrell-Jones fibred isomorphism conjecture holds for
this group, and so we may perform the K -theoretical calculations using Sect. 4.1
and [1, 2]. All of these calculations are based on the knowledge of the lower K -
theory groups of the virtually cyclic subgroups of B4(S

2). In Sect. 4.1, we recall
some general facts about the lower K -groups of infinite virtually cyclic groups. In
Sect. 4.2, we discuss the lower K -groups of the finite subgroups of B4(S

2) and how
they fit together with the infinite virtually cyclic subgroups of B4(S

2) to give the
lower K -groups of Z[B4(S

2)], up to computing the Nili groups. Finally, in Sect. 4.3,
we determine these groups, and we put together all of these ingredients to complete
our calculations to prove Theorem 1.
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4.1 The Lower K -Theory of Infinite Virtually Cyclic
Groups

In this section, we provide the ingredients needed to compute the lower algebraic
K -groups of infinite virtually cyclic groups. For a virtually cyclic group � of Type I,
the algebraic K -groups ofZ[�] are described by the Bass-Heller-Swan formula with
α = 1, which asserts that for a finite group π , there is a natural decomposition [3]:

Ki (Z[π × Z]) = Ki (Z[π ]) ⊕ Ki−1(Z[π ]) ⊕ 2NKi (Z[π ]) for all i ∈ Z, (4.1)

where the i th Bass Nil group of π , denoted by NKi (Z[π ]), is defined to be the kernel
of the homomorphism in K -groups induced by the evaluation e : Z[π ][t] → Z[π ]
at t = 0. In the reduced version, Eq. (4.1) takes the form:

Wh(π × Z) = Wh(π) ⊕ ˜K0(Z[π ]) ⊕ 2NK1(Z[π ]), and

˜K0(Z[π × Z]) = ˜K0(Z[π ]) ⊕ K−1(Z[π ]) ⊕ 2NK0(Z[π ]).

If α �= 1, the group ring Z[�] is equal to Z[F �α Z] ∼= Z[F]α[t, t−1], the latter
being the twisted Laurent polynomial ring of Z[F], and the twisting is given by the
action of α. In this case, the Bass Nil groups are replaced by the Farrell-Hsiang Nil
groups NKi (Z[F], α) ⊕ NKi (Z[F], α−1) [4].

For virtually cyclic groups � of Type II, the fundamental work of Waldhausen
gives rise to the following exact sequence [5]:

· · · → Kn(Z[F]) → Kn(Z[G1]) ⊕ Kn(Z[G2]) → Kn(Z[�])/NilWn →
Kn−1(Z[F]) → Kn−1(Z[G1]) ⊕ Kn−1(Z[G2]) → Kn−1(Z[G])/NilWn−1 → · · · ,

where NilWn denotes the Waldhausen Nil groups, denoted in [5] by:

NilWn = NilWn (Z[F]; Z[G1 \ F], Z[G2 \ F]).

If � is an infinite virtually cyclic group of Type II, there is a surjection f : � −�
Dih∞ whose kernel F is finite. Let T be the unique infinite cyclic subgroup of Dih∞
of index 2. Then the subgroup˜� = f −1(T ) ⊂ � is an infinite virtually cyclic group
of Type I, and ˜� is of the form F �α T . In this situation, it was recently established
that theWaldhausen Nil groups may be identified with the Farrell-Hsiang Nil groups
as follows [6, 7]:

NilWn = NilWn (Z[F]; Z[G1 \ F], Z[G2 \ F]) ∼= NKn(Z[F], α) ∼= NKn(Z[F], α−1).

In negative degrees, the Nil groups are described as follows.
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Theorem 51 ([8, Theorem 2.1]) Let � be an infinite virtually cyclic group. Then:

(a) K−1(Z[�]) is a finitely-generated Abelian group.
(b) K−1(Z[�]) is generated by the images of K−1(Z[F]) under the maps induced by

the inclusions F ⊂ �, where F runs over the representatives of the conjugacy
classes of finite subgroups of �.

(c) K−i (Z[�]) = 0 for all i ≥ 2.

In summary, in order to compute the K -groups of an infinite virtually cyclic group,
we need to understand the K -groups of the corresponding finite kernel F and of the
associated Bass or Farrell-Hsiang Nil groups.

4.2 Preliminary K -Theoretical Calculations for Z[B4(S
2)]

Using the hyperbolicity of B4(S
2) and the results of [2] and [1, Example 3.2], we

may compute Kn(Z[B4(S
2)]), obtaining:

Kn(Z[B4(S
2)]) ∼= An ⊕ Bn ⊕

(

⊕

V∈V
Cokern V

)

,

where:

An = Coker
(

Kn(Z[Q8]) → Kn(Z[Q16]) ⊕ Kn(Z[T∗])) and
Bn = Ker

(

Kn−1(Z[Q8]) → Kn−1(Z[Q16]) ⊕ Kn−1(Z[T∗])).

The group Cokern(V ) corresponds to the various Nil groups described in Sect. 4.1
(and will be determined in what follows), and the sum is over the family V of
conjugacy classes of maximal infinite virtually cyclic subgroups of B4(S

2). Using
the pseudo-isotopy functor instead of K ,we obtain similar formulæ for theWhitehead
and ˜K0-groups:

Wh(B4(S
2)) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Coker
(

Wh(Q8) → Wh(Q16) ⊕ Wh(T∗)
)

⊕
Ker

(

˜K0(Z[Q8]) → ˜K0(Z[Q16]) ⊕ ˜K0(Z[T∗]))
⊕
Nil1

˜K0(Z[B4(S
2)]) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Coker ˜K0(Z[Q8]) → ˜K0(Z[Q16]) ⊕ ˜K0(Z[T∗])
⊕
Ker

(

˜K−1(Z[Q8]) → ˜K−1(Z[Q16]) ⊕ ˜K−1(Z[T∗]))
⊕
Nil0,
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and the K−1-group:

K−1(Z[B4(S
2)]) = Coker

(

K−1(Z[Q8]) → K−1(Z[Q16]) ⊕ K−1(Z[T∗])),

where for i = 0, 1, Nili splits as a direct sum of Bass or Farrell-Hsiang Nil groups
over representatives of V (see Sect. 4.1). From Theorem 31, we have the following
isomorphisms:

Wh(Q8) = 0 ˜K0(Z[Q8]) ∼= Z2 K−1(Z[Q8]) = 0

Wh(Q16) ∼= Z ˜K0(Z[Q16]) ∼= Z2 K−1(Z[Q16]) ∼= Z2

Wh(T∗) = 0 ˜K0(Z[T∗]) ∼= Z2 K−1(Z[T∗]) ∼= Z.

Moreover, by [9, Lemma 14.6], the induction ˜K0(Z[Q8]) → ˜K0(Z[Q16]) is zero and
˜K0(Z[Q8]) → ˜K0(Z[T∗]) is an isomorphism by hyper-elementary induction (cf. [9,
Theorem 14.1(1)]). Furthermore, by Remark 32 and Theorem 51(c), we obtain the
following isomorphisms:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Wh(B4(S
2)) ∼= Z ⊕ Nil1

˜K0(Z[B4(S
2)]) ∼= Z2 ⊕ Nil0

K−1(Z[B4(S
2)]) ∼= Z2 ⊕ Z

K−i (Z[B4(S
2)]) ∼= 0 for all i ≥ 2,

(4.2)

which proves Theorem 1 up to the computation of the Nili terms in the first two iso-
morphisms. To complete the proof, wemust compute theNil groups that appear in the
contribution of the conjugacy classes of maximal infinite virtually cyclic subgroups
of B4(S

2).

4.3 Nil Group Computations

In this section, we compute the Bass Nil groups NKi (Z[Q8]) for i = 0, 1, as well as
the twisted versions. In the non-twisted case, we obtain the following result.

Proposition 52 For i = 0, 1, the groups NKi (Z[Q8]) are isomorphic to a countable,
infinite direct sum of copies of Z2, Z4 or Z2 ⊕ Z4.

In order to prove Proposition 52, we first consider the ring R of Lipschitz quater-
nions of the form a + bi + cj + dk, where a, b, c, d ∈ Z and i, j, k are the quater-
nionic roots of −1, and compute its NK0 and NK1 groups. Recall that the ring S of
Hurwitz quaternions consists of the quaternions of the form (a + bi + cj + dk)/2
where a, b, c and d are integers that are either all even or all odd. Hence:
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R = Z[i, j, k] and S = Z[i, j, k] + Z

[1 + i + j + k

2

]

.

By [10, Example 5.1], S is a non-commutative principal ideal domain, and so is a
regular ring. Let M = (1 + i)S. Observe that M ⊂ R ⊂ S, and that R/M and S/M
are the fields of two and four elements respectively. From this, it follows that S/R
is the group with 2 elements. These computations involve the double relative term
K1(R, S, M) for the injection R → S and ideal M = (1 + i)S that is described as
follows [11, Theorem 0.2]:

K1(R, S, M)∼= (S/R)⊗(M/M2)/{b ⊗ cz+c ⊗ zb−bc ⊗ z | b, c ∈ S, z ∈ M}.
(4.3)

A straightforward computation yields:

M = {a + bi + cj + dk | a + b and c + d even} + Z[i + k]
M2 = {−2b + 2ai + 2d j + 2ck | a + b and c + d even} + 2Z[i + j].

Define the elements b ∈ S/R and u, w, z ∈ M/M2 to be the following cosets:

b = 1 + i + j + k

2
, u = 1 + i, w = j + k, and z = 1 + i + j + k.

Notice that the group generated by u and w is isomorphic to Z2 ⊕ Z2. On the other
hand, b is the only non-trivial element of S/R, b2 = b and the relations in (4.3)
become:

b ⊗ z = 0.

These identities imply that K1(R, S, M) = 0, and so by [12, Lemma 2.1], we obtain:

0 = NK1(R, S, M) ∼= K1(R, S, M) ⊗ xZ[x]. (4.4)

Theorem 53 The groups NK0(R) and NK1(R) are trivial.

Proof As mentioned above, R/M and S/M are the fields of two and four elements
respectively. Consider the following commutative square, where the right-hand ver-
tical morphism is surjective:

R −−−−→ S
⏐

⏐

�

⏐

⏐

�

R/M −−−−→ S/M.

Now R/M , S/M and S are all regular rings, so their correspondingNil groups vanish,
and it follows from the associated Mayer-Vietoris sequence that NK0(R) = 0. On
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the other hand, using the fact that 0 = NK1(R/M) = NK1(S/M) = NK1(S) and the
description of the double relative group K1(R, S, M) given in [11, Theorem 1.1],
we obtain the isomorphism:

NK1(R, S, M) ∼= NK1(R).

It follows from this that NK1(R) is trivial by (4.4). This completes the proof of the
theorem. �

To prove Proposition 52, we will require some general properties of Nil groups.

Remark 54 We recall the following facts about the Nil groups NKi and NilWi for all
i ∈ Z:

(a) if NKi (resp. NilWi ) is non trivial, it is an infinitely-generated group [13, Theo-
rem A].

(b) if A ⊂ NKi (resp. A ⊂ NilWi ) is a finite subgroup then NKi (resp. NilWi ) contains
an infinite direct sum of copies of A [13, Theorem B].

In what follows, if m ∈ N, Cm will denote the cyclic group of order m.

Proof of Proposition 52. We first consider the case i = 0. Let Q8 be equipped with
the following presentation:

Q8 = 〈

x, y
∣

∣ x2 = y2, yxy−1 = x−1〉.

By [14, Theorem50.31, p. 266], the group ringZ[Q8]fits into the followingCartesian
square:

Z[Q8] f ��

q

��

Z[C2 × C2]
p

��
R �� F2[C2 × C2],

(4.5)

where q is defined on the generators of Q8 by q(x) = i and q(y) = j , and f is
induced by the homomorphism Q8 → C2 × C2 given by taking the quotient of Q8

by its centre. The Cartesian square (4.5) gives rise to the following Mayer-Vietoris
sequence:

NK2(Z[Q8])→NK2(R) ⊕ NK2(Z[C2 × C2])→
NK2(F2[C2 × C2])→NK1(Z[Q8])→· · · . (4.6)

By [15, Lemmas 5.3 and 5.4], [12, Theorem 1.3] and [16, Lemma 2.2], we have:

NK1(Z[C2 × C2])∼=�F2[x] ∼=F2[x] dx, NK0(Z[C2 × C2])∼=V = xF2[x]
NK1(F2[C2])∼=(1 + xεF2[x])× ∼=V, NK0(F2[C2])=0

NK0(F2[C2 × C2])=0. (4.7)
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Since F2[C2 × C2] ∼= F2[ε, ν]/(ε2, ν2), the ideal I = 〈ε, ν, εν〉 is nilpotent in
F2[ε, ν], and it follows that NK0(F2[C2 × C2]) ∼= NK0(F2) = 0, which yields
Eq. (4.7). In a similar fashion, we have NK0(F2[C2]) = 0. As Abelian groups,
�F2 and V are both countable infinite direct sums of copies of Z2. As we saw in
Theorem 53, the ring R has trivial Nil groups in degrees 0 and 1. On the other hand,
observe that F2[C2 × C2] ∼= F2[ε, ν]/(ε2, ν2), hence by [3, Proposition 7.8] and [17,
Theorem 3.3], we have:

NK1(F2[C2 × C2]) ∼= (1 + xεF2[x])× × (1 + xνF2[x])× × (1 + xενF2[x])× ∼= V 3.

The Mayer-Vietoris sequence (4.6) thus reduces to:

NK2(Z[Q8]) → NK2(R) ⊕ NK2(Z[C2 × C2]) → NK2(F2[C2 × C2]) δ→
NK1(Z[Q8]) ( f∗1)→ NK1(Z[C2 × C2]) p∗→ NK1(F2[C2 × C2]) τ→

NK0(Z[Q8]) f∗0→ NK0(Z[C2 × C2]) → 0

(4.8)

(the labelled homomorphisms are discussed below). The homomorphism

p∗ : NK1(Z[C2 × C2]) → NK1(F2[C2 × C2])

is trivial since Z[C2 × C2] is reduced and NK1(F2[C2 × C2]) is Artinian
[17, Theorem 3.3]. Thus the part of (4.8) involving NK0(Z[Q8]) is:

0 → NK1(F2[C2 × C2]) τ→ NK0(Z[Q8]) f∗0→ NK0(Z[C2 × C2]) → 0.

Since both NK1(F2[C2 × C2]) and NK0(Z[C2 × C2]) are non-trivial infinite sums of
copies of Z2, it follows by exactness that NK0(Z[Q8]) is an infinite direct sum of
copies of Z2, Z4 or Z2 ⊕ Z4.

We now turn to the case i = 1. Consider the following homomorphism:

f∗1 : NK1(Z[Q8]) → NK1(Z[C2 × C2]).

Exactness of the sequence (4.8) and the fact that p∗ is the trivial homomorphism imply
that f∗1 is a surjection. On the other hand, since once more both NK2(F2[C2 × C2])
and NK1(Z[C2 × C2]) are infinite direct sum of copies of Z2, the latter by [18,
Theorem 1.2], the result follows as before. �

In order to complete the proof of Theorem 1, it remains to determine the twisted
Nil groups of Q8. Recall from Sect. 3.2 that up to isomorphism, there are two non-
trivial semi-direct products of the formQ8 � Z, namelyQ8 � j Z, where j ∈ {2, 3}.
In what follows, we shall use the notation NKα

i (Z[Q8]) = NKi (Z[Q8], α).

Proposition 55 Let i ∈ {0, 1}.
(a) For the action α of Z on Q8 of order 3,



70 4 Lower Algebraic K -Theory Groups of the Group Ring Z[B4(S
2)]

NKα
i (Z[Q8]) ∼= NKα−1

i (Z[Q8]) ∼= NKi (Z[Q8]). (4.9)

(b) For the action α of Z onQ8 of order 2, the twisted Nil groups are isomorphic to
infinitely many copies of Z2, Z4 or Z2 ⊕ Z4.

Proof

(a) Since the action of Z on Q8 is of order three, there is a surjective homomor-
phism ϕ : Q8 �3 Z −� Q8 � Z3

∼= T∗ defined by taking the Z-factor modulo
3. We use the technique of induction on hyper-elementary subgroups [4, proof
of Theorem 3.2] that asserts that:

NKi (Z[Q8 �3 Z]) ∼= lim
H∈HypNKi (Z[ϕ−1(H)]),

where Hyp denotes the set of hyper-elementary subgroups of Q8 � Z3, and the
limit is with respect to the morphisms induced by conjugation and inclusion in
the category Hyp. Following the proof of Proposition 18, we see that the hyper-
elementary subgroups of Q8 � Z3 are isomorphic to one of Z6, Z3, Z2, Z4 or
Q8, and their inverse images by ϕ are isomorphic to Z2 × Z, Z, Z2 × Z, Z4 × Z

and Q8 × Z respectively. With the exception of the last two, the corresponding
group rings of these groups have trivial Nil groups. Further, the subgroups of
Q8 �3 Z that are isomorphic to Z4 × Z are pairwise conjugate, and there is only
one maximal element of the form Q8 × Z in the limit. We thus obtain Eq. (4.9)
using Proposition 52.

(b) Consider the action α of Z onQ8 of order 2 given by exchanging the generators
x and y of Q8. Comparing with the Cartesian square (4.5), we observe that this
actionmay be transposed in all the rings of (4.5), thus giving rise to the following
Cartesian square of twisted polynomial rings:

Z[Q8]α[t] f−−−−→ Z[C2 × C2]α[t]
q

⏐

⏐

�

⏐

⏐

�

p

Rα[t] −−−−→ F2[C2 × C2]α[t],
where the induced action of α exchanges the generators in all group rings, and
exchanges i and j in R. By [19, Theorem 1.6], the Farrell-Hsiang group NKs of
R also vanishes for s = 0, 1. Moreover, let I = 〈ε, ν〉 be the nilpotent ideal gen-
erated by ε and ν in F2[C2 × C2]α[t] ∼= F2[ε, ν]α[t] since F2[ε, ν]α[t]/I ∼= F2.
By an argument similar to that given in the proof of Proposition 52, it follows that
NKα

0 (F2[C2 × C2]) = 0. Hence we obtain the following long exact sequence:
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NKα
2 (Z[Q8]) → NKα

2 (R) ⊕ NKα
2 (Z[C2 × C2]) → NKα

2 (F2[C2 × C2]) δ→
NKα

1 (Z[Q8]) → NKα
1 (Z[C2 × C2]) p∗→ NKα

1 (F2[C2 × C2]) →
NKα

0 (Z[Q8]) → NKα
0 (Z[C2 × C2]) → 0.

(4.10)
We first study the groups K α

� (S[C2 × C2]) for any rings s. Let G be the amalga-
mated product defined as follows. Consider the non-trivial semi-direct products
G1 = C4 � C2 and G2 = C4 � C2, where the cyclic groups of order four are
generated by a ∈ G1 and b ∈ G2, and the cyclic groups of order 2 are generated
by x ∈ G1 and y ∈ G2. Let D2 be the group C2 × C2 generated by u and v, let
D2 ↪→ G1 be the inclusion given by u �−→ a2, v �−→ x , and let D2 ↪→ G2 be
the inclusion given by u �−→ y and v �−→ b2. Then the amalgamated product
G1 ˚D2 G2 is a virtually cyclic group. By [6], the Farrell-Hsiang Nil groups
K α

� (S[C2 × C2]) are isomorphic to the corresponding Waldhausen Nil groups:

NilW� (S[D2] : S[G1 \ D2], S[G2 \ D2])

for all � ∈ Z and all rings S.
Now, for the rings S = Z or F2, these Waldhausen Nil groups are isomorphic
to infinite direct sums of copies of Z2. For S = Z and � = 0, 1, see [15, The-
orem 5.2] and [20, Section7.2]. Hence K α

� (S[C2 × C2]) is isomorphic to an
infinite direct sum of copies of Z2 for � = 0, 1, 2 and for S = Z or F2. From the
exact sequence (4.10), for � = 0, 1, NKα

0 (Z[Q8]) fits into an exact sequence of
the form:

0 → A�+1 → NKα
� (Z[Q8]) → B� → 0,

where both A�+1 and B� are isomorphic to infinite direct sums of copies of Z2.
The result follows using Remark 54. �

Summing up, Propositions 52 and 55 give rise to the Nili summands of Eq. (4.2),
and the decompositions of the statement of Theorem 1 then follow.
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Appendix A
The Fibred Isomorphism Conjecture

The Setup

Let S : TOP → �-SPECTRA be a covariant homotopy functor. Let F be the cat-
egory of continuous surjective maps: objects in F are continuous surjective maps
p : E → B, where E, B are objects in TOP, and morphisms between pairs of maps
p1 : E1 → B1 and p2 : E2 → B2 consist of continuous maps f : E1 → E2 and
g : B1 → B2 that make the following diagram commute:

E1
f−−−−→ E2

p1

⏐
⏐
� p2

⏐
⏐
�

B1
g−−−−→ B2.

(A.1)

Within this framework, Quinn constructed a functor between the categories F and
�-SPECTRA [1]. The value of this�-spectrum at the object (p : E → B) is denoted
by H(B;S(p)), and the value at the object (E → ∗) is S(E). The map of spectra
A : H(B1;S(p1)) → H(B2;S(p2)) associated to the commutative diagram (A.1) is
known as the Quinn assembly map. Other ingredients for the fibred isomorphism
conjecture may be found in [2].

The Conjecture

Given a discrete group �, let EVC� be a universal �-space for the family of virtually
cyclic subgroups of �, let BVC� denote the orbit space EVC�/�, and let X be a
space on which � acts freely and properly discontinuously. If ( f, g) is the following
morphism in F:
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part of Springer Nature 2018
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EVC� ×� X
f−−−−→ X/�

p1

⏐
⏐
� p2

⏐
⏐
�

BVC�
g−−−−→ ∗

then the Fibred Isomorphism Conjecture for the functor S and the group � is the
assertion that

A : H(BVC�;S(p1)) → S(X/�)

is a homotopy equivalence, and hence the induced map

A∗ : πn(H(BVC�;S(p1))) → πn(S(X/�))

is an isomorphism for all n ∈ Z. This conjecture was stated in [2] for the functors
S = P∗(·), K(·) and L−∞, the pseudoisotopy, algebraic K -theory and L−∞-theory
functors respectively. In this manuscript, we use the functor S = K∗(·). The validity
of this conjecture for K -theory and braid groups of S2 is proved in [3]. Other cases
in which the conjecture holds may be found in [4].



Appendix B
Braid Groups

In this appendix, we recall briefly some basic facts and results about braid groups for
the convenience of the reader. More information about braid groups may be found
in [5–8]. We refer the reader to [9] for a recent survey on surface braid groups.

If n ≥ 1, the n-string Artin braid group, denoted by Bn , may be defined by the
following presentation [10]:

generators: σ1, . . . , σn−1 (known as the Artin generators).
relations: (known as the Artin relations)

σiσ j = σ jσi if |i − j | ≥ 2 and 1 ≤ i, j ≤ n − 1 (B.1)

σiσi+1σi = σi+1σiσi+1 for all 1 ≤ i ≤ n − 2. (B.2)

The generator σi may be regarded geometrically as the braid with a single positive
crossing of the i th string with the (i + 1)st string, while all other strings remain
vertical (see Fig.B.1). It is convenient to view a geometric braid as being a collection
of pairwise-disjoint arcs (or strings) in the Cartesian product D2 × [0, 1], where D2

is the 2-disc, and each string joins two points of the form (x, 0) to (y, 1), where x
and y belong to a set X of n distinguished basepoints lying in the interior of D2.
The group operation in Bn corresponds to concatenation of these geometric braids.
The group B1 is trivial, B2 is infinite cyclic generated by σ1, and for all n ≥ 2, Bn is
infinite. For all n ∈ N, Bn is torsion free [11]. The map σ : Bn → Sn defined on the
generators by σ(σi ) = (i, i + 1) for all 1 ≤ i ≤ n − 1 may be seen to be a surjective
homomorphism. Its kernel, denoted by Pn , is known as the n-string pure Artin braid
group. Thus a braid β ∈ Bn is pure if for all x ∈ X , there is a string of β that joins
(x, 0) to (x, 1). The ‘half twist’ braid �n is defined by:

�n =
n−1
∏

i=1

σ1 · · · σn−i .

© The Author(s), under exclusive license to Springer Nature Switzerland AG,
part of Springer Nature 2018
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Fig. B.1 The braid σi and its inverse

Fig. B.2 The braids �6 and �2
6 of B6

Using the braid relations, one may check that the square �2
n of �n , known as the

‘full twist’ braid is given by:

�2
n = (σ1 · · · σn−1)

n ∈ Bn. (B.3)

The braids �n and �2
n are illustrated in Fig.B.2a and b in the case n = 6. One may

check that�2
n is a pure braid. If n ≥ 3, Z(Bn) = Z(Pn) = 〈

�2
n

〉

, where Z(G) denotes
the centre of the group G [12]. The Artin pure braid group is generated by the set
{

Ai, j
}

1≤i< j≤n [8, Lemma I.4.2], where:

Ai, j = σ j−1 · · · σi+1σ
2
i σ−1

i+1 · · · σ−1
j−1. (B.4)

Geometrically, Ai, j may be represented by a braid all of whose strings are vertical,
with the exception of the j th string that wraps around the i th string as in Fig.B.3. In
particular, for all i = 1, . . . , n − 1, Ai,i+1 = σ 2

i .
The Artin braid groups admit many different generalisations, one being that of

surface braid groups. If M is a surface, orientable or not, with or without boundary,
andwith a finite number (possibly zero) of punctures, the n-string braid group Bn(M)
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Fig. B.3 The element Ai, j of Bn

may be defined geometrically simply by replacing D
2 by M . The subgroup Pn(M)

of n-string pure braids is defined in a manner similar to that for Pn . A number of
presentations of Bn(M) and Pn(M) may be found in the literature, see [13–15] for
example.

Braid groups may also defined topologically in terms of configuration spaces as
follows. Let Fn(M) denote the nth configuration space of M defined by:

Fn(M) = {

(p1, . . . , pn) ∈ Mn
∣
∣pi �= p j for all i, j ∈ {1, . . ., n}, i �= j

}

.

We equip Fn(M) with the topology induced by the product topology on Mn . A
transversality argument shows that Fn(M) is a connected 2n-dimensional open man-
ifold. There is a natural free action of the symmetric group Sn on Fn(M) given by
permutation of coordinates. The resulting orbit space Fn(M)/Sn shall be denoted
by Dn(M), the nth permuted configuration space of M , and may be thought of
as the configuration space of n unordered points. The associated canonical projec-
tion p : Fn(M) → Dn(M) is thus a regular n!-fold covering map [8, p. 14]. Fox
and Neuwirth showed that Pn(M) ∼= π1(Fn(M)) and Bn(M) ∼= π1(Dn(M)) [16]. If
n = 1 then F1(M) = M , and thus B1(M) = P1(M) = π1(M), so braid groups gen-
eralise the notion of fundamental group. The map p gives rise to the following short
exact sequence:

1 → Pn(M) → Bn(M)
p∗→ Sn → 1. (B.5)

In the case where M is the disc, p∗ is the surjective homomorphism σ described on
page 75.

This topological definition is very useful in practice, and may be used as follows
to obtain fibrations involving the configuration spaces, and (short) exact sequences
bringing into play the homotopy groups of these spaces. Suppose that M is a surface
with empty boundary, and let m > n ≥ 1. Then the map pm,n : Fm(M) → Fn(M)

given by pm,n(x1, . . . , xm) = (x1, . . . , xn) that forgets the last m − n coordinates
is a locally-trivial fibration, known as the Fadell-Neuwirth fibration, whose fibre is
Fm−n(M \ {z1, . . . , zn}), where (z1, . . . , zn) is a basepoint of Fn(M) [17]. The fibre
is known to be an Eilenberg–Mac Lane space of type K (π, 1). Taking the long exact
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sequence in homotopy of the fibration, and using Fox and Neuwirth’s isomorphisms
mentioned above, we obtain the Fadell-Neuwirth short exact sequence of surface
pure braid groups:

1 → π1(Fm−n(M \ {z1, . . . , zn})) → Pm(M)
(pm,n)∗−−−→ Pn(M) → 1. (B.6)

The homomorphism (pm,n)∗ induced by the map pm,n may be visualised geometri-
cally as the map that ‘forgets’ the last m − n strings of a braid in Pm(M). Due to
the fact that the higher homotopy groups of the braid groups of S2 and RP2 are non
trivial, in order to obtain the short exact sequence (B.6) for these two surfaces, we
need to suppose additionally that n ≥ 3 (resp. n ≥ 2). In particular, if m = n + 1,
then (B.6) becomes:

1 → π1(M \ {z1, . . . , zn}) → Pn+1(M)
(pn+1,n)∗−−−−→ Pn(M) → 1. (B.7)

The braid groups of S2 and RP2 are of particular interest, partly because they
are the only surface braid groups to possess torsion, and as we explained in the
introduction, the methods of [18, 19] cannot be applied to study their lower algebraic
K -theory. The isomorphism classes of the maximal finite subgroups of Bn(S

2) are
given in Theorem 2. An analogous result for the braid groups of RP2 may be found
in [20]. The braid groups of the sphere were initially studied by Fadell, Van Buskirk
and Gillette [21–23]. A presentation of Bn(S

2) due to the first two of these authors
is given in Theorem 34. From a geometric point of view, the space S

2 × [0, 1] in
which geometric braids of the sphere are defined may be visualised as that between
two concentric spheres (see [8, pp. 41, 42 and 45] or [24, Fig. 2.1(c), p. 193] for
example), and the geometric representation of the generators of that presentation is
as in Fig.B.1. Using such figures, the reader may convince himself or herself of the
validity of the relations given in Theorem 34, in particular the ‘surface relation’ (3.1).
Other properties of B4(S

2) that we use in this manuscript are given in Sect. 3.1. The
full twist braid �2

n also plays an important rôle in Bn(S
2). If n ≥ 3, it is the unique

element of Bn(S
2)of order 2, it is the unique non-trivial torsion element of Pn(S2), and

it generates the centre of Bn(S
2) [22, 25]. The pure braid group P4(S2) is generated

by the set
{

Ai, j
}

1≤i< j≤4, where in terms of the generators σ1, σ2 and σ3 of B4(S
2),

Ai, j is given by (B.4), and its geometric representation within S
2 × [0, 1] is as in

Fig.B.3. Ifm ≥ 1, a presentation of Pm(S2)may be obtained using techniques similar
to those of [26, Proposition 7]. Note that if one takes n = 0 in that proposition, one
does indeed obtain a presentation of Pm(S2) whose generating set is

{

Ai, j
}

1≤i< j≤m ,
andwhose relations are given by those of [8, Lemma I.4.2] for Pm , and by the ‘surface
relations’ that are of the form:

( j−1
∏

i=1

Ai, j

)( m
∏

k= j+1

A j,k

)

= 1 (B.8)
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for all 1 ≤ j ≤ m.
Taking M = S

2 and n = 3 in (B.7) yields:

1 → π1(S
2 \ {z1, z2, z3}) → P4(S

2)
(p4,3)∗−−−→ P3(S

2) → 1. (B.9)

The kernel is a free group of rank 2 that may be identifiedwith the subgroup of P4(S2)
generated by (A1,4, A2,4), and the quotient P3(S2) is equal to

〈

�2
3

〉

, and is isomorphic
to Z2. The map s : P3(S2) → P4(S2) defined by s(�2

3) = �2
4 is a homomorphism,

and is a section for (p4,3)∗ since removal of the last string of �2
4 in P4(S2) yields the

braid �2
3 in P3(S2), i.e. (p4,3)∗(�2

4) = �2
3. So the short exact sequence (B.9) splits,

and since �2
4 ∈ Z(P4(S2)), it follows that:

P4(S
2) ∼= F2 × Z2. (B.10)

From this, it follows also that Z(P4(S2)) = 〈

�2
4

〉

.
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