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Preface

The electrochemical insertion of hydrogen and lithium into various materials is of

utmost importance for modern energy storage systems, and the scientific literature

abounds in treatise on the applied and technological aspects. However, there is a

serious lack with respect to a fundamental treatment of the underlying electrochem-

istry. The respective literature is scattered across the scientific journals. The authors

of this monograph have undertaken the commendable task of describing both the

theory of hydrogen and lithium insertion electrochemistry, the experimental

techniques to study it, and the results of various specific studies. The lifelong

experience and enthusiasm of the senior author (Su-Il Pyun) and his coauthors

(Heon-Cheol Shin, Jong-Won Lee, Joo-Young Go) form the solid basis for a

monograph that will keep its value for a long time to come. This monograph

specifically addresses the question of the rate-determining step of insertion

reactions, and it gives a detailed discussion of the anomalous behavior of hydrogen

and lithium transport, taking into account the effects of trapping, insertion-induced

stress, interfacial boundary condition, cell impedance, and irregular/partially inac-

tive interfaces (or fractal interfaces). It is primarily written for graduate students

and other scientists and engineers entering the field for the first time as well as those

active in the area of electrochemical systems where insertion electrochemistry is

critical. Materials scientists, electrochemists, solid-state physicists, and chemists

involved in the areas of energy storage systems and electrochromic devices and,

generally, everybody working with hydrogen, lithium, and other electrochemical

insertion systems will use this monograph as a reliable and detailed guide.

February, 2012 Fritz Scholz

Editor of the series

Monographs in Electrochemistry
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Chapter 1

Introduction

1.1 Introductory Words to Mixed Diffusion and Interface

Control

One of our research concerns is to determine the rate-determining step (RDS) for the
overall lithium and hydrogen insertion into and desertion from lithium/hydrogen

insertion compounds. The “slowest” reaction step among the series of reaction steps

of the overall reaction is often referred to as the RDS, which is the most strongly

disturbed (hindered) from the equilibrium for the RDS. In the same sense, other

reaction steps are called relatively “fast” reactions for which the equilibria are

practically undisturbed. Therefore, the RDS is quantitatively evaluated in terms of

the overpotential (overvoltage) �, which is defined as the difference in potential

between the instantaneous actual and equilibrium values and/or “relaxation (time)”

delineated by the time lag between the electrical voltage (potential) and current.

The overpotential and relaxation time are namely measured relative to the electro-

chemical equilibrium values of a “linear system,” which is effective for the con-

straint of electrical energy |zFE|� thermal energy RT. Here, z means the oxidation

number, F the Faradaic constant (96,485 C mol�1), E the electrode potential, R the

gas constant, and T the absolute temperature.

Thus, the linear system shows linear Ohmic behavior between the voltage and

current. In particular, the overpotential (overvoltage) � and the time lag imply a

deviation from the equilibrium potential and an irreversible degradation (dissipa-

tion) of the Gibbs free energy (G) stored during the previous insertion (charge),

respectively. The partial reaction step is the RDS when it satisfies the general

condition that the overpotential and relaxation simultaneously have the maximum

values among all of the partial reaction steps in question.

The overvoltage for all reaction steps corresponds simply to the product of the

electrochemical equivalent rate (current) and “impedance” for all reaction steps at

steady state. It can sometimes be conveniently expressed as being proportional to

S.-I. Pyun et al., Electrochemistry of Insertion Materials for Hydrogen and Lithium,
Monographs in Electrochemistry, DOI 10.1007/978-3-642-29464-8_1,
# Springer-Verlag Berlin Heidelberg 2012
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the “impedance,” since the respective equivalent rate is the same at steady state and,

hence, it acts as a proportionality constant. The impedance is defined in particular in

the linear system as the ratio of the complex voltage to the complex current and is

generally referred to as a transfer function. By definition, the impedance [Ohm cm2]

for such reaction steps as the interfacial reaction and diffusion in the linear system

is again in general inversely proportional to the specific current density [A cm�2]

spontaneously produced (generated) for charge transfer or adsorption/desorption at

equilibrium (zero overpotential) and to the specific current density for diffusion or

migration at infinite overpotential, respectively. The specific current density for the

interfacial reaction and diffusion is referred to as the exchange current density

io and maximum limiting diffusion current density (diffusion-limited maximum

current density) iDL, respectively.
The former is best thought of as the charge-transfer rate constant (the rate constant

of electron transfer kel ¼ io/zF)/adsorption rate constant at equilibrium (zero

overpotential), similarly to the way in which the engine of a stationary car ticks over

in the idle state. In particular, the value of kel here is related to the rate at zero

overpotential. The value of kel is generally a function of the applied potential Eapp in

the same way that the current density i resulting during charge transfer depends upon
Eapp. In the relatively high Eapp region satisfying the constraint |zFE| � thermal

energy RT as a limiting case for instance, the logarithmic dependence of Eapp or �
on i, that is, “Butler-Volmer (Tafel) behavior” is effective. Practically, io means the

migration rate of Li+/H+ ions through the double layer or charge-transfer rate by

electron tunneling, which is regarded as a measure of the electrocatalytic effects. The

latter is abbreviated as the maximum diffusion current density or simply diffusion

current density at infinite (maximum) overpotential, similar to the rate of water

flowing out of a reservoir when it is full of water under the maximum water height

(level) gradient.

Regarding io, one speaks about the interfacial reaction impedance in general and

the charge-transfer resistance Rct in particular and regarding iDL one speaks about

the transport impedance in general and the diffusion resistance RD in particular.

From the above arguments about io (nonzero value) and iDL, we can easily say that

the charge-transfer current density ranges between io and infinity depending upon

the impressed (applied) anodic (positive) or cathodic (negative) overpotential,

whereas the diffusion current density varies from zero to iDL depending upon the

positive (anodic) or negative (cathodic) difference in concentration of the diffusing

species between the electrode and bulk electrolyte, but it remains nearly constant,

regardless of the applied anodic and cathodic potential. This is the reason why we

can imagine the RDS to be diffusion controlled when the potential step is applied

theoretically to infinite (extremely large) value, as described below. Similarly the

former and latter overvoltages are simply termed the overpotential by charge

transfer and overpotential by diffusion, respectively.

Starting from the pure diffusion-controlled mechanism, there are various kinds

of mixed diffusion and interfacial reaction controls that have been suggested and

experimentally substantiated so far [1]. All of the diffusion controls mixed with the

charge-transfer reaction for lithium and hydrogen insertion, which deviate to a

2 1 Introduction



lesser or greater extent from pure diffusion control, have been grouped together

under the collective term, “anomalous behavior” in the literature. Pure diffusion

control is theoretically thought to be valid for an electrode with an ideally “homo-

geneous clean” structure. One usually thinks of the mechanism of hydrogen and

lithium insertion as being then fixed if the electrode (insertion compounds)/electrolyte

system is specified. The mechanism represents which of either interfacial reaction such

as adsorption, absorption, and charge-transfer reaction or subsequent diffusion or

subsequent “transport” (a collective concept of diffusion and migration) becomes just

the RDS among all reaction steps.

However, our series of investigations [1] taught us that the boundary condition at

the electrode surface regarding the RDS during lithium and hydrogen insertion is

not fixed at the specific electrode/electrolyte system by itself, but is simultaneously

determined for any electrode/electrolyte system by external and internal parameters

such as the temperature, the potential step, and the nature of the electrode surface

roughness, depending upon, for example, the presence or absence of surface oxide

scales, the presence of multiple phases, pores, structural defects acting as lithium

and hydrogen trap sites, and pore fractals as well as surface fractals, etc.

1.2 Glossarial Explanation of Terminologies Relevant

to Interfacial Reaction and Diffusion

Now we need then to choose in particular first the charge-transfer reaction at the

electrode/electrolyte interface (through the electrical double layer), among all of

the partial reaction steps, in order to characterize it in terms of a simple equivalent

circuit element. As an example of the simple circuit element the arrangement of RC
couple in parallel can serve which is found in electrochemistry so common and

useful, for example, for the first approximation to the electrical double layer or

other thin films. The charge-transfer reaction through the double layer will be

activated under the applied potential (the force of the electric field). This goes on

until the movement of charge counteracts the charge retention by the electrons or

Li+/H+ ions being stuck like a glue to the electrical double layer, on the one hand,

and simultaneously the resistance (impediment) to charge transfer by the electrons

or Li+/H+ ions, on the other hand, regardless of whether it occurs by electron

transfer or ion transfer. Stated another way, the charge transfer is then restricted,

that is, there are both capacitive and resistive components.

Thus, the moving electrons or Li+/H+ ions sense the electrostatic double-layer

capacitance Cdl as well as the charge-transfer resistance Rct during the charge-

transfer reaction across the electrode/electrolyte interface to a greater or lesser

extent, depending upon the frequency, o. Charge transfer across the double layer,
as well as many other layers, behaves just like an RC element (a capacitor and

resistor in parallel) within the equivalent circuit, generating a trace consisting of a

semicircular arc as a function of frequency o and, hence, it appears as one

semicircular arc of radius Rct on the complex impedance plane of the Nyquist

1.2 Glossarial Explanation of Terminologies Relevant to Interfacial Reaction... 3



plot. The charge generally moves via more conductive paths. In extremely limiting

cases, electrons or Li+/H+ ions move purely via the pure Ohmic resistance Rct with

Faradaic current and a pure electrostatic double-layer capacitance Cdl with capaci-

tive current at zero frequency and infinite frequency, respectively.

The former current of course senses the Ohmic Faradaic resistance as the charge-

transfer resistance, while the latter current does not sense the capacitive impedance

at all. The latter current does not mean the flow of charge, but rather the charge

retention, by alternatively changing the sign of the charge on both sides of the pure

plate capacitor. At the equilibrium potential (zero overpotential), RC gives the

minimum relaxation time tmin required for electrons/Li+/H+ ions to completely

move across the double layer, from one side of the layer to the other. Here, tmin

means the time constant of the arc caused by the RC element, that is, the reciprocal

of the frequency at the maximum apex of the semicircle in the Nyquist plot.

The frequency at the maximum apex, omax, is related to the RC element by the

Maxwell relationship: omaxRctCdl ¼ 1.

Thus, tmin and, hence, omax, can be used to experimentally determine the

magnitude of io conveniently using the linear proportional relationship between

omax and io. As an empirical and theoretical rule, Cdl has a value of 10 to 40 mF cm�2.

Taking both Rct per unit length of the bulk medium [Ohm cm�1] and Cdl per unit

length of the interface [F cm�1], the inverse of the RC time constant corresponds

exactly to diffusivity [cm2 s�1] in value being defined in the mass transport.

The charge-transfer resistance and the double-layer capacitance at the maximum

frequency in the Nyquist plot yield the rate constant of electron transfer and, hence,

the exchange current density at equilibrium (zero overpotential).

It is worthwhile noting that the temperature dependence of the charge-transfer

resistance exactly follows that of the electronic resistivity in a semiconductor, thus

essentially differing from that in a metal by the term exp(�Eg/kT) (Eg ¼ band gap

energy required to make the electrons move across the double layer). This RC
element in parallel, representing the charge transfer by electrons/ions across the

double layer, is conceptually analogous to the oil drop experiment performed by

Robert Andrew Millikan in 1909�1913 in Chicago to determine the elementary

charge. The balance between the sum of the electrical field force in [N], |eE/d|
(d ¼ distance between two parallel plates of capacitors in [m], E ¼ potential

difference between two parallel plates in [V]) and buoyant force (viscous force),

and the gravitational force,mg (m ¼ mass in [kg]; g ¼ gravitational acceleration in

[m2 s�1]), of the oil drops permits us to experimentally quantify the electronic

charge, e. Here, the counteracting electrical force and viscous force resemble the

capacitive and resistive impedances, respectively. The gravitational force can then

provide a good analog of the resulting force of the applied electric field.

Finally we consider diffusion through homogeneous medium (bulk electrode or

electrolyte), among all of the partial reaction steps. In contrast to the charge transfer

at the interface, the conductivity or diffusivity of charged ions or neutral atoms

through an aqueous/solid medium can, in general, best be studied using a driving

force/frictional force balance model. The diffusing species in the aqueous/solid

medium will be accelerated under the force of the electric field/chemical potential
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gradient until the frictional drag exactly counterbalances the electrical field force or

the force induced by the concentration gradient, regardless of whether they are

charged ions or neutral atoms. Equating these two kinds of forces allows us to

quantitatively determine the (electrical) mobility in [m2 s�1 V�1] of the diffusing

species, which is defined as the ratio of the drift velocity of the species in question

to the applied electrical field/concentration gradient and is related to the diffusivity

and hence finally to iDL. The diffusivity corresponds to the inverse of the RC time

constant, which is defined based on the charge-transfer kinetics.

Estimating diffusion through homogeneous medium from another viewpoint in

analogy to a simple equivalent circuit element, the diffusion process can be

accounted for in terms of the ladder network which is composed of an infinite or

a finite connection of R and C in series. The diffusing species, Li+/H+ ions or neutral

Li/H atoms, repeatedly sense (experience or feel, if you prefer) the electrostatic

double-layer capacitance Cd for migration/diffusion per unit length of the interface

[F cm�1] and resistance Rd to migration/diffusion per unit length of the bulk

medium [Ohm cm�1] in series or sense (dwell in the thermally activated location

between one equilibrium site to the next equilibrium site) the chemical capacitance

Cd and resistance Rd to diffusion in series temporally and spatially during the whole

diffusion reaction across the bulk medium. The capacitance C can be originally

defined as the ability to retain or store charge or neutral chemical species. So the

capacitive element Cd for migration/diffusion per unit length of the interface

[F cm�1] implies an instantaneous mass retention which acts as a glue when the

diffusing species adhere to an instantaneous layer perpendicular to the flow direc-

tion or they dwell in the thermally activated location, irrespective of whether it is an

electrostatic or chemical capacitance. By contrast, the resistance Rd to migration/

diffusion per unit length of the bulk medium [Ohm cm�1] refers to an instantaneous

impediment to the mass transport preventing the diffusing species from jumping

from one equilibrium site to the next equilibrium site (moving in the flow

direction).

The frequency-dependent resistive and capacitive elements can be commonly

described as appearing in a horizontal line just on the real impedance axis and

straight-line perpendicular to the real axis, respectively, on the complex impedance

plane of the Nyquist plots. In contrast to one R and C couple in parallel characterized

by the charge-transfer reaction, the R and C components are completely separated

from each other to exclusively go into the contribution to the real and imaginary parts

of diffusion impedances, respectively. For this reason, the infinite sum of the ladder

network of RC couple in series conceivably gives a straight line inclined to an angle

of 45� with respect to the real axis of complex impedance plane.

Alternatively we can conceive of the diffusion process through homogeneous

medium as though the diffusing medium were composed of an infinite or a finite

sandwich of many millions of layers, each with a slightly different concentration of

the species. Each of these layers resembles an RC element (a capacitor and resistor

in parallel). The respective values of Rk and Ck for the k-th layer will be unique to

each RC element, since each layer has a distinct value of concentration of the

diffusing species. In order to simplify the equivalent circuit model, the infinite or
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finite sum of RC elements is termed the Warburg impedance within the equivalent

circuit. In contrast to the semicircular arc represented by the charge-transfer

reaction, the ideal Warburg impedance represents in general the straight line

inclined at an angle of exactly 45� in the Nyquist plot that always implies diffusion

or migration with the same magnitude of the frequency-dependent resistive and

capacitive impedances, Rk and Ck in absolute value, at a given frequency, o. This is
the same result as that obtained from the transmission line model with ladder

network and mentioned above. The frequency-dependent resistive and capacitive

impedances, Rk and Ck depend upon the common factor, o�1/2, and simultaneously

upon the frequency-independent term, the Warburg coefficient, as well. Therefore,

Rk and Ck are termed the series resistance and pseudo-capacitance, respectively, in

contrast to the frequency-independent pure Ohmic resistance and double-layer

capacitance.

By converting the Nyquist plot into the time domain, the Warburg impedance

including the common factoro�1/2 becomes simplified to the Cottrell equation including

t�1/2 (t ¼ time) usually used in chronoamperometric experiments (potentiostatic current

transient curve). The linear run of both formulae is characterized and identified as pure

diffusion control. TheWarburg coefficient obviously includes the diffusion coefficient by

nature. Alternatively, the diffusivity can be readily estimated from either the linear part of

the frequency dependence of the Warburg impedance or from the linear part of the time

dependence of the diffusion current following the Cottrell equation.

1.3 Remarks for Further Consideration

Let us consider the question of which criteria need to be met to determine the RDS
of the overall lithium and hydrogen insertion in the case where the charge transfer

and subsequent diffusion are connected in series. We briefly discuss here some

critical points which have not been so clearly understood until now. According to

our series of investigations [2–9] there are several intrinsic parameters, such as the

ratio of the diffusion resistance RD to the sum of the charge-transfer resistance Rct

and electrolytic solution resistance Rs, as well as the extrinsic parameters, such as

the potential step DE and temperature T, over a narrow range of which the transition

from mixed diffusion and charge-transfer control to pure diffusion control appears.

Taking DE as an external parameter, it is expected that the condition for Rct � RD

and io � iDL is valid at relatively low potential steps, that is, below a certain

transition potential step, DEtr, while the condition for Rct � RD and io � iDL is

effective at relatively high potential steps, that is, above a certain DEtr. The above

pairs of conditions are in good agreement with each other, because the respective

resistance is inversely proportional to the respective current density.

The experimental treatment of the potentiostatic current transient and ac-

impedance spectroscopy explained quite well the expected transition of Rct � RD

and io � iDL to Rct � RD and io � iDL and thus confirmed the transition from

mixed control to pure diffusion control over a relatively large potential step. It is
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further inferred that the two curves corresponding to the dependence of io on the

potential step DE and less dependence of iDL on DE should intersect over a narrow

range of DEtr. The marked dependence of io on DE is at variance with the common

prediction that the exchange current density io does not depend upon DE, but is
defined at equilibrium (zero overpotential � ¼ 0). We are now faced with a

disconcerting situation.

In order to solve this difficulty, let us introduce the screening factor into the

charge-transfer resistance Rct. Whenever one is trying to newly understand a

phenomenon, it is usually sufficient to use a somewhat oversimplified model before

establishing a more exact one. In order to escape from this dilemma mentioned

above and understand the sharp transition of io or Rct to a relatively large or small

value as compared to iDL or RD, respectively, at the transition DEtr rather than the

dependence of io or Rct on DE, we introduced the term exp(�lDE) to add to

Rct ¼ (RT)/(zFio) as follows:

Rct ¼ RT

zFio
exp �lDEð Þ (1.1)

where l is called the screening constant. The reciprocal of l(l�1) is termed the

screening potential step, DE. The redox electrons, which are in quasi-equilibrium

with the cations of Li+/H+, contribute to the value, Rct ¼ (RT)/(zFio). This is a

situation in which the electrons are trapped by the Li+/H+ cations in a similar

manner to that in which a small bird cannot fly out of its cage.

As the potential step DE is raised, more redox electrons are produced and the

new factor exp(�lDE) enters the equation. These excess redox electrons begin to

create a screen of negative charge around the cationic charge, so that Rct is much

reduced. Rct in this case takes the form of Eq. 1.1. It follows that the screened

cationic charge cannot be sensed (felt, seen, experienced, or attracted, if you prefer)

by the excess redox electrons when the screening DE, l�1, is extremely small as

compared to the large DE. Now, we consider two cases, a small DE from 5 to 10 mV

and a large DE from 800 to 1,000 mV, taking l�1 ¼ (kT)/(ze) ¼ 26 mV at 298�K
(room temperature). At the small DE, the screening factor exp(�lDE) amounts to

0.68 to 0.83, indicating that the trapping effect still overcomes the screening effect.

In contrast, at the large DE, the screening factor is 2.0 � 10�17 to 4.3 � 10�14,

indicating that the screening effect easily overcomes the trapping effect.

Similarly, if the temperature is high enough, it is possible that the number of

such excess redox electrons will become great enough for the screening to far

overweigh the trapping effect and again there will be a sharp transition of Rct to a

very low value. Once the screening effect begins to act, DE is then raised, which

leads to more screening and to the generation of excess redox electrons, thus

resulting in Rct ¼ 0 when DE theoretically reaches an infinite value. In this region

of pure diffusion control, the semicircular arc representing charge transfer in the

Nyquist plot degenerates into a point (Rct ¼ 0). This is the case where the redox

electrons are ideally in reversible equilibrium with the cations of Li+/H+. This is not

unlike the avalanche (“Alpenlawine”) effect where a large mass of snow falls down
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the side of a mountain. The factor exp(�lDE) in the avalanche effect is the same as

an “infinitely thin and long d-function,” a special form of the Weibull distribution

density function of any event x given by

f ðxÞ ¼ m

n
xm�1 exp � xm

n

� �
(1.2)

where m is an extremely large constant value and n is nearly zero. Here, m means

the shape parameter and n is the scale parameter.

The screening factor exp(�lDE) is in many ways similar to the screening term

that Mott [10] and Debye-Hueckel [11] introduced into the same electrical potential

U ¼ �e2/r (where e ¼ electronic charge; r ¼ the distance of the electron from the

nucleus and the distance of the central ion from the next neighboring ion; l ¼ the

screening radius and the thickness of the ionic atmosphere or Debye length,

respectively), in order to explain the sharp transition in the conductivity of a

semiconductor to a metal at a certain transition interatomic distance in a solid

medium and also to explain the appreciable change of the ionic strength (degree of

electrical interaction between ions) at the transition interionic distance in a dilute

strong electrolyte. The screening concept of Rct (io) may also provide a clue to

understanding the sharp transition of iDL or RD to a relatively small or large value as

compared to io or Rct, respectively, at the transition DEtr rather than to the depen-

dence of iDL or RD on DE.

1.4 Concluding Remarks

This whole monograph discussed in detail how to quantitatively determine the RDS
at different applied potential steps and in the presence of multiple phases, pores,

structural defects such as lithium and hydrogen trap sites and surface and pore

fractals, etc. Then, we dealt with the question of what mechanism of anomalous

behavior is operative during the overall lithium and hydrogen insertion into and

desertion from lithium/hydrogen insertion compounds from the viewpoint of the

overpotential (the respective impedance) of charge transfer and diffusion and/or

exchange current density at zero overpotential and maximum diffusion current

density at infinite applied potential (overpotential).

Specifically enumerating the contents of this book, it first presents the basic

concepts of and problems relating to the RDS of the overall insertion and desertion

reactions in Chap. 1 and continues to give a brief overview of the electrochemical

techniques that are essential to characterize the electrochemical and transport

properties of insertion materials (Chap. 2). Then, there are in-depth theoretical

and practical discussions of hydrogen absorption into and subsequent diffusion

through the metals and metal oxides under the permeable and impermeable bound-

ary conditions (Chaps. 3 and 4). The following three chapters cover the conceptual
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and phenomenological aspects of hydrogen trapping inside the materials, insertion-

induced generation of internal stress, and interfacial reaction kinetics that cause

abnormal hydrogen transport behavior (Chaps. 5, 6, and 7). In the last two chapters,

the unusual transport phenomena observed in lithium insertion materials are

discussed in terms of internal cell resistance and irregular/partially inactive

interfaces of the active materials (Chaps. 8 and 9). We hope this book will at

least partially answer some of the queries and difficulties raised herein and provide

the incentive to solve them.
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Chapter 2

Electrochemical Methods

2.1 Chronopotentiometry

In chronopotentiometry, a current pulse is applied to the working electrode and its

resulting potential is measured against a reference electrode as a function of time.

At the moment when the current is first applied, the measured potential is abruptly

changed due to the iR loss, and after that it gradually changes, because a concen-

tration overpotential is developed as the concentration of the reactant is exhausted

at the electrode surface. If the current is larger than the limiting current, the required

flux for the current cannot be provided by the diffusion process and, therefore, the

electrode potential rapidly rises until it reaches the electrode potential of the next

available reaction, and so on.

The different types of chronopotentiometric techniques are depicted in Fig. 2.1.

In constant current chronopotentiometry, the constant anodic/cathodic current applied

to the electrode causes the electroactive species to be oxidized/reduced at a constant

rate. The electrode potential accordingly varies with time as the concentration ratio of

reactant to product changes at the electrode surface. This process is sometimes used

for titrating the reactant around the electrode, resulting in a potentiometric titration

curve. After the concentration of the reactant drops to zero at the electrode surface, the

reactant might be insufficiently supplied to the surface to accept all of the electrons

being forced by the application of a constant current. The electrode potential will then

sharply change tomore anodic/cathodic values. The shape of the curve is governed by

the reversibility of the electrode reaction.

The applied current can be varied with time, rather than being kept constant. For

example, the current can be linearly increased or decreased (chronopotentiometry

with linearly rising current in the figure) and can be reversed after some time

(current reversal chronopotentiometry in the figure). If the current is suddenly

changed from an anodic to cathodic one, the product formed by the anodic reaction

(i.e., anodic product) starts to be reduced. Then, the potential moves in the cathodic

direction as the concentration of the cathodic product increases. On the other hand,

the current is repeatedly reversed in cyclic chronopotentiometry.

S.-I. Pyun et al., Electrochemistry of Insertion Materials for Hydrogen and Lithium,
Monographs in Electrochemistry, DOI 10.1007/978-3-642-29464-8_2,
# Springer-Verlag Berlin Heidelberg 2012
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The typical chronopotentiometric techniques can be readily extended to charac-

terize the electrochemical properties of insertion materials. In particular, current

reversal and cyclic chronopotentiometries are frequently used to estimate the

specific capacity and to evaluate the cycling stability of the battery, respectively.

Shown in Fig. 2.2a is a typical galvanostatic charge/discharge profile of LiMn2O4

powders at a rate of 0.2 C (In battery field, nC rate means the discharging/charging

rate at which the battery is virtually fully discharged/charged for 1/n h.) [1]. The

total quantity of electricity per mass available from a fully charged cell (or storable

in a fully discharged cell) can be calculated at a specific C rate from the charge

transferred during the discharging (or charging) process in terms of C·g�1 or

mAh·g�1. Alternatively, the quantity of electricity can be converted to the number

of moles of inserted atoms as long as the electrode potential is obtained in a (quasi-)

equilibrium state (Fig. 2.2b [2]; for more details, please see the explanation below

on the galvanostatic intermittent titration technique). The specific capacity is

frequently measured at different discharging rates to evaluate the rate capability

of the cell (Fig. 2.3) [3].

The voltage profile, obtained by current reversal or cyclic chronopotentiometry,

can be effectively used to characterize the multi-step redox reactions during the

insertion process. An example is given in Fig. 2.4 for Cu6Sn5 which is one of the

anodic materials that can be used in rechargeable lithium batteries [4]. The differ-

ential capacity curve dC/dE (Fig. 2.4b), which is reproduced from the voltage

versus specific capacity curve of Fig. 2.4a, clearly shows two reduction peaks and

the corresponding oxidation peaks. The reduction peaks, R1 and R2, are caused by

the phase transformation of Cu6Sn5–Li2CuSn and the subsequent formation of

Li4.4Sn, while the oxidation peaks, O1 and O2, are ascribed to the corresponding

reverse reactions for the formation of Li2CuSn and Cu6Sn5, respectively [5, 6].

Fig. 2.1 Different types of chronopotentiometric experiments. (a) Constant current chronopoten-
tiometry. (b) Chronopotentiometry with linearly rising current. (c) Current reversal chronopoten-
tiometry. (d) Cyclic chronopotentiometry
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The galvanostatic intermittent titration technique (GITT) is considered to be one

of the most useful techniques in chronopotentiometry. In the GITT, a constant

current is applied for a given time to obtain a specific charge increment and then it is

interrupted to achieve open circuit condition until the potential change is virtually

zero. This process is repeated until the electrode potential reaches the cut-off

voltage. Eventually, the equilibrium electrode potential is obtained as a function

of lithium content, as shown in Fig. 2.5 [7]. Another important usage of the GITT is
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the estimation of the chemical diffusion coefficient of the species in the insertion

materials [8–10]. When the diffusion process in the material is assumed to obey

Fick’s diffusion equations for a planar electrode, the chemical diffusion coefficient

can be expressed as follows [8]:

~D ¼ 4

p
I0Vm

ziFS

� �2
dE

dd

� �
dE

d
ffiffi
t

p
� ��� �2

for t<<
l2

~D
(2.1)

Fig. 2.3 (a) Voltage profiles

of the electrodeposited Ni-Sn

foam with nanostructured

walls at different discharging

(lithium dealloying) rates,

and (b) dependence of

specific capacity on

discharging rate, obtained

from the samples created at

different deposition times

(Reprinted from Jung et al.

[3], Copyright #2011 with

permission from Elsevier

Science)
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where Vm is the molar volume of the active material; zi, the valence number of

diffusing species; F, the Faraday constant; S, the surface area of the material; Io, the
applied constant current; ðdE=ddÞ , the dependence of electrode potential on the

stoichiometry of the inserted atoms; dE=d
ffiffi
t

p� 	
, the dependence of the electrode

potential on the square root of time; and l, the thickness of the electrode (or solid

state-diffusion length).

Fig. 2.4 (a) Galvanostatic

charge/discharge curves of

the electrodeposited Cu6Sn5
porous film, and (b) the

differential capacity dC/dE
versus cell voltage plot,

determined from (a)

(Reprinted from Shin and Liu

[4], Copyright #2005 with

permission from WILEY-

VCH Verlag GmbH & Co)
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2.2 Chronoamperometry

The current transient technique is another name for chronoamperometry. In this

technique, the electrode potential is abruptly changed from E1 (the electrode is

usually in the equilibrium state at this potential) to E2 and the resulting current

variation is recorded as a function of time. The interpretation of the results is

typically based on a planar electrode in a stagnant solution and an extremely fast

interfacial redox reaction as compared to mass transfer. Figure 2.6 shows the

potential stepping in chronoamperometry, the resulting current variation with

time, and the expected content profile of the active species in the electrolyte.

Chronoamperometry has been widely used to characterize the kinetic behavior

of insertion materials. The typical assumption for the analysis of the chrono-

amperometric curve (or current transient) of insertion materials is that the diffusion

of the active species governs the rate of the whole insertion process. This means the

following: The interfacial charge-transfer reaction is so kinetically fast that the

equilibrium concentration of the active species is quickly reached at the electrode

surface at the moment of potential stepping. The instantaneous depletion (or

accumulation) of the concentration of active species at the surface caused by the

chemical diffusion away from the surface to the bulk electrode (or to the interface

away from the bulk electrode) is completely compensated by the supply from the

electrolyte (or release into the electrolyte). This is referred to hereafter as the

potentiostatic boundary condition. The interface between the electrode and current

collector is typically under the impermeable boundary condition where the atom

cannot penetrate into the back of the electrode. Conceptual illustrations of the

potentiostatic and impermeable boundary conditions are presented in Fig. 2.7

along with their mathematical expressions.

Fig. 2.5 Typical

galvanostatic intermittent

charge–discharge curves of

the Li1-dNiO2 composite

electrode (Reprinted from

Choi et al. [7], Copyright

#1998 with permission from

Elsevier Science)
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When the atomic content is constant throughout the electrode before the appli-

cation of the potential step, and the electrolyte/electrode and electrode/current

collector interfaces are under potentiostatic and impermeable constraints, respec-

tively, the normalized atomic content can be expressed as follows [11–13]:

cðx; tÞ � c0
cs � c0

¼
X1
n¼0

ð�1Þn erfc
ðnþ 1Þl� xffiffiffiffiffi

~Dt
p þ erfc

nlþ xffiffiffiffiffi
~Dt

p
� �� �

for t<<
l2

~D
(2.2)

Fig. 2.6 (a) Schematic

illustration of the potential

stepping in

chronoamperometry, (b) the

resulting current variation

with time, and (c) the

expected content profile of

the active species O in the

electrolyte. Bulk

concentration of the species O

is co
*. Species O is

electrochemically inactive at

E1, but is reduced at E2

Fig. 2.7 Schematic illustration of concentration profile of the active species inserted into the

electrode under the potentiostatic (at the electrode/electrolyte interface) and impermeable (at the
electrode/substrate interface) boundary conditions, together with the mathematical expressions of

the boundary conditions
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cðx; tÞ � c0
cs � c0

¼� 4

p

X1
n¼0

1

2nþ 1
sin

ð2nþ 1Þpx
2l

exp �ð2nþ 1Þ2p2 ~Dt
4l2

 !" #

for t>>
l2

~D
(2.3)

Equations 2.2 and 2.3 are useful to predict the atomic content in the electrode at

the initial and later stages of the diffusion process, respectively. From the definition

of the current given by

IðtÞ ¼ �ziFS ~D
@cðx; tÞ
@x

� �
x¼0

(2.4)

Equations 2.2 and 2.3 become

IðtÞ ¼ Q

l

~D

p

� �1=2

t�1=2 for t<<
l2

~D
(2.5)

IðtÞ ¼ 2Q ~D
1=2

l2
exp � p2 ~D

4l2
t

� �
for t>>

l2

~D
(2.6)

whereQ is the charge allocated to the atomic insertion/desertion process from t ¼ 0

to t ! 1.

Hence, the current transient shows a linear relation between the logarithmic

current and logarithmic time with a slope of �0.5 in the initial stage of diffusion

(Eq. 2.5), while it exhibits an exponential decay in the later stage (Eq. 2.6). In other

words, the current transient shows a transition from semi-infinite diffusion behavior

to finite-length diffusion behavior. The former is called Cottrell behavior.

Presented in Fig. 2.8a–c is the hypothetical open circuit potential curve with the

potential drops chosen for the calculation, the resulting theoretically calculated

current transients, and the time-dependent content profile across the electrode,

respectively [14]. The Cottrell region and the transition time from semi-infinite

diffusion to finite-length diffusion are explicitly indicated in figure (b). The content

profile of figure (c) helps one understand the diffusion process during the

chronoamperometric experiment: At the moment of potential stepping (t ¼ 0),

a new equilibrium content of the active species is imposed on the electrode surface.

Then, the species diffuses into the electrode due to the content gradient. The

resulting depletion of the species at the electrode surface is compensated by the

continuous supply of the species from the electrolytic phase (although this process

is not explicitly illustrated in the figure) and, as a result, the surface content of the

species remains constant. As the diffusion time goes on, the content of the species in

the electrode approaches the equilibrium composition of the final potential

everywhere.
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The current transient for the insertion electrode can be classified into the

following two types: The current buildup transient for the cathodic potential step

and the current decay transient for the anodic potential step. It is expected that the

active species is inserted into the electrode in the former, while it is extracted from

the electrode in the latter. However, the current build-up transient occasionally

includes the information of other (side) reaction than just the insertion of the active

species. For example, when insertion materials such as Pd and LaNi5 combine with

hydrogen and form metal hydrides, hydrogen insertion (or hydride-forming

process) accompanies sometimes the hydrogen evolution reaction. Accordingly,

the current transient includes the information of both hydrogen insertion into the

electrode and hydrogen evolution at the interface. Under the circumstances, the

time-dependent hydrogen content in the electrode cannot be properly estimated

Fig. 2.8 (a) Hypothetic electrode potential curve, (b) the cathodic current transients at the

potential drops of 0.05 V to different lithium insertion potentials, and (c) the change in lithium

content profile across the electrode with time at the potential drop of 0.05–0.04 V. The

potentiostatic and impermeable boundary conditions are assumed for the calculation (Reprinted

from Shin and Pyun [14], Copyright #1999 with permission from Elsevier Science)
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from the current transient. Consequently, in the case of a metal hydride electrode,

Eqs. 2.5 and 2.6 are valid only for the current build-up transient obtained in the

hydrogen-evolution-free region and current decay transient (Fig. 2.9) [15].

A number of current transients have been analyzed on the basis of Eqs. 2.5 and

2.6. Particularly, the slopes of I(t) versus t�1/2 (or the values of I(t)·t1/2) and ln I(t)
versus t curves have been determined in the initial and later stages of the diffusion

process of the active species, respectively, to estimate its chemical diffusion coeffi-

cient in the electrode. However, it has been reported that the chemical diffusion

coefficient determined from the current transient technique on the basis of the

diffusion control process shows a large discrepancy from those values determined

by other electrochemical techniques such as the GITT and electrochemical imped-

ance spectroscopy (EIS) [16–19]. Furthermore, a number of anomalous shapes

observed in current transients, which were never explained on the grounds of the

diffusion-controlled process, have been reported for different insertion materials

[20–23]. Several attempts have been made to explain these atypical behaviors of the

current transient using modified diffusion-controlled concepts or completely new

concepts. These considered the trapping/detrapping of the diffusing species [24],

strain-induced diffusion [25], geometrical effect of the electrode surface [26, 27],

phase transformation [28, 29], and internal cell-impedance [14, 30, 31].

2.3 Voltammetry

Voltammetry is basically referred to as techniques with the common characteristics

that the potential of the working electrode is controlled and the resulting current flow

is measured. One of the most general applications is “linear-sweep voltammetry
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Fig. 2.9 Reduced current

decay transients of PdHx

electrode when the potential

is jumped from 0.1 to 0.90

VH/H+. Before potential jump,

the hydrogen was injected to

the Pd at 0.1 VH/H+ for 2,000 s

(Reprinted from Shin et al.

[15], Copyright #1998 with

permission from Corrosion

Science Society of Korea)
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(LSV or LV)” where the potential is linearly scanned over time in either the negative

or positive direction. “Cyclic voltammetry (CV)” is a set of LSV experiments in

which anodic and cathodic scans are repeated alternately. That is, at the end of the

first scan of LSV, the scan is continued in the reverse direction. This cycle can be

repeated a number of times. Schematically shown in Fig. 2.10a–c are typical cyclic

voltammogram, the cation movements during potential scans, and the expected

voltage (or time) dependence of the cation content profile, respectively.

Fig. 2.10 (a) Typical shape of cyclic voltammogram, (b) the cation movement during potential

scan, and (c) the expected potential (or time) dependence of the cation content profile
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The voltammogram gives us information on the possible redox reactions of the

system, including the Faradaic insertion and extraction reaction. Figure 2.11a

presents the cyclic voltammogram of an LiCoO2 film electrode as a cathode in

rechargeable lithium battery [2]. Three sets of anodic/cathodic current peaks are

observed. The first set of anodic/cathodic current peaks showing the largest value is

caused by the insertion/extraction-induced phase transformation from/to Li-diluted

hexagonal phase to/from Li-concentrated hexagonal phase. The second and third

sets are due to the insertion (extraction)-induced order–disorder phase transition.

Fig. 2.11 The cyclic

voltammograms of (a) a

sputter-deposited LiCoO2

film electrode and (b) multi-

walled carbon nanotubes

(MWNTs), tested as a

cathode and an anode,

respectively, in a

rechargeable lithium battery

(Reprinted from Shin and

Pyun [2], Copyright #2001

and Shin et al. [32], Copyright

#2002, with permissions

from Elsevier Science)
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Furthermore, the presence of a surface reaction and its reversibility during the

atom insertion-extraction process can be successfully examined using voltammetry.

Shown in Fig. 2.11b is the cyclic voltammograms for the first three cycles obtained

from multi-walled carbon nanotubes (MWNTs) tested as an anode in a rechargeable

lithium battery [32]. Aside from the reversible high-current redox signals below

0.5 V versus Li/Li+, originating from the lithium insertion/extraction process, there

are three irreversible peaks in the first cathodic scan. The two peaks below 1.0 V

versus Li/Li+ are caused by the formation of a solid electrolyte interphase (SEI)

layer on the surface of the MWNT electrode, while the peak above 2.0 V versus

Li/Li+ is possibly due to the reduction of the oxygenated species.

Similar to chronoamperometry, the diffusion-controlled model has been usually

used to analyze the voltammetric response of the insertion electrode. When an

electrode initially holds at a potential Ei, where the electrode is in the equilibrium

state, the linear or cyclic potential scanning is expressed at a scan rate v (V/s) as

EðtÞ ¼ Ei � vt. With the assumption of diffusion-controlled atomic transport, the

flux balance based on Fick’s law and the Nernst equation for voltammetry can be

obtained in the same manner as the traditional equations for the combined process

of liquid phase diffusion and the interfacial redox reaction. Nevertheless, the

inability to use the Laplace transform procedure to figure out the equations greatly

complicates the mathematics and makes it quite difficult to get a generalized

expression for the potential-dependent current response during the voltammetric

experiment.

The analytical solution of the peak current Ip on the assumption of the semi-

infinite diffusion condition is known as the Sevčik equation and expressed as

follows [33],

Ip ¼ 2:69� 105z
3=2
i S ~D1=2v1=2co (2.7)

In the case of finite-space diffusion, the reversible accumulation/consumption

reaction can be characterized by the peak current.

Ip ¼ z2i F
2vlSc0
2RT

(2.8)

Equation 2.7 indicates that the diffusion coefficient can be estimated from the

intercept of the ln Ip versus v plot.
The approximate analytical solution for the generalized case has been derived by

Aoki et al. for the dependence of the peak current, peak potential and half-peak

width on the thickness of the electrode and the potential scan rate, in the whole

range of scan rates. In particular, the relationship between the peak current and scan

rate is given by [34]

Ip ¼ 0:446ziFSð ~D=lÞc0b0:5 tanhð0:56b0:5 þ 0:05bÞ (2.9)

where bð¼ ziFvðl2=DÞ=RTÞ is a dimensionless characteristic time parameter.
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Presented in Fig. 2.12a are the cyclic voltammograms expected at different scan

rates. Two regions of finite-length diffusion and semi-infinite diffusion are

indicated at low- and high-rate potential scanning, respectively, in the reproduced

plot for the variation of the peak current with the scan rate (Fig. 2.12b).

Fig. 2.12 (a) The cyclic

voltammograms at different

scan rates and (b) the plot of

cathodic peak current density

versus scan rate, reproduced

from (a)
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2.4 Electrochemical Impedance Spectroscopy

In electrochemical impedance spectroscopy (EIS), the system under investigation

(typically in the equilibrium state) is excited by a small amplitude ac sinusoidal

signal of potential or current in a wide range of frequencies and the response of the

current or voltage is measured. Since the amplitude of the excitation signal is small

enough for the system to be in the (quasi-)equilibrium state, EIS measurements

can be used to effectively evaluate the system properties without significantly

disturbing them. Frequency sweeping in a wide range from high-to low-frequency

enables the reaction steps with different rate constants, such as mass transport,

charge transfer, and chemical reaction , to be separated.

For typical impedance measurements, a small excitation signal (e.g., <20 ~ 30

mVrms) is used, so that the cell is considered as a (pseudo-)linear system. In this

condition, a sinusoidal potential input to the system leads to a sinusoidal current

output at the same frequency. As a matter of fact, the output current exponentially

increases with the applied potential (or polarization, over-voltage), that is, the

typical electrochemical system is not linear. When we take a closer look at a very

small part of a current versus voltage curve, however, the relation might be

regarded as (pseudo-)linear. If we use an excitation signal with a large amplitude

and, in doing so, the system is deviated from linearity, the current output to the

sinusoidal potential input contains the harmonics of the input frequency. Some-

times, the harmonic response is analyzed to estimate the non-linearity of the

system, by intentionally applying an excitation potential with a large amplitude.

The system excitation caused by the time-dependent potential fluctuation has the

form of

EðtÞ ¼ E0 cos ðotÞ (2.10)

where E(t) is the applied potential at time t, Eo is the potential amplitude, and o is

the angular frequency that is defined as the number of vibrations per unit time

(frequency, Hz) multiplied by 2p and expressed in rad/s. In a linear system, the

output current signal I(t) has amplitude I0 and is shifted in phase by f.

IðtÞ ¼ I0 cos ðot� fÞ (2.11)

Then, the impedance of the system Z(t) is calculated from Ohm’s law:

ZðtÞ ¼ EðtÞ=IðtÞ ¼ Z0 cos ðotÞ=cos ðot� fÞ (2.12)

When we plot the applied potential fluctuation E(t) on the axis of the abscissa

and the resulting current output I(t) on the axis of the ordinate, we get an oval shape
known as a “Lissajous figure” that can be displayed on an oscilloscope screen. By

using Euler’s relationship defined as exp(jf) ¼ cosf + jsinf, the system imped-

ance is expressed as a complex function and a lot of useful information on it can be
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visualized in quite a simple manner. The excitation potential input and the resulting

current output are described as

EðtÞ ¼ E0 exp ðjotÞ (2.13)

IðtÞ ¼ I0 exp ½jðot� fÞ� (2.14)

Based on Ohm’s law, we get the expression for the impedance as a complex

number,

ZðoÞ ¼ Z0 exp ðjfÞ ¼ Z0ðcosfþ j sinfÞ (2.15)

When the real part of the impedance is plotted on the axis of the abscissa and the

imaginary part is plotted on the axis of the ordinate, we get a “Nyquist plot.” The

example presented in Fig. 2.13a is a graphical expression of the complex plane

of the electrical equivalent circuit of Fig. 2.13b. In the Nyquist plot, a vector of

length |Z| is the impedance and the angle between this vector and the real axis is a

phase shift, f.
In spite of the wide use of the Nyquist plot, it has a weakness that we cannot

know the frequency at which a specific impedance point is recorded in the plot. The

“Bode plot” might be useful, in that the frequency information is explicitly shown.

In the “Bode plot,” the axis of the abscissa is the logarithmic frequency (log o) and
the axis of the ordinate is either the absolute value of the logarithmic impedance

(log |Z|) or phase shift (f). The Bode plot for the equivalent circuit of Fig. 2.13b is

shown in Fig. 2.14.

The Randles circuit is the simplest and most common electrical representation of

an electrochemical cell. It includes a resistor (with a resistance of Rct; an interfacial

charge-transfer resistance) connected in parallel with a capacitor (with a capaci-

tance of Cdl; a double layer-capacitance) and this RC electrical unit is connected in

series with another resistor (with a resistance of Rs; a solution resistance), as shown

in Fig. 2.15a. The total impedance of the Randles cell is then expressed by

Fig. 2.13 (a) Nyquist plot,

representing absolute value of

impedance vector (|Z|), phase
angle (f), and angular

frequency (o) dependence of
the impedance, and (b) the

corresponding equivalent

circuit with RC parallel

element
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Z ¼ Rs þ R�1
ct þ joCdl

� 	�1
(2.16)

From this equation, the real partZReð¼ Rs þ Rct=ð1þ o2Cdl
2Rct

2ÞÞ and imaginary

part ZImð¼ oCdlRct
2=ð1þ o2Cdl

2Rct
2ÞÞ of the total impedance Z ¼ ZRe þ jZImð Þ can

be separated. By eliminating the angular frequency, o, we can get the following

equation.

Fig. 2.14 Bode plots for the

equivalent circuit with RC
parallel element (Fig. 2.13b)

Fig. 2.15 (a) Randles circuit

and (b) its Nyquist plot
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Z ¼ ZRe � Rs þ Rct

2

� �� �2
þ R2

Im ¼ Rct

2

� �2

(2.17)

This indicates that the Nyquist plot for a Randles cell is a semicircle with two

intercepts on the real axis in the high- and low-frequency regions (Fig. 2.15b). The

former is the solution resistance, while the latter is the sum of the solution and

charge-transfer resistances. The diameter of the semicircle is therefore equal to the

charge-transfer resistance. In addition, the angular frequency is equal to the recip-

rocal of RctCdl at the minimum value of ZIm.
It should be mentioned that the capacitor (e.g., the double-layer capacitor in the

Randles cell) in an impedance experiment frequently does not show ideal behavior.

Instead, it acts like an electrical element with constant phase called a constant phase

element (CPE) and its impedance has the form of Z ¼ AðjoÞ�að0:5<ab1Þ. A few

theories have been proposed to explain the deviation of the capacitive behavior

from ideality, including the surface roughness effect, but there is no general

consensus on the origin of the CPE.

The equivalent circuit of insertion materials includes the diffusion impedance,

originating from the solid-state diffusion of the active species. Assuming a semi-

infinite diffusion process, the Warburg element with an impedance of Zw is

connected in series with the resistor representing the interfacial charge transfer,

Rct, as shown in Fig. 2.16a. The Nyquist plot for the equivalent circuit features an

inclined line with a slope of 45 � in the low-frequency region, due to the Warburg

impedance (Fig. 2.16b).

Fig. 2.16 (a) Equivalent

circuit including the Warburg

element and (b) the typical

shape of its Nyquist plot
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When an atom diffuses into the homogeneous single phase, the Warburg imped-

ance Zw is expressed as

Zw ¼ Cffiffiffiffiffi
jo

p ¼ Cffiffiffi
2

p o�1=2ð1� jÞ (2.18)

where C=
ffiffiffi
2

p
is a constant and is called the Warburg coefficient, sw. The Warburg

coefficient has strong dependence on the chemical diffusion coefficient [35].

sw ¼ Vm

F

@E

@d

� �
1ffiffiffiffiffiffi
2 ~D

p
� �

1

S
(2.19)

Fig. 2.17 Impedance spectra

of (a) the Li1-dCoO2 and (b)

the graphite at a cell potential

of 3.95 V (versus graphite)

and different temperatures.

The solid and dotted lines

were determined from the

CNLS fittings of the

impedance spectra to the

equivalent circuits presented

in the insets. (Reprinted from

Cho et al. [36], with

permission from Elsevier

Science)
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The real situation for the insertion process might be more complicated. Shown in

Fig.2.17a, b are the typical impedance spectra of the Li1�dCoO2 cathode and graphite

anode, respectively, for a rechargeable lithium battery [36]. The first and second

semicircles are attributed to the presence of the solid electrolyte interphase (or the

particle-to-particle contact of the active materials) and charge-transfer resistance

combined with double-layer charging/discharging, respectively [37, 38], while the

inclined line (i.e., Warburg element) is due to solid-state lithium diffusion through the

active materials.

The measured impedance spectra can be modeled in the simplified phenomeno-

logical equivalent circuit shown in the inset of the figure, although different circuit

forms might be used according to the physical model employed to interpret the

insertion process. The values of the resistance, capacitance, and the chemical

diffusion coefficient of lithium into the active materials can be determined from

the complex nonlinear least squares (CNLS) fitting method, by fitting the imped-

ance spectra to the equivalent circuit [39–41].

References

1. Zhang Y, Shin HC, Dong J, Liu M (2004) Nanostructured LiMn2O4 prepared by a glycine-

nitrate process for lithium-ion batteries. Solid State Ion 171:25–31

2. Shin HC, Pyun SI (2001) Investigation of lithium transport through lithium cobalt dioxide thin

film sputter-deposited by analysis of cyclic voltammogram. Electrochim Acta 46:2477–2485

3. Jung HR, Kim EJ, Park YJ, Shin HC (2011) Nickel–tin foam with nanostructured walls for

rechargeable lithium battery. J Power Sources 196:5122–5127

4. Shin HC, Liu M (2005) Three-dimensional porous copper-tin alloy electrodes for rechargeable

lithium batteries. Adv Funct Mater 15:582–586

5. Larcher D, Beaulieu LY, MacNeil DD, Dahn JR (2000) In situ X-ray study of the electro-

chemical reaction of Li with Z-Cu6Sn5. J Electrochem Soc 147:1658–1662

6. Fransson L, Nordstrom E, Edstrom K, Haggstrom L, Vaughey JT, Thackeray MM (2002)

Structural transformations in Lithiated �-Cu6Sn5 electrodes probed by In situ M€ossbauer
spectroscopy and X-ray diffraction. J Electrochem Soc 149:A736–A742

7. Choi YM, Pyun SI, Moon SI, Hyung YE (1998) A study of the electrochemical lithium

intercalation behavior of porous LiNiO2 electrodes prepared by solid-state reaction and sol–gel

methods. J Power Sources 72:83–90

8. Weppner W, Huggins RA (1977) Determination of the kinetic parameters of mixed-

conducting electrodes and application to the system Li3Sb. J Electrochem Soc 124:1569–1578

9. Choi YM, Pyun SI, Bae JS, Moon SI (1995) Effects of lithium content on the electrochemical

lithium intercalation reaction into LiNiO2 and LiCoO2 electrodes. J Power Sources 56:25–30

10. Bae JS, Pyun SI (1995) Electrochemical lithium intercalation reaction of anodic vanadium

oxide film. J Alloys Comp 217:52–58

11. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Clarendon, Oxford

12. Crank J (1975) The mathematics of diffusion. Clarendon, Oxford

13. Wen CJ, Boukamp BA, Huggins RA, Weppner W (1979) Thermodynamic and mass transport

properties of “LiAl”. J Electrochem Soc 126:2258–2266

14. Shin HC, Pyun SI (1999) The kinetics of lithium transport through Li1-dCoO2 by theoretical

analysis of current transient. Electrochim Acta 45:489–501

15. Shin HC, Han JN, Pyun SI (1998) Fundamentals of current transient technique and their

applications to interfacial electrochemistry. J Corros Sci Soc Korea 27:232–245

30 2 Electrochemical Methods



16. Striebel KA, Deng CZ, Wen SJ, Cairns EJ (1996) Electrochemical behavior of LiMn2O4 and

LiCoO2 thin films produced with pulsed laser deposition. J Electrochem Soc 143:1821–1827

17. Uchida T, Morikawa Y, Ikuta H, Wakihara M, Suzuki K (1996) Chemical diffusion coefficient

of lithium in carbon fiber. J Electrochem Soc 143:2606–2610

18. Sato H, Takahashi D, Nishina T, Uchida I (1997) Electrochemical characterization of thin-film

LiCoO2 electrodes in propylene carbonate solutions. J Power Sources 68:540–544

19. Zhang D, Popov BN, White RE (2000) Modeling lithium intercalation of a single spinel

particle under potentiodynamic control. J Electrochem Soc 147:831–838

20. Choi YM, Pyun SI, Paulsen JM (1998) Lithium transport through porous Li1�dCoO2 electrode:

analysis of current transient. Electrochim Acta 44:623–632

21. Bae JS, Pyun SI (1996) Electrochemical lithium intercalation into and deintercalation from

vanadium oxide electrode by using potentiostatic current transient technique. Solid State

Ionics 90:251–260

22. Pyun SI, Choi YM (1997) Electrochemical lithium intercalation into and de-intercalation from

porous LiCoO2 electrode by using potentiostatic current transient technique. J Power Sources

68:524–529

23. Pyun SI, Ryu YG (1998) Lithium transport through graphite electrodes that contain two stage

phases. J Power Sources 70:34–39

24. Pyun SI, Yang TH (1998) Theoretical analysis of hydrogen transport through an electrode at

the coexistence of two hydrogen-poor and -rich phases based upon the concept of hydrogen

trapping. J Electroanal Chem 441:183–189

25. Kim DJ, Pyun SI (1998) Hydrogen transport through anodic WO3 films. Electrochim Acta

43:2341–2347

26. Isidorsson J, Strømme M, Gahlin R, Niklasson GA, Granqvist CG (1996) Ion transport in

porous Sn oxide films: cyclic voltammograms interpreted in terms of a fractal dimension. Solid

State Commun 99:109–111

27. Mattsson MS, Niklasson GA, Granqvist CG (1996) Fractal dimension of Li insertion

electrodes studied by diffusion-controlled voltammetry and impedance spectroscopy. Phys

Rev B 54:2968–2971

28. Shin HC, Pyun SI (1999) An investigation of the electrochemical intercalation of lithium into a

Li1�dCoO2 electrode based upon numerical analysis of potentiostatic current transients.

Electrochim Acta 44:2235–2244

29. Funabiki A, Inaba M, Abe T, Ogumi Z (1999) Nucleation and phase-boundary movement upon

stage transformation in lithium–graphite intercalation compounds. Electrochim Acta

45:865–871

30. Shin HC, Pyun SI, Kim SW, Lee MH (2001) Mechanisms of lithium transport through

transition metal oxides studied by analysis of current transients. Electrochim Acta 46:897–906

31. Shin HC, Pyun SI (2003) Modern aspects of electrochemistry no. 36. In: Vayenas CG, Conway

BE, White RE (eds) Chapter 5 Mechanisms of lithium transport through transition metal

oxides and carbonaceous materials. Kluwer/Plenum, New York

32. Shin HC, Liu M, Sadanadan B, Rao AM (2002) Electrochemical insertion of lithium into

multi-walled carbon nanotubes prepared by catalytic decomposition. J Power Sources

112:216–221

33. Bard AJ, Faulkner L (1980) Electrochemical methods. Wiley, New York

34. Aoki K, Tokuda K, Matsuda H (1983) Theory of linear sweep voltammetry with finite

diffusion space. J Electroanal Chem 146:417–424

35. Ho C, Raistrick ID, Huggins RA (1980) Application of A-C techniques to the study of lithium

diffusion in tungsten trioxide thin films. J Electrochem Soc 127:343–350

36. Cho HM, Choi WS, Go JY, Bae SE, Shin HC (2012) A study on time-dependent low

temperature power performance of a lithium-ion battery. J Power Sources 198:273–280

37. Choi YM, Pyun SI (1997) Effects of intercalation-induced stress on lithium transport through

porous LiCoO2 electrode. Solid State Ionics 99:173–183

References 31



38. Aurbach D, Levi MD, Levi E, Teller H, Markovsky B, Salitra G, Heider U, Heider L (1998)

Common electroanalytical behavior of Li intercalation processes into graphite and transition

metal oxides. J Electrochem Soc 145:3024–3034

39. Macdonald JR, Garber JA (1977) Analysis of impedance and admittance data for solids and

liquids. J Electrochem Soc 124:1022–1030

40. Macdonald JR (1987) Impedance spectroscopy. Wiley, New York

41. Bae JS, Pyun SI (1994) An a.c. impedance study of LiI-Al2O3 composite solid electrolyte.

J Mater Sci Lett 13:573–576

32 2 Electrochemical Methods



Chapter 3

Hydrogen Absorption into and Subsequent

Diffusion Through Hydride-Forming Metals

3.1 Introduction

In most theoretical and experimental investigations, it has been assumed that the

rate-determining step (RDS) of hydrogen insertion (intercalation, ingress, cathodic

charging/injection/introduction) into and desertion (deintercalation, egress, anodic

extraction) from hydride-forming electrodes is hydrogen diffusion through the

electrode. In practice, however, the rate of hydrogen insertion into and desertion

from the electrode is simultaneously determined by the rates of two or more reaction

steps, such as hydrogen ion transport through the electrolyte by diffusion and

migration (ohmic potential drop), interfacial charge (electron) transfer (cathodic

discharge of hydrogen ions), interfacial hydrogen transfer, and subsequent hydrogen

diffusion through the electrode [1]. The RDS of the series-connected overall hydro-
gen insertion reaction is defined as the most strongly impeded/disturbed “slowest”

step deviating far from its thermodynamic equilibrium state that represents the

highest hydrogen overpotential and/or impedance pertaining to the step. In this

respect, the mechanism of hydrogen insertion into and from a hydride-forming

electrode has been extensively studied.

A detailed knowledge of the hydrogen insertion and desertion reactions has been

acquired using various electrochemical techniques such as cyclic voltammetry

[2–5], ac-impedance spectroscopy [6–17], the galvanostatic potential transient

technique (chronopotentiometry) [18, 19], and potentiostatic current transient tech-

nique (chronoamperometry) [20–26]. Among these, ac-impedance spectroscopy

has been widely used to identify the various reaction steps and to determine the

rate-determining step, since it is an exceptionally powerful tool for separating the

dynamics of several electrode processes with different relaxation times [27, 28].

In parallel with hydrogen insertion into hydride-forming electrodes, hydrogen

absorption into and diffusion through metals has been widely studied in electro-

chemical permeation double cells with a metallic planar electrode [29–32] which

S.-I. Pyun et al., Electrochemistry of Insertion Materials for Hydrogen and Lithium,
Monographs in Electrochemistry, DOI 10.1007/978-3-642-29464-8_3,
# Springer-Verlag Berlin Heidelberg 2012
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were first introduced by Devanathan and Starchurski [33]. The theoretical

formulations for the potentiostatic or galvanostatic transient method [32–36],

the steady-state stepwise method [37], and the steady-state galvanostatic pulse

method [38] usually consider a constant concentration of absorbed hydrogen on

(potentiostatic boundary condition) or constant flux (galvanostatic boundary condi-

tion) into the metal surface.

Furthermore, theoretical studies and experimental evidence of the hydrogen

absorption reaction (HAR) using electrochemical impedance spectroscopy (EIS)
have been presented for metal electrodes with symmetric (freestanding membrane

electrode) and asymmetric (modified electrode) geometries by Pyun and coworkers

[6, 7, 9–11, 39, 40]. The former and latter electrodes satisfy the permeable (trans-

missive) boundary (PB) and impermeable (reflective) boundary (IPB) conditions
[41], respectively. The authors of this monograph extended the kinetic approach to

the HAR into the metal which was first derived by Harrington and Conway [42].

These models consider both the hydrogen absorption into and subsequent diffusion

through the metal membrane, which were disregarded in the model of Harrington

and Conway [42]. Two models for the HAR, namely, the indirect HAR and direct

HAR, were derived depending upon the presence or absence of an intermediate state

of adsorbed hydrogen on entry. They showed that the hydrogen absorption mode

into Pd is actually changed from the indirect HAR to direct HAR, based upon the

derived models.

In order to find solutions to the problem of the Faradaic admittance which satisfy

the two PB and IPB conditions established by experiment, let us first consider the

“transmission line (TL) model.” Before dealing in detail with the main topic of

hydrogen insertion into the electrode, we should first discuss the TLmodel which is

readily able to physically and mathematically express the two boundary conditions.

The TLmodel is conveniently used as a powerful tool to generate these PB and IPB
conditions in a quite arbitrary way, depending upon whether the final circuit

element of the original TL network is replaced by pure resistance or pure capaci-

tance, respectively. Therefore, the feature of the TL model is that it has versatile

uses for adequately developing the PB and IPB conditions. Furthermore, the TL
model can be modified and extended by replacing the capacitive element of the

original TL network with an appropriate combination of resistance and capacitance/

constant phase element (CPE) or by taking quite different absolute values among

themselves for the respective resistive and capacitive elements of the TL network.

This chapter covers hydrogen insertion into metals during electrochemical hydro-

gen charging and extraction, with particular attention to palladium as amodel system.

Following the discussion about the TL models under the PB and IPB conditions, the

Faradaic admittance involving hydrogen absorption into and diffusion through

the metal in the low hydrogen concentration range is theoretically derived under

the PB and IPB boundary conditions that are experimentally accessible. All of the

circuit parameters constituting the Faradaic admittance/impedance are quantitatively

expressed in terms of the kinetic rate coefficients and constants. The kinetic

parameters of hydrogen absorption coupled with its subsequent diffusion are deter-

mined and discussed.
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3.2 Transmission Line Model Describing Overall Hydrogen

Insertion

The conventional diffusion process in the electrode can be approximated by a

transmission line (TL) network with the circuit parameters distributed throughout

the line [27, 28, 43–52], since the basic differential equation involved in the TL
network has formal mathematical similarity to the equation for a diffusion process

[50]. From this point of view, the diffusion of hydrogen through hydride-forming

electrodes can be conveniently described by a TL that has a network of distributed

resistive and capacitive elements.

In general, TL networks are classified into two types depending on the boundary

conditions. Figure 3.1a–c show the equivalent circuits of the TL networks which

represent the diffusion process in the electrode under the permeable (transmissive)

boundary (PB) condition, “one” impermeable (reflective) boundary(IPB) condition,
and “another” impermeable (reflective) boundary(IPB) condition, respectively.

In the TL model, as the diffusing atoms move in the forward direction toward the

PB and IPB, they spatially and temporally sense (feel, see, or experience, if you

prefer) their own instantaneous resistance to the movement as Rd in the forward

direction and simultaneously experience (feel, see, or sense, if you prefer) their own

instantaneous accumulation as Cd, downward perpendicular to the forward direc-

tion. In this way, a “right-angle-shaped” RdCd series connection element is

achieved.

Here, Rd [O cm�1] designates the diffusion resistance per unit length, Cd

[F cm�1] the chemical capacitance for diffusion per unit length, and x is the

distance from the electrode/electrolyte interface toward the PB and IPB. The finite
diffusion processes are regarded as a TL network constituted of finite numbers of

combined “right-angle-shaped” RdCd elements achieved by successively welding

the middle of one RdCd element and the beginning of the next RdCd element to each

other, and so on, as illustrated in Fig. 3.1a, b. The beginning boundaries of the

equivalent circuit bar (x ¼ 0) serve as the electrolyte/electrode interfaces, as well

for the PB and IPB conditions. In the case of hydrogen insertion, the electrolyte/

electrode interface with x ¼ 0 is subjected to an applied cathodic potential acting

on the hydrogen entrance (insertion) side.

The only difference between the PB and IPB conditions is the capacitive element

at the end of the equivalent circuit bar (x ¼ L), which is replaced with the interfacial
resistance Rint exposed to the electrolyte for thePB condition and with the interfacial

capacitance Cint adjacent to the electrode interior for the IPB condition. Figure 3.1c

shows that the alternative of the IPB can be generated by a mental experiment of

sandwiching the two IPBs x ¼ L and x ¼ �L of one and the same finite bar with

length L involving the IPB and simultaneously causing both ends of the equivalent

bar x ¼ 0 to be exposed to one and the same electrolyte as well [41]. In the case of

hydrogen insertion, the PB with x ¼ L is subjected to an applied anodic potential

serving as the hydrogen exit (desertion) side, while the two sandwiched IPBs with
x ¼ L and x ¼ �L as well as the IPBwith x ¼ L represent simply the interior of the
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electrode which is impermeable to the diffusing hydrogen atoms. Hence, a zero

concentration of the diffusing species at the PB
�ðcÞx¼L ¼ 0

�
is indicative of the PB,

whereas a zero concentration gradient at the IPB
�

@c
@x

� �
x¼�L ¼ 0

�
is characteristic of

the IPB, where c[mol cm�3] means the concentration of the diffusing species in the

electrode.

Fig. 3.1 Equivalent circuits of transmission line networks representing the diffusion process in

the electrode under (a) permeable (transmissive) boundary (PB) condition, (b) “one” impermeable

(reflective) boundary (IPB) condition and (c) “another” impermeable(reflective) boundary (IPB)
condition
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It is interesting to note that, on the one hand, both the first electrolyte/electrode

interface with x ¼ 0 and the opposite interface also with x ¼ 0 involving the

alternative IPB condition (Fig. 3.1c) need to be subjected to an applied cathodic

potential acting as the hydrogen entrance (insertion) sides for the study of hydrogen

insertion. On the other hand, both of these interfaces should be exposed to applied

anodic potentials acting as the hydrogen exit (desertion) sides for the study of

hydrogen desertion. This latter geometry is analogous to the case of the counter-

diffusion [53] of tracer atoms and normal isotopic atoms involving a plane source

such as a very thin disk film with a surface concentration of N0 [mol cm�2] located
at the origin, x ¼ 0, and satisfying the condition (constraint)N0 ¼ R1

�1 cdx and the

Fick’s second law from x ¼ 0 in one and opposite directions x > 0 and x < 0

toward infinity1 and�1. Such an infinite diffusion bar can easily be achieved by

a mental experiment of intimately sandwiching the two semi-finite bars with x ¼ 0

to1 and x ¼ 0 to �1 together at the origin x ¼ 0. Here x ¼ 0 (reflection at the

origin) of the semi-infinite bar exactly corresponds to the x ¼ L(IPB) and x ¼ +L;
�L(IPB) in Fig. 3.1b, and Fig. 3.1c respectively.

Such a circuit configuration of the TL with PB can be adequately approximated

by the almost symmetric interfaces of x ¼ 0 (hydrogen entrance side) and x ¼ L
(hydrogen exit side), both of which are exposed to the electrolyte. The equality of

Rd ¼ Rint being the sum of the charge-transfer resistance and electrolyte resistance

is characteristic of a symmetric electrode. By contrast, such a circuit configuration

of the TL with IPB can be adequately approximated by the asymmetric interfaces of

x ¼ 0 (hydrogen entrance side) and x ¼ L (IPB impermeable to hydrogen atoms).

First, we will present the mathematical expressions for the transmission equiva-

lent circuits describing hydrogen diffusion and/or transport through a homogeneous

thin film electrode with thickness L. Using the Kirchhoff’s voltage law for the

circuits in Fig. 3.1a, b, the voltage and current are given as follows [46, 52]:

I ¼ �
@E

@x

� �

Rd

(3.1)

@E

@t

� �
¼ �

@I

@x

� �

Cd

(3.2)

where E [V] is the electrode potential, I [A] the current, and t [s] is the diffusion

time.

Combining Eqs. 3.1 and 3.2, we obtain:

@E

@t

� �
¼

@2E

@x2

� �

RdCd

(3.3)

When Cint and Rint are the same as Cd and Rd, respectively, the total finite diffusion

impedance afforded by the Warburg circuit element Zd [O ] can be written in terms
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of Rd [O cm�1] and Cd [F cm�1] by solving Eq. 3.3, depending upon the boundary

conditions [52, 54] as follows:under the PB condition,

Zd oð Þ ¼ Rd

tanh L joRdCdð Þ1=2
h i

joRdCdð Þ1=2
(3.4)

under the IPB condition [27, 28, 50],

Zd oð Þ ¼ Rd

coth L joRdCdð Þ1=2
h i

joRdCdð Þ1=2
¼ RdL

coth jo=ocð Þ1=2
jo=ocð Þ1=2

with

oc ¼ 1

RdCdL2
¼

~D

L2
(3.5)

where L [cm] is the thickness (diffusion layer thickness) of the whole electrode,

j [�] the unit of the complex number, that is,
ffiffiffiffiffiffiffi�1p

,
ffiffi
j
p ¼ 1ffiffi

2
p 1þ jð Þ, o [Hz] the

angular frequency, and oc [Hz] is the characteristic angular frequency of the

transition from a straight line inclined at 45o to the real axis (Warburg line) in the

high-frequency range o>>oc ¼
~D

L2
to a capacitive line vertical to the real axis in

the low-frequency range o<<oc ¼
~D

L2
on the Nyquist plot. oc is conceptually

equivalent to the reciprocal of the transition time ttr in the potentiostatic current

transient. It is noted that the solution for the diffusion impedance satisfying the two

sandwiched IPBs with x ¼ L and x ¼ �L is the same as that given in Eq. 3.5.

Considering the appropriate driving forces and fluxes in the TL model and the

diffusion reaction, the electric potential difference
@E

@x

� �
in the TL networks is

basically analogous to the electrochemical potential difference in the case of one-

dimensional diffusion, as follows:

@E

@x

� �
¼ RT

zF

1

c

@c

@x

� �
(3.6)

where R is the gas constant, T the absolute temperature, z[�] the charge(oxidation

number) of the diffusing species, for instance hydrogen atoms, F the Faraday constant

(96,485[C mol�1]), and c[mol cm�3] is the concentration of the diffusant in the

electrode.

From Eq. 3.6, it is expected that Eqs. 3.4 and 3.5 derived from the circuit

analysis of the TL model is analogous with the analytical solutions to the linear

diffusion through the homogeneous thin film electrode. In fact, this can be verified

by the following analytical approaches based upon the Fick’s diffusion equation.
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The diffusion/transport behavior of hydrogen atoms/hydrogen ions in the electrode

can be described by the Fick’s diffusion equation [55–58]:

@c

@t

� �
¼ ~D

@2c

@x2

� �
(3.7)

Here, ~D[cm2 s�1] represents the chemical diffusivity [41] of any neutral diffusant,

for instance hydrogen atoms.

By using the Laplace transform method, Eq. 3.7 can be solved under the

oscillating concentration (or potential) perturbation at the electrode/electrolyte

interface, depending on the boundary conditions, as follows:

underPB condition; Zd oð Þ ¼ RT

z2F2Aeac ~D

tanh jo L2= ~D
� �1=2
jo= ~D
� �1=2 (3.8)

under IPB condition; Zd oð Þ ¼ RT

z2F2Aeac ~D

coth jo L2= ~D
� �1=2
jo= ~D
� �1=2 (3.9)

Here, Aea [cm
2] is the electrochemical active area. It is noticeable that the resulting

Eqs. 3.8 and 3.9 determined from the diffusion equation are exactly the same

functions as Eqs. 3.4 and 3.5 derived from the numerical approach based upon

the TL networks, respectively.

There are extremely two limiting cases for a semi-infinite Warburg element

under the PB condition as follows:

Zd oð Þ ¼ sWð1� jÞffiffiffiffi
o
p with sW ¼ RT

z2F2Aeac
ffiffiffiffiffiffi
2 ~D
p for o>>oc ¼

~D

L2

Zre
d o ¼ 0ð Þ ¼ LsW

ffiffiffiffi
2

~D

r
(real impedance) and Zimg

d o ¼ 0ð Þ ¼ 0 (imaginary

impedance) o<<oc ¼
~D

L2
Symmetrically, there are also the following two extremely limiting cases for a

semi-infinite Warburg element under the IPB condition:

Zd oð Þ ¼ sWð1� jÞffiffiffiffi
o
p with sW ¼ RT

z2F2Aeac
ffiffiffiffiffiffi
2 ~D
p for o>>oc ¼

~D

L2

which is common in the high-frequency range with PB condition.

Zre
d o ¼ 0ð Þ ¼ 1

3
LsW

ffiffiffiffi
2

~D

r
(real impedance) and Zimg

d o ¼ 0ð Þ ¼ �1 (imaginary

impedance) o<<oc ¼
~D

L2
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Here, sW ¼ RT

z2F2Aeac
ffiffiffiffiffiffi
2 ~D
p is termed the Warburg coefficient with dimensions of

O s�1=2
	 


According to Eqs. 3.4, 3.5, 3.8, and 3.9, Rd and Cd can be derived as follows

[27, 28, 46, 49, 52]:

Rd ¼ 1

zFAea
~D

dE

dc

� �
(3.10)

Cd ¼ zFAea

dc

dE

� �
(3.11)

The application of the TL model to hydrogen diffusion in the hydrogen insertion

electrode provides us with Rd in [O cm�1] and Cd in [F cm�1] which designate the

resistance associated with hydrogen diffusion through the normal lattice sites and

the intercalation capacitance for normal lattice sites, respectively. Both are taken

per unit length. Thus, the reciprocal of the product of Rd and Cd yields the chemical

diffusivity ~D [41] which is by definition identical to the component diffusivity and

Fickian diffusivity for ideal behavior.

The ac-impedance spectrum for diffusion under the transmissive PB conditions

was simulated based upon Eq. 3.4, by assuming that L ¼ 1 cm, Rd ¼ 1 O cm�1,
and Cd ¼ 0.01 F cm�1 which is given in Fig. 3.2. The high-frequency impedance

follows the semi-infinite Warburg line for o >
10 ~D

L2
and the zero-frequency

impedance approaches the real impedance value of Zre
d o ¼ 0ð Þ ¼ LsW

ffiffiffiffi
2

~D

r
and

the imaginary impedance value of Zimg
d o ¼ 0ð Þ ¼ 0. A characteristic difference in

the low-frequency impedance was found in Fig. 3.2: The ac-impedance spectrum

exhibits the ideal Warburg behavior with an inclined phase angle of 45� at high
frequencies which is the same as that of the IPB condition, but a simple arc at low

frequencies which is different from the IPB condition. The transition frequency oc

appears less markedly in the transmissive PB condition than that in the reflective

IPB condition (cf. Fig. 3.3).
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Fig. 3.2 Nyquist plot of the

ac-impedance spectrum

theoretically calculated for

diffusion in the planar

electrode in the permeable

(transmissive) boundary (PB)
condition from Eq. 3.4
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Obviously, this discrepancy in the low-frequency impedance between the PB
and IPB conditions results from the different end elements of the equivalent circuit

bar, either resistance or capacitance. Thus, it is recognized that the impedance

behavior at low frequencies is highly dependent upon whether the mobile atoms

(hydrogen) either pass through the electrolyte/electrode interface which is perme-

able to them or are accumulated at the IPB which is impermeable to them.

The TL model under the PB condition can be used to describe the Faradaic

impedance (or admittance), which does not involve only the diffusion process, but

also the subsequent interfacial reaction at the electrolyte/electrode interface that is

permeable to the diffusing species. In other words, since the TLmodel under the PB
condition includes the interfacial resistance, Rint, distributed at the end element of

the equivalent circuit bar, the interfacial charge-transfer reaction mixed with

subsequent diffusion can be effectively expressed in terms of this model.

Consequently, it can be reasonably stated that the TL model under the PB
condition represents the Faradaic impedance/admittance rather than the non-

Faradaic impedance, when Rint is regarded as the charge-transfer resistance, Rct.

In addition, the TL model can be modified by substituting the appropriate combina-

tion of resistance and/or capacitance elements for the capacitive element of the

equivalent circuit bar, in order to describe the overall Faradaic impedances which

are associated with hydrogen absorption, including adsorption and desorption, and

even evolution coupled with subsequent diffusion. In this sense, the total Faradaic

impedance does not represent the pure interfacial charge-transfer resistance, Rint.

Figure 3.3 illustrates the Nyquist plot of the ac-impedance spectrum under the

reflective IPB condition theoretically calculated using Eq. 3.5, by assuming that

L ¼ 1 cm, Rd ¼ 1 O cm�1, and Cd ¼ 0.01 F cm�1. The ac-impedance spectrum

given in Fig. 3.3 shows two characteristic features depending on the frequency

range, that is, a straight Warburg line inclined at 45� to the real impedance axis in

the high-frequency range above the characteristic (transition) frequency oc and a

straight capacitive line with a phase angle of 90� (perpendicular) to the real axis in
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Fig. 3.3 Nyquist plot of the

ac-impedance spectrum

theoretically determined for

diffusion in the planar

electrode in the impermeable

(reflective) boundary (IPB)
condition from Eq. 3.5
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the low-frequency range below oc. The transition appears more sharply in the

reflective IPB condition than that in the transmissive PB condition (cf. Fig. 3.2).

In contrast to the PB condition, however, the IPB condition demonstrates that the

TL model can effectively describe the non-Faradaic impedance for the diffusion

process which is regarded as consisting of the ladder network of a finite connection

of Rd and Cd in series. Alternatively we can conceive of the diffusion process as if

the diffusing medium is composed of a finite sandwich of many millions layers,

each with a slightly different concentration of the diffusing species. Each of these

layers resembles just an RdCd couple in parallel (see Chap. 1). Here Rd means

instantaneous resistance to the movement of atoms per unit length through the

electrode as a function of the position of the electrode and Cd implies instantaneous

accumulation of atoms per unit length of the electrode as a function of the position

of the electrode.

In fact, the TL model under the IPB condition is known to be the representative

model explaining how the non-Faradaic impedance arises from the processes of

hydrogen diffusion in the electrode. Nevertheless, in the special case where Rd is

located at the electrolyte/electrode interface for the IPB condition and it is also

regarded as the interfacial resistance Rint that is much greater than any other of the

Rd s, the Faradaic admittances derived from both conditions are identical to each

other, as can be seen from the conception of the hydrogen overpotential (see

Sect. 3.3). Chapter 4 discusses the topic of the IPB condition in more detail.

Furthermore, the impedance analysis can also be readily extended to hydrogen

diffusion which involves hydrogen trapping [27, 28] by modifying the diffusion

capacitance in the TL network under the IPB condition. In the presence of reversible

trap sites of one type, the original frequency-invariant diffusion capacitance Cd in

Eq. 3.5 should be replaced by the complex capacitance,C�ðoÞ, which is the sumof the

frequency-independent capacitance for the normal lattice sites Cd and the frequency-

dependent capacitance for the reversible trap sites C�t ðoÞ . Finally, we obtain the

diffusion impedance formula Zd which is the same as Eq. 3.5.

Thus, the impedance formula obtained for hydrogen diffusion with accom-

panying reversible trapping permits us to construct the equivalent circuit of a TL
network which includes an additional series of resistive (Rt in [O cm�1]) and

capacitive (Ct in [F cm�1]) elements related to reversible trapping. As a result, it

is concluded that ac-impedance spectroscopy employing a TL network offers an

exceptionally powerful tool for analyzing anomalous hydrogen diffusion through a

hydride-forming electrode and also for separating the dynamics of two processes

with different relaxation times. Especially, it is of special interest to study anoma-

lous hydrogen diffusion with accompanying trapping in the frequency domain,

which Chap. 5 will discuss in more detail.

3.3 Faradaic Admittance Involving Hydrogen Absorption

Reaction (HAR) into and Subsequent Diffusion Through

Hydride-Forming Metals

From the late 1990s to the early 2000s, Pyun and coworkers [6, 7, 9–11, 39, 40]

performed theoretical studies on the hydrogen absorption reaction (HAR) using

electrochemical impedance spectroscopy (EIS) for planar metal electrodes with
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symmetric and asymmetric geometries. With a small-amplitude signal, the electro-

chemical behavior is nearly linear, so electrode impedance measurements should

provide correct values of the kinetic parameters for hydrogen insertion into the metal

membrane at all hydrogen overpotentials. In fact, their models consider the complete

sequence of water reduction, hydrogen adsorption, recombination, absorption, and

diffusion through the planar metal electrode. Here, the models will be introduced

along with the physical significance of the determined kinetic parameters.

The hydrogen evolution reaction (HER) on a planar Pd electrode in alkaline

solution is known to involve two successive steps [59–61]. The first step of theHER
is the Volmer adsorption reaction of water electrolysis and the second step is the

Tafel chemical desorption of the two adsorbed hydrogen atoms from the metal

surface.

Hydride-forming materials, such as Pd, LaNi5, and TiFe, can absorb a large

amount of hydrogen, and the HAR provides an alternative reaction path which is

parallel to the Tafel chemical or Heyrovsky electrochemical desorption of hydrogen

atoms. The electrolytic hydrogen passes through the adsorbed state into the metal

foil electrode. The adsorbed state is assumed to be identical to that which leads to

the HER and HAR. The reaction sequence at the cathodic surface in alkaline

solution is as follows:

ð3:12Þ

where MHad is the adsorbed hydrogen on the surface, MHab the absorbed

hydrogen just beneath the metal electrode subsurface, n1 the rate of the Volmer

adsorption, n2 the rate of the Tafel desorption, n3 the rate of theHAR, nHey the rate of
the Heyrovsky electrochemical desorption, and Jss [mol cm�2 s�1] is the steady-

state flux of hydrogen in the metal. ni has in general dimensions of [mol cm�2 s�1].
The Heyrovsky electrochemical reaction was not considered in this work, since the

HER on Pd was reported [30, 62, 63] to follow the fast-discharge and slow-Tafel

desorption (recombination) mechanism.

The boundary conditions (BCs) for hydrogen insertion into the metal can be

divided into two categories, namely, the transmissive PB and reflective IPB
conditions. In the former condition, hydrogen enters into the entry side of the

planar metal electrode exposed to an applied cathodic potential, diffuses through

the electrode, and finally escapes into the electrolyte from the exit side of the

electrode exposed to an applied anodic potential, as shown in Fig. 3.4. The PB
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condition is characterized by such typical quantities as tss (time for the diffusant to

attain the steady-state concentration gradient across the planar film electrode) and

constant (potentiostatic) values of the entry hydrogen concentration cs (applied

cathodic potential) at x ¼ 0 and exit hydrogen concentration c (applied anodic

potential) ¼ 0 at x ¼ L. This condition has been widely used in electrochemical

hydrogen permeation studies [29–32] to determine the hydrogen diffusion coefficient

in the metal, since Devanathan and Starchurski [33] first introduced this method.

The latter condition can be easily achieved by merely immersing the electrode in

the electrolyte, as presented in Fig. 3.5, which is the same as that illustrated in

Fig. 3.1c. The IPB conditions are experimentally realized for a zero hydrogen

concentration gradient at the center of a thin Pd foil electrode and the same constant

hydrogen concentration on both electrode surfaces, when hydrogen enters into both

sides of the immersed foil electrode. The center of the electrode acts as a blocking
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Fig. 3.4 Schematic diagram of hydrogen evolution reaction (HER) on/from and hydrogen

absorption reaction (HAR) into planar metal membrane electrode subjected to the two possible

transmissive permeable boundary (PB) conditions with and without adsorbed intermediate state of

hydrogen on the metal surface [6] (Reprinted from Lim and Pyun [6], Copyright #1993 with

permission from Elsevier Science)
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plane against the diffusion of hydrogen. The IPB condition is characterized by such

typical quantities as t1 (time for equilibrium of the diffusant concentration to be

established across the planar film electrode), tITB (time for equilibrium of the

diffusant to first reach the opposite IPB at x ¼ �L) and such conditions as IPB at

x ¼ �L (
@c

@x

� �
x¼�L

¼ 0). The IPB conditions have several advantages over the PB

conditions in that the former can be applied to various systems comprising oxides

and other compounds and that the obtained currents or potentials are close to the

equilibrium values. Also, from a practical viewpoint, the electrode geometry

satisfying the IPB conditions is in general used in electrochromic devices and

batteries such as lithium ion and Ni/metal hydride secondary batteries [55, 64].

The Faradaic admittance based upon the above reaction scheme in Eq. 3.12 was

first derived by Harrington and Conway [42] using an extension of Armstrong’s

kinetic approach to the Faradaic admittance associated with a two-step reaction

[65], under the important assumption that the diffusion of the participating species

within the electrolytic solution is not rate determining. However, they [42]

disregarded the HAR step involved in the HER in determining the Faradaic admit-

tance. Metals can in general absorb hydrogen to a greater or lesser extent, and the

HAR provides an alternative reaction path which is in parallel to the chemical or

electrochemical desorption(recombination) of hydrogen atoms. Two models have

been suggested [59, 66, 67] to describe the HAR into the metal. One involves the

concept that hydrogen, on discharging on the metal, passes through an adsorbed

Fig. 3.5 Schematic diagram of hydrogen evolution reaction (HER) on/from and hydrogen

absorption reaction (HAR) into planar metal membrane electrode subjected to reflective imperme-

able boundary (IPB) condition [10] (Reprinted from Yang and Pyun [10], Copyright #1996 with

permission from Elsevier Science)
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state prior to entering into the metal (the indirectHAR “model A”) [59]. The other is

that hydrogen enters into the metal without passing through the adsorbed state in the

same elementary act as that in which it is discharged (the direct HAR “model B”)

[66, 67]. The absorbed hydrogen diffuses toward the interior of the metal. There-

fore, in deriving the Faradaic admittance involving the HAR, the absorption and

diffusion steps should be taken into account in addition to the HER.
In this connection, the Faradaic admittance/impedance can also be understood as

deduced from the general formulation of the diffusion impedance numerically

simulated based upon the modified TL networks by substituting an appropriate

specific equivalent circuit for the original TL networks, as discussed in Sect. 3.2.

3.3.1 Transmissive Permeable (PB) Boundary Condition

In this chapter, the Faradaic admittance involving the HAR into a hydride-forming

electrode is theoretically derived on the basis of the two HAR models mentioned

above under the PB condition which is experimentally accessible using the

Armstrong’s kinetic approach [65].

To explicitly express the Warburg impedance in terms of the ac diffusion of

hydrogen, let us first determine the oscillating flux of hydrogen at the entry side of

the metal membrane. Under small-signal ac conditions, the system variables may be

separated into steady-state and time-dependent terms.

c ¼ css þ ~c expðjotÞ (3.13)

and

J ¼ Jss þ ~J expðjotÞ (3.14)

where css[mol cm�3] is the steady-state concentration of hydrogen in the metal, ~c
the perturbation (oscillation) in the concentration of hydrogen in the metal due to

sinusoidal oscillations, Jss [mol cm�2 s�1] the steady-state flux of hydrogen in the

metal, and ~J is the perturbation (oscillation) in the flux of hydrogen in the metal due

to sinusoidal oscillations.

Inserting Eqs. 3.13 and 3.14 into the equations of the Fick’s first law of diffusion

and equating the time-dependent terms with each other, one obtains

~J ¼ �DH

@~c

@x

� �
(3.15)

where DH means the Fickian diffusivity of hydrogen in the metal and x is the

distance from the hydrogen entry surface of the metal to an arbitrary position in

metal. The Fick’s second law can then be written in small-signal form.
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jo~c ¼ �DH

@2~c

@x2

� �
(3.16)

where j is a complex number and o the angular frequency.

The general solution of Eq. 3.16 is given by Franceschetti [68] as

~c ¼ A sinh

ffiffiffiffiffiffiffi
jo
DH

r
x

� �
þ B cosh

ffiffiffiffiffiffiffi
jo
DH

r
x

� �
; (3.17)

where A and B are constants which must be suitably selected to satisfy the BCs. The
transmissive permeable BC for the HER and HAR is schematically shown in

Fig. 3.4. The initial (IC) and boundary (BC) permeable (PB) conditions are as

follows:

t ¼ 0 ICð Þ: 0b x bL finite diffusion barð Þ c ¼ 0 (3.18)

t > 0 BCð Þ: x ¼ 0 c ¼ csss þ ~cs exp jo tð Þ potentiostatic perturbationð Þ
x ¼ L c ¼ 0; ð3:19Þ

where csss is the steady-state concentration of hydrogen at the entry side, ~cs the

perturbation in the concentration of hydrogen at the entry side of the planar metal

electrode, and L is the thickness of the planar metal electrode. tss in Fig. 3.4 means

the time needed to establish the steady-state concentration gradient across the

planar electrode, which is called the “time-lag.” The presence of tss is characteristic
of the PB condition, while the existence of tIPB and t1 in Fig. 3.5 is typical of the

IPB condition.

From the BC Eq. 3.19, apart from the perturbation, the Fick’s first law also gives

css ¼ csss 1� x

L

� �
(3.20)

where css is the steady-state concentration of hydrogen at arbitrary x.
From Eq. 3.17 with the BC Eq. 3.19, the perturbation in the concentration of

hydrogen within the planar electrode, ~c, is given by

~c ¼ ~cs cosh

ffiffiffiffiffiffiffiffi
jo
DH

r
L

� �
� coth

ffiffiffiffiffiffiffiffi
jo
DH

r
L

� �
sinh

ffiffiffiffiffiffiffiffi
jo
DH

r
x

� �� �
(3.21)

Thus, the oscillating flux of hydrogen at the entry side of the electrode, Jx¼0, gives
as per the Fick’s first law

Jx¼0 ¼ �DH

@~c

@x

� �
x¼0
¼ DH

L
csss þ

ffiffiffiffiffiffiffiffiffiffiffi
joDH

p
coth

ffiffiffiffiffiffiffiffi
jo
DH

r
L

� �
~cs exp jo tð Þ (3.22)
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Based upon the indirect HAR model “A” and direct HAR model “B,” the

Faradaic admittances involving the HAR into the planar Pd electrode were theoreti-

cally derived [6, 7] in the permeable BC, where the activity of hydrogen at the exit

side of the electrode is almost zero, by using Armstrong’s kinetic approach [65] in

conjunction with Eq. 3.22 which describes the hydrogen diffusion through the

electrode. In the derivation of the Faradaic admittance, the Heyrovsky electrochem-

ical desorption (recombination) is disregarded for the sake of mathematical sim-

plicity. The two HAR models are schematically demonstrated in Fig. 3.4 and will

be detailed below.

3.3.2 (i) Model A – Indirect (Two-Step) Hydrogen Absorption
Reaction (HAR) Through Adsorbed Phase (State) –
(a) Diffusion-Controlled HAR Limit and – (b) Interface-
Controlled HAR Limit

This model developed by Bockris et al. [59] considers the presence of the adsorbed

intermediate stage. After its entry, the electrolytic hydrogen passes through the

adsorbed state into the metal substrate. The adsorbed state commonly leads to both

the HER and HAR. At the cathodic surface in alkaline/acidic solutions, the first step
of the HER involves an electrochemical reduction of the water molecules, with the

formation of hydrogen adsorbed on the electrode surface (the Volmer adsorption,

Eq. 3.12a), followed by either the Tafel chemical desorption Eq. 3.12b or the

Heyrovsky electrochemical desorption Eq. 3.12c:

H2O + M + e ���! ���
k1

k�1
MHad þ OH� with rate v1ð Þ

in alkaline solution and

Hþ + M + e ���! ���
k1

k�1
MHad with rate v1ð Þ in acidic solution (3.12a)

2MHad ���! ���
k1

k�1
2M + H2 with rate v2ð Þ (3.12b)

MHad þ H2O + e ���! ���
vHey

M + H2 þ OH� with rate vHey
� �

in alkaline solution and

MHadþHþ+ e ���! ���
vHey

M+H2 with ratevHey
� �

in acidic solution (3.12c)

The fast discharge by the Volmer adsorption and the slow Tafel-recombination

mechanism proposed by many authors [30, 62, 63] dominate the HER on Pd.
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Therefore, the electrochemical Heyrovsky-desorption reaction Eq. 3.12c was not

considered in this chapter.

The adsorbed hydrogen can pass on into the absorbed state by jumping into the

interstitial sites beneath the first atomic layer [59]. From this absorbed state,

hydrogen diffuses toward the exit side of the Pd electrode.

MHad ���! ���
k3

k�3
MHab ðx ¼ 0Þwith rate v3 (3.12d)

MHab x ¼ 0ð Þ��������!JP
bulk diffusion

MHab ðx ¼ LÞwith rate JP (3.12e)

where MHab refers to the absorbed hydrogen just beneath the metal surface. k3 and
k�3 with units of [mol cm�2 s�1] and [cm s�1] are the rate constants of hydrogen

transfer from the surface (2-dimensional [2D] adsorbed state) to the bulk

(3-dimensional [3D] absorbed state) and from the bulk (absorbed state) to the

surface (adsorbed state), respectively, and Jp is the flux density of hydrogen

permeating out through the planar Pd electrode from the entry side. It is assumed

that for low hydrogen coverages and for low degrees of saturation of hydrogen at

the entry side of the membrane, the rate of the HAR [59–61] is given by

n3 ¼ k3 � y� k�3 � cs (3.23)

where y (¼G/Gmax) is the hydrogen coverage on the entry side of the electrode,

G the surface concentration [mol cm�2] of adsorbed hydrogen, Gmax the maximum

surface concentration [mol cm�2] of adsorbed hydrogen due to sinusoidal

oscillations, and cs is the concentration of hydrogen at x ¼ 0.

Considering that the diffusion of absorbed hydrogen through the planar electrode

under the permeable BC, as expressed by Eq. 3.19, is experimentally accessible, the

Faradaic admittance involving the HER and HAR can be derived in the following

way.

The charge and mass balances are given by the reaction scheme of Eq. 3.12

above

� iF
F
¼ n1 (3.24)

and

Gmax

dy
dt
¼ v1 � 2v2 � Jx¼0; (3.25)

respectively, where iF [A cm�2] is the Faradaic current density and F is the Faraday

constant. The negative sign appearing in Eq. 3.24 is due to the fact that the (�) sign
of the cathodic Faradaic current density iF is the opposite to that of the rate of the

Volmer adsorption reaction.
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The electrochemical response to the sinusoidal oscillation of the potential can be

expressed in terms of a Taylor series expansion. Neglecting the second- and higher

order terms of the series expansion, the sinusoidal response is given by

v1 ¼ vss1 þ
@v1
@E

� �
~E exp jotð Þ þ @v1

@y

� �
~y exp jotð Þ þ @v1

@cs

� �
~cs exp jotð Þ; (3.26)

v2 ¼ vss2 þ
@v2
@E

� �
~E exp jotð Þ þ @v2

@y

� �
~y exp jotð Þ þ @v2

@cs

� �
~cs exp jotð Þ; (3.27)

and

v3 ¼ vss3 þ
@v3
@E

� �
~E expðjotÞ þ @v3

@y

� �
~y expðjotÞ þ @v3

@cs

� �
~cs expðjotÞ (3.28)

where E is the electrode potential and ~E is the amplitude of the sinusoidal

oscillation of the electrode potential ( ~E exp jotð Þ).
From the characteristics of the Volmer adsorption reaction expressed by

Eq. 3.12a and the Tafel desorption reaction expressed by Eq. 3.12b [42], and the

HAR given by Eq. 3.23, it is apparent that

@v1
@cs

� �
¼ 0;

@v2
@E

� �
¼ 0;

@v2
@cs

� �
¼ 0; and

@v3
@E

� �
¼ 0; (3.29)

which are termed reaction constraints. Substituting Eqs. 3.22, 3.26, and 3.27 into

Eqs. 3.24 and 3.25 under the reaction constraints given by Eq. 3.29 and equating the

time-dependent terms with each other, one gets

�
~iF
F
¼ @v1

@E

� �
~Eþ @v1

@y

� �
~y; (3.30)

and

joGmax
~y ¼ @v1

@E

� �
~Eþ @v1

@y

� �
~y� 2

@v2
@y

� �
~y�

ffiffiffiffiffiffiffiffiffiffiffi
joDH

p
coth

ffiffiffiffiffiffiffi
jo
DH

r
L

� �
~cs;

(3.31)

respectively, where ~iF is the perturbation in the Faradaic current density due to the

sinusoidal oscillation and~y is the perturbation in the coverage of adsorbed hydrogen
due to the sinusoidal oscillation.

Considering the mass balance between the rate of the HAR into the metal given

by Eq. 3.23, the flux of hydrogen diffusing away from the entry surface through the
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planar metal electrode given by Eq. 3.22, and the sinusoidal response of n3 given by
Eq. 3.28 under the reaction constraints given by Eq. 3.29, one can obtain

csss
y
¼ k3

DH

L

� �
þ k�3

2
664

3
775 (3.32)

from the dc condition (steady-state term) and

~cs
~y
¼

@v3
@y

� �

� @v3
@cs

� �
þ ffiffiffiffiffiffiffiffiffiffiffi

joDH

p
coth

ffiffiffiffiffiffiffi
jo
DH

r
L

� �
2
6664

3
7775 (3.33)

from the ac condition (oscillating term). It should be noted that Eq. 3.32 coincides

well with the steady-state relation determined by Iyer et al. [61].

Substituting ~cs into Eq. 3.31 for ~cs in Eq. 3.33, one obtains

~y
~E
¼

@v1
@E

� �

joGmax � @v1
@y

� �
� 2

@v2
@y

� �� �
þ

@v3
@y

� �

1�
@v3
@cs

� �

ffiffiffiffiffiffiffiffiffiffiffi
joDH

p
coth

ffiffiffiffiffiffiffi
jo
DH

r
L

� �
2
6664

3
7775

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

(3.34)

Substituting ~y in Eq. 3.34 for ~y in Eq. 3.30, the Faradaic admittance YF is finally
determined as a rather awkward-looking expression
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YF ¼
~iF
~E
¼ �F @v1

@E

� �
�

1þ
1

Gmax

@v1
@y

� �

jo� 1

Gmax

@v1
@y

� �
� 2

@v2
@y

� �� �
þ

1

Gmax

@v3
@y

� �

1�
@v3
@cs

� �

ffiffiffiffiffiffiffiffiffiffiffi
joDH

p
coth

ffiffiffiffiffiffiffi
jo
DH

r
L

� �
2
6664

3
7775

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

;

(3.35)

which is expressed in terms of the kinetic rate coefficients and constants. One sets

Rct ¼� 1

F
@v1
@E

� � ; B¼� @v1
@G

� �
; C¼ 2

@v2
@G

� �
; k3 ¼ @v3

@y

� �
; and k�3 ¼� @v3

@cs

� �
:

It is clear from Eq. 3.35 that the parameters B and C have a simpler meaning than

the equivalent circuit elements, which are much more complex functions of the

kinetic parameters. Equation 3.35 expresses YF for the HAR of adsorbed hydrogen

and subsequent diffusion of absorbed hydrogen at the entry side of the electrode.

On the basis of the electrical equivalent circuit which is given in Fig. 3.6a,

Eq. 3.35 representing the Faradaic admittance can be converted into the following

impedance equation:

ZF ¼
~E
~iF
¼ Rct þ 1

joCad þ 1

Rev

� �
þ 1

Rab þ
s tanh

ffiffiffiffiffiffiffi
jo
DH

r
L

� �
ffiffiffiffiffiffiffiffiffiffiffi
joDH

p

2
664

3
775

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

; (3.36)
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where Cad ¼ 1

BRct

with a dimension [F cm�2�,

Rev ¼ BRct

C
with a dimension O cm2

	 

;

Rab ¼ BGmaxRct

k3
with a dimension O cm2

	 

;

s ¼ k�3
k3

GmaxBRct with a dimension ½O cm3s�1�. It is especially noted that the

Warburg coefficient sW ¼ sffiffiffiffiffiffiffiffiffi
2DH

p has a dimension ½O cm2s�1=2�. The equivalent

circuit given in Fig. 3.6a corresponds to Eq. 3.36. The relation between the

parameters B, C and equivalent circuit elements ideally needs discussion regard-

ing their possible signs and physical dimensions, but this is beyond the scope of

this chapter. All of the circuit elements such as Rct, Rab, and s constituting the

Fig. 3.6 (a) Equivalent circuit for hydrogen evolution reaction (HER) on/from and hydrogen

absorption reaction (HAR) into planar metal membrane electrode in transmissive permeable

boundary (PB) condition, described by the model considering adsorbed phase/state of hydrogen

[6, 7], and (b) equivalent circuit for hydrogen evolution reaction (HER) on/from and hydrogen

absorption reaction (HAR) into planar metal membrane electrode in reflective impermeable

boundary (IPB) condition. Rs ¼ Solution resistance; Cdl ¼ Double-layer capacitance; Rct ¼
Charge-transfer resistance; Cad ¼ Adsorption capacitance; Rev ¼ Evolution resistance; Rab ¼
Absorption resistance; ZW ¼ Warburg impedance; Cps ¼ Pseudocapacitance or Cch ¼ Chemical

capacitance (Reprinted from Lim and Pyun [6], Copyright #1993 and Lim and Pyun [7],

Copyright #1994, with permissions from Elsevier Science)
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Faradaic admittance/impedance are quantitatively expressed as above in terms of

the kinetic rate coefficients and constants. Moreover, the comparison of the

coefficients, Rab and s, appearing in Eq. 3.36 with the corresponding coefficients

in Eq. 3.35 permits us to estimate Rab and s that are coupled with each other by

means of Rct.

The Faradaic impedance in Eq. 3.36 is generally defined only for a linear, stable,

and causal system in another form of Ohm’s law. Conversely, this impedance cannot

be applied to describe the response of a system that does not conform to these

constraints. Ohm’s law is only effective under the constraint of electrochemical

energy due to an electrochemical potential difference zFEj j << thermal energy RTj j.
Furthermore, the ratio of the voltage vector (voltage oscillation, voltage in complex

number) to the current vector (current oscillation, current in complex number) is

generally referred to as a transfer function.

The physical significances of the parameters Cad and Rev have been discussed

elsewhere [42]. From Fig. 3.6, one readily notices that the absorption and

diffusion of hydrogen into and through the metal electrode provides another

relaxation path of adsorbed hydrogen, which is in parallel to the relaxation path

of adsorbed hydrogen through the Tafel chemical desorption (recombination).

This result exactly reflects the physical situation of this model. It should be noted

that the resistance Rab and the Warburg impedance coefficient sW are not

independent, but rather are closely coupled with each other. This strongly

indicates that hydrogen insertion into the planar Pd electrode proceeds by absorp-

tion into the electrode coupled with subsequent diffusion through the electrode.

One should consider the two limiting cases of Eq. 3.35, representing YF for the

HAR and subsequent diffusion at the entry side of the electrode, depending upon

the magnitude of the rate constant k�3 of hydrogen transfer from the absorbed to

adsorbed state and the height of the hydrogen diffusivity-related term as shown

below.

3.3.3 (i) – (a) Diffusion-Controlled HAR Limit

If � @v3
@cs

� �
¼ k�3>>

ffiffiffiffiffiffiffiffiffiffiffi
joDH

p
coth

ffiffiffiffiffiffiffi
jo
DH

r
L

� �
, Eq. 3.33 reduces to

~cs
~y
¼ �

@v3
@y

� �

@v3
@cs

� � ¼ k3
k�3

(3.37)

Substituting ~cs in Eq. 3.31 for ~cs in Eq. 3.37, one obtains
~y
~E
. Substituting the value

of ~y so obtained into Eq. 3.30, one readily finds the Faradaic admittance YF.
The Faradaic admittance in Eq. 3.35 then becomes further simplified as follows:
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YF ¼ 1

Rct

� 1� B

joþ Bþ Cþ 1

leq

ffiffiffiffiffiffiffiffiffiffiffi
joDH

p
coth

ffiffiffiffiffiffiffi
jo
DH

r
L

� �� �
8>>><
>>>:

9>>>=
>>>;
; (3.38)

where leq is the equilibrium length,
1

leq
¼ k3

Gmaxk�3
. Equation 3.38 expresses YF

for the diffusion-controlled indirect HAR.

If k�3 >>
DH

L
, Eq. 3.32 becomes

csss
y
¼ k3

k�3
(3.39)

Equation 3.39 suggests that the HAR given by Eq. 3.12d is in local equilib-

rium under the applied cathodic potential. The slowest step in hydrogen perme-

ation which includes absorption into and diffusion of hydrogen through the Pd

electrode is known as the diffusion process [33, 69]. Under the diffusion-

controlled HAR, the HAR step given by Eq. 3.12d can be considered to be in

local equilibrium. The equilibrium absorption constant, Keq, that is, the ratio of

the concentration of 3D absorbed hydrogen, cs [mol cm�3], to the surface

concentration of 2D adsorbed hydrogen, G [mol cm�2], is defined by Breger

and Gileadi [69] as

Keq ¼ cs
G
¼ k3

Gmax k�3
¼ 1

leq
(3.40)

Therefore, leq is identical to the inverse of the equilibrium absorption constant, Keq,

having the physical dimension of length [cm].

The diffusion-controlled HAR [28, 70] implies that for hydrogen insertion into

the electrode, both the preceding charge-transfer reaction by the Volmer adsorption

Eq. 3.12a and HAR Eq. 3.12d are practically undisturbed from their equilibrium

where the respective forward and backward reactions for Eqs. 3.12a and 3.12d

proceed with the same rate but with different signs, respectively. Both equilibria are

kinetically symmetric. In a similar way, the equilibrium for Eq. 3.12e is attained if

the hydrogen concentration at the entry point x ¼ 0 is the same as that at the exit

x ¼ L, implying that there is no concentration gradient across the membrane.

In contrast, the equilibrium for the succeeding diffusion Eq. 3.12e is strongly

hindered, assuming that the rate of the backward diffusion reaction of Eq. 3.12e,

that is, hydrogen diffusion from x ¼ L toward x ¼ 0 can be practically neglected.

Any departure from the equilibrium for Eq. 3.12e entails the spontaneous develop-

ment of a diffusion resistance to Eq. 3.12e and, hence, a corresponding overvoltage/

overpotential, which is regarded as a measure of the degree of deviation/impedi-

ment from equilibrium for the diffusion pathway.
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Such diffusion in the presence of a concentration gradient across the membrane

is considered to be kinetically asymmetric with a directional character. This

indicates that hydrogen diffusion through the planar bulk can be the RDS for

hydrogen insertion. In other words, as an extremely limiting case, the value of the

interfacial absorption resistance, Rab, is much less than the Warburg coefficient, sW
(fast absorption and slow diffusion). In this way, the overvoltage, �ab,
accompanying the absorption resistance, Rab, also becomes much less than the

overvoltage, �d, accompanying the diffusion resistance, sW.

3.3.4 (i) – (b) Interface-Controlled HAR Limit

If � @v3
@cs

� �
¼ k�3<<

ffiffiffiffiffiffiffiffiffiffiffi
joDH

p
coth

ffiffiffiffiffiffiffi
jo
DH

r
L

� �
, Eq. 3.33 reduces to

~cs
~y
¼

@ v3
@ y

� �

ffiffiffiffiffiffiffiffiffiffiffi
joDH

p
coth

ffiffiffiffiffiffiffi
jo
DH

r
L

� � (3.41)

Substituting ~cs in Eq. 3.31 for ~cs in Eq. 3.41, one obtains
~y
~E
. Substituting the

value of ~y so obtained into Eq. 3.30, one readily finds the Faradaic admittance YF. In

this way, the Faradaic admittance given by Eq. 3.35 is modified to

YF ¼ 1

Rct

� 1� B

joþ Bþ Cþ k3
Gmax

� �� �
8>><
>>:

9>>=
>>;
; (3.42)

which expresses YF for the interface-controlled indirect (two-step) HAR. It is

obvious that YF expressed in Eqs. 3.42 and 3.64 for the interface-controlled indirect
HAR remains invariant, irrespective of whether the transmissive PB condition or

reflective IPB condition applies, because the succeeding diffusion by Eq. 3.12e

deviates only slightly from equilibrium, as mentioned later in Sect. 3.3.7.

The result of the simulation of the complex-plane impedance spectra based upon

Eq. 3.35 for various values of k�3, provided k3
0 ¼ k3

Gmax

� �
¼ 10 s�1 demonstrates

that as the value of k�3 in Eq. 3.35 decreases, the complex-plane impedance spectra

approach these spectra on the basis of the purely interface-controlled absorption,

consisting of two semicircles, simulated based upon Eq. 3.42. It is obvious that if

k�3 decreases to zero as an extremely limiting case, the purely interface-controlled

relaxation strongly deviates from the equilibrium for Eq. 3.12d. The two

semicircles (arcs) are related to the couples between the two different time
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constants, Rct � Cdl and (Rab + Rad) � Cad. Similar results were reported else-

where [71, 72] for experiments performed in the reflective IPB condition.

In order for the reader to clearly understand such a physical situation, the

appropriate equivalent circuits are presented in Fig. 3.7 for the indirect HAR into

a Pd electrode. Here, Rsorp means the sum of Rab and Rad. The impedance spectrum

for the diffusion-controlled HAR is composed of two contributions consisting of

one semicircle corresponding to the single time constant Rct � Cdl couple and the

Warburg impedance. The latter is divided into two categories: One is the Warburg

impedance expressed in the transmissive PB condition and the other involves the

Warburg impedance expressed in the reflective IPB condition, which is described in

detail in Sect. 3.2. By contrast, the impedance spectrum for the interface-controlled

HAR consists of two arcs related to the couples between the two different time

constants, Rct � Cdl and Rsorp � Cad.

In contrast to the diffusion control mentioned above, the interface-controlled

HAR [28, 70] means that for hydrogen insertion into the electrode, both the

preceding charge-transfer reaction by the Volmer adsorption Eq. 3.12a and the

succeeding diffusion Eq. 3.12e are practically undisturbed from their equilibrium

where the forward and backward reactions for both steps run with the same rate but

with different signs. Both equilibria are kinetically symmetric. However, the

equilibrium for the HAR is strongly impeded, assuming that the transfer kinetics

of absorbed hydrogen atoms are so facile that the rate of the backward reaction of

Fig. 3.7 Equivalent circuit for the indirect hydrogen absorption reaction (HAR) into planar metal

membrane electrode [72]. (a) the diffusion-controlled hydrogen absorption reaction(HAR), (b)
the interfacial reaction-controlled hydrogen absorption reaction (HAR). Rs ¼ Solution resistance;

Cdl ¼ Double-layer capacitance; Rct ¼ Charge-transfer resistance; Cad ¼ Adsorption capacitance;

Rab ¼ Absorption resistance; ZW ¼ Warburg impedance; Rad ¼ Adsorption resistance; Rsorp ¼
Sorption resistance (Reprinted from Lasia [72], Copyright #2002 with permission from Kluwer

Academic/Plenum Publishers)
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Eq. 3.12d, that is, hydrogen transfer of the 3D absorbed state to 2D adsorbed state,

can be practically neglected. This zero reaction rate requires that the value of either

k�3 or cs approaches zero because the constraint in Eq. 3.23 is generally valid even

for any noticeably disturbed equilibrium.

Such an HAR is kinetically asymmetric with a directional character. This means

that the hydrogen transfer from the adsorbed state to absorbed state has the potential

to be the RDS for hydrogen insertion. In other words, as an extremely limiting case,

the value of Rab is much greater than the Warburg coefficient sW (slow absorption

and fast diffusion). In a similar way, the overvoltage �ab accompanying the

absorption resistance Rab also becomes much greater than the overvoltage �d
accompanying the diffusion resistance sW.

Furthermore, it would be worthwhile to expound on the terminology “kinetically

more facile (favored) or more limited (impeded) atomistic relaxation process/

macroscopic reaction process” such as the absorption of adsorbed hydrogen and

diffusion of absorbed hydrogen. Let us consider now the HAR and subsequent

diffusion connected in series. The net reaction rate of any partial step is generally

given under the applied cathodic/anodic potentials for hydrogen insertion/desertion

by the difference in rate between the forward and backward reactions, for instance

Eq. 3.23. At equilibrium, both the net rate n3 ¼ 0 and hydrogen permeation flux

density Jp ¼ 0 for no concentration gradient across the planar electrode with a

thickness L and ideally reversible reactions Eqs. 3.12d and 3.12e finally come to a

standstill as well, in which case the charge-transfer resistance Rct to Eq. 3.12d and

diffusion resistance to Eq. 3.12e would be zero as well.

By contrast, in general, for nonequilibrium cases, the resulting net reaction rate

upon the superposition of the forward and backward reactions is not zero, but has a

finite value. Assuming, for example, that the backward reactions Eqs. 3.12d and

3.12e can be neglected as well, then both equations strongly or weakly deviate from

their equilibrium, depending upon either the level of the resistances, Rct and Rd, to

the respective partial relaxation or the height of the corresponding overvoltages,

�ct and �d.
At steady state, the electrochemical equivalent rate (flux density) nst for both

partial steps of absorption and diffusion is the same: �ab ¼ nst Rab; �d ¼ nstRd

(�ab ¼ absorption overvoltage; Rab ¼ absorption resistance; �d ¼ diffusion over-

voltage; Rd ¼ diffusion resistance). Rab and Rd are in general known to be

inversely proportional to the “surface- and bulk-sensitive intrinsic properties” of

the exchange current density and maximum limiting diffusion current density,

respectively. Therefore, for example, a fast relaxation/reaction step is characterized

by a smaller diffusion resistance with a higher diffusion current density, while a

slow relaxation/reaction step is represented by a higher charge-transfer resistance

with a lower exchange current density.

Thus, the steady-state flux density nst is limited by a single relaxation/reaction

step with a large value of the resistance R/overvoltage �. Accordingly, when
hydrogen absorption is the RDS among all of the partial relaxation steps for

hydrogen insertion, it refers to the condition where Rct significantly exceeds Rd,

leading to �ct � �d, so that nst is exclusively determined by the exchange current
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density for the transfer of hydrogen from the adsorbed state to absorbed state.

The kinetically more facile/favored relaxation/reaction for hydrogen diffusion is

held back from the maximum diffusion current density by the kinetically more

sluggish/limited/disturbed hydrogen absorption.

The transfer of hydrogen from the adsorbed state to absorbed state is coupled

with the subsequent diffusion in the electrode interior. This is similar to the case

where fast moving electrons with a higher component diffusivity are retarded

through semiconducting lithium insertion metal oxides under open circuit

conditions in the same direction as lithium ions, due to the electrical neutrality

constraint caused by slow moving lithium ions for the chemical/ambipolar diffusion

of neutral lithium atoms.

3.3.5 (ii) Model B: Direct (One-Step) Hydrogen Absorption
Reaction (HAR) Without Adsorbed Phase (State)

Bagotskaya [66] and Frumkin [67] postulated that hydrogen directly enters the

metal in the same elementary act as that in which it is discharged, and that the

absorbed intermediate state through which hydrogen enters the metal lattice is quite

different from that which leads to the HER. The reaction sequence at the cathode in
alkaline/acidic solutions is presented as follows:

H2O + M + e ���! ���
k4

k�4
MHab x ¼ 0ð Þ þ OH� with rate v4

in alkaline solution and

Hþ + M + e ���! ���
k4

k�4
MHab x ¼ 0ð Þwith rate v4 (3.12f)

in acidic solution

MHab x ¼ 0ð Þ��������!JP
bulk diffusion

MHab x ¼ Lð Þwith rate JP (3.12e)

implying that the HER does not occur, that is, C ¼ 2
@ v2
@ G

� �
¼ 0. Therefore, the

above reaction is adequately liable to such electrodes which absorb mostly hydro-

gen, which is infinitesimally evolved, as electrochromic oxides [73] and metal

hydride-forming electrodes [74].

Under the permeable BC, Eq. 3.19, the charge and mass balances are given by

the reaction scheme described by Eqs. 3.12f and 3.12e listed above,
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�iF
F
¼ n4 (3.43)

and

�iF
F
¼ Jx¼0; (3.44)

respectively, where n4 is the rate of the proton (H+) discharge reaction Eq. 3.12f.

The cathodic Faradaic current density is bestowed a negative sign by definition

and the reaction rate/flux density is usually taken as having a positive sign.

Therefore, the (�) sign is purposely given Eqs. 3.43 and 3.44 in order to make

the two opposite signs of iF andn4 or Jx¼0 equal. The sinusoidal response ofn4 can be
linearized as

v4 ¼ vss4 þ
@v4
@E

� �
~E expðjotÞ þ @v4

@y

� �
~y expðjotÞ þ @v4

@cs

� �
~cs expðjotÞ (3.45)

Substituting Eq. 3.45 into Eq. 3.43 under the reaction constraint of
@v4
@y

� �
¼ 0,

followed by further inserting Eq. 3.22 into Eq. 3.44 and finally equating the time-

dependent terms with each other, one obtains

�
~iF
F
¼ @n4

@E

� �
~Eþ @n4

@cs

� �
~cs (3.46)

and

�
~iF
F
¼

ffiffiffiffiffiffiffiffiffiffiffi
joDH

p
coth

ffiffiffiffiffiffiffi
jo
DH

r
L

� �
~cs; (3.47)

respectively. Eliminating ~cs from Eq. 3.46 by combining Eq. 3.46 with Eq. 3.47, the

Faradaic admittance is finally given again by the rather awkward-looking formula:

YF ¼ �F @v4
@E

� �
� 1þ

@v4
@cs

� �

� @v4
@cs

� �
þ ffiffiffiffiffiffiffiffiffiffiffi

joDH

p
coth

ffiffiffiffiffiffiffi
jo
DH

r
L

� �� �
8>>><
>>>:

9>>>=
>>>;

(3.48)

If one sets

Rct ¼ � 1

F
@v4
@E

� � and B0 ¼ � @v4
@cs

� �
;
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Equation 3.48 is simplified as

YF ¼ 1

Rct

1� B0

B0 þ ffiffiffiffiffiffiffiffiffiffiffi
joDH

p
coth

ffiffiffiffiffiffiffi
jo
DH

r� �� �
8>>><
>>>:

9>>>=
>>>;

(3.49)

which represents the Faradaic admittance YF for the direct (one-step) HAR
“model B.”

Equation 3.38 expressing YF for the diffusion-controlled indirect HAR can then

be rearranged under the constraint of the absence of the HER,C ¼ 2
@ v2
@ G

� �
¼ 0, to

a formula in order to make a bird’s-eye comparison with Eq. 3.49

YF ¼ 1

Rct

1� B00

joleq þ B00 þ ffiffiffiffiffiffiffiffiffiffiffi
joDH

p
coth

ffiffiffiffiffiffiffi
jo
DH

r
L

� �� �
8>>><
>>>:

9>>>=
>>>;

(3.50)

where B00 ¼ leq∙B, B ¼ � @ v1
@ G

� �
. Thus, Eq. 3.50 simply represents YF for the

diffusion-controlled indirect (two-step) HAR “model A” without HER.
The Faradaic impedance characterized by Eq. 3.49 simply represents the

Randles circuit in the transmissive PB condition as follows:

ZF ¼ Rctþ
s tanh

ffiffiffiffiffiffiffi
jo
DH

r
L

� �
ffiffiffiffiffiffiffiffiffiffiffi
joDH

p

2
664

3
775 (3.51)

where s ¼ Rct � @n4
@cs

� �� �
with dimension [O cm3 s�1], sW ¼ sffiffiffiffiffiffiffiffiffi

2DH

p with a

dimension ½O cm2s�1=2� . Equation 3.51 corresponds to Eqs. 3.4 and 3.8 in the

transmissive PB condition.

Equation 3.49 expressing YF for the diffusion-controlled direct (one-step) HAR
“model B” differs from Eq. 3.50 for the diffusion-controlled indirect (two-step)

HAR “model A,” in that B0 (¼surface concentration coefficient of direct absorption
rate n4 ) appears instead of B00 (¼ surface concentration coefficient of adsorption

rate n1 ). Also, it should be stressed here that the only difference between these

models is that in the former case, “model B,” the double-layer capacitance Cdl is

relatively constant, irrespective of the applied potential, while in the latter case,

“model A,” the adsorption capacitance Cad varies with the applied potential.

A comparison of the simulation and experimental results will be given in

Sect. 3.3.6(iii).
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The impedance spectra measured on solid electrodes often show deviations from

the ideal semicircle. In this case, the double-layer impedance, Zdl ¼ 1/joCdl, is

represented by the constant phase element (CPE), defined as [52, 75]

ZCPE ¼ 1

Yo joð Þ’ (3.52a)

where ZCPE has dimensions of [O cm2], Yo is the CPE constant or parameter having

dimensions of [F cm�2 s�(1�j)] or [O�1 cm�2 sj], and ’ is the CPE exponent or the

fractional parameter with a dimension [�] expressing the degree of depression of

the semicircle. Y0 is generally termed CPE if � 1<’<0 and 0<’<1. For special

cases, R(Ohmic resistance) ¼ 1/Yo with physical dimensions of O cm2½ � if ’ ¼ 0.

C (double-layer capacitance) ¼ Yo with physical dimensions of F cm�2½ � if ’ ¼ 1.

L(inductance) ¼ 1/Yo with physical dimensions of Henry cm2½ � if ’ ¼ �1.

ZW ¼ 1

Y0
ffiffiffiffiffiffi
2o
p 1� jð Þ or ZWj j ¼ 1

Y0
ffiffiffiffi
o
p with physical dimensions of O cm2½ � if ’

¼ 1/2. Of course, one does not refer to Y0 in these four special cases as CPEs,

but simply as admittances/impedances with corresponding respective circuit

elements such as resistances, capacitances, inductances, and Warburg impedances

with the same absolute value ZW ¼ 1

Y
ffiffiffiffiffiffi
2o
p of the real and imaginary impedance

or ZWj j ¼ 1

YW
ffiffiffiffi
o
p where

1

YW
ffiffiffi
2
p ¼ sW¼ Warburg coefficient with dimensions of

O cm2 s�1=2
	 


. In another expression ZW ¼ sWffiffiffiffi
o
p 1� jð Þ or ZWj j ¼

ffiffiffi
2
p

sWffiffiffiffi
o
p where

sW¼ Warburg coefficient with dimensions of O cm2 s�1=2
	 


. Thus, the total

interfacial impedance Ztotal is

Ztotal ¼ Rs þ 1

Bo joð Þ’ þ YF
(3.52b)

where Rs is the solution resistance, B0 ¼ C’
d l � ðR�1s þ R�1c t Þ1�’ with dimensions of

[F cm�2 s�(1�j)].
The real and imaginary components Z0 and Z00 obtained at each applied dc

potential are analyzed using the complex nonlinear least squares (CNLS) fitting
method first written by Macdonald et al. [76] and modified in our laboratory [77] to

determine the parameters involved in the theoretically derived Faradaic admittance

equations. The calculations were performed with an IBM 486 personal computer.

Modulus weighting (MWT) was selected as the weighting factor for each experi-

mental point. The curve-fitting error representing the goodness of curve-fitting was

calculated using:

Eerrorð%Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1
f½ðai � AiÞ2 þ ðbi � BiÞ2�=ðai2 þ bi

2Þg
s

(3.53)
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where ai and bi are the real and imaginary components of the experimental

impedance data, respectively, Ai and Bi the real and imaginary components of the

curve fitted impedance data at the same frequency as ai and bi, respectively, and n is
the number of experimental data points. The values of the curve-fitting errors for all

of the fitting results obtained from our laboratory were within 5%.

3.3.6 (iii) Comparison of Simulation with Experimental Results

In order to validate the Faradaic admittance described by Eq. 3.38 expressing the

diffusion-controlled HAR, we simulated the behavior of the combined HAR and

subsequent diffusion process at the entry side of the membrane represented by

Eq. 3.35 in the frequency range of 10�6 to 105 Hz by combining Eq. 3.35 with

Eq. 3.52b, assuming that the Tafel chemical desorption (recombination) step is

neglected, that is,C ¼ 2
@n2
@G

� �
. Figure 3.8 shows the impedance spectra in the form

of the Nyquist plot simulated according to Eq. 3.52b combined with Eq. 3.35

for various values of k�3, assuming that leq ¼ 4.33 	 10�4 cm. We compared

the simulated impedance spectra with those experimentally measured from a 50-

-mm-thick Pd planar membrane in 0.1 M LiOH solution at room temperature (RT)
and with an applied anodic potential Eapp ¼ 0.13 VRHE or an overvoltage �¼ 0.13 V

in the transmissive PB condition. As the value of k�3 in Eq. 3.35 increases, the

complex-plane impedance spectra simulated on the basis of Eq. 3.35 come closer to

those simulated according to Eq. 3.38. It is obvious that if k�3 increases to infinity as
an extremely limiting case, the equilibrium for Eq. 3.12e is then strongly disturbed,

so that the relaxation by Eq. 3.12e comes to be under pure diffusion control.

When the steady-state hydrogen permeation is attained under the transmissive

PB condition achieved usually by using a electrochemical permeation double cell

(see Fig. 3.4), the electrode impedance for the HAR then starts to be measured on

the cathodic side of the membrane with thickness L constituting the double cell and

also acting as the hydrogen entry point. The measurement of the ac-impedance

spectra is made by superimposing an ac signal with an amplitude of 5 mV on a dc

applied anodic potential much lower than 0.94 VRHE over the frequency range from

1 mHz to 10 kHz. Therefore, the hydrogen absorbed into the cathodic side of the

planar membrane diffuses toward its anodic side, which is subjected to a constant

anodic potential of 0.94 VRHE. Here, RHE means a reversible hydrogen electrode

which is related to an SHE (standard hydrogen electrode) as [E against RHE ¼ E
against SHE + 0.0591 pH] at 298 K.

Severe depressions or tailings of the second semicircle in the Nyquist plot are

often found for an HER on Pt [78] and amorphous metals [79]. Bai et al. [78]

performed a simulation of the impedance spectra in terms of the diffusion of H2

away from the electrode surface, but they failed to explain the origin of the tailing

of the second semicircle. In this chapter, we simulated the impedance spectra from

the Faradaic admittance described by Eq. 3.38 for pure diffusion control, by

adopting the rate constants obtained from activated Pt in 0.5 M NaOH solution
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[78], for various values of leq, assuming that the purely diffusion-controlled HAR
applies and not the Heyrovsky electrochemical desorption (recombination). The

steady-state hydrogen coverage was obtained by substituting Eq. 3.22 into Eq. 3.25

and by setting the constraint
dy
dt
¼ 0

� �
. The kinetic equations describing the rates of

the Volmer adsorption and Tafel desorption reactions were taken as those employed

by Bai et al. [78].

The result of the simulation is shown in Fig. 3.9 as a Nyquist plot. As the value of

leq decreases, the second semicircle is converted ultimately to a pure Warburg

impedance due to its depression and tailing. The results of the depressed Warburg

impedance with tailing suggest that the relaxation of the adsorbed hydrogen

through absorption into and subsequent diffusion through the metal substrate is

kinetically more disturbed than relaxation through the Tafel chemical desorption

(recombination) as the equilibrium absorption constant, Keq, increases. Since the

relaxation caused by the combined HAR and subsequent diffusion connected in

series is believed to deviate more or less from the equilibria for both Eqs. 3.12d and

3.12e, it can be referred to as being under mixed HAR and diffusion control.

We are not presently able to assign the respective contributions of pure diffusion

control and interface control to the overall mixed control. In order to solve this

problem, we experimentally determined the ratio of the diffusion current to the

Fig. 3.8 Complex-plane impedance spectra [6] simulated based upon Eq. 3.35 at different values

of k�3 [cm s�1]: (a) 1 	 10�5, (b) 1 	 10�4, (c) 1 	 10�2 with the parameters of Rs ¼ 28 O cm2,

B0 ¼ 1.92 	 10�4 F cm�2 s�(1�j), ’ ¼ 0.88, Rct ¼ 88.6 O cm2, B ¼ � @n1
@G

� �
¼ 3:1	 10�2s�1,

leq ¼ 4.33 	 10�4 cm, DH ¼ 3.72 	 10�7 cm2 s�1, L ¼ 5 	 10�3 cm. Equation 3.35 expresses

YF for the hydrogen absorption reaction (HAR) and subsequent diffusion at the entry side. Circled

points(○) represent the experimental data obtained from hydrogen permeation double cell with a

50 mm-thick Pd planar membrane in 0.1M LiOH solution at Eapp ¼ 0.13 VRHE (Reprinted from Lim

and Pyun [6], Copyright #1993 with permission from Elsevier Science)
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interfacial reaction current by the Butler-Volmer equation by measuring the

potentiostatic current transients as described in the previous reports from our

laboratory [80, 81].

In order to test the validity of Eqs. 3.49 and 3.50, we simulated the impedance

spectra according to Eq. 3.52b combined with Eqs. 3.49 and 3.50, respectively.

Figure 3.10 shows the two different simulated complex-plane impedance spectra in

Nyquist representation. One can distinguish the diffusion-controlled direct

(one-step) HAR “model B” characterized by Eq. 3.49 from the diffusion-controlled

indirect (two-step) HAR “model A” characterized by Eq. 3.50 by the absence of any

adsorption capacitance. It is expected from the fact that Cad > Cdl that this latter

model “A” characterized by Eq. 3.50 would give rise to a slightly smaller high-

frequency semicircle than that former model “B” characterized by Eq. 3.49 and

would also keep the transition from the high-frequency arc to the low-frequency

Warburg impedance sharper.

Similar results were found in the case where Cad � Cdl [82]. The experimental

data from a Pdmembrane in the transmissive PB condition in 0.1 M LiOH solution at

Eapp ¼ 0.1 VRHE follow the indirect (two-step) HAR mechanism almost exactly.

From the results of the poison effect on theHAR into the Pdmembrane, it is suggested

that the HAR usually proceeds by the direct (one-step) pathway [83] in 0.1 M H2SO4

solution at a relatively low applied anodic potential of 0.12 VRHE, but by the indirect

(two-step) pathway [71] in 0.1 M NaOH solution at a relatively high applied anodic

Fig. 3.9 Complex-plane impedance spectra [6] simulated based upon Eq. 3.38 in Nyquist presen-

tation at different values of leq [cm]: (a) 1 	 10�3, (b) 1 	 10�4, (c) 1 	 10�5, (d) 1 	 10�6,
(e) 1 	 10�7 using the parameters of Cdl ¼ 2.5 	 10�5 F cm�2, ’¼ 1, b (symmetry factor/charge

transfer coefficient for Tafel desorption) ¼ 0.5, Gmax ¼ 7.25 	 10�10 mol cm�2, � ¼ �0.03 V,

k1 ¼ 1 	 10�8, k�1 ¼ 3 	 10�7 and k2 ¼ 2.8 	 10�8 mol cm�2 s�1 taken from the literature

[78]. Additionally DH ¼ 1 	 10�7 cm2 s�1 and L ¼ 1 	 10�1 cm are taken. Equation 3.38

expresses YF for the diffusion-controlled indirect hydrogen absorption reaction (HAR) (Reprinted
from Lim and Pyun [6], Copyright #1993 with permission from Elsevier Science)
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potential of 0.15 VRHE. Here, the “applied anodic potential” means the application of

a potential more positive than the Nernstian equilibrium potential to achieve the

underpotential adsorption/deposition (UPD) of hydrogen. Interestingly, the transition
[71] in the mechanism of the diffusion-controlled indirect HAR occurs sufficiently to

interface-controlled indirect (two-step) one at a concentration of thiourea of about

10�7.5 M used as a catalyst poison, as the concentration increases.

3.3.7 Reflective Impermeable (IPB) Boundary Condition

3.3.7.1 Model A: Indirect (Two-Step) Hydrogen Absorption Reaction (HAR)
Through Adsorbed Phase(State) – (a) Diffusion-Controlled HAR
Limit and –(b) Interface-Controlled HAR Limit

The reflective IPB condition for the HER and HAR is schematically shown in

Fig. 3.5. The initial (IC) and boundary (BC) impermeable (IPB) conditions are

given as follows:

Fig. 3.10 Complex-plane impedance spectra [6] simulated by combining Eq. 3.52b and the two

different Faradaic admittance equations, YF: (a) Eq. 3.49 for diffusion-controlled direct hydrogen

absorption reaction (HAR) without adsorbed phase/state, (b) Eq. 3.50 for diffusion-controlled

indirect hydrogen absorption reaction (HAR) through adsorbed phase/state, respectively, using

the parameters of Rs ¼ 28 O cm2, B0 ¼ 1.92 	 10�4 F cm�2 s�(1�’), ’ ¼ 0.88, Rct ¼ 88.6

O cm2, B0 ¼ B00 ¼ 7.26 	 10�5 cm s�1, leq ¼ 4.88 	 10�4 cm, DH ¼ 3.47 	 10�7 cm2 s�1

and L ¼ 5 	 10�3 cm. Circled points(○) represent the experimental data obtained from hydrogen

permeation double cell with a 50 mm-thick Pd planar membrane in 0.1 M LiOH solution at

Eapp¼ 0.1 VRHE. (a): Direct HAR (‘model B’) by Eq. 3.49 involving only Cdl gives a more diffuse

transition of a bit more sized high-frequency arc to low-frequency Warburg impedance. (b):
Indirect HAR (‘model A’) by Eq. 3.50 involving Cad > Cdl gives a sharper transition of a bit

less sized high-frequency arc to low-frequency Warburg impedance (Reprinted from Lim and

Pyun [6], Copyright #1993 with permission from Elsevier Science)
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t ¼ 0 ICð Þ: 0 b x b L finite diffusion bar with a half - thicknessð Þ; c ¼ 0 (3.54)

t > 0 BCð Þ: x ¼ 0; c ¼ cs þ ~cs exp jotð Þ potentiostatic oscillationð Þ
x ¼ L;

@c

@x

� �
x¼L
¼ 0 reflective IPB conditionð Þ (3.55)

where c(x) is the hydrogen concentration within the planar electrode and cs(x ¼ 0)

denotes the hydrogen concentration at the entry surface.

By using the Laplace transform method, the Fick’s second law in Eq. 3.16 can be

solved [41, 84] under the oscillating concentration/potential perturbation at the

electrode/electrolyte interface and in the reflective IPB condition at x ¼ L to the

oscillation in concentration within the electrode satisfying the IC by Eq. 3.54 and

BC by Eq. 3.55 above

~c ¼ ~cs

cosh

ffiffiffiffiffiffiffi
jo
DH

r
x� Lð Þ

cosh

ffiffiffiffiffiffiffi
jo
DH

r
L

¼ ~cs cosh

ffiffiffiffiffiffiffi
jo
DH

r
x

� �
� tanh

ffiffiffiffiffiffiffi
jo
DH

r
L

� �
sinh

ffiffiffiffiffiffiffi
jo
DH

r
x

� �� �
; (3.56)

which is quite different from Eq. 3.21. According to the Fick’s first law, the

oscillating flux of hydrogen at the entry side of the electrode, Jx¼0, is then given by

Jx¼0 ¼ �DH

@~c

@x

� �
x¼0
¼

ffiffiffiffiffiffiffiffiffiffiffi
joDH

p
tanh

ffiffiffiffiffiffiffi
jo
DH

r
L

� �
~cs exp jotð Þ; (3.57)

which differs from Eq. 3.22 only in that the hyperbolic tangent appears instead of

the hyperbolic cotangent and a steady-state concentration gradient does not exist by

nature of the IPB. The hyperbolic tangent and hyperbolic cotangent functions are

characteristic of YF as well as Jx¼0 in the reflective IPB and transmissive PB
conditions, respectively.

The theoretical derivation of the Faradaic admittance for the HAR with the help

of the kinetic equation in the reflective IPB condition, which is very similar to that

in the transmissive PB condition, is as follows. At a low coverage of hydrogen, y,
and low surface concentration, cs , the rate of the HAR, which is expressed by

Eq. 3.23 in terms of a linear combination of y and cs , is effective for the IPB
condition as well as the PB condition.

If themechanism of theHER follows the Volmer-Heyrovsky reactionmechanism

as described by the reaction scheme in Eq. 3.12 above, the charge-transfer reaction

rate and the adsorption rate are given by r0 ¼ n1 + nHey and r1 ¼ n1 � nHey, respec-
tively. However, the Heyrovsky electrochemical desorption reaction was not con-

sidered in this chapter, since the HER mechanism on Pd was reported to follow the

fast discharge by the Volmer adsorption and slow Tafel-recombination mechanisms

[30, 62, 63]. Provided that the HER proceeds by the Volmer-Tafel reaction
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mechanism, the reaction rates are expressed as r0 ¼ n1 and r1 ¼ n1 � 2n2, respec-
tively. Therefore, Eqs. 3.24 and 3.25 which result from the charge balance and mass

balance, respectively, are valid for the IPB condition as well as the PB condition.

Neglecting the second- and higher order terms of the Taylor series expansion,

the rates of the Volmer adsorption, the Tafel desorption, and the HAR, ni (as general
designation), are expressed by Eqs. 3.26, 3.27, and 3.28, respectively, in terms of a

linear combination of the first derivatives of the rate, ni, with respect to the electrode

potential,
@ni
@E

� �
, coverage,

@ni
@y

� �
, and surface concentration,

@ni
@cs

� �
. The above

three equations are the same as those in the transmissive PB condition.

The four kinds of reaction constraints (the first derivatives of the rate ¼ 0)

expressed by Eq. 3.29 are also effective for the IPB condition as well as the PB
condition:

@n1
@cs

� �
¼ 0;

@n2
@E

� �
¼ 0;

@n2
@cs

� �
¼ 0; and

@n3
@E

� �
¼ 0 (3.29)

Substituting Eqs. 3.26, 3.27, and 3.57 into Eqs. 3.24 and 3.25 under the reaction

constraints given by Eq. 3.29 and equating the time-dependent terms with each

other, one obtains the following equations from the charge and mass balances:

�
~iF
F
¼ @r0

@E

� �
~Eþ @r0

@y

� �
~y ¼ @v1

@E

� �
~Eþ @v1

@y

� �
~y; (3.30)

and

joGmax
~y ¼ @n1

@E

� �
~Eþ @n1

@y

� �
~y� 2

@n2
@y

� �
~y�

ffiffiffiffiffiffiffiffiffiffiffi
joDH

p
tanh

ffiffiffiffiffiffiffi
jo
DH

r
L

� �
~cs; (3.58)

respectively. Equation 3.30 is valid in common for both the PB and IPB conditions.

Equation 3.58 differs from Eq. 3.31 only in that the hyperbolic tangent function

appears instead of the hyperbolic cotangent function. This is responsible for the

difference in the Faradaic admittance YF in the transmissive PB and reflective IPB
conditions.

Combining the mass balance equation given by Eq. 3.23 and the sinusoidal

response of n3 given by Eq. 3.28 along with the flux of hydrogen diffusion given by
Eq. 3.57 under the reaction constraints given by Eq. 3.29, one can obtain from the ac

condition (oscillating term)

~cs
~y
¼

@v3
@y

� �

� @v3
@cs

� �
þ ffiffiffiffiffiffiffiffiffiffiffi

joDH

p
tanh

ffiffiffiffiffiffiffi
jo
DH

r
L

� �
2
6664

3
7775 (3.59)

Substituting ~cs in Eq. 3.58 for ~cs in Eq. 3.59 and eliminating ~cs, one obtains
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~y
~E
¼

@v1
@E

� �

joGmax � @v1
@y

� �
� 2

@v2
@y

� �� �
þ

@v3
@y

� �

1�
@v3
@cs

� �

ffiffiffiffiffiffiffiffiffiffiffi
joDH

p
tanh

ffiffiffiffiffiffiffi
jo
DH

r
L

� �
2
6664

3
7775

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;
(3.60)

Substituting ~y in Eq. 3.60 for ~y in Eq. 3.30 and eliminating ~y , the Faradaic

admittance YF is finally determined as the following rather awkward-looking

expression:

YF ¼
~iF
~E
¼ �F @v1

@E

� �
�

1þ
1

Gmax

@v1
@y

� �

jo� 1
Gmax

@v1
@y

� �
� 2

@v2
@y

� �� �
þ

1
Gmax

@v3
@y

� �

1�
@v3
@cs

� �

ffiffiffiffiffiffiffiffiffiffiffi
joDH

p
tanh

ffiffiffiffiffiffiffi
jo
DH

r
L

� �
2
6664

3
7775

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

;

(3.61)

which is also expressed in terms of the kinetic rate coefficients and constants, as in

the case of the transmissive PB condition, but differs from Eq. 3.35 in that the

hyperbolic tangent function appears instead of the hyperbolic cotangent function.

For the sake of comparison with the PB condition, one may set
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Rct¼� 1

F
@r0
@E

� �¼� 1

F
@v1
@E

� �; B¼� @v1
@G

� �
;C¼2 @v2

@G

� �
; k3¼ @v3

@y

� �
; and k�3¼� @v3

@cs

� �
;

which are exactly the same relations as those in the PB condition.

On the basis of the electrical equivalent circuit given in Fig. 3.6b, the Faradaic

admittance can be converted into the following impedance equation,

ZF ¼
~E
~iF
¼ Rct þ 1

jo Cad þ 1

Rev

� �
þ 1

Rab þ
s coth

ffiffiffiffiffiffiffi
jo
DH

r
L

� �
ffiffiffiffiffiffiffiffiffiffiffi
joDH

p
2
664

3
775

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

; (3.62)

where Cad ¼ 1

BRct

with a dimension [F cm�2�,

Rev ¼ BRct

C
with a dimension O cm2

	 

;

Rab ¼ BGmaxRct

k3
with a dimension O cm2

	 

;

s ¼ k�3
k3

GmaxBRct with a dimension O cm3s�1
	 


;

sW ¼ sffiffiffiffiffiffiffiffiffi
2DH

p with a dimension ½O cm2s�1=2� , which are exactly the same

relations among the circuit element, kinetic rate coefficient, and rate constant as

those in the PB condition. Equation 3.62 corresponds to the equivalent circuit given

in Fig. 3.6b. The chemical capacitance (Cch)/pseudocapacitance (Cps) in Fig. 3.6b

acts simply as an IPB blocking the diffusants.

Considering the two extremely limiting cases of the diffusion- and interface-

controlled HAR, Eq. 3.61 can be simplified as follows.

3.3.7.2 - (a) Diffusion-Controlled HAR Limit

If k�3>>
ffiffiffiffiffiffiffiffiffiffiffi
joDH

p
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jo=DH

p
L

� �
, the Faradaic admittance described by Eq. 3.61

is simplified as follows:
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YF ¼ 1

Rct

� 1� B

joþ Bþ Cþ 1

leq

ffiffiffiffiffiffiffiffiffiffiffi
joDH

p
tanh

ffiffiffiffiffiffiffi
jo
DH

r
L

� �� �
8>>><
>>>:

9>>>=
>>>;
; (3.63)

where leq means the equilibrium length [cm],
1

leq
¼ k3

Gmaxk�3
¼ Keq. Equation 3.63

expresses YF for the diffusion-controlled indirect HAR in the reflective IPB condi-

tion. Provided that, for the diffusion-controlledHAR, theHAR partial step described

by Eq. 3.12d is considered to be in local equilibrium, the equilibrium absorption

constant, Keq, can be uniquely defined.

3.3.7.3 - (b) Interface-Controlled HAR Limit

If k�3 <<
ffiffiffiffiffiffiffiffiffiffiffi
joDH

p
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jo=DH

p
L

� �
, the Faradaic admittance described by Eq. 3.61

is readily reduced to

YF ¼ 1

Rct

� 1� B

joþ Bþ Cþ k3
Gmax

� �� �
8>><
>>:

9>>=
>>;
; (3.64)

which expresses YF for the interface-controlled indirect (two-step) HAR in the

reflective IPB condition. It should be emphasized here that YF theoretically derived

and expressed in Eq. 3.64 shares the same physical significance as YF obtained from
the transmissive PB and expressed in Eq. 3.42 for the interface-controlled indirect

HAR, since the succeeding diffusion by Eq. 3.12e is almost in equilibrium, as

mentioned in Sect. 3.3.4(i) - (b). In contrast to the diffusion-controlled HAR, it can
be recognized that the partial step described by Eq. 3.12d departs the furthest from

equilibrium, thus causingKeq either to go to infinity or to approach to zero, regardless

of whether the PB or IPB condition applies. The characteristic feature of the strong

departure from equilibrium is not fixed at the specific electrode/electrolyte system by

itself, but it is simultaneously determined even at any electrode/electrolyte system by

the applied potential and the nature of the electrode surface roughness [85].

The Faradaic admittance in Eq. 3.64 is similar to that in Eq. 3.65 for the pure

HER derived by Harrington and Conway [42].

YF ¼ 1

Rct

þ B0

joþ C0
(3.65)

whereB0 ¼ � F
@r0
@G

� �
@r1
@E

� �
¼ 1

Rct

� �
@n1
@G

� �
with O�1 cm�2 s�1

	 

,C0 ¼ � @r1

@G

� �

¼ @n1
@G

� �
� 2

@n2
@G

� �
with s�1½ �, r0 is the net charge-transfer reaction rate and r1 is

the net adsorption rate.
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3.3.8 Evidence for Direct (One-Step) Hydrogen Absorption
Reaction (HAR) and the Indirect to Direct Transition
in HAR Mechanism

A clue to the diffusion-controlled direct (one-step) HAR into a metal without

any adsorbed intermediate state (phase) or purely interface-controlled indirect

(two-step) HAR with decreasing applied anodic potential was found in the studies

of Pyun and coworkers [6, 7, 9–11, 39, 40]. They reported that as the applied

potential decreases, the equilibrium absorption constant, Keq, is abruptly increased

below a certain potential range, irrespective of the PB and IPB geometries of the Pd

planar membrane, indicating that the transition of the diffusion-controlled two-step

mechanism to the diffusion-controlled one-step mechanism or purely interface-

controlled HAR occurs at a characteristic/critical applied potential (range).

This may provide evidence for the occurrence of the one-step HAR mixed with

subsequent diffusion or purely interface-controlled two-step HAR in the relatively

low applied anodic or even cathodic potential ranges.

Figure 3.11 shows the impedance spectra for the HAR in the case of a 50-mm-

thick Pd planar membrane in the transmissive PB condition measured in 0.1 M

LiOH solution at Eapp values of 0.18, 0.16, 0.13 VRHE. As Eapp is lowered in value,

the Warburg impedance increasingly appears in the Nyquist plot. The Warburg

impedance in the Nyquist plot represents ideal diffusion control like the Cottrell

equation in the current transient expresses ideal diffusion control. It should be

stressed here that the oscillation around the steady-state hydrogen permeation

current was clearly observed at the exit side during the impedance measurement.

The kinetic and equivalent circuit parameters best fitted to Eq. 3.52b combined

with Eq. 3.38 expressing the diffusion-controlled two-step HAR are determined by

using the CNLS fitting method assuming the absence of the HER, C
00 ¼ leqC ¼ 2leq

@v2
@G

� �
¼ 0 which is reasonable. The values of the best-fit parameters are

summarized in Table 3.1. From the optimum-fit parameters, one obtains “the

theoretically calculated Nyquist plots” denoted by the solid lines in Fig. 3.11. The

measured impedance spectra are found to satisfactorily follow the solid lines,

indicating the occurrence of the diffusion-controlled two-step HAR in the given

applied potential range.

From Table 3.1, one notices that the constant for the local equilibrium between

the adsorbed and absorbed hydrogen, Keq, abruptly increases to infinity at 0.08

VRHE with decreasing applied anodic potential, Eapp, indicating that b-PdH is

formed due to the increased hydrogen concentration just beneath the electrode

surface at 0.08 VRHE and that the RDS of the HAR is changed from the indirect

HAR via an adsorbed state to the direct HAR, which is predominant below 0.08

VRHE (see Table 3.2). This result is in good agreement with that measured in the

reflective IPB condition (see Fig. 3.14). The threshold potential for the formation of

b-PdH, 0.08 VRHE, measured in this work coincides satisfactorily with the value of

0.05 VRHE at RT, thermodynamically calculated by Pourbaix [86]. The present

detailed investigation showed us that a-PdH is stable above 0.05 VRHE and that
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b-PdH is stable below 0.05 VRHE. The deposition of a monolayer of hydrogen on

the surface of Pd is frequently found to take place at a potential positive to the

Nernstian equilibrium potential, which is termed the UPD. The formation of UPD
hydrogen is attributed to the fact that the chemical potential of a “monolayer of

hydrogen” in Pd is less than the standard chemical potential of “the bulk hydrogen”

in Pd, in contrast to overpotential deposition/adsorption (OPD).

Fig. 3.11 Impedance spectra in Nyquist presentation for HAR into a 50 mm-thick Pd planar

membrane in transmissive PB condition being achieved through electrochemical hydrogen per-

meation double cell in 0.1 M LiOH solution at various applied anodic potentials and RT: ○,

Eapp ¼ 0.18 VRHE; □, Eapp ¼ 0.16 VRHE; D, Eapp ¼ 0.13 VRHE. Solid lines represent the curves
calculated using optimum best fit-parameters based upon Eq. 3.52b combined with Eq. 3.38 for

diffusion-controlled indirect (two-step) HAR [7] (Reprinted from Lim and Pyun [7], Copyright

#1994 with permission from Elsevier Science)

Table 3.1 Optimum kinetic and circuit parameters best fitted to Eq. 3.52b combined with Eq. 3.38

representing diffusion-controlled indirect (two-step) HAR, for impedance spectra experimentally

obtained during the HAR into Pd planar membrane in transmissive PB condition in 0.1 M LiOH

solution at various applied anodic potentials and RT [7]

Eapp [VRHE]

Bo 	 104

[Fcm�2 s�(1�j)]
’ 	 101

[�]
Rct

[O cm2]

B00 ¼ (leq
B) 	 105

[cm s�1]
leq 	 104

[cm]

DH 	 107

[cm2 s�1]

Eerror

(%)

[�]
0.28 3.72 8.04 317.5 601.46 38.99 5.37 3.16

0.23 3.06 8.18 152.7 183.13 14.00 2.86 2.12

0.18 2.06 8.88 86.6 56.01 5.58 3.08 1.47

0.16 2.01 8.84 87.1 30.43 4.25 3.61 0.95

0.13 1.92 8.86 88.5 13.53 4.32 3.71 1.17

0.10 1.95 8.86 87.7 7.26 4.88 3.47 1.24

0.08 1.95 9.34 66.9 0.54 2 	 10�9 3.15 1.40

0.03 1.95 9.21 60.6 0.34 1 	 10�17 3.09 1.00
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The value of Keq was found to be 7.1 	 102 cm�1 at an Eapp of 0.23 VRHE and

1.8 to 2.4 	 103 cm�1 at 0.18 to 0.13 VRHE for the HAR in a Pd planar membrane,

which are similar in terms of their order of magnitude to the data (7.9 	 102 to

3.0 	 103 cm�1) measured in the applied potential range of 0.25 to 0.10 VRHE

under the reflective IPB condition (see Fig. 3.14), but are one order of magnitude

smaller than that (6 	 103 cm�1) determined at 0.23 VRHE and that (2 to

5 	 104 cm�1) measured at 0.18 to 0.08 VRHE by Breger and Gileadi [69] in

0.3 M NaOH solution from a Pd membrane. It is still not clear whether the

discrepancies in the equilibrium constant for the HAR arise from the method used

or the chemical pretreatment and heat treatment of the specimen. Here, it is

emphasized that the value of Keq was determined by using a small-amplitude

perturbation analysis, that is, the ac-impedance method excluding the ambiguity

arising from double-layer charging.

Figure 3.12 demonstrates the impedance spectra for the HAR in a 50-mm -thick

Pd planar membrane in the transmissive PB condition measured in 0.1 M LiOH

solution at Eapp values of 0.1, 0.08, 0.03, �0.07 VRHE. Since below 0.08 VRHE, Keq

is found to be infinite (the inverse of Keq ¼ leq 
 zero) from Eq. 3.38, as given in

Table 3.1, implying that the equilibrium for the partial step given by Eq. 3.12d is

noticeably disturbed, the diffusion-controlled two-step HAR loses its physical

significance as the RDS and, hence, Eq. 3.38 does not hold any more in the given

potential ranges. Two possibilities of conceiving a new RDS can be substituted for

Eq. 3.38. The first one is the most strongly hindered equilibrium for Eq. 3.12a and

3.12d combined in series which one might call the purely interface-controlled

two-stepHAR. The second one is where the two-step HAR and subsequent diffusion

in series represented by the combined Eqs. 3.12a, 3.12d, and 3.12e is first replaced

with the one-step HAR given by the combined Eqs. 3.12f and 3.12e. Finally, the

latter partial step then strongly departs from equilibrium. Such a strong deviation is

forced to additionally generate both the absorption and diffusion resistances, R, and
hence the corresponding overvoltage/overpotential, �, to establish a new equilib-

rium. Thus, the kinetic and equivalent circuit parameters best fitted to Eq. 3.52b

combined with Eq. 3.49 expressing the diffusion-controlled one-step HAR are

determined by using the CNLS fitting method at Eapp values below 0.08 VRHE.

The optimum-fit parameters are summarized in Table 3.2.

Table 3.2 Optimum kinetic and circuit parameters best fitted to Eq. 3.52b combined with Eq. 3.49

representing diffusion-controlled direct (one-step) HAR, for impedance spectra experimentally

obtained during the HAR into Pd planar membrane in transmissive PB condition in 0.1 M LiOH

solution at various applied anodic potentials and RT [7]

Eapp [VRHE]

Bo 	 104

[F cm�2 s�(1�j)]
’ 	 101

[�]
Rct

[O cm2]

B0 	 105

[cm s�1]
DH 	 107

[cm2 s�1]
Eerror (%)

[�]
0.08 1.96 9.34 66.9 0.54 3.15 1.40

0.03 1.95 9.21 60.6 0.35 3.09 1.00

0.00 2.02 9.20 58.0 0.34 3.81 0.90

�0.02 2.13 9.12 56.5 0.35 5.63 0.79

�0.04 2.28 9.13 48.3 0.53 23.36 0.75

�0.07 2.13 9.32 32.5 0.29 9.64 0.93
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The fit parameters determined at 0.08 and 0.03 VRHE in Table 3.1 are essentially

the same as those in Table 3.2. Consequently, it is suggested that below 0.08 VRHE

the expression of YF for the HAR in a Pd planar membrane changes from that

represented by Eq. 3.38 to that represented by Eq. 3.49 in view of the RDS, that is,
hydrogen directly enters into the interior of the Pd membrane without passing

through the adsorbed phase at relatively low applied potentials. The transitions in

the RDS and mechanism have frequently been observed as functions of the applied

potential and the nature of the electrode surface roughness in metal hydride [85] and

carbon-hydrogen systems [80, 81] in our laboratory. Figure 3.12 shows that as Eapp

is lowered, theWarburg impedance deviates more negatively from the ideal straight

line with a slope of �1. Such a deviation from the ideal Warburg/Cottrell behavior

is referred to as anomalous hydrogen diffusion.

In other words, the RDS is shifted from pure diffusion control to mixed absorp-

tion and diffusion control. Finally, the Warburg impedance submerges at potentials

below�0.02 VRHE, indicating that the transition in the RDS of theHAR occurs from

the mixed absorption and diffusion control to the purely interface-controlled HAR.
Tables 3.1 and 3.2 show that the hydrogen diffusivity DH in a-PdH determined

from the impedance spectra in the applied potential range of 0 to 0.28 VRHE is 3.49

(� 0.69) 	 10�7 cm2 s�1 (a tendency for DH to slightly increase with rising Eapp),

Fig. 3.12 Impedance spectra in Nyquist presentation for HAR into a 50 mm-thick Pd planar

membrane in transmissive PB condition being achieved through electrochemical hydrogen per-

meation double cell in 0.1 M LiOH solution at various applied anodic potentials and RT: ○,

Eapp ¼ 0.1 VRHE;□, Eapp ¼ 0.08 VRHE; D, Eapp ¼ 0.03 VRHE;◊, Eapp ¼ �0.07 VRHE. Solid lines
represent the curves calculated by using optimum best fit-parameters based upon Eq. 3.52b

combined with Eq. 3.38 for diffusion-controlled indirect (two-step)HAR and dotted lines represent
those parameters based upon Eq. 3.52b combined with Eq. 3.49 for diffusion-controlled direct

(one-step) HAR [7] (Reprinted from Lim and Pyun [7], Copyright #1994 with permission from

Elsevier Science)
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which is comparable to the value of 3.07(� 0.07) 	 10�7 cm2 s�1 reported by Bucur
[87], but is slightly lower than the value of 5.57(� 1.21) 	 10�7 cm2 s�1 obtained in
the potential range of 0.02 to 0.22 VRHE in the reflective IPB condition [9].

When the equilibrium state, meaning a constant hydrogen concentration, is

attained at the input surface under the reflective IPB condition which is usually

achieved by simply immersing the planar electrode with a thickness of 2 L into the

electrolyte (see Fig. 3.5), the electrode impedance for theHAR starts to be measured

at the input surface of the electrode in the same manner as in the case of the PB
condition.

Figure 3.13a, b show the Nyquist plots of the impedance spectra for the HAR in a

60-mm-thick Pd planar membrane (L ¼ 30 mm) in the reflective IPB condition in

Fig. 3.13 Impedance spectra

in Nyquist presentation for

HAR into a 60 mm-thick Pd

planar membrane in reflective

IPB condition being achieved

by simply immersing the

planar membrane into 0.1 M

NaOH solution at various

applied anodic potentials

(a) 0.16, 0.12 and 0.10 VRHE,

(b) 0.08, 0.06 and 0.02 VRHE

and RT. Solid lines represent
the curves calculated using

optimum best fitted-

parameters based upon

Eq. 3.52b combined with

Eq. 3.63 for diffusion-

controlled indirect (two-step)

HAR [9] (Reprinted from

Yang and Pyun [9], Copyright

#1996 with permission from

Elsevier Science)
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0.1 M NaOH solution at RT in the applied potential range of 0.02 to 0.16 VRHE.

The impedance spectra involve the charge transfer, adsorption and absorption

reactions and, finally, diffusion in the electrode in sequence as the frequency

decreases. The semicircle in the high-frequency range corresponds to the charge-

transfer reaction. In the potential range of 0.04 to 0.16 VRHE, the Warburg imped-

ance appears in the low-frequency range, representing the finite length diffusion

process of hydrogen under the reflective IPB condition. With decreasing potential,

the Warburg impedance deviates more negatively from the ideal straight line with a

slope of 45�, expressing the finite length diffusion process, as in the transmissive PB
condition. The anomalous hydrogen diffusion can be traced back to many origins

[28], including the transition of pure diffusion control to mixed control with charge

transfer or hydrogen absorption/desorption, in the presence of hydrogen traps,

stresses, fractals and the coexistence of two phases. This anomalous behavior of

hydrogen atoms will be discussed in detail in Chaps. 5, 6, and 7. Finally the

Warburg impedance disappears at potentials below �0.02 VRHE, indicating that

the HAR mechanism is shifted from mixed absorption and diffusion control to the

purely interface-controlled HAR.
Figure 3.14 presents the equilibrium absorption constant Keq determined from

Fig. 3.13 and Eq. 3.63 for the diffusion-controlled HAR in a Pd electrode in 0.1 M

NaOH solution as a function of the applied anodic potential Eapp. The value of Keq

slowly increases from 7.9 	 102 to 3.0 	 103 cm�1 with decreasing applied poten-
tial from 0.25 to 0.10 VRHE, and then abruptly increases to 1.6 	 105 cm�1 at 0.08
VRHE, which is very similar to the value of 2 	 103 cm�1 measured in the potential

range of 0.18 to 0.13 VRHE in the transmissive PB condition (see Table 3.1). It

should be noted that a drastic increase in the value of Keq is observed at 0.08 VRHE,

which is indicative of the formation of b-PdH and the occurrence of a transition in

the RDS of the two-step HAR to the one-step HAR.

Fig. 3.14 Dependence of

equilibrium absorption

constant Keq on applied

anodic potential Eapp,

obtained from the impedance

spectra given in Fig. 3.13 for

the HAR into Pd planar

membrane in reflective IPB
condition in 0.1 M NaOH

solution and RT [9]

(Reprinted from Yang and

Pyun [9], Copyright #1996

with permission from

Elsevier Science)
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Finally, it seems worthwhile to briefly mention that Lasia [72, 82] recently

proposed the mechanism and kinetics of the HAR in metals to discuss its problems

and limitations : The indirect (two-step) HAR is composed of three pathways, one

corresponding to hydrogen adsorption by OPD, the HAR followed by the HER, and
the second one to hydrogen adsorption by UPD. In parallel, there is a third pathway
in which the UPD hydrogen further undergoes the HAR to form the HAR in series

with the Warburg impedance. The direct (one-step) HAR is made up of two

pathways consisting of the charge-transfer resistance in series with the Warburg

impedance and of hydrogen adsorption by UPD, followed by the HER. Therefore,
the model of the HAR has been extended by differentiating between the OPD and

UPD adsorption of hydrogen and even by taking the HER step into account.

3.4 Summary and Concluding Remarks

TheHAR can be categorized into two groups, namely, the indirect (two-step)HAR and

direct (one-step) HAR. The first one is divided into substeps, namely, the interfacial

charge (electron) transfer, hydrogen transfer from the 2D adsorbed state to the 3D

absorbed state and subsequent hydrogen diffusion through the electrode. The second

one is split into substeps, namely, the direct interfacial charge (electron) transfer to the

absorbed state without an adsorbed intermediate state and subsequent hydrogen

diffusion through the electrode. The reaction kinetic and equivalent circuit models

of cathodic hydrogen reduction are satisfactorily employed to derive the Faradaic

admittance expressions for YF. The resistance R to diffusion as well as toHAR and the

corresponding overpotential/overvoltage � are also introduced as a measure of the

degree of deviation from equilibrium, and it plays a crucial role in determining the

RDS, which is regarded as the most strongly impeded/disturbed “slowest” step.

The HAR coupled with diffusion is a complex reaction. Many problems, for

instance the distribution of the weighting factor of pure diffusion control and

interface control over the whole hydrogen absorption mixed with subsequent diffu-

sion, the quantitative determination of theRDS during the overall hydrogen insertion
reaction, still need to be solved. Oneway to solve these problems is the potentiostatic

current method, and ac-impedance spectroscopy should be used in parallel and

complementarily, for example, as in the previous works performed in our laboratory

[80, 81].
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Chapter 4

Hydrogen Transport Under Impermeable

Boundary Conditions

4.1 Redox Reactions of Hydrogen Injection and Extraction

The hydrogen injection reaction into metals and oxides involves hydrogen absorp-

tion, followed by hydrogen diffusion through the bulk electrode. There are two

models that describe hydrogen absorption in an alkaline solution: (1) the one-step

(direct) mechanism and (2) the two-step mechanisms [1–3].

1. One-step absorption mechanism: hydrogen is directly absorbed into the elec-

trode as follows

Mþ H2Oþ e� $ MHabs þ OH� (4.1)

where MHabs denotes a hydrogen atom absorbed at the electrode subsurface just

beneath the topmost surface layer of the metal M.

2. Two-step mechanism: hydrogen is first adsorbed on the electrode surface

(Volmer adsorption) and then transferred from the adsorbed state (MHads) on

the electrode surface to the absorbed state (MHabs) at the electrode subsurface,

Mþ H2Oþ e� $ MHads þ OH� (4.2)

MHads $ MHabs (4.3)

Then, the absorbed hydrogen atom diffuses toward the interior of the electrode.

The hydrogen evolution reaction occurs simultaneously with the cathodic hydro-

gen injection. Hydrogen evolution proceeds by the chemical desorption (Tafel

reaction) or electrochemical desorption (Heyrovsky reaction) of the adsorbed

hydrogen atoms [4–6]. Therefore, the hydrogen evolution reaction provides an

alternative reaction path parallel to hydrogen injection. The adsorbed hydrogen

S.-I. Pyun et al., Electrochemistry of Insertion Materials for Hydrogen and Lithium,
Monographs in Electrochemistry, DOI 10.1007/978-3-642-29464-8_4,
# Springer-Verlag Berlin Heidelberg 2012
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state for hydrogen evolution is identical to that for hydrogen injection, and, thus

hydrogen injection is closely associated with the hydrogen evolution reaction. It is

difficult to uniquely determine the contribution of hydrogen injection to the

measured cathodic current because part of the electric charge is consumed by

hydrogen evolution. In order to study the mechanism of hydrogen transport,

therefore, it is more useful to analyze the anodic currents measured during hydro-

gen extraction from the electrode than the cathodic currents. The hydrogen injec-

tion and extraction reactions are schematically shown in Fig. 4.1a, b, respectively,

along with the corresponding profiles of the hydrogen concentration cH across the

electrode under the impermeable boundary condition. As shown in Fig. 4.1b, the

hydrogen extraction reaction proceeds through the following reactions:

1. Hydrogen diffusion within the bulk electrode

2. Hydrogen transfer of MHabs at the electrode subsurface to MHads on the elec-

trode surface

3. Electrochemical oxidation of the adsorbed hydrogen atom on the electrode

surface involving the charge transfer reaction

The hydrogen extraction reaction has been studied using a wide range of electro-

chemical techniques, for example, cyclic voltammetry [7–10], ac-impedance spectros-

copy [11–21], the galvanostatic potential transient technique (chronopotentiometry)

[22, 23], and potentiostatic current transient technique (chronoamperometry) [24–29].

Among these, the potentiostatic current transient technique is a valuable method of

examining hydrogen transport, due to the simple mathematics involved in the theoreti-

cal treatment. It is sometimes possible to obtain an analytical solution to the appropriate

diffusion equation for any set of boundary conditions.

Fig. 4.1 Schematic diagrams of the (a) hydrogen injection and (b) extraction reactions
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In this chapter, the analysis of the anodic current transients through mathemati-

cal calculations will be demonstrated to show the key features of the current

transients. For this purpose, we introduce the “virtual” electrode potential curve

for the redox reactions of hydrogen injection and extraction, even though real

electrode potential curves may deviate from the virtual one depending on the

electrode system. From the well-known Nernst equation, one can formulate the

expression of the electrode potential E for any solid-state redox system,

E ¼ Eo � RT

F
ln

d
1� d

� �
(4.4)

where d is the dimensionless atomic content, which is defined as the molar ratio of

the intercalated atoms to the host electrode, for example, H/M or MHd, Eo is the

standard electrode potential given at d ¼ 0.5, and F is the Faraday constant. The

notations R and T are usually used symbols. Equation 4.4 indicates that the value of

E decreases monotonously with increasing d. This means that a single phase is

maintained over the whole composition range.

Equation 4.4 is modified to Eq. 4.5 which represents the electrode potential

curve involving both single-phase and two-phase reactions, when the interaction

between the atoms is considered,

E ¼ Eo � zf
F

ð1� 2dÞ � RT

F
ln

d
1� d

� �
(4.5)

where z is the number of neighboring sites and f designates the interaction energy

between atoms (positive values of f correspond to attractive interactions, whereas

negative values refer to repulsive ones). Equation 4.5 was used to describe the

thermodynamic behavior of nonideal, ionic solid solutions where the protons

are dissociated in the host lattice of Ni(OH)2/NiOOH. Aurbach and his coworkers

[30, 31] showed that the isotherm derived based on Eq. 4.5 could fit satisfactorily

into the electrode potential curves measured on Pd, as well as transition metal oxide

electrodes. This indicates that Eq. 4.5 can be successfully used to describe the

electrode potential curve for hydrogen injection into and extraction from a hydride-

forming electrode.

Figure 4.2 presents the E versus d curve calculated with Eo ¼ 0 V, zf ¼ 0.059

eV, and T ¼ 298 K [32]. The electrode potential curve shows a potential plateau

at 0 V between dab ¼ 0:205 and dba ¼ 0:795. This indicates the coexistence of two
hydride phases, a-MHd and b-MHd. d

ab and dba denote the maximum solubility

limit of hydrogen in the a phase and the minimum solubility limit of hydrogen in

the b phase, respectively. For zf > 0.052 eV, the electrode potential curve

exhibits a local minimum below Eo and a local maximum above Eo, that is, the

curve shows an upward concave shape and then a downward concave shape. This

suggests that all of the compositions are unstable in the range between dab and dba,
which is called the “forbidden composition range”; a disproportionation reaction
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takes place in this “forbidden composition range” into a dilute a phase and a

concentrated b phase. Consequently, the electrode potential curve shows a per-

fectly flat potential plateau at Eo due to the equilibrium of the two phases.

4.2 Concept of Diffusion-Controlled Hydrogen Transport

In most theoretical and experimental investigations, it has been assumed that the

rate-determining step of hydrogen transport through hydride-forming electrodes is

hydrogen diffusion. The hydrogen extraction reaction can be represented by a series

of resistances (or impedances) associated with various reaction steps: the charge

transfer resistance Rct, the hydrogen transfer resistance Rht, and the diffusion

resistance Rd, as schematically illustrated in Fig. 4.3. A fast reaction step is

represented by a small resistance, while a slow reaction step is represented by a

high resistance. Let us assume that the linear relationship between the current I and
overpotential � is valid for each reaction step. Under a steady-state condition, the

rates of all of the reaction steps in a series should be the same, and the overpotential

� for each reaction step is expressed by

�ct ¼ Ist Rct (4.6)

�ht ¼ Ist Rht (4.7)

�d ¼ Ist Rd (4.8)

Fig. 4.2 E versus d curve

calculated using Eq. 4.5 with

Eo ¼ 0 V, zf ¼ 0.059 eV

and T ¼ 298 K (Reprinted

from Lee and Pyun [32],

Copyright #2005 with

permission from Elsevier

Science)
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where I st is the steady-state current. Summing Eqs. 4.6, 4.7, and 4.8, one obtains

Ist ¼ �ct þ �ht þ �d
Rct þ Rht þ Rd

(4.9)

I st is determined by one or more reaction steps with large values of R. So, the
diffusion-controlled hydrogen extraction refers to the condition where Rd is much

larger than Rct and Rht, leading to �d > > �ct and �ht, so that I st is exclusively

determined by the rate of hydrogen diffusion. This also means that the more facile

reactions of charge transfer and hydrogen transfer are held back from their maxi-

mum rates by the slow hydrogen diffusion. Given that � for a reaction step is a

measure of how far the reaction step is hindered from its equilibrium state, the

diffusion-control concept implies that the charge transfer and hydrogen transfer

reactions are practically undisturbed from the respective equilibria, but hydrogen

diffusion is noticeably disturbed from its equilibrium state.

4.3 Diffusion-Controlled Hydrogen Transport in the Presence

of Single Phase

4.3.1 Flat Electrode Surface

First, we present mathematical expressions for the current transients describing

hydrogen transport in a planar electrode with a flat surface. The following is

assumed:

1. The geometry is a planar electrode with a flat surface.

2. The electrode is homogeneous in structure, for example, the electrode does not

have any trap sites for hydrogen and comprises only a single phase.

3. The concentration gradient of hydrogen across the electrode is the unique factor

that drives hydrogen transport.

4. The chemical diffusivity of hydrogen ~DH remains constant during hydrogen

extraction.

5. The double-layer charging current is neglected.

Fig. 4.3 Schematic view of the hydrogen extraction process represented as a series of resistances
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Then the governing equation is Fick’s diffusion equation,

@ cH
@ t

¼ ~DH

@2 cH
@ x2

(4.10)

where x is the distance from the electrode/electrolyte interface and t is the hydrogen
extraction time.

Chemical diffusion is a process in which the transport of all species within the

electrode is involved. The chemical diffusivity of hydrogen~DH is related to the

component diffusivity DK which is a measure of the random motion of hydrogen

ions in the electrode as follows [33]:

~DH ¼ DK Wth (4.11)

Here, Wth denotes the thermodynamic enhancement factor. In the case of a metal-

hydrogen system in which one ionic species (hydrogen ion) and one electronic

species are considered in the electrode, Wth is defined as

Wth ¼ te
@ ln aH
@ ln cH

� �
(4.12)

The metal electrode is predominantly an electronic conductor, that is, te � 1,

and hence Wth simply becomes

Wth ¼ @ ln aH
@ ln cH

¼ 1þ @ ln gH
@ ln cH

(4.13)

where gH is the activity coefficient, that is, gH ¼ aH/cH. Since a metal-hydrogen

system is generally considered to be an ideal dilute solution, the thermodynamic

enhancement factor Wth of hydrogen should be unity, so that the chemical diffusiv-

ity of hydrogen ~DH, the component diffusivityDK, the random diffusivityDrand, and

the self-diffusivity Dself are all equal to each other.

The initial condition (IC) and boundary conditions (BCs) are written as follows:

IC : cH ¼ coH for 0 � x � L at t ¼ 0 (4.14)

BC : cH ¼ csH ðdiffusion� controlBCÞ

for x ¼ 0 at t � 0

(4.15)

@ cH
@ x

� �
¼ 0 impermeableBCð Þ

for x ¼ L at t � 0

(4.16)
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where L is the electrode thickness and coH and csH denote the initial equilibrium

concentration of hydrogen and the surface concentration of hydrogen which corre-

spond to Eini and Eext, respectively.

The solution of Eq. 4.10 under the above IC and BCs has one of two standard

forms of cH. It is in the form of either a series of error functions as given in Eq. 4.17

or a trigonometrical series as given in Eq. 4.18 [34, 35]:

cHðx; tÞ ¼ coH � ðcoH � csHÞ

�
X1
n¼0

ð�1Þn erfc
2Lðnþ 1Þ � x

2

ffiffiffiffiffiffiffiffiffi
~DH t

q
0
B@

1
CAþ erfc

2Lnþ x

2

ffiffiffiffiffiffiffiffiffi
~DH t

q
0
B@

1
CA

2
64

3
75 (4.17)

cHðx; tÞ ¼ csH þ 4ðcoH � csHÞ
p

�
X1
n¼0

1

ð2nþ 1Þ sin
ð2nþ 1Þpx

2L

� �
exp �ð2nþ 1Þ2p2~DHt

4L2

 !
(4.18)

Equations 4.17 and 4.18 are used to derive the current-time relation at short

times and long times, respectively. The time-dependent current during hydrogen

extraction is related to the concentration gradient of hydrogen at the electrode

surface by Fick’s first law,

IðtÞ ¼ FAea ~DH

@ cH
@ x

� �
for x ¼ 0 at t � 0 (4.19)

where Aea is the electrochemical active area. Note that the anodic current is taken to

be positive in accordance with the IUPAC convention. Neglecting the higher order

terms in Eqs. 4.17 and 4.18, the current-time relation for hydrogen extraction can be

obtained from Eq. 4.19 as Eq. 4.20 for the early stage of hydrogen extraction and as

Eq. 4.21 for the later stage,

IðtÞ ¼ FAeaðcoH � csHÞ
~DH

p t

 !1=2

for t<<
L2

~DH

(4.20)

IðtÞ ¼ 2FAeaðcoH � csHÞ ~DH

L
exp �p2 ~DH

4L2
t

 !
for t>>

L2

~DH

(4.21)

Equation 4.20 is referred to as the Cottrell equation.

Figure 4.4a illustrates the log I versus log t curve calculated by jumping Eini ¼ 0.01

V to Eext ¼ 0.08 V [32]. The anodic current transient was calculated by assuming

L ¼ 1 cm, Aea ¼ 1 cm2, and F~DH ¼ 1A cm2mol�1 . Here, cH was taken to be d
mol cm–3 for the molar volume of the electrode Vm ¼ 1 cm3 mol–1. The current
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Fig. 4.4 (a) log I versus log
t curve, (b) It1/2 versus log
t plot, and (c) the hydrogen

concentration profile

transients calculated by

jumping Eini ¼ 0.01 V to

Eext ¼ 0.08 V (Reprinted

from Lee and Pyun [32],

Copyright #2005 with

permission from Elsevier

Science)
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transient exhibits a linear relationship between log I and log t with an absolute slope of
0.5 (i.e., Cottrell behavior), followed by an exponential decay of current with time, as

predicted from Eqs. 4.20 and 4.21. Moreover, the simulation showed that all of the

anodic current transients determined at various values of Eext in the range of 0.08 to

0.16 V exactly coincide with each other in shape as well as in value. This is because the

values of Eext correspond to cH of zero as well and, hence, (coH–c
s
H) keeps a constant

value regardless of Eext. According to Eq. 4.20, the Cottrell region is characterized in

the plot of It1/2 versus log t by a plateau with a constant value of It1/2, as demonstrated in

Fig. 4.4b. The transition time, ttr, which is designated as an open circle in Fig. 4.4a, b, is
determined as the time at which the current transient shows a transition from semi-

infinite diffusion behavior (Cottrell behavior) to finite-length diffusion behavior (expo-

nential decay of current with time). Defining the time constant for linear diffusion as

td ¼ L2=~DH , such a transition appears in a narrow time range near t ¼ 0.2td [35].

Figure 4.4c demonstrates the hydrogen concentration profile transients at DEjump of

0.01 to 0.08 V, simultaneously calculated with the anodic current transients. Note that

under the diffusion-control BC, the hydrogen concentration cH at the electrode surface

is fixed at zero, corresponding to Eext over the whole hydrogen extraction time.

Equations 4.20 and 4.21 have been used for the estimation of the hydrogen diffusivity

from the current transient experiments. For example, Ura et al. [25] used the current

transientmethod todetermine the diffusion coefficient of anLaNi5 electrode. Figure 4.5a

shows the typical anodic current-time response of anLaNi5 alloy particlemeasured after

the potential was jumped from �1.0 V for hydrogen injection to �0.1 V for hydrogen

extraction. The current responses are divided into two time domains:

1. The short-time region (t ¼ 8 to 60 s): I is proportional to t�1/2 (Fig. 4.5b).

2. The long-time region: log I is proportional to t (Fig. 4.5c).

The diffusion coefficient was determined by applying Eq. 4.21 to the current

response for the long-time region. The value of ~DH obtained for the LaNi5 alloy is

3.6 � 10�8 cm2 s�1, which is consistent with the values obtained by NMR
measurements [36].

4.3.2 Rough Electrode Surface

Real electrode surfaces are not strictly flat, but are rather irregular and rough and,

thus, hydrogen transport may be affected by the surface roughness. In fact, the

classical theories for the diffusion kinetics at the flat electrode surface place a

limitation on describing hydrogen diffusion toward a real electrode surface that is

either rough or porous. By using fractal geometry, the current transient at a rough

surface can be analyzed in terms of the generalized Cottrell equation under the

diffusion-control BC [37–40]. More information on fractal geometry can be found

in Chapter 9. According to the literature on the diffusion process toward fractal
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Fig. 4.5 (a) Anodic current

transient of an LaNi5 alloy

particle measured by jumping

the potential from �1.0 V to

�0.1 V. (b) I versus t�1/2 plot

in the short-time region and

(c) log I versus t plot in the

long-time region (Reprinted

from Ura et al. [25],

Copyright #1995 with

permission from Elsevier

Science)
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surfaces [37–40], the generalized Cottrell equation is valid for hydrogen transport

through the fractal electrode:

IðtÞ / t�a generalized Cottrell equationð Þ (4.22)

with the exponent a that is solely determined by the fractal dimension of the surface

dF,ss,

a ¼ dF;ss � dE þ 2

2
(4.23)

where dE is the dimension of the Euclidean space where the electrode is embedded

(dE ¼ 2). It should be pointed out that Eq. 4.22 holds in a limited range of t between
the temporal inner cutoff ti (crossover time required for the flat to fractal transition)

and the temporal outer cutoff to (crossover time needed for the fractal to flat

transition) [38]. For diffusion-controlled hydrogen transport, ti and to are exclu-

sively determined by the spatial cutoffs and the hydrogen diffusivity.

The Weierstrass function fWS(y) has been widely used to model a rough surface

and to generate a self-affine fractal profile with a desired fractal dimension [41]:

fWSðyÞ ¼
XN
k¼1

bðdF;sa�2Þkcos(bkyÞ (4.24)

where dF,sa denotes the self-affine fractal dimension of the function. Figure 4.6

shows the self-affine fractal profiles with dF,sa ¼ 1.3 and 1.5 modeled using

b ¼ 1.5 and N ¼ 50 [42]. The fractal curve with dF,sa ¼ 1.5 appears to be more

irregular and rougher than that curve with dF,sa ¼ 1.3. According to the theoretical

and experimental works on a self-affine fractal surface by Pyun and coworkers [41,

43], atomic/ionic diffusion toward a self-affine fractal surface should be described

in terms of the apparent self-similar fractal dimension rather than the self-affine

fractal dimension. The self-similar fractal dimensions dF,ss of the self-affine fractal
profiles of Fig. 4.6 were estimated to be 1.32 for dF,sa ¼ 1.3 and 1.47 for dF,sa ¼ 1.5

by using a triangulation method [43]. The spatial inner and outer cutoffs, li and lo,
for the fractal surface of Fig. 4.6 were evaluated to be ca. 0 and ca. 16, respectively.

The potentiostatic current transients for hydrogen transport through rough electrodes

can be simulated using the kinetic Monte Carlo (MC) algorithm [42]. TheMCmethod

has beenwell established inmany researchworks dealingwith lithium transport through

flat electrodes consisting of transitionmetal oxides [44, 45]. Full details of the simulation

are described in a previous publication [42]. On the basis of the electrode potential curve

in Fig. 4.2, the current transients were theoretically calculated under the diffusion-

control BC by jumping Eini ¼ 0.024 V to Eext ¼ 0.08 V. Figure 4.7 illustrates the log

I versus log t curves calculated from the flat electrode with dF,ss ¼ 1.0 and the fractal

electrodes with dF,ss ¼ 1.32 and 1.47 [42]. The Monte Carlo step (MCS) on the x-axis
was used as the unit of t. The current transients from the fractal electrodes show
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generalizedCottrell behavior at t < to and conventionalCottrell behavior at t > to. The
values of towere determined to be approximately 160MCS aswell for both of the fractal
electrodes, as shown in Fig. 4.7.

Fig. 4.6 Self-affine fractal

profiles generated by

Weierstrass function

(Reprinted from Lee and

Pyun [42], Copyright #2005

with permission from

Elsevier Science)

Fig. 4.7 log I versus log
t curves calculated from the

flat electrode with dF,ss ¼ 1.0

and the fractal electrodes with

dF,ss ¼ 1.32 and 1.47. Note

that the values of I for dF,ss
¼ 1.32 and 1.47 were

multiplied by the factors 2.0

and 4.0, respectively

(Reprinted from Lee and

Pyun [42], Copyright #2005

with permission from

Elsevier Science)
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4.3.3 Effect of Diffusion Length Distribution

The composite electrode consists of particles with different sizes, and such particles

have a size distribution. Even for a composite electrode with a narrow distribution

of particle sizes, the cracking of the hydride particles during charge–discharge

cycling may broaden the size distribution. According to Eq. 4.21, the diffusion

length (particle size) L is one of the key parameters that determine the current

transient. For simplicity, let us assume that all of the particles have the same

electrochemical active area and that the diffusion length L takes a log-normal

distribution f(r) given by [46]

f ðrÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp �ðr � mÞ2
2s2

" #
(4.25)

r ¼ ln
L

Lo

� �
(4.26)

where r denotes the natural logarithm of L divided by an arbitrary unit length Lo to
obtain a dimensionless quantity and m and s represent the mean value and standard

deviation of r, respectively.
If N particles are located in parallel and the current passing through each particle

I is expressed by Eq. 4.27, then the total current Itotal can be written as [46]

ItotalðtÞ ¼ N

ð1

�1
f ðrÞIðtÞ dr (4.27)

where Nf(r)dr means the number of particles between r and r + dr. Substituting
y ¼ ðr � mÞ=s into Eqs. 4.25 and 4.27, one obtains

ItotalðtÞ ¼
ð1

�1
Nf ðyÞIðtÞdy ¼

ð1

�1
IðtÞ Nffiffiffiffiffiffi

2p
p exp � y2

2

� �
dy (4.28)

Figure 4.8 demonstrates the log I versus log t curves theoretically calculated from

Eq. 4.28 for various values of s. The current transient computed with s ¼ 0 exhibits

the ideal behavior predicted from Eqs. 4.20 and 4.21 in the short-time and long-time

regions, respectively. However, the current transients calculated considering the diffu-

sion length distribution deviate from such ideal behavior: As the value of s increases,

the absolute slope becomes larger than 0.5 in the short-time region, and the current

decays more slowly in the long-time region. Remembering that the transition time ttr
for the semi-infinite diffusion behavior to the finite-length diffusion behavior is propor-

tional to the square of the diffusion length L, it follows that the deviation of the current
transient from the ideal behavior is attributable to the dispersion of ttr that is caused by
the diffusion length distribution.
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4.4 Diffusion-Controlled Hydrogen Transport in the Case

Where Two Phases Coexist

During the hydrogen injection and extraction reactions, the hydride-forming elec-

trode undergoes a phase transformation of the a-MHd phase to b-MHd phase and

vice versa, respectively. When these two hydride phases coexist in the electrode,

two regions with different concentrations of hydrogen are separated by a phase

boundary and, thus, hydrogen transport involves the movement of the phase

boundary, as schematically presented in Fig. 4.9 [47].

4.4.1 Diffusion-Controlled Phase Boundary Movement
in the Case Where Two Phases Coexist

Wagner and Jost [48] provided useful mathematical approaches to the phase

boundary movement in the case where two phases coexist, and then their model

was implemented by Millet et al. [49] who studied hydrogen transport through a Pd

electrode consisting of a-PdHd and b-PdHd. Millet et al. [49] provided the exact,

closed-form solutions to the problem of hydrogen transport under the diffusion-

control BC at the electrode surface. When dealing with two-phase problems, one

should have the two differential equations for the diffusion processes in the a-PdHd

and b-PdHd phases,

@ caH
@ t

¼ ~Da
H

@2caH
@ x2

ðin the a phaseÞ (4.29)

Fig. 4.8 log I versus log
t curves calculated considering

the log-normal distribution of

particle sizes with various

values of standard deviation s
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@ cbH
@ t

¼ ~Db
H

@2cbH
@ x2

ðin the b phaseÞ (4.30)

where ~Da
H and ~Db

H represent the hydrogen diffusivities in the a and b phases,

respectively. The IC and BC are given as follows:

IC : cH ¼ coH for 0 � x � L at t ¼ 0 (4.31)

BC : cH ¼ csH diffusion � controlBCð Þ

for x ¼ 0 at t � 0

(4.32)

Let us assume that the interfacial reaction at the a/b phase boundary is very fast,

so that the phase boundary movement is controlled by diffusion. In this case, the

a phase with cabH is in a quasi-equilibrium with the b phase with cbaH and hence the

following BC is valid at the a/b phase boundary, x ¼ x, during hydrogen extraction:

BC : cH ¼ cabH for x ¼ x�at t � 0 (4.33)

cH ¼ cbaH for x ¼ xþat t � 0 (4.34)

In the case where the a phase completely covers the surface of the b phase

matrix, the location of the a/b phase boundary is represented by

x ¼ 2g
ffiffiffiffiffiffiffiffiffi
~Da
H t

q
(4.35)

Fig. 4.9 Schematic diagram

of hydrogen transport

(charging and discharging) in

the case where two phases

co-exist (Reprinted from Cui

et al. [47], Copyright #2001

with permission from

Elsevier Science)
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where g is a dimensionless parameter which is called the growth factor.

The Laplace transform of Eqs. 4.29 and 4.30 under the semi-infinite diffusion

condition yields Eqs. 4.36 and 4.37 for the hydrogen concentrations caH and c
b
H in the

a and b phases, respectively:

caHðx; tÞ ¼ csH þ cabH � csH
erf (gÞ erf

x

2

ffiffiffiffiffiffiffiffiffi
~Da
H t

q
0
B@

1
CA (4.36)

cbHðx; tÞ ¼ coH � coH � cbaH
erfc(g’�1=2Þ erfc

x

2

ffiffiffiffiffiffiffiffiffi
~Db
H t

q
0
B@

1
CA (4.37)

where ’ ¼ ~Db
H=~Da

H . The flux balance for hydrogen at the a/b phase boundary is

written as

ðcbaH � cabH Þ @ x
@ t

¼ ~Da
H

@ caH
@ x

� �
x¼x�

� ~Db
H

@ cbH
@ x

 !
x¼xþ

(4.38)

The following equation is obtained by substituting Eqs. 4.36 and 4.37 into

Eq. 4.38,

cbaH � cabH ¼ cabH � csH
g
ffiffiffi
p

p
erf(gÞ exp(�g

2Þ � ðcoH � cbaH Þ’1=2exp(�g2=’Þ
g
ffiffiffi
p

p
erfc(g’�1=2Þ (4.39)

Equation 4.39 allows us to determine the value of g.
Figure 4.10 gives the typical hydrogen concentration profile transient under the

semi-infinite diffusion condition calculated by jumping Eini ¼ �0.01 to Eext ¼ 0.08 V

[32]. The parameters used are: cH ¼ d, ~Da
H ¼ 1.2 � 10–7 cm2 s–1, ~Db

H ¼ 1.2 �
10–7 cm2 s–1, and g ¼ 0.470. According to Fick’s first law, the current can be obtained

as a function of time as follows:

IðtÞ ¼ FAea

cabH � csH
erf(gÞ

~Da
H

pt

 !1=2

(4.40)

Equation 4.40 indicates that the log I versus log t curve shows an absolute slope

of 0.5, which is similar to the case of hydrogen transport through the electrode in the

presence of a single phase. Such a relationship between I and
ffiffi
t

p
can be understood

as follows: The velocity of the phase boundary movement dx/dt decreases with the

reciprocal of
ffiffi
t

p
, as inferred from Eq. 4.35.
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The model explained above has two critical limitations:

1. The a/b phase boundary moves toward x ¼ L with the velocity determined by

Eq. 4.35 during hydrogen extraction. This implies that the flux leaving the phase

boundary should always be much larger than that entering the phase boundary.

Thus, the assumption of Eq. 4.35 is only valid for~Da
H>> ~Db

H, but it is unlikely to

be realistic for most hydride electrodes. The values of ~Da
H in hydride-forming

metals, for example, a Pd electrode, are known to be about one-order of

magnitude smaller than the values of ~Db
H.

2. The decomposition process of the b phase that may occur at the beginning of

hydrogen extraction is not completely discussed in the above model. For this

reason, Eq. 4.40 has a limitation on describing the measured current transients,

particularly in the short-time region.

4.4.2 Diffusion-Controlled Phase Boundary Movement Coupled
with Boundary Pining

A modified model of hydrogen transport in a hydride-forming electrode in the case

where two phases coexist is developed from the theoretical work by Shin and Pyun

[50, 51]. A numerical method suggested by Murray and Landis [48] was used to

solve the diffusion equation inside each phase on expanding grids in the growing

a phase and contracting grids in the shrinking b phase. The following expressions

are given for the change of the hydrogen concentration gradients across the a phase

Fig. 4.10 Hydrogen

concentration profile

transients calculated based on

Eq. 4.39 by jumping

Eini ¼ �0.01 V to

Eext ¼ 0.08 V (Reprinted

from Lee and Pyun [32],

Copyright #2005 with

permission from Elsevier

Science)
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@ caHðnÞ
@ t

¼ ~Da
H

@2caHðnÞ
@ xðnÞ2 þ @ caHðnÞ

@ xðnÞ
xðnÞ
x

dx
dt

for 0 < xðnÞ<x; n ¼ 2; 3; . . . ; r � 1

(4.41)

and across the b phase

@ cbHðnÞ
@ t

¼ ~Db
H

@2cbHðnÞ
@ xðnÞ2 þ @ cbHðnÞ

@ xðnÞ
L� xðnÞ
L� x

dx
dt

for x<xðnÞ<L; n ¼ r þ 1; r þ 2; . . . ;N

(4.42)

where cH(n) is the hydrogen concentration at the n-th grid point and x(n) is the

position of the n-th grid point. In order to describe in more detail the decomposition

process of the b phase at the beginning of hydrogen extraction, the concept of

“pinning” of the a/b phase boundary is introduced. This assumes that the a/b phase

boundary is pinned at the location x ¼ Lpin close to the electrode/electrolyte

interface, between the a phase completely covering the whole b matrix surface

and the matrix b phase until the flux leaving the a/b phase boundary exceeds that

entering the a/b phase boundary. Then, the IC is modified to reflect the pinning

limitation as follows:

IC : cH ¼ csH þ cabH
x

Lpin
for 0 � x � Lpin at t ¼ 0 (4.43)

cH ¼ coH for Lpin � x � L at t ¼ 0 (4.44)

The BCs at x ¼ 0, x � and x + are given by Eqs. 4.32, 4.33, and 4.34,

respectively. The phase boundary begins to move at the time when the value of cbH
at x ¼ x + reaches the maximum solubility limit of hydrogen cbaH in the b phase.

From this time on, the flux leaving the phase boundary always exceeds that entering

the phase boundary and hence the a/b phase boundary continues to move toward

x ¼ L. When the a/b phase boundary reaches x ¼ L, it disappears and, then,

hydrogen extraction proceeds by hydrogen diffusion in the single a phase.

Figure 4.11a demonstrates the log I versus log t curve calculated by jumping

Eini ¼ �0.01 V to Eext ¼ 0.08 V [32]. The anodic current transient was simulated

with Lpin ¼ 0.05 cm. The hydrogen concentration profile transient simultaneously

calculated with the anodic current transient is also presented in Fig. 4.11b. The

simulated current transient exhibits three-stage behavior:

1. A current plateau in the time interval between t ¼ 0 and t ¼ ttr(1)
2. An upward concave shape to t ¼ ttr(2)
3. A rapid decay of current with time

During the first, second, and third stages of the simulated current transient, the

corresponding concentration profile runs can be divided into three stages:
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1. The pinning of the a/b phase boundary

2. The a/b phase boundary movement

3. Hydrogen extraction from the single a phase.

Figure 4.12 displays the anodic current transients experimentally obtained from

the LaNi5 electrode in 6 M KOH solution [52]. The log I versus log t curve is

composed of a current plateau and then an upward concave curve, followed by a

sudden fall of current with time. Furthermore, the duration of the current plateau in

the first stage was found to be extended with increasing hydrogen preinjection time.

The theoretically calculated anodic current transient shown in Fig. 4.11a is in good

agreement with the experimentally measured one shown in Fig. 4.12. This means

that hydrogen extraction proceeds by a mechanism involving the a/b phase bound-

ary pinning and the diffusion-controlled phase boundary movement. Considering

that the higher the initial hydrogen concentration coH in the b phase, the longer the

Fig. 4.11 (a) log I versus log
t curve and (b) hydrogen

concentration profile transient

calculated by jumping

Eini ¼ �0.01 V to

Eext ¼ 0.08 V (Reprinted

from Lee and Pyun [32],

Copyright #2005 with

permission from Elsevier

Science)
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time necessary until the value of cbH reaches cbaH , the increase in the duration of the

current plateau with increasing hydrogen preinjection time in the measured current

transient of Fig. 4.12 can be accounted for in terms of the increased value of coH. The
slight discrepancy between the simulated and measured current transients observed

around t ¼ ttr(1) and t ¼ ttr(2) can be attributed to the nonuniform size distribution

of LaNi5 particles in the composite electrode [53].
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Chapter 5

Hydrogen Trapping Inside Metals and Metal

Oxides

The anomalous behavior of hydrogen in terms of its solubility and diffusivity

in metals and oxides has been the subject of repeated investigations [1–6].

The diffusion coefficients of hydrogen in metals reported in the literature have

usually been determined under the assumption that the hydrogen concentration is

governed by Fick’s law. Figure 5.1 summarizes some of the experimental data on

the diffusivity of hydrogen reported in the literature [1]. It should be noted that

small values of the diffusion coefficient were obtained for work-hardened samples

(designated as curves 6). Figure 5.1 indicates that the diffusion coefficient is a

function of other variables besides the temperature and that these neglected

variables are in some way related to the work hardening experienced by the

specimen. There are, therefore, some doubts about the validity of Fick’s law and

the simple physical model of random motion through the electrode.

Real metals are known to contain structural defects, e.g., dislocations, grain

boundaries, microcracks, and internal interfaces, which can act as trap sites for

hydrogen atoms. These trap sites deepen the potential well, and thus, a trapped

hydrogen atom must acquire an activation energy larger than the energy for normal

lattice diffusion to escape a trap site. The mean residence time of a diffusing

hydrogen atom is significantly longer in a trap site than in a normal lattice site,

resulting in the substantial decrease of the apparent diffusivity [7]. Darken and

Smith [8] first suggested that hydrogen diffusion is impeded by lattice imperfections

in cold-worked steel. They treated the diffusion process of hydrogen with trapping in

a way analogous to the problem of oxygen diffusion into copper containing small

amounts of silicon with which it could be trapped in the form of SiO2. McNabb and

Foster [1] developed a more general modelistic formulation for the phenomenon of

hydrogen diffusion with accompanying trapping at one kind of trap. Oriani [9] later

reformulated the work of McNabb and Foster using the assumption of a local

equilibrium between the hydrogen atoms in the normal lattice sites and trap sites.

He applied this concept to obtain the trap density in steels from hydrogen charging or

S.-I. Pyun et al., Electrochemistry of Insertion Materials for Hydrogen and Lithium,
Monographs in Electrochemistry, DOI 10.1007/978-3-642-29464-8_5,
# Springer-Verlag Berlin Heidelberg 2012
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permeation measurements. Iino [10, 11] considered irreversible trapping when

analyzing the hydrogen permeation data, and then, Leblond and Dubois [12, 13]

studied the combined effects of reversible and irreversible trappings on hydrogen

transport.

5.1 Hydrogen Trapping in Insertion Electrodes: Modified

Diffusion Equation

The physical model introduced in this chapter assumes the following:

1. The hydrogen atoms wander in a random manner through the metal.

2. Trap sites are regarded as potential wells of significantly greater depth than those

encountered in normal lattice sites (no assumptions are made concerning their

nature or origin).

3. There are two types of traps: reversible and irreversible trap sites.

4. The trap sites are uniformly distributed throughout the metal.

5. Hydrogen atoms tend to get trapped or delayed at trap sites.

6. The trap sites do not form an extended network.

7. Hydrogen transport between trap sites occurs by normal lattice diffusion.

A model for the reversible and irreversible trap sites is schematically presented

in Fig. 5.2.
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Hydrogen transport through the electrode in the presence of trap sites can be

described by the modified Fick’s diffusion equation [1, 14]:

~DH

@2cH
@ x2

¼ @ cH
@ t

þ Nr

@ fr
@ t

þ Ni

@ fi
@ t

(5.1)

@ fr
@ t

¼ krcHð1� frÞ � prfr (5.2)

@ fi
@ t

¼ kicHð1� fiÞ (5.3)

where cH is the hydrogen concentration, ~DH the chemical diffusivity of hydrogen

(see Chap. 4), x the distance from the electrode/electrolyte interface, t the hydrogen
diffusion time, N the total trap concentration, f the fraction of trap sites that are

occupied, and the subscripts r and i refer to the reversible and irreversible trap sites,

respectively. kr and pr are the capture rate and release rate for a reversible trap site,

respectively, and ki means the irreversible trap strength. It is assumed that the

electrode contains a very low fraction of trap sites occupied, i.e., fr and fi << 1.

Then, Eqs. 5.2 and 5.3 reduce to Eqs. 5.4 and 5.5, respectively:

@ fr
@ t

¼ krcH � prfr (5.4)

@ fi
@ t

¼ kicH (5.5)

When treating complicated mathematical problems, it is convenient to use

dimensionless variables as follows:

C ¼ cH=c
o
H (5.6)

X ¼ x=L (5.7)

Fig. 5.2 Schematic diagram of reversible and irreversible trap sites for hydrogen in a metal. L, R
and I represent a normal lattice site, a reversible trap site and an irreversible trap site, respectively
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T ¼ ~DHt=L
2 (5.8)

V ¼ Nrfr=c
o
H (5.9)

W ¼ Nifi=c
o
H (5.10)

l ¼ krNrL
2= ~DH (5.11)

m ¼ prL
2= ~DH (5.12)

k ¼ kiNiL
2= ~DH (5.13)

Now Eqs. 5.1, 5.4, and 5.5 are written as

@2C

@ X2
¼ @C

@ T
þ @ V

@ T
þ @W

@ T
(5.14)

@ V

@ T
¼ lC� mV (5.15)

@W

@ T
¼ kC (5.16)

5.2 Hydrogen Trapping Determined by Current Transient

Technique

We now consider the current transient behavior of hydrogen transport in the

presence of traps based on the modified diffusion equation, Eqs. 5.14, 5.15, and

5.16. We assume that the diffusion-control boundary condition (BC) is effective at
the electrode surface (see Chap. 4). The initial condition (IC) and BCs for hydrogen
extraction from the electrode are given by

IC : C ¼ 1; V ¼ Vo; W ¼ Wo for 0bXb1 at T ¼ 0 (5.17)

BC : C ¼ CS diffusion� controlBCð Þ for X ¼ 0 at Tr 0 (5.18)

@ C

@ X

� �
¼ 0 impermeableBCð Þ for X ¼ 1 at Tr 0 (5.19)

where CS ¼ csH=c
o
H, V

o ¼ Nrf
o
r =c

o
H and Wo ¼ Nif

o
i =c

o
H. Here, f

odenotes the initial

fraction of trap sites that are occupied in the electrode.
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Applying the Laplace transformation to Eqs. 5.14, 5.15, 5.16, 5.17, 5.18, and

5.19 followed by the inverse Laplace transformation, the solution of Eq. 5.14 is

given by

C ¼
X1
n¼0

ð�1Þn s
þ
n þ 2m
sþn � m

2 cos

�
nþ 1

2

�
pX

� �

1þ lm

sþn � m
� �2

" # e�sþn T

þ
X1
n¼0

ð�1Þn s
�
n þ 2m
s�n � m

2 cos nþ 1

2

� �
pX

� �

nþ 1

2

� �
p 1þ lm

s�n � m
� �2

" # e�s�n T ð5:20Þ

s�n ¼ 1

2
lþ mþ kþ nþ 1

2

� �2

p2
" #(

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ mþ kþ nþ 1

2

� �2

p2
" #2

� 4m kþ nþ 1

2

� �2

p2
" #vuut

9=
; ð5:21Þ

By differentiating C with respect to X and letting X ¼ 1, we obtain a reduced

hydrogen flux as follows:

jðTÞ ¼ �
X1
n¼0

sþn þ 2m
sþn � m

2

1þ lm

sþn � m
� �2

" # e�sþn T

�
X1
n¼0

s�n þ 2m
s�n � m

2

L 1þ lm

s�n � m
� �2

" # e�s�n T ð5:22Þ

Equation 5.22 is the general flux-time relation for hydrogen transport through an

electrode with a low hydrogen concentration having reversible and irreversible

traps of one kind.

The anodic current transients were calculated from the modified diffusion

equations using the virtual electrode potential curve described in Chap. 4

(Fig. 4.2). Figure. 5.3a–c illustrates the log (current I) versus log (time t) curves
simulated in the presence of only reversible trap sites as functions of the capture

rate l, the release rate m, and the relative trap concentration Vo initially occupied in

the electrode, respectively [15]. The current transients were calculated by jumping

Eini ¼ 0.01 V to Eext ¼ 0.08 V. For comparison, the anodic current transient for

hydrogen transport in the absence of any trap sites is plotted, and it shows simple
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Fig. 5.3 log I versus log
t curves simulated in the

presence of reversible trap

sites as functions of (a) the

capture rate l, (b) the release
rate m and (c) the relative trap

concentration Vo initially

occupied in the electrode

(Reprinted from Lee and

Pyun [15], Copyright #2005

with permission from

Elsevier Science)
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two-stage behavior, which is typical of the diffusion-control model (see Chap. 4).

The current transients for hydrogen transport in the presence of reversible trap sites

show an additional downward concave curve in the long-time region, i.e., three-

stage shape. The results may be summarized as follows:

1. The first and second stages remain unchanged regardless of the values of l, m,
and Vo.

2. The duration of the third stage is prolonged with increasing l at a constant value
of m (Fig. 5.3a).

3. The duration of the third stage is prolonged with decreasing m at a constant value

of l (Fig. 5.3b).

4. As the value of Vo increases, the current level of the third stage increases and the

duration of the third stage is prolonged (Fig. 5.3c).

The mean residence time of a diffusing hydrogen atom is considerably longer in

a trap site than in a normal lattice site, and thus, the hydrogen atoms residing in

normal lattice sites should be extracted first, followed by those in trap sites.

Therefore, the first and second stages of the anodic current transient results mostly

from hydrogen extraction from normal lattice sites, and the third stage reflects the

extraction of hydrogen from reversible trap sites. The relative trap concentration

profiles at various reduced times T are presented in Fig. 5.4 [14]. During hydrogen

extraction, the hydrogen concentration across the electrode should decrease mono-

tonically with time, regardless of the absence or presence of trap sites. However,

Fig. 5.4 shows that the trap concentration across the electrode increases with

increasing T up to T ¼ 2 and then decreases. This indicates that the hydrogen

atoms are extracted from the interstitial sites and trap sites and/or the hydrogen

atoms are trapped and re-trapped in the initial stage. Note that the reduced time

below T ¼ 2 in Fig. 5.4 corresponds to the first and second stages of the current

transient in Fig. 5.3, indicating that the current transient is affected very little by

reversible trapping, due to the combined actions of trapping and re-trapping. By

contrast, the reduced time above T ¼ 3 in Fig. 5.4 corresponds to the third stage,

which confirms the release of the trapped and re-trapped hydrogen atoms.

Figure 5.5 demonstrates the combined effect of reversible and irreversible traps

on the hydrogen transport [15]. The anodic current transients were numerically

calculated by jumping Eini ¼ 0.01 V to Eext ¼ 0.08 V for various values of the

irreversible trap strength, k. Here, we assume that all of the irreversible trap sites

are initially empty, i.e., Wo ¼ 0, as in the study of irreversible hydrogen trapping

under permeable boundary conditions by Iino [10, 11]. If all of the irreversible trap

sites are initially occupied, the irreversible hydrogen trapping does not affect the

anodic current transient at all. This is because the irreversible trap sites are not

capable of releasing hydrogen over the whole time period. In the presence of

irreversible trap sites, the total number of diffusing hydrogen atoms does not remain

constant. As k increases from 0.1 to 10, therefore, the slope of the first stage of the

anodic current transient deviates negatively from �0.5, and the current levels in all

of the stages are reduced.

Figure 5.6 gives the exemplary log I versus log t curves that show the effect of

hydrogen trapping on the hydrogen transport [16]. The anodic current transients
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(plotted in terms of the reduced current) were experimentally measured on a Pd

electrode in 0.1 M NaOH solution. The reduced current was defined as the

measured anodic current I divided by the total anodic charge Qtotal transferred

during hydrogen extraction. Hydrogen was previously injected into the electrode

at Eini ¼ 0.02–0.1 V(RHE), and then Eini was jumped to Eext ¼ 0.9 V(RHE).

The anodic current transient from the electrode precharged with hydrogen at Eini ¼ 0.1

V(RHE) exhibits a simple two-stage shape with Cottrell character, but the transition

from a two-stage current transient to a three-stage current transient is observed at

Eini ¼ 0.08 V(RHE). This indicates that hydrogen trapping tends to occur below

Eini ¼ 0.08 V(RHE). The absence of any significant deviation of the absolute slope

Fig. 5.4 Relative trap

concentration profiles across

the electrode at various

reduced times T (Reprinted

from Pyun and Yang [14],

Copyright #1998 with

permission from Elsevier

Science)
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of the logarithmic current transient from 0.5 in the first stage implies that hydrogen

trapping is not noticeable in the irreversible trap sites. The good agreement between the

shapes of the measured and simulated current transients in the third stage further

suggests that the release rate of hydrogen from the reversible trap sites increases with

decreasing Eini.
Another example of hydrogen trapping can be found in the current transient on

electro-synthesized Ni(OH)2 (ESN) electrodes [17]. ESN has a fine-grained struc-

ture with water and hydroxyl groups at the grain boundaries. The hydrogen trans-

port behavior strongly depends on the constituents at the grain boundaries. Foreign

species such as water, electrolyte species and additives (e.g., cobalt hydroxide), and

their neighboring sites are considered to act as trap sites, depending on their nature.

Fig. 5.6 log (I/Qtotal) versus

log t curves measured on a Pd

electrode in 0.1 M NaOH

solution (Reprinted from

Yang et al. [16], Copyright

#1997 with permission from

Elsevier Science)

Fig. 5.5 log I versus log
t curves calculated in the case

where reversible and

irreversible trap sites coexist

(Reprinted from Lee and

Pyun [15], Copyright #2005

with permission from

Elsevier Science)
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Figure 5.7 presents the typical anodic current transients for ESN films containing

various fractions of Co(OH)2 just after jumping the applied potential of 0.22–0.40 V

(SCE). The current transients of the 0–20 mol.% Co(OH)2-incorporated films show a

two-staged shape. In contrast, those of the 30 and 50 mol.% Co(OH)2-incorporated

films exhibit a three-staged shape, indicating that hydrogen extraction occurs in the

presence of traps (introduced by Co(OH)2 species).

5.3 Hydrogen Trapping Determined by Ac-Impedance

Technique

Ac-impedance spectroscopy has been established over many years as a powerful

technique for the electrochemical characterization of hydride-forming metals and

oxides, as described in Chap. 3 [17–28]. It allows us to study separately the

dynamics of transport processes with different relaxation times. It is well known

that the ac-impedance spectrum for diffusion in a planar electrode under the

impermeable boundary condition should show two characteristic features

depending on the frequency range [29, 30]:

1. Warburg behavior with an absolute phase angle |y| of 45
�
in the high-frequency

range

2. Capacitive behavior with |y| of 90
�
in the low-frequency range

Hydrogen diffusion can be described by a transmission line that is composed of

distributed resistive and capacitive elements, because the basic differential equation

involved in a transmission line network has some formal mathematical similarity to
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that for the diffusion process [31–37]. The equivalent circuit and impedance diagram

for the ideal diffusion process are schematically displayed in Fig. 5.8. See Chap. 3 for

detailed information on the ac-impedance behavior of hydrogen diffusion.

For hydrogen transport in the presence of reversible trap sites, the transmission

line network can be modified as shown in Fig. 5.9. Rl and Cl represent the resistance

and intercalation capacitance associated with hydrogen diffusion through the

normal lattice sites, respectively. Rr and Cr mean the resistance and intercalation

capacitance for the trap sites, respectively. It should be noted that the intercalation

capacitance for reversible trap sites is a function of the frequency, o. The

frequency-dependent capacitance for reversible trap sites, denoted as C�
r ðoÞ, can

be derived from the modified diffusion equation on the basis of the McNabb-

Foster’s trapping concept. From Eq. 5.2, the steady-state fraction of trap sites that

are occupied �fr is given by

�fr ¼ kr�cH
kr�cH þ pr

(5.23)

Fig. 5.8 Schematic diagrams of the equivalent circuit and the impedance diagram for the ideal

diffusion process
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where �cH refers to the steady-state concentration of hydrogen in the normal lattice

sites that is achieved during the ac-impedance measurement. The steady-state trap

capacitance Cr can be obtained from Eq. 5.23 as follows:

Cr ¼ Nrd�f r
d�cH

� �
Cl ¼ Nrkrð1� �f rÞ

kr�cH þ pr

� �
Cl (5.24)

Under an oscillating potential perturbation, fr and cH are expressed as

fr ¼ �fr þ Dfr expðjo tÞ (5.25)

cH ¼ �cH þ DcH expðjo tÞ (5.26)

where j stands for the complex number, i.e.,
ffiffiffiffiffiffiffi�1

p
, and Dfr and DcH represent the ac-

amplitudes of fr and cH, respectively. Substituting Eqs. 5.25 and 5.26 into Eq. 5.2,

we obtain

Dfr ¼ krð1� �f rÞ
kr�cH þ pr þ jo

� �
DcH (5.27)

Finally, the frequency-dependent trap capacitance C�
r ðoÞ is obtained as

C�
r ðoÞ ¼

Nrkrð1� �f rÞ
kr�cH þ pr þ jo

� �
Cl ¼ 1þ jo

or

� ��1

Cr (5.28)

with the characteristic angular frequency or for reversible trapping expressed as

or ¼ kr�cH þ pr (5.29)

Fig. 5.9 Modified equivalent circuit for hydrogen diffusion involving the reversible trapping

process
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The diffusion impedance Zd in the presence of trap sites under the impermeable

BC is given by

ZdðoÞ ¼ Rl

coth½L joRlC
�ðoÞð Þ1=2�

joRlC�ðoÞð Þ1=2 (5.30)

The diffusion impedance Zd(o) of Eq. 5.30 has two characteristic frequencies,

oo and or characterizing the diffusion and trapping kinetics, respectively:

oo ¼ 1

RlClL2
(5.31)

or ¼ 1

RrCrL2
(5.32)

Figure 5.10a, b present the typical Nyquist plot of the ac-impedance spectrum

and the variation of the phase angle y with log o, respectively, calculated from

Eq. 5.30 for the first case or < oo. The simulation parameters used are Rl ¼ 0.1

kO cm�1, Cl ¼ 1 mF cm�1, Rr ¼ 1 kO cm�1, Cr ¼ 10 mF cm�1, and L ¼ 1 cm.

The results may be summarized as follows:

1. At o > oo, the ac-impedance spectrum exhibits the ideal Warburg behavior,

since at these frequencies the slow trapping reaction has no influence on the

transport process.

2. At or < o < oo, an arc appears in the impedance spectrum, which corresponds

to the characteristic feature of trap relaxation. This arc arises from the parallel

combination of Rr and Cl.

3. At o < or, the ac-impedance spectrum shows a capacitive line in the low-

frequency range, due to the accumulation of hydrogen in both the normal lattice

sites and trap sites at the impermeable boundary.

The typical Nyquist plot of the ac-impedance spectrum and the variation of y
with log o for the second case or > oo are illustrated in Fig. 5.11a, b, respectively.

The ac-impedance spectrum was calculated by assuming Rl ¼ 10 kO cm�1,

Cl ¼ 1 mF cm�1, Rr ¼ 10 O cm�1, and Cr ¼ 10 mF cm�1. In this case, the trap

sites would not slow down the diffusion kinetics in the electrode, but would act as

homogeneous reaction sites. For example, it has been reported that the transport

process in a WO3 electrode proceeds under the condition in which diffusion is

coupled with a relatively fast immobilization reaction at the W6+ sites, leading to

the reduction of W6+ to W5+ [38–40]. The ac-impedance spectrum in Fig. 5.11

shows three distinctive features:

1. At o > or, the ac-impedance spectrum exhibits the ideal Warburg behavior,

followed by a small arc.

2. At oo < o < or, the Warburg behavior of the diffusion impedance appears

again.

3. At o < oo, the ac-impedance spectrum shows the ideal capacitive line.
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It should be pointed out that various kinds of trap sites with different capture

rates k and release rates p may coexist in real hydride-forming electrodes. In this

case, the characteristic angular frequencies or for the trapping reactions are widely

distributed over the whole frequency range, and hence, the ac-impedance spectrum

may exhibit a straight line with |y| larger or smaller than 45
�
, which can be

approximated to the constant phase element (CPE).

Fig. 5.10 (a) Nyquist plot of

the ac-impedance spectrum

and (b) the variation of phase

angle y with log o for

o r < o o
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Chapter 6

Generation of Internal Stress During Hydrogen

and Lithium Transport

6.1 Relationship Between Diffusion and Macroscopic

Deformation

Atomic diffusion in insertion electrodes such as hydride-forming metals and tran-

sition metal oxides may induce structural deformation due to a volume change,

modifying the physical properties of the electrode. Also, the strain or stress field

induced by an external force, for example, elastic bending, may influence the

diffusion process in the electrode, because of the resulting inhomogeneous distri-

bution of the atoms. The relationship between the diffusion and macroscopic

deformation of the electrode can be classified into the elasto-diffusive and

diffusion-elastic phenomena as schematically illustrated in Table 6.1 [1].

6.1.1 Elasto-Diffusive Phenomenon

The elasto-diffusive phenomenon is presented in Fig. 6.1, which shows the varia-

tion of the hydrogen pressure within a Pd81Pt19 tubular membrane with time from

the initial, virtual value, po [1]. The hydrogen pressure was initially kept constant

within the tubular membrane and the hydrogen gas was in equilibrium with the

hydrogen distributed over the tubular membrane. A subsequent increase of hydro-

gen concentration at the outer surface caused by the increase of the outer hydrogen

pressure results in an initial decrease of the hydrogen pressure within the tube (B in

Fig. 6.1a). This phenomenon is known to occur by the outward bending of the

tubular membrane, as illustrated in Fig. 6.1b. The outward bending of the tubular

membrane causes hydrogen to diffuse from the inner surface toward the outer

surface, which is referred to as the elasto-diffusive phenomenon or “Gorsky effect.”

S.-I. Pyun et al., Electrochemistry of Insertion Materials for Hydrogen and Lithium,
Monographs in Electrochemistry, DOI 10.1007/978-3-642-29464-8_6,
# Springer-Verlag Berlin Heidelberg 2012
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Table 6.1 Elasto-diffusive and diffusion-elastic phenomena (Reprinted from Han and Pyun [1],

Copyright #2001 with permission from Korean Electrochemical Society)

Phenomenon

Original

state

Primary

cause Consequence

Direction of

flux (final state)

Elasto-

diffusive

Elastic

bending

Inhomogeneous hydrogen

distribution

Diffusion-

elastic

Diffusion

flux

Inhomogeneous elastic

deformation

Fig. 6.1 (a) Variation of the

hydrogen pressure within a

Pd81Pt19 tubular membrane,

and (b) the shapes of the

tubular membrane at A and B
(Reprinted from Han and

Pyun [1], Copyright #2001

with permission from Korean

Electrochemical Society)
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It is known that the relative magnitude of this phenomenon is related to the initial

hydrogen concentration. The stress field developed in tubular membranes of Pd and

Pd alloys during the Gorsky effect was determined by several researchers using

hydrogen permeation techniques [2, 3].

6.1.2 Diffusion-Elastic Phenomenon

The diffusion-elastic phenomenon refers to the situation where stress or strain fields

are generated by diffusion. The inhomogeneous distribution of atoms during the

diffusion process causes an inhomogeneous volume change of the electrode, leading

to bending distortions. The bending distortions generated during the diffusion

process may also induce the Gorsky effect. However, previous studies [4–7]

indicated that the contribution of the Gorsky effect is too small to affect the overall

bending distortion. In this chapter, we restrict our discussion to the diffusion-elastic

phenomena that are observed during hydrogen or lithium transport.

6.2 Theory of Stress Change Measurements

6.2.1 Laser Beam Deflection (LBD) Method

The laser beam deflection (LBD) technique is a powerful tool for monitoring in situ

the stresses developed during the diffusion process. Pyun et al. [8–14] used the LBD
method combined with electrochemical measurements in order to follow the stress

generated during hydrogen or lithium diffusion. Before going into the details of the

experimental procedures, we first present the mathematical expressions for the

deflections induced by the diffusion process in a planar electrode. As an example,

we consider the deflection measurements during potentiostatic hydrogen extraction

from a hydride-forming electrode. For the analysis of the stresses generated during

hydrogen transport through the electrode, it is essential to know the change in the

hydrogen concentration profile with time across the electrode.

The governing equation is Fick’s diffusion equation,

@cH
@t

¼ ~DH

@2cH
@x2

(6.1)

where cH is the hydrogen concentration, ~DH the chemical diffusivity of hydrogen

(see Chap. 4), x the distance from the electrode/electrolyte interface, and t the
hydrogen extraction time. In the case of current transient measurements under the

impermeable boundary condition, the initial condition (IC) and boundary

conditions (BCs) are written as follows:
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IC : cH ¼ c
�
H for 0 � x � L at t¼ 0 (6.2)

BC : cH ¼ 0 diffusion� controlBCð Þ

for x¼ 0 at t � 0

(6.3)

@cH
@x

� �
¼ 0 impermeableBCð Þ

for x ¼ L at t � 0

(6.4)

where c
�
H is the initial equilibrium concentration of hydrogen corresponding to the

applied potential.

The dissolved hydrogen expands the crystal lattice of the host metal. According

to Vegard’s second law, the relative volume change DV/V is proportional to cH:

DV=V ¼ k3cH (6.5)

where k3 is the proportionality coefficient of Vegard’s second law. For DV=V<<1,

the relative change of the linear dimension Dl=l in the y direction obeys the same

Vegard’s law with a different coefficient, k1:

Dl=l � e ¼ k1cH (6.6)

where e represents the linear strain, that is, the relative linear deformation. Here, the

y-axis is taken to be parallel to the longitudinal axis of the electrode specimen and

perpendicular to the diffusion flux.

Now the stress distribution originating from the hydrogen distribution across the

electrode can be calculated by solving the equation for Hooke’s law as follows [1]:

syðx; tÞ ¼ Eeðx; tÞ ¼ k1EcHðx; tÞ ¼ kcHðx; tÞ (6.7)

where k is the proportionality constant. The bending moment of the electrode

specimen Mb(t) is given as

MbðtÞ ¼
Z L

0

syðx; tÞ � x� 1

2

� �
dx ¼

Z L

0

kcHðx; tÞ � x� 1

2

� �
dx (6.8)

Under the assumption that the deflection is proportional to Mb(t), one can

calculate the deflection transients from the hydrogen concentration profiles. Equa-

tion 6.8 indicates that the hydrogen located in the region 0 < x < L=2 contributes to
the compressive deflection, whereas the hydrogen in the regionL=2 < x < L induces
the tensile deflection.

The deflection transients were theoretically calculated using the virtual electrode

potential curve described in Chap. 4 (Fig. 4.2) and the results are presented in

Fig. 6.2a [1]. The transients were simulated by jumping various initial potentials
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Eini ¼ 0:01� 0:04V to the extraction potential Eext ¼ 0:10V. Figure 6.2b presents

the changes in the hydrogen concentration profile across the electrode with time,

which were simultaneously calculated at the potential jump of 0.01–0.10 V. During

hydrogen extraction, the tensile deflections drastically increase to a maximum value

and then are completely annihilated. The tensile stresses indicate that the extracted

hydrogen contracts the lattice. It is seen that the maximum value of the tensile

deflection increases with decreasing hydrogen injection potential, that is, with

increasing initial hydrogen concentration. On the other hand, the time to maximum

deflection tmax has the same value, regardless of the hydrogen injection potential.

Figure 6.3 displays the effect of the hydrogen diffusivity on the deflection transient.

Fig. 6.2 (a) Deflection

transients calculated by

jumping various values of

Eini ¼ 0.01–0.04 V to

Eext ¼ 0.10 V and (b) the

hydrogen concentration

profile transient at the

potential jump of 0.01–0.10 V

(Reprinted from Han and

Pyun [1], Copyright #2001

with permission from Korean

Electrochemical Society)
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The deflection transients were calculated at the potential jump of 0.01–0.10 V using

the various ~DH values indicated in Fig. 6.3. As the value of ~DH increases, tmax is

shortened, whereas the maximum value of the tensile deflection remains constant.

Under the diffusion-control BC, the following relationship between tmax and ~DH is

established [15]:

~DHtmax

L2
¼ 0:05 (6.9)

Equation 6.9 allows us to determine ~DH from the measured values of tmax and the

given value of L.

6.2.2 Double Quartz Crystal Resonator (DQCR) Method

When an alternating voltage is applied to electrodes coated on both sides of a quartz

plate, a piezoelectric mechanical vibration is induced within the plate. Since quartz

crystal is anisotropic, its vibration mode is critically dependent on the cutting type

or the crystal orientation of the quartz plate [16]. The cutting orientations and

corresponding vibration modes of the quartz are presented in Fig. 6.4.

Particularly for a quartz crystal vibrating in thickness shear mode (i.e., AT and

BT-cut quartz plates), the change in its resonant frequency, Df, has a linear relation-
ship with the mass loading, DM, on it [17, 18].

Df ¼ � DM
A

� �
f 2Q

rQNQ

 !
(6.10)

Fig. 6.3 Deflection

transients calculated with

various hydrogen diffusivities

(Reprinted from Han and

Pyun [1], Copyright #2001

with permission from Korean

Electrochemical Society)
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where A is the piezoelectrically vibrating area; fQ, the natural frequency of the

quartz; rQ, the density of the quartz; and NQ, the frequency constant of the quartz

(for AT-cut quartz crystal NQ
AT ¼ 1,666 Hz m and for BT-cut quartz crystal

NQ
BT ¼ 2,536 Hz m).

Shown in Fig. 6.5 is the side and top view of a typical quartz crystal resonator

sample. In general, a gold or platinum thin layer (several hundreds of microns thick)

is coated on both sides of the quartz plate in a keyhole pattern. A titanium

underlayer is predeposited on the quartz to afford good adhesion of the gold or

platinum film.

The measurement of the internal stress generated in a thin film by using two

quartz crystals with different cutting types (i.e., AT and BT cuts) was first

introduced by EerNisse [19, 20], which is frequently called the double quartz

crystal resonator (DQCR) technique. The AT and BT-cut quartz crystals respond

to the applied stress in a completely different way: A tensile stress leads to a

decrease in the resonant frequency of the AT-cut quartz crystal, whereas it causes

a frequency increase of the BT-cut quartz crystal. Accordingly, the contribution of

the internal stress induced in the thin layer coated on the quartz to its resonant

frequency can be separated from the mass contribution given in Eq. 6.10 when the

thin layers are coated on the AT and BT-cut quartz crystals and the two samples are

tested under the same experimental conditions. When we assume that the stress is

uniformly distributed in the film, and the contribution of the film surface roughness

and the electrolyte viscosity to the resonant frequency of the quartz can be

neglected, the total frequency change is just the superposition of the effects of the

CT
AT

Z
BT

DJ

SL

AT,BT

Y

X

38°
52°

49°
57°35°15°

a

b

Fig. 6.4 (a) Various cut

angular orientations of quartz

crystal and (b) the thickness-

shear-mode oscillation of

AT- and BT-cut quartz crystal
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mass change, DM, and the stress change integrated through the film thickness, DS,
as follows [21]:

Df ¼ � DM
A

� �
f 2Q

rQNQ

 !
þ KDS

f 2Q
NQ

 !
(6.11)

Here, K is the stress coefficient (KAT ¼ 2:75� 10�11m2N�1 and KBT ¼ �2:65�
10�11m2N�1 for the AT and BT-cut quartz crystals, respectively).

Under the assumption that DM and DS for the AT-cut quartz crystal are identical
to the corresponding values for the BT-cut quartz crystal, the mass and stress

changes can be estimated from Eq. 6.11 with the following equations [19–21].

DM ¼ rQK
ATKBT

KAT � KBT

DfATdAT

KATfATQ

þ Df BTdBT

KBTf BTQ

 !
(6.12)

DS ¼ 1

KAT � KBT

DfATdAT

fATQ

� Df BTdBT

f BTQ

 !
(6.13)

Here, dAT and dBT are the thicknesses of the AT and BT-cut quartz crystals,

respectively.

Fig. 6.5 (a) Cross-sectional and (b) surface views of typical quartz crystal resonator sample
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6.3 Setups for the Stress Change Measurements

6.3.1 LBD Method

A typical LBD apparatus for deflection measurements is schematically illustrated in

Fig. 6.6. A commonly used laser source is a He-Ne beam with a spot size of 590 mm
and a maximum output of 5 mW at 632.8 nm. To monitor the deflection during the

electrochemical experiments, the laser beam is directed through a flat window in the

side of the cell to the mirror near the end of the strip. The reflected beam from

the mirror is detected by a position-sensitive detector (PSD). As the beam moves

across the PSD, the position of the beam spot is converted to the output voltage in

the range of �10 V to l0 V.

In general, there are two types of electrode specimens used for LBD
measurements as shown in Fig. 6.7, depending on the thickness of the active

electrode:

1. Thin film electrode (specimen A): The active electrode is much thinner than the

substrate thickness. This type of the specimen is suitable for the investigation of

the stresses generated during the anodic oxidation of metals, electrodeposition,

or hydrogen/lithium insertion into thin films. In the case of the anodic oxidation

of W, for example, the thicknesses of the active material (WO3) and substrate

(W) are 1–10 nm and several tens of micrometers, respectively [8]. In this case,

the plane stress condition is satisfied and, thus, the measured deflection can be

quantitatively converted to the stress value by using the Stoney equation [22, 23].

Fig. 6.6 Typical LBD
apparatus for deflection

measurements
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2. Thick foil electrode (specimen B): The thickness of the active material (e.g.,

50–100 mm for Pd foil) is much larger than that of the impermeable layer (e.g.,

0.1–0.5 mm for Au layer) [9, 10]. This specimen can be effectively used to study

the stresses developed during hydrogen or lithium diffusion. The measured

deflection is proportional to the stress value, but it cannot be quantitatively

translated into the stress value, because the plane strain condition is no longer

valid. As shown in Fig. 6.8, the injection process of hydrogen or lithium into the

active material causes compressive stresses in the whole electrode specimen,

whereas the extraction process induces tensile stresses.

6.3.2 DQCR Method

The thin layers to be tested are deposited on one side of the platinum (or gold)-

coated AT and BT-cut quartz plates, as shown in Fig. 6.5. The thin layers can be

formed through typical wet- or dry processes, such as physical/chemical vapor

Fig. 6.7 Electrode

specimens used for LBD
measurements
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deposition, electroless/electrolytic coating, etc. If the layers need to be heat treated

to improve their crystallinity, the temperature for heat treatment should be kept

below 573�C to avoid thermal damage to the quartz by phase transformation [24].

Shown in Fig. 6.9 is the usual setup for theDQCR test [25]. Together with the mass

change detection, the electrochemical response is recorded by a three-electrode

Fig. 6.8 Stress generation

during hydrogen injection

into and extraction from a foil

electrode (Reprinted from

Han and Pyun [1], Copyright

#2001 with permission from

Korean Electrochemical

Society)

Fig. 6.9 Schematic

representation of the

experimental setup for the

electrochemical measurement

combined with a double

quartz crystal resonator test

(Reprinted from Go and Pyun

[25], Copyright #2003 with

permission from The

Electrochemical Society)
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electrochemical cell configuration. Here, the thin layer coated AT or BT-cut quartz
crystal, which is frequently mounted in a Teflon cell and kept in position with two

O-rings, acts as a working electrode. For example, in a battery field, the thin layer

coated on the quartz or the working electrode might be lithium cobalt dioxide

(LiCoO2) and the reference or counter electrode might be lithium metal. The electro-

chemical data, such as the charge/discharge curve, current transient, and cyclic or

linear sweep voltammogram, are obtained concurrentlywith the resonant frequency or

mass change plots. For the combined measurement of the electrochemical and mass

change signal, potentiostat/galvanostat is basically used in conjunction with a quartz

crystal microbalance (QCM) unit under the remote control of a personal computer,

as shown in Fig. 6.9.

6.4 Interpretation of Insertion-Induced Internal Stress

6.4.1 Analysis of LBD Results

By using the LBD technique, Pyun and his coworkers [9, 10, 12] conducted

extensive investigations into the diffusion-induced internal stresses in a Pd foil

electrode with an impermeable boundary. They adopted a Pd metal as a model for

the metal–hydrogen system, because of its experimental advantages over other

hydride materials, such as its high resistance to irreversible deformation and high

hydrogen solubility [26, 27]. Some of the experimental results on the deflection

measurements during hydrogen transport under potentiostatic and potential sweep

conditions will be discussed below.

Shown in Fig. 6.10a are the deflection versus time plots measured during

hydrogen injection into the Pd foil electrode in a 0.1 M NaOH solution [9].

Hydrogen was potentiostatically injected by dropping the open-circuit potential to

various injection potentials in the range of 0.06–0.12 V(RHE). Figure 6.10a shows

that, during hydrogen injection, the compressive deflection increases to a maximum

value and then it is relaxed. The time to the maximum compressive deflection tmax

is prolonged with decreasing overpotential. It appears that the lower the injection

potential, that is, the larger the amount of hydrogen injected into the electrode, the

higher the maximum value of the compressive deflection. The deflection behavior

in Fig. 6.10a may be explained in detail by the concentration profiles of hydrogen

across the electrode shown in Fig. 6.10b. The concentration profiles A, B, and C
corresponding to the compressive deflections are also indicated in Fig. 6.10a. Due

to the difference between the molar volume of Pd at the electrolyte/electrode

interface and that at the Au layer/electrode interface, the local volume change

across the specimen increases to a maximum value as the hydrogen injection

progresses. Then, the local volume change begins to decrease as hydrogen is

accumulated at the Au layer/electrode interface. Consequently, the compressive

stresses developed at the Au layer/electrode interface and distributed across the
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whole electrode attain their maximum value when the injected hydrogen firstly

reaches the Au layer/electrode interface and then begin to be relaxed as hydrogen is

accumulated at this interface.

The deflection versus time curves obtained for hydrogen extraction are presented

in Fig. 6.11a [9]. The deflection was measured by jumping various injection

potentials to an extraction potential of 0.3 V(RHE). During hydrogen extraction,

the tensile deflection increases to a maximum value and then is completely

annihilated. Figure 6.11b shows the hydrogen concentration profiles across the

electrode during hydrogen extraction. Similar to the case of hydrogen injection,

the difference between the molar volume of Pd at the electrolyte/electrode interface

and that at the Au layer/electrode interface increases to a maximum value as

Fig. 6.10 (a) Deflection

versus time plots measured

during hydrogen injection

into a Pd foil electrode in

0.1 M NaOH solution and

(b) the concentration profiles

of hydrogen (Reprinted from

Han et al. [9], Copyright

#1999 with permission from

Elsevier Science)
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hydrogen is extracted. After that, it begins to decrease as the concentration of

hydrogen at the impermeable boundary drops below the equilibrium concentration.

Corresponding to the local change in the molar volume across the electrode, the

tensile stresses generated at the Au layer/electrode interface and distributed across

the whole electrode attain their maximum value and then are entirely annihilated.

By using Eq. 6.9, the authors determined the value of ~DH from the measured values

of tmax: The value of ~DH estimated during hydrogen extraction was found to vary

between 1 � 10�7 and 5 � 10�7 cm2 s�1, depending on the hydrogen injection

potential. These values of ~DH are in good agreement with the other previously

reported values [28, 29].

Fig. 6.11 (a) Deflection

versus time plots measured

during hydrogen extraction

from a Pd foil electrode in

0.1 M NaOH solution and

(b) the concentration profiles

of hydrogen (Reprinted from

Han et al. [9], Copyright

#1999 with permission from

Elsevier Science)
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Figure 6.12 shows the plots of the deflection versus applied potential (or reduced

time) measured simultaneously with the cyclic voltammograms, that is, under

potential sweep conditions [12]. Note that the time is presented in scales of reduced

time defined as

x ¼ t

2ðEini � Erev) �1000
v (6.14)

where t means the instantaneous time of any applied potential Eapp during potential

scanning, v is the scan rate, and Eini and Erev represent the initial and reverse

potentials, respectively. So, x means the time interval needed for the execution of

one cycle at a given scan rate. Three remarks should be made in respect to Fig. 6.12:

1. At v ¼ 1–12 mV s�1, the deflection exhibits a maximum compressive deflec-

tion, a transition from compressive to tensile deflection, a maximum tensile

deflection, and finally the complete decay of the tensile deflection in sequence.

2. At v ¼ 12–25 mV s�1, the compressive deflection first increases to a maximum

value and then is completely annihilated with time.

3. As the scan rate decreases, the values of the maximum compressive and tensile

deflections are increased and also move toward the reverse potential Erev as well.

Similar to the case of hydrogen diffusion under potentiostatic conditions, this is

attributed to the larger amount of hydrogen in the electrode with decreasing v.

The deflection transients were also simulated under potential sweep conditions

and the results are presented in Fig. 6.13. It is found that the calculated deflection

Fig. 6.12 Plots of deflection

versus applied potential (or

reduced time) simultaneously

measured under potential

sweep conditions (Reprinted

from Han et al. [12],

Copyright #2001 with

permission from Elsevier

Science)
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transients coincide well with the measured ones. The hydrogen concentration profiles

across the electrode were calculated at various times during potential scanning.

The characteristic hydrogen concentration profiles at v ¼ 1 and 25 mV s�1 are

demonstrated in Fig. 6.14a, b, respectively. As a consequence, the movement of the

deflection in the compressive and tensile directions can be explained in terms of

the difference between the molar volume near the electrode surface and that near the

impermeable layer, which is developed during hydrogen diffusion.

The LBD technique can be successfully applied to electrochemical systems

operated in a nonaqueous electrolyte [30–33]. Shown in Fig. 6.15 is the stress

change,Ds, versus the lithium stoichiometry, 1� dð Þ plot, obtained simultaneously

with the cyclic voltammogram for an Li1�dCoO2 film sputter deposited on a Pt/Ti/

thin glass plate in a 1 M solution of LiClO4 in propylene carbonate [33]. The cyclic

voltammogram features three sets of current peaks, namely, (3.95, 3.86), (4.08,

4.05), (4.17, 4.15). The first set of current peaks is caused by the phase transition

between two hexagonal phases (Li-dilute phase a and Li-rich phase b), while the

second and third sets are due to the order/disorder phase transition and lattice

distortion from hexagonal to monoclinic symmetry, respectively [34]. The stress

change measured by LBD shows that in the region of the first set of current peaks,

the negative compressive stress is generated during the anodic scan when lithium is

extracted from the oxide layer and the positive tensile stress is produced during the

cathodic scan when lithium is inserted into the layer (the second stage in Fig. 6.15).

On the other hand, in the region of the second/third sets of current peaks, the stress

change plot features an upward concave shape (the third stage). The variation of the

Fig. 6.13 Plots of deflection

versus applied potential (or

reduced time) simulated

under potential sweep

conditions (Reprinted from

Han et al. [12], Copyright

#2001 with permission from

Elsevier Science)
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stress with the potential is relatively small below ca. 3.8 V versus Li/Li+ (the first

stage).

The dependence of the stress change induced in the oxide layer on the lithium

stoichiometry can be more exactly estimated during the galvanostatic intermittent

discharging experiment where the value of stress change is determined in the

equilibrium state (Fig. 6.16). The open circuit potential (or electrode potential)

curve obtained from the intermittent experiment exhibits a three-stage behavior:

Fig. 6.14 Hydrogen

concentration profiles at

v ¼ 1 and 25 mV s�1

(Reprinted from Han et al.

[12], Copyright #2001 with

permission from Elsevier

Science)
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a monotonic decrease in potential (single a phase region), potential plateau (two-

phase coexistence region), and rapid decrease in potential (single b phase region).

These three stages correspond to the third, second, and first regions in the cyclic

voltammogram, respectively. As regards the stress change, the compressive and the

subsequent tensile stress is generated in the single a phase region, as the lithium

content increases, leading to a stress change plot with an upward concave shape,

and then the tensile stress rapidly increases in the two-phase coexistence region,

similar to the corresponding plot obtained during the voltammetric experiment

(Fig. 6.15). The stress change in the single b phase region is similar to that in the
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two-phase region. Considering that the potential decreases extremely rapidly with

increasing lithium content, this result is actually consistent with the relatively mild

change in the first stage of the stress transient curve of Fig. 6.15.

The stress change transient measured simultaneously with the current transient

gives useful quantitative information on the stress change generated during the

lithium transport. When the initial potential is above (or below) the plateau poten-

tial and the final potential is below (or above) it, the stress change and current

transients reflect the effect of the phase transition of a to b (or b to a). As an

example, Fig. 6.17 presents the anodic current transients when the potential jumps

from 3.86 V versus Li/Li+ to the potentials above the plateau potential 3.90 V

versus Li/Li+, along with the concurrently obtained stress change transients.

All of the anodic current transients feature the slow decay of the logarithmic

current, followed by its steep decrease. The closed circles and triangles on the

current transients correspond to the onset and end times of the b to a phase

transformation, respectively, calculated on the basis of the cumulative charge

passed during the lithium extraction (the open circles and triangles on the stress

change transients have the same meaning). In the case of the final potentials of 3.91

and 3.92 V versus Li/Li+, the phase transition is not completed during the experi-

ment and, therefore, there are no closed triangles on their transients, since the

driving force for the phase transition is quite small. It is noted that the stress

changes developed from t ¼ 0 to the onset times of the phase transition (i.e.,

open circles) are almost equal to each other (0.1 GPa). This time span corresponds

to the potential interval between 3.86 and 3.88 V versus Li/Li+ in Fig. 6.16.

Similarly, for the stress change transients of the final potentials above 3.92 V versus

Li/Li+, the stress changes developed from the onset to end times of the phase

transition are identical to each other, regardless of the final potentials. In addition,

the stress change generated in this time duration (0.67 GPa) matches well with that

between 3.88 and 3.93 V versus Li/Li+ in the galvanostatic intermittent discharge

curve (Fig. 6.16). This also proves that the stress change measured concurrently

Fig. 6.17 Anodic current

transients and the

corresponding stress change

transients, obtained from the

Li1�dCoO2 electrode in a 1 M

LiClO4–PC solution

(Reprinted from Pyun et al.

[13], Copyright #2004 with

permission from Elsevier

Science)
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with the cathodic current during the potential drops (i.e., lithium insertion) shows

quantitative agreement with that estimated in Fig. 6.16 (please see the reference for

details) [33].

Taking the insertion-/extraction-induced strain into consideration, the stress

change can be theoretically calculated. When lithium is inserted into or extracted

from the single a phase, the stress is determined from the molar volume change or

the volume strain, evol . Under the assumptions that the Li1�dCoO2 oxide layer is

single crystal and has isotropic elasticity, evol of the oxide is expressed as [35]

s ¼ Y
evol
3

¼ �Y
ex þ ey þ ez

3
¼ �Yemean (6.15)

where Y is the elastic modulus of the oxide, emean is the mean strain, and ex, ey, and ez
represent the strains in the x, y, and z directions of hexagonal symmetry, respec-

tively. In the literature on the lattice parameters of Li1�dCoO2, it has been reported

that evol in the single a phase region shows an upward concave shape and has a

maximum value in the 1� dð Þ range of 0.55–0.75. If we take the maximum evol
� �9:0� 10�3 , the maximum stress change in the single a phase region is

estimated to be 0.21 GPa from Eq. 6.15.

In the case where the two phases coexist, the stress mainly originates from the

mismatch of the lattice parameters of the two phases. Under the assumptions that

the plate-shaped second phase is formed in the matrix and only the principal misfit

strains, that is, ex misfit; ey misfit , and ez misfit , contribute to the total misfit strain, the

stress per unit volume of the coherent second phase is given as [36]

s ¼ � 2f ð1þ nÞ
ð1� 2nÞ Gemean misfit ¼ � 2f ð1þ nÞ

ð1� 2nÞ G
ex misfit þ ey misfit þ ez misfit

3
(6.16)

where f is the ratio of the elastic moduli of the two phases; n, the Poisson’s ratio; G,
the shear modulus of the second phase; emean misfit, the mean misfit strain. From the

literature, the values of emean misfit at 1� dð Þ ¼ 0:75 and 0.95 were estimated to be

ca. �36 � 10�3 and �2.1 � 10�3, respectively [34], n is about 0.16 (the strain of

the lattice parameter a divided by that of the lattice parameter c) [36], and G is

80 GPa [37]. If the elastic moduli of the two phases are virtually equal f ¼ 1ð Þ, the
stress change in the two-phase region can be theoretically calculated to be

0.57–1.0 GPa from Eq. 6.16.

The calculated stress changes in the single a phase region (0.21 GPa) and two-

phase coexistence region (0.57–1.0 GPa) coincide well with the measured values

(about 0.31 and 0.64 GPa, respectively. See Fig. 6.16). From the above comparative

analysis of the dependences of the stress change and crystal structure (or its lattice

parameter) on the lithium content, it is proved that the stress change in the a phase

and two-phase coexistence regions are attributed to the molar volume change of the

a phase and the mismatch of the lattice parameters between the two phases (a and b
phases) with the lithium content, respectively.
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6.4.2 Analysis of DQCR Results

Shown in Fig. 6.18a, b are the galvanostatic charge curves obtained from the

Li1–dCoO2 films sputter-deposited on the AT and BT-cut quartz crystals and the

corresponding normalized resonant frequency change (Df) curves, respectively.

For the normalization, it is assumed that there is no side reaction in the course of

the lithium extraction process and that the mass changes of the films on the two

quartz crystals equal each other during the experiment. The two charge curves of

Fig. 6.18 (a) Galvanostatic

charge curves of the

Li1�dCoO2 films coated on

the AT- and BT-cut quartz
crystals in a 1 M solution of

LiClO4-PC solution, and

(b) the normalized resonant

frequency changes

simultaneously recorded with

galvanostatic charge curves

(Reprinted from Go and Pyun

[25], Copyright #2003 with

permission from The

Electrochemical Society)
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the films on the AT and BT-cut quartz crystals are nearly identical, whereas the

changes in the normalized resonant frequency with lithium content look quite

different: The frequency change curve of the AT-cut crystal shows an upward

deviation from linearity, whereas that of the BT-cut crystal exhibits a downward

one.

If the mass reduction of the films were the only source for Df during the

galvanostatic (or constant mass loss) situation, Df would show a linear relationship

with the lithium content [17, 18]. This deviation from linearity is known to arise

mainly from the surface roughness of the film [38–40], the lateral stress in the film

[19, 20], and the electrolyte viscosity [41]. Since the viscosity and roughness effects

Fig. 6.19 Lithium content

dependence of average stress

developed in the Li1�dCoO2

film during the lithium

(a) extraction and (b)

insertion (Reprinted from Go

and Pyun [25], Copyright

#2003 with permission from

The Electrochemical Society)
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can be considered to be trivial [25], the nonlinearity is most likely ascribed to the

lateral stress. The Df versus lithium content curves feature three different rates of

frequency change, as indicated in Fig. 6.18b, which is possibly bound up with the

phase transition during the lithium extraction based on the comparison of the stages

in Fig. 6.18a, b. The Df curves during the discharging process (i.e., lithium insertion

into the films) proved to be quite consistent with the trend of the Df curves during
the charging process, in view of their upward/downward deviation from linearity

and three different rates of change.

The lateral stresses that are produced in the films and then are exerted on the

quartz crystals below them can be calculated from Eqs. 6.2, 6.3, and 6.4 on the basis

of the resonant frequency changes of the AT-cut ðDfATÞ and BT-cut ðDf BTÞ quartz
crystals. Shown in Fig. 6.19a, b are the curves of the average stress change (¼ stress

integrated with respect to the film thickness DS divided by the film thickness)

during the galvanostatic charging (lithium extraction) and discharging (lithium

insertion) processes, respectively.

Compressive (�) and tensile (+) stresses are generated in the films during the

charging (lithium extraction) and discharging (lithium insertion), respectively, and

their magnitudes decrease as the film becomes thicker. The stress changes in the

second stage (i.e., the phase transition region) are particularly large, regardless of

the film thickness. The volume contraction and expansion of the film is the most

plausible reason for the lateral stress, because the other possible effects, such as the

electrostrictive force, formation of a surface layer, and surface tension due to the

adsorption of some species from the electrolyte, can be considered to be extremely

small [25].
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Chapter 7

Abnormal Behaviors in Hydrogen Transport:

Importance of Interfacial Reactions

7.1 Interfacial Reactions Involved in Hydrogen Transport

As described in Sect. 3.1, the redox reactions of hydrogen absorption into and

desorption from hydride-forming metals and oxides proceed via one of the follow-

ing two mechanisms: (1) the one-step (direct) and (2) two-step mechanisms [1–3].

In both mechanisms, the (faradaic) charge-transfer reaction on the electrode surface

is the essential step for hydrogen absorption and desorption, leading to reduced and

oxidized species, respectively. Many of the ac-impedance results obtained on

hydride-forming metals and oxides indicated slow charge-transfer kinetics, i.e.,

a large resistance for the charge-transfer reaction at the electrode/electrolyte inter-

face [4–9]. In addition, physicochemical and electrochemical studies on Pt, Pd, and

Ni single crystals demonstrated that an absorbed state for hydrogen exists at the

electrode subsurface, which represents hydrogen atom residing just beneath the

topmost surface layer [10–13]. This means that hydrogen transport in hydride-

forming metals and oxides may involve the hydrogen transfer reaction between

the adsorbed state (MHads) on the electrode surface and the absorbed state (MHabs)

at the electrode subsurface. As a result, one cannot rule out the possibility that in

addition to hydrogen diffusion, interfacial charge transfer, hydrogen transfer, or

both may determine the overall rate of hydrogen transport. In fact, abnormal

behaviors in hydrogen transport have been revealed by current transient analysis,

which showed a strong deviation from the diffusion-control model. The key feature

is that the log (current I) versus log (time t) curve exhibits a simple two-stage shape,

but the absolute value of its slope is lower than 0.5 in the early stage, and no plateau

region appears in the plot of It1/2 versus log t [14–18].
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7.2 Hydrogen Diffusion Coupled with the Charge Transfer

Reaction

The diffusion-control model assumes that the charge-transfer reaction on the

electrode surface is too facile to affect hydrogen transport. From the thermody-

namic viewpoint, this means that the interfacial charge-transfer reaction is practi-

cally undisturbed from the equilibrium (see Sect. 4.2). However, there is much

experimental evidence which indicates that the charge-transfer rate is not suffi-

ciently fast and that the kinetic limitation due to the charge-transfer reaction cannot

be neglected. In this case, hydrogen diffusion and interfacial charge transfer may be

disturbed from the equilibria, namely, hydrogen diffusion and interfacial charge

transfer simultaneously determine the rate of hydrogen transport, i.e., a mixed

control model by hydrogen diffusion and interfacial charge transfer.

7.2.1 Flat Electrode Surface

Chen et al. [15] formulated kinetic theories of hydrogen transport under the kinetic

limitations due to interfacial charge transfer. They assumed that the insertion

reaction can be represented by the charge-transfer resistance Rct and the diffusion

impedance Zd in series, as discussed in Sect 4.2, and derived a theoretical expres-

sion for the current transient. The Laplace transform of the current response IðsÞ to a
small potential step DE is related to the electrode impedance Z(s) by

IðsÞ ¼ DE
sZðsÞ (7.1)

where s is the Laplace complex variable. In the mixed control model by hydrogen

diffusion and charge transfer, the electrode impedance is represented by the charge-

transfer resistance Rct and the diffusion impedance Zd(s) in series as follows:

ZðsÞ ¼ Rct þ ZdðsÞ (7.2)

Zd(s) for an electrode with an impermeable boundary is expressed as

ZdðsÞ ¼ Rd

coth sL2= ~DH

� �1=2
sL2= ~DH

� �1=2 (7.3)

Rd ¼ L

FAea
~DH

dE

dcH

� �
(7.4)
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where Rd is the diffusion resistance, ~DH the chemical diffusivity of hydrogen, and

L the electrode thickness.

If one definesL ¼ Rd=Rct, the Laplace transform of the current is then written as

IðsÞ ¼ ðDE=RctÞ
s 1þ L coth sL2= ~DH

� �1=2
sL2= ~DH

� �1=2.h i (7.5)

Finally, the inverse Laplace transform of Eq. 7.5 yields the current-time relation:

IðtÞ ¼ 2DE
Rct

X1
n¼1

L
L2 þ Lþ b2n

exp � b2n
~DH

L2
t

� �
(7.6)

where bn is the n-th positive root of (b tan b� L ¼ 0). For a small potential step DE
(for hydrogen extraction), the relationship between the potential E and the hydrogen

concentration cH is given by

DE ¼ ðEext � EiniÞ ¼ dE

dcH

� �
ðcsH � coHÞ (7.7)

where coH and csH denote the initial equilibrium and surface concentrations of

hydrogen corresponding to Eini and Eext , respectively. The following theoretical

expression for the current transient is obtained for the mixed control model by

hydrogen diffusion and interfacial charge transfer:

IðtÞ ¼ 2FAeaðcoH � csHÞ ~DH

L

X1
n¼1

L2

L2 þ Lþ b2n
exp � b2n

~DH

L2
t

� �
(7.8)

where Aea is the electrochemical active area.

Equation 7.8 holds only when the potential step is so small that the relationship

between the current I and the overpotential � can be linearized [19]. In simulation

studies [17, 20], Pyun and coworkers considered the case where the charge-transfer

reaction is represented by the Butler-Volmer kinetics. They assumed that the

hydrogen flux at the electrode surface is determined by the rate of interfacial charge

transfer represented by the Butler-Volmer equation. The boundary condition (BC)
at the electrode surface is then written as

BC : IðtÞ ¼ FAea
~DH

@ cH
@ x

� �

¼ Io exp
ð1� aÞF

RT
ðEext �EðtÞÞ

� �
� exp � aF

RT
ðEext �EðtÞÞ

� �� �

mixed control BC by hydrogen diffusion and interfacial charge transferð Þ
for x¼ 0 at t� 0 ð7:9Þ
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where Io is the exchange current, a the transfer coefficient for hydrogen reduction,

ð1� aÞ the transfer coefficient for hydrogen oxidation, and F the Faraday constant.

The notations R and T are the symbols that are usually used. The equilibrium

potential E in the Butler-Volmer equation is determined by the hydrogen concen-

tration cH at the electrode surface. Since cH changes with time during hydrogen

transport, E is a function of time. When simulating the anodic current transient, we

used the functional relation between E and d of Eq. 4.5 in Sect 4.1.

Figure 7.1a presents the log I versus log t curve calculated by jumping Eini ¼
0:01 V toEext ¼ 0:08� 0:16 V[20]. The anodic current transient was calculated by

assuming L ¼ 1 cm, Aea ¼ 1 cm2, and F ~DH ¼ 1A cm2 mol�1. cH was taken to be

d mol cm�3 for the molar volume of the electrode Vm ¼ 1 cm3 mol�1. None of the

current transients show Cottrell behavior. The absolute slope of the log I versus log
t curve is smaller than 0.5. No plateau region (Cottrell region) is observed in the

plots of It1/2 against log t in Fig. 7.1b. The It1/2 versus log t plot shows an upward

convex shape and the time to its local maximum is shortened with increasing Eext.

As shown in Fig. 7.1a, the shape and value of the current transient strongly depend

on the value of Eext . At the moment of the potential jump t ¼ 0ð Þ, the electrode

potential E(0) is equal to the initial electrode potential Eini. When a relatively large

potential jumpDE ¼ Eext � Einið Þ is applied across the electrode, the contribution of
the cathodic current to the total current becomes negligibly small, so that the initial

current Iini at t ¼ 0 is simply given by

Iini ¼ Ið0Þ ¼ Io exp
ð1� aÞF

RT
DE

� �
(7.10)

Equation 7.10 indicates that Iini increases exponentially with increasing DE .
The linear relationship between log Iini and DE is a decisive piece of experimental

evidence that hydrogen transport proceeds via the mixed control mechanism

involving hydrogen diffusion and charge transfer. Figure 7.1c shows the hydrogen

concentration profile transients simultaneously calculated with the anodic current

transients in Fig. 7.1a. cH at the electrode surface is not maintained to zero

corresponding to Eext , due to the kinetic limitations induced by charge transfer,

but gradually goes to zero with time. Figure 7.2a shows the typical log I versus log
t curves measured on a Pd electrode in 0.1 M NaOH solution [17]. The current

transients were measured by jumping Eini ¼ �0.02 V (RHE) to Eini ¼ 0.2 � 0.6 V

(RHE). The dependence of log Iini on DE observed at 0.5 s is also illustrated in

Fig. 7.2b. The absolute slope increases with increasing Eext, and log Iini is linearly
proportional to DE. As shown in Fig. 7.2b, the measured Iini can be fitted to Iini
calculated from the Butler-Volmer equation with Io ¼ 3.4 � 10�5 A and a ¼ 0.64.

The fitted values of Io and a are comparable to those determined by Enyo and

Biswas [21].

Another example of the mixed control model is found in an Mm

(Ni3.6Co0.7Mn0.4Al0.3)1.12 electrode. Figure 7.3a presents the log i versus log

t curves measured from the Mm(Ni3.6Co0.7Mn0.4Al0.3)1.12 electrode in 6 M KOH
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Fig. 7.1 (a) log I versus log
t curve, (b) It1/2 versus log
t plot, and (c) the hydrogen

concentration profile

transients calculated by

jumping Eini ¼ 0.01 V to

Eext ¼ 0.08–0.16 V

(Reprinted from Lee and

Pyun [20], Copyright #2005

with permission from

Elsevier Science)
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solution by jumping Eini ¼ �1.0 V(Hg/HgO) to Eext ¼ �0.85 to �0.65 V(Hg/

HgO) [22]. The anodic current transient shows a linear relationship between log i
and log t with an absolute slope of between 0 and 0.5, followed by the exponential

decay of the current density with time. The initial current density iini observed at 1 s
is plotted in Fig. 7.3b as a function of Eext . In order to more clearly specify the

boundary condition at the electrode surface during hydrogen extraction, the values

of iini at 1 s were theoretically determined from Eq. 7.10, and then quantitatively

compared with the value of iini measured experimentally. It can be seen from

Fig. 7.3b that the measured value of iini is consistent with that calculated from

Eq. 7.10, implying that the mixed control BC of Eq. 7.9 is satisfied at the electrode

surface.

Fig. 7.2 (a) log I versus log
t curves and (b) the

dependence of log Iini on DE
measured on a Pd electrode in

0.1 M NaOH solution

(Reprinted from Han et al.

[17], Copyright #2001 with

permission from Elsevier

Science)
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Han et al. [23] later found that the mixed control BC of Eq. 7.9 is not restricted to

hydrogen transport during the current transient experiment, but it is also appropriate

for hydrogen transport during cyclic voltammetric measurements, depending on the

scan rate. The linear sweep voltammograms measured on a Pd electrode in 0.1 M

NaOH solution are displayed for various scan rates in Fig. 7.4a [23]. In the case

where cH at the electrode surface is determined by the applied potential Eapp , the

relation between the peak current density ip and the scan rate v is theoretically well
established under the impermeable boundary condition as follows [24–26]:

ip ¼ 0:046F
coH

~DH

L

� �
w1=2 tanhð0:56w1=2 þ 0:05wÞ (7.11)

Fig. 7.3 (a) log i versus log
t curves and (b) the

dependence of log iini on Eext

measured from the Mm

(Ni3.6Co0.7Mn0.4Al0.3)1.12
electrode in 6 M KOH

solution (Reprinted from Lee

et al. [22], Copyright #2005

with permission from

Elsevier Science)
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w ¼ F

RT

� �
nL2

~DH

(7.12)

Equation 7.11 is called the Randles-Sevčik equation. The experimental log ip
versus log v curve is plotted in Fig. 7.4b. The anodic peak current density ip was
calculated as a function of n, and the result is presented in the form of a solid line in

Fig. 7.4b. The experimental data follow the Randles-Sevčik relation above

5 mV s�1; however, it deviates from the Randles-Sevčik relation below

Fig. 7.4 (a) Linear sweep

voltammograms and (b) the

dependence of the peak

current density on the scan

rate measured on a Pd

electrode in 0.1 M NaOH

solution (Reprinted from Han

et al. [23], Copyright #2001

with permission from

Elsevier Science)
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5 mV s�1. This means that above 5 mV s�1 cH at the electrode surface is determined

by Eapp whereas, below 5 mV s�1, it is no longer determined by Eapp. Taking into

account that, in the low scan rate range, the hydrogen flux induced by the charge-

transfer reaction at the electrode surface is smaller than that induced by diffusion

inside the electrode, it is reasonable to suppose that the change in cH at the electrode

surface with time is given by the Butler-Volmer equation under the potential sweep

condition.

7.2.2 Rough Electrode Surface

On the basis of fractal geometry, Lee and Pyun [27] examined hydrogen transport

from the bulk electrode matrix toward the rough electrode surface under mixed

control BC by hydrogen diffusion and interfacial charge transfer. They used a

kinetic Monte Carlo (MC) simulation based upon the random walk approach

[28, 29]. The current transients were theoretically calculated using the fractal

surface generated by the Weierstrass function (see Sect. 4.3.2) [30]. More informa-

tion on fractal geometry can be found in Chap. 9. Under the mixed control BC, the
current I is limited by the rate of interfacial charge transfer represented by the

Butler-Volmer equation. In the MC simulation, the jump probability of hydrogen

Wtr across the electrode/electrolyte interface should take the same form as the

Butler-Volmer equation of Eq. 7.13,

Wtr ¼ f exp
ð1� aÞF

RT
ðEext � EðtÞÞ

� �
� exp � aF

RT
ðEext � EðtÞÞ

� �� �
(7.13)

where f designates a dimensionless conversion factor, which represents the

exchange current Io or the rate constant of charge transfer k
o in Io. f was arbitrarily

taken as a value below unity, soWtr in Eq. 7.13 is a dimensionless parameter with a

value below unity (0 � Wtr<1).

Figure 7.5 presents the log I versus log t curves calculated from the flat electrode

with dF;ss ¼ 1:0 and the fractal electrodes with dF;ss ¼ 1:32 and 1.47 by jumping

Eini ¼ 0:024 V to Eext ¼ 0:08 V [27]. The simulation was performed with f ¼
2 � 10�3. The logarithmic current transient computed from the flat electrode with

dF;ss ¼ 1:0 shows an absolute slope of log I with log t flatter than 0.5, followed by a
monotonic increase with time, which is a typical feature of the current transient

under the mixed control BC. On the other hand, an inflection point appears at

t ¼ ca. 1,200 Monte Carlo steps (MCS) in both current transients simulated from

the fractal electrodes with dF;ss ¼ 1:32 and 1.47. Figure 7.6a, b shows the concen-

tration profiles of hydrogen in the fractal electrode with dF;ss ¼ 1:47 computed at

t ¼ 150 MCS before the occurrence of the inflection point and at t ¼ 1,250 MCS
just after the appearance of the inflection point, respectively [27]. The local

concentrations of hydrogen in the electrode were marked in different contrast levels

from white for d ¼ 0–0.02 to black for d ¼ 0.08–0.1.
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At t ¼ 150 MCS, only those hydrogen atoms residing in the vicinity of the

electrode surface are extracted from the electrode and, hence, the equiconcentration

lines in the diffusion layer tend to follow the fractal topography of the electrode

surface. At t ¼ 1,250 MCS, on the other hand, the shape of the equiconcentration

lines in the diffusion layer is no longer similar to that of the fractal topography of

the electrode surface, but is nearly flat. As a result, the simulation analysis

demonstrates that the inflection point is caused by the fractal to flat transition of

the current transient; namely, the current transient under the mixed control BC
exhibits an inflection point at a time that corresponds to the temporal outer cutoff to
of fractality. The results in Figs. 7.5 and 7.6 are summarized as follows:

1. At t<to , the diffusing hydrogen senses the fractal electrode surface with the

microscopic area.

2. As the time goes on, the diffusion layer grows from the electrode surface and,

thus, the equiconcentration lines in the diffusion layer resemble less and less the

fractal topography of the electrode surface.

3. At t>to, the equiconcentration lines in the diffusion layer become straight, and

the thickness of the diffusion layer exceeds the spatial outer cutoff lo of

fractality, so that the diffusing hydrogen senses the flat electrode surface with

the geometric area.

Figure 7.7a, b illustrates the effects of f and DE on the current transients

calculated for hydrogen transport through the fractal electrode with dF;ss ¼ 1:47,
respectively [27]. As the values of the simulation parameters, f and DE, increase,
the current decays more rapidly with time until to is encountered and, at the same

time, to is gradually shortened. The values of ko and DE increase the rate of

interfacial charge transfer (see Eq. 7.13) and, thus, to decreases with increasing

f and DE.

Fig. 7.5 log I versus log
t curves calculated from the

flat electrode with dF,ss ¼ 1.0

and the fractal electrodes with

dF,ss ¼ 1.32 and 1.47. Note

that the values of I for
dF,ss ¼ 1.32 and 1.47 were

multiplied by the factors 2.0

and 4.0, respectively

(Reprinted from Lee and

Pyun [27], Copyright #2005

with permission from

Elsevier Science)
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7.3 Hydrogen Diffusion Coupled with the Hydrogen Transfer

Reaction

Yang et al. [31, 32] first performed galvanostatic potential transient experiments to

systematically study hydrogen transport under the influence of the hydrogen trans-

fer reaction. In their works, theoretical formulations were made for the

galvanostatic discharge process including hydrogen diffusion followed by the

hydrogen transfer reaction, and the experimental data obtained from Zr-based

amorphous alloys were found to be successfully explained by the theoretical

model. The current transient behaviors for the mixed control by hydrogen diffusion

and hydrogen transfer were examined for spherical particles of metal hydrides and

Fig. 7.6 Concentration

profiles of hydrogen in the

fractal electrode with

dF,ss ¼ 1.47 computed (a) at

t ¼ 150 MCS and (b) at

t ¼ 1250 MCS (Reprinted

from Lee and Pyun [27],

Copyright #2005 with

permission from Elsevier

Science)
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for amorphous Pd82�yNiySi18 (y ¼ 0–32) alloy foils [16, 18, 33]. When the

equilibria for both hydrogen diffusion and hydrogen transfer are noticeably dis-

turbed, while the interfacial charge transfer is practically undisturbed, the following

BC is established at the electrode surface during the anodic current transient

experiment [18]:

BC : IðtÞ ¼ FAea
~DH

@cH
@x

� �
¼ FAea kf

cH
cmax
H

� �
ð1� yHÞ � kb yH 1� cH

cmax
H

� �� �� �

mixed control BC by hydrogen diffusion and hydrogen transferð Þ
for x ¼ 0 at t � 0 ð7:14Þ

Fig. 7.7 Effects of (a) f and
(b) DE on the current

transients calculated for

hydrogen transport through

the fractal electrode with

dF,ss ¼ 1.47 (Reprinted from

Lee and Pyun [27], Copyright

#2005 with permission from

Elsevier Science)
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where kf is the forward rate constant of hydrogen transfer from MHabs to MHads; kb,
the backward rate constant of hydrogen transfer from MHads to MHabs; yH, the
surface coverage of adsorbed hydrogen; and cmax

H ,the maximum available concen-

tration of hydrogen which is equal to the total number of interstitial sites available

for hydrogen.

It is assumed that the charge-transfer kinetics is so facile that the hydrogen

adsorbed on the electrode surface resulting from the preceding hydrogen transfer

reaction can be immediately oxidized. This means that the value of yH approaches

zero at the moment of the potential jump. The backward transfer reaction, i.e.,

hydrogen transfer of MHads to MHabs, can be then neglected and Eq. 7.14 can be

simplified as:

BC : IðtÞ ¼ FAea
~DH

@cH
@x

� �
¼ FAeakf

cH
cmax
H

� �

for x ¼ 0 at t � 0 ð7:15Þ

The parameter ðcH=cmax
H Þ means the fraction of absorbed states occupied at the

electrode subsurface. Equation 7.15 is equivalent to the BC involved in the diffu-

sion process coupled with the surface evaporation reaction for which the mathe-

matical treatment can be readily made under semi-infinite and finite diffusion

conditions [34].

The analytical solution to the diffusion equation under the BC of Eq. 7.15 can be

derived as follows: From the Laplace transform of diffusion equation under the

semi-infinite diffusion condition, one can obtain the Laplace transform of cH:

cHðx; sÞ ¼ coH
s
� coHH

sðH þ s1=2Þ exp � s1=2x

~DH
1=2

 !
(7.16)

H ¼ kf

~DH
1=2

cmax
H

(7.17)

Now one obtains the current expression:

IðsÞ ¼ FAea
~DH

@cH
@x

� �
¼ FAea

~DH
1=2

coHH

s1=2ðH þ s1=2Þ for x ¼ 0 at t � 0 (7.18)

Finally, the inverse Laplace transform of Eq. 7.18 gives the following current-

time relation:

IðtÞ¼ FAea
~DH

1=2
coHH expðH2tÞ erfcðHt1=2Þ

¼ FAea

kf
cmax
H

� �
coH exp

kf
cmax
H

� �2 t
~DH

" #
erfc

kf
cmax
H

� �
t
~DH

� �1=2" #
(7.19)
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At very short times, the factor expðH2tÞ erfcðHt1=2Þ can be linearized and, thus,

Eq. 7.19 can be written as

IðtÞ ¼ FAea

kf
cmax
H

� �
coH 1� 2

p1=2
kf
cmax
H

� �
t
~DH

� �1=2" #
(7.20)

The theoretical expressions for the current transient of Eqs. 7.19 and 7.20 can be

used to estimate the kinetic parameters of the rate constant of hydrogen transfer and

the hydrogen diffusivity.

Figure 7.8a illustrates the log I versus log t curves calculated by jumping

Eini¼ 0:01V toEext ¼ 0:08 V under the impermeable BC [20]. The simulated

current transient exhibits a linear relationship between log I and log t with an

absolute slope lower than 0.5, followed by a rapid fall of the current with time. As

the value of kf increases from 2 � 10�6 to 2 � 10�5 mol cm�2 s�1, the current

level in the early stage increases and, at the same time, the absolute slope of the

logarithmic current transient rises. In addition, the plot of It1/2 vs. log t in Fig. 7.8b

shows no plateau region with Cottrell character, but exhibits an upward convex

shape with a local maximum. It should be noted that the value of Iini under the
mixed control BC by hydrogen diffusion and hydrogen transfer is linearly propor-

tional to kf. However, Iini should remain constant, irrespective of the value of DE,
because kf is essentially independent of DE. Similar to the case of the mixed control

by hydrogen diffusion and charge transfer, Fig. 7.8c shows that cH at the electrode

surface gradually decreases with time, because of the kinetic limitations induced by

hydrogen transfer.

Figure 7.9a displays the log I versus log t curve measured on the amorphous

Pd82Si18 electrode in 0.1 M NaOH solution by jumping Eini ¼ �0.1 V(RHE) to

Eext ¼ 0.9 V(RHE) [18]. The value of Iini determined at 0.2 s from the anodic

current transient is also plotted in Fig. 7.9b as a function of DE. Three remarks

should be made concerning the experimental current transients:

1. The Cottrell relationship between log I and log t is not observed in the anodic

current transient.

2. The value of log Iini remains almost constant, irrespective of DE.
3. Themeasured anodic current transient can be fitted quite well to that theoretically

calculated from Eq. 7.20, as shown in the inset of Fig. 7.9a. ~DH and kfðcmaxÞ�1
in

Eq. 7.20 were used as variable parameters. ~DH ¼ 1:6� 10�8cm2s�1 and

kfðcmaxÞ�1 ¼ 2:3� 10�4 cm s�1 gave the best fit to the experimental data.

The results in Fig. 7.9 indicate that hydrogen transport through the amorphous

Pd82Si18 electrode proceeds via the mixed control mechanism involving hydrogen

diffusion and hydrogen transfer.

The rate constant of hydrogen transfer kf, which determines the shape and value

of the current transient, may depend on the nature of the electrode surface [18]. As

an example, Fig. 7.10 displays the value of kfðcmaxÞ�1
as a function of the Ni content

y in Pd82�yNiySi18. The value of kfðcmaxÞ�1
is (2.4 � 0.4) � 10�4 cm s�1,
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Fig. 7.8 (a) log I versus log
t curve, (b) It1/2 versus log
t plot, and (c) the hydrogen

concentration profile

transients calculated by

jumping Eini ¼ 0.01 V to

Eext ¼ 0.08 V (Reprinted

from Lee and Pyun [20],

Copyright #2005 with

permission from Elsevier

Science)
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irrespective of the Ni content [18]. It is difficult to determine quantitatively the rate

constant of hydrogen transfer kf from the value of kfðcmaxÞ�1
because cmax is not

known. Considering the significant decrease of co with the Ni content due to the

lower solubility of hydrogen in Ni, it can be assumed that cmax decreases with

increasing Ni content. It is thus inferred that kf decreases with increasing Ni content.
The cyclic voltammograms on the Ni-free Pd82Si18 and Ni-containing Pd50Ni32Si18
electrodes given in Fig. 7.11 indicate that an Ni(OH)2 layer is formed partly on the

surface of the Ni-containing electrode [18]. From the fact that the value of kf
decreases with increasing Ni content (or with increasing surface coverage by Ni

(OH)2 phase), it seems that the Ni(OH)2 layer on the electrode surface may act as an

effective barrier to hydrogen extraction from the electrode by reducing the rate

constant of hydrogen transfer kf [35, 36].

Fig. 7.9 (a) log I versus log
t curves and (b) the

dependence of log Iini on DE
measured on a Pd82Si18
electrode in 0.1 M NaOH

solution (Reprinted from Lee

et al. [18], Copyright #2003

with permission from

Elsevier Science)
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Fig. 7.10 Plot of kf(cmax)
�1

versus Ni content y in
Pd82�yNiySi18 (Reprinted

from Lee et al. [18],

Copyright #2003 with

permission from Elsevier

Science)

Fig. 7.11 Cyclic

voltammograms measured

on Ni-free Pd82Si18 and

Ni-containing Pd50Ni32Si18
electrodes (Reprinted from

Lee et al. [18], Copyright

#2003 with permission from

Elsevier Science)
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7.4 Change in Boundary Condition with Driving Force

for Hydrogen Transport

The boundary condition at the electrode surface for hydrogen transport is not fixed

at the specific electrode/electrolyte system by itself, but it is determined at any

electrode/electrolyte system by the applied potential step, the overpotential induced

by the electrolyte resistance and/or the nature of the electrode surface.

7.4.1 Effect of Ohmic Potential Drop

An ohmic potential drop due to the uncompensated solution resistance RS, i.e., the

overpotential induced by IRS, must be minimized in the current transient experi-

ment. However, it is very difficult to totally eliminate the overpotential induced

by IRS, even when a Luggin probe and IRS compensation device are used.

The overpotential induced by IRS affects the effective potential step DE effð Þ ¼
Eext � EðtÞ � IRSf g applied across the electrode and, hence, the BC at the electrode

surface for hydrogen transport. Figure 7.12 shows the log I versus log t curves
measured on the Pd electrode in 0.1 M NaOH solution by jumping Eini ¼ �0:02 V

RHEð Þ to Eext ¼ 0:9 V RHEð Þ [17]. Different distances d between the working and

reference electrodes were used. As d decreases from 20 to 2 mm, the absolute slope

of the log I versus log t curve increases from ca. 0 to 0.5. The overpotential induced

by IRS is linearly proportional to the value of d in an electrochemical cell with a

planar configuration. Taking into account that the larger the value of IRS, the

smaller the magnitude of the effective potential jump, DE(eff), applied across the

electrode, it seems that the mixed control BC by hydrogen diffusion and charge

Fig. 7.12 log I versus log
t curves measured on a Pd

electrode in 0.1 M NaOH

solution by jumping

Eini ¼ �0.02 V(RHE) to

Eext ¼ 0.9 V(RHE). Different

distances d between the

working and reference

electrodes were used in an

electrochemical cell

(Reprinted from Han et al.

[17], Copyright #2001 with

permission from Elsevier

Science)

166 7 Abnormal Behaviors in Hydrogen Transport: Importance of Interfacial Reactions



transfer is valid for a large overpotential induced by IRS, while the diffusion-control

BC is satisfied for a small overpotential induced by IRS.

7.4.2 Effect of Potential Step

Figure 7.13 presents the plot of log Iini versus Eext, obtained from the Pd foil

electrode in 0.1 M NaOH solution [22]. The value of log Iini increases linearly

with increasing Eext up to ca. 0.8 V(RHE) and then remains nearly constant

regardless of Eext:

1. At Eext < 0.8 V(RHE), the measured Iini can be fitted well with the value

calculated from the Butler-Volmer equation. This means that the mixed control

BC by hydrogen diffusion and charge transfer is effective at the electrode surface

during hydrogen transport.

2. At Eext > 0.8 V(RHE), the measured value of Iini is almost identical to that

theoretically calculated from the Cottrell equation. This clearly indicates that the

diffusion-control BC is valid at the electrode surface.

In Fig. 7.13, the transition potential Etr is defined as Eext at which the plot of log

Iini against Eext determined from the Butler-Volmer equation intersects that plot of

log Iini versusEext calculated from the Cottrell equation. Similar to the case of the Pd

electrode, Fig. 7.14 shows that a transition of the boundary condition occurs at the

Mm(Ni3.6Co0.7Mn0.4Al0.3)1.12 electrode surface from mixed control to diffusion

control when the potential step exceeds a certain value [22].

Fig. 7.13 Plot of log Iini
versus Eext measured on a Pd

foil electrode in 0.1 M NaOH

solution (Reprinted from Han

et al. [17], Copyright #2001

with permission from

Elsevier Science)
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7.4.3 Effect of Surface Properties

Figure 7.15a compares the anodic current transients obtained from the as-annealed

and as-surface-treated Zr0.65Ti0.35Ni1.2V0.4Mn0.4 hydride electrodes in 6 M KOH

solution [22]. The Zr0.65Ti0.35Ni1.2V0.4Mn0.4 alloy is very susceptible to oxidation

during the alloy preparation process involving arc-melting and annealing treatment

and, hence, its surface is usually covered with dense and passive oxide scales such

as ZrO2 and V2O5 [36–40]. The as-annealed Zr0.65Ti0.35Ni1.2V0.4Mn0.4 electrode

was immersed in boiling 6 M KOH solution to remove the surface oxide scales.

Figure 7.16a, b presents the results of energy dispersive spectroscopy (EDS)
determined from the as-annealed and as-surface-treated Zr0.65Ti0.35Ni1.2V0.4Mn0.4
electrodes, respectively [22]. The Zr La, Ti Ka, V Ka, and Mn Ka peaks shown in the

EDS spectra of the as-annealed electrode disappear completely in the EDS spectra

of the as-surface-treated electrode. The intensities of the Ni peaks of La and Ka in

Fig. 7.16b were found to be much larger than those in Fig. 7.16a. These results

indicate that the oxide scales on the surface of the as-annealed electrode were

removed by the surface treatment, and at the same time the metallic Ni was

enriched on the surface of the as-surface-treated electrode [41].

As shown in Fig. 7.15a, the log Iini versus Eext curve obtained from the as-

annealed electrode exhibits an absolute slope flatter than 0.5. The fact that the

theoretically calculated anodic current transient is consistent with the experimen-

tally measured one as shown in Fig. 7.15b confirms that the mixed control BC by

hydrogen diffusion and hydrogen transfer is effective at the electrode surface for

hydrogen extraction. On the other hand, the current transient obtained from the

Fig. 7.14 Plot of log iini versus Eext measured on an Mm(Ni3.6Co0.7Mn0.4Al0.3)1.12 electrode in

6 M KOH solution (Reprinted from Lee et al. [22], Copyright #2005 with permission from

Elsevier Science)
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Fig. 7.15 log I versus log t curves obtained from as-annealed and as-surface-treated

Zr0.65Ti0.35Ni1.2V0.4Mn0.4 hydride electrodes in 6 M KOH solution (Reprinted from Lee et al.

[22], Copyright #2005 with permission from Elsevier Science)
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as-surface-treated electrode in Fig. 7.15a shows Cottrell behavior, which suggests

that the diffusion-control BC is valid for hydrogen extraction.
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Chapter 8

Effect of Cell Impedance on Lithium Transport

Lithium transport through intercalation compounds, including transition metal

oxides and carbonaceous materials, has been known for a long time to be limited

by solid-state lithium diffusion and most studies on the cell reaction kinetics have

been accordingly focused on lithium transport through the active materials [1–10].

However, a number of anomalous transport behaviors, which have never been

explained on the basis of the “diffusion-controlled” concept, have been reported

for various materials, demanding a new model to explain the lithium transport

behavior [11–23]. The understanding of these anomalous phenomena entered a

new phase when the real mechanism of lithium transport was revealed to be a

“cell-impedance-controlled” process, not a “diffusion-controlled” one [24–35].

This chapter deals with the typical anomalous lithium transport behaviors and

explains the importance of the cell impedance as the main factor affecting lithium

transport.

8.1 Anomalous Features of Lithium Transport

8.1.1 Non-Cottrell Behavior at the Initial Stage of Lithium
Transport

In chronoamperometry, it is expected that the current transient would show a linear

relation between the logarithmic current and the logarithmic time with a slope of

�0.5 in the initial stage of the diffusion process (Cottrell behavior, see Chap. 2 for

the details), insofar as the solid-state lithium diffusion governs the whole insertion

process. However, this is not the case for most lithium insertion materials. Shown in

Fig. 8.1 are the logarithmic current transients, obtained from Li1�dNiO2 and

graphite.

S.-I. Pyun et al., Electrochemistry of Insertion Materials for Hydrogen and Lithium,
Monographs in Electrochemistry, DOI 10.1007/978-3-642-29464-8_8,
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Whether the lithium ion diffusion into them follows the Cottrell behavior or not

can be more effectively judged by the I(t)· t1/2 versus ln t plot: In the Cottrell region,
the value of I(t)· t1/2 remains constant, irrespective of the diffusion time. Shown in

Fig. 8.2 is the I(t) t1/2 versus ln t plot reproduced from Fig. 8.1.

There is a local maximum in the plots and no region with the Cottrell character is

found. Some researchers claimed that the local maximum corresponded to the semi-

infinite planar diffusion region, representing the Cottrell behavior [36–39]. However,

it is quite unlikely that this is the Cottrell region, in that it has no time length. That is,

Fig. 8.1 Experimental

current transients obtained

from (a) lithium nickel

dioxide (Li1�dNiO2) and

(b) graphite (Reprinted from

Lee et al. [28], Copyright

#2001 with permission from

Elsevier Science; Shin and

Pyun [32], Copyright#2003

with permission from Kluwer

Academic/Plenum

Publishers)
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the physical meaning of the pseudo-plateau observed in the I(t)· t1/2 versus ln t plots
of lithium insertion materials has been quite possibly overestimated.

8.1.2 Discrepancy Between Anodic and Cathodic Behaviors

Assuming that the lithium diffusion into the materials governs the whole lithium

insertion process, i.e., the diffusion-controlled process, and the chemical diffusion

coefficient of lithium remains constant in the course of lithium insertion (this is

Fig. 8.2 I(t)·t1/2 versus ln
t plot reproduced from

(a) Fig. 8.1a and (b) Fig. 8.1b

(Reprinted from Shin and

Pyun [32], Copyright #2003

with permission from Kluwer

Academic/Plenum

Publishers)
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quite true when the applied potential step is small and no phase transition takes

place during lithium insertion), the absolute value of the cathodic current transient

should be exactly equal to that of the corresponding anodic transient.

Figure 8.3 shows the cathodic and corresponding anodic current transients

determined in a single-phase region at the potential drop and jump, respectively.

It is noted that the cathodic curves intersect the anodic curves. Considering that the

chemical diffusion coefficient is almost invariant in the potential region where the

experiment was carried out, the intersection of the two curves might provide clear

evidence that the main factor controlling the lithium insertion process is not the

lithium diffusion inside the electrodes.

The following point is also noteworthy: The current values of all of the anodic

curves exceed those of the corresponding cathodic curves in the initial stage of

diffusion (i.e., before the intersection of the two curves), while the former become

smaller than the latter in the later stage of diffusion (i.e., after their intersection).

It is interesting that such a regular variation in the relative current level seems to

reflect the shape of the electrode potential curve. That is, the initial faster and the

subsequent slower current drop in the cathodic chronoamperometric curves

(as compared to the anodic curves) during the potential drop appears to follow

the variation of the electrode potential when it decreases. Also, the electrode

potential rises slowly and then quickly when we record the anodic current transients

that feature an initial slower and succeeding faster current drop. This indicates that

the degree of change of the electrode potential (with the lithium content) in the

negative and positive directions is in qualitative agreement with the rate of cathodic

and anodic current change (with time), respectively. The above argument is

schematically presented in Fig. 8.4.

8.1.3 Quasi-constant Current During Phase Transition

In fact, it is not a surprise that the current transient significantly deviates from the

typical Cottrell behavior in the course of the insertion-induced phase transition,

because the diffusion process in the presence of two phases would be quite different

from that in the presence of a single phase. However, a noteworthy point is the great

discrepancy in the shape of the curve from the solutions of the moving phase

boundary problem: The current transients, either obtained by numerically solving

the modified diffusion equation or predicted on the basis of Wagner’s approach [17,

40, 41], are characterized by a monotonic decrease of current with time during

the phase transition. This is not the case, however, in the case of the current

transients when the potential stepping passes through the plateau potential where

two phases coexist. Shown in Fig. 8.5a are the logarithmic current transients of the

Li1+d[Ti5/3Li1/3]O4 electrode obtained by lowering the potential from 1.7 V versus

Li/Li+ (single-phase potential region) to the region below the plateau potential.

The experimental current transients showed a three-stage shape consisting of a

slow drop, quasi-constant value, and steep decay of the current in sequence. In
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particular, the second stage of the quasi-current plateau is characteristic of the

insertion-induced phase transition, which has never been explained in the literature

on the basis of the “diffusion-controlled” concept: Based on the experimental

finding that the amounts of charge transferred up to the onset and end times of

the current plateau are almost equal to the maximum lithium solubility limit of the

Li-dilute phase and the minimum solubility limit of the Li-rich phase (Fig. 8.5b),

respectively, the quasi-current plateau in Fig. 8.5 is undoubtedly caused by the

phase transition of the Li-dilute phase to the Li-rich phase. Accordingly, it is quite

improbable that the phase transition is governed by the “diffusion-controlled”

process, because the “diffusion-controlled” phase transition would lead to a

Fig. 8.3 Experimental

cathodic and anodic current

transients obtained from

(a) lithium cobalt dioxide

(Li1�dCoO2) and (b) lithium

titanium oxide

(Li1+d[Ti5/3Li1/3]O4)

(Reprinted from Shin and

Pyun [24], Copyright #1999

and Shin et al. [27], Copyright

#2001, with permissions

from Elsevier Science)
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decrease in the rate of phase boundary movement with time and, therefore, a

notable drop of the current.

A quasi-current plateau in the current transient is frequently observed in other

compounds that undergo a phase transition during the lithium insertion process,

although the degrees of the current flatness are different from each other. These

include Li1�dCoO2 [24], Li1�dNiO2 [28], LidV2O5 [26], Li1�dMn2O4 [30], and

graphite [32]. An exemplary current transient and a cumulative charge transient of

LidV2O5 are presented in Fig. 8.6. In the case where the onset and end time points

Fig. 8.4 Schematic

illustrations showing that the

downward convex shape of

the electrode potential curve

possibly causes the

intersection of the cathodic

and anodic current transients.

Rapid drops in current

(a* and B* in (b)) reflect the

shape of upper part of the
electrode potential curve

(a and B in (a)) while mild

drops in current (A* and b*)
reflect the shape of the lower
part of the curve (A and b)
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are unclear, the inflexion points can be used to judge whether the quasi-current

plateaus are due to the phase transition or not, as indicated in Fig. 8.6b.

8.1.4 Lower Initial Current Level at Larger Potential Step

In the “diffusion-controlled” process, the initial current level of the current

transients should increase as the potential step increases, because an increase in

the potential level corresponds to an increase in the concentration difference of the
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Fig. 8.5 (a) Experimental

cathodic current

transients obtained from

Li1+d[Ti5/3Li1/3]O4 and

(b) cumulative charge versus

time plots, reproduced

from (a), together with the

electrode potential curve

(Reprinted from Shin et al.

[27], Copyright#2001 with

permission from Elsevier

Science; Shin and Pyun [32],

Copyright#2003 with

permission from Kluwer

Academic/Plenum Publishers)
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electrode surface from the bulk. However, this is not true for every current transient.

Relevant examples can be found in the anodic current transients of Li1�dNiO2

(Fig. 8.7). When the applied potential jump was about 0.3 V, the initial current level

started deviating from the typical linearity with the degree of potential jump,

showing a parabolic relationship between initial current level and applied potential

jump. The suppression of the initial current level strongly indicates that the lithium

extraction process is seriously retarded.

Another notable point is the increase in current with time: It is natural that, in

chronoamperometry, the current continuously drops with time, since the driving

force gets smaller during the diffusion process. However, as can be seen in the

curves where the initial potentials were 3.60 and 3.55 V versus Li/Li+, the current

increased until several tens to hundreds of seconds had passed. It is quite likely that

Fig. 8.6 (a) Experimental

cathodic current transients

obtained from vanadium

pentoxide (LidV2O5) and

(b) cumulative charge versus

time plots, reproduced from

(a), together with the

electrode potential curve

(Reprinted from Shin et al.

[27], Copyright #2001 with

permission from Elsevier

Science; Shin and Pyun [32],

Copyright #2003 with

permission from Kluwer

Academic/Plenum

Publishers)

180 8 Effect of Cell Impedance on Lithium Transport



the influence of some of the factors retarding the lithium extraction process is

reduced with time.

Fig. 8.7 (a) Experimental

anodic current transients

obtained from Li1�dNiO2 and

(b) the potential jump

dependence of their initial

current levels measured at

10 s (Reprinted from Lee

et al. [28], Copyright #2001

with permission from

Elsevier Science)
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8.2 Revisiting the Governing Mechanism of Lithium Transport

8.2.1 Ohmic Relationship at the Initial Stage of Lithium
Transport

The linear relation between the initial current and the applied potential step is

observed in almost all current transients of lithium insertion compounds. Since the

initial current level is determined, at least in this book, at an insertion time where all

of the capacitive elements in the cell are virtually fully charged or discharged

(typically at a time of several to 10 s) [32], the measured initial current is regarded

as the value when the current is related solely to the resistive elements of the cell,

including the solution, solid electrolyte interface film, and charge transfer

resistances. Such linearity implies that the difference between the initial potential

and the applied (or final) potential is the driving force of the lithium insertion or

extraction process, not the concentration gradient between the materials interface

and the bulk. This linearity is particularly valid, with little standard deviation, when

the initial potential is set to be invariant (Fig. 8.8). In this case, the reciprocal of the

proportionality constant of the linear relation is most likely the cell resistance,

which is defined at the initial potential or the lithium content at that potential.

As a matter of fact, the current is expected to increase linearly with the applied

potential step even in the “diffusion-controlled” process, insofar as the electrode

potential versus lithium content plot is considered to be linear, because the differ-

ence in the lithium content between the materials interface and the bulk would be

proportional to the applied potential step. However, a linear relation between the

initial current and the applied potential step is consistently observed in the experi-

mental current transients, irrespective of whether the electrode potential curves are

linear or not. As an exemplary result, please see the initial current versus applied

potential step plot reproduced from the current transients of Li1+d[Ti5/3Li1/3]O4,

whose electrode potential strongly deviates from linearity as the lithium content

increases (Fig. 8.8a-1 and a-2).

The above results strongly indicate that the lithium insertion process is not

governed by diffusion into the materials. Rather, it is more probable that the cell

resistance critically affects the rate of lithium insertion. This condition is called

“cell-impedance-controlled” lithium transport. Then, the next question is whether

or not the “cell-impedance-controlled” constraint is valid throughout the whole

lithium insertion/extraction process.

8.2.2 Validity of Ohmic Relationship throughout the Lithium
Transport Process

In order to verify the current-potential Ohmic relation in the course of the lithium

insertion/extraction process, the current-potential relation at various amounts of

charge transferred during the process needs to be analyzed. For this purpose, the
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Fig. 8.8 Experimental cathodic current transients (left) and the potential drop dependence of

their initial current levels (right), obtained from Li1+d[Ti5/3Li1/3]O4 (a-1, a-2), Li1�dNiO2 (b-1,

b-2) and LidV2O5 (c-1, c-2) (Reprinted from Shin et al. [27], Copyright #2001 with permission

from Elsevier Science)
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current transients are first obtained by changing from one initial potential to

different final potentials. Then, the current values that have the same cumulative

charge amounts are read on all of the current transients. Since all of the curves have

the same initial potential, when the cumulative charge amounts are identical, the

electrode potentials or lithium contents are virtually identical. Finally, the estimated

current values are plotted as a function of the applied potential step. The resulting

current versus applied potential step plot provides us with the I-V relation at a

variety of cumulative charges (or electrode potentials, lithium contents) in the

course of lithium insertion/extraction. Shown in Fig. 8.9 are the cathodic current

Fig. 8.9 Potential drop

dependence of instantaneous

current at different amounts

of cumulative charge,

reproduced from

(a) Fig. 8.1a for Li1�dNiO2

and (b) Fig. 8.3a for

Li1�dCoO2 (Reprinted from

Shin and Pyun [32],

Copyright #2003 with

permission from Kluwer

Academic/Plenum

Publishers)
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variations with the applied potential step at different cumulative charge transfers,

obtained from Li1�dNiO2 and Li1�dCoO2 in the single-phase potential region where

there is no remarkable phase transition during the lithium insertion process.

Linear relations between the current and potential are clearly observed,

regardless of the cumulative charge amount. This strongly indicates that the

“cell-impedance-controlled” constraint is valid throughout the whole lithium inser-

tion process and, thus, the driving force of the current flow is the difference between

the applied potential and the instantaneous electrode potential. This linear relation-

ship is valid even when the cumulative charge amount is in the lithium content

range of two-phase coexistence (Fig. 8.10), i.e., the phase transition runs under the

“cell-impedance-controlled” constraint, in the same manner as the single-phase

insertion reaction.

8.2.3 Origin for Quasi-Constant Current and Suppressed Initial
Current

When the lithium transport is limited by the internal cell resistance and is driven by

the difference between the applied (final) potential and the instantaneous electrode

potential, the reason for the quasi-constant current observed in the current transients

when the potential step passes through the plateau potential is quite clear:

The electrode potential is basically unchanged during the phase transition and,

thus, the potential difference (between the final and electrode potentials) remains

constant until the phase transition is finished. This means that the current, which is

defined as the potential difference divided by the internal cell resistance, does not

change notably as long as the variation of the cell resistance is trivial.

The suppression of the initial current level observed in the anodic current

transients of Li1�dNiO2 (Fig. 8.7) needs to be dealt with in a slightly different

manner, because the initial potential is different in every experiment, while the

applied potential remains unchanged. In this case, all of the initial current levels

reflect the information of the electrode at different electrode potentials or lithium

contents, unlike the case of an invariable initial potential where the initial currents

obtained are the result of the electrode properties at a specific initial potential.

The experimental results, which indicate that the initial current level showed a

strong negative deviation from linearity and even decreased in spite of the increased

applied potential step, imply that the internal cell resistance might abruptly increase

with decreasing initial electrode potential. This suggestion will be quantitatively

confirmed in Sect. 8.4.1.
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8.2.4 Validation of Internal Cell Resistance Obtained
from Chronoamperometry

The findings in Sects. 8.2.1, 8.2.2, and 8.2.3 consistently tell us that the lithium

transport proceeds under the “cell-impedance-controlled” constraint during the

chronoamperometry experiments. In order to confirm the conclusion drawn from

the observations, it would be quite useful to compare the internal cell resistances

estimated from the current-potential linear relation with those determined by other

techniques.

Fig. 8.10 Potential step

dependence of instantaneous

current at different amounts

of cumulative charge,

reproduced from (a) Fig. 8.6a

for LidV2O5 and (b) Fig. 8.5a

for Li1+d[Ti5/3Li1/3]O4

(Reprinted from Shin and

Pyun [32], Copyright #2003

with permission from Kluwer

Academic/Plenum

Publishers)
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Shown in Fig. 8.11 are the variations of the internal cell resistance with the

electrode potential obtained from Li1�dNiO2. The potential dependence of the cell

resistance determined from the linear relation between the initial current and the

applied potential step showed a parabolic shape, which is similar to the results

obtained by electrochemical impedance spectroscopy (EIS). Here, the values of the

initial current were taken at 10 s to exclude the effect of the non-faradaic current

due to the charging/discharging of the capacitive elements. It is noteworthy that the

former internal resistances quantitatively coincided quite well with the latter

resistances.

It is further noted that the cell resistance estimated from the slope of the

instantaneous current versus potential drop plot in the course of lithium insertion

proved to be higher than that determined by EIS. This slight discrepancy might be

caused by the increase in the over-potential with increasing potential step

(or increasing current level) and the effect of the diffusion resistance on the total

cell resistance at a prolonged lithium insertion time, which is actually disregarded

to estimate the cell resistances based on the linear relation between initial current

level and applied potential drop, and impedance spectra.

On the other hand, the charge/discharge curves obtained at various applied currents

can be utilized to roughly estimate the internal cell resistance. Since a higher current

leads to a larger close-circuit potential drop on the charge/discharge curve and this

typically follows the Ohmic relation, the cell resistance can be calculated from such a

linear relation for specific amounts of charge transfer (Fig. 8.12).

The calculated cell resistance agreed well with those determined from the linear

current-potential relation in the current transients (Fig. 8.13). The quantitative

coincidence of the internal cell resistances obtained from the current transients

with those obtained using the conventional independent techniques proves that

lithium transport proceeds under the “cell-impedance-controlled” constraint, not

the “diffusion-controlled” one.

Fig. 8.11 Variation of

internal cell resistance of

Li1�dNiO2 with its electrode

potential, determined from

current transients (o: initial

current vs. potential drop plot,

D: instantaneous current vs.
potential drop plot of

Fig. 8.9a) and

electrochemical impedance

spectroscopy (•) (Reprinted

from Lee et al. [28],

Copyright #2001 with

permission from Elsevier

Science)
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8.3 Theoretical Consideration of “Cell-Impedance-Controlled”

Lithium Transport

8.3.1 Model for Chronoamperometry

As presented in the previous sections, the current flow is determined by the

potential difference between the instantaneous electrode potential E(t; time) or

E(d; lithium content) and the applied potential, Eapp , divided by the internal cell

Fig. 8.12 (a) Galvanostatic

discharge curves of

Li1�dCoO2 at different

current drains and (b) closed

circuit potential versus

applied current plots at

various cumulative charges

(Reprinted from Go et al.

[31], Copyright #2002 with

permission from Elsevier

Science)
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resistance, RcellðtÞ or RcellðdÞ , i.e., E� Eapp

� �
=Rcell , which is accordingly the

boundary condition at the electrode/electrolyte interface. The electrode/current

collector interface or the center of the particle is under the typical impermeable

boundary condition. Fick’s diffusion equation is used as the governing equation to

calculate the concentration gradient inside the electrode.

As a matter of fact, the diffusion process during the phase transition might not be

properly modeled by the conventional diffusion equation, because the diffusion

coefficient in each phase and the rate of phase boundary movement are expected to

affect the lithium insertion rate and, thereby, the apparent diffusion coefficient.

Nevertheless, it is suggested, from a number of comparative studies between the

experimental and calculated current transients, that there is strong possibility that

the presence of the phase boundary does not significantly affect the shape of the

“cell-impedance-controlled” current transients. Rather, the boundary condition

between the electrode/electrolyte interface determines their overall shape [24–30,

32]. However, further investigation is still needed to clarify the effect of the moving

phase boundary on the solid-state diffusion and the current transients.

Among the model parameters, the instantaneous electrode potential E and the

internal cell resistance Rcell are first experimentally determined as a function of the

lithium content and then the functional relations ofEðdÞ andRcellðdÞ are obtained by
the polynomial regression analysis of the corresponding experimental data. Since

the relation EðdÞ contains the information about the phase transition as a quasi-

potential plateau, the theoretical current transients accordingly reflect the effect of

the phase transition.

For the theoretical calculation of the “cell-impedance-controlled” current

transients, the variation of the electrode potential with the lithium content EðdÞ
was assumed to follow the following equation [42]:

Fig. 8.13 Variation of

internal cell resistance of

Li1�dCoO2 with its electrode

potential, determined from

current transients (o),

discharge curve (D), and
electrochemical impedance

spectroscopy (□) (Reprinted

from Go et al. [31], Copyright

#2002 with permission from

Elsevier Science)
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E ¼ E0 � zif
F

½1� 2d� � aRT
F

ln
d

1� d

� �
(8.1)

where E0 is the standard potential at d ¼ 0:5; zi, the number of neighboring sites; f,
the interaction energy; d, the lithium content; and a, a parameter (a ¼ 1 or 2). We

assumed thatE0 ¼ 0 V; zif ¼ 0:059 eV; a ¼ 1, andT ¼ 298 K for constructing the

hypothetical electrode potential curve (Fig. 8.14).

The electrode potential curve consists of three regions. One is the

potential plateau region ð0:2bdb0:8Þ and the other two are the potential sloping

regions (d<0:2 and d>0:8). The potential plateau is ascribed to the phase transition
(or the coexistence of two phases) and the potential slopes are due to the single-

phase diffusion. The internal cell resistance was assumed to be independent of the

lithium content, i.e., RcellðdÞ ¼ constant. The current transients were theoretically

obtained by applying eight different potential steps, as given in the figure. Four of

these potential steps do not reach the plateau potential and, thus, lithium diffuses in

the single phase while the other four go through the potential plateau where the

phase transition occurs.

8.3.2 Lithium Transport in the Single-Phase Region

Figure 8.15a shows the current transients when the potential steps do not pass

through the plateau potential, i.e., no phase transition occurs during the lithium

insertion process. Unlike the “diffusion-controlled” curves, as discussed in Chap. 2,

no remarkable shape change of the curves is observed except for a monotonic

Fig. 8.14 Hypothetic

electrode potential curve used

for theoretically calculating

the current transients

(Reprinted from Shin and

Pyun [24], Copyright #1999

with permission from

Elsevier Science)
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increase in its absolute slope with time: The transition point from the semi-infinite

diffusion process to the finite-length diffusion process does not appear in the curves.

The concentration profile during the “cell-impedance-controlled” lithium transport

is characterized by a variable surface lithium content (Fig. 8.15b). The instantaneous

surface lithium content is determined by the amount of remaining surface lithium

(i.e., the amount of lithium that does not diffuse inside the electrode) and the lithium

flux at the electrode/electrolyte interface. Since the surface lithium content is not fixed

and depends critically on the lithium insertion time, the lithium flux at the interface is

basically smaller than that in the “diffusion-controlled” case, except at prolonged

lithium insertion times. This implies that the rate of approach to the equilibrium

lithium content in the former “cell-impedance-controlled” case is much lower than

Fig. 8.15 (a) Theoretical

cathodic current transients

obtained by hypothetically

dropping the potential from

0.05 V to different potentials

above the plateau potential

0 V, under the assumption of

cell-impedance controlled

lithium transport and (b) time

dependence of lithium

content profile across the

active material at the potential

drop from 0.05 to 0.04 V

(Reprinted from Shin and

Pyun [24], Copyright #1999

with permission from

Elsevier Science)
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that in the latter “diffusion-controlled” case. In the same context, it is noted that the

concentration profile becomes quite flat, in spite of the fact that the overall lithium

content is still far from the equilibrium value (please see the profile at t ¼ 2.0 in

Fig. 8.15b), strongly indicating that it takes a long time to reach the equilibrium

concentration.

8.3.3 Lithium Transport with Phase Transition

Since the cell potential is basically invariable in the presence of two phases, the

corresponding current transients are characterized by a constant current density, as

long as there is no change in the cell resistance. Accordingly, the flux plateau

regions in Fig. 8.16a certainly originate from the phase transition from the Li-poor

Fig. 8.16 (a) Theoretical

cathodic current transients

obtained by hypothetically

dropping the potential from

0.05 V to different potentials

below the plateau potential

0 V, under the assumption of

cell-impedance controlled

lithium transport and (b) time

dependence of lithium

content profile across the

active material at the potential

drop from 0.05 to �0.01 V

(Reprinted from Shin and

Pyun [24], Copyright #1999

with permission from

Elsevier Science)
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phase a to the Li-rich phase b (Fig. 8.14). The flux sloping regions on the left and

right sides of the flux plateau are due to lithium diffusion through the single a and b
phases, respectively.

Consistent with the above arguments, the calculated concentration profile of

Fig. 8.16b shows that there are three steps of lithium transport with the phase

transition: diffusion in the single a phase followed by the phase transition from a to

b and finally diffusion in the single b phase. It is quite interesting to note that there

is virtually no phase transition until the surface lithium content reaches the maxi-

mum solubility limit of the a phase. That is, in the course of “cell-impedance-

controlled” lithium transport, the b phase might not be nucleated until the lithium

content exceeds the solubility limit of the matrix a phase. Once the b phase

nucleates, it gradually grows in the whole a phase.

This is quite different from the model suggested on the basis of “diffusion-

controlled” lithium transport. The following is one example in which the moving

phase boundary problem is numerically treated under the assumption of “diffusion-

controlled” lithium transport. The basic concept is to simulate the growth of the

new phase, b, in the preexisting matrix phase, a, by making the grids of the a and b
phases contract and expand, respectively, during the phase transition. The concen-

tration profile in each phase is determined by the following modified Fick’s

diffusion equations [43, 44].

@ cbn
@ t

¼ ~Db
Li

@2cbn
@ x2n

þ @ cbn
@ xn

xn
x

dx
dt

ðin b phase; 0<xn<x; n ¼ 2; 3; ::; r� 1Þ (8.2)

@ can
@ t

¼ ~Da
Li

@2can
@ x2n

þ @ can
@ xn

l� xn
l� x

dx
dt

ðin a phase; x<xn<l; n

¼ rþ 1; rþ 2; ::;NÞ (8.3)

The flux balance at the phase boundary is expressed as

ðcba � cabÞ dx
dt

¼ ~Da
Li

@ ca

@ x

� �
x¼xþ

� ~Db
Li

@ cb

@ x

� �
x¼x�

(8.4)

where cba and cab are the lithium contents of the b and a phase sides of the phase

boundary, respectively.

The numerical solutions for Eqs. 8.2, 8.3, and 8.4 under the potentiostatic and

impermeable boundary conditions lead to the current transients reflecting the

“diffusion-controlled” phase transition and the results are presented in Fig. 8.17.

In contrast to the flux plateau of the “cell-impedance-controlled” phase transi-

tion, the flux monotonically decreases in the course of the “diffusion-controlled”

phase transition. Moreover, the change in the concentration profile with time

indicates that the Li-rich b phase completely covers the whole surface of the matrix

a phase and then grows inside the electrode [44, 45].
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The comparison of the changes in the concentration profile with time (Figs. 8.16b

and 8.17b) implies that the growth pattern of the b phase occurs in a quite different

way between the “cell-impedance-controlled” and “diffusion-controlled” pro-

cesses. Schematically shown in Fig. 8.18 are the possible growth models of the

Li-rich phase in the Li-poor matrix phase in each lithium transport mechanism.

8.4 Analysis of Lithium Transport Governed by Cell Impedance

8.4.1 Theoretical Reproduction of Experimental Current
Transients

The time dependence of the concentration profile of real intercalation systems

during chronoamperometry experiments (with applied potential Eapp ) can be

obtained from a combination of the conventional Fick’s diffusion equation and

the following “cell-impedance-controlled” surface (boundary) flux equation.

Fig. 8.17 (a) Theoretical

cathodic current transients

obtained by hypothetically

dropping the potential from

0.05 V to different potentials

below the plateau potential

0 V, under the assumption of

diffusion controlled lithium

transport and “pinning” at the

initial stage of diffusion

process [45] and (b) time

dependence of lithium

content profile across the

active material at the potential

drop from 0.05 to �0.01 V

(Reprinted from

Shin and Pyun [24],

Copyright #1999 with

permission from Elsevier

Science)
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i ¼ �nFA ~DLi

@ cðtÞ
@ x

� �
x¼0

¼ Eapp � EðtÞ
Rcell

(8.5)

Here, the instantaneous surface potential, E(t), is estimated from the calculated

value of the surface lithium content at time t and the electrode potential curve. For

the calculation, it is assumed that the cell resistance Rcell and chemical diffusion

coefficients ~DLi were constant throughout the lithium transport (as a matter of fact,

these assumptions possibly make the discrepancy between the experimental and

calculated current transients, which will be discussed in Sect. 8.4.2). Rcell was

estimated from the linear relationship between the initial current level and the

applied potential step (Fig. 8.8) and ~DLi was determined as the value reported in

the literatures [46–50]. The electrochemical active area A was roughly calculated

from the particle size and active mass.

8.4.1.1 Non-Cottrell Character During the Entire Lithium Transport Process

Presented in Fig. 8.19 are the calculated current transients of lithium nickel oxide

(Li1�dNiO2) and graphite. They show close resemblance to the corresponding

experimental curves (Fig. 8.1) in terms of the non-Cottrell character at the initial

stage of lithium transport and (quasi-) current plateaus.

Especially, Cottrell behavior is not observed in the lithium insertion/extraction

process, as confirmed by the absence of any region with a constant value of I(t)·t1/2 in
Fig. 8.20a, b. Rather, the I(t)·t1/2 versus ln t plots feature local maxima and shoulders,

which are consistent with the corresponding experimental plots (Fig. 8.2).

Fig. 8.18 Schematic illustrations of the possible second-phase growth models in the cases of (a)

the “cell-impedance controlled” and (b) the “diffusion controlled” phase transitions
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8.4.1.2 Intersection of Anodic and Cathodic Curves

The reproduced cathodic and anodic current transients of lithium cobalt dioxide

(Li1�dCoO2) and lithium titanate (Li1+d[Ti5/3Li1/3]O4) (Fig. 8.21) are in substantial

agreement with the experimental results (Fig. 8.3) from the viewpoint of the

crossing of the cathodic and anodic curves during the lithium transport in the

single-phase region. This exceptional reproducibility proves that the shape of

the electrode potential curves plays a critical role in the interfacial lithium flux

during the “cell-impedance-controlled” lithium transport. That is, the rate of

cathodic and anodic current change is determined by the degree of electrode

Fig. 8.19 Calculated current

transients of (a) Li1-dNiO2

and (b) graphite, under the

assumption of the “cell-

impedance controlled”

lithium transport (Reprinted

from Lee et al. [28],

Copyright #2001 with

permission from Elsevier

Science; Shin and Pyun [32],

Copyright #2003 with

permission from Kluwer

Academic/Plenum

Publishers)
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potential change (with the lithium content) in the cathodic and anodic directions,

respectively. Then, the electrode potential curve with an upward concave shape in

the single-phase region results in the mutual intersection of the cathodic and anodic

current transients, as schematically demonstrated in Fig. 8.4.

8.4.1.3 Current Plateau During Phase Transition

In Sect. 8.1.3, it was explained that the charge transferred during the time span of

the current plateau in the current transient is nearly equal to the charge in the

potential plateau region of the electrode potential curve when the current plateau is

Fig. 8.20 I(t)·t1/2 versus ln
t plot reproduced from

(a) Fig. 8.21a and

(b) Fig. 8.21b, showing the

non-Cottrell character of the

current transients (Reprinted

from Shin and Pyun [32],

Copyright #2003 with

permission from Kluwer

Academic/Plenum

Publishers)
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relatively clear, and the amount of charge transferred up to the inflexion point on the

quasi-current plateau falls to the potential plateau region when the time span of the

current plateau is unclear. This strongly implies that the (quasi-)current plateau is

ascribed to the phase transition. The above arguments are quite true for the “cell-

impedance-controlled” lithium transport, as discussed in Sect. 8.3.3: The calculated

flux is invariable in the course of the “cell-impedance-controlled” phase transition

in the case where there is no change in the cell resistance. The current plateaus and

inflection points in the experimental current transients of Li1+d[Ti5/3Li1/3]O4

(Fig. 8.5a) and LidV2O5 (Fig. 8.6a), respectively, are successfully reproduced in

the corresponding curves determined on the basis of “cell-impedance-controlled”

lithium transport, as presented in Fig. 8.22.

Fig. 8.21 Calculated

cathodic and anodic current

transients of (a) Li1�dCoO2

and (b) Li1+d[Ti5/3Li1/3]O4

under the assumption of the

“cell-impedance controlled”

lithium transport, showing

their mutual intersection in

the single phase region

(Reprinted from Shin and

Pyun [24], Copyright #1999

and Shin et al. [27], Copyright

#2001, with permissions

from Elsevier Science)
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Nevertheless, two subtle differences are particularly noteworthy. One is the

discrepancy in the plateau current level of the Li1+d[Ti5/3Li1/3]O4 system between

the experimental and calculated curves, especially when the final potential is very

close to the plateau potential (please compare the current plateaus in the curves of

Li1+d[Ti5/3Li1/3]O4 where the final potential is 1.55 V vs. Li/Li+). This does not

appear to come from the intrinsic character of Li1+d[Ti5/3Li1/3]O4, but from the use

of the closed circuit potential curve for the numerical calculation, instead of the

open circuit potential curve. The closed circuit potential (during lithium insertion)

is always found to be below the open circuit potential due to the (cathodic)

Fig. 8.22 Calculated

cathodic current transients of

(a) Li1+d[Ti5/3Li1/3]O4 and

(b) LidV2O5 under the

assumption of the “cell-

impedance controlled”

lithium transport, showing the

current plateaus in the course

of phase transition (Reprinted

from Shin et al. [27],

Copyright #2001, with

permission from Elsevier

Science)
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polarization. Accordingly, the E� Eapp

�� �� value is underestimated, as compared to

what it should be and, thus, the calculated current level becomes much lower than

the experimental current level. The other difference is that the current plateaus

in the calculated curves are much clearer than those in the experimental curves.

The reason for this slight current slope observed during the phase transition in the

experimental curve has yet to be clarified. Nevertheless, the most plausible reason is

the increase in the cell resistance with increasing lithium content (Fig. 8.10a),

particle size distribution, etc.

8.4.1.4 Suppression of Initial Current Level and Current Increase with Time

The internal cell resistance of the Li1�dNiO2 system has a relatively stronger

dependence on the electrode potential (Fig. 8.11) than that of the other systems

previously mentioned. In this case, the time dependence of the cell resistance needs

to be considered for the reliable simulation of “cell-impedance-controlled” lithium

transport. The calculated current transients are shown in Fig. 8.23. It should be

mentioned that the curves are the result of the potential jumps (i.e., they are the

anodic current transients). Also, the initial potential is varied, while the final

potential is constant. This means that the cell impedances at the initial stage of

lithium transport are different from one another at all of the potential jumps. To be

precise, the lower the initial potential (or the larger the potential step), the larger the

cell resistance at the moment of the potential jump. The calculated curves appear to

exactly reveal the effect of the change in the cell resistance during the lithium

Fig. 8.23 Calculated anodic

current transients of

Li1�dNiO2 under the

assumption of the “cell-

impedance controlled” lithium

transport, showing the

depression of initial current

levels and their increase with

time (Reprinted fromLee et al.

[28], Copyright#2001 with

permission from Elsevier

Science)
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transport and reproduce fairly well the experimental curves (Fig. 8.7) in terms of the

suppressed initial current and current increase with time. However, further

clarification is needed as to why these features are more clearly seen in the

calculated curves.

The cell impedance of Li1�dNiO2 increased sharply with decreasing electrode

potential (Fig. 8.11), resulting in a reduction of the initial current level of the

calculated curves with decreasing initial potential. The question is what makes

the current suppression in the experimental curves much milder than that in the

calculated ones (e.g., please compare the initial current levels of the calculated and

experimental curves obtained at an initial potential of 3.55 V). To answer this

question, the procedure employed for the chronoamperometry experiments and

their limitation should be understood.

The time-dependent anodic current of the experimental curves was measured at

a final potential of 4.00 V, immediately after maintaining the Li1�dNiO2 at the

initial potential of 3.90, 3.85, . . ., 3.60, or 3.55 V for 2 � 104 s. That is, the time

required to cause the electrode to become equilibrated at a specific initial potential

might be finite. Particularly, as the initial potential is lowered, it is more and more

difficult to form a new equilibrium within several tens of thousands of seconds, due

to the increased cell resistance and, thus, the real electrode potential is farther away

from the initial potential that is tacitly admitted and considered for the calculation.

As a result, the real values of both the driving forceEapp � EðtÞand resistanceRcell at

the initial stage are smaller than the values used for the numerical calculation.

Furthermore, since Rcell is highly sensitive to the electrode potential in the low-

potential region, as seen in Fig. 8.11, there is a greater underestimation of Rcell than

ofEapp � EðtÞ. Consequently, the measured current is higher than the calculated one

at the initial stage of potential jumping, leading to the less suppressed initial current

level of the experimental current transients.

The reason why the current increase in the calculated curves is much clearer

than that in the experimental ones can be readily understood in the same context

as the reason for the aforementioned current suppression. In the case of the

“cell-impedance-controlled” lithium transport during the potential jump experi-

ment for Li1�dNiO2, the current increase occurs when Rcell decreases more rapidly

with time thanEapp � EðtÞ. Let us take the case of the curve with an initial potential
of 3.55 V. As explained above, it is quite unlikely that the equilibrium values ofRcell

and E(0) are attained, in spite of the prolonged time duration for equilibrating at

3.55 V. This indicates that the real potential is more than 3.55 V and, therefore, the

real cell resistance is far less than 250 O (Fig. 8.11). More importantly, the absolute

value of the slope at the real electrode potential must be much smaller than that at

3.55 V (Fig. 8.11). This reduces the rate of decrease of Rcell during lithium

extraction and eventually slows the current increase with time. The same argument

holds in the curves with the initial potentials of 3.60 and 3.65 V, where Rcell is still

quite susceptible to the electrode potential.
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8.4.2 Parametric Dependence of Current Transients

8.4.2.1 Diffusion Coefficient

The current and its time dependence monitored during the chronoamperometry

experiment contain the kinetic information of the overall reaction or, more specifi-

cally, the information on the rate-controlling step. Based on the tacit belief that the

solid-state diffusion is the slowest step out of all of the reaction steps, the current

transient has been widely used to estimate the diffusion coefficient of lithium.

However, the several abnormal lithium transport behaviors observed in the

chronoamperometry experiment (i.e., non-Cottrell character, current plateau, initial

current depression, and current increase with time) make it quite unlikely that solid-

state lithium diffusion governs the rate of the lithium insertion process. Instead, as

discussed in previous sections, it looks like “cell-impedance-controlled” lithium

transport is fairly promising as a new model to explain the curves and explain their

abnormalities.

Then, does the rate of solid-state diffusion really have little effect on the shape

and value of the “cell-impedance-controlled” current transients? Although the

diffusion coefficient is not a crucial factor in determining the reaction rate in the

model, it affects the instantaneous surface lithium content (please see Eq. 8.5) and

content profile inside the electrode. To what extent does such an influence change

the curves? The current transients calculated at different values of the diffusion

coefficient (Fig. 8.24) shows that an order of magnitude increase in the diffusion

coefficient causes small but discernible changes in the shape and value of the curves.

This implies that the time (or lithium content)-dependent change in the diffusion

coefficient needs to be considered even in the “cell-impedance-controlled” lithium

transport, unless the change is trivial.

Fig. 8.24 Cathodic current

transients of Li1�dNiO2 at

different chemical diffusion

coefficients, calculated by

dropping the potential from

4.00 to 3.55 V versus Li/Li+

under the assumption of the

“cell-impedance controlled”

lithium transport (Reprinted

from Shin and Pyun [32],

Copyright #2003 with

permission from Kluwer

Academic/Plenum

Publishers)
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8.4.2.2 Cell Resistance

The effect of the cell resistance on the lithium transport (or the current transients)

was already discussed in a relatively qualitative fashion when we set forth the

reason for the suppressed initial current and time-dependent current increase of the

current transients of Li1�dNiO2. Now, let us explore how much inaccuracy is

introduced if the resistance change is not considered in the numerical calculation.

Shown in Fig. 8.25 are the current transients calculated with and without consider-

ing the resistance change with time (or electrode potential), under the assumption of

the “cell-impedance-controlled” lithium transport.

Fig. 8.25 (a) Cathodic and

(b) anodic current transients

of Li1�dNiO2 with (dotted
line) and without (solid line)
consideration of potential

dependence of cell

impedance, calculated by

dropping (or jumping) the

potential from 4.00 (or 3.55)

to 3.55 (or 4.00) V versus

Li/Li+ under the assumption

of the “cell-impedance

controlled” lithium transport

(Reprinted from Shin and

Pyun [32], Copyright #2003

with permission from Kluwer

Academic/Plenum

Publishers)
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Regardless of the cathodic (lithium insertion, Fig. 8.25a) and anodic (lithium

extraction, Fig. 8.25b) curves, there is a great discrepancy between the curves

calculated with and without considering the resistance change with time. Espe-

cially, the two anodic curves might be considered to be completely different from

each other in terms of their shape, while there are many parallels between the two

cathodic curves – one inflection point, a mild decrease, and a subsequent abrupt

drop in current. This considerable difference in the anodic curves is because the

resistance drop is so large in the initial stage of the lithium extraction process that

the anodic curve is seriously distorted from its normal monotonic decreasing

tendency, as discussed in Fig. 8.23. This strongly implies that the change in the

internal cell resistance must be critically considered for the reliable calculation of

the “cell-impedance-controlled” lithium transport.

8.4.3 Theoretical Current-Time Relation

The theoretical equation for the “cell-impedance-controlled” current transient can be

derived in a simplified case, with the assumptions that (1) the electrode potential is

linearly dependent on the lithium content; (2) the phase transition does not take place

during the insertion; (3) the double-layer charging current can be ignored; (4) the

cell impedance Rcell and the chemical diffusivity of lithium ~DLi remain constant

throughout the process. The current-time relation can be found from the solution of

Fick’s diffusion equation under the following initial and boundary conditions:

Initial condition : c ¼ c� for 0 � x � L at t ¼ 0 (8.6)

Boundary condition : i ¼ �nFA ~DLi
@ cðtÞ
@ x

	 

x¼0

¼ Eapp�EðtÞ
Rcell

¼ Vm

Rcell

dE
dd

	 

capp � cðtÞ� �

for x ¼ 0 at t � 0

;

(8.7)

where c and co are the local and initial contents of lithium, respectively, capp the
lithium content at a potential of Eapp;Vm the molar volume of the electrode, and

ðdE=ddÞ the slope of the electrode potential versus lithium content curve at a given

lithium content. Equation 8.7 indicates the cell-impedance-controlled interface

condition under the assumption of a linear relationship between the electrode

potential and the lithium content. When we apply the Laplace transform to the

diffusion equation by considering the semi-infinite diffusion condition combined

with Eqs. 8.6 and 8.7, we get the following current-time relation [51–54],

i ¼ Eapp � Eð0Þ
Rcell

� �
exp

H

Rcell

� �2

t

" #
erfc

H

Rcell

� �
t1=2

� �
for t � L2

~DLi

(8.8)
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where

H ¼ ðVm=F ~D
1=2
Li AÞðdE=ddÞ

Although the derived current-time relation is of limited use due to the several

assumptions to be made, it can be effectively used to systematically analyze the

effect of the cell impedance Rcell and the chemical diffusivity of lithium ~DLi on

current transient when we carefully control the experimental conditions, or to

estimate their values from the “cell-impedance-controlled” current transient.

The current transient of the electrodeposited LidV2O5 film electrode at a sufficiently

early time (this makes the assumption (4) valid) gives a good example: Its electrode

potential decreases monotonously without any potential plateau regions (i.e., the

phase transition does not occur during lithium insertion) and the electrode potential

versus lithium content curve is almost linear if we limit the potential interval to

within ca. 0.1 V (Fig. 8.26). These satisfy the assumptions (1) and (2) used for the

derivation of Eq. 8.8.

Figure 8.27a shows the experimental current transients (open symbols) and those

calculated from Eq. 8.8 (dotted lines) by taking Eapp � Eð0Þ ¼ 0:1 V. As can be

seen in the figure, the experimentally measured current transients can be satisfacto-

rily fitted to Eq. 8.8. For each transient, the parameters ofRcell and H (or ~DLi) can be

quantitatively estimated. When we collect the transient data in different potential

ranges satisfying Eapp � Eð0Þ ¼ 0:1 V and obtain the parameters by fitting them

to Eq. 8.8, we can get the values of Rcell and ~DLi as a function of the electrode

potential (Fig. 8.27b).

The use of Eq. 8.8 is much more suitable for the determination of Rcell than that

of the initial current versus potential step plot (suggested in Fig. 8.8), because the

Fig. 8.26 Electrode potential

curve of the electrodeposited

LidV2O5 film, determined by

intermittently applying

constant cathodic (lithium

insertion) current (Reprinted

from Lee and Pyun [54],

Copyright #2005 with

permission from Elsevier

Science)
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exact value of Rcell at a given potential is obtainable by extrapolating Eq. 8.8 to

t ¼ 0.

8.4.4 Cyclic Voltammograms

The variation in the current with the potential, i.e., the voltammogram, was

discussed in Sect. 2.3 in the case of “diffusion-controlled” lithium transport,

which is characterized by linearity between the peak current and the square root

of the potential scan rate (the so-called Sevčik equation) for the semi-infinite

diffusion process. However, such relationship is invalidated when the lithium

transport is governed by the cell resistance. Actually, a number of studies have

Fig. 8.27 (a) Typical

experimental cathodic current

transients (symbols) of the
electrodeposited LidV2O5 and

(b) the cell impedance Rcell

and the chemical diffusivity

of lithium ~DLi as a function of

the electrode potential.

Dotted lines in (a) were

obtained by fitting the

experimental current

transients to Eq. 8.8, and Rcell

and ~DLi were accordingly

determined (Reprinted from

Lee and Pyun [54], Copyright

#2005 with permission from

Elsevier Science)

206 8 Effect of Cell Impedance on Lithium Transport

http://dx.doi.org/10.1007/978-3-642-29464-8_2


reported abnormal voltammetric trends of lithium insertion compounds [55–60].

The “cell-impedance-controlled” model might shed light on their origin [61].

Figure 8.28a shows cyclic voltammograms of sputter-deposited Li1�dCoO2 at

different potential scan rates, exhibiting continuous increase in peak shifts with

scan rate. The deviation of the slope in the reproduced plot of peak current versus

scan rate from the “Sevčik” relation, as seen in Fig. 8.28b, is also noteworthy.

These are not typical from the viewpoint of the “diffusion-controlled” model

(please see Fig. 2.12 for the typical shape of the “diffusion-controlled” cyclic

voltammograms).

Fig. 8.28 (a) Experimental

cyclic voltammograms of

sputter-deposited Li1�dCoO2

at different potential scan

rates and (b) variation of peak

currents with scan rate

(Reprinted from Shin and

Pyun [61], Copyright #2001

with permission from

Elsevier Science)
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Now, it would be interesting to numerically calculate the cyclic voltammogram

under the assumption of “cell-impedance-controlled” lithium transport and

compare it with the experimental one. As shown in Fig. 8.29a, the experimental

and calculated voltammograms have high similarity with each other at different

scan rates. In particular, the shifts of the anodic and cathodic peaks with scan

rate are satisfactorily reproduced in the “cell-impedance-controlled” cyclic

voltammograms. The slope of peak current versus scan rate plot is matched well

Fig. 8.29 (a) Calculated

cyclic voltammograms of

sputter-deposited Li1�dCoO2

at different potential scan

rates and (b) variation of peak

currents with scan rate at

various values of ~DLi, under

the assumption of the “cell-

impedance controlled”

lithium transport (Reprinted

from Shin and Pyun [61],

Copyright #2001 with

permission from Elsevier

Science)
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with the experimental finding when the diffusion coefficient ranges from 10�9 to

10�10 cm2s�1 (Fig. 8.29b).
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Chapter 9

Lithium Transport Through Electrode

with Irregular/Partially Inactive Interfaces

9.1 Quantification of the Surface Irregularity/Inactiveness

Based on Fractal Geometry

9.1.1 Introduction to Fractal Geometry

Fractal geometry is a tool employed to define real objects in nature which cannot be

characterized by Euclidean geometry. It was conceptualized by Mandelbrot [1] and

has been widely used in various fields such as science, art [2–4], economics [5–8],

etc. Especially, in science, the secret of the anomalous phenomena which take place

on rough and irregular surfaces has been unlocked with the help of fractal geometry.

Rough and irregular surfaces are created by electrodeposition [9–23], fracture

[24–29], vapor deposition [18, 30–43], corrosion [44–51], surface modification

such as machining and plasma irradiation [52–57], etc. These surfaces can be

characterized by fractal geometry according to their own scaling properties: self-

similar or self-affine. Self-similar fractals show isotropic scaling behavior in all

directions, whereas self-affine fractals show asymmetric scaling behavior perpen-

dicular to the surface. Self-affine fractals are more complex than self-similar

fractals and most rough and irregular surfaces belong to the category of self-affine

fractals.

The methods employed for the determination of the surface fractal dimension

should be clarified according to the scaling property of the surface before using

them. When we consider lithium transport through electrode with irregular/partially

inactive interfaces, the characterization of these interfaces with the proper fractal

dimension [58] is the first step and then the effect of the irregularity on the lithium

transport could be analyzed [59]. Here, self-similar and self-affine fractals will be

introduced in detail in order to get them well understood [60, 61].

S.-I. Pyun et al., Electrochemistry of Insertion Materials for Hydrogen and Lithium,
Monographs in Electrochemistry, DOI 10.1007/978-3-642-29464-8_9,
# Springer-Verlag Berlin Heidelberg 2012
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9.1.1.1 Self-similar Fractal

When a set of points S at position x ¼ ðx1; :::; xEÞ in Euclidean E-dimensional

space is transformed into a new set of points rðSÞ at position x0 ¼ ðrx1; :::; rxEÞ
with the scaling ratio 0< r< 1, we call it the similarity transformation. A bounded

set S is self-similar with respect to a scaling ratio r if S is the union of N
nonoverlapping subsets S1; :::; SN, each of which is congruent to the set rðSÞ. Here,
congruent means that the set of points Si is identical to the set of points rðSÞ after
possible translations and/or rotations.

For a deterministic self-similar fractal, the self-similar fractal dimension dF;ss is
uniquely defined by the similarity dimension dF;S given by

dF;S ¼ ln N

ln 1=r
(9.1)

The triadic Koch curve is a representative deterministic self-similar fractal.

Figure 9.1a depicts that it is generated by a similarity transformation with scaling

ratio r ¼ 1=3. In this case, the resulting curve is the union of four nonoverlapping

curves and is congruent to the curve obtained from the original one by the similarity

transformation. Therefore, dF;ss of this curve is determined to be dF;S ¼ ln 4= ln 3
ffi 1:26 by Eq. 9.1.

Fig. 9.1 (a) A deterministic self-similar fractal, i.e., the triadic Koch curve, generated by the

similarity transformation with the scaling ratio r ¼ 1/3 and (b) a deterministic self-affine fractal

generated by the affine transformation with the scaling ratio vector r ¼ (1/4, 1/2) (Reprinted from

Go and Pyun [58], Copyright# 2005 with permission from Kluwer Academic/Plenum Publishers)
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The set S is statistically self-similar when S is the union of N distinct subsets,

each of which is scaled down by r from the original and is congruent to rðSÞ in all

statistical respects. For such sets, the box-counting method is useful in estimating

dF;ss of the set [1, 60–64]. The box dimension dF;B is equal to dF;S.

9.1.1.2 Self-affine Fractal

When a set of points S at position x ¼ ðx1; :::; xEÞ in Euclidean E-dimensional

space is transformed into a new set of points rðSÞ at position x0 ¼ ðr1x1; :::; rExEÞ
with different scaling ratios 0<r1; :::; rE<1, we call it the affine transformation.

A bounded set S is self-affine with respect to a scaling ratio vector r ¼ ðr1; :::; rEÞ if
S is the union ofN nonoverlapping subsets S1; :::; SN, each of which is congruent to
the set rðSÞ. A deterministic self-affine fractal generated by the affine transforma-

tion with scaling ratio vector r ¼ ð1=4; 1=2Þ is demonstrated in Fig. 9.1b.

The resulting curve is the union of four nonoverlapping curves and is congruent

to the curve obtained from the original one by the affine transformation.

The set S is statistically self-affine when S is the union of N nonoverlapping

subsets, each of which is scaled down by r from the original and is congruent to rðSÞ
in all statistical respects.

The dimension of the self-similar fractal is simply defined as the similarity

dimension dF;S. However, the dimension of self-affine fractal dF;sa is not uniquely
defined [60, 61, 65], i.e., there are two different dimensions: a global dimension and

a local dimension [60–62, 65–67]. The global dimension is observed above a

certain crossover scale. It is simply defined as dE � 1, where dE represents the

topological dimension of the Euclidean space where the set is embedded. The self-

affine fractal looks essentially smooth for large sizes.

Therefore, the local dimension describes the irregularity of the self-affine fractal.

The local dimension can be determined by such methods as the box-counting

method [1, 60–64] and the divider-walking method [60, 65]. dF;B for the self-

affine fractal is defined by the Hurst exponent H which is a power exponent

observed in the power law between the root mean square (rms) roughness srms

and the horizontal length L of the self-affine fractal according to the following

equation:

dF;B ¼ dE � H 0<H<1 (9.2)

H defines divider dimension dF;D also as follows:

dF;D ¼ 1

H
0<H< 1 (9.3)

As indicated in Eqs. 9.2 and 9.3, dF;B and dF;D do not coincide in value.

Therefore, H is a unique parameter to characterize the self-affine fractal.
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9.1.2 Characterization of Surface Using Fractal Geometry

The surface roughness is usually quantified using surface profiler or imaging

equipment, such as a scanning electron microscope (SEM), transmission electron

microscope (TEM), and scanning probe microscope (SPM). The digitized surface

profile or image is used to determine the statistical roughness parameter like the rms

roughness srms. It describes only the vertical amplitude in a certain lateral direction

so it is rather inadequate to provide a complete description of the three-dimensional

surface. However, the surface fractal dimension represents both the vertical and

lateral information of the three-dimensional surface over a significant range of

length scales.

SPM would be a more adequate technique than SEM and TEM for the fractal

analysis of the surface morphology. It has its high three-dimensional resolution and

nondestructive character. Scanning tunneling microscope (STM) and atomic force

microscope (AFM) provide the direct digitized height data with a resolution down

to the atomic scale, whereas SEM and TEM produce the two-dimensional cross

section of the surface morphology which can be described by only binary digits.

There are several algorithms used to determine the surface fractal dimension

from SPM images, e.g., the power-spectrum method [1, 2, 68–71], the triangulation

method [34, 40, 42, 60, 65, 72–76], the perimeter-area method [15–18, 20, 22, 24,

60, 61, 71, 77–79], the structure function method [2, 53, 54, 70, 77, 80, 81], the

variance method [53, 54], and the box-counting method [1, 60–64]. Among these

algorithms, the triangulation method and perimeter-area method are more popular

so they are introduced in this chapter as useful tools to determine the self-similar

and self-affine fractal dimensions, respectively.

9.1.2.1 Triangulation Method

The triangulation method, which is analogous to the Richardson method for a

profile, is used to determine the self-similar fractal dimension dF;ss of three-

dimensional self-similar fractal surface [1]. For this, the three-dimensional

digitized image of the surface should be prepared.

Figure 9.2 describes schematically the algorithm used for the determination of

dF;ss by the triangulation method. The square (x,y) plane with a cell size L2 is first
divided into N2 equal squares. This defines the location of the vertices of a number

of triangles. Then, the electrode surface is covered by 2N2 triangles inclined at

various angles with respect to the (x,y) plane. These 2N2 triangles have equal

projected triangle sizes, TS (¼L=N), although their real areas are different.

The scaled surface area, SSA, i:e:, the measured surface area covered by the 2N2

triangles, is estimated to be the sum of the areas of all of the 2N2 triangles.

This measurement is iterated with decreasing projected triangle size, TS, until
every pixel in the AFM image serves as the vertices of the 2N2 triangles. Then,

dF;ss of the surface is given by:
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dF; ss ¼ � d log SSA

d log TS
þ 2 (9.4)

Figure 9.3 shows the resulting SSAs plotted as a function of the projected TS on

a logarithmic scale obtained from the three-dimensional AFM image of the rough

surface. The linear relationship between the logarithm of the SSA and the logarithm

of the projected TS is clearly displayed up to the TS less than around 5 mm, so dF;ss
of the surface can be determined using Eq. 9.4 within this length scale.

However, the logarithm of the SSA becomes constant over 5 mm of the TS.
It means the rough surface shows fractal behavior within the certain length-scale

range between the inner and outer cutoffs. In Fig. 9.3, the value of TS for which the
linear line with a slope of s and the horizontal line intersect is the spatial outer

(upper) cutofflo. Due to the limitation in the resolution of the equipment, we cannot

evaluate the spatial inner (lower) cutoff li in this case.

Fig. 9.2 Process of determination of the self-similar fractal dimension of the three-dimensional

surface by the triangulation method (Reprinted from Go and Pyun [58], Copyright # 2005 with

permission from Kluwer Academic/Plenum Publishers)
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Fig. 9.3 Dependence of the scaled surface area SSA on the projected triangle size TS on a

logarithmic scale obtained from the three-dimensional AFM image of the rough surface (Reprinted

from Go and Pyun [58], Copyright # 2005 with permission from Kluwer Academic/Plenum

Publishers)
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9.1.2.2 Perimeter-Area Method

The perimeter-area method is based on the fact that the intersection of a plane with

a self-affine fractal surface generates self-similar lakes. It usually used to charac-

terize the self-affine fractal surface as dF;sa . To employ this method, the surface

image obtained using tools such as SEM, TEM, and STM should be digitized and

then the two-dimensional cross section of the surface at a certain height should be

generated. The areaA and perimeterPof self-similar lakes in the cross section of the

fractal surface shows the relation with its fractal dimension dLF;ss by

P ¼ b dLF;ss A
dLF;ss=2 (9.5)

where b is a proportionality constant [60, 77]. Then, dF;sa of the original surface is

dF;sa ¼ dLF;ss þ 1 (9.6)

Figure 9.4a, b shows the example of application of the perimeter-area method.

Figure 9.4a is the three-dimensional AFM images of the rough surface filled with

water (black pixels) up to a height corresponding to 40% of the maximum height of

the surface, and Fig. 9.4b is the corresponding two-dimensional description of P
(gray pixels) along with A (black pixels + gray pixels) of the self-similar lakes.

Here, the gray pixels in Fig. 9.4b are defined as the black pixels neighboring white

pixels. The value ofP is the numbers of gray pixels of each lake and the value ofA is

the number of both the black pixels and gray pixels for each lake.
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Fig. 9.4 (a) Three-dimensional AFM image of the rough surface filled with water (black pixels)
up to a height corresponding to 40% of the maximum height and (b) corresponding two-

dimensional description of the perimeters (gray pixels) and areas (gray and black pixels) of the
lakes (Reprinted from Go and Pyun [58], Copyright # 2005 with permission from Kluwer

Academic/Plenum Publishers)
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Figure 9.5 shows the plot ofP againstA of each self-similar lake on a logarithmic

scale. It is clearly shown that the linear relation between log P and log A above the

threshold area, AT � 2:6� 10�13 m2. From this linear line, the self-similar dimen-

sion of the two-dimensional lakes dLF;ss and the self-affine fractal dimension of the

three-dimensional surface dF;sa are determined using Eqs. 9.5 and 9.6, respectively.

The other linear relation belowAT is physically meaningless, due to the limitation of

the AFM measurement [17].

9.2 Theory of the Diffusion toward and from a Fractal

Electrode

The diffusion toward and from a fractal electrode has been theoretically analyzed

by using fractional derivatives [82]. Here, the generalized diffusion equation (GDE)
is introduced with its historical background in Sect. 9.2.1 and, then, its analytical

solutions are summarized under the various boundary conditions in Sects. 9.2.2

and 9.2.3.

9.2.1 Mathematical Equations

Le Mehaute [83, 84] proposed the TEISI (Transfert d’Energie sur Interface à

Similitude Interne) model, which treats the thermodynamics of irreversible pro-

cesses, in order to describe the transfer processes across a fractal interface in the

sense of Mandelbrot [1]. In the linear approximation of the thermodynamics of
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irreversible processes, the macroscopic flow of an extensive quantity across the

fractal interface JðtÞ is described by a generalized transfer equation which is

expressed as

dð1=dFÞ�1

dtð1=dFÞ�1
JðtÞ ¼ K0DXðtÞ (9.7)

where dF is the fractal dimension, K0 a constant, and DXðtÞ the local driving force.

TheGDE involving the fractional derivative was explicitly introduced in physics

by Nigmatullin [85] to describe the diffusion across a surface with fractal geometry

and was mathematically studied by Wyss [86, 87] and Mainardi [88]. In the

simplest case of spatially one-dimensional diffusion, it is expressed as [89]

@3�dFcðx; tÞ
@ t3�dF

¼ ~D� @
2cðx; tÞ
@ x2

2bdF<3ð Þ (9.8)

where cðx; tÞ is the local concentration of diffusing species, x the distance from the

fractal interface, ~D� the fractional diffusivity defined as K4�2dFAdF�2
ea

~D3�dF (K is a

constant related to dF of the fractal interface, Aea the time-independent electro-

chemically active area of the flat interface, ~D the chemical diffusivity of diffusing

species), and @n = @tn the Riemann-Liouville mathematical operator of the frac-

tional derivative:

@ny

@tn
¼ 1

Gð1� nÞ
d

dt

Z t

0

yðxÞ
ðt� xÞn dx (9.9)

where Gð1� nÞis the gamma function of ð1� nÞ.
The procedure of the mathematical derivation of Eq. 9.8 was rigorously checked

by Dassas and Duby [89]. Based upon the concept of the generalized transfer

equation (Eq. 9.7), the flow at the fractal interface JFðx; tÞ is given as

JFðx; tÞ ¼ @

@t
f ~DFðtÞ� @cðx; tÞ

@x
g

� �
(9.10)

where * is the convolution operator and ~DFðtÞ represents the time-dependent

diffusivity defined as

~DFðtÞ ¼ ~D� t2�dF

Gð3� dFÞ (9.11)

By using Eq. 9.10, the diffusion toward and from the fractal electrode is mapped

to a one-dimensional diffusion in Euclidean space as follows:

AeaJFðx; tÞ ¼ AFðtÞJEðx; tÞ (9.12)
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where AFðtÞ is the time-dependent area of the fractal interface defined as k2�dFA
dF=2
ea

ð ~DtÞð2�dFÞ=2 (k is a dimensionless constant) and JEðx; tÞ represents the flow at the

planar interface given by Fick’s first law. Consequently, this mapping process leads

to the generalization of Fick’s second law (Eq. 9.8) by the substitution of @3�dF = @

t3�dF and ~D� for @ = @t and ~D, respectively. When dF equals two, Eq. 9.8 becomes

the usual Fick’s second law for diffusion toward and from a flat electrode/electro-

lyte interface.

9.2.2 Diffusion toward and from a Fractal Interface Coupled with
a Facile Charge-Transfer Reaction

The mathematical derivation of the analytical solutions to the diffusion equations,

i.e., Fick’s first and second laws, is a very well-known approach to understanding

the features of diffusion-controlled reactions at a flat electrode. The diffusion-

controlled reactions are simply described as the semi-infinite diffusion coupled

with facile charge-transfer reaction. Here, to understand the features of diffusion

toward and from the fractal interface coupled with the facile charge-transfer

reaction, the derivation of the analytical solutions to the GDE of Eq. 9.8 will be

introduced under the boundary condition of the diffusion control for potentiostatic,

galvanostatic, linear sweep/cyclic voltammetric, and ac-impedance experiments.

These four analytical solutions refer to the generalized Cottrell, Sand, Randles-

Sevčik, and Warburg equations, respectively. Their derivation was rigorously

checked by Dassas and Duby [89] using the Laplace transform of the fractional

derivative.

For the derivation, the initial condition (IC) and the boundary condition (BC) for
the semi-infinite diffusion are given as

IC : cðx; 0Þ ¼ cb for 0 � x<1 (9.13)

BC : cð1; tÞ ¼ cb at t � 0 semi� infinite constraintð Þ (9.14)

where cb is the bulk concentration of the diffusing species.

9.2.2.1 Generalized Cottrell Equation

The generalized Cottrell equation describes the response of the current I on the

potential step DE applied to the electrode under the diffusion-controlled condition.

The BC at the electrode/electrolyte interface for this situation is given as

BC : cð0; tÞ ¼ 0 at t> 0 potentiostatic constraintð Þ (9.15)
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As a result of the Laplace transforms of Eqs. 9.8, 9.13, 9.14, and 9.15, the

generalized Cottrell equation is obtained by [89]

IðtÞ ¼ zFAea

ffiffiffiffiffiffi
~D�

p
cb

G 3�dF
2

� � t�ðdF�1Þ=2 ¼ zFA
dF=2
ea K2�dF ~Dð3�dFÞ=2cb

G 3�dF
2

� � t�ðdF�1Þ=2 (9.16)

where IðtÞ is the current as a function of t, z the valence of the diffusing species,

and F the Faraday constant (¼ 96,487 C mol�1). For dF ¼ 2, Eq. 9.16 shows the

Cottrell equation for ordinary diffusion. The logarithmic plot of the current versus

time, called the potentiostatic current transient (PCT), exhibits a linear line with a

slope of � ðdF � 1Þ=2, which is the power exponent of Eq. 9.16.

9.2.2.2 Generalized Sand Equation

The generalized Sand equation describes the relationship between the constant

current applied to the electrode Iapp and the transition time t , which is the time

needed for the concentration of diffusing species to drop to zero at the electrode/

electrolyte interface under the diffusion-controlled condition. The BC at the elec-

trode/electrolyte interface for this situation is given as

BC :
@cðx; tÞ
@x

� �
x¼0

¼ � Iapp

zFAea
~DFðtÞ

att > 0 galvanostatic constraintð Þ (9.17)

As a result of the Laplace transforms of Eqs. 9.8, 9.13, 9.14, and 9.17, the

generalized Sand equation is obtained by [89]

Iapp ¼ zFAea

ffiffiffiffiffiffi
~D�

p
cbG

dF þ 1

2

� �
t�ðdF�1Þ=2

¼ zFAdF=2
ea K2�dF ~D

ð3�dFÞ=2
cbG

dF þ 1

2

� �
t�ðdF�1Þ=2

(9.18)

For dF ¼ 2 , Eq. 9.18 shows the Sand equation for ordinary diffusion. The

logarithmic plot of Iapp versus t shows a linear line with a slope of � ðdF � 1Þ=2,
which is the power exponent of Eq. 9.18.

9.2.2.3 Generalized Randles-Sevčik Equation

The generalized Randles-Sevčik equation explains the power dependence of the

peak current Ipeak on the potential scan rate n during the linear sweep/cyclic

voltammetric experiments under the diffusion-controlled condition. For a solution

containing only the oxidized species Ox with a concentration of cb, the electrode is
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subjected to an initial electrode potential Eini where no reaction takes place.

The redox reaction Oxþ ze ¼ Red begins to occur when the potential is linearly

increased or decreased with EðtÞ ¼ Eini 	 n t (EðtÞ is the electrode potential as a

function of t, and the signs “+” and “�” represent the anodic and cathodic scans,

respectively.). Under the assumption that the redox couple is reversible, the surface

concentrations of Ox and Red, i.e., cOxð0; tÞ and cRedð0; tÞ, respectively, are always
determined by the electrode potential E expressed as the following equation, which

is derived from the Nernst equation,

E ¼ E1=2 þ RT

zF
ln

cOxð0; tÞ
cRedð0; tÞ

� �
(9.19)

where E1=2 means the half-wave potential, i.e., the potential bisecting the distance

between the anodic and cathodic peaks in a cyclic voltammogram, R the gas

constant (¼ 8.314 J mol�1 K�1), and T the absolute temperature. (It is assumed

that the diffusivities of Ox and Red are equal, i.e., ~D ¼ ~DOx ¼ ~DRed.)

Under this circumstance, the generalized Randles-Sevčik equation can be

derived from Eq. 9.8 as follows [89]:

Ipeak ¼ 0:2518ðzFÞ3=2Aea

ffiffiffiffiffiffi
~D
�p
cb

ðRTÞ1=2
G

dF � 1

2

� �
n
ðdF�1Þ=2

¼ 0:2518ðzFÞ3=2AdF=2
ea K2�dF ~D

ð3�dFÞ=2
cb

ðRTÞ1=2
G

dF � 1

2

� �
n
ðdF�1Þ=2

(9.20)

For dF ¼ 2, Eq. 9.20 shows the Randles-Sevčik equation for ordinary diffusion.

The power exponent of ðdF � 1Þ=2 in Eq. 9.20 is the slope of the linear line for the

logarithmic plot of Ipeak versus n called the linear sweep voltammogram (LSV).

9.2.2.4 Generalized Warburg Equation

The generalized Warburg equation describes the constant phase element (CPE)
behavior of the diffusion impedance ZdðoÞ in a spatially restricted layer under the

impermeable boundary condition. ZdðoÞ has been used as a tool for the electro-

chemical characterization of intercalation electrodes of which one side is imperme-

able [90–95].

Electrochemical impedance spectroscopy (EIS) superimposes the small sinusoi-

dal signal of EðtÞ onto the electrode with reversible potential Erev given as

EðtÞ ¼ Erev þ e sinot (9.21)
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where e is a constant which represents the perturbation amplitude and o means the

angular frequency.

Under the impermeable boundary condition, ZdðoÞ can be derived from Eq. 9.8

as follows [90–95]:

ZdðoÞ ¼ L

zFAea
~D
�

dE

dc

� � coth ðjoÞð3�dFÞL2= ~D
�h i

1=2

ðjoÞðdF�1ÞL2= ~D
�h i

1=2
(9.22)

where L is the thickness of the electrode. For dF ¼ 2, ZdðoÞ explains the Warburg

equation for a planar electrode with a flat surface.

Figure 9.6a, b gives the typical ac-impedance spectra in Nyquist representation

and the variations of the phase angle y with logo, respectively. Figure 9.6a shows
that the ac-impedance spectrum obtained from the fractal electrode deviates more

considerably from ideal behavior for dF ¼ 2 with increasing dF. In Fig. 9.6b, ZdðoÞ
clearly shows the Warburg impedance in the high-frequency range o>> ~D=L2 .
When we consider the high frequencies, Eq. 9.22 reduces to the generalized

Warburg equation given as [89]

ZdðoÞ ¼ 1

zFAea

ffiffiffiffiffiffi
~D
�p dE

dc

� �
joð Þ�ðdF�1Þ=2: (9.23)
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Fig. 9.6 (a) Nyquist plots of the ac-impedance spectrum and (b) Bode plots of the phase angle y
versus the logarithm of angular frequency log o theoretically determined from Eq. 9.22 as

a function of the fractal dimension dF for diffusion in the fractal electrode during the ac

potential oscillation experiment. The values of the parameters involved in Eq. 9.22 were taken

as L ¼ 1 � 10�5 cm, z ¼ 1, A ¼ 1 cm2, ~D ¼ 1� 10�10cm2 s�1 and (dE/dc) ¼ 20 V cm3 mol�1

(Reprinted from Lee and Pyun [90], Copyright# 2005 with permission from Carl Hanser Verlag)
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9.2.3 Diffusion toward and from a Fractal Interface Coupled with
a Sluggish Charge-Transfer Reaction

When the diffusion is coupled with a sluggish charge-transfer reaction, the reaction

rate of the system cannot be clearly determined and it is called a mixed-controlled

system. Even though most electrochemical systems, including diffusion, are usually

assumed to be diffusion-controlled ones, there are many systems which show

different features from diffusion-controlled systems [96–104].

Several theoretical attempts have been made to obtain a clear understanding of

the mixed-controlled system at the fractal electrode/electrolyte interface, as

follows: de Levie and Vogt [105] derived explicit equations for the current response

to a potential step, i.e., the PCT, at a fractal interface with self-similar scaling

property, by employing the Laplace transform method, in the case where a sluggish

charge-transfer process is operative. Furthermore, Kant and Rangarajan [106]

formulated kinetic theories of the diffusion process involving finite charge-transfer

rates using the perturbation approach and, especially, they provided analytical

expressions for the PCT at fractal interfaces with various morphological features.

However, the above work is oversimplified [105] or quite theoretically oriented

[106], so that it is very difficult to completely or straightforwardly grasp the

behaviors of the PCT at the fractal interfaces when diffusion is coupled with a

sluggish charge-transfer reaction.

In this circumstance, the works of Pyun and his coworkers attracted the attention

of researchers interested in investigating the kinetics of transfer processes in

various systems, because they were the first to describe the fractal to flat transition

and vice versa under the constraint of mixed control [107] and they gave a guideline

to analyze the electrochemical responses at the fractal interface in a realistic

regime [108].

Here, a numerical solution to the GDE based upon the fractional calculus [82]

will be introduced, which was firstly derived by Go and Pyun [108]. Before

exploring their work, it should be recognized that when diffusion in the fractal

media is governed by the GDE, the fractal-to-flat transition never occurs during

atom transport, even though the film thickness is long enough for semi-infinite

diffusion to occur.

Go and Pyun [108] theoretically computed the PCT and LSV from the flat and

fractal electrodes by using the numerical solution to the GDE under the cell-

impedance-controlled constraint at the electrode/electrolyte interface, along with

the impermeable constraint at the electrode/current collector interface.

The cell-impedance-controlled constraint at the electrode/electrolyte interface

and the impermeable constraint at the electrode/current collector interface used in

the calculation of the PCT and LSV are given as
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BC : �zFAea
~DFðtÞ @cðx; tÞ

@x

� �
x¼0

¼ ðEapp � EðtÞÞ
Rcell

at t> 0

cell� impedance� controlled constraintð Þ
(9.24)

BC :
@cðx; tÞ
@x

� �
x¼L

¼ 0 at t> 0 impermeable constraintð Þ (9.25)

The current across the interface between the electrode/electrolyte, IðtÞ , was
calculated from the following equation, which was obtained from the numerical

analysis of Eq. 9.10

IðtÞ ¼ �zFAea
~DFðtÞ @cðx; tÞ

@x

� �
x¼0

¼ zFAea
~DFðtÞ cð0; tÞ � cðDx; tÞ

Dx
(9.26)

Figure 9.7 shows the logarithmic PCTs calculated from the flat and fractal

electrodes. All of the PCTs exhibited three-stage behavior: The logarithm of the

current decreased first slowly with the logarithm of time, then proportionally to the

logarithm of time with a constant negative slope, and finally it decayed exponen-

tially. In the second stage, the linear relationship between the logarithms of current

and time showed the absolute value of the slope increases with increasing dF. The
nonlinear relationship in the first and third stages did not obey the generalized

Cottrell equation presented in Eq. 9.16. In addition, as dF increased, the values of I
during the first and second stages and the time to transition of the second stage to the

third stage increased and decreased, respectively.

Figure 9.8 gives the values of Ipeak , which were obtained from the LSVs
calculated from the fractal electrodes with different dF values, as a function of n
on a logarithmic scale.

All electrodes showed the power dependence of Ipeak on n in the region of n
higher than a certain critical scan rate. However, this power dependence deviated

negatively from the generalized Randles-Sevčik relation expressed in Eq. 9.20. As

dF increased, Ipeak and the critical scan rate, as well as the power exponent, just

increased in value.

The time to transition tch of the second stage to the third stage in the PCT of

Fig. 9.7 and the critical scan rate nch of the plots of Ipeak versus n in Fig. 9.8 are

caused by the transition from semi-infinite diffusion to finite diffusion and vice

versa, respectively. It was suggested based on the analysis of the concentration

profile transients of the diffusion species across the electrode that was under the

constraint of mixed control.

As dF increased, the value of tch in the PCT decreased and I increased up to tch,
while the values of Ipeak and nch in the LSV just increased. From this result, it is

concluded that the surface roughness enhances the cell-impedance-controlled lith-

ium transport as expected from Eq. 9.11: The surface roughness would result in a

marked increase in ~DFðtÞ.
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Regarding the effect of Rcell on the cell-impedance-controlled lithium transport,

contrary to the effect of dF on the lithium transport, as Rcell increased, the value of

tch in the PCT increased and I decreased up to tch, while the values of Ipeak and nch in
the LSV just decreased. From this fact, it can be noted that the beneficial contribu-

tion of the surface roughness to the cell-impedance-controlled lithium transport

counterbalances the detrimental contribution of the internal cell resistance.

9.3 Application of Fractal Geometry to the Analysis of Lithium

Transport

9.3.1 Lithium Transport through Irregular Interface

Based on the theoretical studies of the diffusion toward and from the fractal

interface, as described in the previous sections, Pyun and his coworkers tried

intensively to provide experimental proof of the effect of the surface roughness

on the lithium transport through intercalation compounds, i.e., Li1�dCoO2 [40, 42,

43, 109], V2O5 [110], Li1�dMn2O4 [111], and carbonaceous materials [112]. From

their works, it is experimentally confirmed that the lithium intercalation through the
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Fig. 9.7 Potentiostatic current transients calculated from the flat electrode with dF ¼ 2.0 and the

fractal electrodes with dF ¼ 2.02, 2.06 and 2.10 by dropping the electrode potential of 4.2–3.9 V

under the cell-impedance-controlled constraint at the electrode/electrolyte interface along with the

impermeable constraint at the electrode/current collector interface. The values of the electrode

thickness L and the internal cell resistance Rcell at 4.2 V are fixed as 2.0 mm and 10.0 O,
respectively (Reprinted from Go and Pyun [108], Copyright # 2005 with permission from

Elsevier Science)
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intercalation compounds is a cell-impedance-controlled reaction and is crucially

influenced by the irregularity of the reaction surface.

For dense film electrodes of Li1�dCoO2 and Li1�dMn2O4, the surface roughness

was varied by adopting different Al2O3 substrates with flat and rough surfaces.

Since the thickness of the rf-sputtered film was very thin compared to that of the

Al2O3 substrate, the surface roughness of the Al2O3 substrate directly reflected that

of the intercalation films. Their fractal dimension was characterized by image

analysis using AFM and their spatial cutoff was several hundreds of nanometers,

which is coincident with the ionic diffusion length scale. Under the cell-impedance-

controlled lithium transport boundary conditions, Pyun and his coworkers provided

the real PCT and LSV, which were experimentally measured from these film

electrodes. The representative behaviors of PCT and LSV predicted from the

theoretical studies (see Figs. 9.7 and 9.8) were clearly shown in the real PCT and

LSV [109, 111].

For porous electrodes of V2O5 and carbonaceous materials, the pore structure

was differentiated by the polymer surfactant template method and heat treatment,

respectively. The single-probe gas adsorption method [58, 110, 112] was used to

determine the fractal dimension of their surface with a spatial cutoff of several tens

of nanometers. Due to the molecular scale spatial cutoff, the fractal scaling property

of their surface characterized by this gas adsorption method was meaningful to the
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Fig. 9.8 Plots of the peak current Ipeak versus the potential scan rate n theoretically calculated

from the flat electrode with dF ¼ 2.0 and the fractal electrodes with dF ¼ 2.02, 2.06 and 2.10 by

scanning the applied potential from 4.3 to 3.5 V at various n from 0.1 to 10 mV s�1 under the cell-

impedance-controlled constraint at the electrode/electrolyte interface along with the impermeable

constraint at the electrode/current collector interface. The values of the electrode thickness L and

the internal cell resistance Rcell at 4.2 V are fixed as 5.0 mm and 39.0 O, respectively (Reprinted

from Go and Pyun [108], Copyright # 2005 with permission from Elsevier Science)
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charge-transfer reaction at the electrolyte/electrode interface, but not to the diffu-

sion process [110]. This was the first attempt to differentiate the fractal scaling

properties according to the spatial cutoff range of each method and to provide clear

evidence of the following points: (1) the charge-transfer reaction at the fractal

surface in the molecular length scale results in the interfacial capacitance dispersion

of the ac-impedance spectra and (2) the diffusion reaction through the fractal

surface in the hundreds of nanometers scale results in the frequency dispersion of

the diffusion impedance of the ac-impedance spectra.

9.3.2 Lithium Transport through Partially Inactive Interface

In the previous chapters, the surface roughness was discussed in the case of a fully

active interface. However, the composite electrodes used in electrochemical pro-

cesses are often partially active, since they are composed of an active powder

material and inactive binder and conductor. A partially blocked active electrode

can be characterized by a contiguous fractal with dF < 2:0. And electrodes com-

posed of active islands on an inactive support are belonging to a noncontiguous

fractal with dF < 2:0 [113].

For a contiguous fractal with dF < 2:0 under the diffusion-controlled constraint,

Pajkossy and Nyikos gave the experimental evidence of the validity of the

generalized Cottrell equation [113]. Two kinds of partially active electrodes: a

regular fractal pattern with dF ¼ ðlog 8Þ=ðlog 3Þ ffi 1:893 and a Sierpinski gasket

[1] with dF ¼ ðlog 3Þ=ðlog 2Þ ffi 1:585 were prepared, and then a PCT was obtained

from the experiment on two partially active electrodes using the diffusion-limited

redox couple of K3[Fe(CNÞ6
 and K4[Fe(CNÞ6
 . For both electrodes, the PCT
showed the generalized Cottrell behavior of Eq. 9.16.

Subsequently, Dassas and Duby [89] demonstrated experimentally (1) the tran-

sition time versus current relationship under galvanostatic experiment, (2) the peak

current versus potential scan rate relationship in a voltammetric experiment, and (3)

the current versus time relationship under potentiostatic experiment using a

Sierpinski gasket in a gel electrolyte containing 0.02 M K4[Fe(CNÞ6
 + 0.5 M Na2
SO4 solution. All followed power laws with a power exponent of � ðdF � 1Þ=2
according to the analytical solutions to the generalized diffusion equation involving

the fractional derivative operator of Eq. 9.8.

Lee and Pyun [114] characterized the morphology of the surface groups formed

on and polyvinylidene fluoride (PVDF)-binder materials dispersed on a graphite

composite electrode as a contiguous fractal with dF < 2:0. Two kinds of electrodes:

(1) the as-received SLX50 graphite electrode composed of graphite and PVDF, and

(2) the surface-modified SLX50 graphite electrode composed of heat-treated graph-

ite, PVDF, and surface groups on the graphite were prepared, and then they were

investigated using Kelvin probe force microscopy (KFM).

Figure 9.9a, b shows the surface potential profiles of the as-received

SLX50 graphite electrode and the surface-modified SLX50 graphite electrode.
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The as-received one showed a smooth surface with a few broad peaks, whereas

the surface-modified one showed a rough surface with many sharp peaks with a

lower surface potential and some broad peaks with a higher surface potential. Since

the surface potential of the PVDF is much higher than that of the surface groups,

they assigned the broad peaks to PVDF and the sharp peaks to the surface groups.

The three-dimensional KFM images were cross-sectioned into planes having a

constant surface potential to determine the fractal dimension of the inactive site

distribution. The resulting self-similar distributions of the PVDFs on the as-

received one and on the surface-modified one are given in Fig. 9.10a, b, respec-

tively. The self-similar complex distribution of the surface groups and PVDF on the

surface-modified one is shown in Fig. 9.10c.

These cross-sectional images were analyzed by the perimeter-area method. As a

result, the fractal dimensions of PVDF and the surface groups on the surface-

modified SLX50 graphite were distinguished by using KFM. However, the fractal

dimension determined by the peak-current method was just the average of the two

individual fractal dimensions determined by the KFM analysis. From these results,

it was concluded that the surface-modified SLX50 graphite has multi-fractal geom-

etry [72].

For a noncontiguous fractal with dF < 2:0, Pajkossy and Nyikos theoretically

showed that the current response to a potential step obeys the generalized Cottrell

equation by the random walk simulation of particles toward a Cantor-like boundary

[113]. On the other hand, Strømme et al. experimentally elucidated that the surfaces

of conducting oxide specimens, i.e. In oxide [115] and Sn oxyfluoride [38, 115], are

noncontiguous fractals with dF < 2:0 (Fig. 9.11).

Based on this background information, Jung and Pyun [116] conducted a

theoretical study on the cell-impedance-controlled lithium transport through an

Li1�dMn2O4 film electrode with a partially inactive fractal surface. They modeled

the Li1�dMn2O4 film with partially inactive sites as a Cantor set, as shown in

Fig. 9.11 [60, 72, 113], ran a kinetic Monte Carlo simulation using the random

walk approach, and finally calculated the PCT and LSV.
They calculated the PCTs and LSVs for both the fully active and partially active

fractal electrodes under the cell-impedance-controlled constraint and then

Fig. 9.9 KFM images obtained from the PVDF-bonded composite made from (a) the as-received

SFG50 graphite and from (b) the surface-modified SFG50 graphite (Reprinted from Lee and Pyun

[114], Copyright # 2003 with permission from Elsevier Science)
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compared them with each other. Neither the PCTs calculated for the totally active

nor partially inactive fractal electrodes exhibited generalized Cottrell behavior and

their shape was significantly affected by the interfacial charge-transfer kinetics. In

the case of the LSVs determined from both the totally active and partially inactive

fractal electrodes, the power dependence of the peak current on the scan rate above

the characteristic scan rate deviated from the generalized Randles-Sevčik behavior.

It was further recognized that the cell-impedance-controlled lithium transport

through the partially inactive fractal Li1�dMn2O4 film electrode strongly deviates

from the generalized diffusion-controlled transport behavior of the electrode with

the totally active surface. This is attributed to the impeded interfacial charge-

transfer kinetics governed by the surface inhomogeneities, including the fractal

dimension of the surface and the surface coverage by active sites, and by the kinetic

parameters including the internal cell resistance.

50

40

30

20

10

0
0 10 20 30

µm

µm

50

40

30

20

10

0

µm

50

40

30

20

10

0

µm

40 50 0 10 20 30
µm

40 50

0 10 20 30
µm

40 50

a

c

b

Fig. 9.10 Cross-sectional view of the three-dimensional KFM image (a) for the as-received

SFG50 graphite by cross-sectioning with the plane of the height value in 50% of the maximum

height of the surface potential, (b) for the surface-modified SFG50 graphite by cross-sectioning

with 80% of the maximum height of the surface potential, and (c) for the surface-modified SFG50

graphite by cross-sectioning with 50% of the maximum height of the surface potential (Reprinted

from Lee and Pyun [114], Copyright # 2003 with permission from Elsevier Science)
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Transfer d’Energie sur Interface à Similitude

Interne (TEISI) model, 219

Transfer function, 2, 54

Transition, 6

frequency, 40, 41

potential step, 6

time, 20, 38, 91, 95, 222, 229

Transmission electron microscope

(TEM), 216

Transmission line (TL) model, 34, 35

Trap capacitance, frequency-dependent, 116

Trap relaxation, 117

Trap sites, irreversible, 106, 111, 113

potential well, 105

reversible, 42, 111–115

Trap strength, irreversible, 107, 111

Trapping effect, 7

Triangulation method, 93, 216

U

Underpotential adsorption/deposition (UPD),

hydrogen, 66, 74, 78
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V

Vegard’s second law, 126

V2O5, 227

Volmer adsorption, 43, 48, 55, 67, 83

Volmer-Tafel reaction, 67

Voltammetry, 20

Volume strain, 142

W

Wagner’s approach, 96, 176

Warburg equation, 221, 223, 224

Warburg impedance, 6, 28, 37, 46, 54, 57, 62,

114, 117, 221

Weierstrass function, 93

Work hardening, 105

Z

Zr0.65Ti0.35Ni1.2V0.4Mn0.4, 168
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