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Preface

Spatial statistical analysis has never been in the mainstream of
statistical theory. However, there is a growing interest both for
epidemiologic studies, and in analyzing disease processes.

The above is a quote one of us (L.A.W.) received on a grant review in 1997,
and it outlines succinctly our motivation for this book. Topics in spatial statistics
are usually offered only as special-topic elective courses, if they are offered at
all. However, there is growing interest in statistical methods for the analysis of
spatially referenced data in a wide variety of fields, including the analysis of public
health data. Yet, there are few introductory, application-oriented texts on spatial
statistics. For practicing public health researchers with a general background in
applied statistics seeking to learn about spatial data analysis and how it might play
a role in their work, there are few places to turn.

Our goal is to provide a text that moves from a basic understanding of multiple
linear regression (including matrix notation) to an application-oriented introduction
to statistical methods used to analyze spatially referenced health data. This book
is less an effort to push the methodological frontier than an effort to gather and
consolidate spatial statistical ideas developed in a broad variety of areas and dis-
cuss them in the context of routinely occurring spatial questions in public health. A
complication in this effort is the wide variety of backgrounds among this interest
group: epidemiologists, biostatisticians, medical geographers, human geographers,
social scientists, environmental scientists, ecologists, political scientists, and public
health practitioners (among others). In an effort to provide some common back-
ground, in Chapters 1 to 3 we provide an overview of spatial issues in public
health, an introduction to typical (nonspatial) analytic methods in epidemiology
(for geographers who may not have encountered them previously), and an intro-
duction to basic issues in geography, geodesy, and cartography (for statisticians
and epidemiologists who may not have encountered them previously). In Chapter
4 we merge ideas of geography and statistics through exploration of the methods,
challenges, and approaches associated with mapping disease data. In Chapter 5
we provide an introduction to statistical methods for the analysis of spatial point
patterns, and in Chapters 6 and 7 we extend these to the particular issue of identi-
fying disease clusters, which is often of interest in public health. In Chapter 8 we
explore statistical methods for mapping environmental exposures and provide an

xv



xvi PREFACE

introduction to the field of geostatistics. Finally, in Chapter 9 we outline modeling
methods used to link spatially referenced exposure and disease data.

Throughout, we provide “data breaks” or brief applications designed to illustrate
the use (and in some cases, misuse) of the methods described in the text. Some
sequences of data breaks follow the same data set, providing bits and pieces of
a broader analysis to illustrate the steps along the way, or simply to contrast the
different sorts of insights provided by different methods. In general, we collect
methods and ideas around central questions of inquiry, then explore the particular
manner in which each method addresses the question at hand. We also include
several case studies, wherein we provide a start-to-finish look at a particular data
set and address the components of analysis illustrated through the data breaks in a
new (and often more involved) setting.

Finally, since spatial statistics is often out of the mainstream of statistical theory,
it is often also out of the mainstream of statistical software. Most of the analy-
ses in this book utilized routines in SAS (Littell et al. 1996), the S+SpatialStats
module for S-plus (Kaluzny et al. 1998), and various libraries in the freely avail-
able R (Ihaka and Gentleman 1996) language. For particular applications, we
made use of the freely available software packages WinBUGS (Spiegelhalter et al.
1999), SaTScan (Kulldorff and International Management Services, Inc. 2002), and
DMAP (Rushton and Lolonis 1996), and used the geographic information system
(GIS) packages ArcGIS and ArcView (Environmental Systems Research Institute
1999, including the spatial autocorrelation scripts for ArcView by Lee and Wong
2001). Regarding Internet addresses, we decided to provide references and detailed
descriptions of particular data sets and software packages since links often shift and
go out of date. However, we do post related links, the tabulated data sets, and most
of our R and SAS codes relating to the data breaks on the book’s Web site, linked
from www.wiley.com. This code should allow readers to duplicate (and hopefully
expand!) many of the analyses appearing throughout the book, and perhaps provide
a launching point for the analyses of their own data.

L. A. Waller
C. A. Gotway Crawford

Atlanta, Georgia
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C H A P T E R 1

Introduction

Time, space, and causality are only metaphors of knowledge,
with which we explain things to ourselves.

Friedrich Nietzsche (1844–1900)

It is part of human nature to try to discover patterns from a seemingly arbitrary set
of events. We are taught from an early age to “connect the dots,” learning that if we
connect the right dots in the right way, a meaningful picture will emerge. People
around the world look to the night sky and create patterns among the stars. These
patterns allow navigation and provide a setting for a rich variety of mythologies
and world views. In scientific studies, formalized methods for “connecting the dots”
provide powerful tools for identifying associations and patterns between outcomes
and their putative causes. In public health, identification and quantification of pat-
terns in disease occurrence provide the first steps toward increased understanding
and possibly, control of that particular disease.

As a component of the pattern observed, the location where an event happens
may provide some indication as to why that particular event occurs. Spatial statis-
tical methods offer a means for us to use such locational information to detect and
quantify patterns in public health data and to investigate the degree of association
between potential risk factors and disease. In the nine chapters of this book, we
review, define, discuss, and apply a wide variety of statistical tools to investigate
spatial patterns among data relating to public health.

1.1 WHY SPATIAL DATA IN PUBLIC HEALTH?

The literature uses the phrases geographical epidemiology, spatial epidemiology,
and medical geography to describe a dynamic body of theory and analytic methods
concerned with the study of spatial patterns of disease incidence and mortality.
Interest in spatial epidemiology began with the recognition of maps as useful tools
for illuminating potential “causes” of disease.

Applied Spatial Statistics for Public Health Data, by Lance A. Waller and Carol A. Gotway
ISBN 0-471-38771-1 Copyright  2004 John Wiley & Sons, Inc.
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2 INTRODUCTION

Dr. John Snow’s study of London’s cholera epidemic in 1854 provides one of
the most famous examples of spatial epidemiology. Snow believed that cholera
was transmitted through drinking water, but at the time, this theory was met
with extreme skepticism (Snow 1855; Frerichs 2000). Although the cholera deaths
appeared to be clustered around the Broad Street public water pump, Snow could
not find any evidence of contamination at that particular pump. His contemporary
critics noted that people tended to live close to public drinking water supplies,
so the clustering observed could simply have been due to the population distribu-
tion: outbreaks occur where people are. However, by considering a few carefully
selected controls (i.e., people nearby that did not have cholera) and by interviewing
surviving members of almost every household experiencing a cholera death, Snow
eventually gathered support for his theory. Brody et al. (2000) provide a detailed
history of the role of maps (by Snow and others) in the investigation of the 1854
outbreak.

Other early examples of spatial epidemiology include the study of rickets made
by Palm (1890), who used maps to delineate the geographical distribution of rickets.
Palm observed the greatest incidence in industrial urban areas that had a cold and
wet climate. Today we know that rickets is caused by a vitamin D deficiency,
which in turn can be caused by a lack of ultraviolet radiation. In a related but more
recent study, Blum (1948) surmised sunlight as a causal factor for skin cancer,
again based primarily on the geographical distribution of disease cases observed.

Clearly, where people live can be of great importance in identifying patterns of
disease. However, spatial analyses in public health need not pertain solely to geo-
graphical distributions of disease. The spatial distributions of the sociodemographic
structure, occupational patterns, and environmental exposures of a population are
also of particular interest.

1.2 WHY STATISTICAL METHODS FOR SPATIAL DATA?

Although best known among spatial analysts for the Broad Street maps, it was
Dr. Snow’s careful case definition and analysis of cholera deaths in a wider area
of London that placed him among the founders of epidemiology rather than from
his maps per se (Lilienfeld and Stolley 1984, pp. 28–29; Hertz-Picciotto 1998,
pp. 563–564; Rothman and Greenland 1998, p. 73). Central to this analysis was
Snow’s “natural experiment,” wherein he categorized cholera deaths by two water
companies, one drawing water upstream from London (and its sewage), the other
downstream. The water company service was so intermingled that “in many cases
a single house has a supply different from that on either side” (Snow 1936, p. 75).
Thus, in addition to maps, study design and simple statistics were important tools
in Snow’s analysis.

The analysis of spatial public health data involves more than just maps and visual
inference. Medical science provides insight into some specific causes of disease
(e.g., biological mechanisms of transmission and identification of infectious agents);
however, much remains unknown. Furthermore, not all persons experiencing a
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suspected causal exposure contract the disease. As a result, the analysis of public
health data often builds from the statistical notion of each person having a risk or
probability of contracting a disease. The analytic goal involves identification and
quantification of any exposures, behaviors, and characteristics that may modify
a person’s risk. The central role of probabilities motivates the use of statistical
methods to analyze public health data and the use of spatial statistical methods to (1)
evaluate differences in rates observed from different geographic areas, (2) separate
pattern from noise, (3) identify disease “clusters,” and (4) assess the significance
of potential exposures. These methods also allow us to quantify uncertainty in
our estimates, predictions, and maps and provide the foundations for statistical
inference with spatial data. Some spatial statistical methods are adaptations of
familiar nonspatial methods (e.g., regression). However, other methods will most
likely be new as we learn how to visualize spatial data, make meaningful maps,
and detect spatial patterns.

Applying statistical methods in a spatial setting raises several challenges. Geog-
rapher and statistician Waldo Tobler summarized a key component affecting any
analysis of spatially referenced data through his widely quoted and paraphrased
first law of geography: “Everything is related to everything else, but near things
are more related than far things” (Tobler 1970). This law succinctly defines the sta-
tistical notion of (positive) spatial autocorrelation, in which pairs of observations
taken nearby are more alike than those taken farther apart. Weakening the usual
assumption of independent observations in statistical analysis has far-reaching con-
sequences. First, with independent observations, any spatial patterns are the result
of a spatial trend in the probabilistic expected values of each observation. By
allowing spatial correlation between observations, observed spatial similarity in
observations may be due to a spatial trend, spatial autocorrelation, or both. Sec-
ond, a set of correlated observations contains less statistical information than the
same number of independent observations. Cressie (1993, pp. 14–15) provides an
example of the reduction in effective sample size induced by increasing spatial
autocorrelation. The result is a reduction in statistical precision in estimation and
prediction from a given sample size of correlated data compared to what we would
see in the same sample size of independent observations (e.g., confidence intervals
based on independent observations are too narrow to reflect the appropriate uncer-
tainty associated with positively correlated data). Ultimately, all statistical methods
for spatial data have to take the spatial arrangement, and the resulting correlations,
of the observations into consideration in order to provide accurate, meaningful
conclusions.

1.3 INTERSECTION OF THREE FIELDS OF STUDY

We focus this book on statistical methods and assume that our readers have a
familiarity with basic probabilistic concepts (e.g., expectation, variance, covariance,
and distributions) and with statistical methods such as linear and logistic regression
(including multivariate regression). Most of the methods presented in the book
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Table 1.1 Representative List of Journals That Regularly Contain Articles on
Spatial Statistical Methods Useful in the Analysis of Public Health Data

Field of Study Journals

Statistics/Biostatistics Applied Statistics
Biometrics
Biometrika
Environmetrics
Journal of the American Statistical Association
Journal of the Royal Statistical Society, Series A
Journal of the Royal Statistical Society, Series B
Statistics in Medicine
Statistical Methods in Medical Research

Epidemiology American Journal of Epidemiology
Epidemiology
International Journal of Epidemiology
Journal of Epidemiology and Community Health

Geography/Geology Annals of the Association of American Geographers
Environment and Planning A
Health and Place
International Journal of Geographic Information Science
Journal of Geographical Systems
Mathematical Geology
Social Science and Medicine

build from these concepts and extend them as needed to address non-Gaussian
distributions, transformations, and correlation assumptions.

Even though our focus is on statistical methods, we recognize that the analysis
of spatially referenced public health data involves the intersection of at least three
traditionally separate academic disciplines: statistics, epidemiology, and geography.
Each field offers key insights into the spatial analysis of public health data, and
as a result, the literature spans a wide variety of journals within each subject area.
Table 1.1 lists several journals that regularly contain articles relating to the spatial
analysis of health data.

Although by no means exhaustive, the journals listed in Table 1.1 provide a
convenient entry point to the relevant literature. In our experience, journal articles
tend to reference within a subject area more often than between subject areas, so
searches across disciplines will probably reveal a wider variety of related articles
than searches conducted on journals within a single discipline.

At times, the relationship between statistics and the fields of both epidemiol-
ogy and geography is less than cordial. Often, a backlash occurs when statisticians
attempt to transfer a family of methods wholesale into a new area of applica-
tion without input from the subject-matter experts regarding the appropriateness
of assumptions, the availability of requisite data, and even the basic questions of
interest. We refer readers interested in such debates to Bennett and Haining (1985),
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Openshaw (1990), and Rothman and Greenland (1998, Chapters 2 and 12). As
always, there are two sides to the story. An equal amount of criticism also occurs
when epidemiologists and geographers use and extend statistical methods without
fully appreciating the assumptions behind them or the theoretical foundations on
which their validity is based. Often, this just results in inefficiency (and underuti-
lized and annoyed statisticians!) but there are times when it also produces strange
inconsistencies in analytical results and erroneous or unsubstantiated conclusions.
As applied spatial statisticians, we appreciate both sides and attempt to walk a
fine line between emphasizing important assumptions and theoretical results and
focusing on practical applications and meaningful research questions of interest.

1.4 ORGANIZATION OF THE BOOK

Many spatial statistics books (e.g., Upton and Fingleton 1985; Cressie 1993; Bailey
and Gatrell 1995) organize methods based on the type of spatial data available.
Thus, they tend to have chapters devoted to the analysis of spatially continuous
data (e.g., elevation and temperature, where we can potentially observe a point
anywhere on Earth), chapters devoted to statistical methods for analyzing random
locations of events (e.g., disease cases), and chapters devoted to the analysis of
lattice data, a term used for data that are spatially discrete (e.g., county-specific
mortality rates, population data).

Although the data type does determine the applicable methods, our focus on
health data suggests an alternative organization. Due to the variety of disciplines
interested in the spatial analysis of public health data, we organize our chapters
based on particular questions of interest. In order to provide some common ground
for readers from different fields of study, we begin with brief introductions to
epidemiologic phrases and concepts, components and sources of spatial data, and
mapping and cartography. As statisticians, we focus on reviews of statistical meth-
ods, taking care to provide ongoing illustrations of underlying concepts through
data breaks (brief applications of methods to common data sets within the chapters
outlining methodologies). We organize the methods in Chapters 2–9 based on the
underlying questions of interest:

• Chapter 2 : introduction to public health concepts and basic analytic tools
(What are the key elements of epidemiologic analysis?)

• Chapter 3 : background on spatial data, basic cartographic issues, and geo-
graphic information systems (What are the sources and components of spatial
data, and how are these managed?)

• Chapter 4 : visualization of spatial data and introductory mapping concepts
(How do we map data effectively to explore patterns and communicate results?)

• Chapter 5 : introduction to the underlying mathematics for spatial point pat-
terns (How do we describe patterns mathematically in spatially random
events?)
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• Chapter 6 : methods for assessing unusual spatial clustering of disease in point
data (How do we tests for clusters in collections of point locations for disease
cases?)

• Chapter 7 : methods for assessing spatial clustering in regional count data
(How do we test for clusters in counts of disease cases from geographically
defined areas?)

• Chapter 8 : methods for exposure assessment and the analysis of environ-
mental data (How do we spatially interpolate measurements taken at given
locations to predict measurements at nonmeasured locations?)

• Chapter 9 : methods for regression modeling using spatially referenced data
(How do we quantify associations between spatially referenced health out-
comes and exposures?)

Collectively, we hope these questions and the methodology described and illus-
trated in each chapter will provide the reader with a good introduction to applied
spatial analysis of public health data.
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Analyzing Public Health Data

Disease generally begins that equality which death completes.
Samuel Johnson (London, September 1, 1750),

quoted in the Columbia Encyclopedia

Any important disease whose causality is murky, and for which
treatment is ineffectual, tends to be awash in significance.

Susan Sontag, Illness as Metaphor, 1979, Vintage Books, Ch. 8

The results of studies of health and related risk factors permeate the public health
literature and the popular press. We often read of associations between particular
diseases (e.g., cancers, asthma) and various “exposures” ranging from levels of
various environmental pollutants, to lifestyle factors such as diet, to the socioeco-
nomic status of persons at risk. Although some studies involve carefully controlled
experiments with random assignment of exposures to individuals, many involve
observational data, where we observe disease outcomes and exposures among a
subset of the population and want to draw inferences based on the patterns observed.

The analysis of public health data typically involves the concepts and tools of
epidemiology, defined by MacMahon and Pugh (1970) as the study of the distribu-
tion and determinants of disease frequency. In this chapter we provide a brief review
of assumptions and features of public health data, provide an outline of the basic
toolbox for epidemiological analysis, and indicate several inferential challenges
involved in the statistical analysis of such data.

2.1 OBSERVATIONAL VS. EXPERIMENTAL DATA

In most cases, epidemiological analyses are based on observations of disease occur-
rence in a population of people “at risk.” Typically, we want to relate occurrence
patterns between collections of people experiencing different levels of exposure to
some factor having a putative impact on a person’s risk of disease. Such observa-
tional studies differ in several important ways from experimental studies common
in other fields of scientific inquiry. First, experimental studies attempt to control all
factors that may modify the association under study, while observational studies

Applied Spatial Statistics for Public Health Data, by Lance A. Waller and Carol A. Gotway
ISBN 0-471-38771-1 Copyright  2004 John Wiley & Sons, Inc.

7



8 ANALYZING PUBLIC HEALTH DATA

cannot. Second, most experimental studies randomize assignment of the factors of
interest to experimental units to minimize the impact of any noncontrolled concomi-
tant variables that may affect the relationship under study. Observational studies
step in where experimental studies are infeasible due to expense or ethical con-
cerns. For example, studying a very rare disease experimentally often involves huge
recruitment costs; withholding a treatment with measurable impact often violates
ethical research standards. Whereas controlled randomization of assignment of a
potential treatment within the confines of a clinical trial may be a justifiable use of
human experimentation, random assignment of exposure to a suspected carcinogen
for the purposes of determining toxicity is not.

The presence of controlled environments and randomization in experimental
studies aims to focus interpretation on a particular association while limiting the
impact of alternative causes and explanations. Observational studies require more
care in analysis and interpretation, since controlled environments and randomization
often are not possible. Consequently, observational studies involve potential for a
wide variety of misinterpretation. The nature of observational studies, particularly
of epidemiological studies in the investigation of determinants of disease, provides
a framework for interpretation for most spatial analyses of public health data.
Central to this framework is the quantification of patterns in the frequency of
disease occurrence among members of the population under observation.

2.2 RISK AND RATES

The study of disease in a population begins by addressing the occurrence of a
particular outcome in a particular population over a particular time. A common
goal of an epidemiological study is to determine associations between patterns of
disease occurrence and patterns of exposure to hypothesized risk factors. Due to
the central nature of disease occurrence summaries in epidemiology, the related
literature contains very specific nomenclature for such summaries. We outline the
basic ideas here, referring interested readers to epidemiology texts such as Selvin
(1991, Chapter 1) or Rothman and Greenland (1998, Chapter 3) and the references
therein for more detailed discussion.

2.2.1 Incidence and Prevalence

The first distinction contrasts disease incidence and disease prevalence. Incidence
refers to the occurrence of new cases within a specified time frame and provides a
view of onset within a relatively narrow window of time. Prevalence refers to the
total number of existing cases over a specific time frame and provides a summary
of the current burden of the disease under study within the population. For a given
disease, incidence and prevalence differ when diseased individuals survive for long
periods of time, so that prevalent cases include people who recently contracted the
disease (incident cases) and people who contracted the disease some time ago. For
diseases with a high likelihood of subsequent mortality in a relatively short time
span, incidence and prevalence will be similar. Most epidemiological applications
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favor incidence over prevalence as an outcome in order to assess factors influencing
disease onset, since both onset and duration influence prevalence. However, in cases
where onset is difficult to ascertain (e.g., congenital malformations, infection with
HIV), researchers may use prevalence coupled with assumptions regarding disease
duration as a surrogate for incidence (Rothman and Greenland 1998, pp. 44–45).

2.2.2 Risk

The risk of contracting a disease represents the probability of a person contract-
ing the disease within a specified period. We stress that in this context, risk is
an attribute of a person, determined and modified by characteristics such as age,
gender, occupation, and diet, among other risk factors. Risk is an unobserved and
dynamic quantity that we, the researchers, wish to estimate. A primary goal of an
epidemiological study is to summarize the level of risk of a particular disease in a
particular population at a particular time. Associated with this goal is that of iden-
tifying factors influencing risk, and quantifying their impact, through observation
of disease occurrence within a study population. The statistical question becomes
one of estimating risk and related interpretable quantities from observations taken
across this study population.

2.2.3 Estimating Risk: Rates and Proportions

In general use the term rate defines the number of occurrences of some defined
event per unit time. However, application to disease incidence raises some compli-
cations, and the epidemiologic literature is quite specific in definitions of disease
rates (Elandt-Johnson 1975; Rothman and Greenland 1998, pp. 31–37). Unfortu-
nately, the literature on spatial data analysis applied to health data is not similarly
specific, resulting in some potential for misunderstanding and misinterpretation.
Although we review relevant issues here, our use of the term disease rate in this
book falls somewhere between the strict epidemiologic definition(s), and the general
use in the spatial epidemiological literature, for reasons outlined below.

In an observational setting, subjects under study may not be at risk for identical
times. People move from the study area, are lost to follow-up, or die of causes
unrelated to the disease under study. As a result, the epidemiological definition
of incidence rate is the number of incident (new) cases observed in the study
population during the study period divided by the sum of each person’s observation
time. We often refer to the denominator as a measure of person-time, reflecting the
summation of times over the persons under observation. Rothman and Greenland
(1998, p. 31) note that person-time differs from calendar time in that person-time
reflects time summed over several people during the same calendar time rather
than a sequential observation of people. In epidemiological studies of chronic,
nonrecurring diseases, a person’s contribution to person-time ends at onset, since
at that point, the person is no longer among the population of people at risk for
contracting the disease.

Under the person-time definition, a disease rate is not an estimate of disease
risk. In fact, the person-time rate is expressed in inverse time units (often written
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as “cases/person-year”) and, technically, has no upper limit. Although a population
of 100 persons can only experience 100 cases of a nonrecurring disease, these cases
could happen within any person-time period (e.g., 10, 100, or 10,000 person-years),
affecting the magnitude of the incidence rate.

In contrast to the precise epidemiological use of rate, the spatial epidemiology
literature (including journals in statistics, biostatistics, and geography) tends to use
disease rate to refer to the number of incident cases expected per person rather than
per unit of person-time. That is, this use of disease rate refers to the total number
of cases observed divided by the total number of people at risk, both within a fixed
time interval. Technically, this usage corresponds to a incidence proportion rather
than a rate, but is very common because this incidence proportion is a population-
based estimate of (average) individual risk within the study population. We note
that the time interval provides critical context to interpretation of an incidence
proportion, as we expect very different values from data collected over a single
year and that collected over a decade (since the numerator of the ratio increases
each year but the number at risk is fairly stable and often assumed constant).

The primary differences between the incidence proportion and the incidence
rate lie in assumptions regarding each person’s contribution to the denominator
of the ratio under consideration. In a closed population (no people added to or
removed from the at-risk population during the study period) where all subjects
contribute the same observation time, the incidence proportion would be equal to
the incidence rate multiplied by the length of the (common) observation time for
each person. Some difference between the two quantities always remains since
a person stops contributing person-time to the denominator of the incidence rate
the moment that person contracts the disease. However, this difference between
the incidence rate and incidence proportion diminishes with rare diseases in the
population at risk and/or short observation time per person (i.e., with less loss of
observed person-time per diseased person). This feature represents one of several
instances outlined in this chapter where the assumption of a rare disease (disease
with low individual risk) provides convenient numerical approximations. (See the
exercises at the end of this chapter to assess the impact of the precise rarity of a
disease on the performance of some approximations.)

For the remainder of the book we take care to clarify our use of the term disease
rate in any given instance. In most cases we follow the spatial literature in using the
term to refer to incidence proportion and appeal to an assumption of a rare disease
to justify this use for most of our examples. However, applications of the spatial
statistical techniques outlined in subsequent chapters to more common diseases
require a more careful wording and interpretation of results.

2.2.4 Relative and Attributable Risks

Incidence proportions provide an estimate of the average disease risk experienced
by members of a study population. Often, analytic interest centers around com-
paring risks between individuals with and without a certain exposure. We define
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the term exposure broadly to include both doses of a particular substance and
general lifestyle patterns (e.g., age, smoking, a certain type of occupation, num-
ber of children). For simplicity, we discuss the impact of a binary exposure, so
we partition our study population into exposed and nonexposed subgroups. Two
common methods for comparing risk estimates between these two subgroups are
to compare risk differences or risk ratios, defined as their names suggest. These
two quantities address the additive and multiplicative impact of exposure, respec-
tively. The literature often refers to the risk difference as the attributable risk since
it defines the (additive) impact to a person’s total risk that is attributable to the
exposure under study. Similarly, risk ratios define the relative risk or the multi-
plicative impact of the exposure on a person’s risk of disease. The epidemiologic
and public health literature, as well as the press, tends to favor reporting relative
risk estimates due to ease of communication (e.g., “a 0.000567 increase in risk”
versus “a 22% increase in risk”) and due to ease of estimation, as outlined in the
sections below.

2.3 MAKING RATES COMPARABLE: STANDARDIZED RATES

Most diseases affect people of certain ages disproportionately. In general, there
is an increasing incidence of cancer with age, with marked increases for ages
greater than 40 years. Since incidence proportions reflect estimated average risks
for a study population, populations containing more people in higher age ranges
will have higher summary incidence proportions and rates than those of younger
populations. As a result, the incidence proportion for two regions may appear
different, but this difference may be due entirely to the different age distributions
within the regions rather than to a difference in the underlying age-specific risk
of disease. Rate standardization offers a mechanism to adjust summary rates to
remove the effect of known risk factors (such as age) and make rates from different
populations comparable.

As an example of the need for rate standardization, consider the population
proportions for two hypothetical counties shown in Figure 2.1. We use the same
age-specific disease rates for both counties. The age-specific rates on leukemia inci-
dence correspond to those reported by the U.S. National Cancer Institute through
the Surveillance Epidemiology and End Results (SEER) cancer registries (Horm
et al. 1984), but the age distributions are entirely hypothetical. If both counties
have 10,000 residents but different age distributions, we expect more cases for the
county represented in the lower plot since this county has more residents in the
higher-age (and higher-risk) categories.

The number of cases expected in a region is clearly a function of the age
distribution of the population at risk. The question then becomes: How do we
compare observed rates from regions with different age distributions?

A common option is rate standardization, a method by which analysts select a
standard population and adjust observed rates to reflect the age distribution within
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FIG. 2.1 Hypothetical example illustrating the impact of different age distributions on the number of
cases expected based on age-specific incidence proportions. Bar heights represent population proportions,
and the black line is proportional to the age-specific incidence of leukemia (all types) observed in the
Surveillance Epidemiology and End Results (SEER) study from 1978–1981 (see text).

the standard population. Possible standard populations include a superpopulation
containing the study population (e.g., the population reported by a national census)
and the total subpopulation (if we are interested in standardizing some subset of
individuals, for example, from a particular region within the study area). In the
United States, researchers often use the 1940, the 1970, and increasingly, the 2000
decennial census values to represent a standard population.

Statistically, rate standardization amounts to taking a weighted average of
observed age group–specific rates where the weights relate the age distribution
in the study population to that in the standard population. Standardization typi-
cally involves adjusting observed rates to reflect rates and counts that we would
observe if either the observed age-specific rates (proportions) applied to the stan-
dard population or the population standard’s age-specific rates (proportions) applied
to the study population. The literature refers to the former approach as direct age
standardization (we apply the observed age-specific rates directly to the standard
population) and to the latter approach as indirect age standardization (we use age-
specific rates from the standard population to estimate indirectly the numbers of
cases expected in each age group in the study population observed).

We detail direct and indirect age standardization in the following two sections.
To set notation, suppose that we have J age groups. Let yj and nj denote the
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number of cases and the number of people at risk in age group j for the study
population observed, respectively, where j = 1, . . . , J . Define rj = yj /nj to be
the observed incidence proportion in age group j . Similarly, let y

(s)
j , n

(s)
j , and r

(s)
j

denote the number of cases, number of people at risk in age group j , and the
observed incidence proportion for the standard population. Finally, let

y+ =
J∑

j=1

yj

y
(s)
+ =

J∑
j=1

y
(s)
j

n+ =
J∑

j=1

nj

and

n
(s)
+ =

J∑
j=1

n
(s)
j .

2.3.1 Direct Standardization

Direct standardization seeks to answer the question: How many cases would we
observe in the standard population if the observed age-specific rates of disease
applied? (Mausner and Kramer 1985, p. 339). That is, we seek to translate the
observed incidence to what would be observed in our standard set of persons at
risk. Direct standardization requires the following data (Inskip 1998, p. 4239):

• Age-specific rates (incidence proportions) for the study population observed,
rj = yj /nj , j = 1, . . . , J

• Number of people at risk in the standard population, n
(s)
j

• Total number of cases observed in the standard population, y
(s)
+

Applying the age-specific rates from the observed study population to the num-
bers of people at risk in the standard population gives the age-specific number of
cases expected in the standard population, denoted

E
(s)
j = rjn

(s)
j = yj

nj

n
(s)
j

for j = 1, . . . , J . Therefore, the overall expected rate in the standard population is

∑J
j=1 E

(s)
j

n
(s)
+

=
∑J

j=1 rjn
(s)
j

n
(s)
+

=
∑J

j=1(yj /nj )n
(s)
j

n
(s)
+

. (2.1)
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Note that equation (2.1) corresponds directly to a weighted average of the age-
specific rates observed in the study population, where the weights correspond to
the numbers at risk in each age group within the standard population.

In addition to the directly standardized rate defined in equation (2.1), we could
compare the number of cases expected in the standard population (

∑
j E

(s)
j ) to the

number observed (y(s)
+ ). Their ratio defines the comparative mortality figure (CMF)

(Inskip 1998, pp. 4239–4240):

CMF =
∑

j E
(s)
j

y
(s)
+

.

Note that the directly standardized rate is simply the crude incidence proportion in
the standard population multiplied by the CMF, since

CMF
y

(s)
+

n
(s)
+

=
∑

j E
(s)
j

n
(s)
+

.

Direct standardization requires accurate assessment of the age-specific incidence
proportions for the study population observed. For rare diseases, the incidence
proportions observed, rj = yj /nj , may be statistically unstable, particularly if nj

is small, in that the addition or deletion of a single case within a particular age
group could drastically change the value of rj . Often, the standard population is
much larger and the values r

(s)
j = y

(s)
j /n

(s)
j may provide more stable estimates

of age-specific incidence proportions. In addition, age-specific incidence counts
(yj , j = 1, . . . , J ) may not be as readily available as the total observed incidence
count (y+) and the age-specific population counts (nj , j = 1, . . . , J ) within the
study population observed, due to confidentiality issues or simply due to data
limitations. In such cases, direct standardization is not available and we turn to
indirect methods.

2.3.2 Indirect Standardization

Indirect standardization reverses the roles of the study population observed and the
standard population and seeks to answer the question: What would be the number
of cases expected in the study population if people in the study population con-
tracted the disease at the same rate as people in the standard population? (Mausner
and Kramer 1985, p. 341). As a mirror image of direct standardization, indirect
standardization requires data reversing the roles of the study population observed
and the standard population (Inskip 1998, p. 4239):

• Age-specific rates (incidence proportions) for the standard population, r
(s)
j =

y
(s)
j /n

(s)
j , j = 1, . . . , J

• Number of people at risk in the study population observed, nj

• Total number of cases observed in the study population observed, y+
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The first two items allow calculation of the number of cases expected in age
group j in the study population observed when the age-specific incidence propor-
tions apply:

Ej = r
(s)
j nj =

y
(s)
j

n
(s)
j

nj

for j = 1, . . . , J . Then the total number of cases expected in the study population
observed (using the age-specific rates from the standard population) is

E+ =
J∑

j=1

Ej =
J∑

j=1

r
(s)
j nj =

J∑
j=1

y
(s)
j

n
(s)
j

nj .

The most common application of indirect standardization compares the number
of cases observed in the study population, y+, to the number of cases expected
using age-specific rates from the standard population, E+, through the standardized
mortality ratio (SMR), where

SMR = y+/E+.

Some texts refer to the standardized incidence ratio (SIR) when referring to inci-
dence rather than mortality, but the term SMR is widely used for both mortality
and morbidity (including incidence), and we use SMR throughout the remainder of
the text. SMR values greater than 1.0 indicate more cases observed in the observed
study population than expected based on the age-specific incidence proportions
from the standard population. Often, analysts report the SMR in percentage units
by multiplying the ratio by 100.

Multiplication of the SMR and the crude rate in the standard population provides
the standardized rate indirectly:

SMR
y

(s)
+

n
(s)
+

.

Note that by convention and due to the alternating roles of the observed study pop-
ulation and the standard population, the SMR has observed totals in the numerator,
and (indirectly) standardized expectations in the denominator, but the CMF has
observed totals in the denominator and (directly) standardized expectations in the
numerator.

2.3.3 Direct or Indirect?

The statistical and epidemiologic literature contains many discussions of the rel-
ative merits of direct and indirect standardization [see Fleiss (1981, Chapter 14),
Tukey (1988), and Selvin (1991, pp. 29–35) for discussion and related references].
To better see the underlying difference between direct and indirect standardized
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rates, Pickle and White (1995) suggest rewriting the indirectly standardized rate as
follows:

SMR
y

(s)
+

n
(s)
+

=
∑J

j=1(yj /nj )nj

/∑J
j=1 nj∑J

j=1(y
(s)
j /n

(s)
j )nj

/∑J
j=1 nj

∑J
j=1(y

(s)
j /n

(s)
j )n

(s)
j∑J

j=1 n
(s)
j

.

The expansion of the SMR (left-hand component on the right-hand side of the
equation) reflects a ratio of weighted averages where the crude rates in both the
observed study population and the standard population are weighted by the observed
study population’s age structure. The right-hand component is a weighted average
of the crude rate in the standard population with weights based on the age structure
of the standard population. The reexpression of the SMR implies that weights differ
for each study population considered, unlike directly standardized rates, where the
weights depend on the standard population.

The dependence of indirect standardization on the age structure of the study
population raises the question of the comparability between indirectly standard-
ized rates calculated for different study populations (e.g., for different geographic
regions). Pickle and White (1995, pp. 617–618) outline the following conditions
under any one of which direct and indirect standardization produce identical (or at
least proportional) results:

1. If the proportional population distribution of the study population is identical
to that of the standard population (i.e., nj /n+ = n

(s)
j /n

(s)
+ , for j = 1, . . . , J ).

2. If the age-specific rates in the study population are identical to those in
the standard population (i.e., rj = r

(s)
j for j = 1, . . . , J ). In this case, both

direct and indirect standardized rates reduce to the crude rates from the study
population.

3. If the age-specific rates are proportional to those in the standard population
(i.e., rj = αr

(s)
j for some constant α), the indirectly standardized rate equals

the crude rate in the standard population times α.

Conditions 1 and 2 reflect rather idealized situations and most applications of
indirectly standardized rates appeal to condition 3. As an illustration, suppose that
we wish to compare indirectly standardized rates from two counties, where we use
the same standard population for each county. Under condition 3 we assume that
the age-specific rates within the study population of each county are multiples of
the corresponding rates in the (common) standard population. While the constant
of proportionality (α) may differ between counties, it remains constant across age
categories within each county. That is, if the incidence proportion for ages 0–5
years was 1.5 times that of the standard population for the same age group for
the first county, we assume that the incidence proportion for all other age groups
in that county are 1.5 times the corresponding rate in the standard population.
If we also assume that age-specific incidence proportions for the second county
are proportional to those in the standard population (perhaps by a constant of
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proportionality other than 1.5), we may safely compare the two counties’ indirectly
standardized rates.

Condition 3 is termed the product model (cf. Breslow and Day 1975; Gail
1978) and often motivates the use of an internal standard population consisting of
age-specific rates from a superpopulation containing the regions (e.g., counties) to
compare rather than an external standard based on individuals from an entirely sep-
arate population. In particular, if we wish to compare indirectly standardized rates
between counties within the same state, we may wish to use data from the entire
state as the standard population to obtain a standardized rate for each county. Note
that proportionality is not guaranteed by the use of an internal standard (Freeman
and Holford 1980, p. 198), for instance, if a county has a higher incidence rate
than the standard population for a few but not all age groups. Gail (1978) offers
statistical tests of the multiplicity assumption in condition 3. Gail (1978, p. 226)
also suggests a graphical test of the proportionality assumption. If rij denotes
the incidence proportion observed in age group j for region i (i = 1, . . . , I and
j = 1, . . . , J ), plot j versus ln(rij ) and connect all points corresponding to each
i, i = 1, . . . , I . Under condition 3 (the product model), the curves corresponding
to each region i should be parallel to each other and to the curve corresponding to
ln(r

(s)
j ), subject to some random variability.

In practice, the choice between direct or indirect standardization often reduces
to the type of data available. If age-specific incidence counts are unavailable for
the study population but age-specific rates are available for a standard population,
indirect standardization offers the only option available.

2.3.4 Standardizing to What Standard?

The analyst must also choose a population standard. As mentioned in the preceding
section, one often uses marginal (aggregate) standards in indirect standardization
and assumes proportionality to obtain comparable indirectly standardized rates. The
inherent comparability of directly standardized rates offers us a wider choice in
standards, but increased choice does not mean decreased dependence on the choice
of standard. Krieger and Williams (2001) comment on the impact of changing from
the 1940 standard population to the 2000 standard population in reference to mea-
sures of health disparities and inequalities between sociodemographic subgroups.
In a related commentary, Pamuk (2001) provides a brief but thorough history and
overview of the use of standardization in reporting summaries of vital statistics
(particularly mortality data) and raises several important points. Foremost among
these is the trade-off between the simplicity of summarizing information across
age groups and the implicitly associated loss of information (i.e., we give up age-
specific information in order to provide an age-standardized statistic summarizing
across age categories).

In addition to age standardization, we could also standardize rates to compensate
for other risk strata (e.g., gender, race, and/or ethnicity). Although examples of such
standardization exist, the most common applications of rate standardization involve
adjustments for age.
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2.3.5 Cautions with Standardized Rates

As illustrated above, the goal of standardizing rates is to provide summaries across
groups adjusted for known variations in risk within the structure of the population
of interest. Although we illustrate standardization with respect to a single risk
factor, the idea extends readily to any collection of risk factors as long as we
have the appropriate reference rates and population sizes for each distinct risk
category. Standardization seeks to remove variations in summary measures (rates
or proportions) due solely to these known risk factors, so any remaining differences
suggest risk differences other than those adjusted for.

This said, it is important to note that standardized rates represent summaries
across population strata experiencing differing risks. As summaries, standardized
rates may mask important differences occurring at the stratum level. Fleiss (1981,
pp. 239–240) reviews several valid critiques of the use of standardized rates, partic-
ularly for violations of the proportionality assumption of condition 3 above. While
acknowledging that standardization does not provide a substitute for examining
the age (or other stratum-specific) group’s specific rates themselves, Fleiss (1981,
p. 240) offers three primary reasons for standardization:

1. Comparing single summaries between several study populations (e.g., regions
such as counties) rather than comparing tables of age-specific rates is rela-
tively easy.

2. When some age groups contain very small numbers at risk, the age-specific
estimates may be too imprecise (statistically unstable) for accurate compar-
isons.

3. For some subpopulations of particular interest (e.g., members of racial or
ethnic minorities), accurate age-specific rates may not exist.

2.4 BASIC EPIDEMIOLOGICAL STUDY DESIGNS

Standardization provides a commonly reported means of “adjusting” observed pro-
portions and rates for the presence of known risk factors. Statistical modeling of
epidemiological data extends such ideas, allowing estimation of the impact of par-
ticular risk factors and their interactions with observed incidence (or prevalence)
counts. We next consider the types of data collected in epidemiological studies,
followed by a description of the analytical approaches often used to quantify such
associations.

At their most basic level, most epidemiological studies seek to quantify the
impact of a certain exposure on a certain disease. The simplest case involves a
binary exposure and binary disease, where we classify study subjects as either
“exposed” or “unexposed” (denoted E+ or E−, respectively), and “diseased” or
“not diseased” (denoted D+ or D−, respectively). The classifications allow con-
struction of the contingency table shown in Table 2.1.

The design of the epidemiological study reflects the manner in which we observe
individuals in order to fill in n++, n−+, n+−, and n−− in Table 2.1. As mentioned
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Table 2.1 Basic Epidemiological
Contingency Table Cross-Classifying
the Study Population

E+ E−

D+ n++ n−+
D− n+− n−−

above, most epidemiological studies are observational rather than experimental, in
that the researcher observes rather than assigns the exposures of interest (often for
ethical reasons).

2.4.1 Prospective Cohort Studies

The cohort study is the observational analog to an experiment where the researcher
defines two groups, or cohorts, of disease-free individuals similar in all respects
except for exposure status, then follows the groups over time (i.e., prospectively,
or forward through time) and observes disease status among subjects within each
group. Note that the only difference between such a prospective cohort study and
a large experimental clinical trial is that in the former the researcher has no con-
trol over assignment into exposure groups. Also note that a prospective cohort
study fixes the marginal total numbers in groups E+ and E− (n++ + n+− and
n−+ + n−−, respectively), allowing us to estimate relative or attributable risks by
comparing incidence proportions between the two groups using

n++
n++ + n+−

and
n−+

n−+ + n−−
.

Note that for rare diseases we may need very large numbers of exposed and
unexposed subjects to observe even a single case, let alone enough to provide sta-
tistical stability in estimating the underlying disease incidence via the incidence
proportions observed in each group. In addition, if we suspect a long lag period
between exposure and disease onset, we may need to follow our cohort for an
extended period. Since rare diseases (e.g., cancers) are often of interest in epidemi-
ological studies, alternative approaches for filling in the cells in Table 2.1 may
prove more time- and cost-efficient.

2.4.2 Retrospective Case–Control Studies

A common alternative to prospective cohort studies are case–control studies, where
we choose a sample of (n−+ + n++) diseased persons (cases), then choose a sample
of (n−− + n+−) nondiseased persons (controls) similar to the cases in risk factors
not of primary interest (e.g., age), and classify the cases and controls by each
person’s past (i.e., retrospective) exposure status. In contrast to the cohort study,
where we fixed the total number exposed and unexposed, in case–control studies we
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fix the number of diseased and nondiseased (i.e., we fix a different set of marginal
totals in Table 2.1 under each design).

Note that under the case–control design, we can determine the proportions
exposed among cases and controls directly, but not the incidence proportions for
exposed and unexposed. We can, however, estimate relative measures of incidence
between exposed and unexposed subjects, as outlined in Section 2.5.

2.4.3 Other Types of Epidemiological Studies

Prospective cohort and retrospective case–control studies provide the basis for the
large majority of epidemiological studies. However, there are many variations on
these themes. For example, we could define a retrospective cohort design based on
cohorts identified in the past and followed to the present. Such studies frequently
occur in occupational settings where cohorts of workers and company medical
records provide relevant documentation.

In addition to prospective and retrospective designs, there are also cross-sectio-
nal designs where we determine disease and exposure status at a single time. Such
studies provide estimates of disease prevalence rather than incidence and can be
biased toward the prevalence of long-lasting cases rather than all cases (since peo-
ple surviving with the disease longer have a greater chance of being selected at
any given point in time than people experiencing a short time between diagno-
sis and death). In cross-sectional studies, neither the total number of diseased and
nondiseased nor the total number of exposed and unexposed is considered fixed.

For our purposes, the notions of prospective cohort and retrospective case–
control studies provide a basis for analysis of observational epidemiological data.
The data sets in this book reflect both sorts of study designs and some cross-
sectional data as well. See Rothman and Greenland (1998, Chapters 5–7) for a
fuller discussion of the advantages and limitations of these and other types of
epidemiological studies, as well as additional references to the relevant literature.

2.5 BASIC ANALYTIC TOOL: THE ODDS RATIO

The analytic purpose of an epidemiologic study is to quantify any observable dif-
ference in disease risk between the exposed and unexposed subjects in the study.
As mentioned in Section 2.2.4, a common measure of risk difference is the relative
risk or ratio of disease risk in the exposed population at risk to the disease risk in
the unexposed population. A prospective cohort design allows us to estimate both
the attributable risk (the risk difference) and the relative risk (the multiplicative
increase or decrease in risk) associated with exposure, using incidence proportions
as estimates of risk based on the rare disease assumption. However, accurate sta-
tistical estimation of incidence proportions (and associated asymptotic normality
of the estimators) for rare diseases can require very large sample sizes.

In comparison, case–control studies allow direct frequency-based estimation
of the probability of exposure given disease status [Pr(exposure|disease)] rather
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then the quantity of interest (i.e., the probability of disease status given expo-
sure [Pr(disease|exposure)]). As above, we denote the presence and absence of
disease and the presence and absence of exposure by D+, D−, E+, and E−,
respectively. We could use Bayes’ theorem to reverse the order of the conditional
probability:

Pr(D+|E+) = Pr(E+|D+)Pr(D+)

Pr(E+)
,

but this requires accurate estimates of the marginal probabilities of disease and
of exposure in the population for which we wish to draw inference [Pr(D+)

and Pr(E+), respectively]. We may have estimates of the former from national
health surveys or disease registries, but such estimates of the latter are rarely
available.

However, a case–control study readily provide estimates of Pr(E+|D+) and
Pr(E+|D−), so expanding Pr(E+) via the law of total probability yields

Pr(D+|E+) = Pr(E+|D+)Pr(D+)

Pr(E+|D+)Pr(D+) + Pr(E+|D−)Pr(D−)
,

and similarly,

Pr(D+|E−) = Pr(E−|D+)Pr(D+)

Pr(E−|D+)Pr(D+) + Pr(E−|D−)Pr(D−)

(Neutra and Drolette 1978; Kleinbaum et al. 1982, p. 146). Given an estimate of
Pr(D+), we have the necessary components to build an estimate of the relative
risk, RR, by substituting estimates for each component in

RR = Pr(D+|E+)

Pr(D+|E−)

= Pr(E+|D+)

Pr(E−|D+)

Pr(E−|D+)Pr(D+) + Pr(E−|D−)Pr(D−)

Pr(E+|D+)Pr(D+) + Pr(E+|D−)Pr(D−)
.

For a very rare disease, Pr(D+) ≈ 0, Pr(D−) ≈ 1, and

RR ≈ Pr(E+|D+)

Pr(E−|D+)

Pr(E−|D−)

Pr(E+|D−)

= Pr(E+|D+)/Pr(E−|D+)

Pr(E+|D−)/Pr(E−|D−)
,

which defines the exposure odds ratio, the ratio of the odds of exposure in the
disease population to the odds of exposure in the nondiseased population. (Recall
that the odds of an event equals the ratio of the probability of the event occurring
divided by the probability of the event not occurring.) The exposure odds ratio
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observed results from inserting the frequency-based estimates of each conditional
probability based on Table 2.1:

n++
(n++ + n−+)

(
1 − n++

n++ + n−+

)
n+−

(n+− + n−−)

(
1 − n+−

n+− + n−−

) = n++n−−
n+−n−+

,

recalling that the first subscript of n denotes the exposure status (+ or −), and the
second, disease status.

Next, consider the risk odds ratio observed from a cohort study based on
frequency-based estimates of probabilities Pr(D+|E+) and Pr(D+|E−): namely,
estimating

Pr(D+|E+)/Pr(D−|E+)

Pr(D+|E−)/Pr(D−|E−)

via

n++
n++ + n+−

(
1 − n++

n++ + n+−

)
n−+

n−+ + n−−

(
1 − n−+

n−+ + n−−

) = n++n−−
n+−n−+

.

Since the exposure odds ratio observed from case–control studies is algebraically
equivalent to the risk odds ratio observed from cohort studies, we simply refer to
the odds ratio, regardless of study type. The similarity between the odds ratio and
the risk ratio for rare diseases, and the invariance of the odds ratio observed to
the underlying study type, motivate its use as a single, easily calculated quantity
summarizing associations between exposure and disease for both prospective cohort
and retrospective case–control studies.

See Somes and O’Brien (1985) and Rothman and Greenland (1998, pp. 95–96,
242) for further details regarding calculation and interpretation of the odds ratio in
epidemiologic studies.

2.6 MODELING COUNTS AND RATES

Linear regression offers a broad framework for fitting models to data and inves-
tigating associations between outcome and any number of explanatory variables,
assuming independent error terms, each following an identical Gaussian distri-
bution. Texts such as Neter et al. (1996) and Draper and Smith (1998) provide
overviews of applied regression analysis, and we assume familiarity with linear
models at this level.

Most analyses of public health data involve disease counts, proportions, or rates
as outcome variables rather than the continuous outcomes familiar in linear regres-
sion. Whereas large counts or rates may roughly follow the assumptions of linear
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models, spatial analyses often focus on counts from small areas with relatively few
subjects at risk and few cases expected during the study period. Such instances
require models appropriate for count or rate outcomes.

2.6.1 Generalized Linear Models

The family of generalized linear models (GLMs) provides a collection of models
extending basic concepts from linear regression to applications where error terms
follow any of a wide variety of distributions, including the binomial and Poisson
families for modeling count data.

GLMs consist of a random component defining the distribution of error terms,
a systematic component defining the linear combination of explanatory variables,
and a link function defining the relationship between the systematic and random
components. We define each component here briefly, closely following Agresti
(1990, Section 4.1), in order to introduce logistic regression and Poisson regression,
two approaches widely used to model count outcomes in epidemiologic research.

The random component comprises independent outcomes (denoted Yi for i =
1, . . . , n) from a distribution within the exponential family (Cox and Hinkley 1974,
pp. 28–29); that is, the probability density or mass function may be expressed in
the form

f (yi; θ i ) = exp[a(θ i ) + b(yi) + yiQ(θ i )],

where a(·), b(·), and Q(·) represent arbitrary functions of distributional parameters
θ i , or observed values yi , as noted. For a vector of independent observed values
from the exponential family, we have

f (y1, . . . , yn; θ1, . . . , θn) = exp

[
n∑

i=1

a(θ i ) +
n∑

i=1

b(yi) +
n∑

i=1

yiQ(θ i )

]
. (2.2)

Most of the well-known distributional families (e.g., Gaussian, binomial, Pois-
son, and gamma) fall into the exponential family, so the class of error structures
supported within GLMs is quite broad.

The systematic component of the GLM corresponds to Xβ, where X denotes the
design matrix, with each row listing the values of covariates observed corresponding
to the observation of yi , and β denotes the vector of model parameters.

The link function g(·) provides a functional connection between the systematic
component Xβ and E(Y), the expected value of Y = (Y1, . . . , Yn)

′. Specifically,

g [E(Y)] = Xβ.

The mean, E(Y), is often among the distributional parameters θ for members of
the exponential family, so Q(θ i ) is often a function of E(yi). Setting Q(θ i ) = Xiβ

(where Xi denotes row i of the design matrix) results in the canonical link for a
particular distribution family.

Obtaining estimates (maximum likelihood and otherwise) for GLM parame-
ters (β) generally requires iterative procedures rather than closed-form solutions
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for linear models (cf. McCullagh and Nelder 1989, pp. 115–117; Dobson 1990,
pp. 39–42). We do not detail these methods here; however, most modern statisti-
cal software packages contain routines for fitting GLMs, particularly logistic and
Poisson regression. These two families of generalized linear models see wide appli-
cation in the epidemiological literature. We review logistic and Poisson regression
models below and extend them to spatial models in subsequent chapters.

For additional details regarding GLMs, Dobson (1990) provides a general intro-
duction and McCullagh and Nelder (1989) a thorough treatment of the theory and
application of GLMs. In addition, O’Brien (1992) describes the use of GLMs in
geography.

2.6.2 Logistic Regression

Suppose that we observe binary outcomes yi , where yi = 1 indicates the presence of
the disease of interest in subject i and yi = 0 denotes its absence. Let π denote the
(unknown) probability of disease prevalence in the population under study. (We
refer to prevalence rather than incidence since we are concerned with presence
or absence in this simple example.) The random variable Yi follows a Bernoulli
distribution with probability of disease π . The joint probability associated with the
observed data y1, . . . , yn is

f (y1, . . . , yn; π) =
n∏

i=1

πyi (1 − π)1−yi ,

which may be rewritten as

f (y1, . . . , yn; π) = exp

[
n∑

i=1

log(1 − π) +
n∑

i=1

yi log

(
π

1 − π

)]
,

which, by comparison with equation (2.2), is a member of an exponential family
with θ i = π , a(θ i ) = log(1 − π), b(yi) = 0, and Q(θ i ) = log

[
π/(1 − π)

]
. Here,

since E(Yi) = π , the canonical link is

g(E(yi)) = g(π) = log[π/(1 − π)],

known as the logit link.
Logistic regression represents the GLM based on a Bernoulli random component

and the logit link; that is, for covariates x1, . . . , xp,

log[π/(1 − π)] = β0 + β1x1 + · · · + βpxp

= Xβ. (2.3)

We often recast equation (2.3) as

E(yi) = π = exp(Xβ)

1 + exp(Xβ)
,

describing the expected value of the outcome as a function of model covariates.
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Note that βk represents the expected change in the log odds of Yi = 1 associated
with a unit increase in xk (holding all other covariate values constant). For a binary
covariate xk (e.g., the presence or absence of a particular exposure indicated by
xk = 1 or 0, respectively), exp(βk) represents the odds ratio of Yi with respect to
exposure xk , since the odds ratio equals the ratio of the exponentiated right-hand
side of equation (2.3) for xk = 1 and xk = 0, and

exp(β0 + · · · + βk + · · · + βpxp)

exp(β0 + · · · + βk−1xk−1 + βk+1xk+1 + · · · + βpxp)
= exp βk.

The connection between logistic regression parameters and the odds ratio com-
bined with the properties of the odds ratio described in Section 2.5 implies that
logistic regression is appropriate for the analysis of both prospective and retrospec-
tive studies. McCullagh and Nelder (1989, pp. 111–114) note that the logit link
is unique in this respect among link functions proposed for the analysis of binary
data, including the probit link common in bioassay (cf. Finney 1971).

Logistic regression also provides an analytic tool for binomial observations
where each observation yi denotes the number of people with a particular con-
dition among ni at risk. For example, suppose that we observe yi the number
of people contracting the disease under investigation among the ni at risk in geo-
graphic region i, where i = 1, . . . , I . Note that in this setting i indexes a collection
of people rather than each person, as was the case in the Bernoulli model above.
As a simple probabilistic model of disease occurrence, suppose that the yi repre-
sent observations of binomially distributed random variables where each person is
subject to the same risk of disease, π :

Yi ∼ binomial(ni, π),

so E(Yi) = niπ and Var(Yi) = niπ(1 − π). In addition, suppose that we also
observe a set of p covariates xi1, . . . , xip in region i and wish to model the
disease probability π as a function of these (regional) covariates.

The binomial distribution (corresponding to random variables representing sums
of independent Bernoulli observations) is also in the exponential family (Bickel and
Doksum 1977, pp. 68–69), also with the logit as its canonical link function. As
with the Bernoulli (0/1) case, we model the unknown individual probability of
disease incidence, π , where E(Yi) = niπ and

log

(
π

1 − π

)
= Xβ.

For binary exposure covariates, estimated model parameters again represent the
odds ratio associated with the exposure.

2.6.3 Poisson Regression

For rare diseases we often use the Poisson approximation to the binomial distri-
bution in modeling count data. The Poisson distribution also arises from modeling
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observed point locations as random events, as we will see in Chapter 5. The Poisson
distribution is also a member of the exponential family with the natural logarithm
as the canonical link function. For regional counts Y1, . . . , YI independently and
identically distributed as Poisson random variables with mean and variance equal
to E(Yi), a Poisson regression approach models the expected value as a function
of regional covariates:

log[E(Yi)] = Xβ (2.4)

E(Yi) = exp(Xβ).

As with logistic regression, βk represents the increase in log odds associated with
a unit increase in xik, holding all other covariates fixed.

This concludes a very basic overview of generalized linear models. Kleinbaum
et al. (1982) and Rothman and Greenland (1998, Chapters 20 and 21) provide
much more detail on particular aspects of applying such models in the analysis of
observational public health data, and McCullagh and Nelder (1989) give a thorough
review of GLMs in general.

2.7 CHALLENGES IN THE ANALYSIS OF OBSERVATIONAL DATA

Linear and generalized linear models provide valuable analytical tools for the anal-
ysis of both experimental and observational data. However, special concerns arise
in the observational setting that are often not covered in introductory courses and
texts on statistical modeling, which often assume an experimental setting in model
development and interpretation. We review two issues common in epidemiological
analysis but often not addressed in introductory courses in statistical modeling: bias
and confounding.

2.7.1 Bias

In an experimental setting, researchers control experimental conditions that could
influence the observed associations between treatment and outcome, and assume
that the randomized assignment of treatments to experimental subjects (random-
ization) allows unbiased estimation of any uncontrolled conditions affecting the
association of interest. That is, by randomly assigning treatments, the experimenter
removes (or at least averages out) any potential bias in the estimation due to differ-
ent levels of some uncontrolled factor. For example, consider a hypothetical clinical
study of the treatment of the common cold by a new experimental treatment, com-
pared to “treatment” by a placebo. If we assign the first n patients presenting during
an outbreak to the new treatment and the next n to the placebo group, the measured
effectiveness of the new treatment could be biased if patients presenting early in
the outbreak tended to live healthier lifestyles in general (e.g., more exercise, better
diet) than their counterparts who present later in the outbreak. In this case, some
unmeasured characteristic (here, lifestyle) affects the composition of the treatment



CHALLENGES IN THE ANALYSIS OF OBSERVATIONAL DATA 27

and placebo groups in a manner that will tend to make the treatment appear more
effective than it actually is. Contrast the first experimental design to one where
patients are randomly allocated to the treatment or control group as they present at
the clinic for treatment. In this case, the unmeasured factor (lifestyle) is randomly
split between the treatment and control groups and the potential bias disappears
with adequate sample size.

Observational studies, by their nature, do not randomize treatment; rather, the
researcher observes treatment levels in study participants often for ethical rea-
sons (e.g., it is unethical to randomize subjects to be smokers or nonsmokers, or
to participate in occupations with exposures to hazardous materials). As a result,
observational studies contain many potential biases in their estimates of associa-
tions between treatments (exposures) and outcomes. The epidemiologic literature
provides a thorough discussion of many different sources of bias and assigns names
to particular types. We review the most common of these and refer readers to Roth-
man and Greenland (1998, Chapter 8) for more detailed description and discussion.

Selection Bias Selection bias results when the relationship between exposure and
disease differs for persons participating in the study and those who are theoreti-
cally eligible to participate, but do not. Selection bias may result from different
exposure–disease associations among subjects who volunteer for a study than
among those who do not volunteer. This bias may also result from the healthy
worker effect (Rothman and Greenland 1998, p. 119), common in occupational
studies where exposure–disease associations among workers (who by definition are
healthy enough to work) may not accurately reflect those among nonworkers, lim-
iting inference to the study population rather than the population at large. Another
form of selection bias results if subjects with certain exposures are more likely to
be diagnosed with the outcome of interest than subjects without the exposure.

Recall Bias An example of recall bias occurs when diseased subjects are more
likely than healthy subjects to recall past exposures. For example, families of
childhood leukemia patients may present more detailed recollections of household
chemical use than do families of nondiseased children. Recall bias can occur in
both case–control studies (the preceding example) and prospective cohort studies
(e.g., exposed subjects present more detailed recollection of disease episodes than
do unexposed subjects).

Misclassification Bias Incorrect assignment of disease or exposure status for
study participants may result in misclassification bias. The bias is lessened if mis-
classification occurs at random between disease and exposure classes, but may be
appreciable if misclassification occurs at different rates for different classes. We
note some overlap with selection bias and recall bias.

2.7.2 Confounding

Confounding is a central notion in epidemiology, defined as “a distortion in the esti-
mated exposure effect that results from differences in risk between the exposed and
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unexposed that are not due to exposure” (Rothman and Greenland 1998, p. 255).
Confounding involves the biases above, but tends to focus on factors associated
with the bias rather than the bias per se. That is, one often refers to confounding
factors or confounders as the source of differential selection, recall, or misclassifi-
cation. Rothman and Greenland (1998, p. 255) define two necessary conditions for
a variable to be a confounder:

1. The variable must be a risk factor for the disease among the unexposed
(although it may not cause the disease directly).

2. The variable must be associated with the exposure variable in the population
providing study participants.

In our example based on a study of a new treatment for the common cold, with
the new treatment assigned to the first n study participants, “healthy lifestyle” acts
as a potential confounder since it is a risk factor for the disease (here the “disease”
reflects speedy recovery from a cold), and it relates to the assignment of treatment
or placebo (the “exposure” of interest).

As another example of confounding, consider the following situation. Suppose
that we observe outcomes in subjects experiencing one level of exposure and wish
to compare them to unexposed subjects. If the unexposed participants differ from
the exposed participants with respect to a factor related to the disease (e.g., age),
an estimate of the effect of exposure on outcome by comparisons of outcome
proportions in the two exposure groups can (often, will) be different from the true
effect (i.e., the estimate is biased and confounded).

Simple examples based on dichotomous exposures, diseases, and confounders
appear in almost any epidemiological textbook (e.g., Kleinbaum et al. 1982; Roth-
man and Greenland 1998); however, the issue appears in very few statistical texts.
One reason for the omission is the traditional focus of statistical texts on exper-
imental design and analysis of randomized experiments rather than observational
data. While confounding can arise in randomized designs [e.g., through aliasing, or
see Greenland et al. (1999) for other examples], the issue is much more pervasive
in the observational setting.

Another reason that statistical texts often omit confounding is the inherent diffi-
culty of formalizing the concept mathematically (cf. Greenland and Robins 1986;
Wickramaratne and Holford 1987, 1989, 1990; Greenland 1989, 1998; Holland
1989; Mantel 1989, 1990; Weinberg 1993, 1994; Joffe and Greenland 1994; Green-
land et al. 1999). The difficulty arises since the presence or absence of confounding
is dependent on the definition of outcome. For instance, Greenland (1998) notes
that there are no confounders for the effect of any exposure on 200-year sur-
vival. Also, although there are similarities between confounding and the statistical
notion of interactions between independent variables, it is possible to have interac-
tions without confounding, confounding without interactions, or confounding with
interactions [see Kleinbaum et al. (1982, p. 246) for examples]. Finally, when the
outcome, exposure, and potential confounder are categorical variables, confound-
ing is similar to noncollapsibility in the analysis of contingency tables. However,
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the terms are again not equivalent (without further restrictions; see Gail 1986) and
it is possible to have either with or without the other [see Greenland and Robins
(1986), Greenland (1998), and Greenland et al. (1999) for examples and a more
complete discussion].

2.7.3 Effect Modification

If the association between exposure to a putative risk factor and the outcome of
interest varies with the level of another variable, we refer to that variable as an
effect modifier. Effect modification is also referred to as nonuniformity of effect
and as heterogeneity of effect. Kleinbaum et al. (1982, p. 247, Chapter 19) and
Rothman and Greenland (1998, p. 254) note that effect modification differs from
confounding on several levels. First, confounding represents a bias in effect esti-
mation which we, the analysts, seek to prevent or at least minimize. In contrast,
effect modification is a property of the exposure–outcome association under study.
Simply put, we seek to control confounding by careful selection and classifica-
tion of study participants, but we wish to report precisely how an effect modifier
changes the association between the exposures and outcome of interest.

2.7.4 Ecological Inference and the Ecological Fallacy

In epidemiology, the term ecological inference refers to the process of deducing
individual behavior from aggregate data. This term is due to Robinson (1950),
who noted that in ecological studies, the statistical object is a group of persons.
He stressed the difference between ecological and individual correlations, noting
that the two are almost certainly not equal, leading him and others to question the
results of numerous studies in which conclusions on individual behavior had been
drawn from grouped data.

Robinson (1950) provided one very convincing example of the difference bet-
ween ecological and individual correlations, based on the relationship between
nativity and literacy. For each of the lower 48 states in the United States, he mea-
sured the percent of the population who were foreign-born and the percent who
were literate (based on 1930 data). The correlation based on 48 pairs of points is
0.53. This is an ecological correlation, since the unit of analysis is not a person
but a group of people—the residents of each state. In reality, however, the asso-
ciation between nativity and literacy is negative: the correlation computed using
individuals as the unit of analysis is −0.11. Thus, in this example and in many,
if not most, studies based on grouped data, ecological correlations give the wrong
individual-level inference. The ecological fallacy occurs when analyses based on
grouped data lead to conclusions different from those based on individual data
(Selvin 1958). The resulting bias is often referred to as ecological bias (Richard-
son 1992; Greenland and Robins 1994), which is comprised of two components:
aggregation bias due to the grouping of individuals and specification bias due to the
differential distribution of confounding variables created by grouping (Morgenstern
1982).
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Referring back to our basic epidemiological study design in Table 2.1, the con-
trast between individual and ecological analyses can easily be seen. Individual
correlation depends on the internal cell frequencies, n++, n−+, n+−, and n−−.

Ecological correlation is based on the marginal totals (n++ + n−+), (n+− + n−−),

(n++ + n+−), and (n−+ + n−−). The ecological inference problem arises since
marginal totals do not uniquely determine the internal cell frequencies: There
are many combinations of cell counts that can reproduce the marginal totals.
Statistics for individual-level inference, such as risk ratios, odds ratios, and the
correlation coefficient (the φ coefficient in 2 × 2 tables), depend on the internal
cell counts. Thus, solutions to the ecological inference problem have centered
around developing valid methods for reconstructing the internal frequencies from
the marginal totals.

One such solution has been called ecological regression (Goodman 1959). Sup-
pose that we have I tables like Table 2.1, corresponding to the relationship between
exposure and disease in I groups. These groups could be demographic (e.g., race,
age) or geographical (e.g., counties, states). A linear regression model relating the
proportion of diseased individuals in each group, yi, to the proportion of people
exposed in each group, xi, may be written as

yi = β0 + β1xi + ε, i = 1, . . . , I.

The parameters β0 and β1 can be estimated by least squares (ordinary or weighted).
Then the estimate β̂0 is an estimate of the proportion of nonexposed persons who
contracted the disease: It is the height of the regression equation at x = 0, corre-
sponding to groups with no exposed persons. The estimate β̂0 + β̂1 (the regression
line at x = 1.0) is the proportion of exposed persons who contacted the disease. The
validity of this model for individual-level inference rests on the implicit assumption
the relationship between exposure and disease is constant over the groups, with cell
probabilities varying randomly about their expectations.

There are many more recently proposed solutions to the ecological inference
problem. One that has received much attention in the literature was proposed by
King (1997). He essentially uses linear regression with random coefficients to relax
the constancy assumption in Goodman’s ecological regression. King’s most basic
approach is based on the regression model

yi = pixi + qi(1 − xi), i = 1, . . . , I,

where pi is the proportion of exposed subjects who contracted the disease and
qi is the corresponding proportion for the nonexposed. Assuming that (pi, qi)

are independent and identically distributed bivariate Gaussian variables, they can
be estimated by maximum likelihood. King (1997) has developed more sophisti-
cated models and inferential procedures for more complex problems, and many
of these can be implemented using his EI and EZI programs, available from his
Web site.

Of course, any solution to the ecological inference problem is only as good as
the validity of its assumptions when applied to a given problem. Some assumptions
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must be made since the data necessary for individual-level inference are simply
not available. Freedman et al. (1998) give a comparative overview of several
methods for ecological inference and discuss the effect of the assumptions on
the estimates and the use of model diagnostics to detect departures from these
assumptions.

Ecological analyses can be based on any grouped variables, such as gender,
race, or age. However, geographical correlation studies, special cases of ecologi-
cal correlation studies, are concerned with the association between two variables
that are averages across geographic regions. Such studies are conducted routinely
in the analysis of environmental health data. For example, if we want to study the
association between a person’s health risk (e.g., thyroid cancer) and exposure to a
particular water contaminant (e.g., atrazine from pesticide use), we rarely have the
luxury of obtaining individual-level exposure data. It is difficult to measure individ-
ual exposures without great expense and inconvenience to the person. Instead, we
identify the level of exposure based on average levels in municipal water supplies,
estimate the rate of health events in the communities served by the various water
supplies, and attempt to link the two on a community-wide, not an individual-
level, basis. Inferential problems arise since we have no way to guarantee that the
people with thyroid cancer were in fact exposed to the atrazine levels measured
from the municipal water supply. We discuss spatial regression models useful in
the analysis of geographical correlation studies in Chapter 9. As with all ecologi-
cal studies, geographical correlation studies also suffer from aggregation bias and
specification bias, but the effects of these biases on inference are more complex,
due to the spatial nature of the problem. In such cases, ecological inference is then
considered to be a special case of the modifiable areal unit problem (MAUP) (Yule
and Kendall 1950; Openshaw and Taylor 1979; Openshaw 1984); and the change
of support problem (COSP) in spatial statistics (Cressie 1993, 1996). The resulting
aggregation bias and specification bias are now related to scale and zoning effects
associated with combining regions of different sizes and shapes. We discuss these
issues in more detail in Chapter 4.

2.8 ADDITIONAL TOPICS AND FURTHER READING

This chapter is necessarily brief and offers only an outline of epidemiological con-
cepts and analytic tools for the analysis of public health data (admittedly from a
statistician’s viewpoint). Lilienfeld and Stolley (1984) provide an accessible intro-
duction to the field of epidemiology, and Greenland (1987) contains reprints of
several seminal publications from the years 1946–1977 relating to foundations of
epidemiological inference. Kleinbaum et al. (1982) illustrate the standard statistical
tools of epidemiology, and Rothman and Greenland (1998) provide a comprehen-
sive overview to the concepts and methods associated with modern epidemiological
analysis. Causal inference represents a growing area of interest in the analysis of
observational data and motivates a growing body of analytical methods. Many of
these approaches are beyond the scope of this book and we refer interested readers
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to an excellent review article by Greenland et al. (1999), a brief interaction between
Lindley (2002) and Pearl (2002), and the text by Pearl (2001).

2.9 EXERCISES

2.1 Tukey (1988) presents two examples illustrating the difference between direct
and indirect rate standardization. The numbers are hypothetical but effectively
illustrate the difference between the approaches. The first example represents
a “clean” example, where direct and indirect adjustments are fairly compa-
rable. The second represents a “dirty” example, where the standardized rates
are different.

(a) The upper portion of Table 2.2 presents the number at risk in each of
five age strata, the number of cases observed in each age stratum, and the
rate (incidence proportion) within each stratum. To highlight the differ-
ent data requirements for direct and indirect standardization, we label as
NA (not available) data elements unnecessary for direct standardization

Table 2.2 Hypothetical Observed Data (Top) and
Standard Population (Bottom) for the Clean Example
of Calculating Direct Standardizationa

Number at Risk Cases in Rate (per
in Age Stratum Age Stratum 100,000)

10,000 6 60
20,000 15 75
30,000 75 250
40,000 160 400
50,000 300 600

Number at Risk Cases in
in Age Stratum Age Stratum
of Standard Percent in of Standard Rate (per
Population Age Stratum Population 100,000)

12,000,000 12 NA NA
16,000,000 16 NA NA
20,000,000 20 NA NA
24,000,000 24 NA NA
28,000,000 28 NA NA

Source: Data from Turkey (1988).
aNA, not available (and not needed for direct standardization).
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Table 2.3 Hypothetical Observed Data (Top) and
Standard Population (Bottom) for the Clean Example
of Calculating Indirect Standardizationa

Number at Risk Cases in Rate (per
in Age Stratum Age Stratum 100,000)

10,000 NA NA
20,000 NA NA
30,000 NA NA
40,000 NA NA
50,000 NA NA

(total = 556)

Number at Risk Cases in
in Age Stratum Age Stratum
of Standard Percent in of Standard Rate (per
Population Age Stratum Population 100,000)

12,000,000 12 7,200 60
16,000,000 16 16,000 100
20,000,000 20 40,000 200
24,000,000 24 72,000 300
28,000,000 28 140,000 500

Source: Data from Tukey (1988).
aNA, not available (and not needed for indirect standardization).

but needed for indirect standardization. Use the information in the lower
portion of Table 2.2 to calculate the directly standardized rate of disease.

(b) The upper and lower portions of Table 2.3 present information regarding
the data observed and the standard population necessary to calculate
the indirectly adjusted rates. We maintain the same format in Tables 2.2
and 2.3 to highlight the different data required for direct and indirect
standardization, respectively. Calculate this rate and compare to the
directly adjusted rate calculated using the information in Table 2.2.
Do you observe any differences between the directly and indirectly
standardized rates?

(c) Next, consider the addition of an additional age stratum with very few
people at risk and a single observed case, as shown in Table 2.4. Addi-
tional and changed information from Table 2.2 appears in boldface (note
that population proportions change, due to the addition of the extra stra-
tum). Calculate the directly standardized rate for these data.

(d) Finally, Table 2.5 presents the modified data necessary to calculate
the indirectly standardized rate. How do the directly and indirectly
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Table 2.4 Hypothetical Observed Data (Top) and
Standard Population (Bottom) for the Dirty Example
of Calculating Direct Standardizationa

Number at Risk Cases in Rate (per
in Age Stratum Age Stratum 100,000)

10,000 6 60
20,000 15 75
30,000 75 250
40,000 160 400
50,000 300 600

10 1 10,000

Number at Risk Cases in
in Age Stratum Age Stratum
of Standard Percent in of Standard Rate (per
Population Age Stratum Population 100,000)

12,000,000 10.8 NA NA
16,000,000 14.4 NA NA
20,000,000 18.0 NA NA
24,000,000 21.6 NA NA
28,000,000 25.2 NA NA
10,000,000 9.0 NA NA

Source: Data from Tukey (1988).
aNA, not available (and not needed for direct standardization). Boldface
values represent an additional age stratum not appearing in the clean
example.

standardized rates from the dirty example compare? Discuss the
difference between the clean and dirty examples.

2.2 Consider the typical epidemiologic 2 × 2 table cross-classifying disease
and exposure (cf. Table 2.1). To see the impact of both sample size and
the rarity of the disease on the similarity between the relative risk and
the odds ratio, consider a study with 1000 exposed and 1000 nonexposed
subjects. Suppose that Pr(D+|E−) = 0.1 and the relative risk is 2.0 [i.e.,
Pr(D+|E−)/Pr(D+|E−) = 2].

(a) Given the sample size and probability of disease, define the expected
elements of the 2 × 2 table and calculate the odds ratio.

(b) Repeat the calculation for Pr(D+|E−) = 0.01, 0.001, 0.0001, and
0.00001. Discuss the relationship with between the relative risk and the
odds ratio.

(c) Repeat for a study with 10,000 exposed and 10,000 unexposed subjects
and for a study with 500 exposed and 500 unexposed subjects. Describe
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Table 2.5 Hypothetical Observed Data (Top) and
Standard Population (Bottom) for the Dirty Example
of Calculating Indirect Standardizationa

Number at Risk Cases in Rate (per
in Age Stratum Age Stratum 100,000)

10,000 NA NA
20,000 NA NA
30,000 NA NA
40,000 NA NA
50,000 NA NA

10 NA NA
(total = 557)

Number at Risk Cases in
in Age Stratum Age Stratum
of Standard Percent in of Standard Rate (per
Population Age Stratum Population 100,000)

12,000,000 10.8 7,200 60
16,000,000 14.4 16,000 100
20,000,000 18.0 40,000 200
24,000,000 21.6 72,000 300
28,000,000 25.2 140,000 500
10,000,000 9.0 100,000 1,000

Source: Data from Tukey (1988).
aNA, not available (and not needed for indirect standardization). Bold-
face values represent an additional age stratum not appearing in the
clean example.

how the relationship between the relative risk and the odds ratio changes
with respect to sample size.

2.3 For a count, Y , following a Poisson regression model, show that βk corre-
sponds to the log odds associated with a unit increase in the covariate xk ,
holding all other covariates constant.

2.4 Consider the Scottish lip cancer data described and analyzed in Breslow and
Clayton (1993). The data in Table 2.6 are the total number of observed and
expected lip cancer cases in males in the 56 districts of Scotland during
1975–1980; the percentage of the district population employed in agriculture,
fishing, and forestry (%AFF); and the longitude and latitude coordinate of the
center of each district.

(a) Using linear regression, regress the observed number of lip cancer cases
on the percentage engaged in agriculture, fishery, or forestry. What do
you conclude about the effect of this covariate on the number of lip cancer
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in males? What are the assumptions of this regression? Are they valid
for these data?

(b) Perform the same regression, weighting by the expected number of lip
cancer cases. Does this weighted regression help account for the violations
in assumptions that you noted earlier? Do your conclusions change?

(c) Use Poisson regression to assess the effect of the percentage engaged
in agriculture, fishery, or forestry on the number of lip cancer cases
observed. What do you conclude?

(d) Include the latitude coordinate as another covariate in your regressions
and adjust both regressions for this covariate. This variables serves as
a surrogate for “northernlingless.” For the linear regression, be sure to
put this covariate in the model first, before %AFF. Do your conclusions
change? What does this say about the effects of confounding?

(e) Summarize your conclusions about lip cancer in Scottish males during
1975–1980.

Table 2.6 Scottish Lip Cancer Dataa

District Observed Expected % AFF Longitude Latitude

1 9 1.4 16 57.29 5.50
2 39 8.7 16 57.56 2.36
3 11 3.0 10 58.44 3.90
4 9 2.5 24 55.76 2.40
5 15 4.3 10 57.71 5.09
6 8 2.4 24 59.13 3.25
7 26 8.1 10 57.47 3.30
8 7 2.3 7 60.24 1.43
9 6 2.0 7 56.90 5.42

10 20 6.6 16 57.24 2.60
11 13 4.4 7 58.12 6.80
12 5 1.8 16 58.06 4.64
13 3 1.1 10 57.47 3.98
14 8 3.3 24 54.94 5.00
15 17 7.8 7 56.30 3.10
16 9 4.6 16 57.00 3.00
17 2 1.1 10 57.06 4.09
18 7 4.2 7 55.65 2.88
19 9 5.5 7 57.24 4.73
20 7 4.4 10 55.35 2.90
21 16 10.5 7 56.75 2.98
22 31 22.7 16 57.12 2.20
23 11 8.8 10 56.40 5.27
24 7 5.6 7 55.63 3.96
25 19 15.5 1 56.20 3.30
26 15 12.5 1 56.10 3.60
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Table 2.6 (continued )

District Observed Expected % AFF Longitude Latitude

27 7 6.0 7 55.24 4.09
28 10 9.0 7 55.95 2.80
29 16 14.4 10 56.60 4.09
30 11 10.2 10 55.90 3.80
31 5 4.8 7 55.47 4.55
32 3 2.9 24 55.00 4.36
33 7 7.0 10 55.83 3.20
34 8 8.5 7 56.30 4.73
35 11 12.3 7 55.29 4.98
36 9 10.1 0 55.94 4.95
37 11 12.7 10 55.76 5.02
38 8 9.4 1 55.91 4.18
39 6 7.2 16 56.15 4.99
40 4 5.3 0 56.05 4.91
41 10 18.8 1 55.88 4.82
42 8 15.8 16 56.03 4.00
43 2 4.3 16 56.15 3.96
44 6 14.6 0 55.82 4.09
45 19 50.7 1 55.93 3.40
46 3 8.2 7 55.65 4.75
47 2 5.6 1 55.71 4.45
48 3 9.3 1 55.79 4.27
49 28 88.7 0 55.90 4.55
50 6 19.6 1 56.45 3.20
51 1 3.4 1 56.00 4.27
52 1 3.6 0 56.15 4.64
53 1 5.7 1 55.79 4.70
54 1 7.0 1 55.99 4.45
55 0 4.2 16 55.68 3.38
56 0 1.8 10 55.18 3.40

aData are the district number; the observed and expected numbers of lip cancer cases in males; the
percentage of the population engaged in agriculture, fishing, or forestry; and the longitude and latitude
coordinates of the center of each district.
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Spatial Data

It is impossible not to feel stirred at the thought of the
emotions. . . at certain historic moments of adventure and
discovery: Columbus when he first saw the Western shore,
Pizarro when he stared at the Pacific Ocean, Franklin when the
electric spark came from the string of his kite, Galileo when he
first turned his telescope to the heavens. Such moments are also
granted to students in the abstract regions of thought, and high
among them must be placed the morning when Descartes lay in
bed and invented the method of coordinate geometry.

A. N. Whitehead, quoted in Maling (1973)

Spatial information is comprised of data that can be viewed or located in two
or three (or more) dimensions. As we have seen in Chapter 1, when the spa-
tial arrangement of the data is important to their understanding, an analysis that
explicitly uses spatial information can be very informative. In this chapter we
explore the essential features of spatially referenced data, including location, map
projections, and support. We also review the types and sources of spatial data per-
taining to public health and give an overview of geographic information systems
(GISs) that provide computational tools for managing, merging, and displaying
spatial data.

3.1 COMPONENTS OF SPATIAL DATA

There are three components to spatial data: features, supports, and attributes. A
feature is an object with a specific spatial location and distinct properties. There
are several types of spatial features:

1. Point: a precise location, s, in space; a dot on a map. For example, a point
could be the geographic location of your house or the location of an air
monitoring station.

Applied Spatial Statistics for Public Health Data, by Lance A. Waller and Carol A. Gotway
ISBN 0-471-38771-1 Copyright  2004 John Wiley & Sons, Inc.
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2. Line: a sequential collection of connected points. Roads, rivers, and geo-
graphical boundaries are examples of linear features.

3. Area: a region enclosed by lines. Counties, states, and census tracts are all
examples of areal spatial objects.

4. Volume: a three-dimensional object having height or depth (vertical extent) as
well as horizontal extent. The most common examples of volumetric features
are geologic formations such as aquifers.

A collection of features of the same type is called a feature class. For example,
if we know the locations of several air monitoring stations, each station is a point
feature and the collection of all locations is a point feature class.

Each feature is of a certain size and shape and has a specific spatial orientation.
Taken together, these properties form the support of the data. Points, or spatial loca-
tions, have the smallest support. They have zero size, no shape, and no orientation.
Lines have length and can indicate direction. Regions have area and boundaries
that may impose properties on the associated features. For example, a circle and
a rectangle are both areal features, yet they are inherently different spatial objects
even if they have the same area.

Attributes are observations or measured values associated with features (e.g.,
the NOx concentrations recorded at air monitoring stations, the racial composition
of counties, the salinity of rivers). Attributes provide the data with which statisti-
cians are most familiar [i.e., most (nonspatial) statistical analyses examine attribute
data without regard to location or support]. In any given analysis we may have
a single type of attribute of interest, or several types of attributes associated with
each feature (e.g., we may have ozone, particulate matter, and sulfur dioxide mea-
surements at each monitoring station; or the percentage of the population in each
county self-identifying in each of several race categories). When several types of
attributes are associated with the spatial features, the data are called multivariate.
Some authors do not always distinguish spatial (location space) from multivari-
ate (variable space), since spatial data can be referenced by two coordinates in the
plane that may also be considered “variables.” However, statisticians need to distin-
guish the two terms since the body of methods presented in courses on multivariate
statistics is often very different from the multidimensional methods used for spatial
data analysis. The distinction is simple if we think in terms of attributes and fea-
tures. Multivariate refers to more than one type of attribute; multidimensional refers
to more than one coordinate axis in space. Since this book is introductory, our pri-
mary focus will be on the analysis of a single type of attribute in two-dimensional
space, although we provide references to statistical methods for multivariate and
three-dimensional spatial data.

Thus, spatial data consist of features indexed by spatial locations and with
specified supports, and attributes associated with those features. Spatial statistical
analysis will be based not only on the attribute data, but will also depend on the
spatial locations and the features associated with these locations. To get started, we
need ways to reference spatial location, as described in the next section.
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3.2 AN ODYSSEY INTO GEODESY

Webster’s Collegiate Dictionary defines geodesy as “a branch of applied mathe-
matics concerned with the determination of the size and shape of the earth and
the exact positions of points on its surface.” To work with spatial data, we need a
way to reference spatial location. We also need methods for measuring distances
between locations and for describing complex shapes and their properties. In this
section we provide a very brief overview of the science of geodesy, drawing on
concepts from geometry and topology.

3.2.1 Measuring Location: Geographical Coordinates

Many different coordinate systems have been developed to reference a point uni-
quely on Earth’s surface. Most of these involve approximating Earth by a sphere
or ellipsoid in order to use the geometrical properties of these objects to form the
basis of the coordinate system. Earth is not a perfect sphere, nor a perfect ellipsoid,
and its surface is not smooth, complicating the calculation of precise locations. In
this book we make the simplifying assumption that latitude and longitude (a spher-
ical coordinate system described in some detail below) provide enough location
accuracy for our purposes, and refer interested readers to the geodesy literature for
more detailed discussions (cf. Smith 1997).

The system of latitude and longitude provides a means of uniquely referencing
any point on the surface of a sphere (Figure 3.1). Lines of longitude circle the
Earth passing through the north and south poles. All places on the same meridian
have the same longitude. The line of longitude passing through the Greenwich
Observatory in England has the value 0◦. Thus, longitude measures the horizon-
tal angle formed between the line drawn from a given point to the center of the
sphere and a line drawn from the center of the sphere to the 0◦ line of longi-
tude (Figure 3.2). Due to its rotational nature, we report longitude in degrees (0◦
to 180◦) east or west from the 0◦ meridian, with meridians west of 0◦ longitude
termed west longitude and those east of 0◦ termed east longitude. Since the sur-
face of Earth curves, the distance between two meridians depends on where we
are on Earth: the intermeridian distance is smaller near the poles and larger near
the equator.

To reference north–south positions, lines of latitude (called parallels) are drawn
perpendicular to the lines of longitude, with the equator designated as 0◦ latitude
(the largest circle defined by a plane perpendicular to the axis of Earth’s rota-
tion). Latitudes in the northern hemisphere are termed north latitudes and those
in the southern hemisphere are called south latitudes (see Figure 3.1). Thus, on a
spherical Earth, latitude measures the vertical angle (in degrees) between two line
segments: one going from the location of interest to the center of the sphere, the
other joining the equator with the center of the sphere. Figure 3.2 indicates that on
a spherical Earth, these segments intersect at the center of the Earth, but since Earth
is actually flattened somewhat at the poles, the true point of intersection is offset
somewhat from the center (cf. Longley et al. 2001, p. 88). True to their name and
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FIG. 3.1 Geometric definitions of latitude and longitude on a spherical Earth.

unlike meridians, parallels are parallel to one another, and differences in latitude
are constant over Earth’s surface. One degree latitude is approximately 69 miles.

Any point on Earth, s , can be georeferenced by the coordinate pair (longitude,
latitude). Each coordinate can be as finely measured as we need it to be by dividing
degrees into 60 minutes and each minute into 60 seconds. For example, a longitude
value written as 46◦22′38′′W denotes a point that is located 46 degrees, 22 minutes,
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FIG. 3.2 Latitude and longitude system of coordinates.

and 38 seconds west of 0◦. For calculations, this specification is often translated
into decimal degrees in much the same way as we would translate 1 hour and 30
minutes into 1.5 hours. Also, “E” and “W” are designated by “+” and “−” so
46◦22′38′′W is the same as −46.3772◦.

3.2.2 Flattening the Globe: Map Projections and Coordinate Systems

A three-dimensional globe often is not as convenient as a two-dimensional map.
A map projection is a mathematical transformation used to represent a spherical
(or ellipsoidal) surface on a flat map. The transformation assigns each location on
the spherical Earth to a unique location on the two-dimensional map. However,
we cannot fit the curved surface of Earth to a plane without introducing some
distortion. Map projections differ in the degree of distortion introduced into areas,
shapes, distances, and directions. Conformal (e.g., Mercator) projections preserve
local shape. Typical uses of such maps involve measuring angles (e.g., navigation
charts and topographic maps), since a line drawn in a particular direction will
appear straight in a conformal projection. Small areas are relatively undistorted, but
conformal projections are unsuitable for large regions because areas are distorted.
Equal-area (e.g., Albers’ equal-area) projections preserve area, so regions will
maintain their correct relative sizes after projection. Equal-area projections are
useful for representing distributions of attributes (e.g., population size/density and
land use) over large areas. Projected maps of these types of attributes produced
using an equal-area projection will maintain the relative sizes of each region, and



AN ODYSSEY INTO GEODESY 43

Table 3.1 Distances (in Miles) between Route Locations for Various Projections

Projection

Route Unprojected Albers’ Mercator Equidistant

Atlanta–Seattle 2185 2098 2930 2180
Atlanta–Chicago 588 617 751 601
Atlanta–New York 754 737 931 742
Atlanta–Knoxville 161 171 175 151

hence the relative extents of the associated attributes. These types of maps can
be misleading when using another projection in which the areas are distorted.
Equidistance projections preserve distance relationships in certain directions along
one or a few lines between places on the map. These projections allow accurate
measures of surface distances by the corresponding measured distances on the map.

Each type of projection can preserve only one property. Thus, a conformal
mapping distorts areas, and an equal-area projection distorts shape. There are many
compromise projections that are not conformal, equal-area, or equivalent, and each
can be thought of as providing a projection providing minimum total error as defined
by a summary of resulting distortions in area, shape, distance, and direction. Snyder
(1997) provides a summary of a wide variety of map projections and discusses the
strengths and weaknesses of each. Figure 3.3 shows four different maps of the
continental United States. Notice how the relative sizes and shapes of the states
vary among the maps. Table 3.1 shows how distances can vary as well.

The first step in a projection is the definition of the shape of the Earth we
plan to project and the relationship between this shape and locations on Earth. As
noted in Section 3.2.1, Earth is not a perfect sphere and is somewhat flattened
at the poles. As a result, an ellipsoid (or spheroid) provides a better starting
approximation, and several standard ellipsoids exist (with different ones providing
different levels of accuracy). The position and orientation of the ellipsoid relative to
Earth also need to be defined. When an ellipsoid is fixed at a particular orientation
and position with respect to Earth, it is called a geodetic datum. With a local datum,
the ellipsoid more closely approximates Earth for a particular area. For example,
the NAD27 datum has the location (98◦32′30′′W, 39◦13′30′′N), corresponding to
Meades Ranch, Kansas, as the reference point. At this point, the ellipsoidal model
of Earth and true Earth coincide exactly. The NAD83 datum is an example of
one widely used Earth-centered geodetic datum, calculated using the center of the
Earth as a reference point. The WGS84 (World Geodetic System of 1984) is not
referenced to a single datum, but instead, defines an ellipsoid whose placement,
orientation, and dimensions best fit Earth’s surface. Longley et al. (2001, p. 88)
list several other standards. Different datums have different coordinate values for
the same location, so two maps referenced to different datums can give locations
for the same point that differ by several hundred meters.

Having chosen our standard ellipsoid, we can geometrically project locations on
the ellipsoid Earth onto any of three types of surfaces, called developable surfaces,
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FIG. 3.4 Developable surfaces used in map projections.

that have the property that they can be flattened without distortion. Developable
surfaces include planes, cones, and cylinders, resulting in planar or azimuthal,
conic, and cylindrical projections, respectively (see Figure 3.4). Thus, each type
of projection described above (e.g., conformal, equidistant) can also be classified
by the appropriate developable surface and whether that surface is tangent to or
intersects the surface of the ellipsoid. For example, for conic projections, the point
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of the cone falls along the axis of rotation and the cone is either tangent to the
ellipsoid along a circle (one standard parallel) or intersects the ellipsoid at two
circles (two standard parallels). One popular example is Lambert’s conformal conic
projection, with two standard parallels. Azimuthal projections preserve direction
from one point to all other points, but preserve distance only along the standard
parallel(s). As mentioned above, azimuthal projections can be combined with equal-
area, conformal, and equidistant projections, creating, for example, the Lambert
equal-area azimuthal and the azimuthal equidistant Projections.

A map scale is the relationship between a distance on the map and the corre-
sponding distance on the ground. It is expressed as a fraction such as 1:24,000,
meaning that 1 unit on the map corresponds to 24,000 units on the ground. If the
units are in miles, then 1 mile on the map represents 24,000 miles on the ground.
Because of the projection, the scale actually varies over the flattened map. Thus,
an average approximation is usually given in the map legend to give the map
interpreter some idea of distance. Small-scale maps (e.g., 1:1,000,000) show little
detail but great extent and thus have low spatial resolution. Large-scale maps (e.g.,
1:1000) are much smaller in extent, but show greater detail and thus have high
spatial resolution.

Once we have projected points on Earth to a two-dimensional, flat surface, we
need to set up a grid system to reference each point. Thus, we need to designate
the center of the grid, the units, the central meridian, and the scale factor used
in the projection. The scale factor (usually, a value ≤1.0) is applied to the scale
of the centerline of a map projection where the developable surface intersects the
ellipsoid (usually, the central meridian or a standard parallel). Scale values less than
1.0 are used to reduce the overall distortion of a projection. Most coordinate systems
have already specified these parameters for us. For example, one commonly used
coordinate system is the Universal Transverse Mercator (UTM) coordinate system.
It results from a conformal mapping onto a cylinder wrapped around the poles of
the Earth instead of around the equator as with the ordinary Mercator projection (cf.
Longley et al. 2001, pp. 92–94). This projection is very accurate in narrow zones
around the meridian tangent to the cylinder. The globe is subdivided into narrow
longitude zones, 6◦ wide, each projected with a transverse Mercator projection.
These zones are numbered with zone 1 between 180◦ and 174◦ west longitude and
moving eastward to zone 60 between 174◦ and 180◦ east longitude. The lower 48
U.S. states are covered by zone 10 on the west coast through zone 19 on the upper
east coast (Figure 3.5). In each zone we report UTM coordinates in meters north
(northings) and east (eastings). To avoid negative numbers for locations south of
the equator, the value 10,000,000 meters represents the equator. Each zone contains
a central meridian assigned a value of 500,000 meters. Grid values to the west of
this central median are less than 500,000, and to the east they are greater than
500,000. More complete descriptions of the UTM coordinate system as well as
other map projections can be found in Snyder (1997) and Clarke (2001).

With all the different projections and coordinate systems, how do we know
which one to use? Quantitative uses of a map (e.g., measurement of distances,
areas, and angles) are more likely to reflect projection distortions than are visually



AN ODYSSEY INTO GEODESY 47

128°

10

120° 114° 108° 102° 96° 90° 84° 78° 72° 68°

11

12
13

14
15 16 17

18

19

FIG. 3.5 UTM zones of the continental United States (from the U.S. Geological Survey). The upper
set of numbers gives the longitude value, and the center numbers denote the UTM zones.

based subjective determinations. Thus, if we do not require a high level of accuracy
for locations (e.g., we will not be performing queries based on location and dis-
tance, or we just want to make a quick map), we may not need to transform our
data to a projected coordinate system; a planar display based on latitude and lon-
gitude coordinates (the default in most automated mapping software) will suffice.
Scale, distance, area, and shape are all distorted, with the degree of distortion
increasing with distance from the equator. If, however, we need to make precise
measurements on our map, or we want to preserve one or more of these properties
(area, shape, distance, or direction) for calculations or accurate visual depiction, we
should choose a projected coordinate system. The system you should use depends
on what you want to display. The amount of distortion resulting from a projection
depends on the location, size, and shape of the region of interest. Distortion is least
for small, compact regions and greatest in maps of the world. Popular projections
include the Robinson projection (a compromise projection) for maps of the world,
and the Albers equal-area conic and Lambert azimuthal or polyconic projections
for maps of continental extent in the middle latitudes (e.g., North America). UTM
coordinates (comprised of multiple local projections as outlined above) provide
another common projection system for maps of the United States. Individual states
(within the United States) often use the state plane coordinate system for regional
mapping. This system is philosophically similar to the UTM system, but each zone
may be projected differently than the others. More specific details, examples, com-
parisons, and mathematics that may be useful when choosing a particular coordinate
system are given in Maling (1973), Snyder (1997), and Clarke (2001).

3.2.3 Mathematics of Location: Vector and Polygon Geometry

Once we have a set of locations projected onto a plane, we use vector notation
and linear algebra to summarize common quantities such as distances, directions,
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and paths through locations. This notation provides the symbolic language for
the statistical methods developed in subsequent chapters, and we provide a brief
overview here.

Vectors Some physical quantities, such as location and length, are completely
determined when their values are given in terms of specific units. For other quanti-
ties, such as velocity, direction is also important. Such quantities are called vectors.
It is common to represent a vector visually by a directed line segment whose
direction represents the direction of the vector and whose length represents its mag-
nitude. Mathematically, vectors in two-dimensional space are often represented by
a matrix with two rows and one column, whose elements give the u and v coordi-
nates of the vector starting from (0, 0) and ending at location (u, v) in the plane.
To add two vectors, say h1 = (u1, v1)

′ and h2 = (u2, v2)
′, simply add the cor-

responding components together: h1 + h2 = (u1 + u2, v1 + v2)
′. Subtraction can

be done analogously. The length or magnitude of a vector h = (u, v)′ is denoted
by ‖h‖ = √

u2 + v2. This is also called the norm of the matrix (u, v)′. The zero
vector, denoted 0, is a vector whose length is zero.

Polygons A polygon is a closed planar figure with three or more sides and angles.
We are probably most familiar with rectangles, which are one of the simplest
polygonal forms. We are probably also familiar with how to find the center of a
rectangle and its area. However, many of the polygons in spatial analysis (e.g., the
boundaries of census blocks, counties, and states) are more complex than simple
rectangles. In some applications, we may even want to specify our own polygons,
which describe boundaries of regions of interest to us. We may also want to specify
the “location” of a polygon and determine its area.

In the plane, a polygon is specified mathematically by an ordered set of points,
{ui, vi, i = 0, . . . , n}, connected by line segments. These points define the vertices
of the polygon. We adopt a notation for which the first and last vertex are equivalent,
so that u0 = un, v0 = vn. In some instances, we wish to define the center of a
polygon in order to define some notion of distance between polygons. One definition
of center is the central value of a polygon, obtained by averaging the u values and
the v values to obtain location (um, vm). Another definition of center is the centroid
of a polygon defined by the center of mass (or balancing point) of the polygon.
The coordinates of the centroid of a polygon, R are given by

cu = (1/A)

∫∫
R

u du dv

cv = (1/A)

∫∫
R

v du dv,

where A denotes the area of polygon R. Since the centroid depends on the vertices
only through their definition of the perimeter of R, the centroid is less influenced
than the central value by the number of vertices along any boundary of R. For
example, consider a polygon with one edge defined by a curving feature such as
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a river. If we attempt to represent the curve through many line segments (hence
many vertices), we will drive the central value toward the edge containing many
vertices, while the centroid value remains relatively stable.

At first glance, the centroid seems more difficult to compute than the central
value, and the area of a general polygon can be difficult to derive mathematically.
However, many simple algorithms for computing the area and centroid of a polygon
do exist. One that we have found useful is

A =
∣∣∣∣∣(1/2)

n−1∑
i=0

uivi+1 − ui+1vi

∣∣∣∣∣
cu = [1/(6A)]

n−1∑
i=0

(ui+1 + ui)(uivi+1 − ui+1vi)

cv = [1/(6A)]
n−1∑
i=0

(vi+1 + vi)(uivi+1 − ui+1vi).

Both central values and centroids can fall outside the polygons if the polygons have
very unusual shapes (e.g., crescent, donut). In these cases, we may use known point
locations to reference the polygons spatially.

For many analysis applications, we will not need the central values or the cen-
troids of the polygons. However, many spatial analyses rely on distances (and
directions) among locations to describe spatial relationships. In such cases we cal-
culate distances between central values or centroids and use these to infer distances
between polygons. For most applications, it matters little if we use the central value
or the centroid to indicate the location of a polygon as long as we use the same
definition consistently throughout the analysis. However, spatial analyses based on
distances computed using central values may differ from those using distances com-
puted using centroids since distances among central values probably differ from
distances among centroids. Summarizing the location of a polygon by any one
point in space necessarily introduces uncertainty in the analysis that we may want
to adjust for when interpreting the results.

How Far? Distance Measures and Proximity As we mentioned in Chapter 1, one
of the key concepts in spatial statistics is the idea that attribute values measured
on features near one another tend to be more similar than those measured on
features farther apart. Thus, to quantify this for use in statistical analysis, we need
mathematical descriptions of near and far. We can quickly think of a very easy
description: the distance between two features. However, there are many ways to
measure distances, and as we saw for polygons, sometimes the idea of the location
of a feature can be a bit vague. In this section we describe several different measures
of distance that quantify the degree of closeness between two spatial features.

As the World Turns: Great Arc Length Suppose that we are using the longi-
tude/latitude coordinate system to pinpoint locations on Earth’s surface and we
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have two such locations, s1 = (λ1, φ1) and s2 = (λ2, φ2), where λ denotes the lon-
gitude coordinate and φ denotes the latitude coordinate. Then, the shortest distance
between these two locations along the surface of a spherical Earth is given by

d(s1, s2) = (6378) · arccos[sin φ1 sin φ2 + cos φ1 cos φ2 cos(λ1 − λ2)], (3.1)

where 6378 kilometers is the radius of the (spherical) Earth.

As the Crow Flies: Euclidean Distance Suppose, instead, that we are working
with a projected coordinate system and we have two locations, s1 = (u1, v1) and
s2 = (u2, v2), in a two-dimensional plane. Then the shortest distance between these
two locations on a flat map is given by

d(s1, s2) =
√

(u2 − u1)2 + (v2 − v1)2. (3.2)

Using the notation for vectors, this distance can also be referred to as ‖s2 − s1‖.

This is called the Euclidean norm, and the distance measure in equation (3.2) is
called Euclidean distance. We could also use the longitude and latitude coordinates,
s1 = (λ1, φ1) and s2 = (λ2, φ2), in this formula, but the resulting distance would
not take into account the curvature of the Earth. In general, the Euclidean dis-
tance measure should not be used to compute distances between sets of longitude
and latitude coordinates, particularly if the distances are over a large area. Since
no adjustment is made for the curvature of the Earth, distances affected by this
curvature will be distorted.

As the Person Walks: City-Block Distance In some situations, measuring the short-
est distance is not at all meaningful. For example, in urban areas where there are
one-way streets and buildings between blocks, we cannot travel a straight line to
our destination. Thus, we have to go “around the block,” and to do this we drive
or walk along a series of perpendicular segments. This gives rise to the idea of the
“city-block” distance between two locations, s1 = (u1, v1) and s2 = (u2, v2):

d(s1, s2) = |(u2 − u1)| + |(v2 − v1)|. (3.3)

There are other distance measures for analogous situations [e.g., “as the fish
swims” (Little et al. 1997) and “as the water flows” (Cressie and Majure 1997)].
More details on using these distance measures in spatial analysis are given in
Section 8.4.6.

Across the Picket Fence: Adjacency When we have polygonal features instead of
point locations, we can index the location of each polygon by its centroid and then
use any of the distance measures described above to compute distances between
centroids. This gives one measure of the distance between two polygons. However,
sometimes a meaningful measure of the “closeness” of two polygonal features is
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simply whether or not they share a boundary (i.e., whether or not they are adjacent).
This gives rise to a binary proximity measure

wij =
{

1 if polygons i and j share a boundary
0 otherwise.

We use the term proximity here rather than distance since the distance measures
described above are actually topological metrics that must satisfy certain relation-
ships not necessarily satisfied by proximity measures. There are many different
proximity measures that can be used to define the closeness between two polyg-
onal features, and we discuss these in more detail in Sections 4.4.1 and 7.4.2. As
we shall see throughout this book, both distance measures and proximity measures
have their useful place in spatial data analysis.

3.3 SOURCES OF SPATIAL DATA

The availability of spatially referenced data continues to increase at a rapid pace.
Based on our experience, we focus our outline of available resources on data for
the United States and Canada. However, similar data exist for other countries (or
collections of countries). The following references or organizations offer access or
descriptions of other geographically referenced data sets: Lawson (2001) (United
Kingdom), Statistics Finland (Finland), Pan American Health Organization (Central
and South America), World Health Organization, and the United Nations. Geo-
graphic scope and support (e.g., enumeration districts, counties, states, nations) of
particular data sets vary widely.

In Canada and the United States, digital spatial features (i.e., spatial data that can
be described by numbers) are produced by the national mapping agencies, agencies
responsible for the decennial census, and other national organizations. Considerable
effort has been made to coordinate and standardize the production and distribution
of digital geographic data and most of these data are now readily available free
on the Internet. In the following sections we describe some of the types of spatial
data available that are of potential interest to public health professionals. We avoid
giving actual Internet addresses, since such addresses change over time. Instead, we
provide names of organizations, programs, and surveys and enough detail to enable
Internet search engines to locate particular data sources. With the exception of some
health data, most of the data that we describe are also available on CD-ROM for
minimal processing fees.

3.3.1 Health Data

Data regarding health events vary widely in terms of purpose, ranging from specific
clinical trials and localized observational studies to national (and international)
disease surveillance efforts. Many spatial analyses of public health data utilize
health outcome data collected and summarized by governmental agencies, often
state health departments, and then released for public use.
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Stroup et al. (1994) provide a thorough overview of and comprehensive bib-
liography to data sources relating to public health. We summarize several types
of health data collected by various national and local governments, with particu-
lar attention to spatial aspects of various data sources. Many of the data sources
listed below are publicly available through contact with the agency or organiza-
tion responsible for the data (although we note that “publicly available” need not
always equate with “easily available”). The different types of data involve a variety
of collection methods and purposes, and accordingly, vary in terms of availability,
spatial coverage, and spatial support.

As noted in Chapter 2, confidentiality affects the availability and spatial resolu-
tion of public health data. Reporting agencies must balance the individual’s right to
privacy with the public’s right to know. This balance tips in different directions at
different times under different governmental domains and regulations, so the spa-
tial support available for similar types of data sources may vary between reporting
units.

Vital Statistics Certification of death (issuance of death certificates) represents
one of the earliest attempts to routinely gather and summarize health-related infor-
mation. Parish records in western Europe dating from the fifteenth century and
London’s Bills of Mortality, a weekly report of deaths categorized by causes begin-
ning in 1537, are early examples of data collection and reporting efforts relating to
vital (birth and death) statistics. Stroup et al. (1994, pp. 38–44) provide a thorough
overview of the history and development of the collection of vital statistics noting
that vital statistics are the only health-related data available from many countries
in a standard format. About 80 countries or areas currently report vital statistics to
the World Health Organization, coded according to the International Classification
of Disease (ICD) (ninth or tenth edition).

In the United States, the National Center for Health Statistics (part of the Cen-
ters for Disease Control and Prevention) collects, coordinates, and maintains vital
statistics, including mortality data, some published recently in atlas form (Pickle
et al. 1996; Devesa et al. 1999; Casper et al. 2000; Barnett et al. 2001). In general,
spatial resolution is no finer than the county level, and for particularly rare causes
of death in sparsely populated counties, numbers may be suppressed due to confi-
dentiality concerns. The National Cancer Institute’s Atlas of Cancer Mortality in the
United States, 1950–94 (Devesa et al. 1999) reports mortality for counties and for
state economic areas, collections of counties within states based on demographic
and economic variables as measured in 1960. The atlas does not include maps when
many of the small areas (counties or state economic areas) contain sparse data, so
maps are not reported for some disease/race/gender combinations. The National
Center for Health Statistics’ Atlas of United States Mortality (Pickle et al. 1996)
reports for health services areas, another aggregation of counties based on a cluster
analysis (classification algorithm) linking counties based on where residents aged
65 years and over obtained short-term hospital care in 1988. Unlike state economic
areas, health service areas cross state boundaries.
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Notifiable Diseases Due to their devastating impact and high infectivity, certain
diseases often motivate surveillance by governmental public health units in order
to stem outbreaks, monitor trends, and plan intervention strategies. Notifiable dis-
eases are those associated with regulatory reporting requirements (i.e., by law,
each incident case must be reported to a reporting agency or system upon diagno-
sis or laboratory verification). Stroup et al. (1994) provide a history of notifiable
disease-reporting systems for the United States and internationally.

In the United States, the Centers for Disease Control and Prevention (CDC)
maintains the Nationally Notifiable Disease Surveillance System to manage infor-
mation on 54 reportable diseases. Some states add to the list of notifiable diseases.
The National Electronic Telecommunications System for Surveillance (NETSS)
provides the CDC with weekly data regarding each of the nationally reportable
diseases. The data include the date of diagnosis, age, gender, race/ethnicity, and
county of residence of each reported case, but no personal identifiers (e.g., name of
the case). The NETSS provides information summarized in the CDC’s Morbidity
and Mortality Weekly Report (MMWR), but the CDC is currently upgrading from
the NETSS to the National Electronic Disease Surveillance System (NEDSS) to
address some of the reporting difficulties experienced by NETSS users.

Registries Disease registries differ slightly from vital statistics and notifiable
disease data collection mechanisms in that registries link multiple sources of infor-
mation for each case. Examples of information sources include hospital-discharge
reports, death certificates, pathology reports, billing records, and in some cases the
medical charts themselves. Registries attempt to consolidate information by patient
so that each case appears only once in the registry.

Stroup et al. (1994) contrast case series and hospital-based registries from
population-based registries. Case series and hospital-based registries attempt to
provide information to improve patient care, and often do not provide accurate
estimates of incidence rates (proportions) for the population. In comparison, popula-
tion-based registries seek broader coverage in order to provide accurate estimates
of overall incidence and (possibly) for local areas.

Individual registries focus on particular diseases, such as cancer and birth
defects. Several cancer registries operate internationally. In the United States, the
North American Association of Central Cancer Registries (NAACCR) serves to
coordinate efforts and monitor quality among population-based cancer registries.
NAACCR recently produced a report providing an overview and introduction
to basic geographic information system (GIS) practices for cancer registries that
addresses issues directly relating to spatial coverage, support, and analysis of cancer
registry data in the United States (Wiggins 2002). For birth defects in the United
States, the Birth Defects Monitoring Program (BDMP) links individual states, the
CDC, the National Institute of Child Health and Human Development, and two
nonprofit organizations (the March of Dimes and the Commission on Professional
and Hospital Activities) to provide ongoing surveillance of the incidence of birth
defects through registry programs (Oakley et al. 1983).
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Different registries offer different spatial coverages and support. For instance,
the National Cancer Institute’s Surveillance, Epidemiology, and End Result (SEER)
cancer registry is most likely the largest population-based cancer registry in the
Western world. The SEER registry provides comprehensive incidence data since
1973, but only for the 11 SEER sites, which include state registries in Utah,
New Mexico, Iowa, Hawaii, and Connecticut, and regional registries in Detroit,
Seattle–Puget Sound, Los Angeles, San Francisco–Oakland, San Jose–Monterey,
and Atlanta. The SEER registry also includes supplemental sites, including a Native
American registry for the state of Arizona, a collection of rural Georgia counties,
and the Alaska Native Tumor Registry. Planned expansion to the SEER program
include registries in New Jersey, greater California, Kentucky, and Louisiana. The
National Program of Cancer Registries (NPCR), established in 1992 by a U.S. con-
gressional mandate and managed by the CDC, offers coordination and certification
for registries covering non-SEER areas and states. For those seeking information
on international cancer registry activities, the International Agency for Research on
Cancer (IARC), part of the World Health Organization (WHO), collects information
from cancer registries around the world, and provides a point of contact.

Health Surveys In contrast to registries and surveillance that seek to record all
incident events within a given time period, health surveys use population-based
statistical samples to draw inference regarding incidence and prevalence of health
outcomes and related demographic and risk factor information. Analysts typically
use design-based estimation to provide inference for the reference population, typ-
ically the aggregate population from which researchers draw the sample.

The National Health and Nutrition Examination Survey (NHANES) and the
National Health Interview Survey (NHIS) are two examples of national health sur-
veys in the United States (Korn and Graubard 1999). NHANES involved three
separate data collection efforts. NHANES I collected data from civilian, nonin-
stitutionalized individuals aged 1 to 74 years between the years 1971 and 1974
(with some follow-up in 1974 and 1975). NHANES II collected similar data from
1976–1980 (with the minimum age decreased to 6 months), and NHANES III
collected data from 1988–1994 (with the minimum age decreased to 2 months
and removal of an upper bound on age). The NHANES design involved primary
sampling units of counties (or collections of contiguous counties). Within sampled
areas, researchers collected data from household interviews and medical examina-
tions performed in mobile examination centers (thereby providing some clinical
measures linked to interview data). In comparison, the NHIS uses counties or
metropolitan areas as primary sampling units, then conducts household interviews
within selected units. The NHIS has been in continuous operation since 1957, with
some modifications from time to time. A key difference between NHANES and
NHIS data is the presence of some clinical measures (e.g., blood pressure and blood
lead) in the NHANES data, collected by mobile examination centers in addition to
the household interview data.
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The Behavioral Risk Factor Surveillance System (BRFSS) provides an example
of an annual health survey conducted by each state within the United States (Cen-
ters for Disease Control and Prevention 1998). Based on a structured telephone
interview, the BRFSS collects information on health outcomes and behavioral and
lifestyle factors such as exercise and diet. States collect data sufficient for obtain-
ing statewide estimates and within any particular year, states with large numbers
of counties (e.g., Texas and Georgia) will have several counties not contributing to
the sample.

Surveys are designed for estimation at a particular level of aggregation (e.g., a
nation for NHANES and NHIS, a state for BRFSS). As we might expect, there is
often interest in obtaining sample-based estimates for local regions within the entire
study area (e.g., states within a nation, or counties within a state). Cost often rules
out obtaining adequate sample sizes to support design-based estimation within each
local administrative unit, so researchers often use small-area estimation to com-
bine data from regions statistically to stabilize estimates (Ghosh and Rao 1994,
Schaible 1996, Malec et al. 1997). Only recently have small-area estimation pro-
cedures included spatial correlations, and Ghosh et al. (1998) provide an example
using county-level lung cancer mortality rates in Missouri.

3.3.2 Census-Related Data

In the United States and Canada, the agencies responsible for collecting and dis-
seminating census data provide a number of digital data sets that can be useful
in public health applications. In the United States, in preparation for the 1990
census, the U.S. Bureau of the Census developed the TIGER (Topologically Inte-
grated Geographic Encoding and Referencing) system to standardize, encode, and
aid in processing of census questionnaires. TIGER/Line files cover the 50 states,
the District of Columbia, Puerto Rico, the Virgin Islands, and the outlying areas
of the Pacific Ocean over which the United States has jurisdiction. The spatial
data contained in these files includes street networks, address ranges for street
segments, railroads, political boundaries (including digital boundaries of census
block groups, census tracts, counties, and states), and the boundaries of major
hydrographic features, all geographically referenced by longitude and latitude coor-
dinates. TIGER/Line files do not contain demographic attribute data, but they do
contain region identifiers allowing one to link attributes from the associated census
with TIGER polygons. Typical linked attribute data include feature names and codes
(e.g., codes for state, county, census tract, and block) and may include population
and housing unit counts, income, racial classification, and housing values. Not all
attributes are available for every geographic level; for example, only the total pop-
ulation and housing unit counts are available at the census block level. Many local
governments and software development companies have enhanced, reorganized, or
simplified TIGER files for their own use. Statistics Canada produces similar spatial
data sets.
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3.3.3 Geocoding

Much of the public data collected in the United States is comprised of individual
records, often specified by a person’s address. If you have an emergency and call
“911,” one of the first pieces of information the operator will ask you for is your
address. This address provides definitive location information for the purposes of
dispatching emergency care. However, it is not definitive for automated, computer-
based cartography. For this, we need geographic coordinates of the address. One
way to obtain these coordinates is through geocoding: the process of assigning a
spatial location to an address record.

Geocoding involves matching records in (at least) two databases: the database
containing the address information and a reference geographic base file that contains
both addresses and the geographic coordinates of those addresses. This assumes
that a complete, easily available, accurate geographic base file exists, which is
usually not the case except at a very local level using digital municipal data files.
More commonly, the Census TIGER/Line data described in Section 3.3.2 provide
the geographic base file, address ranges, and street segment records for geocod-
ing. Some mode of interpolation then provides the actual location of the address
within the street segment. Some location error remains in most geocoded addresses,
and the error could be quite large for rural areas containing few street segments.
Thus, the geographic base file providing address and/or street location is critical to
achieving accurate locations. A variety of geographic base files are now available
from both public-domain and private-sector publishers. If you provide addresses
that are complete, specific (i.e., have ZIP + 4 designation), and accurate (i.e., con-
tain no typographical errors and record address elements such as street names in
a standard format), it will usually be possible to match 80–90% of your addresses
to the addresses and associated geographic coordinates in the base file.

3.3.4 Digital Cartographic Data

In the United States, the U.S. Geological Survey (USGS) has long been a source
of maps: topological maps, detailed quadrangle maps, geological maps, and so on.
Most of these maps are now available in digital formats. The USGS’s Digital Line
Graph (DLG) data set includes transportation lines, hydrography, political bound-
aries, and elevation contours for the entire United States. The USGS land use/land
cover data set delineates urban areas, agricultural lands, forests, and wetlands. The
USGS has also enhanced the comprehensive digital elevation data first produced
by the U.S. Defense Mapping Agency. These data sets provide an elevation value
for any location in the United States and provide necessary information for many
engineering and urban planning applications.

3.3.5 Environmental and Natural Resource Data

As with the health surveys (cf. Section 3.3.1), the U.S. government also conducts
a number of different environmental surveys, designed to monitor the status and
trends of ecological and natural resources. Many of these are national, long-term
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monitoring and assessment programs. Some collect data at monitoring stations
(point locations), others collect information over small areal units, and some pro-
grams operate at state or regional levels. The type of attribute data collected varies
widely across programs. Many use probability sampling to select the units for mea-
surement; others select units based on judgment/convenience. Below we provide a
brief overview of some of the major national environmental monitoring programs
that provide public-domain data that might be useful in public health studies. Much
of our information is based on the work of Olsen et al. (1999), and more detailed,
statistical information about many of the surveys we describe can be found in
this work.

Agriculture and Natural Resources The National Resources Inventory (NRI),
part of the Natural Resources Conservation Service (NRCS) within the U.S. Depart-
ment of Agriculture (USDA), collects data on land use, wetlands, soil erosion,
conservation practices, and habitat diversity. The primary sampling unit is a square
plot, containing approximately 160 acres. Some data are collected on these units
(e.g., land use, habitat diversity), while more specific information is recorded at
individual locations within each unit. NRI data provide estimates of natural resource
conditions and changes in these conditions that are used to develop natural resource
conservation programs.

The National Agricultural Statistics Service (NASS), also within the USDA,
collects data on agricultural lands. It maintains a huge database of agricultural
statistics such as crop acreage and production. Some of the information collected
pertains to environmental monitoring on agricultural lands. For example, NASS
maintains an agricultural chemical-use database that includes information on the
type of chemical applied (e.g., specific type of fertilizer, insecticide, or herbicide),
the total amount applied, the percentage of cropland treated, and so on. It is also
a probability-based survey, based on a stratified, two-stage random sample of seg-
ments in land-use strata, combined with a list frame sample of individual farms.
The spatial resolution depends on the information collected, most of which is at the
state or county levels. NASS is one of the oldest and largest national survey orga-
nizations; the survey was mandated by Congress in 1839. Today, NASS publishes
400 national and 9000 state reports each year (Olsen et al. 1999).

Water Quality The Environmental Protection Agency (EPA)’s Environmental
Monitoring and Assessment Program (EMAP) is another national probability-based
survey. It was initiated to provide information on the status and trends in environ-
mental quality and to identify emerging environmental problems by developing
reliable and specific ecological indicators. It is based on a triangular grid covering
the entire United States and uses systematic random sampling to determine units for
measurement. EMAP Estuaries monitors all U.S. coastal waters measuring indices
of ecological condition (e.g., the benthic index, based on surveying benthic inver-
tebrates and combining measures of their abundance and diversity into a single
index) and exposure indicators (e.g., dissolved oxygen). EMAP Surface Waters
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monitors rivers, streams, reservoirs, and lakes (except the Great Lakes). This pro-
gram collects measurements on a variety of indicators that can be used to infer the
“health” of the stream or river, including water quality measurements (e.g., pH),
sediment toxicity, and chemical contaminants in fish. More specific information
about EMAP design and component programs is provided in Stevens (1994) and
Olsen et al. (1999).

The U.S. Geological Survey (USGS) implements several water quality assess-
ment programs. One of the largest, the National Water-Quality Assessment
(NAWQA) program, was initiated to collect information on the quality of the
nation’s ground and surface waters. The sampling design is not probability-based,
but instead, study units were selected by a linear optimization algorithm, and the
units now participating in the program represent 50 major hydrogeologic basins that
comprise the majority of the nation’s water use. The data collected on each study
unit depend on the characteristics of each particular unit, but often include mea-
surements on water pH, temperature, dissolved oxygen, and nutrient concentrations.
Different programs within NAWQA focus on more specific water quality charac-
teristics. For example, the NAWQA Pesticide National Synthesis Project aims to
provide a national assessment of pesticides in surface and ground waters and sup-
plies important information to the U.S. EPA for regulations concerning pesticide
use and biodegradability requirements.

Air Quality In addition to environmental programs that focus on terrestrial and
aquatic ecosystems, the U.S. government also directs many national atmospheric
monitoring programs. Under the guidance of the EPA, the National Atmospheric
Deposition Program (NADP) and the Clean Air Status and Trends Network (CAST-
NET) were developed to provide data necessary to assess the effectiveness of air
pollution control efforts. Such effectiveness can be assessed by monitoring changes
in atmospheric deposition, primarily acid deposition levels, high levels of which
are caused by industrial and automobile emissions. The NADP collects weekly wet
acid deposition samples from almost 200 sites across the United States. Each site
in this network measures important components of precipitation chemistry such
as sulfate, hydrogen ion, and chloride. CASTNET consists of over 70 monitoring
stations across the United States that provide information on dry acid deposition,
ground-level ozone, and other forms of atmospheric pollution. Sites in this net-
work measure weekly average atmospheric concentrations of sulfate and nitrate
and hourly concentrations of ozone and meteorological data used to compute acid
deposition rates. The monitoring sites in both the CASTNET and NADP programs
are located in rural areas and so provide information on natural background pollu-
tion concentrations. Other monitoring networks [e.g., the National Air Monitoring
Stations (NAMS) network] have stations located in urban areas, and data from these
networks can be combined with CASTNET information for a more comprehensive
national air quality assessment.

Climate The National Climatic Data Center (NCDC), part of the National Oceanic
and Atmospheric Administration (NOAA), is the world’s largest archive of global
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climate data. It collects weather data from the National Weather Service, the Federal
Aviation Administration, the U.S. military, and from several international agencies
as well. NCDC data are used to provide short- and long-term national and regional
climate forecasts. They also provide a complete historical record that can be used
to measure global climate change. In environmental health studies, data from the
NCDC are often used in modeling the effects of climate on human health and
in adjusting models quantifying the effects of air pollution on human health for
climatic effects.

3.3.6 Remotely Sensed Data

Remotely sensed data are data collected from a distance. The most common
example of remotely sensed data is the aerial photograph. Such photographs can
provide reliable spatial measurements such as elevation, soil type, and land use,
but the exercise often is not as simple as snapping a photograph: The entire sci-
entific discipline of photogrammetry revolves around this endeavor (Jensen 1996).
Another approach to collecting remotely sensed data is through the use of satellite
images. These are produced from sensors located on satellites that measure the
reflected and emitted radiation from Earth’s surface. This type of radiation cannot
be detected by ordinary photographic film. The images are obtained directly in
digital form and are comprised of cells called pixels (picture elements). Each pixel
corresponds to an area on the ground, and the size of this area determines the resolu-
tion of the image. Associated with each pixel is a wave of electromagnetic energy.
Different features on the ground will emit different energy waves that can then be
analyzed (using our knowledge of light and electromagnetism) and interpreted to
infer physical characteristics. Today, satellite imagery produces some of the most
accurate and globally comprehensive information on the Earth, and many disci-
plines, including public health (particularly in vector-borne diseases), are finding
creative and cost-effective uses for this technology (Cline 1970; Beck et al. 1994;
Washino and Wood 1994; Messina and Crews-Meyer 2000; Xiang et al. 2000).

3.3.7 Digitizing

Any map available in hard copy can be scanned into a computer and digitized
to produce an electronic file of digital boundaries. To tie the digitized map to
a preexisting georeferenced coordinate system (e.g., longitude and latitude), the
digitizer must specify the true coordinates of at least three separate locations on
the map. This approach provided the initial means for transferring paper maps
based on historical land surveys to the digital spatial data sets currently available.

3.3.8 Collect Your Own!

The global positioning system (GPS) is a system of 24 satellites orbiting the Earth.
A GPS receiver locates the nearest satellites and receives a signal from each of
them. By knowing the time differential between the signals, the positions of the
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satellites, and details about their orbit, it is possible to determine the exact location
(longitude, latitude, and elevation) of the receiver. GPS receivers are quickly finding
their way into all kinds of equipment (including automobiles), and handheld GPS
receivers are now a cost-effective scientific tool. In conjunction with a laptop
computer and some software, analysts can use a handheld GPS receiver to record
the boundaries of the spatial features of interest. We may also measure attributes
associated with these features (e.g., administer questionnaires to people; take water,
soil, or blood samples and have them analyzed by a laboratory). Of course, we do
not need a GPS to collect our own spatial data. All we need is a way to record the
location of our features relative to other features. For example, we could designate
an arbitrary point somewhere as (0,0) and then record attribute information on a
regular grid extending from this origin. Agricultural scientists and ecologists have
been using this approach for decades and have developed systematic sampling
and mapping strategies designed to collect spatial information quickly and easily
(e.g., Seber 1986; Stehman and Overton 1996; Wollenhaupt et al. 1997). Thus,
public health practitioners should not rely solely on the large, existing spatial data
sets described above. Much scientific discovery and understanding remains to be
obtained by conducting our own studies that collect the information, both spatial
and nonspatial, that we believe is important and relevant.

3.4 GEOGRAPHIC INFORMATION SYSTEMS

The term geographic information system (GIS) means many things to many people
and has various definitions. The literature on GISs extends back at least to the
mid-1960s and the development of the Canada Geographic Information System for
the Canadian Land Inventory (Longley et al. 2001, pp. 10–13). From our point
of view, a GIS is a complex, interactive software for the management, synthesis,
and display of spatial data. As Bonham-Carter (1994) notes, the word geographic
means that the spatial locations can be specified by geographical coordinates, lat-
itude and longitude. The term information implies that the data input into a GIS
can by organized in a useful way facilitating interpretation (e.g., through maps,
images, charts, and tables). Finally, the word system indicates that a GIS is com-
prised of several different but interrelated components working together. As noted
by Clarke (2001), a GIS allows easy visualization of geographic features comprised
of points, lines, and areas and allows us easily to address questions regarding fea-
tures’ respective sizes, shapes, orientation, and spatial distribution, such as: Where?
How far? In what direction? How big? Several such aspects of spatial features are
illustrated in Figure 3.6. A GIS also allows us to link this information with various
attributes associated with these features. Thus, we can also answer questions such
as: Where are the features associated with large attribute values? How close are
features with the same attribute value? These are simple but important questions,
not quickly answered without GIS technology. Answers to these questions form
the basic building blocks for more complex questions, including those addressed
in subsequent chapters.
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FIG. 3.6 Important aspects of spatial data. [Modified from Clarke (2001).]

3.4.1 Vector and Raster GISs

The literature distinguishes between vector and raster GISs, depending on whether
locations are stored as points/lines/areas or as pixels, respectively. The underlying
geographic data structures determine both the computational storage burden and
the primary GIS operations of interest. Vector data often involve much less storage
since we store attribute data only for points, lines, and areas rather than for every
pixel, as in raster data, although various image compression systems significantly
reduce the storage requirements of raster data. The speed of computational opera-
tions varies between vector and raster data. For instance, we may search through
vector data by iteratively referencing each point, line, and/or area from a reference
list, while a brute-force search of raster data could involve looping through the grid
of pixel points (typically much larger than the vector database). Although many
modern GISs manage both vector and raster data, the different storage, searching,
and algorithmic strategies associated with the data types merit retention of the
distinction.

Different types of data fall more naturally into the vector and raster frameworks.
For instance, health or demographic data summarized to census enumeration regions
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fit well into the vector paradigm, due to the assignment of multiple attributes to
each of a set of polygons covering the study area. In contrast, satellite imagery and
aerial photography better fit into the class of raster data where each image consists
of multiple pixels and their associated values.

3.4.2 Basic GIS Operations

Although particular GIS packages may differ in interface and functionality, there are
certain operations central to every GIS. Although these operations do not constitute
statistical analysis per se, the operations provide means for querying and linking
spatial data.

Spatial Query The operation distinguishing a GIS from any other relational
database is the ability to query data elements with respect to their locations as
well as their attribute values. The spatial query allows us to request summaries of
attribute values in the subset of locations meeting a spatial criterion (e.g., the num-
ber of pediatric asthma case residences within 500 meters of a major roadway). The
spatial query underlies most GIS functionality and provides the means for sorting,
subsetting, and summarizing data with respect to location and distances.

Layering Much as its name implies, the GIS operation known as layering con-
sists of overlaying several different spatial data sets, linking values by location.
Conceptually, think of a set of maps printed on transparencies, where each map
represents a different set of data collected over the same study area (e.g., a map of
population density, a map of roads, and a map of land cover). Stacking or layering
the maps provides a single map consisting of the composite information from all
maps.

Computationally, the GIS matches attribute values based on common locations,
allowing one to query the combined attributes by a single location reference file.
The term spatial join defines the algorithmic operation linking the layered data into
a combined (joined) data set.

Layering provides a powerful visualization and data linkage tool. In public
health, layering allows one to combine census data providing information on local
demographics, disease registry data providing local health outcomes, and environ-
mental monitoring data providing locations of pollution sources, each collected
over the same area. As a particular example in a public health setting, Xiang et al.
(2000) layered two spatial data sets: a map of maternal residences at the time of
birth for infants born between 1991 and 1993 in Weld County, Colorado, and a
(raster) map of crop type for 30-meter by 30-meter pixels as determined by satellite
imagery. Xiang et al. (2000) next inferred pesticide use based on crop type and a
survey of Colorado farmers regarding the type and application patterns of particu-
lar pesticides by crop. Through these GIS operations, Xiang et al. (2000) created
a combined data set which allowed preliminary assessments of the associations
between patterns of low birth weight and pesticide use.
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The ability to combine several data sets collected by different agencies for
different purposes is both a strength and a weakness of layering. Data merging is a
strength in that it allows us to address questions we could not answer using any of
the individual data sets alone. In contrast, data merging may be a weakness in that
the issue of data quality becomes murky. That is, while each individual layer may
meet quality levels sufficient for its intended purpose, the data may not be accurate
enough to address the requirements for inference regarding the combined data.
For instance, air monitoring stations installed to measure pollution levels near an
industrial park may not offer accurate exposure information for subjects throughout
the study area. Thus, we emphasize again that the great availability of spatial data
and the ease with which such data can be combined and displayed in a GIS are still
not substitutes for more focused studies designed to obtain reliable and relevant
information.

Buffering Buffering refers to a particular type of spatial query, the definition of
the area within a specified distance of a particular point, line, or area. For example,
Xiang et al. (2000) define areas (buffers) of 300 and 500 meters, respectively,
around each maternal residence in their study, then assign pesticide values within
the buffer based on the remotely sensed satellite data. Other typical applications of
buffering in public health studies include the definition of exposure (or exposure
potential) zones around sources of hazard (e.g., hazardous waste sites). Buffering,
too, has advantages and disadvantages. It allows us to combine spatial data collected
on different features with differing supports, but in doing so, we have introduced
errors and uncertainty into any analysis and the resulting conclusions.

3.4.3 Spatial Analysis within GIS

Many authors note the analytical and predictive capabilities of GISs. Some (e.g.,
Bailey and Gatrell 1995) distinguish between spatial analysis, the study of phenom-
ena occurring in a spatial setting using the basic GIS operations outlined above, and
spatial data analysis, the application of statistical description and modeling to spa-
tially referenced data. The distinction provides a boundary between standard GIS
operations and queries and the application of data analysis algorithms for estima-
tion, prediction, and simulation familiar to many statisticians. Other authors use the
term spatial analysis quite broadly as a field and include inferential statistics among
the tools. For instance, Longley et al. (2001, p. 282) describe six general categories
for GIS-based spatial analysis: queries (enabled by the spatial relational database
underlying the GIS), measurements (e.g., length, shape, distance), transformations
(e.g., spatial joins, and conversion from vector to raster, or vice versa), descriptive
summaries (e.g., calculating the mean response in a particular area), optimization
(e.g., searching for minima/maxima across a spatial area), and hypothesis testing.
The last category specifically involves inferential statistical methods, while the other
categories describe a variety of tools for quantifying trends, features, and patterns
within a spatial data set. We focus on statistical methods (spatial data analysis)
in this book but note that nonstatistical GIS operations often provide necessary
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precursory elements for the estimation, testing, and modeling approaches outlined
in the following chapters.

With the exception of recent software modules implementing the geostatistical
methods discussed in Chapter 8, most modern GISs allow little in the way of
routine calculations for spatial data analysis involving statistical inference. As a
result, most analyses described in subsequent chapters involve the use of separate
statistical packages and are not analyzed within a GIS setting. Like any set of
software packages, the capabilities of a GIS stem from the needs of the users as
addressed by software developers. As more users seek spatial statistical modeling
capabilities within (or in concert with) GISs, developers will seek to meet the need.
Scripts (much like macros in SAS and functions in S-Plus or R) can greatly extend
the statistical capabilities of a GIS. In addition, a growing variety of applets (Web-
based application tools) for both statistical and GIS computing provides toolboxes
for further development of software tools for spatial data analysis.

3.5 PROBLEMS WITH SPATIAL DATA AND GIS

The apparent availability of spatial databases and the ease with which these can
be used and combined within a GIS make it seem easy to obtain relevant and
important information for almost any study. However, as alluded to above, there
are also common problems, misuses, and limitations associated with the use of
spatial databases. Understanding these limitations, and anticipating them a priori,
will help to ensure more productive analyses.

3.5.1 Inaccurate and Incomplete Databases

Any database can contain typographical errors and misspellings. Spatial databases
are no exception, and such errors can occur in both the location values and in the
attribute values. Sometimes, these errors are fairly easy to notice simply by plotting
the locations on a map using a GIS. For example, when a location plots outside the
domain of interest, it is often the case that the latitude and longitude coordinates
were reversed, a negative sign was deleted from the longitude values, or the first
digit in one of the georeferenced locations is incorrect. When two spatial databases
appear to be offset by a small amount, differing datums could be the culprit.

A quality control program including simple edit checks can help to identify
potential problems. For example, we could check to make sure that the date of
birth and the age of the person are consistent (i.e., the person cannot be older or
younger than the difference between the date of the study and their date of birth),
and we can check to see that fields for city, ZIP code, county, and state are all
consistent, and so on. These types of checks can be automated easily; it is just a
matter of developing a comprehensive system of checks and balances.

Such quality control checks will take us only so far. If we do not know what
the attribute values mean, the projection used, and the time frame over which
the database was compiled, the database will have limited value. The Federal
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Geographic Data Committee (FGDC) has been developing a standard for what
is now called metadata, or “data about the data.” Metadata give us important
information about the database, such as who created it, when it was created, when
it was last updated, the map projection used, and data quality assessments such as
the accuracy of both attribute and locational information. Thus, we should always
be sure to look for and understand any metadata before working with a particular
spatial database.

It is very difficult if not impossible to find a complete and comprehensive spatial
database ideally suited to our interests. Most databases will suffer from one of two
problems: lack of extent or lack of resolution. For example, most environmental
data are often of point support, but they are usually very localized, pertaining to
a county or a region. Some national databases are very sparse, having but one
point per state. On the other hand, it is easy to obtain comprehensive, national,
state-level health data, but such data are usually not available at finer resolutions
(e.g., counties). For any particular study, we will probably have to work very hard
to supplement the existing spatial databases with data specific to our needs.

3.5.2 Confidentiality

Many health data sets contain sensitive information. Good ethical practice, and in
many cases, federal laws, require us to protect confidential information. The FGDC
is developing consistent guidelines that ensure the protection of confidential infor-
mation, but many institutions have developed their own standards. For example, the
U.S. Bureau of the Census will not release any individual-level information, and
many U.S. government agencies have “cell suppression” rules for tables (e.g., if a
count in a particular cell of a table contains five or fewer individuals, the value will
not be released). While the usual patient identifiers such as name and address can
obviously be used to identify patients, point locations obtained from geocoding or
GPS can be used in the same way. Thus, many institutions refuse to share this type
of data or have developed policies that restrict access to such data. For example, to
work with some of the data collected by NCHS at the county level, screened users
must conduct their research at NCHS, where their use of the data can be care-
fully controlled and monitored. Unfortunately, these policies and precautions also
limit health research studies and the conclusions that can be obtained from them.
Recently, geographical masks have been designed that preserve the confidentiality
of individual health records but also allow analyses that require specific locational
information to address important research questions of interest. Armstrong et al.
(1999) provide a comprehensive review and discussion of many different types of
geographical masks.

3.5.3 Use of ZIP Codes

Since geocoding is expensive or time consuming, many health studies georeference
individuals to ZIP codes since patient records often contain a ZIP code field as part
of the address. It is very important to remember that ZIP codes were created by the
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U.S. Postal Service for delivering mail. Unlike census tracts and blocks, they were
not created to be homogeneous with respect to sociodemographic variables, and
in many instances, they will not manifest such homogeneity. Sociodemographic
information is available by ZIP code, but it is often averaged from census block
data. This averaging, over units not necessarily homogeneous, can often lead to
misleading conclusions about data mapped at the ZIP-code level. For example,
Krieger et al. (2001) report the results of a comprehensive study on whether or not
the choice of area-based geographic units really matters when mapping data for
public health surveillance. They found that when health outcomes were reported
and mapped at the ZIP-code level, ZIP code measures failed to detect gradients or
detected trends and patterns that were contrary to those observed with block groups
or census tracts.

3.5.4 Geocoding Issues

Address matching works best for completely specified, correctly spelled addresses
in urban areas. In many cities, a designation such as “East” or “North” is very
important. For example, in Atlanta, North Peachtree Street is in a very different
location than Peachtree Street. It is also important to provide all the aliases for a
given street (e.g., Peachtree is often abbreviated as “P’tree”). Address matching
does not work well in rural areas, and it cannot be used for P.O. boxes or rural
route designations.

Achieving a 100% match rate occurs only when we geocode error-free addresses
using an error-free base map. Of course, a high match rate does not ensure correct
spatial coordinates for each address. Cromley and McLafferty (2002, p. 87) note
that it is not uncommon for 7% of locations assigned to addresses within a base
map to be incorrect. In addition, Krieger et al. (2001) report variable accuracy
in a comparison of four independent geocoding vendors, each assigned the same
original set of addresses. Thus, we stress that although many automated geocoders
may match most addresses within seconds, geocoding is an iterative process that
requires substantial checking and verification to ensure accurate spatial information.

3.5.5 Location Uncertainty

Even a foolproof geocoding approach will not obviate all locational issues. In
human health applications, we traditionally assign the residence location to each
case. Although we will use residential location for the examples below, such
locational assignment may not be entirely satisfactory for some applications. For
instance, assigning residence location to each case ignores human mobility and
may assign cases to locations far from areas where relevant (e.g., occupational or
school-based) exposures occur. Also, people move from place to place during the
course of the day and may receive significant environmental exposures at their
workplace, in their car, or in other locations. Finally, in studies of chronic diseases
(such as various cancers) where disease onset may occur years after the suspected
relevant exposure(s), appropriate locational assignment may involve collection of
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historical housing and occupational data for each case and any relevant noncases
collected as a comparison group.

Lilienfeld and Stolley (1984, pp. 138–139) and Cromley and McLafferty (2002,
pp. 214–215) both provide an example of location issues based on a study of
endemic typhus fever in Montgomery, Alabama, originally published by Maxcy
(1926). Maxcy mapped residences of cases revealing little spatial pattern. Maxcy
then mapped occupational sites for cases showing a concentration of cases in the
city’s central business district. Closer examination of additional data associated
with type of occupation showed higher incidence for employees of food depots,
groceries, feed stores, and restaurants, suggesting a rodent reservoir of the disease
with transmission via fleas, mites, or lice. This study illustrates two important
points: (1) residence may not be the primary location of interest (e.g., location of
the relevant exposure), and (2) additional, nonspatial data (here, type of business)
often refine theories linking cases, and eventually, provide more detailed etiologic
hypotheses than location alone.

These are some of the problems that we may encounter when working with
spatial data. There are undoubtedly more that we can expect with particular appli-
cations. It is important to be aware of them, but we should not let them deter us
from spatial analysis. We hold spatial data to very high standards: We do not seem
to expect other types of data to be so widely and publicly available, nor do we have
entire committees ensuring their accuracy and mandating their documentation!

In this chapter we have provided an overview of spatial public health data, from
attributes and features, through geocoding, geodesy, and GIS, to sources, surveys,
and use of ZIP codes. We turn now to spatial data analysis, and as we will see
in the next chapter, this begins with the principles of cartography and the art and
science of visualization.
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Visualizing Spatial Data

map: Unlike photographs, maps are selective and may be
prepared to show various quantitative and qualitative facts,
including boundaries, physical features, patterns, and
distribution.

The Columbia Encyclopedia, 6th ed., 2001

A plague upon it! I have forgot the map.
William Shakespeare (1564–1616), Henry IV,

Part 1, act 3, scene 1, lines 5–6

Maps provide a powerful means to communicate data to others. Unlike information
displayed in graphs, tables, and charts, maps also provide bookmarks for memories.
They remind us of places we visit, a childhood home, and locations of historical
events. In this way, maps are not passive mechanisms for presenting information.
The mapmaker filters the data and its summaries to emphasize what he or she thinks
is important. The map reader filters the map through his or her previous knowledge.
Thus, the reader may not see what the mapmaker intended, and different readers
may see different things in the same map. Consequently, maps inevitably include
many avenues for misunderstanding.

More specifically, maps differ from statistical graphics because the geographic
setting portrayed in the map almost always triggers memories, opinions, and con-
clusions wholly separate from (but perhaps related to) the intent of the mapmaker.
As an example, in viewing a national weather map we almost instinctively examine
our home city first rather than the perhaps more meteorologically interesting storm
brewing across the country. In contrast, in a scatterplot of height versus weight,
many readers note the overall pattern of points first, then try to identify their own
coordinates in reference to the trends depicted in the plot. In studies of health and
potential environmental effects, the “where’s my house?” syndrome affecting map
readers makes maps a very dynamic communication device, as people familiar with
a particular location often bring additional local information into the discussion.
For example, long-term residents of a neighborhood may add relevant information
regarding the precise location of a closed and demolished gas station in a study

Applied Spatial Statistics for Public Health Data, by Lance A. Waller and Carol A. Gotway
ISBN 0-471-38771-1 Copyright  2004 John Wiley & Sons, Inc.

68



CARTOGRAPHY: THE ART AND SCIENCE OF MAPMAKING 69

of spatial patterns of leukemia incidence. In this setting, although the mapmakers
may not have been aware of and did not include the potential exposure, some map
viewers interpret the map in light of this additional information. It is often diffi-
cult (and sometimes impossible) to incorporate such information within a formal
statistical analysis of a particular data set (e.g., such recollections may not occur
in other areas containing similar exposures but no putative increase in health risk,
thereby biasing any estimate of association between exposure and outcome), but the
additions can provide important insight into the potential strengths and limitations
of study conclusions.

In addition to these considerations, map readers often relate the accuracy of the
display of the geographic setting of a data set to the accuracy of the data displayed.
For example, if a map shows particular local geographic features (e.g., roads or
rivers) accurately, map readers often suppose that the same level of accuracy applies
to the local disease rates displayed in the same map. In short, a good map of bad
data often seems much more believable than a bad map of good data, so it is in
the spatial analyst’s best interest to create good maps of the best data available.

This chapter reviews the role of mapmaking in spatial data analysis for public
health through an overview of the field of cartography. We provide a review of the
typical types of maps used in public health studies, notes regarding cartographic
symbolization (i.e., choices regarding point, line, and area symbols, including color
choices), and an introduction to statistical methods for stabilizing local rate esti-
mates based on small numbers of people at risk. We conclude with a description
of geographic, epidemiologic, and statistical issues arising in the analysis of data
aggregated to and mapped in small areas. These topics provide the tools necessary
for constructing accurate and effective maps of data and output for the statistical
models described in subsequent chapters.

4.1 CARTOGRAPHY: THE ART AND SCIENCE OF MAPMAKING

The science of geodesy defines, through geometrical models of the Earth and map
projections, the planar system within which we display our data. Cartography
involves our decisions of which data to display and how we will display them; it
is simply the art and science of mapmaking. The science provides the canvas and
the frame, and the art provides the pens, brushes, and palette for creating the map.
The art analogy is not too farfetched since we often cannot display all data items
simultaneously in a single map, so we select certain features to highlight, and use
the map and the symbols contained therein to aid in making and communicating
the conclusions of our spatial analyses. As noted in the introduction to this chapter,
the map serves as a point of communication between the mapmaker (in our case,
the spatial analyst) and the map reader (e.g., a research collaborator, a journal
reader or referee, or the general public). This communication has been the focus
of much of the research literature in cartography since World War II. Monmonier
(1996) provides a readable introduction to issues relating to making and read-
ing a map; Slocum (1999) gives a comprehensive introduction into the principles
of cartography illustrated with many examples; while MacEachren (1994, 1995)
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provide a more detailed typology of cartographic elements, their purposes, and
their uses.

MacEachren (1995, pp. 2–6) cites two developments since World War II driving
much of modern cartography: the publication of Arthur H. Robinson’s dissertation
in 1952 (Robinson 1952), followed by the developing view of cartography as a
communication science in the 1970s. Robinson (1952) recognized that a solely
artistic consideration of map design could often lead to increased map misinter-
pretation and proposed the detailed study of map perception in order to develop
objective rules for map design. This view, coupled with an increasing appreciation
of the communicative nature of maps, provides a rich array of methods for the
cartographic display of spatially referenced data.

The rise of modern computing also dramatically affected the field of cartography
(National Research Council 1997, p. 57). This impact is evident not only in the
development of GISs to store, manage, and link spatial data but also in the evolution
of new visualization techniques, including dynamic animated maps (Slocum 1999,
Chapter 14) and interactive and multimedia maps linking geographic information
with videos, sounds, pictures, and text. In the public health field, one of the earliest
animated maps for desktop computers involved visualization of the spread of AIDS
at the county level for Pennsylvania (Gould 1989; National Research Council 1997,
p. 58). The capability to link additional information and to allow users to explore
maps and related data personally led to the growth and expansion of electronic
atlases. The development and design of Internet-based mapping tools remains an
active area of cartographic development.

4.2 TYPES OF STATISTICAL MAPS

There are many different ways to classify map types in order to discuss and illus-
trate general mapping approaches and cartographic principles. Such approaches and
principles necessarily vary with the purpose of the map. For example, the infor-
mation we need from a map to be used for urban planning and zoning will be
quite different from the information we need to hike the Grand Canyon. Thus (this
being a statistics book and not a hiking guide), we focus our attention on some of
the general types of maps that can be useful for displaying the spatial variation of
quantitative data (e.g., disease rates, exposure levels, and population densities). We
use data from the following map study for illustration and discussion.

MAP STUDY: Very Low Birth Weights in Georgia Health Care District 9
Rogers et al. (2000) presented the results of a case–control study of the risk of
having a very low birth weight (VLBW) baby, defined as weighing less than 1500
grams at birth. The study area comprises 25 contiguous counties in southeast-
ern Georgia, collectively referred to as Georgia Health Care District 9 (GHCD9)
(Figure 4.1). Cases were identified from all live-born, singleton infants born bet-
ween April 1, 1986 and March 30, 1988. Controls were selected for this study by
drawing a 3% random sample of all live-born infants weighing more than 2499
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FIG. 4.1 Counties comprising Georgia Health Care District 9.

grams at birth. This sampling was constrained so that the controls met the same
residency and time-frame requirements as the case subjects.

The addresses of the birth mothers were geocoded to produce georeferenced
point location data. The maps presented in this chapter are based on a total of 230
cases and 550 controls. The number of live births per county was also recorded,
enabling calculation of a VLBW rate for each county.

Emissions data for 1986–1988 on 32 industrial facilities within GHCD9 were
obtained from the Georgia Environmental Protection Division (GAEPD) of the
Georgia Department of Natural Resources. These industries produce chemicals,
plastics, fertilizers, asphalt, wood, paper, and gypsum, and according to the
GAEPD, account for almost 95% of the approximately 45,000 tons of total sus-
pended particulate (TSP) emissions in the area per year. An atmospheric transport
model was used to predict TSP exposure at the case and control residence locations.
Further details of this study are described in Rogers et al. (2000).

For purposes of illustration in this chapter, we investigate the spatial distribution
of several different variables: (1) the locations of the 230 cases and 550 controls; (2)
the number of live births per county; (3) the VLBW rate per county; (4) 32 original
TSP emissions values [in tons per year/1000 located by universal transmercator
(UTM) coordinates]; and (5) the predicted TSP exposure at each of the 780 point
residence locations (in µg/m3). In the following subsections we use these variables
to illustrate several different types of statistical maps and discuss some of the
cartographic principles and issues associated with each one. Unfortunately, we are
limited to black-and-white figures; more informative maps may be made by creative
use of color (cf. Brewer 1994, 1999; Brewer et al. 1997).
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4.2.1 Maps for Point Features

Many types of data used in public health studies are point features in that they can
be associated with specific geographic point locations. Examples include residen-
tial addresses, locations of hospitals, locations of hazardous waste facilities, and
locations of air pollution monitoring stations. There are several different ways to
display this type of spatial data, depending on the type of attribute data associated
with the point features.

Point Maps A point map uses symbols to delineate the locations in a point feature
class. The main goal of a point map is visualization of the spatial distribution of
the point features. Thus, if there is no attribute information associated with the
locations, or we just want to see where the point locations are relative to one
another and to other features of interest, a point map can be useful. Often, the
symbols are simply filled dots, and in such situations, point maps are often called
dot maps. A dot map of the VLBW case locations in GHCD9 appears in Figure 4.2.

Dot maps of health data are frequently used to monitor the spread of infec-
tious diseases and can be useful in identifying potential point sources of disease
outbreaks. John Snow’s map depicting the clustering of cholera cases around the
Broad Street pump is a famous example (Snow 1855; Frerichs 2000). However,
such maps must be interpreted with caution since the underlying population also
varies spatially. Disease occurs where people are, and any apparent clusters could
simply be due to a large concentration of residents in a given area. This could be

FIG. 4.2 Point map of cases of very low birth weight in Georgia Health Care District 9.
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the situation conveyed by Figure 4.2, where the largest concentrations of VLBW
cases correspond to the large cites shown in Figure 4.1. Note that dot maps of
data that are not based on population (e.g., dot maps delineating the locations of
landfills or monitoring stations) do not have this interpretive problem.

Another type of point map, called a graduated color map, can be used to address
this difficulty (Figure 4.3). Here, the locations of both cases and controls are plotted
on the same map with the same symbol, but two different colors are used to
differentiate cases from controls. The assumption here is that the controls are a
representative sample of the underlying population at risk and thus their spatial
distribution is similar to that of the underlying population at risk. With this type of
map, the spatial distribution of cases is compared to that of controls rather than to
the distribution of the underlying population that is inferred by the reference map
of the counties in GHCD9.

We can also plot point features with continuous attribute information (e.g., pH
or air pollution concentration). With a continuous attribute, we divide values into
several different classes and use different colors and/or symbols to delineate each
class. Such a map is sometimes referred to as a postplot. The goal here is to allow
the map viewer to see the spatial distribution of all locations as well as judge relative
differences in attribute values without the smoothing that results from contouring.
As an example, we use such a map to look at the spatial distribution of predicted
TSP concentration values associated with each residence (Figure 4.4). Here, we are
not interested in the relative arrangement of locations but in the spatial variation
in TSP concentrations.

FIG. 4.3 Graduated color map of cases of very low birth weight and controls in Georgia Health Care
District 9. Case locations are indicted with filled circles; control locations are designated by the open
circles.
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FIG. 4.4 Graduated color postplot of predicted TSP concentrations (in tons per year) in GHCD9.

Many other options for symbology in point maps also exist. With a point symbol
map, different events of interest are indicated by different symbols (e.g., using
filled and open circles for case and control locations as in the example above). We
can also use pictorial icons to represent particular locations (e.g., red crosses for
hospitals, airplanes for airports, flags for schools).

There is no reason to limit ourselves to the two-dimensional map view. We can
also use the usual statistical scatterplot in three dimensions. With this type of plot,
we plot attribute values on the z-axis and plot locations in the (u, v) plane. An
example based on the original 32 TSP values appears in Figure 4.5.

Contour Maps For spatially continuous attribute variables with point support,
point maps may be inadequate to really allow us to visualize the spatial distribution
of the attribute values. For example, referring to Figures 4.4 and 4.5, we can easily
see where the high and low TSP concentrations are, and we can obtain an overall
indication of broad geographic trends. However, we really cannot assess more
complicated trends and spatial patterns in the values. Also, point maps may not
be very informative if we have a large number of points or if some of the spatial
locations are very close together.

Another approach to visualizing spatially continuous attribute values is to use
a contour map. Contour maps represent values of an attribute variable in two
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FIG. 4.5 Three-dimensional scatterplot of the original 32 TSP concentrations (in tons per year/1000)
in GHCD9. UTMX denotes the u-axis and UTMY the v-axis (measured in UTM coordinates).

dimensions using lines of equal values, called isolines, across the extent of the
map. To construct a contour map, we must first “fill in the holes” between the data
locations. This is done with a process called gridding, the systematic interpolation
of attribute values onto a regular arrangement (or grid) of spatial locations with
our domain of interest. We discuss statistical methods for gridding in Section 8.3.
For now, we simply focus on the visualization aspect of the maps and not their
methods of construction.

We can display a contour map in several ways. First, we must decide how many
isolines to use. Certainly, if we use just one isoline, our map will be too vague, and
if we use too many isolines, our map will be too busy. Typically, between 5 and
10 isolines are used. We can draw the isolines and label them numerically on the
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FIG. 4.6 Filled contour map of predicted TSP concentrations (in tons per year) in GHCD9.

map, or use different colors to designate particular isolines or sets of isolines. For
example, if the data contain a central reference value (e.g., a mean concentration
or regulatory limit), one can used thick and thin lines to mark isolines associated
with values above and below the reference value, respectively. One popular contour
map, called a filled contour map, uses color and patterns between the contour lines.
Figure 4.6 illustrates this type of map for the TSP concentrations predicted. This
map is a smooth version of the postplot in Figure 4.4. It is much easier to see the
spatial distribution in the TSP concentrations in this map than it is in the postplot.

Again, we are not limited to two-dimensional display. A surface map is a three-
dimensional representation of gridded attribute data. Instead of shading the attribute
values like we do when constructing a contour map, we simply plot the interpolated
attribute values on the z-axis as a function of the spatial locations in the x, y plane.
A surface map of the predicted TSP concentrations is shown in Figure 4.7. This
map is a smooth version of the three-dimensional scatter diagram in Figure 4.5.

Image Maps Image Maps show the values of a spatially continuous attribute
variable as variation in colors assigned to a regular array of pixels. The most
common examples of image maps are satellite images and aerial photographs. An
example of an aerial photograph is shown in Figure 4.8.
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FIG. 4.7 Surface map of predicted TSP concentrations (in tons per year) in GHCD9.

4.2.2 Maps for Areal Features

Often, attribute values are associated with an area as opposed to a specific point
on the map, for example, the number of births per county in GHCD9. Information
associated with an area on a map is called areal or regional data. There are several
approaches for visualizing areal data.

Classed Symbol Maps With these maps, a symbol is located at the center of each
region and the attribute value associated with each feature is indicated by the choice
of symbol. With a graduated symbol map the symbol size (often, a filled circle)
varies with the attribute value or class of values. Figure 4.9 displays the number
of very low birth weight babies per county in using a graduated symbol map.
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FIG. 4.8 Aerial photographs. The top photograph is Carol Gotway’s neighborhood and the bottom
photograph is Lance Waller’s neighborhood. Both neighborhoods are in Atlanta, Georgia.

With a proportional symbol map the symbol size is proportional to the magnitude
of the attribute values in each class. Figure 4.10 is an example of a proportional
symbol map where the size of each stork indicates the relative number of live births
per county.

Choropleth Maps Choropleth maps are probably the most common type of map
for the display of areal data. These maps use different color and pattern com-
binations to depict different values of the attribute variable associated with each
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FIG. 4.9 Graduated symbol map of the number of cases of VLBW per county in GHCD9.

area. Each area is colored according to the category into which its corresponding
attribute value falls. Figure 4.11 is a choropleth map of very low birth weight
rates per county in Georgia Health Care District 9. Here, counties with the dark-
est shading have the highest rates of very low birth weight births; counties with
the lightest shading have the lowest rates. The legend provides us indication of
the overall magnitude of the rates and the magnitude of the relative differences in
attribute values that correspond to the range of colors used in the map.

Many cartographers find the choropleth map a relatively crude method of dis-
playing data, particularly data such as disease rates or exposure values, which vary
continuously in space. Several statisticians share this view; for instance, Tukey
(1988, p. 116) offers the following advice to users of choropleth (“patch”) maps:
“Pray.” A primary reason for these concerns is that a choropleth map of continuous
values presents the true (unknown) surface, often assumed to be smoothly varying,
as a piecewise set of constant regional levels. However, many demographic data
(e.g., age, race, and gender) utilized in studies of public health are only available
in aggregate for enumeration units associated with the decennial census and pro-
jections from these data for intercensus years. As a result, choropleth maps often
figure predominately in public health studies.
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FIG. 4.10 Proportional symbol map of the number of live births per county in GHCD9.

A variety of cartographic possibilities exists, even within the family of choro-
pleth maps. Classed choropleth maps (e.g., Figure 4.11) assign to each region a
color, gray scale, or pattern associated with one of a set of nonoverlapping intervals
covering the full range of data values. Intervals may be of equal length, or defined
by data quantiles, “natural breaks” in the observed data, or standard deviation units,
or based on substantive considerations (e.g., pollutant levels associated with par-
ticular levels of regulatory action). Some classification schemes optimize particular
criteria, but all should be considered in light of the application at hand. Quantiles
provide (roughly) equal numbers of regions in each class, while equal intervals
provide interpretable ranges and can better indicate skewness in the outcome distri-
bution. Slocum (1999, Chapter 4) provides a valuable summary of options for data
classification for choropleth maps and illustrations of the differences between them.

Unclassed choropleth maps assign color, gray scale, or pattern according to
a continuous range (e.g., saturation of a single hue going from light to dark red)
where the value associated with each region corresponds to a unique assignment
along this continuum and no two regions share precisely the same color, gray scale,
or pattern unless they have the same attribute value. Debates regarding the relative
merits of classed and unclassed maps peppered the cartographic literature from the
1970s into the 1990s, and Slocum (1999, Section 4.2) provides an overview of the
issue and many examples of both types of maps, illustrating the advantages and
disadvantages of each.
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FIG. 4.11 Choropleth of VLBW rates per 1000 people per year in GHCD9.

The appropriate selection of a map type depends on the experience and famil-
iarity of the map readers as well as the map creators. With particular reference
to maps of disease rates, Pickle et al. (1994) report that the epidemiologists they
interviewed preferred classed choropleth maps and used them more accurately than
competing types of maps. As a result, we expect classed choropleth maps to remain
in fairly wide use within public health for some time to come.

Three-Dimensional Display The three-dimensional depiction of a choropleth map
is called a prism map or a stepped statistical surface (see Figure 4.12). It uses raised
polygons, or prisms, of different heights, patterns, or colors to indicate the values
or classes of values of the attribute variable. Block maps are similar but use blocks
(narrow rectangular prisms within each region) instead of area-shaped prisms to
indicate the relative values of the attribute variable. These types of maps make
it easier to see connected regions with the same class of values. However, it can
be difficult to choose a good angle (tilt) and perspective (rotation) for viewing,
particularly if there are many regions.

Dot Density Maps Not to be confused with dot maps described in Section 4.2.1,
dot density maps derive from aggregated data. Each region has an associated
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FIG. 4.12 Prism map of VLBW rates per 1000 people per year in GHCD9.

attribute value (e.g., the number of live births in a given time period). Instead
of representing each regional value through shading or a proportional symbol, we
add a number of dots to each region, representing that region’s attribute value. For
instance, we could assign a dot for each 100 live births in a county over the study
period. We place dots randomly within each region. Visually, the density of dots in
each region represents the value in a given area. The more points in a given area,
the higher the attribute value in that area.

Dot density maps can be very misleading in public health applications since
it is easy for map readers to assume that each dot on the map represents the
actual location of an event. For example, consider the number of cases of very
low birth weight for each county obtained by adding the total number of cases
of VLBW in each county. Figure 4.13 shows a dot density map constructed from
these aggregated data. Since there are very few cases of VLBW per county, we use
one dot for each case. In this instance, the number of dots per county represents
the number of cases, but the locations of the dots within each county are randomly
generated and do not represent the location of case residences. Recall that case
locations appear in Figure 4.2. We find it far too easy for map readers to assume
that the map in Figure 4.13 represents the same spatial information as the map in
Figure 4.2, when, in fact, the accuracy of event locations is actually very different
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FIG. 4.13 Dot density map derived from the number of cases of VLBW aggregated by county. One
dot corresponds to one case of VLBW.

between the two maps (accurate to the county level or accurate to the individual
level, respectively). While dot density maps most often assign multiple events to
each dot (e.g., a single dot represents 100 cases), we find the visual temptation to
interpret mapped dots as actual case locations to be far too strong to recommend
use of dot density maps for public health applications.

Other Maps Although we review and illustrate several basic types of maps used
to visualize spatial data in this section, there are many others (some of which
we mention briefly in Section 4.6). Which type of map we use and our selection
of particular visualization options (e.g., classes and colors in a choropleth map)
depend on the type of spatial features, the nature of the attribute values, and the
message we want to convey. Often, the best approach is to try different maps with
different visualization options and then compare results. For example, with the very
low birth weight births, the nature of the spatial variation and our color limitations
(to shades of gray only) lead us to prefer a choropleth map over a prism map. The
tilting and rotation used to obtain a decent viewpoint seems to distort the prism map
somewhat, and even then, some of the higher prisms hide lower prisms, making
this map visually unappealing and difficult to read.
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4.3 SYMBOLIZATION

Once we choose a map type (or perhaps types) to display our data, we must also
consider the symbolization used to display the data within the map. Computer-based
mapping routines with GISs offer a wide variety of point, line, and area symbols
to consider. Cartographic principles offer guidance on symbolization, which again
depends on the type of data, the message to be delivered, and the medium used to
deliver it.

4.3.1 Map Generalization

The first consideration is that of map generalization, which governs the level of
detail represented in geographic features displayed on a map. For instance, we
display most linear features such as rivers or roads as collections of connected line
segments. The generalization question involves how many segments we should
use to approximate the continuous nature of our “linear” feature. Generalization
affects issues in GIS map layering. For instance, if we use two layers containing
boundaries of the same feature (e.g., a census tract) stored at different levels of
generalization, we may have difficulty resolving the borders. Generalization issues
are often internal to many GISs, but can affect the construction of maps with layers
from a variety of data sources. McMaster and Shea (1992) provide an overview of
map generalization and its basic components.

4.3.2 Visual Variables

Next we consider the choice of symbols to represent particular geographic fea-
tures (Monmonier 1996, Chapter 10). Bertin (1983) defines the basic typology of
visual variables pertaining to the symbolization of maps. These variables include
location in the plane, size, shape, orientation, texture, gray-scale value, and color.
Slocum (1999, p. 23 and Section 2.3) presents these in some detail, and both Mon-
monier (1996, p. 20) and MacEachren (1994, p. 16) provide tables illustrating these
variables for points, lines, and areas.

The first two variables are fairly straightforward. Location in the plane provides
the spatial structure and support of our geographic data. Size of point features
indicates actual or relative value, or identifies subgroups of points. Size of line
features typically corresponds to width, where, for example, wider lines correspond
to interstate highways and narrower lines correspond to local streets. Using size
symbolization for area-based data typically involves the use of graduated symbols
within each area (e.g., Figures 4.9 and 4.10).

Shape corresponds to icons associated with each geographic feature. Point fea-
tures may be displayed using pictorial representations providing the map reader
with widely differing visual impressions. As a quick example of the impact of
symbolization, if we replace the largest storks in Figure 4.10 by skulls and cross-
bones, our first impression is likely one of distress for areas associated with this
symbol.
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Orientation provides another mode of visual distinction. One example is the
use of wind direction symbols in meteorologic maps, but the idea is quite general.
We could indicate local positive and negative deviations from an overall mean by
slanting lines to the right or the left at points, along lines, or within areas.

Texture, gray-scale value, and color refer to the graphical patterns or colors
assigned to points, lines, and areas. The primary consideration in the assignment
of textures, gray-scales, and colors should be the message the mapmaker wishes to
convey. In the next section we present recommendations drawing primarily from
research involving color (Brewer 1994, 1999; Brewer et al. 1997), but many of the
same principles apply to texture and gray-scale values.

4.3.3 Color

Monmonier (1996, Chapter 11) provides an introduction to the “attraction and
distraction” of the use of color in maps, and Brewer (1994) and Slocum (1999,
Chapter 6) provide thorough reviews of the role of color in modern cartography.
Color is a three-dimensional concept consisting of hue (e.g. red, green, or blue),
lightness or value (e.g., light versus dark), and saturation or chroma (e.g., dull
versus vivid). Varying one or more of these dimensions results in different colors.
Brewer (1994) notes that viewers tend to perceive differences between colors most
readily when changing hue, and perceive ordering most readily when changing
lightness (with darker colors perceived as “higher”). That is, a map viewer can
quickly tell that a green region is somehow different from a red region, but can
more readily report that the light green region is somehow “lower” than the dark
green region. While chromatic (rainbow) colors have an optical ordering (red <

orange < yellow < green < blue < violet), ordering, say, orange relative to green
often requires more thought than ordering light green and dark green (Monmonier
1996, p. 168).

Brewer (1999) suggests dichotomies helpful in determining the appropriate use
of color for maps, based on the underlying message that a mapmaker wishes to
convey. The first is the distinction between sequential and diverging patterns in
mapped values. With sequential patterns, we want our map readers to readily iden-
tify which values are higher or lower than other values. As noted above, lightness
is the color dimension best suited for sequential perception. For diverging patterns,
we want our map readers to easily identify ordering in two directions. For instance,
if we assign blue to counties having lower than average rates and red to counties
having higher than average rates, the reader can quickly separate the blue from
the red counties. Brewer (1999) notes that map readers identify differences in hue
more readily than differences in lightness or saturation for diverging patterns. By
varying lightness within each hue (e.g., light to dark blue for intervals moving
farther below the mean, and light to dark red for intervals moving farther above
the mean) we allow readers to quickly identify counties with rates above or below
the state rate and to order counties within each of these two classes. The Atlas of
United States Mortality (Pickle et al. 1996; Brewer et al. 1997) uses this sort of
scheme for precisely these reasons.
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Brewer (1999) also considers qualitative and binary mapping goals where we
want our map viewer to be able to distinguish between several or two categories,
respectively. In these cases, differences in hue provide the preferred color scheme,
but some thought should go into the particular hues. For instance, three cate-
gories colored bright yellow, dark green, and dark blue do not provide equal visual
distinction between all categories.

Finally, color choices also involve considerations of color choices for colorblind
readers, color choices for display on computer terminals, color choices for color
printing, and color choices for various projection options. Cynthia Brewer syn-
thesizes much of her research (referenced above) in the “ColorBrewer” Web site,
which provides automated assessments of particular color schemes with respect to
these particular presentation issues.

4.4 MAPPING SMOOTHED RATES AND PROBABILITIES

We now turn from choices governing the type and structure of a map, to consid-
erations of what values to map. The typical goal of mapping public health data
is to provide insight into geographic variations in disease risk. Risk is simply the
probability that an unfortunate event occurs. In public health, the unfortunate event
is usually the contraction of or death from a specific disease. When we make a
map of disease counts, proportions, or rates, we are ultimately intending to con-
vey inferences about disease risk. However, a map of raw counts is not the best
tool for inference about disease risk, since we expect regions with larger popu-
lations to have higher disease counts. We can account for population differences
by using rates (disease incidence per person per time) as measures of risk. Higher
disease rates reflect greater chances for contracting the disease, and thus, viewed
this way, rates reflect a person’s risk for disease. However, a map of rates may
still obscure the spatial pattern in disease risk, particularly if the rates are based on
populations of very different sizes. Since the variability in the estimated local rates
depends on population size, some rates may be better estimated than others, and
this may obscure spatial patterns in disease risk. Rates based on small populations
or on small numbers of disease cases are likely to be elevated artificially, reflect-
ing lack of data rather than true elevated risk. As a simple example, consider a
large metropolitan area with 2 million residents and 2 observed cases of a disease.
Suppose that the study area consists of subregions each containing 100 persons at
risk. For the entire study area the crude incidence rate is 1/1,000,000, while two
of the small areas contain crude rate estimates of 1/100. This is often referred to
as the small number problem.

There are several solutions to this problem. First, we could calculate rates over
larger areas (e.g., use states instead of counties), although this comes at the expense
of giving up some of the geographic information we wish to convey. Second, we
could make a comparative map, one that compares each rate to a common measure
and, in doing so, adjusts for different population sizes. One such map is a prob-
ability map (described in Section 4.4.4). Another approach is spatial smoothing,
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one method for reducing the noise in rates associated with geographic regions.
Spatial smoothers are analogous to scatterplot smoothers in regression analysis and
to moving-averaging methods in time series, adapted to two dimensions. The basic
idea is to “borrow” information from neighboring regions to produce a better (i.e.,
more stable and less noisy) estimate of the rate associated with each region and
thus separate out the “signal” (i.e., spatial pattern) from the noise. There are many
different approaches to spatial smoothing. We tend to favor those with theoreti-
cal statistical foundations and those that lead to statistical models. Thus, we have
limited our discussion to commonly used approaches that satisfy these criteria and
do not rely on a lot of assumptions, tedious derivations, or complex computa-
tions procedures. Other methods are described in Section 4.6.4 or are given in the
references.

4.4.1 Locally Weighted Averages

We can obtain a smoothed value for each region by simply averaging the val-
ues associated with neighboring regions. With disk smoothing, a circular or disk
smoothing window of specified radius is centered at the centroid of each region.
The smoothed value for each region is then taken to be the average of all the values
associated with centroids that lie within the disk. Thus, if r1, r2, . . . , rN are the
observed rates, smoothed rates can be calculated as

r̃i =

N∑
j=1

wij rj

N∑
j=1

wij

, (4.1)

where the weights are given by

wij =
{

1 if dij < δ

0 otherwise.
(4.2)

Here dij is the distance (Euclidean, city-block, or any other distance metric)
between the centroids of regions i and j and δ is the disk radius. Casper et al.
(2000) utilize disk smoothing in their atlas of heart disease in women for the
United States.

We may also want simultaneously to weight by population, so that more stable
rates (i.e., those based on larger populations) receive more weight than those based
on smaller populations. Thus, we may want to use

wij =
{

nj if dij < δ

0 otherwise.
(4.3)
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Instead of using circular disks of constant radius defined by geographic proxim-
ity, Talbot et al. (2000) recommend the use of moving windows defined in terms
of constant population size. More generally, we may want to define a smooth-
ing neighborhood that identifies, for each region, the set of regions whose values
are to be used in the local average. A common approach to defining smoothing
neighborhoods is through a spatial proximity measure (discussed in more detail
in Section 7.4.2) that specifies the neighborhood structure and provides suitable
weights for the values being averaged. Different smoothers result from different
choices for the weights. One example, described in Section 3.2.3, is to use adjacency
to define neighbors. Thus, we could use

wij =
{

1 if regions i and j share a boundary

0 otherwise.

Sometimes, it is advantageous to separate the ideas of neighborhood structure
and distance, population, or other types of weighting approaches. Thus, we define
N i = {j : region j is a neighbor of region i}, as the neighborhood set of the ith
region, where j ∈ Ni , implies that region j is a neighbor of region i. Thus, we
can write the locally weighted mean as

r̃i =

N∑
j=1

w∗
ij rj I [j ∈ Ni]

N∑
j=1

w∗
ij I [j ∈ Ni]

, (4.4)

where

I [j ∈ Ni] =
{

1 if regions i and j are neighbors

0 otherwise
(4.5)

and w∗
ij can be any weights of our choosing. For example, choosing w∗

ij = nj and
Ni = {j : dij < δ}, will give us the same overall weighting as using the weights
in equation (4.3) with the smoother in equation (4.1).

Regardless of the weighting function chosen, all means (weighted or not) are sen-
sitive to extreme observations and skewed distributions. More resistant smoothers
can be constructed by using medians rather than means. With median-based disk
smoothing, smoothed values are obtained as the median of all values in each disk.
This idea can be extended to incorporate weighted medians and other robust mea-
sures of central tendency.
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4.4.2 Nonparametric Regression

Suppose that we have data Y1, Y2, . . . , YN from a probability distribution f (y|ξ),

where ξ is an unknown parameter that we wish to estimate. The locally weighted
mean described in Section 4.4.1 is a special case of a more general class of local
estimators that are derived by maximizing the weighted log-likelihood of the data
given by (Brillinger 1990)

N∑
j=1

wij logf (yj |ξ).

Different estimators can be obtained for different distributions and for different
problems. For example, if the data are Gaussian with means ξi and common vari-
ance σ 2, we can estimate ξ by maximizing the weighted log-likelihood with respect
to ξ. Thus,

ξ̂i =

N∑
j=1

wijYj

N∑
j=1

wij

,

which is the locally weighted mean given in equation (4.1) based on the Yj , sug-
gesting that equation (4.1) makes theoretical sense if we assume that local rates
follow a normal distribution. We note that the variance, σ 2, affects any estimate of
standard errors, but not the point estimates ξ̂i .

More often, we consider rates, ri = Yi/ni, where Yi is assumed to follow a
Poisson distribution with mean (and variance) niξ. Here ξ represents the probability
of any person contracting a disease (i.e., the risk of disease), and we wish to map
locally smoothed estimates of ξ to investigate whether the individual risk (rate)
or disease appears to vary across the study area. In this setting, the approach of
Brillinger (1990) yields a locally weighted estimate of ξ for the ith region, the
locally smoothed rate r̃i given by

r̃i =

N∑
j=1

wijYj

N∑
j=1

wijnj

. (4.6)

This estimate differs from the locally weighted mean given in equation (4.1) and
represents a ratio of two smoothers, one applied to the Yi and one applied to the
ni (cf. Kafadar 1996). Such a smoother might be advantageous if we also want to
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explicitly consider, and smooth out, variations in population data that might arise
from sampling or counting errors.

As before, different estimators result from different choices of weights. We can
use a very general notion of weights through the use of kernel functions, by defining

wij = kern

(
si − sj

b

)
,

where si and sj denote the spatial locations of the centroids of regions i and j. The
kernel function, kern(·), is a bivariate probability density function that is symmetric
about the origin and integrates to 1 over the domain. The parameter b, called the
bandwidth, controls the amount of smoothing. Here we assign decreasing weight
to observations Yj as the distance between locations sj and si increases. Larger
values of b result in including more areas in the smoothing neighborhood and
lead to maps with less geographic variation (i.e., “smoother” maps). With kernel
smoothing, smoothed rates are computed as

r̃i =

N∑
j=1

kern

(
si − sj

b

)
Yj

N∑
j=1

kern

(
si − sj

b

)
nj

.

We provide a much more detailed description of kernel smoothing and examples
of kernel functions in Section 5.2.5.

We can also consider local polynomial regression estimators. Instead of a locally
weighted mean, a weighted regression estimate is obtained in each neighborhood.
This approach was first proposed by Cleveland (1979) for scatterplot smoothing
and is now known as a class of smoothers referred to as loess smoothers. It
was then adapted to multivariate smoothing by Cleveland and Devlin (1988). Let
si = (ui, vi) be the centroid of region i and let Yi denote the corresponding outcome
variable of interest. In loess smoothing, we regress Yi or ri on functions of ui and vi

using just the values at the locations closest to (ui, vi). The number of neighboring
values used in each local regression is specified as a fraction of the values, called
the span. The regression is weighted using a user-specified function of the distance
between si and the centroids of its neighboring regions. The smoothed value at
each si is then the predicted value from the locally weighted regression surface.

4.4.3 Empirical Bayes Smoothing

The smoothing approaches outlined earlier “borrow” information from nearby
regions to stabilize local estimates through the use of various weighting schemes.
One set of smoothed rates results from a set of weighted average of neighboring
rates, the other from a weighted average of incidence counts divided by a weighted
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average of population sizes. Another, somewhat more formal approach uses proba-
bility models to obtain smoothed estimates consisting of a compromise between the
observed rate for each region and an estimate from a larger collection of cases and
persons at risk (e.g., the rate observed over the entire study area or over a collec-
tion of neighboring regions). The compromise combines the rate from each region,
which can be statistically unstable due to the rarity of the disease and the relatively
small number of people at risk, with an estimated rate from a larger collection of
people which is more statistically stable but has less geographic resolution.

Clayton and Kaldor (1987) propose a Bayesian approach to this problem which
defines the analytic form of the compromise estimator. Bayesian statistics in gen-
eral treats all unknown model parameters as random variables, and the goal of
inference is to define the distributions of these variables, thereby providing point
and interval estimates, predictions, and probability calculations. Analysts derive
these distributions based on a combination of prior information or beliefs regard-
ing the variables and the observed likelihood of parameter values in light of the
data. Analysts summarize prior beliefs regarding the possible values through spec-
ification of a prior distribution assigning a probability distribution without regard
or reference to the data. Data inform on the variables of interest through the likeli-
hood function (the same likelihood function used in maximum likelihood analysis).
The likelihood function summarizes the conditional probability distribution of the
data, given the value of the unknown parameters. The posterior distribution reflects
the conditional distribution of model parameters, given the data, and represents a
compromise between the prior distribution and the likelihood function, thereby sum-
marizing the distribution of the random variable(s) of interest, taking into account
both prior beliefs and the information observed in the data. To be more specific,
if we have a vector of data values Y = (Y1, . . . , YN)′, and a corresponding vector
of model parameters ξ = (ξ1, . . . , ξN )′, and if we allow f (·) to denote a general
probability density function, we have

prior = f (ξ)

likelihood = f (Y|ξ )

posterior = f (ξ |Y) = f (Y|ξ )f (ξ)/const,

where “const” denotes a normalizing constant [equal to
∫

f (Y|ξ )f (ξ)dξ , ensuring
the posterior density f (ξ |Y) integrates to 1]. Bayes’ theorem provides a connec-
tion that allows the reversal of conditioning between the likelihood function and the
posterior distribution, leading to the term Bayesian statistics. In a Bayesian setting,
all inference regarding the model parameter ξ stems from the conditional distribu-
tion of ξ given the data Y (i.e., the posterior distribution). Carlin and Louis (2000)
and Gelman et al. (2004) provide thorough introductions to Bayesian inference and
its application in a wide variety of data analysis settings.

Bayesian inference depends on the prior distribution. The use of a “non-informa-
tive” prior distribution results in a posterior distribution very similar to the like-
lihood function, while an overly “informative” prior may result in a posterior far
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removed from the likelihood function. The central role of the prior distribution is a
point of contention for many regarding the utility and applicability of the Bayesian
paradigm. An in-depth discussion of the philosophical issues involved in this debate
is beyond the scope of this book. Instead, we illustrate how incorporation of par-
ticular prior distributions achieves our goal to borrow information (often termed
borrowing strength in the statistical literature) from other areas to stabilize local
rates while maintaining a very sensible probabilistic structure to the problem.

To begin, we build a probability model describing our data. Assume that the
disease counts Yi represent random variables, each following a Poisson distribution
with mean equal to niξi , where ξi denotes the risk of a person residing in region
i contracting the disease during the study period. Given this local probability of
disease, we have

Yi |ξi
ind∼ Poisson(niξi). (4.7)

Under this model, we are assuming that the Yi are conditionally independent given
the ξi . This does not mean that the Yi are mutually independent; rather, this implies
that any spatial correlation observed in the Yi is a function of spatial trends in either
the population sizes ni (considered to be fixed, known quantities) or in the local
individual risks ξi for i = 1, . . . , N .

In a Bayesian analysis, the likelihood function is defined by the conditional
distributions defined in equation (4.7) (recall that the likelihood represents the dis-
tribution of the data given the model parameters). Since the Yi are conditionally
independent given the ξi parameters, the likelihood takes a particularly simple form
and is defined as the product, across all regions i = 1, . . . , N, of the conditional
distributions given in equation (4.7).

A Bayesian analysis treats the ξi as random variables, and we next define a prior
distribution for each ξi . To begin, we follow Marshall (1991) and denote the prior
mean by Eξ(ξi) = mξi

and the prior variance by Varξ (ξi) = vξi
. Equation (4.7)

gives the mean and variance of the observed local count, Yi , conditional on the
value of ξi , as niξi . Therefore, the conditional mean and variance of the local rate
observed, ri , of disease are

E(ri |ξi) = E[(Yi/ni)|ξi] = ξi

and
Var(ri |ξi) = Var[(Yi/ni)|ξi] = ξi/ni ,

respectively.
To find the unconditional mean of the rate observed in region i, ri , we need to

take the expectation over ξi of the conditional expectation:

Er(ri) = EξE(ri |ξi) = Eξ(ξi) = mξi
,

where Er and Eξ denote expectation with respect to the marginal distributions of r

and ξ , respectively. The unconditional variance of ri equals the sum of the variance
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of the conditional mean with respect to ξi and the expectation of the conditional
variance:

Varr (ri) = Varξ (ξi) + Eξ(ξi/ni) = vξi
+ mξi

/ni .

Deriving the best linear Bayes estimator of ξi by minimizing the expected total
squared-error loss yields (Marshall 1991)

ξ̂i = mξi
+ Ci(ri − mξi

)

= Ciri + (1 − Ci)mξi
, (4.8)

where Ci = vξi
/(vξi

+ mξi
/ni) is the ratio of the prior variance to the data vari-

ance. This ratio is called the shrinkage factor since it defines how much the crude
rate, ri = Yi/ni , “shrinks” toward the prior mean. Note that the estimator defined
in equation (4.8) corresponds to a weighted average of the crude estimate and the
prior mean. When the population size, ni, is small, Ci → 0, and the Bayes esti-
mator is close to the prior mean, mξi

. However, when the expected count is large,
Ci → 1, and the Bayes estimator approaches the rate observed. In short, the Bayes
estimator provides an approach that borrows strength from the prior mean, where
the amount of strength borrowed depends on the stability of the crude local estimate
as measured by the prior variance.

To compute the estimates, we require values for mξi
and vξi

. In a fully Bayesian
approach, these parameters are also considered to be random variables and given
prior distributions called hyperpriors. The hyperpriors may depend on random
variables that are also assigned prior distributions. This hierarchical specification
can continue through many levels, but at the last stage of the hierarchy, values
must be given for any unknown parameters. In empirical Bayes estimation, the
unknown parameters are estimated from the data. In the case described above,
Marshall (1991) assumed that mξi

≡ mξ , and vξi
≡ vξ (i.e., the same prior mean

and variance for all regions) since the model is otherwise overspecified (i.e., there
are more unknown parameters than there are data values). With this assumption,
Marshall (1991) uses the method of moments to estimate mξ, vξ , and Ci. The
method-of-moments estimator of the overall mean, mξ, is just the weighted sample
mean,

m̃ξ =
∑N

i=1 rini∑N
i=1 ni

. (4.9)

The weighted sample variance is

s2 =
∑N

i=1 ni(ri − m̃ξ )
2∑N

i=1 ni
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and has expected value (ignoring estimation of mξ ) vξ + m/ n, where n = ∑N
i=1

ni/N. Thus, the method-of-moments estimator of vξ is

ṽξ = s2 − m̃ξ

n
. (4.10)

If this quantity is negative, we will use zero as our estimate of vξ , to avoid neg-
ative variance estimates. Substituting m̃ξ and ṽξ from equations (4.9) and (4.10),
respectively, into the expression for Ci gives the method-of-moments estimator of
the Bayes shrinkage factor as

C̃i =




s2 − m̃ξ / n

s2 − m̃ξ / n + m̃ξ /ni

if s2 ≥ m̃ξ / n

0 otherwise.

Substituting these values into equation (4.8) yields the empirical Bayes estimator

ξ̂i = m̃ξ + C̃i(ri − m̃ξ ). (4.11)

This estimator, based on method-of-moments estimates of the prior mean and vari-
ance, provides the most straightforward empirical Bayes estimates of local disease
rates. We can derive other Bayes estimators by assuming different prior informa-
tion about the ξi or by using different methods to estimate the prior parameters (cf.
Clayton and Kaldor 1987; Marshall 1991; Bailey and Gatrell 1995, pp. 303–308).
However, all empirical Bayes estimators have the general form given in equation
(4.8), namely, a weighted sum of the prior mean and the crude local rate. Devine
et al. (1994) provide a thorough discussion and illustration of the use of different
empirical Bayes estimators in epidemiology.

We note that the Bayes estimators described above are global in that they
“shrink” each observed rate toward the prior mean, mξ . We could obtain local
empirical Bayes estimators by considering locally defined prior means (e.g., define
a prior distribution for ξi that results in shrinkage to the mean of rates observed
from regions neighboring region i). In this case, the estimates shrink each ri to its
neighborhood mean rather than the global mean. We illustrate such an approach in
the data break following Section 4.4.5.

Compared to the smoothing methods defined in Sections 4.4.1 and 4.4.2, empiri-
cal Bayes smoothers may seem more complicated in definition and implementation.
The additional structure comprising the Bayesian framework offers a richer frame-
work for modeling covariate effects and spatial correlation structures, somewhat
offsetting the initial effort in model specification and estimation.

For instance, suppose that we wish to consider age-standardized rates to adjust
for differing age distributions among persons at risk within each region. The
weighted averages presented in Sections 4.4.1 and 4.4.2 do not accommodate dif-
fering age structures easily. However, Clayton and Kaldor (1987) illustrate a fairly
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simple adjustment to the empirical Bayes estimates above, adjusting regional dis-
ease risks (rates) for differences in age or other risk factors. First, suppose that
our data involve not only the disease counts Y1, Y2, . . . , YN observed from each of
N regions, but also include a set of counts E1, E2, . . . , EN expected for the same
regions. Second, suppose that the counts expected represent standardized counts
based on the age structure of the population at risk (see Section 2.3). Recall from
Section 2.3.2 that the ratio of observed to expected counts, Yi/Ei , corresponds to
the local observed standardized mortality ratio (SMRi). SMRi represents the max-
imum likelihood estimate of the relative risk experienced by persons residing in
region i [i.e., the multiplicative increase or decrease in disease risk compared to the
risk (or risks) defining the expected count Ei]. Since we treat the expected counts
as fixed and known (not random) quantities, local SMRs suffer the same statistical
instability as local rates (Yi/ni ) for areas with few persons at risk, particularly
for areas with few cases expected during the study period. Therefore, we need to
borrow information from the other regions to stabilize our local SMRs.

Clayton and Kaldor (1987) propose an empirical Bayes solution based on a repa-
rameterization of the basic probability model defined in equation (4.7). We assume
that each Yi (the random variables representing the disease count in region i) fol-
lows a Poisson distribution with mean (and variance) Eiζi , where ζi represents the
relative risk associated with people residing in region i. Specifically, we assume that

Yi |ζi
ind∼ Poisson(Eiζi). (4.12)

The primary difference between equations (4.7) and (4.12) involves the unknown
parameter. In the former setting we seek a smoothed estimate of an unknown
local risk of disease ξi ; here we seek a smoothed estimate of an unknown local
relative risk ζi . Otherwise, the probability models are identical: The conditional
mean of Yi is the product of a known constant [ni in equation (4.7) and Ei in
equation (4.12)] and an unknown parameter (ξi or ζi ). Therefore, we may define
a method-of-moments empirical Bayes estimate of the SMRi by replacing ni with
Ei in the preceding development.

The full advantage of the approach of Clayton and Kaldor (1987) arises when
we wish to include additional covariates and/or consider various spatial correlation
structures to the relative risk parameters ζi . Besag et al. (1991) provide a widely
applied expansion of the basic structure above, allowing very general application of
Poisson regression with correlated errors. These extended models allow us to assess
covariate effects and incorporate spatial correlation. To avoid a (lengthy) digression
into statistical modeling at this point, we defer discussion of such models to Chapter
9, and limit our consideration here to the smoothing and visualization properties
of empirical Bayes estimators simulations in the examples in this chapter.

4.4.4 Probability Mapping

Noting the problems with rate maps based on small populations, Choynowski
(1959) suggested the use of a probability map as an alternative. If we assume
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that the disease counts, Y1, Y2, . . . , YN are independent Poisson random variables,
we can calculate the probability of any observed disease count, Yi, for each region
using the Poisson distribution. We simply need an estimate of the expected count,
Ei, for each region. We can use an overall mean risk estimate over the entire
domain as ξ̂ = ∑N

i=1 Yi/
∑N

i=1 ni , or perhaps an age-adjusted estimate, as in the
preceding section. Using the overall mean risk for simplicity, we calculate the
expected count in each region as Êi = ni ξ̂ . This implies that the risk is the same
in all areas, and we refer to this as the constant risk hypothesis in later chapters.
Next, we calculate the probability of being more extreme than our observed count
in each region, denoted pi , via

pi =
{

Pr[Yi ≥ yi |E(Yi) = Êi] if yi > Êi

Pr[Yi ≤ yi |E(Yi) = Êi] if yi < Êi.

The pi values are based on cumulative probabilities from a Poisson distribution and
provide an index of deviation from the hypothesis of equal risk. For visualization,
we post the probabilities on a choropleth map and consider regions with probabili-
ties less than 0.05 to have rates significantly different from the average. Cressie and
Read (1989) illustrate this approach using sudden infant deaths in North Carolina.
As demonstrated in both Choynowski (1959) and Cressie and Read (1989), these
maps may be much more informative than maps of raw rates. However, as Cressie
(1993) points out, if the ni are very different, it may not be possible to distinguish
deviations from the constant risk assumption from lack of fit of the Poisson dis-
tribution. Moreover, users of probability maps will usually infer significance for
regions with relatively high population sizes since there is intuitively more sta-
tistical power for detecting differences from a background risk in these regions.
Nevertheless, probability maps offer one approach to assessing the significance of
high rates as opposed to visual inference from a choropleth map or ranking of the
rates themselves in which at least one rate must appear to be the highest.

4.4.5 Practical Notes and Recommendations

In this section we draw on the discussion in this chapter, our experience, and
additional literature to offer some practical recommendations pertaining to the
advantages and disadvantages of smoothing, when to smooth, and which smoother
to use.

Advantages and Disadvantages of Smoothing There are two main advantages to
smoothing rates. The first is that smoothing allows us to stabilize rates based on
small numbers by combining available data at the resolution of interest. We do not
have to aggregate to larger regions to achieve stable rates for mapping. The second
advantage to smoothing is that it reduces noise in the rates caused by different
population sizes, thus increasing our ability to discern systematic patterns in the
spatial variation of the underlying risk.
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Smoothing also has some disadvantages. Smoothed maps are maps of values
other than the raw data values. Many people are leary of statistically adjusted
numbers, particularly if money or power is to be allocated based on them. In fact,
Walter and Birnie (1991) reports that very few official disease atlases include any
sort of smoothing, although two recent U.S. atlases do include smoothed rates
(Pickle et al. 1996; Casper et al. 2000). Another disadvantage of smoothing is that
it can introduce artifacts and autocorrelation into the rate map (see, e.g., Gelman
and Price 1999; Gelman et al. 2004). Thus, smoothing may replace one set of
artifacts (e.g., unstable estimates) in mapped rates with another set of artifacts (e.g.,
correlated estimates) in altered rates. Still, we believe that the visual inferences
obtained from maps of raw rates can often be so misleading that smoothing is a
better choice.

When to Smooth We want to avoid hard-and-fast rules concerning smoothing,
since it is important for people familiar with an actual application or study to use
their knowledge and their instincts in the smoothing decision. Nevertheless, here
are some general guidelines that indicate when rates may be unstable and for which
smoothing should be considered:

1. If the addition of one event (e.g., disease case) or one more person at risk
results in a large difference in one or more of the rates.

2. If a rate changes by 25% or more (although what constitutes such a large
difference should be judged on a case-by-case basis).

3. If the number of events that forms the numerator of one or more of the rates
is less then 3.

4. If the number of persons at risk per region is small (e.g., less than 500 or 100
people) and the numbers change by an order of magnitude or more across
the regions. For example, rates based on 10 people are not easily comparable
to rates based on 100 people.

On the other hand, if we are not looking for individual regions (e.g., counties,
tracts) with elevated rates, but instead want to get a general assessment of broad
trends and patterns, smoothing will help reduce the noise and make the trends and
patterns more clear. Smoothing can reduce our attention to large rates that may be
outliers by focusing it on the overall picture.

What Smoother to Use The most important property of a smoother is its accuracy:
It should correctly identify regions of high and low rates and smooth over rates
that are artificially elevated due to instability. It should not indicate trends or
patterns when no such trends or patterns exist. Using these criteria, Kafadar (1994)
put several smoothers to the test (e.g., locally weighted average, empirical Bayes,
loess, and a technique known as headbanging (cf. Section 4.6.4), applying them
to carefully simulated data where the true spatial variation in the data was known.
Kafadar (1994) found that the locally weighted average smoothers with weights
inversely proportional to distance were the most accurate. Loess and local empirical
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Bayes did not perform as well, particularly in what Kafadar (1994) called high-
noise situations, where there was a lot of variability in the data. However, in such
cases, all smoothers were better than no smoothing.

In addition to the overall accuracy criterion considered by Kafadar (1994), we
suggest that two additional criteria are also important. The first of these is sim-
plicity or ease of use. Since these smoothers are meant to be exploratory tools for
descriptive statistics, a smoother that can be calculated quickly without complex
estimation rules, difficult or tedious programming, and specification of extra param-
eters is preferred. Thus, these criteria argue against the use of empirical Bayes or
loess approaches. However, when we want to go beyond exploratory methods to
inferential statistics in which we can adjust for confounders and perform hypothe-
sis tests, Bayesian and empirical Bayes methods offer several advantages. Another
important criterion in selecting a smoother is whether or not we can obtain standard
errors for the smoothed estimates. The ability to quantify uncertainty is perhaps the
distinguishing characteristic of the field of statistics. For the linear smoothers (e.g.,
locally weighted averages, kernel smoothing, empirical Bayes with Ci known),
deriving standard errors for the smoothed rates is straightforward. For nonlinear
smoothers such as headbanging or empirical Bayes with Ci estimated, developing
such a measure of uncertainty is much more difficult.

CASE STUDY: Smoothing New York Leukemia Data To illustrate some
of the ideas and methods presented in this section, we consider leukemia data
reported and analyzed by Waller et al. (1992, 1994). The data here are the number
of incident leukemia cases from 1978–1982 per census tract in an eight-county
region of upstate New York (Figure 4.14). This figure is enlarged in Figure 4.15,
so we can see the tracts more clearly. Note that the census tracts are smaller in
urban than in rural areas.

The data include 592 leukemia cases among 1,057,673 people at risk. As descri-
bed in Waller et al. (1994), most of the leukemia cases were originally georefer-
enced to census block groups, but some of the cases could not be georeferenced
to this resolution. These cases were then allocated proportionally among the block
groups, so that some of the resulting disease counts are not necessarily integers.
For our purposes here, we aggregate the number of cases per block group to census
tracts. The number of cases per tract ranged from 0.00 to 9.29 cases. Leukemia

FIG. 4.14 Eight-county study area in New York.
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FIG. 4.15 Major cities in the eight-county region.

rates per tract were computed by dividing the number of leukemia cases per tract
by the 1980 population per tract and then again by 5 to obtain rates per 100,000
people per year. Figure 4.16 displays the census tract leukemia rates.

Regions with high observed leukemia rates are of particular interest, so we will
have a closer look at these areas. The tract with the highest rate per 100,000 people,
139.86, is located in Syracuse (it is difficult to see this on the map since the census
tract is very small), but it is based on only 1 case of leukemia and 143 people at
risk. The average population size per tract is 3764 people. Of the highest 10% of
the rates, 15% (5) of these have leukemia counts ≤ 2.1 and these five tracts are
located within the Syracuse area. There does not seem to be a trend in the rates
(i.e., no apparent tendency to increase or decrease systematically in any direction),
but high rates do seem to occur near the larger cities. Some of these cities are also
the locations of hazardous waste sites, and the relationship between the locations of
these sites and the occurrence of the leukemia cases is explored further following
Section 7.6.5. The map shows a great deal of variability, some of which may be
due to the small number of cases used to compute the rates, or to the variation in
population sizes, rather than trends or patterns in the underlying leukemia risk.

To illustrate the effects of smoothing, we first smoothed each rate using the
global empirical Bayes smoother given in equation (4.11) (see Figure 4.17). The
effects of smoothing are obvious: Tracts with low rates have been smoothed upward
toward the mean, and tracts with high rates have been smoothed downward toward
the mean. The spatial variation in the rates has been reduced drastically. The
smoothed rates range in value from 5.46 to 24.27, much different than the same
extrema for the original rates (ranging from 0.0 to 139.86). Even so, a few of the
tracts with high original rates (e.g., those near Cortland and Syracuse) still appear
relatively high.

Next we used a local empirical Bayes smoother. The smoothed rates are
again computed using equation (4.11), but in local neighborhoods. We defined
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FIG. 4.16 Original leukemia rates per 100,000 people per year.

neighborhoods by adjacency:

Nj = {j : tract j shares a boundary with tract i}.

The resulting map appears in Figure 4.18. There is more variability in these
smoothed rates, with values ranging from 0.29 to 26.81. Comparing this map to the
map of the original rates and to the map from global empirical Bayes smoothing, we
can see the effects of the local smoothing: Local smoothing allows more variability
in areas where adjacent tracts have moderately different rates. If the differences
between rates in adjacent tracts are large, the highest rates will be smoothed down
and the lowest rates will be smoothed up to the local mean.

Finally, we computed a locally weighted-average smoother using the same
adjacency-based neighborhood as with the local empirical Bayes smoother. We
used weights equal to the population size in each tract in order to compare the
results more directly with those obtained using empirical Bayes. This smoother is
the same as that of equation (4.11) but without the shrinkage factor and imple-
mented locally. The resulting map is given in Figure 4.19. This map is very similar
to that produced using local empirical Bayes.

Even after smoothing, a few tracts appear to have relatively high rates. This
will always be the case in this type of analysis: by definition, 5% of the rates will
exceed the 95th percentile of the distribution of the rate values. On a choropleth
map, the largest values will necessarily be shaded in the same color, often the
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FIG. 4.17 Smoothed leukemia rates using the global empirical Bayes estimator.
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FIG. 4.18 Smoothed leukemia rates using a local empirical Bayes estimator.
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FIG. 4.19 Smoothed leukemia rates using a locally weighted-average estimator.

darkest. Yet we have to wonder if these rates are unusually high in some sense
(e.g., when compared to an overall background rate). We investigate this hypothesis
more precisely in Chapter 7, but as an additional exploratory tool, we construct a
probability map as described in Section 4.4.4 (Figure 4.20). This map depicts, for
each tract, the probability of observing a rate as extreme or more extreme than our
original rate, under the null hypothesis that all rates are equal to a mean rate. If
a probability is small, there is some evidence against this null hypothesis and we
conclude that the corresponding tract has an unusually high or low rate.

We might be more interested in the rates that are significantly high. Thus, in
Figure 4.21 we have indicated the tracts for which the probability of a higher rate
under the null hypothesis of a constant mean rate is < 0.05. Most of these tracts
are located in large cities, where we would expect the power of detecting elevated
rates to be much higher than in other tracts, due to the large populations in these
tracks. However, many of these tracts were also identified as tracts of concern using
the local empirical Bayes and weighted-average smoothers. Notice, however, that
some of the tracts initially of concern (as indicated on the map of original rates
in Figure 4.16)—those in the westernmost part of the state, south of Auburn, and
those in the northeast region, southwest of Oneida—are not significant on this map.

Although these methods are exploratory, some areas are consistently indicated
as areas of concern, all near cities: Binghamton, Cortland, Ithaca, Syracuse, and
Auburn. We consider additional tests and hypotheses concerning these leukemia
rates in Chapter 7.
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FIG. 4.20 Probability map based on the unadjusted leukemia rates in the eight-county study area.
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FIG. 4.21 Tracts with significantly higher-than-average leukemia rates, based on Figure 4.20.
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In summary, smoothing methods offer statistical approaches for stabilizing rate
(or proportion) estimates from small areas. Both smoothing and probability maps
offer a first step toward clarifying the signal by attempting to control (or at least
model) the noise inherent in the summary statistics and to pool values having similar
expectations. Although such approaches aid us in displaying and understanding
summary values from small areas, they do not address a fundamental issue involved
in the analysis of geographically aggregated data, as outlined in the next section.

4.5 MODIFIABLE AREAL UNIT PROBLEM

Once we map health data, we need to take great care in inferring individual risk
from local area rates, even if our rates are stable and based on populations of similar
size. First, we need to take care not to commit the ecological fallacy (inferring
individual-level relationships from group-level data; see Section 2.7.4). Second,
we need to avoid the modifiable areal unit problem (MAUP). This problem is a
geographic manifestation of the ecological fallacy in which conclusions based on
data aggregated to a particular set of districts may change if one aggregates the
same underlying data to a different set of districts.

The MAUP forms the geographical and mathematical basis for gerrymandering
(defining voting districts in such a way as to influence election outcomes), a subject
of intense interest each census cycle in the United States and other countries where
politicians use the census results to define “representative” districts. The problem
becomes even more perplexing because, in many instances, spatial aggregation is
necessary to create meaningful units for analysis. An early description of the latter
aspect appears in Yule and Kendall (1950, p. 312), where they state:

[G]eographical areas chosen for the calculation of crop yields are
modifiable units and necessarily so. Since it is impossible (or at any
rate agriculturally impractical) to grow wheat and potatoes on the same
piece of ground simultaneously we must, to give our investigation any
meaning, consider an area containing both wheat and potatoes and this
area is modifiable at choice.

Geographers have long appreciated the problems associated with the use of modi-
fiable units, leading Openshaw and Taylor (1979) to first coin the term modifiable
areal unit problem.

Gehlke and Biehl (1934) were among the first to document changes in statis-
tical inference due to the scale of aggregation when they found a tendency for
the magnitude of the correlations to increase as districts formed from census tracts
increased in size. Working with 252 census tracts in the Cleveland area, they con-
sidered the correlation of male juvenile delinquency, in absolute numbers, with the
median equivalent monthly rental costs for the census tracts. They then considered
this same correlation based on the 200, 175, 150, 124, 100, 50, and 25 areas formed
by joining contiguous census tracts. The correlation became increasingly negative,
being −0.502 for the 252 individual tracts and decreasing to −0.763 for the 25
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areas. However, when they repeated the exercise using a random grouping for 252
tracts and 25 and 150 areas, the correlations showed no relationship to size.

To better understand the nature of the problem and to suggest efficient groupings
for geographical data, Openshaw and Taylor (1979) constructed all possible group-
ings of the 99 counties in Iowa into larger districts. Their results are somewhat
startling. When considering the correlation between the percentage of Republican
voters and the percentage of elderly voters in the 1976 election, they were able to
construct sets of 12 districts producing correlations ranging from −0.97 to +0.99.
Moreover, Openshaw and Taylor (1979) found no obvious relationship between the
spatial characteristics of the districts and the variation in the resulting correlation
coefficients.

More closely related to health data, Monmonier (1996, p. 158) illustrates the
MAUP with an application to John Snow’s 1854 cholera data. Monmonier (1996,
p. 158) aggregates the cholera deaths to three different sets of districts. In two of
these, the effects of the Broad Street cluster are diluted or obliterated completely.
Monmonier’s example is particular fitting for our discussion, as it takes a classic
disease map based on point locations and illustrates the effect of aggregating these
locations into each of three sets of districts. Thus, as noted by Yule and Kendall
(1950, p. 312), maps are only able to “measure the relationship between the vari-
ates for the specified units chosen for the work. They have no absolute validity
independently of those units, but are relative to them.”

What causes the MAUP? Theoretical reasons for the increase in correlations that
occurs as the level of aggregation increases have been provided by several authors,
including the early work of Robinson (1950), who suggested areal weighting to
alleviate the effects of the MAUP on statistical inference. However, areal weighting
offers an effective solution to this problem only in very specialized situations
(Thomas and Anderson 1965). A simple example [modified from those considered
in Robinson (1956), Thomas and Anderson (1965), and Jelinski and Wu (1996)]
illustrates some of the key ideas. Comparing configurations A–C in Figure 4.22,
the effects of aggregation are clearly visible. The means (top number) do not change
between configurations B and C, but the variances decrease and the correlations
increase with increasing aggregation. Area weighting has no effect because the units
within each of these configurations are all the same size and shape. In configurations
D–F, we aggregate the basic units in various ways to produce larger units. Note that
configurations B and D have the same number of aggregated units, but we aggregate
horizontally in B and vertically in D. Configurations C and E are comparable in
a similar way. Comparing these configurations shows the change in variance that
can result when the orientation of the aggregation is altered but the number of
aggregated units remains the same. Finally, by comparing configurations C, E and
F, we see that even when the number of aggregated units is held constant (here at
n = 4 units), the means, variances, and correlation coefficient all change with the
spatial configuration of the aggregated units, even when areal weighting is used to
adjust these statistics.

This example serves to illustrate that the MAUP is not one, but two interrelated
problems. The first concerns the different results and inferences obtained when
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FIG. 4.22 Impact of aggregation of spatial data. The top number in each cell of configurations B–F
is the aggregated value of X obtained by averaging the original values comprising the larger cell;
the lower number is the corresponding aggregated value of Y . Areal weighting follows formulas in
Robinson (1956).

the same set of data is grouped into increasingly larger areal units. This is often
referred to as the scale effect or aggregation effect. The second, often termed the
grouping effect or zoning effect, considers the variability in results due to alter-
native formations of the areal units, leading to differences in unit shape at the
same or similar scales (Openshaw and Taylor 1979; Openshaw 1984; Wong 1996).
Figure 4.23 illustrates both aggregation and zoning effects.

The effects of the MAUP go beyond simple statistics such as the variance
and the correlation coefficient discussed here. Inferential problems also occur in
multivariate regression analysis, Poisson regression, hierarchical models, spatial
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FIG. 4.23 Aggregation and zoning issues in the modifiable areal unit problem. [Adapted from Wong
(1996).]

autocorrelation statistics, and probably most other statistical modeling and estima-
tion procedures as well.

In the field of geostatistics (cf. Chapter 8), both the MAUP and the ecological
inference problem can be considered special cases of what is called the change
of support problem (COSP). Recall from Chapter 3 that the support of a spatial
feature is the size, shape, and orientation of the feature. Thus, the COSP arises when
features (points, lines, or areas) are altered to produce other features. Changing
the support of a variable (typically by averaging or aggregation) creates a new
variable. This new variable is related to the original one but has different statistical
and spatial properties. The problem of how the spatial variation in one variable
relates to that of the other variable is called the change of support problem.

Is there a solution to the MAUP or the COSP? This rather straightforward
question does not have a straightforward answer. The most obvious answer is “no,”
since there is no way to completely recover information lost in aggregation, and how
the aggregation is done will definitely affect the resulting inference. However, this
answer would be misleading since there are things that we can do to ameliorate the
effects of the MAUP and, under certain assumptions for certain problems, provide
a solution to the MAUP (e.g., the solutions to the ecological inference problem
described in Section 2.7.4).

First, just being aware of the problem may lead to two very simple solutions: (1)
we can refrain from making individual-level inference from aggregate data (e.g.,
we frame our conclusions in terms of rates not risk and in terms of the specific set
of districts used); or (2) we collect/use data only on features about which we want
to make inferences. If we want to make inferences about people, we need to have
data on people. Of course, this may be difficult and expensive, but if we really
want to make inferences about people, this is the best approach.

Second, we should think more about the statistics used to make inferences and
use scale-independent statistics when possible. As King (1997, p. 250) noted:

Despite the clarity with which MAUP seems to be stated, most
statements have propagated a fundamental confusion between the def-
inition of theoretical quantities of interest and the estimates that result
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in practice. Geographers and statisticians have studied the MAUP by
computing a statistic on areal data aggregated to different levels, or in
different ways, and watching the results vary wildly in sign and mag-
nitude. . . . Unfortunately, the statistics used to study these issues have
not been aggregation-invariant (or “scale-invariant”). If a researcher
wishes to have statistics that are invariant to the areal units chosen,
then there is no reason to choose correlation coefficients, which depend
heavily on the definition of available areal units. Solving the MAUP
only requires developing statistics that are invariant to the level of
aggregation.

In fact, even the slope coefficient from simple linear regression would be a better
choice for inference than the correlation coefficient, and there are rules under which
this coefficient is invariant to changes in scale (Prais and Aitchison 1954; Cramer
1964; Firebaugh 1978). In the spatial setting, Richardson (1992) elaborated on
these rules in the context of geographical correlation studies, and Cressie (1996)
showed that a similar result holds in aggregated spatial linear regression models
by properly including geography as a latent variable. Tobler (1989) took this idea
further by suggesting that methods of spatial analysis should be independent of the
spatial coordinates used; the problem is not in the choice of units, but with the
choice of models and methods used in the analysis. Cressie (1996), Fotheringham
(1989), and Tobler (1989) further suggested choosing models whose parameters
change in a predictable manner at various levels of aggregation. Thus, although
the variance (and any p-values) will be affected by changes in scale or zoning,
at least we will infer the correct magnitude and sign (positive/negative) of the
effect.

Finally, several solutions to particular COSPs have been proposed. These solu-
tions differ inherently with respect to the assumptions made, the validity of these
assumptions, and the nature of any “extra” information used to reconstruct the
missing individual-level statistics. Most of these solutions have a common strat-
egy: They all build a model from point support data (even if no observations were
taken at this level of support) and then develop methods to optimally estimate
important parameters. A few of these solutions are examined in more detail in
Sections 4.6.4 and 8.3.2. A more complete review can be found in Gotway and
Young (2002).

4.6 ADDITIONAL TOPICS AND FURTHER READING

Addressing the question: “How do we map data effectively to explore patterns
and communicate results?” covers a wide variety of geographic, cartographic, epi-
demiologic, and statistical issues. In seeking to provide broad coverage of relevant
issues, we necessarily omit some details. Interested readers may wish to explore
the references cited below for more information regarding any of the areas covered.
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4.6.1 Visualization

Few (if any) will view or create maps in the same way after reading How to Lie with
Maps (Monmonier 1996), which should be required reading for anyone interested
in making maps. For readers interested in more detailed discussion of cartographic
visualization, the texts by MacEachren (1994, 1995) and Slocum (1999) provide
an excellent introduction to the field of cartography and access to the cartographic
literature.

A wide variety of types of maps have been used to display health-related data,
and the literature contains several historical reviews. Walter and Birnie (1991)
reviewed the statistical and cartographic techniques used in disease atlases from
several countries (and noted the relative lack of truly international health mapping
activities). Howe (1989) and Walter (2000) provide concise overviews of the history
of health mapping, including several historical examples. Finally, in the course of
preparing the Atlas of United States Mortality (Pickle et al. 1996), its authors col-
laborated with cartographers, statisticians, and epidemiologists, generating several
reports on particular aspects of the mapping process [cf. Pickle (2000) for a review
of the process and issues considered]. The publications resulting from this effort
(e.g., Lewandowsky et al. 1993; Pickle and Herrmann 1995; Hastie et al. 1996;
Herrmann and Pickle 1996; Brewer et al. 1997) provide a valuable contribution to
the medical geography literature.

4.6.2 Additional Types of Maps

Cartography is far from a stagnant field and contains many new developments in
mapping (particularly for computer mapping). With respect to health maps, Carr
et al. (2000) describe two new map templates with application to public health
data: linked micromap plots and conditioned choropleth maps. We describe each
template in turn below. Although such maps have not yet seen wide application
in public health, we note that the U.S. National Cancer Institute recently imple-
mented linked micromap plots as a means for users to explore cancer mortality
data on its Internet sites. As the software becomes more widely available [see the
appendix of Carr et al. (2000) for addresses and Internet access to the software],
we expect greater use of these types of maps in the public health (and other)
settings.

Linked micromap (LM) plots are a collection of related plots presenting many
statistical summaries (e.g., rates for each county and their associated confidence
intervals) from spatially referenced data in one graphical setting. Figure 4.24 illus-
trates an LM plot for low birth weight (LBW) rates by county in Georgia Health
Care District 9. The template for LM plots involves four key components (Carr
et al. 2000, p. 2527). As the first component, LM plots include at least three paral-
lel panels containing items linked by location. The first panel consists of a vertical
series of small maps (micromaps) that provide geographic setting of the data. Rather
than create a single map displaying the rate of LBW births for all counties at once,
the LM plot displays only a small number of counties in each of several maps. The
second panel provides a legend identifying the name and symbology (e.g., color)
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FIG. 4.24 LM plot for LBW rates in GHCD9. (Plot courtesy of Dan Carr, George Mason
University.)

used to identify spatial areas within each micromap. The third panel provides some
sort of statistical graphics, such as confidence intervals or histograms. The second
component of a LM plot is the sorting of geographic units by the summary statis-
tic of interest (e.g., sorting counties in Georgia Health Care District 9 by LBW
rate). The third component partitions the regions into groups to focus attention on
a few regions at a time. The fourth component links study units across the three
panels.
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Referring to Figure 4.24, on the left we see a repeated, relatively low-resolution
map of the set of counties under consideration. Each map displays rates for five
counties. The next column contains the county names and the gray scale used to
denote that county in the adjacent micromap. Note that we use shading to distin-
guish counties within a particular micromap, not necessarily to identify numerical
values. In particular, the same gray scale does not indicate the same numerical
value of a rate between micromaps (e.g., light gray denotes the county with the
lowest observed rate of the five displayed in a particular micromap). The third
vertical panel contains the point estimate of the LBW rate for each county and
a 95% confidence interval for this rate. Note that we order counties from top to
bottom by increasing observed rates. Finally, Figure 4.24 contains a fourth vertical
display reporting the observed number of births in each county (the denominator
of the LBW rate). Note that those counties with the most unstable rates (those
with the widest confidence intervals) correspond to those counties with small num-
bers of births. Any spatial patterns in the data appear in the series of micromaps.
As we move from low to high LBW rates, those counties appearing in previous
micromaps are outlined so that the reader may scan and follow how the pattern
of high-rate counties emerges. In the case of increasing LBW rates, there is some
slight suggestion that lower rates tend to occur in counties near the center of
Georgia Health Care District 9 and then increase as we move toward the coast
and northwestern edge of the district. However, the confidence intervals overlap
quite a bit and the statistical suggestion of a changing pattern is not particularly
strong.

Conditioned choropleth (CC) maps represent the second type of map proposed
by Carr et al. (2000). This format provides a collection of mapped outcomes par-
titioned by categories of potential categorical variables. For instance, consider a
single map of county-specific LBW rates in Georgia Health Care District 9, where
we shade counties one of three colors based on whether the county falls into the
lowest, middle, or highest third (tertile) of rates reported. Such a map indicates
patterns in outcome but does not reveal whether the patterns observed correspond
to any particular potential explanatory variables. Suppose that we wish to see
if the pattern observed in rates corresponds well to the pattern of exposure to
total suspended particulates (TSP) across counties. Further suppose that we divide
county-specific TSP exposures into thirds (tertiles) also. Conditioned choropleth
maps provide a separate choropleth map for each category of the explanatory vari-
able (here, tertiles of TSP). We use the same color categories (different shades for
rate tertiles), but a particular map displays values only for those counties falling
into the TSP tertile associated with that map. In other words, we obtain three maps,
a choropleth map of rate tertiles for counties in the lowest TSP tertile, a choropleth
map of rate tertiles for counties in the middle TSP tertile, and a choropleth map of
rate tertiles for counties in the highest TSP tertile. Carr et al. (2000) also illustrate
the use of CC maps with two potentially interacting covariates. For example, if we
wish to assess spatial patterns of LBW in Georgia Health District 9 with respect to
tertiles of TSP and tertiles of maternal age, we could create a 3 × 3 grid of maps
where each column represents a tertile of TSP and each row represents a tertile of
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maternal age. We examine patterns observed to see whether high rates of LBW
tend to occur for particular combinations of TSP and maternal age (e.g., for high
TSP and low maternal age).

Other examples of applications of LM plots and CC maps appear in Carr et al.
(1998, 2000), and Carr (2001) and the references therein.

4.6.3 Exploratory Spatial Data Analysis

The famous statistician Oscar Kempthorne used to preach in lectures on experi-
mental design: “Look at your data!” Tukey (1977) provided the first set of tools
for data exploration, now known comprehensively by the term exploratory data
analysis (EDA). EDA is a set of statistical techniques, many of them graphical
and implemented interactively, that allow us to look at our data in various ways.
The goals of EDA include extracting important variables; identifying outliers,
anomalies, and unusual observations; detecting patterns and trends; and refining
scientific hypotheses. The emphasis is on descriptive rather than inferential statisti-
cal methods. Many EDA techniques are probably familiar: five-number summaries,
stem-and-leaf diagrams, boxplots, scatterplots, smoothing, and the more visual and
interactive ideas of brushing, rotating, and spinning (Cleveland 1985). Other ideas,
such as “polishing” two-way tables to detect factor effects (similar to analysis
of variance) or using robust statistics, may be less familiar. Two excellent ref-
erences for comprehensive EDA are Tukey (1977) and Velleman and Hoaglin
(1981).

When working with spatial data, we need to put an “S” in EDA: exploratory
spatial data analysis (ESDA). The goals and techniques of ESDA are similar to
those of traditional EDA, but adapted for spatial data. All of the EDA techniques
may be used “as is” with spatial attribute data, but we need additional techniques
that explicitly use the spatial arrangement of the observations. For example, Hain-
ing (1990, Chapter 6, pp. 214–215) provides ESDA techniques that can be used
to detect spatial outliers, observations that may not be unusual overall but that
are unusual with respect to neighboring values. Cressie (1993, pp. 42–44) illus-
trates the use of a “pocket plot” for detecting localized atypical areas. Cressie
(1984) extended the median polish technique of Tukey (1977), providing a robust
method for detecting trends in spatial data. This technique is another type of spatial
smoother, one that Kafadar (1994) included in her evaluation of spatial smoothers.
Median polish and many other ESDA methods are described and illustrated in
Cressie and Read (1989), Haining (1990), and Cressie (1993).

Much recent attention has been focused on software development for ESDA,
including work by Brunsdon and Charlton (1996) and Dykes (1996) and the devel-
opment of ESDA software for use within a GIS (e.g., Haining et al. 1996, 1998).
Wise et al. (1999) provide a more recent overview of scientific visualization and
ESDA. XGobi is a system for visualizing multivariate data that has been adapted
to ESDA through a link to ArcView GIS (Cook et al. 1996; Symanzik et al. 1998).
GeoVISTA Studio, a JAVA-based toolkit for ESDA developed at Pennsylvania
State University and described in Takatsuka and Gahegan (2002), integrates both
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complex computations and visualization with the laudable goal of a codeless visual
programming environment for ESDA and spatial data analysis.

4.6.4 Other Smoothing Approaches

Headbanging One median-based smoothing procedure, known as headbanging
(Tukey and Tukey 1981; Hansen 1991), emphasizes local directional trends. Recent
applications include smoothed national mortality maps, where analysts preferred
headbanging’s ability to preserve steep transitions between regions that can often
be “oversmoothed” by other methods, particularly mean-based or linear smoothers
(Mungiole et al. 1999).

The headbanging algorithm consists of two basic steps. The first step is iden-
tification of the values to be used in a median smoother. For each value to be
smoothed, ri , we first identify its k nearest neighbors. We then select pairs of these
nearest neighbors so that the angle formed by the two segments with ri in the
center, say η, exceeds a specified value, η∗. Ideally, we want each triple, a pair
plus ri, to be roughly collinear. If there are many triples that satisfy this condi-
tion, we use only NTRIP of them whose angles are closest to 180◦ (NTRIP is
a parameter of the smoothing algorithm that can be specified by the user). For
edge or corner points that have few pairs satisfying this condition, the algorithm
creates artificial triples by linear extrapolation from pairs of neighboring points.
Once the triples have been identified, the second step is an iterative smoothing
algorithm that proceeds as follows. For each pair associated with the ith value to
be smoothed, let (lj , uj ) be the lower and higher of the two values in the j th
pair. Let L = median{lj } and U = median{uj }. Then the smoothed value of ri is
r̃i = median{L, ri, U}. The smoothed value is used in place of the original value
and the procedure is repeated until there is no change in the smoothed values.
Greater smoothing results from using larger values of k, NTRIP, and η∗. Hansen
(1991) suggests setting η∗ = 135◦; this default seems to give good results in most
applications. To account for differing variances among the rates, Mungiole et al.
(1999) developed a weighted headbanging algorithm that replaces the use of medi-
ans in the foregoing algorithm with weighted medians. Mungiole et al. (1999)
used reciprocals of the standard errors associated with the rates as weights, but any
specified weighting function could be used.

Splines and Generalized Additive Models Other smoothing approaches build on
the nonparametric regression smoothers were introduced in Section 4.4.2. Sup-
pose that we have spatial data Y1, Y2, . . . , YN , associated with spatial locations
si = (ui, vi). With spline smoothing our goal is to find a function, f (u, v), that
minimizes the trade-off between goodness of fit to the data and the smoothness
(or equivalently, the roughness) of the resulting surface. There are many ways to
measure surface smoothness, but one way is to use partial derivatives to measure
the change in f ; for example (Wahba 1990),

J2(f ) =
∫∫ [(

∂2f

∂u2

)2

+ 2

(
∂2f

∂u∂v

)2

+
(

∂2f

∂v2

)2]
du dv.
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Then our function f, called a thin-plate smoothing spline, minimizes

1/N

N∑
i=1

[Yi − f (ui, vi)]
2 + mJ2(f ).

The first term is a measure of goodness of fit to the data, the second term is a
measure of surface smoothness, and the parameter m controls the trade-off between
the two. If m = 0, there is no penalty for rapid changes in f , and thus the best-fitting
surface will be the one that passes though all the data points. This function is then
called an interpolating spline. Different choices of m lead to very different surfaces,
some perhaps too smooth and others perhaps not smooth enough. One objective
approach is to let the data determine m though a technique called generalized cross
validation (see Wahba 1990). Wahba (1983) derives confidence intervals for the
smoothing spline estimator.

Alternatively, we could use regression to fit a surface to the data. In this
case, E(Y) = β0 + β1u + β2v, and we could estimate the parameters using least
squares. An alternative is to use an additive model, which assumes that E(Y) =
f0 + f1(u) + f2(v), where the fi are smooth functions. Splines and loess smooths
are common choices for the fi. Instead of a linear model, we could assume a gener-
alized linear model (cf. Section 2.6.1) g(E(Y )) = f0 + f1(u) + f2(v), where g is
a link function such as the log or the logit. This model is called a generalized addi-
tive model (GAM). Details on fitting GAMs can be found in Hastie and Tibshirani
(1990), and a particular application to spatial epidemiology appears in Kelsall and
Diggle (1998). Because of their flexibility in modeling nonlinear surfaces, splines
and GAMs are very popular. However, other than cross-validation, which many
find can produce surfaces that seem to be too smooth, there are few objective crite-
ria governing the choice of the number of terms to include in the model, the nature
of these terms, and the choice of m with smoothing splines and the span in loess.
Thus, depending on the choices we make, we can essentially get any surface from
least squares to an interpolating spline. GAMs are great exploratory tools, but it
is very easy to overfit the data. We question their use with semiparametric models
that include covariates of potential interest for which hypothesis testing is desired.

Centroid-Free Smoothing A third alternative smoothing approach seeks to elim-
inate the dependence on centroids for determining distances and neighborhoods.
The use of centroids in determining the distance between areal features ignores the
support of the spatial features. It also introduces an extra source of uncertainty into
the results of smoothing since these results will depend on whether we base our dis-
tance calculations on centroids, centers, capitals, or some other point in each region.
Tobler (1979) suggests one of the earliest centroid-free smoothers of aggregated
data. He assumes the existence of an underlying intensity function, λ(u, v), which is
nonnegative and has a value for every location s = (u, v) ∈ D. (We define and use
intensity functions beginning in Chapter 5.) Thus, we assume the underlying popu-
lation to be distributed according to a spatial density function proportional to λ(s),

and the number of people in any region A is Z(A) = ∫
A

λ(s)ds. Tobler suggested
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that such an intensity function should be smooth and that adjacent regions should
influence each other in the estimation process. Thus, given aggregated data (counts
or totals), Z(A1), . . . , Z(AN) observed in regions Ai within a domain D ⊂ �2, he
suggested choosing λ(u, v) to minimize

∫∫ [(
∂2λ

∂u2

)2

+
(

∂2λ

∂v2

)2]
du dv, (4.13)

subject to the constraints λ(s) ≥ 0 and∫
Ai

λ(s) ds = Z(Ai) for i = 1, . . . , N. (4.14)

When applied to point data, the intensity surface that minimizes equation (4.13) is
the same as the spline surface described above. In the case of areal data, with the
additional constraint of equation (4.14), the surface is constrained to preserve vol-
ume: The intensity process integrates to the data observed for each region. Tobler
(1979) called this constraint the pycnophylactic property (or volume-preserving
property). Tobler used finite difference methods to solve this constrained mini-
mization. His approach is a very elegant solution to a complex problem, although
standard errors for the smoothed values are difficult to obtain.

Finally, Brillinger (1990, 1994) consider a different optimization criterion based
on a locally weighted analysis. Brillinger used the estimator given in equation (4.6)
to estimate the value of λ(u, v) based on a linear combination of aggregate data
values [i.e., λ̂(s) = ∑N

i=1 wiZ(Ai)]. Each weight, wi(u, v), determines the effect
of region Ai on location (u, v). Brillinger (1990, 1994) suggested using weights
that were integrals of the usual kernel functions, accounting for the support of the
regions and avoiding the use of centroids. Müller et al. (1997) adapted Brillinger’s
ideas to estimation of the intensity function of disease incidence, where the total
number of disease cases and the total population at risk are available for each
region. They developed a modified version of locally weighted least squares where
the squared differences between observations and local fits are integrated over the
regions. Unlike Tobler’s method, both of these estimators have standard errors and
allow adjustment for covariates. However, they are much more computationally
involved than the solution proposed by Tobler (1979).

These approaches explicitly recognize the different supports of the regions and
do not reduce spatial analysis to simple computations involving point locations.
Thus, they provide solutions to COSPs. Since we can use them to infer the inten-
sity at any point location from aggregate data, they also provide one solution to
the ecological inference problem. Integrating the intensity estimates over different
regions is a solution to the MAUP.

4.6.5 Edge Effects

Observations near the edges of the study area have fewer local neighbors than
observations in the interior. As a result, smoothed values near the edges often
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average over or borrow less neighboring information than their interior counterparts.
For this reason, the behavior of spatial smoothing algorithms can be suspect near
the edges of the study area. Accurate assessment of the impact of edge effects and
development of flexible adjustments remain open areas for further research, for
which Gelman and Price (1999), Lawson et al. (1999), and Gelman et al. (2000)
provide recent developments.

4.7 EXERCISES

4.1 Derive the locally weighted estimator in equation (4.6).

4.2 Assuming that Yi ∼ Poisson (niξ) and ri = Yi/ni, find the expected value
and variance of the locally weighted-average smoother in equation (4.1).

4.3 Derive the method-of-moments estimators of α and β from the Poisson–
gamma model discussed in Section 4.4.3. Then give the resulting empirical
Bayes smoother.

4.4 Table 4.1 gives the number of low birth weight babies born in 1999, the
number of live births in 1999, and the number of very low birth weight
babies born in 1999 for each county in Georgia Health Care District 9. The
numbers of very low birth weight babies presented here are masks of the
true values, obtained by adding random noise to the original counts. For
confidentiality reasons, we could not release the true values. The table also
gives the centroids of each county in UTM coordinates (in meters).

(a) Compute the rate of very low birth weight for each county. Make a
choropleth map of the rates.

(b) Make a probability map using the very low birth weight rates you com-
puted in part (a). Which counties have significantly high rates?

(c) Use the global empirical Bayes estimator given in equation (4.11) to
smooth the rates.

(d) Implement this estimator locally using neighborhoods based on distance
between centroids and defined by the weights in equation (4.2).

(e) Implement the empirical Bayes estimator locally using neighborhoods
defined by adjacency weights given in equation (4.5). Lee and Wong
(2001) have a nice collection of scripts that can be used to determine the
neighbors of each county using a GIS.

(f) Repeat these exercises using the number of low birth weight babies.

(g) What are your conclusions about smoothing? Do the VLBW rates need to
be smoothed? Do the LBW rates need to be smoothed? Which neighbor-
hood structure did you prefer, and why? Which smoother did you prefer,
and why? Which counties may have unusually high VLBW rates?



EXERCISES 117

Table 4.1 Georgia Health Care District 9 Dataa

No. Live No. Low Birth No. Very Low
County Births Weight Birth Weight Easting Northing

Emanuel 308 35 0 380775.664 3606798.382
Bulloch 693 64 9 429643.221 3587905.874
Effingham 570 36 8 467554.861 3581547.440
Candler 151 9 3 398199.760 3581861.311
Toombs 454 33 2 375444.918 3558825.264
Tattnall 300 21 5 400212.232 3549337.656
Evans 155 9 0 415835.404 3560344.423
Bryan 370 27 2 454305.848 3544080.578
Liberty 1525 147 19 446806.707 3524848.421
Long 164 8 1 434104.476 3505692.396
Jeff Davis 238 28 2 344402.500 3524049.993
Appling 257 23 1 374321.622 3513589.072
Chatham 3570 369 100 493865.557 3539584.049
Wayne 341 30 10 412989.631 3497227.698
Coffee 666 66 18 325675.232 3487194.532
Bacon 143 12 2 364082.121 3494227.776
McIntosh 149 18 3 463548.477 3486352.845
Pierce 228 11 2 383019.454 3473351.819
Ware 492 46 3 366888.053 3438399.181
Glynn 908 95 12 454245.142 3456655.732
Atkinson 164 12 5 321340.050 3464443.158
Brantley 124 8 1 408546.111 3453357.994
Clinch 99 10 2 334630.866 3423796.886
Camden 722 65 7 440181.095 3425482.335
Charlton 127 8 0 388725.451 3424758.917

aTo protect data confidentiality, the counts of very low birth weight cases have been masked, so their
true values are not presented here.
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Analysis of Spatial Point Patterns

Woes cluster. Rare are solitary woes;
They love a train, they tread each other’s heel.

Edward Young, Night Thoughts, Night iii, Line 63

A primary goal in the analysis of mapped point data is to detect patterns (i.e.,
to draw inference regarding the distribution of an observed set of locations). In
particular, we wish to detect whether the set of locations observed contains clusters
of events reflecting areas with associated increases in the likelihood of occurrence
(e.g., unusual aggregations of cases of a particular disease).

In this chapter we introduce mathematical models for random patterns of events
and outline basic related analytic methods for spatial point processes. We pay
particular attention to data restrictions, common assumptions, and interpretation of
results. The models and methods introduced in this chapter provide the basis for
the analytic approaches in Chapters 6 and 7 specifically assessing spatial patterns
observed in public health data.

5.1 TYPES OF PATTERNS

It is human nature to assign order to our observations and to seek patterns in
collections of seemingly random events. Here, we use mathematical definitions to
identify patterns in the spatial distribution of a set of locations. In public health
data, one pattern of particular interest is the presence of a tendency of locations to
cluster together (i.e., occur more frequently in close proximity to one another)
than one would expect from a set of cases with no common causative factor
(e.g., environmental exposure). We explore such applications more thoroughly in
Chapter 6, but the notion of clustering offers a starting point for discussions of
spatial pattern.

To define spatial clustering, we begin by defining its absence. We define an
event as an occurrence of interest (e.g., an incident case of a disease) and associate
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an event location with each event. We follow terminology in Diggle (1983) and
distinguish between an event and a point. A point is any location in the study
area where an event could occur; an event location is a particular location in
the study area where an event did occur. A data set consists of a collection of
observed event locations and a spatial domain of interest. The spatial domain is a
very important aspect of the data set. It may be defined by data availability (e.g.,
a state or county boundary), but in many problems the analyst must define the
boundary with thoughtful consideration. Examples in this chapter illustrate how
different choices for the domain can result in different inferences about the spatial
data under study.

Next, we consider what is meant by a “random” pattern. Technically speaking,
all of the models in this chapter generate random patterns since each is based on
a particular probability structure. However, in general usage, the phrases random
pattern, at random, or by chance typically refer to a distribution of events that is
not influenced by various factors under investigation (e.g., the local level of a toxic
substance).

As our first model of a random pattern, complete spatial randomness (CSR)
defines a situation where an event is equally likely to occur at any location within
the study area, regardless of the locations of other events. That is, events follow a
uniform distribution across the study area, and are independent of one another. We
use the term uniform in the sense of following a uniform probability distribution
across the study area, not in the sense of “evenly” dispersed across the study area.
Figure 5.1 illustrates six realizations (sets of events) arising from a CSR model.
We present several realizations (data sets) based on the same model to illustrate
a range of patterns possible under CSR. Note that each of these spatially random
patterns of events contains collections of nearby events (apparent clusters), and
large gaps between events. The apparent clusters illustrate that a certain degree
of clustering occurs by chance, making visual assessment of particular clusters or
overall patterns of clustering difficult.

Complete spatial randomness serves as a boundary condition between spatial
processes that are more clustered than random and processes that are more regular
than random. Figure 5.2 illustrates three examples of patterns more clustered than
CSR (top row), and three examples of patterns more regular than CSR (bottom row).
It might be easy to distinguish the three different types of patterns in Figures 5.1
and 5.2, but it is difficult to do so in practice, and an “eyeball” comparison can
often be misleading. Moreover, observed patterns do not always fall neatly into one
of the three classes: clustered, random, or regular. Figure 5.3 illustrates realizations
from a process consisting of regular patterns of clusters (clusters are centered at
points arranged like the “five” on a die) and from a process consisting of clusters
of regular patterns (each regular pattern consists of five points in a similar relative
arrangement). Although admittedly contrived, these patterns of 100 events each
illustrate the critical role played by spatial scale in describing observed patterns
(i.e., clustering exists at one level of spatial scale, regularity at another). Issues of
spatial scale are often discussed in the ecology literature. Indeed, an extensive lit-
erature exists regarding the determination of the spatial scale of species, behaviors,
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FIG. 5.3 Realizations of two hypothetical spatial point processes containing both clustering and reg-
ularity at different spatial scales.

and diseases in plants and animals (see, e.g., Turner et al. 1989; Levin 1992), but
little appears to date in the epidemiologic literature [but see Prince et al. (2001)
for an example].

With a general notion of clustered, random, and regular patterns (and an appre-
ciation to the limitations of the simple categorization illustrated in Figure 5.3) we
next seek to define probabilistic models of spatial patterns in order to motivate
methods for detecting clustering among health events.

5.2 SPATIAL POINT PROCESSES

A stochastic process is a probabilistic model defined by a collection of random
variables, say {X1, X2, . . . , XN }. In most cases each Xi is a similar measurement
occurring at a different time or place (e.g., the number of persons in a post office
queue at the ith time period, or the amount of rainfall at the ith location). A
spatial point process describes a stochastic process where each random variable
represents the location of an event in space. A realization of the process is a
collection of locations generated under the spatial point process model; that is, a
realization represents a data set resulting from a particular model (either observed
or simulated). The patterns illustrated in Figures 5.1–5.3 display realizations from
various spatial point process models. In some instances, a data set may consist of
a sample from a realization of a particular pattern (e.g., we may map a simple
random sample of residential locations of disease cases in a registry), and in such
cases we must take care to consider the spatial impact (if any) of the sampling
procedure (cf. Diggle 1983, Chapter 3).

Ripley (1981, Chapter 8), Diggle (1983), and Cressie (1993, Chapter 8) provide
details regarding theory and applications of spatial point processes from many
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diverse fields (e.g., forestry, astronomy, cellular biology). We focus primarily on
basic structures in spatial point process models and their application to assessments
of pattern in public health data.

5.2.1 Stationarity and Isotropy

Two underlying concepts provide a starting place for modeling spatial point pro-
cesses. Mathematically, a process is stationary when it is invariant to translation
within d-dimensional space, and isotropic when it is invariant to rotation about
the origin. In other words, relationships between two events in a stationary process
depend only on their relative positions, not on the event locations themselves. Start-
ing with a stationary process, adding an assumption of isotropy involves a further
restriction that relationships between two events depend only on the distance sep-
arating their locations and not on their orientation to each other (i.e., relationships
depend only on distance, not direction). However, neither property (isotropy nor
stationarity) implies the other.

These two properties offer a notion of replication within a data set. For example,
two pairs of events in the realization of a stationary process that are separated by
the same distance and relative direction should be subject to the same relatedness.
Similarly, two pairs of events from a realization of a stationary and isotropic process
separated by the same distance (regardless of relative direction) should be subject
to similar properties. These two assumptions offer a starting point for most of the
estimation and testing procedures outlined in this chapter. In some cases we move
beyond assumptions of stationarity and isotropy, and we take care to note these
instances.

5.2.2 Spatial Poisson Processes and CSR

We next outline a particular set of spatial point processes and illustrate its equiv-
alence with CSR. Specifically, we consider the family of stationary homogeneous
spatial Poisson point processes defined by the following criteria (Diggle 1983,
p. 50; Stoyan et al. 1995, p. 33):

1. The number of events occurring within a finite region A is a random variable
following a Poisson distribution with mean λ|A| for some positive constant
λ and |A| denoting the area of A.

2. Given the total number of events N occurring within an area A, the locations
of the N events represent an independent random sample of N locations,
where each point (location where an event could occur) is equally likely to
be chosen as an event.

Criterion 2 represents the general concept of CSR (events uniformly distributed
across the study area), and criterion 1 introduces the idea of an intensity λ rep-
resenting the number of events expected per unit area. The Poisson distribution
allows the total number of events observed to vary from realization to realization
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while maintaining a fixed (but unknown) expected number of events per unit area.
Dividing the total number of events observed by the total area provides a straight-
forward estimate of λ (i.e., λ̂ = N/|A|). This estimate serves well for most of the
examples in this book; however, we note that other estimators can provide better
performance in certain situations, particularly those involving estimates based on
sparse samples of the set of events observed (Byth 1982; Diggle and Cox 1983).

For further insight into the properties of homogeneous Poisson processes, con-
sider an equivalent definition listed in Cressie (1993, p. 634):

(a) The numbers of events in nonoverlapping regions are statistically independent.

(b) For any region A ⊆ D,

lim
|A|→0

Pr[exactly one event in A]

|A| = λ > 0

where |A| is the area of region A, D is the domain of interest (study
area), and

(c)

lim
|A|→0

Pr[two or more events in A]

|A| = 0.

Component (a) is particularly important to the analysis of regional counts (e.g.,
the number of incident disease cases observed in a partition of the study area into
enumeration districts). Diggle (1983, p. 50) formally establishes the link between
criteria 1 and 2 and component (a). Component (b) implies that the probability
of a single event in an increasingly small area A (adjusted for the area of A)
is a constant (λ) independent of the location of region A within the study area of
interest. Component (c) implies that the probability of two or more events occurring
in precisely the same location is zero. As above, the quantity λ is the Poisson
parameter, or the intensity of the process, and is equal to the mean number of points
per unit area. Since the intensity of events is constant at all locations in the study
area, we say that the process is homogeneous. Mathematically, stationarity and
homogeneity are related but separate concepts (e.g., a process defined within a finite
study area cannot be stationary). However, the differences are largely technical
and have relevance beyond the scope of this book, and we use the terms fairly
interchangeably in the examples that follow.

The definition of a homogeneous Poisson process given by criteria 1 and 2 not
only describes the mathematical model underlying CSR, but also a straightforward
two-stage approach for simulating realizations from CSR in a study area D. Such
simulations prove extremely useful in the analysis of spatial point process data,
and we outline the simulation procedure here. First, we generate the total number
of points, N(D), from a Poisson distribution with mean λ|D| (where |D| denotes
the area of D). Next, we place events within D according to a uniform distribution.
If D is rectangular, we may generate u and v coordinates using uniform random
number generators on the intervals corresponding to the width and height of D,
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respectively. It is worth noting that many pseudorandom number generators used in
computer simulation contain deterministic (nonrandom) patterns for some pattern
length. As a result, a single string of such pseudorandom numbers may appear
sufficiently random, but the sets of k values exhibit a pattern, typically resulting
in the pseudorandom values falling along sets of parallel lines in k-dimensional
space [see Ripley (1987, pp. 22–26) for details]. For our purposes in two or three
dimensions, the uniform random number generators in most statistical packages will
function well, but some experimentation in the form of plotting pairs or triplets of
consecutive values is often a good idea. For simulating CSR within a nonrectangular
study area D, one option is to embed D within a larger rectangle R, and generate
event locations within R until N(D) events occur within D, and use these N(D)

events as the realization. For more details and other approaches for nonrectangular
areas, see Stoyan et al. (1995, pp. 28–30, 44–46).

5.2.3 Hypothesis Tests of CSR via Monte Carlo Methods

To detect clustering (or regularity) statistically, we need to ascertain departures
from CSR. Even with the same underlying CSR process, Figure 5.1 indicates a
fair amount of variability between realizations. In many applications we observe
a single realization from the underlying (but unknown) point process. We need a
method to describe how much variation we expect under CSR and to tell us when
an observed pattern of event locations appears to differ significantly from CSR.
Hypothesis tests and Monte Carlo simulation techniques provide versatile tools for
such assessments.

A statistical hypothesis test typically compares the observed value of a quantita-
tive summary of the data observed (the test statistic) to the probability distribution
of that summary under the assumptions of the null hypothesis. For example, we
might want to compare the average interevent distance observed for a set of
event locations to the distribution of average interevent distances occurring from
repeated independent realizations from CSR. For many test statistics, one may rely
on asymptotic arguments to derive their associated null distributions theoretically
under CSR [Table 8.6 on page 604 of Cressie (1993) provides an outline of many
of these tests and their associated distributions]. However, these arguments often
require certain assumptions about the shape of the study area (either rectangular or
square), and base asymptotics on the number of observed events going to infinity.
In many health applications, the study area is shaped irregularly and the number
of events depends more on an underlying disease incidence rate than on sampling
considerations (i.e., sample size increases only by observing cases over a longer
period of time, leading to a loss of temporal resolution in the data). In such cases,
the usual asymptotic distributions may be inappropriate and inaccurate.

In contrast, the general frequentist notion of comparing the observed value of
a test statistic to its distribution under the null hypothesis combined with the ease
of simulating data from CSR (even subject to the constraints of a fixed or reduced
sample size and/or an irregularly shaped boundary) suggest the use of Monte Carlo
(simulation-based) methods of inference. In Monte Carlo testing, we first calculate
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the test statistic value based on the data observed and then calculate the same
statistic for a large number (say, Nsim) of data sets simulated independently under
the null hypothesis of interest (e.g., simulated under CSR as described above). A
histogram of the statistic values associated with the simulated data sets provides
an estimate of the distribution of the test statistic under the null hypothesis. The
proportion of test statistic values based on simulated data exceeding the value of
the test statistic observed for the actual data set provides a Monte Carlo estimate
of the upper-tail p-value for a one-sided hypothesis test. Specifically, suppose that
Tobs denotes the test statistic for the data observed and T(1) ≥ T(2) ≥ · · · ≥ T(Nsim)

denote the test statistic values (ordered from largest to smallest) for the simulated
data set. If T(1) ≥ · · · ≥ T(�) ≥ Tobs > T(�+1) (i.e., only the � largest test statistic
values based on simulated data exceed Tobs), the estimated p-value is

P̂r[T ≥ Tobs|H0 is true] = �

Nsim + 1

where we add one to the denominator since our estimate is based on Nsim + 1
values ({T(1), . . . , T(Nsim), Tobs}). One calculates lower-tail p-values in an analo-
gous manner. Besag and Diggle (1977), Ripley (1981, pp. 16–18), Cressie (1993,
pp. 635–636), and Stoyan et al. (1995, pp. 142–142) provide further details regard-
ing the application of Monte Carlo tests to the analysis of spatial point patterns.

Due to their reliance on simulated data sets, Monte Carlo methods are not
precisely replicable. That is, an independent set of Nsim realizations will result in
a slightly different estimated p-value than the first set of simulations. However,
the larger the value of Nsim, the more stable the resulting estimates, and one can
calculate the variability (Monte Carlo error) as a function of Nsim (Ripley 1987).
Note the difference between the asymptotics associated with Nsim (a sample size
we define, irrespective of the data) and the asymptotics associated with the number
of events (a feature of the data not often under our control). The former define
the accuracy of our estimate of the correct null distribution; the latter define a
distribution that is only known to be correct for large numbers of events.

Finally, we note that CSR is only one example of a null hypothesis of interest,
but the Monte Carlo testing procedure is quite general. We illustrate Monte Carlo
testing in a variety of contexts relevant to health data below and in Chapters 6
and 7.

5.2.4 Heterogeneous Poisson Processes

As mentioned in Section 5.2.2, the Poisson process is homogeneous when the
intensity, λ, is constant across the study area. In the analysis of health events, we
may find a homogeneous model too restrictive. In particular, CSR may not be an
appropriate model for the lack of clustering, since the population at risk is not
distributed uniformly across space; rather, people tend to live in towns and cities.
Instead, we often consider the constant risk hypothesis as a model of “no clus-
tering.” Under the constant risk model, each person has the same risk of disease
during the observation period, regardless of location, and we expect more cases in
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FIG. 5.4 Example of a process that appears clustered with respect to CSR but not clustered with
respect to a hypothesis of constant risk. The box represents an area of high population density. The
set of event locations is the same in both plots. In the plot on the left, we observe a higher intensity
of events in the high-population area, consistent with a constant risk hypothesis but inconsistent with
CSR. In the plot on the right, the cluster occurs outside the area of high population density, reflecting
an area of increased local risk and a clustered process with respect to both CSR and constant risk.

areas with more people at risk. Clusters of cases in high population areas could
violate CSR but not the constant risk hypothesis. Typically, for noninfectious dis-
eases we are most interested in clustering above and beyond that due to geographic
variations in the density of the population at risk (i.e., clustering of disease events
after accounting for known variations in population density). We wish to interpret
the observed pattern of cases with respect to the observed pattern of people at risk.
Figure 5.4 provides a simplified example. Both plots show the same set of event
locations. Suppose that the dashed square represents the boundary of a small area
of high population density within the study area. In the left-hand plot, a cluster of
events occurs within the high-population-density area, consistent with a hypothesis
of constant risk, but inconsistent with CSR. In the right-hand plot, the cluster now
occurs outside the high-population-density area, inconsistent with both a constant
risk hypothesis and CSR.

The constant risk hypothesis requires a generalization of CSR where we define
the intensity as a spatially varying function defined over our study area D [i.e., the
intensity is a function λ(s) of the spatial location s ∈ D]. Specifically, one defines
a heterogeneous Poisson process by the following criteria:

1∗. The number of events occurring within a finite region A is a random variable
following a Poisson distribution with mean

∫
A

λ(s) ds.

2∗. Given the total number of events N occurring within an area A, the N

events represent an independent random sample of N locations, with the
probability of sampling a particular point s proportional to λ(s).

The number of events observed in disjoint regions still follow independent Poisson
distributions, but the expectation of the event count in a region A becomes

∫
A

λ(s) ds,
and events are distributed according to a spatial density function proportional to λ(s).
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That is, we expect more events in areas corresponding to higher values of λ(s) and
fewer events in areas corresponding to lower values of λ(s). Note that heterogeneity
(as defined by a spatially varying intensity function) necessarily implies nonsta-
tionarity as the point process is no longer translation invariant (stationarity). Since
we define isotropy with respect to rotation invariance around a single point (typi-
cally referred to as the origin), heterogeneity in the intensity function results in an
anisotropic process only if λ(s) itself is anisotropic (i.e., not symmetrical around the
origin).

The intensity function λ(s) is a first-order (mean) property of the random pro-
cess, describing the expected density of events in any location of the region. Events
remain independent of one another, but clusters appear in areas of high intensity.
Under a heterogeneous Poisson process clusters occur solely due to heterogeneities
in the intensity function and individual event locations remain independent of one
another.

To illustrate, consider a scenario of five cases of acute lymphocytic leukemia
observed in a census region. Since under the constant risk hypothesis, our concept
of whether this constitutes a cluster or not depends on the size of the population at
risk, our model of no clustering should depend on the observed population density
across our study area. As population sizes increase, so should our expected number
of cases under a model of constant individual-level risk of disease at all locations.
The heterogeneous Poisson process offers a convenient null model (model of no
clustering) for our tests of disease clustering that allows for geographic variations
in population size.

As an example of a heterogeneous Poisson process, the spatially varying intensity
function in Figure 5.5 exhibits two modes (areas of high intensity) at s = (u, v) =
(3, 3) and (16, 14), respectively. The intensity is more peaked around the former
and more broad around the latter. Figure 5.6 illustrates six realizations of 100 events
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each from a heterogeneous Poisson process with intensity λ(s) shown in Figure 5.5.
The examples reveal a relative lack of events in the area between the modes, and
proportionally more events in the broader rise in λ(s) surrounding the mode at
(16, 14) than in the smaller, peaked area around (3, 3). Note that collections of
events generally suggest areas of higher intensity, although the specific locations
of the modes can be difficult to spot from a single realization. The problems
at the end of this chapter outline an algorithm for simulating realizations from
a heterogeneous Poisson process with known intensity function, offering further
exploration of this issue.

5.2.5 Estimating Intensity Functions

A contour or surface plot of the intensity function for a heterogeneous Poisson
process indicates areas with higher and lower probabilities of an event occurring.
As an exploratory measure, we may compare peaks and valleys in the intensity
function with maps of covariates and look for similarities between the observed
spatial patterns of events and covariates, respectively. We may also compare the
estimated intensities of event locations associated with incident cases of a disease
and that of a sample of nondiseased subjects (controls) over the same study area.

First we need to define a way to estimate the intensity function from a set of
observed event locations. Suppose that we have a data set consisting of N locations,
s1, . . . , sN , and we wish to estimate λ(s) from these locations. A common method
involves kernel density estimation (Silverman 1986; Scott 1992; Wand and Jones
1995). Conceptually, think of mapping events on a tabletop and then placing an
identical mound of modeling clay over each event. The mounds of clay will overlap
for groups of events occurring close together, resulting in a higher pile of clay in
such areas. When considered together, the clay represents a surface reflecting a
nonparametric estimate of the intensity function.

To illustrate, consider the one-dimensional example in Figure 5.7. Our data set
consists of the event locations marked × along the s-axis within the unit inter-
val. We center our mound of clay, represented by a symmetric “kernel,” at each
observed data location. Intensity functions must be positive at all locations and
integrate to a finite number, so often, known parametric density functions provide
convenient kernels. In Figure 5.7 we use kernels proportional to a Gaussian density
function with different standard deviations illustrating differing amounts of overlap
between kernels. To estimate the shape of the intensity function λ(s) underlying
the distribution of events, we plot the curve defined by summing the heights of all
kernels at any point along the s-axis. Here, the kernel variance reflects the square
of the bandwidth (standard deviation) or extent of influence of each data point and
governs the overall smoothness of the intensity estimate.

Kernel estimation methods originally focused on estimating a probability density
function f (s) rather than an intensity function λ(s). With respect to a spatial point
process, a density function defines the probability of observing an event at a location
s, while the intensity function defines the number of events expected per unit area
at location s. (Note that for a continuous intensity function, this “expected number
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FIG. 5.7 Kernel intensity estimates based on the same set of 20 event locations and four different
kernel bandwidths [kernel variances reflect the square of the bandwidth (standard deviation)].

of events per unit area” varies smoothly from location to location.) By definition,
a density integrates to one across a study area D. In contrast, an intensity estimate
integrates to the overall mean number of events per unit area (i.e., the total number
of events observed divided by |D|, the area of D) (Diggle 2000). Dividing the
intensity λ(s) by its integral over D yields the density f (s). As a result, the density
function and the intensity function differ by a constant of proportionality, which
can result in visual stretching or shrinking of the modes (peaks) in perspective or
contour plots of the intensity compared to similar plots of the densities. However,
the relative spatial pattern (e.g., locations of peaks and valleys) in densities and
intensities will be the same. Most kernel estimation software estimates densities
rather than intensities, and it is fairly common to use a kernel density estimate,
denoted f̃ (s), as an estimate of λ(s) without rescaling. Authors sometimes use
the terms density and intensity interchangeably when the spatial variation in the
functions rather than their precise values is of primary interest, but some care is
required for describing, reporting, and interpreting actual numerical values.

Mathematically, the definition of a kernel density estimate in one dimension
based on observations u1, u2, . . . , uN is

f̃ (u) = 1

Nb

N∑
i=1

kern

(
u − ui

b

)
(5.1)
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where u is a location in one-dimensional space, kern(·) is a kernel function satisfying

∫
D

kern(s) ds = 1

and b denotes a smoothing parameter (bandwidth). Again, the bandwidth corre-
sponds to the width of the kernel function. To obtain a kernel estimate of the
density function, replace N−1 by |D|−1 in equation (5.1).

The one-dimensional kernel estimate in equation (5.1) extends to multiple
dimensions. For our two-dimensional spatial point process data, we consider two-
dimensional product kernels based on the product of two one-dimensional kernels.
Product kernels are a natural extension when we do not assume any interaction or
dependence between the u and v coordinates of the observed event locations in our
data set. The two-dimensional kernel estimate of the density function at location
s = (u0, v0) is defined by

f̃ (u0, v0) = 1

Nbubv

N∑
i=1

{
kern

(
u0 − ui

bu

)
kern

(
v0 − vi

bv

)}
(5.2)

where bu and bv are the bandwidths in the u and v directions, respectively. In
practice, we evaluate equation (5.2) at a grid of locations s = (u0, v0) covering the
study area, then create a surface or contour plot of these values, representing our
estimate of the overall intensity surface. Note that in the product kernel formulation,
we apply one-dimensional kernels in the u and v directions separately, then multiply
the two kernels together. In addition to product kernels, other bivariate kernel
formulations are available [see Scott (1992) and Wand and Jones (1995) for further
discussion and examples].

In applying kernel estimation, we must specify two items: the kernel function
and the bandwidth. We may use any positive function integrating to 1 as a kernel
function; however, several particular functions appear regularly in the literature
and have well-studied theoretical properties. Table 5.1 lists the one-dimensional
form of many commonly used kernels, using u∗ to denote the distance between the
general location u and the ith observation ui , divided by the bandwidth:

u∗ = ((u − ui)/b),

in the ith summand of equation (5.1). While some kernel functions have better
mathematical or computational properties than others, the differences between esti-
mates based on different kernel functions are often small. Hence, for most purposes
any symmetric kernel is adequate. Computational efficiency typically dictates sim-
plicity in the kernel’s functional form, so in practice we often use computationally
simpler functions than the Gaussian kernel used in Figure 5.7 (see Silverman 1986,
pp. 76–77).

In the examples below we use one of two bivariate kernel functions. First,
we consider a product kernel based on univariate Gaussian kernels in the u and
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Table 5.1 Common One-Dimensional Kernel
Functions Centered at the ith Observation ui

a

Kernel Kern(u∗)

Uniform
1

2b
I

(|u∗| ≤ 1
)

Triangle
1

b(2 − b)

(
1 − |u∗|) I (|u∗| ≤ 1)

Quartic (biweight)
15

16b

[
1 − (u∗)2

]2
I (|u∗| ≤ 1)

Triweight
35

32b

[
1 − (u∗)2

]3
I (|u∗| ≤ 1)

Gaussian
1√
2πb

exp

[
−1

2
(u∗)2

]
au∗ represents the difference between location u and ui divided
by the bandwidth b [i.e., (u − ui)/b] (see text). The function
I (expression) is the indicator function taking the value 1 if the
expression is true and 0 otherwise.

v directions. The second kernel is the computationally simpler two-dimensional
analog of the quartic kernel defined in Table 5.1. Bailey and Gatrell (1995, p. 85)
define the two-dimensional quartic kernel as

kern(s) =



3

π
(1 − s′s)2 s′s ≤ 1

0 otherwise,

where s′ denotes the transpose of the vector s. The corresponding estimated intensity

λ̃(s) =
∑

‖s−s i‖≤b

3

πb2

(
1 − ‖s − si‖2

b2

)2

is easy to compute and interpret (only events within distance b of point s contribute
to the estimated intensity at s).

Although the precise form of the kernel weakly influences intensity estimates,
the bandwidth can have a profound impact. Figure 5.7 illustrates the intensity esti-
mates based on a variety of bandwidths. Technically, the optimal bandwidth (i.e.,
the bandwidth minimizing the mean integrated square error between the estimate
and the true intensity) depends on the unknown underlying function λ(s), an unfor-
tunately circular relationship. However, Silverman (1986, pp. 43–61) describes
several approaches for determining bandwidth, each based on different criteria,
noting that the appropriate choice of bandwidth always depends on the purpose
intended for the smoothed estimate. Large bandwidths result in more smoothing;
small bandwidths retain more local features but exhibit spikes at isolated event
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locations. Exploratory analyses may consider several bandwidths to determine
general patterns, and the analyst may determine somewhat subjectively the sen-
sitivity of the intensity estimate to the choice of bandwidth.

A more formal criterion for bandwidth selection involves the asymptotic mean
integrated squared error (AMISE) of the estimate, defined as the limit of the
expected value of ∫ [

λ̃(s) − λ(s)
]2

ds

as the sample size (number of events) goes to infinity. Wand and Jones (1995)
offer a detailed description of bandwidth selection methods based on AMISE. For
our purposes, Scott (1992, p. 152) offers an easy-to-remember data-based band-
width selection rule for Gaussian product kernels in dimensional space, based on
the components of an expansion of the AMISE. The estimated bandwidth for the
component of the product kernel associated with the u-coordinate is

b̂u = σ̂uN
−1/(dim+4) (5.3)

where σ̂u is the sample standard deviation of the u-coordinates, N represents the
number of events in the data set (the sample size), and “dim” denotes the dimension
of the study area. We define b̂v (the bandwidth for the v-coordinate component of
the product kernel) in a similar manner, replacing σ̂u with σ̂v .

We illustrate the kernel estimation approach in the following example.

DATA BREAK: Early Medieval Grave Sites Alt and Vach (1991) describe
an archaeological investigation of an early medieval burial ground in Neresheim,
Baden-Württemberg, Germany. The anthropologists and archaeologists involved
wonder if this particular culture tended to place grave sites according to family
units. To investigate this hypothesis, the archaeologists consider 152 grave sites
and use inherited features in the teeth of excavated skeletons (namely, missing or
reduced wisdom teeth) to mark a subset of 31 grave sites. For illustrative purposes,
we consider a subset of 143 of these 152 grave sites, which includes 30 of the
original 31 affected sites. The research question is whether the spatial pattern of
the 30 graves with affected teeth (graves of “affected individuals”) differs from
the pattern of the 113 nonaffected graves. How could estimates of the intensity
functions for the affected and nonaffected grave sites, respectively, help answer
this question?

Figure 5.8 illustrates the locations of affected and nonaffected grave sites, reveal-
ing several interesting features. First, we note that the locations occur in an irregu-
larly shaped region within the figure, perhaps because of local topographic features.
Second, we suspect heterogeneity in the intensity, as some areas seem to have a
higher concentration of events than others (regardless of their affected/nonaffected
status).

For an initial exploration of the data, we assume that the collections of affected
and nonaffected grave site locations follow heterogeneous Poisson processes with
unknown intensity functions λ1(s) and λ0(s), respectively (e.g., the early medieval
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FIG. 5.8 Early medieval grave site locations. Circled locations denote those grave sites where the
person shows evidence of a particular tooth defect (“affected individuals”). The polygon surrounding
the points represents the edge of the study area. Arrows indicate two locations, each containing two
grave sites occurring at such small distances that visual distinction of event locations is difficult at the
scale of the figure. The question of interest: Do the burial sites of affected individuals tend to cluster?

culture chose grave sites at random in this general area, with the likelihood of choos-
ing any particular location dependent on smoothly varying spatial features such as
soil type and vegetation). At this stage, for simplicity, we assume independence
between the two processes. Figures 5.9 and 5.10 illustrate kernel density estimates
(proportional to the intensity functions) for affected and nonaffected sites, respec-
tively, using Gaussian product kernels. Recall that density functions differ from
intensity functions only by a multiplicative constant, so the two functions exhibit
the same spatial pattern, but the numerical value (height) of the functions depend
on a multiplicative constant corresponding to the integral of the intensity function
over the study area.

Scott’s rule suggests bandwidths b̂u = 872.24 in the u direction and b̂v = 997.45
in the v direction for the affected sites, and bandwidths b̂u = 695.35 and b̂v =
734.82 for the nonaffected sites. The bandwidths are fairly comparable between
the two point patterns, with slightly smaller bandwidths for the nonaffected sites,
due primarily to the slightly larger sample size. The resulting intensity function
estimates suggest some local differences in the two spatial patterns. Both patterns
imply two modes (areas of highest intensity of grave sites), but the modes appear
in slightly different places. As an exploratory tool, our density estimates lend some
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FIG. 5.9 Kernel smoothed density estimate (proportional to the intensity function) for affected loca-
tions (grave sites with tooth defect) in an early medieval grave site data set. Bandwidth set to 872.24 in
the u direction and 997.45 in the v direction based on Scott’s rule [equation (5.3)] for Gaussian kernels
(see text).
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FIG. 5.10 Kernel smoothed spatial density estimate (proportional to the intensity function) for non-
affected locations (grave sites without tooth defect) in early medieval grave site data set. Bandwidth
set to 695.35 in the u direction and 734.82 in the v direction based on Scott’s rule [equation (5.3)] for
Gaussian kernels (see text).

credence to the suspected different burial patterns; however, the estimates do not
yet provide any notion of the “statistical significance” of any observed differences
between the patterns. We outline more formal comparisons between these patterns
in Section 5.3.3.
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5.3 K FUNCTION

In addition to the intensity function’s description of the spatial pattern of the
expected number of events per unit area, we may also be interested in how often
events occur within a given distance of other events. Where an intensity function
informs on the mean, or first-order, properties of a point process, the relative
position of events informs on the interrelationship between events, or second-
order properties (similar to variance and covariance) of the process. Bartlett (1964)
introduced the notion of second-order properties of spatial point processes, while
Ripley (1976, 1977), expanded on these ideas and provided estimation techniques
and examples for applying second-order analyses to observed data sets. We base
much of our development on Diggle (1983, pp. 47–48), which provides a readable
introduction to first- and second-order properties of spatial point processes.

Second-order properties of spatial point processes allow the analyst to summarize
spatial dependence between events over a wide range of possible spatial scales. The
most common form of second-order analysis for spatial point process is termed
the K function or reduced second moment measure (Ripley 1977; Diggle 1983),
defined as

K(h) = E[number of events within h of a randomly chosen event]

λ
(5.4)

for any positive distance (or spatial lag) h. One does not include the randomly
chosen event in the number of events within distance h, so some definitions specify
“the number of additional events.” Equation (5.4) assumes stationarity and isotropy
through the constant intensity λ and by taking the expectation across all events in the
study area (which assumes a process operating identically at all locations). Analogs
of the K function exist for nonstationary (Baddeley et al. 1999) or anisotropic
(Stoyan et al. 1995, pp. 125–132, 134–135) processes, but we focus our attention on
the isotropic and stationary version. Even for a nonhomogeneous Poisson process,
the stationary K function defined in equation (5.4) can provide valuable information
as outlined below.

Ripley (1977) shows that specifying K(h) for all h is equivalent to specifying
Var(N(A)) (the variance of the number of events occurring in subregion A), for any
subregion A of the study region. In this sense, K(·) is associated with the second
moment of the process and is indeed a second-order property of the underlying
spatial point process. The popularity of the K function lies primarily in its ease of
estimation compared to other second-order measures.

Intuitively, the definition of the K function (the average number of events within
distance h of a randomly chosen event divided by the average number of events
per unit area) implies that under CSR, the value of K(h) is πh2 (the area of a
circle of radius h). For processes more regular than CSR, we would expect fewer
events within distance h of a randomly chosen event than under CSR, so K(h)

would tend to be less than πh2. Conversely, for processes more clustered than
CSR, we would expect more events within a given distance than under CSR, or
K(h) > πh2.
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5.3.1 Estimating the K Function

Estimation of the K function proceeds by replacing the expectation in its definition
[equation (5.4)] with a sample average. Initially, this suggests that

K̂(h) = λ̂−1 1

N

N∑
i=1

N∑
j=1
j 
=i

δ(d(i, j) < h) (5.5)

for a realization of N events, where d(i, j) denotes the Euclidean distance between
events i and j , and δ(d(i, j) < h) equals 1 if d(i, j) < h and 0 otherwise. Note
that the assumed stationarity and homogeneity of the process allows us to replace
λ in equation (5.4) with the estimate λ̂ = (number of events in A/|A|), where A

is the study area and |A| denotes the area of A.
The estimator in equation (5.5) is not entirely satisfactory when one considers

events near the boundaries of the study area. For h larger than the distance of
a particular event to the nearest boundary, the count of events within distance
h of other events provided by

∑
i

∑N
j 
=i δ(d(i, j) < h) would not include events

occurring just outside the boundary but nevertheless within distance h of an event
in the data set. The potential undercount becomes more of an issue as the distance
h increases. One solution for closed study areas (i.e., ones having no “holes” where
events could occur but are not observed) is to collect event locations from the entire
study area plus an additional “guard area” of width h∗ around the boundary and
only calculate K̂(h) for h ≤ h∗. Another approach, proposed by Ripley (1976),
uses a weighted version of equation (5.5), namely

K̂ec(h) = λ̂−1
N∑

i=1

N∑
j=1
j 
=i

wij δ(d(i, j) < h) (5.6)

where “ec” denotes “edge corrected” and wij is a weight defined as the proportion
of the circumference of the circle centered at event i with radius d(i, j) which
lies within the study area. Note that wij = 1 if the distance between events i

and j is less than the distance between event i and the boundary of the study
area. Also note that wij need not equal wji and that equation (5.6) is applicable
even if the study area is not closed (i.e., has “holes”). Conceptually, wij denotes
the conditional probability of an event occurring a distance d(i, j) from event i

falling within the study area, given the location of event i (and again assuming
a homogeneous process). Most software packages providing estimates of the K

function use equation (5.6) or some variant thereof. Since the edge correction in
equation (5.6) depends on the definition of the study area’s borders, wij is most
easily calculated for rectangular or circular study areas. Other edge correction
strategies appear in Ripley (1988) and Stoyan et al. (1995).

5.3.2 Diagnostic Plots Based on the K Function

Under CSR, K(h) = πh2, a parabola. Plotting an estimate of K(h) versus h

requires one to visually assess deviation from a curve. Besag (1977) suggested
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a transformation allowing comparison of an estimated K function to a straight
line, an easier visual task. Specifically, since K(h) = πh2 implies that

(
K(h)

π

)1/2

= h,

plotting

h versus

[
K̂ec(h)

π

]1/2

− h

provides a useful diagnostic plot. If we define L̂(h) = [K̂ec(h)/π ]1/2, then (under
CSR) the expected value of L̂(h) − h is zero. Hence, deviations from the horizontal
line L̂(h) − h = 0 provide evidence of departures from CSR. Deviations above
the zero line suggest clustering (more events within distance h than expected),
while deviations below zero suggest regularity (fewer events within distance h

than expected). We refer to such a plot as an L̂ plot. To add to the diagnostic
ability of the L̂ plot we need a method to illustrate the random error associated
with estimating the K function from a finite realization of the underlying spatial
process. Although some asymptotic properties of estimates of the K function exist,
most depend on circular study areas or hold only for a fixed, predefined distance
(Cressie 1993, p. 642; Stoyan et al. 1995, pp. 50–51). Thus, for general inference
regarding K functions we again turn to Monte Carlo methods as introduced in
Section 5.2.3.

5.3.3 Monte Carlo Assessments of CSR Based on the K Function

We begin (as with any Monte Carlo test of CSR) by generating many simulations
of CSR and estimating the K function for each realization. Since we are interested
in the behavior of the estimated K function across a range of distances, and since
each simulation provides an estimated function (rather than a single test statistic
value), we construct envelopes or bands around the value expected under the null
hypothesis. Many applications plot the upper and lower envelopes based on the lines
connecting the minimum and maximum L̂(h) − h values obtained at a collection of
distances h for many simulations. If one can afford a large number of simulations,
it may be more interesting to compute envelopes defining certain percentiles (e.g.,
the 5th and 95th percentiles) in addition to those defining the minima and maxima.
Such percentiles offer diagnostic suggestions of spatial scales (distances) at which
observed patterns appear to differ from the null hypothesis (see the data break
below for an example) but do not provide formal statistical inference in the form
of a test statistic.

If we are interested in hypothesis tests, we may conduct a Monte Carlo test
(as described in Section 5.2.3) with test statistic T = L̂(h) − h for a value of h

specified prior to analysis, or consider a test for deviations of L̂(h) − h from its null
value over a range 0 ≤ h ≤ hmax, where one specifies hmax a priori (e.g., hmax =
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FIG. 5.11 L̂ plots for the regular pattern of clusters (top) and the cluster of regular patterns (bottom)
from Figure 5.3. Dashed lines represent the maxima and minima of L̂(h) − h at each distance h, based
on 500 simulations of complete spatial randomness.

one-half the maximum observed interevent distance). Stoyan et al. (1995, p. 51)
describe an example of the latter with test statistic

T = max
0≤h≤hmax

∣∣L̂(h) − h
∣∣ .

(Again, see the data break below for an example.) One could conduct similar tests
for any predefined interval of interest.

Since second-order properties offer a way to distinguish among CSR, clustered,
and regular processes at different distances, the L̂ plots described above offer
insight into the question of different tendencies at different spatial scales raised
by the example given in Figure 5.3. The top figure in Figure 5.11 shows L̂ plots
for the example of a regular pattern of clusters, while the bottom figure shows the
same plot for the example of a cluster of regular patterns.
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Figure 5.11 also shows minimum–maximum Monte Carlo envelopes based on
500 simulations for each point process. For this example, each simulation consists
of the same number of events (100) as shown in Figure 5.3, but distributed uni-
formly across the unit square. For the regular pattern of clusters we see the plotted
values above the K functions based on the simulated patterns (indicating cluster-
ing) for distances below h = 0.2 and again for h ∈ (0.4, 0.7). The “bumps” indicate
more pairs of events observed at these distances than one would expect under CSR.
The first bump corresponds to pairs of events within a single cluster; the second
(slightly wider) bump corresponds to pairs of events from different clusters. The
second bump is slightly wider than the first, corresponding to the variation in dis-
tance between pairs of clusters. In this case, the L̂ function provides some insight
into the spatial scale of clustering for the process. Overall, the L̂ plot suggests a
pattern with several tight, distinct clusters, with regularity between clusters.

The L̂ plot for the cluster of regular patterns (bottom plot in Figure 5.11) cap-
tures the cluster clearly but does not clearly identify the regular pattern. The regular
pattern occurs only at the very smallest observed distances, and our regular pat-
terns overlap, thereby generating pairs of points (from different regular patterns)
at distances smaller than the interevent distance in a single regular pattern. Hence,
the regularity is not captured in the L̂ function.

DATA BREAK: Early Medieval Grave Sites (cont.) Recall the medieval
grave site data illustrated in Figure 5.8. Previously, we considered first-order sum-
maries of the patterns observed. Here we continue our analysis by considering
second-order properties of the set of all locations, the set of affected locations, and
the set of nonaffected locations. Figure 5.12 illustrates the L̂ plots (based on K̂ec)
for each of the collections of events. The dashed lines represent the simulation
envelopes (minimum and maximum values at each distance) based on 500 simu-
lations of CSR in the region defined by a rectangle bounding the minimum and
maximum u and v values. All three show clear departures from CSR, suggesting
clustering for most distance values, first departing the tolerance envelopes at dis-
tances near 400 units. Unlike the intensity estimates in Figures 5.9 and 5.10, the K

functions do not suggest where clusters occur, but rather, at what distances events
tend to occur from other events with respect to distances expected under CSR.

Closer examination reveals several features of Monte Carlo analysis, allowing
more specific inference. First, in our simulations of CSR, the total number of events
varies according to Poisson distributions with means defined by the numbers of
grave sites observed, grave sites affected, and grave sites nonaffected, respectively.
Does it make sense to allow the total number of events to vary in our application?
Assuming a thorough archaeological survey, we should not expect any more grave
sites within the study area. Perhaps we should restrict our inference to the observed
number of grave sites within each category. In that case, we seek an answer to
more specific questions, moving from “Do the grave sites follow CSR?” to “Do
the observed 143 (or 30 or 113) grave sites appear to be uniformly distributed in
space?” That is, we are investigating patterns of a fixed number of grave sites to
see if their locations appear to be distributed randomly.
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FIG. 5.12 L̂ plots for the early medieval grave site data shown in Figure 5.8. The dashed lines
represent the upper and lower simulation envelopes based on 500 simulations of CSR. The thin solid
lines represent the upper 97.5th and lower 2.5th percentiles of simulated L̂(h) values at each distance h.
Here simulations place events throughout the rectangular area defined by the minimum and maximum
coordinates observed for both the u and v directions.

Second, does CSR on a rectangle offer a sensible null hypothesis? The event
locations clearly occur within an irregularly shaped, nonconvex polygon contained
within the rectangular boundary of Figure 5.8, while CSR over a rectangle can (and
does) assign grave sites uniformly throughout the rectangle (including locations
outside the irregular polygon). The clustering suggested by Figure 5.12 may be
due entirely to the occurrence of events within the enclosing polygon.

Some refinement of our simulations addresses both concerns. Suppose that we fix
the number of events in each simulation to the number observed and then simulate
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FIG. 5.13 L̂ plots for the early medieval grave site data shown in Figure 5.8 based on edge-corrected
estimates of the K function. The dashed lines represent the upper and lower simulation envelopes based
on 500 simulations of CSR within the bounding polygon shown in Figure 5.8. The thin solid lines
represent the upper 97.5th and lower 2.5th percentiles of simulated L̂(h) values at each distance h.
Compare to Figure 5.12.

CSR within a polygon containing the locations observed. Figure 5.13 illustrates
the L̂ plots when we limit inference to the polygon surrounding the collection of
all grave site locations. Note the “noisier” point estimate of L̂ − h and associated
wider simulation envelopes for the set of affected sites, due to the much smaller
sample size (31) compared to the other two plots (sample sizes of 143 and 113,
respectively). Fixing the number of events within each simulation serves to narrow
the simulation envelopes over what would be observed with a Poisson number of
grave sites in each simulation. Limiting comparisons to events within the polygon
serves to remove the suggestion of clustering observed in Figure 5.12. The revised
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L̂ plots exceed the 95% simulation envelopes only for the shortest distances in
the affected sites, probably due to the two locations indicated in Figure 5.8 with
two affected graves occurring very close together. By refining our simulations we
refined the question under investigation from “Are grave sites clustered within a
square?” to the more appropriate “Are grave sites clustered within the study area?”.

Figures 5.8, 5.9, and 5.13 provide comparisons of the spatial patterns (summa-
rized through estimated intensities and K functions) between the set of affected
sites and CSR, and between the set of nonaffected sites and CSR. Such comparisons
allow us to compare patterns in the affected and nonaffected sites only through their
respective comparisons to CSR. We next consider using K functions to compare
directly the patterns of affected and nonaffected sites (i.e., to assess whether the
spatial pattern of affected sites is similar to the spatial pattern of nonaffected sites).

Suppose we assume that the set of all grave sites is fixed and we are interested
in the patterns of the 30 affected graves among these 143 sites. A non-CSR but
equally valid model of “no pattern” is that each grave site is equally likely to be an
affected grave. This is known as the random labeling hypothesis, which differs
slightly from the constant risk hypothesis of Section 5.2.4. The random label-
ing hypothesis always conditions on the set of locations of all events observed,
whereas the constant risk hypothesis may or may not condition on the total num-
ber, depending in part whether the overall risk of disease is estimated from the
data or known with some certainty based on other information (e.g., the scientific
literature), respectively.

The random labeling hypothesis, introduced by Diggle (1983, p. 93), offers one
approach for assessing the pattern of affected graves within the set of all graves.
Failure to reject the random labeling hypothesis suggests similarity in the under-
lying processes, but rejection of the random labeling hypothesis suggests that the
set of affected graves appear to be selected from the set of all graves via some
mechanism other than simple random selection. As noted by Diggle (1983, p. 93),
random labeling neither implies nor is implied by the stricter notion of statistical
independence between the pattern of affected sites and that of nonaffected sites.
Independence and random labeling are only equivalent when both point patterns
follow homogeneous Poisson processes. Further discussion contrasting indepen-
dence and random labeling and associated tests appears in Diggle (1983, Sections
6.2, 6.3, 7.2.2, and 7.2.3).

In our example, the random labeling hypothesis offers a reasonable formulation
of our question of interest: Do the affected graves appear to follow the same K func-
tion as the nonaffected? To test the random labeling hypothesis, we condition on the
set of all grave site locations, using the same 143 locations in all simulations, with
the Monte Carlo step drawing a sample of 30 locations from the set of 143 observed
locations (randomly without replacement), and calculating the corresponding K

function for the 30 sampled locations. Under the random labeling hypothesis, the 30
sampled locations reflect a random “thinning” of the set of all locations. The theo-
retical K function of the thinned process is identical to that of the process generating
the entire set of 143 locations, but (naturally) we observe some variability in K̂ec(h)

between random samples, due to estimation based on finite samples.
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FIG. 5.14 L̂ plot for the early medieval grave site data shown in Figure 5.8, compared to a random
labeling hypothesis (see text). The solid line illustrates L̂(h) − h for the case data (comparable to the
middle plot of Figure 5.13). The dashed, dotted, and dash-dotted “envelopes” represent the minimum,
maximum, 2.5th percentile, 97.5th percentile, and median values, respectively, based on 499 random
samples of 30 sites each from the set of 143 sites.

Figure 5.14 shows the L̂ plot for the observed data (dark solid line), the minima/
maxima-based envelopes (dashed lines), the 2.5th and 97.5th percentile-based enve-
lopes (dotted lines), and the median value (dot-dashed line) based on 499 random
labelings. The observed values lie mostly within the envelopes, wandering beyond
only for the very smallest distances (as in the L̂ plot for the affected sites in
Figure 5.13), reflecting the two pairs of grave sites at very small distances of one
another (possibly multiple graves), and for one other very short interval.

To determine statistical significance of any clustering, we consider the Monte
Carlo test defined above using the test statistic

T = max
0≤h≤hmax

(
L̂(h) − h

)
.

This test is attractive since it investigates deviations over a range of distances from
zero to hmax, a distance we define. Technically, we must define hmax a priori, prior
to our analysis of the data. Specifically, for our hypothesis-testing assumptions to
hold, we must define hmax based on it being a distance of interest for the problem at
hand rather than as the most suggestive distance shown in Figure 5.14. If we select
hmax = 2000, then based on 499 simulations, we obtain a Monte Carlo p-value
of 0.453, suggesting little statistical evidence for clustering beyond that expected
under a random labeling hypothesis for distances between 0 and 2000.

Reviewing our analysis of the grave site data, the L̂ plots suggest that the pat-
tern of 113 nonaffected grave sites observed does not differ appreciably from a
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random allocation of locations within our study polygon. The pattern of affected
sites observed is also fairly consistent with a random selection of sites within the
polygon except for a suggestion of clustering at the smallest distances. Compari-
son of the estimated second-order properties with those arising under the random
labeling hypothesis also gives little reason to suspect a more clustered site selection
process for the affected sites than for the nonaffected sites, where again the only
suggestion of clustering occurs at very short distances. If we rerun the analyses
generating Figures 5.13 and 5.14 omitting one of each pair of the locations circled
in Figure 5.8, all suggestion of clustering (at any distance) disappears. In summary,
our second-order analysis of the grave site data suggests a largely homogeneous
site selection process across the study area for the culture under study, with the
exception of two locations containing pairs of graves in very close proximity, both
of which are affected grave sites.

5.3.4 Roles of First- and Second-Order Properties

First-order (intensity function) and second-order (K function) analysis provide dif-
ferent but complementary insight into the analysis of spatial point patterns. In
our medieval grave site example, our second-order (K function) analysis of the
medieval grave site data provides insight into global aspects of the point pattern
(are there general patterns of clustering and/or regularity with respect to CSR or
another pattern?), whereas first-order properties (intensity functions) provide local
insight (where do the patterns appear to differ?). Although we did not make explicit
inferential comparisons here of the intensity functions we explore this issue (and
the distinction between local and global properties of spatial point patterns) with
special emphasis in Chapters 6 and 7.

The examples in this chapter show that the estimated intensity (first-order prop-
erty) and K function (second-order property) provide insight into the process
underlying observed point patterns. We next consider whether the first- and second-
order properties uniquely define a spatial point process. Baddeley and Silverman
(1984) indicate that this is not the case and provide an interesting counterexample
illustrating two very different spatial point processes defined on the unit square
with identical intensity and K functions. The two processes are a homogeneous
Poisson process (CSR) with intensity function λ = 1 and the point process defined
by the following:

1. Divide the plane into unit squares by random placement of a square grid.

2. In each unit square, place Ns events uniformly and independently, where Ns

comes from the distribution

Pr[Ns = 0] = 1

10

Pr[Ns = 1] = 8

9

Pr[Ns = 10] = 1

90
.
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3. A realization consists of only the set of events (i.e., the grid cell boundaries
are not observed).

In the second process, most cells have exactly one event. Some cells are empty.
Very rarely (1/90 of the time) we observe a cluster of 10 events. For a study
area A with |A| close to 1 square unit, we generally observe very few events per
realization, with rare exceptions. For study areas closer to 100 square units in size,
we tend to observe one cluster of 10 events, while the other events tend to be more
regularly distributed than we would expect under CSR. The equality of intensities
is readily apparent, since for the second process,

λ|A| = [0(1/10) + 1(8/9) + 10(1/90)]|A| = |A| = λCSR|A|.
Baddeley and Silverman (1984) provide proof of equality of the associated theo-
retical K functions, based on equality of Var(N(A)) between the two processes for
any area A (recall that this is equivalent to showing equality between the processes’
respective K functions).

In summary, just as first and second moments provide some information about
possible probability distributions driving observations of a univariate random vari-
able but do not identify the particular distribution uniquely, the estimated first- and
second-order properties of an observed spatial point pattern provide valuable but
only partial insight into possible underlying probabilistic mechanisms.

5.4 OTHER SPATIAL POINT PROCESSES

The homogeneous and heterogeneous Poisson processes introduced in Section 5.2
play a key role in the development of statistical methods for the analysis of chronic
disease data and form the basis for many of the methods outlined in Chapters 6
and 7. However, such models allow clustering only through inhomogeneities in
the intensity function. Clusters could also arise through processes such as ran-
domly located cluster centers, each emitting mutually independent but still clustered
events, or through interactions between events (e.g., through some sort of conta-
gion process), although applications of such models to the analysis of public health
data are currently rare. A variety of other spatial point process models exist and
provide alternative approaches for the analysis of observed spatial point patterns.
An appreciation of the underlying structure of each set of models, and determina-
tion of the appropriateness of a given model for a particular application, drives the
choice of the appropriate family of models. We provide brief overviews of three
general model classes here and defer the reader to Diggle (1983), Cressie (1993),
and Stoyan et al. (1995) for more complete definitions, examples, and relevant
references.

5.4.1 Poisson Cluster Processes

The Poisson cluster process defines a spatial point process wherein each event
belongs to a particular cluster. Specifically, the process consists of a set of parent
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locations each of which generates a set of child locations. The parent locations
are not observed and the realization of the Poisson cluster process consists of the
locations of the children only. Typically, the parent locations follow a Poisson spa-
tial point process (either homogeneous or heterogeneous), the number of children
per parent follows a discrete probability distribution (typically Poisson), and the
child locations follow a spatial probability density function, generally peaked at
the associated parent location, and decaying with distance from the parent (e.g., a
bivariate Gaussian density centered at the parent location) (Cressie 1993, p. 662).
Conceptually, think of a set of trees in a forest where seeds are most likely to fall
near the parent tree but (less often) may be carried some distance away by wind
or animals. Again, a realization of a Poisson cluster process consists only of the
children’s locations, and does not include the parents.

The family of Poisson cluster processes grew from models described in Ney-
man (1939) and Neyman and Scott (1958), with the latter defining a particular
class of Poisson cluster processes where (1) the parent locations follow a homo-
geneous or heterogeneous Poisson process, (2) the numbers of children per parent
are independent and identically distributed according to the same probability dis-
tribution for each parent, and (3) the locations of children around their respective
parent are independent and identically distributed according to the same bivari-
ate probability density for each parent. The restriction to identical distributions
for both the number and the location of child events with respect to their parent
event provides enough replication to yield some underlying theoretical properties,
and the literature refers to such processes as Neyman–Scott processes. Briefly,
a Neyman–Scott process is stationary and isotropic if the parent process is sta-
tionary and the child-dispersal distribution is isotropic. Diggle (1983, p. 55) and
Cressie (1993, pp. 664–666) illustrate that the theoretical K function for sta-
tionary and isotropic Neyman–Scott processes is equal to the K function for
CSR plus a strictly positive term based on the distribution of the number of
children per parent and the spatial distribution of children around parents (i.e.,
the K function for the Poisson cluster process exceeds that for CSR, indicating
clustering).

The definition of a Poisson cluster process above provides an algorithmic recipe
for simulating realizations. Edge effects can play a key role in such simulations,
particularly regarding observations of children for parents located outside the study
area. One pragmatic solution involves either generation of parents and children
in a much larger area encompassing the study area and observing children only
within the study area. Another, applicable only to rectangular study areas, involves
a toroidal correction wherein one assigns child locations generated, say, d units
outside the study area to occur d units inside the opposite side of the study area
(where the top and bottom of the rectangle are “opposite” sides, as are the right
and left sides of the rectangle). This approach effectively simulates locations on a
torus where the top of the study area connects to the bottom, and the right edge
connects to the left edge.

Finally, one could extend the notion of a Poisson cluster process to multiple gen-
erations (children generating children). Although conceptually easy to implement
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via simulation, such processes quickly become mathematically intractable and do
not appear extensively in the literature.

5.4.2 Contagion/Inhibition Processes

Other spatial point processes focus on the direct modeling of interevent interactions
such as contagion or inhibition wherein the occurrence of an event raises or lowers
(respectively) the probability of observing subsequent events nearby. Contagion
models are particularly appropriate for modeling the spread of infectious diseases,
while inhibition models address applications wherein each event precludes the
occurrence of other events in a nearby area (e.g., the territory of an animal or the
volume of a cell).

Inhibition and contagion provide a wide realm of possibilities for spatial mod-
eling. Inhibition may be absolute (i.e., there may be a “hard core” radius around
each event within which no other events may occur) or may simply result from a
reduced (but still positive) probability of nearby events. A wide variety of models
for inhibition and/or contagion exist (e.g., Markov point processes and Gibbs pro-
cesses), where we define contagion rather loosely to refer to the increased likelihood
of events near other events. Many such models involve specification of the local
interaction between events via some functional relationship, such as a pair-potential
function (Stoyan et al. 1995, p. 169). In addition, one may specify such functions
in a manner resulting in regularity at some spatial scales and clustering at others,
thereby addressing the issue raised in Figure 5.3 in a more substantial manner. The
definition and estimation of spatial interaction functions, and the simulation of such
processes, are beyond the scope of this book and we refer the interested reader to
Diggle (1983, pp. 63–66), Cressie (1993, Sections 8.5.4 and 8.5.5), Stoyan et al.
(1995, Chapter 5), van Lieshout (2000), and the references therein for details.

5.4.3 Cox Processes

We next contrast the specific models of spatial clusters in Sections 5.4.1 and 5.4.2
with the clustering observed among independent events generated by a spatially
varying intensity function of the heterogeneous Poisson processes of Section 5.2.4.
In our public health applications to chronic disease data, we typically think of
events as independent of one another, but we consider the intensity function λ(s)

to reflect some sort of environmental heterogeneity in disease occurrence (e.g.,
due to a heterogeneous population at risk or a heterogeneous risk of disease based
on some environmental factors). In some applications we may wish to consider
this heterogeneity a random factor that changes from year to year (e.g., due to
population mobility or to variation in environmental exposures). In such a case
we could consider the intensity function λ(s) as a random quantity drawn from
some probability distribution of possible intensity functions over our study area.
Such processes are referred to as Cox processes based on their development in one
dimension by Cox (1955) and are said to be doubly stochastic (i.e., the random
location of events depends on a random process itself).
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Perhaps the simplest example of a Cox process is an extension of CSR where
we assume the intensity λ (a constant) follows some probability distribution. Such
a model would be appropriate if we assume a uniform distribution of events in the
study area but allow the expected total number of events (E[N(D)]) to vary from
realization to realization. One could generalize such a model to a heterogeneous
Poisson process where the allowable intensity surfaces are proportional to one
another (hence each is proportional to the same probability density in space) but
again, the expected total number of observed events can vary between realizations.

Lawson (2001, Chapter 11) considers a general class of heterogeneous Poisson
process models for infectious disease modeling. The intensity function consists of
a product of spatial clustering functions (as in the Poisson cluster processes above)
and temporal clustering functions. Such functions typically involve parameters that
may be assigned by the analyst (yielding a heterogeneous Poisson process) or
estimated from the data (resulting in a Cox process approach).

The Cox process offers a very broad class of models. Recently, Møller et al.
(1998) defined the subclass of log Gaussian Cox processes as a parameterization
allowing fairly complex spatial modeling of the intensity function based on covari-
ates and spatial correlation, in a manner utilizing many of the structures considered
in this book in Chapters 7 and 8. Computational implementation is still rather
intricate [see Møller et al. (1998) and Brix and Diggle (2001) for examples], but
the very general modeling structure in such models offers much promise for more
advanced applications.

5.4.4 Distinguishing Processes

Distinguishing between possible underlying processes based on observed data can
be problematic. For instance, based on a single realization, there is no mathemat-
ical way to distinguish between a process of independent events generated under
a heterogeneous intensity and a process of dependent events generated under a
homogeneous intensity. With replicate realizations, one may be able to distin-
guish the patterns since realizations with a heterogeneous (but fixed) intensity will
tend to have concentrations of events in the same locations in each realization
(see Figure 5.6), while realizations of dependent observations would tend to have
concentrations of events in different locations in each realization.

If we allow the heterogeneity itself to be random (moving from a heteroge-
neous Poisson process to a Cox process), the mathematical boundaries between
processes become murkier and in some cases vanish entirely. Bartlett (1964) for-
mally established the mathematical equivalence between Neyman–Scott processes
with Poisson numbers of children per parent and Cox processes. That is, for any
Neyman–Scott process with a Poisson number of children, one can derive an equiv-
alent Cox process. To gain intuition for Bartlett’s equivalence, consider any fixed
set of parent locations and define a heterogeneous intensity function consistent
with the child dispersal process (i.e., with a mode over each parent and a distance
decay matching the probability of observing a child event around that parent). Next,
assign an appropriate probability to each intensity, corresponding to a possible set
of parent locations. This defines a Cox process equivalent to the Neyman–Scott
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process under consideration [see Cressie (1993, pp. 663–664) for a more formal
argument]. We note that the results establish an equivalent Cox process for any
Neyman–Scott process (with Poisson numbers of children), but the reverse does
not hold, as the class of Cox processes is much larger than those equivalent to
Neyman–Scott processes. For example, consider the simple Cox process based on
CSR with a variable intensity λ. No realization of this process involves clustering
consistent with a Neyman–Scott process (unless one considers a degenerate uni-
form child-dispersal distribution). Finally, although the conceptual description of
Bartlett’s equivalence above might suggest that any Poisson cluster process yields
an equivalent Cox processes, formalizing the argument mathematically requires
precise definitions of valid probability structures, and Cressie (1993, p. 664) points
out that the general result remains unproven.

5.5 ADDITIONAL TOPICS AND FURTHER READING

In this chapter we provide only a brief introduction to spatial point processes
and their first- and second-order properties. The methods outlined above provide
the probabilistic tools to develop the analytic methods in Chapters 6 and 7 for
investigating spatial patterns of disease. Many of the applications in Chapters 6
and 7 build from heterogeneous Poisson processes, and our discussion here tends
to focus accordingly, resulting in limited treatment of some concepts covered in
more detail in more general texts on spatial statistics. In particular, we only provide
the barest details regarding tests of CSR. Cressie (1993, Chapter 8) provides a more
thorough presentation of such methods.

Due to our focus on heterogeneous Poisson processes, we ignore the sizable
literature regarding nearest-neighbor distance distributions. The literature refers to
the F function and the G function to represent cumulative distribution functions
of the distances between either a randomly chosen point in the study area or a
randomly chosen event to the nearest-neighboring event, respectively. See Diggle
(1983, Section 2.3) and Cressie (1993, Sections 8.2.6 and 8.4.2) for further details.
In addition, van Lieshout and Baddeley (1996) consider the ratio of the F and G

functions (termed the J function) as a measure of spatial interaction in a spatial
point processes. Van Lieshout and Baddeley (1999) provide an analog to the J

function for multivariate point processes (e.g., point processes with more than one
type of event, as in the grave site example).

Finally, there are also a wide variety of point process models in addition to the
Poisson processes outlined above. We refer the reader to Diggle (1983), Ripley
(1988), Chapter 8 of Cressie (1993), Stoyan et al. (1995), and Lawson (2001) for
further details and examples.

5.6 EXERCISES

5.1 Suppose that we have a realization of a spatial point process consisting of
N event locations {s1, . . . , sN }. Let Wi denote the distance between the ith
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event and its nearest-neighboring event. The literature refers to the cumulative
distribution function of W (the nearest event–event distance) as the G func-
tion. What is the G function under complete spatial randomness; that is, what
is Pr[W ≤ w]? (Hint: Consider the probability of observing no events within
a circle of radius w.)

5.2 Simulate 100 realizations of complete spatial randomness in the unit square
with 30 events in each realization. For each realization, calculate the distance
between each event and its nearest-neighboring event, denoted Wi for the
ith event in the realization. Calculate 2πλ

∑30
i=1 W 2

i (Skellam 1952) for each
realization and compare the distribution of values to a χ2

2N distribution where
N = 30 denotes the number of events, λ the intensity function (30 for this
application), and π is the familiar mathematical constant.

5.3 Repeat Exercise 5.2, letting the number of events in each realization follow a
Poisson distribution with mean 30. What changes in the two settings? Under
what assumptions is Skellam’s chi-square distribution appropriate?

5.4 Simulate 100 realizations of a Poisson cluster process and calculate Skellam’s
statistic for each realization. Compare the histogram of values to that obtained
in Exercise 5.2. How does the distribution of the statistic change compared
to its distribution under complete spatial randomness?

5.5 For each of λ = 10, 20, and 100, generate six realizations of CSR on the unit
square. For each realization, construct a kernel estimate of λ(s) (supposing
you did not know that the data represented realizations of CSR). How does
each set of six estimates of λ(s) compare to the known constant values of
λ? What precautions does this exercise suggest with regard to interpreting
estimates of intensity from a single realization (data set)?

5.6 The following algorithm outlines a straightforward acceptance–rejection ap-
proach to simulating realizations of N events from a heterogeneous Poisson
process with intensity λ(s). First, suppose that we can calculate λ(s) for any
point s in the study area A, and that we know (or can calculate) a bounding
value λ∗ such that λ(s) ≤ λ∗ for all s ∈ A.

Step 1. Generate a “candidate” event at location s0 under CSR in area A.

Step 2. Generate a uniform random number, say w, in the interval [0, 1].

Step 3. If w ≤ (
λ(s)

/
λ∗ )

[i.e., with probability
(
λ(s)

/
λ∗ )

], keep the
candidate event as part of the simulated realization; otherwise, “reject”
the candidate and omit it from the realization.

Step 4. Return to step 1 until the collection of accepted events numbers
N .

In this algorithm, events have a higher probability of being retained in the
realization in locations where the ratio

(
λ(s)

/
λ∗ )

is higher. The closer the
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value λ∗ is to maxs∈A λ(s), the more efficient the algorithm will be (as fewer
candidates will be rejected overall). [See Lewis and Shedler (1979), Ogata
(1981), and Stoyan et al. (1995, Section 2.6.2) for more detailed discussions
of this and similar algorithms.]

For a heterogeneous intensity λ(s) and study area A of your choice,
generate six realizations with 30 events each from the same underlying het-
erogeneous Poisson process. For each realization, estimate λ(s) via kernel
estimation. Plot the realizations with respect to your known intensity λ(s).
Provide separate plots of each kernel density estimate and compare to the
true intensity function λ(s).

On a separate plot, indicate the location of the mode (maximal value) of
each kernel estimate of λ(s). How do these six values compare to the true
mode of λ(s)? What (if any) implications do your results suggest with respect
to identifying modes of disease incidence based on intensity estimated from
a single data realization (e.g., a set of incident cases for a single year)?

5.7 The medieval grave site data set introduced in Section 5.2.5 appear in Table 5.2.
Estimate the intensity functions for affected and nonaffected sites for a variety
of bandwidths. For what bandwidths do the two intensities appear similar? For
what bandwidths do they appear different?

Table 5.2 Medieval Grave Site Dataa

u v Aff u v Aff u v Aff

8072 8970 0 9004 7953 0 8614 8528 0
9139 8337 1 8876 8641 1 8996 8039 0
7898 8892 0 8320 9010 0 9052 8923 0
9130 7438 0 9194 6474 0 9338 5737 0
8102 7636 0 9334 6740 0 9183 6073 0
8889 7272 0 8639 6916 0 9110 6393 0
8167 5609 0 9272 7095 0 8341 6903 0
8546 6218 0 9419 4177 1 9215 4570 0
8400 4117 0 9110 5067 0 9310 5450 1
9361 7166 1 8303 4935 0 8536 4226 0
9435 4473 1 8189 5720 0 8797 4787 0
8326 9300 0 8457 4785 0 8326 9541 1
5100 6466 0 8373 9379 0 7042 8761 0
4714 6455 0 4492 7463 0 7212 8262 0
7209 7467 0 7468 7789 1 7768 7972 1
7796 7657 0 7639 7009 1 7237 7299 0
7620 6039 0 6934 6918 1 9149 3588 0
7708 5776 0 7119 7784 0 7042 7264 1
7039 6234 1 8778 3844 0 9485 3319 1
5305 6065 1 5306 6065 1 5456 6353 0
5717 6023 0 5597 7725 0 5231 7472 0
6092 7671 1 4862 5969 0 6252 8271 0

(continued overleaf )
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Table 5.2 (continued )

u v Aff u v Aff u v Aff

6720 7164 1 6569 7391 0 6258 7127 0
9558 9403 0 9208 9114 1 9352 7957 0
9473 8826 0 7505 6024 0 7974 6332 0
7634 6229 0 8126 7269 0 9756 9257 0
9752 6468 0 10073 8273 0 9405 10431 0

10147 8141 0 10100 3085 1 9262 10068 0
9990 3824 0 9305 9661 0 8831 9393 0
9570 9059 0 9656 8356 0 9547 7690 0
9416 9223 0 9502 8846 0 8937 9611 0

10263 4790 0 10324 4389 0 10232 7271 0
9497 7564 0 9412 7463 0 9722 7065 0
9757 5276 1 9879 6309 0 10061 5937 0
9716 6713 0 9699 7240 0 9665 5554 1

10156 5225 1 10143 6317 0 10373 3208 1
8575 8840 0 9072 8894 0 8846 7633 0
9131 6958 1 9230 7068 0 8217 5835 0
8458 5106 0 8685 4497 0 8175 4862 0
8598 5377 0 8789 5006 0 5101 7115 0
4716 6733 0 5109 6590 0 7507 8280 0
7459 6591 0 8861 3882 0 7068 6341 0
5683 7046 0 4612 6147 0 5385 7052 0
6720 7541 0 5952 6278 1 7759 6222 1

7628 6730 0 10070 6739 0 9770 3469 0
9850 3656 1 9667 9541 0 9702 4581 1

10030 4274 0 10292 7562 0 9953 4673 0
10192 5291 0 10148 5222 1

au and v denote the coordinates of each location and “Aff” indicates whether the grave site included
missing or reduced wisdom teeth (Aff = 1) or did not (Aff = 0). See text for details.

5.8 Simulate 10 realizations from the Baddeley and Silverman (1984) process
defined in Section 5.3.4 on a 100 × 100 unit grid. Plot the K function for
each realization and plot the average of the 10 K functions at each distance
value. Does the average of the K-function estimates appear consistent with the
K function for complete spatial randomness? Does each of the 10 estimated
K functions appear consistent with the K function from complete spatial
randomness?
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Spatial Clusters of Health Events:
Point Data for Cases and Controls

It is no great wonder if in long process of time, while fortune
takes her course hither and thither, numerous coincidences
should spontaneously occur.

Plutarch, Life of Sertorius

The methods outlined in Chapter 5 provide a basis for addressing a very common
question related to mapped health data: Are there clusters of disease? As we saw
in Chapter 5, this question in deceptively simple to ask and considerably more
difficult to answer. In this chapter and the next, we review basic issues affecting our
assessment of clustering related to data types, answerable questions, assumptions,
and interpretation of results.

The typical data structure for assessments of spatial health patterns involves
a collection of locations of incident events over a particular period for a given
study area. For example, one might record the locations of residences for children
diagnosed with acute lymphocytic leukemia in a given year. Common questions
relating to the clustering of health events include:

• Do cases tend to occur near other cases (perhaps suggesting an infectious
agent)?

• Does a particular area within the study region seem to contain a significant
excess of observed cases (perhaps suggesting an environmental risk factor)?

• Where are the most unusual collections of cases (the most likely clusters)?

To address such questions, we need to determine whether an observed collection
of cases is somehow unusual (i.e., different than we expect under a hypothesis of
chance allocation of cases among the population at risk).

The question “Are disease cases clustered?” appears to imply existence of a
simple “Yes” or “No” answer, and suggests a hypothesis-testing approach based
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on a conceptual null hypothesis of

H0 : There are no clusters of cases. (6.1)

However, as we will see, there are many ways to operationalize this simple idea,
each differing in underlying assumptions, goals, and ways of assessing departures
from this null hypothesis. The statistical literature contains a variety of hypothe-
sis tests addressing disease clustering [see Marshall (1991), Elliott et al. (1995),
Alexander and Boyle (1996), Lawson and Waller (1996), Kulldorff (1997), Dig-
gle (2000), Wakefield et al. (2000b), Lawson (2001), and Kulldorff (2002) for
reviews]. We do not attempt an exhaustive review here; rather, we focus on a
variety of strategies for addressing the conceptual null hypothesis above, listing a
sample of methods following each strategy.

6.1 WHAT DO WE HAVE? DATA TYPES AND RELATED ISSUES

Disease cluster investigations generally involve case data in one of two broad
categories: case–control point data or regional count data. Case–control point data
involve point locations for each of a set of cases reported (e.g., those cases reported
to a disease registry or other reporting system within a given time period), and
a collection of noncases, termed controls. Regional count data generally provide
reported counts of incident (newly diagnosed) or prevalent (existing) cases residing
in particular regions partitioning the study area (e.g., census enumeration districts).
We focus on methods for case–control point data in this chapter, and on methods
for regional count data in Chapter 7.

With case–control point data, the control locations provide background infor-
mation on spatial patterns of the population at risk. Often, we assume that controls
represent an independent random sample from subjects free of the disease of inter-
est, and compare patterns of the cases to the pattern of people without the disease.
In some cases, we select controls “matched” to the set of cases, reflecting similar
proportions of demographic features such as age, gender, or race/ethnicity. Such
matching of controls is common practice in epidemiology, but analysts need to
be aware that matching affects the standard error of statistical estimates and often
requires adjustments in calculations [see Chapter 10 of Rothman and Greenland
(1998) for a general discussion of matching and Diggle et al. (2000) for issues
specific to spatial point pattern analysis]. In some cases we may have complete (or
very nearly complete) enumeration of cases and noncases (e.g., a complete registry
of birth defects combined with a birth certificate database). In other cases we may
consider sampling controls from the population at risk. For very rare diseases, we
may consider the set of all persons at risk (diseased and nondiseased) as a set
of controls with the bias associated with the inclusion of the cases in the set of
controls diminishing with increasing rarity of disease.

Limited availability of point data for nondiseased persons often necessitates
other definitions of controls. One approach uses cases of a second disease (or set
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of diseases) different from the disease under investigation (cf. Diggle 1989, 1990;
Lawson 1989; Lawson and Williams 1993). In this case the analyst specifically
assumes differences in etiology between the case and control diseases relating par-
ticularly to any exposures of interest (environmental or otherwise). As a specific
example, English et al. (1999) investigate associations between pediatric asthma
and traffic flow using pediatric asthma cases among children using California’s
Medicaid program and controls sampled from the nonrespiratory visits recorded in
the same system. This choice of cases and controls explores differences between
the spatial distribution of residences of children using the low-income health sys-
tem for asthma-related outcomes and that of children using the same system for
reasons other than respiratory ailments. Note that this is a different comparison than
that between all cases of pediatric asthma and nonasthmatic children. The particu-
lar choice of controls refines the hypotheses under investigation and specifies the
answerable questions in the available data.

The case and control point locations provide realizations from the underlying
case and control spatial point processes. In the methods outlined below, we use
ideas from Chapter 5 to find similarities or differences between these two processes.

6.2 WHAT DO WE WANT? NULL AND ALTERNATIVE HYPOTHESES

To define hypothesis tests, we first need to operationalize H0 as defined verbally in
equation (6.1). The particular implementation of a hypothesis test involves several
assumptions, each determining whether observed patterns provide evidence for or
against a conclusion of clustering. As discussed in Section 5.2.4, complete spatial
randomness (CSR), a mathematical definition of the absence of clustering in spa-
tial point processes, is not a satisfactory null hypothesis if the population at risk
is distributed heterogeneously across the study area. As a result, many traditional
tests of CSR based on nearest-neighbor distances [e.g., those outlined in Table
8.6 of Cressie (1993, p. 604)] are not appropriate tests of clustering of disease
cases in heterogeneously distributed populations. One way around this problem
involves defining mathematical transformations of the study area such that the
population at risk is homogeneously distributed in the transformed space, allowing
application of distance-based tests of CSR in the transformed data (Selvin 1991,
pp. 117–124). These transformations generate cartograms or density equalized map
projections. Public health applications of cartograms appear in the literature (e.g.,
Levison and Haddon 1965; Selvin et al. 1987, 1988; Schulman et al. 1988). How-
ever, defining a unique transformation that maintains regional adjacencies (shared
borders) can be nontrivial. Since the heterogeneous Poisson process provides a
flexible means for analyzing the untransformed data, we limit discussion to such
approaches below.

To begin, we consider spatially varying functions defining the spatial pattern
of disease and consider the relationship between these quantities and the spatial
intensity function for a heterogeneous Poisson process defined in Chapter 5. Such
functions allow us to assess whether the data observed appear consistent with
the conceptual null hypothesis expressed in equation (6.1). Three concepts from
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Chapter 2 provide a starting point: spatial variations in disease risk, disease rates,
and relative risk. As noted in Chapter 2, the term rate often refers to incidence
proportion rather than to a true rate (number of incident cases per time interval).
Expanding the definitions of Chapter 2 to the spatial domain implies a spatially
varying function risk(s), denoting the probability of a person at location s contract-
ing the disease of interest within a specified interval, a function rate(s) denoting
the proportion of people at location s contracting the disease within the interval,
and a function relative risk(s) denoting the multiplicative increase in disease risk
occurring at location s compared to the overall disease risk observed (i.e., the
total number of cases divided by the total number of persons at risk). As noted
in Chapter 2, risks are unknown and unobserved quantities specific to individuals,
often estimated by rates (proportions) observed over groups of people.

If we assume that case and control locations follow heterogeneous Poisson point
processes, we may consider each of the spatially varying intensity, risk (rate), and
relative risk functions as ratios comparing the expected number of cases (numerator)
at a location s to different reference quantities (denominators). Conditional on the
total number of cases in the study area, the intensity function at location s is
proportional to the spatial probability density function at location s describing the
proportion of all cases observed expected to occur at location s. The risk (rate)
at location s describes the proportion of at-risk persons at location s expected to
contract the disease. Hence the comparison (denominator) groups for intensity and
rate (risk) functions are all cases, and all at-risk persons, respectively.

Ratios of case and control intensities and ratios of spatially varying risk functions
both provide insight into the spatial relative risk function. Informally, consider the
rate ratio resulting from replacing the ratio of risks (unknown probabilities to be
estimated) with proportions. The typical interpretation of the spatially varying rate
ratio is

(number of incident cases at s)/(number at risk at s)

(total number of cases)/(total number at risk)
. (6.2)

We note that algebraic manipulation of equation (6.2) yields

(number of incident cases at s)/(total number of cases)

(number at risk at s)/(total number at risk)
. (6.3)

As a result, the rate ratio at location s describes the ratio of intensities in equation (6.3)
(the ratio between the proportion of all cases occurring at location s and the proportion
of all noncases occurring at location s) and the ratio of incidence proportions in
equation (6.2) (the ratio of the incidence proportion at s to the incidence proportion
for the entire study area) equally well. More formal development of the spatial
relative risk with respect to intensity and density functions appears below and in
Diggle (2000, pp. 89–91) and Wakefield et al. (2000b, pp. 140–141).

With estimates or summaries of spatially varying risks, rates, or relative risks,
attention turns to quantifying how a particular estimate varies from what would
be expected under the conceptual null hypothesis. As outlined below, different
statistical methods approach this issue in different ways.
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Two common methods for operationalizing the null hypothesis defined in equation
(6.1) based on an assumed underlying heterogeneous Poisson process are the ran-
dom labeling hypothesis for point case–control data (defined in the application of
the K function to the medieval grave site data in Section 5.3.3), and the constant
risk hypothesis (defined in Section 5.2.4) for regional count data. Recall that the
former assumes that case and control event locations arise from the same under-
lying spatial point process, while the latter assumes cases reflect a random sample
of the at-risk population where the probability of selection is the same everywhere
(perhaps varying by risk strata, e.g., age, but with spatially constant stratum-specific
risks). Accordingly, many statistical approaches for point case–control data rely on
estimates of intensity or K functions, while those for regional data involve compar-
isons of regional summaries to those expected from independent Poisson random
variables with expectations defined as the product of the assumed constant risk and
the population size perhaps adjusted for demographic structure. As a result, many
tests for regional count data resemble traditional goodness-of-fit tests wherein one
compares the number (or proportion) of cases observed to that expected under the
null hypothesis, as detailed in Chapter 7.

The two approaches to defining null hypotheses are similar but not identical. In
particular, the constant risk hypothesis assumes a known (or estimated) background
risk, while the random labeling hypothesis only assumes an equal probability of
case–control assignment at all locations. We will refer to the constant risk hypoth-
esis even though technically we replace risk with an estimate based on proportions
(rates). The assumptions defining random labeling and constant risk can differ in
the situation where we use a reference disease risk estimated from data external
to the study area (e.g., applying a national rate to a local area). To illustrate, con-
sider a situation where the external rate (risk estimate) differs appreciably from the
rate observed within the data set but that this difference occurs uniformly across
the study area. In this setting, tests comparing the case counts observed to those
expected under the external rate would tend to find evidence against the null hypoth-
esis, due to comparison with a discrepant overall rate rather than to local variations
in disease risk within the study area. In short, when using an externally estimated
reference rate, the constant risk hypothesis may be rejected by any of the following:
local deviations in the disease rate within the study area (i.e., localized clustering
or a nonstationary disease intensity), a uniform increase or decrease in the rate
across the study area (i.e., a mismatch between the disease rate for the entire area
and that of the external reference population), or some combination of both. This
feature argues for careful interpretation of any rejection of the constant risk hypoth-
esis, particularly when using reference rates based on external data. In contrast, the
random labeling hypothesis assigns the case–control label using the frequency of
cases and controls observed in the data. Related tests are conditional on the fre-
quency observed, and random labeling is not sensitive to the estimated/assumed
background risk in the same manner as is the constant risk hypothesis.

We may also distinguish subtle differences between different implementations of
the null hypothesis by considering how we might simulate data realizations under
each implementation. This approach is particularly enlightening since Monte Carlo
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(simulation) methods provide inference for many of the tests described below.
First, consider simulating realizations under the random labeling hypothesis for
case–control point data. Here, we consider the set of event (say, N1 case and N0
control) locations fixed and generate data sets under the null hypothesis by ran-
domly assigning N1 of the set of N = N0 + N1 locations as “cases.” In defining
our null process in this manner, we address the question: “Is there evidence of
clusters or clustering in our data?” more explicitly as “Are the N1 case locations
observed consistent with a random assignment of N1 among the N event locations
observed?” Table 6.1 extends this exercise to a variety of settings, each operational-
izing the conceptual null hypothesis in slightly different ways for both case–control
point and regional count data.

Table 6.1 also distinguishes between null hypotheses based on fixed and variable
total numbers of cases. For example, contrast the questions “Is there evidence of

Table 6.1 Specification of Questions Addressed by Different Approaches for
Operationalizing the Null Hypothesis of the Absence of Clusteringa

Null
Hypothesis Question Addressed

Random labeling
Case–control point data

Are the N1 case locations observed consistent
with a random assignment of N1 cases among
the N event locations observed?

Constant risk
Case–control point
data (fixed total)

Are the N1 case locations observed consistent
with a random assignment of N1 cases among
the N event locations observed?

Constant risk
Case–control point data
(variable total)

Are the case locations observed consistent with
each of the N locations observed having
probability N1/N of being a case?

Constant risk
Regional count data
(fixed total, risk known)

Are the regional counts observed consistent with
a random assignment of N1 cases among the
population at risk?

Constant risk
Regional count data
(variable total, risk known)

Are the regional counts observed consistent with
a random assignment of cases among the
population at risk, where each person is
subject to the same, known risk of disease?

Constant risk
Regional count data
(variable total, risk estimated)

Are the regional counts observed consistent with
a random assignment of cases among the
population at risk, where each person is
subject to the same constant, but unknown,
risk of disease?

aAs in the text, N0 denotes the number of controls observed, N1 the number of cases observed, and
N = N0 + N1 the total number of cases and controls. For the purposes of this table, we assume that
the population at risk remains constant for the study period.



WHAT DO WE WANT? NULL AND ALTERNATIVE HYPOTHESES 161

clustering of 592 cases of leukemia among 1,057,673 persons at risk?” and “Is
there evidence of clustering of cases of leukemia among 1,057,673 persons at risk
where each person has a risk of 592/1,057,673 of contracting leukemia in the
time interval under study?” In the former we seek evidence of clusters among 592
observed cases, and each simulated data set would include 592 cases of leukemia
in a Monte Carlo study. In the latter we seek evidence among a fixed population
of 1,057,673 persons at risk but allow the total number of cases to vary (both
conceptually and in Monte Carlo simulations) even though each person experiences
a constant risk of disease. Another example involves the difference between “Do
we observe evidence of clustering among the 592 cases observed this year?” and
“Do we observe evidence of clustering among cases observed at this year’s rate?”
Bithell (1995) outlines theoretical reasons for conditioning on the total number of
cases (an ancillary statistic), whereas we focus on the conceptual change in the
question of interest.

In addition to differences in the null hypothesis, most tests assess deviations from
the conceptual null hypothesis in equation (6.1) with respect to particular mathe-
matical definitions of “cluster” within alternative hypotheses. Hence, different tests
identify different patterns as evidence of deviations from this null hypothesis. Sev-
eral possibilities exist for relevant alternative hypotheses, and Besag and Newell
(1991) provide valuable terminology for distinguishing between them. First, con-
sider the distinction between clusters and clustering. Detecting a cluster involves
the identification of a collection of cases inconsistent with our null hypothesis
of no clustering, whereas detecting clustering involves assessment of the overall
propensity of cases to cluster together (i.e., detecting the tendency of cases to clus-
ter rather than identifying a particular collection or collections of cases). A single
cluster represents an anomaly in the data (i.e., a collection inconsistent with the
broader pattern); clustering represents a pattern among all or most cases. Typically,
a test of clustering provides a single assessment of the statistical significance of the
pattern for the entire area (e.g., a single p-value), whereas tests to detect clusters
often utilize multiple tests (multiple p-values) to determine which collection of
cases represents the most significant cluster. We note that the distinction between
detecting clusters and detecting clustering is not always clear (e.g., some cases may
occur in clusters whereas others do not, there may be more than one cluster, or
only a subset of cases actually exhibit a clustering tendency). Nonetheless, the cat-
egories focus our attention on different aspects of the observed spatial distribution
of cases and different answers to the question “Is there evidence of clusters in my
data?”

Besag and Newell (1991) further distinguish between general tests and focused
tests (of clustering or to detect clusters). General tests test for clusters/clustering
anywhere in the study area; focused tests test for clusters or clustering around
predefined foci of suspected increased risk of disease (e.g., a contaminated well).
Statistically, the difference lies again in the null hypotheses; contrast H0 for a
general test (absence of clustering) with that for a focused test:

H0: There are no clusters of cases around the foci.
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In a focused study, one attempts to increase statistical attention (e.g., power) on a
particular set of possible clusters (those around the foci) rather than trying to find
any sort of cluster in any location.

6.3 CATEGORIZATION OF METHODS

With the ideas outlined in Sections 6.1 and 6.2 in mind, we review several specific
statistical approaches for case–control point data in the following sections. We note
that different tests may provide differing conclusions regarding clusters/clustering
present in the same set of data (Waller and Jacquez 1995). By better understand-
ing the types of clustering/clusters associated with particular tests, we may better
understand the types of patterns present in any particular data set.

In the sections below we present tests of disease clusters/clustering catego-
rized by the type of data and the statistical strategy for detecting clusters and/or
clustering:

• Methods for case–control point data using first- and second-order summaries
of spatial point processes (e.g., intensity and K function estimates)

• Methods for case–control point data based on scanning local rate estimates

We believe that this classification aids in identifying differences among methods
and the assumptions and goals underlying each. We present a representative (but not
exhaustive) sample of case–control point approaches appearing in the statistical and
epidemiologic literature, and provide references to reviews and other approaches
in Section 6.7. We take care to indicate assumptions inherent in the methods and
highlight the particular manner in which each method operationalizes the conceptual
null hypothesis stated in equation (6.1).

6.4 COMPARING POINT PROCESS SUMMARIES

In Chapter 5 we introduced two-dimensional heterogeneous Poisson processes and
defined their first- and second-order properties as summarized by the intensity
function λ(s) and K function K(h), respectively. We also provided methods for
estimating the intensity and K functions from an observed realization of event loca-
tions. We illustrated these methods using the medieval grave site data (listed at the
end of Chapter 5), drawing only qualitative conclusions comparing the point pat-
terns of affected and nonaffected grave sites. We now formalize inferential methods
comparing intensity functions for a pair of patterns observed over the same study
area. When considering the set of affected and nonaffected sites, the medieval grave
site data again provide an example of case–control point data and we continue to
use the data to motivate the various statistical approaches.

6.4.1 Goals

The primary goal for comparisons of intensity functions is to detect local differ-
ences between the spatial pattern in disease incidence observed in the cases from
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the spatial pattern observed in the controls, and to assign statistical significance to
any differences observed. Most often, we wish to detect significant peaks (and/or
valleys) of case incidence above and beyond the baseline pattern of individuals at
risk, illustrated by the controls. As a result, the approaches below most often serve
as tests to detect clusters, although the approaches sometimes use summary values
to provide a means to assess overall clustering as well. Such tests of clustering
assess the frequency and strength of local differences occurring anywhere in the
study area rather than directly assessing a tendency of cases to occur near other
cases (i.e., the presence of many individual clusters can provide evidence for clus-
tering rather than a general tendency for cases to be near other cases). The goal of
detecting local differences between the case and control patterns observed indicates
that the approaches most often offer general inference, although we could define
focused approaches either as special cases of a general method or as derived from
the same underlying principles.

In contrast, comparison of second-order properties focuses on assessing cluster-
ing rather than clusters. Recall that the K function is a summary of the tendency
for observed events to occur within a distance h for values of h ranging from zero
to (typically) half the largest interevent distance observed. As such, the K function
summarizes clustering tendency across all events rather than identifying particular
collections of events as clusters.

6.4.2 Assumptions and Typical Output

For comparing intensities or K functions, we assume that the case locations repre-
sent a realization of a heterogeneous Poisson point process and that the control loca-
tions represent a realization of a second heterogeneous Poisson process observed
over the same area. As such, we assume that each case and control event location
occurs independently of other events in the same process, with spatial variation in
incidence summarized by the intensity function for the appropriate process.

As mentioned in Section 6.2, methods for case–control point data often build
inference based on the random labeling hypothesis, conditional on the point loca-
tions observed. All methods described in this section assume that the set of case–
control locations are fixed. That is, all simulations involve random assignment of
the case–control label to the existing set of locations rather than randomly assign-
ing locations to cases. As a result, the tests seek an answer to the question: Is the
labeling of event locations observed as cases and controls consistent with a random
assignment of labels to this set of locations observed? Recall that random labeling
does not necessarily imply independence between the case and control processes.
For methods based on estimated intensity functions, we are less concerned with
describing the overall pattern of events than with identifying those locations in
the study area where the observed probability of an observed event being a case
(versus a control) appears high. Hence, the output of our general tests to detect
clusters below will typically consist of a map indicating areas where events appear
more or less likely to be cases than controls, as compared to the case–control ratio
observed in data aggregated over the entire study area.
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Naturally, methods based on estimated first- and second-order properties of
spatial point processes inherit the assumptions allowing the particular estimation
methods in the first place. As a starting point, the approaches below assume inde-
pendence between events within a realization (e.g., events within the case process)
and therefore do not apply readily to infectious outcomes. Second, the usual imple-
mentations of kernel estimation of intensities and edge-corrected estimation of the
K function employ some form of isotropy. Kernel estimation typically uses isotropic
kernels, which may work well with a sufficiently large sample size (number of loca-
tions), even for an anisotropic intensity function. K-function estimation assumes
isotropy of the underlying process. Both intensity estimation and K-function esti-
mation may be extended to incorporate various anisotropies, provided that we have
a priori reasons for such an adjustment. Finally, K-function estimation typically
assumes stationarity of the underlying process in addition to isotropy. Diggle and
Chetwynd (1991) note that one may assume stationarity for a heterogeneous Poisson
process as long as one assumes that the (heterogeneous) intensity function is itself
a realization of a stationary random process defining intensities (i.e., a Cox process
as defined briefly in Section 5.4.3). As in the data break ending Section 5.3.3, a
random labeling hypothesis based on K functions seeks to determine if the case and
control processes exhibit the same sort of deviation from a homogeneous Poisson
point process.

6.4.3 Method: Ratio of Kernel Intensity Estimates

Suppose that our data include the locations of N1 case events and N0 control events
distributed throughout the same study area. The medieval grave site data from Alt
and Vach (1991) introduced in Section 5.2.5 provide an example of such data. We
define λ1(s) and λ0(s) as the intensities associated with the point process of cases
and controls, respectively. Each intensity function is proportional to the underlying
spatial probability density functions associated with the probability of observing
an event of the associated type (case or control) at any particular location in the
study area. Comparisons of the two intensity functions form the basis of several
approaches for assessing spatial clustering in public health data (Bithell 1990;
Lawson and Williams 1993; Kelsall and Diggle 1995a,b, 1998). Bithell (1990) and
Lawson and Williams (1993) suggest exploratory analyses based on the ratio of
these two intensities, with Bithell (1990) proposing a logistic transformation to
symmetrize variances. Kelsall and Diggle (1995a,b) formalize such comparisons
of intensity functions and we outline their approach here.

By assuming an underlying Poisson process, Kelsall and Diggle (1995a,b) note
that conditional on the number of cases and controls, the data are equivalent to
two independent random samples from (spatial) probability distributions over the
study area (denoted D) with density function

f (s) = λ1(s)

/∫
D

λ1(u) du
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for cases and

g(s) = λ0(s)

/∫
D

λ0(u) du

for controls. Kelsall and Diggle (1995a,b) suggest inference (conditional on N1 and
N0) based on the natural logarithm of the ratio of the two spatial densities, i.e.,
inference based on

r(s) = log{f (s)/g(s)},

a quantity related to the logarithm of the relative risk of observing a case rather
than a control at location s in D. Note that algebraic manipulation of the definition
of r(s) yields

r(s) = log{λ1(s)/λ0(s)} − log

{∫
D

λ1(u) du

/∫
D

λ0(u) du

}
. (6.4)

The second term on the right-hand side of equation (6.4) does not depend on
the spatial location s, so r(s) and the natural logarithm of the ratio of intensity
functions contain identical information regarding spatial variation in risk. That is,
a surface plot of the log ratio of the spatial density functions [f (s) and g(s)] will
be identical to that of the log ratio of the spatial intensity functions [λ1(s) and
λ0(s)] offset by a constant defined by the log ratio of the integrated intensities.
This constant corresponds to the log overall disease rate if we observe all case and
noncase locations (the complete realization of the two point processes), or may be
estimated by log(N1/N0) − log(q1/q0) if we sample proportions q1 of N1 cases
and proportion q0 of N0 noncases, given values for N0, N1, q0, and q1 (Kelsall and
Diggle 1995b).

Statistical analysis proceeds via estimation of r(s) and inference regarding either
clustering or detection of particular clusters. An advantage of analysis based on
r(s) is that one obtains an estimate of the (log) relative risk surface at all locations
s within the study area D. Local assessment of the null hypothesis defined by
equation (6.5) (i.e., assessment at particular locations s ∈ D) allows identification
of those areas appearing least consistent with r(s) = 0 (i.e., a way to detect the
locations s defining the most suspicious clusters within the study area).

To implement this approach, we require an estimate of the function r(s). Kel-
sall and Diggle (1995a) propose a ratio of kernel estimates for f (s) and g(s),
denoted f̃b(s) and g̃b(s), respectively, where b denotes the bandwidth. The usual
considerations in kernel estimation apply, including edge-effect adjustments, ker-
nel selection, and bandwidth selection. As noted in Section 5.2.5, the particular
functional form of the kernel is not as important as the choice of bandwidth (but
the numerical values of bandwidth may not be directly comparable between kernel
types, as illustrated in the data break below). On the practical side, we note that the
assumption of r(s) as a continuous function of location s assumes that people at
any location experience some nonzero risk of the disease. For small sample sizes
of cases or controls, kernel estimation of the intensity function using finite-tail
kernels (e.g., quartic kernels) can result in zero estimates for either f (s) or g(s)
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in locations containing few cases and/or controls. Zero estimates for g(s) lead to
local instabilities (division by zero) in resultant estimates of r(s). Even kernels with
infinite tails (e.g., Gaussian kernels) may result in numerically instable estimates if
the data include wide gaps between event locations yielding very small estimates
of g(s). The existence and extent of such instabilities vary with the choice of the
bandwidth, suggesting careful examination of plots of the estimated surfaces f (s),
g(s), and r(s) for odd behavior. An advantage to choosing a kernel with infinite
tails such as a bivariate Gaussian density is that the estimate of the control density,
g(s), is nonzero for all locations and bandwidths, thereby avoiding division by zero
in the estimate of r(s). Kelsall and Diggle (1995a) note that bandwidths sensible
for individual densities f̃b(s) and g̃b(s) may not be sensible for estimating r(s),
and suggest a common b for both when r(s) ≈ 0.

While an optimal bandwidth based on mean integrated squared error (MISE)
cannot be defined (see Section 5.2.5), an approach known as least squares cross-
validation provides an approximation to minimizing the MISE (Silverman 1986,
pp. 48–53; Wand and Jones 1995, pp. 63–66). In one dimension, least squares
cross-validation approximates the MISE by the difference between the squared
kernel estimate integrated over the study area and twice the averaged estimates
based on kernel estimates from the data set omitting each observation in turn.
Although least squares cross-validation is not perfect and can have poor perfor-
mance in some situations (Wand and Jones 1995, pp. 65–66), it does provide a
general strategy for bandwidth selection. We defer details of particular bandwidth
selection algorithms to Wand and Jones (1995), Kelsall and Diggle (1995a,b), and
Lawson (2001, pp. 66–67).

Suppose that we denote the selected bandwidth value (or values, in the case of
product kernels) by b∗. At a descriptive level, a contour plot of r̃b∗(s) provides
a map of areas where cases are more or less likely than controls [s such that
r̃b∗(s) > 0 and r̃b∗(s) < 0, respectively]. Assessment of the significance of these
deviations from zero proceeds via Monte Carlo analysis. Although a null hypothesis
based on the constant risk hypothesis (actually, a constant relative risk hypothesis)
makes intuitive sense, Monte Carlo tests are easier under the random labeling
hypothesis (as is typically the case for case–control point data). We condition
on the observed locations of cases and controls, and randomly assign N1 of the
N1 + N0 total locations as cases for each simulated data set. We then calculate
r̃b∗(s) for each simulated split of locations into cases and controls (typically using
the bandwidth calculated for the data both for computational ease and to remove
variability associated with bandwidth estimation from our inference). If we repeat
the process Nsim times over the same grid of locations in the study area, we can
construct histograms and Monte Carlo p-values [the number of simulated values
of r̃b∗(sk) exceeding the value based on the observed data divided by Nsim + 1]
associated with each grid point.

In addition to assessment of local clusters, the r̃(s) surface also allows investi-
gation of overall clustering via assessment of the global null hypothesis

H0 : r(s) = 0 for all s in D, (6.5)
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reflecting a situation where the spatial densities (and intensities) of cases and con-
trols may vary across the study area but are always in the same relative proportion.
That is, any heterogeneities in the spatial intensity of cases directly mirror those
in the spatial intensity of controls. As written, equation (6.5) is a constant relative
risk hypothesis, but as above, Monte Carlo implementation is more straightforward
under the random labeling hypothesis. Note that the null hypothesis defined in
equation (6.5) holds for all locations s within the study area, so a test of this null
hypothesis provides summary inference (e.g., a single p-value) for the entire study
area. For a test of overall clustering, Kelsall and Diggle (1995b, p. 2339) suggest
one based on the statistic

∫
D

{r̃(u)}2 du, (6.6)

calculated for the observed and simulated data, with inference based on Monte
Carlo testing under the random labeling hypothesis. The integration summarizes
all deviations between the case and control intensities across the study area, thereby
providing a single statistic for the entire study area. Hence, unlike other tests of
clustering proposed below, the log ratio of intensity functions provides a test of
clustering using a direct mathematical summary of individual clusters.

DATA BREAK: Early Medieval Grave Sites (cont.) Let us reconsider the
medieval grave site data of Chapter 5. In the data break in Section 5.2.5 we cal-
culated and visually compared kernel estimates of the intensity functions for cases
(grave sites with affected teeth) and controls (grave sites without affected teeth).
We now apply the method of Kelsall and Diggle (1995b) to assess the statistical
significance of any observed deviations between the two intensity functions.

We begin with circular symmetric Gaussian kernels for cases and controls with
a common bandwidth of 700 units in all directions, where our choice represents
a compromise among Scott’s rule (Section 5.2.5) for bandwidths in the u and v

directions for cases and controls [(872.24,997.45) for cases, and (695.35,734.82)
for controls, respectively]. Recall that bandwidths meeting selection criteria for the
individual case and control processes do not necessarily correspond to sensible
bandwidths for the ratio of density (intensity) estimates, and we consider a variety
of kernels and bandwidths below.

Figure 6.1 illustrates contour plots for the two density functions (normalized
intensities) for a bandwidth of 700 units. The densities are somewhat less smooth
than those presented in Figures 5.9 and 5.10, due to the slightly smaller bandwidth.

Figure 6.2 reveals the resulting log relative risk surface. No areas exceed the
upper or lower pointwise 90% tolerance intervals for this choice of bandwidth
based on 999 random labeling simulations, suggesting no locally significant depar-
tures from the random labeling hypothesis. This implies that the visual differences
observed between the two estimated density (intensity) functions in Figures 6.1
and 5.10 do not correspond to statistically significant deviations from the random
labeling hypothesis (i.e., clusters).
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FIG. 6.1 Estimated densities (normalized intensities) using Gaussian kernels and a bandwidth of 700
units (see text). Compare with Figures 5.9 and 5.10.
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FIG. 6.2 Log ratio of density functions (proportional to the log ratio of intensity functions) for the
medieval grave site data, using Gaussian kernels with a bandwidth of 700 distance units. Thin lines
represent contours for log ratio values below zero, dashed contours represent log ratios of zero, and
thick contours represent log ratio values above zero.

Using the same 999 random labeling assignments, the global test based on
the statistic defined in equation (6.6) with Gaussian kernels and a bandwidth of
700 units yields a p-value of 0.18, suggesting that the overall difference between
intensities does not suggest a global pattern of clustering.

In order to investigate the sensitivity of our inference to the selection of the band-
width, Figure 6.3 illustrates the log relative risk surface based on radially symmetric
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FIG. 6.3 Log ratio of density functions (proportional to the log ratio of intensity functions) for the
medieval grave site data, using Gaussian kernels with a bandwidth of 350 distance units. Any collections
of “+” symbols indicate areas where the observed log ratio exceeds the upper 90% tolerance region
obtained by 999 simulations under the random labeling hypothesis (see text). Similarly, any collections
of “−” symbols indicate areas where the observed log ratio of intensities is below the lower 90%
tolerance limit. Thin lines represent contours for log ratio values below zero, dashed contours represent
log ratios of zero, and thick contours represent log ratio values above zero.

Gaussian kernels with a bandwidth of 350 distance units for both cases and controls.
For comparability, we use the same vertical scale, (−3,3), and contour levels in
Figures 6.2 and 6.3. As expected, the smaller bandwidth results in a bumpier sur-
face, and certain areas now exceed the upper or lower pointwise tolerance limits.
In Figure 6.3 we label areas exceeding the upper pointwise 90% tolerance intervals
with collections of “+” symbols, and areas of significantly reduced (log) relative risk
appear as a collection of “−” symbols. These areas suggest a cluster of cases near
(6500, 6500), and a deficit of cases along the southern border near (8000, 5000). The
area indicated by these symbols indicate areas within the study area which are the
most inconsistent with a random labeling assignment of grave sites, suggesting the
most unusual clusters of affected grave sites. The area exceeding the lower tolerance
limits corresponds to the sharp lower “spike” observed in the perspective (left-hand)
plot in Figure 6.3. Such a deviation is due to the local deficit of cases near this edge
of the study area (see Figure 6.1). The reduced bandwidth places this location out
of the range of appreciable kernel weight of any of the case locations.

Again based on 999 random labeling assignments, the global test based on the
statistic in equation (6.6) using Gaussian kernels and a bandwidth of 350 units
yields a p-value of 0.13, suggesting that the overall difference between intensities
still does not suggest a global pattern of clustering. However, we note that this
does not mean that the individual deviations seen in Figure 6.3 are “insignificant,”
as the global test is a test for clustering rather than a test of the existence of any
clusters.



170 SPATIAL CLUSTERS OF HEALTH EVENTS: POINT DATA FOR CASES AND CONTROLS

u

v

Log relative risk

Log relative risk surface

4000 6000 8000 10000

40
00

60
00

80
00

10
00

0

u
v

Quartic kernel, bandwidth =  700

++++++++++++−2

−2
−2
−2

−2

0

0

0

−1.5

−1
.5−0.5

FIG. 6.4 Log ratio of density functions (proportional to the log ratio of intensity functions) for the
medieval grave site data, using quartic kernels with a bandwidth of 700 distance units. Thin lines
represent contours for log ratio values below zero, dashed contours represent log ratios of zero, and
thick contours represent log ratio values above zero. Any collections of “+” symbols indicate areas
where the observed log ratio exceeds the upper 90% tolerance region obtained by 999 simulations under
the random labeling hypothesis (see text).

Next we consider kernel estimates based on radially symmetric quartic kernels
rather than Gaussian kernels. Figure 6.4 shows the log relative risk function using
quartic kernels and a bandwidth of 700 units, illustrating an important point regard-
ing kernels and bandwidth selection. The log relative risk function based on a
quartic kernel with bandwidth set to 700 units is very similar to the log relative risk
surface based on a Gaussian kernel with bandwidth set to 350 units (Figure 6.3).
Even though we note in Section 5.2.5 that kernel estimates are more sensitive to
bandwidth than the particular kernel used, the bandwidth must always be interpreted
in the context of a particular kernel.

To see why the log relative risk surface based on quartic kernels with bandwidth
set to 700 units is similar to that based on Gaussian kernels with bandwidth set
to 350 units, consider Figure 6.5, where we overlay the one-dimensional Gaussian
and quartic kernels, each with bandwidth set to 700. For the Gaussian kernel,
the bandwidth corresponds to the standard deviation of a Gaussian distribution;
for the quartic kernel, the bandwidth corresponds to the distance beyond which
locations do not contribute to the kernel estimate for the location of interest (u = 0
in Figure 6.5). Note the quartic kernel assigns zero weight beyond its bandwidth
of 700 units, while the Gaussian kernel assigns appreciable weight to the distance
beyond 700 units, resulting in a smoother kernel estimate for Gaussian kernels than
for quartic kernels with the same bandwidth. The Gaussian kernel with bandwidth
350 units provides a set of kernel weights similar to those provided by the quartic
kernel with bandwidth 700 units, hence a similar intensity (density) estimate.

Based on the different results for different kernels and bandwidths, which do we
choose? First, we find no clear general pattern of clustering among the grave sites
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FIG. 6.5 Comparison of the one-dimensional Gaussian and quartic kernels (defined in Table 5.1) with
bandwidth set to b distance units, centered at u = 0.

for Gaussian kernels with the bandwidth set to either 350 or 700 units. However,
we do find an area with a suspicious aggregation of affected sites for Gaussian
kernels with bandwidth 350 units (similarly for quartic kernels with bandwidth set
to 700 units). The aggregations only appear inconsistent with the random labeling
hypothesis for smaller bandwidths, suggesting fairly local impact of neighboring
locations, if any.

The results are clearly dependent on the bandwidth selection. Recalling our
original intent, we wish to recover a log relative risk surface accurately portray-
ing differences in burial site selection patterns for affected and nonaffected sites.
Smaller bandwidths may correspond to more local burial site selection criteria more
closely than do larger bandwidths. Linking the statistical methods with the origi-
nal application requires development of a reasonable bandwidth reflecting a likely
“area of influence” of a familial-based burial strategy, a decision based on both
statistical and archaeological input.

In summary, although the log relative risk approach alone does not prove burial
by family unit, the local tests suggest areas where archaeologists may wish to seek
additional evidence for familial ties through artifacts, or further laboratory testing
of the remains.

6.4.4 Method: Difference between K Functions

In contrast to comparisons of estimated first-order properties, Diggle and Chetwynd
(1991) consider inference based on estimated second-order properties of the case
and control processes, namely the difference

KD(h) = Kcases(h) − Kcontrols(h)
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between the K function based on cases and that based on controls for distance h.
We estimate KD(h) by K̂D(h) replacing the K functions with their edge-corrected
estimates defined in Section 5.3.1. As mentioned above, edge-corrected estimates
of the K function typically assume stationarity (homogeneity) of the underlying
point processes; however, Diggle and Chetwynd (1991) provide justification of their
use here based on an assumption that the heterogeneous case and control intensity
functions themselves arise from underlying stationarity random processes.

Under the random labeling hypothesis the expected value of KD(h) is zero
for any distance h. Positive values of KD(h) suggest spatial clustering of cases
over and above any clustering observed in the controls. Hence, distances for
which KD(h) exceeds zero provide insight into the spatial scale of any clustering
observed. Note KD(h) provides a summary of clustering within the entire data
set, or at a particular distance (h), but does not pinpoint the location of specific
clusters.

Diggle and Chetwynd (1991) and Chetwynd and Diggle (1998) provide deriva-
tions of the variance–covariance structure of the estimated K functions, providing
pointwise interval estimates under random labeling for each value of h under con-
sideration. However, as above, Monte Carlo interval estimates and hypothesis tests
are straightforward, and we concentrate on these here. With N1 cases and N0 con-
trols, conditional on the set of (N1 + N0) locations, we repeatedly randomly select
N1 cases and define the remaining locations as controls for each of Nsim simula-
tions. For each simulation, we calculate K̂D(h), then calculate envelopes based on
percentiles of the simulated values (or the minima and maxima values), providing
Monte Carlo pointwise interval estimates of KD(h) under the random labeling
hypothesis.

If we wish to summarize clustering behavior over a range of distances, Diggle
and Chetwynd (1991) suggest

KD+ =
m∑

k=1

K̂D(hk)/

√
Var

[
K̂D(hk)

]

as a sensible test statistic summarizing clustering over a set of m distances. Under
random labeling, KD+ approximately follows a Gaussian distribution with mean
zero and variance equal to

m + 2
m∑

j=2

j−1∑
i=1

corr
[
K̂D(hj ), K̂D(hi)

]
,

with
Var

[
K̂D(hk)

]
and corr

[
K̂D(hj ), K̂D(hi)

]
defined in Diggle and Chetwynd (1991). Alternatively, we may use a Monte Carlo
test where we calculate KD+ for each of our Nsim random labelings, rank the
estimates, and define our p-value as the number of KD+ values from simulated
data exceeding the value observed in the data divided by (Nsim + 1).
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The medical literature contains applications of the difference between the K-
function approach in assessments of clustering of anophthalmia and microphthalmia
(Mariman 1998; Dolk et al. 1998; Cuzick 1998), primary biliary cirrhosis (Prince
et al. 2001), and granulocytic ehrlichiosis in dogs (Foley et al. 2001), as well as a
comparison of the geographic distributions of cancers in dogs and humans (O’Brien
et al. 2000).

DATA BREAK: Early Medieval Grave Sites (cont.) By applying the differ-
ence of K functions (a second-order approach) to the medieval grave site data, we
address a different question than we did with methods based on first-order inten-
sity (density) functions. In this case we are not interested in determining where
affected grave sites cluster; rather, we explore at what distances any observed clus-
tering tends to occur, averaged over the entire study area. Figure 6.6 illustrates the
difference between the K functions for cases and that for controls, compared to
the 5th and 95th percentiles (calculated at each distance) of the difference based
on 499 random labelings of cases and controls. These values offer pointwise 90%
tolerance regions for the estimate of KD(h) for a particular distance h.

We see the function K̂D(h) stray beyond the tolerance envelopes for the small-
est distances, and briefly for distances slightly less than 500 units. This suggests
relatively weak evidence for an overall pattern of clustering at small distances, a
conclusion fairly consistent with the type of clusters observed in comparing the
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limits calculated from 499 random labelings of cases and controls. The dotted line connects the median
difference from the 499 random labelings.
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intensity functions above. There we only observed a few, tight-knit regions with
elevated relative risk of being a case (affected) versus being a control (nonaffected)
for small bandwidths. The results in Figure 6.6 reflect this assessment by suggest-
ing a slightly increased probability of cases near other cases, but only for small
distances.

We contrast the global test of clustering based on the integrated log relative risk
function defined in equation (6.6) and that based on KD+. The former addresses
the question “Do cases and controls tend to occur in the same locations?” and the
latter addresses the question “Do cases tend to occur near other cases in the same
manner that controls tend to occur near other controls?” For instance, it would
be possible for KD(h) to be near zero for all distances h but still have different
intensity functions, since second-order summaries do provide inference regarding
the locations of any local modes in the intensity functions.

6.5 SCANNING LOCAL RATES

While the point process summaries outlined in Sections 6.4.3 and 6.4.4 most closely
follow methods for the analysis of spatial point processes introduced in Chapter 5,
calculation of intensity and K-function estimates typically remain outside the stan-
dard set of tools in most statistical and geographic information system software
packages. As a result, the literature includes a variety of other tests for assessing
clusters and clustering, many based on particular properties of the heterogeneous
point process (e.g., the number of events in an area follows a Poisson distribution),
but constructed from statistics more readily available in standard software tools.

To explore such approaches, we next focus on a collection of methods for case–
control point data based on comparisons of local rate estimates (e.g., methods
assessing whether the ratio of cases to controls appears “significantly” elevated
in certain areas). Although such methods are similar in spirit to the comparisons
of intensity functions outlined above, recall intensity ratios compare the expected
number of cases per unit area to the expected number of controls per unit area,
whereas the methods below either compare rates (cases per persons at risk) or
case/control ratios (number of cases compared to the number of controls) between
different areas.

6.5.1 Goals

The primary goal of comparisons of local rates (or case/control ratios) is to deter-
mine areas where the observed rate (or ratio) appears inconsistent with the rate
(or ratio) observed over the rest of the study area. As such, the approaches focus
primarily on tests to detect clusters rather than tests of clustering.

6.5.2 Assumptions and Typical Output

As mentioned above, scans of local rates or case/control ratios typically seek to find
the most unusual aggregation(s) of cases (i.e., the most likely clusters). The methods



SCANNING LOCAL RATES 175

listed below build from basic geographic information system (GIS) operations such
as calculating distances from a point, and counting case and control events occur-
ring within a specified polygon or circle. Usually, the approach considers a set of
potential clusters and ranks them by the unusualness of each. The use of statistical
significance (e.g., a p-value for each potential cluster) as a measure of “unusual-
ness” complicates statistical inference of individual clusters due to multiple testing
issues, especially when potential clusters overlap and share individual cases.

Tests based on scans of local rates or case/control ratios often condition on the
set of all locations and operationalize the conceptual null hypothesis of no clus-
tering through a random labeling or a constant risk hypothesis where the effective
difference hinges on whether or not the total number of cases remains fixed across
simulations, respectively. By conditioning on the total number of locations, the
operational difference between the random labeling and the constant risk hypothe-
ses reduces to the difference between conducting simulations conditional or not
conditional on the total number of cases (N1), respectively.

The typical output of these methods includes a map containing an indication of
the location(s) of the most likely cluster(s), often accompanied by some measure
of the statistical significance of these cluster(s).

6.5.3 Method: Geographical Analysis Machine

The geographical analysis machine (GAM) of Openshaw et al. (1988) provides the
prototype for the methods below. The GAM involves an algorithm for a systematic
search of potential clusters and mapping of the most unusual collections of cases.
At each of a fine grid of locations covering the study area, the user centers a circle
of a prespecified radius (typically larger than the grid spacing in order for circles
to overlap), counts the number of cases occurring within the circle, and draws the
circle on the map if the count observed within the circle exceeds some tolerance
level. Openshaw et al. (1988) define their tolerance level via random labeling; in
particular, they draw the circle if its observed count exceeds all of the counts
associated with that circle under 499 random labeling simulations. The GAM also
considers a variety of circle radii in order to capture a variety of geographic sizes of
potential clusters. All operations involve basic GIS functions allowing automation
of the process. Subsequent modifications of the GAM replace case counts with
rates or case/control ratios within each circle to account for spatial heterogeneity
in the population at risk.

Openshaw et al. (1988) suggest the use of a very fine grid and a relatively large
radius for each circle, resulting in a large overlap between neighboring circles and
a high degree of correlation between rates estimated in adjacent circles (since they
share most of the same cases). That is, if one circle meets the plotting criterion,
many neighboring circles will also resulting in a map containing “blobs” of circles.
The circles of the GAM are conceptually similar to circular uniform kernels; in
fact, one can construct kernel estimates in a GAM-like fashion, as we will see in
Section 6.5.4. However, the computational implementation differs. In the GAM,
we center circles on grid locations, and in kernel estimation we center kernels
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around data locations. The GAM approach utilizes standard GIS operations (i.e.,
buffering and point-in-polygon routines), offering some advantage over the kernel
approach for GIS implementation, although an increasing number of GIS packages
(or add-on modules) include some sort of kernel estimation routines.

Early critics of the GAM faulted its somewhat ad hoc statistical basis and the
large number of blobs drawn, leading to many false positive clusters due to the
large degree of overlap between circles. However, Openshaw (1990) stresses that
the goal of the GAM was not to provide a statistical test to detect clusters per
se, but rather, an automated spatial surveillance tool to identify areas of potential
concern.

The GAM influenced development of several related methods, including a
“thinned” GAM (Fotheringham and Zhan 1996) where the user only plots a simple
random sample of circles meeting the plotting criterion, thereby reducing some of
the spurious blobs, consisting of only one or two circles, and focusing attention on
blobs consisting of greater numbers of individual circles. Other approaches take
the basic structure of GAM operations and consider a variety of techniques for
providing associated statistical inference. We present several methods rooted in
GAM ideas in the sections below.

6.5.4 Method: Overlapping Local Case Proportions

Rushton and Lolonis (1996) propose an exploratory method for assessing spatial
variation in disease risk in case–control point data that bears similarity to both the
GAM and the ratio of intensity estimators. We first define a grid of points covering
the study area and, as with the GAM, consider a set of overlapping circles centered
at each grid point. Unlike the GAM, Rushton and Lolonis (1996) propose using
radii slightly smaller than the grid spacing, considerably reducing the number of
circles sharing any particular event.

Next, we determine the number of case events and control events occurring
within each circle and calculate the ratio of the number of cases to the number of
cases and controls. The result is a local case proportion, the proportion of cases
among events near each grid point. Since the circles overlap and share neighboring
cases and controls, these ratios exhibit (positive) spatial correlation. The strength
of this autocorrelation will vary based on the relationship between the circle radii
and the grid spacing, both defined by the user. To avoid local estimated case
proportions based on very few event locations, Rushton and Lolonis (1996) suggest
only mapping values for circles containing a user-defined minimum number of
events (cases or controls).

Rushton and Lolonis (1996) consider a Monte Carlo assessment of statistical sig-
nificance conditional on the set of all locations. Within each simulation, we assign
a case–control label to each location independently with probability N1/(N0 + N1)

(i.e., the number of cases divided by the total number of locations). Although this
involves random labeling of case and control locations, note the subtle difference
from the random labeling hypothesis as applied previously. In the examples above,
each random labeling simulation resulted in N1 cases, and here the total number
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of cases varies from simulation to simulation (with an expected value of N1). As
a result, the Monte Carlo approach of Rushton and Lolonis (1996) also reflects
a sort of constant risk hypothesis, where risk corresponds to the probability that
any event location receives a “case” assignment. The simulation approach yields a
Monte Carlo significance value for each grid location.

Rushton and Lolonis (1996) consider an application based on the spatial dis-
tribution of low birth weight among the population of registered live births in
Des Moines, Iowa for 1983–1990. Since they have event locations for all persons
under study (i.e., the set of controls represents all noncases in the study area),
their local rate estimates correspond to incidence rates (incidence proportions), and
their approach assesses spatial variations in local rates compared to a constant risk
hypothesis. In more general application where we have a set of controls (most
likely sampled from all noncases), direct application of the approach of Rushton
and Lolonis (1996) results in assessment of spatial variations in the local propor-
tion of cases within the set of cases and controls compared to a hybrid constant
proportion/random labeling null hypothesis.

We note that the local Monte Carlo significance values (associated with each grid
point) will also be positively spatially autocorrelated, again due to the overlapping
circles, and just as was the case in consideration of the ratio of intensity estimates
in Section 6.4.3, the local assessment of significance provides pointwise local infer-
ence rather than a global test of clustering. The number of pointwise significance
values and their inherent correlation makes proper adjustment for multiple testing
difficult, so we limit conclusions to suggestion of clusters rather than definitive
identification of significant clusters.

DATA BREAK: Early Medieval Grave Sites (cont.) To illustrate the ap-
proach, we apply the method of Rushton and Lolonis (1996) to the medieval grave
site data. We define a grid with points approximately 325 units apart in both
the u and v directions and a radius of approximately 300 units. DMAP (Disease
Mapping and Analysis Program), the software package implementing the approach
of Rushton and Lolonis (1996), references locations in latitude and longitude, so
precise distances in two dimensions depend on map projections and geodesy as
outlined in Chapter 3.

Figure 6.7 illustrates contour plots of the estimated local case proportions (left)
and a plot of the associated local Monte Carlo p-values (right). The “×” symbols
in the case proportion plot indicate grid points meeting a user-defined criterion of
containing at least two (case or control) events, thereby omitting estimation and
inference outside the study area and for areas within the study area with sparse
collections of controls. The p-value plot (on the right) only reports p-values for
the subset of these locations with at least one case in the circle (i.e., a nonzero
estimate of the local case proportion). We note that (in general) the contour plot of
the local case proportion displays a spatial pattern similar to that seen in the log
ratio of intensity (density) functions shown in Figures 6.2–6.4 using the log ratio
of intensity functions, particularly for small bandwidths.

In fact, the method of Rushton and Lolonis (1996) is very similar to the ratio
of intensity estimators using circular uniform kernels. The methods are equivalent
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FIG. 6.7 Contour maps of local case proportions (left) and associated pointwise Monte Carlo p-values
(right) based on 499 simulations under a constant case proportion (see text). Large black dots represent
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“×” symbols in the p-value plot represent locations with nonzero estimated local case proportions.
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0.05.

if we replace local case proportions with local case/control ratios (the ratio of
the number of cases to the number of controls in each circle), and if we only
exclude circles containing no controls (where the case/control ratio is undefined).
Prince et al. (2001) do precisely this, applying the method of Kelsall and Diggle
(1995b) with circular uniform kernels to assess spatial variations in the incidence
of primary biliary cirrhosis in a set of cases and controls in northeast England.
To see the relationship between the ratio of intensities and the method of Rushton
and Lolonis (1996) applied to case/control ratios, suppose that we wish to estimate
the case/control ratio at each of a set of grid points (thereby allowing a contour
or surface plot). As noted above in Section 6.5.3, counting cases and controls
within circles centered at grid points more readily utilizes standard GIS operations
than does counting the number of kernels (centered at case or control locations)
overlapping each grid point.

Figure 6.8 illustrates the equivalence between the two approaches and the differ-
ent types of calculation involved. In the left-hand plot, the circle around the central
grid point contains two cases and two controls leading to a (local) case/control
ratio of 1. In the right-hand plot, the central grid point falls within two control and
two case kernel boundaries. Since this point receives zero kernel weight from any
other case or control, the ratio of intensity functions is also 1. Finally, Figure 6.9
contrasts the one-dimensional uniform kernel (bandwidth 300 units) to the quar-
tic and Gaussian kernels used in Figures 6.2–6.4. As with the quartic kernel, the
uniform kernel assigns no weight to observations beyond the bandwidth.

The equivalence between the local case/control ratios and the ratio of intensity
(density) estimates raises two issues regarding selection of the grid points and the
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circle radii. First, Rushton and Lolonis (1996) describe the choice of circle radii
as a compromise between the overall smoothness of the surface and the ability
to discern local peaks and valleys, precisely equivalent to the role of bandwidth
selection. Although Rushton and Lolonis (1996) do not specifically require that
the circle radius be less than the distance between grid points, their examples
do suggest that such a restriction and the current version of the DMAP package
will not accept radii larger than the grid spacing. Such a restriction constrains
our analysis of the grave site data, since we would like fairly small grid spacing
(to provide estimates for much of the study area), but small bandwidths allow
inclusion of only a few events in each circle. Viewing the circle diameters as kernel
bandwidths indicates that no such limit is needed, and Prince et al. (2001) utilize
a cross-validation approach to choose bandwidths (circle radii), unconstrained by
grid spacing. Second, for relatively sparse data (such as the grave site data), perhaps
nonuniform kernels provide better performance as kernel weights decrease more
gradually than the uniform kernel, allowing additional events to have diminishing
(but nonzero) impact as distance increases.

A few features of our application merit attention. First, the output of the method
of Rushton and Lolonis (1996) is limited to circles meeting our (user-defined)
criterion of a minimum of two events (case or control). The low-birth-weight data
considered by Rushton and Lolonis (1996) contain 2406 case locations and a large
number of controls (8506 non-low-birth-weight births in Des Moines, Iowa, over
a period of eight years), and similarly, the analysis of Prince et al. (2001) includes
over 3000 controls. However, the grave site data contain only 143 event locations,
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700, 700, and 300, respectively.

limiting estimation to those grid points indicated by a “×” symbol in Figure 6.7. In
addition, the overall case proportion (30/143) is much higher than the typical disease
rates considered in public health applications of tests of clusters and clustering.
Together, the relatively small number of controls, the relatively large overall case
proportion, and a fairly tight grid result in circles with very small numbers of cases
and controls.

Our choice of a minimum number of events is a compromise between main-
taining coverage of a large proportion of the study area with a tight enough grid to
provide local variations in the case proportions. However, the choice is not partic-
ularly satisfactory, since it results in many circles containing zero cases, providing
a local case proportion of zero for many of the circles meeting the “greater than
two cases or controls” criterion. In addition, the circles contain between two and
six controls and between zero and three cases, so the possible observed values
of the case/control ratio are severely limited. For example, circles containing two
events can only experience case proportions of 0.0, 0.5, or 1.0 in each simulation
(resulting in the relative high number of 0.5 values observed in the left-hand plot
in Figure 6.10). The highly discrete distribution of the case proportions also lim-
its the observable pointwise p-values, as illustrated in Figure 6.10, a feature not
immediately obvious from the contours displayed in Figure 6.7. (Recall that under
the null hypothesis, p-values will follow a uniform distribution for test statistics
with continuous distributions; see, e.g., Sackrowitz and Samuel-Cahn 1999.)

This example illustrates both the type of output of the method of Rushton and
Lolonis (1996) and the sort of care that one should take in interpreting the output
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maps, especially for modest numbers of events. In addition, the example highlights
the interpretation of the output as case proportions, which approximate disease rates
for a rare disease (where the ratio of cases to cases and controls approximates the
ratio of cases to the number at risk), but do not when controls represent a sample
of noncases.

6.5.5 Method: Spatial Scan Statistics

Scan statistics provide another approach similar to the local case/control ratios
of Rushton and Lolonis (1996). A scan statistic involves definition of a moving
“window” and a statistical comparison of a measurement (e.g., a count or a rate)
within the window to the same sort of measurement outside the window. A large
literature exists on the theoretical aspects of scan statistics in one dimension (cf.
Glaz et al. 2001) and their application to the detection of temporal clusters of
disease (Wallenstein 1980; Sahu et al. 1993; Wallenstein et al. 1993).

Kulldorff (1997) defines a spatial scan statistic very similar to the GAM and
the method of Rushton and Lolonis (1996), but with a slightly different inferen-
tial framework. As with the two preceding methods, the primary goal of a scan
statistic is to find the collection(s) of cases least consistent with the null hypothesis
[i.e., the most likely cluster(s)]. Kulldorff (1997) goes a bit further and seeks to
provide a significance value representing the detected cluster’s “unusualness,” with
an adjustment for multiple testing.
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Like Openshaw et al. (1988) and Rushton and Lolonis (1996), Kulldorff (1997)
considers circular windows with variable radii ranging from the smallest observed
distance between a pair of cases to a user-defined upper bound (e.g., one-half the
width of the study area). The spatial scan statistic may be applied to circles centered
at either grid locations (like the previous two methods) or the set of observed case–
control locations, but note that these two options define different sets of potential
clusters, and therefore may not provide exactly the same answers, particularly for
very spatially heterogeneous patterns.

Kulldorff (1997) builds an inferential structure based on earlier work where
Loader (1991) and Nagarwalla (1996) note that variable-width one-dimensional
scan statistics represent collections of local likelihood ratio tests comparing a null
hypothesis of the constant risk hypothesis compared to alternatives where the dis-
ease rate within the scanning window is greater than that outside the window. Let
N1,in and Nin = N0,in + N1,in denote the number of case locations and persons at
risk (number of case and control locations) inside a particular window, respectively,
and similarly, define N1,out and Nout = N1,out + N0,out for outside the window. The
overall test statistic is proportional to

Tscan = max
all windows

(
N1,in

Nin

)N1,in
(

N1,out

Nout

)N1,out

I

(
N1,in

Nin
>

N1,out

Nout

)
, (6.7)

where I (·) denotes the indicator function (i.e., we only maximize over windows
where the observed rate inside the window exceeds that outside the window).
Although developed for circular windows, the general structure of Tscan allows
application for other shapes of clusters (e.g., within 0.5 mile of a particular stream,
or a highway).

The maximum observed likelihood ratio statistic provides a test of overall gen-
eral clustering and an indication of the most likely cluster(s), with significance
determined by Monte Carlo testing of the constant risk hypothesis. The Monte Carlo
method differs somewhat from those proposed above and merits a detailed descrip-
tion. The GAM and the method of Rushton and Lolonis (1996) raise multiple testing
issues by assessing the unusualness of each possible cluster. However, the spatial
scan statistic focuses attention on the single potential cluster generating the maxi-
mum likelihood ratio statistic [equation (6.7)]. As mentioned above, all methods in
this section, including the spatial scan statistic, provide results conditional on the
set of all case–control locations. As a result, the infinite number of potential clus-
ters defined by the infinite possible radii considered generates only a finite number
of test statistic values since the test statistic defined in equation (6.7) only changes
for radii where an additional case or control location joins the potential clusters.
However, the number of potential clusters remains large. Following a Monte Carlo
approach proposed by Turnbull et al. (1990) (outlined in Section 7.3.4), Kulldorff
(1997) randomly assigns cases to the set of all locations (a random labeling assign-
ment), calculates and stores the test statistic [equation (6.7)], and repeats several
times, thereby obtaining a Monte Carlo estimate of the distribution of the test
statistic under a random labeling null hypothesis.
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As a result, the spatial scan statistic provides a single p-value for the study
area, suggesting that it is a test of clustering. However, the test statistic observed
is generated by a well-defined set of cases, and we can map the potential cluster
generating the test statistic value observed, thereby identifying the most likely
cluster. So, in a sense, the spatial scan statistic provides both a test of clustering and
a test to detect the most likely cluster. We tend to favor the latter categorization,
as the term clustering as described in Section 6.2 tends to refer to a pattern of
clustering over the entire study area rather than the presence of a single cluster, as
suggested by the spatial scan statistic.

The literature contains a considerable number of applications of the spatial
scan statistic and space–time extensions (cf. Kulldorff et al. 1998; Hjalmars et al.
1999; Viel et al. 2000; Gregorio et al. 2001; Sankoh et al. 2001) due in part to the
availability of SaTScan, a free software package developed and distributed by the
U.S. National Cancer Institute.

DATA BREAK: Early Medieval Grave Sites (cont.) We utilize the SaTScan
package to apply the spatial scan statistic to the medieval grave site data. We
consider potential clusters centered around all case and control locations, with radii
varying from the minimum interevent distance (between cases, controls, or case–
control pairs) up to half of the maximum interevent distance. Figure 6.11 indicates
the most likely cluster occurs in and covers much of the lower right section of
the map, very similar to the areas with high log relative risk (based on the ratio
of intensities) (Figures 6.2–6.4) and the smoothed case/control ratios (Figure 6.7).
The most likely cluster has a p-value of 0.067 based on 999 simulations, again
suggesting relatively weak statistical evidence for any clustering (or clusters) in
the data.

6.6 NEAREST-NEIGHBOR STATISTICS

6.6.1 Goals

We next turn to a class of methods based on characteristics of the nearest neighbors
of case–control point event locations. Rather than examine point process summaries
or estimated local rates or case/control ratios, these methods examine local patterns
of cases in the vicinity of other cases. Evidence for clustering involves observing
more cases among the nearest neighbors of cases than one would expect under
the random labeling hypothesis. Simply put, the method seeks an answer to the
question: Are there more cases than we would expect under random labeling in the
q locations nearest each case?

6.6.2 Assumptions and Typical Output

By the nature of the question of interest, nearest-neighbor statistics summarize
clustering behavior across the study area and therefore provide tests of clustering
rather than tests to detect clusters. Such tests typically derive inference under a ran-
dom labeling hypothesis and as a result, are conditional on the set of all case–control
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FIG. 6.11 The spatial scan statistic’s most likely cluster for the medieval grave site data with Monte
Carlo p-value 0.067 based on 999 simulations (see text). Filled circles represent affected sites (cases)
and empty circles represent nonaffected sites (controls). The method selects from among circular clusters
centered at each case or control location and radii varying from the minimum distance between any
pair of case or control locations up to half the extent of the study area.

locations. The output involves an overall p-value summarizing the significance of
the clustering observed compared to patterns expected under random labeling.

6.6.3 Method: q Nearest Neighbors of Cases

Independent of one another, Cuzick and Edwards (1990) and Alt and Vach (1991)
developed identical random labeling approaches based on the nearest-neighbor
properties observed in case–control point data. Specifically, for N1 case and N0
control locations (N = N0 + N1 locations in all), the test statistic represents the
number of the q nearest neighbors of cases that are also cases. The user defined q

then calculates the nearest-neighbor adjacency matrix W = {
wi,j

}
, where

wi,j =
{

1 if location j is among q nearest neighbors of location i

0 otherwise.
(6.8)

Both Cuzick and Edwards (1990) and Alt and Vach (1991) consider the test statistic

Tq =
N∑

i=1

N∑
j=1

wi,j δiδj (6.9)

= δ′Wδ,
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where δi = 1 if the ith location represents a case, δi = 0 if the ith location rep-
resents a control, and δ = (δ1, δ2, . . . , δN )′ is the vector of case indicators for
all (case and control) locations. Note that equation (6.9) simply accumulates the
number of times δi = δj = 1 (both locations are cases) and location j is in the q

nearest neighbors of location i.
For inference, Cuzick and Edwards (1990) provide an asymptotic normal dis-

tribution; however, Monte Carlo tests under the random labeling hypothesis are
applicable for any sample size. As described in Section 5.2.3, the rank of the test
statistic based on the data observed among the values based on the randomly labeled
data allows calculation of the p-value associated with the test.

Different values of q may generate different results, possibly indicating the scale
(in the sense of the number of nearest neighbors, not necessarily geographic dis-
tance) of any clustering observed. However, Tq2 is correlated Tq1 for q1 < q2 since
the q2 nearest neighbors include the q1 nearest neighbors since we condition on the
set of all locations, somewhat complicating any adjustment for multiple testing in
the use of multiple values of q. Ord (1990) suggests the contrasts between statistics
(e.g., Tq2 − Tq1 ) which exhibit considerably less correlation and may provide more
direct inference regarding the spatial scale of any clustering tendencies observed.
The contrasts are interpreted as excess cases between the q1 and the q2 nearest
neighbors of cases. As above, any conclusions regarding scale are with respect to
the neighbor relationships, not necessarily geographic distance.

As described above, the Cuzick and Edwards (1990) and Alt and Vach (1991)
approach is a general test of clustering. Cuzick and Edwards (1990) also describe
its use as a focused test of clustering by considering only the q nearest neighbors
to a fixed set of foci locations, and defining the test statistic as the total number
cases among the q nearest neighbors of the foci. Inference again follows via Monte
Carlo testing under the random labeling hypothesis.

Jacquez (1994) proposes an extension to the method of Cuzick and Edwards
(1990) for application when case and control locations are not known exactly;
rather, cases and controls are assigned to centroids of enumeration districts.

Published health-related applications of the method of Cuzick and Edwards
(1990) include assessments of spatial patterns of childhood leukemia and non-
Hodgkin’s lymphoma (Alexander et al. 1992; Dockerty et al. 1999), assessments
of rodent bites in New York City (Childs et al. 1998), and assessments of patterns
of infections in cattle and horses (Singer et al. 1998; Doherr et al. 1999).

DATA BREAK: Early Medieval Grave Sites (cont.) We next apply the Cuz-
ick and Edwards (1990)/Alt and Vach (1991) q nearest-neighbor statistics to the
medieval grave site data. [Incidentally, the grave site data originally appear in Alt
and Vach (1991) and served as the primary motivation for their approach.]

To illustrate the approach, arrows go from each affected site to each of its
three nearest neighbors in Figure 6.12. The value of the test statistic T3 is simply
the number of these nearest neighbors that are also affected (cases). Note that
the statistic will count some affected sites more than once (affected sites that
are within the three nearest neighbors of more one affected site). For example,
consider the collection of cases in the southernmost portion of the study area
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FIG. 6.12 Three nearest neighbors of each affected site for the medieval grave site data. Filled circles
represent affected sites (cases), and open circles represent nonaffected sites (controls). Arrows point
from each case to its three nearest neighbors.

[near location (10000,4000)]. Also note that the nearest-neighbor relationship is
not reciprocal. For example, consider the three affected sites near location (6000,
6000) (recall from Figure 5.8 that the western affected site is actually two sites
very close together).

Table 6.2 gives test statistics and associate p-values (based on 499 random
labeling simulations) for a variety of values of q. All numbers of nearest neighbors
suggest statistically significant clustering among the cases. To determine whether
the tendency for clustering occurs among large or small groups of affected sites,
we follow the suggestion of Ord (1990) and consider the contrasts presented in
Table 6.3. Since none of the contrasts suggest significant clustering of affected
sites outside the three nearest neighbors, we conclude that the significant clustering
observed among collections of more than three nearest neighbors is driven primarily
by clustering among the three nearest neighbors.

The medieval data set provides another interesting example of the methodology.
How can we observe significant clustering but not find significant clusters? As
in Section 6.4.4, the data suggest a pattern of clustering at small distances (i.e.,
between events falling within the three nearest neighbors of affected sites). These
clusters appear to be quite small and involve only a few affected (case) sites each.
Such small clusters are difficult to detect individually (without using very small
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Table 6.2 Observed Test Statistics, Tq (Number of
Cases within the q Nearest Neighbors of Other Cases),
for the Medieval Grave Site Dataa

Monte Carlo
Number of Nearest p-Value (Based on
Neighbors (q) Tq 499 Simulations)

3 32 0.002
5 45 0.010
7 58 0.028
9 73 0.016

11 91 0.016
13 109 0.006
15 122 0.010

a499 random labeling simulations define Monte Carlo p-values.

Table 6.3 Observed Contrasts Tq2 − Tq1
between Test Statistics (Number of Cases
between and including the q1 and q2 Nearest
Neighbors of Other Cases) for the Medieval
Grave Site Dataa

Monte Carlo
p-Value (Based on

Contrast Value 499 Simulations)

T5 − T3 13 0.490
T7 − T5 13 0.540
T9 − T7 15 0.258
T11 − T9 18 0.106
T13 − T11 18 0.108
T15 − T13 13 0.492

T7 − T3 26 0.510
T9 − T3 41 0.314
T11 − T3 59 0.154
T13 − T3 77 0.066
T15 − T3 90 0.078

a499 random labeling simulations define Monte Carlo
p-values.

bandwidths), but the general pattern appears for both the difference of K functions
and the nearest-neighbor analysis.

With regard to the motivating question of whether this society tended to bury
family members together, the results in the sections above do suggest some evidence
for a general tendency for affected sites to occur together in small groups (in
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agreement with the original analysis of the data by Alt and Vach 1991), and also
suggest particular areas as the most likely clusters. The results suggest areas for
future fieldwork and detailed laboratory analysis of artifacts and remains recovered
from these locations.

CASE STUDY: San Diego Asthma The medieval grave site data provide
valuable insight into the mechanisms and application of the various methods pre-
sented in this chapter. However, these examples also reveal some limitations in
application of the methods to relatively small data sets (only 30 case events). We
now apply the same methods to a much larger public health data set, drawn from
a study reported by English et al. (1999).

The data involve the point locations of 3302 cases and 2289 controls and reflect
a subset of the original data used for a spatial substudy. Cases and controls were
drawn from the MediCal paid claims database, maintained by the Medical Care
Statistics Program of the California Department of Health Services in Sacramento,
California. MediCal represents California’s Medicaid program and pays for health
care costs incurred by persons qualifying under public assistance, those who are
“medically needy” (blind, disabled, elderly) or those who are medically indigent.
For potential cases, English et al. (1999) consider all claims from San Diego
County, California paid between January 1993 and June 1994 with a diagnosis of
asthma (ICD-9 code 493) for children aged less than or equal to 14 years. English
et al. (1999) select study controls from a random sample of all paid claims for
the same county, time period, and age group. The control set excludes pharmacy
claims (no ICD-9 diagnoses), asthma and respiratory diagnoses, and subsequent
paid claims from the same person occurring in the study period). Additional details
appear in English et al. (1999).

The spatial data structure mirrors that of the medieval grave site data, with point
locations and corresponding case–control labels. Precise residential locations were
masked geographically to preserve confidentiality by shifting each location by the
same small distance and direction (Armstrong et al. 1999).

Figures 6.13 and 6.14 illustrate the point locations in the data. The polygon
outline represents the boundary used for intensity (density) function estimation and
K- function estimation. The western coast corresponds to the Pacific coastline, but
the eastern edge is selected primarily for convenience and to avoid large empty
areas. For the two point process approaches (intensity estimation and K functions),
we ignore the few cases and controls residing in the more rural locations in the
eastern part of the study area.

Both cases and controls exhibit spatial patterns relating to the heterogeneous
distribution of children at risk. This spatial pattern reflects the distribution of chil-
dren aged ≤14 years presenting paid claims to MediCal during the study period.
We note that this probably does not reflect the spatial distribution of all children
aged ≤14 years during the study period, so our inference is based on spatial pat-
terns of asthma in children within the population of MediCal paid claims for the
study period.
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FIG. 6.13 Residence locations for 3302 MediCal claims for asthma diagnoses aged 0–14 years (cases)
in San Diego County for 1993 (see text for details). The polygon defines the study area used for the
ratio of intensity (density) functions and the local rate estimates.

Due to the strong background pattern, we begin by estimating the log relative
risk function based on kernel density estimation. Figures 6.15 and 6.16 use Gaus-
sian kernels with bandwidths of 2000 and 4000 distance units, respectively. For
reference, the cross-validation approach defined by Kelsall and Diggle (1995b) sug-
gests a bandwidth in the range of 3500 distance units. The top surface plots have
the same vertical range, indicating the relative change in smoothness due to the
increasing bandwidth. Collections of “+” and “−” symbols indicate areas where
the estimated log relative risk surface is above or below (respectively) the pointwise
tolerance intervals defined by 500 random labeling simulations. Both bandwidths
suggest areas of local deviation from the random labeling null hypothesis, includ-
ing an area of reduced risk along the eastern border. As one might expect, a higher
bandwidth results in a smoother relative risk surface and larger, more connected
areas of high risk. Compared to a bandwidth of 4000 units, setting the bandwidth
to 2000 units provides more local detail but considerably more variation in the log
relative risk surface.



190 SPATIAL CLUSTERS OF HEALTH EVENTS: POINT DATA FOR CASES AND CONTROLS

460000 480000 500000 520000 54000036
00

00
0

36
20

00
0

36
40

00
0

36
60

00
0

36
80

00
0

u

v

FIG. 6.14 Residence locations for 2289 MediCal nonrespiratory controls aged 0–14 years in San
Diego County for 1993 (see text for details). The polygon defines the study area used for the ratio of
intensity (density) functions and the local rate estimates.

Figure 6.17 reproduces the bottom plot in Figure 6.16, adding case and control
locations indicating potential clusters near urban concentration of San Diego itself
and near the central portion of the study area. The log relative risk surface with
bandwidth 2000 units subdivides the northern cluster into smaller east and west
components, and substantially reduces the suggestion of the southern cluster. We
present both to illustrate the dependence of results on bandwidth and to provide
comparison for the results below.

We next explore second-order properties of the case and control patterns for
evidence of clustering. Figure 6.18 indicated the L̂ plots for cases and controls
revealing a clear separation indicating increased clustering in the cases compared
to that observed in the controls. To assess the significance of this, we display 95%
tolerance envelopes based on 499 simulations under a random labeling hypothesis.
The median of the simulated values corresponds to the K function of the entire
set of locations (cases and controls), and the tolerance envelopes indicate that the
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FIG. 6.15 Estimated log relative risk surface for San Diego asthma data based on a ratio of case and
control density estimates (Gaussian kernels, bandwidth = 2000). The symbol “+” denotes areas with
log relative risk above the upper 95% pointwise tolerance bound, and the symbol “−” denotes areas
with log relative risk below the lower 95% based on 500 random labeling simulations.

observed separation between the K functions is far beyond what we would expect
under random labeling.

Figure 6.19 presents the results in terms of the difference between the case
and control K functions [K̂D(·)] further illustrating significantly more clustering
among the cases than among the controls.

Next, we apply the method of Rushton and Lolonis (1996) to the San Diego
data using grid spacing of 1332 units, a circle radius of 1066 units (approximate
distances based on transformation from latitude and longitude), and calculating the
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FIG. 6.16 Estimated log relative risk surface for San Diego asthma data based on a ratio of case and
control density estimates (Gaussian kernels, bandwidth = 4000). The symbol “+” denotes areas with
log relative risk above the upper 95% pointwise tolerance bound, and the symbol “−” denotes areas
with log relative risk below the lower 95% based on 500 random labeling simulations.

local case proportion only for circles containing at least 10 events. As before, our
choices for grid spacing, radii, and minimum denominator reflect a compromise
between the grid resolution, stability of local estimates, and coverage of the study
area. Figure 6.20 illustrates those circles meeting the minimum denominator cri-
terion. Note the concentration of local estimates in areas with higher densities of
both cases and controls, in particular the small coverage of the northern cluster(s)
suggested by the log relative risk approach described above.
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FIG. 6.17 Detail of areas with estimated log relative risk outside the 95% tolerance envelopes (Gaus-
sian kernel, bandwidth = 4000), indicating case and control locations.

Figure 6.21 indicates local case proportions above (“+”) or below (“−”) the
upper or lower (respectively) 90% tolerance bounds based on 500 constant case
proportion simulations. The approach suggests clusters in areas corresponding to
the southern cluster indicated by the ratio of density functions with bandwidth set
to 4000 units. The clusters indicated here are somewhat more local due to both the
radius used (limiting weight to a very local collections of cases and controls) and to
the set of grid points meeting the minimum denominator criterion (10 events). This
criterion results in very few estimated (or evaluated) case proportions between the
collections of “+” symbols in Figure 6.21. In fact, close comparison of Figures 6.16
and 6.21 illustrates that differences between the collections of “+” symbols in the
southern cluster in the two figures correspond directly to differences between the set
of grid points reporting local case proportions (circles in Figure 6.20) and the set
of all grid points.

Figure 6.20 suggests careful consideration of the (user-specified) lower bound
on the denominator for calculating local case proportions, particularly in popula-
tions with a very heterogeneous spatial distribution. The San Diego data include
concentrations of many events interspersed with empty areas containing few events,



194 SPATIAL CLUSTERS OF HEALTH EVENTS: POINT DATA FOR CASES AND CONTROLS

0 10000 20000 30000 40000

−5
00

0
0

50
00

10
00

0

Distance

L−distance (cases)

L−distance (controls)
min, max
2.5th, 97.5th percentiles
median

√K
/p

 −
 d

is
ta

nc
e

^

^

FIG. 6.18 L̂ plots for cases (thick solid line) and controls (thick dashed line) in the San Diego asthma
data. Thin solid lines represent the minima/maxima envelope, thin dashed lines represent the 95%
tolerance envelope, and the thin dotted line represents the median L̂ plot, all based on 500 random
labeling simulations.
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FIG. 6.19 The difference between case and control K functions for the San Diego asthma data (thick
line). Thin solid lines represent the minima/maxima envelope, thin dashed lines the 95% tolerance
envelope, and the thin dotted line the median difference, all based on 500 random labeling simulations.
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FIG. 6.20 Circles of radius approximately 1070 units, indicating grid points meeting criteria of at least
10 case and control locations. Local case/(case + control) ratios (Rushton and Lolonis 1996) calculated
only for the circles shown.

again reflecting a combination of the population distribution in general and local
concentrations of paid MediCal claims within San Diego county. As with our
analysis of the medieval grave site data, more general kernel intensity (density)
estimation may provide a more robust approach to identifying areas of excess risk
than the current implementation of local case proportions found in the DMAP
package. The local case proportion approach involves calculations better suited to
current GIS environments, although some GISs incorporate density estimation tech-
niques. However, as noted by Rushton and Lolonis (1996), Monte Carlo simulation
remains an open area for development in the GIS arena.

Figure 6.22 illustrates the most likely cluster identified by the spatial scan statis-
tic (p < 0.001). The most likely cluster appears in an area consistent with areas
suggested by both the ratio of intensity (density) functions and the local case pro-
portions. Note that our spatial scan statistic analysis considers only circular potential
clusters, and given the highly heterogeneous spatial distribution of the population at



196 SPATIAL CLUSTERS OF HEALTH EVENTS: POINT DATA FOR CASES AND CONTROLS

460000 480000 500000 520000 54000036
00

00
0

36
20

00
0

36
40

00
0

36
60

00
0

36
80

00
0

u

v

FIG. 6.21 Areas above or below 90% range of simulated case/(case + control) ratios, based on 500
constant case proportion simulations.

risk and the general shapes for clusters suggested by the ratio of intensity (density)
functions and the local case proportions, elliptical or perhaps more complex shapes
for potential clusters may be desirable.

Table 6.4 presents results for the data based on the q-nearest-neighbor test of
clustering developed by Cuzick and Edwards (1990) and Alt and Vach (1991). The
total number of cases within the q nearest neighbors of other cases exceeded all
values generated under the random labeling hypothesis, suggesting strong evidence
for clustering among the case locations. These results echo those the difference in
K-function results: The overall pattern of cases is more clustered than one would
expect from a random sample of 3308 cases from the 5581 total event locations.

Both the q-nearest-neighbor analysis and the comparisons of K functions indi-
cate very strong evidence for clustering of the cases above and beyond that observed
in the controls. Furthermore, the clustering pattern extends across both large dis-
tances (K functions) and large numbers of nearest neighbors (q nearest neighbors).
The log relative risk surface, the local case proportions, and the spatial scan statistic
suggest similar areas for the most likely clusters. As these occur in or near areas
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FIG. 6.22 Most likely cluster detected by the spatial scan statistic for the San Diego asthma data.

Table 6.4 q-Nearest-Neighbor Statistics for the
San Diego Asthma Dataa

Monte Carlo
Test p-Value (Based on
Statistic Value 499 Simulations)

T9 18072 <0.00
T20 40172 <0.00
T100 199313 <0.00

T20 − T9 22100 <0.00
T100 − T9 181241 <0.00
T100 − T20 159141 <0.00

a499 random labeling simulations define Monte Carlo p-
values.
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containing some of the highest densities of events (MediCal claims), perhaps a more
focused analysis of these areas (with smaller bandwidths) would provide additional
insight into local variations in the risk of a paid MediCal claim associating with
asthma rather than nonrespiratory ailments in children aged 0–14 years.

6.7 FURTHER READING

The methods described in this chapter illustrate several types of approaches used
to investigate clustering and to detect clusters in case–control point data. Diggle
(2000) and Wakefield et al. (2000b) provide additional reviews of point process
methods applied to disease clusters and clustering.

There is a wide and growing literature on statistical modeling and inference for
point processes building from the basic extensions outlined at the end of Chapter 5.
Stoyan et al. (1995), Barndorff-Neilsen et al. (1999), and Lawson and Denison
(2002) provide texts focusing on such models. In general, Geyer (1999) provides
a very general framework for likelihood inference for spatial point processes.

Finally, we concentrate on general rather than focused approaches in the sections
above. The addition of foci of suspected increases in relative risk allows construc-
tion of models and refinement of methods to assess clustering or detect clusters
only near the foci. The spatial scan statistic and q-nearest-neighbor approaches can
be readily applied in the situation where we consider only potential clusters (radii
or nearest neighbors) of the foci rather than the cases. Local case proportions and
ratios of intensity (density) functions may also be adapted to the focused setting.
Diggle (1990), Diggle et al. (2000), and Lawson (2001, Chapter 7) specifically con-
sider such focused approaches, and Lawson and Waller (1996) provide a review of
point process methods for focused tests.

6.8 EXERCISES

6.1 Contrast the goals of identifying clusters and identifying clustering. What sort
of conclusions does each approach provide when applied to disease incidence
data?

6.2 Using the medieval grave site data given in Table 5.2, construct kernel inten-
sity (density) estimates for the affected and nonaffected sites based on a
variety of bandwidths. For what bandwidths do the kernel estimates seem
similar? For what bandwidths do the kernel estimates differ?

6.3 Construct log relative risk surfaces for the medieval grave site data, and
identify areas exceeding the pointwise 90% tolerance surfaces using simula-
tions under the random labeling hypothesis for a variety of bandwidths. For
what range of bandwidths does the log relative risk surface exceed the point-
wise tolerance limits for the area indicated by “+” symbols in Figure 6.3?
How stable is the area indicated by “−” in Figure 6.3 for the same range of
bandwidths?
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6.4 Create a cluster in the medieval grave site data by selecting a set of nearby
locations. Reassign any nonaffected sites in your cluster to “affected,” and
keep the same affected/nonaffected ratio by reassigning as “nonaffected” the
same number of affected sites randomly selected from those outside your
cluster. Create log relative risk surfaces for Gaussian kernels and bandwidths
of 350 and 700 units. Does the approach detect your cluster?

6.5 Create a cluster as in Exercise 6.4. Also create a separate data set containing
two clusters, and keep the two clusters close to the same size (i.e., construct
both clusters with approximately the same radius). For both data sets, esti-
mate the K functions for affected and nonaffected sites. Does the difference
between these K functions detect your cluster(s) as evidence of clustering?
Compare the results between the two data sets.

6.6 Calculate E
(
Tq

)
and Var

(
Tq

)
under the random labeling hypothesis for the

test statistic defined in Section 6.6.3.

6.7 Create a data set contain a single cluster as in Exercises 6.4 and 6.5. Does the
q-nearest-neighbor approach described in Section 6.6.3 detect your cluster?
Repeat with two clusters. Do contrasts between test statistics identify the scale
of your clusters correctly?



C H A P T E R 7

Spatial Clustering of Health Events:
Regional Count Data

The species Homo sapiens has a powerful propensity to detect
patterns, even when no patterns exist.

Julian Bond, economist, quoted in Fienberg and Kaye (1991)

The statistical methods for detecting disease clustering and disease clusters pre-
sented in Chapter 6 draw fairly directly from the concepts and theory of spatial
point processes introduced in Chapter 5. Many times, however, access to point
data is either strictly or practically impossible. As mentioned in Chapters 2 and
3, confidentiality restrictions often limit release of point-level disease or census
data, and many official agencies release disease, census, or other data only as sum-
mary counts for a particular set of enumeration districts. These regions partition
the study area, assigning each location to one region only. In the United States,
states are divided into counties which are divided into census tracts. Census tracts
are divided into block groups, which in turn are divided into census blocks. In this
chapter we turn attention to statistical approaches for detecting clustering and/or
clusters in disease incidence data available as counts of cases from a set of geo-
graphic regions. We use the term regions throughout to refer to the enumeration
districts partitioning the study area and the term area to refer to the entire study
area or a particular collection of regions.

7.1 WHAT DO WE HAVE AND WHAT DO WE WANT?

In Sections 6.1 and 6.2 we introduce general issues that arise in specifying the
null and alternative hypotheses in tests to detect disease clusters or tests to identify
disease clustering. Many of the ideas apply to both point and regional count data.
However, the use of counts raises some additional analytic and inferential compli-
cations, three of which we outline below. As a result, methods proposed to detect
clusters and/or clustering in regional count data often take a slightly different form
than those proposed for point data.

Applied Spatial Statistics for Public Health Data, by Lance A. Waller and Carol A. Gotway
ISBN 0-471-38771-1 Copyright  2004 John Wiley & Sons, Inc.
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First and foremost, we only view patterns in regional count data through the
filter of the aggregation system. That is, we cannot observe spatial patterns at a
scale smaller than that defined by the smallest set of units for which data are
available. For example, in a set of census tract incidence data, we cannot explore
the distribution of cases within tracts without additional information or assumptions.

Second, aggregate data yield ecological analyses, that is, analyses based on
grouped data as defined in Section 2.7.4. Such analyses always contain the potential
for ecological fallacy wherein analysts extrapolate associations between outcomes
and potential risk factors observed in groups of people to similar associations at the
individual level. Furthermore, spatial analyses of regional count data are subject to
the modifiable areal unit problem (MAUP), defined in Section 4.5, where observed
associations between variables can change with different aggregations of individ-
uals into different sets of regions. The MAUP is particularly an issue if the data
contain (or are suspected of containing) small clusters associated with increased
local risk. If enumeration district boundaries divide a particular cluster between two
or more regions, any statistical evidence of the cluster can be diluted across these
boundaries and can appear much weaker than an assessment based on point data.

Finally, as we saw in Chapter 4, regional counts must also balance the small-
number problem with the spatial scale of the data. This balance is crucial when
investigating hypotheses concerning disease clustering. Recall that the small-number
problem occurs when one subdivides the study area into very small regions and
observes the incidence of a rare disease over a relatively short period. In such
instances, expected numbers of cases per region can be so small that any single
observed case appears suspicious (i.e., as a “cluster”). We cannot detect meaningful
increases in risk in such regions without an appreciable increase in the total number
of persons at risk or cases observed in each region, thereby arguing for fewer, larger
regions observed over a longer study period. In contrast, the spatial scale of the
data defines the geographic resolution. In this case, smaller regions provide more
local information, arguing for many small regions. The balance between the two
issues manifests itself as a trade-off between geographic resolution (where we want
many small areas) and the statistical stability of estimates associated with these
areas (where we want stable local estimates).

As a result of these three interweaving issues, the particular set of regions within
a data set provides a lower bound to the observable spatial scale of any pattern and
must provide a context within which to interpret any analytic results (Waller and
Turnbull 1993). For example, statistically significant clustering at the census tract
level does not necessarily imply significant clustering at the block group level, and
vice versa.

7.1.1 Data Structure

The basic form of the data involves a set of counts observed (one count for each
region) and a matching set of counts expected reporting the number of cases we
expect in each region, under the null hypothesis. We base statistical inference on
comparisons between these two sets of counts. More formally, we often assume that



202 SPATIAL CLUSTERING OF HEALTH EVENTS: REGIONAL COUNT DATA

the data represent a set of counts arising from a heterogeneous Poisson process (i.e.,
the data Y1, Y2, . . . , YN in regions 1, 2, . . . , N are mutually independent Poisson
random variables). Furthermore, we assume that we observe fixed (nonrandom)
population counts for each region, denoted n1, n2, . . . , nN . As in the empirical
Bayes smoothing approaches defined in Section 4.4.3, these population counts are
used in determining the number of cases expected in each region, under a null
hypothesis of no clusters/clustering, denoted E1, E2, . . . , EN .

7.1.2 Null Hypotheses

Like the methods defined in Chapter 6, many of the methods build on a probability
model based on the assumptions of an underlying heterogeneous Poisson spatial
point process (cf. Section 5.2.4). In particular, many methods model the regional
counts as independent Poisson random variables based on one of the basic proper-
ties of a spatial Poisson process: event counts from nonoverlapping regions follow
independent Poisson distributions where the underlying intensity function defines
the expected values (and variances). Some analysts prefer the binomial distribution
as a probabilistic model for regional counts, since the Poisson distribution assigns
a nonzero positive probability of observing more cases than persons at risk in each
region. However, for rare diseases, this probability is very small, so the practical
difference between the Poisson and binomial distributions is often negligible. In
addition, since we continue to advocate the use of Monte Carlo hypothesis tests,
the choice between an underlying binomial or Poisson distribution governs the
underlying simulation, but not the general structure of the analytic approaches, as
outlined below.

In some instances we may want to condition on the total number of cases in
the study area, yielding a multinomial distribution for the set of counts. Since we
consider the population sizes n1, n2, . . . , nN fixed, the total population size in the
study area,

n+ =
N∑

i=1

ni,

is also fixed. If we condition on Y+, the total number of cases observed, we are in
effect setting the individual disease risk r = Y+/n+, which is assumed fixed for
everyone under the constant risk null hypothesis. Although there can be motivation
for conditioning on the total number of cases (or equivalently, the assumed constant
disease risk), analysts should realize that conditioning on the total can subtly change
the question addressed (e.g., from “Is there clustering among leukemia cases in
upstate New York?” to “Is there clustering among 592 cases distributed at random
to people in upstate New York?” [cf. Table 6.1 and Bithell (1995)].

For the most part, methods to assess clusters and clustering in count data assume
some background information on the entire population rather than a set of controls.
This is due primarily to the wide availability of regional census data. For many
countries, the census provides readily available data giving detailed background
information on the population at risk within a specific set of defined regions.
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Since regional count methods for assessing clustering or detecting clusters typ-
ically use observed incident disease counts and census-based population counts
for the same set of regions, most assess the constant risk hypothesis (people are
equally likely to contract the disease regardless of location) by comparing the counts
observed to their corresponding counts expected based on a global incidence rate
(proportion) applied to local population counts. (Here the term global rate refers
to the rate observed across the entire data set, and local population count refers
to the population size observed within a single enumeration district.) Since the
comparison group (census data) typically includes all persons at risk (including the
cases), application of the random labeling hypothesis (fixing the case and control
locations and randomly assigning the case and control labels) is less straightforward
for regional count data than for point data.

As noted above, the constant risk hypothesis assumes a constant disease risk, r ,
giving Ei = rni for i = 1, 2, . . . , N . The counts expected may also be standard-
ized in the manner discussed in Section 2.3. For example, if we have age-specific
rates rj for age groups j = 1, . . . , J , and population sizes nij for the same age
groups within each region, we can define an age-adjusted expected count via
Ei = ∑

j rjnij , for i = 1, . . . , N .
Simulation of regional count data sets under the constant risk null hypothe-

sis differs somewhat from approaches defined for complete spatial randomness,
heterogeneous Poisson processes, or the random labeling hypothesis. Rather than
simulate event locations as points, we simply simulate the counts directly, based on
the properties of a heterogeneous spatial Poisson process (i.e., we simulate Yi using
a Poisson random number generator with mean Ei). For a heterogeneous Poisson
process, recall that Yi is independent of Yj for i �= j . If we wish to condition on the
total number of cases Y+, we simply draw regional counts (Y1, Y2, . . . , YN) based
on a multinomial distribution with cell probabilities (n1/n+, n2/n+, . . . , nN/n+).

7.1.3 Alternative Hypotheses

Under a heterogeneous Poisson process, our observed regional counts should appear
(1) independent, (2) Poisson distributed, with (3) expectations (and variances) Ei

for i = 1, . . . , N . These three components represent areas for potential deviation
from a heterogeneous Poisson process, and these (individually and in combination)
represent alternative hypotheses for many of the statistical tests of disease clustering
and clusters proposed for regional count data. Although only the third component
relates directly to the constant risk hypothesis per se, the literature contains many
different statistical assessments of clustering and clusters, each building on different
deviations from the components noted above. Some estimate and assess measures of
correlation between observations, some assess the accuracy of a Poisson distribution
(usually through assessments of over- or underdispersion expressed through appar-
ent differences between the mean and variance), and many tests compare observed
to expected counts or rates in a manner very similar to goodness-of-fit statistics.
We focus primarily on the first and last of these types of tests, deferring discussion
of tests of over- and underdispersion to the references cited in Section 7.8.
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The use of correlation as a measure of clustering or as an approach to detect
clusters merits some clarification, particularly for chronic (noninfectious) diseases.
A spatial Poisson process, the assumed probability model for our null hypothesis,
generates independent events. Conceptually with an infectious disease, we tend to
attribute deviations from independence to the direct relationship between cases (e.g.,
a large number of influenza cases in one week generates a similar or even greater
number of cases the following week). With a chronic (noninfectious) disease, we
typically think of clusters and/or clustering resulting from putative environmental
causes. Such an exposure–disease link tends to suggest a local increase in the
number of cases observed in areas with higher exposure over that expected under
a constant risk, but maintains independence between individual cases.

Does this mean that any correlation-based alternative implies an infectious nature
to the disease? Not necessarily. At the risk of being overly simplistic, suppose that
we expect to observe the same number of cases in every region of the study area
(i.e., the constant risk hypothesis applies to a set of regions each containing the
same population size). Next, suppose that we observe a collection of three contigu-
ous regions each containing twice the number of cases expected. This deviation
could be caused by a trend in the true (unknown) means of the Poisson counts
for these regions or by correlation between the counts. Recall from Section 5.4.4
that it is mathematically impossible from a single data realization to distinguish
between heterogeneously distributed independent events and homogeneously dis-
tributed dependent events. The practical implication is that a method assuming
independence identifies the deviating regions as evidence of a trend, while a
method assuming no trend identifies the deviation as correlation. Both methods
may “notice” the deviation, but each summarizes the pattern in a different way.
As a result, we may find some approaches more appropriate (and possibly more
statistically powerful) in some situations than in others.

Often, assessing deviation from a heterogeneous Poisson process in only one
category (correlation, Poisson, or expectation) may be inadequate for detecting
clusters or clustering. Rogerson (1999) provides an excellent example illustrating
this point, which we paraphrase here. A purely goodness-of-fit approach (e.g.,
Pearson’s χ2 statistic) compares observed to expected counts without regard to
location. In our simplistic example from the preceding paragraph, the value of
such a statistic is identical (provides the same evidence of lack of fit), regardless
of the relative location of the three deviant observations. That is, the statistic’s
value is the same whether the three outlying observations are next to one another,
or separated. Surely, we would prefer an approach where deviations proximate to
each other suggest greater evidence of a cluster. Similarly, a statistic measuring
the amount of correlation assesses similarity between neighboring observations,
not necessarily their deviation from expectation. That is, an estimate of the degree
of autocorrelation will not provide us directly with an assessment of the relative
risk of disease within a particular cluster compared to outside the cluster. Neither
goodness of fit nor autocorrelation is entirely satisfactory without some input from
the other approach. We review approaches from both perspectives as well as some
approaches seeking to combine both goals in the sections below.
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Finally, the distinctions defined in Section 6.2 between tests of clustering and
tests to detect clusters, and between general and focused tests (Besag and Newell
1991), still apply. These distinctions define the sorts of alternative hypotheses of
primary interest in the application of a particular analytic technique. As a reminder,
recall that methods assessing clustering address global patterns of correlation or fit
across the study area, while methods to detect clusters involve local assessments
of these same quantities. General tests assess clusters and clustering anywhere and
focused tests assess clusters and clustering around foci of suspected increased risk.

7.2 CATEGORIZATION OF METHODS

Following the format of Chapter 6, we consider tests of disease clusters and clus-
tering for regional count data in categories based on the statistical strategy for
detecting clusters and clustering:

• Methods based on scanning local rates
• Methods based on global indexes of spatial autocorrelation
• Methods based on local indexes of spatial autocorrelation
• Methods based on goodness-of-fit tests
• Methods combining goodness of fit and indexes of spatial autocorrelation

We begin with methods extended directly from those introduced in Chapter 6,
then branch into tests particularly addressing deviations from a heterogeneous
Poisson process based primarily on either spatial correlation or lack of correspon-
dence between observed and (constant risk) expected values, then conclude with
approaches combining autocorrelation and fit.

7.3 SCANNING LOCAL RATES

The geographical analysis machine (GAM) of Openshaw et al. (1988) introduced
in Section 6.5.3 provides an exploratory tool for both case–control point data and
regional data. Recall that to implement the GAM, we construct circles of various
distances, count the number of cases and the number of people at risk within the
circle, calculate a local incidence proportion (rate), and display those circles with
local incidence proportions exceeding some user-specified threshold.

The use of regional count data requires some additional specification not needed
in the analysis of case–control point data regarding assignment of cases and people
at risk to particular circles (e.g., should all or a fraction of the cases in a region
intersecting the edge of a circle be included within the circle?). We take care to
specify how each approach outlined below addresses this issue.

7.3.1 Goals

The goal for methods based on scanning local rates remains the same for regional
data as for point data [outlined in Section 6.5; i.e., to identify areas with unusually



206 SPATIAL CLUSTERING OF HEALTH EVENTS: REGIONAL COUNT DATA

high (or perhaps unusually low) local incidence proportions (rates)]. The motivation
for overlapping circles is similar to the smoothing methods of Chapter 4 (i.e., to
combine information from neighboring areas in order to stabilize local estimates).
As such, these methods are primarily tests to detect individual clusters rather than
tests of overall clustering. However, as we note below, summarizing local devia-
tions over the study area often also provides a general test of clustering.

7.3.2 Assumptions

Recall from Section 6.5.3 that the GAM was intended as an exploratory device, not
a statistical assessment of clusters (Openshaw 1990). However, the GAM received
much statistical criticism motivating development of several statistical approaches
seeking to provide local inference based on GAM-type operations. Overlapping
circles and spatially heterogeneous population distributions yield correlated inci-
dence proportions with differing variances, respectively, considerably complicating
our desire to assign statistical significance to each local estimate.

The distributional building blocks for constructing inference involve the null
hypothesis based on mutually independent Poisson counts with a constant individual
risk of disease (i.e., a Poisson count Yi with expectation Ei = rni for each region).
Although the counts themselves are independent under the null hypothesis, neigh-
boring local incidence proportions calculated for overlapping circles share a large
number of the same counts and are correlated. Several of the approaches described
below use Monte Carlo simulation to generate (simulated) data sets based on the
underlying independent counts and calculate the local incidence proportions (rates)
within the user-defined circles for each simulated data set. The local incidence
proportion (rate) estimates are correlated within each data set but are independent
between them, allowing a local Monte Carlo hypothesis test at each location. Such
tests allow us to calculate a Monte Carlo significance value corresponding to the
local incidence proportion observed in each circle.

Population heterogeneity complicates inference since often each local incidence
proportion derives from a different number of people at risk, yielding different
expectations and variances for each local incidence proportion. These heteroge-
neous distributions make statistical comparisons between local incidence propor-
tions difficult. Some methods detailed below improve comparability through revis-
ing the circles to collections of regions containing the same number of cases or
number at risk (i.e., controlling the numerator or the denominator of the incidence
proportion, respectively).

We describe four related approaches below. The first and last represent direct
generalizations of point methods introduced in Chapter 6, and the other two explore
statistical versions of the GAM.

7.3.3 Method: Overlapping Local Rates

Recall the method of Rushton and Lolonis (1996) defined in Section 6.5.4. In this
approach, based on GIS-friendly operations, we define a set of grid points covering
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the study area and calculate local incidence proportions within circles centered at
the grid points. Also recall that we typically use circle radii slightly smaller than
our user-defined grid spacing. To apply the approach to rates, we count a region
as falling within the circle if the region’s centroid falls within the circle. Other
definitions for including regions are possible, such as including cases from regions
having any portion within the circle, or including only a fraction of the observed
cases and persons at risk from any region intersecting the circle. Note that the latter
choice requires an additional choice regarding what fraction to include. Including
a fraction of cases and people at risk proportional to the fraction of the geometric
area of the region falling within the circle requires an accompanying assumption
of a homogeneous population density within the region which may be reasonable
in some settings and not in others. In addition, the proportion of area falling within
a circle may also depend on the choice of map projection, possibly resulting in
similar but slightly different assignment of cases to circles in different projections.

To assess the statistical significance of the local incidence proportions, Rushton
and Lolonis (1996) utilize Monte Carlo tests at each location based on an overall
constant risk hypothesis where cases are assigned to regions according to the inci-
dence proportion observed for the entire study area, and the total number of cases
in the study area varies between iterations.

DATA BREAK: New York Leukemia Data To illustrate the methods defined
in this chapter, we consider the New York leukemia data introduced in the data
break following Section 4.4.5. Recall that the data include the number of cases
of leukemia (all types) diagnosed in people residing in an eight-county region
of upstate New York for the years 1978–1982. The original data appearing in
Turnbull et al. (1990) and Waller et al. (1992, 1994) involve counts for block
groups in seven of the eight counties, and counts for census tracts only in Broome
County (southeastern corner of the study area). For illustration, we consider the
data aggregated to the census tract level for all eight counties, leading to 592 cases
in 281 regions.

Figure 7.1 provides a contour plot of the local rate surface estimated for the
New York data defined by the method of Rushton and Lolonis (1996). Census tract
centroids appear as filled circles and grid points as small “×” symbols. Circle radii
are slightly smaller than the grid spacing. Note that circles for many grid points
will contain no tract centroids, and these circles are not considered in the analy-
sis. Furthermore, we calculate local rates only for grid points with corresponding
circles containing at least 500 persons at risk, indicated by the larger “×” sym-
bols in Figure 7.1. (For visual simplicity, the contours derive from interpolation
between those grid points meeting our measurement criterion.) Under the constant
risk hypothesis, we expect to observe approximately 0.25 case in 500 people at
risk. This choice of a lower limit for the population size results in many local
estimates based on zero observed cases. As noted in Section 6.5.4, the choice of
grid spacing and circle radius require a compromise between local detail in the
surface and stability of the local incidence proportions (rates).

We note some areas with slightly increased local incidence proportions in the
central portion of the study area, and a visually striking area of nested contours
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FIG. 7.1 Local case proportions for the tract-level New York leukemia data. Filled circles denote
census tract centroids (data locations), small “×” symbols denote the grid considered, larger “×”
symbols denote grid points meeting the minimum population size of 500 people (1980 census). Contour
lines correspond to the smoothed relative risk surface.

in Figure 7.1 corresponding to a locally increased incidence proportion in the city
of Binghamton, located in the south-central portion of the study area. However,
based on 999 simulations, no location exhibits a statistically significant deviation
from the constant risk hypothesis.

We note that our assessment omits many of the rural tracts, due to our selection of
grid spacing and a 500-person lower bound for each circle. Lowering the population
size threshold for the same grid spacing and radius could be counterproductive
since, coupled with the rarity of the disease, it would probably increase the number
of local rate estimates of zero. Monte Carlo tests for grid points with rate estimates
of zero make little sense (a zero observed rate will never appear significantly
high!). As a result, our selections for grid spacing, circle radius, and population
lower bound in this example are in no sense optimal. We also need to interpret
our results with even greater care since (1) each local incidence proportion derives
from a different number of people at risk; and (2) conducting many significance
tests using the same data alters the overall type I error level (i.e., the more tests we
make, the greater the chance that we will find at least one test to be significant).
This is often referred to as the multiple testing problem. The methods described in
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Sections 7.3.4 to 7.3.6 address one or both of these problems. However, the results
in Figure 7.1 provide an initial view of the data and highlight areas of suggestively
(although not statistically significantly) increased local incidence.

7.3.4 Method: Turnbull et al.’s CEPP

The heterogeneous population density provides a statistical complication in the inter-
pretation of incidence proportions (rates) based on local aggregations of regional
counts. The use of a fixed geographic distance in the circles for both the GAM of
Openshaw et al. (1988) and the approach of Rushton and Lolonis (1996) generates
collections of circles with varying numbers of incident cases (the numerator) and
varying numbers of people at risk (the denominator). One way to increase com-
parability between local rates is to limit attention to circles containing a constant
number of people at risk. In this spirit, Turnbull et al. (1990) introduce a cluster
evaluation permutation procedure (CEPP), requiring the user to define a population
size n∗ of interest. The user then considers (again overlapping) collections of n∗
persons at risk, centered at each region. These collections vary in geographic size
but maintain a constant population size at risk, so observed counts are identically
distributed. However, since these collections of cases and people overlap, the counts
are not independently distributed.

For a fixed population radius n∗, the CEPP builds a circle containing n∗ persons
at risk around each region in the data set. Note that the CEPP does not examine all
collections of n∗ persons at risk, or even all geographically contiguous collections
of n∗ persons at risk. Instead, the CEPP examines disease counts observed from
each collection of the n∗ persons at risk residing in a particular region and its
nearest surrounding regions. That is, for region i, we aggregate region i and the
regions nearest region i until we reach a collection of n∗ persons at risk.

Usually, we define the population radius to be larger than the region-specific
population size. To achieve an at-risk population size of n∗, we typically need
to add only a fraction of the persons and cases in the most distant of the nearby
regions added to a particular circle. In practice, the choice of what fraction of cases
to include in the circle imposes some additional assumptions on the analysis. For
example, if nj denotes the population size of the most distant region added to the
circle around region i, we need to include (n∗ − n+,i )/ni persons at risk, where
n+,i is the sum of the population sizes of region i and regions nearer than region
j . Including the same fraction of the number of cases observed in region j to the
circle centered at region i assumes a homogeneous risk within region j . Often,
this is a reasonable assumption to make, since we have no information regarding
the distribution of cases within each region, but acknowledging such assumptions
provides a clearer interpretation of results. In addition, specifying such assumptions
allows us to conduct sensitivity analyses wherein we measure the impact of various
case allocation strategies on the final results (cf. Waller et al. 1992).

Monte Carlo simulations based on the constant risk hypothesis provide a means
for “pointwise” significance testing for each circle in precisely the same manner as
described for the method of Rushton and Lolonis (1996) in Sections 6.5.4 and 7.3.3.
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That is, we can generate simulated data sets based on the constant risk hypothesis,
then consider a Monte Carlo test for counts observed within each region’s circle.
However, such an approach still suffers from the problem of multiple testing and
is further complicated by correlations between the multiple tests.

Rather than focus on multiple tests each centered at different regions, Turnbull
et al. (1990) focus attention on the maximum number of cases observed in any
collection of n∗ persons at risk. Since all circles are based on the same number of
persons at risk, comparing counts corresponds to comparing incidence proportions
(ignoring risk variations due to age and other risk factors, for simplicity’s sake), and
the highest count corresponds to the highest local incidence proportion observed in
any of the circles. The question of interest becomes: Is the highest observed count
higher than we would anticipate under the constant risk hypothesis?

To assess this question, Turnbull et al. (1990) consider the following Monte
Carlo test: For each simulated data set, we find the highest count observed in
any circle of n∗ persons at risk and compare our maximum count observed to
the distribution of the maxima from the constant risk simulations. Note that the
maximum from any given simulated data set may occur at any location in the
study area, so we are comparing our maximum incidence proportion observed to
the maximum incidence proportions in each of the simulated values rather than to
the incidence proportion for the same set of n∗ people in each simulation. This
results in a single test statistic (the maximum incidence proportion observed) and
single reference distribution approximated by the histogram of maximum incidence
proportions observed in each of the simulated data sets.

The simulation approach of Turnbull et al. (1990) addresses two inferential prob-
lems. First, the approach avoids multiple testing since we use a single test statistic,
and each Monte Carlo realization produces an independent comparison value. Sec-
ond, the approach differs from the pointwise Monte Carlo test of the maximum
incidence proportion (i.e., comparing the maximum count observed to the simu-
lation values for the same circle), since we compare the value observed to the
maximum observed for any circle in each simulation. This distinction avoids the
“Texas sharpshooter” problem of identifying the maximum observed, then conduct-
ing a local hypothesis test for counts (or incidence proportions) observed in that
particular circle (similar to shooting the side of a barn, then painting a bull’s-eye
around the bullet hole).

DATA BREAK: New York Leukemia Data (cont.) We illustrate the CEPP
approach via application to the tract-level New York leukemia data [the original
analysis of the block group-level data appears in Turnbull et al. (1990)]. Figure
7.2 illustrates the variable geographic extent of the circles (actually, aggregations
of tracts) based on a constant population radius. Each circle represents a separate
collection of n∗ persons at risk within the analysis. As noted above, we build the
circles by combining census tracts in order of intercentroid distance. Although a
reasonable approach, the easternmost example in Figure 7.2 illustrates that our set
of circles includes at least one noncontiguous collection of tracts. The smallest
tract in this circle has a centroid closer to the centroid of the central tract for this
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Third nearest

FIG. 7.2 Example of three different circles, all with a population radius of 10,000 persons at risk.
The dark census tracts correspond to the central tract of each circle, and gray areas the additional tracts
defining an associated circle (see text).

circle than does the centroid of the long and winding intermediary tract. We leave
such circles in the analysis, but the example illustrates how aggregating irregular
regions based on intercentroid distances can stretch the geometric appropriateness
of the term circle in this context.

We consider four population radii: n∗ = 1000, 5000, 10,000, and 40,000 persons
at risk. We obtain the number of cases observed in the n∗ at-risk persons centered
in each tract, and find identify the maximum observed count (and its location). To
assess significance, we consider 999 simulations under the constant risk hypoth-
esis, where we allow the total number of cases to vary between simulations. For
each data set simulated under the constant risk hypothesis, we store the maximum
observed count occurring in any circle (again noting that the maximum count for
each simulated data set could occur in any of the collections of n∗ at-risk persons
under consideration).

Figure 7.3 shows histograms of the maximum count based on 999 constant risk
simulations for each population radius. The maximum count observed among all
circles (the nearest n∗ persons to each census tract) appears as a vertical line,
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FIG. 7.3 Histograms and associated p-values (based on 999 constant risk simulations) of the maximum
case count observed among all circles of the same population radius, applying the cluster evaluation
permutation procedure to the tract-level New York leukemia data (see text). The vertical line denotes
the maximum count observed among all circles.

and the one-sided p-value represents the proportion of maximum counts from the
simulated data sets exceeding the maximum observed. Naturally, the maximum
count observed increases as we increase n∗ (the number at risk in each circle),
although we could divide by the number at risk for comparability. We note that the
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FIG. 7.4 Collections of tracts containing the maximum disease count observed using the cluster eval-
uation permutation procedure for each of several population radii (see text).

maximum number of cases observed is not statistically significant for population
radii n∗ = 1000 or 5000 persons but is for the two larger population radii.

Figure 7.4 illustrates the location of the tracts containing the maximum observed
count for each value of n∗, the population radius. We shade the central tract black,
and other tracts contributing cases and population at risk to this tract’s circle, gray.
Note that the maximum occurs in different places for different population radii.
For the smaller population radii (n∗ = 1000), the most likely (but statistically non-
significant) cluster is in Binghamton, but for larger population radii the most likely
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clusters appear near Cortland, in the center of the study area. We note that the circle
associated with the maximum count observed for a population radius of 10,000 per-
sons occurs in a somewhat noncircular circle, again based on intercentroid distance,
as shown in Figure 7.2.

To emphasize again the nature of the Monte Carlo test and to contrast the
method of Turnbull et al. (1990) with a local test of the count (or incidence pro-
portion) observed for a single circle, we consider how often the overall maximum
count appears in each circle under the constant risk hypothesis. We prefer analytic
approaches to be “fair” under the constant risk null hypothesis, where each tract
has an approximately equal chance of anchoring the circle containing the maximal
count. Gangnon and Clayton (2001) refer to this feature of tests to detect clusters as
unbiased, although we prefer the term geographically unbiased, to distinguish the
property from the usual definition of unbiased from the theory of hypothesis test-
ing (i.e., the power of an unbiased test never exceeds the significance level under
the null hypothesis and always exceeds the significance level under any alternative
hypothesis; cf. Lehmann 1994, Chapter 4).

Figure 7.5 indexes tracts from 1 to 281 and reports the number of times that the
circle of population radius n∗ centered at each tract contained the maximum count
across 9999 constant risk simulations. Under an equal chance of selection we would
expect each tract to contain the maximum 9999/281 = 35.6 times. For population
radii 10,000 and 40,000, we see relatively little systematic departure from this
expected value. We do note an apparent reduction in the variability associated with
tracts having indexes between 100 and 200. We index tracts sequentially according
to their Federal Information Processing Standards (FIPS) codes, so tracts appear
together in counties. Mapping the values (not shown) does not reveal clear geo-
graphic trends in the estimated probability of selection, but reveals that the tracts
with reduced variance correspond to tracts in Syracuse within Onondaga County.
The reason for this apparent reduction in variation in the number of times that a
particular tract appears as the center of the maximum cluster could depend on a
number of factors, such as the higher population density across a set of tracts, higher
variation in population sizes between tracts (one tract in this area contains only nine
residents), and the geographically small area associated with each tract (so overlap-
ping circles in this area share many more tracts than do those in more rural areas).

7.3.5 Method: Besag and Newell Approach

Another approach for controlling variability in local incidence proportions (rates)
within distance-based circles is to limit attention to circles containing a constant
number of cases (the local incidence proportion numerator) rather than a constant
population radius (the local incidence proportion denominator considered in the
CEPP). That is, we now consider circles with a constant case radius rather than
the CEPP’s circles with a constant population radius. We use the term case circles
to distinguish circles defined by a case radius from those defined by a distance or
population radius. Besag and Newell (1991) consider such an approach, directly
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FIG. 7.5 Number of times (out of 9999 constant risk simulations) that each tract appears as the most
likely cluster for population radii 10,000 (top) and 40,000 (bottom). The horizontal line denotes the
number expected under a random assignment among tracts (9999/281).

addressing the question of defining the most likely clusters of c∗ cases for a user-
defined case radius (or cluster size) c∗.

To implement the approach of Besag and Newell (1991) we define a number
of cases c∗, then consider the collections of c∗ cases centered at each census
region and identify the most unusual collections of c∗ cases as possible clusters.
As with the CEPP, the approach does not consider all collections of c∗ cases nor
all geographically contiguous collections of c∗ cases, but rather, all collections of
c∗ cases observed in each region and its surrounding regions.

As proposed originally, the approach considered data aggregated to geographi-
cally small regions typically containing zero, one, or possibly two observed cases
each. In this data setting, Besag and Newell (1991) center a case circle around each
case. For data aggregated to larger regions often containing multiple cases, such
a definition results in multiple case circles containing precisely the same cases for
regions containing more than one case, and no case circles for regions containing
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no observed cases. As our example data set contains many regions with more than
one case, we limit attention to a single case circle at each region. In addition, for
regions containing no observed cases, we consider case circles where none of the
c∗ cases occur in the central region (i.e., the c∗ clusters occur in a ring around the
central region).

For each region we determine the number of regions in its case circle (i.e., the
number of regions containing the c∗ nearest cases) and assess significance based
on the probability of observing c∗ cases in fewer regions. That is, we calculate the
probability of observing a more tightly clustered collection of the c∗ cases around
the region of interest.

More specifically, we order regions by their distance to the centroid of the
region of interest, say region i. Next, we define ni,c∗ as the cumulative population
size of the nearest regions (including region i) containing c∗ cases. We define Li

as a random variable associated with region i representing the number of regions
containing the collection of c∗ nearest cases, and li as the observed value of Li .
For instance, if we set the case radius c∗ = 12 and region i contains five cases, the
nearest region to region i contains three cases, and the next-nearest region contains
seven cases, li = 3. Besag and Newell (1991) base inference on Li rather than the
incidence proportions observed themselves, and unlike the CEPP, we do not need
to add fractions of the observed cases or population size for the farthest region.

To calculate Pr(Li ≤ li ), we define r as the overall disease incidence proportion
for the region. Under the constant risk hypothesis, we assume an underlying Poisson
distribution for each region, so Pr(Li ≤ li ) corresponds to the probability (under the
constant risk hypothesis) of observing c∗ or more cases within ni,c∗ persons at risk:

Pr(Li ≤ li) =
∞∑

j=c∗

exp(−rni,c∗)(rni,c∗)j

j !
,

= 1 −
c∗−1∑
j=0

exp(−rni,c∗)(rni,c∗)j

j !
. (7.1)

Since the method is based on the probability of observing c∗ cases in fewer regions
than observed, the method preforms best when we choose a case radius c∗ such
that most case circles cover multiple regions. See the exercises at the end of this
chapter for further discussion of the relationship between the level of aggregation
and the choice of the case radius c∗.

The method provides a significance value associated with each region and hence
is primarily a collection of tests to detect individual clusters. If pressed for an
overall test of clustering, Besag and Newell (1991) suggest the total number of
clusters (for a given case radius) achieving some nominal level of significance,
say 0.05, as a test statistic. We denote this number TBN and note that we make no
adjustment for multiple tests. An approximation of expected value of TBN under
the constant risk null hypothesis is the number of tests multiplied by the nominal
significance level of each test. This is only an approximation, due to the discrete
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distribution of TBN, and Besag and Newell (1991) provide a derivation of the exact
expectation as follows: For each region, we apply equation (7.1) successively for
li = 0, 1, and so on, until the significance level first exceeds our nominal level
(e.g., 0.05), say for li = l∗. The value of equation (7.1) for li = l∗ − 1 provides
the true attainable significance level, denoted αi , for the c∗ cases in the ith and
neighboring regions. The exact expectation of TBN under the constant risk null
hypothesis is given by

E (TBN) =
N∑

i=1

αi.

Waller et al. (1994) point out that the accuracy of the approximation depends not
only on the case radius c∗, but also on the level of aggregation (population size
of the regions) in the data. Simulations under the constant risk hypothesis provide
Monte Carlo tests for the value of TBN observed.

Finally, we may obtain a focused version of the method of Besag and Newell
(1991) by limiting attention to the c∗ nearest cases to each focus instead of each case
or each region. We start by finding the nearest c∗ cases to each focus, and determine
whether these collections of cases represent unusual aggregations compared to the
local populations at risk. We obtain significance values associated with each focus
using equation (7.1) as before.

DATA BREAK: New York Leukemia Data (cont.) We now apply the method
of Besag and Newell (1991) to the tract-level New York leukemia data. [For appli-
cation to the block-group-level data, see Waller et al. (1992, 1994) and Waller and
Turnbull (1993).] For comparability with the results of the CEPP of Turnbull et al.
(1990), we consider case radii (cluster sizes) of 6, 12, 17, and 23 cases, corre-
sponding to the nearest integer number of cases expected in 1000, 5000, 10,000,
and 40,000 persons at risk, under a constant risk hypothesis based on the incidence
proportion (rate) observed in the entire study area.

Figure 7.6 illustrates the most significant clusters for each cluster size, those
with the lowest associated local p-value calculated using equation (7.1). We use the
term local p-value since the significance values correspond to the collection of (at
least) c∗ cases in the tracts nearest to each tract centroid. Besag and Newell (1991)
suggest mapping all clusters attaining some nominal significance level (e.g., 0.05
or 0.01). We limit our attention to the most significant clusters, primarily for space
reasons. Figure 7.6 resembles Figure 4.21, the probability map for the same data.
Both figures display local Poisson probabilities, but Figure 4.21 presents values
for each region separately, while Figure 7.6 seeks to increase comparability and
stability (at the cost of independence between local tests) by combining cases and
at-risk populations across local collections of regions.

Table 7.1 provides additional detail regarding the most significant clusters illus-
trated in Figure 7.6. First we note that due to the aggregations of cases into tracts,
each case circle may contain more than c∗ cases. Recall that unlike the approach of
Turnbull et al. 1990, the farthest tract is added to each tract in its entirety rather than
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6 and 17 cases

12 cases

76 cases

23 cases

FIG. 7.6 Most significant clusters from the method of Besag and Newell, based on collections of 6,
12, 17, 23, and 76 cases (see text).

Table 7.1 Values Observed and Local Significance
of the Most Locally Significant Clusters in the New
York Leukemia Data as Determined by the Method
of Besag and Newella

Case Cumulative
Radius, Cases Population Local
c∗ Observed Size, ni,c∗ p-Value

6 cases 8.18 2,921 0.002
12 cases 12.21 8,876 0.002
17 cases 17.69 11,268 <0.001
23 cases 25.46 19,615 <0.001

aLocal significance is determined by the collection of c∗ cases
nearest to each tract centroid (see text).

as a fraction. Also, the most significant cluster need not be the cluster exhibiting
the maximum observed local incidence proportion. Finally, we note the local
p-values defined by equation (7.1) differ from the p-value associated with the max-
imum incidence proportion observed in the CEPP of Turnbull et al. (1990). Recall



SCANNING LOCAL RATES 219

that the p-value associated with the maximal incidence proportion for the CEPP
reflects the probability of observing a maximal incidence proportion (anywhere)
higher than the value observed under the constant risk hypothesis. In compari-
son, the local p-values of the method of Besag and Newell (1991) parallel those
of the GAM of Openshaw et al. (1988) and the method of Rushton and Lolonis
(1996) representing the probability of observing a more extreme local incidence
proportion, thereby providing a separate p-value for each location measured.

7.3.6 Method: Spatial Scan Statistics

Although the approach of Turnbull et al. (1990) introduces a novel approach for
assessing the statistical significance of the maximum local incidence proportion,
inference remains linked to the user’s choice of a population radius. The user’s
choice of bandwidth for kernel smoothing, distance radius for the approach of
Rushton and Lolonis (1996), and case radius for the approach of Besag and Newell
(1991) each provides a similar context for the interpretation of associated results.
None of these methods provide a straightforward manner for comparisons across
radii (bandwidth values). The spatial scan statistic defined by Kulldorff (1997) and
introduced for point data in Section 6.5.5 aims to address this particular issue and
provide inference across a range of cluster radii.

As a brief review of the material in Section 6.5.5, Kulldorff (1997) builds the
spatial scan statistic from results of Loader (1991) and Nagarwalla (1996) regarding
links between variable-width scan statistics and likelihood ratio statistics. Further-
more, Kulldorff (1997) notes that methods such as those proposed by Turnbull
et al. (1990) and Rushton and Lolonis (1996) correspond to fixed-window spatial
scan statistics and may be viewed as special cases of his general approach.

Implementation of the spatial scan statistic for regional count data mirrors that
for case–control point data, replacing controls by census-based regional population
counts. Recall that the primary goal of a scan statistic is to find the collection of
cases (among the collections considered) least consistent with the null hypothesis
(i.e., the most likely cluster) and to provide a significance value representing the
detected cluster’s “unusualness.” In a regional count setting, Kulldorff (1997) con-
siders distance-based circles with radii ranging from the smallest observed distance
between a pair of regions (e.g., intercentroid distance) to a user-defined upper bound
(e.g., one-half the width of the study area). A region contributes all of its cases and
individuals at risk to the circle if the region’s centroid falls within the circle. As
illustrated in the preceding sections, collections of irregular regions with centroids
within a given circle may not appear “circular” on the map. However, we retain the
term circle here since each collection of regions arises from the region centroids
falling within a distance-based circle rather than a population- or case-based circle.
More recent implementations of the spatial and space-time scan statistic allow for
distance-based linear and elliptical clusters, but not clusters based on population or
case radii, as far as we are aware.

At each possible radius in the user-defined interval (e.g., at each observed inter-
centroid distance) and for each circle having that radius, we calculate a likelihood
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ratio statistic testing the constant risk hypothesis versus the specific alternative
that risk within regions having their centroid within the circle differs from the
risk in the rest of the study area. With regional data we observe counts rather
than individual cases or controls, so we base the likelihood ratio in terms of the
Poisson distribution rather than the Bernoulli case described for case–control point
data in equation (6.7). In this setting, the scan statistic involves the number of
cases observed in regions defining the circle of interest, Yin, the number expected
within this circle under the null hypothesis, Ein, and the corresponding number of
cases observed and expected occurring outside the circle, denoted Yout and Eout,
respectively. Under the constant risk hypothesis, the expected counts consist of
age-standardized values or of regional population sizes multiplied by an estimate
of the overall risk. Therefore, the spatial scan statistic is proportional to

max

(
Yin

Ein

)Yin
(

Yout

Eout

)Yout

. (7.2)

The Monte Carlo assessment of significance for the maximum observed count
in the approach of Turnbull et al. (1990) provides direct motivation for inference
of the spatial scan statistic (Kulldorff 1997). As before, we generate independent
data sets under the null hypothesis, calculate the likelihood ratio statistic for each
circle, and store the maximum statistic value, regardless of where it may occur.
Statistics are correlated between circles within each simulation, but the maximum
values are independent between simulations, providing a valid p-value for the
most likely cluster, provided that one interprets the p-value as the probability of
observing a more extreme maximal statistic anywhere in the study area (rather than
the significance of observing the maximum at a particular location).

DATA BREAK: New York Leukemia Data (cont.) The methods of Rushton
and Lolonis (1996) and Turnbull et al. (1990) suggest the possibility of a geo-
graphically small local increase in the Binghamton area in the southern portion of
the study area, and the possibility of a less pronounced but geographically larger
increase in the central portion of the study area (Cortland County). In both cases,
for the geographic and population radii considered, the test statistic values observed
are not unusual when compared to the distribution of values obtained by repeatedly
assigning the 592 cases at random to the 1,057,673 people at risk (a Monte Carlo
test under the constant risk assumption, where the total number of cases observed
varies between simulations). It appears that the most likely clusters in the observed
data are not much different than those we would expect to observe by chance.
These methods indicate little evidence of significant clusters in the data.

We next apply the spatial scan statistic to the data. Figure 7.7 reveals three
suggestive clusters, labeled A, B, and C. Table 7.2 provides summary information
on the three clusters, including the number of cases observed and expected under
the constant risk hypothesis. The ratio of cases observed to cases expected provides
the standardized morbidity ratio (SMR), as defined in Section 2.3.2, providing an
estimate of the relative risk of leukemia, comparing people residing inside each
cluster to those residing outside that particular cluster.
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Cluster B

Cluster C

Cluster A

FIG. 7.7 Spatial scan statistic results for the New York leukemia data (281 tracts). Shading represents
the census tracts (1980 Census) included in each potential cluster. Details regarding clusters A, B, and
C appear in Table 7.2.

Table 7.2 Spatial Scan Statistic Results for New York Leukemia Data (281 Tracts)a

Cases Cases Relative Population
Cluster Observed Expected Risk (SMR) Size p-Value

A 117 70.61 1.657 135,295 0.001
B 47 25.31 1.857 48,820 0.050
C 44 23.83 1.846 45,667 0.101

aClusters A, B, and C are shown in Figure 7.7. Significance (p-values) based on 999 constant risk
simulations (see text).

Cluster A has the highest corresponding likelihood ratio statistic and represents
the collection of cases least consistent with the constant risk null hypothesis (i.e.,
the most likely cluster in the data). This cluster corresponds to the area of the
highest local risk estimated by the method of Rushton and Lolonis (1996) (see
Figure 7.1). The associated p-value of 0.001 reported in Table 7.2 reveals that
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the maximum likelihood ratio test statistic observed was significantly higher than
the maximum likelihood ratio statistics observed for 9999 simulations under the
constant risk hypothesis.

We note that the number at risk in cluster A is considerably larger than any of
the population radii considered in the preceding data breaks using the approaches
of Turnbull et al. (1990) and Besag and Newell (1991). The scan statistic radii
include those comparable to the population and case radii considered above, but
the scan statistic suggests much larger radii for the most suspicious clusters. For
comparison, applying the CEPP with population radius 135,000 yields a maximum
disease count of 120 occurring in the circles based on four tracts in the same area
as cluster A. (These four circles overlap and contain many of, if not precisely,
the same tracts.) The maximum count observed exceeds all 999 maxima for data
simulated under the constant risk hypothesis. Furthermore, applying the method of
Besag and Newell (1991) with a case radius of 76 cases (the number expected in
135,000 persons at risk under the constant risk hypothesis) yields 77 cases observed
among 85,271 persons at risk with location shown in Figure 7.6 and a local p-value
less than 0.001.

Clusters B and C represent the second- and third-highest observed likelihood
ratio statistics, under a constraint of considering the likelihood ratio statistics from
nonoverlapping clusters. Since many of the potential clusters overlap, neighboring
likelihood ratio statistics are often very similar since they contain many of the
same cases and persons at risk. There are a variety of ways to constrain consid-
eration of the next-most-likely clusters, and as long as the same constraints apply
to each simulated data set, the Monte Carlo inference remains valid (subject to the
constraint).

Cluster B corresponds exactly to the tracts in Cortland County. The fairly regular
shape of the county and the collection of census tracts and their associated centroids
around a central tract allow our circular potential clusters to include this rectangular
area. Note that cluster B overlaps the most likely cluster defined by the CEPP for
a population radius of 40,000 people (see Figure 7.4), but cluster radii based on
population size and on distance result in slightly different clusters.

The p-values associated with clusters B and C rank the second- and third-highest
likelihood ratio statistics observed for 9999 constant risk simulations. The precise
questions addressed by these p-values are rather specific and differ somewhat
from the sort of questions that are of interest to health officials and the public. For
instance, compare the following statements:

1. “The secondary cluster at location B appears statistically significantly higher
than we would expect the highest cluster to appear under a hypothesis of
constant risk.”

2. “The secondary cluster also exhibits an observed incidence proportion sig-
nificantly higher than expected from national incidence proportions.”

Generally, interested parties prefer an answer to statement 2, but our Monte Carlo
ranking provides a statistical answer to statement 1.
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7.4 GLOBAL INDEXES OF SPATIAL AUTOCORRELATION

We now move from methods that smooth local incidence proportions (rates) to
methods that summarize the extent of observed spatial similarity between nearby
regions. Griffith (1992) describes several interpretations of spatial autocorrelation,
including the notion of self-correlation. Under this interpretation, the term spatial
autocorrelation implies correlation among the same type of measurement taken at
different locations. A global index of spatial autocorrelation provides a summary
over the entire study area of the level of spatial similarity observed among neigh-
boring observations. Statistical indexes of autocorrelation appear in a wide variety
of applications, and Cliff and Ord (1973, 1981) are two classic references on the
theory and application of these indexes.

7.4.1 Goals

The goal of a global index of spatial autocorrelation is to summarize the degree to
which similar observations tend to occur near each other. Typically, extreme values
of the index in one direction suggest positive spatial autocorrelation, while extreme
values in the opposite direction suggest negative spatial autocorrelation. Since
global indexes are by definition summaries over the study area, most applications
of global indexes of spatial correlation in the assessment of disease patterns result
in tests of clustering rather than tests to detect individual clusters. As discussed in
Section 7.1.3, autocorrelation among disease counts or incidence proportions may
reflect real association between cases due to infection, or perceived association
based on a spatial aggregation of similar values.

7.4.2 Assumptions and Typical Output

Most indexes of autocorrelation share a common basic structure. In this structure,
we calculate the similarity of values at locations i and j , then weight this similarity
by the proximity of locations i and j . High similarities with high weight (i.e.,
similar values close together) lead to high values of the index, while low similarities
with high weight (i.e., dissimilar values close together) lead to low values of the
index. Following Lee and Wong (2001, pp. 79–80), let simij denote the similarity
between data values Yi and Yj , and let wij denote a weight describing the proximity
between locations i and j , for i and j = 1, . . . , N . Most global indexes of spatial
autocorrelation build on the basic form

N∑
i=1

N∑
j=1

wij simij

N∑
i=1

N∑
j=1

wij

, (7.3)

the weighted average similarity between observations. The geography and statisti-
cal literature often refer to statistics of this form as general cross-product statistics,
introduced by Mantel (1967) as a test statistic for comparing two matrices. The
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matrices of interest here are the matrix of fixed weights wij and the matrix of
observed similarity values simij for i, j = 1, . . . , N . Various indexes adjust the
average similarity by different multiplicative constants to rescale or otherwise nor-
malize the index, but the basic structure remains the same. Many statistics fall into
this category, including the q-nearest-neighbor methods described for point data in
equation (6.9) of Section 6.6.3.

The basic form in equation (7.3) is similar to the locally weighted-average
smoothers presented in Section 4.4.1. However, the two approaches differ with
respect to the weights wii controlling the impact of the value observed in region i

on the weighted average for region i. When calculating a spatially averaged inci-
dence proportion to stabilize the incidence proportion estimate for region i, we
typically assume that the data observed in region i should substantially contribute
to this weighted average and hence set wii > 0. In contrast, when calculating a
spatially weighted average similarity of nearby observations as in equation (7.3),
we typically omit the similarity of the ith region with itself and set wii = 0. For
the remainder of this chapter, we assume that wii = 0.

We note that the measure of similarity simij depends on random variables defin-
ing observations, and the wij are fixed quantities based on the underlying geography
of the regions. As such, the simij define the distributional structure of the index,
and the wij define the spatial structures of correlation that a particular index (i.e.,
a particular combination of simij and wij ) is best suited to detect. Therefore,
different measures of similarity define different index classes (e.g., Moran’s I and
Geary’s c, as defined below), while different measures of proximity lead to different
applications within the class of index.

Spatial Proximity Matrices We often report our collection of weights wij as a
spatial proximity matrix (also called spatial connectivity or spatial weight matrixes;
see, e.g., Cliff and Ord 1981; Haining 1990; Bailey and Gatrell 1995, pp. 261–262).
The (i, j )th element of a spatial proximity matrix W , denoted wij , quantifies the
spatial dependence between regions i and j , and collectively, the wij define a
neighborhood structure over the entire area (cf. Section 4.4.1). Perhaps the sim-
plest neighborhood definition is provided by the binary connectivity matrix, whose
elements are

wij =
{

1 if regions i and j share a boundary
0 otherwise.

(7.4)

Note that this choice of proximity measure necessarily results in a symmetric
spatial proximity matrix since wij = wji . As noted above, we set wii = 0 for
i = 1, . . . , N .

As in Section 4.4.1, many other choices of spatial proximity measures can be
considered. For instance, we may want to expand our idea of a neighborhood to
include regions that are close, but not necessarily adjacent. Thus, we could use

wij =



1 if the centroid of region j is one of the q nearest
to the centroid of region i

0 otherwise.
(7.5)



GLOBAL INDEXES OF SPATIAL AUTOCORRELATION 225

The regions for which wij = 1 in equation (7.5) are called the q nearest neighbors
of region i, and the resulting spatial proximity matrix is not necessarily symmetric
(i.e., wij need not be equal to wji).

Instead of specifying a certain number of nearest neighbors, we can define
the neighbors by some parametric function of distance. For example, if dij is the
distance (Euclidean, city-block, or any other distance metric) between the centroids
of regions i and j , we could choose

wij =
{

1 if dij < δ

0 otherwise
(7.6)

or

wij =
{
d−α
ij α > 0

0 otherwise
(7.7)

for some power α. Both approaches yield symmetric weights.
As a final example, we could define neighborhood structure based on the fraction

of region i’s border that is shared with region j ; that is,

wij =



lij

li
if regions i and j share a boundary

0 otherwise,

where lij is the length of the common boundary between regions i and j and
li is the perimeter of region i (Cliff and Ord 1981, pp. 17–18). Such a structure
may arise as a model of the flow of goods, people, or possibly disease between
regions. If such commodities flow out from a region uniformly with respect to
direction, neighboring regions covering a greater proportion of the common border
will receive more of region i’s output. Note that in this case the spatial proximity
matrix W is not symmetric.

Sometimes, we may want to adjust for the total number of neighbors in each
region and employ a row standardized matrix where we divide each wij by the
sum of neighbor weights for region i giving a matrix Wstd, where

wstd,ij = wij

N∑
j=1

wij

.

If region i has four neighbors, each receives weight 1
4 . Note that Wstd need not

be symmetric, and is not symmetric in most situations where the regions are of
different spatial support (e.g., irregularly shaped regions).

Null Distributions Inference for a global index of spatial autocorrelation derives
from the null distribution (i.e., the distribution of the index under the null hypothesis).
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Observed values of the index falling in the tails of this distribution suggest significant
spatial autocorrelation. Thus, identification of the appropriate null distribution is
critical for accurate statistical conclusions.

Cliff and Ord (1973) define distributional properties for global indexes of spa-
tial autocorrelation under a null hypothesis of independent observations under two
different assumptions. The first, termed the normality assumption, assumes that
all observations follow identical and independent Gaussian (normal) distributions.
With the normality assumption, the values observed represent a single observation
from an infinite set of possible realizations. If we were to simulate such a process
(by generating independent Gaussian observations at each location), the sum of
the values is not constrained, hence the normality assumption is often referred to
as normality sampling or free sampling. The second assumption, termed the ran-
domization assumption, assesses the distribution of the autocorrelation index under
random assignment of the values observed to locations (similar to a generalization
of random labeling where we assign N labels to locations rather than just two).
With the randomization assumption, the set of observations remains the same in
each randomization. The values are simply reassigned among the (fixed) locations,
so some texts refer to randomization as nonfree sampling. In both settings, under
the additional assumption that the mean and variance of the data are both constant
across the regions, Cliff and Ord (1973, Chapter 2) prove the global indexes of spa-
tial autocorrelation have asymptotic Gaussian (normal) distributions as the number
of regions (N ) increases. Upton and Fingleton (1985) suggest that the asymptotic
approximations are accurate for N > 20 regions, although Tiefelsdorf and Boots
(1995) indicate that the appropriateness of the asymptotic distribution is a function
of the spatial proximity matrix W as well as the number of regions.

As noted in Section 7.1.3, our null hypothesis of no clustering (or no clusters),
operationalized through the constant risk hypothesis, typically assumes Poisson-
distributed regional counts with heterogeneous expected values (due to varying
population sizes across regions) in addition to the assumed independence between
regional counts. The discrete nature of the data and the relatively small counts
expected violate any assumption of normality, and heterogeneous population sizes
violate any assumption of constant variance among incidence proportions (even
under the constant risk hypothesis). As a result, the normality assumption is inap-
propriate for most public health (and many geographical) applications. In addition,
variation in the expectations and variances of counts (and in the variances of inci-
dence proportions) renders the randomization assumption inappropriate (Besag and
Newell 1991). Results in Walter (1992a,b) suggest that population heterogeneity
can lead to inflated type I error levels, causing us to reject the null hypothesis of
no clustering more often than we should.

Since the standard approximations to the null distribution of global indices of
spatial autocorrelation may be inappropriate for assessing clustering in heteroge-
neously distributed Poisson data, we again turn to Monte Carlo hypothesis tests as
defined in Section 5.2.3 and described by Besag and Newell (1991, p. 146). We
simply calculate the value of the autocorrelation index for each of a number of
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data sets simulated under the constant risk hypothesis and distributional assump-
tions more appropriate to our application, and compare the index observed to the
distribution defined by the simulated values.

In the sections below, we define two common global indexes of spatial auto-
correlation, Moran’s I and Geary’s c, illustrate them on the New York leukemia
data introduced in Chapter 4, and contrast Monte Carlo results with naive inference
based on the normalization and randomization assumptions.

7.4.3 Method: Moran’s I

The first index we consider is Moran’s I (Moran 1950). Moran’s I is widely
used, and variations of it relate to likelihood ratio tests and best invariant tests
for particular models of correlation for normally distributed random variables [cf.
Haining (1990, p. 146) and Tiefelsdorf (2000) for discussion].

Moran’s I follows the basic form [equation (7.3)] for global indexes of spatial
autocorrelation with similarity between regions i and j defined as the product of
the respective difference between Yi and Yj with the overall mean:

simij = (Yi − Y )(Yj − Y )

where Y = ∑N
i=1 Yi/N . In addition, we divide this basic form by the sample vari-

ance observed in the Yi’s, yielding

I =
(

1

s2

)
N∑

i=1

N∑
j=1

wij (Yi − Y)(Yj − Y )

N∑
i=1

N∑
j=1

wij

, (7.8)

where

s2 = 1

N

N∑
i=1

(Yi − Y )2.

Thus, I is a random variable having a distribution defined by the distributions of
and interactions between the Yi . We obtain the value of I observed by inserting
observations into equation (7.8). When neighboring regions tend to have similar
values (i.e., the pattern is clustered), I will be positive. If neighboring regions tend
to have different values (i.e., the pattern is regular), I will be negative. When there
is no correlation between neighboring values, the expected value of I is

E(I) = − 1

N − 1
, (7.9)

approaching zero as N increases. Unlike a traditional correlation coefficient, values
for Moran’s I need not be constrained to the interval [−1, 1]. Usually, |I | < 1,
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unless regions with extreme values of Yi − Y are heavily weighted. The theoretical
upper bound is

|I | ≤ N

∑
i �=j

N∑
j=1

wij




∑
i �=j


 N∑

j=1

wij (Yi − Y )




2

N∑
i=1

(Yi − Y )2




1/2

(cf. Cliff and Ord 1981, p. 21; Haining 1990, p. 234; Bailey and Gatrell 1995,
p. 270).

Moran’s I is very similar to Pearson’s correlation coefficient, a measure of
association between N observed values of random variables X and Y . Recall that
the definition of Pearson’s correlation coefficient is

N∑
i=1

(Xi − X)(Yi − Y )

N√√√√ N∑
i=1

(Xi − X)2

N

√√√√ N∑
i=1

(Yi − Y )2

N

.

Replacing Xi by Yj , comparing Yj to the overall mean Y , and weighting elements
by their proximity as defined by the W matrix yields

N∑
i=1

N∑
j=1

wij

(Yi − Y )(Yj − Y )

N∑
i=1

N∑
j

wij

√√√√ N∑
i=1

(Yi − Y )2

N

√√√√ N∑
j=1

(Yj − Y )2

N

.

The two terms in the denominator are identical; hence, Moran’s I reflects a spatially
weighted form of Pearson’s correlation coefficient.

We can judge the significance of any observed value of I by comparing it to
its expected value of −1/(N − 1), but we must also account for the expected
variability in the I statistic under the appropriate null hypothesis. This is where
the distributional assumptions about the data become very important. With the
randomization assumption, data values are reassigned among the N fixed locations,
providing a randomization distribution against which we can judge our observed
value. If our observed value of I lies in the tails of this distribution, we reject
the assumption of independence among the observations and conclude that there is
significant spatial autocorrelation in the data. If we rely instead on the normality



GLOBAL INDEXES OF SPATIAL AUTOCORRELATION 229

assumption, we compare the z-score z = [I − E(I)]/
√

Var(I ) to a standard normal
distribution where E(I) is as given in equation (7.9) and Var(I ) is given by

Var(I ) = N2S1 − NS2 + 3S2
0

(N − 1)(N + 1)S2
0

−
(

1

N − 1

)2

,

with S0 = ∑N
i=1

∑N
j=1 wij , S1 = 1/2

∑N
i=1

∑N
j=1(wij + wji)

2, and S2 = ∑N
i=1

(wi+ + w+j )
2, with wi+ = ∑N

j=1 wij and w+i = ∑N
j=1 wji (Cliff and Ord 1981,

Chapter 2).
Application of Moran’s I to public health regional count data merits some

thought. Note that in the definition of Moran’s I in equation (7.8), we assess the
spatial similarity of deviations of each regional count Yi with the overall mean
regional count Y . Does spatial variation in deviations from the mean regional
count really assess clustering? Due to the spatial heterogeneity of regional at-risk
population sizes inherent in regional public health data, observed spatial similarity
in regional deviations from the mean regional count may simply be due to variations
in the regional at-risk population size. For example, suppose that regions with large
population sizes tend to occur near each other. Under the constant risk hypothesis,
regions with higher-than (overall)-average population sizes will tend to have higher-
than-average observed counts, elevating the value of Moran’s I . In short, we may
observe high values of Moran’s I [as defined in equation (7.8)] even when the
constant risk hypothesis is satisfied. Any autocorrelation in the data may simply
be due to relationships among the population sizes and not to any spatial pattern
in the disease counts.

We could replace regional disease counts with regional crude incidence pro-
portions (rates), seeking to remove or at least lessen the impact of population
heterogeneity. Consideration of incidence proportions (rates) removes heterogene-
ity in the value expected under the constant risk hypothesis since comparison of
regional incidence proportions to the overall mean incidence proportion makes
more sense than comparison of regional counts to the overall mean count. How-
ever, the variances of the local incidence proportions depend on the regional at-risk
population sizes, which remain heterogeneous. Oden (1995), Waldhör (1996), and
Assunção and Reis (1999) each propose adaptations of Moran’s I for incidence pro-
portions and provide derivations of the associated null distribution in the presence
of heterogeneous regional population sizes.

We could also adjust Moran’s I for regional counts by comparing the observed
count in region i with its expectation under the constant risk hypothesis, rather than
comparing the count to the overall mean count. Walter (1992a) suggests modifying
equation (7.8) as follows:

Icr =

N∑
i=1

N∑
j=1

wij

Yi − rni√
rni

Yj − rnj√
rnj

N∑
i=1

N∑
j=1

wij

, (7.10)



230 SPATIAL CLUSTERING OF HEALTH EVENTS: REGIONAL COUNT DATA

where ni denotes the population size for region i, and r denotes the overall disease
incidence proportion (rate) specified a priori or estimated by the total number of
cases observed divided by the total number of persons at risk. Note that we replace
the scaling factor s2 with the product of the region-specific (Poisson) standard
deviations, to emphasize variation around each regional expectation rather than
around an overall mean count. Equation (7.10) reflects a weighted cross-product
of “observed minus expected” elements bearing resemblance to goodness-of-fit
statistics, a similarity we return to in subsequent sections.

The statistic Icr represents an assessment of residual spatial autocorrelation, or
autocorrelation among deviations of values observed from local expectations based
on some model of disease incidence (here the constant risk assumption serves
as our model). Cliff and Ord (1973, 1981) and Tiefelsdorf (2000) explore the
application of Moran’s I to linear regression residuals (an application we return to
in Chapter 9) and provide the relevant theory and asymptotics for inference based
on identically distributed Gaussian residuals.

Here Icr corresponds to Moran’s I applied to the Pearson residuals from a
generalized linear model (GLM) for Poisson outcomes with local mean equal to
rni (McCullagh and Nelder 1989, p. 37). Jacqmin-Gadda et al. (1997) provide
some relevant theoretical results for a general version of equation (7.10), where we
replace the value expected under the constant risk hypothesis with the expectation
of Yi under any generalized linear model (in practice, typically a logistic or a
Poisson regression model) fit to the data. Jacqmin-Gadda et al. (1997) show that this
more general statistic corresponds to a score test of correlation among GLM model
residuals comparing a null hypothesis of no correlation with a particular correlation
model defined by the user’s choice of weights wij . The converse implies that if
the user has a particular correlation structure of interest, we can define specific
weights making the generalization of Icr a score test for that particular alternative.
Score tests are locally most powerful tests (cf. Cox and Hinkley 1974); that is,
score tests have optimal statistical power (probability of detecting deviations from
the null when an alternative hypothesis holds) for small deviations from the null
toward the alternative of interest. Theoretically, these score tests have asymptotic
(N going to infinity) Gaussian distributions, but to our knowledge, the sensitivity
of the asymptotic distribution of Icr (or generalizations thereof) to the number
of regions (N ), the rarity of the disease (r), or the specification of the spatial
weights (wij ’s) remains largely unexplored [with the exception of the work of
Jacqmin-Gadda et al. (1997)].

To conclude our discussion of Moran’s I , even if we accept the statistic as
a meaningful indicator of spatial similarity, we find that both the normality and
the randomization assumptions are generally inappropriate for testing clustering
with heterogeneous count data or incidence proportions. However, the simplicity
of simulating statistically independent Poisson variables under the constant risk
hypothesis that accounts for the differing at-risk population sizes provides straight-
forward application of Monte Carlo hypothesis tests (Besag and Newell 1991,
p. 146). These allow us to compare our observed value of Moran’s I (or any other
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index of spatial autocorrelation) against more appropriate null distributions, and
we compare and contrast such approaches in the data break below.

DATA BREAK: New York Leukemia Data (cont.) We illustrate the use (and
misuse) of Moran’s I using census tract counts from the New York leukemia data
described previously. For simplicity, we limit attention to the binary connectivity
matrix with elements wij = 1 if regions i and j share any portion of their borders
with one another. (These are often called adjacency weights.)

Table 7.3 gives Moran’s I for both leukemia counts and the local incidence
proportions (crude rates). The expectation of I under the null hypothesis of inde-
pendence is −1/(N − 1) = −1/280 ≈ −0.00357 for all three outcomes (since this
expectation depends only on the number of regions, not the measurements under
consideration).

Even though we argue against their use above, we present p-values associated
with the normality and randomization assumptions for comparison with the p-value
based on a Monte Carlo test using the constant risk hypothesis based on 9999
simulations where we generate independent Poisson counts with mean rni (the
overall incidence proportion times the population size) for each region i. Note that
we simulate counts based on these expectations but apply Moran’s I as defined in
equation (7.8), comparing each regional count to the overall mean regional count.

For counts, Table 7.3 reveals a substantial difference in significance levels based
on the (incorrect) normality and randomization assumptions and that based on con-
stant risk. Figure 7.8 illustrates the source of the difference. The top histogram
shows the distribution of Moran’s I values under randomization, where we reas-
sign observed counts at random among the 281 regions (which makes little sense
with heterogeneous population densities, as noted above). The bottom histogram
illustrates the distribution of Moran’s I under the constant risk hypothesis and
reveals a considerable shift away from the usual null distribution of Moran’s I for
independent, identically distributed (i.i.d.) regional random variables. We see more
positive values of Moran’s I than we would expect for i.i.d. counts. However,
since we simulated the data, we know that our counts are independent and differ

Table 7.3 Moran’s I Values for Incidence Counts and Proportions Observed for
Leukemia (All Types), 1978–1982, for an Eight-County Region of Upstate New Yorka

Outcome I Null Distribution p-Value

Count 0.110 Normality <0.001
Randomization 0.002
Constant risk (Poisson) 0.143

Incidence proportion 0.039 Normality 0.119
Randomization 0.106
Constant risk (Poisson) 0.143

aSignificance values are calculated from the standard Gaussian distribution for the normality assumption
and based on 9999 simulations each under randomization and the constant risk hypotheses (see text).
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FIG. 7.8 Histograms of 9999 values of Moran’s I for upstate New York leukemia incidence counts
simulated under the randomization assumption (top) and the constant risk hypothesis (bottom). The
thick vertical line represents the observed value of Moran’s I for the New York leukemia data.

in distribution only through their associated means and variances. This observation
suggests that the spatial structure in the population sizes (hence expected counts)
induces measurable positive spatial correlation among the observed counts, even
under the constant risk hypothesis. The key to interpretation is our understanding of
the null distributions. Our data are inconsistent with the normality and randomiza-
tion assumptions, but when we think about these assumptions, we wouldn’t expect
our data to satisfy them. On the other hand, the Monte Carlo test of the constant
risk hypothesis acknowledges the impact of the heterogeneous regional popula-
tion sizes and suggests that the data do not contain significant spatial clustering
of deviations of counts from the overall mean count. In effect, we find a Monte
Carlo approximation to the distribution of Moran’s I conditional on the spatial
heterogeneous regional population distribution in order to turn attention away from
the heterogeneous spatial population pattern and toward spatial patterns in local
deviations from this process.

As we noted in the description of Moran’s I , assessing spatial patterns in devi-
ations of regional incidence proportions (rates) from the overall mean regional
incidence proportion may be preferable to comparing regional counts to the overall
mean regional count when we have heterogeneous population sizes. Table 7.3 pro-
vides the p-values associated with the normality and randomization assumptions,
and that obtained from Monte Carlo simulation under the constant risk hypotheses
when applying Moran’s I to the local incidence proportions (rates). Figure 7.9



GLOBAL INDEXES OF SPATIAL AUTOCORRELATION 233

Incidence Proportions: Randomization

Moran’s I value

F
re

qu
en

cy

−0.2 −0.1 0.0 0.1 0.2

Moran’s I value

−0.2 −0.1 0.0 0.1 0.2

0
10

00
20

00

Incidence Proportions: Constant Risk

F
re

qu
en

cy

0
10

00
20

00

FIG. 7.9 Histograms of 9999 values of Moran’s I for upstate New York leukemia incidence pro-
portions (rates) simulated under the randomization assumption (top) and the constant risk hypothesis
(bottom). The thick vertical line represents the observed value of Moran’s I for the New York leukemia
data.

illustrates histograms comparing the null distribution of Moran’s I under the ran-
domization assumption to that obtained with the constant risk simulations. The
histograms do not shift as dramatically for incidence proportions (rates) as they
did for counts since we adjust for heterogeneous population sizes by dividing each
count by the regional population size. However, as noted in Chapter 4, the het-
erogeneities in population size affect the statistical stability (variation) of local
estimates of estimation, and these heterogeneous variances result in a slight shift
and wider tails in the histogram based on constant risk simulations. As we expect,
we observe less difference between the distribution of Moran’s I for incidence pro-
portions (rates) under the constant risk hypothesis and those under the normality
and randomization assumptions than we do between the corresponding distribu-
tions for Moran’s I for counts. Finally, we note that under the Monte Carlo test
we obtain nearly identical inference, regardless of our choice to work with counts
or incidence proportions.

To account more directly for population heterogeneity, we apply Icr to the New
York leukemia data. Recall that Icr summarizes the spatial similarity in the discrep-
ancy of each regional count with its expectation under the constant risk hypothesis.
Monte Carlo tests based on 9999 simulations yield a p-value of 0.001 for the con-
stant risk hypothesis, suggesting significant clustering of standardized deviations
of the regional counts observed from their values expected under constant risk.
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To summarize, the example illustrates several applications of Moran’s I and
variants thereof to data with a heterogeneously distributed population at risk. We
find the normality and randomization assumptions inappropriate in such a situation
and illustrate how naive application may yield misleading results. Monte Carlo
testing based on the constant risk hypothesis suggests little statistical evidence
of significant spatial correlation of deviations of regional counts from the overall
mean regional count, little statistical evidence for significant spatial correlation of
deviations of regional incidence proportions (rates) from the overall mean incidence
proportion (rate), but we do find strong statistical evidence for spatial correlation
of standardized deviations from regional expected counts under the constant risk
hypothesis. How are these results mutually compatible?

Note our application of Moran’s I [equation (7.8)] to counts and incidence pro-
portions assumed both a single reference mean and a single reference variance,
the latter estimated by s2 and assumed homogeneous across the study area. Our
application of Icr [equation (7.10)] allows for heterogeneity in regional variation
from the regional mean, based on an assumed underlying Poisson probability distri-
bution. The specification of regional variations appears to provide additional local
precision in assessing the spatial similarity of statistically unusual counts. The
example illustrates the importance of assessing the particular question addressed
by a statistical test, and the importance of aligning the statistical methodology with
appropriate assumptions based on the structure of the data.

Finally, our analysis suggests evidence of clustering (based on Icr) but does not
identify the locations of any particular clusters driving the pattern observed. We
investigate methods to identify the location of clusters based on components of
Moran’s I in Section 7.5.

7.4.4 Method: Geary’s c

A second popular global index of spatial autocorrelation derives from equation (7.3),
where we measure similarity between observations via

simij = (Yi − Yj )
2.

If regions i and j have similar values (e.g., counts or incidence proportions), simij

will be small. We build a global index of spatial autocorrelation based on a weighted
average of the similarity values observed for all pairs of regions assigning weights
by spatial proximity (i.e., assigning higher weights for closer pairs of observations).
Geary (1954) scales this weighted average by a measure of overall variation around
the mean regional observation Y , yielding a statistic now called Geary’s contiguity
ratio, or Geary’s c, defined as

c = N − 1

2
N∑

i=1

(Yi − Y)2

N∑
i=1

N∑
j=1

wij (Yi − Yj )
2

N∑
i=1

N∑
j=1

wij

. (7.11)
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Geary’s c ranges in value from 0 to 2, with 0 indicating perfect positive spatial
correlation (Yi = Yj for any pair of regions with nonzero wij ), and 2 indicating
perfect negative spatial autocorrelation. Geary’s c does not correspond directly to
a correlation coefficient, but instead, corresponds to the Durbin–Watson d statistic,
used to test for serial autocorrelation in regression and time series.

In contrast to Moran’s I , low values of Geary’s c denote positive autocorrelation
and high values indicate negative correlation. Also, under the null hypothesis of
spatial independence, and assuming constant means and variances, the expected
value of Geary’s c is equal to 1 under either the normality or the randomization
assumptions. Again, these assumptions (and the assumptions of constant means and
variances across regions) are often inappropriate in the analysis of regional health
data with heterogeneous population sizes, and we contrast these with a Monte Carlo
implementation based on the constant risk hypothesis in the data break below.

We can also adjust Geary’s c for counts in a manner similar to the modification
of Moran’s I denoted Icr and defined in equation (7.10). The key is to replace
each regional count Yi by a standardized value (thereby adjusting values Yi and
Yj to have comparable variance) and to remove the overall measure of variation
around the mean regional count. We leave precise specification and implementation
of such an adjustment as an exercise.

DATA BREAK: New York Leukemia Data (cont.) Table 7.4 provides the
observed value of Geary’s c for the New York leukemia regional counts and inci-
dence proportions (rates). Due to the nature of Geary’s c, low values denote positive
autocorrelation and we perform a lower-tail test to test against an alternative of
positive spatial autocorrelation. We report lower-tail probabilities as p-values (the
probability, under the null hypothesis, of observing a value of the test statistic less
than that computed from the observed data).

Table 7.4 Geary’s c Values for Observed Incidence
Counts, Population Sizes (1980 Census), and Incidence
Proportions for Leukemia (All Types) 1978–1982 for an
Eight-County Region of Upstate New Yorka

Null
Outcome c Distribution p-Value

Count 0.874 Normality 0.003
Randomization 0.006
Constant risk 0.176

Incidence 0.925 Normality 0.054
proportion Randomization 0.289

Constant risk 0.129

aSignificance values calculated from the Gaussian distribution for the
normality assumption and based on 9999 simulations each for the
randomization assumption and the constant risk hypotheses (see text).
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As with Moran’s I , we present p-values based on naive (and incorrect) application
of Geary’s c based on the normality and randomization assumptions and contrast
this with Monte Carlo tests based on the constant risk hypothesis. Applying Geary’s
c to the count data, we find that both the normality and randomization null hypothe-
ses report strong statistical evidence for positive spatial correlation, but the Monte
Carlo constant risk test moderates our enthusiasm for such a conclusion. Applying
the statistic to the incidence proportions, we find that p-values based on normaliza-
tion and on randomization are quite different from each other. This suggests that
the incidence proportions observed appear to exhibit positive spatial autocorrela-
tion compared to i.i.d./Gaussian (normal) random variables but not when compared
to random allocation of the observed incidence proportions among the 281 census
tracts. The difference here may be due to the spatially heterogeneous distribution of
the population at risk.

As above, we note that neither the normality nor the randomization assumptions
are appropriate for determining the null distribution, and we find the Monte Carlo
tests based on the constant risk hypothesis to provide fairly consistent inference
for both counts and incidence proportions. In short, we find suggestive but not sta-
tistically significant evidence of greater positive spatial autocorrelation than would
be expected under the constant risk hypothesis given the spatial distribution of the
population at risk.

Finally, we note that Moran’s I , Geary’s c, and all other global indexes of spatial
autocorrelation (typically, general cross product statistics) are tests of clustering and
provide a single p-value summarizing spatial autocorrelation observed across all
regions in the study area. To use tests of spatial autocorrelation to detect clusters,
we next consider local indicators of spatial autocorrelation.

7.5 LOCAL INDICATORS OF SPATIAL ASSOCIATION

As their name implies, global indicators of spatial association assess patterns of
spatial similarity summarized (often through weighted averages) over the entire
study area. When such indexes indicate positive spatial autocorrelation, this auto-
correlation may arise from a number of sources. If the index compares regional
counts or incidence proportions to an overall mean regional count or proportion,
a spatial trend in expectation can result in index values suggesting spatial sim-
ilarity. In addition, and more to our interest, local pockets of mutually similar
deviations from the overall mean regional count or proportion may drive the value
of the index. Such collections reflect our intuitive definition of disease clusters.
As noted in our motivation and description of the adjusted Icr statistic defined in
equation (7.10), removing trend and spatial heterogeneities in regional variances
can reduce the influence of overall trends and variance heterogeneities on the index,
thereby making the adjusted index more responsive to clusters than to trends.

Even adjusted for trends and variance heterogeneities, global indexes remain
global and only detect spatial associations averaged over the entire study area.
Therefore, such indexes may have little statistical power to detect a single cluster
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within a study area otherwise following the null hypothesis. In addition, a global
index can suggestion clustering but cannot identify individual clusters. These issues
led Getis and Ord (1992), Anselin (1995), and Ord and Getis (1995) to consider
local forms of the global indexes, which Anselin (1995) termed local indicators of
spatial association (LISAs).

7.5.1 Goals

Anselin (1995) outlines the goals and structure of the class of LISAs. The main
purpose of such indicators is to provide a local measure of similarity between each
region’s associated value (in our case, a count or an incidence proportion) and
those of nearby regions. We can map each region’s LISA value to provide insight
into the location of regions with comparatively high or low local association with
neighboring values.

Anselin (1995) also formally links LISAs with corresponding global indicators
by requiring that the LISA values from each region sum to a global indicator of
spatial association (up to a multiplicative constant). This connection defines LISAs
as components of a global index, and provides a means for partitioning a test of
clustering (the global index) into a set of tests to detect clusters (the LISAs). As
a result, most LISAs are defined as local versions of well-known global indexes.
One of the most popular LISAs is a local version of Moran’s I , which we consider
in some detail below.

7.5.2 Assumptions and Typical Output

Anselin (1995), Ord and Getis (1995), and Getis and Ord (1996) provide detailed
overviews of LISAs and their application, which we review briefly here. Getis and
Ord (1996) trace the basic idea to Mantel (1967)’s derivation of the general cross-
product statistic defined in Section 7.4.2, and give the basic form of the LISA for
region i as

N∑
j=1

wij simij .

Although not required, many applications use row-standardized weights, so the
weights wij , j = 1, . . . , N , sum to 1, and there is some comparability between
regions with different numbers of neighbors. This form represents the ith summand
in the numerator of the basic structure of a global indicator of spatial association
(the denominator is the sum of the weights and is a multiplicative constant). Hence,
the sum of such local indicators will equal (up to a multiplicative constant) a global
indicator, meeting the requirement of Anselin (1995). As defined in Section 7.4.2,
simij represents a measure of similarity between regional observations and in our
case is a function of the regional count or incidence proportion (rate).

As noted above, we consider the proximity weights to be fixed quantities and the
similarity measurements simij to be functions of the observations at locations i and
j . Since we consider these observations to represent observed values of random
variables, the distribution of these variables defines the distribution of the simij
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values, which in turn define the distribution of each local indicator. The distribution
of each LISA allows probability statements such as the probability of any LISA
exceeding a specified critical value.

The null hypotheses for LISAs mirror those for general indicators of spatial asso-
ciation, namely that the Yi represent independent observations. Most analytic results
for LISAs involve independent, identically distributed (i.i.d.) Gaussian (normal)
regional random variables, but even in this case analytic solutions are complicated
(cf. Tiefelsdorf and Boots 1995, 1996; Tiefelsdorf 2000). Anselin (1995) applies
a randomization assumption, which applies most accurately to i.i.d. data as noted
in Section 7.4. In our data break below we repeat our pattern in Section 7.4 and
contrast Monte Carlo tests based on the randomization assumption and the (in our
setting) more appropriate constant risk hypothesis.

The typical output of a LISA analysis involves the values of the LISAs them-
selves, typically mapped to indicate areas with high values, suggesting stronger
local correlation than others. We note that high LISA values may be due to aggre-
gations of high counts or proportions, aggregations of low counts or proportions,
or aggregations of moderate counts or proportions. As a result, high values of a
LISA suggest clusters of similar (but not necessarily large) counts or proportions
across several regions, and low values of a LISA suggest an outlying cluster in a
single region (different from most or all of its neighbors).

Other typical output includes maps of p-values associated with the probability
of exceeding the observed value of each regional LISA, under a given set of
assumptions that determines the distribution of the LISA under the null hypothesis.
Calculations of p-values or any other probability statements are complicated by
the following four issues [compiled from similar lists in Getis and Ord (1996) and
Tiefelsdorf (2000)]:

1. The analytic distributional properties of LISAs remain largely unknown, with
the recent exception of the work of Tiefelsdorf and colleagues (cf. Tiefels-
dorf and Boots 1995, 1996; Tiefelsdorf 1998, 2000, 2002), who provide
approaches for obtaining the exact distribution of local (and global) Moran’s
I under assumed Gaussian (normal) distributions in all regions.

2. The multiple testing problem of conducting a separate statistical test for each
region.

3. The correlation between neighboring LISAs, which share observed counts
or incidence proportions (rendering the typical Bonferroni adjustment for
multiple tests very conservative).

4. The problem of conducting many tests, each based on a relatively small
sample size (resulting in spurious significant results within the type I error
rate of each test), and relatively unstable tests on very discrete outcomes
(resulting in the observable type I error rates varying between regions).

We use Monte Carlo testing in our development to address the distribution of
LISAs based on heterogeneous non-Gaussian random variables, thereby address-
ing issue 1, but the other issues remain in most applications of LISAs to public
health data.



LOCAL INDICATORS OF SPATIAL ASSOCIATION 239

As a final general consideration, Anselin (1995), Ord and Getis (1995), and
Tiefelsdorf (2000, pp. 133–134) provide derivations of the distribution of the local
indicator for each region conditional on a known or estimated background spatial
trend (or more generally, a known or estimated spatial process). As discussed
in Section 7.4.3, by conditioning on known heterogeneities in either the mean
(trend) or variance (e.g., due to heterogeneous population sizes in the constant risk
hypothesis), local deviations from local expectations (e.g., clusters) drive the value
of the index more than deviations from a the overall (global) regional mean value.
See Anselin (1995), Ord and Getis (1995), and Tiefelsdorf (2000, pp. 133–134) for
further discussion of the conditional distribution of local Moran’s I and analytic
results for regional values following Gaussian (normal) distributions.

7.5.3 Method: Local Moran’s I

Probably the most widely used family of LISAs is the local version of Moran’s I ,
defined for the ith region as

Ii =
N∑

j=1

wij simij

=
N∑

j=1

wij (Yi − Y )(Yj − Y )

= (Yi − Y )

N∑
j=1

wij (Yj − Y).

Most authors (e.g., Anselin 1995; Lee and Wong 2001) divide each deviation from
the overall mean by the overall variance of the Yi values, yielding

Ii,std = Yi − Y

s

N∑
j=1

wij

Yj − Y

s
, (7.12)

where s represents the square root of the sample variance of the Yi’s, and the “std”
subscript represents the use of the standardized difference of each regional obser-
vation from the overall regional mean. Tiefelsdorf (2000, pp. 134–136) presents an
application of Ii,std (assuming that each Yi follows a Gaussian (normal) distribu-
tion) to health data in an analysis of regional patterns of bladder cancer incidence
proportions among men and women in the former German Democratic Republic.

With heterogeneous population sizes yielding local Poisson distributions with
heterogeneous expected counts and variances under the constant risk hypothesis,
we can follow equation (7.10) and define an adjusted local Moran’s I statistic for
the constant risk hypothesis:

Ii,cr = Yi − rni√
rni

N∑
j=1

wij

Yj − rnj√
rnj

, (7.13)
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where, as before, r denotes the assumed constant risk and ni denotes the population
size in region i.

DATA BREAK: New York Leukemia Data (cont.) To illustrate the use of
LISAs, we apply local Moran’s I , Istd, and our modification for the constant risk
hypothesis Icr to the New York leukemia data using row-standardized adjacency
weights. Figure 7.10 provides choropleth maps of local values for these three
LISAs. We divide the 281 census tracts into quintiles of Icr, then use the same
intervals for all three maps, using darker shades of gray to indicate increasing pos-
itive values, and more densely striped areas to indicate increasing (absolute) values
of negative correlation. The maps of Istd and Icr show some similarities, with the
highest fifth of values concentrated primarily near Binghamton in the south, Cort-
land in the center, and Syracuse in the north-central sections. However, they differ
with respect to the extent of these concentrated values. The values of Istd for the

I(std) Counts

I(CR) Counts

Quintiles of local I

−1.881 to −0.275
−0.275 to −0.025
−0.025 to 0.211
0.211 to 0.566
0.566 to 6.608

I(CR) Proportions

FIG. 7.10 Maps of Istd for counts (top left) and incidence proportions (top right), and a map of Icr
for counts (bottom left) based on the New York leukemia data.
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I(std) Counts p−value

I(CR) Counts p−value

0 - 0.01

0.01 - 0.05

0.05 - 1

I(CR) Proportions p−value

FIG. 7.11 Maps of p-values for Istd based on counts (top left) and incidence proportions (top right),
and a map of p-values for Icr based on counts (bottom left). Inset (bottom right) shows p-values for
Icr within tracts in the area of Binghamton, New York.

incidence proportions (rates) are less extreme than those for counts as evidenced by
fewer tracts in the highest and lowest quintiles of Icr; however, the highest values
occur in similar areas.

Figure 7.11 presents the p-values based on 999 simulations under the constant
risk hypothesis. We make no adjustment for multiple testing and simply indicate
those tracts where the associated LISA value results in a p-value less than 0.05 or
less than 0.01. As in Figure 7.10, the LISA values for incidence proportions are
less extreme than those for counts. The statistics Istd and Icr highlight similar areas
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(again, Binghamton, Cortland, and Syracuse) with some outlying rural areas also
indicated. The figures illustrate little qualitative difference between conclusions
drawn for Istd and Icr in this data set, when we base p-values for both on Monte
Carlo tests under the constant risk hypothesis. Whether this similarity holds more
broadly remains to be seen.

7.6 GOODNESS-OF-FIT STATISTICS

In the preceding two sections, we found that indexes of spatial association based on
spatial versions of familiar correlation coefficients often involve weighted averages
of “observed minus expected” terms. In equations (7.10) and (7.13) we used this
format to adjust the statistics to allow for heterogeneities in trend (expected values)
and variances (due to varying population sizes) to better match the constant risk
hypothesis. Many other tests of clustering and/or tests to detect clusters involve
similar tests but are not necessarily derived as indexes of autocorrelation. We
consider goodness-of-fit statistics and spatially weighted versions of such statistics
here, illustrating a certain similarity with indexes of autocorrelation when applied
to assess disease clustering.

7.6.1 Goals

The goal of any goodness-of-fit statistic is to summarize deviation between observed
data and their expected values under some probabilistic model. The model may be
as simple as comparing all observations to a constant value (usually estimated
by the sample mean), or may involve more complex modeling (e.g., a heteroge-
neous Poisson process with an estimated intensity function, depending on covariate
values).

One of the (if not the) original goodness-of-fit test is Pearson’s χ2 statistic
defined for a 2 × 2 contingency table as

χ2 =
N∑

i=1

(Oi − Ei)
2/Ei, (7.14)

where N is the number of cells, Oi corresponds to the value observed in cell i of
the contingency table, and Ei is the value expected in cell i based on independence
between rows and columns. In traditional contingency table analysis, the Ei are
based on binomially (or multinomially) distributed cell counts, and a test of inde-
pendence between rows and columns is based on expected relationships among the
Ei under this null hypothesis.

We can heuristically apply these ideas to the spatial case by thinking of regional
data from irregular regions as a large contingency table (here, map) of cell counts,
not necessarily constrained to be in rows and columns. In our setting, we replace
the null hypothesis of independence between rows and columns with the constant
risk hypothesis based on Poisson-distributed counts. This heuristic development
requires a few modifications for use with a single set of spatial data, but the basic
structure and purpose of the test statistic remains the same.
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7.6.2 Assumptions and Typical Output

In general, Pearson’s χ2 statistic measures any deviation from expectation and
takes no account of spatial patterns among these deviations; that is, if we were
to randomly reassign the counts or rates to different regions, the value of χ2

would remain the same. Therefore, the use of goodness-of-fit statistics to assess
spatial pattern often incorporates some sort of spatial weighting to deviations from
expectation, thereby limiting attention of the test to alternatives consistent with
some sort of spatial pattern. In other words, the characteristic making a goodness-of-
fit test appropriate for assessing spatial clustering is the consideration of particular
alternative hypotheses, specifically those suggesting a spatial pattern in deviations
from expectation.

Most goodness-of-fit tests assume statistically independent regional counts under
both the null and alternative hypotheses, thereby distinguishing them from indexes
of spatial association that assume independence under the null hypothesis, but not
under the alternative. That is, usual applications of goodness-of-fit tests typically
quantify spatial dependence in a different way than do indexes of spatial association.
When applying goodness-of-fit tests as that tests of clustering or to detect clusters,
we typically maintain the assumption of regional independence under the null
hypothesis of interest (e.g., the constant risk hypothesis), and often under the alter-
native hypotheses defining clusters or clustering as well. Although we focus discus-
sion below on independent counts under the constant risk hypothesis, this need not
apply strictly, and Waller et al. (2003) illustrate the use of Monte Carlo tests based
on Pearson’s χ2 statistic for a null hypothesis containing positive spatial correlation.

Under a null hypothesis with independent counts, inference for goodness-of-fit
tests typically draws from the distribution of a sum of independent, standardized
regional observations. Pearson’s χ2 statistic is an example of this approach. We
subtract the expectation (under the null hypothesis) and divide by the standard
deviation to create a sum of i.i.d. random variables. In the case of Pearson’s χ2

statistic, this leads to an asymptotic χ2 distribution with N − 1 degrees of freedom,
but modifications of the statistic may complicate distributional results. Monte Carlo
tests of the constant risk hypothesis are straightforward and we continue our use
of such tests in the development below.

The typical output of a goodness-of-fit test is a single p-value summarizing
the evidence for deviation of observed values from those expected under the null
hypothesis, summarized across all regions. As such, these typically provide general
tests of clustering, although we also present some focused tests among the methods
outlined below.

7.6.3 Method: Pearson’s χ2

To start our discussion of goodness-of-fit statistics, we consider whether Pearson’s
χ2 statistic as defined in equation (7.14) provides a reasonable test of clustering.
Rogerson (1999) observes that Pearson’s statistic seeks to detect any sort of deviation
from the null hypothesis and, as a result, makes no distinction between nonspatial
and spatially structured collections of deviations. To repeat a simple example from
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Section 7.1.3, suppose that only three regions in a study area have large deviations
of observed from expected values. The value of Pearson’s χ2 statistic is unchanged
whether these three regions are contiguous (perhaps suggesting a small cluster) or
widely separated.

Rogerson (1999) also notes that indexes of spatial association (which do assess
whether similar deviations occur near each other) may not provide a completely
satisfactory means of detecting clustering since most indexes of spatial association
only compare deviations between pairs of regions and do not assess the magnitude
of lack of fit within each region (since typically, the spatial weight wii = 0). Thus,
as we saw in Section 7.4, violations in model assumptions can affect the validity
of spatial autocorrelation statistics, but these assumptions often go unchecked in the
analysis.

As a compromise between these extremes, Rogerson (1999) explores a spatial
χ2 statistic building on an earlier adjustment to Moran’s I for heterogeneous pop-
ulation density proposed by Oden (1995), and an index of clustering originally
proposed for temporal data by Tango (1984), who later extended the index to the
spatial setting (Tango 1995). Based on Tango’s development of the basic statistic,
its generalization to heterogeneous time intervals, and its extension to a spatial
setting, we refer to the test as Tango’s index.

7.6.4 Method: Tango’s Index

Tango (1984) introduces an index of disease clustering in time using interval count
data, based on equal-length time intervals subdividing the entire study period with
event counts observed for each interval. He later generalizes the index for appli-
cations involving unequal time intervals and/or interval-specific covariates (Tango
1990b). Finally, and most directly applicable to our interest, Tango (1995) recasts
the generalized statistic in a spatial setting. We present this version of Tango’s
index here.

First, rather than the set of regional counts Y1, . . . , YN , we consider the set of
regional proportions, (

Y1

Y+
, . . . ,

YN

Y+

)
,

where Y+ = ∑N
i=1 Yi , the total number of observed cases. Note that the elements

of this set of values reflect the proportion of cases in each region, not the incidence
proportion (rate) in each region. The former divides by the total number of cases,
while the latter divides by the population size of the corresponding region.

Next, we obtain the vector of expected proportions under the constant risk null
hypothesis, namely the vector of population proportions

(
n1

n+
, . . . ,

nN

n+

)
,

where n+ = ∑N
i=1 ni denotes the total population at risk.
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Note that Tango’s index assumes that both Y+ and n+ are known. When we
condition a set of independent Poisson counts on their total, the distribution of
the set of counts follows a multinomial distribution. Thus, under the constant risk
hypothesis, the population proportions provide the expected cell probabilities for
a multinomial distribution. Tango’s index compares the case proportions observed
to those expected under the constant risk null hypothesis.

We define Tango’s index as

Tti =
N∑

i=1

N∑
j=1

w∗
ij

(
Yi

Y+
− ni

n+

) (
Yj

Y+
− nj

n+

)
, (7.15)

where the w∗
ij denote spatially defined weights providing a measurement of the

“closeness” between regions i and j . Tango (1995) considers spatial weights, w∗
ij ,

defined by the value of a monotonically decreasing function of the distance dij

between the centroids of regions i and j . The choices of dij and w∗
ij define the

clustering alternatives of interest. Tango (1995) suggests

w∗
ij = exp

(−dij /κ
)

as a good starting point, where κ represents a tuning parameter that increases
sensitivity of the test to large or small clusters, corresponding to large or small
values of κ , respectively.

We note that Tango’s index is similar in spirit to a weighted version of the
Pearson’s χ2 goodness-of-fit test in the sense that the index is a sum of weighted
“observed minus expected” elements. Tango’s index also closely resembles the
global indices of spatial association defined in Section 7.4; in particular, it appears
to fit the basic form of such indexes defined in equation (7.3). However, in Tango’s
index, we typically assign a nonzero value to w∗

ii , for i = 1, . . . , N ; therefore,
Tango’s index summarizes both the squared deviation of the case proportions
observed to those expected under the null hypothesis and the cross-product terms
defining a measure of spatial similarity (simij ) in equation (7.3). Recall that we
often assume that wii = 0 for i = 1, . . . , N in global indexes of spatial association,
giving the motivation to distinguish (in notation) the weights w∗

ij in equation (7.15)
from the weights wij in equation (7.3). By its structure, Tango’s index provides
a compromise between a goodness-of-fit test ignoring spatial pattern and a global
index of spatial association ignoring local fit (Rogerson 1999).

To see this feature of Tango’s index more clearly, Rogerson (1999) splits the
right-hand side of equation (7.15) into two pieces:

Tti =
N∑

i=1

N∑
j=1

w∗
ij

(
Yi

Y+
− ni

n+

) (
Yj

Y+
− nj

n+

)

=
N∑

i=1

w∗
ii

(
Yi

Y+
− ni

n+

)2

+
N∑

i=1

∑
j �=i

w∗
ij

(
Yi

Y+
− ni

n+

) (
Yj

Y+
− nj

n+

)
, (7.16)
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where often w∗
ii = 1 for i = 1, . . . , N . Rogerson (1999) thereby clearly represents

Tango’s index as the sum of two terms, the first directly measuring goodness of fit
in each region, the second measuring spatial similarity between regions.

Rogerson’s representation of Tango’s index as the sum of a goodness-of-fit
component and a spatial autocorrelation component provides important insight into
the sorts of deviation from the null hypothesis likely to set off the clustering
“alarm.” Tango’s index may be large (indicating clustering) due to either a lack
of fit within regions (poor fit), spatial similarity in deviations from expectation
(spatial autocorrelation) between regions, or both. In the extreme case, if we obtain a
significant value of Tango’s index comprised entirely of large goodness-of-fit terms,
we conclude that the constant risk hypothesis does not hold. On the other hand, if
we obtain a significant value of Tango’s index comprised entirely of large spatial
autocorrelation terms, we conclude that proportions associated with regions that are
close together are more alike than those farther apart. Both of these conclusions
may be interpreted as evidence of clustering.

Rogerson’s summation representation of Tango’s index also provides insight
into the impact of the choice of spatial weights (the w∗

ij ) on the performance of the
statistic. For instance, suppose that we choose weights based on a particular distance
threshold, d∗

ij (e.g., we define the neighbors of region i to be any region j with its
centroid within a prespecified distance, say d∗

ij , of the centroid of region i, for all
regions i). If we choose our threshold distance d∗

ij to be smaller than the minimum
intercentroid distance in our data set, we remove the spatial autocorrelation term
from equation (7.16) and Tango’s index becomes a goodness-of-fit test. This feature
becomes particularly important for distance-based weights (e.g., distance threshold
or distance decay) in sets of regions of varying geographic support (e.g., varying
geographic sizes), as we illustrate in the data break below.

In his discussion of Tango’s index, Rogerson (1999) suggests defining w∗
ij by

exp(−dij /κ)√
(ni/n+)(nj /n+)

(7.17)

so the first (goodness of fit) term in equation (7.16) more closely matches Pear-
son’s χ2 (each term now represents the ratio between the squared deviation of
the proportion observed from the proportion expected, divided by the proportion
expected), and the second term (a global cross-product index of spatial association)
more closely resembles Moran’s I with

simij =
(

Yi

Y+
− ni

n+

) (
Yj

Y+
− nj

n+

)
.

Rogerson’s weights also link Tango’s index with a statistic proposed by Oden
(1995), a connection meriting further discussion. Oden (1995) proposes an adjust-
ment to Moran’s I for application to counts, proportions, or rates based on regions
with heterogeneous population sizes. Using Rogerson’s weights with Tango’s index
in equation (7.16) provides the dominant term in Oden’s population-adjusted statis-
tic. Oden notes that equation (7.16) corresponds to a spatial version of Pearson’s
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χ2 statistic for testing a null hypothesis of homogeneous proportions, and notes
that such a statistic can detect clustering within regions via local lack of fit as well
as clustering between regions via the index of spatial association. Oden (1995)
notes that spatial variability in the proportions (which probably contributes to sig-
nificant lack of fit) is viewed as evidence of clustering, since this spatial variation
suggests within-region disease aggregations even if the rates have no spatial pat-
tern. However, since Moran’s I does not consider local lack of fit, Assunção and
Reis (1999) argue that direct comparisons between Oden’s adjustment (and, by
extension, Tango’s index) and Moran’s I are inappropriate since the null hypothe-
ses associated with the various statistics differ in their inclusion (for Oden and
Tango) or exclusion (for Moran) of local lack of fit as evidence against the null
hypothesis of “no clustering.” Assunção and Reis (1999) make an important point
regarding comparison between tests of clustering, echoing the central issue raised
in Sections 6.2 and 7.1: What question do we wish to address with a statistical test
of clustering? Oden (1995) and Rogerson (1999) argue for a combination of local
lack of fit and spatial autocorrelation since disease clustering may result in either
or both aspects, depending on the spatial scale of clustering and the spatial scale
of data aggregation.

The next step in applying Tango’s index is to determine its distribution under the
constant risk hypothesis. Whittemore and Keller (1986), Whittemore et al. (1987),
and Rayens and Kryscio (1993) explore the distributional properties of Tango’s
index applied to temporal clustering. These authors show that the index is a member
of the class of U statistics, a family of nonparametric tests, including the Wilcoxon
rank-sum test (Cox and Hinkley 1974, pp. 198–202). The theory of U statistics
suggests an asymptotic Gaussian (normal) distribution for Tango’s index. However,
Tango (1990a) and Rayens and Kryscio (1993) note that this asymptotic derivation
applies most directly under increasing values of the number of time intervals,
and the convergence with respect to increasing values of Y+ (the total number of
observed cases) is often too slow to be useful in disease-clustering investigations. In
our spatial setting, this corresponds to asymptotics based on increasing the number
of geographic regions rather than being based on increasing numbers of cases
observed. The second setting may be more natural in the clustering application,
where we observe cases over a longer period of time (Y+ increasing) rather than
over a greater number of regions (N increasing).

Two options allow us to improve on the asymptotic Gaussian distribution for typ-
ical clustering applications. First, we could apply a Monte Carlo testing approach,
where we simulate regional counts conditional on the fixed total Y+ (i.e., each
simulation assigns a total of Y+ cases to the regions where the probability of each
case falling in region i is ni/n+ for i = 1, . . . , N ). Second, Tango (1990a) derives
an approximate chi-square distribution for his index, based on adjustments for the
substantial amount of skewness in the distribution of Tti. Tango (1990a) shows this
chi-square approximation to be adequate for sample sizes with as few as one case
expected per region. Although at first glance the notation may appear somewhat
dense, any statistical package allowing basic matrix operations (e.g., transpose and
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trace) allows quick calculation of the approximation, which performs well in prac-
tice for a variety of sample-size configurations with respect to both number of cases
and number of regions (Rayens and Kryscio 1993).

We apply the chi-square approximation as follows. Let W ∗ denote the matrix
of weights w∗

ij for i, j = 1, . . . , N , and p the vector of expected proportions:

p =
(

n1

n+
, . . . ,

nN

n+

)
.

Next, consider the standardized statistic

T ∗
ti = Tti − E(Tti)√

Var(Tti)

with expectation and variance (under the constant risk hypothesis) given by

E(Tti) = 1

Y+
tr(W ∗V p)

and

Var(Tti) = 2

Y+
tr[(W ∗V p)2],

where
V p = diag(p) − pp′

is the asymptotic variance of r (Agresti 1990, pp. 423–424), diag(p) denotes a
matrix with the elements of p along the diagonal and zeros elsewhere, tr(·) denotes
the trace function (the sum of the diagonal elements of a matrix), and p′ denotes
the transpose of vector p. Tango’s chi-square approximation (Tango 1990a, 1995)
requires calculation of the skewness, sk(Tti), of Tti via

sk(Tti) = 2
√

2
tr[(W ∗V p)3]

(tr[(W ∗V p)2])1.5
.

Tango (1995) derives the asymptotic chi-square distribution

(dfti) + T ∗
ti
√

2(dfti)
a∼ χ2

dfti
, (7.18)

where dfti = 8/[sk(Tti)]
2 denotes the degrees of freedom adjusted for skewness.

In summary, Tango’s index offers a straightforward general-purpose test of spa-
tial clustering which incorporates aspects of tests of goodness of fit and general
indexes of spatial association. Furthermore, Tango’s index allows us to “tune” the
test to particular types of clustering (e.g., single clusters at prespecified places,
or focused clusters around putative sources of increased risk) through our choice
of the distance measure dij and the spatial weights w∗

ij , as illustrated in the data
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break below. Tango’s index can also be modified to provide local indexes similar
to the LISAs discussed in Section 7.5 [see Rogerson (1999) and the exercises at
the end of the chapter).

DATA BREAK: New York Leukemia Data (cont.) We illustrate the appli-
cation of Tango’s index using the New York leukemia data. Table 7.5 provides
the value of Tango’s index Tti observed and its standardized value T ∗

ti based on
Tango’s weights w∗

ij = exp(−dij /κ) for various values of κ . We present p-values
based on Tango’s chi-square approximation and Monte Carlo p-values based on
9999 simulations under the constant risk hypothesis. We observe fairly close agree-
ment between both sets of p-values, and note a rather dramatic decrease in p-values
as we increase κ .

What happens as we increase κ? First, note that w∗
ii = 1 for all values of κ , so

that the goodness-of-fit component of Tango’s index Tti remains constant across
values of κ . Hence, the difference between values of Tango’s index for differ-
ent values of κ derives entirely from differences in the spatial autocorrelation
component. Changing the weight matrix W ∗ changes the skewness of Tti, which
in turn reduces the degrees of freedom dfti dramatically for Tango’s chi-square
approximation, resulting in much smaller p-values.

To see the impact of the choice of weights on the goodness-of-fit and spatial
autocorrelation components of Tti [defined in equation (7.16)], Figure 7.12 plots the
two components against each other for the data observed and for 999 simulations
under the constant risk hypothesis. We note that the two components of Tango’s
index are not necessarily independent (i.e., they are not orthogonal contrasts; cf.
Best and Rayner 1991), so plotting each pair of components provides insight into
their joint distribution. The plots indicate an increasing impact of the spatial auto-
correlation term as we increase κ but also reveal that the statistic observed suggests
clustering both within and between tracts through evidence for both poor fit and
spatial autocorrelation.

To press the point further, for κ = 1, w∗
ij is appreciably greater than zero only

for very close pairs of tracts, effectively limiting consideration of spatial association

Table 7.5 Tango’s Index for the New York Leukemia Data Using Weights w∗
ij

= exp

(−dij /κ), Where dij Represents the Distance between Centroids of Tracts i and ja

Tango’s Index, Standardized Chi-Square Monte Carlo
κ Tti Statistic (T ∗

ti ) dfti p-Value p-Value

1 0.0029 36.40 29.27 0.171 0.181
10 0.0056 20.84 5.56 0.001 0.003
15 0.0062 20.38 4.79 0.001 0.002
20 0.0065 20.09 4.38 0.001 0.001

aWe calculate the chi-square p-value using Tango’s adjusted chi-square approximation (see text) and
the Monte Carlo p-value based on 9999 simulations under the constant risk hypothesis with a fixed
total number of cases.
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FIG. 7.12 Plots of the goodness of fit (GOF) versus the spatial autocorrelation (SA) terms for Tango’s
index, based on equation (7.16). The “×” denotes the components of the value of Tango’s index observed
for the New York leukemia data, based on weights w∗

ij
= exp(−κ/dij ) for κ = 1, 10, 15, and 20. The

open circles represent GOF and SA components of Tango’s index based on 999 simulations under the
constant risk hypothesis (see text).

to tracts within Syracuse in the north and Binghamton in the south. For κ = 10 all
tracts assign weight greater than 0.05 to at least one other tract, and we see a jump
in the value of Tti, coupled with increased skewness leading to the reduction in the
significance value observed.

Table 7.6 gives the observed test statistic values and associated significance
levels for Tango’s index applied to the New York leukemia data using Rogerson’s
weights, i.e.,

w∗
ij = exp(−dij /κ)√

pipj

.

The results of Tables 7.5 and 7.6 are qualitatively similar. Since the proportion of
the overall population residing in each of the 281 census tracts is relatively small,
Rogerson’s weights are much larger in magnitude than Tango’s weights (although
the standardization within Tango’s index somewhat mitigates this discrepancy).
However, we do note another difference in the two weighting schemes. Tango’s
weights will assign the same value of w∗

ij to any pairs of tracts separated by
the same distance dij . In contrast, Rogerson’s weights adjust the distance-based
component, exp(−dij /κ), by the proportion of the population in tracts i and j .
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Table 7.6 Tango’s Index for the New York Leukemia Data Using Weights
w∗

ij
= exp(−dij /κ)

/√
pipj

a

Tango’s Index Standardized
(Rogerson’s Statistic Chi-Square Monte Carlo

κ Weights) Tti T ∗
ti dfti p-Value p-Value

1 0.821 33.94 25.95 0.135 0.147
10 1.460 17.46 4.65 0.003 0.006
15 1.533 16.64 4.23 0.003 0.006
20 1.576 16.25 4.00 0.003 0.006

a dij represents the distance between centroids of tracts i and j , and pi denotes the proportion of
the study area population residing in tract i. The degrees of freedom dfti reflect an adjustment for
the skewness of the distribution of Tti. We calculate the chi-square p-value using Tango’s adjusted
chi-square approximation (see text) and the Monte Carlo p-value, based on 9999 simulations under the
constant risk hypothesis with a fixed total number of cases.

As a result, two different pairs of tracts, each separated by distance dij , may
receive different weights w∗

ij if the population proportions are different within the
respective tracts.

Figure 7.13 indicates the goodness-of-fit and spatial autocorrelation components
of Tango’s index, based on Rogerson’s weights. As in Figure 7.12, we observe the
impact of the changing weights on the relative impact of the two components.
Figure 7.13 also reveals that Rogerson’s weights tend to result in a few very high
lack-of-fit values under the constant risk hypothesis, due primarily to a few regions
with very small population sizes (found in the city of Syracuse in these data). As a
result, the joint distribution of the two components of Tango’s index is somewhat
more complicated.

For both sets of weights, Tango’s index suggests evidence of clustering in the
data. Figures 7.12 and 7.13 suggest somewhat stronger evidence of clustering across
tracts than within tracts, due to the goodness-of-fit and spatial autocorrelation com-
ponents of Tango’s index.

7.6.5 Method: Focused Score Tests of Trend

Up to this point, we describe primarily general tests of clustering and/or algo-
rithms to detect clusters anywhere in the study area. We now turn to the problem
of assessing focused clustering/clusters. Recall that for focused tests, we have a
predefined set of foci or locations of putative increased disease risk. Our examples
involve point locations, but foci could also be lines (e.g., highways or power lines)
or areas (e.g., agricultural fields treated with particular pesticides). Our interest
involves the question: Is there evidence of increased disease incidence in areas
exposed to the foci?

To maintain a proper inferential setting for the focused tests outlined here, it is
important that foci be identified prior to assessment of the most likely general clus-
ters. The “Texas sharpshooter” phenomenon of shooting the barn first, then painting
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FIG. 7.13 Plots of the goodness of fit (GOF) versus the spatial autocorrelation (SA) terms for Tango’s
index, based on equation (7.16). The “×” denotes the components of the value of Tango’s index observed
for the New York leukemia data, based on weights proposed by Rogerson (1999) for κ = 1, 10, 15, and
20. The open circles represent GOF and SA components of Tango’s index based on 999 simulations
under the constant risk hypothesis (see text).

a bull’s-eye around the bullet hole again provides an extreme example of the fal-
lacy of identifying a significant local cluster, identifying nearby putative sources of
increased risk, then testing for significant clustering around these sources. Although
we may find such an approach tempting (particularly if we have ready access to
multiple layers of GIS data pertaining to possible foci), this sequential nature of
cluster, then foci identification redefines the null and alternative hypotheses, and
as a result, the interpretation of significance values. By identifying foci near the
most unusual observed local collections of cases, we tip the balance in favor of
detecting focused clustering, even if there is no association between the disease
and the foci.

For instance, in the tests below, we define a set of foci and wish to assess the
conceptual null hypothesis defined in Section 6.2:

H0: There are no clusters of cases around the foci.

Contrast this notion with the Texas sharpshooter conceptual null hypothesis:

H0: There are no clusters of cases around the foci
nearest the most likely clusters.
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In this admittedly oversimplified example, we observe that the second hypothesis
suffers from both convoluted English and convoluted logic, considerably compli-
cating the interpretation of any claims of statistical significance.

With this in mind, we assume that we have identified a set of foci based on our
knowledge or suspicions regarding possible causes of the disease under study. Such
foci generally define sources of known or suspected exposure to particular sub-
stances putatively associated with disease outcome. For example, if the outcome of
interest is leukemia, we may be interested in sources of possible exposure to known
leukemogens such as benzene or ionizing radiation, or to substances whose leuke-
mogenic properties are subject to ongoing study and debate (e.g., trichloroethylene
or electromagnetic fields).

Often, we define the foci as a set of locations (points, lines, or areas) repre-
senting the source of suspected exposures. Information regarding the magnitude of
exposures may be nonexistent, or may include emission levels from each focus or
monitored exposure values (typically, at a different set of locations). With nonexis-
tent exposure levels, we often use increasing distance from the foci as a surrogate
for decreasing exposure, or at least decreasing potential of exposure. The presence
of reported emission levels or monitored exposure levels requires interpolation of
exposure values to nonmonitored sites, as discussed in Chapters 4 and 8. Here
we describe tests based on minimal exposure data (focus locations only), but these
could be modified to include exposure estimates (and associated estimates of uncer-
tainty), if such data are available.

Waller et al. (1992, 1994) and Lawson (1993) consider focused tests based on
the following operationalization of the constant risk null hypothesis:

H0 : Yi
ind∼ Poisson(rni), (7.19)

where, as before, Yi represents the number of cases observed in region i, r denotes
the hypothesized constant individual-level risk of disease, and ni denotes the pop-
ulation size in region i. The hypothesis defined in equation (7.19) derives from
an assumption of an underlying heterogeneous Poisson process generating case
locations.

Both Waller et al. (1992) and Lawson (1993) consider the following alternative
hypothesis:

HA : Yi
ind∼ Poisson(rni(1 + �iε)), (7.20)

where �i represents exposure to the foci experienced by residents of region i and
ε represents a small, positive constant. The only difference between the hypotheses
defined in equations (7.19) and (7.20) is the multiplicative increase in individual-
level risk associated with living in region i. That is, the probability that a person in
region i will contract the disease during the time period of interest is r under the
(constant risk) null hypothesis and r(1 + �iε) under the alternative hypothesis;
therefore, the relative risk of disease comparing people residing in region i to
people with no exposure is 1 + �iε.
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The exposure value �i is fairly general and may be used to represent a variety
of types of focused clusters. Setting �i = 1 for regions within a given distance of
the foci and �i = 0 for all other regions gives an example of a hot spot cluster (cf.
Wartenberg and Greenberg 1990) wherein all persons residing within the cluster
experience the same increase in risk, and people outside the cluster experience
no increase in risk. Setting �i to a distance–decay function represents decreasing
exposure with increasing distance from the foci, resulting in what Wartenberg and
Greenberg (1990) refer to as a clinal cluster, a cluster where risk decreases smoothly
with exposure to the focus. In addition, since the null and alternative hypotheses
defined in equations (7.19) and (7.20) both assume independent disease counts, �i

is not limited to spatially defined risk patterns, and by an appropriate choice of
�i the alternative could represent any classification of regions by exposure, even
those with little or no spatial pattern of exposure (e.g., smoking habits by census
tract). Since alternative hypotheses need not be spatial, the tests defined below are
equivalent to a widely used class of trend tests for Poisson random variables (cf.
Rothman 1986, pp. 346–349; Breslow and Day 1987).

Waller et al. (1992) and Lawson (1993), independently, developed score tests
of the null hypothesis given in equation (7.19) based on the alternative hypothesis
defined in equation (7.20). Score tests provide statistical hypothesis tests based on
the derivative of the likelihood function (cf. Cox and Hinkley 1974, p. 315), and
are asymptotically equivalent to likelihood ratio tests. In addition, score tests have
some optimal statistical power properties; namely, if a uniformly most powerful
(UMP) test against a certain family of alternative hypotheses exists, the score test
is equivalent to the UMP test. As mentioned briefly above, if a UMP test does not
exist (as is often the case), score tests retain certain optimal local power properties
(e.g., they are “locally most powerful” rather than UMP), where here the term local
refers to small deviations from the null hypothesis, not small geographic distances.
In the case of alternatives defined by equation (7.20), local alternatives for a fixed
set of �i values represent small values of ε, yielding small increases in risk for
regions with high exposure.

Since the alternative hypothesis defined in equation (7.20) ignores spatial auto-
correlation, the test represents a goodness-of-fit test comparing the counts observed
to those expected under the null hypothesis. The test statistic is a weighted sum
of deviations of observed case counts from those expected under the constant risk
hypothesis, with the weight for region i given by the exposure, �i .

The score test statistic is

Tsc =
N∑

i=1

�i(Yi − rni),

the sum of each region’s deviation from expectation weighted by the region’s
exposure. Waller et al. (1992, 1994) use �i defined by the inverse distance of
each region from the foci, while Lawson (1993) develops tests for a wide variety
of exposure values. For inference, we typically standardize Tsc by noting that the
expectation of Tsc is zero under the null hypothesis, then dividing by the square
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root of the variance of Tsc under the null hypothesis which, if r is known, is

Var(Tsc) = r

(
N∑

i=1

� 2
i ni

)
.

If r is unknown, we estimate it using the maximum likelihood estimate of r ,

r̂ = Y+
n+

,

where Y+ and n+ denote the total number of cases observed and the total population
size, respectively. In this case, the variance of Tsc is

Var(Tsc) = r̂

(
N∑

i=1

� 2
i ni

)
− Y+

n2+

(
N∑

i=1

�ini

)2

.

Based on the theory of score tests, we compare the observed value of the stan-
dardized statistic

T ∗
sc = Tsc√

Var(Tsc)

to a standard normal distribution. The normal approximation follows asymptotic
results based on an increasing number of regions (N ). Monte Carlo tests remain an
option if the appropriateness of the approximation is in question, particularly for a
small number of regions, or for a very rare disease (i.e., very small value of r lead-
ing to very small expected counts in each region). As an alternative to Monte Carlo
tests, Waller and Lawson (1995) provide an algorithm for determining the exact
distribution of T ∗

sc using numerical inversion of the statistic’s characteristic func-
tion. Since the number of Monte Carlo simulations required for accurate estimates
increases as we estimate probabilities further into the tail of the distribution, we
may find increased computational efficiency in the calculation of tail probabilities
under the exact approach.

Tango (1995) notes that Tsc based on r̂ = Y+/n+ yields

Tsc =
N∑

i=1

�i

[
Yi − ni

(
Y+
n+

)]

= Y+
N∑

i=1

�i

(
Yi

Y+
− ni

n+

)
, (7.21)

indicating that Tsc provides a score test comparing regional proportions of cases and
proportions of population at risk as well as a test comparing observed and expected
counts. As a result of equation (7.21), the score test statistic bears some resemblance
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to the goodness-of-fit portion of Tango’s index; that is,
∑N

i=1 w∗
ii (Yi/Y+ − ni/n+)2

if we define weights w∗
ii based on the product of the total number of cases Y+ and

the exposure associated with region i, and weights w∗
ij = 0 for i �= j . Like Pear-

son’s χ2, Tango’s index assesses squared deviations from expectation. The score
test can be defined equivalently through squared deviations (cf. Lawson 1993), but
there are some interpretative advantages to using Tsc. In particular, squared devi-
ations provide the same contribution regardless of whether observed counts are
above or below their respective null expectations. Through the sign of its compo-
nents, the statistic Tsc indicates which regions exceed expectation. As a result, we
can use a two- or one-tailed test of significance with Tsc, depending on whether
we desire inference on any deviation from expectation or only increases above
expectation, respectively.

DATA BREAK: New York Leukemia Data (cont.) We now illustrate the
focused score test using the New York leukemia data set. Foci include inactive
hazardous waste sites documented as containing trichloroethylene (TCE) (New
York State Department of Environmental Conservation 1987). In general, the epi-
demiologic links between TCE exposure and human cancer are weak or nonexistent
[see Bogan and Gold (1997), particularly their review of epidemiologic findings
on page 27]. Exposure to TCE was one of the motivating concerns driving the
highly visible investigation of childhood leukemia in Woborn, Massachusetts in
the 1980s (Lagakos et al. 1986), reviewed in the book and motion picture A Civil
Action (Harr 1995). In fact, the events in Massachusetts motivated the state of New
York to explore proactive methods of cluster investigation, and part of this effort
led to the original analyses of the New York leukemia data. We note that the results
below do not represent a thorough assessment of biological associations between
TCE exposure and leukemia (nor would any spatial analysis based on observational
data); rather, the results provide an illustration of the methods above.

Waller et al. (1992, 1994) consider 11 (then inactive, or not accepting new
materials) waste sites, each documented with the New York State Department of
Environmental Conservation as containing TCE (generally in addition to other
contaminants). Table 7.7 gives the coordinates (in kilometers) and name of each
site, as reported originally by Waller et al. (1992).

The locations of the TCE sites appear in Figure 7.14. We note that many of the
sites appear along the Susquehanna River passing through an industrial area in and
near Binghamton. As an aside, the original report (New York State Department of
Environmental Conservation 1987) provides a street address for each site. Waller
et al. (1992) “geocoded” these addresses by hand by locating each site to the
extent possible along roads labeled on U.S. Geological Survey (USGS) 7.5◦ ×
7.5◦ quadrangle topographic maps of the area. The x and y coordinates (not to
be confused with the number of cases in region i, Yi ) in Table 7.7 are defined
by the 1980 U.S. Census and represent deviations from the geographic centroid
of the study area in the east-west and north-south directions. Global positioning
system (GPS) data (much less expensive to obtain today than in the mid-1980s)
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Table 7.7 Location of 11 Inactive
Hazardous Waste Sites Containing
Trichloroethylene in Upstate New York

x y Name

−0.14 −67.19 Monarch Chemicals
−4.47 −67.65 IBM Endicott
11.98 −71.61 Singer
13.03 −75.34 Nesco

−46.60 24.43 GE Auburn
9.30 −5.82 Solvent Savers

−19.04 −15.37 Smith Corona
−19.41 −67.39 Victory Plaza
−17.97 −67.16 Hadco
−41.99 −30.90 Morse Chain
−30.37 −14.39 Groton

GE Auburn

Solvent
Savers

Smith
Corona

Groton

Morse
Chain

Victory
Plaza

Hadco

IBM Endicott
Monarch Chemicals

Singer

Nesco

FIG. 7.14 Location of 11 inactive hazardous waste sites containing trichloroethylene in upstate New
York.
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Table 7.8 Standardized Score Test Statistics for the New York Leukemia Dataa

T ∗
sc p-Value T ∗

sc p-Value
Site (r Known) (r Known) (r Unknown) (r Unknown)

Monarch Chemicals 4.13 <0.0001 4.69 <0.0001
IBM Endicott 3.40 0.0003 3.57 0.0002
Singer 2.47 0.0067 2.87 0.0020
Nesco 2.47 0.0068 2.86 0.0021
GE Auburn 2.43 0.0075 2.49 0.0063
Solvent Savers 0.60 0.2731 1.63 0.0518
Smith Corona 2.80 0.0025 3.26 0.0006
Victory Plaza 1.96 0.0254 2.41 0.0080
Hadco 1.28 0.1009 1.50 0.0669
Morse Chain 0.01 0.4974 0.01 0.4974
Groton 0.86 0.1947 0.93 0.1772
All sites 2.27 0.0117 2.27 0.0117

aExposure surrogates defined by the inverse distance to each site and the inverse distance to the nearest
site (“All sites”). Values of the test statistic and the associated standard normal p-value based on treating
the overall disease incidence proportion as known (center columns) or unknown (right columns).

would provide much more accurate location data and would improve the geographic
precision of the analysis.

We note that the results in Table 7.8 suggest statistically significant focused clus-
tering around many of the sites and around the set of sites as a whole (based on
using the inverse distance to the nearest site as an exposure surrogate). However,
the results do not necessarily indicate a statistically significant link between expo-
sure to TCE and incidence of leukemia for several reasons. First, recall that our data
do not include detailed exposure measurements; rather, we use the inverse distance
between TCE sites and census tract centroids as a surrogate for exposure. Although
this provides some insight into the general geographic pattern of leukemia incidence
around the TCE sites, it is not a necessarily accurate assessment of individual-level
exposure. Second, we calculate expected incidence proportions based on the overall
five-year incidence proportion of leukemia in the study area, without adjustments
for common risk factors such as age or occupation. Waller and McMaster (1997)
present results based on indirect age standardization for the tracts in Broome County
with little change in results. Occupational adjustments are important (since occu-
pational use provides an important route of exposure), but such adjustments are
difficult due to the lack of detailed, individual-level data. Ahrens et al. (2001) take
a step in this direction by incorporating aggregate occupational information from
the 1980 U.S. Census (e.g., proportions of residents employed in each of several
job classes) in a generalized linear model that explains much of the suspicious
spatial pattern suggested above.

The modeling results of Ahrens et al. (2001) provide an important step into
understanding the reasons behind the spatial patterns observed throughout the data
breaks in this chapter and highlight that all tests of clustering and tests to detect



STATISTICAL POWER AND RELATED CONSIDERATIONS 259

clusters provide only an initial component to describing and understanding spatial
patterns of disease. Application of the score test based on more realistic exposure
surrogates would likely provide additional insight into the patterns observed above.

7.7 STATISTICAL POWER AND RELATED CONSIDERATIONS

In the sections above we present a variety of statistical hypothesis tests for detecting
clusters or clustering in spatially referenced public health data. Which method do
we use? Statisticians often turn to assessments of statistical power to decide between
competing hypothesis tests. Briefly, power represents the probability of detecting
departures from the null hypothesis given that the data, in fact, arise under some
alternative hypothesis. In our setting, statistical power represents the probability
of detecting clusters or clustering when we should (i.e., when such features are
present). Although the term power is related with a type II error (failing to reject a
null hypothesis that is false), the probability of making a type I error (rejecting the
null hypothesis when it is true) is also important. We want the probability of both
types of errors to be small, but for a given sample size, there is typically a trade-off
between them. Thus, although most of the discussion below focuses on the power
of tests under alternatives of clustering, we note that inflated type I error rates can
be particularly serious, requiring unnecessary and expensive cluster investigations.

7.7.1 Power Depends on the Alternative Hypothesis

In many statistical testing situations, there is a clear alternative hypothesis or family
of alternative hypotheses (e.g., a shift in the mean response, or model parameters
not equal to zero). However, as detailed in Sections 6.2 and 7.1, there is no general
family of alternatives capturing all possible cluster/clustering scenarios, and individ-
ual tests vary with respect to the types of null and alternative hypotheses of interest.
Examples of null hypotheses include the constant risk hypothesis and the random
labeling hypothesis. Examples of families of alternative hypotheses include general
and focused alternatives and cluster and clustering alternatives. Even among these
families, important distinctions between types of clusters/clustering could occur
(e.g., “hot-spot” clusters/clustering as addressed by the spatial scan statistic and the
clinal clusters/clustering as addressed by Tango’s index and the focused score test).

A particularly important distinction occurs between lack-of-fit alternatives that
maintain independence between regional counts but do not follow the constant risk
hypothesis and spatial autocorrelation alternatives that contain correlated counts
that may or may not follow a constant risk model. Kulldorff et al. (2003) refer
to lack-of-fit alternatives as first-order clustering (since clusters/clustering occur
due to deviations from the expected regional mean values) and spatial autocor-
relation alternatives as second-order clustering (since clustering occurs due to
correlation between counts). The terms relate to first- and second-order proper-
ties of the assumed underlying spatial point process driving the observed pattern
of regional counts. As noted in Chapter 5, it is impossible to distinguish between
first- and second-order patterns from a single data realization, so the distinction
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between alternatives is somewhat vague [e.g., tests developed to detect first-order
clustering will have power to detect second-order clustering, but power properties
may not always translate easily (or even intuitively) between different families of
alternatives]. For example, many indices of spatial correlation (e.g., Moran’s I

and Geary’s c), developed for second-order clustering, have power against first-
order clusters as well. McMillen (2003) provides an excellent example where such
indexes suggest autocorrelation among model residuals arising from a local lack
of fit. In this case, the test attributes the observed pattern to autocorrelation rather
than its true cause (a missing indicator of increased local intensity).

As a result of the wide variety of situations encompassed in our conceptual
notions of cluster and clustering, different tests address different particular aspects,
and no single test will serve as the “most powerful” in all situations. Rather, we
may seek tests with optimal (or at least comparatively high) power for certain
specific cluster/clustering scenarios, using families of statistical tests with known
theoretical power advantages such as likelihood ratio tests or score tests. Examples
of these approaches include the spatial scan statistic (based on likelihood ratio
tests for hot-spot clusters) and the focused score test [based on focused clusters
defined by the family of alternatives given in equation (7.20)]. Such approaches
yield competitive power results for the family of alternatives under consideration,
but the power under other cluster/clustering scenarios often remains unexplored.

7.7.2 Power Depends on the Data Structure

In addition to the particular alternative hypothesis or hypotheses, the structure of the
data also affects the ability of any given test to detect clusters/clustering. Two data
features particularly important in the analysis of regional count data are the level
of aggregation in the data and the amount of population heterogeneity (numbers
and demographics of the population at risk) between regions.

Aggregation and the population composition and density affect the number of
cases expected under the constant risk assumption (or any other null hypothesis).
Areas with more people at risk have higher local sample sizes, often yielding higher
power to detect a given local increase in relative risk (for first-order alternatives). As
a result, most (if not all) tests to detect clusters have spatially heterogeneous power
(i.e., the power to detect a cluster depends on where the cluster occurs). In other
words, there is not a single summary power value for a test to detect clusters when
applied to a study area with spatially heterogeneous population density. Geographic
variation in power is noted by some authors (cf. Waller and Poquette 1999; Gangnon
and Clayton 2001) and explored in some depth by Rudd (2001). The power of
tests of clustering will also depend on the location of clusters in heterogeneous
population densities, but the extent of the impact is less clear given the summary
nature of such tests.

7.7.3 Theoretical Assessment of Power

In some settings, exact or approximate theoretical distributional results under par-
ticular alternative hypotheses allow direct calculation of power or approximations
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to power. For instance, Rayens and Kryscio (1993) report that Tango’s chi-square
approximation (defined in Section 7.6.4) remains appropriate for any alternative
hypotheses defined by an alternative set of expected proportions, provided that one
assumes that the incidence counts in different regions remain independent. That
is, the chi-square approximation allows power calculations for lack-of-fit (first-
order) alternatives but not for spatial autocorrelation (second-order) alternatives. As
another example of theoretical power assessments, Waller and Lawson (1995) con-
sider numerical approximations to the distribution of the focused score test under
the lack-of-fit alternatives defined by equation (7.20). Finally, Waller and Poquette
(1999) extend the results of Waller and Lawson (1995) to explore the impact of
misspecified exposure values (�i) on the statistical power of the focused score test
(e.g., assessing the power of the test based on inverse-distance exposure surrogates
to detect alternatives based on exponential decay distance–exposure relationships).

Generally, such theoretical assessments of power rely on asymptotic approx-
imations (e.g., the chi-square and normal approximations used in the references
above), and one must always assess the appropriateness of these approximations in
any given data setting. In the disease cluster/clustering literature, most theoretical
approaches assess power for lack-of-fit alternatives (based on independent regional
counts with nonconstant risk) rather than spatially autoregressive alternatives (based
on dependent regional counts), although Cline and Kryscio (1999) provide algo-
rithms to determine the distributions of Tango’s index, Pearson’s χ2, and similar
statistics under alternative hypotheses generated under a family of contagion models
yielding dependent region counts.

7.7.4 Monte Carlo Assessment of Power

Since theoretical assessments of power are often elusive, especially for spatial auto-
correlation (second-order) alternatives, Monte Carlo methods play an important
role. Since omnibus power results covering all possible cluster/clustering alter-
natives are unavailable (and probably unattainable), power comparisons typically
focus on certain collections of alternative hypotheses of interest. This collection of
alternative hypotheses defines the probability model(s) underlying the generation
of simulated data sets containing clusters and/or clustering.

A Monte Carlo assessment of statistical power typically involves the following
steps:

1. Find the critical value for the test statistic under the null distribution. Either
use a theoretical null distribution (e.g., find the 95th percentile of the null
distribution), or approximate the critical value using Monte Carlo methods.
That is, generate a large number of data sets under the null hypothesis and
calculate the test statistic T for each. Find the critical value under the null
distribution (e.g., the 95th percentile of the T values associated with the sim-
ulated data sets). Note that accurate estimation of extreme percentile values
generally requires a large number of simulations.

2. Generate a large number of data sets under a particular alternative hypothesis
(e.g., containing a hot-spot cluster with a doubling of the relative risk for
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people residing within the cluster). Calculate the test statistic T for each
data set and estimate the power using the proportion of test statistic values
exceeding the critical value found in step 1.

Often, we repeat the process for several related alternative hypotheses and then
describe the relationship of power across the alternatives considered. For example,
Waller (1996) considered hot-spot clusters with increasing relative risk associated
with people residing in the hot spot, and plotted the associated power versus relative
risk (within the hot spot) to explore the detectable effect size for several tests. For
second-order alternatives, Anselin and Rey (1991) simulate data sets containing
spatial correlation and plot power values versus the correlation parameter.

Such Monte Carlo power assessments provide important information regard-
ing the performance of tests to detect clusters/clustering. However, Kulldorff et al.
(2003, p. 666) correctly note that these assessments are “tedious, time consuming,
and unglamorous to perform.” Conclusions are limited to the particular alternative
hypotheses under consideration and may not correspond to the alternatives of inter-
est in other settings. As a result, power assessments for various tests are not directly
comparable since the assessments occur for different families of alternatives. For
example, there is currently a wide gap in the literature between power assessments
based on first-order alternatives (primarily for tests of disease clusters/clustering;
cf. Waller and Lawson 1995; Waller 1996; Kulldorff et al. 2003) and those based
on second-order alternatives (primarily for general and local indexes of spatial
autocorrelation applied to linear regression residuals; cf. Anselin and Rey 1991;
Anselin and Florax 1995; Anselin et al. 1996).

7.7.5 Benchmark Data and Conditional Power Assessments

To address some of the variation in the power literature for tests of clusters/clustering,
Kulldorff et al. (2003) propose the creation and use of benchmark data sets incor-
porating a wide variety of types of clusters and clustering made available through
the Internet to allow researchers to compare and contrast the performance of new
and existing methods on the same sets of data. The idea is similar to the use of
phantoms (items of a particular shape and/or composition) to test imaging hardware
and software. Kulldorff et al. (2003) constructed over 1,000,000 simulated data sets
generated under 51 different clustering models (some first and some second order)
set in the counties of the northeastern United States. These data are freely available
to assess performance of tests. One advantage of the use of benchmark data sets
is that we may compare the power of any particular test to that reported for any
other test previously assessed on the same data sets without reevaluation of the tests
assessed previously. This allows a growing collection of comparable power results
based on the same underlying data structure and cluster models.

Although benchmark data sets will provide valuable comparisons between meth-
ods, the comparisons are not global, even within a particular family of alternatives,
since power depends on the level of aggregation and the population heterogene-
ity. In particular, power comparisons based on test performance on the counties in
the northeastern United States may not translate to the relative performance of the
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same tests applied to different data settings. As a result, power comparisons cannot
entirely replace Monte Carlo power comparisons conducted on the particular study
area of interest (Waller and Poquette 1999).

In conclusion, power provides a yardstick for comparing the statistical perfor-
mance of various tests, but the comparisons are valid only within the family of
alternatives considered and within the particular structure of the data at hand.

DATA BREAK: New York Leukemia Data (cont.) After all of the analyses
in this chapter, we return to our original question of interest: Are there clusters of
elevated leukemia rates in upstate New York? The honest answer is “possibly.” We
give this rather tentative answer since any answer must depend on our beliefs about
the validity of the test statistics, the types of clusters they detect (often defined by
user-specified parameters such as n∗ in CEPP and κ in Tango’s test), and the degree
to which our data support the assumptions the test statistics require and provide
sufficient statistical power to detect the deviations observed.

The traditional spatial autocorrelation statistics are not statistically significant,
yet we raised some question regarding their meaning when applied to counts and
rates, particularly those arising from differing population sizes. In contrast, Icr, a
statistic adjusting for population heterogeneity, indicates significant spatial cluster-
ing measured as spatial correlation among population-adjusted counts and rates.
Tango’s index indicates significant clustering for κ ≥ 10, yet it is difficult to deter-
mine if this is solely the result of spatial autocorrelation or is due partially to
the addition of many more terms in the index and/or the increased influence of
neighboring values.

Scanning local rates suggests particular clusters near Binghamton, Syracuse,
and Cortland, but as we noted in Chapter 4, the rate estimates associated with each
region may not be stable. These statistics also depend on the radii of the scanning
circles. Scanning local counts using either the CEPP statistic or Besag and Newell’s
test indicates clusters near Binghamton and Cortland, but these locations depend on
what we assume for either the population radius (n∗ in CEPP) or the case radius (c∗
in Besag and Newell’s test). Scan statistics indicate similar areas, but for wide radii,
including many people. The LISAs highlight similar areas (near Binghamton, Cort-
land, and Syracuse) as pockets of local positive spatial autocorrelation, yet differ in
construction and interpretation from other tests used to identify particular clusters.

Although we would like to take some comfort from the fact that all of these
tests and the local smoothing in Chapter 4 indicate roughly the same areas as
potentially higher-than-expected risk, these approaches still make some common
assumptions and may be sensitive to violations of them. For instance, the assump-
tion of Poisson counts that we have made throughout this analysis may not realistic
since it implicitly assumes that E(Yi) = Var(Yi), an assumption violated by many
count data sets, even in nonspatial settings. To our knowledge, the effect of any
overdispersion [a term used for cases where E(Yi) < Var(Yi)] on the type I error
levels or the power of any of these test statistics has not been widely investigated.
Finally, as we noted above, we must temper any interpretation of unusual clusters
until we account for spatial patterns in important covariates possibly affecting local
leukemia rates (cf. Chapter 9).



264 SPATIAL CLUSTERING OF HEALTH EVENTS: REGIONAL COUNT DATA

Although we want to put our interpretation of these statistics in context, it is
easy to be just as critical of any statistical application, particularly with observa-
tional data. Our focus here and throughout this chapter is to stress the importance
of key issues (e.g., clustering vs. clusters, the effect of population heterogeneity,
and distributional assumptions) so that we may make more valid interpretations
and conclusions. The key questions “What do we have?” and “What questions
can we answer?” drive all of the discussion above and provide a yardstick for
the application of any of the methods described here. We revisit these issues in
Chapter 9.

7.8 ADDITIONAL TOPICS AND FURTHER READING

The sections above provide an introduction to various tests to detect disease clus-
ters and/or clustering. However, the methods above only highlight a fraction of
the methods proposed and applied in this arena. We present tests representing a
variety of approaches to the cluster/clustering detection problem and illustrate their
application. However, there are several other approaches and we list some of these
here briefly, providing references for the interested reader.

7.8.1 Related Research Regarding Indexes of Spatial Association

Our overview of indexes of spatial autocorrelation is brief and focuses on appli-
cation as tests of disease clustering and to detect disease clusters. This application
represents only a fraction of the use of such statistics, and there is a wide literature
regarding the theory and application of such indexes. Particularly relevant to the
study of public health data are recent results pertaining to spatial autocorrelation
indexes applied to regions with heterogeneous population sizes. Relevant references
include Getis and Ord (1992, 1996), Oden (1995), Waldhör (1996), and Assunção
and Reis (1999).

In addition, other recent research explores approaches other than Monte Carlo
for obtaining the exact distribution of spatial autocorrelation indexes for Gaussian
(Tiefelsdorf and Boots 1995, 1996; Hepple 1998; Tiefelsdorf 1998, 2000, 2002) and
Poisson or binomial (Hill 2002) data. Although such methods based on character-
istic function inversion and saddlepoint approximations offer some computational
improvements over Monte Carlo tests, the details of these methods fall beyond the
scope of this text.

7.8.2 Additional Approaches for Detecting Clusters and/or Clustering

Tests of Overdispersion As noted in Section 7.1.3, deviations from the Poisson
distribution may offer evidence of clustering or local clusters. One approach to
assess the adequacy of the Poisson distribution is to explore the similarity between
the sample mean and variance. Another is to formally test for overdispersion, as
in Potthoff and Whittinghill (1966a,b), Breslow (1984), Muirhead and Ball (1989),
Dean (1992), and Muirhead and Butland (1996).
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Other Modifications to Pearson’s χ2 Hook and Carothers (1997) propose a
Monte Carlo test of clustering based on the maximum summand in Pearson’s χ2.
Since simulations compare the observed maxima, the inferential procedure avoids
the multiple comparisons problem in precisely the same manner as the CEPP of
Turnbull et al. (1990) and the spatial scan statistic of Kulldorff (1997), defined in
Sections 7.3.4 and 7.3.6, respectively.

Also, Best and Rayner (1991) propose an alternative approach to Tango’s statistic
based on collections of the orthogonal components of Pearson’s χ2 statistic to test
for temporal clustering, arguing that these components offer score tests with optimal
power properties for particular clustering alternatives. However, as illustrated in
Best and Rayner (1992) and Tango (1992), the interpretation of the components of
Pearson’s χ2 requires some care, as some types of clustering appear significant in
some components of Pearson’s χ2 but not in other components.

Stone’s Tests The focused score tests of Section 7.6.5 provide one means of
constructing statistical tests of fit for particular alternatives of interest. Another
approach is to use likelihood ratio tests [i.e., compare the likelihood of the data
under the null hypothesis to that under the alternative hypothesis (or hypotheses)
of interest]. In this setting, Stone (1988) develops a set of hypothesis tests of
focused clustering designed specifically to compare the constant risk hypothesis
to the alternative hypothesis where risks decrease monotonically as exposure to
the focus (or foci) decrease. The tests do not require specification of a precise or
even parametric exposure–disease relationship in the alternative (as in the focused
score tests); rather, they only depend on an assumption that region-specific disease
risk either stays the same or decreases as regions experience less exposure to the
focus (or foci). This feature has lead to widespread application of Stone’s tests (and
variants thereof) by the Small Area Health Statistics Unit (SAHSU) in the United
Kingdom (cf. Elliott et al. 1992, 1996; Morris and Wakefield 2000). However,
calculation and application of Stone’s statistic typically involve fitting isotonic
(order-constrained) regression models and falls somewhat outside the scope of this
text. Variants and extensions of Stone’s approach appear in Lumley (1995) and
Morton-Jones et al. (1999, 2000).

Weighted Likelihood Ratio Tests Gangnon and Clayton (2001) extend the like-
lihood ratio structure of the spatial scan statistic and present weighted likelihood
ratio tests, illustrating the approach on the block-group-level New York leukemia
data.

Bayesian Cluster Detection Gangnon and Clayton (2000) define a Bayesian ap-
proach to cluster detection based on model averaging ideas, also illustrated on the
block-group-level New York leukemia data.

Classification Methods A separate usage of the term clustering appears in the
statistical classification literature wherein one seeks to partition each of a set of
observations into separate clusters or collections of observations more like one
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another than like the observations in other clusters. In this setting, every obser-
vation is assigned to one and only one cluster. Such methods have been applied
to geographically referenced regional count data and provide inference somewhat
related to the cluster/clustering methods of this chapter. Such approaches appear in
Schlattman and Böhning (1993), Knorr-Held and Rasser (2000), and Knorr-Held
and Best (2001).

7.8.3 Space–Time Clustering and Disease Surveillance

We end with what historically appeared first. Much of the initial interest in the
development of tests to detect disease clusters or clustering occurred in the setting
of detecting clusters in space and time. That is, a cluster consists of cases near other
cases in both space and time. We focus on spatial clusters in this and preceding
chapters, but acknowledge a wide literature on the detection of space–time clusters.
Key early references include Ederer et al. (1964), Knox (1964), and Mantel (1967).

Recent increased interest in bioterrorism and emerging infectious diseases has
lead to increased efforts to detect emerging clusters (i.e., spatially proximate cases
that are occurring now). Kulldorff (2001), Rogerson (2001), Lazarus et al. (2002),
and Mostashari et al. (2003) provide related developments in this area.

7.9 EXERCISES

7.1 Consider regions with 50, 500, and 5000 people at risk, respectively. Find the
Poisson probability of observing more cases than people at risk for diseases
with individual risks of 0.1, 0.01, 0.001, and 0.0001.

7.2 We note some similarities between assessments of overlapping local inci-
dence proportions and ratios of kernel intensity estimates for point data in
Section 6.5.4. Do such similarities extend to the analysis of regional count
data? How would we implement kernel estimates? Discuss.

7.3 Replicate the assessment of geographic unbiasedness reported in the data
break following Section 7.3.4. Can you quantify a reason for the apparent
reduced variation indicated in Figure 7.5?

7.4 Derive the likelihood ratio statistic associated with each potential cluster in
the spatial scan statistic, where regional counts are assumed to follow inde-
pendent Poisson distributions under both the null (no clusters) and alternative
(single cluster) hypotheses, where the only difference between the hypothe-
ses is with regard to the expected value of the counts inside and outside the
potential cluster.

7.5 Use equation (7.1) to relate the choice of the case radius c∗ in the method of
Besag and Newell (1991) to the population size of a particular region (say,
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region i). For a given population size in region i, are there case radii that
cannot be declared significance at a given level of significance (say, 0.05)?
What does this suggest about possible choices for c∗?

7.6 In Geary’s c statistic, the scaling factor preceding the weighted average of
simij in equation (7.11) summarizes variation of regional count around the
mean regional count. As mentioned with respect to Moran’s I , variability
around the mean regional count is not appropriate when we have heteroge-
neous regional population sizes. Define an adjustment to Geary’s c similar
to the adjusted Moran’s I statistic Icr defined in equation (7.10) and apply
it to the New York leukemia data. Compare your results to those reported
in Table 7.4.

7.7 Divide the unit square into a 4 × 4 grid of regions. Generate 100 events
from a homogeneous Poisson process on the unit square and create aggregate
counts in each region. Calculate Tango’s statistic and the spatial scan statistic
for your data. Create a cluster within two adjacent regions by selecting
several cases at random from the regions outside the cluster and adding
them to two adjacent regions. Increase the number of cases moved to the
cluster until the scan statistic and Tango’s statistic become significant. How
many cases did you need to move to the two regions? Can you phrase this
cluster “size” in terms of relative risk? What does this suggest regarding the
size of clusters detectable by the scan statistic and Tango’s statistic in your
data?

7.8 For the New York leukemia data in Table 7.9, plot Tango’s and Rogerson’s
weights versus distance for several values of κ . Will the different weighting
schemes affect the type of clustering detected by Tango’s index? If so, how?

Table 7.9 New York Leukemia Dataa

x y Pop. Cases x y Pop Cases

4.069 −67.353 3540 3.083 4.639 −66.862 3560 4.083
5.709 −66.978 3739 1.087 7.614 −65.996 2784 1.065
7.316 −67.318 2571 3.060 8.559 −66.934 2729 1.064
9.207 −67.179 3952 2.092 10.180 −66.879 993 0.023
8.698 −68.307 1908 2.045 7.405 −68.078 948 0.022
7.335 −68.351 1172 1.027 6.644 −67.644 1047 3.025
5.556 −67.778 3138 5.073 5.403 −68.525 5485 4.128
3.892 −68.166 5554 6.130 4.320 −69.593 2943 2.069
6.726 −69.763 4969 5.116 8.341 −68.803 4828 4.113
4.319 −40.067 2618 0.061 5.888 −48.612 2244 0.053

−3.922 −39.102 2039 1.048 −3.473 −53.637 1425 0.033
−4.243 −57.960 5262 1.123 10.472 −59.754 4126 1.097
10.429 −60.770 4133 2.097 6.029 −60.332 3974 1.093

9.294 −63.504 3036 4.071 15.301 −57.990 4364 2.102
(continued overleaf )
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Table 7.9 (continued )

x y Pop. Cases x y Pop Cases

28.533 −59.213 4965 1.116 44.542 −71.661 2635 1.062
26.200 −70.753 5911 7.138 14.651 −70.153 5834 1.137
13.633 −73.304 6204 5.145 5.520 −71.256 5007 1.117
6.220 −64.636 5594 5.131 2.294 −63.134 1198 0.028

−1.307 −65.936 5088 7.119 −3.056 −67.421 3107 4.073
−3.228 −66.656 2851 0.067 −3.376 −66.134 3725 3.087
−7.735 −68.314 5505 4.129 −6.265 −66.089 8122 0.190
−4.848 −67.158 5146 7.120 −4.788 −67.943 2143 2.050
−6.278 −68.079 3912 0.092 −5.496 −68.645 3256 6.076

3.106 −65.587 3909 5.091 2.420 −66.551 3106 1.073
2.739 −67.014 3433 5.080 2.646 −67.673 4048 1.095
1.476 −65.563 2630 3.062 0.728 −69.439 12221 9.286

−4.198 −69.329 5963 6.140 −7.078 −71.146 3857 3.090
−2.693 −75.291 5197 2.122 −50.243 36.814 10494 3.839

−48.713 54.252 3571 0.626 −44.846 48.834 1322 0.232
−51.984 50.333 2235 0.392 −54.284 36.220 3905 1.684
−48.719 35.411 6501 1.139 −45.506 26.448 5163 4.905
−44.249 23.500 6021 2.055 −46.511 26.100 7398 8.296
−47.855 24.276 5200 6.911 −53.546 21.137 5616 1.984
−46.274 24.648 6810 7.193 −55.482 9.899 2919 3.511
−45.278 11.980 1765 0.309 −32.888 8.954 3117 0.546
−30.870 −2.614 4278 0.750 −41.620 −4.037 1817 3.318
−51.202 −0.781 1762 0.309 42.713 −2.720 5780 1.703

21.226 −11.684 4189 0.509 38.318 −20.559 4141 4.504
38.701 −19.448 3941 5.479 46.626 −14.208 5802 4.705
37.769 −23.729 7710 2.938 21.514 −28.348 2376 1.289
32.135 −41.099 7278 2.885 31.607 −49.284 8127 3.988
1.862 −16.601 5532 3.340 −10.903 −0.588 2592 1.159

−17.986 −1.508 5653 6.347 −18.630 −12.635 5105 7.314
−18.906 −11.309 4421 2.272 −15.73 −12.060 3242 2.199
−12.310 −10.786 2921 8.180 −6.136 −23.354 3711 5.228

−15.148 −16.950 4855 1.298 −19.260 −13.129 6438 7.396
−18.944 −22.815 4350 4.267 26.365 41.438 5170 2.476

27.552 40.655 2940 3.271 26.373 41.236 2700 0.249
18.846 45.413 3766 0.347 18.898 41.544 4773 0.440
7.169 48.289 6557 2.604 10.795 38.083 2519 0.232
8.497 38.279 4295 1.396 10.823 24.177 2599 3.239

11.161 23.461 3281 4.302 23.025 31.970 6250 2.576
24.096 19.087 6677 0.615 16.640 8.843 3245 4.299
36.296 13.316 3725 1.343 39.356 14.481 4616 1.425
53.509 10.264 2037 0.188 −15.326 40.508 9 0.000

−13.793 41.011 3704 4.056 −12.939 41.735 1702 0.026
−12.226 41.264 4193 3.063 −13.906 40.029 1401 1.021
−13.351 40.456 3268 2.049 −12.758 40.442 1612 0.024
−12.147 40.364 2705 4.041 −11.244 40.312 3927 2.059
−9.848 40.709 4330 6.065 −14.694 39.499 143 1.002
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Table 7.9 (continued )

x y Pop. Cases x y Pop Cases

−13.917 39.117 99 0.001 −13.303 39.395 1475 0.022
−12.970 39.858 2766 3.042 −12.276 39.573 2636 4.040
−12.173 38.934 3132 3.047 −11.109 39.123 2603 5.039
−10.519 39.400 2973 1.045 −9.809 39.762 3156 0.048
−8.752 39.839 4807 1.073 −16.723 38.980 2587 2.039

−15.217 38.544 1997 3.030 −14.159 38.501 1211 2.018
−12.996 38.885 2549 1.038 −11.893 38.702 2231 0.034
−16.457 38.264 2225 3.034 −16.375 37.649 2291 0.035
−15.444 38.028 1189 0.018 −14.124 37.801 2621 2.040
−13.363 38.134 914 2.014 −12.743 37.939 1409 0.021
−12.224 38.122 1268 0.019 −11.479 37.992 1437 0.022
−10.724 37.938 3359 2.051 −9.753 38.180 2662 2.040
−8.704 38.332 2356 0.036 −15.727 37.105 503 1.008

−15.397 36.783 2852 1.043 −14.469 36.803 5883 2.089
−13.954 37.319 2446 0.037 −13.265 36.954 717 1.011
−12.722 36.979 2579 2.039 −12.024 37.260 9393 4.142
−11.158 36.577 2193 2.033 −10.470 36.651 4524 0.068
−8.878 37.115 5469 7.083 −16.433 35.815 2014 1.030

−15.426 35.799 1661 0.025 −14.754 35.563 3213 0.048
−13.920 35.189 3061 2.046 −13.832 36.218 3525 1.053
−12.852 36.222 3128 0.047 −12.634 35.421 4144 0.063
−11.764 34.930 2912 0.044 −10.617 35.288 1689 1.025
−10.592 34.676 2720 0.041 −14.111 34.358 2670 5.040
−13.321 34.785 3108 4.047 −12.558 34.582 3072 0.046
−13.447 32.917 4149 2.063 −12.469 33.387 3635 3.055
−11.562 32.740 2801 5.042 −12.506 31.784 3097 0.047
−4.891 53.764 2154 0.032 −10.943 56.410 3290 1.05
−9.834 51.064 5935 0.090 −4.197 49.537 3095 2.047
−9.488 49.009 2677 0.040 −9.754 47.072 4443 0.067

−10.954 47.897 2095 0.032 −12.085 47.577 5875 2.089
−13.100 46.879 3234 0.049 −15.175 47.155 7914 3.119
−13.057 48.404 4740 1.072 −18.973 48.402 8140 1.123
−18.418 47.007 4081 1.062 −21.552 51.780 2668 0.040
−20.175 53.142 1733 2.026 −18.852 50.853 6762 4.102
−12.434 51.045 4889 0.074 −18.052 54.741 2802 0.042
−24.874 54.020 1704 2.026 −30.753 53.944 5743 3.087
−22.711 48.810 2345 0.035 −27.924 50.923 4105 1.062
−28.128 49.183 2514 0.038 −24.891 46.477 6261 0.094
−29.806 46.681 3810 0.057 −38.079 38.625 5885 3.089
−26.755 40.217 2397 0.036 −25.887 37.029 1298 0.020
−24.213 36.358 5311 3.080 −23.675 38.145 4774 1.072
−21.451 37.998 4629 1.070 −20.238 37.167 4429 2.067
−20.627 38.879 1495 1.023 −21.121 43.888 3092 2.047
−18.195 39.401 2729 1.041 −18.463 38.801 4411 4.067
−18.940 37.247 4713 3.071 −17.473 37.273 3583 4.054
−17.892 44.541 2849 2.043 −19.460 46.367 5520 2.083

(continued overleaf )
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Table 7.9 (continued )

x y Pop. Cases x y Pop Cases

−15.544 45.000 4629 2.070 −16.679 43.819 4437 1.067
−15.545 42.823 3823 0.058 −13.259 45.162 2406 3.036
−11.959 44.163 3169 3.048 −12.618 43.821 4354 2.066
−13.802 42.558 1576 2.024 −11.201 41.737 4637 5.070
−6.841 39.955 3412 1.051 −8.644 41.997 3073 0.046
−5.825 41.656 4837 2.073 −6.325 37.769 6146 5.093
−7.852 35.601 4813 4.073 −4.732 35.064 3077 2.046
−7.625 31.607 1510 0.023 −1.213 35.810 4709 3.071
−1.369 35.773 4927 0.074 1.035 32.848 2510 3.038

1.028 32.994 5241 0.079 3.692 37.486 859 1.013
−1.368 41.001 3640 1.055 −2.432 39.997 4101 2.062
−1.698 45.139 2502 0.038 0.683 24.737 4492 0.068
−7.767 24.012 4488 4.068 −14.328 26.250 596 0.009

−20.450 26.646 5424 2.082 −10.325 29.876 1214 1.018
−12.444 30.194 2779 1.042 −15.661 32.754 5690 2.086
−19.003 35.414 2717 0.041 −28.670 29.259 4310 1.065
−28.688 30.852 1870 1.028 −35.983 26.866 2786 1.042
−34.554 26.419 5009 2.076 −24.898 14.560 1596 0.024
−19.610 16.637 2112 0.032 −10.921 9.999 2409 1.036

0.175 13.306 1811 0.027 −14.565 −48.845 6006 4.085
−29.003 −52.870 4919 1.889 −15.798 −68.106 7023 2.269
−14.282 −72.352 9084 4.641 −22.738 −67.371 4364 6.788
−29.470 −69.684 6999 2.265 −43.339 −69.836 11417 5.063
−30.749 −13.465 5213 4.060 −44.146 −15.211 3916 1.045
−40.460 −22.936 887 0.010 −43.466 −20.207 475 0.005
−51.912 −24.866 7041 2.081 −43.550 −28.728 3476 1.04
−40.564 −27.572 3404 6.039 −38.618 −26.765 2630 3.03
−39.284 −29.119 1777 1.020 −41.395 −29.395 13015 3.149
−41.510 −30.601 4358 3.050 −42.080 −31.169 3880 3.045

−42.878 −30.248 5630 1.065 −47.493 −30.821 971 0.011
−40.500 −32.883 5613 1.064 −36.439 −33.877 524 0.006
−37.096 −29.876 884 1.010 −34.078 −27.819 3025 0.035
−28.790 −23.104 7723 1.089 −34.646 −39.355 5203 3.060
−51.142 −42.100 4401 1.051 −41.960 −24.820 1010 0.012
−42.675 −27.313 2029 2.023

ax and y denote coordinates of the centroid of each of 281 census tracts in an eight-county region
of upstate New York. “Pop.” denotes the 1980 U.S. Census population size of each tract, and “cases”
denotes the number of leukemia cases assigned to each tract (see text for explanation of fractional
cases).

7.9 For the New York leukemia data, simulate 1000 data sets under multinomial
sampling (592 cases in each simulation). Compare Tango’s χ2 approxima-
tion and the Monte Carlo distribution of the test statistic under the constant
risk hypothesis. Compare the distributions when we only have half as many
cases (but the same population proportions).
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7.10 Rogerson (1999) proposes a local form of Tango’s index, defined as

Ri = 1√
ni/n+

(
Yi

Y+
− ni

n+

) N∑
j=1

exp(−dij /κ)√
ni/n+

(
Yj

Y+
− nj

n+

)

for i = 1, . . . , N . Does Ri satisfy the criteria for local indicators of spatial
association (LISAs) outlined in Section 7.5?

Based on Tango’s chi-square approximation, Rogerson (1999) suggests
comparing each Ri to a chi-square distribution with one degree of freedom.
Are negative values of Ri possible? What does this suggest regarding the
chi-square approximation? Outline a Monte Carlo approach for obtaining
p-values for each Ri .

Apply Ri to the New York leukemia data for different values of κ and
discuss the results. Compare your Monte Carlo approach to the chi-square
approximation. Is the chi-square approximation appropriate for Ri in these
data? Which tracts contain the most suggestive values of Ri?

Using Monte Carlo simulation, assess the appropriateness of the normal
approximation to the distribution of the focused score test under the constant
risk hypothesis for:

(a) The entire New York leukemia data set

(b) The first 51 elements of the New York leukemia data set (Broome
County)

(c) The first 51 elements with 70 observed cases

(d) The first 51 elements with 30 cases

How robust does the approximation appear to be?
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Spatial Exposure Data

I speculate. Mapmakers are entitled to do so, since they readily
acknowledge that they are rarely in possession of all the facts.
They are always dealing with secondary accounts, the tag ends
of impressions. Theirs is an uncertain science.

James Cowan, A Mapmaker’s Dream, the Meditations of Fra Mauro,
Cartographer to the Court of Venice, 1996, Warner Books, p. 11

We now turn to a different aspect of the spatial analysis of public health data:
spatial exposure information. When analyzing spatial patterns of disease, we may
also want to study spatial patterns of potential exposures. In fact, we often need to
consider spatial exposure information to understand the observed spatial variation
in disease. As we noted in Chapter 1, Palm (1890) was among the first to link
the spatial distribution of a disease (rickets in Great Britain) to a spatial exposure
when he noted that sunlight deficiency was an important component in the etiol-
ogy of this disease. Spatial analysis also led Blum (1948) and Lancaster (1956)
to identify sunlight as a causal factor in skin cancer. While latitude is a surrogate
for sunlight that is easily recorded, other studies may require exposure assessment
and maps that are based on field measurements. This is particularly true in envi-
ronmental health applications in which environmental measures (e.g., air pollution,
groundwater contamination) are thought to exacerbate disease. Spatial exposure
assessment is also important from a health policy standpoint since environmental
monitoring data often formulate regional air and water quality standards.

Maps of both disease and potential exposures form the basis for geographical
correlation studies that attempt to draw inferences about disease risk in relation
to spatially varying risk factors. We discuss statistical methods for such studies in
Chapter 9. In this chapter we focus on the exposure component alone and statistical
methods for mapping spatial exposure data. We will borrow much of the method-
ology from the field of geostatistics, a field of statistics concerned with the study
of spatial data that have a continuous spatial index (i.e., data can be observed at
any location within a domain of interest, at least conceptually). This is in contrast
to aggregated spatial data (discussed in Chapter 7), which are associated with areal
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regions for which there is no opportunity for measurement between locations. In
geostatistics, the locations of the data are assumed to be fixed and known, not
random as is the case with spatial point patterns discussed in Chapters 5 and 6. In
using geostatistical methodology, we seek a general statistical model to infer the
characteristics of the spatial process that gives rise to the data we observe. Much
of the material in this chapter draws heavily from that in Cressie (1993) and from
Carol Gotway’s coursework and interaction with Noel Cressie as one of his first
Ph.D. students in spatial statistics, and his continued long-term mentoring as an
incredible resource on spatial statistics.

8.1 RANDOM FIELDS AND STATIONARITY

Suppose that we have spatial exposure data Z(s1), Z(s2), . . . , Z(sN) that represent
observations of a variable Z at spatial locations s1, s2, . . . , sN . The spatial locations
may be aligned on a regular grid or distributed irregularly throughout some domain
of interest, D. We restrict our attention to two dimensions, so each location is a
two-dimensional vector, s = (x, y), referencing a point in the plane.

In geostatistical applications, the data are assumed to be a partial realization of
a random process (called a stochastic process or random field)

{Z(s) : s ∈ D}

where D is a fixed subset of �2, and the spatial index, s, varies continuously
throughout D. Thus, for a fixed location s, Z(s) is a random variable to which
the laws of probability apply; for a fixed realization of this process, we observe a
function of space: namely, the data at locations s1, s2, . . . , sN . The data are only
a partial realization of a spatial function since we cannot, for practical reasons,
observe the process at every point in D.

This model for spatial data makes traditional statistical inference difficult since
we do not have independent replication. As mentioned in Chapter 5, a facsimile of
replication is provided by the concept of stationarity. With a random field, if

E[Z(s)] = µ for all s ∈ D (8.1)

(i.e., the mean of the process does not depend on location) and

Cov
(
Z(si ), Z(sj )

) = C(si − sj ) for all si , sj ∈ D (8.2)

(i.e., the covariance depends only on the difference between locations si and sj , not
on the locations themselves), then Z(·) is said to be second-order stationary. The
function C(·) defined by equation (8.2) is called the covariance function and is one
measure of spatial autocorrelation. Thus, through the assumption of stationarity,
the process essentially repeats itself in space, providing the replication necessary
for estimation and inference. If, in addition, C(si − sj ) is a function only of the
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distance between si and sj and not direction, the process is called isotropic. If
C(si − sj ) depends on both distance and direction, the spatial process is called
anisotropic. The notions of stationarity and isotropy correspond conceptually to
those defined for spatial point processes in Chapter 5, although equations (8.1) and
(8.2) phrase the concepts directly in terms of the Z process.

We do not need stationarity to work with random fields and geostatistics, but it
provides a convenient place to begin our development of geostatistical methods for
public health data. Methods for handling nonstationary exposure data are described
in Section 9.2.

8.2 SEMIVARIOGRAMS

We have seen in Chapter 7 that one of the fundamental attributes of spatial data
is spatial autocorrelation: observations closer together tend to be more alike than
observations farther apart. In geostatistics, this idea of autocorrelation is quantified
through a function called a semivariogram.

Suppose that in addition to the constant mean assumption given in equation (8.1),
{Z(s) : s ∈ D} also satisfies

Var(Z(si ) − Z(sj )) = 2γ (si − sj ), si , sj ∈ D. (8.3)

Then Z(·) is said to be intrinsically stationary and the function 2γ (·) defined by
equation (8.3) is called a variogram. If a process is intrinsically stationary [i.e., it
satisfies equations (8.1) and (8.3)], 2γ (h) is a function of the spatial lag, h = s − u,
but not of the locations s and u. Note that the definition of intrinsic stationarity
is very similar to that of second-order stationarity, where the former is defined
in terms of the variogram and the latter in terms of the covariance function. In
fact, the variogram is a generalization of the covariance function, and under the
assumption of second-order stationarity, the two functions are related, as we shall
see below.

The function γ (·) is called a semivariogram, as it is one-half the variogram.
The semivariogram is central to the field of geostatistics. Although many authors
use the terms variogram and semivariogram interchangeably, they clearly differ:
One is twice the other. This may not matter in some calculations, but in others
the distinction can be crucial. Since we have seen too many studies (and even
theoretical results) off by a factor of 2, we will distinguish the variogram from the
semivariogram and use just the latter term.

The semivariogram is a function of the spatial process and as such satisfies
certain properties:

(i) γ (−h) = γ (h) [i.e., the autocorrelation between Z(s) and Z(u) is the same
as that between Z(u) and Z(s)].

(ii) γ (0) = 0, since by definition, Var(Z(s) − Z(s)) = 0.

(iii) γ (h)/‖h‖2 −→ 0 as ‖h‖ −→ ∞, where ‖h‖ denotes the length of the
vector h.
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(iv) γ (·) must be conditionally negative definite; that is,

m∑
i=1

m∑
j=1

aiaj γ (si − sj ) ≤ 0 (8.4)

for any finite number of locations {si : i = 1, . . . , m} and real numbers
{a1, . . . , am} satisfying

∑m
i=1 ai = 0. This condition is the analog of the

positive-definite condition for covariance functions and variance–covariance
matrices, ensuring that all variances are nonnegative.

(v) If the spatial process is isotropic, γ (h) ≡ γ (h), where h = ‖h‖ (i.e., the semi-
variogram is a function of distance alone).

A graph of a semivariogram plotted against separation distance, ‖h‖, conveys
information about the continuity and spatial variability of the process. This graph
starts at zero, and if observations close together are more alike than those farther
apart, increases as the separation distance increases. In this way, increasing vari-
ation in pairwise differences with increasing distance reflects decreasing spatial
autocorrelation, since Z(s) and Z(u) can vary more with respect to each other as
locations s and u move farther apart. Often, the semivariogram will level off to
nearly a constant value (called the sill) at a large separation distance (called the
range). Beyond this distance, observations are spatially uncorrelated, reflected by
a (near) constant variance in pairwise differences. These properties are depicted in
Figure 8.1. Note that if the spatial process is not isotropic, the semivariogram and
the information it conveys will differ with direction and we can envision several
graphs like Figure 8.1, one for each direction. If there is no autocorrelation between
Z(s) and Z(u), the semivariogram will be a horizontal line.

The shape of the semivariogram near the origin is of particular interest since it
indicates the degree of smoothness or spatial continuity of the spatial variable under
study. A parabolic shape near the origin arises with a very smooth spatial variable

Sill

Range

Distance

Nugget

g

FIG. 8.1 Typical semivariogram.
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that is both continuous and differentiable. A linear shape near the origin reflects a
variable that is continuous but not differentiable, and hence less regular. A disconti-
nuity, or vertical jump, at the origin [i.e., limh→0 γ (h) = c0 > 0] indicates that the
spatial variable is not continuous and has highly irregular spatial variability. This
discontinuity is called the nugget effect in the geostatistical literature. If the process
has a large nugget effect, two observations fairly close together have very different
values. This is often due to measurement error, but can also simply indicate a spa-
tially discontinuous process. (The term nugget effect comes from mining. In mining
gold ore, we may not find ore at one location, but then at a nearby location find a
gold nugget.) The nugget effect is a discontinuity; by definition [see equation (8.3)]
the semivariogram at the origin (i.e., at zero separation distance) is always zero.

8.2.1 Relationship to Covariance Function and Correlogram

The covariance function defined in equation (8.2) is related to the semivariogram in
the following way. If Z(·) is second-order stationary [i.e., satisfied equations (8.1)
and (8.2)], then

γ (h) = C(0) − C(h).

If C(h) −→ 0 as ‖h‖ −→ ∞, then γ (h) −→ C(0). So C(0) is the variance of
Z(s) and the sill of the semivariogram. When there is a nugget effect, the partial
sill is defined as the difference between the process variance (sill) and the nugget
effect, or C(0) − c0. The term relative nugget effect refers to the percentage of the
total sill comprised of the nugget effect. Formally, the range of the semivariogram
in the direction r0/‖r0‖ is the smallest length ‖r0‖ such that γ (r0(1 + ε)) = C(0)

for any ε > 0 (i.e., for any distance larger than ‖r0‖, the semivariogram equals the
sill). Practically, for any fixed direction, it is the minimum distance, r , for which
γ (r) = C(0).

Sometimes, particularly if we are comparing two spatial processes, it is useful to
use a measure of correlation instead of covariance. Thus, we can define the spatial
correlogram as

ρ(h) = C(h)/C(0).

The definition of ρ(h) is analogous to that of a typical correlation [i.e., scaled so
that |ρ(h)| ≤ 1].

Since these functions are all related, why do we use the semivariogram instead of
a covariance function? Theoretically, the class of intrinsically stationary processes
(those with a valid semivariogram) is more general than the class of second-order
stationary processes (those with a valid covariance function). But only barely, and
processes that have a semivariogram but not a covariance function rarely arise in
public health applications. The curious can refer to Cressie (1993, p. 68) for an
example of a process (Brownian motion) for which γ (·) is defined but C(·) is not.
A practical reason for preferring the semivariogram to the covariance function is
that estimation of the semivariogram from the data observed is more reliable than
estimation of the covariance function, since estimation of the semivariogram does
not require estimation of the mean (see Cressie 1993).
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8.2.2 Parametric Isotropic Semivariogram Models

There are many parametric functions that satisfy the properties of the semivari-
ogram (see, e.g., Journel and Huijbregts 1978; Chilès and Delfiner 1999). We say
that a semivariogram model is valid in d dimensions (i.e., in �d ) if it satisfies
the conditional negative-definite property defined in Section 8.2 [equation (8.4)].
A closer look at some of these will give us a better understanding of the semivar-
iogram and its relationship to the spatial process of interest. We also use these as
models for the empirical semivariogram in Section 8.2.4. Since these are isotopic
models, we write them in terms of a generic lag distance, denoted h. Graphs of
these theoretical semivariograms illustrate their differences (Figure 8.2).
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FIG. 8.2 Selected theoretical semivariogram models.
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• Spherical:

γ (h; θ) =



0, h = 0
c0 + cs

[
(3/2)(h/as) − (1/2)(h/as)

3
]
, 0 < h ≤ as

c0 + cs, h > as,

(8.5)

where θ = (c0, cs, as)
′; c0 ≥ 0, cs ≥ 0, as > 0. It is valid in �d, d = 1, 2, 3.

The spherical semivariogram is nearly linear near the origin. The parameter
c0 measures the nugget effect, cs is the partial sill (so c0 + cs is the sill), and
as is the range.

• Exponential:

γ (h; θ) =
{

0, h = 0
c0 + ce

[
1 − exp(−h/ae)

]
, h > 0,

(8.6)

where θ = (c0, ce, ae)
′; c0 ≥ 0, ce ≥ 0, ae > 0. It is valid in �d, d ≥ 1. The

exponential semivariogram rises more slowly from the origin than does the
spherical semivariogram. As with the spherical model, c0 is the nugget effect
and ce is the partial sill (so c0 + ce is the sill). However, this model approaches
the sill asymptotically, so the range is not ae, since γ (ae) 
= c0 + ce. The
“effective range” (traditionally defined as the distance at which the autocor-
relation is 0.05) is 3ae.

• Gaussian:

γ (h; θ) =
{

0, h = 0
c0 + cg

{
1 − exp[−(h/ag)

2]
}
, h > 0,

where θ = (c0, cg, ag)
′; c0 ≥ 0, cg ≥ 0, ag > 0. It is valid in �d, d ≥ 1. The

Gaussian semivariogram model is parabolic near the origin, indicative of a
very smooth spatial process. Many argue that such processes rarely arise in
practice, although the Gaussian model is often deemed best by automatic
model-fitting criteria. This is a valid semivariogram model; however, its use
can often lead to singularities in spatial prediction equations (Davis and Mor-
ris 1997). Wackernagel (1995) calls it “pathological” since it corresponds to a
deterministic process and thus contradicts the underlying randomness assump-
tion in geostatistics. Although we do not take such an extreme view, we do
recommend that the Gaussian semivariogram model only be used with cau-
tion and never without a lot of closely spaced data to assess behavior near
the origin. Similar to the previous models, c0 measures the nugget effect and
cg is the partial sill (so c0 + cg is the sill). The effective range is

√
3 ag .

• Power:

γ (h; θ) =
{

0, h = 0
c0 + bhp, h > 0,
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where θ = (c0, b, p)′; c0 ≥ 0, b ≥ 0, 0 ≤ p < 2. It is valid in �d , d ≥ 1.
Models in this family do not have a sill or a range, so spatial correlation
does not level off for large lag distances. They play an important role in frac-
tal processes and the estimation of the fractal dimension [see Gallant et al.
(1994) for a comparative overview of fractal dimension estimation]. The lin-
ear model, obtained by taking p = 1, is the most common member of this
class.

• Stable:

γ (h; θ) =
{

0, h = 0
c0 + ct {1 − exp[(−h/at )

α]} , h > 0,

where θ = (c0, ct , at , α)′; c0 ≥ 0, ct ≥ 0, at > 0, 0 ≤ α ≤ 2. It is valid in
�d, d ≥ 1. Near the origin, models in the stable semivariogram family have
the same behavior as models in the power family. The behavior near the origin
is determined by α. However, they do reach a sill (c0 measures the nugget
effect and ct is the partial sill, so c0 + ct is the sill). As with the exponential
model that is a member of this family, models in this family approach the sill
asymptotically, so the range is not at . The effective range depends on both at

and α. Given at , models with smaller values of α will approach the sill more
slowly.

• K-Bessel (Matérn):

γ (h; θ) =



0, h = 0

c0 + ck

[
1 − 1

2α−1�(α)

(
h

ak

)α

Kα
h

ak

]
, h > 0,

where θ = (c0, ck, ak, α)′; c0 ≥ 0, ck ≥ 0, ak > 0, α ≥ 0, Kα(·) is the modi-
fied Bessel function of the second kind of order α, and �(·) is the gamma
function. It is valid in �d, d ≥ 1. This family of models has long been referred
to as the K-Bessel model in geostatistics, due to its dependence on Kα(·).
Recently, statisticians rediscovered the utility of this family and renamed it
the Matérn class, based on its initial presentation by Matérn (1960). Here, c0
measures the nugget effect and ck is the partial sill (so c0 + ck is the sill).
Models in this family approach the sill asymptotically. As in the stable family,
the behavior near the origin is determined by α, and the parameter ak con-
trols the range. The Gaussian semivariogram model is obtained in the limit by
letting α → ∞, and the exponential semivariogram corresponds to the case
where α = 1

2 . An advantage of this family of models (and the stable family)
is that the behavior of the semivariogram near the origin can be estimated
from the data rather than assumed to be of a certain form. However, the com-
putation of Kα(·) needed for this estimation is cumbersome and, as for the
Gaussian model, requires some closely spaced data.
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• Cardinal-Sine:

γ (h; θ) =



0, h = 0

c0 + cw

(
1 − aw

h
sin

h

aw

)
, h > 0,

where θ = (c0, cw, aw)′; c0 ≥ 0, cw ≥ 0, aw > 0. It is valid in �d, d = 1, 2, 3.
The cardinal-sine model is one member of a family of models called hole-
effect models that are parameterized by a more general form called the J-
Bessel model [see Chilès and Delfiner (1999) for the equation of the J-Bessel
model]. These models, and the cardinal-sine model in particular, are useful
for processes with negative spatial autocorrelation or processes with cyclical
or periodic variability. It reaches a maximum and then continues to oscillate
around the sill with a period of aw.

There are many more parametric semivariogram models not described here [see,
e.g., Armstrong (1999), Chilès and Delfiner (1999), and Olea (1999) for several
others]. In addition, the sum of two semivariogram models that are both valid in
�d is also a valid semivariogram model in �d , so more complex processes can be
modeled by adding two or more of these basic semivariogram models (Christakos
1984). Semivariogram models created this way are referred to as models of nested
structures. Note that a model valid in �d2 is also valid in �d1 , where d2 > d1, but
the converse is not true. An important example is the piecewise linear or “tent”
function:

γ (h; θ) =



0, h = 0
c0 + csh, 0 ≤ h ≤ as

c0 + cs, h > as,

(8.7)

where θ = (c0, cs, as)
′; c0 ≥ 0, cs ≥ 0, as ≥ 0. This model is a valid semivari-

ogram in �1 but not in �2. Thus, this model should not be used with spatial
processes.

8.2.3 Estimating the Semivariogram

The semivariogram can be estimated easily from data {Z(si ) : i = 1, . . . , N} under
the assumption of intrinsic stationary so that equations (8.1) and (8.3) hold. Using
rules of expectation, we can write the variogram as

2γ (h) = Var(Z(s + h) − Z(s))

= E[(Z(s + h) − Z(s))2] − [E(Z(s + h) − Z(s))]2.

From equation (8.1), E[Z(si )] = µ for all i, so the second term is zero. Thus, to
estimate the variogram we need only estimate E[(Z(s + h) − Z(s))2]. Since expec-
tations are just statistical averages, one way to estimate this term is to average all
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observed squared differences [Z(si ) − Z(sj )]2 for pairs of observations taken the
same distance apart in the same direction (i.e., for all si , sj such that si − sj = h).
This is the rationale behind the method of moments estimator of the semivariogram,
given by

γ̂ (h) = 1

2|N(h)|
∑
N(h)

[Z(si ) − Z(sj )]
2, h ∈ �2, (8.8)

where N(h) is the set of distinct pairs separated by h [i.e., N(h) = {(si , sj ) :
si − sj = h, i, j = 1, . . . , N} and |N(h)| = the number of distinct pairs in N(h)].

Equation (8.8) gives what is often referred to as the classical semivariogram
estimator. It gives point estimates of γ (·) at observed values of h. If the pro-
cess is isotropic, we need only consider pairs lagged ||h|| apart. If the process is
anisotropic, the semivariogram can be estimated in different directions by selecting
a particular direction and averaging pairs of data lagged ||h|| apart in that particular
direction.

If we have data on a regular grid, we can easily define the lag distances, ||h||,
and the directions using the grid. With irregularly spaced data, there may be only
one pair of locations that is h apart (two for ‖h‖). Averages based on only one or
two points are poor estimates with large uncertainties. We can reduce this variation
and increase the accuracy of our point estimates by allowing a tolerance on the
lags. Thus, we will define tolerance regions and group the sample pairs into these
regions prior to averaging. This is analogous to the procedure used in making a
histogram, adapted to two dimensions (see Figure 8.3). We average the pairwise
squared differences for pairs of points in the tolerance regions to produce point
estimates of the semivariogram at the average lag distances in each region. Each
region should be small enough so that we retain enough spatial resolution to define
the structure of the semivariogram, but also large enough so that we base each point
estimate on a relative large number of paired differences. Typically, one specifies
tolerance regions through the choice of five parameters: the direction of interest; the
angle tolerance, which defines a sector centered on the direction of interest; the lag
spacing, which defines the distances at which the semivariogram is estimated; the
lag tolerance, which defines a distance interval centered at each lag; and the total
number of lags at which we wish to estimate the semivariogram. Tolerance regions
should include at least 30 pairs of points each to ensure that the empirical semivar-
iogram at each point is well estimated (Journel and Huijbregts 1978). Usually, a set
of directions and associated angle tolerances are chosen together so that they com-
pletely cover two-dimensional space. For example, we might choose the four main
directions east-west, north-south, northeast-southwest, and northwest-southeast, and
an angle tolerance of 22.5◦. This partitions the space into four sectors that cover the
plane completely. A more complete analysis of potential anisotropies might specify
directions every 10◦ with a 5◦ angle tolerance. An isotropic semivariogram results
when the angle tolerance is 90◦, so we use all pairs to estimate the semivariogram.
In a similar fashion, one typically defines distance classes by specifying the lag
spacing and lag tolerance (directly analogous to the class spacing and number of
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classes in a histogram). As a rule of thumb, one should construct these intervals
so that the total number of lags is between 10 and 20 in order to see the structure
of the semivariogram. Finally, note that estimates of the semivariogram at large
lags rely only on points at the opposite ends of the domain. This usually results
in very few pairs of data locations and wide variation in the estimates. Thus, in
practice, we usually take the maximum lag distance to be about half the maximum
separation distance (Journel and Huijbregts 1978). One should be careful of the
use of very short maximum lag distances. The semivariogram is a picture of your
data spatially: the sill and the range, if they exist, provide estimates of the process
variance and the zone of influence of the observations, and information at larger
lags can indicate large-scale trends that may be important to interpret.

DATA BREAK: Smoky Mountain pH Data The pH of a stream can affect
organisms living in the water, and a change in the stream pH can be an indicator
of pollution. Values of pH can range from 0 to 14, with 7 considered neutral;
values less than 7 are termed acidic while pH values greater than 7 are called
alkaline. Acidic stream water (with pH < 5) is particularly harmful to fish. In a
study of the chemical properties of streams in the mid-Atlantic and southeastern
United States, Kaufman et al. (1988) measured water pH at many locations within
the Great Smoky Mountains. The locations of these measurements are shown in
Figure 8.4. The relative variation in the pH values is also indicated in Figure 8.4,
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FIG. 8.4 Smoky Mountain pH sampling locations. Distances are measured in miles.

with the darker circles indicating higher values of pH. Initially, we assume that
the water pH process is isotropic and estimate what is called an omnidirectional
semivariogram. Here, we are simply concerned with the distances between points
and not in directional variation. Since the data do not lie on a regular grid, we will
have to define tolerance regions (which for an omnidirectional semivariogram are
tolerance intervals on the lag distances) for semivariogram estimation.
We begin with the following specifications as a starting point: Let the maximum
lag distance be one-half the maximum separation distance, which in our case is√

(43.2 + 55.4)2 + (72.3 + 79.2)2/2 = 90.4 miles; set the number of lags equal to
20 (arbitrarily chosen); take the lag spacing = maximum lag distance/number of
lags, or 4.5 miles; and set the lag tolerance = lag spacing/2, in this case 2.3 miles.
Using these defaults with the pH values, we obtain the empirical semivariogram
in shown Figure 8.5. The distance column gives the average distance between
locations in each tolerance interval. It is also common simply to use the midpoint
of each tolerance interval to indicate the spacing of the intervals. Notice that the
estimates of the semivariogram at the first few lags are based on only a few pairs
of observations and may not be very accurate. Also, the empirical semivariogram
is a bit noisy and we may be able to obtain a clearer structure by taking a larger
tolerance interval of, say, 10 miles. We may also want to extend the maximum
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FIG. 8.5 Empirical semivariogram of pH values. The lag spacing is 4.5 miles.

lag distance to be sure that there is a well-defined sill. The resulting empirical
semivariogram is shown in Figure 8.6.

The latter empirical semivariogram shows a much clearer relationship. It is
always a good idea to experiment with several choices for the maximum lag dis-
tance and lag spacing. Semivariogram estimation is a mixture of both science and
art. The goal is accurate estimation, a clear structure, and at least a total of 10 to
20 lags for modeling and inference. The guidelines presented here should work
well in many applications. However, in others, the empirical semivariogram may
appear erratic for many reasonable choices of the lag spacing and lag tolerance.
Common problems with semivariogram estimation and more complex solutions are
discussed in Section 8.4.1.

8.2.4 Fitting Semivariogram Models

The empirical semivariogram, γ̂ (·), is not guaranteed to be conditionally nonneg-
ative definite. This is not a problem if we limit ourselves to inferences about the
spatial continuity of the process, but it can lead to problems when used for spatial
prediction and mapping where we need reliable estimates of prediction uncertainty.
Thus, we will need to find a valid theoretical semivariogram function that closely
reflects the features of our empirical semivariogram. We limit our choices to a
parametric family of theoretical variograms (like those described in Section 8.2.2)
and seek to find the parameter estimates that best fit the data.

Nonlinear Least Squares Regression The idea here is to select a theoretical
semivariogram family and find a vector of parameters θ̂ that makes this theoretical



SEMIVARIOGRAMS 285

Lag Distance g (h) N(h)

〈

1
2
3
4
5
6
7
8
9

10
11
12
13

2.77
11.33
20.49
30.42
39.98
49.75
59.64
69.67
79.23
89.55
99.86

110.30
119.87

0.04
0.13
0.14
0.17
0.18
0.18
0.21
0.27
0.21
0.23
0.23
0.22
0.22

19
138
249
341
352
314
310
281
184
192
138
101
68

0.
30

0.
25

0.
20

0.
15

0.
10

0.
05

0.
00

0 20 40

Distance
E

m
pi

ric
al

 s
em

iv
ar

io
gr

am
60 80 100 120

FIG. 8.6 Empirical semivariogram of pH values. The lag spacing is 10 miles.

model “close” to the empirical semivariogram. Let γ̂ (·) be the empirical semi-
variogram estimated at K lags, h(1), . . . , h(K) and let γ (h; θ) be the theoretical
semivariogram model whose form is known up to θ . Since the relationship between
γ̂ (h) and h is usually nonlinear, nonlinear least squares regression can be used to
estimate θ .

Nonlinear ordinary least squares (OLS) finds θ̂ minimizing the squared vertical
distance between the empirical and theoretical semivariograms, that is, minimizing

K∑
j=1

[
γ̂ (h(j)) − γ (h(j); θ)

]2
.

However, the estimates [γ̂ (h(j))] are correlated and have different variances,
violating the general assumptions underling OLS theory. The usual statistical adjust-
ment to OLS when observations are correlated and heteroskedastic is generalized
least squares (GLS). Cressie (1985) applied nonlinear GLS to semivariogram esti-
mation, finding θ̂ minimizing the objective function

[γ̂ − γ (θ)]′V (θ)−1[γ̂ − γ (θ)],

where γ̂ = [γ̂ (h(1)), . . . , γ̂ (h(K))]′ with variance–covariance matrix V (θ) and
γ (θ) = [γ (h(1); θ), . . . , γ (h(K), θ)

]′. Since V (θ) depends on θ and θ is
unknown, this estimator is computed iteratively from starting values (one for each
parameter in θ) that are improved (using, e.g., the Gauss–Newton algorithm) until
the objective function is minimized. Taking V (θ) ≡ I gives the OLS estimator, and
taking V (θ) ≡ diag{Var[γ̂ (h(1))], . . . , Var[γ̂ (h(K))]} gives a nonlinear weighted
least squares (WLS) estimator.

Determining the elements of V (θ) requires knowledge of the fourth-order
moments of Z. Although these have been derived (see Cressie 1985), they are
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tedious to compute. Cressie (1985) showed that a nonlinear WLS estimator
based on

var[γ̂ (h(j))] ≈ 2[γ (h(j); θ)]2/N(h(j)) (8.9)

yields an estimation procedure that often works well in practice. Thus, weighting
the OLS objective function inversely proportional to the (approximate) variance of
the empirical semivariogram estimator gives an estimator of θ that minimizes the
weighted regression sum of squares:

WRSS(θ) = 1

2

K∑
j=1

N(h(j))

[γ (h(j); θ)]2

[
γ̂ (h(j)) − γ (h(j); θ)

]2
. (8.10)

This approach is an approximation to WLS and offers a pragmatic compromise
between OLS and GLS. It gives more weight where there is more “data” [large
N(h(j))] and near the origin [small γ (h; θ)], thus improving on OLS. Although
it will not be as efficient as GLS, the ease of computation is a definite advantage.
It can be used even when the data are not Gaussian, and empirical studies have
shown (e.g., Zimmerman and Zimmerman 1991) this approach to be fairly accurate
in a variety of practical situations.

An approximation to the covariance matrix of θ̂ can also be obtained from
the regression, based on the matrix of partial derivatives of γ (h; θ) with respect to
each parameter in θ . Approximate confidence limits are then θ̂ ± tK−g,1−α/2s.e.(̂θ),
where s.e.(̂θ) is the standard error of θ̂ , tK−g,1−α/2 is the 1 − α/2 percentage point
of a t-distribution with K − g degrees of freedom, and g = dim(θ). Textbooks
on nonlinear regression (e.g., Seber and Wild 1989) provide the theoretical and
computational details of nonlinear regression.

Maximum Likelihood Estimation If the data, Z, follow a multivariate Gaussian
distribution with mean 1µ (here 1 is a vector of 1’s) and variance–covariance
matrix �(θ), likelihood-based techniques can be used to estimate θ . Maximizing
the multivariate Gaussian likelihood with respect to θ yields the maximum like-
lihood estimator (MLE) of θ . With restricted maximum likelihood (REML), the
likelihood derived from error contrasts (or differences) of the data is maximized.
Since maximizing the likelihood is equivalent to minimizing twice the negative log
likelihood, in practice, the following objective functions are minimized:

ML: l(θ) = log(|�(θ)|) + (Z − 1µ)′�(θ)−1(Z − 1µ) + N log(2π)

REML: lR(θ) = (N − 1) log(2π) + log(|�(θ)|) + log(|1′�(θ)−11|)
+Z′{�(θ)−1 − �(θ)−11(1′�(θ)−11)−11′�(θ)−1}Z.

An approximate covariance matrix of θ̂ can be obtained as the inverse of the
Fisher information matrix. Approximate confidence limits are then θ̂ ± z1−α/2s.e.(̂θ),
where s.e.(̂θ) is the standard error of θ̂ , and z1−α/2 is the 1 − α/2 percentage
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point of a standard normal distribution. Searle et al. (1992) is a good reference
text for the computational details and distributional properties of likelihood-based
estimators.

Empirical Model Comparison A major advantage of statistical approaches to
fitting semivariogram models (as opposed to fitting them “by eye” as is often done
in many disciplines) is the availability of objective criteria for comparing the fits of
two or more competing models. Although the details depend on whether nonlinear
least squares (NLS) or likelihood-based (LB) approaches are used to estimate the
model parameters, such criteria take three broad forms.

1. Single-parameter tests. These are Wald tests for each parameter computed
as θ̂i/s.e.(θ̂i). For NLS, this test statistic is compared to a t-distribution on
K − g degrees of freedom, and for LB tests, it is compared to a standard
normal distribution. Such tests are similar to the familiar significance tests
for individual parameters in a linear regression.

2. Full and reduced model tests. The best-fitting model should have the smallest
value of the objective function [either WRSS(θ ), l(θ ), or lR(θ )]. The question
is whether or not the difference in these criteria between two models is
“significant.” When the two candidate models are nested (i.e., one is a special
case of the other obtained by putting one or more of the parameters equal to
zero), formal tests can be made.

Consider comparing two models of the same form, one based on param-
eters θ1 and a larger model based on θ2, with dim(θ2) > dim(θ1) (i.e., θ1
is obtained by setting some parameters in θ2 equal to zero). With NLS, the
test statistic for testing H0 : γ (h; θ) = γ (h; θ1) vs. H1 : γ (h; θ) = γ (h; θ2)

is (Webster and McBratney 1989)

WRSS(θ1) − WRSS(θ2)

dim(θ2) − dim(θ1)

/
WRSS(θ2)

K − dim(θ2)
, (8.11)

and the test is made by comparing this statistic to an F distribution with
(dim(θ2) − dim(θ1), K − dim(θ2)) degrees of freedom. With REML, the
comparable test is based on comparing

lR(θ2) − lR(θ) (8.12)

to a χ2 with dim(θ2) − dim(θ1) degrees of freedom. [An analogous test
can be done for ML using l(θ).] An important exception occurs when the
parameters to be tested lie on the boundary of the parameter space. In such
cases, the test statistic in equation (8.12) is a mixture of χ2 distributions.
Such boundary exceptions arise in practice when testing whether variance
components (e.g., nugget and sill) are equal to zero. If we are testing only
one of these variance components against 0, the test statistic has a distribution
that is a 50:50 mixture of a degenerate χ2 that places all mass at {0} and a
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χ2 with dim(θ2) − dim(θ1) degrees of freedom (Self and Liang 1987; Littell
et al. 1996). Thus, to make the test, simply divide by 2 the p-value obtained
from a χ2 with dim(θ2) − dim(θ1) degrees of freedom.

3. Penalized objective functions. The tests described above should be used with
caution. Wald tests can be unreliable with small samples and for variance
components that have a skewed distribution. The full and reduced F-test is
based on assumptions of independence and normality, assumptions not met
by the empirical semivariogram. Moreover, when the models are not nested
(e.g., we want to compare the fit of a spherical to that of an exponential),
full and reduced tests are not applicable, even for likelihood-based methods.
Thus, rather than relying on a statistical test, we should simply choose the
model that has the smallest value for the objective function. Since the value of
this function is reduced by increasing the number of parameters in the model,
other criteria that penalize the objective functions for additional parameters
have been developed. Akaike’s information criterion (AIC) (Akaike 1974)
is perhaps the most commonly used of these. This criterion was originally
developed for likelihood methods and then adapted to regression fitting of
semivariogram models by Webster and McBratney (1989):

AIC(θ) = K log

(
WRSS(θ)

K

)
+ 2p (NLS) (8.13)

AIC(θ) = lR(θ) + 2p, (REML) (8.14)

where p is the number of parameters in the model. We should prefer the
model with the smallest AIC value.

Practical Notes on Model Fitting There are many different ways to parameterize
each semivariogram model (particularly the exponential, Gaussian, and K-Bessel
models), and different computer software programs may use slightly different
forms. Also, some programs simply ask for or return “the range” and “the sill,”
which may or may not be one of the parameters of the model. It is a good idea
to check the software manual or online help for the equation of each model to be
sure of the exact form of the models you are using.

Good starting values are very important in iterative fitting methods. We rec-
ommend using a parameter search to determine good starting values, even if you
feel your initial values are very close. If convergence is still a problem, using
a different optimization approach (e.g., use of the Marquardt method in NLS or
Fisher scoring in LB methods) may be helpful (Seber and Wild 1989). NLS can be
affected adversely by a noisy semivariogram, so you may need to try a different lag
spacing to define the structure of the semivariogram more clearly. LB methods are
based on a covariance function, not on a semivariogram, and they do not calculate
an empirical covariance function analogous to equation (8.8). They also use all
the data to estimate the model parameters, whereas the empirical semivariogram is
often estimated only for lags less than half the maximum separation distance. Thus,
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judging the model fits from LB approaches by superimposing the fitted model on
the empirical semivariogram can be misleading.

Finally, remember that although the semivariogram is estimated from the data
available, it is describing the variability of a spatial process. So even though a
particular model is deemed best for a particular data set by a statistical comparison,
it may not be the best choice. For example, the Gaussian model is often selected as
best with automatic fitting criterion, but it also corresponds to a process that is often
unrealistically smooth. Ultimately, the final choice of model should reflect both the
results of the statistical model fitting procedure and an interpretation consistent
with the scientific understanding of the process being studied.

DATA BREAK: Smoky Mountain pH Data (cont.) To continue our Smoky
Mountain pH data break, consider fitting a theoretical semivariogram model to
the empirical semivariogram shown in Figure 8.6. The semivariogram appears to
reach a definite sill, but we do not have a lot of information about the shape
of the semivariogram near the origin or the value of the nugget effect. In the
absence of such information, a model that is approximately linear near the origin
is a good choice since it does not assume that the process is too smooth. Thus
either an exponential model or a spherical model might be a good choice. The

Table 8.1 Weighted Nonlinear Least Squares Fit of the
Exponential Model to the Empirical Semivariogram in Figure 8.6a

Approximate Approximate 95%
Parameter Estimate Standard Error Confidence Limits

ae 34.432 12.352 (6.909, 61.955)
ce 0.191 0.025 (0.137, 0.246)
c0 0.057 0.025 (0.002, 0.111)

WRSS(̂θ) = 26.81 with 10 degrees of freedom

aWRSS is the weighted residual sum of squares as discussed in the text.

Table 8.2 Weighted Nonlinear Least Squares Fit of the Spherical
Model to the Empirical Semivariogram in Figure 8.6a

Approximate Approximate 95%
Parameter Estimate Standard Error Confidence Limits

as 110.312 31.939 (39.138, 181.521)
cs 0.185 0.026 (0.126, 0.243)
c0 0.084 0.016 (0.048, 0.121)

WRSS(̂θ) = 29.28 with 10 degrees of freedom

aWRSS is the weighted residual sum of squares as discussed in the text.
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values of pH may have some measurement error associated with them, so we
initially include a nugget effect in both models. The NLS fit statistics for the
exponential model are shown in Table 8.1, and those for the spherical model are
given in Table 8.2. (These results depend on the options used in the NLS fitting.
We compared the results from three different software packages using their default
options and obtained different results from each. Hence your results may differ from
those presented here, but they should be close.) The fitted models are superimposed
on the empirical semivariogram in Figures 8.7 and 8.8.

Since the models contain the same number of parameters, comparing AIC criteria
computed from equations (8.13) is the same as comparing the weighted residual
sums of squares [shown as WRSS(̂θ ) in each table]. Since the fit to the exponential
model has the smallest WRSS, this model fits the empirical semivariogram better
than the spherical model.

We have several criteria to help us decide whether or not a nugget effect
is needed. First, the Wald confidence limits do not contain zero, indicating that
the nugget effect is significantly different from 0. Refitting the model without a
nugget effect gives WRSS = 36.89, much higher than WRSS = 26.81 for the full
model. The full and reduced F statistic is then (36.89 − 26.81)/1/(26.81/10) =
3.76 on (1,10) degrees of freedom, giving a corresponding p-value for the test
of 0.08. Although this is not technically significant at 0.05, it is significant at
0.10 and provides some evidence against our null hypothesis of a zero nugget
effect. Finally, a comparison of the AIC criteria gives AIC = 15.41 for the full
model and AIC = 17.56 for the reduced model. Taken together, these statistics
lead us to conclude that including a nugget effect probably results in a better-fitting
model.
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FIG. 8.7 Exponential model fit to the empirical semivariogram of pH values.
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FIG. 8.8 Spherical model fit to empirical semivariogram of pH values.

8.2.5 Anisotropic Semivariogram Modeling

The nature of the semivariogram may change with direction. Then γ (h) will be
a function of both the magnitude and direction of the lag vector h. Such spatial
processes are referred to as anisotropic. Anisotropies result from the differential
behavior of a physical process. For example, the pH of a stream may vary with
the direction of stream flow. Although anisotropic processes are probably more
common than isotropic ones, they receive less attention in the literature because
they are more difficult mathematically and require more data for inference.

Since we must refer to direction as well as distance, we need a way to describe
directions succinctly. The term northwest is too vague, and notation such as
“N30◦E” can be too cumbersome. In this book, we report directions as an angle, φ,
measured in degrees counterclockwise from east. This allows the use of standard
geometrical definitions.

Geometric Anisotropy Geometric anisotropy is a particular type of anisotropy
characterized by two properties: (1) the directional semivariograms have the same
shape and sill but different ranges; and (2) the semivariogram in direction φ has
the maximum range of any direction, amax, and perpendicular to this direction,
the semivariogram in direction φ ± 90◦ has the minimum range of any direction,
amin, and all the ranges delineate an ellipse with major and minor radii equal to
amax and amin, respectively. This is depicted graphically in Figure 8.9. To work
with anisotropy we need to construct anisotropic semivariogram models that are
conditionally negative definite. To do this, we adapt the isotropic semivariogram
models described in Section 8.2.2 using elliptical geometry. Eriksson and Siska
(2000) provide an excellent discussion of anisotropy, and our presentation draws
greatly from their work.
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FIG. 8.9 Geometric anisotropy. The maximum range is in the direction φ. The points si and sj are
separated by a distance hij in the direction ηij = ξij + φ. [Adapted from Eriksson and Siska (2000).]

Let u and v be the axes defined by the major and minor axes of the ellipse and
convert these to rectangular coordinates:

u = aξ cos ξ, v = aξ sin ξ, with aξ =
√

u2 + v2.

Here ξ is the angle between the vector −→sisj and the u-axis relative to the (u, v)

coordinate system and aξ is the range (length) in the direction ξ . Then, substituting
into the equation of an ellipse, u2/a2

max + v2/a2
min = 1, gives

a2
ξ cos2 ξ

a2
max

+ a2
ξ sin2 ξ

a2
min

= 1.

So, relative to the u, v coordinate system, the range in direction ξ is

aξ = amaxamin

/√
a2

min cos2 ξ + a2
max sin2 ξ . (8.15)

With respect to the original x, y coordinate system, the vector −→sisj makes an angle
ηij = ξij + φ which, with respect to the u, v system, is the same as the angle
ξij = ηij − φ. Thus, the range in direction ηij is

aηij
= amaxamin

/√
a2

min cos2(ηij − φ) + a2
max sin2(ηij − φ) .



SEMIVARIOGRAMS 293

This now plays the role of the usual range parameter in an isotropic semivariogram
model. For example, using a spherical model with unit sill and zero nugget effect,
a geometric anisotropic model can be written as

γ (h, η; θ) =




0 for h = 0

3

2


h

√
a2

min cos2(η − φ) + a2
max sin2(η − φ)

amaxamin




−1

2


h

√
a2

min cos2(η − φ) + a2
max sin2(η − φ)

amaxamin




3

for 0 ≤ h ≤ amaxamin/

√
a2

min cos2(η − φ) + a2
max sin2(η − φ)

1 otherwise
(8.16)

where θ = (amin, amax, φ)′.
Unfortunately, few books or papers ever write anisotropic models in this form.

Instead they usually describe a method of rotation and shrinkage and a “reduced
distance” notation. The idea here is first to rotate the coordinate axes so they are
aligned with the major and minor axes of the ellipse. Then shrink the axes so that
the ellipse is now a circle with radius 1. This can be done using

h′ =
[

1/amax 0
0 1/amin

] [
cos φ sin φ

− sin φ cos φ

] [
xij

yij

]

≡
[

1/amax 0
0 1/amin

] [
uij

vij

]
, (8.17)

where uij and vij are distance components of si − sj in the u and v directions
relative to the u and v axes, and xij and yij are the same distance components
in the x and y directions relative to the x and y axes. After transformation, the
ellipse is now a circle with radius 1, so isotropic semivariogram models can be used
with the transformed distances. Continuing with our example of a spherical model
without a nugget effect, the value of the anisotropic model in various directions is
equal to the value of the isotropic semivariogram with range 1 using

||h′|| =
√√√√u2

ij

a2
max

+
v2

ij

a2
min

. (8.18)
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The quantity ||h′|| given in equation (8.18) is called the reduced distance. Then,
the values of the anisotropic semivariogram model given in equation (8.16) are
equal to

Sph1(||h′||) =




0, ||h′|| = 0

(3/2)||h′|| − (1/2)||h′||3, 0 ≤ ||h′|| ≤ 1

1, otherwise,

(8.19)

where Spha(·) denotes an isotropic spherical semivariogram model with zero nugget
effect, unit sill, and range a (Isaaks and Srivastava 1989). In this formulation the
dependence on direction is not obvious but is implicit in the reduced distance (each
pair of points may have different distance components). A geometric argument for
the use of the reduced distance can be found in Eriksson and Siska (2000).

Zonal Anisotropy The term zonal anisotropy refers to the case where the sill
changes with direction but the range remains constant. This type of anisotropy
is common with three-dimensional spatial processes, where the vertical direction
(depth, height, or time) behaves differently from the two horizontal directions. To
model zonal anisotropy, assume that in the direction φ, the sill is cmax, the sill
in the direction perpendicular to φ is cmin, and denote the constant range by a.
This type of anisotropy is usually modeled using the sum of two isotropic semi-
variogram models, referred to as structures. (Recall from Section 8.2 that the sum
of two valid semivariograms is also a valid semivariogram.) The first structure is
an isotropic model with sill cmin and range a. The second structure is a contrived
geometric model with sill cmax − cmin. The range in the direction of maximum sill
is taken to be the common range a and the range in the direction of minimum sill
is set to a very large value so that this structure does not contribute to the overall
model in the direction of minimum sill. For example, suppose that the maximum
sill is 9 in the direction φ and that the smallest sill of 5 is observed in the perpen-
dicular direction. Assume that a spherical model can be used to fit both directions
and that the constant range is 100. Then the values for the zonal model can be
computed from

5 · Sph1(h/100) + 4 · Sph1(||h′||) with ||h′|| =
√

u2
ij

100
+

v2
ij

100,000
.

In the direction of minimum sill, the first component of the reduced distance used
in the second structure is zero and the contribution of the second term is negligible
because of the large range in this direction. Hence we obtain a spherical model
with range 100 and a sill of 5. In the direction of maximum sill, both structures
contribute to the computations, but the second component of the reduced distance
used in the second structure is negligible. Thus, the values can be obtained using
5 · Sph1(h/100) + 4 · Sph(h/100) = 9 · Sph(h/100).
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Detecting Anisotropy There are two primary tools used to explore anisotropy. The
first is a contour or image map of the empirical semivariogram surface. This map is
constructed by partitioning the domain into cells of length x in the x direction and
y in the y direction (so the “pixels” are rectangular tolerance regions). To calculate
the empirical semivariogram for locations separated by h = (hx, hy), we average
the pairs separated by hx ± x in the x direction and by hy ± y in the y direction.
Then we draw a contour or image map depicting the empirical semivariogram as
a function of the x and y distances. The center of the map corresponds to (0,0),
with distances increasing in each direction from this central point. If the process
is isotropic, no strong directional trends will be evident in the map and we should
see circular contours. Elliptical contours indicate anisotropy and the direction of
maximum range or sill will be indicated by a trough of low values connected in a
particular direction. This type of map is a good visual tool for detecting anisotropy
and suggesting plausible anisotropic models.

Contour plots can be difficult to use for modeling where we need more precise
values for the nugget effect, ranges, and the sills. Directional empirical semivar-
iograms are used to determine these. Directions of interest may be indicated by
the contour map of the semivariogram surface, determined from scientific infor-
mation, or investigated systematically going from 0◦ in increments of d◦. Once a
suite of directional semivariograms is estimated from the data, the first place to
start is to see if the process exhibits geometric anisotropy. Fix a common nugget
effect and sill and then record the range in each direction. It may be useful to plot
the length of each range as a line in the direction of interest; this plot is called
a rose diagram (Isaaks and Srivastava 1989). If geometric anisotropy is present,
the diagram will resemble an ellipse and the quantities for constructing a model
of geometric anisotropy can be read easily from this diagram. The same may be
done to investigate zonal anisotropy by fixing the range and the nugget effect and
plotting the sills.

When investigating anisotropy, patience, creativity, and flexibility are key. The
ellipses are based on semivariograms estimated from the data, and perfectly defined
ellipses are rare. Investigations of anisotropy split the data set, so directional semi-
variograms based on a much reduced sample size are consequently noisier. In many
applications, there will not be enough data to investigate anisotropy adequately,
and some compromises will have to made (e.g., consider only a few directions,
use large angle tolerances, assume isotropy). The semivariogram surface could
show several directions of anisotropy, and the directional semivariograms may
indicate both zonal and geometric anisotropy. An irregular domain can make an
isotropic process appear anisotropic. One of the advantages of interactive semi-
variogram modeling, such as that done by ESRI’s Geostatistical Analyst (Johnston
et al. 2001), is that it can show hypothetical fits of an anisotropic model to several
directions simultaneously. When the anisotropy is complicated, it may be easier to
consider a trend process model (see the data break following Section 9.1.2) since
systematic large-scale trends in the data can manifest themselves as directional spa-
tial autocorrelation. The difference between trend and anisotropy is subtle, and it
can simply be one of interpretation and preference (Zimmerman 1993; Gotway and
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Hergert 1997). Remember that all models are abstract approximations of reality;
the goal is not the model, but a good model that is defensible, parsimonious, and
reflects understanding of the spatial processes under study.

DATA BREAK: Smoky Mountain pH Data (cont.) In this portion of our
data break, we investigate anisotropy in the pH data. First, consider the semivar-
iogram surface displayed as an image map in Figure 8.10. This map was based
on a lag spacing of 12 miles (with a tolerance of ±6 miles) in both the x and y
directions. We initially chose a lag spacing of 10 miles based on the omnidirec-
tional semivariogram (Figure 8.6), but this resulted in too few pairs for estimation
in certain directions. After experimenting with several different choices for the lag
spacing, including choices that allowed different spacings in the x and y directions,
we decided that this lag spacing gave the best balance between reliable estimation
and map detail. From Figure 8.10 we can see a trough of low values oriented at
about 70◦, indicating strong spatial continuity in this direction (i.e., low variance
of pairwise differences for observations in the “trough”).

To explore this pattern further, we estimated four directional semivariograms,
starting with direction 70◦ and rotating counterclockwise 45◦, using an angle tol-
erance of ±22.5◦. We considered only four directions since, with only 75 data
points, restricting semivariogram estimation to data within small sectors may result
in poor estimates. Figure 8.11 indicates anisotropy, with the 70◦ direction showing
the largest range and smallest sill and the 160◦ direction showing the smallest range
and highest sill. Thus, there is evidence of anisotropy, but the type of anisotropy
is not immediately apparent. Since the sill and range depend on each other, fixing
one of these parameters allows us to vary the other. Since geometric anisotropy is
the simplest type of anisotropy, we start by fixing a common nugget effect and sill
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FIG. 8.10 Empirical semivariogram contour map for Smoky Mountain pH data.
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FIG. 8.11 Empirical directional semivariograms for Smoky Mountain pH data.

and then vary the ranges to see if a geometrically anisotropic model can adequately
fit these empirical semivariograms. We initially chose a common nugget effect of
0 since the 160◦ direction does not show a nugget effect and WLS estimation
will be easier without this extra parameter. Then, fixing φ = 70◦ and c0 = 0, we
used the estimates from all four directions to fit an exponential model with range
given in equation (8.15) using WLS. This gave ĉe = 0.2725, âmax = 36.25, and
âmin = 16.93, and the resulting fits are shown in Figure 8.12. Considering that we
have only 75 data points, the overall fit seems adequate, although the fit to the 70◦
direction could be improved by including a nugget effect, but only at the expense
of the fit in the 160◦ direction. Although we did have evidence of anisotropy, the
fit of the isotropic model from Table 8.1 to these directions seems almost equally
adequate. The isotropic model fit seems better in the 70◦ and 115◦ directions, but
worse in the 160◦ and 205◦ directions. However, the isotropic model is a much
simpler model. To help decide if a geometrically anisotropic model is better, we
can compare the AIC criteria from fitting this model to that obtained by refitting an
isotropic model to the directional semivariograms. This gives AIC = 67.95 for the
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FIG. 8.12 Empirical directional semivariograms and fitted models for Smoky Mountain pH data. The
solid curve is the fit of the geometric anisotropic model, and the dashed curve shows the fit of the
isotropic model.

geometrically anisotropic model and AIC = 72.99 for the isotropic model. Even
if we further penalize the geometrically anisotropic model for estimation of φ, it
appears that this model gives a slightly better fit than the isotropic model. Knowl-
edge of stream flow or other stream parameters affecting pH would also be helpful
in deciding between the two models.

In this analysis we assumed that the pH process was anisotropic and esti-
mated the direction of maximum continuity (range for geometric anisotropy and
sill for zonal anisotropy) “by eye” using the empirical semivariogram surface in
Figure 8.10. Instead of considering just four directions defined by nonoverlapping
sectors, we could have estimated empirical semivariograms every 20◦ (or so) using
an angle tolerance of 22.5◦ or even 45◦, allowing the binning sectors to over-
lap. This would have allowed us to construct a rose diagram of the ranges in each
direction and permitted a more refined estimate of the direction of maximum range,
although the notion of “different directions” in the case of overlapping sectors and
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large angle tolerances is rather vague. More precise and objective (e.g., WLS)
estimation of this direction requires many empirical directional semivariograms
(i.e., measured every 10◦ to 20◦) computed with a small angle tolerance. We usu-
ally do not have enough data to do this, and some compromise between many
blurred directions and a few more precise ones must be made. This compromise
must also balance precision and accuracy against the time and effort involved;
obtaining good estimates of many directional semivariograms can be a tedious
chore. One such compromise, based on smoothing of the semivariogram surface, is
implemented with ESRI’s Geostatistical Analyst (Johnston et al. 2001). A kernel
smoother, similar to those described in Chapter 5, is used to smooth the semivar-
iogram values in each cell of the semivariogram surface, borrowing strength from
values in neighboring cells. Locations are weighted based on their distance from
the center of each cell. A modified weighted least squares algorithm, implemented
in stages, can then be used to fit an anisotropic model to the smoothed surface.
Using this approach with the pH data, we obtained WLS estimates φ̂ = 69.6◦, ĉ0 =
0.0325, ĉe = 0.2015, âmax = 44.9, and âmin = 16.65. These values, computed from
the empirical semivariogram surface, are subject to errors induced by the rectan-
gular binning and the smoothing, but are obtained quickly and objectively (and the
fit is not all that different from that obtained previously with much greater effort).

8.3 INTERPOLATION AND SPATIAL PREDICTION

In exposure assessment, we may want to predict exposure at a location where we
have not recorded an observation, say at location s0. Interpolation is the process
of obtaining a value for a variable of interest [denoted here as Z(s0)] at an unsam-
pled location based on surrounding measurements. An example of the interpolation
problem is given in Figure 8.13. Here five data values are recorded at locations
s1, s2, s3, s4, and s5, and we would like to predict the value at s0 from these
observations.

It is often useful to have a map of the spatial variation in exposure. Gridding
refers to the systematic interpolation of many values identified by the nodes of a
regular grid. These interpolated values are then displayed graphically, usually by
means of a contour or surface map.

There are many methods for interpolating spatial data. These fall into two broad
classes: deterministic and probabilistic. Deterministic methods have a mathematical
development based on assumptions about the functional form of the interpolator.
Probabilistic methods have a foundation in statistical theory and assume a statistical
model for the data. When probabilistic methods are used for interpolation, they are
referred to as methods for spatial prediction. These predictors have standard errors
that quantify the uncertainty associated with the interpolated values. Deterministic
interpolators do not have a measure of uncertainty associated with them. Some-
times, interpolation methods can be developed from both points of view (as with
least squares regression, for example). We discuss two of the most commonly used
methods: inverse distance interpolation (deterministic) and kriging (probabilistic).
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FIG. 8.13 The interpolation problem. The numbers next to each line are distances.

Cressie (1989) gives a comparative overview of many other interpolation methods
not described here.

8.3.1 Inverse-Distance Interpolation

An inverse-distance interpolator is simply a weighted average of neighboring val-
ues. The weight given to each observation is a function of the distance between
that observation’s location and the grid point s0 at which interpolation is desired.
Mathematically, the general inverse-distance interpolator is written as

ẐIDp =
N∑

i=1

Z(si ) d
−p

0,i

/
N∑

i=1

d
−p

0,i . (8.20)

Here d0,i is the distance from the grid point location s0 to the ith data location
si . The weighting power, p, is selected to control how fast the weights tend to
zero as the distance from the grid node increases, based on assumed increasing
similarity between observations taken closer together. As the power increases, the
contribution (to the interpolated value) from data points far from the grid node
decreases. Distance powers between 1 and 3 are typically chosen, and taking p = 2
gives the popular inverse-distance-squared interpolator. [See Burrough (1986) for
a general discussion and illustration of these interpolators.]

As an example, consider the spatial layout in Figure 8.13. Intuitively, a good
guess for the value at s0 is 0, the average of these values. But in inverse-distance
interpolation, the values at s2 and s4 will receive lower weight since they are farther
away. Applying equation (8.20) with p = 2, we see that Ẑ(s0)ID2 = 0.53.

Most interpolation methods use only some of the “neighboring” data. The neigh-
borhood is usually taken to be a circle centered on the grid node unless the study
domain is elongated (e.g., elliptical) or the spatial process is anisotropic. If there
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are many points in the neighborhood, we may further restrict the calculations and
use just the closest m points. (In many computer programs, defaults for m vary
from 6 to 24.) These parameters (search neighborhood size, shape, and number of
points used for interpolation), together with the choice of the weighting power, can
affect the nature of the interpolated surface. Higher weighting powers and small
search neighborhoods with few data points retained for interpolation produce very
localized, choppy surfaces; lower powers of distance and large neighborhoods with
many data points used for interpolation result in smoother surfaces. This idea is
similar to the role of bandwidth in kernel density estimators of spatial intensity
functions discussed in Section 5.2.5. Care must be taken to ensure that the interpo-
lated values are based on enough data so that the averaging gives a fairly accurate
value, particularly for grid nodes near the edges of the domain.

Inverse-distance interpolators are popular in many disciplines since they are
relatively simple conceptually, require no modeling or parameter estimation, and
are computationally fast. They can be exact interpolators (i.e., the interpolated
surface passes through the original observations), or smoothers (i.e., predictions
at observed locations are adjusted toward their neighborhood mean). However,
mapped surfaces tend to have flat-topped peaks and flat-bottomed valleys giving a
characteristic bull’s-eye pattern produced by concentric contours around data points
that can detract from the visual interpretation of the map. Also, since there is no
underlying statistical model, there is no easy measure of the uncertainty associated
with the value interpolated.

8.3.2 Kriging

Kriging is a geostatistical technique for optimal spatial prediction. We emphasize
the distinction between prediction, which is inference on random quantities, and
estimation, which is inference on fixed but unknown parameters. Georges Matheron,
considered by many to be the founding father of geostatistics, introduced this
term in one of his early works developing geostatistical theory (Matheron 1963).
A Soviet scientist, L. S. Gandin, simultaneously developed the same theory in
meteorology, where it is known by the name objective analysis (Gandin 1963).
Since these beginnings, the original development of kriging has been extended in
many ways. There are now many different types of kriging, differing by underlying
assumptions and analytical goals. The following represents a partial list of the
different types of kriging appearing in the literature, along with a brief definition:

• Simple kriging: linear prediction (i.e., predictor is a linear combination of
observed data values) assuming a known mean

• Ordinary kriging: linear prediction with an constant unknown mean
• Universal kriging: linear prediction with a nonstationary mean structure
• Filtered kriging: smoothing and prediction for noisy data; also known as

kriging with measurement error
• Lognormal kriging: optimal spatial prediction based on the lognormal distri-

bution
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• Trans-Gaussian kriging: spatial prediction based on transformations of the
data

• Cokriging: multivariate linear prediction (i.e., linear prediction based on one
or more interrelated spatial processes)

• Indicator kriging: probability mapping using indicator functions (binary data)
• Probability kriging: probability mapping based on both indicator functions of

the data and the original data
• Disjunctive kriging: nonlinear prediction based on univariate functions of the

data
• Bayesian kriging: incorporates prior information about the mean and/or covari-

ance functions into spatial prediction
• Block kriging: optimal linear prediction of areal data from point data

This list is not exhaustive, and many combinations of these are possible (e.g.,
universal cokriging is multivariate spatial prediction with a nonstationary mean
structure).

A comprehensive discussion of all of these methods is beyond the scope of
this book. Instead, our discussion focuses on a few of these methods, written
to balance completeness, theoretical development, and practical implementation.
Our choice was indeed a struggle. Our readers are encouraged to consult other
books (e.g., Journel and Huijbregts 1978; Isaaks and Srivastava 1989; Cressie
1993; Rivoirard 1994; Wackernagel 1995; Chilès and Delfiner 1999; Olea 1999;
Stein 1999) to learn more about the methods and theoretical considerations we
cannot discuss here.

Ordinary Kriging Assume that Z(·) is intrinsically stationary [i.e., has a con-
stant unknown mean, µ, and known semivariogram, γ (h)]. Assume that we have
data Z = [Z(s1), . . . , Z(sN)]′ and want to predict the value of the Z(·) process
at an unobserved location, Z(s0), s0 ∈ D. As with the inverse distance meth-
ods described in Section 8.3.1, the ordinary kriging (OK) predictor is a weighted
average of the data:

ẐOK(s0) =
N∑

i=1

λiZ(si ). (8.21)

However, instead of specifying an arbitrary function of distance, we determine the
weights based on the data using the semivariogram and two statistical optimality cri-
teria: unbiasedness and minimum mean-squared prediction error. For unbiasedness,
the predicted value should, on average, coincide with the value of the unknown
random variable, Z(s0). In statistical terms, unbiasedness requires E[ẐOK(s0)] =
µ = E[Z(s0)], which means that

∑N
i=1 λi = 1. To ensure the second optimality

criterion, we need to minimize mean-squared prediction error (MSPE), defined
as E[ẐOK(s0) − Z(s0)]2, subject to the unbiasedness constraint. One method for
solving constrained optimization problems is the method of Lagrange multipliers.
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With this method, we need to find λ1, . . . , λN and a Lagrange multiplier, m, that
minimize the objective function

E


( N∑

i=1

λiZ(si ) − Z(s0)

)2− 2m

(
N∑

i=1

λi − 1

)
. (8.22)

The second term is essentially a penalty, minimized when
∑N

i=1 λi = 1, thus ensur-
ing that our overall minimization incorporates our unbiasedness constraint. Now∑N

i=1 λi = 1 implies that

[
N∑

i=1

λiZ(si ) − Z(s0)

]2

= −1

2

N∑
i=1

N∑
j=1

λiλj

[
Z(si ) − Z(sj )

]2

+
N∑

i=1

λi [Z(s0) − Z(si )]
2 .

Taking expectations of both sides of this equation gives

E


( N∑

i=1

λiZ(si ) − Z(s0)

)2 = −1

2

N∑
i=1

N∑
j=1

λiλjE
[(

Z(si ) − Z(sj )
)2]

+
N∑

i=1

λiE
[
(Z(s0) − Z(si ))

2
]
,

so that the objective function given in equation (8.22) becomes

−
N∑

i=1

N∑
j=1

λiλjγ (si − sj ) + 2
N∑

i=1

λiγ (s0 − si ) − 2m

(
N∑

i=1

λi − 1

)
. (8.23)

To minimize (8.23), we differentiate with respect to λ1, . . . , λN , and m in turn and
set the partial derivatives equal to zero. This gives a system of equations, referred
to as the ordinary kriging equations,

N∑
j=1

λjγ (si − sj ) + m = γ (s0 − si ), i = 1, . . . , N

N∑
i=1

λi = 1. (8.24)

We solve these equations for λ1, . . . , λN (and m), and use the resulting optimal
weights in equation (8.21) to give the ordinary kriging predictor. Note that Ẑ(s0)
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has weights that depend on both the spatial correlations between Z(s0) and each
data point Z(si ), i = 1, . . . , N , and the spatial correlations between all pairs of
data points Z(si ) and Z(sj ), i = 1, . . . , N, j = 1, . . . , N .

It is often more convenient to write the system of equations in (8.24) in matrix
form as

λO = �−1
O γ O (8.25)

where

λO = (λ1, . . . , λN , m)′

γ O = [γ (s0 − s1), . . . , γ (s0 − sN), 1]′

and the elements of �O are

�Oij
=




γ (si − sj ), i = 1, . . . , N

j = 1, . . . , N

1, i = N + 1; j = 1, . . . , N

j = N + 1; i = 1, . . . , N

0, i = j = N + 1.

So (8.25) becomes




λ1
λ2
...

λN

m


 =




γ (s1 − s1) · · · γ (s1 − sN) 1
γ (s2 − s1) · · · γ (s2 − sN) 1

...
. . .

...
...

γ (sN − s1) · · · γ (sN − sN) 1
1 · · · 1 0




−1


γ (s0 − s1)

γ (s0 − s2)
...

γ (s0 − sN)

1


 .

Note that we must calculate λO for each prediction location, s0. However, only the
right-hand side of equation (8.25) changes with the prediction locations (through
γ O). Since �O depends only on the data locations and not on the prediction
locations, we need only invert �O once and then multiply by the associated γ O

vector to obtain a prediction for any s0 in D.
The minimized MSPE, also known as the kriging variance, is

σ 2
k (s0) = λ′

Oγ O

=
N∑

i=1

λiγ (s0 − si ) + m

= 2
N∑

i=1

λiγ (s0 − si ) −
N∑

i=1

N∑
j=1

λiλjγ (si − sj ), (8.26)
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and the kriging standard error, σk(s0), is a measure of the uncertainty in the predic-
tion of Z(s0). If we assume the prediction errors, Ẑ(s0) − Z(s0), follow a Gaussian
distribution, then a 95% prediction interval for Z(s0) is

(Ẑ(s0) ± 1.96σk(s0)).

As an example, consider the spatial configuration shown in Figure 8.13. For
illustration, assume a spherical semivariogram with c0 = 0, cs = 1, and a = 1.5.
Then the ordinary kriging equations are




λ1
λ2
...

λ5
m


 =




0 0.852 0.995 1.00 0.995 1
0.852 0 0.852 1.00 1.00 1
0.995 0.852 0 0.911 1.00 1
1.00 1.00 0.911 0 1.00 1
0.995 1.00 1.00 1.00 0 1
1 1 1 1 1 0




−1


0.852
0.995
0.852
0.911
0.852
1




,

and the ordinary kriging predictor of Z(s0) is ẐOK(s0) = 0.88. Note that this is
slightly larger than Ẑ(s0)ID2 = 0.53, because Z(s2) = −3 is given smaller with
kriging than it is with inverse-distance-squared interpolation. The 95% prediction
interval for Z(s0) is (−1.07, 2.83).

The ordinary kriging predictor has the smallest mean-squared prediction error in
the class of all linear unbiased predictors. Consequently, it is often referred to as the
BLUP (best linear unbiased predictor). In practice, OK is also called the EBLUP
(“E” for empirical) since the unknown semivariogram is estimated and modeled
parametrically, as described in Sections 8.2.3 and 8.2.4. The resulting empirical
semivariogram model then provides the values of γ (si − sj ) and γ (s0 − sj ) needed
to solve the ordinary kriging equations [equations (8.24)]. The ordinary kriging
predictor is always the BLUP, regardless of the underlying statistical distribution
of the data (i.e., the data need not be Gaussian to use OK). Prediction intervals
are also valid for non-Gaussian data, although we do have to assume that the
prediction errors are Gaussian to construct such intervals. However, OK may not
always be the best predictor. In statistical prediction theory, the best predictor of
Z(s0) given the data is always E[Z(s0)|Z(s1), . . . , Z(sN)]. For Gaussian data, this
conditional expectation is a linear function of the data and is equivalent to simple
kriging (kriging with a known mean). When the mean is unknown and the data are
Gaussian, ordinary kriging serves as a very good approximation to this best linear
predictor. However, when the data are not Gaussian, E[Z(s0)|Z(s1), . . . , Z(sN)]
may not be linear, and ordinary kriging, being a linear predictor, may not provide
the best approximation to this conditional mean.

As with the inverse distance methods described in Section 8.3.1, kriging is usu-
ally done locally using search neighborhoods. In fact, when kriging any particular
point, there is usually no need to use data outside the range of the semivariogram
because these data will have negligible weights. The use of local search neighbor-
hoods can result in great computational savings when working with large data sets.
However, the search neighborhood should be selected with care, as it will affect
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the characteristics of the kriged surface. Global kriging using all the data produces
a relatively smooth surface. Small search neighborhoods with few data points for
prediction will produce surfaces that show more detail, but this detail may be mis-
leading if predictions are unstable. In general, try to use at least 7–12 points for
each value predicted; kriging with more than 25 points is usually unnecessary. If
the data are sparse or the relative nugget effect is large, distant points may have
important information and the search neighborhood should be increased to include
them. When the data are evenly distributed within the domain, a simple search that
defines the neighborhood by the closest points is usually adequate. However, when
observations are clustered, very irregularly spaced, or located on widely spaced
transects, quadrant or octant searches can be useful. Here, one divides the neigh-
borhood around each target node into quadrants or octants and uses the nearest two
or three points from each quadrant or octant in the interpolation. This ensures that
neighbors from several different directions, not just the closest points, will be used
for prediction. It is also possible to change the search strategy node by node. It
is always a good idea to experiment with several different neighborhoods and to
check the results of each prediction to be sure of the calculations.

Filtered Kriging Ordinary kriging is an exact interpolator that honors the data
[i.e., the kriging surface must pass through all data points so that Ẑ(si ) = Z(si )

whenever a data value is observed at location si]. However, when the data are
measured with error, it would be better to predict a less noisy or filtered version
of the data instead of forcing the kriged surface to honor the errors. Suppose that
we can write

Z(s) = S(s) + ε(s), s ∈ D,

where S(·) is the true, noiseless version of the process we are studying and ε(s)

is a measurement error process. S(·) need not be a smooth process; it may also
exhibit small-scale or nugget variation. Cressie (1993) gives a more general model
that distinguishes between several sources of variation (measurement error varia-
tion and small-scale or nugget variation being just two of these). We have adapted
his development for our discussion here. We assume that S(·) is intrinsically sta-
tionary and that ε(s) is a zero-mean white noise (i.e., without spatial correlation)
process, independent of S(·), with Var(ε(·)) = σ 2

ME. Repeated measurements at the
same location allow an estimate of σ 2

ME. When the measurements are recorded by
a laboratory instrument (e.g., chemical concentrations), the precision of the instru-
ment may be known from validation studies and can be used to estimate σ 2

ME when
replicates are not available. Note that γZ(h) = γS(h) + γε(h) with γε(h) = σ 2

ME
for ||h|| > 0 and γε(h) = 0 otherwise.

The ordinary kriging predictor of S(s0) is derived in a manner analogous to that
given above. This predictor is

Ŝ(s0) =
N∑

i=1

νiZ(si ),
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with optimal weights satisfying

�OνO = γ ∗
O. (8.27)

The matrix �O is the same as in the ordinary kriging equations (8.25), with ele-
ments γZ(si − sj ). The matrix γ ∗

O = [γ ∗(s0 − s1), . . . , γ ∗(s0 − sN), 1]′ is sligh-
tly different since, in the minimization, the elements of this matrix are derived from
E[(Z(s0) − Z(si ))

2] = γS(s0 − si ) + σ 2
ME ≡ γ ∗(s0 − si ). At prediction locations,

s0 
= si , and γ ∗(s0 − si ) = γZ(s0 − si ), i = 1, . . . , N . At data locations, s0 = si ,
and γ ∗(s0 − si ) = σ 2

ME( 
= 0). Thus, this predictor “smooths” the data, and larger
values of σ 2

ME result in more smoothing.
The minimized MSPE is given by

τ 2
k (s0) =

N∑
i=1

νiγ
∗(s0 − si ) + m − σ 2

ME.

Note that this is not equal to the ordinary kriging variance, σ 2
k (s0), defined in

equation (8.26), unless σ 2
ME = 0. Prediction standard errors associated with filtered

kriging are smaller than those associated with ordinary kriging (except at data
locations) since S(·) is less variable than Z(·).

Software programs sometimes implement filtered kriging by putting σ 2
ME on the

diagonal of �O [i.e., by replacing γZ(0) = 0 with σ 2
ME]. This gives an incorrect

set of kriging equations since, by definition, the semivariogram is always 0 at the
origin. The quantity γ ∗(h) results from the minimization and is really a cross-
semivariogram between Z(si ) and S(s0) and not the semivariogram of either Z(·)
or S(·).

DATA BREAK: Smoky Mountain pH Data (cont.) We now use the semi-
variogram models developed for the Smoky Mountain pH data (beginning at the
end of section 8.2) in ordinary kriging to predict the pH value anywhere in the
study area. We make a map of predicted stream pH by predicting several values on
a regular grid of points within the domain of interest and then drawing a contour
plot. To specify the grid, we must choose the starting and ending points of the grid
in both directions and the grid spacing. A general guideline is to choose about 50
grid points in the x direction and use the resulting grid spacing in this direction to
specify the grid in the y direction. These specifications can then be adjusted based
on the domain dimensions and the spacing of the data points in both directions.
For the stream pH data, we used this guideline, taking the minimum and maximum
values of easting and northing to define the beginning and ending points of the
grid, and using a grid spacing of 3 miles in each direction. Since it is easier to
specify the grid as a rectangle, we will make predictions on this rectangular grid
and then trim them to a polygon containing the data points.

We use ordinary kriging, filtered kriging, and inverse-distance-squared inter-
polation to predict pH values at the grid locations. For ordinary kriging, we use
the geometrically anisotropic semivariogram model developed earlier: exponential
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with φ = 70◦, âmax = 36.25, âmin = 16.93, ĉe = 0.2725, and c0 = 0. For filtered
kriging, we assume a nugget effect of ĉ0 = 0.0325 as indicated by Geostatistical
Analyst and assume that this nugget effect is due entirely to measurement error in
the pH values. We use the same semivariogram as with ordinary kriging but adapt
it to include this nugget effect: exponential with φ = 70◦, âmax = 36.25, âmin =
16.93, ĉe = 0.2400, and ĉ0 = 0.0325. The search neighborhood for all approaches
was taken to be an ellipse oriented in the 70◦ direction, with the lengths of the
major and minor axes equal to âmax and âmin, respectively, and we based each
prediction on the closest eight values in this neighborhood. The results appear in
Figure 8.14.

Comparing the three pH maps, we can see that the filtered kriging map is slightly
smoother than the ordinary kriging map, reflecting the extra smoothing done to filter
the measurement error. The bull’s-eye pattern characteristic of inverse-distance
approaches is evident in the inverse-distance-squared pH map. We also notice that
the root mean-squared prediction errors for the filtered kriging approach are higher
at and near the data locations, but lower overall, also reflecting our measurement
error modeling. The root-mean-squared prediction errors closely reflect the data
locations, being smaller where pH samples were taken and higher in areas where
there are relatively few pH measurements.

All three pH maps depict the general spatial pattern in the Smoky Mountain pH
measurements, and any one of these is a decent picture of the spatial distribution
of pH values. However, they do show subtle differences, reflecting the different
models of spatial dependence that we used to construct them.

The accuracy of kriged maps compared to those constructed using inverse-
distance-squared interpolation depends on the statistical and spatial characteristics
of the data. Kriging is often more accurate (Isaaks and Srivastava 1989; Weber
and Englund 1992; Gotway et al. 1996; Zimmerman et al. 1999) and preferred in
many applications since the data determine the nature of the spatial autocorrela-
tion, and a prediction standard error is associated with each value predicted. More
objective approaches that can be used to select the “best” map include validation
and cross validation, where subsets of the data are withheld from the analysis
and then predicted with the remaining values (see, e.g., Isaaks and Srivastava
1989).

Lognormal Kriging When the data are very skewed, a linear predictor may not be
the best choice, since the best predictor, the conditional expectation mentioned at
the end of the discussion of ordinary kriging, may be highly nonlinear. In addition,
the empirical semivariogram may be a poor estimator of the true semivariogram.
Statisticians often deal with such problems by transforming the data so that the
transformed data follow a Gaussian distribution and then performing analyses
with the transformed data. If we want predictions on the original scale, we can
transform back, but the resulting predictions will be biased. However, in certain
cases, we can adjust the back transformation so that the resulting predictions are
unbiased.
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FIG. 8.14 Prediction and prediction standard error maps of Smoky Mountain pH.

With lognormal kriging, we transform the data Z(si ), i = 1, . . . , N to a Gaus-
sian distribution using Y(s) = log(Z(s)), and assume that Y(·) is intrinsically
stationary with mean µY and semivariogram γY (h). Ordinary kriging of Y(s0) using
data Y(s1), . . . , Y (sN) gives ŶOK(s0) and σ 2

Y,k(s0), obtained from equations (8.21),
(8.24) and (8.26) using γY (h). Now, if we transform predictions back to the Z(·)
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scale using the exponential function, the resulting predictor Ẑ(s0) = exp[ŶOK(s0)]
is biased. However, we can use the properties of the lognormal distribution to
construct an unbiased predictor. Aitchison and Brown (1957) showed that if

Y = (Y1, Y2)
′ ∼ MV N(µ, �)

µ = (µ1, µ2)
′, � = σij , i, j = 1, 2,

then [exp(Y1), exp(Y2)]′ has mean ν and covariance matrix T , where

ν = (ν1, ν2)
′ = [exp(µ1 + σ11/2), exp(µ2 + σ22/2)]′

and

T =
[

ν2
1 [exp(σ11) − 1] ν1ν2[exp(σ12) − 1]

ν1ν2[exp(σ21) − 1] ν2
2 [exp(σ22) − 1]

]
.

Applying this result to twice, first to Ẑ(s0) and then inversely to µY , gives

E[Ẑ(s0)] = E[exp(ŶOK(s0))] = µZ exp
{
−σ 2

Y /2 + Var[ŶOK(s0)]/2
}

,

where σ 2
Y = Var(Y (si )). Then the bias-corrected predictor of Z(s0) (see Cressie

1993), denoted here as ẐOLK (for ordinary lognormal kriging) is

ẐOLK = exp
{
ŶOK(s0) + σ 2

Y /2 − Var(ŶOK(s0))/2
}

= exp
{
ŶOK(s0) + σ 2

Y,k(s0)/2 − mY

}
(8.28)

where mY is the Lagrange multiplier on the Y scale. The bias-corrected MSPE
(see, e.g., David 1988) is

E

[(
ẐOLK − Z(s0)

)2] = exp(2µY + σ 2
Y ) exp(σ 2

Y )

·
{

1 +
[
exp(−σ 2

Y,k(s0) + mY )
] [

exp(mY ) − 2
]}

.

Thus, unlike ordinary kriging, we will need to estimate µY and σ 2
Y (·) as well as

γY (·) in order to use lognormal kriging.
The bias correction makes the lognormal kriging predictor sensitive to depar-

tures from the lognormality assumption and to fluctuations in the semivariogram.
Thus, some authors (e.g., Journel and Huijbregts 1978) have recommended calibra-
tion of Ẑ, forcing the mean of kriged predictions to equal the mean of the original
Z data. This may be a useful technique, but it is difficult to determine whether or
not it is needed and to determine the properties of the resulting predictor. Others
(e.g., Chilès and Delfiner 1999) seem to regard mean unbiasedness as unneces-
sary, noting that exp(ŶOK(s0)) is median unbiased (i.e., Pr[exp(ŶOK(s0)) > Z0] =
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Pr[exp(ŶOK(s0)) < Z0] = 0.5). Since the back-transformed predictor will not be
optimal (have minimum MSPE), correcting for bias can be important, so we prefer
to use the mean-unbiased lognormal kriging predictor given in equation (8.28).

Indicator Kriging Indicator kriging provides a simple way to make a probabil-
ity map of an event of interest. Suppose that we are interested in mapping an
exceedance probability [i.e., Pr(Z(s0) > z|Z1, . . . , ZN)]. This probability can be
estimated by kriging the indicator I (Z(s0) > z) from indicator data I (Z(s1) >

z), . . . , I (Z(sN) > z) (Journel 1983), where

I (Z(s) > z) =
{

1 if Z(s) > z

0 otherwise.
(8.29)

This gives an estimate of the optimal predictor, E(I (Z(s0) > z)|I (Z(si) > z),
which for indicator data is an estimate of Pr(Z(s0) > z|Z1, . . . , ZN). The indicator
kriging predictor is simply

ÎOK(s0) =
N∑

i=1

λiI (Z(si ) > z),

where the kriging is performed as described earlier using the semivariogram esti-
mated and modeled from the data indicator.

As some information is lost by using indicator functions instead of the original
data values, indicator cokriging (Journel 1983), which use k sets of indicators cor-
responding to various threshold levels, zk , and probability kriging (Sullivan 1984),
which uses both the indicator data and the original data to estimate conditional
probabilities, have been suggested as better alternatives. There is no guarantee,
even with these methods, that the predicted probabilities will lie in [0,1] as prob-
abilities should. In practice, various corrections are used (see Goovaerts 1997),
some of which force the kriging weights to be positive. Negative kriging weights
usually occur when the influence of one data value is reduced or screened by a
closer value. Thus, one common solution to the problem of negative probabilities
with indicator kriging is to decrease the search neighborhood. This can often also
correct the problem of “excessive” probabilities (those > 1). If this does not work,
another common correction is to reset any unrealistic values to their nearest bound,
either 0 for negative probabilities or 1 for excessive probabilities.

Kriging Areal Regions Thus far, our discussion has focused on predicting values
associated with spatial locations. In some applications we may want to predict an
average value associated with a region of interest (e.g., county, census tract) from
either data at individual locations or data associated with the regions themselves.
Suppose that instead of observing a realization of the process {Z(s) : s ∈ D}, data
Z(B1), Z(B2), . . . , Z(BN) are collected where

Z(Bi) = 1

|Bi |
∫

Bi

Z(s) ds.
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Here Z(Bi) is the average value of the process within region Bi ⊂ D, and |Bi | is
the area of Bi, i = 1, 2, . . . , N . In geostatistics, Bi is called the spatial support
of Z(Bi). The support of the data reflects the size, shape, and spatial orien-
tation of the specific regions (and not just their areas) being considered. The
change of support problem is concerned with drawing inference on Z(B) from
data Z(B1), Z(B2), . . . , Z(BN).

A common special case of the change of support problem is the prediction of the
average value of a region, Z(B), from “point” samples Z(s1), . . . , Z(sN). These
samples may or may not lie within region B. We consider linear prediction using

Ẑ(B) =
N∑

i=1

λiZ(si), (8.30)

and derive the optimal weights, {λi}, by minimizing the mean-squared prediction
error subject to the unbiasedness constraint E(Ẑ(B)) = E(Z(B)). Since E(Z(B))

= E(Z(si )) = µ, the unbiasedness constraint implies that
∑

λi = 1. To mini-
mize the mean-squared prediction error, we follow a development similar to that
described earlier and minimize

−
N∑

i=1

N∑
j=1

λiλjγ (si − sj ) + 2
N∑

i=1

λiγ (si , B) − 2m

(
N∑

i=1

λi − 1

)
, (8.31)

which is analogous to equation (8.23) with γ (s0 − si ) replaced with γ (si , B), the
point-to-block semivariogram. This semivariogram can be derived from the semi-
variogram of the {Z(s)} process as (Journel and Huijbregts 1978; Cressie 1993)

γ (s, B) ≡
∫

B

γ (u − s)du/|B|. (8.32)

Differentiating equation (8.31) with respect to λ1, . . . , λN , and m in turn and set-
ting each partial derivative equal to zero gives the system of equations

N∑
j=1

λkγ (si − sj ) + m = γ (si , B), i = 1, . . . , N

N∑
j=1

λj = 1. (8.33)

These equations are referred to as the block kriging equations in geostatistics. The
term block comes from mining applications for which this approach was developed,
where the goal was the prediction of the grade of a block of ore prior to mining
recovery.

The minimized mean-squared prediction error, called the block kriging vari-
ance, is

σ 2
K(B) =

N∑
i=1

λiγ (si , B) + m.
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The point-to-point semivariogram, γ (u − s), is assumed known for theoretical
derivations, but is then estimated from the point data and modeled with a valid
conditional nonnegative definite function (as described in Section 8.2.3). In prac-
tice, the integral in equation (8.32) is computed by discretizing B into Nu points,
{u′

j }, and using the approximation γ (si , B) ≈ 1/Nu

∑Nu

j=1 γ (u′
j , si ).

The block kriging predictor, Ẑ(B) given in equation (8.30) with weights sat-
isfying equations (8.33), is identical to that obtained by averaging Nu ordinary
point kriging predictions at the discretized nodes {u′

j }. However, block kriging will
reduce the computational effort involved in solving many ordinary point kriging
systems and will also assure the correct prediction standard error.

CASE STUDY: Hazardous Waste Site Remediation This case study is based
on an investigation of dioxin-contaminated soils described by Zirschky and Har-
ris (1986). In 1971, a truck transporting dioxin-contaminated residues dumped an
unknown quantity of waste in a rural area of Missouri to avoid citations for being
overweight. Although the highest concentration of wastes occurred where the waste
was dumped, contamination had spread to other areas. In November 1983, the U.S.
Environmental Protection Agency (EPA) collected soil samples in several areas
and measured the TCDD (tetrachlorodibenzo-p-dioxin) concentration (in µg/kg) in
each sample. Figure 8.15 shows the locations of the TCDD samples, where for
illustration we have transformed the study domain by dividing the x-coordinate by
50 to produce a region that is almost square. The objective of the study was to
determine where EPA should concentrate soil remediation efforts.

One way to address the study objective is to make a map of the TCDD con-
centration predicted. Since concentration values must be positive and often have
skewed distributions, it is common to assume a lognormal distribution, so we will

0 10 20 30 40 50 60 70

x/50 (feet)

y 
(f

ee
t)

0

20

40

60

FIG. 8.15 Locations of EPA TCDD samples.
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FIG. 8.16 Empirical omnidirectional semivariogram of log-TCDD data.

use lognormal kriging to make this map. The first step in lognormal kriging is
to take the logarithm of the concentration data and then compute the omnidirec-
tional semivariogram using the methods discussed in Section 8.2.3. This is shown
in Figure 8.16. The initial increase in the semivariogram indicates strong spatial
autocorrelation with a fairly large range and a negligible nugget effect. Given that
the spill occurred along a roadway, we might expect anisotropy and can explore this
using a contour map of the semivariogram surface (Figure 8.17) (see Section 8.2.5).
From this figure it appears that the range of spatial autocorrelation is greatest in
the east-west (0◦ direction), corresponding to the primary orientation of the road.

If we assume geometric anisotropy with the maximum range in the east-west
direction we can fit an anisotropic model. With no other information about the labo-
ratory process used to obtain the TCDD concentrations, we assume that the nugget
effect is zero. Assuming an exponential model, we used the modified WLS approach
implemented in ESRI’s Geostatistical Analyst (Johnston et al. 2001) to fit a geomet-
rically anisotropic model and obtain the estimates âmax = 18.30, âmin = 8.18, and
ĉe = 3.45. Model fits to the east-west and north-south directional semivariograms
are shown in Figure 8.18.

We predict values on a closely spaced regular grid superimposed on the domain
depicted in Figure 8.15 using lognormal kriging. We use an elliptical search neigh-
borhood oriented in the east-west direction with the length of the major and minor
axes equal to âmax = 18.30 and âmin = 8.18, respectively, and retain the nearest
five points from each of four quadrants for each prediction. The resulting map
is shown in Figure 8.19. Based on this map, EPA should concentrate remediation
efforts in the area with the highest predicted TCDD concentration, indicated by the
large dark area in the center of the study domain.

An alternative approach is to recommend remediation only for those areas for
which it is likely that the TCDD concentration exceeds the EPA standard. Zirschky
and Harris (1986) considered 1 µg/kg as the cleanup criterion, but today, the EPA
standard for disposal of sewage sludge used in agriculture is 0.3 µg/kg. We will use
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FIG. 8.17 Semivariogram surface of log-TCDD data.

0 10 20 30 40 50

Distance

0

1

2

3

4

5

E
m

pi
ric

al
 s

em
iv

ar
io

gr
am

East-West (0°) direction

0 10 20 30 40 50

Distance

0.0

0.1

0.2

0.3

0.4

0.5

E
m

pi
ric

al
 s

em
iv

ar
io

gr
am

North-South (90°) direction

FIG. 8.18 Empirical directional semivariograms of log-TCDD data and model fit.

indicator kriging to determine areas that exceed this standard. First, we transform
the data to indicators defined as

I (TCDD(s) > 0.3) =
{

1 if TCDD(s) > 0.3

0 otherwise.
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FIG. 8.19 Lognormal kriging prediction map of TCDD contamination.

The indicator process reflects the same type of anisotropy as the original con-
centration process, so we will consider the same type of model as used for the
TCDD concentration process. Refitting this model to the indicator data, we obtain
âmax = 14.02, âmin = 5.57, and ĉe = 0.2716. Model fits to the east-west and north-
south directional indicator semivariograms are shown in Figure 8.20.

We used this fitted model to predict the indicator data on the same grid and
with the same type of search neighborhood as with the original TCDD data. The
resulting map, depicting the probability of exceeding the EPA standard for TCDD
concentration of 0.3 µg/kg appears in Figure 8.21. This map leads to a very different
remediation strategy than that inferred from the lognormal kriging map. Since most
of the values that exceed our cleanup criterion of 0.3 µg/kg occur on either side
of the roadway, the area with the greatest probability of exceeding this criterion
occurs along the roadway as well. Thus, based on this map, we would recommend
concentrating remediation efforts along a rather large swath of land centered along
the roadway.

An alternative approach to constructing such a probability map is to use the
lognormal kriging predictions. If we assume that the logarithms of the TCDD con-
centration follow a Gaussian distribution, then at each location we can calculate
the probability of exceeding a threshold value. The mean and standard deviation
necessary for these probabilities are the predicted value obtained from kriging and
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FIG. 8.20 Empirical directional indicator semivariograms and model fit.
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FIG. 8.21 Indicator kriging prediction map of Pr(TCDD > 0.3).

the standard error, respectively. We applied this approach to the TCDD concentra-
tion data using the same threshold of 0.3 µg/kg, and the resulting map appears in
Figure 8.22. This map is similar to that made using indicator kriging, but since the
actual TCDD concentration values are used in the calculations, it shows more detail.
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FIG. 8.22 Probability map of Pr(TCDD > 0.3) using the Gaussian distribution.

All the maps at least roughly indicate the same area of highest contamination.
However, they differ greatly in the uncertainty associated with each predicted value
or probability. Obtaining standard error maps for the three methods is left as an
exercise.

This case study illustrates the type of analyses that geostatistical methods can
provide. We would be remiss if we led you to believe that these analyses are
definitive. The dioxin data represent an example of a “real” data set with many
“problems” that often accompany real data. The data do not meet all of the
assumptions and expectations discussed in this chapter. For example, the data are
left-censored and of differing supports. In kriging the TCDD data, we essentially
assumed that the spread of contamination was not affected by the placement of
roadway. Nevertheless, our geostatistical methods provide valuable insight and a
preliminary analysis that can form the basis for more complex models, and the case
study highlights both the potential and the limitations of geostatistical analysis of
environmental monitoring data.

8.4 ADDITIONAL TOPICS AND FURTHER READING

8.4.1 Erratic Experimental Semivariograms

Semivariogram estimation and modeling can be difficult, particularly if the data
are noisy (either statistically or spatially), the data distribution is skewed, or there
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are influential observations. Good discussions of many of the common problems
encountered in semivariogram estimation and model fitting, together with some sug-
gested solutions, are given in Armstrong (1984) and Webster and Oliver (2001).
Basu et al. (1997) considered the effect of influential observations on semivari-
ogram estimation and illustrated graphical techniques for identifying such obser-
vations. Cressie and Hawkins (1980) developed several robust semivariogram esti-
mators, using power transformations, medians, and trimmed means. One of these,
based on fourth roots of squared differences, is available in many software pack-
ages as either the robust or the Cressie–Hawkins semivariogram estimator. Haining
(1990) provides a good summary of robust and resistant semivariogram estimators
and the results of several theoretical and empirical evaluations and comparisons.

8.4.2 Sampling Distribution of the Classical Semivariogram Estimator

Davis and Borgman (1979) tabulated the exact sampling distribution of 2γ̂ (h)

assuming equally spaced, one-dimensional Gaussian data with a linear theoretical
semivariogram. Analogous results for more general cases may be possible, but
given the difficulty of this approach, attention has focused on asymptotic sampling
distributions. Davis and Borgman (1982) showed that [γ̂ (h) − γ (h)]/

√
Var(γ̂ (h))

converges to a standard normal distribution as the number of data values becomes
large. The variance of γ̂ (h) needed to compute this standardized quantity (and
the covariances for the multivariate generalization needed for simultaneous con-
fidence bands) were derived by Cressie (1985). As discussed in Section 8.2.4,
these variances and covariances are not easy to obtain from the data, so approx-
imations like the one given in equation (8.9) are used. An alternative based on
iteratively reweighted generalized least squares (cf. Section 9.2) is described by
Genton (1998). A comprehensive discussion and illustration of these methods and
several others for assessing the uncertainty in semivariogram estimates is given in
Pardo-Iqúsquiza and Dowd (2001).

8.4.3 Nonparametric Semivariogram Models

Using spectral properties of the covariance function, Shapiro and Botha (1991)
introduced a nonparametric representation of the semivariogram

γ (h) =
k∑

i=1

[1 − �d(hti)]pi,

where the values ti are the nodes of the semivariogram, {pi} are nonzero weights
and

�d(x) =
(

2

x

)(d−2)/2

�

(
d

2

)
J(d−2)/2(x),

where d is the spatial dimension (d = 2 for two-dimensional space), �(·) is the
gamma function, and Jm(x) is the Bessel function of the first kind of order m. The
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idea here is to build more flexible semivariogram models by adding several valid
semivariograms together. This is the same idea behind the nested structure models
in geostatistics that we described briefly in Section 8.2.2.

Given the nodes, constrained nonlinear least squares (constrained so that pi ≥ 0)

can be used to estimate the weights. Various methods have been suggested for
determining the number of nodes and their placement. Cherry et al. (1996) suggest
using many nodes (e.g., 200) and placing half of them at equally spaced increments
in [0,4] and the other half in equally spaced increments in [4.16, 20]. Ecker and
Gelfand (1997) recommend using a small number of nodes (e.g., 5), spaced equally
in an interval determined by the number of desired sign changes in the Bessel
function and use a Bayesian approach to infer either the placement of the nodes
when the weights are equal to 1/k, or to infer the weights when the placement of
the nodes is specified.

Although nonparametric semivariogram families provide a flexible alternative
to parametric models, they have two main drawbacks (other than the subjectivity
required in determining the nodes): their inability to fit a nugget effect and their
difficulty in modeling anisotropy. Ecker and Gelfand (1999) overcome the latter
difficulty by extending their Bayesian approach to geometrically anisotropic data.
Ver Hoef and Barry (1996) overcome both problems using a family of semivari-
ograms based on integration of a moving-average function over white noise random
processes.

8.4.4 Kriging Non-Gaussian Data

As we discussed in Section 8.3.2, linear predictors such as ordinary and univer-
sal kriging may not be the best choice for spatial prediction with non-Gaussian
data. Based on the ideas behind lognormal kriging, Cressie (1993) derives a trans-
Gaussian predictor using a general transformation to a Gaussian distribution [e.g.,
Y(s) = φ(Z(s))]. He uses a second-order Taylor series expansion to adjust for bias
in the back transformation. Gotway and Stroup (1997) extend universal kriging to
the class of generalized linear models that account for variance-to-mean relation-
ships in the data (e.g., models for Poisson data for which the mean equals the
variance). Diggle et al. (1998) had a similar goal but used a conditional specifica-
tion for the generalized linear model and inference based on Bayesian hierarchical
modeling. Yasui and Lele (1997) compare and illustrate both marginal and condi-
tional generalized estimating equations for estimation of spatial disease rates using
Bayesian methods, and Gotway and Wolfinger (2003) make a similar comparison
of spatial prediction methods using penalized quasi-likelihood approaches.

8.4.5 Geostatistical Simulation

For many methods in spatial statistics, Monte Carlo simulation is used for inference
(cf. inference methods in Chapters 5, 6, and 7). Simulation is also a powerful
tool for the analysis of geostatistical data. Typically, simulation is used here for
uncertainty analysis in order to generate a distribution of a spatial response from
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uncertain spatial inputs. The result is an entire probability distribution of values at
each spatial location, and thus an ensemble of maps or surfaces, all possible given
the data. One of the main differences between geostatistical simulation and other
simulation approaches is that geostatistical simulation methods can constrain each
simulated surface to pass through the given data points. This is called conditional
simulation.

There are many different conditional simulation algorithms [see, e.g., Deutsch
and Journel (1992), Dowd (1992), and Gotway and Rutherford (1994) for descrip-
tions and comparisons]. One of the most familiar to statisticians is called LU
decomposition, based on a Cholesky-type decomposition of the covariance matrix
between data observed at study locations and data at grid or prediction locations.
This covariance matrix can be written as

C =

 C11 C12

C21 C22


 ,

where C11 is the covariance among data at study locations, C12 is the covariance
between data at study locations and data to be predicted at grid locations, and C22 is
the covariance among data to be predicted at grid locations. It can be decomposed
into a product of a lower triangular matrix and an upper triangular matrix (hence
the name LU decomposition) as

C =

 L11 0

L21 L22




 U11 U12

0 U22




(a well-known result from matrix algebra). A conditional Gaussian simulation is
obtained by simulating a vector, ε, of independent Gaussian random variables with
mean 0 and variance 1 and using the data vector Z in the transformation


 LZZ 0

L21 L22




 L−1

11

ε


 =

 Z

L21L
−1
11 Z + L22ε


 . (8.34)

This transformation induces spatial correlation (specified by C) in the simulated
values and also forces them to be equal to the Z values at observed data locations.
It is also possible to generate realizations that do not honor the data. More details
about this approach as well as other geostatistical simulation algorithms can be
found in Deutsch and Journel (1992), Dowd (1992), and Gotway and Rutherford
(1994).

8.4.6 Use of Non-Euclidean Distances in Geostatistics

Throughout this chapter we have used Euclidean distance as a basis for measuring
spatial autocorrelation. In many applications, particularly those in the environmental
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sciences, this measure of distance may not be realistic. For example, mountains,
irregularly shaped domains, and partitions in a building can present barriers to
movement. Although two points on either side of a barrier may be physically
close, it may be unrealistic to assume that they are related. Geostatistical anal-
yses can also be done using non-Euclidean distances (e.g., city-block distance)
provided that two conditions hold: (1) the distance measure is a valid metric in
�2 (i.e., it must be nonnegative, symmetric, and satisfy the triangle inequality);
and (2) the semivariogram used with this metric must satisfy the properties of a
semivariogram (i.e., it must be conditionally negative definite). Using these cri-
teria, Curriero (1996) showed that the exponential semivariogram is valid with
city-block distance, but the Gaussian semivariogram is not. This general issue and
a proposed alternative using multidimensional scaling is given in Curriero (1996).
Rathbun (1998) used these results to evaluate the use of water distance (the short-
est path between two sites that may be traversed entirely over water) for kriging
estuaries.

8.4.7 Spatial Sampling and Network Design

When we have the luxury of choosing the data locations, some thought should go
into the design of our sampling plan. Olea (1984), Cressie (1993), and Gilbert
(1997) review many different spatial sampling plans in the context of differ-
ent objectives (e.g., estimation of a mean or total, estimation of spatial patterns,
detection of hot spots). A systematic sampling plan using a regular grid with a
random start was recommended for estimating trends and patterns of spatial vari-
ability in fixed (not mobile) populations. A triangular grid is the most efficient for
semivariogram estimation and kriging and EPA’s Environmental Monitoring and
Assessment Program (EMAP) is based on this design [see, e.g., Stevens (1994)
for an overview of this program]. Instead of a systematic triangular grid design,
Stehman and Overton (1994) suggest a tessellation-stratified design, where the
strata are defined by the squares or triangles of a regular or triangular grid and the
sampling locations are chosen randomly within each stratum. This type of design
allows greater variability in distances, including some that are small, and so may
allow for better estimation of the semivariogram.

Since all of these sampling plans are probability based, probability sampling the-
ory offers many tools for estimation and inference (e.g., the Horvitz–Thompson esti-
mator and a variety of methods for variance estimation from systematic sampling).
Model-based analysis (e.g., regression and kriging) can also be done. Another
approach to the construction of spatial sampling plans useful in network design is
based on the kriging variance. Since the kriging variance depends only on the spa-
tial locations and not on the data values themselves, prediction errors from kriging
can be determined for any particular sampling plan before the sampling is actually
performed. We may then choose the sampling plan that minimizes the average (or
the maximum) prediction error. Cressie et al. (1990) illustrate this approach. More
recently, Bayesian methods have been used to provide a flexible framework for
network design (Zidek et al. 2000).
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8.5 EXERCISES

8.1 The data in Table 8.3 were collected to assess the suitability of a waste isola-
tion pilot plant (WIPP) in southeastern New Mexico for disposal of transuranic
wastes (see, e.g., Gotway 1994). Transmissivity values measuring the rate of
water flow through the Culebra aquifer that lies just above the WIPP site
were collected from 41 wells.

Table 8.3 WIPP Transmissivity Dataa

East (km) North (km) log(T) East (km) North (km) log(T)

14.2850 31.1240 −4.6839 7.0330 17.6060 −2.9136
7.4450 29.5230 −3.3692 16.7480 17.3390 −5.6089

16.7400 26.1450 −6.6023 15.3600 16.7980 −6.4842
24.1450 25.8250 −6.5535 21.3860 16.7940 −10.1234
16.7020 21.7380 −4.0191 18.2220 16.7770 −4.9271
13.6130 21.4520 −4.4500 18.3650 15.5740 −4.5057
19.8910 21.2450 −7.0115 11.7210 15.3210 −5.6897
15.6630 20.6910 −4.1296 13.6430 15.1910 −7.0354

9.4040 20.4720 −3.5412 0.0000 15.1380 −2.9685
16.7290 19.9680 −6.9685 15.3990 14.9270 −5.9960
16.7540 19.6230 −6.4913 16.2100 14.4930 −6.5213
15.2830 19.6100 −5.7775 18.7370 13.9570 −6.6361
16.7580 19.2260 −6.1903 16.9450 13.9100 −5.9685
16.7580 19.0970 −6.4003 20.0420 11.8960 −6.7132
16.7620 18.7630 −6.5705 11.1430 11.0920 −2.8125
16.3880 18.6560 −6.1149 25.9940 8.9170 −7.1234
12.1030 18.4200 −3.5571 9.4810 5.9030 −3.2584
16.7150 18.4020 −6.2964 17.0080 4.7050 −3.9019
18.3340 18.3030 −6.8804 17.9720 3.8980 −4.3350
16.4420 18.1280 −6.0290 11.7020 0.0000 −5.0547
15.6700 18.0950 −6.2005

aData are the UTM coordinates in kilometers measured from a fixed location and the log transmissivity
(T) in log10(m2/s).

(a) Estimate the omnidirectional semivariogram and the empirical semivar-
iograms in the east-west and north-south directions. For each, provide
the average lag distance, number of pairs, and semivariogram estimate as
well as a graph of the empirical semivariograms. Do you see evidence of
trend or anisotropy? Discuss.

(b) Repeat your analysis deleting the large negative log(T) value of −10.12.
What effect does this have on your results?

8.2 Suppose that we have data Z(s1), . . . Z(sN) from an intrinsically stationary
process with covariance function C(si − sj ). Find the variance of the sample
mean, Z =∑N

i=1 Z(si )/n. Express this result in terms of the autocorrelation
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function ρ(si − sj ) and compare it to the result you obtain assuming that
the data are independent. What implication does this have for survey design
based on spatial data?

8.3 Referring to the dioxin case study, Zirschky and Harris (1986) provide the
TCDD data. Use ordinary kriging to map the logarithm of the TCDD concen-
tration. How do your conclusions about waste remediation differ from those
obtained using lognormal kriging and indicator kriging?

8.4 Using the logarithm of the TCDD concentration values, use different nugget
effects, sills, ranges, and search neighborhoods to investigate systematically
the effects of your choices on the maps of log(TCDD) concentration and
prediction standard errors obtained from ordinary kriging. What conclusions
can you draw about the effect of these parameters on the kriged values and
standard errors? Do the maps you draw reflect the differences?

8.5 Using the TCDD data, obtain standard error maps for lognormal kriging,
indicator kriging, and a probability map from the lognormal kriging using
properties of the Gaussian distribution. Discuss the differences in the maps
and relate them to the assumptions underlying each method.

8.6 Derive the filtered kriging equations given in equations (8.27).

8.7 Refer to the graveyard data set described in Chapter 5 and given in Table 5.2.
Suppose that the affected grave sites are coded as 1’s and the nonaffected
grave sites are coded as 0’s, so that the data set consists of x location, y loca-
tion, and grave site type. Discuss the implications of using indicator kriging
to map the probability of an affected grave site. What assumptions need to
be made? How realistic are these?



C H A P T E R 9

Linking Spatial Exposure Data to
Health Events

. . . all models are wrong. The practical question is how wrong
do they have to be to not be useful.

Box and Draper (1987, p. 74)

In Chapters 4, 5, 6, and 7 we describe and illustrate methods for making inferences
about the spatial distribution of health events, observed either at point locations
(Chapters 4, 5, and 6) or as aggregated counts, rates, and standardized mortality
ratios (Chapters 4 and 7). In Chapter 8 we consider some of the geostatistical meth-
ods for assessing the spatial variation in exposure measurements. Through the data
breaks and case studies, we show how all of these statistical methods can provide
much more substantial conclusions than we could obtain using just visualization
and a GIS. There is, however, an alternative approach based on the use of spa-
tial regression models that can help us refine our conclusions even more. These
models allow us to adjust our analyses and our maps for important covariate infor-
mation. They also allow us to more explicitly use spatial exposure measurements
to help describe the spatial distribution of public health events. In this chapter we
integrate much of the knowledge we have acquired thus far and use it to develop
several different types of spatial regression models to link spatial exposure data to
health events.

In traditional statistics, we frequently assess the effects of exposure on health
outcomes through regression analysis. Such analysis can take many forms: Linear,
Poisson, and logistic regression are perhaps the most familiar, and we gave an
overview of these (for nonspatial data) in Chapter 2. The same ideas can be used
in spatial analysis after we adapt them to incorporate our ideas about neighborhood
relationships and spatially correlated error terms.

Our goal in this chapter is to quantify the nature of the association between a spa-
tially referenced outcome of interest, Y(s), and a set of spatially referenced explana-
tory variables x0(s), x1(s), . . . , xp−1(s). We begin in Section 9.1 with a brief
review of multivariate linear regression, assuming that the data follow a multivariate
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Gaussian distribution and the relationship between Y(s) and x1(s), . . . , xp(s) can
be described adequately by a linear model with independent errors. We present basic
results from the theory of maximum likelihood estimation and rely on matrix nota-
tion to provide a parsimonious development [see, e.g., Draper and Smith (1998) for
an introductory treatment of ordinary least squares regression and relevant matrix
notation].

9.1 LINEAR REGRESSION MODELS FOR INDEPENDENT DATA

Many spatial models generalize the basic structure of linear models and we review
basic results here to provide a point of reference and comparison for the spatially
motivated generalizations to follow. Most of our development in Chapter 8 builds
from the assumption of a constant mean [i.e., E(Y(s)) = µ]. In this chapter we
relax this assumption and allow the mean to depend on a linear combination of
covariates using the regression model

Y = Xβ + ε, (9.1)

where Y = [Y(s1), Y (s2), . . . , Y (sN)]′ is the data vector of measurements at loca-
tions s1, . . . , sN , β = (β0, β1, . . . , βp−1)

′ is the vector of regression parameters,
and the matrix

X =




1 x1(s1) · · · xp−1(s1)

1 x1(s2) . . . xp−1(s2)
...

...
...

...

1 x1(sN) . . . xp−1(sN)




contains the covariate values observed at each location. [We assume that x0(s) ≡
1, so our models fit an intercept.] We assume that the residual (or error) vector
ε = [ε(s1), . . . , ε(sN)]′ has mean 0 and variance–covariance matrix

� = Var(Y) = Var(ε) = σ 2I, (9.2)

where I is the N × N identity matrix. With this variance–covariance matrix [equa-
tion (9.2)] we are assuming that the data are uncorrelated. This assumption implies
that all of the spatial variation in the data is assumed to be due to the covari-
ates. This is in sharp contrast to most of the development in Chapter 8, where we
effectively assume that all of the spatial variation in Y is due to spatial autocorrela-
tion as quantified by the semivariogram. Our goal in this chapter is a compromise
between these two extremes, and we extend the model defined by equations (9.1)
and (9.2) in several ways. First, in Section 9.2 we modify � = Var(Y) to allow
spatially autocorrelated error terms. Our treatment here will be somewhat gen-
eral, with specific examples utilizing the geostatistical framework in Chapter 8.
Second, in Section 9.3 we allow more flexible neighborhood structures for aggre-
gated spatial data, as described in Sections 4.4.1 and 7.4.2. This takes many of the
ideas regarding spatial clustering described in Chapters 5, 6, and 7 and puts them
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into a regression context, so we use not only neighboring information to ascertain
clustering of disease cases, but also spatially varying covariate information to pro-
vide potential reasons for the clustering. Third, we adapt the models for Poisson
and logistic regression in Section 9.4. This allows us to extend traditional public
health analytic methods to a spatial setting and to introduce random effects and
hierarchical modeling. Finally, we treat random effects and hierarchical models for
spatial data in more detail and conclude with an introduction to Bayesian models
for disease mapping in Section 9.5.

9.1.1 Estimation and Inference

To quantify associations between Y(s) and x0(s), x1(s), . . . , xp−1(s) using the
linear model defined by equations (9.1) and (9.2), we need to estimate β. In order
to obtain standard errors needed for confidence intervals and significance tests, we
also need to estimate σ 2. Since we are assuming that the data follow a multivariate
Gaussian distribution [i.e., we assume Y ∼ MV N(Xβ, σ 2I )], we could use either
ordinary least squares or maximum likelihood methods to provide these estimates.
We concentrate on maximum likelihood here since there is a very rich theory
underlying this approach, providing general methods for obtaining standard errors,
deriving the asymptotic distributions of the resulting estimators, and constructing
hypothesis tests. We use maximum likelihood as a starting point for developing
inference for the more complex models in subsequent sections in this chapter.
In this section we give an overview of maximum likelihood estimation for the
parameters of the linear model defined by equations (9.1) and (9.2). We focus
on major points and main results to facilitate a general understanding of how the
estimators, confidence intervals, and hypothesis tests operate in order to better
motivate their use with more complex models in subsequent sections. Even so, we
admittedly omit many important details needed for complete understanding and
computation. These can be found in Cox and Hinkley (1974), Graybill (1976),
Judge et al. (1985), and Searle et al. (1992). The equations we provide in this
section and in Section 9.2 have been synthesized and adapted from all of these
references, primarily Judge et al. (1985).

Maximum likelihood (ML) estimators are those estimators that maximize the
probability of obtaining the data over the set of possible values of the model
parameters. This probability is quantified by the joint probability distribution of
the data, given parameter values. Thus, for the linear model defined by equations
(9.1) and (9.2), the maximum likelihood estimators of β and σ 2 maximize the joint
likelihood of the data given by the multivariate Gaussian probability density

l(β, σ 2|Y, X) = (2πσ 2)−N/2 exp

[
− (Y − Xβ)′(Y − Xβ)

2σ 2

]
,

or equivalently, maximize the natural logarithm of the likelihood

L = ln(l(β, σ 2|Y, X)) = −N

2
ln(2π) − N

2
ln(σ 2) − (Y − Xβ)′(Y − Xβ)

2σ 2
. (9.3)
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The maximum of this function can be obtained analytically using calculus: We take
the partial derivatives with respect to β and σ 2, set them to zero, and solve the
resulting set of equations for the optimal values. This procedure yields

∂L
∂β

= 1

σ 2
(X′Y − X′Xβ) = 0

∂L
∂σ 2

= − N

2σ 2
+ N

2σ 4
(Y − Xβ)′(Y − Xβ) = 0.

These equations are termed the score equations. Solving the first of these equations
for β gives the maximum likelihood estimator of β. Since we are assuming that
the data follow a Gaussian distribution, the ML estimator of β is equivalent to the
ordinary least squares (OLS) estimator of β since it also minimizes the residual
sum of squares [(Y − Xβ)′(Y − Xβ)]. Most regression textbooks (e.g., Draper and
Smith 1998) use the least squares approach and for Gaussian data, least squares
estimators and maximum likelihood estimators are equivalent. We refer to the max-
imum likelihood estimators of β and σ 2 derived in this section as OLS estimators
to distinguish them from other estimators derived under different assumptions in
subsequent sections. Thus, solving the first score equation for β, we obtain the
maximum likelihood estimator (and the OLS estimator) of β as

β̂OLS = (X′X)−1X′Y. (9.4)

Substituting this solution into the second score equation gives the maximum like-
lihood estimator of σ 2:

σ̂ 2 = (Y − Xβ̂OLS)′(Y − Xβ̂OLS)

N
.

This estimator is biased, so instead, we often use the estimator

σ̂ 2
OLS = (Y − Xβ̂OLS)′(Y − Xβ̂OLS)

N − p
, (9.5)

taking into account the loss in the degrees of freedom associated with estimating β.
Rather than adjusting the ML estimator of σ 2 for the loss in degrees of freedom,

an alternative approach, called restricted maximum likelihood (REML), is often used
to estimate σ 2. REML uses likelihood methods based on linear combinations of
the data that do not involve β to estimate σ 2 and is the default estimation proce-
dure in many statistical programs estimating variance components. The restricted
likelihood, methods for maximizing it, and the resulting REML estimators are all
similar to the corresponding concepts in maximum likelihood theory, and we omit
the details here for brevity. Theoretical and computational details of REML can be
found in Searle et al. (1992), with additional references provided in Section 9.7.

In order to determine whether solutions to the score equations maximize the
likelihood function, calculus suggests using what is called the second derivative
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test; that is, we evaluate the second derivatives using the solutions to the score
equations (first derivative equations) and assess whether the resulting values are
less than zero (for a maximum). In statistics, it is also important to see if there
are any values on the edge of the parameter space that give local maxima (e.g.,
σ 2 = 0), since it is often difficult (if not impossible) to determine whether an edge
value is a true global maximum of the likelihood function. For the models we
consider here, these checks have already been done and the details can be found in
Cox and Hinkley (1974), Graybill (1976), Judge et al. (1985), and Dobson (1990),
and in the other more subject-specific references provided throughout this chapter.

One of the advantages of maximum likelihood estimation is that the resultant
estimators have a Gaussian distribution and the theory provides us with a way to
derive the associated variance–covariance matrix of the estimators. This is based
on the information matrix, defined by

I (ω) = −E

[
∂2L

∂ω ∂ω′

]
,

where ω = (β ′, σ 2)′ is a (p + 1) × (p + 1) vector containing all the unknown
parameters to be estimated. The inverse of the information matrix provides the
variance–covariance matrix of the maximum likelihood estimators. For the linear
model considered here, this matrix is

I (ω)−1 =
[
σ 2(X′X)−1 0

0′ 2σ 4/n

]
,

where 0 is a p × 1 vector with all elements equal to 0. Thus, I (ω)−1 is a (p +
1) × (p + 1) matrix with the (i,j)th element equal to Cov(ωi, ωj ). For example, in
this case, the (1, 1) element is Var(β̂0), the (1, 2) element is Cov(β̂0, β̂1), and the
(p, p + 1) element is Cov(β̂p, σ̂ 2) = 0.

Thus, the variance–covariance matrix of β̂OLS is Var(β̂OLS) = σ 2(X′X)−1, and
we estimate it by

̂Var(β̂OLS) = σ̂ 2
OLS(X′X)−1, (9.6)

where σ̂ 2
OLS is given in equation (9.5). If we denote the diagonal elements of

(X′X)−1 by vkk, k = 0, . . . , p − 1, then the standard error for a single [β̂OLS]k is

s.e.([β̂OLS]k) = σ̂OLS

√
vkk, (9.7)

and a (1 − α)% confidence interval for βk is

[β̂OLS]k ± (tN−p,α/2)σ̂OLS

√
vkk, (9.8)

where tN−p,α/2 is the α/2 percentage point from a t-distribution on N − p degrees
of freedom.
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In addition to the test of H0 : βk = 0 associated with the confidence interval in
equation (9.8), we may also test multiparameter hypotheses about β, estimate stan-
dard errors, and obtain confidence intervals for σ̂ 2. Relevant details and examples
appear in Rao (1973), Graybill (1976), Judge et al. (1985), and Searle et al. (1992).

9.1.2 Interpretation and Use with Spatial Data

The OLS estimators are unbiased and the associated confidence intervals are cor-
rect only if the model is correctly specified and includes all relevant covariates. This
means we assume that any spatial pattern observed in the outcome Y is due entirely
to the spatial patterns in the explanatory covariates, X, so we have no residual spa-
tial variation. However, if we inadvertently omit an important covariate, estimates
of β will be biased (see, e.g., Draper and Smith 1998, pp. 235–238), and if this
covariate is also one that varies spatially, we will have residual spatial variation.
This residual spatial variation will often manifest itself as spatial autocorrelation
in the residual process, ε. This means that the variance–covariance matrix of the
data, �, is not σ 2I as we assumed in equation (9.2), but has a more general form
whose elements Cov(Y (si ), Y (sj )) = Cov(εi, εj ) reflect the residual spatial auto-
correlation in the data. Thus, the data are no longer independent, but are spatially
correlated.

Sometimes, even if we include all relevant covariates, there may still be residual
spatial autocorrelation. Some outcomes vary inherently in such a way that the
value at any location is strongly related to nearby values, and try as we might, we
may never be able to find or measure a suitable covariate or set of covariates to
fully describe this complex variation. Examples include the spatial variation in an
infectious disease or in a disease with complex environmental risk factors.

Both situations (missing spatially referenced covariates or inherent spatial simi-
larity) result in spatially correlated error terms. Thus, in Section 9.2 we incorporate
residual spatial autocorrelation into multiple regression models.

DATA BREAK: Raccoon Rabies in Connecticut We assume that most read-
ers are familiar with the basics of multiple linear regression models with spatially
independent errors as outlined above. Nonetheless, the material involves a fair
amount of notation and many matrix equations, and we now provide an illustrative
application of the approaches to a spatial study of raccoon rabies transmission in
Connecticut.

Raccoon rabies has long been endemic in Florida, but it was unknown in the
northern states until around the mid-1970s, when a restocking program apparently
transported rabid raccoons from Florida to Virginia and West Virginia (see Moore
1999). The data for this data break are Yi , the month of the first reported case
of raccoon rabies for the ith township in Connecticut, ui , the distance east, in
kilometers, from the southwest corner of the state, and vi , the distance north, in
kilometers, from the southwest corner of the state. The goal of our analysis here is
to use a particular type of multiple linear regression analysis called trend surface
analysis to try to determine areas of fast or slow spread of rabid raccoons in order
to better understand the speed and direction of transmission in various habitats.
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In trend surface analysis, the broad spatial variation in the data is modeled as
a linear combination of polynomial functions of the spatial locations. That is, we
seek to explain all of the spatial pattern in the data with the (spatially defined)
covariates, and do not use spatially correlated errors. A polynomial trend surface
of degree r is defined by

µ(s) =
0≤k+l≤r∑

k

∑
l

βklu
kvl, s = (u, v)′

[consisting of (r + 1)(r + 2)/2 terms]. For example, a quadratic (r = 2) trend sur-
face is given by

µ(s) = β00 + β10u + β01v + β20u
2 + β11uv + β02v

2.

Historically, trend surface analysis has been based on the assumption that any
residual variation is spatially uncorrelated, so the trend surface model is equivalent
to the regression model given in equation (9.1) with X defined by the uk and vl

terms in µ(s) and Var(ε) = σ 2I , as in equation (9.2). The trend surface parameters,
β, can then be estimated using equation (9.4) and a contour map displaying the

fitted values Ŷ (s) =
0≤k+l≤r∑

k

∑
l

β̂klOLSu
kvl as a function of u and v depicts the spatial

variation in Y .
To determine the order of a trend surface that describes the raccoon rabies data,

some appropriate plots can give us a lot of preliminary information. A posting of
the data is shown in Figure 9.1, and a three-dimensional scatter diagram is shown
in Figure 9.2. From these figures we see that the spread of raccoon rabies moves
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FIG. 9.1 Month of first reported case of raccoon rabies in Connecticut.
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FIG. 9.2 Scatter diagram of raccoon rabies data.

north and east from the southwest corner of the state (entering in the township
labeled “1” in Figure 9.1), with the latest occurrence in the southeastern part of the
state. We use trend surface analysis to model this spread. From the scatter diagram
we can see that there is some curvature to the scatter (this can be seen more clearly
by making two-dimensional scatter plots of Yi vs. ui and Yi vs. vi), so we will
fit a second-order trend surface to these data (Figure 9.3). Thus, this trend surface
assumes that

E[Y ] = β0 + β1u + β2v + β3uv + β4u + β5v. (9.9)

The results are shown in Table 9.1. We could also use stepwise regression to
determine the important terms for our regression model. The resulting surface may
not be a trend surface per se (since it may not include all of the terms required in
the definition of a trend surface function), but instead, would be a response surface
model based on just the most important terms in equation (9.9).
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FIG. 9.3 Second-order trend surface fit to the raccoon rabies data.
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Table 9.1 Results from Ordinary Least Squares Estima-
tion of Trend Surface Parametersa

95% Confidence Interval

Lower Upper
Order Effect β̂ Bound Bound

r = 2 Intercept −0.7890
u 3.1601 2.1168 4.2035
v 1.5537 0.0195 3.0880
uv −0.2262 −0.3266 −0.1258
u2 0.0413 −0.0230 0.1056
v2 0.0115 −0.1350 0.1580

aOriginal spatial coordinates (u, v) were divided by 10 so β̂ and the
confidence intervals should be scaled accordingly for interpretation.

To better understand the spread of raccoon rabies, we can determine the direction
and magnitude of the most rapid increase in this surface at each location. From
vector calculus, this is given by the gradient of Ŷ , denoted here by ∇Ŷ (u0, v0) =
(∂Ŷ /∂u)0�i + (∂Ŷ /∂v)0 �j , where (∂Ŷ /∂u)0 is the partial derivative of Ŷ with respect
to u evaluated at (u0, v0), (∂Ŷ /∂v)0 is the partial derivative of Ŷ with respect to v

evaluated at (u0, v0), and �i and �j are unit basis vectors [e.g., �i is the vector from
(0,0) to (1,0)]. Thus, for our fitted second-order trend surface,

∇Ŷ (u0, v0) =
(
β̂1 + β̂3v0 + 2β̂4u0

)
�i +

(
β̂2 + β̂3u0 + 2β̂5v0

)
�j .

The instantaneous rate of change of Ŷ per unit distance in the direction of the
gradient is

r =
√

(β̂1 + β̂3v0 + 2β̂4u0)2 + (β̂2 + β̂3u0 + 2β̂5v0)2.

Plotting the direction of most rapid increase in the trend surface as a vector with
length r using a vector plot shows the spread of raccoon rabies (see Figure 9.4). The
initial direction is northeast, but the spread turns southeast about midway across
the state. Ecological data important for determining conditions favorable to raccoon
habitats and rabies transmission (e.g., location of wooded areas and preferred food
and water sources, temperature, and elevation data) might help us better understand
the reasons for the transmission pattern of raccoon rabies in Connecticut.

9.2 LINEAR REGRESSION MODELS FOR SPATIALLY
AUTOCORRELATED DATA

In previous sections we assumed that all spatial variation in the outcome variable of
interest can be completely described by a collection of spatially varying covariates.
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FIG. 9.4 Vector diagram of fitted second-order trend surface.

In this section we relax this assumption. We still assume the same linear relationship
between the outcome variable and the covariates [equation (9.1)], but in addition to
the spatially varying covariates, we allow the data to be spatially correlated. This
means that the variance–covariance matrix of the data becomes

� = Var(Y) = Var(ε), (9.10)

where the (i, j)th element of � is Cov(Y (si ), Y (sj )). The geostatistical models
described in Chapter 8 are special cases of this more general linear model obtained
by assuming that X ≡ 1, where 1 is an n × 1 vector whose elements are all equal
to 1. In this case, E[Y(s)] = µ for all locations s, which is one component of
the assumption of second-order stationarity defined in Section 8.1. Thus, the more
general linear model allows us to relax the assumptions of stationarity we made
in Chapter 8. The term Xβ is often referred to as the mean structure, large-scale
variation, or trend, to distinguish this variation from the variation in the residual
vector, ε, that defines the small-scale variation in the data and determines the
stochastic dependence structure or residual autocorrelation in the data. (Note that
this usage of the terms large scale and small scale for broad trends and small
details, respectively, is different from the cartographic usages of the terms defined in
Chapter 3.) The residual process adjusts the model for any residual spatial variation
remaining in the data after accounting for covariate effects.

9.2.1 Estimation and Inference

If � is known, we may use maximum likelihood methods to obtain an estimator
of β. It is slightly more general and often easier for computations to assume that
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� is known up to a constant, that is,

� = σ 2V, (9.11)

where σ 2 is an unknown parameter to be estimated and the elements of V reflect
the residual spatial correlation [directly generalizing equation (9.2)].

Assuming that Y ∼ MV N(Xβ, σ 2V ), the log likelihood is

L = ln[l(β, σ 2|Y, X)]

= −N

2
ln(2π) − N

2
ln(σ 2) − 1

2
ln|V | − (Y − Xβ)′V −1(Y − Xβ)

2σ 2
, (9.12)

where |V | denotes the determinant of V . We use the same approach as for the
linear model with uncorrelated residuals (Section 9.1.1) to obtain the maximum
likelihood estimators of β and σ 2. Thus, the maximum likelihood estimator of β,
also called the generalized least squares (GLS) estimator, is

β̂GLS = (X′V −1X)−1X′V −1Y, (9.13)

and the maximum likelihood estimator of σ 2, adjusted for the loss in degrees of
freedom resulting from estimating β, becomes

σ̂ 2
GLS = (Y − Xβ̂GLS)′V −1(Y − Xβ̂GLS)

N − p
. (9.14)

Of course, � is usually not known, and it is difficult to estimate the elements of
�, since in the spatial setting we have only a single realization. That is, there is no
independent replication; we have only a single “subject” with which to work. Even
in the case where Var(Y (s)) = σ 2 (i.e., the diagonal elements of � are all equal),
there are N(N − 1)/2 remaining elements to estimate. If n = 15, a small sample
by most standards, we would have 105 covariance parameters to estimate! One way
around this problem is to create a parametric model for the elements of � so that
the number of parameters in this model is much less than N(N − 1)/2. However,
we cannot use just any model: Since � is a variance–covariance matrix, we need
to ensure that it satisfies the properties of a variance–covariance matrix (i.e., it
must be symmetric and positive definite). Also, since � is describing residual
spatial variation, we would also like to be able to interpret our estimates in this
context. The parametric semivariogram models described in Section 8.2.2 provide
a convenient way to meet all of these criteria.

Recall from Section 8.1 that under the assumption of second-order stationarity,
the covariances that define the elements of �, Cov

(
Y(si ), Y (sj )

)
, depend only

on the difference between locations si and sj , not on the locations themselves.
This is quantified by the covariance function, C(si − sj ), where C(si − sj ) =
Cov

(
Y(si ), Y (sj )

)
. Also recall from Section 8.2.1 that the covariance function is

related to the semivariogram by the relationship

C(si − sj ) = C(0) − γ (si − sj ), (9.15)
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where C(0) = Var(Y (s)). If the spatial process is isotropic, then γ (si − sj ) is
a function only of the distance between locations si and sj [i.e., γ (si − sj ) ≡
γ (h), where h = ‖si − sj‖]. Thus, from the semivariogram models described and
illustrated in Section 8.2.2, we obtain a comparable set of valid models for the
covariance function using the relationship in equation (9.15). For example, consider
the exponential semivariogram model defined in equation (8.6):

γ (h; θ) =
{

0, h = 0

c0 + ce[1 − exp(−h/ae)], h > 0,

where θ = (c0, ce, ae)
′, c0 is the nugget effect, the sill c0 + ce is the variance of

Y(s), and the effective range (cf. Section 8.2.2) of autocorrelation is 3ae. Using
the relationship in equation (9.15), the exponential covariance function is

C(h; θ) =
{

c0 + ce, h = 0

ce[exp(−h/ae)], h > 0.

Using parametric covariance functions such as this one to describe the matrix
elements, � becomes a function of θ , denoted here as �(θ). For example, using the
exponential covariance function, the (i, j)th element of �(θ) is Cov(Y (si ), Y (sj ))

= ce[exp(−‖si − sj‖/ae)]. Thus, �(θ) depends on at most three parameters, c0, ce,
and ae, that we estimate from the data. Any of the semivariogram models and the
rules for creating more complex semivariogram models given in Section 8.2.2
provide models for the covariance function and �(θ).

In Sections 8.2.3 and 8.2.4 we describe and illustrate how to estimate the semi-
variogram from the data and fit parametric models to the empirical semivariogram
to ensure a valid semivariogram function. However, in the general linear model
where µ(s) = x(s)′β �= µ (i.e., the mean is not constant but depends on the spatial
locations through the covariates) and the residuals are spatially correlated, esti-
mation of the semivariogram is more difficult. To see this, consider estimating
γ (·) using the classical semivariogram estimator given in equation (8.8). Under the
model defined by equations (9.1) and (9.10),

E[(Y (si ) − Y(sj )]
2 = Var(Y (si ) − Y(sj )) + [µ(si ) − µ(sj )]

2

= 2γ (si − sj ) +
{

p∑
k=0

βk[xk(si ) − xk(sj )]

}2

,

with x0(si ) ≡ 1 for all i (Cressie 1993, p. 165). Thus, when we average pairs of
values to estimate the semivariogram at each lag, the empirical semivariogram
will no longer estimate the true, theoretical semivariogram. If the covariates are
trend surface functions, the trend often manifests itself in practice by an empirical
semivariogram that increases rapidly with ‖h‖ (often, quadratically). The empir-
ical semivariogram based on the raccoon rabies data described in the data break
following Section 9.1 (Figure 9.5) provides a typical example.
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FIG. 9.5 Semivariogram of month of first occurrence of raccoon rabies.

If β was known, we could use it to adjust for the bias in the empirical semi-
variogram estimator. Of course, β is not known and to (optimally) estimate it, we
need to know γ (·)! To get us out of this circular argument, we need to estimate β

and γ (·) simultaneously. In the following sections we describe two methods often
used to estimate the parameters of a semivariogram model, and equivalently, the
parameters in �(θ), under the general linear model defined by equations (9.1) and
(9.10): iteratively reweighted generalized least squares (IRWGLS) and maximum
likelihood (ML).

Iteratively Reweighted Generalized Least Squares (IRWGLS) As described in
Section 8.2.4, we select a theoretical semivariogram function, γ (h; θ), defined up
to a vector of parameters θ . To estimate both θ and β, we proceed as follows:

1. Obtain a starting estimate of β, say β̂.

2. Compute residuals r = Y − Xβ̂.

3. Estimate and model the semivariogram of the residuals using techniques
described in Section 8.2. This yields γ (h; θ̂) and, correspondingly, �(θ̂).

4. Obtain a new estimate of β using β̂ = β̂GLS = (X′�(θ̂)−1X)−1X′�(θ̂)−1Y.

5. Repeat steps 2–4 until the change in estimates of β and θ are “small” (e.g.,
<10−5).

Cressie (1993) shows that the semivariogram estimators based on the residuals
Y − Xβ̂ (step 3 above) are biased and discusses some consequences of this bias. He
suggests that if the semivariogram parameters are estimated by weighted nonlinear
least squares as described in Section 8.2.4, the effect of the bias should be small.
Likelihood-based techniques, described below, offer another alternative.

IRWGLS gives an estimator of β often referred to as an estimated generalized
least squares (EGLS) estimator, β̂EGLS. Thus, if we denote the estimator of θ
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obtained from IRWGLS by θ̂EGLS, the EGLS estimator of β is

β̂EGLS = [X′�(θ̂EGLS)−1X]−1X′�(θ̂EGLS)−1Y. (9.16)

Generalizing equation (9.6), an estimator of the variance of β̂EGLS is

̂Var(β̂EGLS) = [X′�(θ̂EGLS)−1X]−1. (9.17)

If we denote the diagonal elements of [X′�(θ̂EGLS)−1X]−1 by skk, the standard
error for a single [β̂EGLS]k in β is

√
skk , and a (1 − α)% confidence interval for

βk is

[β̂EGLS]k ± (tN−p,α/2)
√

skk, (9.18)

where tN−p,α/2 is the α/2 percentage point from a t-distribution on N − p degrees
of freedom. The theoretical properties of the EGLS estimators are discussed in
Judge et al. (1985, pp. 175–177).

Likelihood Methods The procedure described in Section 9.1.1 also provides max-
imum likelihood estimators of β and θ (Mardia and Marshall 1984). The log
likelihood is now

L = ln[l(β, θ |Y, X)] = −N

2
ln(2π) − 1

2
ln|�| − (Y − Xβ)′�−1(Y − Xβ),

(9.19)

and we assume that � ≡ �(θ). Unfortunately, the score equations for θ do not
lead to a closed-form solution for θ . Thus, a common practice is to maximize the
concentrated log likelihood, obtained from substituting the solution to the score
equation for β [equation (9.13) with V = �(θ)] into the log likelihood in equation
(9.19). The concentrated log likelihood then depends only on θ , and ignoring the
constant (N/2)ln(2π) is

L∗(θ) = −N

2
ln
[
n−1e(θ)′�(θ)−1e(θ)

]
− 1

2
ln|�(θ)| − N

2
,

where e(θ) = Y − X[X′�(θ)−1X]−1X′�(θ)−1Y (the observed values minus the
model’s predicted values). Maximizing L∗ is equivalent to minimizing

Q(θ) = N ln[e(θ)′�(θ)−1e(θ)] + ln|�(θ)|. (9.20)

There are many algorithms for finding θ that minimize equation (9.20), and
the Newton–Raphson algorithm is perhaps the best known. Most textbooks on
nonlinear regression (e.g., Seber and Wild 1989) provide a description of this algo-
rithm and other nonlinear optimization techniques. Most implementations involve
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a grid search procedure over the range of possible values of θ evaluating equation
(9.20) systematically over a specified range of values and finding the value of θ

producing the minimum value of Q(θ). More sophisticated algorithms make this
search procedure more efficient (and hopefully, faster!), and seek to avoid con-
vergence to a local rather than a global minimum. In practice, we often combine
such approaches with additional algorithms to avoid repeated inversion of large
unstructured matrices (Mardia and Marshall 1984; Zimmerman 1989).

Given the maximum likelihood estimator of θ , denoted θ̃ , the maximum likeli-
hood estimator of β is

β̃ = [X′�(θ̃)−1X)−1X′�(θ̃]−1Y. (9.21)

The asymptotic standard errors of the maximum likelihood estimators derive from
the inverse of the information matrix using an approach analogous to that described
in Section 9.1.1. In this case, the inverse of the information matrix for ω = (β ′, θ ′)′
is (see Breusch 1980; Judge et al. 1985, p. 182)

I (ω)−1 =
[
(X′�(θ)−1X) ∅

∅′ 1
2
′(�(θ)−1⊗�(θ)−1)


]−1

, (9.22)

where the matrix ∅ denotes a p × g matrix with all elements equal to 0, and

 = 
(θ) = ∂(vec(�(θ)))/∂θ ′ is an N2 × g matrix, where g is the number of
elements in θ that contain the partial derivatives of each element of �(θ) with
respect to each element in θ . The matrix operator vec(·) stacks the columns of
a matrix into a single vector, so vec(�(θ)) is an N2 × 1 vector. The symbol

⊗
denotes the matrix direct product multiplying each element in the first matrix by
every element in the second matrix producing an N2 × N2 matrix.

Although the notation used to define the elements of I (ω) is involved and,
in practice, we often leave its computation and inversion to the computer, the
variance–covariance matrix of β̃ takes the (by now familiar) form

Var(β̃) = [X′�(θ)−1X]−1,

estimated via

V̂ar(β̃) = [X′�(θ̃)−1X]−1. (9.23)

Paralleling previous development, we use ṽkk to denote the diagonal elements of
[X′�(θ̃)X]−1, so that the standard error for a single β̃k in β can be written as√

ṽkk, with a (1 − α)% confidence interval for βk defined by

β̃k ± (tN−p,α/2)
√

ṽkk, (9.24)

where tN−p,α/2 is the α/2 percentage point from a t-distribution on N − p degrees
of freedom.
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Since maximum likelihood estimators are asymptotically Gaussian, we obtain
approximate confidence intervals or associated hypothesis tests for the elements of
θ using

θ̃� ± (zα/2)

√
̂Var(θ̃�), (9.25)

where Var(θ̃�) derives from the inverse of the information matrix, substituting ML
estimates for any unknown parameters.

Finally, as discussed in Section 8.2.4, likelihood methods allow us to choose
between competing models through the use of likelihood ratio tests of hypotheses
about θ� to see whether a subset of the covariance parameters (θ�s) fits the data as
well as the full set. Consider comparing two models of the same form and with the
same set of covariates, one based on parameters θ1 and a larger model based on
θ2, with dim(θ2) > dim(θ1) (i.e., θ1 is obtained by setting some parameters in θ2
equal to zero). Then a test of H0 : θ = θ1 against the alternative H1 : θ = θ2 can
be done by comparing

2[L(β, θ2) − L(β, θ1)] (9.26)

to a χ2 with dim(θ2) − dim(θ1) degrees of freedom.
To compare two models that are not nested, we can use Akaike’s information

criterion (AIC), a penalized-log-likelihood ratio defined by

AIC(β, θ) = L(β, θ) + 2(p + g), (9.27)

where p + g is the number of parameters in the model (Section 8.2.4). We prefer
the model with the smallest AIC value.

9.2.2 Interpretation and Use with Spatial Data

In spatial regression, the decomposition of the data into the sum of covariate infor-
mation and residuals must be done with great thought. Suppose that we left out an
important spatially varying covariate (say, xp+1) when we defined X. We might
expect residuals from our model to reflect the spatial autocorrelation of the missing
variable. By allowing correlated errors, ε effectively “mops up” the excess resid-
ual correlation induced by omitting xp+1, and the model omitting xp+1 may have
overall fit comparable to that of the model including xp+1. So we could have two
competing models defined by parameters (β1, ε1) and (β2, ε2) with comparable
fit. If X1β1 �= X2β2, the interpretations in the two models could be very different,
although both models are valid representations of the spatial variation in the data.
In short, for spatial analysis we have to give even greater care to the interpreta-
tion of the regression parameters in the models we develop than we would with
traditional nonspatial models.

Even if we identify our model with care, there is no guarantee that the statistical
estimation algorithms accurately differentiate between what we call the large-scale
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covariate effects and what we call the small-scale residual autocorrelation param-
eters, even if a fitting algorithm “converges.” The ability to separate these com-
ponents depends on the data: If covariate effects are strong or the data are not
extremely variable, statistical separation of these components usually occurs reli-
ably. However, when the data include a lot of variation and covariate effects are
weak, separation of these components is more difficult and the results of the statis-
tical estimation algorithms may be suspect. Careful and varied choices of starting
values and thoughtful interpretation of parameter estimates are crucial when fitting
the spatial regression models using the iterative approaches outlined above.

9.2.3 Predicting New Observations: Universal Kriging

In addition to providing inferences regarding model parameters, another goal of
regression analysis is to use the fitted model to provide predictions of and related
inferences for new observations. The same is often true in spatial statistics. We
discussed the prediction of new observations in a spatial setting (called kriging) in
Section 8.3.2. However, in Section 8.3.2 we assumed that the mean was constant
[i.e., E(Y) = µ] and used the semivariogram of the data to develop a spatial
prediction technique called ordinary kriging. In this section we develop a predictor
of Y(s0), the outcome variable at a new, unobserved location s0, assuming the
general linear regression model with autocorrelated errors discussed in Section
9.2. This predictor is known as the universal kriging predictor. To parallel the
development in Section 8.3.2, we derive the universal kriging predictor in terms of
a semivariogram and then show how it can be expressed in terms of a covariance
function.

We assume the general linear regression model of equation (9.1) and assume
that the residual process has semivariogram 1

2 Var[ε(si ) − ε(sj )] = γ (si − sj ). As
in 8.3.2, we develop the best linear unbiased predictor (BLUP), following the ideas
and notation in Cressie (1993). We consider linear predictors of the form Ŷ (s0) =∑N

i=1 λiY (si ), and derive the weights, λi , by minimizing the mean-squared pre-
diction error subject to the unbiasedness condition E[Ŷ (s0)] = x(s0)

′β for all β,
where the vector of covariates at location s0 is x(s0) = [1, x1(s0), . . . , xp−1(s0)]′.
This condition implies that λ′X = x′(s0), so instead of a single unbiasedness con-
straint, we need p constraints

N∑
i=1

λi = 1,

N∑
i=1

λix1(si ) = x1(s0), . . . ,

N∑
i=1

λixp−1(si ) = xp−1(s0).

To find the optimal predictor, we follow the ideas in Section 8.3.2 and minimize
the mean-squared prediction error (MSPE), E{[Ŷ (s0) − Y(s0)]2}, subject to λ′X =
x′(s0), that is, minimize

E



[

N∑
i=1

λiY (si ) − Y(s0)

]2

− 2

p−1∑
j=0

mj

{
N∑

i=1

λixj (si ) − xj (s0)

}
(9.28)
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[where x0(s) = 1] with respect to λ1, . . . , λN , and the p Lagrange multipliers
m0, . . . , mp−1. Expanding terms, we obtain

[
N∑

i=1

λiY (si ) − Y(s0)

]2

=
[
λ′Xβ +

N∑
i=1

λiε(si ) − x′(s0)β − ε(s0)

]2

=
[

N∑
i=1

λiε(si ) − ε(s0)

]2

= −
N∑

i=1

N∑
j=1

λiλj [ε(si ) − ε(sj )]
2/2

+ 2
N∑

i=1

λi[ε(s0) − ε(si )]
2/2.

Taking expectations (9.28) becomes

−
N∑

i=1

N∑
j=1

λiλjγ (si − sj ) + 2
N∑

i=1

λiγ (s0 − si )

− 2
p−1∑
j=0

mj

[
N∑

i=1

λixj (si ) − xj (s0)

]
.

Differentiating this expression with respect to λ1, . . . , λN, m0, . . . , mp−1 in turn
and setting the derivatives equal to zero gives the system of universal kriging
equations

λug = �−1
u γ u, (9.29)

where

λug = (λ1, . . . , λN, m0, . . . , mp−1)
′

γ u = [γ (s0 − s1), . . . , γ (s0 − sN), 1, x1(s0), . . . , xp−1(s0)]
′

and

�u =




γ (si − sj ), i = 1, . . . , N; j = 1, . . . , N

xj−1−N(si ), i = 1, . . . , N; j = N + 1, . . . , N + p

0, i = N + 1, . . . , N + p;
j = N + 1, . . . , N + p
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[with x0(s) ≡ 1]. Thus, the universal kriging predictor is

Ŷ (s0)UK =
N∑

i=1

λiY (si ), (9.30)

where the weights {λi} satisfy equations (9.29).
The optimal universal kriging weights also give the minimized MSPE (kriging

variance):

σ 2
k (s0) = λ′

ugγ u

= 2
N∑

i=1

λiγ (s0 − si ) −
N∑

i=1

N∑
j=1

λiλj γ (si − sj ).

We can also write the universal kriging equations using general covariance terms:

λu = �−1
u cu, (9.31)

where

λu = (λ1, . . . , λN, −m0, . . . , −mp−1)
′

cu = [c′, 1, x1(s0), . . . , xp−1(s0)]
′

c = [Cov(Y (s0), Y (s1)), Cov(Y (s0), Y (s2)), . . . , Cov(Y (s0), Y (sN))]′

and [with x0(s) ≡ 1]

�u =




Cov[Y(si ), Y (sj )], i = 1, . . . , N; j = 1, . . . , N

xj−1−N(si ), i = 1, . . . , N; j = N + 1, . . . , N + p

0, i = N + 1, . . . , N + p;
j = N + 1, . . . , N + p.

Then, the universal kriging predictor is given in equation (9.30), where the
weights {λi} satisfy equations (9.31) and the kriging variance is

σ 2
k (s0) = C(0) − 2

N∑
i=1

λiCov[Y(s0), Y (si )] +
N∑

i=1

N∑
j=1

λiλj Cov[Y(si ), Y (sj )].

Developing the universal kriging predictor using covariance terms allows us
to use it for prediction with the general linear regression model with autocor-
related errors, specified by the mean function in equation (9.1) and the general
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variance–covariance matrix � defined in equation (9.10). In practice, we assume
second-order stationarity so that Cov[Y(si ), Y (sj )] = C(si − sj ), and model �

using parametric functions as described in Section 9.2.1.
Since many geostatistical software packages do not implement universal kriging,

it is tempting to try to bypass the universal equations [equations (9.29) and (9.31)]
by using ordinary kriging with detrended data. The idea is to remove the large-scale
mean structure, Xβ, and cast the prediction problem into one based on a constant
mean that can be handled with ordinary kriging. In this approach, detrending is
done by using either ordinary least squares or estimated generalized least squares to
estimate β, and then obtaining the residuals from the fitted model as ε̂ = Y − Xβ̂.
The residuals have expectation 0, so we can use ordinary kriging (Section 8.3.2) to
predict the residual at a new location s0, thus obtaining ε̂(s0)OK. We can then add
the trend or covariates observed at this location, x(s0), to the kriged residual. Thus,
our predicted value of Y(s0) is Ŷ (s0) = x′(s0)β̂ + ε̂(s0)OK. This approach will give
us the same predictions as universal kriging (if the semivariogram or covariance
function used in ordinary kriging with model residuals is used in universal kriging
and if β is estimated using GLS or EGLS and not OLS). However, the prediction
errors obtained from the kriging variance will be incorrect for the predictions based
on detrended data. The reason for this is somewhat intuitive: The kriging variance
from kriging the detrended data does not reflect the uncertainty associated with
estimating β. This reason is also somewhat counterintuitive, since universal kriging
does not require estimation of β. However, if we explicitly solve the universal
kriging equations for λ, the dependence of the UK predictor on β̂GLS and the UK
variance on Var(β̂GLS) become clear (see Gotway and Cressie 1993; Cressie 1993,
pp. 154, 173). Thus, the kriging variance from universal kriging accounts for the
uncertainty in estimating β, whereas kriging with detrended data does not, and
consequently, the prediction errors from kriging detrended data are too low.

By allowing covariate effects, we often simplify the spatial correlation structure
required for prediction since many times any anisotropy, nonstationarity, or even
spatial correlation in the outcome variable may be due to spatial patterns in relevant
covariate effects ignored in the prediction models in Chapter 8. For example, in the
model in Section 9.1, the covariates completely describe the spatial variation in the
outcome, yielding independent errors and making spatial autocorrelation adjust-
ments irrelevant. In such cases, γ (si − sj ) represents only a pure nugget effect
(i.e., no spatial autocorrelation) and � = σ 2I [equation (9.2)]. Hence, universal
kriging reduces to the traditional prediction with multiple linear regression mod-
els. In other applications, directional variation in the outcome process (suggesting
anisotropic semivariograms for the outcome variable) may be due entirely to covari-
ate effects. Then, the residual spatial variation characterized by γ (si − sj ) or �

exhibits only isotropic spatial variation [see, e.g., Cressie (1993, Section 4.1) and
Gotway and Hergert (1997) for some comparative illustrations]. When obtaining
point predictions, it matters little if we model the spatial variation entirely through
the covariates, entirely as small-scale variation characterized by the semivariogram
or �, or through some combination of covariates and residual autocorrelation. How-
ever, our choice of covariates to include in the model affects both the interpretation
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of our model and the magnitude of the prediction standard errors, so, as above, it
is important to choose our model carefully and rely on a scientific understanding
of the spatial process we are studying to help us specify our model.

DATA BREAK: New York Leukemia Data In many public health studies,
we would like to use specific covariates to explore associations with the outcome of
interest and to adjust our maps for potentially important demographic risk factors.
We turn now to a linear regression analysis (with spatially correlated errors) of the
New York leukemia data introduced in the data break following Section 4.4.5.

Data Reminder, Assumptions, and Analysis Goals We consider the census tract-
level leukemia incidence data introduced earlier covering an eight-county region of
upstate New York. As an exposure covariate, we use the inverse distance between
each census tract centroid to the nearest of the inactive hazardous waste sites
containing trichloroethylene (TCE) (introduced following Section 7.6.5). The use
of distance as surrogate for exposure admittedly involves several assumptions.
First, we assume that exposure decreases monotonically with the distance from
each waste site. Second, we assume that all people residing within a given census
tract receive the same exposure. Third, we ignore the amount of TCE reported at
each site and treat all sites as sources of equivalent exposure. Finally, we assume
that the inverse distance to the nearest site represents the only relevant source of
TCE exposure. Based on these fairly restrictive simplifying assumptions, we should
view all analyses in this chapter as attempts to assess association between leukemia
incidence and proximity to locations of sites reporting TCE, not as assessments
of associations between leukemia incidence and TCE exposure itself. However,
individual exposure is difficult and costly to measure, so these assumptions allow us
a fairly fast preliminary indication of elevated leukemia risk that may be associated
TCE exposure.

Scrutinizing Model Assumptions Our intent is to use linear regression to model
the relationship between the leukemia rate associated with each tract and the inverse
distance to the nearest TCE waste site. In using linear regression, we make several
rather important assumptions:

1. The linear model with the specified covariates given in equation (9.1) ade-
quately describes the variation in our outcome variable of interest.

2. The error terms, ε(si ) have zero mean.

3. The data have a constant variance, σ 2.

4. The data are uncorrelated (OLS) or have a specified parametric covariance
structure (GLS).

5. The data are multivariate Gaussian.

Diagnostic plots of residuals e = Y − Xβ̂ versus the fitted values Xβ̂, residuals
versus each covariate, and normal probability plots based on the residuals can be
very helpful in assessing model adequacy even when the outcome variable and the
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covariates are spatially varying [see, e.g., Draper and Smith (1998) for a detailed
description and illustration of common methods for residual analysis]. In addition
to the traditional methods for residual analysis, a map of the residuals, plots of
the residuals versus each spatial coordinate, the empirical semivariogram of the
residuals, and maps of local indicators of spatial association based on residuals
can be useful in assessing whether there is any remaining spatial variability not
accounted for explicitly in the model. If the residuals do show spatial structure,
the models described in subsequent sections can be used to account for this spatial
variability.

Assumption 5 is necessary if we want to use Gaussian-based likelihood methods
for estimation. If we do not want to use likelihood methods, but instead, want to rely
on least-squares estimation, we will also need to assume that certain “regularity con-
ditions” are satisfied, so our estimators have nice asymptotic properties and we can
construct confidence intervals and make hypothesis tests. In practice, assumption 5
is almost the least of our worries: Linear regression analysis is relatively robust to
departures from normality, and even when the data are nonnormal, data transforma-
tions, commonly discussed in the literature in most disciplines, can often be used
to achieve (or adequately approximate) the desired normality, as illustrated below.

Violations in assumption 3 can have especially severe consequences on statistical
inference since standard errors, confidence intervals, and hypothesis tests for the
covariate effects (i.e., for the β̂k) can be incorrect if this assumption is violated.
Assumption 3 is also worth a bit more discussion here since disease counts and rates
often violate this assumption in a rather complex way that has not been addressed
adequately in the literature.

Referring back to our discussion in Chapter 7, suppose that the number of cases
of a particular disease within a region i, Yi , follows a Poisson distribution under
the constant risk assumption. Hence, E(Yi) = rni , where ni is the population size
at risk within region i and r is the assumed constant risk of disease. This in turn
implies that Var(Yi) = rni , since with the Poisson distribution, E(Yi) = Var(Yi).
Thus, when working with disease counts and rates, assumption 3 above is violated
in two ways: The variance of the data depends on the mean, and the variance is
not constant, but rather, depends on the population sizes that can be very different
from region to region. Consequently, we really need to fix two problems: a mean–
variance relationship that is usually inherent in discrete data, and heteroscedasticity
resulting from the differing population sizes.

A variance-stabilizing transformation can be used to remove the dependence
of the mean on the variance, and often, an intelligent choice of transformation
will fix (or at least improve) nonnormality (violation of assumption 5), nonlinear-
ity (violation of assumption 1), and the mean–variance relationship (violation of
assumption 3). There is a wide literature on such transformations, including the
well-known families of Box–Cox and power transformations (cf. Carroll and Rup-
pert 1988; Draper and Smith 1998, Chapter 13; Griffith and Layne 1999, Chapter
2). However, it is rare for any of these transformations to remove heteroscedasticity.

If heteroscedasticity is the only remaining issue following transformation, one
solution is to perform a weighted analysis (e.g., weighted least squares), where
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the weights are inversely proportional to the differing variances. Transforming
the outcome variable using a variance-stabilizing transformation, and weighting
traditional multiple linear regression analysis together provide a widely applied
approach for addressing violations in assumption 3.

As we shall see in the rest of this data break, addressing assumptions 1–5 to allow
linear modeling of public health data often requires a series of less-than-elegant
gyrations and data transformations. However, such analyses remain common in the
literature, due primarily to available software and decades of statistical work on
methods for assessing departures from these assumptions and making the appro-
priate corrections. An alternative solution is to use the generalized linear models
described in Sections 9.4 and 9.5 that more directly embrace the characteristics of
discrete data at the expense of computational simplicity.

Transformations As we mentioned above, the outcome counts, particularly for
a rare disease, usually do not follow a Gaussian distribution or even a symmetric
distribution (the former a necessary assumption for inference with the maximum
likelihood regression methods in Sections 9.1 and 9.2, and the latter for ordinary
least squares). Observed incidence proportions (rates) may follow a Gaussian dis-
tribution more closely than do counts, but often will not, particularly for very rare
outcomes. Second, there is almost always a relationship between the variability
in the counts or rates and their expected values (means), violating the Gaussian
assumption of independence between regional means and variances.

Functional transformations of the data provide a time-honored approach to
addressing these problems in the regression setting where the transformed data
better meet the key model assumptions described in Section 9.2.4. The advantages
of trying to adapt the analytical methods discussed in Sections 9.1 and 9.2 to spatial
counts or rates include the use of widely available software for linear regression
and the existence of a broad class of model diagnostics based on residual analysis.
The main disadvantage of using linear regression methods with rates or counts lies
with the violation of several key model assumptions and the subsequent need to
transform the data: it is often difficult to find a suitable transformation addressing
all problems simultaneously. Furthermore, unbiased estimation back-transformed
to the original scale of measurement is usually impossible. Additional discussion
regarding (spatial) regression analysis of regional count data appears in Pocock
et al. (1981, 1982), Cook and Pocock (1983), Cressie and Chan (1989), Cressie
and Read (1989), Richardson et al. (1992), and Griffith and Layne (1999).

We begin by addressing our first challenge, the need for the outcome data to meet
the assumptions of OLS [i.e., the need for the transformed data to be Gaussian (or at
least have a relatively symmetric distribution) and to have the variance of the trans-
formed data be independent of the mean]. Note that neither the leukemia counts,
Yi , nor the corresponding proportions, pi = Yi/ni , satisfy these assumptions.

Theoretically, we may expect the counts, Yi, i = 1, . . . , N , to follow binomial
distributions since each is bounded above by ni . However, for large ni and small pi

their distributions may be approximated adequately by Poisson distributions. Using
a Poisson distribution instead of a binomial has the advantage that the square
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root transformation serves as a variance stabilizing transformation for the Poisson
distribution, offering more straightforward implementation and interpretation than
the variance stabilizing transformation for the binomial distribution (the arcsine
transformation; cf. Draper and Smith 1998, pp. 292–294). However, discussion and
analysis in Cressie (1993, pp. 395–396) suggest that the presence of spatial auto-
correlation may require a stronger transformation. In his analysis of sudden infant
death syndrome (SIDS) data, Cressie (1993, p. 395) suggests three potential trans-
formations. One of these is particularly useful here since it helps to discriminate
among the tracts with Yi ≤ 1 but with different population sizes:

Zi = log

(
1000(Yi + 1)

ni

)
.

The effect of this transformation on the data is quite nice, taking a very skewed
distribution (Figure 9.6) and transforming it into one that is reasonably symmetric,
with a mean value of −0.21 and a median value of −0.28 (Figure 9.7).

Figure 9.7 reveals three rather large observations in the transformed data: 4.71,
2.64, and 2.31. These correspond to tracts with observed leukemia counts of 0, 1,
and 0 cases, and associated population counts of 9, 143, and 99 people, respectively.
Such extreme observations could affect the results of linear regression analysis, and
we briefly take a closer look at these observations.

These three observations provide excellent examples of the small-number prob-
lem, having both a very small number of cases and very small population sizes.
This is one of the main arguments for spatial smoothing (cf. Section 4.4), but
if we smooth the incidence proportions (rates) prior to regression analysis we
might also smooth away any effect of the proximity of the TCE locations on the
risk of leukemia. We could proceed with linear regression and use the traditional
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FIG. 9.6 Histogram and QQ plot of incidence proportions for the New York leukemia data.
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FIG. 9.7 Histogram and QQ plot of the transformed New York leukemia data.

influence diagnostics to help us decide how to treat these observations. However,
these diagnostics must be used with caution with spatial data since many of the
distributions and test statistics used to measure the potential influence of any one
observation on model results can be distorted by residual spatial autocorrelation
(cf. Haining 1995). Instead, since our goal is a spatial analysis, we first examine the
locations of these observations before we decide what, if anything, we are going to
about them. Doing so leads to an interesting revelation: the outlying (transformed)
observations occur in adjacent tracts within the city of Syracuse at the southeast
end of Lake Onondaga (Figure 9.8). The tracts are bounded by two interstate high-
ways and the lake and have experienced steady emigration from the 1970s to the
1990s as the area became more industrial and commercial. In fact, the three tracts
were merged to one in the 1990 U.S. Census, due primarily to their low population
sizes. For this analysis, since the potential spatial information contained within
these tracts could be important, we leave these observations “as is” in all of our
analyses. Analyses without these observations are left as exercises.

Mean–Variance Relationship and Heteroscedasticity While the distribution of
the transformed data, Zi , is fairly Gaussian, we need to determine if the transfor-
mation has removed the dependence between the mean and the variance. Such an
assessment is rather problematic in this case since both the mean and the variance
depend on the population sizes, ni .

To assess whether or not our transformation removes mean–variance depen-
dence, we follow a procedure suggested by Cressie (1993, p. 395) and partition
the tracts into “similarly sized” subsets, each with roughly equal ni values. Specif-
ically, we split the tracts into seven groups, corresponding to groups of tracts with
population sizes between 0 and 999, 1000–1999, 2000–2999, . . . , 6000+ people.
For each group, we compute the interquartile range of the Zi , IQZ, and then plot
IQ2

Z/avg{1/ni} against the median of the Zi’s in each group, where avg{1/ni}
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FIG. 9.8 Locations of the tracts containing the three largest values of Zi (dark gray regions in inset).
White area in inset represents Lake Onondaga and black dashed lines represent interstate highways.

is the average (sample mean) of the 1/ni within each group. For each group,
IQ2

Z provides a resistant (to extreme observations) estimate of Var(Zi) and since
Var(Zi) ∝ 1/ni , IQ2

Z/avg{1/ni} should not depend on the ni , but any dependence
on the mean (estimated with the sample median from each group) will remain.
Plotting IQ2

Z/avg{1/ni} against the median of the Zi’s in each subset provides a
diagnostic plot indicating what relationship, if any, the variance of the Zi (adjusted
for the ni) has with the mean of the Zi .

To illustrate the approach, consider the relationship resulting when we use
the untransformed proportions, pi . The relationship depicted in the top plot of
Figure 9.9 shows a roughly linear relationship, as may be expected for a Poisson
variable. Following transformation to Zi , a substantial portion of the linear depen-
dence of the variance on the mean has been removed (or least reduced), as shown
in the bottom plot of Figure 9.9. Although some dependence between the mean
and variance may remain, it appears less pronounced in the Zi than for the original
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FIG. 9.9 Estimated variance–mean relationship for the incidence proportions (rates), pi (top), and the
transformed outcome Zi (bottom).

pi, i = 1, . . . , N , and the Zi appear to meet linear model assumptions better than
do the pi .

Selecting an appropriate transformation is as much art as science. In practice, we
usually consider, compare, and contrast several transformations to arrive at the final
transformation. Griffith and Layne (1999, Section 2.2) give a detailed discussion of
transformations and provide several examples illustrating their use and evaluation
with many different types of spatial data.

Covariates and Transformations In using linear regression analysis, we assume
the relationship between the outcome (the transformed proportions, Z) and the
potential exposure (the inverse distance between each census tract centroid and the
nearest TCE waste site, IDIST) is in fact linear. A scatterplot of the relationship
between these two variables (Figure 9.10, upper left) shows a very skewed exposure
distribution where the slope of the regression line may be strongly influenced by the
five highest exposure values, and the constant variance assumption is questionable.
Thus, we chose to transform this variable using X1 = log(100 × IDIST). (The
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constant multiplier of 100 is used for convenience to make the values positive.)
The scatterplot of this relationship in Figure 9.10 suggests a pattern less driven
by high exposure values than the nontransformed exposure and a pattern better
meeting the assumption of constant variance (with the possible exception of the
three outliers discussed previously).

Any relationship between outcome and our surrogate measure of exposure may
be confounded by demographic variables that also potentially affect leukemia rates.
For instance, the risk of leukemia increases with age so we expect tracts containing a
higher proportion of older people to have a higher incidence of leukemia, regardless
of proximity to TCE sites. In addition, measures of socioeconomic status are also of
interest in the analysis of health outcomes. For illustration, we include two Census-
based variables in our analysis, X2 = the percentage of residents over 65 years of
age, and X3 = the percentage of the population that own their own home. This
latter variable serves as a surrogate for income. Scatterplots of our transformed
outcome (Z) and each of these variables appear in the bottom row of Figure 9.10
and the data themselves appear in Table 9.15 at the end of the chapter. In the
scatterplots, we see a fairly linear upward trend in Z with increasing percentages
over 65 years and perhaps a slight linear decrease in Z with increasing percentages
of residences owning homes. We note that this analysis does not fully capture
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all possible covariates, but rather serves as a general illustration of the modeling
techniques described above.

Linear Regression Assuming Independent Errors We are now ready to fit mod-
els. To begin, we consider a linear regression model of the form

Zi = β0 + β1X1i + β2X2i + β3X3i + εi,

where Xji denotes the value of covariate Xj associated with region (tract) i. As a
point of comparison, we begin with ordinary least squares (or the equivalent max-
imum likelihood procedures discussed in Section 9.1.1) to estimate the unknown
parameters (the β’s) and assess the potential significance of our explanatory vari-
ables (the X’s) on our transformed outcome.

As we do so, there is one important issue remaining. Recall that in using linear
regression models with independent errors (Section 9.1) we assume the variance–
covariance matrix of the data is σ 2I , i.e., we assume that the data are uncorrelated
with constant variance. However, from our earlier discussion we know that the data
do not have constant variance. Even though our transformation removed (or at least
reduced) dependence on the mean, it did not necessarily remove the heteroscedas-
ticity arising from the differing population sizes since the variance of Zi is still
dependent on the population size ni . The usual statistical remedy is to perform a
weighted analysis, where the weights are inversely proportional to the variances.
In this case, weighting inversely proportional to 1/ni means that our weights will
be ni . Thus, in performing a weighted analysis, we assume that the variance–
covariance matrix of the data is V = σ 2diag[1/ni ] ≡ σ 2D, where D = diag[1/ni ]
is a diagonal matrix with elements 1/ni , and use generalized least squares (Section
9.2.1) to estimate the regression parameters. In the statistical literature, this is
known as weighted least squares and we obtain our estimated parameters via

β̂WLS = (X′D−1X)−1X′D−1Z.

Many software packages for linear regression analysis allow the use of a weight
variable, but they often differ on how the weights must be specified. Some programs
weight inversely proportional to the variable specified (e.g., 1/ni is provided as the
weight variable, and the program computes D−1, so weights ni are actually used),
while others assume that the weights themselves are specified (so the program
expects that the elements of D−1, the ni , are specified). Improper weighting can
have a disastrous effect on results and conclusions, so it is important to understand
what any particular software program actually does. Traditional linear regression
software can also be tricked into performing a weighted analysis by regressing
n

1/2
i Zi on n

1/2
i , n

1/2
i X1, n

1/2
i X2, and n

1/2
i X3. Pocock et al. (1981) give a more

sophisticated model for weighting in regression analyses of regional health counts
and proportions, but for simplicity we will use WLS.

We fit the regression model using both OLS and WLS for comparison. The
results, presented in Tables 9.2 and 9.3, respectively, are based on partial sums
of squares, where every variable is adjusted for every other variable and not on
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Table 9.2 Results of Ordinary Least Squares Linear Regression Applied to the
(Transformed) New York Leukemia Data

Parameter Estimate Std. Error t-Value p-Value

β̂0 (intercept) −0.5173 0.1586 −3.26 0.0012
β̂1 (TCE) 0.0488 0.0351 1.39 0.1648
β̂2 (% age > 65) 3.9509 0.6055 6.53 <0.0001
β̂3 (% own home) −0.5600 0.1703 −3.29 0.0011

σ̂ 2 0.4318 277 df

R2 = 0.1932 AIC = 567.5a

aBased on maximum likelihood fitting.

Table 9.3 Results of Weighted Least Squares Linear Regression Applied to the
(Transformed) New York Leukemia Data

Parameter Estimate Std. Error t-Value p-Value

β̂0 (intercept) −0.7784 0.1412 −5.51 <0.0001
β̂1 (TCE) 0.0763 0.0273 2.79 0.0056
β̂2 (% age > 65) 3.8566 0.5713 6.75 <0.0001
β̂3 (% own home) −0.3987 0.1531 −2.60 0.0097

σ̂ 2 1121.94 277 df

R2 = 0.1977 AIC = 513.5a

aBased on maximum likelihood fitting.

sequential sums of squares, where inference for each variable depends on the order
in which variables enter the model (cf. Draper and Smith 1998, pp. 151–153).

Referring to Table 9.2, we see that in the OLS analysis, the two census variables
are significant, but our surrogate exposure is not. In the weighted analysis (Table
9.3), all covariates are associated significantly with the outcome. Weighting has
little effect on model fit (as measured by R2), but it does have a large impact on
some of the parameter estimates and their standard errors. The impact of weighting
is most pronounced in the estimate of the effect of our surrogate exposure variable
X1, nearly doubling the parameter estimate and indicating a statistically significant
effect (after accounting for the impact of the other covariates). The change indicates
the impact of the heterogeneity in population sizes even after transformation, due
primarily to lessening the impact of the three outliers (all from counts with small
population sizes) on the estimated slope associated with the exposure surrogate.

Figure 9.11 maps the outcome variables predicted (transformed) Zi . In general,
we find higher predictions in the cities and towns, and an interesting set of low
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FIG. 9.11 Map of fitted transformed outcomes (Zi ) based on the weighted least squares linear regres-
sion model defined in Table 9.3.

predicted values in a ring surrounding Syracuse. There is some suggestion of spatial
autocorrelation in the fitted values, as high values tend to occur near other high
values and low values near other low values. To this point, we have not used
spatial correlation in our models, so this visual tendency is induced entirely by
spatial patterns in the covariate values.

Residual Analysis To assess the fit of the model, we consider the vector of resid-
uals from our regression defined by

e = Z − Xβ̂WLS.

The variance–covariance matrix of this residual vector is

Var(e) = σ 2(I − H)D,

where H = X(X′D−1X)−1X′D−1. Since D is a diagonal matrix, the variance of
the ith residual is

Var(ei) = σ 2

ni

(1 − hii),
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where hii is the (i, i)th element of H . Consequently, the residuals have different
variances and these depend on the ni even though we used a weighted regression
to estimate β. It is a good idea to take this inequality of variance into account in
residual analysis. In our case, it is even more important to do so to make sure that
any patterns in the residuals reflect lack of fit and are not simply due to patterns
in the different population sizes. Thus, we use studentized residuals, residuals that
are each divided by their estimated standard error:

es
i = ei√

V̂ar(ei)

= ei
√

ni√
σ̂ 2

WLS(1 − hii)

, (9.32)

where

σ̂ 2
WLS = (Z − Xβ̂WLS)′D−1(Z − Xβ̂WLS)

N − p

is the mean-squared error from the weighted regression. Studentized residuals have
expected value zero and a constant variance Var(es

i ) = 1.
The plot of the residuals against the fitted values provides a standard diagnostic

tool in linear regression analysis, and Figure 9.12 shows the studentized residuals
plotted against the fitted values from the model. This plot offers no strong evidence
of violation of model assumptions, with the possible exception of a particularly low
negative residual value, occurring just to the west of Binghamton. In this tract the
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FIG. 9.12 Studentized residuals vs. fitted values from WLS regression (no spatial correlation).
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Quantiles of
studentized
Residuals

−3.931 to −0.706
−0.706 to −0.047
−0.047 to 0.391
−0.391 to 0.926
−0.926 to 2.117

Syracuse Binghamton

FIG. 9.13 Choropleth map of studentized residuals from weighted least squares (WLS) regression.
Positive studentized residuals appear in gray-scale, negative studentized residuals as dots.

fitted value (based on covariate values) is much higher than the incidence proportion
observed.

To assess the fit spatially, we first consider a choropleth map of the studentized
residuals (Figure 9.13). The figure illustrates locations of positive (gray-scale) and
negative (dot-pattern) studentized residuals, with insets showing patterns in the
cities of Syracuse and Binghamton. We see the slight suggestion of a concentration
of positive residuals (indicating an area underfit by the model) through the middle
of the study area. The highest positive residuals appear in many of the cities and
towns but often do not display a strong spatial pattern (e.g., within the city of
Syracuse we find high residuals occurring in tracts adjacent to tracts with very low
residuals). However, for geographically larger tracts, we tend to find positive (neg-
ative) residuals in tracts adjacent to other tracts with positive (negative) residuals,
suggesting positive spatial autocorrelation. We turn next to numerical summaries
to assess the level and significance of any residual spatial correlation.

Assessing Residual Spatial Autocorrelation The studentized residuals estimate
a scaled version of the εi , the true errors associated with our regression model.
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Thus, we can investigate the possibility that our errors are spatially autocorrelated.
Analysis of residual correlation is complicated by the fact that the sample residu-
als (the ei) are correlated even when the true error terms (the εi) are independent
(cf. Draper and Smith 1998, p. 206). We examine this in more detail below, but
stress here that much of the literature on spatial regression (and the remainder of
our analyses here) build on heuristic assessments of spatial correlation in the sam-
ple residuals. The two most common approaches in applications are: (1) explore
the semivariogram (or correlogram) of the residuals, or (2) summarize correlation
through indexes of spatial autocorrelation (cf. Sections 7.4 and 7.5). In this data
break, we assess residual spatial correlation using the geostatistical methods dis-
cussed in Section 8.2, deferring assessments via indexes of autocorrelation to the
data break following Section 9.3.3.

The studentized residuals should have roughly a constant mean (0) and a constant
variance (1), and their distribution should be approximately Gaussian. We found
little in the residual analysis above to indicate gross departures from these character-
istics for the transformed data. Thus, the studentized residuals should approximately
satisfy the assumption of intrinsic stationarity discussed in Section 8.2, and we can
use them to estimate the semivariogram of the regression error term, basing dis-
tance calculations on distances between the tract centroids. As discussed in Section
9.2.1, this semivariogram is biased and in this case, where we are working with
proportions, the covariances of the errors still depend on the ni . Again, the goal
is not perfection (i.e., finding the right model) but a substantial improvement over
methods that do not adjust for covariates, unequal population sizes, or spatial
correlation.

The empirical semivariogram of the studentized residuals appears in Figure 9.14.
We notice immediately the fairly large relative nugget effect, reflecting one of our
conclusions based on the insets in Figure 9.13: For small tracts that are very close

Distance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 20 40 60 80

g

FIG. 9.14 Empirical semivariogram of studentized residuals from WLS regression.
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together (e.g., in Syracuse) there are high residuals occurring in tracts adjacent
to tracts with very low residuals. The empirical semivariogram appears to then
increase up until a distance of about 18 km (roughly the width of the metropolitan
area of Syracuse), suggesting that tracts separated by distances less than 18 km tend
to have similar values (cf. Figure 9.13). Beyond this distance, there is a drop in the
empirical semivariogram, perhaps indicating some negative spatial autocorrelation
between rural tracts and those in the major urban areas, and then it eventually levels
off to a sill. The empirical semivariogram seems to exhibit an overall cyclical
pattern, but it is not clear whether this is real, due to noise in residual process
(including that induced by our three outliers), or perhaps induced artificially by
the spatial distribution of the tract centroids. Interestingly, Cressie (1993, p. 544)
notes a similar oscillatory pattern in empirical semivariograms of residuals from a
spatial regression of health data and attributes the pattern to the relative location
of outliers in the data.

To investigate the effect of any potential spatial correlation among the studen-
tized residuals on the fit of our model, we next use a linear regression model that
has the same form as the one we used earlier:

Zi = β0 + β1X1 + β2X2 + β3X3 + εi,

but instead of assuming that the errors are uncorrelated, we apply the ideas in
Section 9.2.1 and assume that they have a variance–covariance matrix �(θ). We
use a semivariogram model to describe the elements of �(θ) as a function of
nugget (c0), partial sill (cs), and range (a) parameters in θ = (c0, cs, a)′. To com-
plete our regression model specification, we need to choose a functional form for
the semivariogram model. We use the empirical semivariogram of the studentized
residuals to infer the shape of this model and choose a spherical semivariogram to
model this shape. Thus, our model is now specified completely, up to the unknown
values of the parameters β and θ .

To estimate these unknown parameters, we use maximum likelihood fitting of the
linear regression model with correlated errors described in Section 9.2.1. Since we
are now estimating both covariate effects (related to the mean of the outcome) and
covariance parameters (related to the variance–covariance matrix of the outcome),
we shift focus from least squares to maximum likelihood estimation (recalling
that weighted and generalized least-squares estimation assume a fixed and known
variance–covariance function).

More specifically, we chose a grid of values around a range of 15 km for
the range parameter a. Since we use the studentized residuals, the values for the
nugget and partial sill have been scaled so that the overall variance is 1.0. To
scale these back to the data, we express the nugget and partial sill as percentages
of the total variance estimated from the OLS regression, σ̂ 2 = 0.4318. From the
empirical semivariogram of the studentized residuals, the nugget effect appears
to be about 80% of the total sill, so we use a grid search around the values
of 0.80 × 0.4318 = 0.35 for the nugget effect, and 0.20 × 0.4318 = 0.09 for the
partial sill. The resulting estimates appear in Table 9.4. Note that with residual
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Table 9.4 Results of Unweighted Regression with Spatially Correlated Errors

Parameter Estimate Std. Error F -Value p-Value

β̂0 (intercept) −0.7222 0.1972 13.40 <0.0001
β̂1 (TCE) 0.0826 0.0434 3.63 0.0576
β̂2 (% age > 65) 3.7093 0.6188 35.93 <0.0001
β̂3 (% own home) −0.3245 0.2044 2.52 0.1136

ĉ0 = 0.3740 ĉs = 0.0558 â = 6.93

AIC = 565.6a 277 df

aBased on maximum likelihood fitting.

correlation, R2 is no longer a valid measure of model fit, but the AIC suggests a
slightly better fit than the model with no residual correlation. Comparing results
from Tables 9.2 and 9.4, we see that accounting for spatial correlation substantially
affects our conclusions about the effects of TCE concentration and income on the
risk of leukemia.

Although these results account for the spatial autocorrelation in the data, they do
not account for heteroscedasticity that results from the unequal population sizes in
each tract. Although we used the studentized residuals (that do use the ni to account
for this heteroscedasticity) to infer the shape of the underlying correlation structure
in the regression error term, this is not enough to account for the heteroscedasticity
in our data. As before, we must also explicitly adjust for this heteroscedasticity
in our model. Thus, we also weight our regression with spatially correlated errors
in the same way that we weighted our regression with uncorrelated errors. Our
variance–covariance term is now modeled as

Var(Z) = D1/2�(θ)D1/2,

instead of �(θ), as in the previous analysis. The results from this weighted regres-
sion with spatially correlated errors appear in Table 9.5. Weighting induces sub-
tle changes in the estimates of the covariate effects and their standard errors
and places the nugget and sill estimates on different scales. The primary dif-
ference concerns the estimated standard errors of the estimates of β, affecting
the significance level observed for the covariates. As in the independent error
case, the exposure surrogate is significant in the weighted analysis but not in the
unweighted analysis, again influenced by heteroscedasticity induced by the three
outlying variables.

Figure 9.15 presents a choropleth map of the fitted values (predicted outcomes)
based on the model with spatially correlated errors. Since the overall model fit
(as measured by AIC) is not improved by inclusion of the spatial error terms, we
would not expect drastic differences in predicted values with the addition of the
correlation term, but some subtle differences are apparent. Comparing this map
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Table 9.5 Results of Weighted Regression with Spatially Dependent Errors

Parameter Estimate Std. Error F -Value p-Value

β̂0 (intercept) −0.9161 0.1648 30.91 <0.0001
β̂1 (TCE) 0.0956 0.0322 8.85 0.0032
β̂2 (% age > 65) 3.5763 0.5920 36.49 <0.0001
β̂3 (% own home) −0.2285 0.1761 1.68 <0.1956

ĉ0 = 997.65 ĉs = 127.12 â = 6.86

AIC = 514.7a 277 df

aBased on maximum likelihood fitting.

Spatial
Regression
Fit

(−0.95, −0.56)
(−0.56, −0.48)
(−0.48, −0.34)
(−0.34, −0.16)
(−0.16, 1.2)

FIG. 9.15 Map of fitted transformed outcomes (Z) based on the weighted regression with spatially
correlated errors.

to the map of WLS fitted values (no spatial correlation, Figure 9.11) we observe
greater spatial smoothing of fitted values, most notably in the expanded region of
very low fitted values surrounding Syracuse.

In summary, in this section we describe and illustrate how the traditional linear
regression model can be adapted for spatial analysis. Using a weighted analysis
that accounts for population heterogeneity and incorporating spatial correlation not
explained by the covariates can both be crucial for obtaining valid conclusions.
The general linear regression model that incorporates geostatistical methods for
modeling spatial autocorrelation in the data provides one approach to doing this,
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but another class of linear regression models, which allows the use of the more
flexible spatial proximity measures, offers an interesting alternative. These models
are described in the next section.

9.3 SPATIAL AUTOREGRESSIVE MODELS

Once we define the covariates we want to include in our regression model, we
complete our specification of a spatial regression model by specifying the elements
of the variance–covariance matrix �. In the preceding section we specified this
variance–covariance matrix directly using parametric functions of distance. How-
ever, with regional data, this approach will limit our measure of spatial proximity
to the distances among points assumed to represent each region (e.g., intercentroid
distances). In the case of counts, rates, and proportions from a fixed set of admin-
istrative regions, we often require only inference for the given set of regions, and
the full generality afforded by geostatistical methods (e.g., observations occurring
at any location) expressed in the models of Chapter 8 and Section 9.2 may not
make sense. For example, do we really wish to model the number of incident
cases occurring within some hypothetical region centered between two adjacent
counties? To restrict inference to a given set of regions and to build spatial mod-
els for these regions, we make use of the spatial proximity measures described in
Sections 4.4.1 and 7.4.2 and discuss associated approaches to specifying residual
spatial autocorrelation.

We consider a structure mirroring the time-series literature which makes wide
use of autoregressive models wherein we regress the current observation on obser-
ved values of all or, more commonly, a subset of other observations. In time
series, the “other” observations occur in the recent past; in the spatial setting, they
occur nearby. Just as the term autocorrelation reflects self-correlation, the term
autoregressive reflects self-regression. Through such regressions, we incorporate
spatial similarity by treating observations of the outcome variable at other locations
as additional covariates in the model with associated parameters defining spatial
association, rather than building an explicit parametric model of the covariance
function of the error terms. The autoregressive model induces a particular covari-
ance structure for the joint distribution of variables, but we typically do not fit the
covariance directly. Instead, the autoregressive model itself defines this covariance
for us.

In the spatial setting, we lose the ordering (past before present) inherent in
a time series, somewhat complicating development and application of spatially
autoregressive models. We describe two general classes of spatial autoregres-
sive models and their associated covariance structures in subsequent sections.
We retain the general multiple linear regression focus of Sections 9.1 and 9.2,
expanding the framework to address Gaussian outcomes from a regional setting.
In developing the material for these sections, we synthesize important contribu-
tions originally provided in Cliff and Ord (1981), Haining (1990), and Cressie
(1993).
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9.3.1 Simultaneous Autoregressive Models

We begin by applying the idea of spatial autoregression to the vector of residual
errors, ε, in the linear regression specification depicted in equation (9.1). That is,
we regress ε(si ) on all the other residual terms, giving

ε(si ) =
N∑

j=1

bij ε(sj ) + υ(si ), (9.33)

with bii = 0 [so we don’t regress ε(si ) on itself] and assume that the resid-
ual errors (“residual residuals”!) from this regression, υ(si ), i = 1, . . . , N , have
mean zero and a diagonal variance–covariance matrix �υ = diag[σ 2

1 , . . . , σ 2
n ].

The terms {bij } represent spatial dependence parameters since they measure the
contribution of the “other” observations [i.e., {ε(sj ), j �= i}] to the variation of
ε(si ). Thus our linear regression model, Y(si ) = x(si )

′β + ε(si ), where x(si )
′ =

(1, x1(si ), . . . , xp−1(si )), becomes

Y(si ) = x(si )
′β +

N∑
j=1

bij ε(sj ) + υ(si ).

If all the bij are zero, there is no autoregression and the model reduces to the
traditional linear regression model with independent errors.

Using the relationship ε(sj ) = Y(sj ) − x(sj )
′β from our original linear regres-

sion model [equation (9.1)], we obtain

Y(si ) = x(si )
′β +

N∑
j=1

bij [Y(sj ) − x(sj )
′β] + υ(si ), i = 1, 2, . . . , N. (9.34)

This model allows us to assess the degree of spatial dependence in the data through
the inclusion of the term

∑
j=1 bij (Yj − x(sj )

′β) (a weighted sum of the deviation
of the j th observation from its modeled mean value) while controlling for covariate
effects within region i. Conversely, the formulation also allows us to measure
covariate effects while controlling for spatial dependence. We express the model
in matrix form as

(I − B)(Y − Xβ) = υ, (9.35)

where the N × N matrix B contains the spatial dependence parameters, bij , and
bii = 0 for all i. From this, we can derive the variance–covariance matrix of Y as

�Y = Var(Y) = (I − B)−1�υ(I − B ′)−1, (9.36)

assuming that (I − B)−1 exists. Thus, the autoregression induces a particular model
for the general covariance structure (�Y ) of the data Y that is defined by the
parameters bij .
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The model given in equation (9.34) [and equivalently, in equation (9.35)] was
introduced by Whittle (1954) and often appears in the literature as the simultaneous
autoregressive (SAR) model, where the adjective simultaneous describes the simul-
taneous application of equation (9.34) to each data location and distinguishes this
type of spatial model from the class of conditional autoregressive models defined
in Section 9.3.2.

Spatial Dependence and Covariance Matrices The relationship between matrices
B and �Y merits some special attention. We note that �Y relates to the inverse
of the matrix of spatial dependence parameters, so the link between particular val-
ues of B and corresponding values of �Y is not immediately obvious and may,
in fact, be somewhat counterintuitive. For example, spatial dependence parame-
ters that decrease monotonically with distance do not necessarily correspond to
spatial covariances that decrease monotonically with distance. Although the cor-
respondence between B and �Y appears mathematically throughout the spatial
autoregressive literature, in practice, we often find similar decreasing functions of
distance (e.g., an exponentially decaying function of intercentroid distance) used
to define elements of B for an autoregressive analysis or �Y for a generalized
least squares analysis. Griffith (1996) performs an empirical examination of sim-
ilar parametric families of autoregressive parameters and covariances on a set of
regular regions, but the matrix inversion linking B and �Y often makes general
conclusions impossible.

Clearly, the matrix of spatial dependence parameters, B, plays an important role
in SAR models. To make progress with estimation and inference, we will need to
reduce the number of spatial dependence parameters through the use of a parametric
model for the {bij } and, for interpretation, we would like to relate them to the ideas
of proximity and autocorrelation that we described previously. One way to do this
is to take B = ρW , where W is one of the spatial proximity measures discussed in
Sections 4.4.1 and 7.4.2. In this case, the SAR model can be written as

Y(si ) = x(si )
′β + ρ

∑
j∈Ni

wij

[
Y(sj ) − x(sj )

′β
]+ υ(si ), i = 1, 2, . . . , N,

where N denotes the number of regions and Ni denotes the neighborhood set of
the ith region [i.e., Ni = {j : j is a neighbor of i}], as defined in Section 4.4.1.
This model derives from the autoregressive structure

Y = Xβ + ε

ε = ρWε + υ,
(9.37)

where B = ρW . We can manipulate this model in a variety of ways, and it is often
intuitive to write the model as

Y = Xβ + (I − ρW)−1υ (9.38)

= Xβ − ρWXβ + ρWY + υ. (9.39)
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From equation (9.38) we can see how the autoregression induces spatial auto-
correlation in the linear regression model through the term (I − ρW)−1υ. From
equation (9.39) we obtain a better appreciation for what this means in terms of
a linear regression model with uncorrelated errors: We now have two additional
terms in the regression model: ρWXβ and ρWY. These terms reflect spatially
lagged variables. If we include ρWXβ, the covariates are spatially lagged (i.e.,
covariate values nearby affect the outcome in region i), and if we include ρWY,
the outcome variable is spatially lagged (i.e., observed outcomes nearby impact
the outcome in region i). Thus, in a SAR, both the covariates and the outcome
variable are spatially lagged. Econometricians, seeking to develop spatial models
that are direct analogues of time-series models, develop spatial models, including
either the lagged variables ρWXβ or ρWY (see Anselin 1988, (1990), (1993)).
Often, such models are difficult to motivate in purely spatial applications (they are
more useful in space–time applications) and we defer details of such models to the
spatial econometric references above.

For a well-defined model, we require (I − ρW) to be nonsingular (invertible).
This restriction imposes conditions on W and also on ρ, best summarized through
the eigenvalues of the matrix W . If ϑmax and ϑmin are the largest and smallest eigen-
values of W , and if ϑmin < 0 and ϑmax > 0, then 1/ϑmin < ρ < 1/ϑmax (Haining
1990, p. 82). For a large set of identical square regions, these extreme eigenvalues
approach −4 and 4, respectively, as the number of regions increases, implying that
|ρ| < 0.25, but actual constraints on ρ should be checked by computing the eigen-
values of W , especially when the sites are located on a set of irregularly shaped
regions. Often, the row sums of W are standardized to 1 by dividing each entry in
W by its row sum,

∑
j wij . Then, ϑmax = 1 and ϑmin ≤ −1, so ρ < 1 but may be

less than −1 (see Haining 1990, Section 3.2.2).

Estimating the Parameters in SAR Models Suppose that the data are multivariate
Gaussian with the general SAR model defined in equations (9.35) and (9.36) [i.e.,
the data are multivariate Gaussian with mean Xβ and variance covariance matrix
given in equation (9.36)]. Following the ideas in Section 9.2.1, we reparameterize
the diagonal matrix �υ as �υ = σ 2Vυ , so the variance–covariance matrix of a
SAR can be written as

�SAR = σ 2(I − B)−1Vυ(I − B ′)−1 = σ 2VSAR(θ), (9.40)

where θ is a vector containing the spatial dependence parameters bij and the param-
eters of Vυ . This is exactly the form of the variance–covariance matrix in equation
(9.11) of Section 9.2.1. Thus, if VSAR(θ) is known, the results from maximum like-
lihood estimation and inference for the general linear model with autocorrelated
errors, described in Section 9.2.1, apply directly to estimation and inference with
a SAR model, replacing V (θ) in equation (9.11) with VSAR(θ) defined in equation
(9.40). In practice, of course, VSAR(θ) is not known and we estimate θ using meth-
ods analogous to those described in Section 9.2.1. Specifically, we estimate θ by θ̃

obtained by minimizing Q(θ) in equation (9.20) with �(θ) replaced with VSAR(θ).
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Given θ̃ , we estimate β using equation (9.13) with V replaced by VSAR(θ̃), and we
estimate σ 2 using equation (9.14), again with V replaced by VSAR(θ̃). We obtain
the standard errors of these parameter estimates from the information matrix as
discussed in Sections 9.1.1 and 9.2.1.

In this general development, many model parameters are contained in the vector
θ , and thus minimizing Q(θ) may be difficult or impossible. Thus, in practice, we
usually assume that the parameters in Vυ are known (e.g., the (i, i)th element is
equal to 1 or equal to 1/ni to account for differing population sizes). Such assump-
tions still may not be enough allow minimization of Q, so we also often parame-
terize B as a parametric function of a spatial proximity matrix W . For example, if
we take B = ρW and Vυ = σ 2I , the only unknown parameter is ρ. In this case,
minimizing Q(ρ) with respect to ρ is typically straightforward and the information
matrix has a much simpler form (Ord 1975; Cliff and Ord 1981, p. 242):

I (β, σ 2, ρ) =




σ−2[X′A(ρ)−1X] 0 0

0′ N
2 σ−4 σ−2tr(G)

0′ σ−2tr(G) σ−2[α + tr(G′G)]


 , (9.41)

where A(ρ) = (I − ρW)−1(I − ρW ′)−1, G = W(I − ρW)−1, tr(·) denotes the
trace function (summation of the diagonal elements of a matrix), and α =∑[ϑ2

i /

(1 − ρϑi)
2], where ϑi are the eigenvalues of W . Again, we see that the matrix of

spatial dependence parameters B = ρW affects results through its eigenvalues.
The information matrix in equation (9.41) looks similar to those associated with

least squares techniques [cf. Section 9.1.1 for OLS and equation (9.22) for GLS],
which makes us wonder why we can’t simply use least squares to estimate all the
parameters in a SAR model. If ρ is known or specified, we can. The ML estimators
of β and σ 2 for the SAR are equivalent to their generalized least squares estimators.
However, if ρ is not known, the least squares estimator of ρ is inconsistent (Whittle
1954; Haining 1990, p. 130).

Testing Residual SAR Dependence The one-parameter SAR model described
above (with B = ρW and Vυ = σ 2I ) is by far the most prevalent SAR model
used in practice. One of its most common uses is to provide an alternative model
for a test of residual spatial autocorrelation in OLS residuals. That is, we consider
the following two models, a traditional linear regression model with independent
errors and the one-parameter SAR model:

(9.42)
Y =




Xβ + ε, �Y = σ 2I

Xβ + (I − ρW)−1υ, �Y = σ 2(I − ρW)−1(I − ρW ′)−1. (9.43)

Setting ρ = 0 in the SAR model [equation (9.43)], we obtain the traditional linear
regression model with independent errors [equation (9.42)]. This nesting of the
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two models, together with a traditional null model for which estimation is rather
straightforward (i.e., OLS), provide several approaches for constructing tests of
H0 : ρ = 0 vs. H1 : ρ �= 0 (or a corresponding one-sided alternative). We review
some of these briefly here.

Moran’s I with OLS Residuals The residuals from ordinary least squares or max-
imum likelihood fitting of the model in equation (9.42) are

e = Y − Xβ̂OLS,

where

β̂OLS = (X′X)−1X′Y.

As we saw in Section 9.2.3, it is natural to use residuals from fitting a model with
uncorrelated errors to assess whether there is any residual spatial autocorrelation
in the data after accounting for covariate effects. Instead of the residual semivari-
ogram, we use a variant of Moran’s I statistic with these residuals. Specifically, we
replace the overall mean in Moran’s I [given in equation (7.8)] with the model’s
predicted value Ŷ = Xβ̂, yielding

Ires = 1

(1/N)
∑N

i=1

(
Yi − Ŷi

)2

[∑N
i=1
∑N

j=1 wij (Yi − Ŷi )(Yj − Ŷj )∑N
i=1
∑N

j=1 wij

]

= N∑N
i=1
∑N

j=1 wij



∑N

i=1
∑N

j=1 wij (Yi − Ŷi )(Yj − Ŷj )∑N
i=1

(
Yi − Ŷi

)2




= N∑N
i=1
∑N

j=1 wij

e′We

e′e
(9.44)

(cf. Cliff and Ord 1981, Chapter 8; Haining 1990, p. 146).
As in Chapters 6 and 7, it is critically important to consider what null and

alternative hypotheses are of interest when applying a specific test statistic, in this
case Ires. To begin, a null hypothesis based on randomization (cf. Section 7.4)
is no longer appropriate here, even with stationary Gaussian residuals (cf. Cliff
and Ord 1981, p. 200; Anselin and Rey 1991). Recall from Section 7.4 that under
the randomization assumption, each data value is equally likely to be observed at
any location. This assumption is not satisfied with sample residuals since they are
correlated, even in the absence of residual spatial autocorrelation.

If we assume that the error terms follow a multivariate Gaussian distribution,
Cliff and Ord (1981, pp. 202–203) show that under the null hypothesis of inde-
pendent error terms, Ires asymptotically (N going to infinity) follows a Gaussian
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distribution with mean

E(Ires) = N

(N − p)
∑N

i=1
∑N

j=1 wij

tr(I − HW)

= − N

(N − p)
∑N

i=1
∑N

j=1 wij

tr
[
(X′X)−1X′WX

]
, (9.45)

where tr(·) again denotes the trace function, and H = X(X′X)−1X′ (called the
“hat” matrix of regression). Cliff and Ord (1981, pp. 202–203) also derive the
asymptotic variance of Ires as

Var(Ires) = N2

(Sum0)2(N − p)(N − p + 2)

×
{

Sum1 + 2tr
[
G2
]

− tr(F ) − 2[tr(G)]2

N − p

}
, (9.46)

where

Sum0 =
N∑

i=1

N∑
j=1

wij

Sum1 = 1

2

N∑
i=1

N∑
j=1

(wij + wji)
2

F = (X′X)−1X′(W + W ′)2X

G = (X′X)−1X′WX.

Based on the asymptotic results in equations (9.45) and (9.46), we obtain an
approximate test of the null hypothesis of independent observations by comparing
the observed value of

z = Ires − E(Ires)√
Var(Ires)

(9.47)

to the appropriate percentage point of the standard normal distribution.
The asymptotic results of Cliff and Ord (1981) derive from results assuming

constant variance for the OLS residuals, a situation that may not hold in practice.
Even so, Cliff and Ord (1981, Section 2.4) and Haining (1990, p. 147) report
the approximation works well in practice and in simulation studies for as few as
N = 10 regions. An important exception occurs when the W matrix is very sparse
(i.e., most regions have very few neighbors) and asymptotic normality no longer
holds (cf. Cliff and Ord 1981, p. 50).

Using Moran’s I with OLS residuals to test for residual spatial autocorrelation
has several advantages. First, obtaining OLS residuals is fairly straightforward and
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can be done by most statistical software packages. Second, since we do not have
to estimate our alternative (SAR) model to make the test, we avoid the need to
obtain the more computationally intensive maximum likelihood estimates for the
SAR model. Finally, Ires has several nice statistical properties [e.g., it is locally best
invariant against SAR alternatives and even a uniformly most powerful invariant
test for particular SAR models (King 1981; Tiefelsdorf 2000)]. The main practical
disadvantage in applying the normal approximation of Cliff and Ord (1981) is
that it requires several assumptions that may not be satisfied in practice. OLS
residuals are correlated and have different variances, even when the original data
are i.i.d. In public health applications where we are working with counts, rates, and
proportions, OLS residuals are even more suspect since their variances depend on
the population sizes, even after transformation. As we show in the next data break,
using Moran’s I with studentized residuals from weighted least squares may offer
a feasible alternative, although little is known about the statistical properties of the
resulting statistic.

Finally, it is important to state that Ires also has power against other (non-SAR)
alternatives and may not distinguish between competing types of residual spatial
correlation (Anselin and Rey 1991). Furthermore, McMillen (2003) illustrates that
Moran’s I cannot distinguish between residual spatial autocorrelation and local
model misspecification, a point raised in Section 7.7. That is, Moran’s I is sensitive
to departures from standard model assumptions (under the usual i.i.d. Gaussian
assumptions) but is not specific to exactly what sort of departure is driving any
unusual observed pattern.

Wald Test Since maximum likelihood estimators are asymptotically Gaussian, an
approximate confidence interval for ρ is

ρ̂ ± (zα/2)

√
V̂ar(ρ̂), (9.48)

where V̂ar(ρ̂) is obtained from the inverse of the information matrix, substituting
ML estimates for any unknown parameters. A Wald test of H0 : ρ = 0 is made by
comparing

z = ρ̂/

√
V̂ar(ρ̂)

to a standard normal distribution. Wald tests can also be used easily to test hypothe-
ses about β and ρ simultaneously. The main advantage of Wald tests is their
flexibility once the alternative model is fit. The main disadvantage lies in having
to fit the alternative model by maximum likelihood. Also, with small data sets,
Wald tests tend to have an inflated type I error rate (i.e., they tend to reject the null
hypothesis too often with small data sets).

Likelihood Ratio Test We introduced likelihood ratio tests in Chapters 6 and 7
and again in Section 8.2.4. The same idea applies here. In this case we are com-
paring our alternative model in equation (9.43) with parameters θ2 = (β ′, σ 2, ρ)′
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to our null model defined by equation (9.42) with parameters θ1 = (β ′, σ 2)′, with
dim(θ2) − dim(θ1) = 1. A test of H0 : θ = θ1 against the alternative H1 : θ = θ2
is also a test of H0 : ρ = 0 vs. H1 : ρ �= 0, and it can be done by comparing

2(L(β, σ 2, ρ) − L(β, σ 2, 0)) (9.49)

to a χ2 distribution with one degree of freedom.
The main advantage of this test is the beautiful theory underlying maximum

likelihood estimation and inference. It also has the advantage that more complex
models can be considered if their likelihoods can be obtained. The main disadvan-
tage is the amount of computation required to fit both the null and the alternative
models. Also, the χ2 distribution can be a poor approximation to the distribution
of the likelihood ratio for small data sets.

Concluding Remarks All tests here are asymptotic [i.e., they give approximately
valid inference only for large N (number of regions in the study area)]. How large
is large enough depends on several factors, including the particular structure of
the spatial weight matrix W . If the accuracy of the normal approximation is in
question, we may use Monte Carlo hypothesis tests, provided that we simulate the
original data from the null model of no independence and a fixed set of covariates.
However, this approach often will be labor intensive since we must fit a regression
model for each simulation (e.g., 999 or more regressions!). As an alternative to
Monte Carlo tests, Tiefelsdorf and Boots (1995, 1996), Hepple (1998), Tiefelsdorf
(1998, 2000), and Hill (2002) explore other computational approaches for obtaining
the exact distribution of Moran’s I as applied to OLS residuals from a particular
set of zones with a particular spatial weight matrix.

In addition, all tests described here are applied to OLS residuals. Development
of appropriate tests of spatial autocorrelation in error terms of SAR models (or any
other spatial model for that matter) remains an open area of research, despite an
early call for such work by Cliff and Ord (1981, p. 240).

9.3.2 Conditional Autoregressive Models

In Sections 9.2 and 9.3.1 we present models of the joint probability distribution
f [Y(s1), . . . , Y (sn)] with spatial association incorporated through the variance–
covariance matrix � = Var(Y). In some applications, we may find it more intuitive
to specify models for the set of conditional probability distributions of each obser-
vation, Y(si ), given the observed values of all of the other observations. That is,
we model f [Y(si )|Y−i ], where Y−i denotes the vector of all observations except
Y(si ), and we do this for each observation in turn.

As with the SAR models in Section 9.3.1, we may simplify the situation by
assuming that Y(si ) depends only on a set of neighbors [i.e., Y(si ) depends on
Y(sj ) only if location sj is in the neighborhood set, Ni , of si]. If we assume
that each conditional distribution is Gaussian, we need only specify the conditional
mean and conditional variance of each observation in order to complete our model.
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More formally, we define a conditional autoregressive (CAR) model by specifying
the conditional mean and variance:

E[Y(si )|Y−i] = x(si )
′β +

N∑
j=1

cij [Y(sj ) − x(si )
′β], (9.50)

Var[Y(si )|Y−i] = σ 2
i , i = 1, . . . , N, (9.51)

where the cij denote spatial dependence parameters (we use a different notation
to distinguish spatial dependence parameters in CAR models from those in SAR
models). The cij are nonzero only if sj ∈ Ni . By convention, we set cii = 0 since
we do not want to regress any observed value on itself, so as a consequence,
no region is a neighbor to itself. (As an aside, this “a region can’t be its own
neighbor” convention, which makes intuitive sense for autoregressions, often carries
over to the indexes of spatial autocorrelation introduced in Section 7.4, resulting
in tests of correlation that entirely ignore issues of goodness of fit, as noted in
Section 7.6.3.)

To illustrate how a set of conditional distributions, each defined over a set of
spatial neighbors, might define a joint distribution with positive spatial autocor-
relation, consider a classroom with seats arranged in rows and columns. Students
occupy each seat, and each student receives a piece of paper with a number on
it. The instructor tells the class that each student’s number represents a measure-
ment from a smoothly varying spatial process (e.g., temperature) measured at that
student’s seat’s location. The instructor asks students to raise a hand to a height
corresponding to their individual measurements. As the instructor glances at the
course notes, each student quickly glances at the height of the hands displayed
by her or his neighboring students. Each student adjusts the height of her or his
hand to be closer to the perceived neighboring measurements. In this example,
each student considers the conditional probability of her or his own measurement,
compared to the associated neighboring measurements. Taken together, the set of
conditional distributions induces a joint distribution of measurements with positive
spatial autocorrelation.

More formally, a mathematical result known as the Hammersley–Clifford the-
orem [first proved in Besag (1974)] describes the conditions necessary for a set
of conditional distributions to define a valid joint distribution. Whereas deriving
Gaussian conditional distributions from a multivariate Gaussian (joint) distribution
follows standard results in multivariate distribution theory, the conditions needed
for a set of conditional distributions to define a valid joint distribution are less
straightforward (Besag and Kooperberg 1995; Arnold et al. 1999). A set of condi-
tional distributions defined over spatial neighborhoods and meeting these conditions
defines a Markov random field, where each observation (given the other observa-
tions) depends only on values at neighboring locations.

A full treatment of the Hammersley–Clifford theorem and its related conditions
falls beyond our scope, and we defer to Besag (1974) and Cressie (1993, Chapter
6) for technical details. For our Gaussian modeling needs, the conditions required
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by the Hammersley–Clifford theorem are not too restrictive and Besag (1974)
shows (see also Cliff and Ord 1981, p. 180) that the set of Gaussian conditional
distributions with conditional means and variances defined by equations (9.50) and
(9.51) generates a valid joint multivariate Gaussian distribution with mean Xβ and
variance

�Y = (I − C)−1�c, (9.52)

where �c = diag[σ 2
1 , . . . , σ 2

n ]. To ensure that this variance–covariance matrix is
symmetric, we have to impose the constraints

σ 2
j cij = σ 2

i cji . (9.53)

Just as in Section 9.3.1, the link between particular values of C and corre-
sponding values of �Y is not immediately obvious and may, in fact, be somewhat
counterintuitive. Again, for example, spatial dependence parameters that decrease
monotonically with distance do not necessarily correspond to spatial covariances
that decrease monotonically with distance.

In summary, CAR models provide us with yet another model for the general �

in equation (9.10), including parameters to measure residual spatial autocorrelation.
We now consider some particular CAR models in order to better understand how
they model spatial dependence in our data.

Relationship to SARs If we set �c = σ 2I and if in the development of the SAR
models, we set �υ = σ 2I , then comparing the variances in equations (9.36) and
(9.52), we see that any SAR model with spatial dependence matrix B can be
expressed as a CAR model with spatial dependence matrix C = B + B ′ − BB ′.
Any CAR model can also be expressed as a SAR model, but the relationships
between B and C are somewhat contrived (see Haining 1990, p. 89), and the
neighborhood structure of the two models may not be the same (Cressie 1993,
p. 409).

Estimation and Inference with CAR Models Using results from Besag (1974),
the joint distribution of data specified with a CAR model is multivariate Gaussian
with mean Xβ and variance–covariance matrix given in equation (9.52). Following
the ideas in Section 9.2, we reparameterize the diagonal matrix �c as �c = σ 2Vc,
so the variance–covariance matrix of a CAR can be written as

�CAR = σ 2(I − C)−1Vc = σ 2VCAR(θ), (9.54)

where θ is a vector containing all the spatial dependence parameters cij , and the
parameters of Vc. This is exactly the form of the variance–covariance matrix in
equation (9.11) of Section 9.2.1. Thus, if VCAR(θ) is known, the results from
maximum likelihood estimation and inference for the general linear model with
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autocorrelated errors, described in Section 9.2.1, apply directly to estimation and
inference with a CAR model, replacing V (θ) in equation (9.11) with VCAR(θ)

defined in equation (9.54), just as we did with the SAR model in Section 9.3.1.
In practice, of course, VCAR(θ) is not known and we estimate θ using methods
analogous to those described in Section 9.2.1. Specifically, we estimate θ by θ̃

obtained by minimizing Q(θ) in equation (9.20) with �(θ) replaced with VCAR(θ).
Given θ̃ , we estimate β using equation (9.13) with V replaced by VCAR(θ̃) and we
estimate σ 2 using equation (9.14), again with V replaced by VCAR(θ̃). We obtain
the standard errors of these parameter estimates from the information matrix as
discussed in Sections 9.1.1, 9.2.1, and 9.3.1.

As with estimation in the SAR models described in Section 9.3.1, there are
many parameters in θ , and thus minimizing Q(θ) is often difficult or impossible.
Thus, in practice, we usually assume that the parameters in Vc are known [e.g., the
(i, i)th element is equal to 1 or equal 1/ni to account for differing populations].
This still may not be enough to allow minimization of Q, so we also parameterize
C as a parametric function of a spatial proximity matrix W , as described in Section
9.3.1.

In the case of the one-parameter CAR with C = ρW and Vc = σ 2I , minimizing
Q(ρ) is usually straightforward. In this case, the information matrix reduces to
(Cliff and Ord 1981, p. 242)

I (β, σ 2, ρ) =




σ−2(X′A(ρ)−1X) 0 0

0′ N
2 σ−4 1

2σ−2tr(G)

0′ 1
2σ−2tr(G) 1

2α


 , (9.55)

a form very similar to equation (9.41), but where A(ρ) = (I − ρW)−1, G = W(I −
ρW)−1, and α =∑[ϑ2

i /(1 − ρϑi)
2], where ϑi are the eigenvalues of W .

The primary difference between CAR and SAR models based on Gaussian data is
the different definitions of �Y . In the simplest one-parameter cases, �Y = σ 2(I −
ρW)−1 for a CAR and �Y , = σ 2(I − ρW)−1(I − ρW ′)−1 for a SAR. Thus, the
methods for testing H0 : ρ = 0 vs. H1 : ρ �= 0 for the simple CAR model are the
same as those discussed in Section 9.3.1.

Unlike the SAR model, least squares estimators of the parameters in CAR mod-
els are consistent. Thus, iteratively reweighted generalized least squares (described
in Section 9.2.1) can also be used to estimate the parameters of the simple CAR
model. In this case, when we obtain the residuals, we estimate ρ using ordinary
least squares (Haining 1990, p. 130)

ρ̂OLS = e′We

e′W 2e

[cf. equation (9.44)].
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9.3.3 Concluding Remarks on Conditional Autoregressions

Just as with the SAR models introduced in Section 9.3.1, the primary purpose of
CAR models is to provide a modeling mechanism to account for residual spatial
correlation (i.e., spatial trends not explained by spatial patterns in covariate values).
As we illustrated in the data break following Section 9.2.3, residual correlation can
bias parameter estimates and their standard errors, leading to incorrect inference
regarding the impact of covariates on the outcome value.

Spatial autoregressive models were developed primarily for use with geograph-
ically aggregated spatial data, in contrast to the geostatistical models developed for
spatially continuous data, where measurements could be taken (at least theoreti-
cally) at any location in the study area. Unlike the regression models with spatially
autocorrelated data, where universal kriging allows us to predict an outcome vari-
able at an unmeasured location, prediction of new observations is not usually the
focus of SAR and CAR modeling. The interpretation of a predicted value located
between adjacent areal units is at best unclear (e.g., if we have the disease rate for
each state in the continental United States, what does it mean to predict the dis-
ease rate at a “location” between Texas and Louisiana?). However, when data are
missing, prediction of areal values may be a goal, and in such cases, the universal
kriging predictor (Section 9.2.3) can be used, with �Y corresponding to either a
SAR or a CAR model.

DATA BREAK: New York Leukemia Data (cont.) In this portion of the
data break, we consider spatial autoregressive models for the New York leukemia
data. Most of the assumptions underlying OLS regression (discussed in Sections 9.1
and 9.2) must be made for these models as well. In particular, we assume that the
data follow a multivariate Gaussian distribution with the mean independent of the
variance. As we discussed earlier, the incidence proportions do not satisfy these
assumptions, but much of the work needed to overcome this difficulty was done
in the data break following Section 9.2.3. We continue with our analysis of the
transformed proportions, Zi , and use the same covariates as before. Essentially, we
pick up this data break just after fitting the OLS and WLS regression models in
the preceding data break (results in Tables 9.2 and 9.3).

Earlier, we assessed whether there was any residual spatial autocorrelation by
computing the semivariogram of the residuals. In this data break, we apply the
ideas in Sections 7.4 and 7.5 to assess residual autocorrelation. We continue using
the binary connectivity matrix with elements wij = 1 if regions i and j share any
portion of their borders with one another, to specify the neighborhood structure as
we did in the data break following Section 7.4.3.

Assessing Residual Autocorrelation Using Moran’s I In Section 9.3.1 we descri-
bed how Moran’s I can be used to test for residual spatial autocorrelation. Based
on the traditional OLS residuals from our New York leukemia case study, e =
Y − Xβ̂OLS, we obtain a Moran’s I value of Ires = 0.08309 [equation (9.44)] that
has a variance of 0.0013. The test statistic in equation (9.47) suggests significant
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residual spatial autocorrelation (p = 0.0155). Thus, we fit both a SAR and a CAR
model and compare our results to those in the earlier data break.

We first fit a one-parameter SAR model with variance–covariance matrix

�SAR = σ 2
S (I − ρSW)−1Vυ(I − ρSW ′)−1,

with Vυ = I , and then a comparable one parameter CAR model with variance–
covariance matrix

�CAR = σ 2
C(I − ρCW)−1Vc,

with Vc = I . We use different subscripts on σ 2 and ρ to indicate that the parameters
differ between the two models. Their values need not be similar, although their
interpretations are the same. The results appear in Tables 9.6 and 9.7.

Comparing these results we see many similarities. The estimates of the covariate
effects are similar, as are the associated standard errors. The main difference lies
in the estimate of β3 corresponding to the percentage who own their own home.

Table 9.6 Results of Unweighted SAR Regression for the New York Leukemia Data

Parameter Estimate Std. Error t-Value p-Value

β̂0 (intercept) −0.6182 0.1781 −3.47 0.0006
β̂1 (TCE) 0.0710 0.0424 1.68 0.0947
β̂2 (% age > 65) 3.7542 0.6292 5.97 <0.0001
β̂3 (% own home) −0.4199 0.1927 −2.18 0.0302

σ̂ 2
S

0.4198 276 df

ρ̂S = 0.04049 AIC = 564.2a

aBased on maximum likelihood estimation.

Table 9.7 Results of Unweighted CAR Regression for the New York Leukemia Data

Parameter Estimate Std. Error t-Value p-Value

β̂0 (intercept) −0.6484 0.1824 −3.55 0.0004
β̂1 (TCE) 0.0779 0.0440 1.77 0.0778
β̂2 (% age > 65) 3.7038 0.6317 5.86 <0.0001
β̂3 (% own home) −0.3828 0.1970 −1.94 0.0530

σ̂ 2
C

0.4135 276 df

ρ̂C = 0.08412 AIC = 563.7a

aBased on maximum likelihood estimation.
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The absolute value of the SAR estimate is larger, indicating a significant effect,
whereas the same covariate in the CAR model is not technically statistically signif-
icant. Both models indicate no significant effect of our surrogate exposure variable
on the incidence of leukemia at α = 0.05. Comparing these to the results from
OLS regression in Table 9.2, we see how including spatial autocorrelation affects
results and conclusions. The AIC criteria are smaller for the SAR and CAR mod-
els, indicating that these models have a slightly better fit. The impact of including
spatial autocorrelation is most pronounced for our surrogate exposure variable X1,
greatly increasing the parameter estimate. With the SAR and CAR models, this
effect is significant at α = 0.10 but is not significant with traditional OLS regres-
sion at this level. We observe the same tendency using geostatistical methods of
incorporating spatial autocorrelation (Table 9.4), where spatial proximity is defined
by the intercentroid distances. The estimated regression coefficients from the SAR
and CAR models are comparable to those in Table 9.4, with the exception of the
estimated effect of X3, our surrogate income variable.

The estimates of ρS and ρC are small, even when we interpret them against their
plausible range of (−0.3029, 0.1550) defined by the reciprocals of the smallest and
largest eigenvalues of W , ϑmin = −3.3012, and ϑmax = 6.4535. Since the OLS
model can be obtained as a special case of both the SAR and the CAR models
by taking ρ = 0, we can use a likelihood ratio test to test for the significance of
the autocorrelation parameters. For example, the value of L(β, θ1) from equation
(9.26) for the OLS model with five parameters is −278.75. For the SAR model
with six parameters, L(β, θ2) = −276.12. Thus, our likelihood ratio test statistic is
2[−276.12 − (−278.75)] = 5.3. Comparing this to a χ2 distribution on one degree
of freedom gives a p-value of 0.0294. An analogous test can be used with the CAR
model.

Assessing the effects of important covariate factors is usually the primary goal
in most regression analyses. With spatial regression analysis, we might want to go
beyond this primary goal to assess whether the leukemia incidence proportions or
rates are clustered so that we might identify areas of potentially elevated risk. The
test based on Ires using Moran’s I and the likelihood ratio test of H0 : ρ = 0 in SAR
and CAR models are tests of overall clustering. However, these are global tests.
The local indicators of spatial association described in Section 7.5 provide local
measures of spatial similarity that can provide insight into areas with comparatively
high or low association with neighboring values. Figure 9.16 shows a map of local
Moran’s I values, computed from the OLS residuals. Thus, this map represents a
local version of Ires in equation (9.44) that can also be interpreted as a map of local
Moran’s I values given by Ii,std in equation (7.12) adjusted for the covariates.

Local Ires maps require extra effort in interpretation, and we first describe what
values capture our interest and for what reasons. High extreme values reveal tracts
where all surrounding tracts have similar values. High values of Ires may result
from high, medium, or low residual values as long as the neighbors have residuals
of similar magnitudes. Therefore, high Ires values do not necessarily correspond
to high residual values, as we might be tempted to conclude. In fact, comparing
Figure 9.16 to the map of studentized residuals (Figure 9.13, which is qualitatively
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Quantiles of Local
Moran's I for
(Unstudentized)
OLS Residuals

(−2.752, −0.147)
(−0.147, −0.026)
(−0.026, 0.032)
(−0.032, 0.185)
(−0.185, 8.389)

FIG. 9.16 Map of local Moran’s I values based on OLS residuals for the New York leukemia data.
The map is based on the row-standardized binary connectivity matrix.

similar to the map of OLS residuals, which we do not show), we see that several
of the high Ires values correspond to clusters of low studentized residual values
(where we observe fewer cases than predicted by the model). Low values of Ires
suggest tracts with residual values very different from those associated with sur-
rounding tracts. These may be high values surrounded by low values, or low values
surrounded by high values. Consistent with these interpretations, the three outliers
(all high positive residuals and all adjacent to one another) produce three of the
five highest observed local values of Ires, and a tract neighboring one of the outliers
produces the lowest observed local value.

Both extremes of Ires values may suggest clusters of interest. A collection of
high values of Ires suggests an aggregation of regions with similar residuals, thus
potentially indicating a spatial pattern in the residuals. A low value of Ires suggests
a residual that is different from the neighboring residuals, which we might expect
if the residuals show no spatial structure, or a local outlier is different from its
spatial neighbors. A collection of low values could reflect negative spatial auto-
correlation or spatial noise in the residual process (e.g., those near Syracuse, as
suggested previously by the high relative nugget effect in the empirical residual
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semivariogram in Figure 9.14). As a result, the residual LISA map must be inter-
preted in concert with a map of the residual values. Even so, we must remember
that some regions will contain the highest or lowest local values of Ires, even for
models with independent error terms. The trick is to identify when the extremes are
“too extreme,” a task complicated by the multiple numbers of correlated statistics
encountered in consideration of the set of local statistics (Anselin 1995).

We caution against overinterpretation of results based on Ires since the OLS
residuals are correlated and have different variances, even when the original data
are i.i.d. They are even more suspect in the case we consider here, since as we
discussed the preceding data break, their variances depend on the population sizes,
ni , even after transformation. To account for this population heterogeneity, we
fit weighted versions of the SAR and CAR models considered previously. Since
Var(Zi) ∝ 1/ni , we take

�SAR = σ 2(I − ρW)−1Vυ(I − ρW ′)−1,

with Vυ = diag[1/ni], and for the CAR we use

�CAR = σ 2(I − ρW)−1Vc,

with Vc = diag[1/ni]. The results are shown in Tables 9.8 and 9.9.
Comparing these tables, there seems to be little difference between the results

from the SAR model and those from the CAR model. All three covariate values are
significant at α = 0.05. Note, however, that these results do not differ substantially
from those obtained using WLS regression with independent errors (Table 9.3). A
comparison of the AIC criteria suggests that the WLS regression model fits slightly
better than the weighted SAR or weighted CAR, indicating that adjustment for
spatial autocorrelation was unnecessary. The nature of the weighted and unweighted
results suggests that the residual spatial autocorrelation for the OLS results may
be driven by spatial patterns in population size, in particular the collection of the
three outliers mapped in Figure 9.8.

Table 9.8 Results of Weighted SAR Regression for the New York Leukemia Data

Parameter Estimate Std. Error t-Value p-Value

β̂0 (intercept) −0.7971 0.1451 −5.49 <0.0001
β̂1 (TCE) 0.0805 0.0285 2.82 0.0051
β̂2 (% age > 65) 3.8167 0.5802 6.58 <0.0001
β̂3 (% own home) −0.3808 0.1576 −2.42 0.0164

σ̂ 2 1120.24 276 df

ρ̂ = 0.009564 AIC = 515.23
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Table 9.9 Results of Weighted CAR Regression for the New York Leukemia Data

Parameter Estimate Std. Error t-Value p-Value

β̂0 (intercept) −0.8132 0.1459 −5.57 <0.0001
β̂1 (TCE) 0.0812 0.0288 2.82 0.0051
β̂2 (% age > 65) 3.7874 0.5819 6.51 <0.0001
β̂3 (% own home) −0.3662 0.1586 −2.31 0.0217

σ̂ 2 1118.9 276 df

ρ̂ = 0.02242 AIC = 515.14

9.3.4 Concluding Remarks on Spatial Autoregressions

In this section we describe and illustrate how the idea of spatial autoregression can
be used to adapt the traditional linear regression model for spatial analysis. As in
the data break following Section 9.2.3, using a weighted analysis that accounts for
population heterogeneity and incorporating spatial correlation not explained by the
covariates can both be crucial for obtaining valid conclusions.

Spatial autoregressive models incorporate spatial dependence through the use
of spatial proximity measures. As we saw in Chapter 7, these measures provide a
flexible modeling tool for geographical data. An alternative approach is provided by
geostatistics, where the semivariogram based on inter-centroid distances quantifies
the spatial autocorrelation in the data. These two different approaches, and the
differences in the results obtained with them, lead us to wonder to what extent
the choice of spatial dependence measure has on conclusions. Conceptually, given
the differences in the spatial proximity measures, the impact of the choice of
spatial proximity measure is likely to be great, as it will result in very different
neighborhood structures and thus allow much different interactions among the data.

Griffith (1996) posits several rules of thumb concerning the choice of spatial
proximity measure. Although his focus is limited to spatial proximity measures,
several of his rules and conclusions apply to modeling spatial dependence in gen-
eral, whether it be through spatial proximity measures or geostatistical methods.
We adapt his rules for our discussion here and interweave some of our own.

1. It is better to use any reasonable method for modeling spatial autocorrelation
than to assume that the data are independent.

2. However, the choice of spatial dependence model can greatly affect both the
estimates from regression models and their standard errors. Thus, exploratory
spatial analysis is important since it can provide valuable information con-
cerning the spatial relationships among the data that can be used to choose a
spatial dependence model substantiated by the data. It is also wise to com-
pare results from several different spatial dependence models and to try to
understand their differences.
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3. Many inferential procedures in spatial statistics are based on asymptotic
results which assume that the number of spatial units (points or regions)
is large. For inference about the mean with i.i.d data, a sample size of 30
data values is considered a “large” sample. With spatial data, large depends
on the specific application and the strength and type of the spatial depen-
dence. Our rule of thumb when working with spatial data is based on the
idea of effective sample size. If the data are correlated, each data value con-
tains information about other data values, so we have far less information
than would be contained in an independent sample of the same size. How
much less information? Although this can be calculated, our conservative
rule of thumb is that spatial correlation reduces the information contained in
a sample of independent data by a factor of 2. Thus, if 30 data values are
needed for asymptotic inference with i.i.d data, we would need 60 correlated
values for the same inference. However, we stress that this serves only as a
loose rule of thumb and may not (probably will not) apply to all spatial data
analytic settings.

4. As shown in the data break, accounting for population heterogeneity in geo-
graphically aggregated data is very important. Many of the tools for inference
with spatial data assume second-order stationarity and thus may give mislead-
ing conclusions when applied to data based on units with differing population
sizes or with different spatial support.

5. The principle of parsimony is paramount; we should choose the simplest
model that both adequately explains the variation in our data and facilitates
an interpretation that is consistent with our knowledge about the people,
places, and processes we are studying.

Linear models are probably the most widely used regression models in spatial
statistics. However, in public health applications, probably the most widely used
regression models are the Poisson and the logistic. In the next section we describe
how these can be adapted for the analysis of spatial data.

9.4 GENERALIZED LINEAR MODELS

A linear model may not always be the best approach for modeling health events,
particularly when the data are counts or rates, or when we are interested in estimat-
ing health risk from binary data. In such cases, generalized linear models (GLMs),
with Poisson and logistic regression models as special cases, may be more appro-
priate. A general description of these models (ignoring spatial correlation) appears
in Section 2.6.1. In this section we provide more details about GLMs and adapt
them for use with spatial data.

9.4.1 Fixed Effects and the Marginal Specification

Instead of assuming the mean response is a linear function of the explanatory
covariates as we did with linear regression models in Sections 9.1 and 9.2 [cf.
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equation (9.1)], we assume that some function of the mean, called the link function,
is linearly related to the covariates:

g(µ) = g(E(Y)) = Xβ, (9.56)

where µ is the vector of mean values (µ(s1), µ(s2), . . . , µ(sn))
′ of the data vec-

tor Y = (Y (s1), Y (s2), . . . , Y (sn))
′. Recall from Section 2.6.1 that there are two

common link functions used with public health data. One is the log link function
for count data, g(µ) = log(µ), and the other is the logit link function for binary
data, g(µ) = log[µ/(1 − µ)].

To complete our regression model, we have to assume something about the
variance of the data. In many of the discrete statistical distributions used to model
count or binary data (e.g., Poisson and binomial), the variance of the data depends
on the mean. This dependence is included in the specification of a GLM as the
variance function, v(µ). With the log link function for count data, v(µ) = µ, and
with the logit link function for binary data, v(µ) = µ(1 − µ). In traditional appli-
cations of GLMs (e.g., in the development of Dobson 1990), the data are assumed
to be independent, but with heterogeneous variances given by the variance function.
Thus, the variance–covariance matrix of the data Y is

� = Var(Y) = σ 2Vµ, (9.57)

where Vµ is a N × N diagonal matrix with the variance function terms on the
diagonal, and the parameter σ 2 allows for “inexactness” in the variance–to-mean
relationships called overdispersion (in many real data situations the variance is
greater than the mean, hence the modifier “over”). The variance–covariance matrix
defined in equation (9.57) is a generalization of the variance–covariance matrix
assumed for linear regression models with uncorrelated residuals [equation (9.2)].

Technically, our use of σ 2 differs slightly from our previous usage in this chapter.
In equation (9.57), σ 2 represents a multiplicative increase (or decrease) in the typi-
cal variance associated with the distribution of the data, while earlier σ 2 referenced
any multiplicative factor shared across the data variances. The distinction is subtle
and does not affect our development below, so we maintain the use of σ 2 here
to illustrate similarities in estimation routines between the methods outlined below
and those of Sections 9.1 and 9.2.

Marginal GLMs with Spatial Correlation Generalized linear models can be used
with spatial data if we assume that the data are independent and that any of the
systematic spatial variation we observe in the outcome can be accounted for by
the covariates (just as with the linear regression model with independent data
in Section 9.1). Since we may not always be willing to assume that the data are
independent, we need to adapt the GLM models to allow for spatial autocorrelation.
We have already done this for the linear regression model in Section 9.2, where we
allowed spatially autocorrelated residuals and the more general variance–covariance
matrix �(θ). We extend this idea by modifying �(θ) to include the variance-to-
mean relationships inherent in a GLM specification. Based on the ideas in Wolfinger
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and O’Connell (1993) and Gotway and Stroup (1997), one such approach is to
model the variance–covariance matrix of the data as

Var(Y) = �(µ, θ) = σ 2V
1/2
µ R(θ)V

1/2
µ , (9.58)

where R(θ) is a correlation matrix with elements ρ(si − sj ; θ), the spatial cor-
relogram defined in Section 8.2.1. The diagonal matrix, V

1/2
µ , has elements equal

to the square root of variance function,
√

v(µ). Recall that the correlogram or
correlation function is related directly to the covariance function and the semivar-
iogram, so all of the ideas in Section 8.2 apply here. Often, we assume a single
parameter for the correlogram (since the sill of a correlogram is 1; i.e., θ ≡ a,
the range of spatial autocorrelation). If we wish, we can add a nugget effect by
using

Var(Y) = σ 2
0 Vµ + σ 2

1 V
1/2
µ R(θ)V

1/2
µ .

In this case, Var(Y (si )) = (σ 2
0 + σ 2

1 )v(µ(si )), and the covariance between any two
variables is Cov(Y (si ), Y (sj )) = σ 2

1

√
v(µ(si ))v(µ(sj ))ρ(si − sj ).

Example To see how to set up the matrices in a spatial GLM, we consider the
spatial arrangement in Figure 8.13. For now, we do not consider the interpola-
tion problem, so we will ignore the point s0. Assume that the data given in this
figure (the Z’s) are actually covariate values associated with each location. Further
assume that count data Y(s1), Y (s2), Y (s3), Y (s4), Y (s5) will be observed at spa-
tial locations s1, s2, s3, s4, s5 in the figure. Since the data are counts, we will use
the log link function and specify the mean function in equation (9.56) as

log(E(Y)) = log(µ) =




log(µ(s1))

log(µ(s2))

log(µ(s3))

log(µ(s4))

log(µ(s5))


 =




1 2
1 −3
1 3
1 −4
1 2



[
β0
β1

]
,

and the variance function as v(µ), so that V
1/2
µ in equation (9.58) is

V
1/2
µ =




√
µ(s1) 0 0 0 0
0

√
µ(s2) 0 0 0

0 0
√

µ(s3) 0 0
0 0 0

√
µ(s4) 0

0 0 0 0
√

µ(s5)


 .
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By taking the inverse of the link function, we find that µi = exp(β0 + β1Zi), so
the vector of expected values and the variance–covariance matrix become

E(Y) = µ =




exp (β + 2β1)

exp (β0 − 3β1)

exp (β0 + 3β1)

exp (β0 − 4β1)

exp (β0 + 2β1)




and

V
1/2
µ =




√
eβ+2β1 0 0 0 0

0
√

eβ0−3β1 0 0 0
0 0

√
eβ0+3β1 0 0

0 0 0
√

eβ0−4β1 0
0 0 0 0

√
eβ0+2β1


 ,

respectively.
Now assume that the spatial correlation function can be specified in terms of one

of the semivariogram models given in Section 8.2.2. For illustration, we choose
the exponential model so that ρ(si − sj ; θ) = exp{−‖si − sj‖/a}. Taking a = 1
and using the distances defined in Figure 8.13 gives

R =




1 0.37 0.24 0.13 0.24
0.37 1 0.37 0.13 0.11
0.24 0.37 1 0.33 0.14
0.13 0.13 0.33 1 0.16
0.24 0.11 0.14 0.16 1


 .

Notice that the matrices needed to define the GLM are specified in terms of two
unknown parameters, β0 and β1. In practical applications, a would also be unknown
and we might include an extra parameter, σ 2, to account for overdispersion.

To fit the model, we need to estimate these parameters from the data. However,
before detailing estimation techniques for spatial GLMs we present an alternative
spatial GLM formulation using conditional (rather than marginal) specification of
the model. The marginal and conditional specifications provide different approaches
for including spatial correlation, similar in spirit to the simultaneous and conditional
autoregressive models presented in Section 9.3 but also unique in perspective, as
described in the next section.

9.4.2 Mixed Models and Conditional Specification

In the development in Section 9.4.1, we assume that β is a vector of fixed, unknown
parameters and we modeled E(Y) as a function of these fixed parameters. The lit-
erature refers to this approach as the marginal specification since we model the
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marginal mean, E(Y), as a function of fixed, nonrandom (but unknown) parameters.
An alternative specification defines the distribution of each outcome, conditional on
an unobserved (latent) spatial process defining the spatial similarity between obser-
vations. The conditional approach incorporates this unobserved process through the
use of random effects within the mean function and models the conditional mean
and variance of the outcome as a function of both fixed covariate effects and
the random effects deriving from the unobserved spatial process. We describe this
approach below.

In our discussion of filtered kriging in Section 8.3.2 we assumed that the data
were noisy measurements of an underlying smooth spatial process S(s). Here again,
we make the same assumption and also assume that S(s) is a Gaussian random field
with mean 0 at any location and covariance function σ 2

S ρS(si − sj ). We note that
S(s) enters the GLM model as part of the linear component (i.e., within the link
function) and adds (spatially structured) noise around the mean of the transformed
mean of the data Y(s). We also note that the Gaussian assumption for S(s) is
separate from the random component of the GLM, which defines the distribution
of error terms associated with each observation (e.g., Poisson or binomial).

More specifically, instead of E(Y), we consider the conditional mean

E[Y(s)|S(s)] ≡ µ(s)

and let the link function relate this conditional mean to the explanatory covariates
and also to the underlying spatial random field, so that

g[µ(s)] = x′(s)β + S(s). (9.59)

We note that equation (9.59) illustrates how the particular value S(s) of the random
effect at location s enters the linear component of the GLM as an addition to the
intercept, so at any location we can consider S(s) to represent a random intercept
(or more accurately, a random addition to the intercept).

Now, instead of trying to predict S(s0) at an unmeasured location s0, our interest
will be estimation of fixed effects given the spatial variation in S(s) and smoothing
[prediction of S(s) and the related mean value of the outcome at the data locations].

To allow the variance to depend on the mean, we assume that the data are
conditionally independent (i.e., independent given the value of S) with conditional
variance

Var[Y(s)|S(s)] = σ 2v(µ(s)), (9.60)

where the function v(·) is the variance function described earlier and σ 2 is an
overdispersion parameter. The conditional independence assumptions implies that
any spatial correlation among the Y ’s is due solely to spatial patterns within the
random field S. Operationally, conditional independence defers treatment of spatial
autocorrelation to the consideration of S (i.e., the key component in the estimation
techniques below is the approach for incorporating information regarding S). This
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type of model specification is known as a generalized linear mixed model (GLMM),
the term mixed indicating the model is composed of both fixed (β) and random
effects (S(s)).

This conditional specification and the marginal specification given in Section
9.4.1 are different in structure and interpretation. For example, consider g(µ) =
log(µ) and v(µ) = µ, and let m(s) = exp[x ′(s)β]. Standard results from statis-
tical theory reveal that the marginal mean is the mean of the conditional mean
and the marginal variance is the sum of the mean conditional variance and the
variance of the conditional mean. Using these facts together with the mean and
variance relationships of the lognormal distribution (see Section 8.3.2) we define
the corresponding marginal moments of the data as

E(Y(s)) = ES[E(Y(s)|S)] = ES[m(s) exp(S)] = m(s) exp(σ 2
S /2) (9.61)

Var(Y (s)) = m(s)[σ 2 exp(σ 2
S /2) + m(s) exp(σ 2

S )(exp(σ 2
S ) − 1)] (9.62)

Cov(Y (si ), Y (sj )) = m(si )m(sj ) exp(σ 2
S ){exp[σ 2

S ρ(si − sj )] − 1}, (9.63)

where ES(·) denotes the expectation over S. Note Var(Y (s)) > E(Y(s)), even if
σ 2 = 1. Also, both the overdispersion and the autocorrelation induced into data
by the latent process, S(s), depend on the mean, so the conditional model can be
used with nonstationary spatial processes where the mean and variance vary across
locations.

As with the marginal spatial GLMs described in Section 9.4.1, the correlation
function ρS(si − sj ) can be modeled as a function of a q × 1 vector of unknown
parameters θS that completely characterizes the spatial dependence in the under-
lying surface [i.e., corr(S(si ), S(sj )) = ρS(si − sj ; θS)]. Thus, to use this model,
we need to estimate the parameters for the fixed covariate effects, β, the variance
components, σ 2

S and σ 2, and the spatial autocorrelation parameters, θS .
The spatial GLMM is an example of a hierarchical model, or a model defined in

stages. At the first stage of the model, we define the distribution of the data given
values of the random effects. At the second stage, we define the distribution of
the random effects. By combining the first and second stages, we obtain inference
about the data, taking into account the distribution of the random effects. We use a
similar approach in our discussion of empirical Bayes smoothing in Section 4.4.3.
The notion of hierarchical models provides a very convenient framework for spatial
GLMs, as we illustrate throughout the remainder of this chapter.

9.4.3 Estimation in Spatial GLMs and GLMMs

The likelihood function plays a central role in the statistical estimation of linear
model parameters as illustrated in Sections 9.1 and 9.2. As we move from lin-
ear models to GLMs, maximum likelihood estimation still provides an attractive
approach for inference, but several factors complicate the direct calculation and
maximization of the likelihood function in the spatial GLM and GLMM settings.
We briefly outline some of these issues, then define and illustrate a variety of
estimation techniques for both marginal and conditional specifications.
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Likelihood Complications First, as outlined in McCullagh and Nelder (1989,
Chapter 9), we often have less detail in GLMs than in linear models regarding
the underlying random mechanism generating the data. For instance, the Gaussian
distribution arises as a limiting distribution for a wide variety of statistics due
to the central limit theorem, leading to the wide use of Gaussian models across
application areas. In contrast, for regionally specified data, we tend to assume a
Poisson distribution for counts of events within regions due to the properties of a
spatial Poisson process outlined in Chapter 5, but often a binomial distribution is
more realistic for counts of events among a fixed regional population size (since
the Poisson distribution assigns a small but nonzero probability of observing more
events than there are people at risk). Differences between the Poisson and binomial
likelihoods are typically small for large population sizes and small individual risks,
but such differences still exist.

Although the precise random mechanism may not be clear in GLM applications,
we often do have clear conceptual models of the mean and variance (and perhaps
the range) of possible values. For example, the constant risk hypothesis of Chapter
7 provides a model of the mean number of events within a fixed number of people
at risk. Often, particularly when working with discrete data like counts or rates,
our conceptual models result in mean–variance relationships and we would like to
explicitly include these in our statistical models rather than transform them away.
Thus, a second issue arises in that the variance in a GLM (or GLMM) is often a
function of the mean, and a Gaussian distribution, by definition, does not allow
such functional relationships.

Traditional GLMs allow us to move away from the Gaussian distribution and
utilize other distributions that allow mean–variance relationships. However, a final
complication arises from spatial dependence. For likelihood-based inference we
need to build a multivariate distribution. When the data are spatially autocorre-
lated, we cannot easily build this distribution as a product of marginal likelihoods
as we do when the data are independent. Constructing multivariate distributions
that allow general spatial dependence structures can be very difficult, and few
such distributions (outside the multivariate Gaussian) have been fully evaluated for
practical modeling value.

We can bypass this problem by using conditionally specified GLMM models,
since these models always assume that conditional on random effects, the data
are independent. The conditional independence and hierarchical structure allow
us to build a multivariate distribution, although we cannot always be sure of the
properties of this distribution. The hierarchical structure of GLMMs further com-
plicates matters if we wish to build a likelihood function encompassing all stages
of the model. As noted in Breslow and Clayton (1993), exact inference for first-
stage model parameters (e.g., covariate effects) typically requires integration over
the distribution of the random effects. This necessary multidimensional integra-
tion can often result in numerical instabilities, requiring approximations or more
computer-intensive estimation procedures.

There are several ways to avoid all of these problems (although arguably each
approach introduces new problems). To address the situation where we can define
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means and variances, but not necessarily the entire likelihood, Wedderburn (1974)
introduced the notion of quasilikelihood based on the first two moments of a dis-
tribution, and the approach sees wide application for GLMs based on independent
data (McCullagh and Nelder 1989, Chapter 9). This leads to an iterative estimating
equation based on just the first two moments of a distribution that can be used with
spatial data. Another solution is based on an initial Taylor series expansion that then
allows pseudolikelihood methods for spatial inference similar to those described in
Section 9.2.1. Finally, Bayesian inference (introduced briefly in Section 4.4.3 and
revisited in more detail in Section 9.5) is an attractive alternative since it can avoid
the approximations and heuristic arguments inherent in working with “quasi” and
“pseudo” likelihood methods and uses simulation to obtain parameter estimates and
inferential distributions. As detailed in Section 9.5, the Bayesian approach requires
more assumptions and more work in model specification since the distributions for
simulations must be derived, but it tends to provide a more complete framework
for estimation and inference. We provide several modifications and approximations
to likelihood-based inference for GLMs and GLMMs in the sections to follow, then
transition to the introduction to Bayesian analysis of spatially correlated regional
counts in Section 9.5.

Quasilikelihood Estimation and Generalized Estimating Equations As noted
briefly above, quasilikelihood builds inference in terms of the first two moments
only rather than the entire joint distribution, but it has many of the familiar prop-
erties of a joint likelihood. For example, estimates derive from maximizing the
quasilikelihood function using score equations (partial derivatives set equal to zero)
and have nice asymptotic properties such as Gaussian distributions. Although devel-
oped most fully for independent data, McCullagh and Nelder (1989, Section 9.3)
extend quasilikelihood estimation to dependent data, and Gotway and Stroup (1997)
phrase the approach in a spatial GLM context, which we summarize here.

To define our GLM, let µ = (µ1, . . . , µN) denote the vector of mean values
for the regional counts Y(s1), . . . , Y (sN) and g(µ) denote the link function, where
g(µ) = Xβ. For notational convenience, we denote observation Y(si ) by Yi . The
quasilikelihood function Q(µi; Yi) is defined by the relationship

∂Q(µ; Y)

∂µ
= V −1(Y − µ),

where V represents the variance–covariance matrix capturing the spatial correlation,
where Y denotes the vector of observed outcomes. We note that in GLMs, the
elements of V are often functions of µ. Differentiating Q(µ; Y) with respect to
each element of β yields the set of quasilikelihood score equations


′V −1(Y − µ)
set= 0

where 
 denotes the matrix with elements [∂µi/∂βj ] and j = 0, . . . , p indexes
the parameters in the linear portion of the GLM. Solving the score equations for
β yields the quasilikelihood estimates of the model parameters.
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McCullagh and Nelder (1989, pp. 333–335) note the inverse of the variance–
covariance matrix V −1 must satisfy several conditions to guarantee a solution to
the score equations, some not easily verified in practice. As a result, Wolfinger and
O’Connell (1993) and Gotway and Stroup (1997) follow Liang and Zeger (1986)
and Zeger and Liang (1986) and limit attention to variance–covariance matrices of
the form introduced in equation (9.58):

V ≡ �(µ, θ) = V
1/2
µ R(θ)V

1/2
µ

where R denotes a matrix of correlations among the observations parameterized by
the vector θ , and V

1/2
µ a diagonal matrix of scale parameters (perhaps including

overdispersion). With V now also depending on unknown autocorrelation param-
eters, the quasilikelihood score equations are known as a generalized estimating
equations. Liang and Zeger (1986) and Zeger and Liang (1986) show that under
mild regularity conditions, these equations generate consistent estimators of β, even
with misspecified correlation matrices. Zeger (1988) shows that the same conditions
are met for a single time-series replicate, provided that the covariance function is
“well behaved” in the sense that �(µ, θ) breaks into independent blocks for large n.
This same result holds for spatial data as well (McShane et al. 1997). In the spatial
setting, to avoid any distributional assumptions in a completely marginal analy-
sis, Gotway and Stroup (1997) suggest using an iteratively reweighted generalized
least-squares (IRWGLS) approach to solve the quasilikelihood/generalized estimat-
ing equations for β and θ that is very similar to that described in Section 9.2.1.
With η = Xβ, the matrix 
 can be written as 
 = �X, where � = diag[∂µi/∂ηi],
and the quasilikelihood/generalized estimating equations can be written as

(X′A(θ)X)−1β = X′A(θ)Y∗,

where A(θ) = � ′�(µ, θ)−1� and Y∗ = Xβ + �−1(Y − µ). The elements of
R(θ) can be estimated via standard geostatistical techniques (e.g., based on the
residual semivariogram or correlogram), and then IRWGLS is used to obtain esti-
mates of β and θ .

The quasilikelihood approach outlined above provides marginal inference
regarding covariate effects (i.e., estimates of the average effect of each covariate
across the entire study population). Breslow and Clayton (1993), Leroux (2000),
and Gotway and Wolfinger (2003) provide additional details and related analytic
approaches for GLMs applied to spatial data.

Pseudolikelihood Estimation Instead of quasilikelihood, Wolfinger and
O’Connell (1993) suggest an approach termed pseudolikelihood (PL) as a
flexible and efficient way of estimating the unknown parameters in a generalized
linear mixed model (GLMM). (We note that different uses of the term pseudolike-
lihood appear in other statistical estimation contexts; cf. Besag 1975; Gong and
Samaniego 1981.)
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The pseudolikelihood approach of Wolfinger and O’Connell (1993) differs from
the quasilikelihood approach above in that at any step of the iterative process, a
function that is a true joint likelihood is used to estimate unknown parameters. In
the case we consider here, a pseudolikelihood approach assumes that β is known
and estimates σ 2 and θ using ML (as described in Section 9.2.1), and then assumes
that θ is known and estimates β using ML and iterating until convergence. We can
apply this approach to marginal GLMs as special cases of a GLMM. We concentrate
on the PL method here since in Sections 9.1 and 9.2 we have already developed
much of the statistical theory we need and PL procedure can be implemented with
standard software for random effects modeling or with repeated calls to such soft-
ware. There are many important theoretical and implementational details associated
with the use of these methods (e.g., asymptotic theory, starting values, convergence
criteria, etc.) that we do not provide here and defer to the excellent discussions
and examples in Green (1987), Breslow and Clayton (1993), and Wolfinger and
O’Connell (1993).

The idea behind the pseudolikelihood approach is to linearize the problem so
that we can use the approach in Section 9.2 for estimation and inference. This is
done using a first-order Taylor series expansion of the link function to give what
Wolfinger and O’Connell (1993) call pseudodata (similar to the “working” outcome
variable in quasilikelihood, Y∗)

Y
(p)

i = g(µ̂i) + g′(µ̂i)(Yi − µ̂i), (9.64)

where g′(µ̂i), is the first derivative of the link function with respect to µ, evaluated
at µ̂, and µ̂ is a current estimate of µ. To apply the methods in Section 9.2, we need
the mean and variance–covariance matrix of the pseudodata, Y(p). Conditioning on
β and S, assuming that Var(Y|S) has the form of equation (9.58) and using some
probabilistic approximations described in Wolfinger and O’Connell (1993), these
can be derived in almost the traditional fashion as

E(Y(p)|β, S) = Xβ + S

Var(Y(p)|β, S) = �µ̂,

with

�µ̂ = σ 2
µ̂V
1/2
µ̂

R V
1/2
µ̂


µ̂.

Here 
µ̂ is a N × N diagonal matrix with elements [∂g(µ(si ))/∂µ(si )] evaluated
at µ̂. The marginal moments of the pseudodata are

E(Y(p)) = Xβ

Var(Y(p)) = �S + �µ̂ ≡ �Y(p) ,

and �S has (i, j)th element σ 2
S ρS(si − sj ). This can be considered as a general lin-

ear regression model with spatially autocorrelated residuals described in Section 9.2
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since the mean (of the pseudodata Y(p)) is linear in β. Thus, if we are willing to
assume that �µ̂ is known (or at least does not depend on β) when we want to
estimate β and that β is known when we want to estimate θ , we can maximize the
log-likelihood analytically yielding the least squares equations

β̂ = (X′�−1
Y(p)X)−1X′�−1

Y(p)Y
(p) (9.65)

Ŝ = �S�−1
Y(p) (Y

(p) − Xβ̂) (9.66)

σ̂ 2 = (Y(p) − Xβ̂)′�−1
Y(p) (Y

(p) − Xβ̂)

N
. (9.67)

However, �µ̂ does depend on β, so we iterate as follows:

1. Obtain an initial estimate of µ̂ from the original data. An estimate from the
nonspatial generalized linear model often works well.

2. Compute the pseudodata from equation (9.64).

3. Using ML (or REML) with the pseudodata, obtain estimates of the spatial
autocorrelation parameters, θ , and σ 2

S in �Y(p) (cf. Section 9.2.1).

4. Use these estimates to compute generalized least squares estimates (which are
also the maximum pseudolikelihood estimators) of β and σ 2 from equations
(9.65) and (9.67) and to predict S from equation (9.66).

5. Update the estimate of µ using µ̂ = g−1(Xβ̂ + Ŝ).

6. Repeat these steps until convergence.

Approximate standard errors for the fixed effects derived from

V̂ar(β̂) = σ̂ 2(X′�̂−1
Y(p)X)−1

using the converged parameter estimates of θ in �Y(p) to define the estimator �̂Y(p) .
We can construct approximate p-values using t-tests analogous to those described
in Section 9.2.1.

We have a choice as to how to model any spatial autocorrelation: through R or
through �S . Marginal models let R be a spatial correlation matrix, R(θ), and set
S = 0. Conditional models are specified through S and �S , with spatial dependence
incorporated in �S = σ 2

s V (θS) and R equal to an identity matrix. Once we have
determined which type of model we want to use, we use the iterative approach just
described to estimate any unknown parameters (σ 2, β, θ for a marginal model and
σ 2, σ 2

S , β, θS for a conditional model).

Example (cont.) Continuing with our example in Section 9.4.1, suppose that we
fit a marginal model, but this time with an overdispersion parameter, σ 2, and with
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an unknown range of autocorrelation, a. The vector log(µ) and the matrix V
1/2
µ

remain the same. The spatial correlation matrix is now

R(a) =
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.

The link function is g(µ) = log(µ), so g′(µ) = 1/µ, and


µ = diag {1/µ(s1), 1/µ(s2), 1/µ(s3), 1/µ(s4), 1/µ(s5)} .

We can also write this matrix as


β = diag {1/ exp(β + 2β1), 1/ exp(β0 − 3β1), 1/ exp(β0 + 3β1),

1/ exp(β0 − 4β1), 1/ exp(β0 + 2β1)} ,

to emphasize the dependence on β. The pseudodata are

Y(p) =




1 2
1 −3
1 3
1 −4
1 2



[
β0
β1

]
+ 
β







Y(s1)

Y (s2)

Y (s3)

Y (s4)

Y (s5)


−




exp(β + 2β1)

exp(β0 − 3β1)

exp(β0 + 3β1)

exp(β0 − 4β1)

exp(β0 + 2β1)





 ,

and given values for the data Y(s1), Y (s2), . . . , Y (s5), they depend only on β0
and β1. Thus, given an estimate of µ, or equivalently, estimates of β0 and β1, the
vector of pseudodata Y(p) is completely determined and plays the role of the data
in generalized least-squares fitting with

�Y(p) = σ 2
µV
1/2
µ R(a)V

1/2
µ 
µ,

where 
µ and Vµ are evaluated in terms of β0 and β1. Thus, the iteration pro-
ceeds as follows: Given initial estimates of β0 and β1, we compute the means
µi = exp(β0 + β1Zi) and then evaluate 
µ, V

1/2
µ , and Y(p). Given data Y(p),

we estimate σ 2 and a using ML or REML. Then we substitute these estimates
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into �Y(p) and estimate β0 and β1 using generalized least squares and repeat this
procedure until convergence.

DATA BREAK: Modeling Lip Cancer Morbidity in Scotland Spatial
GLMMs are often used to smooth spatial disease rates, and they provide a nice
extension to the empirical Bayes smoothing methods illustrated in Section 4.4.3.
In this data break, we use spatial GLMMs to estimate the effect of an exposure
variable on lip cancer rates in Scotland and then to smooth the rates, adjusting for
this exposure.

As an aside, we originally intended to use the New York leukemia data through-
out the data breaks in this chapter to illustrate the differences and the similarities
that result from the various modeling approaches. However, the Scottish lip cancer
data represent a “classic” data set for regionally specified health data and receives
much attention in the literature, so we could not resist including it here. The data
permit a nice comparative illustration of many statistical methods spanning a spec-
trum from traditional Poisson regression through random effects modeling to spatial
GLMMs. In addition, the multiple analyses of the lip cancer data appearing in the
spatial literature provide interesting cross-references for the results presented here.
A GLMM analysis of the New York leukemia data is left as an exercise.

Clayton and Kaldor (1987) report the number of lip cancer cases registered
during 1975–1980 in each of 56 districts of Scotland, which we denote Yi, i =
1, . . . N , N = 56. Clayton and Kaldor (1987) also report estimates of the expected
number of cases per district, Ei , accounting for the different age distributions
in each district. Assuming that the Ei are fixed constants, Clayton and Kaldor
(1987) use the standardized morbidity ratio (SMR), ri = Yi/Ei , as the data for
their analyses. We follow Cressie (1993, p. 536) in the use of the term districts,
since the 56 regions correspond to a collection of political regions defined in
1973 corresponding to 53 districts and three “island authorities.” The 1994 Local
Government (Scotland) Act redefined the political geography of Scotland, replacing
the 53 districts with 32 “council areas,” so the districts in this analysis are no longer
in use.

Clayton and Bernardinelli (1992) and Breslow and Clayton (1993) also report the
percentage of the workforce in each district employed in agriculture, fishing, and
forestry (%AFF). These authors note that the original compilers of the data, Kemp
et al. (1985), observed spatial variation in this covariate similar to that observed
for the lip cancer SMRs. Kemp et al. (1985) suggest that exposure to sunlight, a
known risk factor for lip cancer and a frequent occurrence for those engaged in
the agriculture, fishing, and forestry professions, might be the reason. We provide
these data, as well as the longitude and latitude coordinate of the center of each
district, in Table 2.6. Since we consider distance-based covariance functions in our
analysis below, we projected the data using the British National Grid (a transverse
Mercator projection), so distances are measured in meters. Figures 9.17 and 9.18
show the spatial distributions of the SMRs and the exposure values, respectively.

Recall from the discussion in Section 4.4.3 the concept of an unobserved relative
risk for each region, ζi , whose spatial distribution we want to depict on a map. We
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FIG. 9.17 Lip cancer SMRs during 1975–1980 in the 56 districts of Scotland.
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FIG. 9.18 Percentage of the workforce engaged in agriculture, fishing, or forestry during 1975–1980
in the 56 districts of Scotland.
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assumed, and we do so again here, conditional on these true but unobserved relative
risks, that the disease district in the N districts, Y1, . . . , YN are independent Poisson
random variables with means µi = E(Yi |ζi) and variances Var(Yi |ζi) = σ 2µi . In
contrast to the smoothing methods in Section 4.4.3, in this data break we relate
these means to an exposure covariate, xi =%AFF/10 (we divide the covariate by
10 in order to compare our results more easily with those in the literature). Since
the data are Poisson, we choose the link function g(µ) = log(µ), so that µi =
exp[log(Ei) + x′

iβ + ζi], where β = (β0, β1)
′. The term log(Ei) is an offset in the

model representing the (assumed) fixed denominator of the SMR, allowing us to
model the local SMRs based on local counts following the Poisson distribution.

To complete the model specification, we need to make some assumptions about
the distribution of the ζi (in this example, ζ plays the role of S in the development
in Section 9.4.2). As in Section 9.4.2, we assume that the vector of random effects,
ξ , is MV N(0, �ζ (θ)), with the elements of �ζ (θ) modeled with a parametric
covariance model. If we use a CAR- or SAR-type model for ξ , we can model
�ζ (θ) = ρW , where W is a known spatial proximity matrix. Often, W is taken to
be the matrix of adjacency weights, and in fact, the adjacencies are given in Clayton
and Kaldor (1987). However, to be curious and different, we try to let the data
inform on the spatial correlation in the random effects and use the geostatistical
methods described in Chapter 8 and Section 9.2.1 and illustrated in Section 9.2.3
to suggest a parametric model for �ζ (θ). We use the word try since we know
that for our analysis in Section 9.2.3, this can be tricky to do with rates, and the
problem is exacerbated when fitting a GLMM since we lose the nice decomposition
of variability into large-scale covariate effects and small-scale autocorrelation.

However, we do have this decomposition on the log scale, so we follow the same
procedure that we used in Section 9.2.3. We obtain the empirical semivariogram
of the studentized residuals from a weighted (by Ei) regression of log(ri + 1)

on xi (Figure 9.19) and use this to infer a model for �ζ (θ). Again we see an
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FIG. 9.19 Empirical semivariogram of log(SMR + 1) values for the lip cancer data. Distances are in
kilometers.
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apparent periodicity in the empirical semivariogram, which seems fairly common
when working with health data and is perhaps due to the geographic distribution of
the population. Cressie (1993, p. 544) suggests that the apparent negative depen-
dence at distances between 45 and 65 miles (72,000–105,000 meters here) is partly
due to districts 4 and 50 being considerably different from their neighboring dis-
tricts. Either an exponential or a spherical semivariogram model will smooth out
the fluctuations and provide a reasonable overall fit to the empirical semivariogram,
so we use both as models for �ζ (θ) and compare the results for illustration.

Using traditional likelihood methods for nonspatial GLMs and the methodology
described in Section 9.4.3, we fit the following seven models to the lip cancer
SMRs:

1. PR: traditional (nonspatial) Poisson regression without random effects, not
adjusted for overdispersion

2. PR + OD : traditional (nonspatial) Poisson regression without random
effects, adjusted for overdispersion

3. GLMMI : nonspatial Poisson regression with uncorrelated random effects
(i.e., with �S = σ 2

S I ), adjusted for overdispersion

4. GLMME : the spatial GLMM described above, without adjustment for
overdispersion, using an exponential correlation function

5. GLMMS : the spatial GLMM described above, without adjustment for
overdispersion, using a spherical correlation function

6. S + OD : the spatial GLMM described above, with adjustment for overdis-
persion, using a spherical correlation function

7. MGLM : marginal spatial GLM, with adjustment for overdispersion, using a
spherical correlation function

We summarize results in Table 9.10. We present the results in a single table
to facilitate comparison and discussion, but stress that the entries may have dif-
ferent interpretations depending on the model. We elaborate on this further in the
discussion below.

Table 9.10 Results of seven GLMs Fit to the Lip Cancer SMRsa

Model β̂0 β̂1 σ̂ 2
S

σ̂ 2 â p-Value

PR −0.54 ± 0.07 0.74 ± 0.06 —– —– —– 0.0001
PR+OD −0.54 ± 0.15 0.74 ± 0.13 —– 4.92 —– 0.0001
GLMMI −0.43 ± 0.16 0.68 ± 0.14 0.29 1.50 —– 0.0001
GLMME 0.44 ± 0.35 0.31 ± 0.12 0.42 —– 114.66 0.0155
GLMMS 0.49 ± 0.33 0.30 ± 0.12 0.47 —– 256.74 0.0168
S+OD 0.44 ± 0.32 0.33 ± 0.13 0.38 1.38 263.70 0.0125
MGLM −0.63 ± 0.21 0.70 ± 0.16 —– 7.10 53.16 0.0001

aThe units of the spatial autocorrelation parameter, â, are in kilometers. The p-value is based on testing
β1 = 0.
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In nonspatial GLMs (PR and PR+OD), it is important to adjust for overdisper-
sion, as it can have a large effect on standard errors. This is clearly illustrated by
comparing the results from the PR and PR+OD models: Note that the estimates
of β0 and β1 are the same, but the associated standard errors are more than twice
as large after adjusting for overdispersion. The assumption in the PR model that
the variance equals the mean is not valid if there is substantial overdispersion,
and thus the standard errors estimated from this model are too low. The impact
of including a dispersion parameter in the GLMMs (compare models GLMMS vs.
S+OD) is not nearly as great since the conditional models include overdispersion,
even without the extra dispersion parameter [cf. equation (9.62)].

The inclusion of independent (nonspatial) random effects in the PR model
(model GLMMI) decreases the estimate of β1 slightly, from 0.74 to 0.68, but
adjusts for the overdispersion in the data via the variability in the random effect.
The inclusion of spatially correlated random effects (models GLMME, GLMMS,
and S+OD) has a substantial impact on the estimate of β1, essentially reducing it
by a factor of 2 (from 0.68 in the GLMMI model to 0.33 in the comparable S+OD
model). However, the estimated standard errors for β̂1 remain about the same. We
observe somewhat different results when fitting the marginal spatial GLM: Includ-
ing spatial correlation increases the standard errors slightly (from 0.13 in PR+OD
to 0.16 in MGLM), but leaves the magnitudes of the estimated β1 coefficients
unchanged.

The results illustrate an important point first made in Section 9.2.2 concerning
the interpretation of spatial regression models. All regression models partition the
variation in the data into variation that can be attributed to systematic changes
in fixed covariates and the remaining random variation. When we are modeling
spatial variation with spatially varying covariates, this partitioning is not unique
and it can be difficult to decide what part of the spatial variation belongs to the
covariates and what part should be treated as residual autocorrelation. The variation
that one model attributes to the covariates may be attributed to random variation
in another model, and both models could be valid! This is even more difficult with
the inclusion of spatially structured random effects, since we now have to partition
our variation into three parts instead of two. If the spatial variation in the random
effects is related to that in the covariates, some of the covariate effect will be
assigned to the random effects. Thus, we have to take great care in interpreting the
results from spatial regression models by understanding how the components of our
models can affect our interpretation. If the signal in the data is strong, all models
should give similar conclusions, even if the particular values parameter estimates
and standard errors differ. This seems to be the case with our analyses of the lip
cancer rates: All models clearly indicate a significant effect due to occupational
exposure as measured by %AFF.

The choice of autocorrelation model has little effect on the results from the
spatial GLMMs (recall that the effective range in the exponential model is about 3a,
so the effective range for this model is slightly larger than for the other conditionally
specified models). We emphasize that the range of autocorrelation in the conditional
models is that of the ζi and not that of the data Yi as with the marginal model, which
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is why the estimates of a are much different for the two types of models. Although
it is not obvious from the correlation function computed using equations (9.63)
and (9.62), the strength of the marginal autocorrelation induced by the spatially
correlated random effects is probably much smaller than that indicated by the â.
This can be seen theoretically in Zeger (1988) [he assumes that E(exp(ζ )) = 1,
simplifying equations (9.63) and (9.62)] and empirically from results in Gotway
and Wolfinger (2003).

How do we know when to use a marginal spatial GLM or a conditional spatial
GLMM? The choice between marginal and conditional models is of considerable
debate even in nonspatial applications. There are several considerations that may
help us choose. The first is the interpretation of the regression parameters. In the
marginal model, β describes the change in g(E(Y)) with changes in the covariates.
Thus, this approach is often referred to as population averaged, since it describes
the dependence of a population mean on selected covariates. In contrast, when
separate random effects are estimated for each “subject” (here, the district), β

represents covariate effects at the subject-specific level. When the subjects are
people in a clinical trial, subject-specific inference may be undesirable, but when
the subjects are spatial regions, subject-specific inference can be appealing, arguably
more appealing than inference with a population-averaged interpretation. A second
consideration in the choice between marginal and conditional models is the overall
application. In many studies, it may not make sense to assume the existence of
unobserved, random, but fairly well-structured variables affecting the response. In
other studies, including these variables may provide a much more elegant and direct
interpretation than that provided by a marginal model. A third consideration is the
overall goal of the analysis. We may not always be interested in estimating covariate
effects. For example, we may simply want a smooth map of the rates adjusted
for covariates or known confounders. The spatial GLMMs are ideally suited to
this since the fitted means, µ̂i = exp[log(Ei) + x′

i β̂ + ζ̂i], provide the smoothed,
adjusted, empirical Bayes estimates of mean counts. Dividing these smoothed mean
counts by population sizes provides a smoothed map of local rates, while dividing
by the expected counts Ei yields a smoothed map of local SMRs. The smoothed
SMR map based on the GLMME model appears in Figure 9.20. Note how the
trend in the SMRs is much more apparent after adjusting for the percentage of
the workforce engaged in agriculture, fishing, or forestry. The larger rates tend
to occur in more rural areas, with the smallest rates near the middle, more urban
regions.

Smoothing rates with marginal models is slightly more complicated since we
somehow have to adjust for the aggregation effects (this is essentially one interpre-
tation of what the ζ ’s do). This has not received much attention in the literature,
primarily, we think, because theoretical results for inference from a single real-
ization of correlated data are difficult to obtain: Conditioning allows us to assume
independence and makes the theory more tractable. We do not we present the
details here (see Section 9.7.7 and think about using filtered kriging in a spatial
GLM context), but we do provide a smoothed map from a marginal spatial GLM
for comparison (Figure 9.21).
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FIG. 9.20 Smoothed lip cancer SMRs using the spatial GLMM described in the text.
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FIG. 9.21 Smoothed lip cancer SMRs using a marginal spatial GLM similar to the one described in
the text.
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9.4.4 Additional Considerations in Spatial GLMs

The preceding data break illustrates the application of a variety of marginally and
conditionally specified GLMs and GLMMs, some incorporating spatial correlation.
GLMs and GLMMs model rates, counts, and proportions more directly than the
linear regression models of Sections 9.1, 9.2, and 9.3, at the expense of more
complicated model formulation and computational implementation and residual
diagnostics. These issues, in turn, raise some interesting theoretical and practical
issues.

We use geostatistical methods to quantify the spatial autocorrelation in the
data primarily to motivate spatial GLMMs as natural extensions to the general
linear regression models we describe in Section 9.2. However, we may use the
models and the computational procedures described here with a variety of spatial
covariance structures, including autoregressive structures similar to those defined
in Section 9.3. Breslow and Clayton (1993) provide an example of autoregressive
spatial random effects and use a penalized quasilikelihood approach to fit the model
to the Scottish lip cancer data.

Theoretically, the distribution of the random effects need not be Gaussian. A
Gaussian distribution allows many of the approximations driving the PL approach
for fitting GLMMs, but some applications may merit other distributions for the
random effects. Changing the random effects distribution sometimes complicates
the numerical and computational approaches used to fit GLMMs, but clever choices
actually offer advantages over Gaussian assumptions [cf. Lee and Nelder (1996)
and associated discussion]. In general, treating the distribution of the random effects
as a prior distribution in a Bayesian setting (as introduced with empirical Bayes
smoothing approaches in Section 4.4.3) offers additional advantages, which we
explore in Section 9.5.

On the practical implementation side, all GLMM parameter estimation algo-
rithms are iterative and require assessment of convergence of the algorithm. Such
convergence is often sensitive (sometimes very sensitive) to the starting values
defined by the user, and robust, general-purpose convergence diagnostics are lack-
ing. In the example above, we implement a parameter search that is sensitive to both
the range of possible parameter values and the search increment considered. Agresti
et al. (2000) provide a readable overview of GLMMs, including a detailed discus-
sion of the advantages and disadvantages of different computational approaches for
GLMM parameter estimation.

Finally, many analyses exploring links between geographically referenced expo-
sures and health outcomes involve data collected on units with different spatial
supports (e.g., point measurements of exposure suggesting geostatistical interpola-
tion coupled with outcomes defined by regional counts of a particular health event).
Fitting a GLM or GLMM to such misaligned data presents considerable analytical
and inferential challenges. To illustrate the issue, we now explore an example in
detail and in the process incorporate many of the spatial statistical ideas and tools
defined throughout the book.



400 LINKING SPATIAL EXPOSURE DATA TO HEALTH EVENTS

CASE STUDY: Very Low Birth Weights in Georgia Health Care District 9
In many public health studies, particularly those assessing the impacts of the envi-
ronment on human health, the locations of the exposure data and those of the
health data do not coincide. Thus, we cannot apply regression methods, even those
in spatial statistics, to such misaligned data. In this case study, we illustrate one
approach to overcoming misalignment problems in statistical analysis. Additional
approaches are reviewed in Gotway and Young (2002).

In Section 4.2 we used data on very low birth weights to illustrate several dif-
ferent statistical maps useful for the display of spatial data. These data are based
on a case–control study of the risk of having a very low birth weight (VLBW)
baby, one weighing less than 1500 grams at birth (Rogers et al. 2000). The study
area comprised the 25 contiguous counties in Georgia Health Care District 9
(GHCD9) (Figure 4.1). Cases were identified from all live-born, singleton infants
born between April 1, 1986 and March 30, 1988. Control selection for this study
was based on a pool of potential control subjects derived from a 3% random sample
of all live-born infants weighing more than 2499 grams at birth and meeting the
same residency and time frame requirements as the case subjects. The addresses
of the birth mothers were geocoded to produce 770 georeferenced point locations,
230 of these corresponding to the locations of the VLBW cases, and the remaining
550 corresponding to the controls (Figure 9.22).

One of the hypotheses of the study was that pollution from industrial emissions
adversely affected birth weights during this period. Emissions data for 1986–1988
on 32 industrial facilities within GHCD9 were obtained from the Georgia Envi-
ronmental Protection Division (GAEPD) of the Georgia Department of Natural

FIG. 9.22 Cases of very low birth weight and controls in Georgia Health Care District 9. Case
locations are indicted by filled circles; control locations, by open circles.
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FIG. 9.23 Locations of industrial emissions facilities in GHCD9. The projection used with the map
boundary file does not correspond exactly to that used to georeference the facilities, so some locations
appear outside the boundary.

Resources (Rogers et al. 2000). These industries produce chemicals, plastics, fer-
tilizers, asphalt, wood, paper, and gypsum and account for almost 95% of the
approximately 45,000 tons of total suspended particulate (TSP) emissions in the
area per year. The locations of these industrial facilities are shown in Figure 9.23.
For each facility, the average annual TSP concentration (in tons) was recorded, and
for illustration here, we assume that the emission concentration at each location is
proportional to the ground-level concentration. Since particulate matter less than
10µm in diameter, PM10, is often assumed to have the greatest potential impact
on human health and accounts for approximately 55% of the TSP concentration
(Dockery and Pope 1994), we converted the ground-level TSP concentrations to
PM10 concentrations and used the PM10 concentrations (in µg/m3) for our analysis.

In this study, our health outcome of interest, VLBW, is recorded at the resi-
dences of the study participants (Figure 9.22), and our exposure of interest, PM10,
is measured at the emissions facilities located throughout the region (Figure 9.23).
The two sets of locations do not coincide. How can we assess the effect of PM10
exposure on the risk of a VLBW baby?

There are several possible answers to this question. One approach is to use a
focused test where we consider the exposure locations to be focuses of potentially
increased relative risk (see Sections 6.2 and 6.7; Cuzick and Edwards 1990; Dig-
gle 1990; Lawson and Waller 1996; Diggle et al. 2000; Lawson 2001). Another



402 LINKING SPATIAL EXPOSURE DATA TO HEALTH EVENTS

approach is to create a variable that measures the distance from each residence
to the nearest emissions facility and then use this variable as a covariate in logis-
tic regression. We used this approach to study the impact of waste exposure on
the risk for leukemia. Both of these are feasible approaches, although they would
not explicitly use the amount of PM10 measured at each location (at least without
modification). Another approach, and one that we consider in some detail here, is
to use kriging (Chapter 8) to predict the exposure concentration at each residence
and then use logistic regression with the estimated exposure as a covariate.

The PM10 exposure values range from 1 to 5895 µg/m3, with most values below
2000 µg/m3. Thus, the distribution of PM10 values is very skewed (see Figure 9.24).
In such cases (see Section 8.3.2), lognormal kriging may result in better predictions
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FIG. 9.24 Histogram of PM10 values.
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FIG. 9.25 Histogram of log(PM10) values.
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FIG. 9.26 Empirical semivariogram of log(PM10) values. The distances are in meters.

than ordinary kriging, so we should analyze the logarithm of the PM10 values. The
distribution of this transformed variable is shown in Figure 9.25.

Using these transformed values, we estimated the empirical semivariogram using
the methods described in Section 8.2.3 (see Figure 9.26). There is obviously a
large nugget effect, and we do not know if this is due to measurement error,
lack of information at small distances, or the nature of the spatial variation in the
emissions data. We used weighted least squares (Section 8.2.4) to fit a spherical
semivariogram model [equation (8.5)] to this empirical semivariogram, and the
model fit is shown in Figure 9.27.
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FIG. 9.27 Fit of the spherical semivariogram model to the empirical semivariogram of the log(PM10)
values. The estimated parameters are c0 = 1.50, ce = 0.56, and ae = 53, 385.57.
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FIG. 9.28 Predicted log(PM10) concentrations in GHCD9 using filtered ordinary kriging.

We used this fitted semivariogram model and filtered ordinary kriging (assuming
the nugget effect was 50% measurement error and 50% spatial variation at distances
smaller than the smallest distance lag; see Section 8.3.2) to predict the log(PM10)
concentrations at the residences of the study participants (the locations shown in
Figure 9.22). A contour map of the predicted log(PM10) concentrations is shown
in Figure 9.28.

Now that we have a predicted log(PM10) concentration at each of the case and
control locations, we can use logistic regression to infer the effect of the predicted
log(PM10) concentrations on the risk of VLBW. We first fit a traditional logistic
regression model (cf. Section 2.6.2) to the case and control data. Our outcome
variable is

Y(s) =
{

1 if location s is a case

0 if location s is a control,

and we assume that this variable has a Bernoulli distribution with the probability of
a VLBW baby equal to π . We use the logit link function to relate this probability
to the log(PM10) concentrations. Following Rogers et al. (2000), we partitioned
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the predicted log(PM10) concentrations into four categories for ease of interpreta-
tion from logistic regression. The categories were defined based on the distribution
of the predicted log(PM10) concentrations at only the control locations. Predicted
log(PM10) concentrations above the 95th percentile of those at the control loca-
tions defined a high exposure group (>6.51µg/m3). A medium exposure group was
delineated by predicted log(PM10) concentrations between the 75th and 95th per-
centiles of the control concentration distribution (between 6.22 and 6.51 µg/m3),
and a low exposure group was similarly defined using the 50th–75th percentiles
(between 5.79 and 6.22 µg/m3). The reference baseline category for an unexposed
group was taken to be any predicted log(PM10) concentration less than the 50th per-
centile of the predicted exposures at the control locations (i.e., <5.79µg/m3). Based
on these categories for the predicted log(PM10) concentrations, logistic regression
was used to estimate the probability of being a case rather than a control as a
function of the exposure categories. Thus, our regression model is

log[π/(1 − π)] = β0 + β1x1(s) + β2x2(s) + β3x3(s) + β4x4(s), (9.68)

where x1(s) is an indicator variable taking the value of 1 if the predicted log(PM10)
concentration at location s is a high exposure, x2(s) is an indicator variable taking
the value of 1 if the predicted log(PM10) concentration at location s is a medium
exposure, and x3(s) and x4(s) are defined similarly, with x4(s) indicating the
baseline (no exposure) group, as defined above. The results are summarized in
Table 9.11. From this table we can see that the risk of VLBW (as measured by
the odds ratio) increases as the predicted log(PM10) concentrations increase. At the
highest levels of exposure, this risk is significantly greater than that of the baseline,
unexposed group.

To use the spatial generalized linear models described in this section, we need
to determine how best to model ρ(si − sj ) in equation (9.58) for a marginal spa-
tial GLM, or ρS(si − sj ), the spatial correlation in S(s) of equation (9.59), for a
conditional spatial GLMM model. To investigate this, we computed the empirical
semivariogram of the Pearson residuals, the raw residuals divided by the square
root of the variance function, from the logistic regression [cf. Section 7.4.3 and
McCullagh and Nelder (1989, p. 37)]. The resulting empirical semivariogram is
shown in Figure 9.29. There seem to be some small periodicities in the semivari-
ogram that may reflect the geographic distribution of the population. Even though

Table 9.11 Results of Logistic Regression of
Predicted log(PM10) Exposures on Case–Control
Status in GHCD9

Exposure 95% Confidence
Category Odds Ratio Limits

High 2.12 (1.14, 3.93)
Medium 1.79 (1.22, 2.64)
Low 1.09 (0.73, 1.63)
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FIG. 9.29 Empirical semivariogram of the case–control data in GHCD9.

the need for hole effect models rarely arises in practice, we considered both a
hole effect model and a pure nugget model for this empirical semivariogram. The
best-fitting model is the pure nugget model (a straight, horizontal line), indicating
the lack of any residual spatial autocorrelation. Thus, adjusting our analyses for
small-scale autocorrelation as we did with the earlier data break on lip cancer data
seems unnecessary here and we will base our remaining discussion on the use of
the traditional logistic regression model described above.

The results from the logistic regression (Table 9.11) are misleading, however,
since they are based on predicted exposure concentrations, and the uncertainty
associated with these predictions is not incorporated into the logistic regression.
If it were, the width of the confidence intervals associated with the odds ratios
would undoubtedly increase. We have one measure of the uncertainty in the pre-
dicted log(PM10) concentrations: the standard errors associated with the predicted
values obtained from filtered ordinary kriging (see Figure 9.30), but how can we
incorporate these standard errors into our logistic regression? It is difficult, if not
impossible, to derive the effect of this uncertainty analytically on the estimated
odds ratios and associated confidence intervals since the amount of uncertainty
varies from location to location. Thus, as we have done many times in previous
chapters, we turn to Monte Carlo simulation for a more tractable solution.

We touched briefly on geostatistical simulation in Section 8.4.5, and we use
these ideas here to generate a Monte Carlo distribution of odds ratios that reflects
the uncertainty in the exposure concentrations predicted. Although the details and
nuances associated with geostatistical simulation are beyond the scope of this book,
the basic idea is simple and we describe it below.

1. We first generate a realization of the exposure distribution at the case and
control locations. Since we assumed that the original emissions data were



GENERALIZED LINEAR MODELS 407

Standard Error Map
Predicted Log(PM10)

1.31−1.40

1.41−1.45

1.46−1.50

1.51−1.56

1.56−1.63

FIG. 9.30 Standard errors of predicted log(PM10) concentrations in GHCD9.

recorded with error, we use unconditional simulations rather than condi-
tional simulations, which would force each realization to pass through the
original log(PM10) values [cf. equation (8.34)]. Unconditional realizations
can be obtained using an equation similar to equation (8.34) but without
the complexity due to the conditioning. Specifically, for the case loca-
tions, we first generate a vector z1 of 230 realizations of an N(0,1) random
variable. We induce autocorrelation into this vector using LU decompo-
sition (Section 8.4.5) of �1(θ̂), the 230 × 230 variance–covariance matrix
of the unobserved log(PM10) measurements at the case locations with ele-
ments based on the spherical semivariogram (Figure 9.27) using θ̂ = (c0 =
1.50, ce = 0.56, ae = 53, 385.57)′ and the distances between the 230 resi-
dential case locations. Then the LU (or Cholesky) decomposition of �1(θ̂)

gives L1U1 = �1(θ̂), and L1z1 has variance–covariance matrix Var(L1z1) =
L1Var(z1)L

′
1 = L1L

′
1 = L1U1 = �1(θ̂). We assume that the exposure distri-

bution at the control locations has the same spatial variability as the exposure
distribution at the case locations, so we apply the same procedure for the
control locations and obtain L2z2. However, the elements of both L1z1 and
L2z2 have zero expectations (means) and we cannot assume that the mean
of the exposure distribution at the case locations is the same as the mean
of the exposure distribution at the control locations (if we did make this
assumption, we would be assuming that exposure has no effect on risk of
a VLBW baby). The mean of the predicted log(PM10) values for the cases
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is 5.70 and that for the controls is 5.52, so we will add these means to our
simulated vectors for the cases and controls. Thus, for the case locations,
our simulated vector is now P1 = 5.70 + L1z1, where 5.70 is a vector with
elements all equal to 5.70. Similarly, for the controls, our simulated vector
is now P2 = 5.52 + L2z2. To obtain a single realization at both the case and
control locations with the desired mean and variance structure, we combine
the two vectors into a single realization as P = (P′

1, P′
2)

′, a 780 × 1 vector of
autocorrelated values at both the case and control locations. If we repeated
this procedure many times (we will, but not yet), each realization Pi can
be used to make a plausible map of predicted log(PM10) concentrations.
The map produced by kriging (Figure 9.28) is an average of these simulated
surfaces.

2. For each realization Pi , we fit the logistic regression model described above
[equation (9.68)]. The result will be one estimated odds ratio for each real-
ization.

3. Repeat this procedure many times (e.g., 1000). Note that each �(θ̂) needs
to be decomposed only once.

The end result is a distribution of odds ratios for each exposure category that
reflects the uncertainty in the predicted log(PM10) measurements. This idea is illus-
trated in Figure 9.31, where the simulated log(PM10) surfaces are the realizations,
the logistic regression analysis plays the role of a transfer function, and the system
response is the odds ratio. We use the mean of the resulting distribution of odds
ratios as a point estimate and the 2.5th and 97.5th percentiles of this distribution as
an empirical or bootstrap confidence interval. The results of this spatial uncertainty
analysis applied to the log(PM10) and VLBW case–control data described above
are presented in Table 9.12. Although the trend of increasing risk with increasing
exposure level is still apparent and the estimated odds ratios are similar to those in
Table 9.11, the confidence intervals are much wider. Note that at the highest levels
of exposure, the risk of VLBW is no longer significantly greater than that of the
baseline, unexposed group.

Multiple
Realizations

Transfer
Function

Distribution of
System Response

0

1

x

F(x)

FIG. 9.31 Geostatistical simulation for uncertainty analysis.
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Table 9.12 Results of Logistic Regression of
Case–Control Indicators on log(PM10) Exposure
Categories Obtained Using Geostatistical
Simulation of log(PM10) Exposures in GHCD9

Exposure 95% Confidence
Category Odds Ratio Limits

High 2.08 (0.17, 8.99)
Medium 1.48 (0.38, 4.36)
Low 1.26 (0.49, 2.55)

There are other approaches that we could use to predict the log(PM10) con-
centrations at the residence locations instead of kriging as we have used here.
Rogers et al. (2000) used a deterministic atmospheric transport model to predict
ground-level exposures as a function of distance between exposure and residence
locations, windspeed, and emission stack heights. Regardless of the approach used,
it is important to adjust subsequent statistical analyses for the uncertainty in the
exposures predicted. Spatial uncertainty analysis, and geostatistical simulation in
particular, is a powerful method for making such adjustments.

9.5 BAYESIAN MODELS FOR DISEASE MAPPING

The preceding sections illustrate the structure and application of generalized linear
mixed models (GLMMs) as a means of modeling regional counts and rates. The
hierarchical structure of spatial GLMMs provides an intuitive structure for spa-
tial model building. We first define the probability structure of the data given the
observed covariate values and assuming that the observations are mutually indepen-
dent. Second, we relax the assumption of independence by inducing spatial corre-
lation through random effects representing unmeasured (or perhaps unmeasurable)
effects not otherwise included in our model. The model defined in equation (9.59)
incorporates all such effects as a spatially structured random intercept. Although
the addition of a random intercept is helpful conceptually, its inclusion often
complicates likelihood-based inference, resulting in the quasilikelihood and pseu-
dolikelihood approaches defined above. However, these approaches build from
distributional or functional assumptions particular to certain classes of GLMMs
(e.g., those with Gaussian random effects) and may not readily apply or be extended
to other hierarchically defined GLMMs. In contrast, developments in a very gen-
eral class of simulation-based algorithms for Bayesian inference allow us to fit very
complicated hierarchical models, including those with spatially correlated random
effects. Building on the hierarchical structure of GLMMs defined in Section 9.4.2,
the brief introduction to Bayesian statistics outlined in Section 4.4.3, and a very
brief overview of Markov chain Monte Carlo (MCMC) algorithms, we conclude
the chapter with a Bayesian formulation of GLMMs.
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Recall from Section 4.4.3 that in Bayesian statistics we build a probability model
linking the distribution of the data to model parameters, and we treat the model
parameters as random variables. Contrast this conceptual framework with the clas-
sical statistical approach of fixed but unknown model parameters. In a Bayesian
setting, we seek inference regarding the probability of unknown model parameters
taking on certain values (e.g., given the data and our probability model, what is
the probability that the mean is greater than zero?) rather than assessments of the
probability of estimates being close to the true (but still unknown) parameter values
(e.g., given an estimate of the mean and our probability model, how often would
we expect data under this model to generate sample means greater than zero?). The
differences in inferential style are sometimes subtle and generate much discussion
and debate. For our purposes, the most important notion is that of using the data
to define a probability distribution for each of the model parameters, then using
these distributions to draw inference.

9.5.1 Hierarchical Structure

More specifically, all Bayesian inference stems from the posterior distribution,
that is, the conditional distribution of the model parameters given the observed
data, denoted for general development by f (θ |Y), where θ denotes the vector
of model parameters, Y the data vector, and f (·) represents general notation for
any probability density (or mass) function. Using Bayes’ theorem, the posterior
distribution is proportional to the product of the likelihood function (the conditional
probability distribution of the data Y given the parameters θ), denoted f (Y|θ), and
the prior distribution of the parameters (the analyst-defined probability distribution
of parameters without input from the data), denoted f (θ):

f (θ |Y) ∝ f (Y|θ)f (θ), (9.69)

where the constant of proportionality,
∫

f (Y|θ)f (θ), ensures that the posterior dis-
tribution integrates to 1. [We note that our use of f (·) for the posterior, likelihood,
and prior densities does not mean that all have the same parametric or functional
form.] Carlin and Louis (2000) and Gelman et al. (2004) provide detailed introduc-
tions to Bayesian methods and their application in a wide variety of data analysis
settings.

Next, we expand the right-hand side of equation (9.69) in light of the GLMMs
introduced in Section 9.4.2. In this hierarchical setting we have three types of
model parameters:

• A vector of fixed effects β relating covariates to the expected outcome Y
• A vector of random effects ψ typically based on either a Gaussian random

field [S(s)] or a multivariate Gaussian distribution with spatial correlation
• A vector of parameters θψ defining the spatial correlations (variance–covari-

ance matrix) of the random effects
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The hierarchical structure of the model parameters yields a joint posterior
distribution

f (θψ, ψ, β|Y) ∝ f (Y|β, ψ)f (ψ |θψ)f (β)f (θψ). (9.70)

The steps between equations (9.69) and (9.70) include the split of the vector of all
model parameters [θ in equation (9.69)] into three components (β, ψ , and θψ ), and
the specification of the hierarchy of parameters, that is, defining the random effects
ψ as dependent on the covariance parameters θψ (i.e., using the prior distribution
f (ψ |θψ) rather than f (ψ)), and assuming that the covariance parameters and
the fixed effects are random and assigning prior distributions to them. Since the
covariance parameters θψ enter the model at a second level of the hierarchy, we
often refer to them as hyperparameters and assign a hyperprior distribution to them.
Finally, we assume statistical independence between the fixed-effects parameters
β and the hyperparameters θψ , yielding a product of prior distributions for the
various categories of model parameters.

As a brief aside and a point of semantics, the term fixed effects may seem a
bit odd, since a Bayesian analysis treats all model parameters as random variables
rather than fixed but unknown values. However, in the mixed-models context, we
define fixed effects as parameters pertaining to all study units (in our example, β),
and random effects as parameters that vary between study units and are assumed
to be drawn from some common (prior) distribution (in this example, ψ). This
distinction (every unit experiencing the same effect of a covariate vs. each unit
experiencing a unique effect drawn from some overall population distribution of
effects) remains a key component of mixed models regardless of the inferential
approach.

9.5.2 Estimation and Inference

So how does Bayesian, posterior inference differ from the likelihood (and pseudo-
likelihood) inference defined in Section 9.4.2? The key difference involves the prior
and hyperprior distributions f (β) and f (θψ), which are included in the Bayesian
approach but not in the likelihood approximations. To see this, consider the fol-
lowing. A classical development of GLMMs bases inference on the product of the
likelihood of the data with the random effects distribution: namely,

f (Y; β, ψ)f (ψ; θψ). (9.71)

[We note that traditional likelihood notation replaces the conditioning in equation
(9.70) with a semicolon to indicate the classical view of a likelihood as a function of
model parameters to be maximized over rather than a conditional probability distri-
bution per se.] Based on equations (9.70) and (9.71), both classical and Bayesian
inference proceed in similar ways [e.g., inference regarding the fixed effects β

results from integrating out (averaging over) the impact of the random effects
yielding a marginal likelihood in the classical sense, and a marginal posterior dis-
tribution in the Bayesian sense]. Theoretically, inferential differences between the
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two approaches depend on the impact of the prior and hyperprior distributions for
β and θψ , respectively. If these are broadly defined with wide variances, there will
be little difference between the approaches, although the Bayesian approach will
incorporate uncertainty in the hyperparameters [reflected in the hyperprior f (θψ)]
that is not included in the classical approach. In practice, implementation of the
classical GLMM and Bayesian approaches derives from different numerical approx-
imations and computational algorithms. We present the pseudolikelihood approach
for classical inference in Section 9.4.2, and we outline Bayesian computational
approaches below.

Building the Hierarchy To illustrate Bayesian inference on one of the most
widely applied spatial GLMMs, consider the model proposed by Clayton and
Kaldor (1987) and introduced in Sections 4.4.3 and the data break following 9.4.3.
Briefly, for each of N regions, we obtain the number of incident cases (Yi, i =
1, . . . , N ) and the number expected based on the population size and structure
within region i (Ei, i = 1, . . . , N ). We treat the Yi as random quantities and the
Ei as fixed values. Often, the Ei reflect age-standardized values as defined in
Section 2.3.

To allow for the possibility of region-specific risk factors in addition to those
defining each Ei , Clayton and Kaldor (1987) propose a set of region-specific rela-
tive risks ζi, i = 1, . . . , N , and define the first stage of a hierarchical model through
equation (4.12):

Yi |ζi
ind∼ Poisson(Eiζi). (9.72)

Note that E[Yi |ζi] �= Ei , since the ζi reflect an additional (multiplicative) risk
associated with region i not already accounted for in the calculation of Ei .

Recall from Sections 2.3.2 and 4.4.3 that the ratio of observed to expected
counts, Yi/Ei , corresponds to the local standardized mortality ratio (SMRi) and
represents the maximum likelihood estimate of the relative risk, ζi , experienced by
people residing in region i.

We place equation (9.72) in the structure of equation (9.59) through the use of
the log link (the canonical link for Poisson data; cf. Section 2.6.1), yielding

log(E[Yi |ζi]) = log(Ei) + log(ζi).

If we let log(ζi) = ψi , we have a GLMM with offset log(Ei) and a random intercept
ψi for each region i, i = 1, . . . , N . We can incorporate fixed and random effects
within the relative risk parameter if we include covariates and let

log(ζi) = x′
iβ + ψi (9.73)

for i = 1, . . . , N .
Thus, at this stage, our model is

Yi |β, ψi
ind∼ Poisson(Ei exp(x′

iβ + ψi)), (9.74)
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which corresponds to the first term in equation (9.70); that is, we have condi-
tionally independent observations with distributions defined by equation (9.74) and
parameters β and ψ (the vector of ψis).

The next step is to specify distributions for the parameters β and ψ . In our
GLMM analysis in the data break following Section 9.4.3, we assume that β is
fixed and not random, and we assume a multivariate Gaussian distribution for ψ .
We then (as noted in the preceding section) base inference on

f (Y; β, ψ) = f (Y; β, ψ)f (ψ; θψ),

where θψ represents parameters of overdispersion or spatial correlation. Both the
classical GLMM and Bayesian approaches require specification of the distribution
of ψ as a function of θψ . However, for the classical GLMM methods, the hierarchy
stops here and we iterate between estimates of β and θψ . A Bayesian hierarchical
model is not defined completely until we specify the prior distributions for β

and θψ .

Prior Distributions For the fixed effects β (which apply equally to all study
units), we typically define a noninformative prior such as a uniform or Gaussian
distribution with very wide prior variance, since the elements of β are typically
well estimated by the data. Noninformative priors result in posterior inference very
similar to maximum likelihood inference. In the case of a uniform prior distribution,
f (β) is proportional to a constant; hence the posterior distribution is proportional
to the likelihood. In this case, the mode of the posterior distribution corresponds to
the MLE. Note that for continuous parameters (potentially) taking values anywhere
in [−∞, ∞], the uniform prior distribution is an improper distribution (i.e., its
probability density function does not integrate to 1). However, when the likelihood
is sufficiently well defined, we do obtain a proper posterior distribution. This simple
example illustrates that proper posterior distributions are not always associated
with proper prior distributions and indicates the need to assess posterior propriety,
especially in complex modeling settings.

Bayesian inference differs from the methods described in previous sections
in how it incorporates the (spatial) distribution of the random effects ψi, i =
1, . . . , N . Before defining a spatially structured prior for ψ , we first consider
a simpler prior distribution inducing (nonspatial) overdispersion among the Yi ’s.
Suppose that

ψi
ind∼ N(0, vψ), i = 1, . . . , I, (9.75)

where vψ denotes a shared prior variance for the ψi (similar to that defined
in the method of moments empirical Bayes estimates of Section 4.4.3). With
equation (9.75), we assume (prior to collecting or examining the data) each ψi

is drawn from an underlying Gaussian distribution centered at zero. Under this
prior structure, the ψi do not depend on location i and are said to be exchange-
able. The effect of the prior distributions defined in equation (9.75) is to add excess
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(but not spatially structured) variation to the model in equation (9.73), and hence
to the model in equation (9.74).

Even though the prior distributions add spatially unstructured variation, the
variation does induce some structure in the model. Each ψi represents a value
sampled from the same underlying distribution, and the exchangeable prior distri-
bution induces similarity among the observations. In Section 4.4.3 we saw how we
can take advantage of this similarity and “borrow strength” across observations to
improve estimates of any single estimand. Specifically, we saw that the exchange-
able prior distribution defined in equation (9.75) results in posterior estimates of
the local relative risks based on weighted averages of the MLE of the local relative
risk, Yi/Ei , and the global relative risk defined across all regions, Y+/E+. The
weights assigned to the local and global values are functions of the prior variance
vψ and the variance associated with any particular local SMR. Conceptually, the
model smoothes more where local estimates are least stable, precisely where we
require more smoothing.

If we estimate the remaining model parameter vψ from the data, we obtain
empirical Bayes inference, as in Section 4.4.3, but data-based estimates of prior
parameters are not entirely in the spirit of Bayesian inference. For fully Bayes infer-
ence, we complete the hierarchy by defining a hyperprior distribution for vψ . At
higher levels of the hierarchy, we are typically less interested in introducing new
structure (particularly because it may not be altogether clear how such structure
cascades through the other levels of the hierarchy and eventually affects the pos-
terior distribution). In addition, we often require a proper hyperprior distribution
(i.e., based on a well-defined density function integrating to 1) to ensure a proper
posterior distribution. Therefore, we often choose a proper, conjugate prior for
vψ [i.e., a parametric family of prior distributions yielding a marginal posterior
distribution for vψ within the same parametric family as the prior; cf. Carlin and
Louis (2000, Section 2.2.2) for details]. In our case of a variance parameter for
a Gaussian distribution, the inverse gamma distribution (i.e., the reciprocal of vψ

follows a gamma distribution) provides the conjugate family.
Most applications complete the model at this point, assigning fixed values to

the two parameters of the inverse gamma hyperprior. Identifying noninformative
choices for these parameters can be tricky since the inverse gamma distribution is
defined only for positive values, and zero is a degenerate value. In practice, many
analysts assign values corresponding to a very small mean and very large variance
as a sort of noninformative hyperprior for vψ . However, Kelsall and Wakefield
(1999) [in a discussion of Best et al. (1999)] and Gelman et al. (2004, Appendix
C) note that even though this definition results in a long, flat upper tail for the prior
distribution, it also increases without bound for values very close to zero and may
be more informative than is often appreciated. Furthermore, Ghosh et al. (1999)
and Sun et al. (1999) define conditions on the inverse gamma parameters to ensure
a proper posterior. In practice, some experimentation to assess the sensitivity of
inferences to changes in the hyperprior parameters provides valuable insight into
the robustness of inference to the choice of these (hyper)parameters.
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Defining the prior distribution for ψ offers spatial modeling opportunities. We
want to express some sort of spatial pattern among the ψi’s, perhaps through a
parametric correlation model linking pairs ψi and ψj for j �= i. Also, we want to
allow the data to inform on the relative strength and extent (scale) of any correlation
through the likelihood, resulting in posterior inference for correlation parameters,
and the ψi’s themselves. We consider two classes of spatially structured prior
formulations below.

First, we can follow development in the Scottish lip cancer data break and con-
sider a joint multivariate Gaussian prior distribution for ψ with spatial covariance
matrix �ψ , that is,

ψ ∼ MV N(0, �ψ). (9.76)

In this data break we define the elements of �ψ through a parametric semivariogram
or correlogram model. A Bayesian hierarchical model is defined in the same way
except that we treat the autocorrelation parameters as random and specify prior
distributions for them. Diggle et al. (1998) illustrate a Bayesian application of
this approach using an isotropic exponential correlation function with parameters
governing the rate of decay with distance and controlling the overall smoothness
of the prediction. The rate of decay and smoothness parameters are then assigned
independent uniform priors.

As an alternative to the joint prior distribution defined in equation (9.76) and
as noted in Section 9.4.3, we could consider a conditionally specified prior spa-
tial structure for ψ similar to the conditional autoregressive models introduced in
Section 9.3.2. Clayton and Kaldor (1987) propose such conditionally autoregres-
sive priors (CAR priors) in an empirical Bayes setting, and Besag et al. (1991)
provide the fully Bayes implementation. In addition, Breslow and Clayton (1993)
apply CAR priors as random effects distributions within likelihood approximations
for GLMMs. The CAR priors see wide use in the area of disease mapping or
regional smoothing of rates (proportions) of rare events, as discussed in Chapter 4.
Clayton and Bernardinelli (1992), Mollié (1996), and Wakefield et al. (2000a) all
provide overviews of the application of hierarchical GLMMs with CAR priors to
the area of disease mapping.

Due to their widespread use, we consider the CAR disease mapping models in
more detail. First, we specify a subset of Gaussian CAR priors defining the prior
mean of each ψi as a weighted average of the other ψj , j �= i,

ψi |ψj �=i ∼ N

(∑
j �=i cijψj∑

j �=i cij

,
1

vCAR
∑

j �=i cij

)
, i = 1, . . . , N. (9.77)

Here, the cij ’s denote spatial dependence parameters defining which regions j are
neighbors to region i (and quantifying how “neighborly”), and vCAR denotes a
hyperparameter related to the conditional variance of ψi given the values of the
other elements of ψ . As with the CAR regression models in Section 9.3.2, we
set cii = 0 for all i. Typical applications consider adjacency-based weights where



416 LINKING SPATIAL EXPOSURE DATA TO HEALTH EVENTS

cij = 1 if region j is adjacent to region i, and cij = 0, otherwise. Other weighting
options also appear in the literature (e.g., Best et al. 1999) but are much less widely
applied.

For the CAR regression models in Section 9.3.2, we parameterized the covari-
ance matrix induced by the CAR structure, then estimated the covariance parameters
(rather than estimating the cij ’s themselves). In applications of Bayesian GLMMs,
we often assign fixed values to the cij ’s in equation (9.77) (e.g., based on adjacency
within the census geography), with only the hyperparameter vCAR controlling the
amount of spatial similarity. We explore reasons for this approach and the links
between the joint and conditionally specified prior distributions in Section 9.5.3.

Fitting Bayesian Models: Markov Chain Monte Carlo As noted above, the pri-
mary theoretical difference between Bayesian and the likelihood-based approaches
to GLMMs involves whether or not one incorporates (Bayesian) or omits (likeli-
hood) the prior distribution for fixed effects and the hyperprior distribution for ran-
dom effect covariance parameters. The two approaches also differ in the algorithms
used to fit the models. In Section 9.4.3 we outlined pseudolikelihood approaches
to fitting GLMMs under the classical approach. Although it might seem that the
inclusion of prior and hyperprior structures will only complicate calculations, in
fact, consideration of the posterior distribution allows application of a fairly general
family of simulation-based model-fitting techniques.

We present closed-form empirical Bayes posterior inference for nonspatial ran-
dom effects in Section 4.4.3. However, when considering spatial prior distributions,
analytic calculation of the resulting posterior distribution becomes difficult, due to
the dimension of the problem (we have N observations and N random effects in
addition to the fixed effects contained in the vector β) and the inclusion of the
spatial structure itself.

Such complications (high-dimensional, complex posterior distributions) ham-
pered the widespread application of Bayesian methods for many years. However,
during the 1990s, many statisticians recognized and expanded a class of simulation-
based Markov Chain Monte Carlo (MCMC) algorithms particularly suited to the
analysis of hierarchical models, including the spatial models defined here. In this
section we provide a brief introduction to the concepts underlying MCMC methods
and their connection to the hierarchical spatial GLMMs defined above. Gelfand
and Smith (1990), Agresti et al. (2000), Carlin and Louis (2000), and Gelman
et al. (2004) provide more detailed development, many examples, and associated
references.

A Markov chain is a sequence of random variables where the distribution of
the next value depends only on the present “state” or value. An example of a
Markov chain is the simple random walk, where at any point in time we either
move one step to the right or to the left with equal probability. Where we go next
depends only on where we are right now, not on where we were several steps
ago. Under certain conditions, if we “run” a Markov chain (i.e., we generate a
long sequence of observed values one at a time), the chain will converge to a
stationary distribution [i.e., after convergence, the probability of the chain being in
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any particular “state” (or taking any particular value) at any particular time remains
the same]. In other words, after convergence, any sequence of observations from
the Markov chain represents a sample from the stationary distribution. Note that
each (postconvergence) sequence represents a correlated sample, since each new
observation still depends on the preceding observation.

In a nutshell, MCMC methods construct (Monte Carlo) simulations generating
parameter values from Markov chains having stationary distributions identical (at
least theoretically) to the joint posterior distribution of interest. After these Markov
chains converge, the simulated values represent a (again, correlated) sample of
observations from the posterior distribution. We can often define an MCMC algo-
rithm even when the target posterior distribution is analytically intractable, allowing
us to fit complex, highly structured hierarchical models such as the spatial GLMMs
considered here.

For illustration of an MCMC algorithm, suppose that we have a model with
data vector Y and three parameters θ1, θ2, and θ3. One of the simplest MCMC
algorithms is a Gibbs sampler, based on the full conditional distributions

f (θ1|θ2, θ3, Y)

f (θ2|θ1, θ3, Y)

f (θ3|θ1, θ2, Y).

Next, suppose that we have the full conditional distributions and can simulate
values from each of the full conditional distributions and we start with values θ

(1)
1 ,

θ
(1)
2 , and θ

(1)
3 . Then we iterate through the full conditional distributions generating

the second value of each parameter from the following distributions:

sample θ
(2)
1 from f (θ1|θ(1)

2 , θ
(1)
3 , Y)

sample θ
(2)
2 from f (θ2|θ(2)

1 , θ
(1)
3 , Y)

sample θ
(2)
3 from f (θ3|θ(2)

1 , θ
(2)
2 , Y).

As we continue to update the values of θ sequentially, they will eventually become
indistinguishable from samples from the joint posterior distribution f (θ1, θ2, θ3|Y),
provided that such a stationary distribution exists (which is the case under fairly
mild conditions met by most well-defined models with proper posterior distribu-
tions; cf. Gelfand and Smith 1990).

Example. Gelman et al. (2004, pp. 288–289) provide a very simple example illus-
trating Gibbs sampling, which we repeat here to illustrate the basic idea. Suppose
that we have a single observation (Y1, Y2) which follows a bivariate Gaussian distri-
bution with unknown mean θ = (θ1, θ2), known variances Var(Y1) = Var(Y2) = 1,
and a known value for Cov(Y1, Y2) = ρ. With a uniform prior on θ , the joint pos-
terior distribution of θ is multivariate Gaussian with mean (Y1, Y2) and variance–
covariance matrix with Var(θ1|Y) = Var(θ1|Y) = 1 and Cov(θ1, θ2|Y) = ρ; that is,
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given values for Y1 and Y2,

[
θ1
θ2

]
∼ MV N

([
Y1
Y2

]
,

[
1 ρ

ρ 1

])
.

Standard results from multivariate statistics reveal the full conditional distribu-
tions as univariate Gaussian distributions

θ1|θ2, Y ∼ N(Y1 + ρ(θ2 − Y2), 1 − ρ2)

θ2|θ1, Y ∼ N(Y2 + ρ(θ1 − Y1), 1 − ρ2).

Since we know both the full joint posterior distribution and the full conditionals in
this simple example, we can check how well Gibbs sampling output matches the
known full posterior distribution.

To implement a Gibbs sampler, we generate a value from the full conditional
distribution of θ1 given the current value of θ2 and the data, then generate a value
of θ2 given the current value of θ1 and the data. We continue to alternate between
the full conditionals until we have a sufficient sample of values to estimate the
joint posterior density (e.g., using kernel estimates as we did for point patterns in
Chapter 5).

Figure 9.32 illustrates the example for ρ = 0.5 and Y = (0.2655, 0.2742). The
plot in the upper left-hand corner shows the values and the order of the first 10
updates of θ1 and θ2, and so includes 20 points (updating each parameter given
the current value of the other). The plot in the upper right-hand corner shows
the first 500 updates, revealing that all (but the starting value of (4,0) fall within
the elliptical region of the bivariate normal distribution specified. The histograms
on the bottom compare the marginal histograms of each parameter (the univariate
histograms of each of the parameter samples) to the known marginal Gaussian
density functions. Additional illustrative examples of Gibbs sampling appear in
Casella and George (1992) and in Gelman et al. (2004, Chapter 11).

Returning to our general description of MCMC algorithms, in some applications
we may find that deriving the full conditional distributions may not be possible,
or the full conditional distributions may not fall into convenient parametric distri-
butional families. Such cases require more advanced simulation methods typically
based on acceptance–rejection sampling, wherein we generate “candidate” values
under a more manageable distribution, then accept or reject the candidate value in
a manner such that the sample of accepted values follows the desired distribution
(cf. Gelman et al. 2004, Chapter 11).

Based on the description of a Gibbs sampler above, the conditional specification
of the CAR prior seems almost a “custom fit” to an MCMC algorithm. Indeed,
the Hammersley–Clifford theorem detailed in Besag (1974), which defines under
what conditions a set of (full) conditional distributions uniquely defines a valid
joint distribution, is one of the key results enabling the use of both MCMC and
CAR spatial models. However, we cannot directly implement a Gibbs sampler for
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FIG. 9.32 Example of Gibbs sampling for bivariate normal model. The plot on the upper left illustrates
the first 10 iterations, the plot on the upper right illustrates the first 500 iterations. The lower plots give
histograms of samples of θ1 and θ2, compared to the theoretical marginal density functions.

our GLMM since some full conditional distributions are not available in closed
form due to the non-CAR parameters (e.g., vCAR) in the model, and we require
acceptance–rejection-based sampling. This said, the conditional specification does
provide a (relatively) straightforward implementation of MCMC approaches to
sample from the joint posterior distribution of all model parameters.

Summaries of the postconvergence MCMC samples provide posterior inference
for model parameters. For instance, the sample mean of the (postconvergence) sam-
pled values for a particular model parameter provides an estimate of the marginal
posterior mean and a point estimate of the parameter itself. The interval defined
by the 2.5th and 97.5th quantiles of the (postconvergence) sampled values for a
model parameter provides a 95% interval estimate of the parameter. In the data
break following Section 9.4.4 we used a similar idea to provide a summary of a
distribution of odds ratios generated using geostatistical simulation and we called
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this interval a bootstrap confidence interval. In Bayesian inference, such an interval
is termed a credible set to distinguish it from the confidence interval of classical
statistics. Although similar in spirit, the interpretation of the two intervals is dif-
ferent. A 95% credible set defines an interval having a 0.95 posterior probability
of containing the parameter of interest (which is assumed to be a random variable
in Bayesian statistics). In contrast, a 95% confidence interval represents an interval
such that 95% of intervals constructed similarly from identically distributed and
independent data sets would contain the true parameter value (which is assumed
to be a fixed but unknown quantity in classical statistics).

The MCMC samples also provide posterior inference for functions of model
parameters. For instance, an MCMC implementation of the spatial GLMM with
Poisson likelihood and CAR priors provides samples from the posterior distribution
of model parameters contained in the vectors β and ψ . If we define β(s) and ψ (s)

as the set of simulated values at the sth (postconvergence) iteration of our MCMC
algorithm, then

ζ
(s)
i = exp

(
x′

iβ
(s) + ψ

(s)
i

)
defines the sth value in a Markov chain having the posterior distribution of ζi as
its stationary distribution. As with the sampled values of the model parameters
themselves, histograms, percentiles, and other summaries provide sampling-based
estimates of the posterior distribution for ζi for each region i.

Assessing convergence for MCMC algorithms is an active area of statistical
interest, particularly for models containing many parameters. Several diagnostics
exist, but none are foolproof (Cowles and Carlin 1996). As a result, MCMC algo-
rithms offer an approach to fitting highly complex parametric models but are by
no means “automatic” and should be used with care.

9.5.3 Interpretation and Use with Spatial Data

While the hierarchical spatial GLMM defined above contains sensible pieces,
they fit together to create a somewhat complicated inferential structure. Although
MCMC algorithms offer a means to fit such models, the models are certainly not
the most straightforward or basic of hierarchical models, and several features merit
further attention.

First, we elaborate on the relationship between the joint and conditional spec-
ifications of spatially structured priors. In the discussion of spatial autoregressive
models in Section 9.3, we give the joint distribution induced by a conditional
autoregression, parameterize the elements of the (induced) covariance matrix, and
then estimate these (covariance) parameters from the data. As noted briefly above,
most Bayesian implementations of spatial GLMMs based on conditionally speci-
fied CAR priors define a (seemingly sensible) set of spatial dependence parameters,
{cij }, treat these as fixed values, then derive the resulting posterior distributions via
MCMC algorithms. However, the connection between the user-defined cij ’s and
the resulting (prior or posterior) spatial covariance structure of ψ , although theo-
retically sound, is not altogether transparent. For instance, the connection rarely,
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if ever, provides a closed-form, functional relationship between the spatial depen-
dence parameters {cij } and the elements of the covariance matrix �ψ for the joint
distribution of ψ , as we illustrate below.

Besag and Kooperberg (1995) explore the connection between the autoregressive
spatial dependence parameters and the spatial covariance matrix in detail, and
we highlight several key points here. First, if ψ follows a multivariate Gaussian
distribution with covariance �ψ , then the density, f (ψ), follows

f (ψ) ∝ exp

(
−1

2
ψ ′�−1

ψ ψ

)
. (9.78)

Standard multivariate theory defines the associated conditional distributions as

ψi |ψj �=i ∼ N


∑

j �=i

(−�−1
ψ,ij

�−1
ψ,ii

)
ψj ,

1

�−1
ψ,ii


 , (9.79)

where �−1
ψ,ij denotes the (i, j)th element of the �−1

ψ matrix. Note that the condi-
tional mean for ψi is a weighted sum of ψj , j �= i, and the conditional variance
is inversely proportional to the diagonal of the inverse of �ψ . Reversing direction
and going from a set of user-specified conditional Gaussian distributions to the
associated joint distribution is a bit more involved, requiring some constraints on
the weights defining the conditional mean and variance to ensure, first, a Gaussian
joint distribution, and second, a symmetric and valid covariance matrix �ψ (cf.
Besag 1974; Besag and Kooperberg 1995; Arnold et al. 1999).

Note that both the conditional mean and the conditional variance in equation
(9.79) depend on elements of the inverse of the covariance matrix �ψ . As a result,
any MCMC algorithm applied to the joint specification based on updating single
elements (or any subset) of ψ based on a full conditional distribution will involve
matrix inversion, and we must reinvert whenever we update covariance parameters.
This feature suggests that the CAR prior formulation may be more computation-
ally efficient than the joint formulation, since the CAR priors (effectively) limit
modeling to the elements of �−1

ψ , rather than �ψ , thereby avoiding the potentially
costly inversion step.

The preceding paragraph suggests that working directly with the spatial depen-
dence parameters (cij s) rather than the elements of �ψ has practical advantages for
spatial GLMMs, particularly for MCMC implementation. However, much of this
book aims to develop models (and intuition) for elements of �ψ rather than for ele-
ments of �−1

ψ , that is, models of spatial covariance (and correlation), not models
of spatial dependence parameters. Also, as noted in Section 9.3.1, the relation-
ship between the dependence parameters (autoregressive weights) and the resulting
covariances may not always be intuitive. How, then, do we develop sensible struc-
tures for the cij ’s within CAR priors?
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To address this issue, we first link the spatial dependence parameters in equation
(9.77) with their counterparts in equation (9.79). Doing this, we find that

cij∑
j cij

=
−�−1

ψ,ij

�−1
ψ,ii

and
vCAR

∑
j

cij = �−1
ψ,ii .

Therefore, cij = �−1
ψ,ij /vCAR, and symmetry of �ψ requires symmetry of the spatial

dependence parameters, cij , in the collection of CAR priors defined by equa-
tion (9.77).

By limiting attention to CAR priors with symmetric spatial dependence parame-
ters, we restrict attention to a subset of the full class of valid conditionally specified
CAR prior distributions, since in general, the weights defining the conditional mean
need not be symmetric themselves as long as the diagonal elements of �−1

ψ com-
pensate appropriately via

(−�−1
ψ,ij

�−1
ψ,ii

)
�−1

ψ,ii =
(−�−1

ψ,ji

�−1
ψ,jj

)
�−1

ψ,jj . (9.80)

[Although equation (9.80) may seem trivial, recall that in practice we define the

additive weights
(
−�−1

ψ,ij /�−1
ψ,ii

)
and conditional variances 1/

(
�−1

ψ,ii

)
without

regard to the specific nondiagonal elements of �−1
ψ , so verification is impor-

tant for any proposed conditional structure.] The class of CAR priors defined by
equation (9.77) (with associated symmetric cij ’s) includes the widely applied adja-
cency weights (cij = 1 when regions i and j share a boundary, cij = 0 otherwise),
and (symmetric) distance-decay weights such as those considered by Best et al.
(1999), and we continue to limit attention to this subset of CAR priors here, for
simplicity and to raise some practical issues associated with these particular prior
distributions.

Using results in Besag (1974), we find that the set of CAR priors defined in
equation (9.77) uniquely defines a corresponding multivariate normal joint distri-
bution

ψ ∼ MV N(0, �ψ), (9.81)

where �−1
ψ,ii =∑j cij and �−1

ψ,ij = −cij . However, for symmetric cij ’s, the sum of

any row of the matrix �−1
ψ is zero, indicating that �−1

ψ is singular (noninvertible),
and the corresponding covariance matrix �ψ in equation (9.81) is not well defined.
This holds for any symmetric set of spatial dependence parameters cij (including
the adjacency-based cij ’s appearing in many applications). Surprisingly enough,
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this does not preclude application of the model with such weight matrices (cf.
Besag and Kooperberg 1995), but it does prevent easy transition from the spatial
dependence parameters to spatial covariances.

A further complication arises by noting that the full class of CAR priors [includ-
ing those defined by equation (9.77)] falls into the class of pairwise difference prior
distributions defined by Besag et al. (1995). Such distributions define improper
priors since they only define contrasts (differences) between pairs of values ψi −
ψj , j �= i. Besag et al. (1995) note that the only source of impropriety for such
pairwise difference prior distributions lies in their inability to identify an overall
mean value for the elements of ψ , since such distributions define the value of each
ψi relative to the values of the others. In this case, any likelihood function based
on data allowing estimation of an overall mean also allows the class of improper
pairwise difference priors to generate proper posterior distributions. In practice, we
assure this by adding the constraint

N∑
i=1

ψi = 0.

This provides a sensible restriction since we do not want the random effects to add
to the overall mean value of the outcome, but instead we want the ψi to reflect
only the spatial similarity between residual values at nearby locations.

As a result of the preceding development, we have a set of conditional prior
distributions defined by a sensible set of spatial dependence parameters that do
not translate directly into a closed-form model of spatial correlation or covari-
ance. We also have a joint specification that allows direct parametric modeling of
the covariance function but is computationally intensive to fit (due to the matrix
inversion component). Both induce spatial similarity between observations by bor-
rowing strength from neighboring values. However, the conditionally specified
model is much more attractive for practical MCMC implementation. At present,
computational demands often win out over direct parameterization of the covari-
ance structure and the literature contains many more examples of CAR priors than
the multivariate normal formulation.

DATA BREAK: New York Leukemia Data (cont.) To illustrate Bayesian
disease mapping models, we turn again to the New York leukemia data set. Our
previous modeling efforts revolved around linear models with residual correlation.
Meeting the standard assumptions for linear regression required transformations of
the outcome and covariates of interest. We now turn toward a hierarchical Poisson
regression analysis, very similar to that used in the analysis of the Scotland lip
cancer data in Section 9.4. The Poisson model allows us to treat the counts as
outcomes without the awkward transformations we utilized earlier in the chapter. In
addition, we use similar covariates to those above, but again without transformation.

More specifically, we observe census tract counts Y1, . . . , Y281 modeled as
conditionally independent Poisson random variables with mean

Yi |ζi
ind∼ Poisson(Eiζi)
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and
log(ζi) = x′

iβ + ψi,

where
Ei = ni(Y+/n+) = ni(592/1, 057, 673),

ni denotes the population size of the ith tract, and ψi, i = 1, . . . , 281, denotes
tract-specific random effects. We consider three tract-specific covariates: the per-
cent of residents aged greater than 65 years, the percent of residents who own
their own home, and a surrogate for exposure to the 11 inactive hazardous waste
sites reporting TCE. For illustration we use the natural logarithm of the inverse
distance between each tract and the nearest waste site, recalling the precautions in
interpretation associated with exposure surrogates noted in the data break following
Section 7.6.5.

For the next stage of model specification, we assume uniform prior distributions
for the fixed-effect parameters (β), and consider three different prior specifications
for the tract-specific random effects in ψ . First, we consider the exchangeable (non-
spatial) prior distribution defined in equation (9.75). Next, we assign the spatially
structured conditionally autoregressive (CAR) prior defined in equation (9.77).
Finally, we consider a model introduced by Besag et al. (1991) that includes a
pair of random effects for each tract, one assigned an exchangeable prior, the other
assigned a CAR prior. Including both random effects clearly overparameterizes
the model (two random intercepts for each observation). The likelihood will only
identify the sum of the two parameters for each tract, although the prior distribu-
tions allows posterior identifiability (see Besag et al. 1995; Carlin and Louis 2000,
p. 263).

To complete the model specification, we assign conjugate inverse-gamma prior
distributions to the variance parameters associated with the exchangeable and/or
CAR priors. More specifically, we follow discussions in Gelman et al. (2004,
Appendix C) and a specific suggestion in Kelsall and Wakefield (1999) and define
the hyperpriors

1

vψ

∼ gamma(0.5, 0.0005)

and
1

vCAR
∼ gamma(0.5, 0.0005).

We utilize these particular hyperprior distributions primarily for illustration rather
than advocate them as any sort of optimal choice. In fact, for the model containing
both exchangeable and CAR random effects, the choice is technically not particu-
larly “fair” (in the sense of providing equal prior emphasis on the nonspatial and
spatial random effects), due to the marginal nature of the exchangeable effects and
the conditional nature of the CAR effects (cf. Bernardinelli et al. 1995b; Best et al.
1999; Carlin and Louis 2000, pp. 263–264).
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FIG. 9.33 Trace plots of the first 10,000 Markov Chain Monte Carlo (MCMC) updates for the inter-
cept, age effect, exposure effect, and home ownership effect for the hierarchical Poisson regression
model with exchangeable random effects.

To fit the model, we implement an MCMC approach using 20,000 updates of
each model parameter. Figure 9.33 illustrates a trace of the first 10,000 updates
of the fixed effects in β = (β0, βage, βhome, βexposure)

′. For each parameter, we
observe the algorithm move away from the (intentionally distant) starting value
and then generate values “wiggling” around within a consistent range of values
representing the posterior distribution of each model parameter. Trace plots for the
fixed effects based on the CAR and the composite model are similar. Although
we do not show any formal diagnostics of convergence, the plots strongly suggest
that this is the case. We base inference on iterations 5001 to 20,000 (we do not
show the second 10,000 iterations in Figure 9.33), noting that the Markov nature
of MCMC algorithms induces correlation within the sequence of simulated values
for each parameter so that we are not basing inference on 15,000 independent
observations, but rather, on a more modest (but still large) effective sample size
for each parameter.

Table 9.13 provides the estimated posterior median and associated 95% credible
set for each of the fixed effects and for all three models. In addition, Figure 9.34
provides kernel estimates of the corresponding posterior densities. We note that
the particular choice of prior (spatial or not) makes relatively little difference in
inference. From the results in Table 9.13, we note a strong age effect (as expected)
and a suggestive exposure effect (the posterior density of βexposure primarily covers
positive values). In addition, we note that homeownership also has a suggestive
negative effect (i.e., the lower the proportion of homeowners in a tract, the higher
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Table 9.13 Markov Chain Monte Carlo Results
for Hierarchical Poisson Regression of the New
York Leukemia Data for Each of Three Modelsa

Posterior 95% Credible
Priors Median Set

Intercept (β0)

Exchangeable 0.034 (−0.335, 0.401)
CAR 0.048 (−0.355, 0.408)
Both 0.049 (−0.368, 0.414)

% > 65

Exchangeable 4.034 (2.759, 5.300)
CAR 3.984 (2.736, 5.330)
Both 3.985 (2.708, 5.293)

Exposure

Exchangeable 0.153 (0.085, 0.223)
CAR 0.152 (0.066, 0.226)
Both 0.152 (0.069, 0.228)

% Own Home

Exchangeable −0.372 (−0.783, 0.037)
CAR −0.367 (−0.758, 0.049)
Both −0.379 (−0.765, 0.072)

aModels are identical except for the prior distributions
assigned to the random effects. Posterior medians and
95% credible sets are based on 15,000 (postconvergence)
iterations.

the incidence of leukemia). While the 95% credible set in Table 9.13 offers one
summary, we may also query the simulated values directly and find the proportion
of simulated values of βhome below zero in iterations 5001 and 20,000 yielding
estimates of 0.034, 0.036, and 0.047 for the posterior probability Pr(βhome < 0|Y)

from the models with exchangeable, CAR, and both types of random effects, respec-
tively. These results are remarkably consistent with the results from weighted linear
regression given in Tables 9.3, 9.5, 9.8, and 9.9.

In addition to inference for the fixed effects, we may also use the MCMC samples
to explore patterns in the local standardized mortality/morbidity ratios (SMRs) which
incorporate fixed and random effects to provide insight into differences between the
modeled expected values and the Ei values (that do not adjust for covariate effects
or regional differences). More specifically, we consider inference for

SMRi = 100 × Ei exp(x′
iβ + ψi)

Ei

= 100 × exp(x′
iβ + ψi),
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FIG. 9.34 Kernel estimates of the posterior density of the fixed effects in a hierarchical Poisson
regression of the New York leukemia data. The three densities correspond to exchangeable (solid line)
random effects, conditionally autoregressive (CAR) random effects (dashed line), and both types of
random effects (dotted line).

where we multiply by 100 to put the local SMRs on their traditional scale, where
SMRi = 100 indicates the same number observed (or expected under the model,
in our case) as expected (as defined by the Ei). The local SMRs are functions of
the model parameters. In a likelihood-based setting, obtaining inference for such a
function of parameters would require extended calculations or approximations such
as the delta method. In our MCMC-based Bayesian analysis, calculating

SMR(s)
i = 100 × exp(x′

iβ
(s) + ψ

(s)
i )

for each iteration s of the (postconvergence) MCMC samples [where the superscript
(s) denotes the sth simulated value for each parameter], we obtain a sample from
the posterior distribution of each of the 281 local SMRs.

Figure 9.35 provides a map of the posterior median value of SMRi for each
tract. We note concentrations of high SMRs in and around the cities and towns of
Syracuse (north), Binghamton (south), Cortland (center), Auburn (northwest), and
Ithaca (west), perhaps suggesting a need for including an urban–rural effect or some
other covariate correlating with occupation that differentiates between urban and
rural locations (cf. Ahrens et al. 2001). We note that Figures 9.11 and 9.15 from
weighted linear regression showed similar patterns, as did Figure 4.21, based on
Poisson probability mapping. It is interesting to note that the three tracts identified
as possible outliers in our earlier analyses (identified in Figure 9.8) also exhibit
large local SMRs. This provides a nice validation of the approach; we know that
these tracts exhibit odd behavior, due primarily to low local population sizes.
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FIG. 9.35 Map of posterior median local standardized mortality/morbidity ratios (SMRs), based on a
hierarchical Poisson regression with conditionally autoregressive (CAR) random effects.

Finally, paralleling our calculation of the posterior probability of βhome exceed-
ing 0, we can also calculate local posterior probabilities of exceeding particular
SMR values. For example, Figure 9.36 maps the local posterior probabilities

Pr(SMRi > 150|Y),

(top map) and
Pr(SMRi > 200|Y),

estimated as the fraction of MCMC samples exceeding 150 and 200, respectively.
These values correspond to model predictions of half again or twice as many cases
as expected based on the overall crude proportion Y+/n+. As with the map of the
local SMRs themselves, we find the tracts with elevated probability of exceeding
the cutoff values occurring in the cities and towns of the study area, particularly
within Syracuse and Binghamton.

In conclusion, our analyses of the New York leukemia throughout the book
provide some suggestion of spatial patterns in the observed counts and proportions,
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Probability SMR > 200

FIG. 9.36 Maps of the posterior probability of the local SMR exceeding 150 (top map and insets) or
200 (bottom map and insets). The insets provide local detail within the cities of Syracuse (north) and
Binghamton (south).

but also suggest that many of the spatial patterns are driven by spatially varying
covariates (some of which we adjust for in this chapter), a conclusion also proposed
by Ahrens et al. (2001). Each analysis addresses different aspects of the data and
provides answers to a slightly different set of questions. The underlying “true”
picture remains somewhat elusive, but each analysis reveals additional avenues
for further investigation. This is often the case in the spatial analysis of public
health data, and this chapter in particular illustrates the wide variety of tools and
approaches that apply to the myriad of questions surrounding a “simple” map of
disease rates.

9.6 PARTING THOUGHTS

We conclude our tour of spatial statistics by noting that we are as much at a
beginning point as an end. To stretch a geographic metaphor perhaps a bit too
thin, the map of spatial statistics reveals a wide world of applications with the



430 LINKING SPATIAL EXPOSURE DATA TO HEALTH EVENTS

notion of “space” ranging from subatomic particles to the scale of the known
universe, crossed by trails of breathtakingly beautiful mathematics linking related
applications but sometimes bypassing particular areas of substantive interest. These
trails are still expanding and much territory remains to be uncharted (“here there
be dragons” in the parlance of the classical cartographers). Our goal has been to
send postcards from some scenic areas, link them together around certain spatial
questions in public health, and provide an invitation to readers to join in our
exploration of the side roads, forests, seas, and deserts. We anticipate many exciting
reports from the frontier in the years to come.

9.7 ADDITIONAL TOPICS AND FURTHER READING

The literature on statistical modeling for spatial data is wide ranging and diverse.
In the sections above, we highlight approaches that we find most useful for the
analysis of public health data. However, we acknowledge that we provide only an
introduction to many of these approaches and omit others entirely. In this section
we provide a very brief description of a few more specific methods and an overview
of the current research in statistical modeling of spatial data.

9.7.1 General References

Readers interested in learning more about spatial statistical modeling can find
descriptions and applications in the following references (roughly in the order of
increasing mathematical complexity): Bailey and Gatrell (1995), Griffith and Layne
(1999), Upton and Fingleton (1985), Haining (1990), Anselin (1988), Lawson
(2001), Cressie (1993), Ripley (1981), Banerjee et al. (2003), and Ripley (1988).
Each reference has its own special emphasis and tone, and there is much to be
learned from each. We have found that some of the best investments in learning
about spatial modeling are time, a computer, and a bookcase.

In addition to these general references, we provide brief descriptions and relevant
introductory references for several more detailed approaches branching off the basic
development in the sections above.

9.7.2 Restricted Maximum Likelihood Estimation

As discussed briefly in Section 9.1.1, restricted maximum likelihood (REML) pro-
vides an alternative to maximum likelihood estimation (and associated inference)
of random effects parameters (θ ). There is a large literature on the use of ML and
REML for spatial modeling, and this is an area of active research in statistics. The
basic theory is fairly straightforward, but the complexities encountered in many
practical applications lead to issues and modifications falling beyond our scope
here. Mardia and Marshall (1984) provide the basic theory of ML estimation in a
spatial setting. Littell et al. (1996) give a nice overview of ML and REML estima-
tion techniques in linear models and some good examples of their use in spatial
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modeling. Cressie and Lahiri (1996) provide the distributional properties of REML
estimators, and Kenward and Roger (1999) provide an overview of related recent
theoretical developments.

9.7.3 Residual Analysis with Spatially Correlated Error Terms

Cliff and Ord (1973, 1981), Anselin (1988), Anselin and Rey (1991), and Tiefels-
dorf (2000) all describe approaches for exploring spatial autocorrelation in OLS
residuals. In the presence of spatially correlated error terms, residual analysis
becomes much more complicated. As illustrated in the data breaks above, many
of the standard approaches are complicated by the inherent correlation of model
residuals, and this problem is further compounded by the spatial correlation already
included in fitting the model. Martin (1992) provides one of the earliest discussions
on leverage and other diagnostics for the linear regression model with correlated
error terms. His ideas were then applied to spatial autoregressive models by Hain-
ing (1994). Christensen et al. (1992) and Haslett (1998) extend the “leave one out”
ideas of the model diagnostics in ordinary least squares regression to the spatial
case based on best linear unbiased prediction.

Unfortunately, in moving from linear regression to GLMs and GLMMs, the pic-
ture becomes even more complicated. The current model diagnostics and methods
for residual analysis in the case of independent data are often not informative, and
with the exception of Jacqmin-Gadda et al. (1997) there has been little work on
model diagnostics for the spatial case. There is a need for more general results
regarding the properties and behavior of the residuals from the various spatial
models outlined above.

9.7.4 Two-Parameter Autoregressive Models

Suppose that we want to allow the spatial dependence to vary with direction. Recall
from Section 8.2.5 that this directional spatial dependence is called anisotropy.
One way to do this is to consider two spatial dependence parameters, one for each
direction. For example, if we consider a regular lattice of spatial locations and the
first nearest-neighbor structure in a SAR model, we could allow the strength of
spatial dependence in the east-west direction to be different from the strength of
spatial dependence in the north-south direction and specify that (Whittle 1954)

Y(u, v) = ρ1(Y (u + 1, v) + Y(u − 1, v)) + ρ2(Y (u, v + 1)

+ Y(u, v − 1)) + υ(u, v).

For (I − B) to be invertible, |ρ1| + |ρ2| < 0.5 (Haining 1990, p. 82). Alternatively,
Brandsma and Ketellapper (1979) use two spatial proximity matrices and two spa-
tial dependence parameters to model spatial migration patterns from two different
influences. Thus, in the autoregressive framework of equation (9.37), they take
B = ρ1W1 + ρ2W2. This can easily be extended to consider multiple influences by
using Bρ1W1 + · · · + ρkWk , provided that the parameters can be estimated reliably.
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Pace and LeSage (2002) consider a sequence of nested nearest-neighbor proxim-
ity matrices and use maximum likelihood to select the optimal nearest-neighbor
structure. Another approach is to parameterize W directly, so that W = W(θ). For
example, we could choose

wij =
{

d−α
ij , α > 0

0, otherwise

so that θ ≡ α, W(θ) ≡ W(α), the matrix of spatial dependence parameters is
B(α) = W(α), and we would then estimate α from the data. Whereas these exten-
sions have focused primarily on SAR models, the same ideas can be used with
CAR models. If we need an even more general spatial dependence structure, we
could consider the broader geostatistical framework described in Section 9.2, where
we drop the use of spatial proximity matrices and autoregression altogether and
model � directly.

Other than the research described above, very little work has been done on devel-
oping multiparameter autoregressive models for practical applications. Although it
is simple to conceive of a variety of parametric models for the spatial dependence
matrix (B in a SAR model and C in a CAR model), it is necessary to know the
theoretical constraints on the specified parameters, and sophisticated computing
algorithms may be needed to estimate them.

9.7.5 Non-Gaussian Spatial Autoregressive Models

With the simultaneous approach, there are few alternatives to transformation, pri-
marily because there are few alternatives to the multivariate Gaussian distribution
that allow a general variance–covariance matrix. In general, constructing a general
multivariate distribution with specified marginals is very difficult, and those distri-
butions that have been developed result in or require constraints on the correlation
parameters (see Johnson and Kotz 1969, Chapter 11) that make them unattractive
for spatial modeling.

With the conditional approach, in addition to providing the mathematical under-
pinnings for Gaussian conditional autoregressive models, Besag (1974) also des-
cribes non-Gaussian conditional autoregressive models in general. As we mention in
Section 9.3.2, the Hammersley–Clifford theorem provides the most general form for
a valid joint distribution that can be constructed from a set of specified conditional
distributions. This form is quite flexible for Gaussian conditional distributions, but
for other distributions, the most general form is much more restrictive, essentially
imposing more restrictions on the neighborhood structure than can be used. Thus,
Besag (1974) developed a class of models called auto models that allow only pair-
wise dependence between spatial locations and so satisfy the conditions imposed
by the Hammersley–Clifford theorem.

The models we describe at length in Section 9.3.2 are often referred to as auto-
Gaussian models. However, there are other auto models corresponding to other
distributions. In particular, the auto-logistic model finds application in many fields,
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including the analysis of plant patterns (Besag 1972; Gumpertz et al. 1997; Huf-
fer and Wu 1998). Besag (1974) also introduces an auto-Poisson model, primarily
as an example of the care required in developing conditionally specified models,
since the constraints on spatial similarity parameters coupled with the small (but
nonzero) probability of observing an infinite number of events result in a require-
ment of negative spatial autocorrelation. Some recent modifications allow positive
spatial correlations (Ferrándiz et al. 1995; Kaiser and Cressie 1997), and Kaiser
and Cressie (2000) provide additional tools for constructing Markov random fields
that allow multiway spatial dependence and a spatial beta process.

9.7.6 Classical/Bayesian GLMMs

For more details regarding comparisons and contrasts between the Bayesian and
classical developments, general discussions of Bayesian and classical issues appear
in Cox and Hinkley (1974), and particular comments regarding GLMMs and their
implementation appear in Breslow and Clayton (1993), Lee and Nelder (1996), and
Agresti et al. (2000).

9.7.7 Prediction with GLMs

There are two types of predictions that can be considered with a spatial GLMM.
The first is obviously the prediction of random effects. With the pseudolikelihood
approach in Section 9.4.3, prediction of random effects is done using equation
(9.66). We show in the data break following Section 9.4.3 how these can be used
to obtain fitted values and smoothed rates. In the Bayesian setting, prediction of
random effects is discussed in Zhang (2002).

However, in many mapping applications, we may also want to predict new
observations, just as we did with universal kriging in Section 9.2.3. In this case, for
a marginal GLM or with a GLMM using the pseudolikelihood approach in Section
9.4.3, prediction of new observations is very similar to kriging with the GLM mean
and variance structure (see Gotway and Stroup 1997; Gotway and Wolfinger 2003).
Gotway and Wolfinger (2003) also perform simulations comparing the predictions
from a conditionally specified GLMM to those from a marginal GLM. From a
Bayesian viewpoint, prediction of new observations in a spatial GLMM is described
in Diggle et al. (1998), Christensen and Waagepetersen (2002), and Gelman et al.
(2004).

9.7.8 Bayesian Hierarchical Models for Spatial Data

For readers interested in more details regarding Bayesian hierarchical spatial mod-
els, key developments appear in Besag (1974), Besag et al. (1991, 1995), Cressie
(1993), and Besag and Kooperberg (1995). Detailed descriptions and applications
appear in Clayton and Bernardinelli (1992), Mollié (1996), Best et al. (1999), Wake-
field et al. (2000a), and Banerjee et al. (2003).
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Some of the published extensions of the basic structure include spatiotempo-
ral models (Bernardinelli et al. 1995a; Waller et al. 1997; Knorr-Held and Besag
1998; Xia and Carlin 1998), and models for point process data (Wolpert and Ick-
stadt 1998). There has also been a great deal published recently regarding the
analysis of misaligned data, as mentioned in the case study following Section 9.4.4
(Mugglin et al. 1999, 2000, Best et al. 2000; Gotway and Young 2002). Finally,
recent studies allow the covariate effects in equation (9.73) to be random effects
and vary (spatially or not) from location to location. This is the concept underlying
geographically weighted regression as described in Fotheringham et al. (2002) and
illustrated in the Bayesian context by Congdon (2003, Chapter 7) and Gelfand et al.
(2003).

9.8 EXERCISES

9.1 Fit a fourth-order trend surface to the raccoon rabies data described in
Section 9.1.2. (The data are given in Table 9.14.) Use a variable selection
routine (e.g., stepwise, or maximizing R2) to create a response surface based
only on the most important terms of this model.

Table 9.14 Connecticut Raccoon Rabies Dataa

x y Month x y Month x y Month

103.02 68.71 37 46.42 28.44 18 118.57 88.25 41
63.44 76.51 18 25.32 91.6 24 47.89 35.93 18
71.1 86.21 19 52.84 35.69 28 20.55 30.59 7
35.41 60.04 14 73.53 80.64 15 97.2 73.99 32

118.71 50.69 34 68.67 22.61 17 37.02 11.93 9
22.75 47.47 3 57.11 64.9 17 21.28 42.25 12

136.23 76.23 40 55.69 73.44 16 27.7 94.77 21
131.83 67.06 38 59.54 84.58 26 122.2 76.69 36

60.68 46.33 23 94.12 35.09 32 89.49 23.9 16
105.41 50.27 41 46.1 99.03 28 107.88 66.1 32

26.24 83.3 18 104.63 75.55 30 79.26 56.69 28
16.12 34.81 3 13.16 0.37 10 95.04 31.28 22
44.68 26.83 28 77.56 41.33 32 73.8 92.47 27

100.77 43.8 29 92.2 50.64 32 82.66 73.53 31
63.94 24.63 25 113.94 31.65 35 86.83 88.88 32

125.5 88.16 41 28.35 18.26 8 99.49 92.12 33
88.21 97.52 27 98.99 28.07 27 30.04 11.01 7
64.89 70.32 29 121 57.98 46 88.8 65.91 26
33.99 83.16 24 65.64 93.66 19 0 0 6

138.2 54.4 48 130.73 30.09 36 75.64 28.99 18
88.25 42.06 27 58.99 34.68 26 127.93 75.82 39
77.2 73.85 32 56.69 99.17 18 47.34 72.61 21

101.05 63.02 32 15.87 70.45 11 144.03 52.38 41
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Table 9.14 (continued )

x y Month x y Month x y Month

86.92 32.57 21 112.52 59.77 46 131.46 39.68 46
131.41 56.46 27 35.96 70.73 18 104.35 34.03 40

80.91 29.49 19 90.22 75.13 20 114.63 75.96 32
95.64 60.18 28 68.3 49.49 18 42.47 48.58 17
75.27 47.06 21 79.58 50.91 33 48.44 16.19 18
34.26 28.9 13 121.23 41.97 47 35.41 65.68 21
47.75 44.03 20 69.35 62.79 18 11.1 9.72 7
13.12 44.49 6 51.79 82.66 16 59.03 24.08 26

124.08 29.17 46 19.04 55.73 11 73.94 65.28 28
29.81 34.91 9 36.92 97.1 21 63.9 31.42 19
28.94 101.14 19 63.94 33.16 20 142.93 42.66 41
17.75 4.59 7 125.45 51.28 36 108.34 26.56 45

101.28 24.26 28 49.58 21.83 19 41.56 38.16 26
140.13 67.7 37 63.9 63.8 20 50.27 62.93 16
133.89 84.49 40 85.91 56.1 30 132.19 47.61 37

54.35 45.36 19 143.16 88.57 16 21.15 24.54 3
11.33 25.46 1 79.12 62.2 24 28.07 51.42 15

111.19 44.22 41 18.26 97.79 18 125.41 67.06 49
44.58 31.05 13 17.48 83.99 18 41.65 22.84 10
12.48 52.2 8 66.46 98.02 23 96.19 98.02 33
87.2 81.14 12 33.21 42.06 17 62.29 56.42 28

126.64 59.26 49 107.43 97.61 35 6.97 3.35 7
147.06 68.44 39 141.05 32.84 49 41.28 14.54 11

77.06 97.93 17 44.91 62.43 13 142.38 97.15 38
103.02 85.96 38 42.38 81.6 17 35.64 19.82 10
119.63 98.39 38 95.36 81.46 36 146.05 54.22 40

67.98 41.05 20 24.5 71.19 16 26.79 62.06 12
50.27 49.86 19 43.3 58.12 18 71.79 73.57 18
55.64 21.19 18 95.27 24.86 33 22.25 16.33 7
24.13 7.71 9 79.4 66.65 24 111.28 85 37
16.38 14.77 3 44.26 90.45 25 118.02 67.79 38
78.8 84.81 27 79.63 90.45 29 54.35 56.14 18
49.36 29.68 21 35.92 52.15 15 130.36 96.33 37

ax and y denote the coordinates of each township’s centroid from the southwesternmost township
centroid, and “month” denotes the number of months until first appearance.

9.2 Fit a second-order trend surface to the raccoon rabies data. Calculate an
empirical semivariogram based on the residuals from your model. Are the
residuals spatially autocorrelated? Use iteratively reweighted least squares
or maximum likelihood to fit the same trend surface function with residual
spatial autocorrelation. How does the fit compare to the model assuming
independent errors?

9.3 Assess the adequacy of the transformation used in the New York leukemia data
break and the impact of excluding the three highest transformed incidence
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proportions on the analysis. The data are provided in Table 9.15. How does
excluding these potential outliers affect the residual spatial autocorrelation?
How does excluding these potential outliers affect the regression results and
the conclusions obtained from them? Is weighting still necessary?

Table 9.15 Covariate Data for the New York Leukemia Analysisa

x y Exposure % Own Home % Over 65

4.069 −67.353 0.237 0.328 0.147
4.639 −66.862 0.209 0.427 0.235
5.709 −66.978 0.171 0.338 0.138
7.614 −65.996 0.141 0.462 0.119
7.316 −67.318 0.158 0.192 0.142
8.559 −66.934 0.173 0.365 0.141
9.207 −67.179 0.191 0.666 0.231

10.180 −66.879 0.198 0.667 0.279
8.698 −68.307 0.215 0.459 0.172
7.405 −68.078 0.173 0.166 0.179
7.335 −68.351 0.176 0.065 0.344
6.644 −67.644 0.150 0.045 0.398
5.556 −67.778 0.175 0.121 0.225
5.403 −68.525 0.175 0.319 0.166
3.892 −68.166 0.241 0.693 0.194
4.320 −69.593 0.197 0.713 0.188
6.726 −69.763 0.180 0.523 0.165
8.341 −68.803 0.218 0.485 0.125
4.319 −40.067 0.036 0.745 0.124
5.888 −48.612 0.051 0.808 0.110

−3.922 −39.102 0.036 0.756 0.113
−3.473 −53.637 0.072 0.823 0.093
−4.243 −57.960 0.103 0.829 0.104
10.472 −59.754 0.084 0.840 0.102
10.429 −60.770 0.091 0.869 0.144

6.029 −60.332 0.108 0.748 0.121
9.294 −63.504 0.117 0.840 0.167

15.301 −57.990 0.071 0.846 0.107
28.533 −59.213 0.048 0.768 0.114
44.542 −71.661 0.032 0.514 0.143
26.200 −70.753 0.072 0.712 0.100
14.651 −70.153 0.329 0.697 0.111
13.633 −73.304 0.471 0.817 0.105

5.520 −71.256 0.155 0.867 0.100
6.220 −64.636 0.146 0.691 0.197
2.294 −63.134 0.211 0.877 0.122

−1.307 −65.936 0.584 0.803 0.130
−3.056 −67.421 0.698 0.488 0.171
−3.228 −66.656 0.629 0.834 0.196
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Table 9.15 (continued )

x y Exposure % Own Home % Over 65

−3.376 −66.134 0.535 0.668 0.152
−7.735 −68.314 0.300 0.644 0.147
−6.265 −66.089 0.42 0.809 0.085
−4.848 −67.158 1.611 0.558 0.185
−4.788 −67.943 2.314 0.218 0.134
−6.278 −68.079 0.538 0.350 0.162
−5.496 −68.645 0.699 0.384 0.156

3.106 −65.587 0.276 0.645 0.248
2.420 −66.551 0.379 0.243 0.166
2.739 −67.014 0.347 0.339 0.142
2.646 −67.673 0.354 0.696 0.247
1.476 −65.563 0.436 0.562 0.289
0.728 −69.439 0.415 0.593 0.109

−4.198 −69.329 0.588 0.815 0.157
−7.078 −71.146 0.229 0.830 0.127
−2.693 −75.291 0.127 0.880 0.091

−50.243 36.814 0.077 0.537 0.032
−48.713 54.252 0.033 0.759 0.091
−44.846 48.834 0.041 0.538 0.105
−51.984 50.333 0.038 0.684 0.103
−54.284 36.220 0.071 0.776 0.102
−48.719 35.411 0.089 0.799 0.127
−45.506 26.448 0.436 0.645 0.205
−44.249 23.500 0.395 0.832 0.166
−46.511 26.100 0.598 0.526 0.187
−47.855 24.276 0.791 0.299 0.208
−53.546 21.137 0.130 0.721 0.159
−46.274 24.648 2.548 0.535 0.155
−55.482 9.899 0.059 0.591 0.116
−45.278 11.980 0.080 0.691 0.127
−32.888 8.954 0.048 0.593 0.130
−30.870 −2.614 0.085 0.712 0.130
−41.620 −4.037 0.065 0.722 0.099
−51.202 −0.781 0.040 0.558 0.119

42.713 −2.720 0.030 0.665 0.140
21.226 −11.684 0.075 0.615 0.123
38.318 −20.559 0.031 0.449 0.161
38.701 −19.448 0.031 0.495 0.223
46.626 −14.208 0.026 0.710 0.150
37.769 −23.729 0.030 0.716 0.152
21.514 −28.348 0.039 0.640 0.138
32.135 −41.099 0.027 0.665 0.127
31.607 −49.284 0.034 0.670 0.132
1.862 −16.601 0.076 0.679 0.123

−10.903 −0.588 0.059 0.736 0.110
(continued overleaf )
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Table 9.15 (continued )

x y Exposure % Own Home % Over 65

−17.986 −1.508 0.072 0.713 0.106
−18.630 −12.635 0.362 0.639 0.107
−18.906 −11.309 0.246 0.438 0.152
−15.730 −12.060 0.214 0.278 0.200
−12.310 −10.786 0.123 0.672 0.179
−6.136 −23.354 0.066 0.624 0.102

−15.148 −16.950 0.238 0.455 0.133
−19.260 −13.129 0.444 0.607 0.081
−18.944 −22.815 0.134 0.757 0.103

26.365 41.438 0.020 0.459 0.065
27.552 40.655 0.020 0.533 0.357
26.373 41.236 0.020 0.734 0.136
18.846 45.413 0.019 0.687 0.117
18.898 41.544 0.021 0.568 0.155
7.169 48.289 0.018 0.775 0.098

10.795 38.083 0.023 0.847 0.092
8.497 38.279 0.023 0.748 0.111

10.823 24.177 0.033 0.562 0.147
11.161 23.461 0.034 0.791 0.119
23.025 31.970 0.025 0.767 0.088
24.096 19.087 0.035 0.551 0.097
16.640 8.843 0.061 0.574 0.118
36.296 13.316 0.030 0.472 0.086
39.356 14.481 0.028 0.684 0.153
53.509 10.264 0.021 0.707 0.132

−15.326 40.508 0.028 0.500 0.333
−13.793 41.011 0.027 0.421 0.148
−12.939 41.735 0.026 0.710 0.199
−12.226 41.264 0.026 0.701 0.213
−13.906 40.029 0.028 0.201 0.116
−13.351 40.456 0.027 0.296 0.182
−12.758 40.442 0.027 0.441 0.170
−12.147 40.364 0.026 0.504 0.146
−11.244 40.312 0.026 0.648 0.158
−9.848 40.709 0.025 0.336 0.186

−14.694 39.499 0.028 0.323 0.196
−13.917 39.117 0.028 0.124 0.505
−13.303 39.395 0.027 0.114 0.106
−12.970 39.858 0.027 0.315 0.162
−12.276 39.573 0.027 0.322 0.120
−12.173 38.934 0.027 0.044 0.361
−11.109 39.123 0.026 0.423 0.132
−10.519 39.400 0.026 0.570 0.153
−9.809 39.762 0.025 0.548 0.161
−8.752 39.839 0.024 0.658 0.178
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Table 9.15 (continued )

x y Exposure % Own Home % Over 65

−16.723 38.980 0.030 0.465 0.155
−15.217 38.544 0.029 0.303 0.180
−14.159 38.501 0.028 0.203 0.124
−12.996 38.885 0.027 0.085 0.150
−11.893 38.702 0.027 0.209 0.084
−16.457 38.264 0.030 0.378 0.162
−16.375 37.649 0.030 0.562 0.167
−15.444 38.028 0.029 0.384 0.149
−14.124 37.801 0.028 0.151 0.133
−13.363 38.134 0.028 0.003 0.147
−12.743 37.939 0.027 0.003 0.109
−12.224 38.122 0.027 0.008 0.041
−11.479 37.992 0.027 0.118 0.042
−10.724 37.938 0.026 0.205 0.047
−9.753 38.180 0.025 0.438 0.083
−8.704 38.332 0.025 0.479 0.088

−15.727 37.105 0.030 1.000 0.066
−15.397 36.783 0.030 0.371 0.144
−14.469 36.803 0.029 0.167 0.058
−13.954 37.319 0.028 0.137 0.069
−13.265 36.954 0.028 0.127 0.031
−12.722 36.979 0.028 0.025 0.087
−12.024 37.260 0.027 0.008 0.107
−11.158 36.577 0.027 0.326 0.047
−10.470 36.651 0.026 0.452 0.079
−8.878 37.115 0.025 0.750 0.231

−16.433 35.815 0.031 0.896 0.172
−15.426 35.799 0.030 0.741 0.138
−14.754 35.563 0.030 0.689 0.094
−13.920 35.189 0.029 0.473 0.084
−13.832 36.218 0.029 0.282 0.068
−12.852 36.222 0.028 0.178 0.087
−12.634 35.421 0.028 0.338 0.069
−11.764 34.930 0.027 0.204 0.328
−10.617 35.288 0.027 0.796 0.194
−10.592 34.676 0.027 0.001 0.004
−14.111 34.358 0.029 0.498 0.099
−13.321 34.785 0.029 0.485 0.062
−12.558 34.582 0.028 0.423 0.063
−13.447 32.917 0.029 0.678 0.170
−12.469 33.387 0.028 0.439 0.409
−11.562 32.740 0.028 0.041 0.416
−12.506 31.784 0.029 0.880 0.185
−4.891 53.764 0.020 0.792 0.110

−10.943 56.410 0.021 0.682 0.106
(continued overleaf )
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Table 9.15 (continued )

x y Exposure % Own Home % Over 65

−9.834 51.064 0.022 0.789 0.094
−4.197 49.537 0.020 0.746 0.075
−9.488 49.009 0.022 0.909 0.065
−9.754 47.072 0.023 0.658 0.072

−10.954 47.897 0.023 0.662 0.121
−12.085 47.577 0.024 0.625 0.141
−13.100 46.879 0.025 0.903 0.143
−15.175 47.155 0.026 0.515 0.093
−13.057 48.404 0.024 0.730 0.097
−18.973 48.402 0.027 0.837 0.055
−18.418 47.007 0.028 0.093 0.045
−21.552 51.780 0.027 0.825 0.097
−20.175 53.142 0.026 0.873 0.044
−18.852 50.853 0.026 0.859 0.050
−12.434 51.045 0.023 0.910 0.032
−18.052 54.741 0.024 0.752 0.085
−24.874 54.020 0.027 0.601 0.166
−30.753 53.944 0.030 0.854 0.075
−22.711 48.810 0.029 0.857 0.121
−27.924 50.923 0.031 0.694 0.091
−28.128 49.183 0.032 0.480 0.199
−24.891 46.477 0.032 0.630 0.097
−29.806 46.681 0.036 0.849 0.094
−38.079 38.625 0.060 0.792 0.120
−26.755 40.217 0.039 0.847 0.106
−25.887 37.029 0.041 0.539 0.128
−24.213 36.358 0.039 0.799 0.142
−23.675 38.145 0.037 0.818 0.115
−21.451 37.998 0.035 0.637 0.143
−20.238 37.167 0.034 0.851 0.157
−20.627 38.879 0.034 0.805 0.198
−21.121 43.888 0.031 0.856 0.123
−18.195 39.401 0.031 0.398 0.152
−18.463 38.801 0.032 0.632 0.224
−18.940 37.247 0.033 0.960 0.210
−17.473 37.273 0.031 0.925 0.294
−17.892 44.541 0.029 0.624 0.150
−19.460 46.367 0.029 0.634 0.080
−15.544 45.000 0.027 0.747 0.087
−16.679 43.819 0.028 0.496 0.097
−15.545 42.823 0.028 0.732 0.171
−13.259 45.162 0.025 0.815 0.231
−11.959 44.163 0.025 0.753 0.153
−12.618 43.821 0.026 0.672 0.160
−13.802 42.558 0.027 0.731 0.139
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Table 9.15 (continued )

x y Exposure % Own Home % Over 65

−11.201 41.737 0.025 0.730 0.197
−6.841 39.955 0.023 0.467 0.166
−8.644 41.997 0.024 0.769 0.172
−5.825 41.656 0.023 0.709 0.117
−6.325 37.769 0.024 0.581 0.119
−7.852 35.601 0.025 0.754 0.180
−4.732 35.064 0.023 0.893 0.122
−7.625 31.607 0.025 0.793 0.100
−1.213 35.810 0.023 0.709 0.130
−1.369 35.773 0.023 0.750 0.190

1.035 32.848 0.025 0.756 0.156
1.028 32.994 0.025 0.571 0.116
3.692 37.486 0.023 0.764 0.109

−1.368 41.001 0.021 0.756 0.129
−2.432 39.997 0.021 0.946 0.113
−1.698 45.139 0.020 0.825 0.133

0.683 24.737 0.031 0.853 0.101
−7.767 24.012 0.029 0.805 0.116

−14.328 26.250 0.031 0.878 0.050
−20.450 26.646 0.038 0.909 0.100
−10.325 29.876 0.027 0.923 0.104
−12.444 30.194 0.029 0.837 0.131
−15.661 32.754 0.031 0.651 0.200
−19.003 35.414 0.034 0.627 0.267
−28.670 29.259 0.054 0.861 0.106
−28.688 30.852 0.053 0.495 0.152
−35.983 26.866 0.092 0.651 0.191
−34.554 26.419 0.082 0.759 0.110
−24.898 14.560 0.042 0.478 0.107
−19.610 16.637 0.036 0.586 0.083
−10.921 9.999 0.039 0.667 0.098

0.175 13.306 0.047 0.711 0.096
−14.565 −48.845 0.054 0.774 0.104
−29.003 −52.870 0.057 0.731 0.108
−15.798 −68.106 0.422 0.825 0.102
−14.282 −72.352 0.157 0.839 0.076
−22.738 −67.371 0.300 0.492 0.157
−29.470 −69.684 0.097 0.761 0.108
−43.339 −69.836 0.042 0.748 0.067
−30.749 −13.465 1.000 0.732 0.126
−44.146 −15.211 0.072 0.708 0.097
−40.460 −22.936 0.123 0.509 0.110
−43.466 −20.207 0.093 0.739 0.101
−51.912 −24.866 0.086 0.705 0.121
−43.550 −28.728 0.374 0.448 0.164

(continued overleaf )
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Table 9.15 (continued )

x y Exposure % Own Home % Over 65

−40.564 −27.572 0.276 0.549 0.150
−38.618 −26.765 0.187 0.516 0.092
−39.284 −29.119 0.309 0.105 0.084
−41.395 −29.395 0.618 0.191 0.032
−41.510 −30.601 1.767 0.261 0.074
−42.080 −31.169 3.526 0.238 0.135
−42.878 −30.248 0.908 0.400 0.160
−47.493 −30.821 0.182 0.734 0.127
−40.500 −32.883 0.403 0.563 0.066
−36.439 −33.877 0.159 0.591 0.120
−37.096 −29.876 0.200 0.571 0.149
−34.078 −27.819 0.118 0.611 0.075
−28.790 −23.104 0.113 0.697 0.081
−34.646 −39.355 0.089 0.712 0.102
−51.142 −42.100 0.069 0.747 0.107
−41.960 −24.820 0.164 0.497 0.128
−42.675 −27.313 0.274 0.134 0.065

ax and y denote locations of each census tract centroid, “exposure” the inverse distance from the tract
centroid to the nearest TCE site (see text), and “% own home” and “% over 65” denote census variables
(1980 U.S. Census).

9.4 Using the New York leukemia data, fit both a SAR and a CAR model based
on the proximity measure defined in equation (7.6) with δ = 15 km. Do your
results differ from those presented in the data break following Section 9.3.3?
Do your conclusions change?

9.5 Derive the universal kriging predictor in Section 9.2.3 using the covariances
Cov(Y (si ), Y (sj )) instead of the semivariogram.

9.6 Clarify the statement in Section 9.4 regarding the difference between the use
of σ 2 in Sections 9.1 and 9.2 and its use in Section 9.4.

9.7 Simulate 100 data sets from the final linear regression model (independent
errors) for the New York leukemia data set. Compare the observed (trans-
formed) outcome with the histogram of model-based outcomes at each tract.
Are there spatial patterns to the local fit?

9.8 Use Poisson regression with the New York leukemia data to model the effects
of the three covariates on the leukemia rates. How do your conclusions differ
from those discussed in the data breaks following Sections 9.2.3 and 9.3.3?
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9.9 Simulate 100 data sets from your final Poisson regression model (indepen-
dent errors) for the New York leukemia data set. Compare the observed
(transformed) outcome with the histogram of model-based outcomes at each
tract. Are there spatial patterns to the local fit?

9.10 Redo the analyses in the data break following Section 9.4.3 using the Scot-
tish lip cancer data in Table 2.6. For spatial analyses, use the latitude and
longitude coordinates. Do the results of the spatial analyses based on lati-
tude and longitude differ from those discussed in the data break based on
the British National Grid projection? Why? Why not?
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López, A., 434
Louis, T. A., 91, 94, 411, 415, 417, 425
Lucas, N., 295, 299, 314
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Smoky Mountain pH data:
anisotropic semivariogram estimation and

modeling, 296–299
data, 282–287, 289–299
filtered kriging, 307–309
inverse-distance squared interpolation,

307–309
isotropic semivariogram estimation,

282–285

isotropic semivariogram model fitting,
289–291

ordinary kriging, 307–309
Datum, 43, 64
Density equalized map projections, 157
Density function, contrasted with intensity

function, 131, 164–165
Detrending, 344
Developable surfaces, 43–46
Digital line graph, 56
Digitizing maps, 59
Direct standardization, see Standardization
Disease mapping, 327, 415, 423
Disease mapping and analysis program (DMAP),

176–181, 191–193, 195, 206–209, 220. See
also Cluster, Clustering

Disease rate, see Rate
Disease registry, 53
Disease surveillance, 266
Disjunctive kriging, 302
Disk smoothing, 87–88
Distance:

adjacency, 50–51
city-block, 50
Euclidean, 87–88
great-arc, 49–50
impact of projection on, 43–44
intercentroid, 210–211, 214, 219, 225, 246
metric, 51
nearest-neighbor, 185
non-Euclidean, 321–322
proximity, 49, 50–51
surrogate for exposure, 345

Dot density maps, see Maps
Dot maps, see Maps
Doubly stochastic process, 149
Durbin-Watson statistic, 235

Easting, 46, 283, 307
Ecological inference problem, 29–31, 104, 201

solutions, 30–31, 107–108, 115
Edge effects, 115–116, 138, 142–144, 148, 165,

172
Effect modification, 29
Effective range, 278–279, 336, 396
Effective sample size, 3, 380
Eigenvalues, 365
Empirical Bayes:

estimation, 93, 397, 413–416
smoothing, 90–95, 99–101, 202, 385, 392,

399
compared to fully Bayesian, 414–415

Empirical best linear unbiased predictor
(EBLUP), 305
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Envelopes, see Monte Carlo
Environmental data, 56–59, 272
Environmental Monitoring and Assessment

Program (EMAP), see Environmental
surveys

Environmental surveys, 57–58
Estimating equations, 387–391
Euclidean distance, 87–88. See also Distance
Event, 118–119, 146–148, 176
Event location, 119, 127, 133–134
Exceedance probability, 311, 316
Exchangeable prior distribution, 413–414, 424,

426–427
Expected counts, 13–15, 95–96, 159, 201, 204,

220, 242, 245, 397, 412
Experimental data, 7–8
Exploratory data analysis (EDA), 112, 134–136,

176, 206
Exploratory spatial data analysis (ESDA),

112–113, 379
Exposure, 7–8, 18–20, 63, 66–67, 253, 258,

272–274, 325, 345, 392, 404, 406–410, 424
Exponential semivariogram model, see

Semivariogram models
External standard population, 17

Feature, 38–39, 84
Feature class, 39
Federal Geographic Data Committee (FGDC),

65
Federal Information Processing Standard (FIPS),

214
Filtered kriging, 301, 306–307, 384, 397, 404,

406
equations, 307
mean-squared prediction error, 307
measurement error variance, 306
model assumptions, 306
prediction standard error, 307
predictor, 306
Smoky Mountain pH data, 307–309
smoothing with, 307

FIPS, see Federal Information Processing
Standard

First law of geography, 3
Fixed effects, 380–399, 410, 411–413
Focused clusters and clustering, 217, 243,

251–259, 261, 401. See also Cluster,
Clustering

compared to general clusters/clustering,
160–161

hypothesis tests, 251–259
Fractal dimension, 279
Free sampling, 226. See also Normality

assumption

Full conditional distribution, 417–419
Fully Bayes inference, see Bayesian statistics

Gaussian distribution, multivariate, 226, 286,
326–329, 345, 347, 362, 365, 367, 369,
372, 386–387, 413, 417–418, 421–422

Gaussian random field, 384
Gaussian semivariogram model, see

Semivariogram models
Geary’s c, 234–236, 260
General clusters and clustering, 160–161, 185,

243, 251, 259
compared to focused clusters/clustering,

160–161
hypothesis tests, see Cluster, Clustering

General cross-product statistics, 223–224, 236
Generalized additive models, 113–114
Generalized estimating equations, 320, 387–391
Generalized least squares, 295, 335, 337–338,

353, 390–392. See also Least squares
estimation

estimated, 337–338
semivariogram model fitting, 285–286

Generalized linear mixed models, 383–392, 404,
409, 411–413, 416–417, 419, 420–421,
431, 433

Generalized linear models, 22–26, 258, 320,
347, 380–409, 431, 433

link function, 23, 381, 384, 387, 389, 394, 412
logistic regression, 24–25, 230, 325–326,

380–381, 402, 404–405, 408
offset, 394
Poisson regression, 25–26, 95, 230, 325–326,

380–381, 392, 395, 423, 425–428
random component, 23, 384
Scottish lip cancer data break, 392–398
spatial, 95, 380–434
systematic component, 23, 384
variance function, 381

Geocoding, 56, 65–67, 256, 400
Geodesy, 40–51, 69, 177
Geographic information system (GIS), 38, 53,

60–67, 70, 84, 112, 174–176, 178, 195,
206, 252, 325

Geographical analysis machine (GAM),
175–176, 181–182, 205, 209

Geographical correlation studies, 31, 108, 272
Geographical masks, 65, 188
Geographically unbiased, 214
Geographically weighted regression, 434
Geometric anisotropy, 291–299, 314. See also

Anisotropy
Georgia Health Care District 9 data, see Case

studies, Data breaks
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Geostatistical data, 272–324
Geostatistical simulation, 320–321, 406–409,

419
Geostatistics, 107, 272–274, 279, 301,

325–326, 334, 361, 374, 379, 388,
394, 399

GeoVISTA Studio, 112
Gerrymandering, 104
Gibbs sampler, 417–418
GIS, see Geographic information system
Global indices of spatial autocorrelation, see

Indices of spatial autocorrelation
Global positioning system (GPS), 59–60, 65,

256
Goodness-of-fit, 159, 203–205, 230, 242–259,

371
Gradient, 333
Graduated color, 73
Graduated symbols, 84
Great arc length, 49–50
Gridding, 75, 299, 307
Grouping effect, 106
Guard area, 138

Hammersley–Clifford theorem, 371, 418, 432
Hazardous waste site remediation case study, see

Case studies
Headbanging, 97–98
Health services areas (HSA), 52
Health surveys, 54–55
Healthy worker effect, 27
Heteroscedasticity, 346, 349–351, 353–354,

360
Heterogeneous Poisson process, 126–130, 149,

202, 204–205, 242, 253
constant risk hypothesis, 126–128
detecting clusters, 157–159, 161–164
early medieval gravesite data break, 134–136
intensity estimation, 130–136
random labeling hypothesis, 144, 163
simulating, 152

Hierarchical models, 93, 106, 320, 327,
385–386, 411–412, 415–417, 420, 423,
425–428

Hole effect semivariogram model, see
Semivariogram models

Homogeneous Poisson process, 123–126, 137,
152, 164. See also Complete spatial
randomness (CSR)

random labeling hypothesis, 144
simulating, 124–125

Horvitz–Thompson estimator, 322
Hyperparameter, 411–412, 414, 416
Hyperprior, 93, 411–412, 414

Hypothesis testing, see Monte Carlo, Cluster,
Clustering

Improper prior distribution, 413
Incidence, 8–10, 157, 200

proportion, 10, 158, 177, 203, 205, 210, 214,
216–219, 223–224, 226, 229–237,
240–241, 244, 258, 347–348, 357–358,
362, 369, 415, 428

rate, 9, 125, 203, 205, 206, 209, 223,
229–230, 232–235, 237, 241, 244, 380,
415, 428

Identifiability, 424
Indicator data, 311, 315
Indicator function, 302
Indicator kriging, see Kriging
Indicator semivariogram, 316–317
Indices of spatial autocorrelation, 205, 223–242,

244–245, 247–248, 260, 263–264, 358,
371

definition, 223–224
detectors of clusters/clustering, 204, 223–242
Geary’s c, 234–236, 260
local, 231–242
modifiable areal unit problem, 106–107
Moran’s I , 227–236, 246–247, 256,

367–369, 376
normality assumption, 226
null distribution, 225–227
randomization assumption, 226

Indirect standardization, see Standardization
Information matrix, 329, 339

conditional autoregressive model, 373
general linear regression model, 329, 339
simultaneous autoregressive model, 366, 369

Inhibition process, 149
Inhomogeneous Poisson Process, see

Heterogeneous Poisson process
Intensity function, 123–124, 126–128, 141,

146–147, 158, 173–174, 178, 189–193,
195, 202, 242, 260

comparing two point processes, 162–171
contrasted with density function, 131,

164–165
early medieval gravesite data break, 134–136,

167–171
estimation, 130–136, 165–171

Internal standard population, 17
International Agency for Research on Cancer

(IARC), 54
International Classification of Disease (ICD), 52
Interpolation, 299–309

deterministic, 299
exact, 301, 306
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inverse-distance, 299–302, 305, 307–309
probabilistic, 299
Smoky Mountain pH data, 307–309

Intrinsic autoregressive prior distribution, see
Conditional autoregressive prior distribution

Intrinsic stationarity, see Stationarity
Isolines, 75
Isotropic process, 274–275, 281, 283, 336
Isotropic semivariogram models, see

Semivariogram models
Isotropy, 123, 127–128, 137, 148, 164, 336, 415
Iteratively reweighted generalized least squares,

337–338, 373, 388

J-Bessel semivariogram model, see
Semivariogram models

K-Bessel semivariogram model, see
Semivariogram models

K function, 137–146
comparing two patterns, 162–164, 171–174,

190–191, 194
detecting departures from CSR, 137–144
diagnostic plots, see L̂-plots
early medieval gravesite data break, 141–146,

199
edge-corrected, 138, 164, 172
estimation, 138, 164, 172
Monte Carlo tests, 139–140, 172, 190–194
San Diego asthma case study, 190–194,

196–197
under CSR, 137

Kernel density estimation, 130–134, 164–165,
418, 425

bandwidth selection, 130–135
relationship to intensity estimation, 130–131,

164–165
Kernel function, 90, 130, 175, 177–178, 180,

189–193
one-dimensional, 130–132
two-dimensional, 132

Kernel smoothing, 90, 219, 299
Kriging, 299, 301–318, 408, 433. See also

Spatial prediction
Bayesian, 302
block, 302, 311–313
cokriging, 302, 311
disjunctive, 302
filtered, see Filtered kriging
hazardous waste site remediation case study,

314–318
indicator, 302, 311
lognormal, see Lognormal kriging
neighborhood, 305–306

non-Gaussian data, 320
ordinary, see Ordinary kriging
probability kriging, 302, 311
simple, 301
Smoky Mountain pH data break, 306–309
standard error, 305
residuals, 344
trans-Gaussian, 302
universal, see Universal kriging
variance, 304, 343–344

L̂ plots, 138–139, 173, 190–191, 194
assessing clustering, 173–174
early medieval gravesite data break, 173–174
San Diego asthma case study, 190–194
simulation envelopes, 171–174

Lag, spatial, 137, 274, 285
distance, 277, 281, 283, 284
tolerance, 281, 283
spacing, 281, 283–285, 296

Lagrange multiplier, 302–303, 310, 342
Large scale variation, 334, 340, 344
Latent spatial process, 384–387
Latitude, 40–42, 60, 272, 392
Layering, 62–63
Least squares estimation, 326, 346, 359, 366,

373, 390
estimated generalized least squares, 337–338,

344
generalized, 285–286, 335, 337–338, 344,

353, 359, 366, 390–392
iteratively reweighted, 319, 337–338, 373, 388
nonlinear, 284–286, 288–290
ordinary, 327–328, 330, 344, 346–347,

353–355, 366–367
weighted, 285–286, 289–290, 299, 337,

346–347, 353–356, 359, 369, 378, 403, 426
Likelihood, 91, 254, 286, 329, 338, 346, 385,

395, 409–411, 415, 427. See also
Maximum likelihood estimation

Likelihood ratio tests, 182, 219–220, 222, 227,
254, 260, 265, 287, 340, 369–370, 376

Line, 39, 61, 84, 107
Linear semivariogram, see Semivariogram

models
Linear models, 326–380, 423, 426
Linear models with spatial error terms, 333–380,

389–390, 423
Link function, see Generalized linear models
Linked micromap plots, 109–112
Local indicators of spatial association (LISA),

205, 236–242, 249, 263, 346, 376–378
Local p-value, 217
Local rates, 162, 174–183, 191–198, 206–209,

214, 218, 223
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Local regression, 89–90
Locally most powerful test, 230, 254
Locally weighted average, 87–88, 100, 102, 224
Locational uncertainty, 66–67
Loess smoother, 90, 97
Logistic regression, see Generalized linear

models
Lognormal distribution, 301, 310, 385

moments, 310
Lognormal kriging, 301, 308–311, 402

hazardous waste site remediation case study,
314–316

mean-squared prediction error, 310
model assumptions, 309
predictor, 310

Longitude, 40–42, 60, 392
LU decomposition, 321

Maps, 2, 67–116, 175, 181, 325, 345
animated, 70
block, 81
choropleth, 78–81, 83, 240, 357, 360–361
classed symbol, 77–79
color, 71, 85–86
conditional choropleth, 109–112
contour, 74–76, 404
dot density, 81–83
filled contour, 76, 309, 316–318
graduated color, 73–74
graduated symbol, 77, 79
image, 76–78
linked micromap plot, 109–112
local indicators of spatial association,

376–378
point (dot), 72–74
postplot, 73–74, 283
prism, 81, 83
probability, 86, 95–96, 102–103, 217
proportional symbol, 78, 80
residual, 346, 357, 377–378
scatterplot, 74–75
smoothed, 86–104, 397
stepped statistical surface, 81, 83
surface, 76
symbology, 74, 77–80, 84–86, 109
three-dimensional, 81, 83
vector plot, 333–334

Map projections, 42–51, 177, 207, 392, 401
impact of, 43–44, 46–47

Map study, Georgia Health Care District 9,
70–84

Marginal generalized linear models, 381–383,
385–399, 411, 433

Markov chain, 416–417, 420

Markov chain Monte Carlo, 409, 416–421,
425–428

Markov random field, 371, 433
Matching, 156
Matérn class of semivariogram models, see

Semivariogram models
Maximum likelihood estimation (MLE), 89, 91,

95, 286–288, 326–329, 334–340, 346–347,
353–355, 359, 365, 369–370, 372–373,
375, 385, 389–391, 412–414, 430–431

concentrated, 338
restricted, 286–288, 328, 390–391, 430–431
semivariogram model fitting, 286–288

Mean integrated square error (MISE), 166
Mean-square prediction error, 302, 305, 307, 310,

341, 343–344. See also Kriging variance
Mean structure, 301, 302, 334. See also Large

scale variation, Trend
Mean-variance relationship, 345–347, 349–351,

386
Measurement error, 275, 290, 301, 306, 308,

403–404
Medieval grave site data, see Data breaks
Metadata, 65
Method of moments:

empirical Bayes, 93
semivariogram estimator, 281

Misaligned data, 399, 400–409, 434
Misclassification bias, 27
Mixed models, see Generalized linear mixed

models
Modifiable areal unit problem (MAUP), 34,

104–108, 115, 201
Monte Carlo:

envelopes, 139–146, 172, 190–194
power assessments, 261–263
tests, 125–126, 139–146, 159–160, 166–167,

172, 176–178, 182, 184–185, 187,
194–195, 197, 202, 206–210, 214, 217,
220, 222, 226–227, 230–236, 238,
242–243, 247, 249, 251, 255, 261,
264–265, 370

Moran’s I statistic, 227–236, 246, 256,
367–369, 376

adjusting for population size, 229–231,
233–236

exact distribution, 238, 264, 370
for residuals, 230, 367–369, 374–378
relation to score test, 230

Morbidity and Mortality Weekly Report
(MMWR), 53

Multidimensional data, 39
Multiple testing, 175, 177, 181–182, 185, 208,

210, 216, 238, 241
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Multivariate data, 39, 371
Multivariate Gaussian distribution, see Gaussian

distribution, multivariate

National Agricultural Statistics Service (NASS),
57

National Air Monitoring Stations (NAMS), 58
National Atmospheric Deposition Program

(NADP), 58
National Cancer Institute (NCI), see U.S.

National Cancer Institute
National Center for Health Statistics (NCHS), 52
National Climatic Data Center (NCDC), 58–59
National Electronic Disease Surveillance System

(NEDSS), 53
National Electronic Telecommunication System

for Surveillance (NETSS), 53
National Health and Nutrition Examination

Survey (NHANES), 54–55
National Health Interview Survey (NHIS), 54–55
National Oceanic and Atmospheric

Administration (NOAA), 58
National Program of Cancer Registries, 54
Natural resource data, 56–59
Natural Resources Conservation Service (NRCS),

57
National Resources Inventory (NRI), 57
National Water-Quality Assessment Program

(NAWQA), 58
Nearest-neighbor methods, 151, 184–188,

196–197, 199, 224–225
Neighbor, 88, 223, 227, 246, 376
Neighborhood, 88, 225, 325–327, 370–371, 379
Neighborhood, smoothing, 88, 100

search, 300–301, 305–306, 308, 314
Network design, 322
New York leukemia data, see Case Studies, Data

breaks
Newton–Raphson, 338
Neyman–Scott process, 148
Nonfree sampling, 226. See also Randomization

assumption
Noninformative prior distributions, 413–414
Nonlinear least squares, see Least squares

estimation
Nonstationarity, 344. See also Stationarity
Normality assumption, 226–230, 231, 233–236
North American Association of Central Cancer

Registries (NAACCR), 53
Northing, 46, 283, 307
Notifiable diseases, 53
Nugget effect, 275, 278–279, 289–290, 297,

306–308, 336, 344, 358–360, 382, 404,
406. See also Semivariogram

relative, 276, 306
Null hypothesis, 126–128, 156, 160–161, 182,

201–203, 206, 225–230, 233, 235–238,
242–243, 252, 254–255, 259, 261, 265,
287–290, 367–368, 370. See also Constant
risk hypothesis, Random labeling
hypothesis

Objective analysis, 301
Observational data, 7–8, 264
Observed counts, 201, 220, 242, 245
Odds ratio, 20–22, 405–406, 408
Offset, 394, 412
Ordinary kriging, 301–306, 320, 341

equations, 303–305
kriging standard error, 305
kriging variance, 304, 307, 309
mean-squared prediction error, 304
model assumptions, 302
of residuals, 341–345
prediction interval, 305
predictor, 302, 309
Smoky Mountain pH data, 307–309

Ordinary least squares, see Least squares
estimation

Overdispersion, 263–264, 381, 383–385, 388,
390, 395–396, 413

Pair potential function, 149
Pairwise difference prior distributions, 423
Parallels, 40

standard, 46
Parent events, 147–149
Partial sill, 276. See also Semivariogram
Pearson’s χ2, 242–244, 246–247, 256, 261,

265
Pearson’s correlation coefficient, 228
Pearson residuals, 230, 405
Person-time, 9–10
Photogrammetry, 59
Pixels, 59, 61, 76, 295
Point, 38, 41, 61, 72–74, 84, 107, 119, 200–201,

325
Point maps, see Maps
Point process, spatial, see Spatial point process
Point support, 38–39, 108, 156. See also

Support
Point symbol, 74
Poisson cluster process, 147–149
Poisson process, see Homogeneous Poisson

process, Heterogeneous Poisson process
Poisson regression, see Generalized linear

models
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Polygon, 48, 307
centroid, 48

Polynomial trend surface, 331
Population averaged effect, 397
Population heterogeneity, 229–231, 233–236,

260, 262–263
Population radius, see Radius
Posterior distribution, 91–92, 410–411,

414–415, 417, 419, 423, 425
Postplot, 73–74, 283
Power, 204, 236, 259–264
Power semivariogram model, see Semivariogram

models
Prediction, see Spatial prediction, Kriging
Prediction error, see Mean-square prediction

error
Prediction interval, 305
Prevalence, 8. See also Incidence
Prior distribution, 91–92, 399, 410–411,

413–417, 424, 426–427
Probability kriging, see Kriging
Probability mapping, 86, 95–96, 102–103, 302,

311, 316–318
Product kernel, 132
Projection, see Map projection
Proper prior distribution, 413–414
Prospective data, 19–20
Proximity, 49, 50–51, 88, 223–226, 362, 364,

366, 370, 376, 379–380, 431. See also
Spatial proximity measures

Probability plots, 345, 348–349
Pseudodata, 389
Pseudolikelihood, 387–391, 399, 409, 411–412,

416, 433
Pycnophylactic property, 115

Quasi-likelihood, 320, 387–391, 399, 409

Raccoon rabies in Connecticut, see Data breaks
Radius:

population, 211–214, 219–220, 222, 263
case, 214, 217, 219, 263

Random effects, 327, 343, 384–385, 389,
394–396, 399, 409–415, 424–426, 430

Random field, 273, 384
Random labeling hypothesis, 144, 159, 163,

166–167, 172–173, 175–177, 182–185,
189–190, 194, 199, 203, 226, 259

Randomization, 26, 367
Randomization assumption, 226–227, 230–231,

233–236, 238
Range, 275–276, 278–279, 359, 382, 391. See

also Effective range, Semivariogram
Rare disease assumption, 10, 20–22, 34, 156,

181, 201–202, 208, 230, 255, 347, 386, 415

Raster data, 61–62
Rate, 9–10, 86–87, 107, 158, 175, 182, 263,

325, 346–347, 362, 369, 380, 386, 394,
397, 409, 415, 429

standardized, 11–18
Rate ratio, 158, 174
Recall bias, 27
Reduced distance, 293–294
Reduced second moment measure, see K

function
Regional data, 39, 77, 156, 205, 211, 200–271,

362–380, 386, 412
Registry data, 53, 156
Regression, 89–90, 106, 330–333, 341,

345–362, 365
in MAUP, 106
locally weighted, 89–90
logistic, see Generalized linear model
nonlinear, 284–286, 289–291
nonparametric, 89–90
Poisson, see Generalized linear model
spatial, 325, 345–362, 389–390

Regularity, 119–122, 149
Relative risk, 10–11, 20–22, 95, 158, 165,

174, 220, 260–262, 392, 394, 401, 412
Relative risk surface, 158, 165, 174, 177, 178

early medieval gravesite data break, 167–171,
183, 198

estimation, 165
San Diego asthma case study, 189–193

Remote sensing data, 59, 62
Residual spatial autocorrelation, 326, 330,

334–336, 341, 344, 348–349, 355–380,
396, 406, 423, 431

Residuals, 230, 330, 337, 340–341, 343,
345–348, 355–362, 368, 370, 373–374,
377–378, 394, 431

Pearson, 230
studentized, 356–360, 369, 394

Response surface, 332
Restricted maximum likelihood, 286–288, 328,

390–391, 430–431
Retrospective data, 19–20
Risk, 3, 9–11, 86–87, 95, 107, 158, 177,

201–202, 253, 402
Risk difference, 10–11, 20–22
Risk factor, 9, 345, 412
Risk ratio, 11, 20–22
Row standardized matrix, 225, 237, 240

Sample size, 134–135, 143, 185, 238, 247–248,
260, 368–370, 380

Sampling, 122, 125, 156, 164, 177, 181, 322. See
also Spatial sampling

design-based vs. probability based, 322
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SAR models, see Simultaneous autoregressive
model

Satellite imagery, 59, 62, 76
SaTScan, 183
Scale, 119, 200–201, 308, 310, 394

effect, 106
large vs. small, 46, 334
map, 46
of clustering, 119, 139, 149, 172, 185, 199,

247
Scan statistics, 181–183, 195–197, 219–222,

259–260, 265
Besag and Newell’s method, 214–219
Kuldorff’s spatial scan statistic, 181–183,

195–197
Openshaw’s geographical analysis machine

(GAM), 175–176, 181–182
Rushton and Lolonis’ disease mapping and

analysis program (DMAP), 176–182,
191–193, 195

Turnbull et al.’s cluster evaluation permutation
procedure (CEPP), 209–214, 219–220, 263

Score equations, 328, 387–388
Score test, 230, 265

focused clustering, 251–259, 260–261
residual spatial correlation, 230

Scottish lip cancer data, see Data breaks
Scott’s rule for bandwidth selection, 134–135,

167
Search neighborhood, 300–301, 305–306, 308,

311, 314
Second derivative test, 328–329
Second order properties, 137, 141, 146–147,

162, 164, 171, 173–174, 190
Second order stationarity, see Stationarity
Selection bias, 27
Semivariogram, 274–299, 314–317, 326,

335–337, 341, 344, 378–379, 382–383,
388, 415

anisotropic, 291–299, 314–317
defined, 274
directional 291, 295–299, 314–317
empirical, 283–285, 297, 291, 295–299, 305,

308, 314–317, 336, 346, 359, 394–395,
403, 405–406

indicator, 316–317
interpretation, 275–276, 278–279, 382,

403
of residuals, 337, 344, 358–359, 367, 378,

406
point-to-block, 312
relationship to covariance function, 276,

335–336
theoretical properties, 274–275

using non-Euclidean distance, 321–322
valid, 277–280

Semivariogram estimation, 280–284, 291,
295–299, 305, 336

anisotropic, 281, 291, 295–299, 314–317
classical semivariogram estimator, 281, 319
common problems, 284, 318–319
Cressie–Hawkins estimator, 319
directional, 291, 295–299, 314–317
hazardous waste site remediation case study,

314–317
isotropic, 281, 282–285
method of moments estimator, 281
omnidirectional, 283, 296, 314
robust, 319
Smoky Mountain pH data, 282–285,

296–299
tolerance regions, 275–276, 281–285,

295–296
Semivariogram model-fitting, 284–290,

297–299, 314–317, 336
empirical model comparison, 287–288, 290
Georgia Health Care District 9 data,

401–402
hazardous waste site remediation data,

314–317
maximum likelihood estimation, 286–287
nonlinear least squares regression, 284–286,

288–290, 299, 314
practical notes, 288–289
restricted maximum likelihood estimation,

286–288
Smoky Mountain pH data, 289–290,

296–299
Semivariogram models, 277–280, 285, 291–299,

305, 314–317
anisotropic, 291–299, 314–317
cardinal sine, 277, 280
exponential, 277–278, 289–290, 297–298,

314–315, 317, 383, 395–396
Gaussian, 277, 278
hole effect, 280
isotropic, 277–281, 291, 293
J-Bessel, 280
K-Bessel, 277, 279
linear, 279
Matérn class, 279
nonparametric, 319–320
piecewise linear, 280
power, 277–279
spherical, 277–278, 289–291, 395, 403, 407
stable, 277, 279
valid, 277, 278–280
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Semivariogram surface, 295–296, 299,
314–315

hazardous waste site remediation case study,
315

Smoky Mountain pH data, 296
Separation distance, 275–276, 283
Shrinkage factor, 93–94
Sill, 275, 278–279, 336, 359–360, 382. See also
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