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Preface

The content of management studies is very rich, with a large amount of theoretical
and applied studies. As such, there is still much disagreement whether management
studies are a subject in the liberal arts, science or engineering. I believe that
whichever discipline management studies fall within, the most important mission of
management studies is to be able to explain thoroughly the reason and mechanism
that give rise to the various phenomena in practice, and to provide instruction and
assistance for the various problems. In some respects, management studies are like
medicine. In medical research, however abstract and abstruse, a ‘model’ is still
useless if it cannot treat an illness or provide instruction and help for doctors.
Similarly, the primary task in management research is to guide management
practice by means of the profound theory.

As one of the main areas in management research, there is already a large
amount of published work and teaching materials on game theory, providing
abundant materials for studying game theory. However, these published work and
teaching materials have one thing in common, in that they are mainly theoretical
research. What readers find in these books are mostly abstract argument and lots of
examples purely as numbers. Many people feel unable to apply them in actual
management and research work.

The characteristic of this book is that while providing the necessary basics in
game theory, it is mainly based on various game theory phenomena in management
practice. Thus, it is convenient for the readers to see the profound game theory
principle behind the various phenomena in management practice. Conversely, these
game theory principles can also provide a degree of guidance for solving practical
problems.

This book aims at being brief and concise, and is kept short, but the content is
relatively comprehensive, including theories on non-cooperative games, coopera-
tive games and evolutionary games and their related phenomena and questions in
management practice.

The book is made up of two parts.
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The first part focuses on the classical game theory. The content of this part
comes mainly from several excellent reference books given at the end of this book,
which was edited by the author of this book. The inclusion in this book of such
content is mainly to enable the readers to have a relatively comprehensive under-
standing of the basics of game theory. In fact, these authors with their research and
insights into their works greatly inspired the author of this book; theirs are the bases
from which further research is carried out. Here, the author conveys sincere grat-
itude to the authors of those reference books.

The other part is the research of the author himself, some of which has already
been published in academic journals. Different from the author’s editing work in the
first part, this part forms the author’s ‘writings’ in this book. It is hoped that
inclusion of these will inspire the readers to carry out further research.

This book is for teachers, students and cadres engaged in management studies
and research, and it can also be used by postgraduate students as learning materials
in game theory.

Research funding for this book: National Natural Science Foundation of China
(71171134, 71771151); Shanghai World-class Discipline Project (S1201YLXK);
Plateau Discipline Project of Shanghai (Management and Engineering).

Yangpu district, China Shaorong Sun
Na Sun
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Synopsis

Based on the fundamentals of game theory, the game problems in this book are
organised from various game phenomena in management practice. Thus, the
readers can easily understand the profound game theory principles behind the
management practice. Meanwhile, these game theory principles can also provide
some guidance on solving practical problems.

This book is clear and concise, while the content is comprehensive, including
theories on non-cooperative games, cooperative games and evolutionary games and
the related phenomena and problems in management practice.

This book can be used as reading material for teachers, students and officials
engaged in management studies and research, or as teaching material for post-
graduate students studying game theory.

xi



Chapter 1
The Fundamentals of Non-cooperative
Games

1.1 Introduction to Game Theory

Game (boyi inChinese)means playing chess in ancient China.Nowadays, it ismainly
about choosing the most advantageous plan of action given the effect the opponent
has on us. The theory on the study of games is called game theory.

In real life, there are broadly three main types of games.
The first type is when the object of the game is determined in advance, and the

question concerning the game is to choose the most advantageous action in the given
situation determined by the other player. This kind of game is called non-cooperative
games.

Example 1.1 Price wars

In the products market, each enterprise works to promote the sale of their own
products and to crowd out the sale of similar products by other enterprises. This is
usually achieved through formulating lower prices. The problem is that everybody
wants to increase the sale of their own products by lowering prices, which leads
to a competition for price reduction, the so-called ‘price war’. In this situation, the
important question for each enterprise is how to formulate prices that are not higher
than those of other enterprises and will not cause a serious loss to the enterprise. This
is a classic question for non-cooperative games.

Non-cooperative games can be further divided into static games and dynamic
games.

During the game, if each player chooses their own strategy without knowing the
strategy chosen by other players, the game is called a static game. The well-known
Prisoner’s Dilemma is a classic static game.

If each player chooses their own strategy in a particular order, and if each player
can observe the action and strategy taken by all the players before, the game is called
a dynamic game.

© China Economic Publishing House and Springer Nature Singapore Pte Ltd. 2018
S. Sun and N. Sun, Management Game Theory,
https://doi.org/10.1007/978-981-13-1062-1_1
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2 1 The Fundamentals of Non-cooperative Games

In a dynamic game, if the number of players is limited, and if the players con-
tinuously choose their strategy in a specified sequence, this kind of game is called
repeated games.

Otherwise, if the players cannot repeat to choose a strategy during the whole
game, it is called a non-repeated game. Non-cooperative games generally refer to
non-repeated games unless stated otherwise.

The second type is cooperative games. The object for this type of games is also
definite. The question is finding a scheme for distributing payoffs obtained in coop-
eration which outweigh that of cost, so that every player feels that the benefits for
cooperation are greater than non-cooperation. This kind of games is called coopera-
tive games.

Example 1.2 Payoff distribution

Let us assume there are four players 1, 2, 3, 4 discussing whether or not to coop-
erate in starting an enterprise: If all 4 cooperate, the enterprise can earn up to
1,000,000 yuan annually; if 1 and 2 cooperate, then the enterprise’s annual income
will be 100,000 yuan; if 1 and 4 cooperate, the annual income can reach 500,000 yuan;
if 2 and 3 cooperate, the annual income will be 300,000 yuan; if 3 and 1 cooperate
the annual income will be 600,000 yuan; if 4 and 2 cooperate, the annual income
will be 0; if 4 and 3 cooperate, the annual income will be 30,000 yuan; if each work
by themselves, then the annual payoff for each of them will be 0.

Now, the 4 of them want to find a reasonable scheme for payoff distribution so
that each and everyone of the 4 will be willing to cooperate in order to produce a
good outcome of 1,000,000 yuan payoff. Clearly, if the payoff as any sub-group of
fewer than 4 is greater than that of the payoff as a ‘large’ group, then those in the
sub-group will not be willing to participate in the 4-person ‘large’ group. This is a
classic cooperative game problem.

The third type is evolutionary games. The biggest difference with the two types
before is that the object of this type of games is not definite. Usually, in a very large
group of players there is a certain probability of likelihood that each player will meet
another player of a certain ‘type’ (i.e. a player with a certain game strategy). In this
situation, each player choosing different strategies can result in different payoff for
themselves. In this situation, since the object of the game is indefinite, each player
cannot knowwhich strategywill bemore advantageous. However, if the game repeats
continuously, then each player will gradually ‘learn’ what strategy is more likely to
bring better payoff. In thisway, for the large group everyonewill learn to continuously
adjust their own strategy, until the ratio of different types of players stabilises, that
is, this ratio does not change anymore. This is the process of the evolutionary game.
The problem for study by the evolutionary game theory is to predict the direction of
change to the ratio in the various types of players and the end point of that change
(when the ratio stabilises).

Games as a social phenomenon have always existed in society. The idea of game
theory emerged early on in society.TheArt ofWar, a book inChina over two thousand
years ago, exhibited many ideas on game theory.
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In 1712 James Waldegrave suggested that the minimax mixed strategy can be
used to play the best game. This says that if each of our own strategy leads to many
different results depending on the other player’s choice of strategy, then we should
first find the least advantageous result from our own strategy (i.e. the lowest value of
payoff from our own strategies). Then compare these values of low payoff, and select
the strategy that gives the highest result out of all these low values. This method can
effectively prevent the risk of loss encountered with the strategy.

In 1838 the French economist A. A. Cournot used game ideas to analyse the
problem of equilibrium quantity for competitive oligopoly in economic manage-
ment. Using the reaction function, a profit function is derived which finds the game
equilibrium, i.e. the equilibrium quantity.

During the 1920s the French mathematician Borel proposed the mixed strategy
concept that reflects the phenomenon of uncertain moves in the process of games.

In 1944, von Neumann and Morgenstern jointly published the Theory of Games
and Economic Behaviour. This publication is regarded as the beginning of a more
systematic theory on games.

By the 1950sGillies andShapley proposed the concept of the ‘Core’ in cooperative
games. This is an important development in cooperative game theory.

In the area of non-cooperative games, Nash came forward with the concept of the
Nash Equilibrium and the Equilibrium Existence Theorem which states that for any
finite number of players with finite strategies in non-cooperative games, if a mixed
strategy is considered, then there is at least one equilibrium point. At the same time,
Tucker came up with a well-known non-cooperative game example, the Prisoner’s
Dilemma, in 1950.

In 1965 Reinhard Selten focused on the question of the Nash Equilibrium in
dynamic games and came forward with the subgame perfect Nash equilibrium
concept.

In the 1960s game theory produced a very important branch: Evolutionary game.
This branch is able to explain biological evolution. For example, in 1960 Lewontin
began to use game theory to explain biological evolution.

In 1973 Maynard Smith and Price proposed the important fundamental concept
in the evolutionary game theory: Evolutionary stability.

In 1982 John Maynard Smith published Evolution and the Theory of Games, a
text regarded as a classic in the field of evolutionary game. Afterwards, Taylor and
Jonker put forward the evolutionary dynamics equation which further established
this theory. It also produced a lot of applied research. For example, people employ
evolutionary games to analyse how social systems change over time, stock market
trends, how consumers select brands, the formation of social customs, etc.



4 1 The Fundamentals of Non-cooperative Games

1.2 Three Essential Elements in Non-cooperative Games

There are three essential elements in non-cooperative games.
One essential element is the player. Some Chinese publications on games call this

the player, the gameplayer, etc. Participants are themain body of a game, independent
in making judgement and decision. In a game there are at least two players, otherwise
it cannot constitute a game. Of course, there can be three, four players, etc. In the
evolutionary game, there is usually an infinite number of players.

Where there are 2 players, it is called a 2-person game, 3 players, a 3-person
game, etc.

In publications of game theory, all the participants constitute a set of player. As N
indicated n players form a set, the ith player is usually called ‘player i’. For example,
in the situation of n=3, the three players can be represented as player 1, player 2,
player 3. Where it will not cause confusion, it can directly be said of 1, 2, 3.

The second essential element is the strategy or the action chosen by the player. Of
these, strategy is with regularity. For instance: ‘If the opponent attacks I will counter-
attack’ is a strategy; ‘if the opponent attack I will yield’ is also a strategy. However,
action is purely a counter measure. For example, when the opponent comes to grab
the enterprise’s market share, one action is ‘to counter-attack by lowering the price
of our products’; but ‘acceptance, no action taken’ is also an action.

In many publications of game theory, where strategy and action are unified, the
term ‘strategy’ is used because ‘action’ can be interpreted as a kind of simple strategy,
or as a strategy without preconditions.

During a game, each player usually has many strategies to choose from. Therefore
the strategies available for each player is called a strategy set. Generally si indicates
a chosen strategy of player i, whereas Si is the strategy set of player i.

The Cartesian product of the strategy sets of all the players S � Xi∈N Si is called
the strategy space. Thus, regarding all the players, if everyone has chosen a specific
strategy, then the strategy vector s � (s1, s2, . . . , si , . . . , sn) is a point in the strategy
space S � Xi∈N Si . Each point in the strategy space represents a play of the game.
This is formed after every player has chosen their own strategy, and as such is a
description of the chosen strategy of all the players.

In game theory there are two types of strategies. One is a pure strategy, and the
other is a mixed strategy.

A pure strategy refers to the strategy a player must choose out of his strategy
set when faced with all the strategies to choose from (i.e. his strategy set). In other
words, of the various strategies in the strategy set, it is either chosen by the player or
it is not chosen. Represented as that player’s strategy vector, it is:

Assume the strategy set of player i is Si � {
si1, si2, . . . , simi

}
, of this, mi is the

number of elements of the strategy set Si � {
si1, si2, . . . , simi

}
.

Again, suppose player i in choosing a strategy from his own strategy set, the
vector resulting from the probability in using each of the strategy in the strategy
set Si � {

si1, si2, . . . , simi

}
(abbreviated as player i’s strategy probability vector)

is Pi � {
pi1, pi2, . . . , pimi

}
, if Pi � {

pi1, pi2, . . . , pimi

}
meets the conditions
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pi j �
{
1, When si j is adopted

0, When si j is not adopted
, as well as

∑mi
j�1 pi j � 1, then the strategy

adopted by player i is a pure strategy.
In a game, if all the players adopt pure strategies, then the game is called a pure

strategy game.
Regarding the strategy probability vector of player i Pi � {

pi1, pi2, . . . , pimi

}
,

if Pi � {
pi1, pi2, . . . , pimi

}
, 0 ≤ pi j ≤ 1, and also

∑mi
j�1 pi j � 1, then the strategy

adopted by player i is a mixed strategy. In other words, in adopting a mixed strategy,
the probability of the player choosing any element in the strategy set is between 0
and 1 (including 0 and 1). In such situation, there is a certain amount of uncertainty
as to the strategy to be adopted by the player.

In a game, if all the players adopt mixed strategies, then the game is called amixed
strategy game.

The children’s game of ‘rock, paper, scissors’ is a kind of mixed strategy game.
There is a lot of uncertainty beforehand as to whether the other player will make the
sign for ‘rock’, ‘paper’ or ‘scissors’.

Broadly, pure strategy is a special case of mixed strategy; it occurs when the
probability pi j of the mixed strategy is the endpoint value (0 or 1).

The third essential element is payoff; some Chinese game publications also call it
benefit or payout. It refers to the reward received after the player has chosen a certain
strategy or action. It should be pointed out that some payoffs as expressed in functions
often use the ‘utility’ concept so as to more accurately reflect the true reward for the
player. In fact, since many payoffs are not economic indicators but some kind of
social payoffs, such as winning a war, enjoying some prestige, promotion at work,
etc., and since the players are under different circumstances and will feel differently
to the same reward, therefore the concept of ‘utility’ can more accurately express the
payoff of the game.

Generally speaking, the payoff for player i within the game’s payoff is
expressed as ui . Thus, the payoff for all players also from a payoff vector U �
(u1, u2, . . . , ui , . . . , un). It is actually an n-dimensional space called a payoff space.

With the three essential elements defined, a game can be expressed as G �
(N , S,U ). Among this, N is the set of players, S is the strategy space, and U is the
payoff space.

1.3 Non-cooperation Game Model Form

There are two forms when describing non-cooperative games—one is the matrix
form, the other is the extensive form.
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1.3.1 Representation of the Non-cooperative Game Matrix

The matrix is also called the payoff matrix. It shows, in table form, as a way to
describe non-cooperative games, the payoffs of the various players under different
combinations of strategies. Some publications of game theory sometimes call the
game matrix as the ‘normal-form game’.

The matrix is only suitable for describing the static game.
For a game with only two players, a 2-dimensional table form can be used, with

one player’s strategy runs horizontally (called the row strategy), because each row
in the table represents a strategy of that player. The other player’s strategy runs
vertically (called column strategy), because each column on the table represents a
strategy of that player. The corresponding payoffs from the various strategy profiles
for both players are written in the table. For instance, for the well-known Prisoner’s
Dilemma, the matrix is (Table 1.1):

Table 1.1 Prisoner’s dilemma matrix

B denies B confesses

A denies Serve a 1-year sentence, serve
a 1-year sentence

Serve a 10-year sentence,
immediately released

A confesses Immediately released, serve a
10-year sentence

Serve an 8-year sentence,
serve an 8-year sentence

This game is about the police arresting the suspects A and B. Because the police
interrogate the two separately, a non-cooperative game began between the two sus-
pects. The available behaviour sets for A and B are ‘deny, confess’. The payoffs are
in each box—A’s payoff (payout) is on the left, B’s payoff (payout) is on the right.
In Table 1.1, A’s strategy is the row, and B’s strategy is the column.

Table 1.2 is for 3×2 strategy game matrix.

Table 1.2 3×2 strategy game matrix

Player 2’s strategy 1 Player 2’s strategy 2

Player 1’s strategy 1 0, 3 2, 6

Player 1’s strategy 2 2, 1 4, 2

Player 1’s strategy 3 6, 2 3, 1

Regarding the number of tables in the matrix form, when there are two players,
there is only one table. If there are more than two players, then the number of tables
in the matrix will increase. If the number of players is n ≥ 3, the number of tables in
the matrix is t, then t � S3 × S4 × · · · Sn; among this, Si is the number of strategies
in the strategy set of player i. So, for n ≥ 3, the number of tables is the product, after
the third player, of the strategy number in each of the player’s strategy set. It can also



1.3 Non-cooperation Game Model Form 7

Table 1.3 a One of 4×3×2 strategy game matrices (when player 3 adopts strategy 1)

Player 2’s strategy 1 Player 2’s strategy 2 Player 2’s strategy 3

Player 1’s strategy 1 0, 3, 2 2, 6, 3 1, 0, 8

Player 1’s strategy 2 2, 1, 3 4, 2, 4 3, 1, 2

Player 1’s strategy 3 6, 2, 2 3, 1, 1 4, 0, 3

Player 1’s strategy 4 3, 1, 1 2, 2, 3 2, 3, 2

Table 1.3 b One of 4×3×2 strategy game matrices (when player 3 adopts strategy 2)

Player 2’s strategy 1 Player 2’s strategy 2 Player 2’s strategy 3

player 1’s strategy 1 2, 1, 0 1, 3, 2 2, 1, 3

player 1’s strategy 2 1, 2, 1 2, 2, 1 1, 2, 0

player 1’s strategy 3 3, 4, 2 0, 3, 2 3, 1, 2

player 1’s strategy 4 0, 5, 4 3, 1, 4 4, 2, 3

be treated as the number of Cartesian product ‘points’ from the strategy set of each
player after the third player.

For example, when player 1’s strategy is 4, player 2’s strategy is 3, player 3’s
strategy number is 2, then the game matrix is Table 1.3a and 1.3b.

As it shows in Table 1.3b, when player 1 adopts strategy 4, player 2 adopts strategy
3, player 3 adopts strategy 2, the payoff for the three players are respectively 4, 2
and 3 (see shaded area in Table 1.3b).

1.3.2 Representation of the Non-cooperative Game Extensive
Form

The extensive form game is called Extensive Game Mold in English. It is the main
form to describe the dynamic game. The representation of the extensive form game
is often called a game tree in some game theory publications.

In the extensive form nodes and edges form a branching out tree diagram. A
game tree usually has an initial node called the root of the game tree. Then it grows
continuously downwards or to the right. As each node grows, there is at least one
edge (usually there are at least two or more edges). Each node represents the point
in time where a certain player can choose a specific strategy from his own strategy
set. The number of edges from this node extending downwards or to the right is the
number of the strategies from that player’s strategy set at this point in time.

It should be pointed out that the nodes at the lowest or furthest point to the right
(whether it is furthest down or right is dependent on the direction of the game tree as
it grows) where edges stop extending are called terminal nodes. At a terminal node,
the player’s payoff is usually written down to indicate the end of the game.
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Fig. 1.1 The wife makes the first move in a husband and wife game

Figure 1.1 describes a young couple working away from home. The problem of
whether to return to the husband’s home or the wife’s home for the Chinese New
Year forms a dynamic game tree. The husband wants to spend the festival with his
family, while the wife wants to spend it with her family, but the husband and wife do
not want to celebrate the Chinese New Year separately (which is the worst outcome
for both). If both of them go to the wife’s home for the Chinese New Year, then the
wife’s payoff is 2, while the husband’s payoff is 1; if they both go to the husband’s
home for the Chinese New Year, then the wife’s payoff is 1, while the husband’s
payoff is 2; if they separate and go back to their own homes respectively, then the
payoff for both is 0. Figure 1.1 shows a dynamic game where the wife makes the
first move.

1.4 The Optimal Strategy (the Optimal Action)
and the Worst Strategy (the Worst Action)

1.4.1 The Optimal Strategy (the Optimal Action)

In non-cooperative games, sometimes this situation emerges for a player: Regardless
of what strategy (action) is chosen by other players, when one chooses a certain
strategy (action) the payoff is always bigger than that from one’s other strategies put
together. This strategy is that player’s optimal strategy.

Let’s assume that with regards to game G � (N , S,U ), S−i shows the n − 1
dimensional strategy space formed by subtracting player i’s strategy set Si from
the strategy set S � ×i∈N Si . s−i ∈ S−i represents any node in S−i (i.e. any strategy
profile that does not include player i’s strategy); s∗

i represents one of player i’s specific
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strategy;
{
Si − s∗

i

}
represents the strategy set formed by subtracting s∗

i from player
i’s strategy set. So for any si ∈ {

Si − s∗
i

}
there is:

u(s∗
i , s−i ) ≥ u(si , s−i )

Then s∗
i is player i’s optimal strategy.

For instance, in the Prisoner’s Dilemma, for A, the result of choosing to ‘confess’
is always better than choosing to ‘deny’ whether B chooses to ‘deny’ or ‘confess’.
Therefore to ‘confess’ is optimal strategy for A. Likewise, ‘confess’ is also B’s
optimal strategy.

1.4.2 The Worst Strategy (the Worst Action)

The worst strategy is opposite to optimal strategy. Sometimes this happens to one of
the players: Regardless of what strategy (action) is chosen by other players, when
one chooses a certain strategy (action) the payoff is always smaller than that from
one’s other strategies put together. This strategy is that player’s worst strategy.

Let’s assume that with regards to game G � (N , S,U ), S−i shows the n − 1
dimensional strategy space formed by subtracting player i’s strategy set Si from
strategy space S � ×i∈N Si . s−i ∈ S−i shows any node in S−i (i.e. any strategy
profile that does not include player i’s strategy). s−

i shows one of player i’s specific
strategy.

{
Si − s∗

i

}
shows player i’s strategy set Si formed without s−

i . So for any
si ∈ {

Si − s∗
i

}
there is:

u(s−
i , s−i ) ≤ u(si , s−i )

Then s∗
i is player i’s worst strategy.

For instance, in the Prisoner’s Dilemma, for A, whether B chooses to ‘deny’ or
‘confess’, if A chooses to ‘deny’, his outcome is always worse than choosing to
‘confess’. Therefore to ‘deny’ is the worst strategy for A. Likewise, ‘deny’ is also
B’s worst strategy (Table 1.1).

Table 1.1 Prisoner’s dilemma matrix

B denies B confesses

A denies Serve a 1-year sentence, serve
a 1-year sentence

Serve a 10-year sentence,
immediately released

A confesses Immediately released, serve a
10-year sentence

Serve an 8-year sentence,
serve an 8-year sentence
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1.4.3 Relative Optimal Strategy

Compared to relative optimal strategy, a lesser case iswith regards to a certain strategy
profile of other players (note that this is others’ strategy profile, i.e. not including
the player referred to), when the payoff of that player’s chosen strategy (action) is
always greater or equal to that of his any other strategy. This strategy is that player’s
optimal strategy with regards to the strategy profile of other players.

For instance, let us suppose that the game matrix of players A and B’s non-
cooperative game is as represented as in Table 1.4.

Table 1.5 indicates player A’s relative optimal strategy. It can be seen from this
table that for player A, if B chooses strategy 1, then A’s relative optimal strategy is
strategy 2; if B chooses strategy 2, then A’s relative optimal strategy is strategy 1, of
which the payoff from A’s relative optimal strategy is underlined in Table 1.5.

Table 1.6 indicates player B’s relative optimal strategy. For player B, if A chooses
strategy 1, then B’s relative optimal strategy is strategy 1; if A chooses strategy 2,
then B’s relative optimal strategy is strategy 2, of which the payoff from B’s relative
optimal strategy is underlined in Table 1.6.

Table 1.4 An example of a two-person non-cooperative game

B’s strategy 1 B’s strategy 2

A’s strategy 1 2, 3 5, 1

A’s strategy 2 3, 1 2, 4

Table 1.5 Player A’s relative optimal strategy

B’s strategy 1 B’s strategy 2

A’s strategy 1 2, 3 5, 1

A’s strategy 2 3, 1 2, 4

Table 1.6 Player B’s relative optimal strategy

B’s strategy 1 B’s strategy 2

A’s strategy 1 2, 3 5, 1

A’s strategy 2 3, 1 2, 4
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1.5 Nash Equilibrium and How to Find the Nash
Equilibrium

1.5.1 Nash Equilibrium

Nash Equilibrium is a very important term in non-cooperative games, named after
its proponent John Nash.

Nash Equilibrium is a stable combination of chosen strategy by all the players in a
non-cooperative game. Here, the strategy of each player is the relative optimal strat-
egy relative to other players’ strategy profile. In other words, when Nash Equilibrium
is reached, for any players, when other players’ current strategy remains unchanged,
if that player changes his own current strategy, it will lead to a reduced payoff for
himself (when his strategy is strictly optimal), or at least it will not lead to increased
payoff (when his strategy is weakly optimal).

Nash Equilibrium came from John Forbes Nash Jr.’s doctoral dissertation entitled
‘Non-cooperative Game’ (1950). This dissertation was published as two papers:
‘Equilibrium Points in N-person Games’ (1950), and ‘Non-cooperative Games’
(1951). These papers presented the generic solution that exists in non-cooperative
games of any number of players (what scholars discussed before Nash was basically
two-person zero-sum games). This solution was later called Nash Equilibrium.

The formal definition for Nash Equilibrium:
Let us suppose that s∗ � (s∗

1 , . . . , s
∗
n ) is a node in the strategy space S of the game

G � (N , S,U ) (i.e. the strategy profile of n players), if, for each player i there is:

ui (s
∗
1 , . . . , s

∗
i−1, s

∗
i , s

∗
i+1, . . . , s

∗
n ) ≥ ui (s

∗
1 , . . . , s

∗
i−1, si , s

∗
i+1, . . . , s

∗
n ),

then s∗ � (s∗
1 , . . . , s

∗
n ) is called a Nash Equilibrium of game G � (N , S,U ).

Note that in s∗ � (s∗
1 , . . . , s

∗
n ) the strategy of each of the player can be pure

strategy or mixed games.

Example 1.3 Prisoner’s Dilemma and Nash Equilibrium

For the convenience of comparison, all the payoffs in Table 1.1 of the Prisoner’s
Dilemma are represented in numbers (number of years in prison) (Table 1.7). Note
that the bigger the number, the longer the prison sentence, and therefore the two
players are seeking the smallest possible number.

There is only one pure strategy Nash Equilibrium in this game, i.e. (A confesses,
B confesses). It can be seen from Table 1.7 that, whether B chooses to ‘deny’ or ‘con-

Table 1.7 Prisoner’s
dilemma matrix in numbers

B denies B confesses

A denies 1, 1 10, 0

A confesses 0, 10 8, 8
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Table 1.8 Another example of Nash equilibrium

B strategy 1 B strategy 2

A strategy 1 4, 2 5, 6

A strategy 2 6, 8 3, 2

Table 1.4 An example of a two-person non-cooperative game

B’s strategy 1 B’s strategy 2

A’s strategy 1 2, 3 5, 1

A’s strategy 2 3, 1 2, 4

fess’, A’s optimal strategy is to always to ‘confess’, and as for B, likewise, whether
A chooses to ‘deny’ or to ‘confess’, B’s optimal strategy is always to ‘confess’.

Example 1.4 Another example of Nash Equilibrium

Table 1.8 is another example of a two-person non-cooperative game. In this example
we assume that the number for the payoff is the bigger the better. From Table 1.8 it
is found that there are two pure strategy Nash Equilibria: (A strategy 1, B strategy
2) and (A strategy 2, B strategy 1).

Example 1.5 No pure strategy Nash Equilibrium

It can be seen from Table 1.4 that if A chooses strategy 1, then B should choose
strategy 1; whereas if B has chosen strategy 1, then A will choose strategy 2. After A
has chosen strategy 2, B will choose strategy 2; after B has chosen strategy 2, A will
return to strategy 1. Thus begins a new cycle. Therefore the game shown in Table 1.4
does not contain a Nash Equilibrium of pure strategy.

From the several examples above, it can be seen that for a non-cooperative game
of limited players with limited strategy, it sometimes does not contain a pure strategy
Nash Equilibrium, sometimes contains only one Nash Equilibrium, sometimes more
than one Nash Equilibrium.

1.5.2 Nash’s Theorem and the Odd Number Theorem

The number of Nash Equilibrium differs in the three examples above. Therefore,
the natural question is, under normal circumstances for a non-cooperative game
G � (N , S,U ), how many Nash Equilibria are there?

Regarding this, Nash gave us the answer in 1950, namely the Nash’s Theorem.
Nash’s Theorem: In a situation where the number of players is limited and the

pure strategy set of each player is limited, if the pure strategy set of each player is
expanded as a mixed strategy set, then in the non-cooperative game G � (N , S,U )
there is at least one Nash Equilibrium.
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Nash’s Theorem states that with regards to non-cooperative games with limited
players, if mixed strategy is considered, then at least one Nash Equilibrium can be
found.

Further, Professor Robert Wilson proved in 1971 that: The number of Nash Equi-
librium is limited in almost all static games of limited strategy, and this number is
an odd number. This is the well-known odd number theorem.

1.6 How to Find the Nash Equilibrium in Static Games

1.6.1 How to Find Pure Strategy Nash Equilibrium—Method
of Underlining Relative Optimal Strategy

How do we find the Nash Equilibrium point if given a payoff matrix in a static game?
In Introduction to Game Theorywritten byWan Zeke and Li Jie, a very simple way of
finding the Nash Equilibrium was given—underlining the relative optimal strategy.

Aiming at each player, this method finds one’s relative optimal strategy given the
various strategy profiles of other players, and draws lines under the figure of one’s
own payoff as a result of one’s relative optimal strategy. In the payoff matrix, if in
a box the payoff figures of all the players have lines, then the players’ strategies in
that box form a Nash Equilibrium.

Clearly, underlining the relative optimal strategy is only suitable for finding pure
strategy Nash Equilibrium.

For instance for the non-cooperative game in Table 1.8, the steps to underline the
relative optimal strategy are:

Table 1.8 An instance of the
non-cooperative game

B strategy 1 B strategy 2

A strategy 1 4, 2 5, 6

A strategy 2 6, 8 3, 2

First, find A’s relative optimal strategy:
Let us suppose that B adopts strategy 1, then A’s relative optimal strategy is

strategy 2; if B adopts strategy 2, then A’s relative optimal strategy is strategy 1.
Thus in Table 1.8, the result of the lines are as in Table 1.9:

Table 1.9 Finding A’s
relative optimal strategy

B strategy 1 B strategy 2

A strategy 1 4, 2 5, 6

A strategy 2 6, 8 3, 2
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Table 1.10 Finding B’s
relative optimal strategy

B strategy 1 B strategy 2

A strategy 1 4, 2 5, 6

A strategy 2 6, 8 3, 2

Then, find B’s relative optimal strategy. Let us suppose that A adopts strategy 1,
thenB’s relative optimal strategy is strategy 2; if A adopts strategy 2, thenB’s optimal
strategy is strategy 1. Thus in Table 1.9, the result of the lines are as in Table 1.10.

Looking at Table 1.10 two Nash Equilibria can be observed: (strategy 1, strategy
2), (strategy 2, strategy 1).

1.6.2 Finding Mixed Strategy Nash Equilibrium—Extremum
Method

Drawing lines is only suitable for finding the pure strategy Nash Equilibrium. Then
what about finding the mixed strategy Nash Equilibrium?

Table 1.11 shows the non-cooperative game matrix of ‘rock, paper, scissors’
played by two children. In this, the payoff is 1 for the winner, −1 for the loser,
and 0 for both if it is a tie.

It can be seen from Table 1.11 that this is a zero-sum game, i.e. the sum of the
winnings by A and B is zero. This is a very competitive non-cooperative game,
namely that if one side obtains a payoff, the other side must lose.

Let’s first try to find the pure strategyNash Equilibrium by underlining the optimal
strategy. The lines are as shown in Table 1.12:

Looking at Table 1.12, it can be seen that none of the boxes contain any lines
under the payoff for the two sides in this game. Therefore there is no pure strategy
Nash Equilibrium in this game.

Table 1.11 Rock-paper-
scissors
game

B rock B scissors B paper

A rock 0, 0 1,−1 −1, 1

A scissors −1,1 0, 0 1,−1

A paper 1,−1 −1, 1 0,0

Table 1.12 Underlining the
optimal strategy

B rock B scissors B paper

A rock 0, 0 1,−1 −1,1

A scissors −1,1 0, 0 1,−1

A paper 1,−1 −1,1 0,0
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Let us now see if this game contains a mixed strategy Nash Equilibrium. For this,
let us suppose:

The probability of A plays ‘rock’, ‘scissors’, ‘paper’ in turn is:
p11, p12, 1 − (p11 + p12)

The probability of B plays ‘rock’, ‘scissors’, ‘paper’ in turn is: p21, p22, 1−(p21 +
p22)

When A adopts the strategy for ‘rock’, his expected payoff is:

u11 � 0 × p21 + 1 × p22 + (−1) × p23 � p22 − p23

When A adopts the strategy for ‘scissors’, his expected payoff is:

u12 � (−1) × p21 + 0 × p22 + 1 × p23 � −p21 + p23

When A adopts the strategy for ‘paper’, his expected payoff is:

u13 � 1 × p21 + (−1) × p22 + 0 × p23 � p21 − p22

When B adopts the strategy for ‘rock’, his expected payoff is:

u21 � 0 × p11 + 1 × p12 + (−1) × p13 � p12 − p13

When B adopts the strategy for ‘scissors’, his expected payoff is:

u22 � (−1) × p11 + 0 × p12 + 1 × p13 � −p11 + p13

When B adopts the strategy for ‘paper’, his expected payoff is:

u23 � 1 × p11 + (−1) × p12 + 0 × p13 � p11 − p12

Since it is supposed that both children use mixed strategy (i.e. sometimes ‘rock’,
sometimes ‘scissors’, sometimes ‘paper’, the choices for each child are the proba-
bility of playing these gestures), therefore:

A’s expected payoff is:

u1 � p11u11 + p12u12 + p13u13
� p11(p22 − p23) + p12(−p21 + p23) + p13(p21 − p22)

� p11(p22 − p23) + p12(−p21 + p23) + (1 − p11 − p12)(p21 − p22)

� p11(2p22 − p23 − p21) + p12(−2p21 + p23 + p22) + (p21 − p22)

B’s expected payoff is:

u2 � p21u21 + p22u22 + p23u23
� p21(p12 − p13) + p22(−p11 + p13) + (1 − p21 − p22)(p11 − p12)
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� p21(2p12 − p13 − p11) + p22(−2p11 + p13 + p12) + (p11 − p12)

Then, seek the optimal strategies for both A and B.
Let us first seek the partial derivatives of A’s andB’s payoff functions respectively:

∂u1
∂p11

� 2p22 − p23 − p21�2p22 − 1 + p22 + p21 − p21 � 3p22 − 1,

∂u1
∂p12

� −2p21 + p23 + p22 � −2p21 + 1 − p21 − p22 + p22 � 1 − 3p21

∂u2
∂p21

� 2p12 − p13 − p11 � 2p12 − 1 + p12 + p11 − p11 � 3p12 − 1

∂u2
∂p22

� −2p11 + p13 + p12 � −2p11 + 1 − p11 − p12 + p12 � 1 − 3p11

Solving the simultaneous equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1
∂p11

� 3p22 − 1 � 0

∂u1
∂p12

� 1 − 3p21 � 0

∂u2
∂p21

� 3p12 − 1 � 0

∂u2
∂p22

� 1 − 3p11 � 0

We have:

p11 � 1

3
, p12 � 1

3
, p13 � 1 − p11 − p12 � 1

3
;

p21 � 1

3
, p22 � 1

3
, p23 � 1 − p21 − p22 � 1

3

i.e. the Nash Equilibrium of the two children is [( 13 ,
1
3 ,

1
3 ), (

1
3 ,

1
3 ,

1
3 )], that is the

probability of A playing ‘rock’, ‘scissors’, ‘paper’ is one-third, and the probability
of B playing ‘rock’, ‘scissors’, ‘paper’ is also one-third.

Think carefully about this, and the Nash Equilibrium makes sense: So long as the
other player plays a certain gesture (such as the ‘rock’) with a greater probability, a
corresponding gesture can be found immediately (such as playing ‘paper’) in order
that one can win more frequently. Therefore optimal strategy is the same probability
for every gesture. Thus, the other player has no opportunity to gain the upper hand.
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1.6.3 Finding Nash Equilibrium for Games with Continuous
Strategies—Extremum Method

In static non-cooperative games, if a player’s strategy set is continuous, for example
strategy set Si is continuous, that is Si is made up of infinitely continuous strategies.
How do we find the Nash Equilibrium in such situations?

The extreme value method can be used to find the Nash Equilibrium.
Below, the Cournot model is used as an example to explain this method.
The Cournot model describes the process of how twomanufacturers who produce

a homogeneous product reach equilibrium in the game. The conditions are:
A certain product is manufactured by two enterprises 1 and 2; the production cost

of that product is zero.
The market demand price function is P � a − (q1 + q2). Within this, P is the

product’s selling price, a is the constant, q1 and q2 are the outputs of enterprises
1 and 2. The two enterprises both accurately understand the demand curve in that
market.

Under non-cooperative game conditions, the two enterprises will first estimate
the other’s output, and then determine their own output that will give the enterprise
the biggest profit.

More importantly, when the two enterprises decide on their own output, it must be
done simultaneously without the situation of one enterprise determining its output
before the other.

Let us suppose that:
q1 is enterprise 1’s output, q2 is enterprise 2’s output, u1 is enterprise 1’s profit,

u2 is enterprise 2’s profit, then:

u1 � q1P � q1[a − (q1 + q2)]

u2 � q2P � q2[a − (q1 + q2)]

Seek the optimal output for enterprise 1 and 2:

∂u1
∂q1

� a − (q1 + q2) − q1 � a − q2 − 2q1 � 0

∂u2
∂q2

� a − (q1 + q2) − q2 � a − q1 − 2q2 � 0

And the optimal output for enterprise 1 and 2 are:

q∗
1 � 1

2
(a − q2)

q∗
2 � 1

2
(a − q1)
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Everything being equal between the two enterprises, solving the above simulta-
neous equations will arrive at the Nash Equilibrium of the simultaneous decisions
on output by the two enterprises:

q∗
1 � q∗

2 � a

3

Therefore, the Nash Equilibrium in a Cournot game is: ( a3 ,
a
3 )

1.7 Determining the Outcome of a Game with Multiple
Nash Equilibria

In many situations, there are often many Nash Equilibria in a non-cooperative game.
In such situation, which Nash Equilibrium is the most likely outcome of the game?

In a situation of many Nash Equilibria, the most likely game outcome is actually
decided by the views of the game players, i.e. their principle in choosing the final
outcome.

1.7.1 Risk Control Principle

Risk control principle means that in choosing one’s strategy, the player will first
choose the strategy with the least risk to oneself. See the game shown below in
Table 1.13.

Table 1.13 shows the game as: the products manufactured by enterprises A and B
are complementary. The strategy for both sides can be divided into three situations:

If enterprises A and B act in concert with each other, i.e. the strategy profiles
of A and B are (A acts in concert, B acts in concert), then the payoffs for both are
great—the payoff is (100, 100).

However, if one enterprise acts in concert, the other enterprise does not, then
the enterprise that acts in concert will have the least payoff, only 10, whereas the
enterprise that does not act in concertwill have a higher payoff, up to 80. InTable 1.13,
(A acts in concert, B does not) and (A does not act in concert, B does) are both of
this kind of situation.

Table 1.13 An example of risk control

B acts in concert B does not act in concert

A acts in concert 100, 100 10, 80

A does not act in concert 80, 10 60, 60
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Another situation is when both sides adopt the strategy ‘not to act in concert’,
that is the strategy profile for both sides is (A does not act in concert, B does not act
in concert). Here, because both sides are prepared, the loss for both sides is smaller
than if one side acts in concert but the other side does not. Both sides can obtain 60
units of payoff.

Underlining the optimal strategy, it can be seen that there are two pure strategy
Nash Equilibria in this game; they are (A acts in concert, B acts in concert), and (A
does not act in concert, B does not act in concert).

In the Nash Equilibrium point (A acts in concert, B acts in concert), the payoff for
both sides is (100, 100); in the Nash Equilibrium point (A does not act in concert, B
does not act in concert), the payoff for both sides is (60, 60).

If the two sides can consult, it is very likely that theywill choose (A acts in concert,
B acts in concert), so that both sides can obtain the biggest payoff.

The problem is that this is a situation of non-cooperative game, that is, decisions
are made on the basis of neither side having confidence in the other side. In such
situation, from the point of view of preventing risks, (A acts in concert, B acts in
concert) is not likely to be the game’s outcome.

For example, A will consider: If I choose to ‘act in concert’, but the other side, for
some reason (such as misunderstanding, or being provoked by a third party, or lack
of resources within the enterprise, etc.) chooses to ‘not act in concert’, then my own
payoff will reduce sharply from the originally expected ‘100’ to ‘10’. If I choose to
‘not act in concert’, then in the worst case scenario, I am guaranteed ‘60’ units of
payoffs.

Similarly, B will also consider this problem.
Therefore, to control risks in this game, the most likely outcome is (A does not

act in concert, B does not act in concert).

1.7.2 The Principle of Pareto Optimum

The principle of Pareto optimummeans the measure by which the Nash Equilibrium
is chosen by the various players, considering only the payoffs.

Where there are many Nash Equilibria, if on one of the Nash Equilibrium, the
payoff for each player is bigger than one’s own on other Nash Equilibrium. Here,
if each player only considers payoff, then this Nash Equilibrium will be chosen
unanimously as the outcome of the game.

Still using the game example in Table 1.13, clearly for the two Nash Equilibria
points (A acts in concert, B acts in concert) and (A does not act in concert, B does
not act in concert), the Pareto optimal Nash Equilibrium is (A acts in concert, B acts
in concert).
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1.8 Nash Equilibrium in Dynamic Games

Seeking Nash Equilibrium in dynamic games is mainly via the rollback method, that
is, assuming that each player can observe and judge accurately his own payoff and
that for other players from the various strategy (action) portfolios, then starting from
the payoff at the end point of the game tree to make a judgement on the payoff for the
various players. From this a guess is made on the action chosen by the player before
this outcome was achieved, an action by which the player was seeking a maximum
payoff.

Below, we still use the husband and wife game where the female makes the first
move (Fig. 1.1) as an example, to explain the rollback process.

The specific process in a rollback:
Firstly if the wife has already chosen the ‘husband’s home’, let us see how the

husband will choose. From the top half of Fig. 1.1, it can be seen that the wife has
already chosen the ‘husband’s home’. If the husband then chooses the ‘husband’s
home’, then the payoff for the husband is ‘2’, and the wife gets ‘1’. However, if
the husband chooses the ‘wife’s home’, then the outcome is the husband goes to the
wife’s home to spend the Chinese NewYear, and the wife goes to the husband’s home
to spend the Chinese New Year. Neither side can go to their own parents’ house for
the Chinese New Year, nor can they be together. Therefore both the husband and
wife get ‘−1’. Thus, it can be seen that if the wife has already chosen to go to the
husband’s home for the Chinese New Year, then considering the payoff, the husband
will definitely choose the ‘husband’s home’. Now, having chosen the ‘husband’s
home’, the wife’s estimate of her own payoff is ‘1’.

If the wife has already chosen the ‘wife’s home’, let us see how the husband will
choose. From the bottom half of Fig. 1.1, it can be seen that the wife has already
chosen the ‘wife’s home’. If the husband chooses the ‘wife’s home’, the outcome is

Fig. 1.1 The wife makes the first move in a husband and wife game
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that husband and wife will spend the Chinese New Year with the wife’s family, then
the payoff for the husband is ‘1’, and for the wife is ‘2’. But if the husband persists
in choosing the ‘husband’s home’, then the outcome is that the husband goes back
to his home for the festival, and the wife goes back to her home; both sides can only
go to their own parents’ house for the Chinese New Year but cannot be together.
Therefore, the payoff offsets the loss, and both sides get ‘0’. Thus, it can be seen
that if the wife has already chosen to spend the Chinese New Year at her home, then
from the point of view of his own payoff, the husband will also choose the ‘wife’s
home’. Thus, for the wife, she can evaluate that, having chosen the ‘wife’s home’,
her own payoff is ‘2’.

To summarise the above situation: if the wife makes the first move, then she can
guess that if she chooses the ‘husband’s home’, her own payoff will be ‘1’; if she
chooses the ‘wife’s home’, then her own payoff will be ‘2’. Therefore, after a payoff
evaluation, the wife will choose the ‘wife’s home’.

This is the dynamic game Nash Equilibrium reached by rollback: The wife makes
the first move and she chooses the ‘wife’s home’; the husband makes a later move,
and he chooses the ‘wife’s home’.

Note that generally the dynamic game Nash Equilibrium is connected with the
order of the actions of the various players. Later in this book, it will be seen that
if the husband makes the first move, then the outcome for the Nash Equilibrium of
this game is the husband chooses the ‘husband’s home’, and the wife chooses the
‘husband’s home’.



Chapter 2
Low Efficiency Caused
by Non-cooperative Games

In non-cooperative games each player chooses the action which is most beneficial
to themselves (this is individual rationality), in the end achieving Nash Equilibrium.
Such action under individual rationality is often not as much as the payoff for each
player brought by collective rationality (action as guided by the payoff for all players).
That is, under some circumstances, individual rationality is often inconsistent with
collective rationality, and it destroys the action chosen under collective rationality.

2.1 Prisoner’s Dilemma

The Prisoner’s Dilemma is a classic case in games. It tells of the police arresting
two suspects A and B but without sufficient evidence to prosecute the two. Then the
police keep the suspects in separate cells, interrogate the two separately and give
them the following choices.

If you confess and plead guilty, whereas the other denies, then youwill be released
immediately, and the other is sentenced to 10 years imprisonment.

If both deny, then bothwill be sentenced to 1 year imprisonment due to insufficient
evidence.

If both confess, their crime is confirmed, but because of their confession they will
both be sentenced to 8 years imprisonment (Table 2.1).

Table 2.1 Prisoner’s dilemma

B denies B confesses

A denies Serve a 1-year sentence, serve
a 1-year sentence

Serve a 10-year sentence,
immediately released

A confesses Immediately released, serve a
10-year sentence

Serve an 8-year sentence,
serve an 8-year sentence

© China Economic Publishing House and Springer Nature Singapore Pte Ltd. 2018
S. Sun and N. Sun, Management Game Theory,
https://doi.org/10.1007/978-981-13-1062-1_2
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Thus, there are two actions for each prisoner: Deny or confess.
The character of this game is that no matter what the other chooses, the optimal

choice for each is always to confess: If the other denies and I choose to confess, I
will be released; choosing to deny I will be given a one year sentence; if the other
confesses and I choose to confess, I will be sentenced to 8 years; choosing to deny I
will be given a 10-year sentence.

Let us suppose that both suspects understand game theory and understand the
reasoning, and thus will both choose to confess. The outcome is that each will be
sentenced to 8 years.

On the contrary, if they cooperate, for instance they are trusted friends, and have
agreed beforehand that if arrested, they will choose to deny. If both sides abide by
their promise, then both will only serve a one-year sentence.

It can be seen from this classic game that non-cooperative games lead to low
efficiency.

2.2 Competition and Cooperation for Duopoly—The
Cournot Model and Cooperation Payoff

The Cournot model (this example is taken from Game Theory and Information
Economics by Zhang Weiying) describes the process of how two manufacturers
who produce a homogeneous product reach equilibrium for their output decisions in
the game. The conditions are:

A certain product is manufactured by two enterprises 1 and 2; the production cost
of that product is zero.

The function of the product’s market price is P � a − (q1 + q2). Within this,
P is the product’s selling price, a is the constant, and q1 and q2 are the output of
enterprises 1 and 2. The two enterprises also accurately understand the demand curve
in that market.

Under non-cooperative game conditions, the two enterprises will first estimate
the other’s output, and then determine their own output that will give themselves the
biggest profit.

More importantly, when the two enterprises decide on their own output, it must be
done simultaneously without the situation of one enterprise determining its output
before the other.

Let us suppose that:
q1 is enterprise 1’s output, q2 is enterprise 2’s output, u1 is enterprise 1’s profit,

and u2 is enterprise 2’s profit, then:

u1 � q1P � q1[a − (q1 + q2)]

u2 � q2P � q2[a − (q1 + q2)]

Seeking the optimal output for enterprise 1 and 2:
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∂u1
∂q1

� a − (q1 + q2) − q1 � a − q2 − 2q1 � 0

∂u2
∂q2

� a − (q1 + q2) − q2 � a − q1 − 2q2 � 0

Solving the optimal output for enterprise 1 and 2:

q∗
1 � 1

2
(a − q2)

q∗
2 � 1

2
(a − q1)

Everything being equal between the two enterprises, solving the above simulta-
neous equations will arrive at the Nash Equilibrium of the simultaneous decisions
on output by the two enterprises:

q1
∗ � q2

∗ � a

3

Here, the payoff for each enterprise is:

u1 � q1P � q1[a − (q1 + q2)]

� a

3

[
a −

(a
3
+
a

3

)]
� a

3
× a

3

� a2

9

u2 � a2

9

Sun Shaorong re-modelled this classic duopoly non-cooperative game into a
duopoly cooperative one. Let us suppose that the two enterprises reach a cooper-
ation agreement. The method for setting output is to first determine the reasonable
total output together by both enterprises. Then this total output is divided by 2, which
becomes the output for each enterprise.

As such, let us suppose that the total output for the two enterprises is q, and the
total payoff for the two enterprises is u.

Then the group’s payoff is:

u � qP � q[a − q]

Seeking the group’s biggest payoff, to take the derivative of the overall output and
make it 0, we have:

∂u

∂q
� [a − q] − q � 0



26 2 Low Efficiency Caused by Non-cooperative Games

The solution is:

q∗ � a

2

Here, since the two manufacturers are homogenous and thus under the same
conditions, the output for each is half of the total output:

q1
∗ � q2

∗ � q∗

2
� a

4

Here, the payoff for each enterprise is:

u1 � q1P � q1[a − (q1 + q2)]

� a

4

[
a −

(a
4
+
a

4

)]
� a

4
× a

2

� a2

8

u2 � a2

8

It can be seen that under the conditions put forward by Sun Shaorong in the
duopoly cooperation model, the payoff for both enterprises is higher than that of
Cournot’s model of non-cooperative game.

At present, China faces the problem of massive overcapacity. For example, there
are large surpluses in the production of steel, coal and construction materials etc.,
which also lead to low efficiency for the enterprises in these industries. Such serious
overcapacity can be explained in light of the game theory: the local enterprises make
decisions independently rather than reach a unified decision cooperatively. This is
the same reasoning as to why the output in a competitive duopoly is greater than that
in a cooperative situation.

2.3 The Irrational Equilibrium in the Tragedy
of the Commons and Sun Shaorong’s Fishing Model,
and How the Number of People in a Collective Affects
Efficiency

2.3.1 An Introduction to the Tragedy of the Commons
and Sun Shaorong’s Fishing Model

The Tragedy of the Commons is a well-known case of non-cooperative game by
multiple entities. This game is designed for institution problems by Hardin. Under
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institution of publicly owned production resources, and production payoff going to
individuals, equilibrium is achieved by non-cooperative games of the many entities
concerned, which leads to the depletion of publicly owned resources and reduces the
payoff for everybody. Hardin has proved that the payoff for each individual can be
much higher than in non-cooperative games, if the many entities are united under a
leader who coordinates the production actions for everybody in their interests. This
in fact is also the problem of low efficiency in non-cooperative games.

In Hardin’s model, each herdsman’s number of sheep grazing in the field is the
variable of the action in the game. The basic idea is that if each herdsman has a large
number of sheep, then the total number of sheep in the field is very large, leading
to the field being inadequate in supplying the needs for such large number of sheep,
which then causes a drop in the value of each sheep (such as the sheep gets thinner).
Of course too few sheep can also lead to reduced payoff. Therefore, the problem
facing each herdsman is how many sheep he should keep in order to maximise his
own payoff.

In Hardin’s model, the direct object for consideration is the ‘value of the sheep’,
which is indirectly related to the problem of depletion of the production resource (the
field) as a result of a system of publicly owned production resources but with payoffs
going to individuals. For this, Sun Shaorong has re-designed a ‘fishing model’ for
international waters (Sun Shaorong, Journal of Systems & Administration, 2008
issue 2). This model reflects a ‘natural reality’, which is that all fishery resources in
international waters has no owner (publicly owned), but the catch each time goes to
the fishermen. In this model, the main variable is the frequency of fishing of each
fisherman. In a non-cooperative game there are too many individuals (fishermen)
carrying out unrestrained fishing at high frequencies, leading to a reduction of the
fishery resources, which causes a reduced catch each time for the fishermen, and
which leads to the problem of low efficiency in a non-cooperative game between the
fishermen.

Furthermore, Sun Shaorong demonstrated how efficiency is affected by the num-
ber of fishermen in non-cooperative games. It is pointed out that in a non-cooperative
game situation, the more the fishermen, the lower the efficiency. Furthermore from
this, the limit value for efficiency loss, or irrational equilibrium, is reachedwhen there
is an unlimited number of fishermen in a non-cooperative game. At the same time,
the importance of taxation in managing low efficiency caused by non-cooperative
games is pointed out. Taxation can lower the frequency of fishing by the fishermen,
thus acting to protect the resources and indirectly raising the fishermen’s payoff;
taxation does not just redistribute income as said in economics books.

2.3.2 Sun Shaorong’s Fishing Model

Let us suppose that there are n fishermen fishing in public fishery. The ability of each
fisherman is the same. The payoff each time for each fisherman is G. It is proportional
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Fig. 2.1 Relationship curve of payoff G per person per catch and frequency of fishing B

to the fish stocks at the time. B is the number of times all fishermen go fishing (i.e.
frequency of fishing) per unit of time (such as a month).

Since the payoff G for each fisherman’s catch each time is proportional to the
fish stocks in the sea, while the fish stock in the sea decreases with the number of
fisherman for each unit of time B (i.e. frequency of fishing) in that sea area. Therefore
the payoff G for each fisherman will reduce each time with the frequency of fishing
B. However, this reduction is not linear.

When B is very small, there is a lot of fish in the sea, and so reproduction is strong.
When B starts to increase, the speed of decrease of fish in the sea is not very fast (the
left-hand portion in Fig. 2.1).

As B continues to increase, there is less and less fish in the sea, that is, the ability
of the fish to replenish—its ability to reproduce is much reduced compared to earlier
times. Therefore, the fish stocks in the sea decrease quickly (the portion between a
and b in Fig. 2.1).

In the end, when there is very little fish in the sea, the fishermen’s catch gets very
little each time. Therefore the decrease of fish stocks at this time becomes fairly slow
as the number of fishing increases within each time unit (the right-hand portion in
Fig. 2.1 b).

In summary, the relationship between payoff G per fisherman per catch and the
frequency of fishing B is a curve as shown in Fig. 2.1.

From Fig. 2.1 it can be seen that G is the decreasing function of B. Thus, the
following relationship exists:

dG

dB
< 0

For this fishing problem, there is a game relationship between n fisher-
men. The action of each fisherman is to determine his own number of fishing
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within each time unit given n fishermen are fishing at the same time, that is one’s
own frequency of fishing to maximise one’s payoff.

Let us suppose that when the n fishermen’s game reaches Nash Equilibrium, the
frequency of fishing is B∗, then:

B∗ �
n∑

i�1

bi

In this formula, bi indicates fisherman i’s number of fishing in the unit of time,
i.e. fisherman i’s frequency of fishing.

When a fisherman’s frequency of fishing is bi , the payoff is:

ui � G(B)bi − cbi (2.1)

Of this,G(B) is the earning for each fisherman in a single catch (i.e. payoff before
cost deduction); it is the decreasing function of B which is the frequency of fishing
in that sea area; c is the production cost per person per catch.

In order to seek the optimal frequency of fishing bi ∗ of each fisherman, we take
the derivative of bi

u′
i � G ′(B)bi + G(B) − c

When fisherman i’s frequency of fishing is the optimum value bi
∗, he achieves

the biggest payoff ui ∗. Here u′
i � 0, that is

G(B) + bi
∗G ′(B) � c (2.2)

When every fisherman achieves his optimal frequency of fishing, the total fre-
quency of fishing is B*, that is B∗ � [b1∗, b2∗, · · · , bi ∗, · · · bn∗]. Here no fish-
erman will unilaterally change his own frequency of fishing, therefore B∗ �
[b1∗, b2∗, · · · , bi ∗, · · · bn∗] is the Nash Equilibrium point.

The process of that game is completely symmetrical, and the condition of each
fisherman is the same, therefore

b1
∗ � b2

∗ � · · · � bi
∗ � · · · � bn

∗ � B∗

n

Therefore, to satisfy the conditions for the total frequency of fishing B* under
Nash Equilibrium (i.e. to seek a formula to solve B*) is:

G(B∗) +
B∗

n
G

′
(B∗) � c (2.3)

In Formula (2.3), n is the total number of fishermen, c is the production cost
per fisherman per catch. G(B∗) is the increase of a fisherman’s payoff brought by
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an increase to fish each time in unit time when the frequency of fishing for all the
fishermen as a whole is B*. B∗

n is the frequency of fishing for each fisherman when
the total frequency of fishing is B*. B∗

n G
′
(B∗) is when the total frequency of fishing

is B*, if each fisherman decides to increase fishing by once per unit of time, the total
value of his reduced payoff resulting from it for himself in that unit of time for all
the B∗

n of fishing (G
′
(B∗) < 0).

The physical significance of (2.3) is:
As every fisherman knows the payoff G(B) for each catch and the total frequency

of fishing B of all the fishermen is of an inverse relationship, let us suppose that
in that group (assuming that there is only one group in the whole international sea)
the frequency of fishing for each fisherman is B

n . Each fisherman decides on his own
frequency of fishing (i.e. decide on the value of B

n ). WhenG(B), the increased payoff
for a fisherman brought by one fishing added by himself in each unit of time, is equal
to the sumof B

n G
′
(B), his own reduced payoffwithin that unit of time (each fisherman

will fish B
n times per unit of time) resulted from that increased fishing (causes increase

in frequency of fishing, which in turn causes decrease in payoff each time), and c,
increased production cost caused by the additional fishing, increased frequency of
fishing individually will not increase payoff. It is at this time that each fisherman
will decide not to increase his own frequency of fishing. By this time, B is stable on
a certain value of B*, so that the quantity of fish will also be stable at certain level.
Whereas the frequency of fishing of each fisherman is stable on bi

∗ � B∗
n .

bi ∗ is a derivative of ui from bi , that is to seek optimal frequency of fishing from
the point of view of individual fishermen, therefore what is achieved here is the
equilibrium of frequency of fishing B∗ which is the Nash Equilibrium point reached
with individual rationality.

2.3.3 Sun Shaorong’s Non-rational Behaviour Equilibrium
Point B0

∗

The problem is, for a real game with many fishermen, the fishermen in fact cannot
know the precise relationship between frequency of fishing and payoff (i.e. the 2.1
formula). Therefore it is difficult to determine for oneself the optimal frequency of
fishing.Undermost circumstances for the fishermen, an individual fisherman actually
does not know how reduced fishing resources relate to his own fishing behaviour,
but what he can see is the payoff and production cost for himself brought by one
additional fishing.

Therefore the frequency of fishing as judged and determined by each fisherman
himself generally will not reach stability at the Nash Equilibrium point as given in
Formula (2.3). If, according to economics theory, people will not enter a sector only
when payoff equals cost in a competitive situation, then fishermen will only really
stop increasing the frequency of fishing when the fishery resources are reduced to
such an extent that the payoff for each fishing equals the cost. That is
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G(B0
∗) � c (2.4)

Compared with (2.3) formula, in (2.4) formula the negative item B∗
n G

′
(B∗) is

missing on the left, whereas G(B) is a decreasing function, so with the increase in
frequency of fishing B, the payoff G(B) for each catch will decrease. Therefore,
where C is the same, B0

∗ will be greater than the Nash Equilibrium point B* in
Formula (2.3).

That is

B0
∗ > B∗ (2.5)

Therefore, for a non-cooperative, competitive fishing game with many fishermen,
the fishermen’s actual frequency of fishing ismuch greater than the optimal frequency
of fishing B* as inferred by individual rationality. In fact, B* is an idealised game
outcome by individual rational judgement and when information is complete, while
in Formula (2.4), B0

∗ is a game outcome not of an ideal situation, but from incomplete
judgement or information.

From Formula (2.4) the equilibrium point B0
∗ is obtained independently by Pro-

fessor Sun Shaorong; it was not obtained from Hardin’s Tragedy of the Commons
model. Professor Sun Shaorong calls B0

∗ the irrational equilibrium point, so as to
differentiate it fromHardin’s individual rationality equilibrium point B*. The signifi-
cance of this is that B0

∗ is different from Nash Equilibrium, being a new equilibrium
point.

2.3.4 Collective Rationality Equilibrium Point B∗∗

If n fishermen are seen as a collective, to maximise benefits, the optimal first-order
condition is:

G(B∗∗) + B∗∗G
′
(B∗∗) � c (2.6)

In the formula c is the cost per person per catch when all the fishermen within
a unit of time carry out fishing, that is when B** is the number of the total actions
of all fishermen. When the intensity of the action is B**, for each additional catch
in each unit of time, the increase in the number of catches in the unit of time leads
to reduced payoff for each catch, which leads to a reduced total value B∗∗G ′

(B∗)
for B** catches. G(B∗∗) is the increased payoff per catch when the intensity of the
action is B**.

Therefore, the physical significance of Formula (2.6) is:
The fishermen’s collective is a unified decision-making body. This body knows

the relationship between the payoff G(B) per catch and the total number of fishing
B by all the fishermen, which is the mathematical model (2.1). The fishermen’s
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collective decide on their frequency of fishing in the unit of time (i.e. decide on the
value of B). When G(B), the increased payoff for the collective brought by one
fishing added in each unit of time, is equal to the sum of BG

′
(B), the collective’s

reduced payoff within that unit of time (the collective will fish B times per unit of
time) resulted from that increased fishing (causes increase in total times of fishing,
which in turn causes decrease in payoff each time), and c, increased production cost
caused by the additional fishing, the increased number of fishing by now will not
increase payoff for the collective. The collective will then decide not to increase the
number of fishing. By this time, B is stable on a certain value of B∗∗, so that the
quantity of fish will also be stable at a certain level.

B∗∗ is called the collective rationality equilibrium point, abbreviated as collective
equilibrium.

2.3.5 Comparisons of Non-rational Equilibrium Point B0
∗,

Individual Rationality Nash Equilibrium Point B∗,
and Collective Rationality Equilibrium Point B∗∗

According to Formula (2.5), we already have:

B0
∗ > B∗

Therefore comparing B∗ and B∗∗ will give us the relationship between the three.
Observing conditions for Nash Equilibrium (2.3)

G(B∗) +
B∗

n
G

′
(B∗∗) � c.

And conditions for a collective optimal point of equilibrium (2.6)

G(B∗∗) + B∗∗G
′
(B∗∗) � c

For an individual, the condition for equilibrium is:

G(B) − c � B

n
G

′
(B)

The payoff from an additional fishing minus the cost of that fishing, equals the
sum of reduced catch volume each time for the individual in the unit of time resulted
from that additional fishing.

For the collective, the condition for equilibrium is:

G(B) − c � BG
′
(B)
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The payoff from an additional fishing minus the cost of that fishing, equals the
sum of reduced catch volume each time for the collective in the unit of time resulted
from that additional fishing.

Given that additional number of fishing in a unit of time leads to reduced payoff
for each fishing, since the number of fishing for a collective in a unit of time is bigger
than that for an individual, with the same frequency of fishing B, for each additional
number of fishing, the scale of payoff reduction is bigger for the collective than it is
for the individual.

In other words, the payoff for an additional number of fishing allowable at equi-
librium as a decision by a unified collective G(B∗∗) must be bigger than that decided
by an individual G(B∗).

That is G(B∗∗) > B∗G(B∗).
At the same time, G

′
(B) < 0 therefore G(B) is a decreasing function, which

gives:

B∗∗ < B∗

Combining the results (2.5), we have:

B∗∗ < B∗ < B∗
0 (2.7)

That is to say, when n as the number of individuals that compose a collective is
large enough:

Collective rationality equilibrium point B∗∗, which maximises the payoff for the
whole collective, is the minimum, that is the smallest number of fishing. If at this
point equilibrium is achieved (i.e. the number of fishing does not increase), the highest
payoff for each member can be achieved.

Based on the fact that individual rational Nash Equilibrium B∗ is bigger than the
collective benefits equilibrium point B∗∗, if equilibrium is achieved at this point, (i.e.
the number of fishing does not increase), the payoff for each member is not as high
as the payoff for the collective at the optimal equilibrium point B∗∗.

Since an individual’s judgement arrived at instinctively not to increase the num-
ber of fishing in a unit of time, i.e. irrational equilibrium B0

∗ is bigger than Nash
Equilibrium point B∗, it is much bigger than the number of fishing in a unit of time
B∗∗ that maximises collective benefits. In other words, if there is no interference by
a manager to represent the interests of the collective, the intensity of action for equi-
librium achieved by individual instinctive judgement far exceeds that of collective
rationality equilibrium point.
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2.3.6 True Equilibrium Point—Depending on Society’s
Average Profit

If we take into account the reality of the flow of capital and labour that exists between
the different sectors in society, then whatever the sector (including fishing) is, people
will only stop entering the sector when the payoff minus cost (i.e. net payoff) in that
sector equals society’s average profit. Therefore, fishermen will truly stop increasing
the frequency of fishing when the fishery resources are reduced to the extent that
the payoff minus the cost for each action in fishing leaves a net payoff that equals
society’s average profit.

G(B00
∗) − c � K (2.8)

In the above formula, K is society’s average profit, B00
∗ is the equilibrium point

at which the payoff from fishing equals society’s average profit.
Thus, there are four possible equilibrium points in the fishing problem. As soci-

ety’s average profit differs, there are two scenarios in the possible relationship
between them:

B∗∗ < B∗ < B00
∗ < B∗

0 (2.9)

B∗∗ < B00
∗ < B∗ < B∗

0 (2.10)

Of these, Formula (2.10) is a scenario where society’s average profit is relatively
high, whereas Formula (2.9) is a scenario where society’s average profit is relatively
low.

2.3.7 The Influence of the Quantity of Collective (n)
on Equilibrium Point

Now let us consider the effect the number ofmembers in a collective has on individual
rationality equilibrium point B∗.

For this, we re-examine the Nash Equilibrium formula of individual games.

G(B∗) +
B

n

∗
G ′(B∗) � c (2.3)

Regarding the effect the number of members n in a collective has on the individual
rationality equilibrium point, the conclusion mainly is as follows.
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2.3.7.1 The Bigger n Is, the Further Nash Equilibrium Leans Towards
Over Equilibrium

Looking at the Nash Equilibrium Formula (2.3), it can be seen that if there are many
members in the collective, i.e. as n gets towards infinity, Formula (2.3) becomes
Formula (2.4):

G(B∗
0 ) � c (2.4)

Namely the formula for Nash Equilibrium of individual rationality becomes
the individual irrational equilibrium formula. That is, as the number of members
increases in a collective, even if individuals can make judgement based on individual
rationality, the equilibrium point will still lean towards individual irrational excessive
action. This means that for collectives without the restraint of managers, the more
the members, the more serious the depletion and damage to resources.

2.3.7.2 The Smaller n Is, the Further Nash Equilibrium Leans Towards
Collective Rationality Equilibrium

Looking at the Nash Equilibrium Formula (2.3) for individual games, it can be seen
that if n becomes small, Nash Equilibrium based on individual rationality will change
towards collective rationality equilibrium. In particular, when n equals 1, the original
Nash Equilibrium completely becomes collective rationality equilibrium.

G(B∗∗) + B∗∗G
′
(B∗∗) � c (2.6)

That is, for collectives without the restraint of managers, the fewer the mem-
bers, the less severe the depletion and damage to resources. This suggests that if
the resources can be divided, then the equilibrium in a system of privately owned
resources with profit-seeking behaviour by many members is the same as that in a
system with publicly owned resources to maximise collective interests.



Chapter 3
Free Ride, Adverse Selection, Moral
Hazard and Separating Equilibrium

3.1 Free Ride Under Conditions of Symmetrical
Information

A free rider refers to someone who enjoys others’ outcome without exerting efforts.
To exert efforts implies a cost is involved, so to free ride implies there is no cost to
oneself for hard work but a free rider can enjoy the fruits of others who paid the cost
for hard work. Therefore to free ride is actually a behaviour that takes advantage of
others. Free ride is a classic game behaviour.

The Theory of free ride comes from the book The Logic of Collective Action:
PublicGoods and the Theory ofGroups (published in 1965) by the economistMancur
Olson.

Example 3.1 The boxed pigs game

The ‘boxed pigs’ game is a classic case in game theory put forward by John Nash in
1950. The content of the game is: There is one big pig and one small pig in a pigsty.
At one end of the rectangular pigsty is a trough, and at the other end is a switch that
controls the feed in the trough. Press the switch and 10 units of pig feed will get in
the trough.

It takes a certain amount of time to return to the trough from where the switch is,
therefore:

If the big pig goes to press the switch, the small pig waits by the trough, then the
small pig, which eats slowly but ahead of the big pig, can eat 4 units of feed. The big
pig can eat 6 units of feed.

If the two pigs go together to press the switch, then they both reach the trough at
the same time. The result is that as the big pig eats fast, it can eat 7 units of feed,
whereas the small pig can only have 3 units of feed.

If the small pig goes to press the switch, the big pig waits by the trough, then the
big pig can eat up all 10 units of feed. By the time the small pig reaches the trough,
there is no pig feed left.
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Of course, if neither the big pig nor the small pig goes to press the switch but wait
by the trough, then there is not any feed in the trough, so that the feed for both small
pig and big pig is 0 (Table 3.1).

In this game the strong Nash Equilibrium is the big pig pressing the switch while
the small pig waiting by the trough. Here, the big pig can eat 6 units of feed whereas
the small pig can eat 4 units.

The situation of the boxed pigs game achieving equilibrium point (big pig presses
switch, small pigwaits) is that of a small enterprise taking a free ride, becausewithout
contributing labour it enjoys the fruits from the big enterprise.

The boxed pigs game is common in business sectors. For instance it is usually
small enterprises that wait for big enterprises to develop the technologies andmarket.
When the market matures, the strategy of small enterprises is to follow and imitate.

In product sales many enterprises let weak products follow strong products to
leverage for ‘distribution’. In fact this is a kind of free riding behaviour. ‘Magic yak
bonemarrowgranules’ free ridingwith ‘Biyang bone strengthening yak bonemarrow
powder’ is an example. ‘Biyang bone strengthening yak bone marrow powder’ has
bombarded television and newspaper media with intensive advertising. In the end,
‘Magic yak’ adopts the strategy to follow ‘Biyang’ closely: where there is ‘Biyang
yak’, there is ‘Magic yak’, and ‘Magic yak’ thus got very good sales performance.
In appearance the packaging of ‘Magic yak’ is almost the same as ‘Biyang yak’, but
is slightly cheaper.

In management, ‘free riding’ is often harmful—it weakens the motive for hard
work.

For instance, China experienced a period of equal distribution, that is, the salary
for each member of staff in an enterprise was fixed—no more for working harder
and no less for working less hard. The result was to seriously dampen the enthusiasm
of the hard workers and encouraged the lazy. And over time, the hard workers also
became lazy.

Table 3.1 Boxed pigs game payoff matrix

Small pig

Press switch wait

Big pig Press switch 7, 3 6, 4

Wait 10, 0 0, 0
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3.2 Asymmetric Information and Adverse Selection

3.2.1 Asymmetric Information

Asymmetric information in a game means the information possessed by the two par-
ties is different. In real life asymmetric information is a very common phenomenon.
In such situation, the party with more information is often at an advantage.

For instance during trading, buyers and sellers often possess different information.
In some situations, the seller has more information than the buyer with regards to
the goods to be traded, for example in selling used cars, the seller knows the car’s
performance best. In some other situations, the buyer has more information than the
seller, for example in the medical insurance market, the buyer’s understanding of his
own health conditions is better.

If there is asymmetric information in trading games, it can cause adverse selection
before the buyer and seller sign the contract (or sign the agreement), and moral risk
after the buyer and seller have signed the contract.

3.2.2 Adverse Selection

In competitive games, if information is complete and symmetrical, the result in
competitive games should be ‘survival of the fittest’. In trading, good quality wins
whereas poor quality goods will be eliminated from the market. However in situ-
ations of asymmetric information, because the party with poor information cannot
accurately judge the effect of his own actions in the game (such as whether to buy
product A or product B), the situation of ‘elimination of the best and survival of the
poor’ often happens in competitive games which is contrary to reason.

Asymmetric information causing adverse selection makes many basic economic
principles ineffectual. Apart from the ‘survival of the fittest’ principle in competitive
markets, law of price will also become invalid. According to the law of price, if
the price of certain product is lowered, that product’s market demand will increase;
by contrast, if that product’s price is raised, its demand will decrease. However, as
consumers have little product information, when its price is lowered, consumers are
reluctant to buy that product because they worry about its quality. By contrast, in
raising the product price, consumers may be willing to buy because they may believe
that the product is of high quality.

Kenneth Joseph Arrow in 1963 began to study asymmetric information that leads
to the phenomenon of adverse selection. Later, in 1970 George Akerlof published
the thesis ‘TheMarket for Lemons: Quality Uncertainty and theMarket Mechanism’
which further studied this, and in 2001 was awarded the Nobel Prize in economics.

GeorgeAkerlof’s theory on adverse selection is called the ‘lemonsmarketmodel’.
From the perspective of trading in ‘lemon cars’ as an example, he explained the
problem of adverse selection. Lemon is a fruit that appears nice but is bitter inside,
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so inAmerican slang ‘lemons’ are goodswith defective quality that cannot be noticed
from the outside.

George Akerlof wrote that in themarket for used cars, a seller generally knows the
quality of the car, while a buyer generally does not know but he knows the average
quality in the used car market. In such situation, to avoid risks in all used cars, the
buyer, based on his understanding of all used cars of average quality, is onlywilling to
give the seller a medium price (this is game behaviour). As such, sellers of those used
cars of better than average quality suffer a loss. Therefore those ‘good’ cars of quality
above average level are withdrawn from the market. The result is that with good cars
withdrawn, the average quality drops in the second-hand car market. As a result the
price quoted by buyers continues to drop, based on the declining average quality.
As this repeats, in the end all the cars in the market are of the ‘worst quality’. This
process is due to the existence of asymmetric information in games, which gradually
push good cars out of the market. But according to the efficient market hypothesis,
competition should result in good cars pushing bad cars out of the market. Since this
phenomenon is contrary to the conclusion of the efficient market theory, this process
is called adverse selection.

The Akerlof model is:

Assume that there are only two types of used cars in the market, one is the high
quality cars worth 6000 US dollars, and the other is low quality cars only worth 2000
US dollars.

Buyers do not know the specific quality of each car, but they know that the average
quality car in the used car market is 4000 US dollars. Therefore, the highest price the
buyer is prepared to pay is 4000 US dollars. Thus, sellers of high quality cars worth
6000 US dollars suffer a loss. Therefore only sellers with low quality cars worth
2000 US dollars are left in the market.

When the buyer knows that high quality cars are withdrawn, he knows that the
cars left in the market must be of low quality worth only 2000 US dollars, therefore
the price he now quotes is changed to 2000 US dollars. This price is the equilibrium
as a result of the game by the buyers and sellers in the used car market. The game
leads to the result that only low quality used cars are left in the market; high quality
cars have been pushed out. Thus, information symmetry causes ‘market failure’, that
is ‘survival of the fittest’ has been reversed.

In recent years electronic commerce develops rapidly but the problem of asym-
metric information is more acute, leading to an evenmore serious problem of adverse
selection. This is because on the Internet, it is even more difficult to verify product
quality, and the vendor’s real identity is even more difficult to know.

Asymmetric information that leads to adverse selection also exists widely in the
area of human resources. For instance, among company employees adverse selection
is frequent. Generally speaking a companymanager does not know for sure the ability
of each member of staff. In such situation, he pays them an average salary according
to the average ability of employees. In such situation, employees who are more
able feel that they have lost out, and so choose to leave the company, whereas less
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able employees feel that it is ‘worthwhile’ and are willing to stay in the company.
Gradually, more able employees are being pushed out of the company, basically
leaving behind less able ones.

In Akerlof’s model, the seller is the party with superior information. But in the
insurance sector, the buyer is often the party with superior information. For instance,
in the car insurance market, buyers know more about their own driving habits and
probability of claims than the insurance company. Insurance companies cannot dif-
ferentiate between high risk and low risk customers, and as such they charge each
customer the same insurance premium, which is determined by the average proba-
bility for accidents. In such situation, only those who are accident prone will actively
buy insurance, whereas those drivers who are more careful feel that buying insurance
is not worthwhile, and so are not keen to buy insurance. In such situation, most of
the customers who buy insurance are high risk people, whereas low risk customers
gradually withdraw from the market. This process will gradually lead to a higher
probability for claims. For the company, this is adverse selection.

The significance of the theories of asymmetric information and adverse selection
is that they reveal certain flaws that exist in the theory of free market. During the
times of Adam Smith, the ‘invisible hand’ of the market was much admired. Main-
stream economic theory advocated a self-regulated free market, and opposed any
state interference in the market. In reality, asymmetric information is very common
in society and it is this kind of situation which hinders social justice and affects the
efficiency in the market allocation of resources.

3.2.3 Ways to Solve Adverse Selection

In order to solve the problem of adverse selection that causes market failure, many
approaches emerge. The common feature of these approaches is that they are all
based on the improvement of information asymmetry.

One is to record and provide evaluation by previous customers. Clearly, customer
evaluation is higher for good quality products, or the probability of customers scoring
‘good’ is higher. This method of recording customer evaluation is widely used in
e-commerce. Also, some products that become good quality brands are actually a
result of customer evaluations. This information can provide reference for subsequent
buyers.

Secondly, manufacturers provide quality assurance, maintenance, returns, etc., to
distinguish their own good quality products from the inferior ones.

Thirdly, quality certificates or indicators, etc. can be issued by a third party (such as
the government or industry associations). In such situation, the guarantor for quality
has shifted from the manufacturer to a more authoritative and trusted third party such
as a government, which clearly makes the buyer feel that the quality is more reliable.

In the human resources market, academic and the various qualification certificates
awarded by education institutions and examination bodies are an effective approach
for improving the problem of asymmetric information in this market. With these
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certificates, organisations recruiting can evaluate the ability and professional levels
of these job applicants. In this respect, according to Michael Spence the more able
can obtain qualifications at a lower cost (such as time and effort in studying), whereas
those of lower ability must obtain qualifications with a very high cost. Therefore it
is more ‘economical’ to go to university only for those who are highly capable.
Thus, academic qualifications are information in the labour market. Organisations
can evaluate the applicant’s ability using this information, and therefore to improve
the problem of asymmetric information in the labour market. According to Spence,
certificates of qualifications can be regarded as proactive signals from job applicants
to improve the problem of asymmetric information. Therefore his theory is called
the ‘signalling model’.

Fourthly, information seeking. This mainly refers to activities of the party with
inferior information, such as visits, surveys, etc. so as to increase the information
they hold. Clearly, thismethod for improving asymmetric information is rather costly
for the individual in the game.

In order to prevent ‘adverse selection’ companies generally strengthen their per-
formance appraisal for individual staff. Via performance-related pay, employees of
high capability get high rewards, and employees of low capability get low rewards.
This method is in fact also an improvement for asymmetric information by seeking
information, and thus to prevent the phenomenon of adverse selection. The problem
is that for certain posts, the individual performance of employees are hard to appraise.
The problem of adverse selection in this type of posts is still difficult to solve.

3.3 Separating Equilibrium

Apart from the above four methods for solving the problem of adverse selection,
Joseph Stiglitz also proposed the separating equilibriummodel. This model is mainly
established for the study of asymmetric information in games concerning how the
party with weak information differentiates the side with strong information. Joseph
Stiglitz mainly studied the phenomenon of asymmetric information in the insurance
market and the credit market, and proposed the separating equilibrium model.

The reason for the existence in the insurancemarket of adverse selection is mainly
due to the fact that the insurance company does not know the extent of risk of the
policyholders. When the insurance premium is generally of average price, people
of low risks feel that buying insurance is not worthwhile, and so withdraw from
the insurance market. However, people of high risks are willing to buy insurance
as they feel it worthwhile. For the insurance company, bad customers have pushed
good customers out of the insurance market. To solve this problem, Joseph Stiglitz
suggested that insurance companies should provide different types of contracts for
the policyholders to choose. One type is a high excess amount with a low premium;
another type is a low excess amount with a high premium. Clearly, if the customer
is of low risk, then choosing a contract of high excess with a low premium is more
economical. If the customer is of high risk, then choosing a contract of low excess
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with a high premium is more economical. Thus, having two types of contracts help to
differentiate between high and low risk customers, whichwas originally not possible.
This is the separating equilibrium in games.

The separating equilibrium phenomenon also exists when stocks and shares com-
panies issue shares (i.e. IPO).

When companies issue new shares, high quality companies generally have their
first tranche issued at a discount, attracting the attention of investors with a fairly low
issue price. When the investors know the company better, the company then have a
higher price for their seasoned equity offering (SEO). The second issue of shares at a
higher price can make up for the cost of the shares issued at a discount the first time.
But for an inferior company who fears that investors will know, it will raise as much
capital as possible at the first issue. Thus the two different behaviours in issuing shares
by a high quality company and an inferior company lead to a separating equilibrium,
that is a high quality company raises capital in two stages—the first stage with a big
discount for shares issued, whereas an inferior company raises capital in one stage
and also issues shares with a small discount.

Example 3.2 Separating equilibrium and pooling equilibrium of job applicants
choosing to be educated (get education qualifications) or not (without education
qualifications)

Let us assume that there are two types of people in the human resources market—one
type is of high ability, the other type is of low ability. The salary institution of the
employer will impact on whether it will be a separating equilibrium or pooling
equilibrium regarding these two types of job applicants in choosing education (get
education qualifications) or not (no education qualifications). That is to say, if the
employer has an appropriate salary institution, then in their choice of education, the
high ability and the low ability will form a separating equilibrium. However, if the
salary institution is inappropriate, then the two will probably form a pooling equi-
librium, but the specific circumstances for the pooling equilibrium (i.e. equilibrium
at not getting educated or getting educated) depend on the salary institution.

Let us assume that in obtaining the same education qualifications, the high ability
applicants and low ability applicants have to pay different costs. Of these the cost is
4 for the high ability ones, and 8 for the low ability ones.

Salary institution 1: The two form a separating equilibrium, i.e. the high ability
applicants choose education, and the low ability ones choose no education.

Let us assume that the employer cannot differentiate the actual ability of the job
applicants and has to rely onwhether they have certificates for evaluating their ability.
If they have certificates, they will be given 10 units of salary; otherwise they will be
given 5 units of salary. Like this:

The payoff for the high ability applicants with education: 10−4=6*
The payoff for the high ability applicants without education: 5−0=5
The payoff for the low ability applicants with education: 10−8=2
The payoff for the low ability applicants without education: 5−0=5*
* means the The Optimal Strategy.
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Under such salary institution, the high ability applicants choose education, and
the low ability applicants choose no education, i.e. the game outcome is a separating
equilibrium. In such situation, the employer as the party with weak information uses
an appropriate salary institution to differentiate between the high ability and low
ability applicants.

Salary institution 2: The two form a pooling equilibrium,with both the high ability
and low ability applicants choosing education.

If they have certificates, then they will be given 20 units of salary; if they have no
certificates they will be 5 units of salary. Like this:

The payoff for the high ability applicants with education: 20−4=16*
The payoff for the high ability applicants without education: 5−0=5
The payoff for the low ability applicants with education: 20−8=12*
The payoff for the low ability applicants without education: 5−0=5

Under this kind of salary institution, whether they are of high or low ability, they
will choose education, i.e. the outcome of the game is a pooling equilibrium.

Salary institution 3: The two form a pooling equilibrium,with both the high ability
and low ability applicants choosing no education.

If they have certificates, then they will be given 8 units of salary; if they have no
certificates they will be 5 units of salary. Like this:

The payoff for the high ability applicants with education: 8−4=4
The payoff for the high ability applicants with no education: 5−0=5*
The payoff for the low ability applicants with education: 8−8=0
The payoff for the low ability applicants with no education: 5−0=5*

Under this kind of salary institution, whether they are of high or low ability, they
will choose no education, i.e. the outcome of the game is a pooling equilibrium.

Example 3.3 Story of the grey circle—separating equilibrium

During the Song Dynasty in Zhengzhou, a rich man surnamed Ma died. Ma had two
wives. Only the second wife gave him a son who was to inherit the family’s fortune.

But the first wife colluded with officer Zhao in the county government to abduct
the child and expel the second wife from the home. The case got all the way to
Kaifeng; Officer Bao presided at the trial. Both the first and second wives said the
child is theirs.

Officer Bao did not question further, but ordered some slaked lime and drew a
large circle in the court. Officer Bao placed the child in the centre, and let the two
women each hold one of the child’s arms. He said: Whoever can pull the child out
of the circle to her side, the child will be hers.

Officer Bao called out ‘Start’. The first wife pulled hard. Seeing that the child’s
arm, thin and small and was being pulled forcibly by the first wife, the second wife
hesitated, and the child was pulled over to the side of the first wife.

When Officer Bao saw this, he said that it did not count as the second wife would
not pull hard.
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The second time, again the first wife pulled forcibly. To start with, the second
wife also pulled hard, but the child started to cry. She could not bear it and let go of
her hand. Again the child was pulled over to the side of the first wife.

The second wife burst out crying, and explained the reason for not pulling hard.
Everyone in court was moved and convinced.

Officer Bao banged on the desk and demanded the first wife to confess. The
mystery got cleared up.

This example shows how, a game devised by Officer Bao between the two wives,
formed a separating equilibrium. The first wife was not the child’s real mother. The
biggest benefit was to pull the child over, and so she chose to use brute force to
pull the child. But the second wife was the child’s real mother. She loved the child.
The biggest benefit was for the child not to be hurt, so she chose to let her hand
go. Originally Officer Bao was the party with weak information. He did not know
who the child’s mother was. But having devised a game of separating equilibrium,
he successfully differentiated between the real and false mother.

Example 3.4 Time-based pricing strategy of Airlines—separating equilibrium

There are two types of airline passengers:
One is the business travellers—they are not sensitive to ticket prices but are sensitive
to time, and require reasonable departure times. The other are travellers like the
students—they have no income and thus are very sensitive to ticket prices but are
not sensitive to departure times, and basically have few requirements.

Thus, if the airline onlyhas oneflight time, setting ticket prices couldbe adilemma:
If ticket prices are set high, they will lose the student travellers; if set low, they will
lose income.

Therefore the optimal game strategy for an airline is: Different ticket prices are
set according to flight schedules, i.e. high ticket pricing for flights departing during
office hours, but low ticket pricing for flights departing in the night and at dawn. Thus,
a separating equilibrium occurred for student travellers and business travellers.

Example 3.5 Additional incentives undermine the separating equilibrium—a huge
increase in the number of ‘useless patents’

Lincoln has a famous saying: The exclusive use of his invention; and thereby added
the fuel of interest to the fire of genius. Patent is a reward mechanism for promoting
technological inventions. Venice which was commercially advanced, was the first to
implement a system for patents, and promulgated the patent law in 1474. At present,
the system for patents is widely used in many countries around the world.

Patent as a concept in law is basically that for an invention to be authorised
as a Patent, the applicant must make it known to the world so that society can
understand the applicant’s invention and progress in related fields. However, patent
inventions cannot be used by others free of charge. If someone uses the invention
without permission from the patent holder, it will be regarded as an ‘infringement of
a patent’, and lead to a penalty applied in accordance with the country’s patent law.
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Fig. 3.1 The growth of patents authorised inChina. SourceState Intellectual Property RightsOffice
Annual Report (http://www.sipo.gov.cn/tjxx/)

Table 3.2 Some higher education institutions’ patent applications and exploitation—survey by Liu
Yue’e et al.

Year Number of applications Number of exploited
patents

Rate of exploitation (%)

2001 3180 289 9.09

2002 4377 416 9.50

2003 8650 543 6.28

2004 10,940 910 8.32

2005 16,578 976 5.89

Thus, it is necessary to give remuneration to the patent holder to obtain permission
for use, the so-called ‘patent purchase’.

In recent years, the number of China’s patents is growing unusually fast (see
Fig. 3.1). But at the same time, the rate of exploited patents (the proportion of patents
in actual use as compared with patents applied for) is falling significantly. Table 3.2
is the survey result by Liu Yue’e et al. in ‘The current status in the exploitation of
higher education institution patents—an investigation and reflections’. Figure 3.2 is
produced from the results of that survey, showing the status for exploiting of patents
during 2001–2005 in the top 100 schools that applied for patents. It can be clearly seen
from Table 3.2 and Fig. 3.2 that higher education institutions applying for patents
soared from 3180 in 2001 to 16,578 in 2005, but the rate of exploitation dropped
from 9.09% in 2001 to 5.89% in 2005.

The average quality of patents has dropped, and the rate of ‘useless patents’ as
compared to applications has increased,which is a result of the separating equilibrium
of applying for patents having been undermined. Let us construct the separating
equilibrium model to analyse this situation as follows:

http://www.sipo.gov.cn/tjxx/
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Fig. 3.2 Contrast diagram of patent application and exploitation of higher education institutions
plot according to investigation result of Liu Yue’e et al.

Let us assume there are two types of inventions.A type is high potential inventions,
i.e. the inventions that can be put into production for use and can produce economic
efficiency; B type is of low potential, i.e. the inventions that cannot be put into
production for use and so cannot produce economic efficiency.

For any invention (i.e. whether it is A or B), the inventor has two choices for
action: to apply for patent or not to apply for patent. Of these, a+ indicates that the
inventor patenting an A type invention; a− indicates that the inventor not patenting an
A type invention; likewise, b+ indicates that the inventor patenting a B type invention;
b− indicates that the inventor not patenting a B type invention.

Whichever type of invention, the cost in applying for patent (such as application
fee and patent annual fee etc.) is c > 0. For a high potential invention A, because
it can be put into production for use and so produce economic efficiency, therefore
after the patent application, the patent assignment cost is v(a+) > c > 0. But for a
low potential invention B, because it cannot be put into production for use and so
cannot produce economic efficiency, after patent application, the patent assignment
cost is v(b+) � 0.

Thus, under a normal patent institution, the inventor’s payoff matrix for both types
of inventions is as shown in Table 3.3.

It can be seen from Table 3.3 that, under a normal patent institution for high
potential inventions A and low potential inventions B, the Nash Equilibrium should

Table 3.3 The inventor’s payoffmatrix for both types of inventions under a normal patent institution

b+ b−

a+ v(a+) − c, −c v(a) − c, 0

a− 0, −c 0, 0
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be (a+, b−), i.e. high potential inventions will apply for patent, and low potential
inventions do not apply for patent. Here, the payoff for high potential inventions is
u(a+) � v(a+)−c > 0, whereas the payoff for low potential inventions is u(b−) � 0.

Currently the reality is that many institutions aiming to be high up on the ‘patents
ranking’ in the various comparisons often introduce mechanisms to encourage more
people to apply for patents. For instance some areas stipulate that if a graduate had
applied for patent, he can be allocated ‘extra points’ when registering for a permanent
resident account in the city. Some institutions include the number of patents applied
for by staff in the annual assessment indicator. In such situation, applying for patents
can produce economic efficiency v(a+) as well as systemic incentives s > c > 0.
With such an institution, the inventor’s payoff matrix for both types of inventions is
shown in Table 3.4.

It can be seen from Table 3.4 that, under an incentivised patent institution for
high potential inventions A and low potential inventions B, the Nash Equilibrium
should be (a+, b+), i.e. high potential inventions will apply for patent, and low
potential inventions will apply for patent too. Here, the payoff for high potential
inventions is u(a+) � v(a+)− c > 0, whereas the payoff for low potential inventions
is u(b+) � s − c > 0. It can be seen that this kind of incentives undermine the
original separating equilibrium, which leads to a kind of pooling equilibrium where
inventions of both high potential and lowpotential apply for patents. In such situation,
it is not surprising that the number of useless patents greatly increases.

Likewise, the current criticism on the problem of ‘rubbish thesis’ is, in effect, due
to excessive incentives for theses which undermine the original separating equilib-
rium.

Also, inmanywork units everybody is desperate for senior positions and senior job
titles, which, due to their many benefits, lead to the original separating equilibrium
being undermined. In situations of separating equilibrium, the capable should be
the ones seeking senior positions or job titles, while the less capable can then be
content doing low position jobs or having low job titles. Now because there are too
many benefits attached to senior positions and senior job titles, even though the cost
in striving for these is very high for the less capable, once they succeed it is still
worthwhile. This is what has caused everybody to strive for senior positions and
senior job titles.

Table 3.4 The inventor’s payoff matrix for both types of inventions under an incentivised patent
institution

b+ b−

a+ v(a+) + s − c, s − c v(a+) + s − c, 0

a− 0, s − c 0, 0
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3.4 Asymmetric Information and Moral Hazard

In modern society, many games are conducted under constraints of bilateral agree-
ments (if the two parties to the agreement is of a principal-agent relationship, then
one party is the principal, the other the agent). For instance during working hours a
company employee (generally the company is the principal, the employee the agent)
is under the constraint of the signed agreement and chooses actions most beneficial
to himself. If both parties to the agreement are under conditions of asymmetric infor-
mation (usually the agent has better information because he knows best whether he
is doing his job in accordance with the agreement), one party (usually the agent)
uses his advantage in possessing better information to carry out actions meant to be
concealed, which are difficult to be observed, so as to profit at the expense of the
other party. This kind of behaviour is called moral hazard.

Common moral hazards are:
Being slack, or free riding in situations of asymmetric information, with the indi-

vidual exerting little while enjoying the fruits of other people’s efforts.
Opportunism, or efforts of the individual to increase his own payoff are at the

expense of the other party (the principal). This situation is also called negative direc-
tion hard work.

There are mainly two conditions that lead to moral hazard. The first is existing
conflict on utility between contracting parties. The second is asymmetric information.
This kind of asymmetric information is different from that in adverse selection. It
emerges after the agreement has been signed, mainly caused by the fact that whether
or not one party carries out actions as stipulated in the agreement is difficult to
observe. If whether one party carries out actions as stipulated in the agreement is
not easily seen by the other party, then the former has a certain advantage over
information, and moral hazard can occur.

Example 3.6 Moral hazard in the insurance market

Between the insurance company and the policyholders there exists information asym-
metry. The policyholders are with better information because the insurance company
cannot observe the actions of the policyholders after signing the insurance contract.
For example, after insuring their properties, some of the policyholders do not look
after their properties carefully, because when they suffer a loss, they will be com-
pensated by the insurance company. There are even people who deliberately create
accidents to defraud insurance premiums. All these behaviours cause insurers to
undertake a higher than normal rate for loss.
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3.5 Some Approaches for Solving Moral Hazard

In practice, there are mainly three types of approaches for solving moral hazard.
One is to strengthen information observation, so as tominimise informationweak-

ness, and reduce information asymmetry.
Secondly, if it is a repeated game, then post penalties can be used, that is if one

party in the game exhibits moral hazard, making these behaviours known to theworld
can create a kind of post penalty, so that moral hazard can be deterred.

The third is to design a reasonable contract, so that the effective goal of the agent is
consistent with that of the principal’s, thus ultimately preventingmoral hazard. In this
respect, the economist Hurwiez put forward the ‘incentive compatibility principle’,
that is, by devising a reasonable agreement or system, the individual interest of the
agent becomes consistent with that of the principal’s. For instance, with regard to
sales personnel, a company’s remuneration system that is ‘in accordance with sales
commission’ is consistent with the principle of compatible incentives, because under
such a system, the sales personnel as the agent will aim for sales quantity, and for
the company as the principal, increasing sales is also what they want.

∫
u(s(r (a∗, θ ))) f (r )dr − c(a∗) ≥

∫
u(s(r (a, θ ))) f (r )dr − c(a) (3.1)

Formula 3.1 is put forward byHurwiez et al. on ‘incentive compatibility principle’
expressed as a mathematical model. Here:

a∗ is the action the principal hopes the agent will choose, a are other
random actions apart from a∗ that can be chosen by the agent.

r (a, θ ) is the agent’s output function, among this, θ is the random factor that
affects output. This function shows that the agent’s output is affected
both by his own choice of action a and the random factor.

s(r (a, θ )) is the incentive the principal gives the agent (for example pay or bonus
etc.). This function shows that the incentive given by the principal
to the agent is influenced by the agent’s output r . Normally the two
form a positive correlation function, i.e. the higher the agent’s output,
the bigger the incentive he will get.

u(s(r (a, θ ))) is the agent’s utility function. This utility function shows that the
utility the agent gets from his own action is related to the incentive
s given by the principal. This relationship is normally positively cor-
related, i.e. the more incentives the agent gets, the greater utility (u)
he feels.

f (r ) this is the distribution density function for output.
c(a) is the cost of the action a.

Formula 3.1 shows that, as the principal, if hewants the agent to choose his desired
action a∗, he must let the agent have more effect in taking that action a∗ than if the
agent chooses other actions a. This is the meaning of ‘incentive compatibility’. For
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instance, if the manager (principal) hopes that the workers (agent) work hard, he
must let the hard worker gets a much bigger remuneration than the slack worker.

The reader should note that Hurwiez’s ‘incentive compatibility’ formula is
premised on an implied assumption: Let us suppose that utility can be increased
and decreased. For instance in Formula (3.1), desired utility

∫
u(s(r (a, θ ))) f (r )dr

is subtracted by cost c(a), which is the agent’s overall utility. But in reality, only like
payoff can be added or subtracted (for example economic payoff can be added or
subtracted by economic payoff), and for an action, its efficiency can only be derived
after the total payoff is obtained. For example, someone’s business cost is 200,000
yuan, the income is 300,000 yuan. The overall utility cannot be expressed as the
utility of 300,000 yuan minus the utility of 200,000 yuan, but as 300,000 yuan minus
200,000 yuan resulting in 100,000 yuan and after this, seek the utility of 100,000
yuan. Therefore, Hurwiez’s formula only gives the principle of incentive compat-
ibility, i.e. it gives the conditions that must be fulfilled if ‘the agent listens to the
principal’, but it is not a formula that accurately reflects reality. Thus it cannot be
applied directly unless ‘utility’ is changed to ‘payoff’, then it can be applied to actual
practice.

Currently, some companies devise ‘employee stock ownership plan’ to try and
bind the interests of the staff to that of the company as a whole, so that the staff
work hard and voluntarily protect the company’s interests, which actually is building
‘incentive compatibility’.



Chapter 4
First-Move Advantage and Second-Move
Advantage

In a game of two players, if both sides do not take action at the same time, then
one player makes a move first, the other player makes a move afterwards. In some
situations, who makes the first move and who makes the second can lead to positions
of advantage or disadvantage. If the first-mover has advantage, it is called first-move
advantage; if the second-mover has the advantage, then it is called second-move
advantage.

4.1 First-Move Advantage

4.1.1 First-Move Advantage in Discrete Behaviour

Example 4.1 First-move advantage in a husband and wife game (this example is
adapted from Introduction to Game Theory by Wang Zeke and Li Jie).

The Battle of the Sexes game is a classic case in game theory. It describes the game
process between a man and a woman in choosing whether to watch a football match
or to watch a ballet show together at the weekend. Generally, men prefer watching
a football game whereas women prefer watching a ballet show. However, the two
parties are not willing to be separated to watch football and ballet. Thus the two sides
carry on the game under such constraints.

For the game to be ‘worth playing’ (In fact, whether to watch football or ballet, for
lovers deeply in love almost no one is willing to ‘play games’. Rather they want to
please the other by choosing the programme more preferable to the other side.) and
to make that case more appropriate to problems facing the Chinese people, the author
has adapted the problem to a young couple working away from home. During the
Spring Festival, they face the game problem of whether to go to the husband’s home
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(husband’s home) or to go to the wife’s home (wife’s home) for the festival. Like the
Battle of the Sexes game, the husband wants to go back to his family, while the wife
wants to go back to her family, but the husband and wife do not want each other to
go separately to their respective family to spend the Chinese New Year (which is the
worst outcome for both).

Let us assume that the husband and wife go separately to buy tickets for going
home. In such a situation, it is a husband and wife game of first-move advantage, i.e.
whoever is first to go to buy tickets will have a higher payoff.

Please take a look at the woman’s side making the first move in a husband and
wife game (Fig. 4.1).

With inverse method, it can be seen that the equilibrium point of this game is
where both the wife and husband choose the wife’s home. The outcome is that the
payoff for the wife is 2 and the payoff for the husband is 1.

The specific process with inverse method:
Firstly since the wife has already chosen the ‘husband’s home’, let us see how

the husband will choose. It can be seen in the top part of Fig. 4.1 that if the husband
chooses the ‘husband’s home’, the result is husband and wife both go the husband’s
home for the Chinese New Year, then the payoff for the husband is ‘2’, the wife ‘1’.
However, if the husband chooses the ‘wife’s home’, then the outcome is the husband
goes to the wife’s home to spend the Chinese New Year, and the wife goes to the
husband’s home. Neither side can go to their own parents’ house for the festival, nor
can they be together. Therefore both the husband and wife get ‘-1’. Thus, it can be
seen that if the wife has already chosen to go to the husband’s home for the Chinese
New Year, then the husband will definitely choose the ‘husband’s home’. Thus for
the wife, the payoff for choosing the ‘husband’s home’ is ‘1’.

After the wife has already chosen the ‘wife’s home’, let us see how the husband
will choose. It can be seen in the lower part of Fig. 4.1 that if the husband chooses

Fig. 4.1 The wife makes the first move in a husband and wife game



4.1 First-Move Advantage 55

the ‘wife’s home’, the result is husband and wife both go the wife’s home for the
Chinese New Year, then the payoff for the husband is ‘1’, the wife ‘2’. But if the
husband chooses the ‘husband’s home’, then the outcome is that the husband goes
home for the Chinese New Year, and the wife goes home for the Chinese New Year;
both sides can go to their own parents’ house for the festival but cannot be together.
Therefore, the payoff cancels out the loss, and both sides get ‘0’. Thus, it can be seen
that if the wife has already chosen to go to the wife’s home, then the husband will
definitely choose the ‘wife’s home’. Thus for the wife, the payoff for choosing the
‘wife’s home’ is ‘2’.

Taking the above together, if the wife makes a first move, then she should choose
the ‘wife’s home’. Thus, the game outcome is that the payoff for the wife is 2 while
the husband’s payoff is 1. It can be seen that because the wife makes the first move,
her payoff is bigger than the husband’s.

On the contrary, if the man makes the first move, then the game is as in Fig. 4.2.
With inverse method, it can be seen that the equilibrium point of this game is

where both the wife and husband choose the husband’s home. The outcome is that
the payoff for the wife is 1, the payoff for the husband is 2.

Similar to the above, where the husband makes the first move, the process with
inverse method is:

Firstly since the husband has already chosen the ‘husband’s home’, let us see how
the wife will choose. It can be seen in the top part of Fig. 4.2 that if the wife chooses
the ‘husband’s home’, the result is husband and wife both go to the husband’s home
for the Chinese New Year, then the payoff for the husband is ‘2’, the wife ‘1’. But if
the wife chooses the ‘wife’s home’, then the outcome is that the husband goes home
for the festival, the wife goes home for the festival, and both sides can go to their own
parents’ house but cannot be together. Therefore, the payoff cancels out the loss, and

Fig. 4.2 The husband makes the first move in a husband and wife game
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both sides get ‘0’. Thus, it can be seen that if the husband has already chosen to go to
the husband’s home for the Chinese New Year, then the wife will definitely choose
the ‘husband’s home’. Thus, for the husband, the payoff for choosing the ‘husband’s
home’ is ‘2’.

Since the husband has already chosen the ‘wife’s home’, let us see how the wife
will choose. It can be seen in the lower part of Fig. 4.2 that if the both the husband
and wife choose the ‘wife’s home’, the result is husband and wife together go to the
wife’s home, then the payoff for the husband is ‘1’, the wife ‘2’. However, if the wife
chooses the ‘husband’s home’, then the outcome is the husband goes to the wife’s
home to spend the Chinese New Year, and the wife goes to the husband’s home.
Neither side can go to their own parents’ house, nor can they be together. Therefore
both the husband and wife get ‘−1’. Thus, it can be seen that if the husband has
already chosen to go to the wife’s home for the Chinese New Year, then the wife will
definitely choose the ‘wife’s home’. Thus, for the husband, the payoff for choosing
the ‘wife’s home’ is ‘1’.

Taking the above together, if the husband makes the first move, then he should
choose the ‘husband’s home’. Thus, the game outcome is that the payoff for the wife
is 1, and the husband’s payoff is 2. It can be seen that because the husband makes
the first move, his payoff is bigger than the wife’s.

Note that in this example of the husband and wife game, we have defined the two
parties as ‘rational persons’, i.e. the criterion for both sides in choosing an action
is to maximise one’s own interests. In such a situation, the ‘husband and wife’ are
aiming for their own payoff and not in looking after the other. If both sides aim to
maximise the other’s payoff (this is a selfless couple in such a situation), then the
game outcome is entirely different.

The husband and wife game can be used to describe a relationship between enter-
prises and how their products correlate. Often there is a first-move advantage between
these enterprises. If the products on both sides are complementary, then the payoff
for both will be bigger. However, the enterprise making the first move can choose
to produce products more favourable to itself. Faced with whether to choose ‘com-
plementary’ or ‘non complementary’ products following the first move by the other
enterprise, the enterprise making the second move has no choice but to choose ‘com-
plementary products’. In such a situation, the payoff for the enterprise making the
first move is often bigger than that for the enterprise making the second move, thus
leading to the ‘first-move advantage’.

4.1.2 First-Move Advantage in Continuous Behaviour

Continuous behaviour refers to the change between actions as being a continuous
situation. For instance, in the bidding process if each quote from the buyer is an
action, because the price that can be quoted is continuous, then the behaviour is a
kind of continuous behaviour.
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In order to contrast it with the advantage of the person making the first move,
we will first introduce a classic game model without first-move advantage—the
Cournot model. Then the model with first-move advantage will be introduced—the
Stackelberg model.

Example 4.2 The Cournot model—simultaneous decision-making (this example is
taken from Game Theory and Information Economics by Zhang Weiying).

The Cournot model is also called the Cournot duopoly model, put forward by the
French economist Antoine Augustin Cournot in 1838. This model describes how
the output from two manufacturers, in producing a homogeneous product, reach
equilibrium when there is no coordination between them.

Through a high degree of abstraction of reality, an analysis of the problem is made
simple and easily understood by using the Cournot model.

The condition of a Cournot model is:
A certain product is manufactured by two enterprises 1 and 2; the production cost

of that product is zero.
The function of the product’s market price is P � a − (q1 + q2). Within this, P is

the product’s selling price, a is the constant, q1 and q2 are the output of enterprises
1 and 2. Both enterprises accurately understand the demand curve in that market.
Both enterprises first estimate the other’s output amount, before determining their
own output that can bring the biggest profit.

More importantly, when the two enterprises decide on their own output, it must be
done simultaneously without the situation of one enterprise determining its output
before the other.

Let us suppose that:
q1 is enterprise 1’s output, q2 is enterprise 2’s output, π1 is enterprise 1’s profit,

π2 is enterprise 2’s profit, then:

π1 � q1P � q1[a − (q1 + q2)]

π2 � q2P � q2[a − (q1 + q2)]

Seeking the optimal output for enterprise 1 and 2:

∂π1

∂q1
� a − (q1 + q2) − q1 � a − q2 − 2q1 � 0

∂π2

∂q2
� a − (q1 + q2) − q2 � a − q1 − 2q2 � 0

Solving the optimal output for enterprise 1 and 2:

q∗
1 � 1

2
(a − q2)
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q∗
2 � 1

2
(a − q1)

Everything being equal between the two enterprises, solving the above simulta-
neous equations will arrive at the Nash Equilibrium of the simultaneous decisions
on output by the two enterprises:

q∗
1 � q∗

2 � a

3

Example 4.3 Stackelberg’s leader-follower model—first-move advantage (this
example is taken fromGameTheory and InformationEconomics byZhangWeiying).

Heinrich Freiherr von Stackelberg, 1905–1946, was a German economist. In 1934
he published the book Marktform und Gleichgewicht in which he put forward the
well-known leader-follower model. Later it was called the Stackelberg leadership
model, i.e. the Stackelberg leader-follower model.

In the Stackelberg leader-follower model, the game players are enterprises that
are leaders and followers. The game is still about choosing the output for the same
product. The two sides’ actions in order are: The leader first decides on his own
output; after the follower has seen the leader’s decision, he decides on his own
output. The leader knows that the follower will observe this output decision and
devise his own output based on having seen the leader’s results. Therefore the leader
must fully consider this when making decisions.

Let us suppose that enterprise 1 is the leader, its output is q1; enterprise 2 is the
follower, its output is q2. Let us also suppose that the product’s demand price function
is still P � a − (q1 + q2). In order to compare this with the above Cournot model,
here let us still assume that the production cost of the product is 0.

Since the Stackelberg leader-follower model describes the order of game actions
by the two parties, this can be solved by using backward induction. For this, let us
first find the output decision of enterprise 2 who act last. When the output q1 of
enterprise 1 is known, enterprise 2’s payoff function is:

π2 � q2P � q2[a − (q1 + q2)]

Find the derivation and make it 0, we have:

∂π2

∂q2
� a − (q1 + q2) − q2 � a − q1 − 2q2 � 0

The solution is: q∗
2 � 1

2 (a − q1)
For enterprise 1, its payoff function is:

π1 � q1P � q1[a − (q1 + q2)].
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Substituted by q∗
2 � 1

2 (a − q1):

π1 � q1P � q1[a −
(
q1 +

1

2
(a − q1)

)
] � q1[a −

(
q1 +

1

2
a − 1

2
q1

)
]

� q1[a −
(
1

2
q1 +

1

2
a

)
] � q1(

1

2
a − 1

2
q1) � 1

2
(aq1 − q2

1 )

Find the derivation and make it 0, we have:

dπ1

dq1
� 1

2
(a − 2q1) � 0

The solution is:

q∗
1 � a

2

Substituting it into q∗
2 � 1

2 (a − q1), we have

q∗
2 � 1

2
(a − q1) � 1

2

(
a − a

2

)
� a

4

Therefore, enterprise 1’s biggest payoff is:

π1 � 1

2
(aq1 − q2

1 ) � 1

2
(a
a

2
− a2

4
) � 1

2
(
a2

4
) � a2

8

π2 � q2[a − (q1 + q2)] � a

4
[a −

(a
2
+
a

4

)
] � a

4
(
a

4
) � a2
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Contrasting the Stackelberg model with the Cournot model, when the two enter-
prises act at the same time, the Nash Equilibrium is q∗

1 � q∗
2 � a

3 , whereas when the
two enterprises act in sequence, then the output of enterprise that acts first is q∗

1 � a
2 ,

and the output of the enterprise that acts later is q∗
2 � a

4 . In comparing these two
equilibria results, we discover that in the Stackelberg model, enterprise 1’s equilib-
rium quantity is bigger than that in the Cournot model; enterprise 2’s equilibrium
quantity is smaller than that in the Cournot model; enterprise 1’s profit is bigger than
that in the Cournot model; enterprise 2’s profit is smaller than that in the Cournot
model. Enterprise 1 made the first move and so has a certain advantage—this is the
‘first-move advantage’.

In commercial competition, companies in high-tech industries often seek towin by
continuous development of new products. In fact, this is the first-move advantage in
games. When a new product appears, those who copy it later need a certain period of
time before establishing a production scale. Therefore the first mover canmonopolise
during that period. Also, once a new product has formed brand and customer loyalty,
followers will have to pay a high cost to break into the market.
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In reality, software development, developing technical standard, setting traffic reg-
ulations, computer keyboard layout, and even choosing a country’s official language
all involve first-move advantages.

4.2 Second-Move Advantage

Do all dynamic games have first-move advantage? The answer is negative. Some
games have second-move advantage.

Let us look at a game: There are 3n (n equals 1) cards, and two persons take turns
to pick cards in a game. Rules: Each person can pick 1 or 2 cards at each turn. The
person who picks the last card wins.

For this game, the winner must be the second mover. The reason is that the second
mover can decide whether to pick one or two cards based on the number of cards left
behind, always leaving 3m (m is smaller than n) cards for the other. For instance, if
there are 7 cards left, one will be picked, leaving 6 for the other; if 5 cards are left,
2 will be picked, leaving 3 for the other. The result is that whether the other picks 1
or 2 cards, the last card will always be his.

With regards to the ‘price setting’ game between enterprises producing a homo-
geneous product, the second-move advantage is also true. For so long as the price
set by the other enterprise is known, this enterprise can set the product price slightly
lower than the other side to attract consumers.

Table 4.1 shows that in the game (this example is taken from Introduction to Game
Theory edited by Wang Zeke and Li Jie), player 1 has the second-move advantage:
If player 2 chooses an action first, he will definitely choose ‘left’ (‘right’ is a weak
and poor action and should not be chosen). Thus, player 1 can choose ‘up’, so that
both sides reach (4.12) Nash equilibrium, and the payoff is 4.

In contrast, if player 1 makes a move first, he will choose ‘up’. The result is that
it will make no difference whether player 2 chooses ‘left’ or ‘right’. Now, player 1
will face a bigger risk.

Table 4.1 A game where player 1 has second-move advantage

Player 2

 Left Centre Right

Up

Player 1

Down

12

4

10

3

12

2

12

3

10

2

11

1
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Table 4.2 An example of
both first-move advantage and
second-move advantage

Player 2

Left Right

Up

Player 1

Down

0

10

4

5

100

10

0

5

In economics theories there is a ‘theory on order’ in economics or the ‘entry order
effect’. That theory mainly investigates whether the first mover or the second mover
has the advantage in competitive markets. Regardless of the various views, on the
whole, that theory leans towards ‘second-move advantage’. For instance, Lieberman
andMontgomery (1990) believe that there is second-move advantage in at least three
aspects:

(1) The ‘free ride’ effect: The second mover can probably save more than the first
mover in investment for product design and research, fostering customer loyalty,
staff training, government inspection, infrastructure etc.

(2) The first mover is at a higher risk for errors regarding technology or marketing
strategy because there is almost no experience to learn from.

(3) The first mover has to pay dearly for technology and experience which can
easily be copied.

4.3 Both First-Move Advantage and Second-Move
Advantage May Be Present

In sequential games, some are of neither first-move advantage nor second-move
advantage, some are of first-move advantage, some are of second-move advantage,
while for others both first-move advantage and second-move advantage are present.

Please see the game in Table 4.2 (this example is taken from Introduction to Game
Theory edited by Wang Zeke and Li Jie).

In this game, player 1 has first-move advantage. That is, he chooses ‘down’ first
and is bound to get 10. If player 2 is allowed to make a first move by choosing ‘left’,
the risk for him is very high because in such a situation, if by chance player 1 chooses
‘up’, then player 2 can only achieve 0. Therefore, to be on the safe side, player 2 will
generally choose ‘right’ first so that player 1 can only achieve 5.
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The characteristic of this game is that while player 1 has the first-move advantage,
player 2 also has the second-move advantage. He can let player 1 make a first move;
player 1 will definitely choose ‘down’ so that he can choose ‘left’ and ultimately
achieve the big payoff of 100.



Chapter 5
Credible Commitment and Credible
Threat in Games

5.1 Credibility of Commitments and Threats

5.1.1 Commitment and Threat

Commitment and threat are important subject matters in game theory.
A commitment is a pledge advantageous to the other party, whereas a threat is a

pledge disadvantageous to the other party.
T. C. Schelling, the Nobel Prize winner in economics, defined commitment and

threat as: A announces that B’s behaviour will lead to a response from A. If this
response is a reward, then the announcement is a commitment; if this response is a
penalty, then the announcement is a threat.

From the perspective of the recipient of the commitment or threat, judging from
the effect on the payoff for the partywho issues the commitment and threat in carrying
out the pledges, some commitments and threats are credible, while others are not
credible.

If in carrying out the pledges under pre-agreed conditions is more advantageous
to the party who issues the commitment or threat, then these pledges are credible.
By contrast, if in carrying out the commitment or threat it is not of advantage or is
even harmful to the party that issues the pledges, then these pledges are not credible.

In a game, the objective of the commitment and threat affect the other party’s
choice of behaviour.

5.1.2 Credibility of Commitments and Threats

In reality, some commitments and threats are credible, some are not.
Here, the principle for judging the credibility of the commitment and threat is

that, given the conditions that can prompt the commitment and threat, if it is more
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advantageous to carry out the pledges by the person who issued the commitment or
threat, then the commitment or threat is credible. By contrast, if it is disadvantageous
to the person who issued the commitment or threat to carry out the pledges, then the
commitment or threat is not credible. This is because we believe that a rational
person, when faced with choices of behaviour, will only choose the one that is most
beneficial to himself. It must be emphasised here that the research in the credibility
of commitment and threat is based on the assumption of a rational person. It is not
possible to judge the credibility of commitment and threat of an irrational person.

Example 5.1 Threats of the trade union

When a trade union demands a pay rise for the workers of an enterprise, the threat
often used is: “If we do not get a pay rise we will go on strike.” For the enterprise,
this is a non-credible threat. Although the enterprise will suffer a loss in a strike, so
will the workers. The condition that the enterprise ‘does not give workers a pay rise’
will trigger the workers to choose the ‘no strike’ behaviour which is more beneficial
to them. It should be pointed out that ‘non-credible’ here does not mean it will
‘definitely not happen’. For instance, if the trade union believes that the enterprise
will finally find it too much and will have to give the workers a pay rise in the end,
then the trade union will choose to ‘strike’.

5.2 How to Increase the Credibility of Commitments
and Threats

During a game the way to make one’s commitment or threat credible is to change the
environment that will trigger the condition so that carrying out the commitment or
threat becomes one’s advantageous strategy. In such a situation, when the condition
is triggered, the other party, in assuming that the opponent in this game is rational,
will believe that the pledge will definitely be carried out.

Schelling, who received the Nobel Prize in economics for his research in credible
commitments, cited an example:A tailorwants to borrowsomemoney fromsomeone.
It is not a large sum of money and if he does not pay it back, he will not be penalised
legally. Here, if he simply says ‘I will definitely pay it back. Please believe me’, then
this is a non-credible commitment because in such a situation it is more advantageous
to him not to pay back the money (not taking into account the loss in reputation and
the adverse effect it will have on his business). By contrast, if he puts his sewing
machine up as collateral for the creditor (assuming the market value of his sewing
machine is greater than the amount he wants to borrow), then his promise to pay
back the money is a credible commitment. It is credible because if he defaults, the
creditor keeps the collateral and he will suffer greater loss.

In pledging collateral for a loan, paying a deposit for ordering goods, etc., people
are in fact turning non-credible commitments into credible commitments. The ancient
Chinese idiom on the story to ‘break the cauldrons and sink the boat’ (meaning to



5.2 How to Increase the Credibility of Commitments and Threats 65

burn one’s bridges) is in fact to make carrying out the threat inevitable by taking into
account all the choices one has once the conditional option is changed.

Studying the credibility of a commitment and how to increase its credibility has
significant meanings in sectors such as commercial contracts.

5.3 Both Parties in a Game Have no Credible Threat—The
Chicken Game

In game theory publications there is a well-known chicken game. ‘Chicken’ in Amer-
ican slang means a ‘coward’, so the chicken game means a ‘coward’s game’.

The original chicken game comes from an American film in the 1950s. There is
this scene in the film: Two drivers were testing each other’s nerve and the rules for
the contest were agreed beforehand: The two will drive simultaneously towards each
other on a collision course. The one who swerves at the last minute to avoid a crash
will be the loser. Of course, if neither swerves, then the cars collide and there will
be casualties.

In this game, if either side proposes that he ‘will not yield’, it is a non-credible
threat. This is because if the threatened side does not believe it and is determined to
go ahead, the side issuing the threat has two choices: One is to make good and carry
out the threat, i.e. to crash towards the other; the other is to swerve with the result to
save his own life. Clearly, for a completely rational person, if the other side crashes
towards you recklessly, it is more advantageous to swerve rather than to crash ahead.

In the chicken game, if one side is reckless and irrational whereas the other side
is completely rational, then because the ‘irrational person’ does not think about
the consequences, the rational person cannot judge if the other side will choose
‘avoidance’. However, knowing that the other side is ‘irrational’, he will more than
likely judge that the other side will ‘recklessly crash forward’, therefore he can only
choose to ‘avoid’. In such a situation, the irrational person is often the winner in the
game.

5.4 The Market Entry Game—One Side Has no Credible
Threat

The structure of the market entry game is as shown in Fig. 5.1. That game has two
players—enterprise 1 is an oligopoly that has hold of the market of a certain product,
and enterprise 2 plans to challenge enterprise 1 by producing that product and so
enters the market.

The process of the game for both sides is:
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Fig. 5.1 Structure of the
market entry game

(4, 10)

(6, 6)(3, 3)

1

2

Not enter Not 
enter 

Attack Not attack 

Under the situation that enterprise 2 has hold of the whole market, it discovers that
enterprise 1 wants to enter the market. Because of this, enterprise 2 sends a threat to
enterprise 1: If you enter the market, I will hit you by reducing the product price.

Under such a threat from enterprise 2, enterprise 1 has to decide whether to ‘enter
the market’ or ‘not enter the market’. If it does not enter the market, the game is
over for both sides; enterprise 2 still has hold of the whole market and its payoff is
10. Since enterprise 1 does not enter the market but continues its business in its own
area, its payoff is 4.

If enterprise 1 enters themarket, then enterprise 2will decidewhether to ‘hit enter-
prise 1 with a price reduction’ or ‘no price reduction so as not to fight enterprise 1’.

If enterprise 2 does not fight with enterprise 1, then enterprise 1’s payoff is 6,
and because of enterprise 1’s entry, the market is under attack so that enterprise 2’s
payoff is reduced from the original 10 to 6.

If enterprise 2 attacks enterprise 1, then enterprise 1 will suffer a loss with a payoff
of 3, thus it might as well not enter the market. Having to fight enterprise 1 with a
price reduction, enterprise 2’s own payoff is affected, reduced from the original 10
to 3.

Clearly, enterprise 2’s threat to enterprise 1 with ‘if you enter the market I will hit
you by reducing the product price’ is a non-credible threat. Under the situation that
enterprise 1 decides to ‘enter’, the best action for enterprise 2 is ‘not attack’ rather
than ‘attack’. Therefore, the equilibrium outcome of this game is (enter, not attack).

5.5 Burning One’s Bridges: One Side with Credible Threat

From the perspective of game theory, the Chinese idiom of ‘break the cauldrons and
sink the boat’ in fact illustrates the situation where ‘one party has a credible threat’.
During the Qin and Han dynasties in China, the Qin army surrounded the state of
Zhao. Xiang Yu, the leader of the farmer’s insurrection, led his forces to assist the
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state of Zhao. At the time, the Qin army was very strong. Xiang Yu’s men were not
willing to fight out of fear of defeat. By now, Xiang Yu must find a way to make his
men fight hard, which got him into a game situation with his men.

To make his men put aside the thought of life or death, Xiang Yu made a threat
to his men that ‘not fighting hard will mean death’:

Xiang Yu led the whole army across the Zhang River, all the boats were sunk,
pots and pans were all smashed, the entire military camp was burnt, and only took
three days’ supply of food, so as to show the soldiers that they must be determined
to fight till they die; there was to be no thought of withdrawing. The army got to the
front line and surrounded Wang Li. The army then faced the Qin army and fought
many battles, blocking the road built by the Qin army and wiped them out. Su Jiao
was killed and Wang Li was captured.

This game in essence is that after the soldiers crossed the Zhang River, Xiang Yu
destroyed all the boats. In such a situation, if the soldiers did not fight hard, Xiang
Yu did not have the choice of ‘letting the soldiers withdraw’. Thus, Xiang Yu’s threat
that ‘if they do not fight hard they will die’ is a credible threat.



Chapter 6
Coalitional Games

6.1 Coalitions

6.1.1 Grand Coalition

Assume N is a set formed by n persons, that is N � {1, 2, . . . , n}.
In cooperative games, the above n persons that form the coalition is called a grand

coalition.
People form coalitions because they want to achieve payoffs greater than those

they can get on their own. Only when a coalition offers payoff that is superadditive
can it make each individual’s payoff exceed that of individuals going it alone.

For this, it is necessary to define additivity, superadditivity, and subadditivity.

Additivity

For any two minor coalitions (including situations with only one player) S, T , if
S∩T � ∅, then v(S ∪ T ) � v(S)+v(T ). Then, that coalition is an additive coalition.
For an additive coalition the payoff is the same whether or not an individual joins
the coalition (that is, if each individual’s allocation does not encroach on other’s
contribution).

Superadditivity

For any two minor coalitions S, T , if S∩T � ∅, then v(S ∪ T ) > v(S)+v(T ). Then
that coalition is a superadditive coalition. Clearly, a superadditive coalition benefits
from size and scale. A coalition’s superadditivity is the motivation for individuals to
join the coalition.

Subadditivity

For any two minor coalitions S, T , if S ∩ T � ∅, then v(S ∪ T ) < v(S) + v(T ).
Then that coalition is a subadditive coalition. Clearly, in a subadditive coalition, the
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payoff for individuals is reduced after joining the coalition. For instance, in groups
featuring serious internal conflicts and mutual constraints, the payoff for individuals
is not as good as those individuals who go it alone.

6.1.2 Number of Sub-coalitions

For N � {1, 2, . . . , n}, any coalition with persons fewer than or equal to n (including
coalitions with no one), it is called a sub-coalition.

Now let us consider the possible number of sub-coalitions.
Firstly, an individual ‘going it alone’ is the smallest sub-coalition. For N �

{1, 2, . . . , n}, there are
[
n
1

]
� n sub-coalitions of this kind.

Next, a sub-coalition can be formed of two persons; there are

[
n
2

]
‘two-person

sub-coalitions’.

Likewise, the number of ‘three-person coalition’ is

[
n
3

]
. The number of ‘k-person

coalition’ is

[
n
k

]
(1 ≤ k ≤ n).

6.1.3 The Number of All Coalitions

Furthermore, from the perspective of taking into account all possibilities, the unusual
sub-coalition of an ‘empty coalition’ ∅ should be considered. ∅ containing no one,

there is only

[
n
0

]
� 1 empty coalition.

Since a sub-coalition is defined as ‘any coalition with persons fewer or equal to n’,
grand coalitions (including those of n players), empty coalitions (these two coalitions
can be treated as special sub-coalitions) and any other possible sub-coalitions can
come to a total number of

[
n
0

]
+

[
n
1

]
+

[
n
2

]
+ · · · +

[
n
n

]

For the summation of the above formula, let us look at the binomial formula:

(x + y)n �
[
n
0

]
x0yn +

[
n
1

]
xyn−1 + · · · +

[
n
k

]
xk yn−k + · · ·

[
n
n

]
xn y0

Making x � y � 1, we have:
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[
n
0

]
+

[
n
1

]
+

[
n
2

]
+ · · · +

[
n
n

]
� 2n

Thus, for N � {1, 2, . . . , n}, the number of all sub-coalitions that can be
formed (including the grand coalition itself, empty coalitions and various ‘real’ sub-
coalitions) is 2n .

For this reason, publications of cooperative games often mark all possible sub-
coalition groupings as 2N (note that this is only a set symbol, used to indicate that it
contains a set of 2n elements). Thus, any sub-coalition can be represented as S ∈ 2N .
And |S| represents the number of members in coalition S.

6.1.4 Characteristic Vector

A characteristic vector is used to accurately represent and differentiate 2n the number
of possible sub-coalitions.

Suppose the n dimensional characteristic vector that indicates S is marked as es ,
then its i element is.

(
eS

)
i �

{
1 When i ∈ S
0 When i ∈ N\S (6.1)

In Formula (6.1), N\S shows from N the subset S is removed, and we get the
complement.

Clearly, the characteristic vector of a grand coalition is eN � (1, 1, . . . , 1).

6.1.5 Characteristic Function

For S ∈ 2N , use the set-valued function v(S) to represent coalition S’s payoff for
all its members taken together. To differentiate it from a general algebraic function,
the independent variable of the set-valued function is ‘set’ instead of a numerical
variable in general functions; therefore the variable v(S) is an actual number.

The set-valued function v(S) that reflects the coalition’s payoff is called the char-
acteristic function. It represents the transferable utility or payoff that the coalition can
obtain. It should be emphasised that v(S) is coalition S’s ‘bottom line’ for achievable
payoff, i.e. any coalition in N\S cannot cause the payoff for S to be less than v(S).

Note that S is a set of players, so for an enumeration of all the elements in S, the
regular set symbol is S � {1, 2, . . . , k}. Thus, the enumeration of the characteristic
function should be shown as v({1, 2, . . . , k}); but this appears very cumbersome, so
in this book v(1, 2, . . . , k) is used to represent v({1, 2, . . . , k}). For instance v(i) is
used to represent v({i}).
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Example 6.1 The characteristic function in the Airport Game (Littlechild and Owen
1973) (this example is taken from Cooperative Game Theory by Dong Baomin,
Wang Yuntong and Guo Guixia, and An Introduction to Cooperative Games by Shi
Xiquan).

n Airline companies N � {1, 2, . . . , n} own different sizes of aircrafts, and each of
these airlines only has aircrafts of a certain size. Large aircraft needs a longer runway
than small aircraft. Runways that can accommodate large aircraft to take off and land
will definitely accommodate small aircraft.

Suppose for aircraft size i, the construction cost of the runway is
ci (i � 1, 2, . . . , n). We can also suppose the size of aircraft is in this order 1 ≤
2 ≤ · · · ≤ n. Thus, the construction cost of runways for each size of aircraft alone
is c1 ≤ c2 ≤ · · · ≤ cn . Thus, for the coalition S ∈ 2N formed by some airlines, the
cost outlay is only the runway construction cost for the biggest aircraft. Therefore,
the cost borne by all airlines in coalition S is:

v(S) � max
{
cp, cq , . . . , cw

}
(p, q, . . . ,w) ∈ S (6.2)

Readers should note that in this example, v(S) is the cost, not the payoff.

Example 6.2 The characteristic function of the Glove Game (this example is taken
from An Introduction to Cooperative Games by Shi Xiquan).

In a crowd N � {1, 2, . . . , n} there exists two partitioned subsets L and R (‘partition-
ing’ results in subsets L and R both fulfilling the conditions L∩R � ∅, L∪R � N .
In L each person only owns one left hand glove; in R each person only owns one
right hand glove. The value of a single glove is 0; the value of a pair of matching left
and right gloves is 100 yuan.

In such a situation, for any sub-coalition S, the more gloves that can be paired up,
the bigger the payoff for the coalition.

Thus, for any one S ∈ 2N , S can include members of subset L and members
of subset R. Therefore, the number of gloves that can be paired up is the smallest
number in subset |S ∩ L| (number of people holding a left hand glove in S) and
subset |S ∩ R| (number of people holding a right hand glove in S).

Therefore, the characteristic function of the Glove Game

v(S) � 100 × min{|S ∩ L|, |S ∩ R|},∀S ∈ 2n (6.3)

For instance, there are 20 people in S, of which 12 people have a left-hand glove,
eight have a right-hand glove, then v(S)�100×min{12, 8}�100×8 � 800 yuan.

6.1.6 Definition of Cooperative Games

Cooperative games can be defined by the set of players N and the characteristic
function v.
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Definition 6.1 Acooperative game is a 2-tuple 〈N , v〉, havingN as the set of players,
v as the characteristic function, and v : 2N → R, i.e. a mapping from set 2N to the
real number set R.

Normally,GN is used to indicate the cooperative gamewithN as the set of players.
For determining the set of players only, there can be many kinds of characteristic
functions. Hence v ∈ GN is often used to represent a certain characteristic function
with N as the set of players.

6.2 Imputation and the Core

For cooperative games of transferable utility, the ‘solution of the game’ is to find
a scheme acceptable to all for allocating collective payoff between the players (or
sharing cost). Only if such an allocation scheme can be found and executed can the
‘coalition’ be maintained and not disintegrate.

Clearly, for coalitional games, the ‘solution of the game’ is a scheme for allocating
collective payoff (or a scheme for sharing collective cost). It must be satisfactory to
each of the player as well as each of the sub-coalition. This is because, if any of
the sub-coalition (including the smallest sub-coalition—an individual) is dissatisfied
with the allocation, they will leave the coalition and it will disintegrate.

Example 6.3 (Imma Curiel 1997) There are five people (marked as 1, 2, 3, 4, 5
respectively) in different situations: they may have funds, technical know-how, fac-
tory premises, personal connections. These five people decide to partner up to set up
a business. The business feasibility report states that when the enterprise is set up,
the annual profit will be 1 million US dollars. To enable the five people to cooperate,
it is necessary to determine a reasonable scheme for allocating the annual profit (in
million US dollars) (Table 6.1).

Table 6.1 Possible cooperation between the five and the corresponding profits

S V(S) S V(S) S V(S) S V(S)

{1} 0 {1, 5} 20 {1, 2, 4} 35 {3, 4, 5} 70

{2} 0 {2, 3} 15 {1, 2, 5} 40 {1, 2, 3, 4} 60

{3} 0 {2, 4} 25 {1, 3, 4} 40 {1, 2, 3, 5} 65

{4} 5 {2, 5} 30 {1, 3, 5} 45 {1, 2, 4, 5} 75

{5} 10 {3, 4} 30 {1, 4, 5} 55 {1, 3, 4, 5} 80

{1, 2} 0 {3, 5} 35 {2, 3, 4} 50 {2, 3, 4, 5} 90

{1, 3} 5 {4, 5} 45 {2, 3, 5} 55 {1, 2, 3, 4, 5}100
{1, 4} 15 {1, 2, 3} 25 {2, 4, 5} 65 ∅ 0

This example is taken from Cooperative Game Theory by Dong Baomin, Wang Yuntong, and Guo
Guixia
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Firstly, someone propose that the profit should be equally distributed (i.e. each person
gets 200,000 US dollars).

However, players 4 and 5 find that if just the two of them cooperate, their annual
payoff can reach 450,000 US dollars, great than the 400,000 US dollars payoff they
can get in the five-person cooperation. Therefore, in view of the scheme for equal
distribution, 4 and 5 propose that they do not join the five-person cooperation but the
two of them cooperate instead.

The remaining people 1, 2 and 3 find that if only the three of them cooperate, the
annual payoff is only 250,000 US dollars. Therefore, 1, 2 and 3 decide to find ways
to keep 4 and 5 in. Thus, they decide to give 460,000 US dollars to 4 and 5 (more
than the 450,000 US dollars created by the cooperation between 4 and 5), and then
equally share out the remaining 540,000 US dollars between 1, 2 and 3.

But then a new problem arises: Players 3, 4 and 5 find that if the three of them
leave the grand coalition to cooperate by themselves, the annual payoff is 700,000
US dollars, more than the 640,000 US dollars when 4 and 5 cooperate (460,000 US
dollars+180,000 US dollars).

If this happens, only 1 and 2 are left to cooperate together; due to the lack of the
funds and know-how, the payoff for their cooperation is 0. Thus, 1 and 2 can only
agree to apportion 710,000 US dollars between 3, 4, and 5, the remaining 290,000
US dollars is equally shared between 1 and 2.

Obviously, for transferable utility in cooperative games, to seek a ‘solution for
the game’ is to find an allocation scheme satisfactory to all the sub-coalitions. This
allocation schemecanbe expressed as the payoff vector x � (xi )i∈N ∈ Rn constituted
by the payoff of all the players, of which xi is cooperation payoff allocated to player
i.

Below, we will explore the conditions that are necessary in an allocation scheme
that can satisfy all the sub-coalitions.

6.2.1 Collective Rationality—The Feasibility of the Allocation
Scheme and the Player’s Degree of Satisfaction

Firstly, from the perspective of the feasibility of the allocation scheme, only if∑
i∈N xi ≤ v(N )’s payoff vector is satisfied can it be feasible. In other words, after

allocating the payoff to the players, the coalition should not be in deficit.
On the other hand, from theperspective of the players, clearly the greater the payoff

allocated, the greater the satisfaction. Considering these two conditions together, the
allocation scheme should satisfy the equation as follows:

∑
i∈N xi ≤ v(N )

This condition thatmust be satisfied in an allocation scheme is called the collective
rationality.
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6.2.2 Individual Rationality—Condition for an Individual
to Join a Coalition

For certain individuals, they can choose to join to a coalition and also to go it alone.
Whether to join a coalition or to go it alone depends on the size of the payoff for these
two choices. Suppose for the individual i ∈ N , his payoff for working alone is v(i),
and the payoff for joining a coalition (with the coalition adopting a certain allocation
scheme) is xi . Clearly, when xi < v(i), i will not join the coalition but work alone.
Only when it is xi ≥ v(i), an individual will join a coalition. In other words, for the
set of players N , when the allocation scheme ensures that all the people in N can
have their payoff as xi ≥ v(i) in the coalition, then this N-person coalition can be
sustained. This condition that must be satisfied in an allocation scheme is called the
‘individual rationality’.

6.2.3 The Imputation Set

Definition 6.2 If the allocation scheme (payoff vector) x ∈ Rn can simultaneously
satisfy the collective rationality and individual rationality, i.e.

∑
i∈N xi � v(N )

and also xi ≥ v(i) is true for all i ∈ N , then x is an imputation of the game v ∈ GN .

Definition 6.3 All the imputations of the game v ∈ GN form the imputation set,
which is marked as I (v).

Obviously, if the imputation set I (v) is not empty, then it is possible to choose an
allocation scheme from I (v) to sustain the coalition N .

But the question is under what conditions is I (v) not empty? In this regard, it is
evident from published works that v(N ) <

∑
i∈N v(i) is a necessary and sufficient

condition for I (v) as an empty set.
In fact, v(N ) <

∑
i∈N v(i) means that the coalition’s payoff is smaller than the

arithmetic sum of all the players’ ‘going-it-alone payoff’. This means that this so-
called ‘coalition’ is not superadditive: the efficiency is not as high as each individual
working alone. This is the case with the ‘inefficient coalitions’ featuring lots of
internal conflicts and mutual constraints.

By contrast, if v(N ) <
∑

i∈N v(i), it clearly says that this kind of coalition is
‘superadditive’, i.e. the coalition’s payoff exceeds the sum of the payoff of the various
individualsworking alone. The kind of coalition is able to achieve economies of scale.

Of course, in reality there are coalitions that satisfy the condition v(N ) <∑
i∈N v(i). In this kind of coalition, the efficiency generated exactly equals the sum

of the payoff of the various players working alone. This kind of coalition is called
an ‘ordinary coalition’, because it makes no difference whether or not an individual
joins the coalition, so it does not matter.

With regards to an ordinary coalition, it can be verified that x �
(v(1), v(2), . . . , v(n)) is the only imputation.
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6.2.4 Small Coalition Rationality

Marking the imputation set as I (v),which is a combinationof the allocation scheme
that simultaneously satisfies individual and collective rationality.

Now, the new question is, can all the schemes in the imputation set sustain the
coalition and prevent it from disintegrating?

Think about the requirement that an imputation has to satisfy individual rationality,
which in effect is the basic condition that prevents individuals from choosing to go
it alone.

However, if k players (1 < k < n) in N form a small coalition S, and the payoff
for this coalition S despite the grand coalition is v(S), which is greater than the sum
of the payoff they get from the grand coalition’s imputation x, i.e. v(S) >

∑
i∈S xi ,

then this sub-coalition will leave the grand coalition. Thus, the grand coalitionN will
dissolve because these k players have left.

By contrast, if leaving the grand coalition the sub-coalition S’s payoff v(S) is
less than the sum of the payoff from the grand coalition’s imputation x, i.e. v(S) >∑

i∈S xi , Then in such a situation, the individuals in the small coalition S will not
leave the grand coalition.

Definition 6.4 In the set of players N , for any partition (S1, . . . , Sk) of N , for each
subset Sj j ∈ 1, . . . , k after the partition, if v

(
Sj

) ≤ ∑
i∈Sj

xi exists, then this kind
of allocation scheme is small coalition rational.

Since a player by himself is also a subset Sj , small coalition rationality actually also
includes individual rationality. In other words, if a certain allocation scheme satisfies
the small coalition rationality, then it must also satisfy the individual rationality.

6.2.5 The Core

According to the analysis above, it can be seen that not all the allocation schemes in
the imputation set I (v) can definitely guarantee the stability of the coalition. In the
imputation set I (v), only the allocation schemes that are small coalition rational can
make all the players feel willing to join the grand coalition. This kind of schemes
form a subset of I (v), which is called the core, expressed as C(v).

Definition 6.5 The core C(v) in cooperative games is:

C(v) �
{
x
∣∣∣x ∈ I (v),

∑
i∈S xi ≥ v(S),∀S ∈ 2N\{∅}

}
(6.4)

The definition of Formula (6.4) is based on the coalition’s allocation of payoff. If
cost sharing is carried out within the coalition, i.e. seeking a reasonable cost sharing
scheme, then the definition of the core is (6.5):
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C(v) �
{
x
∣∣∣x ∈ I (v),

∑
i∈S xi ≤ v(S),∀S ∈ 2N\{∅}

}
(6.5)

In Formula (6.5), v(S) is the cost borne by the sub-coalition alone when it leaves
the grand coalition.

According to the definitions of imputation set and core, the difference and rela-
tionship between the imputation set and the core can be clearly seen: An imputation
set I (v) is a set of allocation schemes that is both individually rational and collec-
tively rational, whereas for a core C(v) the requirements are more strict: It is a set
that is individually rational, collectively rational, and small coalition rational. Thus
C(v) ⊆ I (v).

6.2.6 The Problem that Exists When the Core Is the Solution
to the Coalitional Game

From the perspective of maintaining a coalition’s stability, the allocation scheme of
the core is without doubt a good choice. However, in practice, the core has short-
comings. There are three aspects to these shortcomings: The allocation scheme is
not unique (sometimes there are infinite allocation schemes in a core), the allocation
scheme is extreme (in some situations there is serious bias towards the dominant
side), and an absence of conditions that meet the allocation scheme (sometimes the
core is an empty set).

6.2.6.1 The Allocation Scheme Is not Unique

In many situations the core has many allocation schemes, even infinite. In such a
situation, actually choosing an allocation scheme for solving the game becomes
difficult.

Example 6.4 An insurers coalition (this example is taken from An Introduction to
Cooperative Games by Shi Xiquan).

Suppose there are three insurance companies. Insurer i has ni insured customers
(i � 1, 2, 3). Each company has a certain probability for claims by their customers.
Therefore, insurance companies must have a certain amount of fund in reserve for
claims. Let us assume that the premiums paid by customers are all used by insurance
companies as reserve for claims. If a certain companyhas toomany customersmaking
claims which exceed the amount in reserve for claims, that insurance company will
go bankrupt.

Under certain bankruptcy probability, the greater the number of customers, the
smaller the average amount in reserve for claims per customer is needed. This is
because according to the probability principle, the greater the number of people, the
smaller the probability for claims at the same time.
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When n1 � 100, if a customer suffers a loss, then the amount of his loss is 1
(assume it’s fully comprehensive cover where the insurer compensates the customer
for the full amount of loss, i.e. the amount of loss equals the amount of claim), and the
probability of loss is q1 � 0.1. According to the country’s regulations, an insurer’s
amount for claims reserve should be set at a level making sure that the company’s
bankruptcy probability is less than 0.001 (one thousandth).

Suppose the incident of the customer’s loss is independent. Since n1 is quite big,
the normal approximation of the binomial distribution for a large sample can be
applied. The amount of reserve for claims company 1 needs is

p1 � n1q1 + 3
√
n1q1(1 − q1) � 10 + 9 � 19

Thus, the amount of reserve for claims the company needs is 19. There are cur-
rently 100 customers, and 100 × 0.19 � 19, therefore each customer has to pay
0.19.

For insurance company 2, n2 � 100. If a customer suffers a loss, the amount of
his loss is 1, and the probability for loss is q2 � 0.2. Likewise, an insurer’s amount
for claims reserve should be set a level making sure that the company’s bankruptcy
probability is less than 0.001 (one thousandth). The amount of reserve for claims
company 2 needs is

p2 � n2q2 + 3
√
n2q2(1 − q2) � 20 + 12 � 32

Thus, the amount of reserve for claims the company needs is 32. There are cur-
rently 100 customers, and 100 × 0.32 � 32, therefore each customer has to pay
0.32.

What is the situation if insurance companies 1 and 2 merge as insurance company
12?

Let us assume that insurance company 12’s bankruptcy probability is still less
than 0.001, the amount of reserve needed for claims is:

p12 � n1q1 + n2q2 + 3
√
n1q1(1 − q1) + n2q2(1 − q2) � 10 + 20 + 15 � 45

Since p12 � 45 < p1 + p2 � 51, the result of merging the two companies is
that the amount of reserve for claims is reduced by 6. If the characteristic function
is considered (that characteristic function represents cost), it is:

v(1) � 19, v(2) � 32, v(1, 2) � 45

Suppose insurance company 3 has n3 � 120 customers, the probability for cus-
tomers making claims is q3 � 0.3, and the amount for a claim is 1. The bankruptcy
probability for company 3 is less than 0.001, so the amount of reserve needed for
claims is

p3 � n3q3 + 3
√
n3q3(1 − q3) � 36 + 15 � 51
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Now, the three insurance companies merge to become a large insurance company
123. Under the condition that the bankruptcy probability for company 123 is less
than 0.001, the amount of reserve needed for claims is

p123 � n1q1 + n2q2 + n3q3 + 3
√
n1q1(1 − q1) + n2q2(1 − q2) + n3q3(1 − q3)

� 10 + 20 + 36 + 21 � 87

p123 � 87 < p1 + p2 + p3 � 102. It can be seen that the more the customers, the
less the amount of reserve for claims per unit of customer.

Suppose the vector of shared expenses for the three insurance companies is
(x1, x2, x3). Let us study the solution to this cooperative game below.

First, any allocation scheme in the set of imputations I (v) for that cooperative
game must satisfy the conditions below: x1 + x2 + x3 � 87, x1 ≤ 19, x2 ≤ 32, x3 ≤
51.

However, not every scheme in I (v) can keep company 123 from disintegrating.
For instance, in I (v) the scheme (17, 30, 40) clearly belongs to I (v). But company
1 and company 2 find that if they form a coalition as company 12, then the fund of
reserve for claims is only 45, less than that scheme’s 17+30�47. Therefore, these
two companies can definitely form their own company 12; then company 12’s reserve
for claims is 45, which can be allocated using the scheme (16, 29), clearly better
than the (17, 30) they get in the grand coalition.

In such a situation, company 3 must yield if it wants companies 1 and 2 to coop-
erate, so that the amount of reserve for claims borne by company 1 and company 2
is less than 45. Thus, the amount of reserve for claims borne by company 3 must be
greater than 42 (x3 ≥ 87 − 45 � 42).

Likewise, we must also think about the payoffs if company 1 and company 3 form
a coalition, or company 2 and company 3 form a coalition. These are:

p13 � n1q1 + n3q3 + 3
√
n1q1(1 − q1) + n3q3(1 − q3) � 10 + 36 + 17.54 � 63.54

p23 � n2q2 + n3q3 + 3
√
n2q2(1 − q2) + n3q3(1 − q3) � 20 + 36 + 19.3 � 75.3

Thus, to make the allocation scheme (x1, x2, x3) small coalition rational, so that
even if any of the companies form small coalitions, their payoff cannot be greater
than what they can achieve in the grand coalition, then the allocation scheme in the
game’s core C(v) must satisfy the conditions below:

x1 + x2 + x3 � 87

x1 ≤ 19, x2 ≤ 32, x3 ≤ 51
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x1 + x2 ≤ 45, x1 + x3 ≤ 63.54, x2 + x3 ≤ 75.3

Reorganised, we have:

x1 + x2 + x3 � 87

11.7 ≤ x1 ≤ 19, 23.46 ≤ x2 ≤ 32, 42 ≤ x3 ≤ 51

It is not difficult for the readers to find out that the allocation scheme in that game
is infinite. As the allocation scheme in the core is not unique, it leaves room for the
various parties in their scramble for their interests, but also causes potential problems
for the coalition’s disintegration.

6.2.6.2 Extreme Allocation Scheme

An extreme allocation scheme refers to the allocation scheme in the core that is
sometimes seriously biased towards the dominant party, making it absurd and in fact
not feasible.

Example 6.5 The core of Glove Game (this example is taken from An Introduction
to Cooperative Games by Shi Xiquan).

Suppose N � {1, 2, 3}, in which 1 owns a left-hand glove, 2 and 3 each owns a
right-hand glove. The value of each pair of matched glove is 100 yuan. The value of
any single glove is 0. Among the three players, 1 has an important position because
without 1’s cooperation, no coalition will have any payoff.

What is surprising is that (100, 0, 0) is the only allocation scheme of the ‘core’
in this game, i.e. 1 has all the payoff, the payoff for 2 and 3 is 0.

This is because if 2 or 3’s payoff is greater than 0, then the allocation scheme is
unstable.

For instance, let us suppose that the allocation scheme is (100 − �,�, 0),
of which � > 0. Obviously, player 3 will not be happy with this allocation
scheme because his payoff is 0. Now, 3 can propose a new allocation scheme(
100 − �

/
2, 0,�

/
2
)
. Obviously, in the new allocation scheme 1 and 3 have

increased payoffs, therefore 1 is also willing to accept the new scheme. But since
the payoff for 2 becomes 0, he is dissatisfied with the new scheme and proposes(
100 − �

/
4,�

/
4,0

)
. 2 and 3 continue in turn like this. In the very end, the scheme

is (100, 0, 0). Now 1 is very satisfied, whereas 2 and 3 can no longer suggest any
scheme to increase their own payoff that is acceptable to 1.

Note that even though the allocation scheme in the core is extreme, it does not
mean that it definitely does not exist in reality. In many situations, there is some basis
for the allocation scheme in the core.
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Example 6.6 A real-life version of the Glove Game—Chinese enterprise producing
high-speed rail equipment cutting each other’s prices overseas (“Merger of CNR and
CSR:Avoiding cut-throat competition overseas”, by Chen Shanshan,China Business
News, 28 October 2014).

In China there are only two manufacturers of high-speed rail equipment; they are
China CNR Corporation Limited (CNR) and China South Locomotive & Rolling
Stock Corporation Limited (CSR). The enterprises got into a ‘vicious’ competition.

In 2012 the government of Argentina planned to purchase urban rail trains. CNR
participated in the tender, with the first quote being 2.39 million US dollars per
train. Compared with overseas competitors, the price seemed rather high, but being
reassured by quality, they felt very confident.

What surprised CNR was that, CSR who had never been in the Argentine market,
suddenly got in for the kill During the first tender, it quoted a low price of 1.27
million US dollars per train, nearly 50% lower than CNR’s. The Argentinians who
put the tender out were shocked but pleased, and immediately proposed that for the
second tender no enterprise could quote exceeding 1.27 million US dollars per train.

In such a situation, CNR could only quote a low 1.26 million US dollars per train
in the second tender, but they never imagined that CSR’s quote was even lower, at
only 1.21 million US dollars per train. In the end CSR got the two tenders that it
wanted.

Opposite to the situation in China, many manufacturing powers in rail and train-
making usually only have one enterprise in the country for rail manufacturing, such
as Germany’s Siemens and France’s Alstom.

6.2.6.3 Allocation Schemes that Do not Satisfy Any Conditions
of the Core

For some special types of cooperative games, the ‘core’ might be empty. In other
words, there may not be any allocation schemes that satisfy conditions of the core.

For situations where a core does not exist in cooperative games, readers can refer
to ‘Example 8.4’ of Chap. 8 of this book.

6.3 The Shapley Value

Because the core can include many allocation schemes, the core as the solution to
coalitional games is often an interval. In such a situation, the core solution (i.e.
the allocation scheme to be adopted) is not unique. By comparison, the Shapley
value can give a unique solution to coalitional games and therefore is widely used
in management practice. The basic idea of the Shapley value is to carry out the
allocation according to the players’ average contribution margin for the coalition.
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When players join a coalition, how much is a player’s marginal contribution to
the coalition is often connected with the order in which he joins the coalition, which
is the formation of the order in which players join the coalition. Take the example of
a two-person game G{1, 2}: in order that the two persons are motivated in forming a
coalition, let us suppose v(1) + v(2) < v(1, 2), i.e. the coalition is superadditive.

First, let us take a look at the permutation σ 1 � (1, 2), i.e. 1 joins the coalition
first, and 2 joins afterwards. Here, 1 joins the coalition first. At the time, because
there is no other player in the coalition, then the marginal contribution 1 makes
to the coalition equals the payoff he gets when he goes it alone, i.e. v(1) − v(0).
However, 2 joins the coalition after 1, and there is already player 1 in the coalition.
Thus, the marginal contribution 2 makes to the coalition is v(1, 2) − v(1). Thus, in
the permutation σ 1 � (1, 2), 1 and 2’s marginal contribution vector mσ1(v) for the
coalition formed is:

mσ1(v) � {[v(1) − v(0)], [v(1, 2) − v(1)]}

According to the assumption that the coalition is superadditive, i.e. v(1)+ v(2) <

v(1, 2), therefore v(1, 2)−v(1) > v(2). Thismeans that because 2 joins the coalition
later, his marginal contribution to the coalition is greater than the payoff he gets when
he goes it alone.

Here, the reason the marginal contribution vector is important is because
during negotiations of the allocation schemes, each player’s marginal contribu-
tion to the coalition is key for obtaining their own benefits from the allocation
scheme.

Next, in the permutation σ2 � (2, 1), 1 and 2’s marginal contribution vector
mσ2(v) for the coalition is:

mσ2(v) � {[v(2, 1) − v(2)], [v(2) − v(0)]}

Likewise, v(1)+ v(2) < v(1, 2), therefore v(1, 2)− v(2) > v(1). This means that
now player 1, in joining the coalition later, his marginal contribution to the coalition
is greater than the payoff he gets when he goes it alone.

As a result, in coalitional games G{1,2}, if allocation is based on the player’s
marginal contribution to the coalition, then the player who joins later is more advan-
tageous in the allocation scheme. Now, here is a problem. If players are allowed to
choose the moment to join a coalition, they will choose to be the last to join.

An idea for solving this problem, is to allow each player to join the coalition in
all the permutations, then add together the marginal contribution vectors of all the
possible permutations to get an average value. This average value is used as the basis
for each player’s allocation. This is the basic idea of the Shapley value.

According to this idea, regardingG{1,2}, the twoplayers’ allocation scheme formed
by their respective average contribution margin vector is:
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(x1, x2) �
(
[v(1) − v(0)] + [v(2, 1) − v(2)]

2!
,
[v(2) − v(0)] + [v(1, 2) − v(1)]

2!

)

(6.6)

Likewise, for a coalitional game G{1,2,3} with three players, we have:

(
x1, x2, x3

) �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

{[v(1)(The permutation is 1, 2, 3) − v(0)] + [v(1)(The permutation is 1, 3, 2) − v(0)]}
+ {[v(2, 1) − v(2)] + [v(3, 1) − v(3)]} + {[v(2, 3, 1) − v(2, 3)] + [v(3, 2, 1) − v(3, 2)]}

3! ,

{[v(2)(The permutation is 2, 1, 3) − v(0)] + [v(2)(The permutation is 2, 3, 1) − v(0)]}
+ {[v(1, 2) − v(1)] + [v(3, 2) − v(3)]} + {[v(1, 3, 2) − v(1, 3)] + [v(3, 1, 2) − v(3, 1)]}

3! ,

{[v(3)(The permutation is 3, 1, 2) − v(0)] + [v(3)(The permutation is 3, 2, 1) − v(0)]}
+ {[v(1, 3) − v(1)] + [v(2, 3) − v(2)]} + {[v(1, 2, 3) − v(1, 2)] + [v(2, 1, 3) − v(2, 1)]}

3!

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.7)

Similarly, the allocation in a n-person coalition can be made by the average con-
tribution margin vector.

Definition 6.6 Game GN ’s Shapley value φ(v) is:

φ(v) � 1

n!

∑
σ j∈π(N )

mσ j (v) (6.8)

In the formula, π (N ) is the set of the various permutations that can be produced
by each player in the set of players N . σ j is one of the permutations in π (N ). mσ j (v)
is a marginal contribution vector formed under the permutation σ j with n players’
marginal contribution.

It can be seen from the Formula (6.8) that game GN ’s Shapley value φ(v) is the
vector formed by the arithmetic mean of the various players’ marginal contribution
vector. The Shapley value φ(v) is different from the concept of the core in that the
Shapley value is an allocation scheme for n players; it is not a set of the various
allocation schemes.

The Shapley value φ(v) is a vector; its i component φi (v) is the average value of
the marginal contribution by player i in the various possible permutations in N , i.e.

φi (v) � 1

n!

∑
σ j∈π(N )

m
σ j

i (v)

In the formula, m
σ j

i (v) is player i’s marginal contribution in the n-player permu-
tation σ j .

Example 6.7 For coalitions with payoffs that are only additive (not superadditive nor
subadditive), i.e. for coalition S, T ∈ 2N , if S ∩ T � ∅, then v(S ∪ T ) � v(S)+v(T ).
Here, there is v(S ∪ {i}) � v(S)+ v(i), i.e. v(S ∪ {i})− v(S) � v(i). Clearly, it does
not matter what permutation the player is in; the i marginal contribution always
equals the payoff v(i) he gets when going it alone. Therefore, the i component of the
Shapley value is (note that for a coalition of n players, the total number of possible
permutations is n!):
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φi (v) � 1

n!

∑
σ j∈π(N )

m
σ j

i (v) � n! v(i)

n!
� v(i).

Thus, for this kind of coalition that is only additive, its Shapley value is
(v(1), v(2), . . . , v(n)).



Chapter 7
Allocating Benefits in Coalitions

7.1 Allocating System Efficiency

Inmanagement practice,most of the time the goal of cooperation is system efficiency.
When the number of elements in a system does not reach a certain critical point, the
system efficiency is 0, but once the number of elements reaches the critical point,
system efficiency suddenly emerges.

Let us assume that the set of players is N � {1, 2, . . . , n}, the special feature of the
characteristic function for a coalition with system functionality is v(1) � v(1, 2) �
· · · � v(1, 2, . . . , n − 1) � 0, v(1, 2, . . . , n) > 0.

For instance, player 1 has land, player 2 has labour (foreman), and player 3
has technology know-how and facility. On their own, land, labour, or technological
facility cannot produce efficiency. But if these three elements are brought together,
an excellent payoff can be produced.

For coalitions with system efficiency, let us assume N � {1, 2, . . . , n}, then for
any player to have marginal contribution, he must wait till the n player joins the
coalition. Also, when he is positioned at n, the marginal contribution is the same
whatever the permutation, i.e. it equals v(1, 2, . . . , n); the marginal contribution is 0
at any other position. Therefore, the Shapley value component of player i is:

φi (v) � 1

n!

∑

σ j∈π(N )

m
σ j

i (v) � (n − 1)!

n!
v(1, 2, . . . , n) � v(1, 2, . . . , n)

n
(7.1)

That is, for coalitions with system payoff, the allocation scheme determined by
the Shapley value is for the various players to equally share in the coalition’s payoff.
In the above formula, there is (n − 1)! in the numerator because player i has to wait
till player n to join the coalition for his marginal contribution to equal v(1, 2, . . . , n).
At this time, there are altogether (n−1) players who have joined the coalition before
him; the number of permutations for these people is (n− 1)!. But in other situations,
player i’s marginal contribution is 0.
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7.2 The Problem of Unequal Status

7.2.1 A Landlord and Tenant Cooperative Game

7.2.1.1 The Shapley Value When Tenants Do not Form a Sub-coalition
(This Example Is Taken from Cooperative Game Theory
by Dong Baomin, Wang Yuntong and Guo Guixia)

Moulin (1988) brought forth a landlord and tenant cooperative game problem.
Let us suppose there are n + 1 players. Player 0 is the landlord who owns the land

(but the landlord does not do labour work); players 1, 2 …, n are the n tenants who
can offer labour. Each tenant’s capacity for labour is the same. Let us also assume
thatM is the subset of m tenants in n formed by tenants and landlord 0 (may or may
not include landlord 0).

The characteristic of this cooperative coalition is:
The landlord alone cannot produce any payoff, i.e. v(0) � 0
Tenants without a landlord also cannot produce any payoff, i.e. v(M) � 0, when

0 /∈ M .
When the landlord and tenants join up to form a coalition, the payoff is an increas-

ing function of the number of tenants, i.e. v(M) � f (m), when 0 ∈ M . At this point
|M | � m + 1.

For this cooperative game, the set of players is {0, 1, 2, · · · , n}, in which 0 is the
landlord. When the landlord is positioned at i + 1 in the permutation, there are i
tenants before him. At this time, his marginal contribution is f (i). Therefore, the
landlord’s Shapley value is:

φ0(v) � 1

n + 1

n∑

i�1

f (i) (7.2)

For each of the tenant, because their labour capacity is the same, the Shapley
value is the same, i.e. for any tenant j, his Shapley value is the whole of the grand
coalition’s payoff minus the landlord’s Shapley value and then equally divided by n
tenants:

φ j (v) � 1

n

[
f (n) − 1

n + 1

n∑

i�1

f (i)

]
(7.3)

For this example, if the game’s core is used to solve the allocation
scheme, then it can be seen that in the core there are many allocation
schemes. It includes a scheme that gives all the payoff to the landlord
(x0 � v(0, N ), xi � 0, n ≥ i ≥ 1), and a scheme that allows the tenants to take all

the payoff
(
x0 � 0, xi � v(0,N )

n , n ≥ i ≥ 1
)
, as well as the various ‘compromise’

schemes between the two extremes (because a core is a convex set).
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7.2.1.2 The Situation When Farmers Form a Sub-coalition

With regards to this problem, Sun Shaorong points out that, to prevent the landlord
using his uncommon status to get hold of more benefits, these n tenants can form a
sub-coalition called tenantN . Thus,n+1players are simplified to become twoplayers:
landlord 0 and tenant N . In this way, the problem evolves to become a problem of
system efficiency. Because if there is only landlord 0 or tenantN (indicates that there
are n tenants joining or not joining the coalition as an entity), foodstuff cannot be
produced. That is v(0) � 0, v(N ) � 0.

According to the Shapley value solution above for coalitions with system effi-
ciency, we have:

φ0(v) � v(0, N )

2
� f (n)

2
, (7.4)

i.e. the landlord and n tenants each side getting half of the overall payoff.
Then, with regards to the allocation among the n tenants, as their capacity for

labour is the same, the payoff is divided equally for everybody, i.e.

φi (v) � f (n)

2n
, i � 1, 2, . . . , n (7.5)

Comparing Formula (7.5) with Formula (7.3), it can be proved that when f (m) is
a linear increasing function, the numerical result is the same for both. In other words,
the two algorithms produce the same Shapley value, i.e. the tenants’ payoff is the
same.

However, if the factor of negotiation capability is taken into consideration, then
the situation is not the same for Formulae (7.5) and (7.3). It is not difficult to see that
in Moulin’s landlord-tenant cooperative game problem, the landlord is obviously
more dominant in the game. Because if the landlord does not provide the land,
the cooperation payoff between the tenants is 0, while the landlord can choose to
cooperate with different tenants. In such a situation competition between tenants
emerges, leading to the tenants competing to reduce their own share. Thiswas actually
the reason why in old China some landlords could raise the rent of the land really
high, so there was exploitation.

Therefore, if we follow Sun Shaorong’s improvement proposal for all the tenants
to form a sub-coalition, it is of advantage for the protection of the tenants’ interests.
Then the landlord can only negotiate with the tenants as an entity, and without
the participation of the tenants, his payoff will become 0. In such a situation, the
landlord’s negotiation capacity equals the tenants’ as a whole. From this it can be
seen that farmers associations or trade unions are important in some countries.

Likewise in the human resources market, since viewed in terms of quantities the
number of employers is always fewer than the number of job seekers (each enterprise
counts as a player, and each job seeker also counts as a player), in the game of the
employer and the job seekers, the employer is always in a dominant position. In
such a situation, if the country does not take the lead in stipulating a minimum
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wage, employers can keep wages really low. This is the reason governments of many
countries step out to stipulate a standard for minimum wage.

7.2.2 The Problem of Asymmetric Pairing

7.2.2.1 The Shapley Value When the Weak Parties Do not Form
a Sub-coalition

The problem of pairing is very common in management practice. In some game
theory works, pairing left and right hand gloves or left and right shoes are generally
used as examples. In fact, the problem of pairing technology and capital or land and
facilities are more pertinent.

The so-called problem of asymmetric pairing is in fact an imbalance of numbers
on pairing the two sides, causing a dominant side and a weak side.

Let us still use the problem of pairing gloves as an example. Suppose N �
{1, 2, 3}, in which 1 owns a left-hand glove, 2 and 3 each owns a right-hand glove.
The value of each pair of matched glove is 100 yuan. The value of any single glove
is 0.

When the extreme nature of the core as an allocation schemewas discussed before,
the allocation scheme in the unique core was given as (100, 0, 0) for that problem.

Now let us take a look at the Shapley value for this problem. For a situation with
only three players, (this example is taken fromAn Introduction toCooperativeGames
by Shi Xiquan), there are altogether only six possible permutations, and therefore
all of them can be listed. The various players’ marginal contribution vectors formed
by their marginal contributions under the various permutations can also be listed, as
shown in Table 7.1.

In the six marginal contribution vectors, player 1 got 100 four times, and player 2
and player 3 each got 100 once. Thus, the Shapley vector is (400/6, 100/6, 100/6).

For the problem of pairing n left gloves with (n + 1) right gloves, as n gets bigger,
the difference in quantity of the two becomes smaller, the advantage of having a left

Table 7.1 Marginal
contribution vector

Permutations Marginal contribution vector (the
number inside the brackets is the
number of the player)

123 0, 100 (2), 0

132 0, 100 (3), 0

213 0, 100 (1), 0

231 0, 0, 100 (1)

312 0, 100 (1), 0

321 0, 0, 100 (1)



7.2 The Problem of Unequal Status 89

glove will become less and less. The Shapley value of the gloves game when n �
1, 000, 000: for each person holding a left-hand glove the allocation was 0.500433×
100 yuan, for each person holding a right-hand glove the allocation is 0.499557× 100
yuan. It can be seen that in the situation where there are 1,000,000 left-hand gloves
and 101 right-hand gloves, the advantage of having a left-hand glove is basically
gone.

7.2.2.2 The Shapley Value When the Weak Parties Form
a Sub-coalition

Now let us reconsider the problem. N � {1, 2, 3}, 1 has a left-hand glove, and 2 and
3 each has a right-hand glove; each matched pair of gloves is valued at 100 yuan.
What is different from before is that, as pointed out by Sun Shaorong, in fighting
for their interests, 2 and 3 as the weak parties will form a sub-coalition, and agree in
advance that, they as a sub-coalition will pair up with 1, i.e. 2 and 3 agree in advance
to either join or not join the grand coalition together.

In such a situation, it evolves into a question of the Shapley value for a coalition
with system efficiency; because a payoff can only be produced when 1 and the sub-
coalition formed by 2 and 3 are combined as a grand coalition.

As before, according to the Shapley value solution for a coalition with system
efficiency, player 1 gets half of the grand coalition’s payoff, whereas the sub-coalition
23 gets the other half of the payoff, which 2 and 3 then equally share. In such a
situation, the Shapley value is (50, 25, 25). As we can see, when 2 and 3 form a
sub-coalition, the payoff for players 2 and 3 is improved because, if they do not form
a sub-coalition, the Shapley value is (400/6, 100/6, 100/6).

7.3 The Question of Sets of Cost

The question of sets of cost refers to the situation where in cooperative games when
the various playerswork alone, their costs or payoffs can forman increasing sequence,
and the cost of the person with high cost (or payoff) can offset the cost of the person
with low cost.

For instance, there is a straight road that leads to town. The cost of constructing
the road for the village furthest from town is higher than that for the village next
furthest from town, and the cost for the village next furthest from town is higher
than that for the villages nearer to town, when they each bear the construction cost
alone…; for colleagues who travel the same road and share a taxi home after work,
the one who lives furthest from work will have a higher cost when hiring the taxi
alone than the one who lives the next furthest from work… and so on.

Below let us use the example of the Airport Game (Littlechild and Owen 1973)
to illustrate the Shapley value solution for the question of cost sets (this example is
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taken from Cooperative Game Theory by Dong Baomin, Wang Yuntong and Guo
Guixia).

Let us suppose that n Airline companies N � {1, 2, . . . , n} own different sizes of
aircrafts, and each of these airlines has only a certain size of aircrafts. Large aircrafts
need a longer runway than the small aircrafts. Runways that can accommodate large
aircrafts to take off and land will definitely accommodate small aircrafts.

Suppose for aircraft size i, the construction cost of the runway is
ci (i � 1, 2, . . . , n). We can also suppose the size of aircraft is in this order 1 ≤
2 ≤ · · · ≤ n. Thus, the construction cost of runways for each size of aircraft alone is
c1 ≤ c2 ≤ · · · ≤ cn . Thus, for the coalition S ∈ 2N formed by some airlines, the cost
outlay is only the runway construction cost for the biggest aircraft in S. Therefore,
the cost borne by all airlines in coalition S is:

v(S) � max
{
cp, cq , . . . , cw

}
, (p, q, . . . , w) ∈ S (7.6)

Let us first look at the cost borne by company 1with the smallest model of aircraft.
There are (n − 1)! possible permutations for company 1 to be at the first position.
When company 1 is at the first position, its marginal contribution (increasedmarginal
cost to the coalition) is c1. When company 1’s position is second or even later in the
permutation, because company 1’s cost is the lowest, the runway cost of the company
(companies) positioned before it already includes company 1’s runway cost, so its
increased marginal cost to the coalition is 0. For n companies, the number of all the
permutations is n!, and therefore company 1’s Shapley value is:

φ1 � (n − 1)!

n!
c1 � c1

n
(7.7)

Next, let us look at the cost borne by company 2. If it is the first to join the coalition,
then its marginal contribution to the coalition is c2. There are (n − 1)! permutations
for this situation. For n companies, the number of all the permutations is n!, therefore
the probability for this is (n−1)!

n! � 1
n . Here the cost borne by company 2 should be

c2
n .
When company 2 is the second to join the coalition, if the one before it happens to

be company 1, the marginal contribution to the coalition by company 2 is the portion
of its cost that exceeds company 1’s cost (c2 − c1). There are (n − 2)! permutations
for this situation, and therefore the probability is (n−2)!

n! for this kind of situation. The
cost borne by company 2 should be (n−2)!

n! (c2 − c1).
If company 2 is positioned third or even later, then there is at least one com-

pany before it whose runway cost is greater than c2. Here, company 2’s marginal
contribution to the coalition is 0.

Therefore, company 2’s Shapley value is

φ2 � c2
n

+
(n − 2)!

n!
(c2 − c1) � c2

n
+

1

(n − 1)n
(c2 − c1)



7.3 The Question of Sets of Cost 91

� c2
n

+
n − (n − 1)

(n − 1)n
(c2 − c1)

� c2
n

+

(
1

n − 1
− 1

n

)
(c2 − c1) � c1

n
+

1

n − 1
(c2 − c1)

Next, let us look at the cost borne by company 3. If it is the first to join the coalition,
then its marginal contribution to the coalition is c3. There are (n − 1)! permutations
for this situation. For n companies, the number of all the permutations is n!, and
therefore the probability for this is (n−1)!

n! � 1
n . Here the cost borne by company 3

should be c3
n .

When company 3 is the second to join the coalition, there are three kinds of
situations.

The first is that the company before it happens to be company 1, and the marginal
contribution to the coalition by company 3 is the portion of its cost that exceeds
company 1’s cost (c3 − c1). There are (n − 2)! permutations for this situation, so the
probability is (n−2)!

n! for this kind of situation. Here the cost borne by company 3 is
(n−2)!

n! (c3 − c1).
The second is that the company before it happens to be company 2, and the

marginal contribution to the coalition by company 3 is the portion of its cost that
exceeds company 2’s cost (c3 − c2). There are (n − 2)! permutations for this situ-
ation, so the probability is (n−2)!

n! for this kind of situation. Here the cost borne by
company 3 is (n−2)!

n! (c3 − c2).
The third is that at least one of the companies before it is neither company 1

nor company 2. Here, before company 3, there must be company 4 or a company
of a higher number. In such a situation, company 3’s marginal contribution to the
coalition is 0.

All in all, when company 3 is the second to join the coalition, its cost is
(n−2)!

n! [(c3 − c1) + (c3 − c2)].
When company 3 is the third to join the coalition, there are two kinds of situations.
One is that the company before it happens to be company 1 and company 2. Here,

company 3’s marginal contribution to the coalition is the portion of its cost that
exceeds company 2’s cost (c3 − c2). The number of permutations for this situation is
(n − 3)! 2!, of which (n − 3)! is the number of permutations of n−3 companies after
removing company 1, company 2 and company 3 from the n companies. 2! is the
possible permutations of company 1 and company 2 when these two companies are
in front of company 3. Therefore, the probability is (n−3)!2!

n! for this kind of situation.
Here the cost borne by company 3 is (n−3)!2!

n! (c3 − c2).
The other situation is that at least one of the companies before it is neither company

1 nor company 2. Here, the companies before it is either company 4 or a company
of a higher number. Since the length of runway of any company whose number is
greater than 3 will be longer than company 3’s runway, here, company 3’s marginal
contribution to the coalition is 0.

Bringing together the various sequences of company 3 joining the coalition, com-
pany 3’s Shapley value is:
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φ3 � c3
n

+
(n − 2)!

n!
[(c3 − c1) + (c3 − c2)] +

(n − 3)! 2!

n!
(c3 − c2)

φ3 � c3
n

+
(n − 2)!

n!
[(c3 − c1) + (c3 − c2)] +

(n − 3)! 2!

n!
(c3 − c2)

� c3
n

+
1

n(n − 1)
(c3 − c1) +

[
1

n(n − 1)
+

2

n(n − 1)(n − 2)

]
(c3 − c2)

� c3
n

+
n − (n − 1)

n(n − 1)
(c3 − c1) +

[
1

n(n − 1)
+

2

n(n − 1)(n − 2)

]
(c3 − c2)

� c3
n

+
1

(n − 1)
(c3 − c1) − 1

n
(c3 − c1) +

[
1

n(n − 1)
+

2

n(n − 1)(n − 2)

]
(c3 − c2)

� c1
n

+
1

(n − 1)
(c3 − c1) +

[
1

n(n − 1)
+

2

n(n − 1)(n − 2)

]
(c3 − c2)

� c1
n

+
1

(n − 1)
(c3 − c1) +

[
n − 2

n(n − 1)(n − 2)
+

2

n(n − 1)(n − 2)

]
(c3 − c2)

� c1
n

+
1

(n − 1)
(c3 − c1) +

[
(n − 1) − (n − 2)

(n − 1)(n − 2)

]
(c3 − c2)

� c1
n

+
1

(n − 1)
(c3 − c1) +

1

(n − 2)
(c3 − c2) − 1

(n − 1)
(c3 − c2)

� c1
n

+
1

(n − 1)
(c3 − c1) +

1

(n − 2)
(c3 − c2) − 1

(n − 1)
(c3 − c2)

� c1
n

+
1

(n − 1)
(c2 − c1) +

1

(n − 2)
(c3 − c2)

In fact, for the Airport Game, the Shapley value of company k(k � 1, 2, . . . , n)

is:

φk � c1
n

+
1

n − 1
(c2 − c1) + · · · + 1

n − k + 1
(ck − ck−1) �

k∑

i�1

ci − ci−1

n − i + 1
(7.8)

Looking at the formula, we find that cost c1 of the shortest runway is shared
equally among the n companies. Then the cost difference between the next-shortest
runway cost c2 and the shortest runway cost c1, which is (c2 − c1), is equally divided
by the other (n − 1) companies except company 1 …, until (ck+1 − ck) is shared by
(n − k + 1) companies between company k and company n. Thus, companies with
longer runways bear higher cost, which is, however, lower than if that company ‘goes
it alone’.



Chapter 8
Coalitions—Disintegration and Stability

Coalitions in games refer to groups formed by some of the players of the game for
pre-agreed actions. The aim of this kind of coalitions is to protect the interests of
coalition members.

Generally speaking, forming coalitions can achieve more payoffs for the coalition
as a whole, so that participating individuals can be allocated more payoffs than
working alone. However, in many situations, coalitions can disintegrate.

Usually, for grand coalitions, the existence of individual rationality or small coali-
tion rationality, or put another way, selfishness in individuals or in the small coali-
tions, can cause the coalition to break up, or cause cooperation within the coalition to
become confrontational, leading to diminished payoffs, and in some situations can
even lead to unstable game behaviour.

8.1 Individual Rationality Causes a Cooperative Game
to Become Confrontational and Diminished Payoffs

The so-called individual rationality mainly refers to game players maximising his
own payoff as his guiding principle when deciding his choice of actions. This kind
of individual rationality often causes cooperation to become confrontational within
a coalition.

Example 8.1 Disintegration of a coalition caused by individual rationality—Pris-
oner’s Dilemma (this example is based onGame Theory and Information Economics
by Zhang Weiying, and Introduction to Game Theory by Wang Zeke and Li Jie).

Prisoner’s Dilemma was formulated byMerrill Flood, Melvin Dresher and Albert
Tucker of Rand Corporation in 1950. A classic Prisoner’s Dilemma is:

Two suspects A and B are arrested by police, but the police do not have enough
evidence to convict the two. So they are imprisoned separately, and the police offered
them each the following choices:
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Table 8.1 Prisoner’s Dilemma

B denies B confesses

A denies Serve a 1-year sentence, serve
a 1-year sentence

Serve a 10-year sentence,
immediately released

A confesses Immediately released, serve a
10-year sentence

Serve an 8-year sentence,
serve an 8-year sentence

If someone confesses and pleads guilty whereas the other one denies, then former
is immediately released, and the one who denies is sentenced to 10 years imprison-
ment.

If both deny, then bothwill be sentenced to 1 year imprisonment due to insufficient
evidence.

If both confess, their crime is confirmed, but because of their confession they will
both be sentenced to 8 years imprisonment (Table 8.1).

Therefore each prisoner faces two choices: Deny or confess.
The character of this game is that no matter what the other chooses, the optimal

choice for each is always to confess: If the other denies and I choose to confess, I
will be released; choosing to deny I will be given a one-year sentence; if the other
confesses, I will be sentenced to 8 years; choosing to deny I will be given a 10-year
sentence.

If both suspects are individually rational, they will both choose to confess, and
the result is that each will be sentenced to 8 years.

However, this is the result if the two do not cooperate.
If the two are trusted friends, they will agree beforehand that in the event of being

caught, they will both choose to deny so that they will get the lightest sentence. This
kind of situation is when a cooperative coalition emerges.

8.2 Small Coalition Rationality Causes a Cooperative
Game to Become Confrontational and Diminished
Payoffs

Small coalition rationality has already been defined in Chap. 6 of this book. It mainly
refers to the situation where some members of a grand coalition consider forming a
small coalition for higher payoff. This manifestation of ‘small coalition selfishness’
is small coalition rationality.

In reality, there are models of sub-coalition in grand coalitions; sub-coalition
rationality often harms the interests of the grand coalition.
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Example 8.2 Small coalition rationality causing confrontations and diminished
payoffs

Please take a look at the example of a three-person game below (this example is
quoted from Introduction to Game Theory by Wang Zeke and Li Jie).

In the three-person game represented in Table 8.2, each player has two strategies:
Player A’s strategy is a1 or a2; player B’s strategy is b1 or b2; player C then decides
whether it is scheme One or scheme Two.

There are two pure strategy Nash Equilibria in this game (a1, b1, scheme One)
and (a2, b2, scheme Two). Comparing the two equilibria, it can be seen that (a1, b1,
scheme One) is the Pareto optimal, i.e. v(A, B,C) in the situation of (a1, b1, scheme
One) is greater than v(A, B,C) in the situation of (a2, b2, scheme Two). Under (a1,
b1, scheme One) the payoff vector is (0, 0, 10), i.e. player C’s payoff is 10, whereas
player A’s and player B’s payoff is 0 respectively. In this situation, player C must
share some of his payoff with player A and player B. At least, A and B’s payoff
should be greater than 1, such as in the (2, 2, 8) allocation scheme. Otherwise, player
A and player B will conspire together and respectively choose (a2, b2). In such a
situation player C will be forced to choose scheme Two, resulting in a payoff vector
of (−1, −1, 5). Obviously, when this result is compared with the suggested scheme
(2, 2, 8) at the equilibrium point (a1, b1, scheme One) the payoff has declined for all
players.

Table 8.2 The harm of Small
Coalition Rationality B

b1 b2

a1

A

a2

Player C chooses scheme One

Player C chooses scheme Two

B

b1 b2

a1

A

a2

0 0 10 -5 -5,0

-5 - 1 1 -5

-2 -2 0 -5 -

-5 - -1 -1 5
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If the three sides can form a coalition, then everyone will agree in advance to
reach the equilibrium point (a1, b1, scheme One). At the same time, to console A
and B, the allocation scheme (2, 2, 8) is adopted. Only in such a situation can a true
equilibrium be achieved. Of course, this kind of equilibrium is not Nash Equilibrium
but a game in agreement under cooperation.

8.3 Individual Rationality Causes the Disintegration
of a Coalition

The following is an example of individual rationality causing a coalition to disinte-
grate.

Example 8.3 Garbage disposal game (this example is taken from Introduction to
Game Theory by Wang Zeke and Li Jie).

The Indian economist Avinash K. Dixit et al. formulated the Garbage Game,
constructing a coalition that can be broken up. Its main content is:

The players are the people of n households. Each household has one bag of garbage
to deal with. Every time a bag of garbage is not disposed, the loss suffered by the
garbage owner is 1.

In this example, m is used to indicate a m-person coalition; the characteristic
function for them-person coalition (i.e. the coalition’s payoff) is v(m), and 1 ≤ m ≤
n is stipulated.

Let us assume that the people of n households are not well-behaved and a fight
over the garbage broke out between them: everyone wants to throw their garbage to
someone else to dispose for them. In such a situation, if m people unite together, the
characteristic function of this m-person coalition is v(m) � −(n − m) because this
coalition can throw m bags of garbage to people outside the coalition, whereas those
outside the coalition can throw n − m bags of garbage to people in the coalition.

From the characteristic function it can be seen that the greater the number of
people in m, i.e. the nearer it is to n, the greater the v(m). However, if m equals m,
the coalition’s characteristic function is not v(m) � −(n − m) � −(n − n) � 0 but
v(n) � −n, because it assumes that the garbage cannot be thrown to people outside
the n people. Here, the existence of coalition m is meaningless - it is the same as not
having a coalition.

Thus, the coalition with the biggest payoff is a coalition formed by n−1 persons;
here v(n − 1) � −1: These n − 1 people can throw their garbage to the poor chap
excluded from the coalition. The best revenge for this poor chap is to throw his bag
of garbage to a person in the coalition (randomly to someone in the coalition).

However, individual rationality can easily break up this coalition.
The person excluded from the coalition can inform n − 2 people in the coalition,

asking them to throw their garbage to the person in the coalition who has not been
informed, whose bag of garbage he will take on himself. Thus, in the new situation,
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the n − 2 people who have been informed by him no longer face the risk of being in
receipt of garbage. That is v(n − 2) � 0.

Whereas for the person originally excluded from the coalition, his characteristic
function or the cost he has to bear is reduced from v(i) � −(n − 1) to v(i) � −1.
Thus, the original coalition m has disintegrated.

8.4 Small Coalition Rationality Causes the Disintegration
of a Coalition

Example 8.4 Majority rule in internal allocation of benefits causes coalition disin-
tegration (this example is edited from An Introduction to Cooperative Games by Shi
Xiquan).

Below let us discuss an example in a cooperative game where small coalition
rationality leads to the disintegration of the coalition.

Three players 1, 2, 3 form a coalition. The wealth they all own together is valued
at 1. This coalition has a rule for allocating wealth: The allocation scheme is decided
by a vote, and the majority rule is adopted in voting.

According to this allocation rule, anyone who works alone (i.e. has a difference
of opinion to others for allocating wealth) will be allocated 0.

That is v(1) � 0, v(2) � 0, v(3) � 0.
Anyone who holds the same opinion as the majority (two or three people) can

take possession of all of the wealth valued at 1.
That is v(1, 2) � 1, v(2, 3) � 1, v(1, 3) � 1, v(1, 2, 3) � 1.
Obviously for this coalition the imputation set is:

I (v) � {x1, x2, x3|, x1 + x2 + x3 � 1, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,}

Now let us prove that in the imputation set there are no subsets that satisfy small
coalition rationality, i.e. the core in this imputation set is an empty set.

There are three separate situations to prove this.
The element (i.e. allocation scheme) in this imputation set must be one of these

three situations:

Situation 1: The three players are all allocated a certain share of the assets, i.e.
x1 > 0, x2 > 0, x3 > 0.
Situation 2: Two of the three players are allocated a share of 0 of assets.
Situation 3: One of the three players is allocated a share of 0 of assets.

Now we can prove that these three situations do not satisfy small coalition ratio-
nality, i.e. they are not the allocation schemes in the core.

Let us first look at situation 1. In this situation, any two of the three persons can
form a small coalition to share the wealth valued at 1. Since the payoff increases
when two persons share the wealth valued at 1 rather than three persons sharing
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(here each of the three must get a certain share of the wealth), therefore there is no
small coalition rationality in situation 1.

Next, let us look at situation 2. If there are two persons without any payoff, i.e.
their payoff is 0, then they can definitely form a sub-coalition in order to overthrow
the voting in situation 2. Therefore, situation 2 is not in the core either.

Lastly let us look at situation 3. This is when one person’s payoff is 0; for the
other two, the payoff for one is� �� 0, and for the other it is 1−�. For convenience,
let us assume that the imputation is (0,�, 1 − �). Now, player 1 can propose an
improved allocation scheme (�− �

2 , 0, 1−�+ �
2 ). Here, player 3 will also agree this

new allocation scheme because his payoff has also increased. Thus a sub-coalition
of player 1 and player 3 is formed. Similarly, player 2 is unwilling to accept the loss
and will propose a new allocation scheme (0,� − �

2 − �
4 , 1 − � + �

2 + �
4 ), which

starts up the sub-coalition of player 2 and player 3. And so it continues. It can be
seen that situation 3 is not a stable result either, and it is not in the core.

It can be proved that for a coalition formed by any players of odd number greater
than 3, so long as it adopts the majority rule, it is unstable.

This example shows that, for decision-making in collectives to deal with issues
such as allocating internal benefits and assets, the institution of vote in the collective
currently used widely, which features decision based on the opinion of the majority,
is unsuitable. Here is a real life example. In the 1990s, the faculty of a college in met-
allurgy voted to decide the last ‘staff accommodation allocation scheme’. Since the
majority of teaching staff is male in a college in metallurgy, the voting outcome was
‘only male teachers will be allocated accommodation’. The incident caused dissatis-
faction among female teaching staff, which was reported to the provincial Women’s
Federation and was only resolved when the Women’s Federation intervened.

8.5 A Coalition’s Stability

8.5.1 Confrontations and a Coalition’s Stability

A coalition’s stability is decided by individuals’ satisfaction degrees to distribution
schemes in a coalition.

From the perspective of a coalition’s stability, in addition to meeting the require-
ments of the core, the coalition’s payoff allocation scheme should also prevent any
individual in the coalition from proposing improvement schemes sharing with others
against a certain player. An improvement scheme of this kind is called a confrontation
against a certain player’s original allocation scheme.

If a new improvement scheme is proposed directed at the confrontation, i.e. a con-
frontation aimed at the confrontation, this is called a counter-confrontation. Obvi-
ously, if the person proposing the confrontation can foresee that his confrontation
will be denied by a counter-confrontation, then the confrontation will not be pro-
posed. An allocation scheme is stable if it does not face confrontations, and it is the
very basis of a stable coalition.
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Example 8.5 Anexample of a confrontation and counter-confrontation (this example
is taken from An Introduction to Cooperative Games by Shi Xiquan).

Let us consider a three-person game, v(1, 2, 3) � 100, v(1) � 0, v(2) �
0, v(3) � 0, v(2, 3) � 50, v(1, 2) � 100, v(1, 3) � 100. In this game, player
1’s status is relatively important. If players 2 or 3 can cooperate with player 1, the
coalition’s payoff can reach 100. But if 2 and 3 cooperate, then the payoff can only
be 50.

From this, someone proposes an imputation of (75, 25, 0), i.e. player 1 and 2 are
united. As 1 is more important, he gets 75; player 2 has at least 25, because if 2 gets
less than 25, he can form an alliance with 3 to equally share the payoff of 50 and can
get at least 25.

However, it is very likely that player 1 will disagree with the scheme (75, 25, 0)
because he can also form an alliance with 3, and achieves imputation (76, 0, 24).

Thus, (76, 0, 24) is player 1’s confrontation against player 2.
But with regards to (76, 0, 24) player 2 can also propose a counter-confrontation

(0, 25, 25). Player 3 will clearly support this counter-confrontation because player
3’s payoff will be bigger.

In such a situation, player 1 expects that his proposed confrontation (76, 0, 24)
towards (75, 25, 0)will be counteracted by (0, 25, 25) proposed by player 2, leading
to an even worse result for him. Therefore, player 1 will not confront (75, 25, 0).

However, will player 2 propose the confrontation (0, 27, 23) against (75, 25, 0)?
We find that with regards to this confrontation, player 1 can propose a counter-
confrontation (75, 0, 25). This schemewill also be supported by player 3. Obviously,
this counter-confrontation is even more disadvantageous for player 2.

Therefore, player 2 will not propose a confrontation against (75, 25, 0).
Therefore, if only players 1 and 2 are considered, then the imputation (75, 25, 0)

is stable—neither party will propose a confrontation scheme.
Similarly, if only players 1 and 3 are considered, the imputation (75, 0, 25) is also

a stable imputation because the status of player 2 and player 3 are the same in the
cooperative game.

However, for imputation (75, 25, 0), if we consider player 3 exists, then it is not a
stable scheme because player 3 can propose (76, 0, 24) directed against player 1, and
can also propose (0, 26, 24) directed against player 2, so as to break up the coalition
of 1 and 2.

Likewise, if only players 2 and 3 are considered, then (0, 25, 25) is also a stable
imputation. It is because, if player 2 proposes the confrontation (0, 26, 24), then
player 3 will propose a counter-confrontation (75, 0, 25).

However, if we consider player 1, then (0, 25, 25) is not a stable imputation either.
It is because player 1 can propose (74, 26, 0) against player 2, or he can propose
(74, 0, 26) against player 3, so as to break up the coalition of 2 and 3.

Bringing together the above, in this cooperative game, the sub-coalitions S1 �
{1, 2}, S2 � {1, 3}, and S3 � {2, 3} are not stable coalitions because it is not possible
to find an imputation that cannot be broken up by confrontations.



100 8 Coalitions—Disintegration and Stability

8.5.2 Definitions of Confrontation
and Counter-Confrontation

For the two imputations x and y, and also with regards to any coalition:

x > (S)y If and only if xi > yi ,∀i ∈ S (8.1)

Definition 8.1 Regarding coalition S and the imputation x , the definition

e(S, x) � v(S) −
∑

i∈S
xi (8.2)

Is the excess for S regarding x .
The excess e(S, x) is the difference between sub-coalition S’s payoff and the sum

total of all the coalition members’ payoff from the imputation. For all the members
in S, the sum of the payoff is

∑
i∈S xi from the imputation x . Coalition S can produce

a payoff of v(S). Thus, if the excess is e(S, x) ≥ 0, it shows that coalition S can
produce a payoff of v(S) and it is not ‘completely depleted’. In other words, the
smaller the excess, the more the S members are willing to accept x .

Confrontation can be defined as follows:

Definition 8.2 A confrontation by player i against another player j and the imputa-
tion x is expressed as (y, S), of which y is another imputation, S ⊆ N , i ∈ S, j /∈
S, (y, S) satisfies e(s, y) � 0 as well as y > (S)x .

In Example 8.3, the confrontation initiated by player 1 against player 2 and the
scheme is ((76, 0, 24), S � {1, 3}). (76, 0, 24) is better for player 1 and 3 than (75,
25, 0). At the same time the excess of {1, 3} regarding (76, 0, 24) is 0.

Definition 8.3 Player j’s counter-confrontation against player i and his confrontation
(y, S) is expressed as (z, T ). z is another imputation, and T is another sub-coalition,
of which j ∈ T, i /∈ T , and also T ∩ S �� φ, (z, T ) satisfies: e(T, z) � 0, z ≥ (T )y.

For Example 8.3, regarding player 1’s confrontation ((76, 0, 24), S � {1, 3}),
player 2 proposes his counter-confrontation z � (0, 25, 25), T � {2, 3}, so that
the payoffs for players 2 and 3 are increased.

8.6 Stability of Game Behaviour in Non-cooperative Games

Let us now analyse the question of stability of game behaviour in non-cooperative
games. In some situations, if the non-cooperative game can reach Nash Equilibrium,
then the game behaviour of the various players in that game reaches a state of sta-
bility. However, if the behaviour of everybody changes continuously, then the game
behaviour is unstable.
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The economist Harold Hotelling pointed out in 1929 that if two manufacturers A
and B produce the same good, then the closer the geographical locations for the sale
of goods from these twomanufacturers, the stronger their substitutability. Consumers
who are further away from the geographical locations where the goods are sold, their
cost for the purchase is higher. Therefore customers will choose the nearest shops
to buy products. Therefore, for manufacturers producing the same product, they are
only in competition with manufacturers in the same neighbourhood. Let us assume
that there are only two manufacturers in the market. Each manufacturer only has one
point of sale and can only be distributed along a 1 km line segment. Parallel to this
at a certain distance is where consumers are evenly distributed along a 1 km straight
line. As in Fig. 8.1 (this example is from Introduction to Game Theory by Wang
Zeke and Li Jie).

Here, what is a better choice for the point of sale for each manufacturer?
It is often assumed that this line segment is equally divided into quarters, with the

first manufacturer’s point of sale A at 1/4, the second manufacturer’s point of sale
B at 3/4. Indeed, if the two manufacturers are in a rather good relationship, and also
both sides abide by their agreement, then it is possible to distribute the point of sale
for both sides in this way.

But from the perspective of competitive games, if Amoves along to the right, then
A will have more customers, and B will have fewer customers. In such a situation,
B will also move along to the left to recapture lost customers.

Thus, A continues to shift to the right, and B continues to shift to the left. In the
end, both sides reach close to the middle of the segment at position 1/2 (Fig. 8.2).
Now, neither side can move along anymore, and so equilibrium is reached.

However, if along that line segment there are three manufacturers’ points of sale
A, B, C. What is the situation? The conclusion is that in this situation, there is no
stable equilibrium: these points of sale will continue to move.

Fig. 8.1 The distributing of the point of sale if they are in good relationship

Fig. 8.2 The distributing of the point of sale if they are in competition



Chapter 9
Bottom Line for Negotiations
and Solutions

9.1 Overview of Negotiations and Negotiation Proportional
Models

9.1.1 An Overview of Negotiations

Negotiation means that in situations of opposing interests, the two sides carry out
talks to fight for their own interests. As to opposing interests for the two sides in
games, if one party’s interests increase, then the other party’s interests will reduce.

From the point of view of a negotiation outcome, if both sides reach an agreement,
then the negotiation is a success. By contrast, if both sides cannot agree in the end,
then the negotiation has broken down.

Generally speaking for both parties, the payoff for a successful negotiation is better
than when a negotiation breaks down. In other words, an expectation from both sides
for success in negotiations is an important basis for conducting the negotiation. On
the other hand, without breaking off the negotiation, both sides will work to increase
their own benefits. Therefore, negotiations are a process of struggle in a cooperative
situation.

9.1.2 Negotiation Proportional Models

To define negotiation from the perspective ofmathematical description, let us assume
that when A and B are successful in a negotiation, the total benefits for both sides
is 1. Also, let us assume that the negotiation process for both sides is to fight for
a proportion of benefits as great as possible during the benefits allocation. Let us
suppose that through negotiations, the proportion of benefits A gets is 0 < x < 1,
then the proportion of benefits B gets is 0 < 1 − x < 1; therefore the negotiation
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outcome is (x, 1 − x). If the negotiation breaks down, then the outcome is (0, 0).
Therefore, as long as x �� 0, x �� 1, a successful negotiation is better than a failed
negotiation. Therefore, any outcome in (x, 1− x) (0 < x < 1) is Nash Equilibrium.
The problem is, to determine the numerical specifics of 0 < x < 1 that fulfils this
condition, both sides have to fight given their terms and capacity.

The negotiation outcome is connected to the bottom line they set for themselves
prior to the negotiation. The so-called bottom line is the least acceptable settlement
set by the player himself prior to the event. From a mathematical perspective, the
negotiation bottom line is a set formed by the total payoff from the various allocation
schemes after a successful negotiation. We use BLA to indicate A’s bottom line
and BLB to indicate B’s bottom line. For example, both sides determine in advance
that the bottom line in the negotiation is that their own payoff cannot be less than
one half of the overall payoff, i.e. for A it is BLA � x ≥ 1

2 , whereas for B it is
BLB � 1 − x ≥ 1

2 . In such a situation, only x � 1
2 will be an acceptable outcome.

In such a situation, the proportion of payoff for both sides is 1
2 .

The fundamental condition for a successful negotiation is that the intersection of
sets formed by the bottom line of both sides is not empty. That is BLA ∩ BLB �� ∅.

For instance, BLA � {
x ≥ 1

3

}
, BLB � {

1 − x ≥ 1
4

}
, then BLA ∩ BLB �{

x � [ 13 ,
3
4 ]

}
. In such a situation, both sides can haggle over x � [

1
3 ,

3
4

]
to fight for

an advantageous outcome for themselves.
Figure 9.1 is an image representation of BLA ∩ BLB � {

x � [
1
3 ,

3
4

]}
. In this

graph, the horizontal axis is A’s proportion of payoff x, the vertical axis is B’s payoff
1− x , to the right of the dotted line x � 1

3 is BLA � {
x ≥ 1

3

}
, and above the dotted

line 1− x � 1
4 is BLB � {

1 − x ≥ 1
4

}
. The solid line in Fig. 9.1 is the outcomes set

of the negotiation; it is located at the top right corner of the point of intersection of
the dotted lines x � 1

3 and 1 − x � 1
4 , and indicates the viable outcomes set of the

negotiation.
If BLA � {

x ≥ 2
3

}
, BLB � {

1 − x ≥ 1
2

}
, then BLA ∩ BLB � ∅. In such a

situation, the negotiation between the two sides will definitely break down.
Figure 9.2 shows how BLA � {

x ≥ 2
3

}
and BLB � {

1 − x ≥ 1
2

}
lead to the

situation of BLA ∩ BLB � ∅. To the right of the dotted line x � 2
3 is BLA �{

x ≥ 2
3

}
, and above the dotted line 1 − x � 1

2 is BLB � {
1 − x ≥ 1

2

}
. It can be

seen from the graph that the negotiation outcomes set is the solid line in Fig. 9.2,
located at the lower left corner of the point of intersection of the dotted lines x � 2

3
and 1− x � 1

2 , and indicates that there is no viable outcomes set for this negotiation.
In some negotiations, the set of viable outcomes is only a point, such as BLA �

x ≥ 1
2 and BLB � 1 − x ≥ 1

2 . In such a situation, only x � 1
2 is a mutually

acceptable outcome, i.e. the elements in BLA ∩ BLB is only a point. The graph is
represented in Fig. 9.3.
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Fig. 9.1 The situation at BLA ∩ BLB � {
x � [ 13 ,

3
4 ]

}

9.2 A General Model for Negotiations and an Objective
Bottom Line

9.2.1 A General Model for Negotiations

Let us now discuss a general model for negotiation by two sides.
Let us suppose the two sides are A and B in the negotiation.
If the two sides are successful in the negotiation, it will produce a total payoff of

v(A,B).
If the negotiation breaks down, A’s payoff is v(A), and B’s payoff is v(B).
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Fig. 9.2 The situation at BLA ∩ BLB � ∅

Obviously, v(A,B) > v(A) + v(B) is a fundamental condition for holding the
negotiation.

Let us suppose that the negotiation is successful; A’s payoff is Ap, and B’s payoff
is Bp � v(A,B) − Ap.

9.2.2 The Objective Bottom Line in a Negotiation

The so-called objective bottom linemeans that if a negotiation breaks down, one party
can still achieve a minimum payoff. If, for that one party, its payoff in a successful
negotiation is not even as high as a failed negotiation, then a successful negotiation
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Fig. 9.3 The situation at BLA ∩ BLB � 1
2

becomes meaningless. Therefore, in the event that a negotiation breaks down, the
minimum payoff that one side can obtain is called its objective bottom line in the
negotiation.

It can be seen from the analysis above that A’s objective bottom line for the
negotiation is BLA � {

Ap ≥ v(A)
}
, and B’s is BLB � {

v(A,B) − Ap ≥ v(B)
}
,

i.e. BLB � {
v(A,B) − v(B) ≥ Ap

}
. In other words, B’s objective bottom line only

allows the other side to have a payoff not exceeding v(A,B) − v(B).
In the actual negotiation process, the bottom lines set by both sides are often much

higher than the objective bottom lines.
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9.3 The Set of Solutions for a Successful Negotiation

It is easy to see that the acceptable set of outcomes for A is BLA �{
Ap ≥ v(A)

}
, and the acceptable set of outcomes for B is BLB �{

v(A,B) − Ap ≥ v(B)
}
. Therefore the set of outcomes acceptable for both sides

is

BLA ∩ BLB � {
Ap ≥ v(A)

} ∩ {
v(A,B) − Ap ≥ v(B)

}

� {
Ap ≥ v(A)

} ∩ {
v(A,B) − v(B) ≥ Ap

}

� {
Ap � [v(A), v(A,B) − v(B)]

}

� {
Bp � [v(B), v(A,B) − v(A)]

}

.

This is the set of solutions for a successful negotiation. If this set of solutions is
empty, then there is no possibility for a successful negotiation.

If a negotiation is treated as a kind of cooperative game, then the conditions for a
possible successful negotiation can be expressed by a characteristic function, i.e.:

v(A,B) − v(B) ≥ v(A), v(A,B) − v(A) ≥ v(B)

In other words, the conditions for a successful negotiation are that the payoff v(A)
for player A when he goes it alone is smaller than that of player B v(B), whereas the
payoff v(A,B) is bigger when both sides cooperate. In such a situation both sides
would be interested in the negotiation.

9.4 A Negotiation’s Nash Product Solution

A non-empty set of solutions BLA ∩ BLB is often not a set of single points. Within
this are many elements (i.e. many possible schemes of the negotiation outcomes in
Fig. 9.1 BLA ∩ BLB form a straight line, among which are infinite element ‘points’,
each point being in fact a negotiation outcome; of course sometimes elements are
limited in the solution set for a problem under negotiation).

In such a situation, the final negotiation outcome is determined by the negotiation
capability of the two sides. Therefore, theoretically speaking, only a ‘set’ of various
outcomes can be predicted for the negotiation, but it is impossible to accurately give
a unique negotiation outcome.

However, for a solution based on an ‘overall optimal set’, then the negotiation
outcome is often unique. For instance, the Nash product solution.

Let us assume that the general model for a problem under negotiation is: The
two parties in the negotiation are A and B. If the negotiation is successful, the total
payoff produced is v(A,B); if the negotiation fails, A’s payoff is v(A), and B’s payoff
is v(B). Let us suppose that the negotiation is successful, A’s payoff is Ap, and B’s
payoff is Bp � v(A,B) − Ap.

Assuming that A’s utility is uA, B’s utility is uB , then the Nash product is defined
as the product of the increment of the payoff uA(Ap − v(A)) achieved by A’s success
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in the negotiation and the utility increment uB(Bp − v(B)) achieved by B’s success
in the negotiation:

uA(Ap − v(A))uB(Bp − v(B)) (9.1)

When each of A’s and B’s utility increment equals their payoff increment (this
situation is common, i.e. when neither A nor B has special economic requirement for
the size of the payoff, and also the payoff range under consideration is small enough
to not cause an obvious diminishing or increasing marginal utility), the Nash product
is:

[Ap − v(A)][Bp − v(B)] � [Ap − v(A)][v(A,B) − Ap − v(B)]

� [Bp − v(A)][v(A,B) − Bp − v(A)] (9.2)

In the situation that a non-empty set of solutions BLA ∩ BLB has many elements,
we can seek the biggest value of its Nash product. Clearly, this is a unique solution
and it satisfies the ‘optimal collective principle’.

Example 9.1 Asymmetrical utility function as a solution for the negotiation

The two sides in the negotiation have different utility functions. In this, party A has
to repay a debt of 550,000 yuan or else his house worth of 1,000,000 yuan will
be repossessed. If it can be guaranteed that the house will not be repossessed, then
the utility increases by five units. Therefore, his utility function jumps up a point at
500,000, i.e. it is a linear function with jumps, as shown in Fig. 9.4.

A’s utility function is:

UA �
{
0.05Ap, Ap < 550, 000 yuan

5 + 0.05Ap, Ap ≥ 550, 000 yuan

As B does not have the above special situation, therefore his utility function is just
a general linear function. However, he places more importance to economic payoff,
as shown in Fig. 9.5.

B’s utility function is:

UB � 0.1Bp

If the negotiation is successful, then the total payoff produced is v(A,B) �
100,0000 yuan; if the negotiation fails, A’s payoff is v(A) � 50,000 yuan when
going it alone, B’s payoff is v(B) � 70,000 yuan when going it alone.

Let us suppose that the negotiation is successful, A’s payoff is Ap, then B’s payoff
is Bp � v(A,B) − Ap.
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U
til
ity

Payoff

Fig. 9.4 Linear utility functions with jumps

Considering A and B’s utility function described above, the Nash product for this
negotiation problem is:

uA(Ap − v(A))uB(Bp − v(B)) � 0.05(Ap − v(A))0.1(Bp − v(B))

� [0.05(Ap − v(A))][0.1(v(A,B) − Ap − v(B))]

� [0.05(Ap − 5)][0.1(100 − Ap − 7)],When Ap < 550, 000

uA(5 + Ap − v(A))uB(Bp − v(B)) � 0.05(5 + Ap − v(A))0.1(Bp − v(B))

� [0.05(5 + Ap − v(A))][0.1(v(A,B) − Ap − v(B))]

� [0.05(5 + Ap − 5)][0.1(100 − Ap − 7)],WhenAp ≥ 550, 000
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U
til
ity

Payoff

Fig. 9.5 Continuous linear utility function

When Ap < 550,000, Nash product derived function is:

duA(Ap − v(A))uB(Bp − v(B))
d Ap

� d{[0.05(Ap − 5)][0.1(100 − Ap7)]}
d Ap

� 0.005d[(Ap − 5)(100 − Ap − 7)]

d Ap

� 0.005d[(Ap − 5)(93 − Ap)]

d Ap

� 0.005d[(Ap(93 − Ap) − 5(93 − Ap)]

d Ap
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� 0.005d(93Ap − A2
p − 465 + 5Ap)

d Ap

� 0.005d(98Ap − A2
p − 465)

d Ap

� 0.005(98 − 2Ap),When Ap ≥ 550, 000

Make duA(Ap−v(A))uB (Bp−v(B))
d Ap

� 0

The solution is: A∗
p � 49, that is when Ap < 550,000, the Nash product solution

is A*
p � 490,000 yuan, B*

p � 100 − A*
p � 510,000 yuan.

Then Ap ≥ 550,000:

duA(Ap − v(A))uB(Bp − v(B))
d Ap

� d{0.05[5 + Ap − v(A)]0.1[Bp − v(B)]}
d Ap

� d{0.05[5 + Ap − v(A)]0.1[Bp − v(B)]}
d Ap

� d{0.05(5 + Ap − v(A))]0.1(v(A,B − Ap − v(B))]}
d Ap

� 0.005d[(5 + Ap − 5)(100 − Ap − 7)]

d Ap

� 0.005d[Ap(93 − Ap)]

d Ap

� 0.005d[Ap(93 − Ap)]

d Ap

� 0.005d(93Ap − A2
p)

d Ap

� 93 − 2Ap,When Ap ≥ 550, 000

Make duA(Ap−v(A))uB (Bp−v(B))
d Ap

� 0

The solution is: A∗
p � 46.5, that is, whenA*

p ≥ 550, 000, theNash product solution
is A*

p � 465,000 yuan, B*
p � 100 − A*

p � 535,000 yuan.
Since the independent variable domain of that function is Ap* ≥ 550, 000, and

also take into account that duA(Ap−v(A))uB (Bp−v(B))
d Ap

� 93 − 2Ap is a linear function,

whereas the Nash product solution is A*
p � 465,000 yuan < 550, 000 yuan, it can

be determined that when it is Ap � 550,000, the Nash product achieves the highest
value. To substitute Ap � 550,000 for Ap ≥ 550,000 in the Nash product:

uA(5 + Ap − v(A))uB(Bp − v(B)) � 0.05(5 + Ap − v(A))0.1(Bp − v(B))

� [0.05(5 + Ap − v(A))][0.1(v(A,B) − Ap − v(B))]

� [0.05(5 + Ap − 5)][0.1(100 − Ap − 7)]
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� 0.005Ap(93 − Ap)

� 0.005 × 55(93 − 55)

� 10.45

Then when Ap < 550,000, A∗
p � 49, substituted into the Nash product at this

stage, the highest value achieved is:

uA(Ap − v(A))uB(Bp − v(B)) � 0.05(Ap − v(A))0.1(Bp − v(B))

� [0.05(Ap − v(A))][0.1(v(A,B) − Ap − v(B))]

� [0.05(Ap − 5)][0.1(100 − Ap − 7)]

� [0.005(Ap − 5)(93 − Ap)

� [0.005(49 − 5)(93 − 49)

� 9.68

Clearly, the Nash product 9.68 (Ap � 490,000) is smaller than the Nash product
10.45(Ap � 550,000). Therefore, the Nash product solution scheme for that negotia-
tion is: For the cooperative payoff of 1,000,000 yuan, side A gets 550,000 yuan, and
side B gets 450,000 yuan.



Chapter 10
Evolution and Stability

10.1 Evolutionarily Stable Point

In usual circumstances, the object of behaviour management is groups with large
numbers of non-rational individuals. Owing to the existence ofwidespread irrational-
ity and sheep-flock effect, the analysis of individual rationality with game theory is
often not in accord with reality. In fact, these non-rational individuals usually cannot
correctly make a one-off, optimal choice in their game behaviour. Instead, through
simple imitating and learning, they continuously adjust their own behaviour until it
eventually reaches optimal utility. This is the evolutionary game.

Example 10.1 Pairing game (this example is edited from Economic Game Theory
by Xie Shiyu).

Table 10.1 shows a pairing game. Let us suppose that there is a group with a large
number of individuals. Everyone makes a living by doing a certain type of work and
that work can only be done by two persons pairing up (such as to lift heavy items
for transporting). Thus, in this game, every player can choose two actions: to ‘pair
up’ and to ‘not pair up’. The rule for payoff is that only when both sides choose to
‘pair up’ can the work be effective, and then each can achieve a payoff of one unit.
As long as the other chooses to ‘not pair up’ the pairing cannot happen and thus the
work is ineffectual, and the payoff for both sides is 0. Note that we have assumed
that the game is a static game, i.e. both sides choose the action simultaneously.

Table 10.1 The pairing game Player 2

Player 1 Pair up Not pair up

Pair up 1,1 0,0

Not pair up 0,0 0,0
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It is easy to see that in that game there are two pure Nash Equilibrium actions
(pair up, pair up) and (not pair up, not pair up). Of these, (pair up, pair up) is more
Pareto optimal. Therefore, if the two players are completely rational, clearly both
sides will choose to ‘pair up’.

Now let us suppose that the players do not have the full capacity for judgement, or
that they lack the information needed for making the accurate judgement. Therefore,
they can only improve their own actions continuously by trials and reviewing lessons
learned from experience.

Thus, for each individual, they can meet others who may choose to ‘pair up’, or
may also choose to ‘not pair up’. Therefore, a player’s payoff is connected with what
type of player his is and what type of player he will meet through stochastic pairing.

Let us assume that in the group, the proportion of players who are inclined to ‘pair
up’ is x , then the proportion of players who are inclined to ‘not pair up’ is 1 − x .
The payoff for players inclined to ‘pair up’ is ux , and the payoff for players inclined
to ‘not pair up’ is u1−x , then:

ux � x · 1 + (1 − x) · 0 � x

u1−x � x · 0 + (1 − x) · 0 � 0

Thus, in the group, the average payoff for all the members is

ū � x · ux + (1 − x)u1−x � x2

It can be seen that the payoff for the players who are inclined to ‘pair up’ is higher
than that of the players who are inclined to ‘not pair up’. Thus, through continuous
repetitions, all players will discover this difference in payoff. In other words, players
who do not pair up will gradually find that it is more advantageous to change their
original behaviour, and so they start to imitate the other type of players.

Thus, in the actual process the proportion of the two types of players x and 1− x
varies with time.

With regards to the rate of change for the players inclined to ‘pair up’, it is
determined by two factors: One is the base figure of the ‘pair up’ type players—the
larger the base figure, the faster the rate of change. The other is the difference between
the payoff for the ‘pair up’ type of players and the average payoff—the bigger the
difference the faster the rate of change.

Let us assume that the rate of change of the ‘pair up’ type players is proportional
to these two factors, then the differential equation is:

dx

dt
� x(ux − u) (10.1)

Here, x is the proportion of the ‘pair up’ type of players, and (ux − u) is the
difference between the payoff for the ‘pair up’ type of players and the average payoff.
dx
dt is the rate of change with time for the ‘pair up’ type of players. That equation
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is called an equation for the speed of evolution for groups with a large number of
individuals.

When the ‘pair up’ players’ expected payoff and the average payoff for all the
players in the group are brought into the equation described above for the speed in
learning, we have:

dx

dt
� x

(
x − x2

) � x2(1 − x) � x2 − x3

Observing the above equation, we find that if x � 0, i.e. initially in the group,
there is no one who wants to pair up, and the group will never have people who
adopt the ‘pair up’ behaviour. This is because learning and imitation require objects
to imitate and learn from. x � 0 means that there simply is no object from whom
imitation can be learnt. Therefore none of the players will change from their original
behaviour.

When x > 0, i.e. in the initial state of the groupwhen ‘pair up’ behaviour is already
adopted by players, if the payoff for these players exceeds the average payoff, then
in group the rate of change of x (the proportion of players who ‘pair up’) is positive,
i.e. there is a gradual increase in players to ‘pair up’.

The question is what the final state is with this kind of change in a group. To
solve this problem, it is necessary to look at the phase diagram of the equation for
the speed of evolution (Fig. 10.1).

According to the phase diagram described above of the equation for the speed of
evolution, with the exception that the number of ‘pair up’ people is 0 in the group, the
ultimate outcome evolved is that all players will be ‘paired up’, i.e. x � 1. Therefore,
x∗ � 0 and x∗ � 1 are the two end points of the direction of evolution (the final
state).

The question of stability in the final state should be considered in an evolutionary
game, i.e. if an individual deviates from the state of stability for any reason, can the

Fig. 10.1 Phase diagram of
the equation for the speed of
evolution in a pairing game

x
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group still return to its original stable state? This is a question of how robust is the
final evolved state of the group.

Let us still use the example of a pairing game. Let us assume that we are in a state
when the behaviour of all players converges towards ‘pairing up’, there appears a
proportion ε of players who, for various reasons, deviate from the equilibrium point
and choose to ‘not pair up’. Thus, the proportion of players who choose to ‘pair up’
is 1 − ε.

Therefore, the expected payoff for the players who ‘pair up’ and ‘do not pair up’
respectively and the average payoff for the players are:

ux � (1 − ε) · 1 + ε · 0 � 1 − ε

u1−x � (1 − ε) · 0 + ε · 0 � 0

ū � (1 − ε) · ux + ε · u1−x � (1 − ε)2

ux � 1 − ε > 0, therefore the expected payoff for the players who ‘do not pair
up’ is lower than that of the ‘pair up’ players. Thus, players who ‘do not pair up’ will
gradually evolve to become paired up, and the final outcome is still for all players to
‘pair up’. That is, x∗ � 1 is an evolutionarily stable point (ESS). It can still remain
stable even disturbed.

However, the other final state x∗ � 0 described in the above equation for the
speed of evolution, i.e. when all the players adopt the behaviour to ‘not pair up’, is
not an evolutionarily stable point.

This is because although when in the group x∗ � 0, no one will deviate from that
point, once the group deviates from that point, it is impossible to return to it.

Let us assume that ε proportion of players deviate from ‘not pair up’ to ‘pair up’,
and the expected payoff for the ‘pair up’ players and the average payoff for the group
are:

ux � ε · 1 + (1 − ε) · 0 � ε

u1−x � ε · 0 + (1 − ε) · 0 � 0

ū � ε · ux + (1 − ε) · u1−x � ε2

Thus, because the expected payoff for the ‘not pair up’ players is lower than
the payoff for the ‘pair up’ players, during the process of continuous replication, the
number of ‘not pair up’ players will decrease continuously, until the group converges
to x∗ � 1, i.e. all players ‘pair up’.
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10.2 Mathematical Conditions for an Evolutionarily Stable
Point

Anevolutionarily stable point (ESS) is a robust point against perturbation. Therefore,
for ESS x∗, apart from having 0 as its equilibrium point in the evolution speed, in the
event that the proportion of types in the group deviates from that point, it can also
enable the proportion of types x in the group to ‘automatically’ return to x∗.

Let us consider the conditions for an evolutionarily stable point (ESS) from the
principles of mathematics. Firstly, with the evolutionarily stable point the speed of
evolution dx

dt � 0; at the same time, when x is lower than x∗ because of disturbance,
the speed of change dx

dt of the proportion of types x should be greater than 0 (thus xwill
gradually increase with time); when x is greater than x∗ because of disturbance, dx

dt
should be less than 0 (thus, x will gradually decrease with time). Thus, the condition,
described with the characteristic of a second derivative, is that the derivative of dx

dt

with respect to t is less than zero, or
d( dx

dt )
dt < 0, i.e. the slope of a tangent line in the

graph is smaller than 0.
Therefore, the conditions for an evolutionarily stable point (ESS) are:

⎧
⎪⎨

⎪⎩

dx
dt � 0

d( dx
dt )
dt < 0

(10.2)

In Fig. 10.1, x � 0 is not a evolutionarily stable point because on this point,
although the evolution speed is dx

dt � 0, its slope of the tangent line is greater than
0. Only at x � 1 is the slope of the tangent line smaller than 0. Therefore, x � 1 is
the evolutionarily stable point.

10.3 Follow-the-Crowd Game—the Evolutionary
Equilibrium Point and the Stable Point
of Evolutionary Equilibrium

The bandwagon effect in games reflects the phenomenon of a fickle public in evolu-
tionary games.

The nature of the follow-the-crowd game belongs to coordination games. Coor-
dination games are an important type of games in game theory. Jasmina Arifovic
(2000), Hans Carlsson, Mattias Ganslandt (1998) and Paul G. Straub (1995) have all
conducted a large amount of research in coordination games.

It is generally believed that there are two basic characteristics in coordination
games.

Firstly, there are many Nash Equilibria in that game; secondly these Nash Equi-
libria can be ranked according to Pareto optimality.
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According to Vincent P. Crawford and Hans Haller (1990), if each of the player in
a coordination game has the same belief (such as aiming for maximum utility), and
everybody has a correct expectation for the choice of action by other players (i.e. they
know that the other side will also choose to maximise utility), then although there
are multiple Nash Equilibria in a coordination game, there exists a unique solution,
which is Pareto optimal.

Example 10.2 Follow-the-crowd game—pairing game with penalty

In order to explain the phenomenon of following the crowd, or the ‘bandwagon
effect’ in an evolutionary game, Sun Shaorong has designed a ‘pairing game with
penalty’. Let us assume that in a business group of many enterprises, each enterprise
can coordinate its production with other enterprises, and it can also carry out produc-
tion independently. If it works with other enterprises, then both sides can exchange
components to reinforce each other’s advantage. Therefore the payoff for both sides
is the highest, at 15 units.

If both sides choose ‘independent production’, then the payoff is 10 units.
If an enterprise chooses to work with another enterprise to produce products,

whereas that enterprise chooses independent production, then the enterprise that
chooses to ‘coordinate’ can only sell its products cheaply and barely achieve
breakeven, i.e. its payoff is 0. However, the enterprise that chooses ‘independent
production’ is at the receiving end of revenge by the enterprise that originally wants
to ‘coordinate’, and so the payoff for both sides is somewhat less than if the two sides
independently produce, at 5 units.

The game’s payoff matrix is as shown in Fig. 10.2.
Let us assume that in the group, the proportion of players who ‘coordinate’ is x ,

then the proportion of ‘independent’ players is 1− x . The payoff for the player who
chooses to ‘coordinate’ is ux , and the payoff for the ‘independent’ player is u1−x ,
then:

Fig. 10.2 The evolutionarily
stable point and evolutionary
equilibrium point in
coordination games

dx
dt

x

0

1 2 1
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ux � x · 15 + (1 − x) · 0 � 15x

u1−x � x · 5 + (1 − x) · 10 � 10 − 5x

Thus, in the group, the average payoff for all the members is

ū � x · ux + (1 − x)u1−x � x · 15x + (1 − x)(10 − 5x) � 15x2 + 10 − 5x − 10x + 5x2

� 20x2 − 15x + 10

According to Formula (10.1), we have:

dx

dt
� x(ux − u) � x(15x − 20x2 + 15x − 10)

� x(30x − 20x2 − 10)

The solution has three equilibrium points: x* � 0, x* � 1 and x∗ � 1
2

The phase diagram for that game’s equation for the speed of evolution is as shown
in Fig. 10.2.

We find that in Fig. 10.2, both x∗ � 0 and x∗ � 1 are the evolutionarily stable
points, whereas x∗ � 1

2 is not the evolutionarily stable point but only an unstable
evolutionary equilibrium point.

From this we know that in that business group, if at a givenmoment the proportion
of enterprises choosing to ‘coordinate’ x is at interval

(
0, 1

2

)
, the ultimate point of

the evolution will be for all enterprises to choose ‘independent production’, i.e.
x∗ � 0. By contrast, if at a given moment, the proportion of enterprises choosing
to ‘coordinate’ x is at interval

(
1
2 , 1

)
, the ultimate point of the evolution is that all

enterprises will choose to ‘coordinate’, i.e. x∗ � 1.
This outcome states that, if the parameters for a pairing game with penalty is as

shown in Table 10.2, then that game is in effect a gamewith the bandwagon effect, i.e.
when there aremore enterprises in a business group that choose to ‘coordinate’ (when
the proportion exceeds one half), for an individual enterprise, the payoff expectation
is relatively high when it chooses to ‘coordinate’. Therefore the stable point of
evolutionary equilibrium is for all enterprises to choose to ‘coordinate’. However,
when there are more enterprises in a business group that choose to be ‘independent’
(here the proportion of enterprises that choose to ‘coordinate’ is less than one half),
for an individual enterprise the payoff expectation is relatively high when it chooses
to be ‘independent’. Therefore a further stable point of evolutionary equilibrium is
for all enterprises to choose to ‘coordinate’. However, when by coincidence, the
amount of enterprises in that business group that choose to ‘coordinate’ is the same
as the amount of those choose to be ‘independent’ (each being half), then for any
enterprise, the expected payoff is the same whether they choose to ‘coordinate’
or to be ‘independent’. (When the number of enterprises is very large, it can be
taken that the choice of action of a single enterprise does not alter the proportion of
enterprises making the choice). The only thing is that this point is unstable. As soon
as the proportion of choice is disturbed and deviates from one half, the equilibrium
outcome will begin to shift towards one of the two previous situations.
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Table 10.2 The bandwagon
effect in a game—pairing
game with penalty

Player 2

Player 1 Independent Coordinate

Independent 10, 10 5, 0

Coordinate 0, 5 15, 15

This game shows that with some conflicting behaviours, where there are effective
mechanisms for penalties, in groupswith a large number of individuals people tend to
behave the sameway: either everybody is uncooperative, or everybody is cooperative.

10.4 Evolutionarily Stable Point in a Central-Tendency
Game—the Hawk-Dove Game

The Hawk-Dove game is another classic game problem. Its characteristics are the
opposite to the ‘follow-the-crowd game’; its evolutionarily stable point is a point at
the middle of the number line for the proportion of player types.

The Hawk-Dove game describes a game in which a group of homogeneous indi-
viduals fight for fixed benefits. Each individual has a choice of two behaviours; the
‘hawk’ refers to tough, unyielding behaviour, while the ‘dove’ refers to behaviours
for compromise.

Since the individuals are homogeneous in that group, if players who adopt the
‘hawk’ behaviours meet other players who also adopt the ‘hawk’ behaviours, then
the probability to win is 50%, and if they win they get the fixed benefit v (such as
territorial gain). There is also a 50% probability for losing, and if they lose, they
suffer a loss of c (such as injury in fighting).

If players adopting the ‘hawk’ behaviours meet players who adopt the ‘dove’
behaviours, then the probability for the former winning is 100%, and they will get
the fixed benefits v.

If players adopting the ‘dove’ behaviours meet other players who also adopt the
‘dove’ behaviours, then both sides have an equal share of the payoff, i.e. they get v

2 .
If players adopting the ‘dove’ behaviours meet players who adopt the ‘hawk’

behaviours, then they yield their payoff to the other side. Because they do not carry
out fighting they do not lose anything, i.e. their total payoff is 0.

According to the description above, the Hawk-Dove game is as shown in
Table 10.3.

Let us assume that in the group, the proportion of players who choose the ‘hawk’
behaviour is x , then the proportion of ‘dove’ players is 1− x . The payoff for players
who choose the ‘hawk’ is ux , and the payoff for players who choose the ‘dove’ is
u1−x , then:

ux � x · v − c

2
+ (1 − x) · v � x

v

2
− x

c

2
+ v − xv � v − x

v

2
− x

c

2
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Fig. 10.3 The Hawk-Dove
game—the evolutionarily
stable point and the
evolutionary equilibrium
point in the central-tendency
game

dx
dt

0

v
c

1

x

u1−x � x · 0 + (1 − x) · v
2

� v

2
− x · v

2

Thus, in the group, the average payoff for all the members is

ū � x · ux + (1 − x)u1−x � x(v − x
v

2
− x

c

2
) + (1 − x)(

v

2
− x · v

2
)

� xv − x2
v

2
− x2

c

2
+
v

2
− x · v

2
− x

v

2
+ x2 · v

2

� v

2
− x2

c

2

According to Formula (10.1), we have:

dx

dt
� x(ux − u) � x(v − x

v

2
− x

c

2
− v

2
+ x2

c

2
)

� x(
v

2
+ x2

c

2
− x

v

2
− x

c

2
)

� x(x2
c

2
− x(

v

2
+
c

2
) +

v

2
)

� x

2
(x2c − x(v + c) + v)

Table 10.3 The payoff matrix in a Hawk-Dove game (this example is edited from Economic Game
Theory by Xie Shiyu)

Player 2

Player 1 Hawk Dove

Hawk v−c
2 , v−c

2 v, 0

Dove 0, v v
2 ,

v
2
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The solution has three evolutionary equilibrium points: x* � 0, x* � 1 and x∗ � v
c .

In this example of the Hawk-Dove game, the phase diagram of the equation for
the speed of evolution is as shown in Fig. 10.3.

It can be seen from Fig. 10.3 that for the three equilibrium points x* � 0, x* �
1 and x∗ � v

c , only x∗ � v
c is an evolutionarily stable point. In other words, when

the proportion of players in the group who choose the ‘hawk’ behaviour is smaller
than x∗ � v

c , the proportion of players choosing the ‘hawk’ behaviour will increase;
whereaswhen theproportionof players in the groupwhochoose the ‘hawk’ behaviour
is greater than x∗ � v

c , the proportion of players choosing the ‘hawk’ behaviour will
decrease. If this game is interpreted as a mixed strategy game, then for each player
the probability for choosing ‘hawk’ behaviour will move nearer to x∗ � v

c .
Since the ‘hawk’ behaviour is by nature a combative behaviour, as soon as the

combat is lost, the loss is often great; though winning a combat can bring payoff,
when compared with the loss in a failed combat, it is often a small gain. That is to
say, usually, 0 < v < c, i.e. 0 < v

c < 1. Therefore, for this game’s stable point of
evolutionary equilibrium, 0 < x∗ � v

c < 1. That is why this game is also called
the central-tendency game, i.e. the proportion of players who choose the ‘hawk’
behaviour or the ‘dove’ behaviour (or the probability of each player choosing the
‘hawk’ or the ‘dove’) is often between 0 and 1. Especially if c � 2v, then the stable
point of evolutionary equilibrium is x∗ � 1

2 , i.e. the ‘hawk’ and the ‘dove’ eachmake
up one half.

This game shows that for some minor conflicts (such as taking advantage of
something), when effective mechanisms for penalties are lacking, there is a certain
proportion in society of those individuals who are tough and unyielding and those
behave peacefully, but it will not be a situation where everybody is either tough and
unyielding or peaceful.

10.5 Evolutionarily Stable Point and the Evolutionary
Equilibrium Point in the Layabout Game

The croaking frog game is a classic game model (this example is edited from Eco-
nomic Game Theory by Xie Shiyu). The game is mainly concerned with whether
male frogs choose to croak or not. The key feature of that game is: croaking attracts
female frogs but also brings cost (consuming energy); no cost is involved in not
croaking but no female frogs are attracted. A male frog that does not croak have
to be a ‘free rider’ by relying on the croaking from other frogs, thus lowering the
probability of meeting other female frogs.

To make the content of that game more relevant as a real management issue, the
author has adapted this classic game so it becomes a game about whether members
of a society choose to work for a living or not work but rely on social security.
Of course, all the members of the groups in this game are homogeneous, i.e. each
member possesses certain capability for work. Therefore, they can choose to work
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or to rely on social security. It is not a society where the young must work whereas
the elderly people can only rely on social security.

The content of the layabout game is as follows.
Let us assume that there is a society formed by two healthy and strong young

people. They can choose either towork or notwork. These two people are ‘layabouts’,
and because of their lazy nature, neither likes to work.

The problem is that, if neither works, then this ‘two-person society’ has no wealth
whatsoever. In such a situation, the income for both is 0.

If only one person works out of the two, then it produces a small amount of labour
output f . Now, the worker gets a wage of w f (w f < f ). At the same time, there is
a cost in working c, and therefore the worker’s actual payoff is w f − c. The other
person who does not work can only rely on social security. As social security is equal
to the reward for labour minus the wage, therefore it is f − w f . As the nature of
providing relief, there is f − w f < w f , i.e.

f
2 < w f .

If both work, then they produce a large amount of labour output b. Now, each
worker gets a wage of wb, with an actual payoff of wb − c.

Thus the two players’ payoff matrix is as in Table 10.4.
If the two players are completely rational people, then an equilibrium outcome

for the layabout game is determined by its parameters.
When w f − c < 0, i.e. w f < c, then neither player will choose to work. Thus

(not work, not work) is the equilibrium point of that game.
When w f − c > 0, i.e. w f > c, and wb − c < f − w f , then the layabout game

has two pure strategy Nash Equilibria, which are (work, not work) and (not work,
work) respectively.

When wb − c > f −w f , then ‘both work’ is an equilibrium outcome, i.e. (work,
work).

Now, let us broaden the situation to a group with numerous people. Following
a stochastic pairing in the group, they play the layabout game. Let us also suppose
that none of the players in that group are rational, i.e. it is not possible to form an
equilibrium point from an analysis of the payoff matrix. An evolutionary equilibrium
is reached only after continuous trials and errors, and reviewing past experience and
lessons.

Let us assume that in the group the proportion of players who choose to ‘work’ is
x , then the proportion of players who ‘do not work’ is 1− x . The payoff for players
who choose ‘to work’ is ux , the payoff for players who choose to ‘not work’ is u1−x ,
then:

Table 10.4 The layabout game

Player 2

Player 1 Work Not work

Work wb − c, wb − c w f − c, f − w f

Not work f − w f , w f − c 0, 0
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ux � x(wb − c) + (1 − x)(w f − c) � xwb + (1 − x)w f − c

u1−x � x( f − w f ) + (1 − x) · 0 � x( f − w f )

Thus, in the group, the average payoff for all the members is

ū � x · ux + (1 − x)u1−x � x(xwb + (1 − x)w f − c) + (1 − x)(x( f − w f ))

� x[(xwb + (1 − x)w f − c) + (1 − x) f − (1 − x)w f ]

� x[xwb − c + (1 − x) f ]

According to Formula (10.1), we have:

dx

dt
� x(ux − u) � x(xwb + (1 − x)w f − c − x[xwb − c + (1 − x) f ])

� x(xwb + (1 − x)w f − c − x2wb + xc − x(1 − x) f )

� x[x(1 − x)wb + (1 − x)w f − (1 − x)c − x(1 − x) f ]

� x(1 − x)[xwb + w f − c − x f ]

� x(1 − x)[x(wb − f ) + w f − c]

The solution has three evolutionary equilibrium points: x* � 0, x* � 1 and x∗ �
w f −c
f −wb

.

When 0 <
w f −c
f −wb

< 1, x∗ � w f −c
f −wb

is also an equilibrium point. Now, it is known

from 0 <
w f −c
f −wb

< 1, here wb − c < f − w f , i.e. when both of the two people
work and the actual payoff for each person (i.e. the payoff after deducting cost) is
less than the income he gets from social security when doing no work, then in the
group, an equilibrium point is reached with some people working, others living on
social security. Here, x* � 0 and x* � 1 are only evolutionary equilibrium points,
not evolutionarily stable points; the only evolutionarily stable point is x∗ � w f −c

f −wb

(Fig. 10.4).
It can be seen fromFig. 10.4 that at 0 <

w f −c
f −wb

< 1, the proportion ofworkers in the

group will remain stable at x∗ � w f −c
f −wb

. That is, if the proportion of workers exceeds

x∗ � w f −c
f −wb

, then the workers suffer a loss (the expected payoff for the workers is
less than the expected payoff for those living on social security), and the number of
people choosing to work will gradually reduce, while the number of people choosing
to live on social security will gradually increase. If the proportion of workers is less
than x∗ � w f −c

f −wb
, it is not worthwhile for those living on social security; the number

of people choosing to be workers will gradually increase, and the number of people
choosing to live on social security will gradually reduce.

Whenwb−c > f −w f , i.e. when both sides work and each person’s actual payoff
is greater than the income of living on social security, there are two equilibrium points
x* � 0 and x* � 1 in the layabout game, of which x∗ � 1 is the evolutionarily stable
point, i.e. an evolutionarily stable outcome is everybody working (Fig. 10.5).
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In the layabout game, when w f − c < 0, it is clear that the workers’ payoff is less
than the cost. Here, there are two equilibrium points x* � 0 and x* � 1 in the layabout
game, of which x∗ � 0 is the evolutionarily stable point, i.e. the evolutionarily stable
outcome is nobody working (Fig. 10.6).

Fig. 10.4 The evolutionary
equilibrium point and
evolutionarily stable point in
the layabout game (when
0 <

w f −c
f −wb

< 1)

dx
dt

0
1 x

f

b

w c
f w

Fig. 10.5 The evolutionary
equilibrium point and
evolutionarily stable point in
the layabout game (when
wb − c > f − w f )

dx
dt

0 1 x

Fig. 10.6 The evolutionary
equilibrium point and
evolutionarily stable point in
the layabout game (when
w f − c < 0)

dx
dt

x0 1
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The layabout game illustrates that in given social conditions (in this example
i.e. when 0 <

w f −c
f −wb

< 1) the proportion of different types of members (such as
layabouts and workers, law abiding citizens and citizens not abiding by the law, etc.)
will remain stable at a certain point. This is in fact the basis of evolutionary games
of the long-standing phenomenon that there will always be ‘good people’ and ‘bad
people’ in every country, region, or organisation. Of course, as a manager, changing
this condition appropriately can also change their proportions.
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