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Preface

It has become an established paradigm to formulate problems within image
processing and computer vision as partial differential equations (PDEs), variational
problems or high-dimensional optimization problems. This compact, yet expressive
framework makes it possible to incorporate a variety of desired properties of the
solutions and to design algorithms based on well-founded mathematical theory.
Applications range from early image formation through compressive sensing, to
low-level image enhancement, restoration and feature detection, and to higher-level
image understanding, segmentation and classification. More recently, the same tools
have also shown great promise in more general applications of data analysis and
machine learning.

In August 2016, we organized a conference titled Imaging, Vision and Learning
based on Optimization and PDEs (IVLOPDE) in the city of Bergen, Norway.
The conference was intended to foster collaboration and exchange of new ideas
within these mathematical techniques for the broad range of applications in imaging
science, computer vision and machine learning. The 5-day event included invited
presentations from 18 internationally leading experts within the field, and 16
contributed poster presentations. Plenty of time was also set aside for informal
discussions, such as a full-day excursion to the fjords and mountains of western
Norway. After the conference, the participants were invited to submit full papers
based on their presentations, or based on new ideas that may have emerged
during the course of the event. Each submitted article was evaluated by 2–3
expert reviewers, who were mostly selected among the other invited speakers. The
reviewers provided a lot of useful feedback, which in some cases led to new insights
that the authors incorporated in revised versions of their articles.

This book constitutes the conference post-proceedings of IVLOPDE. It contains
11 original research articles that were selected from the submitted full papers
after the peer-review process. The articles present various novel techniques and
analytical results within optimization, variational models and PDEs, together with
experimental results on applications ranging from early image formation to high-
level image and data analysis. To guide the reader, the articles have been divided
into four topical sections: (I) image reconstruction from incomplete data, (II)

v



vi Preface

image enhancement, restoration and registration, (III) 3D image understanding
and classification, and (IV) machine learning and big data analysis. Each section
features a balance of theoretically oriented articles and application oriented articles.
The book will benefit all researchers within mathematics, imaging science or data
science who would like to become more familiar with this active field, as well as
experts who would like to learn about the latest developments.

We would like to thank all the reviewers for their valuable suggestions and
careful evaluations, the Research Council of Norway (through ISP-matematikk
project 239033/F20) for providing funding for the conference, and Ruth Allewelt
and Martin Peters at Springer for their excellent support and patience while we
were preparing this book.

Bergen, Norway Xue-Cheng Tai
Kjeller, Norway Egil Bae
Porsgrunn, Norway Marius Lysaker
April 2018
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Chapter 1
Adaptive Regularization for Image
Reconstruction from Subsampled Data

Michael Hintermüller, Andreas Langer, Carlos N. Rautenberg, and Tao Wu

Abstract Choices of regularization parameters are central to variational methods
for image restoration. In this paper, a spatially adaptive (or distributed) regulariza-
tion scheme is developed based on localized residuals, which properly balances the
regularization weight between regions containing image details and homogeneous
regions. Surrogate iterative methods are employed to handle given subsampled data
in transformed domains, such as Fourier or wavelet data. In this respect, this work
extends the spatially variant regularization technique previously established in Dong
et al. (J Math Imaging Vis 40:82–104, 2011), which depends on the fact that the
given data are degraded images only. Numerical experiments for the reconstruction
from partial Fourier data and for wavelet inpainting prove the efficiency of the newly
proposed approach.

Introduction

Image restoration is one of the fundamental tasks in image processing. The quality
of the obtained reconstructions depends on several input factors: the quality of the
given data, the choice of the regularization term or prior, and the proper balance
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4 M. Hintermüller et al.

of data fidelity versus filtering, among others. The goal of the present paper is to
reconstruct an image, defined over the two-dimensional Lipschitz (image) domain
Ω , from contaminated data f , defined over the data domain Λ. Given the original
image û : Ω → R, the data formation model is assumed to be

f = Kû+ η, (1.1)

whereKû represents possibly subsampled data which results from a linear sampling
strategy and η is related to white Gaussian noise (with zero mean). As we later
describe, η is given by white Gaussian noise in the numerical tests, and in the
function space setting we assume it to be a zero mean L2 function. A more precise
description of the data formation model is postponed until section “Problem Settings
and Notations”.

A popular approach to image restoration rests on variational methods, i.e., the
characterization of the reconstructed image u as the solution of a minimization
problem of the type

min
u

Φ(u; f )+ αR(u), (1.2)

whereΦ(·; f ) represents a data fidelity term, R(·) an appropriate filter or prior, and
α > 0 a regularization parameter which balances data fidelity and filtering. The
choice of Φ is typically dictated by the type of noise contamination. As long as
Gaussian noise is concerned, following the maximum likelihood we choose

Φ(u; f ) = 1

2
‖Ku− f ‖2

L2(Λ)
.

On the other hand, R encodes prior information on the underlying image. For the
sake of edge preservation, we choose

R(u) = |Du|(Ω), (1.3)

i.e., the total variation of a function u (see Eq. (1.5) below for its definition).
Then the resulting model (1.2) becomes the well-known Rudin-Osher-Fatemi
(ROF) model [31] which has been studied intensively in the literature; see, e.g.,
[5, 6, 8, 14, 21, 24, 29, 32, 33] as well as the monograph [38] and many references
therein.

It is well known that the proper choice of α is delicate. A general guideline
is the following one: Large α favorably removes noise in homogeneous image
regions, but it also compromises image details in other regions; Small α, on the
other hand, might be advantageous in regions with image details, but it adversely
retains noise in homogeneous image regions. For an automated choice of α in (1.2)
several methods have been devised; see for example [10, 18, 20, 34, 40] and the
references therein, and see [22, 25] for the spatially distributed α methods. We note
that instead of considering (1.2) one may equivalently study λΦ(u; f )+R(u) with
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λ = 1/α. Based on this view, in [2], a piecewise constant function λ over the
image domain is considered: The partitioning of the imagine domain is done via
pre-segmentation and λ is computed by an augmented-Lagrangian-type algorithm.
While still operating in a deterministic regime, [2] interestingly uses a spatially
variant (more precisely a piecewise constant) parameter function λ.

Later it was noticed that stable choices of λ (or respectively α) have to
incorporate statistical properties of the noise. In this vein, in [1, 15] automated
update rules for λ based on statistics of local constraints were proposed. For
statistical multiscale methods we refer to [16, 17, 26]. A different approach has
been proposed in [35] for image denoising only, where non-local means [4] has
been used to create a non-local data fidelity term. While the methods in [1, 15, 23]
are highly competitive in practice, the adjustment of λ requests the output of K
to be a deteriorated image which is again defined over Ω . This, however, limits
the applicability of these approaches in situations where K involves transformation
of an image into a different type of data output space. Particular examples of such
transformations include wavelet or Fourier transforms. It is therefore the goal of this
paper to study the approach of [15] in the context of reconstructing from such non-
image data, possibly coupled with subsampling for the sake of fast data acquisition.

Here we also mention other spatially weighted total variation methods from the
existing literatures. Very often these methods, different from [15, 23] (and also
the present paper), weight the total variation locally by certain edge indicators. In
[9, 42, 43] the difference of the image curvature was used as an edge indicator,
while alternatively the (modified) difference of eigenvalues of the image Hessian
was considered by Yan et al. [41] and Ruan et al. [30]. Recently, the authors in
[27, 28] used similar edge indicators to weight the total variation anisotropically
under the framework of quasi-variational inequalities.

The rest of the paper is organized as follows. Section “Problem Settings
and Notations” describes in detail the problem settings and the notations. Our
adaptive regularization approach is presented in section “Adaptive Regularization
Approach”. Section “Numerical Experiments” concludes the paper with numerical
experiments on reconstruction of partial Fourier data and wavelet inpainting.

Problem Settings and Notations

In the data formation model (1.1), we shall consider the continuous linear operator
K as a composition of two linear operators, i.e., K = S ◦ T . More precisely, T :
L2(Ω) → L2(Λ) is a linear orthogonal transformation which preserves the inner
product, i.e., 〈u, v〉L2(Ω) = 〈T u, T v〉L2(Λ) for any u, v ∈ L2(Ω). Typical examples
of T include Fourier and orthogonal wavelet transforms. Further, we denote the
subsampling domain by Λ̃, which is assumed to be a (measurable) subset of Λ of
finite positive measure, i.e., 0 < |Λ̃| < ∞. Such a Λ̃ may arise in application
cases where there is no access to the complete measured data over Λ, but only to a
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reduced version of it. Define 1Λ̃ as the characteristic function on Λ̃, i.e., 1Λ̃ equals
1 on Λ̃ and 0 elsewhere. Then the so-called subsampling operator S : L2(Λ) →
L2(Λ) is defined by (Sf )(y) = 1Λ̃(y)f (y) almost everywhere (a.e.) on Λ. It is
worth mentioning that S is an orthogonal projection which satisfies idempotency,
i.e., S2 = S, and self-adjointness, i.e., S∗ = S, and that the range of S, denoted by
Ran S, is a closed subspace of L2(Λ). In this setting, we consider the noise η as an
arbitrary oscillatory function in Ran S with

∫

Λ̃

η dy = 0, and
∫

Λ̃

|η|2dy = σ 2|Λ̃|, (1.4)

for some σ > 0. As a direct consequence, the data f according to (1.1) also lies in
Ran S.

For u ∈ L1(Ω), the total variation term |Du|(Ω) in (1.3) is defined as follows:

|Du|(Ω) := sup
{

∫

Ω

u div p dx : p ∈ C1
0 (Ω;R2), ‖p‖L∞(Ω) ≤ 1

}

. (1.5)

Here, C1
0 (Ω;R2) denotes the set of all R

2-valued continuously differentiable
functions onΩ with compact support.

Adaptive Regularization Approach

The focus of this paper is to reconstruct a high-quality image from subsampled data
in a non-image data domain using an adaptive regularization approach. The present
section is structured as follows. In section “ROF-Model and Surrogate Iteration”,
we introduce the surrogate iteration method for solving the ROF-model [31]. Then
in section “Hierarchical Spatially Adaptive Algorithm” we incorporate spatially
adaptive regularization into the surrogate iteration. We further accelerate the spatial
adaptive algorithm by hierarchical decomposition.

ROF-Model and Surrogate Iteration

Our variational paradigm is chosen to follow Rudin et al. [31], which allows
to preserve edges in images. Further, due to the properties of the noise term η

in (1.4), the ROF-model restores the image by solving the following constrained
optimization problem:
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minimize (min) |Du|(Ω) over u

subject to (s.t.)
∫

Λ̃

Ku dy =
∫

Λ̃

f dy,

∫

Λ̃

|Ku− f |2dy = σ 2|Λ̃|.

(1.6)

Usually (1.6) is addressed via the following unconstrained optimization problem:

min
u
|Du|(Ω)+ λ

2

∫

Λ̃

|Ku− f |2 dy (1.7)

for a given constant λ > 0. Note that, since Ku− f ∈ Ran S, the objective in (1.7)
remains unchanged if the integration in the second term of the objective is performed
over Λ rather than Λ̃. Assuming that K does not annihilate constant functions, one
can show that there exists a constant λ ≥ 0 such that the constrained problem (1.6)
is equivalent to the unconstrained problem (1.7); see [6].

Our purpose is to modify the objective in (1.7) in order to handle a spatially vari-
ant parameter λ over the image domain Ω and the operator K: L2(Ω)→ L2(Λ).
Note that this can not be done directly by inserting λ on the integral over Λ̃ in (1.7)
since we require λ to be defined overΩ . Hence, instead of tackling (1.7) directly we
introduce a so-called surrogate functional S [12]. In this vein, for given a ∈ L2(Ω),
S is defined as

S(u, a) := |Du|(Ω)+ λ
2

(

‖Ku− f ‖2
L2(Λ)

+ δ‖u− a‖2
L2(Ω)

− ‖K(u− a)‖2
L2(Λ)

)

= |Du|(Ω)+ λδ
2
‖u− fK(a)‖2

L2(Ω)
+ φ(a,K, f, λ),

(1.8)
with

fK(a) := a − 1

δ
K∗(Ka − f ) ∈ L2(Ω),

where we assume δ > 1. Since ‖S∗‖ = ‖S‖ ≤ 1 and ‖T ∗‖ = ‖T ‖ = 1, we
have ‖K‖ ≤ 1 < δ. We note that here and below ‖ · ‖ denotes the operator
norm ‖ · ‖L (L2(Ω)). We also emphasize that φ is a function independent of u.
It is readily observed that minimization of S(u, a) over u is no longer affected
by the action of K . Rather, minimizing S(u, a) for fixed a resembles a typical
image denoising problem. In order to approach a solution of (1.7), we consider the
following iteration.
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Surrogate Iteration: Choose u(0) ∈ L2(Ω). Then compute for k = 0, 1, 2, . . .

u(k+1) := arg min
u
|Du|(Ω)+ δ

2

∫

Ω

λ|u− f (k)K |2dx. (1.9)

with f (k)K := fK(u(k)).

It can be shown that the iteration (1.9) generates a sequence (u(k))k∈N which
converges to a minimizer of (1.7); see [12, 13]. Moreover, the minimization problem
in (1.9) is strictly convex and can be efficiently solved by standard algorithms such
as the primal-dual first-order algorithm [5], the split Bregman method [19], or the
primal-dual semismooth Newton algorithm [24].

For a constant λ > 0, the above iteration can be formulated as a forward-
backward splitting algorithm: Let F1(u) := |Du|(Ω) and F2(u) := λ

2

∫

Ω |Ku −
f |2dx, and define the proximal operator

proxγ,F1
(u) := argminw

(

F1(w)+ 1

2γ

∫

Ω

|u− w|2dx
)

.

Then, (1.9) is equivalent to

u(k+1) = prox 1
δλ ,F1

(

uk − 1

δλ
∇F2(u

k)

)

.

A different scenario is present if instead we consider a spatially adapted λ as we do
next.

Hierarchical Spatially Adaptive Algorithm

The problem in (1.9) is related, via Lagrange multiplier theory, to the globally
constrained minimization problem

min
u
|Du|(Ω) s.t.

∫

Ω

|u− f (k)K |2dx ≤ A, (1.10)

whereA > 0 is a constant depending on σ andK; see [6]. In order to enhance image
details while preserving homogeneous regions, we localize the constraint in (1.10),
which leads to the modified variational model:

min
u
|Du|(Ω) s.t. S (u) ≤ A a.e. in Ω. (1.11)
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Here the local variance term S (u)(·) := ∫Ω w(·, x)|u−fK(u)|2(x)dx is defined for
some given localization filter w. A popular choice for w, utilized in what follows,
is a window type filter. Thus the constraint in (1.11) with u = u(k+1) reads

S (u(k+1))(·) =
∫

Ω

w(·, x)∣∣u(k+1) − u(k) + 1

δ
K∗(Ku(k) − f )∣∣2(x)dx ≤ A.

(1.12)

Given the convergence result, as k → ∞, for scalar λ alluded to in connection
with (1.9), one expects the term u(k+1) − u(k) to vanish. This indicates that
∫

Ω w(·, x)| 1δ K∗(Ku(k)−f )|2(x)dx ≤ A is expected in the limit. This consideration
leads to the following pointwisely constrained optimization problem:

min
u
|Du|(Ω) s.t.

∫

Ω

w(·, x)
∣

∣

∣

1

δ
K∗(Ku− f )

∣

∣

∣

2
(x)dx ≤ A a.e. in Ω.

(1.13)

Next we discuss the choice of A. In view of the (global) estimate for the
backprojected residual K∗(Kû− f ), i.e.,

‖K∗(Kû− f )‖2
L2(Ω)

≤ ‖K∗‖2‖Kû− f ‖2
L2(Λ)

≤ σ 2|Λ̃|,

we thus choose

A := σ
2|Λ̃|
δ2

.

In deriving the above inequalities, we have used the facts that ‖K∗‖ = ‖K‖ ≤ 1
and ‖Kû− f ‖2

L2(Λ)
= σ 2|Λ̃|.

In a discrete setting, we now describe a strategy, based on a statistical local
variance estimator, to adapt the spatially variant regularization parameter λ. The
idea behind considering a spatially varying λ (instead of a constant one) is motivated
by the fact that the constraint in (1.13) is spatially dependent, in contrast to the one
in (1.10); see [15] for further discussion. For this purpose, consider a discrete image
u defined over the discrete 2D index set Ωh (of cardinality |Ωh|), whose nodes lie
on a regular grid of uniform mesh size h := √1/|Ωh|∈ N. The total variation of a
discrete image u is denoted by |Du|(Ωh); see (1.15) below for a precise definition.
We also define the residual image associated with fK(·) by

r(u) := fK(u)− u.

Concerning the filter w associated with S in (1.11), we exemplarily choose the
mean filter pertinent to a square window centered at x. For this reason and in our
discrete setting, we define the averaging window

Ωωi,j :=
{

(i + hs, j + ht) : s, t ∈
[

−ω − 1

2
,
ω − 1

2

]

∩ Z

}

,
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where ω > 1 is an odd integer representing the window size, and then compute the
estimated local variance at (i, j) ∈ Ωh by

S ω(u)i,j := 1

ω2

∑

(ĩ,j̃ )∈Ωωi,j

∣

∣

∣r(u)ĩ,j̃

∣

∣

∣

2
.

Given the reconstruction un associated with λn, we use S ω(un) to check whether λn
should be updated or it already yields a successful reconstruction un. In particular,
motivated by Dong et al. [15], we intend to increase λn at the pixels where the
corresponding local variance violates the upper estimate A. More specifically, we
utilize the following update rule:

(λn+1)i,j = ζn
ω2

∑

(ĩ,j̃ )∈Ωωi,j
min

{

λ̄,

(

(λn)ĩ,j̃ + ρn‖λn‖�∞
(√

S̃ ω(un)ĩ,j̃ /A− 1
)

)}

.

(1.14)
Here

S̃ ω(u)i,j :=
{

S ω(u)i,j , if S ω(u)i,j > A,

A, otherwise,

λ̄ > 0 is a prescribed upper bound, and ‖λn‖�∞ is a scaling factor suggested in [15].
Two step-size parameters, ζn > 1 and ρn > 0, will allow a backtracking procedure
should λn+1 be overshot by (1.14), on which we refer to the HSA algorithm below
for a more detailed account.

We are now ready to present our (basic) spatially adaptive (SA) image recon-
struction algorithm.

SA Algorithm: Initialize u0 ∈ R
Ωh , λ1 ∈ R

Ωh+ , n := 1. Iterate as follows
until a stopping criterion is satisfied:

1) Set u(0)n := un−1. For each k = 0, 1, 2, . . ., compute u(k+1)
n according to

u(k+1)
n := arg min

u
|Du|(Ωh)+ δh

2

2

∑

(i,j)∈Ωh
(λn)i,j

∣

∣

∣(u− f (k)n )i,j
∣

∣

∣

2
,

with f (k)n := u(k)n − 1
δ
K∗(Ku(k)n −f ). Let un be the outcome of this iteration.

2) Update λn+1 according to (1.14). Set n := n+ 1.
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Following [15] we further accelerate the SA algorithm by employing a hierar-
chical decomposition of the image into scales. This idea, introduced by Tadmor,
Nezzar and Vese in [36, 37], utilizes concepts from interpolation theory to represent
a noisy image as the sum of “atoms” u(l), where every u(l) extracts features
at a scale finer than the one of the previous u(l−1). This method acts like an
iterative regularization scheme, i.e., up to some iteration number l̄ the method yields
improvement on reconstruction results with a deterioration (due to noise influence
and ill-conditioning) beyond l̄.

Here we illustrate the basic workflow of hierarchical decomposition in a denois-
ing problem (i.e., where K equals the identity). Given the exponential scales
{ζ lλ0 : l = 0, 1, 2, . . .} with λ0 ∈ R

Ωh+ and ζ > 1, the hierarchical decomposition
operates as follows:

1. Initialize u0 ∈ R
Ωh by

u0 := arg min
u
|Du|(Ωh)+ h

2

2

∑

(i,j)∈Ωh
(λ0)i,j

∣

∣(u− f )i,j
∣

∣

2
.

2. For l = 0, 1, . . ., set λl+1 := ζλl and vl := f − ul . Then compute

dl := arg min
u
|Du|(Ωh)+ h

2

2

∑

(i,j)∈Ωh
(λl+1)i,j

∣

∣(u− vl)i,j
∣

∣

2
,

and update ul+1 := ul + dl .
Now we incorporate such a hierarchical decomposition into the SA algorithm,

which we shall refer to as the hierarchical spatially adaptive (HSA) algorithm. We
note that all minimization (sub)problems in the HSA algorithm are solved by the
primal-dual Newton method in [24]. There, the original ROF-model is approximated
by a variational problem posed in H 1

0 (Ω) via adding an additional regularization
term μ

2 ‖∇u‖2
L2(Ω)

, with 0 < μ � 1/(ess sup λ), to the objective and assuming,
without loss of generality, homogeneous Dirichlet boundary conditions. In this case,
the (discrete) total variation is given by

|Du|(Ωh) = h
∑

(i,j)∈Ωh

(

|ui+1,j − ui,j | + |ui,j+1 − ui,j |
)

, (1.15)

with ui,j = 0 whenever (i, j) /∈ Ωh. We refer to [24] for a detailed account of this
algorithm.
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HSA Algorithm: Input parameters δ > 1, ω ∈ 2N+ 1. Initialize u0 ∈ R
Ωh ,

λ1 ∈ R
Ωh+ (sufficiently small), ζ0 > 1, ρ0 > 0.

1) Set u(0)0 := u0. For each k = 0, 1, 2, . . . , κ0, compute u(k+1)
0 by

u
(k+1)
0 := arg min

u
|Du|(Ωh)+ δh

2

2

∑

(i,j)∈Ωh
(λ1)i,j

∣

∣

∣(u− f (k)0 )i,j

∣

∣

∣

2
,

with f (k)0 := u(k)0 − 1
δ
K∗(Ku(k)0 −f ). Let u1 be the outcome of this iteration,

and set n := 1.
2) Set vn := f −Kun−1 and d(0)n := 0. For each k = 0, 1, 2, . . . , κn, compute
d
(k+1)
n by

d(k+1)
n := arg min

u
|Du|(Ωh)+ δh

2

2

∑

(i,j)∈Ω
(λn)i,j

∣

∣

∣(u− f (k)n )i,j
∣

∣

∣

2
,

with f (k)n := d(k)n − 1
δ
K∗(Kd(k)n −vn). Let dn be the outcome of this iteration,

and update un := un−1 + dn.
3) Evaluate the (normalized) data-fitting error

θn :=
‖Kun − f ‖2

�2

σ 2|Λ̃h|
.

If θn > 1, then set ñ := n, ζn := ζn−1, ρn := ρn−1, and continue with step
4;
If 0.8 ≤ θn ≤ 1, then return un, λn and stop;
If θn < 0.8, then set un := uñ, λn := λñ, ζn := √ζn−1, ρn := ρn−1/2, and
continue with step 4.

4) Update λn+1 according to formula (1.14). Set n := n+ 1 and return to step
2.

We also remark that the initial λ1 ∈ R
Ωh+ should be sufficiently small such that

the resulting normalized data-fitting error θ1 is much larger than 1. Then the HSA
iterations are responsible for (monotonically) lifting up λn in a spatially adaptive
fashion as described earlier in this paper. Such a lifting is performed until the data-
fitting error ‖Kun−f ‖2

�2/|Λ̃h| approaches the underlying noise level σ 2. If the data-

fitting error drops too far below σ 2, then the algorithm may suffer from overfitting
the noisy data. In this scenario, we backtrack on λn through potential reduction of
ζn and ρn; see step 3 of the HSA algorithm.



1 Adaptive Regularization for Image Reconstruction from Subsampled Data 13

Numerical Experiments

In this section, we present numerical results of the newly proposed HSA algorithm
for two applications, namely reconstruction from partial Fourier data and wavelet
inpainting. All experiments reported here were performed under Matlab. The image
intensity is scaled to the interval [0, 1] in advance of our computation. For the
HSA algorithm, we always choose the following parameters: δ = 1.2, ω = 11,
ζ0 = 2, ρ0 = 1, λ̄ = 106, u0 = K∗f . In the primal-dual Newton algorithm
[24], we choose the H 1-regularization parameter μ = 10−4, the Huber smoothing
parameter γ = 10−3, and terminate the overall Newton iterations as soon as
the initial residual norm is reduced by a factor of 10−4. Besides, the maximum
iteration numbers {κn} for the surrogate iterations are adaptively chosen such that
‖d(κn)n − d(κn−1)

n ‖�2 ≤ 10−6√|Ωh|.
The images restored by HSA are compared, both visually and quantitatively, with

the ones restored by the variational model in (1.7) with scalar-valued λ. For quanti-
tative comparisons among restorations, we evaluate their peak signal-to-noise ratios
(PSNR) [3] and also the structural similarity measures (SSIM) [39]; see Table 1.1.
To optimize our choice for each scalar-valued λ, we adopt a bisection procedure, up
to a relative error of 0.02, i.e., |λk+1 − λk | < 0.02λk, to maximize the following
weighted sum of the PSNR- and SSIM-values of the resulting scalar-λ restoration

Table 1.1 Comparisons with respect to PSNR and SSIM

Cameraman Knee

Fourier Scalar-valued λ HSA Scalar-valued λ HSA

σ #rad’l PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

0.05 75 26.7895 0.8051 26.9559 0.8124 30.4347 0.8247 30.5399 0.8290
0.05 90 27.5399 0.8215 27.5020 0.8262 30.8355 0.8337 30.9442 0.8389
0.05 105 28.1553 0.8307 28.1667 0.8346 31.1155 0.8402 31.3328 0.8478
0.1 75 24.9336 0.7576 25.1809 0.7639 28.2375 0.7570 28.4896 0.7639
0.1 90 25.2738 0.7666 25.7072 0.7775 28.4811 0.7627 28.7140 0.7721
0.1 105 25.6780 0.7740 26.2317 0.7843 28.5856 0.7662 28.8373 0.7745

Cameraman Barbara

Wavelet Scalar-valued λ HSA Scalar-valued λ HSA

σ s.r. PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

0.05 2.5% 24.0319 0.7388 24.5702 0.7436 22.9489 0.6174 24.4184 0.6777
0.05 5% 26.5279 0.7969 27.1539 0.7964 24.6622 0.6922 26.1698 0.7438
0.05 10% 28.6248 0.8374 29.5812 0.8351 26.5317 0.7645 27.8187 0.8083
0.1 2.5% 23.7416 0.7301 24.1510 0.7326 22.7299 0.6067 24.0291 0.6605
0.1 5% 25.7625 0.7786 26.5195 0.7791 24.1307 0.6733 25.2635 0.7095
0.1 10% 27.3033 0.8136 27.5671 0.7937 25.4469 0.7410 26.3245 0.7591

Bold values in the table correspond to the best in their respective classes
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Fig. 1.1 Test images (from left to right): “Cameraman”, “Knee”, and “Barbara”

PSNR(λ)

max{PSNR(λ̃) : λ̃ ∈ I } +
SSIM(λ)

max{SSIM(λ̃) : λ̃ ∈ I }

over the interval I = [102, 105]. The maximal PSNR and SSIM in the above
formula are pre-computed up to a relative error of 0.001. The original images used
for our numerical tests are given in Fig. 1.1.

Reconstruction of Partial Fourier Data

In magnetic resonance imaging, one aims to reconstruct an image which is
only sampled by partial Fourier data and additionally distorted by additive white
Gaussian noise of zero mean and standard deviation σ . Here the data-formation
operator is given byK = S ◦ T , where T is a 2D (discrete) Fourier transform and S
represents a downsampling of Fourier data. In particular, we consider S which picks
Fourier data along radial lines centered at zero frequency.

Our experiments are performed for the test images “Cameraman” and “Knee”
with σ ∈ {0.05, 0.1} and #radials ∈ {75, 90, 105} respectively. In these experiments,
we have always initialized HSA with λ1 = 100. The resulting restorations via
the total-variation method with scalar-valued λ and via our HSA method are both
displayed in Figs. 1.2, 1.3 and 1.4. We also show the ultimate spatially adapted
λ from HSA in each test run, where the light regions in the λ-plot correspond
to high values of λ and vice versa. It is observed that the values of λ in regions
containing detailed features (e.g. the camera and the tripod in “Cameraman”)
typically outweigh its values in more homogeneous regions (e.g. the background sky
in “Cameraman”). As a consequence, this favorably yields a sharper background-
versus-detail contrast in the restored images via HSA. In Fig. 1.3, we observe face
and camera of “Cameraman” reconstructions with a better performance of our HSA
method. According to the quantitative comparisons reported in Table 1.1, HSA
almost always outperforms scale-valued λ in terms of PSNR and SSIM. As a side
remark, it is also observed that the spatially adapted λ via HSA is able to capture
more features of the underlying image at a lower noise level (Fig. 1.4).
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      0.05

75 radials 90 radials 105 radials

Restorations via optimal scalar-valued    ’s

Restorations via HSA

Spatially variant    ’s via HSA

       0.1
75 radials 90 radials 105 radials

Restorations via optimal scalar-valued    ’s

Restorations via HSA

Spatially variant λ ’s via HSA

Fig. 1.2 Reconstruction of partial Fourier data on “Cameraman”
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      0.05

105 radials90 radials75 radials

105 radials90 radials75 radials

Restorations via optimal scalar-valued   ’s

Restorations via HSA

      0.1

Restorations via optimal scalar-valued   ’s

Restorations via HSA

Fig. 1.3 Zoom in for reconstructions of partial Fourier data on “Cameraman”

To test the robustness of HSA, we perturb our choices of the window size ω and
the initial choice of λ in our experiments. In Fig. 1.5, we report the resulting PSNRs
and SSIMs of such sensitivity tests on the particular Fourier-Cameraman example
with σ = 0.05 and #radials = 90. It is observed that HSA behaves relatively stable
with different choices of ω. On the other hand, one should be cautioned that the
results of HSA deteriorate as the initial λ is chosen too large. Nevertheless, among
all initial λ’s smaller than a certain threshold (in this case 200), smaller choices do
not always claim advantages over larger ones.
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     0.05

75 radials 90 radials 105 radials

Restorations via optimal scalar-valued ’s

Restorations via HSA

Spatially variant ’s via HSA

      0.1
75 radials 90 radials 105 radials

Restorations via optimal scalar-valued ’s

Restorations via HSA

Spatially variant ’s via HSA

Fig. 1.4 Reconstruction of partial Fourier data on “Knee”
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Fig. 1.5 Sensitivity test: image= “Cameraman”, σ = 0.05, #radials= 90

Wavelet Inpainting

Wavelet inpainting is about restoring missing wavelet coefficients due to lossy
compression or error-prone data transmission; see, e.g., [7, 44]. Here we consider
the scenario where a test image is compressed by storing the largest Daubechies-
4 wavelet coefficients [11] in magnitude only up to a small sampling rate (s.r.),
namely s.r. ∈ {2.5%, 5%, 10%}. The compressed wavelet coefficients are further
contaminated by additive white Gaussian noise of mean zero and standard deviation
σ ∈ {0.05, 0.1}. For wavelet inpainting, we have initialized HSA with λ1 = 10.
The experiments are performed for the test images “Cameraman” and “Barbara”,
and the corresponding results, both restored images and the adapted λ’s, are shown
in Figs. 1.6 and 1.7. A detailed view of the face region of “Barbara” is given in
Fig. 1.8, where the results are in favor of our HSA algorithm.

In the wavelet-Cameraman example, the results via scalar-valued λ’s and HSA
are almost identical to human eyes. Even though, HSA always outperforms the
scale-valued λ in terms of PSNR, while the SSIM-comparison is somewhat even; see
Table 1.1. Interestingly, the adapted λ’s in this example exhibit patterns analogous
to the ones in the Fourier-Cameraman example.

Our HSA method gains more advantages when it is applied to the “Barbara”
image with a stronger cartoon-texture contrast than “Cameraman”. In Fig. 1.7, it is
witnessed that the restored images via scalar-valued λ’s suffer from undesirable
staircase effects. In comparison, spatially adapted λ’s yield significant improve-
ments on the restorations, even in the cases where the pattern of λ is less transparent
due to lack of data or strong noise. In Table 1.1, the PSNR- and SSIM-comparisons
also dominantly favor the HSA method.
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0.05

2.5% coeff. 5% coeff. 10% coeff.

Restorations via optimal scalar-valued ’s

Restorations via HSA

Spatially variant ’s via HSA

0.1
2.5% coeff. 5% coeff. 10% coeff.

Restorations via optimal scalar-valued ’s

Restorations via HSA

Spatially variant ’s via HSA

Fig. 1.6 Wavelet inpainting on “Cameraman”
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0.05

2.5% coeff. 5% coeff. 10% coeff.

Restorations via optimal scalar-valued ’s

Restorations via HSA

Spatially variant ’s via HSA

0.1
2.5% coeff. 5% coeff. 10% coeff.

Restorations via optimal scalar-valued ’s

Restorations via HSA

Spatially variant ’s via HSA

Fig. 1.7 Wavelet inpainting on “Barbara”
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0.05
2.5% coeff. 5% coeff. 10% coeff.

Restorations via optimal scalar-valued ’s

Restorations via HSA

0.1
2.5% coeff. 5% coeff. 10% coeff.

Restorations via optimal scalar-valued ’s

Restorations via HSA

Fig. 1.8 Zoomed view on wavelet inpainting on “Barbara”

Qualitative Relation to Other Spatially Distributed Parameter
Methods

A particular feature of the HSA algorithm is that it allows to assign a spatially
variant parameter λ, on the image domain Ω , associated to a data fidelity term that
is determined by an integral over Λ̃ ⊂ Λ, a non-image domain. Such configuration
renders certain variational methods with spatially variant λ’s not applicable: For
example, the SATV algorithm developed in [15] requires K to map into functions
over the image domainΩ . This obstacle has been overcome in [22] and [25] where
the spatially variant parameter is not longer related to the data fidelity term, but
rather to the regularization functional. Specifically, a parameter α : Ω → R in the
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model

min
u

∫

Ω

α(x)|Du| + 1

2

∫

Λ̃

|Ku− f |2 dy, (1.16)

is automatically selected based on a bilevel formulation involving also localized
variance estimators.

For non-negative constants λ and α in (1.7) and (1.16), respectively, it holds
true that if λ = α−1 solutions of the optimization problems are identical. In the
spatially variant case for λ and α, the relationship between the parameters does
no longer hold exactly when automatically chosen via local variance estimates of
reconstructions, i.e., we only expect λ(x) � (α(x))−1 for x ∈ Ω . One specific
difference between the two approaches is related to the fact that λ is only required
to be essentially bounded while (in the function space setting) α requires to have
higher regularity for the objective in (1.16) to be well-defined. The latter translates
into the need of having an additional regularization term for the smoothing of α in
the upper level objective. This has a clear consequence in differences for λ and α for
the HSA algorithm and the bilevel method in [22] and [25], respectively: λ seems
to be able to have more variability than α on Ω . On the other hand, although λ and
α have, in general, high and low values on details, respectively, α seems to decrease
on edges more drastically, while λ has slower transitions there. In particular, the
previous explains how the selection of α is a preferable choice over the one of λ in
images with large homogeneous regions, sharp edges, and corners, and vice versa
for images with significant number of details on small regions and certain textures.
A quantitative analysis for such differences is beyond the scope of the paper, and an
active research direction.

In order to compare with the HSA method, we consider the spatially distributed
method described in [22] and [25], where α is chosen in (1.16) via a bilevel
formulation. We define K = S ◦ T to collect Fourier coefficients along 120 radial
lines centered at zero frequency, and take data distorted by additive white Gaussian
noise of zero mean and standard deviation σ = 0.05. For the bilevel scheme, we
utilized the same configuration and parameters as in [25], where the local variance
bounds are chosen as in (#2); see [25] for all details. For the HSA algorithm, we use
the same setup as above in the reconstruction of partial Fourier data. WhenK maps
into functions over the image domain, it was observed that the bilevel formulation
provides, in general, reconstructions with better SSIM than the ones from the SATV
algorithm in [15]. However, the SATV performs better in terms of PSNR than the
bilevel scheme. This same behavior is observed between the HSA algorithm and
the bilevel one. Reconstructions for both methods are given in Fig. 1.9, and we
take zoom views of the two framed regions in the “Chest” image for further detail
comparison in Fig. 1.10. Finally, in Fig. 1.11, we observe the α parameter of the
bilevel scheme, and λ−1 where λ is HSA parameter. As fine details are hard to
observe in the black and white images, we have included red colored plots of the
surfaces associated with both parameters with a specific light effect to show such
details.
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(a) (b) (c)

Fig. 1.9 Fourier inpainting: “Chest”. (a) “Chest” image. (b) Bilevel restoration. PSNR: 28.8837—
SSIM:0.8406. (c) HSA restoration. PSNR:29.2488—SSIM:0.8282

Original Backprojection Bilevel HSA

Fig. 1.10 “Chest”: zoomed views

(a) (b)

Fig. 1.11 Fourier inpainting parameters. (a) α in bilevel. (b) λ−1 in HSA
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Conclusion

In this work, it has been shown that spatially adapted data fidelity weights help
to improve the quality of restored images. The automated adjustment of the local
weights is developed based on the localized image residuals. Such a parameter
adjustment scheme can be further accelerated by employing hierarchical decompo-
sitions, which aim at decomposing an image into so-called atoms at different scales.
The framework of the paper is suitable for subsampled data in non-image domain, in
particular incomplete coefficients from orthogonal Fourier- and wavelet transforms
as illustrated in the numerical experiments.
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Chapter 2
A Convergent Fixed-Point Proximity
Algorithm Accelerated by FISTA for the
�0 Sparse Recovery Problem

Xueying Zeng, Lixin Shen, and Yuesheng Xu

Abstract We propose an approximation model of the original �0 minimization
model arising from various sparse signal recovery problems. The objective function
of the proposed model uses the Moreau envelope of the �0 norm to promote
the sparsity of the signal in a tight framelet system. This leads to a non-convex
optimization problem involved the �0 norm. We identify a local minimizer of the
proposed non-convex optimization problem with a global minimizer of a related
convex optimization problem. Based on this identification, we develop a two stage
algorithm for solving the proposed non-convex optimization problem and study its
convergence. Moreover, we show that FISTA can be employed to speed up the
convergence rate of the proposed algorithm to reach the optimal convergence rate
of O(1/k2). We present numerical results to confirm the theoretical estimate.

Introduction

Sparse recovery problems recently attracted considerable attention in many applica-
tions such as signal processing, machine learning and computer vision. Generally,
many practical problems can be formulated as

u = Ax + ω, (2.1)
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where the vector x ∈ R
n denotes the signal to be recovered, the matrix A ∈ R

m×n
describes the system response mechanism, and the vector ω ∈ R

m presents noise.
The sparse recovery process seeks a solution of (2.1) which can be represented using
only a few atoms of some redundant system. Mathematically, it can be formulated
as the following constrained �0 optimization problem:

min
x∈Rn

‖Dx‖0, s.t. ‖Ax − u‖2 ≤ ε, (2.2)

where the �0 norm ‖x‖0 counts the number of nonzero components of x, ε is
a positive parameter corresponding to the noise level of ω in (2.1), and D is a
redundant dictionary. Alternately, the constrained optimization problem (2.2) may
be written in its unconstrained “Lagrange” counterpart

min

{

λ

2
‖Ax − u‖2

2 + ‖Dx‖0 : x ∈ R
n

}

, (2.3)

where λ is a positive parameter related to the noise level of ω. In this paper, we
assume D to be a discrete tight framelet system, that is, D�D = I with D� being
the transpose of D and I the identity matrix.

The �0 norm provides an intuitive and easily grasped penalization of sparsity.
However, it is challenging to design an efficient algorithm to solve (2.2) or (2.3)
directly. A widely used alternative is the convex relaxation which replaces the �0
norm with the �1 norm which is convex to take advantage of efficient algorithms in
convex optimization [2, 9, 21]. Another approach is to replace the discontinuous
nonconvex �0 norm by a nonconvex but continuous penalty, which is more a
principle than a method. The main motivation was to overstep the bias introduced
by the �1 penalty on large coefficients of the recovered signals in the transform
domain [10, 25]. Such penalties include but not limit to the �p norm for 0 < p < 1
[14], the Log-det function [11], the Mangasarian function [17], and other nonconvex
functions in [20]. It has been demonstrated that the nonconvex penalties can
outperform the �1 norm in various applications such as compressive sensing, matrix
recovery and image processing [3, 8, 12, 14, 16]. However, these improvements are
usually achieved at the cost of much higher computational complexity compared to
the cost of solving the �1 norm models.

In our previous work [24], we proposed a new nonconvex approximation model
for (2.2) in which the �0 norm was approximated by its continuous Moreau
envelope, and a fixed-point proximity algorithm was developed when A is a partial
wavelet or Fourier matrix, that is, AA� = I . The proposed model provides
significant improvement for image restoration compared to the �1 relaxed model.
The remarkable properties of the Moreau envelope of the �0 norm allow us to solve
the approximation model efficiently. We also found in our numerical experiments
that the proposed algorithm can be significantly accelerated by the FISTA technique
in [1]. Although convergence analysis of the developed algorithm for the considered
case had been given in [24], from a mathematical viewpoint there is a need for
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understanding convergence mechanisms for more general problems involving the
�0 norm. Moreover, although FISTA has been well studied in the context of convex
optimization, its acceleration effects for nonconvex optimization problems involving
the �0 norm should be justified.

In this paper, we extend the study in [24] to a general model covering both
constrained and unconstrained cases with an arbitrary matrix A. The model under
consideration has the form

min{‖Dx‖0 + f (A x) : x ∈ R
n}, (2.4)

where A is the affine transform with the form A x := Ax−u, and f is a proper and
lower semi-continuous convex function. Specially, by identifying f as the indicator
function of B(‖ · ‖2, ε) and λ

2 ‖ · ‖2
2, model (2.5) can be specified to models (2.2)

and (2.3), respectively, where

B(‖ · ‖2, ε) := {z : ‖z‖2 ≤ ε}

is the ball of radius ε with respect to the �2 norm. We approximate the �0 norm
in (2.4) with its Moreau envelope envβ‖·‖0 , and result in the model

min{envβ‖·‖0(Dx)+ f (A x) : x ∈ R
n}. (2.5)

We shall present an equivalent formulation of problem (2.5) which possesses a
variable separation structure. We shall develop a two-stage proximity algorithm
for solving problem (2.5) and understand the insight of its convergence to (local)
minimizers. Particularly, we shall reveal that the speedup of FISTA for the proposed
algorithm is due to the fact that the second stage of the algorithm is essentially
solving a convex subproblem.

This paper is organized in five sections. In section “Minimizers of the Proposed
Model”, we propose our approximate sparsity model using the envelope of the
�0 norm. We then present an equivalent formulation of the proposed model and
characterize its global and local minimizers. In section “Convergence Analysis
of the Proposed Algorithms”, we describe a two stage fixed-point proximity
algorithm for solving the proposed model and analyze its convergence. We also
prove that FISTA can speed up the proposed algorithms for solving the nonconvex
optimization problems involving the �0 norm. Because this paper mainly focuses
on understanding the mathematical insight of convergence of the proposed algo-
rithm, we shall only present a simple numerical example in section “Numerical
Experiments” to show the convergence and acceleration effects of the algorithms.
Those who are interested in knowing more about the numerical performance of the
proposed algorithm are referred to [24], where a special case of the model studied
in this paper was considered. Our conclusions are drawn in section “Conclusion”.
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Minimizers of the Proposed Model

The goal of this section is to conduct a theoretical study on the proposed model (2.5).
Specifically, we present an equivalent formulation of model (2.5), characterize its
local minimizers and prove the existence of its local minimizers.

We recall the notion of the proximity operator and the Moreau envelope crucial
for our algorithmic development and as well as the related convergence analysis.
Let ϕ : Rd → (−∞,+∞] be a proper, lower semi-continuous function, and β be a
parameter. The proximity operator proxβϕ at x ∈ R

d is defined by

proxβϕ(x) := arg min

{

1

2
‖z − x‖2

2 + βϕ(z) : z ∈ R
d

}

.

Note that proxβϕ is a set valued function. The proximity operator and the Moreau
envelop are intimately related to each other. The Moreau envelope envβϕ at x ∈ R

d

is defined by

envβϕ(x) := min

{

1

2β
‖z− x‖2

2 + ϕ(z) : z ∈ R
d

}

.

As shown in [22], for any β > 0, the function envβϕ enjoys several remarkable
properties: It is a continuous finite-valued function whereas ϕ itself may merely
be lower semi-continuous and extended real-valued. Further, it yields a family of
approximations {envβϕ}β>0 to the function ϕ and there holds

lim
β→0+

envβϕ(x) = ϕ(x), x ∈ R
d .

These properties make envβ‖·‖0 to be seen as a nonconvex but continuous relaxation
of the �0 norm and they motivate us to approximate the �0 norm with its Moreau
envelope.

We introduce a function of two variables

F(y, x) := 1

2β
‖y −Dx‖2

2 + ‖y‖0 + f (A x), (y, x) ∈ R
q ×R

n

and consider the model

min{F(y, x) : (y, x) ∈ R
q × R

n}. (2.6)

Moreover, for x ∈ R
n, we let

J (x) := envβ‖·‖0(Dx)+ f (A x).
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By the definition of the Moreau envelope, we observe that

J (x) = F(y, x), for all y ∈ proxβ‖·‖0
(Dx) and for all x ∈ R

n. (2.7)

The next proposition confirms that the proposed model (2.5) and model (2.6) are
essentially equivalent.

Proposition 2.1 Let f : Rm→ (−∞,+∞] be a proper and lower semicontinuous
convex function, A : Rn → R

m be an affine transform and D ∈ R
q×n be a tight

framelet system. For any β > 0, if a pair (y�, x�) is a solution of model (2.6), then

y� ∈ proxβ‖·‖0
(Dx�). (2.8)

Moreover, a pair (y�, x�) is a solution of model (2.6) if and only if x� is a solution
of model (2.5) with y� satisfying (2.8).

Proof We prove the first part of this proposition. Suppose that (y�, x�) is a solution
of model (2.6) and we prove that (y�, x�) satisfies the inclusion relation (2.8). It
follows immediately from the hypothesis that

F(y�, x�) ≤ F(y, x�), for every y ∈ proxβ‖·‖0
(Dx�).

On the other hand, by the definition of the proximity operator of ‖ · ‖0, one has that

1

2β
‖y�−Dx�‖2

2+‖y�‖0 ≥ 1

2β
‖y−Dx�‖2

2+‖y‖0, for every y ∈ proxβ‖·‖0
(Dx�).

Hence, we have that

F(y�, x�) ≥ F(y, x�), for every y ∈ proxβ‖·‖0
(Dx�).

Summarizing the above discussion, we conclude that

F(y�, x�) = F(y, x�), for every y ∈ proxβ‖·‖0
(Dx�).

This implies that

1

2β
‖y�−Dx�‖2

2+‖y�‖0 = 1

2β
‖y−Dx�‖2

2+‖y‖0, for every y ∈ proxβ‖·‖0
(Dx�).

By using the definition of the proximity operator of ‖ · ‖0 again, we observe that
(y�, x�) satisfies the inclusion relation (2.8).

Next, we prove the second part of the proposition. We assume that a pair (y�, x�)
is a solution of model (2.6). We show by contradiction that x� is a solution of
model (2.5). Assume to the contrary that there exists a vector x̃ ∈ R

n such that
J (̃x) < J (x�). This inequality together with (2.7) yields that

F(ỹ, x̃) = J (̃x) < J (x�), for all ỹ ∈ proxβ‖·‖0
(Dx̃). (2.9)
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By the first part of this proposition, we know that y� ∈ proxβ‖·‖0
(Dx�). By (2.7),

we obtain that J (x�) = F(y�, x�). This with (2.9) gives that F(ỹ, x̃) < F(y�, x�),
which contradicts the assumption and proves that x� is a solution of model (2.5).

Conversely, we assume that x� is a solution of model (2.5) and y� ∈
proxβ‖·‖0

(Dx�). We show that the pair (y�, x�) is a solution of model (2.6). Once
again, we prove it by contradiction. If (y�, x�) is not a solution of model (2.6), then
there exists a vector x̃ satisfying F(ỹ, x̃) < F(y�, x�), where ỹ is any vector in
proxβ‖·‖0

(Dx̃). This together with (2.7) implies that J (̃x) < J (x�), which violates
the assumption of x� being a solution of model (2.5).

The next proposition identifies a global minimizer of F(·, ·). This result will be
used in the next section to design numerical algorithms.

Proposition 2.2 Let f : Rm→ (−∞,+∞] be a proper and lower semicontinuous
convex function,A : Rn→ R

m be a affine transform,D ∈ R
q×n be a tight framelet

system, and β > 0. If a pair (y�, x�) is a solution of model (2.6), then

y� ∈ proxβ‖·‖0
(Dx�) and x� = proxβf ◦A (D�y�). (2.10)

Proof Let (y�, x�) be a solution of model (2.6). By Proposition 2.1, immediately we
have the first inclusion of (2.10). It remains to prove the second formula of (2.10).
By the Fermat rule (see, e.g., Theorem 10.1 in [22]), we have that

0 ∈ 1

β
D�(Dx� − y�)+ ∂(f ◦A )(x�), (2.11)

where ∂ denotes the Fréchet subdifferential (see, e.g. [22]). Since D�D = I and

β∂(f ◦A ) = ∂(βf ◦A ),

the inclusion in (2.11) leads to

D�y� − x� ∈ ∂(βf ◦A )(x�). (2.12)

This inclusion combined with Proposition 2.6 in [18] leads to the second formula
of (2.10).

We need the notion of the support of a vector. For a vector y ∈ R
q , we denote

by N(y) the support of all nonzero components of y, that is N(y) := {i : yi �= 0}.
For an ordered subset N of the ordered set {1, 2, . . . , q}, we use �N to denote its
cardinality and N [i] its ith component. For a given subset N , we let SN denote
the set of vectors whose supports are included in N , that is,

SN := {y : N(y) ⊆ N }. (2.13)
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When no ambiguity may be caused, we write SN as S . Clearly, S is a convex
set.

We next construct a convex optimization problem whose global minimizer is a
(local) minimizer of the nonconvex optimization problem (2.6). For this purpose,
we introduce a convex function

G(y, x) := 1

2β
‖y −Dx‖2

2 + f (A x), (y, x) ∈ R
q × R

n.

For an ordered subset N of {1, 2, . . . , q}, we consider the optimization problem

min{G(y, x) : y ∈ S , x ∈ R
n}. (2.14)

Clearly, since G(·, ·) is a convex function and the set S × R
n is a convex set, the

model (2.14) is a convex optimization problem.

Proposition 2.3 Let f : Rm → (−∞,+∞] be a proper, lower semicontinuous
convex function and continuous on its domain,A : Rn→ R

m be a affine transform,
D ∈ R

q×n be a tight framelet system, andN be an ordered subset of {1, 2, . . . , q}.
If (y�, x�) ∈ S × R

n is a solution of (2.14), then (y�, x�) is a local minimizer of
F(·, ·) in (2.6).

Proof To prove that (y�, x�) is a local minimizer of F(·, ·), we consider all pairs
(y� + �y, x� + �x) in a small neighbourhood of (y�, x�), where �y ∈ S and
�x ∈ R

n are small in their Euclidean norms. We consider only the case of A (x� +
�x) ∈ dom(f ) := {x ∈ R

m : f (x) < +∞}, because if this is not the case, then
f (A (x� +�x)) = +∞. In such a case, we clearly have that

F(y�, x�) ≤ F(y� +�y, x� +�x).

Let σ1 := min{|y�i | : i ∈ N(y�)}. When ‖�y‖∞ < σ1, we have that

|y�i + (�y)i |0 = |y�i |0, for all i ∈ N(y�). (2.15)

We consider two cases: �y ∈ S and �y /∈ S .
We first consider the case that�y ∈ S . When ‖�y‖∞ < σ1, by (2.15), we have

that y� +�y ∈ S and ‖y� +�y‖0 = ‖y�‖0. Therefore, (y� +�y, x� +�x) is a
feasible point of (2.14). Since (y�, x�) is a solution of (2.14), we find that

G(y�, x�) ≤ G(y� +�y, x� +�x).

This implies immediately that

G(y�, x�)+ ‖y�‖0 ≤ G(y� +�y, x� +�x)+ ‖y� +�y‖0.
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By the definition of F , if ‖�y‖∞ < σ1, we have that

F(y�, x�) ≤ F(y� +�y, x� +�x). (2.16)

We now consider the case that �y /∈ S . When ‖�y‖∞ < σ1, we have that

‖y� +�y‖0 ≥ ‖y�‖0 + 1. (2.17)

Moreover, since f is continuous on its domain and A (x�+�y) ∈ dom(f ), we get
that

lim�x,�y→0
G(y� +�y, x� +�x) = G(y�, x�).

Therefore, there exists a positive number σ2 such that whenever ‖�y‖∞ < σ2 and
‖�x‖∞ < σ2, there holds the inequality

G(y� +�y, x� +�x) ≥ G(y�, x�)− 1. (2.18)

Let σ := min{σ1, σ2}. Combining (2.17) and (2.18), for any small perturbations
(�y,�x) such that ‖�y‖∞ < σ and ‖�x‖∞ < σ , we obtain that

G(y� +�y, x� +�x)+ ‖y� +�y‖0 ≥ G(y�, x�)+ ‖y�‖0.

This implies that

F(y� +�y, x� +�x) ≥ F(y�, x�). (2.19)

Combining both cases (2.16) and (2.19), we conclude that (y�, x�) is a local
minimizer of F(y, x).

We next show the existence of a local minimizer of model (2.6). To this end, we
define necessary notation. By DN we denote the submatrix of D associating with
the set N , that is,

DN := [D�N [1],D
�
N [2], . . . ,D

�
N [�N ]]�.

Let N be the complement of N in {1, 2, . . . , q}. For a convex set S , let PS denote
the projection on S . For a linear mapping T , let Ker(T ) denote the null space of T .

Proposition 2.4 For any subsetN of {1, 2, . . . , q}, if Ker(DN ) ∩Ker(A ) = {0},
then F(·, ·) in (2.6) has a (local) minimizer (y�, x�) such that N(y�) ⊆ N .

Proof Since Ker(DN ) ∩Ker(A ) = {0}, we have that

lim‖x‖2→∞
‖DN x‖2

2 + f (A x) = +∞.
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That is, the objective function of the following model

min

{

1

2
‖DN x‖2

2 + f (A x) : x ∈ R
n

}

, (2.20)

is coercive. Hence, model (2.20) has a solution x�. By noticing the definition of
the set S in model (2.14), the pair (y�, x�) with y� := PS (Dx�) is a solution of
model (2.14). By Proposition 2.3, (y�, x�) is a local minimizer of F(·, ·) in (2.6).

Convergence Analysis of the Proposed Algorithms

In this section, we describe our iterative algorithm for finding a local minimizer of
problem (2.6) and study its convergence property. In particular, we shall explain
how FISTA accelerates the convergence of the proposed algorithm.

Proposition 2.3 ensures that a global minimizer of problem (2.14) with a
particular S corresponds to a local minimizer of problem (2.6). In view of the
definition of the set S in (2.13), a local minimizer of problem (2.6) depends on
the support of the sparse variable y. This property naturally motivates a two-stage
algorithm to find a local minimizer of problem (2.6): We first pursue a suitable
support for the sparse variable y and then solve problem (2.14) with this support.

Sparse Support Pursuit

The proposed algorithm to pursue a candidate for the support of the sparse variable
y is motivated by the system of fixed-point equations in (2.10) that characterize the
global minimizers of the problem (2.6). Based on the fixed-point equations (2.10)
with a similar modification to that in [24], the proposed algorithm is expressed as

{

yk+1 ∈ proxαβ‖·‖0
(αDxk + (1− α)yk)

xk+1 = proxβf ◦A (D�yk+1)
(2.21)

where α ∈ (0, 1) is a parameter which balances the two termsDxk and yk.
The updates of both variables y and x in (2.21) at each iteration can be efficiently

implemented. The first subproblem in (2.21) can be explicitly solved by using
the closed-form formula of the proximity operator of the �0 norm, which may be
found in [24]. By the definition of the proximity operator, with the variable y being
fixed, updating the variable x in the second subproblem in (2.21) should solve the
following convex optimization problem

min

{

1

2
‖x −D�y‖2

2 + βf (A x) : x ∈ R
n

}

. (2.22)
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Problem (2.22) can be seen as a generalization of the well-know ROF model [23]
which could be solved by several efficient algorithms in [1, 4, 6, 13, 15, 18, 19] and
the reference therein.

We are now ready to present the convergence analysis of algorithm (2.21).
Specifically, we shall show that the support of the sparse variable yk generated by
algorithm (2.21) remains unchanged after a finite number of iterations. We need a
sequence of lemmas to establish the main theorem.

We need a function that is closely related to both functions F and G to be used
as a bridge. Specifically, we define E : Rq → R at y ∈ R

q by

E(y) := 1

2β
‖(I −DD�)y‖2

2 + envβf ◦A (D�y). (2.23)

In the next lemma, we reexpress the objective function F given in (2.6) in terms
of E.

Lemma 2.1 Let y ∈ R
q . If x = proxβf ◦A (D�y), then

G(y, x) = E(y) and F(y, x) = E(y)+ ‖y‖0. (2.24)

Proof We establish the first equation in (2.24). Note that D is a tight framelet
matrix and

‖y −Dx‖2
2 = ‖x −D�y‖2

2 + ‖(I −DD�)y‖2
2.

By the definition of G, we obtain that

G(y, x) = 1

2β
‖(I −DD�)y‖2

2 +
1

2β
‖x −D�y‖2

2 + f (A x).

By using the fact x = proxβf ◦A (D�y) and the definition of the Moreau envelope,
we know that

1

2β
‖x −D�y‖2

2 + f (A x) = envβf ◦A (D�y).

Hence,

G(y, x) = 1

2β
‖(I −DD�)y‖2

2 + envβf ◦A (D�y),

which together with the definition of E leads to the first equation in (2.24).
We now prove the second equation in (2.24). From (2.6), for any y ∈ R

q and
x ∈ R

n, we have that

F(y, x) = G(y, x)+ ‖y‖0.

This together with the first equation of (2.24) gives the second equation.
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The next lemma establishes the quadratic function majorization property of the
function E, which is crucial for our convergence analysis.

Lemma 2.2 If E is given by (2.23), then

E(t) ≤ E(s)+ 〈∇E(s), t − s〉 + 1

2β
‖t − s‖2

2

for all s, t ∈ R
q .

Proof We first show that ∇E is Lipschitz continuous with Lipschitz constant 1
β

. It
can be directly verified for any s, t ∈ R

q that

‖∇E(s)−∇E(t)‖2
2

=
∥

∥

∥

∥

1

β
(I −DD�)(s − t)+ 1

β
D((I − proxβf ◦A )(D�s)

−(I − proxβf ◦A )(D�t))
∥

∥

∥

2

2
.

Since D�D = I and D�(I −DD�) = 0, from the above identity we get that

‖∇E(s)−∇E(t)‖2
2

= 1

β2 ‖(I −DD�)(s − t)‖2
2 +

1

β2 ‖(I − proxβf ◦A )(D�s)

− (I − proxβf ◦A )(D�t)‖2
2.

Using the nonexpansiveness of operator I − proxβf ◦A , we obtain that

‖∇E(s)−∇E(t)‖2
2 ≤

1

β2 ‖(I −DD�)(s − t)‖2
2 +

1

β2

‖D�(s − t)‖2
2 =

1

β2 ‖s − t‖2
2.

That is, ∇E is Lipschitz continuous with Lipschitz constant 1
β

. The conclusion fol-
lows immediately from the well-known and fundamental property of a differentiable
convex function with a Lipschitz continuous gradient and Lipschitz constant 1

β
.

We need Lemma 3 from [24].

Lemma 2.3 If {yk} is the sequence generated by algorithm (2.21), then the
following statements hold:

(i) |yki | ≥
√

2αβ for all i ∈ N(yk), and |yki | = 0 for all i ∈ N(yk).
(ii) ‖yk+1 − yk‖2 ≥ √2αβ if N(yk) �= N(yk+1).

We are now ready to establish the theorem on convergence of algorithm (2.21).
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Theorem 2.1 Let f : Rm → (−∞,+∞] be a proper and lower semicontinuous
convex function, A : R

n → R
m be a affine transform, D ∈ R

q×n be a tight
framelet system, α be a number in (0, 1), and β be a positive number. If {(yk, xk)}
is a sequence generated by algorithm (2.21), then the following statements hold:

(i) F(yk+1, xk+1) ≤ F(yk, xk) for all k ≥ 0 and lim
k→∞‖y

k+1 − yk‖2 =
lim
k→∞‖x

k+1 − xk‖2 = 0.

(ii) There exists a K > 0 such that N(yk) = N(yK) for all k ≥ K .

Proof We first prove Item (i). Since

xk+1 = proxβf ◦A (D�yk+1),

by Lemma 2.1, we have that

F(yk+1, xk+1) = E(yk+1)+ ‖yk+1‖0.

Combining this equation with Lemma 2.2 yields that

F(yk+1, xk+1) ≤ E(yk)+ 〈∇E(yk), yk+1 − yk〉 + 1

2β
‖yk+1 − yk‖2

2 + ‖yk+1‖0.

(2.25)

Noting that

∇E(yk) = 1

β
(yk −Dproxβf ◦A (D�yk)) =

1

β
(yk −Dxk), (2.26)

we rewrite (2.26) with a parameter α ∈ (0, 1) to obtain the equation

αDxk + (1− α)yk = yk − αβ∇E(yk).
By the first equation of (2.21) and using the definition of the proximity operator, we
have that

yk+1 ∈ argmin

{

1

2αβ
‖y − (yk − αβ∇E(yk))‖2

2 + ‖y‖0 : y ∈ R
q

}

. (2.27)

Expanding the quadratic term 1
2αβ ‖y − (yk − αβ∇E(yk))‖2

2 in (2.27) as

αβ

2
‖∇E(yk)‖2

2 + 〈∇E(yk), y − yk〉 +
1

2αβ
‖y − yk‖2

2

and replacing the constant αβ2 ‖∇E(yk)‖2
2 by E(yk) (that will not alter the mini-

mizer) yield

yk+1 ∈ argmin

{

E(yk)+ 〈∇E(yk), y − yk〉 + 1

2αβ
‖y − yk‖2

2 + ‖y‖0 : y ∈ R
q

}

.
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It follows immediately from Lemma 2.1 that

E(yk)+ 〈∇E(yk), yk+1 − yk〉 + 1

2αβ
‖yk+1 − yk‖2

2 + ‖yk+1‖0 ≤ F(yk, xk).
(2.28)

Since α ∈ (0, 1), estimate (2.28) together with (2.25) leads to the first part of Item
(i). Furthermore, we conclude that the sequence {F(yk, xk)} converges. Moreover,
from (2.25) and (2.28), we have that

‖yk+1 − yk‖2
2 ≤

2αβ

1− α (F (y
k, xk)− F(yk+1, xk+1)).

Therefore,

lim
k→∞‖y

k+1 − yk‖2 = 0.

By the second line in (2.21) and using the nonexpansiveness of the proximity
operator, we have that

lim
k→∞‖x

k+1 − xk‖2 = 0.

This proves Item (i).
The second part of Item (i) implies that there exists a numberK > 0 such that

‖yk+1 − yk‖2 <
√

2αβ, for all k ≥ K.

By Item (ii) of Lemma 2.3, sets N(yk) for all k ≥ K are identical as a subset of
{1, 2, . . . , q}. The proof of Item (ii) is completed.

Theorem 2.1 together with Lemma 2.3 reveals an important property of the
sequence {yk}: The index set of the components with biggest absolute values
remains unchanged after a finite number of iterations. The support size of this index
set depends on the β. We denote by N the unchanged support of yk after a finite
number of iterations. Then, N labels the locations of the most important transform
coefficients of the recovered signal. In this sense, it is a good support for the sparse
variable y which will be used in model (2.14) to recover the signal.

Recovery on the Sparse Support

After the support of the variable y keeps unchanged after a finite iteration of algo-
rithm (2.21), we replace the proximity operator proxαβ‖·‖0

in the first subproblem
in (2.21) by the projection on the set S associated to the unchanged support N .
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The resulting iteration has the form of

{

yk+1 = PS (αDxk + (1− α)yk),
xk+1 = proxβf ◦A (D�yk+1).

(2.29)

It is readily seen that the closed-form formulation of PS can be given by

PS (z) =
{

zi, if i ∈ N

0, otherwise
. (2.30)

Therefore, the computational complexity of (2.29) is comparable to that of (2.21).
We shall show that the sequence {(yk, xk)} generated by (2.29) converges to

a solution of problem (2.14), which, by Proposition 2.3, is a local minimizer of
problem (2.6).

Theorem 2.2 If f : Rm → (−∞,+∞] is a proper and lower semicontinuous
convex function, A : Rn → R

m is a affine transform, D ∈ R
q×n a tight framelet

system, α a number in (0, 1), β a positive number, and S a set defined in (2.13),
then the sequence {(yk, xk)} generated by algorithm (2.29) converges to a solution
(y�, x�) of problem (2.14).

Proof By the second equation of (2.29) and (2.26), we get that

αDxk + (1− α)yk = yk − αβ∇E(yk).
Therefore, the two equations of algorithm (2.29) can be combined as

yk+1 = PS (y
k − αβ∇E(yk)). (2.31)

Since E has the Lipschitz continuous gradient with Lipschitz constant 1
β

and α ∈
(0, 1), the projection on a set is essentially the proximity operator of the indicator
function associated with the set, the above iterative scheme (2.31) is the well-known
forward-backward splitting algorithm (see, e.g., [7]) of the optimization problem

min{E(y)+ ιS (y) : y ∈ R
q}, (2.32)

where ιS is the indicator function of S . Therefore, the sequence {yk} converges to a
solution of y� of problem (2.32). As a direct consequence, by the second subproblem
of (2.29), we get that

lim
k→∞ x

k = x� with x� = proxβf ◦A (D�y�).

We next show by contradiction that (y�, x�) is a solution of problem (2.14). If this
is not true, suppose a pair (ŷ, x̂) solves problem (2.14), that isG(ŷ, x̂) < G(y�, x�).
By the Fermat rule and Proposition 2.6 in [18], we can conclude that

x̂ = proxβf ◦A (D�ŷ).
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This together with Lemma 2.1 implies thatG(ŷ, x̂) = E(ŷ). Moreover, since

x� = proxβf ◦A (D�y�),

again by Lemma 2.1, we have thatG(y�, x�) = E(y�). Therefore, we conclude that
E(ŷ) < E(y�), which violates the fact that y� is a solution of problem (2.32).

Since the iteration of algorithm (2.29) can be combined as that in (2.31), and E
has the Lipschitz continuous gradient with Lipschitz constant 1

β
and α ∈ (0, 1), the

iteration (2.31) can be accelerated by the well-known FISTA technique

⎧

⎪

⎪

⎨

⎪

⎪

⎩

yk+1 = PS (αDproxβf ◦A (D�ỹk)+ (1− α)ỹk)
tk+1 =

√

1+4t2k+1

2
ỹk+1 = yk+1 + tk−1

tk+1
(yk+1 − yk)

. (2.33)

The next theorem demonstrates that algorithm (2.33) offers an optimal convergence
rate of O(1/k2).

Theorem 2.3 Let Y ×X denote the solution set of problem (2.14). If {yk} is gen-
erated by algorithm (2.33), and {xk} is the sequence with xk := proxβf ◦A (D�yk),
then for any k ≥ 1,

G(yk, xk)−G(y�, x�) ≤ 2β‖y0 − y�‖2
2

(k + 1)2
, for all (y�, x�) ∈ Y ×X . (2.34)

Proof Since E is differentiable and its gradient is Lipschitz continuous with
Lipschitz constant 1

β
, by Theorem 4.4 in [1], we get that

E(yk)− E(y�) ≤ 2‖y0 − y�‖2
2

β(k + 1)2
, for all y� ∈ Y . (2.35)

To complete the proof, we need only show thatG(yk, xk) = E(yk) andG(y�, x�) =
E(y�). Since (y�, x�) is a solution of problem (2.14), by the proof of Theorem 2.2,
we get that

x� = proxβf ◦A (D�y�).

This relation together with (2.24) imply that G(y�, x�) = E(y�). Likewise, one
can conclude that G(yk, xk) = E(yk) by the relation xk = proxβf ◦A (D�yk)
and (2.24). This completes the proof.

This theorem justifies the numerical examples provided in [24], which demon-
strate an optimal convergence rate of O(1/k2).
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Numerical Experiments

In this section, we present a numerical example to demonstrate the convergence and
acceleration effects of the proposed algorithms. In the example, we consider the
image inpainting problem in the wavelet domain which is described by model (2.2).

The wavelet inpainting problem is to restore an image from its incomplete and/or
inaccurate wavelet coefficients [5] and the corresponding matrix A has the form of
A = PW , where W represents a wavelet transform matrix and P is a selection
matrix. For wavelet inpainting, both steps of algorithm (2.21) have the closed form
solution which can be found in our previous work [24]. We use the tight framelet
systems constructed by the discrete cosine transform to generate the matrix D and
choose the image “Barbara” with the size of 256 × 256 as the testing image. In
the experiment, our goal is to approximate the original image x from its 80% Haar
wavelet coefficients through minimizing the optimization model (2.6) in which the
parameter β is 10.

Even though we propose in section “Convergence Analysis of the Proposed
Algorithms” to use the FISTA in algorithm (2.21) once the nonzero support of the
variable y keeps unchanged, our numerical observation shows that using FISTA at
the beginning of algorithm (2.21) can also accelerate the algorithm to find a stable
nonzero support of y. Figure 2.1a plots the difference of the �0 norm between two
successive variables yk and yk+1 obtained from algorithm (2.21) (the dashed curve)
and its FISTA version (the solid curve). We can see that both algorithms can find
the stable nonzero support of the sparse variable and using FISTA is much faster
than algorithm (2.21) to obtain the support. The values of the objective function
of model (2.6) against the number of iterations of the algorithms are displayed in
Fig. 2.1b. Again, we use the dashed curve and the solid curve to represent the values
computed by Algorithm (2.29) and the FISTA version. respectively. We can see the
dramatic acceleration effects of using FISTA.

Conclusion

This paper provides a rigorous mathematical understanding of the fixed-point
proximity algorithm for solving non-convex optimization problems involved the �0
norm. Specifically, we propose a sparse recovery model using an approximation of
the �0 norm of the transformed coefficients of the underlying signal in a redundant
tight framelet system. We characterize the minimizers of the proposed model by the
fixed-point inclusion expressed in terms of the proximity operator of the functions
involved in its objective function. We further develop a two stage algorithm based on
the characterization. We prove that the second stage of the proposed algorithm can
be accelerated by using the FISTA technique to reach the optimal rate convergence
of O(1/k2). Our numerical example confirms the convergence and acceleration
convergence of the proposed algorithms.
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Fig. 2.1 The effects of using FISTA on the convergence and acceleration effects of the algorithms
(blue dashed: Algorithm (2.21), red solid: using FISTA in (2.21))
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Chapter 3
Sparse-Data Based 3D Surface
Reconstruction for Cartoon and Map

Bin Wu, Talal Rahman, and Xue-Cheng Tai

Abstract A model combining the first-order and the second-order variational
regularizations for the purpose of 3D surface reconstruction based on 2D sparse
data is proposed. The model includes a hybrid fidelity constraint which allows
the initial conditions to be switched flexibly between vectors and elevations. A
numerical algorithm based on the augmented Lagrangian method is also proposed.
The numerical experiments are presented, showing its excellent performance both
in designing cartoon characters, as well as in recovering oriented three dimensional
maps from contours or points with elevation information.

Introduction

Image processing has a strong influence and impact on our world, finding applica-
tions in almost all areas from nanophysics to astrophysics, from biology to social
sciences, from robotics to smart phone applications, etc. 3D surface reconstruction
from sparse data is both a challenging and an interesting image processing task.

One area of application of the surface reconstruction has been the sketch based
3D design, which has attracted much attention, cf. [1–5], because it is intuitive and
effective, particularly in applications like cartoon and game design. To a sketch
based method, the only known informations are information given on sparse lines,
for instance in the form of contours [2], without specifying the heights, or in
the form of complex sketches with elevation [3], or structured annotations [6].
However, the methods proposed in those papers are limited in their capabilities in
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reconstructing structures with crease. The crease can be added artificially [7]. How-
ever, a simple and automatic method is still necessary when the task becomes large,
complex and computationally intensive. Recently, to this end, there is a method been
proposed [8, 9] which interpolates the normal vectors under curl-free constraint and
then reconstructs the 3D surface based on the obtained vector field. The method
[8, 9] is based on the previous work on surface reconstruction from surface gradients
[10–17] and inspired by TV-Stokes method [18–22] where actually the curl-free
constraint comes from. The main difference of this method [8, 9] compared to the
other two-step methods [15, 23] is that, instead of the Laplace operator, an TV
regularizer is employed which is better in edge preserving. In addition, a more phys-
ical constraint, the curl-free constraint is introduced by the method. The numerical
results show an excellent performance in preserving edges and crease structures.

Another area of application has been the 3D surface reconstruction based
only on height values (contours) or both height values and vectors. The height
values are needed because the reconstructed surfaces for such applications are
expected to be as precise as possible to the ground truth, e.g., the digital elevation
maps and data compression. One way is to use explicit parameterization of given
contours with subsequent pointwise matching and interpolation [24–26]. For such
models, the parametrization may be difficult and expensive to compute, and the
loss of continuity of slope across contours is a challenge. Another way is to
treat the expected surface as a function over the considered domain. A renowned
model is the absolutely minimizing Lipschitz extension (AMLE) interpolation
model, see [27, 28], based on the PDE theory. The AMLE has a drawback in
interpolating slopes. To overcome, one can rely on high-order differential operators
or regularizations [29–33]. The method addressed in [33] introduces a third order
anisotropic regularization together with a way to find an auxiliary vector field. The
method results in clear surfaces with anisotropic features.

It is however desirable to recover the 3D surface with enough precision at
the same time to be able to adjust the shape of the reconstructed surface by
tuning vectors. For instance in case of data compression, it may be helpful to
store vectors (relative positions) along with sparse elevations instead of single the
sparse elevations for correct representations. The aim of this paper is to propose
a versatile model incorporating both height and vector information in one place.
We thus propose a one-step model with a combination of first-order and second-
order variational regularizations under a hybrid fidelity constraint consisting of
both elevation and normal vectors. The main contributions of our research can be
summarized as follows:

• The model allows for adjusting normal vectors intuitively and a more precise
representation of the elevations. It preserves both structures and details.

• A fast and efficient numerical algorithm based on the augmented Lagrangian
method [34–36] is proposed which can be used for 3D surface reconstruction of
cartoon and digital map based on very sparse 2D input data.

The paper is organized as follows. In section “Proposed Model”, we propose our
model with a first-order and a second-order regularizations and a hybrid constraint.
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In section “Augmented Lagrangian Method”, we present numerical method based
on augmented Lagrangian. Numerical experiments on cartoon design and three
dimensional map reconstructions are presented in section “Numerical Results”.
Finally, in section “Conclusion”, we give our conclusion.

Proposed Model

We first explain the model presented in [8, 9] before we propose ours. We define
the surface as the graph of I given by the points (x, y, I (x, y)) ⊂ R

3 in the
space, where I is a function of the coordinates x and y over a two dimensional
domain Ω ⊂ R

2. The normal vector to the surface or the graph is then given by
(−∂xI,−∂yI, 1). Projecting it to the xy−plane, we get the 2D normal vectors as
(−∂xI,−∂yI). Because I is a scalar-valued function, the curl of the gradient of I
must be zero. Based on this, a curl-free model has been proposed in [8, 9]. They first
interpolated the normal vector n := (∂xI, ∂yI) by solving the following constrained
minimization problem

min
n

{∫

Ω

(1− g)|∇n|F + g|∇n|2F + η
∫

Γ

|n− n∗|
}

, (3.1)

subject to the curl free condition

∇ × n = 0,

where n∗ is the known normal vector along some given sparse lines or strokes Γ ,
g is the parameter for a convex combination of the T V and the H 1 norm, and η is
the parameter to balance between the regularization terms and the fidelity term. We
note that | · |F is used to denote the standard Frobenius norm [37]. The height map
I is then reconstructed by solving the following minimization problem

min
I

{∫

Ω

(1− h)|∇I − n| + h|∇I − n|2 + ξ
∫

Σ

|I − I0|
}

, (3.2)

where n is the normal vector field obtained from the first minimization step, I0 is the
known elevation along some given sparse lines or strokes Σ , h is the parameter for
a convex combination of T V and H 1 norms, ξ is the parameter to balance between
the regularization terms and the fidelity term.

It is obvious that reconstructing a 3D surface would require both constraints, the
one on the normal vector n and the one on the height I , corresponding to the fidelity
terms of (3.1) and (3.2). However, since the model above is not coupled, it is hard
to satisfy both constraints simultaneously, and therefore the resulting surface may
deviate from the surface actually being sought.
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We therefore propose the following one-step model including both the height and
the normal vector constraint, that is the hybrid constraint.

min
I

{∫

Ω

g|∇(∇I)|F + h|∇I | +
∫

Γ

η|∇I − n0| +
∫

Σ

θ |I − I 0|
}

, (3.3)

where h and g are parameters for the first and the second variational regularizations,
respectively. We note here that because our model is of second order, it naturally
satisfies the curl free condition.

Augmented Lagrangian Method

For the numerical solution of the problem (3.4), we derive an augmented Lagrangian
method, cf. [34]. Augmented Lagrangian method is preferred because it is in general
fast and efficient; for its use in image processing, we refer to e.g. [35, 36].

In order to be able to define our entire minimization problem over the whole
domain, we replace the two fidelity parameters η and θ with the following
parameters,

η̂ =
{

η, on Γ

0, in Ω\Γ, and ̂θ =
{

θ, on Σ

0, in Ω\Σ.

We get our model (3.3) reformulated as follows,

min
I

{∫

Ω

g|∇(∇I)|F + h|∇I | + η̂|∇I − n0| +̂θ |I − I 0|
}

. (3.4)

We shall introduce some auxiliary variables and turn the above minimization
problem into an equivalent constrained minimization problem. For the fourL1-norm
terms in the above functional, introducing one new variable to each, we get four new
variables Q := ∇E, P := ∇I , C := P, and S := I , corresponding to |∇(∇I)|F ,
|∇I |, |∇I − n0|, and |I − I 0|, respectively. In addition, for the term |∇(∇I)|F , we
introduce another variable E := P in order to avoid dealing with high order terms.
The unconstrained minimization problem (3.4) is then converted to an equivalent
constrained optimization problem as:

min
Q,P,C,S

{∫

Ω

g|Q|F + h|P| + η̂|C− n0| +̂θ |S − I 0|
}

such that

P− ∇I = 0; E− P = 0; Q−∇E = 0; S − I = 0; and C− P = 0,
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where C,E,P ∈ R
2 are 2-dimensional vectors, and Q ∈ R

2×2 is a 2-by-2 matrix.
Using Lagrange multipliers and adding penalty terms for each condition, we get the
following augmented Lagrangian functional

L (Q,P,C, S, I,E;ΛQ,ΛP ,ΛC, λS,ΛE)

=
∫

Ω

g|Q|F + h|P| + η̂|C− n0| +̂θ |S − I 0|

+ΛQ · (Q−∇E)+ cQ2 |Q−∇E|
2
F

+ΛP · (P−∇I)+ cP2 |P− ∇I |
2

+ΛC · (C− P)+ cC
2
|C− P|2

+λS · (S − I)+ cS
2
|S − I |2

+ΛE · (E− P)+ cE
2
|E− P|2,

whereΛQ,ΛP ,ΛC , λS andΛE are Lagrange multipliers, cQ, cP , cC , cS and cE are
positive penalty parameters. That is, the augmented Lagrangian method is to seek a
saddle point of the following problem:

min
Q,P,C,S,I,E

max
ΛQ,ΛP ,ΛC,λS,ΛE

L (Q,P,C, S, I,E;ΛQ,ΛP ,ΛC, λS,ΛE). (3.5)

For the solution we solve its associated system of optimality conditions with an
iterative procedure, see Algorithms 3.1 and 3.2. For the sake of convenience, we use
Λ := (λS,ΛP ,ΛC,ΛQ,ΛE) to denote the Lagrange multipliers.

Algorithm 3.1 The augmented Lagrangian for (3.5)

Set k = 0 Initialize Q0, P0, C0, S0, I0, E0 and Λ0 while not converged do
Set k = k + 1 Given Λk−1, solve the minimization problem:

(Qk,Pk,Ck, Sk, Ik,Ek) = arg min
Q,P,C,S,I,E

L (Q,P,C, S, I,E;Λk−1); (3.6)

Update the Lagrange multipliers:

λkS = λk−1
S + cS(Sk − Ik); ΛkP = Λk−1

P + cP (Pk −∇Ik );
ΛkC = Λk−1

C + cC(Ck − Pk); ΛkQ = Λk−1
Q + cQ(Qk −∇(Ek));

ΛkE = Λk−1
E + cE(Ek − Pk);

end
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Algorithm 3.2 Alternating minimization for (3.6)

Set l = 0 Initialize
Qk,0 = Qk−1; Pk,0 = Pk−1; Ck,0 = Ck−1;
Sk,0 = Sk−1; Ik,0 = Ik−1; Ek,0 = Ek−1;

while not converged and l < L do

Solve the sub-minimization problems:

Qk,l+1 = arg min
Q

L (Q,Pk,l ,Ck,l, Sk,l , I k,l ,Ek,l;Λk−1);

Pk,l+1 = arg min
P

L (Qk,l+1,P,Ck,l , Sk,l, I k,l ,Ek,l;Λk−1);

Ck,l+1 = arg min
C

L (Qk,l+1,Pk,l+1,C, Sk,l , I k,l ,Ek,l;Λk−1);

Sk,l+1 = arg min
S

L (Qk,l+1,Pk,l+1,Ck,l+1, S, Ik,l ,Ek,l;Λk−1);

Ik,l+1 = arg min
I

L (Qk,l+1,Pk,l+1,Ck,l+1, Sk,l+1, I,Ek,l;Λk−1);

Ek,l+1 = arg min
E

L (Qk,l+1,Pk,l+1,Ck,l+1, Sk,l+1, I k,l+1,E;Λk−1);
Set l = l + 1

end
Set (Qk,Pk,Ck, Sk, Ik,Ek) = (Qk,L,Pk,L,Ck,L, Sk,L, Ik,L,Ek,L).

Because the variables Q, P, C, S, I and E in L (Q,P,C, S, I,E;Λk−1) are
coupled together in the minimization problem (3.6), it is difficult to solve them
simultaneously. We split the minimization problem into six sub minimization
problems, and solve them alternatively to convergence, see Algorithm 3.2.

The six sub-minimization problems can be formulated in a more specific and
clearly way as in the following:

• The Q-subproblem needs to solve:

Q� = arg min
Q

∫

Ω

g|Q|F +ΛQ ·Q+ cQ
2
|Q−∇E|2F . (3.7)

• With Λ̃ := ΛP −ΛE −ΛC . , the P-subproblem needs to solve:

P� = arg min
P

∫

Ω

h|P| + Λ̃ · P+ cP
2
|P−∇I |2 + cE

2
|E− P|2 + cC

2
|C− P|2,

(3.8)

• The C-subproblem needs to solve:

C� = arg min
C

∫

Ω

ΛC · C+ cC
2
|C− P|2 + η̂|C− n0|. (3.9)
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• The S-subproblem needs to solve:

S� = arg min
S

∫

Ω

λS · S + cS
2
|S − I |2 +̂θ |S − I 0|. (3.10)

• The I -subproblem needs to solve:

I� = arg min
I

∫

Ω

−ΛP · ∇I + cP
2
|P−∇I |2 − λS · I + cS

2
|S − I |2.

(3.11)

• The E-subproblem needs to solve:

E� = arg min
E

∫

Ω

ΛE · E+ cE
2
|E− P|2 −Λq · ∇E+ cQ

2
|Q−∇E|2F .

(3.12)

For the first four sub-minimization problems, we can find closed form solutions.
Each problem has one L1-norm term, and either one or more than one quadratic
terms in its objective functional. Such problems can be solved using either a
subgradient method, cf. [38], or a geometric method, cf. [36]. However, we will
use a different approach to get the close form solutions in this work. We propose
a simpler approach which is based on the optimality condition of the minimization
functionals, i.e. the Euler-Lagrange equations. More details on this will be given
below, see also Definition 3.1. For the last two sub-minimization problems, we solve
them by the discrete cosine transform, see Remark 3.1.

Definition 3.1 If A and B are two matrices such that A = λB for some non-
negative real number λ, then we say that A is compatible with B. It is easy to see
that A/|A|F = B/|B|F .

In the following, we elaborate more on the details in getting close form solutions
or design fast solvers for the subproblems.

Solving the Q-Subproblem (3.7)

The optimality condition, that is the Euler-Lagrange equation, for the Q-
subproblem (3.7) is as follows

g

cQ

Q�

|Q�|F +Q� = ∇E− ΛQ
cQ
.

Since g and cQ are both positive numbers, the matrices Q� and (∇E − ΛQ
cQ
) are

both compatible in the sense of Definition 3.1, according to which, we can replace
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Q�/|Q�|F with (∇E− ΛQ
cQ
)/|∇E− ΛQ

cQ
|F . Now moving it to the right hand side,

we get

Q� =
⎛

⎝1− g

cQ|∇E− ΛQ
cQ
|F

⎞

⎠

(

∇E− ΛQ
cQ

)

.

Again since Q� and ∇E− ΛQ
cQ

are compatible, the coefficient on the right hand side,

that is

(

1− g

cQ|∇E−ΛQcQ |F

)

, must be non-negative, and hence

Q� = max

⎧

⎨

⎩

0, 1− g

cQ|∇E− ΛQ
cQ
|F

⎫

⎬

⎭

(

∇E− ΛQ
cQ

)

.

With the derivation given above, we have shown an easy way to get a close form
solution for the subproblem. We shall use similar techniques to get close form
solutions for some of the other subproblems.

Solving the P-Subproblem (3.8)

The corresponding Euler-Lagrange equation for the P-subproblem (3.8) is the
following,

h

cP + cE + cC
P�

|P�| + P� = cP∇I + cEE+ cCC
cP + cE + cC − Λ̃

cP + cE + cC .

Use X to denote cP∇I+cEE+cCC
cP+cE+cC − Λ̃

cP+cE+cC . In the same way as before, since h,
cP , cE and cC are positive numbers, both vectors P� and X are compatible (cf.
Definition 3.1). Accordingly, we replace P�/|P�| with X/|X|, and move it to the
right hand side, to get

P� =
(

1− h

(cP + cE + cC)|X|
)

X.

Again since P� and X are compatible, the coefficient
(

1− h
(cP+cE+cC)|X|

)

must be

non-negative. Hence

P� = max

{

0, 1− h

(cP + cE + cC)|X|
}

X.
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Solving the C-Subproblem (3.9)

The corresponding Euler-Lagrange equation is the following,

C� − n0 + η̂

cC

C� − n0

|C� − n0| = P− n0 − ΛC
cC
.

Since η̂ and cC are both positive numbers, it follows that both vectors C� − n0

and P − n0 − ΛC
cC

are compatible (cf. Definition 3.1). Accordingly, we replace

(C� − n0)/|C� − n0| with (P− n0 − ΛC
cC
)/|P− n0 − ΛC

cC
|, and move it to the right

hand side, to obtain

C� − n0 =
(

1− η̂

cC |P− n0 − ΛC
cC
|

)

(P− n0 − ΛC
cC
).

Again since C� − n0 and P − n0 − ΛC
cC

are compatible, the coefficient
(

1− η̂

cC |P−n0−ΛCcC |

)

must be non-negative. Hence

C� = n0 +max

{

0, 1− η̂

cC |P− n0 − ΛC
cC
|

}

(

P− n0 − ΛC
cC

)

.

Solving the S-Subproblem (3.10)

The Euler-Lagrange equation is the following,

S� − I 0 + ̂θ

cS

S� − I 0

|S� − I 0| = I − I
0 − λS

cS
.

Again using the fact that ̂θ and cS are both positive numbers, it follows that
S� − I 0 and I − I 0 − λS

cS
have the same sign. Replacing (S� − I 0)/|S� − I 0| with

(I − I 0 − λS
cS
)/|I − I 0 − λS

cS
|, and moving it to the right hand side, we obtain

S� − I 0 =
(

1− ̂θ

cS |I − I 0 − λS
cS
|

)

(

I − I 0 − λS
cS

)

.
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Because S� − I 0 and I − I 0 − λS
cS

have the same sign, the coefficient
(

1− ̂θ

cS |I−I 0− λScS |

)

must be non-negative. Therefore

S� = I 0 +max

{

0, 1− ̂θ

cS |I − I 0 − λS
cS
|

}

(

I − I 0 − λS
cS

)

.

Solving the I-Subproblem (3.11)

The Euler-Lagrange equation is the following inhomogeneous modified Helmholtz
equation,

∇ · ∇I� − cS
cP
I� = ∇ · P+ 1

cP
∇ ·ΛP − cS

cP
S − 1

cP
λS,

with the Neumann boundary condition,

∇I� · ν = (P+ 1

cP
ΛP ) · ν,

where the ν denotes the outward unit normal vector on the boundary of the domain.
The Euler-Lagrange equation, with the boundary condition, is solved by the discrete
cosine transform. Details are given in Remark 3.1.

Solving the E-Subproblem (3.12)

The corresponding Euler-Lagrange equation is the following,

∇ · ∇E� − cE
cQ

E� = 1

cQ
ΛE − cE

cQ
P+ 1

cQ
∇ ·ΛQ +∇ ·Q,

which is a set of two inhomogeneous modified Helmholtz equations, one equation
for each component of E = (E1, E2), and corresponding Neumann boundary
conditions,

∇E1 · ν = (Q1 + 1

cQ
ΛQ1) · ν,

∇E2 · ν = (Q2 + 1

cQ
ΛQ2) · ν,
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where Q1 and Q2 are the row vectors of the matrix Q, and ΛQ1 and ΛQ2 are
corresponding Lagrange multipliers, respectively. ν is the outward unit normal on
the boundary of the domain. Each equation is solved in the same way as in the
I-subproblem, cf. Remark 3.1.

Remark 3.1 The last two sub-minimization problems, each reduces to solve a
partial differential equation of the form

�u(x, y)− λu(x, y) = F(x, y),

with a Neumann boundary condition and λ a non-negative number, also known as
the inhomogeneous modified Helmholtz equation. A fast solver based on discrete
cosine transform similar for the Poisson equation, cf. [39, 40], is developed as the
following treatment.

Using the singular value decomposition, the discrete Laplace operator

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−1 1
1 −2 1
. . .
. . .
. . .

1 −2 1
1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

takes the form of [40],

−C�
[

0
Σ2

]

C,

whereC is theN×N discrete cosine transform matrix andΣ = diag(σ1, · · · , σN−1)

is the diagonal matrix with its diagonal entries representing the singular values

σk = 2 sin
πk

2N
for k = 1, 2, · · · , N − 1. Now using this the discrete (matrix)

formulation of the inhomogeneous modified Helmholtz equation then reads

−uC�
[

0
Σ2
x

]

C − C�
[

0
Σ2
y

]

Cu− λu = F.

A further transformation using ũ = CuC� and F̃ = CFC�, results in

−ũ
[

0
Σ2
x

]

−
[

0
Σ2
y

]

ũ− λũ = F̃ .

The solution of the above equation can be obtained by a direct entrywise division
due to the linearity of the equation as well as the non-singularity of the coefficient
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Fig. 3.1 Illustrating the cartoon case, where the input data are vectors along strokes (the top row)
drawn by artists. The vectors are not shown here. The corresponding 3D cartoons generated by our
algorithm, are shown in the bottom row. The parameters are g = 0.5, h = 0, θ = 0, and η = 5.0

matrix, and is formulated as

ũ = F̃ ./M,
where ./ denotes the entrywise division and M is the N × N coefficient matrix
defined as

M = −

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 σ 2
1,x · · · σ 2

N−2,x σ 2
N−1,x

σ 2
1,y σ 2

1,x + σ 2
1,y · · · σ 2

N−2,x + σ 2
1,y σ 2

N−1,x + σ 2
1,y

...
...

. . .
...

...

σ 2
N−2,y σ

2
1,x + σ 2

N−2,y · · · σ 2
N−2,x + σ 2

N−2,y σ
2
N−1,x + σ 2

N−2,y

σ 2
N−1,y σ

2
1,x + σ 2

N−1,y · · · σ 2
N−2,x + σ 2

N−1,y σ
2
N−1,x + σ 2

N−1,y

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

− λ,

u is defined on a squaredN ×N domain. The solution of the initial inhomogeneous
modified Helmholtz equation is thus calculated as

u = C�((CFC�)./M)C

using discrete cosine transform.
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Fig. 3.2 Illustrating the effect of the second order regularization by varying the parameter g. In
these tests, h = 0, θ = 0, and η = 5.0. (a) g = 0.01, (b) g = 0.1, (c) g = 0.5, (d) g = 1, (e) g = 1.5,
(f) g = 2

Numerical Results

For the numerical results, we consider the two different cases of surface recon-
struction, namely, the 3D cartoon generation and the three dimensional map
reconstruction, where in the first case we are given normal vectors along strokes
while in the second case we are given both normal vectors and elevation data along
contours and isolated points. The numerical tests are done using the augmented
Lagrangian algorithm, Algorithms 3.1 and 3.2. Algorithm 3.1 is stopped when the
total energy stabilized. For Algorithm 3.2, it was enough to use only one iteration.

In the cartoon case, we start with normal vectors along the strokes, which are
given by artists. The results are shown in Fig. 3.1. Since we do not have the elevation
data I0, we set θ = 0. In these experiments, we do not have flat surfaces, and hence
we set h = 0. For flat surfaces h needs to be nonzero. We have used g = 0.5 and
η = 5.0. As we can see from the Fig. 3.1, the algorithm is effective in preserving
both structures and details.

In our next experiment with cartoon, we investigate the effect of the second order
regularization by varying the g. The results are shown in Fig. 3.2, where the strokes
and the normal vectors along the strokes are kept the same. θ is set equal to 0 in the
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Fig. 3.3 3D surface reconstructions with two different sparsities of input data. Height values
are given at red points, and normal vectors are given at blue points. (a) Reconstructed surface
corresponding to sparsity of (c). (b) Reconstructed surface corresponding to sparsity of (d). (c)
Input data sparsity: 5.18%. (d) Input data sparsity: 2.38%

experiment since the initial elevation is not known. h is set equal to 0 as we do not
expect flat structures. The parameter g varies from 0.01 to 2.0 and the parameter η
stays fixed at 5.0. As we can see in Fig. 3.2, the edges get sharper as g grows.

In our next experiment, we consider the 3D surface reconstruction of maps. The
input data includes contours with height values, and isolated points with normal
vectors. Figure 3.3 presents the results with two different sparsities of input data,
respectively 5.18% and 2.38%. The given normal vectors are kept the same for
both cases, and are represented by the blue points, as shown in Fig. 3.3c–d. The
case in Fig. 3.3d has much less information on elevation than the case in Fig. 3.3c,
represented by the red points. The parameters for both cases are g = 0.1, h = 0,
θ = 105 and η = 106. The results show that, if we have adequate vector information,
even with less height data, our model preserves the main feature of the 3D maps
perfectly.

In Fig. 3.4, we compare the effect of using vector constraint. Figure 3.4a shows
the result of using the hybrid constraint while Fig. 3.4b shows the result using only
the elevation data constraint. As we can see that without the vector constraint, in this
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Fig. 3.4 Figures showing 3D reconstructions of map using different fidelity constraints, both
elevation and vector constraint (hybrid) in (a), only elevation constraint in (b), using our algorithm,
and elevation constraint on contours using the algorithm of [33] in (d)

test case, there is some loss of structure in the valley. The test cases in Fig. 3.4a, b
have the same input points. The test case in Fig. 3.4b has only elevation data as input,
while in the test case in Fig. 3.4a the elevation data is replaced with normal vectors
for some points. Figure 3.4d the same reconstruction is made using the method
[33] which is based on 3rd order anisotropic regularization. As we can see that
our method manages to preserve the small structure comparatively better even with
sparser data, because we have the flexibility to input additional information to our
model like the normal vectors.

In the final experiment, cf. Fig. 3.5, the effect of the first order regularization is
studied. As seen in the figure, the groundtruth contains a flat valley, cf. Fig. 3.5a, d.
The parameters g, η and θ are kept the same in the whole experiment, whose values
are g = 0.1, η = 0 and θ = 106. In Fig. 3.5b, e, h = 100 while in Fig. 3.5c, f h = 0.
As seen from the figure that ∇I term is needed to preserve the flat valley structure.
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Fig. 3.5 Illustrating the effect of the first order regularization, 3D figures in the bottom row and
2D projection (yz-plane) in the top row. Inside the valley, we set the parameter h to 0 (switching
off the first order regularization) in (c) and (f), and to 100 (switching it on) in (b) and (e). h = 0 in
the rest of the domain. The sparsity of the input data is 5.98%. Here g = 0.1, η = 0, and θ = 106

in all cases

Conclusion

We have proposed a model for 3D surface reconstruction based on 2D sparse
hybrid data, that is involving both height values and normal vectors in the same
model, allowing for flexible control of their fidelity. An effective algorithm based
on the augmented Lagrangian has been developed, where we split the minimization
problem into six sub minimization problems, each with either a closed form solution
or a fast solver. The proposed model is well suited for both 3D cartoon design and
digital 3D elevation maps. Because it allows for flexible use of both the height
data and the vector information, which can be on sparse curves or points, it has the
potential to be used in areas where precise reconstruction of surfaces, represented by
rather sparse data, are needed, and rather quick, for instance in real time applications
like the web-based 3D visualization of maps, 3D GPS navigation, and 3D online
gaming.
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Chapter 4
Variational Methods for Gamut Mapping
in Cinema and Television

Syed Waqas Zamir, Javier Vazquez-Corral, and Marcelo Bertalmío

Abstract The cinema and television industries are continuously working in the
development of image features that provide a better visual experience to viewers,
increasing spatial resolution, frame rate, contrast, and recently, with emerging
display technologies, much more vivid colors. For this reason there is a pressing
need to develop fast, automatic and reliable gamut mapping algorithms that can
transform the colors of the original content, adapting it to the capabilities of the
display or projector system in which it is going to be viewed while at the same time
respecting the artistic intent of the creator. In this article we present a review of our
work on variational methods for gamut mapping that comply with some basic global
and local properties of the human visual system, producing state-of-the-art results
that appear natural and are perceptually faithful to the original material.

Introduction

The cinema and television industries are continuously working in the development
of image features that provide a better visual experience to viewers; these image
attributes include large spatial resolution, high temporal resolution (frame rate), rich
contrast, and vivid colors. Virtually all display devices work on a similar principle;
they use three well chosen red, green and blue color primaries that can be mixed
in proper proportions to create different colors. These colors can be visualized in
a 3D space; however when describing colors it is a very common and convenient
practice to decouple the luminance component from the chromatic components. So
by ignoring luminance, the chromatic content can be represented on a 2D plane
known as the CIE xy chromaticity diagram (shown in Fig. 4.1). In this figure the
tongue-shaped region corresponds to the chromaticities of all the colors a standard
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Fig. 4.1 Gamuts on CIE xy chromaticity diagram

observer can see. But for a display device, the xy coordinates of the three color
primaries define its gamut, which is the range of colors it can reproduce. It is
important to note that the three RGB primaries of a display form a triangle in the
chromaticity diagram and the colors that this device generates will always lie within
this triangle. Moreover, it is evident that there is no set of physically-realizable
primaries that can create a gamut capable of covering the full visible spectrum (in
fact no finite set of primaries can, due to the shape of the spectral locus). This implies
that there are many colors that we are able to see but display devices are not capable
of reproducing. Hence, a device gamut is a subset of the human vision gamut. With
the goal of making a display device that can reproduce more of the colors that we
can perceive, several multiple-primary displays have been proposed that make use
of four [16], five [15, 73], and even six color primaries [64, 75]; however, the quest
to make an optimal display still continues.

State-of-the-art digital movie cameras are capable of shooting content with a
large range of colors. However, before a movie is released, its colors have to be
“fitted” to the standard gamuts: DCI-P3 [68] used for digital cinema projections,
or BT.709 [29] used for cable and broadcast TV, DVD, Blu-Ray and streaming.
These standard color gamuts DCI-P3 and BT.709 (shown in Fig. 4.1) exist to ensure
a consistent movie presentation across different digital cinema projectors and TVs,
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respectively. This adaptation to a standard gamut implies altering the range of colors
(and contrast) of the original captured content. The process of color reproduction is
either carried-out within the camera in live TV broadcasts (or low-budget movie
productions), or performed offline by colorists (expert technicians) in the cinema
industry. In order to modify the color gamut, colorists at the post-production stage
specify manually only a few colors using 3D look-up-tables (LUTs), while the rest
are interpolated without taking into account their spatial or temporal distribution
[8]. As a consequence, the reproduced movie may have false colors that were not
originally present. To deal with this issue, intensive manual correction is usually
necessary, commonly performed in a shot-by-shot, object-by-object basis. This
process is difficult, time consuming and expensive, and therefore it makes an
automated procedure called Gamut Mapping (GM) very desirable: GM transforms
colors of a source material to a target gamut.

There are two types of GM: Gamut Reduction (GR) and Gamut Extension (GE).
In the process of gamut reduction, colors are mapped from a larger source gamut to
a smaller destination gamut. For example, footage mastered for cinema projection
has to pass through a GR operation before it can be displayed on a TV [5, 34].
On the other hand, gamut extension involves the mapping of colors from a smaller
source gamut to a larger destination gamut. For example, state-of-the-art digital
cinema projectors have a wide color gamut but they often receive cinema footage
that is encoded with a limited gamut as a precaution measure against regular (or
poor) projectors; therefore, in order to realize the full color rendering potential
of these new projectors, a GE procedure is needed [8]. The process of GE is
gaining importance with the introduction of laser projectors [38, 67] and ultra-high
definition (UHD) TVs. These new displays use pure (very saturated) color primaries
which enable them to cover the very wide next generation UHDTV standard gamut
known as BT.2020 [30], and therefore reproducing all the frequently occurring real
surface colors as defined by Pointer’s gamut [60].

Gamut mapping is not only important in the film or the broadcast industry but it is
also an essential module in the image reproduction pipeline of printing technologies,
where the end goal is to minimize the perceptual difference of the same image when
it is viewed on a display device and when it is printed. Other application domains
of gamut mapping include handheld devices (mobile, tablet computers), websites,
photo-sharing online platforms, computer graphics, animation and video games.

At this point it is necessary to mention a key difference between the application
of gamut reduction and gamut extension. Gamut reduction is required, not optional,
when the colors of the input image fall outside the display’s gamut; if not, the display
will reproduce the image with artifacts and loss of spatial detail. On the contrary,
gamut extension is not essential, rather it is considered as an enhancement operation
[54]. For example, displaying a BT.709 footage (represented in a BT.2020 container)
as it is on a wide-gamut BT.2020 supported display device will not cause any visual
color distortion, but if we do not extend colors of the input footage to the gamut of
display we will be missing the color rendering potential of the wide-gamut screen.
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Related Work

There is a large number of works that exist in the literature on gamut mapping; while
majority of these gamut mapping algorithms (GMAs) deal with the gamut reduction
problem, only few of them perform gamut extension. We can divide GMAs into
two broad categories: global GMAs and local GMAs. Global (also called non-local
or non-adaptive) GMAs modify each color of an image independently, meaning
that these methods completely ignore the spatial color distribution in the image.
On the other hand, local GMAs modify pixel values by taking into account their
neighborhoods. For an in-depth explanation of GMAs, we refer the interested reader
to the comprehensive book [54].

Gamut Reduction Algorithms (GRAs)

The global gamut reduction algorithms can be classified into two sub-classes: clip-
ping and compression. Gamut clipping is the simplest approach to perform gamut
mapping where colors that lie inside the destination gamut are left unmodified while
those colors that fall outside are projected onto the destination gamut boundary [33,
46, 47, 57, 65, 71]. Murch and Taylor [57] proposed the Hue Preserving Minimum
ΔE (HPMINDE) algorithm, that clips an out-of-gamut (OOG) color to the closest
color (in terms of ΔE error) on the destination gamut boundary along lines of
constant hue. CIE recommends adding HPMINDE as a benchmark in the evaluation
of GRAs. Masaoka et al. [47] presented a GRA that aims at mapping colors from a
very wide gamut (BT.2020) to a small gamut (BT.709), while preventing excessive
chroma loss; this involves dealing differently with colors of low luminance and
high luminance, specifically the authors map bright colors without respecting the
constant hue lines in order to avoid a blown-out appearance. All gamut clipping
methods project the whole OOG color segment to a single point on the destination
gamut boundary, and this may produce a gamut mapped image with a visible loss of
texture and color gradients. To overcome this issue, gamut compression algorithms
[23, 26, 31, 53, 66, 74] modify all the colors present in an input image. Gamut com-
pression algorithms map a larger OOG color segment to a smaller in-gamut color
segment and therefore they may cause a significant loss in saturation, especially
when the difference between the source gamut and the target gamut is large.

Local GRAs are also known as ‘spatial’ methods. The spatial GRAs of [4, 51]
and [81] perform gamut reduction in two stages: firstly the gamut of the input image
is reduced using a global method, and secondly the high frequency image detail
(texture) is added to the gamut-reduced image using a spatial filtering operation.
Morovic̆ [55] introduced a multilevel, full-color GRA that first decomposes the
image into a number of spatial frequency bands. Secondly, at the lowest frequency
band, the lightness compression is applied followed by the application of initial
gamut mapping. Then, the next higher frequency band is added to the gamut mapped
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image and again gamut mapping is applied to the resulting image. This step is
repeated until the highest frequency band is reached. McCann [48, 49] proposed a
Retinex-inspired framework that performs spatial comparisons to preserve the local
gradients to obtain the final gamut mapped image. Alsam and Farup [1] proposed
an iterative GRA that at iteration level zero behaves as a gamut clipping algorithm,
whereas, by increasing the number of iterations, the solution approaches spatial
gamut mapping. Nakauchi et al. [58] defined gamut mapping as an optimization
problem where they use a perceptual metric to minimize the perceived differences
between the original and the reproduced image in order to obtain the final reduced-
gamut image, and many other algorithms [36, 40, 62, 63] followed a similar
optimization idea. Local GRAs are adaptive and flexible but at the same time more
complex and computationally far more expensive than global GRAs. Moreover,
spatial GRAs are often based on many assumptions, and may produce halo artifacts.

Gamut Extension Algorithms (GEAs)

Unlike GRAs, there exists a small number of GEAs in the literature. One may take
a GRA and use it in the reverse direction to obtain an image with an extended
gamut [54]. However, the key struggle is to produce gamut extended images that
are natural, pleasant and perceptually as similar as possible to the original images.

Hoshino [27] proposed the pioneering global GEA that first maps the lightness
using a non-linear tone reproduction curve, and then the chroma is mapped along
lines of constant lightness and hue. A revised version of the same GEA was
introduced in [28] in order to produce extended-gamut images that are more pleasant
and natural in appearance. Kang et al. [32] developed a GEA based on the numerical
fitting of data that was obtained by allowing a group of observers to manually
extend lightness and chroma in a linear manner. Anderson et al. [2] presented a
semi-automated framework in which an expert first expands the color gamut of
some key frames from which a LUT is learned. This LUT is then applied to the
rest of frames to perform gamut extension. While all these aforementioned GEAs
are image-independent methods, the authors of [13, 59] and [25] introduced global
GEAs that first analyze the colors of the input image and classify them according
to some criterion. Afterwards a mapping procedure is applied in order to treat these
colors in different manner. The algorithm of [44] uses the CIELUV color space
to expand the color gamut of the input image from an anchor point while keeping
the hue constant. Kim et al. [35] proposed a GEA with three types of mapping
directions: chroma mapping, mapping along lines from the origin, and adaptive
mapping that is a compromise between the first two strategies. Laird et al. [39]
proposed and evaluated five GEAs that are explained in more detail later in this
chapter where we will compare our GEAs with them.

There are a few other GEAs [50, 69, 70] that mainly aim at preserving the skin
tones in the reproductions. In three different thesis works [12, 14, 42], authors use
GRAs in the reverse direction to obtain images with an extended gamut.
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To the best of our knowledge, apart from the GEAs that we present in this book
chapter, there is only the following previous work that extends colors taking into
account their local neighborhoods. Li et al. [41] presented a two-stage framework.
In the first stage the color gamut of the input image is globally extended using a non-
linear hue-varying extension function. And in the second stage an image-dependent
chroma smoothing procedure is applied in order to avoid an over-enhancement of
contrast and to retain in result the local information of the input image.

Reproduction Intent and Evaluation

Every GMA aims at reproducing content according to the specific application in
which it is going to be employed. For instance, a GMA that is intended to be used in
the cinema industry needs to reproduce images that are faithful to the vision of the
content’s creator. Whereas in the television industry, TV makers prefer distorting
image attributes such as tones and colors in ways that they think consumers may
find visually pleasant [61].

On one hand, GMAs with accurate reproduction intent aim at reproducing
images that are perceptually faithful to the originals. On the other hand, GMAs
with pleasant reproduction intent reproduce images that a viewer deems pleasant.
The latter may imply departing from the original content as much as needed, and
incorporating steps that could modify the aesthetics (contrast, sharpness, etc.) of
images. In this work we discuss GMAs that comply with the accurate reproduction
intent, and the results these algorithms produce are evaluated with the criterion
of accuracy. For a GMA to be adopted by the movie industry, it is important to
preserve the artistic intent of the content’s creator in the reproduced image, and
this is guaranteed when the accurate reproduction intent is chosen in the evaluation,
which can be either subjective or objective.

Subjective Evaluation

In the case of subjective evaluation, subjects take part in psychophysical
experiments where they have to choose or rate the reproductions based on a
criterion (preference or accuracy). Psychophysical studies to evaluate GMAs follow
closely the guidelines of [17] in which the conditions of the experimental setup
are detailed: for example, viewing conditions, method of comparison, minimum
number of observers and test images, maximum time duration per experiment
session, methods for subject’s color vision testing, etc. Some commonly used
subjective methods are:

• Pair Comparison: Two different gamut-mapped versions of an original image
are shown to observers in isolation or alongside the original image. Observers
are then asked to select the gamut-mapped image which exhibits more of the
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property (pleasantness, naturalness, or accuracy) being evaluated. There are
several studies that make use of the pair comparison scheme to evaluate GMAs
such as the works of [11, 18, 24, 52, 56], and [39].

• Category Judgment: In a category judgement experiment the observer is
shown, one at a time, several images reproduced by different GMAs and asked
to evaluate their pleasantness by assigning them descriptive names (such as
excellent, good, fair, poor, bad) or just numbers from an integer scale (e.g.,
1–10). This method is based on the law of categorical judgement [72]. Before
starting the main experiment, it is recommended by CIE [17] to show observers
for training purposes a pair of images, one of which serves as an example of the
best quality image and the other one as a worst case example.

• Rank Order: Observers are asked to rank a given set of images according to a
perceptual attribute.

Objective Evaluation

Subjective evaluation is time consuming, expensive and often unreliable if the
number of observers is not sufficient. Therefore, an alternative is to use objective
quality metrics that are capable of finding specific distortions in reproduced images.
There exists a vast variety of image quality metrics [6, 7, 19, 43, 45, 63] in the
literature that could in principle be used to quantify the results of GMAs. Hardeberg
et al. [24] and Baranczuk et al. [6] presented psychophysical studies to identify the
best performing objective measure for the GR problem. It is important to note that
the ranking of color metrics for gamut reduction may not be consistent in the context
of gamut extension if the metrics are not trained to predict well the distortions found
in gamut extended images.

Gamut Mapping in RGB Based on Perceptually-Based Color
and Contrast Enhancement

In [9] the authors propose a variational method for color and contrast enhancement
consisting in minimizing the following energy functional:

E(I) =α
2
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(

I (x)− 1

2

)2

− γ
2

∑
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y

w(x, y)|I (x)− I (y)|

+ β
2

∑

x

(I (x)− I0(x))2 , (4.1)

where α, β and γ are constant weights, I is a color channel (R,G or B) in the
range [0, 1], I0 is the original image channel, w(x, y) is a normalized Gaussian
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Fig. 4.2 Example images and their corresponding gamut plots. Left column: input image. Middle
column: extended-gamut image. Right column: reduced-gamut image

kernel of standard deviation σ , and x and y are pixel locations. The constants α and
β are always positive, so minimizingE(I) penalizes the departure from the original
image (third term of the functional) and from a mean value of 1/2 (first term). If γ
is positive, minimizing E(I) amounts to increasing

∑

x

∑

y w(x, y)|I (x) − I (y)|,
i.e. the local contrast. If, on the contrary, γ < 0, then the minimization of Eq. (4.1)
reduces, not increases, the contrast, as pointed out in [10].

Figure 4.2, top row, shows example outputs that can be obtained with this
approach. The left image is the input, the middle image is the result that minimizes
Eq. (4.1) for some γ > 0, and the image on the right is the result that minimizes
Eq. (4.1) for some γ < 0. Notice how, in the middle image, the contrast has been
enhanced and the colors have become more saturated, while the opposite happens in
the image on the right, where contrast has been reduced as well as the chromaticity
of the pixel colors. This is corroborated in the bottom row, that plots the chromaticity
diagrams for the pictures above.

This example highlights the potential for the variational method of [9] to be used
for gamut mapping: with γ > 0 it is capable of producing gamut extension, and
gamut reduction when γ < 0. That is the approach we followed in [76]: after
replacing the value of 1/2 in the first term of the functional with the global mean
average value μ, the minimum of Eq. (4.1) can be obtained by iterating

Ik+1(x) = I
k(x)+Δt (αμ+ βI0(x)+ γ

2RIk (x)
)

1+Δt(α + β) , (4.2)

where the initial condition is Ik=0(x) = I0(x), RIk (x) indicates the contrast
function

RIk (x) =
∑

y w(x, y)s
(

Ik(x)− Ik(y))
∑

y w(x, y)
, (4.3)
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and the slope function s(·) is a regularized approximation of the sign function, which
in [9] is chosen as a polynomial of degree 7.

GRA-RGB [76]: Gamut Reduction Algorithm on RGB

In detail, for gamut reduction we propose in [76] an iterative approach, where at
each iteration we run Eq. (4.2) for some particular α, β, and γ until we reach the
steady state. At this point we check all pixels and those that have values that are
inside the target gamut are kept untouched for all subsequent iterations, i.e. these
pixels will be part of the final output. Next we decrease the value of γ and proceed
to the following iteration, repeating the process until all the out-of-gamut colors
come inside the destination gamut. An example of this iterative procedure is shown
in Fig. 4.3, where the vivid green color marks the pixels that are out-of-gamut at that
iteration. Figure 4.4b shows how the gamut is iteratively reduced towards the target.

The standard deviation σ of the Gaussian kernel w has an impact on the final
appearance: small σ values preserve colors but introduce artifacts, while larger σ
values yield images that are free from artifacts but with less saturated colors. This is

Fig. 4.3 Gradual mapping of colors. Out-of-gamut colors (in green) when (a) γ = 0, (b) γ =
−0.22, (c) γ = −0.83, (d) γ = −3.21. As γ decreases the number of out-of-gamut pixels is
reduced



76 S. W. Zamir et al.

Fig. 4.4 GR approach. (a) Gamuts on chromaticity diagram. (b) Top left: original image. Top
right: γ = −0.22. Bottom left: γ = −0.83. Bottom right: γ = −3.21

why we compute four intermediate output results Iσ (x) with different values for σ ,
and for each pixel in the final output If inal(x) we select the value from that pixel
location in the gamut mapped image Iσ (x) that has the minimum LabΔE distance
with respect to the original image value Iorig(x)

If inal(x) =arg min
Iσ

(

Lab(Iσ (x))− Lab(Iorig(x))
)2
,

∀x, σ ∈ {σ1, · · · , σ4}. (4.4)
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Fig. 4.5 Detail preservation using GRAs on still images. Column 1: original cropped regions.
Column 2: output of HPMINDE [57]. Column 3: output of Lau et al. [40]. Column 4: output of
Alsam et al. [1]. Column 5: output of our GRA-RGB

The proposed method is shown in [76] to outperform the state-of-the-art both
visually (Fig. 4.5), with better color and detail preservation, and quantitatively, in
terms of the CID perceptual metric presented in [43]. This is the case both for static
images and for video sequences, which show no spatio-temporal artifacts.

GEA-RGB [76]: Gamut Extension Algorithm on RGB

For gamut extension the process is no longer iterative, but it consists of three stages.
First we slightly shift to the right the histogram of each channel, so as to prevent
pixel values from going to black in the subsequent contrast enhancement step. Next
we run Eq. (4.2) with positive α, β, and γ until we reach the steady state. The value
of γ is selected so that the processed image has a gamut slightly larger than the
destination gamut. Finally, the out-of-gamut values are mapped back inside using
the GRA-RGB method described in the previous section.

While in [76] we present experimental comparisons and visual and quantitative
assessments of the results of our GEA, these tests were rather limited because
they were not performed in realistic conditions: the target gamut was not an actual
wide gamut like the DCI-P3 used in cinema, and the validation did not involve
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psychophysical tests in the proper set-up (e.g. large screen, low ambient light like in
a movie theater). We addressed these limitations in our following work, described
next.

Gamut Extension in CIELAB Color Space

Our GEA-RGB [76] presented in the previous section, due to its inherent behavior
of expanding colors by increasing the contrast of the image, produces results with
over-enhanced contrast, which in turn makes a few colors go towards black (loss of
saturation), as it is visible in Fig. 4.6b. It can be seen that the overall contrast of the
reproduction is increased noticeably, making it depart from the original image. Also,
the over-enhancement of contrast causes loss of color details as it is shown in the
area highlighted by a bounding box in Fig. 4.6b. To overcome these problems, we

Fig. 4.6 Gamut extension example. (a) Input image. (b) Result of GEA-RGB [76]. (c) Result of
GEA-LAB1 [77]. Bottom row (d)–(f): Zoomed-in view of the regions cropped from the top row.
Original image is courtesy of [37]



4 Variational Methods for Gamut Mapping in Cinema and Television 79

introduced in [77] and [79] two new GEAs based on [76]; these methods perform
gamut extension using the same energy functional (Eq. (4.1)) and its corresponding
evolution equation (Eq. (4.2)) as used by Zamir et al. [76], but under the CIELAB
color space. This key modification eliminates not only the problems with saturation
and contrast in the reproduced images, but also the need to perform any sort of
preprocessing as it was the case with the GEA-RGB [76].

GEA-LAB1 [77]: Gamut Extension Algorithm

To perform gamut extension, our GEA-LAB1 [77] first converts the RGB input
image to the CIELAB color space, and then only maximizes the contrast of the
chromatic components ‘a’ and ‘b’ using Eq. (4.2), while keeping the lightness
component constant. To show how the evolution equation (4.2) extends the color
gamut, an example with several different gamuts (visible spectrum, source gamut,
target gamut and reproduced gamut) on a chromaticity diagram is shown in
Fig. 4.7a. It is important to note that for each set of values for α, β, and γ , the
evolution equation (4.2) has a steady state. For example, it is shown in Fig. 4.7a
that when β = 1, α = 0, and γ = 0 we obtain the original image as the steady
state of the evolution equation. Moreover, it can be seen in the same figure that as
we increase γ the steady state of Eq. (4.2) has a gamut which is gradually larger.
Figure 4.7a also shows that the colors of the source gamut can be expanded to the
destination gamut just by using a large enough value for γ (γ = 0.35 in this case).
And to select an adequate γ value, we keep increasing the γ value and running
evolution equation (4.2) to steady state until the gamut of the input image exceeds
the target gamut up to a certain threshold T . This threshold T defines a stopping
criteria according to which if T% pixels of the original image move out of the target
gamut we should stop performing extension. Additionally, the threshold T controls
the amount of saturation: a large value of T provides a higher level of saturation,
whereas a small value of T produces a less saturated output. For each γ value,
the corresponding reproductions are shown in Fig. 4.7b–e. After this, the colors
that were placed outside the target gamut in previous iterations are mapped back
inside using our GRA-RGB [76]. However, since this method uses a fixed value of
threshold T for all the images, the results can be off from the ground truth and may
present hue shifts.

GEA-LAB2 [79]: Gamut Extension Algorithm Driven by Hue,
Saturation and Chroma Constraints

To overcome the issues of GEA-LAB1 [77] we introduced in [79] another method
that works iteratively with added constraints to perform gamut extension in terms
of the contrast coefficient γ . The general structure of this algorithm (GEA-LAB2),
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Fig. 4.7 Gamut extension approach. (a) Gamuts on chromaticity diagram. Gamut extension
results: (b) input image (γ = 0), (c) gamut extended image with γ = 0.17, (d) γ = 0.23 and (e)
γ = 0.35. As the γ value increases the gamut becomes larger; notice the increment in saturation
of helmets, socks, ski suits and shoes. Original image is courtesy of [37]
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that also operates on the ‘a’ and ‘b’ components in the CIELAB color space, is as
follows.

First, we initialize our final image and set all its values to zero. Then, we run the
evolution equation (4.2) for β = 1, α = 0, and γ = 0 until we reach the steady
state. For each pixel of the steady state solution we check if it accomplishes at the
same time three different constraints described below: one in saturation, one in hue,
and one in chroma. In case it does, we select the current value of the pixel as the
value of this pixel in the final image. We keep repeating this process by increasing
γ and setting α = γ

20 until either the final image has been filled or until the gamut of
the original image exceeds our destination gamut up to a threshold T . At this point,
we stop the iterations and replenish the final image with the pixel values obtained
in the last iteration, taking special care of those pixels that have exceeded the gamut
(to which we apply a small reduction using our GRA-RGB [76]).

Let us now briefly describe our three constraints. In short, regarding the
saturation, we aim at a result where no pixel is less saturated than in the original
image; regarding the hue, unwanted changes on the hue (or tint) of the objects
should be avoided; regarding the chroma, we should prevent the over-enhancement
of natural colors such as sky, skin, or memory colors.

Another important part of our approach is the definition of a scaled destination
gamut that allows our method to work under different target and source combina-
tions. The process is as follows. Given the original image (I0) whose gamut we
want to extend, we convert the RGB values of this image into luminance values Y
and chromaticity values x, y. Then, we define the first reference point pr1 as the
mean among all the vertices of the gamut of I0 on chromaticity values. We show
the reference point pr1 and the convex hull of the chromaticities (CGchrom) of I0
in Fig. 4.8a. We then define a set of lines (L) that connect the reference point pr1 to
any point in the border of CGchrom. Finally, we generate new points (one from each
line in L) using a scaling factor equal for all the lines. This scalar (η1) is defined
such as none of the new points falls outside the target gamut and at least one of
them touches the boundary of the target gamut as shown in Fig. 4.8a. Similarly, we
calculate another scaling factor η2, but this time using the mean of all chromaticity
values of the image as reference point pr2 and repeat the process. Once we have
the scaling factors η1 and η2, we apply them on the xyY triplets that make the
three-dimensional (3D) convex hull of the original image I0 (shown in Fig. 4.8b) to
obtain two 3D scaled gamuts. The final scaled destination gamut is defined as the
intersection of both 3D scaled gamuts as illustrated in Fig. 4.8c. An example with
all the relevant gamuts is shown Fig. 4.8d.

Qualitative Experiments and Results

Methodology

Let us start this section by pointing out that the final goal a GE method must
accomplish is to respect as much as possible the intent of the person who created the
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Fig. 4.8 Scaled destination gamut computation

material. This is the reason why we evaluate our method via a forced-choice pair-
wise comparison experiment that compares an original ground-truth image versus
the results of two different methods: we inquire the observers for the result that is
closer to the ground-truth (even if it is not the most pleasant for them).

A general framework for our experiment is shown in Fig. 4.9. The first task is
to obtain both the wide-gamut ground truth images and the limited-gamut input
images. For obtaining the wide-gamut test images we have used a camera that is
capable of capturing images in RAW format which can then be associated with
a particular wide-gamut color space (ProPhoto RGB) to obtain true color images.
Along with the 21 images shown in Fig. 4.10, we use 9 other test images that come
from professional feature films. Let us note that these original images may have
colors that fall outside the gamut of the cinema projector we use for displaying the
content; therefore, to create the ground truth, we map the colors of the test images
to the gamut of the projector by using the state-of-the-art gamut reduction algorithm
of [1]. Next, to create the limited-gamut input images, we apply the same state-of-
the-art gamut reduction method of [1]. Once we have the input images ready, we
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Fig. 4.9 A schematic of the evaluation for GEA-LAB2 [79]

Fig. 4.10 Some of the wide-gamut images used in our tests. Note that only the central part of the
images is shown

apply to them our GEA-LAB2 and four competing GEAs, namely LCA, CE, HCM,
SDS [39].

To test the robustness of our approach with respect to different combinations of
source and target setups, we defined two setups for our experiments:

1. Mapping from small gamut to DCI-P3 gamut: laser displays with gamuts vastly
extending current capabilities are becoming popular. This leaves us with a clear
problem: in the near future, there will exist large differences between source
standard gamuts and displays’ gamuts. Therefore, to emulate this behavior we
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Fig. 4.11 Gamuts on
chromaticity diagram

Table 4.1 Primaries of gamuts

Red primaries Green primaries Blue primaries

Gamuts x y x y x y

BT.2020 0.708 0.292 0.170 0.797 0.131 0.046

BT.709/sRGB 0.640 0.330 0.300 0.600 0.150 0.060

DCI-P3 0.680 0.320 0.265 0.690 0.150 0.060

Projector 0.680 0.320 0.265 0.690 0.140 0.070

Toy 0.570 0.320 0.300 0.530 0.190 0.130

Mock 0.510 0.320 0.310 0.480 0.230 0.190

map the source images from the small ‘Toy’ gamut (slightly smaller than the
BT.709 gamut, see Fig. 4.11, and for its primaries see Table 4.1) to the large
DCI-P3 gamut. Our ‘Toy’ gamut was selected so that the difference in gamuts
for this setup is almost equal to the difference between BT.709 and BT.2020.

2. Mapping from BT.709 to DCI-P3 gamut: in this setup we mimic the practical
situation where the source material is in the BT.709 gamut and we map the source
colors to the colors of the DCI-P3 gamut.

The room for the experiment has a low-light ambiance of 1 lx and the illumina-
tion measured at the screen was around 750 lx. The glare-free screen used in our
experiments was 3 m wide and 2 m high. We used 15 observers (10 male and 5
female) all with correct color vision and with ages between 27 and 44 years (average
of 32 years). Observers were asked to sit approximately 5 m away from the screen.

As already stated before, we used a forced-choice pairwise comparison. The
observers were simultaneously shown three images: ground-truth (in the center) and
the results of two gamut extension methods (located left and right of the ground-
truth image). The selection instructions given to the observers were: (a) if there are
any sort of artifacts in one of the reproductions, choose the other, and (b) if both of
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Fig. 4.12 Accuracy scores using 15 observers and 30 images. (a) Setup 1. (b) Setup 2

the reproductions have artifacts or are free from artifacts, choose the one which is
perceptually more closer to the ground truth.

Moreover, to further validate the robustness of the different GEAs we asked
nine experienced observers (who belong to the image processing community and
participated in various psychophysical studies) to perform a second experiment. In
this case, they were shown a pair of images side by side in the projection screen: the
ground-truth image and the result for some particular method. In this case, observers
were asked to look for artifacts and hue shifts in the reproductions as compared with
the original material.

Results

In order to compute the accuracy scores from the raw psychophysical data we use
the data analysis procedure presented in [53]. The analysis for the first and second
setups are shown in Fig. 4.12a and b, respectively. For the first setup we can see that,
when there is a large difference among the source-target gamut pair, our GEA-LAB2
produces images that are perceptually more faithful to the original as compared with
the other competing algorithms. Regarding the second setup we can see that, when
the difference between source and target gamut is smaller, the ranking order of the
GEAs changes dramatically. In this case the HCM algorithm is ranked as the most
accurate method, with our GEA showing comparable performance with it.

Results for this second experiment for setups 1 and 2 are shown in Fig. 4.13a, b.
These results are computed as the average of cases where the observers noticed the
visual distortions: artifacts or hue shifts. For the setup 1 subjects noticed artifacts
in 25% of the reproductions obtained using the LCA algorithm and in 12% of the
images in the case of the CE algorithm. The observers also confirmed that GEA-
LAB2 produces images with very low error rate, around 2%. In terms of hue shifts,
both the SDS and HCM algorithms show strong hue shifts. Regarding the setup
2 we can see that the SDS and HCM algorithms produce gamut extended images
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Fig. 4.13 Percentage of reproductions in which nine experienced observers noticed visual distor-
tions. (a) Setup 1. (b) Setup 2

Fig. 4.14 Examples of artifacts. (a) Ground Truth. (b) Output of CE algorithm [39]. (c) Output
of LCA algorithm [39]. (d) Output of our GEA-LAB2. (e)–(h) Zoomed-in view of the regions
cropped from the top row. Note that these are wide-gamut images where out-of-sRGB pixels are
masked green

with strong hue shifts for 13.6% and 7% of the input images, respectively. It can
be seen in the same figure that none of the competing algorithms produces images
with distinct visual artifacts for setup 2, in which there are small color differences
between source and target gamut. Finally, Fig. 4.14 presents examples of artifacts
found by the observers, while Fig. 4.15 presents examples of hue shifts. In both cases
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Fig. 4.15 Examples of hue shifts. (a) Ground Truth. (b) Output of SDS algorithm [39]. (c) Output
of HCM algorithm [39]. (d) Output of our GEA-LAB2. (e)–(h) Zoomed-in view of the regions
cropped from the top row. Note that these are wide-gamut images where out-of-sRGB pixels are
masked green

we can see that our method is free of the problems presented by the competing ones.
Let us note that in these figures we are only displaying the colors that are inside the
sRGB gamut, and masking those that are outside.

Temporal Consistency Test

In order to examine the temporal consistency of the GEAs, we conducted a
psychophysical study with nine experienced observers and two colorful image
sequences with different levels of motion that had been extended using the different
GEAs. Representative frames for both image sequences are presented in Fig. 4.16.

In this experiment, each observer was asked to inspect the following attributes:
temporal color consistency (objects should retain the same hue, chroma and
brightness), global flickering, local region flickering, and excessive noise. None of
the observers noticed any temporal artifacts, which supports our choice to apply all
competing GEAs on each frame independently. Finally, we want to stress that the
quality of the input video is of high importance; if it contains any spatial artifacts
due to compression or noise they may become prominent in the reproduced video.
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Fig. 4.16 Representative frames of image sequences with toy gamut. (a) Image sequence 1. (b)
Image sequence 2

Gamut Mapping Using Kernel Based Retinex (KBR) in HSV
Color Space

GEA-KBR [78]: Gamut Extension Algorithm

The main limitations of the GEA-LAB2 [79] presented previously are, on one hand,
its sensitivity to the correct choice of parameter values and, on the other hand, its
significant computational cost: a non-optimized MATLAB implementation running
on a machine with 8 cores 3.4-GHz CPU takes (on average) 4.5 min to process an
image of resolution 656× 1080 pixels.

Since the human visual system is very sensitive to changes in hue, it is
recommended in the gamut mapping literature to leave the image hues unmodified,
whenever possible [17, 54]. Therefore, we introduced in [78] a new GEA that works
in the HSV color space and modifies only the saturation component while keeping
hue and value constant. The proposed GEA is based on the kernel-based Retinex
(KBR) method proposed by Bertalmío et al. in [10]. By using KBR we can pose the
gamut extension problem as one of increasing saturation.

One fundamental mechanism of the KBR algorithm [10] is that it is capable
of increasing contrast while being monotonically increasing, i.e. it can increase
the contrast without decreasing the image values. Bertalmío et al. [10] propose
the following formula to convert the intensity values I of an image into perceived
lightness values L:

L(x) =
∑

y

w(x, y)f

(

I (x)

I (y)

)

sign+(I (y)− I (x))

+
∑

y

w(x, y) sign−(I (y)− I (x)),
(4.5)
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where I (x) and I (y) represent image values at pixel locations x and y, respectively,
I is an image channel, f is a monotonically increasing function such that f (r) ≥ r ,
∀r , w(x, y) is a normalized Gaussian kernel of standard deviation of σ , and the
functions sign+(·) and sign−(·) are, respectively, defined as:

sign+(a) =
⎧

⎨

⎩

1, if a > 0,
1
2 , if a = 0,
0, if a < 0,

(4.6)

sign−(a) = 1− sign+(a). (4.7)

In [10] it is shown that the KBR is not idempotent. Therefore, instead of manually
choosing the number of times the KBR should be applied to obtain the best enhanced
image, it is better to rewrite Eq. (4.5) in the form of a partial differential equation
(PDE): It (x) = L(x, t) − I (x, t), into which we can introduce an attachment to
data term that leaves the image unmodified once it has departed too much from the
original image. We use this framework in the GM context by applying this PDE to
the Saturation channel only, while keeping the Hue and Value channels fixed: we
know that KBR will increase the Saturation values, which implies that the gamut
will be extended. Taking Eq. (4.5) for the Saturation channel S and adding also a
chroma term C = SV (from [21]) we get:

St (x, t) =γ
∑

y

w(x, y)

[

f

(

S(x, t)

S(y, t)

)

sign+(S(y, t)

−S(x, t))+ sign−(S(y, t)− S(x, t))
]

− S(x, t)− β(S(x, t)− S0(x))

− τ (S0(x))(S(x, t)V0(x)− S0(x)V0(x)),

(4.8)

where β > 0 controls the strength of the original data attachment term S0 and γ
is a positive constant. V0 is the value component of the original image. In gamut
extension, if all colors of an image are extended in the same manner (and by an
equal amount), the result may appear unnatural. Therefore, to treat objects of low
saturation and high saturation differently, we make use of the saturation-dependent
weighting function τ (·). As it is shown in Fig. 4.17, higher weights τ (·) are attached
to the low saturated input colors (such as skin tones, neutral colors, etc.) as we
should apply to them little to no extension, whereas low weights are given to the high
saturated (artificial objects) colors in order to extend them normally. To compute
the weights for each pixel, we use the following adapted version of the generalised
logistic function (https://en.wikipedia.org/wiki/Generalised_logistic_function):

τ (S0(x)) = τmax
(

1− 1

1+ 0.55e−1.74S0(x)2

)

(4.9)

https://en.wikipedia.org/wiki/Generalised_logistic_function
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Fig. 4.17 Logistic function

where τmax is a positive constant. The values used in Eq. (4.9) have been chosen
based on tests we performed on several images with different color characteristics.

Let us now discretize the derivative and apply a forward-time numerical scheme
on Eq. (4.8) as

Sk+1(x) =γΔtRSk (x)+ Sk(x)[1−Δt(1+ β)]
+Δt[βS0(x)+ τ (S0(x))V0(x)(S0(x)− Sk(x))],

(4.10)

where Δt is the time step and k ∈ N denotes the iteration number. The initial
condition is Sk=0(x) = S0(x), and the function RSk (x) indicates the contrast
modification function:

RSk (x) =
∑

y

w(x, y)

[

f

(

Sk(x)

Sk(y)

)

sign+(Sk(y)− Sk(x))

+ sign−(Sk(y)− Sk(x))
]

.

(4.11)

Following the work of [10] we can rewrite Eq. (4.10) as

Sk+1(x) = S
k(x)+Δt (S0(x)(β + τ (S0(x))V0(x)

2)+ γ
2RSk (x)

)

1+Δt(β + τ (S0(x))V0(x)2)
(4.12)

Results of GEA-KBR

In this section we assess the image reproduction quality of our GEA-KBR and
other algorithms [39] using the datasets of [3] and [22]. Given an RGB image,
we first convert it into the HSV color space and apply gamut extension only on
the saturation component using the evolution equation (4.12). The parameter values
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Fig. 4.18 Results: mapping from Toy to sRGB gamut. Column 1: Input image. Column 2: HCM
[39]. Column 3: SDS [39]. Column 4: Chroma extension [39]. Column 5: LCA [39]. Column 6:
Our GEA-KBR. Original images are from [3] and [22]

that we use in Eq. (4.12) are β = 1, Δt = 0.10. The non-linear scaling function is
f (r) = A log(r) + 1, where A = 1

log(256) . The value for σ , the standard deviation
for w(x, y), is equal to one-third of the number of rows or columns of the input
image (whichever is larger). The results that we present in this section are mapped
from the ‘Toy’ gamut to the sRGB gamut (see primaries of gamuts in Table 4.1).

While emerging wide-gamut displays are capable of rendering vivid colors, it is
extremely important to reproduce skin tones carefully so as to preserve the artistic
intent of the content’s creator. To compare how different GEAs reproduce flesh tones
(always a key issue in movie postproduction), in Fig. 4.18 we present some results
showing that our GEA-KBR extends skin tones in a controlled (limited) manner,
but applies normal color extension to the artificial objects (see row 2 and row 4).
Whereas in the same figure it can be seen that other methods such as same-drive
signal (SDS) [39] and chroma extension [39] reproduce skin tones poorly and also
have a problem of over-saturation. For better comparison, we show in Fig. 4.19 the
zoomed-in view of regions cropped from Fig. 4.18. Since the lightness chroma adap-
tive (LCA) algorithm [39] works by modifying both lightness and chroma, it tends
to produce images with artifacts, loss of saturation and loss of spatial detail. For
instance, we can notice in Fig. 4.19 that the napkin in row 2 has some artifacts, and
there is a loss of spatial details in the picture of the elephant in the last row. As shown
in row 4 of Fig. 4.19, the chroma extension algorithm [39] reproduces high chro-
matic objects poorly as it has a problem of giving a strong chroma boost to colors.

It is reported in [20] that viewers prefer saturated colors, but this is only true
when they are not aware of the original colors of objects: viewers tend to become
very critical of color changes in those objects for which they have memory such
as sky, grass, etc. Therefore, extra care should be taken while extending memory
colors. In Fig. 4.18, row 1, it can be observed that the hybrid color mapping (HCM),
and SDS algorithms produce images with an over-saturated grass region, whereas
our GEA performs a controlled amount of extension and reproduces the same grass
region accurately.
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Fig. 4.19 Zoomed-in view of the regions cropped from Fig. 4.18. Column 1: Input image. Column
2: HCM [39]. Column 3: SDS [39]. Column 4: Chroma extension [39]. Column 5: LCA [39].
Column 6: Our GEA-KBR

Making the GEA-KBR Faster

The non-optimized MATLAB implementation of our GEA-KBR running on a
desktop PC takes 11 s to process an image of resolution 656 × 1080 pixels,
which means that the GEA-KBR is 25 times faster than the GEA-LAB2 (that
we have presented in the previous section). However, by applying the following
chain of operations (only on the saturation component) we can further reduce the
computational cost to perform gamut extension using the GEA-KBR. All the stages
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Fig. 4.20 A schematic to reduce the computational cost of the proposed framework

Fig. 4.21 Example of reducing computational time. (a) Input image. (b) Result of GEA-KBR
applied on a full resolution image. (c) Result of GEA-KBR applied on a sub-sampled image.
Original image is from [37]

of the procedure are shown in Fig. 4.20 and described as follows:

• Sub-sampling: the first step is to down-sample the full resolution image by some
scaling factor. We recommend using the scaling factor of 0.40 as it provides a
good trade-off between image quality and speed.

• Apply GEA: apply the proposed GEA-KBR on the sub-sampled image to obtain
a reduced-size image with an extended gamut.

• HistogramMatching: finally perform histogram matching of the full resolution
input image and the sub-sampled extended-gamut image in order to obtain the
final full-resolution extended-gamut image.

Figure 4.21 shows that the aforementioned steps produce results having the same
visual appearance as of applying the GEA-KBR directly on the full resolution
image, but in just a fraction (25%) of the time.

GRA-KBR: Gamut Reduction Algorithm

This section is devoted to present a key modification in the framework of GEA-KBR
that will allow us to perform gamut reduction. Let us note that the chroma term in



94 S. W. Zamir et al.

the PDE (Eq. (4.8)) was exclusively used to deal with the gamut extension problem
in which we need to treat low-saturated and high-saturated colors differently. So by
removing the effect of the chroma term from Eq. (4.8), i.e. by setting τ (·) to zero,
we obtain the following corresponding evolution equation

Sk+1(x) = S
k(x)+Δt (βS0(x)+ γ

2RSk (x)
)

1+ βΔt , (4.13)

and by using γ < 0 in this equation we can decrease the saturation of the input
image and subsequently reduce the color gamut.

Results of GRA-KBR

Our GRA-KBR works iteratively and maps only the out-of-gamut colors to the
smaller destination gamut, while leaving the in-gamut colors unmodified; this
iterative process is the same as we have described for the GRA-RGB in sec-
tion “GRA-RGB [76]: Gamut Reduction Algorithm on RGB”.

To perform visual quality assessment we map colors of sRGB images to a
challenging smaller ‘Mock’ gamut using our GRA-KBR and the GRAs of [1, 66],
LCLIP [65] and HPMINDE [57]. The color primaries of the sRGB and Toy gamuts
are given in Table 4.1. In the results presented in Fig. 4.22 it can be seen that our
GRA-KBR works well in preserving hues and texture in the reduced-gamut images;
and these reproductions are perceptually more faithful to the original images than
those of other competing methods. For a better comparison we present close-ups
in Fig. 4.23 where it is clearly noticeable in row 1 and row 4 that the results of
HPMINDE have artifacts (loss of spatial detail) due to its inherent functionality
of projecting two nearby out-of-gamut colors to far-away points on the destination
gamut. The GRAs of Schweiger et al. [66] and LCLIP [65] may produce reduced-
gamut images with excessive desaturation in bright regions, as shown in rows 1 and
3 of Fig. 4.23. The method of Alsam et al. [1] can over-compensate the contrast,
as shown in the close-up of the yellow parrot. In the example of the second row of
Fig. 4.23, all tested GRAs except the proposed one produce tonal discontinuities on
the face of the woman.

Conclusion and Future Work

In this article we have presented a review of our work on variational methods for
gamut mapping that comply with some basic global and local properties of the
human visual system, producing results that appear natural and perceptually faithful
to the original material. In Table 4.2 we list the characteristics and limitations
of each of the presented methods. The following are some challenges in gamut
mapping that still need to be addressed.
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Fig. 4.22 Reproductions of GRAs. Column 1: input images. Column 2: LCLIP [65]. Column 3:
HPMINDE [57]. Column 4: Schweiger et al. [66]. Column 5: Alsam et al. [1]. Column 6: Our
GRA. The original image in the last row is from [17], while rest of the input images are from
Kodak dataset [37]

Fig. 4.23 Comparison of GRAs: croppings are from Fig. 4.22. Column 1: original cropped
regions. Column 2: LCLIP [65]. Column 3: HPMINDE [57]. Column 4: Schweiger et al. [66].
Column 5: Alsam et al. [1]. Column 6: Our GRA-KBR
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Table 4.2 Summary of the presented gamut mapping algorithms

GMAs Characteristics Limitations

GRA-RGB [76] • Works in RGB color space • May introduce spatial artifacts

• Apply on each color channel when difference between source

independently and target gamut is large

• Reduces gamut by reducing contrast • Poor reproduction if the input

• Iterative in nature image has low contrast

• Computationally expensive

GEA-RGB [76] • Works in RGB color space • May over-enhance contrast

• Apply on each color channel • May send a few colors towards

independently black, leading to loss of

• Extends gamut by increasing contrast saturation for high contrast input

images

• Non-iterative (one-shot) in nature • Computationally expensive

GEA-LAB1 [77] • Works in CIELAB color space • May introduce hue shifts

• Apply only on chromatic channels • May send a few colors towards

‘a’ and ‘b’, while preserving lightness black, leading to loss

• Extends gamut by increasing contrast of saturation for high contrast

• Non-iterative (one-shot) in nature input images

GEA-LAB2 [79] • Works in CIELAB color space • Wrong parameters selection may

• Apply only on chromatic channels introduce false edges

‘a’ and ‘b’, while preserving lightness • Computationally expensive

• Extends gamut by increasing contrast

• Iterative in nature

• Added constraints to avoid hue shifts,

loss of saturation and excessive chroma

boost

GEA-KBR [78] • Works in HSV color space • Fixed contrast modification (γ )

• Apply only on saturation component, parameter for all input images,

while preserving hue and value which may produce some results

components either under-enhanced or

• Extends gamut by increasing saturation over-enhanced

• Uses logistic function to deal with

low-saturated and high-saturated

pixels differently

• Non-iterative (one-shot) in nature

GRA-KBR [80] • Works in HSV color space • High computational cost

• Apply only on saturation component,

while preserving hue and value

components

• Reduces gamut by reducing saturation

• Iterative in nature
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• Although current spatial GMAs are adaptive and flexible, at the same time they
are more complex and computationally expensive than global GMAs. These local
GMAs need to be fast so that they can yield color reproductions on the fly in live
broadcasts. The development of fast spatial GMAs is also important if we want
to implement them in the image processing pipeline of a camera.

• Our user study [79] showed that the current image quality metrics, when
applied to the gamut extension problem, provide results that do not correlate
well with users’ choices. Therefore, there is the need to develop an error
metric specifically for gamut extension. Without a suitable image quality metric,
the gamut extension problem cannot be posed as an optimization procedure;
moreover, we are forced to conduct psychophysical tests for evaluating GEAs
but these subjective tests are cumbersome, time-consuming and expensive.
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Chapter 5
Functional Lifting for Variational
Problems with Higher-Order
Regularization

Benedikt Loewenhauser and Jan Lellmann

Abstract Variational approaches are an established paradigm in the field of image
processing. The non-convexity of the functional can be addressed by functional
lifting and convex relaxation techniques, which aim to solve a convex approximation
of the original energy on a larger space. However, so far these approaches have been
limited to first-order, gradient-based regularizers such as the total variation. In this
work, we propose a way to extend functional lifting to a second-order regularizer
derived from the Laplacian. We prove that it can be represented efficiently and thus
allows numerical optimization. We experimentally demonstrate the usefulness on a
synthetic convex denoising problem and on synthetic as well as real-world image
registration problems.

Introduction and Related Work

In this work, we consider variational energy minimization problems of the form

inf
u:Ω→Γ

∫

Ω

ρ(x, u(x)) dx + λS(u), (5.1)

for estimating some unknown data u defined on an open, bounded, connected—
usually rectangular—image domain Ω ⊆ R

d with values in Γ ⊆ R
n. The data

term in (5.1) is of integral form, with the integrand ρ(x, u(x)) typically depending
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on some noisy, corrupted measurements. We are particularly interested in the case
where ρ is non-convex in u(x).

The regularizer S, weighted by a parameter λ > 0, encodes prior knowledge in
order to account for randomness and is often used to resolve ambiguities and render
the problem well-posed.

A classical convex example is the Rudin-Osher-Fatemi model with

ρ(x, u(x)) := 1

2
(u(x)− g(x))2 and S(u) := TV(u), (5.2)

which can be used to remove noise from a given image g : Ω → Γ while preserving
discontinuities [35]. The total variation TV(u) is defined as the integral

TV(u) :=
∫

Ω

d‖Du‖, (5.3)

where the vector-valued Radon measure Du is used to represent the distributional
derivative of u in order to allow for discontinuities [1, 41]. For (weakly) differen-
tiable u, the total variation assumes the simpler form

TV(u) =
∫

Ω

‖∇u(x)‖2dx. (5.4)

As we will be mainly focused on the discretized setting, we will restrict ourselves
to the regular case and use the more suggestive notation (5.4).

In the ROF model, as ρ is convex, computing a global minimizer of (5.1)
numerically is feasible even for large problems [4]. However, in many applications,
one cannot assume convexity. As a prime example, consider the problem of image
registration [24], also sometimes referred to as large-displacement optical flow: one
starts with two images R, T : Ω → R and aims to find a deformation, also called
displacement, u : Ω → R

d which is “sufficiently regular” and aligns R and T in
the sense that

R(x) ≈ T (x + u(x)) (5.5)

for all x ∈ Ω . A suitable energy is

1

2

∫

Ω

(R(x)− T (x + u(x))2dx + λS(u). (5.6)

This data term is also referred to as sum-of-squares distance (SSD) [25].
Numerically minimizing (5.6) is a challenging problem: not only is the data term

generally non-convex, the degree of non-convexity is also completely determined
by the data R and T , which are generally noisy and result in an energy landscape
with many local minima.
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Typical methods for minimizing (5.6) therefore rely on local solvers such as
gradient-based and (Quasi-)Newton methods; see [30] for an algorithmic overview.
In the context of optical flow [16], the classical, and still most common, method
is to linearize T around a current estimate, which renders the problem convex.
These approaches suffer from the typical issue of local non-convex optimization:
the algorithm can get stuck in local minima and requires a good initial estimate.
Much work has been dedicated to finding such a starting point, such as “warping”
and coarse-to-fine strategies [3].

Non-convexity also appears in much simpler settings, such as q-(pseudo-)norm
denoising with energies of the form

∫

Ω

|u(x)− g(x)|qdx + λS(u), (5.7)

with q < 1. This choice of q makes the method more robust against outliers in
the data g, as the influence of outliers diminishes as q → 0. Choosing q < 1
also encourages the sparsity of the argument more than convex variants with q ≥
1; this is a particularly useful feature in the context of sparse representation [11].
See also [29] for an extensive analysis of non-convex regularization. However, it
again renders the data term non-smooth and non-convex. A recent development is
to modify methods for non-smooth convex optimization to the non-convex setting
[26, 27], however these are again local and convergence results are currently very
limited.

Computational and algorithmic advances have recently made another strategy
viable: Instead of solving the non-convex problem directly, one aims to approximate
it by a—usually much larger—convex one, which can be solved to a global optimum.
In order to approximate the original problem well, one relies on functional lifting,
i.e., embedding the original problem into a much larger space: Instead of solving

inf
u:Ω→Γ f (u), (5.8)

one solves the lifted problem

inf
ū:Ω→P(Γ )

f̄ (ū), (5.9)

where P(Γ ) is the set of probability measures over the range Γ , and f̄ is a suitable
extension of f on this larger function space in the following sense: with each
u : Ω → Γ , one can associate a function ū : Ω → P(Γ ) which is a Dirac
measure at every point, ū(x) := δu(x), and require that f̄ (ū) = f (u) for all u in
the original space. On the other hand, if the solution of (5.9) is a Dirac measure
δu(x) at every point and f̄ does not introduce artificial minimizers, then u will be a
solution of the original problem (5.8), as each element of the feasible set of (5.8)
has a corresponding element in the feasible set of (5.9).
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This leaves the question of how to define f̄ on arguments ū that are not
Dirac measures, but rather mixtures or even diffuse measures. There is a series of
publications discussing different strategies for deriving “good” liftings, starting with
image segmentation [20, 32, 38, 39], general convex first-order regularization [33]
as a functional-analytic formulation of the classical paper [17], recently advancing
the framework to manifold-valued problems [21] and more accurate discretizations
[18, 28, 40].

However, all these works assume that the regularizer depends only on the first-
order derivative ∇u or its distributional counterpart. For natural images, such first-
order regularization is often sub-optimal, as it penalizes linear parts and, in the case
of TV, prefers -wise constant solutions.

For natural images, regularizers that use second- and higher-order derivatives
have been found to be much more suitable [2, 7, 22, 23, 31, 36]. Therefore one would
like to use these more advanced regularizers in the functional lifting framework.
However, so far there has been little progress in this direction. The reason is that the
space of probability measures P(Γ ) is usually discretized as a discrete probability
measure on � chosen points in the range Γ . If one follows the same strategy as for
lifting TV, one ends up with a large number of constraints on the dual variables,
which is at least cubic with respect to �. This requires to choose � very small,
which corresponds to a very rough discretization of the range Γ of u and brings
the accuracy below acceptable thresholds.

Contributions

In this work, we propose a method for approximating energies of the form (5.1)
using functional lifting and convex relaxation, where ρ is a general non-convex data
term and the regularizer S incorporates second-order information:

• We investigate the non-smooth “Absolute Laplacian” regularizer, which incor-
porates second-order derivatives and coincides with TV2 on one-dimensional
domains (section “Lifting for Absolute Laplacian Regularization”).

• After reviewing mathematical prerequisites (section “Notation and Mathematical
Preliminaries”) and the discretized version of the problem, we discuss where
the usual strategy for computing a convex extension of the regularizer fails for
more involved regularizers (section “Approximate Relaxation of the Absolute
Laplacian”).

We prove that by introducing an approximation step, the number of required
constraints can be reduced from cubic (�3) to linear (�) growth in the one-
dimensional case (Theorem 5.1). We propose an extension to the case d ≥
2, which—although currently without theoretical guarantees—has been very
successful in all of our experiments.

• In order to show that a non-convex data term combined with higher-order
regularization has practical benefits, we illustrate the method on a synthetical
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q-pseudo-norm denoising example as in (5.7) with second-order regularization
(section “Non-convex Denoising with Second-Order Regularity”).

• We demonstrate the applicability to the non-convex problem of image registra-
tion as in (5.6) (section “Image Registration Using the Absolute Laplacian”).

We conclude with an outlook and notes on further open questions (section “Conclu-
sion and Outlook”).

Lifting for Absolute Laplacian Regularization

In the following, we will consider a special case of second-order regularization: For
u = (u1, . . . , un) : Ω → R

n, we define the absolute Laplacian regularizer

SAL(u) :=
∫

Ω

‖Δu(x)‖1 dx. (5.10)

By convention the LaplacianΔu := (Δu1, . . . ,Δun)
� is vector-valued for n > 1.

Similar to the total variation, SAL can be extended to functions with distributional
Laplacians as well using a dual formulation; it can also be viewed as the set of
functions with a gradient of bounded deformation [37]. Again we will focus on the
discretized energy and therefore use the simplified notation (5.10).

The absolute Laplacian regularizer (5.10) has some drawbacks: most importantly,
it is not isotropic in the sense that SAL(u) = SAL(Ru) for some rotation matrix
R ∈ R

n×n, and it has a large kernel that includes all harmonic functions. The latter
issue was also discussed in detail in [14] for quadratic Laplacian regularization.

It is tempting to substitute a full Hessian regularization such as [9, 15, 23]

∫

Ω

(

n
∑

i=1

‖∇2ui(x)‖2
2

) 1
2

dx, (5.11)

however this couples all components of u, which invalidates the argument used in
the proof of Theorem 5.1 below. As of now, we have not found a way for efficiently
computing a convex relaxation in the full Hessian-regularized case.

In contrast, the absolute Laplacian (5.10) decouples in the components ui .
Moreover, in the one-dimensional scalar case with d = 1 and n = 1, it is identical
to the second-order total variation [9],

SAL(u) =
∫

Ω

|u′′(x)| dx (5.12)

or its distributional equivalent.
The absolute Laplacian is motivated by a regularizer that is—in a slightly loose

interpretation of the term—known as “curvature” regularization in the medical
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image registration community [10] and penalizes the squared Laplacians ‖Δu(x)‖2
2

instead of ‖Δu(x)‖1. However, as we will see in the next sections, the 1-
homogeneous nature of SAL is crucial in order to accurately lift the regularizer.

Notation and Mathematical Preliminaries

In the following, we detail the discretized lifting approach. We follow the notation
in [28]. In order to discretize the probability measures P(Γ ), we choose an n-
dimensional regular grid of points {t1, . . . , t�} ⊆ Γ , which are referred to as labels.
The number of labels in each dimension of the range Γ is denoted by lk, k =
1, . . . , n, and the grid spacing h is assumed to be uniform and constant.

The space P(Γ ) is discretized as the unit simplex in R
�,

Δ� := {p̄ ∈ R
�|p̄ ≥ 0,

�
∑

i=1

p̄i = 1}. (5.13)

In a slight abuse of notation, we will from now on denote by ū a function mapping
into the set of discretized probability measures, i.e., ū : Ω → Δ�. The i-th unit
vector ei ∈ Δ�, i ∈ {1, . . . , �}, is associated with the Dirac measure δti at label ti .
Rather than associating a general vector ū(x) ∈ Δ� with a weighted sum of Dirac
measures as is commonly done, we assign to each vector a single Dirac measure
δu(x), where u(x) ∈ Γ is obtained by linear weighting of the labels:

u(x) =
�
∑

i=1

ūi (x)ti . (5.14)

Whenever (5.14) holds, we refer to ū(x) ∈ R
� as a lifted representation of u(x) ∈ Γ .

A function ū : Ω → Δ� is called a lifted representation of the function u : Ω → Γ

if (5.14) holds point-wise for all x ∈ Ω .

Approximate Relaxation of the Absolute Laplacian

In order to illustrate the basic process of constructing an energy function for the
lifted representation, first consider the data term in integral form:

F(u) :=
∫

Ω

ρ(x, u(x)) dx. (5.15)
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We discretize P(Γ ) as in the previous section, and seek a suitable convex extension
of F ,

F̄ (ū) :=
∫

Ω

ρ̄(x, ū(x)) dx, (5.16)

to all ū : Ω → Δ�. A classical way [6] is to find the largest convex ρ̄ : Ω×Δ�→ R

such that

ρ̄(x, ei) = ρ(x, ti ), i = 1, . . . , �. (5.17)

In order to do so for some fixed x, one first defines a function

φ(p) :=
{

ρ(x, ti), if p = ei,
+∞, otherwise,

(5.18)

and sets ρ̄(x, p) := φ∗∗(p), where φ∗∗ is the Legendre-Fenchel biconjugate [34].
More precisely,

φ∗(f ) := sup
p
{〈p, f 〉 − φ(p)} = max

i∈{1,...,�}{〈ei , f 〉 − ρ(x, t
i)}, (5.19)

φ∗∗(p) := sup
f

{〈p, f 〉 − φ∗(f )}. (5.20)

As can be seen from (5.19), even for integrands ρ that depend only on a single value
u(x), the conjugate is generally composed of � pieces. Using common first-order
solvers, this incurs a cost of � dual or auxiliary variables per point.

For the regularizer, this issue is much worse: AssumeΩ ⊆ R, then the Laplacian
of u at a point x is simply the second derivative and commonly discretized as

u′′(x) ≈ (u(x − η)− 2u(x)+ u(x + η))/η2, (5.21)

which depends on three different values of u. A finite difference-based second-order
regularizer will therefore be of the form

∫

Ω

ρ(u(x − η), u(x), u(x + η)) dx, (5.22)

which results in three running indices in (5.19) and thus �3 terms in the maximum.
Even for a very moderate choice of � = 10, this results in 1000 additional variables
per point, which is impractical.

In this section, we therefore consider an approximation of this process for the
special case of the absolute Laplacian regularizer (5.10), which only requires linear
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complexity. We derive the model for the one-dimensional case d = 1 and n = 1,

∫

Ω

|u′′(x)|dx, (5.23)

and subsequently discuss how to generalize it to n-dimensional image domains and
vector-valued u.

The first step is to separate computation of the second derivatives from the lifting
process, i.e., we also apply the derivative operator to the lifted representation ū and
seek a lifted regularizer

∫

Ω

ρ̄(ū′′(x))dx ≈
∫

Ω

ρ̄
(

(ū(x + η)− 2ū(x)+ ū(x − η)) /η2
)

dx, (5.24)

where x ± η are the neighboring points of x. For simplicity, we assume η = 1.
We apply the same process as in (5.18) to ρ(z) = |z| and set

φ(p) =
{

|μ| · ∣∣ti1 − 2ti0 + ti2
∣

∣ , if p = μ · (ei1 − 2ei0 + ei2),
+∞, otherwise,

(5.25)

where 1 ≤ i0, i1, i2 ≤ �. The free variable μ ∈ R is not required, but ensures that φ
is positively homogeneous. This implies that the conjugateφ is an indicator function
of some set, which simplifies the later optimization. Taking the convex conjugate,
we obtain

φ∗(f ) = δK1D(f ) :=
{

0, f ∈ K1D,

+∞, otherwise,
(5.26)

with the set

K1D :=
⋂

1≤i0,i1,i2≤�

{

f ∈ R
� : fi1 − 2fi0 + fi2 ≤ h |i1 − 2i0 + i2|

}

. (5.27)

This is a straightforward computation following from the definition of the convex
conjugate and making use of the 1-homogeneity of φ, and using the assumption that
the labels ti are uniformly spaced with distance h. The above formulation consists
of �3 constraints, which would render the problem numerically intractable except
for very small �.

A main contribution of this work is the following theorem, which shows that the
number of constraints can be reduced to linear order.
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Theorem 5.1 The set K1D in (5.27) with �3 linear constraints can be equivalently
represented by � linear constraints:

K1D =
{

f ∈ R
� : f2 − f1 ≤ h, f� − f�−1 ≥ −h

} ∩
⋂

2≤i≤�−1

{

f ∈ R
� : fi−1 − 2fi + fi+1 ≤ 0

}

. (5.28)

Proof Denoting the right-hand side in (5.28) by Kred1D , and using the definition of
K1D in (5.27), we have to show that K1D = Kred1D .

K1D ⊆ Kred1D
Assume f ∈ K1D as in (5.27), i.e., fi1 − 2fi0 + fi2 ≤ h|i1 − 2i0 + i2| holds

for all triples i0, i1, i2 ∈ {1, . . . , �}. Choose i1 = i2 = 2 and i0 = 1, then the
first inequality in (5.28) follows. Analogously we obtain the second inequality f� −
f�−1 ≥ −h by setting i1 = i2 = � − 1 and i0 = �. All other inequalities in (5.28)
follow by setting i1 = i − 1, i0 = i, i2 = i + 1, therefore f ∈ Kred1D .

K1D ⊇ Kred1D
Suppose f ∈ Kred1D , i.e., the inequalities in (5.28) hold. We define the vector

a ∈ R
�−1, ai := fi+1 − fi as the difference between two consecutive components

of f . Using this notation, we reformulate the constraints (5.28) in terms of a:

a1 ≤ h, (5.29)

a�−1 ≥ −h, (5.30)

ai−1 ≥ ai, ∀i ∈ {2, . . . , �− 1}. (5.31)

Thus the components of ai form a finite, monotonously non-increasing sequence
that is absolutely bounded by h, i.e., a ∈ S := {x ∈ [−h,+h]�−1 : xi ≥ xi+1}.

If i0 = i1 = i2, the inequality in (5.27) holds trivially. Otherwise, if two of the
indices agree, then the inequality in (5.27) takes the form

fj − fk ≤ h|j − k|. (5.32)

Assuming without loss of generality that j > k, this inequality follows from

fj − fk = ak + . . .+ aj−1 ≤ |ak| + . . .+ |aj−1| ≤ h|j − k| (5.33)

due to the observation that all ai are bounded by ±h.
We are left with the last case of distinct i0, i1, i2. Without loss of generality

assume i1 > i2, otherwise we swap the symbols.
As all inequalities are invariant with respect to the addition of a constant to f , it

suffices to prove the claim for all f with f1 fixed to some constant. Therefore we
can assume f1 = 0. Under this assumption, the linear map between vectors f ∈ R

�
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in Kred1D and vectors a ∈ R
�−1 satisfying (5.29)–(5.31) is bijective. As the vertices

of the latter set consist of the vectors of the form (h, . . . , h,−h, . . . ,−h), from
bijectivity we deduce that the vertices of the set Kred1D ∩{f |f1 = 0} are the elements
satisfying the equality |fi+1 − fi | = h and the inequality fi−1 − 2fi + fi+1 ≤ 0.

Showing that all f satisfying (5.28) are contained in the set in (5.27) is equivalent
to showing

max
f∈Kred1D ∩{f |f1=0}

{fi1 − 2fi0 + fi2 } ≤ h|i1 − 2i0 + i2|. (5.34)

As the maximum problem is a linear program, it assumes its maximum on the set of
vertices of Kred1D ∩ {f |f1 = 0}. Therefore we only have to show that

fi1 − 2fi0 + fi2 ≤ h|i1 − 2i0 + i2| (5.35)

for all f in the finite set of vertices, i.e., satisfying |fi+1−fi | = h and the inequality
fi+1 − 2fi + fi−1 ≤ 0 (and still f1 = 0). This can be argued case by case:

i0 < i2 < i1
As the left-hand side in (5.35) can be written as (fi1 − fi0)+ (fi2 − fi0) and

due the observation (5.33), the maximum is assumed on the vertex f satisfying
fi+1 = fi + h for all i, with maximum value

fi1 − 2fi0 + fi2 = h(i1 − i0)+ h(i2 − i0) = h(i1 − 2i0+ i2) = h|i1 − 2i0+ i2|,
(5.36)

which shows that the inequality in (5.27) holds for this case.

i2 < i0 < i1
In this case the maximum is assumed if either fi+1 = fi +h or fi+1 = fi −h

for all i, depending on which of i2 − i0 and i0 − i1 is larger. Therefore

fi1 −2fi0 +fi2 ≤ max{±(h(i0− i2)−h(i1− i0))} = h|i1−2i0+ i2|. (5.37)

i2 < i1 < i0
Again with the observation (5.33), we see that in this case the maximum is

attained for fi+1 = fi − h for all i, in which case

fi1−2fi0+fi2 = −(fi0−fi1)−(fi0−fi2) = h(−i2+2i0−i1) = h|i1−2i0+i2|.
(5.38)

This shows that (5.35) holds for all vertices in the set Kred1D ∩ {f |f1 = 0}, and
therefore for all points, which concludes the proof of the remaining inclusion
Kred1D ⊆ K1D . ��
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Interestingly, in the classical convex relaxation for the (first-order) total variation
used in [19, 33], the dual constraint set is of the form

KTV,1D =
⋂

1≤i≤�−1

{

f ∈ R
� : |fi − fi+1| ≤ h

}

. (5.39)

As the second intersection in (5.28) enforces fi+1 − fi ≤ fi − fi−1, we obtain

K1D = KTV,1D ∩
⋂

2≤i≤�−1

{

f ∈ R
� : fi−1 − 2fi + fi+1 ≤ 0

}

. (5.40)

Thus, when moving from first- to second-order regularization in the proposed way,
the only addition is an extra non-positivity constraint on the second derivative of the
dual variable f .

So far we have only considered the case of a one-dimensional domain Ω . In
order to generalize the construction in (5.25) to d > 1 dimensions, we replace the
one-dimensional three-point stencil by the corresponding Laplacian stencil in higher
dimensions:

φ(p) =
⎧

⎨

⎩

|μ| ·
∣

∣

∣

∑d
j=1(i1,j − 2i0 + i2,j )

∣

∣

∣ , if p = μ ·∑d
j=1(ei1,j − 2ei0 + ei2,j ),

+∞, otherwise,
(5.41)

where i1,j and i2,j are the indices of the neighboring points of i0 in the j -th spatial
direction. The convex conjugate can be computed in a similar fashion as in the one-
dimensional case:

φ∗(f ) = δK(f ) (5.42)

with the set

K :=
⋂

1≤i0,i1,1,i2,1,...≤�

{

f ∈ R
� :

d
∑

j=1

(fi1,j − 2fi0 + fi2,j ) ≤ h
∣

∣

∣

∣

∣

d
∑

k=1

(i1,j − 2i0 + i2,j )
∣

∣

∣

∣

∣

}

.

(5.43)

Taken all together, the lifted absolute Laplacian regularizer for scalar-valued images
in a d-dimensional image domain becomes

S̄AL,s(ū) :=
∫

Ω

sup
f∈K

〈Δū(x), f 〉 dx. (5.44)

In order to approximate the absolute Laplacian for lifted vector-valued func-
tions u = (u1, . . . , un), we apply (5.44) to the marginal distributions ū(k)(x) :=



112 B. Loewenhauser and J. Lellmann

Πkū(x) ∈ Δlk separately in each component k ∈ {1, . . . , n}, where

Πk := (1, . . . , 1)
︸ ︷︷ ︸

l1·l2·...·lk−1ones

⊗ Idlk ⊗ (1, . . . , 1)
︸ ︷︷ ︸

lk+1·lk+2·...·lnones

∈ R
lk×� (5.45)

computes the k-th marginal distribution by summing the entries of ū over all
dimensions of the range with the exception of the k-th dimension. As the absolute
Laplacian regularizer decouples in the components of u, it can be approximated by
summing the one-dimensional regularizer of the marginalized label distribution over
the label dimensions:

S̄AL(ū) :=
n
∑

i=1

S̄AL,s(Πiū) =
n
∑

i=1

∫

Ω

sup
f i∈Kli

〈ΔΠiū(x), f i(x)〉 dx. (5.46)

Here Kli ⊆ R
li denotes a set of the form (5.43) in li-dimensional space, which

accounts for the fact that there may be a different number of labels in each dimension
of the range.

After discretizing the image domain Ω ⊆ R
d on a d-dimensional Cartesian

gridΩ ′, the full discretized problem can be formulated in saddle point form:

inf
ū:Ω ′→Δ�

sup
f i :Ω ′→Kli , i=1,...,n

∑

x∈Ω ′
ρ̄ (x, ū(x))+ λ

∑

x∈Ω ′

n
∑

i=1

〈ΔΠiū(x), f i(x)〉.
(5.47)

This problem can be readily solved using any available primal-dual method for non-
smooth convex optimization.

We do not know of a result similar to Theorem 5.1 yet in order to reduce the
number of constraints for the sets Kli in a similar way as for K1D. Therefore, we
take a pragmatic approach: we approximate each of the sets Kli by the set K1D
in the corresponding dimension, which amounts to an outer approximation of Kli .
We can then apply Theorem 5.1 to solve the problem using the reduced number of
constraints.

Experimental Results

We evaluate the proposed strategy for higher-order relaxation of non-convex
problems on two applications. Firstly, we consider a non-convex denoising problem,
using the MATLAB extension CVX [12, 13] to solve the primal formulation of the
saddle-point problem (5.47) on an Intel Core i7-4500U CPU with 8 GB of RAM.
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Secondly, we examine a real-world image registration problem, using a CUDA
7.5.17 implementation1 of a first order primal-dual algorithm with diagonal precon-
ditioning [5] which runs on an Nvidia GeForce GTX 680 GPU with an Intel Core
i7 960 CPU and 24 Gb RAM. The implementation uses a more recent “sublabel-
accurate” approach for lifting the data term in order to reduce the required resolution
for the data term [18, 28].

Non-convex Denoising with Second-Order Regularity

In order to illustrate that non-convexity can be beneficial when combined with
second-order regularization, we consider the simple one-dimensional denoising
problem

inf
u:Ω→R

∫

Ω

|u(x)− g(x)|q dx + λ
∫

Ω

|u′′(x)|dx (5.48)

with Ω ⊆ R. For q = 1, one obtains a simple convex TV2−L1 denoising model,
while for q < 1, the energy is generally non-convex. We used the proposed method
to approximate a global solution of (5.48).

The method was applied to a smooth input signal g distorted by heavy salt-
and-pepper noise, with 80% of the values randomly set to 0 or 1. The locations of
the outliers were unknown to the solver, and no additional preprocessing or outlier
masking was performed.

As can be seen from Figs. 5.1 and 5.2, combining higher-order regularization
with a non-convex data term allows to reconstruct the signal more faithfully. While
both approaches prefer piecewise linear results as expected from the function-space
formulation, in the convex approach with q = 1, input noise is carried over into the
output before the structure is fully visible.

While convex methods relying on L1 data terms are often—rightfully—referred
to as “robust” methods in comparison to methods using smooth or quadratic data
terms, the non-convex approach with q = 0.1 is even more robust against outliers
and returns a decent reconstruction for a range of λ on this challenging problem.
Run times were in the order of 0.3 s for a discretization of Ω using 120 grid points
and � = 63 labels.

1See [28] and http://github.com/tum-vision/prost for the most recent version.

http://github.com/tum-vision/prost
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Fig. 5.1 Classical convex second-order (TV2−L1) denoising of a smooth signal corrupted by
80% blind salt-and-pepper noise using varying regularization strength λ. The result is piecewise
affine as expected from TV2 regularization. Starting from large λ with heavy over-regularization
and decreasing λ, noise is picked up early. There is no regimen where both noise is removed and
the signal reconstructed faithfully

Image Registration Using the Absolute Laplacian

For a more challenging application, we apply the method to the image registration
problem with SSD data term (5.6) and absolute Laplacian regularization.

Translation-Only Synthetic Image

We first apply the absolute Laplacian regularizer to a synthetic binary image
registration problem. The input reference image R is a binary 64 × 64 image of
two vertical boxes. The template image T is obtained by translating the input image
by 12 pixels (Fig. 5.3, first row). Thus the ground truth is a uniform translation by
12 pixels and constitutes a global minimizer, as it has vanishing data term and the
second-order regularizer does not penalize linear deformations. This configuration
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Fig. 5.2 Non-convex second-order (TV2−Lq with q = 0.1) denoising of the signal in Fig. 5.1
using the proposed convex lifting and approximation with varying regularization strength λ. The
proposed approach allows to approximate global minimizers of such higher-order regularized non-
convex models. The additional non-convexity achieves a better reconstruction of the signal (top
right) than in the convex case (Fig. 5.1) before giving in to noise (bottom left)

is challenging for methods based on local optimization, as there is a strong local
minimum. Furthermore, as the images contain large constant regions, the energy
landscape has extensive flat regions with zero gradient.

We compare our approach to a traditional curvature-regularized model solved
using a single-resolution local minimization method implemented in the MATLAB

extension FAIR [24, 25]. The regularization strength was manually set to λ = 10,
however a wide range of values for λ produced the same qualitative behavior. The
traditional approach leads to a solution that is not globally optimal (Fig. 5.3, second
row). Using our approach, we retrieve the globally optimal ground truth with � = 9
labels in the label space Γ = [−12, 12]2 and a run time of 85 s, without having to
resort to approaches such as coarse-to-fine or affine pre-registration for initialization
(Fig. 5.3, bottom row).
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Fig. 5.3 Application of the proposed lifting for absolute Laplacian regularization to a synthetic
image registration problem. A traditional curvature-regularized model solved using a local Gauss-
Newton method serves as a baseline. The input reference image R (top left) and template
image T (top right) differ by a ground truth translation of 12 pixels. The second and third row
show the final difference images 1

2 (R(x) − T (x + u(x)))2 (left) and obtained deformation u
visualized as a deformation grid (right). The classical local optimization method (second row)
converges to a local solution which is not globally optimal and yields a non-constant deformation
with a mean displacement of 2.3 pixels. Using the proposed functional lifting for absolute
Laplacian regularization (bottom row), the global optimum is retrieved accurately with an average
displacement of 12.0002 pixels
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Real-World Image Registration

As a real-world example, we employ the SSD energy with absolute Laplacian
regularization to solve the image registration problem on a pair of X-ray images,
and compare to the existing lifting approach [18] with total variation regularization.
The regularization strength was manually set to λ = 0.05. Run times were 933 s for
total variation, and 515 s for absolute Laplacian minimization.

As can be seen from the numerical results (Fig. 5.4), while the first-order total
variation regularization achieves a very good data fit, it results in a physically
implausible self-intersecting deformation grid (Fig. 5.4, second row). This behavior
can be partly attributed to the well-known fact that total variation promotes
piecewise constant solutions, also commonly referred to as stair-casing effect [8].
In the context of medical image registration, this is a highly undesired behavior, as
jumps in the deformation map u correspond to infinite stretch or compression and
often lead to self-intersections. In contrast, the proposed second-order regularizer
(Fig. 5.4, bottom row) maintains a physically meaningful deformation, while still
achieving an acceptable data fit.

Conclusion and Outlook

In this work, we have taken a first step towards extending the convex relaxation
and functional lifting framework to second-order regularization. We showed how
to solve the main issue of an exploding number of constraints for the absolute
Laplacian regularization.

Experiments on a denoising problem showed that the combination of higher-
order regularization and non-convex data terms can lead to better results than a
convex model, and allows to recover highly corrupted data in a piecewise linear
fashion. In the application of image registration, the absolute Laplacian faithfully
retrieves simple translations and leads to a more realistic deformation grid than total
variation regularization on a real-world problem.

While our relaxation allows to reduce the number of required constraints to linear
complexity, it is an approximation, rather than a “tight” relaxation in the sense of an
exact biconjugate, and the proof is still limited to one dimension. An open question
is whether one can find a similar compact representation for the tight relaxation in
more than one dimension.
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Fig. 5.4 Comparison between two global optimization methods for medical image registration:
classical first-order total variation regularization [18] and the proposed second-order lifting
approach. The input data consists of a pair of 128 × 128 grayscale X-ray images of two right
hands (top row). Both approaches are evaluated using � = 102 = 100 labels, Γ = [−12, 12]2,
Ω = [0, 128]2, and a regularization strength of λ = 0.05. The classical first-order total variation
regularization generates piecewise constant deformations and a physically implausible self-
intersecting deformation grid (second row). The second-order regularizer avoids discontinuities
and maintains a physically meaningful deformation grid (bottom row)
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Finally, in this work we have constrained ourselves to the discretized setting. A
functional-analytic discussion as well as an extension to the more recent manifold-
valued and sublabel-accurate relaxations remain subject of future work.
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Chapter 6
On the Convex Model of Speckle
Reduction

Faming Fang, Yingying Fang, and Tieyong Zeng

Abstract Speckle reduction is an important issue in image processing realm. In this
paper, we propose a novel model for restoring degraded images with multiplicative
noise which follows a Nakagami distribution. A general penalty term based on the
statistical property of the speckle noise is used to guarantee the convexity of the
denoising model. Moreover, to deal with the minimizing problem, a generalized
Bermudez-Moreno algorithm is adopted and its convergence is analysed. The
experimental results on some images subject to multiplicative noise as well as
comparisons to other state-of-the-art methods are also presented. The results can
verify that the new model is reasonable.

Introduction

Speckle has been widely known as one of the main drawbacks in synthetic aperture
radar (SAR) images. It significantly degrades the visual appearance of images as
a signal dependent noise and eventually leads to diminishing performance of other
vision tasks based on the SAR images such as image interpretation and information
extraction [24]. In fact, the speckle is a comprehensive result of attenuation and
scattering, which means it is hard to control speckle from origin [5]. Due to
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the inevitability of the speckle and the important applications of SAR images,
despeckling therefore is an essential preliminary process of using SAR images and a
number of despeckling methods have been proposed over the past decade to provide
better performance of images.

The multi-look technique is a typical spatial method. It reduces noise by means
of averaging the values from several independent observations. However, this simple
process brings about a significant loss of resolution due to the overlook of the
characteristics of SAR images. Therefore, filtering techniques have been employed
in a great deal of research to overcome this deficiency, which perform better in
preserving the details and edges of images while removing the noise meanwhile.
Such filters including Lee filter in [17–19] and sigma filter in [19–21] were based
on a minimum mean-square error (MMSE) approach, and were later refined to a
more sophisticated maximum a posteriori (MAP) approach such as T-MAP filter
in [23]. Anisotropic diffusion, another popular technique in the image processing
community, has also been used to act as spatial filters, e.g., speckle reducing
anisotropic diffusion (SRAD) [33] and detail preserving anisotropic diffusion
(DPAD)[1]. However, these spatial filters have fallen out of favor in recent years
mainly because of the limited performance in either preserving image details or
moving off speckles.

Wavelet-based despeckling, as a new filter-based methodology, is a represen-
tative technique in transformed domain [4, 28]. Despeckling with the transform
method requires to remove the speckle from the new formulation of the signal in the
transformed domain followed by an inverse transformation applied on the image [4].
Image filtering in the domain of wavelet features a combination of a low-pass filter
which guarantees a high-speed identification and a high-pass filter aimed to extract
details. Combined with a MAP Bayesian estimation model [4, 12, 22], despeckling
in the wavelet domain realizes superior performance in both noise reduction and
detail preservation.

Apart from the techniques performed in the transformed domain, the non-
local(NL) algorithm-based method is one of the most promising modern solutions
in the field of image restoration. Several NL methods for despeckling [13, 25, 32]
have also been proposed in recent years. The characteristic NL filters, e.g., the
probabilistic patch-based (PPB) [13], provide favorable results from weighted
averages of selected pixels according to their similarities with the fixed pixel. The
NL principle has also been successfully integrated with the wavelet representation,
e.g., the block-matching 3-D filter (BM3D) [11]. The NL means in BM3D is utilized
to form the final 3-D groups of pixels by looking for suitable blocks of pixels
throughout the image with an appointed one, after which Wiener filtering is applied
to the wavelet coefficients of the obtained groups. An improved version of BM3D
[25] takes the specific traits of SAR images into consideration and displays a more
favorable performance than other techniques on SAR images.

Another important branch of modern denoising approaches is the variational
method which transforms the despeckling image problem into a variational problem.
In the variational method, a recovered image is obtained by minimizing the suitable
energy functional which consists of a data fidelity term and a regularization term
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inspired by an image prior to guarantee smoothness as well as edge preservation
of recovered images. The variational regularization was firstly introduced for the
Additive White Gaussian Noise (AWGN) denoising by Rudin et al. [29] followed by
a number of variational models developed for removing multiplicative noise. Total
variation (TV) regularization is one of the best-known regularizers and thus TV-
based methods have been widely used for the despeckling tasks in different domains.
In 2008, Aubert and Aujol [7] initially proposed the optimization model (termed as
AA model) in the original intensity field and adopted a data fidelity term using a
MAP method.

However, in term of non-uniqueness problem caused by the proposed non-
convexity model defined in the original field, the logarithmic domain has been
particularly considered later. In [30], the data term of the nonconvex model(AA
model introduced in [7]) was subsequently converted to a convex model by Shi and
Osher. And in [16], this model was modified to a simpler alternating minimization
model by adding a quadratic term.

In this paper, we focus on the despeckling of SAR images by variational methods.
Due to the non-convexity of the AA model, which causes the convergence and
uniqueness problems, we propose a new convex model based on the statistical
properties of the multiplicative Nakagami distribution. Moreover, we study the
existence and uniqueness of the solution to the new model and use the generalized
Bermudez-Moreno algorithm to solve the minimization problem. The numerical
results in this paper show that our model has potential advantages over existing
methods in terms of less staircasing artifacts widely exist in the variational methods.

The reminder of this paper is organized as follows. Section “A Convex Model
for Despeckling” elaborates our new convex model of speckle reduction. Subse-
quently, section “Numerical Scheme Using Bermudez-Moreno Algorithm” shows
the numerical scheme based on the Bermudez-Moreno algorithm to minimize the
proposed model. Finally, section “Experimental Results and Analysis” demonstrates
the experimental results and section “Conclusions” gives our conclusion.

A Convex Model for Despeckling

In this section, we first briefly introduce the statistical properties of speckle noise
and then show our proposed despeckling model.

Speckle Noise

Given a connected bounded open subsetΩ ⊆ R2 with compact Lipschitz boundary,
assume that an image u : Ω → R is a real function, the degraded image f can be
modeled as:

f = un, (6.1)
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where n ∈ L2(Ω) represents speckle noise with mean 1. Generally, f is assumed
to be larger than 0. In the multiplicative speckle model, we focus on the assumption
that n follows a Nakagami distribution, i.e., the conditional PDF of f given u is,

p(f |u,L) = 2LL

Γ (L)u2L f
2L−1e

−Lf 2

u2 , (6.2)

where L is the number of looks, and Γ (·) is the well-known Gamma function.
According to the Bayes rule, by using a maximum a posteriori (MAP) estimator,

the following energy term via E = − logp(f |u,L) can be obtained,

E1(u, f ) =
∫

Ω

logu2L + Lf
2

u2 dx ∝
∫

Ω

(

2 logu+ f
2

u2

)

dx. (6.3)

Convex Variational Model for Despeckling

The classical TV-based despeckling model is as follows:

E(u) =
∫

Ω

(

2 logu+ f
2

u2

)

dx + α
∫

Ω

|Du|, (6.4)

where
∫

Ω |Du| is the seminorm in the BV(Ω), and denotes the space of functions
of bounded variation. It is defined as [2, 7]:

∫

Ω

|Du| = sup

{∫

Ω

udivϕdx; ϕ ∈ C1
0 (Ω)

N, |ϕ|L∞(Ω) ≤ 1

}

.

Unfortunately, Eq. (6.4) is nonconvex with respect to u, which will lead to the
uncertainty of the denoising result. To avoid this drawback, we propose to use the
following energy model,

E(u) = α
∫

Ω

|Du| +
∫

Ω

(

2 logu+ f
2

u2

)

dx + μG( u
f
). (6.5)

HereG( u
f
) = ∫Ω g( uf )dx, g(·) ∈ C2 is a convex function, and μ > 0 is a parameter

which makes the energy (6.5) convex.
Additionally, we need to define a functional space in which we search for a

minimizer for u. Here we set

S(Ω) := {u ∈ BV (Ω) : u ≥ 0}.
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Readily, S(Ω) is a convex and closed space. To ensure the completeness of the

space, we set log 0 = −∞, 1
0 = +∞ and 2 log 0+ f 2

02 = ∞.

Proposition 6.1 If μ ≥ sup
y>0

{

2y2−6
y4g′′(y)

}

, then the energy (6.5) is convex.

Proof Given y > 0, let h be a function defined as:

h(y) = 2 log y + 1

y2 + μg(y). (6.6)

The second order derivative of h can be readily calculated by

h′′(y) = − 2

y2 +
6

y4 + μg′′(y). (6.7)

The function (6.6) is convex if and only if h′′(y) ≥ 0 for all positive y. Thus, taking
the convexity of g(y) into account, we have

μ ≥ sup
y>0

{

2y2 − 6

y4g′′(y)

}

. (6.8)

Therefore, if μ satisfies (6.8), h(y) is convex. For each x ∈ Ω , setting y = u(x)
f (x)

,

we can obtain the convexity of the last two terms of (6.5). Since the term
∫

Ω
|Du|

is also convex, the convexity of the energy (6.5) is reached.

The next issue is that we should determine the formulation of G( u
f
) based on

some certain properties of the speckle noise.
Actually, one simple nature is that the distribution of most data set can be

modeled as Gaussian distribution. On the other hand, we randomly selected 500
clear images as f , and obtained corresponding u by adding speckle noise which
follows Nakagami distribution to f . The pdfs of u

f
with different L are shown in

Fig. 6.1. As we can see, their pdfs are very close to Gaussian distribution (with mean
one). Moreover, as L increases, the pdf decreases more rapidly and approximates
to symmetry, which actually are two essential properties of Gaussian distribution.
Therefore, the functionalG can be approximately defined as:

G(u) =
∫

Ω

| u
f
− 1|2dx.

Accordingly, (6.5) can be written as the following special case:

E(u) = α
∫

Ω

|Du| +
∫

Ω

(

2 logu+ f
2

u2

)

dx + μ
∫

Ω

| u
f
− 1|2dx. (6.9)
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Fig. 6.1 The pdfs of u
f

with different L. (a) L=4. (b) L=8. (c) L=16. (d) L=32

In this case, the convex property of (6.9) can be directly given by:

Proposition 6.2 If μ > 1
12 , then the energy (6.9) is strictly convex.

Proof Since g(y) = |y − 1|2, we have g′′(y) = 2. According to Proposition 6.1, μ
satisfies:

μ ≥ supy>0

{

2y2−6
y4g′′(y)

}

= supy>0

{

2y2−6
2y4

}

= supy>0

{

−3( 1
y2 − 1

6 )
2 + 1

12

}

= 1
12 .

(6.10)

From above analysis, the h′′ in (6.7) reaches its unique minimum 12μ−1
6 at y =√

6. Since μ > 1
12 , we have h′′ > 0. Hence we can proof the strict convexity of

energy (6.9) as h is strictly convex.

According to Proposition 6.2, we know that given a suitable μ, the energy (6.9)
is a convex approximation of the non-convex energy (6.4). Next, we discuss the
existence and uniqueness of the solution of the energy (6.9). Indeed, we have the
following conclusion:
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Theorem 6.1 Let f > 0 be in L∞(Ω), then minimization problem (6.9) admits a
solution u∗ ∈ S(Ω) with

0 < inf
Ω
f ≤ u∗ ≤ sup

Ω

f.

Furthermore, u∗ is unique if μ > 1
12 .

Proof Let

F(u) = 1

α

∫

Ω

(

2 logu+ f
2

u2

)

dx + μ
α

∫

Ω

| u
f
− 1|2dx.

With f > 0, for all x ∈ Ω , using (6.9), we have

E(u) ≥
∫

Ω

(

2 logu+ f
2

u2

)

dx ≥
∫

Ω

(1+ 2 logf ) dx.

That is, E(u) in (6.9) is bounded from below. Thus, we can extract a minimizing
sequence {ui ∈ S(Ω) : i = 1, 2, . . .}. Since for each x ∈ Ω , the real function

h(y) := 2 log y + f
2(x)

y2 + μ| y
f (x)

− 1|2,

is decreasing if y ∈ [0, f ) and increasing if y ∈ [f,+∞). Therefore,
h(min(y,M)) ≤ h(y) is derived withM > f (x). Thus, we can deduce that

F(inf(u, sup
Ω

f )) ≤ F(u).

Furthermore, according to [14], with
∫

Ω |D inf(u, supΩ f )| ≤
∫

Ω |Du|, we can
deduce

E(inf(u, sup
Ω

f )) ≤ E(u).

Similarly, we can get E(sup(u, infΩ f )) ≤ E(u). Therefore, the assumption 0 <
infΩ f ≤ u∗ ≤ supΩ f is reasonable. That is, ui is bounded in L1(Ω).

Since {ui} is a minimizing sequence, we thus have E(ui) is bounded. Moreover,
∫

ω |Dui | is bounded, and then {ui} is bounded in the BV (Ω). Hence, There exists
a subsequence {uik } and u∗ ∈ BV (Ω) such that,

uik −→
L1(Ω)

u∗ and uik ⇀
BV−w∗

u∗.



128 F. Fang et al.

With the space S(Ω) convex and closed, combining the Fatou’s lemma and the
w.l.s.c of the BV space, we can conclude that

min
u∈S(Ω)E(u) = lim inf

ik→+∞
E(uik ) ≥ E(u∗),

i.e., u∗ is a minimum point of E(u), and 0 < infΩ f ≤ u∗ ≤ supΩ f .
Besides, E(u) is strictly convex while μ > 1

12 , therefore the uniqueness of u∗ is
guaranteed directly.

Numerical Scheme Using Bermudez-Moreno Algorithm

In this section, we propose to use Bermudez-Moreno (BM) algorithm [9] to solve the
model (6.9). In what follows, we first present a generalized form of BM algorithm,
then use this algorithm to solve our minimization problem.

Generalized Form

BM algorithm is a general minimization algorithm. It can provide efficient pro-
cedures to deal with the image processing problem [8]. The general minimization
problem it can solve is as follows:

min
y∈V {F(y)+ ϕ(y)} , (6.11)

where V is a Hilbert space and ϕ(·) is a proper lower semi-continuous (l.s.c.) convex
function in V :

ϕ = φ ◦ B∗.

Here ◦ is the compound operator,φ : E→ R is a l.s.c. convex function,B : E→ V

is a bounded linear operator, B∗ is the adjoint of B and E is a Hilbert space.
It has been proved that the subdifferential of a l.s.c. convex function φ (denoted

by H = ∂φ) is a maximal monotone operator [3, 8, 27], and we have the following
remark:

Remark 6.1 If H is a maximal monotone operator, we denote by Hλ its Yosida
approximation (Lλ is the resolvent of λH )[27]:

Hλ = I − Lλ
λ

, where Lλ = (I + λH)−1. (6.12)
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Given an arbitrary initial value y0, we generalize Bermudez and Moreno
algorithm to minimize (6.11):

{−F ′(zi) = Byi
yi+1 = Hλ(B∗zi + λyi) , (6.13)

where we suppose the F ′ invertible.

Application to the Proposed Method

We first rewrite our energy (6.9) as:

min
u∈S ′(Ω)

E(u) = J (u)+ F(u), (6.14)

where

S′(Ω) := {u ∈ L2(Ω) : u ≥ 0},

and J (u) is the total variation of u extended to L2(Ω) (we know that BV (Ω) ⊂
L2(Ω)):

J (u) =
{∫

Ω |Du|, u ∈ BV (Ω)
+∞, otherwise

.

From the definition, the formula (6.14) has the same minimizer to (6.9) clearly.
In fact, the formula (6.14) is an example of the problem (6.11). Let V = L2(Ω)

and E = (L2(Ω))2, then J (u) = ϕ(u) = φ(B∗(u)) with B = −div = ∇∗ and
B∗ = ∇. The φ is the support function of K:

φ(w) = sup
v∈K
〈v,w〉E,

and

J (u) = sup
w∈K

〈u, divw〉,

where the K , a closed convex set in E, is defined as:

K =
{

w ∈ E/divw ∈ V, ‖w‖∞ ≤ 1, |w| =
√

w2
1 +w2

2

}

.
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Accordingly, Hλ(w) is the orthogonal projection of w
λ

onto K [8, 27]. That is,
Hλ(w) = PK(wλ ), and

PK(w) =
(

w1

max{1, |w|} ,
w2

max{1, |w|}
)

.

In this case, the BM algorithm of the proposed model is:

{−F ′(ui) = −divyi
yi+1 = PK( 1

λ
∇ui + yi) . (6.15)

The second line of equation (6.15) is a direct formula. As for the first line, it can
be rewritten as,

2

α

(

f 2u2
i − f 4 + μu4

i − μf u3
i

u3
i f

2

)

= −divyi, (6.16)

which is equivalent to the following quartic equation,

μu4
i + eu3

i + f 2u2
i − f 4 = 0, (6.17)

where e = (α2 divyif 2 − μf ). Assume that vi = ui + e
4μ , then (6.17) can be turned

into

v4
i + av2

i + bvi + c = 0. (6.18)

Here
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

a = f 2

μ
− 3e2

8μ2

b = e3

8μ3 − ef 2

2μ2

c = e2f 2

16μ3 − 3e4

256μ4 − f 4

μ

.

It is easy to verify that the following equation is equivalent to Eq. (6.18) for any
variable r ,

(v2
i + a + r)2 = (a + 2r)v2

i − bvi + (a2 − c + 2ar + r2). (6.19)

We can select a suitable r to ensure that the right hand side of the above equation is
a perfect square. In this case, r should satisfy:

b2 − 4(a + 2r)(a2 − c + 2ar + r2) = 0. (6.20)
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Equation (6.20) is a cubic equation, and the closed form solution of r can be
obtained directly. Then Eq. (6.19) is simplified into two quadric equations:

v2
i + a + r = ±

√
a + 2r(vi − b

2(a + 2r)
).

Hence,

vi = 1

2

(

−√a + 2r ±
√

a + 2r − 4(a + r − b

2
√
a + 2r

)

)

,

or

vi = 1

2

(

+√a + 2r ±
√

a + 2r − 4(a + r + b

2
√
a + 2r

)

)

.

Besides, we have the following proposition for the solution of ui :

Proposition 6.3 Let μ > 1
12 and α > 0. Given the image f > 0, there only exists

one positive solution with respect to u for the following equation:

−F ′(ui) = −divyi (see (6.15)).

Proof Readily, we have

−F ′(ui) = 2

α

(

1

ui
− f

2

u3
i

+ μui
f 2 −

μ

f

)

.

Then, combining f > 0 and μ > 1
12 , we can deduce that

F ′′(ui) = 2

α

(

− 1

u2
i

+ 3f 2

u4
i

+ μ

f 2

)

= 2

αf 2u4
i

(

μu4
i − f 2u2

i + 3f 4
)

= 2

αf 2u4
i

(

μ

(

u2
i −

f 2

2μ

)2

+ (3− 1

4μ
)f 4

)

> 0. (6.21)

That is, F ′(ui) is strictly monotonically increasing. Then, the equation −F ′(ui) =
−divyi has only one solution.
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Besides, we can deduce that:

Proposition 6.4 U is a solution of

− F ′(u) ∈ −div∂φ(∇u), (6.22)

if and only if (u, y) is a solution of

{−F ′(u) = −divy
y = PK( 1

λ
∇u+ y) . (6.23)

Proof As aforementioned, H = ∂φ and Hλ(w) = PK(wλ ). Since H is a maximal
monotone operator, the following two conditions are equivalent (see Lemma 2.1
in [9]):

• y ∈ H(z),
• y = Hλ(z+ λy).
Then Proposition 6.4 is a direct consequence.

We also present a Lemma:

Lemma 6.1 We have

1

λ2 ‖Lλ(z1)− Lλ(z2)‖2 + ‖Hλ(z1)−Hλ(z2)‖2 ≤ 1

λ2 ‖z1 − z2‖2.

Proof This inequality can be immediately derivated by the definitions in (6.12).

Based on the analyses above, we have the following convergence result.

Theorem 6.2 Assume that μ > 1
12 and λ > α‖∇‖2, then the sequence (ui, yi)

defined in (6.15) is such that ui → u (for the strong topology ofL2(Ω)) and yi ⇀ y

(in L2(Ω)× L2(Ω) weak), with u the solution of (6.15).

Proof First, since μ > 1
12 , it is obvious that F is convex and strong Lipschitz

differentiable. Besides, φ is a proper l.s.c. convex function.
From Lemma 6.1, we have:

1

λ2
‖Lλ(∇u+ λy)− Lλ(∇ui + λyi)‖2 + ‖y − yi+1‖2

≤ 1

λ2 ‖∇(u− ui)+ λ(y − yi)‖2

= 1

λ2 ‖∇(u− ui)‖2 + 2

λ
〈∇(u− ui), y − yi〉 + ‖y − yi‖2.
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Using the Bermudez-Moreno algorithm, we know that:

F ′(u)− F ′(ui) = −div(yi − y).

Taking the inner product with (u− ui), we obtain:

〈F ′(u)− F ′(ui), u− ui〉 = 〈−div(yi − y), u− ui〉 = 〈yi − y,∇(u− ui)〉.

Therefore,

〈yi − y,∇(u− ui)〉 = 〈F ′(u)− F ′(ui), u− ui〉
≤ −α

2
‖u− ui‖2

≤ − α

2‖∇‖2 ‖∇(u− ui)‖2. (6.24)

We now deduce that:

1

λ2
‖Lλ(∇u+ λy)− Lλ(∇ui + λyi)‖2 + ‖y − yi+1‖2

≤ 1

λ
(

1

λ
− α

‖∇‖2 )‖∇(u− ui)‖2 + ‖y − yi+1‖2. (6.25)

Since λ > α‖∇‖2, with ui �= u, we obtain:

‖y − yi+1‖ ≤ ‖y − yi‖.

Thus we deduce that ‖y − yi‖ is a convergent sequence in R. Taking limit to the
above inequality, we get:

lim
m→∞‖∇(u− u

i)‖ = 0.

Then, using (6.24), we have u→ ui .
For the proof of the convergence of yi , we first pass to the limit in (6.25) to

obtain:

Lλ(∇ui + λyi)→ Lλ(∇u+ λy).

Taking Lλ = I − λHλ and the second line of (6.23), we get that:

Lλ(∇u+ λy) = (∇u+ λy)− λHλ(∇u+ λy) = ∇u.
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From the second line of (6.15), we obtain:

yi+1 = Hλ(∇ui + λyi) = yi + 1

λ
(∇ui − Lλ(∇ui + λyi).

Taking limit to the equation, we then have:

lim
m→∞{y

i+1 − yi} = 0.

Moreover, since

z ∈ L2(Ω)× L2(Ω)→ Hλ(∇u(z)+ λz),

with u(z) the solution of −F ′(u) = −divz non-expansive [26], we can conclude
that yi ⇀ y in L2(Ω)× L2(Ω) is weak.

Remark 6.2 In the discrete scheme, ‖∇‖2 ≤ 8 (see [10]). Thus the priori condition
λ > α‖∇‖2 in Theorem 6.2 can be transformed into λ > 8α.

Finally, it should be noted that our algorithm stops when the iteration number

i reaches tmax or the relative error ‖ui−ui−1‖2
‖ui−1‖2

< ξ . In addition, we set tmax =
200, ξ = 10−4 in the following experiments.

Experimental Results and Analysis

In this section, in order to examine the effectiveness of the proposed method, we
present and analyse the experimental results on some images. We also compare our
model with three state-of-the-art methods, i.e., AA (Aubert and Aujol) model [6],
SO (Shi and Osher) model [30] and I-divergence model [31]. Note that all the
following experiments are implemented in Matlab R2013a on an Intel(R) 3.33 GHz
PC with 12 GB RAM.

For illustrations, the results of three images “Water castle”, “Cameraman” and
“Boat” are presented. The original images are shown in Fig. 6.2. Besides, we use
the mean of the peak signal to noise ratio (PSNR) [15], which is very famous and
widely used in the image processing realm, to quantitatively measure the denoising
results.

In each of the figures shown in Figs. 6.3, 6.4 and 6.5, test images are corrupted by
multiplicative noise with the number of looks L=4, 8 and 16, respectively, and the
denoising results of multiplicative noise with L= 4, 8 and 16, are shown in the 1st-
3rd columns. Besides, the first row is the noisy image, and from top to bottom rows
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Fig. 6.2 Original images. (a) “Castle” (size: 481× 321), (b) “Cameraman” (size: 256× 256), (c)
“Boat” (size: 512× 512)

are the denoising results produced by AA (2nd row), SO (3rd row), I-divergence
(4th row) and proposed methods (5th row), respectively.

From these figures, we can observe that the proposed method empirically
approach the ground truth of the original images, and the denoised results can restore
some fine texture details. By contrast, the results of other three methods are either
smoothing the details on the edge or remaining some noise in the smooth regions.
As a classical denoising method, AA deals with the multiplicative noise using a
minimization model which is directly derived from the distribution of the PDF.
These results (i.e., Figs. 6.3, 6.4, and 6.5b) are thus reasonably good. However, since
AA is non-convex, the global solution cannot be guaranteed, and the results may be
worse than our proposed method. The SO method is a convex variation of the AA
model by using the logarithmic transformation. There is still some noise in their
results, especially in the case of small L. The I-divergence model is an alternative
convex method. Its results are generally over-smoothed with much details vanish.

Taking the first column in Fig. 6.3 (L=4) as an example, much noise and
unpleasant edges in (c) are reserved and most details of the castle in (d) are missing,
while the results in (b) seem acceptable. Nevertheless, it is still slightly worse than
the proposed result. For instance, we can see that the spire of the tower on the right
side of the image is more clear in our result.

The above observations and analyses are also confirmed by the image quality
indicator PSNR. As shown in Table 6.1, our results outperform the others with
respect to all images and the number of the looks. Those show that our methods
perform well on these images, and the results are of good quality with few artifacts.
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Fig. 6.3 Denoising results of different methods with different L on “Castle” image. (a) Noisy
image. (b) AA. (c) SO. (d) I-divergence. (e) Proposed
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Fig. 6.4 Denoising results of different methods with different L on “Cameraman” image. (a)
Noisy image. (b) AA. (c) SO. (d) I-divergence. (e) Proposed
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Fig. 6.5 Denoising results of different methods with different L on “Boat” image. (a) Noisy
image. (b) AA. (c) SO. (d) I-divergence. (e) Proposed
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Table 6.1 The comparisons of PSNR values by different methods

Images L value AA SO I-divergence Proposed

Castle 4 24.85 24.39 22.75 25.28
8 25.29 25.50 23.18 27.39

16 28.33 27.10 27.42 28.71
Cameraman 4 25.89 24.91 22.90 25.94

8 26.48 26.28 23.30 27.90
16 27.95 28.13 24.92 28.88

Boat 4 26.08 25.18 23.63 26.17
8 26.53 26.58 24.01 28.15

16 28.04 28.36 25.48 28.93

The bold value is the best PSNR

Conclusions

We have introduced a convex variational model to remove the multiplicative noise.
The proposed method first presents a general model based on the PDF of the speckle.
And the convexity condition of the model is discussed. Using the statistical property
of the noise, we then specify the proposed model as well as the convexity condition.
Moreover, to deal with the minimizing problem, a Bermudez-Moreno algorithm is
proposed and its convergence is analysed. Compared to other recently proposed
methods, our methods appear to be reasonable and competitive.
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Chapter 7
Multi-Dimensional Regular Expressions
for Object Detection with LiDAR
Imaging

Todd C. Torgersen, V. Paúl Pauca, Robert J. Plemmons, Dejan Nikic,
Jason Wu, and Robert Rand

Abstract Regular expressions are a fundamental technique for pattern matching
in textual data and for lexical analysis in compiler design. They are ubiquitous in
most systems used today, including operating systems (e.g. grep, awk), computer
languages (e.g. Perl, Java, Python), and web search engines (e.g. Google). However,
this highly useful way of exploring and mining data has thus far eluded non-
textual datasets, such as images and 3D geometric data. Shape-based searching
of 3D objects continues to be a core problem in computer vision. We propose
a novel extension of traditional finite-automata-based methods to find multi-
dimensional objects in spatial data sets. Our approach extends regular expressions
and finite automata to multi-dimensional pattern models. While we demonstrate
the effectiveness and efficiency of our approach for finding target objects in 3D
LiDAR image data sets using an implicit geometry representation of the data, it is
important to note that the proposed technique can be applied to any general data set
of vertices in 3D space. Non-geometric information, such as material and spectral
characteristics from hyperspectral image data can also be discretized and encoded
into our approach.
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Introduction

Regular expressions and finite automata are powerful tools for encoding text
patterns and searching for these patterns in textual data. For example, hashtags in
social media messages and posts (e.g. #OccupyWallStreet) can be found using
the notation (ˆ|\s)#([A-Za-z0-9_]+), where (ˆ|\s)# denotes beginning
of a line or a blank space followed by a # and ([A-Za-z0-9_]+) denotes a
sequence of one or more alphanumeric characters and the underscore symbol. Two
important components of regular expressions are the ability to express sophisticated
patterns using a prescribed notation and the capacity to search efficiently for such
patterns in a given input text.

A number of retrieval methods for finding a few specific objects in 2D image
data have been developed and popularized over the last decade. Face detection is
one such method that is now employed by most digital photography management
systems and social networks such as Facebook and Instagram. These methods
typically require large amounts of training data and careful selection of feature
descriptors for discerning between object classes.

However, techniques that enable the encoding of more general and complex
shapes and 3-D geometries and efficient searching in high dimensional data sets,
such as 3-D point clouds and meshes, are still lacking. This functionality is
desirable in many applications involving 3-D data and 3-D modeling. For example,
Funkhouser et al. [5] argue that in computer graphics the challenging question
will shift from how to construct 3-D models to how to search for 3-D models in
existing data using shape-based queries. Similarly, the need to search for specific
geometries in 3-D meshes also arises in architectural design, where “searching and
replacing” within a mesh or restoring object identity from a given polygon soup [21]
are desirable.

In this paper, we examine the problem of efficiently searching for objects of
interest in 3-D image data sets. Specifically, we are motivated to detect target
objects of particular geometric shapes in 3-D LiDAR data sets [3, 6]. LiDAR
is an optical imaging method that measures distance to a target by illuminating
that target with a laser light and therefore captures geometric information about
a scene. LiDAR, along with hyperspectral data, are the pervasive methods in
remote sensing, e.g. [10]. The typical characteristics of LiDAR have also resulted in
several applications which were not deemed feasible hitherto with the conventional
techniques viz. mapping of transmission lines and adjoining corridors, change
detection to assess damages ( e.g. in buildings) after a disaster, etc. We assume
here the raw LiDAR point cloud has been pre-processed, using methods such as
implicit geometry [15], into a 3-dimensional data volume of (equal sized) voxels,
where each voxel value comes from a finite set {0, 1, 2, . . . , s-1}.1

1Implicit geometry representation of point cloud data may be based on a number of metrics,
including population, distance, and validity, see, e.g. [15]. The data presented in this paper uses
a simple population metric for voxelization of the point cloud data.
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Contribution of This Work

We introduce and implement a novel approach for shape-based searching in 3-D data
sets based on multi-dimensional regular expressions (MDRE) and the corresponding
deterministic and nondeterministic finite automata [11]. This approach consists of
both a new notation for regular expressions able to encode geometry along various
spatial dimensions as well as a parser implementation in C++ capable of reading
such notation and searching for matching expressions in an input 3-D data set.

Related Work

The generalization of concepts and techniques of formal languages, such as regular
and context-free languages, to two dimensions has been studied primarily within the
theoretical computer science literature. Nirmal and Rama [16] proposed a linguistic
model for the generation of 2-D pictures by the substitution of regular sets into
well-known families of L-systems. Later, Giammarresi and Restivo [7] explored
the notion of two-dimensional languages or picture languages, recognized by finite
automata and denoted by a rectangular representation notation. They also introduced
the notion of local picture languages or tiles leading to so-called tiling systems.
Tiling rewriting grammars [18] and pure 2D picture grammars [20] extend these
concepts to the context-free languages. Some of the implications in the extension to
2-D relative to the classical properties of 1D regular versus context-free languages
have also been studied, see e.g. [2]. Unlike these generative models, the notation
introduced in our approach generalizes regular expressions to 2-D and higher
dimensions and the resulting patterns are not rectangular in nature. Moreover, our
parser makes it possible to apply regular expressions in practical applications.

A technique perhaps closest to ours is that of Wurzer et al. [21] who developed a
system for expressing and matching 3-D regular expressions while processing 3-D
meshes generated in the course of architectural work. In their approach, a string is a
sequence of characters, a mesh or a set of vertices connected by edges. They search
for paths within this mesh, taking the sequence of angles between each pair of edges
on that path as criterion (angular search) [21]. This is a powerful technique that
is also invariant to rotations. The grammar models formalism for object detection
in computer vision [8] is another related approach that uses the concept of a bag
grammar for object representation.

While context free and bag grammars provide powerful models for object gen-
eration and detection, grammars present a number of difficulties including choice
of parsing algorithm, NP-hardness of parsing for bag grammars [4], ambiguity, and
Turing undecidability of grammar equivalence [1, 4, 19]. Regular expressions have
several advantages over grammars including:
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• Ambiguity is not an issue for regular expressions.
• Choice of parsing algorithm is not an issue for regular expressions. Object detec-

tion is accomplished efficiently by simulating a deterministic finite automata
(DFA) on an input data set.

• Practical questions such as the equivalence of two regular expressions are
decidable in polynomial time.

In addition to the provable properties above, a review of many practical examples
suggests that the full expressive power of context free grammars (and their
corresponding pushdown automata) is not needed for objects of practical interest.
The fundamental difference between DFA and pushdown automata (PDA) is the
inclusion of an unbounded stack memory in the PDA model. Target objects are
usually contained in a relatively small (finite) support region, and therefore a model
including unbounded stack memory is not necessary.

Readers unfamiliar with traditional regular languages are referred to [11, 19] for
a review of these concepts.

Definitions and Notation

In this section, we introduce the definition of regular expressions and its formal
extension to higher dimensions. Notation suitable for computer implementation is
also presented.

1-D Regular Expressions and Regular Languages

Let Σ be a finite alphabet. We define a language to be a set of finite strings2 over
the alphabetΣ . The standard regular operations union, concatenation, and Kleene
closure are summarized below:

Union Let L1 and L2 be languages overΣ . We define the union of two languages
L1 ∪ L2 as: L1 ∪ L2 = {t | t ∈ L1 or t ∈ L2}.
Concatenation Let L1 and L2 be languages over Σ . We define the concatenation
of two languages L1 · L2 as: L1 · L2 = {u · w | u ∈ L1 and w ∈ L2}, where u · w
denotes the concatenation of two strings u and w.

Kleene Closure LetL be a language over alphabetΣ andLn be defined recursively
by: L0 = {ε}, Ln = L · Ln−1.We define the Kleene closure of L denoted by L∗ as:
L∗ = ∪∞i=0 L

i.

2While each string in a regular language is a finite string, a regular language itself may be infinite.
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Regular Expressions Regular expressions over alphabet Σ along with the lan-
guage they represent are defined as follows:

1. The symbol φ is a regular expression denoting the empty language (the empty
set).

2. The symbol ε is a regular expression denoting the language containing the empty
string.

3. The symbol a where a ∈ Σ is a regular expression denoting the language {a}.
If R is a regular expression, we use the notation L(R) to denote the language

associated with R.

1. IfR and S are a regular expressions, then (R | S) is a regular expression, denoting
the language L(R) ∪ L(S).

2. IfR and S are a regular expressions, then (R · S) is a regular expression, denoting
the language L(R) · L(S).

3. If R is a regular expression, then (R∗) is a regular expression denoting the
language (L(R))∗.

In practice, we avoid excessive use of parentheses by assigning a precedence
ordering to the operations of union, concatenation and Kleene closure (in that
order from lowest to highest), similar to the way in which addition, multiplication
and exponents are used in traditional elementary algebra. Additionally, we adopt the
notation an to denote n repetitions of the symbol a. Informally, we will also use the
juxtaposition of two symbols ab to indicate a · b.

For the purposes of object detection it is useful to have a short-hand notation for
expressing a pattern which occurs at least m times, but no more than n times. Let a
be a symbol. We propose the notation:

R = am:n

to denote such a range. For example, a3:5 denotes a string of contiguous a symbols
which is either length 3, or 4, or 5. Notice that this example is still regular, since we
can express it as

R = aaa | aaaa | aaaaa

The symbol a could be replaced by any regular expression to allow patterns that are
repeated a limited number of times.

Extending Regular Expressions to Higher Dimensions

We extend the definition of 1-D regular expressions using a naturally recursive
definition. Let R(n) denote an n-dimensional regular expression. We formally define
R(n) recursively in terms of a (n−1)-dimensional regular expressions as follows:
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1. The expression R(1) is an 1-dimensional regular expression equivalent to a
traditional regular expression, as defined in section “1-D Regular Expressions
and Regular Languages”.

2. The expressionR(n) = [R(n−1) ] is an n-dimensional regular expression of length
one (along dimension n). The square brackets are part of the notation to enclose
a sub-expression of one lower dimension. The language L(R(n)) is the set of
all n-dimensional objects which consist of a single (n − 1)-dimensional object
matching the expression R(n−1), and where that (n − 1)-dimensional object is
embedded in n-dimensional space.

3. If R(n) and S(n) are a n-dimensional regular expressions, then (R(n) | S(n)) is a
regular expression, denoting the language L(R(n)) ∪ L(S(n)).

4. IfR(n) and S(n) are a regular expressions, then (R(n) · S(n)) is a regular expression,
denoting the language L(R(n)) · L(S(n)).

5. If R(n) is a regular expression, then (R(n)∗) is a regular expression denoting the
language (L(R(n)))∗.

We refer to the expressions defined above as the class of Multi-Dimensional Regular
Expressions (MDRE).

A 2-D Example

We consider the objects illustrated in Fig. 7.1. We consider only two symbols in this
example: 0 for an empty pixel, and 1 for an occupied pixel. The diagram on the left
models a tower or pole that consists of a base of five occupied pixels (horizontally)
and six occupied pixels (vertically). The object on the right models a structured
object.

We impose an ordering on the dimensions: the horizontal direction is designated
the top-level dimension, and the vertical direction is designated as the low-level
dimension. The origin is the lower left corner of the image. Our regular expression

Fig. 7.1 Pole object (left) and structured object (right)
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for the pole object is then:

R(2) = [ 1 ][ 1 ][ 1 1 1 1 1 1 ][ 1 ][ 1 ] = [ 1 ]2 · [ 16 ] · [ 1 ]2 (7.1)

Notice that R(2) is a concatenation of 2-D regular expressions along the horizontal
direction, each of which specifies 1-D regular expressions within square brackets
along the vertical direction.

The regular expression (7.1) does not specify that the area surrounding the pole
is not occupied. In this example, the regular expression (7.1) would also match
the structured object illustrated in Fig. 7.1 (right). If we wish to be more specific
regarding the surrounding area, we must build that specification into the regular
expression. For example:

R(2) = [ 1 · 0 ] · [ 1 · 05 ] · [ 16 · 0 ] · [ 1 · 05 ] · [ 1 · 0 ] (7.2)

Regular expression (7.2) will match the pole object in Fig. 7.1 (left), but will not
match the structured object in Fig. 7.1 (right).

We can accommodate some variation in the object using our notation regarding
ranges. Suppose the base is either one or two pixels on either side of the center
tower, and suppose the tower height is somewhere between four and six pixels high.
Our regular expression is then:

R(2) = [ 1 ]1:2 · [ 14:6 ] · [ 1 ]1:2 (7.3)

Intuitively, the concept of “symbol” in an n-dimensional regular expression is
replaced by an (n− 1)-dimensional regular expression. To match an n-dimensional
regular expression with an n-dimensional input data set, we impose an ordering
d1, d2, . . . dn on the dimensions. As the input data is scanned in the top-level
dimension, we encounter a sequence of starting points where an (n−1)-dimensional
expression may be matched. Next, we discuss this n-dimensional regular expression
matching approach in detail.

Expression Matching for n-Dimensional Objects

In two dimensions, a recursive algorithm scans along the top level dimension
(e.g., horizontal). As each regular 1-dimensional expression is encountered, it is
processed (vertically) using 1-dimensional techniques. This recursive approach
can be generalized to an arbitrary number of dimensions. Each data dimension
corresponds to a recursive level in the computation performed by an n-dimensional
DFA. If the pattern extent implied by the regular expression is bounded by a
constant, then the time complexity of a target search is bounded by a linear function
of the number of voxels contained in the data set.

The first step in processing an n-dimensional regular expression is to con-
struct an n-dimensional deterministic finite automata (DFA) equivalent to the
given n-dimensional regular expression. We use the notation M(n) to denote an
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n-dimensional DFA. We use the notation L
(

M(n)
)

to denote the language recog-
nized byM(n). We now formally define an n-dimensional DFA as follows:

Base Case A 1-dimensional finite automata is a traditional DFA.3

General Case An n-dimensional deterministic finite automata is a 5-tuple:

M(n) =
(

Q(n),Σ(n), δ(n), q0(n) , F(n)
)

(7.4)

where

• Q(n) is a finite set of states.
• Σ(n) is a finite set of (n− 1)-dimensional deterministic finite automata.
• δ is a function: δ : Q(n) × L

(

M(n−1)
) → Q(n) where M(n−1) is an (n − 1)-

dimensional DFA.
• q0(n) ∈ Q(n) is a starting state.
• F(n) ⊆ Q(n) is a set of accepting states.

Fortunately, well-known 1-D construction techniques extend naturally to the
higher dimensional cases. Given an n-dimensional regular expression, the construc-
tion of an equivalent n-dimensional DFA proceeds by a dimensionally recursive
application of standard algorithms for converting regular expressions to equivalent
DFA. A regular expression is first converted to a nondeterministic finite automata
(NFA) using a construction based on the recursive definition of regular expressions.
The concept of ε-closure [11] is used to construct a DFA which is equivalent to the
intermediate NFA form. The states in the newly constructed DFA consist of sets of
states from the NFA. Further details regarding 1-D construction techniques can be
found in [1].

Implementation

The usual implementation of 1-dimensional DFA-based pattern matching code
represents a 1-dimensional DFA as a table indexed by states (i.e., the row index)
and by alphabet symbols (i.e., the column index). For an n-dimensional DFA, we
take a similar table-based approach: the column index refers to one of the (finitely
many) (n−1)-dimensional DFA which define the n-dimensional DFA. For example,
in the 2-D case, the traditional operation of matching a symbol (in the 1-D case) is
replaced by simulating a 1-D DFA to decide a match in the appropriate direction.
The code for the n-dimensional DFA was implemented using the C++ language.

n-Dimensional Regular Expression Parser To make our system practical, we
also implemented a parser capable of reading n-dimensional regular expressions,

3The reader is referred to [19] for further details.
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such as those shown in (7.1), (7.2) and (7.3), in a linearized ASCII form. For
example Eq. (7.2) may be written as

[1 0] [1 0^5] [1^6 0] [1 0^5] [1 0]

Here blank spaces denote concatenation, circumflex (^) denotes repetition. In
addition, vertical bar (|) denotes set union. We use the acronym MDRE to refer
to our computer implementation of the ideas presented in this paper.

Target Search in a 2-D Example

We illustrate 2-D expression matching on a 256 × 256 simulated scene shown in
Fig. 7.2 (left). Let the dimensions be ordered as: (vertical, horizontal). This ordering
corresponds conveniently to row-column indexing where the pixels in the scene are
arranged in a matrix. If we use the symbols 1 for an occupied pixel, and 0 for an
un-occupied pixel, the inverted “T” target objects seen in Fig. 7.2 can be specified
by the regular expression:

R = [ 1 1 0 ]^4 [ 1^17 0 ]^3 [ 1 1 0 ]^4

Alternately, the ordering on the dimensions can be chosen to be (horizontal,
vertical). In this case, a regular expression appropriate to the target object is:

Ra = [ 1^11 ]^2 [ 0^4 1^3 0^4 ]^15 [ 0^11 ]

MDRE successfully finds the seven occurrences of the object specified by the regular
expressions above (using either dimension ordering), and records a bounding box for
each instance. The result of finding the target object is illustrated in Fig. 7.2 (right).

SAMPLE 2D SCENE

0 50 100 150 200 250
0

50

100

150

200

250
2D DFA MATCHES FOUND

0 50 100 150 200 250
0

50

100

150

200

250

Fig. 7.2 A sample 2-D scene (left) and corresponding MDRE result (right)
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Next, we apply MDRE and 3D regular expressions to search for objects of specific
geometry in LiDAR data sets.

3D Regular Expressions for Implicit Geometry Data Sets

We consider a sample (real) implicit geometry data set and give a 3D regular
expression for finding light poles in the observed region. This dataset is a tile from
a larger collection of measurements of Ottawa, Canada obtained using ground and
air-based LiDAR equipment at 15 cm resolution [14]. The regular expression given
in (7.5) is best understood by visualizing a stack of squares measuring 6× 6 voxels
at the base and extending 9 voxels vertically. Within the 6× 6 square, in the central
4× 4 region at least one occupied voxel is required. Alternates (set unions denoted
by “|”) within the regular expression are used to accommodate sampling issues,
including aliasing, noise, and variations (e.g., attachments) in the shape of the poles.
Additionally, we require 1 voxel of unoccupied space surrounding the central 4× 4
region. The complete expression is given in Eq. (7.5):

Rpole = [ [ 0 0 0 0 0 0 ] [ 0 ( 0 | 1 )^4 0 ]

( ( [ 0 ( 0 | 1 ) ( 0 | 1 ) 1 ( 0 | 1 ) 0 ]

[ 0 ( 0 | 1 )^4 0 ] ) |

( [ 0 ( 0 | 1 ) 1 ( 0 | 1 ) ( 0 | 1 ) 0 ]

[ 0 ( 0 | 1 )^4 0 ] ) |

( [ 0 ( 0 | 1 )^4 0 ]

[ 0 ( 0 | 1 ) 1 ( 0 | 1 ) ( 0 | 1 ) 0 ] ) |

( [ 0 ( 0 | 1 )^4 0 ]

[ 0 ( 0 | 1 ) ( 0 | 1 ) 1 ( 0 | 1 ) 0 ] ) )

[ 0 ( 0 | 1 )^4 0 ]

[ 0 0 0 0 0 0 ] ]^8
(7.5)

The current implementation converts the regular expression into an equivalent
3D DFA and performs lexical analysis (pattern finding) by simulating the 3D DFA
on an IG data set. Figures 7.3 and 7.4 illustrate the light poles identified by this
process.

We now turn our attention to a more difficult target: trees. The issue here is that
there is no obvious or easily defined pattern that we can definitively declare to be the
unambiguous characterization of a tree. On examining a few LiDAR/IG data sets, it
is clear that the lower portion of tree trunks are not well represented in the 3D data
sets, apparently because the trunk is mostly occluded by the upper branches and
leaves. A 3D regular expression for recognizing trees is given in (7.6). The basic
idea is to look for a region in which:

• most (but not all) voxels in the region are occupied, and
• the region is an appropriate distance from the ground.
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Fig. 7.3 Light poles recognized in an IG data set using MDRE

The structure of the expression in (7.6) is similar to the structure of (7.5): the
expression is organized as a stack of 9 × 9 squares. The initial portion of (7.6),
containing [ [ ( 0 | 1 ) ] ]^6, acts to lift the stack of 9 × 9 squares 6
voxel units above the ground level. The remaining portion of (7.6) uses alternates
(set unions) and concatenation to specify three consecutive regions (in the vertical
direction):

1. a 5× 5 central region in which at least 3/5 of the voxels are occupied,
2. a 3× 3 central region in which at least 1/3 of the voxels are occupied, and
3. a 9× 9 unoccupied region.

A number of patterns could be defined which could use alternate characterizations
of the appearance of trees in IG data sets.

A sample IG scene together with the identified trees is illustrated in Fig. 7.5.
We observe that not all trees are found in this example. The 3D regular expression
can be made more inclusive (i.e., allow more alternates) in an effort to recognize
more trees. However, patterns that become too inclusive tend to falsely identify
other scene objects as trees. Preliminary investigation suggests that our 3D regular
expressions can be modified to incorporate probabilistic measures to better allow
for natural variations in the target objects and to avoid classification errors due to
noise. Probabilistic measures also hold the possibility of allowing us to simplify the
regular expressions: variations in the target object will be built in to the probabilistic
framework rather than a large number of alternates within the regular expression
itself. An example tree recognized by the MDRE expression in Eq. (7.6) is shown
in Fig. 7.6.
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Fig. 7.4 Sample light pole structures recognized using MDRE. Notice that the structure in the
bottom right is a false positive
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Fig. 7.5 Trees recognized in an IG data set using MDRE

Fig. 7.6 Sample tree recognized using MDRE
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Rtree = [ [ ( 0 | 1 ) ] ]^6

[

[ 0 (0 | 1)^7 0 ]

[ (0 | 1)^9 ]

[ ( 0 | 1 )^2

( 1^5 | 0 1^4 | 1 0 1^3 | 1 1 0 1 1 | 1^3 0 1 | 1^4 0 |

0 0 1 1 1 | 0 1 0 1 1 | 0 1 1 0 1 | 0 1 1 1 0 |

1 0 0 1 1 | 1 0 1 0 1 | 1 0 1 1 0 | 1 1 0 0 1 |

1 1 0 1 0 | 1 1 1 0 )

( 0 | 1)^2 ]^5

[ (0 | 1)^9 ]

[ 0 (0 | 1)^7 0 ]^2

]

[

[ 0 0 0 ( 0 | 1 )^3 0 0 0 ]

[ 0 0 ( 0 | 1 )^5 0 0 ]

[ 0 ( 0 | 1 )^7 0 ]

[ ( ( 0 | 1 )^3

( 1^3 | 0 1 1 | 1 0 1 | 1 1 0 | 0 0 1 | 0 1 0 | 1 0 0 )

( 0 | 1)^3 )

]^3

[ 0 ( 0 | 1 )^7 0 ]

[ 0 0 ( 0 | 1 )^5 0 0 ]

[ 0 0 0 ( 0 | 1 )^3 0 0 0 ]

]

[

[ 0 ( 0 | 1 )^7 0 ]

[ ( 0 | 1 )^9 ]^7

[ 0 ( 0 | 1 )^7 0 ]

]

[ [ 0^9 ]^9 ]

(7.6)

Hamming Distance for Deterministic Finite Automata (DFA)

A regular expression may fail to match an input data set due to errors (noise) in the
LiDAR data set. We observe that for the implicit geometry data sets studied here,
insertion errors and deletion errors do not occur because of the method by which
an implicit geometry representation is computed from a raw point-cloud data set.
For this reason, we use the Hamming distance measure instead of the Levenshtein
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distance [12, 13]. I.e., we consider only substitution errors. Mismatches between
a multidimensional DFA and the input data are detected only during 1D DFA
matching. For this reason, it is sufficient to define Hamming distance between a
DFA and a string in the 1D case.

To further simplify our analysis, we consider regular expressions which do not
include the Kleene closure operation4; the resulting DFA graphs contain no cycles.

Let x denote a 1D input string, and let

S(M, x) = {w | w ∈ L(M) and |w| = |x|}
where L(M) denotes the language accepted by DFA M . We define the Hamming
distance between a string x and a DFAM to be:

d(x,M) =
⎧

⎨

⎩

min
w∈S(M,x) h(x,w) if S(M, x) �= φ

+∞ otherwise
(7.7)

where h(x,w) is the Hamming distance between strings x and w.
We can use Eq. (7.7) to accept a (noisy) string x if and only if

d(x,M) ≤ τ (7.8)

for some (nonnegative integer) threshold τ of tolerable error count. Computing
d(x,M) is not as trivial as one would hope. An algorithm to find the minimum
number of substitutions needed for acceptance can not proceed by performing a
substitution at the point where the first symbol in error is detected. It is possible that
a fault in a previously scanned symbol, e.g., symbol b in position t , caused the DFA
to transition to an incorrect state q . Continuing from state q , several symbols may
match correctly, followed by a large number of mis-matched symbols. However,
correcting the single erroneous symbol in position t could lead to a state q ′ from
which no further errors are encountered.

At first glance, it would appear that backtracking is necessary, leading to a
computationally inefficient method. Fortunately, for a given tolerance τ , we can
construct a polynomial time algorithm for deciding Eq. (7.8) without resorting to
backtracking.

Hamming Automata

Given a string of symbols w and a positive integer τ < |w|, the corresponding
Levenshtein automata accepts any string y which can be formed from w using τ

4In practice the Kleene operation is rarely helpful to express a pattern, since objects of interest are
never infinitely extensible.
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Fig. 7.7 Example Levenshtein automata (left) and Hamming automata (right)

or fewer insertion, deletion and substitution operations (i.e., within Levenshtein
distance τ ). A simple modification of the Levenshtein idea can be used to limit
editing operations to substitution errors only, resulting in an automata which
will accept any string within a chosen Hamming distance. We propose the term
Hamming Automata to refer to a finite automata which accepts all strings y which
are within Hamming distance τ of string w. A Levenshtein automata (left) and a
Hamming automata (right) are shown in Fig. 7.7 for the string w = “Lucky” with
τ = 2. A transition labeled by a question mark (?) denotes a transition on any
symbol, except those symbols explicitly shown. Observe that while the Levenshtein
automata is an NFA with ε-transitions, the Hamming automata is a simple DFA.

A polynomial time algorithm to decide Eq. (7.8) is given below.

Input: A DFAM , a string x and a positive integer τ .

Output: “Accept” if d(x,M) ≤ τ , “reject” otherwise.

Method:
1. Construct a Hamming automataH for input string x and tolerance τ .

Note: This construction can be done in time O(|x|τ ).
2. If L(M) ∩ L(H) is non-empty, then accept x, otherwise reject.

The implementation of step 2 above is straightforward. Given two DFAM1 and
M2 with n1 and n2 states respectively, a DFA ̂M recognizing L(M1) ∩ L(M2) can
be constructed in time O(n1n2) using a well known algorithm; see [19]. Depth first
search of a DFA (treated as a directed graph) may be used to decide if there exists a
path from the start state to any accepting state.

Comparison to Other Methods

A statistically robust comparison of MDRE to other methods is beyond the scope of
this paper. However, some insight can be gained by a closer examination of the pole
finding example shown in section “3D Regular Expressions for Implicit Geometry
Data Sets”.
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Figure 7.4 shows an isolated 3-D view of the poles found in Fig. 7.3. We observe
in Fig. 7.4(4) that there is sufficient bulk midway up the pole to match the base
portion of the pattern in Eq. (7.5). Observe the upper portion of the pole in Fig. 7.4(4)
is identical to the region shown in Fig. 7.4(12). We consider Fig. 7.4(12) a false
positive. Also, in Fig. 7.4(3) a second pole is seen near the edge of the region; the
shape of the second pole does not match any of the other found structures. We
consider Fig. 7.4(3) to indicate a false negative. This false negative is caused by the
close proximity of occupied voxels near the bases. In the current implementation,
the search is restarted (after finding a match) at the next voxel beyond the matched
region. In our pole-finding example, the accuracy of our method appears competitive
with the 90% accuracy reported in [17] for finding pole-like objects using linear
discriminant analysis and support vector machines.

In the special case of Fig. 7.4(12), the false positive can be eliminated by a
simple post processing step which compares the LiDAR range of the base pattern
to the range of the ground plane. We also observe that two closely spaced poles are
resolved in Fig. 7.4(10) and (11).

Discussion

The MDRE approach presented here contrasts sharply with traditional classification
methods such as linear discriminant analysis (LDA) and support vector machines
(SVM). Foremost, MDRE is based on formal language theory and is inherently
discrete. In contrast, both LDA and SVM rely on continuous mathematics and
optimization principles. In the case of LDA, the within-class scatter matrix may
be ill-conditioned, leading to numerical instability. No such numerical difficulties
exist for MDRE.

Support vector machines depend critically on the choice of a kernel function.
For many data sets there are few intuitive clues as to which kernel function best
serves the intended purpose. Often, a “popular” kernel function is chosen solely
because it has performed adequately on some (other) classification problem. Writing
MDRE expressions requires some 3-D pre-visualization skills on the part of the user.
However, thinking in terms of “stacks of 2-D slices” is often sufficient to construct
an effective MDRE.

Both LDA and SVM benefit from being mature techniques with very broad
applicability to many types of classification problems. They have the advantage
that a practical classifier can often be algorithmically constructed given sufficient
training data. In its current form, MDRE relies on a user-specified expression which
the authors acknowledge can be somewhat tedious to develop. While algorithmic
construction of multi-dimensional regular expressions from training data has not yet
been demonstrated, we believe the metrics described in section “Hamming Distance
for Deterministic Finite Automata (DFA)” can be used with evolutionary algorithms
to combine MDRE with supervised learning.
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MDRE differs from other formal language based approaches such as bag
grammars in a number of important ways. By restricting the underlying model
to (multi-dimensional) regular languages, many of the computational difficulties
associated with bag grammars can be avoided. For example, if G denotes a bag
grammar, deciding the question whether w ∈ L(G ) for input w is known to be
NP-complete [4]. Further, the equivalence question for two grammars is Turing
undecidable [19]. In contrast, all relevant questions regarding regular languages can
be decided in polynomial time.

Another fundamental strength of grammars is that they can represent nested
structures to an arbitrary depth (e.g., nested loops in a programming language).
However, man-made objects generally have no such recursive structures. For
example, a bicycle consists of parts such as: frame, seat, handlebar, and wheels.
In turn, wheels consist of parts such as: rim, spokes, and axle. Also the various
parts and sub-parts form a n-way tree structure corresponding to the target object;
grammars easily represent such a structure.

For man-made objects, the part/sub-part tree structure is relatively shallow and
never involves recursion. In our bicycle example, we observe that rims, spokes,
and axles do not recursively contain seats or handlebars. This observation strongly
suggests that regular patterns are sufficient for describing many man-made objects.
Natural fractal patterns are an exception to the regularity of man-made objects.

Conclusions

We have presented a novel approach for efficient representation and detection
of geometric objects in n-dimensional space by means of n-dimensional regular
expressions and their corresponding finite automata. A fundamental advantage of
regular expressions over context free or bag grammars is that practical questions
regarding regular languages can be answered algorithmically in polynomial time. In
contrast, some practical questions relating to context free and bag grammars, e.g.,
equivalence of two context free grammars is Turing undecidable [19].

Higher order regular and context free languages have been studied in the
literature, specifically within the field of theoretical computer science, see e.g. [2,
16, 20]. Our work here includes representation methods suitable for direct computer
processing. The language of multi-dimensional regular expressions as illustrated in
Eqs. (7.5) and (7.6) is itself context free.

The authors acknowledge that writing patterns such as Eqs. (7.5) and (7.6) “by
hand” may be tedious for some target objects. An essential point of the work
presented here is to serve as an efficient low-level computer based representation
of geometric patterns, comparable to the role of assembly language for representing
computer programs. In practice, higher level tools are needed to enable users to
more easily generate multi-dimensional patterns. The authors believe the framework
presented here provides several opportunities. For example, machine learning
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techniques may succeed at discovering multi-dimensional regular expressions from
a set of training data.

Future Work

We outline a few directions in which the work presented here may be extended for
object detection and retrieval purposes.

1. Performance improvements may be possible by adapting the concepts used by
the Knuth-Morris-Pratt algorithm [9].

2. Fused image datasets, such as co-registered LiDAR and HSI datasets [6] may be
processed by extending the alphabet of the n-dimensional DFA to also include a
larger but finite set of features representative of the fused dataset.

3. Scale invariance may be introduced into the object detection algorithm by
applying n-dimensional DFAs at various spatial scales and selection scale auto-
matically by minimizing the Hamming distance. Similarly, rotation invariance
may be introduced in several ways. For example, one may first detect the
principal direction using a histogram of gradients approach for a region of
interest and then rotating the coordinate space appropriately to match the regular
expression.

4. Hamming automata may be extended to provide a distance metric between two
n-dimensional DFAs (or regular expressions). Discrete optimization techniques,
often used in machine learning approaches, may utilize such distance criteria for
learning n-dimensional regular expressions from training data.
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Chapter 8
Relaxed Optimisation for Tensor
Principal Component Analysis
and Applications to Recognition,
Compression and Retrieval of Volumetric
Shapes

Hayato Itoh, Atsushi Imiya, and Tomoya Sakai

Abstract The mathematical and computational backgrounds of pattern recogni-
tion are the geometries in Hilbert space used for functional analysis and the
applied linear algebra used for numerical analysis, respectively. Organs, cells and
microstructures in cells dealt with in biomedical image analysis are volumetric
data. We are required to process and analyse these data as volumetric data without
embedding into higher-dimensional vector spaces from the viewpoint of object-
oriented data analysis. Therefore, sampled values of volumetric data are expressed
as three-way array data. The aim of the paper is to develop relaxed closed forms
for tensor principal component analysis (PCA) for the recognition, classification,
compression and retrieval of volumetric data. Tensor PCA derives the tensor
Karhunen-Loève transform, which compresses volumetric data, such as organs, cells
in organs and microstructures in cells, preserving both the geometric and statistical
properties of objects and spatial textures in the space.

Introduction

For computer assisted diagnosis, inspection and biopsy in precision medicine,
abnormality detection based on pattern recognition is a fundamental technique.
From cells to the human body, the medical data used for diagnosis are multi-way
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array data. Organs, cells in organs and microstructures in cells, which are dealt
with in biomedical image analysis, possess statistical properties in the form of
spatial textures. These biological objects also possess volumetric structures with
spatial geometric and topological properties in the form of three-dimensional objects
[10, 12, 26, 28, 30]. Although their local volumetric structures are computed from
geometric and topological properties, their textures are used to estimate both local
and global statistical properties of these objects. Since organs are essentially spatial
textures defined in finite regions, the outer boundaries of these regions define the
shapes of the organs. For the data analysis of these volumetric data, methods which
simultaneously process geometrical and topological structures and spatial texture
properties are required.

A pattern is assumed to be a square integrable function in a linear space and to
be defined on a finite support in a higher-dimensional Euclidean space [6, 9, 25].
For planar and volumetric patterns, the dimensions of the Euclidean spaces are two
and three, respectively. For the achievement of pattern recognition by numerical
computation, sampled patterns are dealt with. In traditional pattern recognition,
these sampled patterns are embedded in an appropriate-dimensional Euclidean
space as vectors. The multi-way array is the other way to deal with sampled patterns.
These multi-way array data are expressed as tensors [4, 15, 16, 18, 20, 22] to preserve
the linearity of the original pattern space since tensors express three-way array data
in multilinear forms. Therefore, multi-way principal component analysis (PCA) of
tensor data is used to extract features from multi-dimensional objects for pattern
recognition, classification, compression and data retrieval.

We apply three-way PCA to volumetric data analysis in biomedical information
processing. For three-way PCA, we developed a relaxed closed form of tensor PCA
computation based on Tucker-3 tensor decomposition, although Tucker-3 tensor
decomposition [4, 15, 17] is achieved by solving variational optimisation problems
iteratively. Our method solves a system of variational optimisation problems derived
from the original Tucker-3 decomposition with the orthogonal constraints for
solutions. We also numerically clarified that data compression by the discrete cosine
transform (DCT) [27] efficiently approximates the data compression procedure
based on tensor PCA since the DCT approximates the Karhunen-Loève (K-L)
transform [7, 24]. This method is used for compression and retrieval of volumetric
data preserving the volumetric structures with the spatial geometries and statistical
properties of shapes [5, 32].

These orthogonal-projection-based data compression methods for three-way data
arrays extract outline volumetric shapes [31]. Mathematically, a shape is a finite
closed region in a Euclidean space. The boundaries of planar and volumetric shapes
are closed simple planar curves and closed simple two-dimensional manifolds,
respectively. An outline shape is a smoothed profile of a shape. For a planar shape,
an outline shape is generated by smoothing the boundary contour of the shape. For
a volumetric shape, an outline shape is generated by smoothing the closed boundary
manifold of the shape. These properties imply that outline shapes are generated
as smoothed approximations of the original shapes. Outline shapes of volumetric
images of organs provide fundamental features for information filtering in medical
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diagnosis and data retrieval. Furthermore, if a shape is expressed as a series
expansion using base functions, an outline of the shape is a finite truncation of this
series expansion of the shape. We introduce a basis system which simultaneously
extracts both the outline shape of an object and global statistical properties of the
interior texture of the object.

We are required to process and analyse volumetric data as three-way array data
without embedding sampled values in vector space from the viewpoint of the object-
oriented data analysis (OODA) [21]. We derive the tensor subspace and mutual
subspace for tensors using tensor PCA based on the Tucker-3 tensor decomposition.
The mutual tensor subspace method is stable against geometric perturbation of
queries for pattern recognition since the method assumes that a query is an element
of a low-dimensional tensor subspace.

Principal Component Analysis and Pattern Recognition

Subspace Method for Pattern Recognition

A volumetric pattern is assumed to be a square integrable function in a linear space
and to be defined on a finite support in three-dimensional Euclidean space [6, 9, 25]
such that

∫

Ω

|f |2dx <∞ (8.1)

forΩ ⊂ R
3. Furthermore, we assume

∫

Ω

|∇f |2dx <∞ (8.2)

∫

Ω

tr{(∇∇�f )�(∇∇�f )}dx <∞, (8.3)

where ∇∇�f is the Hessian matrix of f . The collection of these functions defines
the Hilbert space H.

Setting (f, g) to be the inner product in H, the relation |f |2 = (f, f ) is satisfied.
For the orthogonal projection P⊥ = I − P , f ‖ = Pf and f⊥ = P⊥f are the
canonical element and canonical form of f with respect to P and P⊥, respectively,
where I is the identity operation in H. If P is the projection to the space spanned by
the constant element, the operation P⊥f is called the constant canonicalisation. Let
P i be the orthogonal projection to the linear subspace corresponding to category
Ci ⊂ H. For a pattern f , if |P i∗(f/|f |)| ≤ δ for an appropriately small positive
number δ, we conclude that f ∈ Ci∗ .
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Let θ be the canonical angle between a pair of linear subspaces L1 and L2.
Setting P 1 and P 2 to be the orthogonal projections to L1 and L2, respectively,
cos2 θ is the maximiser of (P 1f,P 2g)

2 with respect to the conditions |f | = 1,
|g| = 1, P 1f = f and P 2g = g. The relation cos2 θ = λ2

max is satisfied, where
λmax is the maximal singular value of P 2P 1.

Since, in the mutual subspace method (MSM) [19], a query f is expressed by
using a set of local bases, we set Qf to be the orthogonal projection to the linear
subspace expressing query f . Then, if the canonical angle between Qf and P i
satisfies the relation � (Qf ,P i ) < � (Qf ,P

∗
i ) for all Ci , we conclude that f ∈ Ci∗ .

Setting δ and ε to be a small vector and a small positive number, respectively, we
have the relation

|f (x + δ)− (f (x)+ δ�∇f + 1

2
δ�(∇∇�f )δ)| < ε, (8.4)

for local geometric perturbations. For n = 3, all f , fx , fy , fz, fxx , fyy , fzz, fxy ,
fyz and fzx are independent if f is not sinusoidal in each direction. Therefore,
Eq. (8.4) implies that, for a pattern defined in two- and three-dimensional Euclidean
spaces, the local dimensions of the pattern are four and ten, respectively, if the local
geometric perturbations and local bending deformation of the pattern are assumed as
local transformations of the pattern. This property of the local dimensionality allows
us to establish the MSM, which deals with a query as a pattern in a subspace [8].

Setting P i to be the orthogonal projection to linear subspace Li corresponding to
categoryCi , we compute the orthogonal projection Q which maximises the criterion

I (Q) =
n
∑

i=1

|QP i |22 (8.5)

with respect to the condition Q∗Q = I , where Q∗ is the conjugate of Q and |A| is
the trace norm of the operator A in Hilbert space H. The minimisation problem

J (Q) =
n
∑

i=1

|QP i |22 + tr(Λ(I −Q∗Q
¯
)) (8.6)

derives the eigen-operator problem

(

n
∑

i=1

P i

)

Q = QΛ. (8.7)

Though operation Qf removes the common part for all categories from f , (I−Q)f

essentially preserves significant parts for pattern recognition of f .
For f and g in H, we define the metric d for μ(f ) and μ(g) as d(μ(f ), μ(g))

using an appropriate one-to-one transform μ from H to its subset. Furthermore,
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using an appropriate mapping Φ, we define the measure

s(f, g) = Φ(d(μ(f ), μ(g))). (8.8)

If we set μ(f ) = f
|f | and set d and Φ as the geodesic distance on the unit sphere in

H and Φ(x) = cos x, respectively, s(f, g) becomes the similarity measure based on
the angle between f and g. For f ′ = f + δf and g′ = g + δg, setting

min(|f |, |g|) = Λ, max(δf , δg) = Δ, (8.9)

we have the relation
∣

∣

∣

∣

(

f ′

|f ′| ,
g′

|g′|
)

−
(

f

|f | ,
g

|g|
)∣

∣

∣

∣

= cΔ
Λ
, (8.10)

for a positive constant c. Therefore, s(f, g) is stable and robust against perturbations
and noises in f and g.

For patterns in H, we have the following property.

Property 8.1 For |f | = 1 and |g| = 1, assuming |f − g| ≤ 1
3 · π2 , the geodesic

distance θ = dS(f, g) between f and g satisfies the relation |θ − |f − g|| < ε for
a positive small number ε.

Figure 8.1a, b show geometric properties of the subspace method and multiclass
recognition using the subspace method, respectively. Let ϕ1 and ϕ2 be the basis of
a linear subspace for a pattern. For an input g, the similarity is computed using the
length of the orthogonal projection of g to the pattern space. The subspace method
allows us to achieve multiclass recognition using orthogonal projections. Setting
P 1 and P 2 to be the orthogonal projections to subspaces C1 and C2, respectively,

|Pg|2
|g|2

(a)

|P1g|2
|g|2

|P2g|2
|g|2

(b)

Fig. 8.1 Subspace method. (a) Setting ϕ1 and ϕ2 to be the basis of a linear subspace corresponding
to a pattern, for an input g, the similarity between g and a pattern in a pattern space is measured
by the length of the orthogonal projection of g to the pattern space. (b) Setting P1 and P2 to be
operators for subspaces C1 and C2, respectively, the input g is labelled as being in the first class,
since the length of the orthogonal projection of g to C1 is greater than the length of the orthogonal
projection of g to C2
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the input g is recognised as an element in the first class, since the length of
the orthogonal projection of g to C1 is greater than the length of the orthogonal
projection of g to C2. The ratio |Pg|/|g| is called the cumulative contribution ratio
(CCR) of g to the linear subspace defined by P .

Principal Component Analysis

The variational average of data {fi}ni=1 defined in a metric space M is the minimiser
of the variational problem

J (g) =
n
∑

i=1

d(fi, g)
2 + λP(g), (8.11)

using the metric d(·, ·) in M, where g in the first term of the right-hand side of the
equation is the Frechet mean of {fi}ni=1 and the second term is the regulariser for g.

For volumetric images {fi}ni=1 defined in a finite closed region of the three-
dimensional Euclidean space R

3, the normalised average is the minimiser u of the
optimisation criterion

Jα(u) =
n
∑

i=1

|fi − αu|2, (8.12)

for α > 0 with the condition |u|2 = 1. The normalised average is the maximiser of
the variational problem

Jλ(u) =
n
∑

i=1

|(fi , u)|2 + λ(1 − |u|2). (8.13)

Variation on Eq. (8.13) implies that u is the eigenfunction of the correlation of
{fi}ni=1 associated with the maximal eigenvalue.

Three-way array data derived from a sampled discrete function fijk =
f (Δi,Δj,Δk) of f defined in R

3 are embedded into R
n as a vector f =

(f1, f2, · · · , fn)�. Let D = {f i}mi=1 be a collection of vectors in n-dimensional
Euclidean space R

n with the condition
∑m
i=1 f i = 0. Setting (f ,g) = f�g and

|f | =
√

|f�f | to be the inner product and the norm induced by the inner product
in R

n, respectively, the principal component of D ⊂ R
n is the minimiser of the

criterion

J (u) = 1

m

m
∑

i=1

|f − (f i ,u)u|2 (8.14)
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with the condition |u|2 = 1. u is the eigenvector of the correlation of {f i}ni=1
associated with the maximal eigenvalue. Therefore, setting

M = 1

n

n
∑

i=1

f if
�
i (8.15)

for
∑n
i=1 f i = 0, the eigenvectors {u}ni=1 of

Mui = λiui , λi ≥ 0 (8.16)

define the principal components of D. Using {u}ni=1, we can define a linear subspace
Π = L({ui = 1k}) for k ≤ n as the category C defined by {f i}mi=1. Furthermore,

the orthogonal projection to the category C is PC =
∑k
i=1 uu�. We note that for

practical applications the relation k � n� m is expect
Since the DCT [27] is asymptotically equivalent to the matrix of the K-L

transform [24] for data observed from a first-order Markov model [7, 24], the
dimension reduction by PCA is performed using the DCT as

f ni =
k−1
∑

i′=0

ϕi′igi′ , gi =
n−1
∑

i′=0

ϕii′fi′ (8.17)

for k ≤ n, where

Φ(n) = ((ε cos
(2j + 1)i

2πn
)) = ((ϕij )), ε =

{

1 if j = 0
1√
2

otherwise
(8.18)

is the DCT-II matrix of order n. If we apply the fast cosine transform to the
computation of the DCT-II matrix, the computational complexity is O(n logn).

There are several extensions of PCA. Let a collection of structured data T =
{t i}ni=1 be a subset of a metric space M. An outline of these data is computed as the
mean by minimising the criterion

t = arg{min
t

n
∑

i=1

d(t i , t)
2}. (8.19)

We can extend the PCA algorithm as follows.

1. Compute the centroid t̄ of T.
2. Select a metric d(t, t ′) in M.
3. Select a geodesic path P ∗ which minimises the criterion

J =
n
∑

i=1

d(t i , P )
2 (8.20)

with the condition t̄ ∈ P in M.
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This data processing is called principal geodesic analysis (PGA) [23]. If we can
define a manifold of combinatorial structures such as trees and graphs, PGA can
be used for the classification and retrieval of structured objects. For geodesic PCA
(GPCA), the curvature of spaces is extended from zero to nonzero. Shape spaces and
collections of phylogenetic trees are examples of positive- and negative-curvature
spaces, respectively. GPCA in a shape space is used for longitudinal analysis
(follow-up analysis) of cancers in organs. GPCA for phylogenetic trees computes
the mean of the trees in the data space. This extension is derived on the basis of
OODA, which deals with data without embedding into vector spaces, in which the
computation of PCA is achieved.

Tensor Analysis and Sampling

For the triplet of positive integers I1, I2 and I3, the third-order tensor RI1×I2×I3 is
expressed as X = ((xijk)). Indices i, j and k are called the 1-mode, 2-mode and 3-
mode ofX , respectively. The tensor space RI1×I2×I3 is interpreted as the Kronecker
product of three vector spaces RI1 , RI2 and R

I3 such that RI1 ⊗ R
I2 ⊗ R

I3 . We set
I = max(I1, I2, I3).

For a square integrable function f (x), which is zero outside of a finite supportΩ
in three-dimensional Euclidean space, the sample Sf (Δz) for z ∈ Z3 and |z|∞ ≤ I
defines an I×I×I three-way array F. To preserve the multi-linearity of the function
f (x), we deal with the array F as a third-order tensor F . The operation vecF
derives a vector f ∈ R

I123 for I123 = I2 ·I2 ·I3. We can reconstruct f from F using
an interpolation procedure. Figure 8.2a shows the relations among sampled data
and multi-way data. Figure 8.2b shows a data compression procedure for multi-way
data.

For the outer product of N vectors, if the tensor X satisfies the condition

X = u(1) ◦ u(2) ◦ u(3),= ((u1
i u

2
ju

3
j )) (8.21)

f(x) ∈ R

f Sf(x) = f(Δz)

Interpolation Sampling

arraytensor

fz ∈ R

vecF

(a) Sampling procedure

1st-order 2nd-order 3rd-order

(b) Type of tensors

Fig. 8.2 Sampling and tensor expression of multi-way data. We can reconstruct f from F using
an interpolation procedure. (a) Relations among sampled data and multi-way data. The sampled
values of a multivariate function derive multi-way array data. These multi-way array data are
dealt with as a higher-order tensor to preserve the multilinear properties of the data. (b) Data
compression procedure for multi-way data by deriving a small-size tensor from the original one
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for u(k) = (uk1, uk2, · · · , ukIk )�, where ◦ denotes the outer product, we call this tensor
X a rank-one tensor. For X , the n-mode vectors, n = 1, 2, 3, are defined as the
In-dimensional vectors obtained from X by varying this index in while fixing all
the other indices.

The unfolding of X along the n-mode vectors of X is defined as matrices such
that

X(1) ∈ R
I1×I23 , X(2) ∈ R

I2×I13 , X(3) ∈ R
I3×I12 (8.22)

for I12 = I1 · I2, I23 = I2 · I3 and I13 = I1 · I3, where the column vectors of X(j)

are the j -mode vectors of X for i = 1, 2, 3. We express the j -mode unfolding of
Xi as Xi,(j). Figure 8.3a, b show unfolding procedures of second- and third-order
tensors, respectively.

For matrices U = ((uii′)) ∈ R
I1×I1 , V = ((vjj ′)) ∈ R

I2×I2 and W = ((wkk′)) ∈
R
I3×I3 , the n-mode products for n = 1, 2, 3 of a tensor X are the tensors with

entries

x[1]ijk =
I1
∑

i′=1

xi′jkui′i , x[2]ijk =
I2
∑

j ′=1

xij ′kvj ′j , x[3]ijk =
I3
∑

k′=1

xijk′wk′k, (8.23)

where (X )ijk = xijk is the ijkth element of tensor X . The inner product of two
tensors X and Y in R

I1×I2×I3 is

〈X ,Y 〉 =
I1
∑

i=1

I2
∑

j=1

I3
∑

k=1

xijkyijk . (8.24)

(a) (b)

Fig. 8.3 Unfolding of tensors. (a) Unfolding of a second-order tensor. For a tensor in R
6×8,

unfolding of 1- and 2-modes yields eight 1-mode vectors and six 2-mode vectors, respectively.
(b) Unfolding of a third-order tensor. For a tensor in R

4×5×3, unfolding for 1-, 2- and 3-modes
yields fifteen 1-mode vectors, twelve 2-mode vectors and twenty 3-mode vectors, respectively
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Using this inner product, we have the Frobenius norm of a tensor X as |X |F =√〈X ,X 〉. The Frobenius norm |X |F of tensor X satisfies the relation |X |F =
|f |2, where |f |2 is the Euclidean norm of vector f = vecF of the vectorisation of
tensor F .

To project a tensor X in R
I1×I2×I3 to the tensor Y in a lower-dimensional tensor

space R
P1×P2×P3 , where Pn ≤ In, three projection matrices {P (i)}3i=1 for P (i) ∈

R
In×Pn are required for i = 1, 2, 3.

Y =X ×1 P (1)� ×2 P (2)� ×3 P (3)�. (8.25)

This projection is established in three steps, where in each step, each i-mode vector
is projected to a Pn-dimensional space by P (i) for i = 1, 2, 3.

Tensor Principal Component Analysis

Setting the data matrix X to be X = (f 1 f 2 · · · fm
)

for data vectors {f i}mi=1 in

R
N , whose mean is zero, the K-L transform is established by computinĝf i = Uf i

for U which minimises

J1 = |UX|2F (8.26)

with the condition U�U = IN . The orthogonal matrix U is the minimiser of

J11 = |UX|2F + (U�U − I )Λ, (8.27)

where Λ = Diag(λ1, λ2, · · · , λN ) for λ1 ≥ λ2 ≥ λ2 ≥ · · · ≥ λN ≥ 0. The
minimiser of Eq. (8.27) is the solution of the eigenmatrix problem

MU = UΛ, M = XX�. (8.28)

The row vectors of U are the principal components.
The compression of f i to a low-dimensional linear subspace is achieved by

computing the transform P nUf , where P n is the orthogonal projection such that

P n =
(

In O

O� O

)

(8.29)

for n < N .
Using three orthogonal matrices U (i) for i = 1, 2, 3, we have the tensor

orthogonal decomposition for a third-order tensor as

Y =X ×1 U (1)� ×2 U (2)� ×3 U (3)�. (8.30)
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For a collection {Xk}mk=1 of third-order tensors, the orthogonal-projection-based
dimension reduction procedure is achieved by maximising the criterion

J3 = Ek(|Xk ×1 U (1)� ×2 U (2)� ×3 U (3)�|2F ) (8.31)

with respect to the conditions U (i)
�
U (i) = I for i = 1, 2, 3. The Euler-Lagrange

equation of this conditional optimisation problem is

J33(U
(1),U (2),U (3)) = Ek(|Xk ×1 U (1)� ×2 U (2)� ×3 U (3)�|2F )

+
3
∑

i=1

|(I − U (i)
�
U (i))Λ(i)|2F . (8.32)

This minimisation problem is solved by the following iteration procedure.

Algorithm 8.1:

1: U
(i)
(0) := Q(i) such that Q(i)�Q(i) = I and α = 0.

2: U
(1)
(α+1) = argmin J33(U

(1),U
(2)
(α),U

(3)
(α)).

3: U
(2)
(α+1) = argmin J33(U

(1)
(α+1),U

(2),U
(3)
(α)
).

4: U
(3)
(α+1) = argmin J33(U

(1)
(α+1),U

(2)
(α+1),U

(3)).

5: if |U (i)
(α+1) − U

(i)
(α)
|F ≤ ε, then stop, else α := α + 1 and go to step 2.

For the practical computation of tensor PCA, we call this iteration-based method the
higher-order singular value decomposition (HOSVD).

For

J33(U
(1),U (2),U (3)) = Ek(|Xk ×1 U (1)� ×2 U (2)� ×3 U (3)

�|2F )

+
3
∑

i=1

|(I − U (i)
�
U (i))Λ(i)|2F (8.33)

setting U
(i)
1 := I , the system of minimisation problems

U (1) = argmin f (U (1), I , I )

U (2) = argmin f (I ,U (2), I ) (8.34)

U (3) = argmin f (I , I ,U (3))

is derived. This system of minimisation problems derives the following system of
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eigenmatrix problems:

∇U (1)J33(U
(1), I , I ) = 0

∇U (2)J33(I ,U
(2), I ) = 0 (8.35)

∇U (3)J33(I , I ,U
(3)) = 0.

We call this method matrix PCA. In matrix PCA, if we set the number of bases to
the size of the original tensors in Algorithm 8.1, we call the method full projection
(FP). If we set the number of bases to fewer than the size of the original tensors in
Algorithm 8.1, we call the method full-projection truncation (FPT).

From Eq. (8.35), as an extension of the two-dimensional problem, we define the
system of optimisation problems [14]

Jj = E(|U (j)�Xi,(j)U
(j)|2F )+ (U (j)�U (j) − I j )Λ

(j) (8.36)

for i = 1, 2, 3, as a relaxation of the iteration procedure, where Xi,(j) is the ith
column vector of the unfolding matrix X(j). These optimisation problems derive
the system of eigenmatrix problems

M (j)U (j) = U (j)Λ(j), M (j) = 1

N

N
∑

i=1

Xi,(j)X
�
i,(j) (8.37)

for j = 1, 2, 3.

Setting P (j) to be an orthogonal projection in the linear space L ({u(j)i }
Ij
i=1)

spanned by the column vectors of U (j), data reduction is computed by

Y =X ×1 (P
(1)U (1))� ×2 (P

(2)U (2))� ×3 (P
(3)U (3))�. (8.38)

This expression is equivalent to the vector form

vecY = (P (3) ⊗ P (2) ⊗ P (1))(U (3) ⊗ U (2) ⊗ U (1))vecX . (8.39)

The eigenvalues of the eigenmatrices of Tucker-3 orthogonal decomposition
satisfy the following theorem.

Theorem 8.1 The eigenvalues of U = U (1) ⊗ U (2) ⊗U (3) define a semi-order.

Proof For the eigenvalues λ(1)i , λ
(2)
j , λ

(3)
k of the 1-, 2- and 3-modes of tensors, the

inequalities

λiλj λk ≥ λi+1λjλk,

λiλj λk ≥ λiλj+1λk, (8.40)

λiλj λk ≥ λiλjλk+1,
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define semi-orders among the eigenvalues as

λ
(1)
i λ

(2)
j λ

(3)
k !

〈

λ
(1)
i λ

(2)
j λ

(3)
k+1, λ

(1)
i λ

(2)
j+1λ

(3)
k , λ

(1)
i+1λ

(2)
j λ

(3)
k

〉

(8.41)

is satisfied. �
Regarding the selection of the dimension of the tensor subspace, Theorem 8.1

implies the following theorem.

Theorem 8.2 The dimension of the subspace of the tensor space for data com-
pression is 1

6n(n + 1)(n + 2) if we select n principal components in each mode of
three-way array data.

Proof For a positive integer n, the number sn of eigenvalues λ(1)i λ
(2)
j λ

(3)
k is

sn =
n−1
∑

i+j+k=0,i,j,k≥0

(i + j + k) =
n
∑

l=1

l
∑

m=1

m = 1

6
n(n+ 1)(n+ 2). �

If n = 1, 2, 3, 4, we have N = 1, 4, 10, 20, respectively, for tensors X =
((xijk)) in R

I×I×I .
Setting {P (i)}3i=1 to be orthogonal projection matrices, the orthogonal projection

of a third-order tensor X to the linear subspaceΠ123 by {P (i)}3i=1 is computed as

Y =X ×1 P (1) ×2 P (2) ×3 P (3). (8.42)

Since |Y |F is the length of the part of tensor X on the linear subspace Π123, the
ratio 0 ≤ |Y |F /|X |F ≤ 1 is the CCR of X to Π123. The dimension of Π123 is
computed by Theorems 8.1 and 8.2.

Since the DCT [27] is asymptotically equivalent to the matrix of the K-L
transform [24] for data observed from a first-order Markov model [7, 24], the
dimension reduction by PCA is performed using the DCT as

f nijk =
k−1
∑

i′j ′k′=0

gi′j ′k′ϕi′iϕj ′j ϕk′k, gijk =
n−1
∑

i′j ′k′=0

fi′j ′k′ϕii′ϕjj ′ϕkk′ (8.43)

for k ≤ n, where Φ(n) is the DCT-II matrix of order n. If we apply the fast
cosine transform to the computation of the 3D-DCT-II matrix, the computational
complexity is O(3n logn).

In the vector and tensor forms, the transforms are expressed as

vecF n = (Φ(n) ⊗Φ(n) ⊗Φ(n))
�(P k ⊗ P k ⊗ P k)(Φ(n) ⊗Φ(n) ⊗Φ(n))vecF (8.44)

F n = F ×1 (Φ
�
(n)P kΦ(n))×2 (Φ

�
(n)P kΦ(n))×3 (Φ

�
(n)P kΦ(n)). (8.45)
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Since

vec(u ◦ v ◦ w) = u⊗ v ⊗ w, (8.46)

the outer product of vectors redescribes the DCT-based transform as

F =
n−1
∑

i,j,k=0

aijkϕi ◦ ϕj ◦ ϕk, aijk = 〈F , (ϕi ◦ ϕj ◦ ϕk)〉, (8.47)

where

Φ(n) =
(

ϕ0,ϕ1, · · · ,ϕn−1
)

. (8.48)

The DCT matrix Φ(n) is the eigenmatrix of the discrete Laplacian with the
Neumann boundary condition. We can define the order of the column vectors of
DCT matrix using the order of the eigenvalue {λi}n−1

i=0 of the discrete Laplacian.
Since λiλj λk derives the same semi-order with relation of Eq. (8.41), we define the
order for the outer product of the column vectors {ϕn−1

i=0 }
ϕi ⊗ ϕj ⊗ ϕk " ϕi+1 ⊗ ϕj ⊗ ϕk,

ϕi ⊗ ϕj ⊗ ϕk " ϕi ⊗ ϕj+1 ⊗ ϕk, (8.49)

ϕi ⊗ ϕj ⊗ ϕk " ϕi ⊗ ϕj ⊗ ϕk+1.

This order is used for the definition of the dimension of subspace for the relaxed
PCA with DCT. On this order, the kth elements lies on the surface of the oct-sphere
of the radius k − 1 with the l1-distance. Therefore, this order defines the low-pass
filter of which path window is the oct-diamond in discrete space.

Classification of Three-Way Array Data

Tensor Subspace Method

As an extension of the subspace method [9, 29] for three-way data, we introduce
a linear tensor subspace method (TSM) for third-order tensors. This method is a
three-dimensional version of the two-dimensional TSM [13].

For a third-order tensor X , we set U (j) for j = 1, 2, 3, to be projection matrices
of the tensor-to-tensor projection of X to Y . For a collection of normalised tensors
{Xi}Mi=1, such that Xi ∈ R

I1×I2×I3 , ‖Xi‖F = 1 and E(Xi ) = 0, the solutions of

{U(j)}3j=1 = arg max E
(

‖X ×1 U (1)� ×2 U (2)� ×3 U (3)�‖F/‖Xi‖F

)

(8.50)

with respect to U (j)�U (j) = I for j = 1, 2, 3 define a multilinear subspace that
approximates {Xi}Mi=1. Therefore, using projection matrices {U (j)k }3j=1 obtained as
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the solutions of Eq. (8.50) for the kth category Ck , if a query tensor G satisfies the
condition

arg

(

max
l
‖G ×1 U

(1)�
l ×2 U

(2)�
l ×3 U

(3)�
l ‖F/‖G ‖F

)

= {U (j)k }3j=1, (8.51)

we conclude that G ∈ Ck , k, l = 1, 2, . . . , NC , where Ck and NC are the tensor
subspace of the kth category and the number of categories, respectively.

Since a pattern represented by a tensor includes perturbation, we define the kth
category as

Ck(δ) = {X | ‖X ×1 U (1)� ×2 U (2)� ×3 U (3)� −X ‖F � δ}, (8.52)

where the positive constant δ is the bound for the perturbation to the pattern.
Therefore, by defining similarity and dissimilarity between a tensor subspace and a
query, we can construct tensor-subspace-based classifiers that are robust and stable
against small perturbations to patterns.

Mutual Tensor Subspace Method

Setting Cq = {Gi′ }M ′
i′=1 to be a collection of query tensors, the orthogonal matrices

{V (j)}3j=1 = arg max E
(

‖G ×1 V (1)� ×2 V (2)� ×3 V (3)�‖F/‖Gi‖F

)

(8.53)

are orthogonal projections in each mode for Cq. We have the projected tensors

Ai′ = Gi′ ×1 U
(1)�
k ×2 U

(2)�
k ×3 U

(3)�
k (8.54)

in the category subspace Ck and

Bi′ = Gi′ ×1 V (1)� ×2 V (2)� ×3 V (3)� (8.55)

in the query subspace Cq. These tensors define the dissimilarity between Ck and Cq
as

d(Cl ,Cq) = E
(

‖Ai′ −Bi′ ‖2
F

)

(8.56)

for

Ai′ = Ai′ ×1 (PU
(1)
k )

� ×2 (PU
(2)
k )

� ×3 (PU
(3)
k )

� (8.57)

Bi′ = Bi′ ×1 (PV (1))� ×2 (PV (2))� ×3 (PV (3))�, (8.58)
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with the conditions |Ai′ |F = 1 and |Bi′ | = 1, where the projection matrix P

selects bases for each mode of tensors. Therefore, if the queries {Gi′ }M ′
l=1 satisfy the

condition

arg

(

min
l
d(Cl ,Cq)

)

= Ck, (8.59)

we conclude that {Gi′ }M ′
i′=1 ∈ Ck(δ) for k, l = 1, 2, · · · , NC, where NC is the total

number of categories in the pattern space. We call the classification and recognition
of query subspaces using Eq. (8.59) the MTSM as the extension of the mutual
subspace method for vector data to array data.

Numerical Examples

Reconstruction Errors of Volumetric Data

The performances of tensor PCA, the three-dimensional DCT (3D-DCT) and the
pyramid transform (PT) are compared for the approximation of volumetric data. For
tensor-based expressions of the PT, see the Appendix. The volumetric data of human
livers in the computational anatomy (CA) dataset1 and of human left ventricles
in the cardiac MRI dataset [1] are used for comparisons. Table 8.1 summarises
the numbers and sizes of the volumetric data. Figures 8.4 and 8.5 illustrate the
original and approximated volumetric images of a human liver and a left ventricle,
respectively. Figure 8.6 summarises the reconstruction errors of the three methods
in terms of the compression ratio.

Figures 8.4 and 8.5 illustrate that, in terms of appearance, the 3D-DCT efficiently
approximates the K-L transform as a relaxation of tensor PCA for three-way
array data derived from volumetric images. The PT for volumetric grey-valued
images is an acceptable approximation of the K-L transform for a low compression
ratio. Since the PT is a convolution operation, the time complexity of the PT is
O(n log2 n). However, for a high compression ratio, the PT loses details of the
interior texture, although the PT preserves the appearance of outline shapes of the
volumetric images.

Figure 8.7 shows the dependences of the reconstruction error and the CCR on the
numbers of dimensions of the linear subspace for the reconstruction of volumetric
images by using the 3D-DCT as a relaxation of tensor PCA. In Fig. 8.7a, we have
85, 93 and 71 nonzero eigenvalues for modes 1, 2 and 3, respectively. In Fig. 8.7b,
we have 77, 70 and 63 nonzero eigenvalues for modes 1, 2 and 3, respectively. The

1The project “Computational Anatomy for Computer-aided Diagnosis and Therapy: Frontiers of
Medical Image Sciences” funded by Grant-in-Aid for Scientific Research on Innovative Areas,
MEXT, Japan. http://www.comp-anatomy.org/wiki/index.php?Computational.

http://www.comp-anatomy.org/wiki/index.php?Computational
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Table 8.1 Size and number of volumetric data

�data Data size [voxel] Reduced data size [voxel]

CA dataset (see footnote 1) 32 89 × 97× 76 32× 32× 32

Cardiac MRI dataset [1] 340 81 × 81× 63 16× 16× 16

�data represents the number of volumetric data. The data size is the original size of the volumetric
data. The reduced data size is the size of the volumetric data after tensor-representation-based
dimension reduction

Fig. 8.4 Original and reconstructed volumetric image of a human liver. The left column illustrates
the original volumetric data. The other three columns illustrate volumetric images reconstructed
from the data compressed by tensor PCA, the 3D-DCT and the PT. (a)–(d) Rendered volumetric
images. (e)–(h) 30th axial slice of the volumetric images. The size of the reduced volumetric data
is 32 × 32 × 32. The compression ratio is 0.05, that is, the size is 5.0% of the original size of
89× 97× 76

reconstruction error decreases and the CCR increases as the number of dimensions
of the linear subspace increases.

Figure 8.7a, b show that the reconstruction errors and the CCR have similar
mathematical properties for data compression ratios of 1/4 and 1/2 if the 3D-DC
Tand PT are accepted as relaxations of tensor PCA Therefore, the 3D-DCT is an
acceptable relaxation method for the tensor K-L transform defined by tensor PCA.

The time complexity of PCA for vector is O(n3) since the main procedure of
PCA is achieved by solving eigenvalue problem. TCPA requires O(k × n3) com-
putation times where k is the iteration times to guaranty numerically convergence
of the iteration process. The time complexity of the computation of 3D-DCT is
O(n logn). Figure 8.8 shows the computational time of dimension reduction for
tensors by using the HOSVD, the FP, FPT and 3D-DCT. Curve profiles in Fig. 8.8
support theoretical analysis of computation times.
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Fig. 8.5 Original and reconstructed volumetric images of a human left ventricle. The left column
illustrates the original volumetric images. The other three columns illustrate the volumetric images
reconstructed from the data compressed by tensor PCA, the 3D-DCT and the PT. (a)–(d) Rendered
volumetric images. (e)–(h) First axial slice of the volumetric images. The size of the reduced
volumetric data is 16 × 16 × 16. The compression ratio is 0.01, that is, the size is 1.0 % of the
original size of 81× 81× 63

(a) Liver (b) Left ventricle

Fig. 8.6 Reconstruction error vs compression ratio. The reconstruction error is given as the
relative error ‖X − ̂X‖F/‖X‖F, where X and ̂X are the original and dimension-reduced volume
data, respectively. The compression ratio is given as d/n, where d and n are the reduced size and
the original size, respectively. In (a) and (b) the original sizes are 86× 97× 76 and 81× 81× 63,
respectively. The reduced size is given by i × j × k for the original size I × J × K , where
i = 1, 2, . . . I , j = 1, 2, . . . J and k = 1, 2, . . . K for tensor PCA and the 3D-DCT. For the PT,
the reduced sizes are l × l × l for l = 4, 8, 16, 32, 64
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Fig. 8.7 Reconstruction errors and the CCR by using the 3D-DCT and PT as a relaxation of tensor
PCA. The reconstruction error is given as the relative error ‖X − ̂X‖F/‖X‖F, where X and ̂X are
the original and dimension-reduced volumetric images, respectively. From the 1st to nth frequency,
the CCR is computed by

∑n
l=1 λl/

∑N
l=1 λl , where λl are the eigenvalues of the three modes in

descending order. In (a) and (b) the original sizes are 76× 86× 97 and 81× 81× 63, respectively.
The reduced sizes are given by i × j × k for the original size I × J × K and i = 1, 2, . . . I ,
j = 1, 2, . . . J and k = 1, 2, . . . K

Fig. 8.8 Computational time of dimension reduction for tensors of the order three. The computa-
tional time of construction of projection matrices for 306 sequences of silhouette images and 35
voxel images of livers, respectively. We compare the HOSVD, FP, FPT and 3DDCT. The vertical
and horizontal axes represent the computational time and compression ratio, respectively [14]

Average Computation of Volumetric Organ Data

For the grey-matter parts of 20 volumetric images in BrainWeb [2], we apply tensor
PCA and the 3D-DCT to reduce image data sizes. The 271 × 181 × 181-voxel
volumetric images are reduced to 64 × 64 × 64-voxel images. Table 8.2 shows
the size of the original data. In Fig. 8.9, a rendered volumetric image and a slice
are illustrated. For 56, 84, 120 and 165 major components, dimension-reduced
volumetric images are illustrated in Figs. 8.10, 8.11, and 8.12, which show outlines
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Table 8.2 Sizes and numbers of volumetric data of brains [2]

�data Data size [voxel] Reduced data size [voxel]

Volumetric data of brains 20 217× 181 × 181 64× 64 × 64

�data represents the numbers of livers and brains. The data size is the original size of the volumetric
data. The reduced data size is the size of the volume data after tensor-representation-based
dimension reduction

Fig. 8.9 Original volume data of brain. (a) Rendered volumetric image. (b) 80th slice of the
volumetric image

Fig. 8.10 Rendered volume images compressed by the FP of tensor principal components. The
tensor principal components are computed from 20 volume data. (a) 4 majors, (b) 10 majors, (c)
20 majors, (d) 35 majors, (e) 56 majors, (f) 84 majors, (g) 120 majors, (h) 165 majors

obtained using the FP, FPT and 3D-DCT, respectively. Figures 8.13, 8.14, and 8.15
show slice images corresponding to Figs. 8.10, 8.11, and 8.12, respectively.

Figure 8.16 shows the reconstruction error for the reconstructed volume data. For
the dimension reduction of volume data, tensor PCA and 3D-DCT are used. The size
of the dimension-reduced data is 64×64×64 voxels. The curves in Fig. 8.16 imply
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Fig. 8.11 Rendered volumetric images compressed by using several principal components. For
reduction, the FPT is used. (a) 4 majors, (b) 10 majors, (c) 20 majors, (d) 35 majors, (e) 56 majors,
(f) 84 majors, (g) 120 majors, (h) 165 majors

Fig. 8.12 Rendered volume images compressed by 3D-DCT. (a) 4 majors, (b) 10 majors, (c) 20
majors, (d) 35 majors, (e) 56 majors, (f) 84 majors, (g) 120 majors, (h) 165 majors

that tensor PCA and the 3D-DCT are comparable methods for the K-L transform of
volumetric images.

Figures 8.17 and 8.18 show 10 right lung images of males and females (see
footnote 1), respectively. The sizes of the data are listed in Table 8.3. These
volumetric images are aligned using the centroids and mechanical moment axis.
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Fig. 8.13 Slice images for reconstructed volumetric images shown in Fig. 8.10. (a) 4 majors, (b)
10 majors, (c) 20 majors, (d) 35 majors, (e) 56 majors, (f) 84 majors, (g) 120 majors, (h) 165
majors

Fig. 8.14 Slice images for reconstructed volumetric images shown in Fig. 8.11. (a) 4 majors, (b)
10 majors, (c) 20 majors, (d) 35 majors, (e) 56 majors, (f) 84 majors, (g) 120 majors, (h) 165
majors



8 Relaxed Optimisation for Tensor Principal Component Analysis and. . . 187

Fig. 8.15 Slice images for reconstructed volumetric images shown in Fig. 8.12. (a) 4 majors, (b)
10 majors, (c) 20 majors, (d) 35 majors, (e) 56 majors, (f) 84 majors, (g) 120 majors, (h) 165
majors

Fig. 8.16 Reconstruction error for reconstructed volumetric images. For the dimension reduction
of volume data, the FP, FPT and 3D-DCT are used. The size of the dimension-reduced data is
64 × 64 × 64 voxels. The vertical axis shows reconstruction errors between the original and
reconstructed volumetric images evaluated by Frobenius norms. The horizontal axis shows the
number of eigenvectors used for reconstruction
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Fig. 8.17 Rendered volume images of right lungs of males. Volumetric images are extracted from
CT images using annotated labels. Extracted lungs are aligned using the centroids and principal
axis of the mechanical moment. From (a) to ( j), the interior textures of ten volumetric male-lung
images are shown

Fig. 8.18 Rendered volume images of volumetric right lungs of females. Volumetric images are
extracted from CT images using annotated labels. Extracted lungs are aligned using the centroids
and principal axis of the mechanical moment. From (a) to ( j), the interior textures of ten volumetric
female-lung images are shown
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Table 8.3 Sizes and numbers of volumetric right lungs of males and females (see footnote 1)

Name �category � data/category Original size [voxel] Reduced size [voxel]

CA (see footnote 1)
dataset

2 10 361 × 361× 361 128 × 128× 128

� represents the number of data. The original size is the original size of the volumetric data. The
reduced size is reduced by using the tensor-representation-based dimension reduction

Fig. 8.19 Comparison among original and reconstructed volumetric right lungs of a male (part 1).
From left to right, the rendered original volumetric images and the volumetric images reconstructed
by the FP, FPT, and 3D-DCT are shown. Images are compressed to 64×64×64 voxels. (a) Original,
(b) FP, (c) FPT, (d) 3D-DCT

Fig. 8.20 Comparison among original and reconstructed volumetric right lungs of a male (part 2).
From left to right, the rendered original volumetric images and the volumetric images reconstructed
by the FP, FPT, and 3D-DCT are shown. Images are compressed to 128 × 128 × 128 voxel. (a)
Original, (b) FP, (c) FPT, (d) 3D-DCT

We evaluated the data compression results by three methods: the FP, FPT and 3D-
DCT. Figures 8.19 and 8.20 show the reconstructed results for 64 × 64 × 64 and
128×128×128 voxels, respectively, from the lung data of Fig. 8.17b. These results
show that the 3D-DCT and tensor PCA reduce the sizes of volumetric images while
preserving the interior air-tube trees of the lungs. The profile curves of the CCRs
of tensor PCA by three methods FP, FPT and 3D-DCT in Fig. 8.22 imply that
the mathematical abilities of these three methods are compatible. Finally for the
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Fig. 8.21 Principal components of dimension-reduced data. For the compression of volume data,
the FP, FPT and 3D-DCT are used. Top, middle and bottom rows show the results obtained by the
FP, FPT and 3D-DCT, respectively. From left to right, data reconstructed by using the 4, 10 and 20
major principal components of FP are shown

lungs, we show the reconstruction results using several major principal components
using three methods for the reduction of the size of the volumetric images to
128 × 128 × 128 voxels. In Fig. 8.21, the top, middle and bottom rows show the
results obtained by the FP, FPT and 3D-DCT, respectively. From left to right, data
reconstructed by using the 4, 10 and 20 major principal components of FP are
shown. These results show that the major components of the three methods possess
similar geometric properties for the reconstruction of volumetric images.
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Fig. 8.22 CCR of FP for reduced volume data. The data is reduced by the FP, FPT and 3D-DCT.
For the computation of the CCR, all eigenvalues of modes 1, 2 and 3 are used after sorting the
eigenvalues in decreasing order

Classification and Recognition

Tensor Subspace Method

While the left ventricles are beating, they are deforming from averages [11]. These
temporal deformations of moving left ventricles cause geometric perturbations to
the temporal averages. These moving organs with temporal perturbations can be
modelled as elements in subspaces [19].

Using the volumetric images of lungs shown in Figs. 8.17 and 8.18 we have
evaluated the performance of the classification. The reduction of volumetric data
by tensor PCA is applied for the classification. The original volumetric images are
compressed to 128 × 128 × 128 voxels by using the FP, FPT and 3D-DCT. 10
volumetric images for each gender are separated to a test set of 5 images and the
learning set of 5 images.

The recognition rate is plotted against the compression rate (361 × 361 ×
361)/(k × k × k) for k = 1, 2, · · · , 32, where k is the number of principal
components in each mode. The curves in Fig. 8.22 imply that the three methods
are compatible for the recognition of volumetric images.

Mutual Tensor Subspace Method

Volumetric sequences of left ventricles are extracted by using the landmarks of the
endocardium of left ventricles. These landmarks are manually given and provided
as part of the dataset. Figure 8.23 illustrates the extracted sequences of volumetric
data for 17 patients. Figure 8.24 shows the sagittal slices of the original cardiac MRI
dataset with landmarks. Table 8.4 summarises the number and size of the extracted
volumetric data in all phases. Figure 8.23 illustrates the extracted sequences of
volumetric data for 17 patients. Figure 8.24 shows the sagittal slices of the original
cardiac MRI dataset with landmarks.
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Fig. 8.23 Illustration of extracted cardiac MRI dataset. These sequences of volumetric data were
extracted from the cardiac MRI dataset with landmarks of the endocardium of left ventricles [1]. As
shown in Table 8.4, we have 17 sequences of volumetric data of left ventricles for 17 patients. Each
sequence of volumetric data represents one cardiac beat by 20 frames. Every sequence starts with
the maximally expanded state. Red and white parts of the volume rendering of the data represent
the muscle and inner space of left ventricles, respectively. We set the centre of the first sagittal slice
of each volume data to the centre of the slice

Fig. 8.24 Cardiac MRI dataset [1]. These images represent the sagittal slices of volumetric data.
The sagittal direction is expressed by the z-axis for the description of depth. Green and red lines
depict the endocardium and epicardium of the left ventricle, respectively. From (e) to (h), the
ventricle shrinks then expands. (a) z = 1, t = 1, (b) z = 4, t = 1, (c) z = 7, t = 1, (d)
z = 10, t = 1, (e) z = 5, t = 1, (f) z = 5, t = 5, (g) z = 5, t = 10, (h) z = 5, t = 15
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Table 8.4 Size and number of volumetric data of left ventricles (see footnote 1)

�category
�data Data size Reduced data

/category [voxel] size [voxel]

CA data (see footnote 1) 17 20 81 × 81× 63 d × d × d
�category represents the number of individuals. �data/category represents the number of frames
in one sequence of left ventricles. The data size is the original size of the volumetric data. The
reduced data size is the size of the volume data after reduction. We set d ∈ {8, 16, 32}

Fig. 8.25 Shape and inner texture of original image and volumetric images of left ventricles
reconstructed from compressed data by the FP, FPT and 3D-DCT. Upper and lower rows show
rendered volume data and sagittal slice of the volumetric data, respectively. In upper row, red
and white parts depict the muscle of the heart and the texture, respectively, for the original and
approximated volumetric images. In these approximated volumetric images the data are reduced to
the size 16× 16 × 16 voxels. (a) Original, (b) FP, (c) FPT, (d) 3D-DCT

We separate these dimension-reduced data into training and test data. From
the training data set, the tensor subspace of each category is constructed. For
the dimension reduction, we apply HOSVD, the FP and FPT to all the extracted
volumetric data in all categories. For evaluations of the robustness and stability of
the methods with respect to the size of the data, we set the sizes of the dimension-
reduced data to 8× 8× 8, 16× 16× 16 and 32× 32× 32 voxels.

Figure 8.25 illustrates the results of the compression between the original and
dimension-reduced data for the three methods. In Fig. 8.25a–d, rendered images
of the original and reconstructed volume data are presented. For the data reduced
by the FP and FPT, the shapes of the volumetric data reconstructed from the
compressed data appear to be almost the same. The data reconstructed from the
data reduced by the 3D-DCT have the closest shape to the original volumetric data.
In Fig. 8.25e–h, the differences in the appearances between the sagittal slices of the
reconstructed data and the original shape are compared. Compared to the original
data shown in Fig 8.25a, the 3D-DCT gives a blurred inner texture as shown in
Fig. 8.25h. As shown in Figs. 8.25f, g, the compression by the FP and FPT extracts
the outline shape of the ventricle without the inner texture. Figure 8.26 illustrates
data reconstructed from the principal components of the dimension-reduced volume
data. This result shows that the principal components of the dimension-reduced
volume data are almost the same for the three methods.
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Fig. 8.26 Extracted principal components of dimension-reduced volume data. The dimension-
reduction of data is archived by the FP, FPT and 3D-DCT. The major 20 principal eigenvectors for
three mode are selected for extraction. Top and bottom images show shapes and inner textures of
the reconstructed volumetric images. (a) FP, (b) FPT, (c) 3D-DCT

In the dimension-reduced data, each sequence consists of 20 frames. We use
odd and even frames in the compressed data as training and test data, respectively.
Applying the FP to training data of each category, we construct 17 categories
as tensor subspaces for the TSM and MTSM. We use only odd frames for the
construction of tensor subspaces of categories to evaluate robustness. If the MTSM
classifies a category of even frames, we conclude that this classifier is robust to the
small geometric changes between frames.

The recognition rate is defined as the successful classification ratio of individuals
in 1000 classifications. In the selection of query for the TSM, we randomly select
one of 17 individuals and one of the test data of the individual. From a left ventricle
sequence of a patient, we construct the query subspaces for the MTSM. We set the
dimensions of query subspaces are one, two and three. Figures 8.27 and 8.28 show
the recognition rate of left ventricles for the TSM and MTSM, respectively.

In Fig. 8.27, the profiles of recognition curves for HOSVD, the FP, FPT and 3D-
DCT are almost the same for compression ratios higher than 103. Furthermore, for
the compression ratios higher than 103, the data compressed by these four methods
derive almost the same recognition rates. These recognition rates are the same
as those of the tensors of the original size. Moreover, the TSM with five major
eigenvectors in each mode provides accurate recognition rate. Figure 8.28a–c show
the recognition rate of the MTSM if the query subspace is spanned by one query.
The results show that the recognition properties are almost the same for data with
the reduced sizes of 8× 8× 8, 16× 16× 16 and 32× 32× 32 voxels. The results
in Fig. 8.28d–i imply that the MTSM achieves more robust recognition than the
TSM against small geometric perturbations by using a query subspace if the query
subspace is spanned by a few queries with geometric perturbations. These numerical
examples lead to the conclusion that the 3D-DCT accurately approximates the
performance of tensor PCA. Furthermore, the recognition by the TSM and MTSM
is accurate and robust for volumetric images containing geometric perturbations as
temporal deformation.
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(a) (b) (c)

6 5 4 3 2 1 6 5 4 3 2 6 5 4 3

Fig. 8.27 Recognition rates of left ventricles for original and compressed tensors using the TSM.
The volumetric images are reduced to (a) 32× 32× 32, (b) 16× 16× 16 and (c) 8× 8× 8 voxels.
HOSVD, the FP, FPT and 3D-DCT reduces the image sizes. Vertical and horizontal axes represent
recognition rate and compression ratio, respectively. For the original size D = 81 × 81 × 63 and
the reduced size K = k × k′ × k′, the compression ratio is given by D/K

Conclusions

We have developed two relaxed closed forms for tensor principal component
analysis (PCA). The first method solves a system of eigenmatrix problems using
the unfolding of a tensor instead of solving a variational optimisation problem
iteratively. Our method solves a system of variational optimisation problems derived
from the original expression of the Tucker-3 decomposition with the orthogonal
constraints for solutions. The second method is based on the low-pass filtering of
multidimensional signals using the discrete cosine transform (DCT) since the DCT
efficiently approximates the Karhunen-Loève (K-L) transform. Such orthogonal-
projection-based data compression extracts outline shapes of biomedical objects
such as organs and the interior structures of cells. Furthermore, we have numerically
evaluated the performance of these algorithms for compressing volumetric medical
images. Moreover, we expressed the pyramid transform (PT) of volumetric data as
the mode decomposition of tensors. This algebraic property of the PT allow us to
geometrically compare data reduction by the PT with that of tensor PCA for data
compression and reduction.

We applied three-way tensor PCA to the extraction of outline shapes of volumet-
ric data and their classification. In the numerical examples, we demonstrated that
three-way tensor PCA extracts the outline shape of volumetric images. Furthermore,
the tensor subspace method (TSM) accurately classifies the extracted outline shapes.
Moreover, we showed that the 3D-DCT-based reduction approximated both the
outline shape and the texture of volumetric images.

Furthermore, we developed tensor-based multilinear classifiers, the tensor sub-
space method (TSM) and mutual tensor subspace method (MTSM) for third-order
tensors. In the numerical examples, we evaluated the performance of dimension
reduction by HOSVD, the FP, FPT and 3D-DCT for the recognition of individual
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(a) 32×32×32 (b) 16×16×16 (c) 8×8×8

(d) 32×32×32 (e) 16×16×16 (f) 8×8×8

(g) 32 32 32 (h) 16 16 16 (i) 8 8 8

6 5 4 3

6 5 4 3

6 5 4 3 2

6 5 4 3 2
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6 5 4 3 2 1

6 5 4 36 5 4 3 26 5 4 3 2 1

Fig. 8.28 Recognition rates of left ventricles for compressed tensors. We adopt the reduces sizes
of HOSVD, the FP, FPT and 3D-DCT compress the original volumetric image to 32 × 32 × 32,
16 × 16 × 16 and 8 × 8 × 8. To construct a query subspaces of TMSM, we select one, two and
three queries. The top, middle and bottom rows show recognition rates for the case of one, two
and three images for the reconstruction of query subspaces, respectively. Vertical and horizontal
axes represent the recognition rate and compression ratio, respectively. The original size D =
81× 81× 63 is reduced size K = k× k′ × k′. The compression ratio is measured byD/K , where
the original and compressed sizes are D = 81 × 81× 63 and K = k × k′ × k′, respectively
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left ventricles. In the reduction, the FP and FPT extracted the outline shapes of
left ventricles. The results of the evaluations showed that the dimension reduction
by HOSVD possesses the same performance as the FP and FPT, which are
non-iterative computation procedures. In the evaluations, the TSM and MTSM
accurately recognised individual left ventricles even though cardiac MRI images
include geometric perturbations. Using a query subspace spanned by more than
one frame, the MTSM achieved more stable recognition and robustness against
geometric perturbations than the TSM.

In traditional methods in medical image analysis, the outline shapes of objects
such as organs and the statistical properties of interior textures are independently
extracted using separate methods. However, tensor PCA for volumetric images
allows us to simultaneously extract both the outline shapes of volumetric objects
and the statistical properties of the interior textures of volumetric images from data
projected onto a low-dimensional linear subspace spanned by tensors. The extension
of the algorithms to higher-order multi-way data analysis, such as the spatio-
temporal volumetric analysis of moving and deforming objects, is straightforward
using higher-order tensors.

The time complexity of PCA for vector is O(n3) since the main procedure
of PCA is achieved by solving eigenvalue problem. TCPA requires O(k × n3)

computation times where k is the iteration times to guaranty numerically con-
vergence of the iteration process. On the other hand the 3D-DCT achieves in
O(n logn) computation times with numerically acceptable accuracy. Since the DCT
matrix is the eigenmatrix of the Laplacian operation, the 3D-DCT method is a
harmonic analysis for volumetric data. PCA is a method to derive eigenfunctions
from data. The methods based on PCA allow us to operate both shapes and interior
textures of volumetric data. This is an advantage of 3D-DCT over Laplace-Beltrami
eigenfunctions for shape analysis [3].
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Appendix

The linear reduction operation R and its dual E are defined as

g(x) = Rf (y) =
∫

R3
w3(u)f (2x − u)du, (8.60)

Eg(x) = 23
∫

R3
w3(u)g

(

x − u

2

)

du. (8.61)
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where w3(x) = w(x)w(y)w(z) for x = (x, y, z)� and

w(s) =
{ 1

2 (1− |s|
2 ), |s| ≤ 2

0, |s| > 2
(8.62)

These processes are achieved by computing a weighted average of the image values
in a finite small region, which is called the window for the operation.

Setting w±1 = 1
4 and w0 = 1

2 , for the two-dimensional sampled function
fijk = f (Δi,Δj,Δk), the transforms of Eqs. (8.60) and (8.61) are respectively
described as

Rfkmn =
1
∑

p,q,r=−1

wpwqwrf2k−p 2m−q 2n−p, (8.63)

Efkmn = 1

23

2
∑

p,q,r=−2

wpwqwrfk−p
2

m−q
2

n−r
2
, (8.64)

where the summation is achieved for (k−p)2 , (m−q)2 and (n−r)
2 being integers. These

procedures are called the pyramid transform and extension, respectively. These two
operations involve the reduction and expansion of the image sizes. Therefore, image
features are extracted in the higher-layer images of the pyramid transform.

Setting

R = 1

4
(I ⊗ (0, 1)�)(D + 4I ) (8.65)

for the second-order differential matrix D with the Neumann condition such that

D =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−1 1 0 0 · · · 0 0
1 −2 1 0 · · · 0 0
0 1 −2 1 · · · 0 0
...
...
...
...
. . .
...
...

0 0 0 · · · 0 1 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (8.66)

the three-dimensional pyramid transform

gpqr =
1
∑

i,j=−1

wiwjwkf2p−i 2q−j 2r−k,, (8.67)

is redescribed

Y =X ×1 R ×2 R ×3 R (8.68)

using the Tucker-3 decomposition of X .
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Since the eigenmatrix of D is the DCT-II matrix the three-dimensional pyramid
transform processes the following property.

Property 8.2 Setting LN = L({ϕk}2
N−1
k=0 ), for three-dimensional images, the pyra-

mid transform is a linear transform from LN × LN × LN to L
N
2 × LN2 × LN2 .

Equation (8.68) directly derives outlines of volumetric shapes by enforcing and
inhibiting low- and high-frequency parts, respectively, on the DCT of the volumetric
shape. Therefore, the dominant operation in the pyramid transform is the relaxed
Karhunen-Loève transform using the DCT.
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Chapter 9
An Incremental Reseeding Strategy
for Clustering

Xavier Bresson, Huiyi Hu, Thomas Laurent, Arthur Szlam,
and James von Brecht

Abstract We propose an easy-to-implement and highly parallelizable algorithm for
multiway graph partitioning. The algorithm proceeds by alternating three simple
routines in an iterative fashion: diffusion, thresholding, and random sampling.
We demonstrate experimentally that the proper combination of these ingredients
leads to an algorithm that achieves state-of-the-art performance in terms of cluster
purity on standard benchmark data sets. We also describe a coarsen, cluster and
refine approach similar to Dhillon et al. (IEEE Trans Pattern Anal Mach Intell
29(11):1944–1957, 2007) and Karypis and Kumar (SIAM J Sci Comput 20(1):359–
392, 1998) that removes an order of magnitude from the runtime of our algorithm
while still maintaining competitive accuracy.
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Introduction

One of the most basic unsupervised learning tasks is to automatically partition data
into clusters based on similarity. A standard scenario is that the data are represented
as a weighted graph. Data points correspond to vertices on the graph while edges
between vertices encode the similarity between data points. Many of the most
popular and widely used clustering algorithms, such as spectral clustering, fall into
this category. Despite the vast literature on graph-based clustering, the field remains
an active area for both theoretical and practical research.

In this work, we propose a resampling-based spectral algorithm for multiway
graph partitioning. On graphs that contain reasonably well-balanced clusters of
medium scale, the algorithm provides a strong combination of accuracy, efficiency
and robustness to noise in the graph construction process. The algorithm is also
exceedingly simple, intuitive and trivial to implement. A MATLAB code consists
of fewer than 40 lines, for instance (the code is provided in the Appendix). It also
parallelizes trivially, and can therefore scale gracefully to large numbers of clusters
as well as to graphs with large numbers of vertices.

We validate these claims via an extensive experimental evaluation of the algo-
rithm. We also provide a detailed algorithmic comparison using recent clustering
algorithms that claim state-of-the-art results. These experiments demonstrate that
our algorithm achieves state-of-the-art performance in terms of cluster purity while
running faster than the other highly accurate clustering methods (e.g. [4, 16]) that
we compare against. We also provide experiments to demonstrate the robustness
of the algorithm with respect to noise and perturbations in the underlying graph.
While many highly accurate algorithms exhibit a sharp decrease in accuracy if
the input graph is corrupted by noise, our algorithm remains stable: the accuracy
of our algorithm decays slowly and gracefully with increasing levels of noise.
These results, when taken together, lead to an algorithm with a quite appealing
combination of simplicity, performance and ease in out-of-the-box usage.

Description of the Algorithm

The main idea behind our algorithm arises from a well-known and widely used
property of the random walk on a graph. Specifically, a random walker started
in a low conductance cluster is unlikely to leave that cluster quickly [11]. This
fact provides the basis for transductive label propagation methods [18] as well as
for “local” clustering methods [14]. In label propagation, for instance, an oracle
provides a set of labeled vertices that are propagated along the graph using a random
walk matrix or a diffusion matrix. Each unlabeled vertex is then associated to the
label which, after being propagated, best represents the given unlabeled vertex.

Our algorithm simply iterates upon this basic idea. Assume that the graph has
R well-defined clusters of comparable size and low conductance. If we knew these



9 An Incremental Reseeding Strategy for Clustering 205

Fig. 9.1 Illustration of the Incremental Reseeding (INCRES) Algorithm for R = 3 clusters. The
various colors red, blue, and green identify the clusters. (a) At this stage of the algorithm, s = 2
seeds are randomly planted in the clusters computed from the previous iteration. (b) The seeds
grow with the random walk operator. (c) A new partition of the graph is obtained and used to plant
s + ds seeds into these clusters at the next iteration

clusters in advance, we could then select a handful of “seed” vertices in the center
of each cluster. We would then expect to obtain good results from a transductive
label propagation by using these seeds as labels. In an unsupervised context we
cannot, of course, a-priori place seeds in the center of each cluster. To overcome
this, we instead place a handful of seeds at random. We then apply a random walk
matrix or diffusion matrix a few times to propagate these seeds. We finally obtain a
temporary clustering by assigning each vertex to the seed which, after propagation,
best represents the vertex. We then choose new seeds from these temporary clusters
and iterate the process. If the clusters improve then the seeds will likely improve,
and vice-versa. This incites a feed-back loop and we get a virtuous cycle. We can
then excite the speed and improve the quality of this cycle by gradually drawing
more and more seeds throughout the process. We refer to this idea as an incremental
reseeding strategy. Figure 9.1 depicts this cyclic process graphically.

The Basic Algorithm

To formalize these ideas, let G = (V ,W) denote a weighted, connected graph on
N vertices V = {v1, . . . , vN } with edge weights W = {Wij }Ni,j=1 that encode a
measure of similarity between each pair (i, j) of vertices. LetD denote the diagonal
matrix of (weighted) vertex degrees. The algorithm starts from a random partition
P = (C1, . . . ,CR), C1 ∪ · · · ∪ CR = V , Cr ∩ Cq = ∅ (r �= q) of the vertices.
In other words, each vi is assigned to one of the R clusters uniformly at random.
Let s = 1 denote the initial number of seeds. At each of the successive iteration,
we update the current partition P = (C1, . . . ,CR) according to the steps outlined
in Algorithm 9.1. At the beginning of each iteration, the routine PLANT(P ,s) will
sample s seeds from each of the R clusters Cr in the current partition P uniformly
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Algorithm 9.1: INCRES algorithm
Input: Similarity matrixW , seed increment ds, number of clusters R.
Initialization: s = 1, random partition P.
repeat

F ← PLANT(P, s)
U ← GROW(F,W)
P ← HARVEST(U)
s ← s + ds

until P converges;
Output: P

at random. These Rs seeds furnish the temporary labels that the GROW routine
then propagates along the graph using a random walk matrix. We initialize GROW
with an N × R matrix U, where Ui,r = 1 if vertex vi was drawn from cluster
Cr and Ui,r = 0 otherwise. We then iteratively apply the random walk transition
matrixWD−1 to U until each vertex has a nonzero probability of being visited by a
random walker, i.e. until each entry Ui,r is nonzero. Finally, the routine HARVEST
simply assigns each vertex vi to its most likely cluster, or in other words the cluster
for which Ui,r is maximal. This produces a new partition P of the vertices into R
clusters. We then increment s to s + ds, and use this partition and number of seeds
s to initialize PLANT at the beginning of the next iteration. We refer to this overall
procedure as the Incremental Reseeding Algorithm (INCRES).

function PLANT(P, s)
Initialize F as an N-by-R matrix of zeros.
for r = 1 to R do

for k = 1 to s do
Draw at random a vertex i in cluster Cr .
Fi,r ← Fi,r + 1

end for
end for
return F .

end function

function GROW(F,W )
Initialize U as an N-by-R matrix equal to F .
while mini minr Ui,r = 0 do

U ← (

WD−1
)

U

end while
return U .

end function

function HARVEST(U )
for r = 1 to R do

Cr = {i : Ui,r ≥ Ui,q for all q}
end for
return P = (C1, . . . ,CR)

end function
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The overall routine has only a single parameter ds that controls the linear rate at
which the number of seeds drawn at each iteration increases. In practice, we select

ds = speed× 10−4 × N
R

(9.1)

for some proportionality constant speed between one and ten. By rescaling ds in
this way, a constant of proportionality speed = 1 corresponds to a total of s =
0.1N/R seeds planted in each cluster after 1000 iterations. Assuming well-balanced
clusters of roughly equal size, approximately one-tenth of each cluster is sampled
after 1000 iterations. Drawing a significant fraction of each cluster will cause the
subsequent clustering to stabilize, leading to eventual convergence of the algorithm.
Using around 10% of labels in each cluster is a typical level at which INCRES will
stabilize.

The parameter ds therefore represents a “timestep” for INCRES, and the overall
algorithm behaves well with respect to this parameter. In general, small increments
ds will lead to slower convergence at higher accuracy while larger increments
ds will lead to faster convergence but potentially less accurate solutions. Our
experiments show that speed = 1 works remarkably well for a large variety of data
sets. We also provide results for speed = 5, which yields faster stabilization with
slightly less accuracy, to show that the algorithm is indeed robust and predictable
with respect to the choice of this parameter.

The general INCRES framework also proves robust to implementation choices
for the three main routines. For instance, in addition to the random walk matrix
WD−1, there exists a variety of alternative means to propagate labels along a
graph. By-and-large, the overall INCRES strategy does not depend heavily upon
the particular implementation of GROW, so long as it realizes the basic idea of label
propagation in one form or another. For instance, we have found that replacing the
random walk step U ← WD−1U with a diffusion step U ← D−1WU or U ←
D−1/2WD−1/2U will give similar results in many circumstances. Occasionally, we
have found that utilizing a “personalized Page-Rank” step

U ← αWD−1U + (1− α)F (9.2)

can give better performance on small data sets that contain a large (relative to the
size of the data set) number of clusters. Here the parameter 0 < α < 1 denotes
a length-scale that controls the extent of diffusion and F denotes the input to the
GROW routine. A propagation step of the form (9.2) is also used in Pagerank-
NIBBLE [1] and NMFR [16], up to replacing WD−1 with D−1/2WD−1/2 in the
latter case. As another example, choosing to sample with or without replacement
in the PLANT routine leads to essentially no significant difference in the resultant
clusterings.



208 X. Bresson et al.

Relation with Other Work

Our methodology relies upon and incorporates number of ideas from transductive
learning. In particular, we leverage the notion of label propagation [18]. In the
standard label propagation framework, an oracle provides a set of labeled points
or vertices. These labeled vertices form either nonzero initial conditions or heat
sources for a discrete heat equation on the graph. The second step of the INCRES
algorithm (the GROW routine) precisely corresponds with a label propagation of
the random labels returned from the first step of the algorithm (the PLANT routine).

The proposed algorithm has a quite intuitive and appealing motivation based
on a first principle approach to graph partitioning, in the sense that INCRES
combines a simple iterative application of label propagation and thresholding to
handle unsupervised learning. At a deeper level, we may also view INCRES as a
leading-order approximation of the algorithm from [4] that optimizes the product
cut (PCUT) objective. The PCUT algorithm optimizes the “likelihood”

L (P) :=
R
∏

r=1

∏

vj∈Cr
probCr (vj )

of a partition, where the “probability distribution” probCr (vj ) of a cluster Cr � V
results from iterating the personalized Page-Rank step (9.2) until convergence.
The subsequent optimization of L (P) from [4] then proceeds using a sequence
of three routines analogous to the PLANT, GROW and HARVEST routines of
INCRES. While the PLANT and HARVEST strategies from [4] barely differ from
the INCRES algorithm, the GROW routine

function GROWPCUT(F,W )

̂F = F diag(1T F )−1

Solve
(

Id − αWD−1
)

̂U = (1− α)̂F for ̂U

F̃ik = Fik/̂Uik
Solve

(

Id − αD−1W
)

Ũ = (1− α)F̃ for Ũ

return U = Ũ + log ̂U .

end function

for PCUT requires two label propagation steps performed in series. After
normalizing F to make ̂F column-stochastic, the solution ̂U of the first system
comes from iterating

U ← αWD−1U + (1− α)̂F (9.3)
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until convergence. The solution Ũ of the second system similarly comes from an
iterative diffusive process

U ← αD−1WU + (1− α)F̃ . (9.4)

In other words, the GROW function for the PCUT algorithm also performs a type
of label propagation on randomly planted seeds, but it does so in quite an expensive
way. The dual diffusions result in twice the complexity of INCRES, and moreover,
the second PCUT diffusion depends on the first; they cannot be performed in
parallel. While performing GROW in this way leads to a rigorous strategy for opti-
mizing the likelihood L (P), in practice the second diffusion proves unnecessary.
At the outset of the algorithm log ̂U dominates Ũ by an order of magnitude, and
approximating the PCUT algorithm by neglecting this term essentially results in
INCRES. Making this approximation allows us to perform label propagation in a
more efficient way, and as a consequence, we obtain an algorithm that runs more
than twice as fast as the PCUT algorithm. The INCRES algorithm has a heuristic
dynamic process rather than a rigorous energetic framework as its foundation, but
as we show in the experimental section, the two approaches achieve comparable
results in terms of accuracy.

The NIBBLE algorithm and its relatives [1, 11, 13, 14] also relate to INCRES
in the sense that they obtain unsupervised clusterings from label propagation
by planting random seeds. These works cluster the entire graph in a sequential
manner: at each step a single random vertex is drawn and propagated. Then a
sweep is performed to extract a small cluster around this vertex. These algorithms
function well for problems aimed at extracting many small clusters from graphs
with fine structure. In contrast, we perform multiway partitioning directly instead
of recursively. We also aim at medium scale clusters instead of small scale clusters.
We also utilize a significantly different random seeding strategy.

The INCRES algorithm alternates between label propagation (GROW) and
thresholding (HARVEST). The idea of iteratively alternating between a few steps of
label propagation and subsequent thresholding has also appeared in a transductive
learning context [7], although the presence of labeled information results in a differ-
ent implementation of the propagation step. The non-negative matrix factorization
method [16] also incorporates random walk information in a manner that resembles
the GROW routine, but otherwise the underlying principles of the algorithms differ
substantially.

Finally, the algorithms GRACLUS [6] and METIS [8] directly inspired the multi-
grid version of our algorithm. We use essentially the same coarsening algorithm,
but rely upon a different clustering on the coarsest scale (INCRES vs. kernelized
k-means or pure spectral clustering). Our refinement technique also differs substan-
tially. The INCRES algorithm relates to the kernelized k-means procedure used in
GRACLUS even in the single level case: we can essentially interpret the GROW
routine as the “maximization” step in an alternating minimization for a kernelized
k-means. However, the kernel is a power of the normalized weights and the power
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may depend on the cluster, so it is not exactly the same. The “expectation” step in
our algorithm is replaced by sampling, and instead of having a single representative
for a class, the number of representatives increases as the algorithm progresses.
Using power iterations of the weight matrix W directly for clustering has appeared
in [9, 10]. These works utilize the power iterations to generate an embedding of
the vertices of the graph, which is then clustered using k-means. These methods
can also be considered as kernelized k-means methods, with a power of the weights
providing the kernel.

Because the GROW function we use iterates the random walk on the graph, our
algorithm is a form of spectral clustering. However, our main contribution to the
clustering problem, and the primary novelty in our algorithm, is the incremental
reseeding process. This process is not fundamentally tied to the INCRES algorithm
presented here—it seems to be quite universal and can be adapted to other clustering
methods. However, combining reseeding with the random walk method offers an
excellent combination of accuracy, speed, and robustness.

A Multigrid Speedup

The main computational burden of the basic INCRES algorithm lies in the GROW
routine. Its computational cost scales like O(R × E × diam(G)) in the worst case,
whereE denotes the number of edges in the graph and diam(G) denotes its diameter.
In practice, the expected diameter of the graph effectively determines the cost of
each step in the algorithm. For graphs commonly used in machine learning, such
as k-nearest neighbor graphs, the number of matrix multiplications required in each
call to GROW is generally quite small as a result.

However, the computational burden of the GROW routine still causes the
straightforward implementation of our algorithm (in serial) to run two orders of
magnitude slower than popular multiscale coarsen-and-refine algorithms such as
GRACLUS [6] and METIS [8]. As we now show, pursuing a similar coarsen-and-
refine strategy allows us remove an additional order of magnitude from the runtime
of our algorithm. In many cases, this multiscale version of INCRES still maintains
the consistently high level of accuracy obtained by the basic version.

Coarsening Phase We follow the same coarsening procedure used by GRACLUS
and its relatives [6, 8] in our multilevel approach. We construct an agglomerative
hierarchy of weighted graphs in a recursive fashion, beginning from the original
weighted graph. We therefore set G1 := G = (V ,W) and then successively
transform the vertex set V 1 = V into a sequence of smaller weighted graphs
G2,G3, . . . ,GL in such a way that the size of each corresponding vertex set
decreases |V 1| > |V 2| > . . . > |V L| in a geometric fashion. The procedure
terminates once the number of vertices |V L| in the current graph falls below some
number n0, which we take as n0 = 20R in our experiments.
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The transition between two successive levels Gl and Gl+1 proceeds as follows.
Each vertex of Gl begins unmarked. We then visit the vertices in V l one-by-one
according to their degree, from smallest to largest. When visiting a given vertex vi ,
we merge it with its neighboring unmarked vertex vj that maximizes

Wij

di
+ Wij
dj
.

The two merged vertices vi and vj are then marked, and the process continues. If
at any stage a vertex vi has no unmarked neighbors, we simply mark vi and leave
it as a singleton. The vertices vl+1

i in Gl+1 therefore correspond to pairs of vertices
{vli1 , vli2} from Gl , so that the number of vertices |V l | roughly halves at each stage.

Given two new vertices vl+1
i = {vli1, vli2 } and vl+1

j = {vlj1 , vlj2}, we define the

weightsW(l+1)
i,j between these two vertices according to the relations

W
(l+1)
ij := W(l)i1j1 +W

(l)
i1j2
+W(l)i2j1 +W

(l)
i2j2
,

W
(l+1)
ii := W(l)i1,i1 + 2W(l)i1i2 +W

(l)
i2i2
,

i.e. simply by summing the weights between all possible pairs of vertices in the two
merged pairs.

Base Clustering and Refinement The clustering phase begins with a base clus-
tering of the coarsest graph GL in the hierarchy. We simply use the basic version
of INCRES applied to GL to obtain this initial clustering. We then extrapolate this
clustering to the next level GL−1 in the hierarchy, refine the clustering of GL−1

using INCRES again, and repeat until we obtain a clustering of the original graph at
the finest level.

The extrapolation procedure we use is straightforward: a clustering of Gl+1

defines a corresponding clustering of Gl by simply assigning each vertex vli1 and

vli2 in the pair vl+1
i = {vli1 , vli2} to the cluster of its parent. We subsequently refine

this clustering using a slightly modified version the original INCRES procedure.
Let Nl := |V l | denote the number of vertices in the current graph. We set the initial
number of seeds to si = .2Nl, the final number of seeds to sf = .5Nl, and we
specify a set number of iterations I l of INCRES to perform at the current level. We
then select the seed increment parameter ds so that the number of seeds s transitions
from si to sf in exactly I l iterations. We perform IL = 200 steps of INCRES at
the coarsest level and I 1 = 1 step of INCRES at the finest level. We then select
the number of iterations I l to perform at the lth level as a geometrically decreasing
progression between these two endpoints.



212 X. Bresson et al.

Experiments

We now provide the results of our extensive experimental evaluation of the algo-
rithm. This section shows that our algorithm achieves state-of-the-art performance
in terms of cluster purity on a variety of real word data sets while running faster
than the other comparably accurate clustering methods. We also show that INCRES
is very robust to perturbations in the input graph.

The Algorithms We compare our method against five clustering algorithms that
rely on variety of different principles. We select algorithms that, like our algorithm,
partition the graph in a direct, non-recursive manner. The PCut algorithm [4]
shares many of the features and motivations of the INCRES algorithm, but has
twice the complexity per step. The NCut algorithm [17] is a widely used spectral
algorithm that relies on a post-processing of the eigenvectors of the graph Laplacian
to optimize the normalized cut energy. The NMFR algorithm [16] uses non-
negative matrix factorization and graph-based random walk principles in order to
factorize and regularize the original input similarity matrix. The LSD algorithm [2]
provides another non-negative matrix factorization algorithm. It aims at finding a
left-stochastic decomposition of the similarity matrix. The MTV algorithm from
[3] provides a total-variation based algorithm that attempts to find an optimal
multiway Cheeger cut of the graph by using �1 optimization techniques. The last
three algorithms (NMFR, LSD and MTV) all use NCut in order to obtain an initial
partition. By contrast, we initialize our algorithm with a random partition. We use
the code available from [17] for NCut, the code available from [16] to test the
two non-negative matrix factorization algorithms (NMFR and LSD) and the code
available from [3] for the MTV algorithm.

The Data Sets We provide experimental results on four text data sets (20NEWS,
RCV1, WEBKB4, CITESEER) and four data sets containing images of handwritten
digits (MNIST, PENDIGITS, USPS, OPTDIGITS). We processed the text data sets
by removing a list of stop words as well as by removing all words with fewer than
twenty occurrences (for 20NEWS) and fewer than five occurrences (for all others)
across the corpus. We then construct a 5-NN graph based on the cosine similarity
between tf-idf features. For variety, we include some weighted graphs (RCV1 and
CITESEER) as well as some unweighted graphs (20NEWS and WEBKB4). For
MNIST, PENDIGITS and OPTDIGITS we use the similarity matrices constructed
by [16], where the authors first extract scattering features [5] for images before
calculating an unweighted 10-NN graph. For USPS we constructed a weighted 10-
NN graph from the raw data without any preprocessing. We provide the source for
these data sets and more details on their construction in the supplementary material.

Accuracy Comparisons In Table 9.1 we report the accuracy obtained by the
selected algorithms NCUT LSD, NMFR, MTV, PCUT and INCRES (for two values
of the timestep parameter, speed = 1 and speed = 5) on the various data sets.
We use cluster purity to quantify the quality of the calculated partition, defined
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Table 9.1 Algorithmic comparison via cluster purity

PCUT INCRES INCRES

Data Size R RND NCUT LSD NMFR MTV (speed 1) (speed 1) (speed 5)

20NEWS 20K 20 6% 27% 34% 61% 36% 61% 61% 61%
RCV1 9.6K 4 30% 38% 38% 43% 43% 53% 55% 51%

WEBKB4 4.2K 4 39% 40% 46% 58% 45% 58% 57% 57%

CITESEER 3.3K 6 22% 23% 53% 63% 43% 63% 62% 62%
MNIST 70K 10 11% 77% 76% 97% 96% 97% 96% 94%

PENDIGIT 11K 10 12% 80% 86% 87% 87% 87% 89% 86%

USPS 9.3K 10 17% 72% 70% 86% 85% 89% 88% 87%

OPTDIGIT 5.6K 10 12% 91% 91% 98% 95% 98% 97% 95%

according to the relation

Purity = number of “successes”

N
= 1

N

R
∑

r=1

max
1<i<R

nr,i .

Here nr,i denotes the number of data points in the rth cluster that belong to the ith
ground-truth class. In other words, given a computed cluster we count a data point
as a success if it belongs to the ground truth class that best represents the cluster. We
allowed each iterative algorithm a total of 10,000 iterations to reach convergence.
Both INCRES, PCUT and MTV rely on randomization, so for these algorithm we
report the average purity achieved over 1000 different runs. The fourth column of
the table (RND) provides a base-line purity for reference, i.e. the purity obtained by
assigning each data point to a class from 1 to R uniformly at random. The boldface
numbers in the table indicate the highest purity score achieved on each data set.

Overall, INCRES, PCUT and NMFR significantly outperform the other algo-
rithms. This is especially true for text data sets. These three algorithms utilize a
random walk strategy to help “smooth” irregular graphs, such as the similarity
matrices obtained from text data sets. This strategy also contributes to the robustness
of these algorithms and to their solid performance across the full range of data sets.
However, the INCRES algorithm typically runs at least one order of magnitude
faster than the NMFR algorithm and more than twice as fast as the PCUT algorithm.
As that INCRES and PCUT obtain very similar purity scores, these results provide
evidence of the fact that the sophisticated GROW routine of the PCUT algorithm
does not lead to substantially better results than the simple and more efficient
GROW routine of the INCRES algorithm. The additional mathematical rigor of
PCUT does not translate into better results in practice, and it comes with a non-
trivial increase in computational cost.

Finally, note that the INCRES algorithm performs comparably when speed = 1
and speed = 5, demonstrating that the algorithm is robust with respect to the choice
of the seed increment parameter ds.
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Fig. 9.2 Purity curves for the four algorithms considered on two benchmark data sets (20NEWS
and MNIST). We plot purity against time for each algorithm over two different time windows.
The circular marks on each curve indicate the point at which the curve reaches 95% of its limiting
value. The corresponding times at which this happens are reported in Table 9.2. (a) 20NEWS (first
90 s). (b) 20NEWS (first 7 min). (c) MNIST (first 30 s). (d) MNIST (first 15 min)

Speed Comparisons Figure 9.2 illustrates the speed at which, LSD, MTV, NMFR
and INCRES converge toward their respective solutions. We ran each algorithm
for a total of 7 min on 20NEWS and for 15 min on MNIST. We report the purity
obtained by the algorithm at each iteration. For the randomized algorithm (INCRES
and MTV) the purity curves were obtained by averaging the results over 240 runs.
The overwhelming computational burden for all of these algorithms arises from the
sparse-matrix times full-matrix multiplications required at each step. The PCUT
algorithm (not shown) runs about two times slower than the INCRES algorithm
but otherwise achieves similar results. Each algorithm is implemented in a fair and
consistent way, and the experiments were all performed on the same architecture.

In order to give an indication of the speed/accuracy trade-off for each algorithm,
in Table 9.2 we record the time it took for the purity obtained by each algorithm
to reach 95% of its limiting value on both 20NEWS and on MNIST. Overall,
the simple INCRES algorithm provides accuracy comparable to the state-of-the-
art NMF algorithm [16], yet runs an order of magnitude faster. Timing results on
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Table 9.2 Computational
time Data NMFR MTV

INC. INC.

(spd1) (spd5)
20NEWS 3.7 min – 25.4 s 5.6 s

(57.7%) – (57.7%) (58%)
MNIST 4.6 min 1.8 min 4.8 s 3.1 s

(92.2%) (90.7%) (91.2%) (89.3%)

Table 9.3 Robustness comparisons

GRACLUS INCRES-ml INCRES

Noise NCUT LSD MTV (multilevel) (multilevel) (speed1)

20NEWS

+0% edges 27% 34% 36% 42% 59% 61%
+50% edges 21% 27% 20% 15% 19% 52%
+100% edges 18% 22% 11% 13% 12% 44%
+150% edges 15% 20% 10% 12% 10% 34%
+200% edges 14% 18% 9% 11% 9% 27%
MNIST

+0% edges 77% 76% 96% 97% 97% 96%

+50% edges 87% 94% 55% 93% 97% 97%
+100% edges 84% 93% 25% 80% 90% 97%
+150% edges 74% 87% 18% 63% 74% 97%
+200% edges 67% 82% 16% 52% 53% 96%

Bold values mean highest values—this is standard to use in this field

the data sets from Table 9.1 are consistent with those obtained for 20NEWS and
MNIST, in the sense that INCRES typically runs one order of magnitude faster than
NMFR on these data sets as well.

Robustness Experiments Table 9.3 reports accuracy results of various algorithms
on graphs that we corrupted by adding different levels of noise. We began with
the original 20NEWS graph used in Table 9.1 and added additional edges to the
graph uniformly at random. The original graph had e = 144, 632 edges. For the
experiment, we added 0.5e, e, 1.5e and 2e additional noise edges. For each of
these four levels of noise, we randomly generated 144 separate perturbed graphs.
The table reports, for each level of noise, the average purity obtained by each
algorithm on the 144 randomly generated matrices. We then proceeded to perturb the
original MNIST graph in a similar fashion. The original graph has e = 1, 027, 412
edges, and we randomly generated 120 graphs at each level of noise. This gives a
total of 1056 randomly generated graphs for this set of experiments. We provide
experimental results for all algorithms other than NMFR (it is far too slow to run to
convergence on all 1056 adjacency matrices) and PCUT (to avoid redundancy).

The results clearly elucidate the robustness of the INCRES algorithm with
respect to noise in the graph construction process. On the 20NEWS data set, for
example, all other algorithms experience a sharp decrease in accuracy as soon as
noise is added. In contrast, the purity of the INCRES algorithm slowly decreases in
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Table 9.4 Accuracy comparison for multilevel algorithms

Data Size METIS GRACLUS INCRES-ml

20NEWS 20K 42.4% 42.4% (0.05s) 58.6% (0.85s/0.07s)

RCV1 9.6K 34.1% 42.4% (0.01s) 47.9% (0.15s/0.03s)

WEBKB4 4.2K 37.9% 49.0% (0.01s) 53.9% (0.10s/0.02s)

CITESEER 3.3K 45.2% 53.5% (0.01s) 61.5% (0.11s/0.02s)

MNIST 70K 86.0% 96.9% (0.17s) 96.9% (1.99s/0.52s)

PENDIGIT 11K 67.3% 84.7% (0.02s) 88.8% (0.46s/0.05s)

USPS 9.3K 75.1% 86.9% (0.02s) 87.2% (0.34s/0.05s)

OPTIDIGIT 5.6K 83.0% 94.2% (0.01s) 95.0% (0.26s/0.03s)

Bold values mean highest values—this is standard to use in this field

a stable fashion. On the MNIST data sets, the results obtained by INCRES remain
essentially unchanged across all noise levels. The competing algorithms do not
exhibit this behavior. Interestingly, NCut and LSD actually obtain better results at
the 50% and 100% noise levels. Given that LSD relies on NCut for initialization, it
comes as no surprise that gains for NCut produce subsequent gains for LSD as well.
This pathological behavior still indicates a lack of robustness, in the sense that both
algorithms exhibit a high degree of sensitivity to changes in the underlying graph.

Multigrid Experiments Table 9.4 reports the accuracies and run times of the
coarsen and refine algorithms METIS [8], GRACLUS [6] and the multilevel version
of our reseeding algorithm. We refer to the multilevel version of INCRES as
INCRES-ml to distinguish it from the basic version. The reported purity values
correspond to the average accuracy obtained over 500 trials of each routine. By and
large, INCRES-ml obtains clustering of higher quality than the two other multilevel
algorithms. This comes at a cost of one order of magnitude in computational time.

The computational cost that INCRES-ml incurs at level l of the graph hierarchy
scales as

O(R × El × diam(Gl)× I l),

where El denotes the number of edges in the graph Gl and I l once again denotes
the number of iterations performed at this level. In comparison, the computational
burden that GRACLUS incurs at level l scales as

O(R × El × I l),

where I l has the same meaning as before, but obviously refers to the number of
iterations performed by GRACLUS. The extra term diam(Gl) in the computational
cost of INCRES-ml partly explains the difference between the computational times.
However, the diameters of the graphs considered in our experiments are typically
smaller than ten. This is especially true for the coarsest levels in the hierarchy.
The other major source of the difference in computational time comes from
implementation: while GRACLUS is a heavily optimized C code, our multilevel
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algorithm has a naive MATLAB implementation. Finally, we remark that all of these
multilevel procedures suffer from a severe sensitivity to noise, see Table 9.3. This
fact motivates the use of the basic version of INCRES in situations where robustness
to the graph construction process is highly desirable.
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Appendix

Matlab Code Used in the Experimental Section

Below is the exact MATLAB code that we used in the experimental section of the
paper.

f u n c t i o n C=INCRES( W , R , sp eed , m a x i t e r )
D = sum (W, 2 ) ;
RW=W∗ s p d i a g s ( 1 . / D, 0 , n , n ) ;
s =1 ;
ds= speed ∗10^(−4)∗n /R ;
C= r a n d i (R , n , 1 ) ;
f o r i t e r =1 : m a x i t e r

[ F , R] = PLANT(C , R , round ( s ) ) ;
w h i l e ( min ( min ( F ) ) < ep s )

F= RW ∗ F ;
end
[ ~ ,C] = max ( F , [ ] , 2 ) ;
s=s +ds ;

end
end

f u n c t i o n [ F , R] = PLANT(C , R , s )
n= l e n g t h (C ) ;
F= z e r o s ( n , R ) ;
EmptyClass = [ ] ;
f o r k =1 :R

i d x = f i n d (C==k ) ;
C l a s s S i z e = l e n g t h ( i d x ) ;
i f ( C l a s s S i z e == 0 )

EmptyClass =[ EmptyClass , k ] ;
e l s e

i d x S e e d s = i d x ( r a n d i ( C l a s s S i z e , s , 1 ) ) ;
F ( : , k )= f u l l ( s p a r s e ( id x Seed s , ones ( 1 , s ) , 1 , n , 1 ) ) ;

end
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end
F ( : , EmptyClass ) = [ ] ;
R= s i z e ( F , 2 ) ;
end

Datasets

• 20NEWS (unweighted similarity matrix): The word count from the raw docu-
ments was computed using the Rainbow library [12] with a default list of stop
words. Words appearing less than 20 times were also removed. The similarity
matrix was then obtained by 5 nearest neighbors using cosine similarity between
tf-idf features. Source: http://www.cs.cmu.edu/~mccallum/bow/rainbow/

• RCV1 (weighted similarity matrix): This dataset was obtained in preprocessed
format from http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html with
the tf-idf features were already computed. We then simply used cosine similarity
and 5-NN.

• WEBKB4 (unweighted similarity matrix): The word count from the raw docu-
ments was done with the Rainbow library [12]. A list of stop word was removed.
Words appearing less than five times were removed. The similarity matrix was
then obtained by five nearest neighbors using cosine similarity between tf-idf
features. Source: http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/

• CITESEER (weighted similarity matrix): This dataset was obtained in pre-
processed format from http://linqs.cs.umd.edu/projects//projects/lbc/index.html
where each publication in the dataset is described by a 0/1-valued word vector
indicating the absence/presence of the corresponding word from the dictionary.
We then simply used cosine similarity and 5-NN.

• MNIST, PENDIGITS, OPTDIGITS (unweighted similarity matrix): The similar-
ity matrices were obtained from [16], where the authors first extracted scattering
features using [15] for images before calculating the 10-NN graph. Source: http://
users.ics.aalto.fi/rozyang/nmfr/index.shtml

• USPS (weighted similarity matrix): We computed a 10-NN graph using standard
Euclidean distance between the raw images. Each edge in the 10-NN graph was
given the weight

wij = e−
‖xi−xj ‖2

2σ2

where each xi denotes a vector containing the raw pixel data. The parameter
σ was chosen as the mean distance between each vertex and its 10th nearest
neighbor. Source: http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html

http://www.cs.cmu.edu/~mccallum/bow/rainbow/
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/
http://linqs.cs.umd.edu/projects//projects/lbc/index.html
http://users.ics.aalto.fi/rozyang/nmfr/index.shtml
http://users.ics.aalto.fi/rozyang/nmfr/index.shtml
http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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Chapter 10
Ego-Motion Classification for Body-Worn
Videos

Zhaoyi Meng, Javier Sánchez, Jean-Michel Morel, Andrea L. Bertozzi,
and P. Jeffrey Brantingham

Abstract Portable cameras record dynamic first-person video footage and these
videos contain information on the motion of the individual to whom the camera
is mounted, defined as ego. We address the task of discovering ego-motion from
the video itself, without other external calibration information. We investigate
the use of similarity transformations between successive video frames to extract
signals reflecting ego-motions and their frequencies. We use novel graph-based
unsupervised and semi-supervised learning algorithms to segment the video frames
into different ego-motion categories. Our results show very accurate results on both
choreographed test videos and ego-motion videos provided by the Los Angeles
Police Department.

Introduction

Affordable high-quality cameras for recording the first-person point-of-view experi-
ence, such as GoPro, are an increasingly common item in many aspects of people’s
lives. In this paper, we present a novel approach for segmenting or indexing body-
worn videos to different ego-motion categories.

Prior work on vision-based first-person human action analysis has focused a
lot on indoor activities, such as object recognition [24], hand gesture recognition
[18] [32], sign language recognition [29], context aware gesture recognition [28],
hand tracking [31] and detecting daily life activities [23]. Work with body-worn
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sensors has also been shown to be effective for categorizing human actions and
activities [11] [27]. An unsupervised ego-action learning method was proposed in
[14] for sports videos. The basis of video indexing is to model the transformation
between successive frames in the video. For the purpose of video indexing,
several studies have examined parametric models of frame transformation [6, 13].
Parametric models can be also used for video stabilization [26], and panorama
construction [12].

In this paper, we propose an approach to classify different ego-motion categories.
We know that human motion observed from a first-person point-of-view can be
captured by the global displacement between successive frames. This means that
we should be able to aggregate global motion and marginalize out local outlier
motion. We also know that motion involving the human gait has an inherent
frequency component. Therefore we can expect that frequency analysis can be
used as an important feature for ego-action categorization. We propose the use
of a parametric model for calculating the simple global representation of motion.
This approach produces a low dimensional representation of the motion of the
ego. We then classify the ego-motion using novel graph-based semi-supervised
and unsupervised learning algorithms. The algorithms are motivated by PDE-based
image segmentation methods and achieve high performance in both accuracy and
efficiency for different discrete data sets.

We consider the ego-motion classification problem with both benchmark and
real-world data. Working with both types of data is critical because of the stark
differences in the degree of difficulty in the analysis of video data collected
under controlled and uncontrolled or “wild” conditions. Benchmark datasets with
known ground truth are developed under experimental conditions controlled by
the researcher. Such datasets attempt to simulate the types of behaviors that are
of most interest. Simulations may favor positive outcomes because they seek not
only to limit sources of error linked to video image quality, but also enhance target
behaviors of interest. For example, experimental protocols that seek to enhance
camera stability, ensure adequate lighting conditions, avoid obstructions may all
assist in the algorithmic task. Ensuring that experimental participants enact well-
defined or discrete transitions between different types of behavior, or exaggerate the
differences between behavioral modes may favor accurate segmentation. We draw
on choreographed video collected under controlled circumstances to develop our
approach.

Videos not collected under controlled conditions may nevertheless be hand-
labeled by the researcher to produce a ground truth. Such videos may be subject
to many more quality challenges than simulated scenes. Actual behavior and
conditions as they exist on the ground are unforgiving. People in real-world settings
may not act in discrete, linear sequences, nor are they necessarily inclined to
exaggerate their different actions for easy detection. Ego-motions may also proceed
so quickly that they defy discrete recognition. We may also lack sufficient semantic
categories to capture the diversity of real-world behavior. Real-world video systems
may also not be state-of-the-art and therefore suffer from poor camera stability, low
frame rate, low resolution, poor color saturation and data collection errors (both
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human and mechanical). All of these effects can drastically impact the ability of the
researcher to label video for ground truth, which introduces errors into algorithmic
methods. We draw on police body-worn video (BWV) to evaluate how our methods
perform under challenging real-world conditions. Police BWV is typically shaky,
contains noise from low light conditions, poor color saturation and occlusions, and
represents diverse and often mixed motion routines.

The paper is organized as follows. In section “Motion Features”, we describe the
method for motion feature extraction for two successive frames. In section “Classi-
fication Method”, we investigate the semi-supervised and unsupervised graph-based
MBO algorithms for classification. In section “Experimental Results”, we elaborate
on our experimental results using choreographed test video and real-world video
data. Section “Conclusion” concludes the paper.

Motion Features

We characterize motion in a video sequence using a set of features. The features
represent the relative movements of ego, the individual on whom the video
camera is mounted. The features depend on the estimation of parametric models
between successive frames and on the analysis of periodic signals of the motion
through characteristic frequencies. We illustrate our method of constructing the
motion features in Fig. 10.1. In section “Transformations Between Two Successive
Frames”, we discuss how to use the inverse compositional algorithm to estimate
the similarity transformation between successive frames. This transformation is
represented by four parameters tx , ty , a and b. In section “Movement Signal”, we
construct four of the features to be used for the video segmentation—horizontal
displacement (x), vertical displacement (y ), angle of rotation (r) and zoom (z)
using the similarity transformation. In addition, the characteristic frequencies of
these four signals are computed using the method discussed in section “Frequency
Signal”. In section “Equalization of Variance”, we combine the four movement
features and four frequency features to obtain the eight-dimensional feature vector

Fig. 10.1 The process of
constructing the motion
features for each two
successive frames
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for each transformation between two successive frames. It is this feature vector that
will be used for the graph-based machine learning method.

Transformations Between Two Successive Frames

To compute the motion of the video sequence, we estimate the similarity trans-
formations between consecutive frames using the inverse compositional algorithm
[1, 2]. It is possible to use more general parametric motions, such as affinities or
homographies. However, their calculation is more prone to errors in the presence
of camera shake. In any case, we find that the four parameters of the similarity are
sufficient to characterize motion.

The inverse compositional algorithm is an improvement of the Lucas-Kanade
method [2, 15] for image registration. Its implementation in [25] includes the use of
robust error functions and estimates the correct transformation even in the presence
of occlusions or multiple motions. Let I1(x) and I2(x) be two images, with x =
(x, y). Let p be the global displacement vector between the two images and Δp
be the incremental displacement vector at each iteration. Let x′(x; p,Δp) be the
correspondence map from the left to the right image, or equivalently two frames
in a video sequence, parameterized by p and the incremental refinement Δp. The
energy model is given by

E(Δp) =
∑

x

ρ
(

∣

∣I2(x′(x; p))− I1(x′(x;Δp))
∣

∣

2
2 ; λ

)

, (10.1)

where ρ (·) is a function that gives less weight to large values of the argument, where
the difference in image intensities is big (e.g., ρ(s2, λ) = 0.5s2/(s2 + λ2)).

Minimizing the energy with respect to Δp yields:

Δp = H−1
δ

∑

x

ρ′ · (∇I1(x)J(x))T
(

I2(x′(x; p))− I1(x)
)

, (10.2)

with

Hδ =
∑

x

ρ′ · (∇I1(x)J(x))T ∇I1(x)J(x)

=
⎛

⎜

⎝

∑

x
ρ′ · (I1,x(x)J(x)

)T I1,x(x)J(x)
∑

x
ρ′ · (I1,x(x)J(x)

)T I1,y(x)J(x)
∑

x
ρ′ · (I1,x(x)J(x)

)T I1,y(x)J(x)
∑

x
ρ′ · (I1,y(x)J(x)

)T I1,y(x)J(x)

⎞

⎟

⎠ ,

(10.3)
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Table 10.1 Similarity transformation and its Jacobian

Transform Parameters—p Matrix—H(p) Jacobian—J(x; p)

Similarity (tx, ty , a, b)

⎛

⎜

⎝

1+ a −b tx

b 1+ a ty
0 0 1

⎞

⎟

⎠

(

1 0 x −y
0 1 y x

)

and ρ′ := ρ′
(

∣

∣I2(x′(x; p))− I1(x)
∣

∣

2
2 ; λ

)

. J(x; p) = ∂x′(x;p)
∂p is the Jacobian of the

transformation. Table 10.1 lists the similarity transformation and its Jacobian using
the parametrization proposed in [33].

The minimum of this energy provides the parameters of the transformation. To
reach a highly accurate solution, the algorithm uses an iterative process. It also
includes a coarse-to-fine strategy for estimating large displacements. See [25] for
further details.

Movement Signal

Simple motions, such as horizontal (x) and vertical (y) movements, zoom (z) and
rotation (r) information can be computed given the similarity. The procedure for
calculating the displacement of the central pixel is shown in Algorithm 10.1.

Since the similarity includes the composition of a zoom and rotation matrices, it
is easy to obtain these coefficients from the parametrization of Table 10.1. In this
case, the rotation r and zoom factor z are calculated as

r = arctan

(

b

1+ a
)

, z =
√

(1+ a)2 + b2. (10.4)

The signals from raw video footage may have abnormally large values. We filter
out these values in preprocessing. We replace the signal value by its mean μ, if the
signal value is outside the (μ−3σ,μ+3σ) region where σ is the standard derivation.

Algorithm 10.1: Calculate the displacement of the central pixel
Input : The similarity H, size of the frame nx and ny
Output: x,y
1: pm ← (nx/2, ny/2, 1)T {the center of the frame}
2: (p1, p2, p3)

T ← H · pm {project the center point using the similarity }
3: (p1, p2, p3)

T ← (p1, p2, p3)
T /p3 {normalize by the third component}

4: x ← p1 − nx/2 {the horizontal movement}
5: y ← p2 − ny/2 {the vertical movement}
6: return x, y
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Fig. 10.2 The x, y, r and z signals. On the left, the original signals and, on the right, the
corresponding filtered and smoothed data

The filtered signals can still be very noisy. We use convolutions with a Gaussian
function to smooth these signals, which is the basic idea in video stabilization [26].

We use the QUAD video data set1 to examine ego-motion signals. We discuss
the details of this data set in section “Experimental Results”.

The motion signals we calculate using Algorithm 10.1 and Eq. (10.4) are shown
in Fig. 10.2. The left column gives the raw data x, y, z and r and the right column
the corresponding filtered and smoothed data.

The periodic pattern correlates with the periodic actions in the QUAD video.
The large oscillation of x corresponds to ego turning left and right repeatedly. The
large oscillation of y corresponds to ego repeatedly looking up and looking down.
The four peaks in z correspond to ego walking and running, since the frames zoom
fast when the person is walking or running. The large oscillations of rotation r also
correlate with the movements of turning left, turning right, looking up and looking
down.

Frequency Signal

Some ego-motions are periodic, such as jumping, walking and running. Periodic
motions have different characteristic frequencies. This observation leads us to
investigate the frequencies of x, y, z and r using Fourier analysis. We use the

1The data set can be found at: http://www.cs.cmu.edu/$\sim$kkitani/datasets/.

http://www.cs.cmu.edu/$sim $kkitani/datasets/
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Fig. 10.3 The Hann window

short-time Fourier transform (STFT) to determine the sinusoidal frequency and
phase content of local sections of a signal as it changes over time. In practice,
the procedure for computing STFTs is to use a sliding window of fixed length and
compute the Fourier transform as the window slides over the whole signal. We use
the Hann window here:

w(n) = 0.5

(

1− cos( 2πn

N − 1
)

)

. (10.5)

As shown in Fig. 10.3, the Hann window is zero at the boundaries which reduces
the artifacts at the boundary. The STFT is defined by:

ST FT x[n](m,ω) = X(m,ω) =
N
∑

n=0

x[n]w[n−m]e−jωn, (10.6)

where the length of the window is N and m indicates the window sampling rate.
The magnitude squared of the STFT yields the spectrogram of the function:

spectrogram{x[n]}(m,ω) = |X(m,ω)|2. (10.7)

We use a five-second window in our experiments. We show the spectrogram of
six different motions of the y signal in Fig. 10.4. The frequency is very small when
the ego repeatedly turns left and right. The 2 s period is almost the same as when ego
repeatedly looks up and down. Looking up and down causes a frequency at 0.6 Hz.
The spectrogram of small steps and walking are very similar. The largest frequency
is at 7.8 Hz. When ego walks at 0.5 s per step, the frequency is 2 Hz. However,
because the GoPro camera is head-mounted, the camera also has an oscillation when
ego is walking. This camera oscillation causes these observed high frequencies. For
jumping and running, the spectrogram gives accurate frequencies at 2 Hz and 3.4 Hz,
respectively.

We select the characteristic frequency of the window, which is defined as:

fw =
{

fmax, if fmax > 3δ

0, otherwise
, (10.8)
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Fig. 10.4 Spectrogram of six kinds of motions

where fmax is the frequency corresponding to the largest value in the spectrogram
and δ is the standard deviation of the spectrogram. The condition of being larger
than 3δ guarantees that the frequency picked is unlikely to be caused by noise.

In practice, we choose N to be 300 frames (5 s) and let the window move 60
frames (1 s) each time. In this case, at each frame, there are 5 fws. We choose the
median of these fws to be the final frequency at the frame.

We apply this procedure with the four movement signals x, y, r , and z and
get four frequency signals fx , fy , fr and fz. In other words, in addition to four
movement signals, each frame transition is also associated with four characteristic
frequencies. We compute these frequencies for the QUAD video and show their
values in Fig. 10.5. We can observe four periods in the frequencies which correlate
with the action periods in the video.

Equalization of Variance

We always force the variance of each signal to be 1 by forcing x to be x̄ + x−x̄
σ (x)

,
where x̄ is the mean and σ(x) is the standard variation. In this way, each signal
gives equal contribution to the combined feature vector. Different weights can be
considered to be applied on different signals based on the importance of the signals.

After equalizing the variance of the 8 signals, we combine them into a final
motion feature fmotion. It is an N × 8 matrix, where N is the number of frames
in the video. Each row represents the eight-dimensional feature vector of one frame
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Fig. 10.5 The four characteristic frequencies f x, fy, f z, f r of the QUAD video

and we denote the feature vector of the ith frame to be Fi . In this way, we code the
video frames by their feature matrix fmotion:

fmotion = [x, y, r, z, fx, fy , fr , fz]. (10.9)

Classification Method

Once we have built the features fmotion of the video, we would like to infer a number
of ego-motion categories from the data. In this section, we explore graph-based
semi-supervised and unsupervised algorithms for video segmentation. We consider
each transformation between two successive frames as a node in a weighted graph
and classify them in different motion classes.

Recently, novel classification algorithms have been proposed [20] that are
motivated by PDE-based image segmentation methods and are modified to apply
to discrete data sets. These algorithms improve both accuracy of the solution and
efficiency of the computation and can be potentially faster in parallel than various
classification algorithms such as spectral clustering with K-means [17, 36]. The
OpenMP parallelization and optimization of the algorithms are discussed in [19]
with online demo and codes.
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The classification algorithms consider each data point as a node in a weighted
graph. The similarity (weight) between two nodes i and j is given by formula:

wij = exp(−||Fi − Fj ||22/τ), (10.10)

where Fi and Fj are feature vectors of nodes i and j according to (10.9), and τ
is a parameter to be determined [7, 36]. We use the Euclidean distance here. To
determine the value of τ , we try different values and run the experiments on the
validation data to choose the τ with the best accuracy. We use τ = 40 in this paper.
More about how to choose τ can be found in [4].

The classification problem is approached using ideas from graph-cuts [30]. Given
a weighted undirected graph, the goal is to find the minimum cut (measured by a
summation of the weights along the graph cut) for this problem. This is equivalent to
assigning a scalar or vector value ui to each ith data point and minimizing the graph
total variation (TV)

∑

ij |ui − uj |wij [34]. Instead of directly solving a graph-TV
minimization problem, the graph TV can be transformed to a graph-based Ginzburg-
Laudau (GL) functional [4]:

E(u) = ε < Lsu, u > +1

ε

∑

i

(W(ui)), (10.11)

where W(u) is a double well potential, for example W(u) = 1
4 (u

2 − 1)2 in a
binary partitioning and multi-well potential in k dimensions (same as the number
of classes). Ls is the normalized symmetric graph Laplacian which is defined as

L = I − D− 1
2WD− 1

2 , where D is a diagonal matrix with diagonal elements
di =∑j∈V w(i, j).

In the vanishing ε limit, a variant of the GL energy Gamma-converges to the
graph TV functional [35]. Different fidelity terms are added to the GL functional for
semi-supervised and unsupervised learning respectively. The GL energy for semi-
supervised learning is:

E(u) = ε〈Lsu, u〉 + 1

ε

∑

i

W(ui)+
∑

i

μ

2
λ(xi)||ui − ûi ||2L2

. (10.12)

The last term of Eq. (10.12) is the regularL2 fit to known data with some constant
μ, while λ(x) takes the value of 1 on fidelity nodes, and 0 otherwise. The variable
û is the initial value for u with randomly chosen labels for non-fidelity data points
and the “ground truth” for the fidelity points.

The GL energy for unsupervised learning is:

E(u, cr ) = ε〈Lsu, u〉 + 1

ε

∑

i

W(ui)+ μ
n̂
∑

r=1

〈||f − cr ||2, u�,r 〉. (10.13)
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In (10.13), the term ||f − cr ||2 denotes an N × 1 vector (||f (x1) −
cr ||2, . . . , ||f (xN) − cr ||2)T and the xi (i = 1, . . . N) are the N pixels of the
data set. In addition, the term u�,r indicates the rth column of u; the vector u�,r is
a N × 1 vector which contains the probabilities of every node belonging to class
r . The term n̂ is the number of classes and is to be provided to the algorithm in
advance. This problem is essentially equivalent to the K-means method when μ
approaches +∞.

The GL functional is minimized using gradient descent [16]. An alternative is
to directly minimize the GL functional using the MBO scheme [9, 21], or a direct
compressed sensing method [22]. We use the multiclass MBO scheme [9] in this
paper in which one alternates between solving the heat (diffusion) equation for
u and thresholding to maintain distinct class structure. Computation of the entire
graph Laplacian is prohibitive for large data sets so we use the Nyström extension
to randomly sample the graph and compute a modest number of leading eigenvalues
and eigenfunctions of the graph Laplacian [8]. By projecting all vectors onto this
sub-eigenspace, the iteration step reduces to a simple coefficient update.

Semi-supervised and Unsupervised Algorithms

We outline here the semi-supervised and the unsupervised algorithms. For the semi-
supervised algorithm, the fidelity data (a small amount of “ground truth”) is known
and the remaining data needs to be classified according to the categories of the
fidelity. For the unsupervised algorithm, there is no prior knowledge of the data
labels. We use the Nyström extension algorithm beforehand for both algorithms
to calculate the eigenvalues and eigenvectors as the inputs. In practice, these two
algorithms converge very fast and give accurate classification results.

Algorithm 10.2: Semi-supervised Graph MBO algorithm [21]

Data: Eigenvectors matrix Φ, eigenvalues {λk}Mk=1 and fidelity.
Result: u
Initialize u0, d0 = 0, a0 = ΦT · u0;

while
||un+1−un||22
||un+1 ||22

< α = 0.0000001 do

a. Heat equation;

1). an+1
k = ank · (1 − dt · λk)− dt · dnk ;

2). y = Φ · an+1;
3). dn+1 = ΦT · μ(y − u0),;

b. Thresholding;

un+1
i = er , r = arg maxj yi ;

c. Updating a;
an+1 = ΦT · un+1
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Algorithm 10.3: Unsupervised graph MBO algorithm [10]

Data: data matrix f , eigenvector matrix Φ, eigenvalues {λk}Nk=1
Result: u
Initialize u0, a0 = ΦT · u0;

while
||un+1−un||22
||un+1 ||22

< α = 0.0000001 do

a. Updating c;

cn+1
k = <f,un+1

k >
∑N
i=1 uki

;

b. Heat equation;

1. a
n+ 1

2
k = ank · (1 − dt · λk);

2. Calculating matrix P , where Pi,j = ||fi − cj ||22;

3. y = Φ · an+
1
2

k − dt · μP ;
c. Thresholding;

un+1
i = er , r = arg maxj yi ;

d. Updating a;
an+1 = ΦT · un+1;

The K-means algorithm [17] for finding K clusters proceeds iteratively by first
choosing K centroids and then assigning each point to the cluster of the nearest
centroid. The centroid of each cluster is then recalculated and the iterations continue
until there is little change from one iteration to the next.

In both semi-supervised and unsupervised algorithms, we calculate the leading
eigenvalues and eigenvectors of the graph Laplacian using the Nyström method [8]
to accelerate the computation. This is achieved by calculating an eigendecompo-
sition on a smaller system of size M << N and then expanding the results back
up to N dimensions. The computational complexity is almost O(N). We can set
M << N without any significant decrease in the accuracy of the solution.

Suppose Z = {Zk}Nk=1 is the whole set of nodes on the graph. By randomly
selecting a small subset X, we can partition Z as Z = X⋃ Y , where X and Y are
two disjoint sets, X = {Zi}Mi=1 and Y = {Zj }N−Mj=1 and M << N . The weight
matrixW can be written as

W =
[

WXX WXY

WYX WYY

]

,

where WXX denotes the weights of nodes in set X, WXY denotes the weights
between set X and set Y , WYX = WTXY and WYY denotes the weights of nodes
in set Y . It can be shown that the large matrix WYY can be approximated by
WYY ≈ WYXW

−1
XXWXY , and the error is determined by how many of the rows

ofWXY span the rows ofWYY . We only need to computeWXX, WXY = WTYX, and
it requires only (|X| · (|X|+ |Y |)) computations versus (|X|+ |Y |)2 when the whole
matrix is used. Recently this algorithm has been further developed to run on parallel
architectures [19, 20].
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Experimental Results

To evaluate the performance of our method we need both choreographed video
sequences to run controlled experiments and real-world videos to observe perfor-
mance of our method in naturalistic settings. It is easy to define the ground truth for
the choreographed videos since the motions of the person who takes the video are
both discrete, and well-defined. For example, looking left and right never coincides
with running. However, real-world body-worn video usually contains a combination
of different motions with noise and it is therefore harder to define a ground truth.

Choreographed Video

The first video we use is QUAD [14]. We show one frame of the QUAD video in
Fig. 10.6. This video is 4 min and 10 s in length and has 60 frames per second for
a total of 15,000 frames. It contains nine ego-motions (stand still, turn left, turn
right, look up, look down, jump, step in place, walk and run). The Ego wore a head-
mounted GoPro camera. The nine actions were performed in order and repeated four
times. The ground truth is shown in the first row of Fig. 10.7. The horizontal axis
represents time and colors represent different ego-motion categories. The order of
the movements are standing still, turning left and turning right repeatedly, looking
up and looking down repeatedly, jumping, stepping, walking, running, turning left
and then start the same series of motions again for another three times. We compute
the feature vector for each two successive frames as described in section “Motion
Features”. Then we use K-means, the unsupervised graph MBO algorithm and the
semi-supervised graph MBO algorithm for the ego-motion classification. We use

Fig. 10.6 One frame of the QUAD video
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Fig. 10.7 Ego-motion classification results of the QUAD video. The 9 colors represent 9 different
ego-motion classes: standing still (dark blue), turning left (moderate blue), turning right (light
blue), looking up (dark green) and looking down (light green), jumping (bud green), stepping
(aztec gold), walking (orange), runing (yellow)

Table 10.2 Accuracy summary of the QUAD data set

Accuracy Overall Average
1. Stand
still

2. Turn
left

3. Turn
right 4. Look up

K-means 64.84% 61.79% 95.82% 72.26% 77.28% 73.24%

Unsupervised MBO 66.62% 67.59% 79.99% 76.82% 83.37% 69.41%

Semi-supervised MBO 89.14% 88.74% 87.90% 89.43% 92.80% 80.36%

Accuracy 5. Look down 6. Jump 7. Step 8. Walk 9. Run

K-means 0 83.29% 49.29% 36.66% 68.25%

Unsupervised MBO 77.82% 39.38% 43.54% 83.27% 54.68%

Semi-supervised MBO 84.59% 92.71% 93.98% 84.52% 92.38%

10% known labels (evenly sampled) in the semi-supervised graph MBO algorithm.
The classification results of these three algorithms are shown in the 2nd, 3rd and
4th rows of Fig. 10.7. For the K-means and the unsupervised MBO algorithm, we
ran the experiments several times and pick the best results here. Depending on the
initialization, these two algorithms can converge to different local minima, which is
common for most non-convex variational methods. The K-means algorithm gives
relatively good results, except that it does not recognize the category of looking
down and misclassifies some parts of running, jumping, small steps and walking.
The unsupervised graph MBO algorithm gives results similar to K-means. The
semi-supervised graph MBO algorithm with 10% known labels gives very accurate
results. The accuracy summary of these three algorithms is shown in Table 10.2.

Real-World Body-Worn Video

We also investigated real-world body-worn videos. We use a data set from the Los
Angeles Police Department. The videos are from police wearing chest-mounted
cameras while patrolling areas of Los Angeles on foot. The videos record a wide
array of police activities from basic patrol through foot chases and arrest. Our
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ego-motion classification results may be used in modeling the routine activities of
police and their interactions with the public.

Police BWV is not collected under controlled circumstances. Ego-motions may
evolve rapidly without clear or discrete transitions. Much body worn video is
collected at night impacting light and color saturation. The videos also have
distortion due to the use of a fish-eye lens. Since there has been very little formal
analysis of police BWV, there is a lack of appreciation for the diversity of police
behavior likely to be encountered (i.e., very limited semantic dictionaries). The
ground-truth is labeled by us without input from the police.

We show here the video segmentation result of one clip of police video. The video
is 8 min and 16 s in length, with 14991 frames in total. This particular video was
chosen for its diversity of ego-activities thereby presenting a challenging problem
for ego motion classification. In the video, police arrive at an apartment building,
talk with some people in front of the building, go upstairs, wait outside a room,
enter and search the room, leave the room, walk downstairs, and talk to several
people outside the building. We define four ego-motion categories in this video—
standing (or very slow motions not easy to define), walking, going upstairs, and
going downstairs. The ground truth classification of this video is shown in the first
row of Fig. 10.8. The dark blue segments represent the category of standing or slow
movements when the officer talks with others in front of the building. It also contains
actions when the officer enters the room. The video of this period is very shaky and
not easily defined as one motion category. The light blue segment corresponds to
the walking category. The green segment corresponds to the police going upstairs
and the yellow part is going downstairs.

We consider the semi-supervised algorithm for the police body-worn video. We
are not using the unsupervised graph MBO algorithm because the result is not
consistent. The results are shown in Fig. 10.8. K-means is included as a baseline
method since it captures the difference between going upstairs and downstairs.
However, K-means frequently misclassifies walking and going downstairs. Some
standing frames are classified as other motion categories. This later result is
reasonable since standing in this video combines some other movements. The
semi-supervised graph MBO algorithm includes 10% known labels on this piece
of video. The segmentation results are shown in the third row of Fig. 10.8. The

Fig. 10.8 Ego-motion classification results of the police video. The 4 colors represent 4 different
ego-motion classes: standing or very slow motions and motions not easy to define (dark blue),
walking (light blue), going upstairs (green) and going downstairs (yellow)
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Table 10.3 Accuracy summary of the police body-worn video data set

Accuracy Overall Average 1.Stand 2.Walk 3.Upstairs 4.Downstairs

K-means 63.62% 63.77% 68.91% 37.78% 91.84% 56.53%

Semi-supervised MBO 90.17% 74.09% 96.10% 82.12% 83.45% 34.71%

semi-supervised graph MBO method is much better than K-means, and the four
categories are all captured almost correctly. The accuracy summary is shown in
Table 10.3. The overall accuracy of the semi-supervised graph MBO algorithm with
10% known labels is 90.17%.

Conclusion

In this paper, we investigate the task of discovering ego-motion categories from first-
person videos. We deal with this problem in two steps. The first step is comparing
two successive frames using the inverse compositional algorithm to extract signals
containing motion and motion frequency information. Then we use unsupervised
and semi-supervised clustering algorithms for classification. The semi-supervised
graph based methods are particularly accurate using only 10% training data. We
show promising results on both choreographed and real-world video data.

The potential for future advances in this area are significant particularly in
relation to police body-worn video. At full deployment of body-worn video in 2018,
the Los Angeles Police Department is projected to collect 3.2 million individual
videos totaling more than 200K h of total video feed per year. This represents both
a vast resource and a significant analytical challenge. The amount of data suggests
that the full array of ego-motions practiced by police might eventually be discovered
and subject to classification, moving us towards a realistic picture of the diversity of
police activities. There will clearly be no lack of training data with which to tackle
this problem. The same surfeit of video data is proving to be true in other domains
outside of policing. Recognition of the diversity of ego-motion in policing activity
may also lead to novel extensions of the methods into dyadic- and n-person motion
models. In the dyadic-motion case there is much to be learned. It is well known
that relative motion of individuals with respect to one another encodes fundamental
social information [3]. For example, an individual running away from ego may
encode avoidance or fear, while an individual running directly towards ego may
encode attraction and threat. More complex social interactions may be captured in
n-person motion models.

The challenges to achieving such outcomes with real-world video are also
significant. In the police body-worn video case, semi-supervised classification
clearly outperforms the unsupervised approach. Yet even a small fraction of fidelity
points (10% in the current method) is probably infeasible given the volumes of
video arriving each day. Semi-supervised methods will therefore need to rely on
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as few fidelity points as possible. However another approach is video labeling
where activities segmented in one video might be used as labels for semi-supervised
segmentation in another video. This was demonstrated in [4, 5] for image labelling.
It will also be necessary to consider how generalizable methods are across real-
world video examples. Ideally, a handful of videos might be exhaustively labeled
for ground-truth and these would then work across the growing set of videos. This
is an empirical questions that we can start addressing now with the recognition that
new methods may be needed to account for the variability of real-world video.

Finally, we also point out that body-worn video is but one sensor platform in
what is increasingly a multi-sensor world. It is worth investigating whether there is
an advantage to doing more with single sensors, or whether it is better to integrate
the signals from many independent sensors. For example, we can imagine doing
both ego-motion and scene topic classification from the same video sequence, or as
an alternative use accelerometers to capture ego-motion and matching these data to
scene classification from video. Importantly, the issues are not strictly technological.
Police body-worn video is treated as evidence and therefore is subject to all of the
evidence handling rules required by law. Each sensor implies a different packet
of physical of evidence that must be maintained and handled appropriately. Future
work will need to examine these sorts of tradeoffs in detail.
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Chapter 11
Synchronized Recovery Method
for Multi-Rank Symmetric Tensor
Decomposition

Haixia Liu, Lizhang Miao, and Yang Wang

Abstract Symmetric tensor decomposition is of great importance in applications.
In this paper, we design a synchronized multi-rank symmetric Tensor Decompo-
sition alternating minimization method. In this algorithm, we start from a careful
initialization for the non-convex symmetric tensor decomposition and then perform
an alternating minimization algorithm. Our contributions are as follows: (1) Our
method is synchronized and there is no need for a greedy algorithm to get the multi-
rank tensor decomposition. (2) Initialization is an important part in our proposed
method. With a careful initialization, our proposed algorithm can converge to the
global minimizer of the non-convex objective function. (3) The designed alternating
minimization algorithm can give a highly accurate result. In numerical results, our
proposed algorithm is much better than the simple gradient descent method from
the same initialization. Moreover, our results show that with eigenvectors of random
projection as initialization, we can quickly get the global solution by using simple
alternating minimization algorithm, though finding the global minimum of this non-
convex minimization problem is NP-hard.

Introduction

Tensor decomposition [5, 9, 14, 18, 27–30] plays an important role in data analysis,
machine learning and dimension reduction. The problem of tensor decomposition
is an extension of the singular value decomposition (SVD) of a symmetric matrix,
which is an important tool in numerical linear algebra and its applications. There

H. Liu
School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China
e-mail: liuhaixia@hit.edu.cn

L. Miao (�) · Y. Wang
Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong
e-mail: lmiao@ust.hk; yangwang@ust.hk

© Springer International Publishing AG, part of Springer Nature 2018
X.-C. Tai et al. (eds.), Imaging, Vision and Learning Based
on Optimization and PDEs, Mathematics and Visualization,
https://doi.org/10.1007/978-3-319-91274-5_11

241

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91274-5_11&domain=pdf
mailto:liuhaixia@hit.edu.cn
mailto:lmiao@ust.hk
mailto:yangwang@ust.hk
https://doi.org/10.1007/978-3-319-91274-5_11


242 H. Liu et al.

is a particularly important class of tensors, called symmetric tensor. Symmetric
tensors appear mainly as higher order derivatives or moments and cumulants of
random vectors, which is applied for speech, mobile communications, machine
learning, factor analysis of k-way arrays, biomedical engineering, psychometrics
and chemometrics [4, 6, 7, 10, 12, 21, 26]. For a tensor T = (Ti1i2···in ) ∈
R
n1×n2×···×nm , we call it symmetric if n1 = n2 = · · · = nm and Ti1i2···im is

invariant under any permutation of the index (i1i2 · · · im). The canonical polyadic
(CP) decomposition of the symmetric tensor T is of the form

T =
r
∑

i=1

λi vi ⊗ · · · ⊗ vi
︸ ︷︷ ︸

m

, (11.1)

where each λi vi ⊗ · · · ⊗ vi
︸ ︷︷ ︸

m

, i = 1, · · · , r is called a rank-1 component and ⊗ is

the outer product between x

(x⊗ x⊗ · · · ⊗ x
︸ ︷︷ ︸

m

)i1i2···im =
m
∏

k=1

xik ,

m is the order of T and the CP rank of T is defined as the smallest r such that
Eq. (11.1) holds. Finding the decomposition of a symmetric tensor T with fixed
rank r is to solve the following optimization problem

arg min
{λi,‖vi‖=1}ri=1

∥

∥

∥

∥

∥

∥

T −
r
∑

i=1

λi vi ⊗ · · · ⊗ vi
︸ ︷︷ ︸

m

∥

∥

∥

∥

∥

∥

2

. (11.2)

is equivalent to

arg min
{ui }ri=1

∥

∥

∥

∥

∥

∥

T −
r
∑

i=1

sign(λi) ui ⊗ · · · ⊗ ui
︸ ︷︷ ︸

m

∥

∥

∥

∥

∥

∥

2

,

where ui = m
√|λi |vi . There are many works for the decomposition of the symmetric

tensor. Comon et al. [8] study various properties of symmetric tensors in relation to
a decomposition of symmetric tensor and show that the rank and symmetric rank
are equal for the symmetric tensors in a number of cases. To solve the model (11.2),
many works are based on greedy algorithm, that is to find each rank-one component
by iteration. To get each component of the decomposition for a symmetric tensor
T , the problem can be formulated as

min
1

2
‖T − x⊗ x⊗ · · · ⊗ x

︸ ︷︷ ︸

m

‖2
(11.3)
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which is equivalent to

max 〈T , x⊗ x⊗ · · · ⊗ x
︸ ︷︷ ︸

m

〉

s.t. ‖x‖ = 1,

(11.4)

Problem (11.4) is an optimization problem to find the best rank one approximation
of the tensor T and known as the maximum Z-eigenvalue problem, which is
NP-hard [15]. A variety of methods are introduced to solve the maximum Z-
eigenvalue problems [15, 16, 18, 19, 22–24]. In 2009, Qi et al. [24] proposed
Z-eigenvalue methods for solving the problem. Brachat et al. [3] reformulate
Sylvester’s method from the dual point of view and propose a method for symmetric
tensor decomposition by computations with Hankel matrices. Kofidis and Regalia
[16] consider the high-order power method (HOPM) and explain the condition under
which the method is convergent for even-order symmetric tensors. Both Regalia
and Kofidis [25] and Erdogan [13] introduce the Shifted variants of the power
method (SVPM) is in the context of independent component analysis (ICA) and
prove that they are monotonically convergent. In 2011, a shifted symmetric higher-
order power method (SS-HOPM) [19] is introduced by Kolda et al. for computing
tensor eigenpairs. In 2014, Anandkumar et al. [1] give a robust power method for
tensor decompositions for learning latent variable models. They analyze robustness
in theory for orthogonal decomposable tensors, although orthogonal symmetric
tensor decomposition does not exist in general. Anandkumar et al. show that some
symmetric tensor decompositions can be transformed to orthogonal decomposition
by whitening. More recently, Kolda [17] points out there is a transformation
from non-orthogonal tensor decomposition to orthogonal tensor decomposition
when the matrix is with full column rank. Jiang et al. [15] solved the problem
by matrix optimization under a rank-one constraint, which is hard for the large
dimensional tensor. Recently, an iterative eigendecomposition algorithm [2] and a
nonlinear model order reduction method [11] are introduced for symmetric tensor
decomposition. Although there are so many works presented, the problem for
symmetric tensor decomposition is still unsolved.

In this paper, we will introduce a synchronized multi-rank symmetric tensor
decomposition method to calculate symmetric tensor decomposition. We consider
the symmetric tensor decomposition problem as a non-convex optimization prob-
lem. Although there may be many stationary points, our proposed algorithm can
converge to the global minimizer with a careful initialization. Numerical results
show that our method is much better than the standard gradient descent method
with the same initialization. Moreover, a careful initialization is very important for
our non-convex tensor decomposition problem, this algorithm may not converge to
the global minimization for a random initialization.
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Before introducing our method, we will give some notations which will be used
throughout the paper. A m-th order tensor T = (Ti1i2···im ) ∈ R

n1×n2×···×nm , which
is in calligraphic letter. The Frobenius norm of T is

‖T ‖ =
√

∑

i1,i2,··· ,im
T 2
i1i2,···im .

⊗ denotes the outer product for tensors, that is, for T1 ∈ R
n1×···×nm and T2 ∈

R
nm+1×···×nm+l , then T1 ⊗T2 ∈ R

n1×···×nm×nn+1×···×nm+l and

(A1 ⊗T2)i1···im+l = (T1)i1···im(T2)im+1···im+l .

⊗m denotes the multiplication of the outer product for tensors, that is, for T ∈
R
n×···×n,

T ⊗m = T ⊗ · · · ⊗T
︸ ︷︷ ︸

m

.

⊗j denotes a tensor times a vector in mode j , that is,

(T ⊗j x)i1···ij−1 ij+1···im =
nj
∑

l=1

Ti1···ij−1lij+1···imxl .

The inner product of two tensors with the same size T1 ∈ R
n1×···×nm and T2 ∈

R
n1×···×nm is

〈T1,A2〉 =
∑

i1,··· ,im
(T1)i1···im (T2)i1···im .

T is a rank-one tensor if T can be represented as

T = x1 ⊗ x2 ⊗ · · · ⊗ xm,

where xi ∈ R
n, i = 1, · · · ,m. If x1 = · · · = xm, then we say T is a symmetric

rank-one tensor.

Theorem 11.1 For a symmetric tensor T ∈ R

m
︷ ︸︸ ︷

n× · · · × n and x ∈ R
n, we have

T ⊗1 x · · · ⊗i−1 x⊗i+1 x · · · ⊗j−1 x⊗j+1 x · · · ⊗m x = T ⊗1 x · · · ⊗m−2 x.

The rest of this paper is organized as follows. In section “Synchronized Multi-
Rank Symmetric Tensor Decomposition”, we propose our synchronized multi-rank
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symmetric tensor decomposition method to calculate symmetric tensor decomposi-
tion. Numerical results are illustrated in section “Numerical Implements”. Finally,
we conclude in section “Conclusion”.

Synchronized Multi-Rank Symmetric Tensor Decomposition

Minimization of a non-convex objective function is known as a NP-hard problem
and there may be very many stationary points. Tensor decomposition is a much
challenging problem, even for the rank one approximation due to the objective
function is not convex. In this section, we propose a heuristic algorithm of
synchronized recovery for multi-rank symmetric tensor decomposition based on
non-convex optimization. In section “Minimization of a Non-convex Objective
Function”, a minimization of a non-convex objective function algorithm is proposed,
which is followed by a careful initialization via a matrix SVD (or eigenvalue
decomposition) technique in section “Initialization”.

Minimization of a Non-convex Objective Function

Finding the solution of a tensor decomposition (11.2) is a minimization of a non-
convex problem. In order to solve (11.2), one simple way is to use gradient descent
algorithm with a careful initialization (section “Initialization”). That is, iterate by
the following scheme for k = 0, 1, 2, · · ·

Uk+1 = Uk − αk∇U f̃ (Uk),

where f̃ (U) = ‖T −∑r
i=1 u

3
i ‖, U = [u1, · · · ,ur ], Uk is the solution in the k-th

step and αk is the step size. In order to obtain more accurate results, we propose
a very useful algorithm based on the proximal gradient descent algorithm. Our
alternating minimization algorithm uses the following iterations

1. Update V = [v1, · · · , vr ], withΛ =
[

λ
(k)
1 , · · · , λ(k)r

]

fixed.

arg min
{‖vi‖=1}ri=1

∥

∥

∥

∥

∥

T −
r
∑

i=1

λ
(k)
i v⊗mi

∥

∥

∥

∥

∥

2

= arg min
{ui }ri=1

∥

∥

∥

∥

∥

T −
r
∑

i=1

sign(λi)u
⊗m
i

∥

∥

∥

∥

∥

2

� f (u1, · · · ,ur ) (11.5)

with ui = m

√

∣

∣

∣λ
(k+1)
i

∣

∣

∣vi .
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In order to solve (11.5), we can use proximal gradient descent:

(a)

[

ũ(k+1)
1 , · · · , ũ(k+1)

r

]

=
[

u(k)1 , · · · ,u(k)r
]

− αk∇Uf
(

u(k)1 , · · · ,u(k)r
)

.

(b) Project each u(k+1)
i , i = 1, · · · , r to the subspace {x : ‖x‖ = 1}. That is,

v(k+1)
i = u(k+1)

i

‖u(k+1)
i ‖

, i = 1, · · · , r.

2. Update Λ with V fixed.

arg min
{λi }ri=1

∥

∥

∥

∥

∥

T −
r
∑

i=1

λi

(

v(k+1)
i

)⊗m
∥

∥

∥

∥

∥

2

. (11.6)

(11.5) is a non-convex problem about v1, · · · , vr , we use gradient descent to solve
it and then do a projection to the unit ball. For the fixed v(k+1)

i , i = 1, · · · , r , (11.6)
is a quadratic equation about λ1, · · · , λr , which can be solved by the least-square

method. Obviously, u(k+1)
i = m

√

∣

∣

∣λ
(k+1)
i

∣

∣

∣v(k+1)
i . The whole method is summarized

in Algorithm 11.1.

Initialization

Initialization is an important part in the whole algorithm for non-convex optimiza-
tion. The algorithm will converge to the global solution with a good initialization.
In the following, we will introduce our initialization algorithm. As we all know,
the problem of tensor decomposition is an extension of the singular value decom-
position (SVD) of a symmetric matrix, which is an important tool in numerical
linear algebra. One way to connect high-order tensor and matrix is projection
which projects a tensor into a matrix along some vectors [18]. Formally, for

Algorithm 11.1 Rank-r approximation for symmetric tensor
Input: A symmetric tensor T , the rank number r , stepsize α0 and threshold ε.
Initialization: U = [u1, · · · ,ur ].
while

∥

∥T −∑r
i=1 u

⊗m
i

∥

∥

2
F
> ε do

[

ũ1, · · · , ũr
] = [u1, · · · ,ur ] − αk∇Uf (u1, · · · ,ur ) with f (u1, · · · ,ur ) =

∥

∥T −∑r
i=1 sign(λi)u

⊗m
i

∥

∥

2
F

vi = ũi‖ũi‖ , i = 1, · · · , r [λ1, · · · , λr ] =
arg min
{λi }ri=1

∥

∥T −∑r
i=1 λiv

⊗m
i

∥

∥

2
u(k+1)
i = m

√|λi |vi , i = 1, · · · , r

Output: U = [u1, · · · ,ur ].
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T =∑r
i=1 u

⊗m
i ∈ R

nm , the projection along a vector w is

T (I, I,w, · · · ,w) = T ⊗1 I ⊗2 I ⊗3 w · · · ⊗m w

=
n
∑

i3,··· ,im=1

Πmj=3wijT (:, :, i3, · · · , im)

Due to the symmetry of symmetric tensor, projection in different mode will get the
same matrix. For simplicity, we denote T as the projection of the tensor T in this
article. In order to get the initialization, we do the following steps:

1. In order to get the matrix by projection, we generate the vector w randomly,
where T = T (I, I,w, · · · ,w).

2. SVD is performed on T to get the eigenvalues and eigenvectors.
3. The initialization is the eigenvectors corresponding to the largest r absolute

values of eigenvalues.

Numerical Implements

In this section, we evaluate our proposed method for rank-r tensor decomposition.
We use Signal-to-Noise Ratio (SNR) for evaluation, where SNR value of the given
symmetric tensor T is

SNR = 20 log

(

‖T ‖
‖T −∑r

i=1 u
⊗m
i ‖

)

,

with ui , i = 1, · · · , r calculated by Algorithm 11.1. In our numerical experiments,
we mainly focus on the 3-order (m=3) symmetric tensor decomposition and the step
size is a function of iteration number

αt = min(1− e−t/t0, α0),

where t is the iteration number and the values of t0 = 330 and of α0 = 0.3. In the
following, we give the numerical results for the exact rank-r tensor.

Example 11.1 (Rank-r Tensor Decomposition) We generate a vector xi ∈ R
n, i =

1, · · · , r randomly obeying Gaussian distribution, and create the symmetric rank-r
3-th order tensor with Gaussian noise

T =
r
∑

i=1

x⊗3
i + δT0,

where T0 is a symmetric Gaussian tensor.
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Fig. 11.1 The plot of comparison results. (a) Rank 2. (b) Rank 5. (c) Rank 10

In order to verify the values of our proposed algorithm, we perform 3 numerical
experiments with r ∈ {2, 5, 10}. For each r , There are 90 tensors for test in total: we
generate randomly 10 tensors for each δ ∈ {10−3, 10−2, 2 × 10−2, 3 × 10−2, 4 ×
10−2, 5× 10−2, 0.1, 0.2, 0.5}, respectively. For each numerical experiment, we run
the following three algorithms on each group of data:

1. Algorithm without a careful initialization, that is, we start with a random
initialization.

2. Algorithm with a careful initialization in section “Initialization” plus gradient
descent.

3. Our algorithm.

The SNR results of algorithms (1) versus (3) (in blue ∗) and (2) versus (3) (in
red circle ) for r = 2, 5, 10 in Fig. 11.1a, b and c, respectively. From these
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Table 11.1 Stability of our algorithm

Rank SNR(without noise) SNR(with noise) Rank SNR(without noise) SNR(with noise)
1 301.79 69.61 6 51.89 65.11

299.26 65.91 119.74 75.92

281.82 62.04 114.90 76.38

291.09 74.48 119.01 74.66

285.45 65.34 97.22 57.30
2 81.86 112.97 7 48.97 48.57

112.97 67.75 77.17 16.95

109.10 65.75 62.32 40.29

121.88 74.08 120.89 76.10

119.24 70.50 70.64 53.22

3

111.71 70.24

8

107.32 67.4

119.62 74.81 102.47 75.43

113.75 69.45 93.61 54.85

102.22 74.33 79.77 77.28

117.97 71.14 119.20 76.62

4

125.98 76.67

9

43.53 36.33

93.38 67.73 122.42 81.33

124.02 76.37 91.17 61.40

120.17 73.51 140.75 73.17

95.36 71.50 73.55 70.01

5

110.71 74.22

10

68.48 38.29

27.25 34.86 72.45 16.70

82.92 73.96 53.67 81.84

86.37 77.85 86.41 59.53

79.97 73.80 100.35 69.13

figures, we know that any part of our proposed algorithms is very important for this
tensor decomposition problem. Though finding the global minimum of this non-
convex minimization problem is NP-hard, our results show with eigenvectors of
random projection as initialization, we can fast get global solution by using simple
alternating minimization algorithm. We also give some stability analysis for our
proposed algorithm. For each rank, we repeat the experiments five times. Table 11.1
shows the average of the SNR in five experiments for the data with or without noise
for rank from 1 to 10. From the results in the table, our method is rather stable.

Beside, we also compare with the power method, which is a classical method
for tensor decomposition [19, 20]. In the numerical experiments, we choose m =
3, n = 15 and r ∈ {2, 3, 4, 5}. For the two algorithms, the maximum iteration
number is 1000 and the tolerance is 10−6. Table 11.2 gives the comparison results,
including SNR, iteration numbers and computational time. From the results stated
in Table 11.2, the SNR by our method is very large, we know our method converges
to the global minimizer.
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Table 11.2 Performance for
the symmetric tensor
decomposition by Power
method and our proposed
method, Iterative num and
Comp

m = 3, n = 15

r Algo. SNR Iterative num Comp. time (s)

2 Pow 10.1767 19 0.305112

Our 120.8453 296 0.186037
3 Pow 11.8510 31 0.347772

Our 122.2619 369 0.274274
4 Pow 24.7118 8 0.295911

Our 118.8325 417 0.379962
5 Pow 16.1120 12 0.368514

our 117.9566 423 0.451466

Time are iterative numbers and the computational time
(second)

Conclusion

In this paper, we design an alternating minimization method with a careful
initialization for non-convex symmetric tensor decomposition. Our contributions
are as follows: (1) Initialization is an important part in our proposed method. With a
careful initialization, our proposed algorithm can converge to the global minimizer
of the non-convex objective function. (2) The designed alternating minimization
algorithm can give a highly accurate result. In numerical results, our proposed
algorithm is much better than the simple gradient descent method. Moreover, our
results show that with eigenvectors of random projection as initialization, we can
quickly get the global solution by using simple alternating minimization algorithm,
though finding the global minimum of this non-convex minimization problem is NP-
hard. Stability analysis indicates that our algorithm is rather stable for the symmetric
tensor decomposition problem.
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