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Preface

This book is written by scientists who live in different countries (United King-
dom, Denmark, Russia), but who have graduated from, and were established as
researchers at the same place: The Laboratory of Nonlinear Dynamics, Department
of Physics, Saratov State University, Russia. Being apart for many years, we have
united in one team again to write this book. Why?

We aim to summarize both classical results that are crucial for the understanding
of the concept of synchronization, and an up-to-date account of the accompanying
fascinating phenomena. The main theme that runs throughout the book is that in-
teraction between complex systems is governed by the same universal principles.
We strive to explain the material in a way that the newcomers to the field would
hopefully appreciate, namely,

• From simple calculations to advanced theoretical approaches
• From simple dynamics to complex behavior
• From mathematical and physical to general perspectives

Assuming only the basic knowledge of mathematics, our book takes the reader to
the frontiers of what is currently known about this research area.

The classical approach to synchronization we have learned by heart during our
regular and inevitably hot discussions, and most of the results on the new synchro-
nization phenomena we obtained together. It is therefore difficult to separate scien-
tific contribution and to compare the efforts made by each co-author, so we decided
to arrange the list of authors in alphabetic order to emphasize an equal investment
of their time, ideas and enthusiasm.

This book would not have been possible without the help of many people. First
of all, we are deeply indebted to our teacher Prof. V.S. Anishchenko who has intro-
duced us to Nonlinear World and who patiently taught us to properly speak the lan-
guage of science. We are grateful to our teachers and colleagues Prof. V.V. Astakhov
and T.E. Vadivasova for their active support and many invaluable discussions dur-
ing the years. We extend our thanks to Prof. E. Mosekilde, Prof. P. McClintock,
Prof. S.K. Han, who are our closest collaborators in the field of synchronization, and
to Prof. N.-H. Holstein-Rathlou, Prof. D. Marsh, and Prof. H. Braun, with whom
we have been enjoying collaborations in the field of modeling of biological sys-
tems. Our special thanks are due to Prof. E. Schöll who has encouraged us to write
this book. We acknowledge fruitful discussions with our colleagues A. Pikovsky,
M. Rosenblum, M. Zaks, J. Kurths, L. Schimansky-Geier, A. Neiman, A. Nikitin,
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and A. Silchenko on various aspects of synchronization. We gratefully acknowl-
edge the help of S. Malova with references and of P. Sherbakov with experiments.
We would also like to warmly thank Victoria Sosnovtseva for making funny illustra-
tions especially for this book. Finally, we would like to express our sincere gratitude
to our families for their constant support and inspiration.

Over the years our studies were supported by the Russian Foundation for Ba-
sic Research (Russia), the U.S. Civilian Research and Development Foundation
(USA), Engineering and Physical Sciences Research Council (UK), Medical Re-
search Council (UK), The Leverhulme Trust (UK), Forskningsrådet for Natur og
Univers (Denmark), and the European Union through the Network of Excellence
BioSim.

Loughborough, Alexander Balanov
Saratov, Natalia Janson
Lyngby, Dmitry Postnov
May 2008 Olga Sosnovtseva
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1 Introduction

It would not be too much of an exaggeration to say that oscillations are one of the
main forms of motion. They range from the periodic motion of planets to random
openings of ion channels in cell membranes. They are observed at various levels of
organization, have various origins and various properties. Since Newton’s crack at
the three-body problem and until just a few decades ago, the range of phenomena
regarded as oscillations were limited to damped, periodic and quasiperiodic oscil-
lations at best. A significant achievement of the second half of the 20th century is
the admission of deterministic chaos and noise-induced rhythms as equals into the
oscillation family.

Nature is not based on isolated individual systems. It is rich in connections, in-
teractions and communications of different kinds that are complex beyond belief.
With this, synchronization is the most fundamental phenomenon associated with
oscillations. It is a direct and widely spread consequence of the interaction of dif-
ferent systems with each other. In most general terms, synchronization means that
different systems adjust the time scales of their oscillations due to interaction, but
there is a large variety of its manifestations and of the accompanying fascinating
phenomena.

Anyone writing a book on synchronization is faced with two problems: on one
hand, one has to deal with a huge amount of material on the particular aspects and
effects; and on the other hand, there is a need to formulate a universal approach that
would embrace all the particular cases. Fortunately, an essential contribution to the
second problem has been made by Pikovsky, Rosenblum, and Kurths in their recent
book [214], that has provided a contemporary view on synchronization as a univer-
sal phenomenon that manifests itself in the entrainment of rhythms of interacting
self-sustained systems. This viewpoint is in agreement with the approach developed
since the time of Huygens, and is completely shared by ourselves. In writing the
present book we were motivated by the following considerations:

• Recently, a large variety of new synchronization phenomena were discovered
that are inherent in complex (chaotic) systems, but do not occur in simple peri-
odic oscillators. With the modern fascination for the beauty and the complexity
of the new effects, there is a tendency to forget about the basic phenomena and
theoretical results associated with “simply” periodic oscillations. This is largely
due to the fact that not all involved in the studies of these phenomena, and espe-
cially younger researchers and students, have the respective education. It turns
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out to be difficult to recommend a book, which would consistently present, equa-
tion after equation, the most fundamental theoretical results on synchronization.
Without such background, it is problematic to analyze the synchronization of ir-
regular oscillations from the general viewpoint, and to avoid discovering “new”
effects that often appear to be merely manifestations of the general principles in
a particular situation.

• There is a number of fascinating aspects of synchronization (phase multistabil-
ity, dephasing, self-modulation, etc.), that are observed in a variety of systems
and with various types of interaction, that have not been discussed yet in the
framework of the general concept of synchronization.

In order to cover the above problems, our book contains two parts. The first part is
a consistent and detailed description of the classical approach to forced and mutual
synchronization that is based on frequency/phase locking and suppression of nat-
ural dynamics. It is oriented to the people not familiar with the fundamental results
of synchronization theory obtained by a number of physicists and mathematicians,
such as B. van der Pol, A.A. Andronov, A.A. Vitt, M.L. Cartwright, A.W. Gillies,
P.J. Holmes, D.A. Rand, R.L. Stratonovich, V.I. Tikhonov, P.S. Landa, D.G. Aron-
son and co-authors, and published in their original works. It was our aim:

• To reproduce in every detail the derivations of the most fundamental results,
which until now were given only schematically and presented a significant chal-
lenge for beginners because of the traditional brevity typical of the scientific
works of the beginning and middle of the 20th century. We have made every
effort to make the reading easy for non-experts, to reduce to the minimum the
need to refer to other literature when following the calculations or the descrip-
tion of geometrical effects, and to exclude expressions like “It is easy to show.”
As a result, the lengths of the respective sections have increased substantially as
compared to those in the original books and papers, but we believe it was worth
doing this and hope that the readers will find this material helpful.

• To describe the same phenomena using different languages: the ones of physics
and of mathematics. In the early experiments on synchronization, the latter was
detected by means of listening to the volume of sound (organ pipes), visually
observing the positions of pendulums (clocks), and later Lissajous figures and
Fourier power spectra on the oscilloscopes (electric circuits). Thus, synchro-
nization can be naturally understood in physical terms like power, frequency
or phase. On the other hand, the systems that synchronize can be described by
non-linear mathematical equations. Transitions that occur in coupled systems
when their parameters change, can be described in mathematical terms of bi-
furcation and stability theory. In this book we will analyze the phenomena of
synchronization and the associated effects using both languages and making a
clear connection between these different means of description.

• To generalize theoretical results to complex oscillations. An important achieve-
ment of modern oscillations theory is the recognition of the role of irregular
oscillations that can be either deterministic or stochastic. We start by consid-
ering synchronization in simple periodic oscillators. Then we move to chaotic
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and stochastic oscillations and show that in spite of their complexity, they can
synchronize according to the same mechanisms as periodic ones.

We will deem to have achieved our goal, if after reading this part the reader will
be convinced that very different types of oscillations obey the same mechanisms of
synchronization, although the particular manifestations can be different.

The second part is devoted to the general mechanisms and principles of synchro-
nization, describing them with regard to the non-linear properties of the particular
classes of systems and couplings. We discuss synchronization of anisochronous os-
cillations, when fast and slow motions along the trajectory give arise to additional
phase-shifted coexisting regimes and thus change the bifurcational structure of the
synchronization region. A separate chapter is devoted to the concept of phase mul-
tistability and its development in the systems that oscillate with complex waveform
(essential for period-doubling and self-modulated oscillations) and have a particular
structure of their phase space. The latter might include regions of fast and slow mo-
tion, closeness of the trajectories to some singular points, etc. (essential for bursting
behavior). The concept of synchronization is extended to the systems with several
time scales of either deterministic, or stochastic origin. Finally, we consider coop-
erative behavior of systems with a particular type of coupling through the primary
resource supply and discuss their applications.



Part I

General Mechanisms of Synchronization
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“Begin at the beginning,” the King said, very gravely, “and go on till you
come to the end: then stop.”

Lewis Carroll, “Alice in Wonderland”

You have to learn the rules of the game. And then you have to play better
than anyone else.

Albert Einstein

This part offers a tutorial description of the mechanisms of synchronization. We
start from the beginning: periodic oscillations and analytical approaches. Then we
proceed with irregular oscillations, either chaotic or stochastic, and generalize the
classical results. Then we stop.
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2.1 What Are We Going to Talk About?

“Synchronization, of course, but what is it and why should I bother?” you might
ask.

Look, everything around us is moving. As René Descartes used to say [71],
“Give me the matter and motion and I will construct the universe.” Others say “mo-
tion is the mode of existence of matter” [274]. How exactly is the matter moving?
One very popular possibility is the motion that demonstrates a certain degree of rep-
etition, this would be an oscillation. Your heart is an oscillator, can you hear how it
beats?

Now consider several oscillators and let them feel each other’s motion, no matter
how exactly—the scientists would say “couple them.” Most likely, the coupling will
not go unnoticed by any of these systems: all of them will change their behavior to
this or that extent. In fact, this is going on in your body right now: you inhale and
exhale repetitively, and thus influence the way your heart beats without knowing it
perhaps. The basic features of oscillations are their amplitude and shape, but when
we talk about repetition of anything, a natural question is “how often?” With this
question arises the concept of a characteristic time scale of oscillations.

What does coupling have to do with all this? Well, because of coupling all
aspects of the system’s behavior would generally change, sometimes most dras-
tically. So, before you couple anything that oscillates, it would be good to know
the possible consequences in advance, wouldn’t it? We can tell you right now that
a lot of things can happen. For example, oscillations can stop altogether, which
might be good sometimes, but occasionally disastrous. Or they could become to-
tally unpredictable—but you might like it nevertheless because it looks beautiful.
But the phenomenon which is most often associated with synchronization is the
change of the time scales of interacting systems: if you couple the systems cleverly,
they can start to oscillate “syn-chronously,” which means “sharing the same time”
[214]. For your heart and breathing this can mean that, say, while you are breathing
once, your heart makes three beats exactly.

One can say that synchronization is the most fundamental phenomenon that oc-
curs in oscillating processes. In most general terms, synchronization can be defined
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as follows:

Synchronization is an adjustment of the time scales of
oscillations due to interaction between the oscillating
processes.

2.2 Topics to Consider

In Part I we consider the general types of non-damped oscillations that can occur in
real-life systems, and introduce the three mechanisms by which all of them can be
synchronized. More precisely:

• In Chap. 3 we describe the phenomenon of 1 : 1 forced synchronization which
can occur in self-sustained periodic oscillators, i.e., in systems that, without be-
ing influenced externally, demonstrate purely periodic oscillations—a definition
of these systems is given in Sect. 2.3. Real-life examples of such systems are
clocks, either mechanical or electronic, generators of electromagnetic waves,
drills, metronomes, a string of a violin while being bowed, etc. If periodic forc-
ing is applied to such systems, and if the frequency of forcing is close to, but
slightly different from, the frequency of self-oscillations, the forcing can entrain
both their frequency and phase. Two classical mechanisms of forced synchro-
nization are introduced: phase (frequency) locking and suppression of natural
dynamics.

• In Chap. 4 the interaction between two periodic oscillators is described, which
are coupled to each other bidirectionally or mutually. If the frequencies of un-
coupled oscillators are sufficiently close, then depending on the kind of coupling
between them, a number of phenomena can occur. One possibility is 1 : 1 mu-
tual synchronization, when both subsystems start to oscillate periodically with
the same frequency which is not equal to either of their natural frequencies.
Another kind of response induced by coupling is the simultaneous death of os-
cillations in both subsystems. Also, one can expect the more complicated phe-
nomenon of phase multistability: one out of two (or even out of a larger number)
oscillating patterns can be realized at exactly the same set of control parameters,
depending on the choice of the initial conditions. However, the mechanisms of
synchronization in mutually coupled weakly non-linear oscillators of general
type are the same as in forced systems, namely, phase (frequency) locking and
suppression.

• Chapter 5 considers the third mechanism of synchronization of periodic oscilla-
tions via homoclinic bifurcation, which is different from locking or suppression,
and which involves global restructuring of the phase space of interacting sys-
tems. This mechanism is less general, but nevertheless can be expected in quite
a large class of self-oscillators whose autonomous oscillations are highly inho-
mogeneous in time. The examples of such systems are populations of microor-
ganisms, neuron systems, lasers, etc. We give mathematical definitions that are
essential for the description of this synchronization scenario; discuss in detail
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the changes in the phase space that accompany the onset of synchronization via
homoclinic bifurcation, and reveal the phenomena associated with this mecha-
nism.

• Chapter 6 is devoted to a more generic case of n : m synchronization, when, as a
result of interaction, the ratio of the time scales of the coupled systems becomes
equal to n : m, where n and m are arbitrary integers. Such a situation typically
occurs when the natural time scales of the interacting systems are not close
to each other. We describe how the main synchronization mechanisms for this
particular case are realized, and derive a simple discrete map called the circle
map to analyze this type of synchronization. We illustrate n : m synchronization
on an example of cardiorespiratory interaction in humans.

• In Chap. 7 we discuss the general effects of noise on synchronization of pe-
riodic oscillations. We demonstrate that noise, which is inevitably present in
all real systems, can evoke very non-trivial phenomena in the dynamics of syn-
chronized self-oscillators. Different theoretical approaches for the description of
noise-induced phenomena are discussed. For an example of forced 1 : 1 synchro-
nization, we analytically study phase and frequency properties of synchronous
oscillations in the presence of noise. The theoretical results are illustrated by
experiments with electronic self-oscillators and with the cardiovascular system
of humans.

• Chapter 8 describes the mechanisms of synchronization of chaotic oscillations.
The latter was found to be typical dynamical regimes in many real systems.
Examples of systems with chaotic dynamics are fluid and gas flows, electri-
cal circuits, semiconductors devices, populations of animals, biological objects,
and many others. The chapter starts with an explanation of the origin of the
dynamical chaos. We discuss different manifestations of synchronization of ir-
regular chaotic oscillations. The concept of phase for a non-periodic process is
introduced. We describe the synchronization of chaos in terms of phases and
frequencies of chaotic oscillations, and also in terms of saddle periodic orbits
embedded into chaotic attractors. Forced and mutual synchronization of chaos
is discussed. The main mechanisms of chaos synchronization are revealed, and
the effects of noise on them are considered. Some results are illustrated by ex-
periments with an electronic circuit.

• In Chap. 9 synchronization is considered in systems where oscillations are in-
duced merely by external random fluctuations. We discuss different classes of
dynamical systems where noise alone is able to induce highly regular oscilla-
tions with the properties similar to the properties of deterministic self-oscilla-
tions. We show that the mechanisms of synchronization characteristic of purely
deterministic systems are also valid for noise-induced oscillations. We discuss
the peculiarities of synchronization in stochastic systems and illustrate these re-
sults on electronic circuits and on the models of neurons.
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2.3 Self-Sustained Oscillations: A Key Concept
in Synchronization Theory

Before we start talking about any synchronization at all, we need to outline more
precisely the class of systems and processes in which we can expect it to occur.
Systems that oscillate in principle are usually called oscillators. But the systems
we are interested in should be capable of demonstrating oscillations that are self-
sustained, or self-oscillations. The concept of self-oscillations was first proposed by
Andronov, Khaikin and Vitt1 in 1937 [12] (for the English version see [14]2). Self-
oscillations form a special, but rather broad class of all oscillating processes and are
characterized by the following features.

2.3.1 Features of Self-Oscillations

Below we list the features of self-oscillations.

• First and foremost, they do not damp, i.e., the repetitive motion of the system
does not stop with the course of time, and does not show the tendency to stop.3

• Second and equally important, they oscillate “by themselves,” i.e., not because
they are repetitively kicked from outside.

• The third feature is perhaps the most intriguing and fascinating: the shape, am-
plitude and time scale of these oscillations are chosen by the oscillating system
alone.4 An outsider cannot easily change them, e.g., by setting different initial
conditions.5

Examples of self-oscillators are a grandfather pendulum clock, a whistle, your throat
when you sing a musical note, as well as many musical instruments, your heart and
many other biological systems, a bottle of water with a narrow neck that is put
vertically with its neck down (water will come out in pulses). In order to prevent
possible confusion, we would like to give just one example of an oscillator which is
not a self-sustained one.

Counterexample. Consider a famous bob pendulum consisting of a load on a rope,
whose other end is fixed. If we give the load an initial kick, it will start to oscillate,

1 Another popular spelling is “Witt” which is widely used in literature.
2 As explained in “Preface to the second Russian edition” of [14], the name of Vitt was “by

an unfortunate mistake not included on the title page as one of the authors” of [12], but he
has contributed equally with the two other authors.
3 To be more precise, until the power source lasts, as will be explained below; so they are

not perpetuum mobile.
4 In p. 162 of [14] it is said: “The amplitude of these oscillations is determined by the

properties of the system and not by the initial conditions. . . . Whatever the initial conditions,
undamped oscillations are established and (they are) stable.”
5 Except in the case of multistability which will be discussed in Chap. 12. But even then the

number of options is usually quite limited and is anyway offered by the same self-oscillating
system.
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but if we leave it alone, the oscillations will decay and eventually stop due to friction
of the whole construction with air, and also at the point of the rope attachment. Of
course, a repetitive kicking will resume the oscillations of the pendulum, but these
will not be self -sustained because they would damp without the kicks. What if there
were no friction in the system? Then the oscillations would not damp, but would that
make them self-sustained? No, because the properties of these oscillations would
be completely defined by the direction and strength of the initial kick made by an
outsider who would wish to launch them: the harder one kicks, the larger the swing
will be. This would contradict the third feature of self-oscillations.

2.3.2 Features of Self-Oscillating Systems

For self-oscillations to occur, the oscillating system must be designed in a special
way—which is quite a popular design, we haste to say. The following three features
of the self-oscillating systems are most essential: they must be non-linear systems,
there must be dissipation in them, and there must be a source of power.

Dissipation

Dissipation is a mechanism due to which energy is being lost by the system while
it changes its state, i.e., performs a motion. It has to be said that most macroscopic
systems are dissipative anyway, since there is always some sort of friction in it.
For example, mechanical systems lose energy because their details experience fric-
tion with other details or surrounding air. In electronic systems elementary particles
bump into other particles, the elements of the circuits heat and thus lose energy. This
list can be continued, but the main idea is clear: dissipation is everywhere.

It would be pertinent to emphasize again that the systems without (or almost
without) dissipation are not self-oscillators. The oscillations in such systems are
usually associated with the motion of either very small (microscopic) particles like
electrons in an atom, or of very large (megascopic) objects like stars and planets.
They do oscillate (rotate around their centers) eternally, but just because the energy
of their oscillations is not wasted on friction.

Power Source

Having established that dissipation is ubiquitous, a natural line of thought occurs:

• Oscillations have amplitude A. Which, roughly speaking, is half the difference
between the maximal and the minimal values of an oscillating quantity. Note
that if oscillations are decaying, their amplitude decreases. If the oscillations are
on the contrary expanding, A grows with the time course. For self-oscillations
the amplitude A should not change in time.6

6 At least if the oscillations are periodic. If self-oscillations are not periodic, their amplitude
will itself oscillate around some average value, neither growing unboundedly, nor tending to
zero, like, e.g., in chaotic oscillations described in Chap. 8.
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• Any oscillations have power O. Which is the energy per time unit, and monoto-
nously depends on the amplitude A.

• Therefore, in order to maintain non-damped oscillations with a constant ampli-
tude, the system performing them must keep its power at a certain sufficient
level all the time.

• But how can the system do that, if dissipation persistently pumps the power out
of it?

The answer is obvious: The system should simply find the way to feed on some
source of power in order to compensate for its losses.7 Thus we have deduced the
need for the source of power in self-oscillating systems.

Non-linearity

First of all, what is non-linearity? Suppose we have a system about which we would
like to find out whether it is linear or not. Apply some perturbation x1 to it and record
its response y1. Then apply another perturbation x2 and record the response y2 to
that. Then apply perturbation equal to (x1 + x2) and calculate the response y3. Then
calculate the sum (y1 + y2) and compare the two quantities

(y1 + y2) and y3. (2.1)

Are they equal for any chosen x1 and x2? If yes, then the system is linear. If they
are not equal, the system is non-linear. Graphically, linearity can be illustrated as a
straight line on the graph of response y as a function of input x. Anything different
from a straight line would represent a non-linear system.

Let us come back to the system which wants to self-oscillate, i.e., to decide
for itself how to behave and to hold its ground by being resistive to at least minor
influences from the outside world. In order to do this, the system must take power
from the available source in a proper way.

Suppose the system does not oscillate at all, i.e., its amplitude A is zero. At this
state it does not spend power on oscillations, and does not need to compensate for
it. Therefore, the amount of power S taken from the source per time unit should be
zero. They say that the system is in equilibrium. Now let the initial conditions be
such that the amplitude of oscillations is finite A > 0. Then the system is not in
equilibrium and should take power. How?

It is convenient to express powers O and S as functions of A2 rather than A. The
reason is that quite often the power O spent on oscillations is proportional to A2,
i.e., O = kA2 with k being some proportionality constant. Consider this case for
the start.

The amount of power S that enters the system from the source is a function
of A2, and this function can be either linear or non-linear. A few possibilities are
illustrated in Fig. 2.1. In order to maintain oscillations with a certain amplitude A0,

7 In [14] it is said: “A self-oscillating system is an apparatus which produces a periodic
process at the expense of a non-periodic source of energy.”
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Fig. 2.1. Powers in the system as functions of the square of oscillations amplitude A2. Dashed
line: power O spent on oscillations; solid line: power S supplied into the system. The approx-
imation O = kA2 is used. a S is a linear function of A2, no non-damped oscillations can
occur; b S is a non-linear function of A2, oscillations with A0 are stable; c S is a non-linear
function of A2, oscillations with A0 are unstable

the supplied power S must compensate the dissipated power O. If S is a linear func-
tion of A2 as shown in (a), then S and O can intersect only at one zero point, which
is equivalent to the absence of oscillations. If S is non-linear as illustrated in (b),
then two intersections are possible: at zero and at a certain A2

0. This means that if
the amplitude A of oscillations reaches the value of A0, the lost power is being com-
pensated. With this, if A > A0, the supplied power S is not enough to compensate
for the power loss O, and the amplitude of oscillations will decay automatically
until it reaches A0. Similar considerations show that from A0 the system tends to
establish the amplitude A0 as well. The system that demonstrates the given charac-
ter of a non-linearity is capable of self-oscillations. In (c) an example of a non-linear
function S is given at which oscillations with A = A0 can occur, but they will be
unstable. Indeed, setting A > A0 leads to more power entering the system than be-
ing lost, and A is pushed to grow further. Setting A < A0 leads to the power spent
is not compensated, and consequently to the decrease of A towards zero amplitude,
i.e., towards no oscillations. Although this last system can oscillate with a non-zero
amplitude A0, it is not a self-sustained system, because such oscillatory regime is
not stable: a tiny perturbation will ruin it.

If the power of oscillations O is not a linear function of A2, the picture would
qualitatively look as in Fig. 2.2. It is qualitatively similar to the one in Fig. 2.1(b),
so the same principles apply. Based on these simple considerations, it can be con-
cluded that it is an interplay between the non-linear power supply and dissipation
that makes self-oscillations possible. Thus, a self-sustained system must be non-
linear.

Note, that the figures above schematically illustrate the requirements for the
simplest periodic self-oscillations to arise, but would not be sufficient to explain
the origin of more complex self-oscillations whose amplitude is not constant. How-
ever, the fundamental physical principles explained here remain valid for all self-
sustained systems, provided the modern developments are taken into account that
are discussed in the next paragraph.
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Fig. 2.2. Powers in the system as functions of the square of oscillations amplitude A2.
Dashed line: power O spent on oscillations; solid line: power S supplied into the system.
Self-oscillations can occur

2.3.3 Modern Revisions of the Definition of a Self-Sustained System

Andronov et al. [12, 14] have defined a self-sustained system as periodic, but nowa-
days a family of self-oscillations has expanded considerably to include quasiperi-
odic and irregular oscillations, so this requirement is obviously out of date.

Also, the original definition required the self-sustained system to be autonomous,
which in fact means that the power available from the source should be constant and
not depend on time explicitly.8 This definition was revised by Landa [161, 162] in
view of modern developments of oscillations theory. She excluded the word “au-
tonomous” and has thus allowed the source of energy to change in time. This ad-
dition made alone would immediately include oscillations that exist only because
of rhythmic external forcing, i.e., forced oscillations which are not self-sustained.
However, forced oscillations would have the same or similar time scales as the forc-
ing itself. So in order to exclude forced oscillations, Landa adds a requirement that
reads “The complete or partial independence of the frequency spectrum of oscil-
lations from the spectrum of the energy (power) source” [161]. This means that at
least a part of the spectrum of oscillations does not come as a result of the transfor-
mation of the spectrum of the source of power, i.e., the frequency components are
not harmonics or subharmonics of those of the spectrum of the source. At least a
part of the spectrum of oscillations must be defined by the intrinsic properties of the
system itself.

The relaxation of the condition on the constancy of the power source has an
important consequence: it allows one to include into the family of self-sustained
oscillations the ones that are induced merely by random perturbations and would
not occur without them. In Chap. 9 it will be demonstrated that this classification
of noise-induced oscillations is justified, and that they do behave like self-sustained
systems in many respects, and in particular can be synchronized.

8 Although the amount of power actually taken from the source at the given time instant
does depend on the stage of oscillations, and thus depends on time implicitly.
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2.3.4 Self-Sustained Oscillations and Attractors

A distinctive feature of self-oscillating systems is their ability to self-organize. When
we launch a process in such a system by, e.g., switching it on, the initial conditions
can be chosen at random in a wide range. In general, the time course of a process
thus launched can depend on the initial settings quite substantially. However, a self-
oscillator is very confident about what it is ought to do, and after some transient
(relaxation) time passes by, it arrives at the same regime of oscillations from a large
range of initial conditions. In mathematical terms, such regimes are characterized
by the attractors in the phase space. Sometimes, certain systems can have a choice
of the possible attracting regimes to which they can go, depending on the initial
conditions provided, and this is called multistability. Nevertheless, self-sustained
systems are generally quite firm in their decisions on how to behave, and are resis-
tant to weak attempts to distract them from their course. A mathematical term for
this property is robustness.

2.3.5 Synchronization as a Control Tool

In various applications it might become necessary to amend the conduct of a self-
sustained system either slightly or substantially. One might even want to stop all os-
cillations in it. However, this might not be a straightforward and easy task, given the
above-mentioned stubbornness of self-oscillators. In this respect, our book shows
you the possible ways to control the behavior of self-oscillating systems by means
of clever and inexpensive perturbations. But before one is able to choose the best
way to tame the particular system, it is necessary to classify it, to learn about the
temper and habits of the systems from the given family, and to arm oneself with
the full range of the available taming tools. We wish our reader good luck in this
exciting journey.

2.4 Duality of the Description of Synchronization

Synchronization of oscillations is a phenomenon that was originally discovered by
Christian Huygens in 1665 in a mechanical system: two pendulum “grandfather”
clocks hanging on the same beam [125]. The interaction between the organ pipes
was studied by Rayleigh [243]. The first observations of synchronization in a elec-
tronic tube generators were done by Eccles [58, 75] in relation to the problem of
creating a precision clock and the transmission of naval signals. Almost at the same
time experiments with electric circuits were performed by Appleton [28] and by
van der Pol [292, 293] while they were studying the reception of radio signals with
electric circuits with triodes. The same authors developed the first theoretical ap-
proaches that were able to explain their results to some extent. However, the first
non-linear mathematical theory of synchronization which was able to capture the
phenomena observed much more accurately, was created in the Soviet Union by
Andronov and Witt, also with regard to a very practical problem: stabilization of
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the frequency of a powerful generator of electromagnetic waves by energy-efficient
weak external forcing [13, 299].

In the experiments synchronization was detected by observing Lissajous fig-
ures on the screens of oscilloscopes that provided one with information on the
phase shifts, amplitudes and frequencies. Thus, synchronization can be naturally
described in physical terms like power, frequency or phase. On the other hand, the
systems which can demonstrate synchronization, can be described by non-linear
mathematical equations. Transitions that occur in coupled systems when their pa-
rameters change, can be described in terms of dynamical systems theory including
bifurcation theory. We emphasize that the same phenomena can be described using
different languages, the language of physics or the language of mathematics. But
whatever approach we choose, the underlying phenomena remain the same. In this
book we will analyze the phenomenon of synchronization and the associated effects
using both languages and making a clear connection between these different levels
of description.

2.5 Oscillations Helping Each Other Out

A reader who has reached this point in the book might be already thinking: “First,
they were talking about my heartbeats, whistles, clocks and bottles, then about some
electronic experiments and organ pipes. In between they promised me something
exciting to arise out of the coupling of various devices, and also gave a definition
of some imaginary self-sustained system. These look like all different things to me,
having nothing to do with each other. Even if they are saying that two clocks can be
synchronized, so what? How does it help me to understand what happens to organ
pipes? And above all, what does it have to do with my heart?”

This is a fundamental question which we would be delighted to receive and to
answer.

We need to make a short excursion into the past. Before the beginning of the
20th century, non-linearity was perceived as an annoying misfortune that could be
encountered in this or that physical phenomenon. Every physical problem seemed
to contain some non-linearity, but it would be perceived as its own non-linearity
specific to the given problem [256], just like you might have suggested above. In
the early 1930s Soviet physicist Leonid Mandelstam was the first to recognize the
burning need to develop a unique approach to non-linearity and proposed the ideas
of non-linear thinking. In addition to that, in 1944 in one of his lectures he made
an observation that starting from Kepler laws, most fundamental discoveries made
in physics were in fact oscillatory in this or that way. He also observed that oscilla-
tions were a key element that was common in all traditional subdivisions of physics:
optics, electricity, acoustics, etc. Now we know that oscillations are common in bi-
ology, chemistry, geology, finances and social sciences as well, and this list can
be continued. His ideas of commonness of oscillations and oscillations’ mutual aid
consisted in that there are the same fundamental laws of nature that lie behind os-
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cillations of all kinds. An understanding of the principles behind oscillations in one
system would help one to understand oscillations in the other systems.

The statement above might not sound immediately obvious, so we continue.
Already at the end of the 19th century it was clear that if one considers small os-
cillations in acoustics and in electricity, and consistently, from the first principles,
derives mathematical equations describing them, the resulting equations will be the
same [243]! Moreover, it was shown that the same equations are valid for small
oscillations in mechanical systems. Is it a coincidence?

Let us go further. Later on, when deriving from the first principles the differ-
ential equations underlying the non-small oscillations in the systems of all kinds
(chemical, biological, physical) it was noticed that quite often these equations ap-
pear equivalent in the sense of topology. The latter means that a change of variables
would reduce one set of equations to another, i.e., that there is no real difference
between them from the viewpoint of mathematics!

At present these ideas are quite well established and might even be occasionally
regarded as trivial. But, as Mandelstam once said “It is the triviality of this, which
is non-trivial” [256]. Thus, the theory of oscillations serves as a common language
that can be spoken by different disciplines. The laws of the theory of oscillations
are common between oscillations of the same class, regardless of the nature of the
particular system demonstrating them.

Coming back to the question in the beginning of this section, we are safe in
saying that all seemingly different systems and phenomena that were mentioned
here, and a huge lot of those not mentioned, just because there are too many of
them, obey the same fundamental principles. If we state that self-oscillations can
be synchronized, this means that all self-oscillations can do that, no matter where
they are found. In the remainder of Part I of this book the simplest paradigmatic
models will be discussed, that describe periodic, chaotic, noisy and noise-induced
oscillations. The mathematical results will predict that certain interesting things can
happen to them. But then qualitatively the same phenomena can occur even in much
more complex systems, provided that their oscillatory properties are equivalent to
those described by simple equations.

Therefore, when learning about, say, phase locking in van der Pol oscillator, one
learns about phase locking in a general periodically self-oscillating system.

2.6 Terms of Bifurcations Theory

In the next chapters we use a number of terms that belong to the theory of differ-
ential equations, including bifurcation theory. It is not possible to give a detailed
introduction into differential equations here, and anyway this is very well done by
other authors before us. Just a few useful sources are [65, 101, 156], and we would
like to mention separately [2] for those who feel that they need to start from a very
basic level. For an excellent historical introduction to dynamical chaos we would
mention [3].
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In this chapter we study the simplest case of synchronization: synchronization of
unidirectionally coupled periodic oscillators. Another name for this phenomenon is
forced synchronization, which reflects the fact that one system influences the other,
but does not experience any influence from the other system in return. Another sim-
plifying assumption employed here is that the frequency of external stimulus is suf-
ficiently close to the frequency of natural, i.e., unforced, oscillations. Provided that
the strength and frequency of forcing satisfy certain conditions, a remarkable effect
can take place: the system that experiences only weak external perturbation can start
to oscillate with the frequency equal to the one of this perturbation. They say that
the phenomenon of 1 : 1 phase (frequency) locking, or entrainment, occurs. This is
a special case of a more general phenomenon of n : m synchronization that can be
observed when the forcing frequency ff is not close to the natural frequency f0 of
oscillations in the forced system, but instead is close to a value n

m
f0. n : m synchro-

nization will be considered in Chap. 6.
We will start with considering a periodic weakly non-linear oscillator that is

forced harmonically. As a particular example we use a famous paradigm for periodic
self-sustained oscillations, the van der Pol equation, which has been used to describe
a variety of oscillatory phenomena including oscillations of current in electric circuit
[292], signal of electrocardiogram [294], dynamics of semiconductor lasers [49],
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generation of relativistic magnetrons [168], and the activity of a single neuron [197].
The equation reads

ẍ − (
λ − x2)ẋ + ω2

0x = 0. (3.1)

Here, dots over the variables denote derivatives over time t , λ is the non-linearity
parameter and also the bifurcation parameter: at λ < 0 there are no self-oscillations,
and the only stable solution of the system is a stable fixed point at the origin. At
λ = 0, Andronov–Hopf bifurcation occurs, as a result of which the fixed point be-
comes unstable, and a stable limit cycle is born. At the moment of birth, oscillations
on the limit cycle are harmonic, and their frequency is exactly equal to ω0 > 0,
which is also called eigenfrequency. If λ is positive and small, i.e., 0 < λ � 1,
the periodic self-sustained oscillations remain almost harmonic, and their frequency
remains approximately equal to the value of ω0. The solution to (3.1) for large t ,
i.e., after the system has relaxed to the limit cycle from the arbitrarily chosen initial
conditions, can be approximately described by

x(t) = A cos(ω0t + ϕ0), A = const, ω0 = const, ϕ0 = const, (3.2)

where A is the amplitude, ω0 is the frequency, and ϕ0 is the initial phase of oscil-
lations. The respective phase portrait on the plane (ẋ, x) and the realization of x(t)

are shown in Fig. 3.1 by a black line. This is the case of the so-called weakly non-
linear oscillator,1 which can be analyzed analytically by means of the approximate
methods of the theory of oscillations.

Generally, by a weakly non-linear oscillator we understand a system with a limit
cycle, whose control parameters are just above the values corresponding to a super-
critical Andronov–Hopf bifurcation.2 Note that when the non-linearity λ in (3.1) is
no longer small, the oscillations, although remaining periodic, are no longer close
to harmonic, their amplitude grows and the frequency is less than ω0 (Fig. 3.1, grey
line). The larger the λ, the slower the oscillations, and the bigger their amplitude is.

Now, let us introduce external periodic forcing into the system in its simplest
harmonic form as follows:

ẍ − (
λ − x2)ẋ + ω2

0x = B cos(Ωt). (3.3)

Here, B and Ω are the strength (amplitude) and frequency of the external forcing,
respectively. The solutions of (3.3) at ω0 = 1, fixed small value of B = 0.01 and
four different values of Ω close to 1 are illustrated in Fig. 3.2. The external forcing

F(t) = B cos(Ωt) (3.4)

is shown by black in the fourth column together with the solution x(t). Note that the
amplitude B of forcing here is much smaller than the amplitude of x. That is why,
in order to allow the reader to compare the details of the behavior of both x and F ,
in the last column of Fig. 3.2 we show not F , but 10F .

1 Or nearly sinusoidal, as they are called in [12, 14].
2 There are two forms of Andronov–Hopf bifurcation, a supercritical and a subcritical one.

The former is encountered more often, therefore in what follows we will call it simply
“Andronov–Hopf bifurcation” for brevity.
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Fig. 3.1. a Phase portraits and b realizations of the autonomous van der Pol oscillator (3.1) at
ω0 = 1 and two different values of non-linearity λ: λ = 0.1 (black) and λ = 0.5 (grey)

Fig. 3.2. (Color online) Projections of the phase portraits on the planes (ẋ, x) (first column)
and (F , x) (second column), Poincaré sections on the plane (F , x) (third column), and
realizations x(t) and F(t) = B cos(Ωt) (fourth column) of the forced van der Pol oscillator
(3.3) at λ = 0.1, B = 0.01 and different values of Ω: Ω = 0.9, Ω = 0.992, Ω = 1.007,
Ω = 1.1

One can see that if the forcing frequency Ω is sufficiently close to the natural
frequency ω0 = 1 (Ω = 0.992 and Ω = 1.007), which means that the frequency
detuning between the systems is small, the forced oscillations x(t) are periodic.
Namely, the phase trajectories tend to the stable limit cycle, and the Poincaré section
is a fixed point. Each time F takes its maximal value, x tends to be at the same
“stage” of its oscillations. This is phase synchronization of oscillations by external
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forcing. Note that synchronized oscillations have constant amplitude, and the values
of x at the local maxima are the same from one oscillation to another.

However, when the forcing frequency Ω is not close enough to ω0 (Ω = 0.9 and
Ω = 1.1), i.e., frequency detuning is not small, an interesting phenomenon occurs:
the amplitude of oscillations oscillates itself. This is called beating. The instanta-
neous amplitudes, that are roughly half distances between the closest maxima and
minima x(t), oscillate periodically with a certain beat frequency. To some extent,
this can be visible in the Poincaré section, defined by ẋ = 0, ẍ < 0, that shows the
maxima against the values of the forcing F taken at the same instants (Fig. 3.2, third
column). Later we will consider the beat frequency in more detail and make some
theoretical analyses.

Perhaps more importantly, when the amplitude of oscillations is not constant the
forced oscillations are not synchronous with the forcing: when F takes its maximal
values, x can take any value. The projection (F , x) is very informative: it is clearly
visible that x and F move independently of each other. In more rigorous terms,
the oscillations are quasiperiodic: the phase trajectories lie on the two-dimensional
invariant tori whose Poincaré sections are closed curves. This regime corresponds
to the absence of synchronization between the system and the forcing.

In Fig. 3.2 the 1 : 1 synchronization phenomenon is illustrated numerically. How-
ever, for the weakly non-linear oscillator (3.3) considered, synchronization also al-
lows for analytical treatment, which will be illustrated in the next sections.

3.1 Phase of Quasiharmonic Oscillations

Here, we need to introduce an important idea closely associated with the phenom-
enon of synchronization—the idea of phase. When discussing the synchronization
illustrated in Fig. 3.2, we mentioned the “stage” of oscillations, which is the current
position of the system inside the given cycle of oscillations, e.g., the beginning, the
first quarter, the middle, the end, etc. We need a quantity characterizing the “stage”
of oscillations at any given time moment t : call it phase ψ(t). For a purely har-
monic function of time like in (3.2) the phase can be introduced uniquely as an
argument of the cosine or sine, which in the given case will be ψ(t) = ω0t + ϕ0.
In Fig. 3.3(a) a harmonic function cos(1.005t + 0.5) is shown by a solid line that
represents harmonic forcing. The period of the cosine function is 2π, so if we
start to observe the cosine at some time moment t , the onset of the nth full os-
cillation cycle (n = 1, 2, . . .) can be characterized by the values of ψ(t) equal to
ϕ0 +2π(n−1), and the end of it by ϕ0 +2πn. Thus, the first oscillation cycle will be
within ψ(t) ∈ [ϕ0; ϕ0 + 2π], and in terms of time inside the interval t ∈ [0; 2π/ω].
For harmonic oscillations, phase is a linear function of time. In Fig. 3.3(c) the phase
ψ(t) = (1.005t + 0.5) of the signal in (a) is shown with filled circles. In (a) filled
circles indicate the values of the signal at the instants t = 2πn/1.005, i.e., when
phase ψ(t) changes by 2π.

In this chapter we will deal with oscillations in a forced weakly non-linear sys-
tem. Such oscillations, generally not being harmonic, can be viewed as almost har-
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Fig. 3.3. Illustration of phase of quasiharmonic oscillations. a Harmonic signal cos(1.005t +
0.5) that represents forcing; b quasiharmonic signal x(t) that represents response of the
forced system; c phases of a harmonic forcing (filled circles) and quasiharmonic response
(solid line); d phase difference ϕ(t) between the response and the forcing that oscillates
slightly around some constant and is thus an evidence of 1 : 1 phase synchronization

monic, or “quasiharmonic.” This term means that the oscillations can be described
as cosine (or sine) whose argument is not a linear function of time, but is close to
being linear, and whose amplitude is not a constant, but changes either slowly, or
slightly. For quasiharmonic oscillations phase can be also introduced as an argument
of cosine. An example of quasiharmonic oscillations is given in Fig. 3.3(b), and its
phase in (c) by solid line.

It has to be mentioned that purely harmonic or quasiharmonic oscillations are
rare in real life. Unfortunately, even if oscillations are periodic, but non-harmonic,
there is no unique way to introduce a phase. In more detail, the problem of intro-
duction of a phase for non-periodic oscillations of complex shape, including chaotic
ones, will be discussed in Sect. 8.3. Because in this chapter we are not going to con-
sider any other oscillations besides the weakly non-linear ones, we do not need to
be bothered with the more difficult cases right now.

Note that phase itself can serve as a useful instrument for describing the oscilla-
tions. However, in relation to the synchronization problem, phase represents a con-
venient tool for detection whether two oscillations are synchronized or not. Namely,
one can introduce phases for the two oscillations and consider their difference ϕ

that is usually referred to as “phase difference.” If the phase difference happens to
be a constant or to oscillate slightly around a constant3 this would usually imply that
two oscillations are 1 : 1 synchronized. An illustration of this is given in Fig. 3.3(d)
that shows the phase difference between the forcing in (a) and the response in (b).
If the phase difference grows or decreases monotonously in time, there is no 1 : 1
synchronization.

3 If phase difference oscillates around some constant, it does not necessarily mean synchro-
nization. For more detail, see the description of Fig. 3.9.
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3.2 Derivation of Truncated Equations for Phase Difference and
Amplitude

It should be noted that the exact oscillating solution of (3.3) for the arbitrary values
of parameters λ, B and Ω cannot be found analytically with the mathematical tools
available so far. However, for a certain range of values of these parameters, one can
analytically find the approximate solutions that would describe the unknown exact
solutions with a certain degree of accuracy. This would be quite sufficient from
the practical viewpoint, since whatever is measured in a real experiment is anyway
measured with a certain error. Hence, approximate theory can be good enough when
one compares it with an experiment. The idea of calculations similar to the ones
presented here first occurred to Andronov and Witt in the 1920s [13, 299]. The
significance of their results is that they were one of the first to successfully analyze
the non-linear systems by the approximate methods, and to provide an accurate
explanation of the earlier experimental observations of synchronization in electric
circuits. The analysis of equations of the form similar to that of (3.3), i.e., of non-
linear, dissipative ordinary differential equations of the second order with weak non-
linearity and with periodic excitation, was also done by Cartwright [61, 62], Gillies
[88], Holmes and Rand [117], Arrowsmith [36]. An introduction into this analysis
was made in [179] and [110] with more references.

In what follows, we will restrict our analysis to the small values of λ, for which
without the forcing (B = 0) the solution is almost harmonic (3.2). The addition
of forcing (B �= 0) will obviously change the solution. However, let us assume
that the forcing is not too strong, i.e., B is not large as compared to the amplitude
A0 of unperturbed self-oscillations, and the forcing frequency Ω is only slightly
different from ω0. Then the solution of (3.3) can be approximately described as a
quasiharmonic oscillation, i.e., oscillation in the form of (3.2), whose amplitude A

and the argument ψ (phase) of the cosine are perturbed by the forcing.
Since the system, (3.3), under study is close to being linear with small λ, it

is natural to suppose that its response to an external forcing at the frequency Ω

contains the frequency component Ω . We will thus be looking for a solution in the
form of a quasiharmonic function of time, namely,

x(t) = A(t) cos(Ωt + ϕ(t)). (3.5)

Here, A(t) is the envelope of the oscillations x(t) illustrated by Fig. 3.2 (fourth
column). A does not change in time when synchronization occurs, and oscillates
slowly when beating starts.

We assume that both A(t) and ϕ(t) are slow functions of time compared to the
function cos(Ωt). Mathematically, this condition can be written as

Ȧ(t) � ΩA(t), |ϕ̇(t)| � Ω. (3.6)

The full phase ψ(t) of the forced oscillations is

ψ(t) = Ωt + ϕ(t), (3.7)
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while the phase of forcing ψf (t) is

ψf (t) = Ωt.

Hence, ϕ(t) is the phase difference between the forcing and the forced oscillations.
When ϕ(t) is a constant, oscillations x(t) in the system are 1 : 1 synchronized by
the external forcing and are harmonic with frequency Ω . When ϕ(t) changes in
time, there is no 1 : 1 synchronization. Thus, in order to reveal the synchronization
conditions, we need to formulate the explicit equations describing the evolution of
ϕ and A in time. Synchronization will mean that there is/are stable fixed point/s in
these equations, so we will have to find the conditions for these points to exist and
to be stable.

To derive the equations for ϕ and A, one can use the method of averaging, also
known as the Krylov–Bogoliubov4 method [150]. In the following, for brevity we
will omit the brackets “(t)” denoting the explicit dependence on time of A and ϕ. If
we calculate the time derivative of x(t) rigorously, we obtain

ẋ = Ȧ cos(Ωt + ϕ) − AΩ sin(Ωt + ϕ) − Aϕ̇ sin(Ωt + ϕ). (3.8)

By representing the solution in the form of (3.5), instead of one independent phase
variable x(t) we introduce two phase variables: A(t) and ϕ(t). Thus, an ambiguity
is introduced into the system. In order to remove the introduced ambiguity, we have
to specify an additional condition that A(t) and ϕ(t) should satisfy. It is convenient
to set such a condition that the derivative of x(t) is a simple expression in the form

ẋ = −AΩ sin(Ωt + ϕ), (3.9)

which would immediately imply

Ȧ cos(Ωt + ϕ) − Aϕ̇ sin(Ωt + ϕ) = 0. (3.10)

Next, we need to find ẍ. The calculations can be continued using the expressions
above that contain sines and cosines, but it is usually more convenient to operate
with exponential functions. Thus, we want to express all trigonometric functions in
x(t), ẋ and ẍ in terms of exponents of complex arguments. We start from reformu-
lating the solution, (3.5),

x = A cos(Ωt + ϕ) = A
ei(Ωt+ϕ) + e−i(Ωt+ϕ)

2
= eiΩtAeiϕ + e−iΩtAe−iϕ

2
.

Let us introduce a complex function of time a, such that

a = Aeiϕ, a∗ = Ae−iϕ, (3.11)

where the asterisk denotes the complex conjugate. Then x(t) can be represented
through a as

4 Bogoliubov is also sometimes spelled as Bogolyubov or Bogolioubov in literature.
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x = 1

2

(
aeiΩt + a∗e−iΩt

)
. (3.12)

We can call a a complex amplitude of oscillations. The condition (3.10) can be
rewritten as

Ȧ
ei(Ωt+ϕ) + e−i(Ωt+ϕ)

2
− Aϕ̇

ei(Ωt+ϕ) − e−i(Ωt+ϕ)

2i

= eiΩtȦeiϕ + e−iΩtȦe−iϕ

2
− eiΩtAϕ̇eiϕ − e−iΩtAϕ̇e−iϕ

2i

= 1

2
eiΩt

(
Ȧeiϕ + iAϕ̇eiϕ) + 1

2
e−iΩt

(
Ȧe−iϕ − iAϕ̇e−iϕ) = 0.

With the account of the following:

ȧ = Ȧeiϕ + Aiϕ̇eiϕ and ȧ∗ = Ȧe−iϕ − Aiϕ̇e−iϕ,

the condition (3.10) turns into

ȧeiΩt + ȧ∗e−iΩt = 0. (3.13)

Now, consider ẋ and rewrite (3.9) as

ẋ = −AΩ
ei(Ωt+ϕ) − e−i(Ωt+ϕ)

2i
= iΩ

2

(
aeiΩt − a∗e−iΩt

)
. (3.14)

Consider ẍ as a derivative of (3.14)

ẍ = iΩ

2

(
ȧeiΩt + aiΩeiΩt − ȧ∗e−iΩt + a∗iΩe−iΩt

)

= iΩ

2
ȧeiΩt − Ω2

2
aeiΩt − iΩ

2
ȧ∗e−iΩt − Ω2

2
a∗e−iΩt .

Add and subtract iΩ
2 ȧeiΩt and regroup terms

ẍ =
(

iΩȧeiΩt − iΩ

2
ȧeiΩt

)
− Ω2

2
aeiΩt − iΩ

2
ȧ∗e−iΩt − Ω2

2
a∗e−iΩt .

The sum of the second and the fourth terms satisfies the condition (3.13) and is equal
to zero. Hence

ẍ = iΩȧeiΩt − Ω2 1

2

(
aeiΩt + a∗e−iΩt

)
. (3.15)

Substitute x, ẋ and ẍ ((3.12), (3.14), (3.15), respectively) into (3.3)

iΩȧeiΩt − Ω2

2

(
aeiΩt + a∗e−iΩt

)

−
(

λ − 1

4

(
aeiΩt + a∗e−iΩt

)2
)

iΩ

2

(
aeiΩt − a∗e−iΩt

)

+ ω2
0

2

(
aeiΩt + a∗e−iΩt

)

= B
eiΩt + e−iΩt

2
.
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Regroup terms

iΩȧeiΩt + (ω2
0 − Ω2)

2

(
aeiΩt + a∗e−iΩt

) − λ
iΩ

2
aeiΩt + λ

iΩ

2
a∗e−iΩt

+ 1

4

(
a2ei2Ωt + a∗2

e−i2Ωt + 2aa∗) iΩ

2

(
aeiΩt − a∗e−iΩt

)

= B
eiΩt + e−iΩt

2
.

Open the brackets

iΩȧeiΩt + (ω2
0 − Ω2)

2

(
aeiΩt + a∗e−iΩt

) − λ
iΩ

2
aeiΩt + λ

iΩ

2
a∗e−iΩt

+ iΩ

8
a3ei3Ωt − iΩ

8
a2a∗eiΩt + iΩ

8
aa∗2

e−iΩt − iΩ

8
a∗3

e−i3Ωt

+ iΩ

4
a2a∗eiΩt − iΩ

4
aa∗2

e−iΩt

= B
eiΩt + e−iΩt

2
. (3.16)

Collect similar terms and multiply the whole equation by e−iΩt/(iΩ),

ȧ + (ω2
0 − Ω2)

2iΩ

(
a + a∗e−i2Ωt

) − λ

2
a + λ

2
a∗e−i2Ωt + 1

8
a3ei2Ωt + 1

8
a2a∗

− 1

8
aa∗2

e−i2Ωt − 1

8
a∗3

e−i4Ωt

= B

2iΩ

(
1 + e−i2Ωt

)
. (3.17)

We remind you, that the aim of our calculations is to write down the equations
describing the evolution in time of the complex amplitude a(t), and then to solve
them. Knowing a(t), we will know A and ϕ, and thus we will know the approximate
solution x(t) of van der Pol equation (3.3). However, (3.17) is not simpler than the
original (3.3), and it is not easier to find the amplitude a from it than it was to find x

from (3.3). To simplify the problem we can make more use of the fact of slowness of
A and ϕ and exploit the method of averages by Krylov and Bogoliubov [150]. Note
that a, ȧ and a∗ are slow functions of time as compared to the functions e±nΩt ,
n being an integer number. This means that they almost do not change during one
period of fast oscillations with the frequency Ω . If we average the whole equation
over one period T = 2π/Ω of fast oscillations, we can get rid of the fast terms, and
only the slow terms will remain in the equation. The time average f̄ T of a smooth
function f (t) over the time interval T is defined as follows:

f̄ T = 1

T

∫ t0+T

t0

f (t) dt. (3.18)
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Consider terms in (3.17) containing e−i2Ωt . The time average of the second such
term is equal to

1

T

∫ t0+T

t0

λ

2
a∗e−i2Ωt dt

≈ λ

2
a∗ Ω

2π

∫ t0+2π/Ω

t0

e−i2Ωt dt = λ

2
a∗ Ω

2π

(
1

−2iΩ

)
e−i2Ωt

∣
∣∣∣

t0+2π/Ω

t0

= λ

2
a∗ Ω

2π

1

−2iΩ

[
cos(2Ωt)

∣∣t0+2π/Ω

t0︸ ︷︷ ︸
=0

− i sin(2Ωt)
∣∣t0+2π/Ω

t0︸ ︷︷ ︸
=0

]
= 0.

By analogy, it is easy to show that the average values of terms containing ei2Ωt and
e−i4Ωt are equal to zero as well. Thus, we obtain the time-averaged equations which,
with account of a2a∗ = a(aa∗) = a|a|2, read

ȧ + (ω2
0 − Ω2)

2iΩ
a − λ

2
a + 1

8
a|a|2 = −i

B

2Ω
. (3.19)

Recall that a = Aeiϕ and substitute it into (3.19)

Ȧeiϕ + Aiϕ̇eiϕ − i
(ω2

0 − Ω2)

2Ω
Aeiϕ − λ

2
Aeiϕ + 1

8
A3eiϕ = −i

B

2Ω
.

Multiply everything by e−iϕ

Ȧ + Aiϕ̇ − i
(ω2

0 − Ω2)

2Ω
A − λ

2
A + 1

8
A3 = −i

B

2Ω
e−iϕ.

Introduce the frequency detuning Δ between the unperturbed system and the forcing

Δ = (ω2
0 − Ω2)

2Ω
≈ (ω0 − Ω), (3.20)

the latter approximation being valid when the forcing frequency Ω is close to the
natural frequency of unperturbed oscillations ω0 (Ω ≈ ω0). Represent e−iϕ through
cos ϕ and sin ϕ

Ȧ + iAϕ̇ − iAΔ − λ

2
A + 1

8
A3 = −i

B

2Ω
e−iϕ = −i

B

2Ω
(cos ϕ − i sin ϕ).

Separate the real and imaginary parts of the equation

Ȧ − λ

2
A + 1

8
A3 = − B

2Ω
sin ϕ,

Aϕ̇ − AΔ = − B

2Ω
cos ϕ.
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Finally, we obtain

Ȧ = λ

2
A − 1

8
A3 − B

2Ω
sin ϕ, (3.21)

ϕ̇ = Δ − B

2AΩ
cos ϕ. (3.22)

These are the famous truncated equations for the amplitude A of forced oscillations
and for the phase difference ϕ between the latter and the external forcing. These
equations have a fundamental importance in the theory of synchronization. Their
significance is due to the fact that the analysis of a van der Pol equation (3.3) that
is non-autonomous, i.e., depends on time explicitly, is reduced to the analysis of
the autonomous system of equations (3.21)–(3.22). In terms of bifurcation theory,
instead of analyzing periodic orbits of (3.3), we can analyze the fixed points in
(3.21)–(3.22), which is obviously much easier.

The fixed points of (3.21)–(3.22) mean that the phase difference between the
system and external forcing does not change in time (ϕ = const), i.e., the external
forcing has synchronized the system, and the oscillations are periodic with constant
amplitude A and the frequency of external forcing Ω . Thus, finding of the conditions
when these fixed points are stable will mean finding the conditions at which 1 : 1
forced synchronization occurs.

3.3 Amplitude of Unperturbed Oscillations at Small
Non-linearity

It is clearly seen that both truncated equations (3.21)–(3.22) are non-linear, A and ϕ

influencing each other in the presence of forcing (B �= 0).
If there is no forcing (B = 0), one can estimate the stationary amplitude of

natural self-oscillations, i.e., the amplitude that the oscillations will have after the
sufficiently long relaxation time will pass. In order to do this, in (3.21) one should
set Ȧ = 0 and solve the algebraic equation

fA(A) = λ

2
A − 1

8
A3 = 0, A0 = 0,

(3.23)
A0 = 2

√
λ.

Solution A0 = 0 corresponds to the absence of oscillations, i.e., to the fixed point.
Strictly speaking, there are two roots corresponding to the non-zero solution, but
only the positive one makes sense, since the amplitude is supposed to be a positive
value by definition. The stability of the fixed points is determined by the sign of
∂fA(A)/∂A: if it is negative (positive), the point is stable (unstable):

∂fA(A)

∂A

∣∣∣∣
A=0

= λ

2
− 3

8
A2

∣∣∣∣
A=0

= λ

2
> 0,

∂fA(A)

∂A

∣∣∣∣
A=2

√
λ

= λ

2
− 3

8
A2

∣∣∣∣
A=2

√
λ

= λ

2
− 3

8
4λ = −λ < 0.
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Thus, the non-oscillatory solution is unstable, and the oscillatory one is stable. In
what follows let us denote the amplitude of natural (unperturbed) self-oscillations
as A0. Hence, A0 is proportional to the square root of the non-linearity parameter λ

while the latter remains small.

3.4 Analysis of Truncated Equations for Weak Forcing

Consider the non-zero forcing. The analysis of these equations for arbitrary values
of B and Ω is difficult. However, a few special cases can be considered that allow
for approximate analytical solutions. In the simplest case when the strength B of
forcing can be regarded as very small

B � εA0, (3.24)

the amplitude of the perturbed oscillations is not very different from A0. In the
equation for ϕ we can set A = A0 as in (3.23), and then it becomes independent
of A

ϕ̇ = Δ − B

4
√

λΩ
cos ϕ = fϕ(ϕ). (3.25)

The fixed points of this equation that correspond to ϕ̇ = 0 can be found by solving
a non-linear algebraic equation

cos ϕ = 4
√

λΩΔ

B
, (3.26)

which is illustrated in Fig. 3.4. One can see that cos ϕ can intersect the horizontal
line twice, thus there can be two solutions

ϕ1 = cos−1 4
√

λΩΔ

B
, ϕ2 = 2π − cos−1 4

√
λΩΔ

B
,

which exist provided that
4
√

λΩ|Δ| ≤ B. (3.27)

Their stability is determined by the sign of ∂fϕ(ϕ)/∂ϕ in (3.25). Namely,

∂fϕ(ϕ)

∂ϕ

∣∣
∣∣
ϕ1

= B

4
√

λΩ
sin

(
cos−1 4

√
λΩΔ

B

)

= B

2A0Ω

√

1 − cos2

(
cos−1 4

√
λΩΔ

B

)

= B

4
√

λΩ

√

1 −
(

4
√

λΩΔ

B

)2

≥ 0
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Fig. 3.4. Graphical illustration of the solution of the non-linear equation (3.26)

and

∂fϕ(ϕ)

∂ϕ

∣∣∣∣
ϕ2

= B

4
√

λΩ
sin

(
2π − cos−1 4

√
λΩΔ

B

)

= B

4
√

λΩ

[
sin 2π × cos

(
cos−1 4

√
λΩΔ

B

)

− cos 2π × sin

(
cos−1 4

√
λΩΔ

B

)]

= − B

4
√

λΩ

√

1 − cos2

(
cos−1 4

√
λΩΔ

B

)

= − B

4
√

λΩ

√

1 −
(

4
√

λΩΔ

B

)2

≤ 0,

which means that the fixed point ϕ2 is stable and ϕ1 is unstable. When the strict
equality in (3.27) is satisfied, two fixed points merge, and when (3.27) is no longer
valid, the pair of fixed points disappear via saddle-node bifurcation. This means that
there is no longer a constant phase difference between the forcing and the response
in (3.3). Hence, the equation

B = 4
√

λΩ|Δ| (3.28)

describes the borderline of 1 : 1 synchronization region at very small strengths of
forcing B.

At λ = 0.1 and ω0 = 1, and with the approximation in (3.20) for Δ, the syn-
chronization region defined by (3.28) is outlined by the shaded area in Fig. 3.5 on
the plane of forcing parameters (Ω , B). We see that it has the characteristic shape
of a tongue with a tip at Ω ≈ ω0 = 1. The solid lines show the numerically esti-
mated lines of saddle-node bifurcations of a stable and a saddle periodic orbits of
the original non-autonomous equation (3.3) for the same parameters. We see that
the approximation for the synchronization region border given by (3.28) is quite
accurate for a significant range of B.
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Fig. 3.5. (Color online) 1 : 1 synchronization tongue for the forced van der Pol system (3.3)
on the plane of forcing parameters Ω and B, at λ = 0.1, ω0 = 1. Lines correspond to
bifurcations of periodic solutions: solid lines mark saddle-node bifurcations, dashed lines
mark torus birth (Neimark–Sacker) bifurcations, both obtained numerically from the direct
analysis of (3.3). Shaded area shows analytical prediction of the locking region according
to (3.28). Insets to the right show the connections between the above types of lines in more
detail (compare with insets in Fig. 3.7)

3.5 Derivation of Truncated Equations in Descartes Coordinates

If the amplitude B of forcing is not vanishingly small, the truncated equations
(3.21)–(3.22) for the amplitude A and phase ϕ of the complex amplitude a that mod-
ulates periodic oscillations according to (3.12) can have up to three fixed points. To
reveal the borderlines of the synchronization region, one could find the fixed points,
analyze their stability and find the lines in the parameter plane on which bifurcations
occur. However, although the equations look quite compact, their analysis is quite
involved. It appears that if the same equations are rewritten in Descartes coordinates
instead of the polar ones, their analysis becomes less cumbersome. In this section
we show how to obtain the Descartes form of the truncated equations.

At the arbitrary values of B, A can no longer be regarded as a constant ap-
proximately equal to the amplitude of the unperturbed oscillations A0, and the two
equations cannot be separated. Perform the following variable substitution:

ū(t) = A(t) cos ϕ(t), v̄(t) = A(t) sin ϕ(t). (3.29)

The time derivatives of the new variables can be expressed through A and ϕ as

˙̄u = Ȧ cos ϕ − Aϕ̇ sin ϕ,

˙̄v = Ȧ sin ϕ + Aϕ̇ cos ϕ,

and further with account of (3.21)–(3.22) as



3.5 Derivation of Truncated Equations in Descartes Coordinates 35

˙̄u = cos ϕ

[
λ

2
A − 1

8
A3 − B

2Ω
sin ϕ

]
− A sin ϕ

[
Δ − B

2AΩ
cos ϕ

]
,

(3.30)
˙̄v = sin ϕ

[
λ

2
A − 1

8
A3 − B

2Ω
sin ϕ

]
+ A cos ϕ

[
Δ − B

2AΩ
cos ϕ

]
.

Note that

A =
√

ū2 + v̄2, cos ϕ = ū√
ū2 + v̄2

, sin ϕ = v̄√
ū2 + v̄2

,

and substitute this into (3.30),

˙̄u = ū√
ū2 + v̄2

[
λ

2

√
ū2 + v̄2 − 1

8

(
ū2 + v̄2)3/2 − B

2Ω

v̄√
ū2 + v̄2

]

−
√

ū2 + v̄2 v̄√
ū2 + v̄2

[
Δ − B

2Ω
√

ū2 + v̄2

ū√
ū2 + v̄2

]

= ū
λ

2
− ū

8

(
ū2 + v̄2) − Būv̄

2Ω(ū2 + v̄2)
− v̄Δ + Būv̄

2Ω(ū2 + v̄2)
,

˙̄v = v̄√
ū2 + v̄2

[
λ

2

√
ū2 + v̄2 − 1

8

(
ū2 + v̄2)3/2 − B

2Ω

v̄√
ū2 + v̄2

]

+
√

ū2 + v̄2 ū√
ū2 + v̄2

[
Δ − B

2Ω
√

ū2 + v̄2

ū√
ū2 + v̄2

]

= v̄
λ

2
− v̄

8

(
ū2 + v̄2) − Bv̄2

2Ω(ū2 + v̄2)
+ ūΔ − Bū2

2Ω(ū2 + v̄2)
.

The third and the fifth terms of the right-hand part of the equation for ˙̄u cancel each
other. Collect similar terms and rewrite the set of equations for ˙̄u and ˙̄v,

˙̄u = ū

2

[
λ − (ū2 + v̄2)

4

]
− v̄Δ, (3.31)

˙̄v = v̄

2

[
λ − (ū2 + v̄2)

4

]
+ ūΔ − B

2Ω
. (3.32)

Note that (3.31)–(3.32) are completely equivalent to (3.21)–(3.22) and describe ex-
actly the same kind of behavior, only in different coordinates. Typical phase portraits
of these two types of equations are shown in Fig. 3.6 for parameter values λ = 0.1,
Ω = 1.005, B = 0.01 (for reference, see the bifurcation diagram in Fig. 3.5): in po-
lar coordinates in Fig. 3.6(a), and in Descartes coordinates in Fig. 3.6(b). The phase
difference ϕ is shown by the modulus of 2π.

At these parameters phase locking takes place, and there are two fixed points
in the truncated equations: one saddle (empty circle) and one stable (filled circle).
Note that the closed curve formed by the manifolds of the saddle point in Fig. 3.6(b)
is almost a perfect circle. One might think that for any value of ϕ the amplitude A

should take the same values, but as seen from Fig. 3.6(a), this is not the case. The
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Fig. 3.6. Phase portraits of the truncated equations for the amplitude A and phase difference
ϕ corresponding to the forced van der Pol oscillator: a in polar coordinates (A, ϕ) from
(3.21)–(3.22); b in Descartes coordinates (ū, v̄) from (3.31)–(3.32). Parameters are λ = 0.1,
Ω = 1.005, B = 0.01 and correspond to the phase locking. Filled (empty) circles show stable
(saddle) point. Solid lines show the unstable manifolds of the saddle points

reason is that the amplitude A is the distance between the phase point and the origin
in Fig. 3.6(b). With this, the center of this circle is not at the origin, so at different
values of ϕ, the distance between the origin and the phase point is different.

It is not convenient to analyze (3.31)–(3.32) in their present form, since they
contain too many control parameters. For the further analysis, let us try to make
them look simpler. Denote

u = ū

2
√

λ
, v = v̄

2
√

λ
, (3.33)

substitute into (3.31)–(3.32) and divide the result by 2
√

λ

du

dt
= λ

u

2

[
1 − (

u2 + v2)] − vΔ,

(3.34)
dv

dt
= λ

v

2

[
1 − (

u2 + v2)] + uΔ − B

4
√

λΩ
.

Introduce new independent argument τ ,

τ = λt

2
,

and divide both equations by λ/2,

du

dτ
= u

[
1 − (

u2 + v2)] − v
2Δ

λ
,

dv

dτ
= v

[
1 − (

u2 + v2)] + u
2Δ

λ
− B

2Ωλ
√

λ
.
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Denote

δ = 2Δ

λ
, F = B

2Ωλ
√

λ
(3.35)

and rewrite the last equations as

du

dτ
= u

[
1 − (

u2 + v2)] − δv = f (u, v), (3.36)

dv

dτ
= v

[
1 − (

u2 + v2)] + δu − F = g(u, v). (3.37)

These are the equations for a non-linear system that is potentially able to demon-
strate self-sustained periodic oscillations.

3.6 Analysis of Truncated Equations in Descartes Coordinates

We will now analyze the stability of the fixed points of (3.36)–(3.37) without making
any simplifying assumptions on the values of parameters δ and F . The fixed points
are defined by

u̇ = f (u, v) = 0, v̇ = g(u, v) = 0. (3.38)

From (3.36) we obtain
δv = u

(
1 − (

u2 + v2)), (3.39)

and from (3.37)

1 − (
u2 + v2) = F − δu

v
. (3.40)

Substitute (3.40) into (3.39)

v2 = u(F − δu)

δ
. (3.41)

Substitute v2 from (3.41) into (3.40)

(F − δu) = v

(
1 − u2 − Fu

δ
+ u2

)
= v

(
1 − Fu

δ

)
, (3.42)

v = δ
F − δu

δ − Fu
. (3.43)

Take a square of the last expression to obtain

v2 = δ2 (F − δu)2

(δ − Fu)2
. (3.44)

Equating (3.44) and (3.41) leads to the following equation that only includes the
u-variable:

δ2 (F − δu)2

(δ − Fu)2
= u(F − δu)

δ
. (3.45)
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(F − δu) = 0 could be a root of (3.45). But due to (3.43), it would lead to v = 0,
which is not a root of (3.38). Thus, (F − δu) �= 0, and we can safely divide by it
both parts of (3.45)

δ3(F − δu)

(δ − Fu)2
= u.

Simple transformation leads to the cubic equation for u

F 2u3 − 2Fδu2 + (
δ2 + δ4)u − δ3F = 0. (3.46)

We need to solve this equation. Denote

ã = F 2, b̃ = −2Fδ, c̃ = (
δ2 + δ4), d̃ = −δ3F. (3.47)

The first step in solving a cubic equation is obtaining a “depressed cubic equation,”
i.e., equation without a quadratic term, by making the following variable substitu-
tion:

u = u∗ − b̃

3ã
. (3.48)

Substitute u in the above form into (3.46) and obtain

u3∗ +
(

c̃

ã
− b̃2

3ã2

)
u∗ +

(
2b̃3

27ã3
− b̃c̃

3ã2
+ d̃

ã

)
= 0. (3.49)

Denote

C =
(

c̃

ã
− b̃2

3ã2

)
, D =

(
2b̃3

27ã3
− b̃c̃

3ã2
+ d̃

ã

)
, (3.50)

so that (3.49) becomes
u3∗ + Cu∗ + D = 0. (3.51)

Express C and D through δ and F using (3.47)

C = δ2 + δ4

F 2
− 4F 2δ2

3F 4
= 3δ4 − δ2

3F 2
, (3.52)

D = 2 × (−2Fδ)3

27F 6
− (−2Fδ) × (δ2 + δ4)

3F 4
+ (−δ3F)

F 2

= δ3

27F 3

(
18δ2 − 27F 2 + 2

)
. (3.53)

A cubic equation (3.51) has either three real roots, or one real and two complex-
conjugate roots. With this, either all three, or two of three, roots can coincide, but
there is always at least one real root u∗1. If we find this real root, we can divide
(3.51) by (u∗ − u∗1), obtain a quadratic equation and then find the two remaining
roots. u∗1 can be found from (3.51) by substitution

u∗1 = s − t (3.54)
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with s and t such that

3st = C, (3.55)

s3 − t3 = −D. (3.56)

If we express s through t from the first equation and substitute into the second one,
we obtain an equation of the sixth order with respect to t

t6 − Dt3 − C3

27
= 0.

Denoting z = t3, we obtain a quadratic equation with respect to z

z2 − Dz − C3

27
= 0. (3.57)

The solution of this equation is

z = 1

2

(
D ±

√

D2 + 4C3

27

)
= 1

2
(D ± √

R), (3.58)

where R is

R = D2 + 4C3

27
. (3.59)

Because of the sign “±,” there are two solutions for z = t3, but we can take either
one of them: whatever sign we choose before

√
R, the final solution u∗1 will not

depend on this choice. The properties of the cubic equations are such that if R < 0,
there are three real roots in (3.46); if R > 0, there is only one real root in (3.46),
and the other two are complex and thus not “physical.” When R = 0, two of the
three real roots u∗1, u∗2 and u∗3 coincide. We remind you that u∗j , j = 1, 2, 3
are the shifted and rescaled components of the amplitudes Aj modulating periodic
oscillations in the forced van der Pol equation (see (3.29)). If at certain values of the
normalized detuning δ and normalized forcing strength F , two of these amplitudes
coincide, this means that a saddle-node bifurcation occurs to the fixed points of the
system (3.36)–(3.37) and to the periodic orbits of the original forced van der Pol
system (3.3). Thus, the equation

R = D2 + 4C3

27
= 0 (3.60)

is the condition of a saddle-node bifurcation. Let us reveal the equation of the line
of saddle-node bifurcation on the plane of parameters (δ, F ) by substituting into
(3.60) the expressions for C and D from (3.52) and (3.53)

R = δ6

272F 6

(
18δ2 − 27F 2 + 2

)2 + 4

27

(
3δ4 − δ2

3F 2

)3

(3.61)

= 4δ6

F 6

[
F 4

4
− F 2

27

(
1 + 9δ2) + δ2

27

(
δ2 + 1

)2
]
. (3.62)
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Fig. 3.7. 1 : 1 forced synchronization tongue on the plane (δ, F ) of the parameters of the
truncated equations in the Descartes coordinates (3.36)–(3.37). Saddle-node (solid line) and
Andronov–Hopf (dashed line) bifurcation lines of the fixed points are calculated exactly and
are described by (3.64) and (3.72), respectively. Insets to the right show the connections
between two types of bifurcation lines in more detail: the upper one is accurate, and the lower
one is schematic which is included in order to emphasize the configuration of the curves

Thus, the curve defined by the condition

F 4

4
− F 2

27

(
1 + 9δ2) + δ2

27

(
δ2 + 1

)2 = 0 (3.63)

is the line of saddle-node bifurcation. We can plot this line denoted by F SN by
noting that the condition above defines a quadratic equation with respect to F 2. We
can solve this equation and find two branches F SN

1 (δ) and F SN
2 (δ) of the saddle-node

line

F SN
1,2 (δ) = √

2

(
(1 + 9δ2)

27
±

√
(1 + 9δ2)2

272
− δ2

27

(
δ2 + 1

)2
)1/2

, (3.64)

taking the positive values of F SN
1,2 . F SN is symmetric with respect to δ = 0, and is

shown in Fig. 3.7 by a solid line.
One can see that F SN outlines a closed region in the (δ, F ) plane. It can be easily

shown, e.g., by trying just one point inside this area, that R is negative there. Thus
there are three real roots of (3.46), implying three fixed points in (3.36)–(3.37), and
hence there are three possible values of fixed amplitude of periodic oscillations of
the original forced van der Pol oscillator (3.3). The analysis of the eigenvalues of the
fixed points of (3.36)–(3.37) reveals that only one point is stable. Outside the region
bounded by the saddle-node bifurcation line, R is positive, hence there is only one
fixed point in (3.36)–(3.37).

There is also a special point in the (δ, F ) parameter plane, corresponding to
C = D = 0, at which all three roots of (3.51) coincide and equal to zero. This means
that three fixed points of (3.36)–(3.37), and the three respective periodic orbits of
(3.3), merge. From (3.52) it follows that
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3δ2 = 1, δ = ± 1√
3
,

and the respective value of F from (3.53) is

F =
√

18δ2 + 2

27

∣∣∣∣
δ=1/

√
3
=

√
8

27
.

Thus, the coordinates of this point are (δ, F ) = (±1/
√

3,
√

8/27) for positive F .
At these points the two branches of the saddle-node bifurcation F SN line defined by
(3.64) meet.

Derive the stability conditions for the fixed points of (3.36)–(3.37). First, calcu-
late the derivatives of the functions f and g

fu = ∂f

∂u
= 1 − 3u2 − v2, fv = ∂f

∂v
= −δ − 2uv,

gu = ∂g

∂u
= δ − 2uv, gv = ∂g

∂v
= 1 − u2 − 3v2.

The characteristic equation for the eigenvalues μ1,2 of a fixed point is
∣∣∣
∣
(fu − μ) fv

gu (gv − μ)

∣∣∣
∣ = 0.

The eigenvalues μ1,2 are then expressed as

μ1,2 = 1

2

[
(fu + gv) ±

√
D̃
]
. (3.65)

Here,

D̃ = (fu − gv)
2 + 4gufv = 4

(
u2 + v2)2 − 4δ2, (3.66)

fu + gv = 2 − 4u2 − 4v2. (3.67)

At point (δ, F ) = (1/
√

3,
√

8/27), μ1 = 0, μ2 = −2/3. Since one of the eigenval-
ues is indeed zero, this confirms that a saddle-node bifurcation occurs at this point.

Now, find the conditions for Andronov–Hopf bifurcation. We remind you that
as a result of Andronov–Hopf bifurcation occurring to the (rescaled) components of
the amplitude of periodic oscillations u and v of (3.36)–(3.37), the original forced
van der Pol system (3.3) undergoes the bifurcation of a birth of a torus from a
limit cycle, i.e., oscillations become quasiperiodic and synchronization is lost. When
Andronov–Hopf bifurcation occurs, R in (3.58) is no longer zero. First, we have to
express the solution (u, v) through u∗1, which is now the only real root of the cubic
equation (3.51). From (3.58) it follows that

t3 = 1

2
(D + √

R).
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Then, from (3.56) we find s3

s3 = −D + t3 = 1

2
(−D + √

R).

Thus,

t = 1
3
√

2
(D + √

R)1/3, s = 1
3
√

2
(−D + √

R)1/3.

From (3.48) and (3.54) we find

u = 1
3
√

2

[
(−D + √

R)1/3 − (D + √
R)1/3] + 2δ

3F
, (3.68)

D being defined by (3.53) and R by (3.59). Andronov–Hopf bifurcation occurs
when the eigenvalues μ1,2 of the fixed point (u, v) become purely imaginary, which
with account (3.66)–(3.67) means

fu + gv = 0, D̃ < 0.

For convenience, express v2 through u using (3.41) and substitute into (3.67) to
obtain

fu + gv = 2 − 4F

δ
u = 0,

(3.69)
u = δ

2F
.

In (3.52)–(3.53) denote

D1 = 18δ2 − 27F 2 + 2, C1 = (
3δ2 − 1

)
, (3.70)

so that

D = δ3

27F 3
D1, C = δ2

3F 2
C1.

Then from (3.59)

R = δ6

272F 6

(
D2

1 + 4C3
1

)
.

Express u in (3.68) through D1 and C1 and substitute into (3.69)

1
3
√

2

δ

3F

[(−D1 +
√

D2
1 + 4C3

1

)1/3 − (
D1 +

√
D2

1 + 4C3
1

)1/3] + 2δ

3F
= δ

2F
.

Simplification gives

(
D1 +

√
D2

1 + 4C3
1

)1/3 − (−D1 +
√

D2
1 + 4C3

1

)1/3 =
3
√

2

2
. (3.71)
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Take a cube of both parts

(√
D2

1 + 4C3
1 + D1

) − 3
(√

D2
1 + 4C3

1 + D1
)2/3(

√
D2

1 + 4C3
1 − D1

)1/3

+ 3
(√

D2
1 + 4C3

1 + D1
)1/3(

√
D2

1 + 4C3
1 − D1

)2/3 − (√
D2

1 + 4C3
1 − D1

)

= 1

4
.

Simplify

2D1 + 3
(
D2

1 + 4C3
1 − D2

1

)1/3

× [(√
D2

1 + 4C3
1 − D1

)1/3 − (√
D2

1 + 4C3
1 + D1

)1/3] = 1

4
.

Substitute (3.71) to obtain

2D1 − 3
3
√

4C1 ×
3
√

2

2
= 1

4
or

2D1 − 3C1 = 1

4
.

Substitute D1 and C1 from (3.70)

2
(
18δ2 − 27F 2 + 2

) − 3
(
3δ2 − 1

) = 1

4
,

36δ2 − 54F 2 + 4 − 9δ2 + 3 = 1

4
,

27δ2 − 54F 2 = −27

4
,

4δ2 + 1 = 8F 2,

F HB =
√

δ2

2
+ 1

8
, (3.72)

where F HB denotes the Andronov–Hopf bifurcation line. With this, D̃ from
(3.66) should be negative to enable eigenvalues μ1,2 being imaginary. Substitute
v2 from (3.41) into (3.66) for D̃

D̃ = 4

[
F 2

δ2
u2 − δ2

]
< 0,

leading to
δ2 > |Fu|. (3.73)

Substituting u from (3.69) into (3.73) gives

δ2 >

∣∣∣∣
δ

2

∣∣∣∣ or |δ| >
1

2
. (3.74)
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With account of (3.74), the curve F HB defined by (3.72) has two branches at pos-
itive F : for δ > 0.5 and for δ < −0.5. F HB is shown in Fig. 3.7 by dashed
lines.

By the present point in the book, we have made a long journey: we started from
the full equations for a forced van der Pol oscillator (3.3), arrived at the truncated
equations for the amplitude and phase difference in Descartes coordinates (3.36)–
(3.37), and then to (3.64) and (3.72), the latter equations forming the result we were
looking for: the borderlines of the synchronization region. Remember that the trun-
cated equations (3.36)–(3.37) were supposed to describe the dynamics of the non-
autonomous van der Pol oscillator (3.3) around the 1 : 1 synchronization region. Fig-
ure 3.8 shows the synchronization tongues obtained numerically by applying con-
tinuation methods [73] to the analysis of bifurcations of periodic orbits in (3.3). In
the same figure grey lines are the lines of bifurcations of the fixed points in (3.36)–
(3.37). Graphs are plotted on the plane of parameters (Ω,B) of (3.3). Parameters
(δ, F ) were renormalized to (Ω,B) using (3.35). Figure 3.8(a) shows the graphs for
non-linearity λ = 0.1, and (b) for λ = 0.5 of (3.3). The agreement between the
numerical and analytical graphs is remarkable.

Note that truncated equations (3.36)–(3.37) are valid as long as the quasihar-
monic approximation (3.5) chosen for the forced system is satisfactory. This ap-
proximation works better, the smaller the non-linearity λ is. Indeed, at λ = 0.1 �
1, the analytical graphs coincide with the numerical ones with a very high accu-
racy. λ = 0.5 is no longer much less than 1, the coincidence between the an-
alytical and numerical graphs is somewhat less accurate, but is still remarkably
good.

Fig. 3.8. 1 : 1 forced synchronization tongue on the plane (Ω, B) of (3.3). Lines of bifurca-
tions of periodic orbits of (3.3) (numerical methods) are compared with those of the fixed
points of (3.36)–(3.37) (analytical methods). Designations: saddle-node (solid black line)
and torus birth (dashed black line) lines in (3.3). Grey lines show bifurcations in (3.36)–
(3.37). Insets show enlarged segments of the diagrams in the vicinity of the special point
(δ, F ) = (1/

√
3,

√
8/27). a λ = 0.1, ω0 = 1; b λ = 0.5, ω0 = 1.5
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3.7 Synchronization Region from the Truncated Equations:
Non-bifurcational Approach

In Sect. 3.6 the synchronization conditions were derived as a result of the analysis
of relevant bifurcations. In experiment when one normally observes a single realiza-
tion of a process, it is not straightforward to detect the occurrence of a bifurcation.
Historically, experimentalists used to characterize the processes being observed by
their frequencies. In this and subsequent sections, Fourier spectra of the realizations
of the forced van der Pol system (3.3) will be estimated analytically by analyzing
the truncated equations in the form (3.34).

One might ask “What other analysis do we need if in Sect. 3.6 the exact solu-
tions of the truncated equations were already obtained?” Indeed, from the u and v

found, one can go back to the polar form and obtain the amplitude A and phase
difference ϕ explicitly using (3.29). Then A and ϕ can be substituted into (3.5)
to obtain the approximate solution x(t) to (3.3) that will be accurate enough for
the range of parameters for which the truncated equations remain valid. Then if
function x(t) is known explicitly, one can introduce Fourier power spectral den-
sity. However, the problem is that the explicit accurate solution x(t) will be de-
scribed by a bulky function of time which is difficult to manipulate. And even
if we finally obtain an expression for its spectrum, it will be cumbersome and
quite difficult to interpret. Hence, the whole purpose of these calculations will be
lost.

In this and subsequent sections a different approach will be used. Namely, when
solving the truncated equations, further physically motivated approximations will
be used in order to obtain a solution in a form that can be interpreted easily. Obvi-
ously, further approximations will introduce further inaccuracies into the solution.
However, as long as the latter is capable of describing the main physical effects,
it will be regarded as satisfactory. We will also compare the approximate solutions
of the truncated equations with the results of direct numerical simulation of (3.3).
Since the comparison of exact solutions with numerical simulations was already
made in Fig. 3.8, this will allow one to assess the difference between the exact and
the approximate solutions as well.

Approximate analytic solutions of truncated equations for large values of forc-
ing strength B were presented by Landa in her book [160], where a special form of
a weakly non-linear self-oscillator on a phase plane was considered. In that book,
several special cases were treated analytically, including phase locking at B not
vanishingly small, and suppression of natural dynamics. The calculations given in
[160], although being quite sufficient to be understood by an expert, might still be
lacking detail if considered by a beginner. Moreover, unfortunately, this book is not
translated from Russian so far, and is thus unavailable for the non-Russian readers.
We regard these results as being fundamental and crucial for the understanding of
the phenomenon of phase synchronization, so here we give the full details of this
analysis for the van der Pol oscillator (3.3), which is similar to the version of the os-
cillator considered in [160] but is written here in a simpler form for the convenience
of presentation.
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We start from (3.34), where we denote

F̃ = B

4
√

λΩ
, (3.75)

i.e.,

u̇ = λ

2
u
[
1 − (

u2 + v2)] − vΔ,

(3.76)
v̇ = λ

2
v
[
1 − (

u2 + v2)] + uΔ − F̃ .

These equations describe a non-linear system that is potentially able to demonstrate
self-sustained periodic oscillations. In (3.76), λ is explicitly multiplied by the non-
linear terms in the equations. If we assume that

2Δ 
 λ and F̃ 
 λ (3.77)

then the non-linearity is weak, and λ becomes a “small parameter” of these equa-
tions. Then we can apply the approximate methods for the analysis of weakly non-
linear oscillators, like the Bogoliubov–Krylov method. Note that the assumption
(3.77) implies that both the detuning and strength of forcing must be sufficiently
large and ultimately cannot be regarded as vanishingly small. In the null approxi-
mation, we can neglect the term with λ and analyze the linear equations

u̇ = −Δv,

v̇ = Δu − F̃ ,

or
ü + Δ2u = F̃Δ. (3.78)

This is a linear ordinary differential equation (ODE) of the second order, which is
non-homogeneous due to the non-zero right-hand part. A general solution of a lin-
ear non-homogeneous ODE can be found as a general solution uh of a respective
homogeneous ODE (by setting the right-hand part to zero) plus any particular so-
lution un of the original non-homogeneous equation. The general solution of the
homogeneous equation can be written down as

uh(t) = C̃1eiΔt + C̃2e−iΔt .

The constants C̃1 and C̃2 could be found from initial conditions, and can generally
be complex numbers. If we set

C̃1 = C

2i
eiΨ , C̃2 = −C

2i
e−iΨ ,

uh can be simpler written as

uh(t) = C sin(Δt + Ψ ).
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Next, we have to find a particular solution un for the non-homogeneous equation
(3.78) It is enough to find the simplest solution, so we try a constant un(t) = D. By
substituting D into the equation, we find that

un(t) = F̃

Δ
.

Hence, the general solution of (3.76) is

u(t) = C sin(Δt + Ψ ) + F̃

Δ
. (3.79)

The variable v can be found as v = − 1
Δ

u̇, i.e.,

v(t) = −C cos(Δt + Ψ ). (3.80)

Here, C and Ψ are constants depending on initial conditions. Thus, in the null ap-
proximation, (3.76) describes non-damped oscillations around a center point
(u0, v0) = (F̃ /Δ, 0) with amplitude C and frequency Δ. However, we are not
happy with the null approximation, since λ is not zero, but a small number. Using
the smallness of λ, we will be looking for a solution in the form of quasiharmonic
oscillations with amplitude C(t) and phase Ψ (t), both functions changing slowly in
time t as compared to cos(Δt), i.e.,

|Ċ(t)| � C(t)Δ, Ψ̇ (t) � Δ.

In order to find the solutions u and v that will describe the complex amplitude of
forced oscillations, we need to write down the equations for C and Ψ and to solve
them.

Then the derivatives of u and v are

u̇ = Ċ sin(Δt + Ψ ) + C cos(Δt + Ψ )(Ψ̇ + Δ),

v̇ = −Ċ cos(Δt + Ψ ) + C sin(Δt + Ψ )(Ψ̇ + Δ).

Note that

u2 + v2 = C2 sin2(Δt + Ψ ) + F̃ 2

Δ2
+ 2CF̃

Δ
sin(Δt + Ψ ) + C2 cos2(Δt + Ψ )

= C2 + F̃ 2

Δ2
+ 2CF̃

Δ
sin(Δt + Ψ ).

Substitute u, v, u̇ and v̇ into (3.76)

Ċ sin(Δt + Ψ ) + C cos(Δt + Ψ )(Ψ̇ + Δ)

= λ

2

[
1 − C2 − F̃ 2

Δ2
− 2CF̃

Δ
sin(Δt + Ψ )

]

×
[
C sin(Δt + Ψ ) + F̃

Δ

]
+ ΔC cos(Δt + Ψ ), (3.81)
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−Ċ cos(Δt + Ψ ) + C sin(Δt + Ψ )(Ψ̇ + Δ)

= λ

2

[
1 − C2 − F̃ 2

Δ2
− 2CF̃

Δ
sin(Δt + Ψ )

]

× [−C cos(Δt + Ψ )] + Δ

[
C sin(Δt + Ψ ) + F̃

Δ

]
− F̃

= −λ

2

[
1 − C2 − F̃ 2

Δ2
− 2CF̃

Δ
sin(Δt + Ψ )

]

× C cos(Δt + Ψ ) + ΔC sin(Δt + Ψ ). (3.82)

Multiply (3.81) by sin(Δt + Ψ )

Ċ sin2(Δt + Ψ ) + C cos(Δt + Ψ ) sin(Δt + Ψ )(Ψ̇ + Δ)

= λ

2

[
1 − C2 − F̃ 2

Δ2
− 2CF̃

Δ
sin(Δt + Ψ )

]

×
[
C sin2(Δt + Ψ ) + F̃

Δ
sin(Δt + Ψ )

]

+ ΔC sin(Δt + Ψ ) cos(Δt + Ψ ),

and (3.82) by cos(Δt + Ψ )

−Ċ cos2(Δt + Ψ ) + C sin(Δt + Ψ ) cos(Δt + Ψ )(Ψ̇ + Δ)

= −λ

2

[
1 − C2 − F̃ 2

Δ2
− 2CF̃

Δ
sin(Δt + Ψ )

]
C cos2(Δt + Ψ )

+ ΔC sin(Δt + Ψ ) cos(Δt + Ψ ).

Subtract the latter equation from the previous one to obtain

Ċ = λ

2

[
1 − C2 − F̃ 2

Δ2
− 2CF̃

Δ
sin(Δt + Ψ )

][
C + F̃

Δ
sin(Δt + Ψ )

]
.

Next, multiply (3.81) by cos(Δt + Ψ )

Ċ sin(Δt + Ψ ) cos(Δt + Ψ ) + C cos2(Δt + Ψ )(Ψ̇ + Δ)

= λ

2

[
C sin(Δt + Ψ ) cos(Δt + Ψ ) + F̃

Δ
cos(Δt + Ψ )

]

×
[

1 − C2 − F̃ 2

Δ2
− 2CF̃

Δ
sin(Δt + Ψ )

]
+ ΔC cos2(Δt + Ψ ),

and (3.82) by sin(Δt + Ψ )

−Ċ cos(Δt + Ψ ) sin(Δt + Ψ ) + C sin2(Δt + Ψ )(Ψ̇ + Δ)

= −λ

2

[
1 − C2 − F̃ 2

Δ2
− 2CF̃

Δ
sin(Δt + Ψ )

]
C cos(Δt + Ψ ) sin(Δτ + Ψ )

+ ΔC sin2(Δt + Ψ ).
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Add the previous and the latter equations together to obtain

C(Ψ̇ + Δ) = λ

2

[
1 − C2 − F̃ 2

Δ2
− 2CF̃

Δ
sin(Δt + Ψ )

]
F̃

Δ
cos(Δt + Ψ ) + ΔC.

We thus obtain a system of two equations for C and Ψ

Ċ = λ

2

[
1 − C2 − F̃ 2

Δ2
− 2CF̃

Δ
sin(Δt + Ψ )

][
C + F̃

Δ
sin(Δt + Ψ )

]
,

(3.83)

Ψ̇ = λ

2

[
1 − C2 − F̃ 2

Δ2
− 2CF̃

Δ
sin(Δt + Ψ )

]
F̃

ΔC
cos(Δt + Ψ ).

These are still quite complicated equations that are not easier to analyze than
(3.76) or (3.21)–(3.22). However, here we can use the fact that C(t) and Ψ (t) are
slow functions of t and to average these equations over one period T = 2π/Δ of
fast oscillations, similarly to what we did when deriving the truncated equations.
Regrouping the terms in (3.83) gives

Ċ = λC

2

[
1 − C2 − F̃ 2

Δ2

]
+ λC2F̃

Δ
sin(Δt + Ψ )

+ λF̃

2Δ

[
1 − C2 − F̃ 2

Δ2

]
sin(Δt + Ψ ) − λCF̃ 2

2Δ2

(
1 − cos(2(Δt + Ψ ))

)

and

Ψ̇ = λF̃

2ΔC

[
1 − C2 − F̃ 2

Δ2

]
cos(Δt + Ψ ) − λF̃ 2

2Δ2
sin(2(Δt + Ψ )).

It is clear that averages over T = 2π/Δ of all terms containing sin(Δt + Ψ ),
cos(Δt + Ψ ), sin(2(Δt + Ψ )) and cos(2(Δt + Ψ )) are equal to zero. The resulting
averaged equations for C and Ψ read

Ċ = λC

2

[
1 − C2 − F̃ 2

Δ2

]
− λCF̃ 2

2Δ2
= f (C), (3.84)

Ψ̇ = 0. (3.85)

The fixed points of the system above are

C1 = 0, C2 =
√

1 − 2F̃ 2

Δ2
.

C2 exists when Δ2 ≥ 2F̃ 2, and it is stable since the derivative

df (C)

dC

∣∣∣
∣
C2

= −λ

[
1 − 2F̃ 2

Δ2

]

is negative at this point. Thus, the range of parameters at which the stable ampli-
tude C is non-zero corresponds to the absence of synchronization. The borderline
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of synchronization region will be defined by the equality

Δ2 = 2F̃ 2, Δ = ±√
2|F̃ | = ±√

2
B

4
√

λΩ
,

B = |Δ|2√
2λΩ.

With account of (3.20), B becomes

B = √
2λ

∣∣ω2
0 − Ω2

∣∣. (3.86)

This will be the borderline of synchronization region when the strength of forcing
B is not very small.

3.8 Fourier Power Spectra at Strong Forcing

Outside synchronization region the amplitude C of (3.84) is not zero. Recall that
oscillations in the forced system are in the form x = A cos(Ωt + ϕ), which after
simple transformations and using (3.29) and (3.33), reduces to

x = A cos ϕ cos Ωt − A sin ϕ sin Ωt = ū cos Ωt − v̄ sin Ωt

= 2
√

λ

(
C sin(Δt + Ψ ) + F̃

Δ

)
cos Ωt + 2

√
λC cos(Δt + Ψ ) sin Ωt.

Use trigonometric identities to express sums of sines and cosines in the calculations
above

x = 2
√

λC(sin Δt cos Ψ + cos Δt sin Ψ ) cos Ωt

+ 2
√

λF̃

Δ
cos Ωt + 2

√
λC(cos Δt cos Ψ − sin Δt sin Ψ ) sin Ωt.

Now, use the approximation Δ ≈ (ω0 − Ω) for Ω sufficiently close to ω0:

x = 2
√

λC
[
(sin ω0t cos Ωt − cos ω0t sin Ωt) cos Ψ

+ (cos ω0t cos Ωt + sin ω0t sin Ωt) sin Ψ
]

cos Ωt

+ 2
√

λF̃

Δ
cos Ωt + 2

√
λC

[
(cos ω0t cos Ωt + sin ω0t sin Ωt) cos Ψ

− (sin ω0t cos Ωt − cos ω0t sin Ωt) sin Ψ
]

sin Ωt

= 2
√

λF̃

Δ
cos Ωt

+ 2
√

λC
[
sin ω0t cos2 Ωt cos Ψ − cos ω0t sin Ωt cos Ψ cos Ωt

+ cos ω0t cos2 Ωt sin Ψ + sin ω0t sin Ωt sin Ψ cos Ωt

+ cos ω0t cos Ωt cos Ψ sin Ωt + sin ω0t sin2 Ωt cos Ψ

− sin ω0t cos Ωt sin Ψ sin Ωt + cos ω0t sin2 Ωt sin Ψ
]

= 2
√

λF̃

Δ
cos Ωt + 2

√
λC[sin ω0t cos Ψ + cos ω0t sin Ψ ].
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Finally,
x = A1 cos Ωt + A2 sin(ω0t + Ψ ), (3.87)

where

A1 = 2
√

λF̃

Δ
= B

2ΔΩ
,

A2 = 2
√

λC2 = 2
√

λ

√

1 − 2F̃ 2

Δ2
= 2

√
λ

√

1 − 2A2
1

A2
0

,

where A0 is the amplitude of unperturbed oscillations A0 = 2
√

λ (see Sect. 3.3).
Thus, the resulting oscillations outside the synchronization region consist of two
terms: one at the frequency Ω of forcing, and another at the frequency ω0 of unper-
turbed oscillations. These oscillations can be classified as quasiperiodic. It is clear
that the larger the strength of forcing B is, the larger the component at Ω , and the
smaller the component at ω0. The component at ω0 vanishes when the forcing be-
comes sufficiently strong, i.e., when the following condition is satisfied:

2A2
1

A2
0

= 1, 2

[
B

(ω2
0 − Ω2)

]2 1

A2
0

= 1, B = A0√
2

∣∣ω2
0 − Ω2

∣∣,
(3.88)

B = √
2λ

∣∣ω2
0 − Ω2

∣∣.

The latter relationship is the equation defining the borderline of the synchronization
region. Note that the original assumption (3.77) under which this equation was de-
rived implies that B is large and thus the forcing is strong. This will be the region of
suppression of natural dynamics by the external forcing.

In Fig. 3.9(a), (b) the numerically calculated 1 : 1 synchronization tongues (solid
and dashed lines) are compared with the estimate of the border of the suppression
region given by (3.88) (shaded), for two sets of values of (ω0, λ): ω0 = 1, λ = 0.1,
and ω0 = 1, λ = 0.5. For the convenience of comparison, the analytic line (3.88)
is given for the whole range of Ω and B, not only for selected values of B that are
large enough. The dashed lines show the borderlines of the synchronization regions
formed by the lines of Neimark–Sacker (torus birth) bifurcation. As predicted, the
larger the value of B, the better the agreement is between the theoretical prediction
of (3.88) and the Neimark–Sacker bifurcation line. Also, as usual with the methods
exploiting the weakness of non-linearity, the smaller the value of λ, the better the
analytic prediction is.

The lines shown by filled circles in Fig. 3.9 deserve special attention. As one
leaves the region of suppression by crossing the torus birth bifurcation line (dashed
line), in the original forced system (3.3) a torus is born from the stable limit cycle. In
truncated equations this transition is associated with the birth of a limit cycle from
a fixed point via Andronov–Hopf bifurcation in coordinates “amplitude A”–“phase
difference ϕ.” Importantly, the cycle in (A, ϕ) is born with zero amplitude which
gradually increases as one goes further away from the synchronization region. As
soon as this cycle is born, the synchronization is lost, since the behavior of the full
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Fig. 3.9. 1 : 1 synchronization tongue for the forced van der Pol system (3.3) on the plane of
forcing parameters Ω , B at a ω0 = 1 and λ = 0.1, b ω0 = 1 and λ = 0.5. Solid lines mark
saddle-node bifurcations, dashed lines mark torus birth (Neimark–Sacker) bifurcations, filled
circles mark the line at which the phase ϕ in truncated equations (3.21)–(3.22) start to grow
or decay unboundedly, all lines being estimated numerically. Shaded area shows analytical
prediction of the suppression region according to (3.88)—in agreement with the assumption,
for small B this formula is not very accurate, while it works quite well for larger B

system has become quasiperiodic. However, for a range of Ω outside, but close to,
the suppression region the absolute value of phase difference |ϕ| does not grow un-
boundedly, but oscillates around the fixed point, i.e., belongs to a limit cycle. This
behavior is called the “phase trapped” solution in [35]. Only on the line marked by
filled circles in Fig. 3.9 does this cycle undergo a non-local bifurcation and disap-
pears, as a result of which |ϕ| starts its unbounded growth. According to [35], this
is called “phase drift.”

For the realizations x(t) of the forced oscillations that at large B are approxi-
mately described by (3.87), we can introduce the correlation function K[X,Xτ ] and
the power spectral density S(ω). Strictly speaking, the latter functions are defined
for random processes, i.e., processes whose realizations are random functions of
time. This means that as the same experiment is repeated several times, each trial
produces a different realization of the process. The realization described by (3.87)
is a deterministic function of time, and hence does not describe a random process.
However, in the future we will consider synchronization between random processes,
and it will be convenient to compare the effects in deterministic systems with the
ones oscillating randomly. Thus, here we will introduce the basic functions describ-
ing random processes.

We bear in mind that a deterministic process can be formally regarded as a spe-
cial case of a random process. Also, we will assume that the processes we consider
are already well settled down, and can be regarded as stationary, at least in the wide
sense.5 Roughly speaking, stationarity means that the statistical characteristics of
the process do not change in time; e.g., the mean value that is introduced as an aver-
age over the ensemble of all realizations of the same random process takes the same

5 For the introductory remarks into the theory of random processes see Sect. 7.1.
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value at any time moment. Our last assumption is that the processes we consider are
in addition ergodic. This means that averaging over the ensemble of realizations can
be substituted by averaging over time; e.g., mean value 〈X(t)〉 of the process X(t)

that is defined as an average of all realizations at the given time moment, and is a
constant for a stationary process, is equal to the value x̄ that is defined as an average
over time of a particular realization x(t) of the process. Namely,

〈X〉 = x̄,
(3.89)

x̄ = lim
T →∞

1

2T

∫ T

−T

x(t) dt.

For the realization defined by (3.87), x̄ = 0. Note that stationarity is a necessary
condition for ergodicity, but not a sufficient one.

A correlation function K[X,Xτ ] of a random process X(t) is introduced as

K[X,Xτ ] =
∫ ∞

−∞

∫ ∞

−∞
xxτp

XX
2 (x, t, xτ , t + τ) dx dxτ , (3.90)

where x and xτ are the values of the realizations of the random process at the
time moments t and t + τ , respectively. Function pXX

2 (x, t, xτ , t + τ) is the two-
dimensional probability density distribution describing the probability of the two
events taking place simultaneously: that the realization x(t) of the process X takes
the value from [x; x + x] at time t , and the value [xτ ; xτ + xτ ] at time t + τ .
This is the general definition that is applicable to a random process with arbitrary
properties. If the process is wide-sense stationary, the correlation K[X,Xτ ] does
not depend on time t : it depends only on τ which is the temporal distance between
the two events considered. If the process is in addition ergodic, its correlation can be
estimated by means of averaging over time of a single realization x(t) of the process
X(t) as follows:

K[X,Xτ ] = lim
T →∞

1

2T

∫ T

−T

xxτ dt. (3.91)

We estimate the correlation for the process described by (3.87)

K[X,Xτ ] = lim
T →∞

1

2T

∫ T

−T

[A1 cos Ωt + A2 sin(ω0t + Ψ )]

× [A1 cos(Ωt + Ωτ) + A2 sin(ω0t + ω0τ + Ψ )] dt

= lim
T →∞

1

2T

∫ T

−T

[
A2

1 cos Ωt cos(Ωt + Ωτ)

+ A1A2 cos Ωt sin(ω0t + ω0τ + Ψ )

+ A1A2 sin(ω0t + Ψ ) cos(Ωt + Ωτ)

+ A2
2 sin(ω0t + Ψ ) sin(ω0t + ω0τ + Ψ )

]
dt.
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Using trigonometric identities, we represent the products of sines and cosines
through the sums of sines and cosines. Continuing from above,

K[X,Xτ ] = lim
T →∞

1

2T

∫ T

−T

{
A2

1

2
[cos Ωτ + cos(2Ωt + Ωτ)]

+ A1A2

2

[
sin(Ωt + ω0t + ω0τ + Ψ )

− sin(Ωt − ω0t − ω0τ − Ψ )
]

+ A1A2

2

[
sin(ω0t + Ψ + Ωt + Ωτ)

+ sin(ω0t + Ψ − Ωt − Ωτ)
]

+ A2
2

2
[cos(ω0τ) − cos(2ω0t + ω0τ + 2Ψ )]

}
dt.

After the integration and taking the limit as T → ∞, we obtain the following
expression for K[X,Xτ ]:

K[X,Xτ ] = A2
1

2
cos Ωτ + A2

2

2
cos(ω0τ). (3.92)

Fourier power spectral density (spectrum) S(ω) of the random process is introduced
by Wiener–Khintchine6 theorem as a Fourier Transform (FT) of its correlation func-
tion, i.e.,

S(ω) = F{K[X,Xτ ]} =
∫ ∞

−∞
K[X,Xτ ]e−iωτ dτ. (3.93)

Substitute (3.92) into (3.93)

F{K[X,Xτ ]} =
∫ ∞

−∞

[
A2

1

2
cos Ωτ + A2

2

2
cos(ω0τ)

]
e−iωt dτ

= A2
1

2

∫ ∞

−∞
eiΩτ + e−iΩτ

2
e−iωτ dτ

+ A2
2

2

∫ ∞

−∞
eiω0τ + e−iω0τ

2
e−iωτ dτ. (3.94)

In the equations above, cosine is represented through exponents using a Euler for-
mula. Before calculating the above FT, we need to introduce the following identity.

6 The name of the Russian scientist Khintchine is also spelled in literature as Khintchin,
Khinchin or Hinchin.
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First, consider a Dirac delta-function δ(ω) defined as

δ(ω) =
{

0, ω �= 0,
∞, ω = 0,

∫ ∞

−∞
δ(ω) dω = 1. (3.95)

The property of this function is
∫ ∞

−∞
f (x)δ(x − a) dx = f (a). (3.96)

The inverse FT of delta-function with account of the property (3.96) is

1

2π

∫ ∞

−∞
δ(ω)eiωτ dω = 1

2π
eiωτ

∣∣∣∣
ω=0

= 1

2π
. (3.97)

Hence, δ(ω) is a FT of the function 1/(2π), i.e.,
∫ ∞

−∞
1

2π
e−iωτ dτ = δ(ω). (3.98)

Second, consider a FT of an exponential function eiΩτ

F
[
eiΩτ

] =
∫ ∞

−∞
eiΩτ e−iωτ dτ =

∫ ∞

−∞
e−i(ω−Ω)τ . (3.99)

Comparing (3.99) with (3.98), we conclude that

F
[
eiΩτ

] = 2πδ(ω − Ω). (3.100)

By analogy, the FT of eiω0τ is

F
[
eiω0τ

] = 2πδ(ω − ω0). (3.101)

Thus, with account of (3.100) and (3.101), the spectrum of the process (3.87) is

S(ω) = A2
1π[δ(ω − Ω) + δ(ω + Ω)] + A2

2π[δ(ω − ω0) + δ(ω + ω0)]. (3.102)

The power spectral densities are symmetric with respect to zero frequency, and thus
are normally plotted only for the positive frequencies. Spectra are the tools com-
monly used in experiments in order to characterize the process. According to the
approximate estimates above, the spectrum of forced oscillations with large ampli-
tudes of forcing consists of two delta-peaks placed at the frequency of forcing Ω

and at the natural frequency of oscillations ω0. As the forcing strength B grows, the
positions of the peaks do not change, while their heights change: the peak at ω = Ω

grows, and the peak at ω = ω0 decreases and finally vanishes.
In the next section we will illustrate the evolution of spectra and other useful

characteristics of the forced oscillations by means of numerical simulations of (3.3).
We will associate the bifurcations in the original forced van der Pol system with the
spectra of its realizations.
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3.9 Phase Locking and Suppression: Numerical Simulation

In this section, we illustrate the two mechanisms for phase (frequency) synchro-
nization using the common experimentally accessible methods: realizations, strobo-
scopic sections7 and Fourier power spectral densities (spectra). This illustration will
provide the link between the mathematical and the physical languages that can be
used to describe the same phenomena of forced synchronization of periodic oscilla-
tions.

3.9.1 Phase Locking

We start with considering phase locking mechanism of synchronization. It is re-
alized as one enters the synchronization region at small amplitudes of forcing, and
crosses the line of saddle-node bifurcation that generally forms the lower part of syn-
chronization region. In particular, we will consider the 1 : 1 synchronization tongue
in Fig. 3.10(a) (the same as Fig. 3.9(b)) which describes the case of a forced van der
Pol system (3.3) with non-linearity parameter λ = 0.5. The saddle-node bifurcation
line is marked by solid line here. Let us fix the forcing frequency Ω = 1.05, and
gradually increase the forcing strength B from 0 to 0.4. The evolution of the strobo-
scopic section is shown in the first column of Fig. 3.11, the realizations of forcing
and of the forced system in the second column, and the spectra in the third column.
Each row describes the same forcing strength B, whose value is given to the right
of the respective row.

In the absence of forcing B = 0, the stroboscopic section is not defined. But
bearing in mind that with forcing, stroboscopic section is equivalent to Poincaré sec-
tion, we would like to artificially extend this analogy to the case when the forcing
is absent in order to illustrate the transitions. Without forcing, the Poincaré section
would be a fixed point, so we would like to show the fixed point in the strobo-
scopic section, too. Note that the stroboscopic section consists of the phase points
(ẋ, x) taken at the time moments ti when the values of the phase of external forcing
ψf(t) = Ωt are equal to

φf(ti) = ψ0
f + 2πi, i = 0, 1, 2, . . . , (3.103)

i.e., this section depends on the choice of the constant ψ0
f . At different values of ψ0

f
we get different sections, although all will be topologically equivalent. To illustrate
the situation without forcing, we would not like to place the point arbitrarily, but

7 Stroboscopic section is the set of points of the phase trajectory taken in a period of exter-
nal forcing, i.e., in the case of (3.3) with the time step 2π/Ω . It is topologically equivalent to
the Poincaré section of the periodically forced system: a periodic orbit is shown as a point,
and a torus is shown as a closed curve. In experiments with forced systems, stroboscopic sec-
tion is often preferred to Poincaré section because one does not have to care about choosing
the proper Poincaré secant surface, which makes it easier to introduce. A drawback of the
stroboscopic section approach is that in the absence of forcing it is not defined, while the
Poincaré section is defined in any case.



3.9 Phase Locking and Suppression: Numerical Simulation 57

Fig. 3.10. a The vicinity of 1 : 1 synchronization region of the forced van der Pol oscillator
with λ = 0.5, ω0 = 1, on the plane of parameters “forcing frequency Ω”–“forcing amplitude
B.” b Evolution of periodic orbits along route A is illustrated: the maxima of x are shown
versus B. Solid black line: stable cycle S; dashed line: saddle cycle S∗; grey line: unstable
cycle U (repeller)

at a position that is meaningful. So, we assume that if the forcing is vanishingly
small, the section is going to be very similar to that without forcing. Of course, with
forcing, strictly speaking, it is going to be a circle, but of such a small diameter that
it is virtually indistinguishable from a point. For all stroboscopic sections of this
section, we arbitrarily choose ψ0

f = 4.328.
The point shown in Fig. 3.11, first row, first column, is the result of computation

with vanishingly small B, and it symbolizes the position of the fixed point in the
stroboscopic section without forcing. In the first row, second column of Fig. 3.11,
the realization of x is given by the solid grey line, without the forcing which is
absent. One can see that the oscillations of the system are strictly periodic. Note
that since λ is not close to zero here, the system realization is not harmonic which is
clearly visible in the figure. In the first row, third column, the spectrum is shown by
a solid black line. It contains one peak at the frequency of natural oscillations in the
system.8 The frequency of external periodic forcing is shown by a dashed line. One
can see that the frequency of the unforced self-sustained oscillations in the system
is different from the frequency of forcing.

As the forcing strength is increased from zero, the oscillations in the system be-
come quasiperiodic (B = 0.15, Fig. 3.11, second row). The stroboscopic section is
a stable ergodic torus9 shown by a closed black curve, and the periodic orbit inside

8 The spectra of periodic or quasiperiodic oscillations are discrete, i.e., consist of delta-
functions, as shown in Sect. 3.8. However, the spectra shown in this section are estimated
numerically from the realizations of finite duration, and because of that are continuous func-
tions of frequency. The positions of the peaks of the numerically estimated spectra coincide
with the positions of the respective “true” spectra within numerical accuracy.
9 The torus densely filled by phase trajectories is often called ergodic. This is opposed to a

resonant torus, on whose surface there exist stable and unstable periodic orbits and hence the
phase trajectories do not fill the whole torus surface.
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Fig. 3.11. Illustration of 1 : 1 frequency (phase) locking for the forced van der Pol system (3.3)
at λ = 0.5. In Fig. 3.10(a) we move along route A defined by Ω = 1.05 as we enter the syn-
chronization tongue via saddle-node bifurcation line. Stroboscopic sections, realizations and
power spectral densities (spectra) are shown for each value of B indicated to the right of each
row. First column: Black line (circle)—stable tori (cycles S), grey line—resonant tori, grey
circle—saddle cycles S∗, white circle—unstable cycle U (see Fig. 3.10(b) for reference). Sec-
ond column: Black line—x(t), grey line—force F(t). Third column: Black line—spectrum
of x in (3.3), vertical dashed line shows the position of the forcing frequency Ω = 1.05

(white circle) has become unstable. The realization of oscillations has an ampli-
tude that changes in time. The spectrum has several peaks: the highest peak, whose
frequency can be called “main frequency” and is associated with the frequency of
forced oscillations in the system, the peak at the frequency of forcing (at the dashed
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line), and peaks at the combinations of the main frequency and the frequency of forc-
ing (combination frequencies). Note that the main frequency has shifted towards the
frequency of forcing as compared to the frequency of the unforced oscillations.

As B is increased to the value 0.18, which is very close to the outer boundary
of the phase locking region, the main frequency has coincided with the frequency
of forcing (Fig. 3.11, third row). However, the oscillations remain quasiperiodic,
which is detected by the presence of spectrum peaks at combination frequencies, by
the amplitude modulation of the realization, and by the stroboscopic section in the
form of a closed curve. This is not frequency (phase) locking yet.

As B reaches the value of 0.2, the oscillations in the system become periodic
with the frequency coinciding with the one of external forcing Ω (Fig. 3.11, fourth
row). The stroboscopic section is a stable fixed point (black circle) which lies on the
surface of a resonant torus (closed grey line in the section) together with a saddle
fixed point (grey circle). This pair of fixed points was born on the torus surface
as a result of a saddle-node bifurcation, as was analytically predicted in Sects. 3.4
and 3.6. Inside the torus, there is the same unstable fixed point (white circle) as at
B = 0.15 and B = 0.18. This is the frequency (phase) locked regime.

As B is increased further (Fig. 3.11, fifth row), the stable and saddle fixed points
in the stroboscopic section move further away from each other while staying on the
surface of the same torus (see row corresponding to B = 0.295). At the same time,
the unstable fixed point inside the closed curve (white circle) comes closer to the
saddle fixed point on the torus surface (grey circle). On the upper line of saddle-
node bifurcation in Fig. 3.10(a) they merge and disappear, and this leads to the dis-
appearance of the whole torus surface. As a result of this bifurcation (B = 0.4), the
stable limit cycle represented with a fixed point (black circle) in the section remains
the only object in the phase space of the forced system.

In order to summarize bifurcational transitions as one enters the locking region,
let us return to the bifurcation diagram around the 1 : 1 synchronization region in
Fig. 3.10(a) and consider evolution of all periodic orbits in the system while moving
along route A, i.e., by fixing Ω = 1.05 and changing B from zero to 0.6. The
respective one-dimensional bifurcation diagram is given in Fig. 3.10(b) where the
maxima of x for all three periodic orbits are shown depending on B. For more
detailed illustrations of the key moments, one can also compare this with Fig. 3.11.
At B = 0, there is an unstable fixed point in the system which is denoted by U . At
B = 0, U undergoes Andronov–Hopf bifurcation and an unstable periodic orbit is
born from it which we will continue to denote as U (grey line). At small B there
are no other periodic orbits, and the full system oscillates quasiperiodically. At B ≈
0.1825 a pair of cycles is born via saddle-node bifurcation: one stable S1 and one
saddle S∗

1 . This event signifies the entrance to phase (frequency) locking region. As
B achieves the value of 0.2988, saddle cycle S∗

1 collides with unstable cycle U and
both cycles vanish through saddle-node bifurcation. This event marks the transition
from the region of locking to the region of suppression of natural dynamics. As B is
increased further, there is only one stable cycle S in the system.
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3.9.2 Suppression of Natural Dynamics

We continue with considering suppression of natural dynamics mechanism of syn-
chronization. It is realized as one enters the synchronization region at relatively large
amplitudes of forcing,10 and crosses the line of torus birth bifurcation that generally
forms the upper part of synchronization region. We will continue considering the
1 : 1 synchronization tongue in Fig. 3.10(a), where the torus birth bifurcation line is
marked by the dashed line.

Let us fix the forcing frequency Ω = 1.2 (route B), which is noticeably bigger
than the one chosen for illustration of phase locking. We gradually increase the
forcing strength B from 0 to 0.54. The evolution of the stroboscopic section is shown
in the first column of Fig. 3.12, the realizations of forcing and of the forced system
in the second column, and the spectra in the third column. Each row describes the
same forcing strength B whose value is given to the right of the respective row.

In the absence of forcing, the position of the fixed point is determined by the
same method as was used to illustrate phase locking at B = 0 (Fig. 3.12, first row,
first column). Oscillations are strictly periodic, although not harmonic (first row,
second column). The spectrum contains just one peak at the natural frequency of
oscillations, and the forcing frequency Ω is quite different from that (third column).

As the forcing increases from zero (B = 0.2), the oscillations become quasiperi-
odic (second row): the stroboscopic section is a closed curve, and the fixed point,
that was stable without forcing, has become unstable and is shown by the white
circle. The spectrum of quasiperiodic oscillations contains the highest peak (corre-
sponds to the main frequency), the peak at the frequency of forcing Ω = 1.2, and
the peaks at combination frequencies. This part is very similar to what happened as
we were considering phase locking above (compare with Fig. 3.11, second row).

As the forcing strength becomes larger and reaches B = 0.4 (third row), so that
we approach the torus birth line in Fig. 3.10(a), the picture is qualitatively the same
as with B = 0.2. However, important quantitative changes can be observed: the
diameter of the ergodic torus became smaller, the period of amplitude modulation
became bigger, and the spectrum peak at ω = Ω = 1.2 has grown to become almost
as high as the main peak associated with natural dynamics.

As the forcing strength is increased further to reach B = 0.53 (fourth row in
Fig. 3.12), we have almost touched the torus birth line in Fig. 3.10(a). The torus
diameter became drastically smaller than at smaller B, the period of amplitude
modulation has increased substantially, and the spectrum peak at the frequency
ω = Ω = 1.2 has become the highest of all peaks. But the oscillations remain
quasiperiodic, and this is not synchronization yet.

When B = 0.54, the torus birth line is crossed. The stroboscopic section is a
single point, the oscillations are strictly periodic and synchronous with the forcing,
and the spectrum contains just a single peak at the frequency of forcing. This is

10 Larger than those at which phase locking occurs, but not necessarily large as compared to
the amplitude A0 of natural oscillations in the system. In fact, suppression can be achieved at
the forcing strength B considerably less than A0.
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Fig. 3.12. Illustration of suppression of natural dynamics in the forced van der Pol system
(3.3) at λ = 0.5, ω0 = 1. In Fig. 3.9(b) we move along route B defined by Ω = 1.2 as
we enter the synchronization tongue via torus birth bifurcation line. Stroboscopic sections,
realizations and power spectral densities (spectra) are shown for each value of B indicated
to the right of the each row. First column: Black line (circle)—stable torus (cycle S), grey
line—resonant torus, grey circle—saddle cycle S∗, white circle—unstable cycle U . Second
column: Black line—x(t), grey line—force F(t). Third column: Black line—spectrum of x

in (3.3), vertical dashed line shows the position of the forcing frequency Ω = 1.2

the regime of frequency (phase) synchronization. Note that the amplitude of oscil-
lations in the suppression region at B = 0.54 is around 1, which is smaller than the
amplitude of unforced oscillations

√
2 ≈ 1.41.

The difference between the two routes to synchronization, phase locking and
suppression, manifests itself both in the phase space and in the spectra. The distinc-
tive features of the two synchronization mechanisms are summarized in Table 3.1.
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Table 3.1. Summary of difference between the two synchronization mechanisms: phase/
frequency locking and suppression of natural dynamics. Manifestations of these mechanisms
are given in terms of the phase space and in terms of power spectral densities (spectra)

Phase locking Suppression
Changes Torus diameter almost does not Torus shrinks to become a stable cycle
in phase space change. A stable cycle is born

on its surface

Changes Peak associated with natural Peak associated with natural dynamics
in spectra dynamics moves to coincide almost does not move, but becomes

with forcing frequency smaller and finally vanishes

Note that the analytical estimates of the power spectral density (see Sect. 3.8) of
the forced oscillations along the suppression route to synchronization describe the
real spectra only roughly. First, λ = 0.5 that was used for numerical simulations,
is not close to zero and hence oscillations do not satisfy the assumption of being
quasiharmonic. As a result, the real spectrum contains not only two peaks at the
frequency of forcing and at the natural frequency, but also peaks at their combina-
tions. Second, the peak associated with the natural oscillations in the system does
move slightly towards the forcing frequency, contrary to the estimate of (3.102).
However, the analytical calculations predict the fact that the shifting of the peak as-
sociated with the natural frequency is negligibly small, as compared to its shifting
along the frequency locking route.

3.10 Phase Locking and Suppression: Experiment

In order to convince the reader that the theoretical predictions and the numerical
results presented above are not merely the tricks of mathematical theory or of com-
puter simulations, but the descriptions of the real physical phenomena, we present
the results obtained from real electronic circuits demonstrating self-sustained oscil-
lations.

In presenting the experimental results it was decided to abandon the modern
computer-based interface and to go for an old-fashioned style of the pre-computer
experimental techniques. Namely, all signals used for realizations and phase por-
traits were registered with the help of traditional oscilloscopes, to which they arrived
directly from the electric circuits without any pre-processing. All spectra were mea-
sured by means of the electronic analogue spectrum analyzers that do not use any
numerical techniques. For this reason the spectra of periodic processes have quite
broad peaks, as will be seen below. Where possible, we provide additional evidence
by showing the snapshots of frequency readings, etc. We hope that it was worth the
effort and that the reader will be convinced that different mechanisms of synchro-
nization are something real and not merely the fruits of mathematical imagination.

The electronic implementation used for illustration of forced synchronization is
schematically shown in Fig. 3.13. A classical LC-circuit connected to a non-linear
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Fig. 3.13. Scheme of an experimental setup used to illustrate the phenomena of forced syn-
chronization. The LC-oscillator is used with the following circuit parameters: R1 = R2 =
1.5 kOhm, R3 = 40 Ohm, R4 = 50 kOhm, L = 18 mH, C = 33 nF. The frequency f0 of
self-sustained oscillations in this circuit was measured to be equal to 6.62 kHz

element with a negative resistance is used as possibly the simplest generator of
electromagnetic oscillations. The scheme used is of the same type as the van der Pol
oscillator which was studied theoretically and numerically throughout this chapter,
although it is not the same. With these experiments we intend to demonstrate that
the theoretical results obtained for van der Pol oscillator are sufficiently general
and describe a wide class of phenomena in oscillators with similar properties, but
possibly described by different equations.

The parameters of the circuit were fixed as indicated in the caption to Fig. 3.13,
and the (plain) frequency f0 = ω0/2π of self-oscillations was measured to be
6.62 kHz. The external forcing in the form of a periodically oscillating voltage is ap-
plied to the circuit, and one can change both amplitude B and frequency ff = Ω/2π

of forcing in a wide range.
In Fig. 3.14 1 : 1 forced synchronization by phase locking in the electric circuit

is illustrated with the snapshots of the screens of oscilloscopes. One can compare
this figure with Fig. 3.11 where the same phenomenon is illustrated by numerical
simulation. Each row of Fig. 3.14 corresponds to a certain value of the amplitude B

of the control force in Volts, which is indicated to the right of the row and grows
from top to bottom. The columns show: phase portraits on the plane (y, x) of two
voltages in the circuit (first column), voltage x in the circuit (response) and force F

versus time (second column), and spectrum of response x (third column). In the
bottom of the figure the reading of the forcing frequency ff = Ω/2π is given,
which is equal to ff = 6.7412 kHz and is slightly different from the frequency
of self-sustained oscillations f0 = 6.62 kHz. The arrow at the bottom marks the
position of the forcing frequency on the spectra.



64 3 1 : 1 Forced Synchronization of Periodic Oscillations

Fig. 3.14. Illustration of 1 : 1 frequency (phase) locking in an experiment with the forced
periodic oscillator whose scheme is given in Fig. 3.13, to be compared with Fig. 3.11. All
pictures are photographs of the screens of oscilloscopes on which phase portraits, realizations
and spectra are shown. Phase portraits, realizations and power spectral densities (spectra)
are shown for each value of B. First column: Phase portraits on the plane (y, x) of two
voltages in the circuit. Second column: Large amplitude—voltage x(t) in the circuit, small
amplitude—force F(t). Third column: Spectrum of x

3.10.1 Amplitudes from Oscilloscopes

For those who are not familiar with oscilloscopes, we explain in detail how informa-
tion about the amplitudes of oscillations can be obtained with their help. The screens
of all oscilloscopes are covered with grids with square cells, and each cell embraces
a certain amount of voltage or spectral power in height, or time or spectral frequency
in width. In the phase portraits (first column), the cell height and width are 0.5 V,
and from this we can estimate the amplitudes of oscillations in the circuit; e.g. at
B = 1 V the vertical spread of the phase portrait is approximately 5.5 cells, which
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means that the amplitude of x is about 5.5/2×0.5 V = 1.375 V. In realizations (sec-
ond column), the same cell height embraces different amounts of Voltage for x and
for F : 0.5 V and 2 V, respectively. Again, at B = 1 V x spreads over about 5.5 cells
(like in the phase portrait) and its amplitude is about 1.375 V, while F spreads over
approximately one cell and hence its amplitude is about 1 V—which coincides with
the value of B = 1 V. Note that the amplitude of forcing that is illustrated by the
oscilloscope here appears to be comparable with the amplitude of oscillations in the
circuit, whereas phase locking is expected at much smaller amplitudes of forcing.
However, in this experiment forcing F was measured at the point marked by “forc-
ing” in Fig. 3.13, i.e., before the resistor R4 with a very large resistance. After the
signal F passes R4, its amplitude is decreased considerably by the factor of approxi-
mately 35, so that the signal that reaches the self-oscillator is about 35 times smaller
than the signal visible in the oscilloscope.

In the experiment, the parameters of the self-oscillating circuit and the forcing
frequency were fixed, and the forcing amplitude B was gradually increased from 0 V
to 7 V. At B = 0 V there is no forcing, the oscillations of the circuit are periodic, and
this is clearly visible in the phase portrait in the form of a closed loop, realization
with the constant amplitude and the spectrum that has only one peak with frequency
that is different from the frequency of forcing. At B = 1 V oscillations become
quasiperiodic: the phase portrait is no longer a closed loop but a torus (the visible
circle becomes slightly thicker as compared to B = 0 V), the realization becomes
slightly amplitude-modulated, and the spectrum contains peaks not only at the main
frequency fs = ωs/2π, but also at the combination frequencies n|ff − fs|, where
n is integer number. At the same time, the main spectrum peak fs is shifted against
its original position f0 towards the forcing frequency ff. At B = 3 V the main fre-
quency fs already coincides with the forcing frequency ff and the system spends
a lot of time near the periodic regime: in the phase portrait the bright closed loop
is clearly visible which is a precursor of a periodic regime. However, oscillations
are not periodic yet but are still quasiperiodic: in the phase portrait we still see the
torus, and the spectrum contains a lot of components besides the main one. Finally,
at B = 7 V the oscillations become periodic again: phase portrait is a closed loop,
realization has constant amplitude and spectrum has only one component. However,
this regime is different from the one that existed in the system before forcing was ap-
plied: the frequency of oscillations has changed and become equal to the frequency
of external forcing. This is how phase (frequency) locking takes place.

With the same experimental setup we now demonstrate the occurrence of 1 : 1
forced synchronization by suppression of natural dynamics in the electric circuit
with external forcing. Now the forcing frequency is set at ff = 7.0767 kHz as com-
pared to the frequency of natural oscillations f0 = 6.62 kHz, so that the detuning
is considerably larger than in the case of locking described above. The experiment
on suppression is illustrated in Fig. 3.15, and the designations are the same as in
Fig. 3.14. Here, the heights of grid cells in the oscilloscopes are 0.5 V for x and
5 V for F , but realizations are shown during a longer time interval in order to allow
one to observe amplitude modulation clearly. In the absence of forcing (B = 0 V)
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Fig. 3.15. Illustration of 1 : 1 suppression of natural dynamics in an experiment with the
forced periodic oscillator whose scheme is given in Fig. 3.13, to be compared with Fig. 3.12.
All pictures are photographs of the screens of oscilloscopes on which phase portraits, re-
alizations and spectra are shown. Phase portraits, realizations and power spectral densities
(spectra) are shown for each value of B. First column: Phase portraits on the plane (y, x)
of two voltages in the circuit. Second column: Large amplitude—voltage x(t) in the cir-
cuit, small amplitude—force F(t). Third column: Spectrum of x. Inset in fifth row, second
column is an enlarged segment of the realizations x(t) and F(t)

the oscillations in the circuit are exactly the same as in Fig. 3.14 at B = 0 V, i.e.,
periodic. At B = 2.5 V oscillations are quasiperiodic, which can be detected by the
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“thickened” phase portrait, clearly visible amplitude modulation and the new spec-
trum components which appear at the frequency ff of forcing and at combination
frequencies. Note that the main spectrum peak stays at the same position as it was at
B = 0 V, unlike in the case of locking where at a comparable value of B = 3 V the
position of the main peak has shifted. At B = 4.75 V the amplitude modulation of
oscillations becomes stronger, new spectrum peaks appear at combination frequen-
cies, and the peak at the fs is now only slightly lower than the one at ff. At the same
time, it is now clearly visible that in average the amplitude of oscillations in the
system has decreased as compared to the amplitude at smaller values of B. Further
increase of B up to the value B = 8.25 V makes the phase portrait shrink further,
while the amplitude modulation becomes even more pronounced. Most importantly,
the spectrum peak at forcing frequency ff is now higher than the peak at fs that
corresponds to the natural dynamics of the system! This means that the dominating
dynamics is now the one imposed by external forcing. However, this is not synchro-
nization yet, since oscillations are still quasiperiodic and the natural dynamics is
present alongside with the one dictated by forcing. Finally, at B = 11.25 V only
one spectral peak at the forcing frequency is left in the system and the oscillations
are periodic again. The natural dynamics is now completely suppressed by the forc-
ing, while the imposed behavior has the frequency of forcing and a slightly different
shape and amplitude, as compared to the one that existed in the system before forc-
ing was applied. Note that the “real” amplitude of forcing at which suppression is
achieved is about 11.25 V/35 ≈ 0.32 V which is still considerably smaller than the
amplitude of the natural oscillations in the system which is around 1.375 V.

3.11 Beat Frequency: Theory, Simulations and Experiment

In this section we will discuss in detail the beating of oscillations that was mentioned
in the introductory part of this chapter. To remind you, when synchronization ceases
to exist, the oscillations in the system become modulated by a slow function of
time: instantaneous amplitude A. It is interesting to find out what the shape and the
frequency of A(t) are, and what the practical meaning of the beat frequency is. The
analytical estimates of this section were given in [160], but with less detail.

We remind you that beat frequency ϕ̇ is the instantaneous angular velocity with
which the phase point on the plane (u, v) rotates around the origin (Fig. 3.6(b)) when
there are no stable fixed points in the system (3.31)–(3.32), i.e., no synchronization.

3.11.1 Theory

First, consider weak forcing, i.e., small B. The truncated equation for the phase
difference ϕ can then be approximately written as (3.25) and does not depend on A.
Instantaneous beat frequency is given by ϕ̇. We are interested in its average ¯̇ϕ over
time. For this purpose, we first have to find an explicit solution ϕ(t) of this equation
as a function of time, and then calculate the average of its derivative. Let us denote
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Δs = B

4
√

λΩ
. (3.104)

Equation (3.25) can be solved explicitly by separation of variables, namely,
∫ ϕ

0

dϕ

Δ − Δs cos ϕ
=

∫ t
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dt. (3.105)

The integral of the same type as in the left-hand side of the above formula can be
found, e.g., in [97]. Beats occur outside phase locking region, i.e., when Δ > Δs
(compare with (3.28)). Then the formal condition Δ2 > Δ2

s is satisfied, and the
integral in (3.105) can be written as follows:
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Instantaneous beat frequency is ϕ̇, so let us find it by differentiating ϕ(t)
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Thus, instantaneous beat frequency ϕ̇ turns to be a periodic function of time with
period T = 2π/

√
Δ2 − Δ2

s . However, we are interested in its average over time.
Time average of a periodic function is equal to its average over one period, i.e.,

¯̇ϕ = 1

T

∫ t0+T

t0

ϕ̇ dt.

We remind you that ϕ is an angle of the phase vector in (u, v) plane. Hence, by
definition, in one period of oscillations the phase vector rotates by 2π: ϕ increases
by 2π at Δ > 0, and decreases by 2π at Δ < 0. With account of this, we can rewrite

Δ > 0:
¯̇ϕ = 1

T

∫ t0+T

t0

dϕ

dt
dt = 1

T

∫ 2π

0
dϕ =

√
Δ2 − Δ2

s

2π
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Δ2 − Δ2

s ,

(3.106)
Δ < 0:

¯̇ϕ = 1

T

∫ −2π

0
dϕ = −

√
Δ2 − Δ2

s .

When the detuning Δ approaches Δs, the beat frequency smoothly approaches zero.
Inside the phase locking region, the amplitude A is a constant, which can formally be
associated with an infinite period and zero frequency. Using the definition of Δ from
(3.20), we express the beat frequency ¯̇ϕ as a function of the forcing frequency Ω

¯̇ϕ = ±
√

(ω0 − Ω)2 − B2

16λΩ2
.

From (3.106) it follows that the beat frequency can be either positive for positive
detuning, or negative for negative one. So, for convenience in what follows we will
take a modulus of the beat frequency. A typical dependence of | ¯̇ϕ| on Ω is given in
Fig. 3.16(c) by the solid line for λ = 0.1, ω0 = 1, and B = 0.01 (see Fig. 3.5 for
the theoretical estimate of the lower part of the respective synchronization tongue).
The same dependence, but for a larger range of Ω , is given in Fig. 3.16(a).

Now, consider large amplitudes of forcing B. In this case, the truncated equa-
tions (3.21)–(3.22) cannot be regarded as uncoupled. It is convenient to consider the
Descartes coordinates u and v and to introduce the angle ϕ as

ϕ = arctan
v

u
.

Express u and v through C and Ψ using (3.79)–(3.80) and take a time derivative
of ϕ

ϕ̇ = d

dt
arctan

{

− C cos(Δt + Ψ )

C sin(Δt + Ψ ) + F̃
Δ

}

= 1

1 + C2 cos2(Δt + Ψ )/(C sin(Δt + Ψ ) + F̃
Δ

)2
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Fig. 3.16. Another illustration of the difference between the locking and suppression mecha-
nisms, see Fig. 3.9(a) for reference. a Absolute value of beat frequency | ¯̇ϕ| as in (3.106) for
locking (B = 0.01), and in (3.107) for suppression (B = 0.06). b The distance |Ω − ωs|
between the frequency ωs of the highest spectral peak of forced oscillations, and the forcing
frequency Ω . c, d Comparison between | ¯̇ϕ| and |Ω − ωs| for locking (c) and for suppression
(d). All quantities are shown versus forcing frequency Ω for the forced van der Pol oscillator
(3.3) at λ = 0.1 and ω0 = 1

× (−)
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Δ
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As was shown previously ((3.84)), in average Ψ̇ = 0. Hence, the function ϕ̇ is
periodic with period 2π

Δ
.
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By analogy with the phase locking, we calculate the average of ϕ̇ over one pe-
riod T of oscillations

¯̇ϕ = Δ. (3.107)

This means that when one approaches the suppression region boundary from out-
side, the beat frequency drops from the finite value Δ to zero abruptly. A typical
dependence of | ¯̇ϕ| on Ω is given in Fig. 3.16(d) by the solid line, for λ = 0.1,
ω0 = 1, B = 0.06 (see Fig. 3.9(a) for the theoretical estimate of the upper part of
the respective synchronization tongue).

In Fig. 3.16(a) the beat frequencies versus Ω are compared for the forced van
der Pol oscillator for two different forcing strengths B: B = 0.01 corresponding
to locking mechanism, and B = 0.06 corresponding to suppression. One can see
that the crucial difference between the two mechanisms occurs near the boundaries
of synchronization region. Namely, a signature of phase locking is the smooth ten-
dency of the beat frequency to zero as the boundary is approached. On the contrary,
suppression manifests itself in the almost linear change of the beat frequency as one
approaches the synchronization boundary, and its abrupt drop from a final value to
zero as the boundary is achieved. However, at a large distance from synchronization
border, the beat frequency at small forcing behaves in the same manner as the one
at large forcing: the two graphs practically coincide.

3.11.2 Numerical Simulation

One might wonder: “What is the practical use of the beat frequency? From its defini-
tion, it seems quite an inconvenient quantity to be estimated from experimental data.
How is it related to the more conventional experimentally accessible measures?”

To provide an answer to these questions, let us consider Fourier power spectral
density of forced oscillations. Note that outside synchronization region the oscilla-
tions are quasiperiodic: an almost periodic signal is amplitude-modulated by A(t).
It is known that the Fourier spectrum of such a signal is discrete and consists of
frequency components at the main frequency ωs of oscillations, and at the combi-
nations of this main frequency with the modulating frequency, the latter being the
average beat frequency | ¯̇ϕ|; i.e. the peaks will be placed at

ωs ± n| ¯̇ϕ|, (3.108)

where n is integer number. At the same time, from linear response theory it is known
that in the spectrum of forced oscillations, at least with small forcing, one of the
components will necessarily be at the forcing frequency Ω . Because we assume that
the detuning (ω0 − Ω) is small, it is reasonable to expect that the peak at ωs ± | ¯̇ϕ|,
i.e., the one closest to the main peak, will be the peak corresponding to forcing
frequency. Hence, the distance between Ω and ωs is expected to be the modulating
frequency of the signal, i.e., beat frequency | ¯̇ϕ|.

This assumption can only be checked experimentally or numerically, since it
arises from a merely empirical speculation. In order to check its validity, we numer-
ically simulate the forced van der Pol oscillator (3.3) at the same parameters as for
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Fig. 3.16(a), and estimate the Fourier power spectral density from its realizations
x(t). For each spectrum, the highest peak and its frequency ωs is found, and the
absolute value of the difference between ωs and Ω is estimated. We fix the forc-
ing strength at two values B = 0.01 and B = 0.06, and change Ω . Figure 3.16(b)
shows the values of |Ω − ωs| depending on Ω and demonstrates a high degree of
similarity with Fig. 3.16(a). A closer comparison between the analytical estimates
of beat frequencies using (3.106)–(3.107), and the values of |Ω − ωs| is illustrated
in Figs. 3.16(c)–(d).

One can see that for the locking mechanism, close to synchronization boundary,
the beat frequency changes non-linearly, while at a large distance from the synchro-
nization region its changes are almost linear. In fact, at a large distance from the
boundary of synchronization region it is impossible to distinguish between the two
routes to synchronization: beat frequencies coincide (Fig. 3.16(a)–(b)).

In experiments that involve high-frequency processes, e.g., in lasers or other
semiconductor structures, it is often impossible to record the realizations with suf-
ficiently good time resolution. Hence, it is impossible to extract the envelopes from
them and thus to reliably estimate the beat frequencies ¯̇ϕ directly using the defini-
tion. However, the spectra are normally readily available in such experiments, and
are in fact the main tool for the study of such processes. From Fig. 3.16 it can be
concluded that the spectral measure |Ω−ωs| serves quite an accurate estimate of the
beat frequency | ¯̇ϕ| and can be used to distinguish between different synchronization
mechanisms.

It should be remembered that the expressions (3.106) and (3.107) for beat fre-
quency are valid only as long as (3.25) and (3.79), (3.80), respectively, remain valid.
Hence, when the conditions for the validity of these equations are no longer satis-
fied, the analytical expressions (3.106)–(3.107) for the beat frequency are not accu-
rate. As an illustration of this, consider the forced van der Pol system (3.3) at the
non-linearity λ = 0.5, which does not satisfy the condition of being much smaller
than 1. The respective numerically estimated synchronization region is shown in
Fig. 3.9(b). As one fixes the forcing strength at B = 0.2 and changes Ω , synchro-
nization is achieved by locking, while at B = 0.6 synchronization occurs via sup-
pression. The analytical estimates of the beat frequency using (3.106)–(3.107) are
shown in Fig. 3.17, together with their spectral estimates. For suppression, in agree-
ment with analytical prediction illustrated in (a), there is a jump of |Ω − ωs| on the
synchronization border as shown in (b). However, outside it, the dependence on Ω

is already not strictly linear. For locking, the situation is less clear: synchronization
is achieved while |Ω − ωs| tends to zero, but zero is not achieved (see lower part
of (b)), and as the locking border is hit, it jumps to zero.

3.11.3 Experiment

The behavior of beat frequency in the vicinity of synchronization region was verified
experimentally using the experimental setup whose scheme is shown in Fig. 3.13.
The forcing strength B was fixed at a certain value, and the forcing frequency was
changed between 5.5 kHz and 8 kHz. Beat frequency was estimated as the distance
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Fig. 3.17. And another illustration of the difference between the locking and suppression
mechanisms, see Fig. 3.9(b) for reference. a Absolute value of beat frequency | ¯̇ϕ| as in (3.106)
for locking (B = 0.2), and in (3.107) for suppression (B = 0.6). b The distance |Ω − ωs|
between the frequency ωs of the highest spectral peak of forced oscillations, and the forcing
frequency Ω . All quantities are shown versus forcing frequency Ω for the forced van der Pol
oscillator (3.3) at λ = 0.5 and ω0 = 1

Fig. 3.18. Experimental values of “beat frequency” measured as |Ω −ωs|/(2π) (in kHz), ver-
sus forcing frequency Ω (compare with Fig. 3.16). Experimental scheme is shown in Fig. 3.13

between the main peak ωs of the spectrum of the response signal, and the fre-
quency Ω of forcing, i.e., as |Ω − ωs|. In Fig. 3.18 beat frequency is shown ver-
sus Ω for B = 3.6 V at which the phase locking region is being crossed, and at
B = 23 V at which we cross the suppression region. Remarkably, the experimen-
tal graphs demonstrate the same kind of behavior as predicted by the approximate
theory illustrated in Fig. 3.16(a), and are in an excellent agreement with numeri-
cal simulations illustrated in Fig. 3.16(b). First, the suppression region is proved
to be wider than the locking one, as predicted by the theory. Second, we observe
that as one approaches the locking region, the beat frequency decreases gradually
to become zero, and this dependence is non-linear with the shape very similar to
the theoretical one. With this, as one approaches the suppression region, the beat
frequency decreases almost linearly and then abruptly jumps to zero.



4 1 : 1 Mutual Synchronization of Periodic
Oscillations

In Chap. 3 we considered the simplest case of two interacting processes, namely,
when both processes are periodic, and one influences the other—but not recipro-
cally. A natural question to ask is “What happens if the other oscillator experiences
the influence from the first one in return? Will anything change?” This chapter will
try to answer this question.

We consider the case when two periodic self-oscillating systems are coupled mu-
tually, or bidirectionally. One of the earliest observations of mutual synchronization
was made by Rayleigh [243], in which he found that two organ pipes whose mouths
are sufficiently close can sound in unison. There are a lot of ways one can couple
two systems. Generally, both the physical properties of the coupling chain, and the
specific features of systems to be coupled, define how the coupling term appears
in the model equations. Thus, one can speak about coupling either in terms of its
physical meaning, or in terms of its mathematical description.

The examples of a physical description of coupling are as follows. Two elec-
tronic circuits can be coupled through a resistor, a capacitor or an inductor; chemi-
cal reactions or living systems can be coupled through the processes of diffusion or
directed transport.
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At the same time, coupling that is physically exactly the same can be described
by different forms of coupling terms in the model equations, depending on the struc-
ture of the systems being coupled. One possible way of introducing coupling math-
ematically is simply to add into one or more of each subsystem’s equations terms
proportional to the variables of another subsystem or to some functions of them.
This would be “direct coupling” according to [35]. This kind of coupling was thor-
oughly studied, e.g., in [35] and [161].

Another very popular way of coupling is to represent the coupling term as the
difference between the coordinates of the interacting systems, which will be consid-
ered here. It needs to be noted that the difference between the direct and difference
types of coupling becomes important only when one considers the phenomenon of
oscillation death (Sect. 4.1), otherwise the synchronization phenomena are similar
for both types of coupling.

We again consider the paradigmatic van der Pol oscillators. The model equations
read

ẍ1 − (
λ1 − x2

1

)
ẋ1 + ω2

1x1 + BR(x1 − x2) + BD(ẋ1 − ẋ2) = 0, (4.1)

ẍ2 − (
λ2 − x2

2

)
ẋ2 + ω2

2x2 + BR(x2 − x1) + BD(ẋ2 − ẋ1) = 0. (4.2)

Here, λ1,2 are non-linearity parameters, ω1,2 are the eigenfrequencies. BR and BD
are the strengths of mutual coupling of two different forms. Here we adopt the ter-
minology of [214] where the coupling with BD �= 0 was called dissipative, and the
one with BR �= 0 was called reactive.1 Note that when the two systems demonstrate
identical oscillations at λ1 = λ2 and ω1 = ω2, i.e., are perfectly synchronized,
the coupling terms vanish. The more different the oscillations in the two systems,
the larger the coupling terms are. Although the forcing applied to a system can be
regarded as unidirectional coupling between the two oscillators, there is no direct
analogy between the forced oscillator and the oscillator which is diffusively coupled
to another one. When external forcing is applied to a system like in (3.3), the forcing
term never vanishes whatever the oscillations of the system are.

Mutually coupled van der Pol and some other types of oscillators were studied
in [34, 35, 64, 122, 135, 148, 171, 194, 240, 285].

For convenience, we rewrite (4.1)–(4.2) in the form of four first-order ordinary
differential equations

ẋ1 = y1,

ẏ1 = (
λ1 − x2

1

)
y1 − ω2

1x1 + BR(x2 − x1) + BD(y2 − y1), (4.3)
ẋ2 = y2,

ẏ2 = (
λ2 − x2

2

)
y2 − ω2

2x2 + BR(x1 − x2) + BD(y1 − y2).

1 In [35] these forms of coupling were referred to as scalar and non-scalar, respectively.
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4.1 Truncated Equations for Weakly Non-linear Oscillators

We consider the system of two weakly non-linear van der Pol oscillators (4.1)–(4.2)
that are coupled mutually with coupling represented as a difference between the
respective variables. We consider both kinds of coupling: dissipative and reactive.
The purpose of this section is to derive the truncated equations for the amplitudes in
each partial oscillator, and the phase difference between the oscillators.

By analogy with the case of forced oscillations considered in Sect. 3.2, we will
be looking for the solution in the form

x1,2(t) = A1,2(t) cos
(
ωt + ϕ1,2(t)

) = 1

2

(
a1,2(t)e

iωt + a∗
1,2(t)e

−iωt
)
, (4.4)

where the complex amplitudes a1 and a2 and their complex-conjugates a∗
1 and a∗

2
are expressed through real amplitudes A1 and A2 and phases ϕ1 and ϕ2 as

a1,2 = A1,2eiϕ1,2 , a∗
1,2 = A1,2e−iϕ1,2 . (4.5)

In what follows we will omit the brackets “(t)” that emphasize an explicit depen-
dence on time of the variables A1,2, ϕ1,2 and a1,2.

Note that unlike in Sect. 3.2 where we were looking for the solution at the forc-
ing frequency Ω , here we are looking for the solution at some frequency ω which
we do not know. Then ẋ1,2 can be obtained by the direct differentiation of (4.4):

ẋ1,2(t) = 1

2

(
ȧ1,2eiωt + a1,2iωeiωt + ȧ∗

1,2e−iωt − a∗
1,2iωe−iωt

)
.

By analogy with (3.14), we require that

ẋ1,2(t) = iω

2

(
a1,2eiωt − a∗

1,2e−iωt
)
. (4.6)

Then the additional condition on the complex amplitudes of the mutually coupled
oscillations will read

ȧ1,2eiωt + ȧ∗
1,2e−iωt = 0. (4.7)

ẍ1,2 can be obtained by the differentiation of (4.6)

ẍ1,2(t) = iω

2

(
ȧ1,2eiωt − ȧ∗

1,2e−iωt
) − ω2

2

(
a1,2eiωt + a∗

1,2e−iωt
)
.

In the equation above we represent

ȧ1,2eiωt = −ȧ1,2eiωt + 2ȧ1,2eiωt . (4.8)

Then, with account of (4.7),

ẍ1,2(t) = iωȧ1,2eiωt − ω2

2

(
a1,2eiωt + a∗

1,2e−iωt
)
.
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Substitute x1,2, ẋ1,2 and ẍ1,2 into (4.1)–(4.2)

iωȧ1,2eiωt − ω2

2

(
a1,2eiωt + a∗

1,2e−iωt
)

−
(

λ1,2 − 1

4

[
a1,2eiωt + a∗

1,2e−iωt
]2
)

iω

2

(
a1,2eiωt − a∗

1,2e−iωt
)

+ ω2
1,2

2

(
a1,2eiωt + a∗

1,2e−iωt
)

= BR

2

(
a2,1eiωt + a∗

2,1e−iωt − a1,2eiωt − a∗
1,2e−iωt

)

+ BDiω

2

(
a2,1eiωt − a∗

2,1e−iωt − a1,2eiωt + a∗
1,2e−iωt

)
.

Simplify the left-hand side (l.h.s.):

l.h.s. = iωȧ1,2eiωt + ω2
1,2 − ω2

2

(
a1,2eiωt + a∗

1,2e−iωt
)

− λ1,2iω

2

(
a1,2eiωt − a∗

1,2e−iωt
)

+ iω

8

(
a2

1,2e2iωt + 2a1,2a
∗
1,2 + a∗2

1,2e−2iωt
)(

a1,2eiωt − a∗
1,2e−iωt

)

= iωȧ1,2eiωt + ω2
1,2 − ω2

2

(
a1,2eiωt + a∗

1,2e−iωt
)

− λ1,2iω

2

(
a1,2eiωt − a∗

1,2e−iωt
) + iω

8
a3

1,2e3iωt − iω

8
a2

1,2a
∗
1 eiωt

+ iω

4
a2

1,2a
∗
1,2eiωt − iω

4
a1,2a

∗2
1,2e−iωt + iω

8
a1,2a

∗2
1,2e−iωt − iω

8
a∗3

1,2e−3iωt .

After finding similar terms in the l.h.s., the simplified equation reads

iωȧ1,2eiωt + ω2
1,2 − ω2

2

(
a1,2eiωt + a∗

1,2e−iωt
)

− λ1,2
iω

2

(
a1,2eiωt − a∗

1,2e−iωt
) + iω

8
a3

1,2e3iωt + iω

8
a2

1,2a
∗
1,2eiωt

− iω

8
a1,2a

∗2
1,2e−iωt − iω

8
a∗3

1,2e−3iωt

= BR

2

(
a2,1eiωt + a∗

2,1e−iωt − a1,2eiωt − a∗
1,2e−iωt

)

+ BDiω

2

(
a2,1eiωt − a∗

2,1e−iωt − a1,2eiωt + a∗
1,2e−iωt

)
.

Multiply both parts by e−iωt/(iω):

ȧ1,2 + ω2
1,2 − ω2

2iω

(
a1,2 + a∗

1,2e−2iωt
) − λ1,2

2
a1,2 + λ1,2

2
a∗

1,2e−2iωt
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+ 1

8
a3

1,2e2iωt + 1

8
a2

1,2a
∗
1,2 − 1

8
a1,2a

∗2
1,2e−2iωt − 1

8
a∗3

1,2e−4iωt

= BR

2iω

(
a2,1 + a∗

2,1e−2iωt − a1,2 − a∗
1,2e−2iωt

)

+ BD

2

(
a2,1 − a∗

2,1e−2iωt − a1,2 + a∗
1,2e−2iωt

)
.

By analogy with Sect. 3.2, we assume that a1,2 are slow functions of time and almost
do not change on a period T = 2π/ω of the frequency ω of fast oscillations. Use
the Krylov–Bogoliubov method of averaging, and average the equation above on
the period T using the definition (3.18) of a time average of a function f (t):

ȧ1,2 − ω2
1,2 − ω2

2ω
ia1,2 − λ1,2

2
a1,2 + 1

8
a2

1,2a
∗
1,2 =

(
BD

2
− BR

2ω
i

)
(a2,1 − a1,2).

Represent complex amplitudes a1,2 through their real amplitudes A1,2 and
phases ϕ1,2 using (4.5) and substitute into the last equation:

Ȧ1,2eiϕ1,2 + A1,2iϕ̇1,2eiϕ1,2

= ω2
1,2 − ω2

2ω
iA1,2eiϕ1,2 + λ1,2

2
A1,2eiϕ1,2

− 1

8
A3

1,2eiϕ1,2 +
(

BD

2
− BR

2ω
i

)(
A2,1eiϕ2,1 − A1,2eiϕ1,2

)
.

Divide both parts by eiϕ1,2 :

Ȧ1,2 + A1,2iϕ̇1,2 = ω2
1,2 − ω2

2ω
iA1,2 + λ1,2

2
A1,2 − 1

8
A3

1,2

+
(

BD

2
− BR

2ω
i

)(
A2,1ei(ϕ2,1−ϕ1,2) − A1,2

)
.

Represent the exponent through a sine and cosine using the Euler formula

Ȧ1,2 + A1,2iϕ̇1,2

= ω2
1,2 − ω2

2ω
iA1,2 + λ1,2

2
A1,2 − 1

8
A3

1,2

+
(

BD

2
− BR

2ω
i

)(
A2,1

[
cos(ϕ2,1 − ϕ1,2) + i sin(ϕ2,1 − ϕ1,2)

] − A1,2
)
.

Separate real and imaginary parts and write the full system of four ordinary differ-
ential equations for amplitudes and phases in interacting subsystems:

Ȧ1 = λ1

2
A1 − 1

8
A3

1 + BD

2

(
A2 cos(ϕ2 − ϕ1) − A1

) + BR

2ω
A2 sin(ϕ2 − ϕ1),

ϕ̇1 = ω2
1 − ω2

2ω
+ BD

2

A2

A1
sin(ϕ2 − ϕ1) − BR

2ω

A2

A1
cos(ϕ2 − ϕ1) + BR

2ω
,
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Ȧ2 = λ2

2
A2 − 1

8
A3

2 + BD

2

(
A1 cos(ϕ1 − ϕ2) − A2

) + BR

2ω
A1 sin(ϕ1 − ϕ2),

ϕ̇2 = ω2
2 − ω2

2ω
+ BD

2

A1

A2
sin(ϕ1 − ϕ2) − BR

2ω

A1

A2
cos(ϕ1 − ϕ2) + BR

2ω
.

We note that the right-hand sides of the equations above depend not on ϕ1 and ϕ2
separately, but on the difference between them. Let us introduce a new variable
θ = ϕ2 − ϕ1. Also, take into account that ω ≈ ω1,2 and ω1 + ω2 ≈ 2ω, and by Δ

denote the detuning which is equal to

Δ = ω2
2 − ω2

1

2ω
≈ ω2 − ω1. (4.9)

Then we obtain a system of three truncated equations for the amplitudes A1,2 and
phase difference θ between the oscillators

Ȧ1 = λ1

2
A1 − 1

8
A3

1 + BD

2

(
A2 cos(θ) − A1

) + BR

2ω
A2 sin(θ),

Ȧ2 = λ2

2
A2 − 1

8
A3

2 + BD

2

(
A1 cos(θ) − A2

) − BR

2ω
A1 sin(θ), (4.10)

θ̇ = Δ − BD

2
sin(θ)

(
A2

A1
+ A1

A2

)
+ BR

2ω
cos(θ)

(
A2

A1
− A1

A2

)
.

The equations similar to the above, but in a more general form which is not con-
sidered here for the sake of simplicity, were analyzed by Aronson et al. in [34, 35].
Below we will present some of the results of this analysis which we regard as most
essential for the understanding of the phenomenon of mutual synchronization of
periodic oscillations.

4.2 Periodic Oscillators with Dissipative Coupling

In (4.10) set BR = 0 so that only dissipative coupling is considered. Also, in order
to simplify the analysis let us assign λ1 = λ2 = λ. The truncated equations for
amplitudes and phase difference then read

Ȧ1 = A1

(
λ

2
− 1

8
A2

1 − BD

2

)
+ BD

2
A2 cos(θ),

Ȧ2 = A2

(
λ

2
− 1

8
A2

2 − BD

2

)
+ BD

2
A1 cos(θ), (4.11)

θ̇ = Δ − BD

2
sin(θ)

(
A2

A1
+ A1

A2

)
.

Note that the equations above are symmetric with respect to A1 and A2: if we swap
them, the equations remain the same.
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4.2.1 Symmetric Solutions

We will start by looking for the symmetric solutions in the form A1 = A2 = A

which satisfy

Ȧ = A

2

(
λ − BD − A2

4

)
+ BD

2
A cos(θ), (4.12)

θ̇ = Δ − BD sin(θ). (4.13)

It is clear that the solution (A, θ) to (4.12)–(4.13) generates the solutions (A,A, θ)

to (4.11).
A phase-locked symmetric solution corresponds to Ȧ = 0 (A �= 0) and θ̇ = 0.

From (4.13)2 which does not depend on A we find θ

Δ − BD sin(θ) = 0, sin(θ) = Δ

BD
,

θ1 = sin−1 Δ

BD
, θ2 = π − sin−1 Δ

BD
.

θ1,2 exist as long as |Δ| ≤ BD. So, in the parameter plane (Δ,BD) the lines Δ =
±BD are the borderlines of a phase-locking region. In Fig. 4.1 these lines are shown
on the plane of parameters BD and p, where

p = ω2

ω1
, Δ = ω1(1 − p)

for ω1 = 1. One can compare this part of the diagram with the respective part of
the similar diagrams for a forced system given in Figs. 3.5 and 3.9 and make sure
that the lower boundaries of synchronization regions are qualitatively the same in
all cases.

The values of A corresponding to θ1,2 can be found as follows:

A

2

(
λ − BD − A2

4

)
+ BD

2
A cos(θ) = 0 (A �= 0). (4.14)

Then
(

λ − A2

4
− BD

)
= −BD cos(θ),

cos(θ) =
√

1 − sin2(θ) =
√

1 − Δ2

B2
D

,

(
BD + A2

4
− λ

)
= BD

√

1 − Δ2

B2
D

.

2 An equation in the form of (4.13) is sometimes called an Adler equation [5].
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Fig. 4.1. (Color online) a The vicinity of 1 : 1 synchronization region of the mutually coupled
van der Pol systems (4.3) with dissipative coupling, λ1,2 = 0.1, BR = 0 and BD > 0, on the
plane of parameters of coupling “detuning p”–“strength of coupling BD,” where p = ω2/ω1,
and ω1 and ω1 are eigenfrequencies of partial oscillators. Solid line marks saddle-node bifur-
cation, dashed line marks Andronov–Hopf bifurcation. Dash-dotted lines denote transitions
from torus to the fixed point. In the shaded area there are no oscillations in the system, i.e.,
oscillation death occurs. b Evolution of periodic orbits along route A is illustrated: the max-
ima of x1 are shown versus BD. Solid black line: stable cycle S1; dashed line: saddle cycle S∗

1 ;
grey lines: twice saddle cycles U1,2. Empty circle marks transcritical bifurcation

Take the square of both parts of the last equation:

B2
D + A4

16
+ BDA2

2
+ λ2 − 2λBD − λA2

2
= B2

D − Δ2.

Rearrange terms and reduce to the quadratic equation for A2:

A4 + A28(BD − λ) + 16
(
λ2 − 2λBD + Δ2) = 0.

Solutions for A2 are

Ã2
1 = 4(λ − BD) + 4

√
B2

D − Δ2, Ã2
2 = 4(λ − BD) − 4

√
B2

D − Δ2.

It can be easily checked by an analogy with Sect. 3.4, that (Ã1, θ1) is a stable so-
lution, and (Ã2, θ2) is an unstable one. They collide at the region boundary and
vanish via saddle-node bifurcation, in full analogy with a forced periodic oscilla-
tor.

Let us rewrite (4.12)–(4.13) by making some variable substitutions. First, intro-
duce new “time” τ :

t = 2τ/λ:
dA

dτ
= A

(
1 − A2

4λ
− 1

λ
BD

)
+ 1

λ
BDA cos(θ),

dθ

dτ
= 2

λ

(
Δ − BD sin(θ)

)
.
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Next, rescale A by introducing a value ρ such that

ρ = A

2
√

λ
, A = 2

√
λρ,

and obtain an equation for ρ:

dρ

dτ
= ρ

(
1 − ρ2 − BD

λ

)
+ 1

λ
BDρ cos(θ),

(4.15)
dθ

dτ
= 2

λ
Δ − 2

λ
BD sin(θ).

If we denote

γ = BD

λ
, δ = 2

λ
Δ,

(4.15) are identical to the equations

ρ̇ = ρ
(
1 − γ − ρ2) + γρ cos(θ), θ̇ = δ − 2γ sin(θ) (4.16)

analyzed by Aronson et al. in [35], where the solution to these equations was found
as follows:

ρ2(t) = a(1 − c2)

1 + c sin[θ(t) + ψ] , (4.17)

with a, c and ψ expressed as

a = (1 − γ ), c = γ
√

a2 + δ2/4
, tan ψ = 2a

δ
. (4.18)

In terms of the parameters of (4.12)–(4.13), a, c and ψ are equal to

a = 1 − BD

λ
, c = BD

λ

√

a2 + Δ

λ2
, tan ψ = 1 − BD

λ
1
λ
Δ

= λ − BD

Δ
.

At small γ , which means that a > 0 and c ∈ [0; 1), (4.17) describes an ellipse in
(ρ2, θ ). The same authors have proved that the solution (4.17) is asymptotically sta-
ble, i.e., attracting. An ellipse on the plane (ρ2, θ ) means that the phase trajectories
in the original phase space (x1, y1, x2, y2) of (4.3) lie on a surface of a torus.

Note that the pair of fixed points Ã1,2 found above are born on the ellipse. Hence,
when these points exist, (4.3) demonstrates the regime of phase locking.

4.2.2 Asymmetric Solutions

In [35], the equilibrium asymmetric solutions to (4.11), such that A1 �= A2, were
found as follows:
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Ȧ1 = 0 ⇒ A1

(
λ − A2

1

4
− BD

)
= BDA2 cos(θ), (4.19)

Ȧ2 = 0 ⇒ A2

(
λ − A2

2

4
− BD

)
= BDA1 cos(θ), (4.20)

θ̇ = 0 ⇒ BD

2
sin(θ)

(
A2

A1
+ A1

A2

)
= Δ. (4.21)

The ratio of the first two equations gives

A1

A2

(λ − A2
1

4 − BD)

(λ − A2
2

4 − BD)

= A2

A1
, A2

1

(
λ − A2

1

4
− BD

)
= A2

2

(
λ − A2

2

4
− BD

)
.

The last equation is true either when A1 = A2 which is a symmetric solution studied
above, or when

A2
1 =

(
λ − A2

2

4
− BD

)
,

which describes an asymmetric solution. One can then use the above expression
to reduce (4.19)–(4.21) to a single equation for A2

1. In [35] it was proved that the
asymmetric solutions are always unstable when the coupling is dissipative.

4.2.3 Oscillation Death

Besides the classical phase locking, an interesting phenomenon that can occur in
mutually coupled periodic oscillators is oscillation death (quenching) when, due to
coupling, oscillations in both systems stop completely. This phenomenon was first
discovered experimentally by Rayleigh [243] while he was studying the behavior
of coupled organ pipes: he found out that at a certain strength of mutual influence
and detuning between the pipes they “may almost reduce one another to silence.” In
[46] the same effect was discovered in the model of coupled chemical oscillators.
There is no analog of this phenomenon in forced oscillations. Mathematically, this
is expressed as stabilization of the fixed point at the origin in the original system of
coupled oscillators, (4.3). By analyzing the stability of the point x1 = x2 = y1 =
y2 = 0, one can outline the region where this point is stable and hence there are
no oscillations in the system. The region of oscillator death is marked as the shaded
area in Fig. 4.1(a).

4.3 Dissipative Coupling: Numerical Simulation

We now illustrate the changes occurring in the system as one enters synchronization
region along two different routes A and B in Fig. 4.1(a).
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4.3.1 Locking

Consider route A by fixing the detuning p = 0.98, and change the coupling strength
BD from zero to some finite value. Figure 4.2 shows phase portraits on the plane
(x1, x2) (first column), Poincaré sections on the plane (x1, x2) corresponding to the
maxima of x1, i.e., ẋ1 = 0, ẍ1 < 0 (second column), realizations of x1 and of x2
(third column), and spectra of x1 and of x2 (fourth column).

At BD = 0 the oscillators behave independently of each other: although the
system as a whole behaves quasiperiodically, the oscillations in each subsystem are
periodic. In terms of the phase space, oscillations take place on the surface of a
torus which has a “square” shape, see first column. From the third column one can
see that as x1 takes the maximal value (black circles), x2 can be at any stage of
its oscillations (grey circles), and this is also reflected in the Poincaré map in the
second column. The spectral peaks of x1 and of x2 are well separated as shown in
fourth column.

At BD = 0.015 the oscillators start to “feel” each other, and oscillations are now
quasiperiodic in each subsystem. The phase trajectory fills the surface of a smooth
ergodic torus whose Poincaré section is a closed curve. Note that Poincaré sections
shown in Fig. 4.2 reveal only a part of the phase space, while the full structure will

Fig. 4.2. Illustration of 1 : 1 frequency (phase) locking for the mutually coupled van der Pol
systems (4.3) with dissipative coupling at λ1,2 = 0.1. In Fig. 4.1(a) we move along route A
corresponding to p = 0.98, as we enter the synchronization tongue via saddle-node bifurca-
tion line. Phase portraits, Poincaré sections, realizations and power spectral densities (spectra)
are shown for each value of BD given to the right of the respective row. First column: Phase
portraits on the plane (x1, x2). Second column: Poincaré sections on the plane (x1, x2). Black
line (circle S1)—stable torus (cycle), grey line—resonant torus, grey circle—saddle cycle S∗

1 ,
white circle—twice saddle cycle U2. Third column: Black line—x1(t), grey line—x2(t);
black circles—maxima of x1, grey circles—values of x2 when x1 is at its maxima. Fourth
column: Black line—spectrum of x1, grey line—spectrum of x2
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be discussed below. The absence of phase synchronization is well visible in the real-
izations: as x1 takes the maximal value, x2 can be at any stage of oscillation. There
is no frequency synchronization either, since, although the main spectral peaks of
the two subsystems are now closer to each other than without coupling, they do not
coincide, and the spectra contain combination frequencies.

Finally, at BD = 0.028 the behavior of the system changes drastically: each
time x1 take its maximal value, x2 is at exactly the same stage (phase) of its os-
cillations (third column). At the same time, the two spectral peaks coincide and all
combination frequencies vanish (fourth column), and oscillations in both systems
become strictly periodic (first and third column). This is mutual synchronization
via phase (frequency) locking. The structure of the phase space is better visible in
Poincaré section in the second column where grey closed curve shows the torus
which is now resonant, on whose surface there live a stable limit cycle S1 (black cir-
cle) that is observable in an experiment or simulation, and a saddle periodic orbit S∗

1
(grey circle). Outside the torus there is a twice saddle cycle U2 marked by an empty
circle.

Generally, the mechanism of transition to a synchronized state along route A
is very similar to phase locking in a forced oscillator (compare with Fig. 3.11): the
amplitude of oscillations almost does not change, and the major changes occur in
frequency. The only difference in terms of spectra is that in case of forcing, the
oscillator frequency approaches the forcing frequency to coincide with it, while in
case of mutual coupling the frequencies of both oscillators move towards each other
to meet at some value which lies in between the original frequencies of uncoupled
oscillators.

However, mutual dissipative coupling introduces some changes into the struc-
ture of the phase space as compared to forcing, which becomes visible if one com-
pares Poincaré sections in Fig. 3.11 with B = 0.18 and B = 0.2, and the complete
versions of Poincaré sections in Fig. 4.3 at B = 0.015 and B = 0.028. It becomes
immediately obvious that in the vicinity of synchronization region, the dissipatively
coupled oscillators possess an additional twice saddle cycle U2 which did not exist
in a forced oscillator.

4.3.2 Bifurcations

In order to better understand what happens in the phase space as the system goes
from non-synchronous to synchronous regime, let us consider bifurcations3 of the
special objects involved: of the fixed points and of periodic orbits. We choose to
follow route A in Fig. 4.1(a) that goes across the locking region and into the sup-
pression region. In this way we illustrate the evolution of all periodic orbits with the
change of BD by displaying the maxima xmax

1 of their x1 coordinates (Fig. 4.1(b)).
When the two subsystems are uncoupled BD = 0, the phase space contains two
significant objects: a twice saddle fixed point at the origin U1 and a twice saddle

3 All two-parameter and one-parameter bifurcation diagrams given in this and subsequent
sections were revealed by means of the free software AUTO2000 [73].
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Fig. 4.3. Poincaré sections of mutually coupled van der Pol oscillators (4.3) with dissipative
coupling at λ1,2 = 0.1, p = 0.98 at two different values of coupling strength BD: a BD =
0.015 (no synchronization) and b BD = 0.028 (phase locking takes place). This is a complete
picture, whose part was given in Fig. 4.2. S1 is a stable cycle (black circle) and S∗

1 is a saddle
cycle (grey circle), both lying on the torus (closed curve). The torus is ergodic in a which is
marked by black line, and resonant in b which is marked by grey line. U1 and U2 are twice
saddle cycles that lie outside the torus (empty circles)

orbit U2 of finite size, both lying on grey line [285]. At BD = 0 the fixed point
U1 undergoes Andronov–Hopf bifurcation as a result of which an unstable periodic
orbit is born which is also labelled as U1 and is denoted by grey line going from the
origin in Fig. 4.1(b).

At BD = 0 a torus is born in the system, which can be either ergodic or resonant.
At around B = 0.02 a new pair of periodic orbits is born via saddle-node bifurca-
tion: a stable S1 (black line) and a saddle S∗

1 (dashed line). Both newly born orbits
lie on the surface of a resonant torus illustrated in Fig. 4.2 at B = 0.028. As B grows
above the value of 0.02, no changes occur to the stable orbit S1 in the visible area
of the tongue, and the system stays in the synchronous regime associated with the
given limit cycle. However, two things do happen to the saddle orbit S∗

1 . Namely, at
B = 0.037 (marked by empty circles) S∗

1 meets U1 and U2 and undergoes transcrit-
ical bifurcation as a result of which U1,2 disappear. With the further increase of BD,
the saddle cycle S∗

1 shrinks in size, and at B = 0.052 vanishes through the inverse
Andronov–Hopf bifurcation.

Comparison with Fig. 3.10(b) shows that mutual dissipative coupling causes
more complicated bifurcation transitions under the change of parameters, as com-
pared to an applied forcing.

4.3.3 Suppression

Now consider route B in Fig. 4.1(a) by setting p = 0.85. The phase portraits,
Poincaré sections, realizations and spectra for this route can be found in Fig. 4.4.
Synchronous regimes can be achieved here in a slightly different manner than in
the case of a forced oscillator: via oscillation death. At BD = 0 the behavior of
the system is qualitatively the same as with p = 0.98 described above, only the
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Fig. 4.4. Illustration of arriving at a synchronous regime via oscillation death for the mutually
coupled van der Pol systems (4.3) with dissipative coupling at λ1,2 = 0.1. In Fig. 4.1(a) we
move along route B corresponding to p = 0.85 as we enter the synchronization tongue
after first crossing the oscillation death region. Poincaré sections, realizations and spectra are
shown for each value of BD. Designations are the same as in Fig. 4.2

frequencies of the two systems are better separated. As one increases BD, the os-
cillations remain quasiperiodic, i.e., non-synchronous, but their amplitude shrinks
(see the case with BD = 0.09). However, the spectral peaks almost do not move. As
we cross the boundary of the shaded area, all oscillations cease in both subsystems
(BD = 0.11)—this is oscillation death. When we leave the shaded area through its
upper boundary (BD = 0.17), the oscillations start again, but with small amplitude
and the frequency in between the original frequencies of the uncoupled oscillators.
Now the oscillations in both systems are perfectly synchronized: the maxima of x1
always occur at the same phase of x2. Further increase of BD (BD = 0.2) does not
change the frequency of oscillations noticeably, but leads to the growth of their am-
plitude. The part of synchronization region above the Andronov–Hopf bifurcation
line can be roughly regarded as a region of synchronization by suppression.

However, the region of oscillation death must not necessarily lie below the bor-
derline of suppression region like in Fig. 4.1(a). In [285] some other coupled oscilla-
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tors were considered, for which the line of oscillation death lies inside the classical
suppression region.

4.4 Reactive Coupling

Now, consider system equations (4.3) at BD = 0, BR > 0, i.e., for reactive coupling
only. In [35] interaction of systems was considered with coupling containing both
dissipative and reactive terms. It was demonstrated that in the region of synchro-
nization there are four different periodic orbits in the system, that can be roughly
classified as: “stable symmetric,” “saddle symmetric,” “stable asymmetric,” “saddle
asymmetric.” The same solutions can also be called “stable in-phase,” “saddle in-
phase,” “stable anti-phase” and “saddle anti-phase,” respectively—and this is how
they will be called in the rest of this book. The terms “symmetric” and “asymmet-
ric” (or “in-phase” and “anti-phase”) are well justified as one considers two iden-
tical oscillators with no detuning. In that case, the existing periodic orbits would
satisfy either x1 = x2 and y1 = y2, or x1 = −x2 and y1 = −y2, which means
that in the phase plane (x1, x2) or (y1, y2) the respective phase portraits would be-
long to the main diagonal or to the anti-diagonal. At the same time, the realizations
x1 and x2 will take their maximal values simultaneously for in-phase solutions. For
anti-phase solutions, while x1 will display a maximum, x2 will have minimum. Of
course, when frequency detuning is introduced even between otherwise identical
subsystems, their solutions would no longer lie exactly on the diagonals, but could
be stretched along them. Also, the maxima and minima in the realizations occur not
exactly at the same time, but with some small time (phase) shift. If this is the case,
it might still be reasonable to talk about in-phase or anti-phase solutions.

In addition to the four periodic orbits mentioned above, there are two more orbits
which are “twice saddle,” i.e., have two unstable directions as compared to one
unstable direction of the simply “saddle” orbits. Hence, there are six periodic orbits
in total, and all of them play their role in synchronization of the reactively coupled
systems.

For illustration here, we set ω1 = 1 and ω2 = p, while p introduces the fre-
quency detuning between the systems. For λ1 = λ2 = 0.5, the 1 : 1 synchronization
tongue is shown in Fig. 4.5(a) [44], and the shaded area denotes the absence of
1 : 1 synchronization. Compare this with synchronization tongue for mutual dissi-
pative coupling (Fig. 4.1), and also for forcing (Figs. 3.9 and 3.5). Unlike the dis-
sipative coupling or forcing, reactive coupling makes the structure of the tongue
noticeably more complicated. Namely, now we have not one tongue, but essentially
two tongues embedded into each other. However, we observe the same bifurcation
lines: solid lines mark saddle-node bifurcations, while dashed lines mark torus birth
(Neimark–Sacker) bifurcations.

Let us illustrate the two mechanisms of synchronization in reactively coupled
oscillators by means of data that one can register in an experiment: realizations,
phase portraits, Poincaré sections and spectra.
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Fig. 4.5. (Color online) a 1 : 1 synchronization tongue for the mutually coupled van der Pol
systems (4.3) with reactive coupling, BD = 0 and BR > 0, on the plane “detuning p”–
“coupling strength BR,” where p = ω2/ω1, and ω1 and ω2 are eigenfrequencies of partial
oscillators. Identical oscillators are considered with λ1 = λ2 = 0.5 and ω1 = 1. Solid lines
mark saddle-node bifurcations, dashed lines mark torus birth (Neimark–Sacker) bifurcations.
b Evolution of six periodic orbits along route A with p = 0.98: the maxima of x1 of the
respective solutions are shown versus BR. Solid black line: stable cycles S1,2; dashed line:
saddle cycles S∗

1,2; grey line: twice saddle cycles U1,2. c Evolution of four periodic orbits
along route C with BR = 0.15, designation are as in b

4.4.1 Locking

In Fig. 4.5(a) set p = 0.98 and increase coupling BR from zero to 0.3, hence fol-
lowing the route A that presumably leads to locking (see Fig. 4.6).

In the absence of coupling BR = 0, the two subsystems have different frequen-
cies which is clearly visible in the spectrum (first row of Fig. 4.6). As we increase
coupling BR two spectrum features change systematically. First, the main spectral
peak of the first system marked by � moves to the right, which means that oscil-
lations in the first subsystem become faster. Second, the main peak of the second
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Fig. 4.6. Illustration of 1 : 1 frequency (phase) locking for the mutually coupled van der Pol
systems (4.3) with reactive coupling at λ1,2 = 0.5. In Fig. 4.5(a) we move along route A cor-
responding to p = 0.98, as we enter the synchronization tongue via saddle-node bifurcation
line. Phase portraits, stroboscopic sections, realizations and power spectral densities (spectra)
are shown for each value of BR indicated to the right of the respective row. Designations are
as in Fig. 4.2. In spectra (fourth column) the main peaks of the two subsystems are marked
as � for the first, and � for the second one

system marked by � moves to the right, too. Moreover, the peak � of the second
system tends to catch up with peak �, and it finally coincides with the latter at
BR = 0.10. However, frequency locking occurs only at BR = 0.105 when oscilla-
tions in both subsystems become periodic.

Recall that with dissipative coupling there was no competition between the os-
cillators and the resulting frequency was settled at a value in between the natural
frequencies of two subsystems (Fig. 4.2). However, when coupling is reactive, the
two oscillators compete: one of them changes its frequency (speeds up in the given
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example) and pulls the other oscillator with it, so that the final frequency at which
they both settle is not in between their natural frequencies.

At the same time with the increase of BR from zero the phase portrait becomes
more stretched along the anti-diagonal, and at BR = 0.10 the trajectory spends
a lot of time near the precursor of the stable cycle, which exists at BR = 0.15.
With this, the evolution of the Poincaré section is in line with what happens on the
way to locking in a forced system and in dissipatively coupled ones: the size of the
section does not change near the locking boundary, and the stable cycle is born on
the surface of the torus.

The behavior of realizations reflects all the changes described above, and espe-
cially the points corresponding to the maxima of x1 (black circles) are indicative
of the phase relationships between the two systems: phase synchronization occurs
when each time x1 is at its maximum, x2 (empty circles) is at exactly the same stage
of its oscillations. The onset of phase locking coincides with the onset of frequency
locking.

4.4.2 Suppression

Now consider the route to suppression by setting p = 0.92 and increasing BR from
zero, i.e., by moving along the route B in Fig. 4.5(a). The respective illustrations
are given in Fig. 4.7. As with locking, the spectrum peaks of both subsystems move
in the same direction. As coupling becomes stronger, the spectra are enriched by
combination frequencies. Also, the oscillators compete, but the first one dominates
and tries to suppress the natural dynamics of the second one. At BR = 0.2 the
highest peak � of the second system is no longer at the position corresponding
to its natural dynamics (compare with case BR = 0.18) but at the position � of
the first subsystem. However, this is not synchronization by suppression yet, since
oscillations in both systems are quasiperiodic. At BR = 0.215 the main peaks of
both subsystems grow above the other peaks, while staying together, but only at
BR = 0.22 synchronization occurs and oscillators become periodic.

Transition to suppression is also well visible in the Poincaré section which
shrinks just near the boundary of suppression region. Also, the realizations con-
firm that phase synchronization has occurred only at BR = 2.2 when the maxima
of x1 (black circles) occur at the same stage of x2 with each oscillatory cycle.

4.4.3 Bifurcations

Now consider bifurcational transitions that occur in the system on its way from
non-synchronous to synchronous regime. We will cross the phase locking region in
Fig. 4.5(a) in two directions: from below to above by going from “no synchroniza-
tion” through locking to suppression area (route A, see Fig. 4.5(b)); and from left
to right and back (route C, see Fig. 4.5(c)). This way we are sure to embrace all the
objects in the phase space that are involved in the process of synchronization. In
all one-parameter bifurcation diagrams the maxima of x1-coordinate of the periodic
orbits are shown against the parameter value.



4.4 Reactive Coupling 93

Fig. 4.7. Illustration of 1 : 1 suppression of natural dynamics for the mutually coupled van der
Pol systems (4.3) with reactive coupling at λ1,2 = 0.5. In Fig. 4.5(a) we move along route B
corresponding to p = 0.92, as we enter the synchronization tongue via saddle-node bifur-
cation line. Phase portraits, stroboscopic sections, realizations and power spectral densities
(spectra) are shown for each value of BR given to the right of the respective row. Designa-
tions are as in Fig. 4.2. In spectra (fourth column) the main peaks of the two subsystems are
marked as � for the first, and � for the second one

Route A, Fig. 4.5(b), p = 0.98

When considering this route, the reader might find it useful to refer to Poincaré sec-
tions in Fig. 4.6. At no coupling BR = 0 the situation is similar to the one with dissi-
pative coupling (compare with Fig. 4.1(b)): there is a twice saddle fixed point U2 at
the origin and a twice saddle cycle U1 of finite size. At BR = 0 the fixed point U2 un-
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dergoes Andronov–Hopf bifurcation and a twice saddle cycle is born from it, which
we will continue to call U2. Both U1,2 are marked by grey lines. As BR reaches the
value 0.1045, a new pair of periodic orbits is born: a stable S1 and a saddle S∗

2 (black
and dashed lines, respectively)—we hit the first line of saddle-node bifurcation in
Fig. 4.5(a). At BR = 0.16871 another pair of periodic orbits is born, a stable S2 and
a saddle S∗

1 . Then around BR ≈ 0.2 both saddle orbits S∗
1,2 merge with twice saddle

orbits U2,1, respectively, and disappear via saddle-node bifurcation. This marks the
end of locking regions and the beginning of suppression region. As BR is increased
further, we move deeper into suppression region where only a pair of stable cycles
S1,2 coexist.

Route C, Fig. 4.5(c), BR = 0.15

As we enter the locking region via route C, no bifurcations occur to the twice saddle
orbits U1,2, so they are not shown. The other orbits S1,2 and S∗

1,2 exist only inside
the locking region on this route. On the first left border of the locking region a
pair of cycles are born via a saddle-node bifurcation, S2 and S∗

1 . While moving
deeper into the locking region, we hit the other left saddle-node bifurcation line
at BR = 0.9864 on which another pair of cycles appears, S1 and S∗

2 . Within the
range of BR ∈ (0.9864; 0.1013) there are two coexisting stable limit cycles in the
system. At BR = 0.1013 the two cycles S1 and S∗

1 merge and disappear via saddle-
node bifurcation, and within BR ∈ (0.9864; 0.10337) only one stable cycle exists
in the system. At BR = 0.10337 with another saddle-node bifurcation the system
gets rid of the remaining pair of orbits S2 and S∗

2 . Note that all four orbits that can
exist inside phase locking region are born and evolve on the surface of the same
torus.

4.4.4 Phase Multistability

It is important to emphasize that a crucially new phenomenon is induced by reactive
coupling, which does not occur in forced or diffusively coupled systems: at exactly
the same set of control parameters within the smaller inner tongue in Fig. 4.5(a),
there are two stable cycles in the phase space of the system! This means that the
system has two different oscillatory regimes to choose from. The oscillations corre-
sponding to these different cycles are different in amplitude and in period. Exactly
what regime will be selected depends on the initial conditions. It has significant
implications for experiments: since in a typical experiment initial conditions are
set rather arbitrarily and are often beyond the control of the experimentalist, it is
very hard to predict how the system will behave when the experimental set-up is
switched on! The phenomenon of coexistence of two or more stable solutions in the
phase space of the system at exactly the same set of control parameters is called
multistability.
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4.5 Reactive Coupling and the Saddle Torus

In Sect. 4.4 both mechanisms of synchronization, locking and suppression, in reac-
tively coupled van der Pol oscillators were illustrated by experimentally observable
data. In addition, bifurcational transitions in the system were considered with regard
to these mechanisms. As one carefully considers the latters, one might think of the
following:

• Inside the locking region there are two coexisting stable limit cycles, i.e., two
attractors.

• We know that any attractor must have a basin of attraction: the set of initial
conditions from which the trajectory goes to this particular attractor.

• With two attractors in the phase space, there must be two basins of attraction.
• With two basins, there must be a boundary in the phase space that would separate

them from each other.
Normally, the role of separating boundaries in the phase space is played by the
manifolds of various saddle objects, which are also called separatrices.4 Inside
the inner tongue of locking region, there are indeed two saddle cycles, and we
can imagine that their manifolds do separate the basins of attraction of the stable
cycles.

• However, the same two stable cycles continue to coexist in the region of sup-
pression, where there are no saddle cycles any longer.

• But then, what separates their basins of attraction in the suppression region?
Are we missing any important information about the structure of the phase
space?

In [44] the reactively coupled van der Pol oscillators were considered with non-
linear coupling. It was found out that non-linear reactive coupling has lead to disap-
pearance of a stable torus in the system via some bifurcation, which looked myste-
rious at the first glance. This has lead the authors to pose the above question about
the true structure of the phase space in the vicinity of synchronization region.

In [44] it was hypothesized how various objects like fixed points, periodic orbits
and tori should be packed in the phase space in order to allow for all the bifur-
cational transitions observed numerically. In particular, this configuration had to
explain the coexistence of two stable cycles in the absence of any saddle cycles
around. One of the complications involved in the study of coupled oscillators is the
dimension of their phase space. Indeed, the minimal dimension of a system that can
demonstrate self-sustained oscillations is two. In mathematical terms, a limit cycle
needs at least a two-dimensional phase space (phase plane) to exist, and it cannot
arise in systems described by only one first-order differential equation with the one-
dimensional phase space. Forced synchronization can be studied by applying the
forcing signal to a system with a limit cycle and with dimension two. Since har-
monic forcing introduces another dimension into the phase space, the total minimal

4 For the properties of manifolds see Sect. 5.1.
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dimension of a forced system is three. A three-dimensional phase space can be eas-
ily imagined and visualized, and the number of objects that can be embedded into
it is limited. In particular, the largest dimension of a stable torus that can exist in a
three-dimensional system is two.

When one considers mutually coupled self-sustained oscillators, the simplest
model of their interaction would include two two-dimensional systems, and the
total dimension of the phase space will be four. A human brain is not trained to
imagine or visualize objects in a four-dimensional space, so we can only consider
projections of phase trajectories onto three- or two-dimensional spaces, loosing in-
formation while doing so. Or we can consider three-dimensional Poincaré sections
of this phase space—this is a better option, since if the section is chosen properly,
we will not loose information about the objects apart from fixed points. Thus cycles
will then turn into points, tori into closed curves, and three-dimensional manifolds
(hypersurfaces) into 2D surfaces.

When considering synchronization of two mutually coupled periodic oscillators,
one inevitably encounters a stable two-dimensional (2D) torus. Regardless of the
dimension of the phase space of the whole system, its surface is a two-dimensional
manifold. While in 3D this two-dimensional surface separate the inner volume of
the torus from the outer space, in 4D this surface is no longer a separatrix, and the
notion of the “inside” and “outside” the torus makes no sense. With this, 4D allows
for the existence of objects more complicated than a stable 2D torus.

4.5.1 Hypothesized Structure of the Phase Space

• The phase space of reactively coupled oscillators is arranged differently to that
of a forced two-dimensional system, or of dissipatively coupled systems, the
phase space of the latter cases holding only one torus that is stable and can be
either ergodic or resonant. Namely, with reactive coupling, inside the central
part of locking region of Fig. 4.5(a) containing point 1, there are two different
tori in the phase space.

• Of these, the first is an attracting resonant torus whose dimension is two and
whose surface is formed by the two-dimensional unstable manifolds of the sad-
dle cycles S∗

1,2 that close on stable cycles S1,2. A sketch of its Poincaré section
is shown in Fig. 4.8(a) by the full black closed curve; circles mark the positions
of cycles. This resonant torus is similar to that which exists in a forced system
or in dissipatively coupled systems, but now, instead of one pair of cycles, it has
two pairs of cycles lying on it.

• The second torus is a saddle resonant torus, also of dimension two. In Poincaré
section a two-dimensional saddle torus looks like a saddle cycle, and its man-
ifolds will look like those of a saddle cycle, see Fig. 4.8(b). In the full four-
dimensional phase space, a saddle torus is the intersection of two three-dimen-
sional manifolds. Note that a saddle torus cannot live in (be embedded into)
a three-dimensional space, which is not “spacious” enough for that, and requires
the space of dimension four at least.
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Fig. 4.8. (Color online) Poincaré sections of a a stable resonant torus T with two pairs of
cycles on it: two stable S1,2 and two saddle S∗

1,2; b a saddle resonant torus T ∗ with two pairs
of cycles on it: two saddle S∗

1,2 and two twice saddle U1,2. c Hypothesized structure of the
phase space: a stable and a saddle resonant tori intersect at S∗

1,2

• The two tori intersect at the saddle cycles S∗
1,2 as shown in Fig. 4.8(c). In this

figure, circles show cycles: black—S1,2, white—S∗
1,2, grey—U1,2. Full closed

curves show tori: black—stable T , grey—saddle T ∗.
• Two tori lie on the same closed hypersurface (“sphere”) sketched in Fig. 4.8(c)

by a dotted line. The latter is the unstable manifold of the saddle torus depicted
as a cylinder in Fig. 4.8(b) which does not go to infinity, but is closed from below
and from above. Horizontal plane is a stable manifold of the saddle torus.

The hypothesized structure of the phase space was verified and visualized by
various numerical methods described in [44]. In Fig. 4.9(a) the numerically revealed
structure is shown which corresponds to point 1 in Fig. 4.5(a) at which p = 1.002
and BR = 0.15. Note that this is not exactly the center of the tongue, since p is
slightly larger than 1. Compare this structure with the hypothesized one in Fig. 4.8(c)
in order to make sure that it is qualitatively the same.

4.6 Generality of Bifurcational Transitions at Reactive Coupling

The bifurcations in reactively coupled oscillators were mostly revealed by numer-
ical analysis. A question naturally arises: how general is the reported structure of
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Fig. 4.9. (Color online) a The structure of the phase space inside 1 : 1 locking region for
reactively coupled oscillators: a Identical van der Pol system (4.3) at BD = 0, λ1 = λ2 = 0.5,
ω1 = 1. Parameters p and BR correspond to point 1 in Fig. 4.5(a). b Non-identical FitzHugh–
Nagumo systems (4.22) with ε1 = ε2 = 2 and a1 = a2 = 0.1. Parameters p and BR
correspond to point 1 in Fig. 4.10(b). Compare with Fig. 4.8(c)

the bifurcation diagram around 1 : 1 synchronization tongue? Could it be that the
observed bifurcational transitions were partly due to some degeneracy in the sys-
tem, e.g., due to the fact that the van der Pol oscillators considered were identical
apart from their natural frequencies? What happens is we consider non-identical
oscillators, or oscillators described by different equations?

In order to demonstrate how general the structure of the 1 : 1 synchronization
region is in two mutually coupled oscillators, we show the similar bifurcation dia-
gram for the case of two slightly non-identical van der Pol oscillators (4.1)–(4.2),
with λ1 = 0.5 and λ2 = 0.51 (Fig. 4.10(a)). This diagram is qualitatively the same
as the one for identical van der Pol oscillators shown in Fig. 4.5(a).

In addition, we present the bifurcation diagram around 1 : 1 synchronization
region for two reactively coupled oscillators of a very different type: FitzHugh–
Nagumo oscillators. A FitzHugh–Nagumo oscillator is a rough caricature of the fa-
mous Hodgkin–Huxley biologically accurate model of a neuron (see [59, 128, 188]
for the simplified descriptions of the two models). This system is able to demon-
strate periodic oscillations, which would describe repetitive firing of a neuron. The
equations for the two reactively coupled systems read

ε1ẋ1 = 1

p

(
x1 − x3

1

3
− y1

)
,

ẏ1 = 1

p
(x1 + a1) + BR(x2 − x1),

(4.22)

ε2ẋ2 =
(

x2 − x3
2

3
− y2

)
,

ẏ2 = x2 + a2 + BR(x1 − x2).

Here ε1 = ε2 = 2 are the time scale separation parameters: they determine how
much faster the x-variables are in the equations above as compared to y-variables.
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Fig. 4.10. 1 : 1 synchronization tongues on the plane “detuning p”–“coupling strength BR”
for the reactively coupled systems other than identical van der Pol oscillators. a Non-identical
van der Pol oscillators (4.3) with λ1 = 0.5, λ2 = 0.51, and ω1 = 1. b Non-identical
FitzHugh–Nagumo systems (4.22) with ε1 = ε2 = 2 and a1 = a2 = 0.1. Solid lines
mark saddle-node bifurcations, dashed lines mark torus birth (Neimark–Sacker) bifurcations.
Compare with Fig. 4.5(a)

a1 = a2 = 0.1 are bifurcation parameters: while they are within the range (−1; 1),
a stable limit cycle exists within each partial FitzHugh–Nagumo system when un-
coupled. The frequency detuning between the two oscillators is governed by the
parameter p by analogy with the van der Pol systems (4.3), and BR is the strength
of reactive coupling.

The synchronization tongue and its surroundings are depicted in Fig. 4.10(b),
which has the same structure as in the van der Pol oscillators, both identical and
slightly non-identical (compare with Figs. 4.5(a) and 4.10(a)). For this system the
objects in the phase space were calculated using the same algorithm as the one
applied to identical van der Pol oscillators in Sect. 4.5, and the structure of the phase
space inside the tongue appeared to be qualitatively the same, see Fig. 4.9(b).

4.7 Experiment

As with forced oscillations, in order to convince the reader in the validity of the-
oretical predictions and of the numerically observed phenomena related to mutual
synchronization of periodic oscillations, we present the results of full-scale experi-
ments with electronic circuits. The experimental scheme is given in Fig. 4.11. Now,
each of the interacting oscillators is represented by a classical Wien bridge oscillator
based on an RC-circuit. The circuit parameters are given in the caption to Fig. 4.11,
and the coupling strength is controlled by the value of the variable resistance of the
resistor Rc: the larger the Rc, the smaller the coupling is.

It can be shown by deriving the evolution equations for electric currents and
voltages in the circuit that the coupling introduced via resistor, as shown in the
scheme, results in both a dissipative and a reactive coupling terms. Infinitely large
value of Rc is equivalent to the disconnection at the given point of the circuit and
means no mutual influence between the subsystems at all. As one can see from
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Fig. 4.11. Scheme of an experimental setup used to illustrate the phenomena of mutual syn-
chronization. The Wien bridge oscillators are used with the circuit parameters as follows:
Locking: R1 = R2 = 1.5 kOhm, Rf = 20 kOhm, R = 9 kOhm. C1 = 33 nF, C2 = 35 nF,
Suppression: R1 = 1.5 kOhm, R2 = 1.65 kOhm, Rf = 20 kOhm, R = 9 kOhm, C1 =
C2 = 33 nF

the scheme, the parameters Rf and R are identical in two subsystems. The differ-
ence between the subsystems can be introduced through the non-equal capacitances
C1 and C2 or resistances R1 and R2 which define the natural frequencies f 0

1,2 of
their oscillations. Note that the given electronic circuits are not weakly non-linear,
and oscillations in them are not quasiharmonic: this is well visible in the phase por-
trait at Rc = 35.0 kOhm in Fig. 4.12 (third row), where the shape of the limit cycle
tends to a square rather than to a circle.

4.7.1 Phase Locking

First, demonstrate the phenomenon of locking (Fig. 4.12). For that, the parameter
set R1 = R2 = 1.5 kOhm, C1 = 33 nF, C2 = 35 nF was used. At some large
value of Rc = 48.6 kOhm when the coupling is weak, the two oscillators behave
almost independently of each other, which is especially well visible on the phase
portrait in the projection on (x1, x2) (compare with Fig. 4.2 at BD = 0.015). The
main frequencies of the two subsystems are slightly different, as one can see from
the spectra: the highest peak of the first oscillator (second column) is slightly to the
left of the middle vertical line on the screen of the oscilloscope, which is highlighted
by a white dashed line, while the highest peak of the second oscillator is slightly to
the right of it. However, since Rc is not infinitely large, the oscillators do “feel” each
others’ presence, and each of them demonstrates quasiperiodic oscillations. This is
evidenced by the combination frequencies in the spectra, that is somewhat similar
to the case of BD = 0.015 and is contrary to BD = 0 in Fig. 4.2.

As Rc decreases to take the value of 35.3 kOhm, the coupling between the sub-
systems grows, and their spectra are enriched with more combination frequencies.
With this, the main oscillation frequencies move towards each other: now they are
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Fig. 4.12. Illustration of 1 : 1 locking in an experiment with the mutually coupled periodic
oscillators whose scheme is given in Fig. 4.11. This figure can be compared with Fig. 4.2. All
pictures are photographs of the screens of oscilloscopes in which phase portraits on the plane
(x1, x2) (first column), the spectrum of the first subsystem (second column), and the spec-
trum of the second subsystem (third column) are shown. White dashed line on the spectra
emphasize the central axis on the oscilloscope

closer to the vertical line on the oscilloscope screen than in case of Rc = 48.6 kOhm,
almost coinciding with each other. The phase portrait (first column) reveals that the
subsystems are very close to a synchronous regime: the phase trajectory spends a
lot of time near a certain closed orbit which is highlighted on the screen of the
oscilloscope.

Finally, when Rc is decreased very slightly and achieves the value of 35.0 kOhm,
mutual synchronization takes place: the phase portrait is now a limit cycle whose
precursor was highlighted in the row above, and the spectra of both systems contain
only one peak each at the main frequency of oscillations, which is the same for two
systems.

4.7.2 Suppression

Next, demonstrate the occurrence of suppression in mutually coupled oscillators.
The parameters of the scheme have slightly changed as compared to the experiment
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Fig. 4.13. Illustration of 1 : 1 suppression of natural dynamics in an experiment with the
mutually coupled periodic oscillators whose scheme is given in Fig. 4.11, to be compared
with Fig. 4.4. All pictures are photographs of the screens of oscilloscopes on which phase
portraits on the plane (x1, x2) and spectra are shown. In the first row OL corresponds to an
infinite resistance. Vertical dashed lines in the spectra indicate the frequency f 0

2 = 2.596 kHz
of the second system when uncoupled

on locking. Now C1 = C2 = 33 nF, while the detuning is introduced by setting
the non-equal R1 and R2 (see caption to Fig. 4.11). The experiment described be-
low does not demonstrate oscillation death, but rather a conventional suppression of
oscillations due to coupling, presumably because the coupling appears to be not ex-
clusively dissipative but with the addition of the reactive term. In Fig. 4.13 the results
illustrating suppression between the mutually coupled oscillators are summarized.
In order to make the illustration more convincing, we provide the snapshots of the
resistor readings to the right of each row. Also, the values of the main frequencies
of oscillations in each of the coupled subsystems are indicated in the fields of the
respective spectra.

At Rc = ∞, which is equivalent to a disconnection between the subsystems, the
oscillations in them occur at different frequencies (Fig. 4.13 first row, second and
third columns) and independently of each other (see phase portrait in the first row,
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first column). Note that the frequency of the first oscillator is higher than that of the
second one.

When Rc takes some large, but finite value of 50.75 kOhm, this is equivalent to
a small value of coupling strength. Now, oscillations have started to feel each other,
which is reflected in the appearance of numerous peaks at the combination frequen-
cies in their spectra (second row). However, the main spectral peaks stay almost at
their initial positions. Also, the oscillations remain pretty much independent which
is testified by the phase portrait.

A significant decrease of Rc up to the value of 13.687 kOhm has provided a sub-
stantial increase of coupling strength. Now the oscillators behave with a fair account
of each other which is reflected in the phase portrait that has a well-defined struc-
ture of a two-dimensional torus slightly stretched along the diagonal. The spectra
are well enriched with combination frequencies, and a remarkable event has oc-
curred: while the height of the highest peak of the first oscillator remains almost the
same as without coupling, in the second oscillator the spectrum peak at the original
(smaller) frequency has shrunk, and the dominating peak has grown at the frequency
of the first oscillator! Now the main frequencies of the two coupled subsystems are
the same. However, this is not synchronization yet, since the oscillations in both
subsystems remain quasiperiodic.

Finally at Rc = 12.852 kOhm (fourth row) oscillations in both subsystems be-
come strictly periodic with the same frequency f = 2.86 kHz, and the phase portrait
is a closed curve. Synchronization via suppression of mutually coupled oscillators
has taken place.

4.8 Comparison of Synchronization Transitions in Forced and
in Mutually Coupled Oscillators

In this section we summarize the similarities and differences between the bifurca-
tional mechanisms of synchronization of periodic oscillations with different forms
of coupling that were considered above: unidirectionally coupled, or forced, oscil-
lators; mutually coupled oscillators with dissipative coupling; and mutually coupled
oscillators with reactive coupling. Figure 4.14 contains typical two-parameter and
one-parameter bifurcation diagrams for all these cases using as an example of the
prototype of a self-oscillating system that was considered in this and the previous
chapters, namely, the van der Pol oscillator with weak non-linearity.

With certain caution, it would be reasonable to speak about hierarchy of the
complexity in the synchronization phenomena in periodic oscillators. A formal cri-
terion of complexity could be the number of periodic orbits involved. With this in
mind, bifurcational transitions become more complicated as one goes from forced
synchronization with three orbits, through mutual with dissipative coupling with
four orbits, to mutual with reactive coupling with six orbits. An important fact to
understand and to remember is that if the mutually coupled oscillators are weakly
non-linear, the dissipative form of coupling alone cannot induce the complication in
the form of phase multistability.
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Fig. 4.14. (Color online) Summarized comparison of bifurcation diagrams in the vicinity
of 1 : 1 synchronization regions for three cases: First row: Forced synchronization in (3.3)
with λ = 0.5, p = Ω/ω0 and ω0 = 1. Second row: Mutual synchronization in (4.3) with
dissipative coupling, i.e., BR = 0 and BD > 0, with λ1 = λ2 = 0.1, ω1 = 1, ω2 = pω1.
Third row: Mutual synchronization in (4.3) with reactive coupling, i.e., BD = 0 and BR > 0,
with λ1 = λ2 = 0.5, ω1 = 1, ω2 = pω1

The behavior of both forced and dissipatively coupled weakly non-linear oscil-
lators is relatively simple and quite similar, apart from oscillator death that cannot
occur in a forced system. Phase multistability can only be caused by the introduc-
tion of reactive coupling. However, in Chap. 11 we will demonstrate that this is not
the case for the oscillators that cannot be regarded as weakly non-linear.

Another important fact to have in mind with regard to the two different forms
of coupling, uni- and bidirectional, is that with mutual coupling all spectral peaks
move, regardless of the mechanism of synchronization involved. Even when sup-
pression of natural dynamics is being realized, both the peak of the dominating
dynamics, and the peak of the slaving dynamics move in the same direction.



5 Homoclinic Mechanism of Synchronization
of Periodic Oscillations

In Chap. 3 we considered the two most generic and long known mechanisms of syn-
chronization of periodic oscillations: phase (frequency) locking and suppression of
natural dynamics. We have shown that these mechanisms can be associated with
local bifurcations of periodic solutions. In this section, we introduce a new synchro-
nization mechanism called the “homoclinic mechanism of synchronization,” which
involves a non-local bifurcation and is considered in literature to a much less ex-
tent.

Let us consider a periodic oscillator driven by a periodic excitation. In the exam-
ples considered earlier in Chap. 3 we established that if a weakly non-linear oscil-
lator is forced periodically with very small amplitude, and if the forcing frequency
is close to the natural frequency of the unperturbed oscillator, then one can expect
the phenomenon of 1 : 1 synchronization to occur through the mechanism known as
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Fig. 5.1. Comparison of the objects that must exist in the phase space of an unperturbed
periodic oscillator, and of the same oscillator forced periodically with very small amplitude.
There might be more objects in the phase space, but these are compulsory

phase (frequency) locking. Let us briefly recall what the latter means in terms of bi-
furcations of various objects in the phase space. When there is no forcing, there are
at least two objects in the phase space of the system: a stable limit cycle and a fixed
point with two unstable directions which will be further referred to as “twice sad-
dle” fixed point (see Fig. 5.1, left panel). Periodic perturbation adds one dimension
to the phase space, and at very small forcing amplitudes the forced system gener-
ally has: a stable torus produced from the stable cycle (Fig. 5.1, upper panel), plus
an unstable fixed point and a twice saddle periodic orbit, both produced from the
formerly twice saddle fixed point in the unforced system (Fig. 5.1, lower panel). In
the absence of synchronization the torus is ergodic, which means that there are no
periodic orbits on its surface.

The state of phase locking in terms of the phase space implies that there is a
resonant torus in the system, namely, a two-dimensional toroidal surface on which
two cycles are placed: a saddle and a stable one. Importantly, the resonant torus
arises from an ergodic (non-resonant) one: a pair of cycles are born on the torus
surface. For a wide class of forced periodic systems of various origins that have been
studied experimentally throughout the last century, the above picture was confirmed
and firmly believed in.

Now, let us switch on our mathematical imagination and start thinking as if we
do not have this last bit of information. Let us look at the problem of a periodically
forced periodic system from the merely geometrical viewpoint. An external forcing
can be viewed as an increase of the dimension of the phase space by one. In addition,
at very weak strength, the forcing does lead to the birth of a stable 2D torus in the
phase space. Moreover, at certain parameters of forcing a pair of cycles can be born
via the saddle-node bifurcation. However, who says these cycles must be born on
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the surface of the existing torus?1 This initial restriction was well justified by the
experimental results available by the beginning and the middle of the 20th century.
However, if we think of it from the viewpoint of the phase space geometry, there
is the whole 3D phase space available for the two cycles to choose the location for
their birth.

For an instant, let us discard the assumption that we must expect to find the stable
periodic solution exactly on the torus surface, and see what implications this simple
thought can lead to. Suppose a tiny forcing is applied to a system with limit cycle
with frequency ω0, and the forcing frequency Ω is slightly different from it. Then,
inevitably, a stable torus exists in the phase space. Suppose we increase the forcing
amplitude B further, and at some value of it a stable and a saddle cycles are born in
some vicinity of the torus. Note that the torus does not undergo any bifurcations, so
above the saddle-node bifurcation point two stable regimes coexist! This means the
occurrence of multistability which was already mentioned in Chap. 4. Depending on
the initial conditions, the system can find itself oscillating either quasiperiodically
with any main frequency, or periodically with the frequency of forcing—already a
complication!

Next, we need to draw our attention to the structure of the synchronization re-
gion and stretch the limits of our imagination even further. In Fig. 5.2(a) a sketch
of a typical bifurcation diagram of a forced system is shown which is equivalent
to the ones we have considered earlier. But here we emphasize a detail which was
not given any special attention before: the saddle-node line, which is marked by a
solid line on the graph, in fact consists of two portions: the black one marks the
saddle-node bifurcation between the saddle and stable cycles, while the grey one
marks the same bifurcation between the saddle and twice saddle cycles. Torus birth
(Neimark–Sacker) bifurcation curves hit the saddle-node line exactly at the junc-
tions between its two portions. These special points are bifurcation points of co-
dimension two, and they have special names “Takens–Bogdanov points” after the
people who discovered and studied them [53, 282]. In this section we will refer to
them as to TB-points.

Here, we would like to attract the attention to one more feature of the classical
bifurcation diagram in Fig. 5.2(a): small dotted line that emerges from TB point,
which was again not shown in the diagrams of Chap. 3. What is this mysterious
line? Running a few steps ahead, we can say that this is a homoclinic line whose
existence was deduced from the analysis of the truncated equations (3.21)–(3.22)
already in [61] in 1948, and then proved rigorously in [88, 117].

However, in 1991 Knudsen et al. [146] have proved the existence of the ho-
moclinic line for a general n-dimensional periodic system under periodic forcing,
without reference to the truncated equations and operating in the full phase space of
the forced system. Because this result is more general, we would like to comment
on it here.

1 Well, there is a good reason for the pair of cycles to be born on the torus at least at small
forcing: the torus attracts the trajectories from the surrounding phase space quite strongly.
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Fig. 5.2. (Color online) Sketches of the possible configurations of bifurcation lines around
synchronization region of a periodically forced periodic oscillator. Solid black lines: saddle-
node bifurcations of a stable and a saddle cycle; solid grey line: saddle-node bifurcation
of a saddle and a twice saddle cycle; dashed line: torus birth bifurcation; empty circles:
Takens–Bogdanov (TB) points; dotted line: homoclinic bifurcation; triangles: co-dimension
two bifurcation points; hatched areas: coexistence of a stable ergodic torus and a stable cy-
cle. a “Classical” structure of synchronization tongue that was found analytically in Chap. 3.
b Possible modification of the classical structure

5.1 Global Bifurcation

Before proceeding further, we need to explain what the global bifurcation is. From
the very basics of differential or difference equations, we know that various objects
in the phase space, like fixed points or periodic orbits, can undergo bifurcations, the
reason behind them being the change in the linear stability of these objects. The term
“linear stability” means that we detect the properties of the immediate vicinity of the
object only, and do not care about what happens to its larger neighborhood. When
the local properties of the object undergo a qualitative change, a local bifurcation
occurs. But because local bifurcations are more common than any others, they are
normally referred to as simply “bifurcations.” However, local bifurcations do not
exhaust all possible changes that an object can experience. We remind you that
bifurcation is defined as a drastic change in the properties of the object due to a
small change in the parameters of the system. Below we will show that there can be
even more drastic changes that those caused by local bifurcations.

Consider for simplicity a two-dimensional system with a stable limit cycle, in
whose vicinity a saddle fixed point lies (Fig. 5.3(a)). A saddle fixed point lies on
the intersection of two manifolds: one stable going towards the fixed point, and one
unstable going away from it. Below we remind the reader about the main properties
of manifolds.

1. If we place the initial condition exactly on a manifold, we will stay on it forever.
That is why manifolds are called invariant.

2. If we put the initial condition on the stable manifold of a saddle point, with
the course of time we will be moving towards the fixed point: the closer to the
point, the slower.

3. If we put the initial condition on the unstable manifold of a saddle point, with
the course of time we will be moving away from the fixed point. There are two
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Fig. 5.3. (Color online) Global bifurcation occurring to a stable limit cycle (black line) and
involving a saddle fixed point (empty circle). Grey circle shows the unstable fixed point,
grey lines show the manifolds of the fixed point, and arrows show the directions along the
manifolds. As we proceed from a to c a control parameter of the system grows gradually.
c shows the end of the limit cycle

possibilities: if there is an attractor in the same part of the phase space as the
unstable manifold (like the stable cycle in Fig. 5.3(a)), this manifold will be
tending towards the attractor. If there is no attractor in this part (see the area to
the left of the stable manifold in Fig. 5.3(a)), then the manifold goes to infinity
or to some other saddle object.

4. Manifolds whose dimension is equal to the dimension of the full phase space
minus one, play the role of separatrices (“walls”): they separate different regions
in the phase space, and trajectories cannot cross them.

5. Trajectories that come close to the manifolds roughly follow their direction be-
fore they depart from the manifold sufficiently.

In Fig. 5.3(a) the dimension of the phase space is 2, while the manifolds of the
fixed point are lines and hence their dimension is one. Because 1 = (2 − 1), these
manifolds are indeed separatrices. Suppose we fix all parameters of the system ex-
cept for one, and we gradually increase the latter starting from the value at which
the phase space has configuration shown in Fig. 5.3(a). Assume that as the parame-
ter grows, the size of the limit cycle grows, too. This means, that part of it comes
closer to the saddle fixed point. From item 5 above it follows that if a part of the
cycle comes too close to the saddle fixed point, and therefore to its manifolds, it
starts to stretch along the manifolds. With this, its shape is inevitably distorted by
adjusting to the shape of the “corner” formed by the manifolds near the saddle point
(Fig. 5.3(b)). As our parameter grows further, the limit cycle hits the saddle point
(Fig. 5.3(c)). At this instant, the manifolds of the point embrace the cycle and close
on it. A homoclinic loop is thus formed. This is called a homoclinic bifurcation.

Note that nothing has happened to the fixed point in this situation, at least on
a qualitative level. Most importantly, it did not vanish. Moreover, it did not even
change its stability properties: it was a saddle before the bifurcation, and it remains
a saddle after it. But what happens to the cycle? The cycle disappears altogether!
What is especially interesting here, this catastrophe has happened to cycle through
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no fault of its own: its local properties remained unchanged2 at the moment of this
tragic event, and its size remained large. The only reason for this misfortune is the
presence of another object in the phase space that has by mere accident fallen within
the vicinity of the cycle. Since this bifurcation is caused by the changes in quite a
large neighborhood of the cycle, and is not explained by its local properties, the
bifurcation is called non-local, or global.

It is worth mentioning in this respect that the stable manifolds of the fixed point
form the boundary of the basin of attraction of the limit cycle: only from the initial
conditions to the right of the manifold one could arrive at the cycle. By hitting the
fixed point, the cycle has in fact touched the boundary of its own basin of attraction.
For this reason, this and similar bifurcations are also referred to as boundary crises.

5.1.1 Features of a Homoclinic Bifurcation of a Cycle

Let us emphasize the characteristic features of a homoclinic bifurcation of a limit
cycle:

• At the moment of disappearance, the cycle has a finite size.
• Before the bifurcation, the cycle becomes distorted with one part stretched and

becoming sharper.
• Closely before the bifurcation, the motion on the part that is closer to the sad-

dle point slows down, while away from the saddle point it occurs with normal
velocity. Hence, the period of oscillations on the cycle grows substantially and
tends to infinity at the moment of bifurcation—which is understandable, since
at the fixed point there is no motion at all by definition.

• For the reason above, the motion on the cycle becomes spatially inhomogeneous:
during one fraction of the oscillatory cycle the motion is considerably slower
than during the other fraction. The realizations become spiky.

All the features above mean that in fact homoclinic bifurcation does not befall on
an unsuspecting cycle as a complete surprise, while a parameter of the system is
increased. An observer who might be actually changing this parameter will be able
to predict the crisis by registering the period and the shape of the cycle. The ten-
dency of the cycle period to infinity is generally a very good criterion of a global
bifurcation.

One might ask “What other objects can undergo global bifurcations?” The an-
swer is: any attractor for sure. As an example, take a stable two-dimensional torus
whose Poincaré section is a closed curve that looks exactly like the limit cycle in the
full phase space. Suppose there is a saddle periodic orbit somewhere near the torus,
and its section again looks like the fixed point. Then in the Poincaré section the
transitions can be the same as in Fig. 5.3. The most prominent precursor of global

2 To be precise, at the moment of homoclinic bifurcation the Floquet multiplier of the cycle
turns to zero, which makes the cycle super-stable. However, this is not regarded as a local
bifurcation.
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bifurcation will then be the tendency to infinity by the period of amplitude modula-
tion of the realizations of the oscillating system, i.e., the tendency to zero by the beat
frequency. At the same time, the section of the torus will be distorted and stretched
towards the section of the saddle cycle.

5.2 Homoclinics Inside Synchronization Tongue?

Reverting to Figs. 5.2(a),(b), why would the homoclinic line emerge from the
Takens–Bogdanov point at all? The theorem stated in [146] says that this should be
the case for the system of any dimension. In this section we follow their argument
for a two-dimensional periodic system forced periodically, which is the simplest ex-
ample of a system that would fall into the required category. Two conditions must
be satisfied to make homoclinic bifurcation possible. First, outside the stable torus
there must exist a saddle cycle, i.e., an object which the torus could bump into. Well,
a saddle cycle does exist within the whole curvy triangle bounded by saddle-node
bifurcation lines, so this condition is met near Takens–Bogdanov point as well. The
second condition is formally expressed as follows: the torus birth line should point
inside the tongue as shown in Fig. 5.2. Suppose this condition is also satisfied.

A proof by contradiction is used. Let us first make a statement that there is
no homoclinic line in the region of our interest, i.e., bifurcation diagram around
Takens–Bogdanov point looks like shown in Fig. 5.4 (this is an enlargement of the
respective region of Fig. 5.2(b)). From this it would follow that the torus exists at
least everywhere in the shaded area. Let us choose a route shown by a dotted line
with an arrow, that leads us from some point just below the torus birth line but as
close to it as we wish, to some point on the saddle-node line for non-stable cycles
(i.e., for a saddle and a twice saddle ones). The key stages of this route are marked
by triangles and numbered as 1, 2, 2∗ and 3. In panels surrounding the bifurcation
diagram Poincaré sections of all objects involved are shown whose designations are
given in figure caption. Since point 1 is just below the torus birth line, the torus is of
small diameter. Importantly, at B = 0 this torus was born from, and around the now
twice saddle cycle, which is denoted by grey circle. The key point in our specula-
tions is that this cycle lies inside the torus. Crucially, the torus surface is a manifold,
and hence by property 4 of a manifold (see Sect. 5.1) no trajectories, including of
course those belonging to any cycles, can cross them. Outside the torus, there are
two more cycles, one of which is saddle (empty circle) and the other is stable (black
circle). Point 2 is closer to saddle-node line than point 1, which means that the two
cycles (a saddle and a twice saddle) have prepared themselves for a saddle-node
bifurcation by approaching each other as shown in the respective panel. Also, point
2 is at a larger distance from the torus birth line than point 1, so the diameter of the
torus is larger as well—but this is not relevant to the problem considered, since we
could have chosen a route very close to the torus birth line, along which the torus
diameter would not change at all.

At point 3 exactly on the saddle-node line, the saddle and the twice saddle cy-
cles must touch each other. But at point 2 they were separated from each other by a
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Fig. 5.4. (Color online) Illustration of the argument by Cartwright and Knudsen et al. on
the inevitability of the homoclinic bifurcation line emerging from Takens–Bogdanov point,
provided that the synchronization tongue looks like in Fig. 5.2(b). Proof by contradiction
is employed, for which we first make a statement that there is no homoclinic line inside
the synchronization tongue. Bifurcation diagram: enlarged part of Fig. 5.2(b) around the
Takens–Bogdanov point (empty circle), assuming that there is no homoclinic line. Lines are
denoted as in Fig. 5.2. Panels around bifurcation diagram: Poincaré sections at points 1, 2,
2∗ and 3 of upper panel. Grey, empty and black circles: twice saddle, saddle and stable cycles,
respectively; black line: stable torus. This picture is wrong, see text

barrier in the form of the torus surface. So, the question is how the two cycles can ap-
pear on the same side of this barrier? A naive answer would be: at a certain point 2∗
one of the cycles should cross the barrier as shown in panels labelled with “2∗.”
But bear in mind that the barrier is a manifold which is impenetrable by definition!
Hence, it is impossible for the two cycles to touch each other if the torus exists. This
contradicts the implication of the initial statement, that the torus exists everywhere
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Fig. 5.5. (Color online) Continued illustration of the argument by Cartwright and Knud-
sen et al. on the inevitability of the homoclinic bifurcation line emerging from the Takens–
Bogdanov point, provided that the synchronization tongue looks like in Fig. 5.2(b). Bifur-
cation diagram: enlarged part of Fig. 5.2(b) around the Takens–Bogdanov point. Panels
around bifurcation diagram: Poincaré sections at points 1, 1∗, 1!, 2 and 3. Designations
are as in Fig. 5.4. In 2 and 3 the dotted line shows a resonant torus that is discussed later in
text, but is irrelevant to the argument of the proof. This picture is correct

in the shaded area. Therefore, the statement about the absence of a homoclinic line
and about the validity of bifurcation diagram in Fig. 5.4 was wrong!

Now, try to understand how the bifurcation diagram needs to look in order to
allow the saddle and twice saddle cycles to merge in a saddle-node bifurcation, and
what transitions should occur in the phase space on the chosen route. In Fig. 5.5 the
correct bifurcation diagram is shown that now includes the homoclinic line. In order
for the non-stable cycles to merge, the torus should disappear. And the only obvious
way to do this is via the homoclinic bifurcation as a result of the torus bumping into
the saddle cycle. The respective transitions are illustrated in Fig. 5.5 in the panels
surrounding the bifurcation diagram.

The simple argument we have given here was first suggested by Cartwright in
[61] as applied to truncated equations. It is valid for two-dimensional periodically
forced systems only, since their phase space is three-dimensional. This crucially
means that the surface of the torus forms a barrier for trajectories, and in order
for the two cycles to merge, this barrier has to be destroyed. In systems of higher
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dimension this argument would not be quite valid, since the torus surface would
remain two-dimensional but will no longer be a separatrix. The result by Knudsen
et al. will still be valid, but one would need to use a somewhat more sophisticated
mathematical concept to demonstrate that: in particular, that of a “central manifold
of a bifurcation.” For a more rigorous proof we refer the interested reader to the
original papers [61, 117, 146].

5.3 How Homoclinics Leads to Synchronization

In the previous section we explained why the homoclinic line must exist inside the
synchronization tongue under the specified conditions. However, our argument did
not require the knowledge of the details of the structural reforms in the phase space.
In this section we will consider the changes in the phase space structure that are due
to the homoclinic bifurcation, and how they are related to synchronization.

Imagine that we are following route A in Fig. 5.2(b), increasing forcing fre-
quency Ω . In the region containing point 1, the only stable object in the phase space
is the ergodic (non-resonant) torus. The phase space structure inside the hatched
area is schematically illustrated in Fig. 5.6(a): in addition to the torus (black line)
there is also a stable cycle (black circle), hence multistability occurs. At the same
time, there is another important object in the phase space: a saddle cycle (empty
circle) born on the black solid line of saddle-node bifurcation. Note that the stable
and saddle cycles are inevitably connected by an unstable manifold of the latter,
thus forming a heteroclinic structure. Also, note that now the stable manifold of the
saddle cycle separates the basins of attraction of the stable cycle and the ergodic
torus. As we approach the line of homoclinic bifurcation marked by the grey dot-
ted line in Fig. 5.2(b), the torus approaches the saddle cycle and stretches towards

Fig. 5.6. (Color online) Global bifurcation occurring to a stable torus (black line) and involv-
ing a saddle cycle (empty circle) and a stable cycle (black circle). Poincaré sections are shown
schematically. Grey circle shows the twice saddle cycle, grey lines show the manifolds of the
fixed point, and arrows show the directions along the manifolds. As we proceed from a to d
a control parameter of the system grows gradually. d shows a newly formed resonant torus
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it (Fig. 5.6(b)). At the critical value of Ω , the torus is stuck in the saddle cycle
(Fig. 5.6(c)), and before this point we can expect nothing new as compared with
Fig. 5.3.

But a natural question to ask is: “What happens to this structure next? In par-
ticular, what happens to the homoclinic loop as we move deeper into the tongue
and closer to point 2 in Fig. 5.2(b)?” One possibility is illustrated in Fig. 5.6: the
manifolds of the saddle point, that were glued at the fixed point at the instant of bi-
furcation (c), can split (d), and the structure can appear that is completely equivalent
to a resonant torus. Indeed, there will be a stable cycle and a saddle cycle lying on
the same manifold: compare this with the numerical Poincaré sections of the “clas-
sical” forced system (Fig. 3.11, fourth raw) and make sure that the structure is the
same! Thus, inside the region bounded by homoclinic bifurcation lines a classical
resonant torus should exist!

Continue to exploit your imagination: suppose we are performing an experiment
with the system that has a synchronization tongue with a structure like in Fig. 5.2(b).
Suppose we find the ergodic torus at point 1 and increase the forcing frequency Ω

gradually by moving towards the tongue. When we pass by the saddle-node line,
we will not notice this, since we will stay in the basin of attraction of the torus and
away from the basin of the cycle. However, on the homoclinic bifurcation line, the
ergodic torus will abruptly disappear, and the observed trajectory will be bound to
jump on the existing stable cycle, whose frequency, by the way, will be equal to
the frequency of forcing. An illustration of this phenomenon for a chaotic system
is given in Fig. 8.33. What would this transition mean to us? Correct: synchroniza-
tion. Therefore, by performing this experiment in our imagination, we have derived
the principal possibility for a new mechanism of synchronization: via homoclinic
bifurcation. Congratulations!

Finally, a question remains: where should the line of homoclinic bifurcation go
from the Takens–Bogdanov point? And again, we are able to answer this question by
using only the power of our minds. Naturally, in order for the homoclinic bifurcation
to be possible, we need at least two objects in the phase space: a torus and a saddle
cycle. With this, the saddle cycle required exists only within the area bounded by the
lines of saddle-node bifurcations (black and grey in Fig. 5.2). Hence, the line of ho-
moclinic bifurcation must not leave this area. But it cannot end in the middle of the
tongue either. Therefore, it should end at some point on the saddle-node bifurcation
line for stable and saddle cycles, as shown in Fig. 5.2.

Of course, a skeptic reader would ask: “But how valid are the experiments in
our heads? Do they have anything to do with reality?” The experimental evidence
of synchronization via the homoclinic bifurcation seems to be obtained by Ueda. In
pp. 59–60 of [3] an experiment with a forced van der Pol oscillator is described as
follows: “When one chose an intermediate value of external amplitude B. . . both
periodic and beat oscillations would coexist. . . causing hysteresis and jump phe-
nomena. The parameter range within which such phenomena could occur was. . .
narrow. . . Stroboscopic sampling (of beat oscillations) filled out a smooth curve.”
This looks like an accurate description of a homoclinic transition between synchro-
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nized and non-synchronized (beats) regimes. And this occurred in the simplest van
der Pol oscillator already!

How general is this transition to synchronization? In [146] a two-dimensional
system describing the behavior of a simple chemical oscillator Brusselator was con-
sidered, whose equations read

ẋ = a + x2y − bx − x + B cos(Ωt),
(5.1)

ẏ = bx − x2y.

At B = 0 these equations describe a five-component oscillating chemical reaction,
where x and y reflect the changes in the concentrations of two species involved in the
reaction, while the concentrations of three others species are the control parameters
a and b which are assumed to be constant, see [90, 236] for details. Provided that
b > 1 + a2, the unforced system (B = 0) can demonstrate periodic self-sustained
oscillations that are born as a result of Andronov–Hopf bifurcation. In [146] the
parameters were fixed as a = 0.4 and b = 1.2, i.e., slightly above this bifurcation,
and the frequency of oscillations at these parameters is ω0 = 0.3750375. The region
of 1 : 1 synchronization was revealed, and here we reproduce their results by plotting
the lines of saddle-node and torus birth bifurcations with the help of AUTO [73].

In Fig. 5.7 the bifurcation diagram around the 1 : 1 synchronization tongue for
this system is given. For the convenience of comparison with other results in this
chapter, we plot this diagram on the plane of parameters “detuning p”–“forcing
amplitude B,” where p = Ω/ω0. One can immediately notice that while the right-
hand part of this diagram looks “normal” like in Fig. 5.2(a), the left-hand part has the
shape as in Fig. 5.2(b), although it is stretched towards the upper-left corner of the

Fig. 5.7. (Color online) Vicinity of 1 : 1 synchronization region in a forced Brusselator (5.1)
on the plane of parameters p = Ω/ω0 and B. The left-hand border is like in Fig. 5.2(b). Solid
black line: saddle-node bifurcation of a stable and a saddle cycle; solid grey line: saddle-node
bifurcation of a saddle and a twice saddle cycles; dashed lines: torus birth bifurcations; and
dotted grey line: homoclinic bifurcation. Empty circles: Takens–Bogdanov points
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parameter plane. The homoclinic bifurcation line emerges from Bogdanov–Takens
point and ends on the saddle-node line, as expected.

However, the bifurcation lines of this particular tongue are inclined in such a
way, that synchronization transition from an ergodic to resonant torus would occur
only if we choose a rather intricate path on the plane (p, B), and the probability to
follow this path in a traditional experiment on synchronization does not seem large
enough. But at least the principal possibility for the non-classical synchronization
mechanism is confirmed in a numerical simulation.

5.4 Synchronization in a Bacteria–Viruses Model

In [218, 220] a system was studied numerically that demonstrated the proper ho-
moclinic synchronization. Namely, a biologically motivated system describing the
populations of bacteria and viruses in a pool was considered, whose equations
read

Ḃ = νBS

S + K
− B(ρ + αωP ),

İ = αωBP − ρI − I/τ,

Ṗ = φ − P
(
ρ + α(B + I )

) + βI/τ, (5.2)

Ṡ = ρ
(
σ(t) − S

) − γ νBS

S + K
,

σ(t) = σ0

(
1 − m

2
[1 + sin(Ωt)]

)
.

All variables in these equations are dimensional, unlike all previous examples con-
sidered in this part. Here, B is the concentration of the bacteria population, P is
the concentration of the viruses (phages) population, I is the concentration of the
infected bacteria cells, all concentrations being measured in 106/ml. S is the concen-
tration of resources (food for bacteria) in the pool. σ(t) denotes the concentration of
nutrients supplied to the pool from outside. The meanings of this model parameters
can be found in [218, 220], but here we would like to concentrate on its dynamical
properties. At the set of parameter values

ν = 0.024/min,

K = 10 µg/ml,

τ = 30 min,

α = 10−3 ml/min,

and

ω = 0.8,

γ = 0.01 ng,

β = 100,

φ = 10−6,

and without the periodic modulation of σ , the system demonstrates periodic self-
oscillations with frequency ω0 = 0.0042, and its phase space contains a limit cycle
and a twice saddle fixed point. When a weak periodic modulation of the supplied
nutrients is switched on, the phase space contains the predicted set of objects as
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Fig. 5.8. Vicinity of the 1 : 1 synchronization region in bacteria–virus population with peri-
odic modulation of nutrients supply (5.2) on the plane of parameters p = Ω/ω0 and modu-
lation depth m. The left-hand side of the tongue border is like in Fig. 5.2(b). Solid black line:
saddle-node bifurcation of a stable and a saddle cycle; solid grey line: saddle-node bifurcation
of a saddle and a twice saddle cycles; dashed lines: torus birth bifurcations; empty circles:
Takens–Bogdanov points; and dotted grey lines: homoclinic bifurcation. In the hatched area
a stable torus and a stable cycle coexist

schematically illustrated in Fig. 5.1, namely, a generally ergodic torus, a twice sad-
dle cycle and an unstable fixed point.

A bifurcation diagram around 1 : 1 synchronization tongue was obtained numer-
ically by a number of methods, including AUTO [73] and specially developed soft-
ware. The diagram is given in Fig. 5.8. Note that the left-hand side of this diagram
is like in Fig. 5.8(b).

Consider the left-hand side first and make a note that it looks just like the left-
hand side of the one of the forced Brusselator in Fig. 5.7. In agreement with theoret-
ical predictions of [146], from a Takens–Bogdanov point a homoclinic bifurcation
line grows in the direction towards the saddle-node line for stable and saddle cycles,
and it stops on this line. However, the right-hand side of the synchronization tongue
does not look like the one in Fig. 5.7. Note a homoclinic bifurcation line inside
the tongue, that connects with the torus birth line above and with the saddle-node
line below. The homoclinic line here joins not the saddle-node line, but rather the
torus birth line, at the co-dimension-two bifurcation point. Such bifurcations were
discussed in [102]. Multistability occurs inside the hatched area where an ergodic
torus and a stable cycle coexist (Fig. 5.9).
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Fig. 5.9. Phase portraits of (5.2) at Ω = 0.0039, m = 0.3, i.e., inside the hatched area in
Fig. 5.8

Unlike in Fig. 5.7, homoclinic bifurcation lines are almost vertical. This means
that as one enters the synchronization region along the route like the one marked
as A in Fig. 5.8, one inevitably crosses it. Let us follow the changes occurring
in the phase space on this route by observing the Poincaré sections of the avail-
able objects. Fix m = 0.14 and change Ω from 0.003 to 0.0041. At Ω = 0.003
(p = Ω/ω0 ≈ 0.714), there is a stable torus in the system shown in Fig. 5.10(a).
A twice saddle cycle is not shown, since it is irrelevant to the particular scenario. At
Ω = 0.0039 (p ≈ 0.928) we are inside the hatched area where the torus coexists
with stable and saddle cycles (Fig. 5.10(b)). In this figure we also see a numerically
revealed trace of both sides of unstable manifolds of the saddle cycle—see a se-
quence of dots that go from the empty circle to the torus on one side, and to the
stable cycle on the other side. Compare this with the sketch in Fig. 5.6(a) and make
sure that the visualized picture repeats the picture we imagined earlier. On the line of
homoclinic bifurcation the stable torus has touched the saddle and disappeared, and
there is a homoclinic loop formed by the manifolds of the saddle point. The dots in
Fig. 5.10(c) belong to these manifolds and were numerically revealed in [220] using
an extension of the method proposed in [137]. Note that at these parameters the sta-
ble cycle has complex-conjugate Floquet multipliers, and its Poincaré section looks
like a stable focus, rather than a node unlike in Fig. 5.6. In Fig. 5.10(c) this is espe-
cially well visible, since the trajectory goes to the cycle along a spiral. However, this
does not change anything, since the node is not much different from a focus from
the viewpoint of topology. Also, at the moment of bifurcation, the manifolds still
intersect, and one can notice that they go through the saddle at some angle and not
along smooth lines, exactly like in Fig. 5.6(c).

With a further increase of Ω , we are inside the tongue, and the Poincaré section
(Fig. 5.10(d)) shows how the manifolds have split near the saddle cycle and the new
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Fig. 5.10. Poincaré sections of the system describing a bacteria–virus population with pe-
riodic modulation of nutrients supply (5.2) obtained by numerical methods. Detuning p is
being increased following route A in Fig. 5.8. The figure illustrates a homoclinic bifurcation
occurring to a stable torus (black line) and involving a saddle cycle (empty circle) and a stable
cycle (black circle). As we proceed from a to d the detuning p (see Fig. 5.8) grows gradually.
In b the trace of the manifold going from saddle cycle (empty point) to the torus (black line)
is shown. d shows a newly formed resonant torus

structure in the form of a resonant torus has born, in full analogy with Fig. 5.6(d),
except that the unstable manifolds of the saddle close on the stable cycle after mak-
ing a few loops around it.

5.5 Summary

Let us discuss the meaning of the homoclinic bifurcation line inside the synchro-
nization tongue. Coming back to the description of what 1 : 1 phase locking is (see
second paragraph of Chap. 5), in physics terms, 1 : 1 synchronization implies that
the frequency of forced system coincides with frequency of forcing at appropriate
values of forcing parameters from inside a certain range. In mathematical terms syn-
chronization is most often associated with going from an ergodic torus to a resonant
one. What happens in the system (5.2) is exactly the same, except that the details of
this transition are different from the classical phase locking. Hence, we can state that
a synchronization transition occurs in this system, but via a mechanism that is nei-
ther phase locking, nor suppression. We can call this synchronization via homoclinic
bifurcation, or via crisis.
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In Chap. 3 we considered synchronization phenomena in periodically forced peri-
odic oscillators, when the forcing frequency was close to the natural frequency of
unforced oscillations. A natural question arises: “What happens if we are perturb-
ing the system with a frequency which is substantially different from its natural
frequency? Are there any synchronization phenomena in that case?” The answer is
“yes,” and below we will illustrate this. Before we proceed with considering the ef-
fects involved, the next section introduces a few fundamental concepts—but a reader
with the appropriate mathematical background can skip it.

6.1 Important Definitions Relevant to n : m Synchronization

As promised above, in this section we give definitions of several mathematical con-
cepts that are immediately relevant to n : m synchronization.

6.1.1 Poincaré Return Time

Poincaré return times, or simply “return times” for brevity, Ti, i = 1, 2, . . . , are
the time intervals between two successive crossings by the phase trajectory of the
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Fig. 6.1. Illustration of the concept of a Poincaré section and the return times; and b threshold-
crossing interspike intervals

Poincaré secant surface in one direction, e.g., from below to above like illustrated in
Fig. 6.1(a). If the system oscillates periodically, the values of Ti are the same for all i

and are equal to the period T of oscillations.1 Then 2π/Ti = 2π/T is the main fre-
quency of periodic oscillations at which the highest spectrum peak is located. If the
system behaves quasiperiodically, all Ti’s are generally different. Then their aver-
age value is the mean period of oscillations, whose inverse is the mean frequency of
oscillations. Note, that the latter might not be associated with any particular spectral
peak. Another name for Ti is (threshold-crossing) interspike interval, that comes
from neurobiology where the return time is defined as a time interval Ti between
two successive intersections by the realization x of a certain threshold (Fig. 6.1(b)).

6.1.2 Phase of Oscillations

In Sect. 3.1 the phase of quasiharmonic oscillations was defined. However, most
real-life oscillations are not quasiharmonic, like the ones in the systems that are
not weakly non-linear. For them one needs to define phase as well. It needs to be
emphasized that there is no unique way to introduce a phase for any oscillations of
any complexity. Moreover, phase is a subsidiary concept that only serves as a helpful
means to quantify certain effects. Therefore, for the same process, one can introduce
several phases in different ways, depending on the needs of the particular problem.
However, we haste to say, if the phases are introduced correctly, they should all be
in agreement with each other. Two methods for the phase introduction are described
in Sect. 8.3, but below we will consider the method which is most relevant to this
chapter.

6.1.3 Phase of Oscillations via Poincaré Section

One particular approach for the phase definition is related to the Poincaré section,
according to which the phase ϕ is introduced as a function of time that increases

1 This is true, provided that the limit cycle has only one loop. If it has n loops, then the
secant surface might be defined in such a way, that the cycle crosses it up to n times during
one period. In that case, the subsequent Ti ’s are different, but they behave periodically.
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exactly by 2π between two successive returns to the secant surface in the same
direction (e.g., from above to below). Moreover, in between the two returns, the
phase grows linearly and hence the full information about it is contained in the
values of time moments of return. To summarize, one return to the secant surface
corresponds to one full oscillation and to the change of phase by 2π. The respective
formula is given by (8.10).

6.1.4 Poincaré Winding (Rotation) Number

Poincaré winding number ρ is introduced as

ρ = lim
i→∞

ϕi − ϕ0

2πi
, (6.1)

where i is the number of return to the given secant surface, and ϕi is the phase of
the forced system at the instant of ith return. It is known that the winding number
does not depend on the initial phase ϕ0 [133]. Using the definition of phase above,
the denominator of ρ in (6.1) is the increment of the phase of the external forcing
between the launch of the process at i = 0, and the end of ith full oscillation of the
force. The numerator is the increment of the phase ϕ of the forced system, that has
occurred while the forcing has made i full oscillations. If the forcing is periodic,
this is equivalent to saying that ρ is the ratio of the period of the forcing to the mean
period of the forced system.

What is the relevance of the winding number ρ to synchronization problem? If
the forcing system makes m oscillations while the forced system makes n oscilla-
tions, the winding number ρ is equal to n : m, i.e., is a rational number,2 and this
implies the occurrence of n : m synchronization. If ρ is irrational, this means the
absence of synchronization.

6.1.5 Synchronization Order n : m

The order of synchronization is equal to n : m if m periods of external forcing cor-
respond to n periods of response oscillations; i.e. it is the same as rotation number,
only sometimes this term becomes more convenient to use.

van der Pol seems to be the first to investigate the response of the circuit to peri-
odic forcing in a wide range of its frequencies [292]. 1 : m and m : 1 synchronization
was studied analytically by Hayashi [110] and Landa [160] for the special cases of
a harmonically forced oscillator for the full range of the values of forcing amplitude
B.

6.2 1 : m and m : 1 Forced Synchronization in Weakly Non-linear
Oscillators

Consider a system of two van der Pol oscillators, assuming that one subsystem is
forcing another as follows:

2 A rational number is a number that can be represented as the ratio of two integer numbers.
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ẋ1 = y1, (6.2)
ẏ1 = (

λ − x2
1

)
y1 − x1 + Bx2,

ẋ2 = y2, (6.3)
ẏ2 = (

λ − x2
2

)
y2 − p2x2.

Here, (6.3) represent a single autonomous van der Pol system, while (6.2) describe
the van der Pol oscillator that is forced by a signal from (6.3). One can also say that
the two subsystems are coupled unidirectionally.

Note, that in Sect. 3 we considered a forced van der Pol oscillator (3.3), assum-
ing that the frequency of forcing was close to its natural frequency, and the bifur-
cation diagram in the vicinity of a 1 : 1 synchronization region was shown, e.g., in
Fig. 3.10(a) for λ = 0.5. The difference between an oscillator to which a harmoni-
cally oscillating force is applied, and an oscillator forced by another self-oscillating
system is that in the latter case the applied signal Bx2 is crucially not harmonic.3

This means that its spectrum contains peaks not only at the main frequency, but also
at the multiples of it. The use of a non-harmonic forcing will help us to illustrate
the phenomena that were difficult to detect with harmonic forcing, because they
occurred only within very narrow ranges of control parameters.

Here, we set a relatively small value of the non-linearity parameter λ = 0.5,
which is the same as the one used for numerical illustrations in Sect. 3.9. The phase
portrait, realization and spectrum of the autonomous van der Pol system at λ = 0.5
are shown in Fig. 6.2.

In order to illustrate the effects induced by the external non-harmonic forcing
applied to a van der Pol oscillator (6.2), we calculate the interspike intervals (return

Fig. 6.2. a Phase portrait, b realization x1 and c spectrum of x1 of (6.2) at λ = 0.5 and
B = 0
3 Because self-sustained oscillations can occur only in non-linear systems.
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Fig. 6.3. 1 : m and m : 1 synchronization in a weakly non-linear van der Pol oscillator forced
by another van der Pol oscillator (6.2)–(6.3) at λ = 0.5. Forcing amplitudes are B = 0.2
(grey line) and B = 0.4 (black line), and p changes in a wide range. a The response
frequency ωr against the forcing frequency Ω , both normalized by the natural frequency
ω0 = 0.984721005. Linear segments with different slopes are visible. b Inverse rotation
number 1/ρ = Ω/ωr against detuning Ω/ω0. Plateaus at 1/ρ = 1 and 3 are clearly visible.
This is a trace of “devil’s staircase,” for more detail see Fig. 6.4

times) both for the forcing and for the forced systems. We define them as the time
intervals between the successive crossings of zero in one direction (from below to
above) by the variables x1 and x2, respectively. Because the forcing is periodic,
the inverse of any of its interspike intervals gives the true value of the forcing fre-
quency Ω . The inverse of the mean interspike interval of the forced system provides
the value of the mean response frequency ωr. In the table below all designations are
given that will be used in this section.

Set the strength of forcing at two constant values B = 0.2 and B = 0.4, and let
p change between 0.01 and 3.5. Figure 6.3 summarizes the frequency relationships
in the two unidirectionally coupled van der Pol oscillators (6.2)–(6.3) at λ = 0.5.
The abscissa shows the classical parameter used to explain synchronization phe-
nomena: frequency detuning between the systems, which is the ratio of the forcing
frequency Ω to the natural frequency of unforced oscillations ω0, rather than p.
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The reason is that p is not equal to Ω/ω0, which will also be illustrated later.4

Figure 6.3(a) shows normalized response frequency ωr/ω0.
One can make a few observations. First, ωr/ω0 changes with detuning Ω/ω0

in the whole range of the values of the latter. Second, ωr/ω0 changes in a non-
monotonic way. Moreover, there are segments when ωr/ω0 grows linearly with
Ω/ω0. Third, at a larger value of B the linear segments are wider, and also more of
such segments become visible. Note, that the widest linear segment can be found
around Ω/ω0 = 1, and the next most pronounced linear segments are located
around the values Ω/ω0 = 1/ρ = 1 : 3 and 3 : 1, i.e., at the inverses of the re-
spective rotation numbers ρ.

Consider Fig. 6.3(b) where the same information as in (a) is presented, only at
a slightly different angle. Here, we do not plot the (normalized) response frequency
ωr alone, but rather the ratio Ω/ωr, i.e., an inverse of rotation number ρ. This repre-
sentation allows one to reveal the horizontal plateaus of 1/ρ at 1 : m or m : 1, where
m’s are integer (odd) numbers. Each such plateau implies that in the given range of
Ω/ω0, the forcing entrains the subsystem being forced, so that its frequency remains
equal to a multiple or a fraction of the one of forcing. Note, that this is a robust effect
that occurs not just in one point, but in a whole range of forcing frequency values.

In Fig. 6.3 only the general view of the frequency dependencies is given, but for
the finer structure of this graph let us turn to Fig. 6.4 where the smaller values of
Ω/ω0 are illustrated in more detail. In (a) one can see that in fact there are a lot
of linear segments in the graph considered, which were not detectable from Fig. 6.3
just because they were much smaller than the one around Ω/ω0 = 1. Figure 6.4(b)
presents the same information as Fig. 6.3(b), but here the vertical axis is inverted to
show the rotation number ρ = ωr/Ω . This is done in order to allow the reader to see
for sure that the plateaus occur at the levels of ρ = m : 1 corresponding to odd m.
Namely, plateaus at m equal to 3, 5, 7, 9, 11, 13 and 15 can be found in this figure.
The occurrence of a plateau with rotation number m : 1 implies that the response
frequency is exactly m times larger than the forcing one. In other words, while
forcing makes one oscillation, the forced system makes m oscillations, and hence
synchronization of the order m : 1 occurs. Note, that plateaus of synchronization
with rotation number ρ = m : 1 appear at the values of Ω/ω0 which are close to
the respective values of 1/ρ, i.e., to 1 : 11, 1 : 13, etc. This means that the m : 1
synchronization can occur when the forcing frequency is initially sufficiently close
to m times the natural frequency.

To summarize, Figs. 6.3 and 6.4 have illustrated synchronization of two kinds:
1 : m and m : 1, where m > 1. These phenomena are also called synchronization on

4 When (6.2)–(6.3) are uncoupled (B = 0), the natural frequencies of their self-oscillations
at Andronov–Hopf bifurcation (λ = 0) are equal to the square roots of the coefficients be-
fore x1 or x2, i.e., to 1 and to p, respectively. However, with the non-linearity λ being not
vanishingly small in both subsystems, their natural frequencies are just a tiny bit smaller
than 1 and p; e.g. in (6.2) the natural frequency ω0 = 0.984721005 < 1. Parameter p does
determine the frequency Ω of the forcing signal Bx2, and hence the detuning between the
two subsystems, but is not equal to the latter.
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Fig. 6.4. a Enlargement of graph in Fig. 6.3(a) at B = 0.4 and small Ω/ω0. A lot of linear
segments are visible. b The same data as in Fig. 6.3(b), but the ordinate is inverted for conve-
nience to show the rotation number ρ = ωr/Ω: plateaus at odd numbers are visible. Insets
show the enlargements of this graph around the plateaus at ρ equal to 11, 9 and 7

overtones and on undertones, respectively [160]. Panels (b) of these figures show
the structure reminding the devil’s staircase which we will describe in Sect. 6.3.
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Ω frequency of periodic forcing signal
p parameter of the forcing system that determines the forcing

frequency Ω , but is not equal to it
B amplitude (strength) of forcing

ω0 natural frequency of forced system (i.e. at B = 0)
ωr mean frequency of forced system (of “response”)

ρ = ωr/Ω rotation (winding) number, or synchronization order

Fig. 6.5. Bifurcation diagrams in the vicinities of a 1 : 3 and b 3 : 1 synchronization regions
in a van der Pol oscillator forced by another van der Pol oscillator (6.2)–(6.3) at λ = 0.5.
Solid black lines: saddle-node bifurcations; dashed lines: torus birth bifurcations

What we have seen so far, were the analogs of one-parameter bifurcation dia-
grams: in (6.2)–(6.3) we changed only one parameter p that defined the frequency
detuning between the two subsystems (although was not equal to it). However, the
transitions to synchronous regimes are better understood on the plane of two clas-
sical synchronization parameters: detuning and forcing strength B. We choose two
particular synchronization regions where non-1 : 1 synchronization occurs: 1 : 3 and
3 : 1 synchronization. The vicinities of the respective synchronization tongues are
shown in Fig. 6.5(a), (b) on the planes (p–B). Detailed analysis of 1 : m and n : 1
synchronization tongues can be found in [110, 160].

These figures are reminiscent of that for the 1 : 1 synchronization (compare with
Fig. 3.9). Namely, synchronization occurs within the region whose lower part is a
curvy triangle with the tip at Ω/ω0 = 3 (although the respective value of p is
slightly less than 3). The borders of the synchronization regions are formed by the
lines of saddle-node bifurcation in their lower parts, and by torus birth bifurcations
in their upper parts. We illustrate the transitions in the vicinity of 3 : 1 synchroniza-
tion with the same characteristics as were used to illustrate 1 : 1 synchronization.

6.2.1 3 : 1 Phase (Frequency) Locking

Let us fix p = 0.35 and go along route A in Fig. 6.5(b) to enter synchronization
region via the line of saddle-node bifurcation, i.e., consider phase (frequency) lock-
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Fig. 6.6. Illustration of a 3 : 1 phase (frequency) locking in two unidirectionally coupled van
der Pol oscillators (6.2)–(6.3) at λ = 0.5. In Fig. 6.5(b) we move along route A corresponding
to p = 0.35, as we enter the synchronization tongue via saddle-node bifurcation line. Phase
portraits, stroboscopic sections, realizations and spectra are shown for each value of forcing
strength B given on the right of each row. First column: Phase portraits on the plane (x2, x1).
Second column: Stroboscopic sections on the plane (ẋ1, x1), with ẋ1 = y1. Third column:
Black line—forcing Bx2(t) (except at B = 0 where it is x2/10), grey line—response x1(t);
black circles—maxima of forcing Bx2, grey circles—value of x1 when x2 is at its maximum.
Fourth column: Spectra: black line—forcing Bx2, shaded—response x1. The scales of the
frequency axis are different for two spectra: the spectrum of forcing is shown against ω, while
the one of response against ω/3

ing. In Fig. 6.6 the transitions are illustrated with phase portraits, stroboscopic sec-
tions, realizations and spectra. For the stroboscopic section, we collect all values
of x1 and y1 of (6.2)–(6.3) at which the forcing x2 takes its maximal values. At 3 : 1
synchronization, i.e., with the response making three oscillations while the forcing
makes just one, there will be only one point in the stroboscopic section.

First, consider the evolution of spectra (fourth column of Fig. 6.6) with the in-
crease of forcing strength B. In order to demonstrate the effect most clearly, the
frequency axis is chosen to be different for the spectrum of the forcing and of the
response: the frequencies of response are squeezed by the factor of 3, so that at
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the state of locking (B = 0.35) the main peaks of the forcing and of the forced
system coincide. With this in mind, let us consider how the distance between the
main spectral peaks changes. At zero strength B = 0, the forcing frequency is at
some distance from one-third of the natural frequency of the system, and even with
the rescaled frequencies the spectral peaks are apart. As forcing is switched on and
becomes stronger (B = 0.15), the peaks at combination frequencies appear in the
spectrum of the response, and one of them necessarily coincides with three times
the forcing frequency, which in the rescaled graph is visible as the coincidence of
the first peak from the left and the one of forcing. At the same time, the main peak
of response has shifted towards one-third of the frequency of the forcing peak. At
even larger B = 0.25, the situation is the same as with B = 0.15, only enhanced.
At B = 0.3 the main peak of response signal is now located at exactly three times
the forcing frequency! However, the motion is still not periodic, and there is no syn-
chronization yet. Finally, at B = 0.35 the 3 : 1 synchronization is achieved: forced
oscillations become periodic and their frequency is three times larger than the forc-
ing one. To summarize, the main spectrum peak moves gradually towards the third
of forcing frequency to become locked with it.

In terms of the stroboscopic section (second column of Fig. 6.6), on the route to
locking we go through the invariant closed curve that is densely filled with points
(B < 0.3), to the closed curve on which points are placed non-homogeneously
(B = 0.3). In the upper part of the closed curve one can see condensation of the
points, which is a precursor of locking. And indeed, at B = 0.35 a stable point
appears exactly at the place of condensation. This means that the locked regime is
born on the surface of the torus from the “condensation of phase trajectories,” as
they sometimes say.

Realizations of both forcing Bx2 and response x1 (third column of Fig. 6.6)
provide a good illustration of the phase relationships between the two subsystems.
At small forcing strengths B < 0.3, each time the forcing takes its maximal value,
the response is at a different stage of its oscillations. Closer to the locking boundary
(B = 0.3), one can see how the phase of the response starts to adjust to the phase
of forcing: the grey circles are almost in one horizontal line, but not quite. Finally,
when locking takes place at B = 0.35, the response is always at the same phase
when the forcing takes its maximal values: phase locking has been achieved. Note,
that while the forcing makes one full oscillation (black line), the forced system
makes exactly three oscillations (grey line).

The phase portraits on the planes “forcing”–“response” (first column of Fig. 6.6)
are in line with other observations. When the system was quite away from the state
of locking (B < 0.3), the mutual phase portrait is quite disordered: the two systems
pay little attention to each other and oscillate almost independently. However, the
stronger the forcing, the more the forced system feels the forcing, and the more
structure appears in the phase portrait. At B = 0.3 the phase trajectory spends
most of the time around the future stable limit cycle, which reveals itself inside the
locking region at B = 0.35. This cycle has three loops to signify that one of the
systems is three times faster than the other.
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The transition to phase 3 : 1 locking appears very similar to the transition to 1 : 1
locking (compare with Fig. 3.11).

6.2.2 3 : 1 Suppression of Natural Dynamics

Next, let us enter the synchronization region via route B in Fig. 6.5(b) that crosses
the dashed line of torus birth bifurcation, by fixing p = 0.3 and increasing B. By
analogy with 1 : 1 synchronization, we suggest that suppression of natural dynam-
ics should occur, the transition to which is illustrated in Fig. 6.7 by phase portraits,
stroboscopic sections, realizations and spectra. We will start with considering the
evolution of spectra with the increase of B (fourth column of Fig. 6.7), and this
will immediately reveal the crucial distinction of this route from route A illustrated
above. First, the frequency axis is not rescaled for the spectrum of the response.
From the very beginning (B = 0) the frequency of forcing was approximately three
times less than the frequency of natural oscillations in the system to be forced. In
order to show this without rescaling the abscissas, we embrace a larger range of
frequencies. As a result, one can see that the spectrum of forcing, besides the com-
ponent at Ω , does contain the components at 3Ω and 5Ω (and more, but they are
not visible in the given range of frequencies), so it is indeed not harmonic.

At B = 0 the main peaks of forcing and of the response are well separated.
At B = 0.15 the spectrum of response is enriched with combination frequencies,
and also contains a component at Ω . With too many spectrum components, it might
be difficult to locate the main peaks, so we mark them by � (forcing at Ω) and �
(response). The main peak of the response almost does not move with the growth
of B, however, its height is gradually decreasing with the simultaneous growth of
the component at Ω: the power is being redistributed between these two frequen-
cies. At B = 0.55 the peak at Ω becomes higher than the one that originates from
natural dynamics (which is now slightly shifted from ω0), but the motion is quasi-
periodic and there is no synchronization yet. Finally, at B = 0.65 the oscillations in
the system become periodic with the frequency of forcing. Note, that the transition
from oscillations at about ω0 to the ones at Ω has taken place abruptly. First, the
main frequency of oscillations has jumped from ω0 to Ω , and then the component
at ω0 was gradually suppressed to complete extinction. Note, that unlike in case of
3 : 1 locking, the 3 : 1 suppression has resulted in oscillations with the frequency of
forcing Ω itself, rather than 3Ω . This means that most of the system’s own dynam-
ics is extinct. Exactly how much of it is left, will be clearer from the realizations
which will be commented on below.

In parallel to spectra, follow the route by observing stroboscopic sections (sec-
ond column of Fig. 6.7). In full analogy with 1 : 1 suppression (Fig. 3.12), with the
increase of B the invariant closed curve shrinks, until it becomes a point when syn-
chronization occurs.

Realizations (third column) carry valuable information about both phase and
amplitude relationships between the interacting systems. When the forcing is dis-
connected from the main system (B = 0), the latter oscillates approximately three
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Fig. 6.7. Illustration of a 3 : 1 suppression in two unidirectionally coupled van der Pol oscilla-
tors (6.2)–(6.3) at λ = 0.5. In Fig. 6.5(b) we move along route B corresponding to p = 0.3, as
we enter the synchronization tongue via torus birth bifurcation line. Phase portraits, strobo-
scopic sections, realizations and power spectral densities (spectra) are shown for each value of
forcing strength B given on the right of each row. First column: Phase portraits on the plane
(x2, x1). Second column: Stroboscopic sections on the plane (ẋ1, x1). Third column: Black
line—forcing Bx2(t) (except at B = 0 where it is x2/10), grey line—response x1(t); black
circles—maxima of forcing Bx2, grey circles—values of x1 when x2 is at its maximum.
Fourth column: Black line—spectrum of forcing x2, shaded—spectrum of response x1.
� marks the main peak of forcing at Ω , and � the main peak of response. Note, that the
scales of the frequency axis are the same for two spectra (unlike in Fig. 6.6)

times faster than the driving system: during one full forcing cycle there are approx-
imately three full-amplitude oscillations in the forced system. The non-zero forcing
(B > 0), modulates the mean value of response realizations which is in phase with
the driving system. But around the mean value there are fast oscillations that orig-
inate from the system’s own dynamics, and whose amplitude decreases as forcing
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grows stronger. The larger the external driving is, the stronger the modulation of the
mean value and the smaller the fast oscillations are. Thus, the forcing imposes onto
the system the lower-frequency oscillations and at the same time suppresses the fast
ones. At B = 0.65 the realization of the forced system almost coincides with the
one of forcing. Natural oscillations are now completely suppressed, although their
trace is visible in the form of the small bumps.

The phase portraits on the plane “forcing”–“response” (first column of Fig. 6.7)
illustrate the transition from oscillations independent of each other to the ones that
are synchronized. This is a classical transition to synchronization via the suppression
mechanism.

In the example that was considered in this section, we were able to reveal 1 : m
and m : 1 synchronization for many values of m, but only for odd ones. For even
values of m, synchronization tongues are very narrow and are difficult to detect.
The fundamental reason for that is that the spectrum of the autonomous van der Pol
oscillator does not contain components at even multiples of ω0, i.e., at 2ω0, 4ω0,
etc. (Fig. 6.2(c)), because of the special form of non-linearity in its equations which
is of the cubic type. The even harmonics would have enhanced the respective syn-
chronization regions, but in their absence it becomes quite a challenge to find them.

6.3 n : m Synchronization in Strongly Non-linear Oscillators
with Spiky Forcing

In Sect. 6.2 it was demonstrated that if the forcing frequency is close to an integer
multiple of the natural frequency of oscillations, 1 : m synchronization can occur. If,
on the other hand, the forcing frequency is about m times smaller than the natural
frequency, the system can be synchronized with the rotation number m : 1. In this
section we introduce an even more general phenomenon, namely, n : m synchroniza-
tion, where neither m nor n are equal to 1.

Such synchronization is likely to occur when both the forcing and the system be-
ing forced contain many frequency components in the spectra of their oscillations,
that could interact and enhance synchronization regions of higher orders n and m.
Quite a good model of such oscillations can again be the well-familiar van der Pol
system with large non-linearity λ, which we set to 2. The phase portrait of the
respective unforced oscillations is given in Fig. 6.8(a) (compare with Fig. 6.2(a)).
Further, we need to introduce a periodic forcing whose spectrum contains a lot of
harmonics of the main frequency. A most suitable realization of forcing would thus
be a function of time that contains sharp spikes. As a model capable of generating
such a signal, we can again use van der Pol oscillator with large non-linearity λ = 2.
The full system modelling the required oscillator under external forcing now reads
as follows:

ẋ1 = y1, (6.4)
ẏ1 = (

λ1 − x2
1

)
y1 − x1 + B

|y2| + y2

2
,
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Fig. 6.8. a Phase portrait, b realization y1,2 (grey) and y∗
2 = (|y2|+y2)/2 (black), c spectrum

of x1,2 of (6.2)–(6.3) at λ = 2 and B = 0. Only odd harmonics of the main frequency are
present in the spectrum

ẋ2 = y2, (6.5)
ẏ2 = (

λ2 − x2
2

)
y2 − p2x2.

The difference from (6.2)–(6.3) is in the way the external forcing is applied to the
first system. In order to construct the spiky forcing signal, we take the y2-coordinate
(shown by grey line in Fig. 6.8(b)) and ignore its negative values (black line in
Fig. 6.8(b)), which mathematically can be described as (|y2| + y2)/2, as shown in
the second line of (6.4).

By analogy with the case of the weakly non-linear oscillator under weakly non-
linear forcing considered in Sect. 6.2, let us fix the strength of forcing at B = 0.4
and change p in a range [0.1; 3.5] to see how the response frequency ωr and rota-
tion number ρ evolve. The summary of frequency relationships is given in Fig. 6.9,
where the same quantities as in Figs. 6.3 and 6.4 are shown against Ω/ω0. At first
glance, the same kinds of transitions are observed. However, there are some features
here that were not present in Figs. 6.3 and 6.4. Namely, there are considerably more
linear segments in (a) and considerably more plateaus in (b). Here, plateaus of ro-
tation number ρ occur not only at the values 1 : m or m : 1, but also at n : m, where
neither n nor m are equal to one (although the plateau at 1 : 1 is also present!). How
do we interpret the occurrence of a plateau at ρ = n : m? Well, quite simply, when
the external force makes m oscillations, the forced system makes exactly n oscilla-
tions. This is called n : m synchronization.

Let us illustrate the mechanisms of n : m synchronization. For this purpose single
out some particular rotation number, for example 2 : 3, and consider its vicinity in
more detail. The bifurcation diagram around the 2 : 3 synchronization region on the
plane (p,B) is given in Fig. 6.10. Note, that with λ being substantially larger than
zero, the frequency of unforced oscillations in the van der Pol system is noticeably
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Fig. 6.9. n : m synchronization in a strongly non-linear van der Pol oscillator forced by a spiky
signal from another van der Pol oscillator (6.4)–(6.5) at λ = 2 and B = 0.4. a The response
frequency ωr against the forcing frequency Ω , both normalized by the natural frequency
ω0 = 1.209. Linear segments are visible. b “Devil’s staircase”: inverse of rotation number
ρ = Ω/ωr against Ω/ω0. Plateaus at rational values of ρ = n : m are clearly visible

less than one, see the location of the highest peak in the spectrum of its oscillations
(Fig. 6.8(c)) and the value of Ω at p = 1 in Fig. 6.11. Similarly, the frequency
of the forcing system (6.5) is noticeably less than p in the range considered, as
demonstrated in Fig. 6.11. Moreover, the dependence of Ω on p is not linear. For
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Fig. 6.10. Bifurcation diagram in the vicinity of 3 : 2 synchronization region in two strongly
non-linear unidirectionally coupled van der Pol oscillators (6.4)–(6.5) at λ = 2. Solid black
lines: saddle-node bifurcations; dashed line: torus birth bifurcations

Fig. 6.11. Frequency Ω of oscillations in (6.5) as a function of p at λ = 2 (black line) as
compared to the diagonal (grey line). Vertical line marks p = 1 to highlight the fact that Ω is
noticeably smaller than 1 at this point

this reason, the tip of the 2 : 3 tongue in Fig. 6.10 hits the abscissa at p = 1.384
rather than 3 : 2. The synchronization region is formed by the same typical lines of
saddle-node and torus birth bifurcations. Also, it is inclined considerably, stretching
towards the lower values of p that are closer to lower rotation numbers.

6.3.1 2 : 3 Phase (Frequency) Locking

Consider route A that leads inside the synchronization tongue through the line of
saddle-node bifurcation, and illustrate the changes that occur to the system dynamics
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Fig. 6.12. Illustration of a 2 : 3 phase (frequency) locking in two unidirectionally coupled van
der Pol oscillators (6.4), (6.5) at λ = 2. In Fig. 6.10 we move along route A corresponding to
p = 1.35, as we enter the synchronization tongue via the saddle-node bifurcation line. Phase
portraits, stroboscopic sections, realizations and spectra are shown for each value of forcing
strength B given on the right of each row. First column: Phase portraits on the plane (y∗

2 , x1),
where y∗

2 = (|y2| + y2)/2 is forcing. Second column: Stroboscopic sections on the plane
(y1, x1). Third column: Black line—forcing Bx2(t) (except at B = 0 where it is y∗

2/10),
grey line—response x1(t); black circles—maxima of forcing By∗

2 , grey circles—values of x1
when y∗

2 is at its maximum. Fourth column: Spectra: black line—forcing By∗
2 , shaded—

response x1. The scales of the frequency axis are different for two spectra: the spectrum of
forcing is shown against ω, while the one of response against ω × 3/2

on that way. As before, use phase portraits, stroboscopic sections, realizations and
spectra as the helpful aids (Fig. 6.12). Start with spectra in the fourth column. The
frequency axis is different for the forcing signal (unchanged) and for the response
signal (divided by rotation number 2 : 3). With forcing strength set to zero B = 0,
the forcing frequency is slightly smaller than 1.5ω0. When B is being gradually
increased from zero (B = 0.15, 0.25, 0.33 in Fig. 6.12), the main spectrum peak
of the response signal (shaded area) is shifted towards 2Ω/3, which in the figure
can be seen as the two highest spectral peaks approaching each other. At B = 0.34
the two peaks coincide on the picture, which means that the response frequency



138 6 n : m Synchronization of Periodic Oscillations

became equal to two thirds of the forcing frequency. The combination frequencies
have disappeared, and 2 : 3 locking has taken place.

The same transition is accompanied by the changes in the stroboscopic section
(second column in Fig. 6.12). We go from a closed invariant curve representing the
surface of an ergodic torus, to three points that represent a stable limit cycle that is
born on the torus surface. Why do we see three points instead of one? Just because
of the way the stroboscopic section is constructed: we collect a point (x1, y1) each
time the forcing system is at the same phase. Look at realizations at B = 0.34,
observe the maxima of y∗

2 marked by black circles, and look up the respective value
of x1 is (grey circles). It is clear that each three maxima of y∗

2 correspond to one full
period of the grey line. Hence, we will have three different points in the stroboscopic
section.

Phase portraits (first column) on the plane “forcing y∗
2 ”–“response x1” illus-

trate the transition from the independent behavior of the two systems at B = 0,
to phase-locked oscillations at B = 0.34. Just before the locking has occurred, at
B = 0.33 the trajectories start to concentrate around the future limit cycle that is
born at B = 0.34.

This is a manifestation of the classical phase (frequency) locking for the most
general type of synchronization with the order n : m, which was equal 2 : 3 here.

6.3.2 The Route to 2 : 3 Suppression

The upper part of the 2 : 3 synchronization region in Fig. 6.10 is bounded by the
line of torus birth bifurcation, which is associated with the suppression of natural
oscillations. However, if by analogy with the traditional studies of the suppression
mechanism, we choose a route like B, we would not be able to observe the classical
behavior that normally occurs on the way to suppression. The reason for that is that
the synchronization tongue is inclined so much, that many synchronization regions
with various rotation numbers lie in between its border and B = 0. The evolution
of the dynamical regimes along route B is illustrated in Fig. 6.13 where the x1 coor-
dinate of the stroboscopic section is shown against the value of forcing strength B.
The region of 2 : 3 suppression is at the right end of the diagram and is represented
by three points. On the way to suppression, the transitions between quasiperiodic
behavior, and the synchronized regimes with various rotation numbers are evident.

6.4 Circle Map: Derivation

Earlier in this chapter we illustrated some particular cases of n : m synchronization,
n and m being positive integer numbers. In Sect. 6.3 we considered a strongly non-
linear oscillator subject to spiky forcing. We have shown that unlike in the case of
a weakly non-linear oscillator under nearly harmonic forcing, it can demonstrate
synchronization of n : m orders which can be quite easily detected numerically. Let
us consider a limiting case of such an oscillator.



6.4 Circle Map: Derivation 139

Fig. 6.13. A zoo of oscillation regimes as one moves along route B in Fig. 6.10: one-parameter
diagram showing coordinate x1 in (6.4)–(6.5) against the value of coupling strength B.
Changes between quasiperiodic motion and regimes of n : m synchronization are illustrated

Start with forcing. Among the spiky functions of time t , the most spiky of all is
Dirac delta function δ(t) that is defined as

δ(t) =
{∞, t = 0,

0, t �= 0,

∫ ∞

−∞
δ(t) dt = 1. (6.6)

The most spiky periodic forcing F(t) with the most pronounced harmonics in the
spectrum is a periodic sequence of delta-spikes that can be formally written as

F(t) =
∞∑

j=−∞
δ(t − tj ), tj = jT , (6.7)

where T is the period of forcing, and j is the spike number.
Next, we need to choose an oscillator to be forced. We need a very non-linear

oscillator, which implies that the shape of its realizations is far from being harmonic.
A classical example of such a system is a relaxation oscillator, whose characteristic
feature is a very non-circular shape of its limit cycle. Another important feature of a
strongly non-linear oscillator is temporal inhomogeneity of its oscillations: depend-
ing on the stage of oscillations, and in fact on the current position on the limit cycle,
the motion either slows down or speeds up. It is convenient to describe an oscillator
in terms of amplitude and phase rather than in terms of the original variables.

6.4.1 Amplitude and Phase of Oscillations

Let us introduce the concepts of amplitude and phase of oscillations. In Sect. 3 we
dealt with quasiharmonic oscillations and used this concept semi-intuitively. When
the oscillations are not quasiharmonic, the definition of amplitude becomes a prob-
lem with several possible solutions, as well as the definition of a phase. One of the
popular ways to define both phase and amplitude is by considering a projection of
the system trajectory onto a suitable plane. If the oscillator is two-dimensional, this
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Fig. 6.14. a, b Illustration for the introduction of amplitude A and phase ϕ on a limit cycle of
complex shape. c Transition to a cycle with constant amplitude

would simply be its phase plane. If the dimension of the oscillator is larger than 2,
then one can choose a convenient surface in the phase space to project the phase
trajectories onto it. In Fig. 6.14(a) a limit cycle of a complex shape is shown in 3D
(right) together with its projection on a suitable plane (left). For a periodic oscillator
the projection will be a closed curve.5 Place the origin somewhere inside the pro-
jection of the limit cycle (Fig. 6.14(b)). As time passes by, the phase point travels
along the closed curve, and it does so periodically. At each time moment, connect
the phase point with the origin by a straight line and call the length of this line in-
stantaneous amplitude A(t). Call the angle between this line and the abscissa the
phase ϕ(t). After one full rotation the phase increases exactly by 2π. It is obvious,
that if the projection of the limit cycle on the chosen plane is not a circle, the am-
plitude defined in such a way will oscillate with the period of the cycle. At the same
time, phase grows in magnitude monotonously and unboundedly. The location of
the point on the limit cycle can be completely defined by the phase ϕ. Then the
respective value of the amplitude A is described by some periodic function of ϕ,
Ã(ϕ). Coming back to the strongly non-linear oscillator, its limit cycle is usually
not a circle, and its phase usually grows with different velocity at different parts
of this cycle. But because the motion on the cycle is periodic, the intervals of fast
and of slow phase growth repeat themselves periodically. The velocity ϕ̇(t) of phase
growth at each time moment t will depend essentially on the current position of the
phase point within the limit cycle, i.e., in fact on the current value of ϕ. The equation
for the evolution of phase can thus be written as

ϕ̇ = Λ + f (ϕ), (6.8)

where Λ is the constant average velocity of the phase growth, and f (ϕ) is some
non-linear function of ϕ, which is periodic in its argument and has zero mean. The
time derivative ϕ̇ is called instantaneous frequency and oscillates periodically. Let us
consider perturbation of the limit cycle, and assume that the amplitude component of
this perturbation decays in time almost instantly. At the same time, perturbation of

5 Sometimes the limit cycle can have loops, and its projections might have loops, too. A con-
venient surface would be such that the cycle projection onto it does not contain loops.
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the phase component does not decay at all. This implies that if at the state (A1, ϕ1),
where A1 = Ã(ϕ1), we kick the system in such a way that both its amplitude and
phase change to some new values (A2, ϕ2) that would correspond to a point outside
the limit cycle, the amplitude almost instantly relaxes to the value of Ã(ϕ2), i.e., to
its value corresponding to the position on the limit cycle at the perturbed phase ϕ2
[92]. At the same time, perturbations of the phase will not decay or vanish, and
ϕ will just continue to evolve starting from the value ϕ2.

Remember, that in the problem of synchronization the most essential bit of in-
formation comes from the behavior of phases rather than amplitudes of oscillations.
Normally, amplitudes match the behavior of phases, but nevertheless, phases come
first. In fact, perhaps, the most popular name for synchronization in general is “phase
locking,” although we know already that this is only one of its possible mechanisms.
Let us concentrate only on phases and throw the oscillations of amplitudes out of the
problem. Mathematically this would imply that the amplitude is fixed at a certain
value, i.e., oscillations occur on a perfect circle (Fig. 6.14(c)). However, we empha-
size that the speed of phase growth ϕ̇ continues to depend essentially on the position
within the cycle.

6.4.2 From Differential to Discrete Equation for Phase

After we formulate a simplified model for a phase of a strongly non-linear au-
tonomous (unforced) oscillator, let us incorporate forcing into the problem. Remem-
ber that we have earlier decided to represent forcing as a sequence of delta-spikes
(6.7). In strongly non-linear oscillators is does matter a lot at what stage (phase) of
the oscillation the next kick occurs: there are normally regions on the cycle when
the system is less sensitive to perturbation, and there are regions where the response
is profound. This can be modelled for example by making the forcing amplitude
depend on the current phase ϕ as follows:

ϕ̇ = Λ + f (ϕ)

∞∑

j=−∞
δ(t − tj ). (6.9)

Let us try to simplify the problem further. We are not really interested in how exactly
ϕ behaves in between the delta-kicks. What matters to us is the direct consequence
of ith kick, that presumably results in the change of the value of ϕ at which the next
kick number (i + 1) would arrive. Let us therefore introduce the difference between
the phase at the moment ti and the phase at ti+1:

ϕi+1 − ϕi =
∫ ti+1

ti

dϕ

dt
dt

= Λ(ti+1 − ti ) +
∫ ti+1

ti

f (ϕ(t))

∞∑

j=−∞
δ(t − tj ) dt

= Λ(ti+1 − ti ) +
∞∑

j=−∞

∫ ti+1

ti

f (ϕ(t))δ(t − tj ) dt.
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Note, that in the equations above we are taking the integral from ti to ti+1. Because
for any i, (ti+1 − ti ) = T is the same, within any such interval there will necessarily
be a single delta-spike number i, i.e., j = i. All other delta-spikes with j �= i lie
outside this interval and therefore are not taken into account. Use the property (3.96)
of the delta-function to calculate the integral

ϕi+1 − ϕi = Λ(ti+1 − ti ) + f (ϕ(ti)).

Recall that ϕ(ti) = ϕi , and rearrange the expression above as

ϕi+1 = ϕi + ΛT + f (ϕi). (6.10)

This is the most general form of the circle map. It describes the dynamics of a phase
on the limit cycle under external forcing.

In order to perform theoretical analysis of the properties of the circle map, we
need to define the function f (ϕi), which should be periodic in ϕi . The simplest
periodic function is sine with some amplitude B > 0, which for this map is usually
taken with a negative sign. Denote ΛT = Δ and obtain

ϕi+1 = ϕi + Δ − B sin(ϕi) = F(ϕi), (6.11)

which is called sine circle map, or just circle map for brevity.

6.5 Circle Map: Properties

Sine circle map is a paradigmatic toy model which has been extensively studied
with regard to synchronization problem (see [92] for properties, history and refer-
ences). Here, we will briefly describe the essential features of this map that make
it so useful for the understanding of synchronization. Parameter Δ is an analog of
frequency detuning, and parameter B is an analog of the strength of forcing. As any
other one-dimensional map, circle map can be described in terms of the phase plane
(ϕi, ϕi+1). Note, that the phase ϕi grows unboundedly with i. But for convenience
of the analysis, it is customary to illustrate the dynamics of this map by taking func-
tion F(ϕi) in (6.11) by modulus of 2π,6 so that all points ϕi and ϕi+i lie within the
limits [0; 2π]. Note, that if we set Δ > 2π, the use of the modulus will effectively
reduce the value of Δ by 2πn, n = 1, 2, . . . so it makes no sense to consider Δ

outside the interval [0; 2π].
Some typical phase portraits for four different sets of parameters Δ and B are

shown in Fig. 6.15. In (a)–(c) the cases of |B| < 1 are illustrated. In (a) the value
of Δ is larger than B, and the function F(ϕi) does not cross the diagonal. Hence,
there are no fixed points in the map, and the phase point jumps along the segments
of F(ϕi). This behavior corresponds to the absence of 1 : 1 phase synchronization,

6 This means that if the current value of ϕi or of ϕi+i is larger than 2π, we subtract from it
2π consecutively until it falls within [0; 2π]. Similarly, if ϕi or ϕi+i are smaller than 0, we
add 2π repeatedly until it falls inside [0; 2π].
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Fig. 6.15. Typical phase portraits of sine circle map (6.11) at different sets of control parame-
ters Δ and B, whose values are given in the respective panels

but we need additional analysis to find out if synchronization of some higher orders
n : m occurs. Drawing analogy with a periodic oscillator forced periodically, the
detuning Δ is too big, and the forcing strength B is not enough to synchronize the
system.

In (b) Δ is less than B, and the graph of F(ϕi) crosses the diagonal. This means
the occurrence of two fixed points: one stable (black circle), and one unstable (white
circle). The function F(ϕi) now describes the surface of a resonant torus, on whose
surface the pair of cycles was born. This is 1 : 1 phase locking.

In (c) Δ is equal to B and the graph of F(ϕi) touches the diagonal. This is the
instant of saddle-node bifurcation. The equation Δ = B thus defines the borderline
of 1 : 1 phase locking region. Note, that 1 − Δ = B is also the condition for saddle-
node bifurcation, and so this is another borderline for the respective region.

In (d) an interesting case is illustrated: the forcing strength is larger than 1. At
such values, the map becomes non-invertible, and can demonstrate dynamical chaos.

One can introduce rotation (winding) number for the circle map as

ρ = lim
i→∞

ϕi − ϕ0

2πi
. (6.12)

If ρ is a rational number n : m, then phase locking of the respective order occurs, just
like in the continuous-time forced periodic oscillator. The circle map demonstrates
all kinds of resonances n : m and this is why it remains the classical model used for
the understanding of synchronization.
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Fig. 6.16. General picture of Arnold tongues at small amplitudes B of external forcing. Ω is
the forcing frequency, and ω0 is the natural frequency of unforced oscillations

6.6 Arnold Tongues

To complete the chapter on n : m synchronization of periodic oscillations by pe-
riodic forcing, it needs to be noted that the most general structure of the bifurca-
tion diagram on the plane of parameters “detuning Ω/ω0”–“forcing strength B”
at small B would look like in Fig. 6.16. This figure shows only the regions where
phase locking occurs, while suppression or homoclinic synchronization are not il-
lustrated. This structure was revealed by V. Arnold [30], after whom the synchro-
nization tongues were named “Arnold tongues.” In particular, Arnold has proved the
following important statement. Suppose we have integer numbers n, m, n∗ and m∗,
and there are synchronization tongues with the rotation numbers n : m and n∗ : m∗.
Then in between them on the plane (Ω/ω0, B) there is a tongue with rotation num-
ber (n + n∗) : (m + m∗). This is called Farey order.

One might note that the picture in Fig. 6.16 is shown for small forcing B only.
What happens at larger B? Without going into detail, it has to be mentioned that at
large B different synchronization tongues can overlap resulting in multistability and
hysteresis [93]. Moreover, chaos can occur and synchronization can be destroyed.

6.7 n : m Synchronization: Experiment

There have been quite a few experimental results on n : m synchronization. One of
the first observations of this phenomenon in a biological system was reported in
[94], where forcing in the form of pulses of an electric current was applied to a
spontaneously beating aggregate of cardiac cells from embryonic chick heart. Syn-
chronization of several orders was detected and the traces of Arnold tongues were
revealed from the experimental data. However, one might wonder: “Although the
system studied here is a biological one, it is a bit artificial because the result quoted
required a special, presumably expensive experimental setup and a piece of biologi-
cal tissue isolated from the living organism. But what about natural living systems?
Is synchronization of the order n : m a sufficiently robust phenomenon that it can
be detected without an expensive experimental setup in an almost every-day situa-
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tion?” Below we will describe how this phenomenon can be observed inexpensively
in a human being.

In Chap. 2 we mentioned human cardiovascular system within which several
rhythmic processes interact and might synchronize. Two of such processes are heart-
beats and breathing. In a healthy human both of these processes are not strictly
periodic, but one can argue that they can be approximately viewed as periodic self-
oscillatory processes under the influence of a large number of randomly fluctuating
factors which smear the observed behavior.

It has been known for a while that heart beats can in principle be synchro-
nous with the breathing [152, 259] under certain conditions. However, it seems
that in freely breathing humans spontaneous cardiorespiratory synchronization is
quite rare. In [257] a set of experiments were described, in the course of which six
healthy volunteers underwent controlled breathing with the prescribed frequencies
from a wide range between 3 and 30 breaths per minute. Realizations describing
the heart beating were the electrocardiograms (ECG) that reflected the electrical ac-
tivity of a heart (Fig. 6.17(b)). Respiration was measured by means of wrapping an
elastic band around the chest and measuring the change in extension of the band
while the subject breathed. This way, both the amplitude (depth) of breathing and
its frequency were taken into account.

In Fig. 6.17 typical plots for (a) respiration and (b) ECG are given as functions
of time, both in dimensionless units. For both ECG and the forcing in the form of
breathing one can introduce phases using (8.10) and then calculate the so-called
generalized phase difference ϕn,m(t) as follows:

ϕn,m(t) = nψ1(t) − mψ2(t), (6.13)

where ψ1(t) and ψ2(t) are the phases of the interacting systems, and n : m is syn-
chronization order. The condition of phase synchronization is then the existence of
a sufficiently long plateau of ϕn,m(t). An example of a phase difference between
respiration and ECG for the 2 : 7 synchronization is given in Fig. 6.18(a). One can
observe a long and noisy plateau, which is indeed an evidence of synchronization. In
order to better illustrate this phenomenon, consider the stroboscopic section of res-
piration signal xresp that consists of the values xi

resp taken at the time instants when
R-peaks of ECG, which are the highest and sharpest peaks, have crossed the thresh-
old as shown in Fig. 6.17(b). In Fig. 6.18(b) numbers are assigned to the successive
values of xi

resp in order to single out their cyclic behavior: two large oscillations of
the function include exactly seven points. This means that while the subject inhales
and exhales twice, his heart beats seven times.

The full picture illustrating the response of the given subject to paced breathing
is given in Fig. 6.19 where the plane of parameters “frequency detuning fresp/f0”–
“strength of forcing A” is shown for the same subject that was illustrated above.
Here, each point (fresp/f0, A) represents a single experiment with the same fre-
quency of breathing fresp. With this, the amplitude A of breathing was automatically
adjusted by the subject himself: the faster the subject was breathing, the shallower
(A is small), and the slower, the deeper (A is large). A point was marked as empty
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Fig. 6.17. a Respiration and b electrocardiogram (ECG) of a healthy volunteer undergoing
paced breathing. Both quantities are given in dimensionless units. Horizontal lines define the
threshold which is crossed by the functions in one direction: from above to below. Empty
circles are the points of intersection with the threshold

Fig. 6.18. a Generalized phase difference ϕ between breathing and electrocardiogram (ECG)
that correspond to synchronization order 2 : 7. b A fragment of the realization of a strobo-
scopic section of respiration signal: the values xi

resp of respiration are taken at the time mo-
ments when ECG crosses the threshold level. Numbers from 1 to 7 are attached to successive
points of this graph: during two large oscillations, there are exactly seven points of the stro-
boscopic section. This is another evidence of a 2 : 7 synchronization
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Fig. 6.19. The cutoff of the plane of parameters “frequency detuning fresp/f0”–“strength
of forcing A” for a subject undergoing paced respiration, where f0 is his average heart rate
at rest and fresp is respiration frequency. Empty circles denote the points at which no n : m
synchronization was detected for n and m less than 10. Filled circles mark the points where
some synchronization was detected. The start and the end points at which synchronization
of each particular order n : m was observed, were connected with the tip of the supposed
synchronization tongue in order to roughly outline its borderlines. The area in between the
borderlines of the tongue is shaded. The structure resembling the one of Arnold tongues is
revealed (compare with Fig. 6.16)

circle if no n : m synchronization was observed with n and m less than 10. A point
was filled with color or pattern if such synchronization was observed during suf-
ficiently long time intervals. The start and end points of an interval of breathing
frequencies, at which synchronization with a certain order n : m was observed, are
connected with the points (n : m, 0), i.e., with the supposed tips of the respective
tongues. The shaded areas roughly outline synchronization tongues. The picture in
Fig. 6.19 is only a cutoff of the full plane of parameters. The structure of synchro-
nization regions in the given parameter plane resembles the one that would be ob-
tained by crossing Fig. 6.16 along the same route. One can say that Arnold tongues
were revealed in a full-scale biological experiment.

n : m frequency synchronization between another pair of rhythms in the hu-
man cardiovascular system was systematically studied recently in [237], where the
rhythm with the basic frequency around 0.1 Hz was synchronized by means of paced
breathing in a range of frequencies with various synchronization orders.

6.8 Summary

In this chapter we have defined and illustrated the n : m synchronization in forced,
or unidirectionally coupled, systems. We hope to have convinced the reader that
with different synchronization orders, the mechanisms of synchronization remain
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the same as with the simplest 1 : 1 synchronization. Namely, both locking and sup-
pression are observed, although it was more difficult to observe the latter because
the synchronization tongues were bended strongly on the plane of the forcing para-
meters “detuning”–“forcing strength.”

The same phenomenon of n : m synchronization can occur if two or more oscil-
lators are coupled mutually, as demonstrated in [260] and in Chap. 11. Moreover,
not only periodic, but also chaotic and noise-induced oscillations can become syn-
chronized with the order n : m as will be shown in Sects. 8.6 and 13.2, respectively.

We would like to emphasize that synchronization of any order, i.e., with any ro-
tation number, is a robust effect. This means that it does not occur only at a single
carefully selected set of values of control parameters, but rather within a finite range
over each of them. A slight variation of, say, detuning between the interacting sub-
systems does not lead to the disappearance of the effect. An important consequence
of this is that synchronization is not destroyed by a small random perturbation—
while it remains small! This is of extreme importance from the viewpoint of appli-
cations and experiments with real-life and man-made devices, where random per-
turbations are inevitable. The case when random perturbation is not always small is
considered in Chap. 7.



7 1 : 1 Forced Synchronization of Periodic Oscillations
in the Presence of Noise

So far we have been considering forced synchronization of periodic oscillations in
the almost unrealistic situation where there was no other influence on the system
beyond the external periodic forcing. However, real-life objects are normally influ-
enced by random fluctuations, or noise, of various origins. Noise can originate from
random motion of molecules and atoms inside and outside the object, from fluctua-
tions of external parameters like humidity, temperature, illumination, concentration
of chemical elements, etc., influencing the values of the physical parameters of the
system. For example, random motion of electrons and ions in the elements of electric
circuits leads to fluctuations of instantaneous values of conductance or capacitance.

The question naturally arises if addition of random input to the system will in-
fluence its response to external periodic perturbation and generally the phenomenon
of synchronization.

Consider again the well-familiar van der Pol model of a periodic oscillator under
harmonic forcing, which is in addition subjected to the influence of noise ξ(t)

ẍ − (
λ − x2)ẋ + ω2

0x = B cos(Ωt) + ξ(t). (7.1)
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The problem of synchronization of periodic oscillations in the van der Pol system
in the presence of noise was solved by Stratonovich and co-authors [153, 277].

7.1 Introductory Comments on Random Processes

The readers who are familiar with the main ideas of the theory of random processes
are suggested to skip this section.

In the previous chapters we considered purely deterministic processes. The main
feature of such processes is that they are completely predictable: starting from ex-
actly the same initial conditions, one can run the process many times, and its real-
izations will be identical.

A random process is very different: one can launch the random process several
times from exactly the same initial conditions (perform a random experiment), and
realizations from different runs will generally be different. Moreover, one cannot
predict the outcome of a random experiment for sure, and any predictions can be
made only in probabilistic sense. They say that a random process is a random func-
tion of time.

In view of the above, one needs a special mathematical approach to characterize
a random process. The most general idea behind it is averaging over the ensemble
of realizations. Suppose we can run the same random process X(t) with the same
initial conditions as many times as we like: ideally, infinitely many times. With each
run, we record its realization ai(t), i = 1, 2, . . . . A random process X(t) can be
characterized by its average value 〈X(t)〉 (another term is “mean”) estimated by
averaging over the ensemble of its realizations ai(t) as follows:

〈X(t)〉 = lim
N→∞

1

N

N∑

i=−N

ai(t). (7.2)

〈X(t)〉 can change in time. However, although this approach might be convenient for
an experimentalist, it is not convenient for analytical estimates. A very helpful func-
tion that allows one to perform analytical calculations related to random processes
is a probability density distribution (PDD).

7.1.1 One-Dimensional Probability Density, Mean and Variance

One-dimensional probability density distribution (PDD) pX(x, t) is introduced as

pX(x, t) = lim
x→0

P {X(t) ∈ [x, x + x)}
x

(7.3)

and means the probability P with which the random process X(t) at the time mo-
ment t takes the value that falls within the interval [x, x + x), normalized by the
size of the interval x. If pX(x, t) is known, one does not need to repeat a random
experiment infinitely many times in order to find the average, since pX(x, t) al-



7.1 Introductory Comments on Random Processes 151

Fig. 7.1. Schematic illustrations of the one-dimensional probability density distributions
pX(x, t) of random processes with different averages 〈X(t)〉 and variances σ 2

X
(t). a 〈X(t)〉

is changing in time, σ 2
X

(t) is constant. b 〈X(t)〉 is constant, σ 2
X

(t) is changing. c Both 〈X(t)〉
and σ 2

X
(t) are changing. d Both 〈X(t)〉 and σ 2

X
(t) are constant. This pX(x, t) corresponds to

the first-order stationary process

ready contains all necessary information. Several kinds of behavior of pX(x, t) are
schematically illustrated in Fig. 7.1. In particular, in (a) pX(x, t) is shown with aver-
age value changing in time, which is visually accompanied by the moving position
of the maximum of pX(x, t).

With the help of pX(x, t), 〈X(t)〉 can be found as

〈X(t)〉 =
∫ ∞

∞
xpX(x, t) dx, (7.4)

which is an equivalent of averaging over the ensemble of realizations. In what fol-
lows, angular brackets 〈 〉 will denote average over the ensemble of realizations. In
the integral above, the value x that the process X(t) can take, enters with the or-
der one, and average 〈X(t)〉 is called the moment of the first order. Obviously, if
pX(x, t) = pX(x), i.e., does not depend on time, 〈X(t)〉 does not depend on time,
too (see Fig. 7.1(d)).

One can introduce other characteristics of the random process, e.g., mean square
〈X2(t)〉 as

〈
X2(t)

〉 =
∫ ∞

∞
x2pX(x, t) dx, (7.5)

which has the meaning of the ensemble average value of the square of the process.
However, sometimes it is more convenient to use variance σ 2

X(t)

σ 2
X(t) = 〈

X2(t)
〉 − 〈X(t)〉2. (7.6)

The broader the pX(x, t), the larger the variance is. It is worth noting that while
average 〈X(t)〉 might be constant, σ 2

X(t) does not have to be constant. In Fig. 7.1(b)
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Fig. 7.2. Illustrations of various random processes. In each panel a, b or c three realizations of
the same random processes are shown, launched from the same initial conditions. a Random
process whose average value changes in time. b Random process whose variance changes in
time. c Stationary random process

the pX(x, t) is given with variance σ 2
X(t) growing with time, which is reflected in

pX(x, t) becoming broader. With this, the average 〈X(t)〉 does not change in time.
In Fig. 7.1(c) 〈X(t)〉 moves from negative to positive values, and σ 2

X(t) grows with
time, making pX(x, t) broader and shifting its maximum towards positive values
of x. In Fig. 7.1(a)–(c) the pX(x, t) are changing with time in this or that way, which
is an indication of the non-stationary processes which are often the characteristics
of some transient, not established behavior.

In Fig. 7.2 each panel shows three different realizations of the same random
process: (a) illustrates the process whose average value changes in time which can
be seen as a trend in the realizations, (b) illustrates the process whose average is
constant in time, but the variance grows, (c) illustrates the stationary process.

7.1.2 Two-Dimensional Probability Density, Correlation and Covariance

One-dimensional PDD carries a limited amount of information about the random
process and does not describe if and how the values of the process at different time
moments are related to each other. To take account of the latter, one can introduce a
two-dimensional PDD pXX

2 (x, t, xτ , t + τ) of the random process X(t) as follows:

pXX
2 (x, t, xτ , t + τ)

= lim
x→0,

xτ →0

P {X(t) ∈ [x, x + x) & X(t + τ) ∈ [xτ , xτ + xτ )}
x xτ

. (7.7)
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It has the meaning of the probability with which two events happen simultaneously:
at the time moment t the process X(t) takes the values from [x, x + x), and at the
time moment t + τ the values from [xτ , xτ + xτ ). The superscript XX is used in
order to signify that the two events correspond to the same process X. It is difficult
to visualize pXX

2 , since it generally depends on four different arguments and hence
is rarely used on its own to characterize the process.

However, pXX
2 is used for characterization of the statistical relations between

different values of random processes at different time moments by means of corre-
lation function which is denoted here as K[X,Xτ ] in order to comply with the des-
ignations of [276, 277]. The letter K stands for correlation, square brackets [X,Xτ ]
refer to the processes between which correlation is considered—in our case between
the process X(t) (symbol X in square brackets) and its delayed version X(t + τ)

(symbol Xτ in square brackets). Correlation function K[X,Xτ ] is defined as

K[X,Xτ ] = 〈X(t)X(t + τ)〉
=

∫ ∞

−∞

∫ ∞

−∞
xxτp

XX
2 (x, t, xτ , t + τ) dx dxτ . (7.8)

When calculating K[X,Xτ ], an average has been made over all values the process
can take, and therefore the resulting function K[X,Xτ ] does not depend on them,
being a function of only two arguments: the current time moment t and the tempo-
ral distance τ from t . Correlation function has the meaning of the average product
of the values of the process at two different time moments. It is obvious, that the
largest value of K[X,Xτ ] occurs at τ = 0, since the largest statistical dependence
is between the values of the process at the same time moment. The argument τ

defines the temporal separation of the considered values x and xτ of the random
process. It is natural to assume that generally for real processes, the larger the time
separation τ between the moments is, the smaller the statistical dependence is be-
tween the respective values of the random process. However, this dependence is not
necessarily monotonous.

Perhaps, a more convenient function is covariance Ψ [X,Xτ ] defined as

Ψ [X,Xτ ] = 〈(
X(t) − 〈X(t)〉) × (

X(t + τ) − 〈X(t + τ)〉)〉

=
∫ ∞

−∞
(
x(t) − 〈X(t)〉)(x(t + τ) − 〈X(t + τ)〉)

× pXX
2 (x, t, xτ , t + τ) dx dxτ . (7.9)

The value of Ψ [X,Xτ ] at τ = 0 is in fact variance σ 2
X introduced above

σ 2
X(t) = Ψ [X,Xτ ]|τ=0. (7.10)

The meaning of Ψ [X,Xτ ] for some process X(t) is exactly the same as the meaning
of K[X̃, X̃τ ] for the centered process X̃(t), that is constructed by removing the
average value 〈X(t)〉 from the process X(t), i.e., X̃(t) = X(t) − 〈X(t)〉.
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The correlation and covariance are related as follows:

Ψ [X,Xτ ] = 〈(
X(t) − 〈X(t)〉)(X(t + τ) − 〈X(t + τ)〉)〉

= 〈
X(t)X(t + τ) − X(t)〈X(t + τ)〉
− 〈X(t)〉X(t + τ) + 〈X(t)〉〈X(t + τ)〉〉

= 〈X(t)X(t + τ)〉 − 〈X(t)〉〈X(t + τ)〉
− 〈X(t)〉〈X(t + τ)〉 + 〈X(t)〉〈X(t + τ)〉

= K[X,Xτ ] − 〈X(t)〉〈X(t + τ)〉. (7.11)

7.1.3 Stationary Process

In various applications, however, one is often interested in the processes that are
established after all the transients have died out. Such processes are referred to as
stationary. There are many degrees of stationarity, but in practical applications only
a couple of them appear most useful: first-order stationarity and wide sense sta-
tionarity. If the process is first-order stationary, its pX(x, t) does not change in time
(Fig. 7.1(d)). This does mean that the average 〈X〉 and the variance σ 2

X are constants,
but does not say anything about the relationship between the values at different time
moments.

A wide-sense stationary process is a process whose average 〈X〉 is constant,
power PX is finite, and covariance Ψ [X,Xτ ] depends only on the temporal dis-
tance τ between any two time moments considered, but does not depend on the
current time t . The function Ψ [X,Xτ ] of a wide-sense stationary process is even,
and the variance σ 2

X = Ψ [X,Xτ ]|τ=0 is the largest value the covariance can take.
Note that the power PX of the wide-sense stationary centered process is equal to
its variance σ 2

X, as will be shown later (see (7.20)). If a random process has some
well defined time scale, which is often visible in its oscillating realizations (like
in Fig. 7.2), its covariance oscillates as well. Moreover, for most real stationary
processes the envelope of covariance decays with τ , and the faster it decays, the
more random (more disordered, less coherent, less correlated) the process is. A typ-
ical covariance of a wide-sense stationary random process is shown schematically
in Fig. 7.3(a).

7.1.4 Correlation Time

Note that often it is not convenient to characterize the random process by the whole
function Ψ [X,Xτ ], especially as one needs to compare the properties of different
processes. It is much more convenient to have just one number to characterize the
degree of randomness of the process, and one can introduce correlation time tcor as,
e.g., in [276]

tcor = 1

σ 2
X

∫ ∞

0

∣∣Ψ [X,Xτ ](τ )
∣∣ dτ. (7.12)

The faster the envelope of Ψ [X,Xτ ](τ ) decays, the smaller the tcor is. Note that in
the definition (7.12) the integral is normalized by the value of variance, i.e., in fact
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Fig. 7.3. a A typical covariance of a wide-sense stationary random process with a well-defined
time scale. b Covariance of white noise shown schematically, since delta-function has infinite
value at τ = 0. c, d Spectra of the processes whose covariances are shown in a, b, respectively

by the power of the process, in order to make the quantity tcor to be independent of
it. Processes with different powers can have the same degree of order, and likewise
the processes with the same power can have different degrees of order.

7.1.5 Correlation Between Two Different Processes

In some applications one needs to assess the statistical relationships between dif-
ferent random processes X(t) and Y(t). One can introduce a joint two-dimensional
probability density distribution pXY

2 (x, t, yτ , t + τ) for them as

pXY
2 (x, t, yτ , t + τ)

= lim
x→0,

yτ →0

P {X(t) ∈ [x, x + x) & Y(t + τ) ∈ [yτ , yτ + yτ )}
x yτ

. (7.13)

By analogy, we can introduce the cross-correlation K[X, Yτ ] between the two
processes

K[X, Yτ ] = 〈X(t)Y (t + τ)〉
=

∫ ∞

−∞

∫ ∞

−∞
xxτp

XY
2 (x, t, yτ , t + τ) dx dyτ , (7.14)
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and cross-covariance Ψ [X, Yτ ]
Ψ [X, Yτ ] = 〈(

X(t) − 〈X(t)〉) × (
Y(t + τ) − 〈Y(t + τ)〉)〉

=
∫ ∞

−∞
(
x(t) − 〈X(t)〉)(y(t + τ) − 〈Y(t + τ)〉)

× pXY
2 (x, t, yτ , t + τ) dx dyτ . (7.15)

The relationship between K[X, Yτ ] and Ψ [X, Yτ ] is, by analogy with (7.11),

Ψ [X, Yτ ] = K[X, Yτ ] − 〈X(t)〉〈Y(t + τ)〉. (7.16)

7.1.6 Spectrum of a Wide-Sense Stationary Process

The last characteristic of a wide-sense stationary random process X(t) which we
will be using in this chapter is the power spectral density SX(ω), which we will
call “spectrum” for brevity. Spectrum is introduced via Wiener–Khintchine theorem
as a Fourier transform of the covariance.1 Hence, covariance is an inverse Fourier
transform of the spectrum, namely,

SX(ω) =
∫ ∞

−∞
Ψ [X,Xτ ](τ )e−iωτ dτ, (7.17)

Ψ [X,Xτ ](τ ) = 1

2π

∫ ∞

−∞
SX(ω)eiωτ dω, (7.18)

where ω is the radial frequency. From the property of the Fourier transform it fol-
lows that if the covariance oscillates with a certain time scale, this time scale will
be visible in the spectrum SX(ω) as a peak around some central frequency. If there
are two or more time scales involved, they will be visible in the spectrum as two or
more peaks. The spectrum of a process whose covariance is shown in Fig. 7.3(a) is
given in Fig. 7.3(c).

Meaning of the Spectrum

The power spectral density (spectrum) has the meaning of the distribution of the
power of the process over frequencies. If the spectrum has one peak, it means that
the power of the process is concentrated around the central frequency of this peak.
This property is illustrated in Fig. 7.3(a),(c): the covariance in (a) makes about eight
full oscillations within 50 time units, which corresponds to the average frequency
ω ≈ 8/50 × 2π ≈ 1. This frequency is the central frequency of the spectral peak
visible in (c).

1 Strictly speaking, Wiener–Khintchine theorem introduces the spectrum as a inverse
Fourier transform of correlation function K[X,Xτ ]. But in literature it is often assumed that
the mean value of the process X(t) is zero, and therefore correlation turns into covariance
according to (7.11).
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Power of the Process

The total power PX of a wide-sense stationary process X(t) is the integral of the
spectrum over all frequencies, divided by 2π:

PX = 1

2π

∫ ∞

−∞
SX(ω) dω. (7.19)

Division by 2π has to be done for the following reason. In real physical experiments,
people normally measure spectra as a power versus plain frequency f , rather than
radial frequency ω. The power is then calculated as PX = ∫ ∞

−∞ S(f ) df . In (7.19)
integration is made over radial frequencies ω which are related to f as ω = 2πf ,
and coefficient 2π is introduced in order to comply with the physically motivated
definition of the power as above. The relationship between the variance and the
power of the centered process can be explained by considering Ψ [X,Xτ ] at τ = 0
in (7.18) and remembering that it is equal to variance σ 2

X according to (7.10)

σ 2
X = Ψ [X,Xτ ]|τ=0 = 1

2π

∫ ∞

−∞
SX(ω)eiω×0 dω

= 1

2π

∫ ∞

−∞
SX(ω) dω = PX. (7.20)

Therefore, variance of a wide-sense stationary centered process is equal to its power.

Calculation of the Spectrum

Since the covariance of a wide-sense stationary process is an even function of τ , its
Fourier transform can be calculated as

SX(ω) = 1

2π

∫ ∞

−∞
Ψ [X,Xτ ](τ ) cos(ωτ) dτ

− i
1

2π

∫ ∞

−∞
Ψ [X,Xτ ](τ ) sin(ωτ) dτ

︸ ︷︷ ︸
=0

, (7.21)

and finally

SX(ω) = 1

2π

∫ ∞

−∞
Ψ [X,Xτ ](τ ) cos(ωτ) dτ. (7.22)

White Noise

When one needs to consider a process which is most random, it is convenient to
introduce an idea of “white noise.” Mathematically, white noise ξ(t) is a process
with zero mean 〈ξ(t)〉 = 0, whose covariance is a delta-function, i.e., Ψ [ξ, ξτ ] =
〈ξ(t)ξ(t + τ)〉 = δ(τ ), see Fig. 7.3(b). They say that this process is “delta-correla-
ted”. Note that, strictly speaking, white noise is not a wide-sense stationary process,
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since its power Pξ , which is the value of delta-function at τ = 0, is infinite. The
spectrum of white noise can be introduced by Wiener–Khintchine theorem (7.17)
and as was shown by (3.97) is equal to a constant,

Sξ (ω) = 1

2π
, (7.23)

which is illustrated by Fig. 7.3(d).

7.2 Truncated Equations

Our aim is to write down the truncated equations for the amplitude and phase of
forced oscillations with noise. We introduce new state variables A and ϕ such that
the solution of (7.1) has the form (3.5). We follow exactly the same approach as
without noise, and arrive at the equation similar to (3.17), but its right-hand part
contains one more term

ξ

iΩ
e−iΩt .

We proceed by analogy with (3.17), and then get rid of the deterministic fast terms
by averaging them over the period T of external forcing using (3.18), and arrive at
the following equation for the complex amplitude a:

ȧ + (ω2
0 − Ω2)

2iΩ
a − λ

2
a + 1

8
a|a|2 = −i

B

2Ω
− i

ξ

Ω
e−iΩt .

Note that ξe−iΩt is a random process, i.e., not a deterministic term, and we cannot
apply time averaging to it like to deterministic terms. Simplification of this term will
be considered in the next section. After we go from complex amplitude a to the real
amplitude A and phase ϕ, we arrive at the following set of truncated equations with
noise:

Ȧ = A

2

(
λ − 1

4

)
− B

2Ω
sin ϕ − ξ

Ω
sin(Ωt + ϕ) = FA,

(7.24)
ϕ̇ = Δ − B

2ΩA
cos ϕ − ξ

ΩA
cos(Ωt + ϕ) = Fϕ.

7.3 Simplification of the Fluctuational Terms in Truncated
Equations

In (7.24) in the right-hand parts FA and Fϕ one can single out the terms that depend
only on A and ϕ, and the terms that in addition depend on noise ξ

FA = GA(A, ϕ) + HA(A, ϕ, ξ),

Fϕ = Gϕ(A, ϕ) + Hϕ(A, ϕ, ξ),



7.3 Simplification of the Fluctuational Terms in Truncated Equations 159

where

GA = A

2

(
λ − 1

4

)
− B

2Ω
sin ϕ, HA = − ξ

Ω
sin(Ωt + ϕ), (7.25)

Gϕ = Δ − B

2ΩA
cos ϕ, Hϕ = ξ

ΩA
cos(Ωt + ϕ). (7.26)

The terms depending on ξ were called fluctuational terms by Stratonovich [277], and
their form as defined by (7.25)–(7.26) presents some difficulties for further analysis.
In [277] it was proposed to simplify (7.24) in order to make the fluctuational terms
more convenient. Of course, any simplification will be possible after one makes
additional assumptions on the properties of noise.

The simplification algorithm proposed by Stratonovich in [277] involves:

• Going from a stochastic differential equation to the Fokker–Planck (FP) equa-
tion that describes the evolution in time of the joint probability density distri-
bution (PDD) p of the variables A and ϕ (for brevity, we omit subscript 2 and
superscripts A,ϕ in the designation for the PDD).

• Simplification of the FP equation.
• Reconstructing the stochastic differential equations that correspond to the sim-

plified FP equation.

In this book we will not describe the general procedure of the derivation of a FP
equation from the stochastic differential equation, and we refer the reader to Chap. 4,
Sect. 9 of [276]. Here, we only quote the result we need: for a system of two sto-
chastic differential equations of the form

Ȧ = GA(A, ϕ) + HA(A, ϕ, ξ) = FA,

ϕ̇ = Gϕ(A, ϕ) + Hϕ(A, ϕ, ξ) = Fϕ

one can write a FP equation describing the evolution of the joint probability density
distribution p(A, ϕ, t) according to the following prescription:

∂p

∂t
= − ∂

∂A

{(
〈FA〉 +

∫ 0

t0−t

Ψ

[
∂FA

∂A
, FAτ

]
dτ +

∫ 0

t0−t

Ψ

[
∂FA

∂ϕ
, Fϕτ

]
dτ

)
p

}

− ∂

∂ϕ

{(
〈Fϕ〉 +

∫ 0

t0−t

Ψ

[
∂Fϕ

∂A
, FAτ

]
dτ +

∫ 0

t0−t

Ψ

[
∂Fϕ

∂ϕ
, Fϕτ

]
dτ

)
p

}

+ ∂2

∂A2

{(∫ 0

t0−t

Ψ [FA, FAτ ] dτ

)
p

}
+ ∂2

∂A ∂ϕ

{(∫ 0

t0−t

Ψ [FA, Fϕτ ] dτ

)
p

}

+ ∂2

∂ϕ ∂A

{(∫ 0

t0−t

Ψ [Fϕ, FAτ ] dτ

)
p

}
+ ∂2

∂ϕ2

{(∫ 0

t0−t

Ψ [Fϕ, Fϕτ ] dτ

)
p

}
.

(7.27)

Here, Ψ [R,Qτ ] is the cross-covariance of the two random processes R and Q de-
fined as (see (7.15), (7.16))

Ψ [R,Qτ ] = 〈RQτ 〉 − 〈R〉〈Qτ 〉.
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Here 〈 〉 denote averaging over the ensemble of realizations of the random process,
R is the first random process at the time moment t , and Qτ is another random
process at the time moment t + τ .

We further proceed by analogy with [277] where the equations of a slightly
different form were considered. Obviously, due to the external random influence ξ ,
the functions FA and Fϕ are random functions of time. The various covariances
that appear in (7.27) can be expressed as follows. For the start, consider the first
covariance

Ψ

[
∂FA

∂A
, FAτ

]
=

〈
∂FA

∂A
× FAτ

〉
−

〈
∂FA

∂A

〉
〈FAτ 〉

=
〈
∂(GA + HA)

∂A
× (GAτ + HAτ )

〉

−
〈
∂(GA + HA)

∂A

〉
〈GAτ + HAτ 〉. (7.28)

Because GA and ∂GA/∂A are deterministic functions of time, they are going to be
the same for any realization of random process ξ . Hence, their ensemble averages
〈GA〉 and 〈∂GA/∂A〉 are going to be the functions GA and ∂GA/∂A themselves,
i.e.,

〈GA〉 = GA,

〈
∂GA

∂A

〉
= ∂GA

∂A
. (7.29)

Also, the average of a product of a deterministic and a random functions, is the
product of the deterministic function and the average of the random function, i.e.,

Ψ

[
∂FA

∂A
, FAτ

]
= ∂GA

∂A
× GAτ + ∂GA

∂A
× 〈HAτ 〉 +

〈
∂HA

∂A

〉
× GAτ

+
〈
∂HA

∂A
× HAτ

〉
− ∂GA

∂A
× GAτ −

〈
∂HA

∂A

〉
× GAτ

−
〈
∂HA

∂A

〉
× GAτ −

〈
∂HA

∂A

〉
× 〈HAτ 〉. (7.30)

Some terms above cancel each other. Also, remember that the random process ξ has
zero average, hence from (7.25) HAτ has zero average, too. Finally one obtains

Ψ

[
∂FA

∂A
, FAτ

]
=

〈
∂HA

∂A
× HAτ

〉
. (7.31)

By analogy, one can calculate averages and covariances of other terms in (7.27)

〈FA〉 = GA, (7.32)

〈Fϕ〉 = Gϕ, (7.33)

Ψ

[
∂FA

∂A
, FAτ

]
=

〈
∂HA

∂A
× HAτ

〉
= 〈0 × HAτ 〉 = 0, (7.34)
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Ψ

[
∂FA

∂ϕ
, Fϕτ

]

=
〈
∂HA

∂ϕ
× Hϕτ

〉

=
〈
− ξ

Ω
cos(Ωt + ϕ) ×

(
− ξτ

ΩAτ

cos(Ωt + Ωτ + ϕτ )

)〉

= 〈ξξτ 〉 1

AτΩ2
cos(Ωt + ϕ) cos(Ωt + Ωτ + ϕτ )

= 〈ξξτ 〉 1

AτΩ2

1

2
[cos(Ωτ + ϕτ − ϕ) + cos(2Ωt + ϕ + Ωτ + ϕτ )].

For (7.27) we will need to calculate an integral of Ψ with respect to τ . With that
in mind, in the calculations above let us separate the terms which are independent
on τ :

Ψ

[
∂FA

∂ϕ
, Fϕτ

]

= 〈ξξτ 〉 1

2AτΩ2

[
cos(Ωτ + ϕτ − ϕ) + cos(2Ωt + 2ϕ) cos(Ωτ + ϕτ − ϕ)

− sin(2Ωt + 2ϕ) sin(Ωτ + ϕτ − ϕ)
]

= 〈ξξτ 〉 1

2AτΩ2

[
cos(Ωτ + ϕτ − ϕ)

(
1 + cos(2Ωt + 2ϕ)

)

− sin(Ωτ + ϕτ − ϕ) sin(2Ωt + 2ϕ)
]
.

Now, we need to take an integral of Ψ [∂FA/∂ϕ, Fϕτ ] over τ from (t0 − t) to 0,
where t0 is some initial time moment from which we start to consider the process.
Because we are interested in the established processes, we set t0 to minus infinity

∫ 0

−∞
Ψ

[
∂FA

∂ϕ
, Fϕτ

]
dτ

= 1 + cos(2Ωt + 2ϕ)

2AτΩ2

∫ 0

−∞
〈ξξτ 〉 cos(Ωτ + ϕτ − ϕ) dτ

− sin(2Ωt + 2ϕ)

2AτΩ2

∫ 0

−∞
〈ξξτ 〉 sin(Ωτ + ϕτ − ϕ) dτ. (7.35)

Formally, we are going to integrate over an infinite time interval. However, we make
an assumption that noise ξ is a fast random process with correlation time tcor much
less than the relaxation time of the system (7.1) and (7.24) that is of the order
1/(εω0), i.e.,

tcor � 1

εω0
.

In that case, the correlation function 〈ξξτ 〉 of ξ decays to zero in such time intervals,
during which the slow variables of the system (7.24) A and ϕ almost do not change.
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Hence, in the calculations above we regard A and ϕ as constants that do not change
with τ , i.e.,

A = Aτ , ϕ = ϕτ . (7.36)

Substitution of (7.36) into (7.35) gives

∫ 0

−∞
Ψ

[
∂FA

∂ϕ
, Fϕτ

]
dτ

= 1 + cos(2Ωt + 2ϕ)

2AΩ2

∫ 0

−∞
〈ξξτ 〉 cos(Ωτ) dτ

− sin(2Ωt + 2ϕ)

2AΩ2

∫ 0

−∞
〈ξξτ 〉 sin(Ωτ) dτ. (7.37)

Assume that ξ is a stationary process, then its correlation function 〈ξξτ 〉 depends
only on τ . In the expression above, the first integral is half of the Fourier transform
(FT) of 〈ξξτ 〉 at the frequency Ω , i.e., by Wiener–Khintchine theorem is half the
value of the power spectral density Sξ of the random process ξ at the frequency Ω .
The second integral is the imaginary part of the FT and is equal to zero. With this,
we obtain

∫ 0

−∞
Ψ

[
∂FA

∂ϕ
, Fϕτ

]
dτ = 1 + cos(2Ωt + 2ϕ)

4AΩ2
Sξ (Ω). (7.38)

We would like to further simplify the FP equation (7.27) and hence the term defined
by (7.38). We can again employ the Bogoliubov–Krylov method of averaging and
recall that A and ϕ are slowly varying functions of time (see (3.6)). Then we can
average each term of FP equation on a period of the external force Ω using (3.18).
Finally, we obtain

∫ 0

−∞
Ψ

[
∂FA

∂ϕ
, Fϕτ

]
dτ = 1

4AΩ2
Sξ (Ω). (7.39)

By analogy consider other terms of (7.27)

Ψ

[
∂Fϕ

∂A
, FAτ

]
=

〈
∂Hϕ

∂A
× HAτ

〉
= 0, (7.40)

Ψ

[
∂Fϕ

∂ϕ
, Fϕτ

]
=

〈
∂Hϕ

∂ϕ
× Hϕτ

〉
= 0, (7.41)

Ψ [FA, FAτ ] = 〈HAHAτ 〉 = 1

4Ω2
Sξ (Ω), (7.42)

Ψ [FA, Fϕτ ] = 〈HAHϕτ 〉 = 0, (7.43)

Ψ [Fϕ, FAτ ] = 〈HϕHAτ 〉 = 0, (7.44)

Ψ [Fϕ, Fϕτ ] = 〈HϕHϕτ 〉 = 1

4Ω2A2
Sξ (Ω). (7.45)
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In view of the above, (7.27) can be rewritten as

∂p

∂t
= − ∂

∂A

{(
GA +

∫ 0

−∞

〈
∂HA

∂A
× HAτ

〉
dτ +

∫ 0

−∞

〈
∂HA

∂ϕ
× Hϕτ

〉
dτ

)
p

}

− ∂

∂ϕ

{(
Gϕ +

∫ 0

−∞

〈
∂Hϕ

∂A
× HAτ

〉
dτ +

∫ 0

−∞

〈
∂Hϕ

∂ϕ
× Hϕτ

〉
dτ

)
p

}

+ ∂2

∂A2

{(∫ 0

−∞
〈HAHAτ 〉 dτ

)
p

}
+ ∂2

∂A ∂ϕ

{(∫ 0

−∞
〈HAHϕτ 〉 dτ

)
p

}

+ ∂2

∂ϕ ∂A

{(∫ 0

−∞
〈HϕHAτ 〉 dτ

)
p

}
+ ∂2

∂ϕ2

{(∫ 0

−∞
〈HϕHϕτ 〉 dτ

)
p

}
.

(7.46)

Substitute all terms in (7.32)–(7.33) and (7.40)–(7.45) into (7.27) or (7.46) to obtain

∂p

∂t
= − ∂

∂A

{(
GA + Sξ (Ω)

4AΩ2

)
p

}
− ∂

∂ϕ
{Gϕp}

+ ∂2

∂A2

{
Sξ (Ω)

4Ω2
p

}
+ ∂2

∂ϕ2

{
Sξ (Ω)

4Ω2A2
p

}
, (7.47)

where GA and Gϕ are as in (7.25). We have arrived at the Fokker–Planck equation
which is simplified by means of averaging over the period of the external force,
and thus of getting rid of fast terms. Now we would like to reconstruct stochastic
equations in the form

Ȧ = G̃A(A, ϕ) + H̃A(A, ϕ, η), (7.48)

ϕ̇ = G̃ϕ(A, ϕ) + H̃ϕ(A, ϕ, η), (7.49)

that would result in the simplified FP equation (7.47), if one wanted to construct it
following the recipe (7.27). Note that in general the stochastic equation can involve
more than one source of noise which is emphasized here by writing a noise vector
η = (η1, η2, . . .) rather than a scalar. In particular, we need to find the explicit
forms of functions G̃A, H̃A, G̃ϕ and H̃ϕ which might be different from GA, HA,
Gϕ and Hϕ . In order to do this, compare separate terms of (7.47) with the respective
terms of (7.46), remembering that all functions in the latter would be marked by
tildes. We observe that

∫ 0

−∞
〈H̃AH̃ϕτ 〉 dτ =

∫ 0

−∞
〈H̃ϕH̃Aτ 〉 dτ = 0,

which can be true if the processes H̃A and H̃ϕ are not correlated. This can be realized
if e.g. H̃A depends on the noise η1, while H̃ϕ on η2, η1 and η2 being uncorrelated.
If this is so, then the two pairs of processes ∂H̃A/∂ϕ and H̃ϕ , and ∂H̃ϕ/∂A and H̃A,
are not correlated, too, i.e.,

∫ 0

−∞

〈
∂H̃A

∂ϕ
× H̃ϕτ

〉
dτ =

∫ 0

−∞

〈
∂H̃ϕ

∂A
× H̃Aτ

〉
dτ = 0. (7.50)
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Then

G̃A +
∫ 0

−∞

〈
∂H̃A

∂A
× H̃Aτ

〉
dτ = GA + Sξ (Ω)

4AΩ2
, (7.51)

G̃ϕ +
∫ 0

−∞

〈
∂H̃ϕ

∂ϕ
× H̃ϕτ

〉
dτ = Gϕ, (7.52)

where G̃ and H̃ correspond to (7.48), (7.49), and G and H to (7.25), (7.26). Now
consider

∫ 0

−∞
〈H̃AH̃Aτ 〉 dτ = Sξ (Ω)

4Ω2
. (7.53)

If H̃A depended on A, the integral above would have depended on A, too. But it does
not, so we conclude that H̃A is independent of A, and therefore ∂H̃A/∂A = 0. This
leads to the disappearance of the integral in (7.53), and the final expression for G̃A

is

G̃A = GA + Sξ (Ω)

4AΩ2
. (7.54)

Next, consider
∫ 0

−∞
〈H̃ϕH̃ϕτ 〉 dτ = Sξ (Ω)

4Ω2A2
. (7.55)

Here, the integral depends on A, but does not depend on ϕ, which means that H̃ϕ

explicitly depends on A, but not on ϕ. Then in (7.52) the term involving ∂H̃ϕ/∂ϕ

vanishes, and G̃ϕ is
G̃ϕ = Gϕ. (7.56)

Equation (7.55) can be valid if H̃ϕ is expressed as

H̃ϕ =
√

Sξ (Ω)√
2ΩA

η2, (7.57)

where η2 is delta-correlated noise with zero mean and unity variance, i.e.,

〈η2(t)〉 = 0, 〈η2(t)η2(t + τ)〉 = δ(τ ),
〈
η2

2(t)
〉 = 1.

One can substitute (7.57) into (7.55) to check that the equality would hold. Finally,
we need to find H̃A. From (7.53) we deduce that H̃A is independent both of A and
of ϕ. The following expression for H̃A would make (7.53) valid:

H̃A =
√

Sξ (Ω)√
2Ω

η1,

where η1 is delta-correlated noise with zero mean and unity variance, i.e.,

〈η1(t)〉 = 0, 〈η1(t)η1(t + τ)〉 = δ(τ ),
〈
η2

1(t)
〉 = 1.
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In order to enable H̃A and H̃ϕ to be uncorrelated, we require that η1 and η2 are
uncorrelated, too, i.e.,

〈η1(t)η2(t + τ)〉 ≡ 0.

Finally, the simplified stochastic differential equations that are roughly equivalent
to the original (7.24) have the form

Ȧ = A

2

(
λ − 1

4

)
− B

2Ω
sin ϕ + Sξ (Ω)

4AΩ2
+

√
Sξ (Ω)√

2Ω
η1, (7.58)

ϕ̇ = Δ − B

2ΩA
cos ϕ +

√
Sξ (Ω)√
2ΩA

η2. (7.59)

7.4 Probability Density Distribution of the Phase Difference

Consider the equations for the amplitude A and phase difference ϕ with simplified
fluctuational terms (7.58)–(7.59). Analysis of these equations still remains quite a
difficult problem, in spite of the simplification performed in the previous section.
Let us consider a special case when the amplitude of forcing signal is small

B � εA0, (7.60)

where A0 is the amplitude of the oscillations without harmonic forcing or noise,
i.e., at B = 0 and Sξ (Ω) = 0. By analogy with the deterministic case considered
in Sect. 3.4, the instantaneous amplitude A will not be very different from A0 in
average, which can be mathematically expressed as

〈(A − A0)
2〉

A2
0

� 1. (7.61)

In that case, a good approximation will be to replace A by A0 in (7.59)

ϕ̇ = Δ − B

2ΩA0
cos ϕ +

√
Sξ (Ω)√
2ΩA0

η2, (7.62)

and to treat it separately. For convenience denote

B

2ΩA0
= Δs,

√
Sξ (Ω)√
2ΩA0

= D, (7.63)

and rewrite (7.62) as

ϕ̇ = Δ − Δs cos ϕ + Dη2 = F, (7.64)

F = G + H, G = Δ − Δs cos ϕ, H = Dη2. (7.65)
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Let us write down a Fokker–Planck equation for the evolution of the one-dimension-
al probability density p(ϕ, t) corresponding to (7.64) using the one-dimensional
version of the recipe (7.27)

∂p

∂t
= − ∂

∂ϕ

{(
〈F 〉 +

∫ 0

−∞
Ψ

[
∂F

∂ϕ
, Fτ

]
dτ

)
p

}

+ ∂2

∂ϕ2

{(∫ 0

−∞
Ψ [F,Fτ ] dτ

)
p

}
. (7.66)

We find the components of the FP equation above

〈F 〉 = G = Δ − Δs cos ϕ, (7.67)

Ψ

[
∂F

∂ϕ
, Fτ

]
=

〈
∂H

∂ϕ
Hτ

〉
,

∂H

∂ϕ
= 0 ⇒ Ψ

[
∂F

∂ϕ
, Fτ

]
= 0, (7.68)

Ψ [F,Fτ ] = 〈HHτ 〉 = D2〈η2η2τ 〉 = D2δ(τ ). (7.69)

Substitution of (7.67)–(7.69) into (7.66) gives the FP equation for p(ϕ, t)

∂p

∂t
= − ∂

∂ϕ
{(Δ − Δs cos ϕ)p} + D2

2

∂2p

∂ϕ2
. (7.70)

Denote

J (ϕ) = (Δ − Δs cos ϕ)p − D2

2

∂p

∂ϕ
, (7.71)

where J (ϕ) is the probability current. In order to reduce the lengths of the formula
below, introduce the following designations:

Q = 2

D2
Δ, Qs = 2

D2
Δs, (7.72)

so that J (ϕ) is rewritten as

J (ϕ) = D2

2

[
(Q − Qs cos ϕ)p − ∂p

∂ϕ

]
. (7.73)

Then (7.70) can be rewritten as

∂p

∂t
+ ∂J

∂ϕ
= 0, (7.74)

which is the law of “conservation of probability.” We are interested in the stationary
PDD, i.e., the one that does not change in time, ∂p/∂t = 0. Then from (7.74) the
probability current J does not depend on ϕ, i.e., ∂J/∂ϕ = 0. Differentiate (7.73)
with respect to ϕ remembering that now J is a function of only ϕ and not of t , i.e.,
changing the partial derivatives to the straight ones

d2p

dϕ2
− d

dϕ
[(Q − Qs cos ϕ)p] = 0. (7.75)
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Let us solve this equation in order to find the stationary probability density distrib-
ution p(ϕ). After integrating (7.75) once, we find

dp

dϕ
− (Q − Qs cos ϕ)p = C1. (7.76)

First, we find a solution for the homogeneous form of the (7.76), i.e., when C1 = 0

dp

p
= (Q − Qs cos ϕ) dϕ, p ≥ 0,

(7.77)
ln p = (Qϕ − Qs sin ϕ) + C2.

Taking exponents of both parts, we obtain

p(ϕ) = Ce(Qϕ−Qs sin ϕ),

where C = eC2 . The solution of a non-homogeneous equation will be sought for in
the form

p(ϕ) = C(ϕ)e(Qϕ−Qs sin ϕ), (7.78)

i.e., where C is no longer a constant, but a function of ϕ. After substitution of (7.78)
into (7.76) we obtain

dC(ϕ)

dϕ
e(Qϕ−Qs sin ϕ) + C(ϕ)e(Qϕ−Qs sin ϕ)(Q − Qs cos ϕ)

− (Q − Qs cos ϕ)C(ϕ)e(Qϕ−Qs sin ϕ) = C1,

where the last two terms in the right-hand side cancel each other. The equation for
the unknown function C(ϕ) is therefore

dC(ϕ)

dϕ
e(Qϕ−Qs sin ϕ) = C1.

Direct integration gives

C(ϕ) =
∫ ϕ

C3

C1e(−Qψ+Qs sin ψ) dψ. (7.79)

Thus, from (7.78) we find the solution of (7.75), which is

p(ϕ) = C1e(Qϕ−Qs sin ϕ)

∫ ϕ

C3

e(−Qψ+Qs sin ψ) dψ. (7.80)

Two constants need to be determined: C1 and C3, and there are two conditions that
the function p(ϕ) has to satisfy, from which we can find them. The first is periodicity
condition stating that the PDD of some phase difference ϕ is the same as PDD of
ϕ + 2π, i.e.,

p(ϕ) = p(ϕ + 2π).
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Consider p(ϕ + 2π)

p(ϕ + 2π) = C1eQ2πe(Qϕ−Qs sin ϕ)

∫ ϕ+2π

C3

e(−Qψ+Qs sin ψ) dψ. (7.81)

Under the integral change variables ψ̃ = ψ − 2π, then the limits of integration will
change as well, so that

p(ϕ + 2π) = C1eQ2πe(Qϕ−Qs sin ϕ)

∫ ϕ

C3−2π

e(−Qψ̃−Q2π+Qs sin ψ̃) dψ̃

= C1e(Qϕ−Qs sin ϕ)

∫ ϕ

C3−2π

e(−Qψ+Qs sin ψ) dψ, (7.82)

where in the last integral tilde over ψ is omitted since it is only a dummy variable.
In order to enable the last expression to be equal to p(ϕ) defined by (7.80), one has
to set C3 to plus or minus infinity, C3 = ±∞, bearing in mind that −∞ − 2π =
−∞ and ∞ − 2π = ∞. Let us choose C3 = −∞ for now, and come back to
p(ϕ + 2π)

p(ϕ + 2π) = C1e2πQe(Qϕ−Qs sin ϕ)

∫ ϕ+2π

−∞
e(−Qψ+Qs sin ψ) dψ. (7.83)

Split the range of integration (−∞; ϕ + 2π] into an infinite number of intervals of
equal size 2π: . . . , (ϕ − 2πn − 2π; ϕ − 2πn], . . . , (ϕ − 4π − 2π; ϕ − 4π], (ϕ −
2π − 2π; ϕ − 2π], (ϕ − 2π; ϕ], (ϕ; ϕ + 2π]. Consider integrals over each of these
intervals

p(ϕ + 2π) = C1e2πQe(Qϕ−Qs sin ϕ)

×
(∫ ϕ+2π

ϕ

e(−Qψ+Qs sin ψ) dψ +
∫ ϕ

ϕ−2π

e(−Qψ+Qs sin ψ) dψ

+
∫ ϕ−2π

ϕ−4π

e(−Qψ+Qs sin ψ) dψ + · · ·
)

.

Consider, e.g., the third integral in the equation above, and introduce the change of
variables ψ̃ = ψ + 4π

∫ ϕ−2π

ϕ−4π

e(−Qψ+Qs sin ψ) dψ =
∫ ϕ+2π

ϕ

e(−Q(ψ̃−4π)+Qs sin ψ̃) dψ̃

= e4πQ

∫ ϕ+2π

ϕ

e(−Qψ+Qs sin ψ) dψ.

Similarly, each integral over the interval (ϕ − 2πn − 2π; ϕ − 2πn] can be reduced
to the integral over (ϕ; ϕ + 2π] that is multiplied by a constant exp(2π(n + 1)Q).
Finally, with account of periodicity condition we put p(ϕ) instead of p(ϕ +2π) and
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obtain

p(ϕ) = C1e2πQ
(
1 + e2πQ + e4πQ + · · ·)e(Qϕ−Qs sin ϕ)

×
∫ ϕ+2π

ϕ

e(−Qψ+Qs sin ψ) dψ. (7.84)

Denote

C1e2πQ
(
1 + e2πQ + e4πQ + · · ·) = 1

N
, (7.85)

so that N is

N = e−2πQ

C1(1 + e2πQ + e4πQ + · · ·) .
Note that provided that Q < 0, the infinite sum

(
1 + e2πQ + e4πQ + · · ·) = 1

1 − e2πQ
, (7.86)

and

N = e−2πQ − 1

C1
. (7.87)

7.4.1 Case of Q > 0

One might wonder what happens if Q > 0, since then (7.86) is no longer valid.
Remember, that in (7.82) one can choose C3 = +∞ and write p(ϕ+2π) by analogy
with the above as

p(ϕ + 2π)

= −C1e2πQe(Qϕ−Qs sin ϕ)

∫ ∞

ϕ+2π

e(−Qψ+Qs sin ψ) dψ

= −C1e2πQe(Qϕ−Qs sin ϕ)

×
(∫ ϕ+4π

ϕ+2π

e(−Qψ+Qs sin ψ) dψ +
∫ ϕ+6π

ϕ+4π

e(−Qψ+Qs sin ψ) dψ + · · ·
)

= −C1e2πQe(Qϕ−Qs sin ϕ)
(
e−2πQ + e−4πQ + e−6πQ + · · ·)

×
∫ ϕ+2π

ϕ

e(−Qψ+Qs sin ψ) dψ

= −C1e(Qϕ−Qs sin ϕ)
(
1 + e−2πQ + e−4πQ + · · ·)

×
∫ ϕ+2π

ϕ

e(−Qψ+Qs sin ψ) dψ

= −C1e(Qϕ−Qs sin ϕ) 1

1 − e−2πQ
×

∫ ϕ+2π

ϕ

e(−Qψ+Qs sin ψ) dψ

= C1e(Qϕ−Qs sin ϕ) 1

e−2πQ − 1
×

∫ ϕ+2π

ϕ

e(−Qψ+Qs sin ψ) dψ.
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One can denote N as in (7.87) and arrive at the equation below for p(ϕ). Therefore,
both for positive and negative Q we obtain the same expression for p(ϕ)

p(ϕ) = 1

N
e(Qϕ−Qs sin ϕ)

∫ ϕ+2π

ϕ

e(−Qψ+Qs sin ψ) dψ. (7.88)

We still need to find the constant C1, which can be done using normalization condi-
tion ∫ 2π

0
p(ϕ) dϕ = 1,

1

N

∫ 2π

0

(
e(Qϕ−Qs sin ϕ)

∫ ϕ+2π

ϕ

e(−Qψ+Qs sin ψ) dψ

)
dϕ = 1.

Introduce the new variable χ = ψ − ϕ. Note that ψ = χ + ϕ and dψ = dχ , since
ϕ is regarded as a constant while one considers the integral over ψ . Also, we need
to change the limits of integration of the inner integral: when ψ = ϕ, χ = 0, and
when ψ = ϕ + 2π, χ = 2π. Then

1

N

∫ 2π

0

(∫ 2π

0
e−Qχ+Qs(sin ϕ−sin ψ) dχ

)
dϕ = 1. (7.89)

Next, we need to transform the difference (sin ϕ − sin ψ) using trigonometric iden-
tity

sin ϕ − sin ψ = 2 cos

(
ψ + ϕ

2

)
sin

(
ψ − ϕ

2

)
.

Substituting into (7.89) gives

1

N

∫ 2π

0

(∫ 2π

0
e−Qχ+2Qs cos(χ/2+ϕ) sin(χ/2) dχ

)
dϕ = 1 (7.90)

and

N =
∫ 2π

0
e−Qχ

(∫ 2π

0
e2Qs cos(χ/2+ϕ) sin(χ/2) dϕ

)

︸ ︷︷ ︸
Î

dχ. (7.91)

In the last expression an integral Î is involved that cannot be expressed through sim-
pler functions. Such integrals can be, however, expressed through special functions
called Bessel functions, which will be described in the next section.

7.5 Bessel Functions

Bessel functions arise, e.g., as one tries to expand in a Fourier series the function
exp(ix sin t), where i is an imaginary unit, x is a real number and t is time, namely,

eix sin t =
∞∑

n=−∞
Jn(x)eint .



7.5 Bessel Functions 171

The Fourier coefficients (see, e.g., [134] for the basics of Fourier analysis) denoted
here as Jn are equal to

Jn(x) = 1

2π

∫ 2π

0
e−i(nt−x sin t) dt. (7.92)

Functions Jn(x) form a special class of functions that cannot be represented through
simpler functions—they are called Bessel functions of the first kind. With this, n is
the order of Bessel function, and x is its argument. Jn(x) in the form of (7.92) are
also called “integral representation of Bessel functions.” We will not go into math-
ematical detail of the origin and properties of these functions, but this information
can be found, e.g., in [4].

Note that the function J0(x), i.e., the function of the zeroth order, has the form

J0(x) = 1

2π

∫ 2π

0
eix sin t dt.

One can also introduce modified, or hyperbolic, Bessel functions In(x) which are
expressed via Jn(x) as

In(x) = i−nJn(ix). (7.93)

A modified Bessel function of the zeroth order has the form

I0(x) = 1

2π

∫ 2π

0
e−x sin t dt. (7.94)

The plot of I0(x) is given in Fig. 7.4(a). Note that this function is even, real,
I0(0) = 1, it increases monotonously as |x| grows, and its asymptotic behavior is
as follows [143]:

I0(x) → e|x|
√

2π|x| , |x| → ∞, (7.95)

as illustrated in Fig. 7.4(a) by thick grey line, as compared to thin black line showing
I0(x).

Fig. 7.4. a Graph of modified Bessel function of zeroth order I0(x) (black line) and of the
function e|x|/√2π|x| (grey line). b Graph of I−1

0 (x)
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7.6 Probability Density Distribution of the Phase Difference,
Continued

Compare (7.94) with Î in (7.91) of Sect. 7.4, and observe that Î can be reduced to
the form (7.94) by writing

Î =
∫ 2π

0
e2Qs sin(χ/2) cos(χ/2+ϕ) dϕ =

∫ 2π

0
e−2Qs sin(χ/2) sin(ϕ+χ/2−π/2) dϕ.

Introduce ϕ′ = ϕ +χ/2−π/2, then dϕ′ = dϕ, and the limits of integration are then
from (χ/2 − π/2) to (χ/2 + 3π/2)

Î =
∫ (χ/2+3π/2)

(χ/2−π/2)

e−2Qs sin(χ/2) sin(ϕ′) dϕ′.

Note that exp[−2Qs sin(χ/2)] does not depend on ϕ′ and does not participate in
integration. With this, sin ϕ′ is a periodic function with respect to ϕ′ with period
2π, and so is the function exp[sin(ϕ′)]. The integral of the latter function over any
interval over ϕ of the length 2π will be the same as the integral from 0 to 2π. Hence,
we can write

Î =
∫ 2π

0
e−2Qs sin(χ/2) sin(ϕ′) dϕ′,

which by comparison with (7.94) is

Î = 2πI0

(
2Qs sin

(
χ

2

))
. (7.96)

With account of (7.96), (7.91) can be rewritten as

N = 2π

∫ 2π

0
e−QχI0

(
2Qs sin

(
χ

2

))
dχ. (7.97)

Split the integral into two as follows:

N = 2π

[∫ π

0
e−QχI0

(
2Qs sin

(
χ

2

))
dχ

+
∫ 2π

π

e−QχI0

(
2Qs sin

(
χ

2

))
dχ

]
(7.98)

and introduce variable substitution which would be different for the first and the
second integrals

χ ′ =
{

1
2 (π − χ), 0 < χ < π,
1
2 (χ − π), π < χ < 2π.
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The borders of integration limits in terms of χ ′ are going to be as follows:

1st integral: χ = 0 ⇒ χ ′ = π

2
, χ = π ⇒ χ ′ = 0,

2nd integral: χ = π ⇒ χ ′ = 0, χ = 2π ⇒ χ ′ = π

2
.

Now we have to express χ and dχ via χ ′, which will be different for different
integration intervals, namely,

1st integral: χ = (π − 2χ ′), dχ = −2 dχ ′,
2nd integral: χ = (π + 2χ ′), dχ = 2 dχ ′.

Substitute χ , dχ and new integration limits into (7.98)

N = 2π

∫ 0

π/2
e−Q(π−2χ ′)I0

(
2Qs sin

(
π

2
− χ ′

))
× (−2) dχ ′

+ 2π

∫ π/2

0
e−Q(π+2χ ′)I0

(
2Qs sin

(
π

2
+ χ ′

))
× 2 dχ ′

= 4π

∫ π/2

0
e−πQe2χ ′QI0(2Qs cos χ ′) dχ ′

+ 4π

∫ π/2

0
e−πQe−2χ ′QI0(2Qs cos χ ′) dχ ′

= 4πe−Qπ

∫ π/2

0
I0(2Qs cos χ ′)2 (e2χ ′Q + e−2χ ′Q)

2︸ ︷︷ ︸
cosh(2Qχ ′)

dχ ′.

From that,

N = 8πe−Qπ

∫ π/2

0
cosh(2Qχ ′)I0(2Qs cos χ ′) dχ ′. (7.99)

In the final step of calculating N let us use the following integral that can be found
in [97] on p. 716, Sect. 6.681, formula 3:

∫ π/2

0
cos(2μx)I2ν(2a cos x) dx = π

2
Iν−μ(a) Iν+μ(a). (7.100)

Compare (7.99) with (7.100) and observe that (7.99) can be rewritten in the form of
(7.100) if one uses the following identity:

cosh(x) = cos(ix) (7.101)

and takes ν = 0. Namely,

N = 8πe−Qπ

∫ π/2

0
cos(2iQχ ′)I0(2Qs cos χ ′) dχ ′, (7.102)

and using (7.100) it is equal to

N = 4π2e−QπI−iQ(Qs)IiQ(Qs). (7.103)
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This is an expression for N given in terms of Bessel functions, which is an analytic
expression.

In order to understand how the product I−iQ(Qs)IiQ(Qs) can be calculated nu-
merically, let us also give N in terms of integrals by using (7.92) and (7.93)

I−iQ(Qs) = iiQ
1

2π

∫ 2π

0
e−i(−iQt−iQs sin t) dt

= iiQ
1

2π

∫ 2π

0
e(−Qt−Qs sin t) dt,

IiQ(Qs) = i−iQ 1

2π

∫ 2π

0
e−i(iQt−iQs sin t) dt (7.104)

= i−iQ 1

2π

∫ 2π

0
e(Qt−Qs sin t) dt,

I−iQ(Qs)IiQ(Qs) = 1

(2π)2

∫ 2π

0
e(−Qt−Qs sin t) dt

∫ 2π

0
e(Qt ′−Qs sin t ′) dt ′.

Hence, N can be rewritten as

N = e−Qπ

∫ 2π

0
e(−Qt−Qs sin t) dt

∫ 2π

0
e(Qt ′−Qs sin t ′) dt ′, (7.105)

where Q and Qs are defined by (7.72) together with (7.63). Finally, the probability
density p(ϕ) is expressed by (7.88) with N defined by (7.103) or (7.105).

7.7 Mean Frequency of Forced Oscillations with Noise

Remember, that the full phase ψ(t) of forced oscillations is defined by (3.7). The
derivative ψ̇(t) of the full phase defines the instantaneous frequency of forced os-
cillations, and the derivative averaged over the ensemble of realizations (statistical
average) 〈ψ̇(t)〉 defines the mean frequency of forced oscillations. From (3.7) it
follows that

〈ψ̇(t)〉 = Ω + 〈ϕ̇(t)〉. (7.106)

We know forcing frequency Ω , therefore we need to estimate 〈ϕ̇(t)〉, i.e., the statis-
tical average of the right-hand side of (7.64)

〈ϕ̇〉 = 〈Δ − Δs cos ϕ + Dη2〉 where 〈η2〉 = 0. (7.107)

In order to do this, we need stationary probability density distribution p(ϕ), which
was found in Sect. 7.6. Then 〈ϕ̇(t)〉 is equal to

〈ϕ̇(t)〉 =
∫ 2π

0
(Δ − Δs cos ϕ)p(ϕ) dϕ.
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From (7.71) it follows that

〈ϕ̇(t)〉 =
∫ 2π

0

(
J (ϕ) + D2

2

dp(ϕ)

dϕ

)
dϕ =

∫ 2π

0
J (ϕ) dϕ + D2

2

∫ 2π

0
dp

=
∫ 2π

0
J (ϕ) dϕ + D2

2
(p|ϕ=0 − p|ϕ=2π)
︸ ︷︷ ︸

=0

=
∫ 2π

0
J (ϕ) dϕ.

From (7.74) it follows that since we are considering a stationary probability density
distribution p(ϕ) for which dp(ϕ)/dt = 0, then dJ (ϕ)/dϕ = 0, i.e., J = const and

〈ϕ̇(t)〉 = 2πJ, (7.108)

where J is defined by

J (ϕ) = D2

2

[
(Q − Qs cos ϕ)p − dp

dϕ

]
. (7.109)

The last expression is the same as (7.73), but with straight derivative of p. p(ϕ) is
known, and we only need to find dp/dϕ by differentiating (7.88), bearing in mind
that N is a constant. In (7.88) denote

Î =
∫ ϕ+2π

ϕ

e(−Qψ+Qs sin ψ)
︸ ︷︷ ︸

=A

dψ. (7.110)

To take a derivative of Î whose limits of integration depend on ϕ, we use the funda-
mental theorem of calculus

d

dx

(∫ x

0
f (t) dt

)
= f (x). (7.111)

We can represent an integral in (7.110) as

Î =
∫ ϕ+2π

0
A dψ −

∫ ϕ

0
A dψ (7.112)

and use (7.111) to obtain

d

dϕ
Î = d

dϕ

(∫ ϕ+2π

0
A dψ

)
− d

dϕ

(∫ ϕ

0
A dψ

)

= e(−Q(ϕ+2π)+Qs sin(ϕ+2π)) − e(−Qϕ+Qs sin ϕ)

= e(−Qϕ+Qs sin ϕ)
(
e−2πQ − 1

)
.

Use the last result when differentiating (7.88)

dp

dϕ
= 1

N
e(Qϕ−Qs sin ϕ)(Q − Qs cos ϕ)

∫ ϕ+2π

ϕ

A dψ

+ 1

N
e(Qϕ−Qs sin ϕ)e(−Qϕ+Qs sin ϕ)

(
e−2πQ − 1

)
. (7.113)
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Substitute (7.113) into (7.109)

J = D2

2

[
(Q − Qs cos ϕ)

1

N
e(Qϕ−Qs sin ϕ)

∫ ϕ+2π

ϕ

A dψ

− 1

N
e(Qϕ−Qs sin ϕ)(Q − Qs cos ϕ)

∫ ϕ+2π

ϕ

A dψ − 1

N

(
e−2πQ − 1

)]

= D2

2

1 − e−2πQ

N
.

Hence, from (7.108) 〈ϕ̇(t)〉 is

〈ϕ̇(t)〉 = πD2

N

(
1 − e−2πQ

) = πD2

N

(
1 − e−2πQ

) × 2e−πQ

2e−πQ

= 2πD2

N
e−πQ (eπQ − e−πQ)

2
.

Finally,

〈ϕ̇(t)〉 = 2πD2

N
e−πQ sinh πQ (7.114)

with N defined by (7.103) or (7.105), and Q by (7.72), in which Δ is defined
by (3.20).

By analogy with forced oscillations without noise considered in Sect. 3.11, we
can call |〈ϕ̇〉| mean beat frequency. Consider forced van der Pol oscillator with
noise (7.1) with λ = 0.1, ω0 = 1, B = 0.01 and the values of forcing frequency Ω

close to 1, i.e., around the 1 : 1 locking region outlined in Fig. 3.5. In Fig. 7.5, |〈ϕ̇〉|
versus Ω estimated from (7.114) is shown by black lines for four different non-zero
noise intensities D, from the smallest D = 0.02 given by the lowest curve, to the
largest D = 0.5 (strong noise) given by the upper curve. Grey line shows analyt-
ical estimate of |〈ϕ̇〉| without noise by formula (3.106). One can see that if noise
is weak, the beat frequency demonstrates a plateau inside the locking region, just
like in the case of noiseless oscillations (also compare with Fig. 3.16), although the
slope of it is slightly non-zero. However, the stronger the noise, the larger the slope
of the plateau becomes, and in the limit of very strong noise (D → ∞)2 the plateau
vanishes completely and the dependence takes the form

|〈ϕ̇〉| = |ω0 − Ω|.
Quantitatively the case of D → ∞ looks almost indistinguishable from the case of
D = 0.5 illustrated in Fig. 7.5.

Note that in experiments where only the forcing frequency Ω is being changed,
we would normally detect synchronization by the presence of the plateau in the
graph of beat frequency. If there is no plateau, we would say there is no synchro-
nization. The strong noise destroys synchronization, in some sense overriding the
effect of periodic forcing on the system, hence there will be no plateau.

2 The case of an infinitely large noise is a mathematical abstraction here, since in reality
when noise becomes too large, the whole dynamics is very smeared and it becomes impossi-
ble to introduce the phase of oscillations correctly.
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Fig. 7.5. Mean beat frequency |〈ϕ̇〉| of forced oscillations with noise versus the forcing fre-
quency Ω around 1 : 1 phase locking region for several different noise intensities D. In (7.1)
the parameters are set as: λ = 0.1, ω0 = 1, B = 0.01. Grey line shows |〈ϕ̇〉| without noise,
i.e., at D = 0 (compare with Fig. 3.16). Black lines show |〈ϕ̇〉| at non-zero noise intensities D,
starting from D = 0.02 (lowest curve) and ending with D = 0.5 (upper curves)

7.8 Interpretation of Phase Dynamics

Consider (7.64) describing the dynamics of phase difference ϕ between the response
and the forcing. One can interpret the behavior of ϕ as the behavior of a particle in a
potential V that has the shape described by minus integral over ϕ of the deterministic
part of the right-hand side G(ϕ) in (7.64), (7.65) i.e.,

V (ϕ) = −Δϕ + Δs sin ϕ. (7.115)

This is illustrated in Fig. 7.6. In (a) the parameters of the forcing are chosen to be
such that in the absence of noise the system is inside the synchronization (locking)
region, i.e., Δs > Δ, meaning that the amplitude B of forcing is big enough to
induce synchronization with the given detuning Δ. Three values of Δ are illustrated:
the left part (Δ > 0), the middle (Δ = 0) and the right part (Δ < 0) of the locking
region. When Δ > 0 and Δs > Δ (upper panel of Fig. 7.6(a)), the particle under
the influence of noise oscillates around one of the local minima of the potential
well. If the applied noise has Gaussian distribution, i.e., is able to take any value at
least occasionally, then whatever the barrier height, sooner or later the perturbation
will achieve a value that would be enough to kick the particle over the barrier. The
particle does jump to the neighboring well from time to time, and these jumps,
or phase slips, represent a random process. With each jump to the right, ϕ increases
by 2π, and with each jump to the left it decreases by the same value. It is much easier
for the particle to overcome the lower barriers to the left than to the right, so the
preferred direction of particle drift is to the right, although the jumps in the opposite
direction are not impossible. The phase difference ϕ will in average decrease with
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Fig. 7.6. Schematic illustration of the behavior of phase difference ϕ as a particle in an in-
clined potential V (ϕ), see (7.64) and (7.115). a Inside the noise-free synchronization region,
Δs > |Δ|. b Outside the noise-free synchronization region, Δs < |Δ|

time unboundedly. In Fig. 7.6(a), the second row illustrates the behavior of ϕ in the
middle of synchronization region (Δ = 0). Whatever the amplitude B of forcing is,
the particle with equal probability jumps to the left or to the right, and in average
ϕ does not change. Third row of Fig. 7.6(a) illustrates the case in the right-hand
part of synchronization region, Ω > ω0. In this case ϕ drifts preferably to the
left. Generally, inside synchronization region phase difference displays plateaus of
certain duration that correspond to the state of phase locking, interrupted by jumps
by 2π. The average duration of staying within each potential well is proportional to
the strength of synchronization.

In Fig. 7.6(b) the situation is illustrated schematically for the case when the forc-
ing parameters are such that in the noise-free case the system is outside the locking
region. In that case there are no potential wells for ϕ, and it slides down the surface
in this or that direction, depending on the sign of detuning Δ.

Now let us follow the evolution of the phase difference in time in a full system
describing forced periodic oscillations with noise. Consider van der Pol equations
with external forcing in a slightly different form than (3.3), namely,

ẋ = y,
(7.116)

ẏ = λ
(
1 − x2)y − ω2

0x + B cos(Ωt) + D̃ξ(t).

Here as before, λ = 0.2 is non-linearity parameter, ω0 is the frequency of self-
oscillations just at birth (i.e., at λ = 0), B is the strength of external forcing and
Ω is the forcing frequency. ξ(t) is Gaussian white noise with zero mean and unity
variance, and D̃ is the strength of applied noise. In the absence of noise, bifurcation
diagram in the vicinity of 1 : 1 synchronization region looks as shown in Fig. 7.7.
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Fig. 7.7. (Color online) The vicinity of 1 : 1 synchronization region of a forced van der
Pol system as described by (7.116) with λ = 0.2. Solid lines: saddle-node bifurcations;
dashed: torus birth

We start from considering small amplitudes B of forcing in order to match the con-
ditions of Stratonovich theory described in Sects. 7.4–7.7. In particular, consider
point A inside locking region (Ω = 1.0118 and C = 0.06).

When numerically calculating the phase difference between the forcing and the
response, it is convenient to rewrite the original equations (7.116) in terms of am-
plitude A and phase ψ by introducing x(t) = A(t) cos ψ(t) and y(t) = ẋ(t) =
A(t) sin ψ(t) and to arrive at the following equations:

Ȧ = λ
(
1 − A2 cos2 ψ

)
A sin2 ψ + A sin ψ cos ψ − ω2

0A cos ψ sin ψ

+ B cos Ωt sin ψ + D̃ξ sin ψ,
(7.117)

ψ̇ = λ
(
1 − A2 cos2 ψ

)
sin ψ cos ψ − sin2 ψ − ω2

0 cos2 ψ

+ B

A
cos Ωt cos ψ + D̃

A
ξ cos ψ.

Without noise (D̃ = 0), the difference ϕ between the phase ψ of the forced oscil-
lations and that of the forcing Ωt calculated from the full system (7.117) oscillates
with a small amplitude around a horizontal line, as compared to the straight line that
results from the approximate truncated equations (7.64) for ϕ.

Note, that the noise strength D in (7.64) is not equal to D̃ in (7.117). When
noise is included, the phase difference ϕ starts to jump both in the original equa-
tions (7.116)–(7.117) and in the truncated equations (7.64).

In Fig. 7.8, upper panel, we illustrate what happens when the phase slip occurs
in (7.116): the phase difference gradually slips by 2π. It is interesting to observe
what happens to the realizations of the response and of the forcing during the phase
slip. In Fig. 7.8, lower panel, the realization x(t) of (7.116) is given, on which its
values are superimposed that are taken when the forcing is at the same (arbitrary)
phase, i.e., in fact the values of the stroboscopic section of x. One can see that
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Fig. 7.8. Illustration of a phase slip in a forced van der Pol system with noise (7.116), (7.117)
with λ = 0.2, Ω = 1.0118, B = 0.06 and D̃ = 0.05. Upper panel: phase difference ϕ

gradually slipping by 2π. Lower panel: Realization x (solid line) and the values of x at the
same phase of forcing, i.e., the values of its stroboscopic section (circles)

while phase difference is oscillating around the constant level around −4.2, each
time the forcing makes one full oscillation, x is at approximately the same stage, in
our case near its maximum. However during the phase slip the stroboscopic values
of x run through all possible values, and after the phase slip ends, return to the
original value around the maximum. Thus, phase slip can be noticed either in the
plot of phase difference, or in the realization of the stroboscopic section. Another
illustration of what happens when noise affects the phase-locked system is given
in Fig. 7.9 (first column), where the phase differences are shown for three different
values D̃ of noise intensity. It is clearly seen that as noise becomes stronger, the
number of phase slips per time unit grows (first column). In the second column,
the respective stroboscopic sections are given by black points, together with the
manifold of the resonant torus of the noise-free system and the two cycles: stable
(black circle) and saddle (white circle). Obviously, noise smears the stable cycle and
the phase trajectories visit larger vicinities of it. But in addition to that, in terms of
the phase space phase slip corresponds to the event when noise throws the phase
point outside the delimiting stable manifold of the saddle cycle (not shown), so that
the phase point makes full rotation along the surface of the torus before it comes
back to the vicinity of the stable cycle.

7.9 Phase Diffusion

Strictly speaking, in the presence of unbounded noise there is no synchronization in
its classical sense, because the phase difference ϕ does not oscillate around some
fixed value, but rather occasionally jumps, or slips. However, the phase slips can
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Fig. 7.9. Noise destroying a phase-locked periodic motion in a forced van der Pol oscilla-
tor (7.116). Different values of noise D̃ are given to the right of each row. First column:
Phase difference ϕ between the system and the forcing. Second column: Stroboscopic sec-
tion. Third column: Spectra of x1

either occur quite often, or be rare events, and it is clear that in the former case the
system is further away from its synchronized state than in the latter case. In [174]
Malakhov has proposed the concept of effective synchronization. Following his ter-
minology, we can say that the effectiveness of synchronization is associated with
the frequency of phase slips: the more often phase slips occur, the further away the
system is from the synchronized state. A general method to assess the effectiveness
was described, e.g., in [153] which is based on the observation of the phase differ-
ence. Each panel of Fig. 7.10 shows 15 different realizations of the phase difference
ϕ/2π between the response and the forcing for a forced van der Pol system with
noise (7.117) at Ω = 1.0018 and B = 0.06, corresponding to 15 different realiza-
tions of noise ξ(t) with the same intensity D̃ indicated to the right of each panel.
For the convenience of comparison between different noise intensities, the ordinates
of the two panels have the same scale. ϕ in these figures in normalized by 2π, so
that one can clearly see that the size of each step is 1. The mean slope of ϕ is equal
to the mean beat frequency 〈ϕ̇〉, and it is evident that at smaller noise D̃ = 0.05
it is smaller than at larger noise D̃ = 0.1, as predicted by theory (compare with
Fig. 7.5).

Using the terminology introduced in Sect. 7.1, in Fig. 7.10 there are 15 real-
izations of the same random experiment that was launched from the same initial
conditions. If we look at these realizations carefully, we will notice that at some
time t1 > 0 there is a certain range of values that ϕ can take. At some larger time
moment t2 > t1, the range of values taken by ϕ is larger than at t1. At each time
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Fig. 7.10. 15 realizations of phase difference ϕ between the response and the forcing corre-
sponding to 15 different realizations of noise ξ(t) with the same intensity D̃ shown to the right
of each panel. Data are obtained by numerical simulation of (7.117) at λ = 0.2, Ω = 1.0018
and B = 0.06. Each time the system was launched from the same initial conditions

moment t , the random process governing the evolution of ϕ can be characterized by
a probability density distribution p1(ϕ, t) and its moments: mean value 〈ϕ(t)〉 and
variance σ 2

ϕ (t). At the initial time moment t = 0 the probability density distribu-
tion (PDD) p1(ϕ, 0) was Dirac delta-function δ(ϕ − ϕ0), where ϕ0 is some initial
phase difference, and the process had zero variance σ 2

ϕ (0) = 0. With the increase of
time t , the mean value becomes negative in our case and decreases, while p1(ϕ, t)

is smeared. This means that the variance σ 2
ϕ (t) grows in time. Therefore, the PDD

behaves like in Fig. 7.1(c), only it starts with a delta-function at t = 0.
Even from observing these realizations one can notice that at different D̃ the

ranges of possible values of ϕ grow in time with different velocities: the larger the
noise, the faster. The average velocity of growth of the variance σ 2

ϕ (t) can serve
a measure of how quickly the phase diffuses. A diffusion coefficient Deff can be
introduced as

Deff = lim
t→∞

σ 2
ϕ (t)

2t
= lim

t→∞
〈ϕ2(t)〉 − 〈ϕ(t)〉2

2t
. (7.118)

The larger the value of Deff, the further the system is from the synchronized state.
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7.10 Full-Scale Biological Experiment

We would like to illustrate the phenomenon of 1 : 1 phase synchronization in the
presence of noise by a full-scale biological experiment. Consider a human cardio-
vascular system. It is well-known that our hearts are self-sustained systems that
demonstrate non-damped oscillations. Moreover, it is equally well established that
although the heart does have some well-defined time scale of its beatings, the time
intervals between the successive beats are not the same and are distributed within a
certain range of values. The interbeat intervals are often referred to as RR-intervals.
Of course, there is a lot of random influence that is applied to the heart either from
inside the rest of the human body, or from the outside.

In [22, 23] it was studied how weak non-invasive forcing in the form of a se-
quence of light and sound pulses could influence the heart rate of healthy volun-
teers. The main attention was paid to 1 : 1 synchronization by periodic forcing, and
it has been demonstrated that most subjects were able to adjust their heart rhythm
to a rhythmic signal whose frequency was close to that of the subjects. An easy
and popular way to detect the time scale associated with the heart beats is to reg-
ister an electrocardiogram (ECG)—a signal that reflects the electrical activity of
the human heart. A typical ECG of a healthy human is shown in Fig. 7.11(a). One
can notice that it has a very characteristic shape, and reproduces the same pattern
again and again with a certain accuracy. The sharpest peaks in the ECG are the so-
called R-peaks, and usually one introduces interbeat intervals as the time intervals
Ti between the successive R-peaks. In Fig. 7.11(b) a forcing signal is represented
schematically: at a certain time moment a red square appeared on the screen of the
computer and simultaneously a “beep” signal was generated. The duration of this
sound-and-light pulse was fixed at 0.1 sec. A volunteer was sitting comfortably in
an arm-chair in front of the computer responsible for the generation of the forcing
signal. The frequency of forcing was changed in the range ±25% of the average
heart rate of the subject. The difference between the forcing frequency and the av-
erage heart rate at rest, relative to the average heart rate at rest, was called detuning
Δ. The response to the forcing was recorded and processed for each value of Δ.

Fig. 7.11. (Color online) a A typical electrocardiogram (ECG) of a healthy human. Ti : inter-
beat interval. b A schematic representation of the forcing in the form of a sequence of light
and sound pulses
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Fig. 7.12. (Color online) Probability density distributions p1(Ti) of interbeat intervals Ti :
solid line—rest state immediately before the application of the forcing, shaded—in response
to the forcing signal, vertical lines show the positions of forcing period. The respective values
of frequency detuning Δ are given under the graphs

In Fig. 7.12 the probability density distributions p1(Ti) of interbeat intervals Ti

are shown: solid line—rest state without forcing immediately before the applica-
tion of the forcing, shaded—in response to the forcing signal, vertical lines show
the positions of forcing period. First of all, one can notice that forcing makes the
distribution sharper, more concentrated around some central value, which means
regularization of heart beats. Now let us recall the meaning of synchronization by
periodic forcing: the basic frequency of oscillations should coincide with the fre-
quency of forcing. The basic frequency of heart beats can be associated with the
most probable period of oscillations, which is the value of Ti at which the highest
maximum of p1(Ti) occurs. From Fig. 7.12 one can see that before the forcing was
applied, the most probable period of heart beats was different from the respective
value of forcing period (compare the highest maximum of the solid line with the po-
sition of the vertical line). However, application of forcing can change that. Namely,
at the values of the detuning Δ equal to 3% and 4.5% the most probable period of
heart beats coincides with the period of forcing marked by the vertical line, and this
implies that 1 : 1 synchronization takes place. However, when Δ is equal to 10%,
i.e., the detuning between the forcing and the heart is too large, the forcing period
is quite far away from the most probable period of heartbeats, and this means that
there is no 1 : 1 synchronization.

In Fig. 7.13 two characteristics are given for the same healthy volunteer at dif-
ferent values of frequency detuning Δ between the forcing and the average heart
rate at rest. (a) shows the ratio of the frequency of forcing ff to the frequency of
response fr, the latter being the inverse of the average RR-interval Ti in a subject
who is being subjected to the forcing. Compare this with Fig. 6.3(b) where the same
dependence is given for van der Pol oscillator under periodic forcing to ensure that
around Ω/ω0 = 1 the similarity between the experimental function and the numer-
ical one is quite remarkable. Namely, within the region of synchronization there are
distinct plateaus of these graphs. However, Fig. 6.3(b) illustrates a noise-free case,
and that is why all the plateaus there are strictly horizontal. In the full-scale experi-
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Fig. 7.13. Two quantities characterizing the response to a weak periodic forcing of the pattern
of heart beats of a healthy volunteer. a The ratio of the forcing frequency ff to the response
frequency fr, and b phase diffusion Deff against the detuning Δ

ment there is plenty of noisy influence of various sorts, and in full agreement with
Sect. 7.7 (see Fig. 7.5), the plateau in the experimental plot is slightly inclined.

In Fig. 7.13(a) forced frequency synchronization is illustrated, but what about
the phase one? For both ECG and the forcing one can introduce phases using (8.10).
Then one can calculate the phase difference and from that the effective phase diffu-
sion Deff that was introduced in Sect. 7.9. In Fig. 7.13(b) the phase diffusion Deff is
given for the same values of detuning Δ as in (a). Again, in full agreement with the
theory, Deff demonstrates a pronounced minimum inside synchronization region and
almost reaches the value of zero. Outside synchronization region, phase diffusion is
positive, and the further away from synchronization region, the larger Deff is.

We believe that the experiments with the weak noninvasive forcing applied to
healthy volunteers serve quite a good example of the Stratonovich’s theory in action.

7.11 Effects of Noise on the Spectrum of a Synchronized System

In Sect. 7.7 we considered the effects of noise on the mean frequency of forced os-
cillations 〈ϕ̇(t)〉. Following the analysis by Stratonovich, we have established that
the beat frequency 〈ψ̇(t)〉, by which the frequency of the synchronized system is
shifted away from the forcing frequency Ω under the influence of noise, is defined
by (7.114). Note, that the mean frequency 〈ψ̇(t)〉 of forced oscillations can be inter-
preted in terms of their power spectral density SX(ω), which has the meaning of the
probability density distribution of the power of the process over all frequencies (see
Sect. 7.1). Mean frequency 〈ψ̇(t)〉 is the mean value of this distribution,

〈ψ̇(t)〉 =
∫ ∞

0
ωSX(ω) dω ×

(∫ ∞

0
SX(ω) dω

)−1

. (7.119)

However, (7.114) does not give us any clue as to how the change in 〈ψ̇(t)〉 is linked
to the change in the spectrum of the process.
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Fig. 7.14. Upper panel: spectrum of a 1 : 1 synchronized system without noise. Lower pan-
els: the hypothesized changes of the spectrum due to noise, that could lead to the shift in the
mean frequency 〈ψ̇(t)〉 of forced oscillations. Left: The original spectrum peak is smeared
and shifted (wrong). Right: The original spectrum peak is smeared but stays at the same
position Ω . Another peak appears (correct)

When a distribution of some process changes its shape, its mean as well as other
moments change, too. The power spectral density of the synchronized weakly non-
linear system without noise in the first approximation has one delta-peak at the fre-
quency Ω of forcing (upper panel of Fig. 7.14). Addition of noise smears the peak
anyway, but what about its location? How should the spectrum change in order to
cause the shift of its mean frequency? One possibility is that the only spectral peak
is smeared and shifted in one direction (as shown in Fig. 7.14, lower left panel), and
with that the mean value would shift in the same direction, too. Another possibility
is that another peak appears to one side of the peak at Ω (as shown in Fig. 7.14,
lower right panel). Then the mean frequency would correspond to a value some-
where in between the two peaks. What possibility is realized when noise is applied
to a synchronized system?

Consider a very weak forcing. According to the linear response theory, the sys-
tem perturbed periodically and weakly must contain a spectrum peak at the fre-
quency of applied perturbation. Hence, in the limit of weak forcing the spectrum
of the forced system must contain a peak at Ω . If the system is synchronized by
forcing, there are no other peaks3 besides the one at Ω , and it must exist even in the
presence of noise. So the first hypothesis that the peak at Ω gives place to another
peak does not seem plausible. Therefore, we need to abandon it, and to consider
another option (Fig. 7.14, lower right panel).

3 At least in the close vicinity of Ω . If either the forced oscillator, or forcing are not weakly
non-linear, the spectrum peaks at the multiples of Ω might exist as well, but they are not
taken into account when we discuss the immediate vicinity of the main peak at Ω .
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Fig. 7.15. Scheme of electronic circuit modelled by (7.116)

Fig. 7.16. Spectra measured in a full-scale experiment with van der Pol circuit (Fig. 7.15).
a 1 : 1 phase locking; b 1 : 3 phase locking

Stratonovich [277] has shown by theoretical analysis that the picture in Fig. 7.14,
lower right panel, is correct, but we do not repeat his calculations here because they
are quite lengthy. Instead, we will illustrate the evolution of the spectra numeri-
cally. In Fig. 7.9 (third column) the spectra of the variable x of (7.116) are shown
at three different values of noise intensity D̃ [42]. Note, that the forcing frequency
Ω = 1.0118 here is larger than the frequency of unforced oscillations which is
approximately equal to 1. As predicted in [277], a new spectrum peak appears to
the left-hand side of the peak at the forcing frequency, whose position, height and
width depend on noise intensity. The mean frequency of oscillations is not equal
to Ω , but is shifted towards the unperturbed frequency 1 due to the appearance of
the additional peak induced by noise. In order to check the validity of theoretical
and numerical predictions, in [42] an experiment with the electric circuit described
by the van der Pol oscillator (3.3) was done. The scheme of the circuit is given
in Fig. 7.15, and the resulting spectra for 1 : 1 phase locking in Fig. 7.16(a). The
same parameters of the circuit and of the forcing were chosen as for illustrations in
Fig. 7.9, only slightly different noise intensities are illustrated. One can make sure
that in full agreement with the theory and with the numerical simulations, noise
induces a new spectral peak to the left of the peak at Ω .

In addition to 1 : 1 synchronization, experiments were done for 1 : 3 phase lock-
ing as well, where the forcing frequency was set to Ω = 0.33216 and forcing
strength to B = 0.3. The spectra with three different noise intensities D are given in
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Fig. 7.17. Noise effect on the van der Pol oscillator synchronized by locking, parameters
correspond to point A in Fig. 7.7. a Distance δ of the noise-induced peak from the main
peak at the forcing frequency Ω . b Regularity β of the noise-induced peak. Empty circles:
numerical simulation of (3.3); black triangles: experiment with the scheme in Fig. 7.15

Fig. 7.16(b) and testify to that the effect of the appearance of the noise-induced peak
seems to be a universal one whenever phase locking is being destroyed by noise.

Let us discuss the physical meaning of the noise-induced spectral peak. Impor-
tantly, noise induces in the system the motion that was absent without external ran-
dom fluctuations. This new motion is represented as excursions in the phase space
which occur randomly, but with a certain mean frequency. Obviously, the frequency
of the new spectrum peak is related to the frequency of these excursions. Also, the
respective phase slips can occur more or less regularly, which is associated with the
phenomenon of coherence resonance4 [87, 191, 210, 241, 267]. The latter phenom-
enon means that (i) noise applied to a dynamical system can induce a new kind of
motion that was not present without noise; (ii) there is a moderate value of noise in-
tensity at which the regularity or coherence, of this motion takes its maximal value.
So, counterintuitively, noise plays a constructive role by creating an additional rel-
atively ordered motion in the system. A more detailed description of this phenom-
enon can be found in Sect. 9.1. It is interesting to characterize the parameters of the
motion induced merely by external noise as it affects a synchronized system. The
following characteristics were introduced: the distance δ of the noise-induced peak
from the main one at Ω , and the regularity of the new motion. The first parameter is
straightforward, and δ as a function of D̃ is shown in Fig. 7.17(a) for both numerical
simulation and electronic experiment. At noise intensities close to zero, the position
of the noise-induced peak almost coincides with that of the main one. As the noise
intensity increases, the new peak moves away.

The parameter quantifying the regularity of the noise-induced motion needs to
be defined carefully, since noise changes the properties of both kinds of motion in
the system: oscillations in the phase-locked state and oscillations during the phase
slip. In order to assess the changes in the noise-induced motion only, the latter has
to be separated from the phase-locked one. This was done by artificially removing
the main spectrum peak by means of a band-stop filter and, to avoid the resultant
discontinuity in the spectrum, connecting the edges of the removed frequency range

4 Noise-induced phenomena are discussed in Chap. 9.



7.11 Effects of Noise on the Spectrum of a Synchronized System 189

with a straight line. Then the coherence β of the noise-induced motion was estimated
as the signal-to-noise ratio [87, 241] of the noise-induced peak using the method
described in Sect. 9.3 with (9.3). Figure 7.17(b) shows the coherence β of the noise-
induced peak as a function of noise intensity D̃ from numerical simulation (empty
circles) and from the experiment (black triangles). Both functions have a resonant
character characteristic of the phenomenon of coherence resonance, with β taking
its maximal value at an optimal noise intensity D̃ ≈ 0.2. The latter could be treated
as an evidence of noise-induced ordering.

7.11.1 Effect of Noise on the Spectrum of Oscillations Synchronized
by Suppression

One might wonder if noise can induce a new ordered motion only in the system that
is in the state of being phase-locked by an external forcing. What about the systems
whose dynamics is synchronized by another mechanism, e.g., suppression? We re-
mind the reader, that in the state of suppression the phase space no longer contains
a resonant torus that was present in the lower part of synchronization tongue and
illustrated in Fig. 7.9, second column. Inside the upper part of the tongue in Fig. 7.7
the phase space contains only a stable cycle. However, inside the tongue the proper-
ties of this cycle are not always the same: grey line signifies the transition between
the two types of the cycle stability, i.e., from a node in the central part of the tongue
to the focus in its peripheral part that contains point B corresponding to Ω = 1.129
and B = 0.48. It can be mentioned in advance that when the vicinity of the cycle
does not have any potential to oscillate, i.e., when the cycle is simply a node with
all real Floquet multipliers, noise is not able to induce an ordered motion. However,
the cycle stability can be such that its Floquet multipliers are complex-conjugate,
and hence in the noise-free system the phase trajectories tend to the cycle while
winding around it. In that case noise is capable of inducing these rotations on a
regular basis. We illustrate the evolution of stroboscopic sections and spectra of os-
cillations at point B in Fig. 7.7 with different values of noise intensity. In Fig. 7.18
the first column shows the stroboscopic sections, while the second column the cor-
responding spectra of oscillations influenced by external noise in (3.3). By analogy
with locking, noise appears to create a new peak to the right of the main one at Ω .
However, unlike with locking, the stroboscopic section does not demonstrate large
excursions in the phase space, since there are no guiding manifolds of the resonant
torus here. The noise only initiates rotations around the stable cycle with a certain
average frequency.

The distance δ of the new peak from the main one at Ω , and its regularity β,
are given in Fig. 7.19 both for numerical simulation of (3.3) and for the experiment.
As in case of locking, the system displays coherence resonance with the increase of
noise intensity D̃.

To summarize, on the way of destroying synchronization of periodic oscilla-
tions by a periodic forcing, noise creates a new kind of motion whose regularity
resonantly depends on the noise intensity. This phenomenon appears rather uni-
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Fig. 7.18. Noise destroying a periodic motion in a forced van der Pol oscillator (7.116) that is
synchronized by suppression. Different values of noise D̃ are given to the right of each row.
First column: Stroboscopic section. Second column: Spectra of x1

Fig. 7.19. Noise effect on the van der Pol oscillator synchronized by suppression, parameters
correspond to point B in Fig. 7.7. a Distance δ of the noise-induced peak from the main
peak at the forcing frequency Ω . b Regularity β of the noise-induced peak. Empty circles:
numerical simulation of (3.3); black triangles: experiment with the scheme in Fig. 7.15

versal, since it occurs either in phase-locked states, or in suppressed ones near the
boundary of synchronization region.



8 Chaos Synchronization

In the previous chapters we considered the synchronization of the simplest kinds of
oscillations, namely, of periodic ones. In this chapter we examine synchronization of
irregular oscillations which are associated with deterministic chaos. The concept of
deterministic chaos is an important paradigm for the understanding of quite a broad
range of phenomena, in which complex irregular oscillations play a crucial role.
Examples of these phenomena are turbulence [121, 164, 254], rhythmical activity
of living cells [92], population dynamics [182], charge transport in semiconductor
devices [261], etc.

One might find it quite natural to extend the idea of synchronization from pe-
riodic to chaotic oscillations, but what would this imply? On the one hand, non-
damped chaotic oscillations in dissipative systems are the rightful members of a
family of self-sustained oscillations,1 and as such are entitled to participate in syn-
chronization phenomena in principle. On the other hand, the properties of chaos are
so markedly different from the properties of regular oscillations, that were consid-
ered in this book so far, that the direct parallels are hardly possible. So what could
be expected from the interaction of two or more oscillators, at least one of which be-
ing chaotic? In order to answer this question, in the first instance we need to reveal
what it is that makes chaos so distinguishable from periodic oscillations. A reader
familiar with the features of chaotic attractors can skip Sect. 8.1.

1 See the definition of self-sustained oscillations in Sect. 2.3.
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8.1 What Is Chaos?

Nowadays, theory of deterministic chaos is quite well developed, and there are a
variety of textbooks devoted to this and related topics, e.g., [15, 101, 180, 199,
258, 262, 279]. This section explains the distinctive features of chaos that will be
essential as one considers interaction between different oscillators with at least one
chaotic among them. As before, we will describe the same phenomenon both in
terms of the phase space and of power spectral density.

8.1.1 Exponential Divergence of Phase Trajectories

The complexity of oscillations can be of a deterministic origin and be caused by the
sensitivity of the system to initial conditions. The latter means that if in the same
dynamical system with the same set of control parameters one launches two trajec-
tories from almost indistinguishably close initial conditions, with the course of time
they would diverge exponentially fast.2 Figure 8.1(a),(b) illustrates the sensitivity
of the phase trajectories to initial conditions on a chaotic attractor, using as an ex-
ample a famous paradigmatic system that can exhibit deterministic chaos, namely,
a Rössler oscillator whose equations read

ẋ = −ωy − z,

ẏ = ωx + αy, (8.1)

ż = β + z(x − μ).

This is arguably the simplest chaotic system with continuous time,3 because it has
only one non-linear term zx in its equations. Moreover, its dimension is only three,
which is the smallest dimension of the phase space of a system with continuous
time in which a chaotic attractor can live. At α = β = 0.2 and μ = 6.5, the
phase trajectory lies on a chaotic attractor which is born as a result of a sequence of
period-doubling bifurcations of a stable limit cycle that existed in the system, e.g.,
at μ = 3. In Fig. 8.1(a) two phase trajectories of Rössler system are shown that were
launched from close initial conditions (I.C.) in the vicinity of the point marked by
a filled circle. In Fig. 8.1(b) the corresponding realizations are given. The distance
between the two sets of initial conditions was of the order of 10−2. One can see that
in the beginning the trajectories are very close to each other, but the discrepancy
between them grows with the course of time.

2 To be precise, the distance between the two nearby trajectories grows exponentially in
time only when the trajectories remain close to each other. When the trajectories diverge
too much, the distance between them cannot grow according to an exponent of time, if only
because a chaotic attractor is of finite size and there is simply no room for separation that
would be larger than the largest diameter of the attractor.
3 There are simpler chaotic systems in the form of discrete maps, but they are beyond the

scope of this book.
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Fig. 8.1. (Color online) Illustration of deterministic chaos in Rössler system (8.1). a Two
phase trajectories (denoted by different colors) that start from very close initial conditions
(I.C. in the field of the figure) diverge with time. b Oscillations corresponding to the trajecto-
ries in a. c Spectrum of chaotic oscillations. In spite of complexity of oscillations, determin-
istic chaos can often be treated as a narrow-band process having a pronounced peak in the
spectrum

8.1.2 Chaos Properties in Terms of Phase Space

In terms of the phase space, periodic oscillations are represented by stable (attract-
ing) periodic orbits. Unlike them, chaotic oscillations are generally represented by
a set with a fractal structure (chaotic attractor) whose dimension is non-integer.
A typical example of a chaotic attractor is given in Fig. 8.1(a). There are several
typical bifurcation scenarios that lead to the formation of chaos. This chapter will
be devoted to chaos that is born as a result of an infinite cascade of period-doubling
bifurcations of a limit cycle. This type of chaos is often called Feigenbaum chaos
after a mathematician who was the first to reveal the universality of this scenario and
has created its theory [77, 78]. For this type of chaos synchronization theory is cur-
rently developed to the largest extent, and the typical synchronization mechanisms
are easier to understand using Feigenbaum chaos as an example.

Birth of Feigenbaum Chaos

In order to understand how chaos of Feigenbaum type can be born, let us perform
an experiment in our mind. Out of all control parameters of the dynamical sys-
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Fig. 8.2. (Color online) A schematic illustration of a cascade of period-doubling bifurcations
leading to the birth of Feigenbaum chaos. Black lines: stable cycles; grey lines: saddle cycles;
letters T , 2T and 4T indicate the approximate values of the periods of the cycles. a Before
the first bifurcation at μ = μ0; b after the first period-doubling bifurcation at μ = μ1; c after
the second period-doubling bifurcation at μ = μ2, see text for reference

tem choose one and call it μ. Suppose at a certain μ = μ0 the system demon-
strates periodic oscillations with period T and therefore has a stable limit cycle
in the phase space (Fig. 8.2(a)). Allow this parameter to increase gradually, and
follow the evolution of regimes in the system. Assume that at μ = μ1 the first
period-doubling bifurcation takes place. As a result, at μ slightly exceeding μ1
there are two periodic orbits (cycles) in the phase space of the system: one sta-
ble with period close to 2T , and one saddle with period close to T (Fig. 8.2(b)).
Assume that at μ = μ2 the second period-doubling bifurcation occurs. As a re-
sult, at μ slightly larger than μ2 there are three cycles in the phase space: one
stable with period close to 4T , and two saddle with periods close to 2T and T

(Fig. 8.2(c)). At the end of an infinite sequence of period-doubling bifurcations,
which by the way occurs within a finite range of the values of μ, there is an infinite
number of saddle cycles in the phase space with periods close to, but not exactly
equal to, nT , where n is integer number. And there are no stable limit cycles any
longer. What remains in the phase space forms a chaotic attractor of Feigenbaum
type.
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Skeleton of Feigenbaum Chaos

Imagine an infinite (countable) number of saddle cycles that are packed in a finite
volume of the phase space without intersecting each other. Bear in mind that this is
possible only in a phase space whose dimension is three or larger, since there can
be no saddle cycles in a two-dimensional space (plane). A collection of these cycles
form a skeleton of a chaotic attractor.

Consider a single saddle periodic orbit (a saddle cycle), which is an intersection
of two manifolds: a stable and an unstable one.4 A sketch of a saddle periodic orbit
in a three-dimensional phase space is given in Fig. 8.3. In the latter figure, a stable
manifold is shown as a surface going sideways, and an unstable manifold as a cylin-
drical surface. However, the stability properties of these manifolds can be swapped,
while their intersection will still be a saddle cycle.

For simplicity consider chaotic attractor in a three-dimensional phase space.
One might argue that there is nothing really surprising about all these cycles be-
ing jammed into a finite volume, because each saddle cycle is a one-dimensional
curve, and there is more than enough room for them to coexist comfortably in a
three-dimensional space (3D), which is true. However, remember that the saddle
cycles do not come on their own: they always carry a pair of their manifolds with
them. Note, that in 3D these manifolds will be two-dimensional. Now imagine an in-
finite number of two-dimensional surfaces (manifolds) that are ought to fit within a
finite volume of a 3D. Again, the dimension of each of these surfaces is less than the
dimension of the phase space, so in principle this should not be a problem. However,
these surfaces are not closed, i.e., for a single isolated saddle cycle they would either
go to infinity, or to some attractor, or to another saddle object. In case of a chaotic

Fig. 8.3. (Color online) A schematic representation of a saddle cycle in a three-dimensional
phase space. Curvy cylinder: unstable manifold; surface going sideways: stable manifold.
Two manifolds intersect at a closed curve (black line) which is a saddle periodic orbit (saddle
cycle)

4 For properties of manifolds see Sect. 5.1.
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attractor, there is no “other attractor” in the volume being discussed. The manifolds
are still allowed to end at the infinity or at another saddle cycle, but imagine millions
of them that start within a small volume of the phase space and try to find their ways.
Whereas in fact there is much more of them that a million, or indeed than any other
finite number whatever large! At least some of them will be bound to touch each
other or to intersect, resulting in a hugely intricate homo(hetero)clinic structure.

It would be too difficult to illustrate even one intersection of two manifolds in the
full 3D, so consider the Poincaré section instead. In Fig. 8.4 an intersection of two
pairs of manifolds of two different saddle cycles is illustrated. We haste to note here
that this illustration is very schematic and should not be regarded as mathematically
accurate. The reason is that an accurate picture is immensely more complicated and
is virtually impossible to sketch. Nevertheless, Fig. 8.4 does emphasize the main fea-
ture of manifolds’ intersection, namely, two manifolds cannot intersect just once. If
they intersect, they do so infinitely many times and make infinitely many horseshoes
in the phase space.

This means that within a finite volume, intersection of only two manifolds will
lead to a very intricate structure of the phase space. Now imagine that there are
infinitely many manifolds intersecting with each other. Moreover, snake-like struc-
tures shown in Fig. 8.4 also intersect. In addition to that, it has been proved that
in the vicinity of such a structure there exists an infinite number of periodic orbits
among which there can be stable ones [15], and this structure is often referred to
as non-hyperbolic attractor. It suffices to say that the structure of the phase space
around the skeleton of the chaotic attractor is extremely tangled, apparently beyond
imagination. The phase trajectories are winding around this skeleton, while obey-
ing the ground rules: it never crosses manifolds, and if approaches one of them,

Fig. 8.4. A very schematic illustration of an intersection between the manifolds of two dif-
ferent saddle cycles. The picture is not accurate, since the real picture would be much more
complicated
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Fig. 8.5. a A fragment of a chaotic trajectory of Rössler system (8.1) and b seven unstable
periodic orbits embedded into the attractor shown in a at α = 0.165, β = 0.2, μ = 10

follows it for a while. Consequently, the pathway of the phase point becomes very
involved. What a drastic difference from a stable limit cycle! Note, that the skeleton
defines the topological features of the chaotic attractor [89] and in many respects its
dynamical properties as well [37, 99] (Fig. 8.5).

8.1.3 Chaos Properties in Terms of Spectra

What about the spectral properties of chaos? Feigenbaum chaos contains a countable
set of saddle periodic orbits whose periods are approximately equal to the multiples
of T . Therefore, the spectrum of chaotic oscillations of this type contains a pro-
nounced peak close to f = 1/T , and possibly peaks at harmonics and subharmon-
ics of f . However, oscillations are irregular, and their spectrum cannot be discrete.
In fact, it is continuous and contains components at all frequencies. A spectrum of
chaotic oscillations is illustrated in Fig. 8.1(c).

8.2 What Does Synchronization of Chaos Encompass?

Today synchronization of chaos is one of the central topics of contemporary non-
linear dynamics, which is confirmed by a large amount of publications devoted to
this problem (see [24, 52, 185, 214] for reviews, and references within for more
detail). In contrast to regular oscillations, the manifestations of chaos synchroniza-
tion are not so pronounced and obvious. To a large extent this is because the chaotic
oscillations have a continuous power spectral density, and therefore do not have a
determined period which would unambiguously define the time scale of oscillations.
Apparently, these factors would require different approaches to the understanding of
chaos synchronization. Each of these approaches is based on its own phenomeno-
logical definition of chaos synchronization that reflects different aspects of ordering
which can occur in cooperative dynamics of interacting chaotic systems.

8.2.1 Chaos Synchronization: Different Manifestations

For the first time the problems of interaction of the systems with chaotic dynamics
were considered in [8, 84, 154, 155, 207] that examined the effects of coupling on



198 8 Chaos Synchronization

the dynamics of interacting identical systems, each demonstrating chaotic behavior.
It was shown that for some sufficiently strong coupling the oscillations in interact-
ing chaotic systems become completely identical, even if the subsystems start from
different initial conditions. This phenomenon was called complete synchronization
of chaos [206], and in fact is the strongest manifestation of chaos synchronization.
However, complete synchronization is only possible in identical systems, while even
the slightest difference between the oscillators leads to the disappearance of the ex-
act coincidence of their phase trajectories. In order to extend this definition for non-
identical systems, the concept of almost complete synchronization was introduced
where synchronization was deemed to have been achieved if the distance between
the phase trajectories in interacting systems did not exceed some small value [8].
Later it was found that at a certain sufficiently small mismatch, the interacting sys-
tems can demonstrate almost identical oscillations, but shifted in time with respect
to each other by some time constant. This effect has acquired a name of lag syn-
chronization [248].

Summarizing, we note that in different works synchronization of chaos has been
associated with a series of effects, namely, the appearance of similarity in the dy-
namics of interacting oscillators [8], the decrease of the dimension of the attractor
in the joint dynamical systems [51, 163, 223], the occurrence of functional depen-
dence between the corresponding variables of coupled dynamical systems (general-
ized synchronization) [1, 255].

However, it was shown that synchronization of chaos can also be described in
its classical sense, i.e., in terms of frequencies and phases of interacting oscillations
[16–18, 208, 247].

8.2.2 Chaos Synchronization in a Classical Sense

Recall that with periodic forcing applied to a periodic oscillator, a synchronous
regime is a periodic one with frequency equal to the frequency of external forcing,
which is fairly simple (see Chap. 3). When noise comes into play and the spectrum
of oscillations becomes continuous (see Chap. 7), synchronization needs a broader
definition. Namely, the oscillations are regarded as 1 : 1 synchronous with forcing if
all three conditions below are satisfied simultaneously:

• The frequency of the highest spectral peak of forced oscillations coincides with
the frequency of forcing.

• The graph of phase difference ϕ(t) between the forcing and the response versus
time demonstrates plateaus.

• These plateaus are sufficiently long.

A special term was introduced to characterize this phenomenon: effective synchro-
nization [174].

Feigenbaum chaos which will be considered in this chapter is to some extent
similar to a periodic regime smeared by noise, namely, (i) its spectrum has a pro-
nounced peak, i.e., it is easy to single out a basic frequency of oscillations, and (ii) at
the first glance its phase portrait looks like a limit cycle smeared by noise, although
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we know that its structure is much more complicated than that. With this in mind,
it would be natural to define a synchronous chaos with the help of the same cri-
teria. One can also suggest that for chaos the same mechanisms of synchronization
might be valid, namely, phase (frequency) locking, suppression of natural dynamics,
and possibly via crisis.5 This approach was used in [16–18, 215] for the analysis of
synchronization of chaos in a full-scale experiment and in numerical simulation.

8.3 Phase and Basic Frequency of Chaotic Oscillations

The concept of phase of oscillations is easy to understand if one considers harmonic
oscillations s(t) = A cos(Ωt + ϕ0), also see Sect. 3.1. These oscillations are char-
acterized by the amplitude A and have a period T = 2π/Ω . The argument of the
cosine Φ(t) = Ωt + ϕ0 is called “phase.” On the plane (s,Ω−1ṡ), where ṡ is a
derivative of s with respect to time t , these oscillations are represented by the mo-
tion of the state point along the circle with radius A and the current angle of rotation
Φ(t). Thus one can single out the following main properties of the phase Φ:

1. Φ grows monotonously with time.
2. The increment of the phase by 2π corresponds to one full rotation of the state

(s, ṡ).
3. The slope Φ̇ of the dependence Φ on time t is equal to the angular frequency Ω

of oscillations.

In contrast to periodic oscillations, chaos does not have a unique period, which
makes introduction of a phase for chaotic oscillations quite a non-trivial problem.
At the moment there is no unique way to introduce a phase for deterministic chaos.
However, quite often chaotic oscillations x(t) can be regarded as a narrow-band
(quasi)random process, for which it is known that it might be approximated by a
signal with modulated phase and amplitude [153]

x(t) = A(t) cos Φ(t) = A(t) cos
(
ω0t + ϕ(t)

)
, (8.2)

where A(t) ≥ 0 is a random amplitude and ϕ(t) is a random component of phase.
In spite of its simplicity, such approximation has been shown to be quite accurate to
describe the statistical properties of a wide class of chaotic oscillations [25, 26], e.g.,
of those born as a result of a cascade of period-doubling bifurcations. The spectra
of chaotic oscillations quite often demonstrate pronounced peaks (Fig. 8.1(c)). Then
a criterion for the definition of a narrow-band chaos could be, for example, the
inequality ω � ω0, where ω0 is the central frequency of the main peak and ω

is the width of the peak at the half of its height. The frequency ω0 is sometimes
called basic frequency of chaotic oscillations. Obviously, the approximation (8.2)
is ambiguous, since for the given x(t) there are arbitrarily many ways to define
A(t) and ϕ(t), and, strictly speaking, even ω0. For example, if for the fixed ω0,

5 This has been considered in Chap. 5.
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x(t) changes during some time interval, it is impossible to state unambiguously if
this change was due to A(t) or to ϕ(t). Moreover, (8.2) does not change if ϕ(t) is
substituted by ϕ(t) ± 2πn, n = 0, 1, 2 . . . . In order to exclude the latter ambiguity,
we consider ϕ wrapped into the interval [−π,π).

One of the most popular ways to define the amplitude A(t) and the phase Φ(t) in
(8.2) involves Hilbert transform [85, 153]. Two signals x(t) and y(t) are connected
via Hilbert transform, if

x(t) = − 1

π

∫ ∞

−∞
y(t ′)
t − t ′

dt ′, y(t) = 1

π

∫ ∞

−∞
x(t ′)
t − t ′

dt ′, (8.3)

where the integrals are taken in the sense of Cauchy principal values. Then we can
formally introduce a complex signal η(t) often called analytic signal as follows:

η(t) = A(t) exp(iΦ(t)) = A(t) exp
[
i
(
ω0t + ϕ(t)

)] = x(t) + iy(t). (8.4)

We require that y(t) be expressed as

y(t) = A(t) sin Φ(t) = A(t) sin
(
ω0t + ϕ(t)

)
, |A(t)| ≥ 0, |ϕ| ≤ π, (8.5)

and is a Hilbert transform of x(t), which is the real part of analytic signal η(t). Using
the functions x(t) and y(t), the instantaneous amplitude A(t) and the instantaneous
phase Φ(t) can be defined unambiguously as

A(t) = |η(t)| =
√

x2(t) + y2(t), (8.6)

Φ(t) = arg(η(t)) = tan−1(y(t)/x(t)
)
. (8.7)

In this case the phase Φ can be geometrically understood as an angle of rotation
of a vector with the amplitude A(t) in some projection plane (x, y) as shown in
Fig. 8.6(a).

If the use of the narrow-band approximation is approved, one can consider syn-
chronization in its classical sense similarly to how it was done in Chaps. 3, 4, 5 and 6

Fig. 8.6. (Color online) Two ways to introduce phase for chaotic oscillations: a as an angle
of rotation of the phase trajectory in some projection; b via times Ti of trajectory return to a
certain Poincaré secant surface γ
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for periodic oscillations. That is, if there are two interacting systems that are char-
acterized by triplets of variables {A1,2(t), ω

0
1,2, Φ1,2(t)}, where subscripts mean the

numbers of the respective systems, then a criterion of synchronization can be the
following restriction imposed onto the phase difference:

Φnm(t) =
∣∣∣∣Φ1(t) − n

m
Φ2(t)

∣∣∣∣ < 2π, (8.8)

or a rational ratio of the basic frequencies that can be formally expressed as

nω0
1 − mω0

2 = 0. (8.9)

Remarkably, due to the ambiguity in the definition of the basic frequency ω0 for
chaotic oscillations, the criteria (8.8) and (8.9) do not always coincide. For example,

often as a characteristic frequency the mean frequency ω0 = Φ̇(t) of oscillations
is taken, where the overline denotes averaging over time and which is calculated
as in (3.89). Obviously, the frequency ω0 defined this way might not be equal to
the position of the most pronounced peak in the spectrum of chaotic oscillations.
Hence, the phase and frequency synchronization are sometimes regarded as different
phenomena in literature [131, 283, 284].

If one presumes that the 2π growth of phase corresponds to one full rotation of
the phase trajectory around some center, Poincaré section technique can sometimes
be used for the introduction of the phase. As illustrated in Fig. 8.6(b), one can define
a Poincaré secant surface γ and collect time moments Ti at which the phase trajec-
tory crosses the surface γ in the chosen direction, e.g., from left to right. Between
two successive intersections, i.e., during the time interval (Ti+1 − Ti) the phase
grows linearly by 2π. Then we can express phase Φ at any time moment t as

Φ(t) = t − Ti

Ti+1 − Ti

+ 2πi. (8.10)

Note that in order to be able to introduce phase like this, it is important to define the
section γ to be transversal to all phase trajectories on the attractor and in its vicinity.
Otherwise some rotations of the phase trajectory might not be taken into account,
and the quantity Φ might have essentially non-monotonous character, which would
contradict property 1 of the phase mentioned in the beginning of this section.

In cases when chaotic oscillations cannot be treated as narrow-band signals, the
correct introduction of the phase becomes quite a complicated problem. Although
the general concept of phase synchronization for such oscillations is still under de-
velopment, there are several approaches which might be useful in particular situa-
tions [123, 198, 245, 250].

8.4 Forcing Chaos Periodically: What to Expect?

Perhaps the most obvious question that comes into one’s mind when thinking about
synchronization in connection with chaos would be: “If periodic oscillations can be
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synchronized by periodic forcing, what about chaotic ones? And generally, what can
we expect from forcing chaos periodically?” In this section we will again use the
power of our mathematical imagination in order to predict the possible outcomes.

Consider a Feigenbaum chaotic attractor described in Sect. 8.1.2. We remind the
reader that the finite volume of the phase space that contains this attractor, also con-
tains a countable number of saddle cycles that form the attractor skeleton. Also, it
is good to bear in mind that if we are discussing only systems with continuous time,
the smallest dimension of the phase space where chaos can fit in, is three. Consider
the simplest case: Feigenbaum chaos in a three-dimensional phase space, to which
a periodic forcing of the simplest shape is applied. Note that periodic excitation in-
creases the dimension of the phase space of the system being forced by, at least,
one. Therefore, the smallest dimension of the phase space of a chaotic periodically
forced system is four, which is really difficult to visualize. By analogy with the case
of two reactively coupled periodic oscillators considered in Sect. 4.4, we will visu-
alize the whole picture in the Poincaré section, thus reducing the dimension of the
space to three.

Let us try to understand what effect can the periodic perturbation cause. Single
out just one saddle cycle out of the attractor skeleton. Its Poincaré section is shown
schematically in Fig. 8.7 (upper right panel), together with a projection (not a sec-
tion!) of a stable cycle which represents periodic forcing (upper left panel). A weak
periodic perturbation should make the saddle cycle undergo Neimark–Sacker bifur-
cation, which would have two implications. First, the cycle will acquire two more
unstable directions and become a thrice saddle cycle (empty circle in lower panel
of Fig. 8.7)—which in 4D means that it will become a repeller, since one direction
of any periodic orbit is always neutral. Secondly, a saddle torus might be born out
of the saddle cycle. We have already discussed a resonant saddle torus in Sect. 4.4
(Fig. 4.8(b)). A sketch of a Poincaré section of an ergodic saddle torus together with
its manifolds is shown in the lower panel of Fig. 8.7.

Note that in the unforced Feigenbaum chaos there is not just one, but infinitely
many saddle cycles. Therefore, in the phase space of a chaotic system that is forced
by a weak periodic signal there are

• infinitely many thrice saddle cycles (repellers in 4D)
• possibly infinitely many saddle tori packed within the finite volume6

For comparison and to remind you, in a similar situation the phase space of a period-
ically forced periodic system would contain only one twice saddle cycle (a repeller
in 3D) and one stable torus.

What possibilities would this structure of the phase space provide with regard
to synchronization? We can try to exploit our background in synchronization of
periodic oscillators and maybe draw some analogies. It would be natural to ask our-
selves: “If synchronization of chaos can take place by analogy with synchronization

6 Interestingly, the qualitative picture of the phase space structure in the Poincaré section of
the forced chaotic system would then be the same as the one in the full phase space of the un-
forced system, if we ignore the repellers. Therefore, this is a considerably more complicated
chaos.
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Fig. 8.7. (Color online) A schematic illustration of a periodic forcing applied to a system with
a saddle cycle. The objects involved are indicated in the field of the figure

of periodic oscillations, can we expect the same mechanisms of it?” Consider the
feasibility of phase (frequency) locking and of suppression of chaotic dynamics in
turn.

8.4.1 Phase Locking of Chaos

In periodic oscillations, phase locking is associated with the birth of a pair of cycles
on the surface of the stable torus. For chaos we can suggest that a similar bifurcation
can take place on the surfaces of the saddle tori, as a result of which a pair of cycles
would be born: saddle and twice saddle. Then these saddle tori will become resonant
with the structure shown in Fig. 4.8(b). If each of the infinite number of the saddle
tori becomes resonant, then the phase space acquires an infinite number of saddle
cycles packed within a finite volume. The latter could form a skeleton of a chaotic
attractor of Feigenbaum type, i.e., of the same type as the unforced chaos. All the
other objects in the phase space might continue to exist, and these would be: twice
saddle cycles, thrice saddle cycles (repellers in 4D), and resonant saddle tori with
their manifolds, with an infinite number of each. The latter objects would of course
complicate the general picture, but they would be less stable than saddle cycles with
a single unstable direction and therefore less visible in an experiment. If we ignore
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them, we can say that the (almost) original chaos is reincarnated in the system as a
result of phase locking on the saddle tori!

What should we expect for the bifurcation diagram on the plane of the forcing
parameters “frequency detuning”–“strength of forcing”? In a periodically forced
periodic oscillator there is just one line of a saddle-node bifurcation on the torus,
which forms the lower boundary of the synchronization tongue (see Fig. 4.14, first
row and first column). In a periodically forced chaotic system there are infinitely
many tori, and to expect them to become resonant at the same values of the control
parameters would really be to expect too much. Therefore, we could predict an infi-
nite number of lines of saddle-node bifurcations on the plane of control parameters.
If we are lucky, they are going to lie not too far away from each other. And if we are
extremely lucky, all of them would fit within a finite area of the parameter plane, like
the lines of period-doubling bifurcations do on the route to chaos. In that case, by
crossing the full bunch of these lines we would fall into the region of a phase-locked
chaos! This is where our imagination has taken us so far.

8.4.2 Suppression of Chaos

Recall that in periodically forced periodic oscillations, suppression of natural dy-
namics is associated with a torus death7 bifurcation of a stable torus, as a result of
which the torus shrinks to become a stable cycle. For a periodically forced chaotic
system one can envisage the same bifurcation occurring to the saddle torus: it can
shrink and finally merge with the repeller, i.e., black line in the lower panel of
Fig. 8.7 can shrink and merge with the empty circle. This bifurcation would take
away the two unstable directions of the cycle and make the cycle once saddle, just
like before the forcing was applied. However, the shape of this cycle might not be
exactly the same as without forcing. If all saddle tori undergo the torus death bifur-
cation, then there again will be infinitely many saddle cycles in a finite volume of
the phase space, which could make the skeleton of a chaotic attractor of the same
type that existed in the unforced system. This would imply that chaos is reborn via
suppression of natural dynamics! As to the bifurcation lines in the plane of parame-
ters “frequency detuning”–“strength of forcing,” we can again expect one for each
saddle torus, i.e., an infinite number of them. If they all fit within a finite area of
the parameter plane, crossing of this area would lead us to chaos synchronized via
suppression.

8.4.3 Any Other Options?

Yes, of course. We cannot help mentioning here that in addition to bifurcations of
regular solutions like cycles and tori, there are more bifurcations that can occur in a
chaotic system. Afraimovich and Shilnikov have proved [7], and later Anishchenko
et al. have confirmed in an experiment [19], that a torus can undergo a transforma-
tion called “torus breakdown” by losing its smoothness. As a result of that, torus will

7 Inverse torus birth, or Neimark–Sacker, bifurcation.
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be destroyed and instead a chaotic attractor will appear. Obviously, the same tran-
sition can occur in the opposite direction: chaos can regain smoothness (or rather
loose its non-smooth fractal structure) and turn into a torus. This has to be consid-
ered as a possibility.

What would it have to do with synchronization? If under certain parameters
of forcing chaos would turn into a stable torus, then this torus might obey the same
laws than the one in a periodically forced periodic system. Namely, it might undergo
torus death and turn into a stable cycle which would constitute a synchronized, but
non-chaotic regime.

8.4.4 Interacting Chaotic Systems

Here, it is pertinent to mention what one can expect in a more involved case when
one simplest chaotic system is forced by another simplest chaotic system. In this
case an infinite number of saddle periodic orbits, that represent the system being
forced, will be under the influence of another infinite set of saddle periodic orbits
representing the forcing system. By analogy with the above, we can assume that
this would mean the birth of an infinite number of non-stable tori, which will now
be twice saddle rather than simply saddle. These tori can be either ergodic, or reso-
nant.

What if two chaotic systems are coupled mutually? We can also expect the ex-
istence of an infinite number of saddle tori in their joint phase space. However,
from Chap. 4 we already know that mutual coupling would make the phase space
structure more complicated, as compared to the case of unidirectional coupling. To
summarize, interaction of chaotic systems should allow for the phenomena approx-
imately similar to the one occurring at periodic forcing of chaos, however, even
more options can be anticipated. Running a few steps ahead, note that two interact-
ing chaotic systems are analyzed in detail in Sect. 8.7, while a detailed experimental
and numerical study of unidirectionally coupled chaotic systems is made in [18,
165, 222, 247, 270].

In this section we have allowed ourselves to indulge in speculations about the
possible outcomes that might emerge out of periodically perturbing a chaotic attrac-
tor. It is time to stop and to check if anything of the above is true.

8.5 Synchronization of Chaos by Periodic Forcing

8.5.1 Experiment

In [16–18, 215] several cases of chaos synchronization were studied by means of
both full-scale experiment and numerical simulation. A model system used as a
chaos generator was the Anishchenko–Astakhov oscillator [15]. Periodically forced
chaos was modelled by coupling two of these generators unidirectionally, so that
the forcing unit was in a periodic regime, and the unit being forced in a chaotic one.



206 8 Chaos Synchronization

The equations read

ẋ1 = (m1 − z1)x1 + y1,

ẏ1 = −x1, (8.11)

ż1 = g
(
f (x1) − z1

)
,

ẋ2/p = (m2 − z2)x2 + y2 − B(x2 − 3x1) + B(y2 − 3py1),

ẏ2/p = −x2, (8.12)

ż2/p = g
(
f (x2) − z2

)
,

where

f (x) =
{

0, x < 0,
x2, x ≥ 0.

Equations (8.11) represent the oscillator that generates the forcing signal, and (8.12)
represent the oscillator being forced. A scheme of an experimental setup for these
oscillators is shown in Fig. 8.8.

At m1 = 0.7 and g = 0.3 the first system (8.11) is in a periodic regime whose
spectrum on the screen of an oscilloscope is given in Fig. 8.9, upper panel. At
m2 = 1.19 and g = 0.3 the second oscillator demonstrates chaotic oscillations
that correspond to a well-developed Feigenbaum chaos formed as a result of period-
doubling bifurcations, and its spectrum is shown in Fig. 8.9, lower panel. Parame-
ter p in (8.12) defines the frequency detuning between the subsystems as follows:
all the time derivatives of the system variables x2, y2 and z2 are divided by p, and
thus the time in this subsystem is slowed down if p > 1, and is sped up if p < 1.
p is equivalent to the frequency detuning denoted by the same symbol in Sect. 4.8.
B is the strength of forcing.

Fig. 8.8. Scheme of an experimental setup used to illustrate the phenomena of chaos synchro-
nization. Two Anishchenko–Astakhov oscillators are coupled unidirectionally via a buffer
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Fig. 8.9. Upper panel: spectrum of periodic oscillations in (8.11) (forcing system) at m = 0.7
and g = 0.3. Lower panel: spectrum of chaotic oscillations in (8.12) (the system to be forced)
at m = 1.19 and g = 0.3 without forcing (B = 0)

Note that, unlike in Chaps. 3, 7, 6 and Sect. 5.2, forcing in (8.11)–(8.12) is in-
cluded not by simply adding the signal from the forcing system to one of the sys-
tem’s equations. Instead, the forcing term has the form of a difference between the
variable of the forced system and the scaled variable of the forcing one, which is
rather by analogy with mutually coupled oscillators considered in Chap. 4. Also,
the coupling term actually consists of two components in the first of (8.12): both
the x1 and y1 variables from the forcing system are included. This particular form
of unidirectional coupling arises in the experiment as one tries to implement the
simplest and most natural way of connecting one electronic system to another.

In Fig. 8.10 the vicinity of 1 : 1 synchronization tongue is shown that was ob-
tained in a full-scale experiment. The lines in this figure were obtained as follows:
the physical features of the oscillatory regimes occurring in the experiment were
observed, such as phase portraits, realizations and spectra. When these features
changed drastically, on a qualitative level, it was believed that a qualitative tran-
sition similar to a bifurcation has occurred, and the respective set of forcing pa-
rameters (p,B) was attributed to a certain line. The designations are indicated in
figure caption.

The lower boundary of the tongue is the line at which a non-synchronous chaos
becomes synchronous via frequency locking. This transition is illustrated with the
evolution of spectra in the first row of Fig. 8.12 as one follows route A in Fig. 8.11.
Without forcing, the system demonstrates Feigenbaum chaos with a single well-
defined peak in the spectrum (first column). When forcing is applied (second col-
umn), one can see that another peak appears very close to the main one: but because
this is chaos whose spectrum is continuous, and also because the detuning p is very
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Fig. 8.10. (Color online) The vicinity of 1 : 1 synchronization region for a chaotic oscillator
forced by a periodic signal, see (8.11)–(8.12) with m1 = 0.7, m2 = 1.19 and g = 0.3. a Orig-
inal drawing from [215], b a revised version with only most essential lines. Designations in b:
C1 and C2 are synchronous chaotic regimes, CT is a non-synchronous chaos, T , 2T and 3T

are stable cycles with periods approximately equal to T1, 2T1 and 3T1, respectively. Grey line:
borderline between C1 and CT ; dashed line: inverse torus breakdown transition; solid black:
torus death (inverse Neimark–Sacker) bifurcation; dotted: period-doubling bifurcation; empty
circle: Takens–Bogdanov point (see Chap. 5)

Fig. 8.11. (Color online) The enlargement of Fig. 8.10(b). Several routes are marked by let-
ters, namely, A: p = 1.034, B: p = 1.039, C: p = 1.043, D: p = 1.058, E: p = 1.08.
Illustrations of these transitions are given in Fig. 8.12

close to 1, we can notice this mainly from the thickening of the main peak. Inside
synchronization tongue, there is again only one spectral peak which is at the position
of the forcing frequency. This is how frequency locking has taken place.

A few more transitions that can occur on the way inside synchronization region
via different routes are illustrated in Fig. 8.12: different rows correspond to routes
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Fig. 8.12. Illustration of several synchronization transitions in unidirectionally coupled
Anishchenko–Astakhov oscillators (8.11)–(8.12) with m1 = 0.7, m2 = 1.19 and g = 0.3,
i.e., when a chaotic oscillator is forced by a periodic signal. Spectra of forced oscillations are
shown, all pictures being the snapshots of the screens of oscilloscopes in a full-scale experi-
ment. Each row corresponds to a route marked from A to E in Fig. 8.11 at different values of
detuning p provided to the right of the row

from A to E indicated in Fig. 8.11. In all these routes, the detuning p is fixed at
a certain value and the forcing strength is increased. One can note that the end
points of these routes are different: routes A and B end at synchronized chaos C1,
route C ends at the period-four limit cycle 4T1, route D ends at the period-two limit
cycle 2T1, and route E ends at the period-one limit cycle T1. These transitions are
associated with locking in [16–18, 215].
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Fig. 8.13. Transition to chaos synchronization by suppression in (8.11)–(8.12) with m1 =
0.7, m2 = 1.19 and g = 0.3, i.e., when a chaotic oscillator is forced by a periodic signal.
Detuning is set to p = 1.13. Spectra and phase portraits of forced oscillations are shown, all
pictures being the snapshots of the screens of oscilloscopes in a full-scale experiment. Each
row corresponds to a different value of forcing strength B provided to the right of the row.
For reference, see Fig. 8.10

Consider a larger value of the detuning p = 1.13 and enter the synchroniza-
tion region in Fig. 8.10(b) by increasing B from zero to 0.03. The evolution of
spectra and of the phase portraits is illustrated in Fig. 8.13. To the right of each
row the respective values of B are given together with the designations for the
regime observed. This transition is associated with the suppression of natural dy-
namics. Namely, without forcing B = 0 the regime was chaotic C1, with the ba-
sic frequency f2. As forcing grows from zero to B = 0.01, its frequency f1 ap-
pears in the spectrum at a certain distance from f2, while the observed regime is
a non-synchronous chaos CT . At B = 0.019 we still observe the non-synchronous
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chaos CT , but now the peak at f1 corresponding to the forcing becomes higher than
the peak at f2 that is associated with the natural dynamics. At B = 0.028 the chaos
has turned into a torus T 2 via the inverse torus breakdown transformation, its spec-
trum is discrete and contains peaks at f1, f2, and at their combinations. Note, that the
peak at the forcing frequency f1 is higher than the one at the natural frequency f2.
At B = 0.03 the torus has died and the observed regime is a stable cycle with the
frequency f1 of external periodic forcing. Thus, suppression of natural dynamics
has taken place.

Is anything of the observed in the course of these experiments similar to the
picture we have created in our minds in Sect. 8.4? First of all, at stronger forcing an
inverse torus breakdown bifurcation has turned chaos into a stable torus. And then
this torus has shrunk to become a stable cycle inside the tongue. So, suppression
here is in fact the elimination of chaos. Although, remarkably, deeper inside the
tongue chaos is reestablished again.

As to the weaker forcing, frequency locking has indeed taken place, as it follows
from the spectra. But did it take place as a result of saddle-node bifurcations as we
have imagined in Sect. 8.4? This is impossible to tell yet, because the saddle-node
bifurcations are expected from saddle cycles that are invisible in an experiment. In
order to check this, a numerical analysis is required.

8.5.2 Numerical Analysis

In [16–18, 215] it was first suggested that the transition to chaos synchronization
via phase locking is associated with the saddle-node bifurcations of the saddle cy-
cles. There, the vicinity of the 1 : 1 forced synchronization of chaos in (8.11)–(8.12)
was obtained numerically with all parameters as in Sect. 8.5.1, only m1 was set
to 0.6 instead of 0.7—but the forcing system still demonstrated a periodic regime.
The bifurcation diagram on the plane of forcing parameters “detuning p”–“forcing
strength B” is given in Fig. 8.14: the original drawings from [215] are shown to-
gether with the clearer modern version. Solid grey lines in (b) denote saddle-node
bifurcations for a saddle and a twice saddle cycles, and one can see three such lines
that were revealed numerically. Solid black lines in (b) show saddle-node bifurca-
tions for a stable and a saddle cycle, and dotted lines show period-doubling bifurca-
tions for stable cycles.

It is of course impossible to plot an infinite number of bifurcation lines by means
of a numerical simulation. Moreover, in the late 1980s when this result was be-
ing obtained, powerful computers were not easily available and calculation of even
those saddle-node lines shown in Fig. 8.14 presented a significant challenge for a
researcher. And on top of that, unfortunately, even with the modern numerical tech-
niques available it is still impossible to prove or to refute the existence of the infinite
number of saddle tori in the phase space, and to check whether these bifurcations do
take place on their surfaces. But the numerical evidence at least does not contradict
the hypothesis of Sect. 8.4. For a more accurate numerical evidence we refer the
reader to Sect. 8.6.
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Fig. 8.14. (Color online) The vicinity of 1 : 1 synchronization region for a chaotic oscilla-
tor forced by a periodic signal (8.11)–(8.12)—numerical simulation. Parameter values are:
m1 = 0.6, m2 = 1.19 and g = 0.3. a The original drawing from [215] and b revised clearer
version. c and d are enlargements of two parts of the diagram in a, b. Lines in b are denoted
as: solid grey—saddle-node bifurcations involving saddle cycles, solid black—saddle-node
bifurcations of stable cycles, dotted—period-doubling bifurcations of stable cycles

8.6 Synchronization of Periodic Oscillations by Chaos

In this section we consider a different situation: assume that the system being forced
is periodic, but the forcing is chaotic. As an example, let the Rössler system [252]
drive the paradigmatic van der Pol oscillator. This way, the forced van der Pol system
would always have a chaotic attractor with one positive Lyapunov exponent, and any
bifurcations evoked by coupling would not affect the existence of chaos. Let us write
down the equations of our systems in the following form:

ẋ1 = −ω1y1 − z1,

ẏ1 = ω1x1 + αy1, (8.13)

ż1 = β + z1(x1 − μ),

ẋ2 = y2 + C(x1 − x2), (8.14)
ẏ2 = ε

(
1 − x2

2

)
y2 − ω2

2x2,
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Fig. 8.15. (Color online) Oscillations in the periodic oscillator forced chaotically (8.13)–
(8.14) at ω = 1.08 and two different values of forcing strength C: a C = 0.002, b C = 0.02.
Grey line denotes x1 of driving Rössler system (8.13), black line denotes x2 of the driven van
der Pol oscillations (8.14)

where (8.13) represent the forcing Rössler system and (8.14) the van der Pol os-
cillator being forced. Parameters α, β and μ determine the dynamics of Rössler
system, ε is the non-linearity parameter of the van der Pol oscillator, ω1 and ω2
define the time scales of two oscillators, respectively, and the parameter C is the
forcing strength. We fix α = β = 0.2, μ = 6.5, and ω1 = 1, at which Rössler
oscillator demonstrates a well-developed one-band chaos. ε was set to 0.2.

In Fig. 8.15 oscillations of driving (grey) and of driven (black) systems are pre-
sented for ω2 = 1.08 and two different values of C. Already from this figure one
can conclude that at larger C the systems oscillate more synchronously. For exam-
ple, the maxima of oscillations in the partial systems occur almost simultaneously
at larger C.

8.6.1 Spectra

In order to better understand the effect of coupling on cooperative dynamics in inter-
acting systems, let us examine how the spectra of oscillations evolve with variation
of forcing strength C. This evolution for ω2 = 1.08 is illustrated in Fig. 8.16. The
spectra of the forcing chaotic Rössler system are denoted by grey shaded areas,
while the spectra of the driven van der Pol system are represented by black shaded
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Fig. 8.16. (Color online) Locking of periodic oscillations by chaotic forcing in (8.13)–(8.14)
at ω2 = 1.08. Spectra of forcing (grey) and of response (black) for different values of forcing
strength C: a C = 0.002, b C = 0.006, c C = 0.008

areas. The driving system has a continuous spectrum with a distinct peak at the fre-
quency ω ≈ 1.07. At small C (Fig. 8.16(a)) the oscillations of the driven van der Pol
system have a spectrum with two characteristic peaks. One of them is at ω ≈ 1.07
and is the result of driving from the Rössler system, whereas the second one with
frequency ω ≈ ω2 = 1.08 corresponds to the own dynamics of the van der Pol
oscillator. Note that the third peak present in the spectrum of the van der Pol system
appears at the combination frequency. It reflects the fact of non-linear interaction be-
tween the two dynamical systems, and its position is completely defined by a linear
combination of two basic frequencies. As C grows, the spectral peak corresponding
to van der Pol dynamics moves towards the characteristic frequency of the Rössler
system (Fig. 8.16(b)), and at C ≈ 0.007 coincides with it. Further increase of C

does not change the characteristic frequencies of oscillators (Fig. 8.16(c)). If we
forget that the spectra of coupled oscillators are continuous, the scenario considered
here reminds of the forced synchronization of periodic oscillations via frequency
locking described in Sects. 3.9–3.10.

The system (8.13)–(8.14) demonstrates a very different behavior at ω2 = 1.2
(see Fig. 8.17). As before, the spectrum of the chaotically driven van der Pol os-
cillator has two characteristic peaks. However, in contrast to the previous case, the
increase of the forcing strength C practically does not change the position of the
peak related to the own dynamics of van der Pol oscillator. Instead, we can see
that the power of oscillations around ω2 drops with the increase of C, whereas the
peak at the forcing frequency grows. This can be explained as suppression of nat-
ural dynamics of the van der Pol oscillator by chaotic force. The reported behavior
of spectra is very similar to that typical of synchronization via suppression of nat-
ural dynamics occurring in a forced periodic oscillator (Sects. 3.9–3.10). Hence, the
transformations of spectra that accompany the onset of synchronization in chaotic
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Fig. 8.17. (Color online) Suppression of periodic oscillations by chaos in (8.13)–(8.14) at
ω = 1.2. Spectra of oscillations at different values of forcing strength C: a C = 0.002,
b C = 0.03, c C = 0.1

systems, are quite similar to what is observed for forced synchronization of periodic
oscillations.

In spite of the continuity of the spectrum of chaotic oscillations, one can still
single out two basic scenarios of synchronization. Namely, in the first case the main
peak of the forced system moves closer to the frequency of forcing with the increase
of coupling. In the second case the forcing suppresses the oscillations at frequencies
that are close to the natural frequency of the oscillator being forced.

8.6.2 Poincaré Sections

The analogy with the classical locking and suppression may become clearer, if we
consider the evolution of the attractors of (8.13)–(8.14). Figure 8.18 illustrates topo-
logical changes of the attractors corresponding to the onset of synchronization when
frequency locking is realized at ω2 = 1.08. The projections (x2, y2) of the Poincaré
section defined by x1 = 0 are shown for different values of C. At small C, the
section looks like a smeared closed curve with homogeneously distributed points
(Fig. 8.18(a)). With the increase of C, this distribution becomes more and more in-
homogeneous (Fig. 8.18(b)). Starting from a certain value of C, all section points are
grouped in a segment of the what was a smeared closed curve (Fig. 8.18(c)). This
looks similarly to what happens at frequency locking of periodic oscillations (see
Fig. 3.11): the onset of synchronization corresponds to a saddle-node bifurcation on
the torus.

The evolution of Poincaré sections at ω = 1.2 with the change of forcing
strength C is shown in Fig. 8.19. Here, the increase of forcing strength makes the
initial smeared closed curve shrink along x2 directions until it collapses into a ho-
mogeneous cloud of points. Such a behavior is to some extent similar to the torus
death bifurcation that is responsible for synchronization of periodic oscillations via
suppression of natural dynamics (see Fig. 3.12). Thus, we can conclude that the
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Fig. 8.18. Locking of periodic oscillations by chaos in (8.13)–(8.14) at ω2 = 1.08. Evolution
of Poincaré section defined by x1 = 0. a C = 0.002, b C = 0.008, c C = 0.01

Fig. 8.19. Suppression of periodic oscillations by chaos in (8.13)–(8.14) at ω2 = 1.2. Evolu-
tion of Poincaré section defined by x1 = 0: a C = 0.02, b C = 0.045, c C = 0.08

mechanisms of frequency locking and of suppression of natural dynamics are gen-
eral and common both for periodic and chaotic oscillations. Moreover, the shape of
the synchronization region on the parameter plane “coupling strength”–“frequency
detuning” has a similar tongue-like structure as shown in Fig. 8.22 below.

8.6.3 Phase Difference

Once we have revealed that synchronization of chaos could be understood in terms
of basic frequencies corresponding to the main (independent) peaks in the spectra,
it would be interesting to find out if this phenomenon can be interpreted in terms of
the phase of oscillations. For this purpose, we make use of the fact that as it is seen
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from the spectra, the oscillations of both coupled systems can be treated as narrow-
band signals. Then we can introduce the instantaneous amplitudes A1,2, and phases
Φ1,2 as follows:

x1(t) = A1(t) cos Φ1(t), y1(t) = A1(t) sin Φ1(t),

x2(t) = A2(t) cos Φ2(t), y2(t) = −A2(t) sin Φ2(t).

Signs before sines and cosines above where chosen in order to ensure that phases in
both systems are growing, rather than decreasing, with time. Then we can rewrite
(8.13) and (8.14) in terms of amplitudes and phases

Ȧ1 = αA1 sin2 Φ1 − z1 cos Φ1,

Φ̇1 = ω1 + z1

A1
sin Φ1 + α sin Φ1 cos Φ1,

ż1 = β + z1(A1 cos Φ1 − μ),

Ȧ2 = (
ω2

2 − 1
)
A2 sin Φ2 cos Φ2 + C(A1 cos Φ1 − A2 cos Φ2) cos Φ2

+ ε
(
1 − A2

2 cos2 Φ2
)
A2 sin2 Φ2,

Φ̇2 = sin2 Φ2 + ω2
2 cos2 Φ2 − C

(
A1

A2
cos Φ1 − cos Φ2

)
sin Φ2

+ ε
(
1 − A2

2 cos2 Φ2
)

sin Φ2 cos Φ2,

and analyze the phase difference Φ = Φ1 − Φ2.
The dynamics of Φ for different values of C is presented in Fig. 8.20(a) to

illustrate frequency locking. At C = 0.001 the phase difference changes almost
linearly in time. However, as C increases, the realization of Φ(t) starts to demon-
strate plateau-like segments, on which the phases of oscillations in the partial sys-
tems grow with the same velocity. With the further increase of the forcing strength C,
the plateaus become longer, and starting with some value of C, the phase difference
simply oscillates around some mean value, demonstrating no linear trend. The lat-
ter implies the onset of synchronization. This behavior of the phases can also be
illustrated by the distribution p of the phase difference Φ “wrapped” inside the
interval [−π,π), see Figs. 8.20(b)–(d). At small C the values of Φ are distributed
almost homogeneously (Fig. 8.20(b)). A larger C evokes heterogeneity in the distri-
bution; namely, some values of the phase difference become more probable than the
others (Fig. 8.20(c)). Finally, at a sufficiently large forcing C the distribution of the
wrapped Φ becomes narrow, implying that Φ(t) never achieves some values in
[−π,π) (Fig. 8.20(d)). The latter corresponds to phase synchronization.

As seen from Fig. 8.21, qualitatively the same phase behavior is observed when
synchronization is realized via suppression of natural dynamics. Hence, strictly
speaking, by looking at the evolution of phase difference alone one cannot determine
exactly what mechanism of synchronization is being realized in the given case.

It is important to note that if we define the synchronization condition using, for
example, (8.8) or (8.9), the region of synchronization on the parameter plane (ω2, C)
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Fig. 8.20. (Color online) Locking of periodic oscillations by chaos in (8.13)–(8.14) at
ω2 = 1.08. a Phase difference Φ; distribution of wrapped Φ: b C = 0.001,
c C = 0.006, d C = 0.008

has the classical tongue-like shape, as shown in Fig. 8.22(a), where the condition of
synchronization was used in the form of the rational connection between the basic
frequencies in coupled oscillators (8.9).8

Now, let us find out what bifurcations are associated with the onset of synchro-
nization of chaotic oscillations. In Fig. 8.22(a) the vicinities of three different syn-
chronization tongues are illustrated on the plane of parameters “frequency ω2 of
forced system”–“strength C of forcing,” and in Fig. 8.22(b) the enlargement of 1 : 1
region is given. Black solid and dashed lines are the lines of bifurcations of some
unstable periodic orbits of a chaotic attractor. Namely, solid lines represent saddle-
node bifurcations, and dashed lines denote Neimark–Sacker (torus birth/death) bi-
furcations. These lines form synchronization regions for individual unstable limit
cycles. As seen from the figure, accumulation of bifurcation curves for different syn-
chronization regions for different saddle cycles leads to the occurrence of chaos syn-
chronization. With this, locking of chaos results from the accumulation of saddle-

8 For the case considered, synchronization criteria for the phase and for the basic frequen-
cies are satisfied almost at the same values of C and ω2.
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Fig. 8.21. (Color online) Suppression of periodic oscillations by chaos in (8.13)–(8.14) at
ω2 = 1.2. a Phase difference Φ; and distribution of wrapped Φ: b C = 0.02, c C = 0.04,
d C = 0.05

node bifurcations, whereas suppression of chaos is associated with accumulation of
Neimark–Sacker bifurcations9 [17, 18]. Thus, with variation of the parameters, the
transition to chaos synchronization is realized gradually, unlike in periodic oscilla-
tions. Moreover, from the analysis of Fig. 8.22(a) it also follows that both mecha-
nisms of synchronization seem to be general not only for synchronization 1 : 1 (for
which the conditions (8.9) and (8.8) are valid with n = m = 1), but also for other
ratios n : m. In particular, in the figure we can see accumulation of bifurcation lines
for unstable limit cycles that form the regions of synchronization of the order 3 : 4
and 5 : 4. The latter regions have qualitatively the same structure as that for 1 : 1
synchronization.

Note that the tips of synchronization tongues for periodic orbits embedded into a
chaotic attractor do not necessarily coincide (Fig. 8.22(b)) as discussed in Sect. 8.4,
since the periods of unstable cycles in unperturbed chaos are usually not rationally
related, but are characterized by some distribution [303]. Synchronization of chaos
occurs in the parameter region where synchronization tongues of individual unsta-

9 Compare with the discussion in Sect. 8.4.
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Fig. 8.22. a Region of synchronization of periodic oscillations by chaotic forcing (white area)
in (8.13)–(8.14), which is defined from (8.9). b Zoomed part of a. Lines are bifurcations of
unstable limit cycles embedded in the chaotic attractor: solid lines—saddle-node bifurcations,
dashed—Neimark–Sacker (torus birth/death) bifurcations

ble cycles overlap. Therefore, strictly speaking, in contrast to synchronization of
periodic oscillations, synchronization of chaotic oscillations can be achieved only
at some non-zero forcing.

For chaos that is not a narrow-band process, the distribution of periods of unsta-
ble cycles can be quite broad, and the complete overlapping of synchronization re-
gions of unstable periodic orbits might not occur. In this case, if the phase of chaotic
oscillations is formally introduced using the approximation (8.2), the synchroniza-
tion condition (8.8) for the fixed n and m is valid only for finite time intervals. This
effect is sometimes called imperfect phase synchronization of chaos [201, 303].

Synchronization of chaos via phase/frequency locking, which is associated with
accumulation of saddle-node bifurcations of unstable periodic orbits, can be re-
garded as a crisis of chaotic sets. Namely, while moving towards synchronization
region in the parameter plane, each saddle-node bifurcation implies the birth of a
pair of unstable cycles. In the system being considered, these are periodic orbits with
one unstable direction (saddle orbit) and with two unstable directions (twice saddle
orbits). Accumulation of these bifurcations creates a pair of synchronous chaotic
sets—a stable and an unstable ones, whose skeletons are formed by the saddle and
the twice saddle limit cycles, respectively [211, 246].

8.6.4 Lyapunov Exponents

It is clear that bifurcations of unstable limit cycles should somehow influence the
stability properties of chaotic attractors. In order to illustrate this, consider evo-
lution of Lyapunov exponents of a chaotic attractor for two mechanisms of syn-
chronization: for phase/frequency locking and for suppression of natural dynamics.
Three largest Lyapunov exponents are given in Fig. 8.23 as functions of the forcing
strength C. Both for locking (a) and for suppression (b), chaos outside the synchro-
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Fig. 8.23. Three largest Lyapunov exponents of (8.13)–(8.14) vs coupling strength C: a lock-
ing with ω2 = 1.08; b suppression with ω2 = 1.2. White areas outline synchronization
region

nization region is characterized by one positive and two zero Lyapunov exponents.
With the increase of C one of zero exponents becomes negative, which reflects accu-
mulation of bifurcations of unstable orbits, i.e., occurrence of synchronization. Such
behavior of Lyapunov exponents is quite typical of synchronization of a narrow-
band chaos [225, 247]. However, for more complex chaotic oscillations evolution of
Lyapunov spectrum on the way to synchronization can be different [198, 289].

So far we have considered synchronization of chaotic oscillations by periodic
forcing, and of periodic oscillations by chaotic forcing. A natural question to ask
would be whether chaotic oscillations can be synchronized by chaotic forcing.
Forced synchronization of chaos by chaos was studied both in an experiment and in
numerical simulations in [17, 18, 215].

Summarizing the main results of this section, we can conclude that the mecha-
nisms of synchronization of chaos are similar to the ones of synchronization of peri-
odic oscillations. Actually, there are two basic scenarios for the onset of synchroni-
zation—frequency locking and suppression of natural dynamics, which are well
distinguished through the evolution of spectra. However, the analogy between syn-
chronization of chaotic and of periodic oscillations is even deeper. Namely, synchro-
nization is realized as a result of bifurcations which are the same for periodic and
chaotic systems. The frequency locking is associated with saddle-node bifurcations
of periodic orbits, whereas the suppression is due to Neimark–Sacker bifurcations.
However, if for periodic oscillations synchronization is achieved as a result of only
one bifurcation, the transition to chaos synchronization is accompanied by an infi-
nite cascade of bifurcations of unstable orbits embedded in the chaotic attractor.
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8.7 Mutual Synchronization of Chaos

In Sect. 8.6 we considered the simplest case of chaos synchronization, when the
coupling between the systems was unidirectional. However, in realistic situations
oscillators would often be coupled reciprocally. In this section we are going to inves-
tigate a more complicated case, when the chaotic oscillators are coupled mutually,
i.e., when the dynamics of each system effects the oscillations in the other system
through coupling. The cooperative dynamics in such systems was previously con-
sidered, e.g., in [18, 165, 222, 247, 270]. For our study we use the following model
equations that describe the dynamics of two mutually coupled Rössler systems:

ẋ1 = −ω1y1 − z1 + C(x2 − x1),

ẏ1 = ω1x1 + αy1,

ż1 = β + z1(x1 − μ),
(8.15)

ẋ2 = −ω2y2 − z2 + C(x1 − x2),

ẏ2 = ω2x2 + αy2,

ż2 = β + z2(x2 − μ).

Here x1,2, y1,2, z1,2 are dynamical variables of the first and of the second oscillators;
α, β, and μ are the parameters governing the individual dynamics of the systems;
C defines the strength of coupling between the oscillators, and ω1,2 determine the
main frequencies of oscillations in the respective subsystems. We choose the para-
meter values of α, β, and μ to be such that at C = 0 both systems demonstrate
chaotic oscillations, namely: α = 0.165, β = 0.2, μ = 10. For convenience, we
represent ω1,2 = ω0 ± δ, where δ determines frequency detuning between the two
systems.

8.7.1 Phase/Frequency Locking

Figure 8.24 illustrates how spectra of oscillations behave with variation of coupling
strength C at δ = 0.02. Their evolution looks like a typical evidence of synchro-
nization via phase/frequency locking. Actually, at C = 0 (Fig. 8.24(a)) spectra of
oscillations in each of the two subsystems have quite sharp peaks at the frequencies
defined by, but not equal to, ω1 and ω2. However, at C �= 0 the oscillators start
to interact. This interaction manifests itself via the appearance of the second char-
acteristic peak in the spectra of each oscillator (Fig. 8.24(b)). With the increase of
interaction strength C, two characteristic peaks in the spectra approach each other
(Fig. 8.24(b)), and starting with some C coincide (Fig. 8.24(c)). Such evolution of
spectra is very similar to what we have observed in Sect. 8.6 for forced synchroniza-
tion of chaos when the frequency locking was being realized with the only differ-
ence that here both spectral peaks move towards each other. This conclusion is also
confirmed by the behavior of Poincaré sections shown in Fig. 8.25. The growth of
C makes the motion of phase points in the Poincaré section more inhomogeneous
(Fig. 8.25(a), (b)), and once synchronization is achieved, the phase points concen-
trate only in a small fragment of the initial (for C = 0) Poincaré section.
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Fig. 8.24. (Color online) Locking in mutually coupled chaotic systems (8.15) at δ = 0.02.
Spectra at different values of the coupling strength C: a C = 0, b C = 0.03, c C = 0.04.
Shaded areas: first subsystem; black lines: second subsystem

Fig. 8.25. Locking in mutually coupled chaotic systems (8.15) at δ = 0.02. Poincaré section
defined by y1 = 0 at different values of C: a C = 0, b C = 0.03, c C = 0.04

8.7.2 Suppression

Now consider how synchronization is developed for relatively large detuning δ =
0.07. Evolution of spectra is illustrated in Fig. 8.26. At small coupling C (a) spec-
tra of both subsystems demonstrate two pronounced peaks that are associated with
the natural time scales of the interacting oscillations. With the increase of C, low-
frequency peak decreases, while the high-frequency peak grows (b), and at C large
enough, only one characteristic peak is left in the spectrum (c). This transformation
of the spectra is characteristic of synchronization via suppression of natural dynam-
ics. It is also in line with suppression of mutually coupled periodic oscillators con-
sidered in Chap. 4. However, in contrast to what we have seen in the case of forced
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Fig. 8.26. (Color online) Suppression in mutually coupled chaotic systems (8.15) at δ = 0.07.
Spectra at different values of the coupling strength C: a C = 0.05, b C = 0.134, c C = 0.14

Fig. 8.27. Suppression in mutually coupled chaotic systems (8.15) at δ = 0.07. Poincaré
section defined by y1 = 0 at different values of C: a C = 0.05, b C = 0.11, c C = 0.13, and
d C = 0.14

synchronization in Sect. 8.6, for mutually coupled systems the increase of C leads to
the disappearance of chaos in both subsystems. As demonstrated in Fig. 8.27, while
the systems are approaching the state of synchronization, the chaotic attractor (a),
(b) is first transformed into an (non-smooth) ergodic torus (c), which then collapses
into a limit cycle (d) as a result of an inverse Neimark–Sacker bifurcation. The latter
corresponds to the onset of synchronization.
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8.7.3 Phase Behavior

Synchronization in (8.15) can also be described in terms of phases. Let us introduce
substitutions x(t) = A(t) cos Φ(t), y(t) = A(t) sin Φ(t). Then model equations
read

Ȧ1 = aA1 sin2 Φ1 + C(A2 cos Φ2 − A1 cos Φ1) cos Φ1 − z1 cos Φ1,

Φ̇1 = ω1 − C

A1
(A2 cos Φ2 − A1 cos Φ1) sin Φ1 + a sin Φ1 cos Φ1

+ z1

A1
sin Φ1,

ż1 = b + z1(A1 cos Φ1 − m), (8.16)

Ȧ2 = aA2 sin2 Φ2 + C(A1 cos Φ1 − A2 cos Φ2) cos Φ2 − z2 cos Φ2,

Φ̇2 = ω2 − C

A2
(A1 cos Φ1 − A2 cos Φ2) sin Φ2 + a sin Φ2 cos Φ2 + z2

A2
sin Φ2,

ż2 = b + z2(A2 cos Φ2 − m).

The dynamics of phase difference Φ = Φ1 − Φ2 and the evolution of the distri-
bution of wrapped phase difference are presented in Figs. 8.28 and 8.29. For both
frequency locking and suppression, synchronization manifests itself as localization
of Φ that occurs starting with C = 0.05.

It is important to note here, that when suppression is being realized, an interest-
ing effect occurs near the boundary of synchronization. Namely, there is a range of
the parameter values at which the phase difference Φ is localized, although the ba-
sic frequencies of oscillations are still incommensurate. This situation is illustrated
in Fig. 8.30 where a Poincaré section and a distribution of wrapped phase difference
are presented for δ = 0.07 and C = 0.13. In spite of the fact that (8.15) demonstrate
quasiperiodic oscillations, which are represented by ergodic torus (a), the corre-
sponding (non-wrapped!) phase difference is limited and well localized within an
interval [−π,π) (b). This effect was also mentioned in Sect. 3.8 where forced syn-
chronization of periodic oscillations was considered. Thus, the use of the inequality
(8.8) alone as a synchronization criterion does not always lead to the appropriate
results.

The relationship between the bifurcations of unstable periodic orbits embedded
into the chaotic attractor and the mutual synchronization of chaos is elucidated in
Fig. 8.31. The region of synchronization for which both criteria (8.8) and (8.9) hold
true, is indicated as a white area. Because of symmetry in (8.15), the figure is sym-
metric with respect to δ = 0, and therefore for simplicity all bifurcation lines are
given only for positive δ. Similarly to the case of forced synchronization, here the
region of synchronization has a tongue-like structure, and locking is realized via
accumulations of saddle-node bifurcations of unstable limit cycles (black dashed
lines). Due to the symmetry of (8.15), the tips of the tongues for unstable periodic
orbits meet at one point δ = 0, thus forming a nested structure. With this, sup-
pression occurs as a result of a single inverse Neimark–Sacker bifurcation (black
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Fig. 8.28. (Color online) Phase locking in (8.16) at δ = 0.02. a Phase difference Φ and
distribution of wrapped Φ for: b C = 0.01, c C = 0.03, d C = 0.05

dot-dashed line), which transforms an ergodic torus into a stable limit cycle. The
inside of synchronization region has a very complicated bifurcation structure that
reflects a variety of transitions between regular and chaotic attractors. In particular,
period-doubling bifurcations (grey lines) play an important role in the variety of the
phenomena that take place inside the synchronization region. For example, these bi-
furcations are crucial for complete and lag synchronizations. They are also respon-
sible for the development of phase multistability, which is considered in Chap. 12.

Reorganization of different attractors that is related to the onset and the devel-
opment of chaos synchronization is illustrated in Fig. 8.32. In this figure four largest
Lyapunov exponents are given as functions of coupling strength C for two character-
istic values of detuning δ corresponding to locking and to suppression, respectively.
Note that in both cases the transition to synchronization is associated with the trans-
formation of an attractor with two zero Lyapunov exponents into an attractor with
one zero Lyapunov exponent. However, these transformations are different for two
mechanisms. Consider first how the stability of the chaotic attractor changes when
locking mechanism is realized (Fig. 8.32(a)). At small value of C the chaotic attrac-
tor has two positive Lyapunov exponents, implying that the system demonstrates
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Fig. 8.29. (Color online) Suppression in (8.16) at δ = 0.07. a Phase difference Φ and
distribution of wrapped Φ for b C = 0.11, c C = 0.12, d C = 0.14

hyperchaos [253]. The onset of synchronization does not change the number of pos-
itive Lyapunov exponents. However as C increases further, the stability of the syn-
chronous attractor changes, and one of the positive Lyapunov exponents becomes
negative. This transition leads to the occurrence of a specific correlation between
the amplitudes A1,2 of oscillations that are associated with a phenomenon known as
“lag synchronization” [248, 270].

For suppression, the increase of C first of all changes the number of positive
Lyapunov exponents. Namely, first hyperchaos becomes just chaos with one positive
Lyapunov exponent, and then the chaotic attractor is transformed into a torus with
two zero and four negative Lyapunov exponents. The transition to synchronization
is associated with bifurcation of ergodic torus, which collapses into a stable limit
cycle (see Fig. 8.32(b)).

8.8 Homoclinic Synchronization of Chaos

In Sects. 8.6 and 8.7 we have established that two kinds of local bifurcations of the
saddle cycles embedded into a chaotic attractor are responsible for the realization of
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Fig. 8.30. (Color online) Phase versus frequency synchronization near suppression boundary
in (8.15) at δ = 0.07 and C = 0.13. a Projection (x2, y2) of Poincaré section defined by
y1 = 0; and b the corresponding distribution p(Φ) of wrapped phase difference

Fig. 8.31. (Color online) The vicinity of synchronization region for two coupled Rössler
oscillators (8.15). White area outlines synchronization region. Bifurcations of unstable limit
cycles are indicated by lines: black dashed lines—saddle-node bifurcations; black dot-dashed
line—Neimark–Sacker bifurcation; grey solid lines—period-doubling bifurcations

two classical mechanisms of synchronization of chaos, namely, frequency (phase)
locking and suppression of natural dynamics. However, non-local (global) bifur-
cations can also lead to the onset of synchronization [218, 220]. Synchronization
of periodic oscillations via homoclinic bifurcation is considered in Chap. 5. In or-
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Fig. 8.32. Synchronization transitions in terms of Lyapunov exponents in (8.15). Four largest
Lyapunov exponents are given as functions of C at a δ = 0.02 (locking), b δ = 0.07 (sup-
pression). White areas correspond to synchronization regions

der to study the mechanism of chaos synchronization involving global bifurcations,
consider the following model equations:

dBi

dt
= νBiSi

1

Si + K
− Bi(ρ − αωPi),

dIi

dt
= αωBiPi − ρIi − Ii

τ
,

(8.17)
dPi

dt
= −Pi

(
ρ + α(Bi + Ii)

) + βIi

τ
,

dSi

dt
= ρ

(
Fi(t) − Si

) − γ νBiSi

1

Si + K
, i = 1, 2, 3.

These equations describe the dynamics of populations of viruses and bacteria in
three pools coupled via nutrition flow. This system can be obtained by the appro-
priate modification of (5.2). Here, as before Bi, Ii and Pi are the concentrations
of non-infected bacteria, infected bacteria and viruses in ith pool, respectively, Si

represents the local concentration of nutrients inside the ith pool. All these con-
centrations are given in 106 ml−1. The parameter values were chosen as follows:
ν = 0.024 min−1, K = 10 µg ml−1, τ = 30 min, ω = 0.8, γ = 0.01 ng, β = 100
[41, 183] and are in general agreement with experimentally estimated values [167].
We define the inlet concentrations F1,2,3(t) as

F1(t) = σ1, F2(t) = S1 + σ2, F3(t) = S2 + σ3, (8.18)
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where σi , i = 1, 2, 3, are the values of the nutrient inlet concentrations given in
mg/ml. We fix σ2 = 0, and then setting the value of σ1 we can vary the type of
forcing signal applied to the third population from regular to chaotic oscillations.
Then using an appropriate value of σ3 we can observe either a synchronous or a
non-synchronous response of the third system to the forcing signal.

The main bifurcations and regimes that are induced by variation of σ1 and σ3 are
indicated in Fig. 8.33(a). The area of existence of synchronous attractors is shown by
white, non-synchronous regimes occur inside the grey area. At small σ1, a synchro-
nous regime is a stable limit cycle which undergoes a period-doubling bifurcation
as σ1 grows and crosses the line PD. As a result of this bifurcation, the initial limit
cycle loses its stability, but another stable limit cycle of doubled period is born in its
vicinity. Further increase of σ1 induces a cascade of period-doubling bifurcations,
as a result of which the synchronous cycles of higher periods are consecutively born
and then lose their stability. Finally, we cross the line lcr on which a chaotic syn-
chronous attractor appears in the phase space.

Variation of σ3 changes timescale of third unit, and can thus lead to desyn-
chronization. Boundaries of the region inside which periodic synchronous oscil-
lations exist are torus birth bifurcation lines Ti . However, no stable tori appears
on these lines, only the periodic solutions near the saddle cycle loses its stability.
As it was shown for the two-dimensional system [31, 132], this kind of transi-
tion is accompanied by a global bifurcation involving the homoclinic orbit of the

Fig. 8.33. (Color online) a Bifurcation diagram of coupled bacteria–viruses population (8.17)
in the parameter plane (σ1, σ3). Inside white area only a synchronous attractor exists. Inside
grey area only a non-synchronous attractor exists. In the hatched area both synchronous
and non-synchronous attractors coexist. PD: lines of period-doubling bifurcations; Ti , i =
1, 2, 4: lines of Neimark–Sacker bifurcations; H : line of homoclinic bifurcation on which an
non-synchronous attractor collides with a saddle limit cycle. lcr: transition to chaos inside
synchronization region; CC: crisis of the synchronous chaos. b Hysteresis in the dependence
of the winding number w23 on σ3 at σ1 = 14.25. Arrows indicate the directions of change of
the parameter σ3
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saddle. Above σ1 ≈ 14.07 the variation of σ3 produces a transition between syn-
chronous and non-synchronous chaotic oscillations. Consider this transition in more
detail. The difference between two types of chaos involved is illustrated in Fig. 8.34,
where the Poincaré sections and the respective distributions of phase difference
Φ = Φ3−Φ2 are shown. Here Φ2,3 are phases of oscillations in the second and the
third pool, respectively, which are introduced by means of (8.10). In order to classify
different chaotic regimes, we can use the mean return time10 to a Poincaré secant
surface. For this purpose, we define the Poincaré secant surface for each subsystem
as B2,3 = P2,3/5. The ratio of the mean return times provides the so-called winding
number11 w23, which is a rational number in the case of a synchronous chaos, and an
irrational one when the chaos is non-synchronous. w23 as a function of σ3 is given
in Fig. 8.33(b). Remarkably, this dependence has two overlapping branches. One of
them lies on the line w23 = 1, while the other slightly changes with σ3, assuming a
range of values between 1.3 and 1.4 down to σ3 ≈ 11.73, where w23 drops abruptly

Fig. 8.34. Two different attractors in the phase space of the dynamical system (8.17) at
σ1 = 14.25, σ2 = 0. a, b Poincaré sections defined by B3 = 0.11: a of a synchronous chaotic
attractor at σ3 = 11.35; b of a non-synchronous chaotic attractor at σ3 = 12.5. c, d Distri-
butions of phase difference corresponding to: c synchronous chaos in a, d non-synchronous
chaos in b

10 Poincaré return times are defined in Sect. 6.1.
11 For the definition of winding (rotation) number see Sect. 6.1.
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down to unity. Thus, the value σ3 at which the transition between synchronous and
non-synchronous chaos occurs depends on the direction of variation of σ3; i.e., there
exists a range of parameter values at which a synchronous and a non-synchronous
attractors coexist in the phase space. In Fig. 8.33(a), (b) this range is denoted as a
hatched area.

This observation is consistent with the homoclinic synchronization mechanism
that we have already illustrated for the regular oscillations in Chap. 5. Hence, we
can assume that a similar mechanism is also realized in case of chaos. In order to
verify this assumption, we fix σ1 = 14.25 and calculate the Poincaré section at
three different values of σ3: on the homoclinic bifurcation curve H , in the middle
of the coexistence area, and on the line of chaos crisis CC. The result is shown
in Fig. 8.35(a)–(c). In the middle of coexistence area σ3 = 12.14 two different
chaotic attractors are quite well separated (b). However, with the decrease of σ3, the
non-synchronous (large) chaotic attractor approaches a saddle cycle separating two
chaotic attractors in the phase space,12 and on line H σ3 ≈ 11.73 these two objects
collide as it is shown in (a). After this crisis the non-synchronous chaos becomes un-
stable. Namely, any trajectory that finds itself in the vicinity of this collision escapes
towards the attractor corresponding to the synchronous chaos. A similar picture can
be observed with the increase of σ3. However, in this case the collision happens
between the synchronous (small) attractor and the saddle cycle, see Fig. 8.35(c).

In order to examine these bifurcations more rigorously, we calculated the dis-
tance between the specified objects in the phase space. In Fig. 8.36 the smallest
distance between each of the two chaotic attractors and the saddle cycle is plotted as
a function of σ3. With this, Fig. 8.36(a) illustrates the collision between the saddle
limit cycle and the non-synchronous chaos, whereas Fig. 8.36(b) reflects the crisis
of the synchronous chaos. In the inset the distance profile along the saddle cycle
in the vicinity of the collision is given. 5000 points were recorded along the saddle
cycle, and the smallest distance is shown for each point. As one can see, in both
cases the chaotic attractors approach the saddle cycle and touch it at the point of
bifurcation.

8.9 Effects of Noise on a Synchronized Chaos

In Sect. 7.11 we described the effects produced by noise that is applied to a periodic
oscillator synchronized by periodic forcing. It has been demonstrated that while
destroying either of two main types of synchronization, locking or suppression,13

noise produces a new ordered motion whose regularity resonantly depends on noise
intensity. A natural question to ask in this respect is: “What about noise effects on a
synchronized chaos?” In this section we will try to answer this question.

12 The stable manifolds of this saddle limit cycle form a boundary separating the basins of
attraction of the synchronous and of the non-synchronous chaos.
13 Provided that we are sufficiently close to the boundary of suppression region.
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Fig. 8.35. Poincaré sections B3 = P3/5 of the two coexisting chaotic sets for a σ3 = 11.73,
b σ3 = 12.14 and c σ3 = 12.25. σ1 = 14.25, σ2 = 0. Black dots correspond to chaotic
attractors, grey empty circle is a saddle periodic orbit involved in the bifurcation

8.9.1 Chaotic System Frequency-Locked by a Harmonic Signal

First, consider deterministically chaotic oscillations which are synchronized via
frequency-locking by an external periodic forcing. As shown in [18] and in Sect. 8.6,
this type of synchronization is associated with an accumulation of saddle-node bifur-
cations of unstable periodic orbits embedded in the chaotic attractor. As an example,
we examine the Rössler oscillator under external harmonic forcing, described by the
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Fig. 8.36. a Smallest distance Dmin between the saddle cycle and the a non-synchronous
chaotic attractor and b synchronous chaotic attractor for σ1 = 14.25 as a function of σ3.
The inset shows the distance profile along the saddle cycle in a for non-synchronous chaos at
σ3 = 11.73; in b for synchronous chaos at σ3 = 12.25

equations
ẋ = −y − z + B sin(Ωt) + D̃ξ(t),

ẏ = x + αy, (8.19)

ż = α + z(x − μ).
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Here, α and μ are some parameters, ξ(t) is Gaussian white noise of zero mean and
unity variance, and D̃ is the noise intensity. Without noise (D̃ = 0) and forcing
(B = 0), at α = 0.2 and μ = 6.5 this system demonstrates chaotic oscillations with
the attractor of Feigenbaum type shown in Fig. 8.1. When forcing with B = 0.1 and
Ω = 1.061 is applied, the system is 1 : 1 frequency-locked. The Fourier spectrum
of the oscillations is continuous, but contains one peak at the forcing frequency
(Fig. 8.37(a)).

As noise intensity increases from zero, a new peak appears in the close vicinity
of the first one. In Figs. 8.37(b), (c) and (d), spectra are shown for gradually in-
creasing noise intensities D̃. It is evident that a peak appears on the right-hand side
of the main one, grows (Fig. 8.37(b)), narrows (Fig. 8.37(c)), and then widens and
decreases in amplitude again (Fig. 8.37(d)).

By analogy with periodic oscillations, the distance δ between the noise-induced
peak and the one at forcing frequency Ω was estimated (Fig. 8.38(a)), showing a
monotonic increase of the absolute value of δ with the increasing D̃. This means that
the noise-induced peak gradually moves away from the main one as noise becomes
stronger. The coherence β of the noise-induced motion was estimated using the
approach explained in Sect. 7.11. Figure 8.38(b) shows β as a function of noise
intensity D̃. It has a resonant character, with β taking its maximal value at an optimal
noise intensity D̃ ≈ 0.2.

Based on these observations, we conclude that noise destroys the frequency-
locked state of Feigenbaum chaos in a manner that is in many respects the same
as in the case of periodic oscillations. This can be accounted for empirically in the
following way. It is known that for Feigenbaum chaos, which is characterized by the
presence of a well-resolved peak in the spectrum, the instantaneous amplitude A(t)

and phase Φ(t) of the oscillations can be introduced according to (8.2). Substituting
the latter into (8.19) and making transformations similar to those given in [277, 289]
and also considered in Chap. 7, one can rewrite (8.19) as follows:

Ȧ = αA + C

2
sin φ + Ψa(φ, z,A, t) + ξa, (8.20)

φ̇ = Δ − C

2A
cos φ + Ψφ(φ, z,A, t) + ξφ, (8.21)

ż = α + z
(
A cos(φ + Ωt) + μ

)
.

Here φ = Φ − Ωt is the phase difference between the forced oscillations and the
forcing, Δ is some effective detuning, Ψa,φ are certain non-linear functions, and
ξa,φ are two independent sources of Gaussian white noise whose intensities are
completely defined by the intensity of the original noise ξ . Without the loss of gen-
erality, one can treat Ψa,φ as additional limited “random” forces that are defined
by the chaotic dynamics of the system. Then the system of equations (8.20)–(8.21)
could be considered as those describing the dynamics of a limit cycle oscillator un-
der periodic external perturbation in the presence of two kinds of random forces:
Ψa,φ which would be a bounded correlated random force, and the external noise
ξa,φ which is unbounded. The term “bounded” means literally that the given force
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Fig. 8.37. Spectra of oscillations in Rössler system (8.19) in a chaotic regime, which is syn-
chronized by external periodic forcing via phase (frequency) locking mechanism, at different
noise intensities D̃. Note that the main peak is exactly at the frequency Ω of forcing

Fig. 8.38. Characteristics of a Rössler system (8.19) frequency-locked by harmonic forcing,
plotted as functions of noise intensity D̃: a distance δ between the noise-induced and main
peaks; b coherence β of noise-induced peak. For details of computation, see text

can take values only within a certain finite interval, while “unbounded” means that
the force can take any values, whatever large, although perhaps with different prob-
abilities.
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Even in the absence of external noise ξa,φ , the effective limit cycle in (8.20)–
(8.21) will be smeared by the random forces Ψa,φ . Synchronous chaos occurs when
the largest possible values Ψa,φ are still not large enough to induce phase slips (or
such that phase slips are rare). It is the addition of external noise ξ that induces
phase slips. Hence, the effect of noise on a synchronized Feigenbaum chaos is at
least qualitatively similar to its effect on periodic oscillations.

8.9.2 Periodic System Suppressed by Chaotic Forcing

In Sect. 8.6 it was described how chaotic forcing applied to a periodic oscillator can
suppress natural oscillations in the latter leading to a synchronized state. Consider
(8.14) that describe the van der Pol oscillator that are forced by Rössler system
(8.13). The parameters of Rössler system are fixed as α = β = 0.2, μ = 6.5 and
ω1 = 1, at which it demonstrates a well-developed one-band chaos. Non-linearity ε

(equivalent to λ in (7.116)) in van der Pol oscillator was set to 0.1. The parame-
ters of unidirectional coupling between the two systems were set as γ = 0.04 and
ω2 = 1.16, at which oscillations in van der Pol system are synchronized by external
chaotic forcing via suppression mechanism illustrated in Figs. 8.17 and 8.19. The
spectrum of x2 in the synchronized state is given in Fig. 8.39(a). Note that the fre-
quency of the unforced oscillations in the van der Pol system was ω ≈ 1.16, which
is larger than the frequency of chaotic forcing ≈ 1.079 at which the system has a
peak in the synchronized state.

Let us add a random term D̃ξ(t) into the first equation of (8.14) for ẋ2 and
follow the evolution of spectra as one increases the noise intensity D̃ from zero to
some finite value (Fig. 8.39). Again, a new peak appears to the right of the main
one, which initially grows with noise and becomes sharper, reaches the narrowest
width at D̃ = 0.32, and then widens and decreases in height. Interestingly, unlike
in the case of locking illustrated in Fig. 8.38, the peak due to noise appears at a
finite distance from the main one, and with noise growing stronger approaches the
main peak instead of moving further away, see Fig. 8.40(a) where the distance δ

between the peaks is shown. At the same time, the coherence β estimated from the
noise-induced peak as described in Sect. 7.11 displays a resonant behavior taking its
maximal value at D̃ = 0.4.

8.10 Summary

It appears that in spite of the significant complexity of chaotic oscillations as com-
pared to periodic ones, their synchronization obeys the same fundamental laws.
Namely, the mechanisms of chaos synchronization are the same as those of syn-
chronization of periodic oscillations: frequency (phase) locking, suppression and
crisis (homoclinics). Moreover, the effect produced by the external noise applied
to a chaotic system in a synchronized state is very much the same as the effect of
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Fig. 8.39. Spectra of oscillations in a periodic van der Pol system (8.14), which is synchro-
nized by external chaotic forcing coming from Rössler system (8.13), by suppression mech-
anism, at different noise intensities D̃. The frequency of unforced oscillations in van der Pol
system (8.14) was ω ≈ 1.16

Fig. 8.40. Characteristics of a van der Pol oscillator (8.14) synchronized via the suppression
mechanism, by chaotic forcing from a Rössler system, plotted as functions of noise inten-
sity D̃: a distance δ between the main peak at the frequency of forcing and the noise-induced
one; b coherence β of noise-induced peak

noise on a synchronized periodic system. In both cases, noise creates a new ordered
motion that has the largest regularity at some moderate value of noise intensity.



9 Synchronization of Noise-Induced Oscillations

Today it is widely recognized that noise can induce oscillations. But what exactly
does one mean by that?

Suppose we apply Gaussian white noise1 to a linear oscillator with dissipation.2

In terms of radioelectronics one would say that we allow a signal with continuous
spectrum to pass through a band-pass filter. As a result, the spectrum of the signal at
the output will have a peak, which will be the more pronounced, the less the power
losses are in the oscillator. A realization of these oscillations will look similar to
the ones in noisy self-oscillations. Can we say that these oscillations are induced by
noise?

The answer is “no,” because a linear filter, which in our example is represented
by an oscillator with dissipation, is only able to weaken the components with differ-
ent frequencies which are already present in the original signal. With this, the power
of the signal at the output is always less than at the input.

In non-linear systems the situation is crucially different. There, noise is able to
influence the way the power is taken from its source,3 and also to play the role of the
energy source itself, either completely, or partly. As a result, oscillations induced by
noise acquire the properties that are similar to the ones of self-oscillations. Namely,

1 See definition of Gaussian white noise in Sect. 7.1.
2 See discussion on dissipation in Sect. 2.3.2.
3 See Sect. 2.3.2 for the discussion on the power source in an oscillating system.
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their amplitude and frequency depend non-linearly on the noise intensity, and are
also defined by the properties of this particular system.

With this, one can single out two special cases:

1. Noise-activated oscillations. Without noise the system is in principle capable
of oscillating on its own, although perhaps its oscillations will decay in time.
This is possible thanks to a special structure of trajectories in its phase space.
Normally, when the system is in its relaxed state these regions of the phase
space are not visited, and the oscillations are not observed. However, noise can
kick the system towards the respective region of the phase space thus activating
its oscillatory properties which were already there.
An example is a system just below a saddle-node bifurcation of a stable and a
saddle periodic orbits, when there is no pair of cycles in the phase space yet
(or already), but there is a condensation of phase trajectories (a “ghost” of these
cycles) on which the phase point can spend a significant amount of time after
having been thrown there by noise.
Importantly, the time scale of these oscillations depends weakly on noise inten-
sity because it is defined mostly by the inherent properties of the system. At the
same time, the regularity of these oscillations, i.e., the degree of their closeness
to periodic oscillations is controlled directly by the noise intensity.

2. Noise-induced oscillations. Without noise no repetitive oscillations in the sys-
tem are possible even in the form of a transient process. The trajectories in
the phase space do not form loops or closed unstable trajectories which could
be highlighted (activated) by noise. However, the structure of the phase space is
such that relatively small fluctuations can push the phase trajectory on a pseudo-
orbit, which would be an almost closed trajectory [127].
In terms of the realization of the process, it looks like a single splash induced
by noise. Upon the return to the original state the system can again be thrown
onto the pseudo-orbit. Thus, a sequence of pulses arise which occur irregularly
in time. It is important that the frequency of splashes is directly controlled by
the intensity of noise, although it does depend on the time it takes the phase
point to return to its initial state. Thus noise gives birth to a new time scale
which was absent in the deterministic (noise-free) system. Such oscillations
can be classified as noise-induced, and the systems where they arise are called
excitable [170].

Like any classification, the one given above is an idealization. A particular sys-
tem can behave in a complex manner combining the features of both mechanisms.
However, the partition described above is useful for understanding of different man-
ifestations of the dynamics that arises due to noise.

Non-linear effects caused by noise have a short, but impetuous history. The first
kind of systems where the effects arising due to noise were studied were bistable
systems, and the phenomenon of interest was stochastic resonance (SR) [21, 130].
The process of switchings between the two states of a bistable system does not have
a pronounced maximum in the spectrum. In spite of that, the study of this process in
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terms of the phase of switchings has allowed one to discover both the mutual syn-
chronization of switchings in coupled bistable systems [189], and the effect which
looks like phase locking of switchings by an external forcing [266]. Further studies
have confirmed that the SR effect is indeed accompanied by synchronization, and it
can be characterized in terms of phase diffusion4 [82, 83, 192, 193, 268].

Somewhat later another effect was identified, namely, that of coherence reso-
nance (CR). CR consists in that the degree of regularity (closeness to a periodic
process) of oscillations induced by noise has a maximum at some optimal noise in-
tensity. It was first discovered in a situation when a pair of fixed points, a stable and
a saddle, lie on the limit cycle [87, 241]. Later on CR was studied in the systems
close to local bifurcations5 [42, 166, 191]. In [210] a simple explanation of CR was
proposed based on an excitable system. In [221] CR was studied in an electronic
model of a monovibrator which has no oscillatory solutions in the absence of noise,
whatever the values of its parameters are. CR has a special value for neurodynamics,
since the excitable regime is one of the main regimes in which nervous cells operate.

CR is accompanied by a formation of a pronounced peak in the spectrum of
oscillations6 induced by noise. This allows one to consider the problem of synchro-
nization of such oscillations in classical terms by analyzing phase (frequency) lock-
ing and suppression of oscillations. In this chapter we do this based on the concept
of a stochastic limit cycle introduced below.

At present synchronization of stochastic oscillations is a hot topic in non-linear
dynamics [170], and its applications embrace synchronization of applause [196] to
synchronization of tunneling in quantum systems [96].

Stochastic Limit Cycle

Although no deterministic periodic orbits are involved in the formation of noise-
induced trajectories in the phase space, the phase portrait itself may look like a
smeared-out limit cycle. Moreover, the notion of a “stochastic limit cycle” was pro-
posed in [287, 288]. A stochastic limit cycle can be formally introduced if one con-
siders an appropriate projection of the phase portrait on some manifold (plane or
surface), and calculates a two-dimensional probability distribution density on this
manifold. If this distribution has a shape reminiscent of a crater, at least qualita-
tively, one can define a closed curve through its ridge (highest points), and call this
a stochastic limit cycle.

One can also introduce an average period for such a limit cycle. Of course,
both the shape and the period of a stochastic limit cycle will be defined only in a
statistical, averaged, sense. In addition, the motion around the stochastic limit cycle
can be smeared out to a smaller or larger extent, and also the instantaneous periods
of oscillations can deviate from the average period more or less. This means that the

4 See definition of phase diffusion in Sect. 7.9.
5 An example is given in Sect. 7.11.
6 For the definition of a spectrum see Sect. 7.1.
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noise-induced motion can have different degrees of regularity. Hence, noise-induced
motion does possess a characteristic shape and time scale of its oscillations.

9.1 Noise-Induced Oscillations

Non-linear systems perturbed by noise display a wide spectrum of complex phe-
nomena, ranging from noise-induced chaos [76, 177] and noise-induced order [114,
238] to stochastic ratchets [106, 129].

From the point of view of non-linear dynamics, one of the interesting effects of
noise is to wash out some of the detailed structures in the bifurcation diagrams [66,
286]. Application of noise to a period-doubling system will truncate the bifurcation
sequence by opening a so-called bifurcation gap around the accumulation point for
the period-doubling cascade. As soon as the noise amplitude becomes comparable
with the trajectory splitting for a (high-periodic) orbit, the subsequent bifurcations
can no longer be observed.

However, noise can also play a constructive role by activating dynamics that
is not observed in a noise-free system. The simplest example of this phenomenon
is a linear damped oscillator. While being forced by noise, it exhibits a sequence
(superposition) of relaxation processes converging towards the equilibrium point.
Schematically, this mechanism can be depicted as illustrated Fig. 9.1(a). The result-
ing behavior is characterized by a pronounced global maximum in the power spec-
trum. Hence, there is a frequency that can be assigned to noise-induced behavior.
We emphasize that a damped linear oscillator only acts a filter for the noisy forcing
signal. Thus, there is no self-sustained dynamics.

Quite a different situation can be observed for non-linear systems. Noise can
have different effect when acting on oscillatory or on excitable non-linear systems.
In the deterministic case the oscillatory system already possesses an eigenfrequency
that can be modified by the random forcing. For example, the power spectrum dis-
played by the system after a bifurcation may be visible even before the bifurcation
if noise is applied [166, 191, 298]. Thus, noisy precursor of the bifurcation, i.e.,
a noise-activated time scale is observed. The phase portrait for noise-activated dy-
namics near an Andronov–Hopf bifurcation is similar to the portrait in Fig. 9.1(a)
but the power of the output signal can be larger than the input noise intensity.

Fig. 9.1. (Color online) Two main mechanisms for noise-induced oscillations
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The influence of noise on excitable systems is even more dramatic. According to
the definition by Izhikevich [126]: A dynamical system having a stable equilibrium
is excitable if there is a large amplitude periodic pseudo-orbit passing near the equi-
librium as shown in Fig. 9.1(b). If system is excited beyond the pseudo-orbit (the
excitation threshold) it will perform an excursion in the phase space of the system
(a spike) and return into the vicinity of its stable equilibrium point. In this case, the
pseudo-orbit plays the role of separatrix between the subthreshold behavior (inside
the loop) and excited behavior (beyond the loop).

It was found that the rhythmicity of noise-induced events (spikes in neural sys-
tems, for example) depends significantly on the noise intensity. There is an optimal
noisy level at which the regularity (closeness to periodic processes) is maximal.
Such a non-linear effect is known as coherence resonance and will be considered
in detail below. In many ways, systems with noise-induced oscillations behave like
noisy limit cycle oscillators. In the following sections we shall study the different
types of synchronization that can arise between such systems using the concept of
coherence resonance oscillator [105, 224, 271].

9.2 Models

To examine the synchronization of noise-induced oscillations we shall consider two
representative models, namely, the Morris–Lecar model that describes the spiking
and refractory dynamics of a nerve cell, and the electronic circuit (monovibrator)
that likewise belongs to the class of excitable systems.

9.2.1 Morris–Lecar Model

The Morris–Lecar (ML) model [181] is a simplification of the original Hodgkin–
Huxley model [116] which describes the spiking and refractory properties of bi-
ological neurons. The Morris–Lecar model includes a calcium current generating
fast action potentials and a delayed rectifier potassium current. To maintain a con-
stant potential in the resting state, a leak current is also taken into account. The
ML-model is two-dimensional and does not display bursting dynamics, period dou-
blings or chaos. However, application of noise of a proper magnitude can bring the
system across a separatrix in the phase space, upon which it spikes and returns to
the stable equilibrium point.

To study the synchronization phenomena, we consider two diffusively coupled
ML models. Equations may be written as

dv1,2

dt
= Iion(v1,2, w1,2) + I + D1,2ξ1,2(t) + g(vn,1 − v1,2),

(9.1)
dw1,2

dt
= ε

w∞(v1,2) − w1,2

τ∞(v1,2)
,
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where

Iion(v,w) = gCam∞(v)(vCa − v) + gKw(vK − v) + gL(vL − v),

m∞(v) = [
1 + tanh{(v − va)/vb}

]
/2,

w∞(v) = [
1 + tanh{(v − vc)/vd}

]
/2,

τ∞(v) = 1/ cosh{(v − vc)/(2vd)}.
Here, v denotes the transmembrane voltage of the neuron and w represents the ac-
tivation of the potassium current. I is the external stimulus current and ξ1,2 denote
uncorrelated sources of Gaussian noise with intensities D1,2. The last term in the
first line of (9.1) represents the diffusive interaction between the two cells with
a coupling strength g. The parameter set used in our simulations is: I = 0.23,
va = −0.01, vb = 0.15, vc = 0.0, vd = 0.3, gCa = 1.1, gK = 2.0, gL = 0.5,
vCa = 1.0, vK = −0.7, vL = −0.5, and the time separation parameter ε = 0.02.
vCa, vK, and vL represent the reversal potentials associated with the different cur-
rents, and gCa, gK, and gL are the corresponding conductances. For a detailed ex-
planation of the remaining parameters we refer the reader to the original literature
[181]. The subscript n in (9.1) determines the different types of interaction. If n = 1,
a unidirectional interaction is realized; the first system being the “master” and the
second the “slave.” If n = 2, the systems are mutually coupled.

9.2.2 Monovibrator Circuit

Our experimental studies are performed with a monovibrator circuit that generates a
single electric impulse whenever the external signal exceeds a threshold level [221].
The electric scheme of the two coupled monovibrator circuits is shown in Fig. 9.2.
This system is described by the following dynamical equations:

ε
dx1,2

dt
= χ

(
x1,2 − y1,2 − (

D1,2ξ1,2(t) + αx1,2 + γ vb
)) − y1,2,

(9.2)dy1,2

dt
= x1,2 − y1,2 + g(x1,2 − y1,2 − x2,1 + y2,1),

where x1,2 are voltages at the output of the operational amplifier and y1,2 are voltage
drop across the capacitor C. The constants α and γ are positive and defined by the
value of resistors R1, R2, R3, and Rf. vb represents the normalized threshold voltage.
The function χ is a sign function which takes values of +1 and −1 for positive
and negative arguments, respectively. The independent noise sources ξ1,2 with noise
intensities D1,2 are introduced.

9.3 Coherence Resonance Oscillator

Being forced by white Gaussian noise, both of the above models manifest excitable
dynamics. Namely, there is a continuous sequence of spikes for the ML model and
a sequence of electric impulses for the monovibrator circuit (Fig. 9.3). Remarkably,
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Fig. 9.2. The electrical scheme for the coupled monovibrator circuit. Both units are identical
but the noise sources (Vi1 and Vi2) are independent

Fig. 9.3. Representative time series for a white Gaussian noise, b noise-induced firing in the
Morris–Lecar model, and c noise-induced oscillations in an electronic circuit

the intervals between the noise-induced events seem to be quite regular rather than
random.

Figure 9.4(a) displays the typical power spectra observed for the relaxation-type
neuron model (9.1) with vanishing interaction g = 0 at different noise intensities D.
Each spectrum possesses a well-defined global maximum which may be associated
with the natural frequency of the noise-induced oscillations. The regularized behav-
ior is observed within a finite range of noise intensities.
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Fig. 9.4. The evolution of power spectra a for the noise-driven Morris–Lecar model (curves
1, 2, and 3 in a correspond to D = 0.0001, 0.001, and 0.01 V2, respectively) and b for the
noise-driven monovibrator circuit (curves 1, 2, and 3 in b correspond to D = 0.015, 0.1, and
0.6 V2, respectively)

It is interesting to observe a similar influence of noise on the features of the
power spectrum for the monovibrator system (9.2). For small noise intensity (D �
0.1 V2), the monovibrator generates impulses of duration τ ≈ τ0 = −RC ln{(Vb/E+
1)/2}. The time intervals between the impulses are much longer than τ . Thus, the
respective power spectrum results from a superposition of randomly appearing im-
pulses. The smooth and broad peak at low frequency can be observed in this case
(Fig. 9.4(b), curve 1).

For an optimal noise strength D ≈ 0.1 V2 the pauses between impulses are ap-
proximately equal to their duration. The corresponding peak in the power spectrum
is sharp and relatively high (Fig. 9.4(b), curve 2). Finally, for the strong noise, the
pauses between impulse onsets tends to zero because the monovibrator is immedi-
ately pushed out from the equilibrium state. The peak in power spectrum is absorbed
by the increasing level of noise background (Fig. 9.4(b), curve 3).

Thus, for both systems we observe a noise-induced time scale of the system
(pronounced peak in power spectrum) which is not a noisy precursor of determinis-
tic behavior. The described non-linear effect is known as coherence resonance [87,
241] and manifests itself in a rather regular oscillatory response of an excitable
system to the application of noise of a proper magnitude. In contrast to stochas-
tic resonance, there is no external forcing involved. However, the excitable system
exhibits a characteristic time constant associated with the duration of a spike (or im-
pulse) when the system is excited. Pikovsky and Kurths [210] used this observation
to explain the coherence resonance in terms of a different noise dependence of the
activation (or excitation) and excursion (or relaxation) times.

To characterize the coherence behavior (i.e., the degree of its regularity) one
uses a quantity that can be interpreted as the signal-to-noise ratio [87, 241]:

β = hωp/ωp. (9.3)

Here, ωp is the peak frequency in the power spectrum of the noise excited system,
ωp is the width of the peak, and h = Hp/Hb is the peak height normalized with
respect to the noise background (Fig. 9.5). Note that ωp/ωp is the familiar inverse
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Fig. 9.5. How to measure regularity

Fig. 9.6. Electronic experiment on monovibrator circuit. a Regularity β of noise-induced
oscillations and b output power vs noise intensity D

quality factor Q of a signal [278]. In the following sections, β will be referred to as
a measure of regularity.

As a function of noise intensity, the regularity β (Fig. 9.6(a)) clearly demon-
strates a coherence resonance maximum at a finite noise intensity. As discussed
above, this can be explained in terms of an optimal balance between the mean dura-
tion of a impulse generated by the monovibrator and the mean duration of a pause
[210, 221]. For strong noise the pauses between impulse onsets tend to zero because
the monovibrator is immediately pushed out from the equilibrium state. Strong noise
can also disrupt the recharging process of the capacitor C. Thus, the impulse dura-
tion attains a random value. This leads to decreasing measure of regularity β when
the noise intensity D increases beyond 0.1 V2.

Being related to the dynamics of excitable system at an optimal noise intensity,
coherence resonance can be regarded as activating non-linear properties of the sys-
tem. Let us examine the corresponding aspects of noise-induced oscillations. Fig-
ure 9.6(b) shows the relation between the output signal power U and the input noise
intensity D. The dashed line at 1.0 indicates the equal output and input power. It is
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Fig. 9.7. a Peak and mean frequencies of noise-induced oscillations vs noise intensity D;
b two-dimensional probability density distribution for noise-induced oscillations shows the
ring structure similar to noisy limit cycle

clearly seen that there is an interval of noise intensity where the U/D ratio exceeds
one. Hence, the non-linear system not only transforms the input noise signal into
impulses (spikes) but also spends some internal energy (for the electronic circuit
this is provided by the power supply). This is similar to self-sustained system with
one important difference: the power release is controlled by the noise intensity.

Figure 9.7(a) illustrates that the peak and mean frequencies of the signal coin-
cide and grow as the noise strength increases. Thus, we observe a noise-induced
time scale of the system but not a noise activated deterministic behavior. Let us
consider the geometrical image of such behavior. The two-dimensional probability
density distribution has a clear ring-like structure (Fig. 9.7(b)). This is very similar
to the case of noisy self-sustained relaxation oscillations with segments of fast and
slow motion. Such a structure is particularly pronounced when the noise intensity is
in the optimal range and disappears both for too weak and for too strong noise. Since
the observed structure reveals the geometry of “stochastic limit cycle” [287, 288],
one can introduce a phase of noise-induced oscillations via a position on the cycle.

We can conclude that a noise-driven excitable system in the regime of coherence
resonance can be considered as a “coherence resonance oscillator” whose behavior
is characterized (i) by a peak frequency governed by the noise intensity and (ii) by
a phase defined as the position on a stochastic limit cycle. Hence, the question nat-
urally arises [105]: To what extent interacting nonidentical coherence resonance
oscillators can adjust their motion in accordance with one another so as to attain a
form of synchronization?

9.4 Frequency and Phase Locking

In this section, we shall study the synchronization of coupled non-identical excitable
systems each operating in a regime of coherence resonance. The noise intensity gov-
erns the frequency of the noise-induced oscillations and can, therefore, be consid-
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ered as a frequency mismatch parameter. The transition from the non-synchronous
to the synchronous state is signaled by the merging of the peak frequencies in the
power spectra and also by an evolution of the distribution of instantaneous phase
differences. With a small mismatch, the transition occurs via a frequency locking
of noise-induced oscillations. For large mismatch, the transition is related to the
suppression of the peak frequency.

9.4.1 Frequency Locking: Electronic Experiment

Let us now analyze synchronization of two diffusively coupled coherence resonance
oscillators. To investigate the effect of frequency mismatch on the synchronization
of CR oscillators, the noise intensity of the second oscillator is chosen to be different
from that of the first system. We refer to D2 as a mismatch parameter.

In Fig. 9.8 (left panels), the evolution of the power spectra is plotted as a function
of the noise intensity D2 for the coupled electronic monovibrators. For D2 = D1 =
0.45 V2 both excitable units are identical and peaks in their power spectra coincide
(top left panel). With increasing D2 (middle and bottom left panels) peak in power

Fig. 9.8. Frequency locking observed in the electronic experiment. Left panels: Evolution of
the normalized power spectra as the D2 increases. Right top panel: The ratio of the peak
frequencies f1/f2 (winding number) stabilizes near 1.0 within a range of D2. Right bottom
panel: The degree of regularity β for the second system (solid curve 2) displays the maximum
in the frequency locking region of D2. Note, the regularity for the first system (solid curve 1)
also weakly increases even though D1 is fixed. D1 = 0.45 V2 and g = 0.0125
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spectra of the second monovibrator moves to the right from the initial position.
Frequencies become unlocked.

In Fig. 9.8 (right top panel) a frequency-locked region is easily identified within
a certain range of the noise intensity D2, where the ratio of the peak frequencies
f1/f2 (winding number) stabilizes near 1.0. In the right bottom panel the degree of
regularity β is plotted versus the D2 for both monovibrators. It is clearly seen, that
for the second system (curve 2) β displays a maximum in the frequency locking
region of D2. The regularity for the first system (curve 1) also increases weakly al-
though of D1 was fixed. Note, the D2 ≈ 0.45 V2 is the optimal noise intensity for
the second subsystem. Thus, the observed gain of regularity when D2 approaches
that value is expected. However, Fig. 9.8 indicates an important effect: the maximal
achieved degree of regularity in coupled subsystems is higher that the maximal in-
dividual value for each uncoupled monovibrator (as indicated by the dashed curves
in right bottom panel). The latter means that the noise-induced oscillations are more
regular in the regime of stochastic frequency locking [226]. This can be regarded as
an example of array-enhanced coherence resonance.

The frequency-locked interval tends to become broader as the coupling strength
g is increased. In Fig. 9.9 it is shown that there is the triangular-shaped zone in
(D2, g) parameter plane where the frequencies of noise-induced oscillations are
locked. The latter is determined by the condition that winding number f1/f2 has to

Fig. 9.9. Synchronization region for two coupled monovibrators. The noise intensity D2 ef-
fectively plays the role of a frequency mismatch (D1 = 0.45 V2). White triangular-shaped
area corresponds to the frequency locked regime determined by the condition |f1/f2 − 1| <

0.002
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be sufficiently close to unit. More precisely, the expression |f1/f2 −1| < 0.002 was
used to diagnose whether the frequencies were locked.

The resulting area of stochastic synchronization is resembles the well-known
Arnold tongue. This provides one more evidence that the behavior of the noisy ex-
citable systems is in many ways similar to the self-sustained dynamics.

9.4.2 Phase Locking: Coupled Morris–Lecar Models

Similar results were observed in numerical simulations of the coupled ML system
((9.1) with n = 2). In Fig. 9.10, we have plotted the phase diagram in the two-
dimensional parameter space spanned by the coupling strength g and the mismatch
parameter D2. The synchronization region which clearly resembles the Arnold
tongue was obtained by the condition of closeness of the peak frequencies |ω1 −
ω2| < const = 0.0002. We analyze the instantaneous phases of the two ML oscilla-
tors to provide an alternative diagnostics of synchronization.

Neiman et al. [192] and Rosenblum et al. [247] showed how the instantaneous
phases of stochastic oscillations can be locked. Once instantaneous phases are de-
fined for the CR oscillators, they can be used to detect synchronization of two cou-
pled CR oscillators. According to Refs. [287, 288] the stochastic limit cycle was
defined by connecting the most likely escape trajectory out of a stationary point
with the most likely return trajectory back to that point. The system’s state on this
circular trajectory could be described in terms of phase-like variables. The instanta-

Fig. 9.10. Synchronization region for two coupled ML models. The noise intensity D2 effec-
tively plays the role of a frequency mismatch (D1 = 0.001)
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Fig. 9.11. Variation of the phase difference in two coupled Morris–Lecar models as a function
of time for non-synchronous (g = 0.02), nearly synchronous (g = 0.035) and synchronous
(g = 0.08) states. D2 = 0.00075. The phase slips of 2π for the nearly synchronous regime
are clearly seen in the enlarged inset

neous phase can be defined as [247]: φ(t) = 2π(t − τk)/(τk+1 − τk) + 2πk, where
τk is the time of the kth firing.

Based on the phase variable for each ML system, the instantaneous phase dif-
ference is specified as φ = φ1 − φ2. As the coupling is increased, for a given
frequency mismatch Ω , we observe a transition from a regime where phase dif-
ference grows (φ ∼ Ωt) to a synchronous state where the phase difference
remains bounded, but oscillates around some mean value (Fig. 9.11). Hence, there
is no average (or long term) phase drift. Phase locking for noisy systems can be
observed during a long but finite time [192, 278]. Therefore, it has to be determined
a priori how long the phases should be locked (in average) to assert that a noisy
system is effectively synchronized. We assume that the stochastic oscillations are
synchronous if no 2π phase slip occurs during 50 000 periods.

Figure 9.12 illustrates the distribution function of the phase differences (mea-
sured during 50 000 time periods) and the Poincaré section for three discernible
regimes (corresponding to the points A, B and C in Fig. 9.10, respectively). Inside
the synchronization region (point A), the Poincaré section is concentrated in a small
area (Fig. 9.12(a)) and the distribution density of φ appears to be limited to a fi-
nite range near a vanishing phase difference. But outside the synchronization region
(point C), the Poincaré section is completely different and takes the form of a ring
in the phase space of the system (Fig. 9.12(c)). Moreover, the distribution of the
phase differences is nearly homogeneous over 2π. At the boundary of synchroniza-
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Fig. 9.12. (Color online) The distributions of the phase difference and Poincaré sections
(insets) for two coupled ML oscillators: a inside the synchronization region (g = 0.09),
b near the boundary (g = 0.045), and c outside this region (g = 0.01). D1 = 0.01 and
D2 = 0.0015. The Poincaré section is specified by the condition ω1 = 0.35. From these
plots, one can draw an analogy with the transition from a torus to a limit cycle in the deter-
ministic case

tion (point B), the Poincaré section indicates a closed curve, but it is not equally
dense everywhere (Fig. 9.12(b)). These results clearly allow us to draw an analogy
between the transition from an ergodic torus to a limit cycle in the deterministic case
and the evolution observed in the stochastic oscillations. In this way, we can com-
plement the term “stochastic limit cycle” [287, 288] with the notion of a “stochastic
torus.”

9.4.3 Phase Dynamics Inside the Synchronization Region: Electronic
Experiment

Further inspection of Fig. 9.12 shows that the peak of phase difference distribution
is located close to zero but not precisely at zero. The value of mean phase difference
characterizes the synchronization phenomena as well as the temporal behavior of
the phase difference.

For the regular oscillations it is known that inside the Arnold tongue the phase
difference increases with increasing frequency mismatch, taking the zero value at
vanishing mismatch. Outside the Arnold tongue the mean phase difference decreases
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because the phase distribution tends to uniform distribution with zero mean value.
A similar behavior is observed for chaotic oscillations in spite of the phase dif-
ference distribution having a finite width in the synchronized state. However, for
stochastic synchronization of noise-induced jumps in bistable systems the phase
difference behaves in a rather different way [263].

Does this reflect the essentially different nature of stochastic synchronization?
We study this problem by means of an electronic experiment with unidirection-
ally coupled monovibrators. D2 is fixed at 0.9 V2 while D1 changes within the
interval [0.5; 1.3] V2 providing a frequency mismatch of the noise-induced oscilla-
tions. Figure 9.13 shows the evolution of phase difference distribution (left panel)
when D1 increases. It is clearly seen that for minimal (D1 = 0.5 V2) and max-
imal (D1 = 1.3 V2) values of the noise intensity, the distribution covers all in-
terval of φ. This corresponds to the asynchronous regime. In the intermediate
panels, the phase difference distribution seems to be limited and shifted to larger

Fig. 9.13. Stochastic synchronization in unidirectionally coupled monovibrators (electronic
experiment). Left panels: The phase difference distribution with increasing of D = D1.
Right top panel: Mean phase difference. Right bottom panel: The evolution of frequency
ratio
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φ with increasing D1. The changes of mean phase difference is illustrated in top
right panel while the bottom right panel represents the corresponding changes of the
frequency ratio. The stochastic frequency locking is observed approximately from
D1 = 0.6 V2 till D1 = 1.1 V2 where f1/f2 ≈ 1.0. In the same range of D1,
the mean phase difference φm increases roughly linear. But outside the frequency
locking region φm, as before, approaches zero.

9.5 Synchronization via Suppression

Let us now focus on the synchronization phenomena observed in the unidirection-
ally coupled ML model (n = 1 in (9.1)). In this case, the first and the second sub-
systems play the role of “master” and “slave,” respectively. Noise intensity of the
master system is taken at the optimal value (D1 = 0.001) while D2 is varied as a
mismatch parameter.

Unidirectionally interacting CR oscillators bear many common features to the
behavior observed in forced self-sustained systems. When the coupling is introduced
various patterns of response, depending on the time scales of the two subsystems are
elicited. Figure 9.14 displays the 1 : 1 synchronization region. At the boundary of
this region the mean frequencies of the noise-induced oscillations coincide (|ω1 −
ω2| < const = 0.0002), and remain constant within a range of mismatch parameter
(i.e., inside the synchronization region).

Fig. 9.14. The synchronization region for unidirectionally coupled ML models. Directions
A and B indicate different transitions to synchronized behavior
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The transitions to synchronous regime are realized through locking of the peak
frequencies of the interacting units (direction A in Fig. 9.14) as we discussed above
for mutually coupled systems, or via suppression of noise-induced oscillations in
one of the coupled subsystems by the signal from the other (direction B in Fig. 9.14).

Figure 9.15 shows how the transition to synchronous behavior for large mis-
match parameters occurs. The peak frequency of the noise-induced oscillations in
the driven system keeps its constant value while its height decreases and the width
becomes broader until it becomes difficult to resolve the peak in the noise back-
ground. At this moment suppression of this frequency takes place. When the cou-
pling is further increased, the height of the peak frequency which is equal to the fre-
quency of the driving system can be distinguished in the power spectrum. It grows,
and becomes narrower.

For coupled deterministic self-sustained systems such a spectral evolution re-
flects the transition from a two-dimensional torus (two distinct peaks at different
frequencies) to a limit cycle (peaks in both systems are at the same position). At the
same time, the Poincaré section changes from an invariant curve for the torus sec-
tion to a single point representing the limit cycle. Let us check what can be observed
in the Poincaré section of unidirectionally coupled noisy ML models. In Fig. 9.16
the phase projection of the slave subsystem is shown for the selected moments of
time when v1 increases through the value 0.35. Thus, such a phase projection is an
analog of the Poincaré section (it is not a true Poincaré section because one can
not be sure that all noisy trajectories are transversal to the secant). At weak cou-
pling g = 0.01 one can observe that points form the ring like structure that actually
shows the geometry of the stochastic limit cycle for the slave ML model. This means
that the firing processes in the master system and in the slave system are uncorre-
lated, i.e., asynchronous. This corresponds to the regime illustrated in Fig. 9.12(c).
For stronger coupling g = 0.2 the ring-like structure still exists, but in contrast to
Fig. 9.12(b) its size is considerably reduced. Finally, at strong coupling g = 0.6 the
discussed structure converges to a small spot of points. It is clear that the observed
evolution is qualitatively equivalent to the transition from a closed curve in the torus
section to a single point in the section of the limit cycle. Thus, we conclude, that
suppression synchronization mechanism is observed for the unidirectionally cou-
pled ML models in terms of the evolution both of the power spectra and of Poincaré
sections. How does this relate to the regularity of noise-induced oscillations?

The β evolution for the “slave” system is shown in Fig. 9.17, where the hori-
zontal solid and dashed lines indicate the regularity level for the “master” system
and for the “slave” system without coupling, respectively. From figure it is seen,
that for weak coupling the regularity in “slave” system remains almost the same up
to g ≈ 0.01. This means that the “master” system does not significantly influence
its dynamics. When g values exceed 0.01, the measure of regularity in the driven
system sharply falls and reaches a minimum value at g ≈ 0.08. When g increases
further, β rapidly rises up to the constant value that corresponds to β in the driving
system with optimal noise intensity. All changes described are in a clear relation
with the above discussed spectral evolution. It is clear that the drop of regularity
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Fig. 9.15. Evolution of the power spectrum along the direction B (Fig. 9.14) at increasing
coupling strengths a g = 0.05, b g = 0.08, c g = 0.10, and d g = 0.40. The transition
via the suppression of the noise-induced frequency in the driven system takes place. Dashed
curve corresponds to the driving system with vanishing coupling

Fig. 9.16. Evolution of Poincaré section (with condition v1 = 0.35) for the slave subsystem.
Coupling strength increases from left to right: a g = 0.01, b g = 0.20, c g = 0.60

Fig. 9.17. Measure of regularity vs coupling strength for unidirectionally coupled Morris–
Lecar models: D2 = 0.003 (along the direction B). Horizontal solid and dashed lines indicate
the maximum regularity level for “master” and “slave” systems respectively, with vanishing
coupling
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Fig. 9.18. (Color online) Evolution of the power spectrum obtained from electronic experi-
ment. This figure illustrates a transition via the suppression of the noise-induced frequency
in the driven system

is provided by the suppression of noise-induced oscillations in the “slave” system,
while the subsequent sharp rise reflects the onset of firing regime that just repeats
the firing in the “master” system.

To be sure that observed mechanism of stochastic synchronization is not specific
for the model considered, we also made experiments on electronic monovibrators.
The results are shown in Fig. 9.18. In spite of the different non-linear properties of
the monovibrator (there are no bifurcations for deterministic monovibrator model,
just hook-like trajectory that converges to the stable node), the observed spectral
evolution is the same. It is clearly seen that the peak in the slave system (given in
grey) decreases in height without changing its position, while there is the new peak
growing precisely at the frequency of the master system.

To conclude, we have demonstrated, that both synchronization mechanisms
known for periodic oscillations can be also detected for interacting noisy excitable
systems. This supports the generality of the synchronization mechanism for any kind
of oscillations that have a pronounced peak in the power spectrum, regular, chaotic
or noise-induced.



10 Conclusions to Part I

The main message that we were keen to convey in this part was as follows. Whatever
the nature of self-sustained oscillations we are faced with, be it perfectly periodic,
deterministically chaotic, influenced by noise or even noise-induced, and no mat-
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ter what the exact form of coupling between them is, they all obey the same laws
dictated by the fundamental and universal phenomenon of synchronization. There
are three mechanisms of synchronization: phase (frequency) locking, suppression
of natural dynamics, and crisis, or homoclinic bifurcation.

We would also like to emphasize an important practical aspect of synchroniza-
tion, namely, that it can be used as a tool for the control of virtually all kinds of
oscillations. Indeed, from the beginning of the 20th century the problem of synchro-
nization was studied with regard to the problem of control, when the need arose to
stabilize the frequency of a powerful generator of electromagnetic waves by means
of applying weak external perturbation. In addition to that, synchronization allows
one to manipulate the frequencies of oscillations in the system, as well as their am-
plitudes, shapes and degree of regularity. Sometimes, in engineering applications
one needs to stop oscillations altogether, and oscillation death is one of many phe-
nomena that can occur in coupled oscillating systems and can be helpful in this
respect.



Part II

Case Studies in Synchronization
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One day Alice came to a fork in the road and saw a Cheshire cat in a tree.
“Which road do I take?” she asked. “Where do you want to go?” was his response.

“I don’t know,” Alice answered. “Then,” said the cat, “it doesn’t matter.”
Lewis Carroll, “Alice in Wonderland”

Logic will get you from A to B. Imagination will take you everywhere.
Albert Einstein

This part offers an exciting excursion into the complex web of synchronization
phenomena. There are systems of various origins, there are connections of various
forms. Real living systems are still beyond our imagination. But there is universality
in their behavior.



11 Synchronization of Anisochronous Oscillators

Chapter 3 of this book introduces some theoretical approaches that can be helpful
as one studies the synchronization of periodic oscillations. It provides generic and
useful tools that allow one to predict the behavior of coupled oscillators at different
values of the control parameters, as long as the basic assumptions of the theory are
valid.

One of the most important assumptions used there was that oscillations should
be close to harmonic ones. Thus, the geometry of the cyclic motion in the phase
space of the oscillator was predefined, requiring the shape of the limit cycle to be
close to an ellipse. Note that for a weakly non-linear oscillator the phase velocity
of a point on the limit cycle is approximately proportional to the distance between
this point and unstable equilibrium point inside this limit cycle. As a result, if the
limit cycle grows in size preserving its elliptic shape, the period remains almost
constant. This approach allows one to separate phase and amplitude dynamics, and
also to consider the amplitude of oscillations as a slow variable. With this, there
are no physical reasons why a different geometry of a limit cycle should lead to
considerably different synchronization features.

If a limit cycle has a shape different from an elliptic one, the spectrum of cor-
responding oscillations consists not only of the single frequency that is inversely
proportional to the cycle period, but also of the multiples of this frequency that are
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called “higher harmonics.” We expect that anharmonicity (the presence of higher
harmonics) of oscillations alone is not crucial from the view point of synchroniza-
tion.1 However, it becomes important when it is related to a special feature that is
often found in periodic oscillations: anisochronicity.

Generally anisochronicity means that in different fragments of a limit cycle the
phase point moves with substantially different velocities. In other words, a phase
trajectory slows down in some parts of the limit cycle and accelerates in others.2 It
is clear that the response of such an oscillator to perturbations should depend on the
current position of the phase point on the limit cycle.

If we consider two periodic oscillators, each being only weakly anisochronous,
a small external perturbation will only slightly change the shape and amplitude of
the existing limit cycle, and will also adjust its phase. The character of these changes
does not depend on the exact form of nonlinearity in the interacting systems. The
situation is completely different if partial oscillations in coupled units are anisochro-
nous. In this case, the non-linearity of the systems plays an essential role.

In this chapter we discuss non-linear effects that appear due to anisochronicity
of individual oscillatory units and introduce some useful methods for their analysis.

11.1 Phase Velocity Field and Coupling Vector

First of all, let us define the phenomenology and introduce some quantities that are
helpful for the analysis of anisochronous oscillations. In this section we focus on the
oscillators whose phase space is two-dimensional (2D), i.e., is a phase plane. How-
ever, the approaches being discussed here can be also applied to complex higher-
dimensional systems.

A set of ordinary differential equations for a 2D dynamical system reads

ẋ = f (x, y),
(11.1)

ẏ = g(x, y),

and the respective vector field of phase velocity �v is given by

�v = {ẋ, ẏ}. (11.2)

Vector �v provides one with information about the direction of motion of the phase
point. Moreover, if one introduces its absolute value |v| as follows:

|v| =
√

ẋ2 + ẏ2, (11.3)

1 This statement was partly confirmed when we considered chaos in terms of periodic orbits
(see Sects. 8.4, 8.5.2 and 8.6), which often have quite complex geometry, but nevertheless
obey the phenomenology introduced for ellipse-like limit cycles.
2 Similar behavior was also considered in Sect. 6.4.
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the derivative of |v| with respect to time reflects the acceleration or deceleration of
the phase point along its trajectory, and thus defines the degree of anisochronicity
of oscillations.

Equations (11.1) can be regarded as equations of motion for a phase point, with
the right-hand parts playing the role of internal forces. Any external perturbation
can be considered as an additional force that can change either the direction, or the
velocity of the motion of the phase point.

Consider two identical oscillators and assume that they are coupled weakly.
Then we can represent the behavior of coupled oscillators using a superposition
of their phase planes (Fig. 11.1). This representation provides us with a convenient
method to estimate the phase shift between the oscillators, and also to analyze the
effect of coupling geometrically.

Let us consider a particular kind of coupling between the two subsystems that
would lead to the following effect: each variable of the first subsystem tends to be
equal to the respective variable of the second subsystem, and vice versa. This can
be realized if the coupling is introduced into the system as follows:

ẋ1 = f1(x1, y1) + γx(x2 − x1),

ẏ1 = g1(x1, y1) + γy(y2 − y1), (11.4)
ẋ2 = f2(x2, y2) + γx(x1 − x2),

ẏ2 = g2(x2, y2) + γy(y1 − y2),

where subscripts denote the first and second coupled subsystems, and γx,y are the
coupling constants. This coupling will be referred to as diffusive coupling. The term
“diffusive” naturally arises as one describes chemical or biological processes with
x1,2 and y1,2 being the concentrations of some quantities in connected chambers. In
these cases γx,y are the diffusion coefficients.

On the superimposed phase plane such diffusive coupling is represented by the
vectors �d1 and �d2 attached to the phase points of the first and second subsystems, re-
spectively (Fig. 11.2). In the case of “true” diffusion, γx = γy and coupling vectors

Fig. 11.1. In order to analyze the cooperative behavior of two identical oscillators, one can
superimpose the phase trajectories of the two systems onto one phase plane, which we will
hereafter refer to as “superimposed phase plane”
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Fig. 11.2. Diffusive coupling on the superimposed phase planes. a All-variable coupling with
γx = γy . b One-variable coupling with γx > 0, γy = 0

�d1 and �d2 are always directed towards each other (Fig. 11.2(a)). It looks like points
1 and 2 attract each other in order to minimize the distance between them.

Generally, coupling can be anisotropic, for instance a membrane that is semi-
permeable to chemicals, and γx �= γy . In this case, �d1 and �d2 are not collinear any
longer. In extreme cases, γx or γy can be equal to zero, and we arrive at the one-
variable diffusive coupling that is illustrated in Fig. 11.2(b): geometrically, only hor-
izontal component of the coupling force is present. This kind of coupling can arise
for example in interacting electric circuits that are coupled via a resistor r . Then the
coupling current ic is equal to

ic = (u1 − u2)/r, (11.5)

where u1 and u2 denote the voltages at the connection points. Since the coupling
resistor r provides an energy dissipation with power Pc = ri2

c , such interaction is
also known as dissipative coupling.

Note that any type of cross-variable coupling (for example, if the term (y1 − y2)

appears in the equation for ẋ1,2), as well as asymmetric coupling (for example,
a unidirectional coupling) are not diffusive and are not considered in this chapter.

11.2 Effective Coupling Function

In the limit of weak coupling, the effect of mutual coupling between two slightly
non-identical oscillators can be described by means of effective coupling introduced
by Kuramoto [151]. Of course, the same approach is also valid for identical oscilla-
tors which we will be considering in this section.

11.2.1 Asymptotic Phase

Consider a single two-dimensional oscillator that demonstrates a limit cycle, and
whose motion is characterized with the phase vector �X = (x, y) being a state vector
for the system (11.1). In order to simplify the description, the position �X0 of a phase
point on the limit cycle is replaced by a phase φ that has the following property: the
rate of change of the phase along the limit cycle is the same at any point and is equal
to 2π divided by the period T of the limit cycle, i.e.,
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dφ

dt
= 2π

T
. (11.6)

One can introduce φ with this property for a limit cycle of an arbitrary shape using,
e.g., the return times to Poincaré section (see (8.10)). For any point Q located out-
side the limit cycle, the phase can be defined as follows: If the asymptotic state of
Q converges to the asymptotic state of a point P on the limit cycle, then the phase
of the point P is assigned to the phase of the point Q. The phase defined this way is
called the asymptotic phase.

11.2.2 Effective Coupling Function

Consider a general form of two mutually coupled identical oscillators

d �X1

dt
= �F( �X1) + γ �p( �X1, �X2),

(11.7)
d �X2

dt
= �F( �X2) + γ �p( �X2, �X1),

where �Xi = (xi, yi), i = 1, 2, �p is the perturbation function that describes the
perturbation applied to each system as a result of the coupling between them, and γ

is the strength of coupling. One can describe a single oscillator in terms of its phase,
and (11.7) can be rewritten in terms of the phases φ1 or φ2 as follows:

dφ1

dt
= 2π

T
+ γ �Z(φ1) �p(φ1, φ2),

(11.8)
dφ2

dt
= 2π

T
+ γ �Z(φ2) �p(φ2, φ1),

where T is the period of oscillations in oscillators when uncoupled, �Z(φi) is a sensi-
tivity function defined as the change in φ̇i due to any perturbations from the position
�X0

i (φi) on the limit cycle of the uncoupled system,

�Z(φi) = grad �Xi
(φi( �Xi))| �Xi= �X0

i (φi )
, i = 1, 2. (11.9)

Now �p(φ1, φ2) is a function that describes perturbation of the phases due to cou-
pling. If coupling is weak, the changes in the phases induced by coupling over one
period T of the unperturbed limit cycle are small, too. Therefore, one can aver-
age (11.8) over T ,

Γi(φi, φi′) = 1

T

∫ T

0

�Z(φi) �p(φi, φi′) dt, i = 1, 2, i �= i′. (11.10)

However, it is not the individual phases of interacting oscillators that are of in-
terest to us, but rather the phase difference δφ = (φ1 − φ2) between them. Note
that in (11.10) Γi can be represented as the functions of phase difference δφ, and
Γ2(δφ) = Γ1(−δφ) [151]. Then (11.8) can be rewritten as
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dφ1

dt
= 2π

T
+ Γ1(δφ),

dφ2

dt
= 2π

T
+ Γ1(−δφ). (11.11)

The evolution equation for δφ then reads

d(δφ)

dt
= Γ1(δφ) − Γ1(−δφ) = Γa(δφ), (11.12)

where Γa(δφ) is the effective coupling function expressed as

Γa(δφ) = 1

T

∫ T

0

( �Z(φ1) �p(φ1, φ2) − �Z(φ2) �p(φ2, φ1)
)

dt. (11.13)

How can we calculate the effective coupling in a real situation? In general,
the evaluation of the quantity �Z(φi) in (11.9) grad �Xi

φ( �Xi) for any point �Xi with
phase φi is very complicated. For weak coupling, however, it is approximately equal
to the value calculated at a point �X0

i (φi), where the point �X0
i is on the limit cycle

and its phase is the same as that of point �Xi . For any point on the limit cycle, it is
the gradient of the phase φi that is a function of the phase vector �Xi and it can be
obtained numerically.

Note that the effective coupling Γa(δφ) is an odd function of δφ because the
coupling in (11.7) was introduced as symmetric. The equilibrium phase difference
between the two oscillators is given by the condition Γa(δφ) = 0 that corresponds to
the phase locked regime of coupled oscillators. The stability of such regime is deter-
mined by the slope of the effective coupling d{Γa(δφ)}/d{δφ} at the corresponding
value of δφ. The slope takes a negative or a positive value for the stable or unstable
synchronous regimes, respectively.

11.3 Dephasing

The effective coupling function describes the system’s response averaged over a
period of the limit cycle. But the local inhomogeneity of the phase velocity field can
in addition cause new important phenomena which we will introduce in this section.

There are three types of equilibrium states on a phase plane: stable, unstable
and saddle. The asymptotic dynamics near either stable, or unstable points does
not produce any non-trivial effects: all trajectories either converge to equilibrium or
move away from it. However, the motion of the phase trajectory near a saddle point
can lead to an interesting phenomenon known as dephasing [104, 264].

The mechanism of this phenomenon is illustrated in Fig. 11.3 where a super-
imposed phase plane for the two identical mutually coupled oscillators (11.4) is
shown. S is a saddle equilibrium that existed in each of the oscillators before the
coupling was introduced. Note that diffusive coupling does not change the positions
of the equilibrium states, and therefore S remains at the same location as without
coupling. Ws and Wu are the stable and the unstable manifolds of S, respectively.3

3 For the properties of the manifolds see Sect. 5.1.
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Fig. 11.3. Illustration of dephasing mechanism on the superimposed phase plane of two dif-
fusively coupled identical oscillators (11.4). S is a saddle point with its stable Ws and unsta-
ble Wu manifolds. A (solid line) is the limit cycle that existed in the uncoupled oscillators.
B (dash-dotted line) and C (dashed line) are the segments of the phase trajectory that go
through the initial conditions set inside and outside A, respectively. 1 and 2 are the initial
conditions of the coupled oscillators that are set on the cycle A at some distance from each
other, and the arrows attached to them show the strength and direction of the forcing due to
diffusive coupling: a along x-direction, b along y-direction and c along both variables. For
more detail see text

Symbol A (solid line) denotes the limit cycle that existed in each of the identical
systems when they were uncoupled (in the picture only a segment of the cycle is
shown). We will refer to the area to the right of A as to the “inside of the limit
cycle,” and to the area to the left as to the “outside” of it.

The closed curves around S schematically represent the lines of constant phase
velocity |v|: between the two successive lines there is the same increase in the value
of |v|. Therefore, where these lines are denser, the gradient of |v| is larger. At the
saddle point itself, the phase velocity is equal to zero, near S the motion is slowed
down, and generally the closer to the saddle, the slower the motion is. The cycle A

crosses the lines of constant |v| and thus the motion on A occurs with very different
velocities: the portions that are closer to S are slower than those further away from
it. Also, the inside of the limit cycle A is further away from S than the outside of it in
the portion of the superimposed phase plane shown in Fig. 11.3. Therefore, inside A

the evolution of the asymptotic phase is faster than outside of it. The curves B (dot-
dashed line) and C (dashed line) schematically represent the phase trajectories that
would go through the initial conditions set inside and outside the limit cycle A,
respectively.

Phase points 1 with coordinates (x1, y1) and 2 with (x2, y2) represent the first
and the second oscillators of (11.4), respectively. Note that the coordinates of the
respective state of the full system (11.4) are then defined as (x1, y1, x2, y2). Suppose
the initial conditions (x∗

1 , y∗
1 ) for 1 and (x∗

2 , y∗
2 ) for 2 are defined somewhere on the

limit cycle A of the unperturbed system, but at slightly different positions: 1 is put
closer to the saddle than 2. As seen from Fig. 11.3, the two points find themselves
in the regions with substantially different phase velocities: 1 in a slower region,
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and 2 in a faster one. Since the phase points move clockwise, the initial phase of
the first oscillator appears larger than the phase of the second one, therefore we
will call the first oscillator the “leading” subsystem and the second the “lagging”
one. The arrows attached to points 1 and 2 in Fig. 11.3 show the direction of the
force that is experienced by each point due to diffusive coupling. Three cases are
illustrated: (a) coupling along x-direction only, γx �= 0 and γy = 0, (b) coupling
along y-direction only, γy �= 0 and γx = 0, and (c) coupling along both variables,
or “all-variable coupling” with γx = γy . Consider these cases separately.

For the x-coupling illustrated in Fig. 11.3(a) the phase points “attract” each other
along the horizontal direction. With this, the leading subsystem is being pushed to
the right, inside the limit cycle, where the phase flow is fast. On the contrary, the
lagging subsystem is being pushed to the left, outside the limit cycle, where the
phase flow is slow. As a result, a small phase difference between the two oscilla-
tors increases, and the phenomenon of dephasing occurs. Note that the mechanism
described above is governed by the gradient of phase velocity field that is directed
transversely to the phase trajectory, and therefore it does not disappear at vanishing
coupling.

As the phase trajectories leave the vicinity of the saddle point, the “ordinary”
mechanisms of interaction take control again. As a result, the phase difference set-
tles down at some (non-zero) stable value. For coupling strong enough, the non-
linear mutual attraction takes over the dephasing effect. Hence, the phase difference
between the two oscillators strongly depends on the strength of coupling.

If the coupling through y-variable is applied as illustrated in Fig. 11.3(b), the
local behavior near S is opposite to the one considered above: the leading subsystem
is slowed down while the lagging one is accelerated. Thus, a small phase difference
rapidly decreases (the “inphasing” effect) and in-phase behavior becomes stable.

For the all-variable diffusive coupling γx = γy illustrated in Fig. 11.3(c), points
1 and 2 always attract each other along the trajectory A and no dephasing or in-
phasing effects occur. The mechanism discussed above does not work any longer.
This is why such coupling is sometimes referred to as “scalar.”

The motion of a phase trajectory very close to a saddle point naturally takes
place in the dynamical systems close to a homoclinic bifurcation. Thus, systems
with a homoclinic transition appear to demonstrate the dephasing effect. For the
two coupled Morris–Lecar (ML) models, Han et al. have shown [104] that the one-
variable diffusive coupling leads to dephasing between two oscillations and is re-
sponsible for antiphase synchronization.

Figure 11.4 shows the effective coupling Γa for the diffusively coupled ML sys-
tems described by (11.21) that will be considered in the next section. Here the limit
cycle appears through (a) Andronov–Hopf bifurcation and (b) homoclinic connec-
tion. For the Andronov–Hopf bifurcation (a) the slope of effective coupling for
δφ = π is positive while for δφ = 0 it is negative. Hence, the antiphase state is
unstable and the in-phase state is stable. On the contrary, for the homoclinic bifur-
cation (b), the in-phase state is unstable and the antiphase state is stable. A small
phase difference between the two oscillators gradually increases and settles down
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Fig. 11.4. Effective coupling Γa(δφ) as a function of the phase difference δφ between the
two Morris–Lecar models (11.21): a for the limit cycle that appears via an Andronov–Hopf
bifurcation (J = 0.35) and b for the limit cycle that appears via a homoclinic bifurcation
(J = 0.075). A standard set of parameters is used: uc = 0.0, ud = 0.3, ḡCa = 1.1, f = 0.2.
In both cases, the effective coupling vanishes at δφ = 0, π. In case a, the slope is positive
at δφ = π and negative at δφ = 0. Therefore, the in-phase solution is stable. In case b, the
situation is opposite to the above and the antiphase solution is stable

as one achieves the antiphase state. Thus, the dephasing phenomena are the result
of a strong deformation of the phase flow near the stable manifold of the saddle
point [104].

11.4 Examples of 2D Anisochronous Oscillators

A two-dimensional oscillatory system in its most general form can be written as
follows:

εẍ + D(x, ẋ)ẋ + Ω(x) = 0, (11.14)

where functions D(x, ẋ) and Ω(x) can be chosen in various forms as long as they
fulfill the conditions for the existence of self-oscillations. In (11.14) D(x, ẋ) is re-
sponsible for the energy dissipation and Ω(x) defines the force applied to the oscil-
lator. The zeroes of Ω(x) determine the locations of equilibrium points, whose sta-
bility is determined by the signs of dΩ(x)/dx and of D(x, ẋ). Namely, dΩ(x)/dx

is negative only for saddles, whereas nodes and foci are stable when D(x, ẋ) is pos-
itive. For more compact notations, thereafter we omit the arguments of D and Ω .
The time separation parameter ε in (11.14) determines the difference in the time
scales between x and ẋ.

Anisochronous features of a limit cycle oscillator can be introduced in two dif-
ferent ways. First, choosing ε 
 1 or ε � 1 yields a strong difference in time scales
between x and ẋ that ensures the separation of fast and slow dynamics. Second, by
variation of D and Ω one can change the features of the phase velocity field, since

|v(x, ẋ)| =
√

ẋ2 + 1

ε2
(−Dẋ − Ω)2. (11.15)
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Let us consider a number of representative examples of phase plane oscillators,
most of which will be used throughout this chapter. Figure 11.5 displays isolines of
phase velocity (left column) and the shapes of nonlinear functions D and Ω (right
column) of oscillators (11.14).

van der Pol oscillator [292] is a well-known paradigmatic model for self-
sustained oscillatory dynamics that was thoroughly considered in Chaps. 3, 4 and 6.
It can be defined by setting

D = −α
(
1 − x2),

(11.16)
Ω = x,

where α is a control parameter, and ε = 1 in (11.14). The phase velocity value is
determined by

|v| =
√

ẋ2 + (
α
(
1 − x2

)
ẋ − x

)2
. (11.17)

At a vanishingly small α one can obtain

|v| ≈
√

x2 + ẋ2 =
√

r2 = r, (11.18)

with r being the radius of the limit cycle approximated by harmonic functions (as
done in Chap. 3). Then the period of the limit cycle does not depend on its size and
can be estimated as

T = 2πr

r
= 2π.

Thus, for small α, the van der Pol model provides an example of a perfectly isochro-
nous limit cycle oscillator. However, for considerably large values of α, the trajec-
tory goes through the regions of fast and slow motion, and oscillations become more
complex. In Sect. 11.6 we will discuss how this affects synchronous behavior.

Bonhoeffer–van der Pol oscillator [54] is also referred to as a simplified form of
the FitzHugh–Nagumo neuron model [80]:

εẋ = x − x3

3
− y,

(11.19)
ẏ = x + a.

This model corresponds to the following choice of the functions D and Ω:

D = −(
1 − x2), Ω = x + a

in (11.14). Here, ε is the time separation parameter, which is assumed to be small,
ε � 1, and a is the control parameter. By setting a = 0 and ε ≈ 1, (11.19) is re-
duced to the van der Pol oscillator (11.16). However, we distinguish between these
two cases since they come from different applications. For example, the FitzHugh–
Nagumo model was derived from the four-dimensional Hodgkin–Huxley neural
model [116] by means of simplifications and reduction of system’s dimension. Fig-
ures 11.5(a) and (b) show that the phase velocity is slow in the vicinity of the
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Fig. 11.5. The contour plot for the phase velocity field (left column) and the shape of func-
tions D, Ω (right column) for the a, b Bonhoeffer–van der Pol oscillator; c, d Hindmarsh–
Rose model; e, f Morris–Lecar model; and g, h modified van der Pol system
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N -shaped nullcline defined by the condition ẋ = x − x3/3 − y = 0. Here, the
smaller the ε, the slower the motion of the phase point is. Function D is nega-
tive in the range of x ∈ [−1,+1] and function Ω is a straight line. The intersec-
tion of D and Ω (Fig. 11.5(b)) corresponds to the equilibrium point that undergoes
Andronov–Hopf bifurcation at a = 1.0.

The Hindmarsh–Rose model [115] was originally developed to describe a burst-
ing behavior of a neuron, and has three equations in its original form. However,
there is also a phase plane version of this model whose equations read

ẋ = y − x3 + 3x2 + I,
(11.20)

ẏ = 1 − 5x2 − y.

This is equivalent to the following choice of the corresponding functions D and Ω

in (11.14):

D = −(
3x2 − 6x + 1

)
, Ω = x3 + 2x2 − 1 − I,

where I is the control parameter qualitatively describing the external applied cur-
rent. In contrast to the FitzHugh–Nagumo model, the system (11.20) has three
equilibrium points. Moreover, for negative x both x- and y-nullclines are located
close to each other. As a result, a narrow “valley” of slow motion is formed on the
phase plane, where two of three equilibrium points are located (Fig. 11.5(c)). Fig-
ure 11.5(d) shows that only one (right) zero of Ω function corresponds to the nega-
tive values of D, therefore the respective equilibrium is an unstable focus, whereas
two other equilibrium points are a saddle (the middle one) and a stable (the left one)
nodes.

The Morris–Lecar (ML) model [181] is a simplified model of a spiking neuron
with a refractory period, which is similar to the Hodgkin–Huxley model [116]. Us-
ing two dynamical variables, this model takes into account most of the dynamical
features of the real neurons, including a stimulus-dependent excitability and oscil-
latory behavior. The equations for a single ML model read

du

dt
= −Jion(u,w) + J,

(11.21)
dw

dt
= f

w∞(u) − w

τw(u)
.

Here,

Jion(u,w) = ḡCam∞(u)(u − uCa) + ḡKw(u − uK) + ḡL(u − uL),

m∞(u) = 0.5
[
1 + tanh{(u − ua)/ub}

]
,

w∞(u) = 0.5
[
1 + tanh{(u − uc)/ud}

]
,

τw(u) = 1/ cosh{(u − uc)/(2ud)},
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where the dynamical variables u and w represent the transmembrane voltage of a
neuron and the activation of the potassium current, respectively. The driving forces
for the membrane potential u are the external stimulus current J and the ionic chan-
nel current Jion(u,w). The ionic channel current consists of three terms: the calcium
current ḡCam∞(u)(u − uCa) generating fast action potentials, the delayed rectifier
potassium current ḡKw(u − uK), and the leak current ḡL(u − uL) maintaining a
constant potential at the resting state.

The dynamical properties of this model at various sets of control parameters
have been extensively analyzed by Rinzel and Ermentrout [244]. For very low or
very high values of the excitation current J , it has a single stable equilibrium point.
At intermediate values of J , a stable limit cycle appears either via the Andronov–
Hopf bifurcation, or via the homoclinic connection, depending on the value of f .
For the parameter values set as ua = −0.01, ub = 0.15, uc = 0.1, ud = 0.145,
ḡCa = 1.0, ḡK = 2.0, ḡL = 0.5, uCa = 1.0, uK = −0.7, uL = −0.5 and
f = 1.15, a limit cycle arises at J = 0.0730 via a homoclinic connection. A one-
parameter bifurcation diagram and the corresponding phase portraits are shown in
Fig. 11.6.

Fig. 11.6. The dynamics of a single Morris–Lecar model (11.21). a One-parameter bifurca-
tion diagram. Solid lines denote the stable solutions while dashed lines correspond to non-
stable (saddle and unstable) solutions. b Evolution of the phase portraits. For the external
stimulus J < JA, a stable fixed point, a saddle point, and an unstable fixed point coexist. At
J = JA, a stable limit cycle appears through a homoclinic connection at the saddle point.
At J = JB, the unstable fixed point becomes stable, and an unstable limit cycle is born in
its vicinity. Two limit cycles, stable and unstable ones, coalesce to disappear at J = JD via
a saddle-node bifurcation. At J = JC, the stable and the saddle equilibria disappear via a
saddle-node bifurcation. Here, JA = 0.0730, JB = 0.0756, JC = 0.0833 and JD = 0.0845.
In b we show schematically how phase portraits are evolving for each range of J indicated
in a
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For the case of the Morris–Lecar model, functions D and Ω are given by

D(u, u̇) = ḡCa
∂m∞(u)

∂u
(u − 1) + f

τw(u)

+ ḡCam∞(1 − uK) + ḡL(uL − uK) + Idc − u̇

u − uK
,

(11.22)
Ω(u) = f

τw(u)

{
ḡK(u − uK)w∞(u)

+ ḡCam∞(u)(u − 1) + ḡL(u − uL) − J
}
.

Note that unlike in the models considered above, function D here depends on both
u and u̇, i.e., is a function of two variables which is illustrated in Fig. 11.5(f) as con-
tour plot. Within a typical range of the parameters, Ω has three zeroes that corre-
spond to a stable node, a saddle, and an unstable focus, respectively. When the value
of J is small, the stable node is the only attractor in the phase space. At larger J ,
the system becomes excitable: a small stimulus is unable to induce firing, produc-
ing only insignificant fluctuations of the phase flow near the stable node. However
a sufficiently large stimulus might lead to the firing of the neuron that corresponds
to a long excursion of the phase trajectory along the separatrix formed by the stable
manifolds of the saddle. Thus, in this regime firing is not a self-sustained process,
but is realized due to applied stimuli.

As J increases, a homoclinic bifurcation4 occurs at J ≈ 0.0729, and the stable
and unstable manifolds of the saddle are connected to form a homoclinic loop to
the saddle. Further increase of J leads to the self-sustained firing that is represented
in the phase space of the system by a stable limit cycle. Consequently, now the
phase space contains three equilibria together with a limit cycle. Such structure of
the phase space can be predicted by the shape of the functions D and Ω as shown
in Fig. 11.5(f). Three equilibria are located at the zeroes of Ω , and the type of each
equilibrium is determined by the signs of D and dΩ/du. In the figure, D is given as
a contour plot on the (u, u̇) plane, where the dark area corresponds to the negative
dissipation (the energy generation). Figure 11.5(e) shows that the decrease of the
phase velocity is observed around the line connecting the equilibrium points.

The modified van der Pol model [219] is a generic oscillator with a homoclinic
bifurcation.

The examples of anisochronous oscillators discussed above show that one can
single out two patterns of the inhomogeneous vector fields. The first pattern is re-
lated to the existence of a nullcline for the fast variable. In the vicinity of this null-
cline the motion is slow. The second pattern is related to the slowing down of the
trajectory near the singular points that can be either stable or unstable. In order to
understand the general aspects of interaction between such oscillators, it is useful to
develop a simple model that would mimic the main features of neuronal oscillators
and such that the above features could be easily adjusted by choosing the appropriate
values of control parameters.

4 Homoclinic bifurcation was also discussed in Sect. 5.1.
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Fig. 11.7. A typical phase portrait of neuronal oscillators

The inhomogeneity of the vector field can be induced by a singular point. For
example, this takes place when some segments of a limit cycle are located nearby a
saddle point. Such situation usually precedes a homoclinic bifurcation and is typical,
for example, for Morris–Lecar and Hindmarsh–Rose models. A schematic structure
of the phase space for this case is sketched in Fig. 11.7.

As a model featuring such structure of the phase space we propose a modifica-
tion of the van der Pol oscillator [219], which we refer to below as modified van der
Pol (MVP) model. We choose function D and Ω in the following form:

D = −α
(
μ − x2), Ω = x(x + d)(x + 2d)

d2
, (11.23)

where α, μ and d are the control parameters that are assumed to be positive. The
chosen cubic form of Ω(x) provides three equilibria in the system. A canonical
form for the MVP model is provided by (11.14), and taking into account (11.23),
we can rewrite it as

ẋ = y,
(11.24)

ẏ = α
(
μ − x2)y − x(x + d)(x + 2d)

d2
.

Three equilibrium points are located at yF,S,N = 0 and xF,S,N = 0,−d,−2d for
the focus (index F), the saddle (S), and the stable node (N), respectively. The phase
velocity field as well as the plots for D and Ω are shown in Fig. 11.5(g), (h). The
slopes of Ω at the equilibria are dΩ/dx = 2,−1, 2, respectively. The focus is
unstable since D is negative at xF, and the limit cycle is located between the unstable
focus and the saddle. At the fixed values of d and α, the parameter distance from
the homoclinic bifurcation is controlled by μ. At d = 3 and α = 0.2, the limit cycle
approaches the saddle as μ is increased and the homoclinic connection occurs at
μ ≈ 1.255. At small μ, the limit cycle is located close to the unstable focus, and the
behavior of MVP model is similar to the dynamics of van der Pol oscillator.

11.5 Synchronization near the Homoclinic Bifurcation

In this section we consider synchronization between the limit cycle oscillators near
the homoclinic bifurcation with account of the dephasing mechanism near the saddle
point. The coupled MVP models are taken as a toy system.
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Let us first study the simplest case of the one-variable coupling. Two diffusively
coupled MVP models read

ẋ1,2 = y1,2 + Kx(x2,1 − x1,2),

ẏ1,2 = −α
(
μ − x2

1,2

)
y1,2 − (

x1,2(x1,2 + d)(x1,2 + 2d)
)
/d2 (11.25)

+ Ky(y2,1 − y1,2),

where the coupling strength Kx (or Ky) tends to 0, and Ky (or Kx) are assumed to
be sufficiently small so that perturbations of each subsystem are negligibly small.
In these equations, the variable x can be expounded as a coordinate of the system,
and y is its velocity. Therefore, the particular case of Ky = 0 is sometimes called
position-coupling, and the case of Kx = 0 is referred to as velocity-coupling.

Consider a single oscillator in the absence of coupling. Figure 11.8 shows a
contour plot for the magnitude of the phase velocity |v|. The phase velocity vanishes
at the equilibria (S and F ). At small values of μ, the limit cycle X1 is located far
away from the saddle, an example being given in Fig. 11.8 for μ = 0.2. In this
case, the phase space structure in terms of the |v|-surface along the limit cycle is
qualitatively equivalent to that of the van der Pol oscillator, for which the diffusive
coupling typically leads to the stable in-phase solution.

However, as μ is increased, the limit cycle gradually approaches the saddle,
and the phase trajectories visit the regions with different phase velocities. This case
is qualitatively different as compared to the case of small μ. The limit cycle X2
for μ = 1.0 is shown in Fig. 11.8. The trajectory lying on X2 spends most of the
time near the saddle, and therefore the interaction due to coupling in this region
becomes important. The trajectory is obviously subjected to dephasing mechanism
as discussed in Sect. 11.3. Note that since |v| and the vector field change with the

Fig. 11.8. Contour plot of |v| and limit cycles in the MVP oscillator. The limit cycles are
shown for μ = 0.2 (X1) and μ = 1.0 (X2). The phase velocity field is given for μ = 1.0
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change in μ, it is impossible to plot correctly both limit cycles X1 and X2 in the
same plot. Therefore, in Fig. 11.8, the phase velocity field is given for μ = 1.0.

Now, consider two mutually coupled identical oscillators (11.25), for which the
plane (x, y) in Fig. 11.8 will be a superimposed phase plane. In order to obtain
a quantitative estimation for the dephasing effect between them, let us divide the
limit cycle into two parts by a line AB as shown in Fig. 11.8. It is expected that
the part located near the saddle (to the left of AB) is relevant to the dephasing and,
thus, to the antiphase synchronization. One can introduce measures P and Q for
the linear rate of dephasing as follows. Assume that the motion occurs clockwise
and the initial conditions for both oscillators are exactly on the limit cycle X2, but
are slightly separated from each other. Then the distance between them along the
cycle can be associated with a certain time lag t . Assume that when the leading
oscillator at point A this lag was tA0 and at point B the lag was tB0. Let us follow
the motion of the phase points in two systems along the cycle X2 following the route
ABA clockwise. tB and tA will be the time lags between the two systems at the
endpoints of these routes. Then one can introduce P and Q numerically as

tB = PtA0, (11.26)
tA = QtB0.

The values of P and Q should be determined in the limit of a small initial time lag.
Numerical analysis of the coupled MVP model shows that while P is insensi-

tive to variations in μ (P ≈ 1), Q strongly depends on μ. Figure 11.9 illustrates the
variations of Q versus μ for different coupling strengths and different coupling vari-
ables. The position-coupling (Ky = 0) leads to stronger dephasing as μ approaches
the value of the homoclinic bifurcation (μ ≈ 1.255). Curves 1 and 2 correspond

Fig. 11.9. The linear rate of dephasing Q versus parameter μ. The dotted line H denotes the
homoclinic bifurcation point. Curves 1, 2 and 3, 4 correspond to different types of coupling
(position- and velocity-coupling, respectively). Coupling strength is changed from 0.001 to
0.01 in each pair of curves
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to the coupling strength Kx = 0.001 and Kx = 0.01, respectively. The case of the
velocity-coupling (Kx = 0) leads to in-phasing (curves 3 and 4). Curves 3 and 4
correspond to the coupling strength Ky = 0.001 and Ky = 0.01, respectively. Note
that the effect of both in-phasing and dephasing becomes stronger with larger cou-
pling strength (compare curves 2 and 4 with curves 1 and 3).

Now consider the general case of the two-variable coupling as discussed in
Sect. 11.1. We introduce a vector of coupling using the polar coordinates:

Kx = K cos Ψ,
(11.27)

Ky = K sin Ψ.

Here, K denotes the coupling strength and the angle Ψ reflects the relative weight
of coupling between two variables x and y. Ψ can be also regarded as the orienta-
tion angle of the coupling force in the two-dimensional subspace of each oscillator.
A special case includes the scalar coupling when Kx = Ky . With this, the coupling
forces become attractive when Ψ = π/4 and repulsive when Ψ = 5π/4. The one-
variable coupling is achieved when Ψ = 0,π (position-coupling) and Ψ = ±π/2
(velocity-coupling), respectively. The diffusive coupling refers to the case where
neither Kx nor Ky is negative, i.e., 0 ≤ Ψ ≤ π/2.

11.5.1 Weak Coupling Limit

In this section we consider the case when the coupling is weak, so that an analytical
method based on a phase reduction model (effective coupling function) explained in
Sect. 11.2 can be applied. The calculation of the effective coupling function Γa(δφ)

at different values of coupling angle Ψ (while K is assumed to be vanishingly small)
reveals typical regimes. Figure 11.10 summarizes the main dynamical patterns. The

Fig. 11.10. Function of effective coupling Γa(δφ) for three synchronous states (in-phase I ,
antiphase A, and out-of-phase O). The phase difference for each state is marked by a square
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three curves in this figure correspond to the three main synchronous states: the in-
phase (I ), antiphase (A), and out-of-phase synchronization (O). The existence of
the in-phase state is expected due to the symmetry of (11.25). The diffusive cou-
pling term vanishes when the state variables of coupled oscillators are equal. The
appearance of an antiphase state is also guaranteed by the periodicity of Γa(δφ). The
out-of-phase state corresponds to the phase-locked state with the phase difference
δφ ∈ [0; π]. The symmetry of the solution of (11.25) is broken for out-of-phase
states, but they occur in pairs, and the two solutions demonstrate reflection symme-
try with respect to each other.

By using the effective coupling approach, one can learn how the formation of
the synchronous states depends on the coupling vector. The results are presented
in Fig. 11.11 in the form of a diagram in polar coordinates (Ψ,μ). The angle Ψ

Fig. 11.11. (Color online) Phase diagram for the coupled MVP models (11.25) in the weak
coupling limit on the plane of the polar coordinates “coupling angle Ψ –control parameter μ.”
Areas of in-phase, antiphase, and out-of-phase states are labelled as I , A, and O, respec-
tively, and shaded by white, dark-grey, and hatched pattern. In the grey area C both in-phase
and antiphase regimes are stable and coexist. Curves of symmetry breaking bifurcations are
denoted SB. Dashed line with arrow is the selected circular path P discussed in text
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varies from 0 to 2π, and the radius is limited by the value of μ corresponding to the
homoclinic bifurcation.

Four prominent areas of the parameters denoted by different colors can be dis-
tinguished in the diagram. The white area corresponds to the stable in-phase syn-
chronization (I ), and the antiphase state is unstable there. The dark grey area corre-
sponds to the stable antiphase (A) and the unstable in-phase states. In the hatched
area, a pair of out-of-phase solutions (O) are stable, and they are separated by un-
stable in-phase and antiphase states. Overlapping of areas I and A is denoted by
the light grey area (C). For these values of control parameters, the in-phase and the
antiphase states coexist and are separated by a pair of unstable states with reflection
symmetry. Note that the scale of the radial axis has been non-linearly transformed
in order to magnify the part of the diagram for the larger values of μ.

As one can see from the diagram, at small values of μ (μ ≈ 0.1) the system be-
haves like two coupled van der Pol oscillators. Namely, the in-phase synchronization
is the only stable state in the case of diffusive coupling (Ψ ∈ [0,π/2]). Generally,
depending on Ψ , i.e., on the combination of signs of Kx and Ky in (11.27), the sys-
tem demonstrates either in-phase or antiphase behavior. The area where the pair of
out-of-phase states exist degenerates into a line.

At larger values of μ, however, synchronization states essentially depend on
both Ψ and μ. Let us fix μ = 1.2 and change Ψ along the circular path P de-
noted in Fig. 11.11 by a dashed circle with arrows. The points at which this path
crosses the boundaries between different areas labelled as P1–P4. Along this way,
three different synchronization states change their stability via symmetry-breaking
bifurcations. The sequence of the symmetry-breaking bifurcations is schematically
illustrated in Fig. 11.12. Large circles represent the variation of the phase difference
δφ, whereas small circles on them denote synchronization states. Filled circles mark
stable states and the open circles represent the unstable states. In the insets of the
diagram the branches of in-phase and antiphase states are denoted as straight lines,
and the emerging pairs of branches for symmetry-breaking O states are denoted as
parabolic curves. A solid line denotes a stable branch and a dotted line corresponds
to an unstable branch.

The in-phase state is the only stable state of the system until it reaches P1 where
the largest Floquet multiplier becomes equal to +1. At this point, the in-phase state
loses its stability, and two other stable states with the broken symmetry (O states)
are born. The curve of the symmetry-breaking bifurcations and the corresponding
branch in Fig. 11.12 are denoted as SB1. As Ψ is increased, the out-of-phase states
collide and disappear at P2 where the inverse symmetry-breaking bifurcation (SB2
in Fig. 11.12) occurs, and this gives rise to a stable antiphase state (A).

With the further increase of Ψ , the in-phase state becomes stable at P3 but
the antiphase state remains stable as well. Thus, there is a range of the parame-
ter values where both in-phase and antiphase states are stable (as denoted by C

in Figs. 11.11 and 11.12). These regimes coexist until the antiphase state loses its
stability at P4 via the symmetry-breaking bifurcation with increasing Ψ . The bifur-
cation curves passing through points P3 and P4 are denoted as SB3 and SB4, respec-
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Fig. 11.12. Stability and bifurcations of the synchronization states along the circular path P

in Fig. 11.11. The insets illustrate the corresponding symmetry-breaking bifurcations. Stable
and unstable regimes are denoted by small filled and empty circles. They are connected with
large circles that schematically represent the possible phase difference δφ

tively. The bifurcations at SB3 and SB4 are subcritical since they are accompanied
by two unstable (out-of-phase) states shown as a pair of open circles in Fig. 11.12.

To summarize the described behaviors, the phase diagram in Fig. 11.11 shows
that the in-phase synchronization is the only stable state for weak diffusive coupling
that is similar to the behavior of the coupled van der Pol oscillators. The area of
stability of the in-phase state is particularly large for 0 ≤ Ψ ≤ π/2.

However, with increasing μ the limit cycle approaches the homoclinic bifur-
cation, and the situation changes drastically. Actually, at sufficiently large μ even
for purely diffusive coupling the coexistence of several synchronization states is
possible. This tendency seems to be more pronounced in the case of the position
coupling.

11.5.2 Finite Coupling Strength

At the finite coupling strength the perturbation of the limit cycle can be signifi-
cant and, consequently, the phase model reduction considered above might not be
appropriate for the prediction of the behavior of the coupled systems. Thus, direct
numerical methods have to be applied. The question is: To what extent the results
for the weak coupling limit can be generalized to the case of finite coupling?

Since our primary interest is limit cycle oscillations near a homoclinic bifurca-
tion, we fix μ = 1.2 (close to the bifurcation point) for both oscillators and vary the
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two coupling parameters, K and Ψ . Since each of the interacting oscillators demon-
strates multistability, i.e., in our case the coexistence of a stable fixed point and a
limit cycle for the same parameters values, the general structure of the phase space
of the coupled system is very complicated. Therefore, for simplicity let us focus on
the region in the phase space where each system has an attractor corresponding to
the oscillatory behavior. If for some parameters a trajectory leaves this region, e.g.,
due to a boundary crisis, we assume that there are no stable attractors in the phase
space of the system.

By analogy with Fig. 11.11, Fig. 11.13 presents the resulting phase diagram in
polar coordinates (K , Ψ ) with K varying within the interval [0; 0.013]. The curve
BC denotes the line of the boundary crisis, and the region of the parameter space
without attractors is colored with black.

Fig. 11.13. (Color online) Phase diagram for the coupled MVP model (11.25) at μ = 1.2 at
the finite coupling strength. The polar coordinates are the coupling angle Ψ and the coupling
strength K . Other notations are described throughout the text
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Similarly to the case of the weak coupling limit, the system demonstrates three
synchronization states: the in-phase (I ), antiphase (A), and out-of-phase states (O).
The parameter area of coexisting A and I states is labelled as C. As K becomes
larger, the region of each state is deformed with the deflection of the bifurcation
curves depending on K . Besides the symmetry-breaking bifurcation similar to the
one described above, the states can also undergo other bifurcations such as period
doubling, that cannot be predicted by the phase model with effective coupling func-
tion. Typical bifurcational transitions are illustrated in Fig. 11.14. They correspond
to the variation of Ψ at two different values of K along paths labeled 1 and 2 in
Fig. 11.13. The upper horizontal line denotes the in-phase state branch (I ), and the
lower line denotes the antiphase state branch (A) with solid and dashed curves corre-
sponding to stable and unstable solutions, respectively. Note that the diagram related
to path 1 (smaller K) demonstrates the behavior which is qualitatively the same as
the one observed in the case of the weak coupling limit (Fig. 11.12).

The path 2 for larger K is more complicated. In particular, it includes the period-
doubling routes to chaos. The transition between regions A and I also becomes more
complex, since it involves an additional pair of the stable out-of-phase limit cycles,
whose area of existence is shown in Fig. 11.13 as a hatched region between areas
A and C.

If we start from area A, then with decreasing Ψ the antiphase state loses its
stability via the symmetry-breaking bifurcation (curve SB in Fig. 11.13) that gives

Fig. 11.14. Schematic bifurcation diagrams along paths 1 and 2 in Fig. 11.13, which corre-
spond to K = 0.0025 and K = 0.009, respectively
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birth to a pair of stable O solutions. For even smaller Ψ , the O states of each branch
undergo a cascade of period-doubling bifurcations that lead to the appearance of
two chaotic attractors that are symmetrical with respect to each other. As Ψ is de-
creased further, these two chaotic attractors merge to form a single chaotic attractor
and thus to restore the symmetry in the system. The merged chaotic attractor even-
tually disappears via a boundary crisis, and the trajectory leaves the region of stable
oscillations after crossing the line BC in Fig. 11.13. Note that the period-doubling
cascade of O solutions also occurs on the other side of the BC region.

Let us consider the transition between regions A and I . As one can see from
Fig. 11.14, with decreasing Ψ , I state loses its stability via the symmetry-breaking
bifurcation, and a pair of stable out-of-phase cycles appear. With this, at the moment
when the A state becomes stable, a pair of unstable O solutions are born. These
two pairs of O branches are linked via saddle-node bifurcations. Remarkably, such
saddle-node bifurcations are not observed in the weak coupling limit (Fig. 11.11),
although they can occur in the phase model when Γa in Fig. 11.10 touches abscissa.

11.5.3 Strong Coupling with Moderate μ

In the previous subsection we considered two limit cases: interaction of weakly non-
linear (van der Pol like) oscillators and interaction of strongly non-linear oscillators,
when the coupled units operate close to the homoclinic bifurcation. In the latter
case, the increase of coupling parameter K provides the stronger perturbation of
each oscillator and the systems are pushed out of the self-sustained regime via the
boundary crisis.

Here we examine the behavior of the coupled MVP model (11.25) in the regime
with moderate μ = 1.0, but with strong coupling K = 0.23. It is interesting to find
out if there are any new regimes and transitions as compared to the cases discussed
above.

Figure 11.15 represents the phase diagram on the (K,Ψ ) parameter plane. The
structure of the bifurcation diagram becomes more complicated as compared to
Figs. 11.11 and 11.13. The in-phase synchronous states, in addition to the symmetry-
breaking bifurcations, demonstrate supercritical (PD) and subcritical (PDS) period-
doubling bifurcations, and torus birth, a Neimark–Sacker (T ), bifurcations.

The supercritical period-doubling bifurcation gives birth to a stable period-
doubled in-phase state. With variation of the parameters, this period-doubled in-
phase solution undergoes the symmetry-breaking bifurcation that gives rise to a pair
of the out-of-phase regimes. The out-of-phase states are involved in the cascade of
period-doubling bifurcations that leads to chaos in a way similar that observed for
O states in Fig. 11.13.

The subcritical period-doubling bifurcation entails no attractors, but is related to
the boundary crisis (lines PDS outlining the black area in the diagram). After this
crisis no attractors exist in the region of the phase space considered.

The torus birth bifurcation of the in-phase solutions occurs on the curve T

when a pair of complex-conjugate Floquet multipliers leave the unit circle. Below
this curve there exist Arnold tongues corresponding to the frequency-locked states
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Fig. 11.15. (Color online) Phase diagram for the coupled MVP model (11.25) at μ = 1.0 for
strong coupling. Notations for bifurcation lines and points are as follows: SB—symmetry-
breaking bifurcation; PD—supercritical period-doubling bifurcation; PD2—second super-
critical period-doubling bifurcation; PDS—subcritical period-doubling bifurcation; T —torus
birth, a Neimark–Sacker, bifurcation; CP—cusp point; and BC—boundary crisis

with rational rotation numbers (Fig. 11.15). The most prominent among them is the
tongue of the 1 : 1 locking. Note that the tongues can persist even in the absence of
the stable torus nearby in the parameter space, after the torus has disappeared via a
boundary crisis.

11.5.4 Summary on Synchronization near Homoclinic Bifurcation

Synchronization between the coupled oscillations acquires special features as the
limit cycle in any of the subunits involved approaches the homoclinic bifurcation.
The homoclinic bifurcation implies the presence of a saddle point nearby the limit
cycle, and the latter causes dephasing. Namely, the dephasing rate calculated as
the linear rate Q in (11.26) is shown to increase dramatically as the limit cycle
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approaches the homoclinic bifurcation. Although dephasing is an effect which is
localized in the phase space, it affects the behavior of coupled oscillators in a wide
range of their control parameters.

In the weak coupling limit the use of the effective coupling function allows
one to reveal the existence of three main synchronization states and identifies the
transitions between them through the symmetry-breaking bifurcations. At the finite
coupling strength the effective coupling approach fails, and we have resorted to the
direct numerical calculations. It has been shown that the in-phase synchronization
might not be the only stable state in a system of diffusively coupled oscillators
when a limit cycle approaches the homoclinic bifurcation. A variety of complex
transitions, including the period-doubling and the torus birth bifurcations, the mode-
locking regimes and chaos arise as the coupling strength becomes larger, even if the
control parameter is selected below the homoclinic bifurcation.

The modified van der Pol model introduced as a simple modification of the
generic van der Pol oscillator mimics the dynamical patterns typical of neuron mod-
els. Another more realistic example of a system with similar features will be con-
sidered in Sect. 11.7 below.

11.6 Phase Locking Patterns of Coupled Fast-and-Slow
Oscillators

In the previous section we discussed how synchronous dynamics changes when a
limit cycle approaches the vicinity of a saddle point. The mechanism of dephasing
described in Sect. 11.5 requires the presence of a singular point (equilibrium). With
this, the difference between the time scales of different variables of the same os-
cillator might not be pronounced. Below we consider another situation that occurs
in systems demonstrating motion involving fast and slow time scales which will be
referred to as fast-and-slow motion.

11.6.1 Antiphase Locking in Coupled FitzHugh–Nagumo Models

At small values of time separation parameter ε in the model (11.19), the trajectory
of the limit cycle is split into intervals of fast horizontal jumps and slow drifts up
and down along the right and left branches of the cubic nullcline, respectively, as
schematically shown in Fig. 11.16. The smaller the values of ε, the more pronounced
such fast-and-slow dynamics is.

When two models (11.19) are diffusively coupled, the fast-and-slow dynamics
of the individual units underlies their mutual adjustment. At ε → 0, segments of fast
motion turn into instantaneous jumps and the first equation in (11.19) converges to
the nullcline equation x − x3/3 − y = 0. Theoretical results on the phase equation
for the weakly coupled relaxation oscillators for such relaxation limit have been
obtained in [127, 149]. Application of this approach to (11.19) shows that (i) the
rate of convergence to the in-phase state is relatively fast compared to the case of
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Fig. 11.16. Nullclines and the periodic solution of the model (11.19). Motions along the
branches can be fast or slow

smooth oscillators, and (ii) the antiphase synchronous pattern can be stable. The
latter is realized when the limit cycle spends more time on one of the branches of
the fast nullcline and when the motion on that branch slows down before the jump
point [127]. Note that the above results are valid in the relaxation limit ε → 0 but
should be used carefully for finite values of ε.

The results of numerical calculation of effective coupling function within certain
ranges of ε and a parameter values are summarized in Fig. 11.17. The vertical line
at a = 1.0 corresponds to the supercritical Andronov–Hopf bifurcation. At a > 1.0
the individual systems are in excitable regime, thus there are no oscillations to be
synchronized. At a < 1.0 there is an area where the antiphase locked regime is
stable both for x-coupling (shaded light grey) and for y-coupling (shaded dark grey).

Let us first consider x-coupling. Figure 11.17 illustrates that for small a the
stable antiphase regime is observed at extremely small values of ε. However, for
moderate values of a there is a wide range of ε where antiphase locked regime
is stable. Close to the Andronov–Hopf bifurcation line the area of antiphase solu-
tion sharply shrinks. For the y-coupling, the stability area for the antiphase locked
regime is much smaller and located at a ∈ [0.8; 1.0].

Thus, when a ≤ 1.0 both x- and y-coupling lead to antiphase synchronization
in addition to the in-phase locked regime. Two insets in Fig. 11.17 show the repre-
sentative examples of the effective coupling function Γa. It is clearly seen that in the
light-grey area of the diagram, the curve Γa corresponding to x-coupling (solid line)
has four zeroes with negative slope at δφ = 0 and at δφ = π. With this, there are
two unstable out-of-phase solutions. The curve for y-coupling (dashed line) related
to the dark grey part of the diagram has a similar form.

The qualitative explanation of the observed effects can be given in terms of
superimposed phase plane and of geometrical interpretation of coupling. Let us cal-
culate how much time the phase point spends on the particular segments of the limit
cycle. The left panel in Fig. 11.18 represents the probability density distribution P

of the phase points at a = 0.9 and ε = 0.05 along the limit cycle discretized in
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Fig. 11.17. Antiphase synchronization in two FitzHugh–Nagumo models (11.19) with one-
variable coupling. The corresponding parameter area for x-coupling is shaded by light grey
and labeled A − x. The same parameter area for the y-coupling is shaded by dark grey and
labeled A − y. Inserts show the antisymmetric part of the effective coupling function (11.13)
with solid and dashed lines for the x- and y-coupling, respectively

Fig. 11.18. (Color online) Left panel: Probability density distribution along the trajectory
of a limit cycle. Two areas L and M where the phase point spends most time are clearly
distinguished. Right panel: Position of both subsystems and interacting force are shown
schematically in the superimposed phase plane. Areas of slow motion are shaded grey
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10 000 points. Λ and Π denote the groups of points that correspond to the left and
right branches of slow motion in Fig. 11.16, respectively. The right panel shows
the superimposed phase plane. The filled and open circles denote the first and the
second oscillator, respectively.

Let us first consider y-coupling. It vanishes if at a certain time moment vertical
levels of points 1 and 2 are the same. If the phase point of the second subsystem is
located higher, it is being pulled down by the first subsystem. Due to symmetry of
the coupling term, the phase point of the first subsystem is pulled upwards by the
second one. Thus, both systems are slowing down. However, the area Λ where the
phase points of the first subsystem are accumulated, is much slower than the area Π ,
therefore the coupling-induced perturbation of the first subsystem is less than of the
second one. As a limit case, we can assume that the first subsystem remains in
point 1. Hence, coupling will try to hold point 2 at the same y level, by slowing it
down when its y-position is too high, and by accelerating if it is too low. Note that
both clouds of phase points 1 and 2 move and the process described repeats in time.
As a result, the phase lag of the synchronized regime is determined by the reciprocal
arrangement of the phase points in clouds 1 and 2 as illustrated in Fig. 11.18. For
limited cases of identical coupled systems this corresponds to antiphase locking.

For x-coupling the similar mechanism takes place. Since the second subsystem
is on the fast upper branch (see Fig. 11.16), the effect is even more pronounced. This
explains why the x-coupling provides wider region of the antiphase locking in the
diagram in Fig. 11.17.

11.6.2 Out-of-phase Synchronization via Slow Channels

The key point of the mechanism of the antiphase locking described above is asym-
metric anisochronous motion on a periodic orbit. However, there is another aniso-
chronous mechanism of the phase adjustment based on symmetric geometry of the
limit cycle.

Let us consider how the phase velocity field changes in the van der Pol oscillator
with increasing parameter α in (11.16). The representative snapshots of phase dy-
namics are shown in the left panels of Fig. 11.19 where a phase portrait of periodic
oscillations is shown as a solid line, and phase velocity magnitude is coded by color
gradient. The top panel illustrates the regime of smooth oscillations at α = 0.2. In
this case, the phase velocity field on the limit cycle does not demonstrate essential
variations, thus, the motion is close to isochronous.

For larger α = 1.5 (middle panel in Fig. 11.19), there is considerable inhomo-
geneity in the velocity along the trajectory on the limit cycle. One can distinguish
two narrow symmetrically located “channels” of slow motion that approach the limit
cycle from the left and from the right. They are situated in the area where both x- and
y-nullclines defined as

y = x

α(1 − x2)
, y = 0 (11.28)

come close to each other, but do not intersect. For brevity, thereafter we call them
slow channels.
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Fig. 11.19. Formation of slow channels in two coupled van der Pol oscillators (11.14),
(11.16). Left panel: the phase velocity field (gradient plot) with superimposed limit cycle
trajectory (solid line) for a α = 0.2, b α = 1.5, and c α = 10.0, respectively. Areas of slow
motion are shaded dark grey. Right panel: The corresponding evolution of effective coupling
function Γa for x- and y-coupling (solid and dashed lines, respectively)
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At α = 10.0 the slow channels are fully developed (the bottom left panel in
Fig. 11.19). For such high non-linearity the trajectory on the limit cycle runs very
close to nullclines and inevitably passes through both slow channels spending there
most of the time within a period of oscillations.

Let us now investigate synchronization features of coupled oscillators using the
effective coupling Γa approach (right panels in Fig. 11.19). For small non-linearity
α = 0.2 (top panel), and correspondingly weak anisochronicity, the curves of Γa
calculated for x-coupling (solid line) and y-coupling (dashed line) almost coincide.
Any one-variable coupling, as well as any of its combinations, provide only in-
phase synchronization: the effective coupling curve has one zero with negative slope
at δφ = 0. For α = 1.5 (middle panel), the curves for x- and y-coupling have
different shapes, but there is a still single stable synchronous regime with zero phase
lag δφ. However, at α = 10 (bottom panel), one can observe significant changes
in synchronization patterns. The x-coupling curve has more zeroes located nearby
the in-phase and antiphase states. Inspection of the plot shows that (i) the in-phase
regime is still stable, but its basin of attraction is determined by two unstable out-
of-phase solutions and is thus narrow (right inset), and (ii) the antiphase regime is
still unstable but there are two stable out-of-phase states nearby. In this way, no
qualitative changes are observed for the y-coupling.

To explain the observed phenomena we use a superimposed phase plane and the
geometrical interpretation of coupling. Note that:

• Both interacting subsystems spend most of the time in the slow channels, thus,
we can focus on this state assuming that the contribution from the other segments
of the limit cycle is small

• The antiphase locking is geometrically represented by the symmetric location of
phase points in the left and right slow channels

Suppose that the first (leading) subsystem reaches the slow channel, while the
second (lagging) subsystem is sufficiently delayed (Fig. 11.20(a)). We consider the
leading subsystem being in almost resting state since its position changes very
slowly. Without y-coupling, the phase point of lagging subsystem should follow
the unperturbed limit cycle trajectory (solid line). Once coupling is introduced, the
phase trajectory of the lagging subsystem is “pulled” up by the leading subsystem
by means of a coupling force. The perturbed trajectory is located closer to the center
of the limit cycle. The motion on this trajectory segment is fast, so the interaction
time and, hence, the resulting perturbation of trajectory is quite small. However, it
results in skipping some piece of the slow channel, that will save time considerably.
Thus, the described mechanism accelerates the lagging subsystem to diminish the
initial phase lag.

Let us consider small perturbations of antiphase locking (Fig. 11.20(b)). The
exactly symmetrical location of the leading subsystem with respect to the lagging
subsystem is marked by a cross. Assume that a small perturbation brings the leading
subsystem to the position indicated by filled circle. Two effects can be distinguished:
(i) the phase velocity rises since the trajectory now is close to the exit from the
slow channel, and (ii) the coupling force becomes weaker because the y-distance is
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Fig. 11.20. On the mechanism of formation of out-of-phase stable regimes a when phase lag
is considerable and b when it is small

reduced. Thus, the lagging subsystem is not pulled or pushed to diminish the time
lag. With this, anti-phase regime might be unstable.

In summary, the antiphase regime is found to be locally unstable, but a close-to-
antiphase state could be attractive when a time lag between systems is considerable.
This statement is in a good agreement with the prediction provided by the effective
coupling function (Fig. 11.19). Note that the in-phase regime is stable as long as
both subsystems are in the same slow channel. As one of subsystems escapes from
it, the situation depicted in Fig. 11.20(a) occurs. This explains why the attraction
basin of the in-phase state is quite narrow.

11.7 Synchronous Patterns in Coupled Morris–Lecar Models

In the previous sections we discussed the main mechanisms for the formation of
antiphase and out-of-phase synchronous patterns in coupled anisochronous oscilla-
tors. So far we have used simplest models. In this section, we investigate in detail
the synchronization patterns that can be observed in a more realistic model with an
arbitrary coupling strength.

In this respect, several important questions arise: What are the bifurcational tran-
sitions to and between the coexisting synchronous states? What are the scenarios
leading to the breakdown of quasiperiodic motion and to chaotic bursting? To what
extent can we understand the complexity of the cooperative dynamics of general
anisochronous oscillators, if interaction of even simple periodic oscillators leads to
quite complicated behavior?

11.7.1 Model

The corresponding model equations (11.21) are described in Sect. 11.4. According
to the bifurcation diagram in Fig. 11.6, the homoclinic bifurcation takes place at
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J ≈ 0.0729. We fix J = 0.0750 which corresponds to the regime of periodic
oscillations close to the homoclinic bifurcation. In this regime an individual Morris–
Lecar model demonstrates a pacemaker activity, but an isolated resting state (stable
equilibrium) also exists, being separated from the limit cycle by the stable manifold
of a saddle point.

Consider two mutually and diffusively coupled Morris–Lecar (ML) models

du1,2

dt
= −Jion(u1,2, w1,2) + J1,2 + γ cos Ψ (u2,1 − u1,2),

(11.29)dw1,2

dt
= f

w∞(u1,2) − w1,2

τw(u1,2)
+ γ sin Ψ (w2,1 − w1,2).

In order to compare their dynamics with the behavior of the coupled modified van
der Pol (MVP) oscillators considered above, we plot a bifurcation diagram in the pa-
rameter plane of coupling angle Ψ and coupling strength γ (Fig. 11.21) in a similar
way as in Fig. 11.15 of Sect. 11.5.3.

Note that as in the case of coupled MVP oscillators, the interacting ML mod-
els demonstrate three distinctive synchronous states: in-phase, antiphase, and out-
of-phase. The main dissimilarity between the Morris–Lecar models and the mod-
ified van der Pol oscillators is that areas I and A are located in a different range
of the coupling angle (compare with Figs. 11.15 and 11.21). Thus, coupling via
w-variables for the ML models leads to the synchronous behavior that is qualita-
tively similar to the behavior of MVP oscillators coupled via x-variables. Besides
the above mentioned discrepancy, both models demonstrate similar bifurcation tran-
sitions and coexisting synchronous patterns. The comparison of the diagrams shows
that both systems demonstrate stable antiphase synchronization in a wide range of
the parameters of the diffusive coupling and similar transitions between the states
under the variation of coupling angle Ψ . Moreover, both Figs. 11.15 and 11.21
demonstrate the existence of a cusp point (CP) at which several regions with dif-
ferent states merge. Thus, coupled Morris–Lecar models indeed show cooperative
dynamics that is typical of simplified (MVP) models of oscillators near the homo-
clinic bifurcation considered in the previous sections.

When studying neuron models, it is important to bear in mind that not every type
of coupling is biologically approved. With this, we focus on the particular type of
one-variable coupling which is realized via variable u representing a transmembrane
voltage. Then we come to the following form of the model equations:

du1,2

dt
= −Jion(u1,2, w1,2) + J1,2 + γ (u2,1 − u1,2),

(11.30)dw1,2

dt
= f

w∞(u1,2) − w1,2

τw(u1,2)
,

where γ is the coupling strength and the subscripts 1 and 2 denote the first and the
second neuron, respectively. The above-introduced coupling represents the so-called
gap junction between the neurons, when two intracellular volumes are connected
by means of ion-permittable channels that provide diffusive processes between the
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Fig. 11.21. (Color online) Phase diagram for the coupled Morris–Lecar models (11.29) at
J = 0.0750. In-phase, antiphase, and out-of-phase synchronization patterns are labelled as I ,
A, and O, respectively. Overlapping of I and A is labelled as C. As in Sect. 11.5, SB denotes
the symmetry breaking bifurcation, BC denotes the boundary crisis, and CP is a cusp point.
Lines of the first and the second supercritical period-doubling bifurcations are labelled as PD
and PD2, respectively. Subcritical period-doubling bifurcation is labeled as PDS. The region
of chaos following the period-doubling cascades is denoted by the hatched area

cells. In terms of the diagram Fig. 11.21, we deal with the case of Ψ = 0, i.e., we
require that only the strength of coupling γ is changed.

11.7.2 Overview of the Dynamics

Figure 11.22(a) presents an overview of the dynamical regimes of the coupled ML
system in two-dimensional parameter space (J2, γ ). We have to note that the para-
meters J1,2 affect the frequencies of oscillations in the interacting subsystems. Since
in our study we fix J1 = 0.075, J2 determines the frequency mismatch, or detun-
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Fig. 11.22. (Color online) a Overview of dynamical regimes for the diffusively coupled
Morris–Lecar models (11.30). Different synchronous regions are denoted by different sym-
bols and shadings. b Qualitatively different dynamical states are characterized in terms of the
dynamical features of the single oscillator, that is, nine different combinations of the equilib-
rium points

ing. Thus, we have a bifurcation diagram in the “classical” parameter space used in
synchronization problems: “frequency detuning–coupling strength.”

To mark qualitatively different dynamical states, we use different shadings in
grey scale. It is convenient to characterize new regimes induced by coupling in terms
of states typical of an unperturbed single oscillator. Each of the subsystems has three
coexisting equilibrium points (Fig. 11.6): a stable node N , a saddle S, and an unsta-
ble focus F . Thus, for coupled systems there are nine different equilibrium states
(Fig. 11.22(b)). Possible synchronous regimes can therefore be treated as oscilla-
tions in the vicinity of one of nine equilibrium points:

• The in-phase regime I : When J1 = J2, the time evolution of two oscillators
coincides completely, and the in-phase attractor of the coupled system belongs to
the symmetric subspace v1 = v2, w1 = w2. When J1 �= J2, the in-phase attractors
slightly deviate from the perfect symmetric state. For this type of the symmetric
solution, the trajectories projected in the subspace (u1,2,w1,2) are similar to those
of uncoupled system. In Fig. 11.22(b), I is represented by a diagonal line near the
equilibrium point.

• The antiphase regime A: When J1 = J2, the phases of the two oscillators are
shifted by π. When J1 �= J2, the phase shift is not exactly π, but the regime
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keeps the main features. In (b), it is depicted as a curve that is perpendicular to
the diagonal direction.

• The out-of-phase regime O: When J1 = J2, there exists a pair of solutions,
OL and OR, with a reflection symmetry with respect to the change of coordinates
(u1, w1) ←→ (u2, w2). They are a mirror image of each other. The subscripts
L and R are used for states J2 < J1 and J2 > J1, respectively. For J1 �= J2,
the phase relation between the two oscillators changes continuously, therefore,
labelling OL and OR is preserved. These two solutions are schematically drawn
in the left panel of the middle row of Fig. 11.22(b). With varying parameters,
OL and OR are transformed into the quasiperiodic solutions TL and TR via a torus
birth (Neimark–Sacker) bifurcation. When one of the two oscillators is winding
around the fixed point F or N , and the other oscillates around F , the joint dy-
namical state is denoted by OL1,R1, or OL2,R2, respectively (bottom row in the
figure).

Besides the in-phase (I ), the antiphase (A), and the out-of-phase (O) states, a va-
riety of synchronous periodic solutions appear in the phase space. These solutions
lying on the resonant tori exist in the horn-like regions of the diagram. Inside each
of those regions, the frequency ratio between the two oscillators is locked to p : q,
where p and q are integers [30].

As one can see from Fig. 11.22, the multistability phenomena, i.e., the coexis-
tence of several stable solutions, is one of the most prominent dynamical features
of the diffusively coupled ML oscillators. For a weak coupling (γ < 0.1), the an-
tiphase synchronization A and higher-order resonant solutions are typical states.
For intermediate coupling, the out-of-phase solutions undergo a sequence of bifur-
cations leading to the onset of the quasiperiodic behavior and chaos. For strong
coupling (γ > 0.4), the stable in-phase synchronous regime dominates. Below we
consider the most important bifurcation scenarios between the described dynamical
states that are related to anisochronous properties of the individual subsystems that
are close to a homoclinic bifurcation.

11.7.3 Structure of Arnold Tongue for Antiphase Solution

Most studies on the interacting nonlinear oscillators were focused on the identifi-
cation of the generic bifurcations leading to synchronization [34, 35, 240]. As we
already know from Part I of this book, in the case of weak coupling, one of the
three general mechanisms of synchronization is the formation of a resonant torus
via the saddle-node (SN) bifurcation of a pair of cycles on ergodic torus. With this,
the mechanisms leading to the breakdown of resonant torus remain one of the in-
teresting research topics. Several different schemes of resonant torus breakdown
were reported, depending both on the type of the non-linear oscillators and on the
configuration of coupling [138, 285]. Most studies, however, were focused on the
breakdown of the in-phase resonant torus, where the stable solution is an in-phase
regime. We now analyze the formation and the destruction of the antiphase resonant
solution.
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Fig. 11.23. (Color online) a A typical bifurcation structure in the vicinity of the 1 : 1 in-phase
synchronization region at weak coupling. b Details of the bifurcation diagram in Fig. 11.22(a)
in the vicinity of the 1 : 1 antiphase synchronization regions. Here, I , A+, and U++ are
stable, saddle, and twice saddle solutions, respectively. SN is a saddle-node bifurcation curve
for a stable and saddle cycles, SSN is a saddle-node bifurcation curve for a saddle and a twice
saddle cycles, T is a torus birth bifurcation, and H is a homoclinic bifurcation curve. The
Takens–Bogdanov, the transcritical, and the cusp points of co-dimension-two are denoted as
TB, TC, and C, respectively

To compare the cases of in-phase and of antiphase synchronization, let us briefly
summarize the structural features of synchronization region for the in-phase reso-
nant solutions. Figure 11.23(a) illustrates the bifurcation curves typically observed
in the case of in-phase synchronization that were discussed in Chaps. 4 and 5. For
weak coupling, two resonant periodic solutions, one being in-phase solution de-
noted as I , and the other antiphase solution A+, are generated via a SN bifurcation.
The resonant region is bounded by two curves of saddle-node SN bifurcations. To
characterize the stability of the periodic solutions mentioned above, we use super-
script “+” for each direction of the instability. For example, I , I+, and I++ de-
note a stable, a saddle with one direction of instability, and a twice saddle (with
two directions of instability) solution with two directions of instability, respectively.
Within the synchronization region, two oscillators are synchronized through the fre-
quency/phase locking. Note that the periodic solution U++ is a twice saddle limit
cycle which is located inside the phase-locked region. For a large coupling strength,
the resonant torus apparently disappears. At co-dimension-two Takens–Bogdanov
(TB) bifurcation point [53, 282], the saddle-node SN bifurcation between a stable
and a saddle cycle changes to SSN bifurcation, which is the saddle-node bifurcation
between a saddle and a twice saddle cycle. A torus birth bifurcation curve (T ) em-
anates from the TB point. This bifurcation corresponds to the suppression of natural
dynamics in one of the systems [15, 205, 285]. The upper boundary of the resonant
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region is the bifurcation curve denoted as SSN. On this curve, the saddle cycle A+
and the twice saddle solution U++ merge together to disappear. Above this curve,
the resonant torus does not exist any longer. However, the stable periodic solution I

is not involved in the process of the torus destruction. Hence, the in-phase synchro-
nization region extends up to high values of coupling strength.

An important question arises: What will happen with the structure of synchro-
nization region if the in-phase solution is unstable while the antiphase solution is
stable? This situation can arise, for instance, in weakly interacting ML neural os-
cillators with diffusive coupling, when the individual oscillators are close to the
homoclinic bifurcation. Taking into account the dynamical regimes presented in
Fig. 11.22, we focus on the bifurcations leading to the 1 : 1 resonant solution. In
Fig. 11.23(b) the area around 1 : 1 antiphase synchronization tongue in two coupled
Morris–Lecar systems (11.30) is shown (compare with Fig. 11.22(a)).

Within the main 1 : 1 synchronization region in Fig. 11.23(b), there are three pe-
riodic solutions: the stable antiphase solution A, the saddle in-phase solution I+,
and the unstable solution U+++ (the latter means that the solution has no stable
manifolds). The unstable solution U+++ corresponds to a topological product of an
unstable fixed point with an unstable periodic solution which appears via a subcrit-
ical Andronov–Hopf bifurcation at J = JB = 0.0756 (for the bifurcation diagram
of a single ML system, see Fig. 11.6).

If the coupling strength is small enough, the synchronization tongue is bounded
by two curves of saddle-node bifurcation, SN1 and SN2, where the stable cycle A

and the saddle cycle I+ are born. As the coupling strength increases, the unstable
cycle U+++ undergoes an inverse torus birth bifurcation (the curve T ) and becomes
a saddle cycle U+. Then it collides with the stable cycle A, and they disappear via
a saddle-node bifurcation (the curve SN3) at the top of the synchronization region.
This transition is also schematically illustrated in Fig. 11.27, bottom panel. Above
the curve SN3 the stable solution no longer exists, and the phase trajectory escapes
to one of the four coexisting out-of-phase solutions. The saddle in-phase cycle I+
persists above the saddle-node bifurcation curve SN3 and below the saddle-node
bifurcation curve SSN for a saddle and a twice saddle cycles, where I+ collides
with one of the out-of-phase solutions, either O++

R or O++
L .

As shown in the insets of Fig. 11.23(b), there exist several co-dimension-two
bifurcation points. The point T C shown in the upper inset of Fig. 11.23(b) corre-
sponds to a co-dimension-two transcritical bifurcation point. Two pairs of periodic
solutions involved in the bifurcations SN2 and SN3 merge at this point to change
their stability. At a co-dimension-two Takens–Bogdanov TB point (the right inset in
Fig. 11.23(b)) the bifurcation curves T and SN2 merge and two real Floquet multi-
pliers become equal to one. At the cusp point C located in the left upper part of 1 : 1
resonant region, the stable solution A and the two saddle solutions I+ join together
to give rise to cusp structure [32, 235].

Next, we investigate how the phase space structure consisting of the three peri-
odic solutions and a 1 : 1 resonant torus evolves with increasing coupling strength.
In Fig. 11.24(a), we plot the Poincaré sections of the three periodic solutions A,
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Fig. 11.24. The destruction of resonant torus in 1 : 1 antiphase synchronization region shown
in Fig. 11.23(b) for J1 = J2 = 0.075 and with increasing γ . The Poincaré sections are
shown, namely a a smooth torus surface at γ = 0.025; b the wrinkling of the torus in the
vicinity of the saddle cycle U+ at γ = 0.080; c for γ = 0.084, A and U+ have disappeared
via a saddle-node bifurcation, and the trajectory follows to the saddle-focus fixed point E++
(J1 = J2 = 0.075)

I+, and U+++, together with the invariant curve representing the projection of the
invariant torus manifold. Since two resonant solutions A and I+ lie on the torus,
A and I+ are located on the invariant curve. Since the solution U+++ does not
lie on the resonant torus, it is located inside the invariant curve. We calculate the
invariant manifold numerically using a modification of the technique suggested by
Kevrekidis et al. [138]. Namely, we follow a large number of phase trajectories
launched from the initial conditions distributed around the saddle solution I+. As
time passes by, the phase points scatter along the unstable manifold of the I+ and
tend to approach the stable solution A, thus revealing the manifold sought. At any
point located deep inside the 1 : 1 resonance region (Fig. 11.24(a)) this closure is
smooth, i.e., the derivative at a node does not suffer any discontinuity.

As shown in Fig. 11.24(b), with increasing coupling strength γ , the smooth res-
onant torus is destroyed by the folding of the torus surface. The folding occurs
nearby the stable antiphase solution A. Note that instead of the saddle solution I+,
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A merges with the saddle cycle U+ which does not belong to the torus surface.
With the further increase of the coupling strength γ , the trajectory leaves the torus
because of the crisis that occurs at this point (Fig. 11.24(c)). Thus, the way in which
the resonant torus is broken with the increasing coupling is quite different from the
way typical for the case of in-phase locking.

Chaotic Bursting

What happens with a trajectory launched in the vicinity of the limit cycle A that
has just disappeared (see Fig. 11.24(c))? Can it be reinjected again to this vicinity?
If the answer “yes,” it belongs to an attracting set. To understand this, we have to
take into account that the unstable manifold of the limit cycle U+ is connected with
the stable manifold of the saddle-focus equilibrium point E++, which possesses
two-dimensional stable and unstable manifolds (Fig. 11.24(c)). In turn, the unsta-
ble manifold of the E++ is connected with the stable manifold of I+. Along the
unstable manifold of I+, the trajectory is reinjected back to the vicinity of the van-
ished cycle A. This means that there is a closed loop connecting several unstable
solutions. Since there are no stable periodic orbits on its way, the trajectory returns
again and again to the same part of the phase space. Thus, the connection of the
stable and unstable manifolds of several saddle solutions provides a possibility for a
new attractor. Since the trajectories on the attractor have to pass through the folding
structure, it becomes chaotic.

The temporal behavior of the resulting trajectory is quite remarkable. As illus-
trated in Fig. 11.25(a), it is formed by two dynamical components: spiking trains,
and non-spiking silent zones alternating each other.

Note that the time intervals between two subsequent spikes are of the order 10 (in
arbitrary units), while the time distance between the successive spiking trains is of
the order 1 000. With this, the interspike interval almost does not change within one
spiking train, while the distance between the successive spiking trains depends on
the coupling strength. Note that the oscillations within one spiking train also have
two components: high-amplitude and medium-amplitude oscillations. This means

Fig. 11.25. a The realization and b the phase projection of the chaotic bursting. A, I , and E

denote oscillations near the antiphase regime, in-phase regime, and equilibrium state, respec-
tively (J1 = J2 = 0.075 and γ = 0.084)
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that the resulting dynamics is in fact composed of three different kinds of behavior:
a high-amplitude regular spiking, a medium-amplitude regular spiking, and a non-
spiking small-amplitude oscillation (a silent zone). Projection of the phase portrait
onto a phase plane (u1, u2) shown in Fig. 11.25(b) clarifies the properties of those
three different regimes. As we can see, high-amplitude oscillations correspond to
the trajectory nearby the in-phase synchronous state, the medium-amplitude spiking
is related to the walking around the antiphase synchronous state, and non-spiking
silent state reflects small oscillations around the equilibrium point. Thus, the tem-
poral behavior is defined by itinerant phase trajectories that trace from the in-phase
state to antiphase oscillations, then to the silent state and back again to the in-phase
oscillations.

Such behavior is known as a chaotic bursting [104]. The bursting dynamics has
been observed in neuronal systems [9] and in some biological cells [69]. Typically,
the bursting behavior occurs in a spike generating system, when an additional slow
variable is introduced [107, 126, 244]. This slow component makes the system os-
cillate between the equilibrium and spiking states, thus producing bursting behavior.
However, the bursting dynamics observed in the coupled ML models does not re-
quire an additional slow variable. It is caused not by the presence of a slow variable,
but by the mutual coupling between interacting subsystems. Thus, the provision of
additional (unstable) synchronous states in the dynamics of coupled spiking systems
provides an alternative way to bursting activity [103, 104].

In two-parameter bifurcation diagram (Fig. 11.26(a)) the regime of chaotic burst-
ing occupies a triangular white area in the center of the figure. This area is bounded
by the line of saddle-node bifurcation SN of the limit cycles and the lines of the
boundary crisis BC. Below the SN line the antiphase synchronous solution is sta-
ble, and above the line the out-of-phase solutions become stable. On the BC line,
the chaotic burst attractor undergoes boundary crisis [98, 158], colliding with other
limit cycles or with their manifolds. Therefore, within the triangular region, neither
the antiphase solution, nor the out-of-phase solutions are stable. In Fig. 11.26(b) the

Fig. 11.26. (Color online) a Two-parameter bifurcation diagram representing the transition
to chaotic burst attractor. SN and BC denote saddle-node bifurcation and the boundary crisis,
respectively. Parameter J1 is fixed at 0.075. b Three largest Lyapunov exponents vs coupling
strength γ at J1 = J2 = 0.075. Chaotic behavior is observed for γ ∈ [0.08315; 0.08841]
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three largest Lyapunov exponents of the attractor are plotted as functions of cou-
pling strength γ for J1 = J2 = 0.075. The largest Lyapunov exponent λ1 has a
distinctive positive value within the limited interval of γ ∈ [0.08315; 0.08841] that
indicates chaotic dynamics of bursting activity. An abrupt change of λ1 from nega-
tive to positive values is associated with the boundary crisis.

Chaotic Bursting and Torus Breakdown

It is important to emphasize that the formation of chaotic bursting discussed above,
represents a specific scenario of resonant torus destruction. The latter is an important
topic in the theory of dynamical systems, since it is related to the generic mecha-
nisms of development of deterministic chaos.

Let us compare our findings with the known theoretical results. According to
the mathematical theorem on the mechanism of resonant torus breakdown [15, 33]
known as the Afraimovich–Shilnikov theorem, the smooth invariant torus can be
destroyed in one of the three following ways: (i) near the stable resonant solution,
a torus can lose its smoothness via discontinuous folding of the invariant curve in its
Poincaré section (see Fig. 11.27, top panel); (ii) breakdown of a torus can be caused
by formation of homoclinic structure involving both the stable and unstable mani-
folds of the saddle resonant solution, and (iii) a torus can be destroyed by period-
doubling (or some other) bifurcations of the stable resonant solution. The transition
to chaotic bursting described above reminds pretty much the first scenario, but there
are some differences. To understand these differences let us take a look at Fig. 11.27
where the upper panels (1a)–(1d) schematically illustrate a “classical” scenario of

Fig. 11.27. Schematic diagrams illustrating deformation of manifold structure. Top
panel: Torus destruction according to Afraimovich–Shilnikov theorem (1a–1d). Bottom
panel: The mechanism of torus breakdown leading to chaotic bursting behavior in two diffu-
sively coupled ML models (2a–2d)
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torus breakdown, and the lower panels (2a)–(2d) correspond to the bursting tran-
sition. The notations in the figure are similar to the ones used in other diagrams.
Figures 11.27(1a) and (2a) show that the structures of the manifolds at the tip of
the resonant tongue are qualitatively the same in both cases. Also, in both cases the
invariant closed curves are formed by the smooth closure of the manifolds of sad-
dle cycles [138, 139]. The phase space structure includes saddle cycle A+ or I+
and stable cycle I or A, an unstable equilibrium point E, and two additional saddle
limit cycles. The latter saddle cycles are not involved in the transition, and therefore
are not shown in the figures. At this stage the only difference between the classical
mechanism of torus destruction and the discussed transition to bursting behavior is
the stability of the cycles on the resonant torus. So, in the coupled ML models the
antiphase solution A is stable, whereas in the classical scenario the stable solution
is the in-phase orbit I .

The increase of the coupling strength leads to the formation of the folded struc-
ture near the stable limit cycle (Figs. 11.27(1b) and (2b)). This formation is, how-
ever, different in these two cases. Namely, the folding in ML model requires an ad-
ditional bifurcation as a result of which the unstable limit cycle U+++ appears from
an equilibrium point E++++ via an inverse subcritical Andronov–Hopf bifurcation
E++++ −→ E++ + U+++. Thus, the unstable fixed point E++++ is transformed
into a saddle-focus point E++, whose stable manifold comes from U+++, and the
unstable manifold connects to the stable manifold of the saddle cycle I+.

Between Figs. 11.27(1a) and (1b), the control parameter is changed in such
a way that the systems move towards the boundary of the resonant tongue, on
which the stable and saddle cycles collide in the saddle-node bifurcation as shown
in (1c). Between Figs. 11.27(2a) and (2b), the increase of the coupling strength
along the line J2 = 0.075 also leads to a saddle-node bifurcation that occurs at
γ = 0.08315 (2c). In between (2b) and (2c) the unstable cycle U+++ undergoes
an inverse torus birth bifurcation and becomes a saddle U+, which then collides
with the stable resonant cycle A. Thus, only in the classical scenario (1c) the sta-
ble and the saddle limit cycles are both lying on the same torus at the moment of
saddle-node bifurcation.

Although in both cases Figs. 11.27(1c) and (2d) periodic attractors disappear as
a result of the saddle-node bifurcation, they leave a “ghost” formed by the folds of
the invariant curve, where the phase trajectory spends quite a long time before it
finally escapes along the unstable manifold (see stages (1d) and (2d)). However, the
way to escape from this region depends on the scenario. In the classical case (1d),
the escaped trajectory moves along the invariant closed curve and is then reinjected
back to the area of the ghost. In the ML system (2d), the escaped trajectory does
not follow the former torus surface because the saddle cycle I+ still exists. After
a long wandering across Ã, the trajectory reaches the vicinity of the point where
the stable manifold of equilibrium point E++ is connected with the folded invariant
curve Ã. Here, the trajectory leaves Ã and first approaches E++, then, following its
unstable manifold, finally arrives at the vicinity of I+. After spending some time in
the vicinity of I+ the phase trajectory is reinjected back into Ã. In general, the phase
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state of the system sequentially passes the stages of antiphase, small-amplitude, and
in-phase motion, producing chaotic bursting dynamics.

Thus, the torus breakdown in coupled ML models differs substantially from the
classical scenario. This seems to be a typical mechanism of torus destruction for
high-dimensional systems that demonstrate similar “itinerant” dynamics associated
with chaotic bursting [109, 147].

11.7.4 Crises at the Boundary of Quasiperiodic Regions

In the previous subsection, we investigated the structure of the 1 : 1 resonance. How-
ever, the region of the existence of the invariant (resonant or non-resonant) torus is
not limited by the main 1 : 1 synchronization region. For J2 ∈ [JA = 0.0730; JD =
0.0845] and J1 = 0.075, there are regions of higher order resonant tori (Fig. 11.28).
We observe alternating of non-resonant and resonant regions with different wind-
ing numbers p : q. We would like to illustrate three different characteristic routes
leading to the destruction of the quasiperiodic solution.

Route A

As J2 approaches the homoclinic bifurcation point JA = 0.0730, several resonant
tori with the winding numbers p : q less than 1 change each other in the phase space.
In the inset of Fig. 11.28, a cascade of period-doubling bifurcations for several res-
onant solutions is illustrated, see lines on the top of each tongue. This bifurcation
sequence results in the appearance of chaos, whose area of existence is shaded by
dark grey color. This scenario of resonant torus breakdown is in a full agreement
with the scenario suggested by Afraimovich and Shilnikov [15, 33]. At some criti-
cal values of J2, the chaotic states disappears via crisis, and the system goes out of
self-sustained regime (light grey area). Remarkably, with decreasing J2, the curves
of period-doubling bifurcations and the critical curve of the transition to chaotic
behavior are shifted downwards along the axis γ .

Route B

For J2 ∈ [0.081; 0.083], we observe the resonant tori with winding numbers 9 : 7,
4 : 3, and 3 : 2, etc. This region is characterized by hysteresis phenomenon that was
shown to be prominent in strong resonances.5 In this case, the mechanism of the
transition from non-synchronous to synchronous behavior involves a homoclinic bi-
furcation [220].6 Route B assumes two main ways of the evolution of a synchronous
state on a resonant torus:

5 Following the widely accepted definition, we refer to strong resonances the cases of the
synchronization p : q, for which q < 4, see [30] for details.
6 See also Chap. 5.
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Fig. 11.28. (Color online) Two-parameter bifurcation diagram illustrates the higher order
resonance p : q regions. The three different routes leading to the destruction of quasiperiodic
regimes are marked as A, B, C

(i) Similarly to route A, the synchronous state demonstrates a cascade of period-
doubling bifurcations destroying an invariant torus and leading to chaos. For the
example considered, this scenario arises in the weak 9 : 7 resonance. As γ increases,
the chaotic attractor touches the boundary of its basin of attraction. Since it takes
relatively large time before the trajectory arrives at the boundary crisis area, the
so-called “chaotic transient” is observed within the narrow range of the coupling
parameter above the boundary crisis.

(ii) A period-doubling cascade is not developed inside the resonant region. This
case is illustrated in more details, in Fig. 11.29 where the enlargement of strong 3 : 2
and 4 : 3 resonance tongues of the bifurcation diagram in Fig. 11.28 is presented.
Figure 11.29 shows that in both synchronization regions the stable resonant solution
loses its stability via a torus birth bifurcation (line T ) with the increasing coupling
strength. Since the newly born torus is not stable, the trajectory leaves the vicinity
of the unstable resonant cycle for another attractor. Note that a pair of resonant limit
cycles, namely a saddle and a twice saddle ones, disappear at the two SSN curves
via saddle-node bifurcations. The two SSN curves meet at one point to make a cusp
structure C.

Route C

When the systems are uncoupled, a saddle-node bifurcation occurs at J2 = JD (see
Fig. 11.6), where the stable and the unstable periodic solutions collide and disap-
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Fig. 11.29. (Color online) Enlargement of the bifurcation diagram in Fig. 11.28 showing 3 : 2
and 4 : 3 resonance tongues. The inset schematically illustrates the bifurcation structure in
these regions

pear. A non-zero coupling transforms this bifurcation into a crisis occurring on the
route C in Fig. 11.28. As we show below, this crisis is different from the one ob-
served along the route A.

For weak coupling the cooperative dynamics of the interacting systems can be
considered as a direct product of their sub-spaces. In the range of J2 ∈ [0.0833;
0.0845] and J1 = 0.075, the phase space of the coupled systems contains twelve
asymptotically stable solutions. They appear from the direct product of four states
for the first subsystem (three equilibrium points and one periodic solution) and three
states for the second subsystem (one equilibrium point and two periodic solutions).

Figure 11.30(a) illustrates three states responsible for the crisis of the quasiperi-
odic regime: a stable torus, a saddle torus,7 and a stable limit cycle. These objects
are the direct product of the space of the stable limit cycle for the first subsystem
and the three states for the second subsystem, which are one stable fixed point, one
stable limit cycle, and one unstable limit cycle. Thus, a saddle-node bifurcation for
the limit cycles in the individual oscillator will evoke a saddle-node bifurcation for
the tori in the joint coupled system that happens at J2 = 0.0845 along the route C.

If we deal with resonant tori, each having a pair of cycles lying on their surfaces,
then the saddle-node bifurcation for tori involves those cycles. Namely, a stable

7 A resonant saddle torus was described in Sect. 4.5 and an ergodic saddle torus in Sect. 8.4.



11.7 Synchronous Patterns in Coupled Morris–Lecar Models 311

Fig. 11.30. a Schematic illustration of the solutions involved in crises. b Merging of a stable
and a saddle tori (solid and dashed curves in Poincaré section, respectively) is described as
bifurcations for a pair of cycles on the surface of tori

cycle from the stable torus collides with a saddle cycle from the saddle torus, and a
saddle cycle from the stable torus collides with a twice saddle cycle from the saddle
torus (Fig. 11.30(b)). In this transition, an additional Floquet multiplier of each of
the cycles becomes equal to unity.

For a non-resonant torus, the crisis can be identified through the spectrum of
Lyapunov exponents which at the moment of the crisis is characterized by three
zero values.

11.7.5 Transition to In-phase Synchronization

Complexity of the bifurcation diagrams that we observed in interacting Morris–
Lecar systems (11.30) for weak and intermediate coupling is reduced significantly
when the interaction between the oscillators becomes stronger.

Fig. 11.31 represents typical bifurcational transitions taking place at strong cou-
pling. In the lower part of this diagram, there are two regions of stable out-of-phase
solutions OL and OR. The regions of their existence are nearly symmetric with re-
spect to the line J2 = 0.075. On the torus birth bifurcation line T , the stability of
the OL changes (OL −→ O++

L ), and quasiperiodic oscillations appear in its vicin-
ity. The region of this quasiperiodic state is denoted as TL. On the curve H , the
quasiperiodic solution undergoes crisis touching the stable manifold of the saddle
cycle I+. The detailed mechanism of this bifurcation will be discussed in the next
section. The unstable cycle O++

L merges with I+ at SSN curves and disappears.
Similarly, on the left H curve, the crisis of the TR occurs. In the regions bounded by
the two H curves, both states TL and TR coexist. To emphasize this, we highlighted
a small part of existence areas of TL and TR by dark and light grey, respectively.

In the upper part of Fig. 11.31, the in-phase solution I is the only stable solution.
It originates from a cusp C at J2 = 0.075 and γ = 0.5. This cusp point corresponds
to a pitchfork bifurcation, at which the saddle in-phase solution I+ bifurcates into
the stable in-phase solution I and the two unstable out-of-phase solutions.

The region of the stable in-phase solution is bounded by two SN curves on
which the stable I and the unstable out-of-phase solution collide to disappear via
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Fig. 11.31. (Color online) Bifurcation diagram illustrating the transitions between different
synchronous states in two coupled Morris–Lecar systems (11.30) in the case of strong cou-
pling γ . Notations are the same as in the Figs. 11.23 and 11.29

the saddle-node bifurcation. One can notice a star-like region formed by five co-
dimension-two bifurcation points: the three cusp points C and the two Takens–
Bogdanov points TB. At the upper cusps, the two SN curves merge. At these points,
two stable cycles and one saddle cycle are involved in the bifurcation. Since I is
the only stable solution for the sufficiently strong coupling, we can conclude that all
transitions between different forms of synchronization states end up at the in-phase
regime solution.

11.7.6 Mechanism of Torus Folding in the Vicinity of Unstable Orbit

In the previous Subsection we briefly mentioned the crises which occur when one
of the quasiperiodic solutions TL or TR touches the stable manifold of the saddle
cycle I+. Below we show that such crisis is accompanied by the effects similar to
dephasing, but is realized in the phase space of higher dimension.

In the region where both TL and TR coexist, they are separated by the stable
and unstable manifolds of the saddle cycle I+. Figure 11.32(a) displays the phase
portraits of the TL in the Poincaré section defined by the condition w2 = 0.29415.
The invariant closed curve for TL is separated from TR (not shown) by the stable and
the unstable manifolds of the saddle point S being the section of the saddle cycle I+.
With increasing J2, we approach the boundary crisis at the line H in Fig. 11.31.
Nearby the boundary crisis, the invariant curve comes close to the saddle point S.
Since the closed curve looks smooth, we expect a regular attractor. However, as
shown in the insert, the trajectory is wiggling along the stable manifold Ws and the
unstable manifold Wu of S while the manifolds themselves are not deformed. The
folding of an invariant curve, corresponding to the quasiperiodic solution implies
that the latter is close to the onset of chaos. Lyapunov exponents that are shown in
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Fig. 11.32. a Poincaré section of a two-dimensional torus TL in the vicinity of the saddle
cycle I+ (point S). A folded structure is well developed. b Two largest Lyapunov exponents
as functions of control parameter J2. Positive Lyapunov exponents indicate the onset of chaos
from a quasiperiodic solution

Fig. 11.32(b) confirm this conclusion. The largest Lyapunov exponent is positive for
J2 close to 0.0754.

To understand how folding is formed in the vicinity of a saddle point S that
has smooth manifolds, let us illustrate schematically the behavior of the Poincaré
section of a phase trajectory in the vicinity of S. Figure 11.33 shows the phase space
velocity projection onto the given plane, the darker areas corresponding to lower
phase velocities. The trajectory is depicted as a sequence of Poincaré points. Let us
compare two trajectories starting from two points Xn and Xm. After the first return
into the secant surface they arrive at points Xn+1 and Xm+1, respectively. With this,
a point in the “slow” region Xn is mapped into a closely located Xn+1, whereas a
point in the “fast” region Xm is mapped into a remote point Xm+1. Although the
point Xm is behind Xn on the invariant curve, the trajectory starting from the former
can overtake the trajectory launched from the latter. With this, the manifolds of
the saddle point limit the area where the trajectory can arrive at. Altogether, these
circumstances evoke the formation of a folding structure near the saddle point S. The
proposed mechanism of torus folding is highly effective due to local inhomogeneity
of the phase velocity in the neighborhood of a saddle cycle.

Contrary to the traditional route to chaos via the loss of torus smoothness [15],
a significant part of the invariant curve in the Poincaré section seems to be smooth,
and folding occurs only in a very small area nearby the saddle point. Thus, we can
assume that a local singularity nearby the quasiperiodic motion can cause the ap-
pearance of chaos. Remarkably, similar arguments about the local singularity have
allowed us to explain the dephasing effect discussed in Sect. 11.3, which is respon-
sible for destabilization of in-phase regimes in weakly coupled anisochronous os-
cillators [104, 219].
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Fig. 11.33. Schematic presentation of a phase trajectory in the Poincaré section. Because of
the inhomogeneity of the velocity filed in the vicinity of the saddle point S, the breakdown of
the quasiperiodic solution occurs via folding on the torus surface

11.7.7 Remarks on Synchronization in Morris–Lecar Systems

It has been shown that a simple model of diffusively coupled neural oscillators is
able to demonstrate a rich variety of synchronous states including the anti-phase,
the out-of-phase, and the in-phase regimes. With this, for weak coupling, the anti-
phase synchronization dominates. In the limit of the strong interaction, the in-phase
regime is most probable in the cooperative dynamics. However, for moderate cou-
pling, strong competition between inphasing and dephasing effects take place. This
produces complex dynamical behavior with several stable synchronous states that
can coexist. The typical transitions to chaos observed in such simple system are:

• A cascade of period-doubling bifurcations of a stable limit cycle on a torus surface
• Loss of torus smoothness that generally corresponds to Afraimovich–Shilnikov

theorem, however in the case under study a heteroclinic surface formed by the
manifolds of coexisting states provides a mechanism for re-injecting the trajecto-
ries into the vicinity of a chaotic set and thus gives rise to chaotic bursting

• Localized folding of a torus surface in the vicinity of a saddle cycle
• A sequence of torus doubling bifurcations that were not discussed here but was

described in the original paper [228]

11.8 Summary

Throughout this chapter, we have been discussing how specific anisochronous fea-
tures of an individual oscillator can affect its synchronization properties. Let us now
summarize the main findings.
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The dephasing effect plays an important role in synchronization of anisochro-
nous oscillators.It occurs when some segment of a limit cycle in an individual sub-
system approaches the vicinity of a saddle fixed point. At weak coupling, the de-
phasing effect destabilizes the in-phase solution. In the frames of our study we have
considered an important case of synchronization near the homoclinic bifurcation
that seems to be typical for a variety of oscillators, including models of biological
cells.

We have shown that depending on the topology of the coupling, interacting
anisochronous oscillators can demonstrate complex synchronous regimes when anti-
phase and out-phase states coexist. In this context, we studied the structure of 1 : 1
anti-phase locking region and revealed the main bifurcation scenarios. We have un-
covered a specific bifurcation scenario for the resonant torus breakdown underlying
the formation of chaotic bursting. Moreover, for sufficiently strong coupling, the
transition from out-of-phase regimes to the in-phase locking can be associated with
localized torus folding that occurs nearby a saddle cycle.

To summarize, anisochronicity can produce very prominent effects on synchro-
nization of periodic oscillations. It is able to lead to a rich variety of new regimes
that are not typical for isochronous oscillators. The knowledge of these effects can
be very useful in studying the cooperative dynamics of real complex systems.



12 Phase Multistability

Many processes in nature are characterized by the coexistence of a number of limit
states that can be reached from different initial conditions for a given set of parame-
ters. Such phenomena known as multistability can be observed in almost all areas of
science, including physics [55, 280], chemistry [124, 173], and physiology [60, 81].
In neuroscience, for instance, multistability is commonly considered as a mecha-
nism for memory storage and temporal pattern recognition [113]. Multistability has
also been reported for systems with time delays [142] and noise-induced patterns
[141].

Multistability can also be related to synchronization phenomena. In Chap. 5 mul-
tistability involving asynchronous and synchronous states was shown to have a cru-
cial effect on homoclinic transition to synchronization. Also, in Chap. 4 coexistence



318 12 Phase Multistability

of two synchronous states was discussed in connection with mutual synchronization
of periodic oscillations.

In this chapter we study the phenomena called phase multistability. Generally,
phase multistability assumes the coexistence two or more stable synchronous states,
each corresponding to the same synchronization order n : m, and characterized by
different phase shifts δΦ between oscillations in interacting systems. The fact that
coexisting limit states correspond to different phase shifts gives the name for this
phenomenon.

There are three main reasons leading to phase multistability [186]: (i) the com-
plex wave shape of oscillations associated with subharmonics; (ii) specific geome-
try of coupling; and (iii) anisochronicity of oscillations. The case (ii) was illustrated
in Chap. 4 where we considered evolution of the phase space structure in the sys-
tem of two van der Pol oscillators with reactive coupling. Some examples of the
case (iii) were discussed in Chap. 11 together with other phenomena induced by
anisochronicity of oscillations.

In the sections below we focus on the major mechanism of phase multistabil-
ity determined by complex wave forms of oscillations in interacting systems. The
complex shape of oscillations can be associated with the presence of subharmonic
components or with significant variations of the phase velocity along the orbit of
the individual unit. Focusing on the mechanisms underlying the occurrence of phase
multistability, we examine a variety of phase-locked patterns and universal transi-
tions for different oscillatory regimes. In Sect. 12.1 we study phase multistability in
systems demonstrating period-doubling route to chaos, in Sect. 12.2 self-modulated
oscillations are considered, and in Sect. 12.3 bursting dynamics is investigated.

12.1 Period-Doubling Oscillations

Historically, the phenomenon of phase multistability is associated with synchro-
nization in diffusively coupled oscillators that individually follow a period-doubling
route to chaos [38, 242, 290, 291]. Spectrum of such oscillations contains subhar-
monics of the basic frequency ω0, and for the same parameter values synchroniza-
tion can be realized with several values of phase shift.

With this, the number of possible coexisting synchronous regimes is increased
when more subharmonics of the basic frequency can be distinguished in the power
spectrum. Remarkably that in such systems phase multistability can appear at neg-
ligibly small coupling between subsystems.

Let us try to understand how complex shape of the oscillations in interacting
systems can lead to multistability. As an illustration, we consider Fig. 12.1 that
schematically illustrates possible phase shifts for oscillations with different peri-
ods. Let us assume that we have two interacting identical subsystems without de-
tuning coupled diffusively and demonstrating periodic oscillations with the same
frequency. In this case, synchronization means that local maxima of the oscillations
in both interacting systems occur at the same time moments. First, let us assume that
both systems have oscillations with one local maximum per period (the left panel
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Fig. 12.1. (Color online) Schematic representation of different phase relations between oscil-
lations corresponding to period-one (left panel), period-two (middle panel) and period-four
limit cycles (right panel). The oscillations in the first and the second systems are denoted
by black and grey solid curves, respectively. The dashed lines of the corresponding colors
indicate the positions of the largest maxima of oscillations

of Fig. 12.1). We will call such oscillations “period-one oscillations.” For such type
of oscillations there exists only one possibility to be synchronized that corresponds
to coinciding maxima in time and that is characterized by phase difference δΦ1.
Next, we require both systems to undergo period-doubling bifurcation. Now, both
interacting oscillators demonstrate period-two oscillations (the middle panel of the
figure) and have two different local maxima per period. In this case, synchronization
can be realized in two ways: (i) when maxima in both systems coincide, and when
each larger maximum in one system corresponds to a smaller maximum in the other
system. These two cases of synchronization will be characterized by phase shifts
δΦ1 and δΦ2. Once both systems surmount another period-doubling bifurcation,
their oscillations have four local maxima per period (the right panel of the figure),
and therefore there are four possible versions of synchronization, each with its own
phase shift.

For simplicity let us assume that changing the phase by 2π corresponds to time
interval between the successive maxima of a time realization of oscillations. This
will be valid, for example, if one introduces phases via Hilbert transform approach.1

For the initial period-one oscillations with period T0 a phase difference Φ0 between

1 This approach was described and corresponding, and the references were given, in
Sect. 8.3.
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the subsystems is equivalent to a phase difference Φ0 + 2πk, k = 1, 2, . . . . For
oscillations with doubled period 2T0 whose spectrum contains subharmonic ω0/2,
two different limit cycles in the phase space of interacting systems correspond to the
phase differences Φ0 and Φ0 + 2π. Thus, for two synchronized oscillators whose
spectrum includes subharmonics ω0/2k (k = 1, 2, . . .) of the basic frequency, the
phase difference between the interacting units can attain 2k different values, i.e.,
δφ = φ0 + 2πm, m = 0, 1, 2, . . . , 2k − 1. Obviously, when there is some non-zero
detuning between the synchronized subsystems, the same principles apply, and the
number of possible phase shifts can be predicted similarly.

Phase multistability can also take place for weak chaos, that demonstrates an
N -band structure. The hierarchy of multistability in systems of identical interact-
ing oscillators with weak diffusive coupling has been studied both numerically and
experimentally in [38]. Evolution of the coexisting phase-shifted regimes with vari-
ation of control parameters is accompanied by different bifurcational transitions that
depend on frequency mismatch and coupling strength [222, 242, 291].

12.1.1 Dynamics of Coupled Rössler Systems

Model

Since synchronization is a universal non-linear phenomenon, its key features are
typically independent of a model. As an example, we consider the system of coupled
Rössler oscillators in the form introduced in [247]:

ẋ1 = −ω1y1 − z1 + γ (x2 − x1),

ẏ1 = ω1x1 + αy1,

ż1 = β + z1(x1 − μ),
(12.1)

ẋ2 = −ω2y2 − z2 + γ (x1 − x2),

ẏ2 = ω2x2 + αy2,

ż2 = β + z2(x2 − μ),

where the parameters α, β and μ govern the dynamics of each subsystem. γ is the
coupling parameter, ω1 = Ω + Δ and ω2 = Ω − Δ are the natural frequencies, and
Δ determines the mismatch between these frequencies. Throughout this section we
keep α = 0.15, β = 0.2, Ω = 1.0 and γ = 0.02. The equations (12.1) serve as a
good model for real systems demonstrating period-doubling route to chaos, i.e., for
electronic circuits [18, 112], chemical [95] and biological [182] systems.

To introduce an instantaneous amplitude and a phase of a chaotic oscillations of
the system (12.1) one can use the following representation [212, 247]:

xi(t) = Ai(t) cos Φi(t), (12.2)
x̂i (t) = Ai(t) sin Φi(t).

Here, A(t) and Φ(t) are the instantaneous amplitude and phase, respectively; x̂(t) =
Ĥ [x(t)] denotes Hilbert transform [204]. In the case when the dynamical variables
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x(t) and y(t) are in a linear relation (as for the Rössler system, for example) it is
easy to introduce the following substitution:

xi(t) = Ai(t) cos Φi(t), (12.3)
yi(t) = Ai(t) sin Φi(t).

Here, A(t) and Φ(t) are the polar coordinates of the point (x(t), y(t)) in the (x, y)

plane. When phase locking of chaotic oscillations occurs, the phase difference
Φ1 − Φ2 is bounded, while outside the synchronization region it is an increasing
or decreasing function of time [212, 247]. Note that phase locking is usually closely
associated with the locking of basic frequencies in the power spectrum of chaotic
oscillations (see Chap. 8).

Identical Systems

Let us study the dynamics of (12.1) as the parameter μ is varied in case of com-
pletely identical partial oscillators (i.e., with Δ = 0) and with the fixed coupling
strength γ = 0.02. As μ is increased, a sequence of bifurcations take place, leading
from the initial cycle of period T0 located in the invariant symmetric subspace U ,
defined as x1 = x2, y1 = y2, z1 = z2, to a set of coexisting attractors. Before ar-
riving at chaos, a number of limit cycles coexisting in the phase space is increased.
Let us denote the cycle with the period 2nT0 and the phase shift Φ0 = 2πm by the
symbol 2nCm (n = 1, 2, . . . ; m = 0, 1, 2, . . .). A chaotic attractor with 2n bands
arising from the cycle with the phase shift Φ0 = 2πm is labeled as 2nCAm, and a
2n bands chaotic saddle we denote as 2nCSm.

To illustrate different oscillatory regimes of the system and the transitions be-
tween them in Fig. 12.2 we show schematically the evolution of periodic and chaotic
regimes as parameter μ is increased, while the coupling strength γ is fixed at 0.02.
Note that branch A corresponds to the in-phase family of attractors (i.e., the phase
shift between the oscillations is equal to zero and phase trajectories lie in U ), while
the branches B, C and D illustrate the out-of-phase regimes originated from 2C1,
4C2 and 8C4, respectively.

As μ increases, the in-phase limit cycle C0 undergoes a period-doubling bifur-
cation. A cycle 2C0 of doubled period emerges smoothly. The cycle C0 which be-
comes saddle continues to exist and undergoes another period-doubling bifurcation.
As a result of this bifurcation a saddle cycle 2C1 of doubled period is born. This
cycle does not lie in the symmetric subspace U any longer, but it is self-symmetric
with the respect to the invariant manifold U (i.e., x1 = −x2, y1 = −y2, z1 = −z2).
Cycle 2C1 becomes stable via the inverse subcritical pitchfork bifurcation as μ is
increased further. In the same manner, each of the in-phase limit cycles 2mC0 gives
rise to the corresponding branch of out-of-phase regimes. For the above out-of-
phase cycles the replacement of the next period-doubling bifurcation by torus birth
bifurcation takes place. The torus birth bifurcation leads to quasiperiodicity, fre-
quency locking and the emergence of new out-of-phase families of attractors which
follow the period-doubling route to chaos. Above some critical value of μ, several
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Fig. 12.2. Evolution of oscillatory regimes for the identical coupled Rössler systems. The
solid and dashed lines correspond to bifurcational transitions of attractive and saddle solu-
tions, respectively

chaotic attractors coexist. As μ increases further, there are the merging bifurcations
where the number of bands in the chaotic attractor is halved. Besides this, a crises
of chaotic limit sets leading to the merging of attractors of different branches take
place. Finally, the only one-band global chaotic attractor CAΣ , that includes the
chaotic sets of all branches, emerges in phase space of the system.

A phase shift 2πm between the oscillations of subsystems that defines the corre-
sponding branch of regimes can not be found using instantaneous phases Φ1,2 from
(12.2) or (12.3). The instantaneous phases and their difference are determined with
the accuracy of ±2πk, k = 1, 2, . . . . Therefore, the phase differences, found using
(12.2) or (12.3), for all branches is limited within the range [−π,π] if their initial
values are chosen inside this interval. To find the characteristic phase shift 2πm it is
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necessary to determine a time shift between oscillations in interacting systems for
Δ = 0, and then rewrite it in terms of phase difference. Taking into account that
the out-of-phase regimes are located outside of the symmetric subspace U , we may
introduce a time shift τ , such that states of the subsystems coincide but are lagged
with respect to each other by τ . The value of τ can be calculated via the global
minimum of a similarity function S as described in [248]:

S2(τ ) = 〈(x2(t + τ) − x1(t))
2〉

√
(〈x2

1(t)〉〈x2
2(t)〉)

, (12.4)

where the angular brackets denote averaging over time.
Let us consider in detail the evolution of chaotic attractors as the parameter μ

is changed. Note that there are three types of crises which are labeled in Fig. 12.2
as crosses: transformation of a chaotic attractor into a chaotic saddle, merging of
chaotic attractors of the same branch, and merging of a chaotic attractor of one
branch with a chaotic attractor of another branch. Consider branch A that em-
braces the regimes whose trajectories belong to the symmetric subspace U . All
stable regimes from this branch correspond to the case of complete synchroniza-
tion. As μ is increased, on branch A a chaotic attractor which appears via a period-
doubling cascade of the in-phase regimes bifurcates into a chaotic saddle 4CS0 at
μ ≈ 5.95. As this happens, in the spectrum of Lyapunov exponents, in addition to
the already existing positive exponent, another positive exponent appears. The latter
corresponds to an additional unstable direction which is transversal to U . The tran-
sition 4CA0 → 4CS0 leads to the loss of complete synchronization. The mechanism
of similar transitions was studied in [39, 209]. When an initial point on U is slightly
perturbed, after a long transient time the phase trajectory tends to the stable cycle
8C4 of branch D. When μ is further increased, a sequence of bifurcations of this
cycle leads to chaotic attractor 8CA4 (Fig. 12.3(a)) which at μ ≈ 6.036 undergoes
a crisis by colliding with a chaotic saddle of branch A, as well as a band merg-
ing. As a result, branches A and D merge together which leads to the appearance
of a chaotic attractor 4CAΣ

D (Fig. 12.3(b)). This merging crisis is accompanied by
“on-off” intermittency. Then 2CAΣ

D appears from 4CAΣ
D . At μ ≈ 6.06 a chaotic at-

tractor 2CAΣ
D becomes a saddle. After this transition, phase trajectories switch to the

stable cycle 4C2 which belongs to branch C. Chaotic attractor 4CA2 (Fig. 12.3(c))
appears from 4C2 via a sequence of bifurcations. At μ ≈ 6.35, the chaotic attrac-
tor 4CA2 merges with the saddle of branch D, and a new chaotic attractor 2CAΣ

C
emerges (Fig. 12.3(d)). At μ ≈ 6.44, this attractor becomes a saddle 2CSΣ

C and a
phase trajectory jumps to a chaotic attractor 2CA1 (Fig. 12.3(e)) of branch B. Then
at μ ≈ 6.70, the chaotic attractor 2CA1 merges with a saddle of branch C. Thus,
a sequence of crises ends as the only chaotic attractor CAΣ (Fig. 12.3(f)) which
involves chaotic trajectories from all branches.

It has been found that the behavior of the phase difference calculated from (12.3)
is different for a variety of chaotic attractors inside the synchronization region. For
chaotic attractor located in the symmetric subspace (4CA0, for instance), it is con-
stant in time (δΦ(t) = Φ1(t) − Φ2(t) = 0). For out-of-phase attractors it is not
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Fig. 12.3. Projections of Poincaré sections of chaotic sets in the identical coupled Rössler
systems (12.1). Secant plane is specified as y1 = 0. Label CS is used to identify a saddle set

Fig. 12.4. (Color online) The distribution of phase difference δΦ for out-of-phase attractors:
a 4CAΣ

D at μ = 6.038; b 2CAΣ
C at μ = 6.36; c CAΣ at μ = 6.72. Calculations were

performed with the constant step δΦ = 2π/100

equal to zero and varies chaotically in time. The width of the distribution of phase
differences P(δΦ) characterizes how far the attractor is from the in-phase state.
Figure 12.4 displays the distribution of phase differences for the chaotic attractors
4CAΣ

D , 2CAΣ
C , and CAΣ . It is clearly seen that the merging of chaotic sets from dif-

ferent families (branches) leads to the expansion of the distribution function. How-
ever, note that δΦ remains bounded in the interval [−π,π], since the described
chaotic attractors are synchronous.

The chaotic attractor CAΣ corresponds to the regime of hyperchaos. But the
regime with two positive Lyapunov exponents appears before than CAΣ is formed.
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For example, the chaotic attractor 2CA1 of branch B which appears via merging of
4CA1 and 4CA2 has two positive Lyapunov exponents. For branches C and D, the
transition to hyperchaos is observed when a torus is destroyed.

Effect of Frequency Mismatch

Now we introduce a mismatch between the basic frequencies in the system of cou-
pled oscillators and study the evolution of multistability and of different forms of
synchronization.

Figure 12.5(a), (b) represents the bifurcation diagrams of the synchronization
region for attractors from two branches A and B (shown in Fig. 12.2), respectively.
It has been found that a small frequency mismatch (|Δ| ≤ 0.001) almost does not
affect the evolution of different oscillatory regimes which are observed in the case of
vanishing mismatch Δ. Note that at Δ �= 0 the invariant subspace U does not exist
any longer and the relations of symmetry for limit sets are not satisfied. Therefore,
pitchfork bifurcations of limit cycles are replaced by tangent bifurcations2 leading
to the birth of saddle out-of-phase cycles [39].

When the frequency mismatch is further increased (Δ ≥ 0.0015), the period
doubling bifurcations for cycles 2C1, 4C2, etc., are observed instead of torus birth

Fig. 12.5. Bifurcation diagram on (Δ − μ) parameter plane of the system (12.1) for the
attractors of branches A (a) and B (b). Curves of different width correspond to different
families of attractors

2 Saddle-node bifurcation is sometime called tangent or fold bifurcation in literature.
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bifurcations (Fig. 12.5(b)). Moreover, the types of merging crises of chaotic sets
depend on the values of Δ. In presence of a frequency mismatch, there is no merging
of chaotic attractors 4CA1 and 4CA3, but attractor 4CA3 becomes a saddle and then
it merges with the attractor 4CA1. Transition to hyperchaos occurs before this crisis.

Let us consider the effect of frequency mismatch in terms of synchronization.
Chaotic attractor 4CA0 of branch A that is located in the symmetric subspace U in
the case of Δ = 0, does not belong to U when  �= 0. Hence, complete synchroniza-
tion is lost. However, for a weak frequency mismatch this regime remains topologi-
cally equivalent to the attractor in U . In this case referred to as lag synchronization
[248] the oscillations of two systems coincide but shifted in time. For chaotic at-
tractors of other families and attractors appearing via merging of chaotic sets from
different branches neither complete nor lag synchronization can be achieved. They
can demonstrate only phase synchronization.

Phase Transitions near the Boundary of Synchronization Region

Bifurcational mechanisms of the phenomena that take place at the boundary of
chaotic phase synchronization are associated with the bifurcations of the saddle
periodic orbits. Anishchenko et al. [18] have described this boundary as an accu-
mulation of curves of tangent bifurcations of saddle cycles.3 Pikovsky et al. [211]
suggested (for model two-dimensional map) that attractor–repeller collisions take
place at the transition to chaotic synchronization, thus drawing on the analogy with
the tangent bifurcations of periodic orbits. Rosa et al. [246] consider the transition to
phase synchronization as a boundary crisis mediated by bifurcations of non-stable
periodic orbits on a branched manifold. We are interested in the transition between
different coexisting regimes near the boundary of the phase synchronization region.

When the mismatch between the basic frequencies of interacting oscillators is
introduced the regions of phase synchronization of chaos that are similar to Arnold
tongues for periodic oscillations appear on the parameter plane. Hierarchy of multi-
stability of synchronous regimes near the boundary differs from the case of Δ = 0,
see Fig. 12.6. Taking into account the different sequence of bifurcations for peri-
odic solutions that has been described above, we focus on the peculiarities in the
behavior of chaotic attractors. For a large mismatch, chaotic out-of-phase attractors
of B and C branches become the saddles. When μ is increased, they merge with
the in-phase attractor of branch A. Thus, attractor 4CAΣ

A appears via merging of
a chaotic attractor 4CA0 of branch A and a chaotic saddle of branch C. The band-
merging crisis takes place and an attractor 2CAΣ

A appears. At this moment the tran-
sition to hyperchaos occurs. Then the merging crisis of 2CAΣ

A and a chaotic saddle
of branch B originated from attractor 4CA1 leads to the single attractor 2CAΣ in the
phase space of the system. Figure 12.7 shows the projections of Poincaré sections of
coexisting chaotic attractors 4CAΣ

A and 4CA1 (Fig. 12.7(a)) and of attractor 2CAΣ

(Fig. 12.7(b)) born as a result of merging of chaotic sets from all branches.

3 This is described in Sects. 8.4 and 8.5.
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Fig. 12.6. (Color online) Evolution of oscillatory regimes in coupled Rössler systems (12.1)
at frequency mismatch Δ = 0.0093

Fig. 12.7. Projections of Poincaré sections of chaotic sets from the system (12.1) when fre-
quency mismatch Δ = 0.0093 at a μ = 6.8 and b μ = 7.2

Figure 12.8 represents the bifurcation diagram of the synchronization region
near its boundary. A nested structure of phase-synchronized regions for the attrac-
tors of branches A and B is observed. With this structure, the transition to non-
synchronous behavior in the region of multistability (direction a in Fig. 12.8) is
determined by the loss of stability for the most robust synchronous mode (branch B
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Fig. 12.8. (Color online) Bifurcation diagram near the boundary of synchronization region
of coupled Rössler systems (12.1). Dashed and dotted curves denote bifurcations of periodic
orbits on branches A and B. Numbers 2, 4, and 8 denote the periods of saddle cycles

in our case). Chaotic attractors of branch A remain structurally stable4 when μ is
increased. Hence, above the region of multistability the transition from complex
chaotic regimes appeared after a series of merging crises, to non-synchronous dy-
namics (direction b) is observed.

The boundary of synchronization region is detected from the calculation of the
spectrum of Lyapunov exponents and of the effective diffusion D of the phase dif-
ference is described as follows5:

D = 〈[δΦ(t)]2〉 − 〈δΦ(t)〉2

t
. (12.5)

Figure 12.9 displays these characteristics of synchronization along direction a
marked in Fig. 12.8 at μ = 6.8. As it is clearly seen in Fig. 12.9(a), one of the
negative Lyapunov exponents becomes equal to zero at the boundary of the syn-
chronization region (a vertical dashed line). A similar behavior has been observed
in mutually coupled Rössler systems with one-band chaos that were considered in
Sect. 8.7 (compare with Fig. 8.32), and in a Rössler system with periodic forcing

4 Do not change their topological properties with variation of a parameter.
5 The concept of phase diffusion was discussed in Sect. 7.9.
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Fig. 12.9. a Three largest Lyapunov exponents λ1,2,3 and b the coefficient of diffusion D of
phase difference as functions of frequency mismatch Δ at μ = 6.8 (direction a in Fig. 12.8)

Fig. 12.10. (Color online) a The four largest Lyapunov exponents λ1,2,3,4 and b the coeffi-
cient of diffusion D of phase difference as functions of frequency mismatch Δ at μ = 7.2
(direction b in Fig. 12.8)

[289]. The coefficient of diffusion is vanishing inside the synchronization region
but at the boundary it starts to grow (Fig. 12.9(b)). Similar calculations have been
performed along direction b in Fig. 12.8 at μ = 7.2. Figures 12.10(a), (b) show
that the behavior of Lyapunov exponents is not changed, while the coefficient of
diffusion is very sensitive to the transition to a non-synchronous regime.
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Based on the results from Chap. 8 where the bifurcation mechanisms of phase
synchronization are shown to be related to the bifurcations of saddle periodic orbits
embedded in a chaotic attractor [18, 211, 246], we constructed the curves of tangent
bifurcations of saddle cycles from branches A and B (dashed and dotted lines in
Fig. 12.8, respectively). It is clearly seen that while multistability exists, the curves
tend to be located near the synchronization boundary of each branch of attractors.
However, as soon as merging crises occur, this is no longer valid. The question
“what is the bifurcational transition from the merged synchronous regime which is
characterized by two positive Lyapunov exponents, to non-synchronous behavior?”
is still open.

12.1.2 Mapping Approach to Multistability

To construct a simplified model of the emergence of phase multistability let us in-
troduce an analytical description of a high-periodic signal in the form [222]

x(t) = A(φ(t)) sin(ωt). (12.6)

Here, φ = ωt is the phase of the oscillations, and A(φ) = ∏N
i=1(1 − σi sin(ωt/2i +

iπ/2)) represents the instantaneous amplitude. ω is the natural (or fundamental)
frequency of oscillations, N defines the period of the signal considered TN =
2N(2π/ω), and σi specify the amplitude of each of the subharmonic components.
The term iπ/2 is introduced to obtain a more obvious phase portrait of each period-
doubling in our model. The function x(t) described by (12.6) is illustrated in
Fig. 12.11(a). As N increases, x(t) provides a qualitative representation of a se-
quence of high-periodic cycles, leading in the limit to the birth of chaos via a cas-
cade of period doublings.

For two synchronized oscillators coupled via the variables x1(t) and x2(t), each
being described by an expression like (12.6), the phase difference can attain 2N

different values, i.e., Θ = φ1 − φ2 = 2πm, m = 0, 1, 2, . . . , 2N − 1. Hence,
coexistence of a large number of periodic attractors will occur. When approaching

Fig. 12.11. a Realization x(t) of the periodic orbit with period 4T0 simulated from the ex-
pression (12.6). b The model map (12.9) for the case of N = 2
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the boundary of the synchronization region, these attractors disappear one by one
except for a single family whose bifurcations determine the transition to the non-
synchronous regime. In order to understand the structure of this boundary in more
detail we shall investigate a sequence of model maps.

For quasiperiodic oscillators, the phase difference Θ is known to develop ac-
cording to an equation of the form [50]

Θ̇ = Δ − γf (A1, A2) sin Θ, (12.7)

where f (·) is a function of the amplitudes A1 and A2 that is defined by the type of
interaction. Δ represents the mismatch between the basic frequencies and γ is the
coupling strength.

In our case the oscillators have different instantaneous phases φ1 and φ2 while
their amplitudes A1 and A2, as specified above, depend on the phases in the follow-
ing way:

A1 = A(φ1) =
N∏

i=1

(
1 − σi sin

(
φ1

2i
+ i

π

2

))
,

(12.8)

A2 = A(φ1 − Θ) =
N∏

i=1

(
1 − σi sin

(
φ1

2i
− Θ

2i
+ i

π

2

))
.

It is not possible to obtain an explicit relation for the phase difference between
two chaotic oscillators. However, qualitatively we can consider the oscillators as
high-periodic cycles of periods TN = 2N 2π/ω, where ω is the natural frequency of
the partial system (ω1, for example). To obtain a discrete model, (12.7) is integrated
over the characteristic time T of the system. This gives a model map in the form

ΘN
n+1 = ΘN

n + Ω − KFN
(
ΘN

n

)
mod 2N2π, (12.9)

where ΘN
n+1 = ΘN(t0+nTN) and ΘN ∈ [0, 2N 2π]. Ω = TN, and K is a measure

of the strength of interaction. We may suppose, however, that the interaction strength
depends on the phase differences in the same way as the amplitude of the individual
subsystem depends on its phase. As a simple approach we shall therefore assume an
expression of the form

FN
(
ΘN

n

) = sin
(
ΘN

n

) N∏

i=1

(
1 − δi sin

(
ΘN

n

2i
+ i

π

2

))
. (12.10)

Equations (12.9) and (12.10) may be viewed as a generalized form of the well-
known circle map6 for simple oscillators [239]. Varying N = 1, 2, 3, . . . , we obtain
a family of maps, each being a model of synchronization for 2N -periodic cycles. The
case of N = 2 is illustrated in Fig. 12.11(b). The above equations are not normalized
on the same scale because they are taken to the modulus 2N2π, which is changed

6 See Sects. 6.4 and 6.5.
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with each period doubling. This allows us to preserve the values of Ω and K and
to compare the results for different N . A similar approach to constructing a model
map in the non-autonomous case was suggested by Pikovsky et al. [213].

With these preliminaries let us now investigate the structure of the boundary
of the synchronization region for the main resonance 0 : 1 (or 1 : 1 for continuous-
time systems). In terms of the map, the transition at that boundary corresponds to a
tangent bifurcation. The condition for such a bifurcation to occur is

ΘN∗ + Ω − KFN
(
ΘN∗

) = ΘN∗ ,
(12.11)

d(ΘN + Ω − KFN(ΘN))

dΘN

∣∣∣∣
ΘN=ΘN∗

= 1,

where ΘN∗ is the fixed point. Equation (12.11) immediately gives

KFN
(
ΘN∗

) = Ω
(12.12)

dFN(ΘN)

dΘN

∣∣∣∣
ΘN=ΘN∗

= 0.

Hence, it is easy to see that for any value of ΘN∗ , the set of points corresponding
to the tangent bifurcation forms a straight line in the (Ω,K) parameter plane. The
number of roots of (12.12) defines the number of possible synchronous regimes. For
the case of small N , (12.12) can be solved analytically. For larger N , the solution
can be obtained numerically. Figure 12.12 shows the results for N = 1 (solid lines)
and N = 2 (dotted lines). Each line corresponds to a tangent bifurcation for one
of the fixed points of the map. Under variation of Ω , a pair of stable and unstable

Fig. 12.12. (Color online) a Phase-locking regions for different families of attractors for the
model map (12.9), (12.10) with δi = 0.45, i = 1, . . . , N . The solid lines correspond to
N = 1 (two cycles of period-two coexist). The dashed lines correspond to N = 2 (four
cycles of period-four coexist). b Nested structure of Arnold tongues for the coupled Rössler
oscillators (12.1) with α = 0.15, β = 0.2, and μ = 6.1. The solid and the dashed lines
correspond to the different coexisting families of regimes
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fixed points are born on each line. A nested structure of Arnold tongues is clearly
seen. For larger K , the stable fixed point can subsequently lose its stability through
a period-doubling bifurcation. To find the corresponding parameter values, one only
has to replace the zero in the right-hand side of (12.12) by 2/K . However, in the
present context we shall not consider the further bifurcations of the stable periodic
solutions.

To verify the conclusions based on the model map dynamics, consider again
the dynamics of coupled Rössler oscillators (12.1). In Fig. 12.12(b) the numerically
obtained structure of four Arnold tongues is depicted. The control parameter μ was
set μ = 6.1 while the detuning  and the coupling strength γ were changed This
figure clearly demonstrates good agreement with the results for our model map, at
least for γ < 0.01 [222].

Thus, the maps (12.9), (12.10) for small enough K demonstrate 2N stable (and
a similar number of unstable) fixed points near the center of the synchronization
region. In terms of continuous-time dynamical systems, a set of stable fixed points
correspond to a set of possible synchronization regimes for the coupled oscillators.
A two-dimensional torus exists both outside (ergodic) and inside (resonant) the syn-
chronization region.7 Entering the synchronization region corresponds to the birth
of a pair of stable and saddle cycles, both lying on the torus surface. In these terms,
the appearance and coexistence of other fixed points of the map represent the birth
on the torus surface of additional pairs of stable and saddle cycles which do not
intersect each other. Another interesting question arises: “Do the coexisting syn-
chronous solutions actually lie on the same torus surface?” Note that this is not
necessarily the case for continuous-time systems. In Fig. 12.13 the numerically ob-
tained Poincaré section for the resonant torus surface is given. The parameters of
two coupled Rössler systems correspond to the period-two limit cycle. Two stable
coexisting solutions C1,2 are observed in the plot, each paired with a correspond-
ing saddle cycle S1,2. Moreover, inspection of the figure clearly shows that all the
solutions belong to the same closed curve, formed by the unstable manifold of the
saddle cycles.

On this background we can draw the following conclusions concerning synchro-
nization of large-period oscillations in coupled period-doubling systems: (i) There
are 2N coexisting synchronous solutions which differ from each other by phase
shifts; and (ii) the synchronization region for these solutions consists of a set of
tongues inserted into each other.

The question is now how the results described here manifest themselves in the
case of two interacting chaotic oscillators.

It is well-known that for the period-doubling route to chaos the chaotic attractor
has an N -band structure (N = 1, 2, 4, . . .) within a range of control parameters.
This structure is geometrically similar to the structure for the N -periodic cycles.
Thus let us simulate an N -band chaotic attractor by means of the model map (12.9)
with an added noise term. The logistic map may be used as the source of such
random excitations:

7 Phase-locking region.
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Fig. 12.13. (Color online) Poincaré section of the resonant torus for two coupled Rössler
models (12.1). The secant was chosen as x1 = 0. Control parameters are α = 0.15, β = 0.2,
μ = 5.0, and γ = 0.0273. Points C1,2 denote the stable limit cycles while S1,2 are the saddle
cycles. Arrows indicate the stable directions along the resonant torus surface

ΘN
n+1 = ΘN

n + Ω − KFN
(
ΘN

n

) + Bxn mod 2N2π,
(12.13)

xn+1 = λxn(1 − xn),

where the value of λ is fixed at 3.99. Note that we introduce the source of noise in the
above way (not a Gaussian noise, for example) to maintain the multiband structure
of the chaotic attractor. Within some range of the noise amplitude B, the attractors
produced by this equation become irregular but they still coexist in the phase space
of the system and their basins of attraction differ. When B is further increased, the
attractors start to merge [67].

Figure 12.14 (left panel) shows a one-parameter bifurcation diagram for the case
of an 8-band chaotic attractor. There are eight different synchronous chaotic regimes
which coexist at small Ω . When the detuning parameter Ω increases, the coexisting
chaotic attractors disappear one by one on the edges of their respective synchroniza-
tion regions. At Ω ≥ 0.535 a single synchronous solution is still stable. Note how
the “ghosts” of all eight synchronous solutions remain distinguishable inside the re-
gion of merged chaos at Ω > 0.6. The number of possible synchronous regimes
decreases in the same way as is observed in coupled Rössler systems (Fig. 12.14
(right panel)).

Hence, our conclusions with respect to synchronization of large-period orbits are
also valid for weakly-chaotic solutions. Moreover, we may expect the nested struc-
ture of synchronization tongues to be preserved in the case of an N -band chaotic
attractor and to remain similar to the structure for an N -periodic cycle.
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Fig. 12.14. Left panel: One parameter bifurcation diagram for the model map (12.9), (12.10)
with K = 0.5, δi = 0.45, B = 1.2, and N = 3. The figure shows how the coexisting noise
inflicted periodic orbits one by one lose their synchronization. Right panel: One-parameter
bifurcation diagram for two coupled Rössler systems (12.1) shows similar behavior for α =
0.15, β = 0.2, γ = 0.02, and μ = 6.7

12.2 Self-Modulated Oscillations

Natural phenomena often involve dynamics with different time scales. Oscillations
that are generated by a single self-oscillator and characterized by several different
time scales are sometimes called self-modulated oscillations. They may be particu-
larly significant in living systems. The thalamocortical relay neurons, for instance,
can generate either spindle or delta oscillations [295]. The electroreceptors in pad-
dlefish are found to demonstrate biperiodic dynamics [190]. The functional units
of the kidney, the nephrons, demonstrate low-frequency oscillations arising from a
delay in the tubuloglomerular feedback, together with somewhat faster oscillations
associated with the inherent dynamics of the arteriole [227]. It has been shown that
a system of two diffusively coupled oscillators operating in the 1 : n regime of self-
modulation (n is integer) reveals the same aspects of phase multistability [273] as
the systems with period-doubling cascades [222]. For coupled identical oscillators
one can expect n coexisting synchronous solutions that differ from each other by
phase shifts. The corresponding synchronization region consists of a set of Arnold
tongues embedded into each other or shifted with respect to each other. Let us con-
sider these aspects of self-modulated systems in details.

12.2.1 Methods of Analysis

The description of synchronization phenomena observed in interacting oscillators
may be divided into two stages. The first step is to consider the case when the cou-
pling strength is sufficiently weak so that analytical methods can be applied. The
second step is to examine the case of finite coupling strength and to show to what
extent the results of the weak-coupling limit can be extrapolated. Since the defin-
ition of phase multistability involves the phase difference between the interacting
oscillators, the phase variables will be the main quantities used to characterize the
collective dynamics.
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For the case of weak interaction, the effective coupling approach can be ap-
plied. This approach was considered in detail in Sect. 11.2 (in Chap. 11 devoted to
synchronization of anisochronous oscillations). Here we use its simplified form.

The interaction of two identical oscillators with phases φ1 and φ2 can be quan-
tified by the evolution of their phase difference φ = φ1 − φ2. In the limit of weak
interaction, the phase dynamics averaged over a period for one of the oscillators can
be expressed by effective coupling function [151]

d(φ)

dt
= Γ (φ) = 1

2π

∫ 2π

0
dφZ(φ)P (φ,φ), (12.14)

where P(φ,φ) = P(V0(φ), V0(φ + φ)) describes the rate of change of the
state vector V of one oscillator due to the interaction with another oscillator with a
phase difference φ, and ZP is the phase shift along the limit cycle for the given
perturbation. Note that the limit cycles in both systems are assumed to have similar
shapes, i.e., to be topologically conjugate.

In mutually coupled oscillators, the entrainment manifests itself as a mutual
phase shift. This can be analyzed purely in terms of the antisymmetric part Γa(φ)

of the effective coupling function (12.14) [151]. The zeroes of Γa(φ) correspond to
the phase-locked synchronous states (φ = const) and their stability are determined
from the slope of Γa(φ) at the respective states: a negative slope means a stable
state, and vice versa. This method of effective coupling has been used in a number
of applications [104, 203, 219].

When the coupling becomes strong enough to modify the geometry of the limit
cycle, the phase reduction method can no longer be used. Direct numerical methods
should then be applied. First of all, we calculate a set of points on the limit cycle
modified by the interaction. Over a set of initial conditions covering the full length
of the limit cycle, we follow the evolution of the initial phase shift φ(t) to some
fixed value φ(t + τ). Plotting these results together, i.e., φ(t + τ) vs φ(t), we
obtain a one-dimensional phase map with a discrete time step τ . The analysis of this
map allows us to find the fixed points and estimate their stability.

Note that for the effective coupling method one can obtain the phase map in
terms of Γa. Namely, for two coupled identical oscillators the phase difference be-
havior is given by [151]

d(φ)

dt
= 2Γa(φ). (12.15)

Setting dt → τ and d(φ) → (φt+τ − φt) for small enough τ one finds the
expression

φt+τ ≈ φt + τ2Γa(φt ), (12.16)

to which our numerical calculations converge for vanishing coupling.
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12.2.2 Phase Dynamics of Coupled Oscillators

Model Equations

We apply the above approach to Anishchenko–Astakhov oscillator that can be im-
plemented as an electronic circuit [15, 18] (see also Sect. 8.5.1) and is described by
a simple set of dynamical equations

ẋ = mx − zx + y − bx3,

ẏ = −x, (12.17)

ż = −gz + gx(x + |x|)/2.

Here, m, b, and g are control parameters. With different values of these parameters,
a variety of regular and chaotic regimes can be observed [15]. Among these, the
model (12.17) can operate in a regime of self-modulation. This autonomous regime
is characterized by slow and fast oscillatory modes whose frequencies are in a 1 : 6
ratio (Fig. 12.15).

In the models of coupled systems, the coupling terms are often taken to be pro-
portional to the differences between the respective variables. For two coupled sys-
tems of the form (12.17), this implies the presence of terms of the form (x1 − x2),
(y1 − y2), and (z1 − z2) in the equations for the x, y, and z variables, respectively.
The simplest case involves interaction through only one variable. Examples range
from electronic circuits with a purely resistive coupling between the component
circuits over mechanical oscillatory systems with inertial coupling to neuron mod-
els with electrical coupling. In more realistic circumstances, however, multivariable
coupling seems to be more appropriate. For instance, the reactance in electronic cir-
cuits or the propagation time delay along neuronal axons may give rise to couplings
through the velocity variable. Let us analyze the general case when the diffusive
coupling is introduced in a vector form K = (Kx,Ky,Kz):

1

ω1,2
ẋ1,2 = mx1,2 − z1,2x1,2 + y1,2 − bx3

1,2 + Kx(x2,1 − x1,2),

1

ω1,2
ẏ1,2 = −x1,2 + Ky(y2,1 − y1,2), (12.18)

1

ω1,2
ż1,2 = −gz1,2 + gx1,2(x1,2 + |x1,2|)/2 + Kz(z2,1 − z1,2),

where ω1 = 1 and ω2 defines the frequency mismatch. It may be advantageous to
represent the vector coupling in terms of polar coordinates:

Kx = K cos θ cos β,

Ky = K sin θ cos β, (12.19)

Kz = K sin β.

This is the approach that we shall use in the following analysis. Here, K denotes the
coupling strength, and the angles 0 ≤ θ ≤ π/2 and 0 ≤ β ≤ π/2 define the relative
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Fig. 12.15. Self-modulated regime 1 : 6 in a single Anishchenko–Astakhov oscillator (12.17):
a realization and b phase portrait at m = 2.90328, g = 0.012505, and b = 5 × 10−5

weights of the three coupling terms. θ and β can be also viewed as the orientation
angles of the coupling force in the three-dimensional subspace of each oscillator.
Single-variable coupling is achieved when (θ = 0, β = 0), (θ = π/2, β = 0), or
(β = π/2).

Application of Effective Coupling Method

To reach the regime of self-modulated oscillations for the system (12.17), we fix
m = 2.90328, g = 0.012505, and b = 0.00005. Figure 12.16 illustrates the effect
of phase multistability through the effective coupling technique. Inspection of the
Fig. 12.16(a) clearly shows that the calculated antisymmetric part of Γ for x and y

allows one to detect six stable and six unstable solutions. Note that their number
is equal to the number of local maxima over the period of oscillations (Fig. 12.15).
Since the coupling is diffusive, the stable synchronous regimes in the coupled sys-
tem imply the coincidence of local maxima of oscillations in the individual units.
The system eventually settles down on one of the stable regimes depending on initial
conditions. The coupling has little influence on the phase difference of the system
when the oscillator is in the synchronized regime. If any phase shift from this state
arises, the system will gradually be attracted back to synchronous state.

Coupling via the z variable demonstrates a completely different behavior. There
is only one stable regime and this is an antiphase one. We suggest that this is re-
lated to the dephasing effect8 [104, 219] caused by the vector field deformation in
the vicinity of the saddle equilibrium point near the limit cycle. Variation of the
z variable strongly affects the distance of the perturbed trajectory from this point
and, hence, is responsible for its slowing down or acceleration. Moreover, z(t) op-
erates in a different regime as compared to x(t) and y(t), i.e., without any mod-
ulation (Fig. 12.15). When the vector of diffusive coupling is changed from x- or
y-coupling towards z-coupling, a the transition between different sets of coexisting
regimes is observed. Figure 12.16(b) shows how the multistable regimes succes-
sively disappear as a result of a smooth transition from x- to z-coupling provided by
the variation of β (for θ = 0).

8 Dephasing effect was considered in Sect. 11.3.
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Fig. 12.16. (Color online) Phase analysis of the self-modulated regime of coupled
Anishchenko–Astakhov oscillators (12.18). a Antisymmetric part Γa of effective coupling
function; b Evolution of location and stability of coexisting regimes when the coupling vec-
tor is gradually changed from Kx to Kz. Black circles denote stable solutions

Mapping Approach

Let us consider the behavior of the coupled systems (12.18) for a strong interaction
in order to compare the results with the case of vanishingly weak coupling.

As predicted by the phase reduction method, six phase-locked patterns at K =
0.0005 can be singled out (Fig. 12.17). Each state corresponds to one of six stable
equilibrium points in the phase map described by (12.16), see Fig. 12.18(a). The
time series of the multistable regimes are shifted with respect to each other while
the phase portraits on the (x1, x2) plane indicate different out-of-phase regimes with
respect to the symmetric phase space.

As the mismatch parameter ω2 moves away from 1 the synchronous regimes
sequentially lose their stability. The number of equilibrium points decreases via tan-
gent bifurcations in terms of the map (Fig. 12.18(b) with insert). Figure 12.19 repre-
sents the bifurcation diagram of the possible synchronous regimes on the “frequency
mismatch”–“coupling strength” parameter plane. For weak interaction, there are six
stable (and the same number of unstable) solutions that differ from each other by
a phase shift. There is a set of stability regions for different synchronous regimes
whose structures are similar to those described in Sect. 12.1 for oscillators demon-
strating the Feigenbaum period-doubling route to chaos [222]. In the present case,
however, the tongues are not all inserted into each other, but some of them are shifted
a little with respect to each other [273]. With increasing coupling, the solutions sub-
sequently lose their stability through period-doubling bifurcations (dashed curves).

12.3 Bursting Dynamics

Bursting, i.e., complex behavior characterized by brief bursts of oscillatory activ-
ity interspersed in quiescent periods, is the primary mode of electrical activity for
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Fig. 12.17. Six phase-locked patterns in coupled Anishchenko–Astakhov oscillators (12.18)
with different phase shifts a φ = 0.0, b φ = 1.6553π, c φ = 1.3134π, d φ =
0.9928π, e φ = 0.6710π, and f φ = 0.3425π, at K = 5 × 10−4 and ω2 = 1.0

a variety of nerve and endocrine cells [296]. Bursting patterns were found, e.g., in
discharging cold fibers of cats [56] and in activity of shark sensory cells [57]. It is
known that pancreatic β-cells under normal circumstances display a bursting behav-
ior with alternations between an active (spiking) state and a silent state [69]. It is also
established [200] that the secretion of insulin depends on the fraction of time that the
cells spend in the active state, and that this fraction increases with the concentration
of glucose in the extracellular environment. de Vries et al. [72] found asymmetri-
cally phase-locked solutions to be typical in coupled heterogeneous β-cells while a
set of coexisting out-of-phase regimes was observed for coupled Hindmarsh–Rose
models [202, 203]. When at fixed parameters the initial conditions were changed
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Fig. 12.18. The phase map (12.16) of the system (12.18) at K = 5 × 10−4. Note that as
compared to (12.16) here subscript “t” correspond to “n” and “t + τ” to “n + 1.” a In case
of identical systems (ω2 = 1.0) six stable equilibrium points correspond to six synchronous
regimes. b When a frequency mismatch (ω2 = 1.001) is introduced, only three equilibrium
points remain. K is fixed at 5 × 10−4

Fig. 12.19. (Color online) Synchronization regions for coexisting families of attractors
(m = 2.90328, g = 0.012505, and b = 5 × 10−5). Dashed lines denote period-doubling
bifurcations

the system switched from one burst-locked mode to another one. The mechanisms
of phase multistability in coupled bursters are related to the complex wave forms
of the oscillations, as well as to a version of the above-mentioned dephasing effect
[230] (see Sect. 11.3).
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12.3.1 Simple Qualitative Approach to Phase Multistability

The top traces x1(t) in Fig. 12.20(a) and (b) show typical examples of spike trains
representing, for instance, the locations of local maxima for oscillations with com-
plex wave forms or with bursting dynamics. While in Fig. 12.20(a) the spikes are
equidistant in time, the spikes in Fig. 12.20(b) occur with different intervals.

Consider two identical oscillator with bursting dynamics that are coupled dif-
fusively. One can easily count the number of possible synchronous regimes with
different mutual phase shifts that are determined by different spikes in realizations
x1(t) and x2(t) which occur simultaneously The results of a more formal analysis
are summarized below. Note that this approach is also applicable in case when the
bursting systems are not identical.

Equidistant Spike Train

• We consider a signal that is characterized by the firing interval Tf = it and a
silence interval Ts = jt (i, j are integers) with t = const. The whole period
is defined as T = (i + j)t .

• For two interacting signals x1(t) and x2(t), it is assumed that i1 + j1 = i2 +
j2 = N . To be specific, let i2 < i1 and, thus, j2 > j1.

• If j1 < i2 − 1, the silent region overlaps with the spike train. Hence, the number
of possible combinations is equal to N = i1 + j1 = L. The case with j = 0
and different spike amplitudes corresponds to the cases involving subharmonic
components [38] and to those with self-modulated oscillations [273].

• If j1 ≥ i2 − 1, the number of possible synchronous regimes is equal to N =
i1 + i2 − 1 and increases with increasing i1 and i2.

Fig. 12.20. (Color online) Sketch of the expected variants of the synchronous regimes for
interacting bursting oscillations with three-spike trains. Note the difference between the cases
when the interspike distances are a equal and b different, respectively
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• If i1+j1 �= i2+j2, while t is still the same for both spike trains, then a minimal
period Tij = t(i1 + j1)(i2 + j2) exists, and the problem translates into the
previous case. However, the particular configuration of silent regions and spike
trains depends on the values of i1, j1, i2, and j2. The set of synchronous regimes
can be estimated as i1 + i2 − 1 ≤ N ≤ (i1 + j1)(i2 + j2).

We conclude that interacting equidistant bursting oscillators can provide even more
synchronous states than self-modulated (period-doubled) oscillations of the same
period T .

Non-equidistant Spike Train

This case is perhaps more realistic because a typical bursting scenario involves a
gradual variation of the spiking frequency during a single burst. In such situation
one can expect a different number of coexisting regimes in the interacting bursters
as compared to their number in case of equidistant bursting.

Let one of the spikes in the train be located with a different time interval from
the other spikes (Fig. 12.20(b)). This does not affect the fully in-phase regime. How-
ever, the stability of the phase-shifted regimes is likely to become weaker since the
coincidence of spikes is not as good as in Fig. 12.20(a). At the same time, addi-
tional cases of coincidence for the “separated” peak appear. However, even although
the tendency to synchronize may not be strong enough to provide additional stable
synchronous states, at least they can produce the so-called “ghosts” where phase
differences change slowly.

Limitations to the Above Approach

In Chap. 4 it was shown for mutually coupled van der Pol oscillators that only the
in-phase synchronous regime is stable for weak dissipative coupling [34, 240]. But
there is an interesting mechanism that can produce stable out-of-phase synchronous
state in weakly coupled oscillatory units. In Chap. 11 dephasing was demonstrated
to be responsible for antiphase synchronization in coupled Morris–Lecar neuron
models and in coupled modified van der Pol systems [104, 219]. Models exhibiting
this effect might have different details but they have a common structure of their
phase space. The presence of a saddle equilibrium located nearby but outside the
limit cycle is crucial. The latter create substantial inhomogeneity of phase velocity
on, and in the vicinity of the limit cycle. When perturbed by coupling, the phase
trajectories of the interacting units can be shifted towards, or away from, the saddle
point and hence the dynamics can be slowed down or accelerated. Moreover, it has
been found [230] that the mutual location of the equilibrium point and a limit cycle
in the generalized FitzHugh–Nagumo model can be responsible for similar dephas-
ing effects. In a certain region of the phase space the phase trajectory in the single
cell model approaches the unstable equilibrium point quite closely. Thus, a weak
perturbation can influence the motion of the phase point considerably.
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It is not obvious how the above approach to synchronization of spike trains can
be extended to the antiphase regime and to out-of-phase states. Finally, for some
regimes the time intervals can be different between all spikes in a train. It is the
purpose of the present section is to discuss this problem in detail.

12.3.2 Dynamics of Coupled Bursters

Model

As a basis for the present analysis we use the simplified model of a pancreatic β-cell
suggested by Sherman et al. [265]:

τ
dV

dt
= −ICa(V ) − IK(V , n) − IS(V , S),

τ
dn

dt
= λ

(
n∞(V ) − n

)
, (12.20)

τS
dS

dt
= S∞(V ) − S,

where

ICa(V ) = gCam∞(V )(V − VCa),

IK(V ) = gKn(V − VK),

IS(V ) = gSS(V − VK),

ω∞(V ) = 1

1 + exp[(Vω − V )/Θω] , with ω = m, n, and S.

Here, V represents the membrane potential while, n may be interpreted as the
opening probability of the potassium channels, and S accounts for the presence of
a slow dynamics in the system. S is likely to be related to the intracellular Ca2+-
concentration, although the precise biophysical interpretation of this variable re-
mains unclear. ICa and IK are the calcium and potassium currents, gCa = 3.6 and
gK = 10.0 are the associated conductances, and VCa = 25 mV and VK = −75 mV
are the respective Nernst (or reversal) potentials. τ/τS defines the ratio of the fast
(V and n) and the slow (S) time scales. The time constant τ for the membrane po-
tential is determined by the capacitance and the typical total conductance of the cell
membrane. With τ = 0.02 s and τS = 35 s, the ratio kS ≡ τ/τS is quite small, and
the cell model is numerically stiff.

The calcium current ICa is assumed to adjust instantaneously to variations in V .
For the fixed values of the membrane potential, the gating variables n and S re-
lax exponentially towards their voltage dependent steady state values n∞(V ) and
S∞(V ). Together with the ratio kS of the fast to the slow time constants, VS will be
used as the main bifurcation parameter. This parameter determines the membrane
potential at which the steady state value for the gating variable S attains half its max-
imum value. The other parameters are gS = 4.0, Vm = −20 mV, Vn = −16 mV,
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θm = 12 mV, θn = 5.6 mV, θS = 10 mV, and σ = 0.85. These values are all adjusted
so that the model can reproduce the experimentally observed time series with rea-
sonable accuracy. In accordance with the formulation used by Sherman et al. [265],
all the conductances have been scaled relative to some typical conductance. Hence,
we may also consider (12.20) as a model of a cluster of closely coupled β-cells that
share the capacity and the conductance of the total membrane area.

Figure 12.21 provides an example of the evolution of V , n, and S obtained by
simulating the cell model at the parameter values where it exhibits bursting behav-
ior. Bifurcation analysis of the single Sherman model shows a variety of different
spiking regimes [157]. An example of a two-dimensional bifurcation diagram is
presented in Fig. 12.22. Near the bottom of this figure we observe Andronov–Hopf
bifurcation curve. Below this curve, the model has one or more stable equilibrium
points. Above the curve we find a region of complex behavior delineated by the
period-doubling curve PD1−2. Along this curve, the first period-doubling of the
continuous spiking behavior takes place. In the heart of the region surrounded by
PD1−2 we find an interesting squid-shape structure with arms of chaotic behavior
(indicated in black) stretching down towards the Andronov–Hopf bifurcation curve.
Each of the arms of the squid-shape structure separates a region of periodic bursting
behavior with i spikes per burst from a region with regular behavior with (i + 1)-
spikes per burst. Each arm has a period-doubling cascade leading to chaos on one
side and a saddle-node bifurcation on the other. It is easy to see that the number of
spikes per burst becomes large as kS approaches zero.

Simulation Results

Bursting dynamics that represents another example of fast-and-slow motion, differs
from the described above oscillations in the period-doubled regimes since it contains
a silent state. This implies that local maxima are distributed non-uniformly over
the whole period, and the set of possible synchronous states is expected to have
specific features. Let us develop a simplified qualitative analysis to understand how
coexisting regimes arise. The basic assumption for such analysis is a tendency of
coupled units to be synchronized with the coincidence of their local maxima. The
more local maxima (spikes) coincide, the stronger the stability of the respective
regime is.

To calculate the effective coupling function, it is necessary to define (i) the equa-
tions for the model to be coupled and (ii) the form of coupling. We assume that the
coupling is of diffusive type and is expressed by the difference terms of the form
c(X1 − X2) where X1 = (V1, n1, S1)

T and X2 = (V2, n2, S2)
T are the state vec-

tors of the individual cell models. c is the coupling matrix for which we assume
the form c = diag(1, 0, 1), indicating that coupling takes place via the first and
the third variables. The membrane potentials are coupled resistively via electric cur-
rents that flow between the cells, and the third variables are coupled via the diffusive
exchange of calcium between the cells [301]. We do not consider coupling via the
gating variables n, since such a coupling appears less realistic from the biological
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Fig. 12.21. Example of bursting oscillations in a single Sherman model (12.20) with five
spikes per burst at VS = −39.0 mV and kS = 0.00057. (a) 3D phase plot; (b) realization of
the membrane potential

Fig. 12.22. (Color online) Two-dimensional bifurcation diagram outlining the main bifurca-
tion structure in the (VS, kS) parameter plane for the single cell Sherman model (12.20). Note
the squid-shape black region with chaotic dynamics. Arrows A, B, and C indicate different
routes of parameter variation discussed in the text

point of view. Note that the coupling strength parameter is absent in the expression
for c because the analysis assumes the coupling to be vanishingly weak.

Figure 12.23 illustrates how the number of detected stable synchronous regimes
changes when varying the control parameter kS along route C as indicated in
Fig. 12.22. Along this route, the number of spikes in a train increases stepwise when
crossing the bifurcation curves. The bifurcation mechanism in this direction was de-
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Fig. 12.23. The number N of phase-locked regimes vs the control parameter kS under the
period-adding scenario C (Fig. 12.22). Numbers in the upper part of the figure denote the
number of spikes per burst

scribed by Mosekilde et al. [184]. One typically observes that the “i-spike per burst”
solution destabilizes in a subcritical period-doubling bifurcation, and the “(i + 1)-
spike” solution arises in a saddle-node bifurcation. It is clearly seen from Fig. 12.23
that the maximal number of coexisting states N tends to grow with the increasing
number of spikes in the train. However, the fluctuation of N is significant, and the
whole plot looks quite random.

To understand how the number of synchronous regimes varies with kS, let us
consider the behavior of the effective coupling function as calculated for the seven-
, eight-, and nine-spike trains (Fig. 12.24). We first note that the shape of the ef-
fective coupling function for V -coupling is much more complicated than for S-
coupling. This is associated with the dynamics of the individual Sherman model
where V and S are fast and slow variables, respectively. The spiking dynamics
causes well-pronounced short-range oscillations of Γa around zero. Another inter-
esting observation is that a smooth deformation of a long-range component of Γa
with varying kS (rather than changes in short-range oscillations of Γa) leads to the
changes of the number of intersections with zero. An inspection of Fig. 12.24(c)
shows that the region of short-range oscillations of Γa still exists, but the long-range
structure dominates. As a result, the number of stable synchronous states for the
nine-spikes per train bursting dynamics is only four.

The behavior described here supports the hypothesis that the dephasing effect
can play a significant role for the long-range variation of Γa and, hence, cause the
abrupt changes in the number of coexisting regimes. The strength of the dephasing
effect can be indirectly measured by calculation of the minimal distance Dmin be-
tween the limit cycle and the nearby equilibrium point (Fig. 12.25). Dephasing can
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Fig. 12.24. (Color online) Asymmetric part Γa of the effective coupling function for the
multi-spike bursting regimes. The solid line is for V -coupling while the dashed line is for S-
coupling. a Seven spikes per train at kS = 0.00011; b eight spikes per train at kS = 0.00009;
c nine spikes per train at kS = 0.00008. Note how the slow variation of Γa in c causes the
number of stable synchronization regimes to be quite small, even for V -coupling

explain the irregular changes of the set of coexisting regimes. To find some corre-
lation, we introduce the quantity N/M characterizing how effectively the number
of spikes in a train is transformed into the set of synchronous regimes. We compare
the changes of this quantity with the change of the minimal distance Dmin under
variation of kS. According to the simple quantitative analysis at the beginning of
this Section, one can expect that N/M ≈ 2.0 − 1/M for the case of “perfect” burst-
ing. In practice, the N/M curve jumps within the range [0.666; 4.25]. Moreover,
one can observe a certain correlation between curves for N/M and for Dmin. This
suggests that the phase multistability for the bursting regimes is govern by variation
of distance between the limit cycle and equilibrium point rather than by the number
of spikes per train.
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Fig. 12.25. There is a certain correlation between plots for the minimal distance Dmin from
the equilibrium point to the limit cycle (upper panel) and for the number of coexisting stable
regimes, normalized to the number M of spikes per train (lower panel)

12.3.3 Multistability Induced by Dephasing

Let us return to the diagram in Fig. 12.22. There is no bursting to the right of the
curve PD1−2. Here, continuous spiking is the only stable mode. This regime is in
many ways similar to the behavior of two dimensional models, like the van der
Pol oscillator. Thus, a relatively simple pattern for the mutual synchronization of
the cells is expected. However, inspection of the diagram for two coupled Sherman
models (12.20) reveals different patterns of synchronous states even for weak diffu-
sive coupling. For example, both in-phase and antiphase regimes can be stable, and
an additional pair of out-of-phase solutions can occur. The reason for this variety
of stable synchronous states is the dephasing effect that occurs due to the presence
of a saddle equilibrium located nearby but outside, the limit cycle. In contrast to
the two-dimensional oscillators, the Sherman model has a single equilibrium point
inside the limit cycle. How can dephasing arise in this case?

To illustrate clearly the dephasing effect in Sherman oscillators, we reduce the
model equations (12.20) to a two-dimensional model with only one fast (V ) and one
slow (S) variable (i.e., we assume the relaxation of the gating variable n to be very
fast). This produces a model similar to the FitzHugh–Nagumo model in the general
form

τ
dV

dt
= −ICa(V ) − IK(V , n∞) − IS(V , S) = f (V, S),

(12.21)
τS

dS

dt
= S∞(v) − S = g(V, S).

Here the terms are the same as in (12.20), but n∞ is used instead of n in the expres-
sion for IK.

In Fig. 12.26 the mutual location of the limit cycle (white curve) and the un-
stable equilibrium point (EP) is illustrated together with contour plots of the phase
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Fig. 12.26. Phase velocity contour plot for the reduced Sherman model (12.21) at a VS =
−44.0 mV, kS = 0.001; b VS = −38.19 mV, kS = 0.0175

Fig. 12.27. Antisymmetric part for the effective coupling function, calculated for the reduced
Sherman model at a VS = −44.0 mV, kS = 0.001; b VS = −38.19 mV, kS = 0.0175

velocity (solid lines with grey shading). There is an area of slow motion, deter-
mined by the location of the cubic-shape nullcline f (V, S) = 0. At the intersection
of f (V, S) = 0 with the other nullcline g(V, S) = 0 there is a single point (EP) of
zero phase velocity. It is clearly seen how the position of EP changes with varying
control parameter kS, and the sensitivity to a weak perturbation of the limit cy-
cle changes as well. In Fig. 12.26(b), a deviation from the unperturbed cycle (white
curve) should not produce a significant effect, while the motion along the limit cycle
in Fig. 12.26(a) becomes inhomogeneous.

These qualitative observations are confirmed by the calculations of the effective
coupling function (Fig. 12.27). At VS = −38.19 mV, kS = 0.0175, the equilibrium
point is located away far from the limit cycle. In this case, the in-phase synchronous
regime is stable, but the antiphase solution is unstable (Fig. 12.27(b)) for weak diffu-
sive coupling via the V and S variables. This behavior is similar to synchronization
of dissipatively coupled van der Pol oscillators (see Chap. 4), and the dephasing ef-
fect is not pronounced. As soon as the equilibrium point approaches the limit cycle
(Fig. 12.27(a)), the antiphase regime becomes stable but the in-phase solution main-
tains its stability in contrast to the dephasing effect [104] described in Sect. 11.3.
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Two new out-of-phase unstable regimes appear. Simultaneous coupling via both the
V and S variables produces a qualitatively similar effect.

Thus, the coupled reduced models (12.21) exhibit the dephasing effect in a form
different from the form described in [104, 219] and in Sect. 11.3. We expect that
the dephasing effect will be preserved when we return to the full Sherman model
(12.20). However, in coupled 3D systems it is difficult to make precise statements
about the mutual configuration of a limit cycle and an equilibrium point based on
a Poincaré section only. Useful information can be obtained by calculating the dis-
tance between the two objects in phase space. In Fig. 12.28 the variation of the min-
imal distance Dmin between the limit cycle and the equilibrium point is plotted. It
is clearly seen that this distance decreases with decreasing values of VS. The inserts
show examples of the Γa shape for selected values of VS. For VS = −38.39 mV the
effective coupling function indicates “good” behavior, similar to the behavior ob-
served in dissipatively coupled van der Pol oscillators: the in-phase state is the only
stable solution for coupling via the V (solid line) or S (dashed line) variables. For
VS = −43.25 mV, Γa indicates both in-phase and antiphase regimes that are stable
both for S-coupling and for V -coupling.

Note that the phase space structure of the Sherman model provides phase multi-
stability even outside of the bursting region. The mechanism for this can be identi-
fied as a specific form of dephasing effect, related with a slowing down or accelera-
tion of the trajectory in each coupled unit. Note that the described effect takes place
for arbitrarily weak coupling and is the result of the phase space properties of the

Fig. 12.28. Minimal distance Dmin from the equilibrium point EP to the limit cycle plotted
against the value of VS (along the A route in Fig. 12.22). Inserts display the qualitatively
different responses of the 3D Sherman model (12.20) to weak coupling via the V variable
(solid line) or the S variable (dashed line). Note that the solid line in the upper insert is
reduced by 20 in the vertical scale to fit the same plot as the dashed line
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Sherman model rather than of specific features of the coupling. In the bursting area
we expect the considered mechanism to interact with the effect of multicrest wave
forms, producing additional complexity in the phase patterns.

12.4 Summary

Phase multistability provides a new insight on the variety and complexity of bifurca-
tion transitions inside the synchronization region and near its boundary. The results
presented in this chapter allow us to make a few general conclusions given below

• To estimate the number of stable synchronous states for a system of two weakly
diffusively coupled models one has to take into account (i) the wave forms of
the oscillations in different regions of parameter space (essential for period-
doubling and self-modulated oscillations), and (ii) particular structure of the
phase space of the system, involving regions of fast and slow motion, passing of
trajectories close to singular points, etc. As a result, the dephasing effect can play
an important role in the formation and evolution of coexisting regimes (essential
for bursters).

• Mapping approach, as well as the method of effective coupling, serve a quanti-
tative measure of phase dynamics that provides information on the phase prop-
erties of the interacting solutions and on the number of synchronous regimes.

• Synchronization region should be considered as a set of embedded Arnold
tongues formed by coexisting phase-shifted regimes. Boundary of the synchro-
nization region is related to bifurcations of the most stable synchronous regime.



13 Synchronization in Systems with Complex
Multimode Dynamics

In the previous chapters we considered synchronization phenomena in coupled dy-
namical systems whose individual oscillations were characterized mostly by a single
basic time scale. However, often the natural dynamics of interacting systems can be
more complex, involving several independent time scales of either deterministic, or
stochastic (statistical) origin. This feature is called multimode dynamics. Some ef-
fects of the multimode dynamics on synchronization phenomena were discussed in
Chap. 12, where we showed that interaction of the self-oscillators, each being char-
acterized by several time scales, can lead to phase multistability. In this chapter we
get a deeper insight into how synchronization is developed in the systems whose
natural dynamics is multimode from the viewpoint of evolution of different time
scales in the interacting systems.

Illustrations of several types of multimode dynamics are given in Fig. 13.1. The
simplest example is oscillations with two independent components (modes) corre-
sponding to fast and slow motion (see Fig. 13.1(a)). In this case, the periods of the
slow oscillations T1 and of the fast oscillations T2 serve as two characteristic time
scales of the dynamical system. Another bright example of a system with multimode
oscillations is the famous Lorenz system [172], whose phase dynamics is a combi-
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Fig. 13.1. Examples of multimode dynamics including: a a combination of fast and slow
rotation with periods T1 and T2; b rotation with basic period T1 and switching with mean
switching time T2; c rotation with basic period T1, switching with mean switching time T2
and drift with drift velocity vd. The left panels represent phase portraits. The right panels
show the corresponding realizations

nation of rotations around two symmetrically located fixed points and occasional
jumps from the vicinity of one fixed point to the vicinity of the other (Fig. 13.1(b)).
In such motion one can separate two independent time scales, the first being associ-
ated with rotation around, and the second with switching between, the vicinities of
the fixed points: e.g. the basic period of rotation T1, and mean time interval between
jumps T2. Generally, the system can have an infinite number of fixed points and can
demonstrate the behavior that involves rotation around them as well as jumps be-
tween their vicinities. Moreover, jumps in one direction can be more probable than
in another. In this case, as one can see from Fig. 13.1(c), besides the basic period
of rotation T1 and the mean time interval between jumps T2, the motion is charac-
terized by the drift velocity vd that reflects a trend of the system state towards the
direction in which jumps are more probable.

Multimode oscillations are widely spread in nature and in engineering. They are
typical dynamical regimes, e.g., in lasers [140], in a phase-locked loop [176, 216],
in electrochemical oscillators [145], and in semiconductor nanodevices [10]. Liv-
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ing systems often exhibit dynamics with different time scales. The thalamocortical
relay neurons, for instance, can generate either spindle or delta oscillations [295].
Recently, it has been found that the dynamics of electroreceptors in paddlefish can
be biperiodic [190]. In [272] an individual nephron was described as a two-mode
oscillator demonstrating relatively fast oscillations associated with the myogenic
regulation of the arteriolar diameter, and slower oscillations related to a delay in the
tubuloglomerular feedback.

Many models of bursting neurons [136], for example, can be split into slow
and fast subsystems. Such an approach works very well when these subsystems can
operate separately and the coupling is weak. Otherwise, the paradigm of coupled
units seems to be less fruitful. Hence, the description of double-oscillatory nature
of the original system by means of a single two-mode oscillator is useful when
coupling is strong enough and the essential dynamical effects arise due to interaction
between the subsystems.

Often the cooperative dynamics of coupled multimode systems can be consid-
ered from the viewpoint of synchronization of different components of motion. In
[27] the authors considered synchronization of the systems with quasiperiodic os-
cillations, when each of the interacting systems demonstrates two independent time
scales. In [20] synchronization of switching processes in coupled Lorenz systems
has been studied. In [185, 216] the cooperative dynamics of coupled oscillators with
drifts was explored.

In this chapter we consider the main principles of how different types of mul-
timode behavior can be induced in chaotic and stochastic systems. We also focus
our study on synchronization of oscillations characterized by several time scales of
different origins.

13.1 Synchronization of Chaotic Systems with Fast and Slow
Time Scales

13.1.1 Single System with Two Time Scales

First, consider the case when the phase dynamics of each subsystem is characterized
by two time scales associated with rotation in the phase space. The model we are
going to study consists of two oscillatory subunits, where a self-sustained oscillator
drives a damped non-linear oscillator via both additive and multiplicative forcing.
This model was proposed in [232] in order to describe bimodal oscillations, which
are observed in nephron autoregulation [272]. From the viewpoint of physics, this
process may be considered as a parametric perturbation of the fast oscillations. The
model can be implemented with non-linear electronic circuits or coupled mechanical
oscillators.

The equations read

ẍ − (
1 − x2)ẋ + ω2x = E + cv̇, (13.1)

v̈ + dv̇ + vΩ(v) = F(x, v), (13.2)
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where the first equation represents a van der Pol-type oscillator with frequency ω.
This oscillator is subjected to a constant force E and receives a feedback cv̇ from
the other subunit. The second equation describes a damped oscillator with a fre-
quency Ω(v) represented by a non-linear function in the form Ω(v) = 1 + βev

with β � 1. This form originated from observation of real nephron dynamics, but
actually describes a fairly generic case: for small v, Ω(v) ≈ 1, but larger values
of v produce a considerable upshift of the resonance frequency. The term F(x, v)

represents the forcing from the first oscillator. The specific form to be used includes
both an additive and a multiplicative forcing

F(x, v) = a tanh(x)(1 + γ v). (13.3)

The function tanh(x) is used to describe saturation phenomena at both very pos-
itive and very negative values of x. Together with the non-linear frequency term
Ω(v), F(x, v) provides stabilization of the oscillation amplitude in the parametri-
cally forced oscillator (13.2). ω2 and E are used as control parameters while the
other parameters are fixed at c = 2.0, d = 0.1, β = 0.001, a = 0.474, and
γ = 12.85.

We can rewrite (13.1)–(13.2) as a set of four first-order ordinary differential
equations in the following form:

ẋ = y, (13.4)

ẏ = (
1 − x2)y − ω2x + E + cu, (13.5)

v̇ = u, (13.6)

u̇ = −du − vΩ(v) + F(x, v). (13.7)

In the limit of vanishingly small values of c, the self-sustained dynamics of the
system is bounded by the lines of an Andronov–Hopf bifurcation for subsystem
(13.4)–(13.5), whose equation on the plane of parameters (ω2, E) is

E = ±ω2. (13.8)

However, for finite values of c, self-sustained regimes occupy a wider area on the
(ω2, E) plane because of the positive feedback provided by the term cu. For larger
values of c (c = 2.0 in this study), this region contains various periodic, quasi-
periodic, and chaotic regimes. Among them, let us focus on the regime of chaotic
dynamics that appears through a period-doubling cascade and whose main feature
is the presence of two time scales originating from the slow dynamics of the subunit
(13.4)–(13.5) and the fast dynamics of the subunit (13.6)–(13.7). An example of a
realization of such oscillations is given in Fig. 13.2.

Since both characteristic time scales of the system dynamics are associated with
rotation, the obvious way to estimate those time scales is to calculate the mean pe-
riod of rotations for each subunit. Technically, it can be done by averaging the time
intervals between the successive returns to some Poincaré sections formally intro-
duced for each of subunits. For example, one can collect the time intervals between
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Fig. 13.2. A typical realization of two-mode chaos in (13.4)–(13.7) with E = −0.4898 and
ω2 = 0.5202

the maxima of realizations x(t) and u(t), which would correspond to return times
to Poincaré sections defined by y = 0 and v = 0, respectively. However, if for
fast motion these return times bring a correct information about the velocity of ro-
tations, for slow motion not every maximum reflects the corresponding rotation. As
shown in Fig. 13.2, the feedback from the fast subunit modulates the slow dynamics
making if difficult to choose the Poincaré section appropriately. In order to filter out
the contribution from the fast component, two auxiliary equations are introduced as
follows:

ξ̇ = ω(x − ξ) and η̇ = ω(ξ − η). (13.9)

This way, we can correctly extract information about each of the two oscillatory
modes by calculating return times τx and τv of the phase trajectories to the Poincaré
secant surfaces defined by η = 0 and u = 0, respectively, in the (ξ, η) and (v, u)

phase subspaces. By introducing the winding (rotation) number

r = 〈τv〉/〈τx〉, (13.10)

we can determine the ratio between the slow and fast frequencies that are associated
with the first and the second subunits, respectively. By using sequences of τx and τv

we can also introduce phase for each mode applying a method discussed in Chap. 8.
Figure 13.3 shows how dynamical characteristics of the systems (13.4)–(13.7)

change with variation of E for ω2 = 0.5202. In Fig. 13.3(a) the dependence of three
largest Lyapunov exponents on E is depicted. With increasing E, the system under-
goes a cascade of period-doubling bifurcations, and at E ≈ −0.48989 (Fig. 13.3(a))
one of the Lyapunov exponents becomes positive, i.e., the dynamics of the system
becomes chaotic. Figure 13.3(b) presents a plot of winding number r versus E. It is
clearly seen that for a significant range of E, r has a rational value 1/4. This means
that frequency locking occurs between two modes of the same system. Note that
since E ≈ −0.48989, the mode-locked regimes correspond to chaotic attractors. At
E ≈ −0.4898, the mode locking is destroyed and values of r start to “float” with
variation of E in some range slightly above 1/4. The destruction of mode locking
is also confirmed by the calculation of the effective phase diffusion Deff, which was
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Fig. 13.3. a Three largest Lyapunov exponents, b rotation number r , and c phase diffusion
coefficient Deff as a function of control parameter E for a single system (13.4)–(13.7) with
ω2 = 0.5202. While the largest Lyapunov exponent grows monotonically, r and Deff indicate
transitions inside the chaotic dynamics. Grey circle is put in the middle of parameter range
with mode-locked chaos. Black circle corresponds to mode-unlocked chaos. The properties
of the two types of chaos are compared in Fig. 13.4

introduced in Sect. 7.9. Although Lyapunov exponents do not reveal the qualitative
changes between the chaotic attractors with rational and with non-rational rotation
numbers, further inspection of the system dynamics shows that there is a clear dif-
ference between them.

In Fig. 13.4 the two columns compare the attractor characteristics before and after
the mode unlocking transition at the points marked by grey circle (E = −0.48987)
and by black circle (E = −0.48970) in Fig. 13.3. It is clearly seen that a 3D phase
projection in Fig. 13.4(a) changes in a specific way with loops being added inside
and around the main body of the attractor. Figure 13.4(b) shows a zoom on a part
of the attractor in the (x, y) phase projection. The main difference between the two
panels is the appearance in the right hand panel of additional small-sized structures
in the bundle of trajectories that are indicative of the existence of a time scale faster
than the time scale that defines the main shape of the attractor. Figure 13.4(c) shows
a return time map with τn

v being τv calculated for nth return to the given Poincaré
section. For a simple period-doubling chaos (left panel) this map has a clearly vis-
ible structure with segments, each being visited in a certain order. After the mode-
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Fig. 13.4. Comparison of chaos characteristics in a single system (13.4)–(13.7) at E =
−0.48987 (left panels) and at E = −0.48970 (right panels) corresponding to the grey
and black points in Fig. 13.3, respectively. a 3D phase projection (x, y, u); b zoomed part of
(x, y) projection; c return time maps; d power spectral densities in dB; e distribution H of
return times τx ; f distribution H of return times τv
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unlocking transition (right panel), however, the map becomes more disordered, with
some segments merged and with many points outside the main part of the map. With
this, the power spectra in Fig. 13.4(d) reveal the band structure of the chaotic attrac-
tor. Note that the transition being discussed occurs for a period-doubling chaos, thus
one could expect the well-known band-merging bifurcations [15] to occur. However,
in our case, the sequence of band-merging bifurcations is interrupted by a mode-
unlocking transition described above. Figure 13.4(e), (f) indicate the changes in the
distribution of return times τx and τv . Before the mode-unlocking transition, the
Poincaré section has a well-pronounced band structure for both time scales. After
the transition, the histogram for the slow time scale becomes uniform but clearly
bounded. For the fast time scale, the histogram remains split into a few segments
and spread over a wider interval. Summarizing the description above, the transition
from a rational value of r to its floating behavior is accompanied by considerable
changes in the attractor characteristics as indicated in Fig. 13.4.

Note that a similar phenomenon was observed in a case of generalized synchro-
nization of two chaotic systems with frequency ratio 1 : 2 [255]. However, in our
case system cannot be split into two independent chaotic oscillators, and chaos ap-
pears due to the non-linear interaction between the functional units.

We have also compared the observed transition with the known evolution of a
chaotic attractor to the so-called “Shilnikov chaos” [15]. Again a clear difference
exists. In our case the trajectory does not visit the close vicinity of an unstable
equilibrium point embedded in the attractor. At least there are no visible changes
before and after the mode-unlocking transition. Accordingly, the statistics of mean
return times (given in Figs. 13.4(e), (f)) is rather different from what we know for
the Shilnikov attractor, for which the return time histogram extends to (infinitely)
large times. In our case the return time histogram is smoothed, but bounded for both
modes.

13.1.2 Coupled Systems with Two Mode Dynamics

Let us now consider how such systems, individually operating in the two-mode
chaotic regime, can interact. We introduce a simple difference coupling term with a
strength k. The equation for the x variable in (13.4) then becomes

ẋ1 = y1 + k(x2 − x1), ẋ2 = y2 + k(x1 − x2),

where subscripts indicate the first and the second interacting units. By calculating
two rotation numbers rx and rv , each being the ratio between the similar time scales
in the coupled units,

rx = 〈τx1〉
〈τx2〉 , rv = 〈τv1〉

〈τv2〉 , (13.11)

we can separately describe the adjustment of the slow and fast modes. The sim-
plest way to introduce a mismatch between the units would be to choose different
values of ω2

1 and ω2
2. However, for the individual system (13.4)–(13.7) the curves

of period-doubling bifurcation are generally parallel to the Hopf bifurcation curve
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Fig. 13.5. Adjustment of two pairs of oscillatory modes is indicated by changes in the rx and
rv rotation numbers with respect to the frequency mismatch ε. ω2

2 = 0.5202, E1 = E2 =
−0.48987, and k = 0.0035

given by (13.8), and any variation of ω2 will change not only the main frequency,
but also the operating regime of the unit. Hence, it would be difficult to come to
a reasonable conclusion about the interaction between the attractors of a particular
type. In order to avoid this problem we have introduced a mismatch through an ad-
ditional scale factor ε in the left-hand side of the equations for one of the interacting
units, as suggested in [18], namely, ε = 1.0 corresponds to the case of identical
units, while variations below and above 1.0 give rise to a detuning that does not
influence the operating regime.

Let us consider the mutual adjustment of the oscillatory modes for the selected
value of the coupling strength k = 0.0035. Figure 13.5 presents the variation of the
rotation numbers for the slow rx and the fast rv time scales versus the frequency
mismatch ε. There exists an interval of ε ∈ [0.9984, 1.00176] where rx = rv = 1.0.
This implies synchronous behavior with respect to both time scales. Both for larger
and for smaller values of ε, the rotation number rv diverges from 1.0 while rx re-
mains equal to 1.0 within a wider interval of ε ∈ [0.9957, 1.00382]. This demon-
strates desynchronization between the fast oscillatory modes in the coupled units
while the slow modes remain locked. This way, both partial synchronization (one of
the two time scales is synchronized) and all-mode frequency locking of chaos can
be observed. Note that the behavior of rx and rv near the edges of the locked region
are different. By comparing the shape of the curves with the known synchroniza-
tion pictures, one can draw analogies with the synchronization of periodic oscilla-
tions for rv

1 and something similar to synchronization of noisy oscillations for rx
(see Chap. 7). We assume that this reflects different synchronization mechanisms
for the fast and slow modes. Figure 13.6 represents the synchronization regions on
the (ε, k) parameter plane for the slow and fast oscillatory modes separately. We
can now clearly see that the two time scales have different widths of the Arnold

1 Sharp tongue edges imply saddle-node bifurcations.
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Fig. 13.6. 3D plots on the “frequency mismatch ε”–“coupling strength k” parameter plane
for rotation numbers rx and rv separately. ω2

1 = ω2
2 = 0.5202 and E1 = E2 = −0.48987

tongues down to vanishingly small coupling strengths. An interesting observation
can also be made for stronger coupling. For k > 0.004, the fast oscillatory mode is
completely desynchronized and displays a gradual increase of rv with increasing ε.
This seems to be due to coupling through the slow x-variable. A stronger coupling
increases the coupling-induced shift of the operating point for the two interacting
units, and hence provokes the complete unlocking of the fast modes from the slow
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ones. Since the fast modes can interact only via the slow variable such a situation
leads to desynchronization.

13.1.3 Conclusions

In conclusion to this section, we would like to note that the entrainment of two-mode
chaotic regimes is realized in a more complicated way than synchronization of one-
mode chaotic systems studied in Chap. 8. In particular, a mode-unlocking transition
for chaos significantly influences the cooperative dynamics of the coupled units.
Although obviously connected, the mutual behaviors of the slow and fast modes
manifest many signs typical of independent time scales. As shown above, they are
synchronized independently from each other at different parameter values. With
this, slow components have wider region of synchronization in the parameter plane
“time scale detuning–coupling strength.”

Thus, when studying the cooperative dynamics in systems with multimode os-
cillations, one should keep in mind that synchronization criteria can depend on the
particular mode of motion. With this, the concept of separation of time scales used
in this section can be very helpful, since it allows one to apply the well-established
techniques developed for simpler cases to the analysis of more intricate behavior.

13.2 Generation and Synchronization of Oscillations with
Several Noise-Induced Modes

In the previous section we demonstrated that entrainment phenomena can appear be-
tween the modes of oscillations generated by a single deterministic system, which
cannot be decomposed into two independent self-oscillators. Here, we consider sim-
ilar case when multimode dynamics arises in stochastic oscillators, namely in ex-
citable systems, whose oscillatory behavior is induced merely by noise.

Noise can have quite different effects when acting on self-oscillators or on ex-
citable systems. General aspects of noise-induced transitions have been discussed
in Chap. 9. We remind the reader that deterministic self-oscillators already possess
their own time scales that can be modified by the random forcing [66, 298]. With
this, influence of noise on an excitable system is more sophisticated. Without any
perturbation, there is no response of the system at all, while too large random fluc-
tuations just result in a noisy output. For an appropriate noise intensity, however, the
behavior of the excitable system becomes highly regular. If one introduces some or-
der parameter, e.g., correlation time, to characterize the coherence of oscillations, it
will change non-monotonously with the increase of noise strength. That is, there will
be some optimal level of noise, at which the coherence of the noise-induced oscilla-
tions is maximal. Such phenomenon is known as coherence resonance [86, 87, 166,
210, 241]. In some cases coherence resonance can be understood as the response of
a non-linear dynamical system to noise excitation near the bifurcation of periodic
orbit [190]. The main feature of this effect is that the power spectrum of the sys-
tem after a bifurcation may be visible even before the bifurcation if noise is applied
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[298]. Thus, noisy precursors of the bifurcation, i.e., noise-activated time scales,
are observed. However, the effect of coherence resonance can be found even if the
excitable system does not possess any kind of self-oscillatory behavior. The corre-
sponding mechanism is explained by means of different noise sensitivities for the
excitation and relaxation times [210]. The trajectory in this case may be considered
as a motion on a stochastic limit cycle [287] with the corresponding noise-induced
eigenfrequency.2 These oscillations are controlled by noise and significantly de-
pend on the noise intensity and its statistics. Notably, noise-induced dynamics can
be multimodal, i.e., can be characterized by several time scales [187, 190, 196, 229,
231].

In this section we focus on noise-induced rather than noise-activated oscillatory
modes, i.e., on the time scales that are delivered and controlled merely by noise and
that did not exist in the deterministic case. We provide an experimental observation
of such multimode behavior and investigate the conditions for the generation and
the entrainment of the specified modes.

13.2.1 Description of Experiment

Our study involves experiments on coupled monovibrator circuits. This electronic
model [221] captures well the essential aspects of excitable systems. A single mono-
vibrator (Fig. 13.7(a)) generates a single electric impulse whenever the input voltage
exceeds the threshold level Vth. The circuit employs an operational amplifier that
supplies a non-linear response to the voltage between the two inputs. An RC-chain
is involved in the positive feedback that for a certain time locks the output circuit
in an excited state via a gradual voltage change at the ‘+’ input. The recharging
time constant is τ0 = −RC ln 1

2 (Vth/U + 1), where Vth ≤ U and U is the voltage of
power supply. Being excited by white Gaussian noise ξ(t) of an appropriate intensity
D, the circuit can reach the regime of coherence resonance [221]. The noise-induced
oscillations become quite regular and the whole system (excitable unit + noise) can
be considered as a coherence resonance oscillator whose behavior is described by a
peak frequency governed by the noise and a phase introduced as the position on a
stochastic limit cycle.3

13.2.2 Characterizing Collective Response by Spectra

To characterize the collective response of the system (Fig. 13.7(b) and (c)) we use
the summarized output from all functional units. Figure 13.8 compares the realiza-
tion from the noise source ξ(t) with the more regular response of the excitable sys-
tem in Fig. 13.7(c). In order to characterize spectral properties of the latter signal we
consider its power spectrum S(f ) calculated over a set of L sampled realizations

S(f ) = 1

L

L∑

i=1

|Pi(f )|2, (13.12)

2 See also Chap. 9, where a concept of stochastic limit cycle was discussed.
3 Stochastic limit cycle was introduced in Chap. 9.
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Fig. 13.7. Different implementations of excitable units. a Electronic circuit of a single
monovibrator; b mutually coupled units; c units coupled in a circle

Fig. 13.8. a Realization of noise input ξ(t) and b collective response from three coupled
excitable units shown in Fig. 13.7(c). Arrows indicate voltage and time scales of the signals

where Pi(f ) is the fast Fourier transform calculated for ith realization from the sys-
tem’s output. With L large enough (we use about 200), the pronounced and smooth
peaks can be detected for the excitable units in the regime of coherence resonance.
When S(f ) is calculated from the summarized output signal of coupled units, all
noise-induced time scales and their mutual entrainment can be observed.

13.2.3 Mutually Coupled Excitable Units

Figure 13.9 illustrates spectra corresponding to different patterns of collective be-
havior, at different values of the coupling strength g of two symmetrically coupled
excitable units schematically shown in Fig 13.7(b). Without coupling (g = 0), the
second (right-hand) unit can generate only randomly appearing impulses due to the
presence of weak internal noise with intensity D ∼= 0.0005 V2. At the same time,
the first unit generates a pronounced peak in the power spectrum. With increas-
ing g, the second peak appears. Within a wide range of g, the peak frequencies
are found to keep ratio of 1 : 2 (Fig. 13.9(a)) and 1 : 1 (Fig. 13.9(c)). This means
that the frequency locking takes place. However, in a certain range of the parame-
ter g, the resonance ratio between the noise-induced frequencies is broken down,
and two peaks at incommensurate frequencies can be clearly distinguished in the
power spectrum (Fig. 13.9(b)). The corresponding regions are clearly visible in the
three-dimensional plot in Fig. 13.9(d). Hence, a two-mode behavior is observed with
a resonant and a non-resonant ratios between the noise-induced frequencies. Such
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Fig. 13.9. Two-mode collective response in the system of two monovibrators mutually cou-
pled as shown in Fig. 13.7(b), at D = 0.475 V2 and different g. The evolution of the power
spectrum S(f ) clearly shows the transitions from a 1 : 2 frequency-locking (g = 0.18)
to b non-resonant two-mode behavior (g = 0.25), and finally to c 1 : 1 mode locking
(g = 0.325); d three-dimensional plot illustrating frequency entrainment with varying cou-
pling strength

behavior is similar to quasiperiodic motion in the deterministic case. Note that the
multimode dynamics being considered here is induced merely by noise, since with
vanishing random excitation none of the systems exhibit oscillations. Moreover,
there is no a priori introduced detuning between the time scales of the systems. That
is, coherence entrainment between interacting systems is also governed by noise.

Figure 13.10 illustrates how distinct phase patterns appear as coupling strength
is fixed at g = 0.1. With varying noise intensity D, the frequencies of the noise-
induced oscillations in the coupled systems move with respect to each other to give
rise to oscillatory modes with two pronounced independent peaks in the power spec-
trum. At D ranging from 0.037 V2 to 0.152 V2, the 1 : 2 resonance behavior is ob-
served (see Fig. 13.10(c)). At D ∈ [0.788 V2, 1.07 V2], frequencies are locked in a
1 : 3 ratio (see Fig. 13.10(a)).
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Fig. 13.10. Two-mode collective response in the system of two monovibrators mutually cou-
pled as shown in Fig. 13.7(b), at g = 0.1. Spectrum is shown at different D: a 1 : 3 frequency-
locking (D = 0.77 V2); b non-resonant two-mode behavior (D = 0.42 V2); c 1 : 2 mode
locking (D = 0.15 V2); and d three-dimensional plot illustrating frequency entrainment with
varying coupling strength

In order to quantitatively characterize the effect of coherence resonance, dif-
ferent researchers described the inhomogeneity of the spectrum with different ap-
proaches, including calculation of the signal-to-noise ratio [86, 166, 287] and of the
autocorrelation function [210]. We choose a method which in our case is more uni-
versal, namely the regularity of oscillations is characterized using their spectrum.
First, each value of the spectrum S(fi) is divided by the integral of S(f ) to obtain a
normalized spectrum Sn(fi)

Sn(fi) = S(fi)
∑i=m

i=1 S(fi)
, (13.13)

where fi are the frequencies at which the spectrum is estimated numerically. Next,
Shannon entropy is calculated from the normalized spectrum Sn that contains
m components

E = −
i=m∑

i=1

Sn(fi) ln(Sn(fi)). (13.14)
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E takes zero value for a harmonic signal which is the most regular signal and has a
spectrum in a form of a delta-peak. On the contrary, white noise is considered to be
completely irregular with homogeneous spectrum, for which E reaches its maximal
value

Emax = −
i=m∑

i=1

1

m
ln

(
1

m

)
= ln m. (13.15)

A measure of regularity β can be introduced as follows:

β = 1 − E

Emax
. (13.16)

Defined in this way, the β value reflects essentially the non-uniformity of the spec-
trum, varying from 1 for the purely harmonic oscillations to 0 for white noise.

For a single monovibrator the plot of β versus the noise intensity D has a single
pronounced maximum, i.e., the system exhibits coherence resonance [221]. Since
we deal with coherence resonance oscillators, we are particularly interested in es-
tablishing a relation between the regularity β of the noise-induced oscillations and
the strength of interaction g. Figure 13.11 shows the behavior of β with increas-
ing g both for the collective response of two mutually coupled monovibrators in
Fig. 13.7 and for the individual units. It is clearly seen that the second (right-hand)
unit produces the most regular output. It is remarkable that the local maxima of
regularity β2 correspond to the regions of 1 : 3, 1 : 2, and 1 : 1 mode locking, where
the relative widths of the peaks in the power spectrum are considerably smaller than
at other values of g. The first unit is the subject of external random force Dξ(t).
Hence, its reaction to variations in g is insignificant, until the coupling becomes
strong (g > 0.3). The regularity β12 of the collective response depends on g in a
non-monotonic way. For very weak coupling, β12 ≈ β1 since the second system re-
ceives a weak input and produces almost no firing. At g ∈ [0.05, 0.1], the β12 graph
displays a considerable fall due to rather irregular spike generation in the second

Fig. 13.11. Measures of regularity as a function of coupling strength (D = 0.475 V2) for the
first (β1) and second (β2) units, and for their collective response (β12)
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Fig. 13.12. Power spectrum illustrating three-mode collective behavior in a system of three
interacting excitable units sketched in Fig. 13.7(c) at D = 0.35 V2 and g = 0.03. Peak
frequencies are estimated as f1 = 205.3 Hz, f2 = 403.5 Hz, and f3 = 549.1 Hz

unit. When g is further increased, both units enter the regime of coherence reso-
nance and β12 generally follows the behavior of β1 and β2, displaying maxima in
the mode locking regions and being small in the non-resonant regimes. The main re-
sult of the above experiments is that symmetrically coupled identical excitable units
can surprisingly produce multimode stochastic oscillations.

13.2.4 Three Coupled Excitable Units

To support the above proposition we consider a circle configuration that contains
three functional excitable units (Fig. 13.7(c)). For a certain range of control para-
meters, a regime with three different frequencies is observed. It occurs as a mode
locked state and as non-resonant behavior (Fig. 13.12). Thus, we can state that a
three-unit system is able to generate a three-mode stochastic dynamics.

13.2.5 Two Mutually Coupled Excitable Units with Inhibitory Coupling

The coupling we considered above belongs to one of the simplest types. In neu-
ronal excitable systems, a synaptic (i.e., delayed inhibitory or excitatory) interac-
tion is more realistic. Let us now describe the two-mode stochastic behavior of
system sketched in Fig. 13.13(a) that is actually an electronic model of the simplest
breathing rhythm generator for a snail [251]. The circuit contains self- and mutually-
inhibitory coupling chains that can increase the threshold voltages of the first (Vth1)
and of the second (Vth2) units. Each coupling chain contains a rectifier and a low-
pass filter with coupling strength gij and time constant τij , where i, j are the unit
numbers. Note that the self-inhibitory time constants were chosen to be equal and
greater than the mutual-inhibitory time constants, i.e., τ11 = τ22 > τ12 = τ21.

At small noise intensity D (which is the same for the two units), both ex-
citable units keep silence most of the time, and their threshold voltages remain equal
(Vth1 ≈ Vth2). At intermediate noise, the influence of coupling on threshold voltages
becomes significant. With this, one of two units gets an “advantage” in suppressing
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Fig. 13.13. a Two monovibrators with delayed inhibitory couplings imitate a simple neural
circuit. b Stochastic spike trains generated by the first and the second excitable units. An-
tiphase behavior is registered in average

the firings in the other unit, since mutual inhibition makes the in-phase regime un-
stable. However, with intensive firing, the slow self-inhibitory chain with rate τ11
(or τ22) comes into operation and suppresses the activity of the corresponding unit.
This creates the best conditions for the excitation of the other unit. The process con-
tinues in a similar way, producing a behavior with time-varying firing rates for the
two excitable units (Fig. 13.13(b)).

In this operating regime, two peaks in the power spectrum are clearly distin-
guished (Fig. 13.14(a)). The high frequency peak corresponds to noise-induced os-
cillations in the single system, while the low frequency peak reveals a new noise-
induced oscillatory mode. Hence, the system of coupled excitable units generates
a new oscillatory mode that is characterized by the values of τij and by the rela-
tion between the noise intensity and the initial threshold voltages (Vth1, Vth2). Fig-
ure 13.14(b) shows how the frequency of these oscillations (empty circles) depends
on the noise intensity. It is clearly seen that with increasing noise strength, both
frequencies grow (i.e., they are noise-controlled), but the growth rates are different
(i.e., they are essentially independent from each other). At strong noise, an excitable
system can be immediately pushed away from the equilibrium state in spite of the
threshold voltage. The low frequency peak in the power spectrum disappears, and
the additional time scale no longer exists.

The regularity of the low-frequency stochastic oscillations is related to the
process of pulse generation in each excitable unit. Hence it is determined by the
effect of coherence resonance. Figure 13.14(b) illustrates that the output regular-
ity β (filled circles) is suddenly increased when low frequency oscillations appear
but the peak at the noise-induced eigenfrequency f2 is washed out because of the
threshold modulation.

Summarizing, in this section we have shown that a relatively simple system
consisting of several identical excitable units, one of which is perturbed by random
fluctuations, is able to demonstrate noise-induced multimode dynamics character-
ized by several independent time scales. With variation of noise intensity modes can
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Fig. 13.14. Two-mode dynamics in the excitable system presented in Fig. 13.13(a). a Power
spectrum of the sum of the outputs of two units; note well-pronounced peaks (D = 0.34 V2).
b Peak frequencies (empty circles) and regularity β (filled circles) vs noise intensity D

demonstrate mutual entrainment. Remarkably, the entrainment of modes is related to
coherence resonance phenomenon. Actually, the system demonstrates a maximum
of global coherence when entrainment of modes takes place.

The results presented in this section can also be useful for understanding and
modeling the rhythmic biological phenomena, e.g., in systems of sensor neurons
and pacemakers. In particular, possible advantages of multimode dynamics may
include the following aspects: (i) increased sensitivity via coherence resonance and
(ii) expanded flexibility—the presence and interaction of two distinct oscillatory
modes enrich the dynamical patterns. This approach, involving excitable stochastic
units with self- and mutually-inhibitory couplings, can be applied to simulate neural
systems with distinct phase relations given a priori.

13.3 Synchronization of Chaotic Systems with Denumerable Set
of Equilibrium States

Oscillatory behavior of dynamical systems can have very complicated character in-
volving several dynamical modes of very different origins. Often each mode is char-
acterized by its own time scale. An example of such complex behavior is shown in
Fig. 13.1(c), which illustrates oscillatory motion involving rotation, jumps between
the vicinities of different equilibrium states, and drift in the space. In this section we
discuss synchronization phenomena that result from interaction of such systems.
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An example of a dynamical system demonstrating this kind of multimode dy-
namics is a phase-locked loop. In electronics, a phase-locked loop is a feedback
control circuit which generates a signal, whose characteristics depend on the fre-
quency and phase of an input reference signal. A phase-locked loop circuit responds
to both the frequency and the phase of the input signals by automatically adjusting
the frequency of the generator being controlled, making the latter match the refer-
ence signal both in frequency and in phase. This type of systems is widely used in
telecommunications, radiolocation, computers, and many other electronic applica-
tions where it is desirable to stabilize a generated signal, or to detect signals in the
presence of noise.

A block diagram of one of the possible realizations of phase-locked loop is given
in Fig. 13.15. The corresponding model equations read

ẋ = mx − zx + sin(νy) + a,

ẏ = −x, (13.17)

ż = −gz + gF(x).

The first two equations describe the action of the phase detector (block 3 in
Fig. 13.15), the low-pass filter (block 4) and the amplifier (block 5) while the third
equation accounts for the effect of the feedback loop (block 6) in the amplifier cir-
cuit. The function F(x) is defined as

F(x) =
{

(α + ε)x4, x ≥ 0,
(α − ε)x4, x < 0,

(13.18)

reflecting a non-ideal characteristic of a two-half-period detector, g defines the re-
laxation time of the feedback loop (block 6 in Fig. 13.15), (m − z) determines a
signal gain in the feedback loop. Remarkably, the model (13.17) can be considered

Fig. 13.15. Block diagram of a phase-locked loop: 1—generator of a reference signal with
frequency ω0; 2—generator with controlled frequency ω1; 3—phase detector; 4—low-pass
filter; 5—amplifier; 6—non-linear feedback loop of the amplifier
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as a modification of the Anishchenko–Astakhov oscillator4 [15], which is a simple
electronic circuit that demonstrates Feigenbaum type of chaos [15, 33]. The dynam-
ics of (13.17) was studied in [216]. If a ≤ 1, the system has a denumerable set of
equilibrium states with coordinates x = z = 0, and y determined by the equation
sin(νy) = −a.

In our study we fix a = 0.012 and ν = −0.5. With changing g and m, the
system demonstrates a variety of dynamical regimes which are summarized in the
bifurcation diagram in Fig. 13.16. For small positive values of m and g, the system
possesses a countable set of stable limit cycles in the vicinity of each equilibrium
state. Depending on the initial conditions, phase trajectories are attracted to different
limit cycles. The range of the parameters where such cycles exist is denoted by C1 in
Fig. 13.16. As m grows, these cycles can undergo period-doubling bifurcations, and
the system enters the region C2 where attractors are period-doubled cycles. A cas-
cade of period-doubling bifurcations leads to the appearance of chaotic attractors
which are associated with rotation of phase trajectory around each of equilibrium

Fig. 13.16. (Color online) Map of regimes for the system (13.17) on the parameter plane
(g,m). C1 is an area of existence of a period-one limit cycle; C2 is a domain of period-two
limit cycle; CA is a region of chaotic attractor resulting from a cascade of period-doubling
bifurcation; GA is an area where the system demonstrates complex oscillations accompanied
by a drift in y-direction

4 Coupled Anishchenko–Astakhov oscillators are considered in Chap. 8.
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Fig. 13.17. Different types of chaos in the system (13.17) at g = 0.05: a coexisting chaotic
attractors at m = 1.3 and b joint chaotic attractor for m = 4.09

points (region CA). Projections of such attractors on the phase plane (x, y) for the
parameter values m = 1.3 and g = 0.05 are illustrated in Fig. 13.17(a). With vari-
ation of m, the sizes of the attractors grow until they touch the boundaries of their
basins of attraction. As a result of the boundary crisis, a complex chaotic motion ap-
pears which includes fragments of the former chaotic sets (see Fig. 13.17(b)). This
type of dynamics, which could generally be either chaotic or regular, exists in the
area GA in Fig. 13.16.

The complex behavior of phase the trajectories shown in Fig. 13.17(b) involves
several types of motion. First, this is a rotation around the fixed points whose char-
acteristic time scale T can be introduced as a mean return time to the secant plane
x = 0. Second, the phase trajectories jump from vicinity of one fixed point to the
vicinity of another fixed point with the mean inter-jump time τ . Finally, due to
the asymmetry of F(x), jumps in one of the directions are more probable than
in other direction, and therefore the phase state of the system slowly drifts to-
wards the increasing values of y. This type of motion can be characterized by a
time scale associated with the mean drift velocity vd, which could be calculated as
(y(t + to) − y(t))/to. Here, to is the observation time which is supposed to be quite
long.

To study how different modes interact in two coupled systems, we consider the
following model equations:

p1,2ẋ1,2 = mx1,2 − z1,2x1,2 + sin(νy1,2) + a + C(x2,1 − x1,2),

p1,2ẏ1,2 = −x1,2,

p1,2ż1,2 = −gz1,2 + gF(x1,2),

where the index of the variables means a number of an interacting subunit, p1,2 de-
fine a time scale detuning between the interacting systems, terms C(x2,1 −x1,2) pro-
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vide mutual diffusive coupling between the systems, and C governs the coupling
strength. We fix p1 = 1, m = 4.0, and g = 0.05.

The central questions of this study are (i) whether all dynamical modes of the
interacting systems can be synchronized, and (ii) if yes, whether all of them are
synchronized at the same values of parameter C. We fix p2 = 1.01, and gradually
increase the coupling C between the systems. In Fig. 13.18 the ratios of the time
scales corresponding to the different dynamical modes are shown with variation of
the parameter C. One can see that all ratios have a critical value of the parameter C,
above which they are very close to 1.0. A small discrepancy from 1.0 is explained
by numerical errors in estimation of these ratios. However, the critical value of C

is different for different modes. With increasing C, the modes corresponding to the
rotation are locked first at C ≈ 0.032 (see Fig. 13.18(a)), and then the modes related
to jumping and to the drift are both synchronized at the same value of C ≈ 0.6 as
shown in Fig. 13.18(b). The fact that jumps and drift are synchronized at the same
values of the coupling strength can be explained as follows. The drift velocity in
the system with jumps is proportional to the quantity (Nr − Nl)/to [48, 217], where
Nr and Nl are the numbers of jumps to the right and to the left, respectively, for a
sufficiently long observation time to. Thus, once the jumps are synchronized, drift
modes are synchronized as well.

Fig. 13.18. a Ratios of the time scales characterizing different dynamical modes in interacting
systems vs coupling strength C for p1 = 1 and p2 = 1.01. White areas correspond to the
values of parameter C where the corresponding modes are synchronized
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Finally, we note that mechanisms of synchronization of different modes in deter-
ministic systems similar to the ones considered above, could also be understood in
term of unstable periodic orbits.5 Namely, the synchronization of modes associated
with rotations around equilibrium points is determined by bifurcations of the saddle
periodic orbits winding around the separated fixed points, whereas synchronization
of jumps results from the bifurcations of periodic orbits encompassing several fixed
points [20].

13.4 Summary

In this chapter we considered a few representative examples of both deterministic
and stochastic systems with irregular multimode dynamics of different origins. We
have shown that different modes of the same oscillatory behavior can be entrained
with each other in the way similar to the entrainment of the dynamics of several
interacting self-oscillators.

In coupled multimode systems, the corresponding pairs of modes can be syn-
chronized independently of each other. Thus, the synchronization criteria in the case
of the multimode dynamics can be different for different modes involved. Decom-
position of complex behavior into independent modes can therefore be a very useful
technique for the analysis of cooperative dynamics in systems of interacting multi-
mode oscillators.

5 Synchronization of chaos in terms of periodic orbits is discussed in Sect. 8.6.



14 Synchronization of Systems with Resource
Mediated Coupling

As one can learn from the previous chapters, the classical synchronization paradigm
considers the interaction of two or more oscillators, each with its own source of en-
ergy and with the coupling being responsible for the frequency entrainment and mu-
tual amplitude adjustments. If more than two oscillators are involved, the geometry
of coupling also becomes important. The well-studied coupling geometries include
local coupling [6], where oscillators in a lattice (or some other spatial arrangements)
interact with their nearest neighbors, and global coupling [151] where each oscilla-
tor in an ensemble interacts with all other oscillators (or with a mean field produced
by those oscillators).
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Living systems cover all variety of different network connectivities. The first
type of coupling may represent an interaction of heart muscle cells or pancreatic
β-cells via gap junctions [178] when ions and small molecules can freely pass from
one cell to its neighbors. This coupling typically produces waves or pulses that prop-
agate along the interacting units. Examples of global coupling range from a system
of coupled electrochemical oscillators [144] to metabolic oscillations in a suspen-
sion of yeast cells [68]. Typical phenomena associated with this coupling are global
synchronization, oscillator death through mutual suppression of natural dynamics,
and various forms of clustering. More recently, the studies of so-called small-world
networks have attracted considerable interest [175, 297]. In this case, the interaction
among the oscillators combine a local coupling with a few (more or less random)
long range connections.

For the types of coupling discussed above, the mathematical description assumes
that non-linear properties of the individual functional unit (i.e., its natural frequency
and resistance to external perturbations) are governed by the unit’s own parameters,
while the interaction is specified through a separate set of parameters that character-
ize the coupling structure and the strength of interaction. Hence, one can distinguish
the natural dynamics of the individual oscillators from the properties of the coupling
network.

However, there are problems in physics, engineering, chemistry, and biology
that cannot be considered within this paradigm. Namely, the coupling between os-
cillators takes place via the distribution of energy (or resources) that allows the indi-
vidual oscillator to maintain its dynamics. In such a system, the energy (or primary
resources) delivered to the individual subunit (and, hence, its behavior) depends on
the energy consumed by all other oscillators in the system, both with respect to its
mean value and to its temporal variations (amplitude and phase).

Let us consider a number of representative examples of systems with resource
mediated coupling that are summarized in Table 14.11 to learn more about non-
linear mechanisms underlying their main dynamical regimes.

The source of energy (or primary resources) can be local or distributed across
the whole system. Depending on the consuming rate, the energy supply decreases
or increases along a chain or branching structure. Hence, functional units operate
at different regimes and, even if their parameters are identical, their amplitudes and
frequencies may differ. From the viewpoint of synchronization one cannot separate
the frequency mismatch and the coupling strength parameters any longer. The last
column in the table indicates bifurcations associated with onset and termination of
self-sustained oscillations in the system with increasing energy supply. In most of
models, self-sustained dynamics is observed within a limited range of the control
parameter. Only a certain group of oscillators in a network is under proper condi-
tions to oscillate and/or to be synchronized. Depending on the total energy supply,
this group can move along the network.

1 Note that we use the term “Hopf bifurcation” instead of “Andronov–Hopf bifurcation” to
save space in the table.
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Table 14.1. Examples of systems with resource mediated coupling

System Resource Network type Bifurcations
influx

Neurons communicated Distributed Global production Subcritical Hopf and
via potassium signaling and degradation saddle-node/

Supercritical Hopf

Ensemble of electronic Local Negative gradient Supercritical Hopf/
oscillators in branching Supercritical Hopf

or linear structure

Cascaded microbiological Local or Negative or positive Supercritical Hopf/
oscillators distributed gradient in Unbounded

linear structure

Vascular-coupled Local Negative gradient in Supercritical Hopf/
nephron tree branching structure Supercritical Hopf

To follow the main concept of our book, From Simple to Complex, we arrange
our examples in a special order. We start with a system of two coupled neurons
signalling each other via potassium in their common extracellular space. Then we
proceed with a simple system of two (and more) coupled electronic oscillators shar-
ing common power supply that is related to our daily life problems of electricity
supply to a distributed network of consumers. Cascaded microbiological oscillators
is our next example being an array of a large number of units with one-way nutri-
tion supply: lateral and upstream. Finally, we arrive at the blood flow distribution
in vascular-coupled units of kidney combining hemodynamic and electrochemical
interactions.

14.1 Neural Synchronization via Potassium Signaling

The resource mediated coupling can play the role of energy source and can govern
the cooperative dynamics of an ensemble of self-sustained units. The only necessary
condition is that the individual oscillator should be sensitive to the total amount of
the produced resource.

As an example of such interaction we consider interaction of closely located
neurons affected by the temporally varying concentrations of extracellular ions pro-
duced by neighboring cells [234].

Not any type of ion represents a good candidate for this type of mechanism. For
example, for calcium ions Ca2+, the ratio of extracellular to intracellular concentra-
tion is about 103 and for sodium Na+ and chloride Cl− it is about 10 [136]. This
implies that the transmembrane currents will cause very small changes of the extra-
cellular concentrations of these ions. For potassium K+, the situation is opposite.
Because of its small concentration outside the cell (the extracellular to intracellu-
lar ratio is about 0.05), the transmembrane K+ currents related to neuron firing can
cause significant changes of the extracellular potassium concentrations. There is
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now considerable evidence that extracellular potassium concentrations in vivo may
fluctuate from a normal level of 3.5 mM and to 9 mM under conditions of high neu-
ronal activity [70, 281]. Even more pronounced extracellular potassium variations
can occur in various pathological cases when the glial cells fail to operate correctly
[45]. It is known that moderate elevation of K+ reduces neuronal excitability thresh-
olds and may even induce spikes, while more severe elevations may reduce neuronal
excitability [269]. The effects of elevated K+ concentrations are not restricted to
the immediate region of neuronal activity, however, as glia cells are connected by
gap junctions to form a functional syncytium that allows spatial buffering of ions
[159]. Moreover, tissue responses to ischemia include swelling of the intracellu-
lar space, shrinkage of the extracellular space, and an increase in the extracellular
potassium concentration [108, 300]. Such increases in the extracellular potassium
concentration may have important pathological consequences. For example, in car-
diac ischemia, the increased K+ may cause arrhythmia. Yi et al. [302] numerically
studied the possible mechanisms underlying extracellular potassium accumulation
during ischemia.

In the framework of this section we develop a simple model that describes the
potassium signaling between two neighboring cells and to study the main features
introduced by this coupling. Depending on the coupling parameters, both antiphase
and in-phase synchronization can be observed. We explore the bifurcation transi-
tions to and between different phase locked regimes with increasing mismatch.

14.1.1 Model

Our model is based on a four-dimensional set of equations for the leech P -neuron
[40, 100]. These equations are similar to the well-known Hodgkin–Huxley equa-
tions, except for the precise formulation of the nonlinear functions and for the as-
sumption of a much lower potassium conductance relative to the sodium conduc-
tance. This seems to be reasonable in our case, because interaction via the extracel-
lular potassium concentration is expected to provide weak modulation of the neuron
properties rather than more dramatic changes.

The environment we consider is schematically depicted in Fig. 14.1:

(i) We assume that there is a certain volume between the cells from which the
ionic exchange with the outer bath is rate limited. For simplicity we assume that this
volume is homogeneous and denote the potassium concentration here as [K].2 With
time, particularly during firing events in one or both neurons, the outward channel
currents from the two cells deliver potassium to the extracellular space and [K] rises.

(ii) We neglect the associated intracellular changes of the potassium concentra-
tion and assume this concentration to remain constant. Na–K ATPase pumps K+
back into the cells. This uptake is balanced by K+ leakage when the potassium
concentration is at equilibrium [K]0.

2 Notation [K] is related to chemical representation of ionic concentration and has no other
mathematical meaning.
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Fig. 14.1. (Color online) Schematic representation of the potassium signaling pathways be-
tween two closely located cells: a basic configuration; b with a gap junction between the
cells

(iii) The exchange of K+ ions with the surrounding bath is assumed to take place
via a diffusion process, governed by the concentration difference.

Denoting the bath potassium concentration as [K]0, we can simplify the model by
incorporating all potassium uptake processes (including the influence of glial cells)
in the effective diffusion rate γ .

Figure 14.1 shows two variants of such an environment to be compared. From
a dynamical point of view, the main difference between the two variants is associ-
ated with the accumulating effect of the extracellular space as compared with direct
exchange of ions in variant (b). The equation for the transmembrane voltage V reads

Cm
dV1,2

dt
= −I1,2,K − I1,2,Na − I1,2,L + I1,2,app + I1,2,g, (14.1)

where subscripts 1, 2 denote the first and second cell, respectively. Cm = 1.0 µF/cm2

is the capacitance per unit area of the cell membrane.
The potassium, sodium, leakage, and gap junction currents are

I1,2,K = gK(n1,2)
2(V1,2 − V1,2,K), (14.2)

I1,2,Na = gNa(m1,2)
4h1,2(V1,2 − VNa), (14.3)

I1,2,L = gL(V1,2 − VL), (14.4)

I1,2,g = gg(V2,1 − V1,2), (14.5)

respectively. Here, the conductance gK = 6 mS/cm2 for both cells, gNa =
350 mS/cm2 (such a relatively high value is specific for leech P -neurons as shown
in [40, 100]), and gL = 0.5 mS/cm2. The expression for the potassium current in-
corporates a dependence on the extracellular potassium concentration [K] via a time
varying driving potential:

V1,2,K = RT

F
ln

[K]
[K]1,2

. (14.6)

The intracellular potassium concentration is [K]1 = [K]2 = 147 mM. R, T , and F

are the universal gas constant, the absolute temperature, and Faraday’s constant,
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Table 14.2. The expression for voltage dependent rate α and β in (14.7)

var. αvar

n1,2 0.024(V1,2 − 17)/(1 − e−(V1,2−17)/18)

m1,2 0.03(V1,2 + 28)/(1 − e−(V1,2+28)/15)

h1,2 0.045e−(V1,2+58)/18

var. βvar

n1,2 0.2e−(V1,2+48)/35

m1,2 2.7e−(V1,2+53)/18

h1,2 0.72/(1 + e−(V1,2+23)/14)

respectively. The sodium and leak equilibrium potentials are assumed to be VNa =
60.5 mV and VL = −49 mV.

We assume that the activation variables obey standard Hodgkin–Huxley kinet-
ics:

dξ

dt
= αξ (1 − ξ) − βξ ξ, (14.7)

where ξ = n1,m1, h1, n2,m2, h2. Expressions for the rates α and β associated with
the individual variables are summarized as [40] (Table 14.2):

Balance of extracellular potassium concentration is expressed by the equation:

W
d[K]

dt
= (I1,K + I2,K)

F
+ γ ([K]0 − [K]), (14.8)

where W is the extracellular volume per unit area, measured in nl/cm2. I1,K and I2,K
are the electric potassium currents from (14.1). Divided by Faraday’s constant they
provide the ion flow, and γ ([K]0 − [K]) describes the diffusion of potassium to the
bath. Throughout the study, W and γ are used as main control parameters.

Let us first investigate the dynamics of a single cell without coupling to the inter-
cellular variations in [K], i.e., (gg = 0, [K] = [K]0, and subscripts 1, 2 numbering
the two cells are omitted). The bifurcation diagram in Fig. 14.2(a) shows how an in-
jected current Iapp influences the dynamics of the individual model. With increasing
Iapp, a pair of stable and saddle limit cycles arise via the saddle-node bifurcation
at Iapp = J1 while the resting state losses its stability via a subcritical Andronov–
Hopf bifurcation at the slightly larger value Iapp = J2. Thus, the stable equilibrium
and the self-sustained oscillations coexist in the interval J1 < Iapp < J2. Fur-
ther increase of Iapp is accompanied by a gradual decrease of the spike amplitude.
At Iapp = J3, there is an inverse supercritical Andronov–Hopf bifurcation and the
system returns to the stable equilibrium state. At Iapp ≤ J1, the neuron model ex-
hibits excitable properties. The same sequence of bifurcations is observed under
[K] variation (Fig. 14.2(b)). When increasing the external potassium concentration
[K], the bifurcation points J1, J2, and J3 are shifted to lower values. The black
point in Fig. 14.2(b) indicates the choice of control parameters [K] = 4.0 mM,
I1,2,app = 16.0 µA/cm2 used throughout the next section.
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Fig. 14.2. (Color online) a Bifurcation diagram for the individual cell model at extracellular
potassium concentration [K] = 4.0 mM. The grey area represents self-sustained oscillations.
b Applied current Iapp and bifurcational values J1 (saddle-node bifurcation), J2 (subcritical
Andronov–Hopf bifurcation), and J3 (inverse supercritical Andronov–Hopf bifurcation) vs
the potassium concentration [K]. All currents and voltages are given in µA/cm2 and in mV,
respectively

14.1.2 Identical Cells: Competing In-phase and Antiphase Synchronization

As a first numerical experiment, we consider how two identical cells can adjust
their dynamics via the intercellular potassium interaction (Fig. 14.1(a)). Identity of
the cells is ensured by selecting I1,app = I2,app = 16.0 µA/cm2. The extracellular
volume W and the diffusion constant γ are used as control parameters. The obtained
results are summarized in Fig. 14.3.

Weak Interaction (Large Values of W and γ )

Each cell has two stable regimes: self-sustained oscillations (limit cycle) and stable
steady state. Thus, there are four stable regimes in the coupled systems (to the right
of curve T in Fig. 14.3):

(i) Both cells can oscillate. For coupled systems with symmetry, two main syn-
chronous states with in-phase and antiphase dynamics always exist but their sta-
bility depends on the specific choice of control parameters. In our case, the in-
phase regime V1(t) ≡ V2(t) is stable in a major part of the diagram (all values
of γ > 0.11 nl/cm2·ms). With decreasing diffusion parameter γ (or with increasing
extracellular volume W ), the in-phase regime losses its stability via a subcritical
pitchfork bifurcation at line Pi. For high values of W , in contrast, the antiphase
regime is stable. With decreasing W (or increasing γ ), the antiphase regime un-
dergoes a supercritical pitchfork bifurcation at the line Pa. A pair of out-of-phase
limit cycles with reflection symmetry appears and evolves when W decreases fur-
ther. Their region of stability is bounded by the saddle-node bifurcation curve SN.
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Fig. 14.3. (Color online) Diagram of the regimes on the parameter plane (γ, W ). Cells are
identical with I1,app = I2,app = 16.0 µA/cm2. Left and right panels are representative

phase projections on the plane (V1, V2). W is given in nl/cm2. V1 and V2 are given in mV. γ

is in nl/cm2·ms. We use the following notations for bifurcation curves: H is Andronov–Hopf
bifurcation, SN is saddle-node bifurcation, T is torus birth bifurcation, and Pi,a is pitchfork
bifurcation for in-phase and antiphase regimes, respectively

Fig. 14.4. Schematic bifurcational transition between in-phase and antiphase synchronous
states along the vertical direction for γ ∈ [2.5; 5.0] in Fig. 14.3

At this curve, each of the stable out-of-phase attractors collides with a saddle limit
cycle and disappears. Note that the pair of saddle limit cycles is the same as that
which merges with the stable in-phase limit cycles at the line Pi. The evolution of
coexisting sets is illustrated in Fig. 14.4;

(ii) One of the cells oscillates but the other is in a steady state (asymmetric fir-
ing). There are two symmetrically located limit cycles (top right panel in Fig. 14.3).
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For small values of W and γ the temporal variation of [K] becomes strong enough
and oscillations in one of the cells make the steady state in the other cell unsta-
ble. Thus, the asymmetric firing regime losses its stability via a subcritical torus
birth bifurcation (curve T in Fig. 14.3). Obviously, these curves coincide for the
two asymmetric firing regimes.

(iii) Both cells can be in steady state corresponding to branch J1 < Iapp < J2 in
Fig. 14.2(a).

Strong Interaction (Small Values of W and γ )

When γ becomes smaller, both the in-phase and antiphase attractors undergo an
inverse Andronov–Hopf bifurcation at γ ≈ 0.11 nl/cm2·ms. For lower γ values
there are no oscillations in the coupled system. Inspection of the time variations of
the intercellular potassium concentration [K] provides a reasonable explanation. At
low diffusion, the mean value of [K] becomes so high, that the upper boundary of
the oscillatory region in the individual cell is reached (J3 line in Fig. 14.2(b)). For
the selected parameters I1,app = I2,app = 16.0 µA/cm2 and γ = 0.11 nl/cm2·ms, the
approached mean value of [K] = 10.83 mM falls outside of the oscillatory region
for the individual model.

Note that increasing W and γ corresponds to weakening the interaction. Thus,
there are two weak coupling limits with different dynamical patterns. Let us consider
the limit cases:

If W → 0 and γ remains finite, (14.8) gives

[K] = [K]0 + I1,K + I2,K

γF
. (14.9)

Suppose that the first subsystem starts to generate a spike while the second system
lags behind. I1,K immediately increases [K] and, thus, depolarizes the second sub-
system accelerating its firing. This gives a tendency for in-phase synchronization.

In the other limit case, where W → ∞ and γ is finite, (14.8) gives d[K]/dt → 0.
Thus, for large enough W depolarization induced by the potassium release is less
pronounced. It leads to the relation

I1,K + I2,K ≈ const. (14.10)

This means that the two currents are changed in opposite direction, I1,K ≈
−I2,K. Increasing I1,K prevents the increase of I2,K and this tends to produce
antiphase synchronization.

Hence, we conclude that coupling via the intercellular potassium concentration
[K] can provide both “voltage interaction” (14.9) and “current interaction” (14.10)
depending on the specific choice of the control parameters W and γ . In other words,
potassium interaction demonstrates a dual nature from the synchronization view-
point. The underlying biological mechanisms are the same. However, due to the
threshold nature of ion-channel gating, the cellular response can be different, de-
pending on the range of [K] variations.
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Fig. 14.5. (Color online) Diagrams of dynamical regimes on the parameter plane (γ, W ).
Cells are set to be heterogeneous with a I1,app = 16.0 µA/cm2 and I2,app = 16.1 µA/cm2,

and b I2,app = 18.0 µA/cm2, respectively. At finite mismatch both the antiphase and the in-

phase synchronization areas become limited (compare with Fig. 14.3). W is given in nl/cm2.
γ is in nl/cm2·ms. We use the following notations for bifurcation curves: H is Andronov–
Hopf bifurcation, SNi,a is saddle-node bifurcation for in-phase and antiphase regimes, re-
spectively, T1,2 is torus birth bifurcation for two asymmetric solutions

14.1.3 Heterogeneous Cells: Dynamical Patterns

Let us now investigate how cell heterogeneity, introduced through a mismatch be-
tween the injected currents I1,app and I2,app, will affect the synchronous regimes
and their location in the parameter plane. Our results are summarized in Fig. 14.5.
Note that as soon as a mismatch between the cells is introduced, pure in-phase or
antiphase regimes no longer exist. The two solutions are deformed into close-to in-
phase and close-to antiphase with phase shifts between the oscillations in the two
cells near to 0 and π, respectively. To simplify the description in the following we
will omit the words “close to.”

Weak Mismatch

Let us fix I1,app = 16.0 µA/cm2 and I2,app = 16.1 µA/cm2. This produces small
changes in the operating conditions of the individual cell as confirmed by the fact
that the two torus bifurcation curves T1 and T2 in Fig. 14.5(a) still are located very
close to each other (for identical cells they coincide). However, the picture of mu-
tual adjustment of oscillations in two coupled cells changes dramatically. Now the
main field of the diagram is occupied by an asynchronous regime. Mathematically,
this corresponds to the existence of a two-dimensional torus (we have omitted the
embedded weak resonances). The region of the in-phase operation still occupies a
significant part of the diagram and is now bounded by the saddle-node bifurcation
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curve SNi. The stable antiphase behavior can be observed in a small area within
W ∈ [0.0, 60.0] nl/cm2.

Stronger Mismatch

Let I1,app = 16.0 µA/cm2 and I2,app = 18.0 µA/cm2. Note that two asymmetric fir-
ing regimes now have quite different areas of stability (bifurcational lines T1 and T2)
reflecting the strong mismatch between the individual oscillators.

Figure 14.5(b) shows that the in-phase regime now occupies an area limited by
γ < 8.1 nl/cm2·ms and W < 7.0 nl/cm2. Antiphase synchronization can only be
observed in a narrow region close to the origin. Most part of the diagram is occupied
by the asynchronous regime.

The reduction of the antiphase/in-phase synchronization regions with increasing
mismatch can be explained by recalling that increasing W corresponds to a weak-
ening of the interaction strength because of diminishing [K] variation. Thus, at a
sufficiently large value of W , the introduced mismatch between the cell frequencies
is able to desynchronize the oscillations.

To link our results with classical concept of synchronization we consider the
parameter plane (mismatch I2,app–coupling γ ) for W = 30.0 nl/cm2 and I1,app =
16.0 µA/cm2). Figure 14.6(a) shows how the antiphase synchronization region
quickly reduces its width with increasing γ . At γ = 2.5 nl/cm2·ms the transi-
tion between the antiphase and in-phase synchronous regimes occurs. The width

Fig. 14.6. (Color online) a Diagram of the regimes on the parameter plane (I2,app, γ ) il-
lustrates the transition between antiphase and in-phase synchronous patterns with varying
diffusion rate. Note that we use logarithmic scale for γ . b Enlargement of bifurcation dia-
gram. I2,app is given in µA/cm2. γ is in nl/cm2·ms. We use the following notations: SNr,l is
saddle-node bifurcation for different coexisting in-phase (i), antiphase (a), and out-of-phase
(o) regimes, Cr,l is cusp points for two out-of-phase solutions and Pi,a is pitchfork bifurcation
for in-phase and antiphase regimes, respectively. Multileaf structure is depicted by different
colors
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of the in-phase synchronous region changes with further increase of γ . This can be
explained by competition between tendencies for in-phase and antiphase synchro-
nization at intermediate values of γ and by asymptotic weakening of the coupling
with further increase of γ .

Figure 14.6(b) represents the bifurcation scenario for the transition between an-
tiphase and in-phase synchronization. A set of saddle-node bifurcation curves form
the overlapping tongues. Note that for 15.98 µA/cm2 < I2,app < 16.02 µA/cm2

there is no desynchronization with increasing γ . It is clearly seen that the in-phase
solution is stable from the top of the diagram to the point Pi (γ = 1.80 nl/cm2·ms)
where it loses its stability in a pitchfork bifurcation. On the other hand, the antiphase
solution remains stable from the bottom of the diagram to its pitchfork bifurcation
point Pa at γ = 2.313 nl/cm2·ms where two stable symmetric limit cycles are born.
For γ ∈ [2.313, 2.72] nl/cm2·ms there are three stable and three unstable limit cy-
cles involved in the considered transition: an in-phase and two out-of-phase regimes
are stable while an antiphase and two other out-of-phase regimes are unstable. At
γ = 2.72 nl/cm2·ms both (left and right) horns formed by the out-of-phase solutions
die in the cusp points Cr and Cl, respectively. Above these points only the stable in-
phase limit cycle and a saddle antiphase cycle lie on the surface of the resonant torus
in accordance with the classical structure of the Arnold tongue.

We can conclude that resource mediated coupling via potassium signaling gives
the nearby cells opportunity to adjust their behavior and to interplay among different
phase patterns. Different choices of the control parameters show that two pacemaker
cells can control each other in different ways. At small extracellular volumes, the
potassium release from one of interacting cells considerably depolarizes the other
cell and thus accelerates its firing. This kind of interaction leads to in-phase syn-
chronization. At large enough extracellular volume the depolarization induced by
potassium release is less pronounced and the increase of the potassium current in
one cell is more or less balanced by its decrease in another cell. As a result, the
antiphase synchronization pattern is evoked. There is a wide range on control para-
meters where both tendencies to synchronized patterns are maintained.

14.2 Multimode Dynamics in Linear Array of Electronic
Oscillators

The system of cascaded electronic oscillators is of interest both because the govern-
ing equations are well-established and because detailed experimental verification of
simulation results can be easily obtained.

14.2.1 Model

To investigate the typical behavioral patterns in a resource consumption chain we
look for a simple model that mimics the main properties of such a system. Let us
consider an electronic circuit with a tunnel diode shown in Fig. 14.7. Here, the in-
coming Iin and outgoing Iout power supply currents are explicitly taken into account.
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Fig. 14.7. a Circuit diagram and b the nullclines for the 2D limit case R1,2 = 0. In the
dimensionless model equations (14.11), x represents the voltage u across the tunnel diode D,
y is the current i in the inductor L, and z is the voltage E across the capacitor C2

The voltage E plays the role of energy source for the oscillator system containing
the elements R3, L, C1, and D. Self-sustained oscillations are maintained due to the
N-shaped characteristics (negative differential resistance) of the diode D. The oscil-
lation period is determined by the capacitance C1 and the inductance L. Capacitor
C2 is introduced into account for possible accumulation of energy by an individual
oscillator while the resistor R1 is responsible for the finite replenishment rate and
for losses because of transmission.

Using Kirchhoff’s law for the circuit in Fig. 14.7(a) and introducing the new time
variable τ = t/R∗C1 (R∗ = 1 Ohm) we can write down the governing equations in
dimensionless form:

ẋ = y − f (x),

εẏ = z − yR − x, (14.11)

γ ż = −y + 1

r
(ein − 2z + eout).

Here, ε = L/R∗2C1 and γ = C2/C1. ein and eout are potentials in the “in” and “out”
points, respectively. Parameters r and R are dimensionless representations of the re-
sistors R1 = R2 and R3. Variables x, y and z correspond to the voltage u across
the diode, the current i through the inductor L, and the voltage E on the capaci-
tor C2, respectively. We assume that C2 � C1 so that z quickly follows variations
of x and y. In the following calculations ε = 0.1 and γ = 0.01. f (x) is assumed to
be of cubic shape with the non-linearity chosen in the form

f (x) = 20x − 5x2 + x3/3. (14.12)

In the limit r → 0, one can obtain z = (ein + eout)/2. Hence, we obtain a 2D
oscillator which is similar to the FitzHugh–Nagumo model [80] with z as a control
parameter. Figure 14.7(b) illustrates the location of the nullclines in the system. Note
that the x-nullcline coincides with the f (x) function. It is clearly seen that for small
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and large values of z, intersection of the nullclines occurs outside of the interval
with negative slope of f (x), i.e., the equilibrium point is stable. For intermediate
values of z, there is a couple of Andronov–Hopf bifurcation points where a stable
limit cycle is born, and extinguished.

In order to build a one-dimensional array of such functional units we take

ein = zj−1, eout = zj+1, j = 1, . . . , N,

where j represents the number of the oscillator, and N is the total number of units.
z0 is constant bias voltage, hereafter denoted as Z0 and corresponds to the primary
energy supply. Free end of the chain is modeled by zN+1 = zN .

14.2.2 Clustering

Organized in a chain, the units (14.11) become globally coupled via variation of the
zj variables. There is a gradual decrease of the mean value of zj along the chain
because of the voltage drop across each coupling resistor r . Note that the current
along the chain splits into two currents at each unit. Thus it decreases along the
chain, and the drop of zj from unit to unit becomes smaller and smaller.

In the phase space of the whole system, the variation of the mean value of zj

affects the stability of the global equilibrium state that can be defined from

ẋj = 0, ẏj = 0, żj = 0, j = 1, . . . , N.

The transition from damped behavior to self-sustained oscillations for a par-
ticular unit in the chain takes place through an Andronov–Hopf bifurcation in the
(xi, yi) subspace. In Fig. 14.8 the real part for each pair of complex-conjugate eigen-
values is plotted against Z0 for a chain of ten units (14.11). The third eigenvalue for
each subsystem is not shown in the figure since it is strongly negative in the whole
range of control parameters. With Z0 increasing from 4.0, the eigenvalues one by
one cross the imaginary axis and attain positive real values, and as Z0 increases
further, then again become negative. According to the number of eigenvalues with
positive real part, the dimension of the unstable manifold Du of the equilibrium
point first raises and then decreases with increasing Z0 (inset in Fig. 14.8).

From a physical point of view, these results imply the possibility of Du/2-mode
self-sustained dynamics in the whole system. In spite of the fact that we cannot for-
mally assign a given pair of eigenvalues to a specific unit of the chain, it is clear
that the first pair of eigenvalues crossing zero should be related to the first unit in
a chain that receives the necessary energy input from Z0. Similarly, the subsequent
crossings of zero by different pairs of eigenvalues represent the subsequent transi-
tions of oscillatory units from the damped state to self-sustained dynamics, or vice
versa. This is the basis for the formation of a group of units along the chain, that we
call an oscillatory cluster.

Let us now consider what happens in a longer chain of 50 units in terms of
amplitudes of oscillations. In Fig. 14.9, the xj variable of each unit is plotted against
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Fig. 14.8. The real part of the equilibrium state eigenvalues λi exceeds zero in a certain
range of primary energy supply Z0 (each curve represents one pair of complex-conjugate
eigenvalues). The resulting dimension of the unstable manifold Du versus Z0 is shown in the
inset

Fig. 14.9. With increasing primary energy supply Z0, the oscillatory cluster changes its posi-
tion along the chain and varies slightly in size. Parameters are fixed at r = 0.001, R = 0.05,
ε = 0.1, and γ = 0.001
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its position in the chain for different voltages Z0 of the power supply. For relatively
small voltages (Z0 = 8.0), the first eight units display oscillations of considerable
amplitude. For the next units, the mean value of zj is not sufficient to support self-
sustained dynamics.

For a larger value of the voltage (Z0 = 20.0), inspection of the figure shows
that the first 16 units no longer display significant temporal variations of xj because
the high mean value of zj places the individual unit in a damped state according to
Fig. 14.7(b). The next eight units demonstrate self-sustained dynamics while the rest
are in a damped state. With increasing Z0 (Z0 = 50), the oscillating group shifts
towards the end of chain and grows in size . Thus, we observe an oscillatory cluster
shifting upstream or downstream the chain with variation of the energy source para-
meter Z0. When approaching the low-voltage end of the chain, the cluster becomes
fairly large before it completely disappears at Z0 ≈ 59.

While Z0 defines the maximal level of zj for units in the chain, the parameter r

affects the voltage drop from unit to unit. Hence, r can also influence the position
and size of the oscillatory cluster. Figure 14.10 reveals the relation between the
variations of Z0 and r .

In both cases, the size of the cluster remains relatively stable until the end of the
chain is reached. Here the cluster becomes significantly longer before it disappears.
This can partly be explained by the decreasing voltage drop per oscillator along the
chain. When the cluster is located in the middle of a chain, the tailing oscillators
consume electric power even though they are in a damped state. This produces an
additional voltage drop and reduces the cluster size. Closer to the end of chain, the
cluster has less “silent” energy consumption. The voltage drop between the subse-
quent units decreases, and the cluster length grows.

Fig. 14.10. (Color online) Position and size of the oscillatory cluster are given by the grey
region for different Z0 values (at r = 0.001), and by the hatched region for different r values
(at Z0 = 30). Other parameters are fixed at R = 0.05, ε = 0.1, and γ = 0.001
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14.2.3 Intracluster Synchronization

With the emergence of a cluster of oscillatory, identical units, one might expect to
observe synchronized behavior for the globally coupled identical oscillators. How-
ever, inspection of the cluster dynamics reveals a completely different picture.

Figure 14.11(a) shows how the mean period of oscillations is distributed along
the cluster for different values of the voltage Z0. In this figure m = 1 is assigned
to the first oscillator with self-sustained dynamics in the chain. Thus, different posi-
tions along the chain correspond to different curves in Fig. 14.11(a). This allows us
to compare the spatiotemporal structure of clusters for different values of the con-
trol parameter. It is remarkable that the period distribution maintains its form. For
all the values of Z0 shown, there are two oscillators with longer periods close to the
beginning and the end of the cluster, and there is a clear minimum of the oscilla-
tion period near the center of the cluster. Both the first and the last oscillators in the
cluster also display relatively low oscillation periods.

To explain the particular shape of the intracluster period distribution, we calcu-
late how the period depends on the z value for an individual system (14.11) in the
limit r → 0. The results are given in Fig. 14.11(b). The period distribution along
the cluster clearly follows the behavior of an individual unit with decreasing z. The
observed structure is the result of the drop in zj from unit to unit, combined with
the variation of f (x) in the region of differential negative resistance.

Hence, in spite of the presence of a coupling between identical cluster units, syn-
chronization is not observed due to a coupling-induced frequency mismatch between
the oscillators. For small values of r the frequency mismatch vanishes together with
the drop of zj between the subsequent oscillators. However, the coupling vanishes,
too. The larger r is, the stronger the coupling will be, but at the same time the fre-

Fig. 14.11. a The distribution of oscillation periods T inside the cluster is preserved, while
the whole cluster moves with the variation of Z0. m represents the relative position within the
cluster. Other parameters are set as follows: r = 0.001, R = 0.05, ε = 0.1, and γ = 0.001.
b Dependence T versus z for the individual oscillatory unit reveals the origin of intra-cluster
period distribution
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quency mismatch becomes more pronounced between two neighboring units. This
results in an asynchronous intracluster behavior in the considered parameter range.

As observed in Fig. 14.11(b), the maximal possible period drop between two
units is not greater than T ≈ 0.53 corresponding to the difference between the top
and bottom points of the curve. Thus, the coupling-induced mismatch is limited to
about 20%, while the coupling strength can be increased by an appropriate choice
of control parameters. Let us select R = 0.01 and r = 0.02. This provides an abrupt
drop of zj , and the oscillatory cluster consists mostly of just two units. The cluster
position and operating regimes are schematically given in Fig. 14.12 together with
representative phase plots. The synchronized pairs of oscillator units are given in
grey, while asynchronous behavior is denoted by hatched regions. For higher values
of Z0 the oscillatory cluster moves out of the chain to the right.

For some intervals of Z0 (e.g., Z0 ∈ [10.4, 11.2], [12.2, 12.8]), oscillations in
clusters of two or three units are synchronized with a phase lag between two neigh-
boring units as shown in the inserts. Note that the phase lag in the two-unit cluster
increases with Z0, and the cluster passes through the antiphase state somewhere in
the middle of the Z0 interval for synchronous behavior. For the two-unit cluster there
is a clear explanation: when only two units in the chain display self-sustained dy-
namics, the influence of other units can be regarded as a shift of control parameters.
Hence, we have a system of two oscillators coupled in a competitive way that typ-
ically leads to antiphase synchronization. Together with the coupling-induced fre-
quency mismatch this provides antiphase rather than in-phase synchronization. At
some value of Z0 we find the most balanced regime (minimal frequency mismatch),
and the synchronization regime becomes antiphase. The inset for Z0 = 16.8 shows
that there is also synchronization at various rational frequency ratios.

At some values of Z0 the cluster changes its position. Such a translation is typ-
ically accompanied by an extension of the cluster to three units and a desynchro-
nization between two or all three involved units (see the bottom inset in Fig. 14.12).
When the first or last element of a cluster passes through the Andronov–Hopf bifur-
cation point (Fig. 14.11(b)), the coupling-induced frequency mismatch can be strong
enough to desynchronize the intracluster behavior.

We can thus conclude that:

(i) Although the chain units are originally identical, the resource drop along
the spatial coordinate introduces variations of the operating point and, hence, a fre-
quency mismatch between neighboring units.

(ii) In the case of weak coupling, the cluster elements are generally out of syn-
chrony, and the period distribution along the cluster follows the curve of period
vs energy supply for the individual oscillatory unit. The resulting intracluster pe-
riod/frequency distribution preserves its structure as the cluster moves along the
chain with variation of the bias voltage. Due to the competitive nature of the cou-
pling, there is a tendency for antiphase synchronization.

(iii) For strong enough coupling, intracluster synchronization is typical. How-
ever, shifts of the cluster position are accompanied by desynchronization of the
cluster elements.



14.3 Cascaded Microbiological Oscillators 395

Fig. 14.12. (Color online) Small-sized clusters exhibit different synchronous or asynchro-
nous patterns with varying primary energy supply Z0 for strong interaction along the chain
(r = 0.02, R = 0.01, ε = 0.1, and γ = 0.001). Grey areas denote synchronized behavior,
and hatched areas correspond to asynchronous dynamics

14.3 Cascaded Microbiological Oscillators

Microbiological population dynamics plays an important role in biotechnological
industry. The homogeneous, well-controlled bacterial cultures used in modern
cheese production, for instance, are often quite sensitive to virus attacks, and signif-
icant efforts are made for searching more resistant cultures [275]. Based on the
original work by Levin et al. [167], Baier et al. [41] formulated a multispecies
model of interacting bacteria-virus populations and studied the development of a
chaotic hierarchy with increasing number of bacterial variants. A resource distribu-
tion chain with several cascaded pools was first considered by Postnov et al. [218].
They showed how variations in substrate concentration in the overflow from the
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upstream habitant can produce increasingly complicated dynamics in downstream
units, and how regions of phase synchronization could arise along the chain. In the
present section, these results will be placed in a more general perspective.

14.3.1 Model

We consider a one-dimensional array of population pools whose general model was
considered in Chaps. 5 and 8 [218]. Each pool is the habitat for a three-variable
predator-prey system, consisting of bacteria, infected bacteria, and viruses, repre-
sented in the equations by their concentrations Bi , Ii , and Pi , respectively (i denotes
the pool number). Nutrition balance of inflow, outflow, and consumption provides a
fourth equation for the substrate concentration Si . Altogether this leads to the fol-
lowing set of coupled differential equations:

dBi

dt
= νBiSi

Si + K
− ρBi − αωPiBi, (14.13)

dIi

dt
= αωBiPi − ρIi − Ii/τ, (14.14)

dPi

dt
= φ − Piρ − αBiPi − αIiPi + βIi/τ, (14.15)

dSi

dt
= ρ(Si−1 + σi) − ρSi − γ νBiSi

Si + K
, (14.16)

where the term νBiSi/(Si + K) in the first and fourth equations describes standard
Monod kinetics for bacterial growth. The Michaelis–Menten constant K represents
the concentration of nutrients at which the growth rate is reduced to half its maximal
value, and each cell division is assumed to be associated with a resource consump-
tion γ . For all variables, negative terms proportional to ρ in the governing equations
reflect the washing out from the habitat. According to our assumptions, however,
only nutrients will be transmitted to the next pool. Infection of bacteria by viruses
is described by the term αωBiPi in (14.13) and (14.14). Here, α is the kinetic rate
constant, and ω is the probability that a virus particle successfully infects a cell,
once it has affixed to its surface. The Ii/τ term in (14.14) and (14.15) describe a
lytic response to the virus attack where, after a latent period τ of the order of 30
min, the infected cell bursts and releases an average of β new viruses. The term
−αIiPi in (14.15) represents unsuccessful virus attacks on already infected cells.
Coupling between the pools takes place only through the flow of nutrients with a
total incoming rate of ρ(Si−1 + σi), an outflow of −ρSi , and a consumption in the
habitat of γ νBiSi/(Si + K). For the first habitat, Si−1 ≡ S0 is assumed to be zero.
σi represents a possible lateral nutrition source for the ith habitat.

The parameter values that we have used in the present analysis correspond to the
values used in our previous studies [41]: ν = 0.024 min−1, K = 10 µg/ml, τ = 30
min, ω = 0.8, γ = 0.01 ng, β = 100. These values are also in general agreement
with the experimental values obtained by Levin et al. [167] for particular strains of
bacteria and viruses. The concentrations Bi, Ii, and Pi will be specified in units of
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106/ml. Here we have used a value of α = 10−3 ml/min (as compared with the value
α = 10−9 ml/min applied by Baier et al. [41]).

Like many other ecological models, our system involves positive feedback mech-
anisms related to the replication of bacteria and viruses. There are non-linear con-
straints associated both with the bacterial growth rate and with the infection rate,
and there is a delay associated with replication of the viruses. The rate of dilution is
a main determinant of dissipation in the system. In the absence of viruses, the single
pool model displays an equilibrium point

B0 = 1

γ

(
σ − ρK

ν − ρ

)
, S0 = ρK

ν − ρ
, (14.17)

in which the rate of bacterial growth balances the wash out. For dilution rates ρ >

ρc = σν/(K + σ), only the trivial equilibrium point B1 = 0, S1 = σ exists.
As ρ is reduced below ρc, the equilibrium population of bacteria starts to in-

crease. At the beginning, the cell concentration is still too small for an effective
replication of viruses to take place, and the virus population remains nearly neg-
ligible. As the dilution rate continues to decrease, however, the virus population
grows significantly. The model then undergoes an Andronov–Hopf bifurcation, and
the system starts to perform self-sustained oscillations.

14.3.2 Spatial Dynamics

Depending on the population sizes attained in the upstream habitats, different de-
grees of depletion of the nutrient concentration will occur, and as the surplus re-
sources continue to flow into the next habitat, this population pool will be modu-
lated by a temporal nutrient supply that depends on the type of dynamics realized in
the former pool.

Along the chain there will be a net consumption of resources. However, dif-
ferent choices of the surplus nutrient supply σi allow us to simulate different pat-
terns of growth dynamics. Below we consider two important cases: lateral nutrition
(Figs. 14.13(a) and (b)) and afferent nutrition (Figs. 14.13(c) and (d)). The dilution
rate is assumed to be ρ = 0.003/min, and the nutrient concentration is specified in
µg/ml.

In the first case, the choice of equal values of σi = σ, i = 1, 2, 3 . . . , provides a
separate influx of resources to each habitat. For low values of σ , the system attains
a stable equilibrium state that extends along the entire chain. As the nutrient sup-
ply is increased, starting in the downstream end of the chain, habitat after habitat
begins to perform self-sustained oscillations. There is an interval where all habi-
tats starting from a given number exhibit a synchronous periodic behavior. As σ

is further increased, the downstream habitats begin to show quasiperiodic, chaotic
and hyperchaotic behaviors, and only the intermediate or first pools perform simple
periodic oscillations. For σ > 7 µg/ml, only the motion of the first habitat remains
periodic. Figure 14.13(b) shows the variation of the bacterial concentration B along
the chain for σ = 2.0 µg/ml. It is clearly seen that the first five pools reach an
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Fig. 14.13. (Color online) Overview of the behavior of a chain of 20 population pools: dia-
gram of dynamical regimes (left panels) and variance of bacterial concentrations for selected
σ values (right panels). a and b lateral nutrition: σ = σi is assumed to be the same for all
pools; c and d upstream nutrition: σ1 > 0, σi = 0, i = 2, 3, 4, . . . , 20

equilibrium state at very low B values. The bacterial populations survive here, but
the concentrations are not high enough to generate self-sustained oscillations. Os-
cillatory behavior with increasing amplitude (grey lines indicate the variance of Bi)
is observed starting from the 6th habitat. Pools from six to ten form a cluster with
synchronized periodic oscillations. With gradually increasing resources, oscillations
become chaotic in the 11th habitat and maintain this dynamics till the last, 20th,
habitat.

The second interesting case is afferent nutrition where there is a single source of
nutrition to the first habitat (Fig. 14.13(c) and (d)). Since each bacterial population
consumes part of the incoming resources, the concentration decreases along the
chain. Thus, for some habitat the available resources will not suffice to support self-
sustained oscillations. However, the modulation of S may still be propagated with
the flow providing an oscillatory forcing for habitats in the rest of the chain. In this
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case, one can observe a limited region of self-sustained oscillations along the chain
(Fig. 14.13(c)).

For low values of σ1, a number of habitats at the beginning of the chain may
be able to attain fairly high levels of bacterial concentration. However, these con-
centrations are not sufficient to produce self-sustained dynamics in interaction with
the viruses. As more and more of the resources are consumed along the chain, the
bacterial populations collapse (Bi ≈ 0). At σ1 = 7.024 µg/ml the first population
reaches the point of Andronov–Hopf bifurcation and self-sustained dynamics arises
in the chain. Since the variation of the natural frequency is weak and the coupling
strength (proportional to modulation depth of resources flow) is quite high, one ob-
serves synchronization in the group of habitats that display self-sustained dynamics.

Further increase of σ1 to 10.0–12.0 µg/ml reveals a different pattern where
only the first two habitats maintain the regime of synchronous regular oscillations,
while period-doubled regimes and the development of chaos can be observed further
downstream.

Finally, for σ1 > 16.0 µg/ml only the first habitat shows regular oscillations
(because this is the only possible oscillating regime for an individual system), while
the subsequent habitats are in a chaotic state. The case σ1 = 18.0 µg/ml is illus-
trated in Fig. 14.13(d). By virtue of the resource consumption along the chain, the
self-sustained chaotic behavior dies out after the 10th habitat. However, the next
three habitats display some intermediate dynamical patterns, representing neither
the self-sustained regime nor the population collapse. We can describe these states
in terms of chaotic forcing across the Andronov–Hopf bifurcation point for the in-
dividual system. Thus, such habitats switch chaotically between a self-sustained
regime when the nutrition amount is temporarily high enough, and a damped state.
In Fig. 14.13(d) habitats 11, 12, and 13 display low, but finite amplitudes of varia-
tion in the bacterial concentrations. All downstream habitats are in the population
collapse regime (Bi ≈ 0).

Let us consider the development of frequency patterns for the case of lateral
nutrition when the whole chain oscillates. To examine the formation of localized
domains of chaotic synchronization we calculate the mean return time 〈τi〉 to the
Poincaré section in the individual unit subspace as described in Part I. Each oscilla-
tor now is characterized by the mean frequency 〈fi〉 = 1/〈τi〉.

Figure 14.14(a) shows the frequencies of all habitats as functions of the nutri-
tion parameter σ . One can find that for σ > 5.0 most of frequencies run inde-
pendently without a tendency to synchronization. In the enlargement for σ ∈ [7.5;
9.6] µg/ml (Fig. 14.14(b)), synchronization is witnessed by the fact that several habi-
tats show the same value of 〈f 〉. As we follow the nearly straight line starting around
σ = 8.8 µg/ml and extending to the lower right corner of the figure we can see how
pool after pool falls out of synchrony. In the beginning all pools between number 2
and number 13 are synchronized. As σ is increased, however, starting with the pool
number 13, one pool after the other loses synchronization. In the interval between
σ = 8.3 and 8.6 µg/ml, increasing σ causes the pool number 20, the pool num-
ber 19, etc., to lose synchronization. At the same time, however, pools with lower
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Fig. 14.14. Variation of mean frequency along the cascaded population system. Lateral nu-
trition parameter σ is assumed to be the same for all pools. a Overview of dynamics. There
is no tendency to synchronization. b The enlargement illustrates the phenomenon of slid-
ing synchronization regimes and partial synchronization between several pools. c Examples
of partial synchronization. Note how synchronization with the second population pool can
reappear at a considerable distance down the chain (curve E)

chain number gradually entrain with the behavior of the second and third population
pools.

Three most representative regimes labeled as D, E, F are illustrated in
Fig. 14.14(c). The variation of 〈f 〉 along the chain is shown for three different values
of the local resource supply: σ = 7.785 µg/ml (curve D), 8.452 µg/ml (curve E),
and 9.235 µg/ml (curve F ). Synchronization with the periodic motion of the first
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population pool does not occur with these values of σ . It is interesting to note,
however, that synchronization with the more complicated dynamics of the second
population pool is quite common. Curves D and E, for instance, demonstrate how
the third pool synchronizes with the second pool. For curve D we can also observe
synchronization between pools 4, 5, and 6, between pools 7, 8, and 9, and between
pools 10, 11 and 12.

Intuitively, one would expect that once synchronization with a specific pool had
failed, it could not be reestablished again further down the chain, i.e., information
about the dynamics of a pool would be lost if the subsequent pool did not synchro-
nize with it. By contrast, curve E shows how synchronization with the dynamics
of pool number two can reappear far down the chain. In this figure the dynamics of
pools 4–10 bear no obvious relation with the dynamics of the second pool. Nonethe-
less, pools 12–16 again synchronize with the pool number 2. Curve F also shows
locking of several chaotically oscillating pools, only the synchronization domain
has now moved all the way up along the chain.

Let us summarize some of the main findings:

(i) Changing resource supply along the chain of habitats can generate clusters of
limited size with self-sustained dynamics while the rest of the chain is in equilibrium
state.

(ii) Inside such clusters, units with different behavior (regular oscillations, qua-
siperiodic or chaotic behavior) can be detected.

(iii) Inspection of frequency patterns shows that generally there is no tendency to
synchronization. There are regions of small size where locking patterns occur. Such
locking patterns slide downstream or upstream with variation of nutrition parameter.

14.4 Synchronization Patterns in Kidney Autoregulation

While a chain of microbiological habitats provides a one-way coupling between
the oscillators, the next example represents more complicated distribution network
associated with an asymmetric but global coupling through the sharing blood flow
in a nephronic system.

The blood filtration in kidney is processed with a large number of subunits
(nephrons) connected to a complex branching structure of vessels called the pre-
glomerular vascular tree with an inhomogeneous distribution of arteriolar lengths,
nephron parameters, etc. [63]. Interaction between adjacent nephrons can occur due
to vascularly propagated coupling mediated by electrochemical signals, and muscu-
lar contractions that travel along the arteriolar wall, and hemodynamic coupling by
which an increased flow resistance in the afferent arteriole leading to one nephron
forces a higher blood flow to the neighboring nephrons [118, 120].

Since the individual nephron is known to operate in a regime of self-sustained
oscillations with the arterial pressure being a control parameter, the coupled neph-
rons can be considered in the framework of a resource distribution system.



402 14 Synchronization of Systems with Resource Mediated Coupling

14.4.1 Vascular-Nephron Model

In order to examine the typical mechanisms associated with the structure of pre-
glomerular vascular tree we consider a simplified vascular network that allows us
to made conclusions about the main operating regimes and the transitions between
these regimes with varying parameters [233].

Our model of the vascular-nephron tree consists of a set of afferent arterioles
branching off from a single interlobular artery as shown schematically in Fig. 14.15.
The vascular-nephron tree is described in terms of the lengths of the arteriolar and
arterial branches together with their hemodynamic resistances. It is assumed that the
glomerulus of each nephron is connected to the corresponding branching point via
an arteriole of length L

g
i , and of hemodynamic resistance R

g
i , i = 1, . . . , 12. The

arterial pressure Pa to be used in the model of individual nephron now becomes the
driving blood pressure at the associated branching point P b

j , j = 2, . . . , 7. Con-
nection between the branching points is described in terms of the branch lengths
Lb

jk and their hemodynamic resistances Rb
jk j, k = 1, . . . , 7. The same approach

is used to describe the connection of branching point 1 to the terminal points with
the constant pressure values Pin and Pout. This part of the vascular-nephron tree im-
itates the connection of the tree to higher-level arteries. The hemodynamic-coupled
vascular tree is purely resistive. Transients associated with the distribution of the
blood pressure along the branching points are negative, and we can calculate the
static pressure distribution for any state of connected nephrons using linear alge-
braic equations written for each branching point. An example of such an equation
for the 6th branching point reads

P b
5 − P b

6

Rb
− P b

6 − P b
7

Rb
+ P

g
3 − P b

6

R
g
3

+ P
g
4 − P b

6

R
g
4

= 0. (14.18)

Fig. 14.15. Left: Sketch of vascular-coupled nephron tree including the interlobular artery,
the afferent arterioles and the glomeruli. Right: Oscillation amplitude as a function of the
arterial pressure and the position of the branching point along the preglomerular vascular tree
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Here, P
g
3 and P

g
4 represent the blood pressure in the glomerulus of the 3rd and

4th nephron. P b
5 , P b

6 , and P b
7 represent the blood pressure in the 5th, 6th, and 7th

branching points, respectively. Rb denotes the hemodynamic resistance between the
6th and 7th branching points. This resistance is assumed to be the same for all
branches. R

g
3 and R

g
4 are the hemodynamic resistances to the 3rd and 4th nephron,

respectively. Note that R
g
3 and R

g
4 are not constant because they include the resis-

tance of the active parts of the afferent arterioles.
Equations of this type for all branching points are obviously interdependent and,

hence, produce a global hemodynamic coupling among nephrons in the vascular-
nephron tree. The strength of this coupling is generally increasing with Rb

jk , but

decreasing with R
g
i . Neighboring nephrons can also influence one another through a

vascular propagated electrical (electrochemical) signal. To account for this mech-
anism, the total activation potential for kth nephron is assumed to be the sum of
contributions from all other nephrons in the tree. Moreover, the electrical activation
potentials are assumed to propagate along the vascular wall with an exponential de-
cay. In this way, the vascular propagated interaction is delivered to each nephron as
an additional part of its activation potential Ψ :

Ψ =
N∑

i=1,i �=k

Ψi exp
(−γ

(
Lji + L

g
k

))
, (14.19)

where j is the number of the branching point to which the considered nephron with
number k is connected. The matrix Lji contains the lengths from a given branching
point j to all nephrons i = 1, . . . , N , and L

g
k is the length from the given nephron

to the connected branching point.
Each individual nephron may be described by the following model [47, 182]:

Ṗt = 1

Ctub
{Ff(Pt , Pa, r) − Freab − FH}, (14.20)

ṙ = vr , (14.21)

v̇r = 1

ω
{Pav(Pt , Pa, r) − Peq(r, Ψ (X3, α), T ) − ωdvr}, (14.22)

Ẋ1 = FH − 3

T
X1, (14.23)

Ẋ2 = 3

T
(X1 − X2), (14.24)

Ẋ3 = 3

T
(X2 − X3). (14.25)

The first equation determines the pressure variations in the proximal tubule in terms
of the in- and outgoing fluid flows where Ff is the single-nephron glomerular filtra-
tion rate, reabsorption in the proximal tubule Freab is assumed to be constant, FH is
the flow into the loop of Henle, and Ctub is the elastic compliance of the tubule.

The following two equations describe the dynamics associated with the flow
control in the afferent arteriole. Here, r represents the radius of the active part of
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the vessel and vr is its rate of increase. d is a characteristic time constant describing
the damping of the oscillations, ω is a measure of the mass density of the arteriolar
wall, and Pav denotes the average pressure in the active part of the arteriole. Peq is
the value of this pressure for which the arteriole is in equilibrium with its present
radius and muscular activation Ψ . The expressions for Ff , Pav and Peq involve a
number of algebraic equations that must be solved along with the integration of
(14.20)–(14.25).

The remaining equations in the single-nephron model represent the delay T in
the tubuloglomerular feedback (TGF) regulation. For a more detailed explanation of
the model and its parameters, see, e.g., [11].

Thus the mathematical model of vascular-nephron tree that we investigate con-
sists of (i) 12 sets of coupled ODEs describing individual nephrons, (ii) a set of
linear algebraic equations that determine the blood pressure drop from one branch-
ing point to another, and (iii) algebraic relations for the vascular interaction.

Depending on the choice of the control parameters, the amplitudes of the pres-
sure oscillations in the nephron tree are found to be different at different positions in
the tree. Due to model symmetry, two nephrons connected to the same node have the
same oscillation amplitudes. Thus, we can refer to the number of the branching point
to describe the amplitude properties. Branching points 2, 3, and 4 may correspond to
deep nephrons and branching points 6 and 7 to superficial nephrons. Experimentally,
only the pressure oscillations in nephrons near the surface of the kidney have been
investigated. However, we suppose that both deep (juxtamedullary) and superficial
(cortical) nephrons can exhibit oscillations in their pressures and flows.

When varying the arterial pressure, different amplitude patterns can be observed
in the multinephron model (14.18)–(14.25). For low values of the arterial pres-
sure Pa, vanishing amplitude of the tubular pressure oscillations can be observed
near the top of the tree (i.e., in branching points 5, 6, 7). The nephrons connected
to these points operate in a damped regime like the population pools we discussed
in the above example. In the individual nephron model, the self-sustained dynam-
ics is bounded by two points of Andronov–Hopf bifurcation at Pa1 = 11.48 kPa
and Pa2 = 13.86 kPa. The calculated value of the mean blood pressure in branch-
ing point 5 is lower than Pa1. Hence, neither nephrons connected to this point, nor
nephrons downstream of it, oscillate. As blood pressure increases above Pa2, the
upstream nephrons stop to oscillate. For intermediate values of Pa there is a cluster
of nephrons with self-sustained dynamics in the middle section of the tree. Finally,
for high enough values of Pa(> 17 kPa) only nephrons connected to the branching
points 6 and 7 display oscillations because for all other nephrons the blood pressure
in the corresponding branching point is too high.

Thus, the oscillatory amplitude patterns along a vascular-nephron tree have a
reasonable explanation in terms of a drop in driving pressure from one branching
point to the next one, causing a change of the operating regime of the individual
nephrons.
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14.4.2 Coupling-Induced Inhomogeneity

The vascular-nephron tree represents an extended network whose complex dynam-
ics is controlled by a significant number of parameters. To focus our investigations
we shall emphasize the generic aspects of cooperative behavior in the network rather
than its physiologically relevant properties. From a structural point of view, the ob-
ject we consider is a population of globally coupled two-mode oscillators [272].
Besides the relatively slow mode mediated by the tubuloglomerular feedback with
its inherent delay of about 15 s (associated with the flow of fluid though the loop
of Henle), there is a four to five times faster mode arising from the response of the
smooth muscles in the arteriolar wall. A key question is to what extent the synchro-
nization in the form of frequency and/or phase entrainment can be detected for such
systems under variation of appropriate control parameters?

From the classical theory of synchronization it is known that there are two main
parameters: the strength (or type) of the interaction and the degree of frequency mis-
match. Our first question is, therefore, how the control parameters of the vascular
network are related to the synchronization parameters. We have shown [227] that
increasing vascular coupling leads to in-phase synchronization, while strong hemo-
dynamic interaction can produce antiphase entrainment. We would expect similar
results in the vascular-nephron tree. However, the influence of the arterial pressure
Pa and of the hemodynamic resistances between the neighboring branching points is
not trivial, since these parameters also affect the natural dynamics of the individual
nephrons. Let us perform a few numerical experiments to clarify the situation.

Trial 1. Weak Hemodynamic Coupling

With the parameters used in Fig. 14.15, a choice of the arterial pressure of Pa =
13.3 kPa allows all nephrons to be in the oscillatory regime. Here, the hemodynamic
resistance has been assumed to be Rb = 0.002 kPa·s/nl. The vascular coupling may
then be varied by adjusting γ from 1.6 mm−1 (strong interaction) to 4.0 mm−1

(weak interaction). As defined above, Rb denotes the flow resistance between two
successive branching points of the vascular tree (Fig. 14.15), and the parameter γ

measures the length constant associated with the exponential decay of the vascular
propagated coupling along the arterioles.

The frequency distribution among the nephrons is shown in Fig. 14.16 for the
slow oscillatory mode. For γ = 1.6 mm−1, the frequencies of the slow TGF me-
diated modes are locked at the same value fslow = 0.0275 Hz for all nephrons.
Hence, strong vascular coupling leads to perfect frequency locking along the tree.
With decreasing coupling strength, the collective behavior becomes asynchronous.
In Fig. 14.16(a) this is illustrated by the curves for γ = 2.5 and γ = 3.0 mm−1.
Surprisingly, we find that with further reduction of the coupling (γ = 4.0 mm−1),
all nephrons again demonstrate a synchronous state, now at fslow ≈ 0.02874 Hz. To
explain this, let us consider the phase dynamics (Fig. 14.16(b) and (c)). In the first
synchronous state (strong vascular coupling), in-phase relationships are clearly ob-
served for the slow TGF oscillations (Fig. 14.16(b)), while the second state (weak
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Fig. 14.16. a Slow frequency adjustment with varying vascular coupling. Inset shows the
variation of fslow for the first nephron versus γ . Phase entrainment of the slow mode at
b γ = 1.6 mm−1 and c γ = 4.0 mm−1. Phase differences are calculated with respect to the
first nephron. (Rb = 0.002 kPa·s/nl and Pa = 13.3 kPa)

vascular interaction) corresponds to out-of-phase synchronization (Fig. 14.16(c)).
In this case, the hemodynamic coupling probably plays the ordering role. The inset
in Fig. 14.16(a) illustrates how the locking frequency within a certain range shifts
non-monotonically with varying vascular coupling.

Trial 2. Stronger Hemodynamic Coupling

To examine the hypothesis that the hemodynamic interaction mechanism is respon-
sible for the out-of-phase synchronous state at large γ , we increase the initial hemo-
dynamic coupling to Rb = 0.01 kPa·s/nl and perform the same numerical experi-
ment with increasing vascular interaction.

Let us focus on the changes in the slow dynamics of the nephrons. For strong
vascular coupling (γ = 1.6 mm−1) all nephrons are frequency-locked (Fig. 14.17).
However, this synchronous state is out-of-phase (Fig. 14.17(b)) in contrast to trial 1.
With decreasing vascular coupling one can observe asynchronous behavior detected
both as frequency and phase divergence (Fig. 14.17(c)). Note that the pairs of neph-
rons connected to the same branching point remain synchronous, and the first six
nephrons operate in synchrony, although the distribution looks a little washed out,
but remains limited.

However, a globally synchronized state similar to the state shown in Fig. 14.16 is
not achieved even for γ = 10.0 mm−1. We conclude that a stronger hemodynamic
coupling is unable to synchronize the slow mode oscillations in the whole vascular-
nephron tree.

With increasing vascular coupling the nephrons are found to synchronize at a
lower frequency than in the case of small vascular coupling. This effect cannot be
explained solely in terms of the in-phase nature of the vascular coupling. To find an
explanation of the observed behavior, let us consider how the vascular coupling in-
fluences the natural frequency of the individual nephron. Here, the natural frequency
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Fig. 14.17. (Color online) a Slow frequency adjustment for Rb = 0.01 kPa·s/nl with varying
vascular coupling. Phase entrainment of slow dynamics at b γ = 1.6 mm−1 and c γ =
3.0 mm−1. (Rb = 0.01 kPa·s/nl and Pa = 13.3 kPa)

Fig. 14.18. a The strength of the muscular activation affects the oscillation frequency in a non-
monotonic way. μ is an artificial scaling factor for the activation potential Ψ . b Frequency of
individual nephron as a function of arterial pressure Pa

of the j th nephron is understood to be the frequency of the tubular pressure oscilla-
tions in the absence of interaction, but with the same driving pressure as the pressure
at a branching point to which the nephron is connected, i.e., Pa = P b

j . Since the
vascular coupling acts via the activation potential Ψ of each nephron (14.19), it can
influence the operating regime of the nephron. For in-phase synchronous state, one
can estimate this influence via an artificial variation of Ψ in the individual nephron:
Ψ ′ = μΨ . Here, μ is a scaling factor: the stronger the vascular coupling is, the
larger μ will be. Figure 14.18 illustrates how the nephron frequency depends on μ.
It is clearly seen that the oscillation frequency changes in a non-monotonous way
with increasing μ and becomes lower in average. Thus the vascular coupling in
general reduces the nephron frequency (at least as long as it is introduced according
to (14.19)).
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The influence of the hemodynamic coupling is even more complicated. How-
ever, a similar approach can be used. Because the value of the hemodynamic resis-
tance Rb is closely related to the drop of arterial pressure along the vascular tree, it
can cause essential changes in the oscillatory properties of the individual nephrons.

Figure 14.18(b) shows how the nephron frequency depends on the driving pres-
sure for the individual nephron. The curve is strongly non-monotonic and includes
pieces of gradual increase, gradual fall, as well as values of abrupt change. Clearly,
such behavior is related to the bifurcations of the nephron oscillatory regimes. Thus,
a variation of the hemodynamic coupling can cause effects that are strongly non-
monotonous and depend on Pa. In Fig. 14.18(b), trials 1 and 2 are presented in
terms of P b

j drop along the vascular tree. It is seen that the first trial corresponds
to a relatively small frequency mismatch among the nephrons, while stronger cou-
pling (Rb = 0.01 kPa·s/nl) leads to a faster drop of arterial pressure along the tree
and, hence, to a larger frequency mismatch.

We conclude that:

(i) There is a clear evidence that clustering of oscillators in the vascular-nephron
model occurs due to the limited blood pressure Pa interval for oscillatory behavior
in the individual nephron model.

(ii) Dual nature of such interaction manifests itself (i) by bringing order in the
form of synchronization and (ii) by inducing shift of operating regimes of each
nephron along the tree that is equivalent to a mismatch between interacting systems.

Altogether, these mechanisms provide for a rather complex response of the sys-
tem to variations in the coupling strengths. We refer the above described effect as
coupling induced inhomogeneity that seems to be the essential feature of systems
with resource mediated coupling.

14.5 Summary

We considered four examples of coupled oscillator systems where the coupling is
mediated though the flow of resources that maintains the oscillatory state in the
individual unit.

Since stimulation is one of the mechanisms that can cause changes of extracellu-
lar potassium associated with variation of extracellular space volume, and since the
diffusion rate of potassium depends on the functional conditions of glial cells, these
two quantities have been chosen as control parameters. In the framework of this ap-
proach, we demonstrated that changes of the extracellular potassium concentration
can synchronize two nearby cells. With varying extracellular volume and diffusion
rate, the dual nature of such resource mediated coupling is found to be responsible
for competing in-phase and antiphase synchronization patterns.

The electronic example representing a relatively simple chain structure allowed
us to demonstrate generic behavioral patterns under competing coupling. Localized
(finite-sized) clusters of oscillating units that slide up and down the consumption
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chain in response to the change of overall resource supply, and coupling-induced in-
homogeneity, appear to be characteristic phenomena in such systems. For the gen-
eral model of N identical oscillators, coupling induced inhomogeneity manifests
itself either via an asynchronous intracluster behavior with a distribution of mean
periods, resembling the variation of the period of the individual oscillator with the
energy supply parameter, or (for stronger coupling) via small-sized clusters of out-
of-phase synchronization that move along the chain. Note that the region of self-
sustained dynamics, limited within a certain range of resource parameter, appears to
be the necessary condition for such type of behavior.

The individual microbiological population pool displayed only a simple
Andronov–Hopf bifurcation. However, different resource delivering environments
provide different behavioral patterns. By increasing the lateral resource supply, the
chain of population pools could be driven into a state of increasing complexity with
clusters of chaotic, frequency-synchronized pools. The opposite case of afferent
(downstream-only) nutrition provides a finite-sized cluster with self-sustained dy-
namics, outside which the oscillations die out.

The physiological example of a vascular tree involves a significantly more
complicated coupling structure with the flow mediated hemodynamic coupling com-
peting with a vascular propagated coupling of a very different nature. The non-
linearities of the physiological system considered allowed self-sustained oscillations
only in a finite range of resource supplies. At high and low afferent blood pressures,
the individual nephrons displayed stable equilibrium points. Hence, the cluster for-
mation mechanism we observed for a chain of electronic circuits manifests itself
also in physiological system. Inside the cluster we again encountered the coupling
induced inhomogeneity that now activated rather complex patterns due to the com-
plex response of the individual system to external driving.

Thus, there is a wide class of systems that are composed of a set of individual
oscillators connected via a resource distributed network. In such systems, a number
of spatially localized oscillatory modes is controlled by the amount of resources
delivered to each individual oscillator, and its influx acts as a global parameter.
It is remarkable that in this case the initially identical subunits show a tendency
for desynchronization, so-called coupling-induced inhomogeneity, combined with
spatial localization of subunits in oscillatory clusters.

The coupling that we have considered in this chapter is likely to be quite com-
mon in nature as well as in man-made systems. The generic nature of the resource
dependent coupling suggests that it can serve as useful paradigm together with the
well-known and widely used approaches assuming interaction via mechanisms un-
related to the resource supply.



15 Conclusions to Part II

In Part II of this book we endeavoured to demonstrate that synchronization is a
seriously multifaceted phenomenon. Just a few main features include multistabil-
ity, multimode behavior, the effect from coupling that is mediated by the resources
available, and the non-trivial phenomena arising from anisochronous motion on the
limit cycle.
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And finally. . .

Across the whole book we have been trying to share with the reader everything (or
almost everything) we know about synchronization: from the classical theoretical
results on which we were trained ourselves, to the results of modern studies—which
are perhaps not quite complete, but interesting nevertheless.

Before finishing this book, we would like to ask the reader:

Do you see how various manifestations and aspects of synchronization
of oscillations of all kinds combine to form a single picture?

Do you agree that this approach provides a researcher with a powerful
tool for the analysis of a huge variety of problems related to interactions
between non-linear oscillators?

The authors will be happy with “I have to think about it”;
and grateful to hear “Could be”;
and totally delighted if the answer is “I do.”

Nottingham and Loughborough (UK)
Lyngby (Denmark)
Saratov (Russia)
2005–2007
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