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Foreword

One of the main objectives of research in physics is to find simple laws that
give rise to a deeper understanding and unification of diverse phenomena. A
less ambitious goal is to construct models which, in a more or less restricted
range, permit an understanding of the physical processes involved and lead
to a systematic analysis of the available experimental data while providing
insights into the complex systems being studied. A necessary condition to
reach these goals is the development of experimental instruments and meth-
ods that give access to the relevant information needed to test these models
and guide the introduction of new concepts.

The problem of understanding and predicting the behavior of nuclei is one
of the most difficult tasks encountered by scientists of the past and present
century. From the beginning of the twentieth century until today startling
discoveries have been made in nuclear physics, new elements have been syn-
thesized, novel phenomena have been eludicated and important applications
have been established. The history of nuclear physics has been characterized
by a steady increase toward today’s understanding of the atomic nucleus,
starting from Rutherford’s famed experiment, passing through the discovery
of the neutron by Chadwick and culminating in the formulation of the liquid-
drop and shell models, among the most important benchmarks. In spite of
the impressive advances that have been made over a period of nearly one
century, the field of nuclear physics is currently at a cross roads: the advent
of radioactive-ion beams will vastly expand our observational capabilities and
first results of this new generation of experiments already indicate that our
current understanding of nuclei, which is mainly based on experiments along
the line of stability, is in need of modification. The field has always been fertil-
ized through the very strong interaction between experimental observations
and theoretical modelling. Indeed, in very few fields of physics the develop-
ment of experiment and theory is so closely intertwined. This interconnection
of experiment and theory is a significant part of what is fascinating in nu-
clear physics: new ideas can be often proposed and verified or falsified in short
succession and experimental observations can quickly lead to new theoreti-
cal concepts. A historic example of the latter is Heisenberg’s introduction of
isospin only a few months after the discovery of the neutron by Chadwick.

The nature of the strong force among nucleons that binds nuclei together,
which is still not fully understood, coupled to the many-body characteristics
of these systems, has given rise to a rich and complex field of scientific inquiry,
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VI Foreword

bringing forth a very creative research area. The fact that nuclei contain
many particles but not nearly enough to treat them statistically, explains
why they can be alternatively described both as a collection of individual
nucleons and as a single object akin to a charged, dense liquid drop. These
two representations of the nucleus reflect its collective and single-particle
features, both of which are prominently displayed by nuclei. The following
questions then arise: How do collective effects arise from individual particle
behavior? How can we reconcile these properties that seemingly exclude each
other? The solution of this paradox was outlined by Elliott in 1958 who
indicated how nuclear collective deformation may arise from single-particle
excitations using symmetry arguments based on SU(3).

In 1975 Arima and Iachello followed a similar line of argument again us-
ing symmetry methods by proposing the Interacting Boson Model (IBM).
This model and its extensions have proved remarkably successful in provid-
ing a bridge between single-particle and collective behavior, based on the
approximately bosonic nature of nucleon-pair superpositions that dominate
the dynamics of valence nucleons and that arise from the underlying nuclear
forces. This is in close analogy to the Bardeen–Cooper–Schrieffer (BCS) the-
ory of semi-conductors with its coupling of electrons to spin-zero Cooper pairs
which gives rise to collective behavior we know as superconductivity. From
this conceptual basis a unified framework for even–even and odd-mass nuclei
has resulted. One of the most attractive features of the IBM is that it gives
rise to a simple algebraic description, where so-called dynamical symmetries
play a central role, both as a way to improve our basic understanding of the
role of symmetry in nuclear dynamics and as starting points from which more
precise calculations can be carried out. More specifically, this approach has,
in a first stage, produced a unified description of the properties of medium-
mass and heavy even–even nuclei, which are pictured in this framework as
belonging (in general) to transitional regions between the various dynami-
cal symmetries. Later, odd-mass nuclei were also analyzed from this point
of view, by including the degrees of freedom of a single fermion of the nu-
clear shell model. The bold suggestion was then made by Iachello in 1980
that a simultaneous description of even–even and odd-mass nuclei was pos-
sible through the introduction of a superalgebra, with energy levels in both
nuclei belonging to the same (super)multiplet. In essence, this proposal was
based on the fact that even–even nuclei behave as (composite) bosons while
odd-mass ones behave as (approximate) fermions. At the appropriate energy
scales their states can then be viewed as elementary. The simple but far-
reaching idea was then put forward that both these nuclei can be embedded
into a single conceptual framework, relating boson–boson and boson–fermion
interactions in a precise way. These concepts were subsequently tested in sev-
eral regions of the nuclear table. The final step of including odd–odd nuclei
into this unifying framework was then made by extending these ideas to the
neutron–proton boson model, thus formulating a supersymmetric theory for
quartets of nuclei.



Foreword VII

Symmetry and its mathematical framework—group theory—play an in-
creasingly important role in physics. Both classical and quantum many-body
systems usually display great complexity but the analysis of their symmetry
properties often gives rise to simplifications and new insights which can lead
to a deeper understanding. In addition, symmetries themselves can point the
way toward the formulation of a correct physical theory by providing con-
straints and guidelines in an otherwise intractable situation. It is remarkable
that, in spite of the wide variety of systems one may consider, all the way
from classical ones to molecules, nuclei, and elementary particles, group the-
ory applies the same basic principles and extracts the same kind of useful
information from all of them. This universality in the applicability of sym-
metry considerations is one of the most attractive features of group theory.

Most people have an intuitive understanding of symmetry, particularly
in its most obvious manifestation in terms of geometric transformations that
leave a body or system invariant. This interpretation, however, is not enough
to grasp its deep connections with physics, and it thus becomes necessary to
generalize the notion of symmetry transformations to encompass more ab-
stract ideas. The mathematical theory of these transformations is the subject
matter of group theory.

Over the years many monographs have been written discussing the mathe-
matical theory of groups and their applications in physics [1, 2, 3, 4, 5, 6, 7, 8].
The present book attempts to give a pedagogical view of symmetry methods
as applied to the field of nuclear-structure physics. The authors have col-
laborated for many years in this field but have also independently studied
diverse aspects of nuclei and molecules from a symmetry point of view. Two
of us have written a previous text on algebraic methods [7]. The present vol-
ume has a different focus as it concentrates on the theory and applications
of symmetries in nuclear physics, stressing the underlying physical concepts
rather than the mastery of methods in group theory. The discussion starts
from the concept of isospin, used to this day in the elucidation of nuclear
properties, to arrive at the ideas and methods that underlie the discovery
of supersymmetry in the atomic nucleus. We emphasize here crucial experi-
mental verification of these symmetries, explaining some of the experimental
methods and adopt a more intuitive physical approach, dispensing of mathe-
matical rigor and attempting to focus on the physical arguments that are at
the core of new discoveries and breakthroughs. We also have aimed to give a
modern account of the current state of this exciting field of research. This we
hope has been achieved through the many boxes and examples with which
we have illustrated the ideas explained in the main text.

We apologize for the amount of references to our own work, which we can
only attempt to justify by stating our belief that we needed to rely on our
own experience in order to have an inside look on the way symmetries can
be a guide to study nuclear structure.

It should be clear that a book of this kind has not been written in isolation.
We will not embark on the perilous exercise of mentioning physicists with
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whom we have collaborated or discussed in the course of writing for fear of
leaving out some deserving colleague. Nevertheless, we would like to thank
Richard Casten and Stefan Heinze, for their careful reading of a draft of this
text and their many constructive comments on it. Finally, we wish to dedicate
this book to our wives: Annelies (Jolie) and Vera (Van Isacker), and to our
children: Dan (Frank), David (Van Isacker), Joke (Jolie), Marieke (Jolie),
Pablo (Frank), Thomas (Van Isacker) and Wouter (Jolie), who have lovingly
tolerated us (and our physics) for so long.



Contents

1 Symmetry and Supersymmetry in Quantal Many-Body
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Symmetry in Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Some Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Symmetry Transformations . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.4 Degeneracy and State Labeling . . . . . . . . . . . . . . . . . . . . . 6
1.1.5 Dynamical Symmetry Breaking . . . . . . . . . . . . . . . . . . . . 7
1.1.6 Isospin in Nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.7 Selection Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Dynamical Symmetries in Quantal Many-Body Systems . . . . . 18
1.2.1 Many-Particle States in Second Quantization . . . . . . . . 18
1.2.2 Particle-Number Conserving Dynamical Algebras . . . . . 19
1.2.3 Particle-Number Non-conserving Dynamical Algebras . 22
1.2.4 Superalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3 The Algebraic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Symmetry in Nuclear Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1 The Nuclear Shell Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 The SU(2) Pairing Model . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.2 The SU(3) Rotation Model . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1.3 A Symmetry Triangle for the Shell Model . . . . . . . . . . . 50

2.2 The Interacting Boson Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2.1 Dynamical Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.2.2 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.2.3 Partial Dynamical Symmetries . . . . . . . . . . . . . . . . . . . . . 64
2.2.4 Core Excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.3 A Case Study: 112Cd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.3.1 Early Evidence for Vibrational Structures and

Intruder Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.3.2 The 110Pd(α,2nγ)112Cd Reaction and its Interpretation 71
2.3.3 Studies of 112Cd Using the (n,n′γ) Reaction . . . . . . . . . 75

IX



X Contents

3 Supersymmetry in Nuclear Physics . . . . . . . . . . . . . . . . . . . . . . . 79
3.1 The Interacting Boson–Fermion Model . . . . . . . . . . . . . . . . . . . . 80
3.2 Bose–Fermi Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.3 Examples of Bose–Fermi Symmetries . . . . . . . . . . . . . . . . . . . . . . 84
3.4 Nuclear Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.5 A Case Study: Detailed Spectroscopy of 195Pt . . . . . . . . . . . . . . 89

3.5.1 Early Studies of 195Pt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.5.2 High-Resolution Transfer Studies Using (p,d)

and (d,t) Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.6 Supersymmetry without Dynamical Symmetry . . . . . . . . . . . . . 98

4 Symmetries with Neutrons and Protons . . . . . . . . . . . . . . . . . . 105
4.1 Pairing Models with Neutrons and Protons . . . . . . . . . . . . . . . . 106
4.2 Interacting Boson Models with Neutrons and Protons . . . . . . . 111

4.2.1 s Bosons Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.2.2 s and d Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3 The Interacting Boson Model-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.4 A Case Study: Mixed-Symmetry States in 94Mo . . . . . . . . . . . . 123

4.4.1 The Discovery of Mixed-Symmetry States
in Deformed Nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.4.2 Mixed-Symmetry States in Near-Spherical Nuclei . . . . . 124
4.4.3 Mixed-Symmetry States in 94Mo . . . . . . . . . . . . . . . . . . . 125

5 Supersymmetries with Neutrons and Protons . . . . . . . . . . . . . 133
5.1 Combination of F Spin and Supersymmetry . . . . . . . . . . . . . . . 133
5.2 Examples of Extended Supersymmetries . . . . . . . . . . . . . . . . . . . 136
5.3 One-Nucleon Transfer in Extended Supersymmetry . . . . . . . . . 138
5.4 A Case Study: Structure of 196Au . . . . . . . . . . . . . . . . . . . . . . . . 141

5.4.1 First Transfer Reaction Experiments . . . . . . . . . . . . . . . . 141
5.4.2 New Experiments at the PSI, the Bonn Cyclotron

and the Munchen Q3D Spectrometer . . . . . . . . . . . . . . . . 143
5.4.3 Recent High-Resolution and Polarized-Transfer

Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.4.4 Comparison with Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.4.5 Two-Nucleon-Transfer Reactions . . . . . . . . . . . . . . . . . . . 150

6 Supersymmetry and Supersymmetric Quantum Mechanics 155
6.1 The Supersymmetric Standard Model . . . . . . . . . . . . . . . . . . . . . 155
6.2 Strings and Superstrings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.3 Supersymmetric Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . 158

6.3.1 Potentials Related by Supersymmetry . . . . . . . . . . . . . . . 159
6.3.2 The Infinite Square-Well Potential . . . . . . . . . . . . . . . . . . 161
6.3.3 Scattering Off Supersymmetric Partner Potentials . . . . 162
6.3.4 Long-Range Nucleon–Nucleon Forces and

Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



Contents XI

6.3.5 Matrix Approach to Supersymmetric Quantum
Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.3.6 Three-Dimensional Supersymmetric Quantum
Mechanics in Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183



List of Boxes

Isoscalar factors and the Wigner–Eckart theorem . . . . . . . . . . . . . . . . . . . . 12
Solution of the Richardson model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
The collective model of nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Permutation symmetry and Young diagrams . . . . . . . . . . . . . . . . . . . . . . . . 42
Shape phase transitions and Landau theory . . . . . . . . . . . . . . . . . . . . . . . . 60
The dynamical symmetries of the SO(8) model . . . . . . . . . . . . . . . . . . . . . 109

XIII



1 Symmetry and Supersymmetry in Quantal
Many-Body Systems

Symmetry, together with its mathematical formulation in terms of group
theory, has played an increasingly pivotal role in quantum mechanics.
Although symmetry ideas can be applied to classical physics, they have be-
come of central importance in quantum mechanics. To illustrate the generic
nature of the idea of symmetry, suppose one has an isolated physical sys-
tem which does not interact with the outside world. It is then natural to
assume that the physical laws governing the system are independent of the
choice of the origin, the orientation of the coordinate system and the origin
of the time coordinate. The laws of (quantum) physics should thus be in-
variant with respect to certain transformations of our reference frame. This
simple statement leads to three fundamental conservation laws which greatly
simplify our description of nature: conservation of energy, linear momentum
and angular momentum. On these three conservation laws much of classi-
cal mechanics is built. These quantities are also conserved in isolated quan-
tal systems. In some cases an additional space-inversion symmetry applies,
yielding another conserved quantity called parity. In a relativistic framework
the above transformations on space and time cannot be considered sepa-
rately but become intertwined. The laws of nature are then invariant un-
der the set of Lorentz transformations which operate in four-dimensional
space–time.

The above transformations and their associated invariances can be called
‘geometric’ in the sense that they are defined in space–time. In quantum
mechanics, an important extension of these concepts is obtained by also con-
sidering transformations that act in abstract spaces associated with intrinsic
variables such as spin, isospin (in atomic nuclei), color (of quarks), etc. It is
precisely these ‘intrinsic’ invariances which have led to the preponderance of
symmetry applications in quantal systems.

We start this chapter with a brief review of symmetry in quantum me-
chanics and present a discussion of the role of symmetry and group theory
in quantum mechanics. We then focus in Sect. 1.2 on quantal many-body
systems and their analysis in terms of dynamical symmetries. While the ma-
terial of this chapter is of a general nature and can thus be applied to any
quantal system, the remainder of the book is essentially devoted to nuclear
physics. Some parts of this chapter are also found in more detail in Ref. [7].

A. Frank et al., Symmetries in Atomic Nuclei, 1
Springer Tracts in Modern Physics 230, DOI 10.1007/978-0-387-87495-1 1,
c© Springer Science+Business Media, LLC 2009



2 1 Symmetry and Supersymmetry in Quantal Many-Body Systems

1.1 Symmetry in Quantum Mechanics

In this section it is shown how the mathematical machinery of group theory
can be applied to quantum mechanics. The starting point is to consider trans-
formation acting on a physical system, that is, operations that transform the
coordinates ri and the impulse momenta pi of the particles that constitute
the system. Such transformations are of a geometric nature.For a discussion
of symmetry in quantum-mechanical systems this definition is too restrictive
because it does not include, for example, the spin degrees of freedom.The
appropriate way of dealing with this generalization is to consider, instead
of the geometric transformations themselves, the corresponding transforma-
tions in the Hilbert space of quantum-mechanical states of the system.The
action of the geometric transformation on spin variables (i.e., components of
the spin vector) is assumed to be identical to its action on the components
of the angular momentum vector l = r ∧ p. Furthermore, it can then be
shown that a correspondence exists between the geometric transformations
in physical space and the transformations induced by it in the Hilbert space
of quantum-mechanical states [9].

No distinction is made in the following between geometric and quantum-
mechanical transformations, and the elements of the groups and algebras
that are defined below are operators acting on the Hilbert space of quantum-
mechanical states.

1.1.1 Some Definitions

We begin with a very brief reminder of group-theoretical concepts that will
be used throughout this book. An abstract group G is defined by a set of
elements {G1, G2, . . . , Gn} for which a ‘multiplication’ rule combining these
elements exists and which satisfies the following conditions:

1. Closure. If Gi and Gj are elements of the set, so is their product GiGj .
2. Associativity. The following property is always valid:

Gi(GjGk) = (GiGj)Gk. (1.1)

3. Identity. There exists an element E of G satisfying

EGi = GiE = Gi. (1.2)

4. Inverse. For every Gi there exists an element G−1
i such that

GiG
−1
i = G−1

i Gi = E. (1.3)

The number n of elements is called the order of the group. If n is finite,
the group is said to be finite; it then is necessarily also discrete. Discrete
groups constitute an important class of groups since they classify the point
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symmetries of quantum-mechanical systems such as crystals and molecules.
To understand the degeneracies brought about by these symmetries, it is
necessary to study discrete groups.

A group is said to be continuous if its elements form a continuum
in a topological sense and if, in addition, the multiplication operation has
the appropriate continuity conditions. This leads to the definition of a Lie
group. The essential idea is that all its elements may be obtained by expo-
nentiation in terms of a basic set of elements {gk, k = 1, 2, . . . , s}, called
generators, which together form the Lie algebra associated with the
Lie group.

A simple example is provided by the SO(2) group of rotations in two-
dimensional space, with elements that may be realized as

G(α) = e−iαlz , (1.4)

where α is the angle of rotation and

lz = −i

(
x

∂

∂y
− y

∂

∂x

)
(1.5)

is the generator of these transformations in the x–y plane.
Three-dimensional rotations require the introduction of two additional

generators, associated with rotations in the z–x and y–z planes,

ly = −i

(
z

∂

∂x
− x

∂

∂y

)
, lx = −i

(
y

∂

∂z
− z

∂

∂y

)
. (1.6)

Finite rotations can then be parametrized by three angles (which may be the
Euler angles) and expressed as a product of exponentials of SO(3) genera-
tors (1.5) and (1.6) [10]. Evaluating the commutators of these operators, we
find

[lx, ly] = ilz, [ly, lz] = ilx, [lz, lx] = ily. (1.7)

In general, the s operators {gk, k = 1, 2, . . . , s} define a Lie algebra if they
close under commutation,

[gk, gl] =
∑
m

cm
klgm, (1.8)

and satisfy the Jacobi identity [4]

[gk, [gl, gm]] + [gm, [gk, gl]] + [gl, [gm, gk]] = 0. (1.9)

The set of constants cm
kl are called structure constants and their values de-

termine the properties of the Lie algebra. All Lie algebras have been classified
by Killing and Cartan and a rich literature on their mathematical properties
and their application in physics exists (see, for example, Refs. [4, 8]).
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For any Lie algebra G, operators can be defined which are constructed out
of the generators with the condition that they commute with all generators
of the algebra:

∀gk ∈ G : [Cm[G], gk] = 0, (1.10)

where m denotes the order in the generators gk. The operator Cm[G] is called
the Casimir operator of order m. There exists a mathematical procedure
based on the theory of (semi-simple) Lie algebras for the construction of all
such operators in terms of the structure constants cm

kl [8].

1.1.2 Symmetry Transformations

From a general point of view symmetry transformations of a physical system
may be defined in terms of the equations of motion for the system [11].
Suppose we consider the equations

Okψk = 0, k = 1, 2, . . . , (1.11)

where the functions ψk(x) denote a vector column with a finite or infinite
number of components, or a more general structure such as a matrix depend-
ing on the variables xi. The operators Ok are quite arbitrary and (1.11) may
correspond, for example, to Maxwell, Schrödinger or Dirac equations. The
operators gkl defined as

Ok

(∑
l

gklψl

)
= 0, k = 1, 2, . . . , (1.12)

are called symmetry transformations, since they transform the solutions
ψk to other solutions

∑
l gklψl of the Eq. (1.11). As a particular example we

consider the time-dependent Schrödinger equation (with h̄ = 1)
(

H(x,p) − i
∂

∂t

)
ψ(x, t) = 0. (1.13)

One can verify that g(x,p, t)ψ(x, t) is also a solution of (1.13) as long as g
satisfies the equation

[H, g] − i
∂g

∂t
= 0, (1.14)

which means that g is an operator associated with a conserved quantity.
The last statement follows from the definition of the total derivative of an
operator g

dg

dt
=

∂g

∂t
+ i[H, g], (1.15)

where H is the quantum-mechanical hamiltonian [12]. If g1 and g2 sat-
isfy (1.14), their commutator is again a constant of the motion since
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d

dt
[g1, g2] =

∂

∂t
[g1, g2] + i[H, [g1, g2]]

=
∂

∂t
[g1, g2] − [

∂g1

∂t
, g2] − [g1,

∂g2

∂t
] = 0, (1.16)

where use is made of (1.14) and the Jacobi identity (1.9). A particularly
interesting situation arises when the set {gk} is such that [gk, gl] closes under
commutation to form a Lie algebra as in (1.8). In this case we refer to {gk}
as the generators of the symmetry (Lie) algebra of the time-dependent
quantum system (1.13) [13]. Note that in general these operators do not
commute with the hamiltonian but rather satisfy (1.14),

[H − i
∂

∂t
, gk] = 0. (1.17)

What about the time-independent Schrödinger equation? This case cor-
responds to substituting ψ(x, t) by ψn(x)e−iEnt in (1.13), leading to

[H(x,p) − En]ψn(x) = 0. (1.18)

The set gk(x,p, t = 0) still satisfies the same commutation relations as before
but due to (1.14) does not in general correspond to integrals of the motion
anymore. These operators constitute the dynamical algebra for the time-
independent Schrödinger equation (1.18) and connect all solutions ψn(x) with
each other, including states at different energies. Due again to (1.14), only
those gk generators that are time independent satisfy

[H, gk] = 0, (1.19)

which implies that they are constants of the motion for the system (1.18).
Equation (1.19) (together with the closure of the gk operators) constitutes the
familiar definition of the symmetry algebra for a time-independent system.
The connection between the dynamical algebra {gk(0)} and the symmetry
algebra of the corresponding time-dependent system {gk(t)} allows a unique
definition of the dynamical algebra [13].

1.1.3 Symmetry

The discussion in the preceding section leads in a natural way to the following
definition of symmetry, valid for a time-independent system. A hamiltonian
H which commutes with the generators gk that form a Lie algebra G,

∀gk ∈ G : [H, gk] = 0, (1.20)

is said to have a symmetry G or, alternatively, to be invariant under G.
According to the theory of classical Lie algebras [4], the construction and
enumeration of all operators that satisfy the commutation property (1.20) is
entirely determined by the structure constants cm

kl of the algebra.
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The determination of operators gk that leave invariant the hamiltonian
of a given physical system is central to any quantum-mechanical descrip-
tion. The reasons for this are profound and can be understood from the cor-
respondence between geometrical and quantum-mechanical transformations
mentioned at the beginning of this section. It can be shown [9] that the trans-
formations gk with the symmetry property (1.20) are induced by geometrical
transformations that leave unchanged the corresponding classical hamilto-
nian. In this way the classical notion of a conserved quantity is transcribed
in quantum mechanics in the form of the symmetry property (1.20) of the
hamiltonian.

1.1.4 Degeneracy and State Labeling

A well-known consequence of a symmetry is the occurrence of degeneracies
in the eigenspectrum of H. Given an eigenstate |γ〉 of H with energy E, the
condition (1.20) implies that the states gk|γ〉 all have the same energy:

Hgk|γ〉 = gkH|γ〉 = Egk|γ〉. (1.21)

An arbitrary eigenstate of H shall be written as |Γγ〉, where the first quan-
tum number Γ is different for states with different energies and the second
quantum number γ is needed to label degenerate eigenstates. The eigenvalues
of a hamiltonian that satisfies (1.20) depend on Γ only,

H|Γγ〉 = E(Γ )|Γγ〉, (1.22)

and, furthermore, the transformations gk do not admix states with differ-
ent Γ ,

gk|Γγ〉 =
∑
γ′

aΓ
γ′γ(k)|Γγ′〉. (1.23)

With each element gk is associated a matrix aΓ (k) which defines the trans-
formation among the degenerate states |Γγ〉 under the action of the operator
gk. The matrices {aΓ (k), k = 1, 2, . . . , s} satisfy exactly the same commu-
tation rules as the operators {gk, k = 1, 2, . . . , s} and are therefore said
to provide a (matrix) representation of the Lie algebra G. If all matri-
ces {aΓ (k), k = 1, 2, . . . , s} can be brought into a common block-diagonal
form through a single unitary transformation, the representation is said to
be reducible; if not, it is irreducible.

This discussion of the consequences of a hamiltonian symmetry illustrates
at once the relevance of group theory in quantum mechanics. Symmetry
implies degeneracy and eigenstates that are degenerate in energy provide a
space in which representations of the symmetry group are constructed. Conse-
quently, the (irreducible) representations of a given group directly determine
the degeneracy structure of a hamiltonian with the symmetry associated to
that group.
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The fact that degenerate eigenstates correspond to irreducible representa-
tions shall be taken for granted here and is known as Wigner’s principle [9].
The principle states that the space of degenerate eigenstates provides an ir-
reducible representation of the complete symmetry of the hamiltonian. As a
consequence of Wigner’s principle, an observed degeneracy is either accidental
in which case it would disappear by increasing the precision of measurement,
or it is the result of a (possibly hidden) symmetry of the hamiltonian.

Because of Wigner’s principle, eigenstates of H can be denoted as |Γγ〉
where the symbol Γ labels the irreducible representations of G. Note that
the same irreducible representation might occur more than once in the eigen-
spectrum of H and, therefore, an additional multiplicity label η should be
introduced to define a complete labeling of eigenstates as |ηΓγ〉. This label
shall be omitted in the subsequent discussion.

A sufficient condition for a hamiltonian to have the symmetry prop-
erty (1.20) is that it can be expressed in terms of Casimir operators of various
orders. The eigenequation (1.22) then becomes

(∑
m

κmCm[G]

)
|Γγ〉 =

(∑
m

κmEm(Γ )

)
|Γγ〉. (1.24)

In fact, the following discussion is valid for any analytic function of the various
Casimir operators but mostly a linear combination is taken, as in (1.24).
The energy eigenvalues Em(Γ ) are functions of the labels that specify the
irreducible representation Γ and are known for all classical Lie algebras [4].

1.1.5 Dynamical Symmetry Breaking

The concept of a dynamical symmetry for which (at least) two algebras G1

and G2 with G1 ⊃ G2 are needed can now be introduced. The eigenstates of a
hamiltonian H with symmetry G1 are labeled as |Γ1γ1〉. But, since G1 ⊃ G2,
a hamiltonian with G1 symmetry necessarily must also have a symmetry G2

and, consequently, its eigenstates can also be labeled as |Γ2γ2〉. Combination
of the two properties leads to the eigenequation

H|Γ1η12Γ2γ2〉 = E(Γ1)|Γ1η12Γ2γ2〉, (1.25)

where the role of γ1 is played by η12Γ2γ2. In (1.25) the irreducible represen-
tation Γ2 may occur more than once in Γ1, and hence an additional quantum
number η12 (also known as a missing label) is needed to characterize the
states completely. Because of G1 symmetry, eigenvalues of H depend on Γ1

only.
In many examples in physics (one is discussed below), the condition of G1

symmetry is too strong and a possible breaking of the G1 symmetry can be
imposed via the hamiltonian
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H ′ =
∑
m

κ1mCm[G1] +
∑
m

κ2mCm[G2], (1.26)

which consists of a combination of Casimir operators of G1 and G2. The sym-
metry properties of the hamiltonian H ′ are now as follows. Since [H ′, gk] = 0
for gk ∈ G2, H ′ is invariant under G2. The hamiltonian H ′, since it contains
Cm[G2], does not commute, in general, with all elements of G1 and for this
reason the G1 symmetry is broken. Nevertheless, because H ′ is a combination
of Casimir operators of G1 and G2, its eigenvalues can be obtained in closed
form: (∑

m

κ1mCm[G1] +
∑
m

κ2mCm[G2]

)
|Γ1η12Γ2γ2〉

=

(∑
m

κ1mEm(Γ1) +
∑
m

κ2mEm(Γ2)

)
|Γ1η12Γ2γ2〉. (1.27)

The conclusion is thus that, although H ′ is not invariant under G1, its eigen-
states are the same as those of H in (1.25). The hamiltonian H ′ is said to
have G1 as a dynamical symmetry. The essential feature is that, although
the eigenvalues of H ′ depend on Γ1 and Γ2 (and hence G1 is not a symmetry),
the eigenstates do not change during the breaking of the G1 symmetry. As the
generators of G2 are a subset of those of G1, the dynamical symmetry breaking
splits but does not admix the eigenstates. A convenient way of summarizing
the symmetry character of H ′ and the ensuing classification of its eigenstates
is in terms of two nested algebras

G1 ⊃ G2

↓ ↓
Γ1 η12Γ2

. (1.28)

This equation indicates the larger algebra G1 (sometimes referred to as the
dynamical algebra or spectrum generating algebra) and the symmetry
algebra G2, together with their associated labels with possible multiplicities.

Many concrete examples exist in physics of the abstract idea of dynam-
ical symmetry. Perhaps the best known in nuclear physics concerns isospin
symmetry and its breaking by the Coulomb interaction.

1.1.6 Isospin in Nuclei

After the discovery of the neutron by Chadwick, Heisenberg realized that the
mathematical apparatus of the Pauli spin matrices could be applied to the
labeling of the two nucleonic charge states, the neutron and the proton [14].
In this way he laid the foundation of an important development in physics,
namely the use of symmetry transformations in abstract spaces. The starting
point is the observation that the masses of the neutron and proton are very
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similar [15], mnc2 = 939.56536(8) MeV and mpc2 = 938.27203(8) MeV, and
that both have a spin of 1/2. Furthermore, experiment shows that, if one ne-
glects the contribution of the electromagnetic interaction, the forces between
two neutrons are about the same as those between two protons. More pre-
cisely, the strong nuclear force between two nucleons with antiparallel spins
is found to be (approximately) independent of whether they are neutrons or
protons. This indicates the existence of a symmetry of the strong interaction,
and isospin is the appropriate formalism to explore the consequences of that
symmetry in nuclei. We stress that the equality of the masses and the spins
of the nucleons are not sufficient for isospin symmetry to be valid and that
the charge independence of the nuclear force is equally important. This point
was emphasized by Wigner [16] who defined isospin for complex nuclei as we
know it today and who also coined the name of ‘isotopic spin’.

Because of the near equality of the masses and of the interactions be-
tween nucleons, the hamiltonian of the nucleus is (approximately) invariant
with respect to transformations between neutron and proton states. For one
nucleon, these can be defined by introducing the abstract space spanned by
the two vectors

|n〉 =
[

1
0

]
, |p〉 =

[
0
1

]
. (1.29)

The most general transformation among these states (which conserves their
normalization) is a unitary 2×2 matrix. If we represent a matrix close to the
identity as [

1 + ε11 ε12
ε21 1 + ε22

]
, (1.30)

where the εij are infinitesimal complex numbers, unitarity imposes the rela-
tions

ε11 + ε∗11 = ε22 + ε∗22 = ε12 + ε∗21 = 0. (1.31)

An additional condition is found by requiring the determinant of the unitary
matrix to be equal to +1,

ε11 + ε22 = 0, (1.32)

which removes the freedom to make a simultaneous and identical change of
phase for the neutron and the proton. We conclude that an infinitesimal,
physical tranformation between a neutron and a proton can be parametrized
as [

1 − 1
2 iεz − 1

2 i(εx − iεy)
− 1

2 i(εx + iεy) 1 + 1
2 iεz

]
, (1.33)

which includes a conventional factor −i/2 and where the {εx, εy, εz} now are
infinitesimal real numbers. This can be rewritten in terms of the Pauli spin
matrices as [

1 0
0 1

]
− 1

2
iεx

[
0 1
1 0

]
− 1

2
iεy

[
0 −i
i 0

]
− 1

2
iεz

[
1 0
0 −1

]
. (1.34)
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The infinitesimal transformations between a neutron and a proton can
thus be written in terms of the three operators

tx ≡ 1
2

[
0 1
1 0

]
, ty ≡ 1

2

[
0 −i
i 0

]
, tz ≡ 1

2

[
1 0
0 −1

]
, (1.35)

which satisfy exactly the same commutation relations as those in (1.7), valid
for the angular momentum operators. The action of the tμ operators on a
nucleon state is easily found from its matrix represenation. For example,

tz|n〉 ≡
1
2

[
1 0
0 −1

] [
1
0

]
=

1
2
|n〉, tz|p〉 ≡

1
2

[
1 0
0 −1

] [
0
1

]
= −1

2
|p〉,

(1.36)
which shows that e(1− 2tz)/2 is the charge operator. Also, the combinations
t± ≡ tx ± ity can be introduced, which satisfy the commutation relations

[tz, t±] = ±t±, [t+, t−] = 2tz, (1.37)

and play the role of raising and lowering operators since

t−|n〉 = |p〉, t+|n〉 = 0, t−|p〉 = 0, t+|p〉 = |n〉. (1.38)

Note that we have associated a neutron (proton) with isospin up (down),
and that we could have made the opposite association, which is the usual
convention of particle physics.

This proves the formal equivalence between spin and isospin, and all re-
sults familiar from angular momentum can now be readily transposed to the
isospin algebra. For a many-nucleon system (such as a nucleus) a total isospin
T and its z projection MT can be defined which results from the coupling of
the individual isospins, just as this can be done for the nucleon spins. The
appropriate isospin operators are

Tμ =
∑

k

tμ(k), (1.39)

where the sum is over all the nucleons in the nucleus.
The assumption of isospin invariance can be studied with the isobaric

multiplet mass equation. If, in first approximation, the Coulomb interaction
between the protons is neglected and, furthermore, if it is assumed that the
strong interaction does not distinguish between neutrons and protons, the
resulting nuclear hamiltonian H is isospin invariant. Explicitly, invariance
under the isospin algebra SU(2) ≡ {Tz, T±} follows from

[H,Tz] = [H,T±] = 0. (1.40)

As a consequence of these commutation relations, the many-particle eigen-
states of H have good isospin symmetry. They can be classified as |ηTMT 〉
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where T is the total isospin of the nucleus obtained from the coupling of
the individual isospins 1/2 of all nucleons, MT is its projection on the z
axis in isospin space, MT = (N − Z)/2 and η denotes all additional quan-
tum numbers. If isospin were a true symmetry, all states |ηTMT 〉 with
MT = −T,−T + 1, . . . ,+T , and with the same T (and identical other quan-
tum numbers η), would be degenerate in energy; for example, neutron and
proton would have exactly the same mass.

The Coulomb interaction between the protons destroys the equivalence
between the nucleons and hence breaks isospin symmetry. The main effect of
the Coulomb interaction is a dynamical breaking of isospin symmetry. This
can be shown by rewriting the Coulomb interaction,

V =
∑
k<l

(
1
2
− tz(k)

)(
1
2
− tz(l)

)
e2

|rk − rl|
, (1.41)

as a sum of isoscalar, isovector and isotensor parts [17]

V =
∑
k<l

∑
t=0,1,2

V
(t)
0 (k, l), (1.42)

with

V
(0)
0 (k, l) =

(
1
4
−
√

1
3

(t(k) × t(l))(0)0

)
e2

|rk − rl|
,

V
(1)
0 (k, l) = −1

2
(tz(k) + tz(l))

e2

|rk − rl|
,

V
(2)
0 (k, l) =

√
2
3

(t(k) × t(l))(2)0

e2

|rk − rl|
, (1.43)

where the coupling is carried out in isospin. The effect of the Coulomb interac-
tion on a given state |ηTMT 〉 can be estimated from first-order perturbation
theory, with the energy shift of this state due to the Coulomb interaction
V corresponding to the diagonal matrix element 〈ηTMT |V |ηTMT 〉. To cal-
culate this matrix element, the Wigner–Eckart theorem in isospin space can
be applied (see Box on Isoscalar factors and the Wigner–Eckart theorem) and
allows to factor out the MT dependence according to

〈ηTMT |
∑
k<l

V
(t)
0 (k, l)|ηTMT 〉 = 〈TMT t0|TMT 〉〈ηT‖

∑
k<l

V (t)(k, l)‖ηT 〉.

(1.44)
The coupling coefficient here is the usual Clebsch–Gordan coefficient as-
sociated with SU(2) ⊃ SO(2). From the explicit expressions for these
coefficients,

〈TMT 00|TMT 〉 = 1, 〈TMT 10|TMT 〉 =
MT√

T (T + 1)
,
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〈TMT 20|TMT 〉 =
3M2

T − T (T + 1)√
T (T + 1)(2T − 1)(2T + 3)

, (1.45)

we conclude that the MT dependence of the diagonal matrix elements of the
Coulomb interaction is at most quadratic. If the off-diagonal, isospin mixing
matrix elements of the Coulomb interaction V are neglected, it can then be
represented as

V � Ṽ ≡ κ0 + κ1Tz + κ2T
2
z , (1.46)

for some particular coefficients κ0, κ1 and κ2 which, according to the pre-
ceding discussion, depend on the isospin T and other quantum numbers η.
In the notation introduced in Sect. 1.1.5, this can be viewed as a dynamical
symmetry breaking of the type

SU(2) ⊃ SO(2) ≡ {Tz}
↓ ↓
T MT

. (1.47)

The hamiltonian Ṽ splits but does not admix the eigenstates |ηTMT 〉 with
MT = −T,−T + 1, . . . ,+T and has the eigenspectrum

Ẽ(MT ) = κ0 + κ1MT + κ2M
2
T . (1.48)

Isoscalar factors and the Wigner–Eckart theorem. The Wigner–Eckart theorem
is well known [10] for the case SU(2) ⊃ SO(2) with associated labels of
angular momentum J and its projection MJ . The generalization involves
an arbitrary labeling of the type

G1 ⊃ G2

↓ ↓
Γ γ

.

Suppose the calculation is required of the matrix element of an operator
TΓ

γ . This can be obtained from the generalized Wigner–Eckart theorem [4]
which states that

〈Γfγf |TΓ
γ |Γiγi〉 = 〈Γiγi Γγ|Γfγf〉〈Γf‖TΓ ‖Γi〉.

The matrix element can be written as the product of a generalized coupling
coefficient (denoted as 〈· · · · | · ·〉) and a reduced matrix element (written as
〈·‖·‖·〉). The essential point is that all dependence on the quantum numbers
associated with the subalgebra G2 is contained in the generalized coupling
coefficient. This coefficient can be calculated with standard algebraic tech-
niques which have been detailed in several textbooks (e.g., Refs. [4, 7])
and which are not of concern here. The generalized Wigner–Eckart the-
orem considerably facilitates the calculation of matrix elements of tensor
operators. Typically, it proceeds by evaluating a simple matrix element
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and subsequently obtaining others from ratios of generalized coupling co-
efficients. In addition to this simplification, selection rules follow from the
generalized Wigner–Eckart theorem: if Γf is not contained in the product
Γi × Γ , the generalized coupling coefficient is zero and the matrix element
vanishes. Selection rules can thus be derived from the multiplication rules
of irreducible representations.

The expansion in Tz is but an approximation to the true Coulomb inter-
action; it represents the diagonal part of it, with the T -mixing isovector and
isotensor parts being neglected. In that approximation isospin remains a good
quantum number and the expression (1.48) represents the Coulomb energy.
To find the total energy of a specific state, we need to include the nuclear
interaction and the energy shifts due to the neutron–proton mass difference.
If the nuclear interaction is exactly isoscalar, its contribution to all members
of an isospin multiplet is constant; if it is at most of two-body character,
the dependence of the energy on MT can be shown to be quadratic at most,
following the same arguments as in the case of the Coulomb interaction. On
the other hand, the neutron–proton mass difference gives rise to a term linear
in MT . Therefore, in this approximation, the total energies of the members
of an isospin multiplet are related through the formula

B(A,MT ) = c0 + c1MT + c2M
2
T , (1.49)

where the coefficients ci now include effects of the nuclear interaction and of
the neutron–proton mass difference. The quantity B(A,MT ) is the (positive)
binding energy of an A-nucleon state with MT = (N − Z)/2 and is related
to its mass M(N,Z) by

B(A,MT ) = Nmnc2 + Zmpc2 − M(N,Z)c2. (1.50)

The summary of this discussion is that the excitation spectra of the dif-
ferent nuclei belonging to the same isospin multiplet (with the same T but
different MT ) are identical but that corresponding states (also known as iso-
baric analog states) do not have the same binding energy. The formula (1.49)
implies a relation between the absolute energies of isobaric analog states and
is known as the isobaric-multiplet mass equation or IMME.

The IMME was proposed by Wigner [18], while expressions for the co-
efficients κi in (1.48) based on perturbation theory of the electromagnetic
hamiltonian density were given in Ref. [19]. For T ≥ 3/2 a test is possible
since the parameters ci can be fixed from the isobaric analog states in three
nuclei and thus a prediction follows for the other members of the multiplet.
Early applications of the IMME were considered by Wilkinson [20] and since
then many more nuclear isospin multiplets have been established [21]. The
following example discusses a case of recent interest.

Example: Isobaric multiplets in A = 32 and 33 nuclei. With recent advances in
experimental techniques the validity of the isobaric-multiplet mass equation
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can be put to increasingly stringent tests. Progress has been made in two
key areas. First, it has become possible to produce and transport nuclides of
ever shorter half-lives. Second, due to a variety of trapping techniques [22]
experimenters are able to determine atomic masses with increasing precision,
achieving relative uncertainties down to 10−8. As a result, many more isobaric
multiplets have become accessible in recent years for which the validity of the
IMME (1.49) can be tested.

The measurement of a T = 2 quintet and a T = 3/2 quartet in the mass
A = 32 and 33 nuclei illustrates these two experimental improvements. The
shortest-lived members of these multiplets are the 32Ar and 33Ar nuclides
with half-lives of T1/2 = 98 ms and T1/2 = 173 ms, respectively. In spite of
the difficulties associated with the production of such short-lived isotopes, an
impressively accurate mass measurement was carried out, with uncertainties
of only 1.8 and 0.44 keV in the masses of 32Ar and 33Ar, respectively [23].
An additional complication in the test of the IMME is that several members
of the multiplets are not the ground state of a nucleus but correspond to
an excited state, possibly an unbound one. For example, one member of the
T = 3/2 quartet is an unbound state in 33Cl, the energy of which needed to
be determined from the resonances in the 32S(p,p) reaction [24]. The results
as obtained in Ref. [23] are summarized in Fig. 1.1. The figure shows the

Fig. 1.1. Binding energies of the isobaric members of a T = 2 quintet and of a
T = 3/2 quartet in nuclei with mass A = 32 and A = 33. The quintet contains states
with angular momentum Jπ = 0+ (ground states of silicon and argon, excited states
in phosphor, sulphur and chlorine); the quartet comprises states with Jπ = 1/2+

(ground states of phosphor and argon, excited states in sulphur and chlorine). In
each case the column on the left is obtained for an exact SU(2) symmetry, which
predicts states with different MT to be degenerate. The middle column is obtained
with the IMME with coefficients c0 = 259.735 (271.779), c1 = 6.25261 (6.43351)
and c2 = −0.207439 (−0.210090), in MeV, for the quintet (quartet). The column
on the right gives the experimental binding energies
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binding energies of the quartet nuclei 33Ar and 33P which have T = |MT | =
3/2 in their ground state. The isobaric analogue states in 33Cl and 33S are
Jπ = 1/2+ states at excitation energies of 3.375 and 5.480 MeV, respectively;
these energies are subtracted from the ground-state binding energies of 33Cl
and 33S to give the energies plotted in Fig. 1.1. Similarly, for the quintet
nuclei 32Ar and 32Si the ground-state binding energies are shown which have
Jπ = 0+ and T = |MT | = 2 in their ground state; other members of the
quintet are excited Jπ = 0+ states in 32Cl, 32S and 32P. For an exact SU(2)
symmetry the members of an isobaric multiplet are degenerate in energy. This
degeneracy is lifted by the lowering of the symmetry to SO(2) and the energy
splitting is well accounted for by the IMME. In fact, deviations from IMME
are less than ∼ 1 keV, much less than the splitting between the members of
the multiplet which are of the order of 10 MeV.

Deviations from the IMME cannot be revealed through plots of the type
of the Fig. 1.1. A convenient way of gauging the precision of the IMME is to
increase the expansion in MT to third order,

B(A,MT ) = c0 + c1MT + c2M
2
T + c3M

3
T ,

and to investigate to what extent the data require the coefficient c3 to deviate
from zero. A non-zero coefficient may be the result of isospin mixing or signals
the existence of isospin violating three- or higher-body interactions between
the nucleons. Figure 1.2 shows a compilation of values of c3, taken from
Ref. [21]. In total there are six complete quintets (even A) and 26 complete
quartets (odd A), in some cases several for the same A. Most c3 coefficients
are consistent with zero and in particular the value found in the A = 32
quintet and A = 33 quartet deviates less than 1 keV from zero. We stress

Fig. 1.2. The coefficient c3 for all known complete isobaric quartets (circles) and
quintets (squares). In some cases there are several quartets for the same A. The
inset shows c3 for the A = 32 quintet and A = 33 quartet discussed in the text and
illustrates the increase in precision achieved over recent years
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nevertheless that the quality of fits such as the one in Fig. 1.1 is not the most
important aspect of dynamical symmetries, but rather the existence of good
quantum numbers (isospin T in this case).

1.1.7 Selection Rules

The most important consequence of a symmetry, which remains valid under
the process of a dynamical symmetry breaking, is the existence of conserved
quantum numbers. Frequently, these quantum numbers give rise to selection
rules in radiative transition, particle-transfer or decay processes. The mea-
surement of transition, transfer or decay probabilities is thus the method to
establish the goodness of labels needed to characterize a quantum state and
this in turn indicates to what extent a given (dynamical) symmetry is valid.

The link between symmetries and selection rules can be given a precise
quantitative formulation via the generalized Wigner–Eckart theorem. Sup-
pose the calculation is required of a transition or transfer matrix element
between an initial state |Γiγi〉 and a final state |Γfγf〉, where the labeling
of Sect. 1.1.5 is adopted. To compute the matrix element, it is first neces-
sary to determine the tensor character of the operator associated with the
transition or transfer which generally is achieved by writing the operator as∑

Γγ aΓγTΓ
γ . Each piece TΓ

γ can now be dealt with separately through the
generalized Wigner–Eckart theorem. The essential point is that all depen-
dence on the quantum numbers associated with the subalgebra G2 is con-
tained in a generalized coupling coefficient which can be calculated from
algebraic methods (see Box on Isoscalar factors and the Wigner–Eckart the-
orem). In addition, selection rules now follow from the multiplication rules
for irreducible representations of the algebra G1: if Γf is not contained in the
product Γi × Γ , the generalized coupling coefficient is zero and the matrix
element of TΓ

γ vanishes.
A concrete example illustrates the emergence of selection rules as a result

of a (dynamical) symmetry.

Example: E1 transitions in self-conjugate nuclei and isospin symmetry breaking.
A well-known example of the idea of selection rules concerns electric dipole
transitions in self-conjugate nuclei [25, 26], that is, nuclei with an equal num-
ber of neutrons and protons (N = Z). The E1 operator is, in lowest order of
the long-wave approximation, given by

Tμ(E1) =
A∑

k=1

ekrμ(k),

where the sum runs over all nucleons in the nucleus. Since the charge ek of
the kth nucleon is zero for a neutron and e for a proton, the E1 operator can
be rewritten as
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Tμ(E1) =
e

2

A∑
k=1

[1 − 2tz(k)]rμ(k) =
e

2

[
Rμ − 2

A∑
k=1

tz(k)rμ(k)

]
,

where 2tz gives +1 for a neutron and −1 for a proton. The first term Rμ in
the E1 operator is the center-of-mass coordinate of the total nucleus and does
not contribute to an internal E1 transition. (It is responsible for Thomson
scattering off a nucleus.) The conclusion is that the electric dipole operator
is, in lowest order of the long-wave approximation, of pure isovector character
T

(T=1)
MT =0. The application of the Wigner–Eckart theorem (see Box on Isoscalar

factors and the Wigner–Eckart theorem) in isospin space gives

〈ηfTfMTf |T
(1)
0 |ηiTiMTi〉 = 〈TiMTi 10|TfMTf 〉〈ηfTf‖T (1)‖ηiTi〉,

where the coupling coefficient is associated with SU(2) ⊃ SO(2). Self-
conjugate nuclei have MTi = MTf = 0 and exhibit as a consequence a simple
selection rule: E1 transitions are forbidden between levels with the same
isospin Ti = Tf = T because of the vanishing Clebsch–Gordan coefficient,
〈T0 10|T0〉 = 0.

This selection rule has been verified to hold approximately in light self-
conjugate nuclei [27] (see also Chap. 1 of Ref. [28]). Deviations occur because
of higher-order terms in the E1 operator but also, and more importantly,
because isospin is not an exactly conserved quantum number. Isospin mix-
ing can be estimated in a variety of nuclear models. They all show that the
mixing (i.e., the non-dynamical breaking of isospin symmetry) is maximal in
N = Z nuclei. Isospin mixing effects, caused mainly by the Coulomb interac-
tion, should thus be looked for in heavy N = Z nuclei where they are largest.
Such nuclei will be created in abundance and accelerated for study at the
newly planned radioactive-ion beam facilities. The spectrum of the heaviest
N = Z nucleus studied so far in this respect, 64Ge, is shown in Fig. 1.3.
The crucial transition is the E1 between the 5− and the 4+ levels with
T = 0 (indicated by the down arrow) which should be strictly forbidden
if the isospin (dynamical) symmetry were exact. A small B(E1; 5− → 4+)
value is measured nevertheless and this is explained through the mixing with
higher-lying 5− and 4+ levels with T = 1 in 64Ge, which are not observed
but inferred from their isospin analog states in 64Ga. Although an estimate
of the isospin mixing can be made in this way, the procedure is difficult as it
requires the measurement of the lifetime, the δ(E2/M1) mixing ratio and the
relative intensities of the transitions de-exciting the 5− level [29]. In addition,
to arrive at the isospin-mixing estimate of P ≈ 2.5 %, the analysis involves
some simplifying assumptions such as equal mixing in the initial and final
states of the E1 transition. Given these uncertainties, a reliable measure-
ment of isospin admixtures in nuclei, as a function of N and Z, is still very
much a declared goal of the current experimental efforts with radioactive-ion
beams.
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Fig. 1.3. Energy spectra of the nuclei in the A = 64 isospin triplet 64Ga, 64Ge and
64As relative to the ground state of the first nucleus. Levels are labeled by their
angular momentum and parity Jπ. The observed 5− → 4+ E1 transition between
T = 0 states in 64Ge is explained through mixing with the T = 1 states, indicated
by the arrows. The levels in broken lines are inferred from the isospin analog levels
in 64Ga

1.2 Dynamical Symmetries in Quantal
Many-Body Systems

So far the discussion of symmetries has been couched in general terms leading
to results that are applicable to any quantum-mechanical system. We shall be
somewhat more specific now and show how the concept of dynamical symme-
try can be applied systematically to find analytic eigensolutions for a system
of interacting bosons and/or fermions. As the results are most conveniently
discussed in a second-quantization formalism, first a brief reminder of some
essential formulas is given.

1.2.1 Many-Particle States in Second Quantization

In general, particle creation and annihilation operators shall be denoted as c†i
and ci, respectively. The index i comprises the complete quantum-mechanical
labeling of a single-particle state. In many applications i coincides with the



1.2 Dynamical Symmetries in Quantal Many-Body Systems 19

labels of a stationary quantum state for a single particle in which case c†i
creates a particle in that stationary state. The index i may include intrinsic
quantum numbers such as spin, isospin, color, etc.

The particles are either fermions or bosons, for which the notations c ≡ a
and c ≡ b, respectively, shall be reserved. They obey different statistics, of
Fermi–Dirac and of Bose–Einstein, respectively, which in second quantiza-
tion is imposed through the (anti-)commutation properties of creation and
annihilation operators:

{ai, a
†
j} = δij , {a†

i , a
†
j} = {ai, aj} = 0, (1.51)

and
[bi, b

†
j ] = δij , [b†i , b

†
j ] = [bi, bj ] = 0. (1.52)

While interactions are carried by bosons (such as photons or gluons), matter
consists of fermions. The anti-commutation properties (1.51) ensure that two
fermions cannot occupy the same quantum state, which is known as the Pauli
principle. Introducing the notation

[u, v}q ≡ uv − (−)qvu, (1.53)

with q = 0 for bosons and q = 1 for fermions, one can express the rela-
tions (1.51) and (1.52) as

[ci, c
†
j}q = δij , [c†i , c

†
j}q = [ci, cj}q = 0. (1.54)

A many-particle state can be written as

|n̄〉 ≡
∏

i

(c†i )
ni

√
ni!

|o〉, (1.55)

where |o〉 is the vacuum state which satisfies

∀i : ci|o〉 = 0. (1.56)

A many-particle state is thus completely determined by the number of par-
ticles ni in each quantum state i; the (possibly infinite) set of numbers ni is
collectively denoted as n̄. For fermions only ni = 0 and ni = 1 are allowed
(since a†

ia
†
i |o〉 = −a†

ia
†
i |o〉 = 0) but for bosons no restrictions on ni exist.

1.2.2 Particle-Number Conserving Dynamical Algebras

The determination of the properties of a quantal system of N interacting
particles requires the solution of the eigenvalue equation associated with the
hamiltonian

H =
∑

i

εic
†
i ci +

∑
ijkl

υijklc
†
i c

†
jckcl + · · · , (1.57)
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containing one-body terms εi, two-body interactions vijkl and so on; higher-
order interactions can be included in the expansion, if needed. The hamil-
tonian (1.57) satisfies the requirement of particle-number conservation; the
particle-number non-conserving case is discussed in the next subsection.

With use of the property [see (1.53) and (1.54)] c†jck = (−)qckc†j−(−)qδjk,
the hamiltonian (1.57) can be written in a different form as

H =
∑
il

⎛
⎝εiδil − (−)q

∑
j

vijkl

⎞
⎠uil + (−)q

∑
ijkl

υijkluikujl + · · · , (1.58)

where the notation uij ≡ c†i cj is introduced. The reason for doing so becomes
clear when the commutator of the uij operators is considered,

[uij , ukl] = c†i c
†
k[cj , cl] + c†i [cj , c

†
k]cl − c†k[cl, c

†
i ]cj + [c†i , c

†
k]clcj ,

which, because of the identity [u, v] = [u, v} − (1 − (−)q) vu, can be brought
into the form

[uij , ukl] = uilδjk − ukjδil − (1 − (−)q)
[
c†i c

†
kclcj + c†i c

†
kcjcl

]
.

The last term on the right-hand side of this equation is zero for bosons (when
q = 0) as it is for fermions since in that case the expression between square
brackets vanishes. This shows that

[uij , ukl] = uilδjk − ukjδil (1.59)

is valid for a boson as well as a fermion realization of the uij and that these
operators in both cases satisfy the commutation relations of the unitary al-
gebra U(n) where n is the dimensionality of the single-particle space.

The equivalent form (1.58) shows that the solution of the eigenvalue prob-
lem for N particles associated with (1.57) requires the diagonalization of
H in the symmetric representation [N ] of U(n) in case of bosons or in its
anti-symmetric representation [1N ] in case of fermions. This, for a general
hamiltonian, is a numerical problem which quickly becomes intractable with
increasing numbers of particles N or increasing single-particle space n.

A strategy for solving particular classes of the many-body hamilto-
nian (1.57) can be obtained by considering the algebra U(n) as a dynamical
algebra Gdyn on which a dynamical symmetry breaking is applied. The gen-
eralization of the procedure of Sect. 1.1.5 is straightforward and starts not
from two but from a chain of nested algebras

G1 ≡ Gdyn ⊃ G2 ⊃ · · · ⊃ Gs ≡ Gsym, (1.60)

where the last algebra Gsym in the chain is the symmetry algebra of the prob-
lem. To appreciate the relevance of this classification in connection with the
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many-body problem (1.57), we note that to a chain of nested algebras (1.60)
corresponds a class of hamiltonians that can be written as a linear combina-
tion of Casimir operators associated with the algebras in the chain,

H =
s∑

r=1

∑
m

κrmCm[Gr], (1.61)

where κrm are arbitrary coefficients. This is a generalization of (1.26). The
operators in (1.61) satisfy

∀m,m′, r, r′ : [Cm[Gr], Cm′ [Gr′ ]] = 0. (1.62)

This property is evident from the fact that for a chain of nested algebras
all elements of Gr are in Gr′ or vice versa. Hence, the hamiltonian (1.61) is
written as a sum of commuting operators and as a result its eigenstates are
labeled by the quantum numbers associated with these operators. Note that
the condition of the nesting of the algebras in (1.60) is crucial for constructing
a set of commuting operators and hence for obtaining an analytic solution.
Casimir operators can be expressed in terms of the operators uij so that the
expansion (1.61) can, in principle, be rewritten in the form (1.58) with the
order of the interactions determined by the maximal order m of the invariants.

To summarize these results, the hamiltonian (1.61)—which can be ob-
tained from the general hamiltonian (1.57) for specific coefficients εi, υijkl. . . —
can be solved analytically. Its eigenstates do not depend on the coefficients
κrm and are labeled by

G1 ⊃ G2 ⊃ · · · ⊃ Gs

↓ ↓ ↓
Γ1 η12Γ2 ηs−1,sΓs

. (1.63)

Its eigenvalues are given in closed form as

H|Γ1η12Γ2 . . . ηs−1,sΓs〉 =
s∑

r=1

∑
m

κrmEm(Γr)|Γ1η12Γ2 . . . ηs−1,sΓs〉, (1.64)

where Em(Γr) are known functions introduced in Sect. 1.1.4.
Thus a generic scheme is established for finding analytically solvable

hamiltonians (1.57). It requires the enumeration of nested chains of the
type (1.60) which is a purely algebraic problem. The symmetry Gdyn is broken
dynamically and the only remaining symmetry is Gsym which is the true sym-
metry of the problem. This idea has found repeated and fruitful application
in many branches of physics, as illustrated with the following example.

Example: The Gell-Mann–Okubo mass formula. This example is taken from
particle physics and concerns the classification of ‘elementary’ particles into
SU(3) multiplets. In this case the relevant symmetry groups and their asso-
ciated quantum numbers are
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SU(3) ⊃ U(1) ⊗
(
SU(2) ⊃ SO(2)

)
↓ ↓ ↓ ↓

(λ, μ) Y T MT

,

where T and MT are the isospin and its projection on the z axis and Y is
the hypercharge. Instead of the notation (λ, μ), which is followed here, SU(3)
representations often are denoted by their dimension, that is, the number
of independent basis vectors in the representation [i.e., the number of parti-
cles in the corresponding SU(3) multiplet]. Under the assumption of SU(3)
invariance all particles belonging to one multiplet are predicted to have the
same mass. Since the observed masses differ by hundreds of MeV, they clearly
must contain SU(3) symmetry breaking terms. However, SU(3) can be bro-
ken while maintaining good quantum numbers Y , T and MT , that is, it can
be broken dynamically. Allowing only up to quadratic terms, we find a mass
operator of the form

M = κ0 + κ1C1[U(1)] + κ2C2[U(1)] + κ3C2[SU(2)] + κ4C1[SO(2)]
+κ5C2[SO(2)],

with the eigenvalues

E(Y, T,MT ) = κ0 + κ1Y + κ2Y
2 + κ3T (T + 1) + κ4MT + κ5M

2
T .

Due to the electromagnetic interaction, discussed previously, M is not scalar
in isospin, but contains also isospin vector and tensor terms. Similarly, one
assumes the strong interaction to have a certain tensor character under SU(3)
and this leads to a relation between the coefficients κ2 and κ3 and results in
the Gell-Mann–Okubo mass-splitting formula [30, 31, 32],

E′(Y, T,MT ) = κ0 + κ1Y + κ3

(
T (T + 1) − 1

4

)
+ κ4MT + κ5M

2
T .

The process of successive symmetry breakings is illustrated in Fig. 1.4 with
the example of the SU(3) octet (λ, μ) = (1, 1), containing the neutron, the
proton and the Λ, Σ and Ξ baryons.

1.2.3 Particle-Number Non-conserving Dynamical Algebras

The hamiltonians constructed from the unitary generators uij necessarily
conserve particle number since that is so for the generators themselves. In
many cases (involving, e.g., virtual particles, effective phonon-like excita-
tions. . . ) no particle-number conservation can be imposed and a more gen-
eral formalism is required. Another justification for such generalizations is
that the strategy outlined in Sect. 1.2.2 has the drawback that the dynam-
ical algebra Gdyn can become very large (due a large single-particle space
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Fig. 1.4. Mass spectrum of the SU(3) octet (λ, μ) = (1, 1). The column on the
left is obtained for an exact SU(3) symmetry, which predicts all masses to be the
same, while the next two columns represent successive breakings of this symmetry
in a dynamical manner. The column under SO(2) is obtained with the Gell-Mann–
Okubo mass formula with κ0 = 1112.02, κ1 = −189.576, κ3 = 44.385, κ4 = −3.989
and κ5 = 0.768, in MeV

combined with possible intrinsic quantum numbers such as spin and isospin)
which makes the analysis of the group-theoretical reduction (1.60), and the
associated labeling (1.63) in particular, too difficult to be of practical use. In
some cases the following, more economical, procedure is called for.

In addition to the unitary generators uij , also the operators sij ≡ cicj and
s†ij ≡ c†i c

†
j are considered. [Note that this notation implies s†ij = (sji)†.] We

now show that the set of operators sij and s†ij , added to u′
ij ≡ uij + 1

2 (−)qδij ,
forms a closed algebraic structure. Since the operators uij and u′

ij differ by
a constant only, they satisfy the same commutation relations (1.59), and in
the same way it can be shown that

[u′
ij , skl] = −skjδil − sjlδik, [u′

ij , s
†
kl] = s†ilδjk + s†kiδjl. (1.65)

The commutator of sij with s†kl is more complicated and leads to the following
result, valid for both fermions and bosons:

[sij , s
†
kl] = (−)qu′

liδjk + (−)qu′
kjδil + u′

kiδjl + u′
ljδik. (1.66)

The modification uij → u′
ij is thus necessary to ensure closure of the commu-

tator (1.66). The set {u′
ij , sij , s

†
ij} contains n(2n+1) or n(2n−1) independent

generators for bosons or fermions, respectively. From dimensionality (but also
from the commutation relations) it can be inferred that the respective Lie
algebras are Sp(2n) and SO(2n).
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It is clear that these algebras can be used to construct number non-
conserving hamiltonians. However, the addition of the pair creation and an-
nihilation operators enlarges rather than diminishes the dimension of the
dynamical algebra and does not lead to a simplification of the algebraic struc-
ture of the problem. The latter can be achieved by considering specific linear
combinations

U(ᾱ) ≡
∑
ij

αijuij , S+(β̄) ≡
∑
ij

βijs
†
ij , S−(β̄) ≡

(
S+(β̄)

)†
, (1.67)

where the coefficients αij and βij are chosen to ensure closure to a subalgebra
of either Sp(2n) or SO(2n).

This procedure will not be formally developed further here. We note that,
among the nuclear models, several examples are encountered that illustrate
the approach, such as the SU(2) quasi-spin algebra (Sect. 2.1.1) or the SO(8)
algebra of neutron–proton pairing (Sect. 4.1).

1.2.4 Superalgebras

To conclude the mathematical methods discussed in this chapter, we now in-
troduce the concept of superalgebra, which generalizes the algebras discussed
in the previous sections and which is intimately related to supersymmetry.

In Sect. 1.2.2 it is shown that classical Lie algebras can be realized in
terms of either bosons or fermions. Although they obey different statistics
with different (anti-)commutation properties (1.51) and (1.52) for the particle
creation and annihilation operators, the bilinear products of these operators
have the same closure property (1.59). If we introduce the notation ubb

ij ≡ b†i bj

for bosons and uff
ij ≡ a†

iaj for fermions, the closure property can be written as

[ubb
ij , ubb

kl ] = ubb
il δjk − ubb

kj δil, [uff
ij , u

ff
kl] = uff

ilδjk − uff
kjδil. (1.68)

This shows that the bosons (fermions) define the unitary Lie algebra UB(n)
[UF(m)] where n (m) is the number of single-particle states that can be oc-
cupied by the bosons (fermions). Note that we have added a superscript B or
F to indicate the bosonic or fermionic origin of the algebras. Since the boson
and fermion operators commute,

[ubb
ij , uff

kl] = 0, (1.69)

the set of operators {ubb
ij , uff

kl} define the direct product algebra

UB(n) ⊗ UF(m), (1.70)

which is the dynamical algebra for the combined boson–fermion system.
As shown in Sect. 1.2.2, the hamiltonian (1.57) of a boson, fermion or

boson–fermion system can be built from the bilinear products or generators
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of the corresponding dynamical algebras and separately conserves the boson
and fermion numbers. The question arises as to whether one may define a
generalized dynamical algebra where cross terms of the type b†iaj or a†

jbi are
included and, if so, what are the consequences of this generalization. From
the standpoint of fundamental processes, where bosons correspond to forces
(i.e., photons, gluons,. . . ) and fermions to matter (i.e., electrons, nucleons,
quarks,. . . ), it may seem strange at first sight to consider symmetries that
mix such intrinsically different particles. However, there have been numerous
applications of these ideas over the last decades. These symmetries—known
as supersymmetries—have given rise to schemes which hold promise in quan-
tum field theory in regards to the unification of the fundamental interactions
[33, 34, 35, 36]. In a different context, the consideration of such ‘higher’
symmetries in nuclear structure physics has provided a unification of the
spectroscopic properties of neighboring nuclei [37], as we shall explain in the
subsequent chapters of this book. We emphasize that, although similarities
exist between these applications of supersymmetry, an important difference
is that the bosons in particle physics are elementary, while they are com-
posite in nuclear physics. With this in mind, we consider the effects on the
UB(n) ⊗ UF(m) model arising from embedding its dynamical algebra into a
superalgebra.

To illustrate the concept of a superalgebra, we consider a schematic exam-
ple, consisting of a system formed by a single boson and a single (‘spinless’)
fermion, denoted by b† and a†, respectively. In this case the bilinear products
b†b and a†a each generate a U(1) algebra. Taken together, these generators
conform the

UB(1) ⊗ UF(1) (1.71)

dynamical algebra. Let us now consider the introduction of the mixed terms
b†a and a†b. Computing the commutator of these operators, we find

[a†b, b†a] = a†bb†a − b†aa†b = a†a − b†b + 2b†ba†a,

which does not close into the original set {a†a, b†b, a†b, b†a}. This means that
the inclusion of the cross terms does not lead to a Lie algebra. We note,
however, that the bilinear operators b†a and a†b do not behave like bosons
but rather as fermions, in contrast to a†a and b†b, both of which have bosonic
character (in the sense that, e.g., a†

iaj commutes with a†
kal). This suggests

the separation of the generators in two sectors, the bosonic sector a†a and
b†b and the fermionic sector a†b and b†a. Computing the anti-commutators
of the latter, we find

{a†b, a†b} = 0, {b†a, b†a} = 0, {a†b, b†a} = a†a + b†b, (1.72)

which indeed close into the same set. The commutators between the bosonic
and the fermionic sectors give

[a†b, a†a] = −a†b, [b†a, a†a] = b†a,

[a†b, b†b] = a†b, [b†a, b†b] = −b†a.
(1.73)
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The operations defined in (1.72) and (1.73), together with the (in this case)
trivial UB(1) ⊗ UF(1) commutators

[a†a, a†a] = [b†b, b†b] = [a†a, b†b] = 0, (1.74)

define the graded or superalgebra U(1/1). To maintain the closure prop-
erty for the enlarged set of generators belonging to the boson and fermion sec-
tors, we are thus forced to include both commutators and anti-commutators
in the definition of a superalgebra.

In general, superalgebras then involve boson sector generators ub
i and

fermion sector generators uf
j , satisfying the generalized relations

[ub
i , ub

j ] =
∑

k

ck
iju

b
k, [ub

i , uf
j ] =

∑
k

dk
iju

f
k, {uf

i, u
f
j} =

∑
k

ek
iju

b
k, (1.75)

where ck
ij , dk

ij and ek
ij are complex constants defining the structure of the

superalgebra, hence their denomination as the structure constants of the
superalgebra [38]. We shall only be concerned in this book with superalgebras
of the form U(n/m), where n and m denote the dimensions of the boson and
fermion subalgebras UB(n) and UF(m).

1.3 The Algebraic Approach

We have seen in this chapter how the invariance of the hamiltonian of a given
system leads to the labeling of its quantum-mechanical states. As was illus-
trated with several examples, the existence of a symmetry or, equivalently,
the goodness of its associated quantum numbers can be tested experimentally
via selection rules in various processes.

This methodology to make use of symmetries to solve or simplify quantal
many-body problems is also known as the algebraic approach. It makes use
of dynamical symmetries to compute energy eigenvalues but it goes further
in order to describe all relevant aspects of a system in purely algebraic terms.
We conclude this chapter by indicating the steps that are typically followed
in an algebraic solution:

1. A given system is described in terms of a dynamical algebra G1 which
spans all possible states in the system within a fixed irreducible represen-
tation. The choice of this algebra is often dictated by physical consider-
ations (such as the quadrupole nature of collective nuclear excitations).

2. The hamiltonian and all other operators in the system (e.g., for elec-
tromagnetic transitions) should be expressed in terms of the generators
of the dynamical algebra. Since the matrix elements of the generators
can be evaluated from the commutation properties of the dynamical al-
gebra, this implies that all observables of the system can be calculated
algebraically.
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3. The appropriate bases for the computation of matrix elements are sup-
plied by the dynamical symmetries of the system. The enumeration of
all dynamical symmetries proceeds through the construction of chains of
nested algebras G1 ⊃ G2 ⊃ · · · starting from the dynamical algebra.

4. Branching rules for the different algebra chains as well as eigenvalues of
their Casimir operators need to be evaluated to determine the character
of the dynamical symmetries and their associated energy eigenvalues. All
results thus obtained are analytic but for the occurrence of missing labels
in the branching rules.

5. In a dynamical symmetry the wave function of an eigenstate does not
depend on its energy. This leads to stringent selection rules and analytic
predictions for transition matrix elements between eigenstates that can
be experimentally verified.

6. When several algebra chains containing the symmetry algebra are present
in the system, the hamiltonian will in general not be diagonal in any given
chain but rather include invariant operators of all possible subalgebras. In
that case the hamiltonian should be diagonalized in one of the bases. Dy-
namical symmetries are still useful as limiting cases where all observables
can be analytically determined.



2 Symmetry in Nuclear Physics

While in the previous chapter symmetry techniques were presented from
a general perspective with potential applications in all fields of quantum
physics, in this chapter we turn our attention to atomic nuclei. Symmetry
considerations have played an important role in nuclear physics, starting from
the birth of the discipline, and have continued to do so throughout its develop-
ment. A comprehensive overview of all such applications would be a gargan-
tuan task and no attempt at that is made here. Our aim is rather to present
in this chapter some of the most important developments of symmetry-based
models in nuclear physics (including early ones) from a modern and coherent
perspective. The early models are due to Wigner, Racah and Elliott and can
be considered as precursors to the more modern ones such as the interacting
boson model of Arima and Iachello.

Nuclear models based on symmetry concepts can be separated rather
naturally into two groups. In the first, a nucleus is considered as a system
of interacting neutrons and protons, that is, fermions. This is nothing but
the nuclear shell model which is taken here as the starting point for the de-
scription of a nucleus. In the first part of this chapter we discuss the two
types of shell-model hamiltonian that can be solved analytically with the
techniques of Chap. 1, namely those with pairing and those with quadrupole
interactions. In the second group of symmetry-based models, a nucleus is
treated as a system of interacting bosons which are of composite character
and represent correlated pairs of nucleons. The choice of the different bosons
is dictated by the nature of the nucleonic interactions and also depends on the
particular nucleus that is considered, as is discussed in Sect. 2.2. Throughout
this chapter we pay particular attention to the connections that can be es-
tablished via symmetry techniques between the nuclear shell model and the
interacting boson model. We close the chapter with a detailed study of the
nucleus 112Cd in Sect. 2.3 which illustrates how such symmetries are studied
experimentally.

2.1 The Nuclear Shell Model

The structure of the atomic nucleus is determined, in first approximation, by
the nuclear mean field, the average potential felt by one nucleon through
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the interactions exerted by all others. This average potential is responsible
for the shell structure of the nucleus. For a description that goes beyond
this most basic level, the residual interaction between nucleons must be
taken into account and what usually matters most for nuclear structure at
low energies is the residual interaction between nucleons in the valence shell.
This interaction depends in a complex fashion on the numbers of valence
neutrons and protons and the valence orbits available.

Many of the basic features of the structure of nuclei can be derived from a
few essential characteristics of the nuclear mean field and the residual inter-
action. A schematic nuclear hamiltonian that grasps these essential features
is of the form

H =
A∑

k=1

(
p2

k

2mn
+

1
2
mnω2r2

k + ζlll
2
k + ζlslk · sk

)
+

A∑
1≤k<l

Vri(ξk, ξl), (2.1)

where k, l run from 1 to A, the number of nucleons in the nucleus, ξk is a
short-hand notation for the spatial coordinates, spin and isospin variables
of nucleon k, ξk ≡ {rk, sk, tk} and mn is the nucleon mass. The first term
in (2.1) is the kinetic energy of the A nucleons. The second term is a harmonic-
oscillator potential with frequency ω which is a first-order approximation to
the nuclear mean field [28]. The choice of a more realistic nuclear mean field
(e.g., a Woods–Saxon potential) leads to a different radial dependence of the
single-particle wave functions and, in particular, it does not display the degen-
eracy of states with different orbital angular momentum l in the same major
shell, characteristic of a harmonic oscillator. This deficiency of the harmonic-
oscillator potential can be softened by adding an l2 orbit–orbit term which
lifts this degeneracy. The last one-body term in (2.1) corresponds to a spin–
orbit coupling in the nucleonic motion. The assumption of its existence pro-
vided the decisive step in the development of the nuclear shell model [39, 40]
since it led to a natural explanation of the observed shell structure of nuclei
and their ‘magic’ numbers and to concept of core and valence nucleons (i.e.,
nucleons that occupy the outer most shells). The last term in (2.1) is the
residual two-body interaction which, in principle, depends in a complicated
way on the average one-body potential as well as on the valence space avail-
able to the nucleons. In this sense it is an effective interaction. Very often
either a realistic or a schematic interaction is taken; for the former one adopts
matrix elements adjusted to the data, while for the latter the interaction is
assumed to have a simple spatial form and one calculates its matrix elements
in a harmonic-oscillator basis.

If the single-particle energy spacings are large in comparison with a typ-
ical matrix element of the residual interaction, nucleonic motion is indepen-
dent and the shell model of independent particles results. In this case the
hamiltonian (2.1) has uncorrelated many-particle eigenstates that are Slater
determinants constructed from the single-particle wave functions of the har-
monic oscillator. If the residual interaction cannot be neglected, a genuine
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many-body problem results which is much harder to solve. Interestingly, two
types of residual interaction exist—pairing and quadrupole—which allow an
analytic solution and which have found fruitful application in nuclear physics.

The attractive, short-range nature of the residual interaction has far-
reaching consequences. In the extreme short-range limit of a delta interac-
tion δ(r1 − r2), the many-body nuclear wave function conserves total orbital
angular momentum L and total spin S, besides total angular momentum
J associated with rotational invariance. This classification (LS or Russell–
Saunders coupling) is badly broken by the spin–orbit term in the nuclear
mean field. The conflicting tendency between the short-range character of
the residual interaction, which favors LS coupling, and the spin–orbit term
in the average potential, which leads to a jj-coupled classification, is a cru-
cial element in the structural determination of the nucleus. This conflict was
recognized and studied in the early days of the nuclear shell model [41]. The
generally accepted conclusion is that, while the LS classification is appropri-
ate for very light nuclei, with increasing mass it is gradually replaced by jj
coupling which is relevant for the vast majority of nuclei [42].

The second important feature that determines the structure of the nucleus
is the number of neutrons and protons in the valence shell. The residual
interaction between identical nucleons has a pairing character which favors
the formation of pairs of nucleons in time-reversed orbits. This is no longer
true when the valence shell contains both neutrons and protons, in which case
the interaction acquires an important quadrupole component. Hence, nuclei
display a wide variety of spectra, from pairing-type toward rotational like.
The evolution from one type to the other is governed by the product nnnp of
neutron and proton numbers in the valence shell [43].

In summary, the gross structure of nuclei is determined by (i) the com-
petition between residual interaction and shell structure, (ii) the strength of
the short-range interaction versus the spin–orbit term in the mean field and
(iii) the balance between pairing and quadrupole interactions.

2.1.1 The SU(2) Pairing Model

The residual interaction among the valence nucleons is assumed to have a
pairing character. Thus, for example, in a single j shell one considers an
interaction which is attractive for two particles coupled to angular momentum
J = 0 and zero otherwise,

〈j2JMJ |Vpairing|j2JMJ 〉 = −1
2
(2j + 1)g0δJ0, (2.2)

where g0 is a (positive) strength parameter. This is a reasonable, albeit
schematic, approximation to the residual interaction between identical nu-
cleons and hence can only be appropriate in semi-magic nuclei. The pair-
ing interaction is illustrated in Fig. 2.1 for the nucleus 210Pb which can be
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Fig. 2.1. Observed [44] energy spectrum of 210Pb (left), and the corresponding
spectra for a delta (middle) and for a pairing interaction (right). Levels are labeled
by their angular momentum and parity Jπ

described as two neutrons in a 1g9/2 orbit outside the doubly magic 208Pb
inert core.

The shell-model hamiltonian with a two-body pairing interaction can be
diagonalized analytically in a space of n identical fermions in a single j shell.
This can be shown in a variety of ways but one elegant derivation relies on
the existence of an SU(2) symmetry of the pairing hamiltonian [45]. In second
quantization, the pairing interaction is written as

Vpairing = −g0S
j
+Sj

− (2.3)

with
Sj

+ =
1
2

√
2j + 1 (a†

j × a†
j)

(0)
0 , Sj

− =
(
Sj

+

)†
, (2.4)

where a†
jm creates a particle in orbit j with projection m. The commutator

of Sj
+ and Sj

− leads to the operator

Sj
z =

1
4

⎛
⎝ j∑

m=−j

2a†
jmajm − 2j − 1

⎞
⎠ =

1
4
(2nj − 2j − 1). (2.5)

The operator Sj
z equals, up to a constant, nj which counts the number of

particles in orbit j. The resulting three operators close under commutation:

[Sj
z , Sj

±] = ±Sj
±, [Sj

+, Sj
−] = 2Sj

z . (2.6)

This shows that the set of operators {Sj
z , Sj

±} forms an SU(2) algebra, which
is referred to as the quasi-spin algebra. Because of this relation with the
quasi-spin SU(2) algebra, the pairing hamiltonian can be solved analytically.
From the commutation relations (2.6) it follows that

Sj
+Sj

− =
(
Sj
)2 − (Sj

z

)2
+ Sj

z , (2.7)
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which shows that the pairing hamiltonian can be written as a combination
of Casimir operators belonging to

SU(2) ⊃ SO(2) ≡ {Sz}
↓ ↓
S MS

. (2.8)

The associated eigenvalue problem can be solved instantly with the tech-
niques of Chap. 1 which yield the energy expression

E(S,MS) = −g0 [S(S + 1) − MS(MS − 1)] . (2.9)

The quantum numbers S and MS can be put in relation to the more usual
ones of seniority v, introduced by Racah [46], and (valence) particle num-
ber n,

S =
1
4
(2j − 2v + 1), MS =

1
4
(2n − 2j − 1), (2.10)

leading to the well-known energy expression of the seniority model [47],

E(n, v) = −g0

4
(n − v)(2j − n − v + 3). (2.11)

By repeated action of Sj
+ on a state with n = v, it can be shown that the

seniority quantum number v corresponds to the number of nucleons not in
pairs coupled to angular momentum zero.

A generalization of these concepts concerns that toward several orbits.
In case of degenerate orbits this can be achieved by making the substitution
Sj

+ �→ S+ ≡
∑

j Sj
+ which leaves all previous results such as the algebraic

structure (2.6) unchanged. The ensuing formalism can then be applied to
semi-magic nuclei but, since it requires the assumption of a pairing interaction
with degenerate orbits, its applicability is limited.

A more generally valid model is obtained if one imposes the following
condition on the shell-model hamiltonian:

[[H,S0
+], S0

+] = Δ
(
S0

+

)2
, (2.12)

where S0
+ creates the lowest two-particle eigenstate of H and Δ is a constant.

This condition of generalized seniority, derived by Talmi [48], is much weaker
than the assumption of a pairing interaction and, in particular, it does not
require that the commutator [S0

+, S0
−] yields (up to a constant) the number

operator which is central to the quasi-spin formalism. In spite of the absence
of a closed algebraic structure, it is still possible to compute the exact ground-
state eigenvalue of hamiltonians satisfying 2.12.

The concepts of seniority and quasi-spin have found repeated application
in nuclear physics and have been the subject of fruitful generalizations. An
important extension concerns the seniority classification of neutron–proton
systems which is presented in Sect. 4.1.

The discussion of pairing correlations in nuclei traditionally has been in-
spired by the treatment of superfluidity in condensed matter. The superfluid
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phase in the latter systems is characterized by the presence of a large number
of identical bosons in a single quantum state. In superconductors the bosons
are pairs of electrons with opposite momenta that form at the Fermi surface.
The character of the bosons in nuclei can be understood from the structure
of the ground state of a pairing hamiltonian which, for even–even nuclei, is
given by (S+)n/2|o〉, where |o〉 is the vacuum state for the S pairs. In nuclei
the bosons are thus pairs of valence nucleons with opposite angular momenta.

Condensed-matter superfluidity (and associated superconductivity) was
explained by Bardeen, Cooper and Schrieffer [49] and the resulting BCS the-
ory has strongly influenced the discussion of pairing in nuclei [50], in partic-
ular as regards the problem of pairing of nucleons in non-degenerate orbits.
Nevertheless, the approximations made in BCS theory are less appropriate
for nuclei since the number of nucleons is comparatively small. An exact
method to solve the problem of particles distributed over non-degenerate
levels interacting through a pairing force was proposed a long-time ago by
Richardson [51] based on the Bethe ansatz [52]. Surprisingly, this method
passed almost unnoticed despite its potential impact. Only recently Richard-
son’s work has been properly recognized as well as generalized to other classes
of integrable pairing models [53].

As an illustration of Richardson’s approach, we supplement the pairing
interaction (2.3) with single-particle energies to obtain the following hamil-
tonian:

H =
∑

j

εjnj − g0S+S− =
∑

j

εjnj − g0

∑
j

Sj
+

∑
j′

Sj′

− , (2.13)

where nj is the number operator for orbit j, εj is its single-particle energy
and S+ =

∑
j Sj

+. The solvability of the hamiltonian (2.13) arises as a result
of the symmetry SU(2)⊗SU(2)⊗ · · · where each SU(2) algebra pertains to a
specific j. Whether the solution of (2.13) can be called superfluid depends on
the differences εj − εj′ in relation to the strength g0. In all cases the solution
is known in closed form for all possible choices of εj .

Solution of the Richardson model. An exact solution of the eigenvalue prob-
lem associated with the pairing hamiltonian in non-degenerate orbits,
H =

∑
j εjnj − g0S+S−, is known in general. It is instructive to analyze

first the case of n = 2 particles because it gives insight into the struc-
ture of the general problem. The two-particle, J = 0 eigenstates can be
written as

Sx
+|o〉 =

∑
j

xjS
j
+|o〉,

with xj coefficients that are to be determined from the eigenequation

HSx
+|o〉 = ESx

+|o〉,
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where E is the unknown eigenenergy. With some elementary manipulations
this can be converted into the secular equation

2εjxj − g0

∑
j′

Ωj′xj′ = Exj ,

from which the following expression for the coefficients xj can be deduced:

xj =

⎛
⎝∑

j′

Ωj′xj′

⎞
⎠ g0

2εj − E
,

with Ωj = j + 1/2. This is still not an explicit solution since xj occurs at
both sides of the equation. However, since we are interested in xj up to a
normalization constant N only, we can write

xj = N g0

2εj − E
.

If the eigenenergy E is known, one thus finds the corresponding eigenstate
(up to a normalization factor)⎛

⎝∑
j

1
2εj − E

Sj
+

⎞
⎠ |o〉.

The eigenenergy E can be found by substituting the solution for xj into
the secular equation, leading to

∑
j

Ωj

2εj − E
=

1
g 0

.

This equation can be solved graphically which is done in Fig. 2.2
for a particular choice of single-particle energies εj , degeneracies Ωj and
pairing strength g0. The single-particle orbits and their energies are given in

10
E

-10

10

y (E)

Fig. 2.2. Graphical solution of the Richardson equation for n = 2 fermions
distributed over s = 5 single-particle orbits. The sum

∑
j
Ωj/(2εj −E) ≡ y(E) is

plotted as a function of E; the intersections of this curve with the line y = 1/g0

(dots) then correspond to the solutions of the Richardson equation
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Table 2.1. Single-neutron energies (in MeV) in the tin isotopes

2d5/2 1g7/2 3s1/2 2d3/2 1h11/2

εj 0.00 0.44 3.80 4.40 5.60
Ωj 3 4 1 2 6

Table 2.1 and the pairing strength is g0 = 0.19 MeV. This is an appropri-
ate set of values for the tin isotopes with Z = 50 protons and neutrons
distributed over the 50–82 shell. In the case of two particles coupled to
angular momentum J = 0 there are as many eigenstates as there are single-
particle orbits. This property is, of course, not generally valid for n �= 2.
In the limit g0 → ±0 of weak pairing interaction, the solutions E → 2εj

are obtained, as should be. Of more interest is the limit of strong pairing,
g0 → +∞. From the graphical solution we see that in this limit there is one
eigenstate of the pairing hamiltonian which lies well below the other eigen-
states with approximately constant amplitudes xj since for that eigenstate
|E| � 2|εj |. Hence, in the limit of strong pairing one finds a low-lying J = 0
two-particle ground state which can be approximated as

Sc
+|o〉 ≈

√
1
Ω

∑
j

Sj
+|o〉,

where Ω =
∑

j Ωj . Because of this property this state is often referred to as
the collective S state, in the sense that all single-particle orbits contribute
equally to its structure.

This result can be generalized to n particles, albeit that the general
solution is more complex. On the basis of the two-particle problem one
may propose, for an even number of particles n, a ground state of the
hamiltonian (2.13) of the form (up to a normalization factor)

n/2∏
α=1

⎛
⎝∑

j

1
2εj − Eα

Sj
+

⎞
⎠ |o〉,

which is known as the Bethe ansatz [52]. Each pair in the product is defined
through coefficients xj = (2εj − Eα)−1 in terms of an energy Eα depend-
ing on α which labels the n/2 pairs. This product indeed turns out to be
the ground state provided the Eα are solutions of n/2 coupled, non-linear
equations

∑
j

Ωj

2εj − Eα
−

n/2∑
β( �=α)

2
Eβ − Eα

=
1
g 0

, α = 1, . . . , n/2,
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known as the Richardson equations [51]. Note the presence of a second
term on the left-hand side with differences of the unknowns Eβ − Eα in
the denominator, which is absent in the two-particle case. In addition, the
energy of the corresponding state is given by

n/2∑
α=1

Eα.

The Richardson equations can be derived from the Bethe ansatz for any
eigenstate of the hamiltonian (2.13). A characteristic feature of the Bethe
ansatz is that it no longer consists of a superposition of identical pairs since
the coefficients (2εj − Eα)−1 vary as α runs from 1 to n/2. Richardson’s
model thus provides a solution that covers all possible hamiltonians (2.13),
ranging from those with superfluid character to those with little or no pair-
ing correlations [54].

The Box on the Solution of the Richardson model presents a discussion
of the generalized pairing hamiltonian (2.13) with an explicit solution in the
two-particle case with elementary methods which is then generalized to n �= 2.

Example: Two-nucleon separation energies in the tin isotopes. Evidence for pair-
ing correlations among identical nucleons has several aspects and is well doc-
umented [47]. Good pairing indicators are nucleon separation energies. The
two-neutron separation energy, for example, is defined as

S2n(N,Z) = B(N,Z) − B(N − 2, Z),

where B(N,Z) denotes the ground-state binding energy of a nucleus with N
neutrons and Z protons. In some simple approximation the binding energy
of the ground state of a semi-magic nucleus can be related to the pairing
interaction energy among its valence nucleons. For the exact superfluid case
of several degenerate orbits, this leads to the following result for the difference
of two-nucleon separation energies:

S2n(N,Z) − S2n(N − 1, Z) = −g0,

that is, the two-nucleon separation energy varies linearly as a function of
nucleon number. For a system of identical nucleons occupying a set of non-
degenerate single-particle levels as shown on the left of Fig. 2.3, the complete
absence of pairing correlations (g0 = 0) would lead to a staircase behavior
of S2n as a function of N (see Fig. 2.3a). The other extreme, strong pairing
correlations among nucleons distributed over closely spaced single-particle
levels, is represented in Fig. 2.3b which shows a smooth decrease of S2n as
the nucleon number increases. Figure 2.3c shows the two-neutron separation
energies measured in the tin isotopes, as a function of neutron number. As far
as the 50–82 shell is concerned, the data are consistent with the superfluid
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Fig. 2.3. The two-nucleon separation energy S2n as an indicator of pairing. If
there are no pairing correlations among the nucleons occupying the levels shown on
the left , the separation energy, as a function of nucleon number, behaves as in (a).
Superfluidity leads to the behavior shown in (b). The observed [55] two-neutron
separation energies in (c) show that the superfluid solution is appropriate for the
tin isotopes with active neutrons in the 50–82 shell

solution. At N = 82 a large jump in S2n is observed. This indicates that
pairing correlations are confined to the 50–82 shell.

In addition to the applications discussed so far (all related to pair-
ing), SU(2) has been repeatedly used as a quasi-spin algebra but in dif-
ferent contexts. The most noteworthy example in nuclear physics is the
Lipkin–Meshkov–Glick (LMG) model [56] which considers two levels (as-
signed σ = − and σ = +) each with degeneracy Ω over which n particles
are distributed. In terms of the creation and annihilation operators a†

mσ and
amσ, m = 1, . . . , Ω, σ = ±, it can be shown that the operators

K+ =
∑
m

a†
m+am−, K− = (K+)† , Kz =

1
2
(n+ − n−), (2.14)

form an SU(2) algebra. The hamiltonian

H = εKz +
1
2
υ(K+K− + K−K+) +

1
2
ω(K2

+ + K2
−), (2.15)

can, with use of the underlying SU(2) algebra, be solved analytically for
certain values of the parameters ε, υ and ω. These have a simple physical
meaning: ε is the energy needed to promote a particle from the − to the +
level, υ is the strength of the interaction that mixes configurations with the
same numbers of particles n− and n+, and ω is the strength of the interaction
that mixes configurations differing by two in these numbers. The LMG model
has thus three ingredients (albeit in schematic form) that are of importance
in determining the structure of nuclei: an interaction υ between the nucleons
in a valence shell, the possibility to excite nucleons from the valence shell
into a higher shell at the cost of an energy ε and an interaction ω that mixes
these particle–hole excitations with the valence configurations. With these
ingredients the LMG model has played an important role as a testing ground
of various approximations proposed in nuclear physics.
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2.1.2 The SU(3) Rotation Model

In the early days of nuclear physics, nuclei with a rotational-like spectrum
were interpreted either with the liquid drop model of Bohr and Mottelson [57]
(see Box on The collective model of nuclei) or with a deformed single-particle
shell model of Nilsson [58]. An understanding of rotational phenomena in
terms of the spherical shell model, however, was lacking. Elliott’s SU(3)
model [59] provides such an understanding from a symmetry perspective.
Since SU(3) is based on Wigner’s supermultiplet model, we begin with a
discussion of the latter.

The collective model of nuclei. Among the historically most important models
of nuclear structure is the collective model developed by Bohr and Mottel-
son [57], which complements the shell model by including motions of the
whole nucleus such as rotations and vibrations. The origin of the collec-
tive model goes back to the liquid drop model (LDM), which considers
the nucleus as a very dense quantum liquid in which fundamental nuclear
properties—such as its binding energy—are described in terms of volume
and surface energy, or compressibility, which are macroscopic concepts usu-
ally associated with a liquid. This model has been useful in describing how
a nucleus deforms and undergoes fission [60].

The collective model emphasizes the coherent behavior of many nu-
cleons, including quadrupole and higher-multipole deformations, as well as
rotations and vibrations that involve the entire nucleus. It can be viewed
as an extension of the LDM and has been shown also to be an appropriate
starting point for the analysis of fission. Very generally, the nuclear surface
can be expressed as a sum over spherical harmonics [61, 62]

R = R0

[
1 +
∑

μ

αλμY ∗
λμ(θ, φ)

]
,

where the αλμ can be considered as (time dependent) variables that deter-
mine the shape of the nuclear surface. For particular choices of λ different
shapes are obtained. This is illustrated in Fig. 2.4 where the quadrupole
case (λ = 2) is shown with or without axial symmetry (prolate, oblate
and triaxial) as well as an example of octupole (λ = 3) and hexadecapole
(λ = 4) deformation. For the dominant quadrupole deformations with λ = 2
a corresponding hamiltonian can be written as

H = T + V =
1

2B

∑
μ

(π2μ)2 +
1
2
C
∑

μ

(α2μ)2 ,

where π2μ is the momentum variable associated with α2μ, π2μ = Bα̇2μ,
with B the mass parameter and C the restoring force. This represents a
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triaxial octupole hexadecapole

spherical prolate oblate

Fig. 2.4. Surfaces and their dependence on the variables αλμ. The cases shown
are (i) spherical (all αλμ are zero); (ii) prolate (α20 > 0); (iii) oblate (α20 < 0);
(iv) triaxial (α20 �= 0 and α2±2 �= 0); (v) octupole (α30 �= 0) and (vi) hexadecapole
(α40 �= 0)

five-dimensional harmonic oscillator in the collective variables α2μ as can
be seen by differentiating H with respect to time,

B
d2α2μ

dt2
+ Cα2μ = 0.

This is indeed the differential equation for a harmonic oscillator and, for
each α2μ, the oscillations have the frequency ω =

√
C/B and its vibrational

energy is h̄ω. The quantization of this hamiltonian and the introduction of
intrinsic coordinates (β, γ) and the Euler angles (ϑi, i = 1, 2, 3) lead to the
well-known form of the Bohr–Mottelson hamiltonian:

H = − h̄2

2B

[
1
β4

∂

∂β
β4 ∂

∂β

+
1
β2

(
1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
− 1

4

∑
κ

L′
κ
2

sin2(γ − 2πκ/3)

)]
+ β2,

where L′
κ are the components of the angular momentum in the intrinsic

frame of reference. The general solutions of this equation were found by
Chacón et al. [63] and by Chacón and Moshinsky [64]. These eigenfunctions
can be used as a complete basis for the diagonalization of general potentials
of the form V (β, γ) [65]. The rotational part transforms this solution to the
laboratory frame and is associated with Wigner’s D-functions [10]. The
potential V (β, γ) can be displayed in the (β, γ) plane as contour plots, and
an illustration is shown in Fig. 2.5.

The collective model and its extensions have been very successful in
describing a wide variety of nuclear properties, especially energy levels
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in nuclei with an even number of protons and neutrons. These energy
levels show the characteristics of rotating or vibrating systems expected
from quantum mechanics. Commonly measured properties of these nuclei,

Fig. 2.5. Illustration of a V (β, γ) potential in the (β, γ) plane. Symmetry consid-
erations require that the entire potential is specified by the domain 0 ≤ γ ≤ π/3

including broad systematics of excited state energies, angular momentum,
magnetic moments and nuclear shapes, can be understood from the collec-
tive model.

Recently, symmetry arguments were introduced in the collective model
leading to so-called critical-point symmetries [66, 67]. These symmetries
are outside the scope of this book and the interested reader may consult
Ref. [68] for a review.

The nuclear shell model and the collective model represent extreme
forms of behavior of nucleons in a nucleus, where the former stresses the
single-particle character of the nucleons, while the latter idealizes their
coherent motion. A great deal of work has been accomplished in nuclear
physics (such as Elliott’s SU(3) scheme or Arima and Iachello’s boson
model) with the purpose to reconcile these seemingly conflicting views of
the nucleus.

Wigner’s supermultiplet model [16] assumes nuclear forces to be in-
variant under rotations in spin as well as isospin space. This invariance is
expressed by the following commutation relations:

[H,Sμ] = [H,Tμ] = [H,Yμν ] = 0, (2.16)

where

Sμ =
A∑

k=1

sμ(k), Tμ =
A∑

k=1

tμ(k), Yμν =
A∑

k=1

sμ(k)tν(k), (2.17)



42 2 Symmetry in Nuclear Physics

are the spin, isospin and spin–isospin operators, in terms of sμ(k) and tμ(k),
the spin and isospin components of nucleon k. The 15 operators (2.17)
generate the Lie algebra SU(4). According to the discussion in Chap. 1,
any hamiltonian satisfying the conditions (2.16) has SU(4) symmetry, and
this in addition to symmetries associated with the conservation of total spin
S and total isospin T .

To obtain a qualitative understanding of SU(4) symmetry, it is instruc-
tive to analyze the case of two nucleons in an oscillator shell. Total anti-
symmetry of the wave function requires that the spatial part is symmetric
and the spin–isospin part anti-symmetric or vice versa. Both cases correspond
to a different symmetry under SU(4), the first being anti-symmetric and the
second symmetric. The symmetry under a given algebra can characterized by
the so-called Young diagram (see Box on Permutation symmetry and Young
diagrams). For two particles the anti-symmetric configuration is denoted as
[1, 1], while the symmetric one is written as [2, 0].

Permutation symmetry and Young diagrams. Systems of A identical parti-
cles are invariant with respect to the permutations Pij that exchange all
coordinates of the two particles i and j. As a consequence the hamilto-
nian is invariant under the permutation group SA and its eigenstates can
be classified according to the irreducible representations of that group. If
the constituent particles are fermions, such as is the case for the atomic
nucleus, any physical state must be completely anti-symmetric. If nothing
else is known of the system’s hamiltonian than its invariance with respect
to Pij , not much further can be learned from permutation symmetry. In
many cases, however, a quantum-mechanical system may exhibit an invari-
ance, albeit approximate, under the exchange of part of the coordinates of
two particles i and j. For example, the nuclear interaction is to a good
approximation charge independent. As a result, and if furthermore the ef-
fects of the Coulomb interaction are neglected, the nuclear hamiltonian can
be assumed invariant under the exchange P t

ij of only the isobaric coor-
dinates of particles i and j (see the discussion of isospin in Sect. 1.1.6).
Likewise, although this is a much more questionable hypothesis, one may
impose invariance under the exchange P s

ij of only the spin coordinates of
particles i and j. The additional symmetries, associated with the invari-
ance with respect to permutations that act on a partial set of the nu-
cleons’ coordinates, can be used to devise additional quantum numbers.
The central idea is that while all eigenstates must be completely anti-
symmetric or completely symmetric under Pij , for fermions or bosons, re-
spectively, this is not necessarily the case for permutations such as P t

ij or
P s

ij and their symmetry character under such partial permutations can be
exploited to yield additional labels.

The symmetry type under (total or partial) permutations is specified
by n integers λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 which sum to A and where n is the
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number of single-particle states (see Sect. 1.2.1). The symmetry pattern
associated with this series of integers is denoted as [λ1, λ2, . . . , λn] and can
be given a pictorial representation which is referred to as a Young pattern
or diagram. It corresponds to rows of boxes with length λ1, λ2, etc. which
are placed on top of each other, beginning with λ1. For a permutational
symmetry associated with a certain Young diagram basis states can be
specified by placing each of the A particles in a box according to the follow-
ing rule. To each particle we associate a label from 1 to A and we distribute
them over the boxes such that for each row of boxes the particle index
increases from left to right and that for each column of boxes it increases
from top to bottom. The configurations obtained in this way are named
Young tableaux and each of them corresponds to a different state with a
given mixed symmetry, which has been obtained by anti-symmetrizing in
the particles belonging to the same column after having symmetrized in the
particles belonging to the same row (or vice versa).

For complete symmetry the Young diagram reduces to a single row
of A boxes and there is only one Young tableau possible, namely the one
with increasing particle index from left to right. Similarly for complete
anti-symmetry when the Young diagram is a single column of A boxes
(which must be smaller than n because of the Pauli principle) with a sin-
gle associated Young tableau. This illustrates that in the case of overall
(anti-)symmetry all states have an identical permutational character which
cannot therefore be used to distinguish between them. Only when states
have a mixed-symmetry character (i.e., neither completely symmetric nor
anti-symmetric) under a partial permutational symmetry is it possible to
use this feature to label wave functions.

A full and detailed description of the irreducible representations of the
permutation group SA is given by Hamermesh [1]. A particularly clear and
succinct account of the use of Young diagrams in many-particle quantum
physics is given by Lipas (Chap. 2 of Ref. [69]).

This argument can be generalized to an arbitrary number of nucleons
and the result emerges that the SU(4) quantum numbers specify the way
in which the overall anti-symmetry is distributed over the spatial and spin–
isospin parts of the wave function. More formally, the orbital/spin–isospin
decomposition is equivalent to the algebraic reduction

U(4Ω) ⊃ U(Ω) ⊗ U(4)
↓ ↓ ↓

[1n] [f1, f2, f3, f4] [f̄1, f̄2, f̄3, f̄4]
, (2.18)

where Ω denotes the orbital shell size (i.e., Ω = 1, 3, 6, . . . for the s, p,
sd,. . . shells). The U(4) algebra consists of the SU(4) generators (2.17) sup-
plemented with the particle number operator n. The overall anti-symmetry
[1n] of the wave function requires conjugate symmetry under U(Ω) and
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Table 2.2. Classification of one and two particle(s) in the sd shell

n [f1, f2, f3, f4] L [f̄1, f̄2, f̄3, f̄4] (λ, μ, ν) (S, T )

1 [1] 0, 2 [1] (1, 0, 0) (1/2, 1/2)

2 [2, 0] 02, 22, 4 [1, 1] (0, 1, 0) (0, 1), (1, 0)
[1, 1] 1, 2, 3 [2, 0] (2, 0, 0) (0, 0), (1, 1)

U(4), which defines the relation between [f1, f2, f3, f4] and [f̄1, f̄2, f̄3, f̄4]:
they have conjugate Young diagrams [1]. As an example, the symmetry
classification of one and two particles in the sd shell is summarized in
Table 2.2. The table also gives the more commonly used SU(4) labels which
are related to those of U(4) through

λ = f̄1 − f̄2, μ = f̄2 − f̄3, ν = f̄3 − f̄4. (2.19)

The physical relevance of Wigner’s supermultiplet classification is con-
nected with the short-range attractive nature of the residual interaction as
a result of which states with spatial symmetry are favored energetically. To
see this point, consider an extreme form of a short-range interaction, namely
a delta interaction. It has a vanishing matrix element in a spatially anti-
symmetric two-nucleon state since in that case the wave function has zero
probability of having r1 = r2. In contrast, the matrix element is attractive in
the spatially symmetric case with [1, 1] U(4) symmetry. Again, this result can
be generalized to many nucleons, leading to the conclusion that the energy
of a state depends on its SU(4) labels.

Wigner’s supermultiplet model is a nuclear LS-coupling scheme. With the
advent of the nuclear shell model the importance of the spin–orbit coupling
became clear and, as a result, the SU(4) model was largely abandoned. In
spite of its limited applicability, Wigner’s idea remains important because it
demonstrates the connection between the short-range character of the resid-
ual interaction and the spatial symmetry of the many-body wave function.
The break down of SU(4) symmetry is a consequence of the spin–orbit term
in the nuclear mean field (2.1) which does not satisfy the second and third
commutator in (2.16). The spin–orbit term breaks SU(4) symmetry [SU(4)
representations are admixed by it] and does so increasingly in heavier nu-
clei since the energy splitting of the spin doublets l − 1/2 and l + 1/2 in-
creases with nucleon number A. In addition, SU(4) symmetry is also broken
by the Coulomb interaction—an effect that also increases with A—and by
spin-dependent residual interactions.

Example: Wigner’s mass anomaly in N = Z nuclei. The break down of SU(4)
symmetry with increasing nuclear mass number A can be illustrated with
Gamow–Teller β decay [70] and with nuclear binding energies [71]. A simple
way to represent the latter effect involves the double differences of nuclear
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binding energies [72, 73],

δVnp(N,Z) =
1
4
[B(N,Z) − B(N − 2, Z) − B(N,Z − 2) + B(N − 2, Z − 2)],

where B(N,Z) is the binding energy of a nucleus with N neutrons and Z
protons and where N and Z are assumed even. The quantity δVnp(N,Z) acts
as a filter to isolate the interaction between neutrons and protons and was
recently shown to be correlated with the growth of collectivity in nuclei [74].
Particularly large values of δVnp(N,Z) are found for N = Z [75]. The erosion
of this N = Z enhancement with mass number A provides a proof of the
breaking of SU(4) symmetry. An example is shown in Fig. 2.6 which shows on
the left the measured double binding energy δVnp(N,Z) for even–even nuclei
in the sd shell. The SU(4) result of Fig. 2.6b is obtained by assuming a nuclear
binding energy of the form a + b〈C2[SU(4)]〉 where a and b are coefficients
depending smoothly on mass number and 〈C2[SU(4)]〉 is the eigenvalue of
the quadratic Casimir of SU(4) in the favored SU(4) representation [76].
As long as the departure from SU(4) symmetry is not too important, its
breaking can be investigated by assuming a nuclear ground state which does
not correspond entirely to the favored SU(4) representation but contains an
admixture of the next-favored SU(4) representation. These admixtures will
modify the behavior of δVnp(N,Z) at N ∼ Z. This is illustrated in Fig. 2.6c
where δVnp(N,Z) is plotted by taking a varying mixture of first- and second-
favored SU(4) representations. As the mass of the nucleus increases, one notes
indeed a decrease of the N = Z enhancement effect for δVnp(N,Z), roughly
consistent with the experimental observations. An exceptional point occurs
for N = Z = 20 where the calculation is unrealistic since 40Ca is taken as
doubly closed and hence corresponds to a unique SU(4) representation with
no possible admixtures.
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Fig. 2.6. Barchart representation of double binding energy differences (a) as ob-
served in even–even sd shell nuclei [55], (b) as predicted by Wigner’s unbroken
SU(4) symmetry and (c) as obtained by taking a mixture of first- and second-
favored SU(4) representations. The x and y coordinates of the center of a cuboid
define N and Z and its height z defines δVnp(N, Z). An empty square indicates
that the data are lacking
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In Wigner’s supermultiplet model the spatial part of the wave function is
left unspecified. It is only assumed that the total orbital angular momentum
L is a good quantum number. The main feature of Elliott’s model [59] is that
it provides an orbital classification which incorporates rotational character-
istics. Elliott’s model of rotation presupposes Wigner’s SU(4) classification
and assumes in addition that the residual interaction has a quadrupole
character, a reasonable hypothesis if the valence shell contains neutrons and
protons. With reference to the schematic hamiltonian (2.1), one requires that
it reduces to

H =
A∑

k=1

(
p2

k

2mn
+

1
2
mnω2r2

k

)
+ Vquadrupole, (2.20)

where Vquadrupole = −g2Q · Q contains a quadrupole operator

Qμ =

√
3
2

[
A∑

k=1

1
b2

(rk × rk)(2)μ +
b2

h̄2

A∑
k=1

(pk × pk)(2)μ

]
, (2.21)

in terms of coordinates rk and momenta pk, and where b is the oscillator
length parameter, b =

√
h̄/mnω. Note that Q · Q contains one-body (k = l)

as well as two-body (k �= l) terms.
To recognize that the shell-model hamiltonian (2.20) is analytically solv-

able, it is best to write it in second-quantized form. Because of its symmetric
structure in r and p, the quadrupole operator Qμ does not couple to states
outside a given valence shell and particle creation operators a†

lmlsmstmt
can

be assigned l quantum numbers of that shell, together with spin and isospin
labels. The quadrupole operator (2.21) can then be rewritten as (see Chap. 30
of Ref. [47])

Qμ =
∑

l

√
8(2l + 1) (a†

lst × ãlst)
(200)
μ00 , (2.22)

where ãlmlsmstmt
= (−)l−ml+s−ms+t−mtal−mls−mst−mt

. By construction,
the quadrupole operator (2.21) is a scalar in spin and isospin, as it does
not change either of them, and a tensor in orbital angular momentum. Like-
wise, the orbital angular momentum operator, Lμ =

∑
k(rk ∧ pk)μ/h̄, reads

in second quantization

Lμ =
∑

l

√
4l(l + 1)(2l + 1)/3 (a†

lst × ãlst)
(100)
μ00 . (2.23)

In summary of the preceding discussion, the hamiltonian (2.20) can be
rewritten as

H = h̄ω

(
N +

3
2

)
− g2Q · Q, (2.24)

where N is an operator that counts the number of oscillator quanta. For a
given number of nucleons in the valence shell the first term in (2.24) reduces
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to a constant; the second term, however, generates a spectrum as can be seen
as follows. The hamiltonian (2.20) satisfies the commutation relations (2.16)
and hence has SU(4) symmetry. Its additional symmetry character depends
on the orbital space available to the valence nucleons. With reference to
the classification (2.18), the operators Lμ and Qμ are scalar in spin and
isospin and hence are generators of U(Ω). Furthermore, from their explicit
expressions (2.22) and (2.23) one derives the commutation relations

[Qμ, Qν ] = 3
√

10 〈2μ 2ν|1μ + ν〉Lμ+ν ,

[Lμ, Qν ] = −
√

6 〈1μ 2ν|2μ + ν〉Qμ+ν ,

[Lμ, Lν ] = −
√

2 〈1μ 1ν|1μ + ν〉Lμ+ν , (2.25)

which show that they generate an SU(3) Lie algebra that must then be a
subalgebra of U(Ω). With the commutation relations (2.25) it can also be
shown that the quadratic combination Q · Q + 3L · L commutes with all
generators of SU(3). The quadrupole interaction is thus a combination of
Casimir operators,

Q · Q = 4C2[SU(3)] − 3L · L = 4C2[SU(3)] − 3C2[SO(3)], (2.26)

and it follows that the hamiltonian (2.20) has the eigenvalues

E(λ, μ, L) = E0 − g2

[
4(λ2 + μ2 + λμ + 3λ + 3μ) − 3L(L + 1)

]
, (2.27)

where E0 is a constant energy associated with the first term in the hamilto-
nian (2.24). The quadrupole interaction implies the orbital reduction

U(Ω) ⊃ SU(3) ⊃ SO(3)
↓ ↓ ↓

[f1, f2, f3, f4] (λ, μ) KLL
, (2.28)

and represents an example of dynamical symmetry breaking. The degen-
eracy within a given Wigner supermultiplet is lifted (dynamically) by the
quadrupole interaction.

Example: The rotational spectrum of 20Ne. A simple illustration of SU(3) dy-
namical symmetry is shown in Fig. 2.7. The nucleus 20Ne contains two neu-
trons and two protons in the sd shell (Ω = 6) above the 16O closed-shell
configuration. These four nucleons can acquire a spatially symmetric config-
uration, leading to [f1, f2, f3, f4] = [4, 0, 0, 0] ≡ [4] in U(6). All states in this
symmetric configuration correspond to a single supermultiplet with labels
[f̄1, f̄2, f̄3, f̄4] = [1, 1, 1, 1] ≡ [14] in U(4) and with S = T = 0. The degen-
eracy of this supermultiplet is lifted by the residual quadrupole interaction
which gives rise to the SU(3) spectrum shown in Fig. 2.7. This interaction
separates the different SU(3) multiplets (or representations) which can be
(λ, μ) = (8, 0), (4,2), (0,4) or (2,0). The allowed values of the total orbital
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Fig. 2.7. Observed [44] low-energy spectrum of 20Ne (left) compared with the
lowest SU(3) rotational bands (right). Levels are labeled by their angular momen-
tum and parity Jπ. The SU(3) spectrum is generated with a quadrupole interaction
−g2Q · Q with strength g2 = 0.06 MeV

angular momentum L (and, since S = 0, of the total angular momentum
J) follow from the SU(3) ⊃ SO(3) reduction rule [59]. For the lowest SU(3)
multiplet with (λ, μ) = (8, 0) they are L = 0, 2, 4, 6, 8. The observed angular
momenta J of the states and their excitation energies as a function of J are
approximately consistent with those of a rotational band with K = 0 pro-
jection of the total angular momentum on the axis of symmetry. The SU(3)
model predicts this band to terminate at Jπ = 8+ which is consistent with the
observations since the lowest Jπ = 10+ occurs at 27.5 MeV [44], well above
the energy expected from a rotational behavior. The experimental spectrum
of 20Ne contains many more levels than those in the Kπ = 0+ band, the lowest
of which are shown in Fig. 2.7. States of four nucleons in the sd shell have pos-
itive parity and, consequently, the observed negative-parity levels necessarily
must involve a (particle–hole) excitation outside this shell. The first-excited
0+ level possibly belongs to the next SU(3) multiplet with (λ, μ) = (4, 2), also
shown in Fig. 2.7, containing the levels L = 0, 22, 3, 42, 5, 6. Alternatively, it
may correspond to a two-particle–two-hole excitation outside the sd shell.

The importance of Elliott’s idea is that it gives rise to a rotational classi-
fication of states through mixing of spherical configurations. With the SU(3)
model it was shown, for the first time, how deformed nuclear shapes may arise
out of the spherical shell model. As a consequence, Elliott’s work bridged the
gap between the nuclear shell model and the liquid drop model which up to
that time (1958) existed as separate views of the nucleus.

At this point we can summarize the situation as follows. Elliott’s SU(3)
model provides a natural explanation of rotational phenomena, ubiquitous
in nuclei, but it does so by assuming Wigner’s SU(4) symmetry which is
known to be badly broken in most nuclei. This puzzle has motivated much
work since Elliott: How can rotational phenomena in nuclei be understood
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starting from a jj-coupling scheme induced by the spin–orbit term in the
nuclear mean field? Arguably the most successful way to do so and to extend
the applications of the SU(3) model to heavy nuclei is based on the concept
of pseudo-spin symmetry. The starting point for the explanation of this
symmetry is the single-particle part of the hamiltonian (2.1),

Hsp =
A∑

k=1

(
p2

k

2mn
+

1
2
mnω2r2

k + ζlll
2
k + ζlslk · sk

)
. (2.29)

For ζll = ζls = 0 a three-dimensional isotropic harmonic oscillator is ob-
tained which exhibits degeneracies associated with U(3) symmetry. For ar-
bitrary non-zero values of ζll and ζls this symmetry is broken. However, for
the particular combination 4ζll = ζls some degree of degeneracy, associated
with a so-called pseudo-spin symmetry, is restored in the spectrum of Hsp. To
understand the nature of pseudo-spin symmetry, consider the unitary trans-
formation

U =
A∑

k=1

uk, uk = 2i
sk · rk

rk
, (2.30)

and apply this transformation to the hamiltonian (2.29). One finds

U−1HspU =
A∑

k=1

(
p2

k

2mn
+

1
2
mnω2r2

k + ζlll
2
k + (4ζll − ζls)lk · sk

)
+C, (2.31)

where C = A(h̄ω + 2ζll − ζls) is a constant. The original and transformed
hamiltonians have the same eigenspectrum since they are related, up to the
constant, by a unitary transformation. This shows that for 4ζll = ζls the
spectrum of Hsp is identical (up to a constant) to that of a single-particle
hamiltonian with only an orbit–orbit and no spin–orbit term. This results in
single-particle orbits with j = l + 1/2 and j = (l + 2)− 1/2 being degenerate
for all values of l. These single-particle orbits can be considered as originating
from a pseudo-orbital angular momentum l̃ = l + 1, in the presence of zero
pseudo-spin–orbit splitting l̃ · s̃.

Pseudo-spin symmetry has a long history in nuclear physics. The existence
of nearly degenerate pseudo-spin doublets in the nuclear mean-field potential
was pointed out 40 years ago by Hecht and Adler [77] and by Arima et al. [78]
who noted that, because of the small pseudo-spin–orbit splitting, pseudo-LS
(or L̃S̃) coupling should be a reasonable starting point in medium-mass and
heavy nuclei where LS coupling becomes unacceptable. With L̃S̃ coupling
as a premise, an pseudo-SU(3) model can be constructed [79] in much the
same way as Elliott’s SU(3) model can be defined in LS coupling. The formal
definition of the pseudo-spin transformation (2.30) in terms of a helicity op-
erator was given in Refs. et al. [80, 81]. Finally, it is only many years after its
original suggestion that Ginocchio showed pseudo-spin to be a symmetry of
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the Dirac equation which occurs if the scalar and vector potentials are equal
in size but opposite in sign [82].

The models discussed so far all share the property of being confined to a
single shell, either an oscillator or a pseudo-oscillator shell. A full description
of nuclear collective motion requires correlations that involve configurations
outside a single shell. The proper framework for such correlations invokes
the concept of a non-compact algebra which, in contrast to a compact one,
can have infinite-dimensional unitary representations. The latter condition is
necessary since the excitations into higher shells can be infinite in number
unless they are artificially restricted as is the case, for example, in the LMG
model. The inclusion of excitations into higher shells of the harmonic oscil-
lator was achieved by Rosensteel and Rowe by embedding the SU(3) algebra
into the symplectic algebra Sp(3,R) [83].

2.1.3 A Symmetry Triangle for the Shell Model

The overview of symmetries of the nuclear shell model given in the preceding
sections can be summarized as in Fig. 2.8. The top vertex corresponds to a
mean-field hamiltonian with no residual interactions and with uncorrelated
Hartree–Fock type eigenstates. This limit is reached if the single-particle en-
ergy spacings are large in comparison with a typical matrix element of the
residual interaction. The two bottom vertices correspond to genuine many-
body hamiltonians with correlated eigensolutions that involve a superposi-
tion of several, possibly many, Slater determinants. They differ through the
residual interaction, which is either of pairing or of quadrupole nature. Both
interactions allow an analytic solution of the many-body problem, which
is rather fortunate since pairing and quadrupole are the dominant compo-
nents of nucleonic interactions in nuclei. Pairing models have an underlying

Fig. 2.8. Schematic representation of the shell-model parameter space with its
two main classes of analytically solvable models of pairing and quadrupole type,
respectively
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quasi-spin SU(2) symmetry or its appropriate extension to include isospin
and are usually (though not exclusively) applied in a jj-coupling regime.
The underlying symmetry of quadrupole models is SU(3); this symmetry
presupposes LS coupling and its extension into the jj-coupling regime is
much more problematic. Figure 2.8, of course, in no way gives a realistic rep-
resentation of the entire shell-model parameter space nor does it account for
all analytic solutions of the nuclear shell model. A systematic procedure for
constructing analytically solvable shell-model hamiltonians was devised by
Ginocchio [84] and was later developed as the fermion dynamical symmetry
model [85].

2.2 The Interacting Boson Model

We have seen in the previous section that seniority-type as well as rotational-
like spectra find a natural explanation in the nuclear shell model. A third,
vibrational type of spectrum is frequently exhibited by nuclei, and its shell-
model explanation is more problematic. Evidence for a so-called tri-partite
classification of nuclei [86] can be obtained, for example, from the energies of
the first-excited 2+ and 4+ states in even–even nuclei (see Fig. 2.9). The inset
shows Ex(4+

1 ) as a function of Ex(2+
1 ) for all even–even nuclei where both

energies are known. There is a considerable scatter of points, especially at
the high-energy range. This is not surprising since many nuclei with a high-
lying 2+

1 level have seniority characteristics and the ratio Ex(4+
1 )/Ex(2+

1 ) in
such nuclei depends on the details of the residual interaction which can vary
strongly from shell to shell. At low energies, however, Ex(2+

1 ) is correlated

Fig. 2.9. Energies Ex(4
+
1 ) versus Ex(2

+
1 ). The inset shows the correlation for

all even–even nuclei where both energies are known experimentally [44]. The full
figure shows the correlation for all nuclei with Ex(2

+
1 ) < 0.6 MeV. The two lines

with slopes 3.33 and 2 indicate the rotational and vibrational regions of nuclei,
respectively
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with Ex(4+
1 ) as is clear from Fig. 2.9, which shows a subset of nuclei with

Ex(2+
1 ) < 0.6 MeV. The correlation is particularly strong for very low ener-

gies, Ex(2+
1 ) < 0.1 MeV, where all nuclei fall on a straight line with slope

10/3. This is the rotational regime of nuclei. In addition, there seems evidence
for another nuclear behavior where the slope of the Ex(4+

1 )/Ex(2+
1 ) line is

close to 2. This is the vibrational regime of nuclei.
Vibrational nuclei find an interpretation in terms of the geometric model

of Bohr and Mottelson [57] where the vibrations are associated with (mainly
quadrupole) oscillations of the nuclear surface. The disadvantage of such
interpretation is that a transparent connection with the nuclear shell model
is lacking. In this respect the interacting boson model (IBM) of Arima and
Iachello [87] plays a crucial role: The model contains a vibrational and a
rotational limit (as well as one which can be considered as intermediate)—
which connects well with the phenomenology of nuclei—and it can be brought
into relation with the shell model.

In this section we give a brief outline of the basic features of the simplest
version of the IBM. There are two extensions of this elementary version which
are of particular relevance: the inclusion of fermion degrees of freedom for a
description of odd-mass nuclei and of the neutron–proton degree of freedom.
These developments are presented separately in Chapts. 4 and 5, respectively.

In the original version of the IBM, applicable to even–even nuclei, the
basic building blocks are s and d bosons [88]. Unitary transformations among
the six states s†|o〉 and d†m|o〉,m = 0,±1,±2, generate the Lie algebra U(6).
The s and d bosons can be interpreted as correlated or Cooper pairs formed
by two nucleons in the valence shell coupled to angular momenta J = 0 and
J = 2. This interpretation constitutes the basis of the connection between the
boson and the shell model [89]. Given the microscopic interpretation of the
bosons, a low-lying collective state of an even–even nucleus with 2N valence
nucleons is approximated as an N -boson state. Although the separate boson
numbers ns and nd are not necessarily conserved, their sum ns + nd = N
is. This implies a total-boson-number conserving hamiltonian of the generic
form

H = H0 + H1 + H2 + H3 + · · · , (2.32)

where the index refers to the order of the interaction in the generators of U(6).
The first term is a constant which represents the nuclear binding energy of
the core. The second term is the one-body part

H1 = εsns + εdnd, (2.33)

where εs and εd are the single-boson energies of the s and d bosons. The third
term in the hamiltonian (2.32) represents the two-body interaction

H2 =
∑

l1≤l2,l′1≤l′2,L

vL
l1l2l′1l′2

(
(b†l1 × b†l2)

(L) × (b̃l′2
× b̃l′1

)(L)
)(0)

0
, (2.34)
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where the v coefficients are related to the interaction matrix elements between
normalized two-boson states,

〈l1l2;LML|H2|l′1l′2;LML〉 =

√
(1 + δl1l2)(1 + δl′1l′2

)
2L + 1

vL
l1l2l′1l′2

. (2.35)

Since the bosons are necessarily symmetrically coupled, the allowed two-
boson states are s2 (L = 0), sd (L = 2) and d2 (L = 0, 2, 4). Since for n
states with a given spin one has n(n + 1)/2 interactions, seven independent
two-body interactions v are found: three for L = 0, three for L = 2 and one
for L = 4.

This analysis can be extended to higher-order interactions. Specifically,
one may consider the three-body interactions 〈l1l2l3;LML|H3|l′1l′2l′3;LML〉.
The allowed three-boson states are s3 (L = 0), s2d (L = 2), sd2 (L = 0, 2, 4)
and d3 (L = 0, 2, 3, 4, 6), leading to 6 + 6 + 1 + 3 + 1 = 17 indepen-
dent three-body interactions for L = 0, 2, 3, 4, 6, respectively. The number
of possible interactions at each order n is summarized in Table 2.3 for up
to n = 3. Some of these interactions exclusively contribute to the bind-
ing energy and do not influence the excitation spectrum of a single nucleus.
To determine the number of such interactions, one notes that the hamilto-
nian NHn−1 for constant boson number (i.e., a single nucleus) essentially
reduces to the (n − 1)-body hamiltonian Hn−1. Consequently, of the Nn in-
dependent interactions of order n contained in Hn, Nn−1 terms of the type
NHn−1 must be discarded if one wishes to retain only those that influence
the excitation energies. For example, given that there is one term of order
zero (i.e., a constant), one of the two first-order terms (i.e., the combina-
tion N) does not influence the excitation spectrum. This means that the
eigenspectrum of the hamiltonian remains unchanged if both εs and εd are
modified by the same amount. Likewise, there are two first-order terms (i.e.,
ns and nd) and hence two of the seven two-body interactions do not influ-
ence the excitation spectrum. This argument leads to the numbers quoted in
Table 2.3.

Table 2.3. Enumeration of n-body interactions in IBM for n ≤ 3

Order Number of interactions

total constanta variableb

n = 0 1 1 0
n = 1 2 1 1
n = 2 7 2 5
n = 3 17 7 10

aInteraction energy is constant for all states with the same N .
bInteraction energy varies from state to state.
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2.2.1 Dynamical Symmetries

The characteristics of the most general IBM hamiltonian which includes up to
two-body interactions and its group-theoretical properties are by now well un-
derstood [90]. Numerical procedures exist to obtain its eigensolutions but, as
in the nuclear shell model, this many-body problem can be solved analytically
for particular choices of boson energies and boson–boson interactions. For an
IBM hamiltonian with up to two-body interactions between the bosons, three
different analytical solutions or limits exist: the vibrational U(5) [91], the
rotational SU(3) [92] and the γ-unstable SO(6) limit [93]. They are as-
sociated with the algebraic reductions

U(6) ⊃

⎧⎨
⎩

U(5) ⊃ SO(5)
SU(3)

SO(6) ⊃ SO(5)

⎫⎬
⎭ ⊃ SO(3). (2.36)

The algebras appearing in (2.36) are subalgebras of U(6) generated by op-
erators of the type b†lmbl′m′ , the explicit form of which is listed, for ex-
ample, in Ref. [88]. With the subalgebras U(5), SU(3), SO(6), SO(5) and
SO(3) there are associated one linear [of U(5)] and five quadratic Casimir
operators. This matches the number of one- and two-body interactions
quoted in the last column of Table 2.3. The total of all one- and two-
body interactions can be represented by including in addition the opera-
tors C1[U(6)], C2[U(6)] and C1[U(6)]C1[U(5)]. The most general IBM hamil-
tonian with up to two-body interactions can thus be written in an ex-
actly equivalent way with Casimir operators. Specifically, the hamiltonian
reads

H1+2 = κ1C1[U(5)] + κ′
1C2[U(5)] + κ2C2[SU(3)]

+κ3C2[SO(6)] + κ4C2[SO(5)] + κ5C2[SO(3)], (2.37)

which is just an alternative way of writing H1 + H2 of (2.33) and (2.34) if
interactions are omitted that contribute to the binding energy only.

The representation (2.37) is much more telling when it comes to the sym-
metry properties of the IBM hamiltonian. If some of the coefficients κi van-
ish such that H1+2 contains Casimir operators of subalgebras belonging to
a single reduction in (2.36), then, according to the discussion of Chap. 1,
the eigenvalue problem can be solved analytically. Three classes of spectrum
generating hamiltonians can thus be constructed of the form

U(5) : H1+2 = κ1C1[U(5)] + κ′
1C2[U(5)] + κ4C2[SO(5)] + κ5C2[SO(3)],

SU(3) : H1+2 = κ2C2[SU(3)] + κ5C2[SO(3)],
SO(6) : H1+2 = κ3C2[SO(6)] + κ4C2[SO(5)] + κ5C2[SO(3)]. (2.38)
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In each of these limits the hamiltonian is written as a sum of commuting op-
erators and, as a consequence, the quantum numbers associated with the dif-
ferent Casimir operators are conserved. They can be summarized as follows:

U(6) ⊃ U(5) ⊃ SO(5) ⊃ SO(3) ⊃ SO(2)
↓ ↓ ↓ ↓ ↓

[N ] nd τ νΔL ML

,

U(6) ⊃ SU(3) ⊃ SO(3) ⊃ SO(2)
↓ ↓ ↓ ↓

[N ] (λ, μ) KLL ML

,

U(6) ⊃ SO(6) ⊃ SO(5) ⊃ SO(3) ⊃ SO(2)
↓ ↓ ↓ ↓ ↓

[N ] σ τ νΔL ML

. (2.39)

Furthermore, for each of the three hamiltonians in (2.38) an analytic eigen-
value expression is available,

U(5) : E(nd, v, L) = κ1nd + κ′
1nd(nd + 4) + κ4τ(τ + 3) + κ5L(L + 1),

SU(3) : E(λ, μ, L) = κ2(λ2 + μ2 + λμ + 3λ + 3μ) + κ5L(L + 1),
SO(6) : E(σ, τ, L) = κ3σ(σ + 4) + κ4τ(τ + 3) + κ5L(L + 1). (2.40)

One can add Casimir operators of U(6) to the hamiltonians in (2.37) without
breaking any of the symmetries. For a given nucleus they reduce to a constant
contribution. They can be omitted if one is only interested in the spectrum
of a single nucleus but they should be introduced if one calculates binding
energies. Note that none of the hamiltonians in (2.38) contains a Casimir
operator of SO(2). This interaction breaks the SO(3) symmetry (lifts the ML

degeneracy) and would only be appropriate if the nucleus is placed in an
external electric or magnetic field.

Example: Gamma-soft platinum isotopes. The suggestion in 1978 by Arima and
Iachello that SO(6) is a third possible limit of the IBM [94] and the subsequent
discovery by Cizewski et al. [95] that 196Pt represents an excellent example
of this limit has had a major impact on the use of the model. First, it gave a
solid basis to the introduction of the s boson in the IBM which was needed to
describe vibrational U(5) as well as rotational SU(3) nuclei and which gave
rise to the new SO(6) limit. Second, as was soon demonstrated, only a small
departure from the SO(6) limit gave a description of the complex transitional
region in between γ-unstable and well-deformed prolate rotors [96]. As the
third benchmark to which nuclei can be compared, the SO(6) limit was also
at the origin of the Casten triangle which allows the classification of a large
fraction of all observed nuclei [97].

The SO(6) limit of the IBM is special in several respects. Its generic fea-
tures are best understood from the IBM hamiltonian (2.37). The SO(6) limit
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is obtained if the parameters κ1, κ′
1 and κ2 are zero. The conserved quan-

tum numbers and the energy eigenvalues in that case are given in Eqs. (2.39)
and (2.40), respectively. The lowest states have the maximum allowed value
of σ, σ = N . States at higher energies have σ = N − 2, N − 4, . . . , 1 or 0.
For a given σ, τ takes the values τ = 0, 1, . . . , σ. Since the SO(5) quantum
number τ turns out to play an important role in many aspects of the IBM, it
deserves a more detailed discussion. Note that any hamiltonian (2.37) with
κ2 = 0 conserves the SO(5) quantum number [98, 99]. If in addition κ3 = 0,
one obtains the U(5) limit with the solution given in Eqs. (2.39) and (2.40).
We have deliberately used the same quantum number τ (instead of the more
common v) in (2.39) for labeling SO(5) representations in the U(5) and SO(6)
limits to emphasize that this algebra is common to both limits. The SO(5)
symmetry leads to a peculiar structure of the wave functions which will be
a superposition of components with either an even or an odd number of
d bosons. This is trivially the case in the U(5) limit where the number of d
bosons, nd, is a conserved quantum number. This property can also be proven
analytically in the SO(6) limit [93]. In fact, it holds for all solutions of the
hamiltonian (2.37) with κ2 = 0. The expansion is in terms of an even (odd)
number of d bosons when τ is even (odd).

Because the SO(5) properties are often similar in the SO(6) and U(5)
limits, detailed information on the structure of the lowest σ = N − 2 states
is needed to establish the validity of the SO(6) classification in a nucleus. To
this end, also electric quadrupole properties must be considered which in the
IBM are described with the operator

Tμ(E2) = ebQμ ≡ eb[(s† × d̃ + d† × s)(2)μ + χ(d† × d̃)(2)μ ], (2.41)

where eb is a boson effective charge. The quadrupole operator contains a
parameter χ, the value of which is normally chosen consistently in the E2 and
hamiltonian operators (consistent Q-formalism of Warner and Casten [100]).
In this formalism, a nucleus corresponds to the SO(6) limit if characterized by
χ = 0 in both operators. The most prominent consequences are (i) vanishing
quadrupole moments, because for χ = 0 the quadrupole operator changes
the d-boson number by one which leads to a |Δτ | = 1 selection rule and
(ii) vanishing transitions between states with different σ because for χ = 0
the quadrupole operator is a generator of SO(6). Property (ii) was clearly
established for 196Pt [101]. This nucleus has, however, a first-excited state
with a non-vanishing quadrupole moment, Q(2+

1 ) = +0.62(8) eb [102]. This
deviation can be related to the very rapid structural change occurring for the
γ-soft Pt nuclei [103].

The dynamical symmetries of the IBM arise if combinations of certain co-
efficients κi in the hamiltonian (2.37) vanish. The converse, however, cannot
be said: Even if all parameters κi are non-zero, in some cases the hamiltonian
H1+2 still may exhibit a dynamical symmetry and be analytically solvable.
This is a consequence of the existence of unitary transformations which pre-
serve the eigenspectrum of the hamiltonian H1+2 (and hence its analyticity
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properties) and which can be represented as transformations in the parameter
space {κi}. A systematic procedure exists for finding such transformations or
parameter symmetries [104] which can, in fact, be applied to any hamiltonian
describing a system of interacting bosons and/or fermions.

The enumeration of all symmetries of a hamiltonian system [which in-
cludes symmetries obvious from reductions such as (2.36) but also hidden
symmetries revealed through parameter transformations] is important for a
proper understanding of its chaoticity character [105, 106]. Since they cor-
respond to a sum of mutually commuting operators, hamiltonians with a
dynamical symmetry are integrable and their spectrum is regular. The three
classifications (2.39) and their parameter-transformed analogues do indeed
correspond to integrable hamiltonians but they do not necessarily define all
such hamiltonians. In fact, the U(5) and SO(6) vertices are connected by a
integrable path in terms of the product algebra SUs(1, 1) ⊗ SUd(1, 1) [107].
Along this edge the IBM hamiltonian reduces to a pairing interaction be-
tween s and d bosons distributed over two non-degenerate levels and can be
solved with Richardson’s technique outlined in Sect. 2.1.1.

While a numerical solution of the shell-model eigenvalue problem in gen-
eral rapidly becomes impossible with increasing particle number, the corre-
sponding problem in the IBM with s and d bosons remains tractable at all
times, requiring the diagonalization of matrices with dimension of the order
of ∼ 102. One of the main reasons for the success of the IBM is that it pro-
vides a workable, albeit approximate, scheme which allows a description of
transitional nuclei with a few relevant parameters. Numerous papers have
been published on such transitional calculations. We limit ourselves here to
citing those that first treated the transitions between the three limits of the
IBM: from U(5) to SU(3) [108], from SO(6) to SU(3) [109] and from U(5)
to SO(6) [110]. Another attractive aspect of the IBM is that it can easily
be extended to include new interactions or degrees of freedom of which also
numerous examples can be found in the literature [111]. Notably, the inclu-
sion of the hexadecapole degree of freedom can be achieved through the g
boson leading to a U(15) algebraic structure which has been investigated ex-
tensively (for a review, see Ref. [112]). Likewise, negative-parity dipole and
octupole states can be described by the inclusion of p and f bosons [92, 113].

2.2.2 Geometry

An important aspect of the IBM is its geometric interpretation. As was
demonstrated by several groups simultaneously [114, 115, 116], geometry can
be derived from an algebraic description by means of coherent (or intrinsic)
states. The ones used for the IBM are of the form

|N ;αμ〉 ∝
(

s† +
∑

μ

αμd†μ

)N

|o〉, (2.42)

where |o〉 is the boson vacuum and αμ are five complex variables. These
have the interpretation of (quadrupole) shape variables and their associated
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conjugate momenta. If one limits oneself to static problems, the αμ can be
taken as real; they specify a shape and are analogous to the shape variables
of the liquid drop model of the nucleus [62]. In the same way as in that
model, the αμ can be related to three Euler angles {θ1, θ2, θ3} which define
the orientation of an intrinsic frame of reference, and two intrinsic shape
variables, β and γ, that parametrize quadrupole vibrations of the nuclear
surface around an equilibrium shape. In terms of the latter variables, the
coherent state (2.42) is rewritten as

|N ;βγ〉 ∝
(

s† + β

[
cos γd†0 +

√
1
2

sin γ(d†−2 + d†+2)

])N

|o〉. (2.43)

The calculation of the expectation value of a quantum-mechanical operator in
this state leads to a functional expression in N , β and γ. In this way, the most
general IBM hamiltonian (even with higher-order interactions) can be con-
verted in a potential surface in (β, γ), familiar from the geometric model (see
Fig. 2.5). An analysis of this type shows that the three limits of the IBM have
simple geometric counterparts that are frequently encountered in nuclei. They
correspond to vibrations around a spherical shape [U(5)], around a spheroidal
shape, either prolate or oblate, [SU(3)] and around a spheroidal shape which
is flat against triaxial deformation [SO(6)]. In the SU(3) and SO(6) limits,
vibrational excitations are combined with rotations. Hence, for each of the
three limits of the IBM it is possible to construct its equivalent geometric
model. First, the geometric equivalent of the U(5) limit is the anharmonic-
vibrator model of Brink et al. [117]. Second, the SU(3) limit generates the
spectrum of a deformed nucleus that exhibits quadrupole oscillations around
an axially symmetric equilibrium shape which is a well-established descrip-
tion of the nucleus since the work of Bohr and Mottelson [57]. Third, the
SO(6) limit yields a γ-unstable rotor known as the Wilets–Jean model [118].
Finally, the entire SU(1,1) limit [or U(5)–SO(6) transition] has a geometric
counterpart with the γ-unstable model of Ref. [119].

A catastrophe analysis [120] of the potential surfaces in (β, γ) as a function
of the hamiltonian parameters determines the stability properties of these
shapes. This analysis was carried out for the general IBM hamiltonian with
up to two-body interactions by López-Moreno and Castaños [121]. The results
of this study were confirmed in Ref. [122] where a simplified IBM hamiltonian
is considered of the form

H = εnd + κQ · Q. (2.44)

This hamiltonian provides a simple parametrization of the essential features
of nuclear structural evolution in terms of a vibrational term nd (the number
of d bosons) and a quadrupole interaction Q · Q with

Qμ = (s† × d̃ + d† × s)(2)μ + χ(d† × d̃)(2)μ . (2.45)
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Besides an overall energy scale, the spectrum of the hamiltonian (2.44) is
determined by two parameters: the ratio ε/κ and χ. The three limits of the
IBM are obtained with an appropriate choice of parameters: U(5) if κ = 0,
SU±(3) if ε = 0 and χ = ±

√
7/2 and SO(6) if ε = 0 and χ = 0. One may thus

represent the parameter space of the simplified IBM hamiltonian (2.44) on
a triangle with vertices that correspond to the three limits U(5), SU(3) and
SO(6), and where arbitrary points correspond to specific values of ε/κ and χ.
Since there are two possible choices for SU(3), χ = −

√
7/2 and χ = +

√
7/2,

the triangle can be extended to cover both cases by allowing χ to take negative
as well as positive values.

The geometric interpretation of any IBM hamiltonian on the triangle can
now be found from its expectation value in the coherent state (2.43) which
for the particular hamiltonian (2.44) gives

V (β, γ) =
Nεβ2

1 + β2
+ κ

[
N(5 + (1 + χ2)β2)

1 + β2

+
N(N − 1)
(1 + β2)2

(
2
7
χ2β4 − 4

√
2
7
χβ3 cos 3γ + 4β2

)]
. (2.46)

The catastrophe analysis of this surface is summarized with the phase di-
agram shown in Fig. 2.10. Analytically solvable limits are indicated by the

Fig. 2.10. Phase diagram of the hamiltonian (2.44) and the associated geometric
interpretation. The parameter space is divided into three regions depending on
whether the corresponding potential has (I) a spherical, (II) a prolate deformed or
(III) an oblate deformed absolute minimum. These regions are separated by dashed
lines and meet in a triple point (gray dot). The shaded area corresponds to a region
of coexistence of a spherical and a deformed minimum. Also indicated are the points
on the triangle (black dots) which correspond to the dynamical-symmetry limits of
the hamiltonian (2.44) and the choice of parameters ε, κ and χ for specific points
or lines of the diagram
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dots. Two different SU(3) limits occur corresponding to two possible choices
of the quadrupole operator, χ = ±

√
7/2. Close to the U(5) vertex, the IBM

hamiltonian has a vibrational-like spectrum. Toward the SU(3) and SO(6)
vertices, it acquires rotational-like characteristics. This is confirmed by a
study of the character of the potential surface in β and γ associated with
each point of the triangle. In the region around U(5), corresponding to large
ε/κ ratios, the minimum of the potential is at β = 0. On the other hand,
close to the SU+(3)–SO(6)–SU−(3) axis the IBM hamiltonian corresponds
to a potential with a deformed minimum between β = 0 and β =

√
2. Fur-

thermore, in the region around prolate SU−(3) (χ < 0) the minimum occurs
for γ = 0o, while around oblate SU+(3) (χ > 0) it does for γ = 60o. In this
way the picture emerges that the IBM parameter space can be divided into
three regions according to the character of the associated potential having
(I) a spherical minimum, (II) a prolate deformed minimum or (III) an oblate
deformed minimum. The boundaries between the different regions (the so-
called Maxwell set) are indicated by the dashed lines in Fig. 2.10 and meet
in a triple point. The spherical–deformed border region displays another in-
teresting phenomenon. Since the absolute minimum of the potential must be
either spherical, or prolate or oblate deformed, its character uniquely deter-
mines the three regions and the dividing Maxwell lines. Nevertheless, this
does not exclude the possibility that, in passing from one region to another,
the potential may display a second local minimum. This indeed happens for
the U(5)–SU(3) transition [123] where there is a narrow region of coexistence
of a spherical and a deformed minimum, indicated by the shaded area in
Fig. 2.10. Since, at the borders of this region of coexistence, the potential un-
dergoes a qualitative change of character, the boundaries are genuine critical
lines of the potential surface [120].

Although these geometric results have been obtained with reference to
the simplified hamiltonian (2.44) and its associated ‘triangular’ parameter
space, it must be emphasized that they remain valid for the general IBM
hamiltonian with up to two-body interactions [121].

Shape phase transitions and Landau theory. The hamiltonian (2.44) can be
rewritten as

H = α

(
η nd +

η − 1
N

Q · Q
)

,

and contains two essential parameters: η, describing the transition between
spherical and deformed shapes, and χ which occurs in the quadrupole opera-
tor (2.45) and describes the transition between prolate, γ-soft and oblate de-
formed shapes. The parameter α is an overall energy scaling factor. Because
nd is a one-body term while Q ·Q is of two-body character, the latter term
in the hamiltonian is scaled down by a factor N . This ensures that the con-
tributions of both terms remain of the same order in the large-N limit. Fur-
thermore, the hamiltonian is written such that the full range of structures
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is described by values of η between 0 and 1. The equilibrium shape of the
potential surface (2.46) is spherical for η values ranging down from unity,
changes from spherical to deformed at some critical value η = ηc and is
deformed for η < ηc. The critical value ηc at which the absolute minimum
turns from spherical to deformed depends on the parameter χ. This addi-
tional parameter, related to axial asymmetry, markedly increases the rich-
ness of the structures possible with the hamiltonian (2.44). For χ < 0
(χ > 0) and η < ηc a prolate (oblate) axially symmetric minimum is found,
while χ = 0 corresponds to a completely γ-independent potential.

To understand the evolution of structure with (η, χ) [124, 125], it is
useful to turn to the classical Landau theory of phase transitions [126].
The energy surface (2.46) can be written as an expansion in powers of
β [124, 125, 127],

Φ(β, γ) = Φ0 + Aβ2 + Bβ3 cos 3γ + Cβ4 + O(β5).

Equilibrium conditions occur when Φ(β, γ) has a minimum for some value(s)
(β0, γ0). A minimum at β0 = 0 corresponds to the highest (spherical) sym-
metry, while for β0 �= 0 a lower (deformed) symmetry is obtained. The
coefficients A, B and C are parametric functions of some control variables.
In Landau theory these are often pressure and temperature. In the nuclear
case they depend, for example, on the number of nucleons, the orbits they
occupy or the interactions between these nucleons. All such effects are as-
sumed to be parametrized in terms of η and χ.

We now present a simplified analysis which largely ignores the parame-
ter γ because its influence is trivial. Only terms up to β4 are kept in Φ(β, γ).
The equilibrium values of γ are either γ0 = 0o for B < 0 or γ0 = 60o for
B > 0 and, as a result, the effect of γ can be absorbed in the sign of β. This
analysis, though oversimplified, captures the essence of the physics.

To obtain a stable equilibrium state, the first derivative of Φ(β, γ) with
respect to β must be zero and the second derivative must be positive, lead-
ing to the conditions

β(2A + 3Bβ cos 3γ + 4Cβ2) = 0, 2A + 6Bβ cos 3γ + 12Cβ2 > 0.

For the potential to be well behaved at β → ∞ the coefficient C must be
positive. Furthermore, there are two possible solutions. One is spherical,
β0 = 0; this is a minimum of Φ(β, γ) only if A > 0, which is required for
the second derivative to be positive. The second solution occurs for β0 �= 0
and is obtained by solving the quadratic equation in β. For B = 0 the two
solutions are

β0 = ±
√

−A

2C
.

This requires A and C to be of opposite sign and hence A < 0 since C > 0.
The nuclear phase diagram has thus three phases: spherical (β0 = 0),
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Fig. 2.11. Landau analysis of nuclear phase transitions. The left-hand side shows
a simplified representation of the phases and first-order phase transition lines cor-
responding to A = 0 and B = 0. The axes are labeled by the pressure P and
temperature T . The right-hand side shows the application of this analysis to the
equilibrium phases of nuclei where (P, T ) is replaced by the parameters (η, χ). The
symbol t denotes a nuclear triple point where the two first-order phase transition
lines meet. The white area denotes the region with the highest, spherical symmetry,
while the gray area has lower, ellipsoidal symmetry

prolate (β0 > 0) and oblate (β0 < 0). The spherical–deformed phase
transition occurs when A changes from positive to negative, that is, at
A = 0. The prolate–oblate phase transition occurs when B changes from
negative to positive, that is, at B = 0 (and in addition A < 0 and C > 0).
As illustrated in Fig. 2.11 (left), if we interpret the (η, χ) diagram in
analogy with the (P, T ) phase diagram of Landau theory, the first-order
phase transition conditions, A = 0 or B = 0, each corresponds to a curve in
the phase diagram. These two first-order phase-transition trajectories meet
in an isolated point defined by A = B = 0. This is a nuclear triple point
that corresponds to a second-order phase transition. On the right-hand
side of Fig. 2.11 these ideas are transposed in the context of the extended
symmetry triangle of the IBM [127].

The hamiltonian (2.44) can also be analyzed in terms of Landau theory
(see Box on Shape phase transitions and Landau theory) by which it is possi-
ble to identify the nature and order of the transitions between the different
phases of the nucleus. It is also of interest to study how the eigensolutions
of the hamiltonian (2.44) behave across these first-order phase transitions.
To do so, we show in Fig. 2.12 the characteristic ratio of excitation energies
R4/2 ≡ Ex(4+

1 )/Ex(2+
1 ) for the U(5)–SU(3) transition and the quadrupole

moment Q(2+
1 ) for the SU−(3)–SO(6)–SU+(3) prolate–oblate transition. The

ratio R4/2 increases from 2.0 in U(5) to 3.33 in SU(3) and the phase transition
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Fig. 2.12. Behavior of observables across the two first-order phase transitions
discussed in the text, from spherical to deformed and from prolate to oblate. Top:
Calculated values of R4/2 as a function of η ≡ ε/(ε − Nκ) for χ = −

√
7/2 for

the spherical–deformed transition (left) and of Q(2+
1 ) as a function of χ for η = 0

for the prolate–oblate transition (right). In the latter case χ = 0 corresponds to
the phase transitional point (analogous to B = 0 in Landau theory) as well as to
the SO(6) dynamical symmetry. The calculations are for N = 10 (full line) and
N = 20 (dashed line). Bottom: Experimental values for R4/2 in the Sm isotopes
and for Q(2+

1 ) in the Hf–Hg region. The line gives the theoretical values obtained
with the appropriate boson number N and the fitted η and χ values [103, 108],
with a constant effective charge eb = 0.15 eb

occurs at the point of sharpest increase (maximum of dR4/2/dη) where
η ≡ ε/(ε − Nκ). This feature immediately discloses an important aspect of
structural evolution of the hamiltonian (2.44), namely, the highly non-linear
way in which structure changes from the U(5) vertex to the deformed SU−(3)–
SO(6)–SU+(3) leg. It implies, for example, that well-deformed nuclei (with,
say, R4/2 ∼ 3.31) may actually be situated rather far from the SU(3) vertex.
Along the SU−(3)–SO(6)–SU+(3) transition, Q(2+

1 ) changes from negative
(prolate) to positive (oblate) at SO(6). The critical point of the phase tran-
sition coincides with SO(6) and marks the point where Q(2+

1 ) changes sign
and dQ(2+

1 )/dχ peaks. For both transitions the comparison of results for the
boson numbers N = 10 and N = 20 shows that there is an increase in sharp-
ness with increasing N , as expected for a classical phase transition [125,
128, 129]. Figure 2.12 includes examples of empirical behavior for each of
these transitions [the Sm isotopes for U(5)–SU(3) and the Hf–Hg isotopes for
SU−(3)–SO(6)–SU+(3)]. The observed behavior nicely mimics the
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calculations. (Detailed comparisons are shown in the original literature [103,
108].) While data for a prolate–oblate transition are scarce and do not reach
fruition on the oblate side because of the impending double shell closure at
208Pb, there is a moderate increase in Q(2+

1 ) in going from Pt to Hg. Clearly,
a fascinating quest in exotic nuclei would be to search for a full prolate–oblate
transitional region. With the altered single-particle level sequences thought
possible in weakly bound, very neutron-rich nuclei there are grounds for spec-
ulating that the regions of deformation there might be more compact in N
and Z and more prolate–oblate symmetric.

2.2.3 Partial Dynamical Symmetries

As argued in Chap. 1, a dynamical symmetry can be viewed as a generaliza-
tion and refinement of the concept of symmetry. Its basic paradigm is to write
a hamiltonian in terms of Casimir operators of a set of nested algebras. Its
hallmarks are (i) solvability of the complete spectrum, (ii) existence of exact
quantum numbers for all eigenstates and (iii) pre-determined structure of the
eigenfunctions, independent of the parameters in the hamiltonian. A further
enlargement of these ideas is obtained by means of the concept of partial
dynamical symmetry. The essential idea is to relax the stringent condi-
tions of complete solvability so that the properties (i–iii) are only partially
satisfied.

Partiality comes in three different guises:

1. Some of the eigenstates keep all of the quantum numbers. In this case the
properties of solvability, good quantum numbers and symmetry-dictated
structure are fulfilled exactly, but only by a subset of eigenstates [130].
This is possible, for example, in the SU(3) limit of the IBM where a
hamiltonian can be constructed which is not scalar in SU(3), of which a
subset of eigenstates is solvable with conserved SU(3) symmetry, while
all others are mixed [131].

2. All eigenstates keep some of the quantum numbers. In this case none of
the eigenstates is solvable, yet some quantum numbers (of the conserved
symmetries) are retained. This occurs, for example, if the hamiltonian
contains interaction terms from two different chains with a common sub-
algebra, such as SO(5) which occurs in the U(5) and SO(6) classifica-
tions. As a consequence, the SO(5) label τ is conserved even if U(5) and
SO(6) Casimir operators simultaneously occur in the hamiltonian [98].
In general, this type of partial dynamical symmetry arises if the hamilto-
nian preserves some of the quantum numbers in a dynamical-symmetry
classification while breaking others. Such a scenario is possible, for exam-
ple, in the SO(6) limit of the IBM by constructing a hamiltonian which
preserves the U(6), SO(6) and SO(3) symmetries (and the associated
quantum numbers N , σ and L) but not the SO(5) symmetry, leading
to τ admixtures [132]. To obtain this type of partial dynamical symme-
try, it might be necessary to include higher-order (three- or more-body)
interactions in the hamiltonian.
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3. Some of the eigenstates keep some of the quantum numbers. This is a
combination of the previous cases and represents the weakest form of
partial dynamical symmetry. For example, in the IBM it is possible to
construct a hamiltonian which is not invariant under SO(6) but with a
subset of solvable eigenstates with good SO(6) symmetry, while other
states are mixed and no state conserves the SO(5) symmetry [133].

We emphasize that dynamical symmetry, be it partial or not, are notions
that are not restricted to a specific model but can be applied to any quan-
tal system consisting of interacting particles. Quantum hamiltonians with a
partial dynamical symmetry can be constructed with general techniques and
their existence is closely related to the order of the interaction among the
particles. We first discuss the procedure in general terms and subsequently
illustrate it with an application to the nucleus 196Pt.

The analysis starts from the chain of nested algebras

Gdyn ⊃ · · · ⊃ G ⊃ · · · ⊃ Gsym

↓ ↓ ↓
[h] Γ Λ

. (2.47)

As discussed in Chap. 1, Gdyn is the dynamical algebra such that operators of
all physical observables can be written in terms of its generators; each of its
representations contains all states of relevance in the problem. In contrast,
Gsym is the symmetry algebra and a single of its representations contains
states that are degenerate in energy. A frequently encountered example of
a symmetry algebra is SO(3), the algebra of rotations in three dimensions,
with its associated quantum number of total angular momentum J . Other
examples of conserved quantum numbers can be the total spin S in atoms or
total isospin T in atomic nuclei.

The classification (2.47) is generally valid and does not require conser-
vation of particle number. Although the generalization to partial dynamical
symmetry can be formulated under such general conditions, for simplicity
of notation it is assumed in the following that particle number is conserved.
All states, and hence the representation [h], can then be assigned a definite
particle number N . For N identical particles the representation [h] of the
dynamical algebra Gdyn is either symmetric [N ] (bosons) or anti-symmetric
[1N ] (fermions) and shall be denoted as [hN ]. For particles that are non-
identical under a given dynamical algebra Gdyn, a larger algebra can be cho-
sen such that they become identical under this larger algebra. (For mixed
systems of bosons and fermions the appropriate representation is a super-
symmetric representation [N} of a superalgebra as will be introduced in
Chap. 3.) The classification (2.47) implies that eigenstates can be labeled
as |[hN ]Γ . . . Λ〉; additional labels (indicated by . . .) shall be suppressed in
the following. Likewise, operators can be classified according to their tensor
character under (2.47) as T[hn]γλ. Of specific interest in the construction of a
partial dynamical symmetry associated with the classification (2.47) are the
n-particle annihilation operators T which satisfy the property
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T[hn]γλ|[hN ]Γ0Λ〉 = 0, (2.48)

for all possible values of Λ contained in a given representation Γ0. Any inter-
action that can be written in terms of these annihilation operators (and their
hermitian conjugates) can be added to the hamiltonian with the dynamical
symmetry (2.47) while still preserving the solvability of states with Γ = Γ0.
The annihilation condition (2.48) is satisfied if none of the G representations
Γ contained in the Gdyn representation [hN−n] belongs to the Kronecker prod-
uct Γ0 × γ. So the problem of finding interactions that preserve solvability
for part of the states (2.47) is reduced to carrying out a Kronecker product.

Partial dynamical symmetries have been applied in the context of the
IBM, notably in its SU(3) limit [131]. We illustrate here the procedure out-
lined above with a different example where the classification (2.47) is that of
the SO(6) limit of the IBM.

Example: Partial dynamical symmetries in the SO(6) limit. The classification
in the SO(6) limit of the IBM is given in Eq. (2.39); the dynamical algebra
Gdyn is U(6), while G is SO(6) in this case. The eigenstates |[N ]ΣτLML〉 are
obtained with a hamiltonian which is a combination of Casimir operators of
the algebras SO(6), SO(5) and SO(3), as in Eq. (2.38). Hamiltonians with
an SO(6) partial dynamical symmetry preserve the analyticity of a subset of
all eigenstates. The construction of interactions with this property requires
boson creation and annihilation operators with definite tensor character in
the SO(6) basis:

B†
[n]σvlml

, B̃[n]σvlml
≡ (−1)l−mB[n]σvl−ml

.

Of particular interest are tensor operators with σ < n. They have the prop-
erty

B̃[n]σvlml
|[N ]Σ = NτLML〉 = 0, σ < n.

This is so because the action of B[n]σvlml
leads to an (N−n)-boson state that

contains the SO(6) representations with Σ = N − n − 2i, i = 0, 1, . . ., which
cannot be coupled with σ to yield the SO(6) representation with Σ = N
since σ < n. Interactions that are constructed out of such tensors with σ < n
(and their hermitian conjugates) thus have |[N ]Σ = NτLML〉 as eigenstates
with eigenvalue 0.

A systematic enumeration of all interactions with this property is a simple
matter of SO(6) coupling. For one-body operators one has

B†
[1]1000 = s† ≡ b†0, B†

[1]112ml
= d†ml

≡ b†2ml
,

and no annihilation operator has the property (2.48).
Coupled two-body operators are of the form

B†
[2]σvlml

∝
∑

vkvk′

∑
kk′

Cσvl
vkk,v′

k
k′(b†k × b†k′)(l)ml

,
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Table 2.4. Normalized two- and three-boson SO(6) tensors B†
[n]σvlml

n σ v l B†
[n]σvlml

2 2 2 4
√

1
2

(d† × d†)
(4)
ml

2 2 2 2
√

1
2

(d† × d†)
(2)
ml

2 2 1 2 (s† × d†)
(2)
ml

2 2 0 0
√

5
12

(s† × s†)
(0)
0 +

√
1
12

(d† × d†)
(0)
0

2 0 0 0 −
√

1
12

(s† × s†)
(0)
0 +

√
5
12

(d† × d†)
(0)
0

3 3 3 6
√

1
6

((d† × d†)(4) × d†)
(6)
ml

3 3 3 4
√

7
22

((d† × d†)(2) × d†)
(4)
ml

3 3 3 3
√

7
30

((d† × d†)(2) × d†)
(3)
ml

3 3 3 0
√

1
6

((d† × d†)(2) × d†)
(0)
0

3 3 2 4
√

1
2

((s† × d†)(2) × d†)
(4)
ml

3 3 2 2
√

1
2

((s† × d†)(2) × d†)
(2)
ml

3 3 1 2
√

7
16

((s† × s†)(0) × d†)
(2)
ml +

√
5

112
((d† × d†)(0) × d†)

(2)
ml

3 3 0 0
√

5
48

((s† × s†)(0) × s†)
(0)
0 +

√
3
16

((s† × d†)(2) × d†)
(0)
0

3 1 1 2 −
√

1
16

((s† × s†)(0) × d†)
(2)
ml +

√
5
16

((d† × d†)(0) × d†)
(2)
ml

3 1 0 0 −
√

1
16

((s† × s†)(0) × s†)
(0)
0 +

√
5
16

((s† × d†)(2) × d†)
(0)
0

where Cσvl
vkk,v′

k
k′ is a U(6) ⊃ SO(6) ⊃ SO(5) ⊃ SO(3) isoscalar factor (see

Box on Isoscalar factors and the Wigner–Eckart theorem), which is known in
the specific cases needed in the sum. This leads to the normalized two-boson
SO(6) tensors shown in Table 2.4. There is one operator with σ < n = 2 and
it gives rise to the interaction

B†
[2]0000B̃[2]0000 =

1
3
P+P− =

1
12

{N(N + 4) − C2[SO(6)]} ,

where P+ ≡ (s†s† − d† · d†)/2 is the boson-pairing operator. This proves that
a two-body interaction which is diagonal in |[N ]Σ = NτLML〉 is diagonal
in all states |[N ]ΣτLML〉. This result is valid in the SO(6) limit but not in
general. For example, from a tensor decomposition of two-boson operators
in SU(3) one concludes that the SU(3) limit of the IBM does allow a partial
dynamical symmetry with two-body interactions.

Three-body operators with good SO(6) labels can be obtained from a sim-
ilar expansion and this leads to the normalized three-boson SO(6) tensors
shown in Table 2.4. In terms of the boson pair operator introduced above,
the two operators with σ < n = 3 are
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B†
[3]1000 =

1
2
P+s†, B†

[3]112ml
=

1
2
P+d†ml

,

and from these one can construct the interactions with an SO(6) partial
dynamical symmetry. The only three-body interactions that are partially
solvable in SO(6) are thus P+nsP− and P+ndP−. Since the combination
P+(ns + nd)P− is completely solvable in SO(6), there is only one genuine
partially solvable three-body interaction which can be chosen as P+nsP−.

The generalization to higher orders now suggests itself. For example, four-
body interactions with SO(6) partial dynamical symmetry are written in terms
of B†

[4]2vlml
and B†

[4]0000, and hermitian conjugate operators. Without loss of
generality, these operators can be written as

B†
[4]2vlml

∝ P+B†
[2]2vlml

, B†
[4]0000 ∝ P 2

+.

A four-body interaction with SO(6) partial dynamical symmetry is thus of
the form P+V2P− where V2 is an arbitrary two-body interaction. This interac-
tion leaves solvable all states with Σ = N but in general admixes those with
Σ < N . The conclusion is that we can construct a hierarchy of interactions
of the form P k

+nsP
k
− and P k

+V2P
k
−, of order 2k + 1 and 2k + 2, respectively,

that leave all states with Σ > N − 2k solvable.
The advantage of the use of higher-order interactions with a partial dy-

namical symmetry is that they can be introduced without destroying re-
sults previously obtained with a dynamical symmetry. This is illustrated in
Fig. 2.13, the middle panel of which shows the experimental energy spectrum
of 196Pt [134]. One of the problems in the comparison with the SO(6) limit
of the IBM (left-hand panel) is that the lowest 0+–2+–2+ levels belonging to

Fig. 2.13. Observed spectrum of 196Pt compared with the theoretical spectra
with SO(6) dynamical symmetry (DS) and partial dynamical symmetry (PDS).
Levels are labeled by their angular momentum and parity Jπ and by (Σ, νΔ) where
Σ pertains to SO(6) and νΔ is the label missing between SO(5) and SO(3). The
notation (∗, ∗) indicates that these labels are mixed
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Table 2.5. Parameters (in keV) for the nucleus 196Pt

κ3 κ4 κ5 κ′
3

dynamical symmetry −42.25 45.0 25.0 —
partial dynamical symmetry −29.50 45.0 25.0 34.9

the Σ = N −2 multiplet are not at the correct excitation energy. Three-body
d-boson interactions have been proposed in the past that remedy this prob-
lem [135] but this is a delicate matter since the interaction used also changes
the low-lying states of the Σ = N multiplet. On the basis of the preceding
discussion one may propose to use instead the hamiltonian [136]

H = κ3C2[SO(6)] + κ4C2[SO(5)] + κ5C2[SO(3)] + κ′
3P+nsP−.

The spectrum of this hamiltonian is shown in the right-hand panel of Fig. 2.13
and its parameters without and with the higher-order interaction are given in
Table 2.5. The states belonging to the Σ = N = 6 multiplet remain solvable
and do not change from the dynamical-symmetry calculation. States with
Σ �= 6 are generally admixed (not-solvable) but agree better with the data
than in the exact SO(6) limit. Note that also a partial dynamical symmetry
of type 2 in the classification discussed above occurs since τ is a conserved
quantum number for all states of the eigenspectrum. As a consequence, some
of the states with Σ �= 6 remain completely solvable. For example, the 0+

level with (Σ, νΔ) = (4, 1) is solvable because its value τ = 4 is unique
among the levels with Σ �= 6. As far as electric quadrupole probabilities are
concerned, these are reasonably well described both in DS and in PDS [136]
but, unfortunately, most of the data concern transitions between Σ = 6
levels and hence do not distinguish between the two. The crucial selection
rule forbidding E2 transitions (for χ = 0) between Σ = 6 and the other states
is, however, conserved.

2.2.4 Core Excitations

The microscopic interpretation of the bosons of the IBM is one of corre-
lated pairs of nucleons in the valence shell of the nucleus. Consequently, the
elementary version of the model provides a description only of (collective)
excitations of particles in the valence shell and assumes a totally inert core.
In many nuclei this assumption is not justified and core excitations occur
at low energies comparable to those of valence excitations. This situation
arises in particular in nuclei where one type of nucleon has a closed or almost
closed-shell configuration, while the other type is at mid-shell [137].

Consider as an example 116Sn. This nucleus is magic in the protons
(Z = 50) and is exactly in between the neutron closed-shell configurations
N = 50 and N = 82. With 100Sn as inert core, valence excitations corre-
spond to rearrangements of the neutrons in the 50–82 shell. It is, however,
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well established [138] that this nucleus exhibits a two-particle–two-hole (2p–
2h) Jπ = 0+ excitation of the protons at Ex = 1.757 MeV (the second-
excited state above the Jπ = 2+ level at 1.294 MeV), which corresponds to
a core-excited or intruder configuration. The characteristic feature of this
nucleus—rather typical for nuclei in which one type of nucleon has a closed
or almost closed-shell configuration—is that the core-excited states occur at
energies comparable to those of the usual valence excitations.

A complete description of the low-energy states of such nuclei should thus
include both particle excitations in the valence shells and hole excitations in
the core shells. In even–even nuclei these predominantly occur as pair exci-
tations and, as a result, the situation can be described neatly in the IBM
through the introduction of two types of bosons [139]: particle bosons (parti-
cle pairs in the valence shells) and hole bosons (hole pairs in the core shells),
which may or may not be treated differently, depending on the degree of so-
phistication of the approach. If a distinction is made, one is confronted with
a system of interacting bosons of two different types and one may consider
them as one type of boson in two different intrinsic states. In analogy with
the isospin formalism of Sect. 1.1.6, one assigns an I-spin quantum number
to the bosons, I = 1/2, with Iz = −1/2 for a particle boson and Iz = +1/2
for a hole boson [140]. We close this section by showing an example of an
I-spin multiplet with I = 3/2 (Fig. 2.14). It is seen that a (dynamical) I-spin

Fig. 2.14. Observed [44] spectra of nuclei belonging to an I-spin multiplet with
Np

ν +Nh
π = 3, where Np

ν (Nh
ν ) is the number of proton particle (hole) bosons. Levels

are labeled by their angular momentum and parity Jπ. Underneath each isotope
are given the boson numbers (Nπ

p , Nπ
h ). The levels are drawn relative to the lowest

I = 3/2 state; in the Iz = ±1/2 nuclei 114Cd and 118Te these are excited states
with an energy as indicated on top of the level
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symmetry (which gives rise to identical excitation spectra) is only approxi-
mately valid. Deviations arise due to the difference in microscopic structure
between the particle and the hole pairs that correspond to the bosons.

2.3 A Case Study: 112Cd

The Z = 50 mass region is very favorable for nuclear structure studies due to
the large abundance of stable isotopes combined with the interesting features
of the nearby Z = 50 proton shell closure and with the occurrence of neutrons
in the middle of the N = 50–82 shell. This theoretical interest coupled with
the possibility of detailed experimental studies makes the cadmium (Z = 48),
tin (Z = 50) and tellurium (Z = 52) isotopes ideal for testing the influence
of symmetries in their structure. This is illustrated here with the example of
112Cd, one of the best known nuclei.

2.3.1 Early Evidence for Vibrational Structures and Intruder
Configurations

The earliest work started with the observation by Schraff-Goldhaber and We-
sener [141] that the Cd isotopes exhibit low-lying states that resemble the
quadrupole-vibrational excitations of a surface with spherical equilibrium as
predicted by the collective model of Bohr and Mottelson [57]. Besides the one-
phonon quadrupole state, candidates for two-phonon quadrupole states were
observed around 1.2 MeV, twice the energy of the first-excited 2+ state. The
two-phonon states were found non-degenerate, indicating the need to include
anharmonic effects in the phonon–phonon interactions. Furthermore, addi-
tional 0+ and 2+ states were observed in transfer studies [142]. Attempts by
Bes and Dussel to explain these as strongly anharmonic three-phonon states
failed [143]. The explanation of the additional states was then related to two-
particle–two-hole (2p–2h) excitations of the protons across the Z = 50 closed
shell. Evidence that the extra 0+ and 2+ states were indeed 2p–4h states was
obtained from (3He,n) two-proton-transfer experiments [144]. By the early
1990s intruder bands were identified in most even–even Cd isotopes [145].
Strong support for the intruder interpretation came from the systematic be-
havior of these states as a function of the number of valence neutrons. Due
to the increase in neutron–proton quadrupole interaction, intruder states de-
crease in energy proportional to the number of neutrons, reaching a lowest
value near mid-shell [146]. In the Cd isotopes this mechanism gives rise to
intruder and two-phonon states close in energy, resulting in complex spectra
but also in interesting symmetry effects.

2.3.2 The 110Pd(α,2nγ)112Cd Reaction and its Interpretation

At the end of the 1980s an important reorientation of nuclear structure
research occurred. Major investments were turned to the study of the
structure of the nucleus at high rotational frequencies, following the
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discovery of superdeformation by Twin and collaborators [147]. Somewhat
later the first radioactive-ion beam experiments were performed at Louvain-
la-Neuve [148] opening the access to a largely unexploited degree of freedom,
the neutron-to-proton ratio. Both fields attracted most of the resources and
changed the modus operandi of the nuclear structure community consider-
ably. Many stable-beam facilities were closed, and the classical approach of
complete spectroscopy remained possible at a limited number of research cen-
ters only. Theoretical nuclear physicists turned to these new fields or applied
nuclear physics techniques to other domains of physics, such as molecular and
condensed-matter physics. Those who remained active in low-energy nuclear
structure profited from the improvements in instrumentation and especially
from the ever increasing computer power for the analysis of ever more com-
plex data sets.

It was in this context that an extensive study of 112Cd was performed
at the PSI Philips Cyclotron by Délèze et al. using the 110Pd(α,2nγ)112Cd
reaction and an array of Compton suppressed Ge detectors [149, 150]. Light-
ion-induced fusion–evaporation reactions provided a very complete popula-
tion of low-to-medium spin states [151] and the use of anti-Compton shields
improved the quality of the data significantly. From the excitation functions
to assign the spins and from the angular distributions to determine mixing
ratios, a comprehensive level scheme up to spins of 14h̄ could be obtained.
The data can be interpreted with the interacting boson model with intruder
states in its simplest form [150], in contrast to the standard intruder de-
scription which is based on the interacting boson model with neutron and
proton bosons (see Sect. 4.3). The analysis relies very strongly on symmetry
concepts. The known normal states in 112Cd are fitted with the U(5) energy
expression in Eq. (2.40) with κ′

1 = 0. The three-parameter fit yields an excel-
lent description of the energies of the vibrational states and can be extended
to higher-lying high-spin states up to the six-phonon level (see left-hand side
of Fig. 2.15). Because in this approach many states are not described, in
a second step all fitted normal states are removed from the spectrum. The
remaining states starting with the 0+ level at 1,224.4 keV form a second
collective structure which can be fitted with the SO(6) energy expression in
Eq. (2.40) with the assumption that κ3 is large and negative as no σ = N −2
states could be identified. This is shown on the right-hand side of Fig. 2.15.

In a third step a configuration-mixing procedure is applied. To lowest
order this can be done with a mixing hamiltonian of the form

Hmix = α(s† × s† + s × s)(0) + β(d† × d† + d̃ × d̃)(0). (2.49)

This form fulfils the necessary conditions of scalar invariance and hermitic-
ity. Before mixing an energy shift Δ is applied to the intruder states. With
Δ = 1, 230 keV, α = 30 keV and β = 20 keV the energies of the one- and
two-phonon as well as the two lowest intruder states are well described. In
addition, Table 2.6 shows that the model can account for the observed elec-
tric quadrupole properties (except for the 0+

3 → 2+
1 transition) which are
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Fig. 2.15. Classification of the positive-parity states in 112Cd in the U(5)–O(6)
approach described in the text. The left-hand side shows the normal states calcu-
lated in the U(5) limit with parameters κ1 = 697, κ4 = −9.8 and κ5 = 5.51 (in
keV). The right-hand side shows the intruder states calculated in the SO(6) limit
with parameters κ4 = −60.6, κ5 = 6.0 (in keV) and κ3 large and negative (based
on ref [149])

Table 2.6. Observed E2 transition rates involving normal and intruder states in
112Cd compared with the predictions of a U(5)–SO(6) mixing calculation

B(E2; Ji → Jf)
a Experiment U(5)–SO(6)

normal → normal B(E2; 2+
1 → 0+

1 ) 98(2) 99
B(E2; 2+

2 → 0+
1 ) 2.8(3) 0.001

B(E2; 2+
2 → 2+

1 ) 180(80) 177
B(E2; 4+

1 → 2+
1 ) 197(25) 177

B(E2; 0+
3 → 2+

1 ) 0.039(3) 98
B(E2; 0+

3 → 2+
2 ) 317(26) 140

intruder → normal B(E2; 0+
2 → 2+

1 ) 130(30) 87
B(E2; 2+

3 → 0+
1 ) 1.0(3) 0.034

B(E2; 2+
3 → 0+

2 ) 190(50) 276
B(E2; 2+

3 → 0+
3 ) 128(64) 50

B(E2; 2+
3 → 2+

1 ) 1.0(5) 0.5

aIn units of 10−3 e2b2.

obtained with a quadrupole operator of the form (2.41) with a boson effec-
tive charge eb = 0.111 eb and with χ = −1.969 and χ = 0, for normal and
intruder states, respectively. Finally, the negative-parity states of octupole
character can also be well described through the inclusion of p and f bosons
with the help of the computer code OCTUPOLE which also incorporates
intruder states [152].
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Fig. 2.16. Selective mixing between normal (left) and intruder (right) positive-
parity states in 112Cd in the U(5)–SO(6) model. The mixing is indicated by
the thickness of the arrows connecting states with the same angular momentum.
(Reprinted from H. Lehmann et al., Phys. Lett. B387 (1996) 259 c© Elsevier Science
NL, with kind permission.)

Because of the success of this simple U(5)–SO(6) description, the model
was studied in more detail in Ref. [99] and, specifically, the influence of
the common SO(5) group was investigated and it was found that the re-
sulting symmetry constraints are very important. Since the mixing hamilto-
nian (2.49) is an SO(5) scalar, it can only mix states with the same seniority in
the U(5) and SO(6) limit, as indicated in Fig. 2.16. One notices in particular
that the 2+

2 and 2+
3 states remain pure despite their small energy difference,

while the 0+
2 and 0+

3 levels are strongly admixed. Interestingly, experiments
using high-resolution inelastic scattering of polarized protons on 112Cd per-
formed at the Q3D in Munich came exactly to this conclusion, finding pure
2+ states and maximally admixed 0+ states [153].

Another major consequence is related to the SO(6) character of the mixing
hamiltonian [99]. It is possible to rewrite the hamiltonian (2.49) such that its
tensor character in the SO(6) limit becomes apparent,

Hmix =
1
6

(
α −

√
5β
)

T[2]000 +
5
6

(
α +

1√
5
β

)
T[2]200, (2.50)

where the subscripts refer to the labels [N ]στL and the tensors are T[N ]στL =
B†

[N ]στL + B̃[N ]στL in terms of the operators defined in Table 2.4. Because
the lowest intruder states are characterized by an SO(6) quantum number
σ = N + 2 while the normal states have at most σ = N , they cannot be
coupled by the first term in (2.50). Therefore only the second term mixes the
two configurations and instead of two free parameters α and β only the sum
(α + β/

√
5) counts. This holds not only for the U(5)–SO(6) model but also

for any hamiltonian describing normal and intruder states which conserves
the SO(5) symmetry or which has a partial SO(5) dynamical symmetry.
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2.3.3 Studies of 112Cd Using the (n,n′γ) Reaction

The Kentucky facility is unique for the study of low-spin yrare states because
it delivers a quasi mono-energetic tunable neutron beam. This is achieved
with the 3H(p,n)3He reaction on a tritium gas target. The absence of excited
states in 3He and the slightly negative Q value for this reaction leads after
collimation to a low-energy mono-energetic neutron beam in forward direc-
tion with a typical energy spread of 60 keV. This energy can be tuned by
varying the energies of the proton beam. After collimation the neutrons are
incident on a massive target (5–50 g) containing the isotope to be studied.
The large quantity of mono-isotopic material needed is the main limitation of
the method. To measure the γ rays emitted in the (n,n′γ) reaction, neutron
time-of-flight measurements are used, which also provide a proper normal-
ization.

The main advantage of inelastic neutron scattering is the absence of the
Coulomb barrier. Therefore the neutrons interact with the atomic nucleus
without energy loss. Thus the maximal excitation energy is given by the in-
cident neutron energy which can be varied. This is a paramount advantage
compared to fusion–evaporation reactions in which the nucleus is excited in
a loosely defined and broad energy range. In contrast to the similar situa-
tion in inelastic photon scattering, inelastic neutron scattering does not only
make dipole and quadrupole excitations but also populates all states with
spins up to about 6h̄. The typical dependence of the excitation cross-section
on neutron energy and transferred spin allows the determination of the spin
values. The excitation energies can, of course, also be extracted from these
excitation functions. Multipolarities of transitions are obtained from the an-
gular distributions with respect to the incident neutron beam. While the
intensities measured in the angular distributions yield the mixing ratios, the
observed Doppler shift can be used to extract the lifetimes using the DSA
method [154]. A major advantage is the possibility to avoid side feeding by
tuning the neutron energies such that the excited states under investigation
are populated but no higher-lying levels. If it were not for the delicate use of a
tritium target and the need of huge quantities of enriched material, inelastic
neutron scattering would be the ideal way to perform low-spin spectroscopy.

For the (n,n′γ) study of 112Cd at the Kentucky facility the scattering
sample consisted of 50 g of 112CdO with an enrichment of 98.17%. Several
experiments were performed and the final data analysis was finished in 2007.
The results were analyzed in steps by going up in excitation energy. The
first analysis concerned the three-phonon states for which absolute transi-
tion rates were obtained. Therefore the lifetimes were extracted by analyzing
the angular distribution for Doppler shift using mono-energetic neutrons of
2.5 MeV. This choice of energy avoided the population of higher-lying states
which would have affected the lifetimes due to time delays from the feeding
of higher-excited states. In addition, the clean spectra allowed the observa-
tion of several new transitions depopulating the 2+

4 state at 2,121.6 keV.
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This new decay pattern showed large deviations from the expected decay,
indicating a strongly fragmented state. Therefore it was concluded that there
was no evidence for a 2+ three-phonon state. Other candidates such as the
2+
5 and 2+

6 states were studied [155] and it was found that they decay with
strong M1 transitions making them candidates for mixed-symmetry states
but not for a three-phonon state (see Sect. 4.3). The lifetimes of the 3+ and
4+ states lifetimes were measured, yielding strong collective decay patterns
as expected. The precise order of the intruder and three-phonon states could
never be reproduced and also remained problematic in detailed numerical
calculations [149] using the more sophisticated neutron–proton IBM.

Already in Ref. [149] it was observed that the intruder states in 112Cd
resemble the normal states in 108Ru, as expected on the basis of I spin (see
Sect. 2.2.4). This was investigated in detail in Ref. [156] where the complete
I = 3/2 multiplet is described by separating the hamiltonian in its I-spin
scalar, vector and tensor parts, leading to [157]

E(MI) = κ0 + κ1MI + κ2M
2
I . (2.51)

For each level of the I = 3/2 multiplet it is possible to fit a quadratic function
of MI allowing the prediction of excited intruder states in 116Te as shown in
Fig. 2.17.

To extend the study to even higher energies, a much more extended data
set was needed, involving further angular distribution measurements with
3.4 and 4.2 MeV neutrons, an excitation function using neutron energies

Fig. 2.17. Quadratic fit of observed states in 108Ru, 112Cd and 120Ba, allowing the
prediction of excited intruder states in 116Te. (Reprinted from H. Lehmann et al.,
Nucl. Phys. A621 (1997) 767 c© Elsevier Science NL, with kind permission.)
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between 1.8 and 4.2 MeV and γ–γ coincidences using collimated 4.2 MeV
neutrons. This makes the study of 112Cd the most detailed ever performed
with inelastic neutron scattering. In a first step negative-parity states situ-
ated around 2.5 MeV were investigated [158]. They are candidates for the
quintuplet of states with Jπ = 1−, 2−, 3−, 4− and 5− formed by the cou-
pling of a quadrupole and an octupole boson. Based on the collective E2 de-
cay of most states, candidates for such quadrupole–octupole coupled states
could be clearly identified in agreement with an spdf calculation. Figure 2.18
illustrates the agreement obtained with this description of 112Cd in the
spdf IBM.

The full data analysis was performed in two steps. In Ref. [159] the newly
observed levels and their spin and parities are deduced and compared to
level-density formulas. In a second step the deduced lifetimes and multi-
polarities allowed the determination of hundreds of new absolute transition
rates [160] up to 4 MeV excitation energy. The results combined with those
of transfer reactions were compared to detailed IBM-2 configuration-mixing
calculations [149], shown in Fig. 2.19. This very detailed and difficult study
illustrates the limit of what can be understood using symmetry arguments.
While some evidence for three-phonon states was obtained in earlier studies, it
turned out to be impossible to identify clearly the low-spin members of this
quintuplet as well as low-spin members of the higher multi-phonon states
using absolute decay properties. The origin of this failure is the complex
mixing with other excitations such as hexadecapole (g boson) and quasi-
particle excitations in the high-level-density regime occurring around 2 MeV.

Fig. 2.18. Quadrupole–octupole states in 112Cd as identified by their electric
dipole de-excitation to states with positive parity. (Reprinted from P.E. Garrett
et al., Phys. Rev. C59 (1999) 2455 c©1999 by the American Physical Society, with
kind permission.)
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Fig. 2.19. Comparison between observed E2 rates between positive-parity states
in 112Cd (bottom) and those calculated with IBM-2 (top). Dashed arrows present
those values where only upper limits are known. (Reprinted from P.E. Garrett et al.,
Phys. Rev. C75 (2007) 054310 c©2007 by the American Physical Society, with kind
permission.)

The example of 112Cd clearly underlines the importance of symmetry
principles in nuclear physics as well as their limitations. At low excitation
energy they lead to clear predictions which can be tested. They also allow to
tackle more difficult situations as was shown with the example of the U(5)–
SO(6) model of shape coexistence. At higher excitation energies quadrupole–
octupole states still allow for a model description since they are rather isolated
negative-parity states. However, once the density of states of a given spin
and parity increases drastically due to quasi-particle or other excitations, it
becomes very difficult, if not impossible, to get a detailed agreement with
the data, especially for the electromagnetic decay properties. Here statistical
approaches such as presented in Ref. [159] seem more appropriate. It should
be mentioned that several other even–even Cd isotopes were recently studied
with very high precision such that these nuclei form one of the most detailed
testing grounds of the role of symmetries in nuclear structure.
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One particularly important extension of the interacting boson model (IBM)
concerns odd-mass nuclei, achieved by considering, in addition to the bosons,
a fermion coupled to the core with an appropriate boson–fermion interaction.
The resulting interacting boson–fermion model (IBFM) is thus a specific
version of the particle–core coupling model which has been widely used in
nuclear physics to describe odd-mass nuclei [62]. The characteristic feature
of the IBFM is that it lends itself very well to a study based on symmetry
considerations whereby certain classes of boson–fermion hamiltonians can be
solved analytically. Essential features of the IBFM are recalled in Sect. 3.1,
while its symmetry structure is outlined in Sect. 3.2. Since the IBFM is
described in detail in Ref. [161], no comprehensive review is given here. Two
dynamical-symmetry limits of the IBFM which are of relevance in this and
the remaining chapters, are discussed in Sect. 3.3.

A particularly attractive feature is the similarity in the description of
even–even and odd-mass nuclei which has given rise to the development of a
supersymmetric model, discussed in Sect. 3.4.

Nuclear supersymmetry is a composite-particle phenomenon, linking the
properties of boson and fermion systems, framed here in the context of the
IBM and IBFM. Composite particles, such as the α particle, are known to
behave as approximate bosons. In fact, our knowledge of boson systems is
largely derived from cases where the bosons have a composite character. For
example, He atoms become superfluid at low temperatures and under cer-
tain conditions can also form Bose–Einstein condensates. At higher densities
(or temperatures) the constituent fermions begin to be felt and the Pauli
principle sets in. Odd-particle composite systems, on the other hand, behave
as approximate fermions and are, in the context of the IBFM, treated as a
combination of bosons and an (ideal) fermion. In contrast to the theoretical
construct of supersymmetry in particle physics, where it is postulated as a
generalization of the Lorentz–Poincaré invariance at a fundamental level, ex-
perimental evidence has been found for nuclear dynamical supersymmetry,
and one particular case is presented in detail in Sect. 3.5.

Although supersymmetries in nuclei traditionally have been associated
with dynamical symmetries (i.e., algebraic classification schemes), it is impor-
tant to make a distinction between the two concepts. In fact, both exist sep-
arately: It is possible to find evidence for supersymmetry without dynamical

A. Frank et al., Symmetries in Atomic Nuclei, 79
Springer Tracts in Modern Physics 230, DOI 10.1007/978-0-387-87495-1 3,
c© Springer Science+Business Media, LLC 2009
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symmetry or vice versa. This point, as well as its significance in the analysis
of data, is explained in the final section of this chapter.

3.1 The Interacting Boson–Fermion Model

As mentioned in the introduction to this chapter, the IBFM can be thought
of, on one level, as a core–particle coupling model with the advantage of a
versatile IBM description of the collective core states. However, there are two
aspects of the approach which go further. First, as for the IBM in even–even
nuclei, it is possible to forge a link between the collective hamiltonian and the
underlying single-particle shell structure. Second, symmetries play a central
role in the IBFM, just as they do in the boson case. The three symmetries
which emerge from the algebraic treatment of the boson problem reappear in
the odd-mass formalism although their existence and structure now depend
on the single-particle space available to the odd fermion.

The IBFM of odd-mass nuclei was introduced by Iachello and Scholten
[162]. Different versions of the model can be constructed depending on the
realization of the algebra in terms of creation and annihilation operators.
One such realization, called Holstein–Primakoff, leads to a somewhat different
version of the IBFM, which is known as the truncated quadrupole phonon–
fermion model [163]. The discussion here shall be limited to a brief outline
of the basic features of the simplest version of the IBFM.

The basic building blocks of the IBFM are N s and d bosons, in terms of
which the even–even core states are modeled, and fermions which occupy a
set of single-particle orbits {j, j′, . . .}. Low-lying collective states of an odd-
mass nucleus with 2N + 1 valence nucleons are approximated as N -boson
states coupled to a single fermion. The creation and annihilation operators
are b†lm and blm for the bosons and a†

jm and ajm for the fermions, and satisfy
the (anti-)commutation relations

{ajm, a†
j′m′} = δjj′δmm′ , {a†

jm, a†
j′m′} = {ajm, aj′m′} = 0, (3.1)

and
[blm, b†l′m′ ] = δll′δmm′ , [b†lm, b†l′m′ ] = [blm, bl′m′ ] = 0. (3.2)

Furthermore, it is assumed that boson and fermion operators commute,

[blm, aj′m′ ] = [blm, a†
j′m′ ] = [b†lm, aj′m′ ] = [b†lm, a†

j′m′ ] = 0. (3.3)

To the extent that nucleons are ideal fermions (which, in fact, they are not
since they consist of three quarks), the anti-commutation relations (3.1) are
valid exactly. The bosons are composite objects with an internal structure
and only approximately satisfy the commutation relations (3.2) and (3.3).
The approach followed in the IB(F)M is to impose particle statistics rigor-
ously and to correct for the neglect of the Pauli principle by including addi-
tional correlations in the hamiltonian. Such Pauli corrections are particularly
important for the boson–fermion interaction.
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The hamiltonian of the IBFM consists of a boson and a fermion part, and
a boson–fermion interaction, and can be written as

H = HB + HF + V BF. (3.4)

The boson hamiltonian can be taken directly from the IBM, see Sect. 2.2. As
in the boson case, the fermion hamiltonian can be expanded in the order of
the interaction. In general, for odd-mass nuclei, only one fermion is coupled
to the boson core and this implies that only the one-body part of the fermion
hamiltonian matters, which then can be written as

HF =
∑

j

εjnj , (3.5)

where nj is the number of fermions in orbit j and εj its single-particle energy.
We note that the simplication of the fermion hamiltonian is a consequence
of the assumption of coupling one fermion to the bosons. If several fermions
are coupled to the core, their mutual interaction should be included in HF.
Notably, this is important in odd–odd nuclei where a neutron and a proton are
coupled to the even–even core, as will be discussed in Chap. 5. The need for
a fermion–fermion interaction also arises if two-particle or two-quasi-particle
states are coupled to a boson core which is required for the description of
high-spin phenomena such as band crossing and back bending [164, 165, 166].
This approach has even been extended to the coupling of four-quasi-particle
states to a boson core [167, 168]. The third term in the hamiltonian (3.4)
is the interaction between bosons and fermion which, in lowest order, is of
two-body character,

V BF =
∑

ljl′j′J

vJ
ljl′j′

(
(b†l × a†

j)
(J) × (b̃l′ × ãj′)(J)

)(0)

0
, (3.6)

where the v coefficients are related to the interaction matrix elements
between normalized boson–fermion states,

〈lj;JMJ |V BF|l′j′;JMJ 〉 =

√
1

2J + 1
vJ

ljl′j′ . (3.7)

The boson–fermion interaction (3.6) is too general to be of use in a phe-
nomenological analysis. On the basis of shell-model considerations, a simplied
form of this interaction can be proposed [162] which contains a monopole, a
quadrupole and an exchange term,

V BF
monopole =

∑
j

κj

(
(d† × d̃)(0) × (a†

j × ãj)(0)
)(0)

0
,

V BF
quadrupole =

∑
jj′

κjj′

(
QB × (a†

j × ãj′)(2)
)(0)

0
,

V BF
exchange =

∑
jj′j′′

κj′′

jj′ :
(
(d† × ãj)(j

′′) × (d̃ × a†
j′)(j

′′)
)(0)

0
:, (3.8)
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Fig. 3.1. Schematic representation of different boson–fermion exchange
interactions

where the notation : · · · : indicates normal order and QB
μ is the quadrupole

operator (2.45) with an additional index B to indicate its boson character.
The monopole and quadrupole interactions are the most important compo-
nents in a multipole expansion of the interaction and should be included
as such. The exchange interaction [169, 170] takes account of the fact that
the bosons have an internal structure, and this leads to the exchange ef-
fects illustrated in Fig. 3.1. Since the bosons are fermion pairs, they are
represented by a double line, while a fermion corresponds to a single line;
the vertices denote (two-nucleon) interactions. Microscopic considerations
suggest [171] that the d-to-d exchange interaction is its most important
component.

3.2 Bose–Fermi Symmetries

The Lie algebras associated with the IBFM are UB(6) and UF(Ω) where
Ω =

∑
j(2j + 1) denotes the size of the single-particle space available to

the fermion. The usual boson algebra UB(6) describes the collective core
excitations, while UF(Ω) corresponds to the unitary transformations among
the available single-particle states a†

jm|o〉. The dynamical algebra for an odd-
mass nucleus is then the product algebra

UB(6) ⊗ UF(Ω). (3.9)

It contains two sets of generators, in terms of bosons b†lmb̃l′m′ and in terms of
fermions a†

jmãj′m′ . Note that the IBFM hamiltonian conserves the number
of bosons as well as fermions; it can be expressed in terms of the genera-
tors of the algebra (3.9) which therefore can be considered as the dynamical
algebra.

The existence of analytically solvable IBFM hamiltonians relies on iso-
morphisms between boson and fermion algebras. A simple example of two
isomorphic algebras is provided by the angular momentum algebras which
can be defined for bosons and for fermions. The former consists of the angu-
lar momentum operators LB

μ which generate the boson algebra SOB(3) and
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occurs in the lattice (2.36). The fermion angular momentum operators LF
μ

have commutation properties which are identical to those of LB
μ and thus

are generators of an identical Lie algebra which shall be denoted as SUF(2).
Although the elements of both Lie algebras can be put into one-to-one cor-
respondence, expressed by the isomorphism SOB(3) � SUF(2), the difference
in notation refers to the fact that the bosons can couple to integer angular
momenta only, while for the fermions they can also be half-integer. Because of
the property (3.3), LB

μ and LF
μ commute, and the summed operators LB

μ +LF
μ

close under commutation and generate the boson–fermion algebra SUB+F(2).
This is the algebra of the total angular momentum, which can be integer or
half-integer, depending on whether the number of fermions is even or odd.
Since SOB(3) is a subalgebra of UB(6) and SUF(2) is one of UF(Ω), it follows

that SUB+F(2) is a subalgebra of UB(6) ⊗ UF(Ω),

UB(6) ⊗ UF(Ω) ⊃ · · · ⊃ SUB+F(2). (3.10)

In the following, we shall omit the superscripts B+F in the total angular
momentum algebra which then shall be denoted as SO(3), Spin(3) or SU(2),
depending on whether the angular momenta are only integer or only half-
integer or both integer and half-integer.

The classification of all analytically solvable, rotationally invariant IBFM
hamiltonians amounts to finding the subalgebras of UB(6) ⊗ UF(Ω) which
contain SU(2). It is clear that this classification depends on Ω and the spe-
cific single-particle orbits {j, j′, . . .} available to the fermion. The subalgebra
structure of UB(6) ⊗ UF(Ω) depends on the existence of isomorphisms be-
tween boson and fermion algebras: Whenever an isomorphism is established
between GB and GF, GB � GF, a boson–fermion algebra GB+F can be de-
fined (by adding the corresponding generators) and incorporated into the
lattice (3.10).

The algebraic structure of the boson part of the problem is well known and
contained in lattice (2.36), although careful consideration should be given to
the parameter symmetries mentioned in Sect. 2.2. On the fermion side, since
Ω can be large, the algebraic substructure of UF(Ω) may be complex and not
known a priori. A powerful method to determine subalgebras is based on the
separation of the nucleon angular momentum j = l̃ + s̃ into a pseudo-orbital
part l̃ and a pseudo-spin part s̃ [84]. For s̃ �= 1/2 this is a generalization
of the pseudo-spin scheme of Sect. 2.1. This separation carries with it the
definition of the particle creation operators

a†
l̃s̃,jmj

=
∑

m̃lm̃s

〈l̃m̃l s̃m̃s|jmj〉a†
l̃m̃ls̃m̃s

, (3.11)

where a†
l̃m̃ls̃m̃s

is related as follows to the usual (ls)j-coupled creation
operators:
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a†
l̃m̃ls̃m̃s

=
∑
jmj

〈l̃m̃l s̃m̃s|jmj〉a†
jmj

(3.12)

The separation j = l̃+s̃, is equivalent to the reduction UF(Ω) ⊃ UF (2l̃+1)⊗
UF(2s̃ + 1), where the generators of UF(2l̃ + 1) are scalars in s̃, while the
generators of UF(2s̃ + 1) are scalars in l̃.

These techniques define a large class of subalgebras of UF(Ω), which sub-
sequently may be combined with UB(6) or one of its subalgebras by virtue
of isomorphism. In this way the classification of analytically solvable IBFM
hamiltonians is reduced to a group-theoretical problem concerning the sub-
algebra structure of UB(6)⊗UF(Ω). A comprehensive review of the dynam-
ical symmetries of IBFM, which includes results up to 1991, was given in
Ref. [161]; experimental examples were reviewed in Ref. [172]. We refer to
these reports for details on specific cases. In the next section we present the
two cases which have been most studied and which are of importance for the
subsequent discussion of supersymmetry and its extension.

3.3 Examples of Bose–Fermi Symmetries

The first example of a dynamical-symmetry limit of the IBFM was proposed
by Iachello [37] who worked out its details in collaboration with Kuyucak [173,
174]. It concerns the case where the bosons are classified according to the
SO(6) limit of U(6) and where the fermion occupies a single orbit with j =
3/2. Accordingly, the dynamical algebra is UB(6) ⊗ UF(4) and, because of
the isomorphism SOB(6) � SUF(4), it allows the classification

UB(6) ⊗ UF(4) ⊃ SOB(6) ⊗ SUF(4) ⊃ SpinB+F(6) ⊃
↓ ↓ ↓ ↓ ↓

[N ] [1] 〈σ〉 〈1/2, 1/2, 1/2〉 〈σ1, σ2, σ3〉

SpinB+F(5) ⊃ Spin(3)
↓ ↓

(τ1, τ2) J
. (3.13)

Since the fundamental representation [1] of SU(4) corresponds to the repre-
sentation 〈1/2, 1/2, 1/2〉 of SO(6), the allowed labels 〈σ1, σ2, σ3〉 are obtained
from the multiplication 〈σ〉 × 〈1/2, 1/2, 1/2〉 and given by 〈σ + 1/2, 1/2, 1/2〉
and 〈σ − 1/2, 1/2,−1/2〉, where σ takes the values known from IBM, σ =
N,N − 2, . . . , 1 or 0. If a single fermion is coupled to the N bosons, all rep-
resentations thus obtained are labeled by half-integer numbers and these are
known as spinor representations. This is also the reason that spinor algebras
appear in the reduction (3.13). Note also that the third SpinB+F(6) label σ3

can be either −1/2 or +1/2; it can be shown that both choices are equivalent
and in the following only the absolute value |σ3| will be given. The SpinB+F(5)



3.3 Examples of Bose–Fermi Symmetries 85

labels (τ1, τ2) are determined from the Spin(6) ⊃ Spin(5) reduction which,
for 〈σ1, 1/2, 1/2〉, is given by (τ1, τ2) = (σ1, 1/2), (σ1 − 1, 1/2), . . . , (1/2, 1/2).
Finally, the allowed values of the angular momentum J are found from
the Spin(5) ⊃ Spin(3) reduction and this gives that (τ1, 1/2) contains
J = 2v+1/2, 2v−1/2, . . . , v+1− 1

4 [1−(−)2(τ−v)/3] with v = τ1, τ1−3, τ1−6, . . .
and v > 0. This also shows that for τ1 ≥ 7/2 some J values may occur more
than once.

We can now follow the procedure as outlined in Sect. 1.2 and write
the hamiltonian in terms of Casimir operators of algebras in the nested
chain (3.13). If operators are omitted that give a constant contribution to
all states of a given odd-mass nucleus, this leads to a hamiltonian with four
Casimir operators,

H = κ3C2[SOB(6)] + κ′
3C2[SpinB+F(6)] + κ4C2[SpinB+F(5)]

+κ5C2[Spin(3)], (3.14)

with eigenvalues that are known in terms of the quantum numbers appearing
in (3.13),

E(σ, σi, τi, J) = κ3σ(σ + 4) + κ′
3[σ1(σ1 + 4) + σ2(σ2 + 2) + σ2

3 ]

+κ4[τ1(τ1 + 3) + τ2(τ2 + 1)] + κ5J(J + 1). (3.15)

Furthermore, the eigenstates of the hamiltonian (3.14) have fixed wave func-
tions, that is, they are independent of the parameters κi and can be expressed
in terms of known isoscalar factors associated with the reductions in (3.13).
This, in turn, allows the calculation of many other nuclear properties such
as electromagnetic-transition rates and moments or particle-transfer proba-
bilities, extensively discussed in Refs. [173, 174]. Empirical evidence for this
dynamical-symmetry limit of the IBFM is found in the Ir–Au region, as re-
viewed in Ref. [172].

As a second example of a dynamical-symmetry limit of the IBFM, we
consider the case with a fermion in orbits with angular momenta j = 1/2,
3/2 and 5/2. This scheme was first considered by Balantekin et al. [175]. It is
particularly attractive because, for all three boson symmetries, U(5), SU(3)
and SO(6), it is possible to construct analytically solvable limits. For this
reason, this case has been the subject of several detailed studies [176, 177].
Of special relevance is the SO(6) limit [178, 179] which has been applied
extensively in the platinum isotopes (see Sect. 3.5). For an account of the
U(5) and SU(3) limits we refer to the original papers [178, 180, 181].

The relevant dynamical algebra is UB(6) ⊗ UF(12) and an isomorphism
between the boson and the fermion algebras is established by introducing a
pseudo-spin s̃ = 1/2 and the pseudo-orbital angular momenta l̃ = 0 and 2 for
the fermion. The classification in the SO(6) limit then becomes
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UB(6) ⊗ UF(12) ⊃ UB(6) ⊗ UF(6) ⊗ UF(2) ⊃
↓ ↓ ↓ ↓ ↓

[N ] [1] [N ] [1] [1]

UB+F(6) ⊗ SUF(2) ⊃ SOB+F(6) ⊗ SUF(2) ⊃
↓ ↓ ↓ ↓

[N1, N2] s̃ = 1/2 〈σ1, σ2〉 s̃

SOB+F(5) ⊗ SUF(2) ⊃ SOB+F(3) ⊗ SUF(2) ⊃ Spin(3)
↓ ↓ ↓ ↓ ↓

(τ1, τ2) s̃ L̃ s̃ J

. (3.16)

One obtains two classes of U(6) representations: [N1, N2] follows from the
multiplication [N ]× [1] which gives [N + 1, 0] and [N, 1]. The two-rowed rep-
resentations of UB+F(6) reflect a mixed-symmetry character which is allowed
for a system consisting of two sets of distinguishable quantum objects, in this
case bosons and fermions. For [N +1, 0] the U(6) ⊃ SO(6) reduction is known
from even–even nuclei and gives 〈σ1, σ2〉 = 〈N + 1, 0〉, 〈N − 1, 0〉, . . . , 〈1, 0〉
or 〈0, 0〉. For [N, 1] one obtains 〈σ1, σ2〉 = 〈N − 1, 0〉, 〈N − 3, 0〉, . . . , 〈1, 0〉
or 〈0, 0〉 and 〈σ1, σ2〉 = 〈N, 1〉, 〈N − 2, 1〉, . . . , 〈2, 1〉 or 〈1, 1〉. The SO(5) rep-
resentations contained in 〈σ1, 0〉 are (τ1, τ2) = (σ1, 0), (σ1 − 1, 0), . . . , (0, 0)
and those contained in 〈σ1, 1〉 are (τ1, τ2) = (σ1, 0), (σ1 − 1, 0), . . . , (0, 0)
and (τ1, τ2) = (σ1, 1), (σ1 − 1, 1), . . . , (1, 1). Also for the SO(5) ⊃ SO(3)
reduction we have two cases: (τ1, 0) contains the angular momenta L̃ =
2v, 2v − 2, 2v − 3, . . . , v with v = τ1, τ1 − 3, τ1 − 6, . . . and v ≥ 0, and (τ1, 1)
contains L̃ = 2v +1, 2v, . . . , v +1+δvτ1 with v = τ1, τ1−1, . . . , 0. Finally, the
pseudo-spin value s̃ is coupled with L̃ to give the total angular momentum
J . This coupling causes the typical doublet structure with J = L̃ ± 1/2 for
odd-mass states with L̃ �= 0.

If one neglects Casimir operators which contribute to the nuclear binding
energy only, five second-order operators remain, and the hamiltonian reads

H = κ0C2[UB+F(6)] + κ3C2[SOB+F(6)] + κ4C2[SOB+F(5)]
+κ5C2[SOB+F(3)] + κ′

5C2[Spin(3)]. (3.17)

The energy E of the eigenstates is, then, an analytic expression in terms of
the relevant quantum numbers:

E(Ni, σi, τi, L̃, J)
= κ0[N1(N1 + 5) + N2(N2 + 3)] + κ3[σ1(σ1 + 4) + σ2(σ2 + 2)]

+κ4[τ1(τ1 + 3) + τ2(τ2 + 1)] + κ5L̃(L̃ + 1) + κ′
5J(J + 1). (3.18)

Again, the eigenstates of the hamiltonian (3.14) are independent of the pa-
rameters κi and known in terms of isoscalar factors which enables the calcu-
lation of many nuclear properties, as discussed in Refs. [178, 179]. The appli-
cation of this dynamical-symmetry limit to the nucleus 195Pt is presented in
detail in Sect. 3.5.
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3.4 Nuclear Supersymmetry

In the previous section we showed how dynamical-symmetry limits arise in the
IBFM and we illustrated them with two examples. In each of these examples
it is clear that, if the no-fermion case is considered, the odd-mass classi-
fication in IBFM reduces to one of the three IBM classifications valid for
even–even nuclei. This, in fact, is a generic property and it forms the basis
of a supersymmetric model that allows a simultaneous description of even–
even and odd-mass nuclei. Note, however, that such a unified description is
not achieved with the formalism of the previous section since the dynamical
algebra UB(6) ⊗ UF(Ω) does not contain even–even and odd-mass nuclei in
a single of its representations. The search is thus on for a larger dynamical
algebra which necessarily must be supersymmetric in nature.

Nuclear supersymmetry should not be confused with fundamental super-
symmetry which predicts the existence of supersymmetric particles, such as
the photino and the selectron, for which, up to now, no evidence has been
found. If such particles exist, however, supersymmetry must be strongly bro-
ken since large mass differences must exist among superpartners, or otherwise
they would have been already detected. Competing supersymmetry models
give rise to diverse mass predictions and are the basis for current superstring
and brane theories [36, 182]. Nuclear supersymmetry, on the other hand, is
a theory that establishes precise links among the spectroscopic properties of
certain neighboring nuclei. Even-mass nuclei are composite bosonic systems,
while odd-mass nuclei are fermionic. It is in this context that nuclear su-
persymmetry provides a theoretical framework where bosonic and fermionic
systems are treated as members of the same supermultiplet. Nuclear super-
symmetry treats the excitation spectra and transition intensities of the dif-
ferent nuclei as arising from a single hamiltonian and a single set of transition
operators. A necessary condition for such an approach to be successful is that
the energy scale for bosonic and fermionic excitations is comparable which is
indeed the case in nuclei. Nuclear supersymmetry was originally postulated
by Iachello and co-workers [37, 183] as a symmetry among pairs of nuclei.
Subsequently, it was extended to quartets of nuclei, where odd–odd nuclei
could be incorporated in a natural way, as discussed in Chapt. 5.

Building on the concepts developed in the preceding sections, we now show
that even–even and odd-mass nuclei can be treated in a unified framework
based on symmetry ideas of IBM and IBFM. Schematically, states in such
nuclei are connected by the generators

⎛
⎝ b†b 0

−−− −−−
0 a†a

⎞
⎠ , (3.19)

where indices are omitted for simplicity. States in an even–even nucleus are
connected by the operators in the upper left-hand corner of (3.19), while
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those in odd-mass nuclei require both sets of generators. The operators (3.19)
provide a separate description of even–even and odd-mass nuclei; although the
treatment is similar in both cases, no operator exists that connects even–even
and odd-mass states.

An extension of the algebraic structure (3.19) considers in addition oper-
ators that transform a boson into a fermion or vice versa:⎛

⎝ b†b b†a
−−− −−−

a†b a†a

⎞
⎠ . (3.20)

This set does not any longer form a classical Lie algebra which is defined in
terms of commutation relations. Instead, to define a closed algebraic struc-
ture, one needs to introduce an internal operation that corresponds to a
mixture of commutation and anti-commutation, as explained in Sect. 1.2.4.
The resulting graded or superalgebra is U(6/Ω), where 6 and Ω are the di-
mensions of the boson and fermion algebras.

By embedding UB(6)⊗UF(Ω) into a superalgebra U(6/Ω), the unification
of the description of even–even and odd-mass nuclei is achieved. From a
mathematical point of view this can be seen from the reduction

U(6/Ω) ⊃ UB(6) ⊗ UF(Ω)
↓ ↓ ↓

[N} [N ] [1M ]
. (3.21)

The supersymmetric representation [N} of U(6/Ω) imposes symmetry in
the bosons and anti-symmetry in the fermions and contains the UB(6) ⊗
UF(Ω) representations [N ] × [1M ] with N = N + M [183]. Thus, a single
supersymmetric representation contains states in even–even (M = 0) as well
as odd-mass (M = 1) nuclei.

To understand better the purpose of the introduction of the supersym-
metric generators a†b or b†a, one may inspect their action on an even–even
nucleus, say 194Pt, which appears in the example discussed in the next section,

a†b 194
78Pt116 −→ a† 196

78Pt118 −→ 195
78Pt117, (3.22)

where bosons and fermions are assumed to have a neutron-hole character.
The supersymmetric generators thus induce a connection between even–even
and odd-mass nuclei with the same total number of bosons plus fermions. A
description with the superalgebra U(6/Ω) leads to a simultaneous treatment
of such pairs of nuclei.

This idea is illustrated schematically in Fig. 3.2 for the case of a partic-
ular U(6/12) supermultiplet. The supermultiplet containing 194Pt also con-
tains 195Pt, since the two nuclei are connected by the supersymmetric genera-
tor (3.22). Further action of a†b on 195Pt leads to configurations whereby two
neutron-holes are coupled to a 198Pt core, that is, to two-quasiparticle exci-
tations in 196Pt. This action of a†b may continue indefinitely until no more
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Fig. 3.2. Schematic illustration of part of a U(6/12) supermultiplet in the platinum
region. The supermultiplet is characterized by the supersymmetric representation
[N} with N = N + M = 7. A breaking of the U(6/12) supersymmetry leads to a
splitting in the binding energies of the different nuclei

bosons are available. A U(6/12) symmetry predicts all states of all nuclei
belonging to the supermultiplet to be degenerate in energy; this degeneracy
is first lifted by including UB(6) ⊗ UF(12) invariants which correspond to
nuclear binding energy terms. The analysis then proceeds with the inclu-
sion of Casimir operators of the lower algebras, as schematically indicated
in Fig. 3.2.

3.5 A Case Study: Detailed Spectroscopy of 195Pt

The nucleus 195Pt is situated in a spherical-to-deformed transitional region.
Its core, 196Pt, can be reasonably well described as an SO(6) nucleus (see
Sect. 2.2.1). The dominant natural-parity orbits for the neutrons are 3p1/2,
3p3/2 and 2f5/2, which can be decomposed into pseudo-orbital angular mo-
menta l̃ = 0 and l̃ = 2, and pseudo-spin s̃ = 1/2. Therefore, the nucleus 195Pt
presents itself as the ideal test of the SO(6) limit of UB(6) ⊗ UF(12) and
U(6/12). The analysis of the empirical evidence for this claim is naturally di-
vided into two parts. In the first the validity of the IBFM classification (4.16)
in 195Pt is studied. In the second part the validity of U(6/12) supersymmetry
for the pair 194Pt–195Pt is analyzed. This section is mainly concerned with
the first question and the analysis of supersymmetry in this region is largely
deferred to the discussion of quartet supersymmetry in Sect. 5.4.
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3.5.1 Early Studies of 195Pt

An essential question in the evaluation of Bose–Fermi symmetries is how
to assign quantum numbers to observed levels. This is closely related to
the goodness of these quantum numbers. These issues were studied in the
1980s by means of selection rules in electromagnetic transitions and particle-
transfer reactions. An example of the former is given in Table 3.1 where
25 measured B(E2) values in 195Pt [184, 185] are compared with the pre-
dictions of the symmetry classification for this nucleus, obtained with the
E2 operator

Tμ(E2) = ebQB
μ + efQ

F
μ, (3.23)

where QB
μ and QF

μ are the boson and fermion quadrupole operators, and
eb and ef the effective boson and fermion charges, which have the values
eb = −ef = 0.15 eb. The description is good as large B(E2) values are
observed where they are predicted to be non-zero and small values are found
when they are forbidden, with the exception of the transition from the level
at 420 keV to that at 99 keV.

The structure of the levels of 195Pt can also be probed by magnetic dipole
properties and, specifically, by magnetic dipole moments μ which are particu-
larly sensitive to the single-particle structure. The magnetic moment operator

Table 3.1. Observed E2 transition rates between negative-parity states in 195Pt
compared with the predictions of the SO(6) limit of U(6/12)

B(E2; Ji → Jf)
b B(E2; Ji → Jf)

b

Ei
a Jπ

i Ef
a Jπ

f Expt Th Ei
a Jπ

i Ef
a Jπ

f Expt Th

211 3/2− 0 1/2− 190(10) 179 667 9/2− 239 5/2− 200(40) 239
239 5/2− 0 1/2− 170(10) 179 563 9/2− 239 5/2− 91(22) 22
525 3/2− 0 1/2− 17(1) 0 239 5/2− 99 3/2− 60(20) 0
544 5/2− 0 1/2− 8(4) 0 525 3/2− 99 3/2− ≤ 33 7
99 3/2− 0 1/2− 38(6) 35 613 7/2− 99 3/2− 5(3) 9

130 5/2− 0 1/2− 66(4) 35 420 3/2− 99 3/2− 5(4) 177
420 3/2− 0 1/2− 15(1) 0 508 7/2− 99 3/2− 240(50) 228
455 5/2− 0 1/2− ≤ 0.04 0 389 5/2− 99 3/2− 200(70) 219
199 3/2− 0 1/2− 25(2) 0 525 3/2− 130 5/2− 9(5) 3
389 5/2− 0 1/2− 7(1) 0 667 9/2− 130 5/2− 12(3) 10
613 7/2− 211 3/2− 170(70) 215 563 9/2− 130 5/2− 240(40) 253
508 7/2− 211 3/2− 55(17) 20 389 5/2− 130 5/2− ≤ 14 55
525 3/2− 239 5/2− ≤ 19 72

aEnergy in units of keV.
bIn units of 10−3 e2b2.
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is proportional to the angular momentum operator and consists of a collective
(boson) and a single-particle (fermion) part,

Tμ(M1) =

√
3
4π

⎛
⎝gbLB

μ +
∑

j

gjL
F
μ(j)

⎞
⎠ , (3.24)

where LB
μ and LF

μ(j) are the angular momentum operators for the d bosons
and for fermions in orbit j. The effective boson gyromagnetic ratio is deter-
mined from the magnetic dipole moment μ(2+

1 ) of the neighboring even–even
Pt isotopes to be gb = 0.3 μN, while for the gj factors Schmidt values are
taken with an appropriate quenching (60%) of the spin part. Magnetic dipole
moments of states in the odd-mass nucleus 195Pt are then entirely determined
and, in fact, closed expressions can be derived for them [186]. Results for the
moments of yrast symmetric and non-symmetric states are shown in Fig. 3.3.
Given that no free parameters are involved in this calculation, the level of
agreement can be regarded as remarkable.

Results of similar quality were also obtained [187, 188] for intensities of
one-neutron-transfer reactions starting from and leading to 195Pt and con-
firmed the proposed assignment of quantum numbers.

All data on 195Pt existing at that time (1989) can be combined and re-
produced [189] through an extended fit shown in Fig. 3.4 which includes 22
levels in 195Pt and eight levels in 194Pt. The levels at 99, 130, 212, 239, 508,

Fig. 3.3. Observed g factors (dots) of the yrast symmetric [7, 0] and non-symmetric
[6, 1] levels in 195Pt compared with the prediction of the SO(6) limit of U(6/12)
(line). The g factor of a state is defined as its magnetic dipole moment divided by
its angular momentum J
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Fig. 3.4. Observed and calculated negative-parity spectrum of 195Pt (left) and
positive-parity spectrum of 194Pt (right). Levels are labeled by their angular
momentum and parity Jπ and by the other quantum numbers in the classifica-
tion (3.16). Levels with unassigned Jπ are shown as other levels.(Reprinted from
A. Mauthofer et al., Phys. Rev. C39 (1989) 1111 c©1989 by the American Physical
Society, with kind permission.)

563, 612 and 667 keV are classified by taking account of their E2 branching
ratios. Because this classification does not allow the determination of all pa-
rameters in the hamiltonian (4.17), Mauthofer et al. additionally proposed
that the levels at 927, 1,132 and 1,156 keV are the three lowest states of the
[6, 1]〈5, 0〉 band. This leads to the parameters in the hamiltonian (3.17) as
shown in the first line of Table 3.2. Since all quantum numbers of all states
are known, this automatically fixes the spectra of 194Pt and 195Pt which are
shown in Fig. 3.4. Levels are labeled by their angular momentum and parity
Jπ, and also by the quantum number L̃ which results from the coupling of
the angular momentum of the bosons to the pseudo-orbital angular momen-
tum of the fermion. Also given are the other quantum numbers occurring in
the classification (3.16). As shown in the figure, there were many unassigned
states above 600 keV, for which no definite spins and parities were available
at that time. Also some higher-lying levels, such as the one at 927 keV, had
no uniquely determined spin values.

Table 3.2. Parameters (in keV) for the nuclei 194Pt and 195Pt

κ0 κ3 κ4 κ5 κ′
5

Mauthofer et al. [189] 64.4 −56.7 49.8 1.2 6.0
Metz et al. [190] 48.7 −42.2 49.8 5.6 3.4
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3.5.2 High-Resolution Transfer Studies Using (p,d)
and (d,t) Reactions

The question of the validity of supersymmetry formed the focus of a new
collaboration between groups at the Universities of Fribourg and Bonn, and
the Ludwig-Maximillian University in Munich, aiming at a complete spec-
troscopy of 196Au (see Sect. 5.4). One of the most important spin-offs of this
study concerns the spectroscopy of 195Pt which shall now be presented.

In this study the high-resolution magnetic spectrometer Q3D at the
accelerator laboratory of the Ludwig-Maximillians Universität and Technis-
che Universität in Munich was used. This remarkable instrument is able to
deliver data with a high-energy resolution for angular distributions of the
emitted particles. Today it achieves an energy resolution of 4 keV in the
196Pt(p,d)195Pt reaction for particles having an energy of about 20 MeV (in
the earlier measurements [188] on 195Pt the resolution for this reaction was
16 keV). This is achieved using the optics provided by one dipole and three
quadrupole magnets [191] and a detector which allows one to reconstruct
the focal plane off-line [192]. For comparison, normal semiconductor γ-ray
detectors achieve a resolution of 2 keV at only 1 MeV. In addition, the Q3D
spectrometer is able to identify the particle emitted in the reaction.

Originally considered as a calibration run for the spectrometer, the results
of the 196Pt(p,d)195Pt and polarized 196Pt(d,t)195Pt reactions [190] turned
out to be overwhelmingly rich and enormously extended the knowledge of
195Pt. The (p,d) reaction with an energy resolution of 3 keV allows a di-
rect population of the excited states. The excitation energies of the popu-
lated states are observed as the missing energy of the out-coming deuteron.
The experiment established 22 new states in the energy region 1.0–1.6 MeV.
To extract information on quantum numbers and excitation strength, the
196Pt(d,t)195Pt reaction can be used. In contrast to (p,d), the (d,t) reaction
is more restricted to the nuclear surface and therefore sensitive to the details
of the orbit in which the odd neutron is transferred. By measuring the an-
gular distribution of the outgoing tritons, the l value, as transferred to the
excited state, can be determined. Since the transfer reaction starts from the
Jπ = 0+ ground state of 196Pt, the parity of the excited state in 195Pt is
uniquely determined from the transferred l value. As regards the total angu-
lar momentum, the (d,t) reaction leaves J = l ± 1/2 as possible values for
the populated state, with the l value obtained from the angular distribution
of the deuterons.

The J value can be determined when polarized deuterons are used in the
transfer reaction. Since the deuteron (which is in a Jπ = 1+ state with par-
allel spins of proton and neutron) is now oriented in space, the orientation of
the spin of the transferred neutron is fixed. Using a 60(3)% vector polarized
deuteron beam, for which the vector polarization could be inverted without
any effect on the beam position, the difference in angular cross-sections with
spin up and spin down gives after proper renormalization the so-called vector
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Θ Θ

Ω
σ

Fig. 3.5. Typical examples of angular distributions (left) and analyzing pow-
ers (right) for excited states in 195Pt populated in the 196Pt(d,t)195Pt reaction.
(Reprinted from A. Metz et al., Phys. Rev. C61 (2000) 064313 c©2000 by the
American Physical Society, with kind permission.)

analyzing power Ay, which is positive for a transferred total angular momen-
tum j = l+1/2 and negative for j = l−1/2 (see Fig. 3.5). Therefore, the use
of a polarized deuteron beam for (d,t) transfer on an even–even target yields
directly the Jπ value of the final state. The differential cross-section contains
further information about the final states via the spectroscopic strengths Glj

or factors Slj :

dσ

dΩ
(θ) = Gljσlj(θ) = v2

j (2j + 1)Sljσlj(θ), (3.25)

where σlj(θ) contains the kinematical factors described in a distorted wave
Born approximation (DWBA) and v2

j is the occupation probability of the
neutron orbit j. The spectroscopic strengths and factors thus determine the
amplitudes of the odd neutron occupying the j orbit in the wave function of
an excited state.

With the 196Pt(d,t)195Pt reaction [190] it was possible to establish new or
unique Jπ values for 42 states and to determine the spectroscopic strengths
to 62 states. One of those Jπ values contradicts the previous assignment of
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the lowest 〈5, 0, 0〉 state in 195Pt as shown in Fig. 3.4 since the 927 keV state
turned out to have Jπ = 3/2−. This changes the parameters in the hamilto-
nian (3.17), the values of which are given in the second line of Table 3.2. The
combination of all available spectroscopic information leads to a greatly ex-
tended negative-parity level scheme of 195Pt which is compared with U(6/12)
in Fig. 3.6. With only five parameters the U(6/12) model is able to describe
all 53 negative-parity levels in 195Pt below 1.44 MeV. The same parameters
also describe eight states in 194Pt. One should not underestimate the dif-
ficulty of obtaining such level of agreement, even with five parameters: All
states are calculated at about the correct energy and for each Jπ the correct
number of levels is found.

Besides the energy spectrum, the transfer reaction also yields the trans-
fer strengths which can be compared with the theoretical predictions. To
calculate transfer strengths, one first needs to determine the transfer oper-
ator Tlj . Unfortunately, different reactions lead to different operators which
are combinations of fermion and boson creation and annihilation operators
complicating the description of most reactions. Fortunately however, the
196Pt(d,t)195Pt reaction is relatively easy to describe in the model since one
starts from 196Pt described by six hole bosons and ends in 195Pt with the
same number of bosons and an additional neutron fermion hole. The simplest
form for the model’s transfer operator is then given by the following linear
combination of the fermion creation operators a†

j :

Tlj = v1/2a
†
1/2δj,1/2 + v3/2a

†
3/2δj,3/2 + v5/2a

†
5/2δj,5/2, (3.26)

Fig. 3.6. Observed and calculated negative-parity spectrum of 195Pt. Levels are
labeled by their angular momentum J (to the right of each level) and by the other
quantum numbers in the classification (3.16)



96 3 Supersymmetry in Nuclear Physics

with the square root of the occupation probabilities as weighting factors.
With this transfer operator the spectroscopic strengths from a state with
angular momentum Ji to a state Jf are given by

Glj =
1

2Ji + 1
〈Jf ‖ Tlj ‖ Ji〉2. (3.27)

As in the case of the E2 transitions, this transfer operator has a definite ten-
sor character which leads to population of only some of the states shown in
Fig. 3.6. They necessarily must have the quantum numbers 〈7 or 5, 0〉(0 or 1, 0)
or 〈6, 1〉(1, 0).

To determine the tensor character of the transfer operator, we note
that it corresponds to N = 0 and M = 1. Application of the reduc-
tion rules given above leads to the character |[0][1], [1, 0], 〈1, 0〉, (1, 0), 2, 2 ±
1/2〉 or |[0][1], [1, 0], 〈1, 0〉, (0, 0), 0, 1/2〉. The tensor character under U(6),
SO(6) and SO(5) leads to the population of states with 〈N ± 1, 0〉(0, 0) or
(1, 0) and 〈N, 1〉(1, 0) since the initial state is the even–even ground state
|[N ]〈N〉, (0), 0〉.

Despite the simplicity of the operator, good agreement with the data
is found, as shown in Table 3.3. The table also shows the adopted levels
given by the Nuclear Data Sheets (NDS) [44] before the experiment was per-
formed. The spectroscopic strengths are calculated with the U(6/12) wave
functions and the transfer operator (3.26) with v2

1/2 = 0.56, v2
3/2 = 0.44 and

v2
5/2 = 0.50. Except for one 3/2− state at 1,095 keV all observed strength

predicted to be forbidden is found to be small. Also, the predicted non-
forbidden strength agrees very well with the experimental values. More com-
plicated transfer operators can be constructed. However, the next term to be
included is a three-body operator consisting of two creation operators and
one annihilation operator, and thus becomes very complicated. A possible
way to fix the operator without increasing the number of parameters is to
use its form as obtained from the fermion operator of the shell model, c†lj ,
mapped onto the boson–fermion space of the IBFM. This is reported and
extensively discussed in Refs. [190, 193].

One of the results obtained from the transfer data concerns the effect
of the limited model space. The U(6/12) model describes only excitations in
which the odd neutron occupies the 3p1/2, 3p3/2 or 2f5/2 orbits but it neglects
the 2f7/2 orbit. The polarized-deuteron data do provide information on the
spectroscopic strength of the 2f7/2 orbit. From the observed strengths given
in Table 3.3 one notes the different behavior of the 2f7/2 strength which
increases slowly with energy and becomes important only at energies well
above the centroids for the 3p1/2, 3p3/2 and 2f5/2 strengths. One can thus
conclude that the U(6/12) model space is appropriate for the lower-lying
states but less so for states above ∼ 1 MeV.

In conclusion, the doublet of atomic nuclei 194Pt and 195Pt represents an
excellent example of a dynamical U(6/12) supersymmetry, with 61 excited
states in the two nuclei that are described by a single algebraic hamiltonian
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Table 3.3. Observed (d,t) transfer strength to negative-parity states in 195Pt
compared with the predictions of the SO(6) limit of U(6/12)

NDS Experiment Theory

Ea Jπ Ea Jπ Glj
b Ea Jπ Glj

b

0.0 1/2− 0.0 1/2− 78.12(22) 0.0 1/2− 69.72
98.882(4) 3/2− 99.5(6) 3/2− 88.72(28) 162.5 3/2− 133.01
129.777(5) 5/2− 129.5(6) 5/2− 209.2(6) 179.6 5/2− 226.97
199.526(12) 3/2− 199.2(6) 3/2− 12.76(12) 244.7 3/2− 0.0
211.398(6) 3/2− 212.4(6) 3/2− 20.60(12) 253.3 3/2− 34.25
222.225(6) 1/2− 223.5(7) 1/2− 14.6(8) 234.4 1/2− 0.0
239.269(6) 5/2− 238.7(6) 5/2− 34.98(24) 270.5 5/2− 58.56
389.16(6) 5/2− 389.5(7) 5/2− 1.44(6) 318.0 5/2− 0.0
419.703(4) 3/2− 419.5(7) 3/2− 0.76(4) 476.5 3/2− 0.0
449.66(5) (7/2−) 450.0(7) 7/2− 1.52(16) 342.9 7/2−

455.20(4) 5/2− 455.6(7) 5/2− 1.50(12) 493.7 5/2− 0.0
508.08(6) 5/2−, 7/2− 507.9(6) 7/2− 51.12(24) 596.3 7/2−

524.848(4) 3/2− 524.6(6) 3/2− 0.76(4) 567.4 3/2− 0.0
544.2(6) 5/2− 543.9(6) 5/2− 2.76(6) 584.5 5/2− 0.0
562.81(5) 9/2− 562.6(7) 9/2− 31.4(7) 627.2 9/2−

590.896(5) 3/2− NRc 558.8 3/2− 0.0
612.72(8) 7/2− 612.0(6) 7/2− 51.36(24) 687.1 7/2−

630.138(8) 1/2−, 3/2− 628.8(7) 1/2− 0.60(4) 548.5 1/2− 0.0
632.1(5) 1/2−, 3/2− NRc 581.2 3/2− 0.0

664.200(10) 5/2−, 7/2− 664.2(6) 5/2− 10.92(12) 598.4 5/2− 0.0
667.1(5) (9/2−) NRc 718.0 9/2−

678(1) 5/2−, 7/2− 678.4(8) 5/2− 0.79(6) 632.0 5/2− 0.0
695.30(6) (7/2−) 695.3(6) 7/2− 10.64(16) 656.1 7/2−

739.546(6) 1/2−, 3/2− 739.5(6) 1/2− 11.04(6) 668.9 1/2− 34.11
765.8(9) (7/2−) 766.7(6) 7/2− 14.80(16) 700.9 7/2−

793.0(10) 3/2− NRc 851.3 1/2− 0.0
814.52(4) 9/2− 814.9(6) 9/2− 119.3(14) 731.9 9/2−

875(1) 5/2−, 7/2− 873.8(6) 7/2− 14.21(16) 970.1 7/2−

895.42(7) 9/2− 895.0(9) 9/2− 6.10(40) 787.9 9/2−

915(1) 916.0(6) 7/2− 24.16(16) 1015.0 7/2−

925.(5) 5/2−, 7/2− →916.0
926.89(5) 1/2−, 3/2− 927.9(6) 3/2− 7.92(8) 922.2 3/2− 5.94
930.71 (9/2−) NRc 1045.9 9/2−

971.3 5/2−, 7/2− 970.6(6) 7/2− 29.76(16) 1060.3 7/2−

1016(5) 5/2−, 7/2− 1010.4(7) 5/2− 5.34(12) 939.4 5/2− 10.14
1049.3(7) 1047.1(7) 7/2− 40.80(24) 1105.8 7/2−

1058(5) 5/2−, 7/2−

new 1068.8(7) 9/2− 20.4(8) 1136.7 9/2−

new 1079.7(7) 5/2− 6.18(12) 1017.1 5/2− 0.0
1091.8(5) (5/2 to 13/2) NRc

1095.8(4) 1/2−, 3/2− 1095.5(7) 3/2− 34.44(12) 977.5 3/2− 0.0
new 1111.2(7) 7/2− 2.72(16) 1074.8 7/2−
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Table 3.3. Continued

NDS Experiment Theory

Ea Jπ Ea Jπ Glj
b Ea Jπ Glj

b

1132.40(2) 1/2−, 3/2− 1132.3(7) 1/2− 3.30(4) 967.2 1/2− 0.0
1151(6) 1/2−, 3/2−

1155.8 1155.7(8) 5/2− 8.58(24) 1050.7 5/2− 0.0
1160.38 1/2−, 3/2− NRc 999.9 3/2− 0.0
1166.4 1/2+, 3/2+ NRc

1189(6) 5/2−, 7/2− 1175.5(8) 7/2− 9.28(16) 1119.7 7/2−

1271.0(3) 1/2−, 3/2− 1271.2(9) 3/2− 3.40(4) 1236.3 3/2− 0.06
1287.7(4) 1/2−, 3/2− 1288.3(9) 1/2− 2.56(8) 1350.7 1/2− 7.68

new 1288.3(9) 5/2− 8.22(30) 1253.5 5/2− 0.0
1294(1) 1/2−, 3/2− →1288.3
1306(10)

new 1314.1(10) 5/2− 5.76(12) 1361.5 5/2− 0.0
1320.8(4) 1/2−, 3/2− 1321.0(10) 3/2− 0.64(4) 1344.3 3/2− 0.0
1334.7(4) 1/2−, 3/2− NRc 1418.6 3/2− 0.0

new 1342.4(13) 5/2−, 7/2− 0.96(8) 1435.8 5/2− 0.0
1346.9(6) 1/2, 3/2 NRc

1372.7(4) 1/2−, 3/2− 1371.9(12) 3/2− 1.48(4) 1426.6 3/2− 0.0
1411.1(5) 1/2−, 3/2− NRc

1425.0(5) 1/2−, 3/2− NRc

new 1426.6(14) 7/2− 1.52(8) 1356.1 7/2−

1438.3(4) 1/2, 3/2 1437.7(14) 1/2− 1.28(4) 1416.3 1/2− 0.0
1445.3(5) 1/2−, 3/2− 1445.9(14) 3/2− 1.72(4)

new 1455.9(14) 7/2− 0.56(8)
new 1464.7(15) 5/2− 1.86(12) 1499.8 5/2− 0.0
new 1473.2(15) 3/2− 0.48(4)

aEnergy in units of keV.
bSpectroscopic strength in units of 10−2.
cNot resolved.

with only five parameters. Not only are all negative-parity states of 195Pt be-
low 1.44 MeV accounted for but also electromagnetic transition probabilities
and transfer-reaction amplitudes are well described. The essential ingredi-
ent to arrive at the conclusion that the nucleus 195Pt provides a beautiful
manifestation of a Bose–Fermi symmetry and dynamical supersymmetry was
the use of high-resolution transfer reactions providing a quasi-complete level
scheme.

3.6 Supersymmetry without Dynamical Symmetry

The concept of dynamical algebra implies a generalization of that of a
symmetry algebra, as explained in Sect. 1.2.2. If Gdyn is the dynamical
algebra of a given system, all physical states considered belong to a single
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irreducible representation of Gdyn. For a symmetry algebra, in contrast, each
set of degenerate states of the system is associated to one of its irreducible
representations. A consequence of the existence of a dynamical algebra is that
all states can be reached by acting with the algebra’s generators or, equiva-
lently, all physical operators can be expressed in terms of these generators.
Rather naturally, the same hamiltonian and the same transition operators are
employed for all states. To clarify this point with an example in the frame-
work of IBM, a single hamiltonian and a single set of operators are associated
to a given even–even nucleus and can be expressed in terms of the generators
of U(6) which thus plays the role of dynamical algebra. It does not matter
whether this hamiltonian can be expressed or not in terms of the generators
of a single chain of nested algebras. In short, the existence of a dynamical
symmetry is not a prerequisite for the existence of a dynamical algebra.

This general statement can be illustrated with the example of U(6/12)
supersymmetry. If we consider U(6/12) to be the dynamical algebra for the
pair of nuclei 194Pt–195Pt, it follows that the same hamiltonian and operators
(including in this case the transfer operators which connect states in the two
nuclei) should apply to all states. It also follows that no restriction should
be imposed on the form of the hamiltonian or operators, except that they
must be a function of the generators of U(6/12) (i.e., belong to its enveloping
algebra).

In particular cases this generalization of supersymmetry can be achieved
in a straightforward way. With reference to the IBM hamiltonian (2.37) and
the IBFM hamiltonian (3.17), the following combination of Casimir operators
can be proposed:

H = κ0C2[UB+F(6)] + κ1C1[UB+F(5)] + κ′
1C2[UB+F(5)]

+κ2C2[SUB+F(3)] + κ3C2[SOB+F(6)] + κ4C2[SOB+F(5)]
+κ5C2[SOB+F(3)] + κ′

5C2[SU(2)]. (3.28)

All Casimir operators belong to U(6/12) which therefore remains the dy-
namical algebra of this generalized hamiltonian. [In fact, they all are in
UB(6) ⊗ UF(12) but the transfer between 194Pt and 195Pt requires opera-
tors which belong to U(6/12).] Nuclear supersymmetry imposes the use of an
identical hamiltonian for even–even and odd-mass nuclei, and this hypothesis
can be equally well tested for the generalized hamiltonian (3.28).

This idea has been applied to the ruthenium and rhodium isotopes [194].
The even–even ruthenium isotopes are situated in a transitional region which
falls outside a single IBM limit but requires the combination of the Casimir
operators of U(5) and SO(6) [110]. The observed positive-parity levels of
102–108Ru [195] are consistent with such transitional behavior (see Fig. 3.7).
For example, the excitation energy of the first 2+ state decreases with increas-
ing neutron number and the 4+–2+–0+ two-phonon triplet structure, typical
of vibrational U(5) nuclei, is clearly present in 102Ru but gradually disap-
pears in the heavier isotopes as the 0+ level detaches itself from the triplet.
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Fig. 3.7. Observed and calculated positive-parity spectra of 102–108Ru. Levels are
labelled by their angular momentum J and grouped into multi-phonon multiplets
(see text)

Both features can be reproduced with a U(5)–SO(6) transitional hamiltonian.
The transition from U(5) to SO(6) is obtained by varying κ1, the coefficient
of C1[UB+F(5)], linearly with the number of bosons N [196], as shown in
Table 3.4. At higher excitation energies the theoretical levels can still be
grouped into multiplets (e.g., a three-phonon quintuplet or a four-phonon
septuplet) but it is clear from the figure that it becomes difficult to establish
an unambiguous correspondence with observed levels.

In the odd-mass rhodium isotopes the dominant negative-parity orbits for
the protons are 2p1/2, 2p3/2 and 1f5/2. This matches the angular momenta
required for U(6/12) but it cannot be expected that a single of its limits
describes the series of rhodium isotopes since we know this is not the case for
the even–even ruthenium isotopes. The supersymmetry idea, however, still
applies to the hamiltonian (3.28) and, specifically, we may use the values

Table 3.4. Parameters (in keV) for the ruthenium and rhodium nuclei

κ0 κ1 κ′
1 κ2 κ3 κ4 κ5 κ′

5

7N − 42 841 − 54N 0.0 0.0 −23.3 30.8 −9.5 15.0
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for κi obtained from the ruthenium spectra to predict levels in the rhodium
isotopes. This prediction is not entirely free of ambiguity since the coefficient
κ0 cannot be fixed from the even–even energy spectra nor can the separate
coefficients κ5 and κ′

5 be obtained from it but only the combination κ5 + κ′
5.

Additional information from the odd-mass spectra such as, for example, the
doublet splitting in the odd-mass spectra is thus needed to fix all parameters.
The result of this (partial) supersymmetric prediction for the rhodium iso-
topes, with the parameters of Table 3.4, is shown in Fig. 3.8. The figure
shows the negative-parity levels relative to the lowest 1/2− which is the
ground state only in 103Rh.

An important aspect of the hamiltonian (3.28) is that, although it does
not consist of Casimir operators of a single nested chain of algebras and
hence is not analytically solvable, it still defines a number of exact quantum
numbers besides the total angular momentum J . For example, the algebra
SOB+F(3) is common to all limits of U(6/12) and hence the associated label
[L̃ in the classification (3.16)] is a good quantum number of the generalized

Fig. 3.8. Observed [44] and calculated negative-parity spectra of 103–109Rh, plotted
relative to the lowest 1/2− level. Symmetric states [N +1, 0] are shown as full lines
with the angular momentum J on the right and non-symmetric states [N, 1] as
dashed lines with J on the left
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hamiltonian (3.28). The same property is valid for UB+F(6) and its labels
[N1, N2]. Finally, the algebra SOB+F(5) is common to both the UB+F(5)
and the SOB+F(6) limits of U(6/12), and its labels (τ1, τ2) are thus good
quantum numbers of the hamiltonian (3.28) as long as κ2 = 0, that is, as
long as the hamiltonian is transitional between UB+F(5) and SOB+F(6). This
is the generalization to odd-mass nuclei of the conservation of SO(5) in the
U(5)–SO(6) transition in even–even nuclei, discussed in Sect. 2.2.

On the basis of this argument, all calculated states in Fig. 3.8 can be as-
signed the quantum numbers [N1, N2], (τ1, τ2) and L̃, and, in particular, they
are either symmetric under U(6), [N1, N2] = [N + 1, 0], or non-symmetric,
[N1, N2] = [N, 1]. The structure of the negative-parity levels in the rhodium
isotopes above the lowest 1/2− state is essentially determined by two 3/2−–
5/2− doublets. The excitation energies of both the symmetric and the non-
symmetric doublets are decreasing with increasing neutron number but at
a rate that depends on the symmetry character. These features are repro-
duced by the supersymmetric calculation. Many more levels are observed
at or above the excitation energy of the second 3/2−–5/2− doublet but,
given the uncertain spin assignments, their theoretical identification is more
problematic.

The supersymmetric analysis can also be applied to other nuclear proper-
ties such as for instance one-proton transfer strengths. Ideally, to test U(6/12)
supersymmetry, the transfer should be between supersymmetric partners.
However, in that case a complicated transfer operator must be used, of the
form a†b̃ or b†ã, which is poorly known microscopically. A simpler transfer
operator is Tlj in (3.26) which in the case at hand describes proton pick-up
on the palladium toward the rhodium isotopes. The coefficients vj in the

Fig. 3.9. Observed [44] and calculated spectroscopic strengths for the proton pick-
up reactions A+1Pd→ ARh for A = 105, 107 and 109. The spectoscopic strength
to the 1/2− (black), 3/2− (dark gray) and 5/2− (light gray) states is shown
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operator are the square roots of the occupation probabilities of the different
orbits and these are taken as v2

1/2 = 0.90 and v2
3/2 = v2

5/2 = 0.46. The results
of a calculation of this transfer are summarized in Fig. 3.9. A characteris-
tic feature of the data is the concentration of most of the j = 1/2, 3/2, 5/2
strength below 1 MeV in the ground state and the two lowest 3/2−–5/2−

doublets. This is reproduced by the supersymmetric calculation.
Recently, the idea of supersymmetry without dynamical symmetry was

used to describe shape phase transitions in odd-mass nuclei [197]. The ap-
proach is based on the consistent-Q formalism for odd-mass nuclei [198].
(In fact, the consistent-Q formalism as presented in Ref. [198] represents
the first studied example of a broken dynamical Bose–Fermi symmetry in
UB(6) ⊗ UF(12).) Since the U(6/12) supersymmetry implies a relation be-
tween even–even (B) and odd-mass (B+F) operators, the hamiltonian of the
consistent-Q formalism for even–even nuclei [100] can be generalized in this
way to odd-mass nuclei. This supersymmetric hamiltonian was applied to the
Os–Hg region which exhibits a prolate–oblate phase transition [103]. The sit-
uation can be summarized with the phase diagram shown in Fig. 3.10 which
is similar to the corresponding diagram 2.10 for even–even nuclei.

The study [197] also reveals the existence of partial dynamical symmetries
of the consistent-Q IBFM hamiltonian; for example, throughout the entire
prolate–oblate transition the pseudo-orbital angular momentum L̃, associated
with SOB+F(3) in (3.16) remains a conserved quantum number. This leads
to the occurrence of unavoided crossings of levels with different L̃ and the
same J values.

Fig. 3.10. Phase diagram of a schematic consistent-Q IBFM hamiltonian for
UB(6)⊗UF(12). The black dots indicate the location of the Bose–Fermi symmetries
and the gray dot corresponds to a second-order phase transition between spherical
(I) and deformed nuclei with prolate (II) and oblate (III) shapes. The dashed lines
represent first-order phase transitions
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Dynamical symmetries (even approximate ones) do not occur that often
in nuclei. If their occurrence is considered as a prerequisite for the existence
of a dynamical supersymmetry, examples of the latter will be even more
difficult to find. An immediate consequence of the proposal of supersymmetry
without dynamical symmetry is that it opens up the possibility of testing
supersymmetry in other regions of the nuclear chart.



4 Symmetries with Neutrons and Protons

Atomic nuclei consist of neutrons and protons. This seemingly trivial ob-
servation has far-reaching consequences as far as the structure of nuclei is
concerned. Neutrons and protons are the elementary building blocks of the
nuclear shell model. They are always included in the model, either explicitly
or via the formalism of isospin which assigns to each nucleon an intrinsic
label T = 1/2 with different projections for neutron and proton. While the
neutron–proton degree of freedom is an essential part of the shell model, it is
not always one of the interacting boson model (IBM). In fact, in the version
of the model discussed in Sect. 2.2 no distinction is made between neutrons
and protons and all bosons are considered as identical. Nevertheless, to make
the model more realistic, it is essential to introduce this distinction. This is
the main objective of the present chapter.

In analogy with the isospin of nucleons, the neutron–proton degree of
freedom can be introduced in the IBM by assigning an intrinsic label to the
bosons. This so-called F spin has, by convention, a projection MF = −1/2
for a neutron boson and MF = +1/2 for a proton boson. This approach gives
rise to the simplest version of the boson model that deals with neutrons and
protons, the so-called neutron–proton interacting boson model or IBM-2.

Although the IBM-2 is one of the most successful extensions of the bo-
son model, to make contact with the shell model, and, specifically, with the
isospin quantum number of that model, more elaborate versions of the IBM
are needed. As argued in Sect. 2.2, the s and d bosons of the IBM can be
associated with Cooper pairs of nucleons in the valence shell coupled to an-
gular momenta J = 0 and J = 2. This interpretation constitutes the basis of
the connection between the boson and the shell model. A mapping between
the two models is rather involved for the sd IBM with U(6) dynamical sym-
metry. A simplified version of the IBM with only s bosons, however, has an
immediate connection with the pairing limit of the shell model discussed in
Sect. 2.1.1. The s-boson creation and annihilation operators are associated
with the operators S± which, together with Sz, form the quasi-spin SU(2)
algebra. With use of this correspondence, the pairing interaction between
identical nucleons can be mapped exactly onto an s-boson hamiltonian.

By analogy, to obtain a better understanding of boson models with neu-
trons and protons, we should analyze the pairing limit of the shell model
with non-identical nucleons. This is done in Sect. 4.1. A shell-model analysis
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of this type forms the basis for a proper formulation of a neutron–proton
version of the boson model. With neutrons and protons, as in the case of
identical nucleons, the mapping between the shell and the boson model is
exact if limited to s bosons. The inclusion of d bosons leads to the most elab-
orate version of the boson model, known as IBM-4 and presented in Sect.4.2.
The microscopic foundation of IBM-4 then allows us to study under what
conditions it reduces to its simpler sibling IBM-2, discussed in Sect. 4.3. We
conclude the chapter with a detailed analysis of 94Mo as an illustration of
the application of neutron–proton symmetries.

4.1 Pairing Models with Neutrons and Protons

In Sect. 2.1.1 we discussed the quasi-spin solution of the pairing problem of n
identical nucleons. We assumed that the nucleons occupy a set of degenerate
single-particle states in jj coupling, each orbit being characterized by a total
(i.e., orbital plus spin) angular momentum j. We begin this section with a
brief derivation of similar results in ls coupling, which is more convenient for
the subsequent generalization to neutrons and protons.

If all nucleons are of the same kind (either all neutrons or all protons),
a nucleon creation operator in ls coupling can be denoted as a†

lmlsms
. The

identical nucleons are assumed to interact through a pairing force of the form

Vpairing = −g0S
0
+S0

−, (4.1)

with

S0
+ =

√
1
2

∑
l

√
2l + 1(a†

ls × a†
ls)

(00)
00 , S0

− =
(
S0

+

)†
. (4.2)

The notation S indicates that these are nucleon pairs coupled to total or-
bital angular momentum L = 0, while the superscript 0 in S0

± refers to the
coupled spin S = 0. Since the nucleons are identical, only one pair state
is allowed by the Pauli principle, namely, the state with antiparallel spins
for either neutrons or protons (see Fig. 4.1). Therefore, this pairing mode is
called spin singlet. The ls-coupled pair operators (4.2) and their jj-coupled
analogs (2.4) satisfy the same commutation relations (2.6) if in the former
S0

z = (n − Ω)/2 is taken where n is the nucleon number operator and Ω is
the orbital shell size, Ω ≡

∑
l(2l + 1). The hamiltonian (4.1) can thus be

solved analytically by virtue of an SU(2) dynamical symmetry, of the same
type as encountered in Sect. 2.1.1. For an even number of nucleons, the lowest
eigenstate of (4.1) with g0 > 0 has a condensate structure of the form

(
S0

+

)n/2 |o〉, (4.3)

where |o〉 represents the vacuum. As in the jj-coupled case, a conserved quan-
tum number emerges from this analysis which is seniority [46], the number
of nucleons not in pairs coupled to L = 0.
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Fig. 4.1. Schematic illustration of the different types of nuclear pairs. The valence
neutrons (grey) or protons (black) that form the pair occupy time-reversed orbits
(circling the core of the nucleus in opposite direction). If the nucleons are identi-
cal, they must have anti-parallel spins—a configuration which is also allowed for a
neutron–proton pair (top). The configuration with parallel spin is only allowed for
a neutron–proton pair (bottom)

Next we consider neutrons and protons. The pairing interaction is as-
sumed to be isospin invariant, which implies that it is the same in the
three possible T = 1 channels, neutron–neutron, neutron–proton and proton–
proton, and that (4.1) can be rewritten as

V ′
pairing = −g0

∑
μ

S01
+,μS01

−,μ ≡ −g0S
01
+ · S01

− , (4.4)

where the dot indicates a scalar product in isospin. In terms of the nucleon
operators a†

lmlsmstmt
, which now carry also isospin indices (with t = 1/2),

the pair operators are

S01
+,μ =

√
1
2

∑
l

√
2l + 1(a†

lst × a†
lst)

(001)
00μ , S01

−,μ =
(
S01

+,μ

)†
, (4.5)

where the superscripts 0 and 1 in S01
±,μ refer to the pair’s spin S = 0 and

isospin T = 1. The index μ (isospin projection) distinguishes neutron–neutron
(μ = +1), neutron–proton (μ = 0) and proton–proton (μ = −1) pairs. There
are thus three different pairs with S = 0 and T = 1 (top line in Fig. 4.1)
and they are related through the action of the isospin operators T±. The
dynamical symmetry of the hamiltonian (4.4) is SO(5) which makes the
problem analytically solvable [199, 200, 201], although in a much more labo-
rious way than in the case of SU(2). The quantum number, besides seniority,
that emerges from this analysis is reduced isospin [199], which is the isospin
of the nucleons not in pairs coupled to L = 0.

For a neutron and a proton there exists a different paired state with
parallel spins (bottom line of Fig. 4.1). The most general pairing interaction
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for a system of neutrons and protons thus involves, besides the spin-singlet,
also a spin-triplet term,

V ′′
pairing = −g0S

01
+ · S01

− − g′0S
10
+ · S10

− , (4.6)

where the S = 1, T = 0 pair operators are defined as

S10
+,μ =

√
1
2

∑
l

√
2l + 1(a†

lst × a†
lst)

(010)
0μ0 , S10

−,μ =
(
S10

+,μ

)†
. (4.7)

The index μ is the spin projection in this case and distinguishes the three spa-
tial orientations of the S = 1 pair. The pairing hamiltonian (4.6) now involves
two parameters g0 and g′0, the strength of the spin-singlet and spin-triplet
interactions, respectively. Alternatively, since they concern the T = 1 and
T = 0 channels of the pairing interaction, they are referred to as the isovec-
tor and isoscalar components of the pairing interaction. While in the pre-
vious cases the single strength parameter g0 just defines an overall scale, this
is no longer true for a generalized pairing interaction. Specifically, solutions
with an intrinsically different structure are obtained for different ratios g0/g′0.

In general, the eigenproblem associated with the interaction (4.6) can only
be solved numerically which, given a typical size of a shell-model space, can
be a formidable task. However, for specific choices of g0 and g′0 the solution of
V ′′

pairing can be obtained analytically [202, 203, 204]. The analysis reveals the
existence of a dynamical algebra formed by the pair operators (4.5) and (4.7),
their commutators, the commutators of these among themselves and so on
until a closed algebraic structure is attained. Closure is obtained by introduc-
ing the number operator n, the spin and isospin operators Sμ and Tμ and the
Gamow–Teller-like operators Yμν which are defined in (2.17). In summary,
the set of 28 operators consisting of S01

±,μ and S10
±,μ, defined in (4.5) and (4.7),

together with the operator (n − Ω)/2 and

Sμ =
∑

l

√
2l + 1(a†

lst × ãlst)
(010)
0μ0 ,

Tμ =
∑

l

√
2l + 1(a†

lst × ãlst)
(001)
00μ ,

Yμν =
∑

l

√
2l + 1(a†

lst × ãlst)
(011)
0μν , (4.8)

forms the algebra SO(8) which is thus the dynamical algebra of the problem.
The symmetry character of the interaction (4.6) is obtained by study-

ing the subalgebras of SO(8). Of relevance are the subalgebras SOT (5) ≡
{S01

±,μ, n, Tμ}, SOT (3) ≡ {Tμ}, SOS(5) ≡ {S10
±,μ, n, Sμ}, SOS(3) ≡ {Sμ} and

SO(6) ≡ {Sμ, Tμ, Yμν}, which can be placed in the following lattice of alge-
bras:

SO(8) ⊃

⎧⎨
⎩

SOS(5) ⊗ SOT (3)
SO(6)

SOT (5) ⊗ SOS(3)

⎫⎬
⎭ ⊃ SOS(3) ⊗ SOT (3). (4.9)
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The dynamical symmetries of the SO(8) model. By use of the explicit form
of the generators of SO(8) and its subalgebras, and their commutation re-
lations [203], the following relations can be shown to hold:

S01
+ · S01

− =
1

2
C2[SOT (5)] − 1

2
C2[SOT (3)] − 1

8
(2Ω − n)(2Ω − n + 6),

S01
+ · S01

− + S10
+ · S10

− =
1

2
C2[SO(8)] − 1

2
C2[SO(6)] − 1

8
(2Ω − n)(2Ω − n + 12),

S10
+ · S10

− =
1

2
C2[SOS(5)] − 1

2
C2[SOS(3)] − 1

8
(2Ω − n)(2Ω − n + 6).

This shows that the interaction (4.6) in the three cases (i) g0 = 0, (ii) g′0 = 0
and (iii) g0 = g′0 can be written as a combination of Casimir operators of
algebras belonging to a chain of nested algebras of the lattice (4.9). They are
thus the dynamical symmetries of the SO(8) model in the sense explained
in Chap. 1. As a consequence, in the three cases g0 = 0, g′0 = 0 and g0 = g′0,
eigenvalues are known analytically as a sum of those of the different Casimir
operators which are given by

〈C2[SO(8)]〉ω1,ω2,ω3,ω4 = ω1(ω1 + 6) + ω2(ω2 + 4) + ω3(ω3 + 2) + ω2
4 ,

〈C2[SO(6)]〉σ1,σ2,σ3 = σ1(σ1 + 4) + σ2(σ2 + 2) + σ2
3 ,

〈C2[SO(5)]〉υ1,υ2 = υ1(υ1 + 3) + υ2(υ2 + 1),
〈C2[SO(3)]〉R = R(R + 1) with R = S, T.

The above discussion has introduced a large number of labels ωi, σi, υi, S
and T which are conserved quantum numbers for appropriate values of the
pairing strengths g0 and g′0 in the hamiltonian (4.6). The physical meaning
of these labels is as follows. The S and T are the total spin and total isospin.
The SOT (5) labels (υ1, υ2) are known from the SO(5) formalism for T = 1
pairing [200]: υ1 = 2Ω−vt/2 and υ2 = t, where vt is the usual seniority and
t is the reduced isospin. A similar formalism involving the algebra SOS(5)
can be developed for T = 0 pairing by interchanging the role of S and T and
leads to an associated seniority vs and the concept of reduced spin s which
is the spin of the nucleons not in pairs coupled to L = 0. The SO(6) labels
(σ1, σ2, σ3) characterize a supermultiplet [16]. Because of the isomorphism
SO(6) � SU(4), they are equivalent to SU(4) labels, the correspondence
being given by

σ1 =
1
2
(λ + 2μ + ν), σ2 =

1
2
(λ + ν), σ3 =

1
2
(λ − ν),

where (λ, μ, ν) are defined in Eq. (3.19). Finally, the SO(8) labels
(ω1, ω2, ω3, ω4) are known from the solution of the full pairing problem [203].
In particular, ω1 = Ω − v/2 and the remaining three labels are the reduced
supermultiplet labels (i.e., the supermultiplet labels of the nucleons not in
pairs coupled to L = 0).
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The lattice (4.9) permits the determination of the symmetry structure of
this model (see Box on The dynamical symmetries of the SO(8) model). The
important point to retain from that discussion is that a whole set of quantum
numbers exists that are conserved for particular combinations of the pairing
strengths in the hamiltonian (4.6). It will be shown in the next section that
a boson model can be constructed which has dynamical symmetries with
equivalent labels and that in these symmetry limits an exact mapping can be
established between its boson states and a subset of the fermion states of the
SO(8) model. Specifically, the subset in question contains only seniority-zero
states with all nucleons in pairs coupled to angular momentum zero. (Such
states occur in even–even and odd–odd but not in odd-mass nuclei.) It can
be shown [205] that for an attractive pairing interaction (g0, g

′
0 > 0) the

lowest-energy states have seniority zero in two of the three limits, namely in
the isovector pairing (g′0 = 0) and in the equal pairing (g0 = g′0) limits.

Since a realistic shell-model hamiltonian has values g0 ≈ g′0 [206], the
analytic solution obtained for g0 = g′0 should be the correct starting point
for nuclei and we consider this limit to illustrate the connection between
the SO(8) model and the IBM. The seniority-zero eigenstates of the pairing
hamiltonian (4.6) with g0 = g′0 carry the following labels:

SO(8) ⊃ SO(6) ⊃ SOS(3) ⊗ SOT (3)
↓ ↓ ↓ ↓

(Ω, 0, 0, 0) (σ1, 0, 0) S T
, (4.10)

where σ1 is the first of the SO(6) labels, the others being necessarily zero for
v = 0. The energies of these eigenstates are

E(n,Ω, σ1) = −g0

8
[n(4Ω − n + 12) − 4σ1(σ1 + 4)]. (4.11)

In the next section we will derive the corresponding results in the IBM and
in this way establish its connection with the SO(8) model.

We conclude this section with a brief discussion of the nature of SO(8)
superfluidity in the specific example of the ground state of N = Z nuclei. In
the SO(6) limit of the SO(8) model the exact ground-state solution can be
written as [207] (

S01
+ · S01

+ − S10
+ · S10

+

)n/4 |o〉. (4.12)

This shows that the superfluid solution acquires a quartet structure in the
sense that it reduces to a condensate of bosons each of which corresponds
to four nucleons. Since the boson in (4.12) is a scalar in spin and isospin, it
can be thought of as an α particle; its orbital character, however, might be
different from that of an actual α particle. A quartet structure is also present
in the two SO(5) limits of the SO(8) model, which yields a ground-state wave
function of the type (4.12) with either the first or the second term suppressed.
Thus, a reasonable ansatz for the N = Z ground-state wave function of the
SO(8) pairing interaction (4.6) with arbitrary strengths g0 and g′0 is
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(
cos θ S01

+ · S01
+ − sin θ S10

+ · S10
+

)n/4 |o〉, (4.13)

where θ is a parameter that depends on the ratio g0/g′0.
The condensate (4.13) of α-like particles provides an excellent approx-

imation to the N = Z ground state of the pairing hamiltonian (4.6) for
any combination of g0 and g′0. Nevertheless, it should be stressed that, in the
presence of both neutrons and protons in the valence shell, the pairing hamil-
tonian (4.6) is not a good approximation to a realistic shell-model hamilto-
nian which contains an important quadrupole component. Consequently, any
model based on L = 0 fermion pairs (or s bosons) only, remains necessarily
schematic in nature. A realistic model should include also L �= 0 pairs or,
equivalently, go beyond an s-boson approximation.

4.2 Interacting Boson Models with Neutrons and
Protons

The IBM was originally proposed as a phenomenological model in which the
precise relation between the bosons and the actual neutrons and protons in
the nucleus was not specified. The recognition that the bosons can be identi-
fied with Cooper pairs of valence nucleons coupled to angular momenta J = 0
or J = 2 made it apparent that a connection between the boson and shell
models required an explicit distinction between neutrons and protons. Conse-
quently, an extended version of the model was proposed by Arima et al. [208]
in which this distinction was made, referred to as IBM-2, as opposed to the
original version of the model, IBM-1.

If neutrons and protons occupy different valence shells, it seems natural to
assume correlated neutron–neutron and proton–proton pairs and to include
the neutron–proton interaction explicitly between both types of pairs. Since
in the nuclear shell model the strongest component of the neutron–proton
interaction is of quadrupole character [209], it is natural to make a similar as-
sumption for the interaction between the bosons. If the neutrons and protons
occupy the same valence shell, this approach is no longer valid since there is
no reason not to include the T = 1 neutron–proton pair. This is what Elliott
and White proposed in Ref. [210] and the ensuing model was called IBM-3.
Because the IBM-3 includes the complete T = 1 triplet, it can be made
isospin invariant enabling a more direct comparison with the shell model. All
bosons included in IBM-3 have T = 1 and, in principle, other bosons can
be introduced that correspond to T = 0 neutron–proton pairs. This further
extension (referred to as IBM-4) has indeed been proposed by Elliott and
Evans [211]; it can be considered as the most elaborate version of the IBM.

For the purpose of establishing a connection with the shell model, the
IBM-4 is the most natural model because it allows the construction of state
vectors with many of the labels that are encountered in fermionic systems.
However, the full IBM-4 with s and d bosons is a rather complicated model.
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Therefore, we begin by investigating the properties of a boson model that
only includes bosons which have orbital angular momentum L = 0 and have
the spin–isospin combinations (S, T ) = (0, 1) and (1,0). These are exactly the
quantum numbers of the fermion pairs of the SO(8) model discussed in the
previous section and our main objective in the first part of this section is to
show the connection between both schematic models. Subsequently, in the
second part, bosons with orbital angular momentum L �= 0 are introduced.

4.2.1 s Bosons Only

The elementary bosons of an L = 0 IBM-4 are s01 which is scalar in spin
and vector in isospin and s10 which is vector in spin and scalar in isospin.
To simplify notation superscripts are suppressed; instead, the first boson is
denoted as s and the second as p. Since both bosons have orbital angular
momentum L = 0, all states always have L = 0 and there is no need to
indicate L in this section.

The dynamical algebra of this L = 0 IBM-4 consists of the generators

Ns =
√

3(s† × s̃)(00)00 , Tμ =
√

2(s† × s̃)(01)0μ , Qs
μ = (s† × s̃)(02)0μ ,

Np =
√

3(p† × p̃)(00)00 , Sμ =
√

2(p† × p̃)(10)μ0 , Qp
μ = (p† × p̃)(20)μ0 ,

Y +
μν = (s† × p̃ + p† × s̃)(11)μν , Y −

μν = (s† × p̃ − p† × s̃)(11)μν , (4.14)

where the coupling is in spin and isospin, respectively. The s̃ and p̃ operators
transform as vectors in isospin and spin space, respectively, s̃μ = (−)1−μs−μ

and p̃μ = (−)1−μp−μ. The operators (4.14) are 36 in number and they form
the algebra U(6).

Two meaningful limits of U(6) which conserve spin and isospin can be
defined with the following lattice:

U(6) ⊃
{

Us(3) ⊗ Up(3)
SU(4)

}
⊃ SOs(3) ⊗ SOp(3), (4.15)

where the algebras are defined as Us(3) = {Ns, Tμ, Qs
μ}, SOs(3) = {Tμ},

Up(3) = {Np, Sμ, Qp
μ}, SOp(3) = {Sμ} and SU(4) = {Tμ, Sμ, Y +

μν}. An alter-
native SU(4) algebra can be defined with Y −

μν instead of Y +
μν . The hamiltoni-

ans associated with these two different choices have the same eigenspectrum
but differ through phases in their eigenfunctions. This is yet another exam-
ple of the parameter symmetries mentioned in Sect. 3.2 and is similar to the
existence of the SO+(6) and SO−(6) limits of IBM-1 [212].

The analysis of this model may now proceed in the usual fashion [213].
This involves constructing the most general hamiltonian with single-boson en-
ergies and two-body interactions between the s and the p bosons and showing
that it can be rewritten in terms of Casimir operators of the algebras in the
lattice (4.15). Furthermore, for certain energies and interactions this hamil-
tonian can be written in terms of Casimir operators belonging to a chain of
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nested algebras in the lattice (4.15) in which case it can be solved analytically
with the techniques discussed in Chap. 1.

For the purpose of the present discussion we highlight a few aspects of
this model. The first illustrates the relation between IBM-3 which involves
isovector bosons only and IBM-4 which is constructed from both isoscalar
and isovector bosons. The states of IBM-3 clearly are a subset of those in
IBM-4 and a precise relation between them can be established [214] via one
of the classifications in the lattice (4.15), namely

U(6) ⊃ US(3) ⊗ UT (3) ⊃ SOS(3) ⊗ SOT (3)
↓ ↓ ↓ ↓ ↓

[N ] [Np] [Ns] S T
, (4.16)

where N is the total number of bosons and Np and Ns are the separate num-
bers of p and s bosons with N = Np + Ns. States belonging to IBM-3 have
no p bosons, Np = 0. The implication of this statement is that removing
all Np �= 0 states from the spectrum (e.g., through a large positive p-boson
energy) essentially reduces IBM-4 to IBM-3. Consequently, the second clas-
sification of the lattice (4.15),

U(6) ⊃ SU(4) ⊃ SOS(3) ⊗ SOT (3)
↓ ↓ ↓ ↓

[N ] (0, μ, 0) S T
, (4.17)

is specific to IBM-4 and cannot be realized in IBM-3 because a state (4.17),
written in the basis (4.16), in general can have Np �= 0 components. Another
way of stating the same result is that any boson realization of Wigner’s
supermultiplet symmetry must necessarily involve T = 0 and T = 1 bosons.
In fact, it must do so with both bosons treated on an equal footing.

A second aspect concerns the microscopic foundation of the IBM. In the
limit of equal isoscalar and isovector pairing strengths, the link between the
shell and the boson models is particularly simple to establish. Comparison of
the IBM-4 classification (4.17) and the classification (4.10) of the neutron–
proton pairing model provides the connection. The IBM-4 hamiltonian in the
SU(4) limit,

H = κ0C1[U(6)] + κ′
0C2[U(6)] + κC2[SU(4)], (4.18)

has the eigenvalues

E(N,μ) = κ0N + κ′
0N(N + 5) + κμ(μ + 4). (4.19)

Since the boson number N is half the number of nucleons, N = n/2, and the
SU(4) labels (0, μ, 0) correspond to the SO(6) labels (σ1, 0, 0), the choice of
parameters

κ0 = −(2Ω + 11)
g0

2
, κ′

0 =
g0

2
, κ =

g0

2
, (4.20)
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leads to exactly the energy expression (4.11) in the SO(6) limit of the SO(8)
model. Similarly, the Us(3) ⊗ Up(3) limit of U(6) can be mapped onto the
two SO(5) limits of SO(8) through two different choices of parameters. This,
in fact, is a generic result and we see that, through the use of symmetries, the
fermionic shell model can be connected to the bosonic IBM, hence providing
a miscroscopic foundation of the latter in terms of the former.

If departures are allowed from the exact symmetry limits, conserved quan-
tum numbers cannot any longer be used to establish a connection, which then
must be found with some mapping technique. There exists a rich and varied
literature [215] on general procedures to carry out boson mappings in which
pairs of fermions are represented as bosons. They fall into two distinct classes.
In the first one establishes a correspondence between boson and fermion op-
erators by requiring them to have the same commutation relations. In the
second class the correspondence is established between state vectors in both
spaces. In each case further subclasses exist that differ in their technicali-
ties (e.g., the nature of the operator expansion or the hierarchy in the state
correspondence). In the specific example at hand, namely the mapping from
the shell model to the IBM, the most successful procedure is the so-called
Otsuka–Arima–Iachello (OAI) mapping [89] which associates state vectors
based on a seniority hierarchy in fermion space with state vectors based on a
U(5) hierarchy in boson space. It has been used in highly complex situations
that go well beyond the simple version of IBM with just identical s and d
bosons. Its success has been limited to nuclei close to the U(5) limit which
can be understood from the fact that deformation breaks the seniority classi-
fication. In the case of the SO(8) model, a Dyson mapping (of the first class
mentioned above) has been carried out to connect it to an L = 0 IBM-4 [207].
This analysis confirms the results obtained here in the symmetry limits of
the SO(8) model and can be applied to any SO(8) hamiltonian [213].

4.2.2 s and d Bosons

The logical extension of the L = 0 boson model discussed in Sect. 4.2.1 is
to assume the same spin–isopin structure for the bosons, (S, T ) = (0, 1) and
(1,0), and to extend the orbital structure to include L = 2. The total set
of bosons in this sd IBM-4 is shown in Table 4.1 where the conventional
spectroscopic notation 2S+1LJ is also indicated. Note that there is now an
unambiguous distinction between the boson orbital angular momentum L
and the total angular momentum J . In the simpler versions IBM-1,2,3 the
bosons have no intrinsic spin and the total angular momentum J necessarily
coincides with L.

There are several reasons for including also T = 0 bosons. One justifica-
tion is found in the LS-coupling limit of the nuclear shell model, where the
two-particle states of lowest energy have orbital angular momenta L = 0 and
L = 2 with (S, T ) = (0, 1) or (1,0) (see Table 2.2). In addition, the choice of
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Table 4.1. Enumeration of bosons in the IBM-4

L S J T MT Operator

0,2 0 0,2 1 −1 s†ν , d†
ν

0,2 0 0,2 1 0 s†δ, d
†
δ

0,2 0 0,2 1 +1 s†π, d†
π

0 1 1 0 0 θ′†
1 (3S1)

2 1 1 0 0 θ†
1 (3D1)

2 1 2 0 0 θ†
2 (3D2)

2 1 3 0 0 θ†
3 (3D3)

bosons in IBM-4 allows a boson classification containing Wigner’s supermul-
tiplet algebra SU(4). This was explicitly shown in Sect. 4.2.1 for the L = 0
IBM-4 and it remains true if d bosons are considered. These qualitative argu-
ments in favor of IBM-4 have been corroborated by quantitative, microscopic
studies in even–even [216] and odd–odd [217] sd-shell nuclei.

The IBM-4 classification that conserves orbital angular momentum L,
intrinsic spin S and isospin T , reads

U(36) ⊃
(
U(6) ⊃ · · · ⊃ SO(3)

)
↓ ↓ ↓

[N ] [N1, . . . , N6] L

⊗
(
U(6) ⊃ SU(4) ⊃ SO(3) ⊗ SO(3)

)
↓ ↓ ↓ ↓

[N1, . . . , N6] (λ, μ, ν) S T

, (4.21)

where the dots refer to one of the possible reductions of U(6). To analyze this
coupling scheme, it is helpful to compare it to the fermion supermultiplet
classification, which is given in Table 2.2 for one and two particles in the sd
shell. The corresponding problem for bosons is worked out in Table 4.2. The
essential point to note here is that, of the two SU(4) representations (0, 1, 0)
and (2, 0, 0) that occur for two fermions, the first one is also the fundamental
(or one-boson) representation in the boson classification.

Table 4.2. Classification of one and two boson(s) in IBM-4

N [N1, . . . , N6] L (λ, μ, ν) (S, T )

1 [1] 0, 2 (0, 1, 0) (0, 1), (1, 0)

2 [2, 0] 02, 22, 4 (0, 2, 0) (0, 0), (0, 2), (1, 1), (2, 0)
(0, 0, 0) (0, 0)

[1, 1] 1, 2, 3 (1, 0, 1) (0, 1), (1, 0), (1, 1)
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The starting point of the IBM-4 is thus a truncation of the shell model
which preserves the labels (λ, μ, ν), S, L, J and T of an LS-coupling scheme
in the shell model. A crucial aspect of the IBM-4 is that it does not require the
exact validity of such quantum numbers in the shell model for carrying out
the mapping to the boson space. An example of this flexibility is provided by
the pseudo-LS coupling scheme discussed in Sect. 2.1.2. Neither the orbital
angular momentum L nor the spin S are good quantum numbers in this cou-
pling scheme. Nevertheless, the pseudo-orbital angular momentum L̃ and the
pseudo-spin S̃ are conserved and they can be mapped onto the corresponding
boson classification (4.21). This provides an explicit example in which the
labels L and S in (4.21) do not correspond to the fermionic orbital angular
momentum and intrinsic spin. In particular, the L and S associated with a
single boson should not be thought of as the orbital angular momentum and
the spin of a pair of fermions but rather as effective labels in fermion space
which acquire an exact significance in terms of bosons. A similar argument
holds for the Wigner supermultiplet labels (λ, μ, ν). In contrast, the label T
in (4.21) does correspond to the total isospin, and this is so as long as isospin
is an exact dynamical symmetry in the fermion space.

In the IBM-3 there are three kinds of bosons (ν, δ and π) each with six
components and, as a result, an N -boson state belongs to the symmetric
representation [N ] of U(18). It is possible to construct IBM-3 states that
have good total angular momentum (denoted by L, as in IBM-1 and IBM-2)
and good total isospin T via the classification

U(18) ⊃
(
U(6) ⊃ · · · ⊃ SO(3)

)
↓ ↓ ↓

[N ] [N1, N2, N3] L

⊗
(
U(3) ⊃ SU(3) ⊃ SO(3)

)
↓ ↓ ↓

[N1, N2, N3] (λ, μ) T

. (4.22)

Overall symmetry of the N -boson wavefunction requires the representations
of U(6) and U(3) to be identical. Consequently, the allowed U(6) represen-
tations can have up to three rows in contrast to IBM-1 where the represen-
tations necessarily are symmetric. The SU(3) representations are denoted in
Elliott’s notation of Sect. 2.1.2, λ = N1−N2, μ = N2−N3, and determine the
allowed values of the isospin T of the bosons. Thus the choice of a particular
spatial boson symmetry [N1, N2, N3] determines the allowed isospin values
T .

The classification of dynamical symmetries of IBM-3, of which (4.22) is
but an example, is rather complex and as yet their analysis is incomplete.
The cases with dynamical SU(3) charge symmetry [corresponding to (4.22)]
were studied in detail in Ref. [218]. Other classifications that conserve L and
T [but not charge SU(3)] were proposed and analyzed in Refs. [219, 220].
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The δ or neutron–proton boson plays an essential role in the construction
of states with good isospin. To illustrate this we consider the example of a
state consisting of two s bosons coupled to isospin T = 0, which is a boson
representation of a two-neutron–two-proton state with seniority v = 0. If
the isospin components of the bosons are written explicitly, (s† × s†)(0)0 =∑

μ(1μ 1 − μ|00)s†μs†−μ, the two-boson state can be rewritten as

|s2;T = 0〉 =

√
2
3
|sνsπ〉 −

√
1
3
|s2

δ〉, (4.23)

which shows that a sizeable fraction (33 %) involves δ bosons. This remains
true for many-particle states but with the size of the δ component depend-
ing on the number of neutrons and protons [221]. Nuclei with N ∼ Z have
comparable numbers of neutrons and protons in the valence shell and have
important δ admixtures at low energies. These decrease in importance as the
neutron excess increases. In fact, if the neutrons are holes (i.e., fill more than
half the valence shell) and the protons are particles, the δ admixtures vanish
in the limit of large shell size [222]. In this case IBM-2 states approximately
have good isospin. In heavier nuclei where neutrons and protons occupy dif-
ferent valence shells, IBM-2 states have isospin T = (N−Z)/2 and this result
is exact insofar that the assumption of different valence shells for neutrons
and protons is valid [223]. The application of the IBM-3 and IBM-4 is thus
restricted to nuclei where neutrons and protons occupy the same valence shell
and where they are all particles or all holes. In all other situations the simpler
IBM-2 approach can be used which is discussed in the next section.

4.3 The Interacting Boson Model-2

In the IBM-2 the total number of bosons N is the sum of the neutron and
proton boson numbers, Nν and Nπ, which are conserved separately. The
algebraic structure of IBM-2 is a product of U(6) algebras,

Uν(6) ⊗ Uπ(6), (4.24)

consisting of neutron b†νlmbνl′m′ and proton b†πlmbπl′m′ generators. The model
space of IBM-2 is the product of symmetric representations [Nν ] × [Nπ] of
Uν(6) ⊗ Uπ(6). In this model space the most general, (Nν , Nπ)-conserving,
rotationally invariant IBM-2 hamiltonian must be diagonalized.

The IBM-2 gives a successful phenomenological description of low-energy
collective properties of virtually all medium-mass and heavy nuclei. A com-
prehensive review of the model and its implications for nuclear structure can
be found in Ref. [224]. The classification and analysis of its symmetry limits
are considerably more complex than the corresponding problem in IBM-1
but are known for the most important limits which are of relevance in the
analysis of nuclei [225].
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For the present purpose we highlight the two main features of the IBM-2.
The first is that the existence of two kinds of bosons offers the possibility to
assign an F -spin quantum number to them, F = 1/2, the boson being in
two possible charge states with MF = −1/2 for neutrons and MF = +1/2
for protons [89]. Formally, F spin is defined by the algebraic reduction

U(12) ⊃ U(6) ⊗ U(2)
↓ ↓ ↓

[N ] [N − f, f ] [N − f, f ]
, (4.25)

and with 2F the difference between the Young-tableau labels that charac-
terize U(6) or U(2), F = [(N − f) − f ]/2 = (N − 2f)/2. The algebra U(12)
consists of the generators b†ρlmbρ′l′m′ , with ρ, ρ′ = ν or π, which also includes
operators that change a neutron boson into a proton boson or vice versa
(ρ �= ρ′). Under this algebra U(12) bosons behave symmetrically; as a result
the representations of U(6) and U(2) are identical.

The mathematical structure of F spin is entirely similar to that of isospin.
An F -spin SU(2) algebra [which is a subalgebra of U(2) in (4.25)] can be de-
fined which consists of the diagonal operator Fz = (−Nν + Nπ)/2 and the
raising and lowering operators F± that transform neutron bosons into proton
bosons or vice versa. These are the direct analogs of the isospin generators Tz

and T± and they can be defined in an entirely similar fashion (see Sect. 1.1.6).
The physical meaning of F spin and isospin is different, however: the mapping
onto the IBM-2 of a shell-model hamiltonian with isospin symmetry does not
necessarily yield an F -spin conserving hamiltonian. Conversely, an F -spin
conserving IBM-2 hamiltonian may or may not have eigenstates with good
isospin. In fact, if the neutrons and protons occupy different shells, so that
the bosons are defined in different shells, then any IBM-2 hamiltonian has
eigenstates that correspond to shell-model states with good isospin, irrespec-
tive of its F -spin symmetry character. If, on the other hand, neutrons and
protons occupy the same shell, a general IBM-2 hamiltonian does not lead to
states with good isospin. The isospin symmetry violation is particularly sig-
nificant in nuclei with approximately equal numbers of neutrons and protons
(N ∼ Z) and requires the consideration of IBM-3, discussed in the previous
section. As the difference between the numbers of neutrons and protons in
the same shell increases, an approximate equivalence of F spin and isospin is
recovered [222] and the need for IBM-3 disappears.

Just as isobaric multiplets of nuclei are defined through the connection
implied by the raising and lowering operators T±, F -spin multiplets can be
defined through the action of F± [226]. The states connected are in nuclei with
Nν + Nπ constant; these can be isobaric (constant nuclear mass number A)
or may differ by multiples of α particles, depending on whether the neutron
and proton bosons are of the same or of a different type (which refers to their
particle- or hole-like character).

There exists also a close analogy between F spin and I spin, the particle–
hole boson exchange symmetry discussed in Sect. 2.2.4. While the F -spin
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Fig. 4.2. Schematic illustration of the action of the F -spin and I-spin raising and
lowering operators on a system of N = 3 bosons, where N is either the number
of neutron plus proton bosons, N = Nν + Nπ, or the number of particle plus hole
bosons, N = Np + Nh

raising and lowering operators transform neutron into proton bosons and vice
versa, the corresponding I-spin operators connect particle and hole bosons.
As an example, the action of the F -spin raising and lowering operators F±
is illustrated in Fig. 4.2 and compared to the corresponding actions of I±. In
both cases the total number of bosons is conserved; in an F -spin multiplet
this sum is made up from proton and neutron bosons, while in an I-spin
multiplet it consists of particle and hole bosons.

In spite of the formal equivalence between F -spin and I-spin multiplets,
there is one difference in their application which can be made clear from
Fig. 4.2. Action of F± on the ground state of a nucleus in an F -spin multiplet
leads to the ground state of another member of the multiplet. This is not
necessarily so in an I-spin multiplet: the action of I+ on the three particle
bosons on the left-hand side leads to a 2p–1h boson state which is an excited
configuration in a nucleus with a pair of nucleons in the valence shell. In this
respect I-spin multiplets are akin to isobaric multiplets.

The empirical evidence for F -spin multiplets of nuclei is illustrated with
the following example.

Example: Evidence for F -spin multiplets of nuclei. The relation between levels
belonging to an F -spin multiplet depends on the F -spin symmetry character
of the hamiltonian which comes down to a question of IBM-2 phenomenology.
Specifically, a hamiltonian with an F -spin symmetry satisfies

[H,Fz] = [H,F±] = 0.

This implies, among other things, that all nuclei in an F -spin multiplet have
equal binding energies. This clearly is inappropriate and the condition should
be relaxed to one of a dynamical F -spin symmetry,

[H,F 2] = [H,Fz] = 0,
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which still implies a classification in terms of F and MF but now with non-
degenerate ground-state energies given by

Egs(MF ) = κ0 + κ1MF + κ2M
2
F .

This is the direct analog of the isobaric multiplet mass equation discussed
in Chap. 1, and therefore can be called an ‘F -spin multiplet mass equation’
or FMME. (A related approach to predict nuclear binding energies based
on F -spin symmetry was proposed in Ref. [227]). In addition, the excitation
spectra of the F = Fmax states of nuclei belonging to an F -spin multiplet are
identical for a hamiltonian with a dynamical F -spin symmetry.

Empirical evidence for F -spin multiplets has thus two aspects: (i) To what
extent can ground-state binding energies be described by the FMME? (ii) Are
low-energy excitation spectra of F -spin multiplet nuclei identical?

The first aspect is illustrated in Table 4.3 where the experimental [55]
binding energies of nuclei belonging to an F -spin multiplet with Nν+Nπ = 12
are compared to results obtained with the FMME. The table also gives the
differences Δ between the measured binding energies and those obtained with
the FMME.

The second aspect is illustrated in Fig. 4.3 which shows the observed
excitation spectra [44] of the nuclei in the same Nν + Nπ = 12 F -spin mul-
tiplet [226]. With some exceptions levels are seen to be constant in energy
as implied by a dynamical F -spin symmetry. One exception concerns the
first-excited 0+ level; its peculiar behavior, at variance with the ground-
band states, may have an interpretation that invokes the concept of a partial

Table 4.3. Observed [55] and calculated binding energies of the ground states of
nuclei in an F -spin multiplet with Nν + Nπ = 12

Binding energya

Nucleus Nν Nπ Fz Expt Error FMMEb Δ

156Dy 4 8 2 1278.020 0.007 1278.003 −0.017
160Er 5 7 1 1304.270 0.024 1304.301 +0.031
164Yb 6 6 0 1329.954 0.016 1329.969 +0.015
168Hf 7 5 −1 1355.013 0.028 1355.007 −0.006
172W 8 4 −2 1379.470 0.028 1379.415 −0.055
176Os 9 3 −3 1403.191 0.028 1403.193 +0.002
180Pt 10 2 −4 1426.250 0.011 1426.341 +0.091
184Hg 11 1 −5 1448.884 0.010 1448.859 −0.025

aIn units of MeV.
bWith parameters κ0 = 1329.969 κ1 = −25.353, κ2 = −0.315, in MeV.
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Fig. 4.3. Observed [44] spectra of nuclei belonging to an F -spin multiplet
with Nν + Nπ = 12. Underneath each isotope label the neutron and proton boson
numbers (Nν , Nπ) are given. Levels are labeled by their angular momentum and
parity Jπ.

dynamical F -spin symmetry. Similarly, it is seen that the spectrum of 184Hg
strongly differs from that of all other isotopes in the F -spin multiplet; this
is a result of the propinquity of the Z = 82 shell closure which makes the
excitations of that particular isotope less collective.

The phenomenology of F -spin multiplets is similar to that of isobaric
multiplets [21] but for one important difference. The nucleon–nucleon inter-
action favors spatially symmetric configurations and consequently nuclear
excitations at low energy generally have T = Tmin = |(N − Z)/2|. Boson–
boson interactions also favor spatial symmetry but that leads to low-lying
levels with F = Fmax = (Nν + Nπ)/2. As a result, in the case of an F -spin
multiplet a relation is implied between the low-lying spectra of the nuclei
in the multiplet, while an isobaric multiplet (with T ≥ 1) involves states at
higher excitation energies in some nuclei.

The second important aspect of IBM-2 is that it predicts states which
are additional to those found in IBM-1. Their structure can be understood
in terms of the F -spin classification (4.25). States with maximal F spin,
F = N/2, are symmetric in U(6) and are the exact analogs of IBM-1 states.
The next class of states has F = N/2− 1 and these are no longer symmetric
in U(6) but belong to its representation [N − 1, 1]. Such states were studied
theoretically in 1984 by Iachello [228] and since then have been observed in
many nuclei (see Sect. 4.4).
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The existence of these states with mixed symmetry (MS), excited in a
variety of reactions, is by now well established, at least in even–even nuclei.
The pattern of the lowest symmetric and mixed-symmetric states is shown
in Fig. 4.4. The spectra are obtained with a reasonable choice of parameters
in the three limits of IBM-2 in which F spin is a conserved quantum num-
ber [225]. In those limits the correspondence between the symmetric states
[N ] of IBM-2 and all states of IBM-1 is exact. The figure also shows the
lowest [N − 1, 1] states with angular momentum and parity 1+, 2+ and 3+

and their expected energies in the three limits.
Of particular relevance are 1+ states, since these are allowed in IBM-2 but

not in IBM-1. The characteristic excitation of 1+ levels is of magnetic dipole
type. The IBM-2 prediction for the M1 strength to the 1+ mixed-symmetry
state is [225]

B(M1; 0+
1 → 1+

MS) =
3
4π

(gν − gπ)2f(N)NνNπ, (4.26)

where gν and gπ are the boson g factors and the subscript ‘MS’ refers to
the mixed-symmetry character of the 1+ state. The function f(N) is known
analytically in the three principal limits of the IBM-2,

f(N) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 U(5)
8

2N − 1
SU(3)

3
N + 1

SO(6)

. (4.27)

This gives a simple and reasonably accurate estimate of the total M1 strength
of orbital nature to 1+ MS states in even–even nuclei.

Fig. 4.4. Partial energy spectra in the three limits of IBM-2 in which F spin is
a conserved quantum number. Levels are labeled by their angular momentum and
parity Jπ; the U(6) labels [N − f, f ] are also indicated
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The geometric interpretation of MS states can be found by taking the
limit of large boson number [229]. From this analysis emerges that they cor-
respond to linear or angular displacement oscillations in which the neutrons
and protons are out of phase, in contrast to the symmetric IBM-2 states for
which such oscillations are in phase. The occurrence of such states was first
predicted in the context of geometric two-fluid models in vibrational [230]
and deformed [231] nuclei in which they appear as neutron–proton counter
oscillations. Because of this geometric interpretation, MS states are often re-
ferred to as scissors states which is the pictorial image one has in the case
of deformed nuclei. The IBM-2 thus confirms these geometric descriptions
but at the same time generalizes them to all nuclei, not only spherical and
deformed, but γ unstable and transitional as well. The empirical evidence for
mixed-symmetry states is reviewed in the next section.

4.4 A Case Study: Mixed-Symmetry States in 94Mo

The experimental study of MS states is complicated because the lowest of
them occur at relatively high excitation energies (> 2 MeV) and are of low
spin. Therefore, they need to be populated and to be distinguished from
other levels with the same spin and parity. Population of highly excited low-
spin states cannot be achieved using heavy-ion-induced reactions and is often
difficult with light-ion fusion–evaporation reactions for very low-spin values.
There exist, however, a number of special methods to populate states with low
spin up to high energy. They are Coulomb excitation, β decay, nuclear reso-
nance fluorescence (NRF), transfer reactions, the (n,γ) reaction with thermal
neutrons and inelastic scattering with fast neutrons, protons, α particles or
electrons.

Once populated, the MS state needs to be identified. This is usually
achieved by the measurement of a collective magnetic dipole transition to
the normal (i.e., symmetric) states. To do so, the multipolarity and parity
of the depopulating transition need to be determined as well as the lifetime
of the MS state. Its lifetime is obtained either by measuring the natural line
width or by observing the Doppler shifts on the depopulating transition. The
latter are dependent on the (unknown) lifetime and the known slowing-down
mechanism of the atom containing the excited nucleus and moving as a result
of the nuclear reaction. In the late 1980s two new experimental techniques
were developed and allowed for the first time the measurement of lifetimes of
excited states populated by the (n,γ) and (n,n′) reactions. They have strongly
contributed to the study of collectivity of low-spin states at high energy.

4.4.1 The Discovery of Mixed-Symmetry States
in Deformed Nuclei

The first example of a state with MS character was found by Richter and
collaborators using inelastic electron scattering on 156Gd [232]. To have a
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first idea of properties of MS states in well-deformed nuclei, the appropri-
ate starting point is the F -spin symmetric SU(3) limit [225] of the IBM-2
introduced in the previous section. In this limit, the lowest MS state has
spin–parity Jπ = 1+ and is characterized by a strong M1 transition to the
ground state, with a B(M1) value of about 1 μ2

N [see Eq. (4.26)]. Since dipole
transitions from the even–even ground state are the main excitation mecha-
nism in NRF, this technique is very well suited for the search of 1+ MS states.
Moreover, if the branching ratios are known, the excitation cross-section can
be used to determine the lifetime of the populated state. The main experi-
mental problem of NRF is to distinguish between electric dipole excitation,
populating 1− states, and magnetic dipole excitation, populating the 1+ MS
states of interest here. This problem was solved by combining results with
those of (e,e′) scattering in the original experiment by Bohle et al. [232].
An essential element of the latter experiment was the detection of inelasti-
cally scattered electrons at very backward angles where magnetic excitations
are dominant. In 156Gd a 1+ state was observed at 3.075 MeV excited with
a B(M1; 0+ → 1+) value of 1.5 μ2

N. The existence of this state was later
confirmed by a NRF experiment [233].

Extensive studies with the (e,e′) [234] and (γ, γ′) [235] reactions over
the last 20 years led to the systematic discovery of 1+ MS states in most
stable, deformed nuclei [236]. However, only MS states with spin–parity 1+

could be clearly observed although strongly fragmented in most cases. Other
MS states are difficult to identify [237]. The reason is that the excitation
probability from the ground state to other excited MS states is small in the
reactions used and also because the MS state just above 1+ has spin–parity
2+ and typically is the 10th excited 2+ state. This renders its population with
most reactions very unlikely and leads to fragmentation over several states
due to the very high level density in deformed nuclei.

Finally, it is worth mentioning that a scissors mode was observed recently
in Bose–Einstein condensates [238] which illustrates the general character of
this mode in two-component systems.

4.4.2 Mixed-Symmetry States in Near-Spherical Nuclei

While there is ample evidence for 1+ scissors states in deformed nuclei, only
a few MS states have been identified in non-rotational nuclei. For these nuclei
the appropriate starting point can be the F -spin symmetric U(5) or SO(6)
limit [225] of IBM-2. In both cases the lowest MS state has spin–parity 2+

and it decays with weak E2 and strong M1 transitions to the normal states.
Therefore, there is no clear experimental signature for the excitation of this
state from the ground state, like it is the case for the scissors state in deformed
nuclei. On the other hand, the advantage of nearly spherical (as compared to
deformed) nuclei is their lower level density; as a result, the 2+ MS state is
expected to be the third-to-sixth excited 2+ state. In the mid-1980s Hamilton
et al. proposed several candidates based on measured E2/M1 mixing ratios
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showing dominant M1 decay to the 2+
1 state [239]. While this is a necessary

condition to establish the MS character of a state, it is not a sufficient one
and lifetimes need to be determined to establish the collectivity of the M1
decay to the 2+

1 state. As an example, the lifetime measurement of Ref. [240]
showed that the close-lying second- and third-excited 2+ states in 56Fe share
the MS configuration. With the advent of the γ-ray induced Doppler (GRID)
technique [241], which allows to determine lifetimes after thermal neutron
capture using ultra-high-resolution γ-ray spectroscopy (with ΔE/E = 10−6),
the lifetime of one of the proposed states could be measured and a first pure
2+ MS state in a vibrational nucleus was established in 54Cr [242]. This
then permitted the study of the energy dependence of the MS states in the
N = 30 isotones [243]. As one might wonder whether the IBM-2 can be
applied in these nuclei with only two and three bosons, it is worth men-
tioning that a large-scale shell-model calculation within the pf shell reached
conclusions consistent with IBM-2 [244]. Further examples of 2+ MS states
could be established later in other mass regions [155, 245]. Finally, with the
NRF technique 1+ MS states were found in the SO(6) nuclei 196Pt [246] and
134Ba [247], without, however, the identification of the expected lowest 2+

MS state.

4.4.3 Mixed-Symmetry States in 94Mo

During the past years extended MS structures have been established in 94Mo
by Pietralla, Fransen and their collaborators. As a result, this atomic nucleus
has become the best-established case to test the IBM-2 predictions for these
excitations. In a first set of experiments, NRF on 94Mo at the Dynamitron
accelerator of the University of Stuttgart was combined with β decay at
the FN Tandem accelerator of the University of Cologne. In NRF only 1+,
1− and 2+ states are populated. To study the β decay, the 94Mo(p,n)94Tc
reaction at 13 MeV was used to produce the Jπ = (2)+ low-spin isomer of
94Tc which has a half-life of 52 minutes [248]. This (p,n) reaction favors the
population of the low-spin isomer compared to the 7+ ground state, as the
transferred angular momentum is only 6h̄. The β decay of the low-spin isomer
then populates the low-spin states in 94Mo. The γ rays after β decay were
measured out of beam which allowed the accumulation of high statistics on a
low background so that weak decay branches could be observed (see Fig. 4.5).
The key feature for the data analysis is that both reactions populate the 2+

3

state at 2,067 keV and the 1+
1 state at 3,129 keV. From the excitation cross-

sections of the NRF measurement and by use of the branching and mixing
ratios obtained from the γ–γ coincidences and correlations in the β-decay
experiment, absolute transition rates can be derived, establishing that both
states are of MS character [248]. The observation of the 2+ MS state at
2,067 keV in NRF is possible through the weakly collective E2 decay [about
10% of the B(E2) value to the first-excited state] as predicted in the F -spin
symmetric SO(6) limit. In contrast, the first 2+ MS state in deformed nuclei
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Fig. 4.5. Part of the observed γ-ray spectrum after β decay of the Jπ = (2)+

low-spin isomer in 94Tc. The left part shows the de-exciting transitions out of the
MS states and the right part the coincidence spectrum gated on the decay of
the 2+

3 MS state to 2+
1 . This establishes the 1+ MS state as an excitation built

on the lowest MS state. (Adapted from [248].)

is part of a rotational band built on the 1+ MS state and its decay to the
ground state is about three times weaker. To establish the MS character
of both states, the essential signature is their collective M1 decay via the
transitions 1+

1 → 0+
1 (0.16 μ2

N) and 2+
3 → 2+

1 (0.48 μ2
N). An additional proof

of the MS character of the 1+
1 state is the observation of a very weak 1+

1 → 2+
1

(0.007 μ2
N) and a strong 1+

1 → 2+
2 (0.43 μ2

N) M1 transition.
To understand the importance of the very small B(M1; 1+

1 → 2+
1 ) value

as far as symmetry is concerned, we recall that both U(5) and SO(6) share an
SO(5) subalgebra. As discussed in Sect. 2.2, states with SO(5) symmetry can
be expanded in a basis with either even or odd numbers of d bosons. In U(5) a
single d-boson number value occurs; in SO(6) different values occur but they
are always all even or all odd. This argument can be generalized to IBM-2.
The M1 operator is, in lowest order, a d-boson number conserving operator.
To construct the lowest 1+ MS state with SO(5) symmetry, one needs an even
number of d bosons, e.g., one neutron and one proton boson in U(5). On the
other hand, the first-excited 2+

1 state requires a one-d-boson state in U(5)
and only odd-d-boson numbers in SO(6). Therefore, the B(M1; 1+

1 → 2+
1 )

value vanishes as long as SO(5) is a conserved symmetry. A similar reasoning
explains the vanishing B(M1; 1+

1 → 2+
3 ) value, which is observed with an

experimental upper limit of 0.05 μ2
N [248]. Finally, in the U(5) limit the d-

boson number is fixed such that much more stringent selection rules follow;
notably, the 1+

1 → 0+
1 M1 transition is forbidden. Figure 4.6 schematically

illustrates the typical decay patterns.
The first observation of two MS states and the measurement of their abso-

lute decay probabilities forms the first detailed test of predictions concerning
excited MS states. An excellent agreement with the predictions in the F -spin
symmetric SO(6) of IBM-2 was obtained. Some of the results concerning
the E2 transition rates show that the 1+ MS state can be interpreted in the
Q-phonon scheme [249] as a symmetric quadrupole excitation on top of the
asymmetric quadrupole excitation which corresponds to the 2+ MS state. If
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Fig. 4.6. Schematic overview of the electromagnetic decays of the normal and
mixed-symmetry states. Dashed (solid) lines represent M1 (E2) transitions and the
line thickness illustrates the relative strengths

this is so, one expects nearly the same B(E2; 2+
1 → 1+

1 ) and B(E2; 2+
3 → 0+

1 )
values where the symmetric quadrupole phonon plays the role of spectator
and the spin sequence is chosen such that statistical factors entering the
B(E2) values are the same. The experimental ratio was found to be 0.39 (18)
showing only a deviation by a factor of two. Likewise, the B(E2; 2+

3 → 1+
1 )

and B(E2; 2+
1 → 0+

1 ) values should be equal. Experimentally a ratio of 1.02
was determined but only under the assumption of a pure E2 decay between
both MS states. [The E2/M1 mixing ratio could not be uniquely determined
in the experiment. Two solutions were found, one with δ = −7+3

−20 compat-
ible with a fairly pure collective E2 transition and one with δ = −0.57(16)
indicating only a weakly collective E2 transition].

In a second experiment, the 91Zr(α,n) reaction was used with the specific
aim of maximizing the population of medium-spin states [250]. Indeed, light-
ion fusion–evaporation reactions were shown to be able to populate states
with J ≥ 2 in a very complete way [151]. The energy of the α particles was
15 MeV leading to a population of states with spins between J = 2 and J = 8
at a maximal excitation energy of 9 MeV. The experiment was performed at
the FN tandem accelerator of the University of Cologne using the Osiris
spectrometer equipped with 10 high-purity Ge γ detectors. The data allowed
the identification of a level at 2,965.4 keV as being the 3+ MS state. The
spin and parity of the state were obtained from the γ–γ angular correlations
and its strong population in the β decay of the Jπ = (2)+ low-spin isomer
in 94Tc. It was found that the 3+ MS state decays with nearly pure M1
transitions to the symmetric 2+

2 and 4+
1 two-phonon states and with mixed

E2/M1 transitions to the 2+
1 and 2+

3 states. To judge the collective character
of these transitions, the lifetime of the 3+ MS state was determined using the
Doppler shift attenuation (DSA) method. In this method the slowing-down
time of the recoiling 94Mo atom (moving at 0.38% of c) is compared to the
lifetime of the 3+ MS state via the measured Doppler shifts of de-exciting
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Fig. 4.7. The 3+ → 2+
2 transition at 1,101 keV as observed under 45, 135 and

90◦. One clearly notices the Doppler shifts at forward and backward angles allowing
the determination of the lifetime of the 3+ MS state in 94Mo.(Reprinted from N.
Pietralla et al., Phys. Rev. Lett. 84 (1999) 3775 c©1999 by the American Physical
Society, with kind permission.)

transitions. Figure 4.7 illustrates the data. After taking care of time delays
due to the lifetimes of higher-lying states populating the 3+ MS state, causing
additional delays called side-feeding effects, a lifetime of 80(30) fs could be
extracted [250]. With this information the MS character of the 3+ state at
2,965 keV could be established by the M1 reduced matrix elements of about
1 μN to the 2+

2 and 4+
1 states and the collective E2 transition of tens of

Weisskopf units (W.u.) to the 2+
3 MS state.

In addition, with the same data set the level at 2,870 keV could be identi-
fied as the second 2+ MS state [251]. As for the 3+ state, the branching ratios
and multipolarities of the de-exciting transitions allowed the determination
of a lifetime of 100(20) fs. In contrast to the 1+ and 3+ MS states, which both
are the second-excited state of that spin, at an energy of 3 MeV the excited 2+

MS state is already the sixth 2+ state. Therefore, one needs a clear signature
for its identification. This signature was the collective B(M1; 2+

6 → 2+
2 ) value

of 0.35(11) μ2
N, which is well above the corresponding values for the other

excited 2+ states as shown in Fig. 4.8. Moreover, the identification was not
contradicted by the observed B(E2; 2+

6 → 2+
3 ) value of 16+88

−15 W.u., although
the experimental error did not allow a definite conclusion.

The final experiment on 94Mo was performed at the 7 MV electrostatic
accelerator of the University of Kentucky using inelastic neutron scattering.
In the 94Mo experiment 36.6 g of metallic Mo enriched to 91.6% in 94Mo was
used. Fransen et al. [252] used neutron beams with energies between 2.4 and
3.9 MeV. The excitation functions were measured in steps of 100 keV and
the angular distributions were measured at 2.4, 3.3 and 3.6 MeV. Figure 4.9
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Fig. 4.8. Observed B(M1; 2+
i → 2+

2 ) values in 94Mo. For the 2+
3 and 2+

8 states no
M1 transition was observed. (Adapted from [251].)

Fig. 4.9. Excitation functions for states at 2,739.9 and 2,780.5 keV observed in
94Mo by inelastic neutron scattering. The dots represent the experimental points
and the lines the results of calculations for excitation of states with J = 0 (dots),
J = 1 (full) and J = 2 (dashed line). (Reprinted from Ch. Fransen et al., Phys. Rev.
C67 (2003) 024307 c©2003 by the American Physical Society, with kind permission.)

shows the excitation functions for states at 2,739.9 and 2,780.5 keV. One
clearly observes that the higher state has spin J = 0 and the lower spin
J = 1. Positive parity was assigned to both states. The kink in the excitation
of the latter observed at 3.4 MeV should be attributed to the occurrence
of a level at this energy feeding the state of interest. The 2,780.5 keV state
was not observed before and could be assigned a spin of zero. The measured
excitation function contradicts the earlier association of the 2,739.9 keV level
with the 2+

5 state and indicates a new 1+
1 state. The elimination of the feeding
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problem in inelastic neutron scattering allowed to measure the lifetimes with
about 10% error. As an example, the lifetime of the 3+

2 and the now 2+
5

excited MS state were found to be 131(14) fs and 79(8) fs, in good agreement
with the previous results of 100(20) fs and 80(30) fs from the (α,n) reaction.

One aim of the experiment was the identification of the missing excited
0+ and 4+ MS states. No candidate for the 0+ MS state could be identified.
It should be noted that 0+ states are very difficult to observe and only two
excited 0+ states were found in 94Mo, both of normal multi-phonon character.
A possible candidate for the 4+ MS state was found to be the 4+

3 state
at 2,564.9 keV which decays with a B(M1) of 0.23 μ2

N and a B(E2) of ≤
15 W.u. to the 4+

1 state. However, a transition to the 2+
3 MS state could

not be observed and only an upper limit for this B(E2) of 50 W.u. was
obtained. Neither was a transition to the 2+

2 state observed. Therefore a
unique identification was not possible.

While the excitation energies of the MS states resembles more the F -
spin symmetric U(5) limit of IBM-2, the observation of the strong 1+

2 → 0+
1

M1 transition favors the SO(6) limit. With 100Sn taken as the core, Table 4.4
compares the data to the analytic predictions for this limit given in [225]. For
the M1 transitions, the standard values for the boson gyromagnetic ratios are
used, gν = 0 and gπ = 1 μN. The E2 transitions are calculated with the boson
effective charges eν = 0 and eπ = 0.090 eb. An excellent agreement between

Table 4.4. Observed M1 and E2 transitions rates involving the 1+
2 , 2+

3 , 2+
5 and

3+
2 MS states in 94Mo compared to different theoretical predictions

B(M1; Ji → Jf)
a B(E2; Ji → Jf)

b

Jπ
i Jπ

f Expt IBM-2 SM QPM Jπ
i Jπ

f Expt IBM-2 SM QPM

2+
3 2+

1 0.56(5) 0.30 0.51 0.20 0+
1 2+

1 203(3) 233 210 207
1+
2 0+

1 0.160+11
−10 0.16 0.26 0.08 0+

1 2+
3 27.9(25) 15.0 21.0 10.0

1+
2 2+

1 0.012(3) 0 0.002 0.003 0+
1 2+

5 1.78+23
−20 0 3.7 4.3

1+
2 2+

2 0.44(3) 0.36 0.46 0.42 2+
3 2+

1 12.4+76
−58 0 0.003 0.99

1+
2 2+

3 < 0.05 0 0.08 0.003 1+
2 2+

1 1.83+69
−61 4.8 1.3 7.6

2+
5 2+

1 0.0017+10
−12 0 0.004 0.008 1+

2 2+
2 2.5+23

−16 0 0.14 0.89
2+
5 2+

2 0.27(3) 0.100 0.17 0.56 1+
2 2+

3 < 69 55.6 22.8 73.9
2+
5 2+

3 < 0.16 0 0.06 2+
5 2+

1 1.02+48
−36 1.6 4.6 8.4

3+
2 2+

1 0.006+3
−4 0 0.10 0.004 2+

5 2+
2 1.02+23

−10 0 3.0
3+
2 4+

1 0.075(10) 0.13 0.058 0.12 2+
5 2+

3 < 355 42.9 14.0 57.1
3+
2 2+

2 0.24(3) 0.18 0.09 0.17 3+
2 2+

1 2.3+12
−10 4.8 4.3 7.0

3+
2 2+

3 0.021+16
−12 0 0.003 0.02 3+

2 4+
1 0.36+76

−33 0 2.3 0.02
0.09(2) 3+

2 2+
2 2.3+46

−20 0 17.0 0.89
3+
2 2+

3 24+32
−21 37.1 19.8 64.5

147(36)

aIn units of μ2
N.

bIn units of 10−3 e2b2.
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experiment and IBM-2 is obtained which clearly establishes the proposed MS
states. The data were also analyzed with the spherical shell model [253] and
with the quasi-particle–phonon model [254]. These results are also shown in
Table 4.4.

In conclusion, the use of a combination of different techniques of γ-ray
spectroscopy allowed the first observation of excited MS states in atomic
nuclei. A remarkable property is that these collective excitations survive up to
an excitation energy of 3 MeV. These techniques have also led to a systematic
study of other N = 52 nuclei where more MS states were found, notably in
96Ru [255, 256]. Presently, radioactive-beam experiments are being performed
to extend the studies to lighter N = 52 nuclei.



5 Supersymmetries with Neutrons and Protons

In this chapter we present the logical combination of ideas introduced pre-
viously. In Chap. 3 fermion degrees of freedom were introduced in the inter-
acting boson model (IBM), leading to a description of odd-mass nuclei in the
context of the interacting boson–fermion model (IBFM) and, after due con-
sideration of the appropriate superalgebras, to a simultaneous description of
even–even and odd-mass nuclei. The purpose of Chap. 4, on the other hand,
was the introduction of the F -spin degree of freedom in the IBM to distin-
guish between neutron and proton bosons, with several consequences such as
a better microscopic foundation of the IBM, the existence of F -spin multi-
plets of nuclei and the occurrence of states with a mixed-symmetry character
in neutrons and protons.

In this chapter we combine these two extensions of the IBM and describe
nuclei with bosons and fermions that can be of neutron or proton character.
In the context of a supersymmetric description, this formalism allows a clear
distinction—previously lacking—between odd-mass nuclei that have an odd
number of neutrons and those that have an odd number of protons. In addi-
tion, it leads in a natural way to a description of odd–odd nuclei where both
neutrons and protons are odd in number. The essential features of neutron–
proton (or extended) supersymmetry are explained in Sect. 5.1, while a brief
overview of several classifications is given in Sect. 5.2. Neutron–proton super-
symmetry is particularly relevant for transfer reactions if a supersymmetric
operator is used and Sect. 5.3 is devoted to this topic. We conclude the chap-
ter with a detailed analysis of 196Au as an illustration of the application of
extended supersymmetry.

5.1 Combination of F Spin and Supersymmetry

The first question to be addressed concerns the choice of the dynamical alge-
bra containing the degrees of freedom that we wish to include. As explained
in Sect. 3.4, the simultaneous description of even–even and odd-mass nuclei
requires the superalgebra U(6/Ω), where Ω denotes the single-particle space
available to the odd nucleon. On the other hand, the separate handling of
neutron and proton bosons leads to the dynamical algebra Uν(6) ⊗ Uπ(6) of

A. Frank et al., Symmetries in Atomic Nuclei, 133
Springer Tracts in Modern Physics 230, DOI 10.1007/978-0-387-87495-1 5,
c© Springer Science+Business Media, LLC 2009
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IBM-2 (see Sect. 4.3). It is, therefore, natural to propose as a generalization
the dynamical algebra [257]

Uν(6/Ων) ⊗ Uπ(6/Ωπ), (5.1)

where Ων and Ωπ are the dimensions of the neutron and proton single-particle
spaces, respectively. This algebra contains generators which transform bosons
into fermions and vice versa, and furthermore are distinct for neutrons and
protons. To understand the consequences of this choice of dynamical alge-
bra, the action of its generators is illustrated in Fig. 5.1 with the particular
Uν(6/12)⊗Uπ(6/4) supermultiplet based on the even–even nucleus 194Pt. It
shows that the supermultiplet now contains a quartet of nuclei (even–even,
even–odd, odd–even and odd–odd) which are to be described simultaneously
with a single hamiltonian. As indicated in the figure, further action of the
operators leads to configurations with more than a single neutron and a sin-
gle proton coupled to an even–even core. These correspond to excitations
at higher energies, with a quasi-particle nature and not normally included
in the analysis. The dynamical superalgebra (5.1) thus leads to correlations
between the properties of a quartet of nuclei.

Inspired by the example of IBM-2, where the dynamical algebra Uν(6)⊗
Uπ(6) can be enlarged to U(12), leading to the notion of F -spin multiplets,
it is possible to propose a similar enlargement here. The resulting dynamical
algebra then becomes U(12/Ων +Ωπ) which contains a large number of differ-
ent nuclei in a single of its representations [258]. This represents a merger of
the concepts of F -spin and supermultiplets which is of interest conceptually.
It is, however, problematic to find a single hamiltonian for a simultaneous

Fig. 5.1. Schematic illustration of part of a Uν(6/12)⊗Uπ(6/4) supermultiplet in
the Pt–Au region. The supermultiplet is characterized by the product of supersym-
metric representations [Nν} ⊗ [Nπ} with Nν = 5 and Nπ = 2. Both the neutron
and the proton bosons are hole like
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description of all nuclei in the multiplet and this reduces the applicability of
U(12/Ων + Ωπ) which therefore shall not be further explored here.

Next, one should define the breaking of the dynamical algebra Uν(6/Ων)⊗
Uπ(6/Ωπ), the details of which obviously will depend on the specific appli-
cation at hand. Based on the analogy with IBFM and IBM-2, the extended
supersymmetry classification starts with

Uν(6/Ων) ⊗ Uπ(6/Ωπ) ⊃ UB
ν (6) ⊗ UF

ν (Ων) ⊗ UB
π (6) ⊗ UF

π(Ωπ) ⊃
↓ ↓ ↓ ↓ ↓ ↓

[Nν} [Nπ} [Nν ] [1Mν ] [Nπ] [1Mπ ]

UB
ν+π(6) ⊗ UF

ν (Ων) ⊗ UF
π(Ωπ)

↓ ↓ ↓
[N1, N2] [1Mν ] [1Mπ ]

. (5.2)

Generally, the neutron–proton degree of freedom is not explicitly used for the
bosons since the mixed-symmetry states, with N2 �= 0, occur at high energy
(Ex > 2 MeV) which renders their detection in odd-mass nuclei difficult
and precludes it in odd–odd nuclei. Therefore, one may restrict oneself (as
will be done in the following) to the symmetric states at low energy, with
[N1, N2] = [N, 0], which can be described as N = Nν + Nπ identical s and d
bosons.

A hamiltonian of the extended supersymmetry model is of the form

H =
s∑

r=1

∑
m

κrmCm[Gr], (5.3)

where κrm are coefficients and Gr are subalgebras of the product of super-
algebras Uν(6/Ων) ⊗ Uπ(6/Ωπ). Usually only linear and quadratic Casimir
operators Cm[Gr] are considered, m = 1, 2, which corresponds to a restriction
to one- and two-body interactions. Depending on the realization of the gen-
erators of the various algebras, the Casimir operators generate, besides the
boson interactions, also boson–fermion and fermion–fermion interactions with
the fermion either a neutron or a proton. Finally, as discussed in Sect. 1.2.2,
the algebras Gr may form a chain of nested subalgebras. Although this is not
a necessary condition for supersymmetry to hold (see Sect. 3.6), it allows an
analytic solution of the form

E(Γ1, . . . , Γs) =
s∑

r=1

∑
m

κrmEm(Γr), (5.4)

where Em(Γr) are known functions of the irreducible representation Γr of the
algebra Gr, as introduced in Sect. 1.1.4.

The properties of the even–even, even–odd, odd–even and odd–odd nu-
clei with the same total number of bosons and fermions N = N + Mν + Mπ

are then related through a constant parameter set {κrm}. In the even–even
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and odd-mass members of the quartet, the representations Γ of two different
subalgebras of Uν(6/Ων) ⊗ Uπ(6/Ωπ) may become identical (Γr = Γs for all
levels) and therefore only the sum of parameters κrm + κsm can be deduced
from the experiment. Nevertheless, if a sufficient number of levels is known
in the even–even and odd-mass nuclei, one is able to determine all parame-
ters κrm and hence to predict unambiguously the structure of the odd–odd
nucleus. This situation should be contrasted with supersymmetry between
doublets of nuclei as discussed in Chap. 3. In that case, the even–even spec-
trum necessarily depends on certain sums κrm + κsm only, which precludes
an unambiguous prediction of the odd-mass spectrum. In extended super-
symmetry between quartets of nuclei, the boson–boson and boson–fermion
interactions deduced for the even–even and odd-mass members, uniquely de-
termine the interaction between the neutron and the proton fermion. This
leads to the most clear-cut experimental test of supersymmetry in atomic nu-
clei, of importance not only for nuclear physics but also for other conceivable
applications of supersymmetry in physics where experimental verification so
far is unavailable. In addition, extended supersymmetry concerns odd–odd
nuclei which are highly complex and for which other theoretical approaches
are often difficult to apply.

We emphasize once more that the concept of supersymmetry does not re-
quire the existence of a dynamical symmetry. In the context of the neutron–
proton IBM, supersymmetry adopts the direct product (5.1) as the dynami-
cal algebra for a quartet consisting of an even–even, even–odd, odd–even and
odd–odd nucleus. Nevertheless, dynamical supersymmetry has the distinct
advantage of immediately suggesting the form of the quartet’s hamiltonian
and operators, while the weaker form of generalized supersymmetry does not
provide such a recipe for these operators. Also, wave functions are indepen-
dent of the parameters of a hamiltonian with dynamical (super)symmetry
and this property is not valid any longer for the generalized case.

5.2 Examples of Extended Supersymmetries

The SO(6) limit of Uν(6/12) ⊗ Uπ(6/4) was the first proposed example of a
dynamical-symmetry limit in an extended supersymmetry [257]. It combines
the U(6/12) scheme [175] for the neutrons, with that of U(6/4) [183] for the
protons, both described in Chap. 3. These classifications can be combined at
the SO(6) level, using the isomorphism between SOB+F

ν (6) and SUB+F
π (4).

The neutron and proton single-particle spaces are such that the scheme is
applicable to the Pt–Au region where the odd neutron predominantly occu-
pies the ν3p1/2, ν3p3/2 and ν2f5/2 orbits of the 82–126 shell, while the odd
proton is mostly in the π2d3/2 orbit of the 50–82 shell.

The four nuclei in the supermultiplet shown in Fig. 5.1 are described by
a single hamiltonian which reads
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H = κ0C2[UB+F
ν (6)] + κ3C2[SOB+F

ν (6)] + κ′
3C2[SOB+F

ν+π (6)]

+κ4C2[SOB+F
ν+π (5)] + κ5C2[SOB+F

ν+π (3)] + κ′
5C2[SU(2)]. (5.5)

The indices ν, π refer to the neutron or proton character of the fermion gen-
erators which are combined with the boson generators to form the boson–
fermion algebra GB+F. Associated with the hamiltonian (5.5) is a complete
basis labeled by the irreducible representations of the different algebras,

UB+F
ν (6) SOB+F

ν (6) SOB+F
ν+π (6) SOB+F

ν+π (5) SOB+F
ν+π (3) SU(2)

↓ ↓ ↓ ↓ ↓ ↓
[N1, N2] 〈Σ1, Σ2〉 〈σ1, σ2, σ3〉 (τ1, τ2) L̃ J

,

(5.6)
where J is the total angular momentum which only in the presence of a
neutron fermion is different from L̃ with J = L̃ ± 1/2. The labels given
in (5.6) are valid under the restriction to F -spin symmetric states for the
even–even core. In the case of the odd–odd nucleus, the labels [N1, N2] can
be either [N + 1] ≡ [N + 1, 0] or [N, 1] with N = Nν + Nπ the total boson
number. The allowed values of Σi for these representations are given by
the following rules: [N + 1] contains Σ1 = N + 1, N − 1, . . . , 1 or 0 with
Σ2 = 0, [N, 1] contains Σ1 = N,N − 2, . . . , 2 or 1 with Σ2 = 1 and Σ1 =
N − 1, N − 3, . . . , 2 or 1 with Σ2 = 0. The coupling of the proton leads
to the following SOB+F

ν+π (6) representations: 〈Σ1〉 contains σ1 = Σ1 + 1/2 or
Σ1 −1/2 with σ2 = σ3 = 1/2 and 〈Σ1, 1〉 contains σ1 = Σ1 +1/2 or Σ1 −1/2
with σ2 = 1/2 or 3/2 and σ3 = 1/2, with the limitation that σ1 ≥ σ2. The
subsequent reduction to SOB+F

ν+π (5) leads to the following result: 〈σ1, 1/2, 1/2〉
contains τ1 = σ1, σ1 − 1, . . . , 1/2 with τ2 = 1/2 and 〈σ1, 3/2, 1/2〉 contains
τ1 = σ1, σ1 − 1, . . . , 1/2 with τ2 = 1/2 and τ1 = σ1, σ1 − 1, . . . , 3/2 with
τ2 = 3/2. The reduction from SOB+F

ν+π (5) to SOB+F
ν+π (3) is given in Table 5.1

for the lowest Spin(5) representations. Finally, the values of J are obtained
by coupling L̃ with pseudo-spin 1/2.

The hamiltonian (5.5) is diagonal in the basis (5.6) and its eigenvalues can
be expressed as a function of the quantum numbers given in (5.6), resulting
in the energy expression

Table 5.1. Angular momentum content of some Spin(5) representations

(τ1, τ2) J

(1/2,1/2) 3/2
(3/2,1/2) 1/2, 5/2, 7/2
(5/2,1/2) 3/2, 5/2, 7/2, 9/2, 11/2
(7/2,1/2) 3/2, 5/2, 7/2, 9/2, 9/2, 11/2, 13/2, 15/2
(3/2,3/2) 3/2, 5/2, 9/2
(5/2,3/2) 1/2, 3/2, 5/2, 7/2, 7/2, 9/2, 11/2, 13/2
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E(Ni, Σi, σi, τi, L̃, J)
= κ0[N1(N1 + 5) + N2(N2 + 3)] + κ3[Σ1(Σ1 + 4) + Σ2(Σ2 + 2)]

+κ′
3[σ1(σ1 + 4) + σ2(σ2 + 2) + σ2

3 ] + κ4[τ1(τ1 + 3) + τ2(τ2 + 1)]
+κ5L̃(L̃ + 1) + κ′

5J(J + 1). (5.7)

This expression is valid for all four members of the supermultiplet. In ad-
dition, supersymmetry requires that the parameters are the same for the
four nuclei.

Another example of an extended supersymmetry is the Uν(6/12) ⊗
Uπ(6/12) scheme in which both neutrons and protons occupy single-particle
orbits with j = 1/2, 3/2 and 5/2 [259]. The advantage of this scheme is that
it contains the three limits of the IBM. The scheme was worked out for the
vibrational U(5) limit and applied to the nearly stable isotopes around mass
A = 75 [259, 260, 261]. The most detailed study concerned 76As where good
agreement was found [260].

5.3 One-Nucleon Transfer in Extended Supersymmetry

One of the possible tests of supersymmetry is with one- or two-nucleon trans-
fer reactions and we begin this section with a discussion of the first of these.
The single-particle-transfer operator commonly used in the IBFM has a mi-
croscopic foundation in the shell model and, specifically, one based on the
seniority scheme [262]. Although this derivation in principle is valid in vi-
brational nuclei only, it has been used for deformed nuclei as well. An al-
ternative method to arrive at the structure of the transfer operator and at
predictions concerning transfer intensities, is based on symmetry considera-
tions. It consists in expressing the single-particle-transfer operator in terms of
tensor operators under the subalgebras that appear in the subalgebra chain
of a dynamical (super)algebra [173, 179]. The use of tensor operators has
the advantage of giving rise to selection rules and closed expressions for the
spectroscopic strengths. If the single-particle transfer is between different
members of a single supermultiplet, it provides an important test of super-
symmetry since it involves the transformation of a boson into a fermion or
vice versa but conserves the total number of bosons plus fermions.

The operators that describe one-proton-transfer reactions between the
members of the Uν(6/12) ⊗ Uπ(6/4) multiplet are [263]

T
〈1/2,1/2,1/2〉(1/2,1/2)3/2
1,m = −

√
1
6
(
s̃π × a†

π

)(3/2)

m
+

√
5
6

(
d̃π × a†

π

)(3/2)

m
,

T
〈3/2,1/2,1/2〉(1/2,1/2)3/2
2,m =

√
5
6
(
s̃π × a†

π

)(3/2)

m
+

√
1
6

(
d̃π × a†

π

)(3/2)

m
, (5.8)

where a†
π creates a proton in an orbit with j = 3/2. The operators T1 and

T2 are, by construction, tensor operators under SOB+F
ν+π (6), SOB+F

ν+π (5) and
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SOB+F
ν+π (3) [or SU(2)] and the upper indices 〈σ1, σ2, σ3〉, (τ1, τ2) and J specify

the tensor properties under these algebras.
Figure 5.2 shows the allowed transitions induced by the operators (5.8)

for the transfer of one proton from the ground state of the even–even nucleus
194Pt to states in the odd-proton nucleus 195Au. By convention, N is the
number of bosons in the odd–odd nucleus 196Au, N = Nν + Nπ = 5. The
operators T1 and T2 have the same transformation character under SO(5)
and SO(3) and can only excite states with (τ1, τ2) = (1/2, 1/2) and L̃ = 3/2.
They have different transformation properties under SO(6), however, leading
to different selection rules in the associated quantum number. Whereas T1,
acting on an even–even nucleus with N +2 bosons, can only excite the ground
state of the odd-mass nucleus with 〈σ1, σ2, σ3〉 = 〈N +3/2, 1/2, 1/2〉, the op-
erator T2 also allows the transfer to an excited state with 〈N +1/2, 1/2, 1/2〉.
The ratio of the intensities is given by

R1(194Pt → 195Au) ≡ I(T1; gs → exc)
I(T1; gs → gs)

= 0,

R2(194Pt → 195Au) ≡ I(T2; gs → exc)
I(T2; gs → gs)

=
9(N + 1)(N + 5)

4(N + 6)2
, (5.9)

for T1 and T2, respectively. For 194Pt → 195Au, the second ratio is R2 = 1.12
(N = 5).

The available experimental data [264] from the proton stripping reac-
tions 194Pt(α,t)195Au and 194Pt(3He,d)195Au show that the J = 3/2 ground
state of 195Au is excited strongly with spectroscopic strength C2S = 0.175,
whereas the second J = 3/2 state is excited weakly with C2S = 0.019.
In the supersymmetry scheme, the latter state is assigned as a member of
the ground-state band with (τ1, τ2) = (5/2, 1/2). Therefore, the one-proton

Fig. 5.2. Allowed one-proton transfer in the reaction 194Pt → 195Au. The transfer
intensities are normalized to 100 for the ground-to-ground transition. The quoted
intensities I1/I2 apply to the operators T1/T2. The SOB+F

ν+π (6) labels 〈σ1, σ2, σ3〉 are

given below each level; the SOB+F
ν+π (5) and SOB+F

ν+π (3) [or SU(2)] labels (τ1, τ2)L̃ = J
are given next to each level
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transfer to this state is forbidden by the SO(5) selection rule of the tensor op-
erators (5.8). The observed strength to excited J = 3/2 states is small which
suggests that the operator T1 in (5.8) can be used to describe the data.

In Fig. 5.3 we show the allowed transitions in the one-proton transfer from
the ground state of the odd-neutron nucleus 195Pt to states in the odd–odd
nucleus 196Au. Also in this case the operator T1 only excites the ground-state
doublet of 196Au with 〈σ1, σ2, σ3〉 = 〈N +3/2, 1/2, 1/2〉, (τ1, τ2) = (1/2, 1/2),
L̃ = 3/2 and J = L̃ ± 1/2 whereas T2 also populates the excited state
with 〈N + 1/2, 1/2, 1/2〉. The ratio of the intensities is the same as for the
194Pt → 195Au transfer reaction,

R1(195Pt → 196Au) = R1(194Pt → 195Au),
R2(195Pt → 196Au) = R2(194Pt → 195Au). (5.10)

These relations are a direct consequence of supersymmetry. Just as ener-
gies and electromagnetic transition rates of nuclei in the supersymmetric
quartet are connected because they are calculated with the same hamilto-
nian or transition operator, one-proton-transfer intensities can be related in
a similar fashion. As a result, we find definite predictions for the spectro-
scopic strengths in the 195Pt → 196Au transfer and these can be tested
experimentally.

One-neutron-transfer reactions can be treated in a similar way. The avail-
able data from the neutron stripping reaction 194Pt(d,p)195Pt [265] can be
used to determine the appropriate form of the one-neutron-transfer opera-
tor [187, 188], with which spectroscopic strengths can be predicted for the
transfer reaction 195Au → 196Au. Unfortunately, 195Au is unstable and only
radioactive-beam experiments in inverse kinematics conceivably might allow
a test of this kind.

In summary, as a consequence of supersymmetry, a number of correlations
exist for transfer reactions between different pairs of nuclei. Such relations

Fig. 5.3. Allowed one-proton transfer in the reaction 195Pt → 196Au. The transfer
intensities are normalized to 100 for the ground-to-ground transition. The quoted
intensities I1/I2 apply to the operators T1/T2. The SOB+F

ν+π (6) labels 〈σ1, σ2, σ3〉 are

given below each level; the SOB+F
ν+π (5), SOB+F

ν+π (3) and SU(2) labels (τ1, τ2)L̃, J are
given next to each level
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may provide a challenge and motivation for future detailed experiments of
the kind described in the next section.

5.4 A Case Study: Structure of 196Au

5.4.1 First Transfer Reaction Experiments

A first investigation of the structure of 196Au to test predictions of the
Uν(6/12) ⊗ Uπ(6/4) extended supersymmetry was performed in the late
1980s [266]. From the known experimental level schemes of the even–even
and odd-mass members of the quartet, the level scheme of 196Au was
predicted and subsequently the single-particle-transfer amplitudes for the
197Au(d,t)196Au reaction were calculated. All these results were derived in
the SO(6) limit of the Uν(6/12) ⊗ Uπ(6/4) scheme, for which, as always in
the presence of a dynamical symmetry, the wave functions do not depend
on the hamiltonian parameters. Therefore, quantities such as the spectro-
scopic strengths are fingerprints of the underlying symmetries. At the Accel-
erator Laboratory in Munchen the transfer reaction was performed by the
group headed by von Egidy. As the ground state of 197Au has Jπ = 3/2+,
transfer with l = 1, 3 leads to the negative-parity states described by the
model but also to states based on ν2f7/2 excitations which are outside the
model. Other negative-parity states, arising from the unique-parity orbitals
ν1i13/2 × π1h11/2 occur at higher energies, above the known isomeric Jπ =
12− state at 595.66 keV. To distinguish them unambiguously and also the
positive-parity states populated by ν1i13/2 transfer, the 197Au(3He,α)196Au
reaction can be used which is dominated by l = 6 transfer.

Because the spin and parity of the excited states were unknown, the only
test possible was a comparison of the measured strength function with the one
predicted from the supersymmetry scheme. Theory predicts the excitation of
22 states and a negligible strength distribution above 500 keV. Figure 5.4
shows the results obtained in Ref. [266]. In accordance with the theoretical
predictions, about 20 states share the transfer strength below 500 keV. How-
ever, a clear discrepancy occurs at low energy where theory predicts strength
to two states while the only strength observed at that time was to the ground
state. Also, a huge peak was observed at an excitation energy of 165 keV,
whereas the theoretical prediction showed much more fragmentation. The
running sums of the strength did, however, agree very well as can be seen
from the inset of Fig. 5.4.

Although the transfer experiment sensitively probed states predicted by
the model, one of its drawbacks was that it could not distinguish between
l = 1 and l = 3 transfer. Therefore, no information could be deduced about
spins. A few years later Vergnes and collaborators performed additional trans-
fer experiments at the Institut de Physique Nucléaire in Orsay using the reac-
tion 197Au(p,d)196Au. The resolution in this experiment was 11 keV full width
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Fig. 5.4. Observed transfer strength at 15◦ for the reaction 197Au(d,t)196Au
(middle), compared to the predictions of the Uν(6/12) ⊗ Uπ(6/4) extended super-
symmetry (top). The inset compares the summed l = 1, 3 strength. The character of
the states populated with l = 6 can be deduced from 197Au(3He,α)196Au (bottom).
(Reprinted from J. Jolie et al., Phys. Rev. C43. (1991) R16 c©1991 by the American
Physical Society, with kind permission.)

at half maximum (FWHM). The measured angular distributions allowed to
distinguish between the l = 1 and the l = 3 transfer and the corresponding
strengths could now be compared separately to the theoretical results. The
experiment essentially confirmed the discrepancies already mentioned but
also that the summed l = 1 and l = 3 strengths agree with the predictions.
Because of the considerable observed strength in the ground state and in the
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level at 165 keV, breaking of the dynamical supersymmetry was envisaged to
explain the observed strength distribution [267]. The main problem, shared
by all these experiments, is that the ground-state spin 3/2 of 197Au did not
allow one to determine the spin values of the excited states in 196Au nor did
it allow one to distinguish between the transfer of a 3p1/2 or 3p3/2 neutron.

5.4.2 New Experiments at the PSI, the Bonn Cyclotron and the
Munchen Q3D Spectrometer

At that moment of despair during the mid-1990s, a new collaboration was
established involving the University of Fribourg, the University of Bonn and
the Ludwig–Maximillian University of Munich. In an ultimate attempt to
determine the structure of 196Au, in-beam spectroscopy, in which radiation
emitted by 196Au is measured, was performed at the Philips cyclotron of the
Paul Scherrer Institute (PSI) in Switzerland and at the Bonn cyclotron. In-
beam studies are needed because the unstable 196Au isotope must be created
by continuously bombarding stable isotopes, such as 196Pt or 197Au, with
accelerated protons or deuterons. Under these circumstances the observed
radiation is extremely complex since many states are excited by the different
nuclear reactions and are populated in the de-excitation of these states. In
parallel with the in-beam experiments, several sophisticated transfer experi-
ments were performed at the Tandem accelerator in Garching.

The first in-beam experiments were performed at the Philips cyclotron of
the PSI with the 196Pt(d,2n)196Au reaction at 12.5 MeV. The very complex
spectra were then analyzed with γ–γ coincidences obtained with a spectrom-
eter consisting of five BGO shielded Ge detectors [268]. From the coincidence
conditions several γ rays could be interrelated leading to the identification
of several structures of connected excited states. Of importance were also
the coincidences between the γ rays associated with these structures and the
x-rays which allowed to identify whether they belonged to Au or Pt isotopes.
The observation of structures associated with 195Pt showed that beside the
(d,2n) reaction also 196Pt(d,p)195Pt contributed. Therefore, complementary
in-beam γ–γ coincidence experiments were performed at the Cyclotron in
Bonn with use of the 196Pt(p,n)196Au reaction at 9.12 MeV. This very low
energy, well below the Coulomb barrier of 13 MeV, ensured that all other
reaction channels essentially were closed. The cross-section was estimated to
be 30 mb only. To assign spins, an excitation function was measured with
protons at three higher energies.

Internal conversion, in which atomic electrons instead of γ rays carry
away the energy of a nuclear de-excitation, is a strong competitor to γ-ray
emission in heavy odd–odd nuclei. The K-to-L conversion intensity ratio is
strongly dependent on the multipolarity and this mechanism can be used to
determine the latter. Therefore, in addition to the in-beam γ-ray experiments,
conversion electrons were measured with the Orange spectrometers in Bonn
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in both the (d,2n) and the (p,n) reactions. These experiments included the
determination of e–γ and e–e coincidences.

The analysis of the in-beam data quickly revealed that the peak observed
at 165 keV was in fact a closely spaced triplet of levels, decaying to the
2− ground state with an M1 transition [269]. The multipolarity of the tran-
sition was determined from the conversion electron spectra using e–γ co-
incidences to clean up the spectrum. All three states turned out to have
low spin and negative parity and as such belonged to the supersymmetric
model space.

To study the very dense odd–odd nucleus 196Au, state-of-the-art instru-
mentation provided at the magnetic Q3D spectrometer is needed for transfer
reaction studies. Improvements to the detector and the polarized source made
new transfer experiments worthwhile. The detector measures the energy of
the outgoing particle and as such the excitation energy of the newly formed
excited nucleus which appears as missing energy. As discussed in Sect. 3.5,
the detector developed by Graw and collaborators attained an energy reso-
lution of 3 keV FWHM for the (p,d) reaction, representing an improvement
with a factor of about four compared to the Orsay experiment.

The high-resolution data of the 197Au(p,d)196Au transfer showed for the
first time [270] that the strength previously associated with the ground state
of 196Au was in fact split into a closely spaced doublet—a crucial ingredient
for the solution of the problems encountered before (see Fig. 5.5). In total 47
states were resolved in the energy interval 0–1,350 keV. With knowledge of
the energies of the excited states the 197Au(d,t)196Au reaction was then used
to determine the nature of the transferred particle. This allows to compare
the spectroscopic strengths with the theoretical predictions, as discussed in
Sect. 3.5. However, as the initial state (ground state of 197Au) has J = 3/2+,
several orbits can contribute to the strength to an excited state in 196Au,
and these contributions may add incoherently. This feature was incorporated
in the data analysis which allowed for several contributions to the angular
distributions and analyzing powers. Figure 5.6 illustrates the quality of such
fits. Due to this possibility of transferring nucleons in different single-particle
states, the spin of the final state cannot be determined unambiguously as was
the case for 195Pt. Nevertheless, the possible spins can be limited as follows.
Observation of a 3p3/2 transfer leads to possible spin–parities in the range
from 0− to 3−; a 2f5/2 transfer gives 1− to 4−. When both are observed,
only 1−, 2− and 3− are possible. The high-quality data of the (d,t) reaction
allow the observation of extremely weak contributions to the strengths and
this can be used in the spin determination. The starting hypothesis is that
any state that can be reached by a given transfer will show some small com-
ponents of this transfer. Due to the high level density, the non-observation
of a given transfer can be used to restrict the range of possible spins. For
example, if only 3p3/2 and 2f5/2 but no 3p1/2 transfer is observed, the state
is assumed to be 3−. The observation of only 3p3/2 transfer indicates a
possible 0− state.
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Fig. 5.5. Spectra measured in the (p,d) reaction from 197Au to the low-energy
states in 196Au. Multiplets of levels that were previously unresolved are indicated
by an asterisk. (Reprinted from H.F. Wirth et al., Phys. Rev. C70 (2004) 014610
c©2004 by the American Physical Society, with kind permission.)

To test this method, a third transfer experiment with 18 MeV polarized
deuterons was performed using the 198Hg(d, α)196Au reaction. This type of
experiment is very difficult due to an increased energy loss of the α particles
in target and detectors. With use of very thin targets (34 μg/cm2 of enriched
mercury-sulphid on 7 μg/cm2 of carbon) an energy resolution of 7 keV could
be reached which is excellent for this reaction. The low cross-section combined
with the small amount of target atoms led to low statistics which allowed the
observation of 17 states only. The main advantage of the (d, α) reaction is
that it yields firm spin values because the transfer starts from an even–even
Hg isotope with a 0+ ground state and produces as ejectile an α-particle
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contributions of transferred orbits. (Reprinted from H.F. Wirth et al., Phys. Rev.
C70 (2004) 014610 c©2004 by the American Physical Society, with kind permission.)

with spin J = 0. As the transfer involves a deuteron with spin S = 1, the
knowledge of the transferred orbital angular momentum L (obtained from
angular distributions) is insufficient to determine the Jπ value of the final
state. The solution of this problem is to have vector-polarized deuterons which
are in a magnetic substate with either MS = −1 or MS = +1. The tensor
analyzing powers then determine the favored relative orientation of L and S
and as such the Jπ value of the state excited in the reaction. In all 17 cases the
result agreed with the spin assignment obtained from the (d,t) reaction [270].

The results of the transfer reaction analyzed under the weaker spin as-
signment assumption showed a very good agreement with the predictions
of the Uν(6/12) ⊗ Uπ(6/4) extended supersymmetry [270]. The predictions
for the odd–odd nucleus were partially based on the new quantum number
assignments for negative-parity states in 195Pt which were obtained in par-
allel (see Table 3.2). The most important result of the entire analysis was
the existence of a ground-state doublet with spins 2− and 1− in agreement
with the supersymmetry prediction, although the order of the two levels was
reversed. Also the resolution of the structures at 165 keV was a success. The
observation of almost all predicted states in the very complex level scheme
of a transitional odd–odd nucleus was particularly spectacular [271].

Following these encouraging results, a collaboration with the group at Yale
University, headed by Casten, was set up to get high-statistics γ data. While
the Bonn and PSI experiments used only five Compton-shielded detectors,
the third in-beam experiment was performed at the ESTU Tandem acceler-
ator in Yale with the YRAST ball, equipped with four fourfold-segmented
clover detectors, 17 single Ge detectors and two low-energy photon detectors.
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In 3 days of data taking about 6 × 108 coincidences were accumulated. The
combination of all in-beam data led to the identification of 53 states below
800 keV of which 10 new in comparison with the transfer reaction work. In
total, 300 transitions between these levels could be placed. The range of pos-
sible spins and parities of these levels could be limited via the multipolarities.
A detailed account of the analysis of all in-beam data is given in Ref. [272].

5.4.3 Recent High-Resolution and Polarized-Transfer
Experiments

In recent years more transfer reactions leading to 196Au were performed, with
the aim of limiting the possible spins of the observed states. These efforts are
presented in Ref. [273] and rely on higher statistics for 198Hg(d, α)196Au, and
the new reactions 194Pt(α,d)196Au and 195Pt(3He,d)196Au. The latter two re-
actions are theoretically interesting as they involve only nuclei that belong to
one supermultiplet. The proton-transfer reaction 195Pt(3He,d)196Au did pro-
vide important clues. Specifically, the importance of the π3s1/2 orbit, which
is neglected in the supersymmetric scheme, could be established. Its influence
can be deduced from the running sums of the π3d3/2 and π3s1/2 strengths,
shown in Fig. 5.7. One observes that π3d3/2 is dominant at low energies and
π3s1/2, which might give rise to additional states, becomes important above
900 keV only. The observation of the weaker π3s1/2-transfer contributions
was nevertheless important to limit the possible spin assignments because it
reduced the possible spins of the final state in 196Au to Jπ = 0−, 1−. The
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Fig. 5.7. Incremental plot of the observed π3d3/2 and π3s1/2 strengths obtained
from the 195Pt(3He,d)196Au reaction. (Reprinted from H.F. Wirth et al., Phys. Rev.
C70 (2004) 014610 c©2004 by the American Physical Society, with kind permission.)
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other reaction 194Pt(α,d)196Au had an extremely small cross-section of only
5 μb/sr and needed a very thin target. From these new data many uncertain
spin assignments could be confirmed and this has been an important element
in the clarification of the comparison with theory to which we now turn.

5.4.4 Comparison with Theory

By combining the information obtained from the different experiments de-
scribed in the previous subsections, 27 negative-parity states are now known
below 500 keV, of which 21 have firm spin values and 6 restricted ones [273].
Figure 5.8 summarizes the present experimental status and displays a com-
parison with theory [273]. One notices that the energies and spins of most
excited states agree well with the prediction, considering that the level den-
sity is very high (compare with Fig. 3.6). Table 5.2 lists two parameter sets
which are obtained either by fitting all four nuclei of the supermultiplet (in-
cluding the 27 levels in 196Au) or only to the even–even and odd-mass nuclei.
In both fits the six-parameter hamiltonian (5.5) involves 8 levels in 196Pt, 32
in 195Pt and 11 in 195Au. Significant changes are seen to occur only in the
values of κ5 and κ′

5 which govern the fine splitting of the levels. Other pa-
rameters remain essentially the same which supports the validity of extended
supersymmetry for this particular quartet of nuclei.
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Table 5.2. Parameters (in keV) for the quartet with and without 196Au

κ0 κ3 κ′
3 κ4 κ5 κ′

5

With 196Au 52.5 8.7 −53.9 48.8 8.8 4.5
Without 196Au 51.2 7.9 −52.6 49.0 6.9 6.2
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In Table 5.3 the observed and calculated spectroscopic strengths are sum-
marized. The theoretical values for the strengths Glj are obtained with the
transfer operator (3.26) with coefficients vj as determined in the study of
195Pt (see Sect. 3.5). The agreement is reasonable although one might hope
to reach a better fragmentation of strength if more realistic transfer operators
are used. The overall strength for the ν3p3/2 orbit is observed to be much
weaker than in 195Pt and a better agreement can be obtained by lowering
the value of v2

3/2.

Table 5.3. Observed (d,t) transfer strength to negative-parity states in 196Au
compared with the predictions of Uν(6/12) ⊗ Uπ(6/4)

Experiment Theory

Ea Jπb Gp1/2
c Gp3/2

c Gf5/2
c Gp1/2

c Gp3/2
c Gf5/2

c

0.0 2− 24.3(3) 15.0(10) 43. 1.1 6.5
6.48(4) 1− 1.2(7) 6.3(7) 2.6(15) 26. 3.4 0.9
41.86(6) 0− 1.68(4) 0 7.6 0
162.56(4) 2−, 3− 5.2(9) 59.3(21) 1.1 6.7 40.2

166.40(4) 1− 23.8(13)d 27.0(9)d 16.4(27)d 0.66 20. 5.7

167.43(4) 2− 23.8(13)d 27.0(9)d 16.4(27)d 0 32. 6.9
197.97(4) 1−, 2− 2.84(28) 3.16(24) 4.98(6) 0 4.5 21.
212.80(4) 4− 56.2(3) 0 0 77.
234.53(4) 3− [0.12(12)] 16.6(6) 0 49. 5.2
252.58(4) 1− 3.1(7) 3.6(5) 2.34(14) 0 1.5 6.9
258.61(5) 1−, 2− 1.21(12) 0 0.28 1.25
288.06(4) 2− 1.64(12) 0.84(3) 0 10.5 2.3
298.56(5) 1−, 2− [0.4(3)] 0.72(28) 0 0 0
307.22(4) 2− 1.7(6) 3.1(6) 11.6(12) 0 0 0

323.83(4) 1− 1.48(20)d 2.0(5)d 0 0 0

326.09(5) 1−, 2−,3− 1.48(20)d 2.0(5)d 0 1.53 18.3
349.17(4) 2− 0.28(7) 0.30(5) 1.19(12) 0 0 0
355.91(11) 0− 1.40(12) 0 2.5 0
375.61(4) 3− 19.2(3) 12.7(7) 0 4.5 55.
387.5(7) 0− to 3− 0.32(4) 0 0.45 0
403.79(4) 4− 7.3(5) 0 0 26.
408.36(5) 2−,3− 0.91(10) 1.1(3) 0 16. 1.75
413.74(5) 2− 0.33(9) 3.5(3) 0 2.0 0.42
456.44(5) 2− 0.34(6) 0.76(8) 0 0 0
465.5(7) 2− 0.12(4) 0.08(4) — — —
480.29(4) 2− 0.22(6) 0.08(4) 0 0 0
490.19(4) 3− 1.12(4) 2.40(12) 0 0.29 3.4

aEnergy from in-beam studies, in units of keV.
bBold value is the one used to compare with theory.
cSpectroscopic strength in units of 10−2.
dUnresolved doublet.
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5.4.5 Two-Nucleon-Transfer Reactions

The one-nucleon-transfer reactions discussed so far, 197Au(d,t)196Au and
196Pt(d,t)195Pt, are interpreted, in first approximation, with a transfer opera-
tor of the form a†

ν . As already argued, these reactions are useful for measuring
energies, spins and parities of states in the residual nucleus. However, they do
not test correlations present in the quartet’s wave functions as is the case for
one-nucleon-transfer reactions inside the supermultiplet. The latter reactions
do provide a direct test of the fermionic sector of the graded Lie algebras
Uν(6/12) and Uπ(6/4) (operators a†b and b†a of Sect. 1.2.4).

In contrast to one-nucleon-transfer reactions where the single-particle con-
tent of the states of the final nucleus is scrutinized, two-nucleon-transfer re-
actions probe the structure of these states in a more subtle way, through
the exploration of possible two-nucleon correlations [274]. The spectroscopic
strength of the two-nucleon-transfer reaction depends on two factors: the sim-
ilarity between the states in the initial and final nucleus which differ by two
nucleons and the correlation of the transferred pair of nucleons. The informa-
tion extracted through these reactions supply a challenging test of the wave
functions of any nuclear structure model.

As an illustration of such a test, we present results for the reaction
198Hg(d, α)196Au [273] and compare them with predictions of Uν(6/12) ⊗
Uπ(6/4) [275]. The initial nucleus 198Hg is assumed to have an SO(6) ground
state, while the states of the final nucleus 196Au are characterized by the
labels (6.6) of the Uν(6/12)⊗Uπ(6/4) scheme. In first order, the two-nucleon-
transfer operator for the (d, α) reaction is

(a†
jν

× a†
jπ

)(λ). (5.11)

As in Sect. 5.3, two-nucleon-transfer operators of this type can be constructed
which transform as a given tensor under the various (dynamical) symmetry
algebras of the classifications. As a result, the transfer operator (5.11) can be
expanded in terms of the following three tensor operators:

T
〈1/2,1/2,1/2〉(1/2,1/2)L̃J
1,m ,

T
〈3/2,1/2,1/2〉(1/2,1/2)L̃J
2,m ,

T
〈3/2,1/2,1/2〉(3/2,1/2)L̃J
3,m . (5.12)

These are the analogs of the one-proton-transfer operators (5.8) except that
now L̃ and J may be different because the transfer involves a neutron as well.
Each of the operators (5.12) has well-defined selection rules for the deuteron
transfer which are given in Table 5.4. Furthermore, closed expressions for
their matrix elements can be derived [275].

The 198Hg(d, α)196Au reaction is characterized by the transfer of a cor-
related neutron–proton pair with spin S = 1. Since the angular momentum
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Table 5.4. Selection rules for deuteron transfer operators

〈σ1, σ2, σ3〉 (τ1, τ2) T1 T2 T3

〈N ± 3/2, 1/2, 1/2〉 (1/2,1/2)
√

(3/2,1/2)
√

〈N ± 1/2, 1/2, 1/2〉 (1/2,1/2)
√ √

(3/2,1/2)
√

〈N ± 1/2, 3/2, 1/2〉 (3/2,1/2)
√

of the ground state of 198Hg is zero, the transferred angular momentum λ is
equal to the J of the final state in 196Au. Thus for each value of λ = J there
are three different transfers possible corresponding to L = J −1, J and J +1.
Since the initial and final states have opposite parity, parity conservation re-
quires the allowed values of L to be odd. The transferred angular momentum
and parity of the two-nucleon-transfer operator (5.11) can be Jπ = 0−, 1−,
2−, 3− and 4−. This leads to seven possible combinations of L transfer with
total angular momentum J (denoted as LJ): P0, P1, P2, F2, F3, F4 and H4.

The spectroscopic strengths GLJ for the transfer of a neutron–proton pair
were determined from the measured angular distributions of the differential
cross-section and from the analyzing powers of the 198Hg(d, α)196Au reac-
tion [273]. The calculated spectroscopic strengths can be written as

GLJ =

∣∣∣∣∣∣
∑
jνjπ

gLJ
jνjπ

〈
196Au

∥∥ (a†
jν

× a†
jπ

)(λ)
∥∥198Hg

〉
∣∣∣∣∣∣
2

, (5.13)

where the coefficients gLJ
jνjπ

contain factors that arise from the reaction mech-
anism for two-nucleon transfer, such as a 9j symbol for the change from jj
to LS coupling and a Talmi–Moshinksy bracket for the transformation to
relative and center-of-mass coordinates of the transferred nucleons [274]. The
nuclear structure part is contained in the reduced matrix elements in (5.13).

To compare with data, we show for each combination LJ the relative
strength RLJ = GLJ/Gref

LJ , where Gref
LJ is the spectroscopic strength of a

given reference state with that LJ transfer.
Because of the tensor character of the transfer operator (5.11), only states

in 196Au with (τ1, τ2) = (3/2, 1/2) or (1/2, 1/2) can be excited. The (3/2, 1/2)
multiplet contains J ′ = 1/2, 5/2 and 7/2 (see Table 5.1) from where the total
angular momenta are obtained through J = J ′ ± 1/2. Table 5.4 shows that
these states can only be excited by the tensor operator T3. Therefore, the
ratios of spectroscopic strengths to these states provide a direct test of the
nuclear wave functions, since they do not depend on the coefficients gjνjπ

but
only on the nuclear structure part, the reduced matrix elements of T3. The
states belonging to (τ1, τ2) = (1/2, 1/2) have J ′ = 3/2 and J = J ′ ± 1/2.
Table 5.4 shows that they can be excited by the tensor operators T1 and
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T2. For these states the ratios RLJ depend both on the reaction and on the
structure part.

In Fig. 5.9 the experimental and calculated ratios RLJ are shown [275].
The reference states are identified since they are normalized to one. One
observes a good overall agreement, taking into account the simple form of
the transfer operator. Large ratios generally are well reproduced except in
one case related to a 4− state; all small ratios are consistent with the data.

These results have led Barea et al. [275] to interchange the assignment
of the 2− states at 162.56 and 167.43 keV. Note that this interchange is not
without consequences for the comparison in Table 5.3 where good agreement
for the (d,t) transfer strength is obtained for the 162.56 keV state with its
original assignment. This, however, would lead to worse results for the (d,α)
reaction since it would correspond to interchanging the two gray bars in the
two right-hand panels of Fig. 5.9. So, at the moment the correct assignment
for the two states is not yet clear.

From this analysis we conclude that it is possible to describe the excited
states in four nuclei with a single hamiltonian with only six parameters and
this constitutes strong evidence for the existence of nuclear dynamical su-
persymmetry. Nucleon-transfer-reactions not only offer a powerful tool to

Fig. 5.9. Observed and calculated ratios of spectroscopic strengths. The
two columns in each frame correspond to states with the labels (τ1, τ2) =
(3/2, 1/2) and (1/2, 1/2), respectively. The rows are characterized by the la-
bels [N1, N2], 〈Σ1, Σ2, 0〉, 〈σ1, σ2, σ3〉. From bottom to top we have (i) [6, 0],
〈6, 0, 0〉, 〈13/2, 1/2, 1/2〉, (ii) [5, 1], 〈5, 1, 0〉, 〈11/2, 1/2, 1/2〉 and (iii) [5, 1], 〈5, 1, 0〉,
〈11/2, 3/2, 1/2〉. (Reprinted from J. Barea et al., Phys. Rev. Lett. 94 (2005)
01525010 c©2005 by the American Physical Society, with kind permission.)
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establish the spin and parity assignments in odd–odd nuclei but also provide
sensitive tests of the wave functions via ratios of spectroscopic strengths. In
one- as well as two-nucleon-transfer reactions it is possible to identify several
ratios which only depend on the nuclear structure part, and not on factors
that arise from the kinematical part. Comparisons with measured spectro-
scopic strength show a good overall agreement with the predictions of ex-
tended supersymmetry and, in this way, lend further support to the validity
of this scheme in atomic nuclei, especially in the Pt–Au region. Of interest,
for the future, will be even more detailed comparisons between theoretical
and experimental transfer strengths.

Besides its application to 196Au, the Uν(6/12)⊗Uπ(6/4) scheme was also
tested in 198Au [276, 277] and in 194Ir [278]. Especially in the latter study,
a good description of the odd–odd nucleus was obtained although a slight
breaking of supersymmetry was needed.



6 Supersymmetry and Supersymmetric
Quantum Mechanics

In this chapter we describe briefly, for the sake of completeness, some of the
ideas and applications of supersymmetry, as defined and understood in other
fields of physics. Supersymmetry was originally introduced in particle physics,
more accurately, in relativistic quantum field theory where it was introduced
in an attempt to obtain a unified description of the full range of fundamental
interactions in nature.

As discussed in previous chapters, supersymmetry generates transforma-
tions between bosons and fermions. For normal symmetries the corresponding
algebra involves only commutators, while supersymmetric algebras also in-
clude anti-commutators. The elements of a superalgebra can be interpreted as
infinitesimal generators of a (super)symmetry, similar to the usual Lie algebra
generators. In the simplest situation the supersymmetry generators commute
with the hamiltonian, implying that boson and fermion states should be de-
generate in energy.

In quantum field theory the degrees of freedom correspond to relativistic
fields which in turn correspond to elementary particles. Supersymmetry is
particularly appealing in this case since it can eliminate divergences that
are endemic in quantum theories and can often avoid the instabilities of
the standard model of elementary particles. In addition, it represents a step
forward toward unification of the gauge forces. Only the force of gravity is
not included in its framework; this requires the introduction of (super)string
theory but also the addition of seven extra (and ‘compactified’) dimensions
[279]. It is generally believed that supersymmetry in quantum field theory
might be a low-energy ‘remnant’ of superstring theory.

6.1 The Supersymmetric Standard Model

To incorporate supersymmetry into particle physics, the standard model must
be extended to describe twice as many particles. In some supersymmetric
models this is achieved via the introduction of very heavy stable particles
called weakly interacting massive particles or WIMPs, such as the sneutrino
and the photino (supersymmetric partners to the neutrino and the photon,
respectively). These would interact very weakly with normal matter and thus

A. Frank et al., Symmetries in Atomic Nuclei, 155
Springer Tracts in Modern Physics 230, DOI 10.1007/978-0-387-87495-1 6,
c© Springer Science+Business Media, LLC 2009
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could be candidates for dark matter. In supersymmetric theories every funda-
mental fermion has a boson superpartner and vice versa. But, are there solid
arguments for the existence of supersymmetric particles at the weak scale,
with masses comparable to those of the heaviest known elementary particles,
the W and Z bosons and the top quark? Not quite, except for the mathemat-
ical beauty and consistence of the theory. In the past decades thousands of
papers dealing with supersymmetric field theories have been published. This
is rather unusual since there is as yet no direct experimental evidence for the
existence of any of the new particles predicted by supersymmetry.

As has been pointed out throughout this book, supersymmetry is an
unconventional symmetry since fermions and bosons display very different
physical properties. While identical bosons may condense—a phenomenon
known as Bose–Einstein condensation—in view of the Pauli exclusion prin-
ciple no two identical fermions can populate the same state. Thus it would
be remarkable if a link between these seemingly distinct and dissimilar par-
ticles exists. We have analyzed in previous chapters the kind of algebras
associated to supersymmetry (i.e., graded Lie algebras) which close under
a combination of commutation and anti-commutation relations. In the con-
text of particle physics, supersymmetry predicts that corresponding to every
basic constituent of nature, there should be a supersymmetric partner with
spin differing by a half-integral unit. It further predicts that the two super-
symmetric partners must have identical mass in case supersymmetry is an
exact symmetry. In the context of a unified theory of the basic interactions
of nature, supersymmetry thus predicts the existence of partners to all the
basic constituents of nature, i.e., partners to the six leptons, the six quarks
and the corresponding gauge quanta (the photon, three weak bosons, W+,
W− and Z0, and eight gluons). The fact that no scalar electron (the spin-
less ‘selectron’) has been observed with a mass of less than about 100 GeV
(while the electron mass is only 0.5 MeV) suggests that supersymmetry, if
present in nature, must be a broken symmetry. It is evident that if any such
‘particle’ exists, supersymmetry must be strongly broken since large mass dif-
ferences must occur among superpartners or otherwise at least some of them
would have already been detected. Unfortunately, competing supersymmetry
models give rise to diverse mass predictions. Supersymmetry, proposed more
than three decades ago, has become the dominant framework to formulate
physics beyond the standard model despite of the lack of direct experimental
evidence.

6.2 Strings and Superstrings

The fundamental assumption of string theory is that elementary particles
are not point like but arise as elementary excitations of an extended ob-
ject of dimension one, a string. The time evolution of the string spans
a two-dimensional surface embedded in space–time (see Fig. 6.1). In the
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Fig. 6.1. Worldsheet of a string

supersymmetric version of string theory, the gauge forces and gravity be-
come unified while the world acquires new dimensions. Most of the major
developments in physics in the past century arose when contradictions were
found in the ideas and models of the world. For example, the incompatibility
of Maxwell’s equations and Galilean invariance led Einstein to propose the
special theory of relativity. Similarly, the inconsistency of special relativity
with Newtonian gravity led him to develop the general theory of relativity.
More recently, the reconciliation of special relativity with quantum mechan-
ics led to the development of quantum field theory. Today, general relativity
appears to be incompatible with quantum field theory. Any straightforward
attempt to ‘quantize’ general relativity leads to a non-renormalizable the-
ory. This means that the theory is inconsistent and needs to be modified at
short distances or high energies. String theory achieves internal consistency
by giving up one of the basic assumptions of quantum field theory, namely
that elementary particles are mathematical points, and instead develops a
quantum field theory of one-dimensional strings. There are very few consis-
tent theories of this type. Superstring theory and its extensions are the only
ones capable of a unified quantum theory of all fundamental forces including
gravity. There is still no realistic string theory of elementary particles that
could serve as a new standard model since much is not yet understood. But
that, together with a better understanding of cosmology, is the basic goal of
many of today’s physicists.

Even though string theory is not yet fully formulated and not yet capa-
ble to give a detailed description of how the standard model of elementary
particles emerges at low energies, there are some general features of the the-
ory that are quite remarkable. The first is that general relativity appears in
the theory. At very short distances or at high energies the theory is mod-
ified but at ordinary ranges it is present in the classical form proposed by
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Einstein. This is impressive since gravity arises spontaneously within a con-
sistent quantum theory. In ordinary quantum field theory gravity does not
appear or is inconsistent, while string theory requires it. A second charac-
teristic is that Yang–Mills gauge theories appear naturally in string theory.
While it is not known precisely why the SU(3)⊗SU(2)⊗U(1) gauge theory of
the standard model originates, symmetries of this general type do arise nat-
urally at ordinary energies. The third and most remarkable general feature
of string theory is supersymmetry. The mathematical consistency of string
theory depends on supersymmetry in an essential way, and it is nearly im-
possible to find consistent solutions that do not preserve supersymmetry, at
least in a partial way. This feature of string theory differs from the other
two (general relativity and gauge theories) in that it is a real prediction. It
is a generic feature of string theory that has not yet been confirmed experi-
mentally. Some books that could help the reader to understand better these
aspects of supersymmetry are Refs. [280, 281, 36], while the phenomenology
of supersymmetric models is discussed in Refs. [282, 283, 284]. Strings and
superstrings are introduced at a more elementary level in Refs. [285, 286].

Rather than attempting to present here a necessarily shallow account
of these theories, we shall turn our attention to a different aspect of su-
persymmetry. Given its pedagogic value, we discuss in the following a
one-dimensional version of supersymmetry which has become an interesting
subject on its own, that of supersymmetric quantum mechanics.

6.3 Supersymmetric Quantum Mechanics

Supersymmetric quantum mechanics (SQM) arose several years ago when
the ideas of supersymmetry in quantum field theory were applied to the sim-
pler case of quantum mechanics and, in particular, with the suggestion in
1981 by Witten [287] that it should be easier to understand the breaking of
supersymmetry for the simpler case of non-relativistic quantum mechanics.
The framework of SQM has been very fruitful in the study of potential prob-
lems in quantum mechanics, not only to understand the connections between
analytically solvable problems but also to discover new solutions.

The language and methods of SQM are similar to those developed in this
book. Nuclear supersymmetry has similarities to SQM but there are some sig-
nificant differences too. While both frameworks treat bosonic and fermionic
systems on an equal footing, in the traditional SQM approach the hamilto-
nian H is factorized in terms of so-called supercharges (as we shall see, H
is a combination of anti-commutators of the supercharges) whereas in nu-
clear supersymmetry the hamiltonian is more general and can be written in
terms of the bosonic generators of the graded Lie algebra which governs the
algebraic structure of the problem. In SQM the fermionic generators of the
graded Lie algebra play the role of supercharges. In nuclear supersymmetry
the fermionic generators of the graded Lie algebra are associated with nucleon
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transfer operators which connect the states of the bosonic and fermionic sys-
tems; in general, these ‘supercharges’ do not commute with the hamiltonian.
As a consequence, the spectra of the systems under study are not identical,
as they are in SQM. In other words, whereas in SQM H is a generator of the
superalgebra, this is not the case in nuclear supersymmetry where a more
complicated structure is used. This is of course an unavoidable characteristic
because in nuclear supersymmetry the bosonic states are associated with the
spectroscopic properties of even–even nuclei, while the fermionic ones with
those of the neighboring odd-mass nuclei, and we know these properties are
quite different. As discussed in the previous chapters, in contrast to the case
of fundamental supersymmetry, a precise correlation between measurable ob-
servables in these neighboring nuclei is predicted by nuclear supersymmetry
and over two decades has been verified to be valid to a good approximation
in particular examples. Another application of supersymmetry is SQM. Once
researchers started studying various aspects of SQM, other evidences of low-
energy phenomena were found which involve hidden symmetries of this sort
and are not just a model for testing concepts of supersymmetric field theo-
ries. In this way and during the past years, SQM has provided new insights
into many aspects of standard non-relativistic quantum mechanics. For ex-
ample, it was found that SQM has a direct relation with the factorization
method of Infeld and Hull [288], who were the first to classify the analyti-
cally solvable potential problems. We shall present here a short discussion of
this method. The ideas of supersymmetry have stimulated new approaches
to other branches of physics [289]. Besides the evidence for dynamical su-
persymmetries, relating doublets and quartets of nuclei and extensively dis-
cussed in this book, there are also applications in atomic [290, 291, 292, 293],
condensed-matter [294, 295] and fundamental nuclear physics [296], together
with the method of stochastic quantization which has a path integral formula-
tion directly associated to SQM [297]. A few selected examples are discussed
in this chapter.

6.3.1 Potentials Related by Supersymmetry

If the wave function of the ground state of a particular one-dimensional po-
tential is known, one can establish, up to a constant, the corresponding po-
tential. To see this property, we choose, without any loss in generality, the
ground-state energy to be zero. The ground-state wave function then satisfies

H1φ0(x) ≡ − h̄2

2m

d2φ0

dx2
+ V1(x)φ0(x) = 0, (6.1)

so that

V1(x) =
h̄2

2m

φ′′
0(x)

φ0(x)
. (6.2)
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The potential can thus be determined from the nodeless ground-state wave
function φ0(x). We now factorize the hamiltonian as follows:

H1 = A†A, (6.3)

where
A =

h̄√
2m

d

dx
+ W (x), A† = − h̄√

2m

d

dx
+ W (x). (6.4)

This leads to the relation

V1(x) = W 2(x) − h̄√
2m

W ′(x), (6.5)

which has the form of a Riccati equation [298]. The function W (x) is usually
referred to as the ‘superpotential’ of the problem. It can be written in terms
of the ground-state wave function as

W (x) = − h̄√
2m

φ′
0(x)

φ0(x)
, (6.6)

since substitution of this expression for W (x) in the relation (6.5) leads to
the original Schrödinger equation (6.1) for φ0(x). We can now define a new
hamiltonian

H2 = AA†, (6.7)

which corresponds to a new potential V2(x),

H2 = − h̄2

2m

d2

dx2
+ V2(x), V2(x) = W 2(x) +

h̄√
2m

W ′(x). (6.8)

The potentials V1(x) and V2(x) are called supersymmetric partners. One can
show that the energy eigenvalues of H1 and H2 are positive semi-definite,
that is, E

(1,2)
n ≥ 0. For n > 0 the Schrödinger equation

H1φ
(1)
n = A†Aφ(1)

n = E(1)
n φ(1)

n , (6.9)

leads to

H2

(
Aφ(1)

n

)
= AA†Aφ(1)

n = AH1φ
(1)
n = E(1)

n

(
Aφ(1)

n

)
, (6.10)

while the equation for H2,

H2φ
(2)
n = AA†φ(2)

n = E(2)
n φ(2)

n , (6.11)

implies that

H1

(
A†φ(2)

n

)
= A†AA†φ(2)

n = A†H2φ
(2)
n = E(2)

n

(
A†φ(2)

n

)
. (6.12)
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Since E
(1)
0 = 0, we find from Eqs. (6.9, 6.10, 6.11, 6.12), that the eigenvalues

and eigenfunctions of the two hamiltonians H1 and H2 are related by

E(2)
n = E

(1)
n+1, E

(1)
0 = 0, (6.13)

and

φ(2)
n (x) =

(√
E

(1)
n+1

)−1

Aφ
(1)
n+1(x), (6.14)

φ
(1)
n+1(x) =

(√
E

(2)
n

)−1

A†φ(2)
n (x). (6.15)

From these equations we see that, if φ
(1)
n+1(x) and φ

(2)
n (x) are normalized,

so are φ
(2)
n (x) and φ

(1)
n+1(x) on the left-hand side of Eqs. (6.14) and (6.15).

Furthermore, A (A†) transforms the eigenfunctions of H1 (H2) into eigen-
functions of H2 (H1) with the same energy while annihilating (creating) a
node in the corresponding eigenfunction. This is so except for the ground-
state wave function of H1 since it is annihilated by the operator A, implying
that it has no supersymmetric partner (see Fig. 6.2).

We now consider a simple example of SQM which already displays most
of its interesting features.

6.3.2 The Infinite Square-Well Potential

Let us look at the problem of the infinite square well and determine its
supersymmetric partner potential. Consider a particle of mass m in an infinite
square-well potential of width L,

V (x) =
{

0, 0 ≤ x ≤ L,
+∞, −∞ < x < 0, L < x.

(6.16)

Fig. 6.2. Energy levels of two supersymmetric partner potentials. The action of the
operators A and A† is displayed. The spectra are identical except that one potential
has an extra eigenstate at zero energy
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The normalized ground-state wave function is given by

φ
(1)
0 (x) =

√
2
L

sin
πx

L
, 0 ≤ x ≤ L, (6.17)

while the ground-state energy is E0 = h̄2π2/2mL2. Subtracting the ground-
state energy in order to factorize the hamiltonian, we have that for H1 ≡
H − E0 the energy eigenvalues are

E(1)
n =

n(n + 2)h̄2π2

2mL2
, (6.18)

while the eigenfunctions are

φ(1)
n (x) =

√
2
L

sin
(n + 1)πx

L
, 0 ≤ x ≤ L, (6.19)

which reduce to the expression (6.17) for n = 0. The superpotential for this
problem is readily obtained from Eq. (6.6),

W (x) = − h̄π√
2mL

cot
πx

L
, 0 ≤ x ≤ L, (6.20)

and thus the supersymmetric partner potential V2(x) is

V2(x) =
h̄2π2

2mL2

(
2 csc2 πx

L
− 1
)

, (6.21)

with csc x = 1/ sin x. The eigenfunctions of H2 are obtained by applying the
operator A to the eigenfunctions of H1. We find that

φ
(2)
0 (x) =

√
8

3L
sin2 πx

L
, φ(2)

n (x) =

√
4
L

sin
πx

L
sin

(n + 1)πx

L
. (6.22)

We have thus demonstrated that two different potentials V1(x) and V2(x)
have exactly the same spectra except for the fact that V2(x) has one less
bound state. In Fig. 6.3 are shown the supersymmetric partner potentials
V1(x) and V2(x), and the first few eigenfunctions, in the convention L = π
and h̄ = 2m = 1.

6.3.3 Scattering Off Supersymmetric Partner Potentials

The techniques of supersymmetry also allow one to relate reflection and trans-
mission coefficients in situations where the two partner potentials have con-
tinuum spectra [299]. For scattering to take place for both of the partner
potentials, it is necessary that they are finite as x → −∞ or as x → +∞, or
both. Imposing the condition
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Fig. 6.3. The infinite square-well potential of width L = π and its supersymmetric
partner potential in units h̄ = 2m = 1

W (x → ±∞) → h̄√
2m

W± ≡ W̃±, (6.23)

we find the following asymptotic properties for the potentials:

V1,2(x → ±∞) → h̄2

2m
W 2

± ≡ W̃ 2
±. (6.24)

Consider an incident plane wave eikx of energy E coming from −∞. As a
result of scattering off the potentials V1,2(x) one obtains transmitted and
reflected waves T1,2e

ik′x and R1,2e
−ikx, respectively. It follows that

φ(1,2)(k, x → −∞) → eikx + R1,2e
−ikx,

φ(1,2)(k′, x → +∞) → T1,2e
ik′x. (6.25)

The continuum eigenfunctions of H1 and H2 with the same energy are con-
nected by supersymmetry in the same way as the discrete states. We thus
find the relationships

eikx + R1e
−ikx = N

[
(−ik + W−)eikx + (ik + W−)R2e

−ikx
]
,

T1e
ik′x = N

[
(−ik′ + W+)T2e

ik′x
]
, (6.26)

where N is an overall normalization constant. Equating terms with the same
exponent and eliminating N , we find

R1 =
(

W− + ik

W− − ik

)
R2, T1 =

(
W+ − ik′

W− − ik

)
T2, (6.27)

where k and k′ are given by

k =
√

E − W̃ 2
−, k′ =

√
E − W̃ 2

+. (6.28)
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We see that the following properties are satisfied:

– The partner potentials have identical transmission and reflection and
probabilities since |T1|2 = |T2|2 and |R1|2 = |R2|2.

– The transmission coefficients T1 and T2 as well as the reflection coefficients
R1 and R2 have the same poles in the complex plane except that T1 and
R1 have an extra pole at k = −iW−. This pole is on the positive imaginary
axis only if W− < 0 in which case it corresponds to a zero-energy bound
state.

– In the particular case with W− = W+, we find that T1 = T2.
– If W− = 0 then R1 = −R2.

From this analysis it is clear that, if one of the potentials is constant (i.e., a
free particle), then its partner will be reflectionless. Consider as an example
the superpotential W (x) = β tanhαx in which case the partner potentials are

V1(x) = β2 − β

(
β +

αh̄√
2m

)
1

cosh2 αx
,

V2(x) = β2 − β

(
β − αh̄√

2m

)
1

cosh2 αx
. (6.29)

If β = αh̄/
√

2m, V2(x) is a constant potential so that the partner potential
must be reflectionless. On the basis of SQM one can thus understand the
property of total absence of reflection which occurs for certain depths β of
the potential V (x) = β/ cosh2 αx and which plays an important role in the
soliton solutions of the Kortewijk–de Vries equations [299]. In addition, this
property might have technical applications.

6.3.4 Long-Range Nucleon–Nucleon Forces and Supersymmetry

Although the previous examples are very illustrative and exhibit the power
and elegance of SQM, they do not relate directly to a realistic physical system.
We now consider a nuclear physics example associated in a very surprising
way to the problem of the nucleon–nucleon interaction [296].

The essential idea underlying an exactly supersymmetric model is that
the corresponding hamiltonian can be written as

H =
1
2
{Q,Q†} ≡ 1

2
(QQ† + Q†Q), (6.30)

where Q and Q† are anti-commuting operators which generate the su-
persymmetry transformations. Consider now three hermitean operators xk

(k = 1, 2, 3), together with their associated momenta pk, which satisfy the
usual commutation relations and correspond to the bosonic variables of
the model. The (non-hermitean) fermionic degrees of freedom are given by
the Clifford operators ξk and ξ†k which satisfy
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{ξk, ξl} = {ξ†k, ξ†l } = 0, {ξk, ξ†l } = δkl. (6.31)

Bosons and fermions commute. In terms of these variables we now construct
the (super)generators

Q = [pk − ixkV (r)]ξk, Q† = [pk + ixkV (r)]ξ†k, (6.32)

where a summation over k is implied. The real function V (r) is the ‘superpo-
tential’ and depends only on the radius r with r2 =

∑
k xkxk. One can then

show that (Q)2 = (Q†)2 = 0 which together with (6.30) implies

[Q,H] = [Q†,H] = 0. (6.33)

The explicit form of the hamiltonian is then given by

H =
1
2

(
p2 + r2[V (r)]2 + [ξk, ξ†k]V (r) +

xkxl

r
[ξk, ξ†l ]

dV

dr

)
. (6.34)

To interpret this result, it is necessary to find an appropriate realization
for the fermionic operators. The ξk and ξ†k operators can be first expressed
in terms of hermitean variables a and b through ξk = (ak + ibk)/

√
2 and

ξ†k = (ak − ibk)/
√

2. The vectors a and b then satisfy

{ak, al} = {bk, bl} = δkl, {ak, bl} = 0, (6.35)

which in turn suggests the following realization for a and b in terms of the
Pauli spin matrices

a =

√
1
2

(
A × σ(1)

)
, b =

√
1
2

(
B × σ(2)

)
, (6.36)

where σ(1) and σ(2) are a pair of independent (commuting) Pauli matrices
and A and B are hermitean and satisfy

A2 = B2 = 1, {A,B} = 0. (6.37)

These conditions are required in order for (6.35) to hold. Up to this point
the model hamiltonian (6.34) describes a supersymmetric interaction of two
spin-1/2 particles with spin operators σ(i)/2 and with relative coordinates
xk and pk. In addition, these particles possess an ‘internal quantum number’
space related to the operators A and B and which we shall later identify.
To understand the meaning of these quantum numbers, we first require a
physical representation for them.

Since we are dealing with a two-particle system, the following realization
can be constructed

A = ρ
(1)
1 × ρ

(2)
3 , B = ρ

(1)
2 × I(2), (6.38)
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where the ρ(i) are independent sets of Pauli matrices that operate in the
internal spaces of particle i = 1 and i = 2. The definition (6.38) ensures that
the relations (6.37) are satisfied. We now claim that each particle has an ad-
ditional internal quantum number C(i) which we choose to be the eigenvalues
±1 of ρ

(i)
3 . In terms of this explicit realization the hamiltonian (6.34) can be

written in the form

H =
1
2

(
p2 + r2[V (r)]2 + C

[
σ(1) · σ(2)V (r) + (σ(1) · r̂)(σ(2) · r̂)r

dV

dr

])
,

(6.39)

where r̂ ≡ r/r. The only remnant of the internal ρ spaces is the operator
C which is given by C = −iAB = C1C2 = ρ

(1)
3 × ρ

(2)
3 , i.e., product of the

‘internal charges’. This hamiltonian includes central, spin–spin and tensor
interactions with coefficients that are strongly correlated in terms of the
superpotential V (r), as a consequence of the underlying supersymmetry of
the system. The hamiltonian conserves total spin, total angular momentum
and its projection, as well as parity and the product of the individual internal
charges. The action of the supersymmetric generators Q and Q†, on the other
hand, can be seen to transform p into −p and C into −C. They also act as
shift operators for the angular momentum.

It is possible to show at this point that the long-range, so-called one-pion
exchange potential (OPEP) is a particular example of the supersymmetric
potential (6.39). While at short range the nucleon–nucleon OPEP has a com-
plicated form due to a complex exchange of mesons, for r ≤ 3 fm it has a
well-defined form, given by

Vπ = τ (1) ·τ (2)
{

σ(1) · σ(2)Vs(r) +
[
3(σ(1) · r̂)(σ(2) · r̂) − σ(1) · σ(2)

]
Vt(r)

}
,

(6.40)

where τ (1) and τ (2) refer to the isospin of each nucleon, while the functions
Vs(r) and Vt(r) are the scalar and tensor potentials,

Vs(r) =
μ

3

(
g2

4π

)
e−x

x
, Vt(r) =

μ

3

(
g2

4π

)(
1 +

3
x

+
3
x2

)
e−x

x
. (6.41)

In these formulae x ≡ μr, μ is the pion mass and g is the pion–nucleon
coupling constant. It is now possible to compare the hamiltonians (6.34)
and (6.40) for each individual isospin channel: ξ ≡ τ (1) ·τ (2) = −3/4 and 1/4.
(These values are obtained from the simple relation for two spin operators
s1 · s2 = [(s1 + s2)2 − s2

1 − s2
2]/2 for s1 = s2 = 1/2.) By comparing the

coefficients in (6.34) and (6.40) we find that

1
2
V (r) = ξ[Vs(r) − Vt(r)],

1
2
r
dV

dr
= 3ξVt(r). (6.42)
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Combining these equations, we find the differential condition

r
d(Vs − Vt)

dr
= 3Vt. (6.43)

Using the explicit expressions (6.41), we find that this relation between the
scalar and the tensor components is satisfied exactly. The term r2V 2/2 in
Eq. (6.34) has no counterpart in the potential (6.40) but this term can be seen
to be proportional to e−2x and is negligible in the long-range approximation
(where the dominant term goes like e−x) as it involves the onset of the two-
pion exchange processes. The fact that the relation (6.43) is satisfied by the
scalar and tensor components of the one-pion exchange interaction exerted
between nucleons at long range is remarkable indeed.

6.3.5 Matrix Approach to Supersymmetric Quantum Mechanics

We now make a short mathematical detour to introduce a different and
widespread representation of SQM. As has been discussed in the examples
above, SQM is characterized by the existence of charge operators Q that obey
the relations

{Qi, Qj} = δij , [Qi,H] = 0, i, j = 1, 2, . . . , N, (6.44)

where H is the supersymmetric hamiltonian and N is the number of gener-
ators. Note that this definition has a conventional factor 1/2 difference with
the one used in previous examples. We consider the simplest of such systems
with two operators Q1 and Q2. In terms of Q = (Q1+iQ2)/

√
2 and its hermi-

tian adjoint Q† = (Q1− iQ2)/
√

2, the algebra governing this supersymmetric
system is characterized by

H = {Q,Q†}, (Q)2 = (Q†)2 = 0. (6.45)

From these equations we readily find

[Q,H] = [Q†,H] = 0, (6.46)

that is, the charge operator Q is nilpotent and commutes with the hamiltonian
H. A simple realization of the algebra defined above is

Q =
[

0 0
A 0

]
, H =

[
h+ 0
0 h−

]
, (6.47)

where
A = − ∂

∂x
− i

2
dU

dx
, (6.48)

for some function U = U(x). In this representation the supersymmetric
hamiltonian H contains two components h+ and h−, referred to as the
bosonic and fermionic hamiltonians, respectively. These satisfy the equations
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h±Φ±n(x) ≡
[
− d2

dx2
+ V±(x)

]
Φ±n(x) = εnΦ±n(x),

V±(x) =
(

1
2

dU

dx

)2

∓ d2U

dx2
, (6.49)

which correspond to the supersymmetry partners V1 and V2 defined earlier
while U(x) is the superpotential. Again we see that the operators Q and Q†

induce transformations between the bosonic sector represented by α and the
fermionic one represented by β. We may also interpret H in the same way
as before: The scalar hamiltonian H = AA† has a partner H̃ = A†A such
that H and H̃ are the diagonal elements of a supersymmetric hamiltonian.
Having demonstrated that Q and H can be constructed in a matrix form,
we switch back to the operator language of quantum mechanics to discuss a
three-dimensional example.

6.3.6 Three-Dimensional Supersymmetric Quantum Mechanics
in Atoms

In a series of papers Kostelecky et al. [290, 291, 292, 293] have discussed the
relationship between the spectra of atoms and ions using SQM. In particu-
lar, they have suggested that the lithium and hydrogen spectra come from
supersymmetric partner potentials.

Consider the Schrödinger equation for the hydrogen atom. In spherical
polar coordinates the equation separates into angular and radial parts. While
the angular part is solved by the spherical harmonics, the radial part can be
written as [

− d2

dy2
− 1

y
+

l(l + 1)
y2

− 1
2
En

]
Rnl(y) = 0. (6.50)

We adopt atomic units and use the definitions y = 2r and En = −1/2n2.
The radial wave functions can be written as

Rnl(r) =
2
n2

[
Γ (n − l)

Γ (n + l + 1

]1/2(2r

n

)l

exp
(
−r

n

)
L2l+1

n−l−1

(
2r

n

)
. (6.51)

The Lα
n(x) are the associated Laguerre polynomials for which α is not re-

stricted to be an integer, defined as

Lα
n(x) =

n∑
p=0

(−x)p Γ (n + α + 1)
p!(n − p)!Γ (p + α + 1)

. (6.52)

The symbols in brackets in Eq. (6.49) can be interpreted, for fixed l, in terms
of the hamiltonian h+ of Eq. (6.47) as h+−εn. Since the ground-state energy
is chosen to be zero, this allows the separation of h− and εn, so that it
is possible to find the supersymmetry generator Q and the supersymmetric
partner hamiltonian [291], once we define the function U(x) of Eq. (6.48)
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U(y) =
y

l + 1
− 2(l + 1) ln y. (6.53)

In this realization the hamiltonian h− is identical in form to h+ but with the
constant l(l + 1) replaced with (l + 1)(l + 2), so that

h− − h+ =
2(l + 1)

y2
. (6.54)

This implies that for each l the eigenstates of h− are Rn,l+1(y) where in this
case n ≥ 2.

We now consider a possible physical interpretation for these equations.
For l = 0 the boson sector describes the s orbitals of a hydrogen atom. Since
the spectrum of h− is degenerate with that of h+ except for the ground
state and since the supersymmetry generator Q acts on the radial part of
the hydrogen wavefunctions but leaves the spherical harmonics untouched,
h− describes a physical system that appears hydrogenic but that has the
1s orbitals absent or unavailable. This situation is attained by considering
that the 1s orbital is full, thereby placing the valence electron in the 2s and
2p states. The element with a filled 1s orbital and one valence electron is
lithium. This suggests that h− can be interpreted as an effective one-body
hamiltonian describing the valence electron of lithium when it occupies the s
orbitals. This description can only be approximate since the electron–electron
interactions are ignored. These can be introduced as supersymmetry-breaking
terms. Even in the absence of such terms, one can claim some experimental
support for this atomic supersymmetry as discussed in Ref. [291].

By repeating the argument defining the energy of the 2s orbital in lithium
to be zero, the hamiltonian h− becomes a suitable choice for a bosonic hamil-
tonian to apply a second supersymmetric transformation. The fermionic part-
ner can be constructed and an analogous interpretation to the one above can
be made. This suggests that the s orbitals of lithium and sodium should also
be viewed as supersymmetric partners. The process can be repeated for s
orbitals and can also be applied for other values of the orbital angular mo-
mentum quantum number l, leading to supersymmetric connections among
atoms and ions across the periodic table. In the exact-symmetry limit these
connections all involve integer shifts in l and are linked to the Pauli principle.
We shall not further pursue this example in detail but rather refer the reader
to the original references [290, 291, 292, 293].

The formalism of SQM has also been applied in the fields of condensed-
matter [294, 295] and statistical physics [300, 301] as well as in problems as-
sociated with random magnetic fields in Ising-like models, polymers, electron
localization in disordered media and ferromagnets [302, 303]. We also mention
the relationship between SQM and stochastic differential equations such as
the Langevin equation [304], the path integral formulation of SQM first given
in Ref. [305] and the SQM analysis of the tunneling rate through double-well
barriers which is of much interest in molecular physics [306, 307, 308].
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In terms of the formalism itself and other developments, it should be
noted that the ideas of SQM have been extended to higher-dimensional sys-
tems as well as to systems with large numbers of particles. Inverse-scattering
methods are related to supersymmetry in Ref. [309]. Finally, we would like to
point out the extensive work related to shape-invariant potentials [310, 311]
and self-similar potentials [312], a set of ideas explored by many researchers.
Recent applications to possible deviations from Lorentz symmetry are dis-
cussed in Ref. [313]. A connection of supersymmetry to the prime number
Riemann hypothesis is proposed in Ref. [314]. The list of applications is very
long and a review can be found in Ref. [291].



7 Conclusion

As has become increasingly clear, symmetries in physics, particularly in the
microscopic domain, are intimately related to the dynamics of the systems
being studied. Symmetry methods and concepts have become essential tools
to study the phenomena observed in the nuclear- and particle-physics realm.
Since in these areas of nature the basic forces are not known in detail and
observations are very difficult to carry out, building a coherent picture is
hard. Fortunately, the discovery of conserved quantities, patterns in the data
and selection rules often lead to the identification of (manifest or hidden)
symmetries in theories and models. Group theory thus becomes the natural
language of the physics of the microworld.

Even when symmetries are not exactly satisfied, symmetry breaking, par-
ticularly when the successive splittings leave a subgroup of the symmetry
transformations intact (in which case we refer to the symmetry as dynamical
symmetry), provides a valuable ordering scheme and often leads to additional
insights into the nature of the physical system under consideration. Partic-
ularly interesting are cases when hamiltonians (or lagrangians) of seemingly
distinct systems are unified by the inclusion of additional transformations
among the constituent physical objects.

Supersymmetry is one such theoretical generalization, where matter and
forces, i.e., fermions and bosons, become part of a single entity, in similar
fashion as, e.g., the unification of space and time into ‘space–time’, achieved
by the theory of special relativity. Supersymmetry has wide-ranging conse-
quences and is the precursor of superstring theory and its generalizations,
thought by many physicists to be the appropriate road for including gravity
into a common framework with the other (gauge) forces. Unfortunately, the
problem with supersymmetry and superstring theory is that experimental
evidence for them is yet to be found.

In this general context, it is gratifying that many of the same symmetry-
based concepts and methods—albeit in a non-relativistic framework—can be
found in the low-energy realm of nuclear structure physics, with the added
advantage that ideas and models can be subject to experimental verification.

In this book we discussed different aspects of symmetry and supersymme-
try in nuclear physics. We attempted to give a general overview of the subject,
starting from the fundamental concepts in the theory of Lie algebras, which
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is the necessary mathematical framework for these phenomena. We analyzed
the role of symmetry in the general area of nuclear structure physics, start-
ing with a review of the historical roles of Heisenberg’s isospin SU(2) sym-
metry and Wigner’s spin–isospin SU(4) symmetry, Racah’s pairing SU(2)
and Elliott’s rotational SU(3) model, and then focusing attention on the
interacting boson model and its extensions. We discussed dynamical symme-
try and dynamical-symmetry breaking, both for identical particles and for
neutron–proton systems. We then analyzed boson–fermion symmetries and
supersymmetries and showed their role in the unified description of multi-
plets of neighboring nuclei. Throughout we illustrated ideas and concepts
with experimental examples.

In conclusion, we have analyzed the important role and current status of
symmetry and supersymmetry in nuclear structure physics and considered
diverse extensions that could encompass a large number of nuclei. The Lie-
algebraic methods described in this book are useful in various fields of physics
and will continue to prove a powerful tool in the description of nuclear-
structure phenomenology. We have emphasized how the experimental verifi-
cation of symmetry concepts is often possible when taking advantage of new
experimental capabilities and that symmetries lead to crystal clear predic-
tions to be verified.

We hope to have convinced the reader that symmetry concepts form a par-
ticularly striking example of the combination of the Platonic ideal of symme-
try with the down-to-earth Aristotelean ability to recognize complex patterns
in Nature.
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239. W.D. Hamilton, A. Irbäck, J.P. Elliott, Phys. Rev. Lett. 53, 2469 (1984) 125
240. S.A.A. Eid, W.D. Hamilton, J.P. Elliott: Phys. Lett. B 166, 267 (1986) 125
241. H.G. Börner, J. Jolie: J. Phys. G: Nuclear and Particle Physics 19, 217 (1993) 125
242. K.P. Lieb, H.G. Börner, M.S. Dewey, J. Jolie, S.J. Robinson, S. Ulbig,

Ch. Winter, Phys. Lett. B 215, 50 (1988) 125
243. S.J. Robinson, J. Jolie, J. Copnell: A.I.P. Conf. Proc. 238, 210 (1991) 125
244. H. Nakada, T. Otsuka, T. Sebe: Phys. Rev. Lett. 67, 1086 (1991) 125
245. R. De Leo et al.: Phys. Rev. C 53, 2718 (1996) 125
246. P. von Brentano et al.: Phys. Rev. Lett. 76, 2029 (1996) 125
247. H. Maser, N. Pietralla, P. von Brentano, R.-D. Herzberg, U. Kneissl, J. Mar-

graf, H. H. Pitz, A. Zilges: Phys. Rev. C 54, R2129 (1996) 125
248. N. Pietralla et al.: Phys. Rev. Lett. 83, 1303 (1999) 125, 126
249. T. Otsuka, K.-H. Kim: Phys. Rev. C 52, 2792 (1995) 126
250. N. Pietralla, C. Fransen, P. von Brentano, A. Dewald, A. Fitzler, C. Friessner,

J. Gableske: Phys. Rev. Lett. 84, 3775 (2000) 127, 128
251. C. Fransen, N. Pietralla, P. von Brentano, A. Dewald, J. Gableske, A. Gade,

A. Lisetskiy, V. Werner: Phys. Lett. B 508, 219 (2001) 128, 129



180 References

252. C. Fransen et al.: Phys. Rev. C 67, 024307 (2003) 128
253. A. Lisetskiy, N. Pietralla, C. Fransen, R.V. Jolos, P. von Brentano: Nucl.

Phys. A 677, 100 (2000) 131
254. N. Lo Iudice, Ch. Stoyanov: Phys. Rev. C 65, 064304 (2002) 131
255. N. Pietralla et al.: Phys. Rev. C 64, 031301 (2001) 131
256. H. Klein, A.F. Lisetskiy, N. Pietralla, C. Fransen, A. Gade, P. von Brentano:

Phys. Rev. C 65, 044315 (2002) 131
257. P. Van Isacker, J. Jolie, K. Heyde, A. Frank: Phys. Rev. Lett. 54, 653 (1985) 134, 136
258. J. Jolie, P. Van Isacker, K. Heyde, A. Frank: Phys. Rev. Lett. 55, 1457 (1985) 134
259. P. Van Isacker, J. Jolie: Nucl. Phys. A 503, 429 (1989) 138
260. F. Hoyler et al.: Nucl. Phys. A 512, 189 (1990) 138
261. A. Algora, T. Fenyes, Zs. Dombradi, J. Jolie: Z. Phys. A 352, 25 (1995) 138
262. O. Scholten: Prog. Part. Nucl. Phys. 14, 189 (1985) 138
263. J. Barea, R. Bijker, A. Frank, G. Loyola: Phys. Rev. C 64, 064313 (2001) 138
264. M.L. Munger, R.J. Peterson: Nucl. Phys. A 303, 199 (1978) 139
265. Y. Yamazaki, R.K. Sheline: Phys. Rev. C 14, 531 (1976) 140
266. J. Jolie, U. Mayerhofer, T. von Egidy, H. Hiller, J. Klora, H. Lindner, H.Trieb:

Phys. Rev. C 43, R16 (1991) 141
267. G. Rotbard, G. Berrier, M. Vergnes, S. Fortier, J. Kalifa, J.M. Maison,

L. Rosier, J. Vernotte, P. Van Isacker, J. Jolie: Phys. Rev. C 47, 1921 (1993) 143
268. N. Warr, S. Drissi, P.E. Garrett, J. Jolie, J. Kern, S.J. Mannanal, J.-

L. Schenker, J.-P. Vorlet: Nucl. Phys. A 620, 127 (1997) 143
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291. V.A. Kostelecký: Supersymmetry in Physics (Elsevier Science Ltd, 1985) 159, 168, 169
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