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Preface

Intended Audience, Approach and Presentation

This text is intended for a course of about four months for undergraduate
students. It arises from the adaptation and the amendments to a text for a full-
year course in Structure of Matter, written by one of the authors (A.R.) about
thirty years ago. At that time only a few (if any) textbooks having the suited
form for introduction to the basic quantum properties of atoms, molecules and
crystals in a comprehensive and interrelated way, were available. Along the last
twenty years many excellent books pursuing the aforementioned aim have been
published (some of them are listed at the end of this preface). Still there are
reasons, in our opinion, to attempt a further text devoted to the quantum roots
of condensed matter properties. A practical aspect in this regard involves the
organization of the studies in Physics, after the huge scientific outburst of the
various topics of fundamental and technological character in recent decades. In
most Universities there is now a first period of three or four years, common to
all the students and devoted to elementary aspects, followed by an advanced
program in more specialized fields of Physics. The difficult task is to provide a
common and formative introduction in the first period suitable as a basis for
building up more advanced courses and to bridge the area between elementary
physics and topics pertaining to the research activities. The present attempt
towards a readable book, hopefully presenting those desired characteristics,
essentially is based on a mixture of simplified institutional theory with solved
problems. The hope, in this way, is to provide physical insights, basic culture
and motivation, without deteriorating the possibility of advanced subsequent
learning.

Organization

Structure of Matter is such a wide field involving so many subjects that a first
task is to find a way to confine an introductory text. The present status of that
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discipline represents a key construction of the scientific knowledge, possibly
equated only by the unitary description of the electromagnetic phenomena.
Even by limiting attention to the conventional topics of the condensed matter
only, namely atoms, molecules and crystals, still we are left with an ample
field. For instance, semiconductors or superconductors, the electric and mag-
netic properties of the matter and its interaction with the electromagnetic
radiation, the microscopic mechanisms underlying solid-state devices as well
as masers and lasers, are to be considered as belonging to the field of struc-
ture of matter (without mentioning the “artificial” matter involving systems
such as nanostructures, photonic crystals or special materials obtained by
subtle manipulations of atoms by means of special techniques). In this text
the choice has been to limit the attention to key concepts and to the typical
aspects of atoms (Chapters 1-5), molecules (Chapters 7-10) and of crystalline
solids (Chapters 11-14), looking at the basic “structural” subjects without
dealing with the properties that originate from them. This choice is exempli-
fied by referring to crystals: electronic states and quantum motions of the ions
have been described without going into the details regarding the numerous
properties related to these aspects. Only in a few illustrative cases favoring
better understanding or comprehensive view, derivation of some related prop-
erties has been given (examples are some thermodynamical properties due to
nuclear motions in molecules and crystals or some of the electric or magnetic
properties). Chapter 6 has the particular aim to lead the reader to an illus-
trative overview of the quantum behaviors of angular momenta and magnetic
moments, with an introduction to spin statistics, magnetic resonance and spin
motions and a mention to spin thermodynamics, through the description of
the adiabatic demagnetization. All along the text emphasis is given to the
role of spectroscopic experiments giving access to the quantum properties by
means of electromagnetic radiation. In the spirit to limit the attention to
key subjects, frequent referring is given to the electric dipole moment and
to selection rules, rather than to other aspects of the many experiments of
spectroscopic character used to explore the matter at microscopic level. Other
unifying concepts present along the text are the ones embedded in statistical
physics and thermal excitations, as it is necessary in view of the many-body
character of condensed matter in equilibrium with a thermal reservoir.

Prerequisite, appendices and problems

Along the text the use of quantum mechanics, although continuous, only in-
volves the basic background that the reader should have achieved in under-
graduate courses. The knowledge in statistical physics is the one based on the
Boltzmann, Fermi-Dirac and Bose-Einstein statistical distributions, with the
relationships of thermodynamical quantities to the partition function (some of
the problems work as proper recall, particularly for the physics of paramagnets
or for the black-body radiation). Finally the reader is assumed to have knowl-
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edge of classical electromagnetism and Hamiltonian mechanics. Appendices
are intended to provide ad hoc recalls, in some cases applied to appropriate
systems or to phenomena useful for illustration. The Gaussian cgs units are
used.

The problems should be considered entangled to the formal presentation
of the subjects, being designed as an intrinsic part of the pathway the student
should move by in order to grasp the key concepts. One of the reasons to
entangle problems and institutional theory can be found in what Feynman
wrote in the preface of his Lectures: “I think one way we could help the
students more would be by putting more hard work into developing a set
of problems which would elucidate some of the ideas in the lectures”. Some
of the problems are simple applications of the equations and in these cases
the solutions are only sketched. Other problems are basic building blocks
and possibly expansions of the formal description. Then the main steps of the
solution are presented in some detail. The aim of the mélange intuition-theory-
exercises pursued in the text is to favor the acquisition of the basic knowledge
in the wide and wonderful field of the condensed matter, emphasizing how
phenomenological properties originate from the microscopic, quantum features
of the nature.

It should be obvious that a book of this size can present only a minute
fraction of the present knowledge in the field. If the reader could achieve even
an elementary understanding of the atoms, the molecules and the crystals,
how they react to electric and magnetic fields, how they interact with elec-
tromagnetic radiation and respond to thermal excitation, the book will have
fulfilled its purpose.

The fundamental blocks of the physical world are thought to be the sub-
nuclear elementary particles. However the beauty of the natural world rather
originates from the architectural construction of the blocks occurring in the
matter. Ortega Y Gasset wrote “If you wish to admire the beauty of a cathe-
dral you have to respect for distance. If you go too close, you just see a brick”.
Furthermore, one could claim that the world of condensed matter more easily
allows one to achieve a private discovery of phenomena. In this respect let
us report what Edward Purcell wrote in his Nobel lecture: “To see the world
for a moment as something rich and strange is the private reward of many a
discovery”.
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1

Atoms: general aspects

Topics

Central field approximation
Effective potential and one-electron eigenfunctions
Special atoms (hydrogenic, muonic, Rydberg)
Magnetic moments and spin-orbit interaction
Electromagnetic radiation, matter and transitions
Two-level systems and related aspects

The aim of this and of the following three Chapters is the derivation of the
main properties of the atoms and the description of their behavior in magnetic
and electric fields. We shall begin with the assumption of point-charge nucleus
with mass much larger than the electron mass and by taking into account only
the Coulomb energy. Other interaction terms, of magnetic origin as well as the
relativistic effects, will be initially disregarded.

In the light of the central field approximation it is appropriate to recall the
results pertaining to one-electron atoms, namely the hydrogenic atoms (§1.4).
When dealing with the properties of typical multi-electron atoms, such as alkali
atoms or helium atom (Chapter 2) one shall realize that relevant modifications
to that simplified framework are actually required. These are, for instance, the
inclusion of the spin-orbit interaction (recalled at §1.6) and the effects due to
the exchange degeneracy (§1.3, discussed in detail at §2.2).

The properties of a useful reference model, the two-level system, and some
aspects of the electromagnetic radiation in interaction with matter are recalled in
Appendices and/or in ad-hoc problems at the end of the Chapter (Final Problems,
F.I).



2 1 Atoms: general aspects

1.1 Central field approximation

The wave function ψ(r1, r2, .., rN ) describing the stationary state of the N
electrons in the atom follows from the Schrödinger equation[−h̄2

2m

∑
i

∇2
i −

∑
i

Ze2

ri
+

′∑
i�=j

e2

rij

]
ψ(r1, r2, .., rN ) = Eψ(r1, r2, .., rN )

[
Te + Vne + Vee

]
ψ(r1, r2, .., rN ) = Eψ(r1, r2, .., rN ) (1.1)

where in the Hamiltonian one has the kinetic energy Te, the potential energy
Vne describing the Coulomb interaction of the electrons with the nucleus of
charge Ze and the electron-electron repulsive interaction Vee (Fig. 1.1).

Fig. 1.1. Schematic view of multi-electron atom. The nucleus is assumed as a point
charge Ze, with mass M much larger than the mass m of the electron, of charge −e.

If the inter-electron interaction Vee could be neglected, the total Hamil-
tonian would be H =

∑
i Hi, with Hi the one-electron Hamiltonian. Then

ψ(r1, r2, ...) =
∏

i φ(ri), with φ(ri) one-electron eigenfunctions. Vee does not
allow one to separate the variables ri, in correspondence to the fact that the
motion of a given electron does depend from the ones of the others. Further-
more Vee is too large to be treated as a perturbation of [Te +Vne]. As we shall
see (§2.2), even in the case of Helium atom, with only one pair of interact-
ing electrons, the ground-state energy correction related to Vee is about 30
percent of the energy of the unperturbed state correspondent to Vee = 0.

The search for an approximate solution of Eq.1.1 can initiate by consider-
ing the form of the potential energy V (ri), for a given electron, in the limiting
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cases of distances ri from the nucleus much larger and much smaller than the
average distance d of the other (N − 1) electrons:

ri � d V (ri) � −e2
ri

ri � d V (ri) � −Ze2
ri

+ const. (1.2)

having taken into account that for neutral atoms (N = Z) when ri � d the
electrons screen (Z − 1) protons, while for ri � d (N − 1) electrons yield
a constant effective potential, as expected for an average spherical charge
distribution (Fig. 1.2). We shall discuss in detail the role of the screening
cloud due to the inner electrons when dealing with alkali atoms (§2.1).

r
i

-e

outer electron

screening cloud due to the inner

electrons, (Z-1) for Z=N

r
V(r)

effective potential

-Ze2/r

-e2/r

Fig. 1.2. Sketchy view of the electronic cloud screening the nuclear charge for an
outer electron and correspondent forms of the potential energy in the limiting cases
of large and small distances and of the effective central field potential energy (solid
line). Details on the role of the screening cloud shall be given in describing the alkali
atoms (§2.1).
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In the light of the form of the potential energy suggested by Eqs. 1.2 and
neglecting correlation effects in the electronic positions, one deals with the
central field approximation, first considered by Hartree and Slater. In
this context any electron is moving in an effective average field, due to the
nucleus and to the other electrons, which depends only from the distance
r ≡ |r|, with limiting expressions given by Eqs. 1.2.

Within this approximation Eq. 1.1 is rewritten

∑
i

[−h̄2

2m
∇2

i + V (ri)
]
ψ(r1, r2, ..., rN ) = Eψ(r1, r2, ..., rN ) (1.3)

implying
ψ(r1, r2, ..., rN ) = φa(r1)φb(r2)...φc(ri)...φz(rN ), (1.4)

where the one-electron eigenfunctions are solutions of the Equation

{−h̄
2

2m
∇2

i + V (ri)}φa(ri) = Ea
i φa(ri) (1.5)

in correspondence to a set of quantum numbers a, b..., and to one-electron
eigenvalues Ea

1 , E
b
2.... Moreover

E =
∑

i

Ea...
i . (1.6)

From the central character of V (ri), implying the commutation of Hi with
the angular momentum operators, one deduces

φa(ri) = Rn(i)l(i)(ri)Yl(i)m(i)(θi, ϕi) (1.7)

where Yl(i)m(i)(θi, ϕi) are the spherical harmonics and then the set of quantum
numbers is a ≡ ni, li,mi.

Thus the one-electron states are labeled by the numbers (n1, l1), (n2, l2)
etc... or by the equivalent symbols (1s), (2s), (2p) etc....

The spherical symmetry associated with
∑

i V (ri) also implies that for
the total angular momentum L =

∑
i li, |L| and Lz are constants of motion.

Then one can label the atomic states with quantum numbers L = 0, 1, 2...
. L(L + 1)h̄2 is the square of the angular momentum of the whole atom,
while the number M (the equivalent for the atom of the one-electron number
m) characterizes the component Mh̄ of L along a given direction (usually
indicated by z). It is noted that at this point we have no indication on how L
and M result from the correspondent numbers li and mi. The composition of
the angular momenta will be discussed at Chapter 3. Anyway, since now we
realize that the atomic states can be classified in the form S, P,D, F etc... in
correspondence to the values L = 0, 1, 2, 3 etc....
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1.2 Self-consistent construction of the effective potential

In the assumption that the one-electron wavefunctions φa(ri) have been found
one can achieve a self-consistent construction of the effective potential energy
V (ri). As it is known −e|φa(r)|2dτ can be thought as the fraction of electronic
charge in the volume element dτ . Owing to the classical analogy, one can write
the potential energy for a given j-th electron as 1 (see Fig. 1.1)

V (rj) = −Ze
2

rj
+

∑
i�=j

∫
e2|φa(ri)|2

rij
dτi (1.8)

This relationship between V (r) and φa suggests that once a given V (r) is
assumed, Eq. 1.5 can be solved (by means of numerical methods) to obtain
φ(ri) in the form 1.7. Then one can build up a new expression for V (ri) and
iterate the procedure till the radial parts of the wavefunctions at the n-th step
differ from the ones at the (n-1)th step in a negligible way. This is the phys-
ical content of the self-consistent method devised by Hartree to obtain
the radial part of the one-electron eigenfunctions or, equivalently, the best
approximate expression for V (ri). Here we only mention that a more appro-
priate procedure has to be carried out using eigenfunctions which include the
spin variables and the dynamical equivalence (§1.3), with the antisymmetry
requirement. Such a generalization of the Hartree method has been introduced
by Fock and Slater and it is known as Hartree-Fock method. The appropri-
ate many-electrons eigenfunctions have the determinantal form (see §2.3).
A detailed derivation of the effective potential energy for the simplest case of
two electrons on the basis of Eq. 1.8 is given in Prob. II.2.3.

The potential energy V (ri) can be conveniently described through an ef-
fective nuclear charge Zeff (r) by means of the relation

V (r) = −e
2

r
Zeff (r) (1.9)

(now the index i is dropped). The sketchy behavior of the effective nuclear
charge is shown in Fig.1.3. The dependence on r at intermediate distance has
to be derived, for instance, by means of the self-consistent method or by other
numerical methods.

1.3 Degeneracy from dynamical equivalence

From Eqs. 1.3, 1.5 and 1.7 the N -electron wavefunction implies the assign-
ment of a set of quantum numbers ai to each i-th electron. This assignment
1 Eq.1.8 can also be derived by applying the variational principle to the energy

function constructed on the basis of the φa’s with the complete Hamiltonian, for
a variation δφa leaving the one-electron eigenfunction normalized.
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0

r

1

Z

Z
eff

Fig. 1.3. Sketchy behavior of the effective nuclear charge acting on a given electron
at the distance r from the nucleus of charge Ze, arising from the screening due to
other electrons. The charge (Z − N − 1) (1 for neutral atom with Z = N) is often
called residual charge (for a quantitative estimate of Zeff (r) for the ground state
of Helium see Prob. II.2.3).

cannot be done in a unique way, since the electrons are indistinguishable,
the Hamiltonian H =

∑
i Hi being invariant upon exchange of the indexes

(exchange symmetry). Therefore, for a state of the atom correspondent to
a given eigenvalue, one has to write an eigenfunction combining with equal
weights all the possible configurations, with the quantum numbers ai variously
assigned to different electrons. Therefore

ψ(r1, r2, ..., rN ) =
∑
P

P

[
φa1(r1)φa2(r2)...φaN

(rN )
]

(1.10)

where P is an operator permuting electrons and quantum numbers.
It should be stressed that this remark on the role of the dynamical equiv-

alence is incomplete and somewhat misleading. In fact we shall reformulate it
after the introduction of a further quantum number, the spin number. More-
over, we will have to take into account the Pauli principle, that limits the
acceptable wavefunctions obtained upon permutation to the ones changing
sign (antisymmetric). This topic will be discussed after the analysis of He-
lium atom, with two electrons (§2.2). The eigenfunction in form of the Slater
determinant (§2.3) does take into account the exchange degeneracy and the
antisymmetry requirement.

We conclude these preliminary aspects observing that a proper quantum
treatment, within a perturbative approach, at least should take into account



1.4 Hydrogenic atoms: illustration of basic properties 7

the modifications to the central field approximation due to the Hamiltonian

HP = −
∑

i

Ze2

ri
+

′∑
i�=j

e2

rij
−

∑
i

V (ri) , (1.11)

resulting from the difference between the Hamiltonian in 1.1 and the one in
1.3. This is the starting point of the Slater theory for multiplets.

1.4 Hydrogenic atoms: illustration of basic properties

The central field approximation allows one to reduce the Schrödinger equation
to the form given by Eq. 1.3 and by Eq. 1.5. This latter suggests the oppor-
tunity to recall the basic properties for one-electron atoms, with Z protons at
the nuclear site (Hydrogenic atoms). The Schrödinger equation is rewritten[−h̄2

2m
∇2

r,θ,ϕ − Ze
2

r

]
φn,l,m(r, θ, ϕ) = Enφn,l,m(r, θ, ϕ) (1.12)

with φn,l,m of the form in Eq. 1.7. To abide by the description for the Hydrogen
atom, one can substitute everywhere the proton charge (+e) by Ze in the
eigenvalues and in the wavefunctions. Then

En = −m(Ze)2e2

2h̄2

1
n2

= −Z2RHhc
1
n2

(1.13)

(with RH Rydberg constant, given by 109678 cm−1, correspondent to 13.598
eV). The spherical harmonics entering the wavefunction φn,l,m (see Eq. 1.7)
are reported in Tables I.4.1(a and b), up to l = 3.

The radial functions Rnl(r) in Eq. 1.7 result from the solution of

d2R

dr2
+

2
r

dR

dr
+

[
2m
h̄2 (E +

Ze2

r
) − l(l + 1)

r2

]
R = 0 (1.14)

or
−h̄2

2mr2
d

dr
r2
dR

dr
+

[
l(l + 1)h̄2

2mr2
− Ze

2

r

]
R = ER, (1.15)

namely a one-dimensional (1D) equation with an effective potential energy
Veff which includes the centrifugal term related to the non-inertial frame
of reference of the radial axis. The shape of Veff is shown in Fig.1.4. In
comparison to the Hydrogen atom, Eq. 1.12 shows that in Hydrogenic atoms
one has to rescale the distances by the factor Z. Instead of a0 = h̄2/me2 =
0.529 Å (radius of the first orbit in the Bohr atom, corresponding to an energy
−RHhc = −e2/2a0), the characteristic length thus becomes (a0/Z).
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Table I.4.1a. Normalized spherical harmonics, up to l = 3.

s(l = 0) Y00 = 1√
4π

p(l = 1) Y1−1 =
√

3
8π

x−iy
r =

√
3
8π sinθe

−iφ

Y10 =
√

3
4π

z
r =

√
3
4π cosθ

Y11 = −
√

3
8π

x+iy
r = −

√
3
8π sinθe

iφ

d(l = 2) Y2−2 =
√

15
32π

(x−iy)2

r2 =
√

15
32π sin

2θe−2iφ

Y2−1 =
√

15
8π

z(x−iy)
r2 =

√
15
8π sinθcosθe

−iφ

Y20 =
√

5
16π

3z2−r2

r2 =
√

5
16π (3cos2θ − 1)

Y21 = −
√

15
8π

z(x+iy)
r2 = −

√
15
8π sinθcosθe

iφ

Y22 =
√

15
32π

(x+iy)2

r2 =
√

15
32π sin

2θe2iφ

f(l = 3) Y3−3 =
√

35
64π

(x−iy)3

r3 =
√

35
64π sin

3θe−3iφ

Y3−2 =
√

105
32π

z(x−iy)2

r3 =
√

105
32π sin

2θcosθe−2iφ

Y3−1 =
√

21
64π

(5z2−r2)(x−iy)
r3 =

√
21
64π (5cos2θ − 1)sinθe−iφ

Y30 =
√

7
16π

(5z2−3r2)z
r3 =

√
7

16π (5cos2θ − 3)cosθ

Y31 = −
√

21
64π

(5z2−r2)(x+iy)
r3 = −

√
21
64π (5cos2θ − 1)sinθeiφ

Y32 =
√

105
32π

z(x+iy)2

r3 =
√

105
32π sin

2θcosθe2iφ

Y33 = −
√

35
64π

(x+iy)3

r3 = −
√

35
64π sin

3θe3iφ

Since |φ(r, θ, φ)|2dτ corresponds to the probability to find the electron
inside the volume element dτ = r2sinθdrdθdφ, from the form of the eigenfunc-
tions the physical meaning of the spherical harmonics is grasped : Y ∗Y sinθdθdφ
yields the probability that the vector r, ideally following the electron in its
motion, falls within the elemental solid angle dΩ around the direction defined
by the polar angles θ and φ:

 

θ 

dΩ
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Table I.4.1b. Normalized spherical harmonics in the real form (see text).

s(l = 0) Y00 = 1√
4π

p(l = 1) Yx =
√

3
4π

x
r =

√
3
4π sinθcosφ

Yy =
√

3
4π

y
r =

√
3
4π sinθsinφ

Yz =
√

3
4π

z
r =

√
3
4π cosθ

d(l = 2) Yz2 =
√

5
16π

3z2−r2

r2 =
√

5
16π (3cos2θ − 1)

Yzx =
√

15
4π

zx
r2 =

√
15
4π sinθcosθcosφ

Yzy =
√

15
4π

zy
r2 =

√
15
4π sinθcosθsinφ

Yx2−y2 =
√

15
16π

x2−y2

r2 =
√

15
16π sin

2θcos2φ

Yxy =
√

15
4π

xy
r2 =

√
15
16π sin

2θsin2φ

f(l = 3) Yz3 =
√

7
16π

(5z2−3r2)z
r3 =

√
7

16π (5cos2θ − 3)cosθ

Yz2x =
√

21
32π

(5z2−r2)x
r3 =

√
21
32π (5cos2θ − 1)sinθcosφ

Yz2y =
√

21
32π

(5z2−r2)y
r3 =

√
21
32π (5cos2θ − 1)sinθsinφ

Yz(x2−y2) =
√

105
16π

z(x2−y2)
r3 =

√
105
16π sin

2θcosθcos2φ

Yzxy =
√

105
4π

zxy
r3 =

√
105
16π sin

2θcosθsin2φ

Yx2y =
√

35
32π

(3x2y−y3)
r3 =

√
35
32π sin

3θcos3φ

Yy2x =
√

35
32π

(x3−3y2x)
r3 =

√
35
32π sin

3θsin3φ

In the states labeled by the quantum numbers (n, l,m) the eigenvalue
equations for the modulus square and for the z-component of the angular
momentum are

l̂2φnlm = Rnl(r)l̂2Ylm(θ, ϕ) = Rnl(r)l(l + 1)h̄2Ylm(θ, ϕ);

l̂zφnlm = Rnl(r)l̂zYlm(θ, ϕ) = Rnl(r)l̂zΘlm(θ)eimϕ =

= Rnl(r)Θlm(θ)l̂zeimϕ = Rnl(r)Ylm(θ, ϕ)mh̄ (1.16)

Finally, from Eq. 1.13 it is noted that a given state of the Hydrogenic
atom is Z2 times more bound than the correspondent state in the Hydrogen
atom. This happens because on the average, the electron is Z−times closer to
a nuclear charge increased by a factor Z.

The normalized wave functions for Hydrogenic atoms are reported in Table
I.4.2. It is remarked that for r � a0/Z one has

(φnlm)r→0 ∝ Rnl ∝ rl (1.17)

while for large distance
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eff

 (r)={l(l+1)a
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/2r

2

} - Ze

2

/r

scales with Z
2

r
m
= l(l+1)a

0
/Z

l=2

l=1

l=0

V
e
f
f

 
/
(
Z

 
2

e
2

/
a
0

)

r/(a
0

/Z)

Fig. 1.4. Effective potential energy in the 1D Schrödinger equation for R(r) (Eq.
1.15), for the low-energy states. Horizontal lines indicate the eigenvalues for n = 1, 2
and 3, given by −Z2RHhc/n2 (a0 = h̄2/me2).

(φnlm)r→∞ ∝ Rnl ∝ e−
r

a0
Z
n (1.18)

From the wavefunctions relevant properties of the states, such as the radial
probability density

Pnl(r) =
∫
dϕ

∫
dθsinθr2|φnl|2 , (1.19)

or the expectation values of any positional function f(r)

< f >nl=
∫

|φnl|2f(r)dτ (1.20)

can be derived. The radial probability densities for the 1s, 2s and 2p states
are depicted in Fig. 1.5.
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Table I.4.2. Normalized eigenfunctions for Hydrogenic atoms, for n = 1, 2 and
3.

n l m Eigenfunctions
1 0 0 φ100 = 1√

π
( Z

a0
)3/2e−Zr/a0

2 0 0 φ200 = 1
4
√

2π
( Z

a0
)3/2(2 − Zr

a0
)e−Zr/2a0

2 1 0 φ210 = 1
4
√

2π
( Z

a0
)3/2 Zr

a0
e−Zr/2a0cosθ

2 1 ±1 φ21±1 = ∓ 1
8
√

π
( Z

a0
)3/2 Zr

a0
e−Zr/2a0sinθe±iϕ

3 0 0 φ300 = 1
81

√
3π

( Z
a0

)3/2(27 − 18Zr
a0

+ 2Z2r2

a2
0

)e−Zr/3a0

3 1 0 φ310 =
√

2
81

√
π
( Z

a0
)3/2(6 − Zr

a0
)Zr

a0
e−Zr/3a0cosθ

3 1 ±1 φ31±1 = ∓ 1
81

√
π
( Z

a0
)3/2(6 − Zr

a0
)Zr

a0
e−Zr/3a0sinθe±iϕ

3 2 0 φ320 = 1
81

√
6π

( Z
a0

)3/2(Z2r2

a2
0

)e−Zr/3a0(3cos2θ − 1)

3 2 ±1 φ32±1 = ∓ 1
81

√
π
( Z

a0
)3/2(Z2r2

a2
0

)e−Zr/3a0sinθcosθe±iϕ

3 2 ±2 φ32±2 = 1
162

√
π
( Z

a0
)3/2(Z2r2

a2
0

)e−Zr/3a0sin2θe±2iϕ

For spherical symmetry Pnl(r) can be written as 4πr2|φnl|2. It should be
remarked that for Z = 1 the maximum in P1s occurs at r = a0, corresponding
to the radius of the first orbit in the Bohr model (see Problem I.4.4). For the
states at n = 2 the correspondence of the maximum in Pnl(r) with the radius
of the Bohr orbit pertains to the 2p states.

The first excited state (n = 2), corresponding to E2 = −(Z2e2/2a0)(1/4),
is the superposition of four degenerate states: 2s, 2p1, 2p0 and 2p−1. To de-
scribe the 2p states, instead of the functions φ2p,m=±1,0 (see Table I.4.2) one
may use the linear combinations (see Table I.4.1b)

φ2px =
1√
2
[φ2p,1 + φ2p,−1] ∝ sinθcosϕ ∝ x

φ2py =
i√
2
[φ2p,1 − φ2p,−1] ∝ sinθsinϕ ∝ y

φ2pz = φ2p,0 ∝ cosθ ∝ z (1.21)

From these expressions, also in the light of the P2p(r) depicted in Fig.1.5
and in view of the equivalence between the x, y and z directions, one can
represent the atomic orbitals (the quantum equivalent of the classical orbits)
in the form reported in Fig. 1.6.

The degeneracy in x, y, z is necessary, in view of the spherical symmetry
of the potential. On the contrary the degeneracy in l, namely same energy
for s, p, d... states for a given n, is accidental, being the consequence of the
Coulombic form of the potential. We shall see that when the potential takes
a different radial dependence because of Zeff (r), then the degeneracy in l is
removed (§2.1).
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]
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Fig. 1.5. Radial probability densities for 1s, 2s and 2p states in Hydrogenic atoms.

p-orbitals

x

z

y

-

+

2p
y

2p
z 2p

x

+

+

-

-

Fig. 1.6. Illustrative plots, for the 2p states of Hydrogenic atoms, of the atomic
orbitals, defined as the shape of the surfaces where |φnl|2 = constant, meantime
with probability of presence of the electron in the internal volume given by 0.9. It
should be remarked that the sign + or - , related to the sign of Y2p, can actually be
interchanged. However the relationship of the sign along the different directions is
relevant, since it fixes the parity of the state under the operation of reversing the
direction of the axes or, equivalently, of bringing r in −r.

It is reminded that the difference between the 2p1,0,−1 and the 2px,y,z

representation involves the eigenvalue for l̂z. The former are eigenfunctions of
l̂z while the latter are not, as shown for instance for φ2px:

l̂zφ2px = −ih̄ ∂
∂ϕ
φ2px = −ih̄ ∂

∂ϕ
f(r)sinθcosϕ = +ih̄φ2py (1.22)
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Obviously the difference is only in the description and no real modification
occurs in regard of the measurements. This is inferred, for example, from the
definition of φ2px in terms of the basis of the eigenfunctions for l̂z (see Eq.
1.21).

Finally in Fig. 1.7a the radial probability densities for the n = 3 states
are plotted. The linear combinations of 3d states with different m’s, leading
to the most common representation, with the correspondent atomic orbitals
are shown in Fig. 1.7b.

3cos2θ–1 sinθcosθ
sinφ

sinθcosθ
cosφ

sin2θ sin2φsin2θ cos2φ

d-orbitals

e
g

t
2g

d
x
2
-y
2 d

z
2

d
yz

d
xz

d
xy

Y
αβ

∝
αβ=x,y,z

a)

b)

0 5 10 15 20 25 30

0.0

0.1

P
[
r
/
(
a

0

 
/
Z

)
]

r/(a
0
/Z)

 n=3, l=0

 n=3, l=1

 n=3, l=2

Fig. 1.7. Radial probability densities (a) for the n = 3 states of Hydrogenic atoms.
In part b) of the Figure the angular distribution of the 3d atomic orbitals is reported.
The dz2 and dx2−y2 , grouped together are commonly called eg levels, while the dxy,
dxz and dyz are called t2g levels (we shall return to these aspects at §13.3)

Some expectation values of current use are reported in Table I.4.3
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Table I.4.3 Expectation values of some quantities in Hydrogenic atoms

< r >nlm≡ ∫
φ∗nlm(r)rφnlm(r)dτ ≡ ∫∞

0
|Rnl|2r3dr =

= n2 a0
Z [1 + 1

2 (1 − l(l+1)
n2 )] = a0

2Z [3n2 − l(l + 1)]

< r2 >nlm= n2

2 (a0
Z )2[5n2 + 1 − 3l(l + 1)]

< r−1 >nlm= [n2 a0
Z ]−1

< r−2 >nlm= Z2

a2
0
[n3(l + 1

2 )]−1

< V >nlm= −Z2e2

a0n2

< T >nlm= Z2e2

2a0n2

< r−3 >nlm= Z3

a3
0n3[l(l+1)(l+ 1

2 )]
(l 
= 0)

For l = 0 one has the divergence in the lower limit of the integral,
since in < r−3 >nlm=

∫
φ∗nl

1
r3φnlr

2sinθdrdθdϕ
φnl ∝ rl for r → 0 (see Eq. 1.17).
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Problems I.4

Problem I.4.1 For two independent electrons prove Eqs. 1.4 and 1.6.
Solution:
From H1φ1 = E1φ1 and H2φ2 = E2φ2, by multiplying the first equation

for φ2 and the second for φ1, one writes H1φ1φ2 = E1φ1φ2 and H2φ1φ2 =
E2φ1φ2. Then

Hφ = (H1 + H2)φ1φ2 = (E1 + E2)φ1φ2 = Eφ .

Problem I.4.2 One electron is in a state for which the eigenvalue of the z-
component of the angular momentum l̂z is 3h̄, while the square of the angular
momentum is 12h̄2. Evaluate the expectation value of l̂2x.

Solution:
In h̄2 units, from < l̂2x > + < l̂2y >= l̂2− < l̂2z >. By taking into account

that x and y directions are equivalent and that the square of the angular
momentum has to be 12, one deduces < l̂2x >= (12 − 9)/2 = 1.5.

Problem I.4.3 Prove that the angular momentum operators l̂z and l̂2

commute with the central field Hamiltonian and that a common set of eigen-
functions exists (see Eq. 1.16).

Solution:
In Cartesian coordinates, omitting ih̄

l̂x l̂y − l̂y l̂x =

= (−y ∂
∂z

+ z
∂

∂y
)(−z ∂

∂x
+ x

∂

∂z
) − (−z ∂

∂x
+ x

∂

∂z
)(−y ∂

∂z
+ z

∂

∂y
) =

= y
∂

∂x
+ yz

∂2

∂z∂x
− xy ∂

2

∂z2
− z2 ∂2

∂y∂x
+ xz

∂2

∂y∂z
−

−[zy
∂2

∂z∂x
− z2 ∂2

∂x∂y
− xy ∂

2

∂z2
+ x

∂

∂y
+ xz

∂2

∂z∂y
] =

= (y
∂

∂x
− x ∂

∂y
) = l̂z

In analogous way the commutation rules for the components are found:

[l̂x, l̂y] = ih̄l̂z, [l̂z, l̂x] = ih̄l̂y, [l̂y, l̂z] = ih̄l̂x.

In spherical polar coordinates, from

l̂2 = −h̄2

[
1
sinθ

∂(sinθ ∂
∂θ )

∂θ
+

1
sin2θ

∂2

∂ϕ2

]
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while l̂z = −ih̄∂/∂ϕ, one finds [l̂2, l̂z] = 0.
For the central field Hamiltonian (omitting irrelevant constants) H =

−∇2 + V (r) in Cartesian coordinates for the kinetic energy

T lz = y∇2 ∂

∂x
− x∇2 ∂

∂y
= (y

∂

∂x
− x ∂

∂y
)∇2 = lzT ,

for the ϕ-independent V (r) the commutation with l̂z directly follows.
Now we prove that when an operator M commutes with the Hamiltonian

a set of common eigenstates can be found, so that the two operators describe
observables with well defined values (the statement holds for any pair of com-
muting operators).

FromMH−HM = 0 any matrix element involving the Hamiltonian eigen-
functions reads

< i|MH−HM |j >=< i|MH|j > − < i|HM |j >= 0.

From the multiplication rule∑
l

< i|M |l >< l|H|j > −
∑

k

< i|H|k >< k|M |j >= 0 .

H being diagonal one writes

< i|M |j >< j|H|j > − < i|H|i >< i|M |j >= 0,

namely < i|M |j > (Ei − Ej) = 0, that for i 
= j proves the statement, when
Ej 
= Ei (for degenerate states the proof requires taking into account linear
combinations of the eigenfunctions).

Problem I.4.4 In the Bohr model for the Hydrogen atom the electron
moves along circular orbits (stationary states) with no emission of electro-
magnetic radiation. The Bohr-Sommerfeld condition reads∮

pθdθ = lh l = 1, 2, ...

pθ being the moment conjugate to the polar angle θ in the plane of motion.
Show that this quantum condition implies that the angular momentum is an
integer multiple of h̄ and derive the radius of the orbits and the correspondent
energies of the atom.

Plot the energy levels in a scale of increasing energy and indicate the
transitions allowed by the selection rule Δl = ±1, estimating the wavelengths
of the first lines in the Balmer spectroscopic series (transitions n” → n′,
with n′ = 2).

Compare the energy levels for H with the ones for He+ and for Li2+.
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Finally consider the motion of the electron in three-dimensions and by
applying the quantum condition to the polar angles, by means of vectorial
arguments obtain the quantization l̂z = mh̄ for the z-component of the angular
momentum.

Solution:
From the Lagrangian L = I(∂θ/∂t)2/2 + e2/r one has pθ = I∂θ/∂t, with

I moment of inertia and ∂θ/∂t = ω = constant. The quantum condition
becomes

I
∂θ

∂t

∮
dθ = lh

so that mr2ω2π = lh and mvr = lh̄. From the latter equation and the equi-
librium condition for the orbits, where mv2/r = e2/r2, the radii turn out

rn =
m2v2r2

me2
=
n2h̄2

me2
= n2a0

with a0 = h̄2/me2 = 0.529 Å. The energy is

E = T + V =
1
2
mv2 − e

2

r
= − e

2

2r

(in agreement with the virial theorem, < T >=< V > n/2 , with n exponent
in V ∝ rn) and thus

En = − e2

2rn
= −e

4m

2h̄2

1
n2

as from Eq. 1.13, for Z = 1. A pictorial view of the orbits is the following (not
in scale):

n=1

n=2

n=3

n=4

n=5

4341 Å

6
5
6
3

Å

4
8
6
1
Å

Balmer series

(visible)

Paschen series

(infrared)

Lyman series

(ultraviolet)
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Below the energy levels are depicted:
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Comparison of the energy levels with the ones in He+ and in Li2+:
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In three-dimensions

  

T =
1
2
[pr ṙ + pθ θ̇ + pϕϕ̇]

and pθ′dθ′ = pθdθ+pϕdϕ (since the energy is the same in the frame of reference
(r, θ′) and (r, θ, ϕ)). Thus ∮

pϕdϕ = mh
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with m quantum number and pϕ constant, so that pϕ = mh̄ and pθ′ = kh̄,
while cosα = m/k, with k = 1, 2, 3... and m varies from −k to +k.

A pictorial view of the quantization in terms of precession of the angular
momentum for l = 2 (the “length” being

√
l(l + 1)h̄) is

z

x

y

m=2

m=1

m=0

m=-1

m=-2

Problem I.4.5 In the first atomic model, due to Thomson, the atom was
idealized as a uniform positive electric charge in a sphere, with point-charge
electrons embedded in it. By referring to Hydrogen atom, derive the motion
of the electron and in the assumption that the radius of the sphere is R = 1 Å
estimate the frequency of the radiation expected in the classical description.

Solution:
The force at the distance r from the center of the sphere is

f(r) = −er
3

R3

e

r2

and the electron motion is harmonic, with angular frequency ω =
√
e2/mR3.

For m = 9.0910−28 g, e = 4.8×10−10 u.e.s. and R = 1 Å the frequency turns
out ν = 2.53× 1015 sec−1. In the classical picture the emission is at the same
frequency (and at multiples) of the acceleration.

Problem I.4.6 In the assumption that the proton can be thought as
a sphere with homogeneous charge distribution and radius R = 10−13 cm,
evaluate the shift in the ground state energy of the Hydrogen atom due to the
finite size of the nucleus in the perturbative approach (Note that R � a0).
Repeat the calculation for uniform distribution onto the surface of the sphere.
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Solution:
At the distance r < R from the origin the potential energy is

V (r) = −e
2r3

R3r
−

∫ R

r

e24πr′2

r′4πR3

3

dr′ = −3
2
e2
[

1
R

− r2

3R3

]
The difference with respect to the energy for point charge nucleus implies an
energy shift given by

< 1s|Vdiff |1s >=
1
πa30

∫ R

0

e−
2r
a0

[
e2

r
+
e2r2

2R3
− 3e2

2R

]
4πr2dr

and for r < R� a0

< 1s|Vdiff |1s >� −2e2

a30

[
R2 − R

2

5
−R2

]
=

4
5
e2R2

2a30
� 3.9 × 10−9 eV .

For a uniform distribution onto the surface, since for 0 ≤ r ≤ R
V (r) = −e2/R, from −e2/r + VP (r) = −e2/R the perturbation is
VP (r) = +e2/r − e2/R. The first-order energy correction reads

< 1s|VP |1s >=
e2

πa30

∫ R

0

e−
2r
a0 [

1
r
− 1
R

]4πr2dr =
2e2R2

3a30
� 6.5 × 10−9eV

Problem I.4.7 For a Hydrogenic atom in the ground state evaluate the
radius R of the sphere inside which the probability to find the electron is 0.9.

Solution:
From ∫ R

0

4πr2|φ1s|2dr = 0.9

with φ1s =
√

1/π(Z/a0)3/2exp(−Zr/a0), since∫ R

0

r2e−2Zr/a0dr = −e−2ZR/a0

[
R2a0
2Z

+
Ra20
2Z2

+
a30

4Z3

]
+
a30

4Z3

a trial and error numerical estimate yields R � 2.66a0/Z.

Problem I.4.8 In the assumption that the ground state of Hydrogenic
atoms is described by an eigenfunction of the form exp(−ar2/2), derive the
best approximate eigenvalue by means of variational procedure.
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Solution:
The energy function is E(a) =< φ|H|φ > / < φ|φ >, with

H = −(h̄2/2m)[(d2/dr2) + (2/r)d/dr] − (Ze2/r)

(see Eqs. 1.14 and 1.15).
One has < φ|φ >= 4π(1/4a)

√
π/a, while

< φ|H|φ >= 4π[(3h̄2/16m)
√
π/a− (Ze2/2a)] .

Then

E(a) =
3h̄2

4m
a− 2Ze2

√
a

π

From dE/da = 0 one obtains a1/2
min = 4mZe2/3h̄2√π andEmin = −4e4Z2m/3πh̄2 �

0.849EH
1s (for Z = 1).

Problem I.4.9 Prove that on the average the electronic charge distribu-
tion associated with n = 2 states in Hydrogenic atoms is spherically symmet-
ric. Observe how this statement holds for multi-electron atoms in the central
field approximation.

Solution:
The charge distribution is controlled by

1
4
|φ2,0,0|2 +

1
4
[|φ2,1,−1|2 + |φ2,1,0|2 + |φ2,1,1|2]

where the latter term (see Table I.4.1a) is proportional to [(1/2)sin2θ+cos2θ+
(1/2)sin2θ] = 1.

In the central field approximation the statement holds, the wavefunctions
being described in their angular dependence by spherical harmonics (This is
a particular case of the Unsold theorem

∑m=+l
m=−l Y

∗
l,mYl,m = (2l + 1)/4π).

Problem I.4.10 On the basis of a perturbative approach evaluate the
correction to the ground state energy of Hydrogenic atoms when the nuclear
charge is increased from Z to (Z + 1) (

∫∞
0
xnexp(−ax)dx = n!/an+1).

Solution:
The exact result is EZ+1 = −(e2/2a0)(Z + 1)2.
The perturbative correction reads

E(1)
per = −

∫
(φ1s

Z )∗
e2

r
(φ1s

Z )dτ = −4πe2Z3

πa30

∫
e−

2Zr
a0 rdr = −e

2Z

a0

In (−e2/2a0) units the energy difference EZ+1 − EZ = 2Z + 1 and for large
Z this would practically coincide with 2Z. It is noted that the fractional
correction goes as 1/Z, since E0 ∝ Z2.
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1.5 Finite nuclear mass. Positron, Muonic and Rydberg
atoms

To take into account the finite nuclear mass M in Hydrogenic atoms one can
substitute the electron mass m with the reduced mass μ =Mm/(M +m). In
fact this results from the very beginning, namely from the classical two-body
Hamiltonian, the kinetic energy being

T =
1
2
ω2(Ma2 +mb2) =

1
2

Mm

(M +m)
ω2r2 =

1
2
μω2r2 ,

namely the one for a single mass μ rotating with angular velocity ω at the
distance r:

 

M 

b 

-e 

a 

m

Center of mass  

The potential energy does not change even though the nucleus is moving
and therefore in order to account for the effects of finite nuclear mass, one
simply substitutes m for μ in the eigenvalues and in the eigenfunctions. Then

En = −Z2μe
4

2h̄2

1
n2

= − e2

2a∗0

Z2

n2
(1.23)

with a∗0 = h̄2/μe2. In particular, the wavenumbers of the spectral lines (see
Prob. I.4.4) are corrected according to

ν = Z2RH
1

(1 + m
M )

(
1
n2

f

− 1
n2

i

) (1.24)

where RH is the Rydberg constant for the Hydrogen in the assumption of
infinite nuclear mass (see Eq. 1.13).

The Deuterium has been discovered (1932) from slightly shifted weak
spectroscopic lines (isotopic shift), related to the correction to the eigenval-
ues in Eq. 1.23, due to the different nuclear masses for H and D.

A two particle system where the correction due to finite “nuclear” mass is
strongly marked is obviously the positronium i.e. the Hydrogen-like “atom”
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where the proton is substituted by the positron. The reduced mass in this
case is μ = m/2 , implying strong corrections to the eigenvalues and to the
correspondent spectral lines (and to other effects that we shall discuss in
subsequent Chapters).

In Hydrogenic atoms it is possible to substitute the electron with a negative
muon. From high energy collisions of protons on a target, two neutrons and
a negative pion are produced. The pion decays into an antineutrino and a
negative muon, of charge −e and mass about 206.8 times the electron mass.
The muon decays into an electron and two neutrinos, with life-time τ � 2.2μs.
Before the muon decays it can be trapped by atoms in “electron-like orbits”,
thus generating the so called muonic atoms.

Most of the results derived for Hydrogenic atoms can be transferred to
muonic atoms by the substitution of the electron mass with the muon mass
mμ = 206.8m. Thus the distances have to be rescaled by the same amount
and the muonic atoms are very “small”, the dimension being of the order or
less than the nuclear size (see Fig. 1.8). It is obvious that in this condition
the approximation of nuclear point charge and Coulomb potential must be
abandoned.

0 1 2 3 4 5 6 7 8 9 10 11 12

r (10

-13

 cm)

|φ 
1s

(r)|
2

Fig. 1.8. Sketch of |φ1s|2 for a muon in Pb (Z = 82) in the 1s state in the assump-
tion of point charge nucleus (solid line), in comparison with the charge distribution
of the nucleus itself, of radius around 6 Fermi (dashed area).

However, qualitatively, in muonic atoms the eigenvalues can still be ob-
tained from the ones in Eq. 1.13 by multiplying for 206.8. Under this ap-
proximation the wavenumbers of the correspondent spectral lines become
νμ = 206.8 νH and the emission falls in the X-ray spectral range. The ion-
ization potential is increased up to several MeV 2.
2 It should be remarked that dramatic effects in muonic atoms involve also other

quantities or interactions, for instance the spin-orbit interaction and the hyperfine
field (see §5.1)
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Somewhat opposite to the muonic atoms are the “gigantic” Rydberg
atoms, in which the electron, usually the one outside the inner shells (see the
alkali atoms at §2.1) on the average is at very large distance from the nucleus.
These atoms are found in interstellar spaces or can be produced in laboratory
by irradiating atomic beams with lasers. The Rydberg atoms are therefore
similar to Hydrogen atoms in excited states, the effective charge Zeff (Fig.
1.3) being close to unit. Typically the quantum number n can reach several
tens, hundreds in cosmic space. Since the expectation value of the distance
(Table I.4.3) increases with n2, the “dimension” of the Rydberg atoms can
reach 103 − 104 Å. In these states the life time is very long (we shall see
in Appendix I.3 how the life time is related to the spontaneous emission of
radiation) of the order of one second instead of the typical 10−8 s for inner
levels in the Hydrogenic atoms. The eigenvalues scale with n2 (Eq. 1.13) and
become of the order of 10−2 eV. Thus the Rydberg atoms are easily ionized
and highly polarizable, the electric polarizability increasing approximately
with the seventh power of the quantum number n (see §4.2 and Problem
F.IV.11).
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Problems I.5

Problem I.5.1 In the Hydrogen atom the Hα line (see Prob. I.4.4) has a
wavelength 6562.80 Å. In Deuterium the Hα line shifts to 6561.01 Å. Estimate
the ratio of the proton to deuteron mass.

Solution:
From Eq. 1.24, λD/λH = (1 +m/MD)/(1 +m/MH) and then

Δλ

λH
=

m(MH −MD)
MHMD(1 + m

MH
)
� m(MH −MD)

MHMD
=

−1.79
6562.8

�
MH

MD
− 1

1836
,

yielding MH/MD � 0.4992, i.e. MD = 2.0032MH .

Problem I.5.2 Show that in Rydberg atoms the frequency of the photon
emitted from the transition between adjacent states at large quantum numbers
n is close to the rotational frequency of the electron in the circular orbit of
the Bohr atom (particular case of the correspondence principle).

Solution
From Eq. 1.24, by neglecting the reduced mass correction, the transition

frequency turns out

ν = RHc
(ni − nf )(ni + nf )

n2
in

2
f

which for ni, nf � 1 and ni − nf = 1 becomes ν � 2RHc/n
3.

The Bohr rotational frequency, (see Problem I.4.4) by taking into account
the equilibrium condition mv2/r = e2/r2, results

νrot =
mvr

2πmr2
=
nh̄m2e4

2πmn4h̄4 =
2RHc

n3
.

Problem I.5.3 By using scaling arguments estimate the order of magni-
tude of the correction to the wavefunctions and eigenvalues in Hydrogen when
the electron is replaced by a negative muon.

Solution:
Since μ−1 = (m−1

P +m−1
μ ), a0 in the wavefunction is corrected by a factor �

186. The eigenvalue depends linearly on the mass, then the energy is increased
by a factor � 186. These estimates neglect any modification in the potential
energy. This is somewhat possible since Z = 1, while for heavy atoms (see Fig.
1.8) one should take into account the modification in the potential energy (see
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Problem I.4.6). Similar considerations hold for Protonium (i.e. the “atom”
with one positive and one negative proton), where only the states at small n
are sizeably affected by the modified nuclear potential.

Problem I.5.4 By scaling arguments evaluate how the ground state en-
ergy, the wavelength of (2p→ 1s) transition and the life time of the 2p state
are modified from Hydrogen atom to Positronium (for the life time see Ap-
pendix I.3 and neglect the annihilation process related to the overlap of
the wavefunctions in the 1s state).

Solution:
The reduced mass is about half of the one in Hydrogen. Therefore the

eigenvalue for the ground state is 6.8 eV. The transition frequency is at wave-
length 2430 Å. For the life-time, from Appendix I.3 one notices that the decay
rate is proportional to the third power of the energy separation and to the
second power of the dipole matrix element. The energy separation is one half
while the length scale is twice, the decay rate is 1/2. Then the life time is
increased by a factor 2, namely from 1.6 ns to 3.2 ns. One could remark that
nuclear-size effects, relevant in Hydrogen high-resolution spectroscopy (App.
V.1), are absent for positronium.

Problem I.5.5 In experiments with radiation in cavity interacting with
atoms, collimated beams of 85Rb atoms in the 63p state are driven to the 61d
state. On the basis of the classical analogy (see Problem I.5.2) estimate the
frequency required for the transition, the “radius” of the atom (for n = 63)
and the order of magnitude of the electric dipole matrix element.

Solution:
ν � 2RHcΔn/n

3 = 55.2 GHz; < r >� n2a0 = 2100.4 Å; dipole matrix
element (see Appendix I.3) δ � e < r >= 1.009 × 10−14 u.e.s. cm.

Problem I.5.6 In a Rydberg atom the outer electron is in the n = 50
state. Evaluate the electric field E required to ionize the atom (Hint: assume
a potential energy of the form V (r) = −e2/r − erEcosθ and disregard the
possibility of quantum tunneling).

Solution:
From dV/dr = 0 the maximum in the potential energy is found at rm =√
e/E , where V (rm) = −2e3/2

√E .
The energy of the Rydberg atom is approximately En � (−e2/2a0)(1/n2)

and equating it to V (rm) one obtains (e2/2a0)(1/n2) = 2e3/2
√E , i.e.

E = e/16a20n
4, corresponding to

E � 51V/cm
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1.6 Orbital and spin magnetic moments and spin-orbit
interaction

As we shall see in detail in Chapter 2, the spectral lines observed in moderate
resolution (e.g. the yellow doublet resulting from the 3p ↔ 3s transition in
the Na atom) indicate that also interactions of magnetic character have to be
taken into account in dealing with the electronic structure of the atoms.

The magnetic moment associated with the orbital motion, somewhat cor-
responding to a current, can be derived from the Hamiltonian for an electron
in a static magnetic field H along the z direction, with vector potential

A =
1
2
H × r (1.25)

and scalar potential φ = 0.
The one-electron Hamiltonian3 is

H =
1

2m
(p +

e

c
A)2 + V − eφ (1.26)

yielding, to the first order in A, the operator

H = H0 − i eh̄
mc

A.∇ (1.27)

where H0 is the Hamiltonian in the absence of magnetic or electric fields and
where it has been taken into account that A and ∇ are commuting opera-
tors (Lorentz gauge). Therefore, in the light of Eq. 1.25 the Hamiltonian
describing the effect of the magnetic field is

Hmag = −i eh̄
2mc

H × r.∇ =
e

2mc
l.H . (1.28)

Compared to the classical Hamiltonian −μ.H for a magnetic moment in a
field, Hmag allows one to assign to the angular momentum l a magnetic mo-
ment operator given by

μl = − e

2mc
h̄l = −μBl (1.29)

where μB = eh̄/2mc is called Bohr magneton, numerically 0.927 × 10−20

erg /Gauss. Equation 1.29 can be obtained even classically in the framework
of the Bohr model for the Hydrogen atom (See Problem I.6.2).

Experimental evidences, such as spectral lines from atoms in magnetic field
(see Chapter 4) as well the quantum electrodynamics developed by Dirac,
3 This form of classical Hamiltonian associated with the force F = −eE−e(v/c)×H

is required in order to have the kinetic energy expressed in terms of the generalized
moment p = mv − eA/c (see the text by Goldstein quoted in the Preface) so
that, in the quantum mechanical description, p = −ih̄∇.
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indicate that an intrinsic angular momentum, the spin s, has to be assigned
to the electron.

By extending the eigenvalue equations for the orbital angular momentum
to spin, one writes

s2|α >= s(s+ 1)h̄2|α >, sz|α >=
h̄

2
|α >

s2|β >= s(s+ 1)h̄2|β >, sz|β >= − h̄
2
|β > (1.30)

|α > and |β > being the spin eigenfunctions corresponding to quantum spin
numbers ms = 1/2 and ms = −1/2, respectively, while s = 1/2.

As a first consequence of the spin, in the one-electron eigenfunction (spin-
orbital) one has to include the spin variable, labeling the value of sz. When
the coupling between orbital and spin variables (the spin-orbit interaction
that we shall estimate in the following) is weak, one can factorize the function
in the form

ψ(r, θ, ϕ, s) = φ(r, θ, ϕ)χspin (1.31)

where χspin is |α > or |β > depending on the value of the quantum number
ms.

To express the magnetic moment associated with s without resorting to
quantum electrodynamics, one has to make an ansatz based on the experi-
mental evidence. In partial analogy to Eq. 1.29 we write

μs = −2μBs (1.32)

Due to the existence of elementary magnetic moments, an external magnetic
field can be expected to remove the degeneracy in the z-component of the
angular momenta. For instance for sz, two sublevels are generated by the
magnetic field, with energy separation ΔE = (eh̄/mc)H, a phenomenon that
can be called magnetic splitting (Problem I.6.1).

Now we are going to derive the Hamiltonian describing the interaction
between the orbital and the spin magnetic moments. This will be done in the
semiclassical model first used by Thomas and Frenkel, assuming classical
expressions for the electric and magnetic fields acting on the electron. By
referring to Fig. 1.9, the electric field at the electron is E = (1/er)(dV/dr)r
(where V is the central field energy). From the relativistic transformation and
by adding a factor 1/2 introduced by Thomas to account for the non-inertial
motion, one has

H =
1

2cer
dV

dr
r × v . (1.33)

Thus the magnetic Hamiltonian becomes

Hspin−orbit = −μs.H =
1

2m2c2r

dV

dr
(l.s) ≡ ξ(r)l.s (1.34)
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H = (ε x v)/c 

Fig. 1.9. Definition of the magnetic field H acting on the electron due to the relative
motion of the nucleus of charge Ze creating an electric field at the position r, in
view of the relativistic transformation.

which can be viewed as an effective r-dependent magnetic field along l direc-
tion, acting on the spin magnetic moment when the electron is at the position
r. It is noted that the function ξ(r), of central character, is essentially pos-
itive and includes h̄2 from l and s.

An immediate physical interpretation of the Hamiltonian in Eq. 1.34 can
be achieved by referring to Hydrogenic atoms, where

ξ(r) =
Ze2h̄2

2m2c2r3
(1.35)

Then the energy associated with Hspin−orbit is of the order of

ESO � (Ze2/2m2c2) < r−3 > nh̄.(1/2)h̄

and from Table I.4.3, where < r−3 >� Z3/a30n
3l3, one has

ESO � e2h̄2Z4

4m2c2a30n
5

(1.36)

displaying a strong dependence on the atomic number Z. For small Z the
spin-orbit interaction turns out of the order of the correction related to the
velocity dependence of the mass or to other relativistic terms, that have been
neglected (see Problem F.I.15). Typical case is the Hydrogen atom, where the
relativistic corrections of Dirac and Lamb are required in order to account
for the detailed fine structure (see Appendix V.1).

From Eq. 1.36 one realizes that the effects of the spin-orbit interaction are
strongly reduced for large quantum number n, as it is conceivable in view of
the physical mechanism generating the effective magnetic field on the electron.
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The energy corrections can easily be derived within the assumption that
Hspin−orbit is sizeably weaker than H0, in Eq. 1.27. Then the perturba-
tion theory can be applied to spin-orbital eigenfunctions, ψ(r, θ, ϕ, s) =
φ(r, θ, ϕ)χspin ≡ φn,l,m,ms

, the operators l̂2, ŝ2, lz, sz being diagonal for the
unperturbed system. Since the energy terms are often small in comparison
to the energy separation between unperturbed states at different quantum
numbers n and l , one can evaluate the energy corrections due to Hspin−orbit

within the (nl) representation:

ΔESO =
∫
R∗

nl(r)ξ(r)Rnl(r)r2dr
∑
spin

∫
χ∗m′

s
Y ∗

lm′(l.s)χms
Ylmsinθdθdϕ

(1.37)
that can be written in the form 4

(ΔESO)m′,m′
s,m,ms

= ξnl < m
′m′

s|l.s|mms > . (1.38)

The spin orbit constant

ξnl =
∫
R∗

nl(r)ξ(r)Rnl(r)r2dr (1.39)

can be thought as a measure of the “average” magnetic field on the electron
in the nl state. This average field is again along the direction of l and acting
on μs implies an interaction of the form Hspin−orbit ∝ −heff .μs.

To evaluate the energy corrections due to the Hamiltonian ξnll.s instead of
the formal diagonalization one can proceed with a first step of a more general
approach (the so-called vectorial model) that we will describe in detail at
Chapter 3. Let us define

j = l + s (1.40)

as the total, single-electron, angular momentum. For analogy with l and s, j is
specified by a quantum number j (integer or half-integer) and by the magnetic
quantum number mj taking the (2j+1) values from −j to +j , with the usual
meaning in terms of quantization of the modulus and of the z-component of
j, respectively.

The operators l and s commute since they act on different variables, so
that l.s can be substituted by

l.s =
1
2
(ĵ2 − l̂2 − ŝ2) (1.41)

involving only the modula, with eigenvalues j(j + 1), l(l + 1) and s(s+ 1) 4.

4 It could be remarked that the φn,l,m,ms are not the proper eigenfunctions since
(l.s) does not commute with lz and sz. However, when (l.s) is replaced by the
linear combination of ĵ2, l̂2 and ŝ2 (see Eq. 1.41) and the eigenvalues are derived on
the basis of the eigenfunctions of ĵ2 and jz, the appropriate ΔESO are obtained.
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Therefore, for l 
= 0 one has the two cases, j = l + 1/2 and j = l − 1/2,
that in a vectorial picture correspond to spin parallel and antiparallel to l.

Then the energy corrections due to Hspin−orbit are

ΔESO = ξnlh̄
2l/2,

for j = l + 1/2, and
ΔESO = −ξnlh̄

2(l + 1)/2

for j = (l− 1/2). Being ξnl positive the doublet sketched below is generated.

 

 j=(l +1/2) 

 j=(l -1/2) 

degenerate in m
s
 in the 

absence of Hspin-orbit 

l 

l s 

s 

ξnl ћ
2
l/2 

ξnl ћ
2
(l+1)/2 

For s state only a shift, of relativistic origin, has to be associated with
Hspin−orbit (see Problems I.6.3 and F.I.15).
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Problems I.6

Problem I.6.1 Show that because of the spin magnetic moment, a mag-
netic field removes the degeneracy in ms and two sublevels with energy sepa-
ration (eh̄/mc)H are induced (magnetic splitting).

Solution:
From the Hamiltonian

Hmag = −μs.H = −(−2μBsz)H =
eh̄

mc
Hsz

and the sz eigenvalues ±1/2, one has

ΔE = E1/2 − E−1/2 =
eh̄

mc
H ≡ 2μBH

with the splitting sketched below

 

+1/2 

-1/2 

magnetic moment  μ s 

parallel to H 

H = 0  

H ≠ 0  

Numerically, for H = 1 Tesla, ΔE � 1.16 × 10−4 eV � kBT for T � 1.34 K.

Problem I.6.2 For the electron in the circular orbit of the Bohr model,
derive the relationship between angular momentum and magnetic moment.
By assigning to the electron the spin magnetic moment derive the correction
to the energy levels due to spin-orbit interaction, comparing the results for
n = 2 and n = 3 to the estimates in the Thomas-Frenkel approach (§1.6).

Solution:
The magnetic moment is μ = (iA/c)n̂ with current i = −eνrot (see Prob-

lem I.5.2). A is the area of the orbit of radius r and n̂ the normal. Thus
μ = −(evπr2/2πrc)n̂ ≡ −μBl.

The magnetic field turns out

H = − μ

r3
=

e

2cr3
v × (−r)

Therefore the spin-orbit Hamiltonian is Hspin−orbit = −μs.H = (e2h̄2/2m2c2r3)l.s.
For rn = n2a0 and Eq. 1.41 the energy correction is
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ESO =
e2h̄2

2m2c2n6a30

1
2
[j(j + 1) − l(l + 1) − s(s+ 1)]

By using for r−3
n the expectation value

< r−3 >=
1

a30n
3l(l + 1)(l + 1

2 )

and indicating e2h̄2/4m2c2a30 = 3.62 × 10−4 eV with E0, one writes

ESO = E0
1

n3l(l + 1)(l + 1
2 )

[j(j + 1) − l(l + 1) − s(s+ 1)]

and
n = 2, l = 1, j = 1/2 ESO = −E0/12
n = 2, l = 1, j = 3/2 ESO = E0/24
n = 3, l = 1, j = 1/2 ESO = −2E0/81
n = 3, l = 1, j = 3/2 ESO = E0/81

Problem I.6.3 By referring to one-electron s states try to derive the cor-
rection to the unperturbed energy value due to Hspin−orbit, making a remark
on what has to be expected.

Solution:
Hspin−orbit = ξnl(l.s) with ξnl ∝

∫
R∗

nl(r)ξ(r)Rnl(r)r2dr.
Since Rnl(r) ∝ rl, for l = 0, ξnl diverges for r → 0, while l.s = 0.
The final result is an energy shift that cannot be derived along the pro-

cedure neglecting relativistic effects (see Problem F.I.15). A discussion of the
fine and hyperfine structure in the Hydrogen atom, including the relativistic
effects, is given in Appendix V.1.

Problem I.6.4 Evaluate the effective magnetic field that can be associ-
ated with the orbital motion of the optical electron in the Na atom, knowing
that the transition 3p → 3s yields a doublet with two lines at wavelenghts
5889.95 Å and 5895.92 Å.

Solution:
From the difference in the wavelengths the energy separation of the 3p

levels turns out

|ΔE| =
hc|Δλ|
λ2

= 2.13 × 10−3eV

ΔE can be thought to result from an effective field H = ΔE/2μB (see Prob.
I.6.1). Thus, H = 2.13 × 10−3/2 × 5.79 × 10−5 Tesla = 18.4 Tesla.
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Problem I.6.5 The ratio (magnetic moment μ/angular momentum L),
often expressed as (μ/μB)/(L/h̄), is called gyromagnetic ratio. Assuming
that the electron is a sphere of mass m and charge −e homogeneously dis-
tributed onto the surface, rotating at constant angular velocity, show that the
gyromagnetic ratio turns out γ = μ/L = −5e/6mc.

Solution:
m = (4π/3)ρR3 while the angular momentum is
L =

∫ 2π

0

∫ π

0

∫ R

0
ρωr4sin3θdθdϕdr = (2/5)mR2ω, ρ being the specific mass.

L

R

θ

r

m

The surface charge density is σ = −e/4πR2 and from
μ = Ai/c = (πR4σω/c)

∫
sin3θdθ = −5eL/6mc one has γ = −5e/6mc.

Problem I.6.6 Express numerically the spin-orbit constant ξnl for the
3p, 3d and 4f states of the Hydrogen atom.

Solution:
From Eq. 1.35 and the expectation values of < r−3 > (Table I.4.3 )
ξ3p = 1.29 × 1037 erg−1sec−2 h̄2= 8.94 × 10−6 eV,
ξ3d = 2.58 × 1036 erg−1sec−2 h̄2= 1.79 × 10−6 eV,
ξ4f = 3.88 × 1035 erg−1sec−2 h̄2= 0.27 × 10−6 eV.

Problem I.6.7 Show that when the spin-orbit interaction is taken into
account the effective magnetic moment of an electron can be written

μ± = (−e/2mc)g±(l + s) with g± = 1 ± [1/(2l + 1)].
Solution:
Here g is a particular case of the Landé g factor, to be discussed at §3.2.

± means spin parallel or antiparallel to l.
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For s ‖ l

g+ = 1 +
(2l + 1)(2l + 3) + 3 − 2l(2l + 2)

2(2l + 1)(2l + 3)
= 1 +

1
(2l + 1)

while for g−, s antiparallel to l

g− = 1 +
(2l − 1)(2l + 1) + 3 − 2l(2l + 2)

2(2l + 1)(2l − 1)
= 1 − 1

(2l + 1)
.

1.7 Spectroscopic notation for multiplet states

In the light of spin-orbit interaction the one-electron states have to be la-
beled by quantum numbers n, l, j and mj , with s = 1/2. Accordingly, a fine
structure of the levels is induced, in form of doublets.

As we shall see in detail in Chapters 2 and 3, in the atom other couplings
between li and si occur. At the moment we only state that the whole electronic
structure of the atom can be described by the following quantum numbers:
L, taking possible values 0, 1, 2, 3...
S, taking possible values 0, 1/2, 1, 3/2, 2...
J , taking possible values 0, 1/2, 1, 3/2 , 2...

to be associated with
L =

∑
i li, the total angular momentum of orbital character,

S =
∑

i si, the total angular momentum of intrinsic character
and with the total (orbital and spin) angular momentum J = L + S, or to
J =

∑
i ji.

It is customary to use the following notation for the multiplet state of the
atom

2S+1LetterJ
where Letter means S, P, D, F, etc... for L = 0, 1, 2, 3 etc..., (2S + 1) is the
total number of the fine structure levels when S < L ((2L+ 1) the analogous
when L < S).

The electronic configurations and the spectroscopic notations for the
ground-state of the atoms are reported in the following pages.
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Z Element Symbol Configuration Term 

1 Hydrogen H 1s
1
 

2
S1/2 

2 Helium He 1s
2
 

1
S0 

3 Lithium Li 1s
2
2s

1
 

2
S1/2 

4 Beryllium Be 1s
2
2s

2
 

1
S0 

5 Boron B 1s
2
2s

2
2p

1
 

2
P1/2 

6 Carbon C 1s
2
2s

2
2p

2
 

3
P0 

7 Nitrogen N 1s
2
2s

2
2p

3
 

4
S3/2 

8 Oxygen O 1s
2
2s

2
2p

4
 

3
P2 

9 Fluorine F 1s
2
2s

2
2p

5
 

2
P3/2 

10 Neon Ne 1s
2
2s

2
2p

6
 

1
S0 

11 Sodium Na [Ne]3s
1
 

2
S1/2 

12 Magnesium Mg [Ne]3s
2
 

1
S0 

13 Aluminum Al [Ne]3s
2
3p

1
 

2
P1/2 

14 Silicon Si [Ne]3s
2
3p

2
 

3
P0 

15 Phosphorus P [Ne]3s
2
3p

3
 

4
S3/2 

16 Sulfur S [Ne]3s
2
3p

4
 

3
P2 

17 Chlorine Cl [Ne]3s
2
3p

5
 

2
P3/2 

18 Argon Ar [Ne]3s
2
3p

6
 

1
S0 

19 Potassium K [Ar]4s
1
 

2
S1/2 

20 Calcium Ca [Ar]4s
2
 

1
S0 

21 Scandium Sc [Ar]3d
1
4s

2
 

2
D3/2 

22 Titanium Ti [Ar]3d
2
4s

2
 

3
F2 

23 Vanadium V [Ar]3d
3
4s

2
 

4
F3/2 

24 Chromium Cr [Ar]3d
5
4s

1
 

7
S3 

25 Manganese Mn [Ar]3d
5
4s

2
 

6
S5/2 

26 Iron Fe [Ar]3d
6
4s

2
 

5
D4 

27 Cobalt Co [Ar]3d
7
4s

2
 

4
F9/2 

28 Nickel Ni [Ar]3d
8
4s

2
 

3
F4 

29 Copper Cu [Ar]3d
10

4s
1
 

2
S1/2 

30 Zinc Zn [Ar]3d
10

4s
2
 

1
S0 

31 Gallium Ga [Ar]3d
10

4s
2
4p

1
 

2
P1/2 

32 Germanium Ge [Ar]3d
10

4s
2
4p

2
 

3
P0 

33 Arsenic As [Ar]3d
10

4s
2
4p

3
 

4
S3/2 

34 Selenium Se [Ar]3d
10

4s
2
4p

4
 

3
P2 

35 Bromine Br [Ar]3d
10

4s
2
4p

5
 

2
P3/2 

36 Krypton Kr [Ar]3d
10

4s
2
4p

6
 

1
S0 
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Z Element Symbol Configuration Term 

37 Rubidium Rb [Kr]5s
1
 

2
S1/2 

38 Strontium Sr [Kr]5s
2
 

1
S0 

39 Yttrium Y [Kr]4d
1
5s

2
 

2
D3/2 

40 Zirconium Zr [Kr]4d
2
5s

2
 

3
F2 

41 Niobium Nb [Kr]4d
4
5s

1
 

6
D1/2 

42 Molybdenum Mo [Kr]4d
5
5s

1
 

7
S3 

43 Technetium Tc [Kr]4d
5
5s

2
 

6
S5/2 

44 Ruthenium Ru [Kr]4d
7
5s

1
 

5
F5 

45 Rhodium Rh [Kr]4d
8
5s

1
 

4
F9/2 

46 Palladium Pd [Kr]4d
10

 
1
S0 

47 Silver Ag [Kr]4d
10

5s
1
 

2
S1/2 

48 Cadmium Cd [Kr]4d
10

5s
2
 

1
S0 

49 Indium In [Kr]4d
10

5s
2
5p

1
 

2
P1/2 

50 Tin Sn [Kr]4d
10

5s
2
5p

2
 

3
P0 

51 Antimony Sb [Kr]4d
10

5s
2
5p

3
 

4
S3/2 

52 Tellurium Te [Kr]4d
10

5s
2
5p

4
 

3
P2 

53 Iodine I [Kr]4d
10

5s
2
5p

5
 

2
P3/2 

54 Xenon Xe [Kr]4d
10

5s
2
5p

6
 

1
S0 

55 Cesium Cs [Xe]6s
1
 

2
S1/2 

56 Barium Ba [Xe]6s
2
 

1
S0 

57 Lanthanum La [Xe]5d
1
6s

2
 

2
D3/2 

58 Cerium Ce [Xe]4f
1
5d

1
6s

2
 

1
G4 

59 Praseodymium Pr [Xe]4f
3
6s

2
 

4
I9/2 

60 Neodymium Nd [Xe]4f
4
6s

2
 

5
I4 

61 Promethium Pm [Xe]4f
5
6s

2
 

6
H5/2 

62 Samarium Sm [Xe]4f
6
6s

2
 

7
F0 

63 Europium Eu [Xe]4f
7
6s

2
 

8
S7/2 

64 Gadolinium Gd [Xe]4f
7
5d

1
6s

2
 

9
D2 

65 Terbium Tb [Xe]4f
9
6s

2
 

6
H15/2 

66 Dysprosium Dy [Xe]4f
10

6s
2
 

5
I8 

67 Holmium Ho [Xe]4f
11

6s
2
 

4
I15/2 

68 Erbium Er [Xe]4f
12

6s
2
 

3
H6 

69 Thulium Tm [Xe]4f
13

6s
2
 

2
F7/2 

70 Ytterbium Yb [Xe]4f
14

6s
2
 

1
S0 

71 Lutetium Lu [Xe]4f
14

5d
1
6s

2
 

2
D3/2 

72 Hafnium Hf [Xe]4f
14

5d
2
6s

2
 

3
F2 
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Z Element Symbol Configuration Term 

73 Tantalum Ta [Xe]4f
14

5d
3
6s

2
 

4
F3/2 

74 Tungsten W [Xe]4f
14

5d
4
6s

2
 

5
D0 

75 Rhenium Re [Xe]4f
14

5d
5
6s

2
 

6
S5/2 

76 Osmium Os [Xe]4f
14

5d
6
6s

2
 

5
D4 

77 Iridium Ir [Xe]4f
14

5d
7
6s

2
 

4
F9/2 

78 Platinum Pt [Xe]4f
14

5d
9
6s

1
 

3
D3 

79 Gold Au [Xe]4f
14

5d
10

6s
1
 

2
S1/2 

80 Mercury Hg [Xe]4f
14

5d
10

6s
2
 

1
S0 

81 Thallium Tl [Xe]4f
14

5d
10

6s
2
6p

1
 

2
P1/2 

82 Lead Pb [Xe]4f
14

5d
10

6s
2
6p

2
 

3
P0 

83 Bismuth Bi [Xe]4f
14

5d
10

6s
2
6p

3
 

4
S3/2 

84 Polonium Po [Xe]4f
14

5d
10

6s
2
6p

4
 

3
P2 

85 Astatine At [Xe]4f
14

5d
10

6s
2
6p

5
 

2
P3/2 

86 Radon Rn [Xe]4f
14

5d
10

6s
2
6p

6
 

1
S0 

87 Francium Fr [Rn]7s
1
 

2
S1/2 

88 Radium Ra [Rn]7s
2
 

1
S0 

89 Actinium Ac [Rn] 6d
1
7s

2
 

2
D3/2 

90 Thorium Th [Rn] 6d
2
7s

2
 

3
F2 

91 Protactinium Pa [Rn]5f
2
6d

1
7s

2
 

4
K11/2 

92 Uranium U [Rn]5f
3
6d

1
7s

2
 

5
L6 

93 Neptunium Np [Rn]5f
4
6d

1
7s

2
 

6
L11/2 

94 Plutonium Pu [Rn]5f
6
7s

2
 

7
F0 

95 Americium Am [Rn]5f
7
7s

2
 

8
S7/2 

96 Curium Cm [Rn]5f
7
6d

1
7s

2
 

9
D2 

97 Berkelium Bk [Rn]5f
9
7s

2
 

6
H15/2 

98 Californium Cf [Rn]5f
10

7s
2 5

I8 

99 Einsteinium Es [Rn]5f
11

7s
2
 

4
I15/2 

100 Fermium Fm [Rn]5f
12

7s
2
 

3
H6 

101 Mendelevium Md [Rn]5f
13

7s
2
 

2
F7/2 

102 Nobelium No [Rn]5f
14

7s
2
 

1
S0 

103 Lawrencium Lr [Rn]5f
14

7s
2
7p

1
 

2
P1/2 

104 Rutherfordium Rf [Rn] 5f
14

6d
2
7s

2
 

3
F2 

105 Dubnium Db [Rn] 5f
14

6d
3
7s

2
 

4
F3/2 

106 Seaborgium Sg [Rn] 5f
14

6d
4
7s

2
 

5
D0 

107 Bohrium Bh [Rn] 5f
14

6d
5
7s

2
 

6
S5/2 

108 Hassium Hs [Rn] 5f
14

6d
6
7s

2
 

5
D4 
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Appendix I.1 Electromagnetic spectral ranges and
fundamental constants

Frequency

(Hertz)

Wavelength

(meters)

Common 

name of waves

Photon energy 

(eV)

10

3

10

2

10

1

10

0

10

-1

10

-2

10

-3

10

-4

10

-5

10

-6

10

-7

10

-8

10

-9

10

-10

10

-11

10

-12

10

-13

10

5

10

6

10

7

10

8

10

9

10

10

10

11

10

12

10

13

10

14

10

15

10

16

10

17

10

18

10

19

10

20

10

21

10

-9

10

-8

10

-7

10

-6

1x10

-5

1x10

-4

10

-3

10

-2

10

-1

10

0

10

1

10

2

10

3

10

4

10

5

10

6

10

7

Radiowaves

Microwaves

Infrared
Ultraviolet

V
i
s
i
b
l
e

Hard X-rays or Gamma rays

Soft X-rays

Fundamental constants (for magnetic quantities see App.IV.1)

Speed of light in vacuum c=2.99792 × 10
10

 cm/s 

Electron charge e=-1.60218 × 10
-19

 Coulomb=-4.8 × 10
-10

 u.e.s. 

Electron mass (at rest) m=9.10938 × 10
-28

 g 

Proton mass M=1.67262× 10
-24

 g 

Neutron mass Mn=1.675× 10
-24

 g 

Atomic mass unit (m(
12

C)/12) u=1.661× 10
-24

 g 

Planck constant  h=6.62607× 10
-27

 erg.s=4.1357× 10
-15

 eV.s 

 ћ=(h/2π)=1.05457× 10
-27

 erg.s 

Boltzmann constant kB=1.38065× 10
-16 

erg/K 

Stefan-Boltzmann constant 

(total emittance) 

σ=5.67× 10
-5

 erg/(s.cm
2
.K

4
)= 5.67× 10

-8
 

W/(m
2
.K

4
) 

Bohr radius for atomic 

hydrogen (infinite nuclear mass)

a0=0.52918× 10
-8

 cm= 0.52918 Ǻ 

Rydberg constant (or Bohr 

energy e/2a0) (infinite nuclear 

mass) 

RH=109737 cm
-1

= 13.606 eV=h.(3.29× 10
15

 Hz) 

Bohr magneton μB=eћ/2mc=0.9274× 10
-20

 erg/Gauss=  

0.9274× 10
-23

 A.m
2
= 0.9274× 10

-23
 J/Tesla (see 

App.IV.1) 

Nuclear magneton MN=μBm/M= μB/1836.15=  

=eћ/2Mc=5.0508× 10
-24

 erg/Gauss 

Proton magnetic moment 

(maximum component) 

μP=MNgNI=MN(5.586)(1/2)=1.4106× 10
-23

 

erg/Gauss 

Neutron magnetic moment μn=-1.91315 MN 

Avogadro number NA=6.022× 10
23

 mol
-1

 

Electron volt 1 eV= 1.602× 10
-12

 erg= h.(2.418× 10
14

 Hz) 

1 erg= 6.242× 10
11

 eV 

Gas constant R=NAkB= 8.31447× 10
7
 erg/(mol.K) 

kBT at room temperature 0.0259 eV≈ 1/40 eV 

Fine structure constant α=e
2
/ћc=1/137.036 
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Appendix I.2 Perturbation effects in two-level systems

We shall refer to a model system with two eigenstates, labelled |1 > and
|2 >, and correspondent eigenfunctions φ0

1 and φ0
2 forming a complete or-

thonormal basis. The model Hamiltonian is H0 and H0φ
0
m = Emφ

0
m,with m =

1, 2. In real systems the Hamiltonian H can differ from H0 owing to a small
perturbation HP . Following a rapid transient (after turning on the perturba-
tion) the stationary states are described by eigenfunctions that differ from the
ones of the model system by a small amount, that can be written in terms of
the unperturbed basis. This is equivalent to state that the eigenfunctions of
the equation

Hφ = Eφ (A.I.2.1)

are
φ = c1φ0

1 + c2φ0
2 (A.I.2.2)

with c1 and c2 constants. By inserting φ in A.I.2.1 and multiplying by < φ0
1|

and by < φ0
2| in turn, in the light of the orthonormality of the states, one

derives for c1,2

c1(H11 − E) + c2H12 = 0
c1H21 + c2(H22 − E) = 0

with Hmn =< m|H|n >. Non-trivial solutions imply

det

(H11 − E H12

H21 H22 − E
)

= 0

and the eigenvalues turn out

E∓ =
1
2
(H11 + H22) ± 1

2

√
(H11 −H22)2 + 4H12H21 (A.I.2.3)

When the diagonal elements of HP are zero, A.I.2.3 reduces to

E∓ =
1
2
(E1 + E2) ± 1

2

√
(E1 − E2)2 + 4ε2 (A.I.2.4)

where ε2 = | < 2|HP |1 > |2, HP being Hermitian.
The perturbation effects strongly depend on the energy separation ΔE =

E2 −E1. For degenerate energy levels (ΔE = 0) the largest energy correction
occurs, the separation being given by 2ε. For perturbation much weaker than
ΔE, Eq.A.I.2.4 can be expanded, to yield the second-order corrections

E∓ = E2,1 ± ε2

ΔE
(A.I.2.5)
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The corrections to the unperturbed eigenvalues as a function of ΔE are
illustrated below

ε    

E1 

E2 

ε  

ΔE=E2-E1 

E+ 

E- 

Energy 

≈-ε2/ΔE   

≈ε2/ΔE    

The eigenfunctions in the presence of HP can be obtained by deriving the
coefficients c1,2 in A.I.2.2 in correspondence to E = E+ and E = E−. For
widely separated unperturbed states one obtains

φ+ � φ0
1 −

H12

ΔE
φ0

2, φ− � φ0
2 +

H12

ΔE
φ0

1

while for degenerate eigenstates

φ+ =
1√
2
(φ0

1 +
H12

|H12|φ
0
2), φ− =

1√
2
(φ0

1 −
H12

|H12|φ
0
2) (A.I.2.6)

Now we turn to the time evolution of the system, by considering two
cases. The first is the evolution of the system after a static, time-independent
perturbation has been turned on, the second (to be discussed as Appendix
I.3) when a periodic time-dependent perturbation is applied.

To deal with the time dependence one has to refer to the complete unper-
turbed eigenfunctions and to the time-dependent Schrodinger equation:

[H0 + HP (t)]ψ = ih̄
∂ψ

∂t
(A.I.2.7)

The eigenfunction A.I.2.2 is now written with time dependent coefficients

ψ = c1(t)ψ0
1 + c2(t)ψ0

2 (A.I.2.8)

with |c1|2 + |c2|2 = 1. Let us assume the initial condition c1(t = 0) = 1
and c2(t = 0) = 0. The probability that at the time t after turning on the
perturbation the system is found in the state |2 > is given by
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P2(t) = |c2(t)|2 (A.I.2.9)

The equation for c2(t) is obtained by inserting A.I.2.8 into A.I.2.7. Recall-
ing that

H0ψ
0
1,2 = ih̄

∂ψ0
1,2

∂t

one has
HP (c1ψ0

1 + c2ψ0
2) = ih̄(ψ0

1

dc1
dt

+ ψ0
2

dc2
dt

) (A.I.2.10)

By multiplying this equation by (ψ0
1)∗, integrating over the spatial coordinates

and by taking into account that ψ0
1,2(t) = φ0

1,2exp(−iEo
1,2t/h̄) one finds

c1 < 1|HP |1 > +c2 < 1|HP |2 > e−iω21t = ih̄
dc1
dt

(A.I.2.11)

where ω21 = (E0
2 − E0

1)/h̄; < 1|HP |1 >= H11 ≡ ∫
(φ0

1)
∗HPφ

0
1dτ and

< 1|HP |2 >= H12 ≡ ∫
(φ0

1)
∗HPφ

0
2dτ are the matrix elements of the per-

turbation between the stationary states of the unperturbed system 5.
In analogous way, from A.I.2.10, multiplying by (ψ0

2)∗ one derives

c1H21e
+iω21t + c2H22 = ih̄

dc2
dt

(A.I.2.12)

In order to illustrate these equations for c1,2, let us refer to a perturba-
tion which is constant in time, with no diagonal elements. Then (HP )11 =
(HP )22 = 0 and (HP )12 = h̄Γ, (HP )21 = h̄Γ ∗. Eqs. A.I.2.11 and A.I.2.12
become

dc1
dt

= −iΓe−iω21tc2
dc2
dt

= −iΓ ∗e+iω21tc1

By taking the derivative of the second and by using the first one, one has

d2c2
dt2

= iω21
dc2
dt

− c2Γ 2

of general solution

c2(t) = (AeiΩt +Be−iΩt)e
iω21t

2

with Ω = (1/2)
√
ω2

21 + 4Γ 2. The constants A and B are obtained from the
initial conditions already considered, yielding

c2(t) = − iΓ
Ω
sinΩte

iω21t

2

5 In the Feynman formulation the coefficients ci =< i|ψ(t) > are the ampli-
tudes that the system is in state |i > at the time t and one has ih̄(dci/dt) =∑

j
Hij(t)cj(t), Hij being the elements of the matrix Hamiltonian.
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and therefore

P2(t) = |c2(t)|2 =
4Γ 2

ω2
21 + 4Γ 2

sin2 (
√
ω2

21 + 4Γ 2)t
2

, (A.I.2.13)

known as Rabi equation. P1(t) = 1 − P2(t).
It is worthy to illustrate the Rabi equation in the case of equivalent states,

so that E0
1 = E0

2 . We shall refer to such a situation in discussing the molecular
Hydrogen ion H+

2 where an electron is shared between two protons (§8.1).
Then ω21 = 0 and Eq. A.I.2.13 becomes

P2(t) = sin2Γt (A.I.2.14)

namely the system oscillates between the two states. After the time t = π/2Γ
the system is found in state |2 >, even though the perturbation is weak. For
H+

2 one can say that the electron is being exchanged between the two protons.
For widely separated states so that ω2

21 � 4Γ 2 Eq. A.I.2.13 yields

P2(t) = (
2Γ
ω21

)2sin2ω21t

2
(A.I.2.15)

predicting fast oscillations but very small probability to find the system in
state |2 >.

Pulse resonance techniques (see Chapter 6) can be thought as an applica-
tion of the Rabi formula once that the two spin states (spin up and spin down
in a magnetic field) are “forced to become degenerate” by the on-resonance
irradiation at the separation frequency (E0

2 − E0
1)/h.

In the presence of a relaxation mechanism driving the system to the low-
energy state, a term −ih̄γ (with γ the relaxation rate) should be included in
the matrix element H22. In this case, from the solution of the equations for
the coefficients c1,2(t) the probability P2(t) corrects Eq. A.I.2.14 for the Rabi
oscillations with a damping effect. For strong damping the oscillator crosses
to the overdamped regime: after an initial raise P2(t) decays to zero without
any oscillation (see the book by Budker, Kimball and De Mille quoted
in the preface). Some more detail on the relaxation mechanism for spins in a
magnetic field will be given at Chapter 6.
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Appendix I.3 Transition probabilities and selection
rules

The phenomenological transition probabilities induced by electromagnetic
radiation are defined in Problem F.I.1, where the Einstein relations are also
derived. To illustrate the mechanism underlying the effect of the radiation one
has to express the absorption probability W12 between two levels |1 > and
|2 > in terms of the Hamiltonian describing the interaction of the radiation
with the system. Here this description is carried out by resorting to the time-
dependent perturbation theory.

The perturbation Hamiltonian HP (t), introduced in Appendix I.2, is then
specified in the form

HP (t) = H1e
iωt . (A.I.3.1)

In fact, from the one-electron Hamiltonian in e.m. field (see Eq. 1.26)

H =
(p + eA/c)2

2m
− eϕ (A.I.3.2)

(A and ϕ vector and scalar potentials), recalling that [p,A] = −ih̄(∇.A) ∝
divA = 0 in the Lorentz gauge and that A(r, t) = A0exp[i(k.r − ωt)], the
first order perturbation Hamiltonian is

Hrad = − ih̄e
mc

A.∇ (A.I.3.3)

By expanding A(r, t)

A(r, t) = A0e
−iωt[1 + i(k.r) + ...] (A.I.3.4)

and limiting the attention to the site-independent term (electric dipole ap-
proximation or long-wave length approximation) one can show that6

Hrad ∝ A0.∇ ∝ A0.r ∝ E0.r
c

ω21

Therefore H1 in A.I.3.1 takes the form H1 = −er.E0, with E0 amplitude of
the e.m. field (electric dipole mechanism of transition).

Now we use the results obtained in Appendix A.I.2, again considering
that (Hrad)11 = (Hrad)22 = 0 and (Hrad)12 = (Hrad)∗21. The equations for
the coefficients c1,2 become

6 It is recalled that E = −(1/c)∂A/∂t and that the matrix element of the ∇
operator can be expressed in terms of the one for r:

< 2|∇|1 >= −mω21 < 2|r|1 > /h̄
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ih̄
dc1
dt

= c2e−iω21tcosωt < 1|x|2 > eE0

ih̄
dc2
dt

= c1e+iω21tcosωt < 2|x|1 > eE0 (A.I.3.5)

for a given x-component of the operator r. For Eqs. A.I.3.5 only approximate
solutions are possible, essentially based on the perturbation condition

HP � H0 (while they are solved exactly for ω = 0, as seen in App.I.2).
For ω around ω21 one finds

|c2(t)|2 =
t2

h̄2

sin2

(
(ω−ω21)t

2

)
(ω − ω21)2t2

| < 2|H1|1 > |2 . (A.I.3.6)

|c2(t)|2 has the time dependence depicted below, with a maximum at ω = ω21

proportional to t2.

0-4π/t -2π/t 4π/t2π/t

ω-ω
21

|c
2

(t)|
2

On increasing t the zeroes of the function tend to the origin while the
maximum increases with t2. Thus for t→ ∞ one has |c2(t)|2 ∝ δ(ω − ω21), δ
being the Dirac delta function. By taking into account the spread of the
excited state due to the finite width (see Prob. F.I.1) or by resorting to the
non-monocromatic character of the radiation, one writes

|c2(t)|2 ∝ t2

h̄2

∫
ρ(ω)

sin2 (ω−ω21)t
2

(ω − ω21)2 t2

4

dω (A.I.3.7)

where the frequency distribution ρ(ω) of the radiation is a slowly varying
function around ω21. Then one can set ρ(ω) � ρ(ω21). The integration over ω
yields 2π/t, and thus the transition probability per unit time becomes

W12 = |c2(t)|2/t =
2π
h̄2 | < 2|H1|1 > |2δ(ω − ω21) .
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For linear polarization of the radiation along ε̂ this Equation reads

W12 =
2π
h̄2 | < 2| − er.ε̂|1 > |2E2

0δ(ω − ω21) (A.I.3.8)

For random orientation of r with respect to the e.m. wave one has to average
cos2θ over θ, to obtain 1/3. By introducing the energy density ρ(ω21) or ρ(ν21)
(ρ =< E2 > /4π) one finally has

W12 =
2π
3h̄2 ρ(ν21)|R21|2 (A.I.3.9)

where |R21|2 = | < 2| − ex|1 > |2 + | < 2| − ey|1 > |2 + | < 2| − ez|1 > |2.
R21 represents an effective quantum electric dipole associated with

a pair of states. It can be defined R21 =< 2|− er|1 > exp(−iω21t) and thus
it can be thought a kind of electric dipole oscillating at the frequency of the
transition. Since the power irradiated by a classical dipole is
P = 2 < μ̈2 > /3c3 ∝ ω4 < μ2 >, if one writes for the spontaneous emission
(see Problem F.I.1) P = A21hν21 ∝ ν3

21hν21 < |R21|2 >∝ ω4 < |R21|2 >,
that heuristic definition of R21 is justified.

The selection rules arise from the condition

R21 ≡< 2| − er|1 >
= 0.

In the central field approximation the selection rules are 7

i) each electron makes a transition independently from the others ;
ii) neglecting the spin, the electric dipole transitions are possible when

Δl = ±1 and Δm = 0,±1 (according to parity arguments involving the
spherical harmonics).

When the spin-orbit interaction is taken into account the selection rules
are
Δj = 0,±1 and j = 0 ↔ j = 0 transition not allowed ;
Δm = 0,±1 and no transition from m = 0 ↔ m = 0, when Δj = 0.
The magnetic dipole transitions (mechanism associated with the term

(ik.r) in A.I.3.4) are controlled by the selection rules
Δl = 0 and Δm = 0,±1

while for the transition driven by the electric quadrupole mechanism
Δl = 0,±2 and Δm = 0,±1,±2 (l = 0 ↔ l′ = 0 forbidden)
The transition probabilities associated with the magnetic dipole or with

the electric quadrupole mechanisms in the visible spectral range are smaller
thanW12 in A.I.3.9 by a factor of the order of the square of the fine structure
constant α = e2/h̄c � 1/137. Further details on the selection rules will be
given at §3.5.

7 To derive the selection rules remind that < Yl2,m2 |x|Yl1,m1 >= δl2,l1±1δm2,m1±1

(and similar for y) while < Yl2,m2 |z|Yl1,m1 >= δl2,l1±1δm2,m1 .
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Problems F.I

Problem F.I.1 Refer to an ensemble of non-interacting atoms, each with
two levels of energy E1 (ground state) and E2 (excited state). By applying
the conditions of statistical equilibrium in a black-body radiation bath, derive
the relationships among the probabilities of spontaneous emission A21, of
stimulated emission W21 and of absorption W12 ( Einstein relations).
Then assume that at t = 0 all the atoms are in the ground state and derive
the evolution of the statistical populations N1(t) and N2(t) as a function of
the time t at which electromagnetic radiation at the transition frequency is
turned on (non-degenerate ground and excited states).

Discuss some aspects of the Einstein relations in regards of the possible
maser and laser actions and about the finite width of the spectral line
(natural broadening), by comparing the result based on the Heisenberg
principle with the classical description of emission from harmonic oscillator
(Lorentz model).

Solution:
From the definition of transition probabilities,

 

 

W21  W12  A21 

N1 

N2 

 ρB21  ρB12 

the time dependence of the statistical populations are written

dN1

dt
= −N1W12 +N2W21 +N2A21

dN2

dt
= +N1W12 −N2W21 −N2A21

In terms of the e.m. energy density at the transition frequency one has
W12 = B12ρ(ν12), W21 = B21ρ(ν12), B12 and B21 being the absorption and
emission coefficients, respectively.

One can assume that the system attains the equilibrium at a given tem-
perature T inside a cavity where the black-body radiation implies the energy
density (see Problem F.I.2)

ρ(ν12) =
8πhν3

12

c3
1

e
hν12
kBT − 1

. a)

At equilibrium (dN1/dt) = (dN2/dt) = 0. Then
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N1

N2
=
W21 +A21

W12
=
ρB21 +A21

ρB12
and ρ =

A21/B21

(N1/N2)(B21/B12) − 1
. b)

On the other hand, in accordance to Boltzmann statistics

N1

N2
= e

hν12
kBT c)

The three equations a,b and c are satisfied for

B21 = B12 and A21 =
8πhν3

12

c3
B21

These Einstein relations, derived in equilibrium condition are assumed to
hold also out of equilibrium.

For levels 1 and 2 with statistical weights g1 and g2 respectively, N1/N2 =
g1
g2
e

hν12
kBT and from the equilibrium condition

A21 =
8πhν3

12

c3
g1
g2
B12 and A21 =

8πhν3
12

c3
B21

so that g1B12 = g2B21.
Now the system in the presence of radiation at the transition frequency

(with initial condition N1(t = 0) = N and N2(t = 0) = 0) is considered. Since

dN1

dt
= −N1W12 +N2W21 +N2A21 ≡ −N1W +N2(W +A) =

= −N1(2W +A) +N(W +A)

one derives

N1(t) =
N

2W +A
(A+W +We−(2W+A)t)

plotted below:

 

N(t=0) ≡ N 

N1(t) 

t 

N(W+A)/(2W+A) 

for t → ∞    N1 / N2 = (W+A)/W 

For A � W ≡ W12 = W21 the saturation condition N1 = N2 = N/2 is
achieved. It is noted that for A�W , by means of selective irradiation at the
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transition frequency the equilibrium condition implies a statistical tempera-
ture (describingN1/N2) different from the one of the thermostat. ForN1 < N2

the statistical temperature would be negative (further discussion of these
concepts is given at Chapter 6).

The condition of negative temperature (or population inversion) is
a pre-condition for having radiation amplification in masers or in lasers. In
the latter the spontaneous emission (i.e. A) acts as a disturbance, the
correspondent “signal” being unrelated to an input.

Since A21 ∝ ν3
12 the spontaneous emission can be negligible with respect

to the stimulated emission B12ρ(ν12) in the Microwave (MW) or in the
Radiofrequency (RF) ranges, while it is usually rather strong in the visible
range.

For the finite linewidth of a transition line the following is remarked. Ac-
cording to the uncertainty principle, because of the finite life-time τ of the
excited state, of the order ofA−1, the uncertainty in the energyE2 isΔE � Ah̄
and then the linewidth is at leastΔν12 � τ−1. In the classical Lorentz descrip-
tion, the electromagnetic emission is related to a charge (the electron) in har-
monic oscillation, with damping (radiation damping). The one-dimensional
equation of motion of the charge can be written

m
d2x

dt2
+ 2Γm

dx

dt
+mω2

0x = 0

with solution x(t) = x0exp(−Γt)exp(−iω0t) (for Γ � ω0). The Fourier trans-
form is FT [x(t)] = 2x0/[Γ − i(ω − ω0)] implying an intensity of the emitted
radiation proportional to

I(ω, Γ ) ∝ |FT [x(t)]|2 ∝ Γ

Γ 2 + (ω − ω0)2

namely a Lorenztian curve centered at ω0 and of width Γ .
One can identify Γ with τ−1 ∼ A and a certain equivalence of the classical

description with the semi-classical theory of radiation is thus established.
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Problem F.I.2 (The black-body radiation).
Black-body radiation is the one present in a cavity of a body (e.g. a hot

metal) brought to a given temperature T . It is related to the emission of e.m.
energy over a wide frequency range.

The energy density u(ν, T ) per unit frequency range around ν can be
measured from the radiation ρS(ν, T ) coming out from a small hole of area
S (the black-body), per unit time and unit area. Prove that ρS(ν, T ) =
u(ν, T )c/4.

The electromagnetic field inside the cavity can be considered as a set
of harmonic oscillators (the modes of the radiation). From the Planck’s
estimate of the thermal statistical energy, prove that the average number
< n > describing the degree of excitation of one oscillator is
< n >= 1/[exp(hν/kBT ) − 1] .
Then derive the number of modes D(ω)dω in the frequency range dω

around ω. (Note that D(ω) does not depend on the shape of the cavity).
By considering the photons as bosonic particles derive the Planck dis-

tribution function, the Wien law, the total energy in the cavity and the
number of photons per unit volume.

Then consider the radiation as a thermodynamical system, imagine an
expansion at constant energy and derive the exponent γ in the adiabatic
transformation TV γ−1 = const. Evaluate how the entropy changes during the
expansion.

Finally consider the e.m. radiation in the universe. During the expansion
of the universe by a factor f each frequency is reduced by the factor f1/3.
Show that the Planck distribution function is retained along the expansion
and derive the f -dependence of the temperature.

Solution:

C

A

B

c

Cavity

θ

dΏ dS

V=ABC

φ

The energy emitted in dΩ from the element dS is

ρSdSdν = u(ν, T )c cosθdν
dΩ

4π
dS
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Then

ρS(ν, T ) =
u(ν, T )c

4π

∫ 2π

0

dϕ

∫ π/2

0

cosθsinθdθ =
u(ν, T )c

4π
2π
2

=
u(ν, T )c

4

In the Planck estimate the average energy per oscillator instead of be-
ing < ε >= kBT (as from the equipartition principle in the Maxwell-
Boltzmann statistics) is evaluated according to

< ε >=
∑∞

n=0 nε0e
− nε0

kBT∑∞
n=0 e

− nε0
kBT

where ε0 = hν is the quantum grain of energy for the oscillator at frequency
ν. By defining x = exp(−ε0/kBT ) one writes

< ε >= ε0

∑∞
n=0 nx

n∑∞
n=0 x

n

and since
∑∞

n=0 x
n = 1/(1−x) for x < 1, while

∑∞
n=0 nx

n = xd(
∑∞

n=0 x
n)/dx,

one obtains

< ε >= hν < n >, with < n >=
1

e
hν

kBT − 1

It is noted that for kBT � hν, < n >→ kBT/hν and < ε >→ kBT , the
classical result for the average statistical energy of one-dimensional oscillator,
i.e. for one of the modes of the e.m. field.

The number of modes having angular frequency between ω and ω + dω is
conveniently evaluated by referring to the wavevector space and considering
kx = (π/A)nx, ky = (π/B)ny and kz = (π/C)nz (see the sketch of the cavity).
Since the e.m. waves must be zero at the boundaries, one must have an integer
number of half-waves along A,B and C, i.e. nx,y,z = 1, 2, 3.... By considering
n as a continuous variable one has dnx = (A/π)dkx and analogous expressions
for the y and z directions. The number of k modes verifying the boundary
conditions per unit volume of the reciprocal space, turns out

dnxdnydnz

dkxdkydkz
≡ D(k) =

ABC

8π3
=
V

8π3
.

D(k) is the density of k-modes or density of k-states8.
8 This concept will be used for the electronic states and for the vibrational states

in crystals, Chapter 12 and Chapter 14. It is noted that the factor 8 is due to
the fact that in this method of counting only positive components of the wave
vectors have to be considered. For running waves, in the Born-Von Karmann
periodical conditions (§12.4), the same number of excitations in the reciprocal
space is obtained.
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For photons the dispersion relation is ω = ck and the number of modes
D(ω) in dω can be estimated from the volume dk in the reciprocal space in
between the two surfaces at constant frequency ω and ω + dω:

 

ky 

kx 

kz 

k

k+dk 

Then

D(ω)dω = 2D(k)dk = 2
V

8π3
4πk2dk =

V

π2c3
ω2dω

and

D(ω) =
V

π2c3
ω2 or D(ν) =

8πV
c3
ν2 ,

the factor 2 being introduced to take into account the polarization states.
Photons are bosonic particles and therefore, by referring to the Bose-

Einstein statistical distribution function

fBE = 1/[exp(hν/kBT ) − 1]

one derives the Planck distribution function ρ(ν) (energy per unit volume
in the unit frequency range) as follows. The energy related to the number of
photons dnν within dν around the frequency ν is

dE(ν) = hνdnν and dnν = fBED(ν)dν =
8πV ν2

c3
dν

e
hν

kBT − 1

By definition ρ(ν)dν = dE(ν)/V and then

ρ(ν) =
8πhν3

c3
1

e
hν

kBT − 1

The Wien law can be obtained by looking for the maximum in ρ(ν):
dρ/dν = 0 for hνmax/kBT � 2.8214, corresponding to
νmax � T × 5.88× 1010 Hz (for T in Kelvin). It can be remarked that λmax =
(0.2898/T ) cm 
= c/νmax.

The total energy per unit volume U(T ) is obtained by integrating over the
frequency and taking into account the number of modes in dν and the average
energy per mode hν < n >:
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U(T ) =
1
V

∫
dν
D(ν)hν

e
hν

kBT − 1
= 3!ζ(4)

k4
BT

4

π2c3h̄3

where ζ is the Riemann zeta function, yielding U(T ) = σT 4, with
σ = 7.566×10−15erg.cm−3K−4, corresponding to the total emittance (Stefan-
Boltzmann law) with the constant 5.6 × 10−12 Watt/cm2K4.

The density of photons is obtained by omitting in U(T ) the one-photon
energy:

ntot(T ) =
1
V

∫
dν

D(ν)

e
hν

kBT − 1
= 2ζ(3)

k3
BT

3

π2c3h̄3 = 20.29 × T 3cm−3

To derive the coefficient γ for expansion without exchange of energy, the
radiation in the cavity is considered as a thermodynamical system of volume
V = ABC and temperature T (the temperature entering the energy distribu-
tion function). From V U(T ) = σT 4V = const, one has 4V dT = −TdV , i.e.
TV 1/4 = const and therefore γ = 5/4.

During the expansion, since N = ntotV ∝ T 3V , while TV 1/4 = const, if
the volume is increased by a factor f one has

Tfinal = Tinitial(
Vinitial

Vinitialf
)

1
4 = Tinitialf

− 1
4

and the number of photons becomes

Nfinal = Ninitialf(
Tfinal

Tinitial
)3 = Ninitialf

1
4

To evaluate the entropy the equation of state is required. The pressure of
the radiation is obtained by considering the transfer of moment of the photons
when they hit the surface and the well-known result P = U/3 is derived. For
the entropy

dS =
1
T
d(UV ) +

PdV

T
=
V

T

dU

dT
dT +

4U
3T
dV

and since it has to be an exact differential dU/dT = 4U/T . Thus PV = Utot/3,
where Utot = UV and then

dS =
4U
3T
dV +

V

T
4σT 3dT

From the condition of exact differential S = 4Utot/3T . The decrease of T
yields an increase of the entropy because the number of photons increases. It
is noted that for T → 0, S, P and U tend to zero.

For transformation at constant entropy, assumed reversible, one would
have dS = 0 and then

4σT 3

3
dV + 4σV T 2dT = 0 ,
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so that TV 1/3 = const.

In the expansion of the universe by a factor f the cosmological principle
(each galaxy is moving with respect to any other by a velocity proportional
to the distance) implies that each frequency νi is shifted to νf = νi/f

1/3.
As a consequence of the expansion the energy density du(νi, Ti) in a given
frequency range dνi is decreased by a factor f because of the increase in the
volume and by a factor f1/3 because of the energy shift for each photon. Then

duf =
dui

ff
1
3

=
8πhν3

i

c3
dνi

e
hνi

kBT − 1

1
f

4
3

which can be rewritten in terms of the new frequency νf = νi/f1/3

duf =
8πhν3

f

c3
dνf

e
hνf f1/3

kBT − 1
,

namely the same existing before the expansion, with the temperature scaled
to T/f1/3. Since Utot = UV ∝ T 4V the entropy of the universe is constant
during the expansion, while the energy decreases by a factor f1/3. The number
of photons is constant.

In the Figure the Planck distribution function (solid line) for the cosmic
background radiation, resulting from a series of experimental detections, is
evidenced.
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Problem F.I.3 Derive the life-time of the Hydrogen atom in the 2p state
and the natural broadening of the line resulting from the transition to
the ground state. By neglecting relativistic effects (see Problem F.I.15 and
Appendix V.1) evaluate the energy split due to the spin-orbit interaction
(§1.6) and the effective field of orbital origin acting on the electron in the 2p
state.

Solution:
The life time (Prob. F.I.1) is τ = 1/A2p→1s, with A2p→1s the spontaneous

emission transition probability. Then

A2p→1s =
32π3ν3

3c3h̄
1
3

∑
α

| < φ2pα| − er|φ1s > |2 (α ≡ 0,±1)

From the evaluations of the matrix elements of the electric dipole compo-
nents (See Tables I.4.2) one obtains

A2p→1s = (
2
3
)8

e8

c3a0h̄
4 = 6.27 × 108 s−1 ,

or τ = 1.6 × 10−9 s.
Then the natural line-width can be written Δν = (2.54×10−7/2π)ν2p→1s.
The energy split due to the spin-orbit interaction is ΔE = (3/2)ξ2p, with

ξ2p = e2h̄2/(2m2c2a30 × 24), so that ΔE = 4.53 × 10−5 eV and therefore
H = (ΔE/2μB) � 4 kGauss (see also Problems II.1.2 and I.6.4).

Problem F.I.4 Show that the stimulated emission probability W21 due
to thermal radiation is equivalent to the spontaneous emission probability A21

times the average number of photons (Prob. F.I.1).
Solution:
From < n >= 1/[exp(hν/kBT ) − 1], while

ρ(ν) = (8πhν3/c3)/[exp(hν/kBT ) − 1]

(Prob. F.I.2), and from the Einstein relation B21ρ(ν) = A21 < n >.

Problem F.I.5 By considering the sun as a source of black-body radia-
tion at the temperature T � 6000 K, evaluate the total power emitted in a
bandwidth of 1 MHz around the wavelenght 3 cm (the diameter of the sun
crown can be taken 2R = 106 km).

Solution:
For λ = 3 cm the condition hν � kBT is verified. To each e.m.

mode one can attribute an average energy < ε >= kBT . The density of
modes is (8π/c3)ν2 and thus the energy in the bandwidth Δν is Δu =



Problems F.I 57

(8π/c3)ν2ΔνkBT . The power emitted per unit surface is ρS = uc/4 (see Prob.
F.I.2) and therefore

ΔP =
8π
c3
ν2ΔνkBT

c

4
4πR2 � 1.8 × 109Watt .

Problem F.I.6 The energy flow from the sun arriving perpendicularly to
the earth surface (neglecting atmospheric absorption) is Φ = 0.14 Watt/cm2.
The distance from the earth to the sun is about 480 second-light. In the
assumption that the sun can be considered as a black-body emitter, derive
the temperature of the external crown.

Solution:
The flow scales with the square of the distances. Thus the power emitted

per unit surface from the sun can be written Φtot = (d/R)2Φ (d average
distance, R radius of the sun). Then Φtot = 8 × 103 Watt/cm2 and since
(Problem F.I.2) Φ = σcT 4/4 = (5.67 × 10−12 × T 4) Watt/cm2, one obtains
TSun � 6129 K.

Problem F.I.7 Because of the thermal motions of the atoms the emission
line from a lamp usually has a Gaussian shape. By referring to the yellow line
at about 5800 Å by Sodium atom, neglecting the life-time broadening and
assuming the Maxwellian distribution of the velocities, prove that statement.
Estimate the order of magnitude of the broadening, for a temperature of the
lamp of 500 K.

Show that the shift due to the recoil of the atom upon photon emission is
negligible in comparison to the motional broadening. Comment on the pos-
sibility of resonance absorption by atoms in the ground state. At which
wavelength one could expect that the resonance absorption would hardly be
achieved?

Solution:
Along the direction x of the motion the Doppler shift is

λ = λ0(1 ± vx
c

)

The number of atoms dn(vx) moving with velocity between vx and vx + dvx
is

dn(vx) = N
√

M

2πkBT
e
− Mv2

x
2kBT dvx ,

N the number of atoms, with mass M (see Problem F.I.11). The atoms emit-
ting in the range dλ around λ then are
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dn(λ) = N

√
Mc2

2πλ2
0kBT

e
−Mc2(λ−λ0)2

2kBT λ2
0 dλ

The intensity I(λ) in the emission spectrum is proportional to dn(λ)

I(λ) ∝
√

1
πδ2
e−

(λ−λ0)2

δ2

with δ =
√

2kBT/M(λ0/c).
Numerically, for the Na yellow line one has a broadening of about 1000

MHz, in wave-numbers, 1/δ � 0.034 cm−1.
The photon momentum being hν/c, the recoil energy isER = (hν/c)2/2M �

9 × 10−11 eV and the resonance absorption is not prevented. For wavelength
in the range of the γ-rays the recoil energy would be larger than the Doppler
broadening and without the Mossbauer effect (see §14.6) the resonance
absorption would hardly be possible.

Problem F.I.8 X-ray emission can be obtained by removing an electron
from inner states of atoms, with the subsequent transition of another electron
from higher energy states to fill the vacancy. The X-Ray frequencies vary
smoothly from element to element, increasing with the atomic number Z (see
plot). Qualitatively justify the Moseley law λ−1 ∝ (Z − σ)2 (σ screening
constant):

W
a
v
e
l
e
n
g
t
h

λ
(
Å
)

Kα

Fig. 1.10. Wavelength of the Kα line as a function of the atomic number.
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Solution:
From the one-electron eigenvalues in central field with effective nuclear

charge (Z − σ) (σ reflecting the screening from other electrons, see §2.1 and
§2.2), transitions between ni and nf imply the emission of a photon at energy

hνi→f = RHhc(Z − σ)2( 1
n2

f

− 1
n2

i

)

The K-lines are attributed to the transitions to the final state nf = 1. The
Kα line corresponds to the longest wavelength (ni = 2).

Problem F.I.9 Estimate the order of magnitude of the voltage in an
X-ray generator with Fe anode yielding the emission of the Kα line and the
wavelength of the correspondent photon.

Solution:
The energy of the K term is EK � 13.6(Z − σK)2(3/4) eV. For σK � 2

one would obtain for the voltage V � 5800 Volts. The wavelength of the Kα

line turns out around 1.8 Å.

Problem F.I.10 An electron is inside a sphere of radius Rs = 1 Å, with
zero angular momentum. From the Schrödinger equation for the radial part of
the wavefunction derive the lowest eigenvalue En=1 and the quantum pressure
P = −dEn=1/dV .

Solution:
The equation for rR(r) reads

− h̄
2

2m
d

dr2
(rR) = E(rR)

(see Eq. 1.14). From the boundary condition R(Rs) = 0 one has R ∝
[sin(kr)]/kr, with knRs = nπ for n = 1, 2, 3.... Then

En=1 =
h̄2k2

n=1

2m
=
π2h̄2

2mR2
s

and

P =
πh̄2

4mR5
s

For R = 1 Å one has P = 9.6× 1012 dyne/cm2. Compare this value with the
one of the Fermi gas in a metal (§12.7).

Problem F.I.11 From the Boltzmann distribution of the molecular ve-
locities in ideal gas, show that the number of molecules nc that hit the unit
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surface of the container per second is given by n < v > /4 (n number of
molecules per cm3) with < v > the average velocity. Then numerically esti-
mate nc for molecular Hydrogen at ambient temperature and pressure (see
Problem F.I.7).

Solution:
From the statistical distribution of the velocities the number of molecules

moving along a given direction x with velocity between vx and vx + dvx is

dn(vx) = n(
M

2πkBT
)1/2e−Mv2

x/2kBT dvx

The molecules colliding against the unit surface in a second are

nc =
∫ ∞

0

vxdn(vx) = n(
M

2πkBT
)1/2(−kBT

M
)
[
e−Mv2

x/2kBT

]∞
0

= n(
kBT

2πM
)1/2

The average velocity is

< v >=
1
n

∫ ∞

0

vdn(v) =
1
n

∫ ∞

0

v

[
4πn(

M

2πkBT
)3/2v2e−Mv2/2kBT

]
dv =

= (
8kBT

πM
)1/2 =

4nc

n

Numerically, for molecular Hydrogen H2, nc � 1.22× 1024 molecules/(s.cm2).

Problem F.I.12 Hydrogen atoms in the ground-state are irradiated at
the resonance frequency (En=2 − En=1)/h, with e.m. radiation having the
following polarization: a) linear; b) circular; c) unpolarized.

By considering only electric dipole transitions, discuss the polarization of
the fluorescent radiation emitted when the atoms return to the ground-state.

Solution:
a) The only possible transition is to the 2pz state, with z the polarization

axis (Δm = 0). No radiation is re-emitted along z while it is emitted in the
xy plane, with polarization of the electric field along z.

b) Only transitions to 2p±1 state are possible (Δm = ±1). The fluores-
cent radiation when observed along the z direction is circularly polarized. By
turning the observation axis from the z axis to the xy plane, the fluorescent
radiation will progressively turn to the elliptical polarization, then to linearly
polarized when the observation axis is in the xy plane.

c) Any transition 1s → 2p±1,0 is possible, with uniform distribution over
all the solid angle. The atom will be brought in the superposition state and the
fluorescent radiation will have random wave-vector orientation and no defined
polarization state.

Problem F.I.13 An electron is moving along the x-axis under a potential
energy V (x) = (1/2)kx2, with k = 5 × 104 dyne/cm. From the Sommerfeld
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quantization (see Prob. I.4.4) obtain the amplitudes A of the motion in the
lowest quantum states.

Solution:
From x(t) = Asin[(

√
k/m)t + ϕ] the quantum condition in terms of the

period T = 2π
√
m/k reads∮

mẋdx =
∫ T

0

mẋẋdt = A2k

∫ T

0

cos2(

√
k

m
t− ϕ)dt = A2k

T

2
= nh

Thus A0 = 0 (the zero-point energy is not considered here),
A1 = 1.47 × 10−8cm, A2 = 2.07 × 10−8cm.

Problem F.I.14 The emission of radiation from intergalactic Hydro-
gen occurs at a wavelength λ′ = 21 cm (see §5.2). The galaxy, that can be
idealized as a rigid disc with homogeneous distribution of Hydrogen, is ro-
tating. Estimate the Doppler broadening Δνrot of the radiation, assuming a
period of rotation of 108 years and radius of the galaxy R = 10 kps � 3×1018

cm. Prove that Δνrot is much larger than the broadening ΔνT due to the
thermal motion of the Hydrogen gas (assumed at a temperature T = 100 K)
and larger than the shift due to the drift motion of the galaxy itself (at a
speed of approximately vd = 107 cm/s).

θ

ω

r

x

y

observation

Solution:
The Doppler shift at large distance along the y direction is

ν(r, θ) � ν0(1 +
ν

c
cosθ)
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with νo = λ′/c. The mean-square average frequency is

ν̄2 =
1
πR2

∫ R

0

rdr

∫ 2π

0

ν2(r, θ)dθ = ν2
0+
ω2ν2

0

cπR2

∫ R

0

r3dr

∫ 2π

0

cos2θdθ = ν2
0(1+

ω2R2

4c2
)

Therefore
Δνrot = ν0

ωR

2c
= ν0

πR

cT
� ν0.10−3

From Problem F.I.7 one deduces the order of magnitude of the thermal broad-
ening:

ΔνT =
ν0
λ′
Δλ =

ν0
λ′

√
2kBT

mH

λ′

c
=
ν0
c

√
2kBT

mH
� ν0(4 × 10−6)

For the drift associated with the linear motion of the galaxy one can ap-
proximately estimate the frequency shift of the order of Δνd = (νd/c)ν0 �
3.3 × 10−4ν0.

Problem F.I.15 In a description of the relativistic effects more detailed
than the Thomas-Frenkel model (§1.6) to derive the one-electron spin-orbit
Hamiltonian, the Darwin term

HD =
πh̄2

2m2c2
Ze2δ(r) ≡ πα2Ze

2

2a0
a30δ(r)

(with α = e2/h̄c = 1/137.036 the fine structure constant) is found to be
present.

Discuss the effects of HD in Hydrogenic atoms, numerically comparing the
corrections to the eigenvalues with the ones due to the spin-orbit Hamiltonian
ξnll.s.

Solution:

From

< φnl|HD|φnl >≡ D
∫
φ∗nl(r)δ(r)φnl(r)dr = D|φnl(0)|2 ,

with D = πα2Ze2a20/2, one sees that no effects due to HD are present for
non-s states (within the approximation of nuclear point-charge).

The shift for s states can be written (see Table I.4.2)

ΔED =
Z2α2

n

(
e2Z2

2a0n2

)
≡ −Z

2α2

n
E0

n

with E0
n = −Z2e2/2a0n2 the unperturbed eigenvalues.

From



Problems F.I 63

ξnl = (Ze2/2m2c2) < r−3 >nlm

and < r−3 >nlm= Z3/[a30n
3l(l + 1/2)(l + 1)] (see Table I.4.3), (l 
= 0)

ΔESO =
Z2α2(−E0

n)
2nl(l + 1

2 )(l + 1)
[j(j + 1) − l(l + 1) − 3/4] .

The relativistic kinetic energy is c(p2 + m2c2)1/2 − mc2 = (p2/2m) −
(p4/8m3c2) + .... Then the energy correction reads

ΔEkin =< nlj| − p4/8m3c2|nlj >= − 1
2mc2

< nlj|( p
2

2m
)2|nlj >=

= − 1
2mc2

< nlj|(H0 + e2/r)2|nlj >

and from the expectation value of < r−2 > (see Table I.4.3) one obtains

ΔEkin = −E0
n

Z2α2

n2

[
3
4
− n

l + 1
2

]
.

From ΔED +ΔESO +ΔEkin the eigenvalues of the Dirac theory,

Efs
n,j = −E0

n

Z2α2

n2

[
3
4
− n

j + 1
2

]
are obtained (see Appendix V.1).
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Typical atoms

Topics

Effects on the outer electron from the inner core
Helium atom and the electron-electron interaction
Exchange interaction
Pauli principle and antisymmetry
Slater determinantal eigenfunctions

2.1 Alkali atoms

Li, Na, K, Rb, Cs and Fr are a particular group of atoms characterized by
one electron (often called optical being the one involved in optical spectra)
with expectation value of the distance from the nucleus < r > considerably
larger than the one of the remaining (N − 1) electrons, forming the internal
“core”. The alkali atoms are suited for analyzing the role of the core charge in
modifying the Coulomb potential (−Ze2/r) pertaining to Hydrogenic atoms
(§1.4), as well as to illustrate the effect of the spin-orbit interaction (§1.6).

From spectroscopy one deduces the diagram of the energy levels for Li
atom reported in Fig. 2.1, in comparison to the one for Hydrogen.

In Fig. 2.2 the analogous level scheme for Na atom is shown, with the main
electric-dipole transitions yielding the emission spectrum.

The quantum numbers for the energy levels in Fig. 2.1 are the ones pertain-
ing to the outer electron. At first we shall neglect the fine structure related to
the spin-orbit interaction, which causes the splitting in doublets of the states
at l 
= 0, as indicated for Na in Fig. 2.2.

A summarizing collection of the energy levels for alkali atoms is reported
in Fig. 2.3. It should be remarked that because of the different extent of
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Fig. 2.1. Energy level diagram (Grotrian diagram) of Li atom, in term of the
quantum numbers nl of the optical electron and comparison with the correspondent
levels (n > 1) for H atom. The quantum defect δ (or Rydberg defect) indicated
for 2s and 3s states, is a measure of the additional (negative) energy of the state
in comparison to the correspondent state in Hydrogen. The wavelengths (in Å) for
some transitions are reported.

penetration in the core (as explained in the following) an inversion of the order
of the energy levels in terms of the quantum number n (namely |En| > |En−1|)
can occur.

From the Grotrian diagrams one deduces the following:
i) the sequence of the energy levels is similar to the one for H, with more

bound and no more l-degenerate states;
ii) the quantum defect δ for a given n-state (see Fig. 2.1) increases on

decreasing the quantum number l;
iii) the ground state for Li is 2s (3s for Na, etc...), with L = l (and not

the 1s state);
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Fig. 2.2. Energy levels for Na atom with the electric dipole transitions (Δl = ±1)
generating some spectral lines and correspondent wavelengths (in Å). The doublets
related to spin-orbit interaction and resulting in states at different j ≡ J , are indi-
cated (not in scale). The yellow emission line (a doublet) is due to the transition
from the 2P3/2 and 2P1/2 states to the ground state 2S1/2 with the optical electron
in the 3s state.

iv) the transitions yielding the spectral lines obey the selection rule
Δl = ±1.

These remarkable differences with respect to Hydrogen are related to an
effective charge Zeff (r) for the optical electron (see §1.2) different from unit
over a sizeable range of distance r from the nucleus.

In order to give a simple description of these effects we shall assume an ad
hoc effective charge, of the form Zeff = (1 + b/r),
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Fig. 2.3. Energy levels (neglecting the fine structure) for some alkali atoms, again
compared with the states for Hydrogen at n > 1. The 4s state is more bound than
the 3d state (see arrows), typical inversion of the order of the energies due to the
extent of penetration of the s-electrons in the core, where the screening is not fully
effective (see text and Fig. 2.6)

depicted in Fig. 2.4. The characteristic length b depends from the particular
atom, it can be assumed constant over a large range of distance while for
r → 0 it must be such that Zeff (r) → Z.

As a consequence of that choice for Zeff (r) the radial part of the Schrodinger
equation for the optical electron takes a form strictly similar to the one in Hy-
drogen (see §1.4):

−h̄2

2mr2
d

dr
r2
dR

dr
+

[
l(l + 1)h̄2 − 2me2b

2mr2
− e

2

r

]
R = ER . (2.1)

It is remarked that for b = 0 the eigenvalues associated with Eq. 2.1 are
En = −RHhc/n

2 (Eq. 1.13, for Z = 1).
If an effective quantum number l∗ such that



2.1 Alkali atoms 69

Zeff

r

3

1

2

Fig. 2.4. Sketchy behavior of a plausible effective charge for the optical electron
in Li atom. The dashed part of the Figure (not in scale) corresponds to the region
of r not taken into account in the derivation of the energy levels. For Na, K, etc...
atoms Zeff (r → 0) → Z. A similar form of effective charge experimented by one
electron because of the partial screening of the nuclear charge by the second electron
is derived in Problem II.2.3 for He atom.

l∗(l∗ + 1) = l(l + 1) − 2me2b
h̄2 ≡ l(l + 1) − 2b

a0

is introduced, then in the light of the formal treatment for Hydrogen, from
Eq. 2.1 one derives the eigenvalues

En = −RHhc

(n∗)2
, (2.2)

with n∗ not integer. To evidence in these energy levels the numbers n and
l pertaining to Hydrogen atom, we write n∗ = n − δl, with δl = l∗ − l, thus
obtaining

En,l = − RHhc

(n− δl)2 .

By neglecting the term in δl2

En,l = − RHhc

(n− 2b/[a0(2l + 1)])2
≡ − RHhc

(n− δn,l)2
. (2.3)

The eigenvalues are l-dependent, through a term that is atom-dependent
(via b) and that decreases on increasing l, in agreement with the phenomeno-
logical findings.

The physical interpretation of the result described by Eq. 2.3 involves the
amount of penetration of the optical electron within the core. In Fig. 2.5 it
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is shown that for r ≤ a0 the electron described by the 2s orbital has a radial
probability of presence sizeably larger than the one for the 2p electron. This
implies a reduced screening of the nuclear charge and then more bound state.
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Fig. 2.5. Radial probability of presence for 2s and 2p electrons in Hydrogen and
sketchy behavior of the effective charge for Li (see Fig. 2.4).

As a general rule one can state that the penetration within the core in-
creases on decreasing l. In Fig. 2.6 it is shown how it is possible to have a more
penetrating state for n = 4 rather than for n = 3, in spite of the fact that on
the average the 3d electron is closer to the nucleus than the 4s electron. This
effect is responsible of the inversion of the energy levels, with |E4s| > |E3d|,
as already mentioned.

At the sake of illustration we give some quantum defects δn,l to be included
in Eq. 2.3, for Na atom:

δ3s = 1.373 δ3p = 0.883 δ3d = 0.01
δ4s = 1.357 δ4p = 0.867 δ4d = 0.011

... ... δ4f � 0

These values for the quantum defects can be evaluated from the energy
levels reported in Fig. 2.2 (see also Problem II.1.1).

Finally a comment on the selection rule Δl = ±1 is in order. This rule is
consistent with the statement that each electron makes the transition indepen-



2.1 Alkali atoms 71

0 5 10 15 20 25

0.00

0.05

0.10

0.15

0.20

P
(
r
)
=
a
0

|
R

n
l

|
2

r
2

3d

4s

r/a
0

Fig. 2.6. Radial probability of presence for 3d and 4s electrons in Hydrogen. From
the dashed area it is noted how the bumps in P (r) for r ≤ 2a0 grant the presence of
the 4s electron in the vicinity of the nucleus larger than the one pertaining to the
3d state.

dently from the others, with the one-electron selection rule given in Appendix
I.3. In fact, the total wavefunction for the alkali atom, within the central field
approximation, can be written

φ(r1, r2, ..., rN ) = φcoreφoptical .

The electric dipole matrix element associated to a given 1 ↔ 2 transition
becomes

R1↔2 = −e
∫

(φ(2)
core)

∗(r1, r2, ...)(φ(2)(rn))∗[r1 + r2 + ...rn + ...+ rN ]

×φ(1)
core(r1, r2, ...)φ(1)(rn)dτ1dτ2...dτN

Because of the orthogonality conditions the above integral is different from
zero in correspondence to a given term involving rn only when φ(2)

core = φ(1)
core,

while ∫
(φ(2)(rn))∗[rn]φ(1)(rn)dτn

yields the selection rule (Δl)n = ±1 and (Δm)n = 0,±1.



72 2 Typical atoms

Now we take into account the doublet structure of each of the states at
l 
= 0 (see the illustrative diagram in Fig. 2.2). The doublets result from spin-
orbit interaction, as discussed at §1.6. The splitting of the np states of the
optical electron turns out

Li Na K Rb Cs
2p 3p 4p 5p 6p

0.337 17.2 57.7 238 554 cm−1

0.042 2.1 7.2 29.5 68.7 meV

supporting the energy corrections derived in terms of the spin-orbit constant
ξnl (see for instance Prob. II.1.2). It can be observed that because of the
selection rule Δj = 0,±1 (0 ↔ 0 forbidden) (see App. I.3) the spectral lines
involving transitions between two non-S states in alkali atoms can display a
fine structure in the form of three components (compound doublets).
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Problems II.1

Problem II.1.1 The empirical values of the quantum defects δn,l (see Eq.
2.3) for the optical electron in the Na atom are

Term n = 3 n = 4 n = 5 n = 6

l = 0 s 1.373 1.357 1.352 1.349

l = 1 p 0.883 0.867 0.862 0.859

l = 2 d 0.010 0.011 0.013 0.011

l = 3 f - 0.000 -0.001 -0.008

By neglecting the spin-orbit fine structure, write the wavenumbers of the
main spectral series (see Fig. 2.2).

Solution:
The spectral series are

principal (transitions from p to s terms), at wave numbers

ν̄p = RH

[
1

[n0 − δ(n0, 0)]2
− 1

[n− δ(n, 1)]2

]
, n ≥ n0, n0 = 3;

sharp (transitions from s to p electron terms)

ν̄s = RH

[
1

[n0 − δ(n0, 1)]2
− 1

[n− δ(n, 0)]2

]
, n ≥ n0 + 1;

diffuse ( transitions from d to p electron terms)

ν̄d = RH

[
1

[n0 − δ(n0, 1)]2
− 1

[n− δ(n, 2)]2

]
, n ≥ n0;

fundamental (transitions from f to d terms):

ν̄f = RH

[
1

[n0 − δ(n0, 2)]2
− 1

[n− δ(n, 3)]2

]
, n ≥ n0 + 1.

Problem II.1.2 The spin-orbit splitting of the 62P1/2 and 62P3/2 states
in Cesium atom causes a separation of the correspondent spectral line (tran-

sition to the 2S1/2 ground-state) of 422
◦
A, at wavelength around 8520

◦
A.
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Evaluate the spin-orbit constant ξ6p and the effective magnetic field acting on
the electron in the 6p state.

Solution:
From λ′′ − λ′ = Δλ = 422

◦
A and νdλ = −λdν one writes

ΔE = hΔν � h · c
λ′2

·Δλ � 0.07 eV.

From
ΔESO =

ξ6p

2
{j(j + 1) − l(l + 1) − s(s+ 1)}

one has

ΔE =
ξ6p

2

[
15
4

− 3
4

]
=

3
2
ξ6p

and then
ξ6p =

2
3
ΔE = 0.045 eV .

The field (operator, Eq. 1.33) is

H =
h̄

2emc
1
r

dV

dr
l

with the spin-orbit hamiltonian

Hspin−orbit = −μs · Hnl = ξ6pl · s .

Thus

|H6p| =
0.045 eV |l|

2μB
� 5.6 · 106 Oe = 560 Tesla

Problem II.1.3 In a maser 85Rb atoms in the 63 2P3/2 state are driven to
the transition at the 61 2D5/2 state. The quantum defects δn,l for the states
are 2.64 and 1.34 respectively. Evaluate the transition frequency and compare
it to the one deduced from the classical analogy for Rydberg atoms (§1.5).
Estimate the isotopic shift for 87Rb.

Solution:
From

Enl = −R∗hc
1
n∗2

where R∗ is the Rydberg constant and n∗ = n− δn,l, the transition frequency
turns out

ν = −R∗c
[

1
[ni − δ(ni, li)]2

− 1
[nf − δ(nf , lf )]2

]
� 21.3GHz

The classical analogy (see Problem I.5.2) yields
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ν ≈ −R∗c
2Δn∗

(n̄∗)3
= 27.6GHz.

The wavelengths are inversely proportional to the Rydberg constant:

λ87

λ85
=
R∗

85

R∗
87

≈ 1 − 1.47 · 10−7 .

Therefore the isotopic shift is Δν ≈ 3.16 kHz or Δλ ≈ −20.6 Å.

Problem II.1.4 By considering Li as a Hydrogenic atom estimate the
ionization energy. Discuss the result in the light of the real value (5.39 eV) in
terms of percent of penetration of the optical electron in the (1s)2 core.

Solution:
By neglecting the core charge one would have E2s = −13.56Z2/n2 =

−30.6 eV, while for total screening (i.e. zero penetration and Z = 1) E2s =
−13.56 eV/4 = −3.4 eV.

Then the effective charge experimented by the 2s electron can be consid-
ered Zeff ∼ 1.27, corresponding to about 15 % of penetration.
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2.2 Helium atom

2.2.1 Generalities and ground state

The Helium atom represents a fruitful prototype to enlighten the effects due
to the inter-electron interaction and then the arise of the central field potential
V (r), (see §1.1), the effects related to the exchange symmetry for indistinguish-
able electrons and to discuss the role of the spins and the antisymmetry of
the total wavefunction.

First we shall start with the phenomenological examination of the energy
levels diagram vis-a-vis to the one pertaining to Hydrogen atom (Fig. 2.7).
A variety of comments is in order. It is noted that in He the state corre-
sponding to the electronic configuration (1s)(nl) when compared to the n
state in Hydrogen shows the removal of the accidental degeneracy in l. This
could be expected, being the analogous of the effect for the optical electron
in alkali atoms (§2.1). A somewhat unexpected result is the occurrence of a
double series of levels, in correspondence to the same electronic configura-
tion (1s)(nl). The first series includes the ground state, with first ionization
energy 24.58 eV. It is labelled as the group of parahelium states and all the
levels are singlets (classification 1S,1P , etc..., see §1.7). The second series has
the lowest energy state at 19.82 eV above the ground-state and identifies the
orthohelium states. These states are all triplets, namely characterized by
a fine structure (detailed in the inset of the Figure for the 2 3P state). Each
level has to be thought as the superposition of almost degenerate levels, the
degeneracy being removed by the spin-orbit interaction (§1.6). The orthohe-
lium states are classified 3S, 3P , etc.... Among the levels of a given series the
transition yielding the spectral lines correspond to the rule ΔL = ±1, with
an almost complete inhibition of the transitions from parahelium to orthohe-
lium (i.e. almost no singlets↔ triplets transitions). Finally it can be remarked
that while (1s)2, at S = 0, is the ground state, the corresponding (1s)2 triplet
state is absent (as well as other states to be mentioned in the following).

In the assumption of infinite nuclear mass and by taking into account the
Coulomb interactions only, the Schrodinger equation is[

− h̄
2

2m
(∇2

1 + ∇2
2) −

Ze2

r1
− Ze

2

r2
+
e2

r12

]
φ(r1, r2) = Eφ(r1, r2) (2.4)

and it can be the starting point to explain the energy diagram. In Eq. 2.4
Z = 2 for the neutral atom.

Let us first assume that the inter-electron term e2/r12 can be consider a
perturbation of the hydrogenic-like Hamiltonian for two independent electrons
(independent electron approximation). Then the unperturbed eigenfunc-
tion is

φn′l′,n”l”(r1, r2) = φn′l′(r1)φn”l”(r2) (2.5)

and
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Fig. 2.7. Diagram of some energy levels for Helium atom and comparison with
the correspondent levels for Hydrogen. The electron configuration of the states is
(1s)(nl). E = 0 corresponds to the first ionization threshold. The double-excited
states (at weak transition probabilities and called autoionizing states) are un-
stable with respect to self-ionization (Auger effect) being at E > 0, within the
continuum (Problem F.II.6). In the inset the fine structure of the 2 3P state is re-
ported, to be compared with the separation, about 9000 cm−1, between the 2 3S
and the 2 3P states. Note that this fine structure does not follow the multiplet rules
described at §3.2.

(E0)n′l′,n”l” = Z2EH
n′l′ + Z2EH

n”l” (2.6)

EH
nl being the eigenvalues for Hydrogen (degenerate in l).

For the ground state (1s)2 one has

φ1s,1s(r1, r2) =
Z3

πa30
e−

Z(r1+r2)
a0 (2.7)

and
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E0
1s,1s = 2Z2EH

1s = −8
e2

2a0
� −108.80 eV (2.8)

In this oversimplified picture the first ionization energy would be 54.4 eV,
evidently far from the experimental datum (see Fig. 2.7). This discrepancy
had to be expected since the effect of the electron-electron repulsion had not
yet been evaluated.

At the first order in the perturbative approach the repulsion reads

E
(1)
1s,1s =

∫ ∫
φ∗1s,1s(r1, r2)

e2

r12
φ1s,1s(r1, r2)dτ1dτ2 ≡

≡< 1s, 1s| e
2

r12
|1s, 1s >≡ I1s,1s (2.9)

I1s,1s is called Coulomb integral in view of its classical counterpart, depicted
in Fig. 2.8.
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nucleus

Fig. 2.8. Illustrative plot sketching the classical analogy of the first order pertur-
bation term < e2/r12 > for the ground-state, in terms of electrostatic repulsion of
two electronic clouds.

The estimate of the Coulomb integral can be carried out by expanding
r−1
12 in term of the associated Legendre polynomials (see Problem II.2.1). For

the particular case of 1s electrons, the Coulomb integral I1s,1s can be worked
out in a straightforward way on the basis of the classical analogy for the
electrostatic repulsion. The result is

I1s,1s =
5
4
Z(−EH

1s) =
5
8
e2

a0
Z (2.10)
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The ground state energy corrected to the first order turns out

E1s,1s = E(0)
1s,1s + I1s,1s = (2Z2 − 5

4
Z)EH

1s � −74.8 eV (2.11)

to be compared with the experimental value −78.62 eV.
The energy required to remove one electron is

[(2Z2 − 5
4
Z) − Z2]13.6eV � 20.4 eV

This estimate is not far from the value indicated in Fig. 2.7, in spite of the
crudeness of the assumption for the unperturbed one-electron wavefunctions.
An immediate refinement could be achieved by adjusting the hydrogen-like
wave functions: in this way a good agreement with the experimental ionization
energy would be obtained.

Another way to improve the description is to derive variationally an effec-
tive nuclear charge Z∗, which in indirect way takes into account the mutual
screening of one electron by the other and the related correction in the wave-
functions. As shown in Problem II.2.2, this procedure yields Z∗ = Z− (5/16),
implying for the ground state

E1s,1s = 2(Z − 5
16

)2(
−e2
2a0

) = −77.5 eV

One can remark how the perturbative approach, without modification of the
eigenfunctions, is rather satisfactory, in spite of the relatively large value of
the first order energy correction.

The ground state energy for He turns out about 94.6% of the “exact” one
(numerically obtained via elaborate trial functions, see §3.4) with the first-
order perturbative correction and 98% with the variationally-derived effective
charge. The agreement is even better for atoms with Z ≥ 3, as Li+ or Be2+.
At variance the analogous procedure fails for H− (see Problem II.2.4).

2.2.2 Excited states and the exchange interaction

The perturbative approach used for the ground state could be naively at-
tempted for the excited states with an electron on a given nl state. For a trial
wavefunction of the form

φ(r1, r2) = φ1s(r1)φnl(r2) (2.12)

the energy

E1s,nl = E0
1s,nl+ < 1s, nl| e

2

r12
|1s, nl >

would not account for the experimental data, numerically falling approxi-
mately in the middle of the singlet and triplet (1s, nl) energy levels. The
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striking discrepancy is evidently the impossibility to infer two energy levels
in correspondence to the same electronic configuration from the wavefunction
in Eq. 2.12. The obvious inadequacy of the tentative wavefunction is that it
disregards the exchange symmetry (discussed at §1.3). At variance with
Eq. 2.12 one has to write the functions

φsym
1s,nl(r1, r2) =

1√
2

[
φ1s(r1)φnl(r2) + φnl(r1)φ1s(r2)

]
(2.13)

φant
1s,nl(r1, r2) =

1√
2

[
φ1s(r1)φnl(r2) − φnl(r1)φ1s(r2)

]
(2.14)

granting indistinguishable electrons, the same weights being attributed to the
configurations 1s(1)nl(2) and 1s(2)nl(1). The labels sym and ant correspond
to the symmetrical and antisymmetrical character of the wavefunctions
upon exchange of the electrons.

On the basis of the functions 2.13 and 2.14, along the same perturbative
procedure used for the ground state, instead of Eq.2.11 one obtains

Esym
+ = Z2EH

1s + Z2EH
nl + I1s,nl +K1s,nl (2.15)

and
Eant

− = Z2EH
1s + Z2EH

nl + I1s,nl −K1s,nl (2.16)

where

K1s,nl =
∫ ∫

φ∗1s(r1)φ∗nl(r2)
e2

r12
φ1s(r2)φnl(r1)dτ1dτ2 (2.17)

is the exchange integral, essentially positive and without any classical
interpretation, at variance with the Coulomb integral I1s,nl. Thus double series
of levels is justified by the quantum effect of exchange symmetry. 1

The wavefunctions 2.13 and 2.14 are not complete, spin variables having
not yet been considered. In view of the weakness of the spin-orbit interaction,
as already stated (§1.6), one can factorize the spatial and spin parts. Then,
again by taking into account indistinguishable electrons, the spin functions
are

α(1)α(2), β(1)β(2),
1√
2
[α(1)β(2) + α(2)β(1)] for S = 1

1√
2
[α(1)β(2) − α(2)β(1)] for S = 0 (2.18)

The first group can be labelled χsym
S=1 and it includes the three eigenfunc-

tions corresponding to S = 1. The fourth eigenfunction is the one pertaining
to S = 0. χant

S=0 is antisymmetrical upon the exchange of the electrons, while
χsym

S=1 are symmetrical.

1 Order of magnitude estimates yield I1s,2s � 9 eV, I1s,2p � 10 eV,
K1s,2s � 0.4 eV and K1s,2p � 0.1 eV (see Problem F.II.1).
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Therefore the complete eigenfunctions describing the excited states of the
Helium atom are of the form φtot = φ1s,nl χS and in principle in this way
one would obtain 8 spin-orbitals. However, from the comparison with the
experimental findings (such as the spectral lines from which the diagram in
Fig. 2.7 is derived) one is lead to conclude that only four states are actually
found in reality. These states are the ones for which the total (spatial and spin)
wavefunctions are antisymmetrical upon the exchange of the two electrons.

This requirement of antisymmetry is also known as Pauli principle and
we shall see that it corresponds to require that the electrons differ at least
in one of the four quantum numbers n, l,m and ms. For instance, the lack of
the triplet (1s)2 is evidently related to the fact that in this hypothetical state
the two electrons would have the same quantum numbers, meantime having
a wavefunction of symmetric character φtot = φ1sφ1sχ

sym
S=1. Thus φsymχant

S=0

describes the singlet states, while φantχsym
S=1 describes the triplet states.

Accordingly, one can give the following pictorial description

when S χ φ(r) φtot Energy
↑↓ 0 ant sym ant E+

↑↑ 1 sym ant ant E−

In other words, because of the exchange symmetry a kind of relationship,
arising from electron-electron repulsion, between the mutual “direction” of
the spin momenta and the energy correction does occur. For “parallel spins”
one has E− < E+, the repulsion is decreased as the electron should move, on
the average, more apart.

The dependence of the energy from the spin orientation can be related to
an exchange pseudo-spin interaction, in other words to an Hamiltonian
operator of the form 2

H = −2Ks1.s2 (2.19)

In fact if we extend the vectorial picture to spin operators (in a way analogous
to the definition of the j angular momentum for the electron (see §1.6)) and
write

S = s1 + s2, (2.20)

by “squaring” this sum one deduces s1.s2 = (1/2)[S2−s1
2−s2

2]. Thus, from
the Heisenberg Hamiltonian 2.19 the two energy values

E′ = −2K(1/2)[S(S + 1) − 2(1/2)(1 + 1/2)] = −K/2
2 This Hamiltonian, known as Heisenberg Hamiltonian, is often assumed as

starting point for quantum magnetism in bulk matter. Below a given temperature,
in a three-dimensional array of atoms, this Hamiltonian implies a spontaneous
ordered state, with magnetic moments cooperatively aligned along a common
direction (see §4.4 for a comment).
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for S = 1 and
E” = 3K/2

for S = 0 are obtained. In other words, from the Hamiltonian 2.19, for a given
1snl configuration, the singlet and the triplet states with energy separation
and classification consistent with Eq. 2.15 and 2.16, are deduced.

Now it is possible to justify the weak singlet↔triplet transition probabil-
ity indicated by the optical spectra. The electric dipole transition element
connecting parahelium to ortohelium states can be written

RS=0↔S=1 ∝< χant|χsym >

∫ ∫
φ∗sym[r1 + r2]φantdτ1dτ2 . (2.21)

This matrix element is zero, both for the orthogonality of the spin states and
because the function in the integral changes sign upon exchange of the indexes
1 and 2, then requiring zero as physically acceptable result. Thus one under-
stands why orthohelium cannot be converted to parahelium and vice-versa.
This selection rule would seem to prevent any transitions (including the ones
related to magnetic dipole or electric quadrupole mechanisms) and then do
not admit any violation. The weak singlet-triplet transitions actually observed
in the spectrum are related to the non-total validity of the factorization in
the form φtot = φ(r1, r2)χspin. The spin-orbit interaction, by coupling spin
and positional variables, partially invalidates that form of the wavefunctions.
This consideration is supported by looking at the transitions in an atom sim-
ilar to Helium, with two electrons outside the core. Calcium has the ground
state electronic configuration (1s)2...(4s)2 and the diagram of the energy lev-
els is strictly similar to the one in Fig. 2.7. At variance with Helium, because
of the increased strength of the spin-orbit interaction, the lines related to
S = 0 ↔ S = 1 transitions are very strong. Analogous case is Hg atom (see
Fig. 3.9).
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Problems II.2

Problem II.2.1 Evaluate the Coulomb integral for the ground state of
the Helium atom.

Solution:

φ
2

θ
1

θ
+Ze

φ
1

θ
2

r
12

r
2

r
1

In the expectation value (for e = a0 = 1)

<
1
r12

>=
Z6

π2

∫
e−2Z(r1+r2)

1
r12
dr1dr2.

1/r12 is expanded in Legendre polynomials

1
r12

=
1
r1

∞∑
l=0

(
r2
r1

)l

Pl(cos θ), r1 > r2

=
1
r2

∞∑
l=0

(
r1
r2

)l

Pl(cos θ), r1 < r2

where θ is the angle between the vectors r1 and r2 and

cos θ = cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2)

In compact form
1
r12

=
∞∑

l=0

(r<)l

(r>)l+1
Pl(cos θ)

where r< is the smallest and r> the largest between r1 and r2. From the
addition theorem one writes



84 2 Typical atoms

1
r12

=
∞∑

l=0

+l∑
m=−l

4π
(2l + 1)

(r<)l

(r>)l+1
Y ∗

lm(θ1, φ1)Ylm(θ2, φ2).

The function exp[−2Z(r1 + r2)] is spherically symmetric and Y00 = (4π)−
1
2 .

By integrating over the polar angles one has

I ′1s,1s =
Z6

π2

∞∑
l=0

+l∑
m=−l

(4π)2

(2l + 1)

∫ ∞

0

dr1r
2
1

∫ ∞

0

dr2r
2
2e

−2Z(r1+r2)
(r<)l

(r>)l+1

·δl,0δm,0.

All terms in the sum vanish, except the one for l = m = 0. Then

I ′1s,1s = 16Z6

∫ ∞

0

dr1r
2
1

∫ ∞

0

dr2r
2
2e

−2Z(r1+r2)
1
r>

= 16Z6

∫ ∞

0

dr1r
2
1e

−2Zr1

[
1
r1

∫ r1

0

dr2r
2
2e

−2Zr2 +
∫ ∞

r1

dr2r2e
−2Zr2

]
=

5
8
Z

and properly including a0 and e, I1s,1s = 5
4Ze

2/2a0.
For spherically symmetric wavefunctions one can evaluate the Coulomb

integral from the classical electrostatic energy:

I1s,1s =
Ze2

32π2a0

∫
e−ρ1e−ρ2

ρ12
dτ1dτ2

where
ρ1,2 =

2Zr1,2

a0
, ρ12 =

2Zr12
a0

and
dτ1,2 = ρ21,2 sin θ1,2 dρ1,2 dθ1,2 dφ1,2.

The electric potential from the shell dρ1 at ρ1 is

dΦ(r) = 4πρ21e
−ρ1dρ1

1
ρ1

for r < ρ1,

4πρ21e
−ρ1dρ1

1
r

for r > ρ1.

Then the total potential turns out

Φ(r) =
4π
r

∫ r

0

e−ρ1ρ21dρ1 + 4π
∫ ∞

r

e−ρ1ρ1dρ1 =
4π
r
{2 − e−r(r + 2)}

and therefore

I1s,1s =
Ze2

32π2a0

∫
Φ(ρ2)e−ρ2dτ2 =

Ze2

2a0

∫ ∞

0

[2 − e−ρ2(ρ2 + 2)]e−ρ2ρ22dρ2 =
Ze2

2a0
5
4
.
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Problem II.2.2 By resorting to the variational principle, evaluate the
effective nuclear charge Z∗ for the ground state of the Helium atom.

Solution:
The energy functional is

E[φ] =
< φ|H|φ >
< φ|φ >

where

φ(r1, r2) =
Z∗3

π
e−Z∗(r1+r2)

with Z∗ variational parameter (e = a0 = 1).

Then

E[φ] =
〈
φ

∣∣∣∣T1 + T2 − Z

r1
− Z

r2
+

1
r12

∣∣∣∣φ〉
and

〈φ|T1|φ〉 ≡ 〈ψZ∗
1s |T1|ψZ∗

1s 〉 =
1
2
Z∗2, 〈φ|T2|φ〉 = 〈φ|T1|φ〉,

while 〈
φ

∣∣∣∣ 1
r1

∣∣∣∣φ〉 =
〈
ψZ∗

1s

∣∣∣∣ 1
r1

∣∣∣∣ψZ∗
1s

〉
= Z∗ =

〈
φ

∣∣∣∣ 1
r2

∣∣∣∣φ〉
Since 〈

φ

∣∣∣∣ 1
r12

∣∣∣∣φ〉 =
5
8
Z∗ (see Eq.2.10)

one has
E[φ] ≡ E(Z∗) = Z∗2 − 2ZZ∗ +

5
8
Z∗ .

From
∂E(Z∗)
∂Z∗ = 0 , Z∗ = Z − 5/16 .

Problem II.2.3 In the light of the interpretation of the Coulomb integral
in terms of repulsion between two spherically symmetric charge distributions,
evaluate the effective potential energy for a given electron in the ground state
of He atom and the effective charge Zeff (r).

Solution:
The electric potential due to a spherical shell of radius R (thickness dR

and density −eρ(R)) at distance r from the center of the sphere is

− 1
4πe

dφ(r) = R2ρ(R)
dR

R
for r ≤ R,

R2ρ(R)
dR

r
for r ≥ R.
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By integrating over R and taking into account that

�(r) ≡ |ψ1s(r)|2 =
(
Z

a0

)3
e−

2Zr
a0

π
,

one has

−φ(r)
4πe

= 1
π

(
Z
a0

)3 [
1
r

∫ r

0
dRR2e−

2ZR
a0 +

∫∞
r
dRRe−

2ZR
a0

]
= 1

4π

(
Z
a0

) [
1
u

∫ u

0
dxx2e−x +

∫∞
u
dxxe−x

]
= 1

4π

(
Z
a0

)
1
u [2 − e−u(u+ 2)],

where u = 2Zr
a0

. Therefore

φ(r) = −e
r

[
1 − e− 2Zr

a0

(
Zr

a0
+ 1

)]
and from

−Zeff (r)e2

r
= −Ze

2

r
− eφ(r)

for Z = 2 one finds

Zeff (r) = 1 + e−
4r
a0

(
1 +

2r
a0

)
plotted below.
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Problem II.2.4 The electron affinity (energy gain when an electron
is acquired) for Hydrogen atom is 0.76 eV. Try to derive this result in the
framework of a perturbative approach for the ground state of H−, as well as
by considering a reduced nuclear charge.

Comment the results in the light of the almost-exact value which, at vari-
ance, is obtained only by means of a variational procedure with elaborate trial
wavefunctions.
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Solution:
For H−, by resorting to the results for He and setting Z = 1, in the

perturbative approach one would obtain

E
′
H− = −2Z2RHhc+

5
4
ZRHhc = −3

4
RHhc

to be compared with −RHhc for H. With the variational effective charge
Zeff = (1 − 5

16 )

E
′′
H− = −2Z2

effRHhc = −0.945RHhc

again less bound than the ground-state for neutral Hydrogen.
Only more elaborate calculations yield the correct value, the reason being

that for small Z the perturbation is too large with respect to the unperturbed
energy. By repeating the estimate for Z = 3 (Li+), for Z = 4 (Be2+) and for
Z = 5 (B3+) a convergence is noted towards the “exact” values of the ground
state energy (namely 198.1 eV, 371.7 eV and 606.8 eV, respectively) obtained
from the variational procedure with elaborate trial functions. It should be
remarked that the real experimental eigenvalues cannot be derived simply
on the basis of the Hamiltonian in Eq. 2.4 which does not include the finite
nuclear mass, the relativistic and the radiative terms (see for the Hydrogen
atom the recall in Appendix V.1).



88 2 Typical atoms

2.3 Pauli principle, determinantal eigenfunctions and
superselection rule

In the light of the analysis of the properties of the electronic states in Helium
atom, one can state the Pauli principle: the total wavefunction (spatial
and spin) of electrons, particles at half integer spin, must be antisymmet-
rical upon exchange of two particles. This statement is equivalent to the one
inhibiting a given set of the four quantum numbers (nlmms) to more than one
electron. For instance, this could be realized by considering an hypothetical
triplet ground state (1s)2 for orthohelium, for which the wavefunction would
be φ1s(r1)φ1s(r2)α(1)α(2) (or β(1)β(2) or (1/

√
2)[α(1)β(2)+α(2)β(1)]), and

the quantum numbers n, l,m,ms would be the same for both electrons. At
variance, one only finds the singlet ground state, for which ms = ±1/2.

From the specific case of Helium now we go back to the general prop-
erties of multi-electron atoms (see §1.1 and §1.3). Because of the exchange
degeneracy and of the requirement of antisymmetrical wavefunction the total
eigenfunction, instead of Eq. 1.10, must be written

ϕtot =
1√
N !

∑
P

P (−1)Pϕα(1)ϕβ(2)...ϕν(N) (2.22)

where α, β, ... here indicate the group of quantum numbers (nlmms) and
the numbers 1, 2, 3, ...N include spatial and spin variables. P is an operator
exchanging the electron i with the electron j and the wavefunction changes
(does not change) sign according to an odd (even) number of permutations.
The sum includes all possible permutations.

A total eigenfunction complying with exchange degeneracy and antisym-
metry is the determinantal wavefunction devised by Slater 3

ϕtot =
1√
N !

⎛⎜⎜⎜⎝
ϕα(1) ϕα(2) ... ϕα(N)
ϕβ(1) ϕβ(2) ... ϕβ(N)
... ... ... ...

ϕν(1) ϕν(2) ... ϕν(N)

⎞⎟⎟⎟⎠
accounting for all the possible index permutations with change of sign when
two columns are exchanged. On the other hand the determinant goes to zero
when two groups of quantum numbers (and then two rows) are the same.

Now it can be proved that no transition, by any mechanism, is possible
between globally antisymmetric and symmetric states (in the assumption that
they exist), sometimes known as superselection rule. In fact such a transi-
tion would be controlled by matrix elements of the form

RANT↔SY M ∝
∫
φ∗SY M [O1 + O2 + ...]φANT dτgen (2.23)

3 This form is the basis for the multiplet theory in the perturbation approach
dealing with operators r−1

i and r−1
ij (see §3.4).
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that must be zero in order to avoid the unacceptable result of having a change
of sign upon exchange of indexes, since the integrand is globally antisymmet-
ric.

In the light of what has been learned from the analysis of alkali atoms and
of Helium atom, now we can move to a useful description of multi-electrons
atoms which allows us to derive the structure of the eigenvalues and their
classification in terms of proper quantum numbers (The vectorial model,
Chapter 3). Other typical atoms, such as N, C and transition metals (Fe, Co,
etc...) shall be discussed in that framework.
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Problems F.II

Problem F.II.1 By means of the perturbation approach for independent
electrons derive the energy levels for the first excited states of Helium atom,
in terms of Coulomb and exchange integrals, writing the eigenfunctions and
plotting the energy diagram.

Solution:
The first excited 1s2l states are

u1 = 1s(1)2s(2) u5 = 1s(1)2py(2)
u2 = 1s(2)2s(1) u6 = 1s(2)2py(1)
u3 = 1s(1)2px(2) u7 = 1s(1)2pz(2)
u4 = 1s(2)2px(1) u8 = 1s(2)2pz(1)

The unperturbed Hamiltonian with no electron-electron interaction, im-
plies degenerate eigenfunctions ui(1, 2) in correspondence to the eigenvalue
−(4e2/2a0)(1 + (1/4)).

The secular equation involves the integrals

Is =
〈
1s(1)2s(2)

∣∣e2/r12∣∣ 1s(1)2s(2)
〉

Ip =
〈
1s(1)2p(2)

∣∣e2/r12∣∣ 1s(1)2p(2)
〉

Ks =
〈
1s(1)2s(2)

∣∣e2/r12∣∣ 1s(2)2s(1)
〉

Kp =
〈
1s(1)2p(2)

∣∣e2/r12∣∣ 1s(2)2p(1)
〉

(with p for px, py or pz) and it reads

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Is − E′
Ks

Ks Is − E′ 0 0 0

0
Ip − E′

Kp

Kp Ip − E′ 0 0

0 0
Ip − E′

Kp

Kp Ip − E′ 0

0 0 0
Ip − E′

Kp

Kp Ip − E′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(other integrals being zero for symmetry, see Prob. 8.5 in the book by John-
son and Pedersen quoted in the Preface).
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From the first block E
′
= Is ±Ks, with the associated eigenfunctions

φ1,2 =
1√
2
[1s(1)2s(2) ± 1s(2)2s(1)] .

From the second block E” = Ip ±Kp, with eigenfunctions

φ3,4 =
1√
2
[1s(1)2px(2) ± 1s(2)2px(1)]

and the analogous for y and z. Thus the following diagram (not in scale, see
§2.2.2) is derived (I and K > 0 and Ip > Is).

(1s)
2

I
1s,2p

(1s)(2p)

(1s)(2s)
I
1s,2s

I
1s,1s

2K
1s,2p

2K
1s,2s

Problem F.II.2 For the optical electron in Li atom consider the hybrid
orbital

Φ = (1 + λ2)−
1
2 [φ2s + λφ2pz

]

φ2s and φ2pz
being normalized hydrogen-like wavefunctions, with effective

nuclear charge Z. Find the pseudo-dipole moment μ = e〈z〉 and the value of λ
yielding the maximum of μ (relevant connections for situations where hybrid
orbitals are actually induced are to be found at §4.2 and §9.2).

Solution:
The pseudo-dipole moment turns out

μ = e
∫
Φ∗zΦdτ =
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=
e

(1 + λ2)

[∫
φ2

2s(r)zdτ + λ2

∫
φ2

2pz
(r)zdτ + 2λ

∫
φ2s(r)φ2pz

(r)zdτ
]
,

where the first two integrals are 0. From Table I.4.2 (with e = a0 = 1)

μ =
2λ

1 + λ2

(
Z

2

)3 1
4π

∫ 2π

0

dφ

∫ π

0

cos2 θ sin θdθ
∫ ∞

0

Zr4(Zr − 2)e−Zrdr =

=
λ

1 + λ2

Z3

12

[
Z25!
Z6

− 2Z4!
Z5

]
=

λ

1 + λ2

6
Z
,

i.e. μ = (6ea0/Z)λ/(1 + λ2) in complete form.
From

dμ

dλ
=

6
Z

(1 + λ2 − 2λ2)
(1 + λ2)2

=
6
Z

(1 − λ2)
(1 + λ2)2

= 0

the maximum is found for λ = 1, as it could be expected.

Problem F.II.3 Prove that the two-particles spin-orbital

ψANT =
1√
2
{α(1)β(2)[φa(1)φb(2)] − α(2)β(1)[φa(2)φb(1)]}.

represents an eigenstate for the z-component of the total spin at zero eigen-
value. Then evaluate the expectation value of S2.

Solution:
From

Sz
1ψANT =

1
2

1√
2
{α(1)β(2)[φa(1)φb(2)] + α(2)β(1)[φa(2)φb(1)]} ≡ 1

2
ψSY M .

and
Sz

2ψANT = −1
2
ψSY M

Thus
SzψANT = (Sz

1 + Sz
2 )ψANT = 0

Since
Sz

1S
z
2ψANT = −1

4
ψANT

while

Sx
1S

x
2ψANT =

1
4

1√
2
{β(1)α(2)[φa(1)φb(2)] − α(1)β(2)[φa(2)φb(1)]} ≡ 1

4
ψ′

ANT

and
< ψANT |ψ′

ANT >≡ −|
∫
φ∗a(r)φb(r)dτ |2 ≡ −A
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(with the same result for Sy
1S

y
2 component). By taking into account that

(S)2 = (S1)2 + (S2)2 + 2S1.S2, then

< ψANT |(Sx,y
1 + Sx,y

2 )2|ψANT >=
1
2
{1 −A}

and
< ψANT |(S)2|ψANT >= 1 −A .

Problem F.II.4 At Chapter 5 it will be shown that between one elec-
tron and one proton an hyperfine interaction of the form AI.Sδ(r) occurs,
where I is the nuclear spin (Fermi contact interaction). An analogous
term, i.e. Hp = As1.s2δ(r12) (with r12 ≡ r1 − r2) describes a relativistic in-
teraction between the two electrons in the Helium atom. In this case A turns
out A = −(8π/3)(eh̄/mc)2. Discuss the first-order perturbation effect of Hp

on the lowest energy states of orthohelium and parahelium, showing that only
a small shift of the ground-state level of the latter occurs (return to Prob.
F.I.15 for similarities) .

Solution:
For orthohelium the lowest energy states is described by the spin-orbital

φtot(1, 2) = χS=1
sym

[
φ1s(r1)φ2s(r2) − φ2s(r1)φ1s(r2)

]
.

The expectation value of Hp yields zero since two electrons at parallel spin
cannot have the same spatial coordinates. For the ground state of parahelium
since s1.s2 = −3/4 (see Eq. 2.20), by using hydrogenic wave functions φ1s(r1)
and φ1s(r2) one estimates

< 1s, 1s|Hp|1s, 1s >= −3A
4
Z6

π2a60

∫ ∫
e−2

Z(r1+r2)
a0 δ(r12)dτ1dτ2 =

= −3A
4
Z6

π2a60
4π

∫ ∞

0

e−4Z r
a0 r2dr = 2(

eh̄

mc
)2

1
a30

� 3 × 10−3eV,

a small shift compared to -78.62 eV.

Problem F.II.5 The spin-orbit constant ξ2p for the 2p electron in Lithium
turns out ξ2p = 0.34 cm−1. Evaluate the magnetic field causing the first
crossing between P3/2 and P1/2 levels, in the assumption that the field does
not affect the structure of the doublet (return to Problems I.6.7 and I.6.1).

Solution:
In the assumption that the field linearly affects the two levels, i.e.
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j=3/2

j=1/2

ΔE

(1/2)g’μ
B
H

(3/2)g”μ
B
H

the first crossing takes place when

(
3
2
g” +

1
2
g′)μBH = ΔE

Since g′ = 2/3 and g” = 4/3 the crossing occurs for H = ΔE/(7μB/3).
The correction associated with the spin-orbit interaction is

ξ2p

2
[j(j + 1) − l(l + 1) − s(s+ 1)]

Then ΔE = (3/2)ξ2p and H � 4370 Oe.
When the weak field condition (corresponding to μBH � ξ2p) is released

and the full Hamiltonian ξnll.s+μBH.(l+ 2s) is diagonalized (as it would be
more appropriate), the crossing is found at a slightly different field.

Try to estimate it after having read Chapter 4 (or see Prob. 1.1.20 in the
book by Balzarotti, Cini and Fanfoni or Prob. 7.24 in the book by Johnson
and Pedersen quoted in the Preface). A somewhat similar situation is the
one discussed at Prob. F.V.6 with l substituted by the nuclear momentum I.

Problem F.II.6 Refer to the double-excited electron state 2s4p of the He-
lium atom. In the assumption that the 2s electron in practice is not screened
by the 4p electron, which in turn feels just the residual charge Z(r) � 1
(see §2.1), evaluate the wavelength of the radiation required to promote the
transition from the ground state to that double-excited state. After the au-
toionization of the atom, and decay to the ground-state of He+, one electron
is ejected. Estimate the velocity of this electron.

Solution:
E(2s, 4p) = −14.5 eV, then λ = c/ν = 192 Å and v = 3.75 × 108 cm/s.
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The shell vectorial model

Topics

Electronic structure: “aufbau” and closed shells
Coupling of angular momenta (LS and jj schemes)
Rules for the ground state
Low energy states of C and N atoms
Effective magnetic moments and gyromagnetic ratio
Approximate form of the radial wavefunctions
Hartree-Fock-Slater theory for multiplets
Selection rules

3.1 Introductory aspects

By resorting to the principles of quantum mechanics and after having dealt
with specific atoms, one can now proceed to the description of the electronic
structure in generic multi-electron atoms. We shall see that the sequence of
electron states accounts for the microscopic origin of the periodic Table of the
elements.

First the one-electron states, described by orbitals of the form
φnlm = RnlYlm, have to be placed in the proper energy scale (diagram).
Then the atom can be thought to result from the progressive accommodation
of the electrons on the various levels, with the related eigenfunctions. This
build-up principle (called aufbau from the German) has to be carried out by
taking into account the Pauli principle (§2.3). Therefore a limited number
of electrons can be accommodated on a given level and each electron has
associated one (and only one) spin-orbital eigenfunction, differing in one or
more of the quantum numbers n, l,m,ms from the others.

The maximum number of electrons characterized by a given value of n is
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n−1∑
l=0

2(2l + 1) = 2n+ 4
n−1∑
l=0

l = 2n+ 4
n(n− 1)

2
(3.1)

When this maximum number is attained one has a closed shell. A closed sub-
shell, often called nl shell, occurs when a given nl state (which defines the
energy in the absence of spin-orbit and exchange interactions) accommodates
2(2l + 1) electrons, in correspondence to the degeneracy in the z-component
of the orbital momentum and of the spin degeneracy.

A complete sub-shell (or shell) implies electron charge distribution at
spherical symmetry1 and the quantum numbers L (for the total orbital
momentum) and S (total spin) are zero, obviously implying J = 0 and spec-
tral notation (see §1.7) 1S0.

For the electrons outside the closed nl shells one has to take into account
the spin-orbit interaction yielding j = (l + s) and the electron-electron inter-
action leading to the Coulomb and exchange integrals, as it has been discussed
for alkali atoms (§2.1) and for Helium atom (§2.2). As a consequence, a vari-
ety of “couplings” is possible and a complex distribution of the energy levels
occurs, the detailed structure depending on the relative strengths of the cou-
plings. For instance, the sequence of levels seen for Helium (§2.2), with spin-
orbit terms much weaker than the Coulomb and exchange integrals, can be
considerably modified on increasing the atomic number, when the spin-orbit
interaction is stronger than the inter-electron effects.

In order to take into account the various couplings and to derive the qual-
itative sequence of the eigenvalues (with the proper classification in terms of
good quantum numbers corresponding to constants of motion) one can abide
by the so-called vectorial model. Initiated by Heisenberg and by Dirac,
this model leads to the structure of the energy levels and to their classification
in agreement with more elaborate theories for the multiplets, although it does
not provide the quantitative estimate of the energy separation of the levels.

In the vectorial model the angular momenta and the associated magnetic
moments are thought as classical vectors, as seen in the ad hoc definition of
J and of L and S at §1.6, 1.7 and 2.2.2. Furthermore, somewhat classical
equations of motion are used (for instance the precessional motion is often
recalled). Moreover constraints are taken into account in the couplings, so
that the final results do have characteristics in agreement with the quantum
conditions. For example, the angular momenta of two p electrons are coupled
and pictorially sketched as shown in Fig. 3.1

The interactions are written in the form

a) aikli.sk b) bikli.lk c) ciksi.sk (3.2)

where a) can be considered a generalization of the spin-orbit interaction (aii >
0, as proved at §1.6); b) is the analogous for the orbital couplings, while c) is the

1 The rule
∑+l

m=−l
Y ∗

l,m(θ, ϕ)Yl,m(θ, ϕ) = (2l+1)/4π is known as Unsold theorem
(See Problem I.4.9 for a particular case).
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l =1 l =1 L=2 

L=0 

L=1 

. 

. 

. 

Fig. 3.1. Illustrative coupling of the angular momenta for two p electrons to yield
the L = 0, L = 1 and L = 2 states. It is noted that the effective “lengths” of the
“vectors” must be considered

√
l(l + 1) and

√
L(L + 1).

extension of the exchange interaction discussed in Helium (cjk = −2K < 0).
In these coupling forms the constants a, b and c have usually the dimensions
of energy, the angular momenta thus being in h̄ units.

On the basis of Eqs. 3.2 the energy levels are derived by coupling the
electrons outside the closed shells and the states are classified in terms of
good quantum numbers. The values of a, b and c are left to be estimated on
the basis of the experimental findings, for instance from the levels resulting
from optical spectra.

In spite of these simplifying assumptions the many-body character of the
problem prevents suitable solutions when a, b and c are of the same order of
magnitude. Two limiting cases have to be considered:

i) “small” atoms (nuclear charge Z not too large) so that the spin-orbit
interaction is smaller than other coupling terms and the condition a� c can
be assumed. This assumption leads to the so-called LS scheme;

ii) “heavy” atoms at large Z, where the strong spin-orbit interaction im-
plies a� c (jj scheme).

3.2 Coupling of angular momenta

3.2.1 LS coupling model

Within this scheme one couples si to obtain S and li for L (in a way to account
for the quantum prescriptions). For

S =
∑

i

si and L =
∑

i

li (3.3)

the total spin number S = 0, 1/2, 1, 3/2, ... and the total orbital momentum
number L = 0, 1, 2, ... are defined. Then the spin orbit interaction is taken
into account with an Hamiltonian of the form
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HSO = ξLS L.S , (3.4)

an extension of the Hamiltonian derived at §1.6 (see §3.2.2 in order to under-
stand that the precessions of li yield an average orbital momentum along L,
while the average spin momentum is along S: then Eq. 3.4 follows).

 

m\m
S
 

 

1, 1/2 1,-1/2 0,1/2 0,-1/2 -1,1/2 -1,-1/2 

1,1/2 

 

NO      

1,-1/2 

 

2  0 NO     

0, 1/2 

 

1 1 1 0 NO    

0, -1/2 

 

1 0 1 -1 0 0 NO   

-1, 1/2 

 

0 1 0 0 -1 1 -1 0 NO  

-1, -1/2 

 

0 0 0 -1 -1 0 -1 -1 -2 0 NO 

 

1

S
0
 

3

P
2,1,0

 

1

D
2
 

M,M
s
 

1 

2

Table III.2.1 Derivation of the electronic states compatible with the Pauli

principle for two equivalent p electrons. It is noted that the group 3D cannot exists

since states with M = 2 and Ms = 1 are not found. The values Ms = 0 and with

M running from −2 to +2 are present and they correspond to 1D states at S = 0,

implying J = 2. The states at M = 1 and Ms = 1 are all found and then the

multiplet S = 1 and L = 1 does exist, implying the values J = 2, 1, 0. Finally the

last case corresponds to the singlet state at S = 0 and L = 0. The total number of

original states is 36 (corresponding to 2 × 2 × (2l1 + 1) × (2l2 + 1)) and only 15 of

them are allowed. Six states are eliminated because they violate Pauli principle. Of

the remaining 30 states, only half are distinguishable.

When the electrons to be coupled are equivalent, namely with the same
quantum numbers n and l, one has to reject the coupling configurations that
would invalidate the Pauli principle. In other words, one has to take into
account the antisymmetry requirement for the total wavefunction and this
corresponds to the problem of the Clebsch-Gordan coefficients. A simple
method to rule out unacceptable states is shown in Table III.2.1 for two np
electrons. All the possible values for m and ms are summed up to give M and
Ms. Then the states along the diagonal are disregarded, since they correspond
to four equal quantum numbers. The states above the diagonal are also to be
left out, since they correspond to the exchange of equivalent electrons, the
exchange degeneracy being taken into account by the spin-spin interaction.
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Finally the electronic states compatible with the values of M and Ms are
found by inspection. This method corresponds to a brute-force counting of
the states, as it is shown in the Problems for the low-energy electronic states
in C and in N atoms (Problems III.2.1 and III.2.2).

When the electrons are inequivalent (differing in n or in l) no restrictions
to the possible sums has to be considered (see Problem III.2.3).

Once that L and S are found and the structure of the levels expected from
the couplings 3.2 (b and c) is derived, then in the LS scheme one defines

J = L + S , (3.5)

characterized by the quantum number J . The spin-orbit interaction is taken
into account according to Eq. 3.4 in order to derive the multiplets. Pictorially

S L

J

S

L

J

J=L+S

J

L

S

J=L-S

with coupling energy ESO = ξLS |L|.|S|cosθ (θ angle between L and S).
It is reminded that according to the classical equation of motion, a mag-

netic moment μL ∝ −L in magnetic field precesses with angular frequency
ωL = γH, with γ the gyromagnetic ratio given by γ = μL/L (Problem III.2.4).
In terms of L and S and of the related torque of modulus −∂ESO/∂θ, a pre-
cession of each of them around the direction of J has to be expected. To show
this one writes

dL
dt

= ξLSS × L (3.6)

dS
dt

= ξLSL × S. (3.7)

and since S × S = L × L = 0

dL
dt

= ξLSJ × L

dS
dt

= ξLSJ × S,
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implying the precessional motions of L and S around an effective magnetic
field along the direction of J, the angular frequency being proportional to ξLS

(see Problem III.2.4).
Therefore J and MJ are good quantum numbers while Lz and Sz are

no longer constant of motion (z is here an arbitrary direction). Then the
energies of the multiplet are derived by adding the corrections due to the
spin-orbit Hamiltonian (in the form 3.4) to the energy E0(L, S) resulting
from the couplings between si and between li (see examples in subsequent
Figures). From the definition of J (Eq. 3.5), again by the usual “squaring
rule”, one obtains

E(L, S, J) = E0(L, S) +
1
2
ξLS

[
J(J + 1) − L(L+ 1) − S(S + 1)

]
(3.8)

An empirical rule for ξLS is ξLS � ±ξnl/2S, with the sign + when the
number of the electrons in the sub-shell in less then half of the maximun
number that can be accommodated and - in the opposite case (according to
§1.6 ξnl = a11 in Eq. 3.1). For sign + the multiplet is called regular, namely
the state at lowest energy is the one corresponding to J minimum (pictorially
with L and S antiparallel). For sign - the multiplet is inverted, the state at
lowest energy being the one with maximum value for J (i.e. L and S parallel).

For regular multiplets one immediately derives the interval rule, giving
the energy separation between the states at J and (J + 1). From Eq. 3.8

ΔJ,J+1 = (J + 1)ξLS (3.9)

implying, for example for L = 2 and S = 1, the structure of the levels shown
in Fig. 3.2. This rule can be used as a test to check the validity of the LS
coupling scheme. It is noted that the “center of gravity” of the levels, namely
the mean perturbation of all the states of a given term, is not affected by the
spin-orbit interaction. In fact

< Δ(E −E0) >=
L+S∑

J=|L−S|

ξLS

2
(2J + 1)

[
J(J + 1)− L(L+ 1)− S(S + 1)

]
= 0

(3.10)
(see Figs. 3.2, 3.4 and Problem F.III.4).2

When more than two electrons are involved in the coupling, the procedure
outlined above has to be applied by combining the third electron with the
results of coupling the first two and so on. Examples (Problems III.2.2) will
clarify how to deal with more than two electrons.

2 In fact
∑N

J=0
J = N(N + 1)/2,

∑N

J=0
J2 = N(N + 1)(2N + 1)/6 and∑N

J=0
J3 = N2(N + 1)2/4
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S

L

J=3

J=2

J=1

2ξ
LS

L, S

3ξ
LS

-3ξ
LS

2ξ
LS

ξ
LS

3ξ
LS

degeneracy 7

degeneracy 5

degeneracy 3

average perturbation

Fig. 3.2. Illustration of the interval rule for the multiplet arising from the L = 2
and S = 1 state.

3.2.2 The effective magnetic moment

At §1.6 the effect of an external magnetic field on one single electron has been
considered. The quantum description for multi-electrons atom shall be given
at Chapter 4. Here we derive the atomic magnetic moment that effectively
interacts with the external field in the framework of the vectorial model and
of the LS scheme.

The magnetic field, acting on μL and μS , induces torques on L and on
S while they are coupled by the spin-orbit interaction. A general solution for
the motions of the momenta and for the energy corrections in the presence of
the field can hardly be obtained. Rigorous results are derived in the limiting
cases of strong and of weak magnetic field, namely for situations such that
μL,S .H � ξLS and μL,S .H � ξLS , respectively. Let us first discuss the case
of weak magnetic field (Fig. 3.3)

In view of the meaning of L.J and of S.J, the angles between L and J and
S and J can be written

cosL̂J =
L(L+ 1) + J(J + 1) − S(S + 1)

2
√
L(L+ 1)

√
J(J + 1)

(3.11)

cosŜJ =
S(S + 1) + J(J + 1) − L(L+ 1)

2
√
S(S + 1)

√
J(J + 1)

(3.12)

Then the magnetic moment along the J direction, after averaging out the
transverse components of L and S (due to fast precession induced by spin
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H

S

J

L

μ
J

μ’=μ
L
+μ

S

μ
S
= -2μ

B
S

μ
L
= -μ

B
L

Transverse components

average out

Fig. 3.3. Vectorial description of angular and magnetic moments in magnetic field,
within the LS model. The interaction with the field is weak in comparison to the
spin-orbit interaction and fast precessions of L and S around J occur, controlled by
ξLS . Only the “result” of the precessional motion can effectively interact with the
field: the precession of J at the Larmor frequency ωL = γH is induced. ωL is much
smaller than the precessional frequency of L and S around J (see Problem III.2.4).

orbit interaction) is 3

μJ = −2μBScosŜJ − μBLcosL̂J .

Therefore the effective magnetic moment turns out

μJ = −μBgJ (3.13)

where g, called the Landé factor, is

g = 1 +
J(J + 1) + S(S + 1) − L(L+ 1)

2J(J + 1)
(3.14)

3 The formal proof is based on the Wigner-Eckart theorem (see §4.3)
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Hence the energy corrections associated with the magnetic Hamiltonian are
ΔE = −μJ .H = −μz

JH = gμBHMJ . Thus the magnetic field removes the
degeneracy in MJ and the energy levels, in weak magnetic field, turn out

E(L, S, J,MJ ) = E0(L, S, J) + μBgHMJ . (3.15)

In the opposite limit when the magnetic field is strong enough that the
Hamiltonians μL.H and μS .H prevail over the spin-orbit interaction, one
can first disregard this latter and the energy levels are derived in terms of
the quantum magnetic numbers M and MS . Vectorially this corresponds to
the decoupling of the orbital and spin momenta and to their independent
quantization along the axis of the magnetic field, around which they precess at
high angular frequency. The magnetic moment is the sum of the independent
components and therefore the energy correction is written

ΔE = −[μz
LH + μz

SH] = μBMH + 2μBMsH (3.16)

The spin-orbit interaction can be taken into account subsequently, as pertur-
bation of the states labelled by the quantum magnetic numbers M and MS .
This will be described at Chapter 4 as the so-called Paschen-Back regime.

3.2.3 Illustrative examples and the Hund rules for the ground
state

In the framework of the LS scheme, by taking into account the signs of the
coupling constants for the spin-orbit interaction (§1.6) and for the spin-spin
interaction (§2.2.2), one can figure out simple rules to predict the configuration
pertaining to the ground state of the atom. This is an important step for the
description of the magnetic properties of matter. The rules, first empirically
devised by Hund, are the following:

i) maximize the quantum number S. The reason for this is related to the
sign of the exchange integral, since in the spin-spin coupling c12 plays the role
of −2K, as already observed;

ii ) maximize L, in a way compatible with Pauli principle;
iii ) minimize J for regular multiplets while maximize it for inverted

multiplets. This rule follows from the sign of ξnl and then of ξLS (see Eq.
3.8).

As illustrative examples let us consider one atom of the transition elements,
with incomplete 3d shell (Fe) and one of the rare earth group, with incomplete
4f shell (Sm). The electronic configuration of iron is (1s)2(2s)2(2p)6(3s)2(3p)6

(3d)6(4s)2. Maximization of S implies the spin vectorial coupling in the form
↑↑↑↑↑↓ yielding S = 2. The coupling of five of the six orbital momenta must
be zero, since the m numbers must be all different (from -2 to +2) in order to
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Fig. 3.4. Diagram of the energy levels and labeling of the electronic states within
the LS scheme for: a) one s and one p electron; b) one p and one d electron
(outside closed shells). For case a) it is shown how a magnetic field removes all the
degeneracies, while in case b) the number of degenerate states are indicated on the
right (ξ”LS is negative).

preserve Pauli principle. Then for the sixth electron we take the maximum,



3.2 Coupling of angular momenta 105

namely L = 2. The multiplet is inverted, because the maximum number of
electrons that can be accommodated in the 3d sub-shell is 10. Then J = 4.
Thus the ground state for iron is 5D4. According to Eqs. 3.13 and 3.14 the
magnetic moment would be |μJ | = 4.9μB while experimentally it turns out
|μJ | = 5.4μB (for this discrepancy see Caption to Table III.2.2).

Samarium has the electronic configuration ending with (4f)6(6s)2. Maxi-
mizing S yields S = 3. To complete half of the shell (that would give L = 0)
one electron is missing. Then by taking the maximum possible value one has
L = 3. The multiplet is regular and therefore the ground state is the one with
J = 0, namely 7F0. Other ground states are derived in Problem III.2.5.

In Table III.2.2 the ground state of some 4f magnetic ions often in-
volved in paramagnetic crystals, with their effective magnetic moment |μ| =
g
√
J(J + 1) are reported.
As illustrative examples of the structure and classification of the energy

levels in the LS scheme according to the prescriptions described above, in
Fig. 3.4 the cases of atoms with one s and one p electron and with one p and
one d electron outside the closed shells are shown.

Ion Shell S L J Atomic 

Configuration 

|μ| 

(in Bohr magneton) 

Ce
3+

 4f
1
 1/2 3 5/2 

2
F5/2 2.54 

Pr
3+

 4f
2
 1 5 4 

3
H4 3.58 

Nd
3+

 4f
3
 3/2 6 9/2 

4
I9/2 3.62 

Pm
3+

 4f
4
 2 6 4 

5
I4 2.68 

Sm
3+

 4f
5
 5/2 5 5/2 

6
H5/2 0.85 

Eu
3+

 4f
6
 3 3 0 

7
F0 0 

Gd
3+

 4f
7
 7/2 0 7/2 

8
S7/2 7.94 

Tb
3+

 4f
8
 3 3 6 

7
F6 9.72 

Dy
3+

 4f
9
 5/2 5 15/2 

6
H15/2 10.65 

Ho
3+

 4f
10

 2 6 8 
5
I8 10.61 

Er
3+

 4f
11

 3/2 6 15/2 
4
I15/2 9.58 

Tm
3+

 4f
12

 1 5 6 
3
H6 7.56 

Yb
3+

 4f
13

 1/2 3 7/2 
2
F7/2 4.54 

Lu
3+

 4f
14

 0 0 0 
1
S0 0 

 

Table III.2.2 Ground state of some magnetic ions of the 4f sub-shell, accord-

ing to Hund’s rules, and correspondent values of the effective magnetic moments. It

should be remarked that these data refer to free ions, while the magnetic properties

can change when the crystalline electric field is acting (see Problems F.IV.1, F.IV.2

and F.XIII.3)) 4.

4 For Sm3+ and Eu3+ the agreement with the experimental estimates (1.5 μB and
3.4μB , respectively) is poor. If one takes into account higher order energy levels
good agreement is found (see Eq. 4.38).
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In Fig. 3.5 the energy levels of the p2 configuration are reported and the
transitions to the sp configuration (see Fig. 3.4a), driven by electric dipole
mechanism, are indicated.

np
2

ns np

1

S

1

D

3

P

3

P

1

P

J=0

J=1

J=2

J=1

J=0

J=1

J=2

J=2

J=0

Fig. 3.5. Multiplet structure in the LS scheme for the nsnp and the np2 configu-
rations and transitions allowed by the electric dipole mechanism (see §3.5).
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Problems III.2

Problem III.2.1 Derive and label the low-energy states of the carbon
atom (ground state configuration (1s)2 (2s)2 (2p)2) by taking into account the
inter-electronic interactions, first disregarding the spin-orbit coupling.

Solution:
The method to rule out unacceptable states for equivalent 2p electrons is
shown in Table III.2.1. Equivalently, by indicating |m = 1,ms = 1

2 >≡
a , |0,− 1

2 >≡ d , |1,− 1
2 >≡ b , | − 1, 1

2 >≡ e , |0, 1
2 >≡ c , | − 1,− 1

2 >≡ f
one has the possibilities listed below:

ML MS ML MS

ab 2 0  bf 0 -1 •
ac 1 1 • cd 0 0 
ad 1 0  ce -1 1 •
ae 0 1 • cf -1 0 
af 0 0 ♦ de -1 0 •
bc 1 0 • df -1 -1 •
bd 1 -1 • ef -2 0 
be 0 0 • –

� terms correspond to L = 2 and S = 0, • to L = 1 and S = 1, while ♦ to
L = 0 and S = 0 (see Table III.2.1).

The first low-energy states are 1S0, 1D2 and 3P0,1,2, according to the
vectorial picture and to the Hund rules:

↑ ↓ ↑ ↓ 1S0 L = 0 S = 0

↑ ↑ ↑ ↓ 1D2 L = 2 S = 0

↖ ↗ ↑ ↑ 3P0,1,2 L = 1 S = 1

The correspondent energy diagram, including the experimentally detected
splitting of the lowest energy 3P state due to spin-orbit interaction is



108 3 The shell vectorial model

1s
2

2s
2

2p
2

L=1, S=1, 
3
P

3

P
0

3

P
1

1

S
0

J=1

J=0

20649 cm
-1

3

P
2

J=2

L=0, S=0, 
1
S

L=2, S=0, 
1
D

J=0

J=2

1

D
2

16 cm
-1

43 cm
-1

10195 cm
-1

0       ground state

An extended energy diagram of the atom (with spin-orbit splitting not
detailed) is

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

33S
2s22p3p

33P
2s22p3p

10195 cm-1

20650 cm-1

4
4

31P
2s22p3p

33D
2s22p3p

33D
2s2p3

4

33P
2s22p3s

23P
2s22p2

41D

21D
2s22p2

31P
2s22p3s

41S

21S
2s22p2

Triplet (S=1)Singlet (S=0)
3D3P

3S
1D1P1S

E(eV)

Problem III.2.2 Derive and label the low-energy states for the N atom
(electronic configuration (1s)2 (2s)2 (2p)3) by taking into account the inter-
electron couplings. By assuming a spin-spin interaction of the form

∑′
i,j Asi.sj

evaluate the shift of the ground state.
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Solution:
According to the notation used in Problem III.2.1, the possible one-electron
states are a b c d e f .

The complete states, in agreement with the Pauli principle, are

ML MS ML MS

 abc 2 1/2 bcd 1 -1/2
 abd 2 -1/2 bce 0 1/2
 abe 1 1/2 bcf 0 -1/2
 abf 1 -1/2 bde 0 -1/2

acd 1 1/2  cde -1 1/2
ace 0 3/2  cdf -1 -1/2
acf 0 1/2  def -2 -1/2

 ade 0 1/2 bef -1 -1/2
 adf 0 -1/2  cef -2 1/2

aef -1 1/2 bdf 0 -3/2

(� terms corresponding to L = 2, S = 1/2, i.e 2D5/2,3/2, etc...).
Thus the three low-energy states are

2P 3
2 , 1

2

2D 5
2 , 3

2

4S 3
2

correspondent to the vectorial picture

↖ ↗ → ↑ ↓ ↑ 2P 3
2 , 1

2
L = 1 S = 1

2

↑ ↑ → ↑ ↓ ↑ 2D 5
2 , 3

2
L = 2 S = 1

2

↑ ↓ ← ↑ ↑ ↑ 4S 3
2

L = 0 S = 3
2
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The energy diagram is

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6
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-4
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-2
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0

-14.53 eV

22P
1/2

22D
3/2

24S
3/2

4F2F
Quartet (S=3/2)Doublet (S=1/2)

4D4P4S2D2P2S

E(eV)

The shift of the ground state due to the spin-spin interaction is 3A/4. In
fact

S2 = s2
1 + s2

2 + s2
3 + 2[s1.s2 + s2.s3 + s1.s3]

and then

[s1.s2 + s2.s3 + s1.s3] =
S2 − s2

1 − s2
2 − s2

3

2
=

3
4

The same structure and classification of the electronic states hold for
phosphorous atom, in view of the same configuration s2p3 outside the closed
shells. On increasing the atomic number along the V group of the periodic
Table, the increase in the spin-orbit interaction can be expected to invalidate
the LS scheme (see §3.3). However, for three electrons in the p sub-shell,
since ξLS is almost zero (see Eq. 3.8), the 2P1/2 and 2P3/2 states, for instance,
have approximately the same energy (ΔESO � 3.1 meV).
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Problem III.2.3 Reformulate the vectorial coupling for two inequivalent
p electrons in the LS scheme, indicating the states that would not occur for
equivalent electrons.

Solution:

L

2

1

0

states

S

P

D

S

1

0

multiplets

3

1

∑
i
l
i

∑
i
s
i

J = L + S D J = 3, 2, 1 for S = 1

J = 2 for S = 0

P J = 2, 1, 0 for S = 1

J = 1 for S = 0

S J ≡ S = 1, 0 .

For equivalent electrons only 3P2,1,0, 1D2 and 1S0 are present (see Table
III.2.1).
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Problem III.2.4 By referring to a magnetic moment μL in magnetic
field H, derive the precessional motion of L with the Larmor frequency
ωL = γH, where γ is the gyromagnetic ratio (see Problem I.6.5).

Solution:

The equation of motion is

dL
dt

= μL × H = −γL × H

i.e.
dLz

dt
= 0 ⇒ Lz ≡ L cos θ = const

·
Lx= −γLyH

·
Ly= γLxH

Then
d2Lx

dt2
= −γ2H2Lx

(and analogous for Ly), implying coherent rotation of the components in the
(xy) plane with ωL = eH/2mc.

The frequency of the precessional motion can be obtained by writing (see
Figure)

|ΔL| = L sin θ ωLΔt
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so that

ωL =
|ΔL|
Δt

1
L sin θ

=
μLH sin θ
L sin θ

= γH

Problem III.2.5 Derive the ground states for Fe++, V+++, Co, As, La,
Yb+++ and Eu++, in the framework of the LS coupling scheme (a similar
Problem is F.III.3).

Solution:
The ion Fe++ has six 3d electrons. According to the Pauli principle and

the Hund rules

m spin

2 ↑ ↓
1 ↑
0 ↑ Then S = 2, L = 2, J = L + S = 4 =⇒ state 5D4;
-1 ↑
-2 ↑

V+++ has incomplete 3d shell (2 electrons):

Then S = 1 L = 3 J = L− S = 2 =⇒ state 3F2.

Similarly
Co (3d)7 (4s)2 S = 3

2 L = 3 J = 9
2 =⇒ state 4F 9

2
;
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m spin

2 ↑
1 ↑
0
-1
-2

As (3d)10 (4s)2 (4p)3 S = 3
2 L = 0 J = 3

2 =⇒ state 4S 3
2
;

La (5d)1 (6s)2 S = 1
2 L = 2 J = 3

2 =⇒ state 2D 3
2
;

Yb+++ (4f)13 S = 1
2 L = 3 J = L+ S = 7

2 =⇒ state 2F 7
2
;

Eu++ (4f)7 S = 7
2 L = 0 J = S = 7

2 =⇒ state 8S 7
2
.

(see Table III.2.2)
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3.3 jj coupling scheme

The experimental findings indicate that the interval rule (Eq. 3.9), character-
istic of the LS scheme, no longer holds for heavy atoms. This can be expected
in view of the increase of the spin-orbit interaction upon increasing Z, thus
invalidating the condition a� c at the basis of the LS coupling. In the oppo-
site limit of a� c one first has to couple the single-electron orbital and spin
momenta to define j and then construct the total momentum J:

ji = li + si with good quantumnumbers ji and (mj)i (3.17)

and
J =

∑
i

ji with good quantumnumbersJ andMJ (3.18)

The final state is characterized by l, s, j of each electron and by J and MJ of
the whole atom. The vectorial picture is shown in Fig. 3.6. j1 and j2 are half
integer while J is always integer. To label the states, the individual ji’s are
usually written between parentheses while J is written as subscript.

H

J

μ
J

s
2

s
1

l
1

j
1

l
2

j
2

Fig. 3.6. Vectorial sketch of the jj coupling and of the precessional motions for two
electrons, leading to the total J and μJ precessing around the external magnetic
field.

In a way analogous to the couplings in Eqs. 3.3 and 3.5, by the “squaring
rule” j1.j2 leads to
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j1.j2 =
J(J + 1) − j1(j1 + 1) − j2(j2 + 1)

2
(3.19)

sp

j
1
=1/2, j

2
=3/2

j
1
=1/2, j

2
=1/2

3B/4

B/4

3B’/4

5B’/4

a
22

/2

-a
22

with

a
22

l
2

.s
2

with

Bj
1 

.j
2

J=1

J=1

J=2

J=0

In the presence of 

the magnetic field 

(3/2, 1/2)
1

(3/2, 1/2)
2

(1/2, 1/2)
1

(1/2, 1/2)
0

without 

interactions

Fig. 3.7. jj coupling for s and p electrons. It is noted that for the state j1 = 1/2
and j2 = 3/2 the energy constant B′ describing the coupling is equal and of opposite
sign of the one (B) for the j1 = 1/2 and j2 = 1/2 state (this is proved in Problem
III.3.1).

The structure of the levels and their labelling is evidently different from
the one derived within the LS scheme, as it appears from the example for
one s and one p electron in Fig. 3.7 (to be compared with Fig. 3.4a). In Fig.
3.8 the comparison of the LS and jj schemes for two equivalent p electrons is
shown.

The jj coupling for two inequivalent p electrons is indicated below

j1 j2 J Notation Degeneracy
3/2 3/2 3,2,1,0 (3/2,3/2)3,2,1,0 16
3/2 1/2 2,1 (3/2,1/2)2,1 8
1/2 1/2 1,0 (1/2,1/2)1,0 4
1/2 3/2 2,1 (1/2,3/2)2,1 8

Total number of states 36
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For equivalent p electrons the following cases are excluded

j1 j2 J
3/2 3/2 3
3/2 3/2 1
1/2 1/2 1

number of states excluded 13

The first case implies parallel orbital momenta as well as parallel spins.
The third case corresponds to l1 = l2 = 0 and parallel spins. The middle term
is not pictorially evident (it is the analogous of the 1P states at Table III.2.1)
and corresponds to a level for which no additional distinguishable states are
available.

The states allowed for equivalent p electrons are listed below, where the
MJ degeneracy can be removed by a magnetic field:

j1 j2 J Spectroscopic notation Degeneracy

3/2 3/2 2,0 ( 3
2
, 3

2
)2,0 6

3/2 1/2 2,1 ( 3
2
, 1

2
)2,1 8

1/2 1/2 0 ( 1
2
, 1

2
)0 1

- - - - Total 15

see Fig. 3.8

It is noted that the state (3
2 ,

1
2 )2,1 is indistinguishable from the (1

2 ,
3
2 )2,1

and this accounts for the other 8 states missing with respect to the original
36 states.

An example of heavy atom where a coupling intermediate between the LS
and the jj schemes is Mercury. The energy diagram (simplified) is shown in
Fig. 3.9.

Besides the violation of the interval rule one should remark that the
strongest lines in the spectral emission of a mercury lamp originate from
the intercombination of the 1S0 and 3P1 states. At the sake of illustration,
since the line at 2537 Å would be forbidden in the LS scheme (because of the
orthogonality of singlet and triplet states), one realizes the breakdown of LS
coupling.

In very heavy atoms pure jj coupling does occur. The tendency from LS
to jj coupling scheme is shown schematically in Fig. 3.10 for the sequence C,
Si, Ge, Sn, Pb, in terms of the (sp) outer electrons configuration.
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Fig. 3.8. Comparison of the structure and classification of the levels for two equiv-
alent p-electrons in the LS (left) and jj (right) coupling schemes.
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Fig. 3.9. Energy diagram for Hg, emphasizing the strength of the intercombination
lines between singlets and triplet states (at variance with Fig. 2.7). In the triplet
63D3 − 63D2 − 63D1 the experimental measure of the separation 63D3 - 63D2 is 35
cm−1, while the separation for 63D2 - 63D1 is 60 cm−1. The ratio of the intervals
turns out 0.58, whereas in the LS scheme one would have 1.5 (Eq. 3.9).
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Fig. 3.10. Schematic view of the progressive changeover from LS scheme towards
jj scheme on increasing the atomic number for the two electrons energy levels. It
should be remarked that the LS scheme is often used to label the states eventhough
their structure is rather close to the one pertaining to the jj coupling scheme.

.
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Problems III.3

Problem III.3.1 Prove that for the jj coupling of one s and one p electrons
in the state at j1 = 1/2 and j2 = 3/2 the fine structure constant B′ is equal
to −B (see Fig. 3.7).

Solution:
The couplings are
a11l1 · s1 + a22l2 · s2 +B(j1, j2)j1 · j2 with a11 and a22 > 0.

For s electron l1 = 0 s1 = 1
2 j1 = 1

2

For p electron l2 = 1 s2 = 1
2 j2 = 3

2
1
2

corresponding to the configuration

j1 j2 J

1
2

3
2

2, 1

1
2

1
2

1, 0

with B
(

1
2 ,

3
2

) ≡ B′ (a) and B
(

1
2 ,

1
2

) ≡ B (b).
For case (a)

Bj1 · j2 = B′s1 · (l2 + s2) = B′l2 · s1︸ ︷︷ ︸
negligible

+B′s1 · s2

while for case (b)

Bj1 · j2 = Bs1 · (l2 − s2) = Bl2 · s1︸ ︷︷ ︸
negligible

−Bs1 · s2

Thus B ≡ −c12 > 0 and B′ = −B.

Problem III.3.2 For an electron in the lsjmj state, express the expecta-
tion values of sz, lz, l2z and l2x (z is an arbitrary direction and x is perpendicular
to z).

Solution:
By using arguments strictly similar to the ones at §2.2.2 (see Eq. 3.12) and
taking into account that because of the spin-orbit precession s must be pro-
jected along j:
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sj = |s|cos(ŝj) with

cos(ŝj) =
[
s(s+ 1) + j(j + 1) − l(l + 1)

]
/2

√
s(s+ 1)

√
j(j + 1).

Then < sz >= sj mj/|j| = mjA,

with A = [s(s+ 1) + j(j + 1) − l(l + 1)]/2j(j + 1)

< lz >=< jz > − < sz >= mj(1 −A)

< l2z >=< (jz − sz)2 >=< j2z > + < s2z > −2 < jzsz >=

= m2
j +

1
4
− 2mj < sz >= m2

j +
1
4
− 2m2

jA

Since < l2 >=< l2z > +2 < l2x > (< l2x >=< l2y >) then

< l2x >=
1
2

[
l(l + 1) − 1

4
−m2

j (1 − 2A)
]

The same result for < sz > is obtained from the Wigner-Eckart theorem
(Eq. 4.25): < l, s, j,mj |sz|l, s, j,mj >=< |(s · j)jz| > /j(j + 1) =

= mj < |s · j| > /j(j + 1) = mj < |j2 − l2 + s2| > /2j(j + 1) .
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3.4 Quantum theory for multiplets. Slater radial
wavefunctions

From the perturbative Hamiltonian reported in Eq. 1.11 and on the basis of
the Slater determinantal eigenfunctionsD(1, 2, 3, ...) described at §2.3, one can
develop a quantum treatment at the aim of deriving the multiplet structure
discussed in the framework of the vectorial model. The perturbation theory
for degenerate states has to be used. A particular form of this approach is
described in Problem II.1 for the 1s2l states of Helium. At §2.2.2 a similar
treatment was practically given, without involving a priori the degenerate
eigenfunctions corresponding to a specific electronic configuration.

In general the direct solution of the secular equation is complicated and
the matrix elements include operators of the form r−1

i and r−1
ij and the spin-

orbit term. Again two limiting cases of predominance of the spin-spin or of the
spin-orbit interaction have to be used in order to fix the quantum numbers
labelling the unperturbed states associated with the zero-order degenerate
eigenfunctions. The eigenvalues are obtained in terms of generalized Coulomb
and exchange integrals. First we shall limit ourselves to a schematic illustra-
tion of the results of the Slater theory for the electronic configuration (np)2,
to be compared with the results obtained at §3.2.3 in the framework of the
vectorial model.

For two non-equivalent p electrons (say 2p and 3p) the Slater multiplet
theory yields the following eigenvalues in the LS scheme, I0,2 and K0,2 being
Coulomb and exchange integrals for different one-electron states:

a) E(3D) = E0 + I0 + I2
25 −K0 − K2

25

b) E(3P ) = E0 + I0 − 5I2
25 +K0 − 5K2

25

c) E(3S) = E0 + I0 + 10I2
25 −K0 − 10K2

25

d) E(1D) = E0 + I0 + I2
25 +K0 + K2

25

e) E(1P ) = E0 + I0 − 5I2
25 −K0 + 5K2

25

f) E(1S) = E0 + I0 + 10I2
25 +K0 + 10K2

25

(the indexes 0 and 2 result from the expansion of 1/r12 in terms of Leg-
endre polynomials). For equivalent 2p electrons only states b), d) and f)
occur, with energies (Fig. 3.11)

E(3P ) = E0 + I0 − 5I2
25
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E(1D) = E0 + I0 + I2
25

E(1S) = E0 + I0 + 10I2
25

(the exchange integral formally coincides with the Coulomb integral here).

E
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I
2
/25

3
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Fig. 3.11. Schematic diagram for equivalent p2 electron configuration as derived
in the Slater theory, in terms of Coulomb and exchange generalized integrals. The
comparison with the results of the vectorial model (see Problem III.2.1) clarifies that
the same structure and classification of the levels is obtained. Quantitative estimates
require the knowledge of the radial parts of the one-electron eigenfunctions.

The quantitative estimate of the energy levels cannot be given unless nu-
merical computation of I and K in terms of one-electron eigenfunctions is
carried out.

Approximate analytical expressions for the radial parts of the one-electron
eigenfunction can be obtained as follows.

An effective potential energy of the form

V (r) =
−(Z − σ)e2

r
+
n∗(n∗ − 1)h̄2

2mr2
(3.20)

is assumed, with σ and n∗ parameters to be determined. This form is strictly
similar to the one for Hydrogenic atoms, with a screened Coulomb term and
a centrifugal term (see §1.4). Thus the associated eigenfunctions are

φnlm(r, θ, ϕ) = NYl,m(θ, ϕ)rn
∗−1e

− (Z−σ)r

n∗a0 (3.21)

with N normalization factor.
The eigenvalues are similar to the ones at §1.4 and depend on σ and n∗.

Then E(σ, n∗) is minimized to find the best approximate values for σ and n∗

and the radial part of the eigenfunctions is derived.
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Empirical rules to assign the proper values to σ and n∗ are the following.
For quantum number n one has the correspondence
n = 1 , 2, 3, 4, 5, and 6, n∗ = 1, 2, 3, 3.7, 4, and 4.2
while Table III.4.1 gives the rules to derive (Z − σ).

 H       He 

1s 1       1.6875 

 Li Be B C N O F Ne 

1s 2.6906 3.6848 4.6795 5.6727 6.6651 7.6579 8.6501 9.6421 

2s 1.2762 1.9120 2.5762 3.2166 3.8474 4.4916 5.1276 5.7584 

2p   2.4214 3.1358 3.8340 4.4532 5.1000 5.7584 

 Na Mg Al Si P S Cl Ar 

1s 10.6259 11.6089 12.5910 13.5754 14.5578 15.5409 16.5239 17.5075 

2s 6.5714 7.3920 8.2136 9.0200 9.8250 10.6288 11.4304 12.2304 

2p 6.8018 7.8258 8.9634 9.9450 10.9612 11.9770 12.9932 14.0082 

3s 2.5074 3.3075 4.1172 4.9032 5.6418 6.3669 7.0683 7.7568 

3p   4.0656 4.2852 4.8864 5.4819 6.1161 6.7641 

 

Table III.4.1 The Clementi-Raimondi values for Z −σ (ground states). It

can be noted that for He atom, since n∗ = n = 1 the value of Z − σ must coincide

with Z∗ variationally derived at Prob. II.2.2.

The best atomic orbitals are actually obtained by the numerical solu-
tions along the lines devised by Hartree with the improvement by Fock and
Slater to include the electron exchange interaction. The so-called Hartree-
Fock equations for the one-electron eigenfunctions can be derived, by means
of a rather lengthy procedure,5 applying the variational principle to the energy
function, for a variation that leaves the determinantal Slater eigenfunctions
normalized. The Hartree-Fock equation for the orbital φα(ri) of the i-th elec-
tron for a closed-shell atom can be written

{Hi +
∑

β

[2Iβ −Kβ ]}φα(ri) = Ei
αφα(ri) (3.22)

Hi is the one-electron core Hamiltonian (Ti − Z∗e2/ri, with Z∗ ≡ Z if
no screening is considered). The sum is over all the occupied spatial eigen-
functions, while Iβ and Kβ are the Coulomb and exchange operators that
generalize the terms derived at §2.3 for He:

Iβφα(ri) =
[∫

φ∗β(rj)
e2

rij
φβ(rj)dτj

]
φα(ri)

Kβφα(ri) =
[∫

φ∗β(rj)
e2

rij
φα(rj)dτj

]
φβ(ri) . (3.23)

Eα in Eq. 3.22 is the one-electron energy. After iterative numerical procedure,
once the best self-consistent φ’s are obtained, by multiplying both sides of Eq.
3.22 by φ∗α(ri) and integrating, one obtains for the i-th electron
5 See, for instance, §16-3 in the book by Slater or Chapter 9 in the book by Atkins

and Friedman quoted in the Preface.
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Eα = Eo
α +

∑
β

(2Iαβ −Kαβ) (3.24)

with Eo
α ≡< α|Hi|α > and Iαβ and Kαβ are the Coulomb and exchange

integrals, respectively (with Iββ ≡ Kββ). A sum over all the energies Eα would
count all the interelectron interactions twice. Thus, by taking into account
that each orbital in a closed shell configuration is double occupied, the total
energy of the atom is written

ET = 2
∑
α

Eα −
∑
α,β

(2Iαβ −Kαβ) (3.25)

Although the eigenvalues obtained along the procedure outlined above are
generally very close to the experimental data for the ground-state (for light
atoms within 0.1 percent) still one could remark that any approach based on
the model of independent electrons necessarily does not entirely account for
the correlation effects.

Suppose that an electron is removed and that the other electrons do not
readjust their configurations. Then the one-electron energy Eα corresponds
to the energy required to remove a given electron from its orbital. This is the
physical content of the Koopmans theorem, which identifies |Eα| with the
ionization energy. Its validity rests on the assumption that the orbitals of the
ion do not differ sizeably from the ones of the atom from which the electron
has been removed.

The Hartree-Fock procedure outlined here for multi-electron atoms is
widely used also for molecules and crystals, by taking advantage of the fast
computers available nowadays which allow one to manipulate the Hartree-Fock
equations. When the spherical symmetry of the central field approximation
has to be abandoned numerical solutions along Hartree-Fock approach are
anyway hard to be carried out. Thus particular manipulations of the equa-
tions have been devised, as the widely used Roothaan’s one. Alternative
methods are based on the density functional theory (DFT), implemented
by the local density approximation (LDA). Correlation and relativistic
effects are to be taken into account when detailed calculations are aimed,
particularly for heavy atoms. Chapter 9 of the book by Atkins and Fried-
man (quoted in the preface) adequately deals with the basic aspects of the
computational derivation of the electronic structure.

Finally we mention that for atoms with a rather high number of electrons
and when dealing in particular with the radial distribution function of the
electron charge in the ground-state (and therefore to the expectation values),
the semiclassical method devised by Thomas and Fermi can be used. This
approach is based on the statistical properties of the so-called Fermi gas of
independent non-interacting particles obeying to Pauli principle, that we shall
encounter in a model of solid suited to describe the metals (§12.7.1). The
Thomas-Fermi approach is often used as a first step in the self-consistent
numerical procedure that leads to the Hartree-Fock equations.
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3.5 Selection rules

Here the selection rules that control the transitions among the electronic levels
in the LS and in the jj coupling schemes are recalled. Their formal deriva-
tion (the extension of the treatment in Appendix I.3) requires the use of the
Wigner-Eckart theorem and of the properties of the Clebsch-Gordan co-
efficients. We will give the rules for electric dipole, magnetic dipole and elec-
tric quadrupole transition mechanisms, again in the assumption that one elec-
tron at a time makes the transition. This is the process having the strongest
probability with respect to the one involving two electrons at the same time,
that would imply the breakdown of the factorization of the total wavefunction,
at variance to what has been assumed, for instance, at §2.1.

A) Electric dipole transition

LS coupling
ΔL = 0,±1 and ΔS = 0, non rigorous (L = 0 → L′ = 0 forbidden)
ΔJ = 0,±1, transition 0 ↔ 0 forbidden 6;
ΔMJ = 0,±1 for ΔJ = 0 the transition MJ = 0 →M ′

J = 0 forbidden 6.
For the electron making the transition one has Δl = ±1, according to

parity arguments (see App.I.3).

jj coupling
For the atom as a whole
ΔJ = 0,±1, transition 0 ↔ 0 forbidden 6;
ΔMJ = 0,±1 for ΔJ = 0 the transition MJ = 0 → M ′

J = 0 is
forbidden 6.

For the electron making the transition Δl = ±1, Δj = 0,±1.

B) Magnetic dipole transitions

ΔJ = 0,±1 and ΔMJ = 0,±1 (general validity)

LS scheme
ΔS = 0, ΔL = 0, ΔM = ±1

C ) Electric quadrupole mechanism

ΔJ = 0,±1,±2 (general validity),

LS scheme
ΔL = 0,±1,±2
ΔS = 0

6 Rules of general validity in both schemes.
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Problems F.III

Problem F.III.1 A beam of Ag atoms (in the ground state 5 2S1/2) flows
with speed v = 104 cm/s, for a length l1 = 5 cm, in a region of inhomogeneous
magnetic field, with dH/dz = 1 Tesla/cm. After the exit from this region the
beam is propagating freely for a length l2 = 10 cm and then collected on a
screen, where a separation of about 0.6 cm between the split beam is observed
(Stern-Gerlach experiment). From these data obtain the magnetic moment
of Ag atom.

Solution:
In the first path l1 the acceleration is

a =
F

MAg
=
μz

MAg

dH

dz

and the divergence of the atomic beam along z turns out

d′ =
1
2
a

(
l1
v

)2

In the second path l2, with vz = al1/v and then d′′ = al1l2/v2.
The splitting of the two beams with different z-component of the magnetic

moment (S = J = 1/2) turns out

d = 2(d′ + d′′) =
a

v2
(l21 + 2l1l2)

Then

μz =
MAgv

2d
dH
dz (l21 + 2l1l2)

� 0.93 · 10−20 erg
Gauss

.

Problem F.III.2 In the LS coupling scheme, derive the electronic states
for the configurations (ns, n′s) (i), (ns, n′p)(ii), (nd)2(iii) and (np)3(iv). Then
schematize the correlation diagram to the correspondent states in the jj
scheme, for the nd2 and for the np3 configurations.

Solution:
i)S = 1 L = 0 3S1

S = 0 L = 0 1S0

ii) 1P1 ,
3 P0,1,2
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iii)

2 2 1 1 0 0 -1 -1 -2 -2 ml
1
2

− 1
2

1
2

− 1
2

1
2

− 1
2

1
2

− 1
2

1
2

− 1
2

ms

2 1
2

2 − 1
2

4,0
1 1

2
3,1 3,0

1 − 1
2

3,0 3,-1 2,0
0 1

2
2,1 2,0 1,1 1,0

0 − 1
2

2,0 2,-1 1,0 1,-1 0,0
-1 1

2
1,1 1,0 0,1 0,0 -1,1 -1,0

-1 − 1
2

1,0 1,-1 0,0 0,-1 -1,0 -1,-1 -2,0
-2 1

2
0,1 0,0 -1,1 -1,0 -2,1 -2,0 -3,1 -3,0

-2 − 1
2

0,0 0,-1 -1,0 -1,-1 -2,0 -2,-1 -3,0 -3,-1 -4,0
ml ms

then 1S0,
3P2,1,0,

1D2,
3F4,3,2,

1G4

The total number of states is
(

10
2

)
= 45 .

iv) 4S 3
2
, 2P 1

2 , 3
2
, 2D 3

2 , 5
2

The total number of states is
(

6
3

)
= 20 .

The correlation between the two schemes is given below for the p3 config-
uration

p
3

2
P
3/2,1/2

2
D

5/2,3/2

4
S
3/2

J=3/2

J=1/2

J=3/2,5/2

J=3/2

(3/2,3/2,3/2)

(1/2,3/2,3/2)

(1/2,1/2,3/2)

p
3
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and for the d2 configuration

d
2

1
S

1
D

1
G

3
P

3
F

1
S
0

1
D

2

1
G

4

3
P
2

3
P
1

3
P
0

3
F
4

3
F
3

3
F
2

(5/2,5/2)

(3/2,3/2)

(5/2,3/2)
d
2

LS coupling
jj coupling

Problem F.III.3 By resorting to the Hund rules derive the effective mag-
netic moments for Dy+++, Cr+++ and Fe+++ (See Table III.2.2).

Solution:
The ion Dy+++ has incomplete 4f shell (9 electrons).
According to the Pauli principle and the Hund rules

m spin

3 ↑ ↓
2 ↑ ↓
1 ↑
0 ↑
-1 ↑
-2 ↑
-3 ↑

S = 5
2

L = 5 J = L + S = 15
2

=⇒ state 6H 15
2

The Landé factor is

g = 1 +
J(J + 1) + S(S + 1) − L(L+ 1)

2J(J + 1)
= 1.33

thus
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p =
μ

μB
= g

√
J(J + 1) = 10.65

In similar way

Cr+++ (3d)3 S = 3
2 L = 3 J = |L− S| = 3

2 =⇒ state 4F 3
2
;

g = 0.4 and p = 0.77

Fe+++ (3d)5 S = 5
2 L = 0 J ≡ S = 5

2 =⇒ state 6S 5
2
;

g = 2 and p = 5.92

Problem F.III.4 Derive the multiplets for the 3F and the 3D states and
sketch the transitions allowed by the electric dipole mechanism.

Solution:

Problem F.III.5 When accelerated protons collide on 19F nuclei an ex-
cited state of 20Ne is induced and transition to the ground state yields γ
emission. The emission spectrum, as a function of the energy of colliding
protons, displays a line centered at 873.5 keV, with full width at half inten-
sity of 4.8 keV. Derive the life time of the excited state of 20 Ne. Comment
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about the difference with the emission spectrum of 57Fe, where the transition
to the ground state from the first excited state yields a γ-photon at 14.4 keV,
with life time 10−7 s.

By referring to 57Fe, considering that the transition is due to a proton
and assuming as radius of the nucleus 10−12 cm, by means of order of magni-
tude estimates discuss the transition mechanism (electric dipole, electric
quadrupole, magnetic dipole) driving the γ transition at 14.4 keV in 57Fe.

Solution:
From

τ � h̄

ΔE
� 1.05 · 10−27 erg s

4.8 · 103 · 1.6 · 10−12 erg
= 1.37 · 10−19 s.

for 20Ne, while for 57Fe

ΔE � h̄

τ
= 1.05 · 10−20 erg � 6.6 · 10−12keV

The transition mechanism driving the γ transition at 14.4 keV in 57Fe is
discussed as follows:

a) for electric dipole transition the spontaneous emission probability (see
App.I.3 and Prob. F.I.1) is

AE
21 =

32π3(E2 − E1)3

3c3h̄ h3
| < 2|eR|1 > |2 � 1.8 × 1011 s−1

for | < 2|eR|1 > |2 � (e ·RN )2. Then one would expect

τE ∼ (AE
21)

−1 ∼ 0.55 × 10−11 s

b) for electric quadrupole mechanism

AE
21

AQ
21

=
[< 2|eR|1 >]2

[(2π/λ) < 2|eRR|1 >]2
�

(
λ

RN

)2 1
4π2

and then
τQ ∼ τE · 1.4 · 106 � 7.7 · 10−6 s

c) for magnetic dipole mechanism

AE
21

AM
21

∼
[
eRN

μN

]2

� 4088

τM ∼ τE · 4088 ∼ 2 · 10−8 s,

having used for the magnetic moment μN � 7.5 × 10−24 erg/Gauss.
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From the experimental value it may be concluded that the transition is
due to magnetic dipole mechanism.

Problem F.III.6 Estimate the order of magnitude of the ionization en-
ergy of 92U in the case that Pauli principle should not operate (assume that
the screened charge is Z/2) and compare it with the actual ionization energy
(4 eV).

Solution:
From Eq. 1.13

E = −mZ
2e4

2h̄2n2
= −Z

2

n2
· 13.6 eV

and for n = 1 and Z = 46, the ionization energy would be

|E| = (46)2 · 13.6 eV � 2.9 · 104 eV.

Problem F.III.7 The structure of the electronic states in the Oxygen
atom can be derived in a way similar to the one for Carbon (Problem III.2.1)
since the electronic configuration (1s)2 (2s)2 (2p)4 has two “holes” in the 2p
shell, somewhat equivalent to the 2p two electrons. Discuss the term structure
for oxygen along these lines.

Solution:
From Table III.2.1 taking into account that for (2p)6 one would have

ML = 0 and MS = 0 the terms 3P , 1D, 1S are found. Since one has four
electrons the spin-orbit constant changes sign, the multiplet is inverted and
the ground state is 3P2 instead of 3P0 (see Prob. III.2.1).
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Atoms in electric and magnetic fields

Topics

Electric polarizability of the atom
Linear and quadratic field dependences of the energies
Energy levels in strong and in weak magnetic fields
Atomic paramagnetism and diamagnetism
Paramagnetism in the presence of mean field interactions

4.1 Introductory aspects

The analysis of the effects of magnetic or electric fields on atoms favors a deep
understanding of the quantum properties of matter. Furthermore, electric or
magnetic fields are tools currently used in several experimental studies.

In classical physics the prototype atom is often considered as an electron
rotating on circular orbit around the fixed nucleus. In the presence of electric
and magnetic fields (see Fig. 4.1), the equation of motion for the electron
becomes

m
d2r
dt2

= −e
2r
r3

− eE − e
c

(
dr
dt

× H
)

(4.1)

For a static magnetic field H only (then the external electric field E = 0)
from Eq. 4.1 it is found that the Lorentz force induces a precessional motion
of the charge around z, with angular frequency (see Problem IV.2.1)

ω =

√
(
eH

2mc
)2 +

e2

mr3
± eH

2mc
�

√
e2

mr3
± ωL (4.2)
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z

n
r

θ

H or ε // z

ε
n 
= e r/ r

3

-e, m

x

y

Fig. 4.1. Variables used to account for the effects of electric or magnetic field in
the classical atom (Eq. 4.1).

To give orders of magnitude, the orbital frequency in the plane of motion is
ω0 = e/

√
mr3 ∼ 1016rad s−1 while the Larmor frequency ωL = eH/2mc is

around 1011rad s−1, for field H = 104 Oe (1 Tesla).
The current related to the orbital motion corresponds to the magnetic mo-

ment μ′ = μBn (see Problem I.6.2): its alignment along the field, contrasted
by thermal excitation, implies the temperature dependent paramagnetism.
The effective z component of the magnetic moment is expected of the order of
(μ′)z ∼ μB(μBH/kBT ) (formal description will be given at §4.4). Therefore
the paramagnetic susceptibility χpara = N(μ′z)/H, for a number N = 1022

of atoms per cubic cm, is of the order of χpara � Nμ2
B/kBT ∼ 6 × 10−5 (for

T � 100 K).
The current related to the precessional motion of the orbit is i = (−eωL/2π) =

−e2H/4πmc, along a ring of area A = π(rsinθ)2 (see Fig. 4.1). The associated
magnetic moment is

(μ”)z =
iA

c
= − e2H

4πmc2
πr2sin2θ ,

yielding a diamagnetic susceptibility χdia = Nμ”/H � −e2Nr2/4mc2,
as order of magnitude around −10−6 (again for N = 1022 atoms per unit
volume).

On the ground of qualitative arguments the effect of an electric field E ‖ ẑ
can be understood by referring to the displacement δz of the orbit along the
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field direction: the component of the Coulomb force e2δz/r3 equilibrates the
force eE (see the sketch below).

z

r

δz

ε

-e

Then the dipole moment turns out eδz = Er3 and an atomic polariz-
ability given by α ∼ eδz/E ∼ r3 ∼ 10−24 cm3 can be predicted.

In the quantum mechanical description the electric and magnetic forces
imply the one-electron Hamiltonian (see Eq. 1.26)

H =
1

2m
(p +

e

c
A)2 + V (r) + 2μBs.rotA − eϕ =

=
p2

2m
+V (r)+2μBs.rotA − eϕ+

e

2mc

[
(p.A) + (A.p)

]
+
e2A2

2mc2︸ ︷︷ ︸ ≡ H0 +HP

(4.3)
HP

Here the magnetic term related to the spin moment (Eq. 1.32) has been added,
while V (r) in H0 is the central field potential energy. ϕ and A in Eq. 4.3 are
the scalar and vector potentials describing the perturbation applied to the
atom.

For homogeneous electric field along the z direction

A = 0, and ϕ = −
∫ z

0

Edz = −zE (4.4)

while for homogeneous magnetic field H = ẑH0
1

ϕ = 0, and A =
1
2
H × r (4.5)

The corrections to the energy levels can be evaluated on the basis of the eigen-
functions of the zero-field Hamiltonian H0. In multi-electrons atoms this per-
turbative approach is generally hard to carry out, in view of the inter-electron
1 (1/2)rot(H × r) = ẑH0.
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couplings (as it can be realized by recalling the description in the framework
of the vectorial model (Chapter 3)). In the following we shall describe the
basic aspects of the effects due to the fields by deriving the corrections to the
atomic energy levels in some simplifying conditions.

4.2 Stark effect and atomic polarizability

Stark effect is usually called the modification to the energy levels in the
presence of the Hamiltonian HP =

∑
i eziE (first studied in the Hydrogen

atom also by Lo Surdo). In the perturbative approach energy corrections
linear in the field in general are not expected, the matrix elements of the form∫
φ∗(ri)ziφ(ri)dτi being zero.

The second order correction can be put in the form

ΔE(2) = −α
2
E2 (4.6)

where, in the light of the classical analogy for the electric dipole 2

μe = −∂ΔE
∂E , (4.7)

α defines the atomic polarizability. In fact, one can attribute to the atom
an induced electric dipole moment μe = αE . The polarizability depends
in a complicated way from the atomic state, in terms of the quantum numbers
J and MJ : α = α(J,MJ ).

Let us first evaluate the atomic polarizability α1s for Hydrogen in the
ground state. Instead of carrying out the awkward sum of the second order
matrix elements we shall rather estimate the limits within which α1s falls.
From Eqs. 4.3 and 4.4 one has

ΔE(2) = −
∑
n>1

| < 1s|HP |nlm > |2
En − E1

= −1
2
α1sE2 . (4.8)

| < 1s|HP |nlm > |2 is always positive and En increases on increasing n.
Therefore one can set the limits of variability of α1s/2:

− e
2

E1

∑
| < 1s|z|nlm > |2 < α1s

2
<

e2

(E2 − E1)

∑
| < 1s|z|nlm > |2. (4.9)

(note that the state n = 1 can be included in the sum, since < 1s|z|1s >= 0).
On the other hand∑

< 1s|z|nlm >< nlm|z|1s >=< 1s|z2|1s >=
1
πa30

∫
4π
3
r4e−2r/a0dr = a20 .

2 Note that the field-related energy is ΔE = − ∫ E
0

μedE ′, so that for μe = αE ′

Eq. 4.6 follows.
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From E1 = −e2/2a0 while (E2 − E1) = 3e2/8a0, one deduces

4a30 < α1s <
16
3
a30 .

It is recalled that the “brute-force” second order perturbative calculation
yields α1s = 4.66a30. Thus the electric polarizability turns out of the order of
magnitude of the “size” of the atom to the third power, as expected from the
qualitative argument at §4.1.

An approximate estimate of the polarizability of the ground state of the
Hydrogen atom can also be obtained by means of variational procedures, on
the basis of a trial function involving the mixture of the 1s and the 2pz states:

φvar = c1φ1s + c2φ2pz
. (4.10)

This form could be expected on the ground of physical arguments, as sketched
below in terms of atomic orbitals:

ε // z

z

+

+

-

z

+

-1s

2p
z

(see Problem F.II.2).
The energy function is

E(c1, c2) =
∫
φ∗varHφvardτ∫
φ∗varφvardτ

(4.11)

where H is the total Hamiltonian, while

H11 ≡< 1s|H|1s > ,H22 ≡< 2pz|H|2pz > ,H12 ≡< 1s|H|2pz >,

S12 ≡< 1s|2pz >= 0 , S11 = S22 = 1 (4.12)

From ∂E/∂c1,2 = 0

c1(H11 − E) + c2H12 = 0
c1H12 + c2(H22 − E) = 0 , (4.13)

with secular equation (H11 − E H12

H21 H22 − E
)

= 0 (4.14)
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Since H11 = E0
1s, H22 = E0

1s/4, while from Table I.4.2 for Z = 1
H12 =< 1s|H0|2pz > + < 1s|z|2pz > eE = eE28a0/35

√
2 ≡ A, Eq. 4.14

becomes (
E0

1s − E A

A
E0

1s

4 − E

)
= 0 , (4.15)

of roots

E± =
5
8
E0

1s ±
1
2

√
9(E0

1s)2

16
(1 +

64A2

9(E0
1s)2

) (4.16)

By taking into account that A� E0
1s, from (1+x)1/2 � 1+x/2 the lowest

energy level turns out

E = E0
1s +

4
3
A2

E0
1s

≡ E0
1s − 2.96

a30
2
E2 ,

corresponding to the polarizability α1s = 2.96a30.

In the particular case of accidental degeneracy (see §1.4) Stark effect
linear in the field occurs. Let us consider the n=2 states of Hydrogen atom.
The zero-order wavefunction is

φl = c(l)1 φ2s + c(l)2 φ2p1 + c(l)3 φ2p0 + c(l)4 φ2p−1 (4.17)

and the corrected eigenvalues are obtained from⎛⎜⎜⎝
< 2s| − ezE|2s > −E ... ...

... < 2p1| − ezE|2p1 > −E ...

... ... ...

... ... ...

⎞⎟⎟⎠ = 0 (4.18)

Again recalling the selection rules for the z-component of the electric dipole
(App.I.3), this determinant is reduced to⎛⎜⎜⎝

−E 0 B 0
0 −E 0 0
B 0 −E 0
0 0 0 −E

⎞⎟⎟⎠ = 0 (4.19)

where B = −3a0eE .
From the roots R1,2 = 0 and R3,4 = ±B the structure of the n = 2 levels

in the presence of the field is deduced in the form depicted in Fig. 4.2.
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z
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+

-

z

+

-

1s

2p
z

ε=0 ε≠0

3a
0
eε

μ
eff

=3a
0
e

φ = (1/�2) { φ
2s

- φ
2p

0

}

φ = (1/�2) { φ
2s

+ φ
2p

0

}

φ
2p

1

, φ
2p

-1

Fig. 4.2. Effect of the electric field on the n = 2 states of Hydrogen atom, illustrat-
ing how in the presence of accidental degeneracy a kind of pseudo-orientational
polarizability arises, with energy correction linear in the field E .

The first-order Stark effect is observed in Hydrogen and in F-centers in
crystals (where a vacancy of positive ion traps an electron and causes an effec-
tive potential of Coulombic character which yields the accidental degeneracy).

Finally in Fig. 4.3 the experimental observation of the Stark effect on the
D1,2 doublet of Na atom (see Fig. 2.2) is depicted. It is noted that the degener-
acy in ±MJ ≡ ±mj is not removed, the energy correction being independent
from the versus of the field.

2
P
3/2

2
S
1/2

2
P
1/2

D
1

D
2

ε ≠0

M
J
=±3/2

M
J
=±1/2

M
J
=±1/2

M
J
=±1/2

Fig. 4.3. Ground state and first excited states of Na atom upon application of
electric field and modification of the D doublet. The energy shift of the ground
state is 40.56 kHz/(kV/cm)2, corresponding to an electric polarizability α = 24.11 ·
10−24cm3. The shifts of the P states are about twice larger.



140 4 Atoms in electric and magnetic fields

Problems IV.2

Problem IV.2.1 Show how the classical equation for the electron in orbit
around the nucleus in the presence of static and homogeneous magnetic field
implies the precessional motion of the orbit with the Larmor frequency.

Solution:
From the force

F = −e2 r
r3

− e
c
(v × H) ,

for H along z

m
dvx
dt

+
e

c
Hvy +mω2

0x = 0 , m
dvy
dt

− e
c
Hvx +mω2

0y = 0 ,

where ω0 =
√
e2/mr3 is the angular frequency of rotation in the orbit. The

motion along z is unaffected. By transforming to

x(t) = r cosωt , y(t) = r sinωt

one writes
dvx
dt

= −rω2 cosωt;
dvy
dt

= −rω2 sinωt .

From the equations of motion the equation for ω

ω2 − 2ωLω − ω2
0 = 0 ,

is found (ωL = eH/2mc), yielding (for the positive root) ω =
√
ω2

0 + ω2
L+ωL .

Since, from order of magnitude estimates (see §4.1) ω2
L � ω2

0 , Eq. 4.2
follows. See also Prob. 4.3.1.

Problem IV.2.2 In the classical model for the atom and for the electro-
magnetic radiation source (Thomson and Lorentz models) the electron was
thought as an harmonic oscillator, oscillating around the center of a sphere of
uniform positive charge (see Problem I.4.5). Show that the electric polarizabil-
ity α = e2/k has to be expected, with effective elastic constant k = 4πρe/3,
ρ being the (uniform) positive charge density.

By resorting to the second-order perturbative derivation of the polariz-
ability for the quantum oscillator show that the same result is obtained and
that it is indeed the exact result.

Solution:
The restoring force is F = −(4πx3ρ/3)e/x2 and then k = 4πρe/3, correspond-
ing for the electron to an oscillating frequency
ν0 = (1/2π)

√
k/m � 2.53× 1015 s−1. From eE = F = kx and dipole moment

ex = e2E/k, α = e2/k follows.
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From Eq. 4.8, with perturbation Hamiltonian Hp = −eEz and quantum
oscillator ground and excited states

α = 2e2
∑

exc�=f

| < exc|z|f > |2
E0

exc − E0
f

.

From the matrix elements < v|z|v − 1 >=
√
vh̄/2mω (according to the

properties of Hermite polynomials, see §10.3.1) only the first excited state
|exc > has to be taken into account. Then

α =
2e2

h̄

| < f + 1|z|f > |2
ω0

=
2e2

h̄

h̄

2mω2
0

=
e2

k

The proof that this is the exact result is achieved by rewriting the Hamil-
tonian of the linear oscillator to include the electric energy ezE and observing
that a shift of the eigenvalues by −(eE)2/2k occurs (see the analogous Prob-
lem X.5.6 for the vibrational motion of molecules, where it is also shown that
α does not depend from the state |v > of the oscillator).

4.3 Hamiltonian in magnetic field

From Eqs. 4.3 and 4.5, by including now the spin-orbit interaction, the per-
turbation of the central field Hamiltonian for multi-electron atoms is written

H(1)
P = μBH

∑
i

liz + 2μBH
∑

i

siz +
∑

i

ξinlli.si . (4.20)

The term

H(2)
P =

∑
i

e2A2
i

2mc2
(4.21)

has been left out: it shall be taken into account in discussing the diamagnetism
(§4.5). In writing Eq. 4.20 we have used the interaction in the form −μl,s.H,
as it has been proved possible at §1.6. The magnetic field is considered static,
homogeneous and applied along the z-direction.

One could emphasize that in the hypothetical absence of the spin Eq. 4.20
would reduce to

H(1)
P = μBHLz (4.22)

implying corrections to the energy levels in the form ΔE = μBMH. There-
fore, in the light of the selection rule ΔM = 0,±1 (see §3.5), one realizes that
for a given emission line the magnetic field should induce a triplet, charac-
teristic of the so-called normal Zeeman effect (this terminology being due
to the fact that for such a triplet an explanation in terms of classical Lorentz
oscillators appeared possible, see Problem IV.3.1). The experimental observa-
tion that the effect of the magnetic field on the spectral lines is more complex,
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as shown in the following, can be considered stringent evidence for the exis-
tence of the spin. The real Zeeman effect (at first erroneously considered as
“anomalous” ) in general does not consists in a triplet (see the case of the
Na doublet in the following). The triplet actually can occur, in principle, in
the presence of very strong field (Paschen-Back effect), as we shall see at
§4.3.2.

4.3.1 Zeeman regime

In order to derive the energy of the atom from the Hamiltonian 4.20 one has
to consider the relative magnitude of the terms μBH (magnetic field energy)
and ξnl (spin-orbit energy). In the weak field regime, for μBH � ξnl and
in the LS coupling scheme, the Hamiltonian is considered in the form

H(1)
P = μBH · (L + 2S) (4.23)

and acting as a perturbation on the states |E0, J,MJ > resulting from the
central field Hamiltonian, with the coupling

∑
i li and

∑
i si and the spin-

orbit interaction in the form ξLSL.S.
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Fig. 4.4. Structure of the 2S1/2 ground-state and of the 2P doublet of Na atom in a
magnetic field and transitions allowed by the electric dipole selection rules ΔS = 0,
ΔJ = 0,±1 and ΔMJ = 0,±1. The D1 line splits into four components, the D2 line
into six. Similar structure of the levels hold for the other alkali atoms. On increasing
the magnetic field strength the structure of the lines, here shown for the weak field
regime, progressively changes towards a central π line and two σ+ and σ− doublets
(see Problem IV.3.5). π lines correspond to ΔMJ = 0, while σ lines to ΔMJ = ±1.
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The operator (L + 2S) has to be projected along J by using Wigner-
Eckart theorem

< E0, J,M
′
J |Lz+2Sz|E0, J,MJ >= g < E0, J,M

′
J |Jz|E0, J,MJ >= gMJδM ′

J
,MJ

,
(4.24)

the constant g being obtained from the component of (L + 2S) along J:

g =< E0, J, L, S| (L + 2S).J
J2

|E0, J, L, S >=

=< E0, J, L, S| (L + S).J + S.J
J2

|E0, J, L, S >=

= 1 +
J(J + 1) + S(S + 1) − L(L+ 1)

2J(J + 1)
(4.25)

This result is in close agreement with the deduction of the Landé factor
within the vectorial coupling model (§3.2.2). Then the energy corrections are
given by

ΔE = μBHgMJ , (4.26)

the result that one would anticipate by assigning to the atom a magnetic
moment μJ = −μBgJ and by writing the perturbation Hamiltonian as
HP = −μJ .H.

As a consequence of Eqs. 4.25 and 4.26, in general the structure of the
atomic levels in the magnetic field, in the Zeeman regime, is more complicated
than the one for S = 0. The spectral lines are modified in a form considerably
different from a triplet. At the sake of illustration, the case of the Na doublet
D1 and D2 is schematically reported in Fig. 4.4. By taking into account the
selection rulesΔMJ = 0,±1, for Na coinciding with the ones for single electron
(see §2.1), also the polarization of the emission lines is justified.

4.3.2 Paschen-Back regime

When the strength of the magnetic field is increased the structure of the
spectral lines predicted within the LS coupling model and weak field condition
is progressively altered and in the limit of very strong field the condition of a
triplet (as one would expect for S = 0) is restored. This crossover is related
to the fact that for μBH � ξLS the effect of the magnetic perturbation has
to be evaluated for unperturbed states characterized by quantum numbers
M and MS pertaining to Lz and Sz, while the spin-orbit interaction can be
taken into account only as a subsequent perturbation. This is the so-called
Paschen-Back, or strong field, regime.

From the field-related Hamiltonian in Eq. 4.23, in a way similar to the
derivation within the vectorial model (see §3.2), the energy correction turns
out

ΔE = μBH(M + 2MS). (4.27)
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From the selection rulesΔM = 0,±1 andΔMS = 0 (the spin-orbit interaction
being absent at this point) one sees that the frequency ν(0)

12 of a given line
related to the transition |2 >→ |1 > in zero-field condition, is modified by the
field in

ν
(H)
12 = ν(0)

12 +
μBH

h

[
(M2 −M1) + 2(M2

S −M1
S)

]
(4.28)

implying the triplet, with two lines symmetrically shifted by (e/4πmc)H.
Then the spin-orbit interaction can be taken into account, yielding

ΔE′ = ξLS < |LxSx + LySy + LzSz| >= ξLS < |LzSz| >= ξLSMMS (4.29)

and causing a certain structure of the triplet (see Problems IV.3.2 and IV.3.5).
Finally we mention that the effect of magnetic fields in the jj coupling

scheme can be described by operating directly on the single-electron j moment
and considering the relationship between the magnetic energy and the inter-
electron coupling leading to total J. Again one has to use the Wigner-Eckart
theorem and the results anticipated in the framework of the vectorial model
(§3.3) are derived.
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Problems IV.3

Problem IV.3.1 By taking into account the Larmor precession (Problem
IV.2.1), the classical picture of the Lorentz radiation in magnetic field implies a
triplet for observation perpendicular to the field and a doublet for longitudinal
observation.

Discuss the polarization of the radiation in terms of the selection rules for
the quantum magnetic number.

Solution:
The sketch of the experimental observation for classical oscillator in a mag-
netic field is given below:

2

1 32

3

An oscillating electron is resolved into
three components.

H0 || z

ε⊥ H0

ε⊥ H0,circular

ε⊥ H0
ε || H0

Without magnetic field

With magnetic field in

transverse observation

With magnetic field in

longitudinal observation

(ε electric field of the radiation)

The frequency shift δω can be calculated as shown in Problem IV.2.1.
The frequency of the electron oscillating in the z direction (see sketch above)
remains unchanged. The equations for x and y can be written in terms of
u = x+ iy and v = x− iy, to find for ω0 � ωL

u = u0e
i(ω0+

eH0
2mc )t and v = v0ei(ω0− eH0

2mc )t ,

namely the equations for left-hand and right-hand circular motions at fre-
quencies ω0 ± δω, with δω = eH0/2mc. The oscillators 2 and 3 in the sketch
above have to emit or absorb radiation at frequency (ω0 ± δω), circularly
polarized when detected along H0.

Oscillator 1 is along the field and therefore the intensity of the radiation
is zero along that direction. If the radiation from the oscillators 2 and 3 is
observed along the perpendicular direction is linearly polarized.
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The polarizations of the Zeeman components have their quantum corre-
spondence in the ΔMJ = 0 and ΔMJ = ±1 transitions. These rules are used
in the so-called optical pumping: the exciting light is polarized in a way
to allow one to populate selectively individual Zeeman levels, thus inducing
a given orientation of the magnetic moments (somewhat equivalent to the
magnetic resonance, see Chapter 6).

Problem IV.3.2 Illustrate the Paschen-Back regime for the 2P ←→ 2S
transition in Lithium atom, by taking into account a posteriori the spin-orbit
interaction. Sketch the levels structure and the resulting transitions, with the
correspondent polarizations.

Solution:
The degenerate block

μBH < nlm
′m′

s|lz + 2sz|nlmms >= μBH(m+ 2ms)

is diagonal. The degeneracy is not completely removed. For the non-degenerate
levels the spin-orbit interaction yields the correction

ξnl < mms|lzsz|mms >= h̄2ξnlmms.

For the degenerate levels one has to diagonalize the corresponding block.
It is noted that the terms l+s− and l−s+ have elements among the de-
generate states equal to zero (the perturbation does not connect the states
m = 1, ms = −1/2 and m = −1, ms = 1/2). So this degeneracy is not
removed.

The levels structure and the transitions are sketched below:
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H
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Problem IV.3.3 Evaluate the shift of a spectral line at λ = 1894.6 Å
due to the transition from the 1P1 to the 1S0 state when a magnetic field of
1 Tesla is applied.

Solution:
The magnetic field gives rise to the triplet (ΔMJ = 0,±1) and the separation
between the components is

Δν =
EMJ=1 − EMJ=0

h
=
gμBH

h
� 1.4 · 1010Hz (g = 1)

From Δλ � −(λ0/ν0)Δν = −(λ2
0/c)Δν one has Δλ � 1.67 × 10−2 Å.

Problem IV.3.4 Show that in the low-energy state of the positronium
atom (1S0 and 3S1) no Zeeman effect occurs (the magnetic moment of the
positron is μp = μBgSp).

Solution:
The Hamiltonian is

H = −(μe + μp) · H = a(Se
z − Sp

z ) ,

with a = μBgH.
From the energy corrections

E = a < φ|Se
z − Sp

z |φ >

since in the singlet state the spin eigenfunction is antisymmetric and the
operator (Se

z − Sp
z ) is antisymmetric, the matrix element must be zero. The

same is true also for the triplet state 3S1.
A more formal proof can be obtained by applying the operator (Se

z − Sp
z )

on the four spin eigenfunctions αpαe, βpβe, etc... for the two particles.
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Problem IV.3.5 From the Paschen-Back structure of the D1,2 doublet of
Sodium atom imagine to decrease the magnetic field until the Zeeman weak
field regime is reached. Classify the states and connect the levels in the two
regimes.

Solution:
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P
1/2

1/H

+1/2
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Paschen-Back regime Zeeman regime

ΔE = μBH(m+ 2ms) ΔE = gμBHmj

with E0(n, l,m,ms) with E0(n, l, j,mj)
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Upon increasing the field (from right to left in the Figure) the D1 and D2

lines (Fig. 4.4) modify their structures as schematically shown below:

D
2

D
1

Energy

σ +  

σ − {

σ +     {

σ+

π

σ −

weak 

field

regime

strong field regime

σ −

π{

π



150 4 Atoms in electric and magnetic fields

4.4 Paramagnetism of non-interacting atoms and mean
field interaction

From the energy corrections induced by a magnetic field (Eq. 4.26) in the weak
field regime and in the light of the classical analogy, one can attribute to the
atom a magnetic moment μJ = −μBgJ, with J the total angular momentum.
This statement, already used in the vectorial description at §3.2, is at the
basis of the theory for the magnetic properties of matter.

As illustrative example we shall show how the magnetic properties of an
assembly of atoms can be derived by referring to the statistical distribution on
the levels, when the thermal equilibrium at a given temperature T is achieved.
The atoms will first be considered as non-interacting (the only weak interac-
tions occurring with the other degrees of freedom of the thermal reservoir, so
that statistical equilibrium can actually be attained).

z

μ
J

H=0

M
J
degeneracy

a)

M
J
=+J

M
J
=-J

H= 0

H≠ 0 along z

z

<μ
z 

> ≠ 0

b)

Fig. 4.5. Pictorial sketch of non-interacting atomic magnetic moments in the ab-
sence (a) and in the presence (b) of the field. The field removes the degeneracy in
MJ and after some time (of the order of T1) the statistical distribution yields an
excess population on the low energy levels so that an effective component of the
magnetic moment along the field is induced.
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In the absence of field, degeneracy in the magnetic quantum number MJ

occurs, pictorially corresponding to equiprobable orientations of the magnetic
moments with respect to a given z-direction, as sketched in Fig. 4.5. When
the field is switched on, in a characteristic time usually called spin-lattice
relaxation time T1 (for some detail on this process see Chapter 6), statis-
tical equilibrium is achieved, with the populations on the magnetic levels as
depicted in Fig. 4.5b and with an average (statistical) expectation value of
the magnetic moment along the field < μz >
= 0.

0 1 2 3

0.0

0.5

1.0

J 

J=1

J=1/2

<
μ z
>
/
g

μ B
J

gμ
B

H/k
B

T

→∞

Fig. 4.6. Normalized value of the effective magnetic moment along the field direction
as a function of the dimensionless variable (gμBH/kBT ), according to Eq. 4.32, for
different J ’s.

< μz > is written

< μz >= −gμB

∑
MJ
MJe

−xMJ∑
MJ
e−xMJ

(4.30)

where x = gμBH/kBT . For x� 1 one has

< μz >� −gμB

∑
MJ
MJ(1 − xMJ)∑

MJ
(1 − xMJ)
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Fig. 4.7. Sketchy behavior of the temperature dependence of the paramagnetic sus-
ceptibility in presence of interactions among the magnetic moments. The state below
Tc corresponds to spontaneous ordering of the magnetic moments along a given di-
rection as a consequence of a cooperative process, typical of phase transitions in
many-body systems, driven by the interaction among the components.

and since
∑

MJ
M2

J = J(J + 1)(2J + 1)/3,

< μz >= gμBx
J(J + 1)(2J + 1)

3(2J + 1)
=
μ2

JH

3kBT
(4.31)

with
|μJ | = gμB

√
J(J + 1) .

The volume paramagnetic susceptibility is χ = Nχa, with N number of
atoms per unit volume and χa atomic susceptibility, given by χa = μ2

J/3kBT ,
according to Eq. 4.31. Thus the quantum derivation of the Curie law has been
obtained.

Without the approximation of low field (or high temperature), Eq. 4.30
gives

< μz >= gμBJ

[
2J + 1

2J
coth

(2J + 1)x
2

− 1
2J
coth

x

2

]
, (4.32)

the function depicted in Fig. 4.6 and known as Brillouin function. For
J → ∞, the Brillouin function becomes the Langevin function, while for
J = 1/2 it reduces to tanh(x/2).

The saturation magnetization Msat = N < μz >T→0 corresponds to the
situation where all the atoms are found on the lowest energy level of Fig. 4.5b
and (< μz >)T→0 = gμBJ .
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According to Eq. 4.31 on decreasing temperature the paramagnetic suscep-
tibility (in evanescent field) diverges as 1/T . However, when the temperature
is approaching zero so that the condition x � 1 no longer holds, partial sat-
uration is achieved and χ reaches a maximum and then decreases on cooling.
In practice this can happen only in strong fields (of the order of several Tesla)
and at low temperature.

The reference to an ideal paramagnet in practice corresponds to the as-
sumption that the local magnetic field is the one externally applied (apart
from the diamagnetic correction, see §4.5). This condition does not hold when
some type of interaction among the atomic magnetic moments is active, as it
is common in crystals with magnetic ions. In this case the susceptibility can
diverge at finite temperature, as sketched in Fig. 4.7.

A simple method to deal with the interactions is the mean field ap-
proximation, namely to assume that the local field is the external one Hext

plus a second contribution, related to the interactions, proportional to the
magnetization:

H = Hext + λM

<μz>

Hext

H=Hext + Σi H
μ

i

<μz>

H
μ

i ∝ <μz
i>

Hint

Then the magnetization reads

M = N
[
χ0(Hext + Hint)

]
(4.33)

and the susceptibility turns out

χ =
χ0

1 − λχ0
(4.34)
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where χ0 is the bare susceptibility of the ideal paramagnet, the one without
interactions. Eq. 4.34 is a particular case of a more general equation, for any
system in the presence of many-body interactions (in the framework of the
linear response theory and the so-called random phase approximation,
an extension of the mean field approximation to time-dependent problems).

By taking into account Eq. 4.31, Eq. 4.34 can be rewritten in the form

χ =
Nμ2

J

3kB(T − Tc)
, where Tc =

Nμ2
Jλ

3kB
(4.35)

For T → T+
c one has the divergence of the magnetic response and a phase

transition to an ordered state, with spontaneous magnetization in zero
field, is induced. Typical transition is the one from the paramagnetic to the
ferromagnetic state and it can be expected to occur when the thermal energy
kBT is of the order of the interaction energy.

It is noted that the values of Tc’s in most ferromagnets (as high as
Tc = 1044 K, for instance for Fe bcc), indicate that the transition is driven
by interactions much stronger than the dipolar one. This latter, in fact, for
an interatomic distance d of the order of 1 Å, would imply Tc ∼ μ2

J/d
3kB , of

the order of a few degrees K. Instead the interaction leading to the ordered
states (ferromagnetic or antiferromagnetic, depending on the sign of λ in Eq.
4.34) is the one related to the exchange integral, as mentioned at §2.2 (for
details see Appendix XIII.1).

4.5 Atomic diamagnetism

The magnetic Hamiltonian (Eq. 4.3) also implies the one-electron term (see
Eq. 4.21 and 4.5)

H(2)
P =

e2A2

2mc2

H

r

θ

-e

with A = (1/2)H × r = (1/2)Hrsinθ, the term usually neglected in compar-
ison with the one linear in the field and leading to paramagnetism. Instead
H(2)

P is responsible of the atomic diamagnetism.
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Let us refer to atoms in the ground state where μL = μS = 0. The effect
of H(2)

P can be evaluated in the form of perturbation for states having L, S,M
and MS as good quantum numbers, the spin-orbit interaction being absent.
Thus, from first-order perturbation theory the energy correction due to H(2)

P

is

ΔE =
e2H2

8mc2
∑

i

< |r2i sin2θi| > (4.36)

where the sum is over all the electrons. By resorting to μ = −(∂E/∂H),
Eq. 4.36 implies an atomic magnetic moment linear in the field and in the
opposite direction. Therefore the diamagnetic susceptibility is written

χdia = −N e2

4mc2
∑

i

2
3
< r2i > (4.37)

(N number of atoms per unit volume), the assumption of isotropy having been
made, so that < x2 >=< y2 >= 1/3 < r2 >. In the Table below the molar
diamagnetic susceptibilities for inert-gas atoms (to a good approximation the
same values apply in condensed matter) are reported:

He Ne Ar Kr Xe
χdia(cm3/mole)(×10−6) -2.36 -8.47 -24.6 -36.2 -55.2

Z 2 10 18 36 54

When the perturbation effects from the magnetic Hamiltonian are ex-
tended up to the second order, a mixture of states is induced and a further
energy correction is obtained, quadratic in the field and causing a decrease
of the energy. Thus, even in atoms where in the ground state no paramagnetic
moment is present, a positive paramagnetic-like susceptibility (Van Vleck
paramagnetism) of the form

χvv = 2Nμ2
B

∑
n�=0

| < φ0|(Lz + 2Sz)|φn > |2
E0

n − E0
0

(4.38)

is found. For a quantitative estimate the electronic wavefunctions φ0 of the
ground and of the excited states φn are required. The Van-Vleck susceptibility
is usually temperature-independent and small with respect to Curie suscepti-
bility.
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Problems IV.5

Problem IV.5.1 Evaluate the molar diamagnetic susceptibility of He-
lium in the ground state, by assuming Hydrogen-like wavefunctions with the
effective nuclear charge derived in the variational procedure (Problem II.2.2).
Estimate the variation of the atom energy when a magnetic field of 1 Tesla is
applied.

Solution:
From Eq. 4.37

χdia = − Ne
2

6mc2
[< r21 > + < r22 >]

and in hydrogenic atoms (Table I.4.3) < r2 >= 3
(

a0
Z

)2. For effective charge
Z∗ = Z − 5

16 = 27
16

χdia � −1.46 · 10−6 emu

mole
.

The energy variation is ΔE = (e2H2/12mc2)[< r21 > + < r22 >] �
10−10 eV, very small compared to the ground state energy.

Problem IV.5.2 In a diamagnetic crystal Fe3+ paramagnetic ions are in-
cluded, with density d = 1021 ions/cm3. By neglecting interactions among
the ions and the diamagnetic contribution, derive the magnetization at
T = 300K, in a magnetic field H = 1000 Oe. Then estimate the magnetic
contribution to the specific heat (per unit volume).

Solution:
From Problem F.III.3 for Fe3+ in the ground state the effective magnetic
moment is μ = pμB with p = g

√
J(J + 1) =

√
35.

From Eq. 4.31

M = d
μ2H

3kBT
= 0.0242 erg cm−3 Oe−1.

The energy density is E = −M · H and for μBH � kBT the specific heat
is

CV =
(
∂E

∂T

)
V

= d
μ2H2

3kBT 2
= 0.081 erg K−1 cm−3.

Problem IV.5.3 For non-interacting spins in external magnetic field, in
the assumption of high temperature, derive the Curie susceptibility from the
density matrix for the expectation value of the effective magnetic moment.
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Solution:
The density matrix is

ρ =
1
Z
exp(−HZeeman

kBT
) ,

where Z is the partition function, namely the sum over all the n−states of
the statistical factors exp(−En/kBT ), or Z = Tr{exp(− H

kBT )}. Then the
quantum and statistical average (see §6.1) is written

< μz > =
1
Z
Tr

{
μzexp(−

HZeeman
kBT

)
}

� 1
Z
Tr

{
μz

(
1 − HZeeman

kBT

)}
with

μz = −gμBSz HZeeman = SzgμBH .

Since
Tr S2

z =
1
3
(S + 1)S(2S + 1) and Z � 2S + 1

one obtains for the single particle susceptibility

χ =
S(S + 1)g2μ2

B

3kBT

(as in Eq. 4.31 for S ≡ J).
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Appendix IV.1 Electromagnetic units and Gauss
system

Throughout this book we are using the CGS system of units that when in-
volving the electromagnetic quantities is known as the Gauss system. This
system corresponds to have assumed for the dielectric constant ε0 and for the
magnetic permeability μ0 of the vacuum the dimensionless values ε0 = μ0 = 1,
while the velocity of light in the vacuum is necessarily given by c = 3 × 1010

cm/s.
As it is known, the most common units in practical procedures (such as

Volt, Ampere, Coulomb, Ohm and Faraday) are better incorporated in the
MKS system of units (and in the international SI). These systems of units
are derived when in the Coulomb equation instead of assuming as arbitrary
constant k = 1, one sets k = 1/4πε0, with ε0 = 8.85× 10−12 Coulomb2/Nm2,
as electrical permeability of the vacuum. In the SI system the magnetic field
B, defined through the Lorentz force

F = qE + qv × B

is measured in Weber/m2 or Tesla.
The auxiliary field H is related to the current due to the free charges by the

equationH = nI, corresponding to the field in a long solenoid with n turns per
meter, for a current of I Amperes. The unit ofH is evidently Ampere/m. Thus
in the vacuum one has B = μ0H, with μ0 = 4π10−7 N/Ampere2 ≡ 4π10−7

Henry/m.
In the matter the magnetic field is given by

B = μ0(H + M)

where M is the magnetic moment per unit volume.
The SI system is possibly more convenient in engineering and for some

technical aspects but it is not suited in physics of matter. In fact, the Maxwell
equations in the vacuum are symmetric in the magnetic and electric fields
only when H is used, while B and not H is the field involved in the matter.
The SI system does not display in a straightforward way the electromagnetic
symmetry. In condensed matter physics the Gauss system should be preferred.

Thus within this system the electric and magnetic fields have the same
dimensions (another appealing feature), the Lorentz force is

F = qE +
q

c
v × B, (A.IV.1)

B is related to H by

B = H + 4πM = μH with μ = 1 + 4πχ. (A.IV.2)

M = χH defines the dimensionless magnetic susceptibility χ. For
μBH � kBT , often called evanescent field condition, χ is field indepen-
dent. As already mentioned μ0 and ε0 are equal to unit, dimensionless.
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The practical units can still be used, just by resorting to the appropriate
conversion factors, such as

1 volt → 1
299.8 statvolt or erg/esu (esu electrostatic unit)

1 ampere 2.998 × 109 esu/sec
1 Amp/m 4π × 10−3 Oersted (see below)

1 ohm 1.139 × 10−12 sec/cm
1 farad 0.899 × 1012 cm
1 henry 1.113 × 10−12 sec2/cm
1 Tesla 104 Gauss
1 Weber 108 Gauss/cm2

The Bohr magneton, which is not an SI unit, is often indicated as μB =
9.274 × 10−24 Joule/Tesla, equivalent to our definition μB = 0.9274 × 10−20

erg/Gauss. The gyromagnetic ratio is measured in the Gauss system in
(rad/s.Oe) and in the SI system in (rad.m/Amp.s).

Unfortunately, some source of confusion is still present when using the
Gauss system. According to Eq. A.IV.2, B and H have the same dimensions
and are related to the currents in the very same way. In spite of that, while
B is measured in Gauss, without serious reason the unit of H is called Oer-
sted. Furthermore, there are two ways to describe electromagnetism in the
framework of the CGS system. One with electrostatic units (esu) and the
other with electromagnetic units (emu). The latter is usually preferred in
magnetism. Thus the magnetic moment is measured in the emu unit, which
is nothing else than a volume and therefore cm3. The magnetic susceptibil-
ity (per unit volume) is dimensionless and often indicated as emu/cm3. The
symmetric Gauss-Hertz-Lorentz system (commonly known as Gauss system)
corresponds to a mixing of the esu and of the emu systems, having assumed
both ε0 = 1 and μ0 = 1.

Here we do not have the aim to set the final word on the vexata quaestio
of the most convenient system of units. Further details can be achieved from
the books by Purcell and by Blundell, quoted in the foreword.

A Table is given below for the magnetic quantities in the Gauss system
and in the SI system, with the conversion factors.

Finally a mention to the atomic units (a.u.), frequently used, is in order.
In this system of units (derived from the SI system) one sets e = h̄ = m = 1
and 4πε0 = 1. Thus the Bohr radius for atomic Hydrogen (infinite nuclear
mass) becomes a0 = 1, the ground state energy becomes En=1 = −1/2 a.u.,
the a.u. for velocity is v0 = αc with α � 1/137 the fine structure constant,
so that the speed of light is c � 137 a.u.. The Bohr magneton is 1/2 a.u. and
the flux quantum is Φ0 = 2π (see App. XIII.1). Less practical are the a.u.’s
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Quantity Symbol Gauss SI Conversion factor*

Magnetic Induction B G≡ Gauss T 10−4

Magnetic field intensity H Oe A m−1 103/4π

Magnetization M erg/(G cm3) A m−1 103

Magnetic moment μ erg/G(≡ emu) J/T(≡ Am2) 10−3

Specific magnetization σ emu/g A m2/kg 1

Magnetic flux φ Mx (maxwell) Wb (Weber) 10−8

Magnetic energy density E erg/cm3 J/m3 10−1

Demagnetizing factor Nd - - 1/4π

Susceptibility(unit volume) χ - - 4π

Mass susceptibility χg erg/(G g Oe) m3/kg 4π × 10−3

Molar susceptibility χmol emu/(mol Oe) m3/mol 4π × 10−6

Magnetic permeability μ G/Oe H/m 4π × 10−7

Vacuum permeability μ0 G/Oe H/m 4π × 10−7

Anisotropy constant K erg/cm3 J/m3 10−1

Gyromagnetic ratio γ rad/(s Oe) rad m/(A s) 4π × 10−3

*To obtain the values of the quantities in the SI, the corresponding Gauss values
should be multiplied by the conversion factor.

for other quantities. For instance the a.u. for the magnetic field corresponds
to 2.35×105 Tesla and the one for the electric field to 5.13 × 109 V/cm.
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Problems F.IV

Problem F.IV.1 The magnetization curves for crystals containing para-
magnetic ions Gd3+, Fe3+ and Cr3+ display the saturation (for about H/T =
20 kGauss/K) about at the values 7μB , 5μB , and 3μB (per ion), respectively.
From the susceptibility measurements at T= 300 K for evanescent magnetic
field one evaluates the magnetic moments 7.9μB , 5.9μB , and 3.8μB , respec-
tively. Comment on the differences. Then obtain the theoretical values of the
magnetic moments for those ions and prove that quenching of the orbital
momenta occurs (see Problem F.IV.2).

Solution:
The susceptibility χ = Ng2J(J + 1)μ2

B/3kBT involves an effective magnetic
moment μeff = gμB

√
J(J + 1) different from < μz >max= gμBJ obtained

from the saturation magnetization, related to the component of J along the
direction of the field.

For Gd3+, electronic configuration (4f)7, one has S = 7
2 , L = 0, J = 7

2
and g = 2.
Then μeff = gμB

√
S(S + 1) � 7.9μB , while < μz >max� 2μB7/2 = 7μB , in

satisfactory agreement with the data.

For Fe3+ (see Problem IV.5.2) J = 5/2 and g = 2 and then μeff = 5.92μB

and < μz >max� 5μB .

For Cr3+, electronic configuration (3d)3, S = 3/2, L = 3, J = 3/2 and
g = 2/5 = 0.4 . For unquenched L one would have μeff = (2/5)μB

√
15/4 =

0.77μB , while for L = 0, μeff = 2μB

√
15/4 � 3.87μB .

Problem F.IV.2 By referring to the expectation value of lz in 2p and 3d
atomic states, in the assumption that the degeneracy is removed by crystal
field, justify the quenching of the orbital momenta.

Solution:
When the degeneracy is removed the wavefunction φ2px,y,z are real. Then,

since
< lz >= −ih̄

∫
φ∗
∂

∂ϕ
φdτ

cannot be imaginary, one must have < lz >= 0. Analogous consideration
holds for 3d states and for any non-degenerate state. Details on the role of
the crystal field in quenching the the expectation values of the components of
the angular momenta are given at §13.3 and at Problem F.XIII.3.
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Problem F.IV.3 In Hydrogen, the lines resulting from the transitions
2P3/2 −→ 2S1/2 and 2P1/2 −→ 2S1/2 (see App. V.1) occur at (1210 − 3.54 ·
10−3) Å and (1210 + 1.77 · 10−3) Å, respectively. Evaluate the effect of a
magnetic field of 500 Gauss, by estimating the shifts in the wavelengths of
these lines, in the weak field regime.

Solution:
The relationship between the splitting of lines and the applied field is found

from
dE2 − dE1 = −hc

λ2
dλ ,

namely

dλ = −λ
2

hc
(dE2 − dE1) =

(
−118

Å
eV

)
(dE2 − dE1)

The values for dE2 and dE1 are given in Table below. There are 10 transitions
that satisfy the electric dipole selection rule ΔMJ = ±1, 0. The deviation of
each of these lines from λ0 = 1210 Å is also given.

dλ0 dE2 dE1 dλ dλT = dλ0 + dλ
Å · 10−3 eV · 10−5 eV · 10−5 Å · 10−3 Å · 10−3

-3.54 +0.579 +0.289 -0.342 -3.88

-3.54 +0.193 +0.289 +0.114 -3.43

-3.54 +0.193 -0.289 -0.570 -4.11

-3.54 -0.193 +0.289 +0.570 -2.97

-3.54 -0.193 -0.289 -0.114 -3.65

-3.54 -0.579 -0.289 +0.342 -3.20

1.77 +0.096 +0.289 +0.228 +2.00

1.77 +0.096 -0.289 -0.456 +1.31

1.77 -0.096 +0.289 +0.456 +2.23

1.77 -0.096 -0.289 -0.228 +1.54

Problem F.IV.4 Refer to the Hα line in Hydrogen (see Problem I.4.4).
From the splitting of the s and p levels when a magnetic field of 4.5 Tesla
is applied, by taking into account that the separation between two adjacent
lines is 6.29 · 1010 Hz and by ignoring the fine structure, evaluate the specific
electronic charge (e/m). Compare the estimate with the one obtained from
the observation that a field of 3 Tesla induces the splitting of the spectral line
in Ca atom at 4226 Å in a triplet with separation 0.25 Å (do not consider
in this case the detailed structure of the energy levels).

Solution:
In the Paschen-Back regime the energy correction is
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ΔEm,ms
= μBH0(m+ 2ms) ,

with electric dipole selection rules. One observes three lines with splitting
Δν̄ = 2.098 cm−1. Then from

ΔE = μBH0 =
eh̄

2m
H0 = hΔν

one has |e|
m

=
4πΔν
H0

= 5.28 × 1017 u.e.s.
g
.

For Ca, from ΔE � eh̄H/2mc = −hcΔλ/λ2 again

|e|
m

=
4πc2

H

Δλ

λ2
� 5.2 · 1017 u.e.s.

g
.

Problem F.IV.5 Two particles at spin s = 1/2 , but different magnetic
moments aσ1 and bσ2 (e.g. electron and proton), with σ1,2 spin operators,
interact through an Heisenberg-like exchange Hamiltonian Aσ1.σ2. Derive
the eigenvalues in the presence of a weak magnetic field (see Prob. F.V.6 for
the Hydrogen atom, for the contact hyperfine interaction between nuclear and
electron spins).

Solution:
The Hamiltonian can be written in the form

H = Aσ1 · σ2 − (a+ b)
2

(σ1z + σ2z)H − (a− b)
2

(σ1z − σ2z)H.

By remembering §2.2 and Eqs. 2.19 and 2.20, it is noted that the first two
terms of this Hamiltonian are diagonal in the representation in which Ŝz and
Ŝ2 for the total spin are diagonal, thus yielding for the eigenvalues

A

2
[S(S + 1) − 3

2
] − (a+ b)

2
HMS .

For the last term the only non zero matrix element connects the singlet and
the triplet states

< S = 1,MS = 0|H|S = 0,MS = 0 >= − (a− b)
2

H ,

having considered that

(σ1z − σ2z)
(
α(1)β(2) − α(2)β(1)√

2

)
=

(
α(1)β(2) + α(2)β(1)√

2

)
.



164 4 Atoms in electric and magnetic fields

Therefore, for S = 1 and MS = ±1 the eigenvalues are

E± =
A

4
∓ (a+ b)

2
H .

For the states S = 1, 0 and MS = 0 the secular equation reads(
A
4 − E −(a− b)H/2

−(a− b)H/2 −3A
4 − E

)
= 0

(the out of diagonal elements involving the triplet-singlet mixture) and then
the eigenvalues are

E± = −A
4
± A

2

√
1 +

(a− b)2
A2

H2

(see Problem F.V.6, where b is substituted by 2μB and a→ 0).

Problem F.IV.6 The saturation magnetization (per unit volume) of Iron
(Fe2+) is often reported to be 1.7 · 106 A/m. Derive the magnetic moment per
atom and compare it to the theoretical estimate (density of iron 7.87 g/cm3).

Solution:
From

Msat = 1.7 · 103 erg Gauss−1 cm−3

and natom = 0.85 · 1023 cm−3, one derives μa � 2 · 10−20 erg Gauss−1 or
equivalently μa = 2.2μB . For Fe2+ (S = 2, L = 2, J = 4 and g = 3

2 ) one would
expect μ = gμBJ = 6μB . For quenched orbital momentum μ = 2SμB = 4μB

(see Problem F.IV.2 and §13.3).

Problem F.IV.7 A bulb containing Hg vapor is irradiated by radiation
propagating along the x axis and linearly polarized along z, along which a
constant magnetic field is applied. When the wavelength of the radiation is
2537 Å, absorption and meantime re-emission of light along the y direction,
with the same polarization, is detected. When a RF coil winding the bulb along
the y direction is excited at the frequency 200 MHz one notes re-emission of
light also along the z direction, light having about the same wavelength and
circular polarization. Explain such a phenomenology and estimate the strength
of the field.

Solution:
Since spin-orbit interaction is very strong the weak-field regime holds (see §3.3
and Fig. 3.9). The electric dipole selection rule ΔMJ = 0 requires linearly
polarized radiation. In the absence of radio frequency excitation, π radiation
is re-emitted again, observed along y. Along the z direction the radiation is
not observed.
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The radio-frequency induces magnetic dipole transitions at ΔMJ = ±1
among the Zeeman levels. The re-emission of light in such a way is about at
the same wavelength λ. In fact

Δλ � λ2

c
Δν = 4.29 · 10−4Å .

On the other hand, since among the levels involved in the emission
ΔMJ = ±1, one has circular σ polarization and so the radiation along z
can be observed.

From the resonance condition

ν =
ΔE

h
=
gμBH

h

with g = 3/2, one deduces

H =
hν

gμB
= 95.26 Oe.

The levels (in the LS classification and in the weak field regime) for the
Hg 1S0 and 3P1 states (see Fig. 3.9) and the transitions are sketched below:

3

P
1

1

S
0

M
J

1

0

-1

σ σ σπ

Problem F.IV.8 Consider a paramagnetic crystal, with non-interacting
magnetic ions at J = 1/2. Evaluate the fluctuations < ΔM2 > of the mag-
netization and show that it is related to the susceptibility χ = ∂ < M >/∂H
by the relation χ = < ΔM2 >/kBT (particular case of the fluctuation-
dissipation theorem).

Solution:
The density matrix is ρ = (1/Z)eβHMz (β ≡ 1/kBT ) and the partition

function Z = Tr
[
eβHMz

]
. The magnetization can be written (see also §6.1) 3

3 From

< Mz >= − ∂

∂H
(− 1

β
lnZ)T ,

with
∂

∂H
=

β

H

∂

∂β
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< Mz >=
1
H

∂

∂β
lnZ.

Then

χ ≡ ∂ < Mz >

∂H
= β

[
Tr(eβHMzM2

z )
Tr(eβHMz )

−
[
Tr(eβHMzMz)
Tr(eβHMz )

]2
]

= β < ΔM2
z > .

Without involving the density matrix, from the single-ion fluctuations

< Δμ2
z >=< μ2

z > −(< μz >)2

with < μz > statistical average of μ = −gμBJ, since

< μ2
z >=

1
4
g2μ2

B

and (see §4.4)

(< μz >)2 =
1
4
g2μ2

B tanh2

(
1
2
gμBH

kBT

)
,

by taking into account that

χ =
∂M

∂H
=

1
4
g2μ2

B

N

kBT
cosh−2

(
1
2
gμBH

kBT

)
one finds 4

< ΔM2 >= N < Δμ2
z >=

1
4
g2μ2

BN cosh−2

(
1
2
gμBH

kBT

)
and then

χ =
1
kBT

< ΔM2 >= β < ΔM2 > .

4 The single μ’s are uncorrelated i.e. < ΔμnΔμm >=< Δμn >< Δμm >, for
n = m.
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Problem F.IV.9 Consider an ensemble of N/2 pairs of atoms at S=1/2
interacting through an Heisenberg-like coupling H = KS1 · S2 with K >
0. By neglecting the interactions among different pairs, derive the magnetic
susceptibility. Express the density matrix and the operator Sz on the basis
of the singlet and triplet states. Finally derive the time-dependence of the
statistical ensemble average < Sz

1 (0) · Sz
1 (t) >, known as auto-correlation

function.
Solution:

The eigenvalues are Es = (K/2)S(S + 1), with S = 0 and S = 1. The
susceptibility is

χ =
(
N

2

)
(p0χ0 + p1χ1),

where

pS =
(2S + 1)e−

Es
kBT

e
− E0

kBT + 3e−
E1

kBT

and

χS =
g2μ2

BS(S + 1)
3kBT

.

Then

χ =
Ng2μ2

B

3kBT

3e−
K

kBT

1 + 3e−
K

kBT

.

On the basis given by the states

|1 >= | + + >, |2 >= | − − >, |3 >=
1√
2
(| + − > + | − + >) and

|4 >=
1√
2
(| + − > − | − + >)

omitting irrelevant constants, one has

< i|H|j >=

⎛⎜⎜⎝
K 0 0 0
0 K 0 0
0 0 K 0
0 0 0 0

⎞⎟⎟⎠
Then the density matrix is

< i|ρ|j >=< i|e−βH|j >=

⎛⎜⎜⎝
e−βK 0 0 0

0 e−βK 0 0
0 0 e−βK 0
0 0 0 1

⎞⎟⎟⎠
By letting Sz

1 act on the singlet and triplet states, one has
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< i|Sz
1 |j >=

1
2

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠
The autocorrelation-function is

g(t) =< {Sz
1 (t)·Sz

1 (0)} >= Re[< Sz
1 (t)·Sz

1 (0) >] where {A,B} =
1
2
(AB+BA),

< Sz
1 (t) · Sz

1 (0) >= Tr
[ ρ
Z
e−

iHt
h̄ Sz

1e
iHt

h̄ Sz
1

]
By setting ωe = K

h̄ , (Heisenberg exchange frequency), one writes

< Sz
1 (t) · Sz

1 (0) >=
1

4(1 + 3e−βK)
×

Tr{

⎛⎜⎜⎝
e−βK 0 0 0

0 e−βK 0 0
0 0 e−βK 0
0 0 0 1

⎞⎟⎟⎠×

×

⎛⎜⎜⎝
e−iωet 0 0 0

0 e−iωet 0 0
0 0 e−iωet 0
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠×

⎛⎜⎜⎝
eiωet 0 0 0

0 eiωet 0 0
0 0 eiωet 0
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠},

and then
g(t) = Re[< Sz

1 (t) · Sz
1 (0) >]

=
1

4(1 + 3e−βK)
[2e−βK + e−βK cos(ωet) + cos(ωet)].

For kBT � K

g(t) =
1
8
[1 + cos(ωet)].

1/ωe can be defined as the correlation time, in the infinite temperature
limit.
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Problem F.IV.10 By resorting to the Bohr-Sommerfeld quantiza-
tion rule (Problem I.4.4) for the canonical moment, derive the cyclotron
frequency and the energy levels for a free electron (without spin) moving in
the xy plane, in the presence of a constant homogeneous magnetic field along
the z axis.

Solution:
The canonical moment (see Eq. 1.26) is p = mv−eA/c. From the quantization
along the circular orbit∮

p.dq =
∮

(mv − e
c
A)dq = mv2πR− e

c
πR2H =

πeR2H

c

(R radius of the orbit). The equilibrium condition along the trajectory implies
v = eHR/mc and then the quantization rule yields

πR2
neH

c
= nh, (withn = 1, 2, ...) .

The energy becomes

En =
mv2n

2
=
eh̄H

mc
n ≡ h̄ωcn ≡ 2μBH

with
ωc =

eH

mc

cyclotron frequency. For the quantum description, which includes n = 0
and the zero-point energy h̄ωc/2, see Appendix XIII.1.

Problem F.IV.11 By referring to a Rydberg atom (§1.5) and considering
that the diamagnetic correction to a given n-level increases with n, discuss the
limit of applicability of the perturbative approach, giving an estimate of the
breakdown value of n for magnetic field of 1 Tesla (see Eq. 4.36). Then discuss
why the Rydberg atoms are highly polarizable and ionized by a relatively small
electric field.

Solution:
In

ΔEn =
e2H2

8mc2
2
3
< r2n >

consider (see Table I.4.3)

< r2 >nlm=
n2

2
(
a0
Z

)2[5n2 + 1 − 3l(l + 1)] � a20n4

for large n and l and Z = 1, as for ideal total screen. Then, by assuming that
the perturbation approach can be safely used up to a diamagnetic correction
ΔEn(H) ∼ 0.2E0

n, one obtains
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e2H2

12mc2
a20n

4
lim ∼ 0.2

e2

2a0
1
n2

lim

from which a limiting value of the quantum number n turns out around nlim ∼
65.

As regards the electric polarizability, by considering that in Eq. 4.8 the
relevant matrix elements increase with n2 while the difference in energy at the
denominator varies as 1/n3 (remember the correspondence principle, Problem
I.5.2) one can deduce that the electric polarizability must increase as n7.
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Nuclear moments and hyperfine interactions

Topics

Angular, magnetic and quadrupole moments of the nucleus
Magnetic electron-nucleus interaction
Quadrupolar electron-nucleus interaction
Hyperfine structure and quantum number F
Hydrogen atom re-examined: fine and hyperfine structure

5.1 Introductory generalities

Until now the nucleus has been often considered as a point charge with infinite
mass, when compared to the electron mass. The hyperfine structure in high
resolution optical spectra and a variety of experiments that we shall mention
at a later stage, point out that the nuclear charge is actually distributed over
a finite volume. Several phenomena related to such a charge distribution occur
in the atom and can be described as due to nuclear moments. One can state
the following:

i) most nuclei have an angular momentum, usually called nuclear spin.
Accordingly one introduces a nuclear spin operator Ih̄, with related quantum
numbers I and MI , of physical meaning analogous to the one of J and MJ

for electrons.
Nuclei having even A and odd N have integer quantum spin number I

(hereafter spin) while nuclei at odd A have semi-integer spin I ≤ 9/2; nuclei
with both A and N even have I = 0.

ii) associated with the angular momentum one has a dipole magnetic
moment, formally described by the operator

μI = γIIh̄ = gnMnI (5.1)
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Nucleus Z N I μ/Mn gn

neutron 0 1 1/2 -1.913 -3.826 
1H 1 0 1/2 2.793 5.586 
2H 1 1 1 0.857 0.857 

3He 2 1 1/2 -2.12 -4.25 
4He 2 2 0 - - 
12C 6 6 0 - - 
13C 6 7 1/2 0.702 1.404 
14N 7 7 1 0.404 0.404 
16O 8 8 0 - - 
17O 8 9 5/2 -1.893 -0.757 
19F 9 10 1/2 2.628 5.257 
31P 15 16 1/2 1.132 2.263 

133Cs 55 78 7/2 2.579 0.737 

Table V.1. Properties of some nuclei

where gn is the nuclear Landé factor and Mn the nuclear magneton,
given by Mn = μB/1836.15 = eh̄/2Mpc, with Mp proton mass. γI is the
gyromagnetic ratio (see Problems I.6.5 and III.2.4). gn (which depends on
the intrinsic nuclear properties) in general is different from the values that
have been seen to characterize the electron Landé factor. For instance, the
proton has I = 1/2 and μI = 2.796Mn and then gn = 5.59. For deuteron one
has I = 1 and μI = 0.86Mn. Since the angular momentum of the neutron is
I = 1/2, from the comparison of the moments for proton and deuteron one can
figure out a “vectorial” composition with the neutron and proton magnetic
moments pointing along opposite directions.

At variance with most nuclei, for which gn is positive, neutron as well as
the nuclei 3He, 15N and 17O have magnetic moment opposite to the angular
momentum. Thus for them gn is negative, similarly to electron. The pictorial
composition indicated for deuteron does not account for a discrepancy of
about 0.023 Mn, which is attributed to the fact that the ground state of
the deuteron involves also the D excited state, with a little weight (about 4
percent). Properties of some nuclei are listed in Table V.1.

iii) nuclei with I ≥ 1 are characterized by a charge distribution lacking
spherical symmetry. Therefore, in analogy with classical concepts, they posses
a quadrupole electric moment. For charge rotationally symmetric along
the z axis the quadrupole moment is defined

Q =
1
Ze

∫
[3z2 − r2]ρ(r)dτ (5.2)
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For uniform charge density ρ(r), one has Q = (2/5)(b2 − a2), a and b being
the axes of the ellipsoid (see Problem F.V.1). Since the average radius of the
nucleus can be written Rn = (a2b)1/3, by indicating with δRn the departure
from the sphere (i.e. b = Rn + δRn) one has Q = (6/5)R2

n[δRn/Rn].
iv) since proton and neutron (I = 1/2) are fermions, a nucleus with mass

number A odd is a fermion while for A even the nuclei must obey to the
Bose-Einstein statistics; in fact the exchange of two nuclei corresponds to
the exchange of A pairs of fermions.

5.2 Magnetic hyperfine interaction - F states

The nuclear magnetic moment induces an interaction with the electrons of
magnetic character, that can be thought to arise from the coupling between
μJ and μI . In the framework of the vectorial model one can extend the usual
assumptions (see §3.2) to yield a coupling Hamiltonian of the form

Hmag
hyp = aJI.J (5.3)

In the quantum mechanical description the magnetic hyperfine interaction
is obtained by considering the one-electron magnetic Hamiltonian (see Eq.
4.3)

Hm =
e

2mc

(
p.A + A.p

)
+ 2μBs.∇ × A (5.4)

r

-e

μ
I

μ
I
∝ I

A= (μ
I 
x r)/r

3 ≡ - μ
I
x ∇(1/r)

μ
s

s

Fig. 5.1. Pictorial view of the nucleus-electron interaction of magnetic origin.
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with a vector potential A due to the dipole moment μI at the origin (see
the sketchy description in Fig. 5.1).

By means of some vector algebra (see Problem F.V.14) and by singling out
the terms with a singularity at the origin, as it could be expected on physical
grounds the magnetic hyperfine Hamiltonian can be written in the form

Hmag
hyp = −μI .heff , (5.5)

namely the one describing the magnetic moment μI in an effective field given
by

heff = h1(l) + h2(s) + h3(sing.) . (5.6)

The orbital term
h1 = −2μBl

r3
(5.7)

is derived by considering the magnetic field at the nucleus due to the electronic
current, in the a way similar to the deduction of the spin-orbit interaction (see
§1.6), from h1 = E × v/c = −elh̄/mcr3.

The field

h2 =
2μB

r3

(
s − 3

(s.r)r
r2

)
(5.8)

is the classical field at the origin from a dipole at r:

r

μ
s

Finally

h3 = −2μB8π
3

sδ(r) (5.9)
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is a term that includes all the singularities at the origin related to the expec-
tation values of operator of the form r−3 (see Table I.4.3), for s states. The
contact term Hcont ∝ (I.s)δ(r) can be derived from a classical model where
the nucleus is treated as a sphere uniformly magnetized (see Problem F.V.14).

It is remarked that an analogous contact term of the form As1.s2δ(r12),
with A = −(8π/3)(eh̄/mc)2, is involved in the electron-electron magnetic
interaction, as already recalled at Problem F.II.4.

The three fields in Eq. 5.6 are along different directions. However, by
recalling the precessional motions and then the Wigner-Eckart theorem and
the precession of l and s around j, (see Eq. 4.25) one writes

aj = −γI h̄
< heff .j >
< j2 >

= −γI h̄ < l, s, j|heff .(l + s)
j2

|l, s, j > (5.10)

Since r.l = 0 and < |s.r/r|2 >= 1/4, one obtains

aj =
2μBγI h̄

j(j + 1)
< l, s, j| l

2

r3
+

8π
3

s.jδ(r)|l, s, j > . (5.11)

Then
aj =

16π
3
μBγI h̄|φ(0)|2l=0 for s electrons (5.12)

and

aj = 2μBγI h̄
l(l + 1)
j(j + 1)

< r−3 >l �=0 for l 
= 0 , with j = l ± 1
2
. (5.13)

For l = 0 the angular average of h2 and h1 (Eqs. 5.7 and 5.8) yields zero: only
the contact term related to h3 contributes to aj , once that the expectation
values are evaluated (see Problem V.2.5).

From the Hydrogenic wavefunctions (§1.4) one evaluates

|φ(0)|2l=0 = Z3/πa30n
3

and
< r−3 >l �=0= Z3/a30n

3l(l + 1/2)(l + 1) , in Eq. 5.13.

Therefore the effective field turns out of the order of 8 × 104(Z3/n3) Gauss
for s electrons and of the order of 3 × 104(Z3/n5) Gauss for l 
= 0.

Values of the hyperfine field at the nucleus due to the optical electron, for
the lowest energy states in alkali atoms, are reported in Table 5.1.

For two or more electrons outside the closed shells, in the LS coupling
scheme one has to extend Eqs. 5.7-5.10 to total L, S and J, thus specifying
aJ in Eq. 5.3.

The energy corrections related to the magnetic hyperfine interaction can
be expressed by introducing the total angular momentum F

F = I + J (5.14)
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2S1/2
2P1/2

2P3/2
Na 45 4.2 2.5 
K 63 7.9 4.6
Rb 130 16 28.6 
Cs 210 28 13 

Table 5.1. Magnetic field (in Tesla) at the nucleus in alkali atoms, as experimentally
obtained by direct magnetic dipole transitions between hyperfine levels (see Chapter
6) or by high-resolution irradiation in beams (see Fig. 5.3).

F=5/2

F=3/2

F=1/2

E(L,S,J)

5a
J
/2

3a
J
/2

ΔE
F, F+1 

=  a
J
(F+1)

Fig. 5.2. Magnetic hyperfine structure for J = 3/2 and I = 1.

with the related quantum numbers F ( integer or half integer ) andMF taking
the values from −F to +F .

The structure of the hyperfine energy levels turns out

< L,S, J, F |aJI.J|L, S, J, F >=
aJ

2

(
F (F +1)− I(I +1)−J(J +1)

)
(5.15)

The hyperfine structure for the electronic state J = 3/2 and nuclear spin
I = 1 is illustrated in Fig. 5.2, showing the interval rule ΔF,F+1 = aJ (F+1).
In Fig. 5.3 the hyperfine structure of the D1,2 doublet in Na atom is reported.

It is reminded that the definition of the second as time unit and its metro-
logical measure is obtained through the magnetic dipole F = 4 ⇔ F = 3
transition, at 9172.63 MHz, in 133Cs atom (I = 7/2) in the ground state
2S1/2.
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ΔF=-1

ΔF=0

ΔF=+1

F

3

2

1

0

2

1

2

1

3P

3S

2
P
3/2

2
P
1/2

2
S
1/2

1772 MHz

D
1

D
2

Fig. 5.3. Hyperfine magnetic structure of the low-energy states in Na atom, with
the schematic illustration of three lines detected by means of resonance irradiation
for the D2 component in atomic beams (for details see Chapter 6) by using a narrow
band variable-frequency dye laser (Problems F.V.2 and F.V.13).

F=1

0.0475cm
-1

(λ≅21 cm)

F=0

n= 1

l= 0

j= 1/2

a/4

3a/4

spontaneous emission

Fig. 5.4. Magnetic hyperfine structure of the ground state in Hydrogen and line at
21 cm resulting from the spontaneous emission from the F=1 state, the transition
being driven by the magnetic dipole mechanism.

The hyperfine energy levels for the ground state of Hydrogen are sketched
in Fig. 5.4, with the indication of the spontaneous emission line at 21 cm,
largely used in the astrophysical studies of galaxies.
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A complete description of the fine and hyperfine structure of the energy
levels in Hydrogen, including the results by Dirac and from the Lamb elec-
trodynamics, is given in Appendix V.1.

Finally we mention that the effect of an external magnetic field on the
hyperfine states of the atom can be studied in a way strictly similar to what
has been discussed at Chapter 4 in regards of the fine structure levels. Zeeman
as well as Paschen-Back regimes are currently observed (see Problem F.V.3)

Problems V.2

Problem V.2.1 Evaluate the dipolar and the contact hyperfine splitting
for the ground state of positronium. Estimate the effective magnetic field
experimented by the electron.

Solution:
The hyperfine dipolar Hamiltonian is

Hd =
(2μB)2

r3

[
3(r · s1)(r · s2)

r2
− s1 · s2

]
,

while the Fermi contact term is

HF =
8π
3

(2μB)2|ψ(0)|2s1 · s2

yielding

EF (S) =
8π
3

(2μB)2|ψ(0)|2 1
2
[S(S + 1) + const.] ,

where |ψ(0)|2 represents the probability of finding the electron and the
positron in the same position, in the 1s state. Being zero the contribution
from Hd, the separation between the singlet and triplet levels is given by

EF (S = 0) − EF (S = 1) =
8π
3

(2μB)2

πa3p
=

4μ2
B

3a3o
= 5 · 10−4 eV,

with ap Bohr radius for positronium. The magnetic field experimented by the
electron is about 4 × 104 Gauss.
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Problem V.2.2 Consider a pair of electrons and a pair of protons at
the distance e− e and p− p of 2 Å. Evaluate the conditions maximizing and
minimizing the dipole-dipole interaction, the energy corrections in both cases,
and the magnetic field due to the second particle, for parallel orientation.

Solution:

r

μ
2

μ
1

H(r) = −∇μ · r
r3

.

From the interaction energy

Eint = −μ1 · H2(r) =
μ1 · μ2

r3
− 3(μ1 · r)(μ2 · r)

r5

Eint = 0 for μ1 ⊥ H2(r).
For parallel orientation of the μ’s Eint = (μ1μ2/r

3)(1 − 3 cos2 θ) and for
|r| fixed the extreme values are

E′ = −2μ1μ2

r3
for θ = 0, π

E′′ =
μ1μ2

r3
for θ =

π

2
.

For two electrons at |r| = 2 Å, for μs = 2μB

√
s(s+ 1)

E′ = −6.45 · 10−17erg and |H′| = 4016 Oe

E′′ = +3.22 · 10−17erg and |H′′| = 2008 Oe.

For two protons

μp = gpμN

√
I(I + 1), I = 1/2, μN = μB/1836, gI = 5.6

and then
E′ = −1.5 · 10−22erg and |H′| = 6 Oe

E′′ = 7.5 · 10−23erg and |H′′| = 3 Oe.

For the derivation of the eigenstates and eigenvalues see Problem F.V.8.

Problem V.2.3 Evaluate the magnetic field at the nuclear site in the
Hydrogen atom for an electron in the states 1s, 2s and 3s. Estimate the
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energy difference between the states for parallel and antiparallel nuclear and
electronic spins.

Solution:
From Eq. 5.15 with

aj =
gIμN√
j(j + 1)

hJ =
8π
3
ge μB gI μN |φ(0)|2

and |φ(0)|2 = 1/πa30n
3 the field can be written

hj =
8π
3
ge μB |φ(0)|2 [j(j + 1)]1/2

.

The energy separation a for j ≡ s = 1/2 (Fig. 5.4) and the field turn out

n |φ(0)|2(cm−3) a (cm−1) hJ (kGauss)
1 2.15 · 1024 0.0474 289
2 2.69 · 1023 0.00593 36.1
3 7.96 · 1022 0.00176 10.7

Problem V.2.4 Consider a muonic atom (negative muon) and Hydro-
gen atom, both in the 2p state. Compare the following quantities:

i) expectation values of the distance and of kinetic and potential energies;
ii) the spin-orbit constant and the separation between the doublet due to

2p− 1s transition (see §1.6);
iii) the magnetic hyperfine constant and the line at 21 cm (note that the

magnetic moment of the muon is about 10−2 Bohr magneton).

Solution:

i) 〈r〉 ∝ a∗0 with a∗0 = a0/186; Eμ
n = 186EH

n , with EH
n = −e2/2a0n2.

By resorting to the virial theorem, 〈V 〉 = 2 ·186EH
n and 〈T 〉 = −〈V 〉/2.

ii) From

Hs.o. =
e2h̄2

2m2
μc

2

1
r3

l · s

by taking into account the scale factors for mμ and for r, one finds
ξμ2p = 186 ξH2p, with doublet separation 3ξμ2p/2.
Alternatively, by considering the spin-orbit Hamiltonian in the form
μe

l μ
e
s

〈
r−3

〉
, since μμ

l ∼ μe
l /186 and μμ

s ∼ 10−2, the order of magnitude
of the correcting factor can be written (186)3/186 · 100.
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iii) From Hhyp = −μn ·heff and |heff | ∝ μμ |ψ(0)|2, since μμ ∼ 10−2μB and
|φ(0)|2 ∼ (186)3/a30, one has aμ

1s ≈ aH
1s · 6.5 · 104 and λμ

21 = λH
21/6.5 · 104.

Problem V.2.5 Estimate the dipolar magnetic field that the electron in
2p1,0 states and spin eigenfunction α creates at the nucleus in the Hydrogen
atom.

Solution:
From Eq. 5.8, since μs = −2μBs and −2μBsz = −μB , by taking into account
that for symmetry reasons only the z-component is effective (the terms of the
form z.x and z.y being averaged out) one has

hdip
z = −μB

[
− 1
r3

+
3z2

r5

]
=
μB

r3

[
1 − 3cos2θ

]
The expectation value of 3cos2θ/r3 on R21(r)Y11(θ, ϕ) reads

<
1
r3
>

9
4

∫ 1

−1

d(cosθ)sin2θcos2θ =
3
2
<

1
r3
>

Thus < hdip
z >= −(μB/2) < 1/r3 >. By taking < 1/r3 >211 from Table I.4.3,

|hdip
z | � 1.5 × 103 Gauss, to be compared to Eq. 5.13.
For the electron in the 2p0 state one obtains < (1 − 3cos2θ)/r3 >=

−(4/5) < 1/r3 > (again considering as effective only the z component).

This condition is the one usually occurring in strong magnetic fields where
only the z components of s and of I are of interest.

The vanishing of < h2 > (Eq. 5.8) in s states arises from∫
(1 − 3cos2θ)sinθdθ = 0.
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5.3 Electric quadrupole interaction

Since the first studies of the hyperfine structure by means of high resolution
spectroscopy, it was found that in some cases the interval rule ΔF,F+1 =
aJ(F +1) was not obeyed. The breakdown of the interval rule was ascribed to
the presence of a further electron-nucleus interaction of electrical character,
related to the electric quadrupole moment of the nucleus. As we shall see, this
second hyperfine interaction is described by an Hamiltonian different from the
form aJI.J which is at the basis of the interval rule.

To derive the electric quadrupole Hamiltonian one can start from the clas-
sical energy of a charge distribution in a site dependent electric potential:

E =
∫
ρn(r)VP (r)dτn (5.16)

By expanding the potential VP due to electrons around the center of charge,
one writes

E =
∫
ρn(r)VP (0)dτn +

∑
α

(
∂Vp

∂xα
)0

∫
ρn(r)xαdτn +

1
2

∑
α,β

(
∂2Vp

∂xα∂xβ
)0

∫
ρn(r)xαxβdτn + ... (5.17)

where one notices the monopole interaction (already taken into account as
potential energy in the electron core Hamiltonian), a dipole term which is
zero (the nuclei do not have electric dipole moment) and the quadrupole
term of the form

EQ =
1
2

∑
i,j

Q′
i,jVi,j , with Vi,j =

∫
ρelec.(r)

3xixj − δi,jr2
r5

dτ . (5.18)

In the quantum description

Q′
i,j = e

∑
nucleons

(3xn
i x

n
j − δi,jr2n) (5.19)

is the quadrupole moment operator, while Vi,j is the electric field gradient
operator, a sum of terms of the form −e(3xixj − δi,jr2)/r5.

Without formal derivation (for details see Problem F.V.15), we specify the
correspondent Hamiltonian in the form

HQ
hyp = bJ [3(I.J)2 +

3
2
I.J − I(I + 1)J(J + 1)] (5.20)

where bJ = eQVzz/2I(2I−1)J(2J−1), with eQVzz the quadrupole coupling
constant. The z-component of the electric field gradient is
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Vzz =< J,MJ = J | − e
∑
elec.

(3z2e − r2e)
r5e

|J,MJ = J > (5.21)

while

eQ =< I,MI = I|eQz|I,MI = I >=< I, I|e
∑

n

(3z2n − r2n)|I, I > (5.22)

is the quantum equivalent of the classical quadrupole moment. Q is measured
in cm2 and a practical unit is 10−24 cm2, called barn. Q positive means
elongation of the nuclear charge along the spin direction while for negative
Q the nuclear ellipsoid has its major axis perpendicular to I. For I = 0 or
I = 1/2, Q = 0.

It is remarked that in the Hamiltonian 5.20 the first term is the one im-
plying the breakdown of the interval rule.

With the usual procedure to evaluate the coupling operators in terms of
the correspondent squares of the angular momentum operators, one can derive
the energy corrections associated with the Hamiltonian 5.20. In Fig. 5.5 the
structure of the hyperfine (magnetic and electric) levels for I = 3/2 and J = 1
is shown.

F=5/2

F=3/2

F=1/2

J=1, I=3/2

5a
J 
/2

3a
J
/2

b/4

b

5b/4

Fig. 5.5. Hyperfine magnetic and electric quadrupole energy levels for an atom with
I = 3/2 and J = 1; aJ is the hyperfine constant while here b = eQVzz (see Eqs.
5.20- 5.22). Q has been assumed positive. The value of aJ/b is arbitrary.

The one-electron electric field gradient (Eq. 5.21) is written
< j, j|(3cos2θ − 1)/r3|j, j >.

For a wavefunction of the form ϕj,j = Rn,lYl,lχ
spin, since∫

Y ∗
l,l(3cos

2θ − 1)Yl,lsinθdθ = − 2l
(2l + 3)
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for χspin ≡ α, one has

q ≡ −Vzz

e
=

2l
2l + 3

< r−3 > . (5.23)

In terms of j one can write

qj =
(2j − 1)
(2j + 2)

< r−3 > (5.24)

valid for ms = 1/2 as well as for ms = −1/2. For s states the spherical
symmetry of the charge distribution implies q = 0.

For Hydrogenic wavefunctions the order of magnitude of the quadrupole
coupling constant is

e2qQ ∼ 106Q
Z3

n6
� 10−6Z

3

n6
eV (5.25)

for Q ∼ 10−24 cm2.

In the condensed matter the operators Vjk can be substituted by the corre-
spondent expectation values. The electric field gradient tensor has a principal
axes frame of reference in which VXY = VXZ = VY Z = 0, while

∑
α Vαα = 0,

with |VZZ | > |VY Y | > |VXX |. η = (VXX − VY Y )/VZZ is defined the asym-
metry parameter (see Problems V.3.1 and V.3.2).
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Problems V.3

Problem V.3.1 Find eigenvalues, eigenstates and transition probabilities
for a nucleus at I = 1 in the presence of an electric field gradient at cylindrical
symmetry (expectation values VZZ = eq, VXX = VY Y = −eq/2).

Repeat for an electric field gradient lacking of the cylindrical symmetry
(VXX 
= VY Y ).

Solution:
From Eq. 5.20, along the lines of Prob. F.V.15, and by referring to the ex-
pectation values for the electric field gradient, the quadrupole Hamiltonian
is

HQ = A
{

3Î2z − Î2 +
1
2
η(Î2+ + Î2−)

}
where

A =
e2qQ

4I(2I − 1)
=

1
4
e2qQ, eq = VZZ , η =

VXX − VY Y

VZZ
.

For cylindrical symmetry η = 0 and HQ commutes with Iz and I2. The
eigenstates are

|1 >=

⎛⎝ 1
0
0

⎞⎠ , |0 >=

⎛⎝ 0
1
0

⎞⎠ , | − 1 >=

⎛⎝ 0
0
1

⎞⎠ .
In matrix form

HQ = A

⎛⎝ 1 0 0
0 −2 0
0 0 1

⎞⎠
and

HQ| ± 1 >= A| ± 1 > HQ|0 >= −2A|0 > .
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It can be noticed that magnetic dipole transitions, with ΔMI = ±1
and circular polarized radiation, are allowed (read §6.2).

For η 
= 0 the Hamiltonian in matrix form can be written 1

HQ = A

⎛⎝ 1 0 η
0 −2 0
η 0 1

⎞⎠ .
From

Det(A−1HQ − εI) = 0 ⇒ (2 + ε)(1 + ε2 − 2ε− η2) = 0

the eigenvalues turn out

E = Aε = −2A, (1 ± η)A
with corresponding eigenvectors

| − 2A >=

⎛⎝ 0
1
0

⎞⎠ |(1 ± η)A >=
1√
2

⎛⎝ 1
0
±1

⎞⎠ .
The unitary transformation that diagonalizes HQ is

H′
Q = UHQU

+

with

U =
1√
2

⎛⎝ 1 0 1
0
√

2 0
1 0 −1

⎞⎠ .
1 The matrices of the angular momentum operators for I=1 in a basis which diag-

onalizes Iz and I2 are

Ix =
1√
2

(
0 1 0
1 0 1
0 1 0

)
Iy =

1√
2

(
0 −i 0
i 0 −i
0 i 0

)

Iz =

(
1 0 0
0 0 0
0 0 −1

)
I2 = 2

(
1 0 0
0 1 0
0 0 1

)

I2
z =

(
1 0 0
0 0 0
0 0 1

)
I+ =

1√
2

(
0 2 0
0 0 2
0 0 0

)

I2
+ =

(
0 0 2
0 0 0
0 0 0

)
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Then

H′
Q = A

⎛⎝ 1 + η 0 0
0 −2 0
0 0 1 − η

⎞⎠ .
The structure of the energy levels is

ν1 ν2

ν3

A(1+η)
A(1-η)

-2A

with transition frequencies

ν1 =
3A
h

(
1 +

η

3

)
, ν2 =

3A
h

(
1 − η

3

)
and

ν3 = 2Aη/h.

From the interaction Hamiltonian with a radio frequency field HRF (see
Problem F.V.6 and for details Chapter 6)

HI = −γh̄HRF · I
and by taking into account that

H′
I = UHIU

+

one finds

H′
I = −γh̄

⎛⎝ 0 HRF
x HRF

z

HRF
x 0 iHRF

y

HRF
z −iHRF

y 0

⎞⎠ .
The transition amplitudes are

〈A(1 + η)|H′
I | − 2A〉 = −γh̄HRF

x

〈−2A|H′
I |A(1 − η)〉 = iγh̄HRF

y
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〈A(1 + η)|H′
I |A(1 − η)〉 = −γh̄HRF

z .

All the transitions are allowed, with intensity depending on the orientation of
the radio frequency field with respect to the electric field gradient.

Problem V.3.2 Consider a 23Na nucleus at a distance 1 Å from a fixed
charge −e. Estimate the eigenvalues of the electric quadrupole interaction
and the frequency of the radiation which induces transitions driven by the
magnetic dipole mechanism (the electric quadrupole moment of 23Na is Q =
+0.101 · 10−24 cm2).

Solution:
From the eigenvalues of the electric quadrupole Hamiltonian (see Problem
V.3.1, for η = 0)

EI,MI
=

eQVZZ

4I(2I − 1)
(3M2

I − I(I + 1)).

For I = 3
2

E±3/2 =
1
4
eQVZZ E±1/2 = −1

4
eQVZZ

The transition probabilities related to a perturbation Hamiltonian of the
form HP ∝ Hx

RF · I ∝ I± (see §6.2) involve the matrix elements〈
3
2
,
3
2

∣∣∣Î+∣∣∣ 3
2
,
1
2

〉
=

√
3
〈

3
2 ,

1
2

∣∣∣Î+∣∣∣ 3
2 ,− 1

2

〉
= 2〈

3
2
,−1

2

∣∣∣Î+∣∣∣ 3
2
,−3

2

〉
=

√
3

ThenW 3
2 , 1

2
∝ 3,W 1

2 ,− 1
2
∝ 4,W− 1

2 ,− 3
2
∝ 3. The transition frequencies turn out

ν 3
2 , 1

2
=

1
h

(
E 3

2
− E 1

2

)
=

1
2
eQVzz

h
, ν− 3

2 ,− 1
2

=
1
h

(
E− 3

2
− E− 1

2

)
=

1
2
eQVzz

h

From

VZZ =
3z2 − r2
r5

e =
2e
r3

and VXX = VY Y = −e
2

r3

(note that the Laplace equation holds) one estimates

ν 3
2 , 1

2
= ν− 3

2 ,− 1
2

=
e2Q

hr3
� 3.5MHz.
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Appendix V.1 Fine and hyperfine structure in
Hydrogen

Having introduced the various interaction terms (spin-orbit, relativistic
corrections and hyperfine interaction) to be taken into account for one-electron
states in atoms, it is instructive to reconsider the Hydrogen atom and to look
at the detailed energy diagram (Fig. 5.6).

1S1/2

2P3/2

2S1/2

F =1

1S1/2

, 2P1/22S1/2

2P3/2

2P1/2

3D5/2

3P3/2

3S1/2 , 3P1/2

3D3/23D3/2

3D5/2

3P3/2

3S1/2 , 3P1/2

3D3/2

F=1

F=1
F=1

F=1

F=1

F =0

F=0

F=0

F=0

F=0

F=2

1

4

3

2

Bohr model and
Schrödinger equation

without spin

Fine structure 
according 

to Dirac theory 
(l.s coupling +

relativistic mass 
increase)

Lamb shift
Hyperfine
structure

λ = 21 cm

λ = 6562.8 Å
Hα

1.8 · 10-4 eV

}

23.7 MHz

177.6 MHz

59.19 MHz
10969 MHz 1057.8 MHz

Fig. 5.6. Energy levels in Hydrogen including the effects contributing to its detailed
structure. The scale is increased from left to right and some energy splittings are
numerically reported to give an idea of the energy separations. The fine structure
of the n=2 level is detailed in Figure 5.7.

The solution of the non-relativistic Schrodinger equation (§1.4) provided
the eigenvalues En,l = −RHhc/n

2. Then the spin-orbit Hamiltonian
Hso = (e2/2m2c2r3)l.s was introduced (§1.6). However we did not really dis-
cuss at that point the case of Hydrogen (where other relativistic effects are of
comparable strength) dealing instead with heavier atoms (§2.2 and Chapter
3) where the most relevant contribution to the fine structure arises from Hso.
At §2.2 and Problem F.I.15 it was pointed out that a more refined relativis-
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tic description would imply a shift of the s-states (where l = 0 while at the
same time a divergent behaviour for r → 0 is related to the positional part of
Hso). Finally the hyperfine magnetic interaction was introduced (§5.2) where
Hhyp. = ajI.j, with I = 1/2, j = l ± 1/2 and aj given by Eqs. 5.12 and 5.13.

A simple relativistic correction which could remove the accidental degen-
eracy in l was already deduced in the old quantum theory. As a consequence
of the relativistic mass m = m(v), for elliptical orbits in the Bohr model,
Sommerfeld derived for the energy levels

En,k = −RHhc

n2
[1 +

α2

n2
(
n

k
− 3

4
) + ...]

where k is a second quantum number related to the quantization of the
angular momentum

∫
pθdθ = kh (θ polar angle)(see Problem I.4.4), while

α = (e2/h̄c) � 1/137 is the fine-structure constant.
The Dirac electrodynamical theory, which includes spin-orbit inter-

action and classical relativistic effects (the relativistic kinetic energy being
c(p2 +m2c2)1/2 −mc2 � (p2/2m) − (p4/8m3c2) (see Prob. F.I.15), provided
the fine-structure eigenvalues

Efs
n,j = −RHhcα

2

n3
[

1
j + 1/2

− 3
4n

] = E0
n

α2

n2
[

n

j + 1/2
− 3

4
] ,

with the relevant findings that the quantum number j and not l is involved and
the shift for the s-states is explicit. Accordingly, the ground state of Hydrogen
atom is shifted by −1.8 × 10−4 eV and the n = 2 energy level is splitted in
a doublet, the p3/2 and p1/2 states (this latter degenerate with s1/2) being
separated by an amount of 0.3652 cm−1. The Hα line of the Balmer series
(at 6562.8 Å) was then detected in the form of a doublet of two lines, since
the Doppler broadening in optical spectroscopy prevented the observation of
the detailed structure.

Giulotto and other spectroscopists, through painstaking measurements,
noticed that the relativistic Dirac theory had to be modified and that a more
refined description was required in order to account for the detailed structure
of the Hα line. A few years later (1947) Lamb, by means of microwave spec-
troscopy (thus inducing magnetic dipole transitions between the levels) could
directly observe the energy separation between terms at the same quantum
number j. The energy difference between 2S and 2P states turned out 0.03528
cm−1 and the line had a fine structure of five lines, some of them broadened.
Later on, by Doppler-free spectroscopy using dye lasers (Hansch et al., see
Problem F.V. 13 for an example) the seven components of the Hα line con-
sistent with the Lamb theory could be inferred. It was also realized that this
result had to be generalized and the states with the same n and j quantum
numbers, but different l, have different energy.

The Lamb shift (reported in detail in Fig. 5.7 for the n = 2 states) trig-
gered the development of the quantum electrodynamical theory, which
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Fig. 5.7. Lamb shift for the n=2 levels in Hydrogen.

fully account for the fine structure of the levels on the basis of physical grounds
that electrons are continuously emitting and adsorbing photons by transitions
to virtual states. These states are poorly defined in energy due to their very
short lifetimes. Qualitatively the Lamb shift can be considered the result of
zero-point fluctuations of the set of harmonic oscillators describing the elec-
tromagnetic radiation field. These fluctuations induce analogous effects on the
motion of the electron. Since the electric field in the atom is not uniform, the
effective potential becomes different from the one probed by the electron in
the average position.

The shift of the ground state due to the Lamb correction is about six times
larger than the magnetic hyperfine splitting.

As regards the hyperfine splitting in the Hydrogen atom, at §5.2 it has
been shown how the structure depicted in Figure 5.6 is originated.
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Problems F.V

Problem F.V.1 The electric quadrupole moment of the deuteron is
Q = 2.8 · 10−3 barn. By referring to an ellipsoid of uniform charge, evaluate
the extent of departure of the nuclear charge distribution from the sphere.
Assume for average nuclear radius Rn � 1.89 · 10−13cm.

Solution:
From

Q =
1
Ze
ρ

∫
V

(3z2 − r2)dτ,

for the ellipsoid, defined by the equation (x2+y2)/a2+(z2/b2) = 1, one obtains
Q = (2/5)(b2 −a2). If the average nuclear radius is taken to be R3

n = a2b (the
volume of the ellipsoid is 4

3πa
2b), with Rn + δRn = b, then, for δRn � Rn

a2 =
R3

n

Rn + δRn
=

R2
n

1 + δRn

Rn

≈ R2
n

(
1 − δRn

Rn

)
and

b2 − a2 ≈ R2
n

[
1 + 2

(
δRn

Rn

)
+

(
δRn

Rn

)2
]
−R2

n

(
1 − δRn

Rn

)

= R2
n

[
3
(
δRn

Rn

)
+

(
δRn

Rn

)2
]
≈ 3R2

n

(
δRn

Rn

)
.

Hence

Q =
6
5
R2

n

(
δRn

Rn

)
corresponding to

(
δRn

Rn

)
≈ 6.5 · 10−2.

Problem F.V.2 The D2 line of the Na doublet (see Fig. 5.3) displays
an hyperfine structure in form of triplet, with separation between pairs of
adjacent lines in the ratio not far from 1.5. Justify this experimental finding
from the hyperfine structure of the energy levels and the selection rules (see
Prob. F.V.13 for some detail on the experimental method).

Solution:
From the splittings in Fig. 5.3 and the selection rule ΔF = 0,±1 one can
deduce that the hyperfine spectrum consists of three lines ν{3,2,1}↔2 corre-
sponding to the transitions 2P 3

2
(F = 3, 2, 1) ↔ 2S 1

2
(F = 2) and of three lines
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ν{2,1,0}↔1 corresponding to the transitions 2P 3
2
(F = 2, 1, 0) ↔ 2S 1

2
(F = 1) .

From the interval rule

ν3,2 − ν2,2

ν2,2 − ν1,2
=

3
2

and
ν2,1 − ν1,1

ν1,1 − ν0,1
= 2.

The lines in Fig. 5.3 correspond to the transitions 2P 3
2
(F = 3, 2, 1) ↔

2S 1
2
(F = 2) (see Prob. F.V.13).

Problem F.V.3 Plot the magnetic hyperfine levels for an atom in the
electronic state 2S1/2 and nuclear spin I = 1. Then derive the corrections due
to a magnetic field, in the weak and strong field regimes (with respect
to the hyperfine energy). Classify the states in the two cases and draw a
qualitative correlation between them.

Solution:

In the weak-field regime the effective magnetic moment is along F. By
neglecting the contribution from the nuclear magnetic moment one writes
μF = −gFμBF and the hyperfine correction is

ΔE = gF μB H0mF .

gF is calculated by projecting μJ along F: μF = −gJ |J| cosF̂J.F/|F|, with
cosF̂J = [J(J + 1) + F (F + 1) − I(I + 1)]/2

√
J(J + 1)

√
F (F + 1). Thus

gF = gJ
F (F + 1) + J(J + 1) − I(I + 1)

2F (F + 1)
.

A relatively small field breaks up the IJ coupling and the hyperfine Zee-
man effect is replaced by the hyperfine Paschen-Back effect. The oscillating
components in the x and y directions average to zero and the final result is
that the nuclear angular momentum vector I is oriented along H0. The quan-
tum number F is no longer defined while the quantum numbers mI and mJ

describe I and J. The splitting involves three terms, one being gJ μB H0mJ ,
already considered in the Zeeman effect (§4.3.2), the other is amImJ and the
third one, −μNgImIH0, is negligible.
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See the Figure below, with the pictorial view of the angular momenta and
of the correspondent magnetic moments.

μ
I

μ
J

μ
I

μ
J

I

I

J

J

μ
J

μ
J

J

J

+

-1

Fig. 5.8. Hyperfine structure of the S1/2 state with I = 1: a) in zero field; b) in
weak field, Zeeman regime; c) in strong field, Paschen-Back regime.

Problem F.V.4 In the Na atom the hyperfine interaction for the P state
is much smaller than the one in the S ground state. In poor resolution the
hyperfine structure is observed in the form of a doublet, with relative inten-
sities 5 and 3. From this observation derive the nuclear spin (see also Prob.
F.V.13).

Solution:
From

F= I+1/2 

F= I-1/2   

S
1/2

The intensity being ∝ (2F+1) and the ratio (I+1)/I = 5/3, then I = 3/2.
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Problem F.V.5 For a solid ideally formed by a mole of non-interacting
deuterons in an electric field gradient, derive the contributions to the entropy
and to the specific heat, in the high temperature limit (see Prob. V.3.1).

Solution:
The quadrupolar interaction e2qQ[3M2 − I(I+1)]/4 yields two energy levels,
one doubly degenerate (M = 0,±1).
By indicating with ε the separation between the levels, the partition function
is

Z(β) = (1 + 2e−βε)NA , with β = 1/kBT.

From the free energy

F (T ) = −kBT lnZ = −RT ln(1 + 2e−ε/kBT ) ,

the entropy turns out

S = −∂F
∂T

= R ln(1 + 2e−ε/kBT ) +
2NAε

T

e−ε/kBT

1 + 2e−ε/kBT
.

The internal energy is

U = 2NAε
1

eε/kBT + 2
.

In the high temperature limit

U � 2
3
NAε

(
1 − ε

3kBT

)
,

so that

C =
∂U

∂T
=

2
9
R

(
ε

kBT

)2

∝ T−2,

namely the high-temperature tail of a Schottky anomaly (a “bump” in the
specific heat vs temperature), typical of two-levels systems.

Problem F.V.6 Consider the Hydrogen atom, in the ground state, in a
magnetic field H0 and write the Hamiltonian including the hyperfine interac-
tion. First derive the eigenvalues and the spin eigenvectors in the limit H0 →
0 and estimate the frequencies of the transitions induced by an oscillating
magnetic field (perpendicular to the quantization axis).

Then derive the correction to the eigenvalues due to a weak magnetic field.
Finally consider the opposite limit of strong magnetic field. Draw the en-

ergy levels with the appropriate quantum numbers, again indicating the pos-
sibility of inducing magnetic dipole transitions between the hyperfine levels
(this is essentially the EPR experiment, see for details Chapter 6) and from
the resulting lines show how the hyperfine constant can be extracted.
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Figure out a schematic correlation diagram connecting the eigenvalues for
variable external field.

Solution:
From the Hamiltonian

Hs = 2μBS · H0 − γh̄I · H0 + aI · S
(γ nuclear gyromagnetic ratio, a hyperfine interaction constant, with a = hc/λ
and λ = 21 cm).

For H0 → 0 the eigenstates are classified by S, I, F and MF and for
I = S = 1/2 two magnetic hyperfine states, F = 0 and F = 1, occur. Then
E 1

2 , 1
2 ,1 = a/4 and E 1

2 , 1
2 ,0 = −3/4a.

The spin eigenvectors are the same of any two spins system, i.e.

|αeαp >
|βe βp >

1√
2
|αeβp + αpβe >

⎫⎬⎭defining the triplet T1,1 T1,0 T1,−1

and
1√
2
|αeβp − αpβe > defining the singlet S0,0.

The oscillating magnetic field acts as a perturbation involving the operator
μx = 2μBSx − γh̄Ix (for details see §6.2). The matrix elements for the triplet
and singlet states turn out

< 1, 1|μx|1, 0 >=
1
2

1√
2
(gμB − γh̄)

< 1, 1|μx|0, 0 >=
1
2

1√
2
(−gμB − γh̄)

< 1, 0|μx|1,−1 >=
1
2

1√
2
(gμB − γh̄)

< 0, 0|μx|1,−1 >=
1
2

1√
2
(gμB + γh̄)

< 1, 0|μx|0, 0 >=< 1, 1|μx|1,−1 >= 0.

Therefore the allowed transitions are S → T1 and S → T−1 corresponding to
the transition frequency ν = a

h = 1420 MHz (and formally T−1 → T0, T0 →
T+1 at ν = 0).

For weak field H0, neglecting the interaction with the proton magnetic
moment and considering that the perturbation acts on the basis where F 2,
Fz, I2 and S2 are diagonal, the matrix for H = aI · S + 2μBS · H0 is⎛⎜⎜⎝

a/4 + μBH0 0 0 0
0 a/4 0 −μBH0

0 0 a/4 − μBH0 0
0 −μBH0 0 −3a/4

⎞⎟⎟⎠
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From the secular equation the eigenvalues are found by solving

a

4
+ μBH0 − E = 0

a

4
− μBH0 − E = 0

(
a

4
− E)(−3a

4
− E) − μ2

BH0
2 = 0

yielding E1,2 = a/4±μBH0 and E3,4 = −a/4± (a/2)[1 + 4μ2
BH0

2/a2]1/2 (the
states F = 1,MF = 0 and F = 0,MF = 0 being little affected by a weak
magnetic field).

The Breit-Rabi diagram, as reported below, holds

IS

F=0

F=1

E

H
0

In the strong field regime the eigenvalues are the ones for Sz, Iz Sz and Iz:

E = 2μBH0mS + amSMI − γh̄MIH0

The first term is dominant and the diagram is

m
s

= + ½

m
s

= - ½

v
1 v

2

M
I
=  ½

M
I
=  - ½

M
I
=  - ½

M
I
=  ½

with the electronic transitions ΔmS = ±1 (and ΔMI = 0) at the frequencies
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ν1,2 =
2μBH0 ± a/2

h
.

The nuclear transitions ΔMI = ±1 (and ΔmS = 0) occur at a/2h.

Since the internal field due to the electron is usually much larger than H0

the third term can be neglected (see the Figure below).

gμBH0/2

- gμBH0/2

-gnμnH0/2

gnμnH0/2

gnμnH0/2

-gnμnH0/2

+a/4

-a/4

-a/4

+a/4

ms MI

+1/2 +1/2

+1/2 -1/2

-1/2 -1/2

-1/2 +1/2

Electron
Zeeman 
energy

Hyperfine 
interaction

Nuclear
Zeeman 
energy

Magnetic
dipole

transitions

a

H
EPR spectrum (see Chapter 6)

Problem F.V.7 The 209Bi atom has an excited 2D5/2 state, with 6 sub-
levels due to hyperfine interaction. The separations between the hyperfine
levels are 0.23, 0.31, 0.39, 0.47 and 0.55 cm−1. Evaluate the nuclear spin
and the hyperfine constant.

Solution:
From E(F, I, J) = (a/2) [F (F + 1) − I(I + 1) − J(J + 1)] and
EF+1 − EF = a(F + 1), one finds a = 0.08 cm−1 and Fmax = 7.

Therefore F = 2, 3, 4, 5, 6, 7 and since J = 5/2 the nuclear spin must be
I = 9/2.

Problem F.V.8 A proton and an anti-proton, at a given distance d,
interact through the magnetic dipole-dipole interaction. Derive the total spin
eigenstates and eigenvalues in term of the proton magnetic moment (it is
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reminded that the magnetic moment of the antiproton is the same of the
proton, with negative gyromagnetic ratio).

Solution:
From

H =
μ1 · μ2

r3
− 3

(μ1 · r)(μ2 · r)
r5

.

with μ1 = 2μps1 and μ2 = −2μps2, by choosing the z axis along r

H = −4
μ2

p

d3
s1 · s2 + 12

μ2
p

d3
sz1s

z
2.

Since s1 · s2 = S(S + 1)/2− 3/4 and sz1s
z
2 = (1/2)M2

S − (1/2) · (1/2), one finds

Eigenstates S MS Energies

singlet 0 0 0

1 2μ2
p/d

3

triplet 1 0 −4μ2
p/d

3

−1 2μ2
p/d

3

i. e.

1, ±1

0, 0

1, 0 

2μ
p

2
/d

-4μ
p

2
/d

3

3

Problem F.V.9 Two electrons interact through the dipolar Hamiltonian.
A strong magnetic field is applied along the z-direction, at an angle θ with the
line connecting the two electrons. Find the eigenvalues and the corresponding
eigenfunctions for the two spins system, in terms of the basis functions α1,2

and β1,2.
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Solution:
In the light of Eq. 5.8 for the dipolar field (see also Problem V.2.2) the

total Hamiltonian is

H = H0 + Hd

= 2μBH0(s(1)z + s(2)z ) +
4μ2

B

r3

{
s1 · s2 − 3

r2
[(s1 · r)(s2 · r)]

}
.

In order to evaluate the matrix elements it is convenient to write the
perturbation Hamiltonian in the form (called dipolar alphabet)

Hd =
4μ2

B

r3
[A+B + C +D + E + F ]

where

A = s(1)z s
(2)
z [1 − 3 cos2 θ], B = −1

4

[
s
(1)
+ s

(2)
− + s(1)− s

(2)
+

]
(1 − 3 cos2 θ),

θ angle between H0 and r. The terms C,D,E and F involve operators of
the form s

(1)
+ s

(2)
z , s(1)− s

(2)
z , s(1)+ s

(2)
+ , s(1)− s

(2)
− and can be neglected. In fact these

terms are off-diagonal and produce admixtures of the zero-order states to an
amount of the order of

(
μB/r

3
)
/H0 (i.e. ∼ 10−4 for H0 = 1 Tesla).

Thus the dipolar Hamiltonian is written in the form

Hd =
4μ2

B

r3
(1 − 3 cos2 θ)︸ ︷︷ ︸

A

[
s(1)z s

(2)
z − 1

4

(
s
(1)
+ s

(2)
− + s(1)− s

(2)
+

)]
,

most commonly used.
The complete set of the basis functions is α1α2, α1β2, α2β1 and β1β2

and the matrix elements are

< αα|HT |αα > = 2 μB H0 +
1
4
A

< αβ|HT |αβ > = < βα|HT |βα >= −A
4

< αβ|HT |βα > = < βα|HT |αβ >= −A
4

< ββ|HT |ββ > = −2μBH0 + A/4

It is noted that while the term A is completely diagonal, the term B only
connects |m(1)

s m
(2)
s > to states < m(1)

s + 1,m(2)
s − 1| or < m(1)

s − 1,m(2)
s + 1|.

B simultaneously flips one spin up and the other down.
The secular equation is
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(+2μBH0 + A

4 ) − E 0 0 0
0 −A

4 − E −A
4 0

0 −A
4 −A

4 − E 0
0 0 0

(−2μBH0 + A
4

)− E
∣∣∣∣∣∣∣∣ = 0.

and the eigenvalues turn out

E1 = −2μB

(
H0 − μB

2r3
(1 − 3 cos2 θ)

)
E2 = 0

E3 = −2μ2
B

r3
(1 − 3 cos2 θ)

E4 = +2μB

(
H0 − μB

2r3
(1 − 3 cos2 θ)

)
.

The correspondent eigenfunctions being α1α2 , β1β2 and 1√
2

[α1β2 ± α2β1], as
expected.

Problem F.V.10 In the Ba atom the line due to the transition from the
6s 6p J = 1 to the (6s)2 ground state in high resolution is evidenced as a
triplet, with line intensities in the ratio 1, 2 and 3. Evaluate the nuclear spin.

Solution:
Since F = I + J

for J = 0 one has I = F =⇒ no splitting

for J = 1 =⇒ splitting in (2I + 1) or in (2J + 1) terms.

I = 0 =⇒ no splitting,

for I =
1
2

and J = 1 ΔF = 0,±1 =⇒ two lines

I = 1 or I > 1 =⇒ three lines.

Looking at the intensities, proportional to e−E/kBT (2F + 1), where the
energy E is about the same

for I = 1 F = 0, 1, 2 =⇒ intensities: 1, 3, 5

for I =
3
2
F =

1
2
,
3
2
,
5
2

=⇒ intensities: 2, 4, 6.

Therefore I = 3/2.
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Problem F.V.11 In the assumption that in a metal the magnetic field
on the electron due to the hyperfine interaction with I = 1/2 nuclei is Hz =
(a/N)ΣnI

z
n (a constant and same population on the two states) prove that

the odd moments of the distribution are zero and evaluate < H2
z >. Then

evaluate < H4
z > and show that for large N the distribution tends to be

Gaussian, the width going to zero for N → ∞.
Solution:

〈Ĥ2n+1
z 〉 = 0 for symmetry. Since (Iz

n)2 = 1
4〈(∑

n

Iz
n

)2〉
=

∑
n

〈
(Iz

n)2
〉

+
∑
n�=m

〈Iz
nI

z
m〉 =

1
4
N ,

and then 〈H2
z 〉 = ( a

2N )2N .

〈H4
z 〉 =

( a
N

)4 ∑
i,j,k,l

〈Iz
i I

z
j I

z
kI

z
l 〉 =

( a
N

)4

3
∑
i,j

〈
(Iz

i )2(Iz
j )2

〉− ( a
N

)4 ∑
i

〈
(Iz

i )4
〉

=
( a

2N

)4

(3N2 −N).

In the thermodynamical limit one has 〈H4
z 〉 � 3

(
a

2N

)4
N2: the first two even

moments correspond to the Gaussian moments.

Problem F.V.12 Evaluate the transition probability from the state
M = −1/2 to M = +1/2 by spontaneous emission, for a proton in a mag-
netic field of 7500 Oe.

Solution:
From the expression for A21 derived in App. I.3 and extending it to magnetic
dipole transitions, one can write

A21 =
4ω3

L

3c3h̄
| < 2|μ|1 > |2

=
4ω3

L

3c3h̄
{∣∣∣∣ < 1

2

∣∣μx

∣∣− 1
2
>

∣∣2 +
∣∣ < 1

2

∣∣μy

∣∣− 1
2
>

∣∣2}
with μ = γh̄I. From I± = Ix ± iIy one derives A21 = (2/3)(γ2h̄/c3)ω3

L and
for γ = 42.576 · 2π · 102 Hz/Gauss, ωL = γH0 = 2π · 31.9MHz, yielding

A21 � 1.5 × 10−25 s−1.

Problem F.V.13 High-resolution laser spectroscopy allows one to evi-
dence the hyperfine structure in the optical lines with almost total elimination
of the Doppler broadening.
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The Figure below

F
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2↔1

2↔3

2↔2
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frequency

F

shows the hyperfine structure of the 2S1/2 −2 P3/2 D2 line of Na at 5890 Å
(transitions ΔF = 0,±1 from the F = 2 level of the electronic ground state).
(This spectrum is obtained by irradiating a collimated beam of sodium atoms
at right angles by means of a narrow-band single-mode laser and detecting
the fluorescent light after the excitation. This and other high resolution spec-
troscopic techniques are nicely described in the book by Svanberg, quoted
in the Preface).

From the Figure, discuss how the magnetic and electric hyperfine con-
stants could be derived and estimate the life-time of the 2P3/2 state (in the
assumption that is the only source of broadening).

Then compare the estimated value of the life time with the one known
(from other experiments), τ = 1.6 ns. In the assumption that the extra-
broadening is due to Doppler second-order relativistic shift, quadratic in
(v/c), estimate the temperature of the oven from which the thermal atomic
beam is emerging, discussing the expected order of magnitude of the broad-
ening (see Problem F.I.7).

Solution:
For the ground-state 2S1/2, I = 3/2 and J = S = 1/2, the quadrupole
interaction being zero, from Eq. 5.15 the separation between the F = 2 and
F = 1 states yields the magnetic hyperfine constant a = Δ1,2/(F + 1) = 886
MHz, corresponding to an effective magnetic field of about 45 Tesla (see Table
V.2.1).

The sequence of the hyperfine levels for the 2P3/2 state does not follow
exactly the interval rule. In the light of Eq. 5.20 an estimate of the quadrupole
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coupling constant b can be derived (approximate, the correction being of the
order of the intrinsic line-widths).

In the assumption that the broadening (12 MHz) is due only to the life-
time one would have τ = 1/2πΔν � 13.3 × 10−9 s, a value close to the one
(τ � 16 × 10−9s) pertaining to the 32P3/2 state (Δν � 10 MHz).

The most probable velocity of the beam emerging from the oven is v =√
3kBT/MNa, that for T � 500 K corresponds to about 7 × 104 cm/s.
While the first-order Doppler broadening is in the range of a few GHz,

scaling by a term of the order of v/c leads to an estimate of the second-
order Doppler broadening in the kHz range. Thus the extra-broadening
of a few MHz is likely to be due to the residual first-order broadening
(for a collimator ratio of the beam around 100 being typically around some
MHz).

Problem F.V.14 From the perturbation generated by nuclear magnetic
moment on the electron, derive the effective magnetic field in the hyperfine
Hamiltonian Hhyp = −μI .heff (Eq. 5.6).

Solution:
From the vector potential (see Fig. 5.1 and Eq. 5.4) the magnetic Hamil-

tonian for the electron is

Hhyp = 2μB
l.μI

r3
+ 2μBs.∇ × [−∇ × μI

r
]

Since

∇ × [−∇ × μI

r
] = −gnMn{ I

r3
− 3(I.r)r

r5
} + gnMnIdiv(

r
r3

) ,

while div(r/r3) = 4πδ(r), one writes

Hhyp = 2μBgnMn
I.l
r3

−2μBgnMn{s.I
r3

− 3(I.r)(s.r)
r5

}+2μBgnMn(s.I)4πδ(r) ≡

≡ A+B + C,

To deal with the singularities at the origin involved in B and C, let us
define with Vε a little sphere of radius ε centered at r = 0. Then in the
integral for the expectation values

I =
∫

Vε

Bφ∗(r)φ(r)dτ ≡
∫

Vε

Bf(r)dτ

one can expand f(r) in Taylor series, within the volume Vε

f(r) = f(0) + r.∇f(r) +
1
2
(r.∇)(r.∇)f(r)
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In I there are two types of terms, one of the form

sxIx
∂2

∂x2
(
1
r
) (a)

the other of the form

(sxIy + syIx)
∂2

∂x∂y
(
1
r
) (b)

In the expansion (r.∇f) is odd while (a) terms are even, thus yielding
zero in I. The product of (a) terms with the third term in f(r) when even,
contributes with a term quadratic in ε.

The terms of type (b) are odd in the two variables, while r.∇f includes
odd terms in a single variable. In the same way are odd (and do not give
contribution) the terms (b)f(0). Finally the terms (b) times the third term in
the expression again contribute to I only to the second order in ε. Therefore,
one can limit I only to

I = 2gnMnμBf(0)
1
3

∫
Vε

(s.I)∇2(
1
r
)dτ.

Since ∇2(1/r) = −4πδ(r) the magnetic hyperfine hamiltonian can be
rewritten 2

Hhyp = 2μBgnMn
I.l
r3

−2μBgnMn

[
s.I
r3

− 3(s.r)(I.r)
r5

]∗
+

16π
3
μBgnMns.Iδ(r)

Thus the effective field heff in the form given in Eq. 5.6 is justified.
A model which allows one to derive similar results for the dipolar and

the contact terms is to consider the nucleus as a small sphere with a uni-
form magnetization M, namely a magnetic moment μn = (4πR3/3)M. For
r > R the magnetic field is the one of a point magnetic dipole. Inside the
sphere Hint = (8π/3)M. By taking the limit R→ 0, keeping μn constant and
then assuming that M → ∞, so that

∫
r<R

Hintdrn = 8πμn/3, the complete
expression of the field turns out

H = −μn

r3
+ 3

(μn.r)r
r5

+
8π
3
μnδ(r).

Problem F.V.15 From the energy of the nuclear charge distribution
in the electric potential due to the electron (Eq. 5.16) derive the hyperfine
quadrupole Hamiltonian (Eq. 5.20).
2 The star in the equation below means that in the expectation value a small sphere

of radius ε at the origin has been excluded in the integration and then ε set to
zero, as explained in the derivation. All singularities are included in the contact
term.
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Solution:
By starting from Eq. 5.18 a new tensor Qij so that

∑
lQll = 0 is defined

Qij = 3Q′
ij − δij

∑
l

Q′
ll

and in terms of Q′
ij one has

EQ =
1
6

∑
ij

QijVij +
1
6

∑
l

Q′
ll

∑
j

Vjj

The second term can be neglected since
∑

j Vjj � 0. Thus

HQ
hyp =

∑
ij

Q̂ij
V̂ij

6

where the operators are

Q̂ij = e
∑

n

(3xn
i x

n
j − δijr2n)

V̂ij = −e
∑

e

(3xixj − δijr2e)
r5e

This Hamiltonian can be simplified by expressing the five independent compo-
nents of Qij in terms of one. Semiclassically this simplification originates from
the precession of the nuclear charges around I, yielding a charge distribution
with cylindrical symmetry around the z direction of the nuclear spin.

Then
Qij = 0 for i 
= j and being

∑
lQll = 0, one has Q11 = Q22 = −Q33/2

with Q33 =
∫
ρn(r)(3z2 − r2)dτn.

In the quantum description the reduction of HQ
hyp is obtained by consid-

ering that only the dependence from the orientation is relevant. Thus, for the
matrix elements < I,M ′

I |Q̂ij |I,MI > (other quantum numbers for the nuclear
state being irrelevant), by using Wigner-Eckart theorem one writes

< I,M ′
I |Q̂ij |I,MI >= C < I,M ′

I |
3
2
(IiIj + IjIi) − δijI2|I,MI > .

By defining, in analogy to the classical description, the quadrupole moment
Q in proton charge units as

Q =< II| Q̂zz

e
|II >≡< II|

∑
n

(3z2n − r2n)|II >

the constant C is obtained:
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C < II|3I2z − I2|II >= C[3I2 − I(I + 1)] = eQ

Therefore all the components Qij are expressed in terms of Q, which has the
classical physical meaning (see Eq. 5.2 and Eq. 5.22). Then the quadrupole
operator is

Q̂ij =
eQ

I(2I − 1)
{3
2
(IiIj + IjIi) − δijI2}

Analogous procedure can be carried out for the electric field gradient operator:

V̂ij =
eqJ

J(2J − 1)
{3
2
(JiJj + JjJi) − δijJ2}

where

qJ =< JJ | V̂zz

e
|JJ >=< JJ | −

∑
e(3z

2
e − r2e
r5e

|JJ >

Finally, since ∑
ij

IiIjJiJj = (
∑

i

IiJi)2 = (I.J)2

∑
ij

IiIjδijJ
2 = (

∑
i

Ii)2J2 = I2J2

∑
ij

IiIjJjJi = (I.J)2 + (I.J)

the quadrupole hyperfine Hamiltonian is written

HQ
hyp =

eqJQ

2I(2I − 1)J(2J − 1)
{3(I.J)2 +

3
2
(I.J) − I2J2} ,

as in Eq. 5.20 (see also Eq. 5.24).

Problem F.V.16 At §1.5 the isotope effect due to the reduced mass
correction has been mentioned. Since two isotopes may differ in the nuclear
radius R by an amount δR, once that a finite nuclear volume is taken into
account a further shift of the atomic energy levels has to be expected. In the
assumption of nuclear charge Ze uniformly distributed in a sphere of radius
R = rFA1/3 (with Fermi radius rF = 1.2 × 10−13 cm) estimate the volume
shift in an hydrogenic atom and in a muonic atom. Finally discuss the effect
that can be expected in muonic atoms with respect to ordinary atoms in
regards of the hyperfine terms.

Solution:
The potential energy of the electron is V (r) = −Ze2/r for r ≥ R, while (see
Problem I.4.6)

V (r) = −3
Ze2

2R
(1 − r2

3R2
) for r ≤ R
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The first-order correction, with respect to the nuclear point charge hydrogenic
Hamiltonian, turns out

ΔE =
Ze2

2R

∫ R

0

|Rnl(r)|2(−3 +
r2

R2
+

2R
r

)r2dr � Ze2

10
R2|Rnl(0)|2

The correction is negligible for non-s states, where Rnl(0) � 0, while for s
states one has

ΔE =
2
5
e2R2 Z

4

a30n
3

In terms of the difference δR in the radii (to the first order) the shift turns
out

δE � 4
5
e2R2 Z

4

a30n
3

δR

R

In muonic atoms (see §1.5) because of the change in the reduced mass and
in the Bohr radius a0, the volume isotope effect is dramatically increased with
respect to ordinary hydrogenic atoms.

As regards the hyperfine terms one has to consider the decrease in the
Bohr radius and in the Bohr magneton (μB ∝ 1/m) (see Problem V.2.4). For
the hyperfine quadrupole correction small effects have to be expected, since
only states with l 
= 0 are involved.

Finally it is mentioned that an isomeric shift, analogous to the volume
isotope shift, occurs when a radiative decay (e.g. from 57Co to 57Fe) changes
the radius of the nucleus. The isomeric shift is experimentally detected in the
Mössbauer resonant absorption spectrum (see §14.6).



6

Spin statistics, magnetic resonance, spin
motion and echoes

Topics

Spin temperature and spin thermodynamics
Magnetic resonance and magnetic dipole transitions
NMR and EPR
Spin echo
Cooling at extremely low temperatures

This Chapter, dealing with nuclear and electronic angular momenta in mag-
netic fields, further develops topics already discussed in Chapters 4 and 5. The
new arguments involve some aspects of spin statistics and of magnetic reso-
nance (namely how to drive the angular and magnetic moments and to change
their components along a magnetic field). The magnetic resonance experiment in
most cases is equivalent to induce magnetic dipole transitions among Zeeman-like
levels.

6.1 Spin statistics, spin-temperature and fluctuations

Let us refer to a number N (of the order of the Avogadro number) weakly
interacting spins S = 1/2, each carrying magnetic moment μ = −2μBS,
in static and homogeneous magnetic field H along the z-axis. At the thermal
equilibrium the statistical distribution depicted in Fig. 6.1 occurs. The number
of spins (statistical populations) on the two energy levels are

N− = N
e

μBH

kBT

e
μBH

kBT + e
−μBH

kBT

≡ N

Z
e

μBH

kBT (6.1)

and
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N+ =
N

Z
e

−μBH

kBT , (6.2)

with Z the partition function (for reminds see §4.4, Problems F.I.1 and
F.IV.8). The contribution to the thermodynamical energy is

U = N−(−μBH)+N+(μBH) = μBH(2N+−N) ≡ [
2N
Z
e−ε/T−N ]μBH (6.3)

with

ε =
μBH

kB
the “magnetic temperature”

(having assumed U = 0 in the absence of the magnetic field).

μ
s

μ
s

M
s

= +1/2

M
s

=  -1/2

2μ
B
H

H≠0

z

H=0

N
+
+N

-
=N

Spin degeneracy

N
+

N
-

Fig. 6.1. Pictorial view of the statistical distribution of N spins S = 1/2 on the
two “Zeeman levels” in a magnetic field, with N− > N+ at thermal equilibrium. In
a field of 1 Tesla the separation energy 2μBH is 1.16 × 10−4 eV, corresponding to
the magnetic temperature 2ε = 2μBH/kB = 1.343 K.
An equivalent description holds for protons, with I = 1/2, with the lowest energy
level corresponding to quantum magnetic number MI = +1/2, the gyromagnetic
ratio being positive (§5.1). The energy separation between the two levels, for proton
magnetic moments, is 2μpH, with μp = MngnI and Mn the nuclear magneton,
gn = 5.586 the nuclear g-factor. In a field of 1 Tesla, for protons the separation
turns out 1.76 × 10−7 eV (or 20.4 × 10−4 K).

The statistical populations N+ or N− are modified when the temperature
(or the field) is changed and after some time a new equilibrium condition
is attained. N± can be varied, while keeping the temperature of the ther-
mal reservoir and the magnetic field constant, by proper irradiation at the
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transitional frequency ν = 2μBH/h, by resorting to the magnetic dipole
transition mechanism (the methodology is known, in general, as magnetic
resonance, described in some detail at §6.2).

When N± are modified, in principle the energy U can take any value in
between −NμBH (corresponding to full occupation of the state at MS =
−1/2) and +NμBH (complete reversing of all the spins, with N+ = N).

From thermodynamics, no volume variation being involved, the entropy of
the spin system can be defined

Sspin ≡ S =
∫

1
T

(
∂U

∂T
)V dT (6.4)

and therefore, from Eq. 6.3,

S = 2μBH

∫
1
T

(
∂N+

∂T
)V dT (6.5)

When the statistical distribution on the levels is modified the entropy
changes, in the way sketched in Fig. 6.2 in terms of the energy U .

+Nμ
B
H-Nμ

B
H

0

S

T
spin

>0

T
spin

< 0

S
max

= Nk
B
ln2, T

spin
= ∞

(maximum disorder, N
-

=N
+

=N/2)

U

Fig. 6.2. Entropy S as a function of the energy U in a spin system. The statistical
entropy is defined as the logarithm of the number of ways a given spin distribution
can be attained (See §6.4). The zeroes at U = ±NμBH correspond to all spins in a
single state (see also Problems VI.1.2, VI.1.4 and F.VI.1).

Since the temperature can be expressed as

1
T

=
∂S

∂U
(6.6)



212 6 Spin statistics, magnetic resonance, spin motion and echoes

(in the partial differentiation keeping constant all the other thermodynamical
variables), one can define a spin temperature Tspin in terms of N+ and
N−. Thus a spin temperature is defined also for U > 0, eventhough there
is not a correspondent thermal equilibrium temperature T of the reservoir.
When, by means of magnetic resonance methods (or, for example, simply by
suddenly reversing the magnetic field) the equilibrium distribution is altered,
then Tspin 
= T . It should be remarked that this non-equilibrium situation can
last for time intervals of experimental significance only when the probability
of spontaneous emission (see Appendix I.2) is not so strong to cause fast
restoring. This is indeed the case for states of magnetic moments in magnetic
fields (see the estimate in Problem F.V.12). However, exchanges of energy
with the thermal bath, related to the time-dependence of the Hamiltonians
coupling the spin system to all other degrees of freedom (the “lattice”),
usually occur. This is why a given non-equilibrium spin distribution rather
fast attains the equilibrium condition, usually through an exponential process
characterized by a time constant called spin-lattice relaxation time T1

(see §6.2). The relaxation times T1’s, particularly at low temperatures, are
often long enough to allow one to deal with non-equilibrium states.

Let us imagine to have prepared one spin system at Tspin = −300 K and
to bring it in thermal contact with another one, strictly equivalent but at
thermal equilibrium, namely at Tspin = T = 300 K. The two systems reach a
common equilibrium by means of spin-spin transitions in which two spins
exchange their relative orientations (this process involves a spin-spin relax-
ation time T2 usually much shorter than T1). The total energy is constant
while the temperatures of both the two sub-systems evolve, as well as the
entropy. The final spin temperatures are +∞ and −∞ and the entropy takes
its maximum value. The internal equilibrium, with Tspin = ±∞, is attained
in very short times (for T2 � T1). Then the spin-lattice relaxation process
drives the system towards the thermodynamical equilibrium condition, where
Tspin = T .

Now we return to the field induced magnetization

M = N < μz >H , (6.7)

< μz >H being the statistical average of the component of the magnetic
moment along the field (see §4.4).

From

−gμB

∑
MJ
MJe

−gμBMJH/kBT

Z
= kBT

∂

(
ln(

∑
MJ
e−gμBMJH/kBT )

)
∂H

(6.8)

with Z the partition function (see Eq. 4.30), the magnetization can be written

M = NkBT

(
∂lnZ

∂H

)
T

. (6.9)
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For J = S = 1/2

M =
N

2
2μBtanh

(
μBH

kBT

)
(6.10)

Let us now evaluate the mean square deviation of the magnetization from
this average equilibrium value, i.e. its fluctuations < (M− < M >)2 >
(now we have added the symbol <> to M in Eqs. 6.9 or 6.10 to mean its
average character). The magnetization has a Gaussian distribution around
the average value < M >, zero for H = 0 (See Problem VI.1.1) and the one
in Eq. 6.10 in the presence of the field.

For the fluctuations one has

< ΔM2 >=< (M− < M >)2 >=
=< M2 > −2 < M < M >> + < M >2=< M2 > − < M >2 (6.11)

The single < μz >’s are uncorrelated and therefore < ΔM2 >= N < Δμ2
z >

with < Δμ2
z >=< μ2

z > −(< μz >)2, yielding

< M2 >= N < μ2
z >H= 4Nμ2

B

∑
Ms
M2

s e
−xMs

Z

with x = (2μBH/kBT ) and M2
S = 1/4.

Then < M2 >= Nμ2
B and finally, from Eqs. 6.11 and 6.10

< ΔM2 >= Nμ2
B

[
1 − tanh2

(
μBH

kBT

)]
(6.12)

Now we look for the relationship of the fluctuations to the response func-
tion, the magnetic susceptibility χ = ∂ < M > /∂H. Again, form Eq. 6.10
one derives

χ = NμB

[
1 − tanh2

(
μBH

kBT

)]
μB

kBT
(6.13)

and therefore
< ΔM2 >= kBTχ . (6.14)

This relationship is a particular case of the fluctuation-dissipation theo-
rem, relating the spectrum of the fluctuations to the response functions (see
Problem F.IV.8 for an equivalent derivation).

The considerations carried out in the present paragraph are a few illustra-
tive examples of the topic that one could call spin thermodynamics. This
field includes the method of adiabatic demagnetization, which allows one
to reach the lowest temperatures (§6.4). A valuable introduction to statistical
physics with paramagnets, leading step by step the reader to the concepts
suited for extending the arguments recalled in the present paragraph, can be
found in Chapters 4 and 5 of the book by Amit and Verbin, quoted in the
Preface.
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Problems VI.1

Problem VI.1.1 Express the probability distribution of the total “mag-
netization” along a given direction in a system ofN independent spin S = 1/2,
in zero magnetic field.

Solution:
Along the z-direction two values ±μB are possible for the magnetic moment.
The probability of a given sequence is (1/2)N . A magnetization M = nμB

implies 1
2 (N + n) magnetic moments “up” and 1

2 (N − n) magnetic moments
“down” (see Fig. 6.1). The total number of independent sequences giving such
a distribution is

W (n) =
N ![

1
2 (N + n)

]
!
[

1
2 (N − n)]! .

The probability distribution for the magnetization is thusW (M) =W (n)(1/2)N .
From Stirling approximation and series expansion

ln
(
1 ± n

N

)
≈ ± n

N
− n2

2N2
± ...

one has

lnW (M) ≈ −1
2
ln

(
πN

2

)
− n2

2N

so that

W (M) ≈
(

2
πN

)1/2

exp

[
− n

2

2N

]
namely a Gaussian distribution around the value <M>=0, at width about
(N)1/2. It is noted that the fractional width goes as N−1/2, rapidly decreas-
ing for large N .

Problem VI.1.2 Express the entropy of an ensemble of S = 1/2 non-
interacting spins in a magnetic field and discuss the spin temperature recalled
in Fig. 6.2.

Solution:

The number of available states is

W =
N !

(N+)!(N−)!
.

Resorting to the Stirling approximation (see Prob. VI.1.1) the entropy is

S = kBlnW = kB [NlnN −N+lnN+ −N−lnN−] .
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The energy U (in Fig. 6.2) can be written U = N+α, by setting the low-energy
level at zero and α = 2μBH. Being N− = N −N+ the entropy becomes

S = kB [NlnN − ulnu− (N − u)ln(N − u)] ,
with u = U/α ≡ N+. From Eq. 6.6, with ∂S/∂U = (1/α)∂S/∂u

1
T

=
kB

α
[lnN− − lnN+]

or
T =

α

kBln(N
u − 1)

justifying the plot in Fig. 6.2. The maximum of S occurs for u = N/2, i.e.
N+ = N/2. From the free energy

F = −N
β
ln[1 + exp(−2β μB H)],

and S = −(∂F/∂T )H the same expression for the entropy in terms of u is
obtained.

Problem VI.1.3 Two identical spin systems at S = 1/2, prepared at spin
temperatures Ta= E / 2 kB and Tb= - E / kB are brought into interaction.
Find the energy and the spin temperature of the final state.

Solution:
By setting E = 0 for the low energy level, Ux = Ua + Ub is written

Ux = 2NE
exp(−E/kBTx)

1 + exp(−E/kBTx)
.

Since

Ua = NE
exp(−2)

1 + exp(−2)
and

Ub = NE
exp(1)

1 + exp(+1)
,

one has

exp(E/kBTx) =
e2 + e−1 + 2e
2 + e2 + e−1

≡ z
and then

Tx =
E

kB ln z
≈ 3.3

E

kB
.

Problem VI.1.4 Show that the entropy (per particle) of a system can be
written
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S = −kB

∑
n

pn ln pn

where pn is the probability that the system is found in the state at energy
En, namely for a canonical ensemble

pn =
exp(−En/kBT )

Z
,

with Z partition function. This form of S is known as Shannon-Von Neu-
mann entropy and it holds also for microcaconical and grancanonical ensem-
bles.

Solution:
In fact

S = −kB

Z

∑
n

exp

(
− En

kBT

)[
− En

kBT
− lnZ

]
= kB

lnZ

Z

∑
n

exp

(
− En

kBT

)
+

1
T

∑
n

exp

(
− En

kBT

)
En

Z

= kB lnZ +
1
T

∑
n

exp

(
− En

kBT

)
En

Z
.

On the other hand, from
F = −kB T lnZ

one can write

S =
U − F
T

= kB
∂(T lnZ)
∂T

and
U = kB T

2 ∂ lnZ

∂T
.

Then

S = −
[
∂F

∂T

]
v,H

= kB lnZ + kB T
∂ lnZ

∂T
.

Since
∂ lnZ

∂T
=

1
kB T 2

∑
n

exp

(
− En

kBT

)
En

Z

one has

S = kB lnZ +
1
T

∑
n

exp

(
− En

kBT

)
En

Z
.

Problem VI.1.5 A model widely used in statistics and in magnetism is
the Ising model, for which an Hamiltonian of the form H = −K∑

i,j si sj
is assumed, with the spin variables si taking the values +1 and -1. K is the
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exchange integral (see § 2.2.2 ).1 Derive the partition function Z, the free
energy F , the thermodynamical energy U and the specific heat CV , for a
system of N spins.

Solution:
By indicating with Np,a the number of parallel (p) and antiparallel (a) spins
with Np +Na = N − 1 the number of interacting pairs, the energy of a given
spin configuration is E = −K(Np −Na) = −K(2Np + 1 −N).

The number of permutations of the (N − 1) pairs is (N − 1)!, of which
(N −1)!/Na! Np! are distinguishable. Therefore the sum over the states reads

Z = 2
N−1∑
Np=0

[
(N − 1)!
Na!Np!

]
exp

[
+
K(2Np + 1 −N)

kBT

]

= 2 exp
[
+
K(1 −N)
kBT

]∑
Np

[
(N − 1)!

(N − 1 −Np)!Np!

]
exp

[
+
K(2Np)
kBT

]

(the factor 2 accounts for the configurations arising under the reversing of all
the spins without changing Np or Na ). The sum is the expansion of
{1+exp [ (2 K/kBT )]}N−1 and therefore

Z = 2N

[
cosh

K

kBT

]N−1

.

Then

F = −kB T lnZ = −kB T

[
N ln2 + (N − 1) ln(cosh

K

kBT
)
]
,

U = −∂(lnZ)
∂β

= −(N − 1)K tanh(βK) , with β =
1
kBT

and

CV = (
∂U

∂T
)N = (N − 1)

(
K2

kBT 2

)[
1

(coshβK)2

]
.

1 It can be remarked that having assumed a site-independent interaction, this model
corresponds to the mean-field description, or equivalently to an infinite range of
the interactions.
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6.2 The principle of magnetic resonance and
the spin motion

Transitions involving hyperfine states or nuclear and/or electronic Zeeman-
states in magnetic fields are carried out by resorting to the magnetic dipole
mechanism. These transitions are usually performed by exploiting the phe-
nomenon elsewhere called magnetic resonance, which allows one to drive
electronic or nuclear magnetic moments. This type of experiments are at the
core of modern microwave and radiofrequency spectroscopies.

The first experiment of magnetic resonance, performed by Rabi, involved
molecular beams (see Fig. 6.3).
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Fig. 6.3. a) Sketch of the experimental setup for magnetic resonance in beams
(ABMR). The magnetic fields A and C have gradients along opposite directions.
In region B the magnetic field H0 ‖ z is homogeneous. The radiofrequency (or the
microwave) field H1 in region B is perpendicular to H0.
In part b) of the Figure the sketch of a typical magnetic resonance signal is shown,
detected as a minimum in the arrival of the atoms when in region C the refocusing
of the deviations is inhibited (dotted line) by the resonance driven by H1 in region
B (see text).

The vectorial description, with classical equation of motion (Chapter 3) is
the following (see Fig. 6.4). The motion of the angular momentum L in H0 is
described by

dL
dt

= μL × H0 i.e.
dμL

dt
= −γ(μL × H0) (6.15)
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Fig. 6.4. Precessional motion of the magnetic moment μ at the angular frequency
ωL = γH0 and rotation of the field H1 at ωRF . For ωL = ωRF the magnetic resonance
occurs. The gyromagnetic ratio γ is μI/Ih̄ for nuclear moment (see §5.1) or γ =
μJ/Jh̄ for electron magnetic moment.

implying the precession at the Larmor frequency ωL = γH0 (see §3.2 and
Problem III.2.4). In a frame of reference rotating at angular frequency ω, Eq.
6.15 becomes2

dμL

dt
= γ

(
H0 +

ω

γ

)
× μL. (6.16)

Thus in the presence of the radiofrequency (or microwave) irradiation the
effective field is

Heff =
(
H0 +

ωRF

γ

)
k̂ +H1î (6.17)

When ωRF = −γH0 (the sign minus refers to clockwise precession), in
the rotating frame of reference only H1 is active and the magnetic moment
2 It is reminded that

(
dμ

dt
)lab.frame = (

∂μ

∂t
)relative to rot. frame + (

dμ

dt
)rot.frame

the latter being ω ×μ. For Hx = H1cosωRF t, Hy = H1sinωRF t and Hz = H0, in
the rotating frame the magnetic field is constant: H ′

x = H1, H ′
y = 0 and H ′

z = H0

(see Fig. 6.6).
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precesses around it, thus changing its component with respect to H0. As a
consequence of the change in the z-component of the magnetic moment in the
region B of the Rabi experimental set up (Fig. 6.3) the compensation of the
deviations due to F = ±μz(dH/dz) in the regions A and C does no longer
occur. Then a minimum in the number of atoms (or molecules) reaching the
detector is observed.

The quantum description of the magnetic resonance corresponds to the
situation depicted in Fig. 6.5 for nuclear spin I = 1/2.

M
I

=-1/2

M
I

=+1/2

H
0 
≠ 0

H=0

M
I

=±1/2

Spin degeneracy

Fig. 6.5. Quantum magnetic levels for magnetic moment μI = gMnI = γIh̄, for
I = 1/2 in a magnetic field. The resonance corresponds to transitions from MI =
+1/2 to MI = −1/2, driven by the magnetic dipole mechanism.

The eigenvalues are ±MIgnMnH0 and magnetic dipole transitions, with
selection rule ΔMI = ±1, are possible when the condition hνRF = gnMnH0 ≡
h̄ωL is verified. The perturbation operator is

HP = −μI .H1 ≡ −γN h̄(HxIx +HyIy) = −γN h̄
H1

2
(I−eiωRF t + I+e−iωRF t) ,

with only out-of-diagonal elements. By extending the description in Appendix
I.3, the transition probability has to be written

WRF ∝ | < I,M ′
I |I+ + I−|I,MI > |2 . (6.18)

According to the properties of the I± operators 3 and to the orthogonality of
states at different MI , Eq. 6.18 leads to the selection rule ΔMI = ±1. The
circular polarization required for ΔMI = ±1 transitions is the counterpart of
the rotating field H1 perpendicular to the z−quantization axis.
3

< M |I+|M−1 >=
√

(I + M)(I − M + 1) , < M |I−|M+1 >=
√

(I − M)(I + M + 1) ,

all other elements being zero.
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A treatment of quantum character is possible (for free spins) by consid-
ering the time evolution of the expectation values for the spin components
(Problem VI.2.1).

The description in terms of spin motion is particularly suited for under-
standing the modern pulse resonance techniques, which allow one to drive
the magnetic moments along a given direction by controlling the length of the
radiofrequency irradiation. Examples are shown in Fig. 6.6.
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y’

x’

π/2

π

μ stopped in the xy plane

μ direction is reversed

Fig. 6.6. Illustrative examples of the spin motions induced in pulse magnetic
resonance, by stopping the irradiation after a given time. For the so-called π/2
pulse the time of irradiation turns out (see text for the precession around H1)
τ = (π/2)/ω1 = (π/2)/γH1 = (π/4)h̄/H1μI for nuclear spin I = 1/2 and
τ = (π/2)h̄/H1μB for electron at S = 1/2. The π pulse requires an irradiation
time 2τ and it corresponds to the complete reversing of the spins in the magnetic
field H0 (x′, y′, z′ is the rotating frame).

Finally we mention that resonance experiments (NMR for nuclear, EPR
for electron) nowadays are generally carried out in condensed matter, with a
number of interesting applications.

In condensed matter the interactions with the other degrees of freedom
(the “lattice”) or among spins themselves, play a relevant role. Phenomeno-
logically the interactions are taken into account by the Bloch equations,
that for the expectation values of the spin components, averaged over the
statistical ensemble, in the rotating frame can be written
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d < Ix >

dt
= −< Ix >

T2
(6.19a)

d < Iy >

dt
= −< Iy >

T2
. (6.19b)

These equations account for the decay of the transverse components of
< I >, that at long time must vanish. For the longitudinal component the
Bloch equation is

d < Iz >

dt
=

(I0z− < Iz >)
T1

(6.20)

(where I0z is the expectation value of the z-component at the thermal equi-
librium). This equation describes the relaxation process towards equilibrium,
after a given alteration of the statistical populations (see §4.4 for a qualitative
definition of the relaxation time T1).

In order to have a complete description of the spin motions Eqs. 6.19 and
6.20 must be coupled to the equation

d < I >
dt

= −gnMn

h̄
< I > ×Heff (6.21)

where the effective field is defined in Eq. 6.17. Then one has a system of
equations (6.19-6.21) for the expectation values of the spin components (often
written in terms of the nuclear magnetization Mnuclear ∝ ∑

i < Ii >).
These equations can be solved under certain approximations, to yield the time
evolution of < I > or of Mnuclear.

The quantum description of the time evolution of the spin operators in
magnetic resonance experiments, in the presence of the relaxation processes
imbedded in Eqs. 6.19 and 6.20, is usually based on a variant of the time-
dependent perturbation theory, the density matrix method. The textbook
by Slichter, reported in the Preface, masterly deals with this matter to the
due extent. We shall limit ourselves, in the next paragraph, to describe a
very important phenomenon, the spin echo, that in simple circumstances
can satisfactorily be treated on the basis of the semiclassical motions of the
spin operators and of the Bloch equations.
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Problems VI.2

Problem VI.2.1 Consider a single spin s in a constant and homogeneous
magnetic field along the z-direction. From time-dependent Schrödinger equa-
tion derive the expectation values of the spin components and show that the
precessional motion occurs.
Then consider a small oscillating magnetic field along the x-direction and
prove that at the resonance one has reversing of s with respect to the static
field. Discuss the cases of pulse application of the oscillating field for time
intervals so that the rotation of s is by angles π/2 and π. Qualitatively fig-
ure out what happens if spin-spin and spin-lattice interactions are taken into
account.

Solution:
It can be noticed that the perturbation theory leading to Eq. 6.18 is valid only
for short times, so that the probability of finding the spin in the original state
is still close to unity. A solution valid for any time t can be given by means
of a procedure based on the Rabi description of two-level systems (App. I.2),
for the case S = 1/2. From

μBH
(

1 0
0 −1

)
|φ(t) >= ih̄

d|φ(t) >
dt

where
|φ(t) >= α(t)| ↑> +β(t)| ↓> , |α(t)|2 + |β(t)|2 = 1 ,

one derives

α(t) = a exp (−iωLt) β(t) = b exp (iωLt)

with ωL Larmor frequency. The expectation values are

< φ(t)|sz|φ(t) >=
h̄

2
[|α|2 − |β|2], time-independent,

while
< φ(t)|sx|φ(t) >= (a b h̄) cos(ωL t)

< φ(t)|sy|φ(t) >= (a b h̄) sin(ωL t) ,

indicating the precession depicted in Figs. 6.4 and 6.6.

In the presence of H1 rotating in the (xy) plane

H1(t) = H1exp[±iωt] ,

from the Schrödinger equation one derives
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h̄

2
ωLα+ μBH1exp[−iωt]β = ih̄

dα

dt

μBH1exp[+iωt]α− h̄
2
ωLβ = ih̄

dβ

dt
.

By writing the coefficients α and β in the form

α = Γ (t)exp
[
− iωLt

2

]
β = Δ(t)exp

[
+
iωLt

2

]
those equations are rewritten

μBH1exp[−i(ω − ωL)t]Δ = ih̄
d Γ

dt

μBH1exp[+i(ω − ωL)t]Γ = ih̄
dΔ

dt
.

At the resonance

μBH1Δ = ih̄
d Γ

dt
and μBH1Γ = ih̄

dΔ

dt
.

From the derivative of the first, substituted in the second, one finds

Γ = sin(Ωt+ ψ) and Δ = i cos(Ωt+ ψ) ,where Ω =
μBH1

h̄
.

By setting ψ =0, by repeating the derivation of the expectation values one
has

< φ(t)|sz|φ(t) >= − h̄
2

cos(2Ωt)

< φ(t)|sx|φ(t) >= − h̄
2

sin(2Ωt) sin(ωL t)

< φ(t)|sy|φ(t) >=
h̄

2
sin(2Ωt) cos(ωL t).

These equations can be interpreted in terms of the motion of s as the su-
perposition of the precession around z at the Larmor frequency and the
rotation around H1 at the angular frequency 2μBH1/h̄.

In the rotating frame (see Fig. 6.6) where H1 is fixed, one has the rotation
of s by a given angle, depending on the duration of the irradiation. Thus,
in principle, one can prepare the magnetization M ∝ ∑

i < si > along any
direction, as schematically illustrated in the next page.

It is noted that the (π/2) pulse corresponds to equalize of the statistical
populations in the two Zeeman levels and magnetization in the xy plane. The
π pulse corresponds to the inversion of M and therefore to negative spin
temperature (see §6.1).
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The spin-spin interaction implies the decay to zero in a time of the order
of T2 of the transverse components of M. The spin-lattice interaction, with
transfer of energy to the reservoir, drives the relaxation process towards the
thermal equilibrium distribution, with M along H0, attained in a time of the
order of T1 (see Problem F.VI.5).
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6.3 Spin and photon echoes

Let us imagine that a system of electronic or nuclear spins has been brought
in the xy plane (perpendicular to the z-axis along the field H0) by a π/2
pulse, by means of the experimental procedure described at §6.2 and Problem
VI.2.1. Once in the plane, the transverse components have to decay towards
zero according to Eqs. 6.19, in a time of the order of T2, yielding in a proper
receiver a signal called free induction decay (FID).
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Fig. 6.7. Schematic representation of the spin motions generating the echo signal
upon application of a sequence of π/2 and π pulses. Part a) shows the FID signal
following the π/2 pulse and how the echo signal is obtained at the time 2t1 owing to
the reversible decay of the magnetization in a time shorter than T2. The rotation
of the spins in the (x, y) plane, as seen in the rotating frame of reference, evidences
how refocussing generates the echo.
It should be remarked that with pulse techniques, by switching the phase of the RF
field it is possible to apply the second pulse (at time t1) along a direction different
from the one of the first pulse at t = 0 (e.g. from x’ to y’ in the rotating frame, see
Fig. 6.6).
Part b) shows the effect of a sequence of π pulses (after the initial π/2), with a train
of echoes, the envelope yielding the intrinsic irreversible decay of the transverse
magnetization due to the T2-controlled mechanism.
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Now let us suppose that in times much shorter than T2 another mechanism,
different from the spin-spin interaction, causes a distribution of preces-
sional frequencies. This mechanism could be due for instance to magnetic
field inhomogeneities, to spatially varying diamagnetic or paramagnetic cor-
rections to the external field H0 or to a field gradient created by external
coils. Because of the spread in the precessional frequencies, in a time usually
called T ∗

2 and much shorter than T2, the transverse components of the total
magnetization Mx,y ∝ ∑

i < Ix,y(i) > decay to value close to zero. After a
time t1 larger than T ∗

2 but shorter than T2, a second pulse, of duration π,
is applied (see Fig. 6.7). Since all the spins are flipped by 180o around the
x’-axis, the ones precessing faster now are forced to return in phase with the
ones precessing slower.

Thus after a further time interval t1, refocussing of all the spins along
a common direction occurs, yielding the “original” strength of the signal
(only the reduction due to the intrinsic T2-driven process is now acting, but
2t1 � T2). This is called the echo signal. By repeating the π-pulses the
envelope of the echoes tracks the real, irreversible decay of the Mx,y com-
ponents, as depicted in part b) of Fig. 6.7.

The relevance of pulse magnetic resonance experiments in the development
of modern spectroscopies can hardly be over estimated. Besides the enlighten-
ment of fundamental aspects of the quantum machinery, the echo experiments,
first devised by Hahn, have been instrumental in a number of applications
in solid state physics, in chemistry and in medicine (NMR imaging).

Furthermore the pulse magnetic resonance methodology has been trans-
ferred in the field of the optical spectroscopy, by using lasers. In this case
special techniques are required, because in the optical range the “dipoles” go
very fast out of phase (the equivalent of T2 is very short).

In this respect we only mention that the pseudo-spin formalism can
be applied to any system where approximately only two energy levels, corre-
sponding to the spin-up and spin-down states, can be considered relevant. For
a pair of states in atoms, to a certain extent coherent electric radiation
can be used to induce the analogous of the inversion of the magnetization de-
scribed at §6.2 and Problem VI.2.1, in terms of the populations on the lower
and on the upper atomic or molecular levels. The “oscillating ” electric dipole
moment R21 (see Appendix I.3) plays the role analogous to the magnetic mo-
ment in the magnetic resonance phenomenon. After the “saturation of the
line” corresponding to the equalization of the two levels (to a π/2-pulse), a
second pulse π at a time t1 later, can force the diverging phases of the os-
cillating electric dipoles to come back in phase: a “light pulse”, the photon
echo, is observed at the time 2t1.
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The analogies of two-levels atomic systems in interaction with coherent ra-
diation with the spin motions in magnetic resonance experiments, are nicely
described in the textbook by Haken and Wolf, quoted in the Preface.

6.4 Ordering and disordering in spin systems:
cooling by adiabatic demagnetization

As already shown (see Problem VI.1.4), the entropy of an ensemble of mag-
netic moments in a magnetic field is related to the partition function Z:

S = −(
∂F

∂T
)H = [

∂(NkBT lnZ)
∂T

]H (6.22)

F being the Helmholtz free energy.
From the statistical definition the entropy involves the number of ways W

in which the magnetic moments can be arranged: S = kBlnW . For angular
momenta J, in the high temperature limit theMJ states are equally populated
and W = (2J + 1)N . The statistical entropy is

S = NkBln(2J + 1) (6.23)

For T → 0, in finite magnetic field, there is only one way to arrange the
magnetic moments (see §6.1) and then the spin entropy tends to zero. In
general, since the probability p(MJ) that Jz takes the value MJ is given by

p(MJ) =
e−MJgμBH/kBT

Z
, (6.24)

the statistical entropy has to be written (see Problems VI.1.4 and F.VI.1)

S = −NkB

∑
MJ

p(MJ)ln(p(MJ )) (6.25)

By referring for simplicity to non interacting magnetic ions with J = S = 1/2,
at finite temperature the entropy is

S(T ) = NkB

(
(ln2)cosh(

ε

T
) − ε

T
tanh(

ε

T
)
)
, (6.26)

with ε = μBH/kB the magnetic temperature and

S(T → ∞) = NkBln2 ,

see (Eq. 6.23).
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The temperature dependence of the entropy is plotted below:
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Now we describe the basic principle of the process called adiabatic de-
magnetization, used in order to achieve extremely low temperatures.

A crystal with magnetic ions, almost non-interacting (usually a param-
agnetic salt) is in thermal contact by means of an exchange gas (typically
low-pressure Helium) with a reservoir, generally a bath of liquid Helium at
T = 4.2 K. (This temperature can be further reduced, down to about 1.6 K,
by pumping over the liquid so that the pressure is decreased).

In zero external field the spin entropy is practically given by NkBln2.
Only at very low temperature the residual internal field (for instance the one
due to dipolar interaction or to the nuclear dipole moments) would anyway
induce a certain ordering. The schematic form of the temperature dependence
of the magnetic entropy is the one given by curve 1 in Fig. 6.8. Then the
external field is applied, in isothermal condition at T = Tinit, up to a certain
value Hm. In a time of the order of the spin-lattice relaxation time T1, spin
alignment is achieved, the magnetic temperature is increased and (T/ε) � 1.
Therefore the magnetic entropy is decreased down to Sinit (curve 2 in the
Figure), at the same temperature of the thermal bath and of the crystal. The
value Sinit in Figure corresponds to Eq. 6.26 for T � ε and implies a large
difference in the populations N+ and N− (see Fig. 6.1, where now the point
at the energy E = −NμBH is approached). The external bath (the liquid
Helium) absorbs the heat generated in the process, while the magnetic energy
is decreased. The “internal” reservoir of the sample (namely all the other
degrees of freedom besides the spins, already defined “lattice”) has its own
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entropy Slattice related to the vibrational excitations of the ions (in number
N ′, ten or hundred times the number N of the magnetic ions).
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Fig. 6.8. Schematic temperature dependences of the magnetic and lattice en-
tropies and of the decrease of the lattice temperature as a consequence of the
demagnetization process. The order of magnitude of the lattice entropy is Slattice ∼
10−6N ′kBT 3 (with N ′ say 10 or 100N , N being the number of magnetic ions). The
initial lattice entropy, at T = Tinit has to be smaller than the spin entropy.

Since in general the entropy is

S ∝
∫
δQ

T
=

∫
CV

T
dT ,

by considering that at low temperature the specific heat CV of the lattice goes
as T 3 (see the Debye contribution from acoustical vibrational modes at §14.5)
one approximately has

Slattice ∼ 10−6N ′kBT
3

(curve 2 in Fig. 6.8).
Now the exchange gas is pumped out and the sample remains in poor ther-

mal contact with the external bath. The magnetic field is slowly decreased
towards zero and the demagnetization proceed ideally in isoentropic con-
dition. The total entropy stays constant while the magnetic entropy, step after
step, each in time of the order of T1, has to return to curve 1.
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Therefore Slattice has to decrease of the same amount of the increase
of the magnetic entropy S. Then the temperature of the “internal” thermal
bath has to decrease to Tfinal � Tinit.
The amount of cooling depends from the initial external field, from the lattice
specific heat and particularly from the internal residual field Hres that limits
the value of the magnetic entropy at low temperature. In fact, it prevents the
total randomization of the magnetic moments. As an order of magnitude one
has Tfinal = Tinit(Hres/Hinit).

The adiabatic demagnetization corresponds to the exchange of entropy
between the spin system and the lattice excitations. In the picture of the
spin temperature (§6.1) one has an increase of the spin temperature at the
expenses of the lattice temperature. The final temperature usually is in the
range of milliKelvin, when the electronic magnetic moments are involved in
the process. Nuclear magnetic moments are smaller than the electronic ones
by a factor 10−3 − 10−4 and then sizeable ordering of the nuclear spins can
require temperature as low as 10−6 K or very strong fields. In principle, by
using the nuclear spins the adiabatic demagnetization could allow one to reach
extremely low temperatures. However, one has to take into account that the
relaxation times T1 become very long at low temperatures (while the spin-
spin relaxation time T2 remains of the order of milliseconds). The experimental
conditions are such that negative spin temperature can easily be attained,
for instance by reversing the magnetic field.

From these qualitative considerations it can be guessed that a series of
experiments of thermodynamical character based on spin ordering and spin
disordering can be carried out, involving non equilibrium states when the
characteristic times of the experimental steps are shorter than T1 or T2.

We shall limit ourself to mention that by means of adiabatic demagnetiza-
tion temperature as low as 2.8×10−10 K have been obtained. The nuclear mo-
ments of Copper have been found to order antiferromagnetically at 5.8×10−8

K , while in Silver they order antiferromagnetically at TN = 5.6 × 10−10 K
and ferromagnetically at Tc = −1.9 × 10−9 K.
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Problems F.VI

Problem F.VI.1 A magnetic field H of 10 Tesla is applied to a solid
of 1 cm3 containing N = 1020, S = 1/2 magnetic ions. Derive the magnetic
contribution to the specific heat CV and to the entropy S. Then estimate the
order of magnitude of CV and S at T = 1 K and T = 300 K.

Solution:
The thermodynamical quantities can be derived from the partition func-

tion Z. From the single particle statistical average the energy is

< E >=
∑

i

piEi

and from Maxwell-Boltzmann distribution function the probability of occu-
pation of the i-th state is

pi =
exp(−Ei/kBT )∑
i exp(−Ei/kBT )

≡ exp(−Eiβ)
Z

.

∑
i pi = 1 and the partition function Z normalizes the probability pi.
The total contribution from the magnetic ions to the thermodynamical

energy U (per unit volume) is

U = N < E >

and

< E >=
∑

iEi exp(−Ei/kBT )
Z

= − 1
Z

∂ Z

∂β
= −∂ lnZ

∂β

thus yielding

U = −N ∂ lnZ
∂β

.

For μ = −g μB S and g = 2 (see §4.4) one has

Z = exp
(
μBH

kBT

)
+ exp

(
−μBH

kBT

)
≡ 2 coshx

with
x =

μBH

kBT
≡ βμBH.

For independent particles Ztotal = ZN . Then U = −NμBH tanhx and

CV =
(
∂U

∂T

)
H

=
(
∂β

∂T

)(
∂E

∂β

)
H

= −kB β
2

(
∂U

∂β

)
H

,
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i.e.

CV = NkB x
2sech2x ≡ N kB x

2

cosh2 x

plotted below.
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For the entropy, since (see Problem VI.1.4 ) S = −kB

∑
i pi ln pi

S = −kB

∑
i

[
exp(−βEi)

Z

]
(−βEi − lnZ) =

< E >

T
+ kB lnZ ,

so that
S = N kB [ln (2 cosh x) − x tanhx] ,

as it could also be obtained from S = −(∂F/∂T )H with F = −NkBT lnZ
(see the plot at §6.4).

Numerically, for H = 10 Tesla , T = 1 K corresponds to x>> 1 and
T = 300 K to x<<1, so that

T = 1K CV ≈ 0 , S ≈ 0
T = 300K CV ≈ 0 , S ≈ kBNln2
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Problem F.VI.2 A spin system (S = 1/2) in a magnetic field of 10 Tesla,
is prepared at a temperature close to 0 K and then put in contact with an
identical spin system prepared in the condition of equipopulation of the two
spin states. Find the spin temperature reached by the system after spin-spin
exchanges, assuming that meantime no exchange of energy with the lattice
occurs. Discuss the behavior of the entropy.

Solution:
The thermodynamical energies are

U1 = 0 U2 =
N

2
E ,

with E energy separation between the two spin states.
From the final energy

Ufinal = U1 + U2 =
N

2
E

the spin temperature is obtained by writing

Ufinal =
2NE
Z

exp

(
− E
kB Tspin

)
.

Thus
1 =

4
exp(E/kB Tspin) + 1

and Tspin � E/(kB · 1.1). For E = 2μBH one has Tspin = 12.2 K.
For the entropy see Problem F.VI.1 and look at Figure 6.1, by taking into
account that no energy exchange with the reservoir is assumed to occur.

It is noted that the increase of the entropy can be related to the irre-
versibility of the process.

Problem F.VI.3 Prove that the mean square deviation of the energy of
a system from its mean value (due to exchange of energy with the reservoir)
is given by kB T

2 CV , CV being the heat capacity.
Solution:

The mean square deviation is

<(E − <E>)2> = <E2 − 2E<E> + <E>2> = <E2>− <E>2

where

<E> =
∑

i

Ei exp(−Ei/kBT )
Z

= − 1
Z

∂ Z

∂β

while

<E2> =
∑

i

E2
i exp(−Ei/kBT )

Z
=

1
Z

∂2Z

∂β2
.
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Therefore

<E2>− <E>2 =
∂

∂β

[
1
Z

∂ Z

∂β

]
= −∂<E>

∂β
.

Since
∂

∂β
= −kB T

2 ∂

∂T
and

∂<E>

∂T
= CV

one has
<(E − <E>)2> = kB T

2 CV ,

another example of fluctuation-dissipation relationships (see Eq. 6.14).

The fractional deviation of the energy
[
(<E2>− <E>2)/<E>2

] 1
2 at high

temperatures, where <E> ≈ NkBT and CV ≈ NkB is of the order of N−1/2,
a very small number for N of the order of the Avogadro number (see Problem
VI.1.1).

Problem F.VI.4 Compare the magnetic susceptibility of non-interacting
magnetic moments S = 1/2 with the classical S = ∞ limit (where any orien-
tation with respect to the magnetic field is possible).

Solution:
For S = ∞

<μ cos θ> = μ
∫

cos θ exp
(

μH cos θ
kB T

)
sin θ dθ/

∫
exp

(
μH cos θ

kB T

)
sin θ dθ

= μ
[
coth μH

kB T −
(

μH
kB T

)−1
]

≈ μ2H
3kB T

yielding the Langevin-like susceptibility.
For S = 1/2 (see §4.4)

< μ >= μ

[
exp

(
μ H
kB T

)
− exp

(
− μ H

kB T

)]
[
exp

(
μ H
kB T

)
+ exp

(
− μ H

kB T

)] ≈ μ2H

kB T
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Problem F.VI.5 By taking inspiration from Fig. 6.7, devise an experi-
mental procedure suitable to measure the spin-lattice relaxation time T1.

Solution:

x
y

z

x
y

z

x
y

z

π/2

π/2 π/2

π/2π/2

π/2
π/2

t

t

t
2

t
1

M
z
(0)

M
z
(0)

M
z
(t
2
)

x
y

z

π/2
M

z
(t
1
)

t
t
2

t
1

M
z
(t)

M
z
(t
2
)

M
z
(t
1
)

M
z
(0)

At t=0 the (π/2) pulse brings the magnetization along y, saturating the
populations of the two levels and yielding the FID signal (see §6.3). After
a time t1 a second (π/2) pulse measures the magnetization Mz(t1) during
the recovery towards the equilibrium value. By applying pairs of pulses with
different t1’s (e.g. t2 ) the recovery plot towards the equilibrium is constructed
and T1 is extracted.
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Problem F.VI.6 For an ensemble of particles with a ground state at
spin S = 0 and the excited state at energy Δ and spin S = 1, derive the
paramagnetic susceptibility.
Then, by resorting to the fluctuation-dissipation theorem (see Eq. 6.14 and
Problem F.IV.8) show that the same result is obtained.

Solution:
The energy levels are sketched below:

S=1

S=0

Δ

H=0

H≠0
M

S 
=+1

M
S 
=-1

M
S 
=0

E
H

E
H

E
H 
=2μ

B
H

See also Prob. F.IV.9. The direct expression for the single particle suscep-
tibility is

χ = χ0p0 + χ1p1

where χ0 = 0, χ1 = μ2
Bg

2S(S + 1)/3kBT = 8μ2
B/3kBT and

p0,1 =
(2S + 1)e−βE0,1

Z
,

with Z partition function. For E0 = 0 and E1 = Δ one has

χ =
8μ2

B

kBT

e−βΔ

(1 + 3e−βΔ)

It is noted that the above equation is obtained in the limit of evanescent
field, condition that will be retained also in the subsequent derivation. The
magnetization is

M = N−1μz +N0.0 −N+1μz

with μz = 2μB . Then

M =
N2μB

Z
{e−β(Δ−EH) − e−β(Δ+EH)}

with Z = 1 + e−β(Δ−EH) + e−βΔ + e−β(Δ+EH). Therefore,

M = N2μB
e−βΔ[eβEH − e−βEH ]

1 + e−βΔ[eβEH + 1 + e−βEH ]
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and for βEH � 1

M = 2μBNe
−βΔ 2βEH

1 + 3e−βΔ
=

8μ2
BN

kBT

e−βΔ

1 + 3e−βΔ
H,

yielding the susceptibility obtained from the direct expression.

From the fluctuation-dissipation relationship (see Eqs. 6.11 - 6.14), being
the fluctuations uncorrelated
< ΔM2 >= N < Δμ2

z > with < Δμ2
z >=< μ2

z > − < μz >
2, and

< μ2
z >= 4μ2

B

∑
MS ,SM

2
Se

−βE(Ms,S)

Z
= 4μ2

B{e
−β(Δ−EH) + e−β(Δ+EH)

Z
} .

From < μz >=M/N

< μz >
2= 4μ2

B

[e−β(Δ−EH) − e−β(Δ+EH)]2

Z2

Thus

< ΔM2 >= 4Nμ2
B

e−βΔ

Z
{eβEH + e−βEH − e

−2βΔ

Z
(eβEH − e−βEH )2}

and again for βEH � 1

< ΔM2 >= 4Nμ2
B

e−βΔ

Z
{2 − e

−2βΔ

Z
(βEH)2} � 8Nμ2

B

e−βΔ

1 + 3e−βΔ
= kBTχ.

Problem F.VI.7 Consider an ideal paramagnet, with S = 1/2 magnetic
moments. Derive the expression for the relaxation time T1 in terms of the
transition probability W (due to the time-dependent spin-lattice interaction)
driving the recovery of the magnetization to the equilibrium, after a perturba-
tion leading to a spin temperature Ts, different from the temperature T = 300
K of the thermal reservoir. Find the time-evolution of the spin temperature
starting from the initial condition Ts = ∞.

Solution:
The instantaneous statistical populations are

N− =
N

Z
eμBHβs � N

Z
(1 + βsE−)

with βs = 1/kBTs

N+ =
N

Z
e−μBHβs � N

Z
(1 − βsE+) ,
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while at the thermal equilibrium

Neq
∓ � N

Z
(1 ± βE∓) � N

2
(1 ± βΔE)

with β = 1/kBT and ΔE = 2μBH.
From the equilibrium condition N−W−+ = N+W+− one deduces

W+− =W−+
N−
N+

�W−+
1 + βE−
1 − βE+

and W+− �W (1 + βΔE), with W−+ ≡W . Since

dN−
dt

= −N−W +N+W (1 + βΔE) = −N−W + (N −N−)W (1 + βΔE) =

= −2N−W + 2Neq
− W ,

then N−(t) = ce−2Wt +Neq
− and from the initial condition

N−(t) = (N init
− −Neq

− )e−2Wt +Neq
−

Evidently dN+/dt = −dN−/dt.
From the magnetizationMz(t) ∝ (N−−N+) one has dMz/dt ∝ 2(dN−/dt)

and

Mz(t) = (M init
z −Meq

z )e−2Wt +Meq
z

implying 1/T1 = 2W .
Mz is also inversely proportional to Ts and then one approximately writes

βs(t) = (βinit
s − β)e−2Wt + β

and for βinit
s = 0, βs(t) = β(1 − e−2Wt)

Ts(t) =
T

1 − e−2Wt
(a)

For exact derivation, over all the temperature range, from Problem VI.1.2
Ts = (2μBH/kB)/ln(u−1 − 1) with u = N+/N . Then the exact expression of
the spin temperature is

Ts =
2μBH

kB

[
ln

(
(N/2 −Neq

− )e−2Wt +Neq
−

N − (N/2 −Neq
− )e−2Wt −Neq

−

)]−1

(b)
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See plots below.
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Plot of Eq. a) (solid line) and Eq. b) (dashed line) showing the equivalence of

the two procedures for T > μBH/kB. (In plotting Eq. b) keep at least three
significant digits in the expansion.)

Problem F.VI.8 An hypothetical crystal has a mole of Na atoms, each
at distance d = 1 Å from a point charge ion of charge −e (and no magnetic
moment). By taking into account the quadrupole interaction (§5.2) derive
the energy, the entropy and the specific heat of the crystal around room
temperature (Na nuclear spin I = 3/2 and nuclear quadrupole moment Q =
0.14 × 10−24 cm2).

Solution:
The eigenvalues being E±1/2 = 0 and E±3/2 = eQVzz/2 = E (see Prob.
V.3.2), the partition function is written

Z = [
∑
MI

e−βEMI ]NA = [2(1 + e−βE)]NA .

Then the free energy is (return to Prob. F.V.5)

F = −kBT lnZ = −NAkBT ln(1 + e−βE) −NAkBT ln2

and
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U = − ∂

∂β
lnZ =

NAEe
−βE

(1 + e−βE)

and

S = −∂F
∂T

= NAkBln(1 + e−βE) +
NAE

T

e−βE

(1 + e−βE)
+ kBNAln2

Since E ∼ 10−8 eV � kBT , U and S can be written

U =
NAE

2
(1 − 1

2
E

kBT
)

and

S � R(2ln2 − 1
8
E2

k2
BT

2
)

(see Prob. F.VI.1 for the analogous case).4 From CV = ∂U/∂T , in the high
temperature limit CV � (1/4)R(E/kBT )2, the high-temperature tail of the
Schottky anomaly already recalled at Problem F.V.5. For T = 0, U = 0 and
S = Rln2.

4

ln(1 + e−x) � ln2 + ln(1 − x

2
+

x2

4
) � ln2 − x

2
+

x2

8
.
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Molecules: general aspects

Topics

Separation of electronic and nuclear motions
Symmetry properties in diatomic molecules
Labels for electronic states
One electron in axially symmetrical potential

In this Chapter we shall discuss the general aspects of the first state of “bonded
matter”, the aggregation of a few atoms to form a molecule. The related issues are
also relevant for biology, medicine, astronomy etc. The knowledge of the quantum
properties of the electronic states in molecules is the basis in order to create new
materials, as the ones belonging to the “artificial matter”, often obtained by
means of subtle manipulations of atoms by means of special techniques.

We shall understand why the molecules are formed, why the H2 molecule
exists while two He atoms do not form a stable system, why the law of definite
proportions holds or why there are multiple valences, what controls the geometry
of the molecules. These topics have to follow as extension of the atomic properties.
Along this path new phenomena, typical of the realm of the molecular physics,
will be emphasized.

In principle, the Schrödinger equation for nuclei and electrons contains all
the information we wish to achieve. In practice, even the most simple molecule,
the Hydrogen molecule-ion H+

2 , cannot be exactly described in the framework of
such an approach: the Schrödinger equation is solved only when the nuclei are
considered fixed. Therefore, in most cases we will have to deal with simplifying
assumptions or approximations, which usually are not of mathematical charac-
ter but rather based on the physical intuition and that must be supported by
experimental findings.
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The first basic assumption we will have to take into account is the Born-
Oppenheimer approximation, essentially relying on the large ratio of the nuclear
and electronic masses. It allows one to deal with a kind of separation between
the motions of the electrons and of the nuclei. Another approximation that often
will be used involves tentative wavefunctions for the electronic states as linear
combination of a set of basis functions, that can help in finding appropriate
solutions. For instance, a set of wavefunctions centered at the atomic sites will
allow one to arrive at the secular equation for the approximate eigenvalues.

Finally in this Chapter we have to find how to label the electronic states in
terms of good quantum numbers. This will be done in a way similar to the
one in atoms, by relying on the symmetry properties of the potential energy
(for example, the cylindrical symmetry) and by referring to the limit atomic-like
situations of united-atoms or of separated-atoms.

7.1 Born-Oppenheimer separation and the adiabatic
approximation

For a system of nuclei and electrons the Hamiltonian is written (see Fig. 7.1)

H = − h̄
2

2

∑
α

∇2
α

Mα
− h̄2

2m

∑
i

∇2
i +

∑
i<j

e2

rij
+

∑
α<β

ZαZβe
2

Rαβ
−

∑
α,i

Zαe
2

riα
≡

≡ Tn + Te + Vee + Vnn + Vne (7.1)

The corresponding wave function φ(R, r) involves both the group R of the
nuclear coordinates and the group r for the electrons. In the Hamiltonian the
spin-orbit interactions and the hyperfine interactions have not been included,
since at a first stage they can be safely neglected.

In order to solve the Schrödinger equation for φ(R, r) one observes the
large difference in nuclear and electronic masses (and the related differences
in the electronic and roto-vibrational energies, as it will appear in subsequent
Chapters). This difference suggests that in time intervals much shorter than
the ones required for the nuclei to sizeably change their positions, the electrons
have been able to take the quantum configuration pertaining to ideally fixed
coordinates R. Then one can attempt an eigenfunction of the form

φ(R, r) = φn(R)φe(R, r), (7.2)

where φn(R) pertains to the nuclei, while the electronic wavefunction φe

involves only parametrically the nuclear coordinates, these latter ideally
frozen in the configuration specified by R. When such a function is included
in the Schrödinger equation involving the Hamiltonian in Eq. 7.1 and the fol-
lowing equivalences are taken into account
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electronic motions are considered) 

Fig. 7.1. Nuclear and electronic coordinates used in Eq. 7.1.

Teφnφe = φnTeφe ,

Tnφnφe ≡ −h̄2
∑
α

∇2
α

2Mα
φnφe = −h̄2

∑
α

1
2Mα

∇α · {φe∇αφn + φn∇αφe } =

= φeTnφn + φnTnφe − 2h̄2
∑
α

1
2Mα

∇αφe · ∇αφn ,

then one has

[
−
∑
α

h̄2

2Mα
(2∇αφe · ∇αφn) −

∑
α

h̄2

2Mα
φn∇2

αφe

]
+ (7.3)

+φeTnφn + φnTeφe + (Vnn + Vne + Vee)φeφn = Eφeφn.

Let us assume that the terms included in the square brackets can be ne-
glected (the conditions for such an approximation, essentially corresponding
to the so-called adiabatic approximation, shall be discussed subsequently).
For the electronic wavefunction one can write

Teφe + (Vne + Vee)φe = E(g)
e φe, (7.4)

where E(g)
e (R) is the eigenvalue for the electrons in a frozen nuclear configu-

ration. Then, from Eq. 7.3, by neglecting the terms in square-brackets, after
dividing by φe one obtains the equation for the nuclear motions:[

Tn + Veff (R)
]
φn = Eφn (7.5)
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with Veff (R) = Vnn(R) + E(g)
e (R). In Eq. 7.5 the effective Hamiltonian in-

cludes the eigenvalue for the electrons E(g)
e , for given R’s, as effective po-

tential energy.
Thus, by assigning to the nuclear and electronic states the appropriate set

of quantum numbers ν and g, under the approximations discussed above
the wavefunction solution for the Hamiltonian 7.1 is

φ(g,ν)(r,R) = φ(g)
e (r,R)φ(ν)

n (R), (7.6)

with φe and φn eigenfunctions from Eqs. 7.4 and 7.5 respectively.
The electronic eigenvalue E(g)

e , entering the effective potential energy in
Eq. 7.5, is not a number as in atoms but parametrically depends from the
nuclear coordinates. The total energy of the molecule can be written

E(g,ν) = E(g)
e (Rm) + Vnn(Rm) + E(ν)

n , (7.7)

where Rm means the nuclear configuration corresponding to the minimum for
Veff (R) (see Eq. 7.5).

E
e

(g)
+ V

nn

R
AB

E
(g , ν)

= E
e

(g)
(R

e
) + V

nn
(R

e
) + E

n

(ν)

R
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≡ R
AB

(min.)

from nuclear motions

eigenvalues from Eq. 7.4 (include the 

short-range repulsive term  V
nn

(R
e
))

g
1

g
2

R
equilibrium

≡ R
AB

(min.)

Fig. 7.2. Schematic view of the separation of the electronic and vibrational energies
in a diatomic molecule and of the role of E

(g)
e as effective potential energy for the

nuclear motion, within the adiabatic approximation. The vibrational motion occurs
in an effective potential energy, while the electrons follow adiabatically this motion.

The physical contents of such a framework are more easily grasped by re-
ferring to a diatomic molecule, where in practice the only parameter required
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to fix the nuclear configuration is the distance RAB between the two nuclei,
since as a first approximation the electronic states can be considered unaf-
fected by the rotation of the molecule. A schematic view of the energy of the
molecule for the electronic states as a function of RAB and of the effect of the
eigenvalue for the vibrational motion of the nuclei (corresponding to a varia-
tion of RAB) is given in Fig. 7.2. Complete understanding of this illustration
will be achieved after reading §8.1 and §10.3.1.

Let us briefly comment on the possibility to neglect the terms in square
brackets in Eq. 7.3, corresponding to the validity of the adiabatic approxima-
tion. The order of magnitude of the contribution of those terms to the energy
can be estimated by looking at the expectation values

< φeφn|
[
...

]
|φeφn >,

Therefore a first term is

− h̄
2

Mα

∫
φ∗eφ

∗
n∇nφe · ∇nφndτndτe

that for φe(r,R) in real form, becomes proportional to∫
φ∗e∇nφedτe ∝ ∇n

∫
φ∗eφedτe

which is zero for a given electronic state g1. The second term is

− h̄
2

Mα

∫
φ∗nφndτn

∫
φ∗e∇2

nφedτe,

and by taking into account that the electronic wavefunction depends on
(r − R), one can write

− h̄
2

Mα

∫
φ∗e∇2

nφedτe � m

Mα
< |Te| >,

which is of the order of the contribution to the energy from the electronic
kinetic term scaled by the factor m/Mα and thus negligible.

Finally one would have to consider the non-diagonal terms involving the
operator ∇n, of the form ∫

φ(g2)∗
e ∇nφ

(g1)
e dτe. (7.8)

These terms can be different from zero and in principle they drive transitions
between electronic states associated with the nuclear motions, in other words
to the non-adiabatic contributions. For large separation between the elec-
tronic states compared to the energy of the thermal motions, the transition
probability is expected to be small.
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One should remark that relevant effects in molecules (and in solids) actu-
ally originate from the non-adiabatic terms. We just mention pre-dissociation
(spontaneous separation of the atoms), some removal of degeneracy in elec-
tronic states, the Jahn-Teller effect and, in solids, resistivity and super-
conductivity, related to the interaction of the electrons with the vibrations
of the ions around their equilibrium positions (see Chapters 13 and 14).

7.2 Classification of the electronic states

7.2.1 Generalities

As in atoms, also in the molecules first one has to find how to label the elec-
tronic states in terms of constants of motions, namely derive the good quan-
tum numbers. In atoms l2 and lz commute with the central field Hamiltonian
and then n,l, and m have been used to classify the one-electron states. Also
for molecules the symmetry arguments play a relevant role: a rigorous classi-
fication is possible only for diatomic (or at least linear molecules) so that one
axis of rotational symmetry is present.

Let us refer to Fig. 7.3. When the z axis is aligned along the molecular axis
the potential energy V is a function of the cylindrical coordinates z and ρ,
while it does not involve the angle ϕ. Then the lz operator −ih̄ ∂

∂ϕ commutes
with the Hamiltonian:

[
lz, V

]
∝ (x

∂

∂y
− y ∂
∂x

)V φ− V (x
∂

∂y
− y ∂
∂x

)φ = (r × ∇V )z,

which is zero when the z axis is along the molecular axis.
For homonuclear molecules (A = B) in terms of the positional vector r one
has

|φ(r)|2 = |φ(−r)|2 i.e. φ(r) = −φ(−r) or φ(r) = +φ(−r)

and one can classify the states with a letter g (from gerade) or u (from
ungerade) according to the even or odd parity under the inversion of r with
respect to the center of the molecule (see Fig. 7.3). One should also remark that
the reflection with respect to the yz plane, bringing x in −x, changes the sign
of the z-component of the angular momentum while the Hamiltonian is invari-
ant. It follows that the energy must depend on the square of the lz-eigenvalue
while this operator has to convert the eigenfunction in the one having eigen-
value of opposite sign. The electronic states with lz−eigenvalue different from
zero must be double degenerate, each of the two states corresponding to
different direction of the projection of the orbital angular momentum along



7.2 Classification of the electronic states 249

z
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ρ

ϕ

-e

r

-r

z

Fig. 7.3. Schematic view for the discussion of the symmetry arguments involved in
the classification of one-electron states in a diatomic molecule. A and B are nuclei
dressed by the electrons uninvolved in the bonding mechanism. When A = B the
molecule is homonuclear and it acquires the inversion symmetry with respect
to the center. Then φe(r) = ±φe(−r) and the classification gerade or ungerade,
according to the sign of the wavefunction upon inversion (parity), becomes possible.

the z-axis. 1 On the other hand, for lz-eigenvalue equal to zero a further −
or + sign has to be used to describe the behavior of the wavefunction upon
reflection with respect to the planes containing the molecular axis.

Finally, in these introductory remarks it is noted that the z-component of
the total angular momentum, implying an algebric sum Lz =

∑
i l

i
z, is also a

constant of motion, with associated a good quantum numberML (see §7.2.3).

7.2.2 Schrödinger equation in cylindrical symmetry

By referring again to Fig. 7.3 and in the framework of the Born-Oppenheimer
separation, the Schrödinger equation for the one-electron wavefunction is

−h̄2

2m
∇2

z,ρ,ϕφ+ V φ = E(RAB)φ , (7.9)

1 This two-fold degeneracy is removed when the interaction between the electronic
and rotational motions is taken into account. Then the terms at lz = 0 would
split into two nearby levels. For a multi-electron molecule, in the LS scheme,
where Λ = Λ(Π, Δ, ...) (see end of §7.2.3) characterizes the states at Lz = 0, the
splitting is known as Λ-doubling.



250 7 Molecules: general aspects

where V = V (z, ρ). One should remark that if A and B are protons, namely
we are dealing with the Hydrogen molecule ion, then

V = − e
2

rA
− e2

rB
. (7.10)

By using ellipsoidal coordinates with the nuclei at the foci of the ellipse,
then Eq. 7.9, with V as in Eq. 7.10, is exactly solvable in a way similar to

 

-e (�,�,�) 

RAB 

rA 

rB 

A 

B 

�
� = (rA 

__ rB)/RAB 

� = (rA+ rB)/RAB 

Hydrogen atom, with separation of the variables.
This solution would not be of much help, since when diatomic molecules

with the nuclei dressed by the atomic (core) electrons have to be considered,
the potential is no longer of the form in Eq. 7.10 and therefore relevant mod-
ifications can be expected. A similar modification in the atom is the removal
of the accidental degeneracy upon abandoning the Coulomb potential. Thus
we prefer to disregard the formal solution of Eq. 7.9 for strictly Coulomb-like
potential and first give the general properties of electronic states just by re-
ferring to the cylindrical symmetry of V (again in a way analogous to atoms,
where only the spherical symmetry of the Hamiltonian in the central field
approximation was taken into account). Subsequently approximate methods
will allow us to derive specific forms of the wavefunctions of more general use,
rather than the exact expressions pertaining to the Hydrogen molecule ion.

The kinetic energy operator in cylindrical coordinates reads

∇2
z,ρ,ϕ =

∂2

∂ρ2
+

1
ρ

∂

∂ρ
+
∂2

∂z2
+

1
ρ2
∂2

∂ϕ2
(7.11)

and by factorizing φ in the form φ = χ(z, ρ)Φ(ϕ) Eq. 7.9 is rewritten

2mρ2

h̄2

[
E(RAB) − V (z, ρ)

]
+
ρ2

χ

[
∂2χ

∂z2
+
∂2χ

∂ρ2

]
+
ρ

χ

∂χ

∂ρ
= − 1

Φ

∂2Φ

∂ϕ2
, (7.12)

where at the first member one has only operators and functions of z and ρ
while at the second member only of ϕ. As a consequence, Eq. 7.12 leads to
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solutions of the form φ = χΦ, where χ and Φ originate from the separate
equations in which both members are equal to a constant independent on z,
ρ and ϕ. We label that constant λ2 and then

∂2Φ

∂ϕ2
= −λ2Φ

so that
Φ = Aeiλϕ +Be−iλϕ. (7.13)

The boundary condition for Φ is

Φ(ϕ+ 2πn) = Φ(ϕ)

and exp(iλn2π) = 1, thus yielding λ integer.
The meaning of the number λ can be directly grasped by looking for the

eigenvalue of the z component of the angular momentum of the electron:

lzφ = aφ i.e. − ih̄ ∂
∂ϕ
χΦ = χ(−ih̄∂e

±iλϕ

∂ϕ
) = ±λh̄χΦ = ±λh̄φ ,

namely λ measures in h̄ unit the component of l along the molecular axis, a
constant of motion, as it was anticipated.

From Eq. 7.12 it is realized that the eigenvalue E(RAB) depends on λ2.
Therefore we understand that from a given atomic-like state of angular mo-
mentum l, the presence of the second atom at the distance RAB generates
(l + 1) states of different energy. These states correspond to lz = 0,±1,±2...
and are in general double degenerate, in agreement with the fact that the en-
ergy cannot depend on the sign of lz, as we have previously observed. These
one-electron states are labelled by the letters σ, π, δ..... in correspondence to
0, 1, 2, etc... similarly to the atomic states s, p, d...

7.2.3 Separated-atoms and united-atoms schemes and correlation
diagram

Other good quantum numbers for the electronic states to be associated with
(z , ρ) in Eq. 7.12 can be introduced only when χ(z , ρ) can be factorized in
two functions, involving separately z and ρ. This happens when one refers to
the limit situations of united atoms (i.e. RAB → 0) or of separated atoms
(i.e. RAB → ∞). In the united-atoms classification scheme (for example the
Hydrogen molecule ion H+

2 tends to become the He+ atom) the two further
quantum numbers are n and l, while λ tends to become m. Then the sequence
of the states is

1sσ, 2sσ, 2pσ, 2pπ...

and the parity g or u is fixed by the value of l, namely l even g, l odd u.
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Fig. 7.4. Classification schemes for diatomic homonuclear molecules and correlation
lines yielding a sketchy behavior of the eigenvalues E(RAB) as a function of the
interatomic distance.

For RAB → ∞ the atoms are far away (H+
2 becomes H with a proton at

large distance) and for heteronuclear molecule one has

σ1sA, σ1sB , σ2sA, σ2sB , σ2pA...

For A = B (homonuclear molecule) (nl)A = (nl)B , the splitting of the level
due to the perturbing effect of the other nucleus (e.g. H+ in the Hydrogen
molecule ion) removes the degeneracy and the character g or u can be as-
signed.
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Fig. 7.5. Schematic view of the correlation diagram by referring to the transfor-
mation with the interatomic distance RAB of the shape of the molecular orbitals
generated by linear combination of atomic 1s (cases i) and ii)) and 2px orbitals
(cases iii) and iv)) centered at the A and B sites (see §8.1 for details).

The two classification schemes are obviously correlated. For the lowest
energy levels the correlation can be established by direct inspection, by taking
into account that λ and the g or u character do not depend on the distance
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RAB (see Fig. 7.4). A pictorial view of the correlation diagram in terms of
transformation of the orbitals upon changing the distance RAB is given in
Fig. 7.5, having assumed the one-electron wavefunction in the form of linear
combination of 1s-atomic like wave functions and 2px-wavefunctions, centered
at the two sites A and B (for the proper description see §8.1).
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Separated atoms

(R
AB

→∞)R
AB
→

2pπ
2pσ

1sσ

2sσ

Fig. 7.6. Correlation diagram for heteronuclear diatomic molecules. For RAB → ∞
the assumption of effective nuclear charge ZA > ZB has been made.

The correlation diagram for heteronuclear diatomic molecules is shown in
Fig. 7.6.

It should be observed that there is a rule that helps in establishing the
correlation diagram, the so-called non-intersection or non-crossing rule
(Von Neumann-Wigner rule). This rule states that two curves E1(RAB)
and E2(RAB) cannot cross if the correspondent wavefunctions φ1 and φ2 be-
long to the same symmetry species. In other words they can cross if they have
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different values either of λ or of the parity (g and u) or different multiplicities.

Finally we mention that the electronic states in a multielectron molecule
can be classified in a way similar to the one used in the LS scheme for the
atom (Chapter 3). From the algebraic sum Sz =

∑
i sz

(i) we construct MS ,
while to Lz =

∑
i lz

(i) ML is associated. The symbols Σ,Π,Δ... (generic Λ)
are used for ML = 0, 1, 2 etc. Then the state is labelled as

2S+1Λg,u ,

g and u for homonuclear molecule.
For the state Σ, namely the one with zero component of the total angu-

lar momentum along the molecular axis, in view of the consideration on the
property upon reflection with respect to a plane containing the axis, one adds
the symbol + or - as right apex. Illustrative examples shall be given in dealing
with particular diatomic molecules (§8.2). For the Λ-doubling see footnote 1.
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Problems F.VII

Problem F.VII.1 From order of magnitude estimates of the frequencies
to be associated with the motions of the electrons of mass m and of the nuclei
of mass M in a molecule of “size” d, derive the correspondent velocities by
resorting to the Heisenberg principle. By using analogous arguments derive
the amplitude of the vibrational motion.

Solution:
From Heisenberg principle p ∼ h̄/d. The electronic frequencies can be defined

νelect � Eelect

h
∼ 1
h

p2

2m
∼ 1
h

h̄2

2d2m
=

h̄

4πmd2

For the vibrational motion, by assuming for the elastic constant K
K d2 ∼ Eelect (a crude approximation, see §10.3 and Problem VIII.1.3) and

ωvib =
√
K/M , Evib ∼ h̄ωvib ∼

(
m
M

) 1
2 Eelect and then ωvib ∼ (h̄/d2

√
mM).

Approximate expressions for the correspondent velocities are

velect ∼
√
Eelect

m
∼ h̄

md
,

vvib ∼
√
Evib

M
∼

[
h h̄√
mM3d2

] 1
2

∼ h̄

m
1
4 M

3
4 d

yielding
vvib

velect
∼

(m
M

) 3
4 � 1 .

From a2K ∼ hνvib and then

a2 ∼ h2

(Mm)1/2d2
1

(Eelect/d2)

one can derive for the vibrational amplitude a � 2πd(2m/M)1/4. For the
rotational motion (see §10.1)

Erot � P 2

2I
∼ h̄2

Md2
∼ m

M
Eelect

(P angular momentum and I moment of inertia, see §10.1) and then

vrot ∼
(
Erot

M

) 1
2

∼
[(

m
M

)
mv2elect

M

] 1
2

∼ velect ·
(m
M

)
.
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Electronic states in diatomic molecules

Topics

H+
2 as prototype of the molecular orbital approach (MO)

H2 as prototype of the valence bond approach (VB)
How MO and VB become equivalent
The quantum nature of the bonding mechanism
Some multi-electron molecules (N2, O2)
The electric dipole moment

In this Chapter we specialize the concepts given in Chapter 7 for the electronic
states by introducing specific forms for the wavefunctions in diatomic molecules.
Two main lines of description can be envisaged. In the approach known as molec-
ular orbital (MO) the molecule is built up in a way similar to the aufbau method
in atoms, namely by ideally adding electrons to one-electron states. The prototype
for this description is the Hydrogen molecule ion H+

2 . In the valence bond (VB)
approach, instead, the molecule results from the interaction of atoms dressed by
their electrons. The prototype in this case is the Hydrogen molecule H2.

8.1 H+
2 as prototype of MO approach

8.1.1 Eigenvalues and energy curves

In the Hydrogen molecule ion the Schrödinger equation for the electronic
wavefunction φ(r, θ, ϕ), or equivalently φ(z, ρ, ϕ) (see Fig. 8.1) is written

Hφ = {−h̄
2

2m
∇2 − e2

rA
− e2

rB
+

e2

RAB
}φ = E(RAB)φ. (8.1)
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z

y

ρ

ϕ
z

RAB

++

O

Fig. 8.1. Schematic view of the Hydrogen molecule ion H+
2 and definition of the

coordinates used in the MO description of the electronic states.

As already mentioned the exact solution of this Equation can be carried out
in elliptic coordinates. Having in mind to describe H+

2 as prototype for more
general cases we shall not take that procedure.

It should be remarked that in the Hamiltonian in Eq. 8.1 the proton-proton
repulsion e2/RAB (Vnn in Eq. 7.1; see Fig. 7.2) has been included, so that the
total energy of the molecule, for a given inter-proton distance RAB , will be
found.

By taking into account that for RAB → ∞ the molecular orbital must
transform into the atomic wavefunction φ1s centered at the site A or at the
site B, one can tentatively write

φ = c1φ
(A)
1s + c2φ

(B)
1s . (8.2)

This is a particular form of the molecular orbital, written as in the so-called
MO-LCAO method, namely with the wavefunction as linear combination
of atomic orbitals1.

From the variational procedure, by deriving with respect to ci the energy
function

E(c1, c2) =
∫
φ∗Hφ dτ∫
φ∗φ dτ

(8.3)

with the tentative wavefunction given by Eq. 8.2, the usual equations
1 A similar method is used also in more complex molecules, by writing φ =

∑
i
ciφi

and constructing the energy function E = E(ci) on the basis of the complete

electronic Hamiltonian H =
∑

i
(−h̄2/2m)∇2

i − e2
∑

α,i
Zα/Riα + e2

∑′
i,j

1/rij ,
by iterative procedure evaluating the self-consistent coefficients ci. This is the
MO-LCAO-SCF method.
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c1(HAA − E) + c2(HAB − ESAB) = 0 (8.4)

c1(HAB − ESAB) + c2(HBB − E) = 0

are obtained. Here

HAA = HBB =
∫
φ

(A)∗
1s Hφ(A)

1s dτ

represents the energy of the H+H or of the HH+ configuration.

HAB = HBA =
∫
φ

(B)∗
1s Hφ(A)

1s dτ =
∫
φ

(A)∗
1s Hφ(B)

1s dτ (8.5)

called resonance integral, will be discussed at a later stage.

SAB =
∫
φ

(A)∗
1s φ

(B)
1s dτ

is the overlap integral, a measure of the region where φ(A)
1s and φ(B)

1s are
both different from zero:

BA

1s1s

SAB

From Eqs. 8.4 the secular equations yields

E± =
HAA ±HAB

1 ± SAB
, (8.6)

with c1 = c2 for the sign + and c1 = −c2 for the sign −. Thus

φ+ =
1√

2(1 + SAB)
{φ(A)

1s + φ(B)
1s } (8.7)

φ− =
1√

2(1 − SAB)
{φ(A)

1s − φ(B)
1s } .

In order to discuss the dependence of the approximate eigenvalues E± on the
interatomic distance RAB one has to express HAA, HAB and SAB . One writes
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εAA

HAA =
∫
φ

(A)∗
1s {Hhydr.}φ(A)

1s dτ +
∫
φ

(A)∗
1s

e2

RAB
φ

(A)
1s dτ −

︷ ︸︸ ︷∫
φ

(A)∗
1s

e2

rB
φ

(A)
1s dτ

(8.8)
The first term is −RHhc (with RH Rydberg constant), the second is

e2/RAB . The third term, εAA, represents the somewhat classical interaction
energy of an electron centered at A with the proton at B:

A B
+ +

dτ
rB

εAA can be evaluated by introducing confocal elliptic coordinates (see
§7.2.2).

Then

1
πa30

∫ 2π

0

∫ ∞

1

∫ +1

−1

R3
AB(μ2 − ν2) e−(μ+ν)RAB/2a0

4RAB (μ− ν) dφ dμ dν =

=
1
RAB

[
1 − (1 +

RAB

ao
) e

−2RAB
ao

]
,

plotted below as a function of the internuclear distance in a0 units:
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Therefore

εAA = − e2

RAB
·
[
1 − e−2RAB

ao (1 +
RAB

ao
)
]

In analogous way the overlap integral SAB and the resonance integral HAB

are evaluated.

SAB =
R3

AB

8π a30

∫ 2π

0

∫ ∞

1

∫ +1

−1

(μ2 − ν2) e−μ RAB/a0 dμ dν dϕ =

=
[
1 +

RAB

ao
+

1
3

(
RAB

a0
)2
]
e

−RAB
ao (8.9)

is plotted below
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AB

while

HAB =
∫
φ

(B)∗
1s {Hhydr.} φ(A)

1s dτ +
e2

RAB
SAB −

∫
φ

(B)∗
1s

e2

rB
φ

(A)
1s dτ =

= SAB

(
e2

RAB
−RHhc

)
+ εAB ,

with
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εAB = −
∫
φ

(B)∗
1s

e2

rB
φ

(A)
1s dτ = − e

2

ao
e

−RAB
ao

(
1 +

RAB

ao

)
, (8.10)

is approximately proportional to SAB .
From Eq. 8.6 and the expressions for HAA, SAB and HAB , the energy

curves E±(RAB) are obtained. In Fig. 8.2 E+(RAB) is compared to the exact
eigenvalue for the ground-state that could be obtained from the solution of
Eq. 8.1 through elliptic coordinates.
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Fig. 8.2. Energy curve for the ground and first excited state of Hydrogen molecule
ion as a function of the inter-proton distance RAB , according to MO-LCAO orbital
(dotted lines), with the classification of the electronic states in the separated-atoms
scheme (see § 7.3.3) and sketchy forms of the correspondent molecular orbitals.
The bonding character of the σg1s state grants a minimum of the energy (in qual-
itative agreement with the exact calculation, solid line) while the σu1s orbital, for
which E− > −RHhc ≡ E(RAB → ∞), is anti-bonding. The exact result for E−
(not reported in figure) is well above the approximate energy E− (dotted line).
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The minimum in E+ indicates that when the electron occupies the lowest
energy state (the σg1s according to § 7.3.3) bonding does occur.

Starting from atomic orbitals pertaining to excited states, e.g. the 2px

Hydrogen states, one can obtain the molecular orbitals for the excited states,
as sketched below (see also Fig. 7.3.3):

 

with linear 

combination  + 

+ + 

_ _ 

x 

_ 

+ 

π
u
2p 

with linear combination  
__

 

(and higher energy) 

+

+
_ 

_ 

π
g
2p 

A better evaluation of eigenvalues and eigenfunctions (although still ap-
proximate) could be obtained by using more refined atomic orbitals. For in-
stance, in order to take into account the polarization of the atomic orbitals
due to the proton charge nearby, one could assume a wavefunction φ(A) of the
form

φ(A) = φ(A)
1s + a z e−Ze rA/a0 , (8.11)

with Ze an effective charge. Along these lines of procedure one could derive
values of the bonding energy and of the equilibrium interatomic distance Req

AB

close to the experimental ones, which are

E(Req
AB) = −2.79 eV, Req

AB = 1.06 Å . (8.12)

Rather than pursuing a quantitative numerical agreement with the experi-
mental data, now we shall move to the discussion of the physical aspects of
the bonding mechanism.
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Problems VIII.1

Problem VIII.1.1 Consider a muon-molecule formed by two protons and
a muon. In the assumption that the muon behaves as the electron in the H+

2

molecule, by means of scaling arguments evaluate the order of magnitude of
the internuclear equilibrium distance, of the bonding energy and of the zero-
point energy. (The zero-point energy hν/2 in H+

2 is 0.14 eV and the vibrational
energy hν scales with the square root of the elastic constant).

Solution:
Req

AB is controlled by the analogous of the Bohr radius a0, which is reduced
with the mass by factor mμ/me. Then

Req
AB ≈ 1

200
Req

AB(H+
2 ) � 5 × 10−3Å .

and
E ≈ 200E(H+

2 ) � 500eV .

The force constant can approximately be written k ≈ e2/R3 (see Prob.
VIII.1.3) and then k(μ) = k(H+

2 ) × 8 × 106 , so that

Evib
v=0 ≈ 2.8 · 103Evib

v=0(H
+
2 ) � 396eV .

Problem VIII.1.2 Write the behavior of the probability density ρ for the
electron in H+

2 at the middle of the molecular axis as a function of the inter-
proton distance RAB , for the ground MO-LCAO state, and in the assumption
that SAB � 1.

Solution:
From

ρ = |φ+|2 ∝ 2e−
rA+rB

a0 + e−
2rA
a0 + e−

2rB
a0 ,

for rA = rB = RAB/2, ρ ∝ 4exp[−RAB/a0].

Problem VIII.1.3 In the harmonic approximation the vibrational fre-
quency of a diatomic molecule is given by

1
2π

√
(d2E/dR2)Re

μ
,

where μ is the reduced mass and R the interatomic distance (for detail see
§10.3). Derive the vibrational frequency for H+

2 in the ground-state.
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Solution:
From E(R) = (HAA +HAB)/(1 + SAB) (see Eq. 8.6)

∂2E

∂R2
=

[∂2(HAA+HAB)
∂R2 (1 + SAB) − ∂2SAB

∂R2 (HAA +HAB)](1 + SAB)
(1 + SAB)3

−

−2[∂(HAA+HAB)
∂R (1 + SAB)∂SAB

∂R − (∂SAB

∂R )2(HAA +HAB)]
(1 + SAB)3

From Eqs. 8.8-8.10, for x = R/a0 and k1 = e2/a0, one writes

SAB(x) = e−x(1 + x+
x2

3
),

HAA(x) = k1e−2x(1 +
1
x

) − k1
2
,

HAB(x) = k1e−x(
1
x
− 1

2
− 7x

6
− x

2

6
).

Since ∂E/∂R = (∂E/∂x)(1/a0) and ∂2E/∂R2 = (∂2E/∂x2)(1/a20), one can
conveniently express the second derivative of E(R) in terms of x.
The curves for E(R) and for (d2E/dR2) are reported below (dashed line
(d2E/dR2), in e2/a30 unit, dotted line E(R) referred to −RHhc, see also
Fig. 8.2).
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At Req = 2.49a0 one finds ∂2E/∂R2 = 0.054e2/a30 = 0.839×105 dyne/cm,
yielding a vibrational frequency ν = 5.04 × 1013 Hz (return to Problem
F.VII.1). The experimental value is ν = 6.89 × 1013 Hz for Req = 1.06 Å.
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8.1.2 Bonding mechanism and the exchange of the electron

How the bonded state of the Hydrogen molecule ion is generated? Why the
bonding orbital is the σg1s while σu1s is antibonding? Which is the substantial
role of the resonance integral HAB?

A first way to answer to these questions is to look at the electronic charge
distribution, controlled by ρ± = |φ±|2, where φ can be taken as in Eqs. 8.7.
The intersection of ρ with a plane containing the molecular axis is sketched
in Fig. 8.3.

In order to minimize the Coulomb energy one has to place the electron in
the middle of the molecule. Thus one understands why only the σg1s state
has a minimum in the energy E vs. RAB .

It may be remarked that this consideration of forces between nuclei accord-
ing to “classical” Coulomb-like estimate of the energies is not in contrast with
the quantum character of the system. In fact, as stated by the Hellmann-
Feynman theorem the forces can actually be evaluated “classically” pro-
vided that the charge is distributed according to the quantum description.

++
BA

++
BA

Fig. 8.3. Sketches of the charge distribution according to the bonding and anti-
bonding molecular orbitals in H+

2 . For φ− there is no electronic charge in the plane
perpendicular to the molecular axis at the center of the molecule. On the other
hand, in order to avoid repulsion between the protons, the negative charge must be
placed right in the middle of the molecule, as indicated by classical considerations
(see Problem VIII.2.1).
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Now we are going to discuss the role of the resonance integral (Eq. 8.10)
that through HAB is the source of the minimum in the energy at a given
inter-proton distance (see Fig. 8.2). A suggestive interpretation of the role of
HAB can be given in terms of the exchange of the electron between the two
equivalent 1s states centered at the proton A and at the proton B.

According to the model developed in Appendix I.2, by considering the
basis states |1〉 and |2〉, as sketched below

 

A B 

+ + 

  

1s 1s 

and by writing the generic state in term of linear combination
|ψ〉 = c1|1〉 + c2|2〉, the coefficients obey the equations

ih̄ċ1 = H11c1 +H12c2 (8.13)
ih̄ċ2 = H21c1 +H22c2

with H11 = H22 = Eo. H12 is the probability amplitude that the electron
moves from state |1〉 to state |2〉.

By labeling A the value (negative) of H12, from Eqs. 8.13 by taking sum
and difference, one has

c1(t) =
a

2
e−i ( Eo−A

h̄ ) t +
b

2
e−i ( Eo+A

h̄ ) t (8.14)

c2(t) =
a

2
e−i ( Eo−A

h̄ ) t − b
2
e−i ( Eo+A

h̄ ) t.

It is noted that for the choice of the integration constant a = 0 or b = 0,
stationary states |±〉 are obtained, correspondent to σg1s and to σu1s, i.e.

|+〉 =
1√
2

[
|1〉 + |2〉

]
, |−〉 =

1√
2

[
|1〉 − |2〉

]

with energies E = Eo ±A.
The constants a and b in Eqs. 8.14 can be written in terms of the initial

conditions for c1(t) and c2(t). By setting c1(0) = 1 and c2(0) = 0, one has
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c1(t) = e−i Eo
h̄ tcos (At/h̄)

c2(t) = ie−i Eo
h̄ tsin (At/h̄)

with the behavior of the correspondent probabilities of presence P1,2 = |c1,2|2
shown in Fig. 8.4.

0

1

P
1,2

t  in  h/A units

P
2

P
1

3π/4 ππ/2π/4

Fig. 8.4. Time dependence of the probability of presence of the electron on the sites
A and B according to the description of two-levels states for H+

2 .

Thus the formation of the molecule can be idealized as due to the exchange
of the electron from left to right and back, with the related decrease of the
energy.

This description has some correspondence in classical systems, such as two
weakly-coupled mechanical oscillators or LC circuits, with their two normal
modes and the correspondent exchange of energy. Scattering experiments of
protons on Hydrogen atoms confirm that the exchange process of the electron
is real. When a proton is in the neighborhood (distance of the order of a0) of
an Hydrogen atom for a time of the order of h̄/2A, with A = (E+ − E−) (or
multiple), an Hydrogen atom comes out after the scattering process.

8.2 Homonuclear molecules in the MO scenario

From the MO description of the states in H+
2 it is now possible to analyze

multi-electron homonuclear diatomic molecules. In a way analogous to the
aufbau method in atoms, to build up the molecule in a first approximation
one has to accommodate the electrons on the one-electron states derived for
the prototype. This procedure is particularly simple if a priori one does not
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take into account the inter-electron interactions (e2/rij), thus ideally assum-
ing independent electrons. Then the energy is evaluated on the basis of the
complete Hamiltonian, for Φtotal =

∏
i φMO(ri), by considering the dynami-

cal equivalence of the electrons when different states are hypothesized. At §8.4
we shall discuss the hydrogen molecule to some extent, by taking into account
the spin states and the antisymmetry requirement. For the moment, let us
proceed to a qualitative description of some homonuclear diatomic molecules
by referring most to the ground states.

For H2 the ground state has the electronic configuration (σg1s)2, it is
labelled 1Σ+

g (see §7.2.3) and the MO wavefunction is

φ(σg1s)2(r1, r2) = σg1s(r1)σg1s(r2), (8.15)

that in the LCAO approximation is written (see Eq. 8.7)

φ(σg1s)2(r1, r2) =
1

2(1 + SAB)

[
φ

(A)
1s (r1) + φ(B)

1s (r1)
]
·
[
φ

(A)
1s (r2) + φ(B)

1s (r2)
]

(8.16)
The energy E(RAB), evaluated by including in the Hamiltonian the term
(e2/r12) by means of calculations strictly similar to the ones detailed for H+

2

at §8.1, is sketched below:

2.7 eV

1.7

 

 

R
AB

 /a
0

E (R
AB

 ) 

Spins in the S
z

=0 state

-2R
H

hc

In He+
2 the ground state has the electronic configuration (σg1s)2(σu1s)

and the notation is 2Σu. The third electron has to be of u character, because
of the Pauli principle.
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The He2 molecule cannot exist in state a stable state2. In fact, the elec-
tronic configuration should be (σg1s)2(σu1s)2, with the pictorial representa-
tion sketched below:

σ
g

1s    bonding

σ
u

1s     antibonding

 

R
AB

 /a
0

E

-2R
H

hc

Since for RAB � Req.
AB one has E− > |E+| (see Eq. 8.6) the two antibonding

electrons force the nuclei apart in spite of the bonding role of the electrons
placed in the ground energy state.

Now we are going to discuss a pair of molecules exhibiting some aspects
not yet encountered until now. In the N2 molecule we have an example of
“strong bond” due to σ MO orbital at large overlap integral and of “weak
bond” due to π MO orbitals involving p atomic states, with little overlap. In
fact one can depict the formation of the molecule as below

x

z

+ +

_ _

y y

�g2p

�u2p

1s2 2s2 2p3

(�g1s)2  (�u1s)2 (�g2s)2   (�u2s)2 ( � u2p)4   (�g2p)2   

2 Van der Waals interactions (described at §13.2.2), leading to very weak bonds at
large distances, are not considered here.
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where it is noted that the linear combination with the sign + again implies
electronic charge in the central plane (and therefore is a bonding orbital)
although now the inversion symmetry is u. The σg2p orbital, ideally gen-
erated from the combination of 2pz atomic orbitals, implies strong overlap.
Since HAB is somewhat proportional to SAB (see Eqs. 8.9 and 8.10) one has
a deep minimum in the energy and then a strong contribution to the bonding
mechanism. On the contrary, from the combination of 2px,y atomic orbitals
to generate the π MO’s the overlap region is small and then one can expect
a weak contribution to bond. The electronic state of the N2 molecule is la-
belled 1Σ+

g and the molecular orbitals are fully occupied. Thus the molecule
is somewhat equivalent to atoms at closed shells, explaining its stability and
scarcely reactive character.

Another instructive case of homonuclear diatomic molecule is O2. Here
there are two further electrons to add to the configuration of N2. These elec-
trons must be set on the πg2p orbital, in view of the Pauli principle. The πg2p
orbital is not fully occupied and one has to deal with LS coupling procedure,
similar to the one discussed for atoms for non-closed shells. In principle there
are the possibilities sketched below:

 

State
 

+

+

+

+

_ 
 _  _ 

_ 

_ 
of  g  character 

  S
Z 

1Δg

    L
Z 

1Σg 

3Σg 

• 

According to Hund rules, that hold also in molecules, the ground state is
3Σ−

g corresponding to the the maximization of the total spin. The g and -
characters can be understood by inspection: in Fig. 8.5 it is shown how the
property under the reflection in a plane containing the molecular axis results
from the symmetry of the π orbitals.
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Fig. 8.5. Energy curves for the low energy states in the O2 molecule (a) and sketchy
illustration of the (+ -) symmetries for π+ and π− orbitals (b). The Σ state requires a
label to characterize the behavior under reflection with respect to a plane containing
the molecular axis. Since the two electrons occupy different π orbitals, one of them
is + and the other -, implying the overall - character of the configuration.

The molecule is paramagnetic and because of the partially empty ex-
ternal orbital has a certain reactivity, at variance with N2. In fact the O3

molecule (ozone) is known to exist.
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Problems VIII.2

Problem VIII.2.1 Evaluate the amount of electronic charge that should
be placed at the center of the molecular axis for a two-proton system in order
to justify the dissociation energy (� 4.5 eV) at the interatomic equilibrium
distance Req

AB = 0.74 Å.
Solution:

-ef

+e +e

R
AB

e2

RAB
− ef

[
e

RAB/2
+

e

RAB/2

]
= −4.5 eV .

From
e2

Req
AB

= 19.5 eV ,

f =
−4.5 eV − 19.5 eV

−77.8 eV
= 0.3 .

Problem VIII.2.2 Indicate the electronic configuration and the the spec-
troscopic terms according to §7.2.3 for the ground states and the first excited
states of the molecules H2, Li2, B2, N2, C2 and Br2.

Solution:
Molecule; ground-state; first excited states

H2; (σg1s)2, 1Σ+
g ; (σg1s)(σu1s), 3Σ+

u , 1Σ+
u .

Li2; (σg1s)2(σu1s)2︸ ︷︷ ︸(σg2s)2, 1Σ+
g ; KK((σg2s)(σu2s), 3Σ+

u , 1Σ+
u .

KK

B2; KK(σg2s)2(σu2s)2(πu2p)2, 3Σ−
g ; KK(σg2s)2(σu2s)2(πu2p)(σg2p), 3Πu.
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N2; ......(πu2p)4(σg2p)2, 1Σ+
g ; ......(πu2p)4(σg2p)(πg2p), 1Πu, 1Πg.

For C2 the proper sequence of the energy levels has to be taken into account
(one electron could be promoted from πu to the σg state, see Fig. 7.4). However
the electronic configuration (σg2s)2(σu2s)2(πu2p)4 seems to be favored and
the ground state term is 1Σ+

g .

Br2 (atoms in 2P states), 1Σ+
g

excited states 1Σ−
u ,

1Πg,
1Πu,

1Δg .

It is noted that in some cases the exact sequence of the levels is poorly
known because of the possible modifications of the energy upon excitation and
for the correlation effects. Thus the sequence of the eigenvalues reported in Fig.
7.4 for a given RAB distance might be altered. Only elaborate computational
descriptions can lead to quantitative deductions.



8.3 H2 as prototype of the VB approach 275

8.3 H2 as prototype of the VB approach

In the framework of the valence bond (VB) method, where the molecule
results from the interaction of atoms dressed by their electrons, the prototype
is the Hydrogen molecule.

 

A B 

++ 

 RAB  

-e -e r12 

rB1 

rB2 
rA1 rA2 

1s 
1s 

Fig. 8.6. Definition of the coordinates involved in the Hamiltonian for the H2

molecule.

The Hamiltonian is written (see Fig. 8.6)

H =
[
− h̄

2

2m
∇2

1 −
e2

rA1

]
+

[
− h̄

2

2m
∇2

2 −
e2

rB2

]
+

[
− e2

rA2
− e2

rB1

]
+

[
e2

rAB
+
e2

r12

]
≡

≡ [a] + [b] + [c] + [d] (8.17)

A tentative wavefunction could be of the form φ(r1, r2) = φA
1s(r1)φB

1s(r2),
corresponding to the situation in which the two electrons keep their atomic
character and only Coulomb-like interactions with classical analogies are sup-
posed to occur. However, this wave-function does not lead to the formation
of the real bonded state. In that case, in fact, for the [a] and [b] terms in the
Hamiltonian one obtains −2RHhc and for the interaction terms [c] and [d]
one can write

J =
e2

RAB
+

∫
|φA

1s(r1)|2 e
2

r12
|φB

1s(r2)|2 dτ1 dτ2 −

−2
∫

e2

rA2
|φB

1s(r2)|2 dτ2 . (8.18)
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The latter term in Eq. 8.18 is twice the attractive interaction between the
electron in B and the proton A, as sketched below

 

A B 

d�2 

rA2 

++ 

-e

All the terms in Eq. 8.18 correspond to classical electrostatic interactions
and therefore J is usually called Coulomb integral. From the evaluation
of J through elliptic coordinates, as described for εAA at §8.1.1, one could
figure out that the energy curve E(RAB) displays only a slight minimum,
around 0.25 eV, in large disagreement with the experimental findings (see
Figure 8.7). On the other hand, by recalling the description of the two electrons
in Helium atom (§ 2.2) the inadequacy of the wavefunction φA

1s(r1)φB
1s(r2) can

be expected, since the indistinguishability of the electrons, once that the atoms
are close enough to form a molecule, is not taken into account.

Then one rather writes

φV B(r1, r2) = c1 φA
1s(r1)φB

1s(r2) + c2 φA
1s(r2)φB

1s(r1) ≡ c1 |1〉 + c2 |2〉 (8.19)

By deriving the energy function with the usual variational procedure (see Eqs.
8.3-8.6) one obtains c1 = ±c2 and

E± =
H11 ±H12

1 ± S12
, (8.20)

where H11 ≡ 〈1|H|1〉 = 〈2|H|2〉, H12 ≡ 〈2|H|1〉, S12 = S2
AB and

φ± =
1√

2 (1 ± S12)

[
|1〉 ± |2〉

]
. (8.21)

The eigenvalues turn out

E±(RAB) = −2RHhc+
J

1 ± S2
AB

± K

1 ± S2
AB

(8.22)

where J is given by Eq. 8.18, while

K =
∫
φA∗

1s (r1)φB∗
1s (r2)

[
− e2

rA2
− e2

rB1
+

e2

RAB
+
e2

r12

]
φA

1s(r2)φB
1s(r1) dτ1 dτ2

(8.23)
is the extended exchange integral, with no classical analogy and related
to the quantum character of the wavefunction. K can be rewritten
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Fig. 8.7. Sketch of the energy curves of the Hydrogen molecule in the VB scheme
as a function of the interatomic distance RAB . The real curve (reconstructed by a
variety of experiments) is indicated as exp, while curve c) illustrates the behavior
expected from the Coulomb integral only (Eq. 8.18 in the text). Curves a) and b)
illustrate the approximate eigenvalues E± in Eq. 8.22.

K =
e2

RAB
S2

AB + 2SAB εAB +
∫
φA∗

1s (r1)φB∗
1s (r2)

e2

r12
φA

1s(r2)φB
1s(r1) dτ1 dτ2

(8.24)
where again one finds the resonance integral εAB (Eq. 8.10) and a reduced
exchange integral

Kred =
∫
φA∗

1s (r1)φB∗
1s (r2)

e2

r12
φA

1s(r2)φB
1s(r1) dτ1 dτ2 (8.25)

analogous to the one in Helium atom and positive.
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From the evaluation of J and K the energy curves can be obtained, as
depicted in Fig. 8.7. It should be remarked that most of the bond strength is
due to the exchange integral K.

As for any two electron systems (see §2.2) the spin wave functions are

χS=1
symm i.e. α(1)α(2), β(1)β(2) and

1√
2

[
α(1)β(2) + α(2)β(1)

]

χS=0
ant i.e.

1√
2

[
α(1)β(2) − α(2)β(1)

]
and the antisymmetry requirement implies that χant is associated with φ+,
corresponding to the ground state 1Σg, while for the eigenvalue E− one has
to associate χsymm with φ−, to yield the state 3Σu.

At this point one may remark that the VB ground state for H2 (see Eq.
8.21) is proportional to the MO state

φMO(1, 2) ∝ [φA(1)φB(2) + φA(2)φB(1)] + φA(1)φA(2) + φB(1)φB(2)

(1,2 for r1 and r2) The “ionic” configurations φA(1)φA(2) and φB(2)φB(1)
(Eqs. 8.7 and 8.16) are present in the MO orbital with the same coefficients,
in order to account for the symmetry and to prevent electric charge transfer
that would lead to a molecular dipole moment. A more detailed comparison
of the electronic states for the Hydrogen molecule within the MO and VB
approaches is discussed in the next Section.
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Problems VIII.3

Problem VIII.3.1 Reformulate the description of the H2 molecule in the
VB approach in the assumption that the two Hydrogen atoms in their ground
state are at a distance R so that exchange effects can be neglected. Prove
that for large distance the interaction energy takes the dipole-dipole form and
that by using the second order perturbation theory an attractive term going
as R−6 is generated (see §13.2.2 for an equivalent formulation). Then remark
that for degenerate n = 2 states the interaction energy would be of the form
R−3.

Solution:
From Fig. 8.6 and Eq. 8.17 the interaction is written

V = e2/R− e2/rA2 − e2/rB1 + e2/r12.
Expansions in spherical harmonics (see Prob. II.2.1) yield

1
rB1

=
1

|Rρ − r1A| =
∑
λ=0

rλA1

Rλ+1
Pλ(cos θ) =

1
R

+
(rA1 · ρ)
R2

+
3(rA1 · ρ)2 − r2

A1

2R3
+···,

1
r12

=
1

|Rρ + rB2 − rA1| =
1
R

+
(rA1 − rB2) · ρ

R2
+

+
3[(rA1 − rB2) · ρ]2 − (rA1 − rB2)2

2R3
+ · · ·,

1
rA2

=
1
R

+
(rB2 · ρ)
R2

+
3(rB2 · ρ)2 − r2

B2

2R3
+ · · ·

(ρ unit vector along the interatomic axis).
Thus the dipole-dipole term (see §13.2.2) is obtained

V = −2z1 z2 − x1 x2 − y1 y2
R3

e2,

the z-axis being taken along ρ. By resorting to the second-order perturbation
theory and taking into account the selection rules (App.I.3 and §3.5), the
interaction energy turns out

E(2) =
e4

R6

∑
mn

4z20m z
2
0n + x2

0m x
2
0n + y20m y

2
0n

2E0 − Em − En

where xom, xon etc. are the matrix elements connecting the ground state
(energy E0) to the excited states (energies Em, En). E(2) being negative, the
two atoms attract each other (London interaction, see §13.2.2 for details).
For the states at n = 2 the perturbation theory for degenerate states has to be
used. From the secular equation a first order energy correction is found (see
the similar case for Stark effect at §4.2). Thus the interaction energy must go
as R−3.
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8.4 Comparison of MO and VB scenarios in H2:
equivalence from configuration interaction

Going back to the MO description for the H2 molecule, by considering the
possible occurrence of the first excited σu one-electron state and by taking
into account the indistinguishability, four possible wavefunctions are:

ΦI(g, g) ≡ φg(1)φg(2) gg a)
ΦII(u, u) ≡ φu(1)φu(2) uu b)

ΦIII(g, u) ≡ 1√
2

[
φg(1)φu(2) + φg(2)φu(1)

]
ugsym c)

ΦIV (g, u) ≡ 1√
2

[
φg(1)φu(2) − φg(2)φu(1)

]
ugant d) (8.26)

In view of the four spin wavefunctions χant and χsymm, in principle 16
spin-molecular orbitals could be constructed. Due to the Pauli principle, in
the H2 molecule one finds only 6 states, the ones of antisymmetric character.

The ground MO state (σg1s)(σg1s)χant can be detailed by referring to the
LCAO specialization, so that the complete spin-MO is

φMO
TOT (1, 2) = χant

S=0

[
φV B + φA(1)φA(2) + φB(1)φB(2)

]
(8.27)

namely the VB form with the “ionic” states, as already mentioned.
To find the excited MO state corresponding to the (V B)− wavefunction,

in Eqs. 8.26 one can look for the one that without the ionic states does corre-
spond to 8.21 φ− without the ionic states. From Eq. 8.26d) with the LCAO
specialization it is found that

ΦIV =
1√
2

[
φA(1)φB(2) − φA(2)φB(1)

]
(8.28)

is the same as φ−V B.
From another point of view, now one understands why the 3Σu state is

unstable: it corresponds to have one electron in the g bonding MO orbital and
one in the u antibonding MO (see § 8.2), this latter being strongly repulsive.
In Fig. 8.8 the lowest energy levels in H2 corresponding to 8.26 are sketched.

For a more quantitative comparison of the MO and the VB descriptions in
H2, let us look at the values for the dissociation energies and the equilibrium
distances (see also Fig. 8.9) in the ground state:

φV B Ediss � 3.14 eV Req.
AB = 1.7 a0
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Fig. 8.8. Schematic energy curves for H2 corresponding to the wavefunctions in Eq.
8.26. More accurate forms of the energies for the 1Σ+

g and 3Σ+
u states are reported

in Fig. 8.9, in comparison with the VB eigenvalues.

φMO Ediss � 2.7 eV Req.
AB = 1.7 a0

Experimental Ediss � 4.75 eV Req.
AB = 1.4 a0

One should remark that the VB orbital does not include the ionic states
while the MO-LCAO overestimates their weight. In fact, the energy to remove
the electron from the Hydrogen atom (13.56 eV) is much higher than the
energy gain Δ in setting it on the configuration H−. The energy gain Δ
(sometimes called electron affinity) in principle could be estimated from
the Coulomb integral in Helium atom (§2.2), with Z=1 for the nuclear charge
(however, see Problem II.2.4). From accurate estimates one actually would
find Δ = 0.75 eV. Therefore the ionic states cannot be weighted as much
as they are in the MO-LCAO orbital. This observation suggests a tentative
wavefunction of the form

φV B + λφionic , (8.29)

namely a mixture of the covalent VB and of ionic states with a coefficient λ,
for instance to be estimated variationally. From the derivative of the energy
function E(λ) one could find that the minimum corresponds to λ = 0.25.
Therefore, from the normalization of the wavefunction the weight of the ionic
states is given by λ2/(λ2 + 1), about 6 percent.
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Fig. 8.9. Energy curves for the lowest energy states in H2: dotted lines, within the
VB approach; solid lines, more accurate evaluations for the 1Σ+

g and the 3Σ+
u states

according to the procedure outlined in the text.

How could the MO description of the ground state in H2 be improved?
Since the wavefunctions 8.26 involve the ionic states with different coeffi-
cients, it is conceivable that a better approximation is obtained if a proper
combination of the wavefunctions correspondent to different configurations is
attempted. This procedure is an example of the approach called configura-
tion interaction (CI). In the combination one has to take into account that
the mixture must involve states with the same symmetry properties and same
spin. Thus one should combine the gg state with the uu one, both coupled
to χant:

φCI(1, 2) = φI + kφII (8.30)
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From this wavefunction, as usual, one generates two energy levels, one of them
having energy E < E+, E+ being the energy for φI . In this way one could
find a dissociation energy and equilibrium distance close to the experimental
values. Furthermore those quantities are found to coincide with the ones
associated with the VB wavefunction with addition of the ionic states! This
is not by chance. In fact, by collecting the various terms involving the atomic
orbitals, one can rewrite Eq. 8.30 in the form

φCI(1, 2) = (1 − k)φV B + (1 + k)φionic

and by defining λ = (1 + k)/(1 − k) one sees that it coincides with Eq. 8.29.
This is an example of a more general issue: the MO-LCAO method with

interaction of the configurations is equivalent to the VB approach with addition
of the ionic states to the covalent wavefunctions.

8.5 Heteronuclear molecules and the electric dipole
moment

In the following we shall recall some novel aspects present in diatomic
molecules when the two atoms are different.

First of all one remarks that the inversion symmetry, with the Hamiltonian
H(r) equal to H(−r), no longer holds. Therefore, within the separated atoms
scheme one cannot longer classify the states as g or u and the one-electron
states become (see Fig. 7.6) σ1sA, σ1sB, σ2sA, σ2sB ,...

Within the MO-LCAO scheme the one-electron orbital is written

φ = cAφA + cBφB

with cA 
= cB . Equivalently, in the normalized form

φLCAO
MO =

1
(1 + λ∗2 + 2λ∗SAB)

1
2

[
φA + λ∗φB

]
. (8.31)

Here λ∗ can vary from −∞ to +∞ and it characterizes the polarization
of the orbital, namely measuring the electronic charge transfer from one
atom to the other. As illustrative example in Fig. 8.10 the molecular orbital
for the HCl molecule is sketched.

In the VB description the only way to account for the charge transfer is to
add the ionic states in the molecular orbital, no longer with the same weight
as for the homonuclear molecules (see Eq. 8.29). In practice only the ionic
configuration favoured by the polarity of the molecule can be included. Then

φhet
V B = φV B + λφionic
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Fig. 8.10. Sketchy illustration of the polarized MO-LCAO orbital in HCl. The px

and py atomic orbitals are scarcely involved in the formation of the molecule since
they imply small overlap integral SAB and resonance integral HAB (see § 8.2).

In HCl, for instance, the large contribution to the polar character described
by λ is due to the ionic function representing H+Cl−.

The parameters λ in the above definition and λ∗ in Eq. 8.31 are difficult to
evaluate from first principles. They have been empirically related to the elec-
tronegativity of the atoms or to the difference between the ionization energy
with respect to the one pertaining to the purely covalent configuration.

An illustrative relationship of λ and λ∗ to molecular properties is the
one involving the electric dipole moment μe. By referring to the sketched
schematization for a given molecular orbital with two electrons (pag. 277),

 

z

-e

-e

A 
B 

+ +

the dipole moment is written μe = 2e < z >, with < z > the expectation
value of the coordinate, corresponding to the first moment of the electronic
charge distribution.

For an MO-LCAO orbital as in Eq. 8.31, one has
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< z >=
1

(1 + λ∗2 + 2λ∗SAB)

∫
z

[
|φA|2 + λ∗2|φB |2 + 2λ∗φAφB

]
dτ (8.32)

The mixed term < A|z|B > is usually negligible. By assuming for simplicity
SAB � 1 one obtains

< z >=
1

(1 + λ∗2)

[
−1

2
RAB +

1
2
RABλ

∗2
]

(8.33)

Δ

E
A

E
I

R

AB

(Å)

Fig. 8.11. Energies of the neutral atoms and of the ionic configuration in the NaCl
molecule. EI is the ionization energy of Na, about 5.14 eV while EA = 3.82 eV is the
electron affinity in Cl and it corresponds to the energy to remove an electron from
Cl−.

By defining g = μe/eRAB as degree of ionicity (g being the unit for
total charge transfer and dipole moment μmax

e = eRAB), λ∗ can be expressed
in terms of a relevant property of the molecule:

g =
λ∗2 − 1
λ∗2 + 1

(8.34)

In analogous way in the VB framework, where g is evidently given by the
weight of the ionic structure, one has
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g =
λ2

λ2 + 1
. (8.35)

As for the homonuclear molecules, the energy curve E(RAB) in principle
could be evaluated in terms of the overlap and resonance integrals.

Direct understanding of the mechanism leading to the bonded state can
easily be achieved by referring to a model of totally ionic molecule, i.e.
φMO = φB (or configuration A+B−) and in the assumption of Coulombic
interaction between point charge ions. This is an oversimplified way to derive
the eigenvalue as a function of the interatomic distance, still allowing one to
grasp the main source of the bonding.

For numerical clarity let us refer to the NaCl molecule (Fig. 8.11). One
observes that for distances RAB above about 10 Å the energy of the neutral
atoms is below the one for ions. When the distance is smaller than the R∗

AB

for which e2/R∗
AB � (EI − EA) = Δ, the ionic configuration is favoured and

the system reduces the energy by decreasing the interatomic distance.
At short distance a repulsive term is acting. Its phenomenological form

can be written

Erep ∼ B exp [−RAB/ρ], (8.36)

an expression known as Born-Mayer repulsion. Thus the energy curve de-
picted as solid line in the Figure 8.11 is generated.

The dissociation energy E(Rmin
AB ) can be evaluated by estimating the dis-

tance where the energy minimum occurs. A detailed calculation of this type
will be used for the cohesive energy in ionic crystals (§13.2.1).

Finally, for some polar diatomic molecules the electric dipole moment μe,
the degree of ionicity and the value of λ∗ according to Eqs. 8.32 are reported
below (having used for SAB a value around 0.3).

μe (Debye) μe/eRAB λ∗

HF 1.82 0.43 1.88

HCl 1.08 0.17 1.28

HBr 0.78 0.11 1.19

KF 8.5 0.67 2.93

KCl 10.27 0.77 3.36

(1 Debye = 10−18 u.e.s cm). In H2O, μe = 1.85 Debye.
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Problems VIII.5

Problem VIII.5.1 By using the united atoms classification scheme (Fig.
7.6) write the electronic configuration and the spectral terms for HB, LiH,
CH and NO. Why NO is paramagnetic ? Figure out in detail how the HB
molecule correlates to the C atom in the united atoms scheme.

Solution:

HB; (1sσ)2(2sσ)2(2pσ)2, 1Σ+.
The detailed correlation diagram for the HB molecule with Carbon atom

(see Fig. 7.6) is reported below

1s
2

2s
2

2p
2

(1sσ)
2

(2sσ)
2 

(2pσ)(2pπ)

(1sσ)
2

(2sσ)
2

(2pπ)
2

(1sσ)
2

(2sσ)
2 

(2pσ)
2

1
S

1
D

3
P

1
Δ

3
Π

3
Σ

_

1
Π

1
Σ
+

1
Σ
+

C atom HB molecule 

LiH; (1sσ)2(2sσ)2, 1Σ+;
first excited configuration (1sσ)2(2sσ)(2pσ), 3Σ+ or 1Σ+.

CH; (1sσ)2(2sσ)2(2pσ)2(2pπ), 2Π;
first excited configuration (1sσ)2(2sσ)2(2pσ)(2pπ)2, 4Σ−, 2Δ, 2Σ+, 2Σ−.

NO, from the atomic configurations 1s22s22p3 for N and 1s22s22p4 for O,
the most plausible ground-state configuration could be

NO[KK(2pσ)2(3sσ)2(3pσ)2(2pπ)4(3pπ)],2Π .

Since there is one unpaired 3pπ electron NO is paramagnetic (S = 1/2). As
already mentioned the actual sequence of the eigenvalues is rather uncertain
(see Prob. VIII.2.2).
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Problem VIII.5.2 In the ionic bond approximation assume for the eigen-
value in the NaCl molecule the expression

E(RAB) = − e2

RAB
+

A

Rn
AB

.

From the equilibrium interatomic distance Req
AB = 2.51 Å and knowing that

the vibrational frequency is 1.14 · 1013 Hz, obtain A and n and estimate the
dissociation energy.

Solution:
At the minimum(

dE

dRAB

)
RAB = Req.

AB
≡Re

=
e2

R2
e

− nA 1
Rn+1

e

= 0

thus
e2

nA
=

1
Rn−1

e

.

The elastic constant is (see Problem VIII.1.3)

k =
(
d2E

dR2
AB

)
RAB = Re

= −2e2

R3
e

+An(n+ 1)
1

Rn+2
e

Then

k =
e2

R3
e

(n− 1) .

For the reduced mass μ = 2.3 · 10−23 g the elastic constant takes the value

k = 4π2μν2
0 = 1.18 · 105 dyne/cm

(see §10.3).
Then

n− 1 =
k R3

e

e2
� 8.

From

A =
e2Rn−1

e

n

the energy at Re is

Emin = − e
2

Re
+
A

Rn
e

= − e
2

Re

(
1 − 1

n

)
= −5.1 eV .

and then the dissociation energy turns out

Ediss = −
[
Emin +

1
2
hν0

]
� 5 eV .
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Problems F.VIII

Problem F.VIII.1 The first ionization energy in the K atom is 4.34
eV while the electron affinity for Cl is 3.82 eV. The interatomic equilibrium
distance in the KCl molecule is 2.79 Å. Assume for the characteristic constant
in the Born-Mayer repulsive term ρ = 0.28 Å. In the approximation of point-
charge ionic bond, derive the energy required to dissociate the molecule in
neutral atoms.

Solution:
From

V (R) = −e
2

R
+B e−

R
ρ

and the equilibrium condition(
dV

dR

)
R=Re

= 0 =
e2

R2
e

− B
ρ
e−

Re
ρ

one obtains

V (Re) = − e
2

Re

(
1 − ρ

Re

)
� −4.66 eV.

The energy for the ionic configuration K+ + Cl− is (4.34−3.82)eV = 0.52eV
above the one for neutral atoms. Then the energy required to dissociate the
molecule is

Ediss = (+4.66 − 0.52) eV � 4.12 eV .

Problem F.VIII.2 In the molecule KF the interatomic equilibrium dis-
tance is 2.67 Å and the bonding energy is 0.5 eV smaller than the attractive
energy of purely Coulomb character. By knowing that the electron affinity
of Fluorine is 4.07 eV and that the first ionization potential for potassium is
4.34V, derive the energy required to dissociate the molecule in neutral atoms.

Solution:
Since

ECoulomb =
e2

Re
= 8.6 · 10−12 erg = 5.39 eV

the energy required for the dissociation in ions is Ei = (5.39−0.5) = 4.89 eV .
For the dissociation in neutral atoms Ea = Ei + Af − Pion = 4.89 + 4.07 −
4.34 eV = 4.62 eV .

Problem F.VIII.3 Derive the structure of the hyperfine magnetic states
for the ground-state of the Hydrogen molecular ion. Then numerically evaluate
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their energy separation in the assumption of σg1s molecular orbital in the
form of linear combination of 1s atomic orbitals (the interatomic equilibrium
distance can be assumed 2a0).

Solution:
From the extension of Eq. 5.3 Hhyp

mag = AH+
2

(IA + IB) · s, with AH+
2

the
hyperfine coupling constant. From I = IA + IB, I = 0 or I = 1, namely states
with F = 1/2, 3/2 and F = 1/2 are obtained.

Since I.s = (1/2)[F (F + 1) − I(I + 1) − s(s+ 1)]
the F = 3/2 and F = 1/2 levels are separated by ΔE = (3/2)AH+

2
.

AH+
2

can be obtained from

φσg1s =
1√

2(1 + SAB)
1

√
πa

3/2
0

[
e−rA/a0 + e−rB/a0

]
considering rA = 0 and rB = RAB . Then

|φσg1s(0)|2 =
1
πa30

[
1 + e−RAB/a0

]2

2(1 + SAB)
� 0.41
πa30

for SAB ≈ 0.58 (see Eq. 8.9).
In atomic Hydrogen where |φ1s(0)|2 = 1/πa30 the separation between the

F = 1 and F = 0 hyperfine levels is AH/h = 1421.8 MHz. Then in H+
2 one

deduces ΔE/h = (3/2)0.41AH � 810 MHz. (For the difference between the
ortho-states at I=1 and the para-state at I=0 read §10.9).

Problem F.VIII.4 In the assumption that an electric field E applied
along the molecular axis of H+

2 can be considered as a perturbation, evaluate
the electronic contribution to the electric polarizability (for rigid molecule and
for molecular orbital LCAO).

Solution:

HP = −ezE
At first order < g|HP |g >= 0 (where |g >= (1/

√
2(1 + SAB))(φA + φB)),

since it corresponds to the first moment of the electronic distribution, evi-
dently zero for a homonuclear molecule (see §8.5).

At the second order, involving only the first excited state
|u >= (1/

√
2(1 − SAB))(φA − φB), one has

E(2) = e2E2 | < u|z|g > |2
E+ − E−

From
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< u|z|g >=
1
2

1√
1 + SAB

√
1 − SAB

∫
(φA + φB)z(φA − φB)dτ

=
1√

1 − S2
AB

[
−RAB

2
− RAB

2

]
,

E(2) = − e2E2R2
AB

4(1 − S2
AB)(E− − E+)

and then

αH+
2

= − 1
E
∂E(2)

∂E =
e2R2

AB

2(1 − S2
AB)(E− − E+)

From Req
AB � 2a0, S2

AB � 1 and (E− −E+) � 0.1e2/a0 one has
αH+

2
� (Req

AB)3/0.4, of the expected order of magnitude (see Problem X.3.4).

Problem F.VIII.5 For two atoms A and B with J = S = 1/2, in the
initial spin state αAβB , spin-exchange collision is the process by which at
large distances (no molecule is formed) they interact and end up in the final
spin state βAαB (This process is often used in atomic optical spectroscopy
to induce polarization and optical pumping). From the extension of the
VB description of H2 (§8.3) one can assume a spin-dependent interaction
H = −2K(R)SA · SB , where K(R) is the negative, R-dependent exchange
integral favouring the S = 0 ground-state.

Discuss the condition for the spin-exchange process by making reason-
able assumptions for the collision time Rc/v, Rc being an average interaction
distance and v the relative velocity of the two atoms.

Solution:
In the singlet ground-state the interaction is

E(R) = −2K(R)
[
S2 − S2

A − S2
B

2

]
=

6K(R)
4

An approximate estimate of the time required to shift from αAβB to βAαB

can be obtained by referring to the Rabi equation (App.I.2), in a way some-
what analogous to the exchange of the electron discussed at §8.1.2 for the
H+

2 molecule. Here the Rabi frequency has to be written Γ ≈ E(R)/h̄, for R
aroundRc. Then the time for spin exchange is of the order of (π/3)(h̄/|K(Rc)|)
while the time for interaction is τc = Rc/v (v can be considered the thermal
velocity at room temperature in atomic vapors, i.e. ≈ 3 · 105 cm/s, for light
atoms). Thus one derives −3K(Rc)Rc � πh̄v.

For an order of magnitude estimate one can assume that at large distance
K(Rc) is in the range 10−3 − 10−4eV thus yielding Rc in the range 6− 60 Å.

These crude estimates for the spin-exchange process and the limits of va-
lidity are better discussed at Chapter 5 of the book by Budker, Kimball
and De Mille quoted in the Preface, where a more rigorous analysis of this
problem can be found.
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Electronic states in selected polyatomic
molecules

Topics

Polyatomic molecules from bonds between pairs of atoms
Hybrid atomic orbitals
Geometry of some molecules
Bonds for carbon atom
Electron delocalization and the benzene molecule

In this Chapter some general aspects of the electronic states in polyatomic
molecules shall be discussed. Some more detail will be given for typical molecules
where novel phenomena not encountered in diatomic molecules occur.

The electronic structure in polyatomic molecules is based on principles anal-
ogous to the ones described for diatomic molecules. As already mentioned (see
note at §8.1.1), a general theory somewhat equivalent to the Slater theory for
many-electron atoms (§3.4) can be developed. The steps of that approach are

the following. Molecular orbitals of the form φ(ri, si) =
∑

p c
(i)
p φp(ri)χ

(i)
spin are

assumed as a basis, in terms of linear combination of atomic spin-orbitals centered

at the various sites with unknown coefficients c
(i)
p . The determinantal wavefunc-

tion for all the electrons is then built up and the energy function is constructed
from the full Hamiltonian (T + Vne + Vee) (see § 7.1). The Hartree-Fock varia-

tional procedure is then carried out in order to derive the coefficients c
(i)
p . This

approach is known as MO.LCAO.SCF (self-consistent field). Advanced com-
putational methods are required and the one developed by Roothaan is one of
the most popular. More recently the density functional theory is often ap-
plied in ab-initio procedures, based on the idea that the energy can be written in
terms of electron probability density, thus becoming a functional of the charge
distribution, while the local density approximation is used to account for the
exchange-correlation corrections. Configuration interaction (see § 8.4) is usually
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taken into account. We will not deal with these topics, essentially belonging to
the realm of computational quantum chemistry.

We shall see how in poliatomic molecules qualitative aspects can be under-
stood simply in terms of the idealization of independent bonds, by considering
the molecule as resulting from pairs of atoms, each pair corresponding to a given
bond. In this way the main aspects worked out in diatomic molecules (Chapter 8)
can be extended to polyatomic molecules. Typical illustrative example is the NH3

molecule.
At § 9.2 we will discuss the molecular bonds involving hybrid atomic orbitals

and giving rise to particular geometries of the molecules, typically the ones related
to the variety of bonds involving the carbon atom. In § 9.3 the delocalization of
the electrons will be addressed, with reference to the typical case of the benzene
molecule.
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Fig. 9.1. Pictorial view of the formation of the NH3 molecule in terms of combina-
tion of localized 1s Hydrogen and of 2px,y,z N atomic orbitals, with the criterium
of the maximum overlap to grant the largest contribution to the bonding energy
from each bond (a). The electronic configuration of the molecule can be written
N(1s)2(2s)2[N(2p) + H(1s), σ]6. The equivalent configuration is shown in part (b),
where the molecule can be thought to result from the approach of the H atoms along
the opposite directions of the coordinate axes.
The evolution of the two level states is sketched in part (c) with the inversion
doublet resulting from the removal of the degeneracy. The separation energy of the
doublet is related to the exchange integral. These two states were used to obtain the
first maser operation (see Appendix IX.1).
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9.1 Qualitative aspects of NH3 and H2O molecules

In the spirit of the simplified picture of orbitals localized between pair of atoms
and independent bonds, one can sketch the formation of the NH3 molecule as
resulting from three mutually perpendicular σ MO orbitals involving LCAO
combination of 2p N atomic orbitals and 1s Hydrogen orbital (see Fig. 9.1).

Similar qualitative picture can be given for the H2O molecule (Fig. 9.2).
From those examples one can understand how the geometry of the molecules,

with certain angles between bonds, is a consequence of the maxima for the
probability of presence of the electrons controlled by atomic orbitals coupled
with the criterium of strong overlap, in order to maximize the resonance
integral.

However it should be remarked that this qualitative picture is incomplete.
In fact the angles between bonds are far from being 90◦, in general. For in-
stance in H2O the angle between the two OH bonds is about 104.31◦ (see Fig.
9.2). As we shall see in the next Section, the geometry of the molecules is
consistent with the assumption of hybrid atomic orbitals involved in the
formation of the MO’s.
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Fig. 9.2. Schematic view of the H2O molecule as resulting from two σ MO’s involv-
ing 2p O and 1s H atomic orbitals, with strong overlap of the wavefunctions when
the Hydrogen atoms approach the Oxygen along the directions of the x and y axes.
The electronic configuration can be written O(1s)2(2s2)(2pz)

2[O(2px,y)+H(1s), σ]4.
The increase of the angle between the bonds with respect to the idealized situation
of π/2 can be accounted for by the formation of non-equivalent hybrid orbitals lead-
ing to a shift of the center of the electronic cloud (or by non-localized one-electron
orbitals).
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9.2 Bonds due to hybrid atomic orbitals

By naively referring to the electrons available to form bonds by occupying
the molecular orbitals, the Be, B and C atoms would be characterized by
valence numbers nV = 0, 1 and 2, correspondent to the electrons outside the
closed shells. The common experimental findings (nV = 2, 3 and 4, respec-
tively) could qualitatively be understood by assuming that when molecules
are formed one electron in those atoms is promoted to an excited state. The
increase in the number of bonds, with the related decrease of the total energy
upon bonding, would account for the energy required to promote the electron
to the excited state. This argument by itself cannot justify the experimental
evidence. At the sake of clarity, let us refer to the CH4 molecule: its structure,
with four equivalent C-H bonds, with angles 109◦28′ in between, can hardly
be justified by assuming for the carbon atom one electron in each 2s, 2px, 2py

and 2pz atomic orbitals. A related consideration, claiming for an explanation
of the molecular geometry, is the one aforementioned for the angles between
bonds in the H2O molecule.

Again referring to CH4 and in the light of the equivalence of the four C-H
bonds, one can still keep the criterium of the maximum overlap provided
that atomic orbitals, not corresponding to states of definite angular momen-
tum, are supposed to occur in the atom when the molecule is being formed.
These atomic orbitals are called hybrid.

To account for the geometry of the bonds in CH4 we have to generate
hybrid orbitals with maxima in the probability of presence along the directions
of the tetrahedral environment, as sketched below
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From the linear combination

φC = aφ2s + bφ2px
+ cφ2py

+ dφ2pz

by resorting to the orthonormality condition, to the requirement of electronic
charge displaced along the tetrahedral directions and by considering that for
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symmetry reasons the s electron has to be equally distributed on the four
hybrid orbitals, one can figure out that the coefficients must be

a2 = 1/4 b2 + c2 + d2 = 3/4 b2 = c2 = d2,

yielding maxima for the probability of presence along the directions

(1, 1, 1) , (1,−1,−1) , (−1, 1,−1) , (−1,−1, 1) .

Thus the hybrid orbitals of the C atom are

φI =
1
2

[
2s+ 2px + 2py + 2pz

]
φII =

1
2

[
2s+ 2px − 2py − 2pz

]
φIII =

1
2

[
2s− 2px + 2py − 2pz

]
φIV =

1
2

[
2s− 2px − 2py + 2pz

]
The individual bonds with the H atoms can then be thought to result from
σ MO, given by linear combinations of the C hybrids and of the 1s H atomic
orbitals, as sketched below

+

+

+ +

That type of hybridization is called (sp3) or tetragonal. Besides the
methane molecule, is the one that can be thought to occur in the molecular-
like bonding in some crystals, primarily in diamond (C) and in semiconductors
such as Ge, Si and others (see Chapter 11).

Another type of hybridization involving the carbon atom is (sp2) or trigo-
nal one, giving rise to planar geometry of the molecule, with three equivalent
bonds forming angles of 120◦ between them, such as in the ethylene molecule,
C2H4. The hybrid orbital can be derived in a way similar to the tetragonal
hybridization, from a linear combination of 2s, 2px and 2py. By taking into
account that the coefficients b and c are proportional to the cosine of the re-
lated angles and that a2 = 1/3, b2 + c2 = 2/3, one has the following picture
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1√
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√
2√
3
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φII =
1√
3
φ2s − 1√

6
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1√
2
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1√
3
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6
φ2px − 1√

2
φ2py

Therefore the σ MO bonds are generated from the linear combination of the
1s H orbitals or of the equivalent hybrid orbital of the other carbon atom, as
sketched below
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The 2p electron described by the atomic orbital 2pz, perpendicular to the
plane of the molecule, is not involved in the hybrid and therefore it can form
a π C-C MO of the type already seen in diatomic molecules, leading to an
additional weak bond (see the N2 molecule at §8.2).
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Another interesting hybrid orbital for the carbon atom and leading to
linear molecule, such as acetylene (C2H2) is the digonal (sp) hybrid. It mixes
the s electron and one p electron only. The electronic configuration sketched
below is derived
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The C-C bond here is a triple one (one strong bond and two weak bonds).
More complex hybrid orbitals are generated in other multi-atoms molecules,

with particular geometries. For its importance and at the sake of illustration
we mention the (d2sp3) atomic orbitals, occurring in atoms with incomplete d
shells. The hybridization implies six bonds, along the positive and negative
directions of the Cartesian axes. By combining with 2p oxygen orbitals the
octahedral structure depicted in Fig. 9.3 originates, for example for BaTiO3.

We shall come back to this relevant atomic configuration, characteristic
of the perovskite-type ferroelectric titanates such as BaTiO3, at §13.3 when
dealing with the CuO6 octahedron, which is the structural core of high-
temperature superconductors.
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Fig. 9.3. The configuration of σ bonds involving the six atomic orbitals of the
central atom (for example Titanium) associated with the d2sp3 hybridization. This
atomic configuration is the one occurring, for example in the (TiO3)

2− molecular-like
unit in the BaTiO3 crystal (oxygens are shared by two units) (see §11.4).
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9.3 Delocalization and the benzene molecule

Experimental evidences, such as X-ray diffraction (in the solid state) and roto-
vibrational spectra (see Chapter 10) indicate that the benzene molecule, C6H6,
is characterized by planar hexagonal structure, with the carbon atoms at the
vertices of the hexagon. The C-H bonds form 120◦ angles with the adjacent
pair of C-C bonds. According to this atomic configuration one understands
that the Carbon atom is in the sp2 trigonal hybridization, as the one discussed
for the C2H4 molecule (§9.2). The remaining 2pz electrons of the Carbon
atoms, not involved in the hybrids, can form a πMO between adjacent C
atoms, yielding three double bonds. However, all the C-C bonds are equivalent
and the distances C-C are the same. This is one of the evidences that the
simplified picture of localized electrons, with “independent” bonds between
pairs of atoms, in some circumstances has to be abandoned. We shall see that
the structure of the benzene molecule, as well as of other molecules with π-
bonded atoms like the polyenes, can be justified only by delocalizing the
2pz electrons all along the carbon ring. Thus the one-electron orbitals are not
necessarily localized between pairs of carbon atoms. The delocalization process
is a further mechanism of bonding, since the total energy is decreased, as it
will be shown. At Chapter 12 we shall see that the electronic states in crystals
can be described as related to the delocalization of the electrons. Thus, for
certain aspects the benzene molecule can also be regarded as a prototype for
the electronic states in crystals.

By extending to the six Carbon atoms in the benzene ring the MO.LCAO
description, the one-electron orbital is written

φMO(i) =
∑

r

crφ
(r)
2pz

(9.1)

where φ(r)
2pz

are C 2p orbitals centered at the r-th site of the hexagon (r runs
from 1 to 6). Then the energy function, by referring only to the Hamiltonian
H for the 2pz C electrons, is

E(cr) =
∫
φ∗MO HφMO dτ∫
φ∗MO φMO dτ

(9.2)

By resorting to the concepts already used in diatomic molecules (§8.1) we
label βrs =

∫
φ
∗(s)
2pz

Hφ(r)
2pz
dτ as resonance integral, while Srs =

∫
φ
∗(s)
2pz
φ

(r)
2pz
dτ

is the overlap integral. One has
∫
φ
∗(r)
2pz

Hφ(r)
2pz
dτ = E0, energy of 2p electron

in the C atom and
∫
φ
∗(r)
2pz
φ

(r)
2pz
dτ = 1.

It is conceivable to assume Srs = 0 for r 
= s and to take into account the
resonance integral only between adjacent C atoms: βrs = β for r = s± 1 and
zero otherwise (this criterion was first proposed by Hückel).

Then the secular Equation for the energy function E(cr) reads
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(E0 − E) β 0 0 0 β

β (E0 − E) β 0 0 0
0 β (E0 − E) β 0 0
0 0 β (E0 − E) β 0
0 0 0 β (E0 − E) β
β 0 0 0 β (E0 − E)

⎞⎟⎟⎟⎟⎟⎠ = 0 .

The roots are E0 + 2β, E0 ± β (twice), E0 − 2β (note that β < 0).
The lowest energy delocalized π orbital, correspondent to the eigenvalue

E0 +2β, can accommodate two electrons, while on the state at energy E0 +β
one can place four electrons, as sketched below
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The bonding energy turns out 2(2β)+4β = 8β, lower than the energy 6β that
one would obtain for localized electrons. The energy 2β can be considered the
contribution to the ground state energy due to the delocalization.

In correspondence to the root (E0 + 2β) the coefficients cr in Eq. 9.1 are
equal. The normalization yields cr = 1/

√
6 and therefore the molecular orbital

is

φMO(ri) =
1√
6

[
φ2pz

(ri − l1) + ...+ φ2pz
(ri − l6)

]
(9.3)

where lr indicate nra and specifies the position of the Carbon atom along the
ring of step a. The wavefunction 9.3 is sketched in Fig. 9.4.

In correspondence to the root (E0 +β) different choices for the coefficients
cr are possible (see Problem F.IX.2 for similar situation). One choice is

φMO(ri) =
1√
12

[
2φ2pz

(ri − l1) + φ2pz
(ri − l2) − φ2pz

(ri − l3) − 2φ2pz
(ri − l4) −

−φ2pz
(ri − l5) + φ2pz

(ri − l6)
]

(9.4)

The eigenvalues can be written in the form

Ep = Eo + 2βcos[(2π/6a)pa] , (9.5)
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Fig. 9.4. Pictorial view of the πMO delocalized orbital correspondent to Eq. 9.3
(eigenvalue E0 + 2β).

while for the coefficients

c(l)p = (e2πilp/6)/(6)1/2 , (9.6)

where p = 0,±1,±2, 3.
The benzene ring can be considered the cyclic repetition of a “crystal” of

six Carbon atoms. The eigenvalues and the coefficients in the forms 9.5 and
9.6 are somewhat equivalent to the band states in a one-dimensional crystal
(see Chapter 12).

The quantitative evaluation (by means of numerical methods or by re-
sorting to approximate radial parts of the wavefunctions) of the electronic
eigenvalue as a function of the interatomic distance a yields a minimum for
a � 1.4 Å, in between the values a′ = 1.34 Å and a′′ = 1.54 Å pertaining to
double and to simple C-C bond, respectively. From spectroscopic and ther-
modynamic considerations the values of E0 and β turn out E0 � −1.52 eV
and β = −0.87 eV

The structural anisotropy of the molecule is reflected, for instance, in the
strong dependence of the diamagnetic susceptibility χdia on the orientation.
In fact, by extending the arguments discussed for atoms (§4.5) one can expect
χdia ∝ ∑

i < r
2
i sin

2θi >, with θ angle between the magnetic field and the
positional vector of a given electron. Then, in the benzene molecule,
χ
‖
dia << χ

⊥
dia (with ‖ and ⊥ to the plane of the hexagon) (see Problem F.IX.3).
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Appendix IX.1 Ammonia molecule in electric field and
the Ammonia maser

According to Fig. 9.1 the Ammonia molecule can be found in two equiv-
alent configurations, depending on the position of the N atom above (state
|1 >) or below (state |2 >) the xy plane of the H atoms. By considering
the molecule in its ground electronic state and neglecting all other degrees of
freedom, let us discuss the problem of the position of the N atom along the
z direction perpendicular to the xy plane, therefore involving the vibrational
motion in which N oscillates against the three coplanar H atoms (for details
on the vibrational motions see §10.3 and §10.6).

The potential energy V (z), that in the framework of the Born-Oppenheimer
separation (§7.1) controls the nuclear motions and that is the counterpart of
the energy E(RAB) in diatomic molecules, has the shape sketched below

V(z) (meV)

50

25

E
0

E
u

E
g

-z
0

+z
0

9.84x10
-2
meV

μ
e

|1>

μ
e

|2>

N

N

z

The distance of the N atom from the xy plane corresponding to the minima
in V (z) is zo = 0.38 Å, while the height of the potential energy for z = 0 is
Vo � 25meV. In the state |1 > the molecule has an electric dipole moment μe

along the negative z direction, while in the state |2 > the dipole moment is
parallel to the reference z-axis. Within each state the N atoms vibrate around
+zo or −zo. As for any molecular oscillator the ground state has a zero-point
energy different from zero, that we label Eo (correspondent to the two levels
A and B sketched in Fig. 9.1.c). The vibrational eigenfunction in the ground
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state is a Gaussian one, centered at ±zo (see §10.3). The effective mass of the
molecular oscillator is μ = 3MHMN/(3MH +MN ).

Thus the system is formally similar to the H+
2 molecule discussed at §8.1,

the |1 >, |2 > states corresponding to the electron hydrogenic states 1sA and
1sB , while the vibration zero-point energy corresponds to −RHhc. Therefore,
the generic state of the system is written

|ψ >= c1|1 > +c2|2 > (A.IX.1)

with coefficients ci obeying to Eqs. 8.13. Here H12 = −A is the probability
amplitude that because of the quantum tunneling the N atom jumps from
|1 > to |2 > and viceversa, in spite of the fact that Eo � Vo. Two stationary
states are generated, say |g > and |u >, with eigenvalues Eo −A and Eo +A,
respectively. The correspondent eigenfunctions are linear combinations of the
Gaussian functions describing the oscillator in its ground state (see §10.3):

-z
0 -z

0
+z

0 +z
0

z
z

ψ
ψ

|u>
|g>

The degeneracy of the original states is thus removed and the vibrational
levels are in form of doublets (inversion doublets). For the ground-state the
splitting Eg − Eu = 2A corresponds to 0.793 cm−1, while it increases in the
excited vibrational states, owing to the increase of H12. For the first excited
state 2A′ =36.5 cm−1 and for the second excited state 2A′′ =312.5 cm−1. It
can be remarked that the vibrational frequency (see §10.3) of N around the
minimum in one of the wells is about 950 cm−1.

The inversion splitting are drastically reduced in the deuterated Ammonia
molecule ND3 where for the ground-state 2A =0.053 cm−1. Thus the tunneling
frequency, besides being strongly dependent on the height of the effective
potential barrier Vo, is very sensitive to the reduced mass μ. For instance, in
the AsH3 molecule, the time required for a complete tunneling cycle of the
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As atom is estimated to be about two years. These marked dependences on
Vo and μ explains why in most molecules the inversion doublet is too small
to be observed.

In NH3 the so-called inversion spectrum was first observed (Cleeton
and Williams, 1934) as a direct absorption peak at a wavelength around
1.25 cm, by means of microwave techniques. This experiment opened the field
presently known as microwave spectroscopy.

The typical experimental setup is schematically shown below

Lock-in

Modulation Amplifier

Stark electrode

Detector

Isolator

Klystron

Voltage 

ramp

Computer

Frequency measurement

Finally it should be remarked that the rotational motions of the molecule
(§10.2), as well as the magnetic and quadrupolar interactions (Chapter 5), in
general cause fine and hyperfine structures in the inversion spectra.

As already mentioned the |g > and |u > states of the inversion doublet
in NH3 have been used in the first experiment (Townes and collaborators)
of microwave amplification by stimulated emission of radiation (see
Problem F.I.1). The maser action requires that the statistical population Nu

is maintained larger than Ng while a certain number of transitions from |u >
to |g > take place.

Now we are going to discuss how the Ammonia molecule behaves in a
static electric field. Then we show how by applying an electric field gradient
(quadrupolar electric lens) one can select the Ammonia molecule in the
upper energy state.

In the presence of a field E along z the eigenvalue for the states |1 > and
|2 > become

H11 = Eo + μeE and H22 = Eo − μeE
The rate of exchange can be assumed approximately the same as in absence

of the field, namely H12 = −A. The analogous of Eqs. 8.13 for the coefficients
ci in A.IX.1 are then modified in
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ih̄
dc1
dt

= (Eo + μeE)c1 −Ac2 (A.IX.2)

ih̄
dc2
dt

= (Eo − μeE)c2 −Ac1 (A.IX.3)

The solutions of these equations must be of the form ci = aiexp(−iEt/h̄),
with E the unknown eigenvalue. The resulting Eqs. for ai are

(E − Eo − μeE)a1 +Aa2 = 0
Aa1 + (E − Eo + μeE)a2 = 0

and the solubility condition yields

E± =
H11 +H22

2
±

√
(H11 −H22)2

4
+A2 = Eo ±

√
A2 + μ2

eE2 (A.IX.4)

(representing a particular case of the perturbation effects described in Ap-
pendix I.2 (Eqs. A.I.2.4)). When the perturbation is not too strong compared
to the inversion splitting, Eq. A.IX.4 can be approximated in the form

E± = Eo ±A± μ
2
eE2

2A
. (A.IX.5)

E± are reported below as a function of the field.
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Eq. A.IX.5 can be read in terms of induced dipole moments μ±ind =
−dE±/dE = ∓μ2

eE/A. Therefore, if a collimated beam of molecules passes
in a region with an electric field gradient across the beam itself, molecules in
the |u > and |g > states will be deflected along opposite directions (this
effect is analogous to the one observed in the Rabi experiment at §6.2). In
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particular, the molecules in the |g > state will be deflected towards the region
of stronger E2, owing to the force −∇[−(μeE)2/2A].

In practice, to obtain a beam with molecules in the upper energy state
one uses quadrupole electric lenses, providing a radial gradient of E2. The
square of the electric field varies across the beam. Passing through the lens
the beam is enriched in molecules in the excited state and once they enter the
microwave cavity the maser action becomes possible. The experimental setup
of the Ammonia maser is sketched in the following Figure.
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The basic principles outlined above for the Ammonia maser are also at
work in other type of atomic or solid-state masers. In the Hydrogen or Ce-
sium atomic maser the stimulated transition involves the hyperfine atomic
levels (see Chapter 5). For the line at 1420 MHz, for instance, the selection
of the atoms in the upper hyperfine state with F = 1 is obtained by a mag-
netic multipolar lens. Then the atomic beam enters a microwave cavity tuned
at the resonance frequency. The resolution (ratio between the linewidth and
1420 MHz) can be improved up to 10−10, since the atoms can be kept in the
cavity up to a time of the order of a second. The experimental value of the
frequency of the F = 1 → 0 transition in Hydrogen is presently known to be
(1420405751.781 ± 0.016 Hz), while for 133Cesium the F = 4 → 3 transition
is estimated 9192631770 Hz, which is the frequency used to calibrate the unit
of time (see §5.2).

Solid state masers are usually based on crystals with a certain number of
paramagnetic transition ions, kept in a magnetic field and at low tempera-
ture, in order to increase the spin-lattice relaxation time T1 and to reduce the
linewidth associated with the life-time broadening (see Chapter 6) (as well as
to reduce the spontaneous emission acting against the population inversion).
A typical solid state maser involves ruby, a single crystal of Al2O3 with di-
luted Cr3+ ions (electronic configuration 3d3). The crystal field removes the
degeneracy of the 3d levels (details will be given at §13.3) and the magnetic
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field causes the splitting of the MJ = ±3/2,±1/2 levels. The population in-
version between these levels is obtained by microwave irradiation of proper
polarization.

Here we have presented only a few aspects of the operational principles of
masers, which nowadays have a wide range of applications, due to their reso-
lution (which can be increased up to 10−12) and sensitivity (it can be recalled
that maser signals reflected on the surface of Venus have been detected).



Problems F.IX 309

Problems F.IX

Problem F.IX.1 Under certain circumstances the cyclobutadiene molecule
can be formed in a configuration of four C atoms at the vertices of a square.
In the MO.LCAO picture of delocalized 2pz electrons derive the eigenvalues
and the spin molteplicity of the ground state (within the same approximations
used for C6H6 ).

Solution:
The secular equation is∣∣∣∣∣∣∣∣

α− E β 0 β
β α− E β 0
0 β α− E β
β 0 β α− E

∣∣∣∣∣∣∣∣ = 0 .

By setting α− E = x, one has x4 − 4β2x2 = 0
and then E1 = −2|β| + α , E2,3 = α , E4 = 2|β| + α .

Ground state: 4α−4|β|. Since the Hund rules hold also in molecules (see
§8.2), the ground-state is a triplet.

Problem F.IX.2 Refer to the C3H3 molecule, with carbon atoms at the
vertices of an equilateral triangle. Repeat the treatment given for C6H6, de-
riving eigenfunctions and the energy of the ground-state. Then release the
assumption of zero overlap integral among orbitals centered at different sites
and repeat the derivation. Estimate, for the ground-state configuration, the
average electronic charge per C atom.

Solution:
For Sij = 0 for i 
= j, the secular equation is∣∣∣∣∣∣

E0 − E β β
β E0 − E β
β β E0 − E

∣∣∣∣∣∣ = 0

so that
EI = E0 + 2β EII,III = E0 − β

and the ground-state energy is

Eg = 3E0 + 4β − β = 3E0 + 3β

The eigenfunctions turn out

φI =
1√
3
[φ1 + φ2 + φ3] ≡ A√

3
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φII =
1√
2
[φ1 − φ3] ≡ B√

2

φIII =
1√
6
[−φ1 + 2φ2 − φ3] ≡ C√

6
The total amount of electronic charge on a given atom (e.g. atom 1) is given
by the sum of the squares of the coefficient pertaining to φ1 in φI,II,III :

q = 2(
1√
3
)2 +

1
2
[(

1√
2
)2 + (

1√
6
)2] = 1

(having taken the average of the two degenerate states).

For Sij ≡ S 
= 0, the secular equation becomes∣∣∣∣∣∣
E0 − E β − SE β − SE
β − SE E0 − E β − SE
β − SE β − SE E0 − E

∣∣∣∣∣∣ = 0

and the eigenvalues are

EI =
E0 + 2β
1 + 2S

EII,III =
E0 − β
1 − S

The ground-state energy is

Eg = 2EI +EII = 3
E0 + β(1 − 2S)
(1 + 2S)(1 − S)

with normalized eigenfunctions

φI =
A√

3(1 + 2S)

φII =
B√

2(1 − S)

φIII =
C√

6(1 − S)

Again, by estimating the squares of the coefficients the charge at a given
atom turns out

q′ =
1

(1 − S)(1 + 2S)
.

The charge in the region “in between” two atoms (e.g. atoms 1 and 2) is
obtained by evaluating the sum of the coefficients c1c2 (for φ1 and φ2) in
φI,II,III , multiplied by the overlap integral. Thus

q” =
S(1 − 2S)

(1 − S)(1 + 2S)
.
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Problem F.IX.3 Estimate the order of magnitude of the diamagnetic
contributions to the susceptibility in benzene, for magnetic field perpendicular
to the molecular plane.

Solution:
The diamagnetic susceptibility (per molecule) can approximately be written

χψ = − nψe
2

6mc2
< r2 >ψ ,

where nψ is the number of electrons in a molecular state ψ and < r2 >ψ is
the mean square distance.

In benzene there are 12 1s electrons of C, with < r2 >1s� a20/Z2 (Z = 6).
Then there are 24 electrons in σ bonds for which, approximately,

< r2 >σ �
∫ L

2

−L
2

dx

L
x2 =

L2

12
,

the length of the σ bond being L = 1.4
◦
A .

Finally there are 6 electrons in the delocalized bond πz, where one can as-
sume < r2 >πz

� L2. The diamagnetic correction at the center of the molecule
is in large part due to the delocalized electrons and from that value of< r2 >πz

one can crudely estimate χπ ≈ −0.49 · 10−28 cm3 . The experimental val-
ues for the single-molecule susceptibility are χ⊥dia = −1.52 · 10−28 cm3 and
χ
‖
dia = −0.62 · 10−28 cm3 , for magnetic field perpendicular and parallel to

the plane of the molecule.
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Nuclear motions in molecules and related
properties

Topics

Rotations and vibrations in diatomic molecules
How the rotational and vibrational states are studied
The normal modes in polyatomic molecules
Basic principles of Raman spectroscopy
Nuclear spin statistics and symmetry-related effects

10.1 Generalities and introductory aspects for diatomic
molecules

In the framework of the Born-Oppenheimer separation (§ 7.1), once that the
electronic state has been described and the eigenvalue Ee(R) and wavefunc-
tion φe(r,R) have been found, then the motions of the nuclei are described by
a function φ(g)

ν (R), where g represents the quantum label for the electrons and
ν are the quantum numbers (to be found) for the nuclei. This wavefunction
is solution of the Equation

{−
∑
α

h̄2

2Mα
∇2

α + Ee(R)}φ(g)
ν (R) = Eg,ν φ

(g)
ν (R) (10.1)

(note that Vnn in Eq. 7.3 and 7.5 has been included in Ee(R), see for example
Eq. 8.1).

Let us refer to a diatomic molecule in the ground electronic state, for
which we assume Λ = 0 and S = 0 (1Σ state) and let us indicate the effective
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potential energy, resulting from the electronic eigenvalue and the nucleus-
nucleus repulsion, with V (R), R being the interatomic distance (previously
often indicated by RAB). It is reminded that V (R) has the form sketched
below

 

 

V (R) 

Re � RAB
eq   R � RAB

RAB 

MA 

MB 

C    
 Center of mass 

By introducing the reduced mass μ = MAMB/(MA +MB) the molecule
becomes equivalent to a single particle. By recalling the approach used for the
Hydrogen atom, Eq. 10.1 is rewritten

{− h̄
2

2μ

[
1
R2

∂

∂R
(R2 ∂

∂R
)
]

+ Tθ + Tϕ + V (R)}φ(R, θ, ϕ) = E φ(R, θ, ϕ) (10.2)

where the polar coordinates R, θ and ϕ have been introduced and (Tθ + Tϕ)
involves the angular momentum operator L2. The difference with respect to
the radial part of the Schrödinger equation for Hydrogen is in the potential
energy V (R), obviously different from the Coulombic form although still of
central character. Thus the factorization of the wavefunction follows:

φ(R, θ, ϕ) = R(R)Y (θ, ϕ) , (10.3)

YKM (θ, ϕ) being the spherical harmonics characterized by quantum numbers
K andM (the analogous of l and m in the H atom), related to the eigenvalues
for L2 and Lz.

The radial part of the wavefunction, R(R), obeys the Equation

TRR +
[
V (R) +

K(K + 1)h̄2

2μR2

]
R = ER (10.4)

and corresponds to the one-dimensional probability of presence along a given
direction under a potential energy including the centrifugal term, as sketched
below
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By indicating with Q the internuclear distance R with respect to the equi-
librium distance Re, in terms of the local displacements xA and xB one has

Q = R−Re = xB +Re − xA −Re ≡ xB − xA. (10.5)

Thus Q is a non-local coordinate (we shall return to this point when dis-
cussing the vibrational motions in polyatomic molecules, § 10.6). Then the
centrifugal term in Eq. 10.4 can be written

K(K + 1)h̄2

2μR2
e

[
1

1 + Q
Re

]2

� K(K + 1)h̄2

2μR2
e

(1 − 2Q
Re

) (10.6)

having taken into account that (Q/Re) � 1.
In Eq. 10.6 the term 2Q/Re couples the vibrational and the rotational mo-

tions. In a first approximation this term can be considered as perturbation
and one can deal with the rotational part of the Schrodinger equation only.
After the analysis of the vibrational part and the derivation of the correspon-
dent wavefunction R(R) ≡ φvib(R), it will be possible to take into account
the roto-vibrational coupling by referring to unperturbed states described by

φ(R, θ, ϕ) = φvib(R)φrot(θ, ϕ) (10.7)

with φrot(θ, ϕ) ≡ YKM (θ, ϕ), with the perturbation term given by −(2Q/Re).

10.2 Rotational motions

10.2.1 Eigenfunctions and eigenvalues

From §10.1 it follows that the contribution to the energy of the molecule from
the rotational motion is

Erot = K (K + 1) h̄2/2μR2
e (10.8)

This result can be thought to derive directly from the quantization of the an-
gular momentum P in the classical expression of the rotational energy P 2/2I,
I being the moment of inertia I = R2

eμ.
The eigenfunctions φrot(θ, ϕ), so that φ∗rotφrot dΩ yields the probabil-

ity that the molecular axis is found inside the elemental solid angle dΩ =
sinθ dθ dϕ, coincide with the spherical harmonics. In the light of the classical
relation |P| = Iω, to a given quantum state with eigenvalue
|P| = [K(K + 1)]1/2 h̄, one can associate a frequency of rotation νrot =
(h/4π2I) [K(K + 1)]1/2.

A fundamental rotational frequency

νrot = h̄/2π μR2
e = h̄/2π I (10.9)
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Fig. 10.1. Levels diagram for the lowest-energy rotational states.

or equivalently a rotational constant (in cm−1) B = (h̄/4π I c), are usually
defined (B ≡ (h̄2/2μR2

e)/hc).
The energy diagram for the first rotational states is reported in Fig. 10.1.
The probability distribution of the molecular axis involves Y ∗

KMYKM .
Since the ϕ-dependence of the spherical harmonics goes as exp(± iM ϕ), the
distribution of the molecular axes is characterized by rotational symmetry
with respect to a given z direction. ForM = K and large value of the quantum
numbers the distribution tends to the classical one, as expected from the
correspondence principle.

10.2.2 Principles of rotational spectroscopy

The rotational states are experimentally studied by means of spectroscopic
techniques involving the microwave range (typically 10−1 ÷ 10 cm−1) or the
far infrared range (10 ÷ 500 cm−1) of the electromagnetic spectrum (see Ap-
pendix I.1). Usually the sample is a gas at reduced pressure, since frequent
collisions would prevent the definition of a precise quantum state (which is
hard to define in the liquid state, for instance).

The generators of the radiation are often metals at high temperature or
arc lamps while the detectors are semiconductor devices (for wavenumbers
typically larger than 10 cm−1). When low frequencies are required (say be-
low 150 GHz), klystrons, magnetrons or Gunn diodes (usually fabricated with
GaAs) are the microwave sources. Wave guides, resonant cells and again semi-
conductor detectors are commonly used.
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Without going into details of technical character, we shall devote attention
to the selection rules for electric dipole transitions between the states (K ′,M ′)
and (K ′′,M ′′).

The electric dipole matrix element reads

R1→2 =
∫
Y ∗

K′′M ′′(θ, ϕ)μe YK′M ′(θ, ϕ) sinθ dθ dϕ (10.10)

where μe is the dipole moment of the molecule. Therefore only heteronuclear
polar molecules, where |μe| 
= 0 can be driven into transitions between
different rotational states. Homonuclear molecules cannot interact with the
radiation. From the matrix element in Eq. 10.10, in a way similar to the
deduction of the selection rules for atomic transitions (see § 3.5 and App. I.3),
the selection rules for electric dipole transitions between rotational states in
polar molecules are

ΔK = ±1 ΔM = 0,±1 , (10.11)

the latter being relevant when a static electric field is applied (see §10.2.4).
The energy difference between the states K and (K + 1) is

ΔEK+1, K =
h̄2

2I

[
(K + 2)(K + 1) −K(K + 1)

]
=
h̄2

I
(K + 1) . (10.12)

Then in principle one expects rotational transitions at frequencies ν = n νrot

(Eq. 10.9), with n integer.
The intensities of the lines, to a good approximation, are controlled

by the statistical populations of the rotational levels. According to the
Maxwell-Boltzmann statistics (the molecules are distinguishable), the number
of molecules on a given K state, at the thermal equilibrium, is

NK = AgK e−EK/kB T (10.13)

with gK = (2K + 1). The normalization constant can be expressed in terms
of the population on the K = 0 level and thus one writes

NK(T ) = NK=0(T ) (2K + 1) e−
K(K+1)h̄2

2IkBT , (10.14)

a function of the “variable” K of the form sketched below

 

∝ exp (-K (K+1)) 

∝ K  

NK(T)  

K 
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and implying typical absorption spectrum of the form shown in Figs. 10.2 and
10.3.

The fundamental rotational constants B = h̄/4πIc for some diatomic
molecules are reported below

Molecule B(cm−1)
H2 60.8
N2 2.01
O2 1.45
HCl 10.6
NaCl 0.19

 
� 2K+1 

� exp (-K2) 

� (Hz)  • 1012 � 0.25 

      I/I0 

  

Fig. 10.2. Sketch of the expected absorption rotational spectrum for the DBr
molecule on the basis of Eqs. 10.14 and 10.9. The intensities of the lines are nor-
malized to the one of the K = 0 → K = 1 line. The rotational frequency ν̄ = νrot/c
is around 8 cm−1, corresponding to rotational temperature hνrot/kB ≈ 12 K.
The separation between adjacent lines is 2B and θrot is often defined as θrot =
h̄2/2IkB = Bhc/kB (see §10.2.1).
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Fig. 10.3. (left) Absorption rotational spectrum of the HF molecule. The intensities
of the lines are normalized to the K = 0 → K = 1 line. In the right panel the
wavenumbers associated with the K → K+1 transitions are reported as a function of
K. A departure from the interval rule is observed at large K, owing to the increased
strength of the coupling between rotational and vibrational motions (see §10.5).

10.2.3 Thermodynamical energy from rotational motions

Once the structure of the quantum levels is known, from the statistical distri-
bution function it is possible to derive the thermodynamical energy Urot and
the specific heat. One has

Urot =
∑
K

NKEK (10.15)

with NK given by Eq. 10.14, where NK=0(T ) can be written

NK=0 = N/Zrot (N total number of molecules)

The rotational partition function Zrot is

Zrot =
∑
K

(2K + 1) e−EK/kB T (10.16)

It is noted that the single molecule energy in terms of Zrot (see Problem
VI.1.4) is

Urot = kB T
2 d

dT
lnZrot .

In the high temperature limit T � θrot ≡ h̄2/2IkB (θrot ∼ 5÷10K for most
molecules, with the exception of H2 where θrot � 87K), the sum over K can
be transformed to an integral:
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Zrot ≈
∫ ∞

0

2K e−K2 θrot/T dK =
T

θrot
. (10.17)

For one mole (N = NA), Urot ≈ NA kB T and the specific heat turns out
CV ≈ R, as expected from classical statistics.

The temperature behavior of the molar specific heat (see Problem F.VI.1)
is schematically reported below

 

C
V
 

R 

~ θ
rot 

T 

(For relevant aspects occurring in homonuclear molecules see Problems X.9.1
and X.9.2).

10.2.4 Orientational electric polarizability

Let us outline how one can describe the effect of a static electric field on an
assembly of dipolar diatomic molecules and how the polarizability is evaluated.

The perturbation to the rotational states is given by the Hamiltonian

Hp = −μe · E ≡ −|μe| E cosθ ,
with E electric field along the z direction.
From parity argument one notes that the first order contribution to the energy
is zero:

〈K ′,M ′ |Hp |K ′,M ′〉 = 0

Thus a correction term to the eigenvalues of the form ΔE ∝ E2 and
(μeff )z ∝ E is expected, implying an effective induced dipole moment
and therefore positive polarizability, somewhat similar to the paramagnetic
susceptibility derived at § 4.4.

For the ground-state at K = M = 0 the second-order perturbation cor-
rection

ΔE
(2)
0 =

∑
(K,M)�=0

< 0|Hp|K,M >< K,M |Hp|0 >
E0 − EK,M

reduces to

ΔE
(2)
0 = − I

h̄2μ
2
eE2|

∫
sinθdθdφ

1√
4π
cosθ

√
3√
4π
cosθ|2 = −1

3
μ2

eE2 I

h̄2 ,

(10.18)
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having taken into account that the only matrix element different from zero
is the one connecting the state K = 0 to the state K = 1,M = 0, with
eigenfunctions 1/

√
4π and

√
3/4πcosθ, respectively. Then

α(0, 0) = − 1
E
∂ΔE

(2)
0

∂E =
2μ2

eI

3h̄2 (10.19)

For the states at K 
= 0 we report the result of the estimate similar to the
one given above:

E(K,M, E) = E0
K +

μ2
e E2 I

h̄2

[
K(K + 1) − 3M2

K (K + 1) (2K − 1) (2K + 3)

]
, (10.20)

for K 
= 0.
From the sum over M in a given state |K,M > (in first approximation

the energy can be considered to depend only on K), Eq. 10.20 yields

α(K) �
∑
M

α(K,M) = 0 for K 
= 0

(note that
∑M

K=−M M
2 = K(K + 1)(2K + 1)/3).

Then only the ground state (K =M = 0) contributes to the orientational
effective electric moment along the field. The polarizability is temperature
dependent, since the population of this state is affected by the temperature.

The thermal average reads

〈α〉T =
α(0, 0)
Zrot

(10.21)

When for Zrot the sum over K can be transformed into an integral (see
Eq. 10.17), by taking into account Eq. 10.18 with θrot = h̄2/2IkB , the single-
molecule polarizability becomes

〈α〉T =
μ2

e

3 kB T
, (10.22)

similar to the classical form

〈μe〉z = μe 〈cosθ〉
for

〈cosθ〉 =
∫
eμ E cosθ/kB T cosθ dΩ∫
eμ E cosθ/kB T dΩ

= ctnhx− 1
x
≡ L(x)

with L(x) Langevin function, that for x = μE/kBT � 1 becomes
L(x� 1) � x/3.
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10.2.5 Extension to polyatomic molecules and effect of the
electronic motion in diatomic molecules

In the following we sketch how the rotational eigenvalues can be obtained
in polyatomic molecules when particular symmetries allows one to extend
the quantum rules for the angular momentum already recalled in diatomic
molecules.

The classical rotational Hamiltonian reads

Hrot =
P 2

A

2 IA
+
P 2

B

2 IB
+
P 2

C

2 IC
(10.23)

where IA,B,C are the moments of inertia with respect to the principal axes of
the tensor of inertia (conventionally IA < IB < IC).

When the molecule is a prolate rotator, namely IA < IB = IC , as for
instance in CH3F sketched below

 

H
H 

H 

C 

F 
IC

IA 

IB 

then the Hamiltonian can be rewritten

Hrot =
P 2

A

2 IA
+
P 2

A

2 IB
− P 2

A

2 IB
+
P 2

B + P 2
C

2 IB
=
P 2

2 IB
+ P 2

A (
1

2 IA
− 1

2 IB
) (10.24)

Therefore from the quantization rules

P 2 = K(K + 1) h̄2 PA =Mh̄

the eigenvalues of the rotational energy turn out

E(K,M) =
K(K + 1) h̄2

2 IB
+M2 h̄2 (

1
2 IA

− 1
2 IB

) , (10.25)

where now M refers to the component along the molecular axis A.
Equivalently, for an oblate rotator, where IA = IB < IC (as for instance

in C6H6 (see § 9.3)), one has a similar result.
In the general case, when IA 
= IB 
= IC , no simple expressions can be de-

rived for the eigenvalues and therefore reference to limit situations is usually
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made.

Up to now, in discussing the rotational motions, the electronic motions
have been disregarded. In fact, for diatomic molecules it has been assumed
the most common case of 1Σ ground-state, where the components of the
orbital and spin moments along the molecular axis are zero.

The derivation of the rotational eigenvalues carried out for the prolate
polyatomic rotator and leading to Eq. 10.25, can be used to include the ef-
fect of the electron motion for diatomic molecules in electronic state Λ 
= 0.
In a simplified picture, in fact, the electronic clouds can be regarded as a
rigid charge distribution rotating around the molecular z-axis. Thus the di-
atomic molecule can be considered somewhat equivalent to a prolate rotator,
with moments of inertia IA ≡ Ielec and IB = IC = Inucl., with IA � IB,C .
Then, from extension of Eq. 10.25, at variance with Eq. 10.8 the rotational
eigenvalues for diatomic molecules in an electronic state different from Σ turn
out

Erot(K,Λ) =
h̄2

2μR2
e

[K(K + 1) − Λ2] +
h̄2

2Ielec
Λ2 , (10.26)

Λ being the quantum number for Lz (or for Jz in the case of strong spin-
orbit coupling). The last term in Eq. 10.26, much larger than the first one
and independent from the rotational levels, is the one involved in the electron
kinetic energy. When the molecule is in a state at Λ 
= 0 the roto-vibrational
structure (see §10.5) in the spectra involving electronic states display an extra
line correspondent to a transition at ΔK = 0, called Q-branch. This line
is frequently observed in the electronic lines of band spectra (§10.8) or in
Raman spectroscopy (§10.7), when transitions between electronic states are
involved (see for example Figs. 10.8 and 10.9). This line is obviously absent
when transition involves two Σ states.
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Problems X.2

Problem X.2.1 As sketched in the following scheme the emission spec-
trum in the far infrared region from HBr molecules displays a series of lines
regularly shifted by about 15 cm−1.

Derive the statistical populations of the rotational levels for T = 12K,
36K and 120K. Estimate the interatomic equilibrium distance and obtain the
relationship between temperature and rotational numberKmax corresponding
to the line of maximum intensity.

 

 

 

correspondent to 15 cm
-1

 

   Ki 

  Kf 

ν 

Solution:
The separation among adjacent lines (Fig. 10.1 and Eq. 10.12) is 2Bhc, then
h̄2/2I = 1.06 meV, yielding Re = 1.41 Å .
The maximum intensity implies (∂N(K)/∂K)Kmax

= 0. Then, from Eq. 10.14,
T = h̄2(2Kmax + 1)2/4kBI.

The statistical populations as a function of K are reported below:
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Problem X.2.2 For an ensemble of diatomic molecules at the thermal
equilibrium write the contribution from rotational motions to the free energy
F and to the entropy S in the limits T � θrot and T → 0.

Solution:
From §10.2.3, by extending Eq. 10.17 in the high temperature limit one has

Z �
∫ ∞

0

dK(2K + 1)e−K(K+1)Θrot/T � T

Θrot
(1 +

Θrot

3T
)

while for T → 0 Z � 1 + 3 exp(−2Θrot/T ). Thus for T � Θrot the free
energy per molecule turns out

F � −kBT

[
ln
T

Θrot
+
Θrot

3T

]
,

while for the entropy S = (U − F )/T , with

U � kB(T − Θrot

3
) ,

so that
S � kB + kBln

T

Θrot
.

For T → 0 one finds

U � 6kBΘrote
−2Θrot/T ,

F � −kBT ln(1+3e−2Θrot/T ) , S � 6kBΘrot

T
e−2Θrot/T +kBln(1+3e−2Θrot/T ) .

Problem X.2.3 By referring to the three rotational levels depicted in
Fig. 10.1, plot the splittings induced in the H35Cl molecule by a static electric
field E (Stark effect), indicating the transition that can be observed in rota-
tional spectroscopy. Then assume for the field the value E = 104 V olt/cm and
estimate the splitting induced in the K = 1 states, giving an order of mag-
nitude of the resolution of the spectrometer required to evidence the doublet
associated with K = 0 → K = 1 transition.

Solution:
From Eq. 10.20 the K = 1 state is opened in a doublet, with a splitting among
M = 0 and M = ±1 levels of (3/20)μ2

eE2/Bhc. From Eq. 10.18 the shift
of the ground-state is μ2

eE2/6Bhc. The transitions follow the selection rule
ΔK = ±1, ΔM = 0,±1. Since the doublet associated with K = 0 → K = 1
transition is split by the amount (3/20)μ2

eE2/Bhc, for μe � 10−18 u.e.s. cm
and B � 10.56 cm−1 (correspondent to I = 2.68 × 10−40 g.cm2), one finds
that the resolution required is
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Δν̄

ν̄
=

3
20
μ2

eE2

Bhc

1
2Bhc

� 1.9 × 10−5

Problem X.2.4 In the rotational spectrum of H35Cl two lines are de-
tected with the same strength at 106 cm−1 and at 233.2 cm−1. Derive the
temperature of the gas (remind that B � 10.56 cm−1).

Solution:
From

ν̄ = 2B(K + 1),

with B = 10.6 cm−1, one has for ν̄1 = 106.0 cm−1 K1 = 4 and for ν̄2 =
233.2 cm−1 K2 = 10 . For intensity proportional to the population of the
rotational levels,

(2K1 + 1)e−
hcBK1(K1+1)

kBT = (2K2 + 1)e−
hcBK2(K2+1)

kBT

and
T =

90hcB
kB ln(2.33)

� 1620K .
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10.3 Vibrational motions

10.3.1 Eigenfunctions and eigenvalues

Going back to the radial part of the Schrödinger equation (Eq. 10.4), again
disregarding the term −2Q/Re and without including the rotational terms
K(K + 1) h̄2/2I which does not depend on (R−Re), the function
U(R) = RR(R) is introduced, so that the equation becomes

d2U

dR2
+

2μ
h̄2

[
E − V (R)

]
= 0 (10.27)

While the full expression of the potential energy V (R) is unknown, the
vibration involves small displacements around the equilibrium position Re

and then one can write

V (R) = V (Re) + (
dV

dR
)Re

(R−Re) +
1
2
(
d2V

dR2
)Re

(R−Re)2 + ... (10.28)

Since (dV
dR )Re

is zero, by omitting the constant V (Re) (namely the energy E
has to be added to the electronic energy at the equilibrium position, see Fig.
7.2), in terms of the non-local coordinate Q = xA − xB (Eq. 10.5), one has

V (R) =
1
2
kQ2 + ..., (10.29)

where k is the curvature of V (R) around the equilibrium position. In the
harmonic approximation higher order terms in the expansion 10.28 are
neglected. The equation for the vibration of the nuclei around the equilibrium
position is thus written

− h̄
2

2μ
d2U

dQ2
+

1
2
kQ2U = EU , (10.30)

the well known form for the harmonic oscillator (with −Re ≤ Q <∞). Then
the eigenfunctions are related to the Hermite polynomials and the eigen-
values are

Ev = (v + 1/2)hνo (10.31)

with quantum number v = 0, 1, 2, 3..., while νo = (1/2π)
√
k/μ corresponds to

the frequency of the classical oscillator with same mass and elastic constant.
The eigenvalues and eigenfunctions for low energy states are depicted in

Fig. 10.4. The ground state (v = 0) is described by the wavefunction

U(Q) = (
b

π
)1/4e−Q2b/2, with b =

2πνoμ
h̄

(10.32)

implying a behavior significantly different from the one expected for clas-
sical oscillator for which the maxima of probability of presence are at the
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E

(x 10
13

erg)

U(Q)

Å

Fig. 10.4. First vibrational states in a diatomic molecule, having assumed
k = 5 × 105 dyne/cm and effective mass μ = 10−23 g, corresponding to vibrational
frequency ν0 = 3.6 ·1013 Hz. The dotted lines correspond to the maxima elongations
according to the classical oscillator in the parabolic potential energy indicated by
the solid line.
Typical values for the force constants are i) in H2 k � 5 × 105 dyne/cm; ii) in O2

(where a double bond is present) k � 11 × 105 dyne/cm; iii) in N2 (triple bond)
k � 23 × 105 dyne/cm; iv) in NaCl (ionic bond) k � 1.2 × 105 dyne/cm.

boundaries of the motion. Other relevant differences with respect to classical
oscillator are the extension of the “motion” outside the extreme elongations
and the occurrence of zero-point energy Ev=0 = (1/2)hνo.

The mean square displacement from the equilibrium position reads

< Q2 >v=
∫
U∗

v Q
2 Uv dQ (10.33)

and from the expressions of the Hermite polynomials one finds

< Q2 >v=
h̄√
μk

(v + 1/2) = Ev/k (10.34)

implying Ev = k < Q2 >v, the same relation holding for the classical oscilla-
tor.

To give a few representative examples, in the HCl molecule the vibra-
tional frequency is ν0 = 8.658 × 1013 Hz, corresponding to a force constant
k = 4.76 × 105 dyne/cm, while in CO ν0 = 6.51 × 1013 Hz, corresponding to
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a force constant k = 18.65 × 105 dyne/cm.
Some vibrational constants ν̄0 for homonuclear diatomic molecules are re-
ported below:

Molecule (cm−1)
H2 4159 (see caption in Fig. 10.4)
N2 2330
O2 1556 (see caption in Fig. 10.4)
Li2 246
Na2 158
Cs2 42

10.3.2 Principles of vibrational spectroscopy and anharmonicity
effects

In regards of the main aspects the spectroscopic studies of the vibrational
states in molecules are similar to the ones in optical atomic spectroscopy. The
spectral range typically is within 100−4000 cm−1 (see Appendix I.1) and the
devices are no longer based on glasses but rather use alkali halides, to reduce
the absorption of the infrared radiation. The diffraction gratings grant a
better resolution and the detectors are usually semiconductor devices. Details
of technical character can be found in the exhaustive book by Svanberg,
quoted in the Preface.

As for rotational spectroscopy, being more interested into the fundamental
aspects, we turn our attention to the transition probability due to the electric
dipole mechanism. For two vibrational states at quantum numbers v′ and v′′,
the component along the molecular axis of the electric dipole matrix element
reads

(Rv′→v′′)z =
∫
U∗

v′′μeUv′dQ (10.35)

where μe(Q) is a complicate function of the interatomic distance R.
The sketch of a plausible dependence of μe with R is given below

 

 
 

 

R 
Re 

�e 
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One can expand μe around Re in terms of Q:

μe = μe(0) + (
dμe

dQ
)0Q+ ... , (10.36)

where the first term is involved in the rotational selection rules, while the ex-
pansion has been limited to the linear term in Q (often called linear electric
approximation).

From Eq. 10.35 and 10.36 one concludes that only heteronuclear molecules,
with μe 
= 0, can be driven to transitions among vibrational states. Further-
more, from the term linear in Q one deduces that only states of different parity
imply a matrix element different from zero. Indeed, as it can be seen from in-
spection to the Hermite polynomials, only transitions between adjacent states
are allowed : Δv = ±1. One can also remark that the frequency emitted or
absorbed is the one expected for a classical Lorentz-like oscillator.

Thus in the harmonic approximation (Eq. 10.29) and in the linear dipole
approximation (Eq. 10.36) (sometimes called electrical harmonicity), one
expects a single absorption line, at the frequency νo. The line yields the
curvature of the energy of the molecule at the equilibrium interatomic dis-
tance. The intensity of each component, to a large extent, is controlled by the
statistical population on the vibrational levels:

Nv(T ) = Ae−(v+1/2)hνo/kBT ≡ N0(T )e−vhνo/kBT (10.37)

with
N0(T ) = (N/Zvib)e−hνo/2kBT , (10.38)

N total number of molecules and Zvib the vibrational partition function.
For kBT � hνo, as it is often the case, the ground state is by large the

most populated and therefore the absorption line is practically related to the
transition v = 0 → v = 1.

Now a brief discussion of the anharmonicity effects is in order. The
electrical anharmonicity originates from the term in Q2, neglected in the ex-
pansion 10.36. According to the correspondent matrix element in Eq. 10.35,
because of parity characters of the operator and of the Hermite polynomials,
that term implies transitions between states at the same parity. Therefore
the selection rule Δv = ±2 results, for states pertaining to the mechanical
harmonic approximation (Eq. 10.29).
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The qualitative effect of the terms proportional to Q3 and Q4 in the expan-
sion 10.28 (mechanical anharmonicity) is to cause a progressive reduction
in the separation between the states at high quantum number v, as sketched
below
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Then from the matrix element of the form correspondent to Eq. 10.35,
transitions at frequencies different from νo have to be expected.

The anharmonic terms can be analyzed as perturbation of the vibrational
states described by the wavefunctions Uv(Q). The term in Q3 must be consid-
ered up to the second order, its expectation value being zero for unperturbed
states. Thus the eigenvalues turn out of the form

Ev = (v + 1/2)hνo − a(v + 1/2)2hνo (10.39)

where the constant a, much smaller than unit, is related to the ratio
[(d3V/dR3)Re

]2h̄/(k5/2μ1/2). To give an idea, for the Hydrogen molecule H2,
a = 0.027. In H35Cl, ν0/c = 2885.6 cm−1 and a = 0.0176.

For an heuristic potential V (R) in the Morse-like form (see §10.4) one
derives a = hν0/4De, with De ≡ −V (Re), as we shall discuss in a subsequent
Section (see Eqs. 10.41 and 10.47).
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Problems X.3

Problem X.3.1 Consider the H2 molecule in the vibrational ground state
and in the first excited rotational state (K = 1). Evaluate the number of
oscillations occurring during one rotation.

Solution:
Defining (see §10.2.1)

νrot =
[K(K + 1)]1/2 h̄

2πI
=

√
2h̄

2πμR2
e

and νvib = (1/2π)
√
k/μ , the number of oscillations can be thought

nosc =
1
2π

√
k

μ
· 2πμR2

e√
2h̄

=
√
k μR2

e√
2h̄

� 25 .

Problem X.3.2 The dissociation energy in the D2 molecule is increased
by 0.08 eV with respect to the one in H2 (4.46 eV). Estimate the zero point
energy for both molecules.

Solution:
From

E = −A+ h̄ω
(
v +

1
2

)
the dissociation energy is given by Ed = +A− 1

2 h̄ω, for v = 0.
Since A(H) = A(D),

Ed(D) − Ed(H) = −1
2
h̄[ω(D) − ω(H)].

Hence

h̄ω(H)[1 − ω(D)/ω(H)]
2

=
h̄ω(H)[1 − 1/

√
2]

2
= 0.08 eV,

and the zero-point energy of H2 turns out h̄ω(H)/2 = 0.27 eV while for D2

one has h̄ω(D)/2 = (0.27/
√

2) eV = 0.19 eV.
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Problem X.3.3 The infrared spectrum of a gas of diatomic molecules dis-
plays lines equally spaced by about 1011 Hz. A static electric field of 3kV/cm
is applied. The lowest frequency line, with intensity 2.7 times smaller than
the adjacent one, splits in a doublet, with 1 MHz of separation between the
lines. Derive the molar polarizability.

Solution:
From the ratio of the intensities I(1)/I(0) = 2.7 = 3 exp(−hνrot/kBT ), with
νrot = 1011 Hz, the temperature is deduced: T � 45.6 K.

Since kBT � hνrot the molar polarizability reads (see Eq. 10.22)
α = NAμ

2
e/3kBT .

The electric field partially removes the degeneracy of the K = 1 level. The
separation between levels at MK = 0 and MK = ±1 turns out (see Eq. 10.20)

Δν = 106Hz =
μ2

eE2

h2νrot

3
10

Then μ2
e = 14.6 × 10−38u.e.s.2cm2 and α(T = 45.6K) = 4.7 emu/mole.

Problem X.3.4 Evaluate the order of magnitude of the electronic, rota-
tional and vibrational polarizabilities for the HCl molecule at T = 1000 K
(the elastic constant is k = 4.76× 105 dyne/cm and the internuclear distance
Re = 1.27 Å). From the Clausius-Mossotti relation estimate the dielectric
constant of the gas, at ambient pressure.

Solution:
For order of magnitude estimates one writes (see Problem F.VIII.5 and Eq.
10.22)

αel � 8a30 ∼ 10−24 cm3,

αrot =
e2R2

e

3kBT
� 10−22 cm3.

For the vibrational contribution (see Prob. IV.2.3 and Prob. X.5.6)

αv � e2

k
� 5 × 10−25 cm3.

From the equation of state PV = RT , by taking into account that at ambient
pressure and temperature the molar volume is V = 2.24 ∗ 104 cm3, at T =
1000◦ K one finds V ∼ 8.2× 104 cm3, corresponding to the density N � 1019

molecules cm−3.
From Δε = (4πNαrot)/[1 − 4πNαrot/3] � 4πNαrot, one derives ε ≈ 1.01.
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10.4 Morse potential

An heuristic energy curve for diatomic molecules that can be assumed as
potential energy for the vibrational motion of the nuclei (Eq. 10.27) is the one
suggested by Morse:

VM = De

[
1 − exp[−β(R−Re)]

]2

, (10.40)

of the form sketched below.

V
M

0

D
e

R
e

R

This expression retains a satisfactory validity for R around the interatomic
equilibrium distance Re. De corresponds to the energy of the molecule for R =
Re (the real dissociation energy being De minus the zero-point vibrational
energy (1/2)hν0), while β is a characteristic constant.

It is noted that for R close to Re Eq. 10.40 yields VM � DeQ
2β2,

namely the harmonic potential with elastic constant k = 2Deβ
2 and ν0 =

(β/
√

2π)
√
De/μ.

The Morse potential, often useful for approximate expression of the elec-
tronic eigenvalue E(RAB) in diatomic molecules, has the advantage that the
Schrödinger equation for the vibrational motion (Eq. 10.27) can be solved an-
alytically, although with cumbersome calculations. The eigenvalues turn out

EM = hν0[(v + 1/2) − a(v + 1/2)2] (10.41)

with a = (hν0/4De) (see Eq. 10.39). The eigenfunctions are no longer even or
odd functions for v even or odd, respectively, at variance with the ones derived
in the harmonic approximation. Therefore one has transitions at Δv 
= ±1
without having to invoke electrical anharmonicity.
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Problems X.4

Problem X.4.1 From the approximate expression for the energy of a
diatomic molecule

V (R) = A (1 − exp[−B(R− C)])2

with A = 6.4 eV, B = 0.7×108 cm−1 and C = 10−8 cm, derive the properties
of the rotational and vibrational motions.
Sketch the qualitative temperature dependence of the specific heat. Assume
for the reduced mass the one pertaining to HF molecule.

Solution:
The elastic constant is k = 2AB2 = 105 dyne/cm. For the reduced mass
μ = 0.95M (withM the proton mass), the fundamental vibrational frequency
is ν0 = 4 × 1013 Hz, corresponding to the vibrational temperature Θv =
hν0/kB � 1846 K.

For an equilibrium distance Re = C, the moment of inertia is I = 1.577×
10−40 g cm2. The separation between adjacent lines in the rotational spectrum
is Δν̄ = 35.6 cm−1 and therefore Θr = Bhc/kB = 25.6 K.

The temperature dependence of the molar specific heat is sketched below.

Tθ
r

θ
v

R

2R

C
v

Problem X.4.2 In the RbH molecule (Re = 2.36 Å) the fundamental
vibrational frequency is ν0 = 936.8 cm−1 and the dissociation energy in
wavenumber is De = 15505 cm−1. Derive the Morse potential and the correc-
tion due to the rotational term for K = 40 and K = 100. Discuss the influence
of the rotation on the dissociation energy.
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Solution:
The parameter β for Eq. 10.40 is β = 2πν0

√
μ/2De and from the reduced

mass μ = 1.65 · 10−24 g one has β = 9.14 · 107 cm−1.
At the equilibrium distance Re the rotational constant turns out

B =
h

8π2cμR2
e

� 3 cm−1.

To account for the rotational contribution the energy has to be written in
terms of the R-dependent rotational constant (see Eq. 10.4). Therefore

Erot(R) = hcBK(K + 1) · R
2
e

R2
,

so that the effective potential becomes

Veff(R) = VM (R) + Erot(R),

plotted below.
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On increasing the rotational number the equilibrium distance is increased
and the strength of the energy bond is reduced, as expected (see Eq. 10.47).
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10.5 Roto-vibrational eigenvalues and coupling effects

In high resolution an absorption line involving transitions between vibrational
states evidences the fine structure related to simultaneous transitions between
rotational states (See Fig. 10.5).
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Fig. 10.5. Rotational structure in the vibrational spectral line of the HF molecule
and illustration of the transitions generating the P and R branches.

Still assuming weak roto-vibrational coupling, the wavefunction is
φK,M

rot Rv(R) and the eigenvalues are

EK,v = (v +
1
2
)hνo +

h̄2K(K + 1)
2μR2

e

(10.42)

The electric dipole matrix element connecting two states (K ′, v′) and
(K ′′, v′′) reads

RK′,v′→K′′,v′′ ∝
∫
φK′′,M ′′∗

rot Rv′′(R)∗ · (μe + cjQ)φK′,M ′
rot Rv′(R)sinθdθdφdQ

(10.43)
where j is a unitary vector along the molecular axis. The term involving μe

drives the purely rotational transitions while

c

∫
φK′′,M ′′

rot jφK′,M ′
rot sinθdθdφ

∫
R∗

v′′(R)QRv′(R)dQ (10.44)
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implies transitions with the selection rules ΔK = ±1 and Δv = ±1 (see
Eq. 10.11 and §10.3.2). When in the v′ → v′′ transition the quantum num-
ber K increases then the correspondent line is found at a frequency ν > νo
(branch R in Fig. 10.5) while when K decreases one has ν < ν0 (branch P).

It is noted that the line at ν = ν0 is no longer present. When electronic
states at Λ 
= 0 are involved in a transition a component at ν0 can be observed
(called Q branch), usually in form of a broad line (see §10.2.5, Eq. 10.26 and
examples at Figs. 10.8 and 10.9).

From Eqs. 10.42 and 10.44 the wavenumbers associated with the roto-
vibrational transitions are

ν̄R = ν̄o +Bv′′(K + 1)(K + 2) −Bv′K(K + 1) (10.45)
ν̄P = ν̄o +Bv′′K(K − 1) −Bv′K(K + 1) (10.46)

Since Bv′ � Bv′′ � Bv the separation between the adjacent lines turns out
about 2Bv, as shown in Fig. 10.5. The wavenumbers of the Q branch are

ν̄Q = ν̄o +Bv′K(K + 1) −Bv′′K(K + 1) .

For slight differences in the rotational constants of the two vibrational levels in
practice a superposition of lines occur, yielding a single broad line, as observed
in Raman spectroscopy (Fig. 10.8).

Now a brief comment on the role of the terms coupling the rotational and
vibrational motions is in order. In the framework of the perturbative approach,
with unperturbed eigenfunctions YK,M (θ, φ)R(Q), according to Eq. 10.6 the
perturbing Hamiltonian is

HP =
h̄2K(K + 1)

2μeRe
(−2

Q

Re
).

No correction terms to the unperturbed eigenvalues are expected at the first
order. Thus the evaluation of the roto-vibrational coupling has to be carried
out at the second order in HP .

The final result for the second order correction has the form

ΔE(2) = −a1hν0(v + 1/2)2 + a2(v + 1/2)K(K + 1)− a3K2(K + 1)2 (10.47)

The term in a1 is the one due to mechanical anharmonicity, already dis-
cussed (Eq. 10.39). The term in a2 is related to the effect on the elastic
constant produced by the centrifugal potential and by the contribution in Q
and Q3. Finally the term in a3 in Eq. 10.47 reflects the increase of the moment
of inertia due to the rotation of the molecule (centrifugal distortion).

The detailed expressions for the coefficients ai in Eq. 10.47 are a1 =
(h̄/384π μ k ν3

0) (5α2−3 k β), a2 = (h̄3/k2R2
e) (Re α+3 k) and a3 = h̄4/2 k μ2R6

e

(as it can be obtained also classically by writing kQ = μω2R and then eval-
uating the rotational energy). α and β are the coefficients of the terms in Q3

and in Q4 in the perturbative Hamiltonian resulting in the expansion of Eq.
10.6.
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Problems X.5

Problem X.5.1 The rotovibrational transmission spectrum for the HCl
molecule is shown below.

cm

-1

Derive the equilibrium distance and the elastic constant for the molecule.
Which is the origin of the doublets observed at each peak? How does the
spacing between adjacent lines change for the deuterated molecule?

Solution:
From the spacing among adjacent lines Δ̄ν � 21cm−1 = 2Bhc, the moment
of inertia being I = 2.67 × 10−40 g cm2, the equilibrium distance turns out
Re = 1.27 Å for the reduced mass μ = 0.972 MH = 1.6 × 10−24 g. The
vibrational frequency is about ν0 = 2885 cm−1 × c � 8.65× 1013 Hz, implying
an elastic constant k = 4π2ν2

0μ = 4.56 × 105 dyne/cm.
The doublet arises from the spectra of the H35Cl and H37Cl molecules.
Deuteration implies an increase of the reduced mass μ by about a factor 2,
leading to a spacing of the lines about Δ̄ν � 10.5 cm−1. The vibrational
frequency is reduced by a factor close to

√
2.

Problem X.5.2 The fundamental vibrational frequency of the NaCl
molecule is ν0 = 1.14 · 1013 Hz. Report in a plot the temperature dependence
of mean-square displacement from the equilibrium interatomic distance.
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Solution:
From Eqs. 10.34 and 10.37 (see Problem F.X.1 for the average energy):
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Problem X.5.3 Derive the equilibrium distance and the vibrational fre-
quency of a diatomic molecule in the assumption of interatomic effective po-
tential V (R) = 4U((a/R)12 − (a/R)6), with a = 3.98 Å and U = 0.02 eV, for
reduced mass μ = 10−22 g.

Solution:
From ∂V /∂R

∣∣∣
R=Req

= 0 one has Req = a · (2)
1
6 = 4.47 Å , while

V (Req) = 4U
[
1
4
− 1

2

]
= −U = −0.02 eV .

By deriving V (R) twice, one finds

k =
4U
a2

(
12 · 13 · 2−7/3 − 6 · 7 · 2−4/3

)
= 57.144

U

a2
= 11.558 · 102 dyne/cm

and

ν =
1
2π

√
k

μ
= 5.18 · 1011 Hz .

Problem X.5.4 In a diatomic molecule the eigenvalue E(R) for the
ground state is approximated in the form
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E(R) = −2V0

[
1
ρ
− 1

2ρ2

]
(with ρ = R/a and a characteristic length). Derive the rotational, vibrational
and roto-vibrational energy levels in the harmonic approximation.

Solution:
The equivalent of Eq. 10.4 is

− h̄
2

2μ
d2R
dR2

+
[
−2V0

(
1
ρ
− 1

2ρ2

)
+
K (K + 1) h̄2

2μa2ρ2

]
R = ER,

where μ is the reduced mass. The effective potential has the minimum for

ρ0 ≡ 1 +
K (K + 1) h̄2

2μa2V0
≡ 1 +B

For V (ρ) = −V0 (1 +B)−1 +V0 (1 +B)−3 (ρ− ρ0)2 the Schrödinger equation
takes the form for the harmonic oscillator. Then

E + V0 (1 +B)−1 = h̄

√
2V0

μa2
(1 +B)−3

(
v +

1
2

)
.

For B � 1 (small quantum number K),

E = −V0 +
K (K + 1) h̄2

2μa2
+ hν0

(
v +

1
2

)
− 3

2
h̄3K (K + 1)

(
v + 1

2

)
μ2a42πν0

where ν0 = (1/2π)
√

2V0/μa2 (see Eq. 10.47).

Problem X.5.5 From the data reported in the Figure at Problem X.5.1 for
the HCl molecule, estimate the vibrational contribution to the molar specific
heat, at room temperature.

Solution:
From the thermodynamical energy < E >=

∑
v EvNv(T ) (see Eq. 10.37) the

molar specific heat turns out

CV = R (TD/T )2
eTD/T(

eTD/T − 1
)2 ,

where TD is the vibrational temperature TD = hν0/kB , given by
TD = 4.15 · 103K for ν0 = 0.87 · 1014 Hertz.

At room temperature T � TD and CV � R(TD/T )2exp(−TD/T ) =
1.5 · 104 erg/K mole.

Problem X.5.6 A static and homogeneous electric field E is applied along
the molecular axis of an heteronuclear diatomic molecule. In the harmonic
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approximation for the vibrational motion, by assuming an effective mass μ
and an effective charge −ef (with 0 < f ≤ 1, see §8.5) derive the contribution
to the electrical polarizability, in the perturbative approach.

Prove that the result derived in this way actually is the exact one.
Solution:

For

Hp = fezE
the first order correction is < v|z|v >= 0 because of the definite parity of the
vth eigenfunction of the oscillator. The matrix elements Hvv′ for z are

Hvv′ =< v|z|v′ >=
(
v + 1
2α

)1/2

for v′ = v + 1

( v
2α

)1/2

for v′ = v − 1 ,

where α = μ2πν0
h̄ and ν0 = 1

2π

√
k/μ, with k force constant.

The second order correction to the energy E0
v turns out

E(2)
v = (feE)2

{ |Hv, v+1|2
−hν0 +

|Hv ,v−1|2
hν0

}
=

= (feE)2
{ v+1

2α

−hν0 +
v
2α

hν0

}
= − (feE)2

1
8π2μν2

0

.

Then the electric polarizability is

χ = Nα = N
1
E

(
−∂E

(2)
v

∂E

)
= N (fe)2

1
k

independent of the state of the oscillator (N number of molecule for
unit volume).

The result for the single molecule polarizability α is the exact one. In fact,
going back to the Hamiltonian of the oscillator in the presence of the field

H = − h̄
2

2μ
d2

dz2
+

1
2
kz2 + feEz

by the substitution z = z′ − (feE/k) it becomes

H′ = − h̄
2

2μ
d2

dz′2
+

1
2
k(z′)2 − 1

2k
(feE)2

implying the eigenvalues

E′
v = E0

v − (feE)2

2k
and therefore α = (fe)2/k.
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10.6 Polyatomic molecules: normal modes

In a polyatomic molecule with S atoms, (3S − 6) degrees of freedom involve
the oscillations of the nuclei around the equilibrium positions. If qi indicate
generalized local coordinates expressing the displacement of a given atom, as
sketched below,

 

q
i+1 

q
i+2 

q
i 

for small displacements the potential energy, in the harmonic approximation,
can be written

V = Vo +
∑

i

(
∂V

∂qi
)oqi +

1
2

∑
i,j

(
∂2V

∂qi∂qj
)oqiqj �

∑
i,j

bijqiqj (10.48)

Similarly, the kinetic energy is T =
∑

i,j aij q̇iq̇j . The classical equations
of motion become

d

dt

∂L
∂q̇i

− ∂L
∂qi

=
∑

j

aij q̈j +
∑

j

bijqj = 0 , (10.49)

namely (3S − 6) coupled equations, corresponding to complex motions that
can hardly be formally described. Before moving to the quantum mechanical
formulation it is necessary to introduce a new group of coordinates Q =∑

j hjqj (and a group of constants c1, c2, etc...) so that, by multiplying the
first Eq. 10.48 by c1, the second by c2, etc... and adding up, one obtains
equations of the form d2Q/dt2 + λQ = 0. This is the classical approach to
describe small displacements around the equilibrium positions. The conditions
to achieve such a new system of equations are∑

i

ciaij = hj (10.50)∑
i

cibij = λhj . (10.51)

Therefore, in terms of the constants ci
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i

ci(λaij − bij) = 0 , (10.52)

implying
|λaij − bij | = 0 (10.53)

This secular equation yields the roots λ(1), λ(2), ... corresponding to the con-
ditions allowing one to find hj so that the equations of motions become

d2

dt2
Qi + λ(i)Qi = 0 (10.54)

These equations in terms of the non-local, collective coordinates

Qi =
∑

j

hijqj (10.55)

correspond to an Hamiltonian in the normal form

1
2

∑
i

Q̇2
i +

1
2

∑
i

λ(i)Q2
i , (10.56)

where

λ(i) ≡ (
∂2V

∂Q2
i

)o (10.57)

The Q’s are called normal coordinates. The normal form of the Hamilto-
nian will allow one to achieve a direct quantum mechanical description of the
vibrational motions in polyatomic molecules and in crystals (see Chapter 14).

A few illustrative comments about the role of the normal coordinates are
in order. From the inverse transformation the local coordinates are written

qi =
∑

j

gijQj (10.58)

and therefore, from Eq. 10.54,

qi =
∑

j

gijAjcos

[√
λ(j)t+ ϕj

]
(10.59)

Thus the local motion is the superposition of normal modes of vibra-
tion. Each normal mode corresponds to an harmonic motion of the full system,
with all the S atoms moving with the same frequency

√
λ(j) and the same

phase. The amplitudes of the local oscillations change from atom to atom, in
general.

Taking a look back to a diatomic molecule and considering the vibration
along the molecular axis (see § 10.3) it is now realized that the normal coordi-
nate is Q = (xA−xB). The root of the secular equation analogous to Eq. 10.53
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yields the frequency ω =
√
k/μ and the (single) normal mode implies the har-

monic oscillation, in phase opposition, of each atom, with relationship in the
amplitudes given by xA = −xB(MB/MA).

The formal derivation of the normal modes in polyatomic molecules in
most cases is far from being trivial and the symmetry operations are often used
to find the detailed form of the normal coordinates. For a linear molecule with
three atoms, as CO2, the description of the longitudinal vibrational motions in
the harmonic approximation is straightforward (see for an illustrative example
Prob. F.X.5). Fig. 10.6 provides the illustration of the four normal modes.
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Fig. 10.6. Normal modes (longitudinal and transverse) in the CO2 molecule. The
symmetric mode S is not active in the infrared absorption spectroscopy, the selection
rule requiring that the normal mode causes the variation of the electric dipole
moment (see Eq. 10.66), while the antisymmetric mode A is active. The inverse
proposition holds for Raman spectroscopy (see § 10.7) where the variation of the
polarizability rather than of the dipole moment is required to allow one to detect
the normal mode of vibration.

The coupled character of the motions is hidden in the collective frequency
λ(i) ≡ (∂2V

∂Q2
i
)o, namely in the curvature of the potential energy under the

variation of the i-th normal coordinate.
It is noted that the stability of the system is related to the sign of λ.

Structural and ferroelectric phase transitions in crystals, for instance, are
associated with the temperature dependence of the frequency of a normal
mode, so that at a given temperature the structure becomes unstable (λ(i) is
approaching zero) and a transition to a new phase, restoring large and posi-
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tive λ(i), is driven.

Once that the vibrational motions are described by normal coordinates
Qi, the quantum formulation is straightforward. In fact, in view of the form
of the classical Hamiltonian, the eigenfunction Φ(Q1, Q2, ...) is the solution of
the equation∑

i

(− h̄
2

2
∂2

∂Q2
i

+
1
2
λ(i)Q2

i )Φ(Q1, Q2, ...) = EΦ(Q1, Q2, ...) (10.60)

(the nuclear masses are included in mass-weighted coordinates Q’s). Therefore
the wavefunctions and the eigenvalues are

Φ(Q1, Q2, ...) =
∏

i

Φ(Qi) (10.61)

E =
∑

i

(ni + 1/2)h̄
√
λ(i), ni = 0, 1, ... (10.62)

where Φ(Qi) and Ei = (ni +1/2)h̄
√
λ(i) are the single normal oscillator eigen-

functions and eigenvalues. Thus, by recalling the results for the diatomic
molecule (§ 10.3), the vibrational state is described by a set of numbers
n1, n2, ..., labelling the state of each normal mode.

Now we are going to show that within the harmonic approximation any
normal oscillator interacts individually with the electromagnetic radiation, in
other words the normal modes are spectroscopically independent.

The electric dipole matrix element for a transition from a given initial
state to a final one, reads

Rin→f ∝
∫
Φ∗

nf
1
(Q1)Φ∗

nf
2
(Q2)...μe(Q1, Q2, ...)Φnin

1
(Q1)Φnin

2
(Q2)... . (10.63)

In the approximation of electrical harmonicity (see § 10.3)

μex,y,z ∝
∑

i

(
∂μex,y,z

∂Qi
)oQi (10.64)

Eq. 10.63 involves a sum of terms of the form

(
∂μe x,y,z

∂Qi
)o

∫
Φ∗

nf
1
Φnin

1
dQ1

∫
...

∫
Φ∗

nf
i

QiΦnin
i
dQi... (10.65)

This term is different from zero when

(
∂μe x,y,z

∂Qi
)o 
= 0 , (10.66)

meaning that the i-th normal mode must imply a variation of the electric
dipole moment of the molecule. At the same time it is necessary that
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nf
j = nin

j , for j 
= i
nf

i = nin
i ± 1 . (10.67)

Therefore each normal oscillator interacts with the electromagnetic radiation
independently from the others, with absorption spectrum displaying lines in
correspondence to the eigenfrequencies of the various modes.

When the selection rule in Eq. 10.66 is verified the mode is said to be
infrared active. As a consequence of this condition, one can infer that in the
CO2 molecule only the antisymmetric longitudinal mode can interact with the
radiation while the symmetric one is silent (see Fig. 10.6).

Finally we just mention that in the harmonic approximation the contri-
bution to the thermodynamic energy in polyatomic molecules is obtained by
adding the contributions expected from each mode, of the form derived in
diatomic molecules (see Problem X.5.5).

10.7 Principles of Raman spectroscopy

As it has been remarked, by means of infrared or microwave absorption spec-
troscopies some rotational or vibrational motions cannot be directly studied.
This is the case of rotations and vibrations in homonuclear molecules or for
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normal modes which do not comply with the selection rule given by Eq. 10.66.
Motions of those types can often be investigated by means of a spectroscopic
technique based on the analysis of diffuse radiation: the Raman spec-
troscopy. Phenomenologically the Raman effect can be described by referring
to the experimental set-up schematically reported on the previous page.

The classical explanation for the occurrence of Stokes and of anti-Stokes
lines in the diffuse radiation, although not appropriate in some respects, still it
enlightens the physical basis of the phenomenon. A normal mode of vibration
can be thought to cause a time dependence of the molecular polarizability:

α = αo + α∗cos(ωit) (10.68)

Therefore the electric component of the radiation E(t) = Eocos(ωot) (the
wavelength is much larger than the molecular size) induces an electric dipole
moment

μind = E(t)α(t) = αoEocos(ωot)+
1
2
α∗Eocos(ωo −ωi)t+

1
2
α∗Eocos(ωo +ωi)t

(10.69)
From the phenomenological picture of oscillating dipoles as source of radiation
one can realize that components of the diffuse light at frequencies ωo±ωi have
to be expected.

The inadequacy of the classical description can be emphasized by observing
that the experimental findings indicate that the anti-Stokes lines, in general,
are less intense than the Stokes lines. The interpretation based on the oscillat-
ing dipole as in Eq. 10.69, would predict intensities proportional to the fourth
power of the frequency and then the anti-Stokes lines should be more intense
than the Stokes ones.

The quantum description of the Raman effect is based on the process of
scattering of photons and provides a satisfactory description of all the
aspects of the phenomenon. The intensity of the lines, in fact, are controlled
by the statistical populations on the ground state and on excited vibrational
states, as it can be grasped from the sketch of the inelastic scattering of the
photon (hνi) given below:
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The basic aspects of the Raman radiation can be realized by extending the
idea of electric dipole moment associated with a pair of states (already used
in a variety of cases) to include the field induced dipole moment. Then in

Rn→m(t) =
[∫

Φ∗
mμeΦndτ

]
e

i(Em−En)t
h̄

the dipole moment αE0cosωot, induced by the electric field of the incident
radiation, is included:

Rn→m(t) =
[
Eo

∫
Φ∗

mαΦndτ

]
e−i(ωo−Em−En

h̄ )t . (10.70)

Again interpreting this expression as a kind of microscopic source of radiation
somewhat equivalent to irradiating dipoles, one sees that lines at the frequen-
cies ωo ± ωmn have to be expected.

The amplitude of the matrix element of the polarizability in Eq. 10.70
controls the strength of the Raman components and therefore the selection
rules. By referring for simplicity to scalar polarizability, in a first order ap-
proximation the analogous of Eq. 10.64 can be written

α = αo +
∑

i

(
∂α

∂Qi
)oQi (10.71)

Thus to have Raman radiation the conditions

(
∂α

∂Qi
)o 
= 0 (10.72)

vm
i = vn

i ± 1 (10.73)

must be fulfilled (see Eqs. 10.66 and 10.67).

Going back to Fig. 10.6 now one realizes that the S mode, which is not
active in direct infrared absorption, can give Raman diffusion and vice versa1.

Raman spectroscopy can also be used to study the rotational motions. In
this case the fundamental aspect to pay attention to is the tensorial character
of the molecular polarizability. The rotation of the molecule implies the ro-
tation of the frame of reference ΣP of the principal axes of the polarizability
tensor ¯̄α, thus modulating the component along the direction of the electric

1 This statement regarding the alternative role of symmetric and antisymmetric
modes in Raman and infrared activity is a general one, holding in any molecule
with inversion symmetry. It is related to the fact that the polarizability upon
inversion transforms as a second order tensor while the dipole moment is a vector.
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field in the laboratory frame ΣL, as sketched below
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Therefore the incident radiation interacts with a time-dependent molecular
polarizability, “modulated” at a frequency 2 νrot (the tensor being symmetric).
For a molecule to be active in rotational Raman spectroscopy is not required
to have a dipole moment. Any molecule not spherically symmetric and thus
having anisotropic polarizability, is Raman active, in principle. The se-
lection rule in terms of the quantum number K is ΔK = 0,±2, according
to parity arguments, at variance with the selection rules 10.11 for the direct
electric dipole transition between rotational states.
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Problems X.7

Problem X.7.1 For a gas of diatomic molecules the roto-vibrational en-
ergy diagram is sketched below
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Figure out which lines can be detected in infrared and in Raman spectroscopies
when the two nuclei are non-identical (heteronuclear molecules) .
What do you expect if the molecule has two identical nuclei, with spin I = 0
or I = 1/2?

Solution:
The solution follows directly from Fig. 10.5 and from the selection rules
ΔK = ±1,Δv = ±1 for infrared absorption and ΔK = ±2 for Raman lines.
For identical nuclei read §10.9.
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10.8 Electronic spectra and Franck - Condon principle

The band spectra or the electronic spectra (usually in the visible or in the
UV ranges of the electromagnetic spectrum (see Appendix I.1) ) associated
with simultaneous transitions between electronic and roto-vibrational states
in molecules involve rather complex selection rules.

If no coupling to the nuclear motions is taken into account, the selection
rules for transitions among electronic states can be directly obtained by re-
ferring to the matrix elements for the electric dipole operator −∑

l erl and to
the symmetry properties. In the LS scheme and weak spin-orbit interaction,
from factorization of the total eigenfunction one immediately has the selection
rules ΔS = 0 and ΔMS = 0, while for the spatial part ΔΛ = 0,±1 (Λ being
the equivalent, along the molecular axis, of ML for atoms). By referring to
diatomic molecules, from parity arguments for the components of the total
electric dipole, the following rules are derived:

Σ+ → Σ+ and Σ− → Σ− allowed

Σ+ → Σ− and Σ− → Σ+ forbidden .

In fact, < φfin|z|φin >
= 0 for the first case, while it must be zero in the
second case in order to not change sign upon reflection with respect to a
plane containing the molecular axis. Also < φfin|x|φin > and < φfin|y|φin >
must be zero, otherwise they would change sign upon reflection with respect
to the xz and yz planes.

∑
l rl being an ungerade operator, it is evident that

the g → u transitions are allowed, while the u → u and g → g transitions
are forbidden for homonuclear molecules having equal nuclei for charge, mass
and spin state (see §10.9). In the presence of coupling of the electronic states
with rotational and vibrational motions (with the related so-called vibronic
transitions) the derivation of the selection rules becomes really complex, as
already mentioned.

In diatomic molecules we only illustrate a relevant and general aspect:
the Franck-Condon principle. In Fig. 10.7 the typical energy curves for
the ground and the first excited states are sketched and some transitions
involving the vibrational states are indicated.

The classical description of the principle (given by Franck) was based on
the following arguments. The nuclei-electron coupling is weak, the electronic
transitions occur in very short times (typically 10−15 ÷10−16 seconds in com-
parison to the typical periods, around 10−13 s, of the vibrational motions).
Therefore the interatomic distance can hardly change while the electrons are
carried from one electronic state to the other. Since for the classical oscillator
the probability to find the atoms at a given distance is large in correspondence
to the maxima elongations, it is conceivable to expect a certain prevalence of
the end-to-end transitions, as the one indicated in Fig. 10.7 by the arrow on
the right side.



10.8 Electronic spectra and Franck - Condon principle 353

The basic aspect of the quantum description is outlined hereafter. The
transition probability is controlled by the matrix element

Rg1→g2,v1→v2,K1→K2 =
∫
φg2∗

e φv2∗
vib φ

K2∗
rot

[
μele + μN

]
φg1

e φ
v1
vibφ

K1
rotdτedτN

(10.73)
with μele = −e∑i ri and μN = e

∑
α ZαRα. The rotational part of the wave-

function involves only the angles θ and φ and therefore it can be considered
separately. Thus one is left with

Rg1→g2,v1→v2 =
∫
φg2∗

e φv2∗
vib

[
μele + μN

]
φg1

e φ
v1
vibdτedτN (10.74)

This term can be separated in two, the one involving μN being zero since the
electronic wavefunctions for g1 and g2 are orthogonal. Then only the term
involving μe has to be considered and by assuming that the electronic wave-
functions are only slightly modified when the interatomic distance is varied,
the matrix element is written

Rotational 

levels

Vibrational 

levels

E(R
AB
)

R
e

R
AB

v’’=0

v’=0

Fig. 10.7. Energy curves for the electronic ground state g1 and the first excited
state g2 and sketches of the transitions involving the vibrational v′ and v′′ levels.
The solid lines indicate transitions with large Franck-Condon factors, at variance
with the classical prediction (dashed arrow on the right). The grey line refers to a
transition with small Franck-Condon factor.
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Rg1→g2,v1→v2 =
∫
φv2∗

vib φ
v1
vibdτN

∫
φg2∗

e

[
μele

]
φg1

e dτe = SFC

∫
φg2∗

e

[
μele

]
φg1

e dτe.

(10.75)
Thus the matrix element appears as the usual electronic term multiplied by
the Franck-Condon factor SFC . For v1 
= v2 SFC can be different from
zero since two different electronic states are involved in correspondence to the
two vibrational levels.

The Franck-Condon factor is a kind of overlap integral and now it can
be realized why for large quantum vibrational numbers the empirical formu-
lation of the principle is again attained. The intensity of the transition line,
proportional to the square of the transition dipole moment given by Eq. 10.75,
is controlled by the factor |SFC |2 (see Problem X.8.1).
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Problems X.8

Problem X.8.1 Evaluate the Franck-Condon term |SFC |2 involving two
v = 0 vibrational states for electronic states g1 and g2 (see Fig. 10.7) having
the same curvature at the equilibrium distances, one at Re and the other at
Re +ΔRe.

Solution:
The vibrational wavefunctions are

φ
(1)
0 =

(
b

π

)1/4

e−bQ2/2, φ
(2)
0 =

(
b

π

)1/4

e−b(Q−ΔRe)2/2

where b = μω0/h̄ ( see Eq. 10.32). The overlap integral is

SFC(0, 0) =
(
b

π

)1/2 ∫ +∞

−∞
e−b(Q2/2)−[b(Q−ΔRe)2/2]dQ =

=
(
b

π

)1/2

e−b(ΔRe/2)2
∫ +∞

−∞
e−b(Q−ΔRe/2)2dQ = e−b(ΔRe/2)2

and
|SFC |2 = e−b(ΔRe)2/2 ,

as plotted below:
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10.9 Effects of nuclear spin statistics in homonuclear
diatomic molecules

Now we turn to an impressive demonstration of quantum principles, without
any classical counterpart: the influence of the nuclear spins on the statis-
tics, the related selection of molecular states and the occurrence of zero-
temperature rotations.

Let us consider the total wavefunction of a homonuclear diatomic molecule

φT = φe φvib φrot χspin (10.76)

upon exchange of the nuclei, each having nuclear spin I. The total number
of spin wavefunctions is (2I + 1)2. (2I + 1) of them are symmetric, since
the magnetic quantum numbers mI are the same for both nuclei. Half of
the remaining wavefunctions are symmetric and half antisymmetric. Thus
[(2I + 1)2 − (2I + 1)]/2 + (2I + 1) = (I + 1)(2I + 1) are symmetric and
the remaining I(2I + 1) antisymmetric. Therefore the ratio of the ortho
(symmetric) to para (antisymmetric) molecules is (Npara/Northo) = I/(I+1).
For example, for Hydrogen 75% of the molecules belong to orthohydrogen type
and 25% to parahydrogen.

Let P indicate the operator exchanging spatial and spin coordinates of
the nucleus A with the ones of the nucleus B. One has PφT = +φT for nuclei
with integer I (bosons) while PφT = −φT for nuclei with half integer spin
(fermions).
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-e 

For the electronic wavefunction φe the exchange of the nuclei is equivalent to:
i) rotation by 180 degrees around the x axis;
ii) inversion of the electronic coordinates with respect to the origin;
iii) reflection with respect to the yz plane.
For the most frequent case of electronic ground state Σ+

g one concludes

Pφe = +φe (10.77)

The vibrational wavefunction is evidently symmetrical, i.e. Pφvib = +φvib,
since it depends only on (R−Re). For the rotational wavefunctions one has

Pφrot = (−1)Kφrot (10.78)

namely they are symmetrical (positive parity) upon rotation when the number
K is even while are antisymmetric (negative parity) the ones having odd ro-
tational numbers K. By taking into account Eqs. 10.76-10.78 one deduces the
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requirement that for half integer nuclear spin (total wavefunction antisymmet-
ric upon exchange of the nuclei) ortho molecules (having symmetric spin
functions) can be found only in rotational states with oddK. On the contrary
para molecules (having antisymmetric spin functions) can be found only in
rotational states with K even. For integer nuclear spins the propositions are
inverted. It is noted that ortho to para transitions are hardly possible, for the
same argument used to discuss the (almost) lack of transitions from singlet
to triplet states in the Helium atom (see § 2.2).

A relevant spectroscopic consequence of the symmetry properties in di-
atomic molecules, for instance, is the fact that in Raman spectra in H2 the
lines associated to transitions starting from rotational states atK odd (see the
illustrative plot in the following Figure) are approximately three time stronger
than the ones involving the states at K even, once that thermal equilibrium
is established between the two species ortho and para (see Problem X.9.1).
For D2 an opposite alternation in the intensities occurs (by a factor of two),
the nuclear spin of deuterium being I = 1.
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(ΔK= ±2, see § 10.7)

For O2, the electronic ground state being 3Σ−
g , the nuclear spin for 16O is

zero and χspin is necessarily symmetric. Then only odd K states are allowed.
Thus only the rotational lines corresponding to ΔK = ±2 and involving odd
K states are observed in Raman spectroscopy (see Fig. 10.8). If of the nuclei
is substituted by its isotope 17O, all the rotational lines are detected.

For N2, the nuclear spin being I = 1, the roto-vibrational structure shows
the same alternation in the intensities expected for D2 (see Fig. 10.9).
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Analogous spectroscopic effects are observed in polyatomic molecules hav-
ing inversion symmetry, such as CO2 or C2H2. In particular CO2 is a nice
counterpart of the O2 molecule. While in this latter the ground state is 3Σ−

g ,
in CO2 the ground electronic state is 1Σ+

g . Thus in view of the change of
the symmetry with respect to the xz plane, in CO2 a variety of spectroscopic
studies has evidenced that only the rotational states at even K do occur.

It should be stressed that for Raman spectroscopy, where virtual electronic
states are involved, the remarks given above imply that these states retain
the symmetry properties of the ground state. For optical and UV transitions
between different electronic states these considerations can be applied to the
roto-vibrational fine structure. For detail see the extensive presentation by
Herzberg in the books quoted in the preface.

As a final remark one should observe that for ortho-Hydrogen molecules
the lowest accessible rotational state in practice is the one at K = 1, unless
one waits for the thermodynamical equilibrium for very long times. Thus even
at the lowest temperature the molecules (in solid hydrogen) are still rotating.
This is an example of the so called quantum rotators.

K

cm-1

Fig. 10.8. A Stokes Raman component in 16O2 displaying the rotational structure.
At ν̄ � 1556 cm−1 the Q branch (§10.5), for ΔK = 0, is observed (broad line).
The lines with even K are missing (experimental spectrum reported in the book by
Haken and Wolf (2004) quoted in the preface).
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K

Fig. 10.9. Roto-vibrational Raman spectrum in N2 (for 14N -14N). The alternation
in the line intensities is in the ratio 1:2 (experimental spectrum reported in the book
by Haken and Wolf (2004) quoted in the preface).
The symmetry of the wavefunction does not change in the Raman transitions ΔK =
0,±2, as well as for the spin function. It can be mentioned that the bosonic character
of 14N nucleus has been claimed for the first time by Heitler and Herzberg in 1929
just from the alternation in the line intensities, before the discovery of the neutron
which three years later explained why I = 1.
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Problems X.9

Problems X.9.1 For the molecules 3He2 and 4He2 (existing in excited
states, assumed of

∑+
g character), derive the rotational quantum numbers

that are allowed. By assuming thermal equilibrium, obtain the ratio of the
intensities of the absorption lines in the roto-vibrational spectra, at high tem-
perature.

Solution:
The nuclear spin for 3He is I = 1/2 while for 4He is I = 0. Therefore in 3He2

only states at K even are possible for total spin 0 and only states at K odd
for total spin 1. The intensity of the lines for EK � kBT is proportional to
the degeneracy, e−EK/kBT being practically unit. Therefore, by remembering
that the rotational degeneracy is (2K + 1), while (2I + 1)(I + 1) spin states
are symmetric and (2I + 1)I are antisymmetric, one can expect for the ratio
of the intensities

Intensity of transitions from 2K
Intensity of transitions from (2K − 1 )

=
I(4K + 1)

(I + 1)(4K − 1)
.

For large rotational numbers the ratio reduces to I/(I + 1), namely 1:3, as
discussed at §10.9.
For 4He2, I being 0, no antisymmetric nuclear spin functions are possible, only
the rotational states atK = 0, 2, 4... are allowed and every other line is absent.

Problem X.9.2 In the assumption that in the low temperature range
only the rotational states at K ≤ 2 contribute to the rotational energy of the
H2 molecule, derive the contribution to the molar specific heat.

Solution:
The ortho-molecules (on the K = 1 state) in practice cannot contribute to
the increase or the internal energy Urot upon a temperature stimulus. Then,
only the partition function Zpara

rot of the para-molecules (on the K = 0 and
K = 2 rotational states) has to be considered in

Urot = NkBT
2 d

dT
lnZrot .

From
∑

K(2K+1) exp[K(K+1)θrot/T ] (with θrot ≡ h̄2/2IkB � 87 K in H2),
Zpara

rot � 1 + 5 exp[−6θrot/T ]. Then Urot � NkB30θrot · exp[−6θrot/T ].
Since the number of para-molecules in a mole can be considered NA/4,

CV � NA/4 · 180(θrot/T )2 exp[−6θrot/T ].
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Problem X.9.3 Estimate the fraction of para-Hydrogen molecules in a
gas of H2 at temperature around the rotational temperature θrot = 87 K and
at T � 300 K, in the assumption that thermal equilibrium has been attained.
(Note that after a thermal jump it may take very long times to attain the
equilibrium, see text). Then evaluate the fraction of para molecules in D2 at
the same temperature.

Solution:
For T � 300K the fraction of para molecules is controlled by the spin statis-
tical weights (see Prob. X.9.1). Thus, for H2, fpara � 1/(1 + 3) � 0.25.

Around the rotational temperature one writes

fpara =
∑

Keven(2K + 1) exp[−K(K + 1)θrot/T ]
Zpara + Zortho

�

� 1 + 5e−6 + ...
1 + 5e−6 + ...+ 3[3e−2 + 7e−12 + ...]

� 0.46

For D2 the rotational temperature is lowered by a factor 2 and the spin sta-
tistical weights are I + 1 = 2 for K even and I = 1 for states at K odd. At
T � 300K fpara = 0.33. At T � 87K one writes

fpara =
∑

K odd(2K + 1) exp[−K(K + 1)θrot/2T ]
2ΣK even...+ 1

∑
K odd ....

� 3 exp[−θrot/T ]
2 + 1[3e−1]

� 0.35



362 10 Nuclear motions in molecules and related properties

Problems F.X

Problem F.X.1 Derive the temperature dependence of the mean square
amplitude < (R − Re)2 >≡< Q2 > of the vibrational motion in a diatomic
molecule of reduced mass μ and effective elastic constant k. Then evaluate
the mean square amplitude of the vibrational motion for the 1H35Cl molecule
at room temperature, knowing that the fundamental absorption frequency is
ν0 = 2990 cm−1.

Solution:
From the virial theorem < E >= 2 < V > and then
< E >= 2 · (k/2) < Q2 >≡ μω2 < Q2 > (see also Eq. 10.34).

Since (see Problem F.I.2), for the thermal average

< E >= h̄ω
(

1
2
+ < n >

)
, with < n >= 1/(e

h̄ω
kBT − 1)

one writes

< Q2 >=
h̄

μω

(
1
2

+
1

eh̄ω/kBT − 1

)
.

For kBT >> h̄ω,

< Q2 >� const+ kBT

μω2
.

(see plot in Prob. X.5.2).

For hν0 � kBT < Q2 >� (1/2)hν0/k and
√
< Q2 > � √

h/8π2ν0μ �
0.076 Å.

Problem F.X.2 At room temperature and at thermal equilibrium con-
dition the most populated rotational level for the CO2 molecule is found to
correspond to the rotational quantum number KM = 21. Estimate the rota-
tional constant B.

Solution:
From Eq. 10.14, by deriving with respect to K one finds

2KM + 1 =
(

2kBT

Bhc

)1/2

Then Bhc = 2kBT/(2KM + 1)2 = 4.48 · 10−17 erg.

Problem F.X.3 When a homogeneous and static electric field E =
1070 V cm−1 is applied to a gas of the linear molecule OCS the rotational line
at 24325 MHz splits in a doublet, with frequency separation Δν = 3.33 MHz.
Evaluate the rotational eigenvalues for K = 1 and K = 2 in the presence
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of the field, single out the transitions originating the doublet and derive the
electric dipole moment of the molecule.

Solution:
From Eq. 10.20

E (1,M, E) = 2Bhc+ μ2E2(2 − 3M2)/20Bhc
E (2,M, E) = 6Bhc+ μ2E2(2 −M2)/84Bhc

The transitions at ΔK = ±1 and ΔM = 0 yield the frequencies ν = ν0 +
δν (M), where ν0 = 4Bc while the correction due to the field is

δν (M) =
μ2E2

Bh2c

(29M2 − 16)
210

Then δν (0) = −(8/105)(μ2E2)/(Bh2c), δν (1) = (13/210)(μ2E2)/(Bh2c) and
the separation between the lines is

Δν = δν (1) − δν (0) =
29
210

μ2ε2

Bh2c
=

58
105

μ2E2

h2ν0

The dipole moment of the molecule turns out

μe =
h

E

√
105
58
ν0Δν = 2.37 · 10−21 erg cm V−1 = 0.71 Debye

Problem F.X.4 Derive an approximate expression, valid in the low tem-
perature range, for the rotational contribution to the specific heat of a gas of
HCl molecules.

Solution:
At low temperature only the first two rotational levels E0 and E1 can be
considered and the rotational partition function is written

Z � 1 + 3e−
E1

kBT .

The energy is Urot = −∂lnZ/∂β, (β = 1/kBT ) and then

Urot(T → 0) = 3E1 e
−E1/kBT

and the specific heat (per molecule) becomes

(CV )T→0 =
3E2

1

kBT 2
e−E1/kBT .

This expression can actually be used only for

kBT � h̄2

μR2
e

≡ 2Bhc, where B = 10.6 cm−1
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(see §10.2.2), i.e. for Tval � 30K.

Problem F.X.5 Derive the longitudinal normal modes for the system
sketched below, assuming that the force constant of the spring in between the
two masses is twice the ones for the lateral springs, that are stuck at fixed
points (the springs have negligible mass).

M M

Solution:
In terms of local coordinates (see §10.6)

T =
M

2
(q̇21 + q̇22), V =

k

2
q21 +

2k
2

(q2 − q1)2 +
k

2
q22

The equations of motion in Lagrangian form are

Mq̈1 + 3kq1 + 2kq2 = 0 and Mq̈2 + 3kq2 − 2kq1 = 0

By multiplying by c1,2 and summing

M(c1q̈1 + c2q̈2) + q1(3kc1 − 2kc2) + q2(−2kc1 + 3kc2) = 0

The normal form in terms of the coordinates Qi is obtained for

Mc1 =
1
λ

(3kc1 − 2kc2) = h1 and Mc2 =
1
λ

(−2kc1 + 3kc2) = h2

yielding the secular equation∣∣∣∣ λM − 3k 2k
2k λM − 3k

∣∣∣∣ = 0 .

with roots λ1 = 5k/M (implying c1 = −c2) and λ2 = k/M (c1 = c2), so
that

Q1 = (Mq1 −Mq2) and Q2 = (Mq1 +Mq2)

The equations of motion in the normal form are:

Q̈1 +
5k
M
Q1 = 0 , Q̈2 +

k

M
Q2 = 0

One normal mode corresponds to q1 = q2, and frequency ω2 =
√
k/M , while

the second one corresponds to q1 = −q2 and frequency ω1 =
√

5k/M .
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Problem F.X.6 For the NH3 molecule the rotational temperatures (see
§10.2.5) are ΘA = ΘB = 14.3 K and ΘC = 9.08 K (oblate symmetric top
rotator). Evaluate the molar rotational energy and the specific heat at room
temperature (neglect the effects of the nuclear spin statistics).

Solution:
From

E(K,M) = kBΘBK(K + 1) + kBM
2(ΘC −ΘA)

the rotational partition function can be written

Zrot(T ) =
∞∑

K=0

K∑
M=−K

(2K + 1)exp[−ΘBK(K + 1)/T −M2(ΘC −ΘA)/T ]

and by changing the sums to integrals and recalling that

U(T ) = RT 2 d

dT
lnZrot

one has U(T = 300) � (3/2)RT and CV � (3/2)R.
It can be remarked that when the effects of the spin statistics (§10.9) are

taken into account the high temperature partition function should be scaled
according to the amount of the occupied rotational levels.
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Crystal structures

Topics

Elementary crystallography
Translational invariance
Reciprocal lattice
The Bragg law
Brillouin zone
Typical crystal structures

In this Chapter and in the following three Chapters we shall be concerned
with the general aspects of the solid state of the matter, namely the atomic
arrangements where the interatomic interactions are strong enough to keep the
atoms bound at well defined positions. We will address the bonding mechanisms
leading to the formation of the crystals, the electronic structure and the vibrational
dynamics of the atoms. The liquid and solid states are similar in many respects,
for instance in regards of the density, short range structure and interactions. The
difference between these two states of the matter relies on the fact that in the
former the thermal energy is larger than the cohesive energy and the atoms cannot
keep definite equilibrium positions.

Before the advent of quantum mechanics the solid-state physics was practically
limited to phenomenological descriptions of macroscopic character, thus involv-
ing quantities like the compressibility, electrical resistivity or other mechanical,
dielectric, magnetic and thermal constants. After the application of quantum me-
chanics to a model system of spatially ordered ions (the crystal lattice, indicated
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by Laue X-ray diffraction experiments) quantitative studies of the microscopic
properties of solids began.

During the last forty years the study of the condensed matter has allowed
one to develop the transistors, the solid state lasers, novel devices for opto-
electronics, the SQUID, superconducting magnets based on new materials,
etc... . As regards the development of the theory, solid state physics has triggered
monumental achievements for many-body systems, such as the theories for
superconductivity or of quantum magnetism for strongly correlated electrons,
as well as the explanation of the fractional quantum Hall effect.

Besides the spatially ordered crystalline structures there are other types
of solids, as polymers, amorphous and glassy materials, Fibonacci-type quasi-
crystals, which are not characterized by regular arrangement of the atoms. Our
attention shall be devoted to the simplest model, the ideally perfect crystal,
with no defects and/or surfaces, where the atoms occupy spatially regular posi-
tions granting translational invariance. In the first Chapter we shall present
some aspects of elementary crystallographic character in order to describe the
crystal structures and to provide the support for the quantum description of
the fundamental properties. Many solid-state physics books (and in particular
the texts by Burns, by Kittel and by Aschcroft and Mermin recalled in
the foreword) report in the introductory Chapters more complete treatments of
crystallography, the “geometrical” science of crystals.

11.1 Translational invariance, Bravais lattices and
Wigner-Seitz cell

In an ideal crystal the physical properties found at the position r

 

l
 

r’
 

r
 

are also found at the position r′ = r + l, where

l ≡ ma + nb + pc (11.1)

with m,n, p integers and a,b, c fundamental translational vectors which
characterize the crystal structure.
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the crystalline cell, of volume vc = a × b . c 

the lattice 

a possible basis 
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B 

This property is called translational symmetry or translational in-
variance. As we shall see in Chapter 12, it is a symmetry property analogous
to the ones utilized for the electronic states in atoms and molecules.

The extremes of the vectors l, when the numbers m,n, p in Eq. 11.1 are
running, identify the points of a geometrical network in the space, called
lattice. By placing at each lattice point an atom or an identical group of
atoms, called the basis, the real crystal is obtained. Thus one can ideally
write crystal≡ lattice + basis.

The lattice and the fundamental translational vectors a,b, c are called
primitive when Eq. 11.1 holds for any arbitrary pair of lattice points. Ac-
cordingly, in this case one has the maximum density of lattice points and the
basis contains the minimum number of atoms, as it can be realized from the
sketchy example reported below for a two-dimensional lattice:

 

Primitive (one lattice point in the cell) 

non-primitive (three lattice points in the unitary cell)

The geometrical figure resulting from vectors a,b, c is called the crys-
talline cell. The lattice originates from the repetition in space of this funda-
mental unitary cell when the numbers m,n and p run. The unitary cell is
called primitive when it is generated by the primitive translational vectors.
The primitive cell has the smallest volume among all possible unitary cells
and it contains just one lattice point. Therefore it can host one basis only.

Instead of referring to the cell resulting from the vectors a,b, c one can
equivalently describe the structural properties of the crystal by referring to the
Wigner-Seitz (WS) cell. The WS cell is given by the region included within
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the planes bisecting the vectors connecting a lattice point to its neighbors, as
in the example sketched below.

 

b
 

c
 

a
 

WS cell 

lattice point inside

the WS cell 

 

The lattice points are then at the center of the WS cells.
The translation of the WS cell by all the vectors l belonging to the group

T of the translational operations (see Eq. 11.1) generates the whole lattice.

A few statements of geometrical character are the following:
i) The orientation of a plane of lattice points is defined by the Miller in-

dexes (hkl), namely by the set of integers without common factors, inversely
proportional to the intercepts of the plane with the crystal axes. The reason
of such a definition will be clear after the discussion of the properties of the
reciprocal lattice (§11.2).
ii) A direction in the crystal is defined by the smallest integers [hkl] having

the same ratio of its components along the crystal axes. For example, in a
crystal with a cubic unitary cell the diagonal is identified by [111]. One should
observe that the direction [hkl] is perpendicular to the plane having Miller
indexes (hkl) (see Problem F.XI.1).
iii) The position of a lattice point, or of an atom, within the cell is usually

expressed in terms of fractions of the axial lengths a, b and c.
The symmetry operations are the ones which bring the lattice into itself,

while leaving a particular lattice point fixed. The collection of the symmetry
operations is called point group (of the lattice or of the crystal). When also
the translational operations through the lattice vectors are taken into account,
one speaks of space group. For non-monoatomic basis the spatial group also
involves the symmetry properties of the basis itself. The point groups are
groups in the mathematical sense and are at the basis of an elegant theory



11.1 Translational invariance, Bravais lattices and Wigner-Seitz cell 371

(the group theory) which can predict most symmetry-related properties of
crystal just from the geometrical arrangement of the atoms.

Crystal System Bravais Lattice Unit Cell Dimensions

Triclinic Primitive (P) a ≠ b ≠ c
α ≠ β ≠ γ ≠ 90°

Monoclinic Primitive (P)
Base-Centered (C)

a ≠ b ≠ c
α = γ = 90° ≠ β 

Orthorhombic Primitive (P)
Base-Centered (C) 
Body-Centered (I)
Face-Centered (F)

a ≠ b ≠ c
α = β = γ = 90°

Trigonal R-Centered (R) a = b ≠ c
α = β = γ ≠ 90° < 120°

Hexagonal Primitive (P) a = b ≠ c
α = β = 90° γ = 120°

Tetragonal Primitive (P)
Body-Centered (I)

a = b ≠ c
α = β = γ = 90°

Cubic Primitive (P)
Body-Centered (I)
Face-Centered (F)

a = b = c
α = β = γ = 90°
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Trigonal and  Hexagonal

Monoclinic Triclinic

bcc fcc

Orthorombic

Fig. 11.1. Bravais crystal lattices with the conventional unitary cells, with the
relations among the lattice lengths and among the characteristic angles.

The crucial point is that the requirement of translational invariance
limits the number of symmetry operations that can be envisaged to
define the crystal structures. To illustrate this restriction it is customary to
recall that in a plane the unitary cell cannot be a pentagon (which is charac-
terized by a rotational invariance after a rotation by an angle 2π/5) since in
that case one cannot achieve translational invariance.

In three dimensions (3D) there are 32 point groups and 230 space
groups collecting all the symmetry operations compatible with translational
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invariance and with the symmetry of the basis. These groups define 14 fun-
damental lattices, called the Bravais lattices. These lattices are shown
in Fig. 11.1, where the unitary conventional cell generally used is indi-
cated. It is noted that some cells might appear non-primitive, since there is
more than one lattice point within them (see for instance the bcc lattice).
However, one can easily identify the fundamental lattice vectors defining the
primitive cell of the body-centered-cubic (bcc) Bravais lattice, in terms of the
more frequently used non-primitive cubic lattice vectors a,b, c shown in the
Figure. For the analogous case of the fcc (face-centered cubic) lattice, see Fig.
11.4 and Prob. F.XI.4.

11.2 Reciprocal lattice and Brillouin cell

As a consequence of the translational invariance in the ideal crystal, any local
function f(r) of physical interest (for instance, the energy or the probability
of presence of electrons) must be spatially periodic, in other words invariant
under the translation Tl by a vector belonging to the translational group:

Tlf(r) = f(r + l) = 1.f(r). (11.2)

Then one can abide by the Fourier expansion of f(r) and by referring for
simplicity to a crystal with orthogonal axes a,b and c and choosing x, y and
z along these axes, one writes

f(r) =
+∞∑

−∞ nx

Anx
(y, z)e[inxx(2π/a)] =

+∞∑
−∞ nx

Agx
e[igxx] ,

where nx is an integer and gx = nx(2π/a) are reciprocal lattice lengths. The
coefficients Anx

can be Fourier-expanded along y and z and so one can put
the function f(r) in the form

f(r) =
∑
g

Age
ig·r (11.3)

where

Ag =
1
vc

∫ +∞

−∞
f(r)e−ig.rdr, (11.4)

vc being the volume of the unitary cell. g is a reciprocal lattice vector built
up by linear combination, with integer numbers nx,y,z, of the fundamental
reciprocal vectors, i.e.

g = nx(2π/a)x̂+ ny(2π/b)ŷ + nz(2π/c)ẑ. (11.5)

It follows that for any reciprocal lattice vector g and for any translational
vector l, given by Eq. 11.1, one has
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eig.l = 1 , (11.6)

corresponding to the necessary and sufficient condition to allow the Fourier
expansion of local functions.

The above arguments can be generalized for non-orthogonal crystal axes
by defining the fundamental reciprocal vectors a∗,b∗ and c∗ in the form

a∗ =
2π

(a × b.c)
(b × c) =

2π
vc

(b × c),

b∗ =
2π
vc

(c × a),

c∗ =
2π
vc

(a × b). (11.7)

The set of points, in the reciprocal space, reached by the vectors

g = ha∗ + kb∗ + lc∗ (11.8)

with h, k and l integers, defines the reciprocal lattice:

 

b
* 

a
* 

c
* 

g
 

Instead of referring to the reciprocal lattice cell defined by a∗,b∗ and c∗,
it is often convenient to use its Wigner-Seitz equivalent, having a reciprocal
lattice point at the center. This cell is called the Brillouin cell and it is
shown schematically below for orthogonal axes:

 

b

*
/2 -b

*
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-a

*
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a

*
/2 

c
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-c

*
/2 

a

* 
/ 2 = π / a 

 

b

* 
/ 2 = π / b 

 

c

* 
/ 2 = π / c 

For instance, the Brillouin cell for the fcc lattice is obtained by taking
eight reciprocal lattice vectors (bcc lattice, see Problem F.XI.4) bisected by
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Fig. 11.2. Brillouin cell for fcc lattice

planes perpendicular to such vectors and when the six next-shortest reciprocal
lattice vectors are also bisected. This Brillouin cell is depicted in Fig. 11.2.

From the definitions of reciprocal lattice and of fundamental reciprocal
vectors, one can derive the following properties (see Problem F.XI.1):

i) g(h, k, l) is perpendicular to the planes with Miller indexes (hkl);
ii) |g| is inversely proportional to the distance among the lattice planes

(hkl).
The reciprocal lattice plays a relevant role in solid state physics. Its impor-

tance was first evidenced in diffraction experiments when it was noticed that
each point of the reciprocal lattice corresponds to a diffraction spot. When the
momentum of the electromagnetic wave (or of the De Broglie neutron wave)
as a consequence of the scattering process changes by any reciprocal lattice
vector, then the wave does not propagate through the crystal but undergoes
Bragg reflection, as sketched below:

Δk= (k
scatt

- k
inc

)= g

k
inc

k
scatt

g

θ
(hkl) plane

This condition corresponds to the Bragg law in the form

nλ = 2dsinθ (11.9)

for the constructive interference of the radiation diffused by adjacent planes
(d separation between the planes, n= 1,2,3..., X-ray beam incident at the an-
gle θ the planes). In fact Δk = g is equivalent to 2π/|Δk| = d(hkl), while
|kinc| = |kscatt| = 2π/λ (for elastic scattering) and Δk = (4π/λ)sinθ.
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Furthermore, as we shall see at Chapter 12, the generators of the Brillouin
cell, cut in a way related to the number of the cells in a reference volume, define
the generators of a three-dimensional network in the reciprocal space. These
vectors correspond to the wave-vectors of the excitations that can propagate
through the crystal. Meantime they set the quantum numbers of the electron
states.

11.3 Typical crystal structures

CsCl is the prototype of a family of cubic primitive (P) crystals with the basis
formed by two atoms, one at position (0,0,0) and the other at (1/2,1/2,1/2). As
sketched below the coordination number, i.e. the number of nearest neighbors
around the Cs (or Cl) atoms is 8.

+ =

lattice (cubic P) crystal cellbasis

Cs (0, 0, 0)

Cl (1/2, 1/2, 1/2)

Cs

Cl

Other diatomic crystals with the same structure are TlBr, TlI, AgMg,
AlNi and BeCu. Elements having the simple cubic (the basis being formed by
one atom) Bravais lattice are P and Mn.

A group of interesting crystals having a P cubic lattice with a more com-
plex basis are the perovskite-type titanates and niobates, such as BaTiO3,
NaNbO3, KNbO3. At high temperature (T ≥ 120 ◦C for BaTiO3) the atomic
arrangement is the one reported in Fig. 11.3. The oxygen octahedra having
the Ti (or Nb) atom at the center result from the d2sp3 hybrid orbitals (see
Fig. 9.3). These octahedra are directly involved in the structural transitions
driven by the softening of the q = 0 or of the zone-boundary vibrational modes
(see §10.6 for a comment and Chapter 14). The distortion of the cubic cell is
the microscopic source of the ferroelectric transition and of the electro-
optical properties which characterize that crystal family. For all the crystal
lattices described above the reciprocal lattice is cubic and the Brillouin cell is
also cubic.

NaCl crystal is a typical example of face-centered cubic (fcc) lattice. The
non-primitive, conventional, unitary cell and the primitive cell are shown in
Fig. 11.4. The basis is formed by two atoms at the positions (0,0,0) and
(1/2,1/2,1/2). The coordination number is 6. The fcc lattice characterizes
also the structure of KBr, AgBr and LiH and of several metal elements such
as Al, Ca, Cu, Au, Pb, Ni, Ag and Sr.

The fcc lattice also characterizes the diamond (C) and the semiconductors
Si, Ge, GaAs and InSb. In these cases the basis is given by two atoms (the same
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Ba 
Ba

Ba Ba

Ba

Ti 

Basis 

Crystal 

O 

O 

O 

Fig. 11.3. Sketch of the crystal cell in BaTiO3 (in the cubic phase).
At Tc � 120 ◦C a displacive phase transition occurs, to a structure of tetragonal
symmetry. The arrows indicate the directions of the displacements of the ions, having
taken the oxygen ions at c/2 fixed (also a slight shrinkage in the ab plane occurs). The
displacement of the positive and negative ions in opposite directions are responsible
for the spontaneous polarization arising as a consequence of the transition from
the cubic to the tetragonal phase (ferroelectric state).

Na

Cl

Conventional cell

Primitive cell

Fig. 11.4. Conventional and primitive cells for NaCl.

for C, Si and Ge) at the positions (0,0,0) and (1/4,1/4,1/4). Each atom has
a tetrahedral coordination that may be thought to result from the formation
of sp3 hybrid atomic orbitals (§9.2), as sketched below:
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Carbon is known to crystallize also in the form of graphite, where the sp2

hybridization of the C atomic orbitals yields a planar (2D) atomic arrange-
ment. The 2D lattice is formed by two interpenetrating triangular lattices (see
Fig. 11.5).

It should be mentioned that carbon can also crystallize in other forms, as
for example in the fcc fullerene, where at each fcc lattice site there is a C60

molecule, with the shape of truncated icosahedron (a cage of hexagons and
pentagons).

Fig. 11.5. In-plane atomic arrangement of C atoms in graphite.

Another relevant crystalline form is the one having the hexagonal close-
packed lattice, with the densest packing of hard spheres placed at the lattice
points. The arrangement is obtained by placing the atoms at the vertexes of
planar hexagons and then creating a second layer with “spheres” superim-
posed in contact with the three spheres of the underlying layer. The crystal
lattice is the P hexagonal and the basis is given by two atoms placed at (0,0,0)
and at (2/3,1/3,1/2).

In the hard sphere model 74 % of the volume is occupied and the ratio
c/a is 1.633. In real crystals with this structure one has values of c/a slightly
different, as 1.85 for Zn and 1.62 for Mg.
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Problems F.XI

Problem F.XI.1 From geometrical considerations derive the relation-
ships between the reciprocal lattice vector g(hkl) and the lattice planes with
Miller indexes (hkl).

Solution:
For

g = ha∗ + kb∗ + lc∗.

let us take a plane perpendicular, containing the lattice points ma, nb and
pc. Then, since ma − nb, ma − pc and nb − pc lie in this plane, one has

g.(ma − nb) = g.(ma − pc) = g.(nb − pc) = 0.

Then hm − kn = 0, mh = pl and nk = pl, yielding m = 1/h, n = 1/k and
p = 1/l.

From the definition of the Miller indexes one finds that the plane perpen-
dicular to g, passing through the lattice points ma, nb and pc is the one
characterized by (hkl).

Now it is proved that the distance d(hkl) between adjacent (hkl) planes is
2π/|g(hkl)|. Let us consider a generic vector r connecting the lattice points of
two adjacent (hkl) planes. Since g(hkl) is perpendicular to these planes one
has r.ĝ(hkl) = d(hkl). One can arbitrarily choose r = a/h. Then a.g(hkl) =
2πh and since ĝ = g/|g| one has r.ĝ = 2π/|g|. Therefore

d(hkl) =
2π

|g(hkl)|

Problem F.XI.2 Derive the density of the following compounds from
their crystal structure and lattice constants:

Iron (bcc, a = 2.86 Å), Lithium (bcc, a = 3.50 Å), Palladium (fcc, a =
3.88 Å), Copper (fcc, a = 3.61 Å), Tungsten (bcc, a = 3.16 Å).

Solution:

Fe : ρ =
atomic mass · 2

vc
= 7.93 g cm−3 .

Li : ρ =
2 · 1.660 · 10−24 · 6.939

(3.5 · 10−8)3
= 0.537 g cm−3 .

Pd : ρ = 12.095 g cm−3 .

Cu : ρ = 8.968 g cm−3 .
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W : ρ = 19.344 g cm−3 .

Problem F.XI.3 Estimate the order of magnitude of the kinetic energy of
the neutrons used in diffraction experiments to obtain the crystal structures.
By assuming that the neutron beam arises from a gas, estimate the order of
magnitude of the temperature required to have diffraction.

Solution:
The neutron wavelength has to be of the order of the lattice spacing, i.e. of the
order of 2 Å. Then Ekin = h2/2Mnλ

2 � 20 meV. The corresponding velocity
is around 2 × 105 cm/s. Since Ekin = 3kBT/2, one has T � 160 K.

Problem F.XI.4 Show that the reciprocal lattice for the fcc lattice is a
bcc lattice and vice-versa.

Solution:
In terms of the side a of the conventional cubic cell the primitive lattice
vectors of the fcc structure are (Fig. 11.4):

a1 =
a

2
(i + j)

a2 =
a

2
(i + k)

a3 =
a

2
(j + k)

(i, j,k orthogonal unit vectors parallel to the cube edges). Note that |ai| =
a/

√
2 and therefore the volume of the primitive cell is (a1 × a2) · a3 = a3/4.

Then the primitive vectors of the reciprocal lattice are

a∗
1 =

2πa2 × a3

a3/4

and similar expressions for a∗
2 and a∗

3 (Eq. 11.7) (in the unit cube of volume
a3 there are four lattice points). Thus

a∗
1 =

2π
a

(−i − j + k)

a∗
2 =

2π
a

(−i + j − k)

a∗
3 =

2π
a

(i − j − k)
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The shortest (non-zero) reciprocal lattice vectors are given by the eight vectors
(2π/a)(±i ± j ± k) which generate the bcc (reciprocal) lattice.

A similar procedure applied to the primitive translational vectors of the
bcc lattice

a1 =
a

2
(i + j + k)

a2 =
a

2
(−i + j + k)

a3 =
a

2
(−i − j + k)

(yielding for the volume of the primitive cell (a1 × a2) · a3 = a3/2) implies

a∗
1 =

2π
a

(i + k)

a∗
2 =

2π
a

(−i + j)

a∗
3 =

2π
a

(−j + k)

as primitive vectors of fcc lattice.
The Brillouin cell of the bcc lattice is shown below (compared to the one

in Fig. 11.2).
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Electron states in crystals

Topics

Bands of energy levels
Bloch orbital and crystal momentum
Effective mass of the electron
Density of states
Free-electron model
Magnetic and thermal properties of metals
Perturbative effects on free-electron states and energy gaps
Tight-binding model
Bands overlap and intrinsic semiconductors

12.1 Introductory aspects and the band concept

A fundamental issue in solid state physics is the structure of the electronic
states. Transport, magnetic and optical properties, as well as the very nature
(metal, insulator or semiconductor) of the crystals, are indeed controlled
by the arrangement of the energy levels.

The complete form of the Schrödinger equation for electrons and nuclei can
hardly be solved, even by means of computational approaches. Therefore to
describe the electron states in a crystal it is necessary to rely on approximate
methods applied to model systems.

Usually the crystal is ideally separated into ions (the atoms with the
core electrons practically keeping their atomic properties) and the valence
electrons, which are affected by the crystalline arrangement. The Born-
Oppenheimer separation (§7.2) is usually the starting point, often in the adi-
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abatic approximation 1. From the many-body problem for the electrons, by
means of Hartree-Fock description one can devise the one-electron effective
potential that takes into account the interaction with the positive ions, the
Coulomb-like repulsion among the electrons as well as the generalized ex-
change integrals. We shall not derive the potential energy in detail on the
basis of that type of approach. Rather, similarly to atoms and molecules,
we shall address the main aspects of the electronic structure in crystals on
the basis of the fundamental symmetry property, namely the translational
invariance for the potential energy:

V (r + l) = V (r) (12.1)

with l lattice vector (Eq. 11.1 and §11.2).
First we shall derive the general properties and the classification of the

electronic states in terms of a pseudo-momentum vector in the reciprocal
space. Then a deeper description will be made on the basis of particular
models, at the sake of illustration of the generalities, meantime illustrating
the properties of typical groups of solids.

Henceforth, by extending the molecular orbital approach (§8.1) in the
LCAO form, one can express the one-electron wave function as Bloch or-
bital. This is somewhat equivalent to the delocalized MO introduced for the
benzene molecule (§9.3).

Referring to an ideal crystal formed by a chain of N one-electron atoms

 

“resonance” “resonance”

i-th atom i+1 i-1 

a

and generalizing the concepts used for H2 molecule (§8.2), the formation of
the band of electron levels can be understood as resulting from the removal
of the degeneracy of the atomic levels. In fact, by taking into account the
resonance of one electron among neighboring atoms (see sketch above), the
wave function of the electron centered at i-th site is written

ih̄
dψi

dt
= Eoψi +Aψi−1 +Aψi+1, (12.2)

1 As already mentioned (§7.1) several relevant phenomena belonging to the realm
of solid state physics, for instance electrical resistivity and superconductivity,
require to go beyond the adiabatic approximation.
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where A < 0 is the resonance integral between adjacent sites (equivalent
to HAB in §8.1). From what has been learned for the H+

2 molecule, we look
for a solution of Eq. 12.2 in the form

ψi = φie
−iEt/h̄ (12.3)

where E is the unknown eigenvalue, while φi is the electron eigenfunction for
the atom centered at the site i. Then

Eφi = Eoφi +A(φi−1 + φi+1) , (12.4)

with φi = φ(xi) and φi±1 = φ(xi ± a). By looking for a solution of the form
exp(ikxi), typical of the difference equations and already used for the benzene
molecule (§9.3), Eq. 12.4 is rewritten

Eeikxi = Eoe
ikxi +A

[
eik(xi+a) + eik(xi−a)

]
, (12.5)

yielding
E = Eo + 2Acos(ka) (12.6)

The formation of a band of electronic levels, each level labelled by k, as
a consequence of the removal of the degeneracy existing for non-interacting
atoms, is illustrated below

 

large interatomic distance distance 

E0 

+2A
a

-2A 

as a function of k 

The band of N electron levels is the generalization of the g and u levels
in the H2 molecule or of the four levels in the C6H6 molecule. The energy
interval between two adjacent bands, related to different atomic eigenvalues
Eo, will be called energy gap.

We shall come back to the problem of labelling the electron states and to
the mechanisms leading to the appearance of the gap, after the discussion of
suitable crystal models (§12.7).
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12.2 Translational invariance and the Bloch orbital

In ideal crystals, with no defects and without surfaces, the translation operator
Tl (see Eq. 11.2) commutes with the Hamiltonian:

TlH(r)φ(r) = H(r + l)φ(r + l) = H(r)Tlφ(r)

Then the one-electron eigenfunction φ(r) must be eigenfunction of Tl also,
with eigenvalues cl satisfying the condition |cl|2 = 1, since

|φ(r + l)|2 ≡ |Tlφ(r)|2 = |φ(r)|2.

On the other hand, two translations Tl1Tl2 ≡ Tl1+l2 , must yield the same
result of the translation by l1 + l2:

 

This suggests for the eigenvalue the form cl = exp(iλl), so that

Tl1+l2φ = Tl1e
iλ2φ = eiλ2eiλ1φ = ei(λ1+λ2)φ ,

with λl real number.
For any translation vector l a vector k so that λl = k.l can be picked up

in the reciprocal space (see §11.2). Therefore one writes

Tlφ(r) = φ(r + l) = eik.lφ(r),

and by multiplying by e−ik.r

e−ik.rφ(r) = e−ik.(r+l)φ(r + l).

This condition shows that the function uk(r) = exp(−ik.r)φ(r) has the pe-
riodicity of the lattice, as described by Eq. 11.2.

Then the one-electron wave function can be written as Bloch orbital, i.e.

φk(r) = uk(r)eik.r

uk(r + l) = uk(r) , (12.7)

which couples the free-electron wave function exp(ik.r) (characteristic of the
empty lattice, namely in the limit V (r) → 0) with an unknown wave function
uk(r) having the lattice periodicity.
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It can be remarked that up to now k in the Bloch orbital is just a vector
in the reciprocal space used to label the one-electron states in a periodic
potential. In the next Section the role and the physical properties of k shall
be discussed.

In order to illustrate the Bloch orbital we will take into consideration
a particular form for the function uk(r). uk(r) can be found from the one-
electron Schrödinger equation Hφ(r) = Eφ(r) by writing for φ(r) the Bloch
orbital according to Eq. 12.7:[−h̄2

2m
(∇ + ik)2 + V (r)

]
uk(r) = Ekuk(r) (12.8)

 

within the cell 

in the insulated

atom  

a
0
 

φ 
3s

 

x 

Fig. 12.1. Sketch of uk=0(r) for 3s electron in the Na crystal, derived by Wigner
and Seitz by means of the cellular method (by approximating the WS cell to a
sphere; see also the book by Slater quoted in the preface).

k=0

k=π/a

k=π/4a

k=π/4a

Fig. 12.2. Sketchy illustration of the Bloch orbital in the Na crystal along the [111]
direction for different values of k, with a interatomic distance.
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Under the assumption that uk(r) is weakly k-dependent, i.e. uk(r) �
uk=0(r), one can write φk(r) = uk=0(r)eik.r. From Eq. 12.8 one sees that
for k = 0 uk=0(r) is the solution of the atomic-type Schrödinger equation.
The only difference is in the boundary conditions which impose the continu-
ity at the border of the Wigner-Seitz cell (see §11.1). In Fig. 12.1 the function
uk=0(r) for the 3s electron, in the Na crystal derived under these constraints
(this procedure is the core of the so-called cellular method), is sketched.
The corresponding Bloch orbitals are schematically depicted in Fig. 12.2.

12.3 Role and properties of k

The reciprocal space vector k, labelling the eigenvalues of the translational
operator which commutes with the Hamiltonian, is a constant of motion: its
components kx, ky and kz have to be considered as good quantum numbers for
the one-electron states. Hence, as far as the translational invariance condition
holds, the electron remains in a given state k. 2

A first illustration of the role of k can be provided by considering the lim-
iting case of vanishing potential energy V (r), often called the empty lattice
condition, as already mentioned. Then the eigenfunctions are

φk(r) ∝ eik.r (12.9)

with eigenvalues

Ek =
h̄2k2

2m
. (12.10)

Therefore for the empty lattice, k represents the momentum of the elec-
tron, in h̄ units.

When V (r) 
= 0 h̄k is no longer the momentum of the electron (it is not
the eigenvalue of −ih̄∇). In fact, by referring for simplicity to the x direction,
one sees that

−ih̄ ∂
∂x
ukx

(x)eikxx 
= h̄kxukx
(x)eikxx.

The expectation value of the momentum is given by

−ih̄
∫
u∗kx
e−ikxx ∂

∂x
ukx
eikxxdx = h̄kx + (−ih̄)

∫
u∗kx

∂

∂x
ukx

, (12.11)

2 The translational invariance can be broken by defects, free surfaces or by the
vibrational motions of the ions. In this respect, it should be observed that, at
variance with the states in molecules, here the k-electron states are very close
in energy and the vibrational motions of the ions may cause variation of the
electron state. These processes contribute to the electrical resistivity (see §13.4
for remarks on these aspects).
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where the second term can be considered as an “average momentum” trans-
ferred to the lattice. Nevertheless, even for V (r) 
= 0, k continues to be a
constant of motion and then it labels the state.

Furthermore k plays the role of an electron momentum in regards of
external forces. A semiclassical way to prove this role of k is to consider
the elemental work δL made by an external force Fe (e.g. the one due to an
external electric field). Since

δL = Fe.vgδt

with the group velocity vg = (1/h̄)∂Ek/∂k, one has

δL = Fe.
1
h̄

∂Ek

∂k
δt .

By equating the elemental work δL to δE = (∂Ek/∂k).δk, one derives

δk
δt
h̄ = h̄k̇ = Fe , (12.12)

illustrating how h̄k behaves as a momentum. Thus it can be defined as
pseudo-momentum or crystal momentum.

Up to now k is a continuous vector in the reciprocal space. As already
seen in atoms and in molecules, the boundary conditions determine discrete
eigenvalues and then discrete values for k. In this respect one possibility would
be to fix the nodes of the wavefunctions at the surface of the crystal. Quantum
conditions similar to the ones for a particle in a box can be expected. However,
this procedure would imply the transformation of the wavefunctions from
running waves to stationary waves and surface effects would arise. It is often
more convenient to impose periodic boundary conditions (Born-Von
Karmann procedure), as we shall see in the next Section.
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Problems XII.3

Problem XII.3.1 For k-dependence of the electron eigenvalues given by

E(k) = Ak2 −Bk4

derive the eigenvalue E(k∗) for which phase and group velocities of the elec-
trons are the same. Give the proper orders of magnitude and units for the
coefficients A and B.

Solution:
From vph = ω/k = (Ak −Bk3)/h̄ and vg = ∂ω/∂k = (2Ak − 4Bk3)/h̄, one
has 2A− 4Bk∗2 = A−Bk∗2 , yielding

k∗ =
(
A

3B

) 1
2

and E∗ = k∗2(A − Bk∗2) = 2A2/9B . The orders of magnitude of A and B
are A ∼eV Å2 and B ∼eV Å4.

Problem XII.3.2 Discuss the trajectory of an electron under the Lorentz
force due to an external magnetic field along the z-direction, for energy eigen-
values of the form Ek = αk2

x + βk2
y.

Solution:
According to the extension of Eq. 12.12 to the Lorentz force, from

h̄
dk
dt

=
−evg

c
× H ,

with vg the group velocity, one writes

dk
dt

= − e

h̄2c
(∇kEk × H) .

For magnetic field along the z-direction one has

dk
dt

=
2eH
h̄2c

(αkxj − βkyi)

or

k̇x = −2eH
h̄2c

βky k̇y = +
2eH
h̄2c

αkx

yielding

kx = kx0 cos(ωt+ φ), ky = ky0 sin(ωt+ φ) ,
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where

ω =
2eH
h̄2c

(αβ)1/2

The trajectory in the k plane is an ellipse. From the integration of the
group velocity

vg = (2α/h̄)kx0 cos(ωt+ φ)i + (2β/h̄)ky0 sin(ωt+ φ)j ,

it is found that also in the real space the trajectory of the motion is an ellipse,
for a given value of the energy, so that αk2

x0 = βk2
y0 = Ek0 . The motion

induced by the magnetic field is called cyclotron motion (see App.XIII.1
for details).

Problem XII.3.3 In a cubic crystal the k-dependence of the electron
eigenvalues is

E(k) = C − 2V1[cos kxa+ cos kya+ cos kza]

(a form that can be obtained in the framework of the tight-binding model,
see §12.7.3). Derive the acceleration of an electron due to an external electric
field.

Solution:
From the time derivative of the group velocity vg = (1/h̄)∇kEk, by con-

sidering that k̇ = Fe/h̄, the tensor describing the relationship between the
electric field E and the acceleration v̇g turns out⎛⎝A cos kxa 0 0

0 A cos kya 0
0 0 A cos kza

⎞⎠ ,

with A = 2V1a2

h̄2 . Then, for E = Exi + Eyj + Ezk the acceleration is

v̇g = −A[(eEx cos kxa) i + (eEy cos kya) j + (eEz cos kza)k] .

Since no off-diagonal elements of the tensor are present, the acceleration is
along the same direction of the field. The ratio between the external force and
the acceleration leads to the concept of effective mass (see §12.6).
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12.4 Periodic boundary conditions and reduction to the
first Brillouin zone

Let us refer to a region of macroscopic size in an ideal crystal containing N
cells, N1 along the a direction, N2 along b and N3 along c. The reference
volume is Nvc, with vc = (a × b).c. The electron wavefunctions φk have
to be identical in equivalent points of that region and of a replica region. By
assuming for simplicity that the crystal axes are perpendicular and considering
the vector L = N1a+N2b+N3c, then according to Eq. 12.7 one has to write

eik.r = eik.(r+L) , (12.13)

the equality of uk(r) in the replica region being obviously granted. Then the
conditions

kx = n1
2π
aN1

, ky = n2
2π
bN2

, kz = n3
2π
cN3

(12.14)

with ni integers are obtained. By referring to the reciprocal lattice vectors
(§11.3) a∗,b∗, c∗, thus extending the above arguments to non-perpendicular
crystal axes, the periodic boundary conditions yield

k = n1
a∗

N1
+ n2

b∗

N2
+ n3

c∗

N3
. (12.15)

It should be noticed that k can be outside of the Brillouin cell. However,
as we shall see in the following, an electron state k outside the Brillouin cell
(or first Brillouin cell) is equivalent to a given state within the cell. Therefore,
one can classify the states by means of the set of discrete N vectors k given
by Eq. 12.15, with ni such that k lies within the Brillouin zone (BZ). This
statement can be understood with the aid of the planar reciprocal lattice, as
sketched below:

 

a* 

reciprocal lattice vector  

g’= 3 a* + b* 

b* 

BZ 

k 

k’ 

g’ 

g′ is a reciprocal lattice vector that from k′ outside the BZ brings to a
point inside it. Thus k = k′ − g′ and the wavefunction φk′ can be written
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φk′ = uk′(r)eik
′·r = eik·reig

′·ruk′(r) . (12.16)

Now one can observe that eig
′ruk′(r) has the lattice periodicity since, accord-

ing to Eq. 11.6, eig
′.l = 1. Hence eig

′.ruk′(r) = uk(r) is the function which
makes φk in the form of a Bloch orbital. Then

φk′ = φk and Ek′ = Ek (12.17)

and the electron states can be classified by means of N vectors k in-
side the BZ. The states k′ outside this zone merely correspond to equivalent
states, in a representation called extended zone representation. This rep-
resentation has to be compared to the reduced zone representation where
all states are reported inside the BZ. The details of the electron states in the
framework of specific crystal models (see §12.7) will better clarify this aspect.

For a one-dimensional (1D) crystal one has the illustrative plots reported
below, for a band of the form as in Eq. 12.6.

 a

basis 

Lattice 
l = ma 

WS cell

crystal cell 

Reciprocal lattice 

a* ≡ 2π/a 

Brillouin cell 

-π/a π/a 

Energy curve 

equivalent states

the band

-π/a π/a 
k 

BZ

extended zone representation 

12.5 Density of states, dispersion relations and critical
points

As discussed in the previous Section, the electron states can be described by
referring to the reciprocal space and in particular to the first Brillouin zone.
The state of the whole crystal can be thought to result from the assignment
of two electrons, with opposite spins, to each state k, in a way similar to the
aufbau principle used in atoms and in molecules. For the moment we shall refer
for simplicity to the condition of zero temperature, so that one can disregard
the thermal excitations to higher energy states.
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One can sketch the situation as below,

 

ky 

kz 

kx 

The Fermi surface

“limiting” surface 

 (a sphere in the     

 empty lattice model) 

state k 

with a limit surface in the reciprocal space including all the occupied
electron states. This surface, corresponding to a sphere in the empty lattice
model (Eq. 12.10), is called Fermi surface.

The following points should be remarked:
i) if one increases the reference volume Nvc, by increasing the number of

crystal cells, the total number of k states increases;
ii) if the crystal cell is expanded (vc increases) the BZ volume decreases;
iii) for monoatomic crystals, with the basis formed by a single atom with

one valence electron, the BZ is half filled by occupied states;
iv) again for monoatomic crystal, when each atom contributes with two

valence electrons, the BZ is fully occupied (the surface of the Brillouin cell
not necessarily coincides with the Fermi surface).

The density of k states D(k) can be derived once it is noticed that within
the BZ there are N states, equally spaced in the reciprocal volume. Then, the
BZ volume being v∗c = 8π3/vc, one has

D(k) =
N

v∗c
=
Nvc
8π3

. (12.18)

The reference volume is often assumed 1 cm3. Since for such a volume the
number of states within the BZ is around 1022, although k in principle is a
discrete variable, in practice it is often convenient to treat it as a continuous
variable, so that ∑

k′
→

∫
D(k)dk ≡ Nvc

8π3

∫
dk (12.19)
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The sequence of energy levels E(k) is the band, that we have already in-
troduced qualitatively in §12.1. In analogy to wave optics, the k-dependence
of the eigenvalues is called dispersion relation.

An important quantity characterizing the structure of the energy levels is
the density of energy states D(E) (density of states), namely the number of
electronic states within a unitary interval of energy around E = E(k). D(E)
is related both to D(k) and to the dispersion relation. A general expression
for D(E) can be obtained by estimating the number of states lying between
the two surfaces, in the reciprocal space, correspondent to constant energy
given by E and E + dE, respectively (see sketch below).

 

ky 

kx 

kz 

Surface at E

δVE 

Surface at constant  

energy E+dE 

dSE 

dk⊥ 

The number of states in the volume δVE is

D(E)dE =
Nvc
8π3

.2.δVE ,

the factor 2 accounting for the spin degeneracy. For the volume δVE in between
the two surfaces one has

δVE =
∫

S

dSEdk⊥ =
∫

S

dSE
dE

|∇kE(k)|
since dk⊥ = dE/|∂E/∂k|. Therefore

D(E) =
Nvc
4π3

∫
S

dSE
1

|∇kE(k)| . (12.20)

From the above expression it is evident that D(E) has singularities (Van
Hove singularities) whenever the gradient of E(k) in the reciprocal space
vanishes. The points, in the reciprocal space, where this condition is fulfilled
are called critical points. These critical points are particularly relevant for
the optical and transport properties since they imply a marked denseness of
states. As it will be shown in the next Section, electrons around a critical
point behave as if they had particular effective masses.
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12.6 The effective electron mass

As shown in Section 12.3 the k-dependence of the energy controls the behavior
of the electron under external forces. In fact h̄k̇ = Fe, while the group velocity
is vg = (1/h̄)(∂E(k)/∂k). By differentiating vg one has

a =
dvg

dt
=

1
h̄

∂2E(k)
∂k2

∂k
∂t

=
1
h̄2

∂2E(k)
∂k2

Fe (12.21)

On the basis of the classical analogy, the relationship between the force and
the acceleration points out that the electron reacts to the external force as if
it had a mass

m̃∗ = h̄2(
∂2E(k)
∂k2

)−1. (12.22)

In the empty lattice limit, or free electron model (see §12.7.1), the effec-
tive mass coincides with the real electron mass:m∗ = h̄2/[∂2(h̄2k2/2m)/∂k2] ≡
m.

In order to illustrate the concept of effective mass let us refer to the dis-
persion curve derived in Section 12.1 by applying to a linear chain of atoms
(1D) the idea of resonance among adjacent atoms: E(k) = 2Acos(ka), with k
along x axis and A < 0. Then, from Eq. 12.22, the effective mass turns out

m∗ = − h̄2

2Aa2
1

cos(ka)
. (12.23)

 

+π/a-π/a 

k 

m* → ∞ 
m* 

    Negative 

effective mass 

BZ 

Fig. 12.3. Effective mass m∗ as a function of k for a 1D model crystal, in corre-
spondence to the dispersion relation E(k) = 2Acos(ka), with A < 0.

Finally, as it appears from Eq. 12.22, the effective mass m̃∗ has a tensorial
character, with components (see Problem XII.3.3)

m∗
αβ = h̄2(

∂2E(k)
∂kα∂kβ

)−1. (12.24)
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Problems XII.6

Problem XII.6.1 For a one-dimensional crystal the dispersion relation
is assumed

E(k) = E1 + (E2 − E1) sin2

(
ka

2

)
,

with lattice step a = 1 Å. By referring to a single electron in the band and
by neglecting any scattering process (with defects, boundaries or impurities)
derive the effective mass, the velocity and the motion of the electron in the
real space, under the action of a constant electric field E . For E = 100V/m
and (E2 −E1) = 1 eV, obtain the period and the amplitude of the oscillatory
motion.

Solution:
The group velocity is vg = [a(E2 − E1)/2¯̄h] sin(akx). The effective mass

is m∗ = ¯̄h2[d2E/dk2
x]−1 = m0 sec(akx), where m0 = [2¯̄h2/a2(E2 − E1)] is the

mass at the bottom of the band. m∗ becomes infinite for kx = ±π/2a (see
plots).

k
x
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For a single non-scattered electron in a time-independent electric field Ex

the force implies dkx/dt = (−eEx/h̄). Then kx scans repetitively through the
Brillouin zone, with period t∗ = (2πh̄/aeEx).

In the assumption that at t = 0 E = E1, m∗ = mo, kx = 0, the electron
has finite positive mass for some time, becoming infinite at t = t∗/4.

At t = t∗/2 the electron arrives at kx = −(π/a). The equivalence of this
state with the one at kx = +π/a corresponds to the return into the BZ (this
corresponds to the Bragg reflection of the De Broglie wave, see also §12.7.2).
Then kx decreases again and the mass divergence is reached at t = (3/4)t∗.

From the velocity

vg(t) = [a(E2 − E1)/2¯̄h] sin(−2πt/t∗) = [a(E2 − E1)/2¯̄h] sin(−aeExt/¯̄h)

it is found that in the real space an oscillatory motion occurs:

x(t) =
∫
vgdt = [(E2 −E1)/2eEx] cos(−aeExt/¯̄h)

For a = 1Å and Ex = 102 V/m, t∗ � 4 × 10−7 s and the distance covered
would be about 1 cm.

For the case of a sinusoidally modulated electric field, see the problem 3.30
in the book by Blakemore quoted in the preface.
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12.7 Models of crystals

Now we are going to apply the general description given in previous Sections
to particular models of crystals. This should allow one to achieve a better
understanding of the physical concepts. Meantime the models to be described,
to a good approximation correspond to particular groups of solids.

12.7.1 Electrons in empty lattice

The condition of potential energy V (r) going to zero has already been occa-
sionally addressed. Now we shall explore in more detail this ideal situation
and derive some finite-temperature properties which reflect the thermal exci-
tations and the statistical effects.

When V (r) → 0 the electrons delocalize in the reference volume Nvc and
are described by Bloch orbitals (Eq. 12.7) with constant uk(r). According to
the one-electron Schrödinger equation one has

φk =
1√
Nvc

eik.r (12.25)

and

E(k) =
h̄2k2

2m
. (12.26)

The valence electrons can be thought to move freely in the reference volume
and they become responsible for the electric conduction. This model is suited
to describe the metals.

The theory of metals in the framework of the free electron model was
actually developed before the advent of quantum mechanics. Significant suc-
cesses were achieved, as the derivation of Ohm law and of the relationship
between thermal and electrical conductivity (Wiedemann-Franz law). At
variance, the behaviour of other quantities, such as the heat capacity and the
magnetic susceptibility, requiring in the derivation the use of Fermi-Dirac dis-
tribution, could hardly be explained in the early theories. On the other hand,
in spite of the successful quantum mechanical description, the limits of the
free electron model become obvious when one recalls the huge change in the
electrical conductivity from metals to insulators or the existence of semicon-
ductors. In these compounds the role played by a non-zero lattice potential is
crucial (see next Section).

The dispersion curve for electrons in empty lattice (Eq. 12.26) is reported
in Fig. 12.4 in the extended, reduced and repeated zone representations,
along a reciprocal space axis.
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Fig. 12.4. Dispersion curves for the empty lattice model, in a crystal of lattice step
a, within: a) the extended zone scheme, b) the reduced zone scheme, c) the repeated
zone scheme. The indexes (in b)) indicate the number of reciprocal lattice vectors
a∗ required for the reduction to the first BZ.

The constant energy surfaces in k space are spherical,
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At T = 0 the electrons fill all the states up to a given wavevector of
modulus kF , called the Fermi wavevector, which corresponds to the radius
of the Fermi surface (see §12.6). In a crystal with N cells and Z electrons
per cell, kF can be directly derived by considering the volume of the Fermi
sphere, the density of states D(k) (Eq. 12.18) and the spin variable for each
k state:

ZN =
Nvc
8π3

.2.
4π
3
k3

F , (12.27)

yielding kF = (3π2Z/vc)1/3. The Fermi energy EF = h̄2k2
F /2m turns out

EF =
h̄2

2m
(3π2 Z

vc
)2/3 =

h̄2

2m
(3π2)2/3n

2/3
d , (12.28)

where nd is the number density of electrons (per cubic centimeter).
The Fermi wavevector kF is of the order of 108 cm−1, the correspondent

velocity is of the order of 108 cm/s, while the Fermi energy is of the order of
1 − 10 eV.
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The total density of states for the volume Nvc can be derived starting
from Eq. 12.20:

D(E) =
Nvc
4π3

∫
S

dSE
1

|∇kE(k)| =
Nvc
2π2

(
2m
h̄2 )3/2E1/2 =

3NZ
2
E1/2

E
3/2
F

.

The density of states per unit cell is reported below:

 

EF E 

∝ E
1/2

 

D (E) 

3Z/2EF 

(per unit cell) 

 

D(E) is often defined per unit volume or per atom.
Now we briefly discuss the situation occurring at finite temperature, when

the statistical excitation of the electrons above the Fermi level has to be taken
into account. The probability of occupation of the level at energy E is given
by the Fermi function

f(E) =
1

e
E−μ
kBT + 1

, (12.29)

where for temperatures much lower than the Fermi temperature TF = EF /kB

the chemical potential μ can be considered to coincide with the Fermi energy
EF (of the order of 104 K) (see Prob. XII.7.3).

Then the distribution function and the density of occupied states take the
forms plotted below:

k
B
T

D(E)f(E,T)

D(E)

E
F

EE
0

k
B
T=0.1E

F

T=0

E
F

1

f (E,T)
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The average energy is

< E >=
∫
ED(E)f(E)dE,

and for T → 0

< E >=
∫ EF

0

ED(E)dE =
3
5
NZEF , (12.30)

while at finite temperatures (Prob. F.XII.1) it turns out

< E >=� 3
5
NZEF +

π2

4
NZkBT

T

TF
. (12.31)

It is noted that the contribution to the energy at T 
= 0 takes a form simi-
lar to the classical energy 3kBT/2 (per electron) times the “fraction” ∼ T/TF

of electrons in the neighborhood of the Fermi level.

The specific heat CV and the magnetic susceptibility χP can be derived
as illustrated in the Problems F.XII.1 and XII.7.6.

A simple way to estimate the order of magnitude of CV and χP is to
consider that only a fraction T/TF of all the electrons can be thermally or
magnetically excited. In fact, the states at E � EF are all occupied and the
Pauli principle prevents double occupancies. Then, from the classical expres-
sions for Boltzmann statistics one can approximately write

CV � ∂

∂T
(
3
2
ndkBT )

T

TF
= γT , (12.32)

with γ = 3ndkB/TF (the correct expression is γ = π2D(EF )k2
B/3, withD(EF )

the density of states at the Fermi energy per unit volume, see Prob. F.XII.1),
while

χP � ndμB
2

3kBT

T

TF
=
ndμB

2

3kBTF
, (12.33)

(for the correct expression χP = μ2
BD(EF ) see Prob. XII.7.6).

12.7.2 Weakly bound electrons

As already mentioned the free electron model cannot account for the proper-
ties of crystals different from metals, as for instance the semiconductors, not
even at a qualitative level. In order to explain the basic aspects of those solids
one has to take into account, at least in the perturbative limit, the effects of
the lattice potential, in the so called nearly free electron approximation.
Even a weak perturbation causes relevant modifications with respect to the
empty lattice situation and yields the appearance of the gap, namely the en-
ergy interval where no electron states can exist. In particular, a marked gap
arises for the electrons at De Broglie wavelength (of the order of the inverse
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of |k|) close to the lattice step, in analogy with the diffraction phenomenon
in optics.

The simplest way to account for the effect of the lattice potential V (r) in
modifying the electron dispersion curve E(k) is to consider the perturbative
correction to empty-lattice states Eo(k):

E(k) = Eo(k)+ < k|V (r)|k > +
∑
k′ �=k

| < k|V (r)|k′ > |2
Eo(k) − Eo(k′)

, (12.34)

where
| < k|V (r)|k′ >≡

∫
e−i(k−k′).rV (r)dr. (12.35)

For k − k′ 
= g, with g reciprocal lattice vectors, the integral vanishes
due to the fast oscillations with r of the function e−i(k−k′).r. Whereas for
k − k′ = g the matrix element reads

| < k|V (r)|k − g >≡
∫
e−ig.rV (r)dr = Vg , (12.36)

which is non zero since it corresponds to the coefficent Vg of the Fourier
expansion of the periodic lattice potential (see Eq. 11.3):

V (r) =
∑
g

Vge
ig.r. (12.37)

It can be remarked that for degenerate states, where Eo(k) = Eo(k′) at
the denominator in Eq. 12.34, one should rely on the perturbation theory for
degenerate states and still < k|V (r)|k′ >= 0, for k′ 
= k + g.

Therefore Eq. 12.34 is rewritten

E(k) = Eo(k) + V o +
∑
g �=0

|Vg|2
Eo(k) − Eo(k − g)

, V o =
∫
V (r)dr (12.38)

modifying the dispersion curve for free electrons, at the second order. The
validity of Eq. 12.38 requires the rapid convergence of the series of Fourier
components |V (g)|2, which should be granted by a plausible lattice potential
(often a pseudo-potential). In addition it requires that

Eo(k) 
= Eo(k − g) ,

which corresponds to avoid the wavevectors k at the BZ boundary. In fact,
recalling that Eo(k) = h̄2k2/2m, the condition Eo(k) = Eo(k − g) implies
(k)2 = (k − g)2 and then

k.g =
g2

2
, (12.39)
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corresponding to k at the BZ boundary, as depicted below for a 2D lattice.

 

BZ 

g 

k - g k 

Thus at the BZ boundaries, where the states φk and φk−g have the same
energy, one has the breakdown of the perturbative approach leading to Eq.
12.38.

The situation arising at the zone boundaries can be deduced by mean
of arguments based on the perturbation theory for degenerate states. An il-
lustrative example is easily carried out for a one-dimensional lattice, with
perturbative periodic potential of the form:

 
a

V(x) = V0 cos (2� x/a) 

V0 

x

The zero-order wave function is

φ
(1)
k = c1φk + c2φk−g

and the secular equation becomes

(
< k|V (r)|k > −ε < k|V (r)|k − g >
< k − g|V (r)|k > < k − g|V (r)|k − g > −ε

)
= 0

The choice of the potential implies < k|V (r)|k >=< k−g|V (r)|k−g >= 0
and

< k|V (r)|k − g >=
1
2a

∫ a

0

e−igxVo(e
i2πx

a + e
−i2πx

a )dx =
1
2
Vo. (12.40)

Thus the correction to the unperturbed eigenvalues turns out ε± = ±Vo/2,
implying a gap for the states around the BZ boundaries, as schematically
shown in Fig. 12.5 (to be compared to Fig. 12.4).
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-π/a π/a 

Ek 

-ε -ε 

+ε  

V = 0
V ≠ 0 

V ≠ 0 

k 

+ε 

Fig. 12.5. Schematic representation of the dispersion curve for 1D crystal, in the
nearly free electron approximation, by taking into account that for k far from the BZ
boundaries Eq. 12.38 is a good approximation, while approaching the BZ boundaries
the correction given by Eq. 12.40 has to be considered.

The gap can be thought to arise from the Bragg reflection occurring
when the De Broglie wavelength is λ = 2a. In fact, in this case (see Eq. 11.9)
the Bragg reflected wave, travelling in opposite direction, induces standing
waves, as sketched below:

 

+k

-k

The cosine and sine standing waves formed by the ± linear combination of
exp[(±ikx)], with k = π/a, yield different distributions of probability density.

Thus the electron charge densities ρ(x) around the lattice sites in the two
cases imply different energies:

 

For a travelling wave  

ρ(x) is homogeneous 

sin
2
(πx/a) 

cos
2
(πx/a) 

ρ(x)  goes as 
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The characteristic feature of the gap generation for perturbed electrons
can be derived by constructing the complete k-dependence of the eigenvalues
in a periodic square-well potential, in one dimension. The potential energy in
the Schrödinger equation is assumed V (x) = 0 for 0 < x ≤ a and V (x) = V0

for a < x ≤ a+ b, the lattice parameter being (a+ b). Kronig and Penney
solved this artificial model and derived the k-dependent eigenvalues. In the
limit where V (x) is characterized by Dirac δ functions separated by distance
a (the product V0b remaining finite) the dispersion curve in the extended zone
scheme, with the correspondent density of states, has the form sketched below:

k E

D(E)

E
F

12.7.3 Tightly bound electrons

In this model the electrons are assumed to keep, to a large extent, the prop-
erties they have in the neighborhood of the atoms. Only in the region in
between the atoms sizeable effects occur and the atomic levels are thus spread
in a band. The model allows one to understand how the Bloch orbitals are
related to the atomic states, in a way similar to the case discussed for the
benzene molecule (§9.3).

 

+ 

 

V  

+ ++

region where V ≠ V
a
 

Va  

V(x) 

E1  

E0  

Atomic eigenvalues 

Fig. 12.6. Schematic form of the potential energy for tightly bound electrons, along
a given direction in the crystal.
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Let us refer to the lattice potential reported in Fig. 12.6, along a given
direction in the crystal.

By extending the idea of the molecular orbital used for the delocaliza-
tion of the 2p electrons along the C6H6 ring, we shall assume a one-electron
wavefunction of the form

φk =
∑
l

eik.lφa(r − l) . (12.41)

φa(r− l) is an atomic wavefunction centered at the l-th site and an eigenfunc-
tion of the equation{

− h̄
2

2m
∇2 + Va(r − l)

}
φa(r − l) = Eaφa(r − l). (12.42)

To show that φk in the form as in Eq. 12.41 is a Bloch orbital, one multiplies
by exp(ik.r).exp(−ik.r):

φk(r) = eik.r
∑
l

e−ik.(r−l)φa(r − l) .

Then it can be observed that the term multiplying the plane wave function has
the lattice periodicity and plays the role of uk(r) in Eq. 12.7, as requested. One
also notices that φk in the form 12.41 is a combination of localized atomic
orbitals and in the neighborhood of an atom the orbital behaves in a way
similar to the one for insulated atoms. The phase factor exp(ik.l) modifies
the orbital from site to site, while |φk|2 is unaffected.

To obtain the eigenvalues Ek, the eigenfunction in Eq. 12.41 is inserted in
the one-electron Schrödinger equation (−h̄2∇2/2m+ V )φk = Ekφk.

By recalling Eq. 12.42 one obtains

(Ek − Ea)
∑
l

eik.lφa(r − l) =
∑
l

(V − Va)eik.lφa(r − l). (12.43)

By multiplying both sides of this equation by φ∗a(r − l) and integrating,
one has

(Ek − Ea)
∑
l

eik.l

∫
φ∗a(r − l′)φa(r − l)dr =

=
∑
l

∫
φ∗a(r − l′)(V − Va)eik.lφa(r − l)dr. (12.44)

When the orthogonality condition for l 
= l′ is assumed∫
φ∗a(r − l′)φa(r − l)dr = 0 , (12.45)

by taking into account that the sum in Eq. 12.44 only depends on the difference
h = l − l′, one finds
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Ek = Ea +
∑
h

eik.h

∫
φ∗a(r + h)V1φa(r)dr. (12.46)

In the matrix element in this equation, somewhat analogous to the resonance
integral (§8.1.2), V1 is the difference between the local V (r) and the atomic
potential energy Va (see Fig.12.6). The matrix element is negative.

For cubic crystal, with atoms of the same species,

 

a

a 

 z

x 

y 

assuming that the matrix element for V1 is different from zero only when
nearest neighbors are involved, Eq. 12.46 takes the form

Ek = Ea + Vo + 2 < V1 >

[
cos(kxa) + cos(kya) + cos(kza)

]
, (12.47)

depicted in Fig.12.7, along the kx direction.

 

-π/a π/a 

Ea 

kx 

2<V1> 

Ek 

Fig. 12.7. Dispersion relation E(k) for k along one of the reciprocal lattice axis in
a cubic monoatomic crystal, according to Eq. 12.47. V0 is often negligible.

The band E(k) results from the spread of the atomic energy level when
the interatomic distance in the crystal is reduced. The gap is the direct con-
sequence of the discrete character of the atomic eigenvalues Ea’s. One also
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realizes that the number of states in a single band is N(2l + 1), for N atoms
in the reference volume of the crystal (l quantum number for the atomic or-
bital momentum). The band width is proportional to < V1 > and, therefore,
to the overlap integral, in a way somewhat equivalent to the molecules (see
§8.1). This explains why the internal bands are narrow and why the cores
states are little affected by the formation of the crystal, as sketched below:

E
a

2

gap

E
a

1
R→ R

eq

band
12 <V

1
>

R→∞

E
a

R→ R
eq

R→∞

In the framework of the tight binding model the effective mass (see §12.6)
of the electron can be derived from Eq. 12.47. For small k, by expanding Ek,
one obtains

Ek = Eo + Vo + 6 < V1 > − < V1 > a
2k2 ,

yielding

m∗ =
−h̄2

2a2 < V1 >
> 0,

For kx, ky, kz → (π/a) one has

m∗ =
h̄2

2a2 < V1 >
< 0,

and the electron responds to external forces as a positive charge.
When the spread of the atomic levels leads to the superposition of adjacent

bands related to different states, one has a degenerate band that can be
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thought to result from hybrid atomic orbitals:

Band

overlap

This happens, for instance, in the case of diamond, Si and Ge, as shown
in Fig. 12.8.

The energy bands are usually labelled by referring to the atomic orbitals
which lead to their formation. Furthermore, since the k-dependence of the
energy in the reciprocal space reflects all the symmetry properties of the point
group (see §11.1), one could classify the electron states in a crystal on the
basis of the symmetry properties.

 

 p  

s 

E  

C Si Ge Pb R 

R*

filled 
valence 
band  

empty 
conduction
band  

Fig. 12.8. Sketchy picture of the energy bands for the (ns)2(np)2 electronic con-
figurations showing how, below a certain interatomic distance R, the p and s bands
overlap and change the electronic structure of the crystal. While for R > R∗ one
has a partially filled p band and the possibility of charge transport (see Chapter 13)
(this is the case of Pb, in regards of the 6p and 6s electrons), for R < R∗ one has
an entirely filled valence band and therefore an insulator.
Note that for those elements there are two atoms for each unitary cell. Thus for
R < R∗ when the zones overlap, the lower zone system is exactly filled by eight
electrons per unit cell. When the gap to the upper band (which is empty at T = 0)
is comparable to the thermal energy kBT , then the electrons can be promoted to
the upper conducting band. In this case one can have an intrinsic semiconductor,
as it happens for Si and Ge, in terms of the n = 3 and n = 4 electrons (see §13.1).
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Problems XII.7

Problem XII.7.1 For a one-dimensional crystal the Fourier components
of a perturbative potential energy are VG (Eq. 12.38), with G reciprocal lattice
vectors. Evaluate the effective mass m∗ for k = 0 in terms of the lattice step
a. Reformulate the evaluation for V (x) = 2V1 cos(2πx/a).

Solution:
From

Ek = E0
k + V0 +

∑
G�=0

|VG |2
(E0

k − E0
k−G)

,

with E0
k = h̄2k2/2m, one has

Ek =
h̄2k2

2m
+ V0 − 2m

h̄2

∑
G�=0

|VG |2
G(G− 2k)

.

From Eq. 12.22

1
m∗ =

1
h̄2

∂2E

∂k2
=

1
m

− 16m
h̄4

∑
G�=0

|VG |2
G(G− 2k)3

.

and G = n2π/a. For k = 0 one finds

1
m∗ =

1
m

− ma4

h̄4π4

∞∑
n=1

|VGn
|2

n4
.

For V (x) = 2V1 cos(2πx/a) only VG for n = ±1 is non-zero and

m∗ = m
(

1 − 2m2a4V 2
1

h̄4π4

)−1

.

Problem XII.7.2 For a one-dimensional crystal of lattice step a gener-
alize the result obtained at §12.7.2 exactly at the zone boundary, in order to
obtain the energy E(k) as a function of k for k close to π/a.

Solution:
Near k = π/a the wavefunction can be written as the linear combination

of the two degenerate unperturbed eigenfunctions (see Eq. 12.40):

ψ = c1eikx + c2ei(k−2π/a)x.

By substituting this tentative wavefunction into the Schrödinger equation
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− h̄
2

2m
d2ψ

dx2
+ V ψ = εψ ,

first multiply by e−ikx and integrate over all space. Then multiply by e−i(k−2π/a)x

and again integrate. From the secular equation for c1 and c2 (see the equivalent
at §12.7.2), the eigenvalues turns out

E =
h̄2k2

2m
+
h̄2π

ma

{(π
a
− k

)
±

[(π
a
− k

)2

+
(
amV0

2πh̄2

)2
]1/2

⎫⎬⎭ .

Problem XII.7.3 Consider a metal with one electron per unit cell in
geometric dimension n = 1, 2 and 3 and derive the density of states D(E)
as a function of n. Then give a general expression for D(E) in terms of the
Fermi energy. Finally derive the chemical potential μ (Hint: write the total
number of electrons in terms of the Fermi distribution and use the identity∫ +∞
−∞ f(t) etdt

(1+et)2 = f(0) + π2

6 f
′′(0)).

Solution:
From EF = h̄2k2

F /2m, since the total number of states including the spin
degeneracy is

N = 2D(k)
4πk3

F

3
for n = 3, N = 2D(k)πk2

F for n = 2 ,

N = 2D(k)2kF for n = 1 ,

one finds EF = (h̄2/2m)(3π2N/vc)2/3 for n = 3, EF = πh̄2N/mac for n = 2
and EF = (h̄2/2m)(N/2lc)2 for n = 1.

One can write

D(k)dnk = 2(
√

2m
2πh̄

)ndnx

with x =
√
E. From D(E)dE =

∫
D(k)dnk

D(E) =
3N
2
E1/2

E
3/2
F

for n = 3, D(E) =
m

πh̄2 for n = 2,

D(E) =
N

2
E−1/2

E
1/2
F

for n = 1 .

In general D(E)dE = Nd(E/EF )n/2.

The total number of occupied states at finite temperature is
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N =
∫ ∞

0

D(E)
eβ(E−μ) + 1

dE = N
∫ ∞

0

1
eβ(E−μ) + 1

d(
E

EF
)n/2 =

= N
∫ ∞

−βμ

1
et + 1

d(
μ+ (t/β)
EF

)n/2 = N
∫ ∞

−βμ

et

(et + 1)2
(
μ+ (t/β)
EF

)n/2dt

In the low temperature limit (T � TF , −βμ→ −∞) one has

1 = (
μ

EF
)n/2 +

π2

6
n(n− 2)

4
(
T

TF
)2(

μ

EF
)(n/2)−2 + ...

yielding

μ = EF (1 − π
2

12
(n− 2)(

T

TF
)2 + ....)

Problem XII.7.4 The specific mass (density) of alluminum is d =
2.7 g/cm3. Evaluate the Fermi energy, the Fermi velocity, the average velocity
of the conduction electrons and the quantum pressure (for T → 0).

Solution:
The number of atoms per cubic cm turns out N = 0.54 · 1023 . For three

free-electrons per atom from Eq. 12.28

EF =
h̄2

2m
(3π2Ne/V )2/3 = 11.7 eV ,

(with Ne = 3N) and vF =
√

2EF /m = 2.03 · 108 cm/s . The distribution
function for the velocities is

p(v)dv = D(E)dE = Ned(
v

vF
)3 = 3Ne

v2

v3F
dv

and then
< v >=

∫ vF

0

vp(v)dv =
3
4
vF = 1.5 · 108 cm/s .

From Eq. 12.30 and P = −∂ < E > /∂V one has P = (2/3)(3/5)NeEF �
1.2 · 1012 dyne/cm2 .

Problem XII.7.5 In the assumption that the electrons in a metal can be
described as a classical free-electron gas, show that no magnetic susceptibility
would arise from the orbital motion.

Solution:
The magnetization is M = NkBTd(lnZ/dH)T . The classical partition

function is
Z ∝

∫ ∞

−∞
dxdydz

∫ ∞

−∞
dpxdpydpzexp[− E

kBT
]
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with

E =
(mv)2

2m
=

(p + e
cA)2

2m
with A the vector potential and p = mv− (e/c)A the canonical moment. By
transforming the volume element in the phase space from canonical to kinetic
moments one has

Z ∝
∫ ∞

0

d(mv)(mv)2exp[− (mv)2

2mkBT
] ,

field independent, thus implying M = 0. This is the physical content of the
Bohr-van Leeuwen theorem.

Problem XII.7.6 Derive the paramagnetic susceptibility due to the free
electrons in a metal (Pauli susceptibility).

Solution:
In the absence of a magnetic field the number of electrons with spin up

N+ is equal to the number of electrons with spin down N− and the total
magnetization M = μB(N+ −N−) is zero.

From the field H the energy of spins up is lowered by an amount μBH,
while the one of the spins down is increased by the same amount and the
unbalance in the populations yields the magnetization. The number of spins
up is

N+ =
∫ ∞

−μBH

f(E, T )
D(E + μBH)

2
dE,

(the factor 1/2 in the density of states D(E) takes into account that only the
electrons with spin up are considered). Introducing E′ = E + μBH one can
write

N+ =
∫ ∞

0

f(E′ − μBH,T )
D(E′)

2
dE′.

In the weak-field limit f(E′ − μBH,T ) � f(E′, T ) − μBH(∂f/∂E)E′ and

N+ =
1
2

∫ ∞

0

f(E′, T )D(E′)dE′ − 1
2

∫ ∞

0

μBH(
∂f

∂E
)E′D(E′)dE′.

In the same way

N− =
1
2

∫ ∞

0

f(E′, T )D(E′)dE′ +
1
2

∫ ∞

0

μBH(
∂f

∂E
)E′D(E′)dE′

For H → 0 χP =M/H and therefore, from M = μB(N+ −N−),

χP = μ2
B

∫ ∞

0

(
−∂f
∂E

)E′D(E′)dE′
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For EF � kBT and provided that the density of states varies smoothly around
EF , one writes (−∂f/∂E)E′ � δ(E′ − EF ), so that

χP = μ2
BD(EF )

(see Eq. 12.33). D(E) is the density of states per unit volume and thus χP

is dimensionless.
According to the above equation one finds for the electron contribution to

the spin susceptibility in alkali metals:

Li : 1 × 10−5 , Na : 0.83 × 10−5 , K : 0.67 × 10−5 ,

Rb : 0.63 × 10−5 , Cs : 0.58 × 10−5 .

The experimental data are 2.5, 1.4, 1.1, 1 and 1 (in 10−5 units), respectively.

Problem XII.7.7 For a cubic metal at lattice step a = 5 Å and electron
density 2 × 10−2 electrons per cell, evaluate the temperature at which the
electron gas can be considered degenerate and write the approximate form for
the specific heat well above that temperature.

Solution:
The electron density is

n =
2 × 10−2

a3
= 1.6 × 1020 cm−3

and the average spacing among the electrons is d � (3/4πn)1/3 � 13 Å.
The electron gas can be considered degenerate when d ≤ λDB , the De

Broglie wavelength. Since λDB � h/
√

3mkBT , the gas can be considered
degenerate for T < h2/(3d2mkB) � 8600 K. Above that temperature the gas
is practically a classical one and the specific heat is CV � (3/2)kBn.

Problem XII.7.8 The bulk modulus B = −V (∂P/∂V )T of potassium
crystal at low temperature is B = 0.28 × 1011 dyne/cm2. Discuss this result
in the assumption that B is entirely due to the electron gas.

Solution:
The pressure of the electron Fermi gas is P = (2/5)nEF , with n electron

density (see Prob. XII.7.4). Then

B = −V ∂P
∂V

=
2
3
nEF

For a specific mass of 0.86 g/cm3, the electron density is n = 1.4× 1022 cm−3

and the Fermi energy is EF = 2.1 eV. Then B � 0.32 × 1011 dyne/cm2, in
rather good agreement with the experimental finding.
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Problem XII.7.9 Prove that in a semiconductor at thermal equilibrium
the concentration of electrons and of vacant states, called holes , in the valence
band are given by

n � Nce
−(Ec−EF )/kBT , p � Nve

−(EF −Ev)/KBT

where

Nc = 2
(

2πmekBT

h2

)3/2

Nv = 2
(

2πmhkBT

h2

)3/2

,

EF is the Fermi level (in the middle of the gap), Ec the bottom of the conduc-
tion band and Ev the top of the valence band (me and mh are the effective
masses of electrons and of holes). Assume parabolic bands, going as (k− kc)2

and (k − kv)2.
Then evaluate

(a) the value of Nc for mc = m (m the electron mass) and T = 300◦K ;
(b) the carriers concentration in Si, at T = 300◦K, assuming mc = mh = m,

and a gap of 1.14 eV.

Solution:
At thermal equilibrium the concentration of electrons is given by

n =
∫ Emax

Emin

Dc(E)f(E)dE

the density of states Dc(E) per unit volume being

Dc(E) = (4π/h3)(2mc)3/2(E − Ec)1/2.

The Fermi-Dirac distribution for (E − EF ) � kBT can be approximated as

f(E) =
1

1 + e(E−EF )/kBT
� e−(E−EF )/kBT

Then

n =
4π
h3

(2mc)3/2e−(Ec−EF )/kBT

∫ Emax−Ec

0

x1/2e−x/kBT dx

� 4π
h3

(2mc)3/2e−(Ec−EF )/kBT

∫ ∞

0

x1/2e−x/kBT dx

=
4π
h3

(2mc)3/2[e−(Ec−EF )/kBT ]
1
2
π1/2(kBT )3/2

yielding

n = 2
(

2πmekBT

h2

)3/2

e−(Ec−EF )/kBT

In analogous way the hole concentration can be derived.
Since at 300 K Nc = 2.5× 1019cm−3 the electron and hole concentrations

in Si turn out n = p = 3.14 × 109cm−3. It can be remarked that this value
refers to pure Si (intrinsic semiconductor), while in practice impurities induce
larger carrier concentrations.
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Problems F.XII

Problem F.XII.1 Derive the contribution to the specific heat associated
with the conduction electrons in a metal, for temperature small compared to
EF /kB .

Solution:
In a way analogous to the derivation of the Pauli susceptibility (see Prob-

lem XII.7.6) the increase of the electron energy when the temperature is
brought from 0 to T is written in the form

U(T ) =
∫ ∞

EF

(E − EF )f(E)D(E)dE −
∫ EF

0

(E − EF )(1 − f(E))D(E)dE .

In the second integral (1 − f(E)) gives the probability that an electron is
removed from a state at energy below EF . Then

CV =
∫ ∞

0

(E − EF )
∂f

∂T
D(E)dE � D(EF )

∫ ∞

0

(E − EF )
∂f

∂T
dE .

Since
∂f

∂T
=

(E − EF )
kBT 2

e(E−EF )/kBT

[e(E−EF )/kBT + 1]2

by utilizing
∫∞
−∞ x

2exdx/(ex + 1)2 = (π2/3), one obtains

CV =
π2

3
D(EF )k2

BT

This result can be read as the derivative of the product kBT times the fraction
T/TF of the electrons in the energy range kBT around EF (see Eqs. 12.32
and 12.31).

Problem F.XII.2 Derive the equation of state (relation between P, V
and T ) for the Fermi gas, in the limit T → 0.

Solution:
From the energy (see Eq. 12.31)

U = (3/5)NEF

(
1 +

5π2

12

(
kBT

EF

)2

+ ...

)

with

EF = (h̄2/2m)
(

3π2N

V

)2/3
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(Eq. 12.28), one writes

P = −∂U
∂V

=
2
5
NEF

V

(
1 − 5π2

18

(
kBT

EF

)2

+ ....

)
i.e.

PV = (2/5)NEF

(
1 − 5π2

18

(
T

TF

)2

+ ....

)
.

Problem F.XII.3 The temperature dependence of the specific heat in
Gallium is reported in the Figure
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Noticing that at low temperature the contribution to the specific heat
due to lattice vibrations (see §14.5) can be neglected, from the data derive
the Fermi energy and the electric field gradient at the nucleus (assume for
simplicity that 69Ga with I = 3/2 and Q = 0.168 barn is the only isotope).

Solution:
From the experimental data one deduces the straight line CvT

2 = (a+bT 3)
with a � 4 ·10−4mJ ·K/mole and b � 0.6mJ/moleK2. The second contribution
is associated with conduction electrons. From Cv = (π2/3) · kB

2TD(EF ), one
derives EF � 5.6 eV (see Prob. F.XII.1 and §12.7.1).

The first term for CV , going as 1/T 2, is the high-temperature tail of
the Schottky-like specific heat CQ

v associated with the hyperfine split by
quadrupolar interaction, with energy separation E. Since for kBT � E,
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for a mole one has CQ
v = (1/4)NAkB(E/kBT )2 (see Prob. F.V.5), one finds

E � 6.3 × 10−20 erg. For I = 3/2 the splitting between the MI = ±1/2 and
MI = ±3/2 levels due to quadrupole interaction is E = 2eQVzz, with Vzz the
principal component of the electric field gradient (see §5.3). Then one obtains
Vzz � 4 × 1014 u.e.s./cm3.

Problem F.XII.4 Consider two cubic clusters of Lithium (lattice step a =
3.5 Å and bcc structure) formed by 1.6× 107 and 16000 atoms, respectively.
Evaluate the Fermi energy for each cluster and estimate the separation among
the electronic levels in proximity of the center of the Brillouin zone.

Solution:
The electron density is n = 2/a3 = 4.6× 1022 cm−3 and the Fermi energy

EF = 4.7 eV, size independent. The size affects the spacing among k states.
The first cluster is a cube of size L1 = 200a, while the second one of size
L2 = 20a. Then the separation among the lowest energy levels is

ΔE1,2 =
h̄2

2m
(
π

L1,2
)2 ,

namely ΔE1 = 0.11 × 10−15 erg and ΔE2 = 1.1 × 10−14 erg � 6.9 meV,
corresponding to T � 80 K. Quantum size effects can be expected at low
temperature.

Problem F.XII.5 The density of Lithium is 0.53 g/cm3. Evaluate the
contribution to the bulk modulus due to electrons, in the low temperature
range. Compare the estimated value with the experimental result B � 0.12×
1012 dyne/cm2.

Solution:
From Problem XII.7.8, the electron density being n = 4.7×1022 cm−3 and

the Fermi energy EF = 4.74 eV, then B = 2.4× 1011 dyne/cm2, not far form
the experimental result.

Problem F.XII.6 In semiconductors the concentration of itinerant elec-
trons is low and one can expect that the Pauli susceptibility turns to a Curie-
like susceptibility characteristic of localized electrons. Discuss the derivation
of the Pauli susceptibility for semiconductors (neglect the electron-electron
Coulomb interaction).

Solution:
The Pauli susceptibility is

χP = μ2
B

∫ ∞

0

(
−∂f
∂E

)E′D(E′)dE′



420 12 Electron states in crystals

(see Problem XII.7.6).
For diluted Fermi gas, at room temperature the statistical distribution

function can be written
f(E) � e−(E−EF )/kBT (see Problem XII.7.9).

Thus −∂f/∂E = f/kBT and the susceptibility turns out

χP =
μ2

B

kBT

∫ ∞

0

f(E′)D(E′)dE′ = n
μ2

B

kBT

with n concentration of conduction electrons.
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Miscellaneous aspects related to the electronic
structure

Topics

Covalent, metallic, ionic and molecular crystals
Cohesive energies and bonding mechanisms
Lennard-Jones potential
Crystal-field effects in magnetic ions
Electric current flow
Magnetic properties of itinerant electrons

13.1 Typology of crystals

In the light of the main aspects involving the electronic properties, a clas-
sification of crystalline solids can be devised. This can be done either in a
valence-bond scenario by looking at the bonding mechanisms or by referring
to the electric conduction and the band structure.

In the first case the crystals can be divided in covalent, metallic,
ionic and molecular. In covalent crystals the bonding mechanism and
the strength of bonds are similar to the ones in covalent molecules. In other
words, the crystal can be conceived as a “macroscopic” molecule with marked
directional bonds between pairs of atoms where spin-paired electrons can be
placed. Therefore, covalent crystals are stiff, scarcely plastic and fragile. Illus-
trative examples can be found in carbon-based crystals, such as diamond and
graphite. Diamond, as well as the isostructural Ge, Si, Sn and Pb crystals, re-
sult from an ideally infinite network of sp3 hybrid orbitals (§9.2). On the other
hand, in graphite the sp2 hybridization yields a planar atomic arrangement,
with weak interaction among adjacent planes (see §11.3).
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Metallic crystals are somewhat equivalent to large molecules with elec-
trons delocalized through all the volume, an extension of what discussed in
benzene (§9.3). The description of these systems in a VB-like framework would
require the superposition of a large number of equivalent configurations. It is
evident that a Bloch-like approach is more convenient for the metallic crys-
tals. A suitable way to describe these solids is to refer to a model of positive
ions at the lattice sites embedded in a sea of electrons, with a nearly uniform
charge distribution. In general the bonds are not saturated. For instance, in Li
metal (bcc structure) each ion has 8 nearest neighbors and in a molecular-like
picture one can think that there is 1/4 of electron on each orbital.

In ionic crystals the electrons are characterized by molecular-like orbitals
centered at the atoms having larger electronegativity, as in the case of strongly
heteronuclear molecules (see §8.5). The attractive interaction may often be
approximated to the one for point charge ions and in a crude approximation
the ions can be assumed to have the closed shells configurations. For example,
in LiF crystal, the (1s)2 shell for Li+ and the (2p)6 shell for F−. From the
X-ray diffraction peaks one can estimate the actual number of electrons at a
given site. For instance, in NaCl it turns out that there are 17.85 electrons
at Cl site. Thus the order of magnitude of the bond energy per pair is
−(0.85e)2/R, with R interatomic distance.

The hydrogen bond O-H-O typical of hydrides, of the ferroelectric KDP
(potassium dihydrogen phosphate) and of other organic compounds, can be
considered as a type of ionic bond. The hydrogen atom can be thought in
a local double-well potential. Several electric and elastic properties of these
crystals are rather well explained within this simple model.

In molecular-like scenarios one can hardly devise any bonding mechanism
for neutral molecules at high ionization energy or for closed shell atoms, such
as inert gases. In these cases the aggregation into a solid state can occur
because of an interaction that we have not directly considered in molecules:
the Van der Waals forces, associated with fluctuating electric dipoles. This
mechanism yields a weak attractive potential decreasing as R−6 and leads
to the formation of molecular crystals (a mention has been given in Prob-
lem VIII.3.1 and that interaction shall be described in some detail at §13.2.2).

The classification scheme based on the bonding mechanisms is not very
suited to describe the properties involving the electrical transport. This aim
is better achieved by referring to the band scheme, in the framework of Bloch
orbitals. Let us remind that a band arising from s atomic states can be oc-
cupied by 2N electrons (N the number of atoms in a reference volume) while
in the p band this number is 3 × 2N . As already mentioned, the electrical
conductivity originates from the “acceleration” (namely from the change of
state) induced by the electric field, for a single electron described by the equa-
tion h̄dk/dt = −eE (see §12.3). A few observations can be made in regards
of the current flow (for some more detail see §13.4). In a fully filled band
each k state is occupied by two electrons and a neat flow of current is not
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possible (unless the electric field is so strong to alter the unperturbed bands)
and one has an insulator. For a partially filled band electrical transport can
occur and one has a conductor. When the gap between full valence band
and an empty conduction band is of the order of 0.1-1 eV, then one has
an intrinsic semiconductor. These crystals are insulators for T → 0, while
progressive increase in the conductivity with increasing temperature occurs,
as a consequence of the partial filling up of the conduction band. At variance,
in a metal the conductivity decreases with increasing temperature due to the
increase in the scattering rate between the electrons and the ionic vibrational
modes.

In such a scenario one can predict that alkali crystals as Li, Na, Rb, etc...
and transition metals as Cu, Ag and Au are metallic conductors, since they
have an odd number of electrons per unit cell. This rule however, is not quite
valid and often one has to pay attention to other details. For instance, al-
though As, Sb and Bi atoms convey five electrons in the conduction band,
they generate a crystal which is essentially insulator. Without going into the
real aspects of the electronic band structure, we only mention that the reason
for the quasi-insulating character is related to the generation of five bands
that are completely filled by the valence electrons of the two atoms present in
the unit cell.

In some crystals there is also the possibility of a tiny superposition of
bands, giving a small metallic character and causing electrical conduction
with a particular temperature dependence: these are the semimetals.

Strong band overlap (see §12.7.3 and Fig. 12.8) can drastically change
the simplified picture given above. For instance, according to the previous
statements Be crystal (atomic configuration (1s)2(2s)2) should be insulator.
This is not the case: the overlap between s and p orbitals generates a par-
tially occupied hybrid band, a situation similar to the one in diamond (Fig.
12.8). The overlap of these bands yields a fully occupied valence band and
an empty conduction band in this latter crystal. At the equilibrium distance
characteristic of Si and Ge the gap between the two band diminishes and a
semiconducting behavior can be observed. On the other hand, Sn can undergo
a transition from metallic to semiconductor, in view of the proximity to the
overlap condition. Finally Pb is a metal, since the 6p band is only partially
filled (Fig. 12.8).

Semiconducting behavior can be expected for a class of materials with
tetrahedral structure generated by sp3 hybridization. The so-called III-V semi-
conductors are the crystals in which the basis, instead of being formed by the
same atoms at (0,0,0) and (1/4,1/4,1/4) in the fcc structure (as in C, Si, Ge
and Sn) involves one element of the third group (Ga for instance) and one of
the fifth group (As, for example). The covalent “transfer” of one electron from
As to Ga gives rise to the s2p2 configuration in both atoms, as in Ge or Si,
thus triggering the sp3 hybrid bands and the semiconducting behavior. The
band gaps in Ge (0.75 eV) and in Si (1.14 eV) (indirect gaps, the maximum
of the valence band and the minimum of the conduction band occurring at
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different points of the Brillouin zone) are of the same order of magnitude in
GaAs (1.52 eV) and in GaSb (0.81 eV).

In ionic crystals the gap between the fully occupied valence band and the
empty conduction band can be larger than about 5 eV, thus explaining their
insulating behavior.

13.2 Bonding mechanisms and cohesive energies

The cohesive energy is defined as the difference between the energies of
the atoms for interatomic distance R → ∞ and the one for R = Re, the
interatomic equilibrium distance. From thermodynamical and spectroscopic
measurements the order of magnitude of the cohesive energies turn out:

i) around 5 eV/atom in covalent crystals (e.g. 7.36 eV for diamond);
ii) around 1 eV/atom in metallic alkali crystals;
iii) around 5-10 eV/(pair of atoms) in ionic crystals;
iv) from 10−2 to 10−1 eV in molecular crystals, with a sizeable increase in

the binding energy with increasing atomic number for inert atoms crystals.

Quantitative estimates of the cohesive energy are evidently difficult, since
in principle they correspond to the derivation of the eigenvalues in the
Schrödinger equation for the electronic states. It is possible to achieve sat-
isfactory descriptions of the relevant aspects of the binding mechanisms and
to obtain rather good estimates of the cohesive energies by referring to limit
ideal situations. For instance, one usually refers to molecular-like scenarios
or to ionic atomic configurations. In covalent crystals, where the bonds are
similar to the ones in molecules, the cohesive energy per molecule is expected
around the one described at Chapter 8. The bonding mechanism in metals
can be considered as due to the attractive term related to the electron delo-
calization (favored by the band overlap) and the repulsive term arising from
the increase of the Fermi energy when the electron density increases (see Eq.
12.28).

More quantitative descriptions of the binding energies for ionic and molec-
ular crystals shall be given in the subsequent Subsections.

13.2.1 Ionic crystals

Let us refer to a crystal with N positive and N negative ions, per cubic cm.
In the point-charge approximation the interaction between two ions is written

Vij = ± e2

Rij
+Be−Rij/ρ, (13.1)

where the sign of the first term depends on the signs of the charges at the i-th
and j-th ions. The second term has the Born-Mayer form used to take into
account the short-range repulsion in heteronuclear molecules (Eq. 8.36).
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For a given i-th ion the energy is Vi =
∑′

j Vij and by writing the distance
Rij = pijR (R being the nearest neighbour distance) one has

Vi =
′∑
j

Vij =
e2

R

∑
j

′ (±1)
pij

+ zBe−R/ρ, (13.2)

where in view of its short-range character the repulsive term has been limited
to the z nearest neighbours. Then the total energy becomes

VT = NVi = −Ne
2

R
α+NzBe−R/ρ, (13.3)

with

α =
∑

j

(±1)
pij

, (13.4)

the Madelung constant.
From Eq. 13.3 one realizes that α has to be positive, in order to grant

the aggregation of the ions to form a crystal. At the equilibrium interatomic
distance

(
dV

dR
)R=Re

= 0 =
Nαe2

R2
e

− Nz
ρ
Be−Re/ρ (13.5)

and then (ραe2/zB) = R2
ee

−Re/ρ, thus giving for the total energy

V eq
T = −Nαe

2

Re

[
1 − ρ

Re

]
. (13.6)

The characteristic constant ρ � Re can be estimated from the crystal
compressibility (see Problem XIII.2.1) and usually turns out of the order of
0.1Re. Thus Eq. 13.6 shows that the cohesive energy is of the order of the
dissociation energy of the ideal molecule formed by positive and negative ions
and that it is largely controlled by the Madelung constant.

The estimate of α is not trivial due to the slow convergence of the sum
in Eq. 13.4. It has to be noticed that the series of the positive and of the
negative terms, taken separately, diverge in 3D crystals. Numerical methods
to grant fast convergence for α have been devised a long ago, based on the
choice of reference regions where the monopole contribution vanishes (Ewald
procedure). The remaining dipole or quadrupole contributions converge with
increasing distance faster than the Coulomb terms.

Typical values for the Madelung constants are α = 1.7475 for crystals with
NaCl-type structure and α = 1.7626 for crystals with CsCl-type structure. In
the simple case of a chain with alternating positive and negative ions the
evaluation of α is straightforward:

α = 2[1 − 1
2

+
1
3
− 1

4
+ ...] = 2ln2. (13.7)
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13.2.2 Lennard-Jones interaction and molecular crystals

In order to describe the bonding mechanism in molecular crystals let us
first derive the form of the attractive interaction among the atoms when no
molecular-like mechanisms (as the ones described in Chapters 8 and 9) are ac-
tive. The mechanism we shall consider originates from fluctuating electric
dipoles, first described as Van der Waals interaction and later on known
in the quantum mechanical scenario as London interaction.

To derive the London interaction let us refer to two hydrogen atoms along
the x direction:

 

 

R 

x1 
x2 

H1 H2

x 

r2 
r1

The distance R is larger than the one at which the bonding mechanisms
leading to the Hydrogen molecule would become relevant (in other words R is
a distance where the overlap, resonance or exchange integrals can be neglected;
see Problem VIII.3.1). Then the unperturbed wavefunction is

φo(1, 2) = φn1, l1(r1)φn2, l2(r2) , (13.8)

with eigenvalue Eo = Eo
n1, l1 + Eo

n2, l2. The perturbation Hamiltonian is the
dipolar one

Hd =
e2

R3

[
r1.r2 − 3(r1.x̂)(r2.x̂)

]
,

that is rewritten in the form (see Prob. VIII.3.1)

Hd = − e
2

R3

[
2x1x2 − y1y2 − z1z2

]
. (13.9)

From second order perturbation theory the ground-state energy turns out

E(R) = 2Eo
1s+ < 0|Hd|0 > +

∑
k �=0

< 0|Hd|k >< k|Hd|0 >
Eo

0 − Eo
k

(13.10)

Hd is an odd function and < 0|Hd|0 >= 0.
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By resorting to arguments already used in the derivation of the atomic
polarizability (§4.2) and noticing that the denominator varies from −e2/ao to
−3e2/4ao, one can write

E(R) � 2Eo
1s −

ao

e2

[∑
k

< 0|Hd|k >< k|Hd|0 >− < 0|Hd|0 >< 0|Hd|0 >
]

=

= 2Eo
1s −

ao

e2
< 0|H2

d|0 > . (13.11)

Thus from Eq. 13.9,

E(R) � 2Eo
1s −

ao

e2
e4

R6

[
4 < x2

1 >< x
2
2 > + < y21 >< y

2
2 > + < z21 >< z

2
2 >

]
.

(13.12)

For Hydrogen the expectation values of the square of the components x, y and
z are < r2 > /3 = a2o and then

E(R) � 2Eo
1s −

6e2a2o
R6

a3o, (13.13)

showing that an attractive interaction has arisen.
The London interaction can be depicted as related to the dipolar interac-

tion between an instantaneous dipole in one atom and the one induced in the
neighboring atom, thus explaining the role of the atomic polarizability α ∝ a3o
(see §4.2), as schematically described below

 

R 

μ1 μ2 

1 

2 

μ2 = αε ≈ αμ1/R 

3
   

interaction ~ μ1μ2/R 

3
  ~ αμ2

/R 

6 

(the interaction is attractive for 

any direction of  μ1 ) 

The result in Eq. 13.13 can be generalized, leading to the assumption of
an attractive potential energy of the form

Vatt � −e
2a2o
R6

α, (13.14)

with α proper atomic polarizability. A short-range repulsive term given by
Vrep = B/R12 can be heuristically added.
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The Lennard-Jones potential between two atoms collects the concepts
described above and it reads

Vij(R) = ε
[
(
σ

Rij
)12 − 2(

σ

Rij
)6
]
, (13.15)

where ε and σ are related to the repulsion coefficient B and to the atomic
polarizability α.

Note that according to the form 13.15 for the Lennard-Jones potential ε
and σ are simply related to the shape of the interaction energy:

 

R

V(R) 

ε

σ

To evaluate the cohesive energy in molecular crystals one can proceed in a
way similar to the one carried out in ionic crystals (§13.2.1). At variance with
that case one can now limit the summation to the z first nearest neighbors for
both the repulsive and the attractive terms. From the condition of minimum
at R = Re, one derives

V eq
T = − Nz

2R6
e

e2a2oα. (13.16)

The assumption of London interaction and of short-range repulsion as in
Eq. 13.15 qualitatively justifies the cohesive energy in inert atoms crystals. In
particular, through the dependence of the atomic polarizability from the third
power of the “size” of the atom, Eq. 13.16 explains why the cohesive energy
increases rapidly with the atomic number (see Fig. 13.1).
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Fig. 13.1. Energy curves in crystals of inert atoms as a function of the interatomic
distance.
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Problems XIII.2

Problem XIII.2.1 For ionic crystals assume that the short-range repul-
sive term in the interaction energy between two point-charge ions is of the
form R−n. Show that the cohesive energy is given by

E(Re) = −Nαe
2

Re

(
1 − 1

n

)
with α Madelung constant and Re equilibrium nearest neighbor distance.
Then, from the value of the bulk modulus B = 2.4 · 1011 dyne/ cm2, estimate
n for NaCl crystal. In KClRe is 3.14 Å and the cohesive energy (per molecule)
is 7.13 eV. Estimate n.

Solution:
Modifying Eq. 13.3 we write

E(R) = −N
(
αe2

R
−A 1

Rn

)
where A = ρz (z number of first nearest neighbors and ρ a constant in the
repulsive term ρ/Rn

ij ). From(
dE(R)
dR

)
R=Re

= 0

E(Re) = −Nαe
2

Re

(
1 − 1

n

)
.

The compressibility is defined (being the entropy constant)

k = − 1
V

dV

dP

and from dE = −PdV the bulk modulus is

B = k−1 = V
d2E

dV 2
.

(see Problem F.XII.5).
For N molecules in the fcc Bravais lattice the volume of the crystal is

V = 2NR3 (with R nearest neighbors distance) and then

d2E

dV 2
=
dE

dR

d2R

dV 2
+
d2E

dR2

(
dR

dV

)2

.

From
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dR

dV

)2

=
1

36N2R4

one obtains

k−1 =
1

18NRe

(
d2E

dR2

)
R=Re

.

Since
d2E

dR2
= −N

[
2αe2

R3
− n(n+ 1)A

Rn+2

]
,

k−1 =
(n− 1)αe2

18R4
e

.

For NaCl α = 1.747 while Re = 2.82 Å, therefore n � 9.4 .
For KCl, from E(Re) = −7.13 eV/molecule, one obtains n = 9.

Problem XIII.2.2 In KBr the distance between the first nearest-neighbors
is Re = 3.3 Å, while the Madelung constant is α = 1.747. The compressibility
is found k = 6.8 ·10−12 cm2/dyne. Evaluate the constant ρ in the Born-Mayer
repulsive term and the cohesive energy.

Solution:
From V = 2NR3 and dV = 6NR2dR, the pressure is

P = − 1
6R2

dE

dR
,

where E is the cohesive energy per molecule. Then

dP

dR
= − 1

6R2

(
d2E

dR2

)
+

1
3R3

dE

dR

The second term being zero for R = Re, the compressibility becomes

k = − 3
R

dR

dP
.

Since
d2E

dR2

∣∣∣
R=Re

=
18Re

k
and E = −αe

2

R

[
1 − Rρ

R2
e

e−
(Re−R)

ρ

]
,

one finds
ρ

Re
=

(
2 +

18R4
e

αe2κ

)−1

,

so that Re/ρ � 9 and ρ � 3 ·10−9 cm. The cohesive energy per molecule turns
out EC = |E| = αe2

Re

(
1 − ρ

Re

)
� 6.8 eV.
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13.3 Electron states of magnetic ions in a crystal field.

In a crystal the energy levels of partially filled d and f shells of transition
metal and rare earth atoms are modified by the electric field generated by the
neighboring atoms, yielding significant changes in the electronic and magnetic
properties.

To account for the perturbative effect two approaches can be used: the
crystal field (CF) approximation or the ligand field theory. In the first
case the magnetic ion is assumed to be surrounded by point charges (with no
covalency) which modify the electronic energies, in a way analogous to the
Stark effect (§4.2). Thus one writes

H = Hatom + VCF , (13.17)

where

Hatom =
∑

i

(− h̄
2

2m
∇2

i −
Ze2

ri
) +

∑
i>j

e2

rij
+

∑
i

ξ
(i)
nl li.si (13.18)

The ligand field theory, at variance, takes into account the formation of co-
valent bonds with the neighboring atoms, within the molecular-orbital theory.

Let us discuss a few basic aspects of the electronic states for a magnetic
ion within the CF approach. As regards the order of magnitude of the VCF

term one can remark the following:
a) for 4d and 5d states usually one has VCF >

∑
i>j

e2

rij
> ξnl. In this

strong field limit the CF yields splitting of the atomic levels of the order of
104 cm−1.

b) for 3d states one usually has
∑

i>j
e2

rij
≥ VCF > ξnl. In this case the

splitting of the atomic levels due to the CF is of the order of 103 − 102 cm−1.
c) for rare-earth atoms

∑
i>j

e2

rij
> ξnl > VCF , since the CF on the 4f

electrons is sizeably shielded by the 5s and 5p electrons. Thus small CF split-
ting occurs, of the order of 1 cm−1.

To understand qualitatively the role of the CF local symmetry in removing
the d electron degeneracy, let us first consider the effect of point charges Ze
placed at distances a from the reference ion along the x, y, z axes:

 

a 
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Then the perturbative potential, for instance from the charge at (a, 0, 0)
is

VCF = − Ze2

|r − ai| = − Ze2√
(x− a)2 + y2 + z2

≡ −Ze
2

a

1√
1 + r2/a2 − 2x/a

,

(13.19)
where r is the nucleus-electron distance within the reference ion.

For r � a, by collecting the various terms and using 1

(1 + x)−1/2 = 1 − x
2

+
3x2

8
− 5x3

16
+

35x4

128
+ ...

one writes

VCF = −Ze2
[
6
a

+
35
4a5

(x4 + y4 + z4 − 3
5
r4) + ...

]
. (13.20)

More in general, the CF potential due to the surrounding ions, on a given
i-th electron is written

VCF (ri) = −
N∑

k=1

Zke
2

|Rk − ri| , (13.21)

with Zk the charge of the ion at Rk. Since ri � Rk, the validity of the
Laplace equation ∇2V (ri) = 0 is safely assumed. Then the CF potential can
be expanded in terms of Legendre polynomials Pl (see Problem II.2.1):

VCF (ri) = −e2
N∑

k=1

Zk

∞∑
l=0

rli

R
(l+1)
k

Pl(cosΩki), (13.22)

with Ωki angle between ri and Rk. By expressing Pl in terms of spherical
harmonics

Pl(cosΩki) =
4π

(2l + 1)

l∑
m=−l

Ylm(θi, φi)Ylm
∗(θk, φk), (13.23)

the CF Hamiltonian is written

HCF =
n∑

i=1

∞∑
l=0

l∑
m=−l

Am
l r

l
iYlm(θi, φi), (13.24)

1

1

|r ± ai| �
1

a
∓ x

a2
− r2

2a3
+

3x2

2a3
+ ... (see Problem F.XIII.3)
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with

Am
l =

−4πe2

(2l + 1)

N∑
k=1

ZkYlm
∗(θk, φk)

R
(l+1)
k

, (13.25)

The coefficients Am
l can be calculated once that the local coordination of

the ion is known.
To give an example, let us consider the CF potential on one electron of a

transition metal ion placed at the center of a regular octahedron formed by
six negative charges Ze at distance R along the coordinate axes. In this case
Eq. 13.24 reads

HCF = Ze2
[

6
R

+
7
√
πr4

3R5

(
Y 0

4 +

√
5
14

(Y 4
4 + Y −4

4 )
)]

+ ... (13.26)

resembling Eq. 13.20.
Now one has to look for the effects of this perturbative hamiltonian on the

degenerate d states. The electron wavefunction has to be of the form

φ = coφo + c1φ1 + c−1φ−1 + c2φ2 + c−2φ−2, (13.27)

where φ0,±1,±2 are eigenfunctions of the unperturbed Hamiltonian.
One can notice that the matrix elements < φ0,±1,±2|HCF |φ0,±1,±2 > are

all of the form nDq, with n an integer, D = Ze2/6R5 and q ∝< r4 >.

The secular equation becomes⎛⎜⎜⎜⎝
Dq − E 0 0 0 5Dq

0 −4Dq − E 0 0 0
0 0 6Dq − E 0 0
0 0 0 −4Dq − E 0

5Dq 0 0 0 Dq − E

⎞⎟⎟⎟⎠ = 0 (13.28)

with solutions E1 = E2 = 6Dq and E3 = E4 = E5 = −4Dq, in correspondence
to the eigenfunctions φ′1 ≡ φ0 ≡ dz2 , φ′2 = (1/

√
2)(φ2 + φ−2) ≡ dx2−y2 ,

φ′3 = (1/
√

2)(φ1 + φ−1) ≡ dxz, φ′4 = (−i/√2)(φ1 − φ−1) ≡ dyz and φ′5 =
(−i/√2)(φ2 − φ−2) ≡ dxy.
The structure of the energy levels is shown in Fig. 13.2.

The core of high-temperature superconductors is an octahedron of oxygen
atoms surrounding the Cu2+ 3d9 ion, yielding the splitting of the 3d levels
depicted in Fig. 13.2 (it should be reminded that the CF levels for a single
hole in the 3d sub-shell are equivalent to the ones for a single electron).

The case of one p electron in a perturbative CF due to ions in an octahedral
symmetry is discussed in Problem F.XIII.3, including the effect of an external
magnetic field.
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Due to A
0
0
Y
00

term

(see Eq. 13.26)
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Fig. 13.2. Crystal field splitting of the 3d electron levels in regular octahedral
coordination. The elongation of the octahedron along the z axis would cause the
further splitting of the upper eg levels.

13.4 Simple picture of the electric transport

Let us first recall a few introductory remarks based on the Drude model,
basically classical considerations for a free electron gas, which help to grasp
some aspects of electrical conductivity in solids.

In analogy to the molecular collisions in classical gases, for the electrons
colliding with impurities or with the ions (oscillating around their equilibrium
positions, see Chapter 14) one can define a mean free path λ. This is the
average distance covered by an electron between two collisions, while it is
moving with an average velocity < v >. This average velocity can be related
to the Fermi energy EF by referring to the average energy < E >� 3EF /5
(see §12.7.1): < v >=

√
< v2 > ∼ √

EF /m � 108 cm/s.
An external electric field E modifies the random motions of the electrons

in such a way that a charge flow opposite to the field arises, with a neat drift
velocity vd. The drift velocity is estimated as follows. After a collision a given
electron experiences an acceleration a = eE/m, for an average time λ/ < v >.
Then vd = aλ/ < v >= −eEλ/m < v >, which is usually much smaller than
< v >. Then, indicating with n the electron density, the current density turns
out

j = −nevd =
ne2Eλ
m < v >

. (13.29)
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This equation corresponds to the Ohm law, where the resistivity is ρ = E/j.
The mobility μ, defined by the ratio |vd|/|E |, is thus given by

μ = eλ/m < v > and the conductivity σ is

σ = neμ. (13.30)

For totally filled bands the conductivity is zero, as it will be emphasized
subsequently. When a band is almost filled an expression for the conductiv-
ity due to positive charges (holes) can be considered. A contribution to the
conductivity analogous to Eq. 13.30 can then be written: σh = nhehμh.

It should be noticed that due to the opposite sign of their charges and
of their drift velocities, both electron and hole conductivities contribute with
the same sign to the electric transport.

In the Drude model for metallic conductivity all the free electrons con-
tribute to the current, a situation in contradiction to the Pauli principle. In
fact, the electron at energy well below EF cannot acquire energy from the
field, the states at higher energy being occupied. Furthermore the tempera-
ture dependence of the conductivity (which around room temperature goes as
σ ∝ T−1) is not explicitly taken into account in Drude-like descriptions, the
ions being considered immobile. Note that according to that simplified model
the mean free path can increase to several lattice steps in the low temperature
range (see Prob. F.XIII.1).

The quantum mechanical description of the current flow would require
solving Schrödinger equation in the spatially periodic lattice potential in the
presence of electric field. Here we shall limit to a semi-classical picture in
order to better clarify the phenomenological concepts given above, taking into
account the band structure and resorting to the wave-packet-like properties
of the electrons.

In the semiclassical approach the motion of the electron (see §12.3 and
§12.6) is based on the equation for the increase of energy δE in a time δt, due
to the force associated with the electric field E:

δE = −eE.vδt. (13.31)

Here v represents the group velocity of the Bloch wave-packet describing
the electron:

v = ∇kω(k) ≡ 1
h̄

∇kE(k). (13.32)

It is recalled that in order to have particle properties, still retaining the
required wave-like structure, an electron cannot have a precise definite mo-
mentum but must possess a range of k values.

From Eqs. 13.31 and 13.32 the equation of motion

h̄k̇ = −Ee (13.33)

describes how the wave-vector and hence the state of the electron, changes.
From Eqs. 13.32 and 13.33 the effective mass m∗, reflecting the effect of the
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crystal field included in E(k), was obtained (§12.6). From the components of
the acceleration

v̇α =
1
h̄

d

dt
(∇kE)α =

1
h̄

∑
β

∂2E

∂kα∂kβ
k̇β =

1
h̄2

∑
β

∂2E

∂kα∂kβ
(−eEβ)

the components of the effective mass tensor turn out (see Eq. 12.24 and Prob.
XII.3.3)

(m∗)−1
αβ =

1
h̄2

∂2E(k)
∂kα∂kβ

. (13.34)

As already discussed at §12.6, the effective mass concept is useful to de-
scribe the effect of the lattice in regards of the response of the electrons to
external forces. It has already been emphasized how the effective mass changes
along a given band E(k), so that the electrons can move along the direction
of the electric field or along the opposite direction.

By extending Eq. 13.32 and considering that the density of k states is
Nvc/8π3, the current density (Eq. 13.29) can be written

j =
−e

8π3h̄

∫
BZ

∇kEkdk, (13.35)

where the integration is over all states occupied by electrons, within the Bril-
louin zone. For a fully occupied band the integral extends over all the BZ.

It must be remarked that for each electron with velocity v(k) there is
another electron at - k for which

v(−k) =
1
h̄

∇kE(−k) = − 1
h̄

∇−kE(−k) = − 1
h̄

∇kE(k) = −v(k) (13.36)

(since E(k) = E(−k), due to the inversion symmetry). Thus the current
associated with a full band is zero, as it was anticipated. The crystal is an
insulator, if no thermal excitation to the upper empty band is considered.

For a partially filled band, according to Eq. 13.33 the electric field redis-
tributes the electrons, so that the distribution is no longer symmetric around
k = 0. Therefore for a certain time interval there is no cancellation of the
contributions to the drift and an electronic current flow along −E occurs, as
sketched below in a one-dimensional reciprocal space:

 

occupied  

states 

-π/a π/a 

t = 0 

E 

-π/a π/a 

time t later 

E 



438 13 Miscellaneous aspects related to the electronic structure

By extending to the band what has been derived for a single electron
at Problem XII.6.1, one realizes that after some time the distribution in k-
space changes. The states at positive k are refilled, as sketched below (for the
moment, as in Problem XII.6.1, no scattering process is assumed to occur).

  

-π/a π/a 

total j = 0 

E

states at positive  

k are refilled 

Then, at this moment the current flows due to the regions at positive and
at negative k’s compensate each other. Later on a neat flow in opposite direc-
tion (see Eq. 13.36) should occur. Therefore, as a whole, an oscillating current
should be expected upon application of a constant electric field (the so-called
Bloch oscillations, see Problem XII.6.1 for a single electron). However, we
have to take into account the inelastic collisions of the electrons with impu-
rities or oscillating ions. In a simple description one can imagine that after
each collision the entire group of electrons is forced to re-take the equilibrium
thermal distribution over the k-states. Then, for frequent collisions, only the
evolution of the system in the first time interval mentioned above is practically
effective. The net effect of the field can be thought to generate a stationary
distribution skewed in the opposite direction of the field:

  

-π/a π/a 

E 

yielding a net flow of current.
For almost totally filled bands a description in terms of pseudo-particles

(the holes) occupying the empty states can be given, as anticipated. In fact,
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the integral in Eq. 13.35 extends only over the occupied states. Therefore for
the current density one can write

j =
−e
8π3

[∫
BZ

v(k)dk −
∫

empty

v(k)dk
]

= +
e

8π3

∫
empty

v(k)dk . (13.37)

Thus the current has been formally transformed to a current of positive
particles occupying empty electron states. To those quasi-particles Eqs.
13.31-13.35 and the related concepts do apply.

At the thermal equilibrium the holes are usually confined to the k states
in the upper part of the band, where the electron effective mass is usually
negative. Thus the holes behave as positive charges with a positive effective
mass m∗

h moving along the electric field direction.
These concepts are particularly useful in intrinsic semiconductors, where

the thermal excitations promote a limited number of electrons from the va-
lence band (fully occupied at T = 0) to the conduction band (fully empty
at T = 0). Since the holes in the valence band and the electrons at the bot-
tom of the conduction band move along opposite directions and have opposite
charges, the neat effect is that the electron and hole conductivities sum up.
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Appendix XIII.1 Magnetism from itinerant electrons

The magnetic properties associated with localized magnetic moments,
therefore of crystals with magnetic ions, have been addressed at Chapter 4.
At §12.7 and Problem XII.7.6 the paramagnetic susceptibility of the Fermi
gas has been described.

The issue of the magnetic properties associated with an ensemble of delo-
calized electrons, with no interaction (Fermi gas) or in the presence of electron-
electron interactions, is much more ample. In this Appendix we first recall
the diamagnetism due to free electrons (Landau diamagnetism). Then
some aspects of the magnetic properties of interacting delocalized electrons
(ferromagnetic or antiferromagnetic metals) are addressed, in a simpli-
fied form.

The conduction electrons in metals are responsible of a negative suscep-
tibility, associated with orbital motions under the action of external magnetic
field. To account for this effect one has to refer to the generalized momentum
operator (see Eq. 1.26) −ih̄∇+(e/c)A, with A = (0, Hx, 0) (second Landau
gauge) 2, for a magnetic field H along the z axes.

Then the Schrodinger equation takes the form

− h̄
2

2m

[
(
∂

∂x
)2 + (

∂

∂y
+
ieHx

h̄c
)2 + (

∂

∂z
)2
]
ψ = Eψ (A.XIII.1.1)

Since −ih̄∇y,z describe constants of motion with eigenvalues h̄ky,z one can
rewrite this equation in the form[

− h̄
2

2m
∂2

∂x2
+

1
2
e2H2

mc2
(x− h̄kyc

eH
)2 +

h̄2k2
z

2m

]
ψ = Eψ (A.XIII.1.2)

where the first two terms represent the Hamiltonian for a displaced linear
oscillator, with characteristic frequency

ωc =
eH

mc
=

2μBH

h̄
= 2ωL (A.XIII.1.3)

(ωL Larmor frequency, see Prob.III.2.4). ωc is the cyclotron frequency,
while xo = h̄cky/eH is the center of the oscillations.

Therefore, from Eq. A.XIII.1.2 the eigenvalues turn out

Enkz
=
h̄2k2

z

2m
+ (n+

1
2
)h̄ωc (A.XIII.1.4)

where the quantum number n labels the Landau levels.
The one-electron eigenfunctions in the presence of the magnetic field are

plane waves along one direction (dependent on the choice of the gauge for A)
multiplied by the wavefunctions for the harmonic oscillator.
2 This gauge is translationally invariant along the y-axis, with eigenstates of the

y-component of the momentum.
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The semiclassical view of the result given at Eq. A.XIII.1.4 is that under
the Lorentz force FL = −(e/c)vg × H (with vg the group velocity) the evo-
lution of the crystal momentum h̄dk/dt = FL induces a cyclotron rotational
motion in the xy plane while the electron propagates along the z direction
(see Problem XII.3.2).

It is noticed that each Landau level is degenerate, the degeneracy depend-
ing on the number of possible values for xo. For a volume V = Lx.Ly.Lz, then
0 ≤ x0 ≤ Lx, while one has 0 ≤ ky ≤ LxeH/h̄c ≡ kmax

y . Therefore, ky being
quantized in steps Δky = 2π/Ly, the degeneracy of each Landau level, given
by the number of oscillators with origin within the sample, is

NL(H) =
kmax

y

Δky
= LxLyH

e

hc
=
Φ(H)
Φo

, (A.XIII.1.5)

where Φ(H) is the flux of the magnetic field across the crystal and Φo =
hc/e � 4 × 10−7 Gauss cm2 is the flux quantum 3.

It is observed that the degeneracy, the same for all the n levels, increases
linearly with H. Hence, by increasing H one can vary the population of each
level and eventually when H is very high (and for moderate electron densities)
all electrons will occupy just the first n = 0 level. Accordingly, on increasing
H different Landau levels will cross the Fermi energy.

By resorting to the results outlined above one can calculate the energy of
the electrons E(H) in presence of the field and then the magnetization. One
can conveniently distinguish two regimes, for kBT large or small compared
to h̄ωc. For kBT � h̄ωc an oscillatory behaviour of E(H) is observed. The
oscillations occur when the Landau level pass through the Fermi surface and
cause changes in the energy of the conduction electrons, namely for

(n+
1
2
)h̄ωc = EF , (A.XIII.1.6)

Characteristic oscillations in the magnetization, known as De Haas-Van
Alphen oscillations can be detected.

For kBT � h̄ωc the discreteness of the Landau levels is no longer effective
and the energy increases with H2:

E(H) ∝ h̄ωc[h̄ωcD(EF )] ,

corresponding to an increase by h̄ωc of the energy for all the h̄ωcD(EF )
electrons in a Landau level (D(EF ) density of states at the Fermi level, see
§12.7.1). Therefore, the susceptibility turns out

χL = − 1
12

(
eh̄

mc
)2
D(EF )
Nvc

= − 1
12π2

e2

mc2
kF , (A.XIII.1.7)

3 The flux quantum here is by a factor 2 larger than the superconducting fluxon
ΦSC = hc/2e, since in the latter case a Cooper pair, of charge 2e, is involved.
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kF being the Fermi wave vector. From the Pauli susceptibility χP (see Problem
XII.7.6) one can write

χL = −1
3
χP . (A.XIII.1.8)

Modifications in χL (as well as in χP ) have to be expected when the
effective mass m∗ of the electrons is different from me. For instance, when
m∗ � me (as for example in bismuth, where m∗ ∼ 0.01me) the metal can
become diamagnetic. In fact, the total susceptibility for non-interacting delo-
calized electrons has to be written

χtotal = μ2
BD(EF )[1 − 1

3
(
me

m∗ )2] ≡ χP [1 − 1
3
(
me

m∗ )2]

For further insights on the behaviour of the Fermi gas in the presence of
constant magnetic field, Chapter XV in the book by Grosso and Pastori
Parravicini (quoted in the Preface) should be read.

In transition metals, with partially occupied d bands, the electrons in-
volved in the magnetic properties are itinerant, with relevant many-body
correlation effects. The Fermi-gas picture for the conduction electrons is no
longer adequate and significant modifications to the Pauli susceptibility have
to be expected, including the possibility of the transition to an ordered state.
In these cases one often speaks of ferro (or antiferro)magnetic metals. For
example, an experimental evidence of a particular itinerant ferromagnetism
is iron metal: the magnetic moment per atom is found around 2.2μB . This
value cannot be justified in terms of localized moments on Fe2+ ion, in the
5D4 state (see §3.2.3).

The simplest model to account for the correlation effects on the magnetic
properties of itinerant electrons is the one due to Stoner and Hubbard. In
this model the electron-electron Coulomb interaction is replaced by a constant
repulsive energy U between electrons on the same site, with opposite spins
according to Pauli principle. Then the total Hamiltonian is written

H =
∑
k

E(k)(nk,↑ + nk,↓) + U
∑
m

pm,↑pm,↓ (A.XIII.1.9)

where the first term is the usual free electron kinetic Hamiltonian, while the
second term describes the repulsive on-site interaction, with the sum running
over all lattice sites.

The total magnetization can be derived in a way analogous to the one used
for the Pauli susceptibility (Problem XII.7.6), by estimating the numbers of
electrons with spin up and spin down, following the application of the magnetic
field. For N electrons per cubic cm, in the conduction band of width larger
than U , N↑ and N↓ are the numbers of electrons of spin up and spin down
respectively. Then the energy for spin-up electrons turns out
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E(k)↑ = E(k) + Un↓ + μBH (A.XIII.1.10)

while for electrons with spin-down

E(k)↓ = E(k) + Un↑ − μBH . (A.XIII.1.11)

where n↑,↓ = N↑,↓/N.
The decrease of the energy of the spin-down band with respect to the

spin-up band yields an increase in the population of spin-down electrons and
a non-zero magnetization. Since (see again Problem XII.7.6) for N↑,↓ one
writes

N↓ =
1
2

∫ ∞

Un↑−μBH

f(E)D(E − Un↑ + μBH)dE �

� 1
2

∫ ∞

0

f(E)D(E)dE +
1
2
(μBH − Un↑)D(EF ) (A.XIII.1.12)

while

N↑ � 1
2

∫ ∞

0

f(E)D(E)dE − 1
2
(μBH + Un↓)D(EF ) . (A.XIII.1.13)

The magnetization (per unit volume) becomes

M = μB
(N↓ −N↑)

V
� μBUD(EF )

2N
(N↓ −N↑) + μ2

BD(EF )H (A.XIII.1.14)

(V the reference volume). Therefore the magnetic susceptibility becomes

χ =
M

H
=
μ2

BD(EF )

1 − UD(EF )
2N

=
χP

1 − (UχP /2μ2
BN)

, (A.XIII.1.15)

with χP Pauli susceptibility (for bare electrons) and D(EF ) the density of
states per unit volume.

It is noted that when UD(EF )/2N → 1 (Stoner criterium) the suscep-
tibility diverges and ferromagnetic order is attained.

Even if the Stoner condition is not fulfilled, Eq. A.XIII.1.15 shows that
the susceptibility is significantly modified with respect to the one for bare
free-electrons. Eq. A.XIII.1.15 can be considered a particular case of Eq. 4.33,
where the enhancement factor corresponds to the mean field acting on a par-
ticular electron due to the interaction with all the others. Stoner criterium
rather well justifies the ferromagnetism in metals like Fe, Co and Ni, as well
as the enhanced susceptibility (about 5 χP ) measured in Pt and Pd metals.

Finally a few words are in order about the magnetic behaviour of itinerant
electrons when the concentration n is reduced (diluted electron fluid in
the presence of electron-electron interaction).
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As shown in Problem F.XIII.2 the Coulomb repulsive energy of the elec-
trons goes as < EC >∝ e2n1/D (D the dimensionality), while for the kinetic
energy (for T → 0) one has < E >∝ n2/D. Thus the electron dilution causes
a decrease of the average kinetic energy < E > which is more rapid than the
one for the average repulsion energy. Eventually, below n3D = 1.77× 10−1/a3o
and below n2D = 0.4/a2o, when < EC > becomes dominant, a spontaneous
“crystallization” could occur, in principle (Wigner crystallization).

Monte Carlo simulations predict a three-dimensional crystallization into
the bcc lattice at densities below 2 × 1018 cm−3, while at densities below
2 × 1020 cm−3 the Coulomb interaction should be strong enough to align all
the spins, according to the Stoner criterium. Charge or spin ordering are hard
to be experimentally tested, mainly because of the difficulty of the physical
realization of the electron fluid at low density sufficiently free from impurities
and/or defects.
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Problems F.XIII

Problem F.XIII.1 Silver is a monovalent metal, with density 10.5 g/cm3

and fcc structure. From the values of the resistivity at T = 20K and T = 295K
given by ρ20 = 3.8 · 10−9Ω cm and ρ295 = 1.6 · 10−6Ω cm, estimate the mean
free paths λ of the electrons.

Solution:
The Fermi wavevector turns out kF = 1.2 ·108 cm−1 and the Fermi energy

is EF = 64390 K. The electron density is n = 5.86 × 1022 cm−3.
From ρ = m/ne2τ , λ =< v > τ and < v >∼ √

EF /m (see §13.4), one
derives

λ = 3.6 · 10−6 cm at 295K and λ = 1.53 · 10−3 cm at 20K .

Problem F.XIII.2 For three-dimensional and for two-dimensional met-
als, in the framework of the free-electron model and for T → 0, evaluate the
electron concentration n at which the average kinetic energy coincides with
the average Coulomb repulsion (which can be assumed U = e2/d, with d the
average distance between the electrons).

Solution:
In 3D d = 1/(4πn/3)1/3, while in 2D d = 1/n1/2. Thus

U3D = e2(
4π
3

)1/3n1/3 and U2D = e2n1/2

The average kinetic energy per electron (for T → 0) is< E >=
∫ EF

0
D(E)EdE,

with D(E)3D = (3/2)E1/2/E
3/2
F and D(E)2D = 1/EF .

Then < E >3D= (3/5)EF = (3h̄2/10m)(3π2n)2/3

and < E >2D= (1/2)EF = h̄2πn/2m.
The average kinetic energy coincides with the Coulomb repulsion for n3D =
1.77 × 10−1/a30 and n2D = 0.4/a20, with a0 Bohr radius.

Problem F.XIII.3 A magnetic field is applied on an atom with a single
p electron in the crystal field at the octahedral symmetry (§13.3), with six
charges Ze along the ±x, ±y, ±z axes. Show that without the distortion of
the octahedron (namely a = b, with a the distance from the atom of the
charges in the xy plane and b the one along the z axis) only a shift of the p
levels would occur. Then consider the case b 
= a and discuss the effect of the
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magnetic field (applied along the z axis) deriving the eigenvalues (neglect the
spin magnetic moment).

Solution:
By summing the potential due to the six charges, analogously to the case

described at §13.3, for r � a the crystal field perturbation turns out (see
footnote 1 in this Chapter)

VCF = −Ze2{
(

1
a3

− 1
b3

)
r2 + 3

(
1
b3

− 1
a3

)
z2} + ..... = A(3z2 − r2) + const

where A 
= 0 only for b 
= a.
From the unperturbed eigenfunctions the matrix elements of VCF are

< φpx
|VCF |φpx

> = A
∫
r2|R(r)|2r2dr ∫ sin2 θ cos2 φ(3 cos2 θ − 1) sin θ dθ dφ

= −A < r2 > 8π
15 =< φpy

|VCF |φpy
>

while
< φpz

|VCF |φpz
>= A < r2 >

16π
15
.

In the absence of magnetic field the energy levels are

p
x
,p

y

p
z E

1

E
2

A< r
2

>8π/5

This effect can be interpreted in terms of quenching of angular momentum
(see Prob. F.IV.2). It can be observed that for orthorombic crystal symmetry,
where the lowest degree polynomial solution of the Laplace equation yields
VCF = Ax2 +By2 − (A+B)z2, with A and B constants (with A 
= B), total
quenching of the components of the angular momentum would occur.

For the electron in octahedral symmetry and in the presence of the field,
the total perturbative Hamiltonian becomes VCF + μB lzH.
The diagonal matrix elements of lz in the basis of the unperturbed eigenfunc-
tions are zero. In fact,

< φ2px
|lz|φ2px

>= +ih̄
∫ ∞

0

f(r)dr
∫ π

0

sin3 θ dθ

∫ 2π

0

sinφ cosφdφ = 0

(Problems F.IV.1 and F.IV.2) and, analogously,

< φ2py
|lz|φ2py

>=< φ2pz
|lz|φ2pz

>= 0 .
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The non-diagonal matrix elements are < φ2py
|lz|φ2px

>=
ih̄ = − < φ2px

|lz|φ2py
>.

The secular equation becomes∣∣∣∣∣∣
E0 − E −iμBH 0
iμBH E0 − E 0

0 0 E1 − E

∣∣∣∣∣∣ = 0

yielding E′ = E1 and E′′ = E0 ± μBH, i.e.:

2μ
B
H

p
x
,p

y

p
z

unchanged

magnetic splitting
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Vibrational motions of the ions and thermal
effects

Topics

Elastic waves in crystals
Acoustic and optical branches
Debye and Einstein models
Phonons
The melting temperature
Mössbauer effect

14.1 Motions of the ions in the harmonic approximation

Hereafter we shall afford the problem of the motions of the ions around their
equilibrium positions in an ideal (disorder- and defect-free) crystal. The mo-
tions are called lattice vibrations. The Born-Oppenheimer separation and
the adiabatic approximation (§7.1) will be implicit and the concepts involved
in the description of the normal modes (§10.6) in the harmonic approximation
will be used. In fact, the crystal cell will be considered as a molecular unit:
its normal modes propagate along the crystal with a phase factor, in view of
the spatial periodicity.
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According to the definitions sketched below,

within the harmonic approximation the potential energy will be written

V2 =
1
2

∑
l,s,α

∑
l′,s′,β

(
∂2V

∂α(l, s)∂β(l′, s′)

)
o

uα(l, s)uβ(l′, s′)

≡
∑
l,s,α

∑
l′,s′,β

Φ
(α,β)
l,s,l′,s′uα(l, s)uβ(l′, s′) , (14.1)

where Φ(x,y)
l,s,l′,s′ involves the force along the x direction on the ion at site s of

the l-th cell when the ion at site s′ in the l′ cell is displaced by the unit length
along the y direction. From Eq. 14.1 the equations of motion turn out

ms
d2ul,s

dt2
= − ∂V2

∂ul,s
= −

∑
l′, s′

Φl,s,l′,s′ul′,s′ , (14.2)

namely 3SN coupled equations (S number of atoms in each cell).
Recalling the normal modes in the molecules (§10.6) it is conceivable that

due to the translational invariance, the motion of the atom at site s in a given
cell differs only by a phase factor with respect to the one in another cell (this is
the analogous of the Bloch orbital condition for the electron states). Therefore
the displacement of the (l, s) atom along a given direction is written in terms
of plane waves propagating the normal coordinates within a cell:

u(q)
α (l, s) = Uα(s,q)eiq.R(l,s)e−iωqt, (14.3)

where q are the wavevectors defined by the boundary conditions (the analo-
gous of the electron wavevector k, §12.4).
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From Eqs. 14.3 and 14.2 for each q, by taking h = ls − l′s′ , one has

msω
2
qUα(s,q) =

∑
β,s′
Uβ(s′,q)Mα,β(s, s′,q), (14.4)

where
Mα,β(s, s′,q) ≡

∑
h

Φ
(α,β)
l,s,l′,s′e

iq·h (14.5)

is the dynamical matrix, namely the Fourier transform of the elastic con-
stants.

14.2 Branches and dispersion relations

For a given wave-vector Eq. 14.4 can be rewritten in the compact form

ω2mU = MU (14.6)

where M is a square matrix of 3S degree, m is a diagonal matrix and U is
a column vector. As for the normal modes in molecules (see Eq. 10.53) the
condition for the existence of the normal coordinates is

|M − ω2m| = 0 . (14.7)

For each wavevector q Eq. 14.7 yields 3S angular frequencies ω2
q,j . Here j is a

branch index. 3S − 3 branches are called optical since, as it will appear at
§14.3.2, they can be active in infrared spectroscopy, while 3 branches are called
acoustic, since in the limit q → 0 the crystal must behave like an elastic
continuum, where ωq = vsoundq. At variance, for the optical branches (see
§14.3.2) for q = 0 one has ωq,j 
= 0.

The q-dependence of ωq,j is called dispersion relation. In analogy to the
density of k-states for the electrons (§12.5), one can define a density of q values
in the reciprocal space: D(q) = Nvc/8π3. One also defines the vibrational
spectrumDj(ω) for each branch, with the sum rule

∑3S
j=1

∫
Dj(ω)dω = 3NS.

In the next Section illustrative examples of vibrational spectra will be
given.

14.3 Models of lattice vibrations

In this Section the classical vibrational motions of the ions within the har-
monic approximation will be addressed for some model systems.
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14.3.1 Monoatomic one-dimensional crystal

Let us refer to a linear chain of identical atoms, for simplicity by considering
only the longitudinal motions along the chain direction:

  

N  “cells” 

ul,s 

1D 

cell l 

site s ≡ 1 

a 

The equations of motions are of the form Eq. 14.2, the index s being
redundant. One first selects in the reciprocal space a wavevector q = n12π/Na,
with −N/2 ≤ n1 ≤ N/2. Then one writes the ul,s displacement as due to the
superposition of the ones caused by the waves propagating along the chain,
for each q (correspondent to Eq. 14.3). From Eq. 14.2 and 14.4 one writes

msω
2
qU(s,q) =

∑
s′
U(s′,q)M(s, s′,q), (14.8)

where
M(s, s′,q) ≡

∑
h

Φl,s,l′,s′eiq.h (14.9)

is the collective force constant, representing the Fourier transform of the
elastic constants. Eqs. 14.8 and 14.9 describe the propagation of the normal
modes of the “cell” along the chain.

By limiting the interaction to the nearest neighbors,

  

+2 

spring constant 

+1 0 -1 -2 

“cell” 0, single site, index 0 

index 

the equation of motion for the atom in the cell at the origin (l = 0) turns out

m
d2u0

dt2
= −2ku0 + ku1 + ku−1 (14.10)

implying Φ(0, 0) = 2k and Φ(±1, 0) = −k.
The dynamical matrix (Eq. 14.5) is reduced to

M = Φ(0, 0) +
∑

n=±1

Φ(n, 0)eiqna

and Eq. 14.8 takes the form

mω2
qUq = (2k − 2kcos(qa))Uq, (14.11)
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namely the one for a single normal oscillator, with an effective elastic con-
stant taking into account the coupling to the nearest neighbors.

The solubility condition (Eq. 14.7) corresponds to

ω2
q =

2k
m

(1 − cos(qa)), (14.12)

yielding the dispersion relation

ωq = 2

√
k

m
sin(qa/2) (14.13)

sketched below:

ω=vq

-π/a π/a0
q

ω
q

ω
m

=2(k/m)
1/2

The vibrational spectrum, or density of states D(ω) = D(q)dq/dω, with
D(q) = Na/2π, turns out

D(ω) = (2N/π
√
ω2

m − ω2), (14.14)

reported below

  

only q > 0 are considered here 

�m � 2 (k/m)
1/2 

2N /��m

 

D(� )
 

 

� 

D(�) = (Na/2�) • 2 • (2 / a) • 1/(�m

2
 - �2

)
0.5

 

The situation arising at the zone boundary, where ωq=π/a ≡ ωm, is equiv-
alent to the one encountered at the critical points of the electronic states (see
§12.5).
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14.3.2 Diatomic one-dimensional crystal

For a chain with two atoms per unit cell, with mass m1 and m2

(m1 > m2), again considering the longitudinal modes and assuming a single
elastic constant and nearest neighbour interactions,

  

m1 

cell l -1

single elastic 

constant 

m2 a a

cell l cell l +1 

u1 u2 

the equations of motions for the atoms at sites s = 1 and s = 2, within the
l-th cell, are

m1
d2ul,1

dt2
= −2kul,1 + kul,2 + kul−1,2

m2
d2ul,2

dt2
= −2kul,2 + kul,1 + kul+1,1 (14.15)

Again resorting to solutions of the form

u(l, 1) = U1e
iq2lae−iωqt

and
u(l, 2) = U2e

iq(a+2la)e−iωqt

(the index q in U1,2 is dropped here), one has

(
2k
m1

− ω2)U1 − k

m1
(eiqa + e−iqa)U2 = 0

− k

m2
(eiqa + e−iqa)U1 + (

2k
m2

− ω2)U2 = 0 . (14.16)

The dynamical matrix is

M =
(

2k −k(eiqa + e−iqa)
−k(e−iqa + eiqa) 2k

)
and the solubility condition(

2k −m1ω
2 −2kcos(qa)

−2kcos(qa) 2k −m2ω
2

)
= 0

leads to
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-π/2a π/2a

ωq

 

(2k/μ)
1/2

 

 

0

q

(2k/m2)
1/2

 

(2k/m1)
1/2

 

A 

O

Fig. 14.1. Frequencies of the acoustic (A) and optical (O) longitudinal modes in
one-dimensional diatomic crystal, according to Eq. 14.17.

ω2
q = k(

1
m2

+
1
m1

) ± k
[
(

1
m2

+
1
m1

)2 − 4
m1m2

sin2(qa)
] 1

2

. (14.17)

The dispersion relations are shown in Fig.14.1, with μ reduced mass.
At the boundaries of the Brillouin zone (q = ±π/2a) the frequencies of

the acoustic and optical modes are ωA =
√

2k/m1 and ωO =
√

2k/m2, re-
spectively.

It is noted that whenm1 = m2 the two frequencies coincide, the gap at the
zone boundary vanishes: the situation of the monoatomic chain is restored,
once that the length of the lattice cell becomes a instead of 2a.

For a given wavevector one can obtain the atomic displacements induced
by each normal mode. For instance, by choosing q = 0 for the acoustic branch
one derives UA(0, 1) = UA(0, 2), the same displacement for the two atoms,
corresponding to the translation of all the crystal. For the optical mode, again
for q = 0 one hasm1UO(0, 1) = −m2UO(0, 2), keeping fixed the center of mass.
As for the diatomic molecule (see §10.6) the difference of the two displacements
corresponds to the normal coordinate.

In a similar way one can derive the displacements associated with the
zone boundary wavevectors (Fig. 14.2, where also the transverse modes are
schematized).

From the dispersion relations (Eq. 14.17) the vibrational spectra reported
in Fig. 14.3 are derived.

Up to now only longitudinal modes have been considered. To describe the
transverse vibrations the elastic constants for the displacements perpendicu-
lar to the chain should be considered. In this way, for a given wave-vector,
3 vibrational branches would be obtained for the monoatomic chain and 6
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Acoustic mode 

Acoustic mode 

 

q = π/2a 

Longitudinal modes 

q = 0 
m1 m2 

Transverse modes 

q = 0 

q = π/2a  

 Optical mode 

 

Optical mode 

Optical mode 

 Optical mode 

 Acoustic 

d

 Acoustic mode 

Fig. 14.2. Atomic displacements associated with the q = 0 and the q = π/2a
acoustic (A) and optical (O) modes, for one-dimensional diatomic crystal.

  

ω 

D(ω) 

(2k/μ)
1/2

 

(2k/m2)
1/2

 (2k/m1)
1/2

A 

O 

Fig. 14.3. Vibrational spectra for the longitudinal acoustic (A) and optical (O)
branches in one-dimensional diatomic crystal.
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branches for the diatomic one, at longitudinal (L) and transverse (T) optical
and acoustic characters (see Fig. 14.2).

Finally one should observe that the interaction with electromagnetic waves
requires the presence of oscillating electric dipole within the cell. To grant
energy and momentum conservation, the absorption process should occur in
correspondence to the photon momentum q = h̄ω/c, which for typical
values of the frequencies (ω ∼ 1013−1014 rad s−1) is much smaller than h/2a.
For q → 0, at the center of the Brillouin zone, the acoustic modes do not
yield any dipole moment. Therefore only the optical branches, implying in
general oscillating dipoles (as schematized in Fig. 14.2), can be active for the
absorption of the electromagnetic radiation, similarly to the case described
for the molecules.

14.3.3 Einstein and Debye crystals

The phenomenological models due to Einstein and to Debye are rather well
suited for the approximate description of specific properties related to the
lattice vibrations in real crystals.

The Einstein crystal is assumed as an ensemble of independent atoms
elastically connected to equilibrium positions. The interactions are somewhat
reflected in a vibrational constant common to each oscillator, yielding a char-
acteristic frequency ωE . As regards the dispersion curves, one can think that
for each q there is a threefold degenerate mode at frequency ωE . Thus, the
vibrational spectrum could be schematized as below:

  

D(ω)
 

 3N

ωE

 

δ (ω - ωE) 

ω  

Although introduced to justify the low-temperature behavior of the spe-
cific heat (see §14.5), the Einstein model is often applied in order to describe
the properties of the optical modes in real crystals, at least at qualitative
level. In fact, the optical modes are often characterized by weakly q-dependent
dispersion curves with a narrow D(ω), not too different from the delta-like vi-
brational spectrum of the Einstein model heuristically broadened, as sketched
below:

 

  

zone boundary 

D(ω)
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 ω 
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In the Debye model it is assumed that the vibrational properties are
basically the ones of the elastic (and sometimes isotropic) continuum, with
ad hoc conditions in order to take into account the discrete nature of any real
crystal. In particular:

i) the Debye model describes rather well the acoustic modes of any crystal,
since for q → 0 the dispersion curves of the acoustic branches practically
coincide with the ones of the continuum solid, the wavelength of the vibration
being much larger than the lattice step.

ii) the model cannot describe the vibrational contribution from optical
modes.

iii) one has to introduce a cutoff frequency ωD in the spectrum in order
to keep the number of modes limited to 3N (for N atoms).

iv) only 3 branches have to be expected, with dispersion relations of the
form ωj

q = vj
soundq, where the sound velocity can refer to transverse or to

longitudinal modes.
For a given branch, in the assumption of isotropy, the vibrational spectrum

turns out

Dj(ω) =
Nvc
8π3

dq =
Nvc
8π3

4πq2dq =
Nvc
8π3

4πω2

v3j
. (14.18)

One can introduce an average velocity v and again in the isotropic case,
3/v3 = 2/v3T + 1/v3L. Therefore

D(ω) =
Nvc
8π3

12πω2

v3
=
Nvc
v3

3
2π2

ω2, (14.19)

the typical vibrational spectrum characteristic of the continuum.
Now a cutoff frequency ωD (known as Debye frequency) has to be in-

troduced. The role of ωD in the dispersion relation and in the vibrational
spectrum D(ω) is illustrated below:
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ωD can be derived from the condition
∫
D(ω)dω = 3N or, equivalently,

by evaluating the Debye radius qD of the sphere in the reciprocal space which
includes the N allowed wavevectors.

Thus (Nvc/8π3)(4πq3D/3) = N and then

qD =
(

6π2

vc

) 1
3

(14.20)

and

ωD = vqD = v
(

6π2

vc

) 1
3

. (14.21)

In real crystals detailed descriptions of the vibrational modes are often
difficult. One can recall the following. In the q → 0 limit one can refer to the
conditions of the continuum and the acoustic branches along certain symme-
try directions can be discussed in terms of effective elastic constants. These
constants are usually derived from ultrasound propagation measurements.

The frequencies of the various branches can become equal in correspon-
dence to certain wavevectors, implying degeneracy. Although the optical
branches have non-zero frequency even for q = 0 they are not always optically
active, since do not always imply oscillating electric dipoles. For instance,
in diamond, although the optical modes cause the vibration of the two sub-
lattices (see §11.3) against each other, no electric dipole is induced and no
interaction with the electromagnetic waves can occur.

The dispersion curves are usually obtained by inelastic neutron spec-
troscopy. The schematic structure of a triple axes neutron spectrometer is
reported below:
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A nice description of the lattice vibrations, with theory and basic aspects
of neutron spectroscopy, can be found in the report by Cochran quoted in
the preface.

14.4 Phonons

While discussing the normal modes in molecules (§10.6) it was shown how a
non-normal Hamiltonian (in terms of local coordinates) could be transformed
into a normal one by writing the local displacements as a superposition of
excitations, each one associated to a normal oscillator. The collective normal
coordinate was shown to be a linear combination of the local ones. The treat-
ment given at §10.6 can be extended to the displacements of the atoms around
their equilibrium positions in a crystal. Thus, returning to Eq. 14.3, for each
branch (j) we write the displacement in the form

u =
∑
q

Uqe
iq.Re−iωqt (14.22)

Therefore the problem is reduced to the evaluation of the normal coordinates
Q(j)

q of the crystal cell, that one can build up from the amplitudes Uq by
including the masses and the normalization factors. The translational invari-
ance of the crystal implies the propagation of the normal excitations of the
cell with phase factor eiq·R.

Hence, one can start from Hamiltonians of the form H =
∑

j Hj [Qj(q)],
for each wavevector q of a given branch j. By indicating with Q the group of
the normal coordinates and with φ(Q) the related wavefunction, one expects

φ(Q) =
∏
q,j

φ(j)
q (Qj(q)) . (14.23)

In the harmonic approximation φ(j)
q is the eigenfunction of single normal

oscillator, characterized by quantum number nj(q) and eigenvalues

E(j)
q = h̄ω(j)

q [1/2 + nj(q)] .

The total energy is

ET =
∑

j

∑
q

(nj(q) +
1
2
)h̄ω(j)

q . (14.24)

Therefore the vibrational state of the crystal is defined by the set of 3SN
numbers |..., ..., nj(q), ... > that classify the eigenfunctions of the normal oscil-
lators. At T = 0, the ground-state is labelled |0, 0, 0... > and the wavefunction
is the product of Gaussian functions (see §10.3.1).
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At finite temperature one has to take into account the thermal excitations
to excited states, for each normal oscillator. Two different approaches can be
followed:

A) - the normal oscillators are distinguishable and the numbers nj(q)
select the stationary states for each of them. Then the Boltzmann statistics
holds and for a given oscillator with characteristic frequency ν the average
energy is

E =
∑

v

pvEv, (14.25)

with

pv =
e−Ev/kBT∑
v e

−Ev/kBT

and
Ev = (v + 1/2)hν v = 0, 1, 2, ....

For each normal mode the average energy E is found as shown at Problem
F.I.2 for photons (Planck derivation), here having to include the zero-point
energy:

E = hν(
1
2

+
1

ehν/kBT − 1
) (14.26)

The energy turns out the one for the quantum oscillator, provided that an
average excitation number

< v >=
1

e
hν

kBT − 1
(14.27)

is introduced.
The total thermal energy of the crystal is obtained by summing Eq. 14.26

over the various modes, for each branch.

B) - the crystal is considered as an assembly of indistinguishable
pseudo-particles, each of energy h̄ωq,j and momentum h̄q = (h̄ωq,j/vj,q)q̂.
These quasi-particles are the quanta of the elastic field and are called phonons
in analogy with the photons for the electromagnetic field.

Then the total energy has to be written

< E >=
∑
q,j

(nq,j +
1
2
)h̄ωq,j , (14.28)

where the average number of pseudo-particles is given by the Bose-Einstein
statistics, i.e.

nq,j =
1

e
h̄ωq,j
kBT − 1

, (14.29)
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for a given branch j.

The two ways A and B to conceive the aspects of the lattice vibrations give
equivalent final results, as it can be seen by comparing Eq. 14.26 (summed
up to all the single oscillators) and Eq. 14.28. The derivation of some thermal
properties (§14.5) will emphasize the equivalence of the two ways to describe
the quantum aspects of the vibrational motions of the ions.

14.5 Thermal properties related to lattice vibrations

All the thermodynamical properties related to the vibrational motions can be
derived from the total partition function ZTOT =

∏
q,j Zq,j , with

Zq,j =
∑
e

−E(q,j)
kBT (14.30)

where the sum is over all the energy levels, for each q-dependent oscillator of
each branch.

The thermal energy can be directly evaluated by resorting to the vibra-
tional spectra D(ω), in the light of Eqs. 14.28 and 14.29, by writing

U =
∫
h̄ω(

1
2

+
1

e
h̄ω

kBT − 1
)D(ω)dω. (14.31)

For instance, for Einstein crystals where D(ω) = 3Nδ(ω−ωE) one derives

U = 3Nh̄ωE [1/2 + 1/(e
h̄ωE
kBT − 1)].

The molar (N = NA) specific heat for T � ΘE ≡ h̄ωE/kB (ΘE often
defined Einstein temperature) turns out CV � 3R. At variance with the
classical results, for T � ΘE one has

CV � 3R(
ΘE

T
)2e

−ΘE
T (14.32)

For Debye crystals, from Eq. 14.31 by resorting to Eq. 14.19, one writes

CV =
∂

∂T
{
∫ ωD

0

D(ω)h̄ω
1

e
h̄ω

kBT − 1
dω}

and then, for N = NA

CV = 9R(
T

ΘD
)3

∫ ΘD/T

0

z4ez

(ez − 1)2
dz, (14.33)

with z = h̄ω/kBT .
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For T � ΘD, with ΘD ≡ h̄ωD/kB (known as Debye temperature), one
again finds the classical result CV → 3R.

In the low temperature range (ΘD/T → ∞) Eq. 14.33 yields CV �
(12π4/5)R(T/ΘD)3. Eq. 14.33 points out that the vibrational specific heat
of Debye crystals is a universal function of the variable T/ΘD. From Eq.
14.21 ΘD can be written ΘD = (h̄v/kB)(6π2/vc)1/3.

The temperature dependences of the molar specific heat in the framework
of Einstein and Debye models are sketched below:
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For T → 0 the Debye specific heat CD
V vanishes less rapidly than the

Einstein CE
V . The different behavior of CD

V for T → 0 originates from the
fact that the vibrational spectrum in the Debye model includes oscillatory
modes with energy separation of the order of kBT , even at low temperature.
On the contrary in the Einstein crystal in the low-temperature range one has
h̄ωE � kBT .

In the Table below the Debye temperatures of some elements are reported.

Li 

344 

Be 

1440 

Debye temperature in Kelvin  

(estimated at low temperature) 

 

B 

... 

 

C 

2230 

(diamond) 

N 

... 

O 

... 

F 

... 

Ne 

75 

Na 

158 

Mg 

400 

 

Al 

428 

Si 

645 

P 

... 

S 

... 

Cl 

... 

Ar 

92 

K 

91 

Ca 

230 

Sc 

360 

Ti 

420 

V 

380 

Cr 

630 

Mn 

410 

Fe 

470 

Co 

445 

Ni 

450 

Cu 

343 

Zn 

327 

Ga 

320 

Ge 

374 

As 

282 

Se 

90 

Br 

... 

Kr 

72 

Rb 

56 

Sr 

147 

Y 

280 

Zr 

291 

Nb 

275 

Mo 

450 

Tc 

... 

Ru 

600 

Rh 

480 

Pd 

274 

Ag 

225 

Cd 

209 

In 

108 

Sn 

200 

Sb 

211 

Te 

153 

I 

... 

Xe 

64 

Cs 

38 

Ba 

110 

La 

142 

Hf 

252 

Ta 

240 

W 

400 

Re 

430 

Os 

500 

Ir 

420 

Pt 

240 

Au 

165 

Hg 

71.9 

Tl 

78.5 

Pb 

105 

Bi 

119 

Po 

... 

At 

... 

Rn 

64 

 

By resorting to the expression for the thermal energy in terms of the
vibrational spectra, the mean square displacement of a given ion as a function
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of temperature can be directly derived. According to the extension of Eq. 14.3
to include all the normal excitations, the mean square vibrational amplitude
of each atom around its equilibrium position is written

< |u|2 >=
∑
q,j

|Uq,j |2 . (14.34)

By recalling that for each oscillator the mean square displacement can be
related to the average energy, < u2 >=< E > /(mω2), then for a given
branch j one can write |Uq|2 =< Eq > /Nmω

2
q. Hence,

< u2 >=
1
mN

∑
q,j

< Eq,j >

ω2
q,j

=
h̄

mN

∫ [
1
2

+
1

e
h̄ω

kBT − 1

]
D(ω)
ω
dω. (14.35)

For Debye crystals, at temperatures T � ΘD, from Eq. 14.19 one obtains

< u2 >� 9kBT

mω2
D

(14.36)

and at low temperature < u2 >� 9h̄/4mωD.
It should be remarked that < u2 > controls the temperature dependence

of the strength of the elastic component in scattering processes, through the
Debye-Waller factor e−4π<u2>/λ2

, with λ wavelength of the radiation (see
§14.6 for the derivation of this result).

According to the Lindemann criterium the crystal melts when the mean
square displacement < u2 > reaches a certain fraction ξ of the square of the
nearest neighbor distance R, < u2 >= ξR2.

Empirically it can be devised that ξ is around 1.5 × 10−2 (
√
< u2 > �

0.12R). This criterium allows one to relate the melting temperature Tm to
the Debye temperature. From Eq. 14.36

Tm = ξΘ2
D

mkBR
2

h̄2 . (14.37)
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Problems XIV.5

Problem XIV.5.1 Derive the vibrational entropy of a crystal in the low
temperature range (T � ΘD).

Solution:
From CD

V (Eq. 14.33) in the low temperature limit, by recalling that

S =
∫ T

0

CD
V

T
dT

the molar entropy is S(T ) = [12Rπ4/(15Θ3
D)]T 3. This result justifies the

assumption for the lattice entropy used at §6.4. The contribution from optical
modes can often be neglected.

Problem XIV.5.2 Derive the vibrational contribution to the Helmoltz
free energy and to the entropy in Einstein crystals.

Solution:
For N oscillators the total partition function is ZT = ZN , with

Z = e−h̄ωE/2kBT
∑

v

e−h̄ωEv/kBT =
e−h̄ωE/2kBT

1 − e−h̄ωE/kBT

(remind that
∑
xn = 1/(1 − x), for x < 1).

Then the total free energy turns out

F = −NkBT lnZ = N{ h̄ωE

2
+ kBT ln(1 − e−h̄ωE/kBT )}

and the entropy is

S = −(
∂F

∂T
)V = −NkB{ln(1 − e−h̄ωE/kBT ) − h̄ωE

kBT

1
eh̄ωE/kBT − 1

} .

Problem XIV.5.3 Evaluate the specific heat per unit volume for Ag
crystal (fcc cell, lattice step a = 4.07 Å) at T = 10 K, within the Einstein
model (the elastic constant can be taken k = 105 dyne/cm) and within the
Debye model, assuming for the sound velocity v � 2 × 105 cm/s.

Solution:
The Einstein frequency ωE � √

k/MAg, corresponds to the temperature ΘE �
170 K. In the unit volume there are n = 1/(NAvc) moles, with vc = a3/4 the
volume of the primitive cell. Then, since T = 10 K � ΘE , from Eq. 14.32 one
derives CE

V � 280 erg/K cm3.
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The Debye frequency can be estimated from Eq. 14.21 and the correspond-
ing Debye temperature turns out ΘD � 220 K� 10 K. Then

CD
V � 12π4kB

5vc
(
T

ΘD
)3 � 1.72 × 105erg/Kcm3 .

Problem XIV.5.4 Specific heat measurements in copper (fcc cell, lat-
tice step a = 3.6 Å, sound velocity v = 2.6 × 105 cm/s) show that CV /T
(in 10−4Joule/ mole K2) is linear when reported as a function of T 2, with
extrapolated value (CV /T ) for T → 0 given by about 7 and slope about 0.6.
Estimate the Fermi temperature and the Debye temperature and the temper-
ature at which the electronic and vibrational contributions to the specific heat
are about the same (from the equations at §12.7.1 and §14.5) and compare
the estimates with the experimental findings.

Solution:
From the specific mass ρ = 9.018 g/cm3 the number of electrons per cm3

is found n = 8.54 · 1022cm−3. From Eq. 12.28 TF = 7.8 · 104K.
The Debye temperature, for the primitive cell of volume vc = a3/4, is
θD = (h̄v/kB)

(
6π2/vc

)1/3 = 323K.
From

π2

2
nkB

T ∗

TF
=

1
vc
kB

12π4

5

(
T ∗

θD

)3

,

(per unit volume) the temperature T ∗ at which the electronic and vibrational
contributions are the same is obtained:

T ∗ =
√

5vcn(ΘD)3/2/(π
√

24TF ) � 3K .

From the experimental data according to Eq. 12.31 for NZ = NA

γ = π2R/(2TF ) = 7 × 103 erg/ mole K2, one finds TF � 5.8 · 104K and from

CD
V � 12π4R

5
(
T

ΘD
)3 ,

one derives θD � 343 K.

Problem XIV.5.5 Write the zero-point vibrational energy of a crystal in
the Debye model and derive the bulk modulus for T → 0.

Solution:
The zero-point energy is E0 = 1

2

∫ ωD

0
h̄ωD(ω)dω (Eq. 14.31). From Eq. 14.19

one derives E0 = 9Nh̄ωD/8.
At low temperature the bulk modulus is (B � V ∂2E0/∂V

2). Then, by
writing ωD in terms of the volume V = Nvc one finds

B =
1
2
N

V
h̄ωD ≡ 1

2
nakBΘD .
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14.6 The Mössbauer effect

The recoil-free emission or absorption of γ-ray (for the first time experimen-
tally noticed by Mössbauer in 1958) is strictly related to the vibrational prop-
erties of the crystals. Meantime it allows one to recall some aspects involving
the interaction of radiation with matter.

Let us consider an atom, or a nucleus, ideally at rest, emitting a photon
due to the transition between two electronic or nucleonic levels. At the pho-
ton energy hν is associated the momentum (hν/c). Then in order to grant
the momentum conservation the atom has to recoil during the emission with
kinetic energy ER = (hν/c)2/2M , with M the atomic mass. Because of the
energy conservation the emission spectrum (from an assembly of many atoms)
displays a Lorentzian shape,

 

E
 

 

EB - EA 

Iemis (E)  

ER  

ΔE 

EA 

EB  

photon 

at least with the line broadening ΔE related to the life-time of the level
(the inverse of the spontaneous emission probability, see Prob. F.I.1). An-
other source of broadening arises from the thermal motions of the atoms and
the emission line usually takes a Gaussian shape, with width related to the
distribution of the Doppler modulation in the emitted radiation (see Problem
F.I.7).

Let us suppose to try the resonance absorption of the same emitted
photon from an equivalent atom (or nucleus). Again, by taking into account
the energy and momentum conservation in the absorption process, the re-
lated spectrum must have an energy distribution of Gaussian shape, centered
at E = (EB − EA) + ER:

 

E
 

 

EB - EA 

Iabs (E)  

ER  
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From the comparison of the emission and absorption spectra one realizes
that the fraction of events that grant the resonance absorption is only the one
corresponding to the energy range underlying the emission and absorption
lines.

In atomic spectroscopy, where energy separations of the order of the eV
are involved, the condition of resonant absorption is well verified. In fact,
the recoil energy is ER ∼ 10−8 eV, below the broadening ΔE ∼ 10−7 eV
typically associated with the life time of the excited state. At variance, when
the emission and the absorption processes involve the γ-rays region, with
energies around 100 keV, the recoil energy increase by a factor of the order
of 1010. Since the lifetime of the excited nuclear levels is of the same order of
the one for electronic levels, only a limited number of resonance absorption
processes can take place, for free nuclei.

In crystals, in principle, one could expect a decrease in the fraction of res-
onantly absorbed γ-rays upon cooling the source (or the absorber), due to the
decrease of the broadening induced by thermal motions. Instead, an increase
of such a fraction was actually detected at low temperature. This phenomenon
is due to the fact that in solids a certain fraction f of emission and absorption
processes occurs without recoil. Thus the spectrum schematically reported
below

E
R

E
R

E
B
-E

A
E

emission
absorption

can be conceived, with a sizeable superposition of events around the energy
difference (EB − EA).

The momentum conservation is anyway granted, since the recoil energy
goes to the whole crystal, with negligible subtraction of energy to the emitted
or absorbed photons. The reason for the recoilless processes can be grasped
by referring to the Einstein crystal, with energy h̄ωE larger than ER. It is
conceivable that when the quantum of elastic energy cannot be generated,
then the crystal behaves as rigid.

Another interpretation (not involving the quantum character of the vibra-
tional motions) is based on the classical consideration of the spectrum emitted
by a source in motion. For a sinusoidal motion with frequency ωS , the emitted
spectrum has Fourier components at ωi, ωi ± ωS , ..., so that a component at
the intrinsic frequency ωi should remain.
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The fraction f of recoilless processes can be evaluated by considering, in
the framework of the time dependent perturbation theory used in App.I.3,
the emitting system as one nucleus imbedded in the crystal, looking for the
transition probability between states having the same vibrational quantum
numbers, while the nuclear state is changed. Since the long wave-length ap-
proximation cannot be retained, the perturbation operator reads

∑
i Ai.∇i

(the sum is over all nucleons) (see Eq. A.I.3.3).
Let us refer to an initial state corresponding to the vibrational ground-state

|0, 0, 0, ... >, by writing the amplitude of the time-dependent perturbative
Hamiltonian

∑
i e

ik.Ri . Expressing Ri in terms of the nucleon coordinates
with respect to the center of mass, the effective perturbation term entering the
probability amplitude f1/2 is of the form eik.u, with u the displacement of the
atom from its lattice equilibrium position: f1/2 ∝< 0, 0, 0...|eik.u|0, 0, 0... >.

The proportionality factor includes the matrix element of the variables
and spins of the nucleons as well as the mechanism of the transition.

The vibrational ground-state (see Eq. 14.23) for a given branch is ||0, 0, 0... >=∏
q e

−Q2
q/4Δ2

q . The displacement u can be written as a superposition of the
normal modes coordinates: u =

∑
q αqQq (αq normalizing factors which in-

clude the masses). Then, by referring to the component along the direction of
the γ-rays, one writes

f1/2 ∝
∫ +∞

−∞

∏
q

e

−Q2
q

2Δ2
q eikαqQqdQq ∝

∏
q

e
−α2

qΔ2
qk2

2 = e−
1
2

∑
q

α2
qΔ2

qk2

The mean square displacement turns out

< 0, 0...|u2
x|0, 0... >≡< 0, 0...|

∑
q,q′
αqQqαq′Qq′ |0, 0... >=

=
∑
q

α2
q < 0, 0...|Q2

q|0, 0... >=
∑
q

α2
qΔ

2
q

and then

f ∝ e−k2<u2
x> = e−k2<u2>/3.

Since for k = 0 one can set f = 1, one has

f = e−k2<u2>/3. (14.38)

For T → 0 f depends from the particular transition involved in the emission
process (through k2) and from the spectrum of the crystal through the zero-
point vibrational amplitude < u2(T = 0) >.

The temperature dependence of f originates from the one for < u2 >. f
is also known as the Debye-Waller factor, since it controls the intensity of
X-ray and neutron diffraction peaks. The Bragg reflections, in fact, do require
elastic scattering and therefore recoilless absorption and re-emission.
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By evaluating < |u|2 > for the Debye crystal, for instance, (see Eq. 14.36)
for T � ΘD one has

f = e−(3ER/2kBΘD). (14.39)

The typical experimental setup for Mössbauer absorption spectroscopy is
sketched below

 

Source 

γ-emission 

Absorber 

Detector  counters 

motion 

 

isomer shift 

Counter  

v = 0  v (mm/sec)  

Area 

The source (or the absorber) is moved at the velocity v in order to sweep
through the resonance condition. As a function of the velocity, one observes
the Mössbauer absorption line, the area being proportional to the recoilless
fraction f .

The shift with respect to the zero-velocity condition, isomer shift, is
related to the finite volume of the emitting and absorbing nuclei (try to un-
derstand the shift by returning to Problem I.4.6 and F.V.16).

Since the motions do not affect the linewidth, the resolution of the
Mössbauer line in principle depends only on the intrinsic lifetime of the level.
Typically, for ∼ 100 keV γ-rays, a resolution around 10−14 can be achieved.
Therefore, the Mössbauer spectroscopy can be used in solid state physics to
investigate the magnetic and electric hyperfine splitting of the nuclear levels.
It has been used also in order to detect subtle relativistic effects (see Problem
F.XIV.9).
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Problems F.XIV

Problem F.XIV.1 Show that an approximate estimate of the Debye
temperature in a monoatomic crystal can be obtained from the specific heat,
by looking at the temperature at which CV � 23 · 107 erg/mole K.

Solution:
From Eqs. 14.31 and 14.19

U =
∫ ωD

0

h̄ω

e
h̄ω

kBT − 1
D(ω)dω =

3
2π2

Nvc
v3

∫ ωD

0

h̄ω3

e
h̄ω

kBT − 1
dω ,

(having neglecting the zero-point energy which does not contribute to the
thermal derivatives). v is the sound velocity (an average of the ones for lon-
gitudinal and transverse branches). From Eq. 14.33 the specific heat can be
written

CV = 9R

[
4
(
T

θD

)3 ∫ θD
T

0

z3

ez − 1
dz − θD

T

1

e
θD
T − 1

]
.

For T = θD

CV (T = θD) � 36R
[∫ 1

0

z3

ez − 1
dz − 1

1.72

]
and then CV (T = θD) � 2.856R � 23.74 · 107 erg/mole K .

Problem F.XIV.2 In a 1D linear diatomic crystal of alternating Br− and
Li+ ions and lattice step a = 2 Å, the sound velocity is v = 2.7 · 105 cm/s.
Derive the effective elastic constant for the sound propagation under the as-
sumption used at §14.3.2. Estimate the gap between the acoustic and optical
branches.

Solution:
From Eq. 14.17, in the q → 0 limit, the sound velocity turns out

v =
√

2k
m1 +m2

a .

Then the elastic constant is

k =
1
2
(m1 +m2)

(v
a

)2

� 1.32 × 104 dyne/cm .

The gap covers the frequency range from ωmin = (2k/m1)1/2 to ωmax =
(2k/m2)1/2, with

ωmin = 0.14 · 1014rad s−1 and ωmax = 0.47 · 1014rad s−1.
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Problem F.XIV.3 For a cubic crystal, with lattice step a, show that
within the Debye model and for T � ΘD, the most probable phonon energy
is h̄ωp � 1.6kBT and that the wavelength of the corresponding excitation is
λp � aΘD/T .

Solution:
In view of the analogy with photons (see Problem F.I.2) the number of
phonons with energy h̄ω is given by
n(ω) = D(ω)/(eh̄ω/kBT − 1).

From Eq. 14.19 and from dn(ω)/dω = 0, one finds

h̄ωp

kBT
eh̄ω/kBT = 2(eh̄ω/kBT − 1)

and then h̄ωp/kBT � 1.6.
Since λp(ωp/2π) = v, the average sound velocity, one has λp � 2πvh̄/1.6kBT.

For cubic crystal ΘD = (vh̄/kBa)(6π2)1/3, and then λp � aΘD/T .

Problem F.XIV.4 Show that in a Debye crystal at high temperature the
thermal energy is larger than the classical one by a factor going as 1/T 2.

Solution:
From Eqs. 14.31, 14.19 and 14.21 the thermal energy is

U = 9NkBT (
T

ΘD
)3

∫ xD

0

(
x3

ex − 1
+
x3

2
)dx

with xD = ΘD/T and x = h̄ω/kBT . For x→ 0, after series expansion of the
integrand∫ xD

0

(
x3

ex − 1
+
x3

2
)dx �

∫ xD

0

(
x3

x+ x2

2 + x3

6 + ...
+
x3

2
)dx �

�
∫ xD

0

[x2(1 − x
2

+
x2

12
− ...) +

x3

2
]dx �

∫ xD

0

x2(1 +
x2

12
− ....)dx .

Note that the second term of the expansion cancels out the zero-point
energy. Then one can write
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U = 9NkBT (
T

ΘD
)3
(

1
3
(
ΘD

T
)3 +

1
60

(
ΘD

T
)5 + ....

)
.

The molar specific heat turns out

CV � 3R
(

1 − 1
20

(
ΘD

T
)2 − ....

)
.

Problem F.XIV.5 In the Figures below
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the low temperature specific heats of two crystals are reported. Are they
metals or insulators? Estimate the Debye temperatures and the Fermi energy.

Solution:
From CV /T = A + BT 2, A = R(π2/3)D(EF )kB is the term associated with
the free-electron contribution (see Prob. F.XII.1 for NA electrons), while B =
(12π4/5)(R/Θ3

D) originates from the phonon contribution. Hence the Figure
on the left refers to a metal while the one on the right to an insulator (A = 0).

From the data on the left A � 2.1 × 104erg/K2mole one finds
EF � 1.7 eV. From B � 2.6 × 104erg/K4mole, then ΘD � 90 K. From the
data on the right B � 590 erg/K4mole, yielding ΘD � 320 K.

Problem F.XIV.6 Derive the vibrational contribution to the specific
heat for a monoatomic 1D crystal, at high and low temperatures, within the
Debye and the Einstein approximations. Compare the results with the ex-
act estimates obtained in the harmonic approximation and nearest-neighbor
interactions (§14.3.1).
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Solution:
Within the Debye model the vibrational spectrum is D(ω) = Na/(2πv) and
then according to Eq. 14.31

UD =
N

2
h̄ω +

N

ωD

∫ ωD

0

h̄ω

eβh̄ω − 1
dω .

The molar specific heat turns out CV � R for T � ΘD = h̄ωD/kB and
CV � 2IR(T/ΘD) for T � ΘD, with I =

∫∞
0
x/(ex − 1)dx = π2/6.

Within the Einstein model D(ω) = Nδ(ω − ωE) and results indepen-
dent from the dimensionality are obtained (see Eq. 14.32). One has CV �
R(ΘE/T )2 exp(−ΘE/T ) for T � ΘE and CV � R for T � ΘE .

In the harmonic approximation with nearest neighbors interactions the
density of vibrational states is D(ω) = (2N/π)(1/

√
ω2

m − ω2) for ω ≤ ωm,
while it is zero for ω > ωm (see Eq. 14.14). Then

U =
N

2
h̄ω +

2NkBT

π

∫ xm

0

1√
x2

m − x2

x

ex − 1
dx

with x = βh̄ω and xm = βh̄ωm. For T � Θm = h̄ωm/kB one has

U � N

2
h̄ω +

2NkBT

π
(
π

2
− xm

2
+ ...)

and the molar specific heat is CV � R. For T � h̄ωm/kB ≡ Θm

U � N

2
h̄ω +

2N(kBT )2

πh̄ωm
I

so that
CV � 4I

π
R
T

Θm

showing that the Debye approximation yields the same low temperature be-
havior.

Problem F.XIV.7 A diatomic crystal has two types of ions, one at spin
S = 1/2 and g = 2 and one at S = 0. The Debye temperature is ΘD = 200K.
Evaluate the entropy (per ion) at T = 20K in zero external magnetic field
and for magnetic field H = 1kGauss, for no interaction among the magnetic
moments.

Solution:
The vibrational entropy is

Svib =
∫ T

0

CV (T ′)
T ′ dT ′

where for T � ΘD, neglecting the optical modes (see Prob. XIV.5.1)
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CV (T ′) =
12π4

5
kB

(
T ′

θD

)3

.

Then at T ′ = 20 K

Svib = kB
12π4

15

(
T ′

θD

)3

= 0.078 kB .

The magnetic partition function is

Zmag = exp
(
−1

2
y

)
+ exp

(
1
2
y

)
� 2 +

y2

4

with

y =
μBgH

kBT
� 0.9 · 10−20

1.38 · 10−16
g
H

T
= 6.72 · gH

T
· 10−5 � 1.

From
F = −kBT lnZ and S = −∂F

∂T

with

Smag(T ′) � kB [ln 2 − y
2

4
] � kBln2

one has

S = Svib +
1
2
Smag = kB [0.078 + 0.34] = 0.42kB/ion .

Problem F.XIV.8 The life time of the 57Fe excited state decaying
through γ emission at 14.4 keV is τ � 1.4× 10−7 s (see Problems F.I.1, F.I.7
and F.III.6). Estimate the height at which the γ-source should be placed with
respect to an absorber at the ground level, in order to evidence the gravita-
tional shift expected on the basis of Einstein theory.

Assume that a shift of 5 % of the natural linewidth of Mössbauer resonant
absorption can be detected [in the real experiment by Pound and Rebka
(Phys. Rev. Lett. 4, 337 (1960)) by using a particular experimental setup
resolution of the order of 10−14 − 10−15 could be achieved, with a fractional
full-width at half-height of the resonant Lorentzian absorption line of 1.13 ×
10−12]. Try to figure out why the source-absorber system has to be placed in
a liquid He bath.

Solution:
On falling from the height L the energy of the γ photon becomes

hν(0) = hν(L)[1 +
gL

c2
]
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where mgL/mc2 can be read as the ratio of a gravitational potential energy
mgL to the intrinsic energy mc2 (mass independent and therefore valid also
for photons). The natural linewidth of the Mössbauer line is 2h̄/τ . Therefore,
to observe a 5% variation

2h̄
20τ

= hν(L)
gL

c2

and then

L =
h̄c2

10gτ14.4keV
= 284m

(in the real experiment the height of the tower was about 10 times smaller!).
Note that the natural linewidth, when sweeping with velocity v the absorber
(or the source) corresponds to a velocity width

Δv =
2h̄c
hντ

� 0.2 mm/s

(the actual full-width at half height in the experiment by Pound and Rebka
was 0.43 mm/s).

A difference in the temperatures of the source and the absorber of 1 K could
prevent the observation of the gravitational shift because of the temperature-
dependent second-order Doppler shift resulting from lattice vibrations, since
< v2 >∼ kBT/M . Low temperature increases the γ-recoilless fraction f .
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ABMR, 218

absorption (and emission)

coefficient or spectrum or line, 45, 48,
57, 58, 164, 208, 305, 318, 319,
329, 330, 337, 345, 347, 349, 351,
360, 362, 457, 467-470, 475

adiabatic approximation, 244-247, 384,
449

adiabatic demagnetization, 213,
228-231

Ag atom, 127, see also silver

crystal, 376, 423, 465

AgBr crystal, 376

AgMg crystal, 376

Al or aluminum crystal, 376, 413

Al2O3, 307

alkali

atoms, 1, 3, 65-75, 76, 89, 96, 142

hyperfine field, 175-177

crystals, 423, 424

see also Li, Na, K, Rb, Cs and Fr

alkali halides, 329

AlNi crystal, 376

Amit D.J., 213

ammonia maser, 303-307

ammonia molecule, see NH3

deuterated, 304

in electric field, 305-308

anharmonicity, 329-334, 338

electrical 330, 334

mechanical, 331, 338

annihilation process, 27

antibonding orbital, 262, 266, 270, 280

antiferromagnetic metals 440
state, 154, 231

antiproton (gyromagnetic ratio), 199
antisymmetrical wavefunction, 88
antisymmetry, 5, 6, 65, 76, 81, 88, 98,

269, 278
As atom, 113, 305

crystal, 423
Aschcroft N.W., 368
AsH3 molecule, 304
asymmetry parameter

(of the electric field gradient), 184
Atkins P.W., 124, 125
atomic diamagnetism, 154-155
atomic orbitals, 11-13, 137
atomic polarizability, 135-137, 139, 428

see Stark effect
of Hydrogen (ground state), 136

atomic units, 159
Au crystal, 376
Auger effect, 77
auto-correlation function, 167, 168
autoionizing or autoionization states,

77, 94

B2 molecule, 273
B3+ atom, 87
Ba atom, 201
Balmer spectroscopic series, 17, 18, 190
Balzarotti A., 94
band of levels, in crystals, 383-385,

393, 395, 397, 408-410
degenerate, 409
overlap, 410, 423, 424
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band spectra (in molecules), 323, 352
barn, 183, 192, 418
BaTiO3, 299, 376, 377
Be2+ atom, 79, 87
Be crystal, 423
BeCu crystal, 376
benzene molecule, 294, 300-302, 384,

406, see also C6H6

Bi atom, 198
crystal 423

black-body radiation, 48, 51-55, 56
Blakemore J.S., 398
Bloch equations, 221, 222

orbital, 384, 386-388, 393, 399, 406,
407, 422, 450

oscillations, 438
wave-packet, 436

Blundell S.J., 159
Bohr atom, 7,11, 16-20, 26, 33, 190

magneton, 28, 159, 208
radius, 7, 159, 178, 208
radius in positronium, 23, 27, 178

Bohr-Sommerfeld quantization, 16, 169
Bohr-van Leeuwen theorem, 417
Boltzmann statistics, 49, 228, 317, 402,

461, see Maxwell-Boltzmann
bonding (and antibonding) orbitals,

266, 270, 271, 280
Born-Mayer repulsion, 286, 289, 424,

431
Born-Oppenheimer separation,

244-248, 249, 313, 383, 449
Born-Von Karmann boundary condi-

tions, 52, 389
Bose-Einstein statistical distribution

function, 53, 173, 461
Bosons and bosonic particles, 51, 53,

356, 359
Br2, 273
Brackett series, 18
Bragg law, 375

reflection, 375, 398, 405, 469
branches, acoustic and optical,

451-457, 459, 471
Bravais lattices, 368-373, 430
Breit-Rabi diagram, 197
Brillouin cell and zone, 367, 373-376,

381, 392, 393, 394, 398, 400, 419,
424, 437, 455, 457

reduction to, 392, 400, 456
function, 152

Budker D., 44, 291
bulk modulus, 415, 419, 429, 430, 466
Burns G., 368

C atom (see also carbon), 107, 305,
296-300, 309, 378

Ca atom, 82, 162
crystal, 376

C2 molecule, 273, 274
CH molecule, 287
CH4, 296
C2H2 molecule, 299, 358
C2H4 molecule, 297, 300
C3H3 molecule, 309
C4H4 molecule, 309
C6H6 (see also benzene), 300, 322, 385,

407
susceptibility, 311

canonical moment, 169, 414
cellular method, 387, 388
central field approximation, 1-7, 22, 47,

125, 250
centrifugal distortion, 338
centrifugal term (in atom), 7, 123
Cesium maser, 307
charge transfer, 278, 283, 285
Cini M., 94
Cl, 285-289
Cl−, 285-289
Clausius-Mossotti relation, 333
Clebsch-Gordan coefficients, 98, 126
Cleeton, 305
Clementi-Raimondi rules, 124
closed shells, 97, 105, 110, 271, 296, 422
Co atom, 113
CO molecule,

vibrational constant, 328
CO2 molecule

infrared active modes, 347
normal modes, 345
rotational levels, 358, 362

Cochran W., 460
cohesive energy, 424-429, 431

for inert atoms crystals, 426
in KBr, 431
in KCl, 430, 431
in molecular crystals, 426
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compound doublets, 72
compressibility, see also bulk modulus,

425, 430, 431
conductivity, see also electric transport,

399, 422, 435-439
configuration interaction (CI), 282
contact term (see also Fermi contact

interaction), 175, 178, 205
Cooper pair, 441
Copper crystal, 376, 379, 466
correlation diagram (separated-united

atoms), 251-254
correlation effects, 4, 125, 274, 442
correlation time, 168
correspondence principle, 26, 170, 316
cosmological principle, 55
Coulomb integral, 78, 80, 83, 84, 85,

123, 276, 277, 281
Coulomb repulsion, 78, 81, 85, 258, 266,

314, 384, 444, 445
covalent crystals, 421, 424
Cr3+ ion, 161, 307
critical points, 393-395, 453
crystal field, 161, 307, 432-435, 445
crystallography (elementary), 368-376
crystal momentum, 389, 441
crystal systems, 371
crystal structures, 368, 376-378
Cs atom, 65, 72, 176, see alkali atoms

spin-orbit doublet, 72
Cs2 molecule, vibrational constant, 329
CsCl crystal, 376, 425
Cu crystal, see copper
Cu2+ ion, 434
CuO6 octahedron, 299, 434
Curie law, 152

susceptibility, 152
current density, 435, 437, 439
cyclobutadiene, 309
cyclotron motion and frequency, 169,

391, 440
cylindrical coordinates, 248, 250

d2sp3 hybridization, 299, 376
D2 molecule, dissociation energy vs H2,

332
zero point energy, 332
Raman spectra, 357

Darwin term, 62

DBr molecule, 318

De Broglie wavelength, 375, 398, 402,
405, 415

De Haas-Van Alphen oscillations, 441

De Mille D.P., 44, 291

Debye, frequency and radius, 230, 458,
459

model for lattice vibrations, 457-459,
463-466, 471-474

temperature, 463, for elements, 463

Debye-Waller factor, 464, 469

degeneracy from dynamical equivalence,
5

degeneracy, accidental and necessary,
11, 138

degree of ionicity, 285

delocalization, 293, 294, 300-302

density of k-modes or of k-states, 52,
394

density of modes or of energy states,
395, 453

density functional theory, 125, 293

density matrix, 156, 157, 165, 167, 222

determinantal eigenfunctions, 65, 88

Deuterium and deuteron, 23, 26,

quadrupole moment, 192, 195

diamagnetic susceptibility, 134, 155,
156, 302, 311

for inert gas atoms, 155, 156

diamagnetism (atomic), 154-155

Landau, 440

diamond (see also carbon), 297, 376,
410, 421, 423, 424, 459, 463

diatomic crystal, 454, 456, 474

diffuse (series lines), 73

digonal hybridization, 299

dipolar alphabet, 200

dipolar field, 198, 200

dipole magnetic moment, 171

field induced, 349

dipole-dipole interaction, 179, 198, 199

Dirac, 28, 30, 46, 63, 96, 178, 189, 190,
191, 406

δ function, 46, 406

dispersion relations, 393, 395, 451-455,
458

dissociation energy, 273, 283, 286, 288,
332, 334, 335, 425



480 Index

distribution of the Maxwellian
velocities, 57, 60

Doppler modulation, 467
first and second-order broadening, 57,

58, 61, 467
double excited states, 73
doublet (spin-orbit), 67, 180,

for alkali atoms, 72, 93, 139, 142, 143,
148, 176, 192, 194

Drude model, 435, 436
Dy3+, 129
dynamical equivalence, 5-7, 269
dynamical matrix, 451, 452, 454

eg levels, 13, 435
effective electron mass, 391, 396, 397,

409, 411, 436, 437, 439, 442
effective hyperfine field, 174, 175
effective nuclear charge, 5, 59, 67-70,

79, 85, 91, 156, 254
effective potential, 3, 5, 7, 85, 123, 139,

191, 246, 304, 336, 340, 341
Einstein model of crystal, 457, 465, 474

relations, 45, 48-49, 56
relativity theory, 475
temperature, 462

electric and magnetic field, effects in
atoms, 133-136

electric dipole approximation, 45
induced, 136, 349
mechanism of transition, 45, 131, see

selection rules
of molecules, 283-286
oscillating (in crystals), 457
quantum, associated to a pair of

states, 47, 71, 82
electric field gradient, 182-184, 185,

188, 195, 207, 305, 418, see
quadrupole interaction

electric polarizability, 25, 137, 139, 140,
170, 290, 320, 342

for quantum oscillator, 140, 333, 342
rotational, 320-321

electric quadrupole, mechanism of
transition, 47, 126, 131

electric quadrupole moment, 172,
182, 183, 188, 192, 206, 240, see
quadrupole interaction

of deuteron, 192

electric quadrupole, selection rules, 126
electric transport, 435-439
electrical harmonicity, 330,346
electrical permeability, 158
electronic spectra, 352
electromagnetic ranges, 40
electromagnetic symmetry, 158
electromagnetic units, 158-160
electron affinity, 86, 281, 285, 289
electron-electron repulsion or

repulsive interaction, 2, 78, 81, 90,
96, 175, 442, 443

electron states in crystals, 383-410
electronic charge transfer, 283
electronic configurations

in atoms, 36
in molecules, 251-255

electro-optical properties, 376
ellipsoidal coordinates, 250,258, 260,

262, 276
empty lattice model, 386, 388, 394, 396,

399-402
energy functional, 85
entropy

from quadrupole levels, 195, 240
from rotational motion, 325
magnetic and lattice, 228-231
in spin systems, 214-216
of radiation, 51, 54, 55
vibrational, 465, 474

entropy and specific heat, 195, 240
see also specific heat

EPR, 195, 198, 209, 221
equipartition principle, 52
Eu2+ atom, 113
Eu3+ atom, 105
evanescent field condition, 153, 158, 237
Ewald procedure, 425
exchange degeneracy, 1, 6, 88, 98
exchange integral, 80, 103, 123, 217,

384, 426
extended (in molecules), 276, 277,

278
reduced, 277

exchange interaction, 65, 79-81, 97, 124
exchange symmetry, 6, 76, 80, 81
expectation values, 10, 13, 35, 120, 161,

175, 180, 184, 185, 204, 221, 223,
224, 427



Index 481

F-center, 139
F quantum number, 171, 193
19F nucleus, 130
Fe atom, 89, 103
Fe crystal, 154, 379, 443, 463, see iron
Fe2+ atom, 113
Fe3+ atom, 129, 130
57Fe nucleus, 131, 475
Fanfoni M., 94
Fermi, 125,

contact term and interaction, 93, 178
energy, 401, 412, 413, 414, 416, 418,

419, 424, 435, 441, 473
gas, 59, 125, 415, 417, 420, 440, 442
surface, 394, 400, 441
temperature, 401, 466
wavevector, 400, 442, 445

Fermi-Dirac statistic or distribution,
399, 416

fermions, 173, 356
ferroelectric transition, 346, 376
ferromagnetic metals, 440

ordered states 154, 443
Feynman R.P., 43, 266
Fibonacci crystals, 368
FID, 226, 236
fine structure, 30, 34, 36, 47, 65, 68, 72,

73, 76, 77, 120, 162, 171, 178, 189,
190, 191, 337, 358

fine structure constant, 47, 62, 120, 159,
190

finite nuclear mass, 23-25
finite size of the nucleus, 20
finite width (of the lines), 46, 48
fluctuation-dissipation theorem, 165,

213, 235, 237
fluctuations of the e.m. field, 191

of the magnetization, 165, 213
flux quantization, 459
fluxon (superconductivity), 459
Fock, 5, 95, 124, 125, 293, 384
Fourier components, 403, 411, 468

expansion, 373, 374, 403
transform, 50, 451, 452

Fr atom, 65
Franck-Condon factor, 353, 354

principle, 352-354
free electron model, 396, 399-402
Frenkel, 29, 33, 62

free energy, 195, 215, 217, 228, 240, 325,
465,

Friedman R.S., 124, 125
fullerene, 378
fundamental constants, 40, 160

γ emission (from 57Fe), 131
GaAs, 316, 376, 424
Gallium specific heat, 418

quadrupole moment, 418
crystal, 418, 423

gamma-ray, 467, 468, 469
gap (energy gap in crystals), 385,

402-406, 408, 410, 416, 423, 424,
455, 471

GaSb, 424
Gaussian distribution (around the mean

value), 213, 214
Gauss system, 158-159
Gd3+, 161
generalized moment, 28, 440
Gerlach, 127
germanium atom, 117, 297

crystal, 376, 377, 410, 421, 423
Goldstein H., 28
Giulotto, 190
graphite, 378, 421
Grosso G., 442
Grotrian diagram, 66
ground states of various atoms, 105, 113
group theory, 371
group velocity, 389, 390, 391, 396, 397,

436, 441
Gunn diodes, 316
gyromagnetic ratio, 35, 95, 99, 112, 159,

172, 196, 199, 210, 219

H atom, see Hydrogen
H− atom, 79, 86, 87, 281
H2 molecule, 60, 243, 257, 269, 273,

275-278 (in the VB approach),
279, 332, 361, 384, 385

comparison MO and
VB scenarios, 280-288
Raman spectra, 357
mechanical anharmonicity, 331
specific heat, 360
rotational constant, 318, 360
rotations and vibrations, 332
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vibrational constant, 328, 329

H2O, 295, 296

H+
2 , 44, 243, 252, 257-263, 264, 266,

268, 289, 290, 291, 385, see also
Hydrogen molecule ion

Hα,β,γ,δ lines, 17, 18, 162, 190

Hahn, 227

Haken H., 228, 358

Hall effect (fractional), 368

Hansch, 190

harmonic approximation, 264, 327, 330,
334, 341, 345, 347, 361, 449, 450,
451, 460, 473, 474

Hartree, 4, 5, 124-126

Hartree-Fock theory, 5, 95, 124-126,
293, 384

HBr, 286, 324, rotational constant, 324

HCl, 283, 284, 286

rotational constant, 318

rotational states

and specific heat, 363

rotovibrational spectrum and

deuterated molecule, 333, 339

Stark effect on rotational states, 325

vibrational constant, temperature

and specific heat, 328, 333, 339, 341

He+, 16, 19, 94, 251

He2, 270, 360

He+
2 , 269

Heisenberg, 96,

exchange frequency, 168

Hamiltonian, 81, 163, 167

principle, 48, 256

Heitler, 359

Helium atom, 1, 2, 6, 65, 69, 76-91, 94,
96, 124, 276, 277, 281, 357

Hellmann-Feynman theorem, 266

Helmholtz free energy, 228

(see also free energy)

Hermite polynomials, 141, 327, 328, 330

Hertz, 159

Herzberg G., 358, 359

heteronuclear molecules, 252, 254,
283-285, 317, 330, 341, 351, 422,
424

HF, 286, 319, 335, 337, 463

Hg atom, 82, 118, 164-165

holes, 416, 436, 438-439

homonuclear molecules, 248, 249, 252,
255, 268-271, 283, 286, 290, 317,
329, 347, 352, 356-359

Hubbard, 442
Hückel criterium, 300
Hund rules, 103-105, 107, 113, 129, 271
hybrid bands, 423
hybrid orbitals, 91, 295-299, 376, 421
hybridization,

see hybrid orbitals, d2sp3, 299, 376
Hydrogen atom, 7-14, 16, 20, 26, 27,

28, 30, 34, 35, 56, 69, 76, 86, 87,
136, 137, 139, 179, 190, 195, 250,
268, 281, 314, 422

fine and hyperfine structure, 24, 34,
93, 171, 173, 179, 181, 189-191

intergalactic, 61
life-time of the 2p states, 27, 56, 180
under irradiation, 60

hydrogen bond, 422
Hydrogenic atoms, 1, 7-14, 21, 22, 23,

24, 25, 30, 62, 65, 75, 123, 156,
207, 208

expectation values, 14, 15, 34, 175,
181

Darwin term in, 62
polarizability, 136-139, 427
in weak and
strong magnetic field, 101, 103,

142-143, 146, 148, 162, 178, 193,
195

quadrupole coupling constant, 184
Hydrogen molecule, 269, 275-278, 331,

426, see also H2 molecule
Hydrogen molecule ion, 243, 250, 251,

252, 257-266, 289, 290
hyperfine quadrupole hamiltonian,

205-208, see electric quadrupole
and quadrupole interaction

hyperfine interaction and structure, 34,
194, 202, 203

in Hydrogen, 34, 163, 171, 178,
189-191

for Na doublet, 192
in Hydrogen molecule ion, 289

independent electron approximation, 76
inert gas atoms, cohesive energy, 429

diamagnetic susceptibility, 155



Index 483

infrared radiation, 329
InSb, 376
intergalactic Hydrogen, 61
international system of units, 158
interval rule, 100, 101, 115, 117, 176,

182, 183, 193, 203, 319
inversion doublet, 294, 305
inversion symmetry, 249, 271, 283, 349,

358, 437
inverted multiplets, 103
ionic crystals, 286, 422, 424-430

cohesive energy, 422, 424
Iron atom, 103, 105, 164
Iron crystal (bcc), 164, 379, 442
Ising model, 216
isomeric shift, 208, 470
isotopic shift, 23, 74, 75
itinerant electrons, 440,

magnetic properties, 419, 440-445

Jahn-Teller effect, 248
jj scheme, 115-119
Johnson C.S., 90, 94

k, momentum of the electron, role and
properties, 388-389

K atom, see alkali atoms, 65, 68, 69, 72
Kα line, 58, 59, see X-ray lines
K+ ion, 289
KBr crystal, 376, 431
KCl, 286, 289, 429, 430, 431
KDP, 422
KF, 286, 289
Kimball D.F., 44, 291
Kittel C., 368
klystron, 305, 316
Koopmans theorem, 125
Kronig and Penney model, 406

Λ-doubling, 249, 255
La atom, 113, 114
Lamb, 30, 178, 189, 190, 191
Landau diamagnetism and levels,

440-442, gauge, 440
Landé g factor, 35, 102, 143, nuclear,

172, 210
Langevin function, 152, 235, 321

susceptibility, 235 (see also magnetic
susceptibility)

Laplace equation, 188, 433, 446

Larmor frequency, 102, 112, 134, 140,
145-146, 219, 223, 224, 440

precession, 145, 219

laser, 6, 25, 48, 50, 177, 190, 203, 227,
368

lattice vibrations, 449-464

Laue X-ray diffraction, 368

LCAO molecular orbitals, 258, 262, 264,
269, 280, 281, 283, 284, 290, 293,
300, 309, 384

lead crystal, 421, see also Pb

Legendre polynomials, 78, 83, 122, 433

Lennard-Jones potential, 421, 426-428

Li atom, 65, 66, 69, 91, see also alkali
atoms,

crystal, 379, 415, 423, 471

Grotrian diagram, 66

Li+ atom, 79, 87

Li2+ ion, 16, 19

Li2 molecule, 273, 329

LiF crystal, 422

life-time, 24, 27, 50, 56, 57, 131, 203,
307, 467, of 57Fe nucleus, 131, 475

ligand-field theory, 432

LiH molecule, 287, crystal, 376

Lindemann criterium, 464

line at 21 cm, 61, 177, 180, 189, 196

linear electric approximation, 330

linear response theory, 154

Lithium crystal, 379, 415, 422, 423,
bulk modulus, 419

Lo Surdo, 136

local density approximation, 125, 293

London interaction, 279, 426, 427, 428

long-wave length approximation, 45

Lorentz force, 133, 158, 390, 441, gauge,
28, 45

oscillator, 48, 141, 145

LS scheme, 97-100, 103-107, 110, 111,
113, 115, 116, 117, 118, 119, 122,
126, 127, 142, 175,

in molecules, 249, 255

Lyman series, 17, 18

Madelung constant, 425, 429, 430, 431

magnetic dipole (mechanism of transi-
tions), 47, 82, 126, 131, 132, 165,
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176, 177, 186, 188, 190, 195, 198,
202, 209, 211, 218,

selection rules, 126
magnetic field Hamiltonian, 141-144
magnetic moments, 28-30, 33, 35

of nuclei, 171-174, 180, 193, 196,
198, 199, 204, 205

in field, 111, 112, 127, 134, 143, 147,
150-155, 161, 164, 210, 212, 214,
218-221, 228, 231, 235, 238, 240,
442, 446, 474

effective, 101-105, 129
magnetic permeability, 158
magnetic resonance, 146, 209, 218-222
magnetic splitting, 29, 33, 447
magnetic susceptibility, 158, 159, 167,

213, 235, 399, 402, 413, 443,
magnetic temperature, 210, 228, 229
magnetization, field induced, 152-154,

161, 164, 165, 205, 212, 213, 224,
226, 227, 230, 237, 413, 414, 441,

saturation, 152
magnetron, 316
maser, 48, 74, 294, 295, 303-308
matrix Hamiltonian, 43
Maxwell-Boltzmann statistics, 52, 232,

317
mean field interaction or approximation,

153-154, 217, 443
mean free path, 435, 436, 445
mean square vibrational amplitude, 464
mercury atom, 82, 117, 118, see Hg
Mermin N.D., 368
metals and metallic crystals, 399, 402,

415, 423, 424, 440, 442, 443, 445,
473

Mg crystal, 378
Miller indexes, 370, 375, 379
MKS system of units, 158
Mn crystal, 376
mobility, 436
MO-LCAO, 258-263, 264, 281, 283,

284
MO-LCAO-SCF, 258
modes (of the radiation), 52, of

vibration see vibrational motions
molecular crystals, 422, 424, 426-428
molecular orbitals (MO), 257, see also

MO-LCAO

molecular velocities, 59
moments (angular, magnetic and

quadrupolar) of nuclei, 171-173
monoatomic one-dimensional

crystal,lattice vibrations, 452-453
Morse potential, 331, 334, 335
Moseley law, 58
Mössbauer effect, 58, 208, 467-470,

475, 476
motional broadening, 57
multi-electron atoms, 1, 22, 88, 95, 125,

141
multiplets (quantum theory), 7, 96,

122-125
muon, 24

life-time, 24
molecule, 264

muonic atoms, 25, 26, 180, 207, 208
(spin-orbit hyperfine constant)

N2 molecule, 257, 270, 271-274, 298
rotational constant, 318, 357
rotovibrational structure
and Raman spectra, 359
vibrational constant, 328, 329

Na atom, 28, 34, 58, 65-69, 124, 240,
285

(see also sodium atom and alkali
atoms)

doublet, 67, 142, 143
doublet hyperfine, 176, 177, 192, 194,

203
quantum defect, 70, 72, 73
Stark effect, 139
crystal, 387, 388, 415, 423, 463

Na2 molecule, vibrational constant , 329
NaCl crystal, 376, 377, 422, 425, 430,

431
molecule, 285-287
rotational constant, 318
vibrational constant, 328, 339

NaNbO3, 376
natural broadening, 48, 56
nearly free electron model, 402-405
20Ne nucleus, 130
negative temperature, 50, 224-231
neutron diffraction, 375, 380, 469

spectroscopy, 459
NH3, 294, 295, 305, 365
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Ni crystal, 376, 443, 463
NMR, 209-221, imaging, 227
NO molecule, 287
non-crossing rule (or non-intersection

rule), 254
normal coordinates, 344, 345, 346, 450,

451, 460
normal modes in polyatomic molecules

or crystals, 268, 313, 343-347,
348, 364, 449, 450-452, 460, 469,
infrared active, 347, 350

spectroscopically independent, 346
nuclear g-factor or nuclear Land’factor,

172, 210
nuclear magneton, 172, 210
nuclear moments, 172, see also nuclei
nuclear motions, in diatomic molecules

(separation of rotational and
vibrational motions), 313-315
in molecules, 313-351 (see normal

modes)
nuclear spin statistics (in homonuclear

diatomic molecules), 356-361
nuclear-size effects, 23-25, 87
nuclei, properties of, 171-173

O2 molecule, 271-272
Raman spectra and
rotational lines, 357, 358
rotational constant, 318
vibrational constant, 328

O3, 272
oblate rotator, 322, 365
OCS molecule, rotational states in

electric field, 362
octahedral coordination of crystal field,

299, 434, 435, 445, 446
of oxygen atoms, 434

Ohm law, 399, 436
optical electron, 34, 66, 67, 68, 69, 72,

73, 75, 76, 91, 175
optical pumping, 146, 291
orientational electric polarizability,

320-321
orthohelium, 76, 82, 88, 93
ortho-Hydrogen, 356, 358, 360
ortho molecules and

rotational states, 356-359
overlap (band overlap), 410, 423, 424

overlap integral, 259, 261, 270, 284, 300,
309, 310, 354, 355, 409

Oxygen atom, 132
Ozone, 272

P and R branches, 337-338
P crystal, 376
Palladium crystal, 379
para molecules and rotational states,

357, 360, 361
para-Hydrogen, 361
parahelium, 76, 77, 82, 93
paramagnetic susceptibility, 134, 152,

153, 237, 320, 414
(see also magnetic susceptibility)
of a Fermi gas, 402, 414, 417, 419,

442, 443
paramagnetism, 134, 150-154

Van-Vleck, 155
parity, 12, 47, 126, 163, 248, 249, 251,

255, 320, 330, 342, 351, 352, 356
partition function, 6, 157, 165, 195, 210,

212, 216, 217, 228, 232, 237, 240,
319, 330, 360, 363, 365, 413, 462,
465, 475

Paschen series, 17,18
Paschen-Back effect, 142, 193, 146

on the Na doublet, 148, 145, 174, 188
regime, 103, 143-144, 162, 194

Pastori Parravicini G., 442
Pauli principle, 6, 65, 81, 88-89, 95, 98,

103, 104, 109, 113, 125, 129, 132,
269, 271, 280, 402, 436, 442

susceptibility and
paramagnetism, 402, 414, 417, 419,

442, 443
Pb atom, 24, 117, crystal, 376, 410, 421,

423, see also lead, 421
Pd metal, 379, 443
Pedersen L.G., 90, 94
periodic boundary conditions, 52, 389,

392 see Born-Von Karmann
perturbation effects (in two levels

system), 41-44
Pfund series, 18
phase transitions, 152, 154, 345, 377
phonons, 461, 472
phosphorus atom, 124
photons as bosonic particles, 52
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photon echoes, 226, 227

photon moment, 58, 457

Planck distribution function, 51, 53, 55,
461

point groups, 370, 372

polarizability, anisotropic, 350

in HCl, 333

in hydrogen, 136-139

in molecules, 333

of the harmonic oscillator, 342

orientational, 320-321

pseudo-orientational, 139

polarization of the radiation

and transitions, 47, 145

polyatomic molecules, 293-302

normal modes, 343-347

population inversion, 50, 307, 308

positron, 24, 147, 178

positronium, 23, 27

hyperfine splitting, 178

Zeeman effect, 147, 178

potassium crystal, 415

potential energy, 2-10, 21, 23, 27, 60,
85, 123, 135, 182, 207, 244, 246,
248, 303, 314, 328, 334, 343, 345,
384, 388, 399, 406, 408, 427, 450,
476

Pound, 475, 476

Precession and precessional frequency,
145, 219, 227

pre-dissociation, 248

primitive cell and vectors, 369, 373, 376,
380, 381, 465, 466, lattice, 380

principal (series lines), 73

prolate rotator, 322, 323

proton magnetic moment, 172, 196, 198,
210

protonium, 27

pseudo-momentum or k

see crystal momentum

pseudo-potential, 403

pseudo-spin interaction, 81, 227

Pt metal, 443

Purcell E.M., 159

Q-branch, 323, 338, 358

quadrupole electric lens, 305

quadrupole interaction and quadrupole
coupling constant, 182-185, 188,
203, 205-207, 240, 419

quadrupole moment, 172, 182-185,
188, 206, 240, of deuteron, 192, of
Gallium, 418

quantum defect, 66, 69, 70, 73-74
quantum electrodynamics, 28
quantum number F, 171, 173-177, 193,

197
quantum pressure (from electron gas),

59, 413
quantum rotators, 358
quenching of orbital momenta, 161, 446

Rabi, 193, 197, 214, 218, 220, 223, 291,
298, 306, equation, 44

radial equation and radial functions, 7,
122-125

radial probability densities, 10-13, 71
radiation damping, 50
radiofrequency spectroscopy, 218
radius of the first orbit

(in Bohr atom), 7
Raman spectroscopy, 313, 323, 338, 345,

347-351, 357, 358, 359
random phase approximation, 154
rare earth atom (electronic configura-

tion and magnetic moments), 103,
432

Rayleigh diffusion, 347, 357
Rb atom, 26, 65, 68, 72, hyperfine field,

176, see also alkali atoms
crystal, 415, 423, 463

RbH molecule,
vibrational frequency and
dissociation energy, 335

Rebka, 475, 476
reciprocal lattice, 367, 370, 373-376,

379-381, 392, 393, 400, 403, 408,
411, vectors (fundamental), 374

recoil energy, 58, 468
recoilless fraction, 467-470
reduced mass, 23-27, 207, 208, 264,

288, 304, 314, 335, 336, 339, 340,
341, 362, 455

relativistic effects, 1, 34, 56, 62, 63, 93,
125, 189, 190, 470,

terms, 30, 87
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shift, 203,
transformation, 29, 30

relaxation mechanisms, 44, 151, 212,
222-223, 225, 229, 231, 236, 238,
307 (see resonance technique)

residual charge, 6, 94
residual first-order Doppler broadening,

204
resistivity, 248, 367, 384, 388, 436, 445,

see also conductivity
resonance absorption, 57, 358, 467, 468

see also Mössbauer effect
resonance integral, 259, 261, 266, 267,

277, 284, 295, 300, 385, 408
resonance technique (pulsed), 44,

221-228, 237
Riemann zeta function, 54
Roothaan, 125, 293
rotational constant, 316, 362, 366,

frequency and motions, 315-
323, spectroscopy (principles),
316-319, temperature, 318, 361

roto-vibrational eigenvalues and levels,
244, 315, 323, 337, 338, 341, 351,
352, 357, 358, 359, 360

Rydberg atoms, 1, 23, 25, 26, 27, 74,
169

Rydberg constant, 7, 23, 40, 74, 75, 260
Rydberg defect, 66

Sb crystal, 423
scalar potential, 28, 45
scattering

of photons, 349, 469
of electrons, 397, 423, 438

Schottky anomaly, 195, 241, 418
screening cloud, 3
selection rules, 45-47, 95, 126, 138, 142,

143, 144, 145, 163, 192, 279, 317,
338, 349-352

for quantum magnetic number, 145,
192

self-consistent field, 5, 124, 125, 258,
293

semiconductors, 6, 297, 316, 329, 376,
383, 399, 402, 410, 416, 419, 423,
439

semimetals, 423
separated atoms scheme, 251-255

Shannon-Von Neumann entropy, 216

sharp (series line), 73

shift (relativistic), 203, see also
relativistic effect

Si atom, 117-118, 124, crystal, 376,
377, 410, 416, 421, 423

SI system of units, 158

Silver, 231, 445, see also Ag crystal

Slater J.C., 387

Slater, 4-7, 65, 88, 95, 122, 123-125,

determinant, 6, 65, 88, 122, 124, 293

radial wavefunctions, 122, 123, 125

theory for multiplets, 7, 122-125

Slichter C. P., 222

Sm atom, 103, 105

Sn atom, 117-118, crystal, 421, 423,
see also tin

Sodium atom, 57, 148, 149, see also Na

hyperfine field, 176, 177, 192, 194,
203

Paschen Back effect, 148

Zeeman effect, 142

solid state lasers, 368

Sommerfeld, 190

quantization, 16, 60, 169

sound velocity, 458, 465, 466, 471, 472

sp2 hybridization, 297, 300, 378, 421

sp3 hybridization, 297, 377, 421, 423

space groups, 372

spatial quantization, 16

specific electronic charge (e/m), 162

specific heat, 156, 195, 217, 230, 231,
232, 240, 319, 320, 335, 341, 360,
363, 365, 402, 415, 417, 418, 457,
462, 463, 465, 466, 471, 473, 474

spectroscopic notations, 36

spherical harmonics, 4, 7-9, 22, 47, 279,
314, 315, 316, 433

addition theorem, 83

spin echo, 209, 222, 226

spin eigenfunctions, 29, 147, 181

spin-exchange collisions, 291

spin-orbit interaction, 1, 24, 28-32, 33,
35, 36, 47, 56, 65, 67, 76, 82, 94,
96, 97-100, 107, 110, 115, 122,
141, 143, 144, 146, 155, 164, 174,
190, 244, 352

spin-orbital, 31, 81, 92, 93, 95, 293
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spin-spin interaction, 98, 103, 108, 110,
225, 227

spin-spin transitions, 212
spin statistics, 228-240
spin temperature, 214, 215, 224, 231,

234, 238, 239
negative, 231

spin thermodynamics, 209, 213
spontaneous emission, 25, 47, 48, 50,

56, 131, 177, 202, 212, 307, 467
squaring rule, 81, 100, 115
SQUID, 368
Sr crystal, 376
Stark effect, 136-139, 279, 325, 432

linear, 138
on the Na doublet, 139
on rotational levels 305, 325

stationary states, 16, 41, 43, 267, 304,
461

statistical
populations, 48, 209, 210, 222, 224,

238, 317, 324, 348
temperature, 50
weights, 49, 361

Stefan-Boltzmann law, 54
Stern-Gerlach experiment, 127
stimulated emission, 48, 50, 56, 305
Stirling approximation, 214
Stokes and anti-Stokes lines, 347, 348,

358
Stoner, 442, criterium, 443
Sun, 56, energy flow, 57
superconductors, high-temperature,

299, 434
superselection rule, 88-89
susceptibility, magnetic, 134, 152-155,

158, 159, 160, 165, 167, 235,
237, 238, 302, 311, 320, 399, 402,
413 414, 415, 417, 419, 420, 440,
441-443

(see also magnetic susceptibility)
of a Fermi gas,
see Pauli susceptibility
(see also Landau diamagnetism)

Svanberg S., 203, 329

t2g levels, 13
T1, 147-148, 150, 151, 208, 212, 220,

222, 225, 226, 229, 231, 236, 307,

T1 and spin temperature, 238, 239
T2, 222, 225, 226, 227, 231
tetrahedral or tetragonal hybridization,

296, 423
thermal

effects in crystals, 402, 462, 463, 464
energy in Debye crystal, 462
broadening, 57, 58, 80
properties (related to lattice

vibrations), 462-464
Thomas, 29, 125
Thomas and Frenkel semiclassical

model, 29, 33, 62
Thomas-Fermi method, 125
Thomson model, 20, 140
tightly bound electron model, 406-410
time-dependent perturbation, 41-44
tin atom, 117-118, crystal, 421, 423
titanium, 299
TlBr crystal, 376
TlI crystal, 376
Townes, 305
transition metals ions, in crystal field,

432-435
transition probabilities, 45-47

for quadrupole interaction, 47,
magnetic, 46, 161, 181, 183, 185, 191,

207, 214
translational invariance or

translational symmetry, 368-373,384,
388, 450, 460

operations, 370
trigonal hybridization, 300
Tungsten crystal, 379, 380
two-levels system, 41-44, 195, 228, 268

92U atom, 127
ultrasound propagation, 459
unitary cell, 369-370, 372, 373, 376,

410
united atoms scheme, 244, 251-255,

287
universe (expansion), 51, 55
Unsold theorem, 22, 96

V3+ atom, 132
vacuum permeability, 160
valence band, 410, 416, 423, 424, 439
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valence bond (see also VB), 257,
275-278, 279, 280, 281-283, 285,
291, 421, 422

Van der Waals, 270, 422, 426
Van Hove singularities, 395, see critical

points
Van Vleck paramagnetism, 155
variable frequency laser, 177, 190
variational principle, procedure, 5, 85,

124
VB approach, 257, 275-278, 279, 282,

283
vector potential, 28, 135, 174, 204, 414
vectorial model, 31, 89, 95-111, 122,

123, 136, 143, 144, 173
Venus, 308
Verbin Y., 213
vibrational frequency in H+

2 , 264, 265
temperature, 335, 341
models of
lattice vibrations, 451-459
motions in crystals, 451,
motions in molecules, 327-331
in polyatomic molecules, 343-347,

348, 364
spectroscopy (principle), 329-332

vibronic transitions, 352
virial theorem, 17, 180, 362
volume shift, in Hydrogen and in

muonic atoms, 207-208
Von Neumann-Wigner rule, 254

W crystal, see tungsten
wave-packet, 436

weak magnetic field (condition or
regime), 101, 103, 133, 142-144,
147, 148, 162, 195, 197

Wiedemann-Franz law, 399
Wien law, 51, 53
Wigner crystallization, 444
Wigner-Eckart theorem, 102, 121, 126,

143, 144, 175, 206
Wigner-Seitz cell, 368-370, 374, 387,

388
Williams, 305
Wolf H.C., 228, 358, 359

X-ray lines, 24, 40, 58-59
diffraction (see also Bragg law), 300.

368, 375, 422, 469

Yb3+ atom, 105, 113
yellow doublet (for Na atom), 28, 177,

see also Na atom

Zeeman effect, 141, 142-144
anomalous and normal, 142,
levels, 193, 210, 224,
in Hg, 165,
in positronium, 147
regime on hyperfine states, 178, 196
weak field, 143

zero-point energy, 264, 303, 304, 328,
332, 461, 466, 471, 472

zero-temperature rotations, 356
Zn crystal, 378, 463
zone representation (reduced, extended,

repeated), 393, 399, 400, 406, see
also Brillouin cell and zone.
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