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Foreword

Mechanics is an old science, but it acquired its great reputation at the
end of the 17th century, due to Newton’s works. A century later, Euler
and, above all, Lagrange renewed it and led it towards a formulation not
only aesthetically elegant but also capable of applications to other fields of
physics. Fifty years later, Hamilton and Jacobi gave their names to very
important further contributions. Lastly, at the end of the xix

th century,
Poincaré took a new step with the introduction of geometry in the analysis
of physical problems. During the xx

th century, physicists produced new
developments from the works of their famous predecessors.

This book is addressed to readers already familiar with the Newtonian
approach for mechanics. Several training textbooks – some of them excellent
– rely on this approach. On the other hand, it seems that exercises based on
Lagrangian and Hamiltonian formulations are rather scarce in the literature;
we hope that the present work may help to fill this gap.

In a previous book published in French by EDP, Grenoble-Sciences col-
lection, under the name La mécanique: de la formulation lagrangienne au
chaos hamiltonien, we proposed, for undergraduate students, a comprehen-
sible synthesis of all the modern facets of mechanics and their relationships
to other domains of physics. This textbook contains a great number of ex-
ercises and problems, many of them original, dealing with the theories of
Lagrange, Hamilton and Poincaré. We gave only the results or brief hints
for solving these problems. Some problems can be considered as difficult,
or even disconcerting, and readers encouraged us to provide the solution of
those exercises which illustrate all the topics presented in the book. This
is the aim of the present work. We retained from the foregoing book most
of the problems presented here, very often trying to make them clearer,
sometimes trying to find interesting extensions. We also proposed new ones
better suited to our pedagogic goal. In the same spirit, others have been
withdrawn because we judged them less instructive for physics, even if the
mathematical points they dealt with were logical consequences of features
treated in the textbook.

Of course, the present work is a natural complement of the course-book;
nevertheless, we have tried to make it self-contained and, with this in mind,
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we add in each chapter a succinct, although clear and complete, summary of
each topic. These summaries are adequate to tackle and solve the problems
presented afterwards; every concept or notion necessary for obtaining the
solution is presented and developed therein. Our aim is to make the reader
familiar with the Lagrangian and Hamiltonian approaches, which may be
difficult to grasp, to demonstrate the power of this formalism and help to
develop skills for managing the techniques essential for this kind of study.
The problems are selected with this purpose and they illustrate very often
practical physical situations and sometimes aspects of everyday life.

This book is built around eight chapters entitled:
1. The Lagrangian formulation

2. Lagrangian systems

3. Hamilton’s principle (also called the least action principle)

4. The Hamiltonian formalism

5. The Hamilton-Jacobi formalism

6. Integrable systems

7. Quasi-integrable systems

8. From order to chaos
In each chapter, the reader will find:

• A clear, succinct and rather deep summary of all the notions that must
be understood, the important points that must be memorized and the
notations and symbols used in the problems.

• The statements of the problems which are presented consecutively. These
statements are sufficiently detailed so that, with the help of the lesson
summaries, it is unnecessary for the reader to search for other sources
of information. Whenever a figure turns out to be essential for a good
understanding of the text, it appears in the statement. The progressive
difficulty of the problems is symbolized with an increasing number of
stars (from 1 to 3) added to the title.

• Detailed answers to the problems which are grouped together at the end
of the chapter. A number of additional figures are inserted in the cor-
responding text in order to exhibit essential points or to avoid lengthy
circumlocutions.
At the beginning of the book, a synoptic table gathers, chapter by chap-

ter, the set of all the proposed problems, giving, for each of them, its ref-
erence (number, title, page number), its difficulty (1 to 3 stars), as well as
the important features or the peculiar aspects treated in this problem.
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Two purposes are pursued
• To concretize, through simple and often academic examples, notions that

seem apparently very abstract. The methods to find the solution are not
necessarily the most elegant or the quickest, but it is important to check,
via these simple examples, one’s understanding of these new tools for
mechanics. Sometimes the same problem, or the same physical situation,
is studied once more in a subsequent chapter with new tools in order to
emphasize some novel feature of the method.

• To emphasize the power of these new tools in physics applied to fields as
miscellaneous as traditional mechanics, optics, electromagnetism, waves
in general, and quantum mechanics. Concerning these fascinating and up
to date subjects in physics, we will focus only on the mechanical aspect.
However, the reader could satisfy his curiosity, with help of keywords,
by looking for further information firstly in a good and complete ency-
clopedia, then on the web using a engine such as Google (or, for more
exotic subjects, Yahoo). He will find exhaustive lectures as well as recent
articles.

We strongly recommend that the reader carries out some applications and
draws the figures proposed in the detailed solutions. For the drawing or
plotting of curves, the authors have used the freewares xfig or xmgrace that
can be downloaded from the web. The differential equations have been
solved with the help of the Mathematica software package.
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Chapter 1

The Lagrangian Formulation

Summary

1.1. Generalized Coordinates
A mechanical system is composed, in fine, of a given number N of elements
α, with a mass mα, which can be considered as pointlike and located at
position rα. The configuration of this system is specified by the set of the
constituent coordinates. However, in most situations, internal constraints
(for example in a rigid body the distance between the constituents is inde-
pendent of the configuration) or external constraints (for example a point
subjected to remain on a given surface) impose a number of relationships
between the coordinates; in such cases, a smaller set of specifications allows
us to characterize the configuration of the system.

The n variables (n ≤ 3N), which unambiguously define the configuration
of the system are called generalized coordinates; they are denoted gener-
ically as q, for the set (q1, q2, . . . , qn) of the n generalized coordinates qi.
In any practical case, generalized coordinates are either lengths, or angles.
Generalized coordinates being sufficient to completely describe the configu-
ration, there exist N mathematical relations rα(q, t) (α = 1, . . . , N), each
coordinate position depending only on n variables qi. Sometimes one en-
counters an explicit time dependence of the constraints, for example when
a point moves on a surface which moves itself.

C. Gignoux, B. Silvestre-Brac, Solved Problems in Lagrangian 9
and Hamiltonian Mechanics, DOI 10.1007/978-90-481-2393-3_1,
c© Springer Science+Business Media B.V. 2009
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1.2. Lagrange’s Equations
The Lagrangian formulation of mechanics consists in writing Newton’s equa-
tions, which depend on N vectorial quantities rα, in terms of n scalar quan-
tities qi (q1, q2, . . . , qn). To begin with, let us consider the case for which
the n generalized coordinates are independent; in this case, n is called the
number of degrees of freedom for the system. The Lagrangian formal-
ism relies on the kinetic energy T , which is a kinematic quantity defined in
terms of velocities1 vα = ṙα = drα/dt of each element by

T =
1
2

N∑

α=1

v2
α.

If the particle positions are given in terms of generalized coordinates, the
kinetic energy is expressed not only in terms of n generalized coordinates qi,
but also in terms of n generalized velocities q̇i = dqi/dt and, possibly, in
terms of time: T (q, q̇, t). From the kinetic energy, one builds n kinematical
quantities Ai, called generalized accelerations, defined by the following
relation:2

Ai(q, q̇, q̈, t) =
d

dt
∂q̇i

T (q, q̇, t) − ∂qi
T (q, q̇, t). (1.1)

Then, Newton’s equations are translated into the Lagrangian formalism
through a set of n dynamical equations, called Lagrange’s equations,
which are written

Ai(q, q̇, q̈, t) = Qi(q, q̇, t), (1.2)

where Qi(q, q̇, t) are dynamical quantities, called generalized forces, which
will be defined later.

The Lagrange equations are a set of n coupled differential equations
of second order.
Directions for use and precisions

The first task is to obtain the expression of the kinetic energy as a function3

of the generalized velocities, possibly of the generalized coordinates, and

1 As usual in mechanics, a dot above a quantity means its first derivative with respect
to time, two dots its second derivative, . . . : ḟ = df/dt, f̈ = d2f/dt2, . . .

2 With typographical simplicity in view, we will use a simplified notation to define
partial derivatives for a function of several variables

∂xf(x, y) =
∂f(x, y)

∂x
, ∂2

x2f(x, y) =
∂2f(x, y)

∂x2
, ∂2

xyf(x, y) =
∂2f(x, y)

∂x∂y
.

3 The choice for generalized coordinates is, a priori, arbitrary. The best starting choice
is that which gives the most simple form to the kinetic energy.
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(although rarely) of time4 (see Exercise 1.4). To obtain the kinetic energy,
one supposes first that the generalized coordinates depend on time q(t);
naturally the derivatives of these functions with respect to time q̇(t) appear
in the expression of the velocities. Thus the kinetic energy is expressed
in terms of q and q̇. Subsequently, these functions are considered
as independent. Sometimes, the kinetic energy exhibits only generalized
velocities, and sometimes both generalized velocities and coordinates.

Just as an example, let us consider a particle with mass m, moving on
a plane: if one locates the particle by the Cartesian coordinates (x, y) the
kinetic energy is expressed only as function of generalized velocities since
T (ẋ, ẏ) = 1

2m(ẋ2 + ẏ2), whereas if one chooses polar coordinates (ρ, φ) the
same kinetic energy contains, in addition to the generalized velocities, the
coordinate ρ since T (ρ, ρ̇, φ̇) = 1

2m(ρ̇2 + ρ2φ̇2).

Once the expression for the kinetic energy is obtained the rest of the treat-
ment is as follows:
• One derives the function T (q, q̇, t) with respect to the generalized coordi-

nates qi to get ∂qi
T (q, q̇, t).

• One derives the function T (q, q̇, t) with respect to the generalized velocities
q̇i to get ∂q̇i

T (q, q̇, t).

• One derives with respect to time the function ∂q̇i
T (q, q̇, t), considering

that one handles a function q(t), for which q̇ = dq(t)/dt and q̈ = dq̇(t)/dt.
The generalized acceleration Ai(q, q̇, q̈, t) follows from (1.1).

Proceeding with the previous example and polar coordinates, this series of
operations leads to the generalized acceleration:

Aρ = m(ρ̈ − ρφ̇2); Aφ = m(ρ2φ̈ + 2ρρ̇φ̇).

From Newton’s equations, the product of mass with acceleration is deter-
mined by the forces acting on the system; similarly the link between the
generalized accelerations and generalized forces through Lagrange’s equa-
tions matches Newton’s equations.

As long as the forces are not specified, the functions q(t) entering the
generalized accelerations are arbitrary. Equating generalized accelerations
to generalized forces leads to a system of differential equations which are
fulfilled only for special functions q(t), which are precisely the solutions of
the true physical motion and which are called trajectories. To determine
them unambiguously, it is necessary to set the initial values q(0) and q̇(0).

4 In the kinetic energy, the generalized coordinates and the generalized velocities must
be considered as independent variables. Only once the forces are given is the kinetic
energy a function of q(t) and of its derivatives.
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1.3. Generalized Forces
To define generalized forces, one must first introduce the notion of virtual
displacement. Let us imagine that, at a given time, two configurations
of the system are described by the coordinates q et q + δq, compatible with
the constraints imposed on the system. The quantity δq is called a virtual
displacement.

In this displacement, the constituents α are displaced by a quantity δrα

and the forces fα acting on them produce a total work

δW =
N∑

α=1

fα · δrα.

This last quantity is said to be a virtual work and it can be put under a
form expressed in terms of the virtual displacements δq:

δW =
n∑

i=1

Qi δqi. (1.3)

This expression defines the generalized forces5 Qi(q, q̇, t). Let us note
that a virtual displacement is only compatible with the constraints and can
be entirely different from a real displacement of the system which results
from the temporal evolution given by Lagrange’s equations (1.2).

Let us emphasize a point. In the Lagrangian formalism, the forces respon-
sible for the constraints are inaccessible, since the generalized coordinates
were chosen precisely to get rid of them. Since they are generally uninter-
esting quantities, this is of little consequence and, in fact, lies at the origin
of the elegance of Lagrange’s equations. If, after all, we insist on obtaining
the expression of these constraint forces, we have to introduce supplemen-
tary generalized coordinates (to get rid of cumbersome constraints) in order
to obtain a non vanishing virtual work concerning this type of force (see
Problems 1.4 and 1.7).

When the system is at rest, generalized velocities and accelerations van-
ish; Lagrange’s equations (1.2) then imply a vanishing value for the gener-
alized force. The relation:

Qi = 0 at rest (1.4)

represents d’Alembert’s principle.

5 The generalized force depends on generalized coordinates, on time and sometimes also
on generalized velocities. This is in particular the case for friction forces, magnetic
forces and Coriolis forces. Concerning this point, let us note that if the real work of
these latter forces vanishes because they are perpendicular to the displacement, this
is no longer the case for the virtual work, the displacement being arbitrary.
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1.4. Lagrange Multipliers

Let us consider now the case where the n generalized coordinates are not
independent. It is useful to remind ourselves that these coordinates were
introduced with the purpose of taking into account a number of constraints.

The present case thus corresponds to a situation for which the system
is subject to additional constraints. Practically, this happens when the
constraints are not able to reduce the number of generalized coordinates
or when the search for new generalized coordinates turns out to be a too
painful procedure.

All the virtual displacements are no longer possible, but compelled to
obey new conditions taking into account the supplementary constraints.
For simplicity, let us consider only one condition written under a differential
form:

n∑

i=1

Λi δqi = 0. (1.5)

This equation defines the quantity Λi, an important ingredient in con-
strained Lagrange equations. There exists a special very simple kind of
constraint, known as holonomic, for which this quantity is the differential
of a single function Φ:

n∑

i=1

Λiδqi = dΦ(q).

The constraint is thus equivalent to the fact that Φ(q) is a constant. This
allows us, in principle, to express one generalized coordinate as a function
of the n− 1 others; it is enough then to proceed like this in the expressions
of the kinetic energy and generalized forces6 in order to work now with n−1
generalized coordinates. Indeed the system depends on n− 1 rather than n
degrees of freedom.

If the constraint is not holonomic, or if elimination is not an easy task,
then we keep the original generalized coordinates and introduce Lagrange
multipliers. It is not our intention, in this brief summary, to develop

6 In particular, this is the case for rolling without slipping motion in two dimensions.
This is no more the case in three dimensions.
Let us stress the fact that a rolling without slipping motion necessarily implies a non
vanishing tangential reaction force acting on the rolling surface. Nevertheless in a
virtual displacement, this force does not perform work. The deep reason for this is
a consequence of the fact that, in this virtual displacement δφ, the application point
of the force follows a cycloid and there is a displacement only of second order in
δφ in the perpendicular direction and of third order in the tangential direction (see
Exercise 1.5).
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the general theory of Lagrange multipliers. We simply give the form of
constrained Lagrange equations when the system is subject to l differential
constraints of type (1.5):

Ai(q, q̇, q̈, t) = Qi(q, q̇, t) +
l∑

k=1

λkΛk
i (q, t). (1.6)

The quantities λk are the Lagrange multipliers. Their values must be deter-
mined at the same time as the trajectories q(t) by solving the n differential
equations and the l constraints equations imposed on the coordinates. The
Lagrange multipliers can be interpreted in terms of reaction forces associ-
ated with the constraints (see Exercise 1.8).

Problem Statements

1.1. The Wheel Jack [Solution and Figure p. 24] �

This exercise is simply an application of d’Alembert principle

A wheel jack is an articulated machine which is designed to lift up heavy
burdens (a coach for example); it is represented in Fig. 1.1. It is composed of
two rigid bases (one resting on the ground, the other sustaining the burden
with weight P ); they form an articulated lozenge with side l, which may be
deformed by mean of a threaded stem with a step h, (the axis of the jack
changes by a length h for each revolution of the crank) driven by a force F
applied on the crank of arm length a.

l

P a

F

θ

Fig. 1.1 Principle of a wheel jack
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We assume no friction on the mechanical parts of the jack (fortunately
frictional forces do exist and allow the mass to be supported without any
effort!).
1. Examine the constraints imposed on the system and show that it has

only one degree of freedom. Which generalized coordinate seems to you
the most appropriate?

2. Using d’Alembert’s principle, deduce the relationship between the weight
to be lifted up and the exerted force, as a function of the characteristics
of the jack and of the angle θ between the lozenge side and the threaded
stem.

Numerical application: Calculate the ratio of the weight and the force for
a jack with crank arm length a = 20 cm, with h = 2 mm, at the beginning
of the lifting process when θ = 30◦.

1.2. The Sling [Solution p. 26] �

Very simple application of Lagrange’s equations

A rigid stem is maintained fixed at one of its ends O. It turns around O in
the horizontal plane with a constant angular speed ω = φ̇ (see Fig. 1.2). A
pointlike mass m slips without friction on this stem. It is placed at rest at
a point A such that OA = a.
1. Find the most natural generalized coordinate and assess the real and

generalized forces.

2. Write and solve the Lagrange equation.

x

m O

Fig. 1.2 The sling
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1.3. Rope Slipping on a Table [Solution p. 27] �

Classical problem for which the Lagrangian formalism is well suited

A part L − l of a rope with length L and with constant linear mass μ is
originally at rest on a horizontal table. The rest of the rope, with length l,
hangs vertically in a constant gravitational field g.

The rope is placed without any initial velocity. One assumes that the part
which hangs over the edge of the table remains always vertical7 (Fig. 1.3).

Fig. 1.3 Rope slipping on a table

1. In a first study, assume that friction on the table is absent. Find a
generalized coordinate and assess the real and generalized forces. Write
and solve the Lagrange equation.

2. Assume a solid friction, with a constant friction coefficient f (the dynam-
ical friction coefficient is assumed equal to the static coefficient). What
is the minimum length l0 necessary to induce sliding of the rope. If l > l0
write and solve the Lagrange equation.

1.4. Reaction Force for a Bead on a Hoop
[Solution and Figures p. 28] � �

Calculation of a reaction force by adding a generalized coordinate

Let us consider a system composed of a pierced bead M , with mass m,
which slides without friction on a massless hoop with center O, radius R,
which itself rotates around one fixed diameter Oz, parallel to the vertical.

7 Indeed the linear momentum acquired by the horizontal part of the rope when it falls
has the consequence that it keeps falling and the rope does not turn at right angles.
Moreover a rope is a flexible system which can exhibit transverse deformations and
the fall can cause undulations. Of course, all these complications are neglected.
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The angle φ, between the plane of the hoop and the fixed vertical plane
xOz, varies in time according to a known law imposed by the operator: φ(t).
A generalized coordinate is chosen as the angle θ between the direction OM
and the vertical direction Oz.

This system is embedded in a constant gravitational field g, acting along
the vertical axis.
1. Give the expression of the kinetic energy in terms of the generalized

coordinate.

2. Give the expression of the generalized force.

3. Write down the corresponding Lagrange equation.

4. This simple question illustrates the difference between virtual work and
real work. We are interested in the reaction force of the hoop on the bead.
Introducing a new generalized coordinate which allows virtual work for
the component of the reaction force normal to the plane of the hoop,
determine this force. Check your result with the Coriolis inertial force.

1.5. Huygens Pendulum
[Solution and Figures p. 31] � � �

Work done by contact forces responsible for a motion without slipping

In a vertical plane xOz, a point M , with mass m, is fixed to a massless hoop,
with radius R, which can roll without slipping on a horizontal stem Ox,
placed above it. It is well known that the curve followed by M is a cycloid.
We choose as generalized coordinate the angle φ, such that Rφ is the abscissa
of the center C of the hoop. The origin O is taken when M is in its lowest
position, CM being then parallel to Oz. The system is subject to a constant
gravitational field g directed along the downward vertical.
1. Write the Lagrange equation relative to the coordinate φ.

2. Make a change of variable and take instead x = sin(φ/2). Show that x
varies in time following a harmonic motion with angular frequency ω =√

g/(4R). Deduce that φ evolves periodically with the same angular
frequency, independently of its amplitude. This pendulum is said to be
isochronous and is known as Huygens pendulum.
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1.6. Cylinder Rolling on a Moving Tray
[Solution and Figure p. 33] � �

Work performed by contact forces responsible for a motion without slipping

A homogeneous cylinder, with radius R, mass M and moment of inertia I
around its axis, rolls without slipping on a horizontal tray. We impose a
translational motion on the tray, perpendicular to the axis of the cylinder,
with a given time law a(t). This situation represents for instance the motion
of a bottle in the boot of a car.
1. As generalized coordinate, one can choose the angle θ that specifies an

arbitrary point of the cylinder along the horizontal direction. Show that
the position X of the center of the cylinder in the Galilean frame is
linked to θ by an holonomic constraint which is to be determined. What
is the corresponding generalized acceleration? Solve the corresponding
Lagrange equation and give the real acceleration of the cylinder.

2. Repeat this question choosing now as the generalized coordinate the po-
sition X of the center of the cylinder.

1.7. Motion of a Badly Balanced Cylinder
[Solution and Figure p. 35] � � �

Application of Koenig’s theorem; holonomic forces

An inhomogeneous cylinder (center C), with radius R and mass M , has its
center of mass G at a distance a from its axis. The mass density is constant
along a straight line parallel to the axis. This property implies that one
of the principal axes for the cylinder is also parallel to its axis. We denote
by I the moment of inertia of the cylinder with respect to the straight line
parallel to the axis which passes through G. We study the motion without
slipping of the cylinder subject to a constant vertical gravitational field g;
the cylinder rolls on a fixed horizontal plane, the plane of its circular section
being always fixed (the instantaneous rotation vector ω is always parallel
to the axis).

Equation of motion
1. To define the cylinder configuration, let us take as the single generalized

coordinate the angle θ between the downward vertical and the direction
CG. Taking into account the constraint for rolling without slipping, write
the corresponding Lagrange equation.
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2. After multiplying both sides of this equation by the angular velocity
θ̇, express the conservation of energy E (we speak of a constant of the
motion). To get an idea of this type of motion, plot the angular velocity as
a function of the angle, for several different values of the energy: θ̇(θ,E).

Vertical reaction force

Explain why the cylinder can exhibit singular behaviour if it rolls too
quickly. Using a second generalized coordinate, which breaks the contact
with the plane, determine the vertical component Fv(θ,E) of the reaction
force to the plane. It is naturally supposed that this force is weakest when
the center of mass is in its highest position. Deduce the maximum energy
of the system.

Horizontal reaction force

Rolling without slipping is possible only because the plane exerts a horizon-
tal reaction force to the cylinder. But we know that the ratio between the
horizontal and vertical components of the reaction force cannot exceed the
friction coefficient f . To obtain this horizontal reaction force Fh(θ,E), we
must consider two generalized coordinates in order to break the constraint
of rolling without slipping. Study graphically, as a function of the energy,
the conditions that must be fulfilled to achieve rolling without slipping.

1.8. Free Axle on a Inclined Plane
[Solution and Figures p. 39] � � �

To understand how to use Lagrange multipliers

A massless axle CC ′ maintains two identical wheels, of centers C and C ′

and radius R, in planes normal to it and separated by a distance L = CC ′.
These wheels, for which the axle is a symmetry axis, have a mass m, and
the three moments of inertia are I1 = I2 = I (in the plane of the wheel)
and I3 (along CC ′).

The mechanical system consists of the set of the axle and the two wheels
(see Fig. 1.4). We study the rolling without slipping of this system on a
inclined plane making an angle α with the horizontal plane. For rigidly
locked wheels, the motion is identical to that of a cylinder, that is a uni-
formly accelerated motion.

The aim of this problem is to study the motion when the wheels roll
independently of each other.
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One chooses a system of perpendicular axes in the inclined plane: hor-
izontal XX ′, and Y Y ′ along the direction of steepest upward slope. The
center O of the axle is characterized by its coordinates X et Y in this frame
with an arbitrary origin A. The direction C ′C makes an angle θ with the
horizontal line XX ′. We denote by φ and φ′ the angles which mark the po-
sitions of reference points on the circumference of the wheels with respect
to the line normal to the inclined plane. Thus, the system is described in
terms of 5 generalized coordinates (X,Y, θ, φ, φ′).

α

Fig. 1.4 Axle with independent wheels rolling without slipping on a inclined
plane

1. There exist four scalar relationships concerning the constraints of rolling
without slipping for each of the wheels (two per wheel). In fact, two of
them are identical. Give the three independent constraint relationships
and show that one of them is holonomic whereas the other two are not.

2. Introducing three Lagrange multipliers λ1, λ2, λ3, write the five con-
strained Lagrange equations.

3. Interpret the three Lagrange multipliers in terms of contact forces.

4. To solve the eight equations (five Lagrange equations plus three constraint
equations), it is judicious to change variables by defining σ = (φ + φ′)/2
and δ = (φ − φ′).

Rewrite the Lagrange equations in terms of these new variables. Accord-
ing to the initial conditions, study the various types of behavior for the
axle. In particular, give the equations of the motion if, initially, the axle
center is located at A and sets off down the slope with a speed V0, the axle
itself being horizontal and having an initial angular velocity θ̇(0) = ω.

5. In this framework, calculate the Lagrange multipliers λi which represent
the reaction forces.
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1.9. The Turn Indicator
[Solution and Figure p. 43] � � �

Mechanics in the “clouds”

In the absence of any visual reference, the pilot of an aircraft would ignore
whether he is turning or not, without a small gyroscope (10 cm or so), ref-
ereed to as “turn indicator” or “needle”. Such a gyroscope of center O is
presented in Fig. 1.5. An axis X ′OX, parallel and firmly attached to the
fuselage of the aircraft, is assumed to remain horizontal during the turn.
A frame, with normal OZ, is free to oscillate around X ′X. The mechani-
cal system under study is the inertia flywheel of the gyroscope which is a
cylinder with symmetry axis Y ′OY . The axes of inertia are OX, OY , OZ,
which form a direct orthogonal trihedron OXY Z, and the corresponding
moments of inertia are respectively IX = IZ and IY = I.

z

ω
z′

Z
α

θ

Y

Y ′

O

Fig. 1.5 Gyroscope inside a plane. Only the axis Y ′Y of the gyroscope, the true
vertical Oz and the apparent vertical Oz′ are represented

A small electric motor maintains the flywheel rotation around the axis Y ′Y
and imposes a constant angular velocity Ω on it. The apparent vertical for
the aircraft – namely the normal to the wing plane– is denoted Oz′. A small
spiral spring acts to force the axes Oz′ and OZ to coincide with a restoring
torque C = −kθ, where θ is the angle between the Oz′ and OZ axes. A
needle measures the angle θ.
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The aircraft turns, with constant angular velocity ω (see Fig. 1.5; the
effective rotation axis is located out of the plane, but this does not matter
for the reasoning), around the true vertical Oz (parallel to gravitational ac-
celeration g). The angle between Oz and Oz′ is denoted α and it is assumed
to be constant throughout the turn.

One chooses as generalized coordinate the angle θ which is the only freedom
left to the gyroscope.

In a first study, the apparent vertical is supposed to coincide with the true
vertical: α = 0.

1. Write down the kinetic energy of the flywheel.

2. In the following, we assume the condition ω � Ω, which is always satisfied
in practical circumstances.

3. We are interested in the equilibrium solution (θ = const) (obtained in
practice with a small pneumatic shock absorber). Give ω as a function of
θ; the second order terms ω2 are neglected. The pilot reads the angle θ
and deduces the value ω.

As a matter of fact, the real situation is a little more complicated. Exactly
as does a cyclist, the aircraft banks during the turn, and this corresponds
to an angle α �= 0. The pilot maintains the inclination and the velocity V
of the plane during the turn.

1. Give α as a function of V , ω and g. The simplest method is to consider
a static problem in the frame of the plane.

2. How is the relationship between ω and θ modified if the (obligatory)
inclination of the plane is correctly taken into account. What relation
should exist between V , g and the characteristics of the instrument in
order to achieve maximum sensitivity (to give the biggest value of θ for
a given ω). It is legitimate to employ the approximation α ∼= tan(α).

1.10. An Experiment to Measure
the Rotational Velocity of the Earth
[Solution p. 46] � � �

An alternative to the Foucault pendulum, realized by A.H. Compton

Imagine yourself sitting on a seat of a carousel turning with constant angular
velocity ω. You now take hold of the axis of a disc which can rotate with-
out friction with an angular velocity φ̇. Initially, the axis is maintained in
the vertical direction and the disc is motionless in the frame of the carousel.
Now pivot the axis into the horizontal plane. In so doing, you feel a reaction
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due to the axis and, to your great surprise, the disc starts turning sponta-
neously around its axis. Pursue the change of orientation of the axis until
its complete reversal along the vertical. You will notice that the rotation
velocity increases.

It is easy to do the experiment, sitting on a turning stool, with a bike
wheel grasped in your hands.

Being located at the pole and considering the Earth as the carousel, this
simple experiment directly establishes the earth’s rotation, using a much
less cumbersome set up than Foucault’s pendulum. It was proposed and
realized by A.H. Compton (Phys. Rev. 5, February 1915, 109).
1. Determine the angular velocity of the disc φ̇ around its axis for each

angle θ(t) between its axis and the rotation axis of the carousel.

2. What is the prediction of the calculation if the experiment is realized not
at the pole but at a place located at latitude λ ?

1.11. Generalized Inertial Forces
[Solution p. 48] � � �

How to use the Lagrangian formalism in a non Galilean frame?

In establishing formula (1.1), there is no hypothesis concerning the choice
of the physical frame. The kinetic energy and the acceleration that come
out are those relative to this peculiar frame. If this frame is not Galilean,
one has to take into account inertial forces and equate mαaα to f

(v)
α +f

(i)
α ,

the sum of the true force acting on the particle α and the corresponding
inertial force.

It is important to recall that the inertial force is itself the sum of a driving
force due to the acceleration of the origin, of a Coriolis force (depending on
the velocity vα in the given frame) and of a centrifugal force:

f (i)
α = −mα a(e) − 2mαω × vα − mα(dω/dt) × rα − mαω × (ω × rα).

In this case, the formalism leads to Lagrange equations containing additional
generalized forces Qi → Q

(v)
i + Q

(i)
i .

1. If the given frame moves translationally with an acceleration a(e) (which
can depend on time) with respect to the Galilean frame, show that the
generalized inertial force is simply:

Q
(e)
i = −Ma(e)∂qi

Rcm,

where M is the total mass of the system and Rcm is the center of mass
coordinate. As an application, write Lagrange’s equations for a pendulum
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of length l in a constant gravitational field, whose point of suspension is
subject to an imposed arbitrary vertical motion h(t).

2. If the given frame rotates uniformly with a constant instantaneous rota-
tion vector ω with respect to the Galilean frame, show that there exists
a generalized Coriolis force

Q(cor)
i = ∂qi

(ω · L) − d

dt
[∂q̇i

(ω · L)]

and a generalized centrifugal force

Q(cent)
i = ∂qi

T,

where L =
∑

α

mαrα × vα

is the angular momentum of the system about a point of the axis in the
chosen frame and

T =
1
2

∑

α

mα (ω × rα)2

is the driving kinetic energy of the system (energy of the coincident
points).

Hints: it is expedient to introduce the mixed product [a, b, c] = a · (b × c)
and its invariance properties under even permutations and change of sign
under odd permutations. The following vectorial calculus formulae may also
be useful.

a × (b × c) = (a · c) b − (a · b) c;
(a × b) · (c × d) = (a · c) (b · d) − (a · d) (b · c) .

Problem Solutions

1.1. The Wheel Jack [Statement and Figure p. 14]

1. Let ABCD denote the lozenge of the jack, the apex A lying beneath the
weight, B at the crank and C on the ground; let O be the center of the
lozenge, in the middle of the threaded stem BD (see Fig. 1.6).

A priori the configuration of the system is given by α, the angle between
the crank and the vertical, and by the form of the lozenge, that is by
the values of DB and AC. A first holonomic constraint is due to the
invariance of the length, l, of the side of the lozenge: OA2 + OB2 = l2.
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One has a second holonomic constraint due to the threaded stem, which
gives a relation between α and DB (when α varies by 2π, DB varies by
h). Finally only the angle α is needed to describe the configuration of
the system; it has one degree of freedom.

l l
a

O

A

B

C

D

Fig. 1.6 Lozenge ABCD representing schematically the wheel-jack

Let us make a virtual displacement δα such that the stem length DB
increases by an amount δx = h δα/(2π) and the length OB = OD by
δOB = δx/2. The length OA decreases, in order to fulfill the relation
OA2 + OB2 = l2.

Using these conditions, it is easy to see that δCA = 2δOA = −δx/ tan θ.
Thus the variation in the altitude of the weight is given as a function of
the virtual displacement by: δz = δCA = −h δα/(2π tan θ).

2. The forces concerned are
– the weight P acting at A, which produces an amount of work:

δWP = −P δz = Ph δα/(2π tan θ);

– the reaction force of the ground acting at C which remains at rest; thus
the work due to this force vanishes;

– the force F acting on the crank, the virtual work of which is given by
δWF = −Fa δα (if one wishes to maintain equilibrium, the force must
be opposed to the direct rotation considered previously).

The total virtual work is the sum of all these contributions, namely

δW =
[

Ph

2π tan θ
− Fa

]
δα = Qα δα.

One deduces the generalized force Qα = Ph/(2π tan θ) − Fa.
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At equilibrium, d’Alembert’s principle imposes a null generalized force
and leads to the required expression:

P

F
=

2π a tan θ

h
.

To insure a ratio as large as possible (this is precisely the justification
of the jack principle), one must thus choose a large crank arm and/or a
small step h for the screw.

Numerical application: With a = 20 cm, h = 0.2 cm and tan θ = 0.577, one
finds P/F ∼= 363; these values allow us to maintain a 16,000 N coach with a
force of only F = 11 N (remember that P = 16, 000/4 in this special case).

1.2. The Sling [Statement and Figure p. 15]

The system Oxyz is Galilean; the axis Oz is vertical and its unit vector k is
directed upwards. In the plane xOy, it is natural to specify the position of
the mass by its distance to O: OM = ρ. The angle φ between Ox and OM
is proportional to time, φ = ωt, since the angular velocity is kept constant
φ̇ = ω. Note that φ is not a coordinate, since it is an externally imposed
function.
1. The forces are the weight, along Oz, and the reaction force of the mass on

the stem, perpendicular to the stem since we have a frictionless contact.
None of these forces performs work during the virtual displacement δρ
along OM . The virtual work thus vanishes and the resulting generalized
force is null:

Qρ = 0.

2. The expression for the kinetic energy is easy to obtain; it is the usual
expression in polar coordinates

T =
1
2
m

(
ρ̇2 + ω2ρ2

)
.

From this, one obtains, with (1.1), the generalized acceleration Aρ =
m

(
ρ̈ − ω2ρ

)
. Lastly, the Lagrange equation Aρ = Qρ = 0 provides the

differential equation ρ̈ − ω2ρ = 0. The general solution is well known:
ρ(t) = A cosh(ωt)+B sinh(ωt). The integration constants are determined
from the initial conditions ρ̇(0) = 0 and ρ(0) = a. One finds A = a,
B = 0. The solution is thus given by:

ρ(t) = a cosh(ωt).
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Note: The equation ρ̈ − ω2ρ = 0 represents the fundamental principle of
dynamics in a rotating frame (acceleration = centrifugal force). In this
case, a classical treatment is even simpler.

1.3. Rope Slipping on a Table
[Statement and Figure p. 16]

1. Let M be the total mass of the rope and μ = L/M its linear mass. One
can choose as generalized coordinate the length x which hangs vertically.
Since the rope is not elastic, all the points α of the rope have the same
velocity vα = ẋ, ∀α. The kinetic energy of the rope is deduced:

T =
1
2

∑

α

mαv2
α =

1
2
Mẋ2 =

1
2
μLẋ2.

The acceleration follows from (1.1): A = μLẍ.
Concerning the real external forces, one distinguishes the weight of the

rope and the reaction force of the table (perpendicular to the table since
there is no friction); both are vertical. Let us make a virtual displacement
δx. The work produced by the weight and by the reaction force on
the horizontal part of the table vanishes because the displacement is
perpendicular to them. There remains the work of the hanging portion
μgx of the weight. This work is equal to δW = μgx δx = Qδx; the
expression of the generalized force follows: Q = μgx.

The Lagrange equation A = Q leads to μLẍ = μgx, or ẍ − ω2x = 0
with ω =

√
g/L. The solution of this differential equation is x(t) =

A cosh(ωt) + B sinh(ωt). The integration constants are determined from
the initial conditions ẋ(0) = 0, x(0) = l. They imply A = l, B = 0, hence
the solution:

x(t) = l cosh
(
t
√

g/L
)

.

2. In this case, the reaction force R has both a vertical component Rv and
a horizontal one Rh. At equilibrium, the part on the table is subject to
the weight P , to the reaction force R and to the rope tension T due to
the hanging part. One must have P + R + T = 0. Projection of this
equality on the vertical axis gives P = Rv = μ(L − l)g. Projection on
the horizontal axis gives Rh = T . On the other hand, the tension is also
equal to the weight of the hanging part (in order to insure equilibrium):
T = μl g = Rh.
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This reasoning “à la Newton” is simpler to understand. The condition of
static solid friction imposes Rh ≤ f Rv or l ≤ f(L − l). It follows that
there exists a critical length l0 for equilibrium: l ≤ l0. This minimum
length necessary for the motion of the rope is thus:

l0 =
f

1 + f
L.

The kinetic energy takes the same form as before and hence A = μLẍ.
In contrast to the previous case, the horizontal reaction produces work
(the tension is an internal force that does no work) and its virtual work
is −Rhδx (the force acts against the motion). The total virtual work is
thus δW = (μgx − Rh) δx. On the other hand, for a dynamical friction
action, one has: Rh = fRv = fP = fμg(L−x). The generalized force is
derived as: Q = μg [(1 + f)x − fL].

The Lagrange equation A = Q implies

ẍ =
g

L
[(1 + f)x − fL] or ẍ =

g

L
(1 + f)(x − l0) = ω2

d(x − l0),

where we introduced a new dynamical angular frequency in the presence
of friction ωd =

√
g(1 + f)/L. The solution of the resulting differential

equation, with the correct initial conditions, is given by an expression of
the form:

x(t) = l0 + (l − l0) cosh

(
t

√
g(1 + f)

L

)
.

which is valid for a time less than the time required for the rope to fall.
One should think about the fact, which may seem paradoxical, that, in the
presence of friction, the variation in time for the hanging length is greater
than the corresponding rate without friction: ωd > ω.

1.4. Reaction Force for a Bead on a Hoop
[Statement p. 16]

1. It is possible to begin with Cartesian coordinates expressed in terms of
R, θ, φ, but it is as simple to deal directly with spherical coordinates since
the proposed variables are precisely this type of coordinate. Let us de-
note as usual the unit vector ur (along OM), uθ (along the motion on
the circle) and uφ (along the normal to the hoop plane). The expression
for the bead velocity is given by v = R(θ̇uθ + φ̇ sin θuφ). This is sim-
ply the velocity expressed with spherical coordinates when the bead is
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constrained to move on a circle (Ṙ = 0). From the velocity, the kinetic
energy is expressed as

T =
1
2
mR2

(
θ̇2 + φ̇(t)2 sin2 θ

)
.

In this particular case, it would be incorrect to consider φ as a generalized
coordinate; it is simply an externally imposed function. We are faced with
a constraint (the hoop) which varies with time. As a consequence, the
kinetic energy depends explicitly on time through the function φ̇(t) (see
Fig. 1.7).

•

y

x

z

O

φ(t)

X

θ

M

Fig. 1.7 Bead M slipping without rub-
bing on a hoop with an imposed exter-
nal rotation

2. Let us give the bead a virtual displacement δθ; it moves physically with
δr = R δθ uθ. Since we have a contact without friction, the reaction force
is always perpendicular to the hoop and does no work. The only force
which produces work is the weight

P = mg(sin θ uθ − cos θ ur).

The corresponding virtual work is

δW = P · δr = mgR sin θ δθ.

Identifying this expression to Qθ δθ, one obtains the generalized force:

Qθ = mgR sin θ.

3. From the kinetic energy and using (1.1), one deduces the acceleration:

Aθ = mR2(θ̈ − φ̇2 cos θ sin θ).
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The corresponding Lagrange equation Aθ = Qθ leads, after simplification,
to the differential equation:8

θ̈ =
g

R
sin θ + φ̇(t)2 cos θ sin θ.

It is easy to check this result with the help of the fundamental princi-
ple of dynamics using the momentum of the weight and of the centrifu-
gal force; this gives the time derivative of the angular momentum (see
Fig. 1.8).

mR sin θφ̇2

mg

θ

Fig. 1.8 Weight and centrifugal
force acting on the bead

The system has only one degree of freedom and it is meaningless to
calculate an acceleration Aφ, because φ is not a generalized coordinate.

4. We are concerned with the component f of the reaction force along the
normal uφ to the plane of the hoop.9 If one wishes to calculate it, one
must introduce generalized coordinates which give a non null work for
this force during the virtual displacement. In order to do this, let us
introduce, in addition to θ, the angle φ between the plane of the hoop
and the plane xOz. It coincides with the angle corresponding to the
imposed rotation but, now, instead of considering it as a given function,
it must be considered as a full generalized coordinate.

Let δφ be a virtual displacement of the bead. It moves with δr =
R sin θ · δφ uφ. The virtual work is δW = f · δr = f R sin θ δφ = Qφ δφ.
Hence the expression for the generalized force is Qφ = f R sin θ.

8 The sign in front of the gravitational restoring term may seem strange. It follows from
our choice concerning the definition of the angle θ (from the vertical axis directed
upwards).

9 We could be interested as well by the component in the hoop plane, but along the
radial direction.
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Using the kinetic energy and (1.1), the Lagrange equation Aφ = Qφ

explicitly gives

mR2φ̈ sin2 θ + 2mR2φ̇ θ̇ sin θ cos θ = fR sin θ.

After simplification, one arrives at the required expression:

f(t) = 2mR φ̇(t) θ̇ cos θ + mR φ̈(t) sin θ.

In contrast to its virtual work which vanishes, this force produces work
during a real displacement of the bead.

Once more, one can check this result classically. In the rotating frame,
there exist two terms in the component of the inertial force perpendicular
to the hoop plane: the usual Coriolis force and a contribution due to the
variation of the angular velocity.

1.5. The Huygens Pendulum
[Statement and Figure p. 17]

Remarks concerning the cycloid

Let us consider an arbitrary point P on a circle (not depicted) such that
when the center C lies on the vertical through O, the angle CP with the
upward vertical is α. When the circle has rolled by an angle φ, the contact
point I is horizontally displaced by Rφ (rolling without slipping). The
coordinates for P are easily obtained:

(R(φ − sin(φ + α)), R(cos(φ + α) − 1)) .

•

•
•

mg

x

z

O

φ
C

I

M

Fig. 1.9 The rope of the Huygens pendulum oscillates between two cycloids.
Thus, its length decreases with the deviation from the vertical
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The trajectory followed by the point P is a cycloid which exhibits cusps
when φ = −α modulo 2π.
1. For the point M under consideration, α = π and its coordinates are

(R(φ + sin φ),−R(1 + cos φ)), see Fig. 1.9.

The kinetic energy of this point can be calculated at once:

T =
1
2
mv2 = mR2φ̇2(1 + cos φ)

and the generalized acceleration follows from (1.1):

Aφ = mR2
[
2φ̈ (1 + cos φ) − φ̇2 sinφ

]
.

Let us make a virtual displacement δφ and study the various forces.
– First, the weight: the corresponding work is expressed as

δW = P · δOM = −mgR sin φ δφ,

which provides us with the generalized force Qφ = −mgR sin φ.

– Secondly, the contact force exerted at the point of contact I between
the circle and the axis Ox. To first order in δφ the arbitrary point P
is displaced by

(Rδφ(1 − cos(φ + α)),−Rδφ sin(φ + α)) .

For the given point I, α = −φ, and, to first order, this displacement
vanishes. It is a cusp for which both velocity components are null.
The contact force does not furnish virtual work and the corresponding
generalized force is null.

The Lagrange equation (1.2) Aφ = Qφ leads, with the definition

ω =
1
2

√
g/R,

to the following differential equation:

2φ̈ (1 + cos φ) − φ̇2 sinφ = −4ω2 sin φ.

2. Let us transform first the expression for the Lagrange equation with the
help of well known trigonometric formulae in terms of φ/2; after sim-
plification, we are left with the equation: 2φ̈ cos(φ/2) − φ̇2 sin(φ/2) =
−4ω2 sin(φ/2). Now, let us switch to the variable x = sin(φ/2). This last
equation is then transformed into the much simpler differential equation:

ẍ + ω2x = 0.
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The solution is x(t) = x0 sin ωt = sin(φ(t, x0)/2). Let T = 2π/ω; then, it
is easily seen that φ(t+T, x0) = φ(t, x0), independently of the amplitude
x0. In other words, we have to deal with a synchronous pendulum with
a period T given by:

T = 4π

√
R

g
.

Now let us consider a simple pendulum whose string is attached at one
end to a fixed point on the Oz axis, with a length 4R and which is
constrained by two cycloids symmetric with respect to Oz, in such a way
that the free string length decreases with the oscillation amplitude. It
is possible to show that the pendulum bob follows a cycloid similar to
that studied in this problem. Indeed, a very good isochronism can be
obtained by attaching the string to a flexible blade.

1.6. Cylinder Rolling on a Moving Tray
[Statement p. 18]

Let Oxyz represent a Galilean frame, C the center of the cylinder with
abscissa X, H the contact point of the cylinder on the tray (see Fig. 1.10).
Considering this point as belonging to the tray, its velocity is ȧ (imposed
by the operator); considering this point as belonging to the cylinder, its
velocity is Ẋ + Rθ̇. The non slipping rolling condition imposes equality
for both velocities ȧ = Ẋ + Rθ̇. This expression gives a link between the
generalized coordinate X and the generalized coordinate θ. The constraint
is holonomic.

a(t)

X

H

C

θ

Fig. 1.10 Cylinder rolling without slipping on a tray driven with
a motion a(t). X denotes the coordinate of the center of the cylinder

and θ its rotation angle
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Now consider the cylinder; its kinetic energy is given by T = 1
2MẊ2+ 1

2I θ̇2.
The system is described by one degree of freedom.
1. Let us choose first the θ coordinate. Taking into account the previous

relation, the kinetic energy can be recast as

T =
1
2
M

(
ȧ − Rθ̇

)2

+
1
2
I θ̇2.

Using (1.1), the value for the acceleration is easily obtained:

Aθ =
(
I + MR2

)
θ̈ − MRä(t).

The only force to be considered for the virtual work is the weight (the
force necessary for the rolling has already be taken into account through
the relation between the X and θ coordinates (see Problem 1.5)). For a
virtual displacement δθ, the center of mass altitude does not vary and
the work performed by the weight is null. One deduces a vanishing gen-
eralized force: Qθ = 0. The Lagrange equation leads to:

θ̈ =
MR

I + MR2
ä,

which, coupled with the already quoted relation θ̈ = (ä − Ẍ)/R, allows
us to find the acceleration of the center of the cylinder:

Ẍ =
I

I + MR2
ä(t).

2. Let us now choose X as the coordinate. The expression for the kinetic
energy is at present:

T =
1
2
MẊ2 +

1
2

I

R2
(ȧ − Ẋ)2.

One obtains the corresponding acceleration as:

AX =
(

M +
I

R2

)
Ẍ − I

R2
ä.

For a virtual displacement δX, the virtual work furnished by the weight
is still null, with the consequence of a vanishing generalized force QX = 0.
In this case, the Lagrange equation leads to

(
M +

I

R2

)
Ẍ − I

R2
ä = 0,

or, in other words:

Ẍ =
I

I + MR2
ä(t).

One finds the same result, as required.
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1.7. Motion of a Badly Balanced Cylinder
[Statement p. 18]

1. The Galilean frame Oxyz is depicted in Fig. 1.11 and the angle θ is
defined positively in the trigonometric sense.

•

X

x

z

O

I

R

C
θ

a
G

Fig. 1.11 Cylinder rolling without slipping on a horizontal plane. The center
of gravity G is out of true by a distance a

The velocity component for point G can be calculated very easily:

vG = (Ẋ + aθ̇ cos θ, aθ̇ sin θ).

The non slipping rolling condition imposes the constraint

Ẋ + Rθ̇ = 0.

This holonomic constraint allows us to retain the angle θ as the unique
coordinate (because X = −Rθ). Applying Koenig’s theorem, one obtains
the total kinetic energy of the cylinder as the sum of the translational
energy for the center of mass 1

2Mv2
G and the rotational energy in the

center of mass frame which is simply 1
2Iθ̇2. Explicitly:

T (θ, θ̇) =
1
2
θ̇2

[
I + M(R2 + a2 − 2aR cos θ)

]
.

With the help of formula (1.1), the acceleration is derived

Aθ = θ̈
[
I + M(R2 + a2 − 2aR cos θ)

]
+ MaRθ̇2 sin θ.

The generalized force must now be calculated; the weight P is the only
force that performs work during a virtual displacement δθ:

δW = P · δzG = −Mga sin θ δθ,
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which is identified with the expression δW = Qθ δθ, in order to give the
generalized force Qθ = −Mga sin θ. The Lagrange equation follows from
(1.2):

θ̈
[
I + M(R2 + a2 − 2aR cos θ)

]
+ MaRθ̇2 sin θ = −Mga sin θ. (1.7)

Multiplying by θ̇, the Lagrange equation, Aθ − Qθ = 0, can be recast
in the form dE(θ, θ̇)/dt = 0 where E(θ, θ̇) is the energy function, which
remains constant at the value E.

E =
1
2
θ̇2

[
I + M(R2 + a2 − 2aR cos θ)

]
− Mga cos θ.

From this last equation, it is easy to deduce the velocity in terms of the
coordinate

θ̇ = ±
√

2(E + Mga cos θ)
I + M(R2 + a2 − 2aR cos θ)

. (1.8)

It is useful to discuss the problem of sign and distinguish several regimes
which depend on the sign of the quantity E + Mga cos θ.
– If E < −Mga, the sign of the numerator under the square root is

always negative and Equation (1.8) cannot be satisfied. No motion is
possible.

– If E > Mga, the sign is always positive and θ̇ maintains a constant
sign, which depends on the initial conditions. The cylinder always rolls
in the same direction, the angular velocity being comprised between
two extreme values.

– If −Mga < E < Mga, the numerator of θ̇ in (1.8) vanishes for two
values of the angle: θ = ±θ0, with cos θ0 = |E| /(Mga). The cylin-
der moves by oscillating between these two values where the velocity
vanishes and then changes sign.

The curve which corresponds to the value E = Mga discriminating the
last two regimes is called a separatrix.

All these regimes are illustrated in the upper part of Fig. 1.12.

2. To obtain the vertical component Fv of the reaction force, it is necessary
that it does work to which end one must introduce another coordinate
which allows such work. Thus the ordinate of the center C is no longer
considered to be a constant R but rather a new coordinate q, subject
to a virtual variation. In contrast, the cylinder radius is still R and the
constraint relation remains unchanged. The Cartesian coordinates for
point G are changed to xG = X + a sin θ, zG = q − a cos θ.
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We recalculate the total kinetic energy as:

T (q̇, θ, θ̇) =
1
2
M

[
q̇2 + 2aq̇ θ̇ sin θ

]
+

1
2
θ̇2

[
I + M(R2 + a2 − 2aR cos θ)

]
.

θ̇

θ
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1

0

−1
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−π − 3π
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−π
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−π
4 0

π
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π
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Fh/Fv

θ

2

1

0

−1

Fig. 1.12 Upper part: phase portrait θ̇(θ, E) for several values of the
energy E. The outermost curve corresponds to maximum energy

just before the cylinder takes off

Lower part: ratio between the tangential and normal components
of the reaction force. This ratio must be less than the f coefficient.

The parameters are: M = R = g = 1, a = 0, 3, I = 0, 4.
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The acceleration relative to q can now be obtained:

Aq = M
[
q̈ + aθ̈ sin θ + aθ̇2 cos θ

]
.

For a virtual displacement δq, the weight produces an amount of work
−Mgδq and work corresponding to the reaction force an amount Fv δq
(it acts so as to oppose the weight). Hence, we obtain the generalized
force Qq = (Fv − Mg). The Lagrange equation, Aq = Qq, in which we
substitute q = R (q̈ = 0) finally provides the reaction force:

Fv(θ,E) = M
[
g + a(θ̈ sin θ + θ̇2 cos θ)

]
= M

[
g − a

d2 cos θ

dt2

]
.

The energy dependence for the Fv component is obtained using the rela-
tion θ̇(θ,E) given by (1.8) and the expression θ̈(θ,E) from (1.7). More-
over the condition Fv > 0 must be satisfied in order to keep contact with
the ground; this is an effect of a centrifugal force which is too strong.
The outer curve of the upper part of the Fig. 1.12 corresponds to an en-
ergy Ẽ responsible for the critical situation Fv(π, Ẽ) = 0. For a greater
value of the energy, the cylinder no longer stays on the ground and all
the previous equations are meaningless.

3. We now investigate the horizontal component Fh of the reaction force.
In order to make it perform work, we have to consider the X coordinate
as an independent coordinate no longer connected to θ by a constraint
relationship. The Cartesian coordinates of point G are, in this case,
xG = X + a sin θ, zG = R − a cos θ. The total kinetic energy becomes:

T (Ẋ, θ, θ̇) =
1
2
M

[
Ẋ2 + 2aẊθ̇ cos θ

]
+

1
2
θ̇2

[
I + Ma2

]
.

The acceleration relative to the X coordinate is deduced from (1.1)

AX = M
[
Ẍ + a d(θ̇ cos θ)/dt

]
.

During a virtual displacement δX, the only work comes from the Fh force:
δW = Fh δX (Fh as given here includes its sign which can be positive or
negative); the value of the generalized force is derived at once: QX = Fh.
The Lagrange equation AX = QX , in which one inserts Ẋ = −Rθ̇, gives
the expression for the component of the reaction force:

Fh(θ,E) = M
d

dt

[
θ̇(a cos θ − R)

]
.

The ratio between the tangential and normal components of the force is
plotted in the lower part of Fig. 1.12. For a given friction coefficient f ,
characteristic of the materials, the energy must be such as to allow this
ratio to be less than < f .
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1.8. Free Axle on a Inclined Plane
[Statement p. 19]

Let us use the convention for axes proposed in the statement. The natural
frame is defined by the inclined plane, with origin A, with horizontal axis
AX, axis AY in the direction of steepest slope, and axis AZ normal to the
plane. The coordinates of the center of the axle, O, are denoted X and Y .
Let K be the unit vector normal to the plane, u the unit vector along OC
and v the unit vector of the plane perpendicular to OC. Of course, one
has OC = (L/2)u. Starting with AC = AO + OC the velocity for point
C follows: VC = VO + (L/2)θ̇ v. In the following discussion, to obtain a
quantity relative to wheel C ′, it is enough to change L → −L and φ → φ′

in the corresponding quantity relative to the wheel C (see the configuration
in Fig. 1.13).

Y

XA

C

C’

v
u θ

K

g sin α

O

Fig. 1.13 Position of the axle and the two wheels on the inclined plane. The
axle center O is specified by its two coordinates X, Y and the

axle direction by the angle θ made with the horizontal

1. The axle being massless, only the wheels contribute to the kinetic energy.
The instantaneous rotation vector for wheel C is ω = θ̇ K + φ̇u. The
kinetic energy for this wheel is TC = 1

2mV 2
C +T

(r)
C . The rotational energy

T
(r)
C is calculated using ω, the moments of inertia of the wheel and the

translational kinetic energy using the expression for the velocity given
previously. Thus, one obtains:

TC =
1
2
m

[
V 2

O + (L2/4) θ̇2 + Lθ̇ v · VO

]
+

1
2

[
I θ̇2 + I3 φ̇2

]
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with a corresponding expression for the other wheel. With V 2
O = Ẋ2+Ẏ 2,

the kinetic energy of the system, which is the sum of the kinetic energy
of the two wheels, is calculated as:

T = m
(
Ẋ2 + Ẏ 2

)
+

(
I +

1
4
mL2

)
θ̇2 +

1
2
I3

(
φ̇2 + φ̇′2

)
.

From this expression and from definition (1.1), one deduces the acceler-
ations

AX = 2mẌ, AY = 2mŸ ,

Aθ = 2
(

I +
1
4
mL2

)
θ̈,

Aφ = I3 φ̈, Aφ′ = I3 φ̈′.

We may now express the conditions for rolling without slipping.

Let H be the contact point of the wheel C with the plane; the required
conditions impose VH = 0. This last velocity is calculated from that of
C and from the instantaneous rotation vector: VH = VC +ω×CH. The
non slipping rolling condition provides two scalar conditions. The same
thing is applied to wheel C ′. Among these four conditions, two of them
are identical (those referred to (1.9)). Finally, one has three constraint
equations:

Ẋ cos θ + Ẏ sin θ = 0; (1.9)

Ẏ cos θ − Ẋ sin θ +
1
2
Lθ̇ + Rφ̇ = 0; (1.10)

Ẏ cos θ − Ẋ sin θ − 1
2
Lθ̇ + Rφ̇′ = 0 (1.11)

After simple elimination, these conditions can be recast in the simpler
form:

2Ẋ − R
(
φ̇ + φ̇′

)
sin θ = 0; (1.12)

2Ẏ + R
(
φ̇ + φ̇′

)
cos θ = 0; (1.13)

L θ̇ + R
(
φ̇ − φ̇′

)
= 0. (1.14)

The conditions (1.14) (holonomic) and (1.12), (1.13) (non holonomic)
are the relations required for a non slipping rolling motion. We are faced
with 5 generalized coordinates X,Y, θ, φ, φ′ and 3 differential conditions
of type (1.5):

5∑

i=1

Λ(k)
i δqi = 0.
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The vectors Λ(k) possess the following components:

Λ(1) = (2, 0, 0,−R sin θ,−R sin θ);
Λ(2) = (0, 2, 0, R cos θ,R cos θ);
Λ(3) = (0, 0, L,R,−R)

2. The application points for the reaction forces due to the ground are
not displaced during a virtual displacement, because of the non slip-
ping rolling condition (see the reasoning of Problem 1.5); these reaction
forces do not imply generalized forces. The only non vanishing virtual
work comes from the weight; it is calculated from the displacement of the
center of mass O. We easily get δW = −2mg δzO = −2mg sinα δY . The
only non vanishing generalized force is thus QY = −2mg sinα.

Introducing three Lagrange multipliers λ1, λ2, λ3, the constrained La-
grange equations (1.6) are written

mẌ = λ1; (1.15)
mŸ = −mg sin α + λ2; (1.16)

2
(

I +
1
4
mL2

)
θ̈ = Lλ3; (1.17)

I3φ̈ = −λ1R sin θ + λ2R cos θ + Rλ3; (1.18)
I3φ̈

′ = −λ1R sin θ + λ2R cos θ − Rλ3. (1.19)

3. The interpretation of the Lagrange multipliers

The right hand side of Equation (1.6), multiplied by δqi and summed
over i, gives, in the case of only one constraint:

∑
Qiδqi +

∑
λΛiδqi.

The last term, which is null because of the constraint, takes the form of
a virtual work, product of the force responsible for the constraint by the
displacement of the application point. In our problem, the expression
corresponding to the multiplier λ1 is λ1 (2δX − R (δφ + δφ′) sin θ). It
produces the work performed by the sum of the horizontal components of
the reaction force λ1 to cancel the horizontal displacement δX−Rδφ sin θ
of the first wheel and δX − Rδφ′ sin θ of the second wheel with respect
to the plane.
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λ2 is interpreted as the sum of the components of reaction forces along
OY , and, lastly, λ3 is interpreted as the difference of the components
along v which acts against the axle rotation.10

4. Let us make the proposed change of variables. After some rearrangements
based on (1.14), one obtains Lθ̇ + Rδ̇ = 0; and from (1.18–1.19) λ3 =
(I3/2R) δ̈. Using (1.17), one arrives at

[
2I +

1
2
mL2 + (I3L

2/2R2)
]

θ̈ = 0,

or θ̈ = 0, then δ̈ = 0. The axle spins with a constant angular velocity ω
and, with a convenient choice of the time origin, θ = ωt. It follows that:
δ − δ0 = −(Lω/R) t and λ3 = 0.

Let us derive the two non-holonomic constraints (1.10), (1.11). Using
the proposed variables, after some algebra, one obtains

(
I3 + mR2

)
σ̈ = mgR cos α cos(ωt),

which can be integrated to give

σ − σ0 = − 4Γ
Rω2

(
cos(ωt) − V0

R
t

)
,

where Γ = 1
4

(
mgR2 sin α

)
/
(
I3 + mR2

)
.

Other results are obtained with no particular difficulty. Let us sum-
marize the solution of the problem

θ(t) = ωt;

δ(t) − δ0 = −Lω

R
t;

σ(t) − σ0 = − 4Γ
Rω2

cos(ωt) − V0

R
t with Γ =

mgR2 sinα

4 (I3 + mR2)
,

X(t) =
V0

ω

[
cos(ωt) − 1 +

Γ
ωV0

(2ωt − sin(2ωt))
]

;

Y (t) =
V0

ω

[
sin(ωt) +

Γ
ωV0

(cos(2ωt) − 1)
]
,

δ0 and σ0 are two integration constants which fix the initial values of the
angles φ and φ′.

10 In order to find each reaction force separately, a relation is missing. In fact, very
much as in a hyperstatic system (a table with four legs or more on the ground) it
is impossible, without further information, to obtain the distribution of the reaction
forces (reaction force on each leg).
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If we move in a frame which drifts horizontally with constant speed 2Γ/ω,
we recognize a periodic trajectory which passes through the four partic-
ular points (0, 0), (−2, 0), (−1, 1 − 2Γ/(ωV0)), (−1,−1 − 2Γ/(ωV0)).

In the inclined plane, the trajectory of the axle center is plotted in
Fig. 1.14 in units of V0/ω and for several values of the Γ parameter. The
line of steepest slope is directed downwards while the horizontal is from
left to right.

Fig. 1.14 Trajectories of the
axle center for several values
of parameter Γ in the inclined
plane

5. Finally, the reaction forces are obtained quite easily

λ1(t) = m (−ωV0 cos(ωt) + 4Γ sin(2ωt));
λ2(t) = m (−ωV0 sin(ωt) − 4Γ cos(2ωt) + g sin α);

λ3(t) = 0.

1.9. The Turn Indicator [Statement p. 21]

We will refer to Fig. 1.15 for the axis and frame conventions. The flywheel
rotates around Ŷ with a constant angular velocity Ω. The frame rotates
with respect to the plane XOz with the instantaneous rotation vector θ̇X̂.
Finally, the plane XOz itself rotates with respect to the Earth’s frame of
reference (assumed to be Galilean) with the instantaneous rotation vector
ωẑ. The instantaneous rotation vector of the flywheel with respect to the
Galilean frame is thus ω = ωẑ + θ̇X̂ + ΩŶ . This vector is projected onto
the axes (XY Z), which are the principle axes of the flywheel, to obtain the
components: ωX , ωY , ωZ .
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Y

X

z

O

X ′

Y ′ Z

ω

θ

Ω

Fig. 1.15 Gyroscope in rotation around the axis Y ′Y of its frame with
an imposed constant velocity Ω. The frame can oscillate also around an axis

X ′X locked on a tray rotating at constant velocity ω. The only degree
of freedom is the angle θ between the normal to the frame Z′Z

and the rotation axis Ox of the tray

1. The rotational kinetic energy is equal to

Trot =
1
2
(
IXω2

X + IY ω2
Y + IZω2

Z

)
.

To this energy one must, in principle, add the center of mass kinetic en-
ergy of the flywheel. Since this energy is independent of θ, it is of no
consequence for our study. Performing the calculations with the previ-
ously obtained components of ω one obtains:

T =
1
2
IX

(
θ̇2 + ω2 cos2 θ

)
+

1
2
I (Ω − ω sin θ)2 .

2. The only dynamical variable is θ and the system has only one degree
of freedom, since ω and Ω are imposed variables. The acceleration is
calculated from (1.1):

Aθ = IX θ̈ + IωΩcos θ +
1
2
ω2 (IX − I) sin(2θ).

The forces acting on the flywheel are the weight and the efforts exerted
on the axis by the frame and the restoring force of the spring. For a
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virtual displacement δθ, the center of mass altitude does not vary and
the work of the weight vanishes. The axis X ′X does not change its
direction and the forces that maintain it perform no work. Lastly, the
restoring force performs an amount of work δW = −C δθ = −kθ δθ; this
implies a generalized force Qθ = −kθ. The Lagrange equation Aθ = Qθ

leads to the differential equation:

IX θ̈ + IωΩcos θ +
1
2
ω2 (IX − I) sin(2θ) = −kθ.

3. At equilibrium, one has θ = const ⇒ θ̈ = 0. If the terms in ω2 are
neglected with respect to ωΩ, the previous equation gives the required
relation:

ω = − kθ

IΩcos θ
.

4. The lift (component of the air reaction force perpendicular to the relative
velocity) is perpendicular to the wings and is thus directed along the
apparent vertical. In the frame of the aeroplane, this lift balances the
weight (vertical) and the centrifugal force (horizontal). A simple drawing
shows immediately that tan(α) = centrifugal force/weight, or (R being
the radius of the circle corresponding to the turn):

tan α =
V 2

Rg
=

ωV

g
.

5. The restoring torque is exerted between the apparent vertical and the
normal to the frame; the angle between these two directions is θ. How-
ever the angle between the instantaneous rotation vector ω and the true
vertical is now θ + α; this is precisely the angle which appears in the
expression of the kinetic energy whose value is presently

T =
1
2
IX

(
θ̇2 + ω2 cos2(θ + α)

)
+

1
2
I (Ω − ω sin(θ + α))2 .

The rest of the calculation is similar to that quoted in questions 2 and 3.
We arrive at the following result:

ω = − kθ

IΩcos(θ + α)
.

To obtain a maximum sensitivity, one requires that a small speed varia-
tion leads to a large variation of the reading; this happens when cos(θ+α)
is maximum. In the vicinity of θ ∼= −α, the relation ω(θ) becomes linear
and

|ω| ∼= kα

IΩ
∼= k tan α

IΩ
,
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or, with the result of the last question, ω = kωV/(IΩg), that is:

ΩI

k
=

V

g
.

Consequently, the rotational direction and the speed of the engine must
be correctly chosen in order that the flywheel plane is as close as possible
to the true vertical; this is obviously not the situation depicted in the
drawing of the statement!

1.10. An Experiment to Measure
the Rotational Velocity of the Earth
[Statement p. 22]

We still refer to the Fig. 1.15 of Problem 1.9 since we deal with the same
system, a gyroscope, but employed in a different context.

With respect to its frame OXY Z, the disc rotates around the axis OY
with angular velocity Ω which, following the statement notation, is simply
φ̇. The frame itself rotates with angular velocity θ̇ around the axis OX.
Lastly, the carousel rotates around axis Oz with angular velocity ω with
respect to a Galilean frame.
1. As a consequence, the instantaneous rotation vector is Ω = ωẑ+θ̇X̂+φ̇Ŷ ,

which can be rewritten in terms of its components in the frame of the
inertial axes of the disc

Ω = ΩXX̂ + ΩY Ŷ + ΩZẐ.

Simple projection leads to the expression Ω = θ̇X̂ + (ω sin θ + φ̇)Ŷ +
ω cos θ Ẑ.

The kinetic energy, written first as T = 1
2

[
IΩ2

X + IΩ2
Y + IZΩ2

Z

]
, is

recast as

T =
1
2

[(
θ̇2 + ω2 sin2 θ

)
I +

(
φ̇ + ω cos θ

)2

IY

]
.

The rotation ω and the pivoting motion θ(t) are imposed externally.
The only coordinate describing the system is thus φ. As a result, the
acceleration is

Aφ = IY
d

dt

(
ω cos θ + φ̇

)
.

Let us perform a virtual displacement which consists, at a given time,
of a small rotation δφ for the disc while maintaining the frame fixed.
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The weight performs no work since the center of mass is kept fixed; the
forces that lock the frame do not furnish work since the frame does not
move. Finally, if we suppose a frictionless rotation of the disc around the
axis OY , the reaction force on the rotational axis also does not produce
work. In summary, the virtual work of external forces vanishes and the
generalized force Qφ is null.

Be careful : In a real displacement, the momentum of the forces exerted
on the frame is not null.

The Lagrange equation Aφ = Qφ = 0 leads to the interesting conclusion
φ̇+ω cos θ = const. At the initial time t = 0, one has θ = 0 and φ̇ = 0 (the
disc is at rest with its axis in the vertical position), whence ω = const.
We are led to the desired expression:

φ̇(t) = ω (1 − cos θ(t)) .

When the axis is horizontal (θ = π/2) one obtains φ̇ = ω and after a
complete turn (θ = π) φ̇ = 2ω.

2. It is always possible to choose the carousel axes OXY z with the axis
Oz along the true vertical, the axis OX in the southerly direction and
axis OY in the easterly direction. The instantaneous rotation vector of
the carousel is now given by (ω sinλ) ẑ − (ω cos λ) X̂. The rest of the
treatment is completely similar to that of the previous question. The
instantaneous rotation vector for the disc is therefore written:

Ω = (ω sin λ)ẑ + (θ̇ − ω cos λ)X̂ + φ̇Ŷ .

With respect to the previous study, it is sufficient to replace ω by ω sin λ
and θ̇ by θ̇ − ω cos λ. We then arrive at the equation φ̇ + ω sin λ cos θ =
const, which, using the initial conditions, leads to the final expression:

φ̇(t) = ω sin λ (1 − cos θ(t)) .

After a complete turn, the angular velocity of the disc is: φ̇ = 2ω sinλ.
There is no effect at all at the equator, whereas the effect is maximum
at the pole.

Remarks:
– In contrast to some other problems, the Lagrangian formalism is much

more convenient here than a treatment “à la Newton”.

– Mistakes are not reserved to beginners. A.H Compton, Nobel prize, who
imagined this experiment, found a result which was half the exact value.
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1.11. Generalized Inertial Forces
[Statement p. 23]

The previously derived formula

Ai =
d

dt
(∂q̇i

T ) − ∂qi
T =

∑

α

mαaα · (∂qi
rα)

is valid in any frame. On the other hand, Newton’s formula mαaα = f
(v)
α ,

in terms of the true force, is valid only in a Galilean frame. If we want to
work in the frame under consideration, we must replace this last equation
by mαaα = f

(v)
α +f

(e)
α +f (cor)

α +f (cent)
α where f

(e)
α = −mαa

(e)
α is the driven

inertial force of the origin, f (cor)
α = −mαa(cor)

α is the inertial Coriolis force
and f (cent)

α = −mαa(cent)
α is the inertial centrifugal force. Substituting these

values in the expression Ai and performing virtual displacements, the virtual
work can be expressed in the form

∑

i

Ai δqi = δW (v) + δW (e) + δW (cor) + δW (cent).

The work δW (u) =
∑

i

Q
(u)
i δqi

is that due to the generalized force of type u:

Q
(u)
i =

∑

α

f (u)
α · (∂qi

rα).

1. Translation case

In case of pure translation, the instantaneous rotation vector is null ω =
0. This means that the Coriolis and centrifugal forces are also null;
there remains only the driven inertial force. Moreover, the corresponding
acceleration is independent of the point mass: a

(e)
α = a(e); ∀α. The

generalized force is derived as:

Q
(e)
i = −a(e) ·

∑

α

mα(∂qi
rα), or Q

(e)
i = −a(e) ·

[
∂qi

(
∑

α

mαrα

)]
.

Introducing the center of mass coordinate

Rcm =
1
M

∑

α

mαrα,

one easily arrives at the desired formula:

Q
(e)
i = −Ma(e) · ∂Rcm

∂qi
.
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Application to the pendulum:

Let us direct the vertical downwards and let us specify the direction
of the pendulum, with mass m and length l, by the angle θ. The point
of suspension, A, is subject to a variation OA = h(t). In the system of
reference of the pendulum, the kinetic energy is simply T = 1

2ml2θ̇2 and
the generalized force due to the weight is Q(v) = −mgl sin θ. However,
one must add to this force the driven inertial force. Since a(e) = (0, ḧ)
and (∂Rcm/∂θ)= (l cos θ,−l sin θ), the inertial force is easily derived
as Q(e) = mlḧ sin θ. The Lagrange equation in the pendulum frame is
written, after simplification:

θ̈ +
g − ḧ(t)

l
sin θ = 0.

2. Uniform rotation case

In the case of a uniform rotation around a fixed point taken as origin, the
driven acceleration of the origin vanishes and the instantaneous rotation
vector ω is constant, with the consequence dω/dt = 0. Students often
forget the term dω/dt in generalized forces which vanishes only in the case
of a uniform rotation; this is often a good approximation (the Earth’s
rotation around its axis, or the revolution of the Earth around the sun),
but not a general situation. With our hypothesis, we are faced with two
inertial forces:
– the Coriolis force: f (cor)

α = −2mαω×vα where vα is the velocity of the
point α in the considered frame (relative velocity);

– the centrifugal force: f (cent)
α = −mαω × (ω × rα).

They give rise to two generalized forces Q(cor)
i and Q(cent)

i .

We consider first the Coriolis force

Q(cor)
i = −2

∑

α

mα(ω × vα) · (∂qi
rα) = −2

∑

α

mα [ω,vα, ∂qi
rα] ,

using the notation [ ] for the mixed product.

Let us introduce, in our system of reference, the angular momentum
with respect to an arbitrary point O chosen on the axis: L=

∑
α rα ×

mαvα, which, with the known relation vα = drα/dt =
∑

i q̇i(∂qi
rα) +

∂trα, allows us to write

ω · L =
∑

α,i

mαq̇i [ω, rα, ∂qi
rα] +

∑

α,i

mα [ω, rα, ∂trα] .
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Then ∂q̇i
(ω · L) =

∑

α

mα [ω, rα, ∂qi
rα].

We take the total derivative with respect to time, in which we put drα/dt
= vα and d(∂qi

rα)/dt = ∂qi
vα, to find

d

dt
[∂q̇i

(ω · L)] =
∑

α

mα [ω,vα, ∂qi
rα] +

∑

α

mα [ω, rα, ∂qi
vα] .

Moreover, one has

∂qi
(ω · L) =

∑

α

mα [ω, ∂qi
rα,vα] +

∑

α

mα [ω, rα, ∂qi
vα] .

It then suffices to take the difference between these two last equations to
find:

Q(cor)
i =

∂(ω · L)
∂qi

− d

dt

(
∂(ω · L)

∂q̇i

)
.

Note that it is not necessary to suppose a uniform rotation; if a term ω̇ is
present in the Coriolis force, it appears in the term d[∂q̇i

(ω · L)]/dt and
the previous formula is still valid.

Let us consider now the centrifugal force

Q(cent)
i = −

∑

α

mα[ω × (ω × rα)] · (∂qi
rα).

A well known formula in vector analysis gives ω × (ω × rα) = (ω · rα)ω
−ω2rα and allows us to write:

Q(cent)
i = −

∑

α

mα[(ω · rα) (ω · (∂qi
rα)) − ω2 rα · (∂qi

rα)].

On the other hand, the driving rotational kinetic energy (energy of the
coincident points) is

T =
1
2

∑

α

mα (ω × rα)2 .

After derivation, one obtains

∂qi
T =

∑

α

mα (ω × rα) · (ω × ∂qi
rα) .

Finally, let us use the vectorial property

(ω × rα) · (ω × ∂qi
rα) = ω2 (rα · (∂qi

rα)) − (ω · rα) (ω · (∂qi
rα)) .

Then: Q(cent)
i =

∑

α

mα (ω × rα) · (ω × ∂qi
rα) =

∂T

∂qi
.



Chapter 2

Lagrangian Systems

Summary

2.1. Generalized Potential
A generalized force Qi, associated with the generalized coordinate qi, is said
to arise from a generalized potential V , also called potential energy, if it can
be expressed in the form:

Qi(q, q̇, t) =
d

dt

(
∂V (q, q̇, t)

∂q̇i

)
−

(
∂V (q, q̇, t)

∂qi

)
. (2.1)

If the potential does not depend on velocities, the corresponding force is
simply the negative of the gradient of the potential. This is a situation that
occurs frequently: constant gravitational field, Coulomb-type or Newton-
type law, Hooke’s law for springs.

The first term appears for particular forces that depend on velocities.
The most important case concerns electric and magnetic forces acting on
a particle with charge qe, which arises from the electromagnetic potential
(scalar potential U , vector potential A):

V (r, ṙ, t) = qe (U(r, t) − ṙ · A(r, t)) . (2.2)

There exist also macroscopic forces, which do not arise from a potential,
such as solid friction forces.

C. Gignoux, B. Silvestre-Brac, Solved Problems in Lagrangian 51
and Hamiltonian Mechanics, DOI 10.1007/978-90-481-2393-3_2,
c© Springer Science+Business Media B.V. 2009
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2.2. Lagrangian System
Lagrange’s equations

If all generalized forces arise from a potential, we say that we deal with a
Lagrangian system.

In this case, it is particularly useful to introduce the Lagrange function (or
Lagrangian) L(q, q̇, t), which is the difference between the kinetic energy
function and the potential,

L(q, q̇, t) = T (q, q̇, t) − V (q, q̇, t). (2.3)

As was the case for the kinetic energy, one considers, in this function, the
generalized coordinates and velocities as independent variables. Newton’s
equations, equivalent to Lagrange’s equations (1.2), are expressed in this
case in a very elegant way, using the Lagrangian

d

dt

(
∂L(q, q̇, t)

∂q̇i

)
=

(
∂L(q, q̇, t)

∂qi

)
. (2.4)

These equations are still known as Lagrange’s equations. They form a sys-
tem of n coupled second order differential equations. Their solution
gives the real path q(t) followed by the system; we speak of trajectories
for the system.1

Generalized momentum

The quantity

pi(q, q̇, t) =
∂L(q, q̇, t)

∂q̇i
(2.5)

plays a basic role in Lagrangian theory. We say that pi is the generalized
momentum (or simply momentum) associated with the coordinate qi; al-
ternatively, pi and qi are said to be conjugate variables.

Lagrange’s equation (2.4) can be also written:

ṗi =
(

∂L(q, q̇, t)
∂qi

)
. (2.6)

1 “Much better” than the potential which is defined up to a constant, it is always
possible to add to the Lagrange function, without changing the solution, an arbitrary
function of the coordinates which has the form q̇∂qf(q, t) + ∂tf(q, t) or, for a given
trajectory, df(q(t), t)/dt.
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2.3. Constants of the Motion
Solving the Lagrange equations, which are differential equations of second
order in time, is made easier if it is possible to display constants of the
motion. These are functions that depend only on generalized coordinates
and velocities (but not on accelerations), which remain constant in time
when they are calculated along the trajectory, hence their name.

In some sense, we have lowered the degree of the equation and trans-
formed a second order equation into a first order one. This favorable sit-
uation is often possible for Lagrangian systems. There exists no general
algorithm for the obtention of constants of the motion, but rather recipes
that can be tested in each practical case.

Energy

Let us assume that, for a judicious choice2 of generalized coordinates, the
Lagrange function does not depend explicitly on time. In this case, there
exists a constant of the motion, known as energy,3 which is given by the
following formula:

E(q, q̇) =
∑

i

pi(q, q̇) q̇i − L(q, q̇) = const. (2.7)

This case corresponds to a very frequent situation and one should think of
it before any further procedure.

Cyclic or ignorable coordinate

If the Lagrange function does not depend on the generalized coordinate4

qi, this last coordinate is said to be cyclic or ignorable. In this case, as
is easily seen from Equation (2.6), the momentum pi associated with this
generalized coordinate is a constant of the motion

pi(q, q̇, t) =
∂L(q, q̇, t)

∂q̇i
= const. (2.8)

Once more, one should try to find a set of generalized coordinates such that
some of them are cyclic.

2 For instance for systems subject to rotation, if one works in the rotating frame.
3 Very often, but not always, this quantity can be identified with the sum of the kinetic

and potential energies.
4 On the other hand, it depends on the generalized velocity q̇i.
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Let us consider for instance a particle in a plane subject to a central poten-
tial. Expressed in terms of Cartesian coordinates, the Lagrangian

L(x, y, ẋ, ẏ) =
1
2
m(ẋ2 + ẏ2) − V

(√
x2 + y2

)

does not exhibit cyclic coordinates. However, the same Lagrangian ex-
pressed with polar coordinates, i.e.,

L(ρ, φ, ρ̇, φ̇) =
1
2
m(ρ̇2 + ρ2φ̇2) − V (ρ)

shows clearly that φ coordinate is cyclic.

Noether’s theorem – constants of the motion associated with symmetries

Imagine a set of generalized coordinates q(s) which depend on a continuous
parameter s. If the complete Lagrangian does not depend on this parameter,
then the following quantity, I, is a constant of the motion (q = q(s = 0)):

I(q, q̇, t) =
∑

i

(
∂L(q, q̇, t)

∂q̇i

)
dqi(s)

ds

∣∣∣∣
s=0

= const. (2.9)

This property is known as the Noether theorem.

Application – translational invariance

The total momentum5 is a constant of the motion.
Let us consider a system with a set of generalized coordinates q̃ (which

are lengths), such that if the frame origin is displaced by a along axis Oz,
some coordinates (known as intrinsic coordinates) are unchanged q = q̃,
whereas others, q, obey the relation q(a) = q̃ + a.

If the system is invariant under translation along Oz, its Lagrangian
cannot depend on the choice of origin on Oz, i.e., on the choice of a.
From Noether’s theorem, the quantity associated with this translational
invariance

Pz =
∑

i

∂q̇i
L(q, q̇)

is a constant of the motion, called the component of the total momentum
of the system along Oz (the sum over i is effective only for the non-intrinsic
coordinates). If the invariance concerns the three orthogonal axes of the
frame, the component along each of the axes is a constant of the motion
and the total momentum P = (Px, Py, Pz) provides three constants of the
motion.

5 Generalized momentum and linear momentum are often identical quantities, but this
is not always the case. For instance for a particle embedded in a uniform magnetic
field, translational invariance holds: the generalized momentum along the field direc-
tion is a constant of the motion but not the linear momentum.
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Application – rotational invariance

The total angular momentum6 is a constant of the motion.
If the system is invariant under a rotation around the Oz axis, its La-

grangian is unchanged when we switch from the original coordinates q̃
(which are angles) to new ones q(φ) = q̃ + φ, where φ corresponds to a
change in the angle origin in a plane perpendicular to the Oz axis. Noether’s
theorem provides us with a constant of the motion

Lz =
∑

i

∂q̇i
L(q, q̇),

which is referred to as the component of the total angular momentum of the
system along Oz. If the system is isotropic, this invariance is fulfilled for
the three orthogonal axes of the frame, and the total angular momentum
L = (Lx, Ly, Lz) provides three constants of the motion.

2.4. Two-body System with Central Force
The system is composed of two particles with masses m1 and m2, subject to
a force arising from a potential which depends only on the distance between
the particles, V (|r1 − r2|). Writing the corresponding Lagrangian, it is
easily shown that there exist three constants of the motion identified with
the total momentum. With a convenient choice of the frame – the center of
mass frame – it is possible to cancel the total momentum.

The study of the system can then be applied to a fictitious particle with
mass m = m1m2/(m1 +m2), the reduced mass, subject to a central force
field acting from the center of mass.7 There exist also constants of the
motion due to angular momentum; it can be deduced that the motion takes
place in a plane and that the modulus of the angular momentum8 σ = mρ2φ̇
is a constant of the motion (ρ = |r1 − r2| is the relative distance between
the two bodies and φ is the angle that specifies the relative direction in the
plane of motion with respect to an arbitrary axis).

6 Just as we made a subtle distinction between generalized momentum and linear mo-
mentum, it is necessary to distinguish between the angular momentum and the kinetic
momentum. Very often these two quantities refer to the same thing, but not neces-
sarily. In case of rotational invariance, the angular momentum is a constant of the
motion but not the kinetic momentum.

7 Of course, one can treat with the same formalism the case of a single particle in a
central potential.

8 It is also the sum of kinetic momenta of the two particles with respect to the center
of mass.
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This property is equivalent to the famous law on “areal velocity”: the
areal velocity A remains constant in time dA/dt = σ/(2m) (the particle
sweeps out equal areas in equal times).

In polar coordinates, the trajectory9 ρ(φ) is given by Binet’s equation

d2u

dφ2
+ u +

m

σ2

dV (1/u)
du

= 0 (2.10)

with u = 1/ρ. The constant of the motion σ = mρ2φ̇ allows us to recover
the temporal motion φ(t) from the trajectory with the help of an integral.

Kepler problem (or attractive Coulomb) for a confined motion

For a potential V (ρ) = −K/ρ, the trajectory of relative motion is an ellipse,
with major axis a and with one focus at the origin. The energy E, which is
a negative quantity, is a constant of the motion. The revolution period Tr

and eccentricity e of this ellipse are given by:

Tr = 2π

√
m

K
a3/2; e =

√
1 +

2Eσ2

mK2
. (2.11)

The harmonic problem

In this case, the force varies linearly with the distance (example Hooke’s
law) and the corresponding potential is V (ρ) = 1

2kρ2. The trajectory is
again an ellipse but the origin is at the center of the ellipse and not at
a focus. The revolution period and the values of axes of the ellipse are
obtained through:

Tr = 2π

√
m

k
; E =

ka2

2
+

σ2

2ma2
=

kb2

2
+

σ2

2mb2
. (2.12)

2.5. Small Oscillations

The equilibrium configurations of a Lagrangian system correspond to the
extrema of the potential function. Around the potential minima, the equi-
librium is stable,10 whereas around maxima the equilibrium is unstable.
Weakly deviated from a stable equilibrium configuration, the potential is

9 More precisely the trajectories of each body are similar to that of the “relative motion”
since one has r1,2 = m2,1ρ/(m1 + m2).

10 This means that if we displace the system from its equilibrium position, it will return
if there are friction forces, or oscillate around this position in absence of friction.
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identified with that of a harmonic oscillator. The motion is a superposition
of the n proper modes, the typical combination being a function of the ini-
tial conditions. A proper mode is a solution for which all the generalized
coordinates have a harmonic dependence in time (same angular frequency)
but with distinct phases and amplitudes.

Practically, to find a proper mode, one begins by writing the Lagrangian
in terms of new coordinates Q = q − q(equil), which measure the deviation
from the equilibrium position, and their corresponding velocities Q̇. The
linear terms are absent because of the equilibrium condition, and we retain
only the quadratic terms.

We then seek the proper modes (k), that is the complex numbers Qmax
i

and angular frequencies ω(k) (proper frequencies) such that

Q
(k)
i (t) = Re

(
Qmax

i eiω(k)t
)

are solutions of Lagrange’s equations. Generally, one finds a homogeneous
linear system whose n eigenvalues are the n angular frequencies ω(k) of
proper modes (in general the frequencies appear as squares in this system).
The solution of the problem is a superposition of proper modes

Qi(t) =
n∑

k=1

Q
(k)
i (t),

the amplitudes of which are determined from the initial conditions.

Problem Statements

2.1. Disc on a Movable Inclined Plane
[Solution p. 76] �

Study of a very simple Lagrangian system

l(t)

q(t)

α

Fig. 2.1 Disc rolling without slipping
on a movable inclined plane

In a two-dimensional space, a disc is able to roll without slipping on an
inclined plane under the influence of a constant gravitational vertical field g.
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We note by R, I,m, respectively the radius, the moment of inertia with
respect to the axis and the mass of the disc, α, the slope of the inclined
plane and l(t) the temporal equation of the inclined plane imposed by an
operator (see Fig. 2.1).
1. Describe the motion of the disc for a horizontal displacement imparted

to the inclined plane? Is the disc able to climb the slope?

2. Check this result, in a more elegant way, working in the non Galilean
frame of the inclined plane. You will first verify that the inertial trans-
lational force, studied in Problem 1.11, arises from the potential

Vtrans = ma(e) · Rcm.

2.2. Painlevé’s Integral [Solution p. 77] � �

How to search for a constant of the motion when the Lagrangian depends
on time

A simple pendulum, with length l and mass m, free to oscillate in a vertical
plane, is subject to the Earth’s gravity. One imposes on its point of suspen-
sion a motion described by the law a(t) on a horizontal straight line in this
plane. One may choose, as a generalized coordinate, q, the angle between
the pendulum direction and the vertical oriented downwards.
1. Is this pendulum a Lagrangian system?

2. Give the Lagrange equation. Interpret your result.

3. We now consider the case of a constant acceleration ä. Determine a
function W (q, q̇, t) such that ∂tL(q, q̇, t) =d(W (q, q̇, t))/dt.

4. Deduce from this that I(q, q̇, t) = E(q, q̇, t) + W (q, q̇, t) is a constant of
the motion, called Painlevé’s integral. Interpret your result.

5. Find again this result working in a non Galilean frame. In the case of
a constant acceleration, show that there exists a constant of the motion,
which is precisely Painlevé’s integral.

2.3. Application of Noether’s Theorem
[Solution p. 78] �

Very simple application of a fundamental theorem

In a two-dimensional space, a particle of mass m, located by its Cartesian
coordinates x, y, is subject to a potential of the form V (x − 2y).
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1. Write down the Lagrangian of the system. If x increases by the arbitrary
quantity s, what is the increase in y in order for the potential to be un-
changed ? Deduce that the Lagrangian is invariant in a group of oblique
translations.

2. Write down the new set of coordinates, which depend continuously on s,
and which leave the Lagrangian invariant. With the help of Noether’s
theorem show that the quantity ẋ + 1

2 ẏ is a constant of the motion.

Check – This result can be checked writing the two Lagrange equations
and eliminating the derivative of the potential.

2.4. Foucault’s Pendulum
[Solution and Figure p. 79] � �

Study of a famous experiment in the Lagragian formalism

This experiment was realized, in March 31st 1851, with a 67 m pendulum
beneath the dome of the Pantheon; it was revived in 1902, after Foucault’s
death (1819–1868), by Camille Flammarion (1842–1925).

Let a simple pendulum of length l and with mass m be located at a
latitude λ (complementary angle between the vertical at this point and
the Earth’s rotation axis Z) on the Earth surface. The pendulum thus
moves on a sphere (Fig. 2.2). One wishes to study the effect of the Earth’s
rotation on the motion of the pendulum, in a very elegant way, using the
Lagrangian formalism. The effect due to the Earth’s revolution around the
Sun is neglected.

y

x
zO

z

l l

n

w

λ

n

z

w

Z

Fig. 2.2 Foucault’s pendulum. On the left hand side, the trajectory of
Foucault’s pendulum on the ground. On the right hand side, the position of the

pendulum on the Earth’s surface
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We will take as generalized coordinates x, y the deviations with respect
to the vertical along the south-north direction n and along the east-west
direction w.
1. In the limit of small deviations with respect to the vertical, show that

the potential energy to within a constant, is

V (x, y) ∼= mg
x2 + y2

2l
.

Here g represents the acceleration due to gravity only, the direction of
which is the true vertical.

2. Give, with respect to the northerly axis n, the westerly axis w and the
true vertical (passing through the Earth’s center) z at this position, the
components of the pendulum velocity with respect to the Earth. One
neglects ż. Why?

3. Give the components of the unit vector Z (rotation axis of the Earth, see
Fig. 2.2) on n and z.

4. Give the driving velocity due to the Earth’s rotation (radius RE , angular
velocity Ω). The term in z is neglected. Why?

5. Derive the expression of the kinetic energy and of the Lagrangian. One
neglects all terms containing the square of the Earth’s rotational speed,
except those containing the Earth’s radius. Justify.

6. Write down the Lagrange equations.

7. The equation for the x coordinate contains a constant term. Show that
it can be eliminated by the substitution x̃ = x − xe. Give the value of
the constant xe and its interpretation.

8. To solve the two Lagrange equations on an equal footing, the complex
function u(t) = x̃(t) + i y(t) is introduced. Show that the equation to be
solved is

ü + 2iΩ sin λ u̇ + gu/l = 0.

Rather than using a systematic method for finding the solution, it is
convenient to make the change of function u(t) = U(t) exp(irt).

Choose r and ω as real numbers in order to obtain the equation Ü +
ω2U = 0.

What is the nature of the motion seen in terms of variables X, Y with
U = X + i Y ?

Describe the motion in terms of variables x, y?

What happens at the pole and on the equator?
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Hints:
– The velocity of a point M , which is part of a solid and which rotates with

angular velocity Ω around the axis u is Ωu × OM where O is any point
on the rotation axis.

– In the complex plane, the multiplication by exp(irt) rotates a point by an
angle rt. This method is known as the switch towards rotating axes. It
is also employed for a charged particle in a magnetic field.

– The equilibrium position is not the vertical at the point under considera-
tion (there exists also the centrifugal force which acts against gravity).

Alternative derivation

One works in the non Galilean frame n, w, z.

Express the Coriolis force (the centrifugal force is neglected).

Find the potential corresponding to the Coriolis force?

Write down the Lagrangian and the Lagrange equations.

Compare with the first method.

The Lagrangian is time-independent. What is the constant of the motion?

2.5. Three-particle System
[Solution and Figure p. 82] � �

How astute changes of variables allow us to exhibit symmetries

A – Changing coordinates
Let us consider a system formed with three particles, of equal mass m,
constrained to move on a straight line x′Ox. They interact via a potential
that depends only on the relative distance between them. This system can
represent the vibrations of a linear triatomic molecule.

Let q1, q2, q3, the abscissae, be chosen as generalized coordinates. The
corresponding Lagragian is then written:

L =
1
2
m(q̇2

1 + q̇2
2 + q̇2

3) − V1(q2 − q3) − V2(q3 − q1) − V3(q1 − q2).

1. Give the constant of the motion, associated with spatial translations.
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2. One works with the Jacobi coordinates11 X,x, y defined by:

X =
1
3
(q1 + q2 + q3); x = q1 − q2; y = α

(
q3 −

1
2
(q1 + q2)

)
,

where α is a constant.

Adjust α so that the kinetic energy is written

T =
3
2
mẊ2 +

1
4
m(ẋ2 + ẏ2),

and give the expression of the new Lagrange function. Find again the
previous constant of the motion. What is the number of intrinsic degrees
of freedom for the system?

In this change of coordinates, particle 3 was privileged. One can as well
favor particle 1 using new coordinates X,x′, y′, obtained by a circular
permutation.

3. Show that, if one introduces the complex numbers z = x+iy; z′ = x′+iy′,
one obtains the very simple relation z′ = exp(2iπ/3) z. Deduce that
x2 + y2 = x′2 + y′2. Express the Lagrangian with these new coordinates.

B – Harmonic approximation case

One assumes now that the potentials are identical12 and have the same
expression kr2/2 where r is the relative distance between the interacting
particles (harmonic potential). It is possible to obtain this condition for
an arbitrary potential, if one considers small variations with respect to the
equilibrium position.
4. Give the expression of the Lagrangian and find three independent con-

stants of the motion. Interpret the different proper modes of the system.

C – From the three-body system to the system studied by Hénon
and Heiles

In the case of three identical potentials V (r) = V0 exp(r/a), employed in
the so-called Toda’s net, it was numerically noticed that, in addition to the
constants of the motion associated with the invariance with respect to space
and time translations, there exists a third constant of the motion, a very
infrequent situation. It was only in 1974 that two researchers – M. Hénon
and H. Flachka – found mathematically and independently this constant
of the motion. As we shall see in Chapter 6, the problem is considered as
entirely solved; one says that the system is integrable.

11 It is possible to generalize this transformation to a three dimensional space and, less
easily, for three particles with different masses.

12 It is quite easy to generalize to potentials with different strengths.
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5. Let us consider the case where the distances between the particles are
so small so as to justify truncating the expansion of the potential at
third order. In this limit, give the expression of the Lagrangian. Plot
schematically the equipotential curves.

6. Using the numbers z and z′ of the third question, show that the previous
potential is invariant under the permutation (x, y) → (x′, y′). Deduce
that the equipotential curves exhibit a symmetry of order 3. Prove that
one of these curves is an equilateral triangle.

It happens that this kind of potential can mimic the motion of a star in
the galaxy. The study of this model, which was carried out by Hénon and
Heiles, is connected to the stability of the solar system. Very surprisingly,
this approximate potential does not exhibit a constant of the motion.

2.6. Vibration of a Linear Triatomic
Molecule: The “Soft” Mode
[Solution p. 86] � �

Academic case of the appearance of a mode with a null angular frequency

We are interested in the proper modes of longitudinal vibrations for a tri-
atomic molecule, linear and symmetric. We employ a simple model with re-
spective point-like masses m M m, whose attractive forces are represented
by two identical springs of constant k. We have already seen that this
harmonic approximation is relevant whatever the interaction potential, pro-
vided that the deviation from the equilibrium position is small. We use as
generalized coordinates the displacements xi of mass i with respect to its
equilibrium position.
1. Write down the Euler-Lagrange equations. Set Ω2 = k/m and r = M/m.

2. Find the proper angular frequencies and the corresponding proper modes.

3. A proper mode, known as “soft”, has a null frequency. Explain the cor-
responding motion. In this case, the solution does not depend on time
as does a harmonic oscillator. Find its time dependence. This mode
corresponds to a conserved quantity. Which one and why?

4. Give a simple interpretation of the two other modes.

5. With a precise impulse, we give, at some initial time, a linear momen-
tum p to the first mass. The molecule is initially at rest in its equilibrium
position. Give the equations which describe the temporal evolution for
the three masses. Interpret the result.
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2.7. Elastic Transversal Waves
in a Solid (F Waves) [Solution p. 88] � �

Passing from a discrete to a continuous model for an elastic bar

Imagine an initially straight bar that is deformed transversely. This defor-
mation will evolve in time, but how?

Consider a bar with section S and with mass density ρ. Virtually cut
the bar into N + 1 slices with thickness δ (Fig. 2.3) and place an identical
mass at the center of mass of each slice, which we refer to as a node. Each
of these nodes moves transversely by qi with respect to a null deformation,
and this last displacement is chosen as the coordinate relative to node i.

i i + 1

f

−f

δ

qi+1 − qi

Fig. 2.3 Plane shearing waves in an elastic solid. The bar is cut into an infinite
number of slices with vanishing thickness, which have a kinetic energy and an

elastic potential energy corresponding to their shearing deformation

1. Give the expression for the kinetic energy of the bar.

Each slice has an elastic potential energy: to get qi �= qi+1, one must
exert a shearing force f which is proportional to the deformation

u =
qi+1 − qi

δ

and to the bar section S. Let f = 2μuS, where μ is the shearing modulus
characteristic of the solid.
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2. Determine the elastic energy of this sheared slice.

3. Deduce the total potential energy, then the Lagrangian.

4. Show, switching to a continuous treatment, that the speed for elastic
transversal waves is

√
2μ/ρ (some km/s). In order to do this, it is use-

ful to introduce a function ϕ(x) such that qi = ϕ(x = iδ). We then
investigate the limit δ → 0 in Lagrange’s equations which are finally
transformed into a partial differential equation.

Note : Longitudinal waves, known as S waves (S for Second), can also be
studied; they are also transmitted in fluids. They propagate more slowly
and arrive after the F waves (F for First).

2.8. Lagrangian in a Rotating Frame
[Solution p. 89] � �

Modification to the Lagrangian when one works in a rotating frame

A particle of mass m (or a set of particles) is studied in a frame which
rotates around the Oz axis with an angular velocity φ̇.
1. Write down the kinetic energy choosing, in this frame, as generalized

coordinates, first the Cartesian coordinates X,Y , then the polar coordi-
nates ρ, ψ.

2. Deduce that, in the rotating frame, the inertial Coriolis and centrifugal
forces arise from the potential V = −φ̇Lz − 1

2mφ̇2ρ2, where Lz is the
projection of the kinetic momentum on the rotation axis in the rotating
frame, and ρ the distance of the particle to the rotation axis.

3. Consider the case of a rotating frame with an instantaneous rotation
vector ω. Generalize the previous question to obtain the expression of
the potential: V = −ω · L − 1

2m(ω × r)2.

Note: This expression can be used with an arbitrary choice of the coor-
dinates.

4. With the help of this formula, find the expression of the Lagrangian for
the bead on the hoop studied in Problem 1.4, Page 16.

5. Following on from the first question, point out the analogy with a particle
in a frame that rotates with a small angular velocity, and the case of a
charged particle in a Galilean frame embedded in a magnetic field B
along Oz axis.
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2.9. Particle Drift
in a Constant Electromagnetic Field
[Solution and Figure p. 91] � �

Important example of motion in an electromagnetic field

A – Lagrangians and constants of the motion

In a frame with orthonormal axes, one wishes to study the motion of a parti-
cle of mass m and electric charge qe, placed in an electric field E = (E, 0, 0)
and a magnetic field B = (0, 0, B) uniform, constant and orthogonal to
E. As generalized coordinates, we choose the three Cartesian coordinates
r = (x, y, z) of the particle. We will check that Expression (2.2) is indeed a
generalized potential.

1. Give the expression of the Lorentz force, which is assumed to be the only
force acting on the particle.

2. Calculate the scalar potential U(r).

3. Show that one can choose a vector potential under the alternative forms
A = (−yB, 0, 0) or A = (0, xB, 0) or the half sum A = −1

2 (r × B).
These formulae are very useful in practice for the physicist.

4. With the help of the first expression for A, check that the general-
ized potential associated with the electromagnetic fields is written V =
qe(ẋyB−xE). Write the Lagrangian L of the particle in the electromag-
netic field. Check that z is a cyclic coordinate and give the corresponding
constant of the motion. Deduce the Lagrange equations relative to the
variables x and y.

5. With the help of the second expression, check that the generalized po-
tential associated with the electromagnetic field is V = −qe(xẏB + xE).
Write the Lagrangian L′ of the particle in the electromagnetic field.
Check that y and z are cyclic coordinates and give the two corresponding
constants of the motion. Could they be anticipated from the previous
question?

6. Check that the difference between the Lagrangians L and L′ is the total
derivative with respect to time of a function depending on coordinates
only.

B – Null electric field

For the moment, we assume a null electric field: E = 0.

7. From conserved quantities, deduce the first order in time differential equa-
tion for the three coordinates. Integrate these equations introducing the
complex function w(t) = x(t) + iy(t). It will be useful to introduce the
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“cyclotron frequency” ω = qeB/m. Characterize the motion along this
field and projected onto a plane perpendicular to the field.

This motion is known as cyclotron motion.
C – General case
Let us return to the general case E �= 0.
8. Integrate the equations of motion. Show that, if one works in a frame

moving with velocity −E/B along the axis perpendicular to E and B,
the particle follows the cyclotron motion studied in the previous question.
This motion is known as a drift motion.

2.10. The Penning Trap
[Solution and Figure p. 94] � � �

The drift in a radial electric field may be used to trap particles

Physics made considerable progress due to the fact that we are now able to
work with a unique particle that is confined in space in a trap. For charged
particles, such traps exist, for instance the Penning trap which is the subject
of this problem and the Paul trap which will be presented in Chapter 4.

The principle is quite simple. We just saw in the previous Problem 2.9
that a charge in orthogonal electric and magnetic fields follows a cyclotron
motion, associated with a drift perpendicular to the electric field with a
drift speed equal to the ratio E/B.

Let us imagine a radial electric field, rather than a uniform electric field.
The drift perpendicular to this field will occur around a circle, thus confining
the charge in the plane perpendicular to the magnetic field. Such a radial
field, from Poisson’s law, is associated with a perpendicular electric field,
which confines the charge in the vertical direction as well.

Let us study this trap in more detail.
With the help of two electrodes, one can create a scalar potential

U(x, y, z) =
1
4
k
(
2z2 − x2 − y2

)

with cylindrical symmetry around the Oz axis. In addition, we impose a
uniform magnetic field, with intensity B, directed along this axis.

A particle of mass m and electric charge qe is placed in this electromag-
netic field.
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1. Verify Poisson’s equation with this type of potential. Plot schematically
two equipotential curves with opposite signs. Using the gauge suggested
in the previous problem A = − 1

2r × B, write down the particle La-
grangian.

2. Give the three differential equations for motion on the three axes. Solve
the equation of motion along Oz. It is convenient to introduce the cy-
clotron frequency ωc = qeB/m and the axial frequency ωa =

√
qek/m.

3. Use the trick of Problem 2.9 (introduction of a complex variable) to
solve the two other equations. Under which condition concerning the
electromagnetic field, is the charge confined in the three directions? Write
down the stability condition for the Penning trap.

4. The motion in the plane xOy results from the composition of two uniform
circular motions of frequencies ωm (the smallest one) and ωc. Interpret
these two motions in the limit ωc 	 ωa.

In order to do so, calculate the electric field in the plane z = 0, at a
distance ρ from the revolution axis. What would be the drift velocity if
the field is uniform. What would be the drift angular speed which is also
called magnetron frequency.

5. The surroundings are time independent and there exists a constant of the
motion: the particle energy. Calculate this energy as a function of the
radii of the two circular motions.

2.11. Equinox Precession [Solution p. 97] � � �

Analysis of an important astronomical phenomenon with the Lagrangian
method

In a first approximation, the trajectory of the Earth, of center O and mass
ME= 5.974× 1024 kg, around the Sun, of center S and mass MS = 1.989×
1030 kg, is a circle of center S and radius R = 1.496 × 108 km in a fixed
plane (with respect to a Galilean frame attached to the stars), called the
ecliptic. One considers in this ecliptic two fixed axes Sx and Sy, with unit
vectors ux,uy and the Sz axis, with unit vector uz, perpendicular to this
plane. Thus the trihedron Sxyz is orthonormal and Galilean. We denote by
α the polar angle (Sx, SO) of the Earth on its orbit, which is accomplished
in a year = 365.25 days.

On the other hand, the Earth is considered as a solid which retains its
shape. We denote by (OXY Z) a frame linked to the Earth (thus non
Galilean) with unit vectors uX ,uY ,uZ . The OZ axis is chosen as the
pole axis (directed from south pole to north pole), OX and OY being two
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arbitrary perpendicular axes in the equatorial plane. The Earth rotates
around its OZ axis with angular velocity Ω, assumed to be constant. It
performs a complete revolution relative to the stars during a sidereal day
which lasts 23 h 56min 04 s. In a first approximation, the OZ direction
is fixed relative to the stars; the angle θ = (uz,uZ) = 23◦26′ is called
the declination angle with respect to the ecliptic. It is responsible for the
seasons on the Earth.

Lastly, the Moon, of mass MM = 7.35×1022 kg, rotates around the Earth
along a circle, of center O and radius rM = 3.844 × 105 km. We assume in
the following that the plane of this circle coincides with the ecliptic.

Because of the fact that the Earth is not exactly a sphere, the Sun’s
attraction manifests itself, in addition to a force exerted at the center of
mass, by a torque which tends to make the Earth’s rotation axis OZ per-
pendicular to the direction Sun-Earth SO. The consequence of this torque
is a slow precession of the pole axis OZ around the fixed axis Sz which is
known as the equinox precession; it has been measured experimentally with
a high precision: a complete revolution needs 25,785 years.

Before looking at the consequences of this torque, we attempt to obtain
a better understanding of its origin.

To this end we consider the Earth as a solid with a cylindrical symme-
try axis OZ, and denote by I, I, I3 the respective moments of inertia with
respect to the inertial axes OX,OY,OZ. If the Sun is considered as spher-
ical, its action on a mass dm in the Earth, located at r(x, y, z), produces a
potential energy which is

dV = − GdmMS√
(R − r)2

where R(X,Y,Z) = OS.
1. Expand this expression up to second order in r/R. Sum the contributions

due to all the mass elements of the Earth. In the course of this derivation
the inertia matrix

Iij =
∫

dmxixj

will be encountered. Simplify this expression considering that O is the
center of mass of the Earth and that OX,OY and OZ are inertia axes.
It is possible to take advantage of the freedom left in the determination
of OX and OY to choose the OX axis in the plane SOZ (Fig. 2.4). We
denote by φ the angle (OS,OZ). Express the potential energy not as a
function of X,Y,Z but as a function of φ and R. The φ independent terms
are responsible for the center of mass motion which is not interesting for
the present purposes. The Earth is slightly flat at the poles. What would
be the effect of the torque if there were no spin of the Earth?
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Fig. 2.4 Diagram for the cal-
culation of the inertial tensor
of the terrestrial geoid

Fig. 2.5 Revolution of the Earth
around the Sun in the ecliptic
plane

2. As is seen in Fig. 2.5, the angle φ varies during the revolution of the
Earth around the Sun. Let us therefore admit that we should consider the
potential energy averaged over one revolution. Express cos φ as function
of α and the declination angle θ. Deduce the average value of the potential
as a function of θ.

3. At a given time t, one can choose the OX axis in the ecliptic plane. Let
Ψ be the angle between ux and uX . Give the expression of the instan-
taneous rotation vector ω of the Earth in a reference system attached to
the Earth. Note that ω does not arise solely from the daily rotation.

4. Give the Earth’s kinetic energy in the Galilean frame.

5. We are concerned now by the effect of the torque on the Earth’s axis.
Using the Lagrangian formalism, write down the Lagrange function and
derive the equations of motion.

6. Show that an admissible solution of these equations is the absence of
nutation θ = const. Deduce the precession angular velocity Ψ̇S of the
OZ axis along uz due to the Sun.

7. The effect of the Moon due to the same phenomenon is far from negli-
gible. Assuming that the Moon’s orbit plane coincides with the ecliptic,
calculate the ratio β = Ψ̇M/Ψ̇S between the contributions of the Moon
and the Sun. With the given data, calculate the numerical value of β.
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8. It can be shown that the Moon’s contribution behaves in the same way
as that of the Sun; hence, the precessional angular velocity measured
experimentally is Ψ̇ = Ψ̇M + Ψ̇S . Deduce the expression of the Earth’s
“flatness” given by (I3 − I)/I3. Calculate its numerical value using the
value G=6, 673 × 10−11 MKSA for the gravitational constant.

9. One assumes that the Earth’s shape is an ellipsoid of revolution with
an equatorial radius Re slightly greater than the polar radius Rp. Let
us denote by RE = (Re + Rp)/2 = 6, 367 km the Earth’s mean radius.
Calculate (I3−I)/I3 as a function of Re, Rp and RE . From the value ob-
tained previously, calculate the numerical values of Re and Rp. Compare
your results with the experimental values obtained by geodesic methods:
Re= 6, 378.137 km and Rp = 6, 356.752 km. Comments.

2.12. Flexion Vibration of a Blade
[Solution p. 102] � � �

Why an embedded blade is able to vibrate?

Consider a homogeneous, uniform, thin blade, of mass M , length l and linear
mass μ, which lies at rest in a horizontal position. Imagine for instance
a knife or a flat ruler. If this blade is deformed, it attempts to return to
equilibrium and starts moving, transforming its elastic potential energy into
kinetic energy. It then overshoots its equilibrium position and the process
repeats: there is vibration.

To study such vibrations, the Lagrangian formalism, based on a discon-
tinuous model for the blade and ignoring the effect of gravity, will be used.

The discontinuous model

The blade is cut into N segments each of length δ and mass μδ. The
blade motion is assumed to take place always in the same vertical plane
(absence of torsion). One denotes by Ai the middle of segment i (its center
of mass) and one takes as generalized coordinates qi the deviation of Ai

from the equilibrium position along the vertical. Lastly, one assumes that
the deformation is weak, and this imposes that the angle made by each
segment with the horizontal remains small. Under these conditions, it is
permissible to make the hypothesis that each segment has a fixed length δ,
always equal to its horizontal projection during the deformation.

1. Give the expression of the kinetic energy of the blade.

Let us consider now the elastic potential energy. From elasticity text-
books, one learns that the elastic energy, stored in a unit length, of a
bent blade is EI/(2R2) where I is the so-called elastic moment of inertia,
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which is the product of the section area s by the square of the thickness e
divided by 12 (I = se2/12), R is the radius of curvature of the blade at
the considered point and E, Young’s modulus which is characteristic of
the material.

2. One considers that the radius of curvature, Ri, for segment i is the radius
of the circle passing through the three points Ai−1, Ai, Ai+1 (see Fig. 2.6).
Give an approximate expression, valid in the limit of weak flexions, of this
radius in terms of the generalized coordinates qi−1, qi, qi+1.

3. Ignoring the border effects, give the potential energy of the blade.

4. Write the Lagrangian for the blade and derive the Lagrange equations.
You will notice that the equation for qi requires the functions qi−2, qi−1,
qi, qi+1, qi+2.

i − 1 i + 1i

qi(t)

R

Ai

Ai−1 Ai+1

Fig. 2.6 Vibration of a blade in a vertical plane.
Illustration of the curvature radius on an elementary segment

Passing to the continuous limits

Let ϕ(x, t) be an interpolation function for the blade satisfying condition
ϕ(x = iδ, t) = qi(t) for all points Ai. Consider the limit N → ∞, δ → 0;
Nδ = l = const.
1. Write down the partial differential equation that is satisfied by ϕ(x, t).

2. Seek a solution of type ϕ(x, t) = e−iωtψ(x). Find the differential equation
satisfied by ψ(x). As usual, one looks for a solution of the form ψ(x) =
Aeikx. Solve this equation with the following limit conditions. The blade
is embedded at one of its ends (knife handle): null displacement, null
first derivative; the other end is free: infinite radius of curvature = null
second derivative, null third derivative. Find the angular frequencies of
the vibrations.

3. Estimate the vibrational frequency of your knife taking E=20 × 1010 P.
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Be careful : during the vibration, the blade does not have enough time
to exchange heat with the surroundings. The flexion should therefore be
considered as adiabatic, and one should use the corresponding Young’s
modulus.

Hints:

The 4th order derivative of a function can be approximated by

f (4)(x) ∼= f(x − 2h) − 4f(x − h) + 6f(x) − 4f(x + h) + f(x + 2h)
h4

.

For the solution of the 4th order differential equation, seek four independent
solutions of real or complex type. Combine them to get the correct limit
conditions.

2.13. Solitary Waves
[Solution and Figure p. 105] � �

Waves that propagate without deformation, solutions of a non linear equation

The so-called sine-Gordon equation represents the passage to a continuous
limit of a chain of simple pendulums coupled by a harmonic type force.
The field ϕ(x, t) describing the evolution of the system satisfies the partial
differential equation (sine-Gordon equation)

∂2
t2ϕ − λ

l2
∂2

x2ϕ = −ω2 sin ϕ

where λ is a constant parameter and l the common length of the pendulums.
The sine-Gordon equation possesses the property of exhibiting special

solutions known as solitary waves or solitons, which move without defor-
mation. Except for particular cases (electromagnetic, acoustic waves,. . .)
the solutions of wave equations spread out sooner or later. One may think
of the waves in the ocean. Existence of solitons is connected to the non
linearity of the wave equation.13

The aim of this problem is to find a solution of this type for the sine-
Gordon equation. These solitary waves are illustrated spectacularly by the
tidal wave phenomenon which produces a bore, during flood tides, in the
estuary of some large rivers, which moves up the river for several kilometers.

13 The non linearity implies that the superposition of solutions is no longer a solution.
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1. Show that, retaining generality, by a suitable change of space and time
scales, the sine-Gordon equation can be written (we recall that ϕ(x, t)
represents the angular deviation from the downward directed vertical for
the pendulum located at abscissa x at time t):

∂2ϕ(x, t)
∂t2

− ∂2ϕ(x, t)
∂x2

= − sin ϕ(x, t).

2. One seeks a solution of the form ϕ(x, t) = φ(u) with u = λ(x − vt), the
soliton speed v and the coefficient λ being undetermined for the moment.
Show that this solution must fulfill the equation:

d2φ(u)
du2

= sinφ(u)

if one chooses λ in a suitable way (be careful of the change of sign on the
right hand side). Give the relationship between λ and v. What is the
inequality that must be satisfied by the “speed” v?

We desire a solution which, for |u| = ∞, corresponds to a stable equi-
librium situation for the chain of pendulums, for instance φ(u = ±∞) = 0
(or 2π).

You will notice that the equation

d2φ(u)
du2

= sinφ(u)

is the same as that corresponding to a pendulum with unit angular fre-
quency, if u is taken as the time.

3. What is the constant of the motion associated with a translation of u?
What value must be given to this function in order for the solution to
satisfy φ(u = ±∞) = 0? Show that, in this case, the equation to be
solved is

d(φ/2)
du

= ± sin(φ/2).

4. Show that the solutions of this equation are φ(u) = 4 arctan(e±u). De-
duce two solitary solutions ϕ±(x, t). For several choices of the speed,
plot these solutions schematically at a given time. You will find that the
speed depends on the wave front stiffness.
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2.14. Vibrational Modes of an Atomic
Chain [Solution and Figure p. 107] � � �

Solvable model for a system composed of an infinite number of coupled
oscillators

An infinite atomic chain is composed of two different types of atoms, dis-
posed in an alternate way, the heavy ones of mass m and the light ones of
mass m′ = rm, with r < 1. The interaction between these atoms can be
approximated by attractive forces represented by identical springs of con-
stant k between each atom. In the following, we put Ω2 = k/m. It is
possible to agree on an orientation of the chain and decide that the light
atom numbered n comes before the heavy atom numbered n, following the
orientation. As generalized coordinates, we use the deviations with respect
to the equilibrium position which we denote for the nth light and heavy
atoms respectively as un and vn.
1. Write down the Euler-Lagrange equations.

2. Write the equations giving the proper modes.

3. The translational invariance for two atoms suggests that we search, for
each type of atom, a solution of the form

un(t) = U exp(inφ + iωt)
vn(t) = V exp(inφ + iωt)

Give the two solutions ω(φ). The largest one, ωopt(φ), is called the optical
angular frequency, whereas the other one, ωacou(φ), is called the acoustical
angular frequency.

4. Study the behaviour of ω(φ) in the vicinity of φ = 0. For each of these
cases, study the sign of U/V . A positive sign corresponds to a motion in
phase of all the atoms at low frequency, a negative sign corresponds to a
motion with opposite phase for two neighboring atoms at high frequency.
Give ω(φ = π). Plot schematically ωopt(φ) and ωacou(φ).

5. Let us excite an atom with a wave of angular frequency ω. For what con-
dition on ω does the perturbation propagate? Remark that this atomic
chain is a filter with a stopping band or “gap”.

6. Periodic conditions are imposed to the motion of the atoms. The motion
of the group N + 1 is identical to that of group 1. Deduce the possible
values for φ.
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Problem Solutions

2.1. Disc on a Movable Inclined Plane
[Statement and Figure p. 57]

Let H be the contact point of the disc of center C on the inclined plane;
one chooses q = OH as generalized coordinate, O being an arbitrary origin
chosen on the inclined plane. The rolling without slipping condition imposes
q̇ = −Rθ̇, where θ is the angle that specifies an arbitrary point B of the
disc.

The velocity of the center of the disc is obtained easily adding the imposed
velocity of the origin, which is l̇(t) along the horizontal and its relative
velocity to the inclined plane which is q̇ along the slope. As reference axes,
let us choose the direction of the slope and the normal to the inclined plane;
the velocity of the center is vC = (q̇ + l̇ cos α, l̇ sinα). The kinetic energy of
the disc is obtained after an application of Koenig’s theorem as the sum of
the center of mass kinetic energy 1

2mv2
C and the rotational energy around

the center 1
2Iθ̇2 = I

2R2 q̇2.
1. The only force that performs work is the weight which arises from the

potential V = mgq sin α (up to an unimportant constant). After some
algebra, the expression for the Lagrangian is obtained as

L(q, q̇, t) =
1
2
m

[(
1 +

I

mR2

)
q̇2 + 2l̇(t)q̇ cos α + l̇(t)2

]
− mgq sinα.

(2.13)

The Lagrange equation (2.4) provides the law giving the acceleration:
(

1 +
I

mR2

)
q̈ = −g sin α − l̈(t) cos α.

This is the equation of a movable object in a variable gravitational field.
Let us integrate once in time to obtain the velocity:

(
1 +

I

mR2

)
q̇ = −gt sin α − l̇(t) cos α.

One can have q̇ > 0 – the disc can climb up the plane – if the condition
l̇(t) < −gt tan α is fulfilled.

The time dependence of the motion is obtained by a further integration
(up to a constant):

q(t) = −
(

1 +
I

mR2

)−1 [
g sin α

2
t2 + l(t) cos α

]
.
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2. The driven acceleration is horizontal: it is precisely that of the inclined
plane, a(e) = l̈. The horizontal component of Rcm in this frame is q cos α
and the inertial potential, as indicated in the statement, is written in this
case Vtrans = mql̈ cos α. The corresponding Lagrangian is:

L(q, q̇, t) =
1
2
m

(
1 +

I

mR2

)
q̇2 − mgq sinα − mql̈ cos α.

It becomes identical to the previous one (2.13), if one adds the total time
derivative of a function depending on coordinates only. The last term on
the right hand side can be interpreted as an apparent weight (principle
of equivalence: gravitational field – accelerated frame).

2.2. Painlevé’s Integral [Statement p. 58]

1. Let O be a fixed origin, Ox a horizontal axis, Oz a vertical axis directed
downwards and A the point of suspension of the pendulum, which moves
along Ox according to the law OA = a(t). The only force that per-
forms work is the weight which arises, following our conventions, from
the potential V = −mgz. Hence, the system is a Lagrangian system.

2. Let q be the angle between the Oz axis and the pendulum direction; this
is the generalized coordinate. The components of the pendulum (of mass
m) position vector are x = a + l sin q and z = l cos q. The kinetic energy
is simply T = 1

2m(ẋ2+ẏ2) and the potential energy V = −mgl cos q. The
Lagrangian is obtained by taking the difference between these quantities,
that is in terms of the generalized coordinate:

L(q, q̇, t) =
1
2
m

(
l2q̇2 + 2lȧ(t) q̇ cos q + ȧ(t)2

)
+ mgl cos q.

There is an explicit time dependence through the ȧ(t) function.

In this case, Lagrange’s equation gives, introducing the usual angular
frequency ω =

√
g/l:

q̈ + ω2 sin q +
ä(t)

l
cos q = 0.

3. From the previous Lagrangian expression, it is easy to find that ∂tL =
mä(lq̇ cos q + ȧ) which, in the case of a constant acceleration ä, can be
recast as ∂tL = mä d(l sin q+a)/dt = dW/dt, with the obvious definition
of the function W :

W (q, t) = mä(l sin q + a(t)).



78 2 Lagrangian Systems

4. The energy function is given, as usual, by E = q̇ ∂q̇L−L, or, performing
the calculations,

E =
1
2
m(l2q̇2 − ȧ2) − mgl cos q.

Generally, one always has dE/dt = −∂tL which, in this particular case,
takes the value −dW/dt. This implies that d(E + W )/dt = 0 so that
the quantity I = E + W is a constant of the motion, called Painlevé’s
integral.

Owing to the constant acceleration, which allows us to obtain, by inte-
gration, the velocity and the displacement laws, we are able to calculate
Painlevé’s integral which, after simplification and elimination of constant
terms, is written:

I(q, q̇) =
1
2
ml

(
lq̇2 − 2g cos q + ä sin q

)
.

5. In the frame where the point of suspension is at rest, the kinetic energy
is simply T = 1

2ml2q̇2. To the gravitational potential energy, one must
add the potential driven energy

Vtrans = ma(e) · Rcm = mä × (a + l sin q).

Up to a time dependent function only, the Lagrangian is written:

L(q, q̇, t) =
1
2
m

(
l2q̇2 + l (g cos q − ä(t) sin q)

)
,

which corresponds to a pendulum in an apparent gravitational field.
When the acceleration is constant, this Lagrangian does not depend ex-
plicitly on time. There exists a constant of the motion, which is precisely
Painlevé’s integral I.

2.3. Application of Noether’s Theorem
[Statement p. 58]

1. The Lagrangian L = T − V is easily obtained:

L(x, y, ẋ, ẏ) =
1
2
m(ẋ2 + ẏ2) − V (x − 2y).

Let X = x + s, Ẋ = ẋ. In order to leave the kinetic energy unchanged,
the new variable Y must fulfill Ẏ = ẏ, hence Y = y + a. The potential
energy must be invariant as well, x−2y = X−2Y , which implies a = s/2.
The transformation group that leaves the Lagrangian invariant is given
by:

X = x + s; Y = y + s/2.
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2. Noether’s theorem can be applied safely. There exists a constant of the
motion

I = (∂ẋL) (dX/ds)|0 + (∂ẏL) (dY/ds)|0

or: I = ẋ +
ẏ

2
= const.

One can directly check this property starting from the two Lagrange’s
equations mẍ = −V ′, mÿ = 2V ′, and eliminating the potential derivative
to get ẍ + 1

2 ÿ = 0 which, after integration, gives again the result of
Noether’s theorem.

2.4. Foucault’s Pendulum
[Statement and Figure p. 59]

1. Let us adopt the axis conventions represented in Fig. 2.2. In the labo-
ratory rotating frame, the point of suspension of the pendulum lies at
altitude l. At equilibrium, the pendulum mass is placed at the ori-
gin. For a small deviation θ with respect to the vertical, the altitude
is z = l(1− cos θ) ≈ lθ2/2. Let us perform an approximate calculation of
the gravitational potential energy: V = mgz ≈ (mglθ2)/2. Furthermore,

θ2 ≈ sin2 θ =
OM2

l2
=

x2 + y2

l2
.

This leads to an approximate expression for the gravitational potential:

V (x, y) = mg
x2 + y2

2l
.

2. The pendulum coordinates in the frame attached to the Earth are by
definition (x, y, z). The pendulum velocity in this frame is thus (ẋ, ẏ, ż).
For a small deviation from equilibrium, the coordinates x and y are of
order lθ, whereas z is of order lθ2, hence negligible with respect to the
horizontal components. It is then fully justified to consider that the
motion takes place in the horizontal plane and that the relative velocity
is given by:

vr = ẋ n + ẏ w.

3. The vector n is in the plane defined by the pole axis and the true vertical
z. As a consequence, the unit vector along the pole axis Z is in the plane
formed by the vectors (n,z). A simple analysis based on the various
projections shows that:

Z = cos λ n + sinλ z.
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4. The instantaneous rotation vector is directed along the pole axis: Ω =
ΩZ. Let M0 represent the coincident pendulum point at a given time.
The driving velocity is simply expressed as ve = Ω × OM0. Using the
definition

OM0 = xn + y w + (RE + z)z

and the previous relation to express the instantaneous rotation vector,
one obtains the equation which gives the driving velocity:

ve = −Ωy sin λ n + Ω(x sinλ − (RE + z) cos λ) w + Ωy cos λ z. (2.14)

5. The absolute velocity of the pendulum in the Galilean frame is obtained
by summing the relative velocity and the driving velocity given in Ques-
tions 2 and 4: va = vr + ve. The kinetic energy is obtained from
T = 1

2mv2
a. Taking into account the small value Ω ≈ 10−5rad/s, val-

ues around unity for x, y , the very small value of z and the very large
value of RE ≈ 106 m, one must retain in the expression for T the terms
Ωx, Ωy and REΩ2 (order 10−5) but one can neglect the terms Ω2x2,
Ω2y2, Ωz and Ω2xz (order 10−10). Lastly, the Lagrangian L is the differ-
ence between the kinetic energy T and the potential energy as given in
Question 1. It is of the form:

L =
1
2
m

[
ẋ2 + ẏ2 − 2Ωẋy sin λ + 2Ωẏ(x sin λ − RE cos λ)

−REΩ2x sin(2λ)
]
− mg̃(x2 + y2)

2l

up to an uninteresting constant mΩ2R2
E cos2 λ/2 and in which we intro-

duced the effective gravitational field g̃ = g − Ω2RE cos2 λ modified by
the centrifugal force.

6. We are concerned now by the Lagrange equations giving the motion in
the horizontal plane. Starting from the previous Lagrangian and applying
the traditional recipe (2.4), one obtains the equations of motion:

ẍ − 2Ωẏ sinλ +
g̃

l
x +

1
2
REΩ2 sin(2λ) = 0;

ÿ + 2Ωẋ sin λ +
g̃

l
y = 0.

7. Let define x̃ = x − xe and substitute this value in the first Lagrange
equation; the arbitrary value xe is then chosen in order to cancel the
constant term in the resulting equation. Owing to the fact that the
value REΩ2 ≈ 10−3 m/s2 is very small as compared to g ≈ 10m/s2, it
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is legitimate to approximate g̃ ∼= g, in which case the result takes the
following form:

xe = −RElΩ2 sin(2λ)
2g

.

The set x̃ = 0, y = 0 is a solution of the equations of motion; indeed this
is the equilibrium solution. Thus at equilibrium, the pendulum is not
oriented along the true vertical, but along the apparent vertical, which
makes an angle

α ≈ sinα =
xe

l
= REΩ2 sin

2λ

2g

with respect to the true vertical. This deviation is due to the centrifugal
force. It is maximum on the 45th parallel.

8. The coupled differential equations to be solved are rewritten:

¨̃x − 2Ωẏ sin λ +
g̃x̃

l
= 0;

ÿ + 2Ω ˙̃x sin λ +
g̃y

l
= 0.

Let us introduce the complex variable u = x̃ + iy. Multiply the second
Lagrange equation by i and add the first one; the auxiliary variable u
occurs naturally in the unique differential equation:

ü + 2iΩu̇ sinλ +
g̃

l
u = 0.

Let us put u(t) = U(t)eirt, substitute in the previous equation and choose
r = −Ωsin λ in order to get rid of the U̇ term. Defining

ω2 =
g

l
+ Ω2 sin2 λ − Ω2 RE

l
cos2 λ.

the resulting equation is written as Ü + ω2U = 0.

One has Ω2 ≈ 10−9 s−1 while Ω2(RE/l) ≈ 10−3 s−1. It is thus fully
justified to neglect the second term as compared to the third one so that:

r = −Ω sin λ;

ω2 = ω2
0 − Ω2 RE

l
cos2 λ,

where ω0 =
√

g/l is the proper angular frequency of the pendulum in a
Galilean frame. The solution of the equation Ü + ω2U = 0 is trivial and
gives U = X + iY = Aeiωt + Be−iωt.
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It is always possible to choose the origin of time and the axis orientation
in order to obtain X(t) = A cos ωt; Y (t) = B sin ωt. In this system of
reference, the pendulum describes an ellipse with an angular frequency
ω. In the complex plane, the multiplication by eirt to switch from the set
X,Y to the set x, y is just a rotation of angle rt. In other words, the axes
of the ellipse turn slowly in time with the angular velocity |r| = Ωsin λ.

At the equator λ = 0 so that r = 0 and

ω =

√
ω2

0 − Ω2
RE

l
.

The pendulum oscillates with an angular frequency slightly smaller than
its proper value.

At the pole λ = π/2, then r = −Ω and ω = ω0. The pendulum
oscillates with its proper angular frequency and the ellipse axes make a
complete revolution in one day (see Fig. 2.7).

Fig. 2.7 Different types of trajectories for the ellipse drawn on the ground for
three different initial release conditions. For these three cases r/ω = 1/10. On

the left hand side, the pendulum is released with a
tangential velocity opposite to the driving velocity; in the middle,
the pendulum is released with no initial velocity and on the right

hand side one has a situation intermediate between the previous cases

2.5. Three-particle System [Statement p. 61]

A – Changing coordinates
1. In changing the origin q′i = qi − a, the velocities do not vary q̇′i = q̇i,

neither do the relative distances q′i − q′j = qi − qj . The Lagrangian is
invariant and one deduces the following constant of the motion (this is
also a consequence of Noether’s theorem):

P =
∑

i

∂q̇i
L,
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or P = m (q̇1 + q̇2 + q̇3) is a constant of the motion.

This is the total momentum of the system.

2. Inverting the proposed relations, one gets: q1 = X + x/2 − y/(3α); q2 =
X − x/2 − y/(3α); q3 = X + 2y/(3α). It is easy to obtain the kinetic
energy:

T =
1
2
m (q̇2

1 + q̇2
2 + q̇2

3) = m

[
3
2
Ẋ2 +

1
4
ẋ2 +

1
3α2

ẏ2

]
.

The desired α value must satify 3α2 = 4, or

α =
2√
3

With the proposed change of variables, one is able to write the Lagrangian
under the form:

L =
3
2
mẊ2 +

1
4
m (ẋ2 + ẏ2) − V1(−

√
3

2
y − 1

2
x) − V2(

√
3

2
y − 1

2
x) − V3(x).

We notice that the X coordinate is cyclic. Consequently we find a con-
stant of the motion ∂ẊL = 3mẊ, which owing to the definition of the X
variable, is precisely the quantity introduced in the first question. One
can always choose a frame in which this quantity cancels. The Lagrangian
depends on two degrees of freedom x and y.

3. In a cyclic permutation, the X variable remains unchanged while the new
variables

x′ = q2 − q3 and y′ =
2√
3
(q1 −

1
2
(q2 + q3))

are related to the old ones through

x′ = −
√

3
2

y − 1
2
x and y′ =

√
3

2
x − 1

2
y.

Replacing those values in z′ = x′ + iy′, one finds z′ = (x+ iy)(− 1
2 + i

√
3

2 )
or:

z′ = z exp(2iπ/3).

Of course, one has |z′|2 = (x′2 + y′2) = |z|2 = (x2 + y2).

It is just a matter of simple calculation to check that, with the new
coordinates, the Lagrangian is written:

L =
3
2
mẊ2 +

1
4
m (ẋ′2 + ẏ′2) − V1(x′) − V2(−

√
3

2
y′ − 1

2
x′)

−V3(
√

3
2

y′ − 1
2
x′).



84 2 Lagrangian Systems

B – Harmonic approximation case
4. The harmonic potential is written, following the general expression,

1
2
k

[
(
√

3
2

y +
1
2
x)2 + (

√
3

2
y − 1

2
x)2 + x2

]
,

which finally reduces to 3
4k(x2 + y2). The corresponding Lagrangian can

be recast, after some rearrangement, in the form:

L =
3
2
mẊ2 +

1
4
(mẋ2 − 3kx2) +

1
4
(mẏ2 − 3ky2)

=
3
2
mẊ2 + Lho(x, ẋ) + Lho(y, ẏ).

The X coordinate is cyclic and we are brought back to the constant of
the motion P already studied. This is not surprising, since this property
is independent of the form of the potential. More astonishing is the fact
that the Lagrangian can be decomposed into two decoupled parts. This
property is specific to the harmonic potential. Since these parts are time
independent, one can ascribe to each of them a constant of the motion
analogous to the energy function Ex(x, ẋ) = ẋ ∂ẋLho(x, ẋ)−Lho(x, ẋ) and
a similar relation for the Lagrangian Lho(y, ẏ). After simple calculations,
one arrives at the desired result:

P = 3mẊ;

Eho(x, ẋ) =
1
4
(mẋ2 + 3kx2);

Eho(y, ẏ) =
1
4
(mẏ2 + 3ky2)

are constants of the motion.
The proper mode in x corresponds to a vibration of the two first par-

ticles, the third one remaining at rest. The proper mode in y corresponds
to a vibration of the third particle in opposition to the group formed by the
others.

C – Hénon and Heiles potential
5. The Toda’s potential

V (x, y) = V0

[
exp(−(

1
2
x +

√
3

2
y)/a) + exp((

√
3

2
y − 1

2
x)/a) + exp(x/a)

]
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Fig. 2.8 Equipotential curves, for the Hénon and Heiles potential, obtained
with the value a = 1. We remark the three-fold symmetry,

the existence of a minimum and three saddle points

gives, for small distances, the Hénon’s potential if the expansion is pur-
sued to third order

V (x, y) = V0

[
3 +

3
4a2

(x2 + y2) +
1

8a3
(x3 − 3xy2)

]
.

The equipotential curves are represented in Fig. 2.8. The corresponding
Lagrangian is easily obtained:

L =
1
4
m(ẋ2 + ẏ2) − V0

[
3 +

3
4a2

(x2 + y2) +
1

8a3
(x3 − 3xy2)

]
.

6. We already showed that the term x2 + y2 = |z|2 is invariant under coor-
dinate permutations. This is also the case of the term x3 − 3xy2 if one
notices that it can be written as

x3 − 3xy2 =
1
2
(z3 + z̄3) =

1
2
(z′3 + z̄′3) = x′3 − 3x′y′2.

Hence:

V (x, y) = V (x′, y′).
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Since passing from coordinates (x, y) to coordinates (x′, y′) corresponds
in the plane to a rotation of 2π/3, the previous invariance shows a three-
fold symmetry for the potential. Moreover, V (x = 2a, y) = 7V0; this
proves that the straight line x = 2a is an equipotential curve. Of course,
the same property holds for the lines obtained by symmetry. These three
lines intersect to form an equipotential equilateral triangle with the value
7V0. These properties are clearly seen in the Fig. 2.8.

2.6. Vibration of a Linear Triatomic
Molecule: The “Soft” Mode
[Statement p. 63]

1. Let xi be the deviation from equilibrium for atom i. The force acting
on the first atom is given by F1 = k(x2 − x1), on the third one F3 =
k(x2 − x3) and on the second one F2 = −F1 − F3 = k(x1 + x3 − 2x2)
since the molecule is at equilibrium. These forces arise from the potential
V = 1

2k(x2 −x1)2 + 1
2k(x3 −x2)2 since one has Fi = −∂xi

V . The kinetic
energy is easy to obtain and the Lagrangian is deduced as L = T − V :

L =
1
2
mẋ2

1 +
1
2
Mẋ2

2 +
1
2
mẋ2

3 −
1
2
k(x2 − x1)2 −

1
2
k(x3 − x2)2.

The Lagrange equations are obtained by the classical recipe (2.4):

ẍ1 = Ω2(x2 − x1);
rẍ2 = Ω2(x1 + x3 − 2x2);
ẍ3 = Ω2(x2 − x3)

with the proposed definition of the parameters Ω =
√

k/m and r = M/m.
These are coupled linear differential equations.

2. The proper modes are sought by imposing the same angular frequency ω
on each coordinate, hence by seeking for a solution of the form x1 = Aeiωt,
x2 = Beiωt, x3 = Ceiωt. Lagrange’s equations become:

−ω2A = −Ω2A + Ω2B;
−rω2B = Ω2A + Ω2C − 2Ω2B;
−ω2C = −Ω2C + Ω2B.

Let us simplify these equations dividing by Ω2 and defining λ = ω/Ω.
They can then be written in a matrix form:

⎛

⎝
1 − λ2 −1 0
−1 2 − rλ2 −1
0 −1 1 − λ2

⎞

⎠

⎛

⎝
A
B
C

⎞

⎠ =

⎛

⎝
0
0
0

⎞

⎠.
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This equation has a non trivial solution only if the matrix determi-
nant vanishes. Performing the calculations, one finds the following three
solutions: λ2 = 0 with the eigenvector A = B = C, λ2 = 1 with
A = −C,B = 0 and λ2 = (r + 2)/r = λ2

3 with A = C,B = −2A/r.
Arbitrarily normalizing the eigenvectors, the final solution is obtained
as:

ω = 0 mode

⎛

⎝
1
1
1

⎞

⎠, ω = Ω mode

⎛

⎝
1
0
−1

⎞

⎠,

ω =

√
r + 2

r
Ω mode

⎛

⎝
1

−2/r
1

⎞

⎠.

3. In this particular case, we observe the existence of a soft mode ω = 0 for
which A = B = C. Substituting this solution in the Lagrange equations,
results in ẍi = 0, ∀i, which means ẋ1 = const, rẋ2 = const, ẋ3 = const.
These conditions lead to the conservation of the total linear momentum

P = mẋ1 + Mẋ2 + mẋ3 = const.

This property is the consequence of the Lagrangian invariance under a
continuous space translation. The solution of the soft mode is given by:

x1(t) = x2(t) = x3(t) = at + b.

In such a mode, the system moves as a bulk at constant speed. It is not
interesting from the physical point of view, because one can always work
in a Galilean frame where the total linear momentum vanishes. In such
a frame, the soft mode corresponds to the equilibrium solution.

4. The mode ω = Ω imposes B = 0 and C = −A. The mass M remains
at rest whereas the two masses m vibrate with the same amplitude and
opposite phases.

The mode ω = [(r + 2)/r]1/2Ω imposes C = A and B = −(2/r)A. The
two masses m vibrate in phase, whereas the mass M vibrates with the
opposite phase, with a reduced or enhanced amplitude depending on the
r value.

5. The most general solution for the differential system is written
⎛

⎝
x1(t)
x2(t)
x3(t)

⎞

⎠ = (at + b)

⎛

⎝
1
1
1

⎞

⎠ + BeiΩt

⎛

⎝
1
0
−1

⎞

⎠ + Ceiλ3Ωt

⎛

⎝
1

−2/r
1

⎞

⎠.

Of course, one must consider the real part of this complex number.
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Introducing the proposed initial conditions, a lengthy but straightforward
calculation leads to the equations of motion:

x1(t) =
p

2m + M

[
t +

2 + r

2Ω
sin(Ωt) +

r

2Ωλ3
sin(λ3Ωt)

]
;

x2(t) =
p

2m + M

[
t − 1

Ωλ3
sin(λ3Ωt)

]
;

x3(t) =
p

2m + M

[
t − 2 + r

2Ω
sin(Ωt) +

r

2Ωλ3
sin(λ3Ωt)

]
.

2.7. Elastic Transversal Waves in a Solid
[Statement and Figure p. 64]

1. We place at each node a mass equal to that of a segment, or m = ρSδ.
Since the node is free to oscillate only in the vertical direction, its velocity
is q̇i and its kinetic energy Ti = 1

2ρSδ q̇2
i . The total kinetic energy is

obtained by summing over nodes:

T =
1
2

∑

i

ρSδ q̇2
i .

2. The shear force on the slice i is Fi = 2μS(qi+1 − qi)/δ. The virtual work
of this force on the node is δWi = Fi δqi =2μS(qi+1−qi) δqi/δ. It appears
that this work can be expressed as the negative of a potential function
δWi = −dVi, this last being given by the expression:

Vi =
μS

δ
(qi+1 − qi)2.

3. The total elastic potential energy is of course the sum of the energy for
each slice, and the Lagrangian is the difference between the kinetic and
potential energies. Thus:

L(q, q̇) =
1
2

∑

i

ρSδ q̇2
i −

∑

i

μS

δ
(qi+1 − qi)2.

4. From this Lagrangian, one deduces d(∂q̇i
L)/dt = ρSδ q̈i and ∂qi

L =
2μS (qi+1 + qi−1 − 2qi) /δ (to calculate the last term, don’t forget to take
into account a contribution coming from the slice labelled i, and another
one coming from the slice labelled i − 1). The Lagrange equations lead
to coupled differential equations:

ρ q̈i = 2μ (qi+1 + qi−1 − 2qi) /δ2.
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Let us choose a field function ϕ(x, t) which is identified with the node
coordinates for each time: ϕ(x = iδ, t) = qi(t). In this case, in the limit
of small δ values, one has q̈i = ∂2

t2 ϕ|x=iδ and (qi+1 + qi−1 − 2qi) /δ2 =
∂2

x2 ϕ|x=iδ. Taking the limit δ → 0, the Lagrange equations are repre-
sented by a unique partial differential equation:

1
c2

∂2ϕ(x, t)
∂t2

=
∂2ϕ(x, t)

∂x2
with c =

√
2μ

ρ
.

This is precisely the equation for the propagation of a wave with speed c.

2.8. Lagrangian in a Rotating Frame
[Statement p. 65]

1. The Galilean frame is denoted Oxyz and the Cartesian coordinates of
the particle in this frame x, y, z. The rotating frame is denoted OXY Z
and the Cartesian coordinates of the particle in this frame X,Y,Z. It is
easy to obtain the relation between the two sets of coordinates:

x = X cos φ − Y sin φ; y = X sin φ + Y cos φ; z = Z.

Differentiating these expressions and inserting them in the kinetic energy
T = 1

2m(ẋ2 + ẏ2 + ż2), one obtains the following expression:

T =
1
2
m(Ẋ2 + Ẏ 2 + Ż2) +

1
2
m(X2 + Y 2) φ̇2 + m(XẎ − Y Ẋ) φ̇.

The first term Tr = 1
2m(Ẋ2 + Ẏ 2 + Ż2) is just the kinetic energy in the

rotating frame.

Instead of Cartesian coordinates, one can also use the polar coordinates
(ρ, ψ, Z) in the same frame. With the traditional definition X = ρ cos ψ,
Y = ρ sin ψ, the previous expression for the kinetic energy can be put
into the form:

T =
1
2
m(ρ̇2 + ρ2ψ̇2 + Ż2) +

1
2
mρ2 φ̇2 + mρ2 φ̇ψ̇.

2. Without loss of generality, the kinetic energy can be rewritten as T =
Tr − V . For a free particle, Lagrange’s equation is written d(∂q̇T )/dt −
∂qT = 0. In the rotating frame, one can identify T with a Lagrangian
L for which Tr is the kinetic energy and V plays a role of a potential.
In this case, V = − 1

2mρ2 φ̇2 − mρ2 φ̇ψ̇. This is precisely the potential
which gives rise to the inertial Coriolis and centrifugal forces. Moreover,
in the rotating frame, the OZ component of the angular momentum
L = OM × mVr is simply Lz = −m(ẊY − Ẏ X)=mρ2ψ̇.
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Finally the potential is written:

V = −φ̇Lz −
1
2
mρ2 φ̇2.

3. Generally, for the case of a pure rotation, the velocity addition law is
v = vr + ω × r. Substituting this expression into the kinetic energy
T = 1

2mv2 and equating to Tr − V , one finds the expression for

V = −mvr · (ω × r) − 1
2
m(ω × r)2.

The first term is a mixed product, which can be rewritten −ω ·(r×mvr),
that is −ω · L. Finally:

V = −ω · L − 1
2
m(ω × r)2.

4. In case of the bead moving on the hoop, ω = φ̇ ẑ, vr = Rθ̇uθ whence
Tr = 1

2mR2θ̇2 and the gravitational potential is mgR cos θ. To it, one
must add the potential due to inertial forces V = −ω · L − 1

2m(ω × r)2.
The angular momentum in the hoop frame is perpendicular to its plane
and thus ω · L = 0. We are left with the term − 1

2m(ω × r)2, which is
− 1

2mR2 sin2 θ φ̇2. One deduces the Lagrangian of the system:

L =
1
2
mR2θ̇2 +

1
2
mR2 sin2 θ φ̇2 − mgR cos θ.

5. If the system rotates with a small angular velocity, the centrifugal term
(ω × r)2, which is of second order in ω, is negligible compared with the
Coriolis term, which is of first order. Using the result of the first question,
the kinetic energy is written simply:

T =
1
2
m(Ẋ2 + Ẏ 2 + Ż2) + m(XẎ − Y Ẋ) φ̇

and the Lagrange equations read: mẌ = 2mφ̇ Ẏ ; mŸ = −2mφ̇ Ẋ.

Consider now a particle of mass m and charge qe, placed in a constant
magnetic field along Oz with amplitude B. The Lorentz force qev × B
has the components (Ẏ B,−ẊB, 0) and the fundamental principle of dy-
namics leads to the equations of motion: mẌ = qeB Ẏ , mŸ = −qeB Ẋ.
They are formally identical to those in a rotating frame, if one makes the
substitution:

B =
2mφ̇

qe
.
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2.9. Particle Drift in a Constant
Electromagnetic Field
[Statement p. 66]

1. Using the electric and magnetic fields, and the particle velocity (ẋ, ẏ, ż),
the Lorentz force is easily calculated, F = qe(E + v × B):

Fx = qe(E + Bẏ);
Fy = −qeBẋ;
Fz = 0.

2. The electric potential U follows from (up to a constant that can be taken
with a null value) the equation: E = −∇U . With the previous expres-
sion, an integration provides at once:

U(x, y, z) = −Ex.

3. The equation B = ∇ × A must be satisfied. With the form of the
potential A = (−yB, 0, 0),

∇ × A = (0, 0,−∂y(−yB)) = (0, 0, B) = B.

The equation is thus satisfied. With the alternative expression A =
(0, xB, 0),

∇ × A = (0, 0, ∂x(xB)) = (0, 0, B) = B,

the equation is again verified. The curl being a linear operator, the half
sum of both expressions is also a solution.

4. Let us start with the first expression which leads to the generalized po-
tential: V = qe(Bẋy−Ex). With this expression, it is easy to check that
d(∂ẋi

V )/dt− ∂xi
V =Fxi

, with the force components as given by question
1. The particle is subject to the electromagnetic field only and can thus
be described in terms of the Lagrangian L = T − V , which is expressed
in Cartesian coordinates:

L(ẋ, ẏ, ż, x, y, z) =
1
2
m(ẋ2 + ẏ2 + ż2) + qe(Ex − Bẋy).

The z coordinate is cyclic; it follows that the constant of the motion
∂żL=mż = pz:

mż = pz = const.

The Lagrange equations for the two other variables give respectively:

mẍ − qeBẏ = qeE;
mÿ + qBẋ = 0.
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5. The same study can be repeated, using the alternative expression for the
vector potential that leads to the generalized potential V = −qe(Bẏx +
Ex). The new Lagrangian is:

L′(ẋ, ẏ, ż, x, y, z) =
1
2
m(ẋ2 + ẏ2 + ż2) + qe(Ex + Bxẏ).

The z variable is still cyclic and this Lagrangian provides us with the same
constant of the motion as before. This time, the y variable is cyclic as well
and this leads to another constant of the motion: ∂ẏL= mẏ + qeBx=py,

mẏ + qeBx = py = const.

This last equation could have been derived by integration of the second
equation of the previous question. The Lagrange equation for the x
coordinate is identical to the corresponding equation coming from the
Lagrangian of the previous question. It thus provides nothing new.

6. It is easy to check that L′ − L=qeB(ẏx + ẋy), an expression that can be
recast under the form:

L′ = L + qeB
d(xy)

dt
.

Both Lagrangians differ only by a total derivative with respect to time of
the function F (x, y) = qeB xy; as a consequence, they lead to the same
set of Lagrange equations.

7. With the extra condition E = 0, the first Lagrange equation can be
integrated and we are left with an additional constant of the motion
mẋ − qeBy=px. To simplify the notation, let us put px = a, py = b,
pz = c. To summarize the results of the two previous questions, one
must solve the following differential system:

mẋ − qeBy = a;
mẏ + qeBx = b;

mż = c.

With a suitable choice of the time origin, the last equation can be inte-
grated to give z = (c/m) t. Now by a suitable choice of the spatial origin,
that is taken at xc = b/(qeB) and yc = −a/(qeB), it is possible to cancel
the terms a, b. The two first equations form a coupled system that can be
solved easily introducing the complex variable w = x + iy. This system
is now equivalent to the unique differential equation ẇ + iωw = 0.
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The condition for the initial time t = 0, imposes w(0) = R, and the
equations of the motion become:

x(t) = R cos(ωt); y(t) = −R sin(ωt); z(t) =
c

m
t.

The unknown constant R is determined from the initial velocity v0 via
R = mv0/(qeB).

Thus, the projection of the trajectory in a plane perpendicular to the
magnetic field is just a circle of center C(xc, yc) and radius R. The motion
along Oz is performed at constant speed. Consequently, the particle
motion in space is a helix.

This important result can be found as well by a reasoning “a la Newton”,
equating the centrifugal force with the Lorentz force.

8. Let us come now to the general case E �= 0 and the equations of motion
as stated in Questions 4 and 5. The integration concerning the z variable
is performed at once z(t) = (pz/m) t. If we make use of the cyclotron
angular frequency ω = qeB/m, the equation for y with a null velocity
at the origin provides the relation ẏ = −ωx. Substituting this in the
equation concerning x, one finds the differential equation ẍ + ω2x =
qeE/m, that can be integrated without any difficulty. Inserting this result
in the equation ẏ = −ωx allows us to completely determine y(t) with a
single integration. To summarize, the general solution is given by:

x(t) =
qeE

mω2
(1 − cos ωt);

y(t) =
qeE

mω2
sin ωt − qeE

mω
t;

z(t) =
pz

m
t.

If one works in the frame that drifts along Oy (thus perpendicular to E
and B) with the speed −(qeE)/mω = −E/B, we see that the motion is
still a helix, with axis Oz, characterized by the angular velocity ω. This
is precisely the cyclotron motion studied in the previous question.

A few types of trajectories are represented in the Fig. 2.9.

9. The Lagrangian does not depend on time explicitly. The general theory
predicts a constant of the motion – the energy – given by E = ẋ∂ẋL +
ẏ∂ẏL+ ż∂żL−L (be careful to avoid confusion between the energy E and
the electric field E). Using either form for the Lagrangian, an explicit
calculation gives:

E =
1
2
m(ẋ2 + ẏ2 + ż2) − qeEx =

1
2
mv2

0 .
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drift
B

E

Fig. 2.9 Trajectories in the plane xy for a charged particle placed in a constant
crossed electromagnetic field. The trajectory equations are calculated in

Question 8. The drift direction is the axis y′y. This case corresponds to a null
drift along z′z . The upper trajectory corresponds to a regime with a weak
magnetic field, while the bottom one corresponds to a regime with a large
magnetic field. The intermediate case corresponds to a special value of the

magnetic field which highlights the transition between both types of regimes

2.10. The Penning Trap [Statement p. 67]

1. Since there is no charge in the region where the electric field is present,
Poisson’s equation reduces simply to the Laplace equation ΔU = 0, an
equation that is manifestly satisfied by the proposed form of the potential

ΔU = ∂2
x2U + ∂2

y2U + ∂2
z2U =

1
2
k(−1 − 1 + 2) = 0.

The equipotential surfaces represented in Fig. 2.10 are hyperboloids of
revolution. They give also the form of the electrodes which are held at
fixed potentials.

The scalar potential is given by the expression U = 1
4k(2z2 − x2 − y2)

and the vector potential can be chosen as A = 1
2 (−yB, xB, 0). The

generalized electromagnetic potential V = qe(U − ṙ · A) is written in
terms of Cartesian coordinates as

V =
1
4
kqe(2z2 − x2 − y2) − 1

2
qeB(ẏx − ẋy)
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and the Lagrangian (difference between the kinetic and potential ener-
gies) is:

L =
1
2
m(ẋ2 + ẏ2 + ż2) + qe[

1
4
k(x2 + y2 − 2z2) +

1
2
B(ẏx − ẋy)].

Fig. 2.10 Equipotential surfaces for the scalar potential employed in a
Penning trap. A trajectory for the particle confined inside the trap is also

shown in the figure

2. Applying (2.4), Lagrange’s equations can be derived as:

mẍ = qe(Bẏ +
1
2
kx);

mÿ = qe(−Bẋ +
1
2
ky);

mz̈ = −qekz

The equation for the z variable can be written z̈+ω2
az = 0, with the axial

angular frequency ωa given in the statement. This equation is integrated
at once to give:

z(t) = a cos(ωat + φ).

It reflects a sinusoidal behaviour.
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3. The first two equations may be gathered into a single equation by in-
troducing the complex variable w = x + iy; they lead to the differential
equation ẅ + iωc ẇ − ω2

aw/2 = 0 using the cyclotron and axial angu-
lar frequencies ωc and ωa given in the statement. One seeks a solu-
tion of the form w = eirt. One then obtains the characteristic equation
r2 + ωcr + ω2

a/2 = 0 which has two solutions ωm and ω̃c:

x(t) + iy(t) = Rce
−iω̃ct + Rme−iωmt;

ωm =
1
2

(
ωc −

√
ω2

c − 2ω2
a

)
; ω̃c = ωc − ωm.

The particle oscillates around the plane z = 0. However, in order for it to
remain confined in the trap, the coordinates x, y cannot be allowed to go
to infinity which implies that the two roots must be real. This condition
imposes the constraint ω2

c > 2ω2
a that is:

0 < k <
qeB

2

2m
.

4. If the magnetic field is large enough, the previous condition is satisfied;
moreover, one has ωc 	 ωa. In this case, the largest angular frequency
may be identified with the cyclotron frequency ω̃c

∼= ωc and the small-
est one, known as the magnetron frequency, is ωm

∼= ω2
a/(2ωc)=k/(2B).

There is a superposition of two motions; one is a slow rotation with angu-
lar frequency ωm, the other is a rapid rotation with angular frequency ωc.

In the plane z = 0, the field is radial and its value at a distance R
from the symmetry axis is E = kR/2. We saw in Problem 2.9 that
in a constant electric field, the drift speed in a large magnetic field is
E/B = kR/(2B); moreover this velocity is perpendicular to both the
electric and magnetic fields, so tangential in our case. The time needed
to describe a complete circle of radius R is τ = 2πR/(kR/2B)=4πB/k.
The drift frequency is thus ωd = 2π/τ or ωd = ωm. We thus recover the
result obtained with a more complete calculation.

An example of a trajectory is shown on Fig. 2.10. The small circular
motions are cyclotron motions, which roll up around the circular motion
with larger frequency, corresponding to the magnetron motion.

5. Since the Lagrangian does not depend explicitly on time, the energy is a
constant of the motion. Using the general relation (2.7), we obtain the
value for energy (the energy E must not be confused with the electric
field E): E = 1

2m(ẋ2 + ẏ2 + ż2) + 1
4qek(2z2 − x2 − y2), which can be

rewritten:

E =
1
2
m[(ẋ2 + ẏ2 + ż2) +

1
2
ω2

a(2z2 − x2 − y2)] = const.
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Substituting the time law in this expression, we obtain, after an extensive
but straightforward calculation, the value for the energy:

E =
1
2
m[(ω̃2

c − ω2
a/2)R2

c + (ω2
m − ω2

a/2)R2
m + ω2

aa2].

As ω̃c > ωa and ωm < ωa, the contribution to the energy due to the
cyclotron term is positive, whereas the contribution due to the magnetron
term is negative. It can be noticed that if the particle loses its energy –
for instance by collision processes with other particles – the magnetron
radius increases and the particle can touch the trap wall.

In this type of trap, it is possible to store particles for very long times,
typically of order of a year.

2.11. Equinox Precession
[Statement and Figures p. 68]

1. The Sun is considered as a spherical object; from the gravitational point
of view, it behaves as a pointlike mass MS located at its center S. Let
O be an origin located at the center of mass of the Earth and OXY Z
a frame attached to it, with OZ along the pole axis. Let dm be a mass
element of the Earth placed at position r = (x, y, z) with respect O and
R(X,Y,Z) = OS the position vector of the Sun in this frame. Obviously
SM =

√
(R − r)2. The gravitational potential arising from the force due

to the Sun on the mass element, dm, is

dV = −GMS dm

SM
= − GMSdm√

R2 + r2 − 2R · r
.

On the other hand, one has the condition r � R and it is legitimate to
perform an expansion up to second order for the square root. We thus
arrive at:

dV = −GMS dm

R

[
1 +

r · R
R2

+
3(r · R)2 − r2R2

2R4

]
.

The last term in the right hand side is called the quadrupole interaction.

To obtain the total gravitational potential, one must integrate the pre-
vious expression over the whole of the Earth’s volume. The first term in
brackets gives simply the mass ME . Since O is chosen at the center of
mass, one has ∫

dmxi = 0

(as usual, we will often write x1 = x, x2 = y, x3 = z) and the second
term cancels. The second order terms lead to moments and products of
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inertia. Let us choose a reference system with axes along the inertial
axes. Since the Earth is a solid with cylindrical symmetry along OZ, one
has two identical moments of inertia

I =
∫

dm(x2 + z2) =
∫

dm(y2 + z2)

and a third distinct moment I3 =
∫

dm(x2 + y2); of course the products
of inertia are null by definition. With this choice (which is compatible
with the choice of OZ along the pole axis), the potential can be written
in a much simpler way:

V = −GMS

R

[
ME + (I3 − I)

X2 + Y 2 − 2Z2

2R4

]
.

Let us emphasize that for a spherical Earth I3 = I and the potential
reduces to the usual expression V = −(GMSME/R).

Because of the cylindrical symmetry, the OX and OY axes can be
chosen anywhere in the equatorial plane. Consequently, let us take OX
in the plane SOZ and let us recall that φ is the angle between the pole axis
OZ and the direction pointing to the Sun OS. With these conventions,
we have the relations X = R sin φ, Y = 0, Z = R cos φ, which, after
they have been inserted into the potential expression, lead to the desired
formula:

V = −GMS

R

[
ME +

(I3 − I)
2R2

(1 − 3 cos2 φ)
]
.

Since the Earth is flattened at the pole, I3 > I and the potential is
minimized when φ = π/2; the torque coming from the second term in
the potential tends to align the pole axis perpendicular to the direction
of the Sun.

2. Let Sxyz be a Galilean frame centered at the Sun, with the Sxy plane
in the ecliptic plane. For instance, one can choose the Sx axis along the
Earth-Sun direction when the Earth is at perihelion (in our particular
case this does not make sense since the Earth’s orbit is assumed to be
circular). Since, during one revolution, the pole axis maintains a constant
angle θ with respect to Sz, it is seen that the φ angle actually varies
during a year.

Denoting by α the angle between Sx (the Earth’s direction at the
reference time) and SO (the Earth’s direction at the considered time), a
small graph convinces us that we have the relation:

cos φ = − cos α sin θ.
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Inserting this expression in the potential expression and considering that
θ does not vary during a revolution, it is legitimate to consider the po-
tential as averaged over a full year:14

V (R, θ) = (1/2π)

2π∫

0

V (R, θ, α) dα.

Finally, we arrived at:

V (R, θ) = −GMS

R

[
ME +

(I3 − I)
2R2

(1 − 3
2

sin2 θ)
]
.

3. Let Oxyz be a frame attached to the Earth, but with axes which are fixed
with respect to the stars so that the motion of Oxyz with respect to the
Galilean frame is just the revolution of the Earth around the Sun. Despite
the fact that the Earth rotates around the Sun, this motion is purely
translational (with speed α̇) since the axes of Oxyz remain always parallel
to the axes of the Galilean frame Sxyz. The only effect is a participation
in the total kinetic energy of the Earth. The rotation concerns the link
between OXY Z rigidly attached to the Earth and Oxyz.

The instantaneous rotation vector ω of the Earth originates from the
superposition of several motions. There is first the daily rotation around
the pole axis which contributes to ΩuZ . There is also the precession of the
plane XOZ around the Oz axis (responsible for the equinox precession)
which contributes to ψ̇uz and there is lastly the nutation which separates
the pole axis from the galactic vertical Sz and which contributes to θ̇uX .
Thus, the instantaneous rotation vector is ω = ΩuZ+ψ̇uz+θ̇uX . It must
be expressed in the frame attached to the inertial axes of the Earth; in
order to do this we remark that uz = − sin θ uY +cos θ uZ . Substituting
this in the previous expression, we are led to the required result:

ω = θ̇uX − ψ̇ sin θuY + (Ω + ψ̇ cos θ)uZ .

4. From Koenig’s theorem, the kinetic energy of the Earth is the sum of
the center of mass energy 1

2MER2α̇2 (the angular velocity of revolution
α̇ must be considered as constant) and the rotational energy 1

2 (Iω2
X +

Iω2
Y + I3ω

2
Z). Replacing the components of the rotation vector by those

obtained previously, one writes the total kinetic energy of the Earth, T ,
under the form:

T =
1
2
MER2α̇2 +

1
2

[
I(θ̇2 + ψ̇2 sin2 θ) + I3(Ω + ψ̇ cos θ)2

]
.

14 This crucial point can be justified by the perturbation theory developed in Chapter 7.
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5. It is sufficient to take the difference between the kinetic energy T , just ob-
tained, and the potential energy V from Question 2, to obtain the Earth
Lagrangian (let us remove the constant terms 1

2MER2α̇2 and GMSME/R
which are of no interest for the equations of the motion):

L =
[
I(θ̇2 + ψ̇2 sin2 θ) + I3(Ω + ψ̇ cos θ)2

]

+
GMS

R

[
(I3 − I)

2R2
(1 − 3

2
sin2 θ)

]
.

We remark that ψ is a cyclic variable and, thus, the conjugate momentum
pψ = ∂ψ̇L is a constant of the motion. Hence,

pψ = I sin2 θ ψ̇ + I3 cos θ (Ω + ψ̇ cos θ) = const.

The second Lagrange equation concerning θ is much more involved; it is
written explicitly as:

Iθ̈ =
1
2
(I − I3)ψ̇2 sin(2θ) − I3Ωψ̇ sin θ − 3

4
GMS

R3
(I3 − I) sin(2θ).

6. In fact, one can avoid a lot of unnecessary complications if one remarks
that θ = const (no nutation) and ψ̇ = const (precession with constant
angular velocity) is a solution. The first Lagrange equation is automat-
ically satisfied; as to the second one, it is also satisfied (neglecting the
term in ψ̇2 as compared to Ωψ̇, which is perfectly justified) providing
that the following relation, which gives precisely the precession speed, is
fullfiled:

ψ̇ = −3
2

GMS

ΩR3

I3 − I

I3
cos θ.

7. The Moon exerts on the Earth an analogous torque, which is far from
negligible. Assuming that the revolution plane of the Moon is that of the
ecliptic, one can perform again the same kind of calculations substituting
simply the Sun’s mass MS by the Moon’s mass MM and the Earth-Sun
distance R by the Moon-Earth distance rM . After these changes, the
expression for the precession due to the Moon is identical to that obtained
before.

We thus obtain:

β =
ψ̇M

ψ̇S

=
MM

MS

(
R

rM

)3

.

With the given data, one calculates β = 2.178.
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8. Since the Moon’s action reinforces that of the Sun, the total precession
speed is the sum of both contributions, namely ψ̇ = (1 + β)ψ̇S , or:

ψ̇ = −3
2

GMS

ΩR3
(1 + β)

I3 − I

I3
cos θ.

whence, after inversion, yields:

I3 − I

I3
=

2R3Ω|ψ̇|
3GMS(1 + β) cos θ

.

With the given data, one finds a flattening (I3 − I)/I3 = 3.25 × 10−3.

9. Let ρ be the constant mass density of the Earth. The shape of the Earth
is assumed to be that of an ellipsoid of revolution whose equation is
(X2 + Y 2)/a2 + Z2/c2 = 1 where a = Re is the equatorial radius and
c = Rp the polar radius of the Earth. The ellipsoidal volume is just
4πa2c/3 and the mass density ρ = 3ME/(4πa2c).

We now calculate

Izz =
∫

z2 dm = ρ

∫
z2 dxdydz

by making the change of variables u = x/a, v = y/a, w = z/c in order
to transform the domain of integration into a sphere with unit radius.
Then, one has

Izz = ρa2c3

∫
w2 dudvdw.

Introducing spherical coordinates, it can be shown that the value of the
integral is 4π/15. Consequently, Izz = MEc2/5. By cyclic permutation,
one also deduces Ixx = Iyy = MEa2/5. It is easy to obtain

I = Ixx + Izz = ME
a2 + c2

5
and I3 = Ixx + Iyy =

2
5
MEa2.

The flattening is obtained as (I3 − I)/I3 = (a2 − c2)/(2a2). If we now
introduce the mean radius of the Earth RE = (a + c)/2 we find that, to
first order in (a− c), the flattening is approximately equal to (a− c)/RE ,
or:

I3 − I

I3
=

Re − Rp

RE
.

With the value of the flattening obtained in the previous question, and the
mean radius of the Earth given in the statement, one calculates Re −Rp

= 20.7 km, which may be compared with the measured value 21.4 km.
The agreement is quite remarkable.
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2.12. Flexion Vibration of a Blade
[Statement and Figure p. 71]

The discontinuous model
1. The kinetic energy for segment i is simply Ti = 1

2dm v2
i . All the segments

are identical and have the same mass dm = μδ. Moreover, it is assumed
that each segment is displaced in a vertical plane by a quantity qi(t)
with respect to its equilibrium position. The velocity of the segment is
therefore vi = q̇i and the corresponding kinetic energy is Ti = 1

2μδ q̇2
i .

The total kinetic energy requires a sum over all segments:

T =
1
2
μδ

∑

i

q̇2
i .

2. In the vertical plane, the center of curvature Oi for segment i, with
coordinates (X,Z), is located at the intersection of the medians of Ai−1Ai

and AiAi+1 and the curvature radius Ri is the common value Ri =
OiAi−1 = OiAi = OiAi+1. Writing these relations, one has

(Z − qi−1)2 + (X − xi + δ)2 = R2
i ,

(Z − qi)2 + (X − xi)2 = R2
i ,

(Z − qi+1)2 + (X − xi − δ)2 = R2
i ;

multiplying by 2 the second equation and subtracting the other two, we
are led (neglecting the terms in q2 as compared to the terms in qZ) to:
Z(qi+1 +qi−1−2qi) = δ2. On the other hand, δ is small; one has Z ≈ Ri,
whence the desired relation:

1
Ri

=
|qi−1 + qi+1 − 2qi|

δ2
.

3. The elastic potential energy for the segment i is

Vi =
EI

2R2
i

δ

since E and I are characteristics of the material and not of the partic-
ular segment. Ignoring edge effects, the total elastic potential energy is
obtained by summing the contribution of each segment. Using the value
of the curvature radius calculated in the previous question, we are led to
the result:

V =
EI

2δ3

∑

i

(qi−1 + qi+1 − 2qi)2.
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4. From the kinetic energy calculated in question 1 and the potential energy
calculated in Question 3, the Lagrangian L = T − V is deduced to be:

L =
1
2
μδ

∑

i

q̇2
i − EI

2δ3

∑

i

(qi−1 + qi+1 − 2qi)2.

The Lagrange equations are obtained from (2.4). Be careful to take into
account all the contributions to calculate ∂qi

L. The reader is invited to
rewrite the potential energy with a mute index j and to rely subsequently
on the property ∂qi

qj = δi,j . Finally, the Lagrange equations are written
in the form:

μ q̈i = −EI

δ4
(qi−2 − 4qi−1 + 6qi − 4qi+1 + qi+2) .

The continuous model

5. With the definition of the continuous fields, it is seen that q̈i = ∂2
t2ϕ(xi, t)

and, using the hint given in the statement,

qi−2 − 4qi−1 + 6qi − 4qi+1 + qi+2

δ4
= ∂4

x4ϕ(xi, t).

Lagrange’s equations are expressed in terms of the fields as

μ∂2
t2ϕ(xi, t) = −EI∂4

x4ϕ(xi, t).

One assumes the continuous hypothesis which implies that this equation
is true for any value of x, when the blade is cut in smaller and smaller
pieces with the constraints N → ∞, δ → 0, Nδ = l. Replacing the linear
mass by its value μ = M/l, one obtains the desired partial differential
equation:

∂2ϕ(x, t)
∂t2

= − lEI

M

∂4ϕ(x, t)
∂x4

.

6. Let seek a particular solution15 in the separable form

ϕ(x, t) = e−iωtψ(x).

This leads to a differential equation for ψ(x):

d4ψ(x)
dx4

= K4ψ(x) with K4 =
ω2M

lEI
.

15 The general solution is obtained with a Fourier transform. It is a combination of such
particular solutions, each one presenting a spectral distribution.



104 2 Lagrangian Systems

Here again, following standard techniques, the solution is sought in the
form ψ(x) = eikx, which leads to the simple equation k4 = K4. We have
four roots k = K,−K, iK,−iK. The general solution therefore takes the
form

ϕ(x, t) = e−iωt
[
A1e

iKx + A2e
−iKx + A3e

−Kx + A4e
Kx

]
.

We now consider the limit conditions. The blade is embedded at the
origin which implies that ϕ(0, t) = 0 and ϕ′(0, t) = 0. The corresponding
relationships between the integration constants are: A1+A2+A3+A4 = 0
and iA1 − iA2 − A3 + A4 = 0. The other end of the blade is free. The
curvature radius is infinite which means ϕ′′(l, t) = 0 and ϕ′′′(l, t) = 0.
The corresponding relationships are: −A1e

iKl − A2e
−iKl + A3e

−Kl +
A4e

Kl = 0 and −iA1e
iKl + iA2e

−iKl −A3e
−Kl + A4e

Kl = 0. This linear
system of 4 equations with 4 unknowns has a non trivial solution provided
that the determinant of the matrix vanishes, that is

∣∣∣∣∣∣∣∣

1 1 1 1
i −i −1 1

−eiKl −e−iKl e−Kl eKl

−ieiKl ie−iKl −e−Kl eKl

∣∣∣∣∣∣∣∣
= 0.

The desired condition is very tedious to obtain, but, with some courage,
we find the result 1 + cos(Kl) cosh(Kl) = 0. Let us note X = Kl. We
must solve the following transcendental equation:

cos(X) cosh(X) = −1;X =
(

ω2Ml3

EI

)1/4

,

which allows access to the vibrational angular frequency ω of the blade.

In fact, one has an infinite number of solutions Xi which are roots of
the previous transcendental equation, which lead to the corresponding
angular frequencies:

ωi = X2
i

√
EI

Ml3
.

The lower values are X1 = 1.875104, X2 = 4.694091, X3 = 7.854757,
X4 = 10.995541, etc... and the fundamental angular frequency is:

ωfund = 3.516

√
EI

Ml3
.

7. For a steel blade of thickness e = 1 mm and length l = 10 cm, one
calculates a vibrational frequency of f = ω/(2π) ≈ 75 Hz.



Problem Solutions 105

2.13. Solitary Waves [Statement p. 73]

1. We put x = αρ, t = βτ and define the new field ψ by ϕ(x, t) = ϕ(αρ, βτ)
= ψ(ρ, τ). With the help of the usual rules of differentiation, it is easy to
show that ∂2

ρ2ψ = α2∂2
x2ϕ and ∂2

τ2ψ = β2∂2
t2ϕ. Inserting these relations

in the sine-Gordon equation we find

∂2
τ2ψ = −β2ω2 sin ψ +

β2λ

α2l2
∂2

ρ2ψ.

Let us now take for the arbitrary variables α and β respectively the
definitions α =

√
λ/(lω), β = 1/ω. The wave equation simplifies to

∂2
τ2ψ − ∂2

ρ2ψ = − sin ψ,

which is precisely the requested form. To conform to the notation pro-
posed in the problem statement, let us rename the field ψ as ϕ, and ρ, τ
as x, t. The simplified wave equation becomes:

∂2ϕ(x, t)
∂t2

− ∂2ϕ(x, t)
∂x2

= − sin ϕ(x, t).

2. Writing ϕ(x, t) in the form φ(u) with u = λ(x − vt), we have

∂2
x2φ(u) = λ2φ′′(u) and ∂2

t2φ(u) = λ2v2φ′′(u).

The wave equation is expressed as λ2(v2 − 1)φ′′(u) = − sin φ(u). For
the moment, the parameters λ and v are arbitrary; let us impose the
following relation:

λ2 =
1

1 − v2
.

The equation can then be recast in the simpler form:

d2φ(u)
du2

= sinφ(u).

The parameters λ and v being real numbers, it is necessary that v, which
has the dimension of a speed, satisfies the inequality v < 1.

3. There exists a constant of the motion analogous to the energy for La-
grange’s equation. To see this, multiply the wave equation by 2φ′ to
obtain

2φ′(φ′′ − sin φ) = 0 =
d(φ′2 + 2 cos φ)

du
;
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in other words φ′2 + 2 cos φ = const. For u = ±∞, we impose the limit
conditions φ′(u) = 0 and φ(u) = 0 (pendulum equilibrium). These condi-
tions allow us to determine the value of 2 for the constant of integration
and, thus, we arrive at:

φ′2 + 2 cos φ = 2.

Elementary trigonometry based on the half angle φ/2 allows us to rewrite
φ′2/4 = sin2(φ/2), or

d(φ(u)/2)
du

= ± sin(φ(u)/2).

x−15 −10 −5 5 10 15

φ

2π

4π
3

2π
3

Fig. 2.11 Solitary waves ϕ(x, t = −5) (left curve) and ϕ(x, t = 5) (right
curve), obtained for two different stiffness parameters λ. The steepest soliton

(dotted line)) propagates more quickly than the softest solution (full line)

4. Let us check that the solution of the previous differential equation is
φ(u) = 4 arctan e±u. After differentiation, one obtains

φ′

2
= ± 2e±u

1 + e±2u
.

Using y = tan(φ/4) = tan(arctan e±u) = e±u as an intermediate variable,
we obtain after some algebraic manipulation:

φ′

2
= ±2

tan(φ/4)
1 + tan2(φ/4)

,

or φ′/2 = ± sin(φ/2), which is precisely the equation we want to solve.



Problem Solutions 107

With an arbitrary choice for the signs, we obtain the two following solitary
solutions (see Fig. 2.11):

ϕ+(x, t) = 4 arctan eλ(x−vt);
ϕ−(x, t) = 4 arctan e−λ(x−vt).

2.14. Vibrational Modes of an Atomic Chain
[Statement p. 75]

1. The energy of an elementary chain consisting of light atoms with mass
m′ = rm and heavy atoms with mass m, is obtained easily from the
velocity of their respective displacements un and vn:

Tn =
1
2
rmu̇2

n +
1
2
mv̇2

n.

Between the nth light atom and the nth heavy atom, the net elongation
of the spring is vn − un to which corresponds a potential energy 1

2k(vn −
un)2. Between the light atom n + 1 and the heavy atom n, the net
elongation of the spring is un+1 − vn to which corresponds a potential
energy 1

2k(un+1 − vn)2. The potential energy of the elementary mesh
is the sum of these contributions. The total kinetic energy T and total
potential energy V are obtained by summing over the elementary chains.
The Lagrangian is the difference L = T − V , or

L =
∑

n

[
1
2
m(ru̇2

n + v̇2
n) − 1

2
k(vn − un)2 − 1

2
k(un+1 − vn)2

]
.

The Lagrange equations are derived using the usual techniques (2.4).
Let us introduce the proper angular frequency of the springs Ω =

√
k/m.

Then, the Lagrange equations can be written in the form:

rün = Ω2(vn + vn−1 − 2un);
v̈n = Ω2(un + un+1 − 2vn).

2. To find the proper modes,16 one seeks a solution for which all the atoms
vibrate with the same frequency ω, i.e. in the form un = Aneiωt,
vn = Bneiωt. Introducing these expressions in Lagrange’s equations and
defining the quantity λ = ω2/Ω2, the Lagrange equations can be recast
as:

(2 − rλ)An = Bn + Bn−1;
(2 − λ)Bn = An + An+1.

16 Here again, the general solution is obtained by a superposition of proper modes and
leads to a Fourier series.
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3. The previous equations form a linear system with infinite dimension; it
is not easy to obtain a solution using this form. To go further, one takes
advantage of translational invariance that suggests a solution of the form
An = Ueinφ, Bn = V einφ. Inserting these definitions in the preceding
equations, one obtains:

(2 − rλ)U = (1 + e−iφ)V ;
(2 − λ)V = (1 + eiφ)U.

We are still faced with a linear system, but of dimension 2 only. It can
be solved easily, for instance by multiplying both equations term by term
and simplifying by UV . We are left with an equation of second order
in λ:

rλ2 − 2(r + 1)λ + 4 sin2(φ/2) = 0.

Since λ is expressed as a function of the proper angular frequency ω, this
equation gives the relation ω(φ). The largest solution, ωopt, is called the
optical frequency, while the smallest one, ωacou, is called the acoustical
frequency. Explicitly, one has:

ω2
opt(φ) = Ω2 1 + r +

√
1 + r2 + 2r cos φ

r
;

ω2
acou(φ) = Ω2 1 + r −

√
1 + r2 + 2r cos φ

r
.

4. The truncated Taylor expansion of the previous expression in the vicinity
of φ = 0 is not really a problem; nevertheless, we suggest writing the
discriminant in the form 1 + r2 + 2r cos φ = (1 + r)2 − 4r sin2(φ/2).
Finally, we obtain (see Fig. 2.12):

ω2
opt(φ) = Ω2 2(1 + r)

r

[
1 − r

(1 + r)2
sin2(φ/2)

]
;

ω2
acou(φ) = Ω2 2

1 + r
sin2(φ/2).

Relying on the expressions of the previous question, it is not difficult to
obtain the angular frequencies for φ = π:

ω2
opt(φ = π) =

2
r
Ω2;

ω2
acou(φ) = 2Ω2.

We have transformed a discrete matrix, which has an infinite number
of eigenvalues into an infinity of continuous eigenvalues of two different
types, labelled by the parameter φ.
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In the vicinity of φ ≈ 0, one has U/V ≈ 1−λ/2. For the acoustical wave
λ ≈ 0 and U/V ≈ 1. All the atoms vibrate in phase. For the optical wave
λ ≈ 2(1 + r)/r and U/V ≈ −1/r. The light atoms vibrate with opposite
phase with respect to the heavy ones, with an amplitude ratio which is
inversely proportional to the mass ratio.

5. In order for a wave to propagate, it is necessary that its excitation fre-
quency is precisely that of a proper mode. Thus, we must have ω = ωopt

or ω = ωacou. Comparing this value to the curves of each proper eigen
frequency, the following conditions must be satisfied:

0 < ω2 < 2Ω2 for an acoustical wave;
2Ω2

r
< ω2 <

2(1 + r)Ω2

r
for an optical wave.

The waves such that ω2 > 2(1+ r)Ω2/r or those falling in the gap 2Ω2 <
ω2 < 2Ω2/r are called evanescent waves.

6. If the atoms are subject to periodic boundary conditions such that uN+1 =
u1, vN+1 = v1, there is an additional condition ei(N+1)φ = eiφ, which
leads to eiNφ = 1. In this case, the φ parameter takes only the following
discrete values:

φl =
2πl

N
.

φ

ω(φ)

−π −π
2

π
2

π

0.5

1

1.5

2

2.5

3

Fig. 2.12 Optical (full line) and acoustical (dotted line) angular frequencies
as functions of the phase, obtained with a mass ratio r = 0.3



Chapter 3

Hamilton’s Principle

Summary

3.1. Statement of the Principle
It is possible to state the laws of mechanics (Newton’s or Lagrange’s equa-
tions) under an equivalent and more concise form, but above all with a much
broader impact, applicable to every domain of physics. This new formula-
tion is named “Hamilton’s principle” or “least action principle”. It can be
stated in the following form:

For a given Lagrangian system, among all the imaginable time
evolutions for the configuration q(t) (we remind the reader that
q(t) is a simplified notation for the whole set of degrees of free-
dom q(t) = (q1(t), q2(t), . . . , qn(t)) which begin and end in a de-
termined way (one speaks of a path), the actual evolution (we
say a trajectory) is such that a quantity called action1 is sta-
tionary.2

The task of the physicist is to propose a form of action, which is able to
explain the observed physical phenomena.

1 We note the close analogy with Fermat’s principle or principle of least optical path.
The role of time is played by the curvilinear abscissa, and the Lagrangian by the
optical index. Just as there may exist several rays connecting the object to its image,
there may exist several trajectories with fixed extremities, as you will see in the
Problems 3.4 or 3.5.

2 The term “stationary” implies that an infinitely small variation of the path, q(t)+ε(t),
produces no change in the action to first order in ε.

C. Gignoux, B. Silvestre-Brac, Solved Problems in Lagrangian 111
and Hamiltonian Mechanics, DOI 10.1007/978-90-481-2393-3_3,
c© Springer Science+Business Media B.V. 2009
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3.2. Action Functional
Given a path q(t), the action S is calculated by a time integration of the
Lagrange function L. It is a function of the function q(t) and it is said to
be a functional. More precisely, let us define:

S(q) =

t2∫

t1

L (q(t), q̇(t), t) dt

Its dimension is an energy × a time. In Nature, there exists a quantum
of action (the smallest allowed action), which is the Planck constant, �.
Because this constant is so tiny, the quantification effect is only appreciable
for microscopic systems.

Thanks to the calculus of variations, it can be shown that the prescription
for stationarity of the action with fixed bounds:

δS = S(q + ε) − S(q) = 0 + O(ε2)

is equivalent to Lagrange’s equations

d

dt
(∂q̇i

L(q, q̇, t)) = ∂qi
L(q, q̇, t).

Therefore, a unique condition on the functional is equivalent to n local
conditions.

3.3. Action and Field Theory
When the number of degrees of freedom is infinite, a continuous function3

ϕ(x, t), known as a field, replaces the infinite number of functions, qi(t): the
field ϕ which replaces the coordinates q represents the configuration of the
system specified by the continuous variable x, which replaces the discrete
index i. The Lagrange function, which depends on the system configuration,
is an integral over x of a Lagrangian density � (ϕ, ∂tϕ, ∂xϕ, x, t) which is a
function of the field, its first time derivative, its partial space derivatives,
and possibly of x and t. In this case, the action is a functional of the field,
integral of the Lagrangian density in time and space

S(ϕ) =

t2∫

t1

x2∫

x1

� (ϕ, ∂tϕ, ∂xϕ, . . . , x, t) dxdt.

3 At a given point, it could be the transverse deformation of a vibrating rope, or the
value of the electric potential, etc.
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Field theory treats the time and space variables on an equal footing. As a
consequence, this theory is easily able to incorporate relativistic aspects.

For a continuous system, it can be proved that the stationarity of the action
is equivalent to the Euler-Lagrange equations for the fields:

∂�

∂ϕ
− ∂x

(
∂�

∂(∂xϕ)

)
− ∂t

(
∂�

∂(∂tϕ)

)
= 0.

3.4. Some Well Known Actions
Hamilton’s principle is much more general than Newton’s equations because
it is a universal principle applicable to every domain in physics (provided
we know the corresponding action), but even in mechanics because it al-
lows a generalization to the relativistic case. Indeed, there exist invariance
constraints on action which are due to the space-time properties (assumed
up to now because they have been verified experimentally4), which severely
restrict the forms for possible Lagrangians. It really seems that all La-
grangians present in Nature bestow on the action these invariance proper-
ties. By such considerations (and others5), particular forms of action are
obtained in the following cases
– For one particle in a relativistic regime

S = −mc

(2)∫

(1)

ds

where the infinitesimal distance element ds is given by

ds2 =
∑

μν

gμνxμxν

(gμν is the metric tensor), which, if gravitation is not effective, takes the
simpler form (invariant for a change of Galilean frames):

ds2 = c2dt2 − dx2 − dy2 − dz2.

4 Invariance under time and space translations and reflections, isotropy for rotation,
and relativistic covariance.

5 Superposition principle, with which the results are obtained with the same elegance.
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– For a charged relativistic particle embedded in an electromagnetic field
(U,A)

S(r) =

(2)∫

(1)

[−mcds + qe (A(r, t) · dr − U(r, t) dt)]

=

(2)∫

(1)

[
−mc2

√
1 − ṙ2/c2 + qe (A(r, t) · ṙ − U(r, t))

]
dt.

– For a scalar field 6 ϕ(r, t) representing a particle of mass μ in the presence
of a source ρ

S(ϕ) =

(2)∫

(1)

[
1
2
(
(∂tϕ/c)2 − (∇ϕ)2 − μ2ϕ2

)
− ρϕ

]
dr dt.

– For the electromagnetic field7 A = (U,A) in the presence of a charge
density ρ and current density j

S(A) =

(2)∫

(1)

[
1
2
ε0

(
E2 − c2B2

)
− ρU + j · A

]
dr dt

with E = −∇U − ∂tA and B = ∇ × A.

3.5. The Calculus of Variations
Let us generalize somewhat Hamilton’s principle, which is essentially of
physical character, into a more mathematical framework. The trajectory
q(t) which, with fixed bounds, renders stationary a functional of the form
S(q) =

∫ (2)

(1)
L(q, q̇, t) dt satisfies the differential equation

d

dt
(∂q̇L(q, q̇, t)) − ∂qL(q, q̇, t) = 0.

6 At each space-time point, an identical value for every observer. An example of a
scalar field is the field at the origin of the nuclear interaction (the photon is replaced
by the pion).

7 Four quantities at a given point: the scalar potential U = A0/c and the vector
potential A, which transform, for a change of observer, as a quadrivector Aμ.
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This result is the consequence of a general mathematical proof; L(q, q̇, t)
need not necessarily be a Lagrangian, nor q(t) a generalized coordinate, nor
t a time.

For example, S(q) may be the length l(y) of a curve y(x), in which case
L(q, q̇, t) dt is the length differential element

√
dx2 + dy2 =

√
1 + y′2dx and

t the abscissa x. Thus, the shortest path y(x) between two fixed points
fulfills the equation8

d

dx

(
∂y′

√
1 + y′2

)
− ∂y

√
1 + y′2 = 0.

The mathematical theory, the purpose of which is the search for an ex-
tremum of some functional, is called the calculus of variations. It is mainly
the work of the Swiss mathematician Euler, at the end of the xviiith century.

In some cases, situations occur for which the functions to be minimized
are subject to constraints. There are essentially two types of constraint:
constraints of integral type and constraints of holonomic type.

Constraints of integral form
Example: Which, in the plane, is the closed path of a given perimeter which
encloses the largest area? The quantity to be maximized is the enclosed area;
the constraint is a given value for the length of the path. The expression for
the total length is obtained by an integral of the elementary length, whence
the name of constraint of integral type.

Very generally, the following property can be proved:

The stationarity of
∫ (2)

(1)
L(q, q̇, t) dt with the constraint of integral type

∫ (2)

(1)
c(q, q̇, t) dt = const is equivalent to making the functional

(2)∫

(1)

[L(q, q̇, t) − λc(q, q̇, t)] dt

stationary.

The function qλ(t), obtained from Lagrange’s equations, depends on λ (the
Lagrange multiplier). This multiplier is in turn determined by the constraint

(2)∫

(1)

c(qλ, q̇λ, t) dt = const.

8 Obviously this gives y′ = const, the straight line.
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Holonomic constraints
One can imagine another type of constraint. For instance, let us search
for the geodesic on a surface given as a parametric equation (τ being the
parameter)

φ(x(τ), y(τ), z(τ)) = 0.

This is a holonomic constraint. The three functions x, y, z are not indepen-
dent and, in principle, one could extract z(x, y) from the constraint equation
and restrict the search of the extremum to the two independent functions
x, y.

In fact, it is often more elegant to use the following property of the
variational method with holonomic constraints.

The stationarity of
∫ (2)

(1)
L(q, q̇, t) dt with a constraint of holonomic type

φ(q, t) = 0 is equivalent to making the functional

(2)∫

(1)

[L(q, q̇, t) − λ(t)φ(q, t)] dt

stationary.

The solution is a function of the Lagrange multiplier λ(t) which is in turn
determined, for each value of the integration variable t, by the constraint
equation.

Problem Statements

3.1. The Lorentz Force [Solution p. 131] � �

Direct application of Hamilton’s principle
1. Check that the Lagrange equations resulting from the following Lagrangian

L(r, ṙ, t) = −mc2
√

1 − ṙ2/c2 + qe (A(r, t) · ṙ − U(r, t))

lead to the equations of motion of a relativistic particle, of mass m and
charge qe placed in an electromagnetic field, described by the scalar po-
tential U and the vector potential A.

2. Calculate the energy of the system

E = ṙ · ∂ṙL − L.

Show that, in general, it is not constant.
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3.2. Relativistic Particle in a Central
Force Field [Solution p. 132] � � �

Example of a relativistic Lagrangian
A – Relativistic particle in an electrostatic field

Let us start from the action

S =
∫ (

−mc2
√

1 − β2 − V (r)
)

dt,

where β2 = ṙ2/c2 is the usual relativistic factor.
1. Use the rotational invariance to show that the motion takes place in a

plane. One can for instance work with spherical coordinates and make
use of the fact that the φ coordinate is cyclic.

2. Since the motion is planar, it is legitimate to employ the set of polar
coordinates (ρ, φ). Give the constant of the motion σ associated with
the cyclic coordinate φ (the angular momentum).

3. From now on, we focus on the determination of the trajectory (oth-
erwise the problem is more involved). Thus, one seeks to replace the
time derivative by the derivative with respect to the polar angle φ. In
particular, we will denote ρ′ = dρ/dφ.

Express the angular velocity φ̇ as a function of σ, ρ, and β2 (remem-
ber that β is also a function of ρ, ρ′ and φ). Calculate v2 and deduce
the expression for the kinematical factor γ = (1 − β2)−1/2.

4. Express the constant of the motion E (energy), associated with the
time translational invariance.

5. The variable u(φ) = 1/ρ(φ) is introduced. From the energy and the
expression for γ given in Question 3, give the first order differential
equation satisfied by u(φ).

6. Derive this equation with respect to φ, and deduce the second order
differential equation (sometimes simpler to treat) that is satisfied by
u(φ). Compare to Binet’s equation (2.10).

B – Relativistic particle in a scalar field

We start now from the action S =
∫ (

−mc2 − V (r)
)√

1 − β2 dt.

Examine again all the questions of the previous case.
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3.3. Principle of Least Action?
[Solution p. 135] � � �

Why we speak of least action whereas Hamilton’s principle speaks only of
stationary action?

In many textbooks, Hamilton’s principle is often referred to as a least action
principle. In this problem, we will understand that, if the trajectory extrem-
ities are close enough (the problem will make this notion more precise), the
action which is stationary (Hamilton’s principle) does indeed exhibit a min-
imum (least action principle).
1. A particle of mass m, referred to by its coordinate q, is subject to a force

that arises from a potential V (q). Let us start from the Lagrangian

L(q, q̇) =
1
2
mq̇2 − V (q)

and imagine a path q(t) = q̃(t) + ε(t) close to the trajectory q̃(t). Show
that the second order variation of the action between the time t = 0 and
the time T can be written :

δ2S ∼= 1
2

T∫

0

[
mε̇(t)2 − ε(t)2 V ′′(q̃(t))

]
dt.

It is always possible to choose a time T sufficiently small so that V ′′(q̃)
maintains a constant sign.

If, over the whole range, V ′′(q̃) is always negative or null (case of a
gravitational field), then it is clear that, owing to the fact that δ2S > 0,
we are in the presence of a minimum for the action.

In the other more complex case, it is possible to minimize the term
containing the potential by replacing it by V ′′

max

∫ T

0
ε(t)2 dt, where V ′′

max is
the maximum of the second derivative along the trajectory. The function
ε(t) can be defined up to a multiplicative constant, without changing the
order of inequalities. One can take advantage of this freedom to fix a
value for the integral

∫ T

0
ε(t)2 dt.

2. Using the variational method show, with the constraint of a fixed value for∫ T

0
ε(t)2 dt, that the variation compatible with the boundary conditions

and which minimizes the kinetic energy integral is ε(t) = ν sin(πt/T ).

3. Deduce that, if the time range is sufficiently small: T 2 < mπ2/V ′′
max, we

are dealing with a minimum.
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3.4. Minimum or Maximum Action?
[Solution p. 137] � � �

A stationary action may sometimes be a maximum

Usually, one speaks of the principle of least action. The more appropriate
word would be stationary action. In this problem, we will see that the La-
grange equations lead, depending on the type of variation, either to minima
or to maxima for the action.

Let us take for example the case of a one dimensional harmonic oscillator
and, to simplify the notation (the price to pay is that dimensional analysis
is not easy to employ), write the Lagrange function as

L(q, q̇) =
1
2
(
q̇2 − q2

)
.

1. Write and solve the Lagrange equation giving the trajectory q̃(t).

2. Imagine a path q(t) close to the trajectory: q(t) = q̃(t) + ε(t), such that

ε(0) = ε(T ) = 0.

Show that the second order variation of the action between a time 0 and
an arbitrary time T is:

δ2S(ε) =
1
2

T∫

0

(
ε̇(t)2 − ε(t)2

)
dt.

3. Consider the case of a very simple function for the variation ε(t) =
sin(πt/T ), satisfying the limit conditions. Show that, if T is greater
than a value that should be determined, the variation of the action is
negative so that the action presents a maximum.

4. Let us choose a trajectory passing through the point q0 at time t = 0
and the point q1 at time t1. Show that if t1 �= nπ (n integer), there
exists one and only one trajectory satisfying the conditions. Show that
if t1 = nπ and q1 �= (−1)nq0 there exists no possible trajectory, while
if q1 = (−1)nq0 there exists an infinite number of possible trajectories.
Check that, in this last case,

δ2S(ε) = 0,

for the previous function ε(t) and for n = 1. The point q1 is called the
conjugate point to q0.
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3.5. Is There Only One Solution Which
Makes the Action Stationary?
[Solution and Figure p. 138] � � �

Several trajectories may pass through two given points

How many functions (trajectories) with fixed bounds make the action sta-
tionary ?

Let us take a free particle in a homogeneous infinite space. One knows
that there is only one solution: the straight line covered at uniform speed.
However there exist more amusing situations. For instance, let us consider
a particle of mass m in a one dimensional space, located by its coordinate q,
free in the domain [0, L] and subject to harmonic forces outside this interval:

V (q) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2mω2q2, if q < 0,

0, if 0 < q < L,

1
2mω2(q − L)2, if q > L.

T = 2π/ω is the period of the motion in the harmonic potential.
1. Show that, if t2 − t1 > T/2, there exist at least three trajectories q(t)

starting in the domain [0, L] from the position q1 at time t1, ending in
the same domain at the position q2 at time t2, and which all make the
action stationary.

Indication: You should find the uniform motion, plus two trajectories
that bounce on the potentials on the right and on the left.

For greater time separations, it is possible to have more solutions with
several bounces.

2. Give the expression of the action for each of these trajectories. It is
interesting to use the following property: for a harmonic oscillator, the
average in time for the kinetic energy and for the potential are equal.
This is just a consequence of the virial theorem.

One of these trajectories minimizes the action. What can be said for
the others? To study this point, let us imagine a variation with one
bounce. To make things easier, consider a very close path, with the same
shape, but which corresponds to a smaller period T<.

3. Show that the variation of second order is negative. Nevertheless it is
neither a minimum nor a maximum, because if we consider the solution
with a greater period, the action increases. We say that the trajectory
corresponds to a saddle point action.
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3.6. The Principle of Maupertuis
[Solution p. 141] � �

A principle less general than Hamilton’s principle which gives the trajectory
directly

We will see in Chapter 5 that the trajectory of a particle of mass m in a
conservative force field makes extremal the “reduced action” which is defined
by S0(q) =

∫ (2)

(1)
ds

√
2m (E − V (q)), where ds is the length element along

the trajectory. We remark the analogy with Fermat’s principle. It allows us
to obtain the form of the trajectory, without being worried by the temporal
evolution; in many cases, this is sufficient.

Let us employ the calculus of variations on this reduced action to deter-
mine the trajectory equation in a plane for two particular cases:
First case: gravitational field
The potential under consideration, V (z) = mgz, corresponds to a uniform
gravitational field g along the vertical Oz. We seek a solution in the ver-
tical plane xOz in the form x(z). The reduced action is, in this case, the
functional S(x).
1. Show that the x variable is cyclic and that there exists a constant of the

motion.

2. By integration of the previous equation, show that the trajectory is a
parabola.

Second case: central field
The potential considered is central. We know that the motion takes place
in a plane. In this plane, we use the polar coordinates (ρ, φ).
1. We study first the trajectory in the form φ(ρ). The reduced action is a

functional S0(φ). Show that the φ variable is cyclic and that there exists
a constant of the motion which is identified with the angular momentum
σ (more exactly its opposite). Deduce the integral expression for the
trajectory φ(ρ).

2. At present, we study the trajectory under the form ρ(φ). The reduced
action is a functional S0(ρ). Show that there exists also a constant of
the motion which is again identified as σ. To simplify this expression,
we make the change of function u(φ) = 1/ρ(φ). After derivation, one
obtains a second order differential equation in u, called Binet’s equation.
Give the corresponding equation and check the result in the Expression
(2.10).



122 3 Hamilton’s Principle

3.7. Fermat’s Principle
[Solution and Figure p. 144] � �

Application of Hamilton’s principle in a domain different from mechanics

Fermat’s principle stipulates that “light rays” make stationary the optical
path

∫
nds, where n is the index of refraction and ds the differential length

element. It was stated a long time ago by Fermat in the xviith century, but
it is of course much later that it was recognized that it could be connected
to “least action” type problems. We will use here what we learned on the
variational method to find the equation of rays in a two dimensional space
(x, z), for which the refraction index n(z) depends only on the z coordinate.

To seek the minimum of the optical path (Fermat’s principle), we consider
two methods:
1. Write the expression of the optical path as an integral over the z variable.

Use the Lagrange equations to determine the curve x(z). Notice that
there exists a constant of the motion. Interpret the corresponding relation
in the framework of geometrical optics.

2. Write the expression of the optical path as an integral over the x variable.
Use the Lagrange equations to determine the curve z(x). Notice that we
find the same constant of the motion.

3. Find the light trajectory for a linear variation of the index n(z) = n0+λz.
One imposes the initial conditions z(0) = 0, z′(0) = 0 on the solution.

Give a plausible explanation of the “mirages” observed in deserts.

It is possible to make a complete analogy between the previous study and
the propagation of a sound wave: normally, the temperature decreases
with the altitude and so does the sound speed. What conclusion can be
drawn concerning the propagation of noise?

3.8. The Skier Strategy
[Solution and Figure p. 146] � � �

A very classical problem for application of the calculus of variations

On a snow covered inclined plane with uniform slope, making an angle α
with respect to the horizontal, in a constant vertical gravitational field g,
a skier of mass m starts from a gate O with a null speed, and wishes to
arrive with the fastest time at the gate A below. The optimal trajectory
(the quickest) is not necessarily the straight line OA.
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Explain rapidly why, assuming no dissipation (friction with the snow and
the air), assumption which is of course physically far from reality.

We take in the plane a frame with the origin at O, a horizontal axis Ox
and the axis Oy in the direction of the steepest downward slope. The zero
for the gravitational potential energy is chosen at O.
1. Express the mechanical energy of the skier at a given time. What is its

value?

2. Express the time interval dt between two positions (x, y) and (x+dx, y+
dy) for the skier.

3. Deduce the time needed for the skier to go from O to A. This time will
be given as a functional T (x) where x(y) represents the trajectory of the
skier. The optimal trajectory minimizes this time.

4. Show that the x coordinate is cyclic and deduce a constant of the motion.

5. Obtain the equation of the optimal trajectory under a parametric form
x(θ), y(θ), θ being an angle. It is strongly suggested to carry out a change
of variable such that y is proportional to sin2 θ.

6. Now, a more tricky question: must we consider trajectories that pass
below the end point? Compare the course times for the optimal trajec-
tory, for a straight trajectory and for a descent along the steepest slope
followed by a horizontal segment.

3.9. Free Motion on an Ellipsoid
[Solution p. 150] � �

Calculus of variations with a holonomic constraint

A particle, of mass m, is free to move on an ellipsoid with equation:

(x/a)2 + (y/b)2 + (z/c)2 = 1

One wishes to determine the reaction force that maintains the particle on
the surface.

Let us first remark that the number of degrees of freedom is 2 and, if we
use as generalized coordinates the Cartesian coordinates (x, y, z), one must
take into account the constraint.
1. Write the equation which expresses Hamilton’s principle corresponding

to this holonomic constraint. Deduce the Lagrange equations.

2. Check that the reaction force is normal to the surface.
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3. Check the conservation of energy (kinetic in this particular case).

4. Give the expression for the intensity of the reaction force, R, as a function
of coordinates and velocities, but eliminating accelerations. Check your
result for a sphere.

5. The motion on an ellipsoid is “integrable” that is, as we will see in
Chapter 6, there exist as many constants of the motion as the number of
degrees of freedom. Check that

ẋ2 +
(xẏ − ẋy)2

(a2 − b2)
+

(xż − ẋz)2

(a2 − c2)
,

together with the cyclic permutations, are constants of the motion.

3.10. Minimum Area for a Fixed Volume
[Solution p. 152] � �

Calculus of variations with an integral constraint

With a given volume, among the pear, the apple or the orange, which is the
fruit which has less peel?

One considers a solid with a cylindrical symmetry around the Oz axis.
This solid is specified by the function r(z) – the distance from the symmetry
axis as function of the altitude – between the altitudes 0 and h (example
on Fig. 3.1). One assumes a solid “without circumvolution”; this means
that the function r(z) is single valued (for each altitude z there corresponds
a unique value of r). Moreover, the Oz axis passes inside the solid, and
the lowest and highest points belong to the solid, so that r(0) = 0 = r(h).
Given these conditions, one seeks the solid which has a minimum surface
for a given volume.
1. Cutting the solid into slices of thickness dz, give the volume functional:

V (r) and the area functional: A(r).

2. Write down the functional to be minimized, introducing the Lagrange
multiplier λ.

3. Rather than solving the differential equation resulting from the Euler-
Lagrange equation, it is judicious to remark the existence of a constant of
the motion corresponding to the translation along the Oz axis (equivalent
to time in mechanics). Determine the value of this constant when located
at z = 0. Give the corresponding first order differential equation.

4. Express r′ = dr/dz as a function of r. Integrate this equation (for in-
stance r2 could be used as an auxiliary variable). Deduce that the so-
lution we seek is a sphere. What is the interpretation of the Lagrange
multiplier?
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5. From the previous study, solve in a very simple way the inverse problem:
what is the shape of a solid with a maximum volume for a given surface?

h

dz

z

O

r(z)

Fig. 3.1 Area and volume of a
solid with cylindrical symmetry

3.11. The Form of Soap Films
[Solution and Figures p. 154] � � �

The Hamilton principle in a bubble

What is the underlying basis for the form of the surface of a soap film which
is characterized by one or several closed curves? It is, of course, the surface
tension forces that tend to minimize the area of the surface. Thus, for
determining the form of the minimum surface based on a given curve, it is
not necessary to appeal to high-performance numerical codes; it is enough
to dip an iron stem which has precisely the form of this curve in a detergent
solution and look at the resulting soapy film. Its form gives to you the
answer!

In this problem, we look for the equation of the surface of a film formed
by two identical hoops with the same axis, assuming the natural hypothesis
of cylindrical symmetry. Searching for a solution possessing the symmetry
of the problem is known in physics as the Curie principle.
1. The OZ axis can be chosen as the symmetry axis, and one can define

the surface by r(z), giving the radius at altitude z. The two hoops are
located at altitudes z1 and z2. Write down the integral expression of the
area, which is a functional of the curve r(z).
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Fig. 3.2 Form of a soap film be-
tween two hoops

2. To obtain an extremum for this area, we should, in principle, write and
solve the second order differential equation resulting from Lagrange’s
equation. Nevertheless, one can do better. Find a constant of the motion;
in other words find a quantity, function of r(z) and r′(z) = dr/dz, which
does not depend on z.

3. Check that the solution of the previous first order differential equation is
of the form r(z) = ρ cosh ((z − h)/ρ) (Fig. 3.2). Plot schematically this
function and interpret the constant parameters h and ρ.

4. For brevity, let us take two identical hoops of radius R located at z1 = −H
and z2 = H. Give the relation which allows the determination of the
constant ρ as function of R and H.

5. Find an inequality obeyed by R/H in order that the physical problem
admits at least one solution. If this inequality is fulfilled, there exist two
mathematical solutions, but only one physical solution. Explain why?
What happens if we separate the two hoops up to the limit of the in-
equality? Discuss briefly what happens after.

Indication: Plot, as a function of x = H/ρ, cosh(x) and the straight line
Rx/H.

6. What would you do to determine the force that maintains the cohesion of
the film as a function of the distance 2H between the hoops? Remember
that the capillarity potential energy is proportional to the area and that
the force is the gradient of the potential energy.

The result is simple, but only a posteriori!

Hint: Find the expression of the area

A = 2πH2
(
(cosh(x) sinh(x))/x2 + 1/x

)

and differentiate it with respect to H.
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3.12. Laplace’s Law for Surface Tension
[Solution p. 158] � � �

The Hamilton principle applied to hydrostatics

Let us consider an incompressible liquid (mass density ρ) lying, under the
influence of a vertical constant gravitational field g directed downwards, in
a parallelepipedic channel along an infinite horizontal axis y′y (to avoid the
boundary effect in that direction). Let O be an arbitrary origin on y′y, and
Ox a horizontal axis perpendicular to Oy; the upward vertical is Oz. The
xOz plane is thus a section plane and the form of the surface is a curve
z(x). This form is determined, in a static way, by a minimization of the
gravitational potential energy and the surface potential energy TS. The
surface tension of the liquid in contact with the air is T , supposed to be
constant, and S the air-liquid interface area. Because of the translational
invariance along the y′y direction, we can reason using a slice with unit
thickness in that direction. The edges of the channel are taken at the
abscissas x = 0 and x = l (Fig. 3.3).

The liquid-air-wall interface points are assumed to be fixed at z(0) = h =
z(l). We wish to minimize the total potential energy with fixed bounds.
Moreover, we have in addition the constraint of a constant volume.

y

x

z

h

l

z(x)

Fig. 3.3 Channel containing an incompressible liquid. In a slice
of liquid, one defines a system of axes xOz. The form of the meniscus

is given by the curve z(x)

1. Give the expression of the functional of the total potential energy VP (z).

2. Express in the same way the functional of the volume V (z).

3. Give the Euler-Lagrange equation constrained by a given volume, which
allows the determination of the curve z(x). It is useful to introduce the
curvature radius R(x) at each point.
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3.13. Chain of Pendulums [Solution p. 160] � �

Hamilton’s principle for a continuous system

One considers a chain of N identical pendulums of length l and mass m,
all suspended from a horizontal axis. Each pendulum is separated from the
next by a distance δ. In addition to gravity, the pendulums are subject to
a harmonic force between nearest neighbours 1

2k(qi − qi−1)2, where qi is the
angle between the vertical and the direction of the pendulum numbered i
and k is a constant characteristic of the system which takes into account
the effect of restoring forces.
1. Write down the Lagrangian of the system.

2. Using this Lagrangian and passing to a continuous description, calculate
the Lagrangian density of the system assuming that kδ2/m = λ is a
constant.

3. Applying the Euler-Lagrange equation to this system, recover the wave
equation studied in the Problem 2.13. We remind the reader that this
equation is linear only for small motions.

3.14. Wave Equation for a Flexible Blade
[Solution p. 161] � �

Hamilton’s principle for a continuous system

We revisit Problem 2.12 concerning a metallic blade, of linear mass density
μ, allowed to vibrate in a plane. Again, we assume weak flexions.
1. Passing to a continuous limit, give the expression of the Lagrangian den-

sity for the system.

2. With the help of the Euler-Lagrange equations, recover the wave equation
proposed in the Problem 2.12.

3.15. Precession of Mercury’s Orbit
[Solution p. 162] � � �

Hamilton’s principle can be directly applied in the framework of general rel-
ativity

In classical Newtonian theory, the trajectory of a planet of mass m, subject
only to the attraction of the Sun of mass M , is an ellipse with semi-major
axis a and eccentricity e, with the Sun located at one focus.
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In reality, due to miscellaneous perturbations (influence of the other plan-
ets among others), the true trajectory is not closed; the symmetry axes of
this ellipse rotate very slowly between two revolutions. This phenomenon
is called precession of perihelia. The precession concerning Mercury is most
important.

In spite of all refinements imagined in the framework of celestial mechan-
ics during the nineteenth century, there remained a disagreement between
the predicted and measured values. The explanation of this disagreement
using Einstein’s theory of general relativity was one of its most fantastic
achievements.

The aim of this problem is to present a way for addressing this disagree-
ment. Taking into account relativistic effects for celestial mechanics makes
sense in the theory of general relativity. Don’t give up faced with these
impressive words; read the remainder, you will see that the problem is well
within reach.

The action has the traditional relativistic form S = −mc
∫

ds with, in
general, the differential length element ds given by the metric tensor gμν(x),
(μ, ν = 0, 1, 2, 3), but with a value depending on the position quadrivector
x = (x0 = ct, x1 = x, x2 = y, x3 = z):

ds2 =
∑

μ,ν

gμν(x) dxμ dxν .

The gravitational attraction by a body of mass M with spherical symmetry9

exhibits a metric, known as Schwarzschild’s metric, which, using spherical
coordinates, is written:

ds2 = e(r)c2dt2 − r2(dθ2 + sin2 θ dφ2) − dr2/e(r)

with

e(r) = 1 − 2GM

c2r
= 1 − r0

r
(3.1)

where G is the universal gravitational constant, c the speed of light and
r0 = 2GM/c2 the Schwarzschild radius of the Sun.

As for any central interaction, the trajectory is situated in a plane, that
we choose as equatorial (θ = π/2).
1. Write the action as a time integral and deduce the Lagrange function.

2. The φ variable is cyclic; deduce the associated constant of the motion σ
(the angular momentum).

9 S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General
Theory of Relativity, John Wiley and sons, New York, 1972.



130 3 Hamilton’s Principle

3. Deduce the expression of the angular velocity as a function of the radius
r and its derivative r′ = dr/dφ.

We focus now on the study of the trajectory. One introduces the con-
stant of the motion associated with the translational time invariance,
namely the energy E.

4. Give its expression.

5. Use the result of the previous question to obtain the differential equation
giving the trajectory. Make the usual change of variable u = 1/r and
give the corresponding differential equation.

6. Differentiating this equation with respect to φ, obtain a second order
differential equation for the u variable.

7. Find the inverse of the radius uc = 1/Rc for circular orbits.

8. Let v = u − uc. Solve the differential equation assuming a small value
for v (linearization of the equation of motion). Show that one solution
is stable. The corresponding trajectory is approximately an ellipse. Cal-
culate the angular shift between successive perihelia for the revolution of
the planet around the Sun. Give an estimation of this shift for the planet
Mercury (we remind you of the relationship between the angular momen-
tum and the characteristics of the orbit σ2/(GMm2) = a(1−e2), where a
is the length of the semi-major axis of the orbit and e the corresponding
eccentricity). The measured value of the shift is 572′′ per century; 42.6′′
remained unexplained by classical mechanics.

What about the precession of perihelia for the Earth (in this case the
unexplained difference was 4.6′′ per century)? Conclusion.

Take the values:

G (gravitational constant) = 6.673 × 10−11 MKSA
M (mass of the Sun) = 1.989 × 1030 kg
c (speed of light) = 2.998 × 108 m/s
a (Mercury) = 57.9 × 106 km
e (Mercury) = 0.2056
T (Mercury) = 87.969 days
a (Earth) = 149.6 × 106 km
e (Earth) = 0.0167
T (Earth) = 365.25 days.
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Problem Solutions

3.1. The Lorentz Force [Statement p. 116]

1. The Lagrange equations are written generally

d

dt
(∂ṙL) = ∂rL.

For the proposed Lagragian:

∂ṙL = γmṙ + qeA,

where γ =
(
1 − ṙ2/c2

)−1/2 is the usual relativistic factor. Let us intro-
duce the relativistic linear momentum of the particle π = γmṙ; it then
follows that ∂ṙL = π + qeA. Taking the total time derivative of this
expression leads to

d(∂ṙL)
dt

= dπ/dt + qe [∂tA + ẋ∂xA + ẏ∂yA + ż∂zA]

and moreover

∂rL = qe [ẋ∂rAx + ẏ∂rAy + ż∂rAz − ∇U ] .

The Lagrange equations imply:

dπ

dt
= qe[−∇U − ∂tA + ẋ (∂rAx − ∂xA)

+ẏ (∂rAy − ∂yA) + ż (∂rAz − ∂zA)].

On the right hand side, one recognizes the electric field

E = −∇U − ∂tA.

Let us focus on the term ∂rAx − ∂xA which has three components. The
x component is ∂xAx − ∂xAx = 0; the y component is ∂yAx − ∂xAy =
− (∇ × A)z = −Bz, and the z component is ∂zAx − ∂xAz = (∇ × A)y

= By. The components of ∂rAy − ∂yA and ∂rAz − ∂zA are obtained
similarly by cyclic permutations.

Thus dπx/dt = qe [Ex + ẏBz − żBy] = qe [E + v × B]x with two simi-
lar equations for the y and z components. Therefore, one can write with
vector notation

dπ

dt
= qe [E + v × B]

which is nothing more than the equation of motion for a charged particle
submitted to the Lorentz force.
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2. From the general formula, the energy E (not to be confused with the
electric field E) is expressed as E = ṙ∂ṙL − L. With the already proven
relation ∂ṙL = π + qeA, one obtains

E = γmṙ2 + qeA · ṙ + mc2/γ − qeA · ṙ + qeU,

which simplifies to:

E(r, ṙ, t) = γmc2 + qeU(r, t).

One clearly distinguishes the contributions of the relativistic energy and
the electric energy. The magnetic field does not contribute to the energy
since the Lorentz force, always perpendicular to the velocity, performs no
work. For a time dependent scalar potential, the energy itself depends
on time and thus is not a constant of the motion.

3.2. Relativistic Particle in a
Central Force Field [Statement p. 117]

Case of a particle in an electromagnetic field
1. Let us use spherical coordinates to write the Lagrangian:

L(r, θ, φ, ṙ, θ̇, φ̇) = −mc2
√

1 − β2 − V (r)

where β2 = ṙ2/c2 = (ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2)/c2.

The φ coordinate is cyclic; consequently there exists a constant of the
motion

pφ = ∂φ̇L = mr2 sin2 θ φ̇/
√

1 − β2 = γmr2 sin2 θ φ̇ = const.

It is easy to check that pφ is the z component of the angular momentum
of the particle: pφ = σz, where σ = r × π and π = γmv. The Oz axis
was chosen arbitrarily; a similar reasoning can be made by a choice of two
other mutual orthogonal axes which implies σx = const = σy, or equiv-
alently σ = const. The angular momentum vector being constant, the
same property holds for a plane perpendicular to it; this plane contains
both vectors r and v, that is the trajectory, i.e. The trajectory is plane
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2. Let us work in this plane and employ the polar coordinates (ρ, φ). We
have β2 = (ρ̇2 + ρ2φ̇2)/c2 and the constant of the motion resulting from
the rotational invariance is the modulus of the angular momentum pφ =
∂φ̇L = γmρ2 φ̇ = σ.

γmρ2 φ̇ = σ.

3. In the expression of v2 = ρ̇2+ρ2φ̇2 = φ̇2(ρ′2+ρ2) substitute the expression
for φ̇ obtained in the previous question; let us calculate 1−β2 = 1−v2/c2

from this equation, and then γ = (1−β2)−1/2. After simple calculations,
we obtain:

γ =

√

1 +
σ2(ρ′2 + ρ2)

m2c2ρ4
.

4. The Lagrangian does not depend explicitly on time. The energy is con-
served:

E = ρ̇ ∂ρ̇L + φ̇ ∂φ̇L − L = const.

Performing the calculation, we obtain the traditional expression (the rel-
ativistic kinetic energy plus the potential energy):

E = γmc2 + V (ρ).

5. We extract γ from this last expression and replace γ2 by the expression of
Question 3 thereby obtaining a differential equation concerning ρ. Now,
let us perform the proposed change of variable u(φ) = 1/ρ(φ). We are
led to the following first order differential equation in u (u′ = du/dφ):

u′2 + u2 =
m2c2

σ2

[(
E − V (1/u)

mc2

)2

− 1

]
.

6. Let us differentiate this expression with respect to φ, then simplify by
2u′. We are left with a second order differential equation in u.

u′′ + u = −E − V (1/u)
σ2c2

d

du
V (1/u).

One could qualify this equation as the “relativistic Binet equation” for
a particle in an electromagnetic field. For specific cases, it is more con-
venient than the first order differential equation given in the previous
question (it avoids the cumbersome square root).
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Case of a particle in a scalar field
1. The proof follows exactly the same reasoning as in the previous case and

results from the rotational invariance. Nevertheless, remember that the
angular momentum σ = r×p is not identical with the kinetic momentum
since the generalized momentum p = γ(m + V (r)/c2)v is different from
the linear momentum π = γmv, where, as usual, γ = 1/

√
1 − β2.

2. With polar coordinates, the Lagrangian is now written

L(ρ, φ, ρ̇, φ̇) = −
(
mc2 + V (ρ)

)√
1 − β2,

with a similar expression for β2 as in the preceding case. The φ variable
is still cyclic and leads to a constant of the motion which is precisely the
angular momentum: pφ = ∂φ̇L = σ. A short calculation gives:

γ

(
m +

V (ρ)
c2

)
ρ2 φ̇ = σ.

3. A calculation completely analogous to the one developed previously pro-
vides the relation:

γ =

√
1 +

σ2c2 (ρ′2 + ρ2)
(mc2 + V (ρ))2 ρ4

.

4. In this case also, the Lagrangian is time-independent and the energy is a
constant of the motion: E = ρ̇ ∂ρ̇L + φ̇ ∂φ̇L − L = const.

Performing the calculations, we obtain (this expression is not as natural
as the previous one):

E = γ
(
mc2 + V (ρ)

)
.

In contrast to the preceding case, we remark that it is enough to replace
mc2 by mc2 + V (ρ), V (ρ) → 0.

5. The calculations require the same steps as before. Finally, one obtains
the first order differential equation in u:

u′2 + u2 =
E2 −

(
mc2 + V (1/u)

)2

σ2c2
.

6. Let us differentiate this expression with respect to φ, then simplify by
2u′. We are left with the second order differential equation in u:

u′′ + u = −mc2 + V (1/u)
σ2c2

d

du
V (1/u).

One could qualify this equation as the “relativistic Binet equation” for a
particle in an scalar field.
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3.3. Principle of Least Action?
[Statement p. 118]

1. From the Lagrangian L(q, q̇) = 1
2mq̇2 − V (q) and from Lagrange’s equa-

tions, we derive the equation of motion: the trajectory q̃(t) satisfies the
differential equation m¨̃q = −V ′(q̃). The action functional is defined, as
usual, by

S(q) =

T∫

0

L(q(t), q̇(t)) dt.

Let us choose a path q(t) slightly different from the trajectory q(t) =
q̃(t) + ε(t), still imposing fixed bounds ε(0) = 0 = ε(T ), and calculate
the variation of the action ΔS = S(q) − S(q̃), to second order in ε. The
first order vanishes since the trajectory fulfills Hamilton’s principle. We
end up with the desired expression:

δ2S =
1
2

T∫

0

[
mε̇(t)2 − ε(t)2V ′′(q̃(t))

]
dt.

2. It is always possible to assume a bound T which is small enough so as to
maintain a constant sign for V ′′ over the whole integration interval. If, in
the small interval [0, T ], V ′′ ≤ 0, then the second term in the action inte-
gral is always positive or null; since the first one has the same property,
one always has δ2S > 0 and the action corresponds to a minimum.

Let us assume now the opposite relation V ′′ > 0 and let V ′′
max be the

maximum value of V ′′ in the interval: 0 < V ′′(q̃) < V ′′
max. Of course,

δ2S > F (ε) =
1
2

T∫

0

[
mε̇(t)2 − ε(t)2V ′′

max

]
dt.

The quantity F (ε) =
1
2

T∫

0

f(ε, ε̇) dt

is still a functional. If one requires a function ε(t) which makes it ex-
tremum, one sees that there is no reason that the condition ε(0) = 0 =
ε(T ) should still hold, since these conditions have been imposed for the
functional δ2S(ε) which is different from the functional F (ε).

We must modify our conditions, noting that the function ε(t) can be
defined up to a multiplicative constant, which does not change the in-
equalities.
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Let us profit from this property to impose the further condition that∫ T

0
ε2 dt retains a fixed value; obviously the same property holds for

−1
2
V ′′

max

T∫

0

ε2 dt.

Consequently, it is sufficient to search for a function ε(t) which mini-
mizes

∫ T

0
ε̇2 dt with a given value for

∫ T

0
ε2 dt. This goal is achieved by

introducing a Lagrange multiplier λ and requiring that

T∫

0

(ε̇2 − λε2) dt

be a minimum. Hamilton’s principle applied to this functional leads to
the equation ε̈ + λε = 0, the solution of which is ε(t) = ν sin(

√
λt + φ).

The Lagrange multiplier is determined by imposing boundary conditions:
ε(0) = 0 leads to φ = 0 and ε(T ) = 0 to

√
λ = π/T . It is always possible

to assume ν = 1 since ν is a multiplicative constant.

Thus the function which minimizes our quantity is simply:

ε(t) = sin (πt/T ) .

3. Using this expression, it is easy to calculate the value

1
2

T∫

0

[
mε̇(t)2 − ε(t)2V ′′

max

]
dt =

[
mπ2 − T 2V ′′

max

]
/(4T ).

Thereby we prove very important inequalities

δ2S >
1
2

T∫

0

[
mε̇(t)2 − ε(t)2V ′′

max

]
dt >

[
mπ2 − T 2V ′′

max

]
/(4T ).

If T is chosen sufficiently small, explicitly if

T 2 <
mπ2

V ′′
max

,

the inequality δ2S > 0 holds and the action is a minimum.

In conclusion, we always have a principle of least action provided the
action is computed between two sufficiently close instants. This prop-
erty historically gave the name “principle of least action” to Hamilton’s
principle.
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3.4. Minimum or Maximum Action?
[Statement p. 119]

1. With the Lagrangian

L(q, q̇) =
1
2
(q̇2 − q2),

the Lagrange equation leads to the differential equation q̈ + q = 0 whose
general solution is:

q̃(t) = a sin t + b cos t.

2. Let us use the result of the previous problem with m = 1, V (q) = q2/2.
In the particular case of a harmonic potential this result is exact (not
only valid up to second order in ε)

δ2S =
1
2

T∫

0

[
ε̇(t)2 − ε(t)2)

]
dt.

3. Let consider the function ε(t) = sin(πt/T ), which obviously fulfills the
boundary conditions. One easily deduces that

T∫

0

ε(t)2 dt =
T

2
and

T∫

0

ε̇(t)2 dt =
π2

2T
,

whence: δ2S =
T

4

(
π2

T 2
− 1

)
.

It is seen at once that if T > π, δ2S < 0 so that the action is a maximum,
and that we can make the opposite conclusion if T < π.

T > π the action is maximum
T < π the action is minimum.

4. The real solution was determined in the first question: q̃(t) = a sin t +
b cos t. The condition q̃(0) = q0 imposes b = q0 and the additional
condition q̃(t1) = q1 imposes q1 = a sin t1 + q0 cos t1.

Several cases must be investigated.
• If t1 �= nπ ⇔ sin t1 �= 0, then it is possible to find one and only one

value for a, namely a = (q1 − q0 cos t1)/ sin t1. Thus, through the two
given points, there passes one and only one trajectory.

• If t1 = nπ ⇔ sin t1 = 0, then the required condition becomes q1 =
(−1)nq0. Two cases must be then considered:
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– q1 �= (−1)nq0, the condition is not satisfied and there exists no tra-
jectory passing through the two points. Indeed, after an even number
of half periods, the system recovers its state, and for an odd number
a symmetric state.

– q1 = (−1)nq0, the condition is always satisfied whatever the value of
a. There exists an infinite number of trajectories (which differ by the
values of a) passing through the two points.

This situation is illustrated in the Fig. 3.4.

q(t)

t
0

π

2π

t1

q1

q1

q0

Fig. 3.4 Infinite number of sinusoidal trajectories passing through the conjugate
points q0 and q1

3.5. Is There Only One Solution Which
Makes the Action Stationary?
[Statement p. 120]

1. We are interested in the domain such that 0 < |q1| < |q2| < L.
• A first trajectory always lies in the interval 0 < q < L. In this case,

the Lagrangian is simply � = 1
2mq̇2 and the equation of motion q̈ = 0

which implies a linear solution q(t) = vt + u.

Since, in the domain influenced by the harmonic potential, the solu-
tions of the equation of motion are sinusoidal curves with angular fre-
quency ω and period T , the time spent by the particle inside this zone
is T/2 (the particle enters and leaves with the same value of q) for each
exploration. Thus, if t2 − t1 > T/2 the particle has physically enough
time to remain for at least a semi-period in the zone corresponding to
the harmonic potential. We are led to two other trajectories.
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• From t1 to t3, the particle stays in the free zone with a motion described
by the equation q(t) = vt + u. At time t3 it enters the border zone
q(t3) = L with velocity v. Between t3 and t3 + T/2, it stays in the
harmonic zone governed by the solution q(t) − L = A sin(ωt + φ); it
leaves this zone at time t3 + T/2: q(t3 + T/2) = L with the velocity
−v. Between t3 +T/2 and t2, it remains in the free zone with the time
law q(t) = −vt + w.

• Similarly, we have the possibility of a trajectory that explores the left
harmonic zone. From t1 to t4 the particle stays in the free zone with a
motion described by q(t) = −vt + u. At time t4, it enters the border
zone q(t4) = 0 with velocity −v. Between t4 and t4 + T/2, it remains
in the harmonic zone with the equation of motion q(t) = A sin(ωt+φ);
it leaves this zone at time t4 + T/2: q(t4 + T/2) = 0 with the velocity
v. Between t4 + T/2 and t2, it is to be found in the free zone with the
temporal law q(t) = vt + u (see Fig. 3.5).

If t2 − t1 > T , in addition to the three previous trajectories, we have
two supplementary trajectories for which, in each zone of the harmonic
potential, the particle executes half a period before leaving. Every time
the difference in time increases by T , two more trajectories are possible
for which the particle spends half a period more in the harmonic zones.

q(t)

t
0 t1 t3 t2

q1

q2

L

Fig. 3.5 Various possible trajectories between two points (full lines).
Infinitely close paths are indicated by dashed lines

2. The action is given by S =

t2∫

t1

�(q, q̇) dt.

• For the first trajectory, the equation is q(t) = vt + u and the speed is
constant v = (q2 − q1)/(t2 − t1).
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Since in this case � = 1
2mq̇2 = 1

2mv2 remains constant, the action is
simply S = 1

2mv2(t2 − t1), or, replacing the speed by its value:

S1 =
m

2
(q2 − q1)2

(t2 − t1)
.

• The time spent in the free zone is simply t2 − t1 − T/2 and the speed
remains constant. The distance for the first part of the path is L − q1

and for the second part L− q2, so that the total path length in the free
zone is 2L − q2 − q1 and the speed is

|v| =
2L − q2 − q1

t2 − t1 − T/2
.

With the same argument as before the contribution to the action from
this part of the trajectory is

m

2
(2L − q2 − q1)2

t2 − t1 − T/2
.

The action in the harmonic zone vanishes because the integral on the
kinetic energy just cancels the integral on the potential energy; this is a
consequence of the virial theorem (of course, one can perform a rigorous
calculation!). Thus the total action is restricted to its contribution from
the free zone:

S2 =
m

2
(2L − q2 − q1)2

t2 − t1 − T/2
.

• For the third trajectory, the treatment is exactly the same but, in this
case, the distance travelled by the particle in the free zone is q2 + q1.
The corresponding action is therefore:

S3 =
m

2
(q2 + q1)2

t2 − t1 − T/2

3. Let us consider a small variation in the path close to the first trajectory.
It occurs in a zone free of potential. The variation of the action to second
order is thus

δ2S =
1
2
m

t2∫

t1

ε̇2 dt > 0.

The action is always a minimum.
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Let us consider now the second trajectory. In this case, we choose a
path which is still half a sinusoid in the harmonic zone but with a period
slightly smaller T< < T and with a linear motion (at constant speed) in
the free zone. The distance travelled by the particle in the free zone is
still 2L − q2 − q1, but within a time t2 − t1 − T< and the action is still
null in the harmonic zone. The action along this new path is thus

S′
2 =

m

2
(2L − q2 − q1)2

t2 − t1 − T</2
.

One sees that S′
2 < S2. On the contrary, if one chooses a path with a

period in the harmonic zone which is a little greater T> > T , we arrive at
the opposite conclusion S′′

2 > S2. Thus the action S2 is stationary, and
corresponds neither to a minimum nor to a maximum. We are dealing
with a saddle point.

For the third trajectory, one obtains of course a similar conclusion: the
action corresponds to a saddle point.

Remark: The existence of several classical trajectories is at the origin of
important implications for quantum mechanics. This, however, is another
story!

3.6. The Principle of Maupertuis
[Statement p. 121]

First case
1. One investigates a trajectory beginning at the origin O and ending at A

in the plane xOz; let x(z) be the equation for the trajectory. The reduced
action is written

S0(x) =

A∫

O

ds
√

2m(E − V (z)),

or, with V (z) = mgz and ds2 = dx2 + dz2

S0(x) =

A∫

O

√
2m(E − mgz)

√
1 + x′(z)2 dz.

We must apply Hamilton’s principle with the equivalent of a “Lagrangian”

L(x, x′, z) =
√

2m(E − mgz)
√

1 + x′(z)2.
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One sees that the x variable is cyclic and, consequently, there exists a
constant of the motion ∂x′L = const. Calculating the partial derivative,
we find:

√
2m(E − mgz) x′(z)√

1 + x′(z)2
= const.

2. Let us define by H the maximum altitude, obtained with a value x =
xm; at this point the potential energy is mgH and the kinetic energy is
denoted mgA; thus E = mg(H + A). The differential equation can be
recast as:

H + A − z =
1

C2

[
1 +

(
dz

dx

)2
]

where a new constant C was introduced. When (dz/dx) = 0, one has
z = H. From this, one obtains A = (1/C)2. The differential equation
is separable and gives dz/

√
H − z = Cdx which can be integrated to

provide, with the conditions, the result ±C(x − xm) = 2
√

H − z or,
equivalently:

z − H = −(C/2)2(x − xm)2.

One recognizes the classical parabolic equation, with the imposed condi-
tions. It was not necessary to consider the temporal characteristics. This
is precisely the essence of the principle of Maupertuis.

Second case
1. For a central potential, the motion lies in a plane and we may employ

the polar coordinates (ρ, φ); the potential being central, it can be written
as V (ρ). For a trajectory beginning at A and ending at B, the reduced
action is:

S0(φ) =

B∫

A

ds
√

2m(E − V (ρ)),

with ds2 = dρ2 + ρ2dφ2. The reduced action functional is put into the
traditional form with a “Lagrangian”

L(φ, φ′, ρ) =
√

2m(E − V (ρ))
√

1 + ρ2φ′(ρ)2.

The φ variable is obviously cyclic and, consequently, there exists a con-
stant of the motion ∂φ′L = σ.
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The angular momentum σ is written explicitly as

σ = ρ2φ′
√

2m(E − V (ρ))√
1 + ρ2φ′2

.

Simple algebraic manipulation allows us to recast the differential equation
as

φ′ =
dφ

dρ
=

σ[
mρ2

√
(2/m) (E − V (ρ) − σ2/(2mρ2))

] .

This equation can be integrated to give the trajectory in the traditional
form:

φ(ρ) =
∫

σ dρ

mρ2

√
2

rm

(
E − V (ρ) − σ2

2mρ2

) .

2. Let us take now φ as the independent variable. The new “Lagrangian” is
written

L(ρ, ρ′, φ) =
√

2m(E − V (ρ))
√

ρ2 + ρ′(φ)2.

The independent variable does not appear explicitly in the Lagrangian.
There exists a constant of the motion, analogous to the energy, namely

σ = ρ2

√
2m(E − V (ρ))√

ρ2 + ρ′2
.

The constant, σ, is identified with the angular momentum introduced
previously. Isolating ρ′2, we obtain the equivalent equation:

ρ4 [2m(E − V (ρ))] = σ2ρ2 + σ2ρ′2.

Instead of working with the function ρ(φ), let us use u(φ) = 1/ρ(φ). The
previous equation becomes:

2m (E − V (1/u)) = σ2(u2 + u′2).

Differentiating with respect to φ and simplifying by 2u′, we are left with:

u′′ + u = − m

σ2

d

du
V

(
1
u

)

which is nothing more than the famous Binet equation, mentioned in
(2.10).
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3.7. Fermat’s Principle [Statement p. 122]

Consider the plane xOz; the optical index depends on z only: n(z). The
iso-index surfaces are straight lines parallel to the Ox axis. To go from the
origin O to the point A, light takes the path that minimizes the optical path

A∫

O

n(z) ds =

A∫

O

n(z)
√

dx2 + dz2.

1. We seek the curve x(z) and we thus keep z as the integration variable.
The optical path is described in terms of a functional

S(x) =

A∫

O

n(z)
√

1 + x′(z)2 dz

in which we purposely employ the notation relative to the action; with
these conventions, the “Lagrangian” is

L(x, x′, z) = n(z)
√

1 + x′(z)2.

We notice that it does not depend on x; there is “translational invariance”
since L(x − a, x′, z) = L(x, x′, z). One deduces that the “momentum” is
constant: p = ∂x′L. (One can consider also that x is cyclic in which case
we are led to the same conclusion.)

In other words
n(z)x′(z)√
1 + x′(z)2

= const.

The medium can be considered as being formed by an infinite number
of plane diopters parallel to Ox. Let i(z) be the incident angle of light rays
on these diopters. One can easily check that sin i(z) = dx/

√
dx2 + dz2,

so that sin i(z) = x′(z)/
√

1 + x′(z)2. The previous invariance equation
is thus written more simply:

n(z) sin i(z) = const.

This is the expression of the well known Snell–Descartes law (for an
illustration of the angle of incidence, see Fig. 3.6).

2. Let us now consider the situation in terms of the independent variable x.
In this case, the optical path is written:

S(z) =

A∫

O

n(z)
√

1 + z′(x)2 dx.
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i(z)

x

z

n = const

Fig. 3.6 Curves followed by the light rays in a transparent medium the index
of which varies with the altitude. i(z) is the angle between the light ray and

the normal to the iso-index surface (angle of incidence)

The “Lagrangian” L(z, z′, x) = n(z)
√

1 + z′(x)2 does not depend on the
independent variable x. There exists a “constant of the motion” analogous
to the energy : pz′ − L = const where, this time,

p = ∂z′L =
nz′√

1 + z′(x)2
.

Consequently

const =
nz′2√
1 + z′2

− n
√

1 + z′2 = − n√
1 + z′2

.

Moreover we have sin i = 1/
√

1 + z′2. The previous relation is thus equiv-
alent to

n(z) sin i(z) = const.

which is again the Snell–Descartes law. This treatment thus adds nothing
new.

3. Let us start from the previous equation

n(z)√
1 + z′2

= a,

where a is an arbitrary constant. This differential equation can be recast
under the form z′2 = (n/a)2 − 1, or, using the proposed value for the
index,

z′ =
√

[(n0 + λz)/a]2 − 1.
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Let (n0 + λz(x)) /a = cosh u(x). The differential equation is now

a

λ
u′ sinh u = sinhu,

or, even more simply, u′ = du/dx = λ/a, which can easily be integrated
to give u(x) = (λ/a)x + b. The constants a and b are determined from
the initial conditions z(0) = 0 and z′(0) = 0. One obtains a = n0 and
b = 0. Thus the trajectory of the light ray is:

z(x) =
n0

λ

[
cosh

(
λ

n0
x

)
− 1

]
.

When λ > 0, that is when the index increases with the altitude, the
rays are curved upwards. The same type of argument can be employed
with sound waves. The temperature decreases with altitude. Therefore
the speed of sound, which behaves as

√
T also decreases. The refraction

index n = v0/v must thus increase with altitude. In our model, this
corresponds to a positive value for λ. Therefore, “noises rise”.

The wave aspect of light and sound propagation allows us to easily
recover these conclusions. Let us assume that the speed decreases with
the altitude. This means that the wave length decreases and thus that
the wave surfaces tighten more and more with the altitude. The rays,
which are perpendicular to the wave surfaces, are curved upwards.

3.8. The Skier Strategy
[Statement p. 122]

The straight line from O to A indeed corresponds to the shortest path. How-
ever the time needed depends also on the speed along the trajectory. Along
this line, the slope is followed slantwise, thus with a speed, which is smaller
than in the direction of steepest slope. One can imagine a path which,
although longer, profits from the slope to obtain a larger speed.
1. The kinetic energy of the skier is given by: T = 1

2m(ẋ2 + ẏ2) and the
gravitational potential energy, with our conventions for the axes, by
V = −mgy sin α. The mechanical energy E = T + V is a constant of
the motion. At the beginning, the speed of the skier is null and he is
positioned at the origin; at that time his kinetic energy as well as the
potential energy vanish and the same is true for the mechanical energy.
Thus

E =
1
2
m(ẋ2 + ẏ2) − mgy sinα = 0.
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2. Writing ẏ = dy/dt and ẋ = dx/dt = x′ẏ in the equation for the energy,
we obtain

dt2 = (1 + x′2) dy2/(2gy sin α).

We deduce the infinitesimal time between two close points:

dt =

√
1 + x′(y)2√
2gy sin α

dy.

3. The total time necessary for the skier to make the run is obtained by
the integration of the previous expression between the start and finish
points, namely:

T (x) =
1√

2g sin α

A∫

0

√
1 + x′(y)2

y
dy.

This expression is a functional of the curve x(y) performed by the skier.
To minimize this time is a classical problem in the calculus of variations.

4. Identifying the functional with an “action”, the corresponding “Lagrangian”
(up to an unimportant multiplicative constant) is

L(x, x′, y) =
√

(1 + x′2)/y.

One notices that the x coordinate is cyclic, so that there exists an asso-
ciated constant of the motion, the momentum:

∂x′
√

(1 + x′2)/y = x′/
√

(1 + x′2)y = const.

This equality shows that the slope of the trajectory cannot be reversed
(there is no possibility to go back up again to the end point!). The
preceding equation can be rewritten (introducing a new ad-hoc constant
C) as:

√
y(x) (1 + y′(x)2) =

√
C.

5. A simple algebraic manipulation allows us to recast this equation as dx =√
y/(C − y)dy. Let introduce the new variable θ through y = C sin2 θ or

y = C(1 − cos 2θ)/2. This allows us to calculate dx as:

dx = 2C sin2 θ dθ = C(1 − cos 2θ) dθ,

which can be easily integrated with the help of the initial conditions:
x = C(2θ − sin 2θ)/2.
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Finally, we obtain the required curve, called a brachistochrone, under a
parametric form:

x(θ) =
C

2
(2θ − sin 2θ);

y(θ) =
C

2
(1 − cos 2θ).

One recognizes the equation of a cycloid, for which only one branch must
be retained, namely 0 ≤ θ ≤ π/2.

6. Let us be a little more curious; is there really an important gain of
time?
• We first calculate the time along the brachistochrone. Using the θ

variable, the integral gives T (θf ) =
√

2H/(g sinα) θf/ sin θf where H
is the ordinate of the end point (the point A specified parametrically by
the angle θf ), the horizontal distance L (the abscissa) being expressed
as a function of θf by

L = H
2θf − sin(2θf )
1 − cos(2θf )

.

• Let us imagine another choice: the skier takes the steepest slope then
turns at a right angle to cover the horizontal part with the largest
possible speed. The speed at A is the largest, but the total distance is
longer. The time required to make the run in this case is:

T ′(L) =

√
2H

g sin α

(
1 +

L

2H

)
.

• It is also possible to calculate the time if one follows the shortest path,
namely the straight line from O to A.

T ′′(L) =

√
2H

g sinα

√(
1 +

L2

H2

)
.

The three corresponding times are compared on Fig. 3.7. One finds
T (θf (L)) < T ′′(L) < T ′(L), but the gain seems not to be very important.

The limitation to a single branch implies that there is no possible
cycloid if L > πH/2. What is the best trajectory under those condi-
tions? Let us notice that there exists another solution to the equation√

y(x)(1 + y′(x)2) =
√

C: this is the horizontal path y = C at constant
speed. Thus, the best choice is the cycloid with its top at the bottom of
the slope, followed by a horizontal path (see Fig. 3.8).
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L/H

T

T ′

T ′′

0.5 1 π/2

1

1.25

1.5

1.75

2

Fig. 3.7 Comparison of the times as a function of L/H (on the abscissa). In
order of increasing performance, one has first the brachistochrone, then the

straight line and lastly the descent along the steepest slope followed by a turn at
a right angle. The time unit is the time needed to perform the descent with the

same difference of altitude, but in the direction of the steepest slope

L/H0.5 1 1.5 2 2.5 3

−0.2

−0.4

−0.6

−0.8

−1

Fig. 3.8 Different ideal trajectories for the skier with the starting point at the
same point and the same difference of altitude, but with different horizontal
distances L/H. For a too big horizontal distance, the trajectory is a cycloid

followed by a straight segment
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3.9. Free Motion on an Ellipsoid
[Statement p. 123]

1. Since the particle is free, its Lagrangian is

L(ẋ, ẏ, ż) =
1
2
m(ẋ2 + ẏ2 + ż2);

it is constrained to move on an ellipsoid of equation
(x

a

)2

+
(y

b

)2

+
(z

c

)2

= 1.

The constraint is holonomic, since one of the coordinates can be extracted
from the others with the help of this equation; the system therefore has
two degrees of freedom.

To find the equations of motion, one begins with with the action con-
strained by a Lagrange multiplier λ(t): S =

∫
F (x, y, z, ẋ, ẏ, ż, t) dt with

F (x, y, z, ẋ, ẏ, ż, t) = L(ẋ, ẏ, ż) − λ(t)
[(x

a

)2

+
(y

b

)2

+
(z

c

)2

− 1
]

.

The equations of motion are given by d(∂ẋF )/dt = ∂xF , . . . together with
circular permutations. With the previous expression for F , we obtain:

mẍ = −2
λ(t)x
a2

; mÿ = −2
λ(t)y

b2
; mz̈ = −2

λ(t)z
c2

.

2. The contact force is given by Newton’s equation R = mr̈ and the normal
n by the gradient of the surface equation. Explicitly for the component
along Ox: Rx = mẍ. As for the component nx of the normal, it is
proportional to ∂x[(x/a)2 + (y/b)2 + (z/c)2] = 2x/a2.

Using the equations of motion, one can check that Rx ∝ λnx. Of
course, we have similar equations for the other two components; thus,
one can write the result in the vectorial form:

R ∝ λn.

Therefore, the force is normal to the surface, as it should be for contact
without friction. Moreover, the Lagrange multiplier is proportional to
the modulus of the force.

3. The term F (x, y, z, ẋ, ẏ, ż, t) appearing in the action allows us to define
the “energy” E = ẋpx + ẏpy + żpz −F . Owing to the equations of motion,
we must have dE/dt = −∂tF . But

−∂tF = λ′(t)[(x/a)2 + (y/b)2 + (z/c)2 − 1] = 0
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because of the surface condition. Thus dE/dt = 0 and the energy remains
. . . constant on the surface. With px = mẋ, and using again the equation
of the surface, it is easy to calculate the expression of the energy E =
1
2m(ẋ2 + ẏ2 + ż2). This is precisely the kinetic energy, since the particle
is free (the contact force does not produce work):

E =
1
2
mv2 = const.

4. Differentiating the constraint equation twice with respect to time; one
obtains:

(ẋ/a)2 + (ẏ/b)2 + (ż/c)2 + xẍ/a2 + yÿ/b2 + zz̈/c2 = 0.

The terms containing accelerations are eliminated using the equations of
motion proposed in the first question; one obtains an equation giving λ
as a function of the coordinates and velocities. Substituting this value in
the first equation of motion, one obtains ẍ, then Rx = mẍ. Lastly the
modulus of the force follows from R =

√
R2

x + R2
y + R2

z. The calculations
are rather involved, but without any major difficulty. Finally, one finds:

R = m

[
(ẋ/a)2 + (ẏ/b)2 + (ż/c)2

]
√

(x/a2)2 + (y/b2)2 + (z/c2)2
.

For a sphere a = b = c = r, one finds R = mv2/r, or R = mA, where A
is the acceleration of the particle. This equation is simply the expression
of the fundamental principle of dynamics.

5. Let h(x, y, z, ẋ, ẏ, ż) = ẋ2 +
(xẏ − ẋy)2

(a2 − b2)
+

(xż − ẋz)2

(a2 − c2)
.

Calculate the total derivative with respect to time:

dh

dt
= ẋ∂xh + ẏ∂yh + ż∂zh + ẍ∂ẋh + ÿ∂ẏh + z̈∂żh.

Performing somewhat cumbersome calculations, one arrives at

dh

dt
= 2ẋẍ +

2(xẏ − ẋy)(xÿ − ẍy)
(a2 − b2)

+
2(xż − ẋz)(xz̈ − ẍz)

(a2 − c2)
.

Expressing the second derivatives in terms of the Lagrange multiplier, we
can write alternatively

dh/dt = −4λ/(ma2)
[
xẋ + xy(xẏ − ẋy)/b2 + xz(xż − ẋz)/c2

]
.



152 3 Hamilton’s Principle

After some algebra involving the use of the surface equation, one arrives
at the equivalent equation

dh

dt
= −4

λx2

ma2

[
xẋ

a2
+

yẏ

b2
+

zż

c2

]
.

The term in brackets is nothing more than the derivative of the surface
equation which cancels because its value is the constant 1. Then one has
dh/dt = 0 and thus h = const

ẋ2 +
(xẏ − ẋy)2

(a2 − b2)
+

(xż − ẋz)2

(a2 − c2)
= const.

Of course, the same property holds for the two other equations obtained
by permutation.

Notice that the sum of these three constants of the motion gives the
energy, another constant of the motion, which is thus not independent.

3.10. Minimum Area for a Fixed Volume
[Statement p. 124]

1. Let us find quickly and intuitively the expressions for the volume and the
area of the “object”. To this end, we cut it into infinitesimal slices with
thickness δz. Consider the slice whose faces are specified by z + δz/2
and z − δz/2. Its volume is comprised between π[r(z + δz/2)]2δz and
π[r(z − δz/2)]2δz, both quantities taking on the same value πr(z)2 δz
to first order. The sum of all these contributions, which is the required
volume, tends towards the integral:

V (r) = π

h∫

0

r(z)2 dz.

The width of the lateral strip of the slice is, to first order,
√

dr2 + dz2

(Pythagoras’ theorem) and, completely spread out, its length is com-
prised between 2πr(z + δz/2) and 2πr(z − δz/2). The area to first order
is thus 2πr(z)

√
dr2 + dz2. The sum of all these contributions, which is

the required area, tends towards the integral:

A(r) = 2π

h∫

0

r(z)
√

1 + r′(z)2 dz.
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2. We must minimize the functional A(r) with the integral constraint V (r) =
const. We introduce the Lagrange multiplier λ and minimize the quan-
tity:

S(r) = π

h∫

0

(
2r(z)

√
1 + r′(z)2 − λ r(z)2

)
dz

3. This functional looks similar to an “action”, with a “Lagrangian”

L(r, r′, z) = 2r(z)
√

1 + r′(z)2 − λ r(z)2

(we forget about the factor π which is unimportant for our purpose). This
“Lagrangian” does not depend explicitly on z; one deduces the existence
of a constant of the motion, analogous to the “energy”: r′∂r′L−L = const.
Performing the corresponding simple calculations, one obtains the result:

λr2 − 2r√
1 + r′2

= const.

Since the surface cuts the symmetry axis, the value r = 0 is possible (one
can imagine surfaces with a shape like a torus surrounding a cylinder).
Calculating the constant for these particular points, one finds const = 0
and the resulting differential equation is then written:

λr =
2√

1 + r′2
.

4. To simplify, let us put μ = λ/2. Simple algebra transforms this equa-
tion into the form: μrr′ =

√
1 − μ2r2. The integration is performed

separating the variables

μd(r2)√
1 − μ2r2

= 2dz

to give, with the boundary conditions r(0) = 0 = r(h), (z −h/2)2 + r2 =
h2/4 and μ = 2/h. In the plane (r, z), this is the equation for a circle
with radius h/2 and a center situated halfway between the extremities of
the object. By symmetry, it generates a sphere. The Lagrange multiplier
is twice the inverse of the radius.

5. The inverse problem is expressed at present by the minimization of the
quantity

S(r) = π

h∫

0

(
r(z)2 − σ 2r(z)

√
1 + r′(z)2

)
dz,

where we introduced the Lagrange multiplier σ.
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Rewriting the “action” as

S(r) = −πσ

⎡

⎣
h∫

0

(
2r(z)

√
1 + r′(z)2 − 1

σ
r(z)2

)
dz

⎤

⎦,

it appears immediately that the problem amounts to the previous one if
one makes the identification σ = 1/λ. The solution is therefore known;
it is a sphere. In this case, the Lagrange multiplier represents half the
radius.

3.11. The Form of Soap Films
[Statement p. 125]

1. The surface of the film has cylindrical symmetry around Oz. Let us
first calculate the elementary area comprised between altitudes z and
z + dz. Developing this strip one obtains, to first order in z, a rectangle
of length 2πr(z) and width dl(z). Using Pythagoras’ theorem it is seen
that dl2 = dz2 + dr2 = (1 + r′2) dz2. The elementary area is thus dA =
2πr

√
1 + r′2 dz and the total area is obtained by an integration over the

altitudes:

A(r) = 2π

z2∫

z1

r(z)
√

1 + r′(z)2 dz.

This is a functional of the shape of the curve (see also Question 1 in
Problem 3.10).

2. Formally, the expression for the area looks like an “action” for which the
Lagrangian is L(r, r′, z) = 2πr

√
1 + r′2. As it does not depend explicitly

on z, the Lagrange equations, resulting from Hamilton’s principle, imply
the existence of a constant of the motion, analogous to the “energy”:
r′ ∂r′L − L = const. With this form for the Lagrangian, this quantity is
equivalent to the first order differential equation:

r(z) = ρ
√

1 + r′(z)2

where ρ is a real constant that can be identified with the minimal radius.

3. One can check at once that r(z) = ρ cosh ((z − h)/ρ) is the only possible
solution. The integration constant h is the altitude for which the surface
is closest to the axis, and ρ is the value of the radius at that point.

The shape of the soap film, r(z), in the symmetry plane, for two iden-
tical hoops located at altitudes H and −H, is depicted in Fig. 3.9.
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H

−H

r(z + dz)

r(z)

z ρ

Fig. 3.9 Section of a soap film in a plane passing through the symmetry axis.
The hoops are located at altitudes −H and +H. The radius of the circle

corresponding to the neck is ρ

4. One must fulfill the conditions r(H) = r(−H) = R, which imply h = 0
and therefore

R = ρ cosh
H

ρ
.

This is the relationship which gives the unknown constant ρ as a function
of the physical quantities R and H.

5. We define x = H/ρ, so that the previous relation becomes cosh x =
(R/H)x. This is a transcendental equation that gives x and thus ρ as
a function of the ratio R/H. The solutions are the intersections of the
curve cosh x with the straight line (R/H)x. Plotting those curves (see
Fig. 3.10), one remarks that if R/H is small there is no solution whereas
two solutions exist if R/H is large. The critical value xc corresponds to
the situation for which the straight line is tangential to the hyperbolic
curve, which implies sinh xc = R/H. Coupled with the relation cosh xc =
(R/H)xc, this last equation provides xc =

√
1 + H2/R2 which leads to

the transcendental equation for the intersection:

sinh
(√

1 + H2/R2
)

=
R

H
.
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xc x

cosh(x)

(R/H)x

Fig. 3.10 Graphical construction to find the radius at the neck;
it is necessary to calculate the intersection of a straight line

with a hyperbolic cosine, as explained in the text

The solution is (H/R)c = 0.6627429.... Therefore, there exists a solution
only in the case for which:

H

R
<

(
H

R

)

c

= 0.6627429...

As we saw, if this inequality is satisfied, there exist two solutions. To
obtain a better understanding, it is useful to study numerically the area
of the surface formed by the revolution of the hyperbolic cosine which
passes through the two hoops, as a function of the radius at the neck
ρ. This area possesses two extrema, a minimum for the largest value of
the neck radius – and this is the physical solution – and a non-physical
maximum for the lowest value of the neck radius. For the critical value
H/R these two extrema are identical and the solution corresponds to an
unstable saddle point. The area can still decrease up to a conical form
for the surface; for a further decrease, the cone will degenerate into two
separated films based on the two hoops. This discussion is illustrated
graphically in Fig. 3.11.
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ρ/R

Energy

0.25 0.5 0.75 1

Fig. 3.11 Surface tension energy, proportional to the surface, for a film with
a catenoidal shape as a function of the neck radius. The point at the origin

corresponds to the two layers of a cone based on the hoops. The various
curves correspond to different values of H/R. For a value H/R less than a
critical value (symbolized by the dashed line) there exists a minimal energy

solution; for a larger value there is no minimum

6. The surface potential energy is V = TA, where T is the coefficient of
surface tension and A the area of the film. The calculus of the area is
obtained by computing the integral given in Question 1 with the expres-
sion of the film shape as given in Question 3. A long calculation, without
particular difficulty, gives: A = 2πρ2 [x + cosh x sinh x], where x(R/H)
is the physical solution of our transcendental equation cosh x = (R/H)x.
Remember that ρ = H/x(R/H) is a function of R and H.

Note in passing that this area is a increasing function of x(R/H); this
justifies the choice of the largest solution.

A rather involved calculation, performed with care, allows us to obtain
the variation of the area as function of the degree of stretching (of course
the radius of the hoop R remains unchanged) ∂A/∂H = 4πρ. The force
due to the surface tension is defined as the derivative of the potential
energy with respect to the stretching F = ∂V/∂(2H) = (T/2)∂A/∂H
that is

F (H) = 2πTρ(H)

This result is in fact easy to obtain.
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Let us imagine a cut at the neck. One must remember that T , the
coefficient of surface tension, is the force per unit length (perpendicular
to the cut) and, obviously, at the neck the cohesion forces, all parallel,
are exerted over a distance 2πρ(H), the perimeter of the neck, whence
the expression of the force derived above.

3.12. Laplace’s Law for Surface Tension
[Statement p. 127]

The section of the free liquid surface is given by a curve z(x) between point
A on the Oz axis and point B, located at a distance l on the horizontal axis.
We impose the conditions z(0) = h = z(l). The required curve minimizes
the total energy, which is the sum of the gravitational potential energy and
the surface energy.
1. Let us take a small basic rectangle with sides dx and dy centered at the

point (x, y). The small parallelepiped built on this rectangle has a vol-
ume dV = z(x) dx dy and a mass dm = ρdV = ρz(x) dx dy. Its center
of mass lies at the altitude z/2; therefore, its gravitational potential en-
ergy is dVG = dmg (z/2), or dVG = ρg (z2/2) dx dy. The total potential
energy is obtained by integrating this expression over the whole surface.
Because of the translational invariance along Oy, the y variable does not
play any practical role and one can reason using a slice with thickness
dy=1. Thus the gravitational potential energy is dVG = ρg (z2/2) dx.

With identical conditions, the element of the free surface is ds(x) dy =
ds(x), where ds(x) is the elementary length element at point x. Ob-
viously, ds2 = dx2 + dz2 or ds = dx

√
1 + z′2. The free surface has

an area dA = dx
√

1 + z′2 and the corresponding potential energy is
dVT = TdA, where T is the coefficient of surface tension. Therefore
dVT = T

√
1 + z′2 dx. The total potential energy is the sum of the con-

tributions due to gravity and surface tension, that is

dVP = dVG + dVT = ρg
z2

2
dx + T

√
1 + z′2 dx.

The total potential energy for the slice of unit thickness is obtained by
integrating this quantity along Ox:

VP (z) =

l∫

0

[
ρg

(
z(x)2/2

)
+ T

√
1 + z′(x)2

]
dx.

It is a functional of the shape of the meniscus.
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2. We already saw that the elementary volume is dV = z(x) dx dy, or (for
a slice of unit thickness) dV = z(x) dx. The total volume is obtained by
integrating this quantity along Ox:

V (z) =

l∫

0

z(x) dx.

It is also a functional of the shape of the meniscus.

3. Since the liquid is incompressible, its volume remains constant. The
equations of motion minimize the potential energy. We are faced with a
variational principle subject to an integral constraint. The usual method
consists of introducing a Lagrange multiplier λ and then searching for
the minimum of the functional

S(z) =

l∫

0

[
ρg

(
z(x)2/2

)
+ T

√
1 + z′(x)2 − λz(x)

]
dx.

We have an expression analogous to an “action” with a “Lagrangian”

L(z, z′) = ρg
(
z(x)2/2

)
+ T

√
1 + z′(x)2 − λz(x)

The Euler-Lagrange equation is written as: ∂zL = d(∂z′L)/dx. In this
case

∂zL = ρgz − λ, ∂z′L =
Tz′√
1 + z′2

and
d

dx
(∂z′L) =

Tz′′

(1 + z′2)3/2
.

In this last expression, we can identify the radius of curvature of the
meniscus at point x: R(x) = (1 + z′2)3/2/ |z′′| (be very careful, in our
case z′′ < 0); therefore d(∂z′L)/dx = −T/R(x). The Euler-Lagrange
equation leads to:

ρgz(x) +
T

R(x)
= λ

If one sets Z(x) = z(x)−λ/ρg, the equation for the meniscus is ρgZ(x)+
T/R(x) = 0, which does not depend on the Lagrange multiplier (i.e. on
the volume).

Fortunately, one can recover this equation much more elegantly

To simplify, let us take a meniscus with a concavity oriented upwards.
The horizontal is an equipotential curve, i.e. an isobar. The pressure is
the sum of the atmospheric pressure, of the hydrostatic pressure ρgZ(x)
and the difference of pressure on opposite sides of the meniscus (Laplace’s
equation) T/R(x).
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3.13. Chain of Pendulums [Statement p. 128]

1. For the atom numbered i, the kinetic energy is Ti = 1
2ml2q̇2

i , the grav-
itational potential energy (with our conventions for the orientation of
the axes) Vi = −mgl cos qi and the harmonic potential energy V ′

i =
1
2k(qi − qi−1)2. The total Lagrangian is the difference between the ki-
netic energy and the potential energies, after summation over all the
point-like masses. Therefore:

L(q, q̇) =
N∑

i=1

[
1
2
ml2q̇2

i + mgl cos qi −
1
2
k(qi − qi−1)2

]
.

2. Passing to a continuous treatment, the distance between the pendulums
becomes infinitesimal δ = dx, the masses become infinitesimal dm =
μdx (μ is the linear mass density), the coordinates become fields qi(t) =
ϕ(xi, t) and the summations become integrals. In consequence, passing
to this limiting case, the kinetic energy becomes T = 1

2μl2
∫

dx (∂tϕ)2,
the gravitational potential energy V = −μgl

∫
dx cos ϕ and the harmonic

potential energy V ′ = 1
2kdx

∫
dx (∂xϕ)2. With the proposed value at this

limit kdx = μλ, the Lagrangian is written:

L =
∫ [

1
2
μl2(∂tϕ)2 − 1

2
μλ(∂xϕ)2 + μgl cos ϕ

]
dx

which can be written in the form L =
∫

� dx, by introducing the La-
grangian density, �. It thus appears that the Lagrangian density is ex-
pressed as:

�

(
ϕ,

∂ϕ

∂x
,
∂ϕ

∂t

)
=

1
2
μl2

(
∂ϕ

∂t

)2

− 1
2
μλ

(
∂ϕ

∂x

)2

+ μgl cos ϕ.

3. The Euler-Lagrange equations for the continuous fields are written:

∂ϕ� − ∂x

(
∂�

∂(∂xϕ)

)
− ∂t

(
∂�

∂(∂tϕ)

)
= 0.

With the Lagrangian density obtained previously

∂ϕ� = −μgl sin ϕ; ∂x

(
∂�

∂(∂xϕ)

)
= −μλ∂2

x2ϕ; ∂t

(
∂�

∂(∂tϕ)

)
= μl2∂2

t2ϕ.

Introducing the proper angular frequency ω2 = g/l, the Euler-Lagrange
equations lead to the non-linear wave equation, of soliton type (see Prob-
lem 2.13 for the solution of this equation):

∂2ϕ(x, t)
∂t2

=
λ

l2
∂2ϕ(x, t)

∂x2
− ω2 sin ϕ(x, t).
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3.14. Wave Equation for a Flexible Blade
[Statement p. 128]

1. We saw in the Problem 2.12 that the kinetic energy of the blade is

T =
1
2
μδ

N∑

i=1

q̇2
i

and the elastic potential energy

V =
EI

2δ3

N∑

i=1

(qi−1 + qi+1 − 2qi)
2
.

Passing to a continuous treatment, the coordinates become fields qi(t) =
ϕ(xi, t), δ → 0 and δ

∑N
i=1 →

∫ L

0
dx. Thus, the kinetic energy transforms

into T = 1
2μ

∫ L

0
(∂tϕ)2 dx. For the potential energy, one uses

qi−1 + qi+1 − 2qi

δ2
→ ∂2

x2ϕ and V =
1
2
EI

L∫

0

(∂2
x2ϕ)2 dx.

Consequently the Lagrangian is expressed as

L =

L∫

0

[
1
2
μ (∂tϕ)2 − 1

2
EI(∂2

x2ϕ)2
]

dx,

which can be written as L =
∫

� dx, where � is the Lagrangian density.
Explicitly, this density is expressed as:

�

(
ϕ,

∂ϕ

∂x
,
∂2ϕ

∂x2
,
∂ϕ

∂t

)
=

1
2
μ

(
∂ϕ

∂t

)2

− 1
2
EI

(
∂2ϕ

∂x2

)2

.

2. The Euler-Lagrange equations for the continuous fields are written:

∂ϕ� − ∂x

(
∂�

∂(∂xϕ)

)
− ∂t

(
∂�

∂(∂tϕ)

)
+ ∂2

x2

(
∂�

∂(∂2
x2ϕ)

)
= 0.

With the previous Lagrangian density

∂ϕ� = 0, ∂x

(
∂�

∂(∂xϕ)

)
= 0,

∂t

(
∂�

∂(∂tϕ)

)
= μ∂2

t2ϕ, ∂2
x2

(
∂�

∂(∂2
x2ϕ)

)
= −EI∂4

x4ϕ.

Introducing the mass M and the length L of the blade (μ = M/L), in
the wave equation, one obtains the final expression:

∂2ϕ

∂t2
= −EIL

M

∂4ϕ

∂x4
.
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3.15. Precession of Mercury’s Orbit
[Statement p. 128]

1. The action can be rewritten as S =
∫

Ldt where, with the proposed
expression, the Lagrangian is expressed as L = −mcds/dt. For the
Schwarzschild metric, one has explicitly:

L = −mc2

√
e(r) − (r2θ̇2 + r2 sin2 θ φ̇2)/c2 + ṙ2/(e(r)c2).

This Lagrangian is rotationally invariant; this property implies the con-
stancy of the angular momentum which implies a planar motion. It is
therefore natural to work in this plane and to adopt the polar coordinates
(r, φ); this is carried out simply by substituting θ = π/2 in the previous
expression. The form of the Lagrangian is then:

L(r, φ, ṙ, φ̇) = −mc2

√
e(r) − 1

c2
(r2φ̇2 + ṙ2/(e(r)).

2. One notices that the φ variable is cyclic; therefore there exists a constant
of the motion, the conjugate momentum; this last quantity is nothing
more than the angular momentum. Performing all the necessary calcu-
lations in σ = pφ = ∂φ̇L, we obtain the expression:

σ =
mr2φ̇√

e(r) − 1
c2 (r2φ̇2 + ṙ2/(e(r))

.

3. Since we are concerned by the trajectory rather than the temporal evo-
lution, it is judicious to work with r′ = dr/dφ rather than ṙ = dr/dt.
Substituting ṙ = r′φ̇ in the previous expression and isolating φ̇, we arrive
at the alternative expression:

φ̇2 =
e(r)

1
c2

(
r2 + r′2

e(r)

)
+ m2r4

σ2

.

4. Since the Lagrange function does not depend explicitly on time, the en-
ergy E = ṙ pr + φ̇ pφ − L is also a constant of the motion. In order to
simplify the notation, let us set

D =

√
e(r) − 1

c2
(r2φ̇2 + ṙ2/(e(r)).

Then L = −mc2D and one can calculate pr=∂ṙL=mṙ/ (e(r)D) and
pφ=∂φ̇L=mr2φ̇/D. One deduces the value of the energy E = mc2e(r)/D.
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Employing now the D value from the second question, expressed as a
function of σ, the energy can be written in the form:

E =
σc2e(r)

r2φ̇
.

5. Let us square this expression and replace φ̇2 by the value obtained in
Question 3. A little algebra finally leads to the differential equation
giving the trajectory:

e(r)
(

1
r2

+
m2c2

σ2

)
+

r′2

r4
= E2/(c2σ2).

As is often the case, it is more astute to work with the inverse of the radius
u(φ) = 1/r(φ). Substituting this change of variable in the differential
equation and using the explicit expression of e(u) = 1− r0u, we arrive at
the differential equation of first order in u:

u′2 =
E2

c2σ2
− (1 − r0u)

(
u2 +

m2c2

σ2

)
.

6. Let us differentiate this equation with respect to φ and simplify by u′;
we now obtain a differential equation of second order in u:

u′′ + u =
3
2
r0u

2 +
m2c2r0

2σ2
.

This equation could be called the relativistic Binet equation obtained
with the Schwarzschild metric. It can be written alternatively as u′′ =
3
2r0(u − uc)(u − u′

c), after the introduction of the two roots uc and u′
c

for the second degree equation. These latter quantities obey the con-
dition u′′ = 0. Explicitly, one has uc =

(
1 −

√
1 − d

)
/3r0 and u′

c =(
1 +

√
1 − d

)
/3r0 with d = 3 (mcr0/σ)2.

7. For a circular orbit, one has u′′(φ) = 0, a condition that is possible for
R′

c = 1/u′
c and another circle with larger radius Rc = 1/uc. There exist

orbits around those two particular solutions.

8. Let us set v = u − u′
c; in terms of the new variable v the differential

equation becomes:

v′′ +
3
2
r0v

(
v − 2

√
1 − d/3r0

)
= 0.

Let us now assume that v << 2
√

1 − d/3r0; the linearized equation is
even simpler v′′ − ω2v = 0.
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Its solution increases exponentially so that the approximation is no longer
valid. There are no stable orbits close to this radius. The situation is
completely different close to uc for which the equation becomes v′′+ω2v =
0. This equation can be integrated easily to give v = A cos(ωφ + φ0).
Returning to the r variable and defining ω = (1 − d)1/4, one obtains:

r(φ) =
1

uc + A cos(ωφ + φ0)
.

If ω = 1, one recovers the usual equation of an ellipse. Owing to the
fact that ω deviates slightly from 1, the ellipse is slightly distorted: its
axes rotate slowly from one revolution to the other. This phenomenon is
known as the precession of perihelia.
For example, one can say that the major axis rotates by Δφ after one
revolution. To fulfill this, the length of the major axis must be unchanged
and this leads to the equation cos(ωφ) = cos (ω(2π + φ + Δφ)), or 2π +
Δφ = 2π/ω. Substituting the value of ω previously obtained, we deduce
the value of the precession Δφ = 3πm2c2r2

0/2σ2. Finally, expressing
the Schwarzschild radius in terms of fundamental constants, the new
expression for the precession of perihelia is obtained:

Δφ = 6π
G2M2m2

c2σ2
.

One can eliminate the angular momentum, σ, by expressing it in terms
of the characteristics of the classical Kepler orbit (semi-major axis a and
eccentricity e) σ2/(GMm2) = a(1 − e2); the final expression is written:

Δφ = 6π
GM

c2a(1 − e2)
.

• With the characteristic data relative to Mercury’s orbit, one finds Δφ =
0.502×10−6 rd for one revolution, that is Δφ = 0.1035′′ per revolution.
During a century Mercury performs 100 × 87.969/365.25 = 415.203
revolutions. Its perihelion thus advances by 415.203 × 0.1035′′ ∼= 43′′

per century. This results agrees remarkably well with the experimental
observations.

• An analogous calculation for the Earth leads to an advance of 0.0384′′
per revolution, that is 3.84′′ per century; here again the agreement is
very good.



Chapter 4

Hamiltonian Formalism

Summary

4.1. Generalized Momentum
In Chapter 2, we introduced the Lagrange function (or Lagrangian) L(q, q̇, t),
which depends on generalized coordinates q and generalized velocities q̇, con-
sidered as independent variables, and, possibly, on time. The Hamiltonian
formalism is an alternative to the Lagrangian formalism for the descrip-
tion of a mechanical system. Instead of generalized velocities employed in
Lagrangian formalism, it relies on generalized momenta1 defined as:

pi =
∂

∂q̇i
L(q, q̇, t). (4.1)

Theoretically, one could return to generalized velocities q̇(q, p, t) from these
generalized momenta,2 simply by inverting the relations (4.1). In this new
framework, the state of a system is defined using its n generalized coordi-
nates q and its n generalized momenta p, that is by a point (q, p) in a 2n
dimensional space, called phase space.

1 The word “conjugate variable of the generalized coordinate” is also of common use.
Note that we must distinguish between generalized momentum and linear momentum.

2 Let us remark that the product of a coordinate by a momentum has always the
dimension of an action.

C. Gignoux, B. Silvestre-Brac, Solved Problems in Lagrangian 165
and Hamiltonian Mechanics, DOI 10.1007/978-90-481-2393-3_4,
c© Springer Science+Business Media B.V. 2009
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4.2. Hamilton’s Function
The Lagrange functions which derive from a Lagrangian are fully equivalent
to Newton’s equations. For a system with n degrees of freedom (without ad-
ditional constraints), they form a set of n coupled second order differential
equations. In the new formalism, one defines a function, known as Hamil-
ton’s function (or Hamiltonian), which depends on the generalized coor-
dinates q and momenta p (which are considered as independent variables),
and possibly on time, as the Legendre transform of the Lagrangian:

H(q, p, t) = p · q̇(q, p, t) − L(q, q̇(q, p, t), t). (4.2)

In this expression, all the generalized velocities are expressed in terms of
coordinates and momenta q̇(q, p, t), after inversion of relation (4.1). Re-
member that p · q̇ means explicitly

p · q̇ =
n∑

i=1

pi q̇i.

Consequently, the Hamiltonian depends on a point in phase space, and
possibly on time.

Mechanics can be formulated equivalently using either the Lagrangian
or the Hamiltonian. If we know the Hamiltonian, the Lagrangian is easily
recovered from the inverse Legendre transform. One begins by determining
the velocities thanks to q̇ = ∂pH(q, p, t), which can be inverted to give
p(q, q̇, t). The Lagrangian is easily deduced from the Legendre transform:

L(q, q̇, t) = q̇ · p(q, q̇, t) − H(q, p(q, q̇, t), t).

Some examples3 in common use.
• A one-dimensional particle subject to a force arising from a potential

L(q, q̇, t) =
mq̇2

2
− V (q, t) ↔ H(q, p, t) =

p2

2m
+ V (q, t).

• The composite pendulum

L(θ, θ̇) =
Iθ̇2

2
+ mg cos θ ↔ H(θ, p) =

p2

2I
− mg cos θ.

• A non-relativistic charged particle embedded in an electromagnetic field

L(r, ṙ, t) =
mṙ2

2
+ qe (ṙ · A(r, t) − U(r, t)) ↔

H(r,p, t) =
(p − qeA(r, t))2

2m
+ qeU(r, t).

3 Note that the expression H = T + V , although frequent, is not systematic.



Summary 167

• A relativistic charged particle embedded in an electromagnetic field

L(r, ṙ, t) = −mc2
√

1 − ṙ2/c2 + qe (ṙ · A(r, t) − U(r, t)) ↔
(H(r,p, t) − qeU(r, t))2 − (p − qeA(r, t))2 c2 = m2c4.

4.3. Hamilton’s Equations

The temporal evolution of a system is governed by Hamilton’s equations

q̇i =
∂

∂pi
H(q, p, t); (4.3)

ṗi = − ∂

∂qi
H(q, p, t). (4.4)

They replace Lagrange’s equations. In this case, they form a system of 2n
coupled differential equations, but of first order only in (q, p). They can
be considered as giving, at each point (q, p) of phase space, the velocity
vector (q̇, ṗ) used for building all the trajectories (q(t), p(t)). One of these
trajectories (which of course depends on the initial conditions) is called the
flow of the system.

These equations can be completed by

dH(q(t), p(t), t)
dt

=
∂H(q, p, t)

∂t
= −∂L(q, q̇, t)

∂t
. (4.5)

Consequently, if the Hamilton function does not depend explicitly on time,
there exists a constant of the motion: the energy. In this case, the system
is said to be autonomous or conservative. The energy is the value taken
by the Hamiltonian along the considered trajectory. Of course it depends
on the initial conditions:

H(q(t), p(t)) = E. (4.6)

4.4. Liouville’s Theorem

The flow has the remarkable property of being incompressible, a property
that can be expressed as:

Every closed surface in phase space preserves its hypervolume at each time

This property constitutes a succinct formulation of Liouville’s theorem. In
the simplest case of a one-dimensional system where the phase space is two
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dimensional, the hypervolume is just the area and Liouville’s theorem is
frequently named “the theorem of conservation of the area”.

Thanks to Liouville’s theorem, one can deduce another important the-
orem known as “the revisiting theorem”. It is due to Poincaré and can be
formulated as:

For an autonomous system moving in a finite phase space, then in any
domain of this phase space, however small, there exist at least two points
belonging to the same trajectory.

4.5. Autonomous One-dimensional Systems
We work in a two-dimensional phase space. The constant of the motion,
the energy defined by (4.6), immediately gives the flow determined by the
relation H(q, p) = E. The set of all curves p(q, E), which follow from this
equality, for different values of the energy is called the phase portrait of
the system. Depending on the explicit value of the energy, one generally dis-
tinguishes several regimes of behaviour, separated by special curves, known
as separatrices.

There exist trajectories that are restricted to one fixed point (equilibrium
point): ṗ = −∂qH(q, p) = 0; such points correspond to extrema of the
potential.4 Close to these points, there exist two types of behaviour:

• If we are dealing with a potential minimum, the phase portrait is com-
posed of closed curves which are nested inside each other and which look
more and more similar to ellipses as we approach the fixed point; we speak
in this case of an elliptic point or stable node.

• If we are in the presence of a potential maximum, we are dealing with
an unstable equilibrium point; the phase portrait looks more and more
similar to a set of hyperbolae as we approach the fixed point; we speak in
this case of a hyperbolic point or unstable node.

Very often, the Hamiltonian is just the sum of the kinetic energy and the
potential energy. Thus, for an autonomous system, one has T = E − V on
the trajectories. The kinetic energy being always a positive quantity, a real
motion can exist only for points satisfying the condition V ≤ E. The points
for which V = E are called turning points. Most of the time, the motion
can occur only between (or possibly outside) the turning points, where the
velocity vanishes (and changes sign).

4 We forget about possible saddle points.
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It is possible to obtain the time as a function of the coordinate (inverse of
the temporal evolution) and the energy through an integral:

q̇ = ∂pH(q, p) → t − t0 =

q∫

q0

dq

∂pH(q, p)
(4.7)

where, after calculation of the partial derivative ∂pH, we substitute for p
its expression in terms of q and E according to (4.6).

4.6. Periodic One-dimensional
Hamiltonian Systems

For all periodic phenomena, it is worthwhile to observe the system at times
separated by the period T . Indeed this is the principle of stroboscopy. In
our case, this principle implies specifying the coordinate and the momen-
tum once at every period. Thus, in phase space, we consider the appli-
cation which transforms the point (qn−1, pn−1) at time tn−1 to the point
(qn(qn−1, pn−1), pn(qn−1, pn−1)) at time tn = tn−1 + T . If the system re-
turns to its initial state after r periods, one speaks of a fixed point of order
r (r-fold fixed point). Close to a fixed point (of order 1 to simplify the
notation5), a small deviation (εn−1, ηn−1) of the fixed point is transformed,
a period later, by a deviation (εn, ηn) which depends linearly on the ini-
tial deviation. This introduces a matrix, with unit determinant, called the
propagator: (

ε
η

)∣∣∣∣
n

= K

(
ε
η

)∣∣∣∣
n−1

(4.8)

It is possible to prove the following properties.
• If the eigenvalues of the propagator are complex, or if – and this is equiv-

alent – the absolute value of the trace of the matrix is less than two, the
excursion around the fixed point will remain limited. In phase space, the
sequential points will occur close to an ellipse. We are in the presence
of an elliptic fixed point or a stable fixed point. We have depicted this
situation, for three different initial conditions, in the Fig. 4.1 where the
sequence of points is plotted after a stroboscopic inspection. The ellipse
will be filled in after an infinite number of periods.

5 For a fixed point of order r, it is always possible to recover this special case by
considering the rth power of the original application.
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Fig. 4.1 Figure, in phase
space, obtained from the po-
sitions of a system after peri-
odic impulses labelled by the
progressive numbers. This is
the case of complex eigenvalues
with unit modulus for the prop-
agator

• If the eigenvalues of the propagator are real or, equivalently, if the absolute
values of the trace are larger than two, the successive points lie on a hy-
perbola. Starting from a point located exactly on one of the asymptotes,
the next point will lie closer to the fixed point according to a geometric
progression. This is the convergent direction of the hyperbolic point. In
contrast, starting from the other asymptote, the point will move away
from the fixed point according to the inverse common ratio. A non singu-
lar initial deviation always leads to a departure from the fixed point. We
say that we are faced with a parametric resonance. The fixed point is
unstable. We have plotted such a situation in Fig. 4.2. We may remark
that the stroboscopic order jumps from one branch to the other. This is
a consequence of negative eigenvalues.
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Fig. 4.2 Same situation as de-
picted in Fig. 4.1 in the case
of a propagator having negative
real eigenvalues
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The transition between these two types of behaviour occurs for an absolute
value of the trace equal to two. In this case, there exists a preferential
direction. Close to the fixed point, the successive iterations regularly drift
from the fixed point parallel to this straight line.

Problem Statements

4.1. Electric Charges Trapped in
Conductors [Solution and Figure p. 188] � �

An interesting problem dealing with an electrostatic image

A point-like electric charge qe influences an infinite plane conducting wall
which attracts it. The situation is identical to that of an opposite charge
symmetrically placed with respect to the wall (electrostatic image). For a
plane wall, the component of the motion parallel to the plate is uniform and
straight and, thus, rather uninteresting.

We are concerned here with the perpendicular motion, along the x′x axis;
this axis intersects the plate at point O and the position M of the charge
is specified by the generalized coordinate x = OM . The particle, released
without speed from point A such that a = OA, accelerates and falls onto the
plate whose role is to produce a reflection with an instantaneous inversion
of the velocity.
1. Give the attractive force exerted by the plate on the charged particle.

Deduce the corresponding potential.

2. Derive the Hamiltonian and give a constant of the motion. Plot the phase
portrait. You will also consider particles coming from infinity (a = ∞).

3. Find the period of the oscillations that trap the particle. You will need to
find the corresponding formula, consult a table of integrals (or a package
such as Mathematica) or, lastly, . . . use the relation

a∫

0

dx

(
1
x
− 1

a

)−1/2

=
π

2
a3/2.

4.2. Symmetry of the Trajectory
[Solution and Figure p. 190] �

A simple geometrical property of the trajectory
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In a central force field, one considers, in a plane, the trajectory of a
particle with mass m (this could be a single particle subject to central
forces or the virtual particle with reduced mass m in the two-body problem).
This trajectory, expressed using polar coordinates ρ(φ), is assumed to be
comprised between the two turning points ρmin and ρmax for the radial
variable.
1. Show that the particle velocity is perpendicular to the radius vector at

the turning points.

2. As usual, one defines the quantity u(φ) = 1/ρ(φ). The reference axis for
the polar angle can be chosen so as to coincide with the radius vector of
a turning point; consequently φ = 0 for that turning point. Show that,
at this point, the condition of Question 1 implies u′(0) = 0.

3. Let w(φ) = u(−φ) be the function obtained from u by a parity operation
with respect to the axis. Show that the function w(φ) obeys the same
Binet equation as the function u(φ).

4. Using the results of Questions 2 and 3, show that w(φ) = u(φ), ∀φ.

5. Deduce that the trajectory is symmetric with respect to the radius vectors
of the turning points. Conclude that the whole trajectory can be obtained
if it is known only between two consecutive turning points.

6. Show that these conclusions can be extended to the case of a differential
equation of motion in u which is more general than Binet’s equation
provided that it does not contain derivatives of odd order.

4.3. Hamiltonian in a Rotating Frame
[Solution p. 192] ��

This problem is a natural consequence of Problem 2.8

A particle (or a set of particles) with mass m is studied in a frame rotating
around the OZ axis, with angular velocity φ̇ = ω. We proved in Problem 2.8
that the potential of the inertial forces is

V = −ω · L − 1
2
m (ω × r)2 ,

where L is the kinetic momentum around O.
1. Determine the generalized momenta taking as generalized coordinates

either the Cartesian coordinates (X, Y , Z) or the cylindrical coordinates
(ρ,ψ,Z), in this rotating frame. To simplify, one may choose the OZ axis
along the rotation vector ω.

2. Perform the Legendre transform on the Lagrangian, assuming that there
are no additional forces. Show that the resulting Hamiltonian is equal to
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H = H0 − ω · L, where H0 is the Hamiltonian of a free particle in the
rotating frame.

One should notice that the centrifugal term is hidden in the kinetic momen-
tum. This expression must be used with care; it is not valid for an arbitrary
choice of the coordinates.

4.4. Identical Hamiltonian Flows
[Solution and Figure p. 194] �

Different Hamiltonians can lead to the same trajectories

Let H(q, p) be an autonomous Hamiltonian and (q(t), p(t)) a corresponding
trajectory in phase space, with energy E. We consider now a new Hamilton
function K(q, p), which is an arbitrary function of the original Hamiltonian
K(q, p) = F (H(q, p)). We denote (q̃(t), p̃(t)) the corresponding trajectories
with energy F (E).

Show that these trajectories are the same as the previous ones, but gov-
erned by a different temporal law.

This implies that the flows of the Hamiltonians H and K are identical.

4.5. The Runge–Lenz Vector
[Solution and Figure p. 195] � �

A very special vector

One considers the motion of a particle with mass m embedded in a central
force field, the potential of which is given by V (|r|).
Generalities
1. Show that the Hamiltonian of the system is

H(r,p) =
p2

2m
+ V (r).

2. Write down Hamilton’s equations. What do they represent?

3. Demonstrate the following equality

d

dt

(r

r

)
= − 1

r3
[r × (r × ṙ)] .

4. In the case of a central force problem, it is well known that the kinetic
momentum σ = r × p is a constant of the motion.
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Using Questions 2 and 3, deduce the relation

d

dt
(p × σ) = −mr2f(r)

d

dt

(r

r

)
,

where f(r) = −dV (r)/dr is the value of the central force along the unit
vector r/r.

Kepler’s problem

We deal now with the special case of the attractive Kepler problem for
which: V (r) = −K/r (K > 0).
1. Prove that the vector

C = p × σ − mK
r

r
,

called the Runge–Lenz vector, is a constant of the motion.

2. Show that this vector belongs to the plane of the orbit.

3. Choosing the reference axis of the polar coordinate φ along the vector C,
derive the relation Cr cos φ = σ2 − mKr.

4. Relying on the previous question and on the general expression for the
trajectory, show that C is directed along the radius vector corresponding
to the perihelion, and that it is simply linked to the eccentricity e.

5. The problem of a particle in a central force field exhibits six constants
of the motion (depending for example on the initial components of the
position and velocity vectors). In fact, one of these pieces of information
concerns the temporal law, for example the time of passage at the perihe-
lion. There remain five independent constants concerning the orientation,
the shape and the size of the ellipse. However, we may determine seven
constants, namely the energy E, the three components of σ and the three
components of C. There must therefore exist two relationships between
these quantities. Determine these relationships.

4.6. Quicker and More Ecologic
than a Plane [Solution p. 198] � �

An effective solution to conveyance problems

The Earth is considered as a sphere with radius RE = 6, 371 km and
with uniform mass density. We set g, the acceleration due to gravity at
ground level, equal to 9.81 ms−2. Let imagine a straight tunnel between
two arbitrary points A and B on the Earth’s surface, which for instance
connects Paris and Tokyo (see Fig. 4.3).



Problem Statements 175

B
H A

R

x

r

O
Fig. 4.3 Straight tunnel connecting Paris to
Tokyo. The coach is located by its coordinate
x along the tunnel, with the middle of the tun-
nel taken as the origin. The distance between
the coach and the center of the Earth is de-
noted by r

Further imagine a coach which rolls without friction in this tunnel. Start-
ing from Paris, it will accelerate due to the gravitational field then, after
reaching the distance of least approach to the center of the Earth, it will
decelerate.

Is its speed sufficient to reach Tokyo? If so in how much time? The effect
due to the rotation of the Earth is neglected.
1. Calculate the gravity field G(r) for a point inside the Earth located at a

distance r from its center.

2. Calculate the potential V (r) at the same point.

3. As a generalized coordinate x, you should take the distance between
the coach and the middle of the tunnel. Give (up to a constant) the
potential energy of the coach of mass m as a function of x. Write down
the Hamiltonian of the system. Deduce Hamilton’s equations and then
the differential equation concerning x(t).

4. Solve this equation for a departure from Paris. How much time does the
journey take? Show that this time is independent of the choice for A and
B.

5. Just for fun, calculate the length of the tunnel connecting Paris to Tokyo
as well as the maximum speed reached in the middle. We give the lat-
itudes and longitudes of both cities: Paris (48.52 ◦N, 2.2 ◦E), Tokyo
(35.42 ◦N, 139.46 ◦E).

Hint: Be careful! The acceleration due to gravity depends on the distance
to the center of the Earth where it vanishes. To find this dependence,
you can use the analogy with the electric field inside a uniformly charged
sphere. For the motion of the coach, you should find the traditional
“harmonic oscillator”.
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4.7. Hamiltonian of a Charged Particle
[Solution p. 200] � � �

A straightforward use of Lorentz’s covariance

Let us consider a particle of mass m and electric charge qe, placed in an
electromagnetic field (U,A). The aim of the problem is to check that the
following Hamilton’s functions lead to the equations of motion, namely that
the time derivative of the linear momentum π = p − qeA is equal to the
Lorentz force qe [E + v × B]. We consider two important cases.
1. The non-relativistic approximation for which the Hamiltonian H is

H =
(p − qeA)2

2m
+ qeU.

2. The relativistic regime for which the Hamiltonian H is given by

(H − qeU)2 − (p − qeA)2 c2 = m2c4.

3. For the following questions a lecture course on relativity is necessary.

It is more elegant to translate the Hamiltonian formalism into a covariant
form. With this in mind, we use the following contravariant quadrivec-
tors: qμ = (ct, q) = (ct, r); pμ = (E/c,p); Aμ = (U/c,A). In this
problem, the metric is that of special relativity, namely the Minkowski
metric given by6

gμν = gμν = gμμδμν

gii = 1 i = 1, 2, 3
g00 = −1.

and the transformation of the corresponding contravariant and covariant
quadrivectors

Vμ = gμμV μ; V μ = gμμVμ.

Check that the equations of the motion are written

dqμ

dτ
=

pμ − qeA
μ

m
;

dpμ

dτ
=

∑

ν

pν − qeA
ν

m

∂Aν

∂qμ
.

where τ is the proper time defined by dτ2 = (1 − q̇2/c2) dt2.

6 Very often the metric is defined with the opposite sign. Of course, the physical results
are independent of this choice. The choice employed here allows a more natural
interpretation of the momentum signs if they are defined by the usual recipe relying
on the Lagrangian.
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To materialize the covariance of the formalism, we assume that the quadri-
vector qμ = (ct, q) depends on a continuous parameter ω, which will be
identified with the proper time, and we set q′μ = dqμ/dω.

It is natural to define the conjugate momentum by the usual formula
(take care of the indices; the derivative with respect to a contravariant
component is indeed a covariant component): pμ = ∂L/∂q′μ. However
we must start from a correct Lagrangian, which must be a relativistic
invariant and which leads to the correct equations of motion. One could
define it in a standard way by

∫
−mcds − qe(U dt − A · dq) =

∫
L(qμ, q′μ) dω.

It is in fact easier to start from the expression, justified a posteriori,

L(qμ, q′μ) =
∑ 1

2
mq′μq′μ + qeq

′
μAμ

(the fans of Einstein’s convention can remove the summation symbol).

4. Give the expression for the momenta. Show that if we interpret the
parameter ω as the proper time τ , then pμ represents the traditional
momentum as given by Questions 2 and 3.

5. Calculate the Hamilton function H(qμ, pμ). Find again the covariant
Hamilton equation. This Hamiltonian is independent of the integration
variable ω; its value must be constant. Fix this constant in order that
the ω parameter is identified with the proper time τ .

4.8. The First Integral Invariant
[Solution and Figure p. 204] � �

The simplest integral invariant of Cartan’s theory7

For a one-dimensional system, the area limited by a strap which drifts fol-
lowing the flow remains invariant. We wish to generalize this case for a
system with n degrees of freedom. Let us consider a point (q, p) in phase
space and an infinitely close point (q + ε, p + η). The flow corresponding to
a time interval, dt, transports these points to (q′, p′) and (q′ + ε′, p′ + η′)
respectively.

7 For Hamiltonian systems, Cartan proved that there exist n integral invariants. The
total hypervolume, appearing in Liouville’s theory, is one of them. In this problem,
we present another rather simple one.
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1. Show that

ε′i = εi + dt

⎛

⎝
∑

j

εj∂
2
qjpi

H +
∑

j

ηj∂
2
pjpi

H

⎞

⎠,

η′
i = ηi − dt

⎛

⎝
∑

j

εj∂
2
qjqi

H +
∑

j

ηj∂
2
pjqi

H

⎞

⎠.

2. Similarly, take another infinitely close point (q + γ, p + δ) and expand,
retaining only the first order terms in dt, the quantity

∑

i

(ε′iδ
′
i − η′

iγ
′
i) .

Deduce that the sum of oriented areas projected on each (qi, pi) plane is
an invariant:

∮

Γ

p · dq =const.

4.9. What About Non-Autonomous Systems?
[Solution p. 206] �

A possible use of time as a generalized coordinate

For simplicity, let us restrict ourselves to a non-autonomous one-dimensional
system; its Hamiltonian is H(q, p, t). We are free to chose the time t as a full
generalized coordinate with a conjugate momentum denoted pt. Now let us
define, in an enlarged phase space, the function H̃(q, t, p, pt) = H(q, p, t)+pt

which now corresponds to a conservative but two-dimensional system.
1. Write the equations of the flow and interpret the flow parameter as well

as the momentum pt.

2. The pseudo-Hamiltonian H̃(q, t, p, pt) is autonomous; what is its value
along the flow?

4.10. The Reverse Pendulum
[Solution and Figure p. 207] � � �

An unusual manner to handle a pendulum! or how to stabilize a pendulum
around its unstable equilibrium position

Can a simple pendulum with length l and mass m, remain close to its
unstable equilibrium position?
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The answer is yes if we compel the point of suspension A to follow a well
chosen periodic motion z(t). A sinusoidal motion makes the calculations
very cumbersome. We will demonstrate the desired property for a periodic
motion of A which, although not very realistic, makes the calculations easier.
It consists in replacing an arc of a sinusoid by an arc of a parabola.

During a period 2T , the driving motion is as follows. During the first
half-period equal to T , the point of suspension follows the temporal law
z(t) = at(t − T )/2. When it arrives precisely at its initial position z =
0, there is an instantaneous reversal of acceleration (the position and the
velocity do not present a discontinuity) and during the second half-period
the temporal law is z(t) = a(t− T )(2T − t)/2 which, at time 2T , resets the
point A in the same conditions as for the origin. The parameter a is chosen
as a positive quantity. The cycle then repeats periodically (see Fig. 4.4).
The angle θ between the pendulum direction and the upward vertical is
chosen as the generalized coordinate.

t

z

T 2T

Fig. 4.4 Temporal law z(t) im-
posed on the reverse pendulum

1. Using the Lagrangian or Hamiltonian formalism, find again the equation
of motion lθ̈ = (z̈ + g) sin θ.

2. We work in the vicinity of the unstable equilibrium position, that is
for θ small. Given θ0, θ̇0 for the point A at z = 0 and t = 0, calculate
θ′, θ̇′ at the end of the first period of acceleration, that is for z = 0 after
time T . It is interesting to introduce the proper angular frequency of the
pendulum ω0 =

√
g/l and the angular frequency in the presence of the

acceleration ω =
√

(a + g)/l = ω0

√
(a/g) + 1.

3. Starting from these values θ′, θ̇′, calculate θ1, θ̇1 after the second phase
of the motion when z = 0 at time 2T . Justify that stability can occur
only if a > g; this is the case that will be assumed in what follows. We
introduce the new angular frequency Ω =

√
(a − g)/l = ω0

√
(a/g) − 1.

4. Calculate the propagator matrix K, which brings θ0, θ̇0 to θ1, θ̇1 over a
full period. Check the conservation of the area in phase space (θ, θ̇).
To study the stability, we rely on properties concerning the trace of the
propagator (see Section 4.6). Give this trace.
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5. Try to justify that the stability regions correspond to ΩT ∼= (n + 1/2)π
(n integer). Using a pocket calculator or a micro computer, investigate
the possibility of a domain of stability as a function of a/g. In order to
do this, you will proceed by successive approximations trying to impose
the condition |Tr(K)| = 2.

4.11. The Paul Trap
[Solution and Figure p. 211] � � �

A way to trap charged particles in a time dependent electromagnetic field

We already saw (see Problem 2.10) that it is possible to confine a particle,
with mass m and electric charge qe, in a region of space using a Penning
trap. In this trap, it is the geometry of the electromagnetic field that guar-
antees the confinement along the symmetry axis. The transverse instability
is compensated by a magnetic field which produces a drift along the equipo-
tential curves.

The Paul trap provides an alternative to this type of trapping, with a
similar geometry of the electrostatic field but without recourse to a magnetic
field. As we will see, the confinement is achieved by the use of a periodic
potential.8 The form of the scalar potential (the vector potential is assumed
to vanish, A = 0) is given by (U0 is a constant):

U(x, y, z, t) =
1
2
U0 (x2 + y2 − 2z2) cos(ωt)

1. Give the three second order differential equations for the three functions
x(t), y(t), z(t). Use a non-relativistic treatment and the Hamiltonian
formalism.

2. You will see that the three motions decouple. Each differential equa-
tion belongs to a general set of differential equations known as Mathieu’s
equations. These equations do not have analytical solutions and it is
not obvious a priori that a force proportional to the distance, but which
changes sign periodically, can give rise to a solution that is confined in
space.

To better understand how this could happen, but avoiding a compli-
cated rigorous treatment, we simplify the time dependence of the poten-
tial assuming a “square wave shape”, passing periodically from the con-
stant value U0/2 over a half-period T/2 = π/ω, to the constant opposite
value −U0/2 over the other half-period.

8 Note that such a potential satisfies Maxwell’s equations only approximately, but
better for the smaller angular frequency.
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Give, under a “propagator matrix form”, the relation between the position
of the particle and its momentum projected along the three axes during
the time when the potential is positive. Do the same for the other half-
period. Check that the area in phase space is conserved in both cases.

3. Deduce the relation “propagator over a whole period” which links the
components along the x axis for the position and the momentum after a
full period.9 Redo the same study for the position and momentum along
the z axis.

4. We now follow the method proposed in Problem 4.10 for the reverse
pendulum: this matrix can be diagonalized. If the eigenvalues are com-
plex, the origin in phase space is an elliptic point and the charge remains
confined. Using properties concerning the trace of a matrix, give the
relationship between the various parameters in order to produce a con-
finement.

5. With the help of a graphical representation of an appropriate curve, and
solving a transcendental equation, deduce an approximate numerical con-
dition for the parameters in order to achieve confinement in the three
directions.

Remark: For a variation exactly sinusoidal in time, and with the prop-
erties of the solutions of Mathieu’s equations, the exact condition reads:
2qeU0/(mω2) < 0.4539.

4.12. Optical Hamilton’s Equations
[Solution p. 214] � � �

Snell-Descartes law and optical systems

One considers a particular optical medium, for which the refraction index
n depends only on the distance ρ to a given axis, the Oz axis for instance.
You can imagine an optical fiber with an index gradient. Thus the lines
parallel to Oz, at a distance ρ, are iso-index lines n(ρ).

A light trajectory located in a plane containing the symmetry axis is de-
scribed by an equation of the form ρ(z). It is specified by Fermat’s principle,
the principle of least action which stipulates that the optical path between
two given points A and B, Lopt =

∫ B

A
n(ρ) ds, is extremal along the light

trajectory passing through these two points. As usual, we denote by i(ρ)
the angle between the trajectory and the normal to the iso-index lines.

9 This way of investigating the system after only one period (stroboscopy) will be more
intensively used in Chapter 8. The points in phase space for each period form what
is known as a Poincaré section.
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1. Express the optical path as an integral functional over the variable z. By
analogy with classical mechanics, give the corresponding “Lagrangian”
L(ρ, ρ′) for the light ray, taking ρ, ρ′ = dρ/dz as generalized “coordinates”
and “velocity”, and z as the “time”.

2. Give the expression of sin (i(ρ)) and cos (i(ρ)) as a function of ρ′.

3. Give the expression of the momentum p, conjugate to ρ. Ascribe a phys-
ical sense to this momentum.

4. Perform the Legendre transform to obtain the Hamiltonian.

5. Find a constant of the motion and recover the Snell-Descartes law.

6. Write down Hamilton’s equations.

7. As an application of Question 5, one assumes that the index decreases
with the distance to the symmetry axis. Under these conditions, it is
possible to expand the index in powers of ρ and restrict oneself to lowest
order, which gives: n(ρ) = n0−aρ2 (a is a positive constant, characteristic
of the optical medium). We now consider the set of all possible light
trajectories which originate from a single source located at the origin
O of the Oz axis. Thus, for all trajectories, we have ρ(0) = 0. The
trajectories differ by the emission angle with respect to symmetry axis,
which is assumed to be small (ρ′(0) � 1). Differentiating the constant of
the motion found in Question 5 and being consistent in the order of the
truncated expansion, give the differential equation fulfilled by ρ(z).

8. Show that all these trajectories intersect at a unique point I on the axis
(this is the image of O by the optical system which can be virtual). Give
the distance OI as a function of the characteristics of the system.

Note: The conservation of the area for a Hamiltonian system has a counter-
part in geometrical optics. Let us take, for instance, a microscope and place
an object of spatial extension dx0 and extension in momentum dp0 (due
to the emission angle of the rays towards the optical set up). Leaving the
microscope, the light rays of the object form an image with extension dxi

and with momentum dpi on the retina. This image comes from the Hamil-
tonian flow of the object and the conservation of the area imposes dxidpi =
dx0dp0. The extension of the object is fixed by our study and the momentum
dpi is limited by the physiology of the eye (ratio of the pupil diameter to
the eye depth). Thus the ratio dxi/dp0 = dx0/dpi is imposed on us. To
obtain the largest image, one must manage to produce a dp0 as large as
possible. This last quantity depends on the incidence of the rays entering
the microscope (which should therefore be as large as possible), but also
on the optical index of the medium that we want to have also as large as
possible.
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4.13. Application to Billiard Balls
[Solution and Figure p. 216] � �

A problem for addicts of the game of billiards

The behaviour of the ball on a billiard table and its quantum analog, a
particle in a closed object, led to important progress in theoretical physics.
For a two-dimensional planar billiard table, the problem is easy to describe.
The ball maintains a uniform straight line motion until it strikes the cush,
and rebounds with a velocity symmetric to the initial velocity with respect
to the normal to the cush at the point of contact. The shape of the table
is described by a mathematical equation; one can choose on the border
a reference point. Then an arbitrary point of the cush is unambiguously
specified by its curvilinear abscissa s. To describe the behaviour of the
system, it is enough to know the abscissa sn for the impact n and the angle
of incidence in. In other words, in a two-dimensional phase space (s, i), the
evolution of the system is represented by a sequence of points (sn, in) which
are deduced from the foregoing by an mathematical application.

How can we link the study of the billiard ball to the notions developed
in this chapter? First it is a mechanical system with two degrees of freedom
which specify its configuration. Inside the table, the Hamiltonian is just
the kinetic energy; the ball is not subject to any force and the trajectory
is straight. At the cush, the restoring force is infinite. Strictly speaking, a
Hamilton function does not exist. Nevertheless, one can imagine a potential
which, without discontinuity, exhibits a very rapid variation; thus the ball
bounces without energy loss. The phase space has four dimensions. It is
impossible to visualize it completely; a way to study it is to investigate it
only for the bounces, because the couple (sn, in) form a two-dimensional
phase space.

In this problem, we will show that the momentum associated with the sn

coordinate is the sine of the incident angle pn = sin(in). We will check that,
in this space, the area is conserved for sequential applications. This method
to reduce information (passing from four to two dimensions), restricting
ourselves to only a part of phase space – in order to represent it graphically
– is called the study of a Poincaré section. Nevertheless we will show that
something remains from Liouville’s theorem: the conservation of areas.

In order to carry out this investigation, one considers the straight line
joining the points sn−1 to sn with a reflection angle −in−1, namely a mo-
mentum pn−1 = − sin(in−1) and an incident angle in corresponding to a
momentum pn = sin(in). Very close to a bounce, the shape of the cush is
simulated by a straight segment, that can be considered indifferently as the
tangent to this point or the segment joining this point to a closely adjacent
point.
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1. One considers first an infinitesimal variation of the starting abscissa δsn−1

with constant incidence. Calculate the variation of the curvilinear
abscissa δsn and the variation of the incidence δpn at the next rebound.

2. One considers now an infinitesimal variation of the incident angle δpn−1

with constant curvilinear abscissa. Calculate the variation of the
curvilinear abscissa δsn and the variation of the incidence δpn at the
next rebound.

3. Superposing the previous elementary variations, write down the matrix
which linearizes the application, that is such that

(
δs
δp

)

n

= M(sn, pn)
(

δs
δp

)

n−1

,

and show that its determinant is equal to unity; this corresponds, as we
already saw, to the conservation of the area in phase space.

4.14. Parabolic Double Well
[Solution and Figure p. 219] � �

A relatively common shape for a potential

This problem studies the motion of a particle of mass m along an axis x′x,
in a symmetric double well represented by a very simple potential given by
(see Fig. 4.5):

V (x) =
{

∞ if |x| > a
−V0(x/a)2 if |x| ≤ a.

What is the Hamiltonian of the system for |x| ≤ a? Is there a constant of
the motion?

x

V (x)

E < 0

E = 0

E > 0

−a a

−V0

Fig. 4.5 Potential with a
parabolic double well shape
(full line). Three values for
the mechanical energy are rep-
resented by dotted lines

There exist two distinct regimes.
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First regime E > 0.
1. What are the turning points of the trajectory?

2. Plot the phase portrait of the system.

3. Integrate the equation of motion between two turning points, assuming
that the particle starts from the lowest turning point at time t = 0.

4. What is the period of this motion.

Second regime −V0 ≤ E < 0.

Investigate again the previous questions for this case. What happens on the
separatrix E = 0? In particular, what is the time necessary to travel from
x = −a to x = 0?

Note: This kind of potential, at least with a similar shape, is commonly
used in quantum mechanics. In the case E < 0, it allows the system to pass
from a bound state in the first well to a bound state in the second well due
to the tunnel effect. The application to the ammonia molecule is classical.

4.15. Stability of Circular Trajectories
in a Central Potential
[Solution p. 222] � �

Classical case of a power-law potential

Let us take the case of a very simple attractive potential10 described by a
power-law V (ρ) = −λ/ρα (λα > 0, α being an arbitrary real number). We
restrict ourselves to the study of the trajectories in the plane of the motion.

The energy E, as well as the angular momentum σ of the particle (with
reduced mass m in case of a two-body problem) are given. We are especially
interested in the possible orbits, forgetting about the temporal law for de-
scribing them. With polar coordinates (ρ, φ), the equation of the trajectory
ρ(φ) is given by an integral containing the potential V (ρ).

Except in very specific cases, one does not have an analytical expression
for the equation of the trajectory. Very often, it is more judicious to work
with the function u(φ) = 1/ρ(φ). We then obtain the equation

u′2 + u2 =
2m

σ2
(E − V (1/u)) ,

10 Power-law potentials are very important practically as a basis for some effective po-
tentials.
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which is nothing more than the integral form of Binet’s equation. The
equation can be recast in the form

E =
σ2

2m
u′2 + Veff (u).

This is precisely the equation of a conservative one-dimensional system in
which the variable φ replaces the variable t.
1. Give the expression of the effective potential Veff (u) and interpret each

of the contributions.

2. Use the analogy of phase portraits to understand the circular orbits cen-
tered on the center of force? What is the radius of these orbits? Give
the relationship between the total energy and this radius. In the total
energy, what is the proportion of the kinetic energy and the potential
energy (virial theorem).

A small perturbation can modify one of these quantities and thus modify
the circular trajectory. To explain what will happen, one can imagine
linearizing the equations.

3. What condition must be verified by α in order that this circular orbit is
stable? In this case, using an expansion of the potential Veff (u) truncated
to second order in u, show that the new trajectory is comprised between
a perihelion and an aphelion.

4. Working still in the harmonic approximation framework, calculate the
angle Δφ between two successive passages through perihelia (or aphelia).

5. Again with the hypothesis of nearly circular motion, under which con-
dition do there exist closed trajectories? Investigate the case for which
α = n is an integer number. Check in particular that this is the case for
the harmonic potential α = −2 and the Coulomb potential α = 1.

4.16. The Bead on the Hoop
[Solution and Figure p. 224] � �

A problem that we already know well, but studied from another point of
view and for which a broken symmetry is underlined, i.e., the presence of a
bifurcation

We pursue the study of the bead on the hoop proposed in the Problem 1.4,
but with a constant angular velocity ω for the rotation of the hoop.
1. Determine the Hamilton function. Show that it does not depend on time

and thus gives rise to a constant of the motion, the energy E.



Problem Statements 187

The system has one degree of freedom: the angle θ between the direction
specifying the position of the bead and the upward vertical. The system
is subject to an effective potential Vω(θ), which is the sum of the gravita-
tional potential energy and the centrifugal potential energy. The aim of
the problem is to study this system using the phase portrait technique.

2. Give the expression of the effective potential Vω(θ). Show that it is a
periodic function symmetric with respect to θ = π; consequently, one can
restrict the study to the interval [0, π].

Case of a rapid rotation ω >

√
g

R
= ω0

1. Show that the points θ = 0 and θ = π are unstable equilibrium points
and that there exist two stable equilibrium points for θs and 2π − θs.
Calculate θs and the value of the potential at this point Em = Vω(θs).

2. Study the behaviour of the system for an energy Em < E < −mgR.
Make the harmonic approximation in the vicinity of θs for an energy
slightly larger than Em. Give the corresponding angular frequency.

3. Study the behaviour of the system for an energy −mgR < E < mgR.

4. Study the behaviour of the system for an energy E > mgR.

5. Plot the phase portrait of the system in phase space, for all the previous
cases. This portrait is similar for all the potentials of the type “double
well”.

Case of a slow rotation 0 < ω < ω0

1. Show that, in this situation, the point θ = 0 is an unstable equilibrium
point and that θ = π is a stable equilibrium point.

2. Study the behaviour of the system for an energy −mgR < E < mgR.
Make the harmonic approximation in the vicinity of θ = π for an energy
slightly larger than −mgR. Give the corresponding angular frequency.

3. Study the behaviour of the system for an energy E > mgR.

4. Plot the phase portrait of the system in phase space, for the two previous
types of behaviour.

5. Plot the angles corresponding to stable equilibrium as a function of the
angular velocity of the hoop. The splitting of the stable equilibrium
position is called a bifurcation.
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4.17. Trajectories in a Central Force Field
[Solution and Figure p. 228] � �

Relativistic equations for the Coulomb problem

In the Problem 3.2, we wrote the differential equation which determines the
trajectory of a charged particle in a central force field taking into account
relativistic effects. We investigate in the present problem the first case,
namely that of an electrostatic potential and more precisely the Coulomb
potential, V (ρ) = K/ρ. The constant K = qeq

′
e/(4πε0) may be positive

(repulsive potential) or negative (attractive potential). The Kepler problem
is just a particular case with a negative constant (K = −Gmm′). We will
use as energy unit the rest mass energy of the particle and work with the
reduced mass energy ε = E/(mc2), the dimensionless parameter connected
to the angular momentum ν = [K/(σc)]2, and the inverse of the radius
vector in natural units u = |K| /(mc2ρ).

What are the types of different possible trajectories? To answer this
question, the use of the phase portrait is a very practical tool. Indeed, we
may consider the polar angle φ as a time, u as a coordinate and u′ = du/dφ
as a momentum.
1. Plot the phase portraits. Comment on the types of trajectories as a

function of the attractive or repulsive character of the potential and of
the value of the angular momentum σ.

2. As an application, you will estimate the relativistic corrections to the
energy of a hydrogen atom considered as a bound state of a proton and
an electron. The proton is supposed to remain at rest at the center of the
force field; in this case, one has K = −e2/(4πε0). You could assume that
the electron, with mass m, follows an orbit the radius of which equals the
Bohr radius a0 = �

2/(m |K|) and you should introduce the fine structure
constant α = |K| /(�c).

Problem Solutions

4.1. Electric Charges Trapped in
Conductors [Statement p. 171]

1. The system formed by the charge qe and the conducting plate is equivalent
to that of the charge and a charge −qe symmetric with respect to the
plate. This is an example of the principle of electrostatic images. For
these two charges, the median is at a constant potential as it should be
for a conductor.
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We are concerned with the motion along the normal direction; choosing
the origin O in the plane, this normal on which the particle moves is
Ox, with unit vector i. As generalized coordinate, we take the distance
between the plane and the position of the charge: x = OM . The force F
exerted by the conductor on the charge can be reduced to the force ex-
erted by the symmetric charge with opposite sign, but at the distance 2x;
it is thus attractive. From Coulomb’s law and denoting Q2 = q2

e/(4πε0)
to simplify the notation, this force is:

F = − Q2

4x2
i.

The particle potential energy is obtained after integration of the defining
equation F = −dV/dx; this leads to the relation:

V (x) = −Q2

4x
.

2. The kinetic energy of the particle is T = 1
2mẋ2, the Lagrangian L = T −

V , the conjugate momentum p = mẋ and the corresponding Hamiltonian
H = ẋp − L, or:

H(x, p) =
p2

2m
− Q2

4x
.

The Hamiltonian does not depend explicitly on time; its value is the
energy E which remains constant along the trajectory. If the charge is
released from point A (OA = a), with a null speed, the value for the
energy is E = −Q2/4a. Thus

p2

2m
− Q2

4x
= −Q2

4a
.

This equality provides the relation p(x), which is the phase portrait,
depicted in the Fig. 4.6.

Explicitly: p(x) = ±Q

2

√
2m

√
1
x
− 1

a
.

The particle starts from A with a null velocity (p = 0), then approaches
the plane (p < 0) increasing its speed; it arrives on the plate with an
infinite momentum p = −∞. The contact with the plate produces an
instantaneous change of the direction of the velocity and p = ∞. The
particle then decelerates with a positive velocity (p > 0) to arrive at point
A with a vanishing velocity (p = 0).
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p

a

x

Fig. 4.6 Phase portrait for the motion of the charged particle trapped by the
conductor. Just after contact with the conducting plate, the momentum

instantaneously passes from −∞ to ∞. There exist
scattering trajectories for a positive energy (case a < 0) and
periodic trapped trajectories for a negative energy (a > 0)

3. We are in presence of a periodic motion. The half-period T/2 is the time
needed to travel from A to O, namely

T

2
=

A∫

O

dt =

A∫

O

dx

ẋ
=

A∫

O

mdx

p(x)
, or T =

2
√

2m

Q

a∫

0

dx√
1/x − 1/a

.

With the proposed value for the integral, one obtains:

T = π

√
2ma3

Q
.

4.2. Symmetry of the Trajectory
[Statement p. 171]

1. In the plane of the trajectory, we always have the relation (it comes from
Hamilton’s equation on variable ρ) ρ̇ =

√
2 (E − Veff(ρ)) /m, with

Veff(ρ) = V (ρ) +
σ2

2mρ2
.
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The turning points ρt are defined by Veff(ρt) = E, which implies ρ̇ = 0
for this point. Furthermore, we have also r = ρuρ, v = ṙ = ρ̇uρ + ρφ̇uφ.
Because of the previous remark, at the turning point one has v = ρtφ̇tuφ

and consequently:

r.v = 0.

At the turning point the velocity is perpendicular to the radius vector.

2. We begin with dρ/dφ = ρ̇/φ̇, or using the definition of the angular mo-
mentum σ, dρ/dφ = ρ′ = mρ2ρ̇/σ. Except in the case of a vanishing
angular momentum, the condition concerning the turning point leads to
ρ′ = 0. Moreover, since u = 1/ρ, u′ = −u2ρ′ and the condition for the
turning point implies u′ = 0. It is always possible to choose the polar
angle such that φ = 0 at the turning point. The previous condition is
thus written

u′(0) = 0.

3. The equation for the trajectory is given by Binet’s formula

u′′ + u = − m

σ2

d(V (1/u)
du

=
m

σ2u2
V ′(1/u)

where V ′ = dV/dρ. This equation holds for an arbitrary φ value, in
particular for −φ:

u′′(−φ) + u(−φ) =
m

σ2u(−φ)2
V ′(1/u(−φ)).

Let introduce the new function w(φ) = u(−φ). It is easy to check that
w′(φ) = −u′(−φ) and w′′(φ) = u′′(−φ). The previous equation can thus
be written

w′′(φ) + w(φ) =
m

σ2w(φ)2
V ′(1/w(φ)).

Therefore, w(φ) fulfills the same second order differential equation as
u(φ).

4. At the turning point φ = 0 so that w(0) = u(−0) = u(0) and w′(0) =
−u′(−0) = −u′(0) = 0. The function w(φ) satisfies the same differential
equation with the same initial conditions as u(φ). It must therefore
coincide with it

w(φ) = u(φ).
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Fig. 4.7 The trajectory between the perihelion and the aphelion (dotted lines
at the right hand side) is repeated symmetrically with respect to the aphelion

axis for the portion between the aphelion and the next perihelion. This
trajectory between two perihelia is then repeated by rotation

around the center of force

5. The condition u(−φ) = u(φ) is true ∀φ; this proves that the trajectory is
symmetric with respect to the radius vector of the turning point. As this
turning point was chosen arbitrarily, this symmetry property is valid for
every turning point. For instance, let us begin to follow the trajectory
from an aphelion to the next perihelion. Then, we take the symmetric
part of this portion with respect to the direction corresponding to the
perihelion; we thus reach another aphelion (possibly the original one).
We proceed this way from each aphelion to the next one to build the
total trajectory step by step (see Fig. 4.7).

If the trajectory is a closed curve, this procedure needs a finite number
of operations to obtain the whole trajectory; if not, it needs an infinite
number.

6. All our previous conclusions relied on the fact that w′′(φ) = u′′(−φ) and
that the term w′(φ), which could invalidate the conclusion, was absent
in Binet’s equation. The same conclusions hold true for any differential
equation in u, in which the odd order derivatives are absent. In particular,
this is the case for some relativistic Binet’s equations.

4.3. Hamiltonian in a Rotating Frame
[Statement p. 172]

1. We already proved that the potential due to inertial forces in a rotating
frame reads V = −ω ·L− 1

2m (ω × r)2. Choosing ω along OZ: ω = φ̇Ẑ,
and considering only the previous potential, the Lagrangian L = T − V
(we denote by L the Lagrangian to avoid confusion with the angular
momentum L) is easily obtained with Cartesian coordinates:
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L(X,Y,Z, Ẋ, Ẏ , Ż) =
m

2

[
Ẋ2 + Ẏ 2 + Ż2 + 2φ̇(XẎ − ẊY ) + φ̇2(X2 + Y 2)

]
.

The generalized momenta are obtained by the usual recipe: P = ∂Q̇L.
With the previous expression for the Lagrangian, the corresponding mo-
menta are:

PX = m
(
Ẋ − φ̇Y

)
; PY = m

(
Ẏ + φ̇X

)
; PZ = mŻ.

With cylindrical coordinates (ρ, ψ, Z) (we denote by ψ the polar angle in
the rotating frame to avoid confusion with φ, the angle that specifies the
rotating frame with respect to a Galilean frame), the previous Lagrangian
reads:

L(ρ, ψ, Z, ρ̇, ψ̇, Ż) =
1
2
m

[
ρ̇2 + ρ2ψ̇2 + Ż2 + 2ρ2φ̇ψ̇ + ρ2φ̇2

]
.

Using this expression, we obtain the corresponding momenta:

Pρ = mρ̇; Pψ = mρ2(ψ̇ + φ̇); PZ = mŻ.

The generalized momentum vector is simply the linear momentum vector
in the original frame P = PXX̂ + PY Ŷ = mẋx̂ + mẏŷ.

2. The Hamiltonian is obtained by a Legendre transform of the derivatives.
Using Cartesian coordinates: H = ẊPX + Ẏ PY + ŻPZ −L. From the ex-
pressions given in the first question, it can be shown that the Hamiltonian
has the following form:

H =
P 2

X

2m
+

P 2
Y

2m
+

P 2
Z

2m
− φ̇(XPY − Y PX).

One notices that this expression can be recast in a more compact form

H = H0 − φ̇LZ = H0 − ω · L,

where H0 is the Hamiltonian for a free particle.

With cylindrical coordinates: H = ρ̇Pρ + ψ̇Pψ + ŻPZ − L. From the
expression given in the first question, the Hamiltonian can be put into
the form:

H =
P 2

ρ

2m
+

P 2
ψ

2mρ2
+

P 2
Z

2m
− φ̇Pψ.

In this case Pψ = LZ and we recover the previous expression

H = H0 − ω · L.
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4.4. Identical Hamiltonian Flows
[Statement p. 173]

The system is autonomous and described by the Hamiltonian H(q, p). Let
us define the functions F1(q, p) = ∂H/∂p and F2(q, p) = −∂H/∂q. The
equations of motion are given by Hamilton’s equations:

q̇ = F1(q, p);
ṗ = F2(q, p).

Let us denote by q̄(t) and p̄(t) the real trajectory of the system which is
the solution of these equations. Along this trajectory, the Hamiltonian
maintains a constant value equal to the energy, H(q̄(t), p̄(t)) = E.

Consider now a function F (y), with the derivative F ′(y) = dF/dy and
consider another system described by the new Hamiltonian K(q, p) =
F (H(q, p)). The solutions for this new system are q̃(t), p̃(t) which fulfil
the new equations of motion:

˙̃q =
∂K

∂p
= F ′(H)F1; ˙̃p = −∂K

∂q
= F ′(H)F2.

Since F ′(H) = F ′(E) is just a constant, this means that the velocities of
both systems are collinear ˙̃q(t) = F ′(E) ˙̄q(t), ˙̃p(t) = F ′(E) ˙̄p(t) at all times.
If we “forget” about the time, and restrict ourselves to the trajectory in
phase space, we have

dp̃

dq̃
=

˙̃p
˙̃q

=
˙̄p
˙̄q

=
dp̄

dq̄

for all times, i.e. at every point of the trajectory. If the system possesses
more than one degree of freedom, this conclusion holds for each of the
degrees of freedom.

In phase space, we have a strict equality of the tangents at each point.
The trajectory which is simply the envelop of these tangents is therefore the
same for both systems.

The situation is more easily understood if one takes a glance at Fig. 4.8.
The trajectories of both systems in phase space (the grey plane) are identi-
cal. This means that the two systems differ by their temporal evolutions.

Indeed, let us define a new “time” t̃ = t F ′(E). We see that d(q̄(t̃))/dt
= F ′(E) ˙̄q(t) = ˙̃q(t) with an analogous property for the momentum. This
equality being true at every time, we conclude that q̃(t) = q̄(t̃) again with
a similar relation for the momentum. This proves our claim that

q̃(t) = q̄(t F ′(E)); p̃(t) = p̄(t F ′(E)).
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t

p

q

Fig. 4.8 In the extended phase space, the Hamiltonian K describes
the upper dashed curve whereas the Hamiltonian H describes

the lower dashed curve. Both Hamiltonians give rise
to the same trajectories in phase space (full line)

4.5. The Runge–Lenz Vector
[Statement p. 173]

1. The Lagrangian for the system reads: L(r, ṙ) = 1
2mṙ2 − V (r). One de-

duces the momentum p = ∂ṙL = mṙ, then, after the Legendre transform,
the Hamiltonian H = p · ṙ − L, or:

H(r,p) =
p2

2m
+ V (r).

2. The first Hamilton equation gives

ṙ =
∂H

∂p
=

p

m

which is nothing more than the definition of the momentum already men-
tioned.

The second Hamilton equation gives:

ṗ = −∂H

∂r
= −∇V = f .

Since ṗ = ma, it represents the fundamental equation of dynamics.
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3. Simply differentiating, one sees that

d

dt

(r

r

)
=

ṙ

r
− rṙ

r2
= − 1

r3

[
rrṙ − ṙr2

]
.

Noting that rṙ = r · ṙ and r2 = r · r, the expression between brackets
can be identified with the double vector product r × (r × ṙ). We thus
obtain the required identity:

d

dt

(r

r

)
= − 1

r3
[r × (r × ṙ)].

4. Because of the central character of the potential, only the radial compo-
nent of the force f(r) = −dV/dr exists. The second Hamilton equation
simply reduces to ṗ = f(r)r/r. Consequently,

ṗ × σ = f(r)
(r

r

)
× (r × mṙ) =

mf(r)
r

[r × (r × ṙ)].

With the help of the identity derived in the previous question, this ex-
pression can be rewritten as: ṗ × σ = −mf(r)r2d(r/r)/dt. Moreover,
the angular momentum is a constant of the motion so that σ̇ = 0; this
property allows us to write ṗ×σ = d(p×σ)/dt. In summary, we obtain
the following important formula, valid whatever the form of the potential:

d

dt
(p × σ) = −mf(r)r2 d

dt

(r

r

)
.

5. Let us now consider the special case of Kepler’s potential V (r) = −K/r,
which leads to −mf(r)r2 = mK. The equality of the last question can be
recast in a very pleasing form d [p × σ − mKr/r] /dt = 0. This implies
that the vector between brackets is a constant of the motion:

p × σ − mK
r

r
= C.

This vector is called the Runge–Lenz vector. It is represented in Fig. 4.9.

6. Let us calculate C · σ = [p,σ,σ] − mK(r · σ)/r. The first term is
a mixed product which vanishes. Using the definition for the angular
momentum, one has further r · σ = [r, r,p], which is again a vanishing
mixed product. Consequently C · σ = 0. This relation implies that C is
in the plane perpendicular to σ which is precisely the plane containing
the orbit. Thus the Runge–Lenz vector is contained in the plane of the
orbit, i.e.

C · σ = 0.
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r

p

C

σ

Fig. 4.9 The Runge–Lenz vector C is represented in the plane of the elliptic
trajectory. It is directed along the perihelion. The radius vector and the

linear momentum are also represented

7. In the plane of the orbit, let us take as the reference axis for the polar
angle the direction of the Runge–Lenz vector and let us calculate

C · r = Cr cos φ = [r,p,σ] − mK
r2

r
.

The last term is simply −mKr whereas the first one can be rewritten as
[r,p,σ] = (r × p) · σ = σ2.

Grouping these conclusions, we obtain the relation:

Cr cos φ = σ2 − mKr.

8. This last equality can be written in the alternative form

r =
σ2

mK

[
1 +

C

mK
cos φ

]−1

.

Comparing this expression to the equation of the trajectory in polar
coordinates r = (σ2/mK) [1 + e cos φ]−1, we can make two conclusions.
First the minimum radius is obtained for φ = 0,that is along C; in other
words, the Runge–Lenz vector is directed along the perihelion. Second,
we have a very simple relationship between the modulus of the Runge–
Lenz vector C and the orbit eccentricity e:

C = mKe.

9. One has to find two relations between C, E, and σ. The first one was
already found in passing; it is:

C · σ = 0.

This is a scalar equation which provides one relation. The second relation
is obtained by considering the modulus C as a function of the eccentricity
(see previous question): C2 = m2K2e2.
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Furthermore, the eccentricity of the orbit is a function of the energy and
angular momentum through the formula e2 = 1 + (2Eσ2)/(mK2). This
equality is used to obtain the second relation:

C2 = m2K2 + 2mEσ2.

4.6. Quicker and More Ecologic than
a Plane [Statement and Figure p. 174]

1. For a uniform mass distribution ρ, Gauss’s theorem11 tells us that the
gravitational field is identical with that of a single mass located at the
center and contained in the control sphere. In other word, the gravita-
tional field at a distance r from the center is radial and takes the value

G(r) =
GM(r)

r2
,

where M(r) is the mass contained in the sphere of radius r. In particular,
just at the surface, it must be identified with the traditional gravitational
field g = GME/R2

E .

Inside the Earth

M(r) =
4π

3
ρr3, and thus G(r) =

4π

3
ρGr

or, after replacement of the mass density in terms of the Earth’s mass
and the gravitational value at ground level,

G(r) = gr/RE .

2. The gravitational potential is obtained from dVp/dr = G(r), which im-
plies the relation: Vp(r) = g

2RE
r2. The mechanical potential acting on

an object with mass m is simply V (r) = mVp(r), or:

V (r) =
mg

2RE
r2.

3. Let O be the center of the Earth and H the middle of the tunnel AB. The
triangle AOB being isosceles, H is also the extremity of the perpendicular
height from O. Let us set OH = R. At a given time, the coach at point
M in the tunnel is specified by its abscissa x = HM which is chosen as

11 The gravitational interaction law being identical to Coulomb’s law, Gauss’s theorem
can be applied in the same conditions.
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a generalized coordinate. Obviously, one has r = OM =
√

R2 + x2, a
relation that allows us to express the potential as a function of x:

V (x) =
mgR2

2RE
+

mgx2

2RE
.

The term mgR2/(2RE) is an uninteresting constant. Let us consider
only V (x) = mgx2/(2RE); this potential describes a harmonic oscillator.
The kinetic energy of the coach is T = 1

2mẋ2 and the Lagrangian L =
1
2mẋ2 − V (x). The conjugate momentum is given by p = ∂ẋL = mẋ,
so that ẋ = p/m. The Hamiltonian is the Legendre transform of the
Lagrangian H = ẋp − L, namely:

H(x, p) =
p2

2m
+

mg

2RE
x2.

The first Hamilton equation gives ẋ = ∂pH = p/m, a relation encoun-
tered previously, and the second one ṗ = −∂xH, or mẍ = −mgx/RE

which be rewritten, introducing the angular frequency ω =
√

g/RE as:

ẍ + ω2x = 0.

4. For a movement starting at the extremity A of the tunnel, with a null
velocity, the initial conditions are x(0) = x0 = HA, ẋ(0) = 0. The
previous differential equation can be integrated to give x(t) = x0 cos(ωt).
This is a sinusoidal motion with period T = 2π/ω between the two ends
of the tunnel. After a half-period, the coach reaches the other extremity
of the tunnel. Thus the duration of the journey is simply τ = T/2 = π/ω.
Explicitly:

τ = π

√
RE

g
.

With the proposed data, one finds τ = 2,532 s = 42min 12 s, indepen-
dently of the tunnel length. A journey Paris–Tokyo in so short a time
makes you wonder!

5. To calculate the tunnel length, the most convenient way is to work
with the Cartesian coordinates of the two cities and to use the tradi-
tional formula for the distance between two points in a three-dimensional
space. The length of the tunnel Paris-Tokyo is 8,838 km. In the middle
of the tunnel the coach reaches the impressive speed of 5.48 km/s, or
19,740 km/h and passes 1,781 km under the Earth’s surface. At such a
depth, the heat is probably very oppressive; but it is true that we do not
stay a long time!
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4.7. Hamiltonian of a Charged Particle
[Statement p. 176]

1. Let us begin with the non-relativistic Hamilton function:

H(r,p, t) =
1

2m
(p − qeA(r, t))2 + qeU(r, t)

The first Hamilton equation gives ṙ = ∂pH = (p − qeA(r, t)) /m or π =
mv = p − qeA. The second Hamilton equation gives ṗ = −∂rH.

We focus on the first component. Differentiate the first equation with
respect to time to obtain

π̇x = ṗx − qeȦx = ṗx − qev · ∇Ax − qe∂tAx.

From the second Hamilton equation

ṗx = −∂xH = −qe∂xU + qe(∂xA) · p − qeA

m
= −qe∂xU + qe(∂xA) · v.

In consequence,

π̇x = qe [−∂xU − ∂tAx + (∂xA) · v − v · ∇Ax] .

We note the appearance of the term Ex = −∂xU − ∂tAx. As for the
term (∂xA) · v − v · ∇Ax, a simple calculation proves that it is equal
to vy (∇ × A)z − vz (∇ × A)y or [v × B]x. In summary, we obtain the
result: π̇x = qe [Ex + (v × B)x]. After a cyclic permutation, one obtains
a similar formula for the two other components, so that one can write in
vectorial form:

dπ

dt
= qe [E + v × B] .

This is the expected expression for Newton’s equation of a charged par-
ticle submitted to the Lorentz force.

2. Let us consider now the relativistic expression for the Hamilton function

(H(r,p, t) − qeU(r, t))2 − (p − qeA(r, t))2 c2 = m2c4,

or, equivalently

H(r,p, t) = qeU(r, t) +
√

(p − qeA(r, t))2 c2 + m2c4.

The first Hamilton equation gives:

ṙ = ∂pH = c2(p − qeA)/
√

(p − qeA)2c2 + m2c4.



Problem Solutions 201

A simple derivation shows that
√

(p − qeA)2c2 + m2c4 = H − qeU = mc2/
√

1 − v2/c2.

Consequently, the first Hamilton equation can be recast as

π = mv/
√

1 − v2/c2 = p − qeA.

The second Hamilton equation gives the relation ṗ = −∂rH. Here again,
let us focus on the x component. As in the previous question

π̇x = ṗx − qeȦx = ṗx − qev · ∇Ax − qe∂tAx.

Moreover, the second equation gives

ṗx = −∂xH = −qe∂xU + qec
2 (∂xA) · (p − qeA)√

(p − qeA)2c2 + m2c4

= −qe∂xU + qe(∂xA) · v.

The rest of the treatment is essentially the same as in the study developed
in the previous question and, thus, we are led to the same final equation

dπ

dt
= qe [E + v × B] .

3. In the previous question, we demonstrated the two relations (with the
usual convention γ =

(
1 − q̇2/c2

)−1/2). From now on, E denotes the
energy.

E = γmc2 + qeU ; π = γmq̇.

Moreover the proper time τ is given by dτ =
√

1 − q̇2/c2 dt, whence
γ = dt/dτ . The first equation, concerning the energy, can be written as
d(ct)/dτ = (1/m) (E/c − qeU/c). In other words, the equation providing
the energy is the zeroth component of the required equation

dq0

dτ
=

p0 − qeA
0

m
.

The second equation, concerning the momentum, can be expressed as

π

m
=

p − qeA

m
=

dq

dτ

which corresponds to the spatial part of the desired equation. In conse-
quence, this equation holds in terms of quadrivectors:

dqμ

dτ
=

pμ − qeA
μ

m
.
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The other equation is more cumbersome to derive; it relies on Hamilton’s
equations. In Question 2, we proved in passing that

ṗi = ṗi = −qe (∂iU) + qeq̇ · (∂iA) ,

which can be rewritten, introducing the proper time, as p′i = −qeγ (∂iU)+
qeq

′ · (∂iA).

Let us work with the first term which is also

−qeq
′0 ∂

∂xi

U

c
= qeq

′0 ∂A0

∂xi
.

The sum of this term and the second one is expressed in the more com-
pact form qeq

′ν∂(Aν)/∂xi. Using the expression q′ν = (pν − qeA
ν) /m,

obtained just above, this equation can be recast as

dpi

dτ
=

qe

m
(pν − qeA

ν)
∂Aν

∂xi

(with Einstein’s summation convention) which is nothing more than the
spatial part of the desired equation.

Let us begin now with dH/dt = ∂H/∂t and

H = qeU +
√

(p − qeA)2 c2 + m2c4.

We then obtain

dE

dτ
= qe

∂U

∂τ
− qec

2 (p − qeA) · (∂A/∂τ)√
(p − qeA)2 c2 + m2c4

.

Consider the first term which is also

qecγ
∂A0

∂t
=

qe

m
γmc2 ∂A0

∂q0
.

Owing to γmc2 = E − qeU and
(
∂A0/∂q0

)
=(∂A0/∂q0), this term is

rewritten as (qe/m)(E−qeU) (∂A0/∂q0) or (qec/m)(p0−qeA
0) (∂A0/∂q0).

As for the second term, we use the fact that
√

(p − qeA)2 c2 + m2c4 = γmc2

to transform it into the form

−qe

m
(p − qeA)

∂A0

∂t
=

qec

m
(p − qeA)

∂A

∂q0
.
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Summing both contributions and dividing by c, we finally obtain

dp0

dτ
=

qe

m
(pν − qeA

ν)
∂Aν

∂q0

which is precisely the temporal part of the desired equation. Finally, the
second equation can be expressed in terms of quadrivectors as:

dpμ

dτ
= qe

∑

ν

pν − qeA
ν

m

∂Aν

∂qμ
.

4. In order to calculate the derivatives, it is simpler to take the Lagrangian
in the form

L =
∑

ν

[
1
2
mgννq′νq′ν + qegννq′νAν

]
.

After differentiation, one has ∂L/∂q′μ = mgμμq′μ + qegμμAμ, or, intro-
ducing the covariant components

pμ = m
dqμ

dω
+ qeAμ.

If we rewrite this equation in the form dqμ/dω = (pμ − qeAμ) /m, it can
be identified with the first equation of Question 3 (in terms of covari-
ant components) provided that the parameter ω is chosen as the proper
time τ .

5. The Hamiltonian is defined as the Legendre transform of the Lagrangian

H =
∑

ν

pνq′ν − L

or, with the proposed definition of the Lagrangian

H =
∑

ν

(mq′ν + qeAν) q′ν −
∑

ν

(m

2
q′νq′ν + qeAνq′ν

)
=

∑

ν

(m

2
q′νq′ν

)
.

Substituting velocities by momenta, we obtain the final form of Hamil-
ton’s function:

H(qμ, pμ) =
∑

μ

(pμ − qeAμ) (pμ − qeA
μ)

2m
.

6. The first Lagrange equation is written in a covariant form as q′μ =
∂H/∂pμ = (pμ − qeA

μ)/m which is analogous to the first equation of
Question 3.
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The second Hamilton equation is written in the same manner

p′μ = −∂H

∂qμ
=

∑

ν

gνν

m
(pν − qeAν)qe

∂Aν

∂qμ
=

∑

ν

qe

m
(pν − qeA

ν)
∂Aν

∂qμ
,

which is analogous to the second equation of Question 3. In summary:

dqμ

dω
=

pμ − qeA
μ

m
;

dpμ

dω
= qe

∑

ν

pν − qeA
ν

m

∂Aν

∂qμ
.

Using the first Hamilton equation, the Hamiltonian on the trajectory can
be written, in an alternative form, as

∑

μ

1
2
mq′μq′μ = −1

2
m

c2dt2 − dq2

dω2
= −1

2
mc2 dτ2

dω2
.

If the parameter ω is identified with the proper time τ , then dτ/dω = 1
and the constant value of the Hamiltonian along the trajectory is simply:

H = −1
2
mc2.

4.8. The First Integral Invariant
[Statement p. 177]

1. In the 2n-dimensional phase space, the system is at the point A(q, p)
at time t. It drifts with the flow and reaches the point A′(q′, p′) at
time t + dt. Obviously, one has q′ = q + q̇ dt = q + ∂pH(A) dt and
p′ = p + ṗ dt = p− ∂qH(A) dt. Remember that these equations are valid
for any components (qi, pi).

Let B(q + ε, p + η) be a point very close to A at time t. It drifts with
the flow and reaches the point B′(q′ +ε′, p′ +η′) at time t+dt. Similarly,
one has q′i + ε′i = qi + εi + ∂pi

H(B) dt and p′i + η′
i = pi + ηi − ∂qi

H(B) dt.

Furthermore, one has also

∂pi
H(B) = ∂pi

H(q + ε, p + η)

= ∂pi
H(A) +

∑

j

[
εj∂

2
qjpi

H(A) + ηj∂
2
pjpi

H(A)
]

and similarly

∂qi
H(B) = ∂qi

H(q + ε, p + η)

= ∂qi
H(A) +

∑

j

[
εj∂

2
qjqi

H(A) + ηj∂
2
pjqi

H(A)
]
.
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Taking into account Hamilton’s equations q′i = qi + ∂pi
H(A) dt and

p′i = pi − ∂qi
H(A) dt, we can summarize the situation by the following

expressions:

ε′i = εi + dt
∑

j

[
εj∂

2
qjpi

H + ηj∂
2
pjpi

H
]
;

η′
i = ηi − dt

∑

j

[
εj∂

2
qjqi

H + ηj∂
2
pjqi

H
]
.

2. Let us choose now another point C(q+γ, p+δ) also very close to point A
at time t. It drifts with the flow and reaches the point C ′(q′ + γ′, p′ + δ′)
at time t + dt.

Obviously we have relations concerning γ, δ which are completely iden-
tical to those concerning ε, η. From the projection a, b, c of points A,B,C
and the projection a′, b′, c′ of points A′, B′, C ′ onto a particular plane
(qi, pi), one can build a small parallelogram the area of which, ab × ac,
drifts with the flow to become a′b′ × a′c′. The corresponding situation
is depicted in Fig. 4.10.

t

qi

a
b

c

pi

a′

b′

c′

A B
C

A′

B′

C′

Fig. 4.10 Evolution, in the Hamiltonian flow, of three close points.
In a particular plane (pi, qi), we also represent the projections
of the original points and of the points transformed by the flow

The oriented area of this parallelogram takes the value εiδi − ηiγi and,
after the drift, becomes ε′iδ

′
i − η′

iγ
′
i. Substituting in the latter expression

the relations of Question 1, one notices that this particular area is not an
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invariant. On the contrary, if one sums over all the planes, an elementary
algebraic calculation with judicious changes in the indices convinces us
that, to first order in dt,

∑

i

(ε′iδ
′
i − η′

iγ
′
i) =

∑

i

(εiδi − ηiγi).

Indeed there is invariance for the sum of projections of oriented
areas on every plane ∑

i

dA′
i =

∑

i

dAi.

In the presence of a finite domain, we can install a mesh of elementary
small disjointed domains for which the previous equation is valid. Since
the total area of the domain is the sum of the areas of each domain which
forms the partition, the invariance property for an elementary domain can
be extended to the whole domain:

∑

i

A′
i =

∑

i

Ai.

Furthermore, the expression of the area can be also written as

Ai =
∮

Γi

pidqi,

where the integral is calculated on the border Γi of the projection of the
domain onto the plane (qi, pi) so that, finally, the conservation of the
projected areas is written as

∑

i

∮

Γi

pidqi = const,

which is recast in the symbolic simple form
∮

Γ

p · dq = const.

4.9. What About Non-Autonomous Systems?
[Statement p. 178]

1. Since the system is not autonomous its Hamiltonian depends on time:
H(q, p, t). We therefore consider the time t as a full generalized coordinate
so that there exists a conjugate variable: pt. Let us define now a new
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Hamilton function by H̃(q, t, p, pt) = H(q, p, t) + pt and denote by τ the
flow variable. This new Hamiltonian does not depend on τ ; it represents a
conservative system. Now, let us write down the corresponding Hamilton
equations:

dq/dτ = ∂pH̃ = ∂pH

dt/dτ = ∂pt
H̃ = 1

dp/dτ = −∂qH̃ = −∂qH

dpt/dτ = −∂tH̃ = −∂tH.

The second equation shows clearly that the flow parameter can be iden-
tified with the time τ = t. The first one and the third one represent the
Hamilton equations for the original Hamiltonian. Introducing the energy
function E via its traditional formula, the last equation reads ṗt = −∂tH
= −dE/dt; this proves that one can interpret the variable, pt, as the
negative of the energy:

pt = −E.

2. As the system described by H̃ is time independent, there exists a constant
of the motion which is the Hamiltonian itself: H̃ = const. Furthermore,
the original Hamiltonian represents the energy (which is not a constant
of the motion) H = E; thus H̃ = H + pt and, owing to the previous
results, one can write H̃ = E − E = 0. Thus the constant of the motion
is simply null:

H̃ = 0.

4.10. The Reverse Pendulum
[Statement and Figure p. 178]

1. In the Galilean frame XOZ (OZ is the upward vertical) for the oscillation
of the pendulum, the coordinates of the pendulum are: X = l sin θ,
Z = z + l cos θ. The corresponding kinetic energy T = 1

2m(Ẋ2 + Ż2) is
deduced:

T =
1
2
m(l2θ̇2 − 2lżθ̇ sin θ + ż2).

The potential energy is V = mgZ = mg (z + l cos θ) and the Lagrangian
L = T − V . The Lagrange equation provides the required relation:

lθ̈ = (z̈ + g) sin θ.
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This result is obvious. Indeed, one can work in the non-Galilean frame
of the pendulum and add to the gravitational potential the inertial po-
tential. The system seems to be subject to an apparent gravity z̈ + g
directed downwards.

With the temporal law imposed from outside the system, the accel-
eration is constant z̈ = ±a. When the acceleration is directed upward
z̈ = a (first half-period), the apparent force of gravity is larger than the
natural gravity and the upper equilibrium position (θ = 0) is even more
unstable. When the acceleration is directed downward z̈ = −a and is
larger than the natural gravity. One has an apparent force of gravity
directed upward so that the upper equilibrium position becomes stable.
Stability occurs only if the condition a > g is satisfied. In this case, the
condition for stability requires a more refined calculation.

First case: the acceleration is directed upward (z̈ = a)

2. We consider the first half-period, from t = 0 to t = T . Let us set ω2 =
(a+g)/l = ω2

0(a/g+1). For a motion with a small amplitude (sin θ ∼= θ),
the Lagrange equation is written as θ̈ = ω2θ. It exhibits an exponential
behaviour characteristic of an unstable state and it is easily integrated,
taking into account the initial conditions:

θ(t) = θ0 cosh(ωt) + (θ̇0/ω) sinh(ωt).

This allows us to obtain the propagator matrix over the first half-period:

(
θ

θ̇

)

T

=
(

cosh(ωt) sinh(ωt)/ω
ω sinh(ωt) cosh(ωt)

)(
θ

θ̇

)

0

.

It can be easily checked that the determinant of this matrix is unity, a
property that implies the conservation of the area in phase space (Liou-
ville’s theorem).

3. At the moment of change of the law, there is neither a change of position
nor of velocity and, consequently, no force so that the initial conditions
for this second study are precisely the final conditions of the previous
case.

Second case: the acceleration is directed downward (z̈ = −a)

We are now in the second half-period from t = T to t = 2T . We set
Ω2 = (a − g)/l = ω2

0(a/g − 1). The Lagrange equation is written this
time as θ̈ = −Ω2θ which exhibits an oscillating behaviour characteristic
of a stable state. This equation is easily integrated and provides the
desired relation using the initial condition.
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This relation can be expressed in a form involving the propagator matrix:
(

θ

θ̇

)

1

=
(

θ

θ̇

)

2T

=
(

cos(Ωt) sin(Ωt)/Ω
−Ωsin(Ωt) cos(Ωt)

)(
θ

θ̇

)

T

.

In this case also, the conservation of the area can be verified.

4. Using the two previous questions, one sees that the transformation over
a full period can be written in the matrix form:

(
θ

θ̇

)

1

= K

(
θ

θ̇

)

0

.

The propagator K is simply the product of the two previous matrices. Of
course, its determinant is unity which implies conservation of the area.
Explicitly, we have:

K =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

cosh(ωT ) cos(ΩT ) +
ω

Ω
sinh(ωT ) sin(ΩT )

1
ω

sinh(ωT ) cos(ΩT ) +
1
Ω

cosh(ωT ) sin(ΩT )

ω sinh(ωT ) cos(ΩT ) − Ωcosh(ωT ) sin(ΩT )

cosh(ωT ) cos(ΩT ) − Ω
ω

sinh(ωT ) sin(ΩT )

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

5. In order to specify the stability conditions, one must rely on the eigen-
values of the propagator. If both eigenvalues are real, there is instability.
Otherwise there is stability. The condition for stability corresponds to
the relation |Tr(K)| < 2. It is thus necessary to calculate the trace of the
matrix that can be written in the form:

Tr(K) = 2 cosh(ωT ) cos(ΩT ) + (ω/Ω − Ω/ω) sinh(ωT ) sin(ΩT ).

Let us set 2u = (ω/Ω−Ω/ω) = ω2
0/(ωΩ). This quantity is always positive

and tends to 0 when a/g → ∞. It is interesting to investigate the regions
of stability as a function of two independent dimensionless parameters
which we choose as ω0T for abscissa and a/g for ordinate.

When T = 0, one has Tr(K) = 2 and as soon as T increases, the second
term in the trace increases very rapidly, a situation that precludes the
stability of the system. At least for large values of a/g, a way to attain
stability is to impose a null value for the first term; this condition implies
ΩT = (n + 1/2)π.

One can go further seeking, in the plane defined by the parameters, the
curves such that Tr(K) = ±2. The stability region is comprised between
them.
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Let examine for instance the condition Tr(K) = 2 which can be rewritten
as

cos(ΩT ) + u tanh(ωT ) sin(ΩT ) =
1

cosh(ωT )
.

Introducing an angle α = arctan (u tanh(ωT )) the previous equation be-
comes cos(ΩT − α) = cos(α)/ cosh(ωT ), or

ΩT = (n + 1/2)π + α + arccos
[

cos(α)
cosh(ωT )

]
.

This transcendental equation can be solved by successive iterations. Given
a value for a/g, we start with a zero order approximation (region n = 0)
ΩT (0) = π/2; we deduce (ω0T )(0), calculate ω(0), α(0) then the new value
for the first iteration ΩT (1) with the help of the transcendental equation.
We repeat this iterative procedure, improving, at each step, the value ΩT
up to a value that does not change with successive iterations. We thus
obtain the value ω0T associated with the initial value of a/g.

We then change the value of a/g and repeat the iterative procedure,
which converges very rapidly in practice. In this way, we obtain, in the
plane of the parameters, the curve ω0T as a function of a/g which fulfills
the condition Tr(K) = 2. The other regions are built starting instead
from the zeroth order iteration ΩT (0) = (n + 1/2)π, n = 1, 2, . . .

The result is presented in the Fig. 4.11.

a/g

ω0T

5

4.5

4

3.5

3

2.5

2

1.5

1 2 3 4 5 6

Fig. 4.11 Arnold tongue corresponding to the stability region for a reverse
pendulum: the first region is comprised between the two adjacent curves on the
left, and another zone on the right is restricted to within the thickness of the line
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4.11. The Paul Trap
[Statement p. 180]

1. In the absence of a vector potential, the Hamilton function is written:
H(r,p, t) = p2/(2m)+qe U(r, t). The corresponding Hamilton equations
are: ṙ = ∂

p
H = p/m and ṗ = −∂rH = −qe ∇U . Explicitly, we have for

each component:

px = mẋ, py = mẏ, pz = mż

and ṗx = −qe U0 x cos(ωt), ṗy = −qe U0 y cos(ωt),

ṗz = 2qe U0 z cos(ωt).

After differentiation of the first set and use of the second one, we obtain
the equations of motion for the particle:

mẍ = −qe U0 x cos(ωt);
mÿ = −qe U0 y cos(ωt);
mz̈ = 2qe U0 z cos(ωt).

2. The equations are decoupled, but they are differential equations of Math-
ieu’s type, and therefore not so easy to handle. With the proposed sim-
plification, one substitutes, for the first half-period, U0 cos(ωt) by U0.
Let us set ω̃2 = (qe U0)/m and Ω2 = (2qe U0)/m = 2ω̃2; the equations of
motion are then simplified and can be written as

ẍ + ω̃2x = 0;
ÿ + ω̃2y = 0;
z̈ − Ω2z = 0.

First, let us study the equation concerning the x variable; the general
solution is x(t) = A cos(ω̃t) + B sin(ω̃t). One has also px = mẋ. The
initial conditions for the position and the momentum lead to the deter-
mination of the unknown constants A and B. Thus x(t) = x(0) cos(ω̃t)+
px(0)/(mω̃) sin(ω̃t) and px(t) = px(0) cos(ω̃t)−mω̃ x(0) sin(ω̃t). To ob-
tain the expression of the position and momentum after a half-period, it
is sufficient to substitute t = T/2 = π/ω in the previous expressions.

The phase ϕ = πω̃/ω appears naturally. It is then possible to write
the variables relative to the half-period in terms of those relative to the
time origin in the matrix form:

(
x
px

)

T/2

=

⎛

⎝ cos ϕ
1

mω̃
sinϕ

−mω̃ sin ϕ cos ϕ

⎞

⎠
(

x
px

)

0

.
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Of course, we have a similar equation for the y component.
Let us now study the equation concerning the z variable. The general

solution is z(t) = A cosh(Ωt) + B sinh(Ωt). A calculation analogous to
the previous one leads to: z(t) = z(0) cosh(Ωt) + pz(0)/(mΩ) sinh(Ωt)
and pz(t) = pz(0) cosh(Ωt) + mΩ z(0) sinh(Ωt). In order to obtain the
variable relative to the half-period, it is sufficient to substitute t = T/2
in the previous expressions. The phase Φ = πΩ/ω = ϕ

√
2 naturally

appears. We have the following matrix relation:

(
z
pz

)

T/2

=

⎛

⎝ cosh Φ
1

mΩ
sinh Φ

mΩsinh Φ coshΦ

⎞

⎠
(

z
pz

)

0

.

In both cases, one easily checks that the determinant of the propagator
matrix is unity, so that there is conservation of the area in phase space.

For the other half-period, one substitutes U0 cos(ωt) by −U0; the equa-
tions of motion in this case are expressed as:

ẍ − ω̃2x = 0;
ÿ − ω̃2y = 0;
z̈ + Ω2z = 0.

A treatment completely analogous to the previous one (with the obvious
translation by T/2 for the time origin) leads to the propagator matrix
relative to the x variable:

(
x
px

)

T

=

⎛

⎝ cosh ϕ
1

mω̃
sinhϕ

mω̃ sinh ϕ cosh ϕ

⎞

⎠
(

x
px

)

T/2

and to a similar relation for the y variable. As for the propagator matrix
relative to the z variable, it is:

(
z
pz

)

T

=

⎛

⎝ cos Φ
1

mΩ
sin Φ

−mΩsin Φ cos Φ

⎞

⎠
(

z
pz

)

T/2

.

Here too, the determinant of the propagator matrix is unity, and there is
conservation of the area in phase space.

3. In order to obtain the propagator matrix over a complete period, we have
only to calculate the product of propagator matrices relative to each of
the half-periods. The calculation is straightforward.
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One finds for the x component (with a similar relation for the y compo-
nent):
(

x
px

)

T

=

(
cosh ϕ cos ϕ − sinh ϕ sin ϕ

cosh ϕ sin ϕ + sinh ϕ cos ϕ

mω̃
mω̃(− cosh ϕ sin ϕ + sinh ϕ cos ϕ) cosh ϕ cos ϕ + sinh ϕ sin ϕ

)(
x
px

)

0

and for the z component
(

z
pz

)

T

=

(
cosh Φ cos Φ + sinh Φ sin Φ

coshΦ sin Φ + sinh Φ cos Φ
mΩ

mΩ(− cosh Φ sin Φ + sinhΦ cos Φ) cosh Φ cos Φ − sinhΦ sin Φ.

)(
x
px

)

0

4. To achieve stability (elliptic point in phase space), an arbitrary propa-
gator matrix must have complex eigenvalues which is equivalent, in the
case of the Hamiltonian under consideration (conservation of area), to
the condition |Tr(K)| < 2. In the case of the x component, Tr(K) =
2 cosh ϕ cos ϕ and the stability condition becomes: |cosh ϕ cos ϕ| < 1
(with an equivalent relation for the y variable).

For the z component, Tr(K) = 2 cosh Φ cos Φ and the stability condi-
tion becomes: |coshΦ cos Φ| < 1. In order for the orbit of the particle to
remain confined, stability must hold obviously for the three axes. This
implies the simultaneous inequalities:

|cosh ϕ cos ϕ| < 1∣∣cosh(ϕ
√

2) cos(ϕ
√

2)
∣∣ < 1.

5. One can plot the curve |cosh ϕ cos ϕ| as a function of ϕ. It is represented
in the Fig. 4.12. Between 0 (value 1) and π/2 (value 0), it is always
less than 1 and the condition is fulfilled. Beyond π/2, the curve begins
to increase. It takes the value 1 for a particular value ϕ0, solution of
the transcendental equation |cosh ϕ0 cos ϕ0| = 1. Numerically, one finds
ϕ0

∼= 1.8751. To summarize, one has a confined solution, if we fulfill the
simultaneous conditions 0 < ϕ < ϕ0 and 0 < ϕ < ϕ0/

√
2. In fact, these

two conditions are equivalent to the second one only. Substituting for ϕ
by its value in terms of the physical parameters, we obtain the condition:

2qe U0

mω2
< 0.3562
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| cosh ϕ cos ϕ|

ϕ

3

2.5
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1.5
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0
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Fig. 4.12 Curve
|cosh ϕ cos ϕ| and value
1 which provides the spe-
cial value φ0 = 1.8751

discussed in the text

This result does not differ significantly from a more rigorous calculation
based on Mathieu’s equations, for which the previous numerical value is
0.4539.

4.12. Optical Hamilton’s Equations
[Statement p. 181]

1. The iso-index surfaces are cylinders with axes parallel to Oz; the trajec-
tory of a ray between point A and point B is described by an equation
ρ(z) determined by the condition that the optical path Lopt =

∫ B

A
n(ρ) ds

is an extremum. We are thus concerned with a classical variational prob-
lem, the optical path being a functional of the trajectory.

One assumes that point B lies in the plane defined by the Oz axis and
point A. In this case, the problem is two-dimensional. The length element
is given as usual by ds2 = dz2 + dρ2, which implies ds =

√
1 + ρ′2 dz.

The optical path can thus be written in a form that is traditional for the
action formalism, the z variable playing the role of the time. In this case,
the “Lagrangian” is:

L(ρ, ρ′) = n(ρ)
√

1 + ρ′2.

2. As usual, the angle of incidence i is defined as the angle between the
direction of the ray and the normal to the iso-index surface (here the
direction perpendicular to the Oz axis). It is easily seen that sin i = dz/ds
and cos i = dρ/ds. Owing to the expression ds given above, we have:

sin i(ρ) =
1√

1 + ρ′2
; cos i(ρ) =

ρ′√
1 + ρ′2

.
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3. The conjugate momentum to the ρ variable is defined by p = ∂ρ′L. With
the expression for the Lagrangian obtained in the first question, it is easy
to obtain:

p = n(ρ) cos i(ρ) =
n(ρ) ρ′√
1 + ρ′2

.

4. The Hamilton function is the Legendre transform of the Lagrangian: H =
pρ′−L. After a simple calculation based on the result of the first question
and elimination of ρ′ in terms of p with the relation given in Question 3

H(ρ, p) = −
√

n(ρ)2 − p2.

5. The Hamilton function does not depend explicitly on z. We know that, in
this case, it remains constant along the trajectory. This property implies
that n(ρ)2 − p2 = const, or, following Question 3, n(ρ)2 sin2 i(ρ) = const,
that is:

n(ρ) sin i(ρ) = const

which is nothing more than the well known Snell–Descartes law.

6. With our conventions, Hamilton’s equations are written as: ρ′ = ∂pH and
p′ = −∂ρH. Using the expression of the Hamiltonian given in Question
4, one deduces Hamilton’s equations:

ρ′ =
p√

n(ρ)2 − p2
;

p′ =
n(ρ)n′(ρ)√
n(ρ)2 − p2

.

7. Substituting n(ρ) = n0 − aρ2 and replacing the sine by its expression
given in Question 2 in the constant of the motion deduced in Question 5,
we arrive at the differential equation providing the trajectory n0 −aρ2 =
C
√

1 + ρ′2, where C is the integration constant, function of the initial
conditions. More precisely, C = n0/

√
1 + ρ

′2
0 . Since the ray deviates

only slightly from the axis of revolution ρ′0 � 1, one can consider that
C ∼= n0.

Let us differentiate the differential equation and simplify by ρ′; we
obtain: ρ′′ + 2aρ

√
1 + ρ′2/C = 0 = ρ′′ + 2aρ(n0 − aρ2)/C2. Still with

the condition that the ray remains close to the axis of revolution, we can
set ρ3 << ρ and, with the value C ∼= n0 already obtained, the final form
of the differential equation is:

ρ′′ +
2a

n0
ρ = 0.
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8. With the initial condition ρ(0) = 0, the solution of this equation is simply:
ρ(z) = A sin(z

√
2a/n0). At the point I, with abscissa zI = OI, where

the trajectory intersects the optical axis (for the first time), one must
have ρ(zI) = 0, which leads to the value zI = OI with:

OI = π

√
n0

2a
.

This value is independent of the constant A, which governs the inclination
with respect to the axis of the ray emitted by the source. The consequence
is that all rays emitted from O (provided they remain close to the optical
axis) intersect the optical axis at a single point I, known as the image of
O in the optical system.

4.13. Application to Billiard Balls
[Statement p. 183]

Sign convention: one chooses a sense of rotation (for example the trigono-
metric sense) along the cush and the curvilinear abscissae are measured
according to this sense with respect to an arbitrary origin. For the measure
of angles of incidence, one can choose the angle between the normal and the
direction of the incident trajectory.

In the following discussion, we neglect the curvature of the cush between
two close points and consider that the difference between the curvilinear
abscissae for these two points can be identified with the segment connecting
them.

Between two consecutive rebounds, the ball is not subject to any force
and thus follows a straight line.

After the impact, the angle of reflection is the negative of the angle
of incidence (with our convention) since the trajectory is symmetric with
respect to the normal.
1. Let An−1 and An be the points on the cush where the impacts labelled

n − 1 and n occur. Furthermore let the respective curvilinear abscissae
and incidence angles be (sn−1, in−1) and (sn, in).

Assume that the ball arrives, at the impact n − 1, from a point Bn−1,
infinitely close to An−1 and with the same angle of incidence in−1, but
a slightly different curvilinear abscissa An−1Bn−1 = δsn−1. The next
impact will occur at a point Bn infinitely close to An: AnBn = −δsn

(pay attention to the sign convention), with the same incident angle, in,
(the trajectories and the normal are parallel). The sines of the incidence
angles are of course equal so that δpn = 0.
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δin

An−1

δsn−1

Bn−1

in−1

An
δsn

Bn

An−1

in−1

δin−1

An

δsn

Bn

Fig. 4.13 Trajectories (full lines) of the billiard ball between the impacts
n − 1 and n and the rebound after the impact n. The normals

to the cush are denoted by dotted lines. On the left, we represent two
trajectories with the same angle of incidence but separated by a small
curvilinear abscissa. On the right, we represent two trajectories origi-
nating at the same point but with slightly different angles of incidence

Let C be the perpendicular projection of Bn−1 on An−1An and D be
the perpendicular projection of Bn on An−1An. Because of the previous
remarks, one has CBn−1 = DBn = Δ. Furthermore, in the triangle
CBn−1An−1 the relation (see Fig. 4.13)

Δ = An−1Bn−1 cos(in−1) = δsn−1 cos(in−1)

holds. Similarly in the triangle DAnBn, one has the relation Δ =
δsn cos(in). Equating both expressions for Δ and taking care to use
the correct sign, we arrive at the required relation:

δsn = −δsn−1 cos(in−1)/ cos(in).

Thus, with a constant angle of incidence, we have the following equalities:

δsn = −δsn−1
cos(in−1)
cos(in)

;

δpn = 0.

2. One works now with a constant angle of incidence, and the new impact
n−1 thus takes place at An−1 but with an angle of incidence in−1+δin−1.
The new trajectory intersects the cush at Bn, close to An with an angle of
incidence in+δin. Consider the triangle An−1AnBn and set An−1An = L.
The sine relation for triangles gives

AnBn

sin(δin−1)
=

An−1An

sin(π/2 − in − δin)
, or AnBn = L

sin(δin−1)
cos(in + δin)

.
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To first order, we retain only AnBn = Lδin−1/ cos(in). Furthermore
δpn−1 = δ [sin(in−1)] = cos(in−1) δin−1. Owing to the relation AnBn =
−δsn, the two previous equalities lead to

δsn = −L
δpn−1

cos(in−1) cos(in)
.

Lastly, because the normals are parallel for impacts n, one sees that δin =
−δin−1. This equality, translated in terms of variables p, implies the rela-
tion δpn = −δpn−1 (cos(in)/ cos(in−1)). Thus, with constant curvilinear
abscissa, we have the following equalities:

δsn = − L

cos(in−1) cos(in)
δpn−1;

δpn = − cos(in)
cos(in−1)

δpn−1.

3. Generally, one can write sn = F (sn−1, pn−1) and pn = G(sn−1, pn−1).
Let us take the differential of these functions and employ the results of
the previous questions to make the identifications:

(
∂F

∂sn−1

)

pn−1

= −cos(in−1)
cos(in)

;
(

∂G

∂sn−1

)

pn−1

= 0;

(
∂F

∂pn−1

)

sn−1

= − L

cos(in−1) cos(in)
;

(
∂G

∂pn−1

)

sn−1

= − cos(in)
cos(in−1)

.

These quantities allow us to write the infinitesimal variations of the gen-
eralized coordinates in a matrix form:

(
δs
δp

)

n

= M

(
δs
δp

)

n−1

with the matrix M given by:

M =

⎛

⎜⎜⎝
−cos(in−1)

cos(in)
− L

cos(in) cos(in−1)

0 − cos(in)
cos(in−1)

⎞

⎟⎟⎠ .

One can check immediately that det(M) = 1, which implies the conser-
vation of the area in phase space (provided of course that we choose sn

and pn as generalized coordinates).
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4.14. Parabolic Double Well
[Statement and Figure p. 184]

1. The potential does not depend on time and the kinetic energy is quadratic
in the velocity so that the Hamiltonian is H = T + V . The kinetic
energy is expressed as p2/(2m) and, for |x| < a the potential is given by
V (x) = −V0(x/a)2. Consequently:

H(x, p) =
p2

2m
− V0

(x

a

)2

.

The value taken by the Hamilton function remains constant all along the
trajectory and can be identified with the energy E. One immediately sees
that if E < −V0, no motion is allowed because the kinetic energy must
retain a positive value. Thus we have two possible situations: E > 0 and
−V0 < E < 0 for which the number of turning points is different.

First case: E > 0

2. Let us set E = rV0 (r > 0 is a dimensionless real number) and y = x/a.
The turning points are defined by E = V (x). In our case the situation
is somewhat special because the potential looks rather like a distribution
with a passage from a negative value to infinity over a null distance (see
Fig. 4.5). One can, however, agree that the potential takes precisely the
value E at this distance. Furthermore the particle will never explore the
region |x| > a. Consequently we have only two turning points:

x0 = ±a.

Between these two points, the motion is allowed.

3. With our conventions, the equation for the energy is written

rV0 =
p2

2m
− V0y

2,

that is: p(y) = ±
√

2mV0

√
y2 + r.

This equation is nothing more than the phase portrait. The particle
starts from x = −a with a positive velocity; its velocity decreases to
reach a minimum at x = 0, then it increases again. Attaining x = a,
the velocity instantaneously changes its sign and becomes negative. The
particle comes back in the opposite direction with a symmetrical motion.
The phase portrait is illustrated in the Fig. 4.14.

4. Because of the symmetry of the problem, we restrict our study to the
journey from −a to a only. In this portion, p = mẋ = maẏ is positive.
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p

a q−a

Fig. 4.14 Phase portrait for the parabolic double well. The curves must be
understood as passing from a positive (negative) value for the momentum to
a negative (positive) value when touching the wall. The dashed lines sepa-
rate the two regimes (separatrices occurring for E = 0) and are also the

asymptotes of the families of hyperbolae. The hyperbolae of the upper and
lower parts correspond to the case E > 0 and those at the sides to the case

E < 0

The relation proved in Question 3 provides the differential equation lead-
ing to y(t), i.e.:

ẏ =

√
2V0

ma2

√
y2 + r.

In this equation the variables can be separated and the integration can
be performed without difficulty. The change of variable y =

√
r u can be

of some help. Bearing in mind that x(t) = ay(t), we obtain the temporal
law:

x(t) = a

√
E

V0
sinh

[√
2V0

ma2
t − sinh−1

√
V0

E

]
.

5. The motion is periodic with period T . For the one way journey, for which
the temporal equation is given in the previous question, one has only a
half-period T/2. Thus the condition x(T/2) = a allows the determination
of T :

T = 4

√
ma2

2V0
sinh−1

√
V0

E
.
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Second case: −V0 < E < 0

6. In addition to the previous turning points, which persist for the same
reason, there exist two further turning points for which E = −V0y

2.
This time, we set |E| = rV0. One finds y0 = ±√

r, or x0 = ±√
ra.

x0 = ±a ; x0 = ±

√
|E|
V0

a.

There exist two distinct regions corresponding to an allowed motion :
between −a and −√

ra or between
√

ra and a. We will focuse only on this
latter motion, the other one being described by a completely analogous
treatment.

7. The equation still provides the phase portrait which, in this case, is
written:

p(y) = ±
√

2mV0

√
y2 − r.

Between
√

ra (where the velocity vanishes) and a one must take the
positive value for the previous expression; at x = a the velocity instan-
taneously changes its sign and the particle comes back in the opposite
direction with a negative velocity which vanishes again at x =

√
ra. The

corresponding phase portrait is again illustrated in the Fig. 4.14.

8. In this case, the differential equation for the motion is written: ẏ =√
2V0/(ma2)

√
y2 − r, which can be integrated in the same way to give:

x(t) = a

√
|E|
V0

cosh

[√
2V0

ma2
t

]
.

9. We are still dealing with a periodic motion. The half-period T/2 is ob-
tained using the relation x(T/2) = a. A very simple calculation gives the
result:

T = 2

√
ma2

2V0
cosh−1

√
V0

|E| .

When E > 0, the phase portrait consist of portions of hyperbolae, the
asymptotes of which are the separatrices corresponding to E = 0. When
E < 0, one still has portions of hyperbolae (which reduce to a single
point for −V0 = E), with the same asymptotes.

In any case, one can check that T → ∞ when E → 0.
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4.15. Stability of Circular Trajectories
in a Central Potential
[Statement p. 185]

1. Let us start from Binet’s equation (in its integral form):

u′2 + u2 =
2m

σ2
(E − V (1/u)) .

With the proposed potential V (1/u) = −λuα (remember that u(φ) =
1/ρ(φ)), this equation can be recast as:

E =
σ2

2m
u′2 + Veff(u); Veff(u) =

σ2

2m
u2 − λuα.

The above equation can be put into the form u′ = u′(E, u), which is an
equation analogous to that of the phase portrait p = p(E, q), in which
the φ variable is substituted for the time.

Notice that the first term of the effective potential is simply the poten-
tial corresponding to the centrifugal force. Indeed, the inertial centrifugal
force is f = mω2ρ, which can be rewritten, with σ = mωρ2,

f =
σ2

mρ3
= − d

dρ

[
σ2

2mρ2

]
.

One recognizes at once that this force arises from the potential σ2/(2mρ2)
= σ2u2/(2m).

The other term of the effective potential corresponds simply to the
potential associated with the real forces acting on the system.

2. One must still fulfill the condition u′2 > 0, or Veff(u) < E. The values
of u for which Veff(u) exhibits an extremum correspond to equilibrium
positions: it is easy to find the values uc corresponding to V ′

eff(uc) = 0.
A solution always exists: uc =

[
σ2/(mλα)

]1/(α−2). Calculating

V ′′
eff(uc) =

σ2(2 − α)
m

,

one sees that the extremum is indeed a minimum (stable orbit) if α <
2, and a maximum (unstable orbit) in the opposite case. The solution
u(φ) = uc corresponds to a circular orbit, centered at the center of force,
provided that the energy is chosen so as to fulfill u′(φ) = 0. The radius
of the circle is given by ρc = 1/uc that is:

ρc =
(

mλα

σ2

) 1
α−2

.
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The corresponding total mechanical energy Ec is equal to Veff(uc) = Ec.
For the given potential, this equation leads to:

Ec =
λ(α − 2)

2

(
σ2

mλα

) α
α−2

.

This energy is positive if α < 0 or α > 2; it is negative if 0 < α < 2.
The potential energy on the circle is simply V = −λ/ρα

c . Furthermore,
Newton’s equation implies mv2

c/ρc = |F | = |−dV/dρ| = λα/ρα+1
c , leading

to T = 1
2mv2

c = λα/(2ρα
c ), which implies T = −αV/2. Since we have

also T + V = Ec, we obtain finally:

V

Ec
= − 2

α − 2
;

T

Ec
=

α

α − 2
.

These formulae express the virial theorem for this particular potential.
In its general version, the virial theorem stipulates the relation 〈T 〉 =

− 1
2 〈F · ρ〉 where 〈〉 means an average value over a time sufficiently long.

For the circular orbits under consideration, these quantities do not vary
in time and their average value coincides simply with the value taken on
the circle. With the proposed power-law potential, it is easy to check
that F · ρ = αV so that we recover directly the relation already given
T = −αV/2 (For the special case of a Coulomb potential one finds T =
−V/2 and for a harmonic potential the relation T = V ).

3. In the neighbourhood of the circular orbit, the energy differs only slightly
from Ec so that we can write: E = Ec + ΔE and the radius u(φ) (which
now depends on φ) differs slightly from uc: u(φ) = v(φ)+uc. The effective
potential can be expanded up to second order in v (the first order term
vanishes due the extremum condition). Substituting the corresponding
expressions into Binet’s equation, one finds v′2 + (2−α)v2 = 2mΔE/σ2,
or, after differentiation, v′′ + (2 − α)v = 0.

If α > 2, the solution of this differential equation is exponentially
increasing and we are faced with an unstable circular orbit; on the con-
trary if α < 2 the solution presents an oscillating behaviour v(φ) =
cos(

√
2 − αφ). The circular orbit is stable and, in this case, the real orbit

is comprised between a perihelion ρmin and an aphelion ρmax:

ρmin =
1

uc + A
; ρmax =

1
uc − A

.

4. ρ (or u) recovers its value together with v(φ), when φ → φ + 2π/
√

2 − α;
between two perihelia or aphelia the angle φ varies by

Δφ =
2π√
2 − α

.
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5. The perturbed orbit is closed if there is for sure coincidence between
two perihelia: this means that qΔφ corresponds to an integer number of
revolutions, that is p 2π. The condition for the existence of a closed orbit
is thus Δφ = (p/q) 2π. This equality implies a condition on α:

α = 2 − q2

p2

where p and q are arbitrary positive integers.
If α = n is an integer number, the condition for a closed orbit is that√
2 − n equals a rational number. One can check that this is indeed

the case for n = 1 (Coulomb problem: p = q = 1 ⇒ which requires a
complete revolution to pass from one perihelion to the next one), and for
n = −2 (harmonic problem: p = 1, q = 2 ⇒ which requires only half a
revolution to recover the next perihelion).

4.16. The Bead on the Hoop [Statement p. 186]

1. The Lagrange function of the system has already been determined (see
Problem 1.4); it is expressed as

L(θ, θ̇) =
1
2
mR2(θ̇2 + ω2 sin2 θ) − mgR cos θ.

The momentum is deduced at once p = ∂θ̇L = mR2θ̇, and thereby Hamil-
ton’s function: H = pθ̇ − L, or explicitly

H(θ, p) =
p2

2mR2
+

1
2
mR

(
2g cos θ − Rω2 sin2 θ

)
.

2. Identifying the previous expression with the definition H = T + Vω(θ),
one can derive the effective potential:

Vω(θ) =
1
2
mR

(
2g cos θ − Rω2 sin2 θ

)
.

This potential contains a term due to gravity and a term corresponding
to the centrifugal force.

It is easy to check the properties: Vω(2π + θ) = Vω(θ) (the function
is periodic) and Vω(π + θ) = Vω(π − θ) (the function is symmetric with
respect to the vertical oriented downwards θ = π). Consequently, it is
sufficient to restrict our study to the interval [0, π].

Furthermore, the system is autonomous so that the value taken by
Hamilton’s function on the trajectory is a constant identified with the
energy:

E =
p2

2mR2
+ Vω(θ).
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Let us calculate dVω/dθ = −mR sin θ
(
g + Rω2 cos θ

)
and introduce the

proper angular frequency ω0 =
√

g/R to write:

dVω

dθ
= −mR2 sin θ

(
ω2

0 + ω2 cos θ
)
.

The derivative always vanishes for θ = 0 and θ = π and, possibly, for
the value cos θs = −ω2

0/ω2. The motion is possible only if the condition
Vω(θ) < E is satisfied.

Case of a rapid rotation: ω > ω0

3. In the case where the condition
∣∣ω2

0/ω2
∣∣ < 1 is fulfilled, the value θs is

indeed possible:

θs = arccos(−ω2
0/ω2).

One obtains the energy for this angle:

Em = Vω(θs) = −1
2
mR2ω2

(
1 +

ω4
0

ω4

)
.

The potential decreases from mgR for the value θ = 0 to Em for θ = θs

in a first step, then increases to −mgR for θ = π.
Consequently θ = θs (and also θ = π + θs) corresponds to a minimum

for the potential so that this angle corresponds to stable equilibrium,
whereas θ = 0 and θ = π correspond to maxima for the potential and
thus are unstable equilibrium positions.

4. If Em < E < −mgR, there exist two turning points; the motion is con-
fined between these two points. Assume a motion around the equilibrium
position θs and set θ = θs + ε. An expansion up to second order in ε for
Hamilton’s function provides

H = Em +
p2

2mR2
+

1
2
mR2ω2

(
1 − ω4

0

ω4

)
ε2.

One recognizes the Hamiltonian of a harmonic oscillator. Hamilton’s
equations lead to the equation of motion ε̈ + ω̃2ε = 0, with

ω̃2 = ω2

(
1 − ω4

0

ω4

)
.

We are in presence of a sinusoidal motion with angular frequency:

ω̃ = ω

√
1 − ω4

0

ω4
= ω sin θs.
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5. Let us examine now the condition −mgR < E < mgR. There exists a
turning point θ1 comprised between 0 et θs and another one corresponding
to the symmetric point π + θ1. The motion takes place between these
these two turning points for which the velocity vanishes. From θ1 to θs

the speed increases, then from θs to π it decreases; from π to 2π − θs it
increases again, then from 2π − θs to 2π − θ1 it decreases up to θs where
it vanishes. There the velocity changes its sign and the motion starts in
the opposite direction and follows a symmetric behaviour. This type of
motion is known as libration.

p

0

Vω(θ)

E

2π θ

Fig. 4.15 Phase por-
trait of the bead for
a rapid rotation of the
hoop

6. If E > mgR, there is no turning point and the velocity retains a constant
sign. We are dealing with a rotational motion (in one sense or the other).
From the upper point to θs the speed increases, then it decreases from
θs to π; from π to 2π − θs it increases again, then from 2π − θs to the
upper point it decreases again but never vanishes.

7. The phase portrait is given by the equation:

p(θ,E) = ±
√

2mR2(E − Vω(θ))

which represents graphically the characteristics described above. It is
plotted in Fig. 4.15. Each of the two curves obtained for the special
values of the energy E = −mgR and E = mgR, which delimit the two
different regimes, is called a separatrix.

Case of a slow rotation: 0 < ω < ω0

8. In this case θs does not exist anymore. There are only two equilibrium
positions: θ = 0 for which the potential is maximal mgR (unstable equi-
librium) and θ = π for which it is minimal −mgR (stable equilibrium).
Between these positions, the potential decreases (see Fig. 4.16).
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p

0

Vω(θ)
E

2π θ

Fig. 4.16 Phase por-
trait of the bead for
a slow rotation of the
hoop

9. If −mgR < E < mgR, there exist two turning points θ1 and 2π −
θ1 between which the motion can take place. Close to the equilibrium
position, one sets θ = π + ε and one expands Hamilton’s function up to
second order in ε. A simple calculation, in complete analogy with that
of Question 4, reveals a harmonic motion with the angular frequency:

ω̃ = ω

√
ω2

0

ω2
− 1

which again is referred to as libration.

10. When E > mgR, there exist no turning points and the velocity retains
a constant sign. We are in the presence of a rotational motion. There
is acceleration from the upper position to the lower position where the
speed is maximum, then a deceleration from the lower position to the
upper position where the speed is minimum.

11. The phase portrait results from the same equation as before, but it has a
simpler structure. It is plotted in the Fig. 4.16. In this case, there exists
only one separatrix, obtained for the value E = mgR.

12. The position θ = 0 is in all cases an unstable equilibrium position. On
the contrary, the position θ = π is a stable equilibrium position as long
as the condition ω < ω0 is satisfied but it becomes unstable as soon as
ω > ω0. For this particular value of the rotational frequency ω = ω0, we
find a pair of stable equilibrium positions for θs and 2π − θs which move
apart when the rotational speed increases and tend to the values π/2 and
3π/2 for very large rotational speeds.
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This phenomenon which consists in the switch from a stable equilibrium
to an unstable one with the simultaneous appearance of a pair of stable
equilibrium positions is known as a bifurcation.

The behaviour of the equilibrium points as a function of the rotational
speed is illustrated in Fig. 4.17.

θ

0

3π/2

π

2π

π/2

ω/ω01

Fig. 4.17 Stable (full lines) and unstable (dot-
ted lines) equilibrium angles as a function of the
ratio between the proper angular frequency ω0

and angular velocity of the hoop ω

4.17. Stability of Circular Trajectories
in a Central Potential
[Statement p. 188]

1. Let us recall the dimensionless quantities that will be used: the energy ε =
E/(mc2), an independent parameter linked to the angular momentum
ν = [K/(σc)]2 (larger values of ν are associated with smaller angular
momenta or a weaker Coulomb force) and the inverse of the radius vector
u = |K| /(mc2ρ), a quantity that is always positive. The integral form of
the relativistic Binet equation already found in Problem 3.2 is written in
this special case with the natural units:

u′2 + u2 = ν
[
(ε ± u)2 − 1

]
,

the positive sign being appropriate for an attractive potential and the
negative sign for a repulsive potential. This equation can be recast in a
more convenient form as:

u′2 + (1 − ν)
(

u ∓ ν

1 − ν
ε

)2

= ν

(
ε2

1 − ν
− 1

)
.

To this equation, one must add the following restrictions: u > 0 and a
speed less than the speed of light, that is a relativistic factor γ > 1 which,
owing to the expression for the energy E = γmc2 + V , leads to u > 1− ε
in the case of attraction and u < ε − 1 in the case of repulsion.
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First case ν < 1
(large angular momentum or weak Coulomb force)

The phase portrait, plotted in the plane (u, u′), is an ellipse provided that
the right hand member of the equation is positive. This is true if ε > εc =√

1 − ν. εc is the lowest energy for a given angular momentum. In this
case, one must have u′ = 0 and u = uc = ν/

√
1 − ν. The trajectory is a

circular orbit with radius rc =
√

1 − ν/ν. This condition for the energy
follows the expression concerning the eccentricity of Kepler’s orbits

e =

√
1 + 2

(E − mc2)σ2

mK2
=

√
1 + 2

ε − 1
ν

(don’t forget that in the relativistic case the energy is the sum of the
rest mass energy plus the classical energy). The eccentricity vanishes
if ε = 1 − ν/2 ≈

√
1 − ν. One can see that the need to work with a

relativistic formalism increases with the value of ν: it decreases when the
angular momentum increases.

For several values of the energy, the phase portrait consists of nested
ellipses. In the case of an attractive potential, the phase portrait is
represented in the left hand part of Fig. 4.18.

u′

u

u′

u

Fig. 4.18 Phase portrait in the case ν < 1. At the left hand side, the
potential is attractive; the ellipses are nested in order of decreasing energies.
For ε = 1 we obtain the ellipse represented by a dashed line. For lower values
of the energy, the ellipses are complete. They collapse to a single point for a
circular orbit obtained for the energy ε = εc. On the right, the potential is

repulsive; again the ellipses are nested in order of decreasing energies

For an energy ε < 1 the ellipse does not intersect the ordinate axis. The
trajectory is comprised between an aphelion and a perihelion. In the
Fig. 4.19, we represent an example of such an orbit. Let us notice that
for ε = 1, one can have u′ = u = 0; the ellipse is plotted with a dashed
line. In this case the orbit can reach infinity but with a vanishing velocity.



230 4 Hamiltonian Formalism

Fig. 4.19 Example of a trajectory corre-
sponding to the left hand side of Fig. 4.18
for an energy ε < 1.

For energies ε > 1, the ellipse intersects the ordinate axis. The trajectory
approaches the center of force at a minimum distance, possibly makes a
revolution and goes off again to infinity without reaching a null velocity.

In the case of a repulsive potential, one always has ε > 1 and the ellipses
are always truncated by the ordinate axis since the center is obtained for
a negative value of u. The corresponding portrait is represented on the
right hand side of Fig. 4.18. The ellipses are nested by order of decreasing
energies. In all cases the trajectories extend to infinity and approach the
center as the energy increases.

2. Let us apply these remarks to the hydrogen atom, with a circular orbit.
We saw that, in this particular case, the relativistic energy is ε =

√
1 − ν

and the classical energy ε = (1 − ν/2). In this case K = −e2/(4πε0)
and the potential energy is V = − |K| /a0. The virial theorem for the
Coulomb problem leads to T = − 1

2V , whence the total energy

E = mc2 + T + V = E = mc2 +
1
2
V.

Lastly, using the value of the Bohr radius a0 = �
2/(m |K|), we find

V = −mc2 |K|2

�2c2
= −mc2α2,

where we introduced the fine structure constant α = |K| /(�c) = 1/137.
The classical value of the total energy is thus E = mc2(1 − α2/2); this
relation provides the value ν = α2. One deduces the relativistic value of
the total energy:

E = mc2
√

1 − α2.

This result coincides precisely with the value obtained from a complete
relativistic calculation performed in quantum mechanics.
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Second case ν > 1
(small angular momentum or large Coulomb force)

For the phase portrait, we are now dealing with hyperbolae, for each of
which a branch is excluded because of the condition γ > 1. This portrait
is represented in the Fig. 4.20.

u′

u

u′

u

Fig. 4.20 Phase portrait in the case ν > 1. On the left hand side, the
potential is attractive; the hyperbolae are nested in order of decreasing energy
(the curve represented with a dashed line corresponds to ε = 1). On the right

hand side, the potential is repulsive; the hyperbolae are nested in order of
decreasing energy but one always has the condition ε > 1

On the left hand side, the potential is attractive; all the orbits fall (or
begin) from the center spirally. Those with a large energy ε > 1 extend
to (or start from) infinity. Those with ε = 1 (dashed line) reach infinity
with a vanishing velocity. Lastly, those with ε < 1 reach infinity, but
move away from the center as the energy increases. An example of such
a trajectory is illustrated in the Fig. 4.21.

Fig. 4.21 Example of trajectory correspond-
ing to the left hand side of Fig. 4.20

On the right hand side of Fig. 4.20, the potential is repulsive. The hyper-
bolae are nested by order of decreasing energy, but we always have the
condition ε > 1. All the orbits begin or end at infinity but none reaches
the center of force. They come closest for the largest energies.



Chapter 5

Hamilton–Jacobi Formalism

Summary
This chapter will probably not be of great use for finding simple solutions
to problems in mechanics. It is however of considerable historical interest
and, furthermore is fundamental in that it establishes a bridge between
mechanics, wave phenomena, optics and, above all, quantum mechanics.

The action considered here is still the integral of the Lagrangian. In
Chapter 3, it was considered as a functional of the path with fixed
bounds. In this chapter, the path is fixed once and for all as the physi-
cal trajectory; the action is regarded as a function of space and time
relative to the end point of the trajectory. This function obeys a partial
differential equation that can be solved only very rarely. If a solution exists,
the mechanical problem is completely solved: one says that it is integrated.

5.1. The Action Function
Consider a trajectory1 – that is a set of functions q̃(t̃) = (q̃1(t̃), q̃2(t̃), · · · ,
q̃n(t̃)) which obey Lagrange’s equations – which originates at q1 for time t1
(q̃(t̃ = t1) = q1) and terminates at q for time t (q̃(t̃ = t) = q). The action
function is defined as the integral of the Lagrangian along the trajectory:

S(q, t, q1, t1) =

t∫

t1

L(q̃(t̃), ˙̃q(t̃), t̃) dt̃. (5.1)

1 As we saw in Chapter 3, there may exist none or, in contrast, many of them.
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Example – The free particle:
The Lagrangian is simply the kinetic energy and the trajectory is a straight
line. From (5.1) the action is expressed as (see also Problem 5.1).

S(q, t, q1, t1) =
m

2
(q − q1)

2

(t − t1)
.

In what follows, one assumes that q1 and t1 are fixed once and for all, and
they will therefore often be omitted in the text. It is easy to prove the
relations:

∂S(q, t)
∂q

= p ; (5.2)

∂S(q, t)
∂t

= −H(q, p, t). (5.3)

Thus, the action function obeys a non linear partial differential equation of
first order with n + 1 variables (the coordinates and the time), known as
the Hamilton–Jacobi equation:

∂S(q, t)
∂t

= −H

(
q,

∂S(q, t)
∂q

, t

)
. (5.4)

5.2. Reduced Action
By definition, for an autonomous system the energy is constant: H(q, p)
= E = p · q̇ − L(q, q̇) and the action can be written as:

S(q, t, q1, t1) = −E(t − t1) + S̃(q, q1, E) (5.5)

where we introduced the reduced action

S̃(q, q1, E) =

t∫

t1

p
(
q̃(t̃), ˙̃q(t̃)

)
· ˙̃q(t̃)dt̃ =

q∫

q1

p̃(q̃, E) · dq̃. (5.6)

Very important remark: q1 and q being fixed, the orbit2 can be covered
with different temporal laws. This corresponds to different travel times and
energies (for instance think of a free particle following a straight line with
different speeds). Therefore, there exists a relationship between the energy
and the travel time, which we wish to determine more precisely.

2 By orbit, we mean the curve described in configuration space, independently of the
manner it is covered.
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Indeed, the orbit can be specified by a parameter τ . One obtains, up to a
factor, all the generalized velocities as q̇ = dq/dt = (dq/dτ)τ̇ = q′τ̇ and for
the momenta p(q, q′τ̇) = ∂q̇L(q, q̇). The factor τ̇ is a function of the energy
through the relation H (q, p(q, q′τ̇)) = E. We thus have the relation E(q, t)
or t(q, E). Consequently, the momentum p(q, E) encountered in (5.6) is a
function of the coordinates and the energy. This point will be discussed in
more detail in the Problem 5.1.
The reduced action is no longer a function of time but of energy.
In contrast, the total action defined by (5.5), together with (5.6) is a function
not of energy but of time.

Consider the case of a particle subject to a potential which is indepen-
dent of the velocities. In the above approach by taking as parameter the
curvilinear abscissa ds, we obtain:

S̃(q, q1, E) =

q∫

q1

√
2m (E − V (q)) ds

The reduced action obeys the characteristic (or secular) partial dif-
ferential equation of Hamilton–Jacobi:

H

(
q,

∂S̃(q)
∂q

)
= E. (5.7)

The elapsed time between the two extremities of the trajectory can be ob-
tained from the formula:

T = t − t1 =
∂S̃(q, q1, E)

∂E
. (5.8)

5.3. Maupertuis’ Principle
For an autonomous system with more than one degree of freedom, one can
solve the problem in two steps. One can first determine the orbit and then
the speed along the orbit. The determination of the orbit can be achieved
using Maupertuis’ principle. To obtain the speed on the orbit is not really
difficult: one calculates first the potential at the given point and then, by
subtracting it from the mechanical energy, one obtains the kinetic energy
hence the speed.

Maupertuis’ principle stipulates that the real orbit between the points
q0 and q1 corresponds to the minimization of the reduced action:
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S̃(q, E) =

q1∫

q0

∑

i

pi(q, E) dqi (5.9)

In the case of a particle subject to a potential, one recognizes a kind of
stationarity principle quite similar to that of Fermat’s optical path with the
index3 n(q, E) =

√
2m (E − V (q)) (see Problem 3.6).

5.4. Jacobi’s Theorem
Every first order partial differential equation and in particular the Hamilton–
Jacobi equation, possesses a solution which depends on an arbitrary func-
tion: this solution is the general integral. Nevertheless, for mechanical sys-
tems, it is not this general integral which is important, but a solution which
depends on constants whose number equals the number of independent vari-
ables. This particular solution S(q, t, α) is called the complete integral of
the Hamilton–Jacobi equation. It depends on an additive constant of no
interest4 and on n arbitrary constants labelled α for (α1, α2, . . . , αn).

Jacobi’s theorem is expressed through the following equations:

∂S(q, t, α)
∂αi

= βi (5.10)

where (β1, β2, . . . , βn) are n arbitrary constants. If we are fortunate enough
to know the complete solution, the problem is completely solved; it is said to
be integrated. Indeed, from Relation (5.10), it is possible (theoretically) by
inversion to obtain the trajectory q(t, α, β), in which the 2n constants α and
β are fixed by the initial conditions q = q1 and p1 = ∂qS(q, t, α)|q=q1,t=t1

.

5.5. Separation of Variables
Let assume that, in Hamilton’s function, one is able to gather one coordinate
(the last one for instance) and its corresponding momentum into a single
group denoted αn (qn, ∂qn

S(q, t)) which is independent of other degrees of
freedom and time.

3 This is the momentum modulus. Contrary to optics, it is for the largest velocity that
the index is the largest.

4 Since the action appears in the Hamilton–Jacobi equation only through its partial
derivatives, adding a constant to the action yields a solution of the same equation.
This constant does not change the momentum nor the equation of motion (5.2).
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Then, one has the following results:
• the action can be split into a sum implying different coordinates

S(q, t) = Sn(qn, αn) + Sn−1(q1, . . . , qn−1, αn, t);

• furthermore αn is one of the constants appearing in the complete Hamilton–
Jacobi solution which allows us to determine Sn(qn, αn) through an inte-
gral obtained from the differential equation

αn

(
qn,

dSn(qn, αn)
dqn

)
= const.

The variable qn is said to be separated. This is always the case for an
autonomous system since the time is separated and leads to the term −Et
in the action (see (5.5)). This is also the case for a cyclic coordinate qn since
in this case pn = αn and it is possible to exhibit a separable term αnqn in
the action.

Once the variable qn is separated, one substitutes in the Hamilton–Jacobi
equation the corresponding group by a constant. A second coordinate (say
the last but one) may also be separable in which case one introduces a new
constant αn−1.

If this procedure can be pursued for all the variables, the problem is
said to be completely separable and it is integrable.5 The action can be
expressed in the form:

S(q, t, α) = S1(q1, t, α1, . . . , αn) + S2(q2, α2, . . . , αn) + · · · + Sn(qn, αn).
(5.11)

A very important example: a particle in a central force field.

It is useful to work with spherical coordinates; in this case the Hamiltonian
reads:

H =
1

2m

[
p2

r +
1
r2

(
p2

θ +
p2

φ

sin2 θ

)]
+ V (r).

The φ coordinate appears only through its momentum6 so that it is separable
pφ = α3; this constant is nothing more than the projection of the angular
momentum onto the OZ axis. The same thing happens for the θ coordinate
which appears only through the group p2

θ + α2
3/ sin2 θ which represents the

square of the angular momentum.

5 The last constant is automatically proportional to the energy.
6 It is a cyclic coordinate.
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The latter variable is also separated provided that the potential is time in-
dependent; the last constant α1 corresponds simply to the energy. From the
previous procedure, one obtains the expression of the action in a separated
form:

S(q, t, α) = −α1t ±
∫ √

2m (α1 − V (r) − α2
2/(2mr2)) dr

±
∫ √

α2
2 − α2

3/ sin2(θ) dθ + α3φ.

Application of Jacobi’s theorem ∂αi
S(q, t, α) = βi completely solves the prob-

lem. After differentiating with respect to α3, and with a suitable choice of
axes, one can set α3 = 0 and φ = const. This implies a planar motion.
In this plane, the angle θ represents the polar angle. Differentiating with
respect to α2, Jacobi’s theorem provides:

θ = β2 ±
∫

dr√
(2mr4/α2

2)(E − V (r)) − r2
.

This is a function θ(r) which, after inversion, gives the orbit r(θ) in polar
form.

Lastly Jacobi’s theorem applied to the α1 constant leads to the equation:

β1 + t = ±
∫ √

m

2 (E − V (r) − α2
2/2mr2)

dr

which provides the temporal evolution.

5.6. Huygens’ Construction
We consider the most common situation: the system is autonomous and
velocities and momenta are parallel.7

In configuration space, let us imagine a surface Σ0 that we refer to as the
initial wave front and which is taken as the reference origin for the actions
(the action at every point of Σ0 vanishes). From this surface, let us dis-
tribute over the same side “particles” with velocities that are perpendicular
to it and whose modulus is fixed by the relation H(q, p) = E. Let these
“particles” move on their own trajectories up to a point at which the action
has a value given in advance.8

7 One can get rid of this restriction by making the construction more cumbersome.
8 Be careful: these “particles” do not take the same time to reach the iso-action surface.
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Consequently, all the iso-action points will lie on a surface Σ which is con-
stantly perpendicular to every trajectory. This iso-action surface moves
with a speed E/p called the phase speed which moves faster as the “parti-
cles” move more slowly. One can refer to each trajectory as a ray and to
each iso-action surface as a wave front. In contrast to the phase speed, the
physical speed of the “particles” q̇ is called the group speed.

As in optics, from a wave surface, one generates spheres with radius
r = ΔL/n where ΔL is an infinitesimal variation of the optical path (the
mechanical analog for this action is n =

√
2m(E − V )). The envelop of

these spheres is a wave surface (with equal action), and one obtains the
rays (trajectories) by building the curves normal to these surfaces.

Problem Statements

5.1. How to Manipulate the Action and
the Reduced Action [Solution p. 252] � �

To provide a better understanding of the basic notions concerning the action
function and the reduced action

The purpose of this problem is to study in more detail the action for an
autonomous system, defined as a time dependent function, and the reduced
action for which the “good variable” is the energy.

We illustrate this point using three examples: the one-dimensional free
particle, a particle in a constant gravitational field and the three-dimensional
free particle.

Preliminary question:

Using the Relation (5.5) between the action and the reduced action, show
that these two functions are Legendre transforms of one another, the trans-
formation variables being the time and the energy. Equations (5.4) and
(5.8) are useful. The trajectory begins at the point (q1 = 0, t1 = 0) and
ends at the point (q, t).

A – One-dimensional free particle

1. Recalling the expression for the Lagrangian, find the trajectory q̃(t̃) which
passes through the fixed points and calculate S(q, t) with the definition
(5.1). Check that this quantity obeys the Hamilton–Jacobi equation.

2. Calculate the reduced action with the help of the integral
∫

p dq (Formula
(5.6)).
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3. Solving the characteristic Jacobi equation, show that S̃(q, E) = ±
√

2mEq.
Deduce that the reduced action for a path between (0, 0) and (q, t) is
S̃(q, E) =

√
2mE |q|. Find the relationship between the travel time and

the energy.

4. Using the reduced action and expressing the energy as a function of the
travel time, deduce once again the expression for the action obtained in
the first question.

One now considers a particle with a high speed, governed by relativistic
dynamics.

5. Give the expression of the action in this case.

6. Write down and solve the characteristic Jacobi equation and give the
expression for the reduced action.

7. Deduce the travel time and find the action as a function of time.

B – Particle in a constant gravitational field (one dimension)

Here we consider a non-relativistic particle in a constant gravitational field
arising from the potential V (q) = mgq.
1. Using the expression of the Lagrangian, find the trajectory q̃(t̃) which

passes through the given points and calculate S(q, t). Check that this
quantity obeys the Hamilton–Jacobi equation. Deduce the expression of
the energy on this trajectory. You will find that it is difficult to give the
travel time in terms of the energy.

2. Calculate the reduced action with the help of the definition
∫

p dq. Show
that the solution of the characteristic Jacobi equation is

S̃(q, E) = ± 2
3g

√
2/m (E − mgq)3/2

.

Give the relation between these results.

3. Making use of the anwers to the previous questions, deduce a simple
expression for the travel time as a function of the energy.

C – Three-dimensional free particle

One considers a non-relativistic free particle with mass m, moving in a three-
dimensional space. The Cartesian coordinates are denoted (x, y, z) = r.
1. Give the expression of the action and of the reduced action.

2. Solve the characteristic equation to obtain the complete solution not-
ing that the variables separate. Show that the result can be written as
S̃(r,α) = αxx + αyy + αzz = α · r where the three separation constants
fulfill the relation E = α2/(2m). You will notice that by taking α (which
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is actually the momentum) parallel to r, one recovers the reduced action
previously calculated.

3. Study the same questions using a relativistic treatment.

Note: the separation of the variables could also have been achieved using
cylindrical or spherical coordinates.

5.2. Action for a One-dimensional
Harmonic Oscillator [Solution p. 258] � �

A simple and analytical example for the action function

One considers a particle with mass m moving on a straight line with origin
at point O. The position of the particle is specified by the coordinate q.
This particle is subject to a restoring force proportional to q (harmonic
oscillator), which arises from the potential V (q) = 1

2mω2q2.
1. Using the definition of the action function, calculate this function on a

trajectory starting at (q1, t1) and ending at (q, t).

2. Discuss the singularity in the denominator and check that the action
function obtained obeys the Hamilton–Jacobi equation. Deduce the re-
lationship between the energy and the travel time.

3. Find the reduced action between the same extremities and show that
it satisfies the usual characteristic equation. Deduce the relationship
between the energy and the travel time.

5.3. Motion on a Surface and Geodesic
[Solution p. 260] � �

Action for a free particle moving on a surface of arbitrary dimension

A point-like particle of mass m can move freely on an n dimensional surface.
Its configuration is specified by generalized coordinates q = (q1, q2, . . . , qn)
in an n dimensional space. We may think, for example, of the two angles
(θ, φ) that specify a point on a sphere or on a torus.

Let ds be an infinitesimal distance in the vicinity of a point q belonging
to the surface. Using the definition of the (symmetric) metric tensor gij(q),
one can write

ds2 =
∑

i,j

gij(q) dqi dqj .



242 5 Hamilton–Jacobi Formalism

As a simple example we may cite a sphere of radius R: the dimension is 2 and
ds2 = R2

(
dθ2 + sin2 θ dφ2

)
. Another less elementary example was proposed

in Problem 3.15 concerning the precession of Mercury’s orbit.
1. Give the expression of the Lagrangian and of the momenta. Give the

constant of the motion (the energy) due to translational time invariance.
Deduce that ṡ is constant.

2. The particle is placed at point O at the time t = 0. Give the expression
of the action function for a point A located at a distance s(q) from O on
the trajectory (unknown for the moment) for the time T . Give also the
reduced action as a function of the point and of the energy.

3. Check your results in the case of a free particle moving on a straight line.

4. Conclusion: using Maupertuis’ principle, it can be proved that the tra-
jectory of the free particle on the surface is a geodesic on this surface.

5.4. Wave Surface for Free Fall
[Solution and Figure p. 261] � �

A simple example for wave fronts and trajectories

In the plane xOz, one is concerned by the free fall of a mass m in a uniform
vertical gravitational field g. One chooses an arbitrary origin O, a hori-
zontal Ox axis and a vertical Oz axis oriented in the sense opposed to the
field.
1. Write down the characteristic Hamilton–Jacobi equation for the reduced

action. Separating the variables, find a complete integral. It will be useful
to introduce as a conserved quantity, in addition to the total energy E,
the kinetic energy along the Ox axis: Tx (see also Problem 5.1 case B).

2. From this complete integral, determine the wave surfaces, defined as the
surfaces with the same reduced action. Plot them with the help of a
pocket calculator or a micro computer.

3. Calculate the momentum at an arbitrary point (x1, z1), for time t = 0.
With these initial conditions, give x(t) and z(t). Deduce the equation of
the trajectory.

4. Calculate at the point (x1, z1) the slope α1 of the tangent to the trajec-
tory. Calculate at the same point the slope β1 of the tangent to the wave
front passing through this point. Prove that the trajectory is orthogonal
to the wave front at this point.
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5.5. Peculiar Wave Fronts
[Solution and Figure p. 264] � �

Wave fronts and trajectories in a constant gravitational field

From a wave front, contained in the plane yOz, one wishes to build the
successive wave fronts for a particle with mass m, in a constant gravitational
field g, characterized by an energy E = 0, taken as null by convention. One
chooses horizontal axes Ox and Oy and a vertical axis Oz oriented along
the field direction (so that the potential energy is given by −mgz).

This can be achieved following Huygens’ construction from the reference
front which will be taken as the plane yOz, limited to the region z > 0.

To begin with, we need the trajectories that originate from the plane yOz
with an initial velocity directed along Ox, and at the altitude z0 = h > 0.

1. We recall that the vertical motion is uniformly accelerated and the hor-
izontal motion is uniform. Give z(t) and x(t). Eliminate the time and
use the condition E = 0 to find the equation of the trajectory beginning
at z0 = h > 0. Check that all the trajectories are tangent to the first
bisector (this is a caustic).

2. The intersection of this trajectory with the wave front is characterized
by the value S̃ =

∫ √
2m(E − V ) dl for the reduced action S̃ where the

integration is performed over the trajectory. Compute this integral taking
as integration variable the quantity x̃, which runs from 0 to x.

3. Solving the cubic equation of the previous question, express x and z as
function of the h parameter for a given value S̃ of the action. These
functions x(h) and z(h) provide a parametric representation of the wave
front characterized by the value S̃ for the action. You could use the well
known relation: sinhu = 4 sinh3(u/3) + 3 sinh(u/3).

4. With the help of a pocket calculator or a micro-computer, plot the curves
corresponding to the wave fronts and to the trajectories and check that
they are orthogonal.

5.6. Electrostatic Lens [Solution p. 265] � � �

An electrostatic system that behaves like an optical system

Electrostatic lenses can be found in electronic microscopes, in particle accel-
erators and in many other devices. Their purpose is to focus the trajectory
of charged particles (with charge qe) which tend to spread out, in the same
way that an ordinary lens focusses at the exit the light rays that are diver-
gent at the entrance.
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An electrostatic lens is composed of a set of conductors held at ad hoc
electric potentials, this set up having a cylindrical symmetry.

The first obstacle to overcome is associated with electromagnetic prob-
lems. You will prove that the potential energy, at a distance r from the axis
of revolution Oz and at a distance z along this axis is given approximately by

V (r, z) = qeU(r, z) = qe

[
U(0, z) − 1

4
r2∂2

z2U(0, z)
]
.

Because of the revolution symmetry around the Oz axis, the electric poten-
tial is obviously of the form U(r, z), with the natural choice of cylindrical
coordinates. In the space left free by the conductors, this potential obeys
Poisson’s equation

ΔU(r, z) =
1
r
∂rU(r, z) + ∂2

r2U(r, z) + ∂2
z2U(r, z) = 0.

Performing the Taylor expansion of the potential in the vicinity of the axis,
and inserting in Poisson’s equation, show that

1
r
∂rU(0, z) + 2∂2

r2U(0, z) + ∂2
z2U(0, z) = 0.

1. Relying on physical arguments (Gauss’s theorem for instance), justify
that the radial electric field vanishes on the axis of revolution. Deduce
the approximation U(r, z) = U(0, z)− 1

4r2∂2
z2U(0, z). The proposed form

for the potential follows.
Maupertuis’ principle allows us to address the problem of trajectories

in a very economical way.
In the following, we set V (r, z) = V (z) − 1

4r2V ′′(z) and T (z) = E −
V (z), the kinetic energy of the charge if it is situated on the axis.

2. Using Maupertuis’ principle, deduce the differential equation for r(z) cor-
responding to the trajectory of the particle inside the conductor, provided
it does not deviate too much from the axis. This means that we neglect
all the terms of order greater than one for r or its derivative r′ = dr/dz.

This equation is linear and we speak of corpuscular optics. From a
point located on the axis referred to as the object, let us emit identical
charged particles with the same kinetic energy, but with different orien-
tations for the velocities.

3. Show, relying on the linearity of the differential equation, that they leave
the lens either parallel, or diverging from or converging to the same point
(image).
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Remark: Why do we build microscopes working with electrons rather than
light ? Just as the light wave focuses onto special points given by geometrical
optics, the wave associated with each electron focuses onto the same points,
as we saw in this problem. However, the wave length of the De Broglie
wave associated with the electron can be made much smaller than the wave
length of light; the resolution power of the electronic microscope is thus
much improved.

5.7. Maupertuis’ Principle
with an Electromagnetic Field
[Solution p. 268] � � �

Maupertuis’ principle is also useful in the presence of an electromagnetic
field

How can we apply Maupertuis’ principle if the Hamiltonian is not expressed
in the form T +V ? Consider a particle with charge qe and mass m, specified
by its Cartesian coordinates (x, y, z) = r and subject to the electromagnetic
potential (U(r, t),A(r, t)). We will restrict ourselves to a non-relativistic
treatment.
1. Show that the reduced action is

∫
p.dr =

∫ (√
2m(H − qeU) dl + qeA.dr

)
,

where dl is the length element along the trajectory.

2. Using Maupertuis’ principle we study the motion of this particle in the
plane xOy, subject only to a uniform magnetic field B perpendicular to
this plane. We recall that we can choose a gauge for which the vector
potential is given indifferently by A(−yB, 0, 0), or by A(0, xB, 0) or by
the half sum (have a glance at Problem 2.9).

Demonstrate the analogy between Maupertuis’ principle applied to this
system and the isoperimetric problem. Deduce the equations of motion
and check that the trajectory is a circle with a radius R to be determined.

3. One subjects the particle to a motion on a closed curve enclosing a mag-
netic field which vanishes on this contour. The particle experiences no
force except the reaction force normal to the contour (see Fig. 5.1). For
simplicity we take into account only the vector potential. Use as a gen-
eralized coordinate the curvilinear abscissa s along this curve, referred
to an arbitrary origin. Give the expression of the Lagrangian (denote by
t(s) the unit vector tangent to the curve at the point with coordinate s).
Deduce the momentum, the Hamilton function and the reduced action.
Show that ṡ is constant but not p.
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Show that this magnetic field (although invisible for the particle around
its trajectory) nevertheless induces a variation of the reduced action, the
value of which is qeΦ over a complete revolution, where Φ is the magnetic
flux crossing the loop.9

B

Φ

Fig. 5.1 –Charged particle moving on a
closed contour (thick line) enclosing a mag-
netic flux tube

5.8. Separable Hamiltonian,
Separable Action [Solution p. 270] �

Separable Hamiltonian with several degrees of freedom

In the case of separation of variables, it can be shown that, with a judicious
choice of the n coordinates, the action can be expressed as a sum of n sepa-
rate terms, each one being a function of one coordinate only. This favorable
situation allows us to find a complete action function and, using Jacobi’s
theorem, to completely solve the problem. The original Hamiltonian may
not exhibit this property; the Hamiltonian of the particle subject to a cen-
tral potential belongs to this category. In this problem, we will illustrate as
an example the very simple general property corresponding to the converse,
i.e., if the Hamiltonian is separable in the above sense, then the action is
separable and the problem is solved.

Consider the study of the trajectory, in a uniform gravitational field g
directed along the Oz axis, of a particle with mass m moving in the two-
dimensional space of the xOz plane.

The Hamiltonian H = p2
x/(2m) + p2

z/(2m) + mgz is manifestly separa-
ble.
1. Write down the characteristic Hamilton–Jacobi equation for the reduced

action S̃(x, z, E).

2. Seek “separable” solutions under the form S̃(x, z, E) = Sx(x,E)+Sz(z,E).
What happens in this case to the preceding equation?

9 In the quantum mechanical framework, this additional term can be investigated ex-
perimentally. This is the Aharonov–Bohm effect.
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3. Differentiating this equation with respect to x (or with respect to z), show
that these functions must obey two separate characteristic Hamilton–
Jacobi equations

1
2m

(
dSx(x)

dx

)2

= e;
1

2m

(
dSx(x)

dz

)2

+ mgz = E − e

where e is a (positive) constant.

4. Give the complete Jacobi integral for these two separate actions and
thereby the total action.

5. Integrate the problem completely using Jacobi’s theorem. Check in par-
ticular that the trajectory is the expected parabola.

5.9. Stark Effect
[Solution and Figures p. 271] � � �

Parabolic coordinates can be used to separate variables in a problem which,
initially, does not appear separable

Although rare, the cases for which the variables can be separated are im-
portant in physics. One of them, the so-called Stark effect, concerns an
electric charge subject to a central electrostatic potential −K/r, on which
one superposes a uniform electric field (for instance along the Oz axis) which
arises from the potential kz.

In this case, it is astute to work with parabolic coordinates defined by

ξ = r + z; η = r − z; φ

where (ρ =
√

x2 + y2, φ, z) are the standard cylindrical coordinates and
r =

√
ρ2 + z2 is the modulus of the radius vector.

1. Show that the potential can be written as (Vξ(ξ) + Vη(η)) /(ξ + η) and
write, in explicit form, the two functions Vξ(ξ) and Vη(η).

2. Using the expression of the kinetic energy in terms of parabolic coordi-
nates, write down the Hamilton function (in this case, since the vector
potential is null, this function is the sum of the kinetic energy and the
potential energy given above).

3. Write down the Hamilton–Jacobi equation, using the fact that the φ
coordinate is cyclic. Multiply the Hamilton–Jacobi equation by ξ + η
and remark that the variables can be separated. Split the initial problem
into three one-dimensional problems, introducing three constants. Do
not attempt to obtain an analytical form for the reduced action.
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Just as for an autonomous one-dimensional system, there exist, for each
separate variable, allowed regions where the square of the momentum is
positive. For trajectories that do not deviate too much from the attractive
center, the values of the constants (energy E, projection of the angular
momentum σ, and separation energy β) are such that there exist two
cusps.

4. Show that, if this is the case, these restrictions in the space (ξ, η) impose
that the trajectory in the plane (ρ, z) is maintained in a region limited by
two parabolae oriented upwards (η = const) and two parabolae oriented
downwards (ξ = const).

We encourage the reader to make a numerical application with the
following parameters m = K = 1 (this prejudices in no way a choice for
the length and time units), k = 0.4, σ = 0.45, β = 0.2, E = −1.3.

In your answer, you will see how a trajectory (obtained by numerically
solving Hamilton’s equations with parabolic coordinates) fills the space.

5.10. Orbits of Earth’s Satellites
[Solution and Figures p. 275] � � �

Separation of variables in a problem that is not very simple: the motion
of Earth’s satellites. This is the classical “two-center problem”, which is
separable with the use of elliptic coordinates

The orbit of Earth’s satellites is much more complex than the simple ellipse
given by Kepler’s laws. Among the numerous reasons for these complica-
tions, one is the fact that the Earth is not spherical, but flattened at the
poles so that the potential to which the satellite is subjected does not ex-
hibit the 1/r dependence. As a consequence, the motion is not planar and
the orbit is not closed.

The purpose of this problem is to demonstrate that, with a better approx-
imation and a judicious choice of coordinates, the problem can be completely
solved by quadratures.

We showed in the Problem 2.11 dealing with the equinox precession (it
is sufficient to assume in this problem that the Sun plays the role of the
satellite) that, due to the Earth (mass M), a satellite of mass m is subject
to a gravitational potential of the form:

V (r, u) = −GmM

(
1
r

+
(I − I3)

Mr3

(3u2 − 1)
2

)
+ O(1/r4)
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The Earth is assumed to be an ellipsoid with cylindrical symmetry around
the pole axis and with a uniform density.

I3 is the moment of inertia with respect to the axis of revolution and I,
the moment of inertia with respect to a perpendicular axis. r represents the
distance of the satellite to the center of the Earth and u, the cosine of the
angle between the vector radius of the satellite and the pole axis.

Let us assume for the moment that the Earth exhibits the shape of a
rugby ball (I > I3), the so-called prolate shape. One can approximately
simulate the gravitational attraction exerted by the Earth as that due to
two very close equal masses, located on the axis of revolution and separated
by 2σ (quadrupolar approximation). In this simplified model, a better de-
scription of the potential would be thus to consider an expression of the
form 1/(2r1) + 1/(2r2), where ri is the distance between the satellite and
the mass i = 1 or 2.

Let us study the potential corresponding to this model, which is illus-
trated in the Fig. 5.2.

•

•

•

z

σ

O
σ

r1

r

r2

Fig. 5.2 The prolate “Earth”
is schematized by two identical
masses placed on the axis of rev-
olution at a distance ±σ from the
center. The satellite is subjected
to a gravitational attraction from
the two masses situated at the
distances r1 and r2

1. The potential can be written as V = −K

2

(
1

|r − σẑ| +
1

|r + σẑ|

)

where ẑ is the unit vector along Oz.

Find the expansion of the potential in terms of powers10 of σ/r:

1
|r − σẑ| =

1
r

+
σu

r2
+

(3u2 − 1)σ2

2r3
+ O(σ3/r4)

10 An expansion to all orders generates the Legendre polynomials.
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if u is the angle between the direction of r and ẑ. Give the expression
of the potential V and show that it can be identified with the expres-
sion V (r, u) given previously. Deduce the values of K and σ as a function
of the characteristics of the Earth.

Remark: The previous relation does not imply that we can replace the
gravitational problem due to an ellipsoid by that of two distant masses.
This is true only up to order 1/r3. For higher order, the two multipole
expansions differ. Nevertheless this simple model already provides a good
approximate description of the phenomenon.

For this type of potential, the problem is separable if one works with
the set of elliptic coordinates. This corresponds to the famous “two-center
problem” which is treated in many textbooks.

However the true problem of interest is not quite this one. Indeed
the Earth is not prolate but it is flat at the poles; this oblate shape
(I < I3) is incompatible with the condition σ2 > 0 that arises from this
set of coordinates. Physicists however are resourceful people: why not
consider σ as a purely imaginary number and maintain the use of elliptic
coordinates.

In this framework, the potential still reads

−K

2

(
1
r1

+
1
r2

)
,

but now with r1,2 =
√

ρ2 + (z ∓ iσ)2. From the cylindrical coordi-
nates (ρ, φ, z), one defines the elliptic coordinates (ξ, η, φ) by

ξ =
r1 + r2

2σ
, η =

r2 − r1

2iσ
.

Notice that, with such a treatment, the distances r1 and r2 are two
complex conjugate numbers. In contrast, the elliptic coordinates ξ and
η, as well as the potential, are real quantities. The contour curves of
these coordinates are represented in the Fig. 5.3.

2. With this set of coordinates calculate the elementary length. A prelimi-
nary calculation of r2

1 − r2
2, r2

1 + r2
2, r2

1r
2
2 can help a little.

3. Deduce the kinetic energy. Express the potential in terms of these co-
ordinates. Deduce the Lagrangian for the satellite. Then, perform the
Legendre transform to obtain the Hamiltonian. Lastly, write down the
characteristic Hamilton–Jacobi equation for this problem.

4. We will see in this question that, with this set of coordinates, the problem
is separable.

First notice that φ is a cyclic coordinate and that pφ = ∂φS = α is a
constant.
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Multiply the equation by ξ2 +η2; the separation of the variables becomes
evident if one uses the following equality:

1
(1 + ξ2)(1 − η2)

=
1

(ξ2 + η2)

(
1

1 − η2
− 1

1 + ξ2

)
.

Introducing a second constant β, separate the variables and give the
expression of the complete action. Do not try to calculate the integrals.

z

ξ = 1.5

ξ = 1

ξ = 0.5

η = 0.3

η = 0.5

η = 0.7

η = 0.3

η = 0.5

η = 0.7η = 0.9 η = 0.9

ρ

Fig. 5.3 Mesh of elliptic orthogonal coordinates ξ and η obtained for some
particular values

Thanks to Jacobi’s theorem, the problem is fully solved: it is enough to
identify three new constants as the derivatives of the action with respect
to the three constants α, β, E of the complete solution. The three initial
coordinates and the three components of the initial momentum will fix
the values of these six constants.

In this problem, one can adopt the same approach as that employed in
Problem 5.9 to determine the allowed regions and their implications on
the limitation for trajectories.

5.11. Phase and Group Velocities
[Solution p. 279] �

Some aspects of phase and group velocities

Consider a particle of mass m, possibly subject to a potential V (r).



252 5 Hamilton–Jacobi Formalism

It can be proved that the speed of the displacement of wave fronts
for a trajectory with given energy E, also called phase velocity, is given by
vϕ = E/p. It depends on the position of the particle on the trajectory. The
group velocity is defined as the physical velocity of the particle vg = |ṙ|. It
depends also on the position on the trajectory. The aim of this problem is to
study the relation between these two types of velocities for some particular
cases.
1. In the case of a free particle V (r) = 0, what is the relationship between

vϕ and vg?
In quantum mechanics, a free particle is described by a plane wave

wave function: ψ(r, t) = ei(k·r−ωt). The angular frequency of the wave
ω is linked to the particle energy through E = �ω (�= Planck con-
stant / 2π). This is Einstein’s postulate. The wave vector k is linked
to the momentum through p = �k. This is the De Broglie’s postulate.
Starting from the relation between E and p for the free particle, find the
relation between ω and k for the corresponding plane wave. The phase
velocity corresponds to the conservation of the phase, i.e. vϕ = ω/k. The
group velocity is only meaningful for wave packets formed by a superpo-
sition of plane waves. The group velocity corresponds to the speed of the
maximum of the wave packet; it can be shown that vg = dω/dk.

2. Calculate vϕ and vg and give the relation between them. Conclusion.

3. In the case of a particle subject to an arbitrary potential, show that the
product vϕvg is constant. What is the value of this constant?

4. We consider now a relativistic example. Calculate vϕ and vg, as well
as vϕvg for a free particle. Generalize to the broader case of a particle
subject to a scalar potential, whose Hamiltonian is given by H(r,p) =√

(mc2 + V (r))2 + p2c2. Comment on this property.

Problem Solutions

5.1. How to Manipulate the Action and
the Reduced Action [Statement p. 239]

Preliminary question

For an autonomous system and for a given orbit (t1 = 0, q1 = 0 is the
starting point by convention), there is a relation between the energy E
and the travel time t. The total action is linked to the reduced action by
Equation (5.5), which we rewrite as: S(q, t) = −Et − (−S̃(q, E)) in which
E must be understood as E(t). Moreover, from (5.2), ∂tS = −H = −E.
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The Legendre transform of the action S is, by definition, (−E)t−S(q, t),
a quantity in which the time t must be understood as t(E). This transform
is precisely −S̃(q, E).

One knows that the Legendre transform is involutive; this means that
S is the Legendre transform of −S̃. Let us check. From Equation (5.8),
one has ∂E(−S̃) = −t and the Legendre transform of −S̃ is by definition
E(−t) − (−S̃(q, E)), so that the result is S(q, t), as it should be.

A – One-dimensional free particle

1. The Lagrangian is L(q, q̇) = 1
2mq̇2, the Hamiltonian H(q, p) = p2/(2m)

and the trajectory passing through the imposed points is obviously q̃(t̃) =
(q/t) t̃. One deduces the general action S(q, t) =

∫ t

0
1
2m(q2/t2) dt̃ i.e.,

S(q, t) =
1
2
m

q2

t
.

The partial derivatives ∂tS = − 1
2mq2/t2 and ∂qS = mq/t are calculated.

Consequently

H(q, ∂qS) =
(∂qS)2

2m
=

mq2

2t2
= −∂tS

so that the Hamilton–Jacobi equation is satisfied:

H

(
q,

∂S

∂q

)
= −∂S

∂t
.

2. The Hamiltonian is equal to the energy H = E and one derives p̃(E) =√
2mE. The reduced action follows (see (5.6)) S̃(q, E) =

∫ q

0

√
2mE dq̃ =√

2mE q. Thus

S̃(q, E) =
√

2mE q.

3. The characteristic Hamilton–Jacobi equation H(q, ∂qS̃) = E reads in this
case (∂qS̃)2/(2m) = E, or ∂qS̃ = ±

√
2mE = p which is integrated to give

S̃(q, E) = ±
√

2mE q. If q > 0, the velocity is positive, so that p > 0. One
must retain the + sign and the corresponding reduced action is S̃(q, E)
=

√
2mE q =

√
2mE |q|. If q < 0, the velocity is negative p < 0. One

retains the − sign and S̃(q, E) = −
√

2mE q =
√

2mE |q|. Thus, in any
case:

S̃(q, E) =
√

2mE |q| .

The travel time is given by (5.8) t = ∂ES̃, i.e., t =
√

mq2/(2E) or
E = 1

2m(q/t)2, as expected.
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4. With this last value of the energy, we have −Et = − 1
2mq2/t and the

reduced action S̃ =
√

2mE |q| = mq2/t. Consequently the total action
is S = −Et + S̃ = 1

2mq2/t which is identical with the answer to the first
question.

5. For a relativistic particle, the Lagrangian is L = −mc2
√

1 − q̇2/c2, the
momentum p = ∂q̇L = mq̇/

√
1 − q̇2/c2 and the Hamiltonian

H =
√

p2c2 + m2c4.

The Hamiltonian does not depend on time; on the trajectory its value
remains constant and equal to the energy E. One deduces that the mo-
mentum remains also constant as does the velocity q̇ = q/t. The action
is calculated from (5.1) and, since the Lagrangian is constant on the tra-
jectory, one has S(q, t) = Lt, or after inserting the value of the velocity:

S(q, t) = −mc
√

c2t2 − q2.

6. The characteristic Hamilton–Jacobi equation H(q, ∂qS̃) = E is written
in this case: E2 = m2c4 + (∂qS̃)2c2, or ∂qS̃ = ±

√
E2 − m2c4/c, which

may be integrated to give S̃ = ±
√

E2 − m2c4 q/c. A remark analogous
to the non-relativistic case concerning the choice for the sign leads to the
expression (valid in all cases):

S̃(q, E) =
1
c

√
E2 − m2c4 |q| .

7. The travel time is given by (5.8), that is t = E |q| /
(
c
√

E2 − m2c4
)

or, af-
ter inversion, E = mc2/

√
1 − q2/(c2t2). With this latter value for the en-

ergy, the relation between time and energy is −Et = −mc3t2/
√

c2t2 − q2

and the reduced action becomes

S̃ =
1
c

√
E2 − m2c4 |q| =

mcq2

√
c2t2 − q2

.

Thus the total action reads S = −Et + S̃ = −mc
√

c2t2 − q2 as expected
from Question 5.

B – Particle in a constant gravitational field

1. In this case, the Lagrangian is L(q, q̇) = 1
2mq̇2 − mgq, the momentum

p = mq̇ and the Hamiltonian

H(q, p) =
p2

2m
+ mgq.
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It is easy to check that the temporal evolution on the trajectory passing
through the imposed points is expressed as: q̃(t̃) = − 1

2gt̃2 + v0(q, t) t̃
with v0(q, t) = 1

2gt + q/t. Now, the Lagrangian can be calculated on the
trajectory, L = mg2t̃2 − 2mgv0t̃ + mv2

0/2, and the general action is the
integral of this expression between t̃ = 0 and t̃ = t. Finally, we obtain:

S(q, t) = m

[
− 1

24
g2t3 − 1

2
gtq +

1
2

q2

t

]
.

One deduces the partial derivatives ∂tS = − 1
2m

[
1
4g2t2 + gq + q2/t2

]
and

∂qS = m
[
− 1

2gt + q/t
]
. The substitution in H(q, ∂qS) = (∂qS)2/(2m) +

mgq shows that the value obtained is simply −∂tS. The Hamilton–Jacobi
equation is thus satisfied:

H

(
q,

∂S

∂q

)
= −∂S

∂t
.

Since the Hamiltonian does not depend on time, its value on the trajec-
tory is constant and equal to the energy; consequently E = −∂S

∂t that is
E(t) = 1

2m
[
1
4g2t2 + gq + q2/t2

]
= 1

2mv2
0 . Thus,

E(t) =
1
2
m

[
1
4
g2t2 + gq +

q2

t2

]
.

One sees that it is not easy to invert this relation to obtain t(E), because
one must solve a bi-squared equation.

2. From the expression for Hamilton’s function, we derive the momentum as
a function of the energy p̃ =

√
2m(E − mgq̃) (choosing p̃ > 0 is equivalent

to stating that we pass through the extremity before the maximum is
attained) and the reduced action is obtained from (5.6) or

S̃(q, E) =

q∫

0

√
2m(E − mgq̃) dq̃ :

S̃(q, E) = − 2
3g

√
2
m

(E − mgq)3/2 +
m

3g

(
2E

m

)3/2

.

Let us start from S̃(q, E) = ± 2
3g

√
2/m (E − mgq)3/2. One calculates

the partial derivative ∂qS̃ = ∓
√

2m(E − mgq). Then, substituting in
H(q, ∂qS̃), one obtains (∂qS̃)2/(2m) + mgq = E. The characteristic
Hamilton–Jacobi equation is satisfied. To remain consistent with the
sign chosen for the momentum, one must take the − sign and one sees
that the two expressions for the reduced action differ only by the constant
(m/3g)(2E/m)3/2, which has no influence on the equation of motion.
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3. The travel time is given by (5.8) t = ∂ES̃. With the expression for the
reduced action obtained above, the travel time as a function of the energy
is easily found and exhibits the simple form:

t(E) =
1
g

[√
2E

m
−

√
2(E − mgq)

m

]
.

With a little courage, one can check that this expression does indeed
fulfill the bi-squared equation resulting from the inversion of E(t).

C – Three-dimensional free particle

1. The Lagrangian reads L(ṙ) = 1
2mṙ2, the momentum p = mṙ and the

Hamiltonian H(p) = p2/(2m). The temporal evolution on the trajectory,
which satisfies the required conditions, is given by x̃(t̃) = (x/t) t̃, ỹ(t̃) =
(y/t) t̃, z̃(t̃) = (z/t) t̃. The Lagrangian on the trajectory is thus L =
1
2mr2/t2 and the action, which is the corresponding integral between
t̃ = 0 and t̃ = t is obtained as:

S(r, t) = m
r2

2t
.

On the trajectory, the momentum and the velocity are constant and the
reduced action is given by (5.6): S̃(r, E) =

∫ t

0
p̃ · ˙̃r dt̃ = p̃ · ˙̃r t = p̃2t/m

= 2Et. On the other hand, one has E = 1
2m(r/t)2, so that the time can

be eliminated in favour of the energy to obtain:

S̃(r, E) =
√

2mEr2.

It is easy to check that this function obeys the characteristic Hamilton–
Jacobi equation.

2. Let us start from the characteristic equation

1
2m

[
(∂xS̃)2 + (∂yS̃)2 + (∂zS̃)2

]
= E.

The z variable is cyclic and the reduced action is recast in the form
S̃(x, y, z, E) = Ŝ(x, y,E) + αzz. However the same argument applies to
any of the variables so that the reduced action can be expressed in the
form S̃(x, y, z, E) = αxx + αyy + αzz. The characteristic equation is
satisfied if α2 = 2mE. The action is written in the separable form:

S̃(r,α) = α · r; α2 = 2mE.

Manifestly the constant vector α coincides with the momentum.

In general, there exists no relation between the two reduced actions given
in Questions 1 and 2. Nevertheless, one may remark that if the momen-
tum is taken as parallel to the radius vector α =

√
2mE/r2 r the two
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expressions are equal. Jacobi’s theorem ∂αS = β applied to this complete
solution gives directly the equations of motion r(t) = (α/m) t + β.

3. We carry out the same study with the new Lagrangian

L(ṙ) = −mc2

√
1 − ṙ2

c2
,

momentum p = mṙ/
√

1 − ṙ2/c2 and Hamiltonian H(p) =
√

p2c2 + m2c4.
The momentum, as well as the velocity, is a constant vector and the equa-
tion of the trajectory is r̃(t̃) = (r/t) t̃. Since the Lagrangian is constant
along the trajectory, the action is simply given by S = Lt, that is:

S(r, t) = −mc
√

c2t2 − r2.

It is not difficult to check that it fulfills the Hamilton–Jacobi equation.
One can use a treatment similar to that employed in the one-dimensional
case.

One still has

S̃(r, E) =

t∫

0

p̃ · ˙̃r dt̃ = p̃ · ˙̃r t = m
ṙ2t√

1 − ṙ2/c2
=

E

c2

r2

t2
t.

On the other hand E2 = m2c6/(c2 − r2/t2), so that the time can be
eliminated in favour of the energy to find:

S̃(r, E) =
1
c

√
(E2 − m2c4) r2.

It is easy to check that this function fulfills the characteristic Hamilton–
Jacobi equation.

4. The characteristic equation
[
(∂xS̃)2 + (∂yS̃)2 + (∂zS̃)2

]
c2 = E2 − m2c4

is separable exactly as for the non-relativistic case, so that the reduced
action is given as S̃(x, y, z, E) = αxx + αyy + αzz. The characteristic
equation is satisfied if α2c2 = E2 − m2c4. The action is expressed as:

S̃(r,α) = α · r; α2c2 = E2 − m2c4.

Manifestly in this case also, the constant vector α is simply the momen-
tum.
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5.2. Action for a One-Dimensional
Harmonic Oscillator [Statement p. 241]

1. For the harmonic potential, Lagrange’s equation leads to the well known
differential equation ¨̃q+ω2q̃ = 0 whose general solution is q̃(t̃) = A cos(ωt̃)
+B sin(ωt̃).

The integration constants A and B are determined by requiring that
the trajectory passes through the points q1, t1 and q, t. A simple calcu-
lation gives, with T = t − t1:

A =
(q1 sin(ωt) − q sin(ωt1))

sin(ωT )
; B =

(q cos(ωt1) − q1 cos(ωt))
sin(ωT )

.

With the definition τ = t + t1, these values leads to:

B2 − A2 =

(
q2 cos(2ωt1) + q2

1 cos(2ωt) − 2qq1 cos(ωτ)
)

sin2(ωT )
;

2AB =

(
−q2 sin(2ωt1) − q2

1 sin(2ωt) + 2qq1 sin(ωτ)
)

sin2(ωT )
.

The Lagrangian can now be obtained as L = 1
2m

( ˙̃q2 − ω2q̃2
)

along the
trajectory so that the corresponding action is S =

∫ t

t1
L( ˙̃q, q̃) dt̃, which

gives: S = 1
4mω

[
(B2 − A2) cos(ωτ) − 2AB sin(ωτ)

]
. Inserting the val-

ues of the constants obtained above, a simple calculation gives the final
expression:

S(q, t, q1, t1) =
mω

2 sin(ωT )
[
−2qq1 + (q2 + q2

1) cos(ωT )
]

which depends only on the time difference T = t − t1.

2. If ωT = 2kπ, S = mω(q − q1)2/(2 sin(ωT )) so that a difficulty occurs
unless q = q1.

If ωT = (2k + 1)π, S = −mω(q + q1)2/(2 sin(ωT )) and there is a
difficulty unless if q = −q1.

These remarks are connected to the existence (or non-existence) of the
trajectory passing through the required points (see Problem 3.4).

From the general expression for the action, one deduces:

∂tS = ∂T S =
mω2

2 sin2(ωT )

[
−(q2 + q2

1) + 2qq1 cos(ωT )
]

and ∂qS =
mω

sin(ωT )
[−q1 + q cos(ωT )] .

The Hamilton–Jacobi equation ∂tS = −H(q, ∂qS) for the harmonic os-
cillator is expressed as ∂tS = −(∂qS)2/(2m) − 1

2mω2q2. Substituting for
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the partial derivatives by their previous values, it is not difficult to show
that the Hamilton–Jacobi equation is indeed verified:

∂S

∂t
= −H

(
q,

∂S

∂q

)
.

Since ∂tS = −E, we have the relationship between the energy E and the
travel time T :

E = mω2

[
−(q2 + q2

1) + 2qq1 cos(ωT )
]

2 sin2(ωT )
.

3. The reduced action is defined by S̃(q, E) =
∫ q

q1
p̃ dq̃. Moreover, the energy

along the trajectory is E = p̃2/(2m) + 1
2mω2q̃2, so that p̃(q, q1, E) =√

2mE − m2ω2q̃2. The calculation of the integral is performed with the
help of the change of variable x̃ = q̃ω

√
m/(2E) to give

S̃ =
2E

ω

x∫

x1

√
1 − x̃2 dx̃.

Finally, one obtains:

S̃(q, q1, E) =
E

ω

[
y
√

1 − y2 + arcsin y
]y=ωq

√
m/(2E)

y1=ωq1

√
m/(2E)

.

From this equation, one deduces the partial derivative

∂qS̃ =
√

2mE − m2ω2q2.

We can now calculate H(q, ∂qS̃) = 1
2mω2q2 + (∂qS̃)2/(2m), or, with the

value of ∂qS̃ obtained above, 1
2mω2q2 + E − 1

2mω2q2:

E = H

(
q,

∂S̃

∂q

)
.

The characteristic equation is thus fulfilled.
The travel time is obtained from (5.8):

T = ∂ES̃ =
1
ω

[
y
√

1 − y2 + arcsin y − y1

√
1 − y2

1 − arcsin y1

]

+
E

ω

[
2
√

1 − y2(dy/dE) − 2
√

1 − y2
1(dy1/dE)

]
.

With (dy/dE) = −y/(2E), (dy1/dE) = −y1/(2E), this value can be
simplified to give finally:

T =
1
ω

[arcsin y − arcsin y1] ; y = ωq

√
m

2E
; y1 = ωq1

√
m

2E
.
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5.3. Motion on a Surface and Geodesic
[Statement p. 241]

1. The Lagrangian is defined on the surface by

L = T =
1
2
mv2 =

1
2
m

ds2

dt2
,

or, using the expression of the length element,

L =
1
2
m

∑

i,j

gij(q) q̇i q̇j .

One deduces the momentum pk = m
∑

i gik(q) q̇i, and thereby the Hamil-
tonian

H =
∑

i

piq̇i − L = m
∑

i,j

gij(q) q̇i q̇j − L = 2L − L = L.

The Hamiltonian does not depend explicitly on time and its value on the
trajectory is a constant, the energy E.

H = L =
1
2
m

∑

i,j

gij(q) q̇i q̇j = E.

In the expression of the Hamiltonian, one must substitute the velocity
by the momentum, a procedure which necessitates the inversion of the
metric tensor.

One has E = 1
2mṡ2, which implies that ṡ is a constant quantity.

2. The trajectory originates from a point O, at time t = 0, and terminates
at a point A, with curvilinear abscissa s(q), at time t. The action is
defined by

S =

t∫

0

L(q, q̇) dt̃ =

t∫

0

E dt̃ = Et.

Furthermore E = 1
2m(ds/dt)2, so that ds/dt =

√
2E/m and, after inte-

gration, s(q) = t
√

2E/m, whence E = ms(q)2/(2t2). Consequently the
action is expressed as:

S(q, t) =
1
2
m

s(q)2

t
.

On the other hand, one has S(q, t) = S̃(q, E) − Et, i.e., S̃(q, E) = 2Et.
But in the reduced action S̃, time must be eliminated in favour of the
energy or, as we already saw, t =

√
m/(2E) s(q) which implies the ex-

pression of the reduced action:

S̃(q, E) =
√

2mE s(q).
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3. In the case of a particle moving on a straight line, there is only one degree
of freedom s(q) = q. One finds the action:

S(q, t) =
1
2
m

q2

t

as expected (see also Problem 5.1).
Concerning the reduced action, one has S̃(q, E) =

√
2mE q, so that

the action S(q, t) = S̃(q, E) − Et is given equivalently by:

S(q, t) =
√

2mE q − Et

expression that was already proved in Problem 5.1.

4. The Maupertuis principle stipulates that
∫

pdq is stationary on the tra-
jectory. With the expression of the momentum obtained previously, this
integral can be rewritten as

m
∑

i,j

A∫

O

gij(q)q̇jdqi = m
∑

i,j

A∫

O

gij(q)dqj
dqi

dt
= m

A∫

O

ds2

dt
=

A∫

O

[
m

ds

dt

]
ds.

Moreover, we remarked that ds
dt =

√
2E
m . It follows that

√
2mE

∫ A

O
ds is

stationary, or, equivalently,
∫ A

O
ds is stationary.

This simply means that the trajectory follows, from the two points O
and A, a geodesic on the surface.

5.4. Wave Surface for Free Fall
[Statement and Figure p. 242]

1. The Hamiltonian of the system reads

H(x, z, px, pz) =
p2

x

2m
+

p2
z

2m
+ mgz

and the associated characteristic equation is H(x, z, ∂xS̃, ∂zS̃) = E, which
is written in this case:

1
2m

(
∂S̃

∂x

)2

+
1

2m

(
∂S̃

∂z

)2

+ mgz = E.

One notices that the x variable is cyclic, with the consequence that the
action can be written in the form S̃(x, z) = Sz(z)+cx. We note that ∂xS̃
= px = c = const. Denoting Tx = p2

x/(2m) the constant is written as
c =

√
2mTx. Moreover, ∂zS̃ = dSz/dz so that the characteristic equation
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reduces to dSz/dz = ±
√

2m(E − Tx − mgz). The function Sz(z,E, Tx)
is obtained by integration:

Sz(z,E, Tx) = ∓2
√

2m/(3mg) (E − Tx − mgz)3/2
.

Finally the reduced action is expressed as:

S̃(x, z, E, Tx) = ± 2
3g

√
2
m

(E − Tx − mgz)3/2 +
√

2mTx x.

2. The wave surfaces are defined as the surfaces with equal action S̃(x, z, E,
Tx) = S̃. Substituting this value in the previous relation and isolating the
z variable, one obtains (the − sign is chosen in order for the momentum
to be oriented in the increasing (x, z) direction):

z(x) =
E − Tx

mg
−

[
3

2m
√

2g

(√
2mTx x − S̃

)]2/3

.

3. The momentum is given by px = ∂xS̃ = const. On the other hand, px =
mẋ which, after integration and use of the initial conditions, provides the
horizontal temporal evolution:

x(t) =
px

m
t + x1.

As for the vertical variable, one has pz = ∂zS̃ =
√

2m(E − Tx − mgz)
and thus pz1 =

√
2m(E − Tx − mgz1). Moreover, pz = mż. The result-

ing differential equation is separable,
√

2/m dt = dz/
√

(E − Tx − mgz).
After integration, one obtains mgt = pz1 −

√
2m(E − Tx − mgz). One

eliminates the square root by squaring this equation and using the prop-
erty E = Tx + p2

z1
/(2m) + mgz1. The vertical temporal evolution is then

found to be:

z(t) = −1
2
gt2 +

pz1

m
t + z1.

The travel time is extracted from the horizontal time law and inserted
in the preceding (vertical) equation. After some algebra, the equation of
the trajectory is obtained in the form:

z(x) = − mg

4Tx
(x − x1)2 +

√
E − Tx − mgz1

Tx
(x − x1) + z1.

This is the equation of a parabola, as expected.
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4. The slope of the trajectory at the point (x1, z1) is easily calculated:

α1 =
(

dz

dx

)∣∣∣∣
x=x1

=
√

E − Tx − mgz1

Tx
,

where z(x) is given in the previous question.
The slope of the wave front is more difficult to find but, relying on the

value of the constant S̃ given by

√
2mTx x1 − S̃ = 2

√
2
m

(E − Tx − mgz1)
3/2

3g
,

one obtains (with a little patience) the value:

β1 =
(

dz

dx

)∣∣∣∣
x1

= −
√

Tx

E − Tx − mgz1
,

z(x) being given in Question 2. The relation α1β1 = −1 proves that these
two tangents are orthogonal. The point (x1, z1) is arbitrary; the latter
property thus holds for any point and leads to the conclusion that the
wave fronts are orthogonal to the trajectories.

The wave fronts (dotted lines) and the trajectories (full lines) are il-
lustrated in Fig. 5.4.

z

x0 1 2 3 4
0

−1

−2

−3

Fig. 5.4 Representation in the plane xOz of the iso-action
wave front (dotted lines) and the trajectories (full lines)

for a particle in a constant gravitational field
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5.5. Peculiar Wave Fronts [Statement p. 243]

1. With our convention for the axes, the equations of motion are given by
ẍ = 0 and z̈ = g. Using the initial conditions, they can be integrated
easily to give x(t) = v0t and z(t) = 1

2gt2 + h. The mechanical energy is
constant and, at the starting point, it is equal to E = 0 = 1

2mv2
0 − mgh,

so that v0 =
√

2gh. Thus the temporal laws become

x(t) =
√

2gh t; z(t) =
1
2
gt2 + h.

Elimination of time allows us to obtain the equation for the trajectory:

z(x) =
x2

4h
+ h.

At any point x1, the slope of the tangent to the trajectory is x1/(2h) and
the equation for this tangent is z − z1 = x1

2h (x − x1) with z1 = x2
1

4h + h.
Let us choose the point x1 = 2h; one sees easily that the equation of
the tangent is simply z = x, that is the first bisector. This conclusion
remains valid for any value of h, or for any trajectory. In other words,
the first bisector is the envelop to all trajectories which is known as a
caustic.

2. One seeks the wave front which takes the value S̃. It is obtained by
integrating

√
2m(E − V ) over the trajectory. With E = 0, V = −mgz

and
dl =

√
dx2 + dz2 = dx

√
1 + z′2,

the integral reduces to

S̃ = m
√

2g

x∫

0

√
z
√

1 + z′2 dx̃.

Using the equation of the trajectory z(x̃) = h + x̃2/(4h), this integral
becomes S̃ = m

√
2gh

∫ x

0

(
1 + x̃2

4h2

)
dx̃, which can be easily integrated to

give:

S̃ =
m
√

2g

12h3/2

(
x3 + 12h2x

)
.

3. Setting x = 4h sinh(u/3), a simple calculation shows that

S̃ =
4
3
m
√

2g h3/2
(
4 sinh3(u/3) + 3 sinh(u/3)

)
,
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or, using the well known relation concerning the hyperbolic sines, S̃ =
4
3m

√
2g h3/2 sinh u. The rest follows. For a given S̃ and for each value of

h, one derives a quantity u(h) from the previous relation. The abscissa of
the wave front is given by x(h) = 4h sinh(u(h)/3) and the ordinate, which
is on the same trajectory, by z = h + x2/(4h) = h

(
1 + 4 sinh2(u/3)

)
, or,

using the relation 2 sinh2(u/3) = cosh(2u/3)−1, z = h (2 cosh(2u/3) − 1).
In summary, the equation of the wave fronts with a given value of S̃ are
obtained parametrically from the following formulae:

u(h) = sinh−1

(
3S̃

4m
√

2gh3

)
; x(h) = 4h sinh

(
u(h)

3

)
;

z(h) = h

[
2 cosh

(
2u(h)

3

)
− 1

]
.

The trajectories (full lines) and wave fronts (dotted lines) are illustrated
in Fig. 5.5.

z

x0

Fig. 5.5 Trajectories with null en-
ergy (full lines) and corresponding
wave fronts (dashed lines) for a
particle in a constant gravitational
field. Before the trajectory touches
the caustic (dotted line), it is or-
thogonal to the descending wave
fronts. After meeting the caustic,
it is orthogonal to the wave fronts
that are curved upwards

5.6. Electrostatic Lens [Statement p. 243]

1. There is a symmetry of revolution around the Oz axis; the scalar elec-
trostatic potential reads U(r, z) and the mechanical potential exerted on
the particle is V (r, z) = qeU(r, z).

In the space where the particles move, there is no charge source and
the potential obeys Laplace’s equation which, in cylindrical coordinates,
is:

ΔU = 0 = ∂2
r2U +

1
r
∂rU + ∂2

z2U.
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We expand the potential in a Taylor series to obtain

U(r, z) = U(0, z) + r ∂rU |r=0 +
1
2
r2 ∂2

r2U
∣∣
r=0

;

∂rU = ∂rU |r=0 + r ∂2
r2U

∣∣
r=0

;

∂2
r2U = ∂2

r2U
∣∣
r=0

;

∂2
z2U = ∂2

z2U
∣∣
r=0

.

Up to this order, the Laplacian becomes:

0 = 2 ∂2
r2U

∣∣
r=0

+ (1/r) ∂rU |r=0 + ∂2
z2U

∣∣
r=0

Consider a given value of z; the terms ∂2
r2U

∣∣
r=0

, ∂2
z2U

∣∣
r=0

depend only
on z and have a finite value. Let r tend to 0; these two terms maintain
constant values. In order for the Laplacian to vanish, it is necessary
that the other term also retains a constant value; this is possible only
if ∂rU |r=0 = 0. The same conclusion is obtained if one uses Gauss’s
theorem.

Laplace’s equation now implies that ∂2
r2U

∣∣
r=0

= − 1
2∂2

z2U
∣∣
r=0

and the
truncated expansion for the potential reads simply

U(r, z) = U(0, z) +
1
2
r2 ∂2

r2U
∣∣
r=0

= U(0, z) −1
4
r2∂2

z2U

∣∣∣∣
r=0

.

Finally, for small values of r, the mechanical potential is expressed as:

V (r, z) = qe

[
U(0, z) − 1

4
r2 ∂2U(0, z)

∂z2

]
.

The electrostatic field, which is the gradient of the potential, behaves
linearly in r close to the axis and therefore vanishes on the axis itself.

2. The notation can be somewhat simplified if one sets

V (r, z) = V (z) − 1
4
r2V ′′(z) with V (z) = qeU(0, z)

and

V ′′(z) = qe ∂2
z2U

∣∣
r=0

= qe

(
d2U(0, z)/dz2

)
.

Let us apply the principle of Maupertuis to determine the trajectory:
the quantity

∫ √
2m (E − V (r, z)) dl is stationary. In a given plane dl2 =

dr2 + dz2, or dl = dz
√

1 + r′(z) where r′(z) = dr/dz. Thus, we must
render stationary the quantity

∫
F (r, r′, z) dz with

F (r, r′, z) =
√

2m (E − V (r, z)) (1 + r′2).
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Setting T (z) = E −V (z) the kinetic energy of the particle along the axis
of revolution; we have E − V (r, z) = T (z) + (r2/4)V ′′(z).

We are now faced with a classical problem of variations, and the equa-
tion to be solved is d(∂r′F )/dz = ∂rF .

To first order in r and r′, one calculates

d(∂r′F )
dz

≈ r′′
√

2mT +
2mr′T ′

2
√

2mT
; ∂rF ≈ mrV ′′

2
√

2mT
.

Finally the resulting differential equation reads:

r′′(z) +
T ′(z)
2T (z)

r′(z) − V ′′(z)
4T (z)

r(z) = 0.

3. This equation r′′(z) + A(z)r′(z) − B(z)r(z) = 0 is linear. For particles
with the same mass ejected from the axis with the same energy, the A(z)
and B(z) functions are identical. This means that all the trajectories for
these particles obey the same linear differential equation.

All particle trajectories start from the same point, O, on the axis,
chosen as the origin and referred to as the source point in optics. This
means that r(0) = 0 for all trajectories which differ only by the angle
of emittance, that is by r′(0). Because of the linearity of the differential
equation, we have the proportionality of all trajectories. For any two tra-
jectories, the ratio of the slopes remains constant all along the trajectory
(and equal to the initial value).

If at point z = s, (extremity of the region where the differential equation
is applicable), the particles are no longer subject to forces, they will
continue to follow a straight line. Two cases must be considered.
• A particle leaves parallel to the axis: r′1(s) = 0. Owing to the previous

remark, this is true for all other particles. In other words, all the
particles which are emitted from the same point with the same speed
(but with a different angle of emittance) leave with parallel directions.
One can say that the emission point is situated at the focus of the
electromagnetic lens.

• If r′1(s) �= 0, the straight line followed by a particle has the equation
r1(z) − r1(s) = (z − s)r′1(s); it intersects the axis at a point, z1, such
that r1(z1) = 0, that is z1 = s − r1(s)/r′1(s). The same thing is true
for a second particle which cuts the axis at point z2 = s− r2(s)/r′2(s).
Since r2(s)/r′2(s) = r1(s)/r′1(s), it follows that z2 = z1. All the particles
emitted from the same point with the same speed converge to the same
point (r′1(s) < 0) which is called a real image, or, alternatively, diverge
from the same point (r′1(s) > 0) which is referred to as a virtual image.
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This electromagnetic set up behaves exactly as an optical lens, whence
the name of electromagnetic lens.

5.7. Maupertuis’ Principle with
an Electromagnetic Field
[Statement and Figure p. 245]

1. The reduced action is defined by S̃ =
∫

p · dr. In this expression, the
generalized momentum p is connected to the linear momentum π = mṙ
by the well known relation p = π + qeA, so that

S̃ =
∫

π · dr +
∫

qeA · dr.

Let us focus on the first term that can be written in the form
∫

π · ṙ dt
=

∫
mv2 dt =

∫
|π| dl. The non-relativistic Hamiltonian may be taken

as H = π2/(2m) + qeU and thus the latter integral can be written as∫ √
2m(H − qeU) dl. Grouping both contributions, we obtain:

S̃ =
∫ √

2m(H − qeU) dl +
∫

qeA · dr.

2. In the case under consideration, U = 0 and H = E = const since the
vector potential A = − 1

2r × B is time independent. The reduced action
becomes

S̃ =
∫ [√

2mE
√

dx2 + dy2 + (qeB/2)(x dy − y dx)
]
.

Maupertuis’ principle implies the property of stationarity for this quan-
tity; this problem is thus a variational problem quite similar to the isoperi-
metric problem. One first seeks a parametric representation of the tra-
jectory (x(τ), y(τ)). The reduced action can be written in the traditional
form S̃ =

∫
dτ L(x, y, x′, y′), with

L(x, y, x′, y′) =
√

2mE
√

x′2 + y′2 + (qeB/2)(xy′ − yx′).

One obtains two Euler–Lagrange equations both of which can be inte-
grated to give:

√
2mEx′

√
x′2 + y′2

= qeBy + C1,

√
2mEy′

√
x′2 + y′2

= −qeBx + C2,

where C1 and C2 are two integration constants.
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Multiply the first expression by y′, the second by x′ and substract to
obtain 2xx′ + 2yy′ − 2x0x

′ − 2y0y
′ = 0 with x0 = C2/(qeB) and y0 =

−C1/(qeB). This latter equation can be integrated at once to give (x −
x0)2 +(y−y0)2 = const = R2. This is the equation of a circle with center
(x0, y0) and radius R. The origin can be chosen precisely at the center so
that C1 = 0, C2 = 0. Lastly, one can choose τ = t as the time and assume
that x(0) = R, y(0) = 0. Substituting these values in the equations of
motion, one sees that x′(0) = 0, y′(0) < 0 (the particles rotates clockwise)
and that

√
2mE = qeBR, which leads to the determination of the radius

of the circle:

R =
√

2mE

qeB
.

3. The curvilinear abscissa s plays the role of a generalized coordinate. Of
course, v(s) = ṡ t(s), where t(s) is the unit vector tangent to the trajec-
tory at the point labelled by s. The kinetic energy is T = 1

2mṡ2 and the
potential V = −qev · A = −qeṡ t · A. The Lagrangian is the difference
between the kinetic energy and the potential energy, namely:

L(s, ṡ) =
1
2
mṡ2 + qeṡ t(s) · A(s).

The momentum is given, as usual, by p = ∂ṡL, or, in this particular case,

p = mṡ + qe t(s) · A(s),

so that one deduces ṡ = (p−qe t(s) ·A(s))/m. Hamilton’s function is ob-
tained through the Legendre transform H = pṡ−L, or, after substitution
of ṡ by p:

H(s, p) =
(p − qe t(s) · A(s))2

2m
.

The Hamiltonian does not depend on time; it remains constant on the tra-
jectory and takes a value E, which is the energy. Indeed, one notices that
H = 1

2mṡ2 and thus can be identified with the kinetic energy. One de-
duces that the speed along the trajectory remains constant ṡ =

√
2E/m,

whereas the momentum, p, varies because of the presence of the term
t(s) · A(s).

Let us focus on the variation of the reduced action over one revolution.
It is expressed as

ΔS̃ =
∮

p ds =
∮

mṡ ds +
∮

qe t(s) · A(s) ds.
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Since ṡ remains constant over one revolution and since the curvilinear
abscissa recovers its value, the first contribution vanishes. As for the
second one, it can be rewritten, using Stokes’ theorem, as

qe

∫ ∫

Σ

(∇ × A) · dσ = qe

∫ ∫

Σ

B · dσ.

The integral on the surface Σ enclosed by the curve is nothing more than
the flux Φ of the magnetic field through this surface. In consequence, we
arrive at the desired relation:

ΔS̃ = qeΦ.

5.8. Separable Hamiltonian,
Separable Action [Statement p. 246]

1. Let S̃(x, z, E) be the reduced action for the system. The characteristic
Hamilton–Jacobi equation reads H(x, z, ∂xS̃, ∂zS̃) = E, or, with the form
proposed for the Hamiltonian:

1
2m

⎡

⎣
(

∂S̃

∂x

)2

+

(
∂S̃

∂z

)2
⎤

⎦ + mgz = E.

2. The Hamiltonian is manifestly separable and this property encourages
us to search for a separable form of the reduced action: S̃(x, z, E) =
Sx(x,E) + Sz(z,E). Now, since ∂xS̃ = dSx/dx and ∂zS̃ = dSz/dz,
the characteristic equation involves total derivatives instead of partial
derivatives:

1
2m

[(
dSx

dx

)2

+
(

dSz

dz

)2
]

+ mgz = E.

3. Let us differentiate this equation with respect to x. This gives

1
2m

∂x

(
dSx

dx

)2

= 0, or
1

2m

(
dSx

dx

)2

= e,

where e is some constant. The characteristic equation then provides the
other equation. In summary:

1
2m

(
dSx

dx

)2

= e;
1

2m

(
dSz

dz

)2

+ mgz = E − e.
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4. The first equation is easily integrated to give Sx(x, e) = ±
√

2me x. The
second one gives

dSz/dz = ±
√

2m(E − e − mgz).

The corresponding primitive is somewhat complicated but elementary:

Sz(z,E, e) = ±(2/(3g))
√

2/m (E − e − mgz)3/2
.

Therefore, the complete reduced action is obtained in the separable form:

S̃(x, z, E, e) = ±
√

2me x ± 2
3g

√
2
m

(E − e − mgz)3/2
.

The total action is obtained from the classical formula S = S̃ − Et, that
is:

S(x, z, E, e, t) = ±
√

2me x ± 2
3g

√
2
m

(E − e − mgz)3/2 − Et.

5. Jacobi’s theorem leads to a complete solution of the problem. One has
first ∂S/∂E = α = const which implies

z(t) = −1
2
g(t + α)2 +

E − e

mg
.

This is the temporal law for the vertical motion.
On the other hand, one also has ∂S/∂e = β = const which leads to

x/
√

e∓ (2/(mg))
√

E − e − mgz = 2β/m = C, which can be recast, after
some algebra, in the form:

z(x) =
1
2

(
x√
e
− C

)2

+
E − e

mg
.

This is precisely the equation for the trajectory. It is a parabola, as
expected.

These last two equations provide the complete solution to the problem.

5.9. Stark Effect [Statement p. 247]

1. The parabolic coordinates are defined by ξ = r + z, η = r − z so that
r = 1

2 (ξ + η), z = 1
2 (ξ − η). The potential of the system is

V = −K

r
+ kz = − 2K

ξ + η
+

k(ξ − η)
2
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which can be rewritten as

V =
Vξ(ξ) + Vη(η)

ξ + η
,

with the symmetric formulation:

Vξ(ξ) =
k

2
ξ2 − K ; Vη(η) = −k

2
η2 − K.

2. To calculate the kinetic energy, we start from its expression in cylindrical
coordinates

T =
1
2
m

(
ρ̇2 + ρ2φ̇2 + ż2

)
.

We then switch to parabolic coordinates and use the relation ξη = r2 −
z2 = ρ2. There is no major difficulty and one obtains:

T =
1
2
m

[
η2ξ̇2 + ξ2η̇2 + 2ξηξ̇η̇

4ξη
+ ξηφ̇2 +

1
4

(
ξ̇2 + η̇2 − 2ξ̇η̇

)]
.

From the Lagrangian L = T − V , one deduces the momenta

pξ =
∂L

∂ξ̇
= m(ξ + η)

ξ̇

4ξ
, pη =

∂L

∂η̇
= m(ξ + η)

η̇

4η
, pφ =

∂L

∂φ̇
= mξηφ̇.

Hamilton’s function is calculated thanks to the usual formula

H = pξ ξ̇ + pη η̇ + pφφ̇ − L

substituting velocities by momenta, which are given by the previous re-
lations. One finally obtains:

H(ξ, η, φ, pξ, pη, pφ) =
2
m

(
ξp2

ξ + ηp2
η

ξ + η
+

p2
φ

4ξη

)
+

Vξ(ξ) + Vη(η)
ξ + η

.

3. The reduced action S̃(ξ, η, φ,E) is obtained from the characteristic Ham-
ilton-Jacobi equation, which reads in this case:

2
m

⎛

⎝ ξ

ξ + η

(
∂S̃

∂ξ

)2

+
η

ξ + η

(
∂S̃

∂η

)2

+
1

4ξη

(
∂S̃

∂φ

)2
⎞

⎠

+
Vξ(ξ) + Vη(η)

ξ + η
= E.

One may remark that the φ coordinate is cyclic and, of course, one sets:
S̃(ξ, η, φ,E, c) = Ŝ(ξ, η, E, c) + cφ.
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Substituting this equality into the characteristic equation and multiplying
by m(ξ + η), the latter equation can be rewritten in the form:

⎡

⎣2ξ

(
∂Ŝ

∂ξ

)2

− mEξ +
c2

2ξ
+ mVξ(ξ)

⎤

⎦

+

⎡

⎣2η

(
∂Ŝ

∂η
η

)2

− mEη +
c2

2η
+ mVη(η)

⎤

⎦ = 0.

This new equation is itself separable; it is natural to set: Ŝ(ξ, η, E, c) =
Sξ(ξ, E, c) + Sη(η,E, c). Substitution in the preceding equation leads to:

[
2ξ

(
dSξ

dξ

)2

− mEξ +
c2

2ξ
+ mVξ(ξ)

]

+

[
2η

(
dSη

dη

)2

− mEη +
c2

2η
+ mVη(η)

]
= 0.

The partial derivatives are transformed into total derivatives; under these
conditions the first bracket is a function of the variable ξ alone and the
second one of the variable η alone. In order for the characteristic equation
to be fulfilled for all values of the variables (ξ, η), it is necessary that the
first bracket is a constant β and the second one a constant −β. We arrive
at two differential equations:

[
2ξ

(
dSξ

dξ

)2

− mEξ +
c2

2ξ
+ mVξ(ξ)

]
= β

[
2η

(
dSη

dη

)2

− mEη +
c2

2η
+ mVη(η)

]
= −β

which lead to the determination of the functions Sξ and Sη.
The problem is now completely solved since the reduced action is ex-

pressed as:

S̃(ξ, η, φ,E, β, c) = Sξ(ξ, E, β, c) + Sη(η,E, β, c) + cφ.

4. To conform to the usual notation, let us call σ = c the angular momentum
(pφ = ∂φS) and introduce the effective potentials

Wξ(ξ) = −β/(2ξ) + σ2/(4ξ2) + mVξ(ξ)/(2ξ),
Wη(η) = β/(2η) + σ2/(4η2) + mVη(η)/(2η).
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They are represented in Fig. 5.6, with the parameters specified in the
caption. The equations giving the actions are now written in a simpler
form:

(
dSξ

dξ

)2

=
mE

2
− Wξ(ξ) and

(
dSη

dη

)2

=
mE

2
− Wη(η).

Consequently, one must have the following constraints

mE

2
≥ Wξ(ξ),

mE

2
≥ Wη(η).

The equalities in these expressions correspond to turning points; with the
proposed parameters, one has explicitly

ξm = 0.094, ξM = 0.734 and ηm = 0.175, ηM = 0.496.

In the plane (ξ, η), the region corresponding to allowed trajectories is the
rectangle

ξm ≤ ξ ≤ ξM , ηm ≤ η ≤ ηM .

Switching back to the original variables (ρ, z), the corresponding region
is enclosed between two parabolae (η = ηm, η = ηM ) oriented upwards
and two parabolae (ξ = ξm, ξ = ξM ) oriented downwards.

−2

−1.5

−1

−0.5

0.5

1

1.5

2

E

ξm
ηm ηM ξM

0.25 0.5 0.75 1 1.25 1.5 1.75 2

Wη

Wξ

Fig. 5.6 Effective potentials Wξ(ξ) and Wη(η) as a function
of their arguments, for the following values of the parameters

m = K = 1, k = 0.4, σ = 0.45, β = 0.2 The intersections of these
curves with the straight line mE/2 give the turning points (ξ, η)

A trajectory, obtained by numerically solving Hamilton’s equations, is
represented in the Fig. 5.7. The allowed region for the exploration is
indicated by dashed lines.
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Fig. 5.7 Trajectory, in the
plane (ρ, z), for a particle sub-
jected to an attractive cen-
tral electrostatic potential and a
constant electric field along Oz

5.10. Orbits of Earth’s Satellites
[Statement and Figures p. 248]

1. Let us begin with the obvious equality |r − σẑ|2 = (r−σẑ)2 = r2 +σ2 −
2σru, where u = cos(r̂, ẑ) is the cosine between the radius vector and the
Oz axis. It follows that

1
|r − σẑ| =

1
r

(
1 − 2σu

r
+

σ2

r2

)−1/2

.

One works at a distance much larger than the distance between the two
centers σ/r << 1; it is therefore justified to perform a truncated expan-
sion of the square root, which relies on the well known formula (1+ε)−1/2

= 1 − ε/2 + 3ε2/8. We arrive at the desired formula:

1
|r − σẑ| =

1
r

+
σu

r2
+

(3u2 − 1)σ2

2r3
+ O(σ3/r4).

The expression for 1/ |r + σẑ| follows simply by changing σ into −σ.

The potential is deduced at once

V = −K

[
1
r

+
(3u2 − 1)σ2

2r3

]
.

This expression should be compared with the analog obtained from a
revolution ellipsoid:

V = −GmM

[
1
r

+
(3u2 − 1)(I − I3)

2Mr3

]
.
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We deduce that the potential due to the ellipsoid can be replaced by the
two center potential provided that the following identification is made:

K = GmM ; σ =

√
I − I3

M

For a prolate system, I > I3 and the parameter σ should be taken as a
real quantity.

2. In reality the Earth is oblate I < I3 . Let us set σ =
√

(I3 − I)/M and
work with iσ. Define r1 =

√
ρ2 + (z − iσ)2 and r2 =

√
ρ2 + (z + iσ)2.

These lengths are complex conjugate numbers but the potential

V = −1
2
K

(
1
r1

+
1
r2

)

is a real quantity. The same property is true for the two dimensionless
elliptic coordinates ξ = (r1 + r2)/(2σ) and η = (r2 − r1)/(2iσ); one
maintains the polar angle φ as the third coordinate.

It is easy to check the identities r2
1 + r2

2 = 2(ρ2 + z2 − σ2), r2
2 − r2

1

= 4iσz, r2
1r

2
2 = (ρ2 + z2 − σ2)2 + 4σ2z2. Using these identities, simple

calculations give z = ξησ and ρ = σ
√

(ξ2 + 1)(1 − η2). To calculate
the differential length element, the simplest procedure is to start from
its expression in terms of cylindrical coordinates dl2 = dρ2 + ρ2dφ2 +
dz2. Switching from the cylindrical coordinates to elliptic coordinates was
explained previously and, after a long but straightforward calculation,
one obtains finally:

dl2 = σ2(ξ2 + η2)
[

dξ2

1 + ξ2
+

dη2

1 − η2

]
+ σ2(1 + ξ2)(1 − η2)dφ2.

3. The kinetic energy is obtained easily from the square of the length element
since T = 1

2mv2 = 1
2m(dl/dt)2 = 1

2m(dl2)/(dt2). The potential is also
obtained easily since

V = −1
2
K

(
1
r1

+
1
r2

)
= −K

r1 + r2

2r1r2
.

With r1 + r2 = 2σξ and r1r2 = σ2(ξ2 + η2), the potential is obtained
as: V = −Kξ/

[
σ(ξ2 + η2)

]
. Finally, the Lagrangian is obtained from its

definition L = T − V , that is:

L =
1
2
mσ2

[
ξ2 + η2

1 + ξ2
ξ̇2 +

ξ2 + η2

1 − η2
η̇2 + (1 + ξ2)(1 − η2)φ̇2

]
+

Kξ

σ(ξ2 + η2)
.
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The momenta may now be calculated with the usual recipe:

pξ = ∂ξ̇L = mσ2(ξ2 + η2) ξ̇/(1 + ξ2);

pη = ∂η̇L = mσ2(ξ2 + η2) η̇/(1 − η2);

pφ = ∂φ̇L = mσ2(1 + ξ2)(1 − η2) φ̇.

Lastly, the Hamiltonian is obtained by the Legendre transform, H =
pξ ξ̇ + pη η̇ + pφφ̇ − L. We arrive at the result:

H =
1

2mσ2

[
1 + ξ2

ξ2 + η2
p2

ξ +
1 − η2

ξ2 + η2
p2

η +
1

(1 + ξ2)(1 − η2)
p2

φ

]
− Kξ

σ(ξ2 + η2)
.

We now introduce the reduced action S̃(ξ, η, φ,E). It obeys the charac-
teristic Hamilton–Jacobi equation: H(ξ, η, φ, ∂ξS̃, ∂ηS̃, ∂φS̃) = E. With
the previous Hamiltonian, the characteristic equation is written in the
form:

2mσ2E =
1

ξ2 + η2

⎡

⎣(1 + ξ2)

(
∂S̃

∂ξ

)2

+ (1 − η2)

(
∂S̃

∂η

)2

− 2Kmσξ

⎤

⎦

+
1

(1 + ξ2)(1 − η2)

(
∂S̃

∂φ

)2

.

4. This equation is separable. One remarks first that the φ coordinate is
cyclic and this allows us to choose the action in the form S̃(ξ, η, φ,E) =
Ŝ(ξ, η, E) + αφ. The characteristic equation is transformed into:

2mσ2E =
1

ξ2 + η2

⎡

⎣(1 + ξ2)

(
∂Ŝ

∂ξ

)2

+ (1 − η2)

(
∂Ŝ

∂η

)2

− 2Kmσξ

⎤

⎦

+
α2

(1 + ξ2)(1 − η2)
.

Lastly, one employs the identity

1
(1 + ξ2)(1 − η2)

=
1

(ξ2 + η2)

[
1

1 − η2
− 1

1 + ξ2

]

and multiplies the previous characteristic equation by (ξ2+η2). Grouping
the terms suitably, the equation can be recast in the form:

⎡

⎣(1 + ξ2)

(
∂Ŝ

∂ξ

)2

− 2Kmσξ − α2

1 + ξ2
− 2mσ2Eξ2

⎤

⎦

+

⎡

⎣(1 − η2)

(
∂Ŝ

∂η

)2

+
α2

1 − η2
− 2mσ2Eη2

⎤

⎦ = 0.
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As such, the equation is manifestly separable and one is led to set

Ŝ(ξ, η, E, α) = Sξ(ξ, E, α) + Sη(η,E, α).

This equation then becomes:
[
(1 + ξ2)

(
dSξ

dξ

)2

− 2Kmσξ − α2

1 + ξ2
− 2mσ2Eξ2

]

+

[
(1 − η2)

(
dSη

dη

)2

+
α2

1 − η2
− 2mσ2Eη2

]
= 0.

Partial derivatives have been replaced by total derivatives so that it is
clear that the first bracket is a function of ξ alone, whereas the second
one is a function of η alone. In order for this equation to be satisfied,
one must identify the first bracket with a constant −β and the second
one with the constant β so that finally, we have to solve two distinct
differential equations:

(1 + ξ2)
(

dSξ

dξ

)2

− 2Kmσξ − α2

1 + ξ2
− 2mσ2Eξ2 = −β

(1 − η2)
(

dSη

dη

)2

+
α2

1 − η2
− 2mσ2Eη2 = β.

The solutions are obtained through integrals. Assembling all the contri-
butions, one obtains the complete reduced action S̃(ξ, η, φ,E, α, β) and,
thereby, the total action S = S̃ − Et. Explicitly, one has:

S(ξ, η, φ, t, E, α, β) = −Et + αφ

±
∫

dη

1 − η2

√
(1 − η2)(β + 2mσ2Eη2) − α2

±
∫

dξ

1 + ξ2

√
(1 + ξ2)(−β + 2mσ2Eξ2 + 2Kmσξ) + α2.

Using Jacobi’s theorem, and differentiating this expression with respect
to the constants E,α, β and equating respectively these derivatives to
other constants, one completely solves the problem.

Much as in the problem concerned with the Stark effect, there ex-
ists, in the plane (ξ, η), a rectangular allowed region (ξm ≤ ξ ≤ ξM ,
−ηm ≤ η ≤ ηm) for the motion of the satellite. ξm, ξM are the turning
points of the effective potential Wξ(ξ) and ±ηm the turning points of the
effective potential Wη(η). In the plane (ρ, z), the corresponding region is
comprised between two nested ellipses (ξ = ξm, ξ = ξM ) and a hyperbola
(η = ηm). A possible trajectory is represented in Fig. 5.8.
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Fig. 5.8 Trajectory of the satel-
lite in the plane (ρ, z). The pa-
rameters that have been used are
the following: σ = m = 1, K =

2, α = 0.5, E = −1. The allowed
region is comprised between two
nested ellipses (ξ = ξm = 0.135,
ξ = ξM = 1.81) and a hyperbola
(η = ηm = 0.464)

5.11. Phase and Group Velocities
[Statement and Figures p. 251]

1. For a free particle, E = p2/(2m) and p = mṙ. The phase velocity is thus
vϕ = E/ |p| = |p| /(2m). On the other hand, the group velocity is given
by vg = |ṙ| = |p| /m. We have the obvious relationship:

vg = 2vϕ.

2. With the given form relative to the plane wave, the Schrödinger equation
i�∂tψ= −�

2/(2m)Δψ leads to the relation �
2k2/(2m) = �ω. Thanks to

the de Broglie relation, this equation is equivalent to the non-relativistic
expression E = p2/(2m). The phase velocity is given by

vϕ =
ω

k
=

�k

2m

and the group velocity by

vg =
dω

dk
=

d(�ω)
d(�k)

=
�k

m
.

One sees that here also:

vg = 2vϕ.

We thus have the same relationship. This is not surprising since E is
identified with ω and p with k with the same proportionality constant �.
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3. In the case of a particle in a potential,

E =
p2

2m
+ V (r) and p = mṙ.

Therefore |p| =
√

2m (E − V (r)) and vϕ = E/ |p|, or vϕ |p| = E; more-
over vg = |ṙ| = |p| /m. One deduces immediately that

vϕvg =
E

m
.

This quantity is constant along the trajectory.

4. For a free relativistic particle, with velocity ṙ and kinematic parameter
γ =

(
1 − ṙ2/c2

)−1/2, the energy is given by E = γmc2 and the momen-
tum by p = γmṙ. The phase velocity is thus

vϕ =
E

|p| =
c2

|ṙ| =
c2

vg
.

Therefore the relation

vϕvg = c2

always holds. In particular, this is the case for a light wave in a homoge-
neous medium.

For a relativistic particle in a scalar potential, the Hamiltonian is

H(r,p) =
√

(mc2 + V (r))2 + p2c2

which is identified with the energy on the trajectory. The phase velocity
is given by vϕ = E/ |p|. On the other hand, Hamilton’s equation gives

vg = |ṙ| = |∇pH| =
|p| c2

H
=

|p| c2

E
=

c2

vϕ
.

We thus still have the relation:

vϕvg = c2

which is therefore more general than the corresponding relation for the
free particle. It remains true in the case of a scalar potential.



Chapter 6

Integrable Systems

Summary
A system is said to be integrable if it has a regular or predictable behaviour.
In nature, only a few examples are known (among them is the famous Kepler
problem) but they are practically very important. Furthermore, numerous
systems, although not integrable, are “close” to integrable systems. A good
understanding of integrable systems is then a preliminary condition to the
study of this latter category.

6.1. Basic Notions

We consider here only autonomous systems.

As an illustrative example, we consider a particle subject to a central poten-
tial in a two-dimensional space.

6.1.1. Some Definitions

The Poisson bracket of two functions F (q, p) and G(q, p), defined in phase
space, is given by the expression:

{F,G} =
∑

i

(
∂F (q, p)

∂qi

)(
∂G(q, p)

∂pi

)
−

(
∂F (q, p)

∂pi

)(
∂G(q, p)

∂qi

)
. (6.1)

The Poisson bracket of a function F and the Hamiltonian H is of primary
importance. A function F (q, p) defined in phase space is a first integral

C. Gignoux, B. Silvestre-Brac, Solved Problems in Lagrangian 281
and Hamiltonian Mechanics, DOI 10.1007/978-90-481-2393-3_6,
c© Springer Science+Business Media B.V. 2009
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if its Poisson bracket with the Hamiltonian vanishes: {F,H} = 0. Of
course, the Hamiltonian itself is a first integral. For a time independent
Hamiltonian, the notion of a first integral is identified with the already
familiar notion of a constant of the motion.

A n dimensional system is integrable if it has n independent first inte-
grals which are in involution.1

This is, in particular, the case of a one-dimensional autonomous system
with the energy as a first integral. This is also the case for a two or three
dimensional central potential for which, as first integrals, in addition to the
energy, we have also the projections of the angular momentum.2

Let us denote the n first integrals by Fm(q, p) (m = 1, ..., n) (with
F1(q, p) = H(q, p)). They are independent; this means that none of them
can be expressed in terms of the n−1 others. In other words, each function
Fm is not a function of the others in the whole phase space. They are in
involution; this means that the Poisson bracket of any pair of them vanishes:
{Fm, Fp} = 0, ∀m, p.

Since they are independent, one can, at least theoretically, express the
momenta as a function of the coordinates and of the first integrals: p(q, F ).

Illustration: For a two-dimensional system in a central force field, the two
first integrals are the energy F1(q, p) = H(q, p) = E and the angular mo-
mentum F2(q, p) = pφ = σ so that the momenta are given by:

pρ(ρ, φ,E, σ) =

√

2m

(
E − V (ρ) − σ2

2mρ2

)
;

pφ(ρ, φ,E, σ) = σ.

Consequently, in a phase space with dimension 2n, the system evolves on a
manifold3 with dimension n. If, on this manifold, none of the coordinates
can reach infinity and if the first integrals are in involution, the topology of
this manifold is that of a torus which means that each point on the manifold
Mf is specified4 by n angles modulo 2π, as illustrated in Fig. 6.1.

1 The n first integrals Fm(q, p) are said to be in involution if they fulfill the n(n− 1)/2
relations {Fm, Fp} = 0, ∀m, p = 1, . . . , n. These relations are much more constraining
than the n relations {Fm, H} = 0.

2 With Cartesian coordinates in a three-dimensional space, we have 4 independent first
integrals! But they are not in involution.

3 It is in a manifold or on a manifold.
4 This is not the case for a sphere for which, at the poles, the azimuthal angle is

meaningless.
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•

•
0

2π

02π 2π

0

2π

αθ

αr

Fig. 6.1 On the left hand side, the state of the system in Mf is specified by two
angles αr and αθ (modulo 2π). The values 0 and 2π must be considered as
describing the same state. The full line corresponds to a motion in Mf . To

achieve visual continuity, one must attach the sides of the rectangle which have
the values 0 and 2π for both angles. By continuous deformation, this procedure

generates the visual representation of the torus on the right hand side. The
trajectory is continuous on the torus

For systems with two degrees of freedom, two first integrals are automati-
cally in involution. Indeed, if F2(q, p) is a first integral different from the
Hamiltonian H(q, p) = F1(q, p), its derivative with respect to time vanishes
by definition and this property implies, using Hamilton’s equations,

Ḟ2(q, p) = 0 = (∂qF2(q, p)) q̇ + (∂pF2(q, p)) ṗ

= (∂qF2(q, p)) (∂pH(q, p)) − (∂pF2(q, p)) (∂qH(q, p)) .

This last equality is nothing more than {F2,H} = 0.

6.1.2. Good Coordinates: The Angle–Action
Variables

Instead of using q and p to define the state of a system in phase space, one
can imagine other sets of coordinates5 Q(q, p), P (q, p). If the passage from
one set to the other preserves the Liouville invariant (sum of the areas of
the projection of a parallelepiped on the planes (qi, pi)), the transformation
is said to be canonical.

We will encounter, in the section devoted to complements, a very simple
condition which characterizes a canonical transformation.

5 This transformation, called a contact transformation, can depend on time. We will
develop this point in the complements.
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A consequence of the canonicity is that the flow of the Hamiltonian
H(q, p), which is called, more precisely, the generator of time translations,
coincides with the flow of the new Hamiltonian K(Q,P ) = H(q(Q,P ),
p(Q,P )) that is to say:

Q̇ = ∂P K(Q,P ); Ṗ = −∂QK(Q,P ).

In other words, a canonical transformation preserves the form of Hamilton’s
equations.

If one chooses as new momenta P the first integrals Fm, then two very
interesting properties result:
• First, from the second Hamilton equation, the generator of the time

translation or Hamiltonian does not depend on the new coordinates6 Q:
K(Q,P ) = K(P ); the fact that it is possible to find a set of n cyclic
coordinates is precisely a property specific to integrable systems.

• Second, from the first Hamilton equation, these new coordinates have a
constant velocity ω(P ) = ∂P K(P ) and thus vary linearly in time. These
new coordinates are automatically angles since no coordinate can reach
infinity.

In practice, one does not take as new momenta the first integrals them-
selves, but rather combinations of them called “action variables” which
are defined precisely as:

Im(F ) =
1
2π

∮

Γm

p(q, F ) dq. (6.2)

The Γm are the n closed contours based on the torus, all different and non
reducible to a single point. The involution property for the first integrals
implies that the integral (6.2) takes the same value whatever the contours
provided they can be identified with each other by a continuous deforma-
tion. This property is proved in the case of a two-dimensional system in
Problem 6.8.

The action variables being functions of first integrals are themselves first
integrals. Inverting Equation (6.2), one obtains Fm(I) and, in particu-
lar, one can express the Hamiltonian F1 in terms of the action variables
only: K(I).

Illustration: One of the irreducible contours corresponds to a forward and
back variation for the radius without a change of angle: the radius varies
from the perihelion ρmin to the aphelion ρmax and returns to the perihelion.

6 They are all cyclic or ignorable coordinates.
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The action variable is thus:

Iρ(E, σ) =
2
2π

ρmax∫

ρmin

√
2m (E − V (ρ) − σ2/2mρ2) dρ.

The other contour corresponds to a rotation without change in the radius
and the associated action variable is:

Iφ =
1
2π

2π∫

0

σ dφ = σ.

Importance of the action variables

In many situations, one cannot avoid a quantum approach for a mechanical
system. This is obviously the case for physical phenomena with atomic
scales, but not only. The rules for quantum mechanics are precise but rather
involved to realize practically. An economic way to insure quantization
in an approximate way, which is often satisfactory (one speaks of a semi-
classical approximation), starts from a fully classical description in which
the Hamiltonian is expressed in terms of action variables. The quantization
recipe, known as the rule EBK (Einstein-Brillouin-Kramers), stipulates that
the action variables can take only integer values7 of �, the reduced Planck
action:

Ii = ni� (6.3)

The expression K(I) leads thus to the quantization of energy states.

In case of an integrable system, the problem is entirely solved!

Why choose as a first set of new momenta precisely the quantities Im, which
have the dimension of an action? The reason is that the conjugate coor-
dinates α (α1, α2, . . . , αn) associated through the canonical transformation
are angles. The advantage is that when one of these is changed by a multi-
ple of 2π, we come back at the same point in phase space, namely q(α, I)
= q(α + 2πk, I), p(α, I) = p(α + 2πk, I) where k is an array of n arbitrary
integers. The canonical transformation (p, q) ↔ (α, I) is very interesting
since the Hamiltonian depends only on action variables and not on angle
variables.

Consequently, after the canonical transformation, the Hamilton equations
are expressed as:

α̇m =
∂K(I)
∂Im

= ωm(I); İm = 0 (6.4)

7 Sometimes half-integer.
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which can be integrated to give Im = const, αm(q, I) = ωm(I)t+αm0. Using
the inverse canonical transformation, one obtains q(α(t), I) and p(α(t), I).
The mechanical problem is entirely solved.

Regularity, periodicity and quasi-periodicity

In the space of angles, two close initial conditions give trajectories that de-
viate from one another in a regular manner: the angular velocities ωm(I) =
∂Im

H(I) are close for close actions. The motion is regular and predictable.
This is not the case for chaotic systems.

Each coordinate, and more generally each function in phase space, is
a function of the angle variables through periodic functions. Thus, if one
analyzes their variation in time using Fourier series, one will find basic an-
gular frequencies and their harmonics, as well as combinations of these. One
speaks in this case of quasi-periodicity. If these basic frequencies are com-
mensurable, every function in phase space exhibits a periodic dependence
in time. In this case, the torus is said to be resonant.

6.2. Complements

6.2.1. Building the Angle Variables
We saw that the canonical transformation to the angle-action variables is
especially interesting since the equations of motion are very simple: the
actions are constant and the angles vary linearly with time. Building the
action variables is summarized in Formula (6.2). But how do we build the
angle coordinates?

One must first introduce the reduced action function, as explained in
Chapter 5,

S̃(q, I) =
∫

p(q, F (I)) · dq

which, once more, takes the same value for contours that can be transformed
one to the other by a continuous deformation.

The angle variables are obtained after differentiation:

αm(q, I) =
∂S̃(q, I)

∂Im
. (6.5)
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Illustration: We already calculated the reduced action for this system which
is separable:

S̃(ρ, φ, Iρ, Iφ) =
∫ √

2m
(
E(Iρ, Iφ) − V (ρ) − I2

φ/(2mρ2)
)

dρ +
∫

Iφ dφ.

Applying formula (6.5), one obtains:

αρ(ρ, Iρ, Iφ) = ωρ

√
2m

∫
dρ

2
√(

E(Iρ, Iφ) − V (ρ) − I2
φ/(2mρ2)

)

with ωρ = ∂Iρ
E(Iρ, Iφ),

αφ(ρ, φ, Iρ, Iφ) =
∫ (

2mωφ − Iφ/ρ2
)

dρ

2
√

2m
(
E(Iρ, Iφ) − V (ρ) − I2

φ/(2mρ2)
) + φ

with ωφ = ∂Iφ
E(Iρ, Iφ).

In principle, by inversion of (6.5), one can obtain q(α(t), I). Thus, with the
help of integrals and inversion of functions only, the problem can be solved
entirely, whence the name of integrable systems.

6.2.2. Flow/Poisson Bracket/Involution
Let us consider an arbitrary function F (q, p) defined in phase space. The
integral curves of the differential equations:

dq

dτ
=

∂F (q, p)
∂p

;
dp

dτ
= −∂F (q, p)

∂q
.

are referred to as the flow of the generator F (q, p)
The τ variable defined by the above equalities is called the flow param-

eter.
We already met the generator for time translations, namely the Hamil-

tonian H(q, p). In Problem 6.18, we will build the generator of translations
with a translation parameter, as well as the generator of rotations with a
rotation parameter.

The variation of an arbitrary function F (q, p) in phase space along the
flow of G(q, p) is given by a very simple expression:

dF (q, p) = {F,G} dτ (6.6)

in which appears naturally the Poisson bracket {F,G}, as defined by (6.1).
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In the case for which G = H, the flow parameter is the time and the
previous definition implies: Ḟ (q, p) = {F,H}. One sees immediately that if
F is a first integral (it commutes with the Hamiltonian) it is also a constant
of the motion, as was emphasized in the preceding section. This property
explains why the two notions of “first integral” and “constant of the motion”
are often identified.

Nevertheless, some caution is required. The preceding statement is true
in the case of a function F which does not depend explicitly on time. In
the most general case, we have rather the relation:

dF (q, p, t)
dt

= {F,H} +
∂F

∂t
. (6.7)

Strictly speaking, F is no longer a constant of the motion.
Another way to define the involution of two generators consists in re-

quiring commutativity in the order of their flows, as illustrated in Fig. 6.2.

δt
δφ

σ

σ

σ

H
H

H

Fig. 6.2 Flows of the Hamiltonian H

and of the angular momentum pφ = σ.
The flow parameters are the time t for
H and the polar angle φ for pφ

6.2.3. Criterion to Obtain
a Canonical Transformation

The canonical transformations, which preserve the form of Hamilton’s equa-
tions, are of first importance and it is crucial to check the canonicity of a
contact transformation in phase space.

For a system with one degree of freedom, the transformation must insure
area conservation in phase space. In other words the Jacobi matrix for this
transformation must be equal to unity, so that:

(∂qQ(q, p, t)) (∂pP (q, p, t)) − (∂pQ(q, p, t)) (∂qP (q, p, t)) = 1.

This equality expresses the important property concerning the Poisson bracket
{Q,P} = 1.
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More generally, in the case of an arbitrary number of degrees of freedom,
the condition for canonicity becomes:

{Qi, Qj} = 0 ; {Qi, Pj} = δi,j ; {Pi, Pj} = 0, ∀i, j. (6.8)

There exists a very simple way to build a canonical transformation, even
when it depends on time; it relies on the generating functions. If one
starts from the original coordinates (q, p) and original Hamiltonian H(q, p, t),
the new coordinates (Q,P ) and the new Hamiltonian K(Q,P, t) can be
linked by partial differential equations that use four different types of func-
tions G1(Q, q, t), G2(P, q, t), G3(p,Q, t), G4(P, p, t), called generating func-
tions. The defining relations are the following:

p =
∂G1

∂q
; P = −∂G1

∂Q
; K = H +

∂G1

∂t

p =
∂G2

∂q
; Q =

∂G2

∂P
; K = H +

∂G2

∂t

q = −∂G3

∂p
; P = −∂G3

∂Q
; K = H +

∂G3

∂t

q = −∂G4

∂p
; Q =

∂G4

∂P
; K = H +

∂G4

∂t
. (6.9)

If there exists any one of the four generating functions satisfying the corre-
sponding partial differential equations, the canonicity of the transformation
is established with certainty. This notion, which is quite difficult to grasp,
will be discussed in detail in several problems (in particular, Problems 6.9,
6.10, 6.11).

Problem Statements
6.1. Expression of the Period for a

One-Dimensional Motion [Solution p. 305] �

Relation between the action function and the action variable

We introduced in Chapter 5 the reduced action function.
1. Show that this function increases by 2πI(E) (I(E) being the action vari-

able) when the system returns to the same point in phase space, that is
after one period.

2. Relying on the results of Chapter 5, show that the angular frequency ω
is given by: ω(E) = dE/dI = 1/(∂EI(E)) and check the agreement with
the results of this chapter and the Hamilton equations with the set of
angle-action coordinates.
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6.2. One-Dimensional Particle in a Box
[Solution and Figure p. 306] � �

A very simple integrable system

A particle with mass m is considered as enclosed in a “linear box”, if it is free
to move in the interval [−a, a] but is not allowed to pass over the borders of
this interval. Strictly speaking, the Hamiltonian for such a system does not
exist (the potential would be null inside the interval and infinite outside;
one sometimes speaks of a square well). However, a power-law potential
V = (q/a)λ looks quite similar to that of the box in the limit of a very large
power λ → ∞.
1. Write down the Hamiltonian of this system with the power-law potential.

2. Let E be the energy of the system. Plot the phase portrait; calculate
the action variable I(E) (in the limit λ → ∞) and the action variable
α(q, E).

3. Express the energy as a function of the action. Perform the quan-
tization following the EBK rule (see 6.3). The solution of the cor-
responding Schrödinger equation gives a spectrum in the form En =(
n2

�
2π2

)
/
(
8ma2

)
. Compare to the semi-classical EBK treatment.

6.3. Ball Bouncing on the Ground
[Solution and Figure p. 308] � �

Quantization in a constant gravitational field

A ball of mass m is placed in a constant gravitational field g. It is released
from a given height with a null initial speed and it bounces elastically on
the ground; the motion of the ball is along the vertical.
1. Plot the phase portrait; calculate the action variable I(E) and the angle

variable α(q, E).

2. Write down the energy as a function of the action E(I).

3. Quantize the problem according to the EBK rule (see 6.3).

The quantum formula gives approximately:

En = m1/3

(
3π

2
√

2
(n − 1/4)�g

)2/3

.

What may we conclude?
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6.4. Particle in a Constant Magnetic Field
[Solution p. 310] � � �

A problem of classical electromagnetism studied from another point of view

We consider once more the problem of a particle with mass m and charge
qe subject to a constant magnetic field B directed along the Oz axis, but
now viewed as an integrable system. This system has already been dis-
cussed in Problems 2.9 and 5.7; we will choose the same gauge and the
same Lagrangian.
1. Write down the Hamiltonian of the system.

2. Find two first integrals in involution.

3. This system is integrable; moreover it is separable. Solve the Hamilton-
Jacobi equation (do not attempt to evaluate the integral on the y variable)
to find the action function.

4. Using Jacobi’s theorem, give the solution of the problem in the form t(y)
and x(y). Show that, in configuration space, the trajectory x(y) is a
circle.

5. Plot the phase portrait (y, py) in phase space. Notice the analogy with the
harmonic oscillator problem. Show that this phase portrait is an ellipse
the parameters of which are to be determined. Find the action variable
Iy (you can avoid involved calculations, using the simple expression πab
for the area of the ellipse).

6. Quantize the system according to the EBK rule (see 6.3).

7. There exists another very useful expression of the action which requires
only the magnetic flux Φ across the trajectory. Give this expression.

8. We superpose on the magnetic field B a constant electric field E (not to
be confused with the energy E) directed along Oy.

Give the Hamiltonian of this new system.

9. Is this still an integrable system?

10. Give the corresponding action function.

11. Solve the problem using the Hamilton-Jacobi method. To obtain the
trajectory, you will fix the unknown speed v in order that the integrant
giving x − vt is easily calculable. Interpret your result.

12. Show that the phase portrait is still an ellipse. Calculate the action
variable and recover the results of Question 5. Is this surprising?
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6.5. Actions for the Kepler Problem
[Solution p. 314] � � �

A classical but nevertheless important integrable system

One considers the Kepler motion. This is a particle of mass m subject to a
central force; one knows that the trajectory is planar. In this problem one
works from the very beginning in the plane of the trajectory and employs
the polar coordinates (ρ, φ). The potential is denoted V (ρ) = −K/ρ.
1. Recall the expressions of the Lagrangian and of the Hamiltonian.

2. Denote by (E, σ) the first integrals and give the action variable Iφ corre-
sponding to the angle φ.

3. We consider the case of an attractive potential (K > 0) and a negative
energy (E < 0). Give the expression of the radial momentum pρ as
a function of the two first integrals and the integral expression for the
radial action variable Iρ.

4. The integral providing Iρ is not easy to calculate. It is convenient to pro-
ceed indirectly. Thus, you will calculate the simpler integral correspond-
ing to ∂EIρ(E, σ), which is the inverse of the radial angular frequency
ωρ. To do this you will need to change the variable and switch to the θ
variable defined as ρ = 1

2 [ρM +ρm +(ρM −ρm) cos θ], where we introduce
the perihelion ρm and the aphelion ρM of the trajectory.

5. Give, up to a constant, the expression of the action variable Iρ. Using
the Hamilton equation ṗρ = −∂ρH, show that the energy for a circular
orbit is Ec = −mK2/(2σ2). Determine the constant in the expression for
the radial action and give the energy in terms of both actions E(Iρ, Iφ).

6. Deduce the energies of the levels for the hydrogen atom (here K =
e2/(4πε0)), applying the EBK rule (see 6.3). This is the Bohr model. Set
Iρ = nρ�, Iφ = l� and introduce the “fine structure constant” α = K/(�c),
a dimensionless quantity whose value is approximately 1/137. The quan-
tized values for the energy will be expressed as a function of the principal
quantum number n = nρ + l.

Remark: In this problem, we considered a particle in a central force field.
For the application to the hydrogen atom, this corresponds to an infinite
mass for the proton. Nevertheless, we saw in Chapter 2, that a finite mass
Mp for the proton can be dealt with exactly provided that the electron mass
m in the previous expressions is replaced by the reduced mass of the system
μ = Mpm/(Mp + m).
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6.6. The Sommerfeld Atom
[Solution p. 316] � � �

Relativistic correction to the Bohr atom

The atomic model for the hydrogen atom, due to N. Bohr, was very suc-
cessful at the beginning of the elaboration of quantum mechanics. It relies
on the quantization of type EBK for the classical Kepler orbits concerning
an electron rotating around a proton under the action of the Coulomb force
(see problem 6.5). The spectrum of the resulting electromagnetic emission
agrees well with experimental data, but it suffers nevertheless from some
drawbacks; in particular, it does not explain the so-called “fine structure”
which is observed experimentally.

To cure these drawbacks, Sommerfeld introduced relativity in the formalism,
the motion of the electron around the proton occurring with a speed that is
not completely negligible with respect to the speed of light. In this problem,
we study the effect of a relativistic treatment on the quantization of the
states. We assume that the proton has an infinite mass whereas the electron,
with mass m, moves in a central Coulomb force field. We use the convenient
notation: K = e2/(4πε0).

The force being central, we know that the motion occurs in a plane; the
system has two degrees of freedom and the use of polar coordinates (ρ, φ)
is suitable.
1. Recall the expression of the relativistic Lagrangian and the corresponding

Hamiltonian.

2. Denote by E and σ the first integrals and give the action variable Iφ

corresponding to the angle φ.

3. Give the expression of the radial momentum pρ as a function of the two
first integrals, and the integral expression of the radial action variable Iρ.

4. Calculate, as in the non-relativistic case of Problem 6.5, the simpler in-
tegral ∂EIρ(E, σ), which is the inverse of the radial angular frequency
ωρ. To do this, you will make the same change of variable ρ = 1

2 [ρM +
ρm + (ρM − ρm) cos θ], using the perihelion ρm and the aphelion ρM of
the trajectory. In the non-relativistic limit, find again the results for the
Bohr atom.

5. Using the relation
∫ (

1 − x2
)−3/2

dx = x
(
1 − x2

)−1/2, obtain, up to a
constant, the expression for the action variable Iρ. Relying on Hamilton’s
equation ṗρ = −∂ρH, show that the energy of the circular orbit is

Ec = mc2
√

1 − (K/(σc))2.
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Determine the value of the constant appearing in the previous expression
of Iρ and, lastly, give the expression of the energy as a function of the
two actions E(Iρ, Iφ).

6. Let us introduce the “fine structure constant” α = K/(�c), a dimen-
sionless quantity whose value is approximately 1/137. Quantize the ex-
pression of the energy obtained in the previous question using the EBK
prescription (see 6.3); the quantization condition imposes Iρ = nρ� (nρ

integer ≥ 0) and Iφ = l� (l integer ≥ 0).

7. Performing a truncated expansion to second order in α2, calculate the
quantized expression of the binding energy B = E−mc2. The result will
be expressed in terms of the principal quantum number n = nρ + l and
the angular quantum number l. It is very useful to introduce the Rydberg
constant R∞ = mcα2/(2h) and hcR∞ = 13.6 eV (for historical reasons
it was the Planck constant h that appears in the Rydberg constant and
not the normalized constant �).

The term in α2 leads to the non-relativistic Bohr formula, which depends
on n only and implies level degeneracy. The term in α4 is a relativistic
correction depending on both numbers n and l and which, in consequence,
splits the level degeneracy; this effect is known as the fine structure of the
atom. Sommerfeld’s formula looks very similar to Dirac’s formula obtained
in a relativistic quantum mechanical treatment. The tiny difference comes
from spin effects.

Important remark: In the case of a finite mass Mp for the proton, the
correct separation of the center of mass motion, which can be considered
as fixed, and the relative motion of a fictive particle is valid only in a
non-relativistic treatment and cannot be invoked in the present relativistic
framework. Nevertheless, replacing the electron mass m by the reduced
mass of the system μ = Mpm/(Mp + m) in the definition of the Rydberg
constant provides a very good approximation.

6.7. Energy as a Function of Actions
[Solution p. 318] � � �

The two most classical problems in mechanics and their semi-classical quan-
tization

This problem investigates the expression of the energy as a function of
actions for two traditional systems: the hydrogen atom and the harmonic
oscillator; the purpose is to obtain a quantum expression for the energy.
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Let us consider, in a two-dimensional space, a particle with mass m
subject to a central potential. This problem is integrable and separable if
one chooses as generalized coordinates the polar coordinates (ρ, φ).

You can check that the action variables are respectively the angular mo-
mentum Iφ = pφ = σ and the surface area (to within 2π) given by the phase
portrait in the plane (ρ, pρ), namely

2πIρ(E, σ) =
∮

pρ dρ.

The aim of the problem is to determine the expression of the Hamiltonian
as a function of the actions. Of course, the result depends on the choice
of the potential V (ρ). The answer is easy for the most classical periodic
motions (Kepler’s problem V (ρ) = −K/ρ, where, for the hydrogen atom,
K = e2/(4πε0), and the harmonic oscillator V (ρ) = 1

2mω2ρ2).

A – Kepler’s problem
1. Plot schematically the trajectories in spaces (ρ, pρ) and (φ, pφ = σ). Com-

pare the angular frequencies for the motion concerning the angle ωφ and
the radius ωρ (how many revolutions of the trajectory in space (ρ, pρ)
take place when one revolution is performed in space (φ, pφ = σ)). One
can take advantage of the knowledge we have concerning the orbit of the
motion.

2. Using Hamilton’s equations, deduce that the Hamiltonian is a function
of both actions Iρ, Iφ only in an expression of the form

H(Iρ, Iφ) = H(Iρ + Iφ).

B – Harmonic oscillator
1. Examine the same questions as the preceding case and deduce that the

Hamiltonian for a harmonic oscillator takes the form

H(Iρ, Iφ) = H(2Iρ + Iφ).

C – Semi-classical quantization
1. For these two cases, consider the circular orbit. Using Newtonian me-

chanics (centrifugal force = central force), calculate the corresponding
energy Ec(σ).

2. Deduce the expression for Hamilton’s function as a function of the ac-
tion for both problems, and give the energy levels of the corresponding
quantum problems, using the EBK rule (see 6.3).
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6.8. Invariance of the Circulation Under
a Continuous Deformation
[Solution p. 322] � � �

Demonstration of a fundamental geometric property in the two-dimensional
case; importance of involution

The aim of this problem is to demonstrate, in the case of an integrable
system in two dimensions, the invariance of the circulation of the momentum
on a path belonging to phase space which is defined by two functions F1 and
F2 that are in involution: {F1, F2} = 0. We consider in a phase space with
four dimensions, a point of which is specified by the Cartesian coordinates
(x, y, px, py), a two-dimensional surface Mf which is the intersection of two
hypervolumes in 3 dimensions: F1(x, y, px, py) = f1 and F2(x, y, px, py) =
f2. After inversion of these relations, one can express, on the surface,
the momenta as a function of the coordinates, namely px(x, y; f1, f2) and
py(x, y; f1, f2).

Let Γ be a closed path entirely belonging to Mf and let us consider
the reduced action calculated on Γ, that is the circulation of p(q; f) (see
Fig. 6.3):

∮

Γ

p(q; f) · dq =
∮

Γ

(px(x, y; f1, f2) dx + py(x, y; f1, f2) dy) .

Mf

Γ
px

py

x

γ

p

δq

F1(x, y, px, py) = f1

F2(x, y, px, py) = f2

y

Fig. 6.3 Circulation, in configuration space, of the quantity p · dq for two paths,
with the same extremities, chosen on the surface Mf
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The property to be proved is the following: whatever the considered contour
Γ, reducible to a single point, the circulation vanishes. This is equivalent to
the property that, for two arbitrary paths Γ1 and Γ2 connecting the same
two points, and in the same sense, the circulation is the same.
1. Differentiating the two constants of the motion F1 and F2 and choosing,

for each of these equations, paths on Mf with constant x and y coor-
dinates, deduce four partial differential equations connecting p to the
partial derivatives of F .

2. Eliminating correctly the quantities ∂xpx and ∂ypy from these four equa-
tions, find the resulting systems of equations, and calculate the quantities
∂xpy and ∂ypx as a function of the partial derivatives of F .

3. Use the involution property to prove the relation, valid on Mf : ∂xpy −
∂ypx = 0.

4. With the help of Stokes’ theorem, deduce that the integral
∫

(pxdx +pydy),
on the Mf surface, does not depend on the path chosen to calculate it.

6.9. Ball Bouncing on a Moving Tray
[Solution p. 324] �

Change of the Hamiltonian in a time dependent canonical transformation

We wish to study the vertical motion of a ball subject to gravity in a non-
Galilean frame (in an elevator for instance) by adding an inertial force. In
this problem, we employ a more complicated, but very instructive, method
using a time dependent canonical transformation.

Subject to a constant gravitational field g, a ball of mass m bounces
on a tray (the floor of the elevator) whose altitude varies following a law
h(t). Rather than the altitude q above the ground, it is better to take as
generalized coordinate the height Q above the tray.

One thus considers the time dependent contact transformation:

Q(q, t) = q − h(t); P (p, t) = p − mḣ(t).

1. Show that this transformation is a canonical transformation.

2. Find the generating function of the second type G2(P, q, t) for this trans-
formation.

3. Deduce the new Hamiltonian K(Q,P, t). Notice that a pure time depen-
dence in the Hamilton function does not modify the equations of motion.
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6.10. Harmonic Oscillator with
a Variable Frequency [Solution p. 324] � �

A further variant on the theme of the harmonic oscillator

In this problem, we are concerned with a time dependent canonical trans-
formation. The system under consideration is a one-dimensional harmonic
oscillator with a variable angular frequency, the Hamiltonian of which is
given by:

H(q, p, t) =
p2

2m
+

1
2
mω(t)2q2.

This type of Hamiltonian mimics for example a pendulum whose length
varies in time (for small amplitudes) or a heated spring with a constant
that varies in time.

Perform the canonical transformation with the generating function of the
first type:

G1(Q, q, t) =
1
2
mω(t)q2 cot(Q).

Find the new Hamiltonian and write down Hamilton’s equations for the new
set of coordinates.

The advantage of this canonical transformation is that the equation giv-
ing Q(t) is a differential equation of first order (albeit non-linear), whereas
the Lagrange equation giving q(t) is of second order.

6.11. Choice of the Momentum
[Solution p. 325] � �

For a one-dimensional system, it is always possible to choose a momentum
proportional to the Hamiltonian

For an autonomous system with one degree of freedom (phase space with
two dimensions), it is always possible to perform a canonical transformation
such that the new momentum P (q, p) is a function of the Hamiltonian.

To illustrate this property we consider the harmonic oscillator and choose
the new momentum P proportional to the Hamiltonian:

P (q, p) = λH =
1
2
λω(p2 + q2).

1. Calculate the old coordinate q in terms of the old momentum p and the
new momentum P . Which type of generating function occurs naturally?
Calculate this generating function (do not try to evaluate the primitive).
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2. Deduce the new coordinate Q, first as a function of the (P, p) variables,
and then as a function of the old variables (q, p).

3. Adjust the constant λ in order that one period for the motion corresponds
to one revolution along the trajectory. Calculate the corresponding action
variable.

You can adopt this approach for any Hamiltonian, for instance the Hamil-
tonian corresponding to free fall.

6.12. Invariance of the Poisson Bracket
Under a Canonical Transformation
[Solution p. 326] �

A calculation that you should perform once in your life

Let (q, p) be conjugate variables for a one-dimensional system and F (q, p)
and G(q, p) two arbitrary functions defined in phase space. Let us perform a
contact transformation Q(q, p), P (q, p) for which the inverse transformation
is denoted by q(Q,P ) and p(Q,P ).

Express, in terms of the (q, p) variables, the quantity (∂QF ) (∂P G) using
the functions F (q(Q,P ), p(Q,P )) and G (q(Q,P ), p(Q,P )), as well as the
analogous expression obtained by permuting F and G. Demonstrate the
relation:

{F,G}Q,P =
[(∂Qq(Q,P )) (∂P p(Q,P )) − (∂Qp(Q,P )) (∂P q(Q,P ))] {F,G}q,p .

Deduce the invariance of the Poisson bracket under a canonical transforma-
tion.

6.13. Canonicity for a Contact
Transformation [Solution p. 327] �

Generalization of the previous problem to a system with n degrees of freedom

For a system with one degree of freedom, checking for canonicity is simple:
the area in phase space is conserved.
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1. In the case of a system with n degrees of freedom, generalize the method
of Problem 6.12 to find the following necessary and sufficient conditions:

∑

k

(
∂Qi

∂qk

∂Qj

∂pk
− ∂Qi

∂pk

∂Qj

∂qk

)
= 0;

∑

k

(
∂Pi

∂qk

∂Pj

∂pk
− ∂Pi

∂pk

∂Pj

∂qk

)
= 0;

∑

k

(
∂Qi

∂qk

∂Pj

∂pk
− ∂Qi

∂pk

∂Pj

∂qk

)
= δi,j .

valid for any pair (i, j).

Using the Poisson bracket for the (q, p) variables, these equations read
more simply

{Qi, Qj} = 0; {Pi, Pj} = 0; {Qi, Pj} = δi,j .

In other words, the answer implies that it is necessary and sufficient that
all the elementary Poisson brackets are invariant under a canonical trans-
formation.

In fact, this result also holds for time dependent transformations. The
difference between the two cases lies in the expression of the new Hamil-
tonian.

2. When the transformation is canonical, demonstrate the invariance of the
Poisson brackets for any two functions of phase space:

{F,G}Q,P = {F,G}q,p .

6.14. One-Dimensional Free Fall
[Solution p. 329] � �

An involved, but instructive, way to obtain the equation of motion for a
simple problem

A particle of mass m is submitted to a vertical constant gravitational field
g. It is specified by its altitude q above the ground. The Hamiltonian
for the system is H(q, p) = p2/(2m) + mgq. We wish to find a canonical
transformation which provides a cyclic coordinate. To do this, it is useful
to define a new momentum as P = λH.
1. Adopting any method which seems to you well suited, show that a con-

jugate variable can be chosen under the form Q = μp.
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2. Determine the unknown constants λ, μ in order to obtain a canonical
transformation.

3. Solve the corresponding equations and recover the traditional equations
expressed in terms of the original variables.

6.15. One-Dimensional Free Fall Again
[Solution p. 330] � �

Angle-action variables for the free fall problem, using a generating function

Consider again the problem of the ball of mass m, subject to a constant
gravitational field g, bouncing on the ground (see Problem 6.3). In this
example, we will use a generating function.

Let us investigate a canonical transformation which gives a cyclic coordi-
nate. The original Hamiltonian H(q, p) = p2/(2m)+mgq must be expressed
in term of the new momentum P only. The new Hamiltonian is denoted by
H(P ); it is an arbitrary function that can be simply identified with P .
1. Give Q(t). Find again the equation of motion in terms of the original

coordinates. It will be useful to introduce a generating function of the
fourth type G4(P, p) to obtain q(t) and p(t).

2. Calculate the action as a function of the energy.

3. Determine the angular frequency and deduce the corresponding angle
variable. Check your results against those of Problem 6.3.

6.16. Scale Dilation as a Function of Time
[Solution p. 332] � � �

Motion in a time-dependent potential

Consider a particle of mass m moving on a straight line Ox, trapped in a
potential whose range varies in time according to the law V (x/l(t)). We set
l′(t) = dl/dt, l′′(t) = d2l/dt2.

1. Write down the Lagrangian using as generalized coordinate the vari-
able q(x, t) = x/l(t) (even for a particle at rest and subject to no force,
the coordinate varies in time).

2. Deduce the Hamilton function.
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3. Perform a time dependent canonical transformation based on the gen-
erating function

G2(P, q, t) = Pq +
1
2
mq2l(t)l′(t).

Give the new Hamiltonian.

This result is very important. Indeed, it shows that one can deal quite
easily with a linear change of scale (l′′(t) = 0) provided we work with
new variables. In the general case, this means that one must add to
the original potential a harmonic potential (repulsive or attractive).

4. Notice that the kinetic term depends on time through the function l2.
We proved (see Problem 4.4 ) that a new system, whose Hamiltonian is
a function of the Hamiltonian of an old system, has the same families of
trajectories as the old system, but described with a different temporal
law. What is the new temporal law τ(t) and the new Hamiltonian
K(Q,P, τ)?

6.17. From the Harmonic Oscillator to
Coulomb’s Problem [Solution p. 333] � �

The two most classical problems are related by a canonical transformation

In a plane, a particle of mass m is specified by its polar coordinates (ρ, φ).
We recall that the Hamiltonian of an isotropic oscillator is given by

HHO(ρ, φ, pρ, pφ) =
p2

ρ

2m
+

p2
φ

2mρ2
+

1
2
mω2ρ2.

Remember also that, the φ coordinate being cyclic, the angular momentum
pφ is a constant of the motion.

We perform the contact transformation Q = ρ2/l; the length l is arbitrary
but constant and its role is to make Q dimensionally equal to a length, as
is ρ.
1. What should be the expression of the new momentum P in order to make

the transformation canonical? A contact transformation is automatically
canonical, provided that we take as momentum the expression P = ∂Q̇L.
Check this property in this particular case.

2. Give the new Hamiltonian K(Q,φ, P, pφ).

3. The system is conservative so that the value Eho of the Hamiltonian is a
constant.
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The expression obtained for the Hamiltonian looks similar to that of
the Hamiltonian Hc(Q,α, P, pα) encountered in Kepler’s problem with
an attractive potential V (ρ) = −K/ρ. What are the identities which
must be imposed on the constant K, the energy Ec, and the angular
momentum pα to pass from HHO to Hc?

4. The analogy can be pursued by seeking a relationship between the polar
angles φ and α. Comparing the values dρ/dφ in the case of the harmonic
oscillator and dQ/dα in the Coulomb case, show that one must have
α = 2φ. This relation is not surprising since, between two perihelia, the
polar angle φ varies by π in the case of the harmonic oscillator, and the
polar angle α varies by 2π in the case of Kepler’s problem (this property
was underlined in Problem 6.7).

We will profit from these analogies to obtain the features of the trajec-
tory for the isotropic harmonic oscillator based on the properties of the
Kepler motion. We remind you that the trajectory of the Kepler problem
is an ellipse with a focus at the center of force, whose polar equation is
Q = p/[1+ e cos α], where the parameter p is given by p = p2

α/(mK) and
the eccentricity by

e =
√

1 + (2Ecp2
α)/(mK2).

5. Show that the trajectory for the harmonic oscillator is an ellipse with its
center at the center of force. Give the values of the semi-major axis a
and the semi-minor axis b.

6. Check that the value of the Hamiltonian HHO(ρ, φ, pρ, pφ), which may
be calculated for instance at the perihelion, is precisely Eoh.

7. An interesting feature of this approach is the calculation of the radial
action: the transformation being canonical, the result is the same if one
makes the correct substitutions.

The radial action was calculated in Problem 6.5:

Iρ(Ec, pα) =
1
2

(
K
√

2m/|Ec| − 2pα

)
.

With the substitutions proposed in Question 3, deduce the radial action
for the harmonic oscillator. Apply the EBK quantization (see 6.3) in the
case of a two-dimensional harmonic oscillator.

6.18. Generators for Fundamental
Transformations [Solution p. 336] � �

Study of the generators for the most classical transformations and their flow
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A – Translations

Let us consider a constant vector a = (a1, a2, a3) in a three-dimensional
space.
1. Calculate the variation of a function F (r,p) defined in phase space under

the effect of this translation. Be careful!: this transformation affects the
coordinates but not the momenta which are proportional to the velocity.

2. Consider a translation by a along the Oxi axis. Using formula (6.6), give
the flow parameter and the generator Tai

for this translation.

3. Show that generators for translations along different axes commute, that
is

{
Tai

, Taj

}
= 0.

B – Rotations in a three-dimensional space

We examine the motion of a particle moving in a three-dimensional space
(phase space with six dimensions). In this phase space, we consider the
function Lz = xpy − ypx.
1. Calculate the variation of a function F (r,p) for a rotation by an infinites-

imal angle dφ around the Oz axis.

2. Plot the flow of Lz in ordinary space and determine the flow parameter.

3. Defining Lx and Ly from Lz by a circular permutation, demonstrate the
following property: {Lx, Ly} = Lz. One deduces that rotations around
non parallel axes do not commute.

C – Galilean transformation in a one-dimensional space

The Galilean transformation connects the same point, seen from two frames
R and R′ moving relatively one to the other at a constant speed v. In other
words q′ = q − vt. One can consider this operation as an increase by v of
the velocity, the so-called boost.8

One deals with a particle of mass m moving on a straight line.
1. Calculate the variation of a function F (q, p) defined in phase space for a

small relative velocity v between the two frames.

2. Calculate, using Formula (6.6), the generator for the Galilean transfor-
mation G(q, p, t) noticing that the flow parameter is the speed v.

D – Lorentz transformation in a one-dimensionial space

In relativity, the time loses its universal status and is no longer privileged as
compared to space; thus it is convenient to consider it (multiplied par the

8 To consider the same system from two distinct frames is known as the “passive point
of view”. To consider, in the same frame, the action on the system (as a displacement
or an increase of the velocity) is called the “active point of view”.
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speed of light c) as a coordinate. The conjugate variable is the negative of
the energy divided by c. The dimension of phase space is increased by two
and a point in phase space is defined by (q1, q2, p1, p2) = (q, ct, p,−E/c).

The Lorentz transformation can be seen as the transformation of the
coordinates of the same point defined in two frames which move with a
relative speed v. If you have forgotten the form of a Lorentz transformation,
look it up in a textbook on relativity.
1. Show that, for an infinitesimal speed β = dv/c, the change of coordinates

is given by:

q′ = q − βct; ct′ = ct − βq

p′ = p − β
E

c
;

E′

c
=

E

c
− βp.

2. Calculate the variation of a function defined in phase space for the Lorentz
transformation.

3. Calculate, using formula (6.6), the generator of the Lorentz transforma-
tion U(q, t, p, E) noticing that the flow parameter is the speed v.

Problem Solutions
6.1. Expression of the Period for a

One-Dimensional Motion [Statement p. 289]

Let us recall the definition of the reduced action

S̃(q1, q, E) =

q∫

q1

p(E, q̃) dq̃,

where q̃ denotes the generalized coordinate along the trajectory. Since the
one-dimensional motion is periodic, after one period T , the system resets
its coordinate. Let us substitute q = q1 in the previous expression:

S̃(q1, q1, E) =
∮

p(E, q̃) dq̃.

But this integral is precisely 2π times the action variable I(E). Thus
S̃(q1, q1, E) = 2πI(E). On the other hand, the travel time along the tra-
jectory is given by (see (5.8)) t − t1 = ∂ES̃(q1, q, E). If one chooses the
end point to coincide with the starting point after one period, this time is
precisely the period T = ∂ES̃(q1, q1, E) = 2π(∂EI(E)) so that the angular
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frequency ω which is related to the period by ω = 2π/T is ω = 1/(∂EI(E))
= ∂IE:

ω(E) =
dE

dI
=

1
(dI/dE)

Using angle-action variables, the angular frequency is given by ω = dE(I)/dI
and the period of the motion by T = 2π/ω = 2π/(dE(I)/dI), which is iden-
tical with 2πdI(E)/dE.

6.2. One-Dimensional Particle in a Box
[Statement p. 290]

1. The kinetic energy of the particle is T = 1
2mq̇2, and the Lagrangian

L = T − V . One deduces the momentum p = mq̇ and the Hamiltonian
H = pq̇ − L = p2/(2m) + V . With the proposed potential:

H(q, p) =
p2

2m
+

( q

a

)λ

.

2. The phase portrait is given by the curve p2/(2m) + (q/a)λ = E. It is
depicted in Fig. 6.4 for several values of the energy and for the value
λ = 10.

p

q

λ = 10

E = 0.2

E = 0.35

E = 0.6
E = 0.8

E = 0.9

Fig. 6.4 Phase portrait for
a square well that is “soft-
ened” to a power-law poten-
tial with a parameter λ = 10

and for five different values
of the energy
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The action variable is defined by

I(E) =
1
2π

∮
p(q, E) dq,

or, taking into account the symmetries and with the proposed potential:

I(E) =
4
2π

aE1/λ∫

0

√
2m (E − (q/a)λ) dq.

In the integral, let us make the change of variable x = q/(aE1/λ) to
rewrite

I(E) =
2
π

√
2mE aE1/λJ(λ),

with the expression J(λ) =
∫ 1

0

√
1 − xλ dx. Let the potential tend to the

square well, that is let us take the limit λ → ∞. We obtain E1/λ → 1
and J(λ) → 1. Consequently, we are left with the expression:

I(E) =
2a

√
2mE

π
.

For a given energy E, since the particle inside the well is free, its speed is
given by v = p/m =

√
2E/m. During half a period T/2, the particle trav-

els over a distance 2a. One deduces that T = 4a/v and that the angular
frequency ω = 2π/T = πv/(2a) = (π/a)

√
E/(2m). The same expression

could have been obtained from the general relation ω = 1/(dI/dE).
The angle variable evolves linearly in time α = ωt. But it has to be ex-

pressed in terms of the coordinate q and energy E, a procedure that does
not pose any particular problem since t = q/v and thus α = (πv/2a)(q/v)
= πq/(2a).

α(q, E) =
π

2a
q

3. The EBK quantization, which gives the energy as a function of the quan-
tum number n, is obtained very simply by substituting for the action, in
the expression E(I), the value I = n�. From the result given in the first
question, one deduces E = π2I2/(8ma2) or, after performing the above
substitution, the value for the energy:

En =
π2

�
2

8ma2
n2

This semi-classical expression is identical with the corresponding quan-
tum expression.
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6.3. Ball Bouncing on the Ground
[Statement p. 290]

1. The Hamiltonian of the system is H(q, p) = p2/(2m) + mgq; it corre-
sponds to a constant of the motion whose value is E. The ball is released
at rest from an altitude h. For q = h, we have p = mv = 0. Therefore
we obtain the relation h = E/mg. The phase portrait results from the
curve given by p2/(2m) + mgq = E, or:

p(q, E) = ±
√

2m(E − mgq).

From q = h, p = 0, the particle begins to fall (p < 0 with our conventions
concerning the axes); the phase portrait is the portion of the preceding
parabola corresponding to the − sign (phase 1 for the motion). At ground
level, one has q = 0, p = −

√
2mE; the particle bounces so that the sign

of the velocity changes instantaneously q = 0, p =
√

2mE (phase 2).
Then the particle rises following the phase portrait corresponding to the
+ sign, which is still a portion of parabola symmetric to the previous
one (phase 3). At the point q = h, p = 0, it has achieved a cycle and it
then repeats this periodic motion. The corresponding phase portrait is
depicted in Fig. 6.5.

p

q
E = 1 E = 2 E = 3

(1)

(2)

(3)

Fig. 6.5 Phase portrait of
the ball bouncing on the
ground, for three values of
the energy. The rebound
corresponds to the vertical
portion of each curve with
an instantaneous inversion
of the velocity. The three
phases of the motion (1),
(2), (3) are described in the
text

The action variable is defined as

I(E) =
1
2π

∮
p(q, E) dq

which, owing to the symmetry of the up and down journey, is written in
the form

I(E) =
1
π

h∫

0

√
2m(E − mgq) dq.
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This integral is elementary and is calculated more easily by performing
the change of variable x = (mg/E) q. The final result is

I(E) =
2

3πg

√
2
m

E3/2.

The fall time
√

2h/g corresponds to a half-period so that T = 2
√

2h/g;
the angular frequency is given by

ω =
2π

T
= π

√
g

2h
, or ω = πg

√
m

2E
.

This quantity can also be obtained from the general formula ω = dE/dI.
The angle variable varies linearly in time α = ωt, but one must replace
the time by the energy; this relation can be obtained from the temporal
law q = − 1

2gt2 + h which gives

t =

√
2(h − q)

g
.

Finally, replacing ω and h by their values in terms of the energy, the
angle variable is:

α(q, E) = π

√
1 − mg

E
q

2. Writing the energy as a function of the action is simply achieved by
inverting the relation giving the action as a function of the energy, which
was obtained above. This is easy to do and leads to the desired equation:

E(I) =
[
3πgI

2

]2/3 (m

2

)1/3

.

3. To quantize this value using the semi-classical EBK rule, it is sufficient to
replace the action in the previous equation by an integer multiple of the
elementary action �: I = n�. We thus obtain the following semi-classical
formula,

En = (m)1/3

[
3πg�

2
√

2
n

]2/3

which is identical to the quantum formula if one makes the substitution
n → n − 1/4.
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6.4. Particle in a Constant Magnetic Field
[Statement p. 291]

1. The magnetic field is constant and directed along the Oz axis. On several
occasions we saw that the vector potential can be chosen in the form
A(−yB, 0, 0). In our case, the Lagrangian of the system is L = 1

2m(ẋ2 +
ẏ2 + ż2) − qeBẋy. One deduces the momenta

px = ∂ẋL = mẋ − qeBy

py = ∂ẏL = mẏ

pz = ∂żL = mż.

Since ∂zL = 0, one has pz = const which can be chosen as a null quantity
(it is enough to change the inertial frame); one then deduces z = const
which can be taken null as well (translation of the axes). This means that
the motion occurs in the plane z = 0 and the problem is two-dimensional.
The Hamiltonian is the Legendre transform of the Lagrangian H = ẋpx+
ẏpy−L, which, expressed in terms of coordinates and momenta, is written
as

H(x, y, px, py) =
(px + qeBy)2

2m
+

p2
y

2m
.

2. The Hamiltonian is time-independent, so that it is a first integral. Fur-
thermore, it does not depend on the x variable, so that px is also a first
integral. These two first integrals are independent and in involution (case
n = 2).

3. The system possesses two degrees of freedom and two first integrals are
in involution; it is integrable. The action function is given by S(x, y, t) =
−Et+ S̃(x, y,E), where the reduced action obeys the characteristic equa-
tion E = H(x, y, ∂xS̃, ∂yS̃), or

E =
1

2m

(
∂xS̃ + qeBy

)2

+
1

2m

(
∂yS̃

)2

/(2m).

The x variable is cyclic and one can set S̃(x, y,E) = Px+S2(y,E), where
P is the value taken by the first integral px. The characteristic equation
now gives

dS2

dy
= ±

√
2mE − (P + qeBy)2.

In summary, we obtain the total action in the complete form:

S(x, y, t;E,P ) = −Et + Px ±
∫ √

2mE − (P + qeBy)2 dy.
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4. Jacobi’s theorem (5.10), applied to the energy constant, gives

∂ES(x, y, t;E,P ) = const.

Suitably choosing the time origin so as to cancel this constant, we arrive
at the temporal equation:

t(y) = ±m

∫
dy√

2mE − (P + qeBy)2
.

Applying the same theorem to the momentum constant, one has:

∂P S(x, y, t;E,P ) = const = x ∓
∫

(P + qeBy)√
2mE − (P + qeBy)2

dy.

The calculation of the integral is elementary and provides, denoting by
xc the integration constant, the equation of the trajectory

x = ±
√

2mE − (P + qeBy)2/(qeB) + xc.

Squaring, it can be recast in the form:

(x − xc)2 +
(

y +
P

qeB

)2

=
2mE

q2
eB2

.

One recognizes the equation of a circle with center (xc,−P/(qeB)) and
radius

√
2mE/ |qeB|.

5. Since, on the trajectory, one has H = E and px = P , the expression
obtained in question 1 allows us to write : 2mE = (P +qeBy)2+p2

y. This
is precisely the expression of the phase portrait which can be translated
into the more explicit form:

(y + P/(qeB))2

(2mE)/(q2
eB2)

+
p2

y

2mE
= 1.

The phase portrait is an ellipse with its center displaced by −P/(qeB) on
the Oy axis, with the semi-major (or semi-minor) axis a =

√
2mE/ |qeB|

and semi-minor (or semi-major) axis b =
√

2mE.
The action Iy is given by (1/2π)× (Area of the trajectory in phase

space). The area of the ellipse is πab, and, with the data concerning the
axes given above, we arrive at the value for the action variable:

Iy =
mE

|qeB| .
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6. The energy depends only on the action Iy through the formula E =
|qeB| Iy/m. The EBK quantization rule stipulates that one must replace
the action by an integer multiple of the elementary action Iy = n�. We
thus obtain the quantized Landau levels:

En =
n� |qeB|

m
.

7. Let us remind you that the trajectory is a circle of radius

R =
√

2mE/ |qeB| .

The magnetic flux intercepted by the trajectory is thus Φ = πR2B =
2πmE/(q2

eB) so that E = q2
eBΦ/(2πm). Substituting this value in the

expression for the action leads to:

Iy =
|qeΦ|
2π

.

8. One must add the kinetic energy, already obtained in Question 1, to the
electric potential energy to obtain the total Hamiltonian:

H(x, y, px, py) =
(px + qeBy)2

2m
+

p2
y

2m
+ qeEy.

9. As before, the system is conservative and the energy is a first integral
H = E. Moreover, x is a cyclic coordinate so that px is a second first
integral. They are independent and in involution (case n = 2). The
system is integrable.

10. With a reasoning analogous to that developed in the preceding case (x
being still cyclic, the problem remains separable), the expression of the
action function is found to be:

S(x, y, t;E,P ) = −Et + Px ±
∫ √

2m (E − qeEy) − (P + qeBy)2 dy.

11. The equations of motion are obtained from Jacobi’s theorem:

∂ES(x, y, t;E,P ) = const = −t ±
∫

m dy√
2m (E − qeEy) − (P + qeBy)2

;

∂P S(x, y, t;E,P ) = const = x ∓
∫

(P + qeBy)√
2m (E − qeEy) − (P + qeBy)2

dy.
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The constants can be chosen as null quantities without loss of generality.
Let us combine these two equations to form:

x − vt = ±
∫

(P + qeBy) − mv√
2m (E − qeEy) − (P + qeBy)2

dy.

Let us now take v = −E/B; the integration is then immediate and gives
the equation of the trajectory:

(x − vt − xc)2 + (y − yc)2 =
2mE∗

q2
eB2

where xc is an integration constant,

yc = −P − mv

qeB
and E∗ = E +

1
2
mv2 − vP.

It is easy to check that E = E∗ + 1
2mv2 + qeEyc and interpret E∗ as the

kinetic energy of the particle in a frame that drifts in a direction perpen-
dicular to the electric and magnetic fields with a speed v = −E/B. In this
frame, the trajectory is the cyclotron circle with radius (2mE∗)/(q2

eB2)
and in the original frame, it is represented by the equation of the curve
given above.

12. The phase portrait is given by the equation

p2
y

2m
+

(P + qeBy)2

2m
+ qeEy = E

which can be recast in the more friendly form:

(y − yc)
2

(2mE∗)/(q2
eB2)

+
p2

y

2mE∗ = 1.

The phase portrait is still an ellipse, with its center displaced by yc on
the Oy axis, with semi-major (semi-minor) axis a =

√
2mE∗/ |qeB| and

semi-minor (semi-major) axis b =
√

2mE∗. The action variable has the
same expression as that obtained in the absence of an electric field Iy =
πab/(2π), which is the magnetic flux through the drifting circle multiplied
by qe/(2π).

This conclusion is not surprising. One knows from electromagnetism
that an observer moving with respect to the magnetic field sees an electric
field perpendicular to its velocity and to the magnetic field itself. It is
thus possible to cancel the electric field if one works in a frame that drifts
perpendicularly to this field. In this frame, we recover the well known
situation corresponding to the cyclotron motion alone.
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6.5. Actions for the Kepler Problem
[Statement p. 292]

1. Using polar coordinates (ρ, φ), the Lagrangian L and the Hamiltonian H
are given respectively by:

L(ρ, φ, ρ̇, φ̇) =
1
2
m

(
ρ̇2 + ρ2φ̇2

)
+

K

ρ
;

H(ρ, φ, pρ, pφ) =
p2

ρ

2m
+

p2
φ

2mρ2
− K

ρ
.

2. The Hamiltonian is conservative; there exists a first integral which is
the energy H = E. Moreover, φ is a cyclic coordinate so that there
exists a second first integral: the angular momentum pφ = σ. The action
variables are defined by

2πIi =
∮

Γi

p · dq =
∮

Γi

(pρ dρ + pφ dφ) .

On the torus, it is possible to choose a contour with ρ = const. The
corresponding action is Iφ = 1/(2π)

∮
pφ dφ = σ. Thus

Iφ = σ.

3. On the other hand, the radial momentum is easily obtained from the
value of the energy

pρ = ±
√

2m

(
E +

K

ρ
− σ2

2mρ2

)
.

Let us consider an elliptic orbit; the turning points are the perihelion
ρm and the aphelion ρM ; at these points the radial momentum vanishes.
Moreover, the energy is negative E = − |E|. The radial action Iρ is
defined, owing to the symmetry properties, by:

2πIρ =
∮

pρ dρ = 2

ρM∫

ρm

√
2m (K/ρ − |E| − σ2/(2mρ2)) dρ.

4. This integral would be more easily computable if the square root were
present in the denominator. It can be put under this form if we differ-
entiate it with respect to energy. This procedure provides the inverse of
the angular frequency. Thus:

1
ωρ

=
dIρ

dE
=

√
2m

2π
√
|E|

ρM∫

ρm

ρ dρ√
(ρ − ρm)(ρM − ρ)

.
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Let us introduce the mean radius

ρ̄ =
ρm + ρM

2
=

K

2 |E|

and half the difference δ = (ρM − ρm)/2. Now perform the change of
variable ρ = ρ̄ + δ cos θ. The integral is transformed into

√
2m

2π
√
|E|

π∫

0

(ρ̄ + δ cos θ) δ sin θ dθ

δ sin θ
=

√
2mK

4 |E|3/2
.

To summarize:
dIρ

dE
=

√
mK

|2E|3/2
.

5. The previous expression is the derivative of
√

2mK

2 |E|1/2
+ const = Iρ.

The constant is determined if one considers the circular orbit. Hamil-
ton’s equation gives the radius of the circular orbit as ρc = σ2/(mK),
which, inserted in the Hamiltonian, gives the energy Ec = −mK2/(2σ2).
Moreover, for the circular orbit, pρ = 0 and thus Iρ = 0. One deduces
the value of the constant −

√
2mK/(2 |Ec|1/2) = −σ. The value of the

radial action follows:

Iρ =
1
2

[
K
√

2m/ |E| − 2σ
]
.

Finally the energy is written in terms of the actions as:

E = − mK2

2 (Iρ + Iφ)2
.

6. The EBK quantization prescription consists in replacing, in the energy,
each action by an integer multiple of the elementary action �. Therefore,
one sets Iρ = nρ�, Iφ = l� and one obtains the semi-classical expression
for the energy, which corresponds to the Rydberg expression:

En = − mK2

2�2 (nρ + l)2
= −α2mc2

2n2
.

This expression is identical to the quantum formula.
It is worthwhile to point out that the quantum numbers nρ and l

appear through their sum only, the so-called principal quantum number
n = nρ + l. This remarkable property is specific to the Coulomb potential
and leads to degeneracies among the energy levels.
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6.6. The Sommerfeld Atom [Statement p. 293]

1. Using polar coordinates (ρ, φ), the expression for the velocity is v2 =
ρ̇2 + ρ2φ̇2. As we saw in Chapter 2, the free relativistic Lagrangian is
simply L0(r, ṙ) = −mc2

√
1 − ṙ2/c2. Subtracting the Coulomb potential

V (ρ) = −K/ρ, we obtain the total Lagrangian of the system:

L(ρ, φ, ρ̇, φ̇) = −mc2

√
1 − 1

c2

(
ρ̇2 + ρ2φ̇2

)
+

K

ρ
.

The Hamiltonian is deduced from the Legendre transform and is ex-
pressed as:

H(ρ, φ, pρ, pφ) = c

√

p2
ρ +

p2
φ

ρ2
+ m2c2 − K

ρ
.

2. The system is autonomous; the Hamiltonian is a first integral whose value
is the energy E. The φ coordinate is cyclic and the momentum

pφ = ∂φ̇L =
mρ2φ̇√

1 −
(
ρ̇2 + ρ2φ̇2

)
/c2

is also a first integral. As is often the case, it is identified with the angular
momentum, denoted usually as σ. Furthermore, it also corresponds to
the angular action variable Iφ =

∮
pφ dφ/(2π). In summary:

pφ = Iφ = σ.

The system, with two degrees of freedom, possesses two first integrals in
involution: it is integrable.

3. From the expression of the Hamiltonian, we easily deduce the radial mo-
mentum:

pρ(E, σ) = ±
√

(E + K/ρ)2/c2 − m2c2 − σ2/ρ2.

The radial action is given by its usual expression Iρ =
∮

pρ dρ/(2π). Mak-
ing use of the symmetry of the trajectory and introducing the perihelion
ρm and the aphelion ρM , the explicit value of the action is obtained easily:

Iρ(E, σ) =
1
π

ρM∫

ρm

√
(E + K/ρ)2/c2 − m2c2 − σ2/ρ2 dρ.

The perihelion and the aphelion are the roots of the equation

(m2c4 − E2)ρ2 − 2EKρ + σ2c2 − K2 = 0.

Remember that, for a bound state, 0 < E < mc2.



Problem Solutions 317

4. Exactly as in the Problem 6.5, in order to calculate this integral, it is
expedient to first compute its derivative with respect to the energy, which
is precisely:

∂EIρ(E, σ) =
1

πc2

ρM∫

ρm

E + K/ρ√
(E + K/ρ)2/c2 − m2c2 − σ2/ρ2

dρ.

which can be rewritten in the more amenable form:

∂EIρ(E, σ) =
1

πc
√

m2c4 − E2

ρM∫

ρm

Eρ + K√
(ρM − ρ)(ρ − ρm)

dρ.

The proposed change of variable is ρ = ρ̄ + δ cos θ with the definitions ρ̄
= (ρm + ρM )/2 = EK/(m2c4 − E2) and δ = (ρM − ρm)/2, with which
the integral is transformed into

1
πc

√
m2c4 − E2

ρM∫

ρm

(E(ρ̄ + δ cos θ) + K) dθ =

Eρ̄ + K

c
√

m2c4 − E2
=

m2c3K

(m2c4 − E2)3/2
.

Finally: ∂EIρ(E, σ) =
m2c3K

(m2c4 − E2)3/2
.

5. To find the action, it is sufficient to calculate the primitive of the previous
quantity with respect to energy:

Iρ(E, σ) =
KE

c
√

m2c4 − E2
+ const.

Concerning the circular orbit, the Hamilton equation ṗρ = −∂ρH = 0
provides the radius ρc = (σ2)

√
1 − (K/(σc))2/(mK) which is smaller

than the non-relativistic equivalent. Inserting this value in the Hamil-
tonian allows us to obtain the energy for this particular orbit Ec =
mc2

√
1 − (K/(σc))2. Owing to the fact that, for the circular orbit, Iρ =

0, it is easy to determine the integration constant which is −
√

σ2 − (K/c)2.
We deduce the exact expression of the action as a function of the two first
integrals and, then, after inversion, the energy in terms of the actions;

E(Iρ, Iφ) =
mc2

√

1 +
(

(K/c)

Iρ+
√

I2
φ−(K/c)2

)2
.
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6. The EBK quantization procedure allow us to write Iφ = σ = l� (l integer
≥ 1) and Iρ = nρ� (nρ integer ≥ 0). Inserting these values and introduc-
ing the fine structure constant α = K/(�c) in the preceding expression
for the energy, one arrives at the semi-classical expression of the energy
for the Sommerfeld atom:

E(nρ, l) =
mc2

√
1 +

(
α/(nρ +

√
l2 − α2)

)2
.

7. Restricting to second order in α2, one has

√
l2 − α2 ≈ l − α2

2l
− α4

8l3
,

then nρ +
√

l2 − α2 ≈ n − α2

2l
− α4

8l3
,

then α2
[
nρ +

√
l2 − α2

]−2

≈ α2

n2

[
1 +

α2

nl

]

and lastly
[
1 +

α2

(
nρ +

√
l2 − α2

)2

]−1/2

≈ 1 − α2

2n2
− α4(n/l − 3/4)

2n4
.

This equality allows us to find the truncated expansion of E, and thence
the binding energy of the atom B = E − mc2. In the final expression, it
is convenient to introduce the Rydberg constant R∞ = mcα2/(2h). An
elementary calculation leads to the final result:

B = −hcR∞
n2

[
1 +

α2

n2

(
n

l
− 3

4

)]
.

The first term of the truncated expansion corresponds to the classical
value found by N. Bohr. The correction in α2 has a relativistic origin
and contributes to the so-called fine structure of the atomic levels.

6.7. Energy as a Function of Actions
[Statement p. 294]

For a two-dimensional system subject to a central force, the motion occurs in
a plane, and it is natural to choose the polar coordinates (ρ, φ) as generalized
coordinates. The Hamiltonian reads

H(ρ, φ, pρ, pφ) =
p2

ρ

2m
+

p2
φ

2mρ2
+ V (ρ).
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The system is conservative; there exists a first integral which is the energy
H = E. Moreover, the φ coordinate is cyclic and there exists another first
integral: the angular momentum pφ = σ. The action variables are defined
by

2πIi =
∮

Γi

p · dq =
∮

Γi

(pρ dρ + pφ dφ) .

On the torus, one can choose a contour with ρ = const. The corresponding
action is Iφ = 1/(2π)

∮
pφ dφ = σ. Therefore:

Iφ = σ.

On the other hand, one has p2
ρ/(2m) + σ2/(2mρ2) + V (ρ) = E, whence the

radial momentum:

pρ =
√

2m(E − V (ρ)) − σ2/ρ2.

The radial action variable is obtained taking φ = const on the torus:

Iρ =
1
2π

∮
pρ dρ =

1
2π

∮ √
2m(E − V (ρ)) − σ2/ρ2 dρ

or, more explicitly, Iρ(E, σ) or Iρ(E, Iφ). Inverting this expression allows
us to obtain E(Iρ, Iφ) which is the desired expression. One cannot proceed
further if the form of V (ρ) remains unknown.

A – Kepler’s problem
1. In the part (φ, pφ) of phase space, the phase portrait is very simple; it

is just the straight line pφ = σ. In the part (ρ, pρ) the phase portrait is
given by pρ(ρ) = ±

√
2m(E − K/ρ) − σ2/ρ2. This momentum vanishes

at the two turning points, the perihelion ρmin, and the aphelion ρmax.
These remarks are illustrated in the Fig. 6.6.

The trajectory for the Kepler problem is an ellipse. Assume that for
time t = 0, one has φ = 0 and ρ = ρmin; after half a period t = T/2, one
has φ = π and ρ = ρmax. Lastly after one period t = T , the system is to
be found in its original position in phase space φ = 2π ≡ 0 and ρ = ρmin.

Denoting by αi the angle variable associated with the action Ii, we
can assert that αi = ωit (be careful! αφ �= φ, because the polar angle
does not rotate with constant angular velocity). After one period, we
are back to the same point of phase space so that αρ(T ) = 2π and
αφ(T ) = 2π. In consequence, we find the equality between the angular
and radial frequencies:

ωρ = ωφ.



320 6 Integrable Systems

P

pφ pφ

A A A

P

pρ pρ

ρ ρP A P A

φ φA P A A P A P A

Fig. 6.6 Phase portraits for angular coordinates (top) and radial coordinates
(middle). We also plot the trajectory (bottom) and indicate

the center of force. The notation A and P indicates “aphelion” and
“perihelion”. The left part corresponds to Kepler’s problem whereas

the right part corresponds to the harmonic oscillator problem

2. The Hamilton equations written in terms of angle-action variables pro-
vide the relations α̇ρ = ωρ = ∂Iρ

H and α̇φ = ωφ = ∂σH. The equality
between the two frequencies just proved above leads to ∂Iρ

H = ∂σH.
Since the system is integrable, the Hamilton function is expressed in
terms of actions only: H(Iρ, σ). Introducing the new independent vari-
ables u = Iρ + σ, v = Iρ − σ, the preceding equality concerning the
partial derivatives implies that ∂vH = 0, and thus H is a function of u
only. Thus:

H(Iρ, Iφ) = H(Iρ + Iφ).

B – Harmonic problem
1. We are dealing now with the potential V (ρ) = 1

2kρ2 = 1
2mω2ρ2. We

know that the trajectory is an ellipse with its center placed precisely at
the center of force. The phase portrait is also represented in the figure 6.6.
Assume again that for time t = 0, one has φ = 0 and ρ = ρmin; after
half a period t = T/2, one has φ = π, and again ρ = ρmin (ρ = ρmax is
reached after a quarter of period only).
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Lastly, after one period t = T , the system returns to its original position
in phase space φ = 2π ≡ 0 and ρ = ρmin. In terms of angle variables,
one has αφ(T ) = 2π (after one period the angular coordinate recovers its
original value) but αρ(T/2) = 2π (after a half-period the radial coordinate
recovers its original value), that is αρ(T ) = 4π. In consequence we have
the following relations concerning the angular frequencies:

ωρ = 2ωφ.

In this case, the Hamilton equations provide the relations ∂Iρ
H = 2∂σH.

Introducing the new independent variables u = 2Iρ + σ, v = 2Iρ − σ, the
equality concerning the preceding partial derivatives implies ∂vH = 0, so
that H is a function of u only:

H(Iρ, Iφ) = H(2Iρ + Iφ).

C – Semi-classical quantization
1. It is time now to find the u dependence of H(u) in both cases. In order

to do this, it is interesting to work with the circular orbit ρ = const = R,
pρ = 0 = Iρ, u = σ. One has σ = mR2ω.

For Kepler’s problem, Newton’s equation provides mRω2 = K/R2,
whence 1/R = mK/σ2. Therefore E = σ2/(2mR2)−K/R = −mK2/(2σ2)
(this value is also easily obtained from the virial theorem). For a circular
orbit pρ = 0, so that Iρ = 0 and σ = u. The Hamiltonian takes the
required form: H(u) = −mK2/(2u2). Following the result of Question
2, one can write more generally:

H(K)(Iρ, Iφ) = − mK2

2 (Iρ + Iφ)2
.

Concerning the harmonic oscillator, E = σ2/(2mR2) + 1
2mω2R2. With

the expression of the angular momentum σ = mR2ω, each contribution
takes the same value ωσ/2 (this is again the consequence of the virial
theorem) and thus E = ωσ. For the same reason as before, we have
H(u) = ωu. In the general case and following Question 3, we have:

H(HO)(Iρ, Iφ) = ω (2Iρ + Iφ).

2. The EBK quantization procedure consists in replacing each action by
an integer multiple of the elementary action �. Consequently, we set
Iρ = n�, Iφ = σ = l�; the semi-classical formulae for quantized energies
follow immediately:

Enl(Kepler) = − mK2

2�2(n + l)2
; Enl(HO) = �ω(2n + l).
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6.8. Invariance of the Circulation Under
a Continuous Deformation
[Statement and Figure p. 296]

1. In four-dimensional phase space (x, y, px, py), one considers two first in-
tegrals F1(x, y, px, py) = f1 and F2(x, y, px, py) = f2 in involution

{F1, F2} = 0.

For given values of the constants f1 and f2, they define a two-dimensional
manifold Mf = (f1, f2) which is a subset of the phase space. In this mani-
fold, one considers a path Γ beginning at q0 = (x0, y0, px0 , py0) and ending
at q1 = (x1, y1, px1 , py1). We wish to demonstrate the path independence
of the quantity

S(q0, q1, f1, f2) =
∫

Γ

px(x, y, f1, f2) dx + py(x, y, f1, f2) dy.

For simplicity, we set u = px, v = py. Then differentiating the equation
for the surface labelled i = 1 or 2 we write:

(∂xFi) dx + (∂yFi) dy + (∂uFi) du + (∂vFi) dv = 0.

This equality is valid whatever the elementary displacements dx, dy, du,
dv ∈ Mf . In particular, one can set dy = 0 and then divide by dx. In
this case, it should be clear that du/dx can be identified with ∂xu, since
we are working at y = const. Performing the same treatment for dx = 0,
we arrive at:

(∂uFi)(∂xu) + (∂vFi)(∂xv) + ∂xFi = 0
(∂uFi)(∂yu) + (∂vFi)(∂yv) + ∂yFi = 0

Explicitly, we find the four partial differential equations:

(1) (∂uF1)(∂xu) + (∂vF1)(∂xv) + ∂xF1 = 0
(2) (∂uF1)(∂yu) + (∂vF1)(∂yv) + ∂yF1 = 0
(3) (∂uF2)(∂xu) + (∂vF2)(∂xv) + ∂xF2 = 0
(4) (∂uF2)(∂yu) + (∂vF2)(∂yv) + ∂yF2 = 0.

2. We now calculate (1)× (∂uF2)− (3)× (∂uF1) = 0. Simple algebra gives:

∂v

∂x
=

(∂xF1)(∂uF2) − (∂uF1)(∂xF2)
(∂uF1)(∂vF2) − (∂vF1)(∂uF2)

.
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A similar treatment for (2) × (∂vF2) − (4) × (∂vF1) leads to:

∂u

∂y
=

(∂vF1)(∂yF2) − (∂yF1)(∂vF2)
(∂uF1)(∂vF2) − (∂vF1)(∂uF2)

.

3. We now calculate the quantity I = ∂xv − ∂yu which, with the values
obtained in the preceding question, can be written as:

I =
(∂xF1)(∂uF2) + (∂yF1)(∂vF2) − (∂uF1)(∂xF2) − (∂vF1)(∂yF2)

(∂uF1)(∂vF2) − (∂vF1)(∂uF2)

=
{F1, F2}

(∂uF1)(∂vF2) − (∂vF1)(∂uF2)
.

The two first integrals are in involution and this property implies that the
numerator of the previous expression vanishes. The result is explicitly:

∂py

∂x
− ∂px

∂y
= 0.

4. Let us choose for Γ a closed path; Stokes theorem then implies
∮

p · dl =
∮

px dx + py dy =
∫ ∫

Σ

(∇×p) · dn =
∫ ∫

Σ

(∂xpy − ∂ypx) dnz.

The integrant of the last integral is null as we proved just above; this is
also the case for its flux and consequently the circulation of the momen-
tum vanishes : ∮

p · dl = 0.

Let Γ1 and Γ2 be two paths beginning at the same point and ending at
the same point on the manifold. We now form a closed path using the
outward path Γ1 and the return path Γ2. Since this latter contribution
is the negative of the value for going directly from the starting point to
the end point following Γ2, one has the trivial equality

∮
p · dl = 0 =

∫

Γ1

p · dl −
∫

Γ2

p · dl.

Thus we arrived at the desired relation:
∫

Γ1

px dx + py dy =
∫

Γ2

px dx + py dy.
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6.9. Ball Bouncing on a Moving Tray
[Statement p. 297]

1. The Hamiltonian for the ball is H(q, p) = p2/(2m) + mgq, where q is the
coordinate of the ball above the ground. The most suitable coordinate
for our problem is the altitude above the tray Q = q − h(t). Let us take
as the new momentum P = p − mḣ(t) (this is dimensionally consistent).
Now calculate the Jacobian of the transformation in phase space J =
(∂qQ)(∂pP ) − (∂qP )(∂pQ) = (1) × (1) − (0) × (0) = 1. Although the
transformation depends on time, it conserves areas; it is canonical.

2. The generating function G2(P, q, t) must be such that p = ∂qG2 and
Q = ∂P G2. The first equation implies ∂qG2 = P + mḣ which can be
integrated to give G2 = q(P +mḣ)+f(P, t). The second equation implies
Q = q − h = q + ∂P f which leads to ∂P f = −h whence f(P, t) = −hP .
Finally, the generating function reads:

G2(P, q, t) = q
(
P + mḣ(t)

)
− Ph(t).

The explicit existence of a generating function once again proves the
canonicity of the transformation.

3. The new Hamiltonian is given by

K(Q,P, t) = H(q(Q,P ), p(Q,P )) + ∂tG2(P, q, t).

A simple calculation relying on the previous remarks allows us to write

K(Q,P, t) =
P 2

2m
+ m(g + ḧ)Q + mgh + mhḧ +

1
2
mḣ2.

Adding to the Hamiltonian a function that depends on time only does not
change the Hamilton equations, and thus the description of the system.
In consequence one can add to the Hamiltonian K the function −(mgh+
mhḧ + 1

2mḣ2), to obtain a simpler equivalent Hamiltonian:

K(Q,P, t) =
P 2

2m
+ m

(
g + ḧ(t)

)
Q.

6.10. Harmonic Oscillator with
a Variable Frequency [Statement p. 298]

One considers a harmonic oscillator whose angular frequency is time-dependent
and whose Hamiltonian is given by: H(q, p, t) = p2/(2m) + 1

2mω(t)2q2.
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Let us introduce the type 1 generating function:

G1(Q, q, t) =
1
2
mω(t) q2 cot(Q).

We deduce the expressions for the momenta

p = ∂qG1 = mω(t) q cot(Q), P = −∂QG1 = mω(t) q2/(2 sin2 Q)

and the new Hamiltonian

K = H + ∂tG1 = H +
1
2
mω̇(t) q2 cot(Q).

From previous relations, one obtains mω q2 = 2P sin2 Q, p2 = 2mωP cos2 Q
and these equations allow us to express first the original Hamiltonian and
then the new one in terms of the new coordinates. Finally, one has:

K(Q,P, t) = P

(
ω(t) +

ω̇(t) sin(2Q)
2ω(t)

)
.

Since the transformation is canonical, one easily deduces the new Hamilton
equations Q̇ = ∂P K and Ṗ = −∂QK, or explicitly:

Q̇ = ω(t) +
ω̇(t) sin(2Q)

2ω(t)
; Ṗ = − ω̇(t)P cos(2Q)

ω(t)
.

6.11. Choice of the Momentum
[Statement p. 298]

1. The original Hamiltonian for the harmonic oscillator is H = 1
2ω(p2 +

q2) (with a suitable choice of coordinates). One decides to perform a
canonical transformation taking as new momentum the quantity

P (q, p) = λH =
1
2
λω(p2 + q2).

One deduces q = ±
√

(2P/(λω)) − p2. As for the choice of the generat-
ing function, one can take either G3 with q = −∂pG3(Q, p) or G4 with
q = −∂pG4(P, p). Since q = q(P, p), it is the G4 function that appears
naturally. It is obtained by taking the primitive of q = q(P, p). In sum-
mary:

q = ±
√

2P

λω
− p2; G4(P, p) = ∓

∫
dp

√
2P

λω
− p2 + F (P ).
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2. The relationship between the new coordinate and the generating function
is Q = ∂P G4(P, p), or

Q = ∓ 1
λω

∫
dp/

√
2P

λω
− p2 + F ′(P ).

One chooses the particular solution such that F ′(P ) = 0 and one performs
the change of variable p =

√
2P/(λω) cos u. This leads to

Q = ±u/(λω) = ± 1
λω

arccos

(
p

√
λω

2P

)
.

Finally, substituting for P in terms of the original variables, one obtains
the desired expression:

Q(q, p) = ± 1
λω

arccos

(
p√

q2 + p2

)
.

3. From the preceding equation, one deduces p/
√

q2 + p2 = cos(λωQ). Q
must be an angle such that if it is increased by 2π, we return to the
same point in phase space for which p/

√
q2 + p2 retains its value. Con-

sequently, one must have 2πλω = 2π, that is:

λ = 1/ω.

Finally, the canonical transformation reads

P =
1
2
(p2 + q2) =

E

ω
and Q = arccos

(
p/

√
q2 + p2

)
.

Since Q is the angle variable, which increases by 2π to return to the same
point in phase space, its conjugate variable P is the action variable so
that:

I(E) =
E

ω

6.12. Invariance of the Poisson Bracket
Under a Canonical Transformation
[Statement p. 299]

We work in phase space described by the variables (q, p) in which we define
two functions F (q, p) and G(q, p). We now perform a contact transforma-
tion Q(q, p), P (q, p), which can be inverted to give q(Q,P ), p(Q,P ). The
functions F and G become functions of the new coordinates F (Q,P ) =
F (q(Q,P ), p(Q,P )) with a similar relation for G.
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Caution: The functional form of F in terms of the variables Q,P is different
from its form in terms of the variables q, p; in spite of this, its value is
obviously identical if one calculates it at the same point in phase space.
This is the reason for maintaining the same notation for this function.

The rules concerning partial differentiation for functions provide the rela-
tions

∂QF = (∂qF )(∂Qq) + (∂pF )(∂Qp);
∂P G = (∂qG)(∂P q) + (∂pG)(∂P p).

They allow the calculation of (∂QF )(∂P G) and then, inverting the roles of
F and G, the quantity (∂QG)(∂P F ).

It is easy to obtain the Poisson bracket with respect to variables Q,P from
its definition {F,G}(Q,P ) = (∂QF )(∂P G) − (∂QG)(∂P F ) in the form given
in the statement:

{F,G}(Q,P ) =
(

∂q(Q,P )
∂Q

∂p(Q,P )
∂P

− ∂p(Q,P )
∂Q

∂q(Q,P )
∂P

)
{F,G}(q,p) .

The Jacobian of the contact transformation occurs naturally. If the trans-
formation is canonical, the Jacobian is unity and both expressions for the
Poisson bracket are identical. In practice, we always consider canonical
transformations and, in this case, the Poisson bracket acquires a univer-
sal status which allows us to avoid specifying the variables with respect to
which it is calculated.

6.13. Canonicity for a Contact
Transformation [Statement p. 299]

1. We begin with a contact transformation Q(q, p), P (q, p). Let us differ-
entiate the Qi coordinate with respect to time and apply Hamilton’s
equations to the original Hamiltonian H(q, p):

Q̇i =
∑

l

[(∂ql
Qi)(∂pl

H) − (∂pl
Qi)(∂ql

H)] .

We now express the original Hamiltonian in terms of the new form of the
Hamiltonian H(q, p) = K(Q(q, p), P (q, p)). The calculation of the partial
derivatives of H with respect to the original coordinates is translated
now in terms of the partial derivatives of H with respect to the new
coordinates. Making this substitution in the previous expression, we
obtain:

Q̇i =
∑

j

[
(∂Qj

K) {Qi, Qj} + (∂Pj
K) {Qi, Pj}

]
,
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where we introduced the Poisson bracket

{Qi, Qj} =
∑

l

[(∂ql
Qi)(∂pl

Qj) − (∂ql
Qj)(∂pl

Qi)] ,

and an analogous expression for {Qi, Pj}. The transformation is canoni-
cal if the traditional Hamilton equations are fulfilled in terms of the new
variables. In particular, Q̇i = ∂Pi

K implies

{Qi, Qj} = 0 and {Qi, Pj} = δi,j .

A similar calculation based on Ṗi leads to

Ṗi =
∑

j

[
(∂Qj

K) {Pi, Qj} + (∂Pj
K) {Pi, Pj}

]
.

The canonicity for the transformation requires Ṗi = −∂Qi
K, which leads

to {Pi, Pj} = 0 and {Pi, Qj} = −δi,j . This latter Poisson bracket can
also be deduced easily from {Pi, Qj} = −{Qj , Pi} = −δi,j . In summary,
for the transformation to be canonical it is necessary and sufficient that
we have the following conditions:

{Qi, Qj} = 0; {Pi, Pj} = 0; {Qi, Pj} = δi,j .

2. Consider two functions

F (q, p) = F (Q(q, p), P (q, p)) and G(q, p) = G(Q(q, p), P (q, p)).

Let calculate the Poisson bracket

{F,G}(q,p) =
∑

i

[(∂qi
F )(∂pi

G) − (∂pi
F )(∂qi

G)] .

Expressing the partial derivatives with respect to (q, p) in terms of the
partial derivatives with respect to (Q,P ) and substituting in the preced-
ing expression, we arrive at

{F,G}(q,p) =
∑

k,l

(∂Qk
F )(∂Ql

G) {Qk, Ql} +
∑

k,l

(∂Qk
F )(∂Pl

G) {Qk, Pl}

+
∑

k,l

(∂Pk
F )(∂Ql

G) {Pk, Ql} +
∑

k,l

(∂Pk
F )(∂Pl

G) {Pk, Pl} .

Using the expressions for the Poisson brackets obtained in the first ques-
tion, we are left with:

{F,G}(q,p) =
∑

k,l

(∂Qk
F )(∂Pl

G) δk,l −
∑

k,l

(∂Pk
F )(∂Ql

G) δk,l

=
∑

k

[(∂Qk
F )(∂Pk

G) − (∂Pk
F )(∂Qkl

G)] .
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In the latter expression, one recognizes the definition of the Poisson
bracket {F,G}(Q,P ). Finally:

{F,G}(q,p) = {F,G}(Q,P ) .

This equation expresses the invariance of the Poisson brackets under a
canonical transformation. It is therefore licit to consider the Poisson
brackets as an intrinsic property of phase space, which are independent
of the manner we choose the coordinates, provided that the contact trans-
formations are canonical. In consequence, under these conditions, it is
not necessary to specify in the indices the variables with respect to which
the Poisson brackets are evaluated.

6.14. One-dimensional Free Fall
[Statement p. 300]

1. The original Hamiltonian is H(q, p) = p2/(2m)+mgq. It is time-indepen-
dent and its value on the trajectory is constant and equal to the energy
E. We perform a canonical transformation and choose as new momentum
a variable which is proportional to the Hamiltonian

P (q, p) = λH(q, p) = λ

[
p2

2m
+ mgq

]
.

One can choose as new coordinate a variable proportional to the old
momentum Q(q, p) = μp.

2. We require this contact transformation to be canonical. This is achieved
by imposing the condition {Q,P} = 1. Thus,

{Q,P} = λμ

[
1

2m

{
p2, p

}
+ mg {p, q}

]
= −λμmg = 1

so that we have the relation λμ = −1/(mg). This condition can also
be found by considering the conservation of area which imposes a unit
Jacobian.

We still have some arbitrariness and we make the final choice:

λ = 1; μ = − 1
mg

.

3. As the canonical transformation does not depend on time, the new Hamil-
tonian coincides with the old one K = H and thus, with the constant
values obtained in question 2, we have K(Q,P ) = P . A first Hamil-
ton equation gives Ṗ = −∂QK = 0, or P = const. Since P = H, this
constant is simply the energy: P = E.
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The second Hamilton equation gives Q̇ = ∂P K = 1, which can be inte-
grated at once to provide Q = t + Q0 = t − p0/(mg) or p = −mgQ =
−mgt + p0. Then

p2
0

2m
+ mgq0 = E =

p2

2m
+ mgq =

(−mgt + p0)2

2m
+ mgq.

Rearranging the terms, we are led to the equation of the trajectory:

q(t) = −1
2
gt2 +

p0

m
t + q0

which is precisely as expected.

6.15. One-dimensional Free Fall Again
[Statement p. 301]

1. Expressed with the original coordinates, the Hamiltonian reads H(q, p) =
p2/(2m)+mgq. We decide to take as the new momentum the Hamiltonian
itself P = H. The Hamiltonian and the new coordinate do not depend
on time so that the new Hamiltonian K(Q,P ) is identical to the original
Hamiltonian K(P ) = P = p2/(2m) + mgq. The first Hamilton equation
leads to ∂QK = −Ṗ = 0, thus P = const, a result that we already know
since this quantity is identified with the energy. The second Hamilton
equation gives Q̇ = ∂P K = 1, which is integrated easily:

Q(t) = t + Q(0).

Let us choose a generating function of the fourth type G4(P, p). From P
= p2/(2m) + mgq, one deduces

q = − 1
mg

[
p2

2m
− P

]
.

On the other hand, one has also q = −∂pG4. The preceding expression
allows us to obtain, after integration, the generating function (up to a
function of P that can be chosen as null):

G4(P, p) =
1

mg

(
p3

6m
− Pp

)
.

The rest follows naturally; from Q = ∂P G4 = −p/(mg), one deduces
p = −mgQ, or:

p(t) = −mgt + p0
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where we set p0 = −mgQ(0). Since P is constant, it can be identified
with P = p2

0/(2m) + mgq0. Lastly, from

q = − 1
mg

[
p2

2m
− P

]
,

and from the expressions of p(t) and P given previously, we obtain the
temporal law:

q(t) = −1
2
gt2 +

p0

m
t + q0.

We have obtained the usual equations of motion, in a more involved way
than in the formalism “a la Newton”. The purpose was to illustrate the
fact that the method based on canonical transformations can be applied
without any restriction.

2. Since the ball bounces on the ground, it follows a periodic motion from
q = 0 to qmax = E/(mg) on the upward path and a symmetric motion
going down. The action variable is defined by

I(E) =
1
2π

∮
p(q, E) dq,

or, in our particular case,

I =
2
2π

qmax∫

0

√
2m(E − mgq) dq =

√
2gm

π

qmax∫

0

√
qmax − q dq.

The integral is elementary and gives I = 2
√

2m
√

gq3
max/(3π) which can

be expressed as a function of the energy (see also the Problem 6.3):

I(E) =
2

3πg

√
2
m

E3/2.

3. The angular frequency is obtained by the general formula

ω(E) =
1

(dI/dE)
,

which, using the expression of the action given above, provides the rela-
tion:

ω(E) = πg

√
m

2E
.
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Lastly, the angle variable is obtained from

α = ωt = ω

∫
dq/q̇ = ωm

∫
dq/p = ωm

∫
dq/

√
2m(E − mgq).

The primitive is elementary and we arrive at:

α(q, E) = −π

√
1 − mg

E
q.

6.16. Scale Dilation as a Function of Time
[Statement p. 301]

1. Let us denote l′(t) = dl/dt, l′′(t) = d2l/dt2 and the new coordinate
q = x/l(t). One verifies rapidly that ẋ = q̇l + ql′. Substituting this
expression in the kinetic energy T = 1

2mẋ2, this last quantity becomes
T = 1

2m(q̇l + ql′)2 and the Lagrangian L = T − V reads:

L(q, q̇, t) =
1
2
m (q̇l(t) + ql′(t))2 − V (q).

This Lagrangian depends on time.

2. First one calculates the momentum p = ∂q̇L = ml (q̇l + ql′), then Hamil-
ton’s function H = pq̇−L which must be expressed in terms of coordinate
and momentum. Explicitly one obtains:

H(q, p, t) =
1

l(t)2

(
p2

2m
− pql(t)l′(t)

)
+ V (q).

The Hamiltonian also depends on time.

3. We employ a canonical transformation relying on the generating function
G2(P, q, t) = Pq + 1

2mq2l(t)l′(t). One deduces Q = ∂P G2 = q and p =
∂qG2 = P + mqll′.

We thus easily obtain the canonical transformation. The new Hamilto-
nian K(Q,P, t) is derived from the general formula K = H +∂tG2 which
must be expressed in terms of the new variables. A simple calculation
leads to the result:

K(Q,P, t) =
P 2

2ml(t)2
+ V (Q) +

1
2
mQ2l(t)l′′(t).

Although the expression of the Hamiltonian is rather simple, it exhibits
a rather cumbersome time dependence of the kinetic energy.
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4. Let τ(t) be the primitive of 1/l2, so that dt/dτ = l2. Hamilton’s equa-
tions are Q̇ = ∂P K = P/(2ml2) and Ṗ = −∂QK = −V ′(Q) − mQll′′.
Instead of considering the variables (Q,P ) as functions of t, they are
considered as functions of τ . The equations of motion now become (the
trajectory is unchanged but is covered with a different temporal law):
dQ/dτ = P/(2m), dP/dτ = −l2V ′(Q) − mQl3l′′. They can be consid-
ered as Hamilton’s equations arising from the new Hamiltonian:

K̃(Q,P, τ) =
P 2

2m
+ l(t(τ))2V (Q) +

1
2
mQ2l(t(τ))3l′′(t(τ)).

The kinetic energy no longer exhibits the awkward scale dependence. In
particular, for a linear dependence l′′ = 0, the new Hamiltonian presents
a very simple form.

6.17. From the Harmonic Oscillator to
Coulomb’s Problem [Statement p. 301]

1. We begin with the Hamiltonian for the harmonic oscillator

HHO(ρ, φ, pρ, pφ) =
p2

ρ

2m
+

p2
φ

2mρ2
+

1
2
mω2ρ2.

The φ coordinate is cyclic and the corresponding momentum, the angular
momentum σ, is a first integral pφ = σ. In (ρ, pρ) phase space, one takes
as new coordinate the quantity Q = ρ2/l. Let P be the new momentum.
In order for the transformation to be canonical, one must satisfy the
conservation of area, a property that implies a unit Jacobian

J = 1 = (∂ρQ)(∂pρ
P ) − (∂ρP )(∂pρ

Q).

With (∂ρQ) = 2ρ/l, (∂pρ
Q) = 0, this relation is equivalent to (∂pρ

P ) =
l/(2ρ) which is integrated easily to give:

P (ρ, pρ) =
lpρ

2ρ
.

One can check that, if the Lagrangian is written in terms of (Q, Q̇) vari-
ables,

L(Q, Q̇) =
1
2
m

(
lQ̇2

4Q
+

σ2

m2lQ
− ω2lQ

)
,

one has P = mlρ̇/(2ρ) = mlQ̇/(4Q) which is identified with P = ∂Q̇L.
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2. This canonical transformation does not depend on time and the new
Hamiltonian K(Q,φ, P, pφ) is simply identical with the old one, but ex-
pressed in terms of the new coordinates, HHO(ρ(Q), φ, pρ(Q,P ), pφ). A
simple calculation leads to the following expression:

K(Q,φ, P, pφ) =
2QP 2

ml
+

p2
φ

2mlQ
+

1
2
mω2lQ.

3. The system being conservative, the value of this Hamiltonian on the
trajectory is a constant equal to the energy

2QP 2

ml
+

p2
φ

2mlQ
+

1
2
mω2lQ = Eho.

Let us divide this equation by 4Q/l to obtain:

P 2

2m
+

p2
φ

8mQ2
− lEho

4Q
= −1

8
mω2l2.

For a Coulomb potential, one has V (Q) = −K/Q, and the Hamiltonian
for the system is

Hc(Q,α, P, pα) =
P 2

2m
+

p2
α

2mQ2
− K

Q
= Ec.

One notices that it can be written in the same form as the previous
Hamiltonian provided one makes the following substitutions:

K =
lEho

4
; Ec = −mω2l2

8
; pα =

pφ

2

4. The Kepler trajectory is given by dQ/dα = Q̇/α̇. Moreover, Hamilton’s
equations provide Q̇ = ∂P Hc = P/m and α̇ = ∂pα

Hc = pα/(mQ2) so that
Q̇/α̇ = PQ2/pα = ρ3pρ/(lpφ). The trajectory for the harmonic oscillator
is given by dρ/dφ = ρ̇/φ̇. In this case, Hamilton’s equations are ρ̇ =
∂pρ

HHO = pρ/m, and φ̇ = ∂pφ
HHO = pφ/(mρ2) which lead to dρ/dφ =

ρ2pρ/pφ . Comparing these two expressions

dQ

dα
=

ρ

l

ρ2pρ

pφ

=
ρ

l

dρ

dφ
=

1
2

d(ρ2/l)
dφ

=
1
2

dQ

dφ
,

whence dα = 2 dφ and thus, with a judicious choice of the origin:

α = 2φ.
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5. Let us start from the Kepler trajectory given by

1
Q

=
1
p

[1 + e cos α]

with p = p2
α/(mK), e =

√
1 + 2Ecp2

α/(mK2). We make the substitutions
of question 3 to find the equation of the trajectory for the harmonic
oscillator:

l

ρ2
=

1
p

+
1
p
e cos(2φ).

Using the property cos(2φ) = cos2 φ−sin2 φ and the Cartesian coordinates
x = ρ cos φ, y = ρ sin φ, we arrive at the following equation:

x2

[pl/(1 + e)]
+

y2

[pl/(1 − e)]
= 1.

This is the equation of an ellipse with its center at the origin, i.e., at
the center of force, with a semi-minor axis b =

√
pl/(1 + e), and semi-

major axis a =
√

pl/(1 − e). We present in Fig. 6.7, the correspondence
between the two types of trajectories.

y

x

(6)

(6)

(3)

(3)

Q
α ϕ

ρ

Fig. 6.7 Passage from the Kepler trajectory (in light grey) to the harmonic
oscillator trajectory (dark grey) using the proposed contact transformation.

The corresponding positions are displayed as full circles. A complete
revolution around the Kepler ellipse corresponds to half a revolution on the

harmonic oscillator ellipse
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6. It is easy to check that

p =
p2

φ

mlEho
, 1 − e2 =

ω2p2
φ

E2
ho

.

The energy being constant along the trajectory, it is convenient to calcu-
late it at the most suitable point, the perihelion. At that point (pρ = 0),
the kinetic energy is

T =
p2

φ

2mb2
=

1
2
Eho(1 + e)

and the potential energy V = 1
2mω2b2 = 1

2Eho(1 − e). Consequently
HHO = T + V = Eho, as expected.

HHO = T + V = Eho.

7. Let us start from the radial action obtained in the Kepler problem 2Iρ =
K
√

2m/ |E| − 2pα. Substituting the quantities suggested in Question 3,
we arrive at:

2Iρ =
Eho

ω
− pφ.

Performing the EBK quantization procedure, one makes the substitutions
Iρ = n� and Iφ = λ� to obtain the semi-classical quantized value for the
harmonic oscillator:

Eho = �ω(2n + λ).

6.18. Generators for Fundamental
Transformations [Statement p. 303]

A – Translations
1. By definition, the variation of the function in phase space is:

dF = F (x1+a1, x2+a2, x3+a3, px1 , px2 , px3)−F (x1, x2, x3, px1 , px2 , px3),

since the translation does not affect momenta which are proportional to
velocities. For infinitesimal transformations, this variation depends on
the first derivatives of F . Explicitly:

dF =
3∑

i=1

ai
∂F

∂xi
.
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2. Let consider the translation along the first axis Ox1 by an infinitesimal
quantity a. Let Ta be the corresponding generator. From the first ques-
tion, one has dF = a(∂x1F ). On the other hand, relying on (6.6), we
also have dF = {F, Ta} a, since a is the flow parameter. Expliciting the
Poisson bracket and identifying with the previous expression, one ob-
tains (∂px1

Ta) = 1, (∂px2
Ta) = 0, (∂px3

Ta) = 0, (∂xi
Ta) = 0. These

equations allow us to obtain the generator for translations along the Ox1

axis: Ta1 = px1 . An analogous reasoning for the other axes would give
similar results:

Tai
= pxi

.

3. From the results of the preceding question
{
Tai

, Taj

}
=

{
pxi

, pxj

}
. De-

veloping the latter Poisson bracket, we easily find that it vanishes:
{
Tai

, Taj

}
= 0.

This property implies that translation operations along two different axes
commute.

B – Rotations
1. Let F (x, y, z, px, py, pz) be a function defined at a point in a six-dimensio-

nal phase space. One calculates the variation of this function, considering
a neighbouring point (x + dx, y + dy, z + dz, px + dpx, py + dpy, pz + dpz)
obtained by a rotation by an angle dφ around the Oz axis. Since r and
p are two vectors of ordinary three-dimensional space, they transform
under rotation with the same law. Their Cartesian components fulfill the
relations dx = −y dφ , dy = x dφ, dz = 0 and similar relations for the
components of the momentum. Therefore one can write:

dF =
[
x(∂yF ) − y(∂xF ) + px(∂py

F ) − py(∂px
F )

]
dφ.

Furthermore,

{F,Lz} =
3∑

i=1

(∂ri
F )(∂pi

Lz) − (∂pi
F )(∂ri

Lz).

The only non vanishing derivatives are (∂xLz) = py, (∂yLz) = −px,
∂px

Lz = −y and ∂py
Lz = x. Consequently

{F,Lz} = x(∂yF ) − y(∂xF ) + px(∂py
F ) − py(∂px

F ),

so that:

dF = {F,Lz} dφ.
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2. With Cartesian coordinates, the flow of Lz is given by (∂px
Lz, ∂py

Lz,
∂pz

Lz,−∂xLz,−∂yLz,−∂zLz), or (−y, x, 0,−py, px, 0). In ordinary space,
the flow is given by (−y, x, 0), that is the vector field −ρ sin φ êx +
ρ cos φ êy = ρ êφ. The integral lines of this flow are circles with radius ρ,
centered on the Oz axis with z constant.

3. One defines the generators of rotations around the Ox axis and Oy axis
respectively by Lx = ypz − zpy and Ly = zpx − xpz. Then

{Lx, Ly} =
3∑

i=1

(∂ri
Lx)(∂pi

Ly) − (∂pi
Lx)(∂ri

Ly).

Owing to the definition of the generators, one is left only with the differ-
ence (∂zLx)(∂pz

Ly) −(∂pz
Lx)(∂zLy), or

(−py)(−x) − (y)(px) = xpy − ypx = Lz.

The same calculation can be performed alternatively relying on the ele-
mentary Poisson brackets. Thus

{Lx, Ly} = Lz.

Rotations around non parallel axes do not commute.

C – Galilean transformation
1. For a free particle moving on a straight line, one has p = mq̇. In a

Galilean transformation, with infinitesimal speed v, the relation between
the coordinates of the particle seen in both frames is q′ = q−vt. The link
between corresponding momenta is obtained by differentiation and leads
to p′ = p − mv. The variation of a function F (q, p, t) under a Galilean
transformation is expressed as dF = F (q′, p′, t′) − F (q, p, t), or, thanks
to the previous relations and to the universality of time t′ = t: dF =
F (q − vt, p − mv, t) − F (q, p, t). Expanding this expression to first order
in the velocity, which is the flow parameter, one obtains:

dF = − [t(∂qF ) + m(∂pF )] v.

2. Let us denote by G the generator of the free particle for a Galilean trans-
formation. From the Definition (6.6), we have dF = {F,G} v. On the
other hand, the Poisson bracket is translated as {F,G} = (∂qF )(∂pG) −
(∂pF )(∂qG). Identifying this equation with the previous one, we arrive at
the relations (∂pG) = −t, (∂qG) = m. These equations can be integrated
to provide the generator of the Galilean transformation (in this generator
the time is a parameter, but not a component in phase space):

G(q, p, t) = mq − pt.
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D – Lorentz Transformation
1. The one-dimensional Lorentz transformation is written generally as q′ =

γ(q − βct), ct′ = γ(ct − βq) for the event quadrivector and p′ = γ(p −
βE/c), E′/c = γ(E/c − βp) for the momentum quadrivector. We set, as
usual, β = v/c and γ = (1 − β2)−1/2.

If the relative velocity between the two frames is infinitesimal β � 1, one
can restrict oneself to first order in β in the previous transformation; in
this case γ ≈ 1 and the Lorentz transformation reduces to:

q′ = q − βct; ct′ = ct − βq;
p′ = p − βE/c; E′/c = E/c − βp.

2. The phase space is determined by the coordinates (q1 = q, q2 = ct) and
by the momenta (p1 = p, p2 = pct). We saw several times (in particular in
Problem 4.9 ) that the momentum conjugate to time is the negative of the
energy: pt = −E; thus the conjugate momentum for the coordinate ct is,
naturally: pct = −E/c. Consequently, a function in phase space is chosen
in the form F (q1, q2, p1, p2) = F (q, ct, p,−E/c). The variation of this
function dF = F (q′, ct′, p′,−E′/c)−F (q, ct, p,−E/c) for the infinitesimal
Lorentz transformation given previously leads to the following relation:

dF = [−ct(∂q1F ) − q(∂q2F ) − (E/c)(∂p1F ) + p(∂p2F )] β.

3. Relying on (6.6), the preceding expression is the variation of the function
along the flow of the generator of the Lorentz “boost” U . One recognizes
that the velocity v = cβ is the flow parameter and that the term in
brackets should be identified with c {F,U}. This identification implies
the relations (∂p1U) = −t = −q2/c, (∂p2U) = −q/c = −q1/c, (∂q1U) =
E/c2 = −p2/c, (∂q2U) = −p/c = −p1/c. After integration, one deduces
the desired generator U = −(p1q2 + q1p2)/c.

One can remark the analogy with the expression of the component of the
angular momentum Lz (to within a sign). Substituting for the conjugate
variables by their more traditional expressions, we obtain the final form
of the generator for the Lorentz transformation (in this case time is no
longer a parameter, but a full coordinate):

U(q, t, p, E) =
(

q
E

c2
− pt

)
.

Comparing the relativistic expression, U , with the non-relativistic one,
G, for the generator concerning a change of frame, one notices the famous
relation: E = mc2.



Chapter 7

Quasi-Integrable Systems

Summary

7.1. Introduction
A quasi-integrable system differs only slightly from an integrable system; one
uses the properties of the latter system to have an idea of the properties
of the original one. Schematically, one distinguishes two types of quasi-
integrable systems.
1. First we consider systems whose Hamiltonian differs from that of an

integrable system by the addition of a function in phase space, known as
a perturbation, which we can imagine as weak as we wish. This is the
essence of perturbation theory. This method has been largely employed
in celestial mechanics to study the motion of planets. The integrable
system is the couple Sun-Planet and the perturbation is the influence of
all other planets.

2. Second we consider integrable systems whose Hamiltonian depends on pa-
rameters. If one or several of these parameters vary in time these systems
are generally no longer integrable. However, if this variation is sufficiently
slow, one can obtain important results. This is the essence of the theory
of adiabatic invariants. This approach is very useful in the study of the
motion of particles embedded in slowly varying electromagnetic fields.

C. Gignoux, B. Silvestre-Brac, Solved Problems in Lagrangian 341
and Hamiltonian Mechanics, DOI 10.1007/978-90-481-2393-3_7,
c© Springer Science+Business Media B.V. 2009
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7.2. Perturbation Theory
The full Hamiltonian is H(q, p) = H0(q, p) + V (q, p) and we know the so-
lution q0(t), p0(t) of Hamilton’s equations for H0. Perturbation theory
consists in seeking the solution of the more general problem governed by
the Hamiltonian Hε = H0 + εV under the form of an expansion in powers
of ε: qε(t) = q0(t) + εq1(t) + ε2q2(t) + . . . with an analogous expansion for
pε(t).

These expansions are inserted in Hamilton’s equations q̇ε(t) − ∂pHε = 0
and ṗε(t) + ∂qHε = 0, which become polynomials in ε with infinite de-
gree. The unknown functions qi(t), pi(t) are then chosen in order to cancel
the coefficients of this polynomial with order less or equal to m. They
are obtained generally by a chain of cascades order by order starting from
the known solution q0(t), p0(t). Finally, it is sufficient to set ε = 1 in
the expressions of qε(t) and pε(t) to obtain the approximate solution of the
perturbation up to order m.

7.3. Canonical Perturbation Theory
For quasi-integrable systems, the correct choice for coordinates in phase
space is the set of angle-action variables (α, I) of the integrable system
the Hamiltonian of which is denoted H0(I) (angle independent). Thus the
Hamiltonian of the quasi-integrable system is written as:

H(α, I) = H0(I) + V (α, I). (7.1)

As explained previously, one uses the intermediate Hamiltonian Hε = H0 +
εV .

The canonical perturbation theory is an elegant manner of using the gen-
eral perturbation theory. The idea is the following: one seeks a canonical
transformation to new angle-action variables (φ, J) in the form of an expan-
sion to arbitrary order in ε, but in a rather peculiar way. One expands the
new angle1 φ and the old action I as functions of old angle α and the
new action J .

To illustrate this principle, let restrict ourselves to the study of a one-
dimensional system. For the first order perturbation theory, we define:

φ(α, J) = α + εφ(1)(α, J); (7.2)
I(α, J) = J + εI(1)(α, J). (7.3)

1 For a simpler typographical notation, we omit the index ε for the variables (φ, J)
which should be written more rigorously as (φε, Jε).
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This unexpected way to perform the expansions allows us to impose the
canonical condition for the transformation2 more easily.

The original Hamiltonian is then written in terms of the old angle and
the new action in the following form:

H0(I) + εV (α, I) = H0(J) + ε
[
I(1)(α, J)(∂JH0(J)) + V (α, J)

]
+ O(ε2).

The unknown function I(1)(α, J) can be chosen in order that the first order
term in ε is independent of the angle and is written as εH(1)(J).

As soon as I(1) is determined, the canonicity of the transformation allows
us to specify φ(1)(α, J) more precisely. The problem of first order perturba-
tion theory is solved by setting ε = 1. The solution of Hamilton’s equations
for the Hamiltonian H(J) = H0(J)+H(1)(J) differs from the exact solution
in second order.

This solution is simple: the new Hamiltonian H(J) is integrable; the
new actions are first integrals J = const and the new angles φ vary with a
constant angular frequency ω(J):

φ̇(J) = ∂J

(
H0(J) + H(1)(J)

)
= ω0(J) + ω(1)(J) = ω(J).

To retrieve the initial variables, if necessary...

The old angle α is given indirectly to first order by

α = ω(J)t − φ(1)(α, J) = ω(J)t − φ(1)(ω(J)t, J) + O(ε2)

and the old action I directly by

I(α, J) = J + I(1)(α, J).

It can be proved generally that
1. The first correction to the Hamiltonian is the perturbation averaged over

each periodic motion V (J)

H(1)(J) =
1

(2π)n

∫
V (α, J) dα1 . . . dαn = V (J). (7.4)

2. For a problem with one degree of freedom

I(1)(α, J) =
H(1)(J) − V (α, J)

ω0(J)
; (7.5)

φ(1)(α, J) =
∫ (

∂JI(1)(α, J)
)

dα. (7.6)

2 The readers who were courageous enough to study the last elements of Chapter 5.11
will realize that it is sufficient to find a generating function of type 2 in the form
Sε(α, J) = αJ + εS(1)(α, J).
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3. For a problem with more than one degree of freedom, the preceding for-
mulae can be generalized in the following form3:

I
(1)
i (α, J) = −

∑

m

mie
im·α Vm(J)

m · ω0(J)
; (7.7)

φ
(1)
i (α, J) = −

∑

m

eim·α∂Ji

(
Vm(J)

im · ω0(J)

)
(7.8)

in which use is made of the following quantities:
• An array of integer numbers (positive and negative) m to specify the

set of n numbers (m1,m2, . . . ,mn);

• the “scalar products” m · ω0(J) to symbolize m1ω01(J) + m2ω02(J) +
. . . + mnω0n(J) and m · α for m1α1 + m2α2 + . . . + mnαn;

• the Fourier coefficients of the potential Vm(J) defined as usual by

V (α, J) =
∑

m

eim·αVm(J).

Second order perturbations
• One can adopt the same approach and postulate a new canonical transfor-

mation with angle-action variables which are close to their initial values
up to second order and, then, require the Hamiltonian to be angle inde-
pendent for the terms in ε and ε2.

• One can also remark that H−H0(J)−εH(1)(J), expressed as a function of
the new variables, differs from H, up to terms in ε2, and can be considered
as an even smaller perturbation which can be treated at first order as was
done previously.

In addition to the averaged value V (J) already present in first order, the
second order theory requires the calculation of the average value for the
square of the potential V 2(J) defined as:

V 2(J) =
1

(2π)n

∫
(V (α, J))2 dα1 . . . dαn.

In this case, the second order correction to the Hamiltonian is written:

H(2)(J) = ∂J

(
V (J)2 − V 2(J)

2ω0(J)

)
(7.9)

3 With ω0(J) = ∂JH0(J) = (ω01(J), . . . , ω0n(J)) =
(
(∂J1H0(J)), . . . , (∂JnH0(J))

)
, as

we saw in Chapter 5.11.
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and the second order correction to the angular frequency is ω(2)(J) =
∂JH(2)(J).

The perturbative treatment up to second order will be presented in more
detail in Problem 7.4. We will give, in this problem, the second order
corrections to the angles and to the actions whose expressions are much
more involved.

The catastrophe of small denominators

The treatment with the help of the canonical theory of perturbation is very
useful, but it is especially important because it emphasizes what is called
the catastrophe of small denominators or resonance phenomenon. This is
apparent in the Expression (7.7) in the case where m · ω0(J) = 0.

Let us give an example in the case of a two-dimensional system. There
may exist initial conditions for J values such that the angular frequencies
are commensurable, for instance 2ω01(J) ∼= 3ω02(J). In other words, after
each three periods for the variable 1 and each two periods for the variable
2, the system resets its state; the perturbation acts in an identical and
cumulative way: we speak of a 3:2 resonance. There exists a divergence
in the Expansion (7.7) for the term m1 = 2,m2 = −3. There exist many
examples in celestial mechanics: for instance, the daily period of Mercury
is commensurable with its period of revolution.

This property is expressed mathematically by the smallness of the de-
nominator in the corrective terms which no longer correspond to an approx-
imation, and there is no reason to think that this problem can be cured by
increasing the order of perturbation. In special cases, one can get rid of
these undesirable effects with the help of a further canonical transforma-
tion. This failure of the perturbation theory close to the resonance lies at
the origin of the fundamental works of Poincaré, which will be discussed in
the next chapter.

7.4. Adiabatic Invariants
One considers now an integrable Hamiltonian H(q, p, λ) which depends on
one (or several) fixed parameter(s) denoted λ. There exists a canonical
transformation q(α, I, λ), p(α, I, λ) or, inversely, α(q, p, λ), I(q, p, λ) such
that the Hamiltonian can be written as K(I, λ).

Let us assume now that the parameter depends on time : λ(t). The pre-
ceding statements remain valid provided that we add a term to the Hamilto-
nian (see the part of Chapter 5.11 dealing with the time dependent canonical
transformations); moreover I(q, p, λ(t)) is no longer constant.
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It can be shown that, for a variation of the parameter Δλ (not neces-
sarily small), the action variable differs from its initial value by terms of
order inversely proportional to the time T required for this variation of the
parameter.

The action variable is said to be an adiabatic invariant.
This very important result can be understood quite easily.
The variation rate of the action is given, as is the case for any function

of phase space and time (see Chapter 5.11), by

İ = {I,K} + ∂tI(q, p, λ(t))|q,p.

However the Poisson bracket4 {I,K} vanishes. Using the angle-action vari-
ables, the previous relation can be written as:

İ = λ̇(∂λI(q, p, λ))|q,p = λ̇(t)g(α, I, λ(t)), (7.10)

a relation which defines a periodic (and this is an important point) function
g(α, I, λ(t)) of the angle. The angle α has an angular velocity which differs
slightly from ∂IH(I, λ(t)). If, over a period, the variation of the parameter
λ is small the average in time for g(α, I, λ(t)) will be close to the average
over the angle. Yet this average is null for a periodic function5. The same
thing is true for the average rate of variation of the action variable.

The theory of adiabatic invariants is of prime importance for the motion
of charged particles in magnetic fields, as, for example, in the study of the
magnetosphere or of particle accelerators.

Let us give the most important result: we saw that the action variable
for the cyclotron motion of a particle is just the magnetic flux enclosing the
trajectory. This flux is an adiabatic invariant. When the particle moves
towards regions with increasing magnetic field, the radius must decrease
in order to maintain the flux and so the velocity6 and the kinetic energy
increase. The conservation of kinetic energy leads to a decrease of the
component of the velocity parallel to the field, a decrease that can possibly
lead to an inversion of the velocity. This property will be studied in more
detail in Problem 7.8 (page 354).

4 Let us remind you that the Poisson bracket can be calculated with any set of variables,
provided that they are obtained by a canonical transformation.

5 The average value of a periodic function is not automatically null, but, in the present
case, the function g(α) is the derivative with respect to α of another function and
this property indeed holds.

6 See the Problem 6.4 (page 291).
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Problem Statements
7.1. Limits of the Perturbative Expansion

[Solution and Figure p. 358] �

A differential equation which is solved by a perturbative treatment at all
orders

Using the perturbation theory, we wish to solve the differential equation
q̇ = q − εq2 (ε > 0), where q(t) takes the value 1 when t = 0. We choose
as a starting point the function q0(t) = et, and a perturbative expansion of
the form

q(t) =
∞∑

0

εnqn(t).

This equation could mimic the time evolution of a population of bacteria
which multiply proportionally to their number, with a limitation mechanism
proportional to the number of pairs of bacteria.
1. Show that the first correction is q1(t) = et(1 − et).

2. Using the technique proposed in the summary, prove that the perturbed
term of order n is qn(t) = et(1 − et)n.

3. The sum of all corrections is a geometrical series. Give the complete
solution and verify that it makes sense only before a critical time which
is to be determined.

4. Solve directly the proposed differential equation and compare the result
with the perturbed solution.

5. Show that the exact solution tends to a finite limit when t → ∞.

7.2. Non-canonical Versus Canonical
Perturbative Expansion
[Solution p. 361] � �

It may be dangerous to apply perturbation theory with incorrect variables

Let us take, with a suitable set of coordinates, the Hamilton function for a
anharmonic oscillator: H(q, p) = 1

2 (q2 + p2) + 1
3εq3.

The aim of this problem is to show that we must be very cautious if
we do not employ the canonical perturbation theory (based on angle-action
variables).
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1. Derive Newton’s equation and write it in the form: q̈ = −q − εq2.

2. Find a solution of this equation, corresponding to the initial conditions
q(0) = 1, q̇(0) = 0 in the form of a perturbative expansion in ε with the
lowest order q0(t) = cos t. Give and solve the differential equation for
q1(t). Is there a modification of the period of the motion?

3. Same question for the second order correction. One could notice that the
second member of the equation exhibits the natural period; consequently,
the solution increases linearly with time. Such a term is known as a
secular term.

This latter solution is no longer periodic (in principle it should be for
a given range of energy) and it is therefore valid only for small times.
We will see that this drawback disappears if we choose a correct set of
coordinates.

4. Use the canonical perturbation theory and prove that, to first order,
there is no modification of the period. Calculate the angular frequency
to second order as a function of the action (for instance using Formula
(7.9) or the results of Problem 7.4).

7.3. First Canonical Correction for the
Pendulum [Solution and Figure p. 363] � � �

The classical example of a simple pendulum treated by perturbation.

We consider a simple pendulum of mass m and length l. We use as gener-
alized coordinate q, the angle between the direction of the pendulum and
the vertical; we remind you that Hamilton’s function for this system is:
H(q, p) = p2/(2ml2) + mgl(1 − cos q).
1. Find the change of coordinate Q(q) which allows us to transform the

Hamiltonian into the form of a harmonic oscillator (corresponding to
small amplitudes):

H0(Q,P ) =
1
2
ω(P 2 + Q2)

where ω =
√

g/l is the unperturbed angular frequency.

2. We wish to take into account the quartic approximation (in q4), which
arises from the expansion of cos q in the original Hamiltonian. Using
the expressions of the angle-action variables adapted for the unperturbed
Hamiltonian H0, write down the Hamilton function K(α, I) in the quartic
approximation.
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3. Perform a perturbative treatment to first order to find the expression of
the energy K(J) and the new angular frequency ω(J) in terms of the new
set of variables (φ, J).

4. Determine, also to first order, the canonical transformation α(φ, J) and
I(φ, J) between the new and the old set of angle-action variables.

5. Show that the exact period of the pendulum at the quartic approximation
(Hamiltonian including the q2 and q4 terms) is given by the following
expression, where qm is the maximal elongation:

T =
4

ω
√

1 − q2
m/12

1∫

0

dq√
(1 − q2)(1 − μq2)

with μ =
1

(12/q2
m) − 1

The integral appearing in this formula is known as the complete elliptic
integral of the first kind K(μ). Its value is given by known numerical
algorithms. Particular values are K(μ = 0) = π/2 and K(μ = 1) = ∞.
For which value of qm does the period tend to infinity?

6. Show that, for the true pendulum (Hamiltonian depending on cos q), the
period is given by the analogous expression:

T =
4
ω

1∫

0

dq√
(1 − q2)(1 − μq2)

with μ = sin2 qm

2
.

For which value of qm does the period tend to infinity?

7.4. Beyond the First Order Correction
[Solution p. 367] � � �

Canonical theory of perturbation extended up to second order

We wish to apply the method developed in the summary up to second order.
We still consider an autonomous one-dimensional system. The formulae
dealing with first order are supposed to be known (see Formulae (7.4) and
(7.5)).
1. Calculate, as a function of the corrections to the action I(1) and I(2), the

correction to second order for the Hamiltonian K(2)(J).

2. Deduce the angular dependence of the second correction to the unper-
turbed action I(2).
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3. Show that the conservation of area for a canonical transformation to
second order gives:

2π∫

0

I(2)(α, J) dα = 0.

4. From the preceding questions and the results concerning first order cor-
rections, calculate the second order correction to the Hamiltonian, as a
function of the perturbing potential. You will introduce the average value
of the square of the interaction (not to be confused with the square of
the average value V (J)2):

V 2(J) =
1
2π

2π∫

0

V 2(α, J) dα.

Again using the conservation of area, prove that

∂αφ(2)(α, J) = ∂JI(2)(α, J)

and deduce the first part of the canonical transformation α(φ, J) extended
up to second order.

5. Complete the description of the canonical transformation by calculating
I(φ, J) to second order.

7.5. Adiabatic Invariant in an Elevator
[Solution p. 370] � �

A peculiar experiment in an elevator

A ball of mass m bounces elastically on the floor of an elevator, in a con-
stant gravitational field g. We are concerned only with the one-dimensional
motion along the vertical. The elevator starts slowly with a null initial ac-
celeration and the height of the floor above the ground is specified by the
function h(t). At the end of the ascent, the elevator decelerates slowly and
then stops. We assume that the motion can be characterized as adiabatic
(the acceleration varies only slightly between two rebounds).
1. Choosing as a generalized coordinate Q, the altitude of the ball above

the floor, give the expression of the Lagrangian L(Q, Q̇, t). Find a sim-
pler expression for this function by adding the total time derivative of
a well chosen function F (Q, t). Deduce the corresponding Hamiltonian
H(Q,P, t).
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2. Calculate the action I(E, a) at time t, when the acceleration of the el-
evator takes the value ḧ(t) = a (one can also refer to Problem 6.3 for
this particular point). Give the relation between the energy E and the
maximal height Qm reached by the ball under these conditions.

3. Using the adiabaticity condition, show that the height of the rebound
obeys the relation:

Qmax(a)
Qmax(0)

=
(

g

g + a

)1/3

.

4. What is the final height of the rebound after the elevator stops?

7.6. Adiabatic Invariant and Adiabatic
Relaxation [Solution and Figure p. 372] � � �

Walls do not have “ears” but “wings”

In this problem, we reexamine the system described in Problem 6.2. A
particle, of mass m, moves freely on the Ox axis between a “wall” placed at
point O (x = 0) and a “wall” placed at point A (x = L). Striking either of
the walls, the particle bounces elastically (change of the sign of the velocity)
and moves freely in the opposite direction. The corresponding Hamiltonian
is a “square well” which can be simulated by a less singular potential, as was
suggested in Problem 6.2 (in the latter problem the abscissae of the walls
were −a and a instead of 0 and L; you will make the trivial identification
L = 2a). In the following, we need to use the fact that the particle velocity
is constant between the walls and that it changes sign at the impact on a
fixed wall (see Fig. 7.1).

t

x

-vn

vn

-vn+1

Fig. 7.1 Schematic motion of the particle
between a fixed wall on the left side and a
wall moving at constant speed on the right
side
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1. Both walls are assumed to be fixed. Calculate the action of the particle
in terms of the velocity v or the energy E.

2. Now assume that the right wall A moves away from the fixed wall O at
constant speed u and denote by vn the modulus of the velocity after the
nth impact on the fixed wall. Give the relation between vn+1 and vn.
Deduce the expression of vn as a function of the initial velocity v0 (at the
start of the motion for the moving wall).

3. In this question, one calculates the action In, which depends on time, at
the moment when the particle touches the moving wall after the
nth impact on the fixed wall (action calculated between two impacts on
the moving wall). This definition is the usual one in the literature. The
dimensionless quantity zn = u/(v0−2nu) is introduced. Give the relation
between In+1 and In. Show that the action remains constant when the
adiabaticity condition (u << vn) is fulfilled.

4. In this question, the action In is calculated immediately after the nth

impact on the fixed wall (action calculated between two impacts on
the fixed wall). Give the relationship between In+1 and In. What can
we conclude?

5. One considers now the same particle enclosed in a parallelepipedic box,
which expands in time in a homothetic way, that is its length Li (i =
(x, y, z)) along the Oxi axis increases linearly with time: Li = uit. One
speaks of an adiabatic relaxation, in the sense that the particle still con-
tinues bouncing elastically on the walls, without exchanging heat with
the surroundings. We remind you that the kinetic energy is proportional
to the temperature T . Using the result of Question 3 or 4, what is the re-
lationship between the volume V of the box and the absolute temperature
T during an adiabatic process.

7.7. Charge in a Slowly Varying Magnetic
Field [Solution and Figure p. 375] � � �

More on electromagnetic fields.

We study once more the problem of a particle of mass m and electric charge
qe embedded in a magnetic field B directed along the Oz axis. We assume
in a first case that the magnetic field B is uniform and constant. We remind
you that, along the direction of B, the motion is uniform and that, in the
perpendicular plane, the trajectory is a circle covered at constant angular
velocity ω = qeB/m, known as the cyclotron frequency. We are concerned
with this two-dimensional motion in the plane Oxy (see also the Problem
2.9 on the cyclotron motion, p. 66).
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Using adiabatic invariants, one can extend these results to a less academic
situation for which the field may be neither uniform nor constant.

Let us begin with the simplest case of a constant magnetic field. We
work from now on in the gauge where the vector potential is given by
A = (−yB, 0, 0). The generalized coordinates are the Cartesian coordi-
nates (x, y).
1. Recall the relation between the generalized momentum and the velocity,

and then the expression of the Hamiltonian of the particle with this set
of coordinates.

It is useful to perform a canonical transformation switching from the old
coordinates (x, y) to new coordinates (φ, Y ). This canonical transforma-
tion is governed by a generating function of type 1 (if necessary, refer to
Section 6.2.3):

G1(φ, Y, x, y) = C

[
1
2
(y − Y )2 cot(φ) + xY

]
,

where C is a constant undetermined for the moment.

2. Express the new variables (coordinates and momenta) in terms of the old
ones.

3. Determine the value of the constant C in order to obtain the simplest
form for the Hamiltonian expressed in terms of the new set of coordinates.
Give its expression. Is the system integrable? What are the angle-action
variables?

4. Express the new variables in term of the old ones, as well as the compo-
nents and the modulus of the velocity. Interpret these new coordinates.
Show that pφ is proportional to the magnetic flux Φ through the cyclotron
circle, as well as to the magnetic moment μ generated by the cyclotron
motion.

5. Show that the energy can be interpreted as the coupling of the magnetic
moment with the magnetic field: H = −μ · B. Prove that μ and B are
collinear but with opposite sense.

From now on, assume that an operator imposes a time dependence, B(t),
on the field while maintaining its direction along the Oz axis (or that the
particle during its motion along the field lines experiences a variation of
the field). This dependence is assumed to be adiabatic; this means that
an appreciable change of B(t) requires a time which is much larger than
the cyclotron period of the same system.

6. What is the quantity which remains constant in time?
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This transformation allows us to generalize the notion of drift for the
cyclotron orbit (we already met with such a drift by the addition of
an electric field in Problem 2.9). Let us imagine a supplementary force
F acting on the particle. For simplicity we assume that this force arises
from a potential V (y), which depends on the y coordinate only and which
varies slowly over a range of order of the cyclotron radius.

7. Write down the complete Hamiltonian, as well as the Hamilton equations
relative to the (Y, PY ) variables. Deduce that, on average over one revo-
lution, the center of the cyclotron circle drifts along the Ox axis with a
velocity to be determined.

This result is quite general: there is a drift perpendicular to the force,
that is along the equipotential lines, with a velocity Vd = (B×F )/(qeB

2).

7.8. Illuminations Concerning the Aurora
Borealis [Solution and Figure p. 379] � �

A fascinating natural phenomenon studied in detail. It is strongly advised
to solve Problems 2.9 and 7.7 before continuing

To a good approximation, the Earth’s magnetism is that of a magnetic
dipole. In the magnetic equatorial plane, the magnetic field, which is per-
pendicular to it, takes the values Be = 0.31 10−4(RT /R)3 Tesla (Be is the
value of B at the equator). In this formula RT designates the Earth’s ra-
dius and R the distance to the center of the Earth, for which the field is
measured.

An electron of mass m, charge qe and energy E crosses the equatorial
plane, at a distance R from the center of the Earth, its velocity making an
angle α with the direction of the magnetic field.
1. Recall the expression of the cyclotron frequency and show that the cy-

clotron radius (projection of the trajectory onto the equatorial plane) in
the non-relativistic limit is:

Rc =

√
2mE sin2 α

qeBe
.

In units of the Earth’s radius, what is the value of this radius for α = π/4
and for an energy E = 60 keV, at a distance 1.5RT from the Earth’s
center. Give also the period of this cyclotron rotation.

Data: qe = 1.6 10−19 C, m = 9.11 10−31 kg, RT = 6367 km.
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2. Show that the action variable (see also Problem 7.7) is:

pφ = −mE sin2 α

qeBe
.

The electron rolls itself up in an helical trajectory around the field line
and thus sees a magnetic field which increases as it approaches the pole.
The action variable is an adiabatic invariant.

3. Denoting by s the distance covered along the field line and by B(s) the
intensity of the magnetic field (Be = B(s = 0)), show that the energy as-
sociated with the rotational motion is EB(s) sin2 α/Be. The total energy
of the particle is a constant. Why? Deduce that the electron, whatever its
energy, cannot explore a region close to the pole for which the magnetic
field exceeds the value B(sm) = Be/ sin2 α.

4. The particle bounces in the regions of strong field close to the poles and
performs successive rebounds from one hemisphere to the other.

Prove that the period for this cyclic motion is given by the integral:

T = 2
√

m

2E

sm∫

sm

ds√
1 − B(s)/B(sm)

(its value is approximatively 2 s for electrons of 30 keV).

Being close to the poles, thus to the atmosphere, the electric charges
trapped by this mechanism (essentially protons and electrons) finally
strike and excite the atoms of the higher atmosphere. The decay of
these atoms produces a light which generates the aurora borealis.

This bouncing motion from one pole to the other is not limited to the
vicinity of the field lines. Globally, the motion drifts easterly for electrons,
westerly for protons.

We can understand this phenomenon using the results of Problem 7.7.

One knows that the cyclotron motion generates a current, which itself
generates a dipole magnetic moment μ. The rotational energy can be
considered as the coupling of the magnetic moment with the magnetic
field E = −μ · B; the magnetic field exerts a force and a torque on this
magnetic moment.

5. Show that, in our case, this force at the equator, which tends to push the
dipole away from the Earth, takes the value F = 3E sin2 α/R. Deduce
that the easterly drift velocity for the electron close to the equator is

Vd =
3E sin2 α

qeBeR
.
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Additional remarks: This problem is the source of several interesting exten-
sions. The curious reader will easily find complements in an encyclopaedia,
or on the Internet. Let us emphasize some important points.
• In fact, the terrestrial magnetic field is not exactly that of a dipole; this

induces modifications to the previous behaviour; moreover the solar wind
plays a non negligible role.

• There exist two adiabatic invariants associated with two periodic motions:
the northerly-southerly motion and the rotation around the Earth due to
the drift.

• A further cause of drift is the centrifugal force resulting from the curvature
of field lines.

7.9. Bead on a Rigid Wire: Hannay’s Phase
[Solution and Figure p. 382] � � �

An amusing but simple experiment

In this problem, we will find a result due to Hannay which provides more
information on the angle variable.

We consider a bead, of mass m, constrained to slide without friction
on a closed, plane and rigid wire, with an arbitrary shape of perimeter L,
enclosing a surface S. The position M of the bead on the wire is specified by
its curvilinear abscissa s(t), the origin being located at an arbitrary point
of the wire.

In a first experiment, the wire is held fixed in the plane and the bead
moves at constant speed ṡ0 (the only force exerted on the bead is the reaction
force normal to the wire which does not produce work and consequently does
not modify the kinetic energy, nor the linear velocity). The distance covered
during the time t is D0(t) = ṡ0t. We denote by τ = L/ṡ0 the time needed for
the bead to perform a complete revolution. This experiment is the reference
experiment.

In a second experiment, we are concerned with a system which is com-
pletely identical with the previous one, but in which the wire is forced to
rotate in its plane, around a given point O inside the wire (an exterior
point could also be considered). The wire performs a complete revolution
(rotation by 2π) during the time T . The angular velocity of the wire is
denoted by φ̇(t). We assume that at the beginning φ̇(0) = 0. This value
then increases, reaches a maximum, and decreases to vanish again at time
T : φ̇(T ) = 0. The particular form of this function does not matter, pro-
vided that the behaviour is adiabatic, a condition that can be expressed by
τ � T .
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For both experiments, the beads start with the same initial conditions
s0, ṡ0. At the same time we start the rotation of the stem for the second
experiment. The purpose of the experiments is to measure the relative posi-
tions of the two beads after time T , corresponding to a complete revolution
of the stem.

As you will see, the second bead will recover its initial velocity ṡ0. It
will have covered a distance D (which increases as T and ṡ0 increase), while
the reference bead covered a distance D0. The striking property that was
discovered by Hannay (provided that the adiabaticity condition is fulfilled)
is that the difference D − D0 remains constant, giving an unmistakable
signature of the rotation of the stem. This property is independent of the
position of the rotation axis and of the rotational velocity φ̇(t); it depends
on the shape of the stem only. We say that it is of geometrical nature.

•

•

φ̇ = ω

O

M

s

r(s)

Fig. 7.2 Experiment of a bead sliding on a closed stem in rotation and its
reference experiment (see text). The bead is specified by the curvilinear abscissa

s(t) with respect to an arbitrary origin on the stem

1. Let r(s) = OM , the distance of the bead to the axis of rotation, when
it is placed at abscissa s (see Fig. 7.2). Taking into account the relative
velocity and the driving velocity, calculate the kinetic energy Tkin. For
simplicity, it is useful to introduce t(s), the unit vector tangent to the
stem at the position M(s) for the bead.

2. Show that, if the square of the driving velocity is neglected, the kinetic
energy is given by the formula:

Tkin =
1
2
m

(
ṡ2 + 4A′(s) ṡ φ̇

)
,

where A′(s) is the derivative with respect to the curvilinear abscissa of
the area swept out by the radius vector r(s).

3. With the help of Lagrange’s equations, prove that if φ̇ is constant, so is
ṡ. Rederive this result by directly considering the Coriolis force.
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Give the expression of the Hamiltonian and show that it does not depend
on time. Deduce that the velocity ṡ is a constant of the motion.

4. Calculate the action
I =

1
2π

∮
p(s) ds,

performing the integral over a complete revolution of the bead. Give the
expression for the conjugate angle variable?

Hint: The angle varies linearly with time, exactly as does the curvilinear
abscissa.

5. One assumes now an adiabatic variation for φ̇. Give the expression of the
velocity ṡ(t).

6. Deduce the difference between the distances covered by the two beads,
one without and the other with the rotation of the wire, during a complete
revolution time T .

7. On can define an average phase β, corresponding to the position of the
bead such that this phase increases by 2π for a revolution on the wire; in
other words: β = 2πD/L. The difference of phase for the two experiments
is known as the Hannay phase βH . Calculate its value and show that
it depends only on the shape of the wire. Check your result in the case
of a circular wire.

Important remark: One could consider a complicated shape for the wire
exhibiting entangled loops; one must consider in this case S as the algebraic
sum of the areas (counted positively if the bead turns on the loop in the
same sense as the rotation of the wire, and negatively in the opposite situ-
ation). In particular, a wire with an “8” shape leads to a vanishing Hannay
phase, the delay accumulated on one loop being exactly compensated by
the advance accumulated on the other!

Problem Solutions
7.1. Limits of the Perturbative Expansion

[Statement p. 347]

1. We wish to solve the differential equation q̇ = q − εq2 with the initial
condition q(0) = 1. We proceed by perturbation and set

q =
∞∑

n=0

εnqn,
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from which we derive

q̇ =
∞∑

n=0

εnq̇n, and εq2 =
∞∑

n=1

εn
n−1∑

i=0

qiqn−i−1.

The differential equation then implies:

q̇0 +
∞∑

n=1

εnq̇n = q0 +
∞∑

n=1

εn

[
qn −

n−1∑

i=0

qiqn−i−1

]
.

The identification is made term by term for the coefficients of the poly-
nomial to give

q̇0 = q0 ; q̇n = qn −
n−1∑

i=0

qiqn−i−1.

Taking into account the initial condition q(0) = 1, we impose the fol-
lowing constraints q0(0) = 1 and qn(0) = 0, ∀n. The first equation at
zero order, q̇0 = q0 can be integrated to give q0(t) = et. The first order
correction is obtained by setting n = 1 in the coupled equations, that is
q̇1 = q1 − q2

0 = q1 − e2t. This equation can be integrated easily to give
q1 = et − e2t. It can be rewritten as:

q1(t) = et(1 − et).

2. For higher order terms, it is useful to adopt a recursion argument. Let
us set qi(t) = et(1 − et)i, valid for any i < n. The first order is satisfied.
Inserting this relation in the nth order equation, one obtains: q̇n = qn −
ne2t(1 − et)n−1. One is convinced (either integrating directly or just
checking a posteriori) that qn(t) = et(1− et)n is indeed the solution with
correct initial condition. The recursion formula is thus proved, and the
correction to order n is:

qn(t) = et(1 − et)n.

3. In this particular case, the entire series

q(t) = et
∞∑

n=0

[
ε(1 − et)

]n

can be summed up exactly because it is a geometrical series with a com-
mon ratio ε(1 − et).
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However, this can be done only if this ratio is less than 1; this condition
implies the existence of a critical time tc obtained when the common ratio
is 1. Explicitly:

tc = ln
(

1 +
1
ε

)
.

If t < tc, it is legitimate to sum up the series which provides the solution,
obtained by perturbation to all orders,

qpert(t) =
et

1 − ε(1 − et)
,

which can be recast in the simpler form

qpert(t) =
1

ε + (1 − ε)e−t
.

Under this form, it can be checked first that the initial condition is ful-
filled qpert(0) = 1 and secondly that by setting ε = 0, one recovers the
unperturbed solution q0(t).

q(t)

10

8

6

4

2

exact

ttc1 2 3 4 5

(1)

(2)

(0)

Fig. 7.3 The exact solution of the proposed differential equation, for ε = 0.1,
as well as its asymptote, is plotted as a dashed line. The approximations of
order (0): q0, of order (1): q0 + q1, of order (2): q0 + q1 + q2, plotted as full

lines, reproduce the exact solution more and
more accurately. The critical time tc is also shown as a dotted line
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4. The original differential equation is separable and can thus be integrated
easily: with the initial condition, the solution is found to be

t = ln
q(1 − ε)
(1 − εq)

,

which, after some rearrangement, can be written as

q(t) =
1

ε + (1 − ε)e−t
.

Consequently q(t) = qpert(t) so that the two solutions coincide. However
the perturbative solution makes sense only if the time is less than the
critical time, while the exact solution suffers no restriction. One can
consider the exact solution as the analytical extension of the perturbed
solution for times larger than the critical time.

In Fig. 7.3, we show how successive approximations compare to the exact
solution.

5. With the preceding expression of q(t), one immediately sees that

q(t) → 1
ε

when t → ∞.

7.2. Non-canonical Versus Canonical
Perturbative Expansion [Statement p. 347]

1. With the Hamiltonian H(q, p) = 1
2 (p2 + q2) + ε 1

3q3, the Hamilton equa-
tions read q̇ = ∂pH = p and ṗ = −∂qH = −q − εq2. Differentiating the
first equation with respect to time and substituting in the second one,
we obtain Newton’s equation:

q̈ = −q − εq2.

2. Let us perform an expansion to first order for the solution: q(t) = q0(t)+
εq1(t); substituting in Newton’s equation and identifying terms of the
same order, we obtain the equations: q̈0 = −q0 and q̈1 = −q1 − q2

0 . The
solution of the first equation, which obeys the initial conditions q0(0) = 1,
q̇0(0) = 0, is simply q0(t) = cos t.

Substituting this value in the second differential equation, one obtains
the new equation q̈1 + q1 = − cos2 t = − 1

2 (1 + cos(2t)). To fulfill the
initial conditions for the complete solution, the initial conditions con-
cerning this first order correction are now q1(0) = 0, q̇1(0) = 0. The
solution of the corresponding differential equation is obtained with stan-
dard techniques; the general solution of the equation without the second
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member is A sin t + B cos t, while a particular solution of the equation is
− 1

2 + 1
6 cos(2t). The constants A and B are obtained using the initial

conditions. Finally the first order correction reads:

q1(t) = −1
2

+
1
3

cos t +
1
6

cos(2t).

One sees that the period of q1(t) is still 2π, as it is for q0(t). Thus, to
first order the period of the system is not affected.

3. Let us pursue the expansion to second order q(t) = q0(t) + εq1(t) +
ε2q2(t). Proceeding with the usual technique, we obtain, in addition to
the two previous differential equations, the supplementary second order
equation q̈2 = −q2 − 2q0q1. With the explicit expressions of q0 and q1

obtained previously, the differential equation that must be integrated is
the following:

q̈2 + q2 = −1
3

+
5
6

cos t − 1
3

cos(2t) − 1
6

cos(3t).

The initial conditions on the unknown function are now q2(0) = 0,
q̇2(0) = 0. Here again, the technique for obtaining the solution is stan-
dard. However, one notices that in the second member there appears a
term with the same period as the proper period. In this case, the solution
involves a special term linear in time. One obtains finally the solution:

q2(t) = −1
3

+
29
144

cos t +
5
12

t sin t +
1
9

cos(2t) +
1
48

cos(3t).

This solution contains a secular term which increases linearly with time
and is thus no longer periodic. This is contrary to what one expects
physically. The perturbation theory with this set of coordinates clearly
exhibits limitations.

4. Now, we will perform a perturbative treatment based on angle-action co-
ordinates. However, before proceeding it is necessary to find the canonical
transformation which permits the passage from the old set (q, p) to the
new one (α, I), namely q =

√
2I sin α, p =

√
2I cos α. With these new

coordinates, the unperturbed Hamiltonian is H0(I) = I whereas the per-
turbation is V (α, J) = 1

3q3 = 1
3 (2J)3/2 sin3 α, since at first order J = I.

It is easy to calculate the average values of the potential:

V (J) =
1
2π

2π∫

0

V (α, J) dα = 0

V 2(J) =
1
2π

2π∫

0

V 2(α, J) dα =
5
18

J3.
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The second order perturbed Hamiltonian is

K(J) = H0(J) + εK(1)(J) + ε2K(2)(J).

The first order correction is simply (see the summary) K(1)(J) = V (J) =
0, and consequently, to first order, the angular frequency ω(J) = ∂JK(J)
reduces to the unperturbed angular frequency ω0(J) = ∂JH0(J) = 1.

Thus, to first order

ω(J) = ω0(J) = 1.

As was the case in the second question, to first order, there is no modifi-
cation of the period.

To obtain the second order correction (see Problem 7.4), one must cal-
culate the quantity

U(J) =
V (J)2 − V 2(J)

2ω0(J)
= − 5

12
J2.

One deduces the perturbed angular frequency

ω(J) = ∂JK(J) = 1 − 5
6
ε2J.

Thus at second order

ω(J) = 1 − 5
6
ε2J. (7.11)

At second order, the period is modified, but, with this set of coordinates,
in contrast to the old one, the system remains periodic, as it should be.
It is thus necessary to employ the canonical perturbation theory.

7.3. First Canonical Correction for
the Pendulum [Statement p. 348]

1. From the original Hamiltonian H(q, p) = p2/(2ml2) + mgl(1− cos q), we
obtain the harmonic approximation by truncating the expansion of the
cosine at second order, namely H0(q, p) = p2/(2ml2) + mglq2/2. The
natural angular frequency ω =

√
g/l is introduced in order to rewrite

H0(q, p) = p2/(2ml2) + ml2ω2q2/2. Now, let us switch to the new vari-
ables Q = q

√
mωl2, P = p/

√
mωl2 (in order to ensure a canonical trans-

formation {P,Q} = {p, q}); this substitution in H0 allows us to write it
in the standard form

H0(Q,P ) =
1
2
ω(P 2 + Q2).
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2. The angle-action variables (α, I) are obtained using the canonical trans-
formation Q =

√
2I sin α, P =

√
2I cos α. Expressed in terms of these

new variables, the unperturbed Hamiltonian is simply H0(I) = ωI. Fur-
ther developing to the quartic approximation in the expansion of the
cosine adds to H0 the perturbation V = − 1

24mglq4, which, in terms of
the new variables, is expressed as V (α, I) = −(I2 sin4 α)/(6ml2). The
perturbed Hamiltonian then reads

K(α, I) = H0(I) + V (α, I) = ωI − I2 sin4 α

6ml2
.

3. The first order correction to the Hamiltonian results from the general
canonical theory of perturbations

K(1)(J) = V (J) =
1
2π

2π∫

0

V (α, J) dα.

With the previous value of the perturbation, the corresponding value is
−J2/(16ml2). Thus to first order, the Hamiltonian is written as

K(J) = ωJ − J2

16ml2
.

The corresponding angular frequency ω(J) = ∂JK(J) is easily deduced

ω(J) = ω − J

8ml2
.

4. The first order correction to the action is given generally by (see For-
mula (7.5)):

I(1)(α, J) =

(
K(1)(J) − V (α, J)

)

ω0(J)
.

In this special case, an elementary calculation provides the expression

I(1)(α, J) =
J2 (cos(4α) − 4 cos(2α))

48ml2ω
.

As for the correction to the angle, it can be obtained from the general
relation (see Formula (7.5)) ∂αφ(1) = ∂JI(1), which, in this case, gives

φ(1)(α, J) =
J

24ml2ω

[
1
4

sin(4α) − 2 sin(2α)
]

.

Lastly, the canonical transformation is completed by inverting the pertur-
bative expansion while remaining consistent at this order of perturbation.
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One finds α(φ, J) = φ−φ(1)(φ, J) and I(φ, J) = J + I(1)(φ, J). With the
expressions of I(1) and φ(1) given above, we achieve the determination of
the canonical transformation:

α(φ, J) = φ +
J

96ml2ω
[8 sin(2φ) − sin(4φ)]

I(φ, J) = J +
J2

48ml2ω
[cos(4φ) − 4 cos(2φ)] .

5. The Hamiltonian is conservative; its value remains constant and identified
with the energy E. If we restrict ourselves to the quartic expansion only,
this implies

E =
1
2
ml2q̇2 +

1
2
mglq2 − 1

24
mglq4.

It will be convenient to introduce the maximum elongation (amplitude
of the pendulum) qm; one can rewrite E = 1

2mglq2
m − 1

24mglq4
m. The

conservation of energy can then be expressed as

q̇2 = ω2(q2
m − q2)

(
1 − (q2 + q2

m)/12
)
.

This is a separable differential equation which can be integrated to give
the temporal evolution and the period. The latter quantity is simply 4
times the time needed to pass from angle 0 to angle qm, that is

T =
4
ω

qm∫

0

dq√
(q2

m − q2)(1 − (q2 + q2
m)/12)

.

Performing the change of variable u = q/qm and setting μ = 1/(12/q2
m −

1), one can recast the expression for the period in the form

T =
4

ω
√

1 − q2
m/12

1∫

0

du√
(1 − u2)(1 − μu2)

.

One recognizes the form of the complete elliptic integral K(μ). Finally,
at the quartic approximation, the period of the pendulum is

T =
4

ω
√

1 − q2
m/12

K

(
1

12/q2
m − 1

)
. (7.12)

The period becomes infinite as the elliptic integral becomes infinite. This
happens when its argument equals 1, that is when qm =

√
6 radians

(about 140 deg). The other possibility qm =
√

12 radians must be ex-
cluded because it is too large.
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6. Let us now come to the exact case, keeping the cosine expression in the
Hamiltonian. A reasoning quite similar to the one proposed above allows
us to write the expression of the period in the form

T =
4

ω
√

2

qm∫

0

dq√
cos q − cos qm

.

Instead of the q variable, let us choose the variable u defined as sin(q/2) =
sin(qm/2)u. An elementary calculation provides the value of the period:

T =
4
ω

1∫

0

du√
(1 − u2)

(
1 − sin2(qm/2)u2

) .

T
/
T

(h
ar

m
on

ic
)

2.5

2

1.5

1

0.5

Exact:

cos q � 1 − q2

12
+

q4

24

Perturbation

Harmonic oscillator

0 30 60 90 120 150 180

Maximum amplitude (degrees)

Fig. 7.4 Ratio between the period of a simple pendulum and the period
corresponding to the harmonic approximation, as a function of the maximum
elongation qm calculated with the quartic approximation cos q ≈ 1 − q2

2
+ q4

24
.

The value obtained using this approximation (full line) is given by the elliptic
integral of Question 5. The period tends to infinity for qm =

√
6 radians or

qm ≈ 140 deg. The dashed line represents the result of first order
perturbation theory for the quartic approximation, as given in Question 3.

Practically superimposed on this latter curve is the variation for
the exact period as given in Question 6. The period tends

to infinity for qm = π radians or qm = 180 deg
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Here too, we find the complete elliptic integral K(sin2(qm/2)) and the
exact expression for the period of the pendulum is

T =
4
ω

K
(
sin2(qm/2)

)
.

In the particular case of a pendulum, the exact expression is finally no
more cumbersome than the expression resulting from the perturbation
theory. If we set qm → 180 deg, we see that, from the properties of the
elliptic function, T → ∞. A pendulum released from its highest position
with zero velocity needs an infinite time to come back!

In Fig. 7.4, we compare the ratio of the period for various approximations
to the period for the harmonic approximation, as a function of the max-
imum amplitude. For small amplitudes, the various approximations give
similar results but for large amplitudes, the deviations may be important.

7.4. Beyond the First Order Correction
[Statement p. 349]

1. Let us pursue to second order the expansion suggested in the summary

φ(α, J) = α + εφ(1)(α, J) + ε2φ(2)(α, J)
I(α, J) = J + εI(1)(α, J) + ε2I(2)(α, J)

The new Hamiltonian is K(α, I) = H0(I) + εV (α, I). One substitutes in
this expression the preceding expansion of I. One then performs a Taylor
expansion to second order identifying the result with the final expression
of the Hamiltonian which depends on J only: K(J) = H0(J)+εK(1)(J)+
ε2K(2)(J). This identification leads to the following equalities (as usual
ω0(J) = ∂JH0(J)).

K(1)(J) = I(1)(α, J)ω0(J) + V (α, J)
K(2)(J) = I(2)(α, J)ω0(J) + I(1)(α, J) (∂JV (α, J))

+
1
2

(
I(1)(α, J)

)2

(∂Jω0(J)) .

2. It is easy to obtain the value of I(2) from the latter equality:

I(2)(α, J) =
K(2)(J) − I(1)(α, J) (∂JV (α, J)) − 1

2

(
I(1)(α, J)

)2
ω′

0(J)
ω0(J)

which employs the simple notation ω′
0(J) = ∂Jω0(J).
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3. Switching from the old coordinates (α, I) to the new ones (φ, J) results
from a canonical transformation; consequently, there is conservation of
the area in phase space, a property that is expressed by

∮
J dφ =

∮
I dα,

or (since for the new Hamiltonian J = const)

ε

2π∫

0

I(1) dα + ε2

2π∫

0

I(2) dα = 0.

This equality must be satisfied whatever the value of ε so that
2π∫

0

I(1)(α, J) dα = 0 =

2π∫

0

I(2)(α, J) dα.

4. Let us define

V (J) =
1
2π

2π∫

0

V (α, J) dα, V 2(J) =
1
2π

2π∫

0

V 2(α, J) dα.

We derive I(1) as a function of K(1) and V and substitute the result
in the constraint of conservation of the area. We thus obtain the first
order correction to the Hamiltonian K(1)(J) = V (J) and the first order
correction to the action I(1)(α, J) =

(
V (J) − V (α, J)

)
/ω0(J). These

results are presented in the summary.

We proceed in the same way with the integral on I(2) (a quantity that
was obtained in Question 2) which must give a vanishing contribution.
It is composed of three parts. The first contribution is

2π∫

0

K(2)(J) dα = 2πK(2)(J).

The second contribution reads
2π∫

0

I(1)(α, J) (∂JV (α, J)) dα

which can be transformed, after some algebra and using the expression
of I(1) already found, into

2π

2ω0(J)

[
2V (J)

(
∂JV (J)

)
−

(
∂JV 2(J)

)]
=

2π

2ω0(J)
∂J

(
V (J)2 − V 2(J)

)
.
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As for the third contribution

− ω′
0(J)

2ω0(J)

2π∫

0

(
I(1)(α, J)

)2

,

a similar treatment gives the expression

−2πω′
0(J)

2ω0(J)

(
V (J)2 − V 2(J)

)
.

Gathering all the contributions, we obtain finally

K(2)(J) =
1

2ω0(J)

[
∂J

(
V (J)2 − V 2(J)

)
+

ω′
0(J)

ω0(J)

(
V (J)2 − V 2(J)

)]
,

which can be recast in the more convenient form

K(2)(J) = ∂J

(
V (J)2 − V 2(J)

2ω0(J)

)
.

5. The conservation of area in phase space is equivalent to a unit Jacobian
for the transformation from the old set of coordinates to the new one:
D(φ, J)/D(α, I) = 1. A well known property of the Jacobians allows us
to write

D(φ, J)
D(α, I)

=
D(φ, J)
D(φ, I)

× D(φ, I)
D(α, I)

.

Another well known formula is the following,

D(φ, J)
D(φ, I)

=
(

D(φ, I)
D(φ, J)

)−1

.

Taking into account these properties shows that the conservation of area
is equivalent to the relation D(φ, I)/D(φ, J) = D(φ, I)/D(α, I). But

D(φ, I)
D(φ, J)

= [(∂JI)(∂φφ) − (∂φI)(∂Jφ)]

which, owing to the properties (∂φφ) = 1 and (∂φI) = 0, reduces to
D(φ, I)/D(φ, J) = ∂JI.

A similar argument gives D(φ, I)/D(α, I) = ∂αφ. Thus, the conservation
of area is translated into the simpler equation ∂JI = ∂αφ. Restricting
to second order in ε, this equality implies 1 + ε∂JI(1) + ε2∂JI(2) = 1 +
ε∂αφ(1) + ε2∂αφ(2). The identification for the first order term gives

∂φ(1)(α, J)
∂α

=
∂I(1)(α, J)

∂J
.
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The identification for the second order term leads to the conclusion:

∂φ(2)(α, J)
∂α

=
∂I(2)(α, J)

∂J
.

As we see from the preceding reasoning, these kinds of equations are in
fact valid to all orders.

6. The expression I(1)(α, J) =
(
V (J) − V (α, J)

)
/ω0(J) was already ob-

tained. Differentiating with respect to J and integrating with respect to
α, we obtain the expression of φ(1):

φ(1)(α, J) =
∫

dα ∂J

(
V (J) − V (α, J)

)
/ω0(J).

The quantity

I(2)(α, J) =
K(2)(J) − I(1)(α, J) (∂JV (α, J)) − 1

2

(
I(1)(α, J)

)2
ω′

0(J)
ω0(J)

was derived in Question 2. All the terms appearing in this expression
have been determined previously. It is enough to substitute them in
the value of I(2). Differentiating this expression with respect to J and
integrating with respect to α, we obtain the value φ(2)(α, J). We have
now in hand all the elements necessary for the calculation of the canonical
transformation at second order.

Starting from the transformation equations, and performing the neces-
sary truncated expansions, being nevertheless consistent to all orders of
perturbation, we arrive at the desired expressions:

α(φ, J) = φ − εφ(1)(φ, J) − ε2
[
φ(2)(φ, J) − φ(1)(φ, J)

(
∂φφ(1)(φ, J)

)]

I(φ, J) = J + εI(1)(φ, J) + ε2
[
I(2)(φ, J) − φ(1)(φ, J)

(
∂φI(1)(φ, J)

)]
.

7.5. Adiabatic Invariant in an Elevator
[Statement p. 350]

1. If we denote by q the height of the ball above the ground and by Q
its height above the floor of the elevator, we have the obvious relation
Q = q − h(t). The original Lagrangian is simply L(q, q̇) = 1

2mq̇2 − mgq.
Owing to the preceding relation, it can be expressed in terms of the new
coordinates as:

L(q, q̇, t) =
1
2
m(Q̇ + ḣ)2 − mg(Q + h)

=
1
2
mQ̇2 − mgQ + mQ̇ḣ +

1
2
mḣ2 − mgh.
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Without affecting the equations of motion, it is possible to add to the
Lagrangian a total derivative with respect to time of a function of coor-
dinate and time only (see Chapter 1.11): dF (Q, t)/dt. Let us choose the
function

F (Q, t) = −mQḣ +
∫ [

mgh(t) − 1
2
mḣ(t)2

]
dt;

its derivative cancels the three last terms of the Lagrangian and adds the
new term −mQḧ. Finally, the equivalent Lagrangian can be written in
the simpler form:

L(Q, Q̇, t) =
1
2
mQ̇2 − m(g + ḧ(t))Q.

The momentum is easily deduced P = ∂Q̇L = mQ̇ and then the Hamil-
tonian, H = PQ̇ − L, that is:

H(Q,P, t) =
P 2

2m
+ (g + ḧ(t))Q.

This property can be found directly by working in the frame of the el-
evator; the total acceleration is equal to the acceleration due to gravity
plus the driving acceleration.

2. The Hamiltonian depends on time, but the action must be calculated by
freezing the value of H at the value of the energy E at a given time so
that ḧ(t) = a = const. Let Qmax be the maximal height reached by the
ball under these conditions. One has E = m(g + a)Qmax. Moreover, one
has E = P 2/(2m) + m(g + a)Q. Therefore, one can write

P = ±m
√

2(g + a)1/2
√

Qmax − Q.

The action is calculated using the usual formula

I =
1
2π

∮
P dQ

or, more explicitly

I =
√

2m

π
(g + a)1/2

Qmax∫

0

√
Qmax − QdQ =

2
√

2m

3π
(g + a)1/2Q3/2

max.

Introducing the value of the energy, the action can be written in the form:

I(E, a) =
2
√

2
3π

E3/2

(g + a)
√

m
.
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3. One assumes that the elevator accelerates slowly (as compared to the
bouncing period), then decelerates slowly before stopping. For an adi-
abatic motion which leads it up to an acceleration ḧ = a, the action
is conserved (see the summary). Thus we have I(a) = I(0), that is
E(a)3/2/(g+a) = E(0)3/2/g. In other words (E(a)/E(0))3/2 = (g+a)/g.
Introducing once more the maximal height, this last equality can be trans-
formed into the desired relation:

Qmax(a)
Qmax(0)

=
(

g

g + a

)1/3

.

4. When the elevator stops, one has again ḧ = 0, hence (g + ḧ)/g = 1 and
therefore Qmax(ḧ) = Qmax(0). Subsequently the ball bounces at the same
height as before the start.

7.6. Adiabatic Invariant and Adiabatic
Relaxation [Statement and Figure p. 351]

1. As we saw in Problem 6.2, the phase portrait is a rectangle. Over a semi-
period, from q = −a to q = a, the momentum is positive and takes the
value p =

√
2mE; over the other semi-period, from q = a to q = −a, the

momentum is negative and takes the value p = −
√

2mE. At the walls,
the momentum changes sign instantaneously. The action is defined by
the usual formula

I(E) =
1
2π

∮
p(E, q) dq;

in this particular case, the action is written simply as

I =
1
π

√
2mE

a∫

−a

dq,

or I(E) =
2a

π

√
2mE in which we set L = 2a; thus:

I(E) =
L

π

√
2mE.

2. Between the two walls, the particle is free and its velocity remains con-
stant. After the impact n on the fixed wall, the velocity is vn > 0; the
particle attains the moving wall with this velocity. In the frame attached
to the wall (velocities denoted with a prime), there is an elastic rebound
which implies v′

n+1 = −v′
n, after which the particle bounces back with

the constant velocity vn+1 < 0.
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vn
u u

vn-u vn-2u
u

(a) (b) (c)

Fig. 7.5 Illustration of the velocities after the various impacts on the wall.
The left wall is fixed; the right wall moves with velocity u. (a) after the
impact n on the fixed wall, the velocity is vn – (b) after the impact n on

the moving wall, the velocity relative to the fixed wall is vn − u – (c)
the latter velocity is vn − 2u with respect to the fixed wall

The relation between the velocities in both frames is v′ = v − u (it is
assumed that the wall moves with a velocity u > 0). Consequently, one
has v′

n = vn−u. The condition of elastic rebound implies v′
n+1 = vn+1−u

= −v′
n = −(vn−u), that is vn+1 = −vn +2u. Striking the fixed wall, the

particle instantaneously changes the sign of the velocity (see Fig. 7.5).
After the impact n + 1, the relation is simply

vn+1 = vn − 2u.

This is a recursion relation which allows us to easily express the velocity
vn after the impact n in terms of the initial velocity v0. Explicitly, the
desired relation reads:

vn = v0 − 2nu.

3. Instead of ascribing to the fixed wall and to the moving wall the respective
abscissae −a and a, let us denote them rather as 0 and X. With these new
definitions, the action, calculated in the first question, becomes I(X) =
(X/π)

√
2mE = mXv/π.

The relationship between the actions depends on the definition taken
for these actions. In this question, the action is defined at the moment
when the particle touches the moving wall at impact n. The action
at this time is In = mXnvn/π and the action at the next impact is
In+1 = mXn+1vn+1/π.

Let us write zn = u/vn. Owing to the previous question, one has vn+1 =
vn(1 − 2zn). It remains to calculate Xn+1. Let τ be the time separating
the impact n and the impact n+1 on the moving wall. Obviously Xn+1 =
Xn + uτ .
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Moreover, between these two impacts, the speed remains constant at the
value vn+1 and the distance covered is first Xn (going) +Xn+1 (com-
ing back), so that τ = (Xn + Xn+1)/vn+1. Substituting this value in
the preceding equation, one finds Xn+1(1 − u/vn+1) = Xn(1 + u/vn+1).
Moreover, zn+1 = u/[vn(1− 2zn)] = zn/(1− 2zn). These equations allow
us to write Xn+1 = Xn(1 − zn)/(1 − 3zn). Using the recursion relation
between Xn+1, vn+1 and Xn, vn in the expression of the action, we finally
obtain

In+1

In
= 1 +

2z2
n

1 − 3zn
.

The adiabaticity in the motion of the wall implies the inequalities u �
vn < v0 and consequently zn � 1. It follows that the actions satisfy the
relation In+1/In ≈ 1, or

In+1 ≈ In.

If the adiabatic condition is satisfied, there is conservation of the ac-
tion between two impacts. This type of argument is often presented in
textbooks.

4. The action can also be defined from the impacts on the fixed wall. We
still have vn+1 = vn(1−2zn). Now the quantity Xn+1 must be calculated
correctly. Let τ be the delay which separates the impact n and the impact
n + 1 on the moving wall. Of course, one has Xn+1 = Xn + uτ . At time
t = 0, the particle sets off from the fixed wall with velocity vn. At time
τ1, it touches the moving wall, which is placed at position X ′. First
we have X ′ = Xn + uτ1, and then X ′ = vnτ1, from which we derive
X ′ = Xn/(1 − zn).

The time needed to perform the return journey is τ2 = X ′/vn+1 and the
wall is then positioned at Xn+1 = X ′ + uτ2. Substituting τ2 by its value
and X ′ by its value in terms of Xn, we arrive finally at the expression
Xn+1 = Xn/(1 − 2zn). Gathering all these conclusions in the action
value, we find

In+1 =
m

π

Xn

1 − 2zn
vn(1 − 2zn) =

m

π
Xnvn = In.

Thus the property

In+1 = In

does not depend on the adiabaticity condition.

5. We assume a parallelepipedic box, the walls of which move with time.
As we just saw, the actions for the motion of each of the axes remain
constant. To simplify we set A = 2m/π2.
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First one has const = I2
x = AL2

x
1
2mv2

x and two analogous conditions con-
cerning the other axes. One assumes now that the dilation is homothetic
in time, which means Lx = uxt, etc. Thus I2

x = Au2
xt2 1

2mv2
x. One deduces

I2
x

Au2
x

+
I2
y

Au2
y

+
I2
z

Au2
z

= const = t2
1
2
mv2.

Furthermore, the volume of the box is V = LxLyLz = uxuyuzt
3, hence

t2 = (V/(uxuyuz))
2/3. Substituting this expression in the previous con-

stant relation, one obtains V 2/3 1
2mv2 = const. Lastly, the equipartition

theorem (the particles have no mutual interaction) implies a relationship
between the average kinetic energy of the particles and the temperature
T , namely: 1

2mv2 = 3
2kT , where k is the Boltzman constant. The adia-

baticity condition finally leads to the law

TV 2/3 = const.

This expression is precisely that of an adiabatic process TV γ−1 = const
for a monatomic ideal gaz with adiabatic coefficient γ = 5/3. We have re-
covered a thermodynamical law simply from pure mechanical arguments.

7.7. Charge in a Slowly Varying
Magnetic Field [Statement p. 352]

1. We choose the gauge as A = (−yB, 0, 0). The electromagnetic potential
reads V = qe(U − ṙ · A). With U = 0 and the preceding expression for
A, the potential simply becomes V = qeBẋy. Let us restrict ourselves to
the study of the motion in the plane Oxy.

The Lagrangian of the system is

L =
1
2
m(ẋ2 + ẏ2) − qeBẋy.

One deduces the momenta px = mẋ − qeBy, py = mẏ and then the
Hamiltonian H = pxẋ + py ẏ − L which, after replacing the velocities by
corresponding momenta, is written as

H(x, y, px, py) =
1

2m

[
(px + qeBy)2 + p2

y

]
.

2. We define a canonical transformation through the following generating
function of the first type:

G1(φ, Y, x, y) = C

[
1
2
(y − Y )2 cot(φ) + xY

]
.
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From the general formulae concerning the transformation (see (6.9)), one
deduces the corresponding momenta

px = ∂xG1 = CY, py = ∂yG1 = C(y − Y ) cot(φ),
pφ = −∂φG1 = 1

2C(y − Y )2(1 + cot2(φ)),
pY = −∂Y G1 = C [(y − Y ) cot(φ) − x] .

From the first equation, we derive Y = px/C. The substitution of this
value in the second equation leads to cot(φ) = py/(Cy − px). Using
the second equation in the fourth one provides pY = py − Cx. Lastly,
rearranging the third equation gives pφ =

(
p2

y + (Cy − px)2/(2C)
)
. To

summarize, we have

cot(φ) = − py

px − Cy
; Y =

px

C
;

pφ =
p2

y + (px − Cy)2

2C
; pY = py − Cx.

3. We see that the numerator of pφ looks quite similar to the Hamiltonian
if we choose C = −qeB, a value that we henceforth adopt. We obtain
the very simple relation (ω = qeB/m is the cyclotron frequency):

H(pφ) = −qeB

m
pφ = −ωpφ.

The φ and Y variables are cyclic so that pφ and pY are constants of the
motion. The φ coordinate appears only through trigonometric functions
and hence is manifestly an angle; the associated quantity pφ is therefore
an action. The Y variable is a length, but it may be associated with a
coordinate which could be an angle so that pY could be considered to be
connected to an action. In any case, one remarks that the Hamiltonian
is expressed in terms of actions only, without recourse to coordinates
which are cyclic. This condition is sufficient to prove that the system is
integrable. The canonical transformation makes these things clear.

4. Let us start from the relations given in the first question. We have first
px= CY = −qeBY . Now starting from pφ =

(
p2

y + (Cy − px)2
)
/(2C)

and substituting Cy − px by py/ cot(φ), we obtain pφ = p2
y/(2C cos2 φ).

With the value for C derived previously, we deduce from this equation
the value of py which is put in the form py = −qeBR(pφ) cos φ, with the
definition R(pφ) =

√
−2pφ/(qeB). The relation Cx = py − pY allows us

to obtain, with the preceding value of py, the expression x = pY /(qeB)+
R(pφ) cos φ. Lastly, the relation Cy − px = C(y − Y ) provides the value
of y, namely y = Y + R(pφ) sin φ.
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We have finished our study, which can be summarized as:

x =
pY

qeB
+ R(pφ) cos φ; px = −qeBY

y = Y + R(pφ) sin φ; py = −qeBR(pφ) cos φ,

with R(pφ) =
√

−2pφ

qeB
.

The Hamilton equation Ẏ = ∂pY
H = 0 shows that Y is a constant of

the motion; similarly ṗY = −∂Y H = 0 shows that pY is constant. Lastly
ṗφ = −∂φH = 0 shows that pφ is also constant. Obviously the same
property holds for R(pφ) and H(pφ). The φ variable is the only variable
which depends on time; we have in fact φ̇ = ∂pφ

H = −ω.

The interpretation of the new variables is now perfectly clear: from the
expressions for x and y given above, we see that the trajectory of the
particle is a circle with its center at abscissa pY /(qeB) and ordinate at Y
and with radius R(pφ). This circle is covered with the constant angular
velocity ω; it is the cyclotron circle. The φ variable is simply the polar
angle of the particle on the circle. The situation is summarized in Fig. 7.6.

y

Y

x

φ

qe < 0

pγ/qeB

Fig. 7.6 Interpretation of
the new coordinates follow-
ing the canonical transfor-
mation for a particle embe-
ded in a magnetic field

From py = mẏ = −qeBR cos φ, one deduces ẏ = −(qeB/m)R cos φ, and
from px = −qeBY = mẋ − qeBy, one deduces ẋ = qeB(y − Y )/m =
(qeB/m)R sin φ. The modulus of the velocity is thus obtained as v2 =
ẋ2 + ẏ2 = (qeB/m)2R2= −2qeBpφ/m2, a relation that could also have
been obtained from v2 = 2H/m.
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The flux of the magnetic field across the cyclotron circle is Φ = BS =
πR2B = −2πpφ/qe; in other words

pφ = −qeΦ
2π

The variable pφ represents the magnetic flux across the orbit of the par-
ticle. The particle rotating on the circle generates a current i = qe/T =
qeω/(2π). The magnetic moment has a modulus μ = iS = iπR2. Replac-
ing i and R by their respective values, one finds finally: μ = −ωpφ/B =
−qepφ/m. Thus the value of the magnetic moment is

μ = −qe

m
pφ.

5. Let us focus on the direction of the vectors. One assumes that B is di-
rected along the Oz axis. It is easy to see (invoking the Lorentz force
or the components of the velocity) that the velocity v is directed anti-
clockwise if qe < 0 and clockwise if qe > 0. In both cases, the current
i is directed clockwise and the corkscrew rule shows that the magnetic
moment μ is directed along the Oz axis in the negative sense, hence
collinear with B but in the opposite direction. From the proven relation
μ = −ωpφ/B, one deduces μB = −ωpφ = H. Owing to the previous
discussion concerning the signs, one can write generally:

H = −μ · B.

6. If the magnetic field varies slowly, one learns from the theory of adiabatic
invariants that the actions remain practically constant in time. Moreover,
we showed that pφ is an action. Thus, one can claim that pφ or H remains
constant in time.

7. The total Hamiltonian H is the sum of the original Hamiltonian H0 and
the perturbed potential V (y): H = H0 + V (y). Switching to the new
coordinates, the perturbed Hamiltonian reads

H(φ, Y, pφ, pY ) = −qeB

m
pφ + V (Y + R(pφ) sin φ).

The first Hamilton equation gives: Ẏ = ∂pY
H = 0. The relation Y =

const follows; thus the ordinate of the cyclotron center remains fixed.
In other words, the particle drifts along the Ox axis, that is along the
equipotential lines. The second Hamilton equation gives:

ṗY = −∂Y H = −V ′(y) = −V ′(Y ) − R(pφ) sin φV ′′(Y ) ≈ −V ′(Y ).

The abscissa of the cyclotron center is pY /(qeB). Its drift velocity is thus
Vd = ṗY /(qeB) = −V ′(Y )/(qeB).
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Moreover, −V ′(Y ) = F is the force at the origin of the drift. Therefore
Vd = F/(qeB). This relation is compatible with the proposed general
formula:

Vd =
F

qeB
× B

B
.

7.8. Illuminations Concerning the Aurora
Borealis [Statement p. 354]

1. We work in a non-relativistic regime, so that the velocity of the electron
is a function of the energy given by |v| = v =

√
2E/m. Its component

on the equatorial plane,

ve = v sin α =
√

2E sin2 α/m,

is responsible for the cyclotron motion. The corresponding cyclotron
angular frequency is given by the traditional formula ω = qeBe/m; it is
independent of the velocity. In contrast, the cyclotron radius Rc depends
on the velocity, since we have Rc = ve/ω which can be calculated as:

Rc =

√
2mE sin2 α

qeBe
.

Numerical application: Be = 9.185 10−6 T, 1/ω = 6.199 10−7 s, ve =
1.027 108 m/s, then Rc = 63.63 m or Rc/RT = 10−5. The cyclotron
period is τ = 2π/ω = 3.89 μs.

2. The rotational kinetic energy is Ec = 1
2mv2

e = E sin2 α. This energy is
related to the action pφ by (see Problem 7.7): Ec = −ωpφ. We deduce
the value for the action:

pφ = −mE sin2 α

qeBe
.

3. The variation of the magnetic field along the field lines is very slow as
compared to the cyclotron radius. The action is an adiabatic invariant,
which remains constant all along the electron trajectory. At abscissa s,
the rotational energy is Ec(s) = −ω(s)pφ = −pφqeB(s)/m, or, using the
value of pφ obtained in the preceding question:

Ec(s) = E sin2 α
B(s)
Be

.
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The charge is subjected only to the Lorentz force which is always perpen-
dicular to the velocity; consequently there is no work performed along the
trajectory and there is conservation of the total energy. As the particle
moves towards the pole, the magnetic field increases and thus the rota-
tional energy increases to the detriment of the translational energy along
the field lines. There exists an abscissa sm for which the rotational energy
is equal to the total energy Ec(sm) = E. At that point, the translational
velocity vanishes and the electron turns back. The previous condition is
equivalent to the following condition concerning the field

B(sm) =
Be

sin2 α
.

4. The translational, or longitudinal, energy is the difference between the
total energy and the rotational energy

El(s) = E − Ec(s) = E − E sin2 α
B(s)
Be

= E

(
1 − B(s)

B(sm)

)
.

The value of the translational velocity is thus

vl(s) =

√
2El(s)

m
=

√
2E

m

√

1 − B(s)
B(sm)

.

By definition, one also has vl(s) = ds/dt so that the time delay between
the two cancellations of the longitudinal velocity, between s = −sm and
s = sm, is given by

∫
dt =

sm∫

−sm

ds

vl(s)
.

The period for a forward and back journey is obviously twice this time,
which leads to the value:

T =

√
2m

E

sm∫

−sm

ds√
1 − B(s)/B(sm)

.

5. The force (normal to the Earth) is given by the gradient of the energy
F = |∂R(μB(R))| = 0.31 10−4μR3

T × 3/R4 = 3μB(R)/R. Furthemore,
at the equator, μB(R) = Ec = E sin2 α. Thus the absolute value of the
force is

F (R) =
3E sin2 α

R
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As we saw in Problem 7.7, this force leads to a drift of the cyclotron
motion with a velocity

Vd =
F

qeBe
× N ,

where N = B/B is the unit vector along the field line. N is oriented in
the south-north direction; F being radial, the drift velocity Vd is directed
in the east-west or west-east direction, depending upon the sign of qe.
Finally the modulus of this drift velocity is simply F/(qeBe) that is

Vd(R) =
3E sin2 α

qeBeR
.

We show in Fig. 7.7 a number of trajectories for an electron in the Earth’s
magnetic field.

Fig. 7.7 Trajectories, in the Earth’s magnetic field, calculated
numerically using Hamilton’s equations, for a 100 keV electron,
passing at 1.6RT at the magnetic equator, and making an angle
45 deg with the magnetic field. To clarify the various motions,
we have chosen a magnetism much weaker than the real one
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7.9. Bead on a Rigid Wire: Hannay’s Phase
[Statement and Figure p. 356]

1. The axis of rotation is perpendicular to the plane passing through O,
along the Oz axis. The instantaneous rotation vector is thus ω = φ̇k.
The position M of the bead is specified by its curvilinear abscissa s
referred to some arbitrary origin chosen on the wire.

We denote by OM = r(s) the radius vector of the bead. t(s) is the unit
vector tangent to the wire at point M and u(s) the unit vector in the
plane, perpendicular to r(s) at point M . The relative velocity of the bead
is simply vr = ṡt and the driving velocity is ve = ω × r. Consequently,
the absolute velocity of the bead is: v = ve +vr = ṡt+ω× r. Squaring,
we find v2 = ṡ2 + (ω × r)2 + 2ṡt · (ω × r). Moreover, one has (ω × r)2 =
ω2r2 − (ω · r)2 = ω2r2, owing to the fact that ω is perpendicular to the
plane of the motion so that ω · r = 0. On the other hand t · (ω × r) =
ω · (r× t) = ω|r× t| since ω and r× t are vectors which are parallel and
with the same sense. With the relation ω = φ̇, one deduces the kinetic
energy T = 1

2mv2 in the final form:

T (s, ṡ) =
1
2
m

[
ṡ2 + r(s)2φ̇2 + 2|r(s) × t(s)|ṡφ̇

]
.

2. We neglect the square of the driving velocity r(s)2φ̇2, since it is assumed
that the wire turns much more slowly than the bead on the wire φ̇ � ṡ.
Consequently, the kinetic energy can be approximated by

T (s, ṡ) =
1
2
m

[
ṡ2 + 2|r(s) × t(s)|ṡφ̇

]
.

When the curvilinear abscissa is s, the radius vector is r(s) and when it
is s + ds, the radius vector is r(s + ds) = r(s) + dr(s). The elementary
area enclosed between the two vectors (see Fig. 7.8) is given by dA =
1
2 |r(s) × r(s + ds)| = 1

2 |r(s) × dr(s)|. Thus 2dA/ds = 2A′(s) = |r(s) ×
(dr(s)/ds)|. Moreover dr(s)/ds = t(s) so that the kinetic energy can be
recast in the simple form:

T (s, ṡ) =
1
2
m

[
ṡ2 + 4A′(s)ṡφ̇

]
.

3. The bead slides without friction, so that the reaction force is normal to the
wire and does not perform any work: the corresponding generalized force
vanishes and Lagrange’s equation reads: d(∂ṡT )/dt = ∂sT . Furthermore,
∂ṡT = p = m(ṡ+2A′(s)φ̇) and ∂sT = 2mA′′(s)ṡφ̇. In this case, Lagrange’s
equation is written as:

s̈ = −2A′(s)φ̈.
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t(s)

O

r(s)
r(s + ds)

dA(s)
M

Fig. 7.8 – Radius vectors of the
bead M on the wire for the abscis-
sae s and s + ds. The elementary
area swept out between these two
points, denoted by dA(s), is dis-
played in grey

If the wire rotates with constant angular velocity, then φ̈ = 0 so that
s̈ = 0, which means ṡ = const. The bead retains a constant speed during
its motion on the wire. On the other hand ṡ = (p − 2mA′(s)φ̇)/m and
the Hamiltonian H = pṡ − L is expressed as

H(s, p) =
1

2m

[
p − 2mA(s)φ̇

]2

.

4. In the case of a Hamiltonian which depends on time due to the presence
of the function φ̇, the action must be calculated for a particular value of
the time, which must be considered as frozen.

By definition, the action is I = 1
2π

∮
p(s) ds. Owing to the relation p =

m(ṡ + 2A′(s)φ̇) and, because, as a consequence of the previous remark,
ṡ and φ̇ must be frozen at values assumed at the given time, the action
can be simplified to

I =
m

2π

[
ṡ

∮
ds + 2φ̇

∮
A′(s) ds

]
.

Moreover,
∮

ds = L, the length of the wire, and
∮

A′(s) ds = S, the area
generated by the wire. Finally, the action is written in the form

I =
m

2π

[
Lṡ + 2Sφ̇

]
.

In this expression, the velocity ṡ can be deduced as a function of the
action I; substituting this value in the Hamiltonian, this latter quantity
can be expressed in terms of the action. Simple algebra leads to

H(I) =
1

2mL2

[
2πI − 2mSφ̇

]2

.
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The angular frequency follows as ω = ∂IH = 2π[2πI − 2mSφ̇]/(mL2).
Lastly, the angle variable associated with the action is defined generally
as α = ω

∫
ds/ṡ. An elementary calculation leads to:

α(s) =
2π

L
φ̇.

5. One assumes that φ̇ varies adiabatically, which means that performing
one complete revolution for the wire needs a much larger time than for one
revolution of the bead. Under these conditions, we can use the fact that
the action remains constant, that is I(t) = I(0). Using the expression of
the action given above and owing to the property φ̇(0) = 0, we finally
obtain the velocity in the form:

ṡ = ṡ0 −
2S

L
φ̇(t).

6. For a fixed wire; we saw that the bead moves at constant speed ṡ = ṡ0

and the distance covered by the bead during the time T , the period of
the wire, is D0 = ṡ0T .

In the case of a wire rotating at angular velocity φ̇(t), the distance covered
in the same time is:

D =

T∫

0

ṡ(t) dt =

T∫

0

[
ṡ0 −

2S

L
φ̇(t)

]
dt = ṡ0T − 2S

L
(φ(T ) − φ(0)).

Moreover, T is the time necessary for the wire to perform one revolution,
so that φ(T )−φ(0) = 2π. We deduce the desired relation concerning the
respective distances:

D − D0 = −4πS

L
.

7. The phase for the bead β can be defined from the property β/(2π) =
D/L. Let us multiply the previous relation by 2π/L to find the Hannay
phase βH = β − β0. Explicitly βH = −8π2S/L2.

It is remarkable that this value is independent of the velocity of the bead
and the position of the rotation axis. It depends only on the geometrical
form of the wire. The − sign means that, compared to the motion on the
fixed wire, if the bead and the wire rotate in the same sense, the bead is
delayed in the case of the moving wire.

In the case of a circle S = L2/(4π), hence βH = −2π.



Chapter 8

From Order to Chaos

Summary
In this chapter, we consider only two-dimensional autonomous systems act-
ing in a bounded phase space

8.1. Introduction
In Chapter 6, we studied integrable systems. The description of their motion
is very simple. With a correct choice of the coordinates in phase space
(angle-action variables), each trajectory is a helix which rolls, at constant
angular velocity, around a torus with constant actions. In Chapter 7, we
emphasized the catastrophe of small divisors: the perturbation theory is
singular if the ratio of certain frequencies is close to a rational number. In
this chapter, we investigate this situation and show that, depending upon
the initial conditions, the motion can be regular and predictable or, in
complete contrast, chaotic and unpredictable1.

To achieve this goal, it is not necessary to appeal to complicated theories;
there exists a mechanical system which is very simple to solve. It leads to
a numerical experiment within reach of any pocket calculator. It is the
model of the kicked rotor: a pendulum for which the action of gravity
is replaced by periodic kicks. We begin by giving its description and show
that, by changing our point of view, it can be reduced to a two-dimensional
autonomous system, which is integrable for a null perturbation (no kick),
and quasi-integrable otherwise.

1 In the short or long term.

C. Gignoux, B. Silvestre-Brac, Solved Problems in Lagrangian 385
and Hamiltonian Mechanics, DOI 10.1007/978-90-481-2393-3_8,
c© Springer Science+Business Media B.V. 2009
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We will see how to describe the behaviour of this system, by introducing
the Poincaré sections and the basic notions for the chaos phenomenon
will be presented and illustrated with the help of this experiment.

8.2. The Model of the Kicked Rotor

The simplest mechanical system which exhibits a chaotic behaviour is the
periodically kicked rotor. It is specified by an angle θ. When free, its
Hamiltonian is given by H0(p) = p2/(2I), in which I is the moment of
inertia and the momentum p = Iθ̇ is also the angular momentum. This
Hamiltonian is a first integral. The phase space is a cylinder (θ is an angle
which varies between 0 and 2π, whereas p can be any real number), and
the trajectories are circles (transformed into straight lines if the cylinder is
developed), since p = const.

Now we submit the rotor to a periodic impulse (period T and angular
frequency ω = 2π/T ) which, without modification of the angle, instanta-
neously changes its momentum by a quantity proportional to sin θ. Without
loss of generality, the period can be chosen as the unit time and the moment
of inertia can be chosen as unity (I = 1, T = 1, ω = 2π). The periodic
impulse leads to an instantaneous variation of momentum Δp = K sin θn

for the nth kick (see Fig. 8.1.).

•

•

•

t = (n + 1)T

t = nT

pn+1

pn

θn+1

K sin θn+1

θn

Fig. 8.1 Phase space for the
kicked rotor. The cylinder
represents the angle along
the basic circle with the
time along the generatrix.
The grey arrow represents
the periodic impulse which
changes the angular velocity
by a quantity proportional
to the sine of the angle

This Hamiltonian system is one-dimensional but it is non-autonomous and
non-integrable; however it is simple to solve because, between each of the
kicks, the angular velocity remains constant and between the impulses n and
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n + 1 the momentum remains equal to pn. It is convenient to investigate
the angle-momentum series (θn, pn) immediately after the nth kick.

It is easy to show the relationships between the points in phase space:

θn+1 = θn + pn

pn+1 = pn + K sin θn+1. (8.1)

It is difficult to imagine a simpler formulation for the equations of mechanics!
They can be reduced to a mapping depending on a single parameter K which
measures the intensity of the perturbation applied to the integrable system.

The mapping (8.1) is nevertheless very interesting pedagogically because,
despite its simplicity, it contains intrinsically all the wealth of complicated
dynamical systems. It is known as the standard mapping; it will be
considered as a prototype for all further discussions.

Non-autonomous system/two-dimensional system

We already saw, in Chapter 4, that a non-autonomous system can be trans-
formed into an autonomous one if we consider the time as an additional
degree of freedom (see also Problem 4.9). Thus one considers the time t,
no longer as the flow parameter for the Hamiltonian, but rather as a full
coordinate with a corresponding conjugate momentum pt. The system is
governed by a generalized Hamiltonian H̃(θ, t, p, pt) = H(θ, p, t) + pt which
is independent of the new flow parameter and therefore autonomous2.

Without the perturbation, the Hamiltonian is H̃ = p2/2 + pt. It is
independent of the two coordinates θ, t; in consequence, it is integrable,
with the two first integrals p and pt. The associated angle variables are
respectively θ and αt = 2πt/T = 2πt. Actually, the Hamiltonian is periodic
for both variables. The actions, the Hamiltonian and the angular frequencies
are

Iθ =
1
2π

∮
p dθ = p;

It =
1
2π

∮
pt dθ = pt

T

2π
=

pt

2π
;

H̃(Iθ, It) =
I2
θ

2
+ ωIt =

I2
θ

2
+ 2πIt;

ωθ = θ̇ = Iθ = p;
ωα = α̇ = ω = 2π.

2 We studied this point in Problem 4.9 (page 178). The Hamilton equation t′ = dt/dτ
= ∂ptH̃ = 1 shows that the time is indeed the flow parameter.
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The trajectory rolls around a torus with a ratio for the frequencies equal to

p

ω
=

p

2π
.

8.3. Poincaré’s Sections
For two degrees of freedom, the phase space possesses four dimensions. It is
difficult to give a graphical representation of the trajectories3. Nevertheless,
one can use the following trick: given a hyperplane (with 3 dimensions for
the moment), one marks the intersection points between each trajectory
and the hyperplane which is always crossed in the same sense. In general,
one chooses a hyperplane which corresponds to a fixed value for one of the
coordinates, for instance the second one q2 = const. For the rotor, we will
take αt = 0 (modulo 2π).

A trajectory is thus represented by a discrete set of points on the hy-
perplane. However, the system being autonomous, the second momentum
p2 is fixed and it is sufficient to specify, in phase space, the intersections
concerning the first degree of freedom q1 and p1 ((θ, p) in our example). We
are thus concerned with a two-dimensional plane. The intersections of the
trajectory with this plane are referred to as a Poincaré section. The study
of the system is reduced to the study of the mapping which transforms one
intersection to the following one.

For a Hamiltonian system, Liouville’s theorem stipulates that the Hamil-
tonian flow preserves volumes in phase space. In the case of a Poincaré
section, a consequence of the conservation of the energy and Liouville’s the-
orem is the conservation of the area in the Poincaré section for successive
mappings. More precisely, let us imagine a set of trajectories lying within
a closed contour in Poincaré’s section. Each of them repeatedly intersects
the section, probably at different times, but the contour of each set of these
new intersections possesses the same area.

8.4. The Rotor for a Null Perturbation
In the particular case of a null perturbation K = 0, the Poincaré section
is the representation of the simplest mapping pn = const = p and θn+1 =
θn + p.

3 For a conservative system, the iso-energy surfaces are three-dimensional and one could
plot the projection of these trajectories on a plane.
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p

3π/2

π

π/2

0

2π

θ

2π0 π/2 π 3π/2
1 : 1

1 : 4

1 : 3

1 : 2

2 : 3

4 : 5

Fig. 8.2 Poincaré’s section for the standard mapping with a null perturbation.
For each initial condition, we represented 200 intersections. The initial

conditions correspond to θ0 = 1 and different values of p0. The values leading to
a resonant torus s : r are indicated at the right edge of the figure. Other values

lead to non-resonant tori

As described in Chapter 6, the intersections of a trajectory (helix on a torus)
with the hyperplane αt = 0 (mod 2π) take place on a circle (straight line
p = const on the developed cylinder) in phase space θ, p.

It is convenient to restrict Poincaré’s section to a square for which 0 <
θ < 2π and 0 < p < 2π and to identify with a single point of this square all
the points whose coordinates differ by a multiple of 2π. In other words, we
work modulo 2π. The Poincaré section for a null perturbation is represented
in Fig. 8.2. In this figure, one can observe the following features:

• If p is not a fraction of 2π, that is if the two frequencies are incommen-
surable, the intersections for a single trajectory fill in the straight line4

p = const in a dense way. We say that we are faced with non-resonant
tori.

4 Not necessarily in a uniform way. Let us imagine p very close to 2π/r; we first see r
segments filled with intersections and as many empty intervals. We must be patient
to fill in completely the straight line.
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• If p = 2π/r (where r is an integer), which corresponds to commensurable
frequencies, then, between each observation, the rotor turns by a fraction
of a complete revolution. After r iterations of the mapping, we return to
the original point. In this case, we speak of a fixed point of order r.
A single trajectory appears in Poincaré’s section as r aligned but distinct
points.

• The same behaviour occurs if p/(2π) = s/r. In this case, the rotor per-
forms s revolutions after r iterations and returns to the same point in
phase space. In this case, we speak of a fixed point of order s : r. We
speak also of resonant tori s : r (or r : s), in the sense that the totality
of the available phase space (the straight line p = const) has not been
explored with these initial conditions.

Consequently, depending upon the choice of initial conditions, Poincaré’s
section is formed by successive aligned points or by straight lines filled in a
dense way.

8.5. Poincaré’s Sections for
the Kicked Rotor

What happens when the perturbation is switched on? The numerical ex-
periment shows that, for K reasonably weak, the Poincaré section exhibits
features analogous to those presented in Fig. 8.3 (K = 0.75). We recog-
nize undulating continuous curves (KAM curves, from Kolmogoroff, Arnold,
Moser), curves with elliptic shapes forming islands (stability islets) and
zones with scattered points without any structure (chaotic zones).

For the value K = 0.9716 . . ., the undulating continuous curves in the in-
terval [0, 2π[ disappear. The larger the perturbation, the smaller the elliptic
islets and the larger the zones without structure. For a large perturbation
this latter type of behaviour becomes dominant and fills in the whole phase
space: a generalized chaos is installed.

What do we observe at first glance?
As we pointed out already, we observe essentially three types of distinct
structures; let us comment more deeply on these.
1. The KAM curves

For special initial conditions, one observes slightly undulating curves
which are filled in a dense way and which cover the whole interval [0, 2π[
for θ. They are known as KAM curves. The amplitude of the undula-
tion decreases as K decreases.
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p

3π/2

π

π/2

0

2π

θ

2π0 π/2 π 3π/2

Fig. 8.3 Poincaré’s section for the standard mapping with K = 0.75. The 36
initial conditions have been iterated 2000 times each

At the limit of a null perturbation, they become straight lines; they are
the remnants of the non-resonant tori discussed previously. The most
clearly visible are located on either side of the value p = π. For other
initial conditions, the filling in can take more time.

We also observe between these KAM curves the presence of “islets” formed
by closed curves with elliptic shapes and, on each side of these islets, zones
where the points seem to be scattered at random. These structures are
the remnants of the resonant tori described above.

Thus, from the straight lines of the Poincaré sections without perturba-
tion, there remain regular curves separated by zones with more compli-
cated structure.

All these observations are the conclusion of the famous KAM theorem
which can be stated as follows.

Let us consider an integrable (non degenerate) system. If one adds a weak
perturbation, most of the invariant non-resonant tori do not disappear.
These tori, filled in a dense way by the trajectories (a single one is suffi-
cient), form the majority in the sense that the measure of the complement
of their union is small for a weak perturbation.
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Another, more quantitative, point of view consists in claiming that a
resonant torus s : r has a destructive effect on the KAM curves in the
region of phase space where the following condition is fulfilled:

|rω1 − sω2| < k(ω1, ω2)(r2 + s2)−3/4. (8.2)

ω1 and ω2 are the angular frequencies of resonance for a null perturbation
and k(ω1, ω2) is a finite positive quantity whose form depends on each
particular case, and which diminishes as the perturbation itself weakens.
Thus one understands that the tori with the smaller values of r and s are
the most “devastating”, since they correspond to the broadest regions of
disappearance.

2. The stability islets and the stable fixed points

Consider two arbitrary KAM curves within which appear r sets of closed
curves with elliptic shape whose range is less than 2π, which are called
stability islets5. If one takes initial conditions located inside one of
these small “ellipses”, one remarks that the iterate appears inside one of
the ellipses belonging to one of the other following r − 1 groups. For
each iterate, one explores each of the other islets. With some skill, it is
possible to start from a point and return practically to the same point
after r iterations. The ideal point to which we exactly return after r
iterations is known as a fixed point of order r. Obviously, any iterate
of a fixed point of order r is again a fixed point of order r. In these
islets, this point is stable in the sense that starting from a point in the
neighborhood of the fixed point we never move far away from it after r
iterations. Very often we simply refer to a fixed point as a fixed point of
order 1.

In the Poincaré section represented in Fig. 8.3, one can notice the fixed
point of order 1 (π, 0) and the points (0, π), (π, π) which are fixed points
of order 2. Thus from the infinity of fixed points p = π of the resonant
torus 1 : 2, the action of the perturbation preserved a single stable fixed
point with its iterate.

3. Unstable fixed points and chaos

Inserted between the stability islets, there exist r regions where the curves
seem to cross; indeed these are regions of concentrations of points which
are not located on lines but appear to be scattered without any rule.
These regions present a chaotic behaviour, for which the order of succes-
sive iterates seem completely unpredictable.

In these regions, there exist also fixed points of order r, but the behaviour
of the iterates is completely different from that in the neighborhood of

5 In the complement, we will show that they are still KAM curves.
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stability islets. Starting from a point close to such a fixed point, the
iterate appears in one of the r − 1 other regions of the same nature, but
progressively it can leave these zones and appear elsewhere in intermedi-
ate regions. The corresponding fixed point is called an unstable fixed
point of order r. This is, in particular, the case of the fixed point of
order 1 (0, 0), or the fixed points of order 2 (π/2, π), (3π/2, π) for which
the clouds of chaotic points are clearly seen in Fig. 8.3.

Thus, from the infinity of fixed points p = π of the resonant torus 1 : 2,
the action of the perturbation preserves, in addition to the stable fixed
point, an unstable fixed point and its iterate.
The observations discussed in the second and third remarks are the con-

clusions of the Poincaré–Birkhoff theorem which can be stated as fol-
lows:

If an autonomous system is subject to a weak perturbation (KAM theo-
rem applicable), it possesses an infinity of fixed points. In the vicinity of a
resonant torus of order r, there exists a multiple of 2r fixed points which
are alternatively elliptic points (stable) and hyperbolic points (unstable), the
iterate of a fixed point being a fixed point of the same nature.

8.6. How to Recognize Fixed Points
The point F1 in Poincaré’s section is a fixed point of order r if, after r
iterations leading successively to the points F2, F3, . . . , Fr−1, the next
iterate Fr coincides with the original point F1. As we pointed out already,
it follows that any of the points F2, F3, . . . , Fr−1 is also a fixed point
of same order. There exists no systematic method to determine the fixed
points. Those corresponding to low orders are found intuitively; for higher
order points there exist algorithms to recognize them.

Let us start from a point P1 (q1, p1) and denote its nth iterate by qn =
Q(n)(q1, p1) and pn = P (n)(q1, p1). If this point P1 is a fixed point of order
r, we have, by definition, q1 = Q(r)(q1, p1) and p1 = P (r)(q1, p1). What is
the nature of this fixed point, stable (elliptic) or unstable (hyperbolic)?

Let us start from a point (q1 + ε, p1 + ν) close to P1; its rth iterate can
be written to first order as (q1 + ε′, p1 + ν′) with:

(
ε′

ν′

)
=

(
∂qQ

(r) ∂pQ
(r)

∂qP
(r) ∂pP

(r)

)∣∣∣∣
q1,p1

(
ε
ν

)
. (8.3)

The following properties can be proved
• The matrix has a unit determinant (for a Hamiltonian system), a property

we strongly advise to check.
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• If the absolute value for the trace of this matrix is less than 2, the suc-
cessive iterates (within this approximation) are regularly located on one
of the r ellipses centered at the stable elliptic fixed points6.

• If the absolute value for the trace of this matrix is greater than 2, the
successive iterates are located on the branches of the r hyperbolae centered
on the unstable fixed points. The iterates move away from the fixed point
but draw nearer to one branch of each hyperbola, which is said to be a
stable or convergent direction. This fixed point and its r − 1 iterates
are unstable hyperbolic points.

• For a stable fixed point, if one increases the intensity of the perturbation,
the absolute value of the trace may increase to a value > 2. The fixed
point becomes unstable and the instability is associated with the appear-
ance of two unstable fixed points. This corresponds to the bifurcation
phenomenon which precedes the onset of chaos.

8.7. Separatrices/Homocline Points/Chaos
For each hyperbolic7 fixed point, there exists a curve such that the iterations
of any point of this curve are again located on the curve (which is said to
be invariant) and come as close as we wish to this fixed point. This curve
is known as the convergent separatrix. There exists also another curve
such that the preceding iterations come as close as we wish to this fixed
point. This latter curve is known as the divergent separatrix. These two
curves are invariant for the mapping: the iteration of any point located on
the separatrix is located itself on the separatrix.

How to build these curves, at least approximatively? We start from a
point close to a fixed point on the divergent branch; the iterations are close
to the divergent separatrix. They are close because if we invert the mapping,
one comes closer and then moves away8 faster and faster. If we start from
the convergent branch and we use the inverse mapping, we obtain points
which are close to the convergent separatrix.

6 They may fill in this ellipse in a dense way. They may also be located in the same
regions, this property being the signature of existence of higher order fixed points.
This may be the case in Fig. 8.3 in the vicinity of the fixed point (π, 0). However,
one must be very cautious: the filling in may proceed in a very inhomogeneous way.

7 We consider a fixed point of order 1. The extension to any order does not raise any
difficulty.

8 Imagine you are going down a ridge, following it. Without visibility there is little
hope that you achieve it.



Summary 395

It can be shown that:
• The divergent and convergent separatrices intersect at points that are

images of one another. These special points are called homocline points
(if the fixed point is of order 1) or heterocline points (otherwise).

• The segments of the separatrices between two intersections enclose sur-
faces whose areas are preserved under the mapping.

• From one iteration to the next, the intersection points come closer and
closer; the conservation of area implies that the surface is stretched and
deformed infinitively. This phenomenon is called a mixture. Two points
which are initially very close move away from each other inexorably. It is
close to this unstable fixed point that the chaos phenomenon appears.

8.8. Complements

Other KAM curves and self-similarity

The continuous curves which enclose the stable fixed points are also KAM
curves: indeed, close to the fixed point, one notices that the mapping is that
of a new integrable system whose ellipses are the intersections of the tori
which are distorted by this approximation. One can consider this approxi-
mation as a perturbation. The same scenario can be invoked. Between these
new KAM curves there appear new islets of stability and new unstable fixed
points. Again, the mapping close to the fixed points inside the islets is ap-
proximately that of an integrable system but not exactly . . . and everything
repeats. This phenomenon is called scale invariance or self-similarity:
whatever the zoom used to inspect a Poincaré section, and whatever the
observed region, one finds the same miscellaneous structures.

Best rational approximation for an irrational number

A very important question arises: given two angular frequencies ω1 and
ω2, how far are we from a destructive resonant torus, that is with the
lowest values of r and s? The answer is given by the method of continuous
fractions to determine the rational number r/s which is the “closest” to
ω2/ω1. Let us assume that ω2/ω1 = π. One can write π = 3 + 0.14159 . . .
= 3 + 1/(7 + 0.625 . . .) = 3 + 1/(7 + 1/(15 + 0.099659 . . .))= . . . .

The removal of the decimal part gives successive fractions 3, 22
7 , 333

106 which
are increasingly accurate rational approximations to the original irrational
number. Calculating |rω1 − sω2|/(r2 + s2)−3/4, it seems that the most dan-
gerous torus is 333:106. However, one must remember (see Chapter 7) that
the catastrophe of small denominators appears only if the Fourier analysis
of the perturbation has harmonics with frequencies 333ω1 and 106ω2.
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Problem Statements
8.1. Disappearance of Resonant Tori

[Solution p. 415] � �

Understanding the KAM theorem using a simple example
We consider the first quadrant of integer numbers (r > 0, s > 0). To
every rational number s/r, we associate a semi-straight line beginning at
the origin and with a slope αs:r given by tan(αs:r) = s/r, as well as a
disappearance region 2|δαs:r| for the resonant tori whose ratio of angular
frequencies, ω1/ω2 = tan(αs:r+δαs:r), fulfills the condition (8.2), |rω1−sω2|
< K(ω1, ω2)

(
r2 + s2

)−3/4
, with the particular prescription K(ω1, ω2) =

k
(
ω2

1 + ω2
2

)1/2, k being a positive constant.

1. Demonstrate the condition |δαs:r| < kR−5/2 (R =
(
r2 + s2

)1/2) concern-
ing the disappearance region.

The aim of this problem is to show that the angular sum for the dis-
appearance regions, denoted by Δ, is less than the total angular region
of the first quadrant, namely π/2, when the perturbation is sufficiently
small.

2. As a preliminary, show that the summation

∞∑

n=1

1
n5/2

is equal to a finite value S. Give an upper bound to S.

3. Give an upper bound to Δ.

4. Prove that, when k is less than a critical value kc, one is sure that Δ <
π/2, that is that invariant tori still resist the perturbation. This is the
essence of the KAM theorem.

8.2. Continuous Fractions or How to Play
with Irrational Numbers
[Solution p. 417] � �

A new point of view concerning an irrational number as a limit of rational
numbers
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Let α be an arbitrary real number. This number can be approximated by its
decimal expansion, that is by the sequence of rational numbers s0, s1/r1,. . . ,
sn/rn where sn is an integer and rn = 10n. An irrational number has a
non-periodic infinite decimal expansion; a rational number has either a finite
expansion, or a periodic infinite expansion. If one changes the numeral base,
a rational number may have a finite expansion for one base and an infinite
expansion for another one; for example 1/3 = 0.1 with the base 3, but 1/3
= 0.3333. . . with the base 10.

This dependency on the base implies that the above decimal approxima-
tion is not very suitable. There exists also another drawback using this type
of expansion, a rather poor convergence: as |α − sn/rn| < 1/rn, one can
say that the nth term of the sequence has an accuracy of order 1/rn. This
conclusion is independent of the base.

One can thus wonder whether one can approximate the same number α
by another sequence of rational numbers α0, α1,. . . , αn with an accuracy
on αn = sn/rn which would be better than 1/rn and which is, in addition,
independent of the base. The answer is yes and it appeals to the method
of continuous fractions. In particular, a rational number always has a finite
expansion.

Let a0, a1,. . . , an be a sequence of positive integers. The continuous
fraction of order n, with initial term a0 and terms a1,. . . , an as successive
denominators is defined as:

αn = a0 +
1

a1 + 1
a2+

1
...an−1+ 1

an

.

This fraction will be referred to more simply as αn = [a0; a1, a2, . . . , an]. It
is obviously a rational number written as αn = sn/rn, which is independent
on the base.
1. In order to study infinite continuous fractions, it is convenient to obtain a

recursion relation which allows an easy calculation of αn = [a0; a1, a2, . . . ,
an] = sn/rn from the lower order terms αi = [a0; a1, a2, . . . , ai] = si/ri,
with i < n.

Show that the desired relation is

sn = ansn−1 + sn−2,

rn = anrn−1 + rn−2,

with the initial conditions s0 = a0, s−1 = 1, s−2 = 0 and r0 = 1, r−1 = 0,
r−2 = 1.
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2. Prove that
|αn − αn+1| =

1
rnrn+1

.

Consequently the accuracy of the continuous fraction method is 1/(rnrn+1)
instead of 1/rn for an expansion on a particular base.

In the case where the sequence a1, . . . , an is infinite, one speaks of an
infinite continuous fraction. The limit of this fraction, from the building
procedure itself, is an irrational number α = lim(αn). If the sequence of
denominators is periodic, Lagrange proved that α is a quadratic irrational
number, that is a number of the form α = (a + b

√
D)/c, where a, b �=

0, c �= 0 and D are integers (D > 1 differing from an exact square).

3. As a very special sequence, let us consider the number α = [0; p, p, . . . , p,
. . .]. Calculate the value of α.

4. The irrational numbers which, in their expansion in terms of continuous
fractions, converge the most rapidly toward a rational number are those
which exhibit large values of an (after all, an = ∞ breaks the sequence
and makes the number rational). What is the irrational number which is
approximated the most poorly by a rational number?

8.3. Properties of the Phase Space of
the Standard Mapping [Solution p. 418] �

Simple properties of the standard mapping
1. Show that the Poincaré section for the standard mapping defined by (8.1)

is symmetric with respect to the points A = (π, 0) and C = (π, π).

2. Show that the study of the standard mapping for K < 0 can be reduced
to the case K > 0 simply by a translation of the angle origin.

8.4. Bifurcation of the Periodic
Trajectory 1:1 for the Standard
Mapping [Solution and Figure p. 419] � �

Searching for fixed points of the standard mapping and appearance of a bi-
furcation
1. Find the fixed points of order 1 for the standard mapping defined by

(8.1). Study their stability as a function of K. Give the value of K which
corresponds to a transition between a stable and unstable trajectory.
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2. Show that the fixed points of order 2 are symmetric with respect to the
point (π, 0) and, as a consequence of the bifurcation, that they obey the
equations

pf = 2π − 2θf ; pf =
1
2
K sin(θf ).

3. Study graphically the possible solutions of these equations. Check that
a solution exists if the fixed point of order 1 is unstable.

4. We write the two fixed points of order 2 in the form (π− δ/2, δ) and (π +
δ/2,−δ), δ being the root of a transcendental equation to be determined.
We wish to study the stability of this trajectory. In order to do this, it
is necessary to linearize the mapping in the vicinity of these two fixed
points. Deduce that the stability condition is |2 − K cos(δ/2)| < 2, and
that stability exists as long as cos(δ/2) > 0. What is the corresponding
condition for K?

5. Let us go further. Determine the divergent and convergent directions
for the fixed point of order 1, when it is unstable. Give their common
direction at the limit of stability. Check that the fixed points of order 2
are placed along this direction.

8.5. Chaos–ergodicity: A Slight
Difference [Solution p. 423] � �

As we will see, ergodicity does not necessarily result from chaos and chaos
is not always ergodic.

Imagine a configuration space for a system which is characterized by two
angles α, β, i.e., exhibits the topology of a torus. Imagine now a regular
motion on this torus with two angular frequencies ωα, ωβ , which means
that the trajectory is given by α(t) = α0 + ωαt, β(t) = β0 + ωβt. This
motion is fully predictable and chaos is completely absent. The preceding
properties are sufficient to completely determine the system. An illustration,
which comes to mind, is that of an integrable two-dimensional system, the
considered space being a torus defined by the two constant actions. The
angle variables α, β and the angular frequencies ωα, ωβ are determined from
Hamilton’s function, following the recipes given in Chapter 6. In this case,
the space under consideration is a subset of phase space, for which the
actions have fixed values resulting from the initial conditions.

Now, let us define the notion of ergodicity in a more mathematical way.
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Let us consider an arbitrary function F (α, β), defined on the configuration
space; it is obviously periodic with a period 2π both for α and β: F (α +
2iπ, β + 2jπ) = F (α, β), i, j being integers.
The average value in phase space in defined by

F̃ =
1

(2π)2

∮
dα

∮
dβ F (α, β).

Now we decide to start from an arbitrary point α0, β0 and to follow the
trajectory imposed by the dynamics (in the case of a Hamiltonian system,
we would say that we follow the Hamiltonian flow), as was specified at the
beginning of this problem. The F function now depends on time. One
defines the time average of this function along the given trajectory by:

F̄ (α0, β0) = lim
1
T

T∫

0

F (α(t), β(t)) dt, T → ∞.

This system is said to be ergodic in this space if, on the one hand, F̄ (α0, β0) =
F̄ is independent of the starting point, and on the other hand the two types
of average coincide: F̃ = F̄ . This notion is very important in statistical
physics. Ergodicity corresponds to the fact that it is equivalent to realize
an average over a large number of statistical samples at a given time or over
a single sample but followed all along its temporal evolution.
1. Show that the system is ergodic if the two frequencies are not commen-

surable.

Hint: Perform a Fourier analysis of the function F (α, β).

2. Let us consider an ergodic system, characterized by the ergodicity prop-
erty demonstrated in the preceding question. Consider an arbitrary tra-
jectory passing initially through the point (α0, β0); it evolves in time
exploring the configuration space. The purpose of this question is to
prove that it performs the exploration in a dense way. In order to do
this, let us choose a portion D of this space, wherever located, as small
as we wish but with a non-vanishing measure (its area is not null: S(D)
=

∫ ∫
D

dα dβ �= 0). The principle of the demonstration is based on an ad
absurdum reasoning.

The demonstration of the previous question is valid whatever the function
F (α, β), as long as it is periodic in configuration space. Let us choose a
particular function F (α, β) which is equal to 1 everywhere inside the D
region, and 0 everywhere outside. Assume that the trajectory does not
explore this region and show that this is incompatible with the conclu-
sions of the previous question.
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Result: The trajectory of an ergodic system explores the configuration space
in a dense way.

8.6. Acceleration Modes: A Curiosity of
the Standard Mapping [Solution p. 425] � �

The role of the momentum in Poincaré’s section

Let us come back to the inexhaustible standard mapping, as defined by
(8.1). We emphasized that the angle periodicity was natural; in contrast
the momentum periodicity is just a practical convenience for a graphical
representation. In reality, the momentum is by no mean restricted. To be
convinced, we will show that there exist fixed points of order 1 in Poincaré’s
section, which correspond to an increase by 2π of the momentum for each
impulse. We call such a trajectory an acceleration mode.
1. Such points must satisfy the condition

θ1 − θ0 = 2nπ

p1 − p0 = 2π.

It is always possible to choose initial conditions as the usual ones: 0 ≤
θ0 < 2π; 0 ≤ p0 < 2π. Show that the angle (modulo 2π) for the fixed
point θf is determined by the equation K sin(θf ) = 2π. What is the
condition on K for the existence of a solution? How many solutions
exist? Give the expression of the momentum at each impulse. Check
that it corresponds to an acceleration mode.

2. One can be interested in the stability of the solution in phase space,
that is by the question of stability for the acceleration mode. Linearize
the mapping in the vicinity of the fixed point and give the trace of the
corresponding matrix.

3. Show that one trajectory is always unstable. Under which condition is
the other one stable?

8.7. Demonstration of a Kicked Rotor?
[Solution and Figure p. 427] � � �

A physical situation which simulates the standard application

To simulate a motion described by the standard mapping defined by (8.1),
it is enough to impose a well chosen horizontal motion on the rotation axis
of a pendulum.
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A simple pendulum, of length l, of mass m, has a vertical axis of
rotation such that gravity does not play any role. This axis is driven
by a horizontal motion along the Ox axis, with a temporal law a(t). As a
generalized coordinate, we choose the angle θ between the direction of the
pendulum and the Ox axis.

1. Give the traditional equation of motion for an ordinary pendulum in a
constant gravitational field g and the corresponding momentum. To take
into account the motion of the suspension point, it is enough to work in
the accelerated frame where the pendulum is at rest. This corresponds to
the change g → g − ä. Use now the hypothesis that gravity is ineffective
(g = 0) to give the new equation of motion.

2. To recover the standard mapping (8.1), one imagines a jerky motion of
the axis such that the velocity remains constant during the interval of
time T and increases suddenly by v after each interval, the angle being
unchanged at the moment of the jerk. The velocity ȧ(t) thus evolves as
a staircase of steps v, the jumps occurring at times tn = nT (n integer).

Solve Lagrange’s equation during the intervals at constant velocity and
integrate this equation during the interval of infinitesimal time when
the velocity increases by v. Deduce the mapping connecting the angle
θn = θ(tn) and the momentum pn = p(tn + ε), just after the nth kick, to
the same quantities relative to the (n + 1)th kick. Performing a suitable
change of the momentum variable, show that this mapping is nothing
more than the standard mapping. What is the value of the K parameter
for this mapping?

3. One considers now a temporal law a(t) with a sawtooth shape of period
T , for which the velocity v is inverted periodically with period T/2 (the
curve ȧ(t) has a square wave shape). Let us define the angle θn = θ(tn)
and the momentum pn = p(tn + ε) just after the velocity changes to
−v, and the same quantities (θn+1, pn+1) obtained one period later. It
is useful to introduce the intermediate quantities θi = θ ((n + 1/2)T ),
pi = p ((n + 1/2)T + ε), obtained just after the inversion of the veloc-
ity. One can study once more the preceding question in two steps (the
relation between (θi, pi) and (θn, pn) in a first step, the relation between
(θn+1, pn+1) and (θi, pi) in a second step), taking great care of the sign
of the velocity at each step. You should perform a change of the momen-
tum variable in the same spirit as in the previous case, and introduce
the dimensionless parameter K = vT/l. Give the expression of the map-
ping connecting (θn+1, pn+1) to (θn, pn) which is known as the sawtooth
mapping.

4. Plot numerically the Poincaré section corresponding to the sawtooth
mapping. Determine all the fixed points of order 1 (when K is not too
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large, say K < 2π) and study their stability. Prove that four of them can
be calculated precisely. Two others result from a transcendental equation
that should be solved only in the limit of a weak value for K. Check your
calculations using the picture of Poincaré’s section. Notice the analogy
with the fixed points of order 2 for the standard mapping.

8.8. Anosov’s Mapping (or Arnold’s Cat)
[Solution and Figure p. 432] � � �

The Fibonacci sequence as an ingredient of a physical problem

A mathematical preamble

Starting from the initial values a1 = 1, a2 = 1, the sequence obtained by
the recursion relation an = an−1 + an−2 (a3 = 2, a4 = 3, a5 = 5, . . . ) is
known as the Fibonacci sequence. Fibonacci used it to study the evolution
of rabbit populations and it is very famous. A striking property, that may
be familiar, is that the ratio between two consecutive terms is equal to the
golden ratio Φ = (1+

√
5)/2. This relationship with the golden ratio makes

it of rather common use in physical mappings. This problem is a clear
illustration.
1. Demonstrate the relation an+1an−1−a2

n = a2
n−1−anan−2. By a recursion

argument, deduce that a2r+1a2r−1 − a2
2r = 1.

Physical study

We consider a very schematic Hamiltonian (it does not even have the di-
mension of an energy!): H0 = p2/2, where p is the momentum conjugate
to the angle θ. But now the periodic kick, with a unit period, gives to the
system an instantaneous variation of the momentum equal to Δp = θ (at
the moment of the kick) modulo 2π, without changing the angle.
Be careful! in the case concerned by this mapping, the perturbation is so
large that we never meet the conditions required by the KAM theorem.
2. Write down Hamilton’s equations between two kicks. Deduce the map-

ping M connecting the angle and the momentum after two successive
kicks. Check that this mapping M is linear and preserves the area in
phase space.

This mapping was proposed by Anosov. It became famous after Arnold
showed the successive iterations for the picture of a cat in phase space.
In Fig. 8.4, we present the first two iterations of the mapping.
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Fig. 8.4 In the first figure is the original form of the cat. The second picture
shows the result of the mapping, without taking into account the topological
properties of the torus. The third picture represents the real iterate of the

mapping, which takes into account its properties modulo 2π. The last figure
shows the result after a second iteration

Following the same arguments as those of the standard mapping, one
assumes that the topology of phase space is a torus. The coordinates
(θ, p) of a point in phase space are defined modulo 2π and the Poincaré
section is restricted to the reference square.

3. We wish to visualize the effect of this mapping in a geometric way. Show
that there exist two invariant straight lines for this mapping, that is
two eigenvectors which are parallel to the vectors (−Φ, 1) and (Φ−1, 1).
Demonstrate that these vectors are orthogonal. After iteration, one of
these eigenvectors is contracted by the ratio λ1 = 1 − Φ−1, whereas the
other is dilated by the ratio λ2 = 1 + Φ.

What happens to the image of an isosceles rectangle triangle built on
these two proper directions, after successive transformations? What hap-
pens to the image of a straight line? of a rectangle? of a circle?

4. Show that the matrix of the mapping can be written in the form

M = U−1

(
λ1 0
0 λ2

)
U

and give the expressions of U and U−1 as a function of the golden ratio.
Give the expression of the rth power Mr of the matrix of the mapping.
Do not try to evaluate or simplify the matrix elements given in terms of
the golden ratio and its inverse.

5. Relying on the first question and on recursion arguments, calculate Mr

in terms of the elements of the Fibonacci sequence. Check that its deter-
minant is unity.

6. This question is related generally to the fixed points. It will be more
convenient to reason with a 2π unit and to define the reduced quantities
x = θ/2π and y = p/2π. A fixed point of order r is defined so as to
be invariant modulo 2π under the Mr mapping, so that the image after
the Mr mapping of a point (x, y) is written (x + k, y + l) (k and l being
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positive or negative integers). Calculate these fixed points as a function
of k and l.

7. In fact, all these fixed points are redundant because some of them are
obtained from the others modulo 2π. To find all the non-redundant
fixed points, one must restrict the values for the set of numbers (k, l) to
those which lead to solutions lying in the reference square 0 ≤ x < 1;
0 ≤ y < 1. Prove that this condition restricts the region of the plane
(k, l) to a parallelogram, the equation of which is to be determined.

8. Calculating the area of this parallelogram and the area of an elementary
cell corresponding to one set (k, l), estimate the number Nr of fixed points
of order r. You will remark anyhow that this number includes all the fixed
points of the order of a divisor of r.

9. Show that all the fixed points are unstable and that none of them are
compatible with a constant momentum, except the trivial fixed point of
order 1: (0,0).

10. Just for fun, calculate all the fixed points of order 2. Is the estimation
N2 for this number, as determined in a previous question, reasonable?

8.9. Fermi’s Accelerator
[Solution and Figure p. 438] � � �

A simple model explaining the acceleration of particles

To explain the presence of cosmic particles moving at very large speed,
E. Fermi proposed the following mechanism. The big stellar objects are
sources of very intense magnetic fields, the more intense the closer to the
object. As we saw in the preceding chapter, gradients of magnetic fields
act as magnetic mirrors for charged particles. If the object is itself moving
at the moment of the reflection of the particle on the magnetic mirror, the
speed of the particle may increase because the object carries the magnetic
field along with it. At the next reflection on the mirror, the particle speed
may increase again and it is not absurd to think that on average the speed
increases with time. Fermi’s accelerator is an elementary schematic model
for such a process.

In a one-dimensional space, a particle of mass m bounces elastically be-
tween two walls; the left wall is fixed whereas the right wall is moving follow-
ing the law L(t). Let us denote by L′(t) and L′′(t) respectively, the first and
second derivatives of the function L(t). All the velocities we speak about
here are expressed as their moduli (speed), but one must be very cautious
because there exists a change of sign at the moment of the reflection.
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1. At time tn, the particle strikes the right wall and bounces back from the
moving wall with a speed vn relative to the moving wall. It strikes
the fixed left wall at time tn+1 and bounces back after the impact at a
speed vn+1 relative to the fixed wall.

Write down the laws which give (tn+1, vn+1) as function of (tn, vn). The
phase space is defined by the plane (t, E), where E stands for the energy
of the particle in the frame attached to the wall which the particle
has just struck; show that the previous mapping preserves the area in
such a phase space.

2. The definition of the motion is now changed and we denote by tn the
moment when the particle bounces on the fixed left wall and moves off
with the speed vn relative to the fixed wall, whereas tn+1 denotes the
moment when it strikes the moving right wall and bounces back with a
speed vn+1 relative to the moving wall. Same question as before.

3. The particle now performs a forward and backward journey bouncing
alternatively between two moving walls with arbitrary evolution laws.
Let us denote by tn and tn+1 the moments of two consecutive impacts and
En and En+1 the energies of the particle, after the impact, in the frame of
the wall which it has just left. Show that this mapping preserves the area
in this phase space, a property which corresponds to a unit Jacobian:

D(tn+1, En+1)
D(tn, En)

= 1.

It is astute to consider an intermediate situation where a fictitious fixed
wall is introduced in between the two moving walls, and where the prop-
erties developed previously are applied successively.

It may happens that En+1 > En at each iteration. This effect is known
as the Fermi accelerator.

4. We consider now a situation for which the left wall remains fixed and the
right wall is submitted to a periodic motion of period T . The mapping
and the corresponding quantities refer to the impacts on the fixed wall;
the speeds involved are therefore the absolute speeds. The situation is
depicted in Fig. 8.5. The previous questions show that the mapping
preserves the area in phase space:

D(tn+1, En+1)
D(tn, En)

= 1.

We look for a fixed point of order 1, that is for a trajectory that repeats
itself indefinitely. In this case, one must have vn+1 = vn with tn+1 − tn,
a multiple of the period T .
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Fig. 8.5 Consecutive rebounds be-
tween a fixed wall on the left and an
oscillating wall on the right. The time
flows upward

One denotes by tc the moment when the particle strikes the moving
wall: tn+1 > tc > tn and Lc = L(tc). Show that a necessary condition
for the mapping to have a fixed point of order 1 is that the velocity
of the wall at the moment of impact vanishes: L′(tc) = L′

c = 0 and
that tc = (tn+1 + tn)/2. Linearize the mapping in the vicinity of the
fixed point. Show that the trajectory is stable as long as the condition
−4E/m < LcL

′′
c < 0 is satisfied.

5. Each iteration of this mapping requires the calculation of the intersecting
points represented in Fig. 8.5. This calculation is not trivial and investi-
gators usually prefer to work with a simplified version, known as Ulam’s
approximation. The simplification arises from the condition that the os-
cillation amplitude of the wall is small (with respect to the distance cov-
ered between two impacts), so that the length L remains approximately
constant.

Practically without changing its position, the moving wall nevertheless
induces a modification to the momentum of the particle. It is recom-
mended to work in the spirit of the first question, that is considering the
times tn and tn+1 when the particle strikes the moving wall. Within this
approximation, the conservation of area in phase space (t, E) no longer
holds. Show that we have rather conservation of the area in the phase
space (t, v). Notice the analogy with the standard mapping.

8.10. Damped Pendulum and Standard
Mapping [Solution and Figure p. 443] � �

Simple study for a non-Hamiltonian system
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Let consider a simple pendulum with mass m, length l, whose position
is specified by the angle θ with respect to the downward vertical. This
pendulum is subject, in addition to a constant gravitational field g directed
downward, to friction forces applied on the horizontal rotation axis and
whose effects are summarized by a restoring torque −kθ̇.
1. Specify all the forces acting on the system. Do they arise from a potential

(even a generalized one)? Is this a Lagrangian system? Write down the
differential equation resulting from Lagrange’s equation on the angle.
Check your result with Newton’s law.

2. Defining a dimensionless “time” τ = ω t, with the proper angular fre-
quency of the pendulum ω =

√
g/l, give the differential equation for the

angle and show that the only parameter for this problem is the dimen-
sionless quantity γ = k/(2mωl2). From here on, we assume γ < 1.

3. What are the equilibrium positions? Linearize the equation around each
of these positions. Deduce the temporal equation for the angle θ(τ). The
momentum is defined as p = ∂τθ; write down the coupled equations for
the angle and the momentum. Is there conservation of the area in phase
space? With the help of a pocket calculator, plot the curves parametrized
by the time in phase space.

4. One is interested in the angles of the pendulum for times separated by
δt = δτ/ω. Lagrange’s equation gives a relation between three successive
angles θn−1, θn, θn+1 because a reasonable approximation for the first
derivative is simply ∂τθ ≈ (θn+1−θn−1)/2δτ and for the second derivative
∂2

τθ ≈ (θn+1 + θn−1 − 2θn)/δτ2 .

Let us set pn =
θn+1 − θn

δτ
; pn−1 =

θn − θn−1

δτ
.

Show that the solution of these coupled equations in the plane (θn, pn)
reduces to the mapping:

θn+1 = θn + δτpn

pn+1(1 + γ δτ) = pn(1 − γ δτ) − δτ sin θn+1.

Calculate the Jacobian J of the mapping. Deduce the condition implying
conservation of the area.

By a new definition of the momentum, show that for γ = 0, one recovers
the standard mapping defined by (8.1). What is the expression of the
parameter K?

5. In the case γ �= 0, determine the eigenvalues of the matrix corresponding
to the mapping linearized in the vicinity of the stable equilibrium point.
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Show that, by taking two appropriate combinations of the angle and the
momentum, X(θ, p) and Y (θ, p), the mapping decreases the modulus of
X and Y by the same quantity to be determined. Deduce that successive
mappings lead to points closer and closer to the fixed point which roll
themselves up. The corresponding fixed point is known as a stable spiral
point or focus.

6. Using a personal computer, plot Poincaré’s sections for different initial
conditions and different friction coefficients γ for the standard mapping.

8.11. Stability of Periodic Orbits on
a Billiard Table [Solution p. 447] � � �

For addicts of the game of billiards

Gaming room

Physicists working on “dynamical systems”, although serious people, are very
much interested in the game of billiards. The billiard cush is a plane closed
curve. A billiard ball, subject to ideal reflections, is a two-dimensional auto-
nomous system defined by its position and momentum in two directions. In
contrast to standard dynamical systems, this model has the advantage of
not requiring the resolution of Hamilton’s equations: the motion is uniform
between two rebounds. At the impact on the cush, the tangential compo-
nent of the ball’s velocity remains unchanged while its normal component
is reversed.

Moreover, this system exhibits behaviours ranging from integrability to
chaos depending upon the geometry of the table: square, ellipse, heart
shape, stadium shape, triangle, . . .

Concerning this latter point, the knowledge of stability for periodic orbits
is very important. The aim of this problem is to establish the stability
conditions for a periodic orbit of order 1, that is for a perpetual to and fro
journey between two different points of the cush.

Good coordinates for the billiard game

The equivalent of the Poincaré section for the billiard table is a plane where,
at each rebound, we specify the curvilinear coordinate of the nth impact,
sn, along the cush and the projection of the tangential velocity of the ball
pn at the same point. The modulus of the velocity being conserved, one
can assign to it a unit value so that the projection is just the sine of the
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angle of incidence. The sign convention is such that pn > 0 if the velocity
is directed along the sense of increasing curvilinear abscissa.

The interesting problem is the study of the mapping sn = S(sn−1, pn−1),
pn = P (sn−1, pn−1); this mapping depends of course on the shape of the
billiard table. For problems concerning stability, it is sufficient to study the
derivative matrix M defined as

(
dsn

dpn

)
= M

(
dsn−1

dpn−1

)

in the vicinity of a periodic trajectory.
1. Determine the derivative matrix of the mapping.

One needs to build effectively the matrix M . The expression involves
the radii of curvature for each impact Rn, Rn−1. A radius of curvature is
taken as negative if the rebound occurs on a convex portion of the cush.
Indeed the normal to the surface changes its orientation. These curvature
radii are compared with the distance L covered between two impacts.

Check that the mapping preserves the area, justifying the choice of the
coordinates.

Hints: A possible line of attack is to consider small arbitrary displace-
ments of the impact points tn−1dsn−1 and tndsn, where t are unit tangent
vectors, oriented in the direction of increasing curvilinear abscissa (see
Fig. 8.6).

tn

nn

tn−1

nn−1

L
Rn > 0

Rn−1 < 0

dsndsn−1

Fig. 8.6 Trajectory of the billiard ball between two consecutive impacts on
the cush. The distance between these impacts is denoted L. The tangent and

normal vectors to the cush are also represented for the two impacts. The
dotted line represents a neighbouring trajectory
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One deduces the variation of the radius vector L between the impact n−1
and the impact n and one calculates the variations of the coordinates
pn−1 = tn−1 · L/L and pn = tn · L/L. In the derivation, one must not
forget the rotation in the direction of the tangent as we proceed along
the billiard cush: dtn = dsnnn/Rn where nn is the normal to the curve
oriented inward. In addition to the tangential projections of the velocity
after the impacts, it is interesting to introduce the related quantities
qn−1 and qn, the normal projections of the velocity after the impacts.
One has the relationship q2

n−1 = 1− p2
n−1, q2

n = 1− p2
n but we must take

care to note that qn−1 = nn−1 · L/L whereas qn = −nn · L/L. The use
of the Maple or Mathematica software packages may be of some help.

2. Show that the periodic trajectories of order 1 between the point A1 (ra-
dius of curvature R1) and the point A2 (radius of curvature R2), with
A1A2 = L, are stable if the following conditions are satisfied:

0 ≤ (L/R1 − 1)(L/R2 − 1) ≤ 1.

Hint : The trace of the mapping for a to and fro journey must be of
modulus less than 2. A simplification results from the fact that the
incidence angles vanishes. Do not forget that the linearized matrix for
a forward and backward trajectory is the product of two matrices M ,
corresponding to the forward and backward segments.

3. Study the stability of the trajectory for the various geometries of the
rebound presented in Fig. 8.7.

Fig. 8.7 Left upper part: trajectory on an elliptic billiard table close to the
minor axis. Left lower part: trajectory on an elliptic billiard table close to the

major axis. On the right part: Sinaï billiard table. A collection of impenetrable
circles centered at the apexes of a squared net is equivalent to a table made of a

single circle inside an impenetrable square as indicated in the figure
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8.12. Lagrangian Points: Jupiter’s Greeks
and Trojans [solution p. 450] � � �

This problem is a first approach to a very wide subject known as the re-
stricted three-body problem

This is the non-integrable problem that was studied by Poincaré. A first
numerical study corresponds to the famous work of the French astronomer
F. Hénon.

Consider two celestial objects of masses m2 and m3 which, owing to
their mutual attraction, rotate around each other without modifying their
separation, D, which means that they move around circular orbits.

To simplify the notation, we set the total mass M = m2 + m3, and the
mass asymmetry μ = (m3 − m2)/M , so that we can write

m2 =
(1 − μ)M

2
and m3 =

(1 + μ)M
2

.

1. Give the rotational angular frequency ω of the two objects and their
distances d2 and d3 to their center of mass denoted by O. To obtain
this relation rapidly, one can equate the centripetal force and the force
of attraction.

2. Consider also an asteroid with a mass m which is sufficiently weak with
respect to the mass of the two objects that it does not influence their
motion. The question we wish to answer is the following: what is the
motion of the asteroid under the combined action of the objects, with the
further condition that it remains always in the plane of the two circulating
objects.

In the Galilean frame, the interaction potential of the asteroid with the
two objects depends on time. It is astute to work in the frame which
rotates with angular frequency ω around the Oz axis, perpendicular to the
plane of the motion of the two heavy objects. Indeed, in this frame these
two objects are at rest and the interaction potential is time-independent.
We will seek the stationary configurations. In this particular frame, one
chooses for the origin the point O and for the Ox axis the straight line
which connects the two objects in the sense from object 2 to object 3.

In this frame the asteroid coordinates are x, y and their conjugate mo-
menta are px, py. The gravitational interaction potential acting on the
asteroid is denoted by V (x, y).
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Fig. 8.8 In the frame where the two big objects are at rest,
we study the motion of a third light mass. The represented

distances correspond to the equilibrium configuration

Using these coordinates, give the expression of the Hamiltonian. You will
employ the result of Problem 4.3, page 172: H = H0 − ωLz where H0 is
the Hamilton function as if the frame were Galilean and Lz the transverse
component of the angular momentum. It is convenient to introduce the
frequency ω instead of the gravitational constant, as was derived in the
first question.

3. What is the constant of the motion E (known as the Jacobi constant)?
Is the system integrable a priori? Write down the Hamilton equations.

4. We wish to determine whether or not there exist fixed configurations for
the three objects. They correspond to extrema of an effective potential
which contains a centrifugal term Ve(x, y) = V (x, y) − mω2(x2 + y2)/2.
Express this potential as a function of the distances r2 and r3 of the
asteroid to the two other objects Ve(r2, r3). Deduce that there exists
only one extremum for r2 = r3 = D. In this equilibrium configuration,
the three objects are located at the apexes of an equilateral triangle. The
two possible positions for the asteroid are called Lagrangian points. Give
the values of the corresponding variables (xL, yL, pxL

, pyL
). What is the

value of the constant of the motion at these points?
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5. We wish to study the stability around these Lagrangian points. To do
this, one considers a small displacement X,Y of the asteroid away from
the Lagrangian points (see Fig. 8.8). Show that, for small values of X,Y ,
we have the following expansion:

(
(X + a)2 + (Y + b)2

)−1/2
=

1
L

− aX + bY

L3
+

+
(2a2 − b2)X2 + 6abXY + (2b2 − a2)Y 2

2L5
,

with a and b being two arbitrary parameters and L =
√

a2 + b2. Deduce
the expression of the potential to second order in X,Y .

We set px = pxL
+ U ; py = pyL

+ V .

6. Give the expression of the Hamiltonian in terms of the coordinates X,Y,U,
V . To be consistent, we must be sure that the transformation (x, y, px, py)
→ (X,Y,U, V ) is canonical.

Demonstrate that, with an appropriate definition of the λ parameter, the
resulting Hamilton’s equations read

Ẋ = ωY +
U

m
; Ẏ = −ωX +

V

m
;

U̇ = ωV − mω2

8
(2X − λY ); V̇ = −ωU +

mω2

8
(λX + 10Y ).

Notice that they are first order coupled differential equations. The solu-
tions are combinations of proper modes9 with angular frequency Ω.

Show that the proper frequencies result from the four solutions of the
polynomial equation r4 − r2 + 27/16 − λ2/64 = 0, where r = Ω/ω.

7. Deduce that there is stability in the vicinity of the Lagrangian point only
if the mass asymmetry is such that μ2 > 23/27.

Check that this is indeed the case for the Sun-Jupiter couple. The
groups of asteroids placed at the two symmetric Lagrangian points with
respect to the Sun-Jupiter direction are called the “Greeks” and the
“Trojans”, with, of course, a veiled reference to Homer. Take the value
mS = 1049mJ .

Note: In fact the problem of stability is more involved. Markeev, in 1969,
demonstrated the instability for two particular mass ratios, namely μ =
(15−

√
213)/30 and μ = (45−

√
1833)/90 for which the frequencies of the two

modes are commensurable, with the explicit respective values Ω1/Ω2 = 3
and Ω1/Ω2 = 2.

9 See the section concerning the small amplitudes in Chapter 2.
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The presentation of this three-body problem corresponds to a simplified
version. There exist also Lagrangian points when the three objects are
aligned. Moreover we did not study the stability of the trajectory in a
direction perpendicular to the plane for the motion of the two heavy objects.

Lastly, we studied only the restricted three-body problem: the distance
between the heavy objects remains always constant. More generally, for
three objects with arbitrary masses moving on arbitrary orbits, there exist
two configurations for which the three objects, while moving on their re-
spective elliptic orbits, form a triangle with a variable size but always with
an equilateral shape.

Problem Solutions

8.1. Disappearance of Resonant Tori
[Statement p. 396]

1. Because of the relation s/r = tan α, it is convenient to set s = R sin α,
r = R cos α, where R =

√
s2 + r2. Similarly, one can set ω1 = Ωsin β,

ω2 = Ωcos β, where Ω =
√

ω2
1 + ω2

2 ; consequently, the function K(ω1, ω2)
appearing in the KAM theory reads K(ω1, ω2) = kΩ. The condition for
disappearance of resonating tori can be written generally:

|rω1 − sω2| < K(ω1, ω2)
(
s2 + r2

)−3/4
.

With our particular prescriptions, it reads in this case RΩ |sin(α − β)| <
kΩR−3/2. Furthermore, β = α + δα. Thus the condition for disappear-
ance is written simply as:

|sin(δαs:r)| ≈ |δαs:r| < kR−5/2.

2. The series
∞∑

n=1

1
nβ

is convergent if β > 1; in our case β = 5/2 > 1 so that the series converges
and its limit is denoted as S. The function x−5/2 being monotonically
decreasing, the series can be overestimated by an integral:

∞∑

n=2

1
n5/2

<

∞∫

1

x−5/2 dx =
2
3
.
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We thus have an upper bound for the series S1 = 1+2/3 = 5/3. Moreover,
1/n5/2 < 1/n2 and the series can be also overestimated by

S2 =
∞∑

n=2

1
n2

=
π2

6
.

Practically, one chooses the upper bound as the smallest proposed value
min(S1, S2) = S2. Consequently:

S <
π2

6
.

3. The angular sum of all excluded regions is necessarily less than that
around the irreducible rational numbers s/r:

Δ <
∑

r prime with s

2 |δαs:r| .

Moreover, the latter sum is necessarily less than that concerned by all
the rational numbers, irreducible or not:

Δ <
∑

r prime with s

2 |δαs:r| < 2
∞∑

r,s=1

|δαs:r| .

Owing to these remarks and the condition found in the first question, one
obtains

Δ < 2k

∞∑

r,s=1

1/
(
s2 + r2

)5/2
.

Then, the last trick relies on the inequality s2 + r2 > 2rs, which implies

Δ < 2−3/2k
∞∑

r,s=1

1
(sr)5/2

or Δ < 2−3/2k

( ∞∑

r=1

1
r5/2

)2

= 2−3/2kS2.

Δ < 2−3/2kS2.

4. Invariant tori will resist if Δ < π/2. This constraint is automatically ful-
filled if one imposes the condition 2−3/2kS2 < π/2. This will be the case
of course if the perturbation, proportional to k, remains weak. Explicitly,
tori resist if the perturbation is less than a critical value kc given by:

k < kc =
√

2π

S2

One can obtain a more severe constraint if one uses the upper bound for
S proposed in question 2:

k < k′
c =

36
√

2
π3

< kc.
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8.2. Continuous Fractions or How to Play
with Irrational Numbers
[Statement p. 396]

1. The simplest way to demonstrate the property is to adopt a recursive
method.
• for order 0: α0 = a0 = s0/r0. But r0 = a0r−1 + r−2 = a0 × 0 + 1 = 1

= r0, and s0 = a0s−1 + s−2 = a0 × 1 + 0 = a0 = s0; therefore s0/r0 =
a0/1 = a0 = α0. The property holds at this order.

• for order 1: α1 = a0 + (1/a1) = (a0a1 + 1)/a1 = s1/r1. But r1 =
a1r0 + r−1 = a1 × 1 + 0 = a1 = r1 and s1 = a1s0 + s−1 = a1 × a0 + 1;
therefore s1/r1 = (a0a1 + 1)/a1 = α1. The property holds also at this
order. This is sufficient to begin the recursive process.

Assume that the property is satisfied at order n − 1 and let us define
α′

n−1 = [a1; a2, . . . , an] = s′n−1/r′n−1. Furthermore, the desired number
is written αn = a0+(1/α′

n−1) = (a0s
′
n−1+r′n−1)/s′n−1, whence we deduce

the relation between prime and non prime quantities: sn = a0s
′
n−1+r′n−1;

rn = s′n−1. Owing to the assumed recursion property, we have s′n−1 =
ans′n−2 + s′n−3. Thus rn = ans′n−2 + s′n−3. Since s′n−2 = rn−1 and s′n−3

= rn−2, the preceding relation simply reads rn = anrn−1 + rn−2, which
is precisely one of the two desired recursion relations.

Lastly, sn = a0s
′
n−1 + r′n−1 = a0(ans′n−2 + s′n−3) + anr′n−2 + r′n−3 =

an(a0s
′
n−2 + r′n−2) + (a0s

′
n−3 + r′n−3) = ansn−1 + sn−2 = sn which cor-

responds to the second desired recursion relation. The recursion demon-
stration is now complete and one has:

rn = anrn−1 + rn−2

sn = ansn−1 + sn−2.

2. Let us first demonstrate an important property, relying on the previous
recursion relations: snrn+1 − sn+1rn = sn(an+1rn + rn−1) − (an+1sn +
sn−1)rn = −(sn−1rn−snrn−1). Proceeding recursively |snrn+1 − sn+1rn|
= |sn−1rn − snrn−1| =. . . = |s−2r−1 − s−1r−2| = |0 × 0 − 1 × 1| = 1.

Now, |αn − αn+1| =
∣∣∣∣
sn

rn
− sn+1

rn+1

∣∣∣∣ =
|snrn+1 − sn+1rn|

|rnrn+1|
.

Owing to the property just demonstrated and owing to the fact that
rnrn+1 is a positive quantity, we obtain the desired relation:

|αn − αn+1| =
1

rnrn+1
.
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3. The number α is written explicitly

α =
1

p + 1
p+ 1

p+...

.

We clearly observe the identity

α =
1

p + α
,

which is equivalent to the second order equation α2 + αp − 1 = 0. Only
the positive root makes sense; one finds therefore:

α =

√
p2 + 4 − p

2
.

4. The irrational number which converges most poorly to a rational number
corresponds to the preceding situation for which the successive denomi-
nators are the smallest possible, namely the number for which p = 1 in
the previous question. Consequently, one obtains α = (

√
5 − 1)/2 which

is manifestly related to the golden ratio Φ = (
√

5 + 1)/2 by α = Φ− 1 =
Φ−1:

α = Φ − 1 = Φ−1 =
√

5 − 1
2

.

8.3. Properties of the Phase Space of the
Standard Mapping [Statement p. 398]

1. Let us recall the expression for the standard mapping: θn+1 = θn + pn;
pn+1 = pn + K sin θn+1. Let M0 = (θ0, p0) be an arbitrary point in
Poincaré’s section and M ′

0(2π − θ0,−p0) be the symmetric point of M0

with respect to the point A(π, 0). It is equivalent to the point M ′
0(2π −

θ0, 2π − p0), lying inside the standard square, and obtained from the
allowed congruences.

The image of the point M0 is M1 = (θ1, p1) = (θ0 + p0, p0 + K sin θ1);
the image of the point M ′

0 is M ′
1(θ

′
1, p

′
1) = ((2π − θ0) + (−p0), (−p0)+

K sin θ′1) = (2π− (θ0 + p0),−p0 −K sin(θ0 + p0)) = (2π− θ1,−p1). Thus
M ′

1 is the symmetric point of M1. Proceeding recursively, the same prop-
erty holds for any further iterations. In other words, starting from two
symmetric initial conditions, the full trajectories are symmetric. Since
it is possible to divide Poincaré’s section into two regions composed of
symmetric points, one deduces that Poincaré’s section is formed by sym-
metric trajectories.
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Let us employ the same reasoning with a symmetry center chosen at
C(π, π). Again with the same starting point M0 = (θ0, p0), one obtains
the symmetric point M ′

0(2π − θ0, 2π − p0) which is identified, up to a
congruence, with the previous point M ′

0. Therefore, the symmetry with
respect to A is fully equivalent to the symmetry with respect to C. The
conclusions resulting from the symmetry with respect to A can thus be
extended to the symmetry with respect to C.

2. To an arbitrary point M = (θ, p) we associate the point M̃ = (θ̃ =
θ + π, p̃ = p) obtained by a translation by π of the origin of the angles.
Let M ′(θ′, p′) be the image of M by the standard mapping; obviously
θ′ = θ + p, p′ = p + K sin θ′. Let us associate to it the point M̃ ′(θ̃′, p̃′)
obtained by the same translation. Consequently θ̃′ = θ′ + π = θ + p + π
= θ̃ + p̃ and p̃′ = p′ = p + K sin θ′ = p̃ + K sin(θ̃′ − π) or p̃−K sin θ̃′. In
other words, the mapping which associates M̃ ′ to M̃ is given by:

θ̃′ = θ̃ + p̃

p̃′ = p̃ − K sin θ̃′.

One notices that it corresponds to the standard mapping but with a
negative constant K ′ = −K.

8.4. Bifurcation of the Periodic
Trajectory 1:1 for the
Standard Mapping [Statement p. 398]

1. Let us recall the form of the standard mapping: θ1 = θ0 + p0, p1 =
p0 + K sin θ1. The point (θ0, p0) is a fixed point if it corresponds to its
own image; therefore one has p1 = p0 which leads to K sin θ1 = 0, i.e.,
θ1 = 0 or θ1 = π. Moreover θ1 ≡ θ0. For θ1 = 0, this implies θ0 = 0,
then p0 = 0. For θ1 = π, one has similarly θ0 = π and p0 = 0. Therefore,
we end up with two fixed points of order 1:

A(0, 0) ; B(π, 0)

To study the stability of these points, it is necessary to linearize the
mapping in their neighbourhood.

Close to a fixed point (θf , pf ), let us choose a point denoted as (θf +
ε, pf + η); the image of this point is therefore θ1 = θf + pf + ε + η =
θf + ε + η = θf + ε1, that is ε1 = ε + η and p1 = pf + η + K sin θ1 =
pf +η+K sin(θf +ε1) ≈ pf +K sin θf +η+ε1K cos θf = pf +η1, so that
η1 = K cos θf ε + (1 + K cos θf )η. The matrix of the linearized mapping
is expressed as

M =
(

1 1
K cos θf 1 + K cos θf

)
.
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Its determinant is unity and its trace is just T = 2+K cos θf . Close to A,
θf = 0 whence T = 2 + K. One always has |T | > 2; consequently we are
dealing with an unstable hyperbolic point. Close to B, θf = π whence
T = 2 − K. The fixed point is stable, or elliptic, as long as |T | < 2, that
is K < 4. Finally:

A : is always unstable; hyperbolic point
B : K < 4 is a stable or elliptic point
B : K > 4 is an unstable or hyperbolic point.

2. Let (θf , pf ) be a fixed point of order 2 for the mapping in the neigh-
bourhood of B (the only fixed point of order 1 which is stable). From
the original mapping, it is transformed into its symmetric image with
respect to B, in such a way that the image (the second iterate) coin-
cides with the starting point (the symmetric point of the image is the
image of the symmetric point; see Problem 8.3). Therefore θf + pf =
2π − θf and pf + K sin(θf + pf ) = −pf . From the first equation, one
obtains pf = 2π−2θf and from the second one 2pf = −K sin(θf +pf ) =
−K sin(2π − θf ) = K sin θf . The fixed points are therefore determined
through the set of equations:

pf = 2π − 2θf

pf = 1
2K sin θf .

3. The fixed points are the intersections of the sinusoid 1
2K sin θf and the

straight line 2π − 2θf . An intersection exists only if the slope of the
sinusoid at point B is larger in modulus than the slope of the line at this
point, that is 1

2K cos θf < −2 or − 1
2K < −2, therefore

K > 4.

This is the bifurcation phenomenon. When the fixed point of order 1
becomes unstable, there appears a pair of fixed points of order 2.

4. Let pa = δ > 0 for the fixed point a. From the first equation giving the
fixed points, one derives δ = 2π − 2θa, that is θa = π − δ/2. The number
δ is determined from the transcendental equation δ = 1

2K sin(δ/2). This
first fixed point a is thus written as a(π−δ/2, δ); the second fixed point b
is the symmetric point of a with respect to B, that is b(π + δ/2,−δ). We
remark that the momentum of this point can also be written pb = 2π−δ.

Let us start from a point close to a, θ0 = θa + ε, p0 = pa + η. Its image
(θ1, p1) is close to b, that is θ1 = θb + ε1, p1 = pb + η1.
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We saw in the first question that the matrix linearized in the vicinity of
this point is

M1 =
(

1 1
K cos θa 1 + K cos θa

)
.

The second iterate (θ2, p2) is again close to a, and hence θ2 = θa + ε2,
p2 = pa+η2. The matrix linearized in the vicinity of this point is similarly

M2 =
(

1 1
K cos θb 1 + K cos θb

)
.

Passing from the initial point (θ0, p0) to its second iterate (θ2, p2) is
achieved through the product of the two previous matrices

M = M2M1 =
(

1 1
K cos θb 1 + K cos θb

)(
1 1

K cos θa 1 + K cos θa

)

=

⎛

⎜⎜⎝

1 + K cos θa

2 + K cos θa

K(cos θa + cos θb) + K2 cos θa cos θb

1 + K(cos θa + 2 cos θb) + K2 cos θa cos θb

⎞

⎟⎟⎠ .

The trace of this matrix is

T = 2 + 2K(cos θa + cos θb) + K2 cos θa cos θb.

With cos θa = cos(π − δ/2) = − cos(δ/2) and cos θb = cos(π + δ/2) =
− cos(δ/2), the trace may be expressed in a more compact form as

T = 2 − 4K cos(δ/2) + K2 cos2(δ/2)

= (K cos(δ/2) − 2)2 − 2.

The fixed point a (also b) is stable if the condition −2 < T < 2 is satisfied.
One inequality is always fulfilled; the other leads to (K cos(δ/2) − 2)2 <
4, that is:

|K cos(δ/2) − 2| < 2.

If K cos(δ/2) > 2, the previous condition is equivalent to 2 < K cos(δ/2) <
4. If K cos(δ/2) < 2 the same condition is equivalent to 0 < K cos(δ/2) <
2. Gathering both inequalities, the condition for stability is summarized
as 0 < K cos(δ/2) < 4. This condition must be considered as com-
plementary to the equation giving the value of δ, which is, as we saw,
δ = 1

2K sin(δ/2). An elementary calculation shows that the condition
K cos(δ/2) < 4, equivalent to δ/2 < tan(δ/2), is always satisfied. Fi-
nally, the only interesting condition for stability is:

cos(δ/2) > 0.
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Therefore one must have δ < π. Moreover the relation between K and δ
is K(δ) = 2δ/ sin(δ/2). A brief study of the curve K(δ) convinces us that,
over the interval [0, π], it is increasing and monotonic. Consequently, the
condition δ < π is identified with the condition K < K(π) = 2π. Finally,
this long study of stability allows us to conclude that the fixed points of
order 2 obtained as the result of the bifurcation are stable as long as:

4 < K < 2π.

The situation is illustrated in the Fig. 8.9.

=u=

=

=

π

0

−π

p

θπ + δ/2π − δ/2

δ

π 2π

K = 2
δ = 2.2622

Fig. 8.9 Bifurcation around the fixed point of order 1 (π, 0) denoted as a
filled black diamond. The fixed points of order 2 are represented by two small
grey circles. To better appreciate the figure, the upper part of the Poincaré

section has been translated by 2π below the lower part

5. We assume that this condition is realized and we are concerned with the
fixed point of order 1 B(π, 0). The matrix linearized in the neighbourhood
of this point is written explicitly

M =
(

1 1
−K 1 − K

)
.

The first task is to find the eigenvalues λ, which satisfy the characteristic
equation λ2 − (2 − K)λ + 1 = 0. Explicitly the roots are

λd =
1
2

(
2 − K −

√
K2 − 4K

)
and λc =

1
2

(
2 − K +

√
K2 − 4K

)
.
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Since |λd| > 1, |λc| < 1, the directions associated with these eigen-
values are respectively divergent and convergent. The direction of the
corresponding eigenvectors is parallel to the asymptote of the hyperbole
containing the iterations close to the fixed point.

It is easy to calculate the eigenvectors (up to a normalization factor) as
Vd = (1, λd − 1), Vc = (1, λc − 1). When stability disappears, for K = 4,
λd = λc = −1 and the directions of the asymptotes become degenerate
along the vectors

Vd = Vc = (1,−2).

With the position of the fixed points given above, it is easily checked that
Ba = (−δ/2, δ) = −(δ/2)Vd and Bb = (δ/2,−δ) = (δ/2)Vd. The direc-
tion connecting the fixed points thus lies along the common asymptotes
of the nascent hyperbolic point.

8.5. Chaos–ergodicity: A Slight
Difference [Statement p. 399]

1. The trajectory of the system is represented by very simple equations:
α(t) = ωαt+α0, β(t) = ωβt+β0. The configuration space (α, β) possesses
the topology of a torus 0 < α < 2π, 0 < β < 2π. Consider a function
F (α, β) defined in this space. It is obviously periodic in both variables
F (α + 2π, β) = F (α, β) = F (α, β + 2π).

It is convenient to use a Fourier expansion and write:

F (α, β) =
∞∑

m,n=−∞
Fmnei(mα+nβ).

We now follow the values of the function along its trajectory; the function
becomes time dependent and takes the following form:

F (α(t), β(t)) =
∞∑

m,n=−∞
Fmnei(mωα+nωβ)t ei(mα0+nβ0).

Let us calculate now its time average

F̄ (α0, β0) = lim
T→∞

1
T

T∫

0

F (α(t), β(t)) dt

=
∞∑

m,n=−∞
Fmnei(mα0+nβ0) lim

1
T

T∫

0

ei(mωα+nωβ)t dt.
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The value of the integral is given explicitly by

ei(mωα+nωβ)T − 1
i(mωα + nωβ)

if (mωα + nωβ) �= 0, otherwise it is equal to T .

We suppose that the angular frequencies are not commensurable; this
means that ωα/ωβ is not a rational number. This implies that (mωα +
nωβ) �= 0, except for m = n = 0, and that the proposed expres-
sion for the integral is always valid ∀m �= 0, n �= 0. Moreover, 0 <∣∣ei(mωα+nωβ)T − 1

∣∣ < 2 and hence lim
(∣∣ei(mωα+nωβ)T − 1

∣∣) /T → 0. Con-
sequently, in the Fourier expansion, there remains only the term with
m = n = 0, for which the limit is 1. Finally:

F̄ (α0, β0) = F00.

This value is independent of the starting point (α0, β0).

Consider now the average in configuration space:

F̃ =
1

(2π)2

∮
F (α, β) dα dβ.

Using the same Fourier expansion, we obtain:

F̃ =
1

(2π)2

∞∑

m,n=−∞
Fmn

2π∫

0

eimα dα

2π∫

0

eimβ dβ

=
1

(2π)2

∞∑

m,n=−∞
Fmn(2πδm,0)(2πδn,0) = F00

(δij is, as usual, the Kronecker symbol).

Thus, with the conditions of periodicity imposed on the function F , we
have demonstrated the ergodicity property, namely:

F̄ (α0, β0) = F̃ = F00.

2. Now we need to prove that, for an ergodic system, the trajectory explores
the configuration space in a dense way. In order to do this, consider a
small portion D of this space. Let us choose a particular periodic function
F (α, β) defined by the equation:

F (α, β) = 0 if (α, β) /∈ D

F (α, β) = 1 if (α, β) ∈ D.
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Let us start from an arbitrary point (α0, β0) and follow the trajectory

α(t) = ωαt + α0, β(t) = ωβt + β0.

We wish to demonstrate that, soon or later, it will explore the D region.
Let us use a reasoning ad absurdum and assume that the trajectory never
crosses the D domain. This means that (α(t), β(t)) /∈ D ∀t. With the
chosen function F (α, β), this condition is equivalent to F (α(t), β(t)) = 0,
∀t. One thus deduces F̄ (α0, β0) = 0.

On the other hand, the average over configuration space is equal to

F̃ =
1

(2π)2

∫ ∫

D

dα dβ = Area(D)/(2π)2 �= 0.

Consequently, our hypothesis leads to F̃ �= F̄ in contradiction with the
ergodicity property. We thus conclude that the trajectory necessarily
explores the D region, however small it may be. The space is said to be
covered by the trajectory in a dense way.

8.6. Acceleration Modes: A Curiosity of
the Standard Mapping [Statement p. 401]

1. We start from an arbitrary point of Poincaré’s section of the standard
mapping 0 < θ0 < 2π, 0 < p0 < 2π; its image is given by θ1 = θ0 + p0,
p1 = p0 + K sin θ1. We seek fixed points of order 1 corresponding to an
increase of 2π for the momentum. We must solve the equations θ1−θ0 =
2nπ, p1 − p0 = 2π. The first equation can be also written as p0 = 2nπ;
using the initial condition imposed on the starting point, one has n = 0
which leads to p0 = 0 and θ1 = θ0. The second equation for the fixed
point gives K sin θ1 = K sin θ0 = 2π so that the angle for the fixed point
is determined from the equation:

K sin θ0 = 2π

or sin θ0 = 2π/K. Since we have anyway sin θ0 < 1, the constraint on
the intensity of the perturbation reads:

K > 2π.

If this condition is satisfied, there exist two solutions for the angle θ0.
The corresponding fixed points are given by:

θ0 = arcsin(2π/K); p0 = 0
θ0 = π − arcsin(2π/K); p0 = 0.
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With these values, we have θ1 = θ0 and p1 = 2π. Let us adopt a recursive
reasoning and assume θn = θ0, pn = 2nπ. Using the standard mapping,
the next image is characterized by θn+1 = θn + pn = θ0 + 2nπ, which is
identified with θ0, and

pn+1 = pn + K sin θn+1 = 2nπ + K sin θ0 = 2nπ + 2π = 2(n + 1)π.

The recursion property is demonstrated. Therefore, the iteration of order
n is determined by:

θn = θ0

pn = 2nπ.

Passing from one iteration to the next one, the angle does not change,
but the momentum increases each time by 2π. This is why we speak of
an acceleration mode.

2. Let us denote as θ̃0 the angle for the fixed point and p̃0 = 0 its momentum.
We now choose a starting point close to the fixed point θ0 = θ̃0 + ε0,
p0 = p̃0 + η0. Its image angle is

θ1 = θ0 + p0 = θ̃0 + ε0 + η0 = θ̃1 + ε1

and the image momentum is p1 = p0+K sin θ1 = p̃1+η0+(ε0+η0)K cos θ̃0

= p̃1 + η1. The matrix switching from (ε0, η0) to (ε1, η1) is written as:

M =
(

1 1
K cos θ̃0 1 + K cos θ̃0.

)

The trace is equal to

T = 2 + K cos θ̃0.

3. When θ̃0 = arcsin(2π/K), one calculates easily K cos θ̃0 =
√

K2 − 4π2.
Since K > 2π, one deduces T > 2; the corresponding fixed point is always
unstable.

When θ̃0 = π − arcsin(2π/K), one calculates similarly

K cos θ̃0 = −
√

K2 − 4π2.

One deduces T = 2 −
√

K2 − 4π2; one always has T < 2. The corre-
sponding fixed point remains stable as long as we have the inequality:
K < 2

√
π2 + 4. To summarize, one fixed point is always unstable and

the other is stable for the values of the perturbation within the interval:

2π < K < 2
√

π2 + 4.
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8.7. Demonstration of a Kicked Rotor?
[Statement p. 401]

1. The Lagrangian for the simple pendulum is given as usual by L =
1
2ml2θ̇2 + mgl cos θ. The conjugate momentum is p = ml2θ̇ and the
equation of motion θ̈ = −(g/l) sin θ. With our axis conventions, working
in the frame of the suspension point, which is governed by the temporal
law a(t) along the gravitational field, is equivalent to the substitution
g → g − ä in the equation of motion. Setting g = 0, since gravity is
inefficient (at least negligible versus the acceleration of the suspension
point) in this modified equation, we obtain the equation of motion for
the system:

θ̈ =
ä

l
sin θ

2. At time nT , the angle is θ(nT ) = θn, the angular velocity θ̇(nT ) = θ̇n, the
momentum p(nT ) = pn = ml2θ̇n and the velocity of the suspension point
ȧ = nv. Between the instants nT and (n + 1)T , one has ȧ = nv = const,
hence ä = 0 which leads, owing to Lagrange’s equation, to θ̈ = 0. After
integration θ̇ = const = θ̇n, and then p = const = pn = ml2θ̇n. After a
further integration, one obtains θ(t) = θ̇n(t − nT ) + θn. Just before the
kick at time (n+1)T , one has θ ((n + 1)T−) = θ̇nT +θn. This angle does
not change after the kick so that θ ((n + 1)T+) = θn+1 = θ̇nT + θn that
is θn+1 = θn + pn(T/(ml2)).

Just before the kick θ̇ = θ̇n and p = pn. To determine their values
just after the kick, let us integrate the Lagrange equation between t0 =
(n + 1)T − ε and t1 = (n + 1)T + ε:

t1∫

t0

θ̈(t) dt = θ̇(t1) − θ̇(t0) =

t1∫

t0

ä(t) sin θ(t)
l

dt

≈ sin θn+1

l

t1∫

t0

ä(t) dt =
sin θn+1

l
(ȧ(t1) − ȧ(t0)) .

However, by hypothesis, ȧ(t1) − ȧ(t0) = v. Moreover

θ̇(t1) = θ̇ ((n + 1)T + ε) and θ̇(t0) = θ̇ ((n + 1)T − ε) .

In the limit ε → 0, we obtain θ̇(t1) = θ̇n+1 and θ̇(t0) = θ̇n. Our preceding
equation reads θ̇n+1− θ̇n = (v/l) sin θn+1. Rather than angular velocities
we use the momenta: pn+1 − pn = mlv sin θn+1.
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Therefore the desired mapping is written in the form:

θn+1 = θn +
T

ml2
pn

pn+1 = pn + mlv sin θn+1.

To make this mapping compatible with the standard mapping, we change
momenta and define Pn = Tpn/(ml2). The first of these equations is now
identical with the corresponding one of the standard mapping: θn+1 =
θn + Pn. Multiplying the second equation by T/(ml2), it can be recast
in the form of the standard mapping, if one makes the identification:

K =
vT

l
.

3. Now, we consider a velocity which takes the form of a square wave chang-
ing its sign every half-period. Let n be the label of a kick for which the
velocity becomes negative. Just after, the angle is θn, the angular veloc-
ity θ̇n, the momentum pn = ml2θ̇n, the velocity of the suspension point
ȧ = −v and its acceleration ä = 0.

Just after the next velocity inversion, a semi-period later, the correspond-
ing quantities are labelled θi, θ̇i, pi, ȧ = v. Using the results of the previ-
ous study, one can write the relation θi = θn + θ̇nT/2 = θn +pnT/(2ml2),

θ̇i − θ̇n =
sin θi

l
(v − (−v)) ,

or pi = pn + 2mlv sin θi.

We repeat the same arguments for the other semi-period to obtain the
quantities θn+1, pn+1 as functions of θi, pi: θn+1 = θi +piT/(2ml2), pn+1

= pi − 2mlv sin θn+1. As in the previous case, let us perform the change
of variable Pn = pnT/(2ml2) and introduce the value K = vT/l. The
preceding mappings have a simpler form: θi = θn+Pn, Pi = Pn+K sin θi

= Pn + K sin(θn + Pn) and θn+1 = θi + Pn+1, Pn+1 = Pi − K sin θn+1.
It is sufficient to remove the intermediate quantities θi, pi to obtain the
desired sawtooth mapping:

θn+1 = θn + 2Pn + K sin(θn + Pn)
Pn+1 = Pn + K sin(θn + Pn) − K sin θn+1.

This mapping looks very similar to the squared mapping of the standard
mapping; it differs only by the sign of the last term (−K sin θn+1 instead
of +K sin θn+1). However this slight difference induces important modi-
fications in Poincaré’s section. This sawtooth mapping is represented in
Fig. 8.10.
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2π0 π/2 π 3π/2

Fig. 8.10 Example of Poincaré’s section for the sawtooth mapping, obtained
with the value K = 0.75

4. Let us seek the fixed points of order 1 for this mapping. One must have
θ1 − θ0 = 2nπ, P1 − P0 = 0. The latter equation implies sin(θ0 + P0) =
sin θ0. There exist two families of solutions:

θ0 + P0 = θ0, θ0 + P0 = π − θ0.

First family of solutions P0 = 0

From the first equation of the fixed point, one finds 2nπ = K sin θ0 which
admits roots only if K > 2nπ. For the weak values of K that are of
interest, one can have only n = 0, which implies sin θ0 = 0. There exist
two solutions θ0 = 0 and θ0 = π and therefore two fixed points of order 1:

A(0, 0); B(π, 0).

To study the stability of the fixed point (θf , Pf ), it is necessary to linearize
the mapping in its neighbourhood. Let us begin with θ0 = θf + ε0,
P0 = Pf + η0. Substituting these relations in the first equation of the
mapping and restricting to first order, one obtains θ1 = θf + ε1, where
ε1 = ε0(1 + K cos θf ) + η0(2 + K cos θf ). Similarly, substituting in the
second equation, one obtains P1 = Pf +η1, where η1 = ε0(−K2 cos2 θf )+
η0(1 − K cos θf − K2 cos2 θf ).
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The linearized matrix therefore reads:

M =
(

1 + K cos θf 2 + K cos θf

−K2 cos2 θf 1 − K cos θf − K2 cos2 θf

)
.

It is easy to check that its determinant is unity and that the trace is
equal to T = 2 − K2 cos2 θf . Whatever the fixed point chosen, one has
cos2 θf = 1 and the corresponding value of the trace is T = 2−K2. The
points are stable as long as |T | < 2, which corresponds to K < 2.

A(0, 0), B(π, 0) are stable if K < 2
A(0, 0), B(π, 0) are unstable if K > 2.

Second family of solutions 2θ0 + P0 ≡ π

In this case 2P0 + K sin(θ0 + P0) = 2nπ = 2P0 + K sin θ0. With the
initial conditions 0 < θ0 < 2π, one has the constraint 0 < 2θ0 + P0 < 6π.
For the required solutions, one must restrict the choice to 2θ0 + P0 =
π, 3π, 5π.

Finally, we must solve the following system of equations : P0 = (π, 3π, 5π)
−2θ0, P0 = nπ − 1

2K sin θ0. To this end we use a graphical method,
seeking the intersections of the three straight lines π − 2θ0, 3π − 2θ0,
5π − 2θ0 and the three sinusoids nπ − 1

2K sin θ0 for weak values of K
(it is easy to be convinced that only the values n = 0, 1, 2 give solutions
inside the reference square). There exist four allowed solutions in the
reference square. The graphical situation is depicted in Fig. 8.11.

Two fixed points are easily obtained : the central point C(π, π) and
the point D(0, π). The other two, E and F , are obtained by solving a
transcendental equation.

To find the position of E, we use the fact that K is small. Let us set θe =
3π/2−ε, Pe = η. We find the first relation η = 2ε, then the equation η =
1
2K cos ε ≈ K/2. Therefore, we obtain η ≈ K/2 and ε ≈ K/4, which give
the approximate position of E. The F point is obtained by symmetry
arguments. In summary, the fixed points of the second family are the
following:

D(0, π) ; C(π, π) ; E(3π/2 − K/4,K/2) ; F (π/2 + K/4, 2π − K/2).

The matrix corresponding to the linearization of the mapping in the
neighbourhood of the fixed point θf , Pf in this family is obtained with
the same technique as before. It is more involved and reads (with the
definition Cf = cos(θf + Pf ) in order to simplify the expression)
(

1 + KCf 2 + KCf

KCf − K cos θf − K2 cos θfCf 1 + KCf − 2K cos θf − K2 cos θfCf

)
.
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Fig. 8.11 Graphical construction to find the fixed points of the sawtooth
mapping. The black dots correspond to the first family of

solutions. The empty circles correspond to the second family
of solutions. To calculate them, one must determine the intersections,
in the reference square, of the three straight lines kπ − 2θ (k = 1, 3, 5)

and the three sinusoids mπ − 1
2
K sin θ (m = 1, 3, 5)

Its determinant is unity and the trace is equal to

T = 2 + 2K cos(θf + Pf ) − 2K cos θf − K2 cos θf cos(θf + Pf ).

For the fixed point D, the trace is explicitly equal to T = 2 − 4K + K2.
The stability condition is −2 < T < 2, which, in this case, is equivalent
to K < 4.

For the fixed point C, the trace is T = 2 + 4K + K2 > 2 and the point
is always unstable.

For the point E, with the approximation of small K values, T ≈ 2+K2+
K4/16 > 2 and the point is always unstable.

The situation for the fixed point F is identical to that for point E.

To summarize,

C,E, F are always unstable
D, K < 4 is stable
D, K > 4 is unstable
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These conclusions are clearly seen in Fig. 8.10; the 3 fixed points C,E, F
are embedded in a chaotic region whereas the fixed point D is the center
of an islet of stability.

8.8. Anosov’s Mapping (or Arnold’s Cat)
[Statement and Figure p. 403]

1. Let us begin with the recursion relation for an+1 and an in the proposed
expression an+1an−1−a2

n = (an +an−1)an−1−an(an−1+an−2) = a2
n−1−

anan−2. Similarly a2
n−1 − anan−2 = an−1an−3 − a2

n−2 = an+1an−1 − a2
n.

Applying the latter identity to n = 2r, one obtains a2r+1a2r−1 − a2
2r =

a2(r−1)+1a2(r−1)−1 − a2
2(r−1). Pursuing the recursion up to the last term,

this common value is equal to a3a1 − a2
2 = 2 × 1 − 12 = 1. We thus

demonstrate the required identity:

a2r+1a2r−1 − a2
2r = 1.

2. Between two kicks, the Hamiltonian is that of a free particle H = p2/2.
Hamilton’s equations give first ṗ = −∂θH = 0 whence p = const and θ̇ =
∂pH = p. After the kick labelled n, the momentum is pn and the angle
θn. Just before the kick (n + 1), a time T = 1 later, the momentum has
not changed and the angle is θ = pnT + θn = pn + θn. Just after this
kick, the angle is unchanged θn+1 = pn +θn. In contrast, the momentum
exhibits an increase equal to the angle value at that time, namely θn+1;
consequently pn+1 = pn + θn+1.

The Anosov mapping is thus defined as:

θn+1 = pn + θn

pn+1 = pn + θn+1.

It can be written in a matrix form in a totally general way (and not after
linearization as we did for the study of stability in the neighbourhood of
fixed points). In the second equation defined above, we substitute θn+1

by its value pn + θn, to find pn+1 = 2pn + θn. Finally the mapping is
written in matrix form as:

(
θn+1

pn+1

)
=

(
1 1
1 2

)(
θn

pn

)
= M

(
θn

pn

)

Its determinant is unity; this is also the Jacobian valid anywhere in phase
space. This implies conservation of areas. Of course this mapping is linear
in the whole phase space.
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3. The eigenvalue equation reads (1−λ)(2−λ)− 1 = 0, or λ2 − 3λ + 1 = 0.
It possesses two real roots; the smaller of the two is λ1 = (3 −

√
5)/2 =

1 − Φ−1 ≈ 0.382 and the larger is λ2 = (3 +
√

5)/2 = 1 + Φ ≈ 2.618.
Remember that the golden ratio Φ = (1 +

√
5)/2 ≈ 1.618 obeys the

relation Φ2−Φ = 1, or, equivalently Φ = 1+Φ−1. It is easy to see (using
the properties of the golden ratio) that the eigenvectors associated with
the preceding eigenvalues are respectively (they are not normalized):

V1 = (−Φ, 1) ; V2 = (Φ−1, 1)

Therefore MV1 = λ1V1, which corresponds to a contraction for the vec-
tor, and MV2 = λ2V2, which corresponds to a dilation. It can be also
easily checked that V1 · V2 = −ΦΦ−1 + 1 × 1 = 0, which establishes the
orthogonality of these vectors (the M matrix being symmetric, this is
a natural property). Consequently, the mapping gives rise to a dilation
by a factor 2.618 in the direction of the vector V2 and to a contraction
by a factor 0.382 in the direction of the vector V1. Under the mapping,
an isosceles rectangle triangle whose sides are directed along the direc-
tions of these vectors remains a rectangle triangle, since the image of the
eigenvectors are still parallel to the eigenvectors and thus their directions
remain orthogonal. However, for the iteration labeled i, one of the sides
suffers a dilation by a factor λi

2 while the other suffers a contraction by
a factor λi

1. The triangle is thus stretched and becomes progressively
thinner, preserving nevertheless its area. This property is illustrated in
Fig. 8.12, where we represented the original triangle and its first two
iterations.

Fig. 8.12 On the left, we have represented an isosceles rectangle triangle
whose sides are directed along the directions of dilation and contraction. The

picture in the middle shows the first iteration by the
Anosov mapping, and the right picture the second iteration. For clarity,
we did not perform the congruence operations, and changed the scale
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Since the mapping is linear, it transforms a straight segment into a
straight segment. Moreover two parallel segments are transformed into
two parallel segments. On the other hand, the mapping, while conserving
areas, conserves neither angles nor lengths.

A rectangle is transformed into a parallelogram.

The most general form for a conic, in particular a circle, is a quadratic
form. Because of linearity, its transforms are always quadratic forms
representing conics which are of course deformed (but with the same
area) as compared to the original. For a circle, which is a closed loop
with a finite area, the transform is a conic with a closed loop and finite
area, i.e., an ellipse.

A circle is transformed into an ellipse.

Of course, all these properties are valid before the congruence operations
that bring the image back into the reference square.

4. It is well known in linear algebra that a change of basis which transforms
the original matrix M to its diagonal matrix D =

(
λ1 0
0 λ2

)
is accomplished

via a matrix built on the eigenvectors

S =
(
−Φ Φ−1

1 1

)
:

D = S−1MS.

To conform ourself to the nomenclature proposed in the statement, we
write this property in the form M = U−1DU , with the obvious change
U−1 = S, therefore U = S−1, so that the inverse matrix can be calculated
with the standard technique to give:

U =
(
−1/(Φ + Φ−1) Φ−1/(Φ + Φ−1)
1/(Φ + Φ−1) Φ/(Φ + Φ−1)

)
.

Finally the transformation can be summarized as:

M = U−1DU

U−1 =
(
−Φ Φ−1

1 1

)

U =
(
−1/(Φ + Φ−1) Φ−1/(Φ + Φ−1)
1/(Φ + Φ−1) Φ/(Φ + Φ−1)

)
.

Written in such a form, the rth power of the matrix can be straightfor-
wardly calculated: Mr = (U−1DU)r = U−1DrU , in which

Dr =
(

λr
1 0
0 λr

2

)
.
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Using the expressions of the various matrices, one obtains finally:

Mr =

⎛

⎜⎝

Φ(1 − Φ−1)r + Φ−1(1 + Φ)r

Φ + Φ−1

(1 + Φ)r − (1 − Φ−1)r

Φ + Φ−1

(1 + Φ)r − (1 − Φ−1)r

Φ + Φ−1

Φ−1(1 − Φ−1)r + Φ(1 + Φ)r

Φ + Φ−1

⎞

⎟⎠ .

This matrix is symmetric. Since all the elements of the M matrix are
integers, the same property must hold for the elements of the Mr matrix
given just above. The Φ and Φ−1 numbers being irrational, the latter
property is by no means obvious for the form of Mr given previously.
Fortunately we will see in the next question that this is indeed the case.

5. Using the property det(Mr) = (det(M))r, it is immediately seen that
det(Mr) = 1. Nevertheless, it is instructive to build explicitly the matrix
Mr. One may first remark that M = ( a1 a2

a2 a3 ). Let us assume that

Mr =
(

a2r−1 a2r

a2r a2r+1

)

and use a recursion method.

Mr+1 = MMr =
(

1 1
1 2

)(
a2r−1 a2r

a2r a2r+1

)

=
(

a2r−1 + a2r a2r + a2r+1

a2r−1 + 2a2r a2r + 2a2r+1

)

Owing to the recursion definition of the Fibonacci sequence, one has
a2r−1 + a2r = a2r+1 = a2(r+1)−1, a2r + a2r+1 = a2r+2 = a2(r+1), and
a2r−1+2a2r = a2r+a2r+1 = a2r+2 = a2(r+1), a2r+2a2r+1 = a2r+1+a2r+2

= a2r+3 = a2(r+1)+1.

These relations allow us to write the matrix

Mr+1 =
(

a2(r+1)−1 a2(r+1)

a2(r+1) a2(r+1)+1

)

in the desired form. The recursion property is demonstrated. Thus

Mr =
(

a2r−1 a2r

a2r a2r+1

)

Under this form, we can check first that all its elements are integers, and
secondly that its determinant is, as expected, a2r+1a2r−1 − a2

2r = 1, as
shown in the first question.

6. We are seeking for fixed points of order r in the most general way. We
must satisfy the equations θr − θ0 = 2πk, pr − p0 = 2πl.
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Let us introduce, as suggested in the statement, the reduced quantities
x = θ/(2π), y = p/(2π). With these conventions, we need to solve the
matrix equation

(Mr − I)
(

x0

y0

)
=

(
k
l

)
.

We are faced with a traditional linear system; with the expression for the
Mr matrix deduced in the preceding question and using the properties
of Fibonacci’s sequence, a short calculation leads to the solution:

x0 =
la2r − k(a2r+1 − 1)
a2r+1 + a2r−1 − 2

y0 =
ka2r − l(a2r−1 − 1)
a2r+1 + a2r−1 − 2

.

7. To avoid redundancies, we must impose the conditions that both θ0 and
p0 lie in the reference square; in other words we impose the restrictions
0 ≤ x0 < 1 and 0 ≤ y0 < 1. Translated in terms of the x0 and y0

expressions just obtained, these constraints are written as:

a2r+1 − 1
a2r

k ≤ l <
a2r+1 − 1

a2r
k +

a2r+1 + a2r−1 − 2
a2r

a2r

a2r−1 − 1
k − a2r+1 + a2r−1 − 2

a2r−1 − 1
≤ l <

a2r

a2r−1 − 1
k.

The first set of inequalities shows that l is comprised between two parallel
straight lines with slope (a2r+1 − 1)/a2r, while the second set shows that
the same number is comprised between two parallel straight lines with
slope a2r/(a2r−1−1). This means that l lies inside a parallelogram. This
situation is illustrated in Fig. 8.13.

8. All the integer values (k, l) which lie inside the parallelogram are suitable.
To obtain an estimation of this number, it is sufficient to divide the area
of this parallelogram by the average area needed for a single pair (k, l).

This latter area is just unity since an elementary square cell with side 1
in a net whose nodes are placed on half-integer values (1/2, 3/2, 5/2,. . . )
contains one and only one set of (k, l) numbers.

We must now calculate the area S of the parallelogram. Let us desig-
nate by OA(a2r, a2r+1 − 1) the vector along one side and OC(a2r−1 −
1, a2r) the vector along the other side. The area is just given by S =
|OA × OC|. The calculation of this vector product presents no diffi-
culty: one finds S = a2r+1 + a2r−1 − 2.



Problem Solutions 437

7

6

5

4

3

2

1

1 2 3 4

Fig. 8.13 In the plane (k, l), the grey region
represents the parallelogram which contains
the fixed points of Anosov’s mapping. This
situation corresponds to second order fixed
points

This number corresponds also to the estimated number of fixed points of
order r:

Nr = a2r+1 + a2r−1 − 2.

Let us emphasize nevertheless that, in this number, are counted all the
fixed points of the order of a divisor of r. It is also instructive to remark
that the number of fixed points tends to infinity exponentially with r,
and that the parallelogram becomes more and more flat and stretched
because the slopes of the parallel lines tend to a common value which is
precisely the golden ratio.

9. To study the stability of fixed points of order r, one must linearize the
mapping in their neighbourhood. In our particular case, the mapping
is already linear so that the linearization reveals nothing new and is
obviously identical with the Mr matrix itself. Its trace is equal to T =
a2r+1 + a2r−1. It is easy to prove that one always has

a2r+1 + a2r−1 > 2.

Consequently all the fixed points are unstable.

Let us notice also that, except (0,0), there exists no fixed point with l = 0
(this is obvious from the definition of the parallelogram). In consequence,
the momenta inevitably increase at each iteration; we are dealing with
acceleration modes.

10. Let us study the fixed points of order 2. Since a3 = 2, a4 = 3, one
calculates a5 = 5. We expect to find about 5 + 2 − 2 = 5 fixed points,
among them being (0,0), the fixed point of order 1. In our particular case
r = 2 the fixed points are given by x0 = (3l− 4k)/5, y0 = (3k − l)/5 and
the borders of the parallelogram by 4

3k ≤ l < 4
3k + 5

3 , 3k − 5 ≤ l < 3k.
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An exhaustive counting satisfying these conditions reveals that the fixed
points of order 2 are the following:

(0, 0); (1/5, 3/5); (2/5, 1/5); (3/5, 4/5); (4/5, 2/5).

We count 5 such points, which is exactly the estimated number.

8.9. Fermi’s Accelerator
[Statement and Figure p. 405]

1. One denotes by L′(t) = dL(t)/dt, L′′(t) = d2L(t)/dt2 the first and second
derivatives of the displacement law for the right hand wall.

At the instant tn, the particle bounces on the moving wall and returns
towards the fixed wall with a velocity whose modulus is vn, relative to the
moving wall. At that time, the moving wall is at a distance L(tn) from
the fixed wall and its velocity is equal to L′(tn). The relative velocity of
the particle is −vn and, relying on the velocity addition law, the velocity
is un = −vn + L′(tn) in the Galilean frame of the fixed wall. The time
needed to travel between the two walls is thus

L(tn)
|un|

=
L(tn)

vn − L′(tn)
.

Therefore, the instant of the impact on the left wall is simply tn+1 =
tn +L(tn)/ (vn − L′(tn)). After the impact, the velocity of the particle is
un+1 = −un = vn−L′(tn). Since the left wall is fixed, this velocity is also
the velocity relative to the left wall vn+1 = un+1. So, the transformation
law reads:

tn+1 = tn +
L(tn)

(vn − L′(tn))
vn+1 = vn − L′(tn).

We work in the space (t, E) considering, instead of v, the energy E =
1
2mv2 relative to the wall on which the particle rebounds. Let us find
first the Jacobian of the transformation

J =
D(tn+1, En+1)

D(tn, En)
.

Relying on the known properties of Jacobians, one can write

J =
D(tn+1, En+1)
D(tn+1, vn+1)

× D(tn+1, vn+1)
D(tn, vn)

× D(tn, vn)
D(tn, En)

.
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It is easy to check that

D(tn+1, En+1)
D(tn+1, vn+1)

= mvn+1 and similarly
D(tn, vn)
D(tn, En)

=
1

mvn
.

Lastly
D(tn+1, vn+1)

D(tn, vn)
= (∂tn

tn+1)(∂vn
vn+1) − (∂vn

tn+1)(∂tn
vn+1).

An elementary calculation provides

∂tn
tn+1 = 1 +

L′(tn)
vn+1

+
L(tn)L′′(tn)

v2
n+1

,

∂vn
vn+1 = 1, ∂vn

tn+1 = −L(tn)
v2

n+1

, and

∂tn
vn+1 = −L′′(tn).

These expressions allow us to find

D(tn+1, vn+1)
D(tn, vn)

= 1 +
L′(tn)

vn − L′(tn)
=

vn

vn+1

and lead to the conclusion that:

D(tn+1, En+1)
D(tn, En)

= 1.

The area is preserved in this phase space.

2. Now, tn is the instant at which the particle bounces on the left wall and
returns with velocity vn; it reaches the moving wall at the instant tn+1

when its distance is L(tn+1). Since the particle travels at constant speed
vn between the two impacts, the corresponding time is L(tn+1)/vn and
one has tn+1 = tn + L(tn+1)/vn.

At the moment of impact on the moving wall, the absolute velocity is
vn and the driving velocity of the wall L′(tn+1). The relative velocity is
un = vn − L′(tn+1). After the impact, the relative velocity changes its
sign to become un+1 = −un, then, from our definition, vn+1 = |un+1| =
vn − L′(tn+1). To summarize, the required transformation is:

tn+1 = tn +
L(tn+1)

vn

vn+1 = vn − L′(tn+1).

To calculate the Jacobian of the transformation, we adopt the same rea-
soning as before. We will nevertheless take care of the fact that the
quantities L′(tn+1) and L(tn+1) are themselves functions of tn and vn

through the variable tn+1.
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Explicitly, one finds

∂tn
tn+1 =

vn

vn+1
, ∂vn

vn+1 = 1 +
L(tn+1)L′′(tn+1)

vnvn+1
,

and ∂vn
tn+1 = −L(tn+1)

vnvn+1
, ∂tn

vn+1 = −vnL′′(tn+1)
vn+1

.

These relations allow us to calculate D(tn+1, vn+1)/D(tn, vn) = vn/vn+1

and thus, as in the previous question:

D(tn+1, En+1)
D(tn, En)

= 1.

Once again, the area in phase space is preserved.

3. One can imagine the presence of a fictitious wall, between the two moving
walls, on which the particle arrives at the intermediate time T with the
absolute velocity V and an absolute energy E. The situation between
the right moving wall with variables (tn, En) and the fictitious wall with
variables (T, E) has been studied in Question 1; we proved that the
Jacobian of the transformation is unity

D(T,E)
D(tn, En)

= 1.

Furthermore, the situation between the fictitious wall with variables (T,
E) and the left moving wall with variables (tn+1, En+1) has been exam-
ined in Question 2 where we demonstrated that the Jacobian is unity

D(tn+1, En+1)
D(T,E)

= 1.

The transformation connecting the impacts between the two moving walls
is described by the passage from the variables (tn, En) to the variables
(tn+1, En+1). The Jacobian of the transformation D(tn+1, En+1)/D(tn,
En) may be evaluated as

D(tn+1, En+1)
D(T,E)

× D(T,E)
D(tn, En)

.

Owing to the previous remarks, this value is unity. Thus, in the general
case of two moving walls, one still has

D(tn+1, En+1)
D(tn, En)

= 1.

There is conservation of the area in phase phase.

An illustration of our arguments is given in Fig. 8.14.
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T

Fig. 8.14 Rebounds between two mov-
ing walls, introducing a fictitious fixed
wall

4. With the conventions proposed in the statement, there exists a fixed point
if after a multiple of T , the velocity vn+1, after the impact (n + 1), is
identical to that after the impact n, i.e., vn. The relative velocity just
before the impact on the moving wall is un = vn − L′(tc), and after it is
un+1 = −un = L′(tc)−vn. The absolute velocity is therefore un+1+L′(tc)
= 2L′(tc) − vn. The impact on the fixed wall changes its sign vn+1 =
vn − 2L′(tc) so that the condition for existence of a fixed point vn+1 =
vn implies:

L′(tc) = 0.

Furthermore, again from the condition vn+1 = vn, one also has tn+1 =
tc+Lc/vn and tn = tc−Lc/vn. Taking the half sum of these two relations,
we arrive at the desired equation:

tc =
tn + tn+1

2
.

This particular situation is represented in Fig. 8.15.

Let us denote as t0 the instant of impact on the fixed wall, tc that on
the moving wall, and t1 the following instant of impact on the fixed wall;
v0 = v1 are the characteristic velocities for the fixed point. One sets also

Lc = L(tc), L′
c = L′(tc) = 0, L′′

c = L′′(tc).

Let us choose now a starting point on the fixed wall very close to the
fixed point ti = t0 + ε0, vi = v0 +η0 which lead to the values t′c = tc + εc,
tf = t1 + ε1, vf = v1 + η1. We first have vf = v0 − 2L′(tc + εc), which
implies

εc =
η1 − η0

2L′′
c

.
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Fig. 8.15 Fixed points of the mapping
between the fixed wall and the moving
wall

A first equation is ti = t′c − L(t′c)/vi which provides a first relation

η1 = −2L′′
c ε0 +

(
1 + 2

LcL
′′
c

v2
0

)
η0.

A second equation gives tf = t′c + L(t′c)/vf which provides

ε1 =
η0

2L′′
c

−
(

1
2L′′

c

+
Lc

v2
0

)
η1,

which, after replacing η1 by its value calculated just above, is recast as

ε1 = ε0 −
(
−2

Lc

v2
0

)(
1 +

LcL
′′
c

v2
0

)
η0.

We have in hand all the ingredients necessary for the linearization of the
mapping around the fixed point and we obtain the matrix M such that

(
ε1

η1

)
= M

(
ε0

η0

)
.

The trace of this matrix is equal to T = 2 + 2LcL
′′
c /v2

0 . There is stability
of the fixed point if −2 < T < 2, which implies LcL

′′
c < 0 and LcL

′′
c >

−2v2
0 = −4E/m, so that the stability condition is summarized by the

inequalities:

−4E

m
< LcL

′′
c < 0.

5. We denote as tn the instant for impact n on the moving wall, and as tc
the instant for the next impact on the fixed wall. We already saw that
vn+1 = vn − 2L′(tn+1). We have also tc = tn + L(tn)/vn and tn+1 =
tc + L(tn+1)/vn.
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If the distance between the two walls varies slightly between the two
impacts, it is legitimate to make the approximation L(tn) ≈ L(tn+1) = L.
After adding the two previous relations, we arrive at tn+1 = tn + 2L/vn.
Thus, the Ulam mapping is written as

tn+1 = tn +
2L

vn

vn+1 = vn − 2L′(tn+1).

Instead of working in phase space (t, E), we now choose the phase space
(t, v). We seek the Jacobian of the transformation

D(tn+1, vn+1)
D(tn, vn)

.

With the preceding expression for the transformation, it is easy to cal-
culate ∂tn

tn+1 = 1, ∂vn
tn+1 = −2L/v2

n and ∂tn
vn+1 = −2L′′(tn+1),

∂vn
vn+1 = 1 + 4LL′′(tn+1)/v2

n and to check that the Jacobian is indeed
unity:

D(tn+1, vn+1)
D(tn, vn)

= 1.

The Ulam mapping is very similar to the standard mapping. Indeed,
assume that the velocity varies only slightly around a mean velocity v̄;
then 2L/vn = (2L/v̄2) vn. Now, let us perform the replacement t → θ and
v → (v̄2/2L) p. The first Ulam equation becomes θn+1 = θn + pn, which
is identical with the first equation of the standard mapping. Multiply
the second Ulam equation by 2L/v̄2 and assume that the wall velocity
follows a sinusoidal law L′(t) = sin t; this second equation is transformed
into pn+1 = pn + K sin(θn+1), with K = −4L/v̄2. It is also identical to
the second equation of the standard mapping. Under these conditions,
the Ulam mapping is fully equivalent to the standard mapping.

8.10. Damped Pendulum and
Standard Mapping [Statement p. 407]

1. The system is one-dimensional, the angle θ of the pendulum with the
vertical being the only degree of freedom. The kinetic energy is easy
to calculate, T = 1

2ml2θ̇2. We need to calculate the generalized forces
and, to do this, we perform a virtual displacement δθ. We first consider
the weight, P = mg, which produces a virtual work δW = P · δr =
−Pl sin θ δθ = Qp δθ whence the corresponding expression for the force
Qp = −mgl sin θ. This force arises from the potential V (θ) = −mgl cos θ.
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However there exists an additional generalized force due to the friction,
which is precisely the moment of the friction forces Qf (θ̇) = −kθ̇. This
force cannot arise from a simple potential of the form V (θ) because
−∂θV (θ) would be a function of θ alone, whereas Qf is a function of
θ̇ alone (if k �= 0). Let us investigate the possibility of a generalized
potential V (θ, θ̇). In this case, one must satisfy the equation

−kθ̇ =
d

dt

(
∂θV (θ, θ̇)

)
− ∂θV (θ, θ̇) = θ̇∂2

θθ̇
V + θ̈∂2

θ̇2V − ∂θV.

The fact that the force does not depend on θ̈ implies that V (θ, θ̇) =
f(θ)θ̇ + g(θ). The desired relation is now equivalent to −kθ̇ = g′(θ),
which cannot be satisfied if k �= 0. The friction forces therefore do not
arise from a potential, even a generalized one.

The system is not a Lagrangian system.

Nevertheless, one can safely employ the Lagrangian formulation which, in
this case, is written as a Lagrange equation d

(
∂θ̇T

)
/dt−∂θT = Qp +Qf .

It leads to the differential equation

ml2θ̈ + kθ̇ + mgl sin θ = 0.

It can be checked directly from Newton’s equation by equating the time
derivative of the angular momentum with the moment of the applied
forces.

2. Let us divide the Lagrange equation by ml2 and introduce the proper
angular frequency of the pendulum ω =

√
g/l; it then reads

θ̈ +
k

ml2
θ̇ + ω2 sin θ = 0.

We perform the change of variable τ = ωt; the angle is now a function
of τ : θ(τ). Let us set θ′(τ) = dθ(τ)/dτ , θ′′(τ) = d2θ(τ)/dτ2. One can
check that θ̇ = ωθ′, θ̈ = ω2θ′′. Dividing the preceding equation by ω2

and introducing γ = k/(2mωl2), the differential equation to be solved is
written in the simple form:

θ′′ + 2γθ′ + sin θ = 0.

3. At the equilibrium point, one has θ = const, hence θ′′ = θ′ = 0 and thus
sin θ = 0. Therefore there exist two equilibrium points:

θ0 = 0; θ0 = π.
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Consider a point close to the solution θ0 = 0 (lower position of the pendu-
lum) and set θ = ε; then sin θ ≈ ε and the differential equation becomes
ε′′ + 2γε′ + ε = 0. The solution is well known. Since γ < 1, the solution
is

ε(τ) = e−γτ
[
a cos

(√
1 − γ2τ

)
+ b sin

(√
1 − γ2τ

)]
.

The system tends toward the equilibrium point but oscillates around it.

θ(τ) = e−γτ
[
a cos

(√
1 − γ2τ

)
+ b sin

(√
1 − γ2τ

)]
.

The point θ0 = 0 is thus a stable equilibrium point.

Close to θ0 = π (higher equilibrium point), one sets θ = π + ε. The
equation becomes ε′′ + 2γε′ − ε = 0. There exist two real roots, one
negative r1 = −γ−

√
1 + γ2, the other positive r2 = −γ +

√
1 + γ2. The

general solution is:

θ(τ) = aer1τ + ber2τ + π.

The solution increases exponentially with time, so that this equilibrium
point is unstable.

The differential equation can be recast as a set of two coupled differential
equations. Setting p = dθ/dτ = θ′, θ′′ = dp/dτ = p′ and the equation is
equivalent to the system:

θ′ = p

p′ = −2γp − sin θ.

4. One performs stroboscopic observations with period δτ and one sets τn =
nδτ , θ(τn) = θn. The derivatives are expressed as θ′n = θ′(τn) = (θn+1 −
θn−1)/(2δτ), θ′′n = θ′′(τn) = (θn+1 + θn−1 − 2θn)/(δτ)2. The differential
equation is then discretized at point τn and written as

θn+1 + θn−1 − 2θn

(δτ)2
+ γ

θn+1 − θn−1

δτ
+ sin θn = 0.

As suggested in the statement, one defines the momenta via the iden-
tities pn = (θn+1 − θn)/δτ . The latter equation can also be written as
θn+1 = θn + δτ pn. The differential equation arising from Lagrange’s
equation is put in the form (pn − pn−1)/δτ + γ(pn + pn−1) + sin θn = 0,
which, after rearranging similar terms and multiplying by δτ , gives the
recursion relation (1 + γδτ)pn = (1 − γδτ)pn−1 − δτ sin θn. Finally, the
transformation in phase space takes the definitive form:

θn+1 = θn + δτ pn

(1 + γδτ)pn+1 = (1 − γδτ)pn − δτ sin θn+1.



446 8 From Order to Chaos

The Jacobian of the transformation is explicitly equal to

J = (∂θn
θn+1)(∂pn

pn+1) − (∂θn
pn+1)(∂pn

θn+1).

With ∂θn
θn+1 = 1, ∂pn

pn+1 = (1 − γδτ)/(1 + γδτ) −(δτ)2 cos θn+1/(1 +
γδτ) and ∂θn

pn+1 = −δτ cos θn+1/(1 + γδτ), ∂pn
θn+1 = δτ , it is easy to

demonstrate that the Jacobian is equal to:

J =
1 − γδτ

1 + γδτ
.

There is conservation of the area if J = 1, that is if γ = 0, or if friction
is absent.

Consider this latter case and denote Pn = δτ pn. The transformation can
now be written:

θn+1 = θn + Pn

Pn+1 = Pn − (δτ)2 sin θn+1.

This transformation is identical to the standard mapping if one makes
the identification K = −(δτ)2.

5. The stable fixed point is θ0 = 0, p0 = 0. One chooses a starting point
(ε, η) close to this point and one linearizes the mapping given in the
preceding question to obtain its image. The transformation matrix is
written explicitly

M =

⎛

⎝
1 δτ

− δτ

1 + γδτ

1 − γδτ − δτ2

1 + γδτ

⎞

⎠ .

The trace is equal to T = (2−(δτ)2)/(1+γδτ) and its determinant is D =
(1−γδτ)/(1+γδτ). The characteristic equation λ2−Tλ+D = 0 admits
two complex conjugate roots σ, σ∗. The corresponding eigenvectors for
the M matrix are X, Y . Therefore Xn+1 = σXn and Yn+1 = σ∗Yn. Since
|σ| = |σ∗| =

√
D, one deduces

∣∣∣∣
Xn+1

Xn

∣∣∣∣ =
∣∣∣∣
Yn+1

Yn

∣∣∣∣ =
√

D.

D being less than 1, these latter equalities prove that Xn → 0, Yn → 0
following successive iterations. The quantities (ε, η) are related to (X,Y )
by a linear transformation and it follows that εn → 0, ηn → 0 with time.

Whatever the starting point (close to the fixed point), the mapping brings
it progressively to the fixed point iteration after iteration. This fixed
point is known as an attractor, a focus or a spiral point.
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θ′
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Fig. 8.16 Poincaré section corresponding to the damped pendulum, starting
from 9 different initial conditions. The various parameters are indicated in

the figure

6. The Poincaré section corresponding to the damped pendulum is repre-
sented in Fig. 8.16 for a number of iterations equal to 1500, with the
parameters K = 0.04 and γ = 0.15, and for 9 different initial conditions.

8.11. Stability of Periodic Orbits on a
Billiard Table [Statement and Figure p. 409]

1. We choose an origin O and a point A on the cush which is specified by its
curvilinear abscissa s =

�

OA. At point A is defined the unit vector along
the tangent t(s), oriented in the sense of increasing s, the unit vector
along the normal n(s), oriented towards the interior of the table, and
the unit vector perpendicular to the plane of the table z, such that the
trihedron (t,n,z) is direct.

Let B be a point close to A, such that ds =
�

AB, where the tangent is t′

and the normal n′. The directions along n and n′ intersect at a point C.
The circle of center C and radius R = CA is called the osculatory circle,
and R is the radius of curvature at the point A. The convention is such
that

dt = t′ − t =
ds

R
n =

ds

R
(z × t).

With such a definition, the radius of curvature is positive, R > 0, if con-
cavity is directed inward, and negative, R < 0, if it is directed outward.
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At the impact (n− 1), the ball attains the cush at point A with abscissa
sn−1 and, after the impact, the reflection angle is in−1. The second
coordinate is defined as pn−1 = sin in−1 = (vn−1)t/|vn−1| (tangential
component of the velocity normalized to 1). At the next impact, the ball
touches the cush at point B, with abscissa sn, after which the reflection
angle is in and the other coordinate pn.

Let us set L = AB and let D = L/L be the unit vector along the
direction of propagation between two impacts. It is easy to show that,
in all cases, pn = tn · D. It is also convenient to introduce the notation
qn−1 = nn−1 · D. Be careful because qn = −nn · D. Moreover we have
the relation q2

n + p2
n = 1.

Let A′ be a point close to A, with abscissa s′n−1 = sn−1 + dsn−1 and B′,
a point close to B, with abscissa s′n = sn + dsn. One has A′B′ = L′

= L + dL; it is easy to show that dL = dsntn − dsn−1tn−1, then, from
L · dL = LdL, that dL = D · dL = dsnpn − dsn−1pn−1. It can be shown
also, for instance using the vector N = z×D and with tn = pnD+qnN ,
that tn · tn−1 = pnpn−1 − qnqn−1. Similarly, one can calculate

dD =
dL

L
− DdL

L
=

dsn

L
tn − dsn−1

L
tn−1 − D

dsnpn − dsn−1pn−1

L
.

After these rather tedious preliminary calculations, one can deduce

dpn−1 = d(tn−1 · D) = dtn−1 · D + tn−1 · dD

= dsn−1
qn−1

Rn−1
− dsn−1

q2
n−1

L
− dsn

qnqn−1

L
,

a formula that can be inverted to find:

dsn =
1
qn

(
L

Rn−1
− qn−1

)
dsn−1 −

L

qnqn−1
dpn−1.

A very similar calculation leads to

dpn = qn

(
qn

L
− 1

Rn

)
dsn +

qnqn−1

L
dsn−1.

If dsn is replaced by its value obtained previously, one arrives at

dpn =
qn−1Rn−1 + qnRn − L

RnRn−1
dsn−1 +

(L/Rn − qn)
qn−1

dpn−1.

We finally succeed in writing the transformation in the required form
(

dsn

dpn

)
= M

(
dsn−1

dpn−1

)
,
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with the following expression10 for the transformation matrix M :

M =

⎛

⎜⎜⎝

1
qn

(
L

Rn−1
− qn−1

)
− L

qnqn−1

1
RnRn−1

(qn−1Rn−1 + qnRn − L)
1

qn−1

(
L

Rn
− qn

)

⎞

⎟⎟⎠ .

The calculation of the determinant requires some care. Expanding all the
terms, it can be expressed in the form det(M) = (qnqn−1)/(qnqn−1) = 1.
Therefore, one obtains

det(M) = 1.

The transformation preserves the area in phase space (sn, pn).

2. The fixed points (sn, pn) of the mapping do not change from one impact
to the other; this means that the ball bounces perpetually between point
A1 (where the curvature radius is R1) and point A2 (where the curvature
radius is R2). Moreover, the angle of incidence at each impact is 0,
which implies p1 = p2 = 0, q1 = q2 = 1. To study the stability of these
fixed points, one must linearize the mapping corresponding to one period
in the neighbourhood of these fixed points. Furthermore, M(period) =
M(backward) M(forward). Using the convenient notation Xi = (L/Ri)−
1, the above considerations allow us to simplify the M matrices which
are written:

M(forward) =

(
X1 −L

1 − X1X2

L
X2

)

and M(backward) =

(
X2 −L

1 − X1X2

L
X1

)

In fact, we are interested only in the trace of M(period) and it is sufficient
to calculate the diagonal elements and take their sum. One finds T =
[X1X2−1+X1X2]+[−1+X1X2+X1X2] = 2(2X1X2−1). The trajectory
is stable if this trace lies in the interval ] − 2,+2[. This condition is
equivalent to 0 < X1X2 < 1, or:

0 <

(
L

R1
− 1

)(
L

R2
− 1

)
< 1.

10 One can arrive more quickly at the result using the calculation of Problem 4.13, valid
for reflections on two parallel planes, and remarking that the curvature induces a
change of the incidence angle by a quantity ds/R.
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3. For an elliptic billiard table and close to the minor axis, one has R1 =
R2 > 0 and L < 2R1 = 2R2. One has the property 0 < L/Ri < 2 and
therefore −1 < L/Ri − 1 < 1 whence

0 <

(
L

R1
− 1

)(
L

R2
− 1

)
=

(
L

R1
− 1

)2

< 1.

This trajectory fulfills the stability criterion; it is stable.

On the contrary, for a trajectory close to the major axis, one still has
R1 = R2 > 0, but this time L > 2R1 = 2R2 from which one deduces
1 < (L/R1 − 1)(L/R2 − 1) = (L/R1 − 1)2. The trajectory is unstable.
The discussion concerning this type of trajectory merits a more detailed
development according to the passage or not through the focus.

In the case of rebounds on two convex surfaces, one has Ri < 0, hence
L/Ri − 1 < −1 and thus (L/R1 − 1)(L/R2 − 1) > 1 which implies an un-
stable trajectory. This is, in particular, the case of the Sinaï billiard table
for which all the surfaces are convex. This type of table has been exten-
sively studied, particularly for its interest concerning chaotic quantum
spectra.

8.12. Lagrangian Points: Jupiter’s Greeks
and Trojans [Statement and Figure p. 412]

1. Let us consider first the two heavy objects, with masses m2 and m3. We
know that they follow paths which are homothetic to that of a fictive
mass which rotates around a circle of center O. The considered motion is
circular; thus object 2 rotates around O at a distance d2 with an angular
velocity ω and object 3 rotates around O at a distance d3 with the same
angular velocity ω. In this way, the two objects remain always aligned
with O and at a fixed distance D from one another.

The gravitational force experienced by an object due to the influence of
the other is Gm2m3/D2; this force is equal to the mass of the considered
object multiplied by the centripetal acceleration. Therefore m2d2ω

2 =
Gm2m3/D2 = m3d3ω

2. An elementary calculation provides first ω2 =
MG/D3. Then, replacing the masses in terms of μ and ω2 by the value
just obtained, one finds the required distances d2 = 1

2 (1 + μ)D and d3 =
1
2 (1 − μ)D. It can be checked that these values are compatible with the
position of the center of mass at the origin. In summary, one has

ω =

√
MG

D3
; d2 =

1
2
(1 + μ)D; d3 =

1
2
(1 − μ)D.
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2. Let us work in the frame centered at the center of mass O, and which
rotates with angular velocity ω (with respect to a Galilean frame). In
this frame the two heavy objects are at rest and the straight line which
connects them is chosen as the Ox axis.

Now, one considers an asteroid of mass m, submitted to the gravitational
influence of the two heavy bodies. The corresponding potential is writ-
ten V (r2, r3) = −mm2G/r2 − mm3G/r3. Since the distance ri between
the asteroid and the object i is a function of the coordinates x, y of the
asteroid in this frame, the potential can also be expressed as V (x, y). In
this frame the heavy bodies are located at a fixed position and the grav-
itational interaction potential for the asteroid does not depend explicitly
on time.

The price to pay for such a simplification, as we saw in Problem 4.3, is
the addition of a supplementary contribution −ωLz (in our particular
case Lz is the component of the angular momentum of the asteroid on
an axis perpendicular to the rotation plane) to the original Hamiltonian
H0. The latter Hamiltonian is just H0 = (p2

x + p2
y)/(2m) + V (x, y) and

the component of the angular momentum Lz = xpy − ypx. We obtain
the final expression of the Hamiltonian:

H(x, y, px, py) =
1

2m

(
p2

x + p2
y

)
− ω(xpy − ypx) + V (x, y).

Let us notice, as we saw in Problem 4.3, that the centrifugal term is
absorbed in the angular momentum term Lz = xpy−ypx which is different
from the kinetic momentum σz = m(xẏ − yẋ).

3. The Hamiltonian is time independent ∂H/∂t = 0 = dH/dt and its value
remains constant on the trajectory, this constant being known as Jacobi’s
constant:

H(x, y, px, py) = E = const.

The system has two degrees of freedom, but only one first integral. A
priori, it is not integrable.

Hamilton’s equations give respectively ẋ = ∂px
H = px/m+ωy, ẏ = ∂py

H
= py/m−ωx, and ṗx = −∂xH = ωpy −∂xV , ṗy = −∂yH = −ωpx−∂yV .
Denoting the components of the gravitational attraction as fx = −∂xV ,
fy = −∂yV , these equations can be written in the form:

ẋ =
px

m
+ ωy; ẏ =

py

m
− ωx

ṗx = ωpy + fx; ṗy = −ωpx + fy.
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4. At the fixed points, one has ẋ = ẏ = 0 that is px = −mωy, py = mωx.
Differentiating, one finds further ṗx = −mωẏ = 0 = mω2x + fx and
ṗy = mωẋ = 0 = mω2y + fy. Consequently, one obtains the equations
determining the fixed points

fx(x, y) = −mω2x, fy(x, y) = −mω2y.

Owing to the definitions fx = −∂xV , fy = −∂yV and

−mω2x = −1
2
mω2∂x(x2 + y2), −mω2y = −1

2
mω2∂y(x2 + y2),

the equilibrium conditions are equivalent to the search for the extremum
∂xVe(x, y) = 0, ∂yVe(x, y) = 0 of an effective potential

Ve(x, y) = V (x, y) − 1
2
mω2(x2 + y2).

Instead of the variables x, y, it is more convenient11 to retain the variables
r2, r3. We already saw that

V (r2, r3) = −mMG

2

(
1 − μ

r2
+

1 + μ

r3

)
.

Now, we must calculate x2 + y2 = r2, the square of the distance of the
asteroid to the origin. From the well known properties of triangles, one
has first r2

2 = r2+d2
2−2rd2 cos α where α is the angle between Ox and the

direction of the asteroid. Similarly, one has r2
3 = r2+d2

3−2rd3 cos(π−α).
Extracting the value cos α from the first equation and substituting it in
the second one, one obtains after rearranging r2 = (d2r

2
3+d3r

2
2)/D−d2d3,

or
r2 =

1
2
(1 + μ)r2

3 +
1
2
(1 − μ)r2

2 − 1
4
(1 − μ2)D2.

We have in hand all the ingredients required to express the effective po-
tential in the form Ve(r2, r3). The equilibrium condition ∂r2Ve(r2, r3) = 0
provides the relation MG = ω2r3

2, or, using the value of ω2 found in the
first question, r2 = D. The second equilibrium condition ∂r3Ve(r2, r3) =
0 gives similarly r3 = D. In the frame under consideration, there exist
two equilibrium positions, such that the asteroid forms with the heavy
objects an equilateral triangle. These particular points are known as
Lagrangian points.

11 There exist also Lagrangian points on the line that connects the heavy bodies. In
this case, r2 and r3 are no longer independent variables and the treatment presented
here is no longer valid.
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The coordinates of these points are easily obtained. Consider the point
with a positive ordinate. Its abscissa is just in the middle of the segment
joining the heavy bodies, that is

xL =
1
2

[
(1 + μ)D

2
− (1 − μ)D

2

]
=

μD

2
.

Its ordinate corresponds to the height of the equilateral triangle, namely
yL =

√
3D/2. The momenta follow from pxL

= −mωyL and pyL
= mωxL.

To summarize, one finds:

xL =
1
2
μD; yL =

1
2

√
3D

pxL
= −1

2
mω

√
3D; pyL

=
1
2
mωμD.

In contrast with usual situations, the values of the momenta at the equi-
librium points do not vanish.

At these points (in the rest of this question, we drop the index L for
typographical simplicity), one has px = −mωy, py = mωx and hence

p2
x + p2

y

2m
=

1
2
mω2(x2 + y2) =

1
8
mω2D2(μ2 + 3).

One has also −ω(xpy − ypx) = −mω2(x2 + y2) = − 1
4mω2D2(μ2 + 3)

and lastly V (x, y) = −mω2D2. Gathering the three contributions, one
obtains the values of E, explicitly:

E = −1
8
mω2D2(μ2 + 11).

5. Let us start from a point x = xL +X, y = yL +Y close to the equilibrium
point (X/D, Y/D << 1) and seek the expression of the potential at this
point, restricting ourselves to first order in X/D, Y/D.

One has

1√
(X + a)2 + (Y + b)2

=

= L−1

(
1 +

2aX + 2bY

L2
+

X2 + Y 2

L2

)−1/2

≈ L−1

[
1 − 2aX + 2bY

2L2
− X2 + Y 2

2L2
+

3(2aX + 2bY )2

8L4

]

=
1
L

− aX + bY

L3
+

(2a2 − b2)X2 + (2b2 − a2)Y 2 + 6abXY

2L5
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which is the desired expansion. To simplify, let us set X̃ = X/D, Ỹ =
Y/D. One must first calculate

r3 =
√

(x + (1 − μ)D/2)2 + y2

=
√

(xL + X + (1 − μ)D/2)2 + (yL + Y )2

=

√
(X + D/2)2 +

(
Y + D

√
3/2

)2

.

We apply the preceding formula with a = D/2, b = D
√

3/2; in this case
L = D. One obtains

1
r3

= D−1

(
1 − 1

2
X̃ −

√
3

2
Ỹ − 1

8
X̃2 +

5
8
Ỹ 2 +

3
√

3
4

X̃Ỹ

)
.

Now, one has

r2 =
√

(x − (1 + μ)D/2)2 + y2

=
√

(xL + X − (1 + μ)D/2)2 + (yL + Y )2

=
√

(X − D/2)2 + (Y + D
√

3/2)2.

We apply the expansion with now a = −D/2, b = D
√

3/2. Compared to
the previous case, it is sufficient to change a into −a, thus changing the
sign of the odd powers of X̃. One obtains now

1
r2

= D−1

(
1 +

1
2
X̃ −

√
3

2
Ỹ − 1

8
X̃2 +

5
8
Ỹ 2 − 3

√
3

4
X̃Ỹ

)
.

A last calculation leads to the expression of the potential:

V (X,Y ) = −mω2D2 + mω2

[
1
2
μDX +

√
3

2
DY +

1
8
(
X2 − λXY − 5Y 2

)
]

with the value λ = 6
√

3μ.

6. Let us now set px = pxL
+U , py = pyL

+V . Starting from the elementary
Poisson brackets on the original variables x, y, px, py, it can be easily
shown that we also have the elementary Poisson brackets for the new
variables {X,Y } = 0 ={U, V } = {X,V } = {Y,U}, and {X,U} = 1 =
{Y, V }. These properties are sufficient to ensure the canonicity for this
change of variables.
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A long but straightforward calculation allows us to write the Hamiltonian
in terms of the new variables:

H(X,Y,U, V ) = E +
U2 + V 2

2m
− ω(XV − Y U)

+
mω2

8
(X2 − 5Y 2 − λXY ).

Since the transformation is canonical, there is invariance of the form of
Hamilton’s equations. Therefore Ẋ = ∂UH = U/m + ωY , Ẏ = ∂V H =
V/m − ωX, and U̇ = −∂XH = ωV − mω2(2X − λY )/8, V̇ = −∂Y H =
−ωU + mω2(λX + 10Y )/8. The new Hamilton’s equations are:

Ẋ =
U

m
+ ωY ; Ẏ =

V

m
− ωX

U̇ = ωV − 1
8
mω2(2X − λY ); V̇ = −ωU +

1
8
mω2(λX + 10Y ).

We are thus faced with coupled first order differential equations. The
method to solve them is well known: one searches for the proper modes
in the form X = X0e

iΩt, Y = Y0e
iΩt, U = U0e

iΩt, V = V0e
iΩt. Sub-

stituting these values in the differential equations, we obtain a linear
system which possesses a non trivial solution only if the determinant of
the corresponding matrix vanishes, a property that translates as:

∣∣∣∣∣∣∣∣

−iΩ ω 1/m 0
−ω −iΩ 0 1/m

−mω2/4 λmω2/8 −iΩ ω
λmω2/8 5mω2/4 −ω −iΩ

∣∣∣∣∣∣∣∣
= 0.

Setting r = Ω/ω, this condition is equivalent to the characteristic bisquared
equation: r4 − r2 + (27/16 − λ2/64) = 0.

7. There is stability for the motion if the root is a real number, in particular
if r2 > 0. This means that r2 is also a real number. Since the sum of
the roots is equal to 1, at least one of the two roots is positive. The
required condition is therefore that the discriminant is positive, that is
1− 4(27/16− λ2/64) > 0, or 1− 27/4 + λ2/16 > 0 or λ2 > 92. Using the
relation between λ and μ, this inequality is equivalent to

μ2 >
23
27

.

For the Sun-Jupiter system μ = 1048/1050 and μ2 = 0.996 > 23/27 =
0.851. The asteroids, Greeks and Trojans, at the Lagrangian points of
Jupiter’s orbits, follow stable trajectories.
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unstable
hyperbolic point, 394
node, 168

vector potential, 51
virial theorem, 186, 223, 230
virtual

displacement, 12
work, 12

wave front, 242, 243, 263, 264
wheel jack, 14, 24

Young modulus, 72
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