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Preface to the Second Edition

To write a second edition of a textbook is a very challenging enterprise for the
author in many aspects. First of all it gives the chance to back up the content
and the text from the previous edition with all the experience he has collected
after the first edition was distributed and to include the full set of advices and
recommendations he had received from colleagues and students. As important
is the possibility to include new developments in the subject of the book.
Solid-state spectroscopy was originally addressed to be most important for
our understanding of the solid sate. This promise has been more than fulfilled
as in the almost ten years after the publication of the first edition many
important technical developments of analytical tools has lead to better or
even new understanding of materials. Good examples of this progress are the
rapid development of synchrotron radiation as an omnipresent light source,
the increasing interest in spintronics which promoted the spectroscopy of spin
systems or the new subject of transport or electron addition spectroscopy
in nanostructures. These and many other subjects are now included in the
textbook or were rephrased according to the most recent developments.

Solid-state spectroscopy has still the character of an analytical tool but in
a few special cases as for example in the field of luminescence the breakthrough
to the market has occurred.

The format of the textbook as it was originally designed was retained in the
new edition. In the first and main part of the book basic concepts of the various
types of spectroscopy are described with particular emphasis on the physical
background of the methods. The sections on synchrotron radiation, photo
emission, and on spin resonance were extended and a new chapter was added
on spectroscopy of nanostructured solids. On the other hand the contributions
from positron annihilation and myon spin resonance were shortened in order to
limit the overall text to an acceptable volume. The dedication of the textbook
remains as given in the preface of the first English edition and can be inspected
there.

In the second part of the book which is again formatted as appendices to
the individual chapters, a more detailed presentation is provided to help the
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VI Preface to the Second Edition

advanced reader or teaching professors in finding the connections to theoreti-
cal interpretations. In some cases, where it was demanded from the progress
of understanding, parts of the presentations which were originally in the ap-
pendices were moved to the main text.

As for the problems new exercises were included to cover the new sub-
jects accepted in the second edition. The problem solutions are still available
from the author as an extra booklet with the ISBN number 963 463 268 8
published by H. Kuzmany, M. Hulman and J. Kiirti at the Eotvés Univer-
sity in Budapest. New problems are assigned by an upperscale n. They are
unfortunately not included in the booklet.

Due to the lack of space many presentations could not be provided in
sufficient detail to allow for immediate application in research and technology.
Therefore to each chapter the list of references for further reading was updated
with most important recent literature.

Finally it is a great pleasure for me to acknowledge all colleagues who
contributed to the better understanding of this textbook by numerous dis-
cussions and recommendations during its preparation. Particularly valuable
contributions came from Prof. H. Grosse, Prof. Th. Pichler, Dr. R. Pfeiffer,
Dr. A. Grineis, Dr. C. Kramberger, and Mag. W. Plank, Universitdt Wien,
Prof. F. Simon, University of Technology and Economics Budapest, Prof. W.
Jantsch, Universitat Linz, and Prof. P. Jarillo-Herero, Massachusetts Institute
of Technology, Boston. I am also very grateful to our technicians A. Stangl
and Ch. Vlcek for helping to get new and updated illustrations for the text-
book. Finally, I very much acknowledge the editor-in-chief Dr. Ascheron from
Springer Verlag for his continuous stimulations during the preparation of the
manuscript and for his patience in receiving it.

Wien, April 2009 Hans Kuzmany



Preface to the First Edition

The dramatic increase of our knowledge about the solid-state in the last 10-20
years has come in great part from new spectroscopic experimental techniques.
In this context spectroscopy is used in a broad sense and covers various ex-
periments where energy analysis of a particle or electromagnetic radiation
is crucial. Accordingly, spectroscopic methods extend in the electromagnetic
spectrum from radio waves to 7y radiation but also include particles after their
interaction with a solid. Each spectral range has its characteristic technique
and addresses particular properties of the solid. A fundamental knowledge of
the various methods is therefore a prerequisite for a successful investigation
of problems in a particular area.

The actual motivation for writing this textbook was the lack of any di-
dactic review summarizing the methods and applications of spectroscopy
with regards to solids. Many of the methods were well known from molec-
ular physics but, even there, reliable and comprehensive textbooks are not
available. Also, spectroscopic problems can be characteristically different in
molecules and crystalline material because of the periodic arrangements of
atoms and molecules in the latter.

The material presented here is a result of several postgraduate courses
on “Solid-State Spectroscopy” given by the author over the last few years.
The goal of these lectures was to supply a representative selection of spec-
troscopic techniques and to describe their field of application. This goal has
been retained as the concept of the current textbook. Accordingly, the inten-
tion is to provide a broad knowledge of the basic concepts, sufficient to follow
specialized lectures or specialized literature later on.

Another source of the subject to be discussed is a textbook written by
the author in 1989 in German and edited by Springer Verlag in 1989. In this
textbook the concept of presentation and didactic strategy was developed but
the elaboration of the material has been performed in much more detail in the
current version and the volume of subjects presented has been substantially
increased.
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VIII  Preface to the First Edition

During the formulation of the text particular attention was paid to a
physical understanding of the spectroscopic problems rather than to their
formal description. To improve information transfer from the text the most
important results have been framed. This should be of particular help for the
application-oriented reader. To simplify presentation no vector or tensor nota-
tion is employed in general. Only in cases where the physical meaning requires
the specification of the rank of the variables, bulk letters, or indexed symbols
in script are used for vectors and tensors and bulk letters in Roman for oper-
ators. The bulk of the book deals with a description of current spectroscopic
techniques and their applications on an introductory level. This is backed up
by extensive appendices which contain several useful tables and a considerable
number of further details, including some mathematical formulations on an
advanced level. In this way a better link could be established with standard
textbooks and to formulations used in spectroscopic research. The book is
constructed, however, to allow reading and understanding without a study of
the appendices. In this context the latter can be used either as a source of
additional information for the lecturers or as part of the course work.

The first part of the textbook describes electromagnetic radiation, light
sources such as lasers and synchrotron radiation, and general concepts of
experimental techniques. The second part concentrates on individual spectro-
scopic methods using electromagnetic radiation and particles. The problems
collected at the end of each chapter are designed to further the understanding
of the text. Each of them is flagged for its instructive value. Discussion and
solution of the problems is highly recommended. Problems with an asterisk
are more difficult and may be considered as an extension of the subject cov-
ered by the book. Problems labeled with a superscript a require input from
the appendix.

During the specification of the problems I strongly benefited from valuable
discussions with colleagues and former students in my group. In this context
I am particularly grateful to Mag. J. Winter, Mag. R. Winkler, and Mag. M.
Hulman for their engagement in the discussion of the problems. A booklet
with solutions will be available from the author for interested readers.

The current textbook may be useful as a first text for senior undergraduate
students. However, it is particularly designed for postgraduates in physics,
chemistry, and material science, before they start to work in a special research
field. With the inclusion of the appendices the value of the book is extended to
a more knowledgeable audience such as students working on a thesis, academic
lecturers who intend to set up a similar course in solid-state spectroscopy, or
even researchers in the field.

Two years of education in general physics are a prerequisite for under-
standing this book. In addition, a basic knowledge of solid-state physics and
some background in the concepts of quantum mechanics will be very helpful.
At the end of each chapter references are given for readers who need additional
information on specific subjects and recent developments.
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The subject covered by this textbook extends over a very broad field of
material science. Extended discussions with many specialists were therefore
extremely important. In this context I would like to acknowledge in partic-
ular Prof. G. Vogl and Prof. H. Grosse from the Universitdt Wien, Prof. M.
Mehring from the Universitat Stuttgart, Prof. J. Fink from the Institut fiir
Festkorperphysik und Werkstofforschung in Dresden, and Prof. J. Kiirti from
the E6tvos University in Budapest.

For critical reading and correction of special chapters I acknowledge Doz.
B. Sepiol from Wien, and Prof. Kiirti and Prof. Mehring from Budapest
and Stuttgart, respectively. Also, I am particularly grateful to T. Leitner for
his continuous efforts to get the graphics of the textbook into a computer-
compatible shape and for designing the cover plate.

Finally, T acknowledge the Springer Verlag in Heidelberg, in particular
Dr. Lotsch and Mr. C.-D. Bachem, for their support and efforts during the
preparation of the manuscript.

It has been the idea of this book to provide an overview and an aid for new-
comers to the rapidly emerging and colorful field of solid-state spectroscopy.

Wien, January 1998 Hans Kuzmany
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Introduction

Spectroscopy of materials and processes is an extremely wide spread ana-
lytical tool in science. Material, biological, and chemical scientists benefit
from the continuously developing field as well as astrophysicists, mineralo-
gists, or even scientists working in medical research problems. As a definition
of the term spectroscopy any energy analysis of radiation after its interaction
with matter may be used, no matter whether the radiation is electromag-
netic, mechanical, or embodied in particles. In the case of electromagnetic
radiation the frequency range extends from radio frequencies to  radiation
and the particle radiation includes electrons, neutrons, positrons, muons, and
even neutral or charged atoms. The energy range to be considered covers at
least ten orders of magnitude. Information on the matter is obtained from
the radiation spectrum modified by its interaction with the electronic and
magnetic configuration of molecules or crystals. This interaction can pro-
ceed either by two-particle interaction, such as the processes of absorption
or emission of radiation, or by three-particle interaction as in the process of
scattering.!

In fact, many electronic transitions in condensed matter are in the energy
range of 10~7 eV which allows absorption of radio waves in the MHz region.
Transitions of spin states of nuclei or atoms in a magnetic field are examples of
such low-energy processes. In the infrared, vibrational transitions or selected
transitions between electronic orbitals can be investigated. In the visible and
near visible spectral range band to band transitions or excitonic transitions
from localized states dominate. For even higher energies photoelectron spec-
troscopy from valence band states or atomic core levels appear in the spectra
and at the highest energies transitions at the nuclei level score. Inelastic scat-
tering processes of light and particles can give information on energy and
momentum of electrons and atoms.

This textbook deals primarily with spectra from solid-state materials. The
transition energy between two states in the solid is determined from the po-

! In a quantum-mechanical notation absorption is a three-particle process and scat-
tering is a four-particle process.

H. Kuzmany, Solid-State Spectroscopy, DOI 10.1007/978-3-642-01479-6_1, 1
(© Springer-Verlag Berlin Heidelberg 2009
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sition of a structure in a spectrum. The magnitude of the structure is related
to the rate of the transitions between the two states. This rate is always de-
termined by the product of probability for the transition and the number
of appropriate configurations for its realization. All process are subjected to
energy and momentum conservation which is the basis for the information
to be drawn. As such all spectroscopic methods rely on the same principle,
not only from a descriptive point of view, but also from a quantitative and
mathematical point of view manifested in Fermi’s golden rule.

Not only the theoretical background but also the experimental procedures
for the various spectroscopic techniques are strongly related. All of them are
based on the use of

a proper source for the probe beam,

the sample which interacts with the probe,
instrumentation for the analysis of the probe, and
a detection system for the probe.

Each of these items is subjected to highly advanced technologies or, in the
case of the samples, to an advanced theoretical description.

In the following chapters the various spectroscopic processes will be dis-
cussed. We will start by reviewing the concepts of electromagnetic radiation
and the various sources for its generation. Here synchrotrons and lasers play
a dominating role. A basic description for the experimental frame of classical
spectroscopic methods follows. The next three chapters are dedicated to the
simplest formulation of a “response function” of material, spectroscopy in the
visible spectral range and elements of group theory. In the rest of the book spe-
cial spectroscopic techniques are discussed such as Raman scattering, infrared
spectroscopy, magnetic resonance, and x-ray and ~y-ray spectroscopy. The con-
cept of a linear response to a radiative perturbation holds, in principle, for
all these techniques. For scattering experiments with particles an extended
description of the linear response is required, as presented in Chap.14. In
Chap. 16 an extensive description of spectroscopy of small particles follows,
including particles with size quantization.

One recurring problem in solid-state spectroscopy is its relation to spec-
troscopy with molecules. Many of the spectroscopic techniques have been ap-
plied previously to molecular systems. Some of the results from these studies
also apply to solids. However, the periodic arrangement of atoms in crystals
and the high density of electronic states for certain energies play an important
role in solid-state spectroscopy and, in many cases have required the devel-
opment of new concepts. The difference between molecular and solid-state
response is remarkable as in many examples the k vector of the probe and of
the objects play an important role. This holds for techniques such as optical
absorption, Raman scattering, luminescence, x-ray or 7y-ray spectroscopy and
in all cases of spectroscopy with particles. On the other hand in solid-state
spectroscopy both the molecular and the solid-state points of view may be
important since very often properties of molecules are well retained as for
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example in molecular crystals or for localized electronic states. In addition
some trends in solid-state spectroscopy are oriented towards the analysis of
smaller and smaller units until the single molecule objects are reached. Obvi-
ously there the method meets with molecular spectroscopy.

There are many scientific descriptions and textbooks on the market which
discuss and describe the various spectroscopic methods. They will be refer-
enced in the corresponding chapters. However, only very few texts are available
which cover the full range of solid-state spectroscopy. In some reports parts
of the subject are discussed [1.1,1.2].

A final remark should be made regarding the formal presentations in this
text. Since it emphasizes the experimental point of view international units
are used, even for formulas which were derived from purely theoretical con-
siderations. A list of the most important fundamental constants is given in
these units in Table A.1. On the other hand, different energy units are quite
common for the different spectroscopic techniques. Joules, electron volts, wave
numbers, frequencies, temperature, and even atomic energy units (Hartree)
are used. The values for the different units are correlated to each other in
Table A.2 of the appendix to this introductory chapter.
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Electromagnetic Radiation

The main part of this textbook deals with spectroscopy utilizing electromag-
netic (EM) radiation. Thus, we will first review the most important proper-
ties of this particular probe. We will start with the idealized description of a
plane wave within Maxwell’s theory and continue with an explicit description
of more realistic fields, such as radiation from a dipole and from an arbitrarily
accelerated charge. In Sects. 2.3 and 2.4 Fourier transforms are discussed and
applied to the important case of radiation from sources with limited emission
time. These sections are rather short since the readers should be familiar with
such subjects. For those who need a tutorial or a review, a more detailed
treatment of the subject can be found in Appendix B.

2.1 Electromagnetic Waves and Maxwell’s Theory

As long as its wavelength is not too short radiation can be characterized by
the classical description of a plane EM wave in the form

E = Eycos(kx — wt) | (2.1)
or
E = Egeltkr=wt) (2.2)

FE is the electric field of the wave with the amplitude Ey, wave vector k,
and angular frequency w = 2xwf where f is the frequency. The complex form
of the electric field (2.2) is often very convenient, but it should be kept in
mind that only its real part has a physical meaning. Thus, in order to be
correct, the complex conjugate must be added in all calculations. The real
field is then obtained as (FE 4+ E*)/2. The sign of the imaginary symbol i is
arbitrary. It serves to describe the actual phase of the field. Only a consistent
sign convention is needed. Different sign conventions can lead to different signs
in relations derived from the field. This is the reason why formulas found in
the literature often deviate slightly from each other. By convention, a positive
sign is used throughout this book.

H. Kuzmany, Solid-State Spectroscopy, DOI 10.1007/978-3-642-01479-6_2, 5
(© Springer-Verlag Berlin Heidelberg 2009



6 2 Electromagnetic Radiation

The correlation between the wave vector k, the wavelength A, the wave
number v, and the quantum energy e of the radiation are given as follows:

2

k =_—.
A Co hCO

Here, n = ¢p/c is the (real) index of refraction expressed as the ratio between
the velocity of light in vacuum and in the solid. Using these relations the calcu-
lated value of the wave vector for visible light is of the order of 10° cm™!. This
value is very small compared to typical wave vectors of quasi-particles excited
in the first Brillouin zone of real crystals, or as compared to wave vectors of this
zone in general. Typical values for the latter two quantities are ¢ ~ 108 cm™1.
This fact is of fundamental importance for solid-state spectroscopy and often
plays a dominating role in the selection rules of spectroscopic transitions.
Occasionally, general complex numbers A = A, 4 1A are used to describe
EM waves. A. and Ag are called the components of a phasor, and A is the
complex amplitude of the wave. A. and A, are defined as the coefficients of
the cosine term and the sine term if a harmonic oscillation of the general form

E(Z, Y, Zat) - E(Qj’y, Z) cos(wt - ¢)

is separated in its cosine and sine component. Phasors are useful if, for in-
stance, a linear superposition of waves is studied. The resulting wave is then
obtained as a summation of complex numbers.

The energy of EM waves is characterized by different quantities depending
on the spectral ranges. Often used are the wavelength A given in A, nm or
pm, the frequency f given in Hz, (the angular frequency in s=! ), the wave
number v given in cm ™!, or the quantum energy Aw given in eV. For example,
lasers are usually characterized by their wavelength, electronic transitions by
their energy in eV, and vibrational excitations by wave numbers. The use
of different units is not as confusing as it may appear at a first glance since
usually only one type of them appears within a particular field of spectroscopy.
Thus, in this book the traditional units for the description of radiation and
transition energies will be used. It is nevertheless important to keep in mind
the quantitative relations between the various units for the description of
the energy as they are given in (2.3) or in Table A.2. For practical use it is
convenient to remember that

1meV corresponds to about 8 cm™?

1 pm wavelength corresponds to 1.24eV and

1K corresponds to about 0.7 cm™1.

A summary of the energy units commonly used in the various ranges of the
EM radiation is given in Table 2.1. This table also lists the spectroscopic
techniques applied in the various spectral ranges. Abbreviations are explained
in the corresponding sections of this book.
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Table 2.1. The electromagnetic spectrum

Wavelength Wave Frequency Energy Spectroscopic
number techniques
(m™) () (V)
Electric
waves 00-0.03 cm 0-E12 ESR, EPR, NMR
Far infrared 3000-40 um 3-400 (0.4-50)E-3 FTIR, abs., refl.
Infrared 40-0.8 yum  250-12 500 (7-400)E12 0.03-1.6 IR, FTIR
Visible light 0.8-0.4 um (12-25)E3 1.6-3 abs., refl., ellipsom.
Ultraviolet 400-10 nm 3-120 abs., UPS
X-ray 10-0.01 nm 50-120E3 XPS, XAFS
~ radiation 10-0.1 pm (2-1200)E4 MB, PAC

The other characteristic quantities of EM radiation, like the electric field
E, the magnetic excitation H, the induction B, the vector potential A, etc.
can be expressed most conveniently in the SI units V, A, m, and s. These
quantities are listed in Table 2.2, together with descriptors for the radiation
intensity. Note that in the latter case we critically discriminate between the
“intensity” of a radiation source and the “intensity” of an irradiated object
(last line in the table). For the sake of generality the older cgs units are also
given.

Table 2.2. Characteristic quantities of the electromagnetic field

Quantity ST (VAms) cgs (cmgs)  relations

Electric field (E) Vm~! g2em™ 12571 1 V! = (1/3)cgs
Magnetic

excitation (H) Am™! g'"2em ™27 1Am ™' =0.02560e
Magnetic

induction (B) Vsm ™2 g'2em™/%s71 1Vsm ™2 =10%G
Vector potential (A) Vsm ™! g!/2ecmt/?s1

(Radiant) power (P) VA erg s~ !

Energy density (W) VAsm ™3 erg cm~? 1VAm—2=103cgs
Intensity (radiant) (#)*° VA ster™! erg s7! ster ™!

Radiance

(brightness) (L) VAm™2 ster™*

Intensity

(irradiance) (I)®® VAm™? erg cm 257! 1VAm™2=10%cgs

@I, L and @ can be normalized to unit band width. In this case the symbols are
supplied with an index labeling the variable used for the normalization.
® To follow intuition and to avoid confusion with the assignment of the electric
field the symbols I and @ are used as given in the table in contrast to the often
used symbols E and I for irradiance and for radiant intensity.
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In addition to the above quantities, which were derived from the definition
of the EM wave, photometric (or physiological) quantities such as candela,
lumen, and luz are important. According to the most recent definition the
photometric quantities are based on the unit of the luminous intensity candela
(cd). Tt is defined as the light emitted from a source radiating at 540 nm with
a radiant intensity of 1/683 W /ster!. Thus the quantitative relation between
luminous intensity Ij; (in candela) and radiant intensity I; (in W /ster) is

L;(A\) = 683.002y(\) i (\) , (2.4)

where y(A) is the luminosity function given in Fig. 2.1 and I,; is taken from

the black body radiation (3.4), expressed in A and averaged over the visible
spectral range. Even though in this way candela is related to watts it is con-
sidered as an SI unit by itself. The luminous flux or luminous power F is
measured in lumen (lm) and defined as candelaxster (or 1cd = 1lm/ster).
K, = 683.0021lm/W is the photometric radiation equivalent which relates
the above given definition of candela to the older definition of candela as the
emission (and detection by the human eye) of a 1,67 x 107%m? sized black
body at the temperature of melting Pt which is 2042 K. Appendix B.1 has the
details of these relations.

The luminous intensity decreases rapidly for wavelength longer or shorter
than 540 nm due to the loss of sensitivity of the human eye. This sensitivity
is depicted in Fig. 2.1 in relative units for the day light adapted eye (pho-
toptic luminosity function, y(A)). According to the definitions above and the
luminosity function 1 W green light (540 nm), red light (650nm), and blue
light (450 nm) correspond to 6831m, 731m, and 261m, respectively. For the

10+ i

Sensitivity
o o o
EN o o
1 1 1
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L

. . . . . Fig. 2.1. Relative sensitivity of the
300 400 500 600 700 800 human eye for daylight adaption
Wavelength (nm) (luminosity function)

dark adapted eye (scotoptic vision) the luminosity function is redshifted. The
irradiant intensity (illuminance) is measured in lux (Ix); 11x is 11m/m?.

! ster (from steradian) is the unit for the solid angle 2; 1 ster = 1/4m; d2 =
sin 6dfd¢; 0 and ¢ are the nutation angle and the precession angle which can
extend from 0 to 7 and from 0 to 27, respectively.
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The relationships between the quantities listed in Table 2.2 are obtained
from Maxwell’s equations, and the well known relationship between the vector
potential and the field B. For plane waves (2.2) and (B.3) yield

1 . B
B=—(kx Eg)el®r=«0  with  H=— | (2.5)
w Ko

For example, for a wave propagating in the z direction with E || z, the vector
B is || — y and has the form

k i —w
B = _EEoel(kz t) e,

Similarly, the vector potential (Appendix B.3) is given by

A= L Eyeitkr—vt (2.6)
w

and, for a wave propagating in the z direction, it has the form
A= iEoei(kx—wt)ez )
w

From these results the energy density of the radiation becomes

1 B2 H?
W= 3(ED+ HB)= =" + MO (2.7)

where g and pg are the dielectric constant and permeability of vacuum, and
FE. D, H, and B have been assumed as real. ¢y and pg are related to the light
velocity and to the impedance of vacuum by

1
—¢ HO _ 377 Ohm.

0>
VEoMO €0
The numerical values for ¢ and o are compiled in Table A.1.
Since the energy spreads perpendicular to E and H and is equally dis-
tributed to the electric and to the magnetic field, the intensity I (irradiance)
is obtained from

I =We=eeoE?

Co Co
—— = Jeeo B/ H - =FH. 2.8
T €€oLuy/ ko = (2.8)

Written as the Poynting vector I and for u =1

2

1 F%
I:ExH:Ex(kxE)W:W—Ezco\/&oek, (2.9)
0 0

where ey, is the unit vector in the direction of the wave propagation.
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In the above equations W, I, and I are time-dependent (with a term
cos?(kr — wt) for plane waves). To obtain the time average a proper av-
eraging procedure must be performed. In the simple case of plane waves
the values of E? and B? are then replaced by their time average E3/2
and BZ/2.

Using a complex notation for the fields, products of the vectors have to
be replaced by the product of one vector with the complex conjugate of the
other vector. In this way the sum of the squared components of the vectors
represent the square of the magnitude of the field.

The intensity of radiation is very often evaluated for complex fields F from
I = cpepEE*. Since in this case the time dependence is lost only the time-
average intensity is obtained and its magnitude is two times the magnitude
of a real field with the same amplitude.

2.2 Radiation from Accelerated Charges

Even though plane waves are a good example to illustrate electromagnetic the-
ory and are indeed very often useful to describe the EM field locally, they are
not a very realistic form of the radiation. In reality EM radiation always orig-
inates from accelerated electric charges. The mode of acceleration determines
the wave field. Vibrating electric dipoles, such as a vibrating molecule with
a finite electric dipole moment, or excited molecular or solid systems provide
realistic acceleration and emission patterns. We will therefore first discuss the
basic properties of the Hertzian dipole and then make some general remarks
about radiation from arbitrarily accelerated charges.

2.2.1 The Hertzian Dipole

The radiation from an oscillating dipole is emitted by moving charges in a
pattern shown schematically in Fig. 2.2. A dipole with the length I, charge
+@Q and oscillation amplitude Al emits radiation in directions r defined by
the unit vector e,. Thus, at an arbitrary point 7 a field E(r) will be observed.
If the oscillation is harmonic with angular frequency w the time dependent
part of the dipole has the form

Pp = Ppgcoswt = QAl coswt . (2.10)

A Hertzian dipole corresponds to the approximation Al ~ [ and A\ =
2mco/w > 1. Tts amplitude is therefore Ppg = QI. In order to obtain the emit-
ted field we need to evaluate either the potential ¢ from a Poisson equation
or the vector potential A from the time-retarded charges or time-retarded
currents as outlined in B.3. Since the vector potential by itself is enough to
obtain the B field, it is more convenient to calculate the current distribution
for the Hertzian dipole and use its time-retarded value in (B.9) rather than
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—Al

Fig. 2.2. Polar diagram for the emission of electromagnetic radiation from a dipole.
Ip(r,0) is the intensity observed at distance r under the angle . It has rotational
symmetric around the dipole axis. ey looks into the plane of the paper

to calculate @ directly from the retarded charge distribution. A is obtained
from

pro [ 30t —|r —r'|/c) 5,

A(r,t) = — d 2.11
(r.) 47 |r — /| v (2.11)
where v’ and ¢ = |r — r|/c represent the coordinates and the time of the

current density distribution and 7 the coordinates of the field distribution. 2

The time-dependent current distribution for the Hertzian dipole may be
derived from the time-dependent charge distribution. If the dipole is very
short and oriented in the z direction as in Fig. 2.2 we may consider the time-
dependent charge Q(t) = Q coswt as a source for a current in the z direction.
This current then has the form

i(t) = %ez = —wQsinwt e, . (2.12)
To evaluate A we need to integrate over the current density. Even though
the latter nearly diverges locally because of the small size of the electron its
integral is certainly finite. In a simplified form the integration along =’ and g’
yields the current ¢ of (2.12), and the integration along z’ yields the length
of the dipole I. Here it is assumed that v’ < 7 for all points of interest so
that we can use the expression t — r/c for the retarded time and neglect r’
in the denominator of (2.11). With these approximations the vector potential
becomes

~ ppoQlwsin(kr — wt)
N 4dmr

Ap

e, (2.13)

2 Note that here and for the remainder of the book limits for the integration extend
from —oo to oo if not specified otherwise.
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or more generally

_ ppoQlwsin(kr — wt)
N 4dmr

Ap ep , (2.14)

where ep is the direction of the dipole moment and k is the wave vector
(w/c)e,. The curl of Ap yields the field Bp

~ puoQlw? sin 6 cos(kr — wt)

Bp =curl Ap = 2.15
b = it £p drer € (2.15)
or more generally
lw? cos(kr — wt
By — curl Ay, — — oQlTcostkr =) (2.16)
4der

where in the first equation spherical polar coordinates e,, eg, and es have
been used as shown in Fig. 2.2. The result for Bp in (2.16) has been obtained
by retaining only the term proportional to 1/r. This term dominates for large
distances as compared to a terms oc 1/r2. This approximation is therefore
only valid in the far field called the wave or radiation zone. For a more general
solution (static or intermediate zone) see [2.1,2.2]. Results for the wave zone
are, in general, good enough for applications in spectroscopy.

The B field is independent of ¢, perpendicular to e, and ey, and decreases
as 1/r with distance r from the radiating dipole. These proportions are evident
from the second part of (2.16) where sinf e, was replaced by (ep x e;).

The other characteristic quantities for the field follow immediately from the
equations given in Sect. 2.1 and Appendix B.2. The electric field is calculated
from Maxwell’s equations

2

Ep = —C—(k x Bp) = _,UHOQlw2 sin 0 cos(kr — wt) e
w dmr
lw? cos(kr — wt
_ poQlw? cos(kr —w )(er X (ep X e,)) . (2.17)

47y

The power per unit area reaching point 7 (irradiance) is given by the Poynting
vector evaluated from (2.8) and (2.9)

_ EpBp  puup(Ql)>w? sin® 0 cos? (kr — wt)
o 1672cr?

Ip e . (2.18)

The time average of this function is plotted in Fig. 2.2. The radiation per
differential solid angle df? is immediately obtained from this by

dP = |Ip| dF = |Ip|r*d2?  (in W). (2.19)
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All quantities given above are time-dependent. To obtain time-average
values for the radiation power the cos? functions in (2.18) and (2.19) have
to be replaced by their average value of 1/2. Finally, the total average power
emitted by the dipole is obtained from (2.19) by integration over the solid
angle

2 4 2,4

P =
tot 127cy 127c

If more than two charges oscillate the radiation field becomes more com-
plicated and is described by electric multipole radiation. For modern spec-
troscopic techniques quadrupole radiation is important. It has still a simple
structure. The magnitude of the quadrupole moment for an arrangement of
charges symmetric with respect to the z axis is®

(Po)s: = Po = Y Qif3:F —12). (221)

Charges arranged as shown in Fig. 2.3a therefore have a finite quadrupole
moment (but no dipole moment). If the positive and negative charges oscillate
180° out of phase and with equal frequency, they establish a time-dependent
quadrupole moment of the form Pg(t) = Pgo coswt. As a consequence they
will emit a quadrupole radiation. The emitted electric field and magnetic

a) Z z
(@) Al (b)

+% o

Q" (]

y y

| _
-E llQ
—Al

Fig. 2.3. Linear arrangement of charges, @), with a finite quadrupole moment
—I?Q (a), and the radiation pattern for a harmonic time dependence of @ (b).
The pattern is rotationally symmetric about z

induction are given for the arrangement in the figure as

3 Pgo sin 6 cos 0
Eg=—e Hiow 1%(;561:1 o8 cos(kr — wt)
3Pgo sin cos @
Bg = —ey piow 12272521: o cos(kr — wt) . (2.22)

3 For the definition of multipole moments, see Appendix B.4.
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As a result of these relations the emitted power is proportional to sin? @ cos? 6
where 6 is the direction between the z axis and the direction of emission. The
radiation pattern for this geometry of the charges is depicted in Fig. 2.3b.

2.2.2 Emission from Arbitrarily Accelerated Charges

The Hertzian dipole described above may be considered as a special case of
radiation from an accelerated point charge (). The emission from an arbitrarily
accelerated charge moving along 7/(¢) is also important. It is the basis for
the description of black-body radiation, x-ray bremsstrahlung or synchrotron
radiation. General expressions for the potential & and the vector potential
A for this charge are known as Lienard—Wiechert potentials and given in
Appendix B.6. From A and @ the electric field E and the magnetic induction
B for arbitrarily accelerated charges can be derived. If the distance between
the field point P and the emitting charge is very large (s = r — ' = r in
Fig. B.1 or in Fig. 2.4) and the particle is nonrelativistic [(v/co)r = (#//co)r <
r] the radiation intensity observed at distance r (irradiance) under the angle
6 with respect to the direction of acceleration e, is given, for @ equal to the
elementary charge e, by

e?sin? 0 2

I(r,0) = ————
(r.9) 167T25008r2|a

(in W/m?) , (2.23)

where a = d?r’/dt? is the acceleration of the particle in Fig. B.1 or in Fig. 2.4.
The radiation pattern for this particle is exhibited in the latter figure. The

Fig. 2.4. Radiation characteristic
for a particle moving with an arbi-
trary acceleration a

emission of radiation is strongest perpendicular to the direction of the accel-
eration, but it is independent of the direction of the particle velocity. The
radiation pattern is, of course, directly related to the dipole radiation shown
in Fig. 2.2.

The total power (in watts) radiated from the particle is obtained by inte-
grating over the full angular space. This yields

2

€ 2
= e lal” . (2.24)
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This well-known formula for radiation emission from nonrelativistic, acceler-
ated charged particles had already been derived by Larmor at the end of the
19th century.

2.3 Fourier Transforms

The radiation pattern described above for a plane wave and for an oscillator
are still unrealistic as they assume a single value for the angular frequency
w (or do not give any explicit frequency, as in the case of radiation from an
arbitrarily moving point charge). Realistic fields always encompass a frequency
spectrum with a given radiation energy per frequency interval. This means a
realistic radiation field can be described either by a function of time such as
E(t) or by the distribution of the radiation energy over frequencies determined
by the field E(w). The relation between these two descriptions is given by the
Fourier transform (FT) of one type of function into the other. Since FT is
fundamental to modern spectroscopy we will review the basic concepts of this
mathematical technique in this section. More details are given in Appendix
B.7. Nearly all spectroscopic techniques described in the following chapters
use this mathematical tool in one way or another. One of the main reasons for
the importance of FT is the dramatic development in computer technology.
Even personal-size computers can perform a Fourier analysis of very large
numbers of data points in a very short time.

2.3.1 Fourier Theorem

In the usual terminology the Fourier theorem consists of two parts.

a) Any function h(u) periodic in w as h(u) = h(u+w) = h(u+27/v) with the
period w = 27 /v can be represented by a sum of harmonic functions of the
form sin(nuv) and cos(nuv) or exp(inuv) with the fundamental angular
frequency v and overtone number n. The coefficients of the harmonic
functions in the sum can be evaluated in an unique way from the original
function h(u).

b) Statement (a) also holds for non periodic functions in the sense that the
sum is converted into an integral and the frequency range extends now
from —oo to co. In other words, in this case, FT gives a rule for a well
defined transform converting a function h(u) in u-space to a corresponding
function g(v) in v-space. h(u) and g(v) are called Fourier pairs.

Since statement (b) actually includes periodic functions, it can be expected
to cover statement (a). Indeed, it is not very difficult to show that this is true.
Fourier transforms are utilized in various disciplines of science such as
optics, spectroscopy, communications, stochastic processes, solid-state science,
etc. In spectroscopy u usually represents the time ¢ and v the frequency f or w.
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However, the use of space coordinate = for v and the wave numbers v for v is
also common. In solids FT is usually three-dimensional with space coordinate
7 for u and the unit vector of the reciprocal lattice G for v.

The mathematical expressions for the Fourier theorem, as they will be
used in this text are:

a) A function E(t) periodic in time with period T" which means E(t +T') =
E(t), where 1/T = f, and 27 f = w can be expressed by

oo
§ Cn6127rnft

E(t) =
=Cy+ Z[An cos(2mn ft) + By, sin(2mn ft)] (2.25)
n=1
with

1 fotT i2rn ft
Cn = = B(t)e~ 12t 4 |
r ),

~, and tg is arbitrary. The
relation between the complex representation and the real representation
given in (2.25) is obtained from a straight forward calculation and is left
to the reader as an exercise.

(b) For non-periodic functions E(t)

The coefficients ¢,, are complex with ¢_,, = ¢

E(t) = / E(f)e*™tdf  with
B(f) = / E(t)e2"Idt | (2.26)

E(t) and E(f) are the Fourier pairs. When E(t) is even or odd in ¢, the
transform can be obtained using only sine or cosine functions, respectively.

2.3.2 Examples of Fourier Transforms

In general FTs used in spectroscopy are rather simple. Advanced computer
programs such as Mathematica can quite easily calculate F'Ts analytically on
personal computers. We will give here two examples which may serve as a
guide for related problems, and summarize some general properties of the
Fourier pairs in Appendix B.7.

Let E(t) be of the form A| cos 27 ft| with f = 1/T. A graph of this function
is shown in Fig. 2.5a. Since the period of this function is 7'/2 the Fourier
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@) (b) n=1
n=3
| —‘I:;‘2 0 T,;‘2 1 . = .;"2 0 T,-I’2 t

Fig. 2.5. Graph of the function A|cos27t/T| (a), and representation of the func-
tion by an increasing number of harmonic overtones (b). For clarity, curves for
n =1 to 5 are shifted in (b)

coefficients can be calculated from
2A T/4

cos(2mt)T)e 2 2/ T gt | (2.27)
T J 14

Cn
The integration is performed by replacing the exponential by sine and cosine
functions, and using the appropriate trigonometric relationships. ¢g is always
the time average of the periodic function. It is equal to 2/7 in our case.
Since E(t) is even only the real parts of the coefficients ¢, are non zero.
Consequently, c_,, = ¢ = ¢,,. The explicit value of ¢, is

_ Asin[r(2n+1)/2]  Asin[r(2n —1)/2]
m(2n + 1) m(2n —1)

Cn (2.28)
Using these values, replacing 27 f by w and recalling that the period of
| cos 27 ft| is T/2 (2.25) yields

24 RA4A (-1t

E(t) = Al cos 2 ft| = Alcoswt| = —— + ) | — =~ cos2nwt . (2.29)
™ ™ ne —
=1

Figure 2.5b displays |coswt| represented by an increasing number of har-
monic contributions. Obviously, the first ten contributions already represent
the function E(t) very well.

The two-sided exponential decay of a sine wave (wave packet) is a good
example for FT of a non-periodic function. The function is given by

E(t) = Ae "M sinwqt . (2.30)

From this expression, 7 = 1/ is the lifetime of the oscillation. To obtain the
FT we separate the Fourier integral into two parts

E(f) = A/ e sin wote ™27t

oo 0o
— A (_/ ot sinwote_iQWftdt‘F/ et sinwote_izﬂftdt>(2.31)
0 0
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Substituting —t for the integration variable ¢ in the first integral we are left
with two integrals which can be solved straightforwardly. We obtain for E(f)

B iA~y _ iA~y
2 AR (f 4 fo)2 AR HAT(f — fo)?

The inverse transform according to (2.26) must give the original time function
for the whole time space. The frequency spectrum (2.32) is imaginary and odd.
In general, FTs of arbitrary functions E(t) are complex. This is not really a
problem. As we will see below, the distribution of the energy in the spectra
is given by the square of the magnitude of E(f) which is always real. Since
the energy distribution for negative frequencies does not contain any new
information products such as E(f)E*(f) must always be even. This is indeed
the case in our example since the absolute square of any odd function is even.

The frequency spectra of harmonic functions are the § functions. It is easy
to show that FT of E(t) = Acoswot is (A/2)[6(f — fo) +(f + fo)]- A similar,
but odd and imaginary FT is obtained for E(t) = Asinwgt. The FT of a
time-independent function is d(f).

More details about FTs, several examples and useful general rules for the
relations between Fourier pairs are given in Sect. 2.4 and Appendix B.7.

E(f) (2.32)

2.4 Radiation with a Finite-Frequency Spectrum

Let us return to radiation and apply a Fourier analysis to realistic radiation
fields. A strictly monochromatic field, as described in Sects. 2.1 or 2.2, is
only possible for waves which propagate fully undamped and extend in time
from —oo to 4oo. This is unrealistic. In reality radiation is either damped
(at least on an atomic scale) or switched on and off at certain points of time.
The consequences of these experimental constraints will be discussed in this
section for a damped harmonic oscillator and for a plane wave switched on
and off at times t = 0 and T, respectively.

2.4.1 Damped Harmonic Oscillator

In a classical description, the time-dependence for the emission of an electric
field E from a damped harmonic oscillator is given by

E+~yE+WwiE=0 (2.33)
The eigenvalues for this differential equation are
Qg = —% +iy/wd —~2/4 (2.34)

so that the general complex solution is a linear combination of the terms
exp ait and exp ast with complex coefficients. Since we are only interested in
the real part of the field we take as the general solution
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Re{E} = Ci1e "/2 coswt + Che /2 sinwt (2.35)

where w is the detuned frequency /w3 —~?/4. As long as the damping /2
remains smaller than wg, this is a damped harmonic oscillation, where the
coefficients C; serve to satisfy boundary conditions. If we want a maximum
field and a zero derivative of the field at ¢ = 0, the solution has the form

E(t) = Ege ""/?[cos wt + (7/2w) sin wt]. (2.36)

We can also find a simpler special solution for (2.33):
E(t) = Ege "2 coswt  for  t>0
=0 for t<0. (2.37)

In this case we have applied a more restrictive boundary condition which shuts
the oscillator off for ¢ < 0. A graph for this solution is displayed in Fig. 2.6.

E(®)
i
A I
/\'\n.n':l';:l {\P\AAA
VVU'V-"..'!,' VUVVV
l'v' '1.' Fig. 2.6. Damped harmonic oscil-
H lation for ¢ > 0 (—) and sym-
v metrized form (— — —)

The function in (2.37) describing the damped wave field is often extended
to negative values of time and, as we will see later, also to negative values
of the frequencies. Also, a symmetric version with respect to t = 0 (replace ¢
by |t| for all values of t) is often used. Note that this new function is not a
solution for (2.33). It is, however, convenient for mathematical treatments and
therefore often used to describe the frequency spectrum of damped oscillations
or wave packets.

The frequency spectrum for any time-dependent function is obtained from
its FT as shown in the last subsection. Unfortunately the damped oscillation
of (2.37) has a rather complicated frequency spectrum because of the abrupt
change of the function at ¢ = 0. The complex solution for the damped oscillator
which may be written as

E = Ege t/2¢iwt for t>0
=0 for t<o0 (2.38)
gives a more simple but instructive frequency spectrum. Renaming the tuned

frequency of the damped oscillator wy, for convenience, and applying FT yields
for the frequency spectrum
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E(f) — / Eoe—fyt/Qeiwgte—iQﬂ-ftdt
0

Ey
v/2+127(f = fo)
As will be shown in detail in Sect. 2.4.3, the experimentally observed fre-
quency distribution is obtained from the spectral intensity S(f) given by the
square of the magnitude of the frequency spectrum. Thus, returning to an-
gular frequencies, we obtain the spectral intensity for the emission from the
damped oscillator by

(2.39)

. Ej
S(w) = E(w)E*(w) (/27 + (@ —wo)? (2.40)
This particular shape of the intensity spectrum is called a Lorentzian line. Its
spectral width is obviously determined by the magnitude of 7. The full width
half maximum (FWHM) in w space is exactly equal to v in the present case.

Frequency and intensity spectra for the real solution of (2.33) are similar
to (2.39) and (2.40).

Since + is the spectral width (uncertainty in frequency) of the line as well
as the reciprocal lifetime 7 of the oscillation in intensity (y = 27/7) the
relationship between these two quantities is an expression of the uncertainty
relation in the following sense. The oscillator energy e is only determined to
the accuracy de = hdw = h~y. Thus, the relationship between 7 and Je is

7de = Thdw = Thy =h . (2.41)

The relation between life time, or pulse length, and bandwidth is quite general
and very important. Pulses with a shorter lifetime have broader frequency
spectra. If, for example, the life time of the oscillation is 1fs the band width
of the power spectrum is about 4.1¢eV.

2.4.2 Frequency Spectrum for Electromagnetic Waves with a
Finite Radiation Time

The frequency analysis of a plane wave oscillating only in a time interval
from t = 0 to t = T is a straight forward extension of the discussion above.
Considering only the time-dependent part of the wave we have to study

E(t) = Ep coswyt for 0<t<T
=0 otherwise, (2.42)

or its exponential analog. The latter is again more convenient. With FT, as
demonstrated above, we obtain for the frequency spectrum

T
/ Eoei27rfote—i27rftdt
0

_ Eosin[rT(fo — f)] i (fo=T
(fo—f) '

E(f)

(2.43)
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The exponential term in this result is obviously a phase factor, since we
did not start with a packet symmetric about ¢ = 0. The intensity spectrum
should, of course, not depend on this phase. This is indeed true as the product
E(w)E*(w) yields for S(w)

4E2 sin®(wp — w)T/2

(wo —w)?

The graph for the real part of the wave packet and the intensity spectrum (for
its complex form) are shown in Fig. 2.7. From (2.44) the width of the spectral

Y ITVi—
Ak .

W, ®

S(w) = (2.44)

S(w)

O

Fig. 2.7. Wave packet for a plane wave starting at time ¢ = 0 and extending to
t =T (a) and intensity spectrum for its complex representation in time (b)

distribution is determined by the length T of the wave packet. For very large
values of T it approaches a monochromatic structure which can be described
by a delta function of the form §(wg — w). This function is a very useful tool
for the mathematical treatment of spectroscopic problems. Appendix B.8 lists
some of its most important properties. The FWHM for the frequency spectrum
of the wave packet is obtained from (2.44) by Aw = 5.54/T. As in the case of
the damped waves shorter pulses have broader frequency spectra. A pulse of
one femtosecond duration has an approximate bandwidth ZAw = 3.65€V.

2.4.3 Frequency Spectrum and Power Spectrum

As mentioned above, we do not have to worry about complex frequency spec-
tra. The physically meaningful quantity is the intensity or power spectrum
given as

S(f)=1E(f)I? . (2.45)

From the above definition it is not obvious that S(f) is the relevant quantity
to describe the spectral intensity. Alternately one could have used the inten-
sity |E(t)]? from any of the time functions given above and taken the FT.
The result would not be equal to E(f)E*(f). The experimentally observed
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quantity is indeed S(f). The physical reason for this is that the electric field
of the radiation interacts with the electrons of the detector, not its “power”.
Note that the spectral intensity defined in (2.45) is not given in W/m?Hz.
We need to prove that E(f)E*(f) is proportional to the intensity of the radi-
ation, and the factors of proportionality must be evaluated. For a stationary
field the intensity as measured with a detector over a period of time 27" is

T
I(T) = 5000% E(t)E* (t)dt (T arbitrary) . (2.46)

The rational for this measurement is illustrated in Fig. 2.8. The quantity

E@)

Fig. 2.8. Measurement of radiation
-T +T t  intensity for a stochastic field

actually measured is zero for |t| > T and originates from a field E(¢,T) with
a Fourier transform E(f,T). For T large enough I(T') does not depend on T,
and (2.46) can be written as

I= lim EOCO/ B(t,T) /E (f, T)e 2 ftd fat

€0Co
Tﬂoo 2T

// E(t, T)e 2™t qtE* (f,T)df

. . B EOCO
Jim 22 /E £T)E*(f,T /s £,T)df (2.47)

where we have dropped the limits of integration in the last line, but understand
that T is large enough to have no influence on the measurement of the power.
The second Fourier transformation in (2.47) is exact since we are considering
a time function for the field £ which is only finite between —1" and T'. The
derivation shows that S(f,T) is indeed a spectral power and the intensity
per unit frequency range is obtained by multiplying it with egco/2T. We may
define a spectral intensity I(f) explicitly as

If(f)_gg%E(f, TYE*(f,T)  (in W/m2Hz) . (2.48)
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For a pulse-like F field, the spectral intensity given in W/m?Hz may not be
very useful since, for example, in a damped oscillation, the intensity changes
continuously with time. In this case a more meaningful description is obtained
by considering the total energy Wy of the pulse.

Wr = EoCoO’/E2<t)dt (in Joule) ,

where o is the cross section of the pulse. The spectral energy density in J/Hz
is then obtained from

[E)I?
TIEW)Pdf

where Parceval’s theorem was used in the form
[iewea = [1E4)Par . (2.50)

The physical meaning of Parceval’s theorem is that energy is conserved
whether the total energy is expressed in time or in frequency space.

As we have seen, the intensity spectra are always real but we must still
address the question of negative frequencies. They are understood as frequen-
cies corresponding to negative times. This imposes a definite constraint on
the intensity functions. If the field F(t) is real, they must be even which is
indeed always the case. (Note that the intensity spectrum in Fig. 2.7 is not
even because the time function was complex.) Of course, the interpretation
of negative frequencies does not mean that the reverse transform of E(—f)
gives the part of the time function with negative values of ¢. In fact, the part
of E(f) or S(f) with negative f does not give any new information about the
intensity spectrum and is, in this sense, useless.

W(f) = Wr s = eocoo | B(f)|? (2.49)

2.5 Coherence and Correlation

For the application of EM fields in spectroscopy some more of their properties
must be discussed. This section will summarize the concepts of coherence
and correlation in order to provide a basic knowledge of these quantities. It
will be sufficient for understanding the following chapters. Specialists in laser
spectroscopy or correlation spectroscopy will need to study these subjects in
greater depth.

2.5.1 Periodic and Non-Periodic Electromagnetic Fields

In Sect. 2.1 we discussed EM fields with periodic oscillations of infinite dura-
tion. This discussion was extended in Sect. 2.4 to non-periodic functions, most
of which vanish for ¢ — co. Real radiation fields are different as the phases and
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amplitudes of the wave trains have a certain statistical or stochastic charac-
ter. This character exists for laser radiation as well as for black-body emission
even though it is much less prominent in the former. For convenience, we will
distinguish four different types of EM fields

(a) fully periodic fields, to be described by harmonic functions,

(b) quasi-periodic non-stationary fields which vanish for ¢ — oo, to be de-
scribed by damped oscillator functions, as discussed in Sect. 2.4,

(c) quasi-stochastic fields where amplitude and phase vary statistically with
time but the variations are weak. Such fields may be described by the real
part of

E(t) = A(t)e'™®  with at) = 2m fot + p(t) , (2.51)

where the usual time-independent amplitude Ey and phase ¢ have been
replaced by more or less rapidly varying functions in time A(t) and ¢(t),

(d) highly stochastic fields like those from black-body radiation or from a
stochastic generator.

A highly stochastic field may be visualized as a statistically emitted train of
damped oscillations as shown in Fig. 2.9. The coherence time for this light is
given by the lifetime of the wave.

PL’I
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Fig. 2.9. Stochastic light consisting of randomly generated trains of oscillations
with a life time %

2.5.2 Coherent and Non-Coherent Superposition

The coherence of components in a wave field is of fundamental importance
for their superposition. This superposition may be coherent or incoherent.
The results are different and need careful consideration. The intensity of the
radiation field is proportional to E? and is given by

(E?) = % /_i E%(t)dt (2.52)

for an arbitrary function of time. 27" is the duration of the measurement,
as discussed in (2.46). For two superposed harmonic waves E; and Fy with
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amplitudes, frequencies and phases given by Ey1 2, f1,2 and ¢, 2, respectively,
the intensity is

(B?) = (B1 + E2)?) = (E?) + (E2) + 2(E1 E»)
B3 | Eg
= + - + 2FEy1 Eg2(cos ay cos aa) (2.53)

where o 92 = 27 f1 ot + ¢1 2. The first two terms in the equation represent the
intensities of the individual waves and the third term describes the interfer-
ence.

For oy # « the interference term vanishes from the time average, as it
can be expressed by cos-functions of the phase difference oy — as and sum
aq + as. Then, the intensities of the two individual fields simply add.

For fields with equal amplitude and « the situation is different. Since the
amplitudes add to 2E, the intensity increases from 2 x (EZ/2) to 2E2. This
result is also a direct consequence of (2.53), since the time average in the
interference term becomes 1/2. This surprising increase in energy seems to vi-
olate energy conservation. In practice, energy is, of course, conserved even in
an interference experiment of this type. Coherent and collinear superposition
of two equal waves is indeed only possible for beams oriented perpendicular
to each other and split into two equal parts each by inserting a beam splitter
of 45°. In this case each of the original waves propagates, after leaving the
splitter, in two mutually perpendicular partial beams with field amplitude
Eo/v/2. The constructive interference can then only occur for one of the par-
tial beams, and superposition leads to an intensity of ((2E;/v/2)?) = E? at
maximum. Since in this case the intensity in the other superposed beam will
be zero due to destructive interference, energy is conserved.

2.5.3 Temporary Coherence and Correlation

A discussion of coherence needs a more precise definition of this concept.
Comparing one field with a second one which is shifted in space or time, is
probably a good example. Coherence as we understand it from this is a phase
correlation in time or space. In other words, we ask how well is E(ra,t2)
known for a general EM field E(r,t) if we know E(rq,t1). For small Ar and
At the question can often be answered but this will become harder as the two
functions move further apart in space and time. A good indicator to describe
the problem could be the mutual coherence or mutual correlation function
defined as

G(r1,re,7) = (E*(r1, 1) E(ra, t + 7)) (2.54)

where () refers to a time average. Spatial coherence is relevant for interference
experiments with light from extended sources. Since this will not be discussed
in the frame of this book, we will restrict ourselves to temporal coherence. In
this case coherence at the same point r in space is considered and the argument
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r for the coordinates can be dropped in (2.54). Then we obtain from (2.54)
the temporal coherence function or autocorrelation function explicitly

G(r) —Tlgnwﬁ/ E* (OBt +7)dt . (2.55)
The autocorrelation function is maximum for 7 = 0 and may go to zero

for 7 — oo. The autocorrelation function for a partially or highly stochastic
light field vanishes for 7 — oo since eventually E(t) and E(t + 7) become
random in phase and all contributions cancel due to the time averaging. The
autocorrelation functions do not have to become zero for 7 — oo For example
the autocorrelation function for a constant E(t) = Ey is E3 # 0 for all values
of 7. The autocorrelation function for a sin- or cos-wave is given by a cos-wave,
and remains oscillating for all values of 7.

Note that the definition of the autocorrelation function in (2.55) cannot be
used for non stationary fields like wave packets, etc. G(7) would be identically
zero. In this case we have to define it as

T

Gr) = Jim [ E*()E(+ 7). (2.56)

For the case of a wave packet this function is indeed maximum for 7 = 0 and
approaches 0 for 7 — oo. Since the only interesting behavior of G(7) is its
dependence on the time shift 7, a normalized autocorrelation function of the
form

g(r) = G(1)/G(0) (2.57)

is often used. In this case discrimination between stationary and non-stationary
fields is not required.

The decay time of the autocorrelation function gives the coherence time
At and the coherence length Al = ¢g Ar. There are several possible definitions
for the decay time of G(7). The FWHM is one. Another straight forward defi-
nition is related to the variance (mean square deviation) of the autocorrelation
function or to the second moment of the absolute square of this function. In
the latter case the coherence time is defined by

J T G(r)Pdr

(Ar,)* = J1G(7)|]2dr

(2.58)

This definition may be paralleled by a definition for the spectral bandwidth of
the function E(t) as the variance of the absolute square of the power spectrum.

U~ RoPISPAS
JIS(hEaf

(Afy)? (2.59)
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The expressions for A7 and Af allow us to study the product of the two
quantities. As might be expected, there is a fundamental connection between
them. This connection can be investigated in a very general way through an
analysis of a field with a quasi-stochastic fluctuation given by (2.51). Splitting
the complex exponent a(t) into a harmonic part oscillating with the frequency
fo and a fluctuating phase ¢(t) we have

E(t) = /E(f)eiQﬂ'ftdf — A(t)ei(z;(t)eigﬂ—fot 7

where E(f) is the Fourier transform of E(t). This expression can be used to
study explicitly the relationship between the fluctuation of E(t) in time and
its bandwidth. Multiplying both sides with exp(—i2 fo) yields

Ay — / B(f)e>mU—foltqy . (2.60)

A very small bandwidth of E(t) allows only substantial values for E(f) if f is
very close to fy, which means (f — fo) very small or very slow fluctuations with
a long coherence. On the other hand, if E(f) gives substantial contributions
to the integral even for large values of (f — fo) rapid fluctuations with a short
coherence exist. Thus, bandwidth Af and coherence At are inversely related.
The fundamental relationship

AtAf = constant ~ 1 (2.61)

is quite general. The constant is determined by the particular type of the
field as well as by the actual definition used for the bandwidth and for the
coherence. There are numerous examples for this relationship in the literature.
We will give only one and leave others as problems.

Let the field be the damped, one-sided complex exponential wave E(t) =
exp(—7t/2) exp(i27 fot) where we assumed Ey = 1, for convenience. We eval-
uate the autocorrelation function G(7) from (2.56) and use (2.58) and (2.59)
for the definition of A7, and Af,, respectively. This yields

G(7) /E* (WE(t+7)dt = / e~/ 20— (t+7)/2i2m for g4
0

oo
_ e—"yT/QGIQTI'f()T/ e—'yt dt
0

1 .
= —e 0T/2e 2T for 7 >0, and 0 otherwise (2.62)
Y
Note that for negative 7 the integration must be performed from —7 to co. The
power spectrum S(f) for the field under consideration was already evaluated
in (2.40) so that we can immediately calculate the correlation time Ar, and
the band width Af, from
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J T*|G2dr B (I/VQ)IOOO T2 7Tdr
[1GPRdr — (1/42) [y~ ermdr
4/~° 2
_ _2 2.63

27 = 7 (2:69)

(A1) =

and
(g = LU~ forISPdf

J1sPdf

_/[(7/2) (f<f0 Q?f fo)? // [(v/2)2 )(f f0)?2
1 73

B (2m)22v 2
The square root of the product of the two quantities yields the well known
result

(2.64)

1
2(2m)2

Note that the relationship we had in (2.41) between the life time of an
oscillation and its bandwidth is very similar to (2.65). Physically these rela-
tionships are indeed based on the same fundamental principle of uncertainty
but conceptually they are very different. The result from (2.65) can be com-
pared with the simple product of the decay time 7 = 2/v and the FWHM
Af = ~/27 of the Lorentz line which yields

TAf=1/7 (2.66)

AT, Af, = (2.65)

2.5.4 The Wiener—Khintchin Theorem

In many applications both functions, the Fourier transform FE(f) and the
correlation function G(7) of a fluctuating field E(¢) are needed. An exam-
ple was just given. It turns out that the two functions are not independent
but are correlated in a rather simple way known as the Wiener—Khintchin
theorem. This theorem states that the Fourier transform of the correlation
function G(7) equals the power spectrum S(f) of a field E(t), and vice versa.
In mathematical terms this means that

/ G(r)e 2™/7dr = S(f)  and

/ S(f)e?ITdf = G(r) . (2.67)

The proof of the theorem is rather simple for non stationary fields. Using the
definition for the Fourier transform of G(7) and writing it as
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/ G(r)e ?™Tdr = / E*(t)E(t + 7)e 2T (e 2T/t e2m N dtdr

= / E*(t)e ™ B(t + 7)) dtd(t + 7)

= E*(NE(S), (2.68)

which is exactly the power spectrum S(f). The proof for stationary fields is
similar but more laborious. The Wiener—Khintchin theorem is fundamental in
coherent signal processing.

Problems

2.1 Show that the relation between the E field and the B field for an electromagnetic
plane wave is given as B = (1/w)(k x E¢) expi(kr — wt).
(Purpose of exercise: use of Maxwell’s equations)

2.2 Show that the wave equation, as derived from Maxwell’s equations for a con-
ducting system, is given by

_Ep O’E OFE

AE = - oF
2 o TG

Discuss the equation for a good metal and study the behavior of E for a plane wave
solution by performing a back substitution.
(Purpose of exercise: use of Maxwell’s formalism)

2.3 Calculate the magnetic induction and the Poynting vector for a Hertzian dipole
of the radiation zone from the vector potential.
Hint: Use spherical polar coordinates and neglect terms o< 1/ r2.

(Purpose of exercise: use of spherical polar coordinates.)

2.4 Two positive and two negative charges are linearly arranged with the two neg-
ative charges coinciding at z = 0 and the two positive charges at z = +I[. Calculate
the electric dipole moment, the electric quadrupole moment and the quadrupole
radiation field if the charges vary harmonically as @ = Qo cos wt.
Hint: For the evaluation of the field add the contributions from the two oppositely
oriented dipole radiators.

(Purpose of exercise: multipole radiation; Pick the right approximation.)

2.5 Show that E = exp(—yt/2) coswt for t > 0 and E = 0 for ¢ < 0 is a solution for
the damped harmonic oscillator but E = exp(—v|t|/2) coswt is not a solution.
(Purpose of exercise: understanding damped oscillation.)

2.6" Show that the integral form of the Fourier theorem includes the representation
of periodic functions as a sum of harmonic functions and evaluate the coefficients in
the sum from the integral theorem.
Hint: Separate the integral from —oo to oo into a sum of integrals over the range
equal to the period.

(Purpose of exercise: get a feel for the Fourier theorem.)
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2.7" Evaluate the relationships between the complex Fourier coefficients ¢, and the
coefficients for the real representation A, and B, in (2.25). Show that

1 [to+T 9 [to+T
= /tU Et)dt, A,= T /tU E(t) cos nwt dt,
9 [to+T
B, = f/ E(t) sinnwt dt, (2.69)
to

(Purpose of exercise: equivalence of real and complex formalism of Fourier trans-
forms.)

2.8 Calculate the difference in the Fourier transform of two functions generated from
each other by an arbitrary shift in time.

(Purpose of exercise: get an understanding for the spectroscopic meaning of a
time shift.)

2.9 Show that the FT of the intensity I(t) o |E(t)|? for an asymmetric exponential
decay E(t) = Ae™"" is different from the power spectrum S(w).
(Purpose of exercise: get convinced of the difference between the two quantities.)

2.10* Calculate the Fourier transform for the exponential decay E(t) = Ae " for

t > 0, E(t) = 0 otherwise and show that the inverse Fourier transform gives the

correct time function.

Hint: Use integration in the complex plane for the inverse transformation.
(Purpose of exercise: to prove that the full details of the time spectrum are

retained when the inverse transform is taken.)

2.11 Calculate the autocorrelation function for a sin-wave and for a cosine-wave.
(Purpose of exercise: use correlation functions.)

2.12 Calculate the product of the coherence time A7 and the bandwidth Af for a
Gaussian line with the definitions of (2.58) and (2.59).

(Purpose of exercise: verify the relation between coherence length and band-
width.)
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Light Sources with General Application

The light sources initially used in spectroscopy were tungsten lamps or more
generally glowing solids and gas-discharge lamps. The emission of glowing
solids is based on Planck’s and Kirchhoff’s law, whereas in gas-discharge lamps
the radiation from characteristic transitions of valence electrons is used as well.
Thus, in the latter a high density of radiation can be obtained in a narrow
frequency range. Recently, the broad-band radiation emitted from synchrotron
sources has been increasingly employed in various fields of spectroscopy. On
the other hand, the rapid development of various types of lasers, particularly
those relying on emission from semiconductor diodes, has opened up many new
spectroscopic techniques such as laser ultraviolet or far-infrared applications,
frequency tuning, or sub-picosecond resolution spectroscopy.

In this chapter we will discuss light sources with applications to different
spectroscopic experiments. These sources may be classical, like black-body
radiation and gas-discharge lamps, or more advanced, like synchrotron radia-
tion and lasers. Radiation sources like microwave emission or x-ray and ~-ray
sources with application to special spectroscopic methods will be discussed in
the respective chapters.

3.1 Black Body Radiation and Gas-Discharge Lamps

Black-body radiation is the oldest man-made light source and was used in
spectroscopy from the beginning. Basically it originates from electrons which
are statistically accelerated and decelerated by collisions and thus represent a
system of emitting charges like the ones we discussed it in Sect. 2.2.2 (and in
Appendix B.6). For the purpose of this text it is sufficient and more convenient
to use a classical resonator model and some simple results from statistical
thermodynamics to obtain a good description of black-body radiation. Within
this approximation the radiation emitted is determined from the density of
the transversal electromagnetic eigenmodes n(w) of a black-body radiator.
We consider the momentum p of a photon and phase space elements dx and
dp. From statistical physics the number dN of distinguishable states in the
volum dpdz is dpda/h. This yields for three dimensions and for an isotropic
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distribution of the states
Arp?dpd3x B p?dpd3x
h3 - 7T2 h3

AN =2 (3.1)
The factor 2 in front of the fraction takes care of the two possible states of
polarization. Expressing the momentum of the photons by their frequency as
p = hw/cp the differential density of photon states per unit volume is derived
from (3.1) as
2

wdw
—5 - (3.2)

2
mT=Cy

dn(w) = ny(w)dw =

Multiplication of this quantity with the energy of the photons ¢ = hiw and the
thermodynamic probability for the occupation of the state yields the well-
known density of radiation of a black body. The occupation is given by the
Bose-Einstein distribution fg(w,T)

1

Jelw, T) = exp(hw/kgT) — 1"

(3.3)

From this, the radiance (or brilliance) L, (w) dw of radiation emitted per unit
area to the outside of the black body, normal to the surface and into a solid
angle of 1 steradian in the frequency interval dw is given by Planck’s radiation
law

L,(w,T)dw = Z—Onw(w)hwa(w,T)dw
™
w? hw dw

" 4 cd exp(hw/kgT) — 1~

(3.4)

L, (w,T) is expressed in Wm~2ster ~'s. If the emission is under an angle it
is reduced by a factor cos 6. (See for details [3.1]). The total energy emitted
per second, square meter, and steradian is obtained by integration over w.
The result is the Stefan—Boltzmann radiation law

L(T) = = (”2’“4‘3 >T4 (in W /m2ster) (3.5)

= — in m-ster) . .
2m \ 60n°c3

The expression between the parentheses is the Stefan—Boltzmann radiation

constant R with the value R = 5.67 x 1078 W/m?K*.

Equation (3.4) is represented graphically in Fig. 3.1 where the temperature
is the parameter for the curves, and the wavelength is used instead of the
angular frequency as the abscissa. Note that the maximum in plotting (3.4)
versus temperature for a certain frequency range does not appear for the same
temperature as if the equation is plotted for a certain range in wavelengths.



3.1 Black Body Radiation and Gas-Discharge Lamps 33

2t
)
T
59
e
o
2
T4
g
5t
Fig. 3.1. Logarithm of black-body
radiation power L¢ per cm? steradian
10" and 1Hz bandwidth for various tem-

Wavelength (um) peratures, as indicated in K

The graphs in Fig. 3.1 are typical emission characteristics for glowing solids
like tungsten filaments. Tungsten-filament lamps are particularly useful as
light sources in the visible and near IR spectral range if a broad-band emission
is required. To increase the lifetime of high-power lamps small amounts of
halogen gases are often added to the low-pressure noble gas filling. Such lamps
are known as tungsten-halogen filament lamps. The filament temperatures can
be as high as 3300 K.

Gas discharges also emit a continuous spectrum similar to that shown
in Fig.3.1 because electrons are accelerated and decelerated by scattering
processes in the gas plasma. The advantage of gas-discharge sources compared
to solid sources is the possibility of reaching higher temperatures and using
a smaller size for the emitting element. For example, the temperature in a
mercury-arc lamp can be as high as 6000 K for a plasma pressure of 1-2 atm.
This yields a very strong emission in the visible spectral region and a color
temperature close to sunlight. The emitting arc in a Xe arc discharge lamp can
be as small as (0.3 x 0.3) mm?. If the pressure and temperature are very high
broadening and overlapping of electronic states occurs in the excited atoms
which results in a broad-band light emission. Whereas the efficiency given as
the ratio between output light power in the visible spectral range to input
electrical power does not exceed 10% for filament lamps, gas-discharge lamps
can have efficiencies of up to 50% if their glass compartment is supplied with
a phosphorescent layer. If gas-discharge lamps are used in the UV region, the
covering glass must be quartz to allow transmission of the UV light.
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Gas-discharge lamps filled with mercury, hydrogen or helium are employed
for spectroscopy in the UV. In this case the radiation from characteristic
transitions of the atoms is often used as it has a quite high intensity in a
narrow spectral region.

High-power gas-discharge lamps (arc discharge) can operate at gas pres-
sures as high as 100bar (10 MPa) and need therefore an extra electrode for
ignition. If the high gas pressure is only established as a consequence of the
heat release after start up, ignition is possible with an extra electrode for
glow discharge. If the pressure is high from the beginning ignition must be
obtained with an extra electrode connected to a high-voltage pulse. Lamps
up to 1000 W with a brightness up to 250 W/cm? are commercially available.
Models for gas-discharge lamps are illustrated in Fig. 3.2.

mercury arc lamp xenon arc lamp

molybdenum
starter gas ~—— strip
conductors
quartz +— kathode
bulb }— anode ~—SW
E:iﬁl:g sSC Fig. 3.2. Gas discharge lamps for UV

radiation; (SW: starter wire, SC: start-
ing coil)

Note that ultra-violet radiation is very dangerous for the eyes and for the
skin! When working with such sources absorbing goggles and skin protectors
should always be worn. In addition, UV radiation below 250 nm generates
toxic ozone from the oxygen in the air. This means these types of high-power
lamps must be well vented when used in closed rooms. Finally, lamps operated
at very high pressure can be an explosion hazard.

Figure 3.3 compares the emission spectrum from a high-power filament
lamp with spectra from a mercury and a xenon lamp. The irradiance Iy in yW
per cm? and bandwidth is plotted for a distance of 50 cm. Note the particularly
strong emission for the gas discharge lamps in the UV spectral region.

3.2 Spectral Lamps, and Shape of Spectral Lines
Gas-discharge lamps can also be built to predominantly emit spectral lines.

The most common line shapes for these emissions and spectral line shapes in
general, will be discussed in the following section.
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Fig. 3.3. Spectral distribution of irradiance I, for commercial high-power light
sources. The dashed line labels the cut off in air due to ozone generation

3.2.1 Low-Pressure Spectral Lamps

To obtain spectral lines a low gas pressure is used and the lamps are operated
in the glow-discharge region without ignition. Sources with slightly higher gas
pressure are known as spectral lamps and need filament heating to provide
enough electrons for the start up. Spectral lamps are very important in spec-
troscopy for wavelength calibration. They are absolute standards. Typical line
widths are fractions of one A. Usually, the lamps are filled with noble gases
like Ne, Ar, Kr, and Xe or special metal vapors. The emission lines for these
gases are well known and tabulated. A recommended source for spectral lines
is Landolt-Bdrnstein [3.2] and references therein. Some of the most important
spectral lines are listed in Table 3.1.

3.2.2 Shape of Spectral Lines

Spectral lines are examples of a radiation field with a rather narrow frequency
spectrum. The radiation originates from electrons returning to the ground
state after having been excited into a higher orbital. The recombination to
the ground state occurs after a certain lifetime and with a certain transition
probability. Formally the spectral light may be considered as the emission
from a damped (elementary) oscillator. The intensity spectrum of this pro-
cess was described Sect. 2.4 and had the form of a Lorentzian line. Since this
line is fundamental for emission or absorption it is also called the natural line.
Normalized to unit area in w-space, it has the form

/2
(W—wo)®+ (v/2)?

I (w—wo) = (3.6)




36 3 Light Sources with General Application

Table 3.1. Selected spectral lines in nm in the visible and near-visible spectral
ranges. The numbers in parentheses are relative intensities. L indicates lines appro-
priate for stimulated emission

Neon Argon  Argon™ Krypton Krypton™ Xenon Mercury
. 404.66
415.86 427.40 417.18 434.75
420.07  434.80(50) 431.96 435.84
433.36  454.50(25L)  437.61 462.43
457.93(25L)  445.39 468.04(L) 473.42
465.79(25L) 469.44
533.08 487.98(30L) 482.52(L) 480.70
540.06 506.20(30) 557.03 484.56 546.07
585.25 514.53(25L) 501.65 576.96
621.73 617.23(40) 520.83(L)
633.44  696.54  664.37(100) 521.79
647.09(L)
717.39 72729  663.82(50) 758.74 752.55
753.58  T763.51  668.43(50) 819.01 799.32 823.16

v is the FWHM of the line. A graph of a Lorentzian line is depicted in Fig. 3.4a.
The dots correspond to the emission from a krypton laser.

The Lorentzian line is not the only lineshape observed in experiments. If,
for example, all emitting oscillators do not have exactly the same energy but
are rather statistically distributed in energy, the emission line is statistically
broadened. A typical example is a Gaussian distribution of emitters which
may be due to the thermal motion of atoms or molecules. In this case the
spectral line has the form

T T T T T T T T T T T T T T T T

(b) (©

Intensity (arb. units)

PRI R PRI R

13245 13250 13245 13250 15414 15454
v (em™) v (em™) v (em™)

I "

15484

Fig. 3.4. Three spectral lines commonly observed in spectroscopic experiments. Full
drawn: Lorentzian line (a), Gaussian line (b), Fano line (c); Dots in (a) and (b)
are experimental results for the emission from a laser. Dots in (c) are results from
light-scattering experiments on GaAs with vo = 15451 cm™"'; after [3.3]
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where v = 2.35 x ¢ is again the FWHM of the line and (3.7) is normalized to
one. o2 is the second moment (with respect to the mean value wg) or the vari-
ance of the Gaussian distribution. Since the velocities of the ions in an emitting
gas plasma have a Maxwellian distribution, the spectral lines are very often
Gaussian due to the Doppler effect. Even though in solids the atoms cannot
undergo translational motion, Gaussian profiles are quite usual. They are due
to perturbations of the energy levels of the electrons by lattice defects. A nor-
malized Gaussian line is shown in Fig. 3.4b. For equal FWHM the Gaussian
lines converge more rapidly to zero with increasing distance from the center
as compared to the Lorentzian lines. The experimental results of the krypton
laser undoubtedly match a Gaussian profile better than a Lorentzian profile.

Besides Lorentzian and Gaussian lines other line shapes are known and
often used. An example is the Voigtian profile which represents a combination
of a Gaussian and a Lorentzian line (Appendix C.2). Observed line shapes
and line widths may originate from experimental conditions, and may not
necessarily represent the shape and width of the line from the original source.
For example, the instrumental response G(w) (i.e., the spectrum obtained
from the instrument for a strictly monochromatic input spectrum) or, in a
scattering experiment, the width of the line used for excitation may distort or
broaden the original line. In this case a deconvolution process is necessary to
obtain the intrinsic line shape. In the simplest case of a combination of two
Lorentzian lines or two Gaussian lines of widths 7; and 7» the resulting lines
are again Lorentzian or Gaussian. More details about the convolution process
are in Appendix C.2.

For systems which consist of one or several discrete oscillators close to (or
on top of) a continuum transition, interference effects may occur and lead
to special emission characteristics known as Fano lines. These lines have an
asymmetric shape, as shown in Fig. 3.4c. The experimental dots are from a
light-scattering experiment. Fano lines can be observed for light emission, light
absorption and light scattering. A necessary condition for their occurrence is a
coupling between the states responsible for the discrete and continuous tran-
sitions. A formal description for the simplest case of a Fano line (one discrete
and undamped oscillator, energy independent coupling and energy indepen-
dent continuum transition strength) is obtained (for I', @ # 0) from

Q+e* .. w-w-A
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A describes the shift of the line position for the discrete transition from its
position without interaction, and I" is the damping (reciprocal lifetime) due
to the interaction U and given as I" = 27U?2. @ is equal to U~! normalized
by the relative strength of the (modified) discrete oscillator to the strength of
the continuum transition. In Fig. 3.4c wg + A is used on the abscisssa instead
of wy, for simplicity, and the abscissa is scaled in wave numbers. Depending
on the sign of () the minimum of the intensity can appear to the left or to the
right of the peak. More details on the Fano effect are in Appendix C.3.

3.3 Synchrotron Radiation

Synchrotron radiation is a special type of radiation which has become readily
available in the past and has found many useful applications. In the last ten
years the peak brilliance of the synchrotron facilities had a particular steep
increase and raised by three orders of magnitude. Likewise the overall world
wide synchrotron light emission has dramatically increased as many storage
rings especially dedicated to spectroscopy were set up. More than 60 dedicated
rings are available and their number and capacity is continuously increasing.

Spectroscopically synchrotron radiation is very similar to black-body emis-
sion. With respect to the geometry of the beam it is very different from the lat-
ter. Synchrotron radiation is widely used as a powerful UV and x-ray source for
structural analysis, photoelectron spectroscopy, chemical reactions, or photo
lithography. Special sources have even been designed for IR spectroscopy. The
synchrotron light source ELETTRA in Trieste has also a Raman and Brillouin
scattering facility.

3.3.1 Synchrotron Light Sources

Synchrotron radiation is the electric field emitted from charged particles in
linear or circular accelerators like synchrotrons, storage rings, or special syn-
chrotron facilities. The acceleration characteristics determine the spectral na-
ture of the radiation. In synchrotrons the energy of the particles changes
continuously which is not very convenient for spectroscopy. It is more appro-
priate to store a bunch of charges in an extra ring and let them circulate
with a constant velocity. In these storage rings the particles are accelerated
by purely radial forces. This guarantees a very stable light source.
Synchrotrons and storage rings were originally developed for high-energy
physics experiments. At that time synchrotron radiation was considered a
waste product, as it was responsible for a continuous and non negligible en-
ergy loss of the particles. To keep the particles circulating this energy must
be provided by an accelerating ac electric field. Today many rings are spe-
cially built as a light source and are dedicated to spectroscopic experiments.
Practically all those rings use electrons as the charge carrying particles and
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a storage ring as the region where particles circulate. Only such systems will
be considered here.

The advantage of synchrotron radiation for spectroscopy originates from
the following characteristic properties:

very high emission density from a small spot,

very small beam divergence, such as for lasers,

very large bandwidth with the central position tunable by the particle
energy,

highly polarized radiation,

very short light pulses.

A synchrotron light source has the following three main components: a particle
source with a linear accelerator, a synchrotron for the circular acceleration of
the electrons to relativistic velocities and a storage ring where the electrons
circulate as a guided beam with several 100 MeV or several GeV.

Figure 3.5 is a schematic of a synchrotron light source. On the left is the
synchrotron where the electrons from the source are first linearly accelerated
to several MeV and then boostered in the circular region to a final energy
of several GeV. Data given in the figure are typical for a medium-size light
source.

The storage ring consists of a sequence of curved and straight magnetic
lenses. It is evident from this constructive detail that the radius of curvature
and the circumference of the ring are not directly related. Synchrotron radia-
tion emitted in the curved parts is allowed to exit from the tube trough a win-
dow. Special components like wigglers or undulators may be accommodated
in the straight sections. Large synchrotron sources such as the Furopean Syn-
chrotron Radiation Facility (ESRF) in Grenoble or the National Synchrotron
Light Source (NSLS) in Brookhaven can have more than 80 windows or beam

storage ring

Fig. 3.5. Schematic view of a synchrotron with storage ring. (S,A: electron source
with linear accelerator, HF': high frequency power supply, AC: acceleration facilities,
M: magnets, W: windows)
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lines and several special facilities. It is also possible for a single synchrotron to
support more than one storage ring as is the case at the NSLS at Brookhaven
or at MAX-lab in Sweden.

Since the circulating electrons must be pumped continuously to balance
the radiation losses they have to arrive with a well defined phase at the acceler-
ation electrodes. Thus, they can only circulate in bunches. These bunches can
be accumulated to provide a current of several 100 mA which may circulate
for many hours in the storage ring. Eventually as more and more electrons get
lost, the electron beam dies out and the storage ring must be refilled. Beam
life times from 10 to 50 h are not uncommon. Typical widths of the bunches
are 100 to several 100 ps and the circulation time is of the order of millisec-
onds. Since the velocity of the particles is always close to ¢y the circulation
frequency fy is ¢o/l, [ being the circumference of the electron track. Note that
several bunches, in some rings up to 1000, can circulate simultaneously.

Beamlines are usually equipped with technologically top level instrumen-
tation which is shared by all users. Most lines are designed and optimized
for certain applications extending from the IR spectral range to hard x rays
and used by chemists, physicists, material scientists, biologists, and electronic
engineers.

3.3.2 Generation and Properties of Synchrotron Radiation

The emission of radiation by an arbitrarily accelerated charge was discussed
in Sect.2.2 and in Appendix B.6. The formulas derived there are, however,
limited to non-relativistic particles. The extension to a relativistic description
is not straight forward. Without extensive calculations only a relationship for
the total emitted power can be derived from Larmor’s formula in Sect. 2.2 by
introducing relativistic expressions for time, momentum, mass, and energy.
With
1

5:U/Ca ’Y:ﬁv €:7mocg,

where ¢ is the total relativistic energy and mgc2 = 0.5MeV is the rest energy
of the electron, the total emitted power for highly relativistic particles turns
out to be

e’co(fy)!  €*(Be)

P = =
6mR? 6mmach R?

(in W), (3.9)

where R is the radius of the bending magnet. Thus, for § & 1 the total energy
emitted increases with the 4th power of the particle energy e.

From (3.9) the input power can be estimated which is needed to balance the
emission. For a 2-GeV synchrotron with radius of R = 5.5m and no straight
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segments the emission is 3.7 x 1077 W /electron. If the storage ring is operated
with 1 A the number N of circulating electrons is N = 2mR/1.6 x 10~%¢y and
hence the total emitted power

B 3.14 x 11
T 1.6 x 10719 x 3 x 108

The emission pattern differs radically from that for a non-relativistic particle
shown in Fig. 2.4. Due to the relativistic Doppler effect, it is highly directional
with a strong peak in the forward direction and the polarization is strictly
confined to the plane defined by @ = #/ and v = /. Figure 3.6 exhibits the
characteristic emission pattern of a radially accelerated relativistic particle.
As in the case of non-relativistic propagation of Fig. 2.4 polar coordinates have
been used. The direction of particle propagation is the polar axis. The figure
demonstrates the characteristic difference for the two types of radiation. For a
relativistic particle nearly all radiation is emitted forward whereas for a non-
relativistic particle forward and backward emission are almost the same. Note
that the diagram does not have rotational symmetry any more. Symmetry is
only retained with respect to the plane of the storage ring and the sagittal
plane normal to it.

3.7x 1077 = 0.25 (MW) .

~~~~~~ -- Fig. 3.6. Emission characteristic

for a radially accelerated charge
with relativistic speed

The angular width (half width half maximum) of the emitted radiation
can be estimated from

A~ = = . (3.10)

For a 1GeV electron the angular spread is only 0.5 mrad which corresponds
to a linear aperture of 1072, The intrinsic angular spread is, of course, only
observable perpendicular to the circulation plane because emission is smeared
out for observation in the plane.

The tangential emission discussed above and its consequences for the de-
tection of the light are depicted in Fig. 3.7. The left part of the figure shows the
angular spread of the emitted light for directions normal and parallel to the
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Fig. 3.7. Tangential light emission for electrons circulating with relativistic ve-
locities (a) and resulting observation geometry for the relativistically chirped light
pulses (b)

electron orbit. The right part demonstrates the limited time interval during
which the emission can be detected by an observer.

One of the big advantages of synchrotron light is the extremely small
emission area. This area is determined by the intrinsic width of the electron
beam hy, and h,, and by diffraction limits. Typical values for hy x h, are
0.15 x 0.03 mm? if the source is dedicated.

The effective size of the beam is given by the variance of the beam width
04,y and of the angular spread of the electrons og for an assumed Gaussian
distribution. The product of the two quantities is called the emittance € =
04,y0¢ given in nmxrad. The smaller the emittance the better the radiation
source. Emittances for good undulators are of the order of 10 nmrad.

Diffraction limits the emission area to Hy, (horizontal width) and Hy, (ver-
tical width) given by

2 2
Hy =k} + A + Ry , (3.11)
s ,V ghN 8

where R is the radius of the electron orbit and 6 is the full angle of emis-
sion either in plane (h) or perpendicular to the plane (v) of the orbit. The
brightness or brilliance L is determined by the emitted photons per second
and conventionally given in photons/s mm? mrad? 10~3 bandwidth.

With special lenses, so called multilayer Laue lenses synchrotron light of
20KeV can be focused to a spot size of 30 nm diameter.

As already mentioned the emitted light is strongly polarized with the di-
rection of polarization in the plane of electron motion. This holds only for
emission precisely in the plane of the ring. With increasing angle @, the emis-
sion becomes elliptically and finally circularly polarized.

The strongly forward peaked emission pattern also influences the time of
observation of the radiation. Figure 3.7b indicates, that the emission is only
observed for the short time during which the electron bunch passes between
the limiting positions A and B on their way around the storage ring. The
locations of A and B are determined by the direction of observation or, more
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precisely, by the angular spread Af# of the emission. The observation time is
further reduced by a relativistic chirping effect. From the geometry in Fig. 3.7b
the time spread At is given by the angular width of the emission. It can be
estimated from

_ 2R 2Rsin(l/y) 4R

At =to — te, =~ — = .
¢ T Y co 3coy3

(3.12)

where t. and ., are the time intervals which the electron and the light need
to travel from A to B. This interval corresponds to a typical frequency

Fron = 1 3coy? _ 3e3
WP TUAt T 4R 4Rmicl

(3.13)

For an electron with energy 1 GeV and a ring radius of 3m this yields a fre-
quency of ~ 6 x 10'7 Hz or a radiation energy of 2.5 KeV.

The consequence of the short light pulses is a broad frequency spectrum.
The first detailed calculation of this spectrum was reported by Schwinger [3.4].
According to [3.5] the spectral power per unit bandwidth emitted by one
electron per second is

35/2e2¢coy N2 e .
P)\()\) = m /)\C/A K5/3(I’)dx (ln W/nm) 5 (314)

where Kj/3 is a modified Bessel function, and

_heo AR (3.15)

Ae
€c 33

is a characteristic wavelength which determines the high-energy cut off of the
spectrum. A plot of the emission normalized to 1steradian is displayed in
Fig. 3.8a for 1 A bandwidth. The real advantage of synchrotron radiation is
the high power in the VUV and x-ray spectral ranges and the small size of
the emitting area. Therefore the brightness should be used to compare it with
conventional broad-band or x-ray sources. In Fig. 3.8b the spectral brightness
(brightness per unit bandwidth) of a medium-size synchrotron source is com-
pared with black-body radiation and with several narrow-band and continuous
x-ray sources. The advantage of the synchrotron light is obvious, in spite of
the rather large bandwidth of 1eV used in the comparison. (The band width
of characteristic x-rays is typically between 0.5 and 0.8¢V.)

3.3.3 Special Synchrotron Facilities

Considerable enhancement in the intensity of the synchrotron light can be
obtained by special arrangements for the extraction of the light beam. One
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Fig. 3.8. Spectral energy distribution of synchrotron radiation for various particle
energies (a) and comparison of brightness with conventional light sources (b) (— - -
black body, * x-ray and VUV, (———) x-ray continuum, (—) storage rings); after [3.6]

possibility is presented in Fig. 3.9. The electron beam passes several alternat-
ing magnets on a straight section of the storage ring. As a result radiation
is emitted at several positions and can be accumulated to form a beam with
N-fold intensity for N consecutive alternating magnets. This arrangement is
called a wiggler. If N is large the emission from the individual sections of
the wiggler can be coherent, and the setup operates as an undulator. In this
case the peak intensity is proportional to N2. Values of N are of the order of
30 but may extend to values as high as 250. The lengths of the undulators
are 2-5m, in exceptional cases up to 25 m. Since the undulator operates like
an optical grating, interference occurs in certain directions correlated with
particular wavelengths. Thus, radiation energy is accumulated at a particu-
lar wavelength with a very narrow bandwidth. As such it is similar to light

Fig. 3.9. Schematic arrangement of
a wiggler. 2/~ is the aperture of the
emission
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emitted from laser oscillators, as will be discussed in Sect. 3.4. Constructive
interference is obtained for light of wavelength ), and direction A8 from the
mean electron track if

Au K?

(14— +1246%). (3.16)

A =
" 292 2

Ay is the undulator period, n the overtone number, K the undulator parameter
given as eAyBy/2mmoco, and By the magnetic induction of the undulator
magnets.

Equation (3.16) is called the undulator equation. Very often the magnetic
poles in the undulator can be shifted to an arbitrary distance which means the
undulator wavelength Ay can be tuned. The deviation y(z) of the electrons
from the axial direction x is

y(z) = BAU g (2”> (3.17)

s | ——
’}/271' )\U

This means for a 6 GeV (y = 12.000) electron beam and an undulator field
By = 05T K becomes 2.3 and the maximum deviation a,, from the axial
motion is only 2 x 10~*rad or 1.5 um.

Also the divergence A#, of the undulator beam is reduced as

1 [3 14+ K22

where N is the number of poles in the undulator. For the same parameters
as in the example above, N = 33, poles and the 7th overtone the divergence
is reduced by a factor 0.1. More details about the properties of an undulator
is in Appendix C.4.

Figure 3.10 compares the emission from two magnets with the emission
obtained with a 10-pole wiggler and several undulators at the ESRF.

3.3.4 Synchrotron Facilities World Wide

Synchrotrons of the first generation were not dedicated. Second- and par-
ticularly third-generation synchrotrons were especially constructed as light
sources. Third-generation synchrotrons have special facilities like wigglers and
undulators. Table 3.2 lists several well known third generation light sources.
Many of the facilities were used in high energy physics prior to their dedica-
tion. The largest synchrotrons are the European Synchrotron Radiation Fa-
cility (ESRF), the Advanced Photon Source (APS), the National Synchrotron
Light Source (NSLS), and the Japanese ring in Nishi Harima (SPring-8). The
latter has one of the highest brilliances of 10?!. It is obtained from a 25m long
undulator. Figure 3.11a has an explicit schematic of accelerators and beam line
arrangements for the APS facility in Argonne. Inside the storage ring one can
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Fig. 3.10. Spectral brightness of the synchrotron emission from two different mag-
nets compared to the emission from a wiggler and several undulators at the ESRF.
The dashed lines represent third harmonic emission from the undulators. The period
of the undulators are given in mm; after [3.12]

Table 3.2. Sources of synchrotron radiation. Listed are: name (acronym) and lo-
cation of the sources, year of start up, maximum beam energy eg, maximum beam
current I, circumference C, number of beamlines ngr,, number of special facilities
nra, spectral range of radiation, and number N of storage rings; Data are from
synchrotron facilities’s homepages, fall 2008

Name, Location Year eg (GeV) I(mA) C(m) ngL nra Range N
ESRF, Grenoble 1994 6 200 844 40 20< 200KeV 1
BESSY II, Berlin 1998 2 200 240 50 1
SLS, Villingen 2001 24 400 288 17 T7IR to x-ray 1
Diamond, Harwell 2007 3 300 562 7 1
ELETTRA, Trieste 1993 2.4 330 260 24 1610-10°eV 1
MAX-lab II, Lund 1996 280 90 10 4VUV — soft x-ray 3
APS, Argonne 1996 7 1104 68 27 1
NSLS II, Brookhaven 2.5 1000 170 < 4.3 KeV 2
KEK PF, Tsukuba 1997 2.5 450 187 22 8 VUV — x-ray 1
SPring-8, Nishi Harima 1997 8 1436 38IR - 3x 10°eV 1

see the electron source with the linear accelerator (LINAC) and the booster
synchrotron. Each beam line is equipped with dedicated high quality instru-
mentation. Figure 3.11b depicts a cross section of an undulator light beam
recorded in 40 m distance for the 7th overtone with an energy of 27.9 KeV.
The intensity is well approximated by an anisotropic Gaussian distribution.
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Fig. 3.11. Arrangement of beamlines for the APS in Argonne after [3.7] (top), cross
section (2 x 0.5mm?) of an ESRF undulator beam in a false color code after [3.8]
(center), and undulator for a free-electron laser demonstrating the selfordering of
the electron bunches after [3.9] (bottom)

3.3.5 The Fourth Synchrotron Generation

While the efficiency of conventional dedicated light sources is still further
developing by inserting more beam lines and longer undulators the fourth
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generation is already on the way. The best chances has the hard x-ray laser
(free electron laser, FEL) based on very long undulators in high energy linear
accelerators of several Km length. Prototypes are already in operation and
some more are under construction.

The new lasers operate on the basis of self amplified spontaneous emis-
sion (SASE) of high energy electrons powered up in linear accelerators. The
emission comes from long undulators which already extend up to 30 m and
may be coupled in series. The spontaneous emission interacts with the electron
bunches and modulates their structure as depicted in Fig. 3.11c. In this process
emission becomes stimulated and strongly enhanced which results eventually
in a highly coherent radiation. No resonators or mirrors are used. The light
rather has the nature of a superradiation which makes the extension to the
x-ray spectral range easier. Brilliances are expected to increase by at least
10 orders of magnitude and may go up to 103* [3.10]. In contrast the best
undulators at the ESRF have a brilliance of 10%3.

One of the operating systems is the “FLASH” laser at DESY in Ger-
many. Electrons are linearly accelerated to almost 1 GeV and emit radiation
at 6.5nm from a 30 m long undulator. The total length of the laser is 260 m.
Several other lasers with linear accelerators are operating in the IR spectral
range.

In US efforts are concentrating on the “Linac Coherent Light Source” with
15 GeV electrons leading to a 0.15 nm free-electron laser radiation. In Germany
a free-electron laser for 0.64 nm radiation is under construction at DESY. In
Italy the Fermi@Elettra FEL is under construction for a wave length between
100 and 10 nm.

Some more details about conventional FELs in action are in Sect. 3.4.6.

3.4 Lasers as Radiation Sources

Lasers are alternative light sources to tungsten-filament and to gas-discharge
lamps. The name laser is an acronym of light amplification by stimulated emis-
sion of radiation. The principle for coherent amplification of electromagnetic
waves was first discovered theoretically by C.H. Townes, N.G. Basov, and M.
Prokhorov who received the Nobel prize in 1964 for their work. In 1958 A.I.
Shawlow showed how to extend this principle to the optical spectral region and
also received a Nobel prize in 1981, together with N. Bloembergen. T. Maiman
demonstrated the first successful operation of an optical laser in 1960. Since
then, the number of applications in spectroscopy where lasers are used as the
preferred light source have been continuously increasing. Initially such appli-
cations were only possible in the visible spectral range for a few selected laser
lines and for some lines in the IR. Now applications have expanded far beyond
this range, a very large number of lines is available and significant parts of the
spectrum are covered by tunable lasers. In addition, spectral linewidths have
been reduced to the order of hundred Hertz and pulsed lasers are available
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with pulse lengths in the femtosecond (1071 s) range or, for x-ray radiation
even in the attosecond (10718s) range [3.11].

3.4.1 Generation and Properties of Laser Radiation

A laser consists basically of an “optical resonator”, a “pump source”, and
an “optically active medium”. The optically active medium is established by
an “inversion” of population of electronic states. This means an electronic
state 2 with energy €5 is populated with a higher number of electrons than an
electronic state 1 with a lower energy €;. Optical activity is already obtained
if the ratio of the two population numbers Ny and Nj is larger than its value
in thermal equilibrium.

Ny Ny €2 — €1
— — = — . 3.19
N <N1>cqu exp( KT ) (3.19)

To obtain amplification N3/N7 > 1 must be satisfied. The active material can
either be a gas plasma, a crystal with optically active color centers or the
optically active region of a p-n junction in a semiconductor. In all cases the
inversion is established by a pump. Figure 3.12 illustrates the three classical
arrangements for lasers. In the case of a gas laser, an electrical discharge is re-
sponsible for the population inversion. The resonator consists of plane-parallel
or confocal highly-reflecting mirrors. The reflectivity of one of the mirrors is
slightly reduced to 98-99% which allows the laser beam to exit from the cav-
ity. The discharge tube is usually sealed with Brewster windows to minimize
surface reflection losses and to select one particular light polarization for the
laser operation. Optically pumped solid-state lasers operate similarly but the
inversion is established by flash lamps. For semiconductor lasers the cleaved
faces of the p-n junction crystal are usually directly used as the reflectors of
the cavity. The pump is the forward biased current and the active material
extends over the volume of the junction where non-equilibrium carriers are
generated by injection.

P A
N/ N
D=0 ) 7 THEN
n type
) ) '
P M (cleaved faces)
(@) (b) ©

Fig. 3.12. Schematic representation of three classical laser systems; gas discharge
laser (a), optically pumped solid-state laser (b), and semiconductor laser (c); (M:
mirrors, A: active material, P: pump, L: laser beam)



50 3 Light Sources with General Application

Laser light has the following characteristic properties:

(a) Very small beam divergence. Typical values for a gas laser are 10~% rad.
(b) Very narrow linewidths. Special arrangements allow linewidths for gas
lasers to be as low as 10 KHz and even less. Solid-state lasers can have
linewidths as small as 150Hz [3.13]. Here is a collection of typical line
widths:
— 150 Hz smallest linewidth for conventional lasers
— 100 KHz single mode HeNe laser, air cooling
— 100 MHz Single mode gas laser with water cooling
— 1500 MHz Multimode HeNe laser
— 7GHz Multimode Ar ion laser
— 3THz dye laser
— 550 THz sunlight
A narrow line is equivalent to a high coherence of the light. As discussed
in Sect. 2.5 coherence is a measure of the length over which a well defined
phase relation for the wave field exists. Since the line width Af is approx-
imately the inverse of the coherence time 7 the coherence length Al for a
10 KHz bandwidth radiation can be estimated from

Al = com = ¢o/Af = 30Km .

(¢) Very high light intensity per bandwidth. A reasonably good gas-discharge
laser can emit 7W/line with a typical linewidth of 75 MHz in the vis-
ible. This represents an intensity of 0.1 W/MHz, as compared to 0.9 X
10~'2W/MHz for a black-body radiator at 3300K for the same angular
width of 10™*rad and for the same cross section of 2mm?.

(d) If the active medium is terminated by Brewster windows the laser beam
is highly polarized in the sagittal plane, perpendicular to the plane of the

Brewster window.

These characteristic properties of the laser light are due to two important
facts of the experimental setup.

(a) The stimulated emission of radiation from the activated medium occurs in
a very narrow frequency region around a center frequency fy determined
by a gain coefficient a(f — fo). (The gain coefficient o = dn/dz is defined
as the increase in photon concentration n (photon number per incident
photon) per unit of length.) The spectral distribution of « is given by the
lineshape function g(f — fo). For gas lasers the width of this function is
determined by the Doppler broadening of the electronic levels in the gas
molecules. For « larger than a certain threshold laser oscillation is possible.
This threshold is obtained from

2La—v =0,

where L is the length of the active medium, and v is a loss coefficient
describing all sorts of losses during a round trip of the light. Details of
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the condition necessary for an effective stimulated emission process are in
Appendix C.5.

(b) The resonator system leads to mode selection. This selection refers, in
particular, to non-axial modes. Due to multiple reflections in the resonator
these modes leave the cavity before they reach their full intensity. For this
reason the divergence of the radiation is extremely narrow and, in most
cases, diffraction limited.

Since the active medium is a cavity, only standing waves can develop as longi-
tudinal resonator modes. In this case 2L must be equal to an integer number
of wavelengths, and the distance between two neighboring longitudinal modes
with wavelengths A\; and A, is easily evaluated from

to be

C C

For a medium-size He-Ne laser with a typical cavity length of 75cm the dis-
tance between longitudinal modes is only 200 MHz or ~ 10~2 cm™1.

The Doppler broadening of the energy levels is a consequence of the veloc-
ity distribution of the atoms in the plasma. The line-shape function and thus
also the gain coefficient @ may be much broader than the mode distance. Un-
der these conditions several longitudinal modes can oscillate simultaneously.
The situation is schematically demonstrated in Fig. 3.13a. Since the Doppler
width for a He-Ne laser is typically 1500 MHz a considerable number of lon-
gitudinal modes can oscillate if the cavity is 75cm long. These oscillations
are fluctuating as the light intensity statistically jumps between the various
possible modes. The total spectral width of the laser line is given by the width
of the gain curve and not by the width of the individual longitudinal modes.

*

TEM 10 TEM 21
@) (b)

Frequency

Fig. 3.13. Gaussian gain coefficient o and longitudinal modes (a) and field distri-
bution of TEM-modes (b) in a laser resonator
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In order to obtain a laser with a strongly reduced bandwidth, the fluctu-
ations must be suppressed and the oscillations must be restricted to a single
mode. This can be established by inserting an etalon filter into the cavity and
tuning it to the frequency of one of the longitudinal modes. In this case the in-
verted population will be released in a single mode. The etalon or Fabry—Perot
interference filter consists of a plane plate of high-quality quartz or dynasil
1000 glass. The filter is tuned by tilting it perpendicular to the beam axis.
Due to multiple-beam interference in the plate only a very narrow frequency
band is viable for each tilt angle. Thus only one longitudinal mode can prop-
agate in the cavity. Etalon filters must be extremely flat (flatness of the order
of 0.02s of arc) and require a temperature stability of the order of £0.01°C.
The theory of the Fabry—Perot etalon will be discussed in Sect. 4.3.

The width of the single modes is given by construction details which deter-
mine the temperature stability of the resonator size, the vibrational stability
of the mirrors, the plasma tube oscillations, etc. Gas cooled lasers have much
narrower lines than water cooled lasers because of the turbulence-induced
vibrations in the latter.

In addition to longitudinal modes, a laser also has certain transversal
modes of oscillation. These modes are represented by a particular distribution
of the electric field over the cross section of the beam and characterized with
the symbols TEM;;, (transversal electromagnetic modes). Examples of TEM
modes are exhibited in Fig. 3.13b. Dark areas characterize parts of the beam
with high electric field. The indices ¢ and k count the zeros along the x and y
direction, respectively. In general, it is desirable to run the laser in a TEMgq
mode since the possibilities for focusing are optimum in this case. A TEMg-
mode can be obtained by a proper construction of the discharge tube or by
inserting diaphragms to reduce the beam diameter.

The beam divergence 6 is determined by diffraction at the exit mirror.
Thus it depends on the beam diameter D and the wavelength X\ as

2\

o="%. (3.21)
0 is the half angle of the cone over which the beam intensity has dropped
to 1/e of its maximum. A consequence of relation (3.21) is the possibility to
decrease the divergence 6 by increasing the beam diameter with a telescopic
system.

An important advantage of the lasers is their excellent focusing charac-
teristics which is due to the small beam divergence. For a lens with a given
focal length F' the beam can be focused to a spot with diameter d and extent
I (Fig.3.14) according to

2
d:29F:% and Z—IGAF

D =Dz (3.22)
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Fig. 3.14. Focusing of a laser beam by a collec-
tion optic; (D: beam diameter, F: focal length,
d,l: diameter and length of focal area)

For D = 0.15cm, F = 10cm, and A = 500nm, d is 4 x 1072 cm, which results
in an increase of the light intensity by a factor 103.

The good focusing characteristics of lasers are particularly useful for ap-
plications in micro-mechanic machining or surgery. Conversely, they result in
serious eye hazards. Intensities smaller than 1 mW are enough to damage the
retina because of the very good focusing characteristic of the eye lens.

3.4.2 Continuous-Wave Lasers

The He-Ne laser is a good example to study the principle of population in-
version and stimulated emission. The electronic levels involved for the He and
the Ne atoms are shown in Fig. 3.15. The active medium consists of a mixture
of 100 Pa He and 12 Pa Ne. A large number of He atoms are excited by a gas
discharge into the metastable 23s and 2's levels. By collisions with Ne atoms
the latter are stimulated and 3ss and 2s, levels become occupied in a resonant
energy transfer process. This results in a population inversion with respect to
the non-excited Ne states 2py and 3p4. The transition between the s levels
and the p levels of the Ne atoms is dominated by stimulated emission. As
indicated in Fig. 3.15, the transitions correspond to the wavelengths 3391 nm,
1152 nm, and 632.8 nm, respectively. Since the occupation of the Ne p4 levels
are short-lived and rapidly decay to the Ne 1ss level by spontaneous transi-
tion, the inversion is maintained at least as long as the gas discharge is on,
and laser radiation can be emitted if the amplification factor o becomes large

helium neon 3381.2
21
=4+ ™ L= 3p,
202 b 25, == 632.8
S  J2's
2 19t
™ == 2p,
9 18 5
L%: 1152.3
e stimulated
~~ne laser beam
1s, == . spontaneous
L I = absorption

Fig. 3.15. Energy-level scheme and emission processes for the He-Ne laser. The
lower case symbols in the scheme for Ne assign excited atomic levels
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Table 3.3. Emission lines for two krypton-ion gas lasers with different power

single line multiple lines

wavelength  power (W) wavelength ~ power (W)

weak strong (nm) weak strong
799.3 0.03 1.2 752.5-799.3  0.25 3.8
752.5 0.1 3.0
676.4 0.12 2.5 647.1-676.4 0.6 10.0
647.1 0.5 7.0
568.2 0.2 2.5 520.8-568.2 7.5
530.9 0.2 3.0
482.5 0.05 1.0 468.0-530.9 6.0
476.2 0.05 1.0
468.0 0.8 406.7-422.6 3.0
413.1 2.4 333.9-356.4 2.5

enough. A selection of the eventually excited laser lines can be made by using
wavelength selective mirrors or a dispersive prism in the cavity.

The He-Ne gas mixture was one of the first systems which were utilized for
stimulated emission of radiation in a laser cavity. Today a very large number of
other gas mixtures are available. Some of them can provide much higher laser
powers and oscillate on a large number of lines for a given gas mixture. Emis-
sion lines for two krypton-ion lasers with different output power are compiled
in Table 3.3. Single-line or multi-line operation can be selected by choosing
the proper mirrors or by inserting a prisma for dispersion. More than 15 W of
power on one line can be obtained with these lasers. However, to obtain 7W
for the red line at 647.1nm 76 KW of input power for the gas discharge are
needed, as shown in Table 3.4. Thus, the absolute efficiency for light genera-
tion is very low. However, the total power is not as important for spectroscopy

Table 3.4. Technical data for two typical krypton ion lasers

property weak strong

light noise level (2 MHz bandwidth) 0.2% 0.5%

long time stability (30 min) +0.5% +0.5%

frequency stability 60.0 MHz/K 330 MHz/K

beam diameter 1.23 mm 1.6 mm

beam divergence 0.78 mRad 0.6 mRad

cavity length lm 3.44m

longitudinal mode extent 150 MHz (0.05cm™*) 43.5 MHz (0.014cm ™)
weight 105kg 411 kg

electrical input power 13.1 KW 76 KW

cooling requirements 8.4 1/min 26.51/min
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Table 3.5. Gas lasers and solid-state lasers used in solid-state spectroscopy. (YAG
stands for YAl-Garnet (Y3Al5012))

active species matrix most important lines
Cd helium 325, 441.6 nm

Ar™ argon 351.1, 488.0, 514.5nm
Krt krypton 799.3, 647.1, 413.1nm
Ne helium 632.8, 1153, 3390 nm
N2 nitrogen 337 nm

CO2 helium, nitrogen 10.2 um (several lines)
HCN gas with C, H, N 311, 337 um

Crat Al;O3 (ruby) 694.3nm

Sa®* CaF, 708.3nm

Na3+ glass or YAG 1064 nm

Ti%+ Al>Os3(sapphire) 700-1100 nm

Cr3t BeAl;O4 (alexandrite) 720-800 nm

as the stability, bandwidth, beam diameter, etc. Table 3.4 lists some techni-
cal data for the type of krypton lasers characterized in Table 3.3. Data for
argon-ion lasers are similar. In both cases it is the positively charged rare gas
ion which provides the energy level system for the lasing process. Krypton
and argon lasers are most commonly used for continuous-wave (CW) spec-
troscopy. For UV, IR, or pulsed laser spectroscopy many other systems are
available. Table 3.5 lists selected gas and solid-state lasers used in solid-state
spectroscopy, together with their most important lines. The visible and the
near-IR spectral range are well covered by the various laser lines. In the mid-
and far-IR various semiconductor lasers are used, particularly those based on
ITI-V compounds and PbTe. They will be discussed in the next subsection
and in Sect.10.1. The highest possible intensities in CW operation can be
obtained with CO, lasers where powers of 27 x 102 W are reached. However,
such powerful lasers are not used in spectroscopy. They were developed for
nuclear-fusion experiments.

Strong intentions exist to build lasers in the vacuum UV. This spectral
range can be reached either by repeated frequency doubling or by the use of
excimer lasers. Frequency doubling relies on the nonlinear optical properties
of crystals described by the second-order susceptibility x;x;. This and the
higher-order susceptibilities are defined by the generalized nonlinear response
for the polarization P.

P, = Xl(']i)EOEk + Xgi;g(]EkEl + ... (3.23)

Since the response from Fy FE; has a frequency of 2w, crystals with high values
of x®) are often used for frequency doubling. Up to the 13th harmonic with
a wavelength of 80 nm has been observed for Nd:YAG radiation. However, a



56 3 Light Sources with General Application

high degree of frequency multiplication can only be obtained for very high
power and pulsed systems.

Excimer lasers — the name is derived from “excited dimer lasers” — or exci-
plex lasers use rare-gas halogen mixtures. Wavelengths down to 120 nm have
been obtained. Excimer lasers usually operate as superradiators. Besides in
spectroscopy such lasers are used in material processing such as laser sput-
tering. Operating these lasers under ambient conditions is dangerous, since
the high-energy light quanta generate the hazardous gas ozone with a high
efficiency.

3.4.3 Semiconductor Lasers

The development of semiconductor lasers has proceeded rapidly. These lasers
benefit from the continuous progress in semiconductor technology, from their
easy integrability into electronic circuits, and from their small size. Semicon-
ductor lasers can be operated as pulsed systems but also in CW systems, in
spite of the very large currents needed for an efficient operation. For example,
conventional GaAs lasers oscillating at 840 nm need currents of 3 x 108 Am—2
(300 Amm~2). Efficient cooling of the laser diodes is required and is achieved
by mounting the diode on a good heat sink.

In the last few years significant progress was made by the development of
heterojunction and quantum well laser diodes (See also Appendix F.5). For
the near IR and red spectral range GaAs/AlGaAs systems are mostly used
which can have power conversion efficiencies of 25% and more. Theshold cur-
rent densities and operating current densities were reduced by two orders of
magnitude and range around 10 Am~2. This allows for easy CW operation
at ambient conditions. An other breakthrough was obtained for laser emission
in the green and blue spectral range. In this case mainly GaN derived het-
erojunction diodes or quantum well structures are used. Diodes with output
powers up to 200mW at A = 405 nm are commercially available.

Laser diodes can be arranged in arrays or several arrays in parallel with
several hundert diodes on a chip and output powers up to 900 W with 45%
conversion efficiency in the red. Coupling is either direct or by guiding the
light from the individual units with a glass fiber to a bundle. In both cases a
strong gain in emitted power can be obtained.

Table 3.6 lists data for a selection of commercial available semiconductor
lasers operating in the visible and near-IR spectral range.

The advantages of the semiconductor lasers are unfortunately accompanied
by several drawbacks. Since the optical transitions in the semiconductors are
rather broad, of the order of 2nm, a line shape function is obtained with a
width of the order of

A
5f = COT ~ 900 GHz = 30 cm L.

for A = 840 nm. Since the lasing crystals are usually rather short, of the order
of 0.1 cm, the longitudinal mode separation is of the order of 150 GHz. Finally,
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Table 3.6. Semiconductor lasers for the visible and near-IR spectral range. (QW:
quantum well, QWI: quantum well intermixing, QCW: quasi CW, ECL: external
cavity, BLA: bars of laser arrays, dHJ: double-hetero junction); Data for commercial
laser diodes are from manufacturer data sheets

type junction spectral range power  threshold manufacturer
(nm) W) (A)

SLD1332V AlGalnP-QW 660-680 0.5 0.4 Sony

HDP1300 GalnAsP-QWI  670-690 1 0.5 Laser 2000

ARR21P300 BLA-QCW 790-1550 300 16 Northrop
ZnMgSSe/ZnSSe 460 few mW [3.14]

NDHV220APA AlGaInN-dHJ 405 0.2 0.1 Nichia

ECL 670 + 8 0.01 Laser 2000

since the active zone at the junction is rather small, of the order of 20 um, the
beam divergence evaluated from (3.21) is as large as 2.5 x 10~ 2 rad.

Semiconductor lasers with an external cavity (external cavity lasers, ECL)
can be tuned by about £10 nm for emission in the deep red. For specially con-
structed lasers (vertical cavity surface emitting lasers, VCSEL) light emission
can be parallel to the current flow through the junction.

3.4.4 Pulsed Lasers

In order to obtain very high power either pulsed excitation systems or systems
where the stimulated emission occurs only for a very short time are utilized. In
the early days of pulsed lasers a static mirror and a rapidly rotating 180° re-
flecting prism were used for the termination of the laser resonator. In this case
laser oscillation is only possible for the very short time in which the reflection
from the mirror and from the prism are collinear and the whole inversion accu-
mulated from a flash lamp can be used for light generation. Lasers operating
in such a mode are called Q-switched (Q describes the quality of a resonator
cavity). If these lasers had a power of 1 W for quasi-CW operation (1s flash)
100 ns pulses would already yield a power of 10 MW, provided the full inver-
sion of the flash can be converted in the short time. Ruby lasers, Nd(YAG)
lasers, and nitrogen lasers are particularly useful for this mode of operation.
Ruby lasers can produce 250 J of light energy within 5ns which corresponds
to a power of 50 GW. Very large intensities can be obtained by focusing the
light. For a 50 KW neodymium laser peak intensities of 1012 W/cm? are quite
common. This corresponds to a field strength of 2 x 10° V/m. Such lasers are
used to study nonlinear optical properties of materials. For neodymium lasers
intensities up to 102 W/cm? were produced for nuclear-fusion experiments.
By improved Q-switches and other techniques such as mode coupling, pulse
lengths of the order of 107°s can be reached with corresponding high light
power. This has given rise to a new field in spectroscopy known as picosecond
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or femtosecond spectroscopy. For the application of such lasers to study chem-
ical reactions Achmet Zeweil received the Nobel prize in chemistry in 1999.

As we have already mentioned in Sect. 3.4.1, the intensities of the various
longitudinal laser modes fluctuate statistically unless they are reduced to a
single oscillator by an etalon filter. Another option to suppress the fluctuations
and to obtain some order in the mode structure is mode locking. In contrast
to the insertion of a frequency selective absorber, the relative phases of the
modes in the cavity are coupled. In this way the phase fluctuations between
modes are eliminated. To understand how this works we must recall that
any radiation field can be represented in its time domain by E(t) and I(t)
or in its frequency domain by E(f) and I(f). Both, F and I occur with
fluctuating phase ¢. (See for this description also Sect.2.5.1.) Figure 3.16
shows the situation for the intensity fluctuations and for the phase fluctuations
in the case of a free oscillating laser and a laser with mode locking, respectively.
As long as there is no phase correlation between the oscillator modes their
intensity in the frequency domain fluctuates under the gain curve and the
radiation fluctuates in the time domain like thermal noise about a mean value
(Fig. 3.16a). A similar situation holds for the phases. They oscillate between
47 in the frequency as well as in the time domain. In both cases there is a
general relation between the time scale of the fluctuations and the bandwidth
of the spectrum as it will be discussed in the next section in detail.

If phase coupling exists, each mode is amplified according to its position
under the gain curve and the intensity does not fluctuate (Fig.3.16b). Note
the completely different time pattern for the intensity in the two cases. In
Fig. 3.16a the intensity fluctuations extend over all time whereas in Fig. 3.16b
a single spike is formed.
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Fig. 3.16. Schematic representation of the intensity and the phase of laser oscilla-
tions in the frequency domain and in the time domain for a free laser (a) and for a
mode-locked laser (b)
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In practice, phase locking is performed by an appropriate modulation of
the gain curve. As a consequence a train of extremely short spikes occurs with
a period (repetition time) T equal to twice the transition time of the light in
the resonator

)
e

T (3.24)
Active or passive mode-coupling techniques are used to establish the phase
locking. In either case a modulation of the gain curve is induced with a fre-
quency ¢/2L corresponding to the reciprocal turn-around time of the light in
the resonator or, likewise, the distance of the longitudinal modes. For pas-
sive mode coupling a saturable absorber is inserted in the cavity. In this
case absorption is minimum (or gain is maximum) for peak light intensities.
This means that light pulses are shaped with a repetition rate equal to the
round-trip transition time in the cavity. Active mode coupling is obtained by
inserting a piezoelectric crystal into the resonator which operates as an ampli-
tude modulator. Side bands develop for each longitudinal mode wg. The side
bands are tuned to coincide with the closest neighboring longitudinal mode
of frequency ws+1. Thus, they contribute to the stimulated emission of the
neighboring mode and all modes under the gain curve will be coupled.

The mathematical formulation for the establishment of picosecond-pulse
trains results in both cases from an amplitude modulation of the longitudinal
modes. It is most easily discussed for the case of the active mode locking. The
modulation of mode s can be described in this case by a harmonic wave

E;, =TyEsgcoswst with Ty =1—6(1 —cos2t) < 1. (3.25)

0 is the depth of modulation, Ty; the transmission coefficient for the piezo
modulator, and {2 its drive frequency. Simple trigonometric manipulations
yield the side bands E*%) for the mode number s at w**) = w, + 2 by

Eq6
E&Es) = TO cos(ws + £2). (3.26)

When (2 is tuned to 2wc¢/2L, the side bands of ws coincide with the modes
wgs+1- The number m of coupled modes is given by the ratio between the
width of the gain curve and the longitudinal mode distance. For simplicity,
we assume a rectangular gain curve which means all Fyy in (3.25) are equal
and the contribution of the side bands is negligible compared to the mode
amplitude. Counting all modes with frequencies ws = wo + s2 = wy + swey/L
from a central frequency wg yields the total field as a superposition of all
modes:

E= Z Eo cos(wo + s82)t . (3.27)

S=—m
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Considering I(t) o< E(t)? yields from this

EZsin?[(2m + 1)02t/2]

1) o sin(02t/2)

cos? wot (3.28)

which is, indeed, in the limit of large m a pulse train with the repetition pe-
riod T'= 2L/c and the pulse width 6T

2

oT .
mc

(3.29)

m is the number of coupled modes equivalent to the number of modes under
the gain curve and L is the resonator length. A plot of the amplitude in (3.28)
for m = 100 is presented in Fig. 3.17a.

The more modes are coupled the shorter are the resulting laser pulses.
For generation of very short pulses a large bandwidth or equivalently a broad
gain curve of the laser is needed. Bandwidth v and pulse length 7 are related
by the usual formula y7 = 1 (Sects.2.4 and 3.2). A light pulse for which
the duration is only determined by the bandwidth is called bandwidth limited
with a natural linewidth. The bandwidth of an Ar™ laser is, e.g., 7 GHz which
would give a natural pulse width of 140 ps. In contrast, the bandwidth of a
dye laser is 3 THz for which a natural pulse width of 0.3 ps can be obtained.
If the length of the cavity of the laser is 1m 2000 modes are coupled.

The detection of laser pulses in the ps time range is not trivial. Even though
the photoelectric effect has a time constant of only 107*s this time can not
be resolved, since oscilloscopes are limited to 5 GHz allowing for a maximum
resolution of 70 ps. Photodiodes also have time constants of at least 100 ps
which excludes a direct measurement of pulse lengths in the picosecond or
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Fig. 3.17. Light pulses from a mode-coupled laser (a), and experimental setup for
measuring ps laser pulses by two-photon luminescence (b); (BS: beam splitter, OR:
overlap region, NLD: nonlinear dye, C: camera)
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sub-picosecond region. A realistic possibility for the detection of such pulses
consists in the nonlinear excitation of luminescence by a two-photon fluores-
cence (TPF) process according to Fig. 3.17b. In this experiment the light pulse
is divided into two parts by a beam splitter. Subsequently both parts are again
superposed colinearily but in opposite directions in a nonlinear medium. A
strong luminescence which can be observed with a camera is emitted only
during the time at which both pulses are at the same position in the crystal.

A streak camera (Fig.3.18) can also be used to detect picosecond pulses.
Electrons are freed from the photocathode by the very fast external photoelec-
tric effect. They are observed after a strong acceleration towards the anode
and a subsequent deflection by a time-ramped electric field. It is immediately
evident that the resolution in time depends only on the velocity distribution
of the freed electrons. Figure 3.19 shows a streak photograph and the corre-
sponding densitometer readings for two picosecond pulses of width 1.5 ps and
60 ps apart.

C F A S
P \ op
1 —
B b b M Fig. 3.18. Schematic view of a streak camera;
1 H =~ (C: cathode, F: focussing plates, A: anode, DP:

deflection plates with time ramp, S: screen)

(b)

Fig. 3.19. Streak-photo (a) and densitometer reading (b) for two picosecond pulses;
after [3.15]

3.4.5 Tunable Lasers

Initially the disadvantage of laser sources was their restriction to the emission
of a few single and narrow lines. Early in the development process, and in
addition as the result of recent work, lasers were devised which avoid this
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problem and allow wavelength tuning at least in a limited spectral range.
These systems are known as dye lasers. They use a gas laser or a pulsed solid-
state laser to pump an active medium in an extra cavity. Originally the active
media were dyes like rhodamine, coumarine, or stilbene, etc., with broad op-
tical transitions. The broad transitions originate from splitting of electronic
levels by rotational states which are themselves broadened by intermolecular
interactions. In this way a quasi-continuum of electronic transitions is estab-
lished, at least within a limited spectral range. Only the lowest rotational
levels are populated in thermal equilibrium so that a population inversion can
be obtained for recombination into higher rotational states. This may lead
to stimulated emission and eventually to a non linear coherent amplification.
Figure 3.20 shows the luminescence of rhodamine 6G after excitation from
the Sp ground state to an S; excited state (solid line). This luminescence is
more than 10 nm wide.

In many cases the excited state relaxes by intersystem crossing into a
long-living triplet state T;. This state introduces an additional destructive
absorption process into the system. It overlaps partly the luminescence and
therefore decreases the overall gain for the nonlinear amplification. The prob-
lem can be solved by adding a triplet quencher to the dye which transfers the
triplet states back to the S; state by collisions. Alternatively, the dye can be
excited in a rapidly flowing jet stream where the molecules leave the active
volume before the triplet state is generated.

The schematic construction of a dye laser is shown in Fig. 3.21. The pump
light is introduced into the resonator cavity by the pump mirror and excites

10}
2
c
p=
g
S
,§ 5T Fig. 3.20. Luminescence (—) and
E triplet absorption (— — —) for rho-
w damine 6G after excitation from the
. So ground state to a S excited state.
0200 300 400 500 goo 700 The insert shows the rhodamine 6G
Wavelength (nm) molecule; after [3.16]
FlM jet beam i
/ /l mn
I I
ST
: 3 oc Fig. 3.21. Schematic arrangement for
pump laser tuneable laser a dye laser; (FM: folding mirror, PM:
RM pump mirror, RM: reflector mirror,

PM OC: output coupler, F: tuning filter)
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Fig. 3.22. Emission of dye lasers in various spectral ranges for pumping with a 4 W
krypton laser in the blue-green range; after [3.17]

the dye which is injected by a jet with a speed of about 10m/s. The cavity
is folded and consists of a reflector, a folding mirror, and an output coupler.
The wavelength for resonance is tuned by a birefringent Lyot filter. Figure 3.22
displays efficiencies for various commercial dyes. From this figure it is evident
that a large number of different dyes are needed to cover even the visible
spectral range.

Special developments in the field of dye lasers refer to tunable ring lasers
and solid-state lasers. In a ring laser the cavity is not terminated by a system
of reflectors but consists of a closed optical ring. Instead of the build up of
standing waves as in normal cavities propagating waves are generated. This
results in a more efficient spatial geometry for the release of the inversion and
thus gives a higher gain. Ring lasers are more powerful than conventional dye
lasers but require a better alignment and stabilization.

Solid-state tunable lasers are frequently used because they have a high
efficiency and are simpler to operate. A widely used system is a Ti:sapphire
cavity pumped by an argon laser. The optical active ion in the sapphire is
Ti3* which is embedded in a crystalline Al;O3 matrix (Table 3.5). Pumping
with an all line argon laser of 5 W yields emission of several 100 mW in the
spectral range of 700-1000 nm. High-power Nd:YAG after frequency doubling
can be utilized as an alternative pump systems. (For details see also Sect. 3.4.7
below). Nd:YAG lasers excited with a lamp can reach 100 W in CW. Thus,
even after frequency doubling to 532nm with a KTP crystal considerable
pump power is available for the Ti:sapphire system. Figure 3.23 presents the
output power of a Ti:sapphire laser for three different resonator mirrors (a)
and line intensities after frequency doubling with a 15 W pump. Frequency
doubling was performed in this case with a BBO (S-barium borate, BaB2Oy)
crystal.
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Fig. 3.23. Output of a Ti:sapphire laser versus wavelength for a 5 W all line argon
pump (a) and output after frequency doubling for a 15 W pump (b); SW, MW, and
LW refer to short, medium long, and long wavelengths, respectively

3.4.6 Free-Electron Lasers

The free-electron laser is an alternative to conventional tunable laser systems
and operates in vacuum. It is based on the stimulated emission of synchrotron
radiation from electrons in an undulator, and has very good tuning properties.
In principle, it could be used from the IR to the UV spectral range. The
active medium is the electron beam of the synchrotron. It is guided through
the laser cavity which contains the undulator. Figure 3.24 sketches a setup.
The radiation from the wiggles adds up like the partial beams of a grating.
If the timing is such that after one round trip in the cavity, a photon pulse,
emitted from an electron bunch in the undulator, passes the undulator again
at exactly the same time as the next bunch arrives, stimulated emission of
synchrotron radiation occurs. This is possible because the electrons acquire a
weak transverse velocity component from the undulator, which is sufficient to
initiate the stimulated emission process. Since the laser operates in vacuum
no inversion in a classical sense is generated. If the gain from the stimulated
emission is larger than the total loss during one round trip laser oscillations
turn on.

The problem with the free-electron laser is the rapid decrease of the gain
coefficient with increasing electron energy €. « is obtained from

A3 N3K2F
3 b

a=C (3.30)

€

where C' is a constant, N the number of periods in the undulator, and F' a
filling factor between the volume of light propagation and electron propaga-
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tion. Ay and K have the same meaning as in (3.16). Since, from the same
equation, the wavelength for constructive interference decreases as 1/€* high
energies are requested for short wavelength free-electron laser oscillation and
for high energies « is small. So, most FELs operate in the IR or red spectral
range [3.18].

Free-electron lasers with linear accelerator work well in the IR spectral
range. One example is the ELBE light source in Dresden-Rossendorf with
undulators for 4-250 um radiation. For other free electron lasers which use
linear accelerators see the discussion on the forth generation of synchrotron
radiation in Sect. 3.3.5.

3.4.7 New Developments

Recent developments in laser technology have concentrated more and more on
solid-state lasers. In particular the Nd:YAG laser attracts the interest of laser
engineers because of its very high efficiency. This system operates at 1064 nm
but is easily frequency doubled to 532 nm with, e.g., a MgO:LiNbOg crystal.
Lamp pumping and diode pumping are still in competition for the excitation of
the Nd:YAG crystal. Krypton-arc lamps certainly have a high power and can
produce multi-mode CW or mode-locked laser radiation from Nd:YAG with a
power of more than 100 W [3.19]. On the other hand, diode-pumped Nd:YAG
lasers operate with very high efficiency since the emission of GaAs diodes
can be tuned exactly to the main absorption line in the Nd:YAG system at
808 nm, as shown in Fig. 3.25. The emission line matches exactly the transition
energy between the ground state and the *F states in Nd3*. The pump may
be either a single diode, a diode laser, or even a diode-laser array. Since the
diodes of the III-V compounds operate very efficiently in this spectral range,
an all over laser efficiency of the order of 25% can be expected. In contrast,
for broad-band excitation with a lamp all energy not matching this transition
is wasted. In addition, the stability of the diode-pumped systems is an order
of magnitude better than for lamp-pumped systems. Commercially available
systems have powers of 10 W CW for a 1064 nm radiation. Line widths can be
less than 5 KHz, even after frequency doubling. For 532 nm radiation powers
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of 500mW are available. All these systems work with wall-plug powers and
without water cooling.

The rapid development of the diode-pumped Nd:YAG lasers suggests an
all solid-state laser system as the coming source in laser spectroscopy, even
for the visible spectral range. Such systems consist of a diode array as a pump
and a Nd:YAG laser with frequency doubling which provides a suitable pump
for the tunable Ti:sapphire laser (Fig. 3.26). The cavity of the latter contains
a Lyot filter for frequency tuning. The advantage of the all solid systems is
their compact construction and their stability.

Fig. 3.26. All solid-state tunable laser system; (DA: diode array, ND: Nd:YAG
pump laser, FD: frequency doubler, TS: Ti:sapphire laser, LF: Lyot filter); The
numbers are the instantaneous laser wavelengths in nm

Problems

3.1. Use the Stefan-Boltzmann law to estimate the solar constant for the
temperature of the sun (T ~ 6000K), the distance between sun and earth
~ 150 x 10% Km, and the radius of the sun about 6.9x10° Km.

Purpose of exercise: emission of radiation.

3.2. Calculate the total emitted power per unit area for a black-body radiator
from Planck’s law.
Purpose of exercise: difference between spectral power and total power.

3.3. Show that the FWHM for a Gaussian line equals v281n 2.
Purpose of exercise: spectral line shapes.

3.4. Calculate the convolution of two Lorentzian lines and show that the re-
sulting linewidth is the sum of the individual widths.
Purpose of exercise: performing convolutions.

3.5. Discuss the maximum and the minimum position for a Fano line. What
happens for weak coupling?
Subject of training: nature of Fano line.

3.6. " Show from the approximation used in (3.12) that the typical emission
frequency of a bending magnet is given by this equation.

Subject of training: Collect experience in using approriate approximations to
obtain meaningful physical results.
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3.7. ™ Derive the validity of the undulator equation (3.16) from simple geo-
metrical considerations for the track of relativistic electrons.

Hint: Use first the approximation K < 1 (The electron oscillates only in y
direction) and remember that the electron sees in its moving frame a magnetic
field with Lorentz contracted period of A, /7. The corresponding frequency is
further modulated for the observer in the laboratory frame by the Doppler
shift. This results eventually in a wave length of

_ )\u 2 2
A= 25 01+97A0%) (3.31)

Now assume K ~ 1. Then the mean velocity of the electron along x is reduced
to v* = vA,/S where S is the length of the arc between the period A,. The
reduction of v — v* transforms § — 3* and v — ~* and eventually yields the
quested result.

Subject of training: Understanding the undulator motion and undulator emis-
sion.

3.8. The velocities of atoms in a light-emitting gas are distributed according
to a Maxwellian distribution. Show that the Doppler effect for the frequency
shift leads to a Gaussian linewidth for the emitted radiation. How large is the
width for the lines in an argon plasma of 3000 K?

Hint: Neglect the intrinsic linewidths of the atoms.

Purpose of exercise: study the origin of spectral line shapes.

3.9. A laser operating at a wavelength of 633 nm has a beam diameter of 2 mm,
a spectral width of 10 KHz, a power of 5 W, and a divergence of 0.1 mrad. How
much brighter is the laser compared to the sun for equal bandwidth?
Purpose of exercise: characterization of laser light.

3.10. * Evaluate the superposition of the side bands with the longitudinal
resonator modes according to (3.27) and discuss the resulting pulse train on
a personal computer.

Purpose of exercise: summation of field components, presentation of calculated
results on a personal computer.
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Spectral Analysis of Light

Information from a light beam after its interaction with a solid is obtained
from an analysis of the change in its intensity spectrum. Usually monochroma-
tors or interferometers are applied to perform this analysis. These instruments
will be discussed in the current chapter. It is often useful to “preprocess” the
light on its way from the light source to the analyzer or from the analyzer
to the detector. Optical elements like reflectors, lenses, filters, polarizers, etc.,
are appropriate for this process. Light pipes or fiber optics are convenient
means to guide the light. Thus, before discussing in detail spectrometers and
interferometers we will review some useful optical elements.

4.1 Optical Elements

Only optical elements not described in standard textbooks or elements of
particular use in spectroscopy such as filters and polarizers will be discussed.
Since much progress has been made recently in the field of fiber optics, this
topic will also be addressed.

4.1.1 Optical Filters

Optical filters are transmission elements which are only transparent in a well
defined spectral range. They are available for the whole visible and near visi-
ble spectral range. Filters are often used to remove unwanted spectral compo-
nents from the light beam. They can be categorized either according to their
construction (glass filters, or interference filters) or according to their spectral
transmission range (narrow-band filters, line filters, broad-band filters, edge
filters, heat filters, and neutral-density filters). Broad-band, edge, and neutral
density filters are usually glass filters containing special color centers. In con-
trast, line or narrow-band filters are usually interference filters. They can be
either all dielectric or metal dielectric. To obtain sharp cut offs an interference
type of construction is used even for edge filters. Indeed, interference can be
used as a basis for any filter. The drawback of interference filters compared to
conventional ones is their high price and lower resistance to irradiation load.

H. Kuzmany, Solid-State Spectroscopy, DOI 10.1007/978-3-642-01479-6_4, 69
(© Springer-Verlag Berlin Heidelberg 2009
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Filters are characterized by a filter function defined as the transmission
)

T()) = (4.1)

where I'(\) and I7(\) are the incident and the transmitted light intensity. The
filter function defines the wavelength of maximum transmission, the maximum
transmission itself, the half width of the transmission band, the wavelength of
cut on and cut off, and the blocking range. Another important characteristic
of a filter is the maximum allowable irradiation load.

Interference filters consist of several thin layers with varying index of re-
fraction. The extinction of light is based on the interference from layers with
thickness A/4. This superposition of layers can either lead to a transmission
of a narrow spectral range or to a suppression of the transmission in a well de-
fined range. Narrow-band interference filters can be built with a half width as
low as 1 nm. In this case the maximum transmission is reduced by 50%. Figure
4.1 shows filter functions for a heat filter and for two different narrow-band
filters. Narrow-band filters can be slightly tuned by rotation of the filter out of
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Fig. 4.1. Filter functions for a heat filter (a) and for a narrow-band filter (b).
The full width half maximum is indicated for the latter

the plane of normal incidence. The tuning range is about 10 nm for a filter with
a FWHM of 10nm. Tuning by rotation is only possible towards wavelengths
longer than that of the center line for normal incidence, since the optical
wavelengths can only be increased. Narrow-band filters can be made for any
specific wavelength. Standard filters exist for the most important laser lines.
Narrow-band interference filters are particularly important in spectroscopy
with gas lasers since they can suppress the plasma lines originating from the
gas discharge.
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Interference filters with particularly sharp etches are now frequently used
in inelastic light scattering spectroscopy. They are called notch filters or super
notch filters and have etch width of only 75 cm ™! for a band pass of 175 cm ™!
(corresponding to £4nm) and a light suppression of 10=¢ beyond the etch.
Of course they work only for a particular wavelength.

In addition to the filters mentioned above, filters using materials in the
vapor phase play an important role in spectroscopy. A good example is the
iodine filter. Todine has a rotational absorption spectrum with one line at
514.537 nm. This absorption line nearly coincides with the green line of the
argon laser at 514.532nm. If the cavity of the laser is tuned with an etalon
filter to the longitudinal mode which coincides with the rotational absorp-
tion band of the vapor an extremely narrow-band filter for the laser line is
obtained. The situation is shown in Fig. 4.2. With such a filter, elastically

al(f)

Fig. 4.2. Laser gain curve and spectral
P lines for the iodine filter; (LM: longi-

8 tudinal laser mode, RA: rotational ab-
Af (GH2) sorption of iodine)

scattered stray light can be effectively suppressed in a light scattering exper-
iment (Raman or Brillouin scattering) while the inelastically scattered light
remains unattenuated.

4.1.2 Polarizers and Phase Plates

Polarizers are valuable optical elements because information on the structure
of solids can be inferred from the change in the state of polarization of the
light after interaction with the solid. Polarizers consist of two prisms of an uni-
axial optical material glued together by a liquid with an appropriate index of
refraction. The unwanted polarization component is deflected out of the beam
by total reflection at the interface between the two prisms. Details about the
optical path of the light can be found in standard textbooks. The prisms are
known as Nicols or Glan—Thomsen prisms and are commercially available from
companies selling optical accessories. With such prisms polarization ratios
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of the order of 107 and a very good throughput for the light can be obtained.
The disadvantage of the Nicol prisms is their high price, in particular if they
are needed with a large cross section. Sheet polarizers are another option for
polarization elements. They are constructed from sheets of highly oriented
organic polymers which only allow transmission for light with polarization
perpendicular to the orientation of the aligned polymer chains. Polarization
ratios for such polarizers are as good as for crystal polarizers but their through-
put is lower. Also, since the suppression of the unwanted component of light
is by absorption, resistance to light intensity is low. They are not appropriate
for laser powers beyond about one watt.

Very often, instead of polarized light, a completely random polarization
is desirable. In this case a polarization scrambler can be used. A polarization
scrambler consists of a birefringent material which generates arbitrary ellip-
tically polarized light. Scramblers only work properly for linearly polarized
incident light.

Finally, transformation of linearly polarized light to circularly or ellipti-
cally polarized light, or vice versa, may be required. In this case again plates
of birefringent material can be used. Linearly polarized light incident with
its direction of polarization under 45° to the material’s optical axis becomes
elliptically or circularly polarized by traversing a plate cut parallel to the op-
tical axis. This is immediately evident from the phase difference generated
between the two polarization components oriented parallel to the directions
with the refractive indices n, and n,, respectively, as shown in Fig. 4.3a. The
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Fig. 4.3. Geometric arrangement for generating circular polarized light from
linearly polarized light by a A\/4 plate (a) and compensator arrangement consisting
of two perpendicularly oriented phase plates (b); (OA: optical axis)

phase difference A¢ is

27 (ne — no)d

Ag = .

(4.2)

For A¢ = 7 /2 circular polarized light is obtained.
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For the arrangement of Fig. 4.3b an arbitrary and adjustable amount of
phase difference between the ordinary beam (FE,) and the extraordinary beam
(E,) can be obtained. This means the phase shift can be adjusted to give linear
polarized light for any elliptically polarized light.

4.1.3 Glass Fibers and Light Pipes

The technology of glass fibers or light pipes for light transmission has improved
dramatically over the last few years and gained considerable importance in
spectroscopy. Instead of moving the spectrometer and the light source to the
object for spectroscopy the fibers allow the light to be guided easily to the
latter.

Optical fibers consist of a highly transparent glass or quartz core sur-
rounded by a ”cladding” with a lower index of refraction. Then, up to a cer-
tain angle of incidence the incoming light is totally reflected at the interface
between core and cladding, and thus guided through the fiber. The geometri-
cal constraints for a single fiber are shown in Fig. 4.4. The minimum internal

Fig. 4.4. Structure and optical path for the
innermost part of an optical fiber

angle § for which total reflection is possible is related to the ratio between
the index of refraction of the cladding and the core by sin 8 = n./n.. From
this the angle of the external acceptance cone is immediately obtained from
the geometry of the fiber.

1
sina = —y/nZ —n? (4.3)

where ng is the index of the medium outside the fiber. The value given by
(4.3) is the numerical aperture of the fiber. For reasonable differences between
the refractive indices of the two components of the fiber, numerical apertures
close to 1 can be obtained. Standard commercial fibers usually have apertures
of 0.5 or less. For single-mode fibers the apertures in use are even smaller.
Instead of the numerical aperture the F'/number is often quoted. It is related
to the aperture by

1

2tana

F/number =
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The fibers must be thin to remain flexible. As a consequence light transfer
from extended sources requires several thousand fibers which may be packed
into a bundle. Under these circumstances the following types of fibers can be
considered:

—single fibers (actually single-mode fibers),
—randomly oriented fiber bundles,
—coherent bundles for imaging.

Coherent fiber bundles are used in imaging systems. Typically 10 000 light
points per mm? can be transferred coherently in one bundle. Imaging light
detectors which will be discussed in the next chapter use such systems.

Randomly oriented fiber bundles are standard and low price light trans-
mitters. Typical transmission curves for a 1-m glass fiber and a 50-cm quartz
fiber are shown in Fig. 4.5a. The transmission losses are due mainly to the
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Fig. 4.5. Transmission of a 1-m standard glass fiber optic with 3.2 mm diameter
(= — —), and of a fused silica fiber optic, 0.5m long (—) (a), and a bifurcated
cable (b)

(non-transparent) interfaces between the individual fibers. Standard fibers can
be connected easily by optical coupling elements called ferruels. Standardized
input and output couplers with appropriate collection optics are available.
Bifurcated or trifurcated cables with two or three outlets on one end and a
common out let on the other end (Fig. 4.5b) are often used. For example, for
an input light coming through one branch stray light or reflected light can be
detected by the other branch. Coupling a circular to a rectangular cable is
possible. This change of cross section may be useful for optimum adaption to
the slit of a spectrometer.

Single-mode fibers are real optical waveguides. They can be used to trans-
fer single-mode laser light without destroying its typical characteristics. Even
the polarization direction can be preserved. Like in any waveguide the core
diameter is the principal constraint. For a single-mode fiber conserving po-
larization and operating in the blue/green spectral range, the fiber diameter



4.2 Monochromators and Spectrometers 75

must not exceed 3 um, otherwise coupling to other modes and thus multi-
mode transfer will occur. The normalized frequency number, also called the
V-number, is a useful specification for a fiber.

VZQﬂ'aSina ’ (4.4)
A

where sin « and a are the numerical aperture and the radius of the core, re-
spectively. V' is 2 for typical single-mode fibers. It determines the maximum
number of modes which can propagate in the fiber or the maximum size of the
laser focus required for optimum coupling into the fiber. The maximum num-
ber of modes is V2 /2 and the focus must not exceed the core diameter by more
than 30%. The numerical apertures of single-mode fibers are usually rather
low, of the order of 0.1 which means a difference in the indices between core
and cladding of only 0.02. Since single-mode fibers are used for telecommuni-
cations they are manufactured with very low loss. The standard attenuation is
0.1dB/Km (for the minimum absorption in the spectrum, which is at 1.3 pm).
The very small diameter of the fibers requires a very careful alignment of the
laser focus far optimum light input.

4.2 Monochromators and Spectrometers

Light can be analyzed with monochromators or spectrometers. The termi-
nology spectrometer is used for the whole setup whereas the monochromator
is the optical element itself. The monochromator can be dispersive or non-
dispersive. In dispersive systems like prisms or gratings, a spatial separation
is obtained for the spectral components of the light beam. An example of
a non-dispersive element is the interferometer used in Fourier spectroscopy.
Fourier spectroscopy has been applied for a long time in the far-IR, since there
are neither strong light sources nor sensitive detectors for this spectral region.
Even though it is used today from the far-IR to the near-UV, this technique
will be discussed only together with IR spectroscopy in Chap. 10.

4.2.1 Characteristics of Monochromators

As it is shown schematically in Fig. 4.6, a monochromator consists of an en-
trance slit, a dispersive element and an exit slit. The entrance slit is imaged
onto the exit slit by a set of mirrors or lenses with focal length F'. For con-
venience, the height H and the width W are assumed equal for the two slits.
The most important properties for the monochromator are its brightness and
its resolution. The brightness is given by the ratio A/F and is equal to the
etendue E

W H A?

E (in m?) (4.5)
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"“_-_‘.J: ------------------- g
p
H ---- / Fig. 4.6. Schematic arrangement of a
mmadmerrtIIIIl T monochromator; (ES: entrance slit, A:
ES aperture, D: dispersive element, EX:
F exit slit, F: focal length)

of the instrument. The power P (in Watts) transmitted through the spec-
trometer is obtained from the incident light intensity Iy and E by

P=TW\LE, (4.6)

where T'(\) is the transmission coefficient of the instrument. If A2/F? in (4.5)
is expressed in steradian E is called the optical conductance G = WH) =
WHrA?/F?.

The resolution is determined by diffraction effects or by the nature of the
multiple-beam interference. The Rayleigh criterion is the basis for defining
the resolution. Two beams with wavelengths A and A 4+ d\ are resolved if the
maximum of the diffraction pattern (or the constructive interference) for one
beam coincides with the minimum of the diffraction pattern (or the destructive
interference) for the other beam. With this definition of §A the resolution is

_A_f_v
Ro=53 =5 "o (4.7

Its value is the same whether the spectral distribution is given in wavelengths
A, frequencies f, or wave numbers v.

4.2.2 The Prism Monochromator

Prism monochromators rely on the dispersion of light propagating in solids.
This dispersion is determined by the oscillations of bound charges within the
material. As will be shown in Chap. 6, the dispersion as well as the absorption
of light strongly increases close to such oscillators.

The brightness and resolution of a prism monochromator depend only on
the size and dispersion of the prism. The resolution is given by the Frauenhofer
diffraction

sin® rv A0

1(0,50) = I(0, O)W .

(4.8)
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Here I(6, 00) means the distribution of the light intensity as shown on Fig. 4.7,
v is the light frequency in wave numbers, A the aperture, and I(6,0) the

(¢ Qd@

\\
dﬁ
~

Fig. 4.7. Optical path through a prism monochromator

intensity at the maximum. The angular dispersion depends on the dispersion
of the prism dn/dv and is given by!

do  df dn sine

dv  dndr  cosasgcos

dn

= (4.9)

For a symmetric transition with a total angle of deflection § we have a; =
ar=a=(0+¢)/2, 01 =P2=0=¢/2, and sina/sin § = n. Then

do 2sin(e/2) dn _ i)\an
dv [1—n? sin2(5/2)]1/2 dv A d)\

(4.10)

From the Frauenhofer diffraction pattern the distance between the maximum
and minimum diffraction intensity is

1

60 = — . 4.11
] (4.11)
With this and (4.10), the Rayleigh criterion yields for the resolution
v 2sin(e/2) |dn 5 ,dn
Ro— 2 — a2 I Ll G Y 4.12
07 su Y cos((0+¢€)/2) |dv dv (4.12)
or
dn
Ry=X\/dN=d— 4.13
0 / d\ ) ( )

! For a derivation of this relation see [4.1].
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where d is the base of the prism. Consequently, for a high resolution, a prism
must have a wide base and be made of a material with a high dispersion.
Thus, the resolution increases as the wavelength of the light approaches the
absorption lines for phonons. However, with this the absorption increases so
that finally no more light is transmitted. This limits the use of the prism.
Note that the brightness of a prism increases with height. Thus, large prisms
are necessary for good monochromators.

Prism monochromators are still used for the near-UV, visible, and the near-
IR spectral range in simple instruments. Compared to grating spectrometers
their advantage is the dispersion of the light into only one spectral order.
This means all light of a particular wavelength is deflected by the same angle.
In contrast, in the case of a grating spectrometer, only a certain fraction
of the light is diffracted and this fraction is distributed to several orders of
diffraction.

A prism spectrometer’s usefulness is limited to long wavelengths by phonon
absorption. In reality prisms can be applied down to wave numbers of 280

em™!, or in special cases to wave numbers as low as 180 cm ™.

4.2.3 The Grating Monochromator

In general, grating monochromators are superior to prism monochromators. It
is obviously more difficult to make large prisms than to make large gratings.
Moreover, the spectral resolution depends on the number of lines rather than
on the size of the grating. To calculate the spectral resolution we have to
start from the equation for the difference in optical wavelength for the partial
beams of the grating, which can be read directly from Fig. 4.8.

Algpy = d(sin6; £sinby) . (4.14)
0;, 04, and d are the angle of incidence, the angle of diffraction, and the grating

constant, respectively. The positive or the negative sign is used depending on
whether the diffracted beam is on the same or on the opposite side of the

6

Fig. 4.8. Diffraction geometry for a
grating and spectral resolution; (F:
focal length, d: grating constant)
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incident beam with respect to the grating normal. Constructive interference
is obtained for Alype = mA.
To sum the partial beams their relative phase difference ¢ must be con-
sidered, i.e.,
Alopt 2rd

¢ =27 N = T(sinOi —sinfy) . (4.15)

With the reflection coefficient R, the total field in the diffracted beam is

al is¢ 1 eiN¢
E; =VRY Eye*® = VRE;—— (4.16)
s=1

1—¢l¢

for a grating with IV lines. Since the average intensity in the beam is FE*,
the interference pattern has the form

. 2
No/2
I = RIOM (4.17)
sin”(¢/2)
In the directions for which ¢/2 = 0 or ms I, is maximum which means

constructive interference. Figure 4.9 exhibits interference fringes as a function

(@)
—H
(b),
—
" L L Fig. 4.9. Multiple-beam interference
21 Y +27  for a grating with N = 20 lines (a)
¢ and with N = 5 lines (b) from (4.17)

of ¢ for N = 20 and N = 5. The spectral resolution is determined by the width
of the constructive interference line. If 4\ is the minimum distance between
two lines which can be resolved, the spectral resolution for the m-th order
spectrum is

A

Rozﬁz

Nm . (4.18)



80 4 Spectral Analysis of Light

For good gratings N is of the order of 2x10® which, in first order, corresponds
to a resolution, expressed as a band pass dv, of 0.1cm™! for visible light. In
Fig. 4.9 all orders have the same peak intensity. In reality this is not so. As a
consequence of diffraction of the individual partial beams by the entrance slit
higher order spectra are suppressed as 1/m?.

In practice, the spectrum is recorded by rotating the grating and measuring
the light passing through a small slit on the exit side of the spectrometer.
This step by step method of recording is called single channel detection. In
contrast, for multichannel recording wide parts of the spectrum are recorded
simultaneously, as discussed below and in Chap. 5.

The spectral resolution of a grating spectrometer is not only determined
by the resolution of the grating itself but also by the width of the slits. This
is illustrated by the dashed lines in Fig. 4.8. The reflected light is imaged on
the exit slit by an optical element of focal length F'. Hence, the distance dx
of two images generated by a beam with wavelengths A and A+ 6\ is Fd6. To
resolve the two images they must be separated by more than the slit width.
This means, dx = F¢0 must be at least equal to the width W of the slit.
Hence?

—-6x-—A476A 1?' A (4.19)

Using (4.14) for Alyp, = mA the spectral resolution is obtained for very small
angles of incidence as

A AF'm
Ro = 0N Wdcosf - (4.20)

This yields the spectral bandpass of

Wd
ov = F (4.21)
For the numerical values d = 5 x 107 °cm, W = 100 um, F = 100cm, \ =
0.5 um, € = 0°, and m = 1 the resolution, expressed as a spectral bandpass,
is v =2cm™ L.
The resolution allows to express the etendue by the parameters of the
spectrometer. From (4.5) and (4.20) we have for A = d

WHA?  A2H 6\ AR HSA
2 F X F
where we have used Ry = A\/dA =~ A/d.

The amount of light transmitted through the spectrometer is determined
by the brightness and the transmission coefficient. The latter depends strongly

E® = (4.22)

2 This equation holds as well for the spectral resolution in a prism spectrometer.
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on the direction of polarization of the incident light with respect to the ori-
entation of the ruling on the grating. Figure 4.10 plots the relative intensities
observed through a spectrometer with holographic gratings versus light wave-
length for a given incident intensity. Obviously light at 647.1 nm is much easier
to observe if it is polarized perpendicularly to the ruling compared to light
with a polarization parallel to the ruling. For blue light it is just opposite.
This characteristic of the response must definitely be taken into account if
intensities for the two directions of polarization are compared. In addition
any partial polarization of the light in either direction may result in incorrect
relative intensities along a spectrum. To avoid this problem it is possible to
use a scrambler, as described in Sect. 4.1. Unfortunately a scrambler only
works properly for highly linearly polarized light.

The distribution of the diffracted light over the different orders is a dis-
advantage of grating monochromators since there is less energy in any single
order. The distribution can be avoided by using special gratings called echel-
let gratings. Since such gratings are mainly employed in the IR they will be
discussed in Chap. 10.

In modern spectroscopy usually multiple monochromators are employed.
They can either be operated in an additive or in a subtractive mode.
Figure 4.11 sketches the setup for a double monochromator in an additive
mode for a Cherny—Turner arrangement. In this case two gratings, three
slits, and four concave mirrors are needed. The incoming light is two times

S3
M4
G2
M3
s2-1= /
M2
G1
] M1 | Fig. 4.11. Schematic setup of a double
S1 monochromator; (M: mirrors, G: grat-
ings, S: slits)
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additively dispersed by the gratings G1 and G2. Scanning occurs by syn-
chronous rotation of both gratings. The resolution and suppression of stray
light is greatly improved compared to a single monochromator.

For further improvement a third monochromator can be arranged behind
the exit slit resulting in a triple monochromator system. The third monochro-
mator must be tuned to be synchronous with the two other gratings. Such
systems are often used for spectroscopic analyses in the immediate vicinity of
a very strong line such as a laser line. In this case the third monochromator
operates with a wide slit and a sharp cut off towards the laser line.

For a subtractive mode the first two monochromators have oppositely di-
rected spatial dispersions. This means after passing the first two monochroma-
tors the light which satisfies the band pass condition is refocused on the exit
slit which serves as the entrance slit of the third monochromator. Only the
latter provides the spatial dispersion. The path of the light beam is sketched
in Fig. 4.12a for the additive and for the subtractive mode. The design is for
use with an optical multichannel analyzer described in the next chapter. For
the additive mode the slit S3 is wide, the linear dispersion and the resolution
are about a factor three higher than for the subtractive mode but the detector
can only record a small part of the spectrum. For the subtractive mode the slit
S3 is narrow, the linear dispersion and the resolution are low but the detector

® | ' ' ' |
-5} 4
@ I ingl h t
single monochromator
M2 | M3 7t
M1 AD I
— leco 29
f g1}
S1 s 33 I double monochromator |
-13} )
Su | tripl h tor |
15} riple monochromaltor |
{ [ICCD _
7500 200 300 400
31 52 33 v (cr'n_1)

Fig. 4.12. Schematic drawing of the light path for a triple monochromator op-
erating in the additive (AD) and in the subtractive (SU) mode (a), and ratio of
background scattering Ig to grating scattering Ig versus distance v from a laser
line for various multiple monochromators in the additive mode and single-channel
detection, after [4.2] (b); Mi and Si refer to the three monochromators and to the
three slits in use
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can record a much larger part of the spectrum. Stray light rejection is also
much better for the subtractive option. When using an optical multichannel
analyzer the gratings are not rotated.

The suppression of stray light for a single, double, and triple monochro-
mator is compared in Fig. 4.12b. As, for example, in Raman-scattering exper-
iments a stray-light suppression of 10719 is needed with a double monochro-
mator the laser line can be approached to about 100 cm™! and with a triple
monochromator to about 20 cm™!.

Grating spectrometers can be used for light energies up to 100eV, in spe-
cial cases up to 1 KeV.

4.3 Interferometers

If a very high spectral resolution, albeit on a rather narrow spectral range,
is required interferometers must be applied. High quality Fabry—Perot inter-
ferometers which are commercially available are the most frequently used
instruments for this purpose. We will therefore restrict the discussion to this
type and start with a study of plane and parallel plates which are its basic
constructive elements.

4.3.1 Multiple-Beam Interference for a Parallel Plate

The Fabry—Perot interferometer relies on the interference of light multiply
reflected and refracted by a plane parallel plate. As shown in Fig. 4.13, the
EM wave is split on the front and back side of the plate into partial beams
with the amplitudes E; ; and FE ;, respectively. The phase difference ¢ between

Er,1 Er,z Er,a

Id ')9i Fig. 4.13. Reflection and transmission
Se-- T on a plane-parallel plate of thickness d;
'E‘\ E‘x E"’\ (E: partial beam amplitudes)

two consecutive partial beams is

_ 4mnd

o cos®! , (4.23)

where d and 6/ are the thickness of the plate and the internal diffraction angle,
respectively, and n is the refractive index of the plate. The partial beams are
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subjected to interference resulting in an enhancement or quenching of the
reflected and transmitted light. Performing a phase coherent summation of
the field amplitudes and then taking the absolute square of the resulting field
the intensities of the two beams are

I ARsin’(¢/2)
Iy (1—R)2+4Rsin*(¢/2)’ (4.24)
L _ (1-R)” (4.25)

Iy (1—R)2 +4Rsin®(¢/2)

R is the reflection coefficient at the interface from outside to inside the plate.

With increasing phase angle ¢ both equations yield a periodic structure
(with sharp peaks and broad minima in the transmission) representing the
increasing order of the interference.

The relations (4.24) and (4.25) are known as the Airy formulae. Any ab-
sorption in the plate is neglected. The derivation of the formulae is given in
Appendix D.1.

It is common practice to introduce the symbol F for the expression 4R/(1—
R)2. Then (4.24) and (4.25) have the simpler forms

I Fsin?(¢/2)

_ _fsm e 4.26
Iy 14 Fsin?(¢/2) (4.26)
I 1
- 4.27
Ip 14 Fsin?(¢/2) (4.27)
The quantity F* which is directly related to F' by
P TyF o VR (4.28)

27 1-R
is called the finesse of the interference. Since for good mirrors R > 0.99, F*
can be of the order of 300.

In general, d > X so that phase differences between the different partial
beams are large. Then, for components of the spectrum located at v and v,
the maximum for the m-th order of interference for the first frequency may
coincide with the maximum for the m + 1-th order for the second frequency.
In this case we can obviously not discriminate between these two frequencies.
The minimum distance v1 — vo = Avr where this happens is obtained from

(4.23) and the Airy formulae. For perpendicular incidence it occurs where
A¢p = 21 = dmndAv or

_ 1
T ond

Since for this and any larger value of the difference between frequencies the
individual frequencies can not be identified, Av is called the free spectral range

Av (4.29)
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of the interferometer plate. On the other hand (4.26) and (4.27) define also the
full width at half maximum ¢y = ¢1 — P2 = ¢(v1) — ¢(v=2) for the interference
pattern by

Ii(¢1) = It(¢2) = 1o/2 .

Expressed in phase angles this yields, for reasonably large values of R (F' or
F* > 1)

4
)
VF
or, expressed in wave numbers,

(6V)u = (mndVF) ™!

bm = (4.30)

Since the free spectral range expressed in phase angles is 27 we obtain for the
ratio between the free spectral range and the half width

Av 2t o7 N
(5V)H = (ZSiH = 5\/F= F 5 (431)

with (6v)g = v1 — ve Thus, the finesse has a very intuitive meaning. It is the
ratio of the distance of two consecutive interference fringes to their width.
Hence, it determines also the spectral resolution v/dv of the interference. If
we define two frequencies as being resolved if their separation v is > the half
width of their interference fringes (0v)y, dv equals 1/7ndv/F. From this we
obtain

v vE™* N
5 A vF*2nd . (4.32)

4.3.2 The Fabry—Perot Interferometer

The Fabry—Perot interferometer relies on a multiple-beam interference from
a parallel plate of air contained between two highly reflecting mirrors. Fig-
ure 4.14a is a schematic of the interferometer. The light is multiply reflected
between the mirrors M; and Ms, and the transmitted fraction is imaged on
a screen. For a cylindrical geometry and monochromatic radiation circular
fringes are generated as a result of the constructive and destructive interfer-
ences for off-axis partial beams. The off-axis beams are a consequence of the
finite extension of the light source. The distance between the rings determines
the free spectral range of the interferometer and the width of the rings the
resolution ov. Since n = 1 in the present case the two quantities are given by
1

Ay = — 4.
V=g (4.33)
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(a) M, M,

L “-;——

—d

Fig. 4.14. Schematic drawing of a single-pass Fabry—Perot interferometer (a) and
interference fringes for the yellow line of Na vapor (b); (L: light source, My, Ms:
mirrors, S: screen, PH: pinhole, PM : photomultiplier)

and

Av 1

=T T aE

(4.34)

The finesse F'* of the interferometer is again given by the ratio between the
free spectral range and the resolution Av/dv. Figure 4.14b shows the fringes
for a spectral line with a doublet structure. The small distance between the
concentric rings in one fringe gives the amount of splitting.

Equation (4.25) can be used to evaluate the transmission of the inter-
ferometer, but the absorption A of the mirrors must be taken into account.
Because of the large value of R (R is very close to 1) a large number of re-
flections occurs and even small losses at each reflection cannot be neglected.
The absorption is given by A =1 — R —T where T is the transmission coeffi-
cient. The absorption is taken into account by multiplying (4.25) with 7?2 /T¢
where T¢ = (1 — R)? is the square of the transmission without absorption.
The correction factor contains the square of the transmission ratio because
there are two reflections per round trip. With this correction the transmission
is obtained from

I 1-2A4/(1—R)

L~ 1+ (AF2/72)sin?(2nd/ro) | (4.35)

The spectral bandpass dv is directly related to the inverse of the finesse,
as can be seen from (4.34). Thus, the resolution improves as the finesse or
equivalently the reflectivity of the mirrors increases.

Very often as, for instance, in inelastic light scattering experiments, we
whish to study a very weak line very close to a very strong line. In these cases
it is crucial for the light extinction ratio between the interference fringes to be
very high. This is described by the contrast C' of the interferometer, obtained
from (4.35) by
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C_ I(max) :1+4F*2 .

I(min) 72 (4.36)

This means a high finesse gives also a good contrast. However, it is important
to recall that with increasing R the maximum for the transmission is reduced
by 1 —2A4/(1 — R). Typical values for a good Fabry—Perot interferometer are:

R =0.985 =207 Av =05cm™!
d=1cm C =5x10% Sv =1/2dF* = (1/414) cm~!
A =0.002

Thus, the resolution of these instruments is of the order of 0.002 cm™! or

3 x 107* meV.

For the practice of spectroscopy it is convenient to have one of the mir-
rors in Fig. 4.14 on a piezoelectric translation stage. Then, the length of the
cavity can be tuned and the interference rings move from or to the center of
the screen. The fringes and the space between them can be tuned very accu-
rately by replacing the screen in Fig. 4.14 with a pinhole and watching the
transmission through it with a photomultiplier. The latter records a signal, as
shown in Fig. 4.15, where the light was assumed to consist of a main line and

—{ l—av

Fig. 4.15. Output of a Fabry—Perot
interferometer recorded with a photo-
multiplier

Av

a small satellite close by. This is a very convenient way to record the spectrum
electronically. The physical meaning of the finesse as the ratio between Av
and dv is particularly evident in this picture.

4.3.3 The Multipass Fabry—Perot Interferometer

Since the contrast in the interferometers described above is only 104, several
attempts were made to improve it by arranging two or more interferometers in
series. The most successful instrument along this line is the multipass Fabry—
Perot interferometer where the interference process is repeated several times
by inserted corner cube reflectors. A possible set up of a five-pass interferome-
ter is illustrated in Fig. 4.16. The diaphragms D were inserted to reduce stray
light. As can be expected, the overall contrast is increased as
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Fig. 4.16. Schematic drawing of a five-pass interferometer; (M: mirrors, CC:
corner cube reflectors, B: diaphragm with pinholes); after [4.3]

c=0cr, (4.37)

where p is the number of passes, and C is the contrast for a single pass. The
finesse increases as
F*
Fr= = 4.38
—— (4.38)

However the transmission decreases as

T A\

S —— . (4.39)

Ty 1-R
For multipass operation of the interferometers a contrast of the order of 10 is
easily obtained. This is already very close to stray-light suppression in double
monochromators. As a result multipass Fabry—Perot interferometers are, for

example, widely used for inelastic light-scattering spectroscopy from acoustic
phonons.

Problems

4.1 A doublet structure of a spectral line in the green spectral range has a peak-

to-peak separation of 3cm ™. Which slit width is needed to resolve it in first order

with a F' = 1 m grating monochromator for a 10 cm size grating with 180000 lines.
(Purpose of exercise: use of an important formula for practical work.)

4.2 Show that for the interference on a plane parallel plate the ratio of the amplitudes
from two consecutive partial beams E; m41/Fr,m equals the reflection coefficient
R=1./I for m > 2.

(Purpose of exercise: get familiar with reflection and transmission geometry for
a plane parallel plate.)

4.3 A thin film with index of refraction n = 1.4 shows interference patterns for
excitation with red light close to the line of a HeNe-laser. The next neighbor distance
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of the fringes is 50 cm™*. How thick is the film if the light incidence is normal to the
film surface? Note: In a wave number linear representation the distance between the
fringes is independent of the wave number v of the light.

(Purpose of exercise: application of interference relationships to thin film optics.)

4.4 Express the free spectral range and the half width for the interference fringes of
a Fabry—Perot interferometer in wavelengths and show that the ratio is again equal
to the finesse.

(Purpose of exercise: change from phase angles to wave numbers and wave-
lengths.)

4.5 Show that the contrast for a Fabry—Perot interferometer is given by 1+4F*? /72,
(Purpose of exercise: use of Airy formulae.)

4.6" Show that the finesse for the multipass Fabry—Perot interferometer is given by
F* = F{'/v/21/?» — 1 where p is the number of passes.
Hint: The interference fringes from (4.24) and (4.25) narrow down as (I;/Io)",
(It/Io)? for p consecutive passes.

(Purpose of exercise: get familiar with multipass problems.)
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Detection of Electromagnetic Radiation

The radiation used in spectroscopic experiments needs to be measured. Due to
the wide field of applications, radiation detectors must satisfy a large number
of different constraints. Requirements can be high sensitivity, large bandwidth,
high speed, high stability, etc. Hence, a large number of different concepts and
technical realizations exist for the detectors. Their characteristic and basic
properties are:

— the quantum efficiency,

— the signal response,

— the detection limit, and

— the speed.

As in the previous section we will first discuss general forms of radiation
detectors applicable to various spectroscopic techniques. Detectors dedicated
to special spectroscopic methods will be discussed in the corresponding chap-
ters.

5.1 Signal and Noise

Since the radiation intensities in spectroscopic experiments are usually very
low, noise and statistical errors play an important role. The signal to noise
ratio is the quantity which characterizes this problem. The question is very
general and applies to photographic films as well as to photon counting or
photoelectric detection. Figure 5.1 gives an example from a scattering experi-
ment. The figure shows a signal intensity of about 26 counts per second, sitting
on a background signal from the detector of about 23 counts. The noise of the
background is about 4 counts. This gives a signal to noise ratio of 6.5.

The detection of light is determined by the quantum nature of the radi-
ation. The photon is either absorbed in a process relevant to the detection
scheme or not. These are the only two possibilities. The probabilities of such
processes are thus similar to the probabilities of tossing a coin. For coins ei-
ther head or tail may occur and these are exclusive events. The only difference
with the photon absorption is that the probabilities of the two events p and
g =1—p are equal in the coin tossing experiment. Each of them is 1/2. For
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the photon absorption the probability p for contributing to the detection pro-
cess may be much smaller than 1. Considering the problem of light detection
in a form appropriate for a description by probability theory we call “signal”
the number of events k£ of photon absorption processes out of a number of
n > k incident photons. Each single absorption process has a probability p
and ¢ = 1 — p is the probability that no absorption occurs or that absorption
does not contribute to the signal. This approach is valid for a wide range of dif-
ferent radiation detectors. The probability for the “constructive” absorption
of k photons is given by the binominal distribution

n _
P(k,n,p,q) = <k)pkq” * (5.1)
This distribution peaks for k = kuq. = p(n + 1). The total signal scales, of

course, with n. For small values of p the binominal distribution can be well
approximated by the Poisson distribution

k
Pk,n) = %e—y, with  y=np=~ (k). (5.2)

For n large enough y is the mean value (k) of the distribution or the average
magnitude of the signal. Since P is a probability other values of k may be
observed as well. This means the mean signal (k) is dressed with noise. The
square root of the variance o2 of the distribution P should be a good definition
for the noise. A rather simple calculation yields (k) for the variance of the
Poisson distribution. This means the variance is equal to the mean value.
Then, according to the definition above the noise is

o= V{(k—(k)?) = V(k?) = (k)2 = /{k) . (5:3)
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Since the signal (k) increases linearly with the length of the measuring time T,
the noise increases as the square root of T'. The important quantity defining
the accuracy of the measurement is the signal-to-noise ratio which accordingly
increases as /T

5.2 Photographic Films

Photographic films are common light detectors used in the spectral range
from the near-IR to x rays. A large variety of emulsions has been developed
which vary in spectral sensitivity, granularity, speed, resolution, etc., to satisfy
specific requirements. The basic process of the photographic recording is a
reduction of a silver-halide salt during light exposure according to a reaction
of the type

AgBr + hw — Ag + Br.

The latent image created in this way is amplified by the developing process of
the film in which additional silver-halide is reduced, particularly at the sites
of the latent image. The process is terminated by a stopping reaction. In a
final process the unreacted salt is removed from the emulsion and a stable
image is obtained.

The most important signature of an emulsion is its quantum efficiency
7. It determines which fraction of the incoming light quanta participates in
the reduction process. Typical values for n are between 0.01 % and 1%. The
quantum efficiency depends strongly on the light wavelength and on the grain
size of the emulsion.

From a practical view point the sensitivity equal to the signal response, the
spectral sensitivity and the resolving power are the important characteristics
of the emulsion. The sensitivity is defined as the optical density of the film
after development for a given light exposure. The light exposure is measured
in incident light power times irradiation time, technically described in units
of (candela meter seconds). Figure 5.2 shows the relation between the optical
density and the logarithm of the exposure for a commercial emulsion (Kodak
103a-0). The working range of the emulsion is the part of the curves where
optical density and logarithm of exposure are linearly related. The gradient
(steepness) of the curves can be slightly varied by changing the developing
time. The spectral sensitivity is the change in quantum efficiency with the
light wavelength. For the emulsion 103a-0 the quantum efficiency starts to
decrease rapidly for wavelengths longer than 500 nm.

The resolution is determined by the grain size: the smaller the grain the
higher the resolution. The sensitivity decreases, on the other hand, with de-
creasing grain size so that the grains must not be too small. Resolutions of
50-100 lines/mm are standard.
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The advantage of the film detectors is the simultaneous recording of all
spectral components of a light beam, provided these components were “dis-
persed” in space by a dispersive spectrometer. Photographic recording is still
widely used in x-ray diffraction experiments. Its disadvantages are mainly the
laborious processing of the films, and the cumbersome and inaccurate eval-
uation procedures of the recorded data. Nowadays direct electrical recording
with photoelectric detectors (photoconductors, photodiodes or diode arrays)
or photomultipliers presents a significant advantage over the photographic
techniques.

5.3 Photomultipliers

In the visible and near-visible spectral range the photomultiplier is the de-
tector of choice in spite of its complicated construction and the related high
manufacturing costs. The simple reason for this is its extremely high sensitiv-
ity. A schematic drawing of a photomultiplier tube is illustrated in Fig. 5.3.
The main parts of the tube are:

L

T

A

— Fig. 5..3.. Schematic drawing of a pho-
% ¥ 1 tomultiplier tube; (PC: photocathode, D:
PC D A dynodes, A: anode)

— the photocathode,
— the dynodes, and
— the collector (anode).
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Electrons are released at the photocathode by an external photoelectric
effect. Hence, the photocathode must consist of a material with a very low
work function. Multi-alkali compounds are widely used. Semiconductors like
GaAs or InGaAs are employed in more recent models. With such electrodes
a much higher sensitivity is obtained, particularly in the deep-red or near
IR spectral region. Photocathodes are classified according to their chemical
composition like bialkali, trialkali or semiconducting and according to their
spectral sensitivity. The quantum efficiency 7 is the fraction of released elec-
trons per incident photon. It can be as high as 35%. In the near IR the
quantum efficiency drops rapidly to zero. The maximum wavelength where a
photomultiplier can be used is 1.2 ym. At this wavelength only a photocathode
of S1 type is appropriate with a quantum efficiency of only 0.004 %.

The radiation sensitivity or absolute sensitivity E(\) represents the sig-
nal response. It is characteristic for the photomultiplier and can be derived
immediately from the quantum efficiency.

Ie _en(AN _ en())

B\ = 55 = “R5 =S5 (i A/W), (5.4)

where 1. is the current at the photocathode, P the incident light power (in
watts), and N the number of incident photons/sec. A cathode sensitivity in
(amperes/lumen) is defined in a similar way. Typical magnitudes for these
quantities are 80 mA /W or 90 A /Im. Figure 5.4 displays the sensitivity versus
wavelength for various photocathodes. The main disadvantage of photomul-
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Fig. 5.4. Radiation sensitivity E of various photocathodes versus light wavelength

tipliers is the rapid drop of the sensitivity in the near IR. This drop results
from the drop in the quantum efficiency. If the photomultiplier is used for UV
radiation, the entrance window must be made of quartz.

The second most important characteristic of the photocathode is the dark
current due to the thermal emission of electrons (Richardson emission). It
is determined by the work function @4, the temperature, and the size of the
cathode. Thus, small dark currents can be obtained by cooling the photocath-
ode and by reducing its size. In general, cooling to —40°C is good enough to
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lower the dark current to 1-10 electrons per second and cm?. Cooling in this
range is easily performed with Peltier elements. By reducing the area of the
photocathode to the order of one mm?, a dark current of the order of 0.1 to
1 electrons/s can be obtained. Then signals of the order of 1 photon/s or less
can be measured. This is the detection limit. Dark current characteristics for
several photocathodes are shown in Fig. 5.5.
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Photomultipliers are extremely light-sensitive. After irradiation with day-
light their dark current may be enhanced by several orders of magnitude. It
is therefore quite common to keep photomultipliers cool and in the dark for
several months. Windows made of quartz glass usually give a lower dark cur-
rent than windows of commercial glass because of radioactive inclusions in
the latter.

Electrons emitted from the photocathode are multiplied by secondary
emission at the dynodes. The dynode surfaces are made of CsSb which has a
high coefficient for secondary emission. The potential at each dynode is pinned
by a voltage divider. The construction of the latter determines speed, sensi-
tivity, linearity, etc., of the system. The cross current through it must be at
least an order of magnitude larger than the current along the dynodes to guar-
antee linearity of the detector. Typical operating values for photomultipliers
are 1500V at the cathode and 1 mA current at the anode. The multiplication
factor G for the electrons is given by the coefficient of secondary emission &
and by the number n of dynodes

G=d". (5.5)

A typical value of § is 5 which, for 10 dynodes gives a gain of 50 ~ 107. §
depends, of course, strongly on the voltage applied.

At the anode the arriving electrons are measured either as a current or,
for very low incident light intensities, as a charge pulse per incoming photon.
The total sensitivity of the detector is defined by A/lumen, where A is the
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current at the anode and lumen the incident light flux. Maximum acceptable
power dissipation at the anode is usually 1 W for a resistor Rx = 50 (2.

The speed of the detector is determined by R and the capacitance Cx
of the anode. These stray capacitances can be as low as 10 pF which yields
a time constant of 0.5ns. This is, however, a lower limit. An average time
resolution for a good photomultiplier is of the order of 2 ns.

For very low light intensities a photon counting system is appropriate. In
this case the charge pulses arriving at the anode are counted. Discrimination
of the pulse height with respect to a certain threshold enables background
contributions to be suppressed to a large degree.

Photomultipliers are not only used for the detection of visible light but also
for the detection of electrons, x rays or v rays. In the last two applications
the high energy of the light quanta must be transformed first to lower values
by a scintillation process. A discussion of such system will be given in Chap.
12.

5.4 Photoelectric Detectors

The continuous progress in semiconductor technology has led to an ever in-
creasing use of photoelectric detectors. This has been the case for the near-
IR, IR, and far-IR spectral range but photoconductors and photodiodes are
also becoming serious competitors to the photomultipliers even in the visi-
ble spectral range. Diode arrays and charge-coupled devices are particularly
attractive.

In this section we will first discuss some fundamental properties of the pho-
toelectric detectors and then study specifically photoconductors, photodiodes,
and diode arrays.

5.4.1 Fundamentals of Photoelectric Detectors

For photoelectric detectors the signal response and the detection limit are
known as responsivity and detectivity . The responsivity is defined as

 AVs

R=7p

(in V/W) | (5.6)
where AVg is the change in the detector output signal far a change AP; in
the incoming light power. To characterize the detectivity we need the noise
equivalent power (N EP) defined as the light power (in watts) which generates
a signal (in volts) equal to the signal produced by the noise. The inverse of the
NEP is the detectivity D. Obviously this quantity does not only depend on
the magnitude of the generated signal but also on the intensity of the noise.
There are many origins for noise in photoelectric detectors. The noise power
is very often proportional to the square root of the detection bandwidth A fr
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and to the square root of the detector area A. It is therefore common practice
to characterize a detector material by its specific detectivity D* where

D*

« _ VAR ) 1/2
D* = NEP\/Z (in m/s'/2W) . (5.7)

is a standard symbol for this quantity. Since the electric noise is, like any

noise, of statistical origin, the noise signal increases with the square root of the
duration of the measurement. Thus, as discussed before, the signal-to-noise
ratio increases with the square root of the duration of the measurement.

For the detectors to be discussed in this section, as well as for those to be

treated in Chap. 10, the following mechanisms are the most important sources
of noise.

a)

Johnson noise (Nyquist noise): The Johnson noise is due to the thermal
motion of the carriers in the resistor. The mean square noise voltage (V%)
across a resistor Rp is determined by the temperature from

(Vi) = 4kgTRp Af . (5.8)

Af is the bandwidth of the detection system. The noise voltage is the
square root of this quantity. It is always present, even without radiation
incident on the resistor. For example, the noise voltage is 5nV for a 1 K{?
resistor at room temperature and a 1-Hz bandwidth detection.
Generation-recombination noise: This noise, similar to the shot noise in
diodes, is generated by thermal generation and recombination of carriers.
Generation-recombination noise is only observed if current flows through
the detector.

1/f noise : 1/ f noise is determined by the detector surface. It is obviously
dominant at low frequencies.

Amplifier noise: Each signal amplifier also amplifies the noise at the in-
put. The noise figure of the amplifier measures the amplified input noise
compared to the noise on the output side. The noise figure should be close
to 1.

Background noise: Background light incident on the detector is an other
source of noise. This noise is particularly important for the far-IR since
in this spectral range the room temperature radiation already leads to a
considerable noise. The background noise can be reduced by using a cold
filter. If the square of the background noise voltage is larger than the sum
of the squares of the other contributions to the noise the detector is called
ideal or background limited with the acronym BLIP (background limited
photodetector).

5.4.2 Photoconduction Detectors

Photoconduction (PC) detectors play a dominating role, particularly in IR
spectroscopy. For intrinsic photoconduction electrons are excited from the
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valence band to the conduction band by the absorbed photon as shown in
Fig. 5.6a. The conductivity increases with the increased number of carriers

(a) ce (b

o t—— VB T

Fig. 5.6. Intrinsic photo excitation between the valence band (VB) and the con-
duction band (CB) of a semiconductor (a) and circuit for a photoconduction de-
tector (b); (Ry: load resistor, Rp: intrinsic detector resistor, Vo: applied voltage,
Vs: signal voltage)

in the conduction band and in the valence band. The process of excitation
is possible provided the quantum energy of the radiation is larger than the
energy gap €g of the semiconductor. Obviously, like in photomultipliers, there
is also a hard quantum limit below which the PC detectors can not be used.
Fortunately, there are numerous semiconductors with rather small bandwidths
so that the condition hw < €z is de facto not a real limiting relation. In
addition, photoexcitation of electrons or holes from impurities can also lead
to photoconductivity and is therefore appropriate for radiation detection. The
real limitation for PC detectors comes from the thermal excitation of the
carriers across the gap or from the impurity levels. If there is a large dark
current the sensitivity of the photodetector becomes low.

An electric circuit representing PC detectors is shown in Fig. 5.6b. From
this the signal can be obtained by determining the change of the conductance

AG
AcA
l

of the resistor Rp induced by the incident light. Ao is the change of the
conductivity of the detector due to irradiation, and A and [ are its cross
section and length, respectively. The signal AVg is finally obtained from Fig.
5.6b by

AG = (5.9)

VoRLRLAG  VoRLRAA
AVg = = Ao . 5.10
ST ®Rp+ Ru)?  (Bp+Rp)2—" (5.10)

At least for the range of linear photoconductivity AG is proportional to the
incident light intensity Iy. Then, from (5.10) the signal is maximum for Rp =
Ry.

The change of the conductivity Ao is evaluated from the generation
rate g
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g= % (in 1/m3s) (5.11)
and the equation of continuity for the equilibrium state

An = gmy, Ap = gy (5.12)
as

Ao = e An + epp Ap < g < I, (5.13)

where a, 1, T, and 7, are the absorption coefficient, the quantum efficiency,
and the lifetimes for the generated carriers. An and Ap are the number of
carriers generated by the light per unit volume. Obviously, the lifetimes play
a crucial role in determining the sensitivity of the detector. As 7 increases so
does the sensitivity of the detector. We can define an amplification factor for
the photoconductor as the ratio between the number of photo carriers passing
the electrode and the number of generated photo carriers, both per unit time.
Amplification factors for good photoconductors are as high as 10%.

The lifetime also controls the speed of the detector since it determines the
time scale for the change of the carrier concentration with changing light for
non-steady-state conditions. In this case the equation of continuity yields for

Anf(t)
An(t) = An(0)e™t/™ | (5.14)

where An(0) is the light-induced carrier concentration at t = 0. If 7, is large,
only slow changes in the light intensity can be detected. This is a general rule.
The speed of the detection and its sensitivity are inversely related.

In (5.11) to (5.13) it was assumed that the distribution of the photo carriers
is homogeneous which implies a weak light absorption. For strong absorption
the carrier distribution will be inhomogeneous and carrier diffusion becomes
important. The basic properties of the detector such as linearity, sensitivity
and speed are, however, retained. The same holds for photodetectors on the
basis of an extrinsic photoconduction.

The best-known photoconduction detectors are CdS for the visible spec-
tral range and PbS for the IR. For specific applications, particularly in the
IR and far-IR a large number of more sophisticated detectors are available.
Each of them covers only a limited spectral range. Characteristics for selected
photoconduction detectors are presented in Fig. 5.7, together with some pho-
todiodes. From the figure it is evident that several detectors are needed to
cover the spectral range from the visible to the far-IR. For long wavelengths
cooling of the detectors to liquid-He temperatures is required.

5.4.3 Photodiodes

Photodiodes are becoming more and more important. They are widely used
in the IR spectral region but are also useful for high-energy radiation. Diode
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arrays or imagers also make extensive use of photodiodes. Photodiodes are
usually operated in a reverse-biased mode where the change of the very small
reverse current due to light-induced carrier generation is measured. An alter-
native but rarely used possibility is to measure the light-induced photovoltaic
effect for an unbiased diode. With respect to light absorption, lifetime, and
quantum limit the same relationships apply as for photoconductors. The active
volume is the depletion layer of the pn junction. Unfortunately this volume
is usually very small so that the probability of absorbing a photon is quite
low. The situation can be improved by inserting a small intrinsic conducting
region between the p-type semiconductor and the n-type semiconductor. Such
devices are called p-i-n diodes. The acceptable dimension of the intrinsic layer
is given by the lifetime and diffusion or drift length of the carriers. If the car-
riers recombine before they have left the active zone they will not contribute
to the photocurrent.

Alternatively the sensitivity of the diodes can be improved by using a
solid-state type photomultiplier. This is possible since free carriers can accept
energy from an applied field and generate secondary carriers by impact ion-
ization across the energy gap or from impurity centers. If the applied voltage
is high enough, avalanche-type multiplication occurs. Such devices are called
avalanche photodiodes. Unfortunately the amplification process applies also
to the dark current which means that the noise increases as well. As a conse-
quence the detectivity decreases for too high an avalanche multiplication. This
effect could be suppressed by the discriminator in the case of the photomul-
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tipliers. Since suppression is not possible in avalanche photodiodes, the latter
are not as sensitive as the photomultipliers but they have a faster response.
One can not reach a high amplification without loss in bandwidth. Response
times down to 107'0 seconds and amplification factors up to 10* are com-
mon. The amplification-bandwidth product for good avalanche photodiodes
is 100 GHz. With improved p-i-n structures of the form pipn the speed can
be further increased and amplification-bandwidth products of 250 GHz can be
obtained. These are the RAPD diodes (reach through avalanche photodiodes).
For very fast detection Schottky diodes (metal-semiconductor junctions) are
more appropriate.

5.4.4 Detector Arrays and Imagers

Arrays of very narrowly spaced diodes can be prepared with modern semicon-
ductor technology. The arrangements of the diodes can be one-dimensional,
quasi-one-dimensional or two-dimensional. In a one-dimensional arrangement
the diodes are lined up exactly in one row (diode array). In quasi-one-
dimensional detectors several arrays are used shifted in the direction per-
pendicular to the array. In two-dimensional detectors the diodes are arranged
in a true two-dimensional matrix. This latter arrangement allows a complete
imaging of a two-dimensional signal. The big advantage of the array detectors
is the simultaneous recording of a whole spectrum if the light was dispersed
in the spectrometer. This obviously saves measuring time or equivalently re-
sults in a gain in signal-to-noise ratio. Detectors of this type are called optical
multichannel analyzers with the acronym OMA.

Figure 5.8 presents the effective quantum yield (counts per photon, not
photoelectrons per photons) for one standard and two intensified diode arrays
of silicon. Even though the quantum yield for the single Si diode is between

10%
e '
B10°F
- r 3
N 3
3 ]
£ i
=

3107 :
i DA 7

10° ey Fig. 5.8. Quantum yield for a stan-

200 400 600 800 1000 dard diode array (DA) and for two

Wavelength (nm) intensified diode arrays (IDA)

70 % and 80 % the effective quantum yield is less than the one for photomul-
tipliers even for the intensified array. However, if the array consists of 512
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diodes a factor of about 500 is gained in measuring time. Another advantage
of such detectors is the much better response in the deep red and near-IR as
compared to photomultipliers. This is evident from the figure. Si diode-array
detectors cover a spectral range from 185 to 1100 nm. Typical dimensions for
the diodes (pixels) are 25 umx2.5mm with a pixel distance of 25 pm. With
fast scanning diode arrays scan times down to 13 us/diode can be obtained
which means 70 spectra per second with a 1024 pixel array.

The low effective quantum efficiency of the diodes can be raised dramati-
cally by image intensifiers as demonstrated in Fig. 5.8. Intensified diode arrays
are hybrid constructions between photomultipliers and array detectors. The
basic concept is illustrated in Fig. 5.9. The light enters the system through

DA 8 CP C w

cooling unit
HMA
[ ia| S

O ' Fig. 5.9. Construction details of
44-/:4 [ ‘ a diode array detector with image
yi I * $ intensifier; (W: window, C: cath-
printé,d ! E E ode, CP: channel plate, S: screen,
circuits : : . DA: diode array). The horizontally
diodes intensifier hatched areas represent fiber optics

a window and gets absorbed by an external photo effect at the photocath-
ode. The released photoelectrons are accelerated by about 250V towards the
micro-channel plate. The photocurrent gets amplified in the micro channels
across which 700 V are applied. The micro channels act like a photomultiplier
with continuous dynodes. The important point of the imaging plates is the
conservation of the spatial distribution of the light pattern during all pro-
cesses. From the channel plate the electrons are accelerated to a luminescence
screen by 6 KeV to yield an intensified image. This image is finally detected
with the diode array. The photonic gain can be as high as 5x103. Coupling
from the screen to the diode array can be performed with a coherent fiber
optic.

Quasi-one-dimensional detectors are very often constructed as charge cou-
pled devices (CCD detectors). Figure 5.10a shows a schematic picture of a
CCD system. Closely spaced MOS diodes are arranged on a SiO substrate
and biased to establish a depletion layer in the underlying p-Si semiconduc-
tor. Light generates minority carriers under the semitransparent electrodes
which can be read out eventually by transporting them step by step to a col-
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Fig. 5.10. Schematic drawing of a CCD-system (a) and quantum yield 5 for a
standard and a back thinned chip (b)

lector electrode. This is indicated in Fig. 5.10a by the dashed line. The signal
is the response from either one or several diode lines.

CCD detectors were introduced in light measuring techniques in 1970. A
typical pixel size is 5 x 25 um? with 512 or 1024 pixels per array. Thus, the
total width of the device is 5mm for about 1000 pixels. CCD detectors are
characterized by very high sensitivity and an extremely low dark current. For a
liquid nitrogen-cooled CCD system the dark current is as low as 1 electron per
pixel per hour. The read out process is accompanied by a noise of 5 to 6 counts.
The quantum efficiency of a CCD camera is about 40 % in the red, and the
acceptable spectral range is 420 to 1000 nm. In contrast to diode arrays, with
a good electronic an efficiency of 1 count per photoelectron can be obtained.
Quantum efficiency and spectral range can be increased by back-thinning the
CCD chip. In this case the chip is thinned from the back by chemical etching
until even UV light can reach the active zone of the MOS units. Illumination
occurs in these systems from the back. The quantum efficiency can be raised
in this way to 70 % in the whole visible spectral range. With an UV option
the chip can be used down to 200 nm. Quantum efficiencies for a standard
and for a back-thinned CCD chip are shown in Fig. 5.10b. Since for high
gain 1 count per photoelectron is obtained the total effective efficiency can be
0.7 in contrast to 5x10~% for the diode array. The spectral resolution of the
detector is limited. As for all multichannel systems it is determined by the
spectral range incident on one pixel. This depends, of course, on the pixel size
and on the amount of spatial dispersion generated by the spectrometer.

In very recent technical developments peak quantum efficiensied of 95%
are obtained for EMCCDs (electron multiplication CCDs). This was possible
by inserting electron multipliers operating like avalanche diodes between the
pixels of the CCD and the output amplifier.
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Problems

5.1 Show that the variance for the Poisson distribution equals its mean.
(Purpose of exercise: handle probability distributions.)

5.2 The probability distribution for a signal is a Poisson distribution, the measuring
time available is 10 hours. An optimum signal to noise ratio should be obtained. Is
it better to accumulate one signal for 10 hours or to accumulate 10 1-hour signals
and take the average?

(Purpose of exercise: a very practical measuring problem.)

5.3 Calculate the signal AVs for a photoconduction detector with internal resistance
Rp and working resistance Rp, and show that the highest signal is obtained for
Rp = Ry..

(Purpose of exercise: importance of circuit parameters.)

5.4" In a strongly absorbing semiconductor carriers are generated close to the sur-
face. Calculate the steady state distribution of carriers as a function of depth and
the resulting total current for a given applied voltage, a lifetime 7, and a mobility
u of the carriers.

(Purpose of exercise: recall inhomogeneous carrier distribution.)
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The Dielectric Response Functions

The dielectric function and the functions directly related to it are fundamental
in solid-state spectroscopy. Their derivation is based on a very general descrip-
tion of the reaction of a system to an external force. As long as the reaction
is linear, the response is obtained according to a linear response model and
the relations describing the reactions are called the linear response functions.
Thus, the linear response functions are properties of the solid-state system
itself and are independent of the driving force. This concept is applicable to
the whole spectral range from radio waves to y rays as well as to spectroscopy
with particles. The linear response is formulated in time and space. Since the
response is, in general, frequency- and wave vector-dependent and since it is
convenient to operate with harmonic functions, a discussion in Fourier space,
both with respect to time and coordinates, is more appropriate. Thus, rather
than studying the response function directly the linear relation between the
Fourier transform of the driving force and the Fourier transform of the system
response are considered. One of the most fundamental response functions is
the electric susceptibility which describes the polarization P(q,w) generated
by an incident electric field F(q,w).

P(Qaw) = X(‘Lw)gOE(q’w) ) (61)

which is simply a generalization of the definitions given in Appendix B.2 in
connection with the Maxwell theory.

Another important example for a response function is the relationship
between the displacement D and an applied field F

D(Qa w) = E(qa W)50E(q’ w) : (62)

g(¢q,w) is known as the dielectric function (DF) or relative permittivity of
the solid. Note that we have used in both equations a scalar terminology for
convenience even though field and polarization are vectors and susceptibility
and DF are second-rank tensors. Also, for the purpose of this chapter we will
simplify the problem and use response functions x(w) and e(w) which depend
only on the frequency. An introduction to a more general description of the
linear response is given in Chap. 14 and in Appendix L.

H. Kuzmany, Solid-State Spectroscopy, DOI 10.1007/978-3-642-01479-6_6, 107
(© Springer-Verlag Berlin Heidelberg 2009



108 6 The Dielectric Response Functions

We start this chapter by recalling some general relationships between the
optical constants including the Kramers—Kronig relation and continue with
a description of the response of the solids by several simple DF models. For
an extended discussion of DFs of solids in the context of many-body theory
special textbooks like [6.1,6.2] must be studied.

6.1 Optical Constants, and Kramers—Kronig Relations

6.1.1 Optical Constants

From the Maxwell equations some important relationships can be derived for
optical constants and for the propagation of EM waves in homogeneous media.
Using the wave equation from Appendix B.2 for a non-conducting and non
magnetic medium in one dimension

0?E(x,t) e O*E

x> @ o2’ (6:3)

together with the complex representation of a plane wave from (2.2) we obtain
the dispersion relation for the propagation of the EM wave from

k= Se(w) . (6.4)

Obviously, (w) determines the dispersion of the wave. Note that in Appendix
B.2 we have used a relationship in the time domain for the definition of e.
However, this definition does not change if we go to the frequency domain,
since so far € was only used for harmonic waves. Expressing the propagation
constant k by the index of refraction, as it was done in (2.3), we obtain

Nw
Co

ke with N = /e(w) . (6.5)
We have used the symbols k. and IV for the propagation constant and for the
index of refraction since we now allow also complex values for both, and hence

also for the DF. The two functions may be represented as

N(w) = n(w) + ik(w) , and e(w) = er(w) + igi(w) .

(6.6)

The sign for the imaginary part may be chosen either positive or negative.
‘We have selected the positive sign, for convenience, in the formulae used later
on. The complex notation for the index of refraction leads immediately to EM
waves damped in space of the form
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E(z,t) = EgellV@/coz=wi]
_ Eoe—(Qﬂ'n/)\o)zei(kx—wt) ) (67)

The expression 27k /g describes the attenuation of the field and Ag is the light
wave length in vacuum. Since the absorption coefficient is usually defined by
the attenuation in intensity written in the form of Lambert’s law

I(z) = EE* = [ype™ " (6.8)

we obtain for the relationship between x and «

_ ATk

a= N (6.9)

From Maxwell’s relationship N = /e the real and the imaginary parts of
the two functions N(w) and e(w) are correlated via

e =n? — K2, € = 2nk (6.10)

or

€r+|€| 75r+|5|
n=Yr_ B =¥ T 6.11
7 7 (6.11)

With these relationships the absorption coefficient a(w) can be expressed by
the imaginary part of the DF as

wei(w)

o(w) = (6.12)

con(w)

According to its definition the electric susceptibility y(w) = e(w) — 1 is a
complex function as well.

Finally, even the conductivity defined from j(w) = o(w)E(w) may be con-
sidered as a linear response function in a conducting medium. To be general
enough we may, in this case, express the displacement current 9D /0t in the
first Maxwell equation by the polarization in the form

oD N a(&‘oE—FP) 6(€0E)

- o e

where j = OP/0t represents the current density from the polarization of the
bound carriers. Since there is no real need to discriminate between bound and
free carriers as bonding may be arbitrarily weak or strong, we can write the
total current density as the time-derivative of the polarization

oprP

J = Jtree + Jbound Tt ... = E . (613)
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P consists of a contribution Pree = —Jfree(0)/iw from the truly free carri-
ers and another contribution P,oung from the more or less bonded carriers.
Likewise, both the susceptibility from P = yeoFE and the conductivity from
j = o E will include both components. With this terminology and assuming a
time dependence for the field of the form exp(—iwt) we can write

. 8P Xfan .
= — = = — E — E .
I= 5 pr X€olw o
This yields
o(w) = —iwegx(w) (6.14)
and
cw) =x(w)+1=1+ IZSZ) (6.15)

The frequency-dependent conductivity is now also a complex function with
the components o, and ;. Finally, it is very useful to express the absorption
from (6.12) as a function of the conductivity. Inserting from (6.15) yields

or(w)

e (6.16)

a(w) =

Accordingly, a material with a low resistivity has a high absorption.

6.1.2 Reflection and Transmission

Since information about solid materials is very often obtained from reflection
experiments, the propagation of EM waves across planar interfaces between
materials with different optical properties must be studied. This can be done
by considering the continuous transitions of the tangential component of the
F and H fields, and the conservation of energy. For the special case of inci-
dence perpendicular to the boundary between two media with relative index
of refraction N(w) these conditions are

Ei—E, = E; (continuity) and H;+H, = H; (energy conservation) , (6.17)

where i, r, and t refer to the components of the incident, reflected, and trans-
mitted fields, respectively. The minus sign in the relationship for the electric
field follows from the assumption that the reflection occurs at the boundary
to a medium with higher optical density. If the reflection was at a bound-
ary to a medium with lower optical density, the minus sign would be for
H,. The expression for the energy conservation in (6.17) is obtained from
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E;H; = E.H,+ E H by replacing the electric fields with the H-fields from
the second Maxwell equation. Using the relation between E and H from (2.5)
(6.17) yields for the complex field reflection coefficient 7.
E. N-1
B N+1°
The reflectivity is the reflection coefficient for the intensities and immediately
obtained from (6.18) as

(6.18)

. (n—1)% + K2

R=raof=——--"~2——.
Tel'e (n+1)2+ k2

(6.19)

For a non-perpendicular light incidence a more general treatment is re-
quired. The reflection coefficients for the field are then given by the Fresnel
formulae. Appendix E.1 discusses these formulae in more detail.

The situation becomes much more complicated if the radiation is transmit-
ted through a parallel plate. In this case transitions at two boundaries (from
medium 1 to medium 2 and from medium 2 to medium 3) and multiple-
beam interference has to be considered. The geometrical situation is similar
to the case of the Fabry—Perot interferometer discussed in Sect. 4.3, but it
is more complicated because absorption now plays an essential role. Even for
perpendicular incidence the equations become rather complicated. However,
experiments of this type are very important and are often applied to measure
absorption coefficients of solids. Generalized relations for transmission and
reflection are discussed in Appendix E.2.

For the special case where medium 1 and 3 are the same and the interfer-
ence fringes are not resolved, simplified formulae can be given for the averaged
transmission (T') and reflection (R). In the case of a plate with thickness d we
have

(1 - R)2(1 + k2/n?)e~d

(1) = 1 — R202ad

(6.20)

and
(R) = R(1 4 (T)e ). (6.21)

Here averaging means that the transmission or reflection coefficient is aver-
aged over the phase angle for the partial beams. This averaging may occur
automatically in the experiment if the surfaces are not smooth enough or the
absorption is too strong to allow for the development of interference fringes.
A more general discussion of the optical response from optical multi-layers is
given in [6.3].

6.1.3 Kramers—Kronig Dispersion Relations

The Kramers—Kronig dispersion relations are integral relationships between
real and imaginary parts of a function f(w) defined in the complex frequency
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plane. The linear response functions such as e(w), x(w), N(w), etc., are exam-
ples. A generalized description including the conditions for which Kramers—
Kronig relations hold is given in Appendix L.1. One of the requirements for
the relationships to be valid is that the response function vanishes for w — co.
This can be expected for the susceptibility since the DF approaches 1 for very
high frequencies. The Kramers—Kronig dispersion relations for the suscepti-
bility can be written in the form

2 * wyi(w)
. =—P e .22
Xs(wo) ™ /0 w? —w? dw (6.22)
and
2wo < xe(w)
i =—-——P ——dw. 2
W) = —20p 7 0 (623

P represents the principal value of the integral. Similar relationships are avail-
able for the DF and for N(w). With these relationships one component of the
response function can be calculated step by step if the other component is
known for the whole spectral range. This is extremely important since often
only one component can be determined easily from an experiment. However,
this component must be known for the whole frequency range. Since the full
frequency range cannot be covered experimentally proper extrapolations are
required.

To see how good the Kramers—Kronig relationships work even for a finite
range of integration we give an example in Fig. 6.1 for the case of e(w). It is

3.00 T T T T
250t
2.00
150
<4 ook
1.00 Fig. 6.1. Dielectric function
0.50} for a damped harmonic os-
cillator; (—) &r, (———) €: as
0.00 calculated from the function
-0.50 . . " . (6.24), and (...) & as cal-
0 20 40 60 80 100 culated from the Kramers—
Frequency (a. u.) Kronig relation
assumed to have the form
A
wp —w? —iyw
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with A= 2250, v = 20, and wr = 50. We can of course calculate the real
part and the imaginary part and plot them as shown in Fig. 6.1. Alterna-
tively we may insert the real part into a Kramers—Kronig relation for the DF
and calculate ; numerically. To mimic experimental errors the function was
only integrated up to the frequency 600. Despite this the reproduction of the
imaginary part is very good.

A technique used very often to find the DF of a solid is to measure the
reflectivity R(w) over a wide frequency range. The square root of this value
equals the amplitude of the complex field reflectivity r.. Thus, with r. = |r.|e'?
and (6.19) we find

Inre(w) =InvR(w) +ip(w) , (6.25)

where r.(w) is given by (6.18). ¢(w) is the phase of 7.(w). The real part and
the imaginary part of (6.25) are Kramers—Kronig related in the form

d(wo) =

—2ﬂP/0o Iy Rw) =In VR(wo) 5 (6.26)

2 _ 2
T w? —w;

This means, from a measurement of R'/? we can determine the phase ¢(w),
and, in turn, n(w) and x(w) or the DF e(w).

Another important response function is the energy loss function Im{—1/e(w)}.
It is related to e(w) by

Im{g(l } ilw) (6.27)

w) ) W) +eWw)

and describes the loss of energy of particles or quasi-particles on their way
through the solid. We will return to this function and to more details about
DFs in Chaps. 14 and 15.

A listing of Kramers—Kronig transformations for often used response func-
tions is given in Appendix E.3.

6.2 Physical Origin of Contributions to the Dielectric
Function

The DF is determined by the possible excitations of the solid. These exci-
tations can be of very different nature depending on the frequency range
considered. Qualitatively the following processes, listed by increasing spectral
energy, can be expected to dominate the DF:

— dielectric relaxation processes,

— lattice vibrations (optical phonons and librons),

— free carrier absorption,
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— excitons and absorption across the energy gap,

— valence electron polarization and interband transitions,

— valence band plasmon absorption (only in second order for optical absorp-
tion),

— transitions into higher bands,

— transitions from core levels.

In principle, even magnetic excitations on the low-energy side and nuclear
excitations on the high-energy side could be added to the list. In some ranges
of the spectrum and for some applications it is enough to characterize the
DF by its imaginary part and thus to study only the optical absorption ver-
sus excitation energy. In these cases we can schematically plot the absorption
coefficient « versus excitation energy (Fig. 6.2).

@ 10° (0) '
—.Ew“ bho-! mr':(l)t_'i free ! ;un:t:; I B | — |
(3 hons! P07 carriers | MeNtal | 10 : b | core
;— ! ' excitons | | Eimerban d plasma | higher :tr
E absorptior] bands anS™
» ! H ; \itions
10°T 102- 4
fundamental
0.5 1.5 2 5 10 20 25

1 15
hw (eV) hw (eV)
Fig. 6.2. Schematic representation of the absorption coefficient in solids for the
various excitation processes; low-energy range (a), high-energy range (b)

All transitions require the conservation of energy and momentum. Since, at
least for the visible spectral range and below, the wave vector of the photons
is very small only excitations with wave vectors ¢ ~ 0 can contribute to the
DF. This condition is, of course, not required for excitations with electrons,
neutrons, x ray or v quanta. The DF for the latter cases will be discussed in
Chaps. 12-15 and 17.

6.3 Model Dielectric Functions

Since in general, it takes a lot of effort to calculate the DF directly from the
electronic structure model DF's are very useful.

6.3.1 Dielectric Function for Harmonic Oscillators

A simple but very useful DF can be derived for a set of damped harmonic
oscillators. A harmonic electric field E(t) excites a harmonic oscillator with



6.3 Model Dielectric Functions 115

mass m, charge e, damping v and eigenfrequency wr. In a one-dimensional
picture the equation of motion reads

mi + myid + mwie = eBre @t (6.28)

The subscript T indicates a transverse oscillator frequency since only for such
modes a coupling to the transverse electric field is possible. The representation
(6.28) is very general. It is useful for the description of lattice modes as well
as for electronic transitions and, in the limit of wr — 0, even for free carriers.
A particular solution of (6.28) is = xg exp(—iwt). Inserting into (6.28) yields

FE —iwt
T 0

If there are n oscillators per unit volume we obtain for the polarization P

P = nex (6.30)
and from the relationship between electric field and polarization

P =xeoE = (e —1)eoE (6.31)
the susceptibility for the oscillators as

ne?/meg

Xosc = 35 ) -
wp — w? — iwy

(6.32)
The corresponding DF is xcsc + 1.

To be general enough for a realistic system a contribution from the defor-
mation of the ion cores by the electric field must be added to the polarization
of (6.30). This contribution is described by an optical susceptibility xopt (or
Xoo)- While the contributions of the oscillators dominate the susceptibility in
a frequency range close to wr, the polarization from the ion cores dominate
at high frequencies. The corresponding DF given as x. + 1 is therefore often
assigned as €,,. The DF from the ion cores is determined by the relation of
Clausius and Mosotti

;0P €0 . > niOp,
g0+ > (njap je0/3) 1+ (njap,;/3)

oo = Xoot+1= +1, (6.33)

where ap ; (in m3) and n; (in m~3) are the atomic polarizabilities and the
density of the atoms of type j in the crystal, respectively. This relationship
holds at least as long as the generated local field is given by the Lorentz
equation [6.4]. For very high frequencies, that is in the spectral range of x
rays, « becomes 0 and £, becomes 1.

As described here ap is a local response function which creates the dipole
moment P in an atom or in a molecule by an applied field as
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P =apgoE. (6.34)

It is related to the DF by ap = V(e(w) — 1), where V is the volume of the
atom or molecule. This holds as long as depolarization effects are not relevant.

Considering the additivity of the polarization we can write a very useful
model DF as

52X00+X050+1:Xosc+5007

or explicitly

ne? 1 w
£ =€ + - = € + e - s 6.35
U egm (WA —w? —iwy) T (WA —w? —iwy) (6.35)
where the plasma frequency w;, was introduced as
2
wp = | (6.36)
Eom

Relation (6.35) is often called the Kramers—Heisenberg or dipole dielectric
function with real and imaginary part as

_ 2 Wgr —w?
Er = €xo + wp (w% — w2)2 T w272 ’
g = w? ull (6.37)

Pw2 — w?)? + w2
In the case of a mechanical oscillator, like a phonon, wy, is the ion plasma
frequency and e and m are the effective charge and the reduced mass of the
oscillator.
The Kramers—Heisenberg DF can easily be generalized to an arbitrary
number of different oscillators, as for example, for a set of polar lattice modes.
In this case and by separating real and imaginary part we obtain

w2 2 2
wip —w?) . WWw5,Y;
+ + . 6.38
£ =€ Z ( 2 —w?)2 + w2’y]2 I(W?T —w?)? w2,yj2 ( )

An important further generalization of the Kramers—Heisenberg DF is ob-
tained by introducing a generalized oscillator strength. From (6.35) and (6.38)
wg = ne? /egm obviously determines the strength of the response of the system
to the electric field. Thus, instead of just counting the number of oscillators
we may replace wg by a generalized function S which describes the strength of
the response. It turns out to be convenient to introduce S as the dimensionless
(reduced) oscillator strength

S; = wi, /win (6.39)
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The Kramers—Heisenberg DF has then the generalized form

Sw w2 — w? Siww? i
6—6004—2( ) e LMl ) (6.40)

—w2)2 + w2q? 2 02)2 & w22
w?)? + w23 (Wir — w?)? + w?y;

In this form the oscillator strength S; is used as a parameter or may be
calculated eventually from a quantum mechanical model.

Returning to the simple form of the DF given in (6.35) or (6.37) we note
that an imaginary part in the DF is only obtained for v # 0. In contrast, the
imaginary part & of the index of refraction can be nonzero even for v = 0. In
this case £; = 0 but & may be # 0 if &, = —x? is negative. For these conditions
n will be zero from (6.11) and the reflectivity will be 1 from (6.19). Following
(6.37) this situation is indeed possible for w? > w3. With w increasing further,
however, the contribution of w* in the denominator makes €, again positive.
The frequency for which e, becomes 0 is labeled wy, and called the longitudinal
component of the oscillator. From (6.37) wy, is obtained for v =0 as

wi = wi 4wl /eos - (6.41)

In the spectral range where ¢, is negative, i.e. between wr and wy, reflection is
very strong. Since multiple reflections from an interface selectively emphasizes
this spectral range, it is called Reststrahlenbande. If wr lies in the far-IR as it
is the case for optical phonons, the multiple reflections can be used to select
a narrow band of far-IR radiation.

Inserting wr, for wy, in (6.37) we obtain for v =0

2 2 2 2
Wy — W wy —w
L T L
Er=€o—3 5 TExo =€ 3 5 (6.42)
wi — w? wp —w

In this form a discussion of the DF is particular instructive. A qualitative plot
of the equation is shown in Fig. 6.3. €, becomes negative for wt < w < wr..
For negative €, and vanishing &; n will be zero from (6.11) and thus the
reflectivity will be 1 from (6.19). Between TO and LO frequency the light is
totally reflected.

The famous Lyddane—Sachs—Teller relation follows immediately from (6.42).

e(0) _ wi
P (6.43)

Since €(0) is always larger than e, wy, > wr follows.

When discussing the dispersion of the prism we already mentioned the
influence of the lattice oscillator on the propagation constant n(w). Note also
that the function used in Sect. 6.1.3 to demonstrate the Kramers—Kronig re-
lation obviously had the form of a Kramers—Heisenberg DF. Finally, it should
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be stressed again that it is enough to know the frequency dependence for one
of the functions &, €, X1, Xi, 7, K, Qr, @4, or R to obtain the full DF. Figure
6.4 shows the experimentally observed reflectivity for a CdS single crystal
together with two components of the index of refraction as evaluated from
(6.26) and (6.18).



6.3 Model Dielectric Functions 119
6.3.2 The Dielectric Function for Free Carriers

The dielectric response function for free carriers can be derived immediately
from (6.28) by taking wr = 0. Again, as for the Kramers—Heisenberg DF,
this response function is strongly simplified as it does not take into account
any dependence of the excitations in the electron gas on the wave vector of
the electrons. The differential equation (6.28) can be reduced to first order by
introducing the particle velocity # = v. Expressing v by an inverse collision
time as v = 1/7 it yields

m* o +m*v/T = eBre . (6.44)
For v = v exp(—iwt) the amplitude j of the current density becomes for n
carriers per cm?

. ne?> TE;

J =nev = = O'E1 . (645)

m* 1 —iwr
With ¢ = ne?7/m*, the conductivity is

(o) (o) . OowWT

Tl Tier 14wt +11+w27'2 '

(6.46)

Using the relationship (6.15) between DF and conductivity from Sect. 6.1.1,
the DF for the free carriers is

i(fo

= _ 6.4
ED(w) 13 %0 (1 iT) ( 7)
or
iw2r Jw w?
D D
e e — 2 4
ep(w) = €00 T € Ty i)t (6.48)

where for the purpose of generality the contribution of the core electrons
was added. This DF corresponds to the Drude model for free carriers and is
therefore often called the Drude dielectric function. Separating the real and
imaginary part yields

wlT? : w2t /w
1+w2r?2 1+ w272’

ED = €pr T i€D; = €00 — (649)

An important special case of (6.49) is obtained for a loss-free plasma which
means 7 = 00. In this case ep(w) is real and has the value

w.

ep(w) = €00 — — (6.50)

&
N T N
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The zeros of this DF correspond to the longitudinal plasma oscillation with fre-
quency wp = Wp//Exo- This oscillation is a possible excitation of the plasma
in the form of a quantized quasi-particle called the plasmon. In first order
the plasmon cannot be excited by an EM wave because of its longitudinal
character. Thus, it does not immediately contribute to the response for EM
radiation. More details about the response and the dispersion of plasmons will
be given in Sect. 15.1.

Equation (6.50), and in a related way also (6.49), define a frequency range
for which ¢ = &, < 0. In this range the index of refraction will be purely
imaginary and thus R will be 1. The corresponding range is limited by the
longitudinal plasma oscillation frequency wpi. This behavior is called a plasma
reflection and is very well known in semiconductor and metal physics. For the
undamped plasma it starts approximately at the plasma oscillation frequency
and extends to zero frequency. Since 7 was assumed oo (v = 0) plasma
reflection takes place without energy loss. It is due to a powerless current of
the electrons.

Co5r .

0.5
wlw, wlw,

0 05
Fig. 6.5. Reflection for systems with free carriers; n = 10*2cm ™2, e0c = 1 (a)

and n = 10" ecm ™3, 5 = 11 (b). The dashed lines are for finite damping. The
numbers indicate wpT

Interestingly the shape of the plasma reflection depends strongly on the
magnitude of e, as shown in Fig. 6.5 for various values of w,7. Therefore it
has different character for semiconductors and metals. For the latter e, ~ 1
and the reflection drops rapidly from 1 at w, but approaches 0 only for very
large frequencies. In contrast, for semiconductors where €, is large, wy is
quite different from wy;. The reflectivity drops sharply to zero close to wp
(for 7 = 00) and increases back to the value given by e.,. Figure 6.6 exhibits
experimental results for the plasma reflection of aluminum and heavily doped
InSb. The large value for the plasma edge for Al is due to its high carrier
concentration. The plasma reflection passes through zero in the case of InSb
(Fig. 6.6D).
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Fig. 6.6. Plasma reflection for aluminum, after [6.6] (a), and for heavily doped
InSb, adapted from [6.7] (b). The carrier concentration for Al is n = 18 X
10?2 cm ™3, the concentration for InSb is given in units of 10*® cm™3

For another limit which is often observed in semiconductors the absorption
coefficient « as given by (6.12) can be approximated for wr > 1 (collision-free
plasma) and w, < w. In this case n(w) ~ /o and

W2AG
@=73 3
4me,\[eseTCh

An example for a free carrier absorption under these conditions is presented
in Fig. 6.7 for InAs. The linear relationship between A and « in the double
logarithmic plot confirms the power law of (6.51). The slope for the lines

x WIS - (6.51)

100

1 ) . . . Fig. 6.7. Free carrier absorption in InAs
3 5 7 10 15 for different carrier concentrations given in
Wavelength (xm) units of 10*” cm™3; after [6.8]
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is about 2.7. For n = 2.5 x 1017 cm™3, A = 15um and o = 30cm™! (as
taken from Fig. 6.7) 7 becomes 10715 for a typical value of 10 for £, and
an effective mass for InAs of 3 x 10~ 2mg. With these values the limiting
conditions wr = 10> 1 and w, = 1012571 < w = 103571 are well satisfied.

The quantity wy is determined by the density of oscillators which, in the
present case, is the density of free carriers in the conduction band. More gener-
ally the value of w;, depends on the energy range considered or, more precisely,
on the energy range which can be excited in the solid. As an example, for low-
energy excitation, only the electrons and holes from the conduction band and
from the valence band contribute to wy. For higher excitation energies the
relevant plasma is established by all valence electrons. If the solid is excited
in the energy range of 20-30eV even electrons from the lower orbitals (for in-
stance, the d electrons in Ge) contribute to the plasma frequency. This means
several plasma oscillations can be excited in a solid. However, a high plasma
reflection which extends to zero frequency can only originate from free carriers
since it implies a vanishing oscillator energy for the single-particle excitation.

6.3.3 Dielectric Functions for Combined Free Carrier and
Oscillator Response

An other very often studied combination of DFs is constructed from a Drude
response and a response from band to band oscillators. In almost all metals
experiments show a rather strong deviation from a Drude behavior for large
enough light energies. For gold this deviation occurs already in the visible spec-
tral range where d-band transition start to contribute to the DF. Figure 6.8

" | Wp wWT Y
R .
e () 140 (1n ev)

ssess Imi (E)

< e (5}, Drucin Drude 8.8 0.08
« -150 1 - s=1 08 26 0.2
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=00 ‘ s=3 35 31 09
250 s=4 86 45 2

-300 S s LR f 125

1 2 3 4
Energy (eV)

Fig. 6.8. Left: ¢, and ¢ for gold crystals. Symbols are experimental results,
after [16.7]. The full lines are fits with a combined Drude and oscillator re-
sponse. The dashed line is a Drude fit. Right: Parameters for the Drude and
for the oscillator contributions
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depicts some experimental results (symbols) for the DF as obtained from re-
flectivity measurements.

The DF exhibits a good Drude behavior up to almost 2eV. For higher
energies the d-band transitions contribute. These transitions must be evalu-
ated quantum-mechanically but formally one may replace them by oscillator
contributions. The full drawn lines in the figure were obtained from

2 4 w2 T
sl 6.52
w2+ iwy + iwy Zl l —w? - iwysT)l (6.:52)

S
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with parameter values as depicted in Fig. 6.8, right. A response function for
gold covering an even wider spectral range is depicted in Chap. 15, Fig. 15.8.

6.3.4 Oscillator Strength and Sum Rules

In Sect. 6.3.1 a constant S was introduced to provide a generalized description
for the strength of the oscillators. The same could have been done in Sect. 6.3.2
for the transitions of the free carriers. Physically S is related to the probability
f that an oscillator is actually excited. Hence, another quantity f is often
defined from S by

wpf

WT

S =

The total activity of the oscillators for the whole frequency range is described
by the sum of all oscillators and can be expressed by a sum rule ( or f-sum
rule) for the oscillator strengths. Several sum rules exist. An often used rule
which holds for the first moment of the imaginary part of the DF has the form

/ weiw) dw = 30 AT (6.53)
0

J

This relation is independent of the form of ¢;. The integral on the left-hand
side of the equation can be determined from a numerical evaluation of an
experiment. The result can be used to calibrate the experiment on an absolute
scale. If only one oscillator is considered the right-hand side of (6.53) yields
mw? /2 for S inserted from (6.39). For free carriers in a Drude model wy, is the
plasma frequency given by (6.36). For phonons the corresponding ion plasma
frequency wj, with

*2
2 TLGT
2 — 6.54
wlp €o MR ( )

must be used, where n is the concentration of the oscillators, Mg their reduced
mass, and e} the effective transverse charge. Phonons which have an effective
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transverse charge # 0 create a dipole moment and are called polar. Only
polar modes can interact (directly) with the light. The sum rule for &; is
easily rewritten for the real part of the conductivity o as

[e%s} 2
/ or(w) dw = 220 (6.55)
0

Another important sum rule is obtained from the Kramers—Kronig relation
for the DF of lattice modes

2 We id
e — oo = —/ e (6.56)
T Jo w?—wi

where w, is a frequency above the lattice modes but below optical transitions.
For wg =0

[(0) — exc]. (6.57)
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follows. This shows that the difference between the static and the optical
dielectric constant comes from the integrated activity of the oscillators at
finite frequency.

6.4 Experimental Determination of Dielectric Functions
(Ellipsometry)

As we have learned above, it is enough to measure one of the components
of the DF and use the Kramers—Kronig transformation to obtain the other
component. This process may still be cumbersome since the one component
must be measured over the whole frequency range. In alternative methods
both components of the DF are determined simultaneously over a limited
frequency range. In this case a Kramers—Kronig analysis is not needed. A
standard procedure for this approach consists in the analysis of elliptically
polarized light obtained after reflection from a plane surface of the material
under investigation. Accordingly, this technique is called ellipsometry.

Figure 6.9 shows schematically a setup for an ellipsometer. The basic ele-
ments are the polarizer which gives linearly polarized light, the compensator
which provides a well defined ellipticity, the sample surface to be investigated
and the analyzer to check the ellipticity of the light after reflection. These
instruments are called PCSA ellipsometers according to the main elements of
the system. In addition to these basic elements, a broad band light source, a
monochromator, and a detector are needed for spectroscopy.

To fully characterize elliptically polarized light of frequency w seven pa-
rameters are needed. Three parameters define the orientation of the wave in
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A

Fig. 6.9. Schematic set up for a PCSA ellipsometer; (LS: light source, M:
monochromator, P: polarizer, C: compensator, S: sample surface, A: analyzer, D:
detector); PCSA is the acronym for polarizer, compensator, surface, and analyzer

space and the remaining four describe the intrinsic polarization properties.
In the following discussion propagation in z direction is assumed. Then, the
remaining four parameters determine the orientation of the ellipse described
by the electric-field vector in the xy plane, the shape of the ellipse, and the
magnitude and absolute phase angle (as seen from the origin) of the electric
field. These parameters are used to express the two components of the field
in the z and y direction as a plane wave

E;z — onei(k27Wt76x)

E, = Ey,el*k==«1=%) (6.58)

To describe the state of polarization of the wave only the two amplitudes
Ey, and Ey, and the two phases §, and 6, are necessary. Thus, any state of
polarization can be characterized by a two dimensional vector of the form

E = (Ep,es, By, e'®v) , (6.59)

where the two components are complex numbers. These vectors are called
Jones vectors and are utilized in ellipsometry to describe elliptically polarized
light. The intensity of the light is given by the product EE*. The Jones
vectors for light linearly polarized parallel to z or y and for left-circularly
polarized light are

E(||z) = Eo(1,0),
E(lly) = E0(0,1),

E(lep) = %(1, i) (6.60)

Note that the relative magnitude |E,/E;| and the phase difference exp[i(é, —
;)] are enough to characterize the ellipticity of the light.

If light is transmitted or reflected by an optical element which is active
with respect to the state of polarization, the Jones vector will be changed
to another Jones vector. Typical examples of such elements are polarizer,
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phase plates or any type of reflectors, including the reflecting surface of the
sample to be investigated. Since the transformation of one vector into another
is performed by a matrix, each optical element is represented by a matrix T'
which is called the Jones matriz. As an example the Jones matrix for a phase
plate of thickness d is given in diagonalized form by

T <exp(0—i(51) exp(O_MZ)) 7

with ¢; = 2mn;d/\. j = 1,2 stands for the extraordinary and for the ordinary
beam, respectively. The matrix is diagonal for x and y oriented parallel and
perpendicular to the optical axis of the phase plate.

For each optical element there exists a state of polarization which remains
unchanged upon transmission. The corresponding Jones vector is called an
eigenvector of the Jones matrix for the element. For example, the Jones vectors
for polarization directions parallel and perpendicular to the plane of incidence
are eigenvectors for any reflection element. Each Jones matrix has eigenvalues
which are calculated from the diagonalization procedure in the usual way. For
a reflection element the eigenvalues are the complex reflection coefficients for
the amplitudes of waves polarized parallel and perpendicular to the plane of
incidence, defined as

E.

P |6l .
Ei7p ‘ IJ| n

Er,n
Ei n

)

Tp — = |’["n|ei6n . (661)

If the light traverses several optical elements the product of the corresponding
Jones matrices describes the total change of polarization. The change in the
state of polarization in the set up of Fig. 6.9 can be calculated as the product
of the matrices for the elements P, C, S, and A from which the Jones matrix
for the surface of the sample can be determined. The ratio r¢ = r, /7, of the
complex eigen values of the resulting Jones matrix written in the form

Ty = ™ _ tan Peld (6.62)

n

with

™
Tn

tan = and A=, —0dn

is used to determine the DF ¢(w). Equation (6.62) is called the ellipsometer
equation and Y and A are the ellipsometric angles. Physically tan is the
ratio of the field attenuation upon reflection for light polarized parallel and
perpendicular to the plane of incidence, and A gives the corresponding phase
difference. From the ratio of the eigenvalues of the Jones matrix the DF is
obtained from
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1—r\’
— qin2 2 2 s
g(w) = sin” ¢ + sin” ¢ tan ¢<1+Ts> ) (6.63)

where ¢ is the angle of incidence of the light with respect to the sample surface
and the reflection is versus vacuum. (Note: ¢ = 90° is not allowed since it does
not define a plane of incidence and therefore rs can not be evaluated.)

For the explicit experimental determination of rg either a zero method
(zero ellipsometer) or a rotating analyzer (rotating analyzer ellipsometer) is
used. An extensive description of ellipsometry can be found in [6.9)].

Like all reflectivity measurements ellipsometry is very sensitive to contam-
ination of the surface of the sample. Hence this technique is also very useful
for the analysis of thin films on a surface.

Problems

6.1" Determine the reflection coefficient R at an interface for perpendicular incidence
using energy conservation and the continuity of the electric field at the transition.
(Purpose of exercise: derivation of a very important quantity in spectroscopy.)

6.2 The frequency dependence of the absorption coefficient is often directly related to

the frequency dependence of ;. Discuss to what extent this is justified by evaluating

a(w) and €;(w) explicitly for a Kramers—Heisenberg DF with strong absorption.
(Purpose of exercise: prove an often used approximation.)

6.3% Specify the equations for the reflection from thin films on a substrate for
the case of a plane-parallel plate in vacuum and thus provide a proof for the Airy
formulae.

(Purpose of exercise: training in thin film optics.)

6.4 Show how the DF can be obtained from the magnitude and the phase angle for
field reflection.
(Purpose of exercise: gain experience with Kramers—Kronig transformations.)

6.5 Show explicitly that the Kramers—Kronig relation holds for a Kramers—Heisenberg
DF.
(Purpose of exercise: gain experience with Kramers—Kronig transformations.)

6.6 Show that the reflectivity from a Drude DF has a minimum for semiconductors
but not for metals.
(Hint: Study the simplified case for 7 = 00) and show that the reflectivity becomes
zero for w? = w?/(ex — 1) in this case.

(Purpose of exercise: use of the Drude DF.)

6.7 Give a proof of the sum rule for the real part of the conductivity for the Drude

DF and for the Kramers—Heisenberg DF of a polar phonon.
(Purpose of exercise: gain experience with sum rules.)

6.8 Show that /4 platlets generate circularly polarized light from linearly polarized
light by using the formalism of Jones vectors and Jones matrices.
(Purpose of exercise: gain some experience with the Jones formalism)
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Spectroscopy in the Visible and Near-Visible
Spectral Range

The spectral range where spectroscopy has been used for the longest time and
where it is still most often applied is the visible and near-visible. In this range
spectroscopy can be performed with the naked eye without any scientific in-
struments. However, even here, highly sophisticated experimental techniques
have been applied and have revealed many details about electronic struc-
tures. In the present chapter we review first some details about the quantum-
mechanical description of optical absorption and then apply this formalism
to absorption in systems with extended states such as semiconductors and to
systems with localized states like color centers, defect states and transitions
in molecular crystals. An introduction to luminescence processes is presented
in the last section. More details about the quantum-mechanical formalisms
used can be found in Appendices F.1 to F.3.

7.1 Quantum-Mechanical Description of Optical
Absorption

Optical absorption is dominated by the imaginary part of the DF. This is
true for the absorption across the energy gap in a semiconductor as well as
for the absorption by defects or by deep laying electronic levels. It is therefore
convenient to discuss first a general quantum-mechanical description of the
absorption process and then apply the results to various special configurations
in a solid.

The strength of an absorption process is determined by the quantum-
mechanical probability for the transition rate of a system, changing from an
initial electronic state i to a final electronic state f. In general the initial state
is the ground state and the final state is an excited state. The transition prob-
ability is proportional to the square of the magnitude of the matrix element
H{(0), where H' is the perturbation driving the transition. The transition en-
ergy is hwg. In the present chapter the perturbation is an EM radiation with
vector potential A(x,t). For small EM fields the perturbation is explicitly
given (in operator form) by

H. Kuzmany, Solid-State Spectroscopy, DOI 10.1007/978-3-642-01479-6_7, 129
(© Springer-Verlag Berlin Heidelberg 2009
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H/ — _EPA , (71)
m

where p is the momentum operator for the electrons. (For proof of this see
Appendix F.2). The wave functions and the matrix elements of the perturbed
system are usually obtained by first-order perturbation theory, as outlined in
Appendices F.1 and F.2. With the matrix elements H}(0) of the perturbation
the golden rule of quantum mechanics gives the probability for a transition
per unit of time

_ 2m|Hg(0)]?

Py 2

(wg — w). (7.2)

The matrix element H}(0) is evaluated from the time-dependent matrix ele-
ment of the perturbation

H = (f{H'i) = —— (f|pAl) (7.3)

The time-dependent part of this matrix element yields the ¢ function in (7.2)
(see Appendix F.2). It describes the density of allowed final states. The transi-
tion to these states is subjected to energy conservation. The time-independent
part leads to the multipole approximation. Within the dipole approximation
A= Age'*® is replaced by its amplitude Ag which yields

H5(0) = ——=(flpli) = ——pg (7.4)

In this case, the transition matrix element is given in the momentum repre-
sentation by the momentum matrix elements

(0;)s = —ih / ol =123 (75)
€L j

This yields for the j-component of the perturbation matrix element

eApih oY
(H)40) = 22 [ v St (76)
Note that these matrix elements are the components of a vector. ¥¢ and v; are
etgen functions of the excited state and of the ground state, respectively. The
transition matrix element Hf can be expressed in the dipole representation
(Appendix F.3) by replacing the momentum matrix element with the dipole
matrix element (M;)g. This matrix element is defined from

.om o om i
(pj)a = lwﬁ;(Mj)ﬁ = 1Wﬁ;/1/)f exj; dPx. (7.7)
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Again, the dipole matrix elements are vectors with =,y and z components.

Representing the square of the vector potential of the radiation by the
intensity I(w) = nAZeocow? the absolute square of the matrix elements of the
perturbation become

eI (w)|ps|*

H/ 2: fH/ 2:
gl = P = e

(7.8)
where n is the refractive index.

The 6 function on the right-hand side of (7.2) selects a single transition
and insures energy conservation. If there are several states in the immediate
vicinity of the initial and the final state, a summation is required over all states
with equal distance in energy. This is, for example, the case for transitions
between two energy bands.

For states which are characterized by a k vector conservation of momen-
tum requires, in addition, that Y k; = 0 where the sum extends over all
k vectors contributing to the transition process. Momentum conservation is
automatically fulfilled when the transition matrix element is evaluated.

From (7.2) the absorption may be evaluated as the ratio between the rate
at which energy is absorbed per volume V and the rate at which energy is
incident per unit area

_ thﬁ
(W)Y

a(w) (7.9)

This definition is equivalent to the formal definition given in (6.8). Using (7.2),
(7.4), and (7.8) we find

_ 27 €2|pﬁ|2

a(w) 0(hwg — hw) . (7.10)

V mieoconw

With (7.10) and the relationship between o and the imaginary part of e(w)
given by (6.12), the latter becomes

_ 27 |pal?

& (w) O(hws — hw) . (7.11)

V m3eow?

7.2 Absorption from Extended States in Semiconductors

Absorption by extended states plays a dominant role in semiconductors. The
transition for electrons from the valence band to the conduction band starts
abruptly for a quantum energy of the radiation Aiw which exceeds the energy
gap €. The corresponding increase of the absorption by several orders of
magnitude is called the fundamental absorption or the absorption edge. The
energies at which the absorption edges occur, range from several meV to more
than 10eV. Table 7.1 lists some examples.
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Table 7.1. Lowest energetic distance between valence band and conduction band

for various solids

crystal eg (eV)

crystal ez (eV)

crystal ez (eV)

aSn  0.08
PbTe 0.19
InSb  0.23
PbS  0.29
Big Te3 0.31
Ge 0.67
Si 1.10
InP 1.37

GaAs 1.47
GaP 224
NiO 2.3
CdSs 2.5
SiC 2.8
ZnSe 2.8

SrTiO3 3.3

ZnO 3.3
BaO 4.4
LiGaO3 5.2
CaO 6.5
Quarz 6.7
KCl1 8.69
Al, O3 10
KF 10.9

7.2.1 The Physical Background and the Shape of the Absorption
in Semiconductors

Figure 7.1 exhibits the absorption coefficient for three different semiconduc-
tors. It starts at a well defined energy and increases immediately like an edge
by several orders of magnitude. At higher energies the increase slows down
and characteristic structures appear. Details at the edge depend on the band
structure and the nature of the electronic transitions. In special cases, such
as for GaAs, the initial slope on an « versus w diagram is 1/2 when a double
logarithmic plot is used. The corresponding transition is called allowed and
direct. An allowed transition corresponds to a finite dipole matrix element

1

Fig. 7.1. Absorption coefficient a for the

3 4 5 semiconductors Ge, Si, and GaAs close to

the absorption edge; after [7.1]
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at the position of minimum distance between valence band and conduction
band. Direct transitions are possible if the maximum of the valence band and
the minimum of the conduction band occur for the same k vector, as shown
schematically in Fig. 7.2a. A structure on the band edge as, for example, in

Fig. 7.2. Direct electronic transitions between two simple bands (a) and indirect
transitions including the absorption or emission of a phonon (b); (VB: valence
band, CB: conduction band)

the case of Ge in Fig. 7.1 indicates phonon assistance for the electronic tran-
sition. This is always the case if the minimum of the conduction band and the
maximum of the valence band do not occur for the same k vector. An example
is sketched in Fig. 7.2b. The full arrow drawn from the valence band to the
conduction band indicates the transition with minimum energy. This case is
called an indirect transition. In the first step of the transition the electron is
excited to a virtual intermediate state where it stays for a very short time.
From there a phonon with wave vector gy}, is required to finally transfer it to
the real state for which energy and momentum is conserved.

The shape of the absorption curve beyond the edge is determined by tran-
sitions starting from deeper in the valence band or ending higher in the con-
duction band. Eventually also transitions into bands beyond the conduction
band or from bands below the valence band contribute to the absorption.
Analysis of structures in the absorption can give detailed information on the
shape of the bands.

The fundamental absorption is of particular interest. In this case, i and f
in (7.2) and (7.9) correspond to the valence band and the conduction band. In
addition, the electronic states are characterized by their k£ vector in the band,
and wave vector conservation is required for any transition. Since the wave
vector of the light is small compared to the wave vector of the electrons, k£ con-
servation is only possible for perpendicular (direct) transitions which means
kv + kc = 0 for any transition. In other cases like in Fig. 7.2b phonons must
assist to establish k-conservation. As shown in Fig. 7.2a the direct transitions
need not start at £ = 0. Since for a given energy difference many transitions
starting from various values for k are possible, the density of states in the
initial and in the final band are important.
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7.2.2 Direct and Allowed Transitions at the Absorption Edge

In this subsection we will study direct and allowed transitions in more detail.
Whether a transition is allowed or not depends on the symmetry of the initial
and final states. (Further discussion of this problem will be found in Chap. 8).
For example, transitions between s-waves or between s- and d-waves are dipole
forbidden. Transitions between s- and p-waves are dipole allowed. For the
evaluation of the matrix elements in (7.5) or in (7.7) the Bloch functions for
the valence-band electrons and for the conduction-band electrons

i = uy (r)elvT, Yy = uc(r)elker (7.12)

are required. The explicit evaluation of the matrix elements is difficult since
the exact band structure and the correct wave function must be known. Ap-
proximations such as free carrier wave functions instead of Bloch functions
are common. Details of such calculations can be found in special books on
semiconductor physics [7.2,7.3].

Since the matrix elements depend only weakly on the energy, the shape of
the absorption curve at the edge is mainly determined by the joint density of
states ooy (w) between the valence band and the conduction band. The joint
density of states ocv(w) is the density of states available for a given transition
energy fiw. Thus, the value of o obtained from (7.10) must be integrated over
all states in k space which satisfy the energy conservation. These states are
defined by the J function in (7.10). Since the § function is the only strongly
k-dependent part in the equation, the integration can be restricted to this
function.

ocv(w) = 827:3 S[hwov (k) — hw] d°k
= % / S[hwe (k) — hwy (k) — hw] &k . (7.13)

With this the absorption coefficient « is given by

_ 21 pev)?

a(w) ocy(w) . (7.14)

V mieoconw

In the case of absorption, hiw is the quantum energy of the incident light. For
a spherical band we can replace d3k by 4mk? dk and integrate explicitly using
the special property # 5 of the § function given in Appendix B.8 with

9(k) = hlwc(k) —wy (k) — ] .

The result is

(7.15)

2 € € -1
o) =V (Y7 -0
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If the band is spherical and parabolic the relations between € and k are !

h2k2 q h2k2 N
an €E§C = — €x .
CT omy T E

€y =
2mg;

From this the joint density of states for a crystal with the volume V results to

(2m3)*?

=V
oov(w) 2m2h3

hw — €5 . (7.16)

m, is the reduced mass obtained from the effective mass of the holes and of
the electrons in the bands.

This result agrees well with the observation of the square root depen-
dence of the absorption constant on the light energy described above. (See
Subsect. 7.2.1 for the direct allowed transitions). Thus, for this case a has the
form

a(w) = By/hw — € for hw > €g
=0 for hw < €, (7.17)
where B is a constant given from equations (7.2) to (7.16) by

_ e?(2my)3/? pevl.
127T5m(2)n5(2)coh3

7.2.3 Forbidden Transitions and Phonon-Assisted Transitions

A transition is dipole forbidden if the dipole matrix element is zero at k = 0. It
may be nonzero for other wave vectors. In this case an analysis similar to that
presented above yields for the energy dependence of the optical absorption

Qtorb (W) = C(hw — eg)3/? for hw > €g
=0 for hw < €. (7.18)

For semiconductors with an indirect band gap the energy dependence at
the absorption edge is still different. Famous examples are Ge and Si. For
Ge the valence band has its maximum at the center of the Brillouin zone
(I" point). The minimum of the conduction band is at the zone boundary (L
point). The difference in energy is only 0.67 eV. Electronic transitions between
the two points are only possible if a zone-boundary phonon is simultaneously
absorbed or emitted to balance the momentum-conservation. If the phonon is
absorbed, the net photon energy can be even smaller than the gap energy by
the amount of the phonon energy Af2. Therefore, in indirect semiconductors
the optical absorption starts at a quantum energy h{2 lower than the energy

1 If the bands are not spherical and parabolic k£ must be considered as a vector and
the derivatives with respect to k must be replaced by Vi
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gap. For light with a quantum energy higher than /{2 + ¢, phonon emission
and absorption are possible. Accordingly, a similar calculation as above yields

Qipdir = 0 for hw < € — RS2
_ A(hw — €5 + h12)?
exp(hf2/ksT) — 1
_ A(hw — eg + h12)?
exp(h2/ksT) — 1

A(hw — e — 112)?

1—exp(—h2/kgT)

With the light energy further increasing even direct transitions across the gap
at the I'" point may be possible. Quantitative details about the evaluation of
the absorption for forbidden transitions and for indirect transitions can be
obtained from [7.4].

Because of the selective behavior of the absorption information on the band
structure can be obtained from an analysis of the band edge. Since the lower
part of the edge is determined by phonon-assisted transitions even phonon
energies can be determined. This is a possibility to analyze nonzone-center
phonons. It works particularly well for indirect semiconductors at low tem-
peratures. Figure 7.3 shows the low-energy edge of the indirect semiconductor
GaP. Several acoustical and optical modes can contribute to the absorption.

for eg + 1f2 > hw > g — RS2

for hw > €5 + RS2. (7.19)

va (em™)

| (LO"+TA),

220 225 230 235 240
ho (eV)

Fig. 7.3. Low energy part of the absorption edge in GaP for three different tem-
peratures plotted as /a vs. light energy; (TO, LO: transversal and longitudinal
optical modes, TA, LA: transversal and longitudinal acoustic modes); the dashed
lines are guides for the eye; after [7.5]
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The structures are particularly prominent for the data at 77 K. The subscripts
A and F identify the symmetry of the phonons to be discussed in Chap. 8.

7.2.4 Absorption from Higher Transitions

For excitation of the solid with energies higher than ¢, transitions into higher
bands become important, as well as vertical transitions at positions in k space
where the energy separation is larger than the gap. In this case structure in the
absorption function is obtained for energies where the joint density of states
(7.13) has singularities or critical points. These points are called van Howve
singularities in analogy to the singularities in the phonon density of states.
The gaps are assigned as My, My, Ms or M3 depending on their analytical
structure in k space. My gaps refer to local minima, M; and M, to saddle
points, and M3 to maxima in the band-to-band distance for a given k vector.
Figure 7.4a shows the measured and the calculated imaginary parts of the
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Fig. 7.4. Imaginary part of the DF for germanium, (—) as measured [7.6], and
(---) as calculated [7.7] (a) and band structure of germanium; after [7.8] (b)

dielectric function for Ge. The assigned transitions correspond to the critical
points in the corresponding density of states. The Arabic and Greek letters
identify points in the first Brillouin zone where the transitions occur. (For
the assignment of symmetry points and symmetry directions in the Brillouin
zone see also Sects. 8.4 and 12.4.) The discrepancy between the experimental
result and calculation for the A3 — A; transition is artificial. The splitting of
the band in the experiment is due to a spin-orbit interaction which was not
taken into account in the calculation. The corresponding band structure with
the symmetry points is displayed in Fig. 7.4b.
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7.3 Absorption from Localized States

In addition to band-to-band transitions, also transitions between localized
states can be important even for solids. These transitions may be intrinsic to
the solid such as excitons or transitions between molecular units in the crystal
or they may originate from crystal point defects. As will be discussed below,
the basic concepts are the same as those considered in the last section but
experimental features and quantitative formulations are different.

7.3.1 Absorption of Extended and Localized Excitons

In classical semiconductors exciton absorption occurs close to the fundamen-
tal absorption. Thus, excitonic features as well as phonon sidebands can cover
the true shape of the fundamental absorption. Excitons are fundamental and
intrinsic excitations of electrons (or holes) for which a certain amount of
Coulomb interaction between the electron and the hole is retained. Differ-
ent types of excitons are defined depending on how far apart the electron and
the hole are. Weakly bonded excitons where the two particles are separated
by many lattice constants are of the Wannier—Mott type. Strongly bonded
excitons which correspond to highly localized pairs are of the Frenkel type.
In classical semiconductors excitons are of the Wannier-Mott type because
the high dielectric constant strongly shields the Coulomb interaction and the
effective masses are usually much smaller than the free electron mass. Frenkel
type excitons are usually observed in wide-band ionic semiconductors, molec-
ular crystals, or noble-gas crystals. The electronic states of Wannier-Mott
excitons are schematically shown in Fig. 7.5a. They are well described by a
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Fig. 7.5. Energy levels for exciton transitions in a semiconductor (a) and exciton
absorption for CuO2 at 77 K, plotted as the logarithm of the transmission T’
after [7.9] (b). The down-arrows in (a) indicate the binding energy
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hydrogen model using the reduced mass m;} = mim; /(m} + m;) where m}
and mj, are the effective masses of electrons and holes, respectively. Counting
the binding energy from the bottom of the conduction band downwards yields

* 4
1 mye

S S n=123,... 7.20
n? 2h2(477650)2 ( )

6eexc =

Similarly, the radius aex. of the exciton is obtained from

EMyo 47Th260

(7.21)

Qexc =

m¥  mge?

Except for the factor emg/m} the right-hand side of (7.21) is equal to the
Bohr radius of the hydrogen atom. Exciton binding energies are usually a few
meV. Figure 7.5b shows the exciton absorption of CuOs measured at 77 K.
The different absorption lines correspond to different values for n in (7.20).

Wannier-Mott excitons are extended, neutral, and highly mobile particles
which have a momentum k., and kinetic energy €., subjected to a dispersion
relation €qy(kex). In contrast to electrons and holes excited to the bands, exci-
tons do not contribute to photoconductivity. They are observed in absorption
as well as in emission. Thus, they will be further discussed in Sect. 7.6.

For non-metallic solids with a low dielectric constant like noble gases or al-
kali halides the exciton energies can be more than one eV with binding energies
of several 10 meV. The oscillator strengths are also larger, and the reflection
or absorption spectra are dominated by exciton series. In Fig. 7.6a,b a typi-
cal absorption spectrum for KBr is shown together with the band structure.
Obviously the I excitons and the L-excitons are more strongly expressed than
the band transitions at I (1"135/2 — I") and the L-band transitions (Ls — Lo
and Lg/ — Ll)

7.3.2 Absorption by Defects

Electronic transitions between two localized states in the gap are also very im-
portant. Such states originate from defects like impurity atoms, vacancies, or
interstitials. We already saw some examples in the case of Cr ions in Al;O3 or
for the various attributes to the filter glasses. In general in many of these cases
luminescence turns out to be of more practical importance but absorption is
more fundamental. The color centers played, for example, a fundamental role
in the early days of solid-state spectroscopy. In particular, color centers in al-
kali halides have been studied in depth. They consist of lattice defects which
develop special optical properties by capturing an electron. The most promi-
nent example is the F-center in NaCl which has an absorption line at 480
nm. As shown in Fig. 7.7, it consists of a Cl-vacancy which has captured an
electron. The dipole transitions of this electron determine the absorption. The
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Fig. 7.6. Optical density for KBr measured at 80 K (a) and band structure for
the corresponding lattice (b); after [7.10]
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Fig. 7.7. Color centers in alkali halides; F-center (a), Vi-center (b)

same lattice defect occurs in other alkali halides with absorption at a slightly
shifted position. The positions for maximum absorption of the F-centers de-
pend quadratically on the inverse of the lattice constant:

Tiwmax = Cd 2. (7.22)

This is known as the Molwo relation.

The other defect shown in Fig. 7.7 is the famous Vy-center. It is represented
by a Cl, molecule or, in other words, by two Cl~ ions which have captured a
hole. The absorption line for the Vi-center is in the UV spectral range.

Experimental results for the optical absorption from F-centers in various
alkali halides are presented in Fig. 7.8. At these low temperatures the vibronic
sidebands to the electronic transitions are prominent as discussed in the next
section. LiF has the lowest and NaCl the highest vibronic coupling. This type
of absorption spectra are also observed for impurity states in semiconductors
and for molecular crystals like anthracene or benzene. In the latter systems the
excitations remain localized due to weak interactions between the molecules.

Color centers can be generated by irradiation of crystals with UV light
or with x rays. Historically they were the first systems in solids for which



7.4 Theoretical Description of Absorption by Localized States 141

LiF KCI
2
@
c
<]
T
8
a
° L
360 370 380 390 710 720 730 740
2 | Ker NaCl
c
X Fig. 7.8. Optical absorp-
= tion for the F-center in var-
% ious alkali halides at 4.2 K;
o after [7.11]. The strong lines

at the long wavelength sides

780 790 800 810 820 560 580 600 620 640 . ., spectra are the 0-
Wavelength (nm) Wavelength (h"m)  phonon transitions

theoretical concepts could be compared with experiments. For a long time such
investigations were purely academic. However, recently, light emission from
color centers has found an interesting technical application in the development
of lasers.

7.4 Theoretical Description of Absorption by Localized
States

For a theoretical treatment of the absorption from color centers as well as for
absorption from the other localized states (7.10) from Sect. 7.1 is an appropri-
ate starting point. Using the dipole matrix elements instead of the momentum
matrix elements we start with
21 w2 | Mg|?

af = v%é(h&)ﬁ — hw) . (7.23)
In this case the matrix element is the crucial term for the energy dependence.
Since the localized state has no periodicity, Bloch functions cannot be used to
evaluate ag. In contrast to the behavior of extended states, any change in elec-
tronic structure due to excitation leads to a change in the local configuration
of the center. The center relazes as a consequence of the excitation. This phe-
nomenon is represented by a configuration interaction since in a calculation
the relaxed state is represented by a superposition of different configurations.
Identification of the relaxed state is crucial since in (7.3) |i) corresponds to
the wave function for the ground state but (f| to the wave function for the
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relaxed excited state which is not simply equal to the wave function for the
state (f| in the ground-state configuration. This situation implies that for the
calculation of the matrix elements wave functions are required which describe
both the electrons and the lattice.

In addition, changes in local geometry induced by phonons contribute
to the energy of the localized state and to the matrix elements much more
strongly than was the case for the extended states. These local lattice vibra-
tions are called vibrons. In contrast to phonons, they do not have a wave
vector and thus wave vector conservation is not required. Therefore, vibra-
tional contributions to the electronic transitions are the rule rather than the
exception.

Referring to the situation described above the wave functions must de-
scribe the vibronic and the electronic system simultaneously. Calculations of
this generality cannot be performed, and one relies on good approximations.
The most important simplification is the adiabatic or Born—Oppenheimer ap-
proximation where the total wave function ¢ (r, R) for electrons with the co-
ordinates r and atoms with the coordinates R is factored into a wave function
for the electrons ¢(r, R) and one for the atoms p(R).

P(r, R) = o(r, R)p(R) . (7.24)

The wave function for the electrons may still contain the atomic coordinates
R as a parameter. Then, the eigenvalues for these wave functions will also
depend on R. The wave functions for the atoms are harmonic-oscillator wave
functions. (For a summary see Appendix F.4). A further simplification is ob-
tained from the Condon approximation. Here the matrix elements for the pure
electronic transitions are assumed to be independent of the atomic coordinates
R. In this case we can write the dipole matrix element (7.23) as

(M;)a

e [ 6 (R Ry, Rop (R X

()6 [ o (BIp(R)EX (7.25)

where (M ;l)ﬁ is the pure electronic matrix element. Note that the integral
on the right-hand side of the equation is not zero even though integration is
performed over a product of two different harmonic-oscillator wave functions.
The two oscillators are different as one is in the ground-state configuration
and the other in the excited-state configuration. This situation is conveniently
described by the adiabatic potentials expressed in a configuration coordinate
Q. The configuration coordinate (given in meters) is similar but not identical
to a normal coordinate (given in meters/y/kg). The adiabatic potentials for the
excited state Uy can be obtained from the adiabatic potentials for the ground
state U; through a Taylor series expansion and by adding the transition energy
eg for the unrelaxed system.
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[ i § ahQ Fig. 7.9. Adiabatic potentials for the

i i ground state i and for the excited state f as
Q=0 AQ Q a function of the configuration coordinate

Ui(Q) = M2?°Q?/2  and
Ur(Q) = Ui(Q) + 5 + AQ = e5 + AQ + M2°Q?/2 . (7.26)

A = 0U;/0Q describes the linear coupling between the excited electronic state
and the lattice. The oscillator frequency (2 is assumed to be the same for the
ground and the excited states. The right-hand side of (7.26) is the potential
for a harmonic oscillator up-shifted in Q by AQ = A/M 2? and down-shifted
in energy by Ae = A?2/2M 2. Accordingly, the adiabatic potentials can be
drawn as in Fig. 7.9. The configuration coordinate is assumed to be zero for
the minimum of the ground-state oscillator. At this point it is convenient to
introduce another dimensionless coupling constant a by

A A 1/2

a is called the Franck—Condon or electron-vibration coupling constant. With
this the magnitude of the shift for the excited-state oscillator is easily evalu-
ated from (7.26) and (7.27) as

N
AQ =a (]\4(2) . (7.28)

Thus, the Franck—Condon shift AQ is another signature of the strength of the
electron-vibron interaction.

The final approximation for the calculation of the absorption utilizes the
so called semiclassical Franck—Condon principle. According to the latter the
electronic transition from i to f is so fast that the atoms do not have time to
relax into the state f. As a result, with respect to the relaxed excited state,
the electrons end up in a higher vibronic state.

The quantum-mechanical eigenvalues for the motion of atoms in the adi-
abatic potentials of Fig. 7.9 are

€ia = (@ +1/2)R02,
erp = (B+1/2)h02 + e — a®h2/2 . (7.29)

The last term in (7.29) describes the decrease in transition energy due to re-
laxation. It is easily evaluated from the excited-state oscillator by considering
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the loss in energy for a shift of AQ. The horizontal lines in Fig. 7.9 give the
vibronic excitations for the ground state i and for the excited state f in units
of If2. a and ( are the vibronic quantum numbers.

Instead of the coupling a sometimes the quantity

a

S 7 (7.30)
is used. S is called the Huang—Rhys factor.

The transition shown in Fig. 7.9 is not the only one which can occur.
From each vibronic state « a transition to a vibronic state § is possible, and
the probability for this transition is given by the square of the corresponding
matrix element (7.25). Thus, the d-function in (7.23) must be replaced by
d(erp — €1q — hw). The matrix element is a product of a pure electronic part,
and the overlap integral for the ground-state and excited-state harmonic oscil-
lator wave functions. The latter are usually given in terms of the dimensionless
quantity ¢ = x4/M 2/ which has exactly the same structure as the Franck—
Condon coupling constant @ in terms of the shift AQ of the configuration
coordinate. Thus, the wave functions in (7.25) are expressed by Hermite poly-
nomials, as outlined in Appendix F.4, for @ normalized to ¢ = Q+/M2/h.
The arguments for the ground-state and for the excited-state functions are ¢
and q + a, respectively. The relevant integrals

(Blo) = Fpo = /pE(q + a)pa(q)dg (7.31)

are called the Franck—Condon integrals. They can be evaluated analytically
in terms of the associated Laguerre polynomials and are given in Appendix
F.4. The Franck—Condon integral for o = 0 is

a® exp(—a?/4)

Fgo = (—-1)° ETIRE (7.32)

To obtain the observed absorption all transitions from the state i with
various values for « to the state f with various values for 8 must be considered
with their individual matrix elements. For zero temperature only the state
with o = 0 is occupied in the ground state. Thus only contributions from
a = 0 to the various values of 3 have to be considered in the §-function of
(7.23). Hence, the absorption has the form

as(w, T = 0) = K|Mg'>> " |Fao|*0(ees — €10 — hw) (7.33)
B

where K represents the constant factor in (7.23) and M§1 is the appropriate
component of the dipole matrix element, determined by the polarization of the
light. Contributions to the absorption for the different transitions are indicated
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Fig. 7.10. Optical absorption of a localized state in relative units for 7'= 0 and
various values of the electron-vibron coupling

in Fig. 7.10 for various values of the Huang—Rhys factor. The figure shows
clearly that the strongest contribution to absorption does not necessarily come
from the 0-0 vibronic transition. In fact, it shifts to higher values of 8 with
increasing electron-phonon coupling. This is due to the dependence of the
maximum overlap between the wave function for a = 0 and arbitrary values
of B on the magnitude of the shift in the configuration diagram of Fig. 7.9.
For a practical calculation the ¢ function in (7.33) may be replaced by an
oscillator with a certain damping constant .. This yields for the absorption

, — Kl (Ve/m)| Fpol?
o (w, 0,7e) = K| Mg | zﬁ: [hw — (e5 — a2h82/2 + BR)Z +12

(7.34)

For finite temperatures several vibronic levels in the ground state are occu-
pied. Therefore the results of (7.33) and (7.34) have to be extended to finite
values for o and a thermal averaging must be performed. Thermal averag-
ing means that the contributions from the various vibronic states a must be
included and weighted by their thermal occupation. A distribution of the form

W (e, T) = exp(—ah2/kgT)

is appropriate for the averaging. Thus, the temperature- and frequency-
dependent absorption is finally obtained from

ag(w,T) = KM Y "W (o, T)|Fapl?6(c s — €ia — hw) . (7.35)
B,

The equations derived above are only valid for the case of a linear coupling
as assumed in (7.26). If A becomes zero, which may happen for symmetry
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reasons, quadratic coupling must be considered. In this case the difference
between the harmonic oscillators in the ground state and in the excited state
is important.

7.5 Crystal Field and Ligand Field Induced Absorption

Very often the color centers are not intrinsic like vacancies or interstitials but
rather consist of an extra atom or several atoms in a certain charge state which
act as a chromophore. In such cases where the relevant electronic structure is
still localized, it is convenient to consider first the electronic structure of the
atom and study subsequently the influence of the crystalline environment. If
the chromophoric ion or radical binds to a set of other atomic groups as neigh-
bors the latter are called ligands and the electric field generated by the ligands
is the ligand field. In an useful model the ligands are replaced by character-
istic charges which are arranged symmetrically around the chromophore and
generate the crystal field. The symmetry of the crystal field breaks the sym-
metry of the chomophore and group theory as it will be discussed in the next
chapter, determines which transitions are allowed. The crystal field model or
ligand model also holds if the chromophore is not an impurity but a part of
the lattice.

o - B oo B

3dxy 30, 3dy, 3dea-y

Fig. 7.11. Electron density for atomic d-orbitals (a), C=N ligands surrounding
an Fe?T ion (b), and the resulting splitting of the fivefold degenerated d-level
(c). The new levels in (c) are assigned by their Mullikan symbols e4 and ta4 as
they will be discussed in Chap. 8

Chromophores which were intensively investigated are transition metal
ions where the d-electrons are responsible for the color. Such systems are
often encountered in minerals but they can also be used as laser crystals. In
an atom the d-orbitals are fivefold degenerated and have the shape as shown
in Fig. 7.11a. Inserted into a crystal the degeneracy is lifted and the levels
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split according to the reduction of symmetry. In the following description some
results of the chapter on group theory are anticipated.

A good example for ligand field splitting is [Fe(CN)g]*~ as it occurs in
potassium ferrocyanide. Here the Fe?* ion is the chromophore which is sur-
rounded by the six ligands C=N or six corresponding charges in an octahedral
arrangement as depicted schematically in Fig. 7.11b. With the ionization Fe
is left in a 3dS state. In the octahedral crystal field the fivefold degenerated
d-orbitals are first upshifted by the Madelung energy and then split into a
downshifted threefold degenerated to, state consisting of the original dyy, dz.-,
and d, . orbitals and into a further upshifted twofold degenerated e, state con-
sisting of the original d,» and dg2_,> orbitals. From the total splitting energy
A, a fraction of 3/5 is used for the upshift and 2/5 are used for the down-
shift. A, is the crystal field parameter. The index o stands for octahedral 2.
For crystal fields of other symmetries corresponding indices are in use. If the
symmetry of the CF is lower than cubic more than one crystal field parameter
is required for a proper description. The value of the CF parameter depends
on the charges of the ligands and in particular on the distance of the charges
from the chromophoric ion.

The upshift of the d.2» and d2_,> orbitals can be understood from purely
electrostatic considerations. The electron density for both orbitals is oriented
along the coordinates and thus points directly to the ligand charges. This
means they feel the CF strongest. In contrast the d,,, d,., and d,. electron
densities are arranged in dihedral directions to the coordinates and thus the
interaction is relaxed. Applying similar arguments to a tetrahedral or cubic
crystal field leads to a reversed result. d.» and dg2_,» shift downwards and
the dgy, dg-, and d,,, orbitals are upshifted.

The difference in energy obtained from the up-shift and down-shift of the
levels is the crystal field stabilization energy. To evaluate this energy it must
be known which levels are occupied by the electrons. This is determined by
Hund’s rules and leads for low CFs to the so called high spin state where the
spin multiplicity is maximum. (As many spins are parallel as possible). For
high CFs the energy gap between lower and upper level is too large and the
lower level states become double occupied before the electrons go to the upper
level (low spin state). The CF stabilization energy egap for the octahedral CF
is

Estab = nu§A0 - mng , (7.36)

5 5
2 In the special literature the crystal field parameter is often given in units Dq.
A; = 10Dq, for i equal o, t, or ¢ for octahedral, tetrahedral or cubic crystal fields.
Dq stands for the product of an expression D which contains the charge of the
ligand and the distance of this charge to the central atom and ¢ represents the

average of the 4th power of the radial distance of the d-electron from the nuclei.
For details see [7.12].
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where n, and n; are the occupancies of the upper and lower electron levels.
In the case of [Fe(CN)g]*~ we have a high CF and thus a low spin state where
all 6 electrons occupy the lower ¢y, levels. This means n, = 0,7 and the CF
stabilization energy is 12/5 A,.

Electronic (dipole) transitions are allowed between the split states if the
symmetry of the corresponding wave functions yield finite dipole matrix ele-
ments and if the states are properly occupied. In the case of to4 and e, levels
transitions are symmetry allowed in the octahedral group which means op-
tical absorption can take place and the transition energies are in this simple
one electron picture equal to A,. In reality several additional interactions
like electron-electron correlation, spin-orbit coupling, spin-spin coupling, and
others must be considered to explain the observed spectra in detail.

The absorptions (and luminescences) of ruby crystals (a-AlyO3:Cr3+) are
one of the best investigated ligand filed systems. a-Al,Og crystallizes in the
trigonal space group R3c(D$,) and the chromium ions replace some of the Al
cations. The 6 oxygen anions are arranged in CrOg octahedra and provide a
corresponding ligand field. This field splits the highly degenerate many elec-
tron ground state * Iy /2 into Agg, Thy, and Ty, levels as indicated in the insert
of Fig. 7.12. Transitions from As, to T, and to T4 are allowed. The main
part of the figure shows the corresponding absorption spectrum of ruby be-
tween 1.5 and 4 eV for two directions of light polarization. The dependence of
details of the response on the orientation of the electric field is a consequence
of the crystal field which further reduces the symmetry around the chromium
ion from Oy, to Cs.
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Fig. 7.12. Absorption spectrum for a synthetic ruby crystal a-AlO3(Cr®T)
for two different orientations of the field vector with respect to the threefold
axis. The insert shows the splitting of the many electron *F ground state in
an octahedral ligand filed established by 6 oxygen ions; modified from [7.13]
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7.6 Luminescence

Luminescence is in some sense the inverse of absorption. Whereas in absorp-
tion a light quantum is destroyed by the excitation of an electron, luminescence
is a consequence of the radiative recombination of the excited electrons. In
competition with luminescence other, non-radiative recombination processes
may occur. For luminescence to be efficient the radiative recombinations must
dominate over the non-radiative recombinations.

Luminescence from solids is not only of scientific but also of considerable
technological interest. There are two main reasons for this:

1) Luminescence is the basis for the construction of solid-state lasers. This is,
in particular, true for luminescence from impurity states in semiconduc-
tors.

2) Luminescence from inorganic and organic semiconductors is important for
displays in electronic equipment and nowadays even for lamps.

The process of luminescence requires a non-equilibrium carrier concentra-
tion in the electronic bands or in the electronic states of a defect structure.
If the non-equilibrium is obtained by irradiation with light the radiative re-
combination is called photo luminescence, if it is obtained electronically, for
instance, by forward biasing a p-n junction, it is called electro luminescence.
In Fig. 7.13 several possible processes for radiative and nonradiative recom-
binations are illustrated. The first three radiative processes and the last non-

1 2 3 4 56 6 7 8

T T
“y-ir -
D ;t radiative
3" transitions
A
Fig. 7.13. Radiative and nonradia-
tive recombination processes for ex-
LR nonradiative cited electrons; (E: exciton, A: ac-
transitions ceptor, D: Donors, Tr: trapping cen-

ter, R: recombination center)

radiative process are intrinsic, whereas for the others at least one impurity is
required. Reactions 1 and 2 are band-band recombinations which are usually
not very efficient, reaction 3 is the exciton luminescence already mentioned.
Reaction 6 gives rise to donor-acceptor pair spectra, as will be discussed be-
low. The trapping centers labeled Tr in the figure can be very efficient for
luminescence since they can first capture and localize an electron or hole
which then strongly increases the probability of capturing the other partner
for the radiative recombination. The last type of radiative recombination is
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particularly important for laser processes in the visible spectral range and for
chromophores in organic crystals.

Nonradiative recombination occurs either via recombination centers or by
Auger processes. Recombination centers are usually deep impurity levels close
to the center of the gap. In Auger processes the energy released as a conse-
quence of the recombination is transferred to another electron. This electron
gets excited into a higher state in the band from where it can stepwise return
to its ground state without radiation. Auger processes represent a very general
phenomenon and occur in many different configurations® For example, the ra-
diative recombination from the band states to the impurities in Fig. 7.13, #4
and #5 have to compete with the corresponding Auger processes. The likeli-
hood of Auger processes increases as the electrons become closer in space, that
is as the electron density increases. In an n-type semiconductor the probability
of an Auger process is proportional to n?p = nnl2 For carrier concentrations
n > 108 ecm™3 Auger recombination is usually dominant. This is a serious
problem for the construction of efficient electro-luminescence devices. To ob-
tain a large number of active species high concentrations of electrons and holes
are required. The increase in the concentrations is unfortunately limited by
the onset of Auger recombination.

The dominant process for the recombination is determined by its lifetime
in the excited state. The process with the shortest life time wins. The quantum
efficiency for a radiative transition is defined as

B 1/tr T
T Um+1/n trtm’

(7.37)

where 7g is the life time of a radiative transition and 79 that of a nonradiative
transition.

7.6.1 Luminescence from Semiconductors

Luminescence from semiconductors is particularly important. Van Roosebroek
and Shockley provided the first reasonable useful theory in 1954 for the lifetime
of excited quasi-particles [7.14]. Basically, the same relationships are valid for
emission from a luminescence transition as for emission from a black body. The
equilibrium between absorption and emission must be retained. For example,
the band-to-band emission starts for an energy which corresponds to the band
gap. The lifetime for this transition is strongly dependent on the magnitude
of the gap. According to van Roosbroeck and Shockley it is well described by

788 = Cexp (k;gT> . (7.38)

3 For more about Auger processes see also Sect. 12.3.
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This implies that the band-to-band luminescence becomes very weak for trans-
parent crystals. The line shape of the luminescence or, in other words, the
luminescence spectrum is obtained from

I(w) = C'a(w) exp (_g"T) , (7.39)

where a(w) is the absorption constant. This equation clearly reveals the con-
nection between absorption and emission. All relations for absorption obtained
above can therefore be used for evaluating emission as well.

Basically, the lifetime for a radiative process is much shorter for a semicon-
ductor with a direct gap compared to semiconductors with indirect gaps. This
is true at least for band to band emission. Therefore, initially semiconductors
with a direct band gap were preferred as sources of electroluminescence. Typ-
ical examples of such sources are the I1l-V compounds such as GaAs for which
a reasonably good technology has been developed. Most of these compounds
are direct semiconductors but unfortunately their gap hardly reaches the red
spectral range. Many of the III-V compounds are actually narrow gap semi-
conductors such as InSb. With decreasing size of the atoms the gap widens
and can even extend into the green spectral range for GaP. Unfortunately,
here the band structure has changed to an indirect configuration with a very
low efficiency for luminescence.

In order to avoid the problem with indirect gaps localized states can be
included into the luminescence process. The nitrogen impurity in GaP is a well
known and important example. Since nitrogen is isoelectric to phosphorus it
creates only a very shallow impurity state just below the conduction band.
Luminescence from this level has nearly the same energy of 2.22 eV as the band
gap for pristine GaP (e; = 2.24 V). Since the state of the N-center is localized,
momentum selection rules are of no relevance and the luminescence efficiency
can be high. Also, nitrogen is neither an acceptor nor a donor but rather a
trapping center which enhances the cross section for radiative recombination
even further.

Enhancement of luminescence in indirect semiconductors like GaP is also
possible by collecting recombination light from donor—acceptor pairs. Realistic
examples are depicted in Fig. 7.14. The GaP crystal in (a) was doped with
Cd acceptors and S donors. In addition to these two impurity levels the Cd
atoms generate an impurity complex Cd-O which gives rise to hole excitons.
An observed broad photo-luminescence around 1.83 eV comes from the exciton
and a luminescence at 1.78 eV originates from the pair recombination between
Cd-O complex and Cd. A green luminescence is observed between the S donor
and the Cd acceptor, again by pair recombination.

A similar luminescence pattern can be observed for Te (donor) and Zn (ac-
ceptor) doped and forward biased GaP p-n junctions as depicted in Fig. 7.14b.
The red emission is assigned to a Zn-O (or Zn-O — Zn) pair band and the green
emission to a pair recombination involving the Te donor.



152 7 Spectroscopy in the Visible and Near-Visible Spectral Range
(@) (b)

€ par | i
o red) (green} i
| infrared red green .

O35 97 19 21 23

Photon energy (eV)

Intensity (photons)

Fig. 7.14. Electronic level diagram for a Cd and S doped GaP. ¢,, €a, and ep
are the binding energies for the exciton, the acceptor, and the donor, respectively.
(a); after [7.15]. Emission spectrum from a GaP p-n junction with Te, (donors)
and Zn (acceptors) (b); after [7.16]

The donor-acceptor pair luminescence can have an interesting structure
if there remains a Coulomb interaction between the charged donors and the
charged acceptors and if the emission lines are enough narrow. Well known
examples are pairs of Zn and O discussed above, or Si and Te in GaP. Figure
7.15 represents the electronic levels for the Zn and O doped crystal in (a) and
the pair spectrum for Si/Te at 1. 6 K in (b). Independent Zn and O impurity

a) b) J
( © 80 T=16K
€,+€,=0.124 eV
0.89 ev 0.3 SV z‘ 50 i
_L_ 3
2 40}
1.27 eV 1.8 eV =
observed 20
1 0.06ev 0.04 eV . . , . . h
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Fig. 7.15. Energy levels for Zn and O in GaP (a), and pair spectrum for GaP
doped with Si/Te complexes (b). The numbers at the peaks are distances in units
of the lattice constant; adapted from [7.17]

levels have an energetic distance of 1.27 ¢V and would give rise to luminescence
in the IR. If the impurities are close enough in space they interact and the
energy level separation rises to 1.8 eV. Thus, the luminescence is shifted to the
visible and strongly enhanced due to the interaction. The exact difference in
energy depends on the strength of the interaction and is therefore determined
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by the spatial distance between the two impurity centers. The luminescence
resonates in this case for the energies
2
e

hw; =€; — (€4 +e€p) + (7.40)

dmeeor;
The last term in the equation represents the Coulomb interaction between the
donor and acceptor for a distance r;. Since r; are multiples of the lattice con-
stant this term gives rise to a long series of sharp lines on the high-frequency
side of the luminescence spectrum. It can be observed experimentally for emis-
sion at very low temperatures as shown in Fig. 7.15b.

The interaction between impurity centers can give rise to other phenom-
ena. At low temperatures a radiative transition can be effective between donor
D and acceptor. At higher temperatures the electrons from the donor state

kg T D'
D
Fig. 7.16. Thermal quenching of a lu-
minescence from a donor-acceptor re-
combination; (D,D’: donors, A: accep-
A tor)

can be drained to another donor state D’ from where they recombine nonra-
diatively (Fig. 7.16). In this case the luminescence will be quenched for higher
temperatures.

Another thermodynamically interesting phenomenon originates from an
interaction between excitons in highly excited semiconductors. Excitons ex-
hibit a luminescence close to the band gap energy. At low temperatures and
for high excitations the excitons interact strongly and can even condense into
a liquid state. Exciton droplets grow and the exciton luminescence changes
suddenly. This is due to the high carrier concentration in the droplets which
shields the Coulomb interaction. As a result, the excitons are not stable any
more and decay into an electron-hole micro plasma. This plasma has a charac-
teristic recombination spectrum different from that of free excitons. An exam-
ple is presented in Fig. 7.17 for highly excited Ge at three different tempera-
tures. For the given excitation 2.78 K is above the condensation temperature.
Thus only the line for the free excitons at 714.2meV is observed. At 2.52K a
new strong line at 709.6 meV suddenly appears which corresponds to excitons
in the droplets. However, the emission from the free excitons is still there.
For still lower temperatures like 2.32K it has completely disappeared, and
the droplets are the only radiating species. Exciton droplets have only been
observed for indirect semiconductors since it is only in these systems that a
high enough concentration of excitons can be obtained. Direct semiconductors
form bound exciton states (exciton molecules) at high excitation.
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Fig. 7.17. Luminescence of Ge at low temperatures and high excitation; after
[7.18]

Very strong efforts were applied to the enhancement of luminescence in-
tensity and to shift the emission into the blue spectral range. The former was
possible by using semiconductor hetero p-n junctions, particularly for the III-
V compounds. In a hetero p-n junction a semiconductor with a slightly smaller
gap is squeezed inbetween two semiconductors with a larger gap. Then, for
the forward biased junction, electrons an holes are confined to the small area
of the junction and radiative electron-hole recombination is enhanced. If the
junction is very narrow, a quantum well is formed where recombination is even
further enhanced. For more details see Appendix F.5 and Refs. [7.19,7.20].

The shift of the emission into the blue spectral range was managed by
GaN derived III-V semiconductors. GaN is a semiconductor with a direct gap
of 3.5eV between the conduction band and the highest valence band at the I’
point. The valence band is split by the crystal field (6 meV) and by spin-orbit
coupling (37 meV).

Luminescence diodes are already commercialized and used for illumination,
traffic lights, or all sorts of display panels. Even diodes from organic material,
so called OLEDs (organic light emitting diodes) which can be printed or spray
deposited are ready for use and promise very low price applications. Figure
7.18 depicts some examples from the colorful field of light emitting diodes.

7.6.2 Luminescence from Point Defects in Insulators

The relation between absorption and emission is valid for point defects as for
extended states. This means, in particular, that we can apply the adiabatic
approximation and the Franck—Condon principle to study the luminescence
from point defects. The corresponding processes can be described with the
same adiabatic potentials, as shown in Fig. 7.9 and redrawn in Fig. 7.19 for
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Fig. 7.18. Demonstration of light emitting diodes: Illumination of the Stone
Bridge in Regensburg (Germany) with 142 red, green and blue diodes made
from III-V nitride semiconductors (top); after [7.21]. Pulsed laser light emission
from an InGaN multi-quantumwell laser (center); after [7.19] and blue, green
and red light panels from organic light emitting diodes (bottom); after [7.22]
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the case of luminescence. The origin of the transition processes is however
different. Although absorption can start from any vibronic level « and can
end at any vibronic level 3, emission always starts from the lowest vibronic
level 8 = 0 in the lowest excited state. This is independent of the level to
which the electron was excited by the incident light, and is well established
experimentally. It is known as Kahsa’s rule and due to the overlap of the wave
functions between the excited state and the ground state. Note that the most
likely transition occurs between two singlet states (S, S1) which implies spin
conservation. This is true for absorption as well as for emission from the S;
state, as shown in the figure. The spin of the absorbed or emitted photon is
converted to an angular momentum of the electron as Al = 1 is required for
this type of optical transition.

Radiative and non-radiative processes are in competition here likewise as
for transitions from extended states. The situation is well described by the
Jablonski diagram (Fig. 7.20). If no paramagnetic centers are present, the
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2 ¢ a2 ized states; (IC: internal conversion,
So 4 § 4V ISC: intersystem crossing, S;: sin-

glet states, T;: triplet states)

ground state is, in general, a singlet Sg. The excited states are again sin-
glets Sy, So, S3, etc. combined with any vibronic state (. From this state
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the excitation relaxes at first mainly by an interaction with the lattice into
the corresponding pure electronic state with 5 = 0. Now, the next lower
electronic state with a high value for 8 becomes occupied by a process of in-
ternal conversion (IC), and relaxation into the corresponding state with 5 =0
starts again. This process continues until the lowest excited electronic state is
reached (state Sy in Fig. 7.20). From there three processes are possible. Either
the relaxation via the lattice continues and the electron returns to the ground
state without radiation, or it returns to the ground state by emission of a pho-
ton or, alternatively, it undergoes a process of intersystem crossing (ISC) with
a spin flip to a triplet state and finite 3. After relaxation to the lowest triplet
state it either recombines radiatively to the ground state or nonradiatively
via another internal conversion. The radiative recombination from the singlet
state is very fast. It occurs spontaneously within picoseconds or nanoseconds
and is called a luminescence process. The radiative recombination from the
triplet state is considerably delayed since it involves a spin flip. It occurs only
after microseconds or milliseconds and is called a phosphorescence process.
According to Kahsa’s rule radiative recombination is very difficult before the
lowest excited state is reached. If it happens it is called hot luminescence.

In contrast to the case of semiconductors where the excitation is usually
from a forward biased p-n junction, color centers or chromophores are excited
optically. Hence, two types of spectra can basically be measured: the total (or
even energy selective) emission as a function of the spectral excitation, and the
spectral distribution of the emitted light itself. A spectrometer for fluorescence
consists therefore of two monochromators operating in parallel. One is used
for the spectral selection of the exciting light, the other for the analysis of the
emitted light. Figure 7.21a represents schematically the operational layout for
these spectrometers. The light for the excitation of the crystal is spectrally
selected by monochromator 1 and the emitted light is spectrally analyzed by
monochromator 2.

The immediate correlation between optical absorption and emission can
often be seen by comparing excitation and emission spectra. Figure 7.21b plots
the excitation and emisson spectra for polystyrol at 77 K. The right part of
the spectrum represents the spectral distribution of the emission from a T;-Sg
transition. The peaks correspond to the individual vibronic Franck—Condon
modes. The energetic distance of the maxima indicates that they originate
from a C=0 stretching vibration. Since there is no C=0 bond in polystyrol
the corresponding chromophore must be a defect. The left part of Fig. 7.21b
is, except for the intensity, a mirror image of the right side and shows the
excitation spectrum for the Sy-S; transition. The energetic difference between
the first maximum of the phosphorescence and the first maximum of the ex-
citation corresponds to the energy difference between the zero vibron states
of S; and T;. The strong structures in the excitation spectrum at 300 nm are
due to excitations of the monomer.

The process of absorption from point defects is evidently always localized.
However, if the density of the chromophores is high enough a migration of the
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Fig. 7.21. Schematic setup for measuring the excitation and the emission spec-
trum of a luminescence; (S: source, G: grating, SA: sample, A: drive, Re: recorder,
D: detector) (a), and excitation spectrum (left) and emission spectrum (right) for
polystyrol at 77K (b); after [7.23]

excitation is possible. This occurs, in particular, if the absorption spectrum of
one chromophore overlaps the emission spectrum of the other chromophore.
Then the first center can act as a donor (with respect to excitation energy) and
the second center as an acceptor. The energy transfer occurs by dipole-dipole
interaction and not by emission and re-absorption. Therefore this energy mi-
gration is only possible for centers located within a critical distance rr which
is called the Férster radius. The probability of energy transfer decreases with
the 6th power of the distance. This energy transfer is particularly important
for polymers since in this case singlet excitations can migrate step by step over
wide distances. Special chromophores can be attached to the backbone and
act as transmitters for the excitons. If the conformation of the chain changes
with progression along the chain, the orientation of the dipole moment for
the emission is continuously changing. This means the conformation of the
polymer can be studied by an investigation of the time resolved polarization
of the luminescence.

Problems

7.1 Prove that the absorption given in (7.10) has its correct value in SI units.
(Purpose of exercise: convince yourself of the meaning of all symbols in the
equation.)
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7.2% Starting from (7.13) evaluate the joint density of states for spherical and
parabolic bands.
Hint: Use the relation #5 in Appendix B.8.

(Purpose of exercise: use of 0 function, obtain final results for simple band struc-
tures)

7.3"™ Show that relation (7.26) for the adiabatic potential corresponds to a shift of
the oscillator by AQ in the co-ordinate and by Ae in energy.
(Purpose of exercise: understand the schedule of adiabatic potentials)

7.4 Show that the relation between the Franck-Condon coupling constant a and the
shift in the configuration coordinate AQ is a = AQ+/ M 2/h. What is the value of
the relaxation energy expressed in units of a?

(Purpose of exercise: get insight into the meaning of the adiabatic potentials)

7.5 Study the optical absorption from a localized state as a function of the Huang—
Rhys factor for zero temperature using a personal computer.

(Purpose of exercise: probe the relationship between electron-vibron coupling
and maximum response for the absorption)

7.6 Evaluate the real part of (7.11) from a Kramers—Kronig transformation.
(Purpose of exercise: a useful example for the application of the Kramers—Kronig
relation.)
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Symmetry and Selection Rules

Many laborious calculations in solid-sate physics can be simplified if the sym-
metry of the system under consideration is properly included. Furthermore,
statements about possible transition processes can very often be made just
from symmetry considerations, without any calculation. We had plenty of ex-
amples in the last chapter. In these symmetry considerations group theory
plays a fundamental role. This chapter summarizes the symmetry properties
of molecules and crystals, and reviews some elements of group theory. Selec-
tion rules for electronic and vibronic transitions will be discussed. An extended
summary of group theory, the character tables for the point groups, and more
about transformation of coordinates are given in Appendix G.

8.1 Symmetry of Molecules and Crystals

Symmetry and symmetry operations of figures or objects can be defined for-
mally. For extended work a mathematical description is recommended.

8.1.1 Formal Definition and Description of Symmetry

The symmetry of a figure or of an arrangement of points is the set of consid-
ered or mechanically performed operations which transform the object into
a position where it cannot be discriminated from its initial position. An ex-
ample is given in Fig. 8.1. It shows in part (a) a triangle stepwise rotated by
120°. If the corners of the triangle are identical, the three positions cannot be
discriminated. The operation C3 has transformed the triangle into positions
undistinguishable from the initial position. The same would happen for a re-
flection with the mirror plane perpendicular to the plane of the triangle, and
intersecting one corner and the midpoint of the opposite edge. We designate
this operation as o,,, where o means the mirror plane and the index v indicates
its vertical orientation to the rotation axis for the operation C3. C3 and o,
are symmetry operations (SO) for the triangle in the above definition. If the
corner 1 is different from the corners 2 and 3 the reflection with the mirror
plane through 1 is still a SO but Cs is not a SO any more. However, a mirror
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Fig. 8.1. Symmetry operations for a triangle: point symmetry (a), and transla-
tional symmetry (b)

plane in the plane of the triangle is certainly a SO for both systems. We call
it oj, as it is oriented horizontally to the rotation axis.

The translation of the triangle to a different position in space is not a SO
since in the new position it can be discriminated from the initial position.
The situation is different if we consider an infinite arrangement of triangles as
shown in Fig. 8.1b. If we shift the triangle 1, 2, 3 by a well defined translation
vector ¢ to the position 1/,2’,3’, the new arrangement cannot be distinguished
from the initial arrangement. Thus, ¢ is a SO of the object in Fig. 8.1b. Since
in the former type of SO at least one point of the object remains unchanged
we have a point symmetry, whereas the latter type is called translational sym-
metry.

SOs are characterized by symmetry elements such as n-fold rotation axes,
mirror planes, etc. The possible symmetry elements are listed in Table 8.1,
together with their symbolic representation in the Schonflies and in the inter-
national notation. The first four symmetry elements refer to point symmetry,

Table 8.1. Symmetry elements in crystals

symmetry element Schonflies international

rotation axes Cn(Un) mn=1,2,3,4,(5),6,(...)

mirror planes OhyOu,Ody, M

inversion I 1

rotatory reflection axes Sy, 7 (rotation inversion) = 1,2,3,4,6
translations tn tn

screw axes C,’i Nk

glide planes o’ a,b,c,n,d

the last three elements are only applicable for infinitely extended objects. For
symmetries which allow translations the counting of the rotational axes can
only be 1, 2, 3, 4, and 6. The index k for the screw axes indicates how many
translations are accomplished for one rotation by 360°. In other words, per
SO k/n translations are performed. More details about symmetry elements
and their properties and geometrical symbols can be found in corresponding
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reference data [8.1]. In the following pages we will restrict ourselves to the
operations for point symmetry.

Symmetry operations can be carried out successively and the result is a
new SO of the object. This means SO can be combined or multiplied. We may
write this formally as

SO(1) 0 SO(2) = SO(3) or simply
SO(1)SO(2) = SO(3) (8.1)

For example, a reflection by a mirror plane through point 1 of the triangle in
Fig. 8.1a and a successive reflection by a mirror plane through point 2 (in its
new position) gives the same result as the rotation by 120°, or

o,(1)o,(2) =Cs .

For the combination of several SOs the associative law holds. This is a con-
sequence of the validity of the associative law for the transformation of coor-
dinates. As we will see in detail later SOs can be represented by such trans-
formations. The SO which leaves the object unaltered can be taken as a unit
element F. Since the object returns to its initial position after a finite number
of successive SOs an inversion element exists within the set of the SOs for one
object. The above properties of elements in a set define a group in a mathe-
matical sense. Thus the symmetry elements of a finite object are elements of
a group.

The total number of different groups including all subgroups which can
be constructed from the point symmetry elements of Table 8.1 is 32. This
anticipates the exclusion of symmetry elements like C, (rotational symmetry)
or molecular symmetries like Cs, C7, etc. Since the elements of the groups
are point symmetry operations the groups are called point groups. The point
groups are well known and well tabulated. For the assignment of the point
groups the Schonflies as well as the international symbols are used. Table 8.2
presents the 32 point groups in both notations as they are distributed over
the seven crystallographic systems or the 14 Bravais lattices. In Appendix G.1
more extensive information on the groups is given in the form of character
tables. These tables show the point groups, their elements, the irreducible
representations, and their characters. Details about these quantities will be
discussed below.

For the following we need a few more definitions and notations from group
theory which are more or less self explanatory.

a) The order of the group is the number of elements in the group.

b) Most of the 32 point groups are not commutative. This means the group
element obtained from the combination AB is not equal to the element
from the combination BA if A and B are elements of group G.

¢) A group may consist of several subgroups.

d) Two elements A,B C G are conjugated if an element X exists in the
group for which XAX~! = B holds. If X runs over all elements of G we
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Table 8.2. Point groups for the 7 crystal classes

tricline monocline trigonal tetragonal hexagonal cubic
mp,mc (rhombohedral) tp,tb cp,cf,cb
Cil Cz 2 Cs 3 Cy 4 Cs 6 T 23
Ci T CS m C3i g 54 1 C3h 6
Can 2/m Can 4/m Cen 6/m Tn m3
orthorhombic C3, 3m Cay 4mm Cgy 6mm
op,oc,oi,of
Csapy mm2 Dsgq 3m D2g 42m D3, 6m2 T, 43m
Dy 222 D3 32 D, 422 D¢ 622 O 432
Do, mmm Dyn 4/mmm Dep, 6/mmm Or m3m

obtain a set of elements conjugated to A. Since all these elements are also
conjugated to each other the set is called a class of conjugated elements.

e) Each group consists of classes of conjugated elements. In other words,
each element of G belongs to exactly one class. For example, the unit
element E is only conjugated to itself. It always generates its own class.
The symmetry elements for the point groups are given as distributed into
individual classes (Appendix G.1).

8.1.2 The Mathematical Description of Symmetry Operations

The mathematical description of SOs is obtained by the matrices for orthog-
onal transformation of coordinates in three-dimensional space. If ¢ describes
the rotation around the z axis these matrices have the form

cos¢ —sing 0
R(¢) = | sing cos¢ 0 . (8.2)
0 0 =1

Similar matrices are obtained for rotations about the x and the y axis. Al-
lowing a minus sign for the R,, component of the matrix includes improper
rotations (reflections and inversion). A particular transformation of the type
(8.2) is a SO of the object if it transforms the object onto itself. In this sense
R(¢) represents the rotations C,, with ¢, = 360/n,n = 1,2,3,4,6 including
the unit element E for the positive sign of R,., and the reflection and the
inversion with ¢ = 0 and 180°, respectively for the negative sign of R,,. If
the rotation is about an arbitrary axis (8.2) must be subjected to an orthog-
onal transformation. It is most important to note that the trace dg for the
transformation matrix (8.2) is always

dr =2cos¢p*1. (8.3)




8.1 Symmetry of Molecules and Crystals 165

This is independent of any orthogonal transformation.

8.1.3 Transformation Behavior of Physical Properties

For the evaluation of the selection rules the transformation behavior for the
description of physical properties and of mathematical expressions with re-
spect to SOs is important. They are explained and listed in the following.

Scalar quantities such as the density or the temperature are independent
of transformations of coordinates. Polar vectors such as electric fields or dipole
moments behave like coordinates and transform therefore according to (8.2).
For axial vectors transformations of the proper rotations are performed with
R from (8.2) but transformations for the improper rotations are transformed
with —R. Tensors such as the dielectric constant €;; transform like products
of coordinates.

For a transformation matrix Cj; the above statements can be formulated
mathematically by the following expressions:

/
Ty = E CrmkTr
%

A /
Ty Ty = E ConkCrizray
Kl

Emn = Z kaCnlgkl . (84)
Kk,

As a simple example we study the transformation of the coordinates of the
triangle in Fig. 8.1 by a rotation of 120° about z. The rotation matrix is

—1/2 —V/3/2 0
R@2m/3)= | V3/2 —1/2 0
0 0 +1

The x,y coordinates are assumed to cross at the center of gravity, and
one of them is assumed parallel to one side of the triangle. The sides of the
triangle have the length 1. Using the first equation in (8.4) it is straightforward
to show that the coordinates (—1/2,—v/3/6) for the corner 1 transform to
(1/2,—+/3/6), which are exactly the initial coordinates of corner 2.

The second equation in (8.4) is general enough to construct a product for
two (squared) matrices with an arbitrary number of lines and columns. The
dimensions of the two matrices may even be different. The product C,,1xChp;
of the transformation matrices Cy;, or more generally the product C,xDp;
defines the Kronecker product of the two matrices. The Kronecker product
can be written again as a square matrix. The arrangement of the new matrix
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elements is such that the product matrix consists of the submatrices C,, D
where each matrix element of D is multiplied by Cj,x. If the dimensions of
the two original matrices are M and N, respectively, the dimension of the
product matrix is M x N. For example, the Kronecker product for a matrix
with 3 lines and 3 columns with a matrix with 2 lines and 2 columns yields
a square matrix with 6 lines and 6 columns. The trace of the product matrix
equals the product of the traces of the two original matrices.

8.2 Representation of Groups

A representation of a group is a mapping of the group G on a group of matrices
G’. The mapping between the elements of the two groups is defined in the
following way. If for the elements A, B,C' C G the relation

AoB=C (8.5)

holds the corresponding relationship must also hold for the matrices M (A),
M(B), and M(C) from G’

M(A) o M(B) = M(C) (8.6)

but the correspondence between the elements does not have to be bijective.
Each element form G corresponds exactly to one element of G’ but each
element of G’ may correspond to several elements of G. This type of mapping
is known as a homomorphism.

The simplest, so called trivial representation is a mapping of each element
of G on the matrix (1). A slightly more complicated but still very simple
mapping is obtained for a correlation of the symmetry elements to the matrices
(1) or (—1). For example, using (8.5) and (8.6) together with the information
on the point group Cjs, from the tables in Appendix G.1 it is easy to show
that the following mapping is correct:

E — (1), C5 — (1), Cg — (1), (8.7)

Oyl — (_1)a Oy2 — (_1)7 Oy3 — (_1) . (88)

In other words, the one-dimensional matrices (1), (1), (1), (=1), (=1), (-1)
are a representation of the point group Cj3,. A pyramid with a regular triangle
as the basis is a geometrical representation of this group. Note that the sum
over all matrices is zero! This is a special result of a very general sum rule
which originates from the orthogonality of the representation matrices explic-
itly expressed by (G.2). In order to check the mapping defined in (8.8), it is
convenient to set up two multiplication tables. In these tables all products of
symmetry elements of the group and their representations are inserted, which
allows the validity of (8.5) and (8.6) to be profen by comparison.
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In principle, the result of a multiplication of symmetry elements can be
obtained from a multiplication of the matrices for the orthogonal transforma-
tions given in (8.2). In a more simple procedure it can also be obtained from
geometrical considerations by following the change of the positions of the co-
ordinates as a consequence of the SO. In Fig. 8.2 two examples are shown:
Application of the inversion to point 1 in part (a) of the figure transforms

(@ c Z—o 1 (b) (o]l Z—‘¢1
il y dl y
X X
i . S Fig. 8.2. Combination of sym-
1 T E 1 tH metry elements. JoCs = o, (a),
]

ToCy=S;i (b)

it to point 1’ and a subsequent application of a rotation by ¢ = 7 around z
yields the point 1”. Altogether the transformation is a reflection on the zy
plane. This is similar in part (b) of the figure. Starting with an inversion a
subsequent rotation by /2 yields a 37/2 rotation-reflection.

Some of the most important definitions and properties for the representa-
tion of groups are listed in Appendix G.2. Details can be found in [8.2,8.3].
In particular, the following statements are valid, most of them can easily be
profen by group theory:

a) The dimension of the representation is the dimension of the correlated
matrix. For example, the matrices for the orthogonal transformations are
a three-dimensional representation.

b) For each group an infinite number of representations exists. A d-dimensional
representation for a group G of order g can be obtained from an equation
for a transformation of d linear independent coordinates x; of the form

d
¥, = Dipzy, . (8.9)
k=1

The transformation matrices D;; are a representation of the group if for
all elements R C G the coordinates x; are mapped onto themselves or
onto a linear combination of themselves. The homomorphic mapping is
then defined as

Dix(R) = Dy,
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In other words, the set of coordinates x. in (8.9) is the same set as the
coordinates x; or a linear combinations of the coordinates x. The coor-
dinates xj, are called a basis for the d-dimensional representation D(R) of
group G.

Let us consider as an example the representation for Cg, with the SO
(E,Cy,04,0,). The matrices (1) and (—1) transform the x axis (or the
Y,z axis) either onto itself or onto minus itself. Thus, the = axis (or the
Y, z axis) is a basis for a one-dimensional representation. Since the matri-
ces which transform the z axis are (1), (—1), (—1), (1) we readily identify
this representation from the character tables in Sect. G.1 as By. The z axis
is a basis for the trivial representation since all transformation matrices
are (1). If we had selected an other group e.g. Cs, the rotation C3 does
not transform the z axis onto itself. The z axis is therefore not a basis for
a representation of Cs,. If we, however, select the z and y axis all SO of
(3, transform these two coordinates onto themselves or on linear combi-
nations of themselves. Therefore (z,y) are a basis for a two-dimensional
representation of Cl,.

Other representations can be obtained from the coordinates of geometrical
figures by applying the symmetry operations of the figures, as explained
in Appendix G.3.

¢) Applying orthogonal transformations to the matrices D;;(R) we obtain
other representations of G. The traces of the matrices for the various ele-
ments R are the same for all these representations as the traces of matrices
are invariant versus orthogonal transformations. The traces are therefore
called the character x(R) of the element R in the representation D(R). A
trivial but nevertheless important statement results: The character of the
unit element equals the dimension of the representation.

d) Since the matrices for the representations of G can have an arbitrary
dimension, an infinite number of representations exists. However, for any
set of matrices there is an orthogonal transformation which groups the
matrix elements in a optimum way around the diagonal elements for all
R. We call this new set a fully reduced representation of G. An example is
given below.

pr=| . o . |. (8.10)

The symbols thi ) are dj-dimensional sub-matrices, the points are ma-

trices of zeros, and the empty diamonds are matrices like N cgi ). In this
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case already smaller subsets of the coordinates in (8.9) are mapped onto

themselves and we have assigned them to the matrices N, (J ) with the
dimension d;. Since these matrices cannot be further reduced they are
called zrreduczble. From this description we conclude immediately, that
any d-dimensional representation I" = D(R) can be presented by a sum
of irreducible representations. Formally we can write

R)=> noI'®, (8.11)

where n, counts how often a particular irreducible representation I'(®)
occurs in the total representation.

From (8.10) and (8.11) we learn immediately that the character x/)(R)
of the total representation I" is the sum of the characters of the irreducible
representations occurring in I.

R) =) nax(R) (8.12)

There is a well defined number of irreducible representations for each point
group. This number turns out to be equal to the number of classes in the
group.

The irreducible representations are denoted by the Mullikan symbols
A, B, E, F, with subscripts 1,2, g,u and superscripts ’ and /. The sym-
bols have the following meaning. A and B are one-dimensional represen-
tations. A labels representations symmetric with respect to the main ro-
tations (x(Cp) = 1), B stands for representations antisymmetric with
respect to the main rotations (x(C¥ = (=1)¥). E and F label two- and
three-dimensional representations. g and u refer to symmetry and anti-
symmetry with respect to the inversion and 1 and 2 denote symmetry and
antisymmetry with respect to additional rotation or rotory-reflection axes
and mirror planes. Finally, ’ and ” indicate symmetry and antisymmetry
to additional mirror planes. Note that three-dimensional representations
are often also assigned as T instead of F, as e.g. in Fig. 7.12.

The irreducible representations for the 32 point groups, for the icosahedral
group, and for the full orthogonal rotation group are listed in Appendix
G.1 together with the corresponding characters of the symmetry elements.
Since the characters for elements of the same class are equal only the
characters for the various classes are given.

There are several orthogonality relations. (For more details see Appendix
G.2.) The most important relation holds for the characters x(*)(R) and
X (R) of two irreducible representations I'(®) and (%)

Zx*(a)(R)X(ﬂ)(R) = g0ag - (8.13)
R

The summation extends over all symmetry elements of G.
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There are several sum rules.

The sum of the squares of the dimensions of the irreducible representations
equals the order of the group.

For more sum rules see Appendix G.2.

Using the orthogonality relations for the characters one can immediately
derive a formula which counts how often a particular irreducible represen-
tation I'(®) with characters x(®)(R) occurs in an arbitrary d-dimensional
reducible representation with characters x(R). This number n, is given
by the famous magic counting formula

o= = SRR, (8.14)
R

g is the order of the group.

As an example, the three-dimensional representation for the orthogonal
transformations '™ has the characters (3,0,1) in the point group Cs, for
the three classes of the group. This representation is of course reducible,
since the sum of the squares of the characters is 12 whereas the order of
the group is only 6. Applying the magic counting formula it is easily shown
that the three-dimensional representation decays into the one-dimensional
representation A; and the two-dimensional representation F such that

r® — i P (8.15)

The Kronecker product of the matrices for the two representations '™
and '™ is again a representation. If the set of coordinates z, and z,,
form a basis for the two representations the products x,,, form a basis for
the product representation. The characters of the product representation
are the products of the characters of the two original representations:

X" (R) = XM (R)x ™ (R) - (8.16)

Finally, the Kronecker product of two different irreducible representa-
tions never contains the trivial representation. The Kronecker product
of two equal irreducible representation contains the trivial representation
exactly once. Note in this connection: The Kronecker product of the rep-
resentations I'(®) and I"®) may neither contain the representation I"(®)
nor the representation I"®)! For example, for the group D4 the product
Ay 0 By = By and does therefore neither contain A, nor Bj.

The three most important statements h) to j) follow immediately from the

definition for a representation by (8.9), the orthogonality of the characters,
and the definition of the Kronecker product.
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We can now proceed to the first application of group theory in spec-
troscopy.

8.3 Classification of Vibrations

Lattice or molecular vibrations are represented by a total energy H =T 4+ U
as

H= %Zuf(n)Mn + % Z ag;"ui(n)ug(m) (8.17)
n,t 2,7,m,n

where 4, j runs from 1 to 3 and m, n over all atoms N in the molecule or in the
crystal. u;(n) are the displacement coordinates for atom n with mass M,,, and
a;;" are the second derivatives of the crystal potential U with respect to these
displacements. Applying a proper orthogonal transformation and using mass-
weighted coordinates for the displacements the total energy can be represented
in normal coordinates Q) for N mass points as

3N

1 )

H =3 (QF +25Q3) (8.18)
k=1

where (2, are the normal oscillations of the ensemble. If several normal coor-

dinates Q1 to @4, belong to the same (2, the normal mode is degenerate to

the degree dy. In this case (8.18) has the form

1 3N )
H= <§Qz+§n§§%> : (8.19)

Since the energy of an ensemble does not change if a SO of its point group is
applied each normal coordinate @ in (8.18) must be mapped on itself or on
—Qy and in (8.19) all Qy,, of one normal mode must be mapped on themselves
except for the sign. In both cases the normal coordinates are therefore a basis
for a representation according to the definition of (8.9). Since the number of
normal coordinates is 3V the representation is 3N dimensional and therefore,
in general, reducible. (As written in (8.18) and (8.19) it is already presented in
a fully reduced form). Using (8.14) it can be decomposed into the irreducible
representations of the point group. This means all vibrations (including the
translations and the rotations) can be classified according to the irreducible
representations of the point groups. The usual way of expressing this fact is to
assign the vibrations to a particular symmetry type or symmetry species. As a
consequence the vibrations are denoted with the same Mullikan symbols as the
irreducible representations. Figure 8.3 shows the possible in-plane vibrations
for a square together with the assignment of their symmetry species. A;4 is
totally symmetric whereas B, is antisymmetric with respect to the rotation.
F,, is two-dimensional and antisymmetric with respect to the inversion.
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@ (b) ()
—_—
A1 g B1g Eu

Fig. 8.3. Vibrations of a square with symmetry D4p. (a) and (b) are described
by one normal coordinate. (¢) is a twofold degenerate oscillation and therefore
needs two normal coordinates

For the classification of the vibrations of N mass points it is not necessary
to know any of the infinite 3 N-dimensional representations and to reduce the
matrix according to (8.10). It is enough to know the traces of the represen-
tation matrices for each symmetry element R. The traces or characters x(R)
are the sum of the matrix elements on the main diagonal. A simple consid-
eration which is explicitly demonstrated in Appendix G.3 shows that a mass
point contributes only to the main diagonal of M (R) if it is not moved by
the application of the R. In this case the displacements of the mass point are
transformed onto themselves and the matrix of (8.2) applies for the transfor-
mation. For these considerations it is convenient to return from the normal
coordinates to Cartesian coordinates which is no problem since the character
for the representations will remain the same. Also, since we need only the
traces of the representation matrices it does not matter whether we regard
rotation or reflection in z or x or any other direction. The traces remain the
same and are always given by (8.3). If the number of atoms which remain
unchanged for the application of the symmetry element R is N.(R) the char-
acters of the 3N-dimensional representation are

xBNY)(R) = No(R)dr = Ne(R)[£1 + 2 cos ¢(R)] . (8.20)

In this way the characters for all SOs of the ensemble can be evaluated. From
these values for x(R) (8.14) allows immediately to decompose the total rep-
resentation into the vibrational symmetry species. The 3N-dimensional rep-
resentation I'®Y) is alternatively called the total representation I"(**Y). Since
the normal coordinates for the pure translations and for the pure rotations
correspond to particular transformations both can be selected from the total
irreducible representations found from the application of (8.14). The trans-
formations for the pure translations and for the pure rotations are those for
the polar vectors (or coordinates) and for the axial vectors, respectively, as
discussed in Sect. 8.1. In many character tables like in those of Appendix G.1
the corresponding irreducible representations are already identified with the
letters x, y, z for the translations and with the letters X, Y, Z for the rotations.
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To demonstrate the described procedure a simple example is appropriate.
Let us consider the water molecule HyO (Fig. 8.4). The molecule has 3N = 9

C, |~ _|ﬂ'\;

H H Fig. 8.4. Geometry and symmetry elements of
o,
the water molecule

motional degrees of freedom and the symmetry elements E, C5, 0y, 0, . This
means the molecule has Cs, point symmetry and the corresponding irre-
ducible representations can be taken from Appendix G.1. It is convenient to
set up a table like Table 8.3 where the important data and partial results from
the calculation are inserted. The first line in the table lists the point group

Table 8.3. Classification of motional degrees of freedom for H2O

CZv FE 02 Oy Oyt
dr 3-1 1 1
N 3 1 3 1
Xe 9 -1 3 1
X("> = 1+ 2cos ¢ (translations) 3-11 1
XY =1+ 2cos ¢ (rotations) 3 -1-1 -1
[X]2 = 2cos p(£1 + 2cosp) (sym. tensors) 6 2 2 2

and the symmetry elements in the group separated into classes of conjugated
elements. The second line contains the trace dr of the symmetry elements,
the third line the number of stationary atoms for the particular SO and the
fourth line the characters for the total representations according to (8.20).
The fifth and sixth lines give the characters for the translations and for the
rotations. Finally, line 7 presents the characters for the representation accord-
ing to which the symmetry tensors transform. The importance of this set of
characters will be discussed later. To reduce the total representation we use
the magic counting formula (8.14). We may ask, for example, how often is
the irreducible representation A; of Cs, contained in the total representation
I'GN) With (8.14) we find

na, = 1/9[H9) -+ (=) - 1)+ B)- () +(1)- ()] =3.
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Ay occurs 3 times in "GN, Similarly we obtain for np,,n4,, and npg, the
values 3, 1, and 2. Hence the composition of I'®N) is

IGN) =34, 4+ 3By + Ay + 2B . (8.21)

To obtain the vibrations of the water molecule we must find out which of
these representations are covered by the pure translations and by the pure
rotations of the molecule. This means we have to check which irreducible
representations are contained in the representations for the translations and
for the rotations (lines 5 and 6 in Table 8.3). Alternatively we can look into
the character tables and find the representations for the translations and for
the rotations of the point group Cs,. In both ways we find

'™ = A + By + B
for the translations and
oY = Ay + By + By

for the rotations. Note that the total representations for the translations and
for the rotations are always three-dimensional. The irreducible representations
for the translations and for the rotations have to be subtracted from the total
set given in (8.21). Thus, the pure vibrations are distributed on the three
remaining species

') =924, + B, . (8.22)

8.4 Infinitely Extended Ensembles and Space Groups

Very similar considerations as discussed above apply to infinitely extended
ensembles of points in crystals. However, three additional symmetry elements
have to be considered: translations, screw axes, and glide planes. All SOs are
now composed of translations and rotations. Formally they are written as

{R/tn}

where R is a symmetry element of the point groups and t,, a translation. t,, is
not necessarily a multiple of a primitive translation vector of the lattice. In the
case of n-fold screw axes non-primitive translations 7r = ka/n are possible
where k can obtain the values 1,2,... n and a is a primitive translation in
the direction of the screw axis. As a consequence, translations are always
represented by

tn =t, + 7R (8.23)

where t,, are the primitive translations of the lattice.
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From the symmetry elements for the infinitely extended periodic ensem-
bles again groups can be constructed in a mathematical sense. The total of
available elements enables the construction of 230 different space groups S;.
The order of the space groups is always oo since the number of translations
is always co. The pure translations with the symmetry elements {E/t,} are
a subgroup T of the space groups. Space groups which contain only symme-
try elements with primitive translations are called symmorphic. There are 73
symmorphic and 157 non-symmorphic space groups. Dropping the primitive
translations from the space groups yields space group elements of the form
{R/7r}. They are again elements of a set of groups called the groups of the
unit cell. These groups are isomorphic to the groups of point symmetry ele-
ments which appear in the space group elements. The latter are assigned as
the crystallographic point groups. Both types of groups have, of course, finite
order. The third type of isomorphic related groups are the factor groups de-
fined as S;/T. They are obtained by a group-theoretically defined division of
the space groups by the translation groups.

The space groups are again labeled with Schonflies or international sym-
bols. The Schonflies notation counts the space groups belonging to the same
point group. ng would be the 6th space group with the point group D34.
The international notation uses at first a symbol for the Bravais lattice. (F
for fee, T for bee, R for thombohedric, etc.), then a set of the most important
symmetry elements follows. The space group DS, is labeled as R3c. All space
groups are listed in the International Tables of Crystallography [8.1].

In solid-state physics often Arabic or Greek letters are used to label the
irreducible representations of symmetry points in the Brillouin zone, instead
of the Schonflies or international symbols. Table 8.4 compares the different no-
tations of the most important symbols according to [8.2]. Other notations are
used as well. The first, second and third column of the table lists the symme-
try groups in the Schonflies notation, several selected symmetry points in the
Brillouin zone, and the possible irreducible representations in the Schonflies
notation. The lower line in the third column contains possible subscripts to
the symmetry points to correlate them to the Schonflies symbols. For exam-
ple, I'o5 has Fy, symmetry or, s has Fy symmetry in Tq but Fy,, symmetry
in Oy,

If the analysis of vibrations in crystals is restricted to wave vectors with
q ~ 0 it is sufficient to study the finite groups related to the space group. In
this case one can proceed in a very similar way as demonstrated above for the
finite ensembles. The characters for the glide planes and for the screw axes
are identical to those for the corresponding rotation axes and mirror planes.
For the determination of the stationary atoms N, space-group elements of the
unit cell must be used. This means N, is always zero for screw axes and glide
planes. In addition, an atom is still regarded as stationary if it is moved by
a SO from its position in one cell to an identical position in the neighboring
cell. As an example in Appendix G.4 a vibrational analysis is performed for
the crystal CaCOsg.
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Table 8.4. Symmetry points in different notations

group symmetry point notation

Oh Alg A1u Agg Azu Eg Eu Flg Flu Fzg Fgu
I''R,H 1 1 2 20 12 12/ 15 15 25 25
Ta A Ay E Fi F
r 1 2 3 25 15
C4h Alg Alu A2g AZu Blg Blu B2g B2u Eg Eu
X, M 1 1 4 4 2 223 3 5 5§
C41, A1 AQ B1 B2 E
T, A 1 U 2 2 5
Dzd Al A2 B1 Bz E
w 1 2 1 23
ng A1g Alu Agg AQU_ Eg Eu
L 1 1 2 20 3 3
Csy A Ay FE
AF 1 2 3
Doy, Ag A Blg Biw Bzg Bay, B3g B3,
N 1 2 2 1 4 3 3 4
C2v Al AQ Bl BQ
K 1 2 4 3
G,D,SSUZ 1 2 3 4

The irreducible representations of the translations correspond to the acous-
tic modes since for ¢ = 0 the latter are pure displacements. The irreducible
representations for the rotations are now real eigenmodes of the crystals since
the unit cell is not any more free to move. In molecular crystals the represen-
tations for the librational modes (hindered rotations of the molecules) are the
irreducible representations of the rotations.

8.5 Quantum-Mechanical Selection Rules

Quantum-mechanical selection rules control the calculation of the transition
probability for a system changing from a state i to a state f. The relevant
quantity is the matrix element

Mg = / PrPyda (8.24)

where ; and iy are the wave functions for the initial and the final state,
respectively, and P is the operator driving the transition.

In order to be able to make predictions about the magnitude of My it is
necessary to generalize the definition for the representations given by (8.9). If
we have a set of d linear independent functions v, (x) which are mapped onto
themselves by the application of transformations of the form



8.5 Quantum-Mechanical Selection Rules 177

i =Y Dir(R)x (8.25)
R

for all SO R C G these function form the basis for a d-dimensional represen-
tation D;x(R) of G. Since, in particular, the Schrodinger equation

Hvp = ey,

is invariant versus symmetry operations of the system under consideration the
wave functions to a particular eigenvalue are mapped onto themselves and are
thus a basis for an (irreducible) representation. This means the eigenvalues
of the system can be classified according to the irreducible representations of
the group G.

A very important property of the basis functions follows. If w§” )(a:) is a
basis function for a (irreducible or reducible) representation I of G the
relation

/ Y (@)da #0 (8.26)

is only possible for I'(P) being the trivial representation or containing the
trivial representation.

We can always consider 1/11(’) ) in (8.26) as the product of basis functions
from several representations

VP (z) = [l (8.27)
Pk

Then 1/)1(’) ) is the basis for the representation obtained from the Kronecker
product of the representations I"(?+). With this assumption we can immedi-
ately check under which conditions (8.26) is valid. As discussed above the
Kronecker product of two different irreducible representations never contains
the trivial representation, whereas the Kronecker product of two equal irre-
ducible representations always contains the trivial representation exactly once.
Thus, if I'®) is the Kronecker product of two representations and (8.26) is
valid it means two equal representations are contained in this product, and
vice versa. If two equal representations are contained in the Kronecker product
the integral in (8.26) must be finite.

Since all operators transform like particular basis functions we can consider
the integral in (8.24) as the triple product of basis functions representing
the basis for a representation obtained from the Kronecker product of three
representations. Because of the validity of the associative law we can, in this
case, at first evaluate the Kronecker product of the first two representations
and determine the irreducible contributions. Then the Kronecker product for
each of these contributions with the last representation is investigated. If in
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any of these products the trivial representation is contained the integral in
(8.26) is # 0, and we say the transition from state i to state f is allowed.

The above results can be used immediately to establish selection rules for
various processes. If the operator P is a scalar it transforms according to
the trivial representation. In this case only matrix elements for transitions
between energy levels with equal symmetry are # 0.

For IR absorption the operator P is a dipole moment and transforms
therefore according to the coordinates. The corresponding irreducible repre-
sentations are assigned as x,y, z in the character of Appendix G.1. For the
process of IR absorption by phonons or vibrons we can assume the initial
state to be the zero-phonon state. This means the vibration is created from
the vacuum state and the process of absorption does not depend on the initial
electronic states or any other vibronic state. In this case the initial state is
characterized by the trivial representation. The final state is a one-phonon
state with the symmetry of the phonon characterized by its irreducible rep-
resentation. Since we need two equal representations to make the integral in
(8.26) # 0 IR absorption is only possible for phonons with an irreducible rep-
resentation equal to at least one of the representations of the coordinates. In
other words, the irreducible representation assigned in the character tables
with z,y, z are exactly the representations for the IR active phonons or vi-
brations of the corresponding point group. The coordinates given refer to the
polarization of the phonon. As an example, in the point group Oy, all phonons
with irreducible representation Fi, but none of the others are IR active.

For the optical absorption P is the same dipole operator as for IR absorp-
tion. However, the initial state is not characterized by the trivial representa-
tion. It is rather determined by the symmetry of the electronic ground state
represented by I'(®). The integral in (8.24) or in (8.26) is taken over the prod-
uct of basis functions corresponding to the representation ['(8) ['(coord) p(e)
According to the above analysis transitions from state « are possible to all
states 3 for which the irreducible representations I"®) occur in the product
I(coord) P(@) gince then two equal representations are present and the integral
in (8.26) will be finite. This statement is expressed by

&) (e ple)) — <Z naf“”) :

where I'(%) are the irreducible representations contained in I"(¢°°rd) (@) Tf
one of the representations I'(%) equals I'?) the sum contains I'"®) '(®) which
contains '),

Let us analyze as an example the possible transitions for the point group O
with the irreducible representation I'(%) = A;, Ay, E, Fy, F5. The coordinates
transform according to Fy. Thus, all products F; I'%) must be analyzed with
respect to their irreducible components where ') is any of the irreducible
representations of O. A transition from I"%) to any of these components will
be optically allowed. For the transitions between states with equal symmetry
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the symmetric product [I"(%)], must be used. The characters for the symmetric
product are

R = 5 [ R)? + X ()] (3.25)
If 17(coord) oecurs in this product the product 1'(€0rd) (%) contains two equal
representations and therefore also the trivial representation. In the case of the
group O none of the transitions between states with the same symmetry con-
tains F; which means none of them is allowed. The following matrix scheme
gives a summary for the allowed and forbidden transitions in O. The represen-
tation I"() in the first column of the scheme is either the representation for the
coordinates F; (for the off diagonal transitions) or the representation under
consideration (for the diagonal transitions). In the latter case the symmetric
product must be considered.

A Ay E B F
ATD 0 0 0 My 0
ATD 0 0 0 0 Moy
Er 0 0 0 Msy Mss
I My 0 Mgg 0 My
FoI''D 0 Mgy Mss Msy 0.

For M, finite the transition is allowed. For example, F F; contains A1 + F +
F. Therefore transitions from F; to Aj, E, and F are possible but [F;]s does
not contain Fj. Hence a transition from Fj to Fj is forbidden.

Also the splitting of degenerate states by an interaction with an external
perturbation as it was discussed in Sect. 7.5 can be determined from group
theory. This is possible if the symmetry of the perturbation U is lower than
the symmetry of the system under consideration, and the symmetry group of
U is a subgroup of the symmetry group of the system. The Hamiltonian for
the perturbed system has the form

H=H,+U (8.29)

with the symmetry of U. The wave functions which represent a basis for an
irreducible representation of Hy are certainly also a basis for a representation
of H. However, since the symmetry group of H has less elements than the one
of Hy a smaller set of eigenfunctions may already be mapped onto itself. Thus,
a representation of dimension s which is irreducible for the symmetry group
of Hy may be reducible for the group of H. This means the corresponding
s-fold degenerated energy levels are split.

Let us consider threefold degenerated energy level with symmetry F5 in
group T'y. The symmetry elements of Ty and the characters for F, can be
obtained from Appendix G.1 and are listed in Table 8.5 with changed order.
The system be subjected to a perturbation U with symmetry C's,,. C's,, has the
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Table 8.5. Splitting of energy level F» from Ty by a perturbation U with symmetry
C3v

Ta E 8C3 604 3C2 654
X 3 0 1 -1 -1
Csv FE 203 30'1,
X(red) 3 0 1

symmetry elements F,2C3, 30, also given in Table 8.5. Since only part of the
symmetry elements from T'; are available in C'3,, the truncated representation
is reducible in C3,. Reduction yields the components A; + E. Thus the energy
level Fy splits into levels with symmetry A; + F in C',,.

Another good example for the lifting of degeneracy due to symmetry break-
ing is visualized by the splitting of atomic orbital levels due to the crystal or
ligand field as discussed in Sect. 7.5.

The splitting of the irreducible representations of a group into the repre-
sentations of all regular subgroups can be found in correlation tables such as
e.g. in [8.4].

Finally, we want to study the selection rules if P is a tensor. Since a
tensor transforms like the product of coordinates we must work out the rep-
resentation for the product of the coordinates and determine its irreducible
components. These irreducible representations determine the allowed transi-
tions.

If we consider as a special case the selection rules for Raman scattering we
have to keep the symmetric nature of the Raman tensor in mind. Thus, only
the symmetric part of the product representations has to be checked. The
characters for this part are evaluated from (8.28). Using as a representation
for the transformations of the coordinates the matrices (8.2) the characters
for the symmetric product of two (equal) representations is explicitly given
by

[X(R)]2 = 2cos p(+1 + 2cos @) . (8.30)

If again like in the case of the IR absorption the representation for the initial
state is the trivial representation all irreducible representations occurring in
the symmetric product of the coordinates are the representations of the al-
lowed vibrations. So, finally all that needs to be done is to apply the magic
counting formula (8.14) to the characters [y(R)]2 of (8.30). For the point
group C', these characters have already been evaluated above and are listed
in Table 8.3. Reducing with respect to the irreducible representation of Co,
yields

X2 =34, + Ay + By + Bs.
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This means all irreducible representations of C, are contained in the rep-
resentation for the symmetric tensor product or all vibrational species are
Raman active.

In many character tables the irreducible representations which are con-
tained in the representation for the symmetric tensor products are assigned for
all point groups. In the tables of Appendix G.1 this assignment was dropped
for simplicity and to avoid duplications. Instead, attention is directed at this
point to Appendix H.1 where the various irreducible representations are listed
together with the Raman tensors for the various point groups.

Problems

8.1 Prove that the two symmetry elements C; and C3 belong to the same class in
C'4, but not in Cyy,.
(Purpose of exercise: understand the meaning of classes.)

8.2 Show that the trace for the Kronecker product of a matrix A with dimension a
and matrix B with dimension b is the product of the traces of matrix A and matrix
B.

(Purpose of exercise: understand the Kronecker product.)

8.3 Show explicitly the homomorphic character of the mapping in (8.8) by estab-
lishing two multiplication tables.
(Purpose of exercise: understand homomorphism)

8.4 Consider the coordinates z,y, and z as a basis and find a three-dimensional
representation for the point group Cs, by using (8.9).

(Purpose of exercise: understand the meaning of a set of coordinates establishing
a basis for a representation.)

8.5% Derive the magic counting formula from the orthogonality of the characters for
different irreducible representations.
(Purpose of exercise: understand orthogonality relations.)

8.6 Find the vibrational modes of a tetrahedron and discuss the degeneracy of the
modes.

(Purpose of exercise: perform a simple vibrational analysis and understand the
degeneracy.)

8.7 Show that for a crystal with crystallographic point group O the transition from
a state with symmetry E to a state with symmetry F3 is allowed but the transition
from F to FE is forbidden.

(Purpose of exercise: understand selection rules.)

8.8% Calculate the Kronecker square for the representations of group D4 and demon-
strate its difference to the symmetrized direct products.
(Purpose of exercise: understand the symmetrized Kronecker product.)

8.9" Let w§’”> be a basis function of the (reducible) representation I'™). Show that
the relation



182 8 Symmetry and Selection Rules
/ V"™ dz £0 (8.31)

holds only if I (m) is the trivial representation or contains the trivial representation.
Hint: Show first that the integral disappears if wg’") is a basis for an irreducible repre-
sentation which is not the trivial representation. Use: the integral over the full space
must remain constant versus any symmetry transformation and ), DE:)(R) =0
from the orthogonality of the representation matrices.

(Purpose of exercise: prove a fundamental statement for the application of rep-
resentation of group theory.)

8.10 Show that for a reduction of the symmetry I, to T} a fivefold degenerate
vibration decays into a twofold degenerate vibration F4 and a threefold degenerate
vibration Fj.

(Purpose of exercise: study lifting of degeneracy by reduction of symmetry.)

8.11" Show that the fivefold degenerate atomic d orbitals split into orbitals with
E4 and Fz4 symmetry if the atom is inserted into a crystal with O symmetry.

(Purpose of exercise: understand the character of the full orthogonal rotation
groups SO(3) and O(3).)
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Light Scattering Spectroscopy

So far the propagation of light was assumed to be straight or, at most, straight
with a discontinuous change in the direction of propagation at a flat boundary
between two media with different indices of refraction. Straight propagation
of light holds only as long as the medium is homogeneous. If this is not the
case and if the inhomogeneities are, in particular, of the size of the light wave-
length scattering into arbitrary or well defined directions occurs. For purely
geometrical or local inhomogeneities with no time dependence the scatter-
ing is elastic which means without a change of the light energy. Depending
on the size and nature of the optical inhomogeneity the processes are called
Tyndall scattering, Mie scattering, or Rayleigh scattering. For time-dependent
inhomogeneities the scattering process is inelastic and for inhomogeneities pe-
riodic in time sidebands to the excitation line occur. This is the case for the
various forms of Brillouin scattering and Raman scattering. Such scattering
experiments give valuable information on the electronic and vibrational states
of the material.

9.1 Instrumentation and Setup for Light Scattering
Experiments

In light-scattering experiments the spectral distribution of the scattered light
is analyzed relative to the spectrum of the incident light. In the case of Raman
or Brillouin spectroscopy the changes in the spectrum are very close in energy
to the energy of the incident light but usually many orders of magnitude
smaller in intensity. Therefore, a very good suppression is required for the
elastically or quasi-elastically scattered light. Lasers are optimum as light
sources for excitation, and double monochromators or triple monochromators
as they were described in Sect. 4.2 are optimum for analysis. Recently also
single monochromators with notch filters to suppress the primary light beam
became relevant. If the expected changes in the spectrum are as close as
a few wave numbers to the exciting line single-mode lasers and a Fabry—
Perot interferometer are recommended for the excitation and for the analysis,
respectively. This is usually the case in Brillouin spectroscopy.

H. Kuzmany, Solid-State Spectroscopy, DOI 10.1007/978-3-642-01479-6_9, 183
(© Springer-Verlag Berlin Heidelberg 2009
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For the purposes of light analysis various optical elements like polarizers,
analyzers, \/4-platelets, etc., can be inserted into the beam of the incident and
of the scattered light. For a quantitative analysis of the scattering intensity
the use of a scrambler is recommended in order to account for the very strong
difference in spectral sensitivity of the gratings for parallel and perpendicular
polarized light, as was described in Sect. 4.2.

For a good resolution in the spectrometer with a simultaneous high light
intensity the source of the scattered light must be small. Thus, in general, the
laser is concentrated onto the sample by a strongly focusing lens. Figure 9.1
presents several possible geometries. Part (a) is the classical 90°-scattering
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Fig. 9.1. Various geometries for light-scattering experiments: 90° scattering for
transparent crystals (a), 90° scattering for absorbing crystals (b), 180° backscat-
tering (c), 0° forward scattering (d), and line focus (e); (S: sample, M; 2: mirrors)

geometry for transparent crystals. Incident as well as scattered light inten-
sities are increased by a factor of two by the two mirrors M; and M,. Part
(b) of the figure represents a 90° scattering geometry for highly absorbing
material. Excitation and scattering occurs only close to the crystal surface.
A variation to this arrangement is shown in (c) where the scattered light, is
observed in 180° backscattering. Because of its well defined geometry with re-
spect to the propagation of the incident and scattered light this arrangement
is particularly useful to study selection rules in single crystals. In special cases
scattering in the forward direction with scattering angles ~ 0° (Fig. 9.1d) can
also be important. The directly transmitted beam must be deflected from
the scattered light beam by a small prism or a small mirror. Finally, if the
crystal under investigation is light-sensitive a cylindrical lens can be used for
focusing (Fig. 9.1e). This geometry is appropriate as long as a spectrometer
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is used with a slit for the light entrance. The local irradiance on the crystal is
highly reduced due to the linear spread of the focus but the scattering output
remains high if the line focus is properly oriented with respect to the slit.
The classical detectors for Brillouin and Raman experiments are the pho-
tomultipliers operating as photon counters. However, today, multichannel sys-
tems, as they were described in Sect. 5.4, become more and more important.
In the case of light scattering by spatial inhomogeneities (Mie scattering) a
broad-band spectrum is investigated, in general. This means a broad-band ex-
citation source is appropriate as in the case of optical-absorption spectroscopy,
and the spectrometers do not need to have the high resolution required for
Raman or Brillouin scattering. Since the light intensity is high, usually no
high-sensitivity light detection is needed. Instead, the application of a micro-
scope can be very useful since it may enable the analysis of single scattering
centers. If an investigation of the angular distribution of the scattered light is
required laser excitation is advantageous even in this type of experiment.
With the recent increasing interest in small particles of dimensions in the
nm range light scattering from metallic colloides became of great relevance and
will be discussed in some detail in Chap. 16 and the corresponding appendix.

9.2 Raman Spectroscopy

Raman spectroscopy is based on the analysis of inelastically scattered light.
Scattering occurs from optical modes of quasi-particles. Classical scatterers
are optical phonons but other quasi-particles like optical magnons, plasmons
or even electronic excitations provide similar sources for the Raman process.
For the experimental discovery of this type of inelastic light scattering C.V.
Raman received the Nobel prize in physics in 1930.

9.2.1 Fundamentals of Raman Scattering

Raman scattering originates from a change in the polarizability of molecules
or the susceptibility of crystals by the excited quasi-particles. The optical
phonons are the most often investigated species. In contrast to absorption
spectroscopy it is the modulation of the response by the vibrations which is
important, rather than the contribution of the vibronic oscillators themselves.
The effect is demonstrated in Fig. 9.2 for a two-atom molecule. For an applied
field E(w) the polarizability «g of the orbitals shown leads to a dipole moment
Pp(w) = apE(w) which acts as a source for the evanescing EM wave. If the
molecule is vibrating with frequency {2 the distance between the atoms A and
B changes periodically and the polarizability will be modulated. In this case
the total dipole moment has the form!

! Note: The presentation given here is for a single molecule. Thus, o has the units
Asm?/V.
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K AX  Fig. 9.2. Schematic demonstration of
the Raman effect for a two-atomic
S - RRT— - molecule

LR )
A

Pp(w) = (ap + g cos 2t) Eg cos wt . (9.1)
Application of trigonometric sum rules yields
Pp(w) = agEg coswt + (a1 Eg/2)[cos(w + 2)t + cos(w — 2)t] . (9.2)

Thus, the evanescing light oscillates not only with the frequency w but also
at sidebands with frequencies w =+ §2. Since w for visible light is of the order
of 20000 cm~! and the phonon frequencies can be as low as a few cm™!
the line shifts can be very small. In addition, «; is always many orders of
magnitude smaller than aq, which means that the sidebands are usually very
weak. Nevertheless todays spectroscopic techniques enable the measurement
of the Raman sidebands for more or less all solid systems which exhibit Raman
active excitations.

In crystals the situation is more complicated since the phonons have peri-
odic structures and scattering from different parts of the crystal will interfere.
A constructive interference occurs for the condition

2Asin(6/2) = nA . (9.3)

A and )\ are the wavelengths of the phonon and of the light, respectively, n is
the order of diffraction, and 6 the angle between the incident and the scattered
beam. Equation (9.3) means that scattering occurs in a well defined direction
for a given phonon and for a given wavelength of the incident light.

The classical formulation of the scattering process is easily reinterpreted
in a quantum-mechanical picture. In this case the scattering geometry is de-
termined by momentum conservation as shown in Fig. 9.3 and the sidebands

7k, 5
Fig. 9.3. Momentum conservation for a light-scattering
& process with phonon generation; ki, ks, and q: wave vec-
?‘lE tor for incident and scattered photon and for the phonon,

i respectively

are interpreted as emission or absorption of a phonon by the light with con-
servation of energy. The corresponding mathematical relationships are
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hw; = hws £ RS2,
hk; = hks £ hq . (9.4)

The indices s and i refer to the scattered and incident light, respectively. The
+ sign is for phonon generation and the — sign is for absorption. As can be
seen from Fig. 9.3, the direction of the phonon participating in the scattering
process depends on the direction of observation. Also, scattering can only
occur for quasi-particles with very small values of ¢ as compared to the size
of the Brillouin zone. For 180° backscattering the maximum allowed value of
q is obtained. It is related to ks and k; by

Gmax = ki + ks = 2k; . (95)

Since for the visible spectral range k; is of the order of 10° cm ™! only scattering
with phonons from the center of the Brillouin zone with ¢ ~ 0 is allowed.
Depending on whether the quasiparticle is absorbed or emitted, the energy
of the scattered light is higher or lower than the energy of the incident light.
In the first case we speak about antiStokes scattering and in the second case
about Stokes scattering.

molecule o—0

o—0O
vibration ~0—O0~|~<0—(+|~0-0-0+|~0-O—0 ?—é—)—?
change ofa |
| AR A | P I AR
m _— —
E #0 #0 #0 =0 =0
Raman active yes yes yes no no
change of B, [},
with Q ’ DI Q ]—-/ l l i [ S
dRy _ _
da =0 #0 =0 =0 _ =0
infrared active no yes no yes yes

Fig. 9.4. Selection rules for Raman and for infrared activity of vibrations; after
[9.1]

A phonon can only contribute to a Raman process if it induces a change
in the polarizability. This is not necessarily the case for any vibration but
rather depends on the mechanical deformation induced in the molecule or in
the unit cell of a crystal. The situation can be demonstrated with the model
molecules listed in Fig. 9.4. The figure shows which deformations @ lead for
symmetric diatomic, asymmetric diatomic and symmetric triatomic molecules
to a change in the polarizability. In addition, the geometric deformations are
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indicated which lead to a change of the dipole moment Pp of the molecule.
Vibrations of the latter type are infrared active. Column 2 and 3 refer to the
change of the polarizability and the dipole moment of diatomic molecules,
and column 4 shows the same for three different vibrations of a triatomic
molecule. From the symmetry of the vibrations in column 2, 3 and also for
the symmetric vibration in column 4 the polarizability is changed by the
displacement of the atoms. Therefore these vibrations lead to a Raman effect
and are called Raman active. This is not so for the asymmetric vibrations
of the triatomic molecule. In first order the changes induced by one part of
the molecule are compensated by the other part, and the derivative of the
polarizability with respect to the normal coordinate @ is zero at Q = 0. The
oscillations are Raman inactive. Similar considerations can be applied with
respect to infrared activity. Only the oscillation shown in column 3 and the
asymmetric oscillations of column 4 induce a dipole moment and are therefore
infrared active. Obviously a vibration can be either only Raman active or only
infrared active or active to both probes. In fact, vibrations can also be inactive
or silent to both spectroscopic techniques.

The analysis exemplified above relies completely on geometrical considera-
tions. The geometry of the displacement of the atoms must be known. This is
in contrast to the analysis of Raman activity and infrared activity discussed in
Sect. 8.5. The final results with respect to the activity of the various vibrations
is, of course, the same.

The intensity of the light in the sidebands is proportional to the incident
intensity. This means the ratio of the two intensities defines a scattering cross
section of the form

do 1 dos . . . .
—_ = (differential scattering cross section) ,
d2 L dn
or
1d
S = vd% (Raman cross section) , (9.6)

where d®; means the light power (in watts) scattered into the solid angle
df2, I; the intensity of the incident light (irradiance) in watts/m? and V the
scattering volume. S is a cross section per unit volume and thus a property
of the material. Alternately to (9.6), often the derivative of S with respect to
the light frequency or spectral energy is used as a cross section.

The normalization of the Raman cross section to the scattering volume
is important for strongly absorbing materials where the scattering volume is
determined by the penetration depth of the light. For a comparison of Raman
intensities obtained for excitation with different laser lines a correction to the
observed results is required. If R and « are the reflectivity and the absorption
coefficients of the material, the Raman cross section is given by
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_ 1dos (aitos)/F
LA 1—-R)(1—-Ry)’

(9.7)

where F' means the cross section of the laser focus or more generally the
cross section of the scattering volume. Equation (9.7) is derived for strongly
absorbing materials in 180° back scattering. Modified equations must be used
for less strongly absorbing materials [9.2].

9.2.2 Classical Determination of Scattering Intensity and Raman
Tensor

For description of the Raman process and for evaluation of the Raman inten-
sity we can proceed analogous to (9.1). Instead of the scalar polarizability « we
use the susceptibility tensor x;; in the case of the crystals. The displacements
of the atoms are replaced by the normal coordinates Qi of the oscillations. The
susceptibility can then be expanded with respect to the normal coordinates
Q. and one obtains in analogy to « in (9.1)

I 5><ﬂ> <32Xﬂ>
Xt (x@ﬁ%j(a% OQHZ 0wy ), QkQmt - (08)

k,m

where the sum runs over all normal coordinates. 0x;i/0Q} is a component
of the derived polarizability tensor. This tensor is also known as the Raman
tensor and often written as

(X0)k or simply as Xtk or  Xjlk -

The intensity of the scattered light is proportional to the square of the Raman
tensor. The components of the tensor have three indices. j and [ extend over
the coordinates 1 to 3 and k runs over the 3N — 3 normal coordinates for the
vibrations, where N is the number of atoms in the unit cell. In other words, k
runs over all optical modes with wave vector ¢ = 0. The Raman tensor which
refers to all zone-center vibrations thus has rank three. For an individual mode
this tensor is given by a matrix with three rows and three columns determined
from the derived susceptibilities. This quantity is called the Raman tensor of
a particular mode.

Group theory allows to determinate which vibrational species can have
non-vanishing components in their Raman tensor (Sect. 8.5). Since the Raman
intensities are described by symmetric tensors exactly those species are Raman
active for which the representations are contained in the representation for the
symmetric tensors. Group theory can predict even more. It determines which
components of the Raman tensors must be zero in the various point groups and
which are finite. Thus, the structures of the Raman tensors can be evaluated
for all vibrational species and for all point groups. The tensors are tabulated
in many books. Appendix H.1 gives a listing following the work of Poulet and
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Mathieu [9.3]. For example, the Raman tensor for a highly symmetric mode
(Ag-vibration) in the cubic point group O}, has the form

a00

(X)a, = 880 : (9.9)

As we already saw from Fig. 9.4, vibrations can be Raman active as well as
infrared active. For point groups with inversion symmetry Raman activity and
infrared activity is mutually excluded.

By expanding the susceptibility into normal coordinates the Raman inten-
sity is obtained quantitatively from the vibration-induced polarization. In the
linear approximation the susceptibility is according to (9.8)

Xit = (xj1)o + (Xj1,k)0Qk (9.10)
with
Qr = Qrocos 2t .

We consider the emission from an elementary oscillator. With a harmonic
incident field E}(¢) the induced dipole moment which accounts for the emission
in the side bands is

Ppj(w =+ ) = xjikeoVaElgQro cos(w + 2;)t  (in Asm) (9.11)

where V), is the volume of the unit cell. i, has the dimension of a reciprocal
normal coordinate.

For the explicit calculation of the scattering intensity it is convenient to
select a special geometry?. For the case shown in Fig. 9.5 light is incident

X

Fig. 9.5. Beam and sample geom-
etry for 90° scattering; (full drawn
arrows: (||, L)-geometry, dashed ar-
rows: (L, ||)-geometry)

in z direction and observed in x direction. Thus, the scattering plane is the

2 Note: Intensities are given as radiance in watts per steradian rather than as watts
per area.
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xz plane. The polarization for the incident light is in the x direction (full
drawn arrow) which means in the scattering plane. The scattered light is y
polarized, i.e., perpendicular to the scattering plan. Other allowed orientations
for the incident and for the scattered light in this geometry are indicated
in the figure as dashed arrows. It is convenient to describe orientations of
the incident and scattered light polarization with respect to the scattering
plane using the symbols || and L. The scattering geometry E,Pp, given by
the full arrows in Fig. 9.5 is then labeled & . Using (2.19) and (2.18) with
@ =1and = 90° together with (9.11) the time-averaged scattering intensity
per elementary unit cell and unit solid angle can be evaluated. For a total
scattering volume V), consisting of N = V/V, unit cells, the intensities from
elementary oscillators are incoherently superimposed. This yields

dlg,  (w= k) VaXy, 120 E70QroV

— 9.12
dn 3277208 ( )

It is often more convenient to deal with the intensity I; of the incident light
instead of its field. With (2.9) we obtain

dlg,  (w+ Qk)‘*Vquz e AY
— = : (in W/ster). (9.13)
dn 16m2ch

For the Raman scattering cross section (9.6) yields

w =+ 2.)V 2 2
Syo = ( ) “)fly“"”“Q’“O . (9.14)
16725

Similar equations can be derived for other polarizations and for unpolarized
light.

Equations (9.12) to (9.14) describe the observed scattering intensity only
in a very phenomenological way. For example, the amplitude of the normal
coordinates Qo is not known. It depends strongly on the temperature and is,
in fact, the most significant temperature-dependent factor in the equations.
This factor can be calculated from a rather simple quantum-mechanical con-
sideration, to be demonstrated in Sect. 9.2.5. The Raman tensor x;; 5 is also
used in a completely phenomenological way. Its calculation needs the evalu-
ation of transition matrix elements similar to those discussed in Chap. 7 but
perturbation theory of second order is required.

For the characterization of the scattering geometry the directions of the
incident and scattered light as well as the directions of the corresponding
polarizations are important. It is convenient to describe these directions with
the symbol

a(be)d ,

where the letters refer to Cartesian coordinates z,y, and z. a and d give the
directions for the incident and scattered light, and b and ¢ the directions for
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the corresponding polarizations. This assignment is known as Porto notation.
The Porto notation for the scattering geometry of the full drawn arrows in
Fig. 9.5 is z(xy)x.

For many experiments it is enough to determine the components of the
Raman tensor which contribute to the scattering intensity. For example, to
analyze the symmetry species of a vibrational mode it is enough to check which
components of the Raman tensor are nonzero. Since from (2.19) the (radiant)
scattering intensity is proportional to the square of the dipole moment Py, it
is given for the mode k and for a selected direction of polarization e® of the
scattered light by the absolute square of the projection of the P§, on e®.

B(k) = C| & P2 = C| Y 3By (k)2 (9.15)
J

where Pp; are the components of the dipole moment induced by the Raman
effect. This dipole moment is given according to (9.11) by

P, = Zle,ke%EoVusoQk .
1

e} are the components of the unit vector of polarization for the incident light.
Thus, for a scattering geometry where the polarizations for the incident and
scattered light are given by arbitrary vectors e' and e® the scattering intensity
is

D(k) = C'le*(xxe)|* = C'| Y _ esx unellEf - (9.16)
7l

If the modes are degenerate, summation of intensities originating from the
various Raman tensors corresponding to the same mode is required. Equa-
tion (9.16) shows immediately the possibility to select any component of the
Raman tensor by properly choosing the polarization of the incident and the
scattered light. If the observation for the scattering geometry of Fig. 9.5 is
for y polarization but the excitation is for a polarization under 45° to the y
direction, the recorded intensity is proportional to (Xyy.k + Xya.k)>Es/2.

Let us consider experimental results for a scattering experiment with cal-
cite (CaCO3). As discussed in Appendix G.4 the crystal has D34 point sym-
metry with two formula units per unit cell. This yields 27 optical modes
distributed over the irreducible representations of D3y as

IBN=3) = A; (R) + 34z, +4E,(R) 4+ 24;, + 342, (IR) + 5E,(IR) .

Asg and Ay, are silent species. From the table of Raman tensors in Appendix
H.1 we find the form of the Raman tensors for the A, and for the £, modes
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Fig. 9.6. Raman spectra of calcite for different scattering geometries. The four

lines in (a) can be either A14 or E,. From (b) the mode at 1088 cm ™" is A4, from

(c) the modes at 156 and 283 cm ™' are Ey,, and thus the mode at 714 cm™! is

also Eg; after [9.4]

a00 c 00 0 —c—d
Algi 0a0 y Egli 0—cd , Eggi —c 0 0
00b 0dOo —-d 0 0

The twofold degenerate £; modes have two different Raman tensors. Figure 9.6
exhibits spectra for different scattering geometries. For the geometry z(zx)y
the Raman lines of the Ay, and of the £, species can be observed propor-
tional to a? and to c?, respectively. For a scattering geometry y(zz)z only the
Aj,-modes proportional to b? can be observed. In this way the different sym-
metry species and the individual components of the tensors can be determined
experimentally.

9.2.3 Longitudinal and Transversal Optical Modes

Optical modes with ¢ # 0 can be longitudinal (LO) or transverse (TO), de-
pending on the direction of the displacement with respect to ¢. As long as
the modes do not carry a dipole moment the LO and the TO components
are degenerate. They are electrically inactive and do not contribute to the
dielectric function. The situation is different for polar modes which carry a
dipole moment and are electrically active. The polar modes are the IR~active
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species. Since the longitudinal electric field contributes much more strongly
to the force constants than the transverse field, the LO - TO degeneracy is
lifted with the LO frequency always higher than the TO frequency. This was
already evident from the Lyddane-Sachs—Teller relation (6.43) (for wr, = wro)
in Sect. 6.3. Note that the differentiation between LO and TO modes needs
the definition of a direction of propagation. There is no LO-TO splitting in
the above sense for ¢ = 0. For the polar modes the direction of polarization is
assigned with x,y, and z in the character tables and can be taken from there
right away.

Using well defined scattering geometries in a Raman experiment the LO
and the TO components of a mode can be studied separately. Figure 9.7

(@) x-direction (b)  z-direction (c)
y— y—
K K ) i@
§(2) a() K
K, K,
- - I K
xx T b a2y
x(zz) X z(yy) Z A(2) TO
A2 TO A,(2) LO

Fig. 9.7. Scattering geometry for the observation of the TO and the LO compo-
nent for the A;(z) mode in Caz,; (a) and (b) is for 180° back scattering, (c) for
90° scattering

sketches different scattering geometries of the z polarized A; species in the
point group Ca,,. According to Appendix H.1 the Raman tensor has the form

a00
00c

For the geometries in part (a) and (c) of Fig. 9.7 only the TO component is
observed whereas for the geometry of part (b) only the LO component is seen.

Difficulties arise if we want to observe the LO component of the Bj(x)
species in the same point group. It needs a measurement with incident and
scattered light propagating in the z direction. The Raman tensor for Bj(x)
has the form

00e
Bi(z): {000
e00

which requires a xz polarization. Both conditions cannot be fulfilled simultane-
ously because of the transversal nature of the light polarization. In transparent
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crystals the problem can be solved by using a 0° forward scattering geome-
try. In this case the incident beam is shielded by a beam stop and the scat-
tered light is observed through a small pinhole under a very small angle 6
in the nearly-forward direction (Fig. 9.8). As the vector diagram in the fig-

@) z (b) KIlY y(x2)y
Al B,(x) LO
B K1Y q(x)
0 X
laser
2 y 2
= Ky = y(x.2) y
” kIly :

Fig. 9.8. Schematic arrangement for forward scattering to determine the LO
and the TO component of a polar mode (a). The light is incident in y direction,
scattering is for a small angle 6. (b) shows the scattering diagrams for LO and
TO phonon observation; (B: beamstop)

ure demonstrates, for light incident and observed along the y direction and
a (zz) polarization the LO component of the By (z) mode is observed if the
(zy) plane is the scattering plane. Rotating the beamstop by 90° renders the
(yz) plane as the scattering plane and the TO component of the same mode
is observed. In this way all Raman active polar species can be investigated
and the LO-TO splitting can be determined. The LO-TO splitting can be
between a fraction of a wave number and several tens of wave numbers. It is
an important measure for the longitudinal electric field of the mode.

9.2.4 Polaritons

Since the LO - TO splitting does not exist for ¢ = 0, the behavior of the
modes must change dramatically for approaching the zero wave vector. This is
indeed the case. Since the TO component has a transverse polarization which
is equivalent to a transverse electric field it has not only mechanical but also
electromagnetic character. Thus, the description of the polar modes needs not
only lattice dynamics but also Maxwell’s equations. With the relationships

D=¢FE+P, P = Eqcos(qx — 2t), E = Ecos(qz — 2t)
the latter yield for the electric field accompanying the wave

22/32)P — P
eo(q? — 22/cp)
From this equation the electric field for the LO mode with P|| g and for the
TO mode with P q is obtained, as expressed by the polarization P, from
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-P

ELO =

€0
2’E

Eto=—5——. 9.18
TO 50((]268 — (22) ( )
Since ¢%c3 > 22, Er, ~ 0 except for very small values of q. The behavior
of the modes for ¢ — 0 can be checked if P is replaced in (9.17) by eox E. This
yields a homogeneous equation for the determination of the field E. Nontrivial

solutions of the equation imply the condition

Qi 2 Qg (12) — (022 /cf) xi5(£2)
¢ — 2%/cg

dij +

=0. (9.19)

This equation is the dispersion relation for the polar modes. Assuming the
phonon parallel to the i direction yields for the éi-component of the equation
(LO modes)

1+x(2)=¢(2)=0, (9.20)

or {2 = {21,0. This means, the dispersion for the LO phonons is zero. For the
field component perpendicular to the ¢ vector of the phonon (jj-component
or TO modes) (9.19) yields

2%/c3)x (02
(q2 i (};;(/(c%) =0. (9.21)

1—

This equation has two solutions. For small values of ¢ either 2 — 21,0 (as-
suming ¢ = 0 in (9.21) upper branch of the TO modes) or ¢> — 2%¢(0)/cZ (for
the fraction in (9.21) approaching 1, lower branch for the TO modes). £(0) is
the static dielectric constant. For large values of ¢ either x({2) ( lower branch)
or {2 (upper branch) must go to co which means 2 becomes either 2o or
00. Between these limits (9.21) yields the proper dispersion. The modes prop-
agating according to this equation are called polaritons. Figure 9.9 depicts
the dispersion behavior schematically. For small values of ¢ the TO mode ex-
hibits indeed a strong dependence of the frequency on the wave vector and
approaches for ¢ — 0 an EM wave with the propagation velocity cq/+/€(0).
The upper branch of the TO mode approaches the LO frequency for ¢ — 0. For
large values of ¢ it corresponds to a true light wave with propagation velocity
co/+/Eo0- Polaritons occur in all crystals with polar modes and have partly
electromagnetic and partly mechanical character. If the crystal has more than
one polar mode the different branches must not intersect. This means only
the branch with the highest frequency approaches the light wave. Figure 9.10
shows experimental results for the polariton dispersion in GaP. The values for
the frequency and for the wave vector were obtained from Raman scattering
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Fig. 9.10. Polariton dispersion of GaP as measured by Raman scattering in the
forward direction. The dashed lines give the dispersion for the uncoupled photons
and phonons. The angles indicated refer to the scattering geometry; after [9.5]

in forward direction to guarantee small enough wave vectors. For scattering
angles smaller than 3° a clear dispersion for the TO mode is observed.
The upper branch of the TO modes can be measured by IR spectroscopy.

9.2.5 A Simple Quantum-Mechanical Theory of Raman Scattering

For the quantum-mechanical calculation of the Raman process excitation of
an electron by a photon is anticipated. This excitation is followed by a recom-
bination with the simultaneous emission of a photon of different energy. Since
energy and momentum must be conserved, the generation or absorption of
an additional quasi-particle is required during these two processes. The final
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state f is reached from the initial state i via an intermediate state z. It dif-
fers from the initial state by the generation or absorption of a quasi-particle
with energy A2 (Fig. 9.11). In the following the quasi-particle is assumed to
be a phonon (or vibron) even though it could be any particle for which the
selection rules allow a Raman process.

hw,

f
{ 5 BQ Fig. 9.11. Energy level diagram for a Raman pro-
i cess

To calculate the probability of the two optical transitions second-order per-
turbation theory is required, as it is discussed in many special books [9.3,9.1].
In addition, the generation or absorption of the phonon must be considered.
The following description is a simplified version where only the vibrational
part is evaluated explicitly. The optical transitions are treated phenomeno-
logically in a way similar to Sect. 7.4 for the optical absorption.

To discuss the inelastic scattering processes shown in Fig. 9.11 we must
evaluate the matrix element for the transition between state i and f. For the
scattering process the transitions are driven by the polarization induced by
the light P= xeoFE. The matrix element has therefore the form

Py = ({[P]i) = (flzox ) - (9.22)

Since (f| and (i| are generalized wave functions the integration runs over all
electronic and nuclear coordinates. If the wavelength of the light is much
larger than the interatomic distances the electric field can be considered to
be constant in (9.22) so that we can extract from the equation a generalized
form of the susceptibility known as the transition susceptibility

Xmn 1S @ material-specific quantity determined by the electronic orbitals in
the crystal. If the final and initial states are both the ground state, it turns
into the susceptibility as we have discussed it so far. The situation for Raman
scattering is different. We proceed similarly as in Sect. 7.4 by applying the
adiabatic approximation (7.24):

Dmnls = / P2 (X5 (@) X)Xomnipi (2, X)pi(X) dar dX . (9.24)
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First we consider the integration over the electron coordinates x. Assuming
that the final and the initial electronic states are the same renders for this
integral the electronic part x.,(X) of the transition susceptibility. In con-
trast to Sect. 7.4 we did not apply the Condon approximation. This means
the susceptibility still depends on the nuclear coordinates X. If we introduce
normal coordinates @y, we can expand the electronic part of the susceptibility
with respect to the normal coordinates. Considering only the linear term of
the expansion and extracting the expansion coefficient from the integral we
obtain

= v Vi axmn (% Vi
[an}ﬁ = (an)0<.. fk;..‘.. 1k-~> —I-zk: ( 90x )0 < fk|Qk| 1;.3..) . (9.25)

The bra and ket symbols represent total vibrational wave functions from the
integral in (9.24). They are expressed as the product of harmonic-oscillator
wave functions with the occupation numbers v¢g or vig.

(vg1, . Vsk, Vg | = H<Ufk|

k

(Vi1, - Vik, - Vin| = H<'Uilc| ) (9.26)
k

where (vg| and (vig| are the harmonic-oscillator wave function for occupation
numbers vg, and vk, respectively, as given in Appendix F.4. Since we do
not use the Franck—Condon principle the oscillators are unshifted and the
expectation values in (9.24) are

\ _ J O for ve # vig 02T
(ver|vik) = { 1 for veg, = vig "

and

0 for ve, = vig
(vrk|Qrlvik) = § (vik + 1)2\/1/20y for vgy, = vy, + 1 (9.28)
(Uik)l/z T“L/Z_Qk for Vi = Vi — 1.

Because of the orthogonality of the wave functions all expectation values from
(9.25) can be factorized into relationships like (9.27) and (9.28). Then, the first
term in (9.25) is only different from zero if v = vix for all k. This means, the
quantum-state of the system has not changed. If (x,nn)o is properly calculated
it describes the process of absorption or Rayleigh scattering. The second term
is responsible for the Raman process which is evident from the appearance of
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the derived susceptibility. According to (9.27) and (9.28) it is only nonzero if
for all k' # k vy = vy and for the mode k vg, = vy = 1 holds. In this case
the transition susceptibility (9.25) has the form

a mn
[an}v;wrl,vm = (Uik + 1)1/2 \% h/QQk ( T ) (9'29)
0

0Qy
and
8 mn
[XWTJ'Uik_LUik = (Uik)1/2 V h/QQk ( aka ) . (9'30)
0

Equation (9.29) and (9.30) obviously describe the Stokes and the antiStokes
Raman processes. From a comparison with (9.8) for the classical evaluation
of the Raman intensity the equivalence between the tensor for the transition
susceptibility and the derived susceptibility multiplied with the amplitude
of the normal coordinate is evident. In the quantum-mechanical calculation
the amplitude of the latter is replaced by its quantum-mechanical equivalent
/g /282 We have dropped here the index i, for simplicity, and will do this
also in the following equations.

For a comparison with the experimental results attention must be paid to
the dependence of the intensities on the vibronic occupation number vg. Since
the latter is determined by a Boltzmann factor
_exp(—ex/kpT) exp|—h2 (v +1/2)/kpT)

Z N >, XD~ (v +1/2)/kpT]’ (9.31)

a thermal averaging of the form

> (e + W (&)

v

W (ex)

is required to obtain the effective square of the Raman tensor from (9.29) and
(9.30). This is similar to the thermal averaging used for the evaluation of the
optical absorption from localized wave functions (7.35).

In the case of Stokes scattering the average is ny + 1 where ny is given by
the Bose—FEinstein distribution for the mode k

1
= ) = .
e = fel) = o kT =1
For antiStokes scattering the average yields ny. Thus, the scattering intensity
per steradian is derived from (9.13) for the incident intensity I; by replacing

io with the square of the quantum-mechanical amplitude hvy /262 and the
factor for thermal averaging (ny + 1).

(9.32)

dlg;  Bw = 20)*Vuxg, k(i + 1)1V (9.33)
o 32m2ch ' '

A corresponding relation is obtained for antiStokes scattering.
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9.2.6 Temperature Dependence of Raman Scattering

The temperature dependence of the Raman intensity is immediately obtained
from (9.33) by the dependence of n; on T. A conveniently measured quantity
is the ratio between antiStokes and the Stokes intensities of one mode

o, o+ %\ — %

—a = . . 4

P! <w—()k> eXp( knT (9:34)
The dash at the symbol for the intensity stands for the derivation with respect

to the solid angle. Equation (9.34) provides a good check on the temperature
in the laser focus on the crystal. Figure 9.12a shows experimental results
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Fig. 9.12. Ratio of antiStokes to Stokes Raman intensities for Si versus temper-
ature; e experiment, — calculated from (9.34) (a), and width of the Raman line
in Si versus temperature: e experiment, — calculated (b); after [9.6]

for the Stokes/antiStokes ratio in Si for the optical phonon at 525 cm~! in

comparison to the behavior calculated from (9.34).

The widths of the Raman lines also change with temperature. In many
cases the line shape is Gaussian or Lorentzian with FWHM I'. The value of
I' depends on the decay mechanism of the phonons. The most simple but
often observed process is a decay of the optical phonon into two longitudinal
acoustic modes. In this case the width of the Raman line is

(2, T) = I(£24,0) (1 + exp(mk/szT) — 1) . (9.35)

Alternative shapes for the temperature dependence may occur if the phonons
couple to rotational modes or to diffuse motions. Since such motions are ther-
mally activated, line shapes have a temperature dependence of the form
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(82, T) = I'($21,0) exp(—Ea /ksT) , (9.36)

where E is the activation energy for the diffuse motion. Figure 9.12b displays
the line width of the optical mode in Si. The full drawn line has been calculated
according to (9.35).

A particularly strong temperature dependence of the Raman lines can be
observed if the phonons themselves exhibit a strong temperature dependence.
This occurs frequently at structural phase transitions if at least one component
of the oscillation coincides with the vector driving the phase transition. For
approaching the temperature T, of the phase transition the energy of the
mode vanishes like

(Tc — T)a

h$2
oe T

(9.37)

and the mode does not exist above T.. « is called the critical exponent of
the soft mode §2. Figure 9.13 exhibits the temperature dependence of two
Raman active modes in SrTiOg for approaching the temperature of the phase
transition at 110 K.
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0 20 40 60 80 100 120 Fig. 9.13. Raman line position for two soft
T (K) modes in SrTiOs; after [9.7]

9.2.7 Raman Scattering from Disordered Structures

For polycrystalline solids, for disordered polymers, or for molecules in solu-
tion a selection of vibrational species is not possible in the sense of Sect. 9.2.2,
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but even in this case valuable information can be obtained from the observed
vibrations. One possibility is to correlate the vibrational features with the
structure of the chemical bonds. Characteristic bonds give rise to character-
istic frequencies. This is particularly useful for organic compounds where the
bonds are well defined. The procedure is similar to the analysis used in IR
spectroscopy and will therefore be discussed in more detail in Chap. 10. As
compared to IR, classical Raman spectroscopy has the disadvantage of relying
on a very delicate instrumentation such as high-power ion lasers and photon-
counting systems. With the development of Fourier-transform Raman systems
the situation changed and Raman spectroscopy has become as convenient for
industrial application as IR spectroscopy. Fourier-transform Raman systems
will also be discussed in Chap. 10.

To obtain a relation between the Raman tensors and the scattering inten-
sities even for disordered systems the tensors must be subjected to orthogonal
transformations with arbitrary angles, and the results must be averaged over
the whole angular space 4w. The transformation of a tensor from a system
with the coordinates x’, ', 2’ into a system with the coordinates z,y, z is per-
formed by multiplication of the tensor components with the corresponding
product of the direction cosines cos(mm’) cos(nn’)

Xk = Z Xmn k cos(mm') cos(nn') . (9.38)

m’,n’

To make writing easier the index k£ will be dropped in the following. It is
understood that all equations listed below hold for the derived susceptibility
and for each vibration separately.

Since we are dealing with orthogonal transformations the trace 3a and the
anisotropy 7 remain constant with

a= (x11 + x22 + x33)/3
T = [(x11 — x22)% + (x22 — Xx33)° + (X33 — X11)2] /2
+ [60xF2 + X33 + x13)] /2 - (9.39)
On the other hand, the tensor expressions obtained after transformation and
averaging must also be independent of any transformation. This means it must
be possible to express the tensors after averaging by a and 72. This is, indeed,

possible for the averaged products of the tensor components Xy, (Appendix
H.2). The relations can be summarized in the following way:

Xt = X3, = X33 = (45a” + 47%) /45 ,
X%Q = X%:a = X:zn = 7'2/15 ) (9.40)

X11X22 = X22X33 = Xa3xi1 = (45a? — 272) /45 .

All other averaged components of the Raman tensor are zero. Using equations
of the form (9.40) and (9.13) the Raman intensities can be evaluated for the
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different scattering geometries from the components of the Raman tensor,
even in the case of disordered systems. For the ||, L scattering geometry we
obtain for example

dle hw — )V V72 (n+ 1)1
DL _ gy, = Mw=9) . (n+ DL (9.41)
a0 24072} 02
Looking at Fig. 9.5 we note that for 90° scattering a ||, || scattering geom-

etry gives the same intensity as ||, L or L, ||.
Since absolute scattering intensities cannot be determined very accurately,

often the ratio of the intensities for different scattering geometries is investi-

gated. The corresponding quantities are obtained for each mode from

TL@/

=L, (9.42)
llqsfL

1 p
_ Hgs/L sl'JH
1%

= and

Al pL l@ﬁ_a Pn
The various forms of p are the depolarization factors since they determine how
much of a polarization is retained for the scattered light after the interaction
of the incident light with a phonon. For oriented crystals the depolarization
factors are simple ratios of the two components of the Raman tensor and are
obtained from equations like (9.13). For the averaged tensors one obtains for
90° scattering

p=1 for T#0,

372
”L:m’ 0<pL <3/4,
672

The limitation of the depolarization factors to the values indicated is a
consequence of the possibility for 7 and a to become zero. In particular, a line
is called depolarized if p; = 3/4 (a = 0) and fully polarized if p; = 0. From
the Raman tensors in Appendix H.1 it is evident that only totally symmetric
modes can have a nonzero trace. This means, only for these modes p; can
be very small whereas for all others p; = 3/4. Thus, at least the totally
symmetric modes can be distinguished from the non-symmetric species.

Note: in the case of resonance scattering the depolarization ratios can be
dramatically different from the values given above.

9.2.8 Resonance Raman Scattering and Electronic Raman
Scattering

So far the Raman process has been described as the excitation of an electron
by the incident photon and the subsequent recombination of the electron
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with the simultaneous emission of another photon. During these processes a
phonon is absorbed or emitted. The question whether the intermediate state is
an eigenstate of the system has not been considered. For the magnitude of the
transition susceptibility this is, however, of crucial relevance. Transitions into
eigenstates have a much larger matrix element, and the intermediate states
have a much longer lifetime as compared to transitions into virtual states. As
a consequence the probability of the generation of a phonon is much larger
for the former, and the Raman scattering intensities can be many orders of
magnitude larger. A Raman process of this type is called resonance enhanced.
The lifetime of an excitation into a virtual intermediate state is determined by
the Heisenberg uncertainty principle. The closer the intermediate state comes
to an eigenstate the less energy conservation is violated and the more stable
is the excitation.

Raman intensity (a. u.)

Fig. 9.14. Raman spectra
of polydiacetylene-T'S as ex-

i ith different lasers of
1=457.9 cited wit
—_—— ’k o /i~ equal intensity; after [9.8].
1000 1200 1400 . 1600 2000 Insert: chemical structure of
v (em’) the polymer

For a resonance scattering process discrete excited states or critical points
in the density of states are relevant, very similar to optical absorption. Res-
onances of the first type are frequently observed in molecules but also in
molecular crystals and for excitonic excitations in solids. Resonances at criti-
cal points in the density of states are frequently found in semiconductors.

Figure 9.14 exhibits Raman spectra for polydiacetylene excited with dif-
ferent lasers. Polydiacetylene is a conjugated polymer which can be prepared
in macroscopic single crystals. It has a quasi-one-dimensional band structure
with a strong exciton transition close to 2eV. The more the exciting laser
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approaches this transition the stronger the light scattering intensity. Raman
lines shown in the figure correspond to stretching modes of the C=C bond
(1495 cm~!) and of the C=C bonds (2090 cm~!), and to a deformation vi-
bration of the chain (946 cm™1).
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. Fig. 9.15. Resonance Ra-
man cross section for the op-
1 . ) ) ) L tical mode at 365 cm™! in
20 22 24 26 28 30 3.2 GaP. The full drawn line is
hw (eV) calculated; after [9.9]

In Fig. 9.15 the scattering cross section for GaP is depicted. In this case
the resonance is at a critical point in the density of states. By approaching
this point the scattering intensity increases by more than a factor of ten. The
maximum of the resonance has two peaks since two critical points exist: One
for the energy €y corresponding to transitions from the valence band to the
conduction band, and another for an energy ey + Ay where A is the split-off
energy from the valence band due to spin-orbit coupling.

The calculation of the resonance Raman intensities is often simpler than
the calculation for nonresonant scattering since only one electronic transition
has to be considered. The resonance is expressed by a resonance denomina-
tor in the transition susceptibility. Resonance Raman scattering allows, in a
particularly simple way, to determine the interband electron-phonon coupling
constant or the Franck—Condon coupling constant.

A frequently discussed question regards the difference between a Raman
process and a luminescence process. In a Raman process the recombination
always starts directly from the excited electronic state whereas for the lumi-
nescence a strong relaxation from this state always occurs first according to
Kahsa’s rule. In contrast to conventional luminescence, the hot luminescence,
where the emission starts from an excited state, is immediately related to the
Raman process.

So far only phonons were considered as quasi-particles excited in the Ra-
man process. This limitation is not necessary. Even free electrons or plasmons
can interact with the excited state via a Raman process. For a nondegen-
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Fig. 9.16. Raman spectrum for GaAs with a carrier concentration n = 1.75 X
10'"em™ for two different scattering geometries; after [9.10] (a), and single-
particle scattering continuum for n = 1.3 x 10®® cm™ (b). The dashed line in
(b) is an estimated contribution from a luminescence emission; after [9.11]

erate electron gas free carriers obey a Maxwellian velocity distribution. The
Doppler effect occurring during the interaction with the light gives rise to a
continuous up shift or downshift of the stray light spectrum in the immediate
neighborhood of the exciting laser.

If the concentration of the free carriers is large enough longitudinal plasma
oscillations can be excited. The frequency for these oscillations coincides for
g = 0 with the plasma frequency wp = /ne?/eggm* of the system. The
plasmons can be another source for a Raman process and appear as side-
bands to the exciting laser line in the spectra. Figure 9.16 displays spectra for
GaAs excited with a Nd:YAG laser at 1.06 pm. The carrier concentration of
n = 1.75x 10'7 ¢cm™3 corresponds to a plasmon mode at wp = 8.2 x 1012 7!
(vp1 = 130 cm™1). The spectrum in (a) at the top was taken for z(yz)y scatter-
ing and reveals sharp maxima for the LO and TO components of the threefold
degenerate polar mode of the semiconductor as well as the single particle spec-
trum close to the exciting laser. For the zz polarization shown at the bottom
the excitation of the phonon lines is strongly suppressed and the plasmon at
130 ecm™! is clearly observed instead. The plasmon shifts to higher frequen-
cies with /n. As soon as it approaches the polar mode it interacts strongly
with the LO component and coupled plasmon-phonon modes propagate with
the frequencies w™ and w™. Such modes have been observed extensively with
Raman scattering [9.10]. An example of this behavior is shown in Fig. 14.4 in
Sect. 14.2.3.
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In Fig. 9.16b a blown up spectrum for single-particle scattering is shown.
The carrier concentration was high enough to shift the Fermi level into the
conduction band. Under this condition single-particle scattering extends as
far as

Vel & qUr /2Ty |

where ¢ is the scattering vector and v, is given in cm~!. For non-degenerate
conduction electrons where the Fermi level is still in the energy gap single-
particle scattering extends only as far as

Vel & quen/co = (q/co)\/2ksT/m* .

The scattering vector is in both cases approximately equal to the wave vector
of the light.

Interference effects can have a strong influence on the scattering spectra if
in a certain range of the spectrum contributions from the single-particle con-
tinuum or from any other continuum and the response from discrete phonon
lines overlap and if the two systems of quasi-particles interact. The phonon
response appears then with a distorted line shape of the Fano type, as was
discussed in Sect. 3.2 and demonstrated in Fig. 3.4.

9.2.9 Raman Scattering in the Time Domain

When we discussed time resolved light sources in Sect. 3.4 we learned that
recording is in real space and not in frequency space. As it turns out one
can record Raman spectra also in time space by applying femtosecond spec-
troscopy. Indeed, recording vibrational spectra is just a special application
of femtosecond (fs) pump-probe spectroscopy. In this technique the sample is
excited with a strong laser pulse. The relaxation of the system is subsequently
probed with a split off fraction of the same pulse for well defined delay times.
A possible set up is shown schematically in Fig. 9.17. The strong fs laser pulse
is first split with 95% to 5% ratio into the pump and probe beam. The for-
mer irradiates the sample while the later runs over a tunable delay line and
eventually probes the sample by transmission or reflection.

With respect to recording vibrational spectra the technique is in some
sense complimentary to Fourier Raman spectroscopy. It works very well for
very low vibrational modes but becomes more and more difficult with in-
creasing mode frequency. If phonons are studied, the probe beam measures
the modulation of the susceptibility x(w, Qx) with the normal co-ordinate Qx
of the phonon. This is exactly the same as in Raman spectroscopy except
for the fact that non-equilibrium phonons are observed which are generated
during the relaxation process of the excited sample.
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The frequency range which can be covered by this technique is limited on
the low frequency side by the length of the microtranslator and its stability.
At least two or three oscillations should be observed. 30 cm long delay lines
cover a time delay of 1ns and thus allow frequencies of the order of 1 GHz
(equivalent to 1/30cm™1) to be recorded. Since at least 3 waves should be
detected a lower limit of 0.1 cm ™" is well reached. On the high frequency side
the width of the femtosecond pulse is the limit for the proper time resolution.
100 to 200cm ™! are reached with standard systems.

Figure 9.18 has some results for the temperature dependence of the phonon
spectra in (NbSey)sl. (NbSey)sI forms a quasi-onedimensional crystal with
DS, (P4/mnc) space group which undergoes a phase transition to Dj,(P42;c)
at 274 K and an other, displacive phase transition around 100 K. The left part

AR/R (arb. u.)
Intensity (arb. u.)

0 5 10 15 20 0 20 40 60 80 100
t (ps) Frequency (cm™)

Fig. 9.18. Low energy phonons for (NbSes)sl as recorded with pump-probe
technique for various temperatures. Recording in time domain (a) and after
Fourier transformation to the frequency domain (b); modified from [9.12]



210 9 Light Scattering Spectroscopy

of the figure has the measurements in the time domain for various temper-
atures. Part (b) has the frequency spectrum obtained from Fourier transfor-
mation. Both phase transitions are well recognized in the vibrational spectra.
Note that Raman lines to below 3cm™! are well resolved.

9.3 Brillouin Scattering and Rayleigh Scattering

Brillouin scattering is closely related to Raman scattering. According to a
classical definition scattering by optical phonons is a Raman process and scat-
tering by acoustic phonons is a Brillouin process. Definitions from molecular
physics according to which Raman scattering originates from molecular vibra-
tions which change the polarizability of the molecules and Brillouin scattering
originates from thermodynamic fluctuation of the density of the system is not
applicable to solids. A transverse acoustic mode can well contribute to a light
scattering process but does not induce density fluctuations.

A Dbasic difference between Raman scattering and Brillouin scattering
comes from the dispersion relation of the quasiparticle generated. We talk
about a Brillouin process if the frequency is zero for ¢ = 0 (w(g = 0) = 0) and
about a Raman process if w(g = 0) # 0.

9.3.1 Fundamentals of Brillouin Scattering

Like in Raman scattering in most experiments visible light is used for the exci-
tation in Brillouin scattering. The frequency range of the probed excitations is
10751 cm™!. This means only long-wavelength modes will be excited where
phonons have still the same dispersion as the sound waves. Thus, sound ve-
locities and elastic constants can be determined together with their response
to physical processes in the material.

Conservation of energy and momentum must be retained like in Raman
scattering (Fig. 9.3) and the same phenomenological description holds for the
classical picture. The modulation of the response function creates sidebands.
Instead of the susceptibility usually the dielectric function

e(w,q, 2) =e(w,0) + Ae(w, q, 2) (9.44)

is considered. The wave vector is now included since we consider “acoustic”
modulations which definitely require ¢ # 0. For classical Brillouin scattering
density fluctuations in the material are usually considered as the source of
the modulation. The corresponding induced polarization P*(w) which is the
source of the scattered light is obtained from

de(w)
dp

P?(w) = g9 AxE = Ae(w, ¢, 2)E(w)eg = Ap(q, 2)E(w)eg . (9.45)

For dielectric solids the real displacement field ug(r,¢) or more precisely the
Fourier transform of the strain tensor
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Ski(q, 2) = %[uk,z(q, 2) + uy (g, 2)] (9.46)

has to be considered. In (9.46) u (g, £2) is the Fourier transform of the derived
displacement Qug(r,t)/0x;. The modulation of the DF is then expressed by
the photoelastic tensor pp,k;. This tensor is defined by the strain-induced
change of the index of refraction

1 1

2 T3 = PmnkiSk - (9.47)
mn mn0

With this definition we obtain for the modulation of

Ag;j(w,q, 2) = —Eim(w)anj(w)(Aa_l(q, 2))mn (9.48)
where
(Asil(Qa Q))mn = pmnk’lskl(q’ -Q) . (949)

For a longitudinal acoustic strain in an isotropic medium Sir = Ap/p. This
yields

A0(e, 2) (9.50)

As(w, q, Q) = 52(w)p1122
From the induced polarization (9.45) the same relations can be used to calcu-
late the scattered intensity as described in Sect. 2.2 or as given for the Raman
scattering in (9.12) to (9.14). The Porto notation is applicable as well.

Labeling the scattering geometry by the unit vectors e! and e® for the inci-
dent and scattered light, respectively, we obtain for the light energy scattered
per unit of time and per steradian for a scattering volume V

AP (w— 2)1V,|es Acel|2LY

(9.51)

dn 16m2cd

In a more general treatment of the problem thermodynamic fluctuations
must not only be considered for the density p but also for the temperature 7.
In the case of solids rotational deformations I2;; may also add to the modu-
lation of €.

To proceed further a quantum-mechanical treatment of the electronic and
structural transitions is needed. Instead of doing this we will introduce a ther-
modynamic approach and thus obtain at least the temperature dependence
of the scattering process as in the case of the Raman effect.

The energy spectrum of the scattered light is obtained from the space
average (ensemble average) of the absolute square of the scattered field
|E®(r,w + 2)]2 at the point of observation. This quantity is directly related
to the average of the absolute square of the fluctuations. For the case of lon-
gitudinal acoustic modes (density fluctuations) in an isotropic material the
energy spectrum becomes



212 9 Light Scattering Spectroscopy

2

R D) (w— 2)4V|esel]; | de(w)
) S, (q, 9.52
deQ 167T2C(% 8[) P(qa ) ( )
with
0) = Ap(q, 12)]2 .
Sp(q,92) 27r7'wobs| plq, 2)%, (9.53)

where T,ps is the time of observation. S,(g, 2) is called the spectral density
or the power spectrum of the fluctuations or alternatively the dynamic form
factor of the system and relates directly to the power spectrum given by
(2.48). Tt is a very general and very important quantity widely used to study
scattering phenomena. It appears likewise in advanced descriptions of Raman
scattering, Brillouin scattering, inelastic neutron scattering or electron scat-
tering, and will be used again in a more general context in Chaps. 15 and
17. The Wiener-Khintchine theorem (2.68) relates the power spectrum to the
autocorrelation function of the density fluctuations.

To describe the scattering process in crystals the spectral density (9.53) has
to be expressed by the dynamical form factor for the displacement gradients

1
2T Tobs

Sul(g, 92) = 1> ukig, Q)17 (9.54)
k1l

In this case we have to replace Ae in (9.51) with (9.48) and (9.49). Note that
the dynamical form factors in (9.53) and in (9.54) become independent of the
time of observation if 7 is long enough since the average of the square of the
fluctuations increases linear with the observation time (see also Sect. 5.1).

To proceed further the dynamical form factor must be calculated. This was
done for the first time by A. Einstein in 1910 for liquids. The result obtained
for the (2 integrated) dynamical form factor is

Sp(q) = Vp*BrksT (9.55)

where (Bt is the isothermal compressibility (in m?/N). The dynamical form
factor for crystals is similarly

VkgT
Sulq) = -2

9.56
e (9.56)
where vy is the appropriate sound velocity. For a particular component of
e and S the expression for Ae/S;;. becomes £2p which yields finally for the
scattering intensity per steradian and a scattering volume V

®, — o) T
P, _ (W= 0)7 s o VEsT (9.57)

an - cter2 P op?

Inserting approximate numerical values into (9.57) yields &@./I; ~ 1078~

1071% per unit volume.
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The Brillouin scattering process is likewise often used to study the prop-
agation of coherent sound waves. If S is the strain amplitude of the sound its
intensity is Isouna = pv25?/2. The scattering intensity for a sound beam of
width B is given in this case by

Qpé (W_Q)Q 6,2 N2
Ti = Wﬂ B Isound - (9.58)

This case is known as Debye—Sears scattering or the Raman—Nath limit. Since
in this case Isounq can be very large scattering of light can be very efficient.
Such systems are used for light modulation or for sweeping of light beams.

9.3.2 Experimental Results of Brillouin Scattering

Light intensity (a. u.)

Fig. 9.19. Brillouin spectrum of

SbSI as measured with a five-pass

Fabry—Perot interferometer. (T,

: Ta: transversal acoustic modes, L:

-1.0 -05 0 B 0.5 1.0 longitudinal acoustic mode); after
v(cm') [9.13]

Figure 9.19 shows a Brillouin spectrum of SbSI as measured with a multi-
pass Fabry—Perot interferometer. T1, T9, and L label the sidebands originating
from an inelastic scattering by the two transverse acoustic and the longitu-
dinal acoustic phonon modes. From the scattering geometry the g vector of
the phonons can be determined, which enables the calculation of the sound
velocities from the shift of the sidebands with respect to the central line.
The sidebands which are not assigned in the spectrum are replicas originat-
ing from the small value of less than two wave numbers chosen for the free
spectral range of the interferometer.
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9.3.3 Rayleigh Scattering

Rayleigh scattering is a diffuse propagation of light with hardly any frequency
shift. The temperature-induced fluctuations of the density are responsible for
the modulation of the response function. Accordingly Rayleigh scattering is
observed very close to the excitation line.

Problems

9.1 Which geometry is required to observe the Bi4 species in Dop,?
(Purpose of exercise: learn to use selective geometries for scattering experiments
(easy example).)

9.2 The Raman scattering is observed for a calcite crystal (space group Ds3q) in
180° back scattering in the [110] direction and for geometries (||,]|) and (]|,L).
‘Which modes can be seen and which components of the Raman tensor contribute?
Hint: For 180° back scattering || and L refer only to the relative orientations of the
E vector for the incident and scattered light.

(Purpose of exercise: learn to use selective geometries for the scattering experi-
ment (advanced example).)

9.2" A polymer with the point group D2y, is investigated for a 180° back scattering.

The chains are oriented along z by stretching but randomly arranged in the zy

plane. Which modes become visible as compared to the fully oriented polymer?
(Purpose of exercise: training of selection rules for analysis of experiments.)

9.4 Using Maxwell’s equations show that the electric field of a polar mode is given
by (9.17).
(Purpose of exercise: recall the usefulness of Maxwell’s equations.)

9.5" Calculate the dispersion relation 2 = f(q) for polar modes by using the
Kramers—Heisenberg dielectric function and evaluate explicitly the behavior for very
large and very small q.

(Purpose of exercise: explore the usefulness of a simple DF.)

9.6 Show that the average of the occupation numbers (vy + 1)W (ex) is nk + 1.
Hint: Use the relation a exp(—az) = —d exp(—az)/dz.
(Purpose of exercise: prove a very important relation.)

9.7 Calculate the transition probability (decays per second) for the decay process
of an optical phonon £2(0) into two LA modes with frequency 2 = 2" = 2(q)/2.
Hint: The probability I" = dw/d¢ is proportional to the difference in the product of
the final and initial occupation numbers. These products are (n+N)(ng+1)(ng +1)
and (n+N+1)(ny)(ny ), respectively. The equilibrium occupation numbers ng, n,, ny
are given by the Bose—Einstein factor (9.32). N is a small perturbation to the thermal
population of n.
(Purpose of exercise: learn to handle occupation numbers.)

9.8 Discuss the depolarization factors p| and p1 for a 180° back scattering geometry.
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(Purpose of exercise: note the differences for back scattering and 90° scattering.)

9.9 The carrier concentration in a sample of YBaCu3Or,s) is 7X 102! cm 3. Up to
which wave number can scattering from free carriers be expected if the excitation is
performed with a green laser?

(Purpose of exercise: estimate experimental conditions for light scattering.)
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Infrared Spectroscopy

Infrared spectroscopy is one of the most popular spectroscopic techniques in
solid-state physics. The simple reason for this is that nearly all materials ex-
hibit a more or less expressed structure of the absorption in the IR spectral
range. The origin of these structures has already been discussed to some ex-
tent in Chap. 7. Absorption processes due to transitions across the energy gap,
from excitons or from impurity states, are found in the visible spectral range
as well as in the IR. Important additional sources for absorption and reflection
are the IR active phonons or vibrational modes which can give valuable sup-
plementary information to results from Raman scattering. In Chaps. 8 and 9
we have already discussed under which conditions vibrational modes are ob-
servable in an IR spectrum and in Sect. 6.3 we have even given a mathematical
description of the response function in the form of the Kramers—Heisenberg
dielectric function. In the present chapter particular attention will be paid to
special instrumentation not discussed previously, to advanced problems and
to several examples from solid-state physics. The first two sections elucidate
the characteristic difference between radiation sources, optical components,
spectrometers, and detectors for the visible and for the IR spectral ranges. To
do this it is useful to divide the spectral range into three sections:

— near infrared (NIR) 0.8-10 pm
— middle infrared (MIR)  10-40 ym
— far infrared (FIR) 40-1000 pm

The breakthrough in modern IR spectroscopy was the development of
Fourier spectrometers. With this spectroscopic technique it is no longer nec-
essary to disperse the probing light into its spectral components. The whole
light energy is always measured simultaneously, and only after the experi-
ment disentangled mathematically into its spectral components. According
to its dominating role Fourier spectroscopy will be discussed extensively in
a special section. Finally, examples from solid-state physics will be used to
demonstrate the power and broadness of applications of this technique.

H. Kuzmany, Solid-State Spectroscopy, DOI 10.1007/978-3-642-01479-6_10, 217
(© Springer-Verlag Berlin Heidelberg 2009
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10.1 Radiation Sources, Optical Components, and
Detectors

As in the visible spectral range standard radiation sources are black-body
emitters at high temperatures. Even though the maximum of radiation is
shifted to shorter wavelengths with increasing temperature (Fig. 3.1), the
absolute amount of emission in the IR still increases about linearly with 7'
This means even here high-temperature sources are an advantage, but for an
efficient radiator in the spectral range around 100 um very good filtering of
the emission in the visible is required. A simple source operating on the basis
of the black-body radiation is the glowbar. As the name indicates, it consists
of a SiC rod with the dimensions 2cm (length)x 0.5 cm (diameter), which is
heated by about 5 A to 1450 K. The glowbar is generally used in the spectral
range up to 40 ym, in extreme cases even up to 100 ym. Since it is small and
extends in one direction, it can easily be imaged onto the entrance slit of a
monochromator. The glowbar is operated in vacuum.

For more sophisticated applications or for applications in the FIR gas plas-
mas must be used as radiation sources. Hot gas plasma emits a long wavelength
continuum, in addition to the characteristic lines of the atoms. This contin-
uum originates from collisions of electrons with ions or neutral particles. The
special advantage of plasma radiators is their smaller emissivity in the visible
or NIR as compared to a black body at the same temperature. Only in the
FIR the emission becomes equivalent so that the ratio between emission in
the FIR and the emission in other spectral ranges is much higher than that
of a solid black-body radiator.

The plasma emission has a characteristic spectrum. For fully ionized
plasma it is independent of the wavelength but proportional to n2d/ VT,
where n, is the density of the electrons and d the thickness of the plasma.
A drop in the emission intensity on the short-wavelength side starts only at
hwr = he/ArkgT. On the long-wavelength side the emission starts to drop if
either the emission of the black body or the plasma edge at

Ap = 2mco /wp = 274/ Reogme/nee? (10.1)

is reached. The plasma is highly reflecting for wavelengths larger than A, and
has therefore also a low emissivity. This is an immediate consequence of the
Kirchhoff laws. Figure 10.1 shows the calculated emission from two plasmas
with different thicknesses as a function of the wavelength. The straight line on
the long-wavelength side of the emission represents the black-body radiation.
The flat tops of the curves in the central part represent the above-mentioned
independence of the emission from the wavelength. The dashed curve is an
experimental result.

Even though the plasma emission decreases as 1/ VT in reality it is advan-
tageous to choose the temperature of the plasma as high as possible. This is
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Wavelength (zm)

Fig. 10.1. Schematic representation for the emission of a plasma with high thick-
ness (h) and with low thickness (I). The dashed line is the observed emission from
a mercury arc; after [10.1]

due to the fact that the degree of ionization of the plasma for realistic temper-
atures is still far from complete. The gain in electron density with increasing
temperature more than outweighs the loss due to the factor 1/ VT.

A high-pressure mercury arc lamp in a quartz tube, as discussed in
Sect. 3.1, is an appropriate representation of a plasma source. However, even
though the temperature reaches 6000 K the degree of ionization is only 1%. In
spite of this, the spectral distribution of the emission follows well the idealized
behavior discussed above, as seen from the dashed line in Fig. 10.1. Besides
thermic sources lasers play an important role in the whole IR spectral range.
Their dominance is, however, not as clear as was the case for Raman scat-
tering. The lack of the possibility to tune lasers over a sizable spectral range
is the big drawback. On the other hand, semiconductor lasers cover a wide
spectrum not only in the near but also in the MIR or even in the FIR spec-
tral range if properly constructed. The advantage of such laser systems was
already mentioned in Sect. 3.4. Since the absorption lines of several MIR and
FIR lasers cover the spectral positions of important gas molecules applications
in gas analysis or pollution detection in the atmosphere are widespread. Laser
systems on the basis of PbTe or Cd,Hg;_,Te are appropriate. This is demon-
strated in Fig. 10.2 where the range of emission for several laser systems is
compared with the absorption characteristics of important gases.

For cyclotron-resonance experiments HCN lasers (372 um) or HoO lasers
(47-220 pm) are important. Finally, the CO2 laser with an emission around
10 pm is one of the most powerful laser systems altogether, as already dis-
cussed in Sect. 3.4. Because of the many other broad-band sources in this
spectral range the importance of the CO5 laser for spectroscopy has decreased.

The possibility to obtain tunable and still highly monochromatic radia-
tion comes from frequency doubling of microwaves. Microwave generators like
clystrons or magnetrons can be very powerful which enables the generation
of overtones up to the 15th order. This means that from a 58 GHz magnetron
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Fig. 10.2. Spectral range of various semiconductor lasers, and position of absorp-
tion for various gases; after [10.2]

source radiation with 500 pm wavelength can be obtained. Tuning the mag-
netron and selection of the appropriate overtone allows a continuous tuning
in a wide frequency range.

Wavelength (um)

25 3 4 5 6 7 8 15 20 30 50
NaCl
KBr
= BaF,
CaF, CsBr
Sio, Csl
Irtran-2
AgCl
AgBr
KRS-5 polyethylene
4000 3200 2400 1800 1400 1000 600 200
v (em™)

Fig. 10.3. Transmission range of infrared window material. Note that KRS-5
material is poison

Using optical components in an IR beam line attention must be paid to
the transmission properties of the materials. The longer the wavelength of
the radiation the more difficult it becomes to find appropriate materials for
windows and lenses. The limitation in the transmission originates from the
reststrahlen absorption by lattice vibrations. The heavier the atomic compo-
nents of the materials the further to the FIR the material can be used. On
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the other hand, organic materials like polyethylene have no strong absorption
lines in the FIR and are therefore well accepted for optical components below
about 600 cm~!. Figure 10.3 shows transmission ranges in the IR for various
materials.

All materials for which the transmission drops suddenly to zero at a par-
ticular wavelength are appropriate for edge filters. In the FIR wire meshes can
be used. High reflectivity starts for wire meshes when the wavelength of the
light increases beyond the dimension of the meshes. Figure 10.4 is an example.
If one component of the mesh is omitted (only linear wires) the system acts

100

Reflectivity (%)
B (=] o
o o o

n
o

300 400 500

150 200 1000

Wavelength (um)

Fig. 10.4. Wire mesh grating as edge filter for far-infrared radiation. The numbers
indicate distances between the wires in pum; after [10.3]

as a linear polarizer.

The large value for the wavelength in the FIR allows to use even simple, highly
polished tubes for guiding the light. If the tube is conical the propagating light
can be concentrated to a spot.

IR detectors were already discussed in Chap. 5 in connection with photo-
electric detectors. Because of the low sensitivity of the latter, particularly in
the FIR, and because of the low light powers available in this spectral range
other detectors are also frequently used. Examples are various forms of ther-
mal detectors like bolometers or pyroelectric crystals. An often-used system
is the Golay detector (Fig. 10.5). It operates on a pneumatic principle. The
incident IR light is absorbed by a thin film. The generated heat increases the
pressure in the gas chamber, which drives a mirror. The mirror is part of an
optical system which images a grating onto itself. Any small motion of the
mirror leads to a change in the overlap between grating and image and thus
gives a signal to the detector. As compared to low-temperature bolometers
the Golay detector has a low detectivity of only 5x 10° W~! and is rather
slow. On other hand, it is simple to operate and can be used up to 1000 pum.
The detector can only be employed for alternating signals, at best between 3
and 10 Hz.
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G

Fig. 10.5. Schematic arrangement of a Golay detector. (IR: far-infrared beam,
F: film, GC: gas chamber, M: mirror, G: grating, IG: image of grating, L: light
source (visible), D: detector ); after [10.4]

Another simple but often used detector works on the basis of the pyro-
electric effect. Crystals with a permanent electric dipole moment respond to a
sudden change in the dipolar order with the generation of compensating sur-
face charges. IR or heat pulses can be the origin of such induced disorder. The
voltage accompanying the compensation charges can be used to detect the IR
or heat pulse. A well known crystal for such detectors is triglycine sulphate
(TGS). Figure 10.6 shows the basic components. A good heat sink on the

; HS
IR

PC A

Fig. 10.6. Basic components of a pyroelectric

— detector. (IR: IR beam, PC: pyroelectric crystal,
TE: transparent electrode, HS: heat sink, A: am-
plifier)

TE

backside electrode is important. Even though the detector relies on a thermic
effect it can be rather fast. The time constant is given by the ratio between
heat capacity H and heat conductance G to the heat sink. Time constants
can be as short as 1075 s with a sensitivity of 100 V/Watt and a detectivity
of 108109 W1,

More sophisticated but also more elaborate detectors are the low tempera-
ture Ge or Si bolometers. Their operation is based on the temperature-induced
change in the conductivity of the crystal cooled to 4.2K. Figure 10.7 illus-
trates the basic construction for a Ge bolometer. The IR light hits the Ge
crystal through a cold filter which is supposed to reduce the background radi-
ation from the environment. The change of the current through the crystal is
measured by the voltage drop across a cooled resistor. A widely used dopand
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liquid helium
[| R ||| cs
Ge | = <
[L=1} A
CF N
/
100 K radiation Fig. 10.7. Construction of a Ge
Vacuum shield bolometer for constant current sig-
nal detection. (Ge: Ge crystal, CF:
1t cold filter, LR: load resistor, CS:
IR current supply, A: amplifier)

for the Ge crystal is Ga. In a broad spectral band around 100 gm BLIP con-
dition is reached, which means a detectivity of 102 W', For a spectral range
of 1000 ym even 10'* W' can be obtained. This value already approaches the
detectivity of photomultipliers in the visible. However, the signal level is very
low which means low noise amplifiers are required to reach high detectivity.
This limits the bandwidth for the measurement to 10 Hz. By counterdoping
with Sb the detectivity is slightly reduced but the bandwidth increases to
500 Hz. More recently similar detectors with Si as the sensing element are
frequently used.

Really fast experiments with time constants of the order of 10~% s can only
be performed with detectors based on photoconduction. Ge doped with Cu,
Zn, or Ga leads to flat impurity levels with ionization energies between 10
and 40 meV. Such detectors can be operated at 4.2 K up to 150 um (60 cm™1).
In InSb detectors the strong temperature dependence of the carrier mobility
rather than the change of the carrier concentration is used to probe the heat-
ing of the sample. Such systems are known as InSb-transformer detectors.
Figure 10.8 compares various detectors which are particularly useful in the
FIR.

10.2 Dispersive Infrared Spectroscopy

Like optical spectroscopy IR spectroscopy can be performed with dispersive
instruments. Prism spectrometers and grating spectrometers from Chap. 4
are appropriate. Both spectrometers are problematic, particularly in the FIR.
Away from the absorption range the prisms have a very low dispersion which
leads to very low light intensities for a required band pass d\. According to
(4.6) the power in the spectral bandpass d\ incident on the detector is

2

A
PA0X = TIoESA =TIy WHOX (10.2)
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where according to (4.19) §A = (d6/d\) "} (W/F). Using W from this relation
yields
A? 5 df

P\dA =TI, I H(oN) o (10.3)
This means for small values of df/d\ the energy available for a predefined band
pass becomes very small. A prism which is very good at 180 cm ™' because it
has a high dispersion can be very bad at 1000cm™!. Another disadvantage
of the prisms is the limited applicability in the FIR because of reststrahlen
absorption as already discussed in Sect. 4.2.2. Appropriate crystalline ma-
terials with their frequency limit in parentheses are NaCl (650 cm~1), KBr
(400cm~1), CsBr (280 cm™1!), and CsI (180 cm™1).

Using (10.3) and the definition for the etendue in (4.5) together with (4.6),
(4.10), and (4.13) we can find this value for the prism spectrometers from

= ——v. (10.4)

Apparently, this is formally the same result as was derived for the grating
spectrometers in (4.22).

Due to the larger wavelength of the IR light for grating spectrometers the
requirements on the gratings are not as severe as they are in the visible spectral
range. On the other hand the gratings must be much larger to accommodate
the required number of lines for a good interference. Dimensions of 30x 30 cm?
and 100 lines per grating are quite common.

To avoid the distribution of light intensity on the different orders of diffrac-
tion, gratings which are blazed for a particular wavelength (echellet gratings)
are in use. As shown in Fig. 10.9, such gratings have a stepped surface. For
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these gratings the intensities are no longer distributed to all orders of diffrac-
tion, rather they are concentrated to the order which comes closest to the spec-
ular reflection of the long part of the step. For a constructive interference the

6,

f—— Fig. 10.9. Diffraction of an echellet
grating

grating equation (4.14) and simultaneously also the relationship 6;+a = 0q—«
must be satisfied as can be inferred from Fig. 10.9. Thus the equation for the
echellet grating is

mA = 2dsin acos(f; — @) . (10.5)

To record spectra fixed slits and a rotating grating are used as in opti-
cal spectroscopy. The light path is limited to an angular spread of 6; + 04 =
2(6; + a) ~ 20°. Since measurements are usually performed in first order,
(10.5) defines an optimum wavelength Ay termed the blase wavelength. Radi-
ation with wavelength A, can be analyzed in an optimum way in first order.
If A\ becomes much smaller, e.g., equal to A/2 also light from second-order
diffraction will hit the detector, or more generally, radiation with wavelength
A/m will be observed in the m-th order. This means using echellet gratings
only small ranges of the spectrum of the order of

2 3
“Ap <A< A
3 b SAS A

can be analyzed. The rest must be cut off with filters. This is not a serious
problem in the visible since with A, &~ 0.6 um the whole visible spectral range
is covered. To cover, on the other hand, the spectral rang from 5-240cm™!
five gratings blazed for 1300, 650, 325, 160, and 80 um are required for given
values of a and 6; + 4. In addition, for each grating the other spectral ranges
must be filtered. This means that spectroscopy becomes very laborious and
difficult. Accordingly spectrometers in this spectral range are only operated

down to 30 cm L.

10.3 Fourier Spectroscopy

It is obvious from the above that in the MIR and FIR spectral range non-
dispersive spectrometers have a great advantage. As a consequence of the high
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capacity and speed of today’s computers this non-dispersive or interferometric
spectroscopy is already entering the visible spectral range as well and is known
as Fourier spectroscopy. In the following the basic principles and the operation
conditions for this very important spectroscopic technique will be discussed.

10.3.1 Basic Principles of Fourier Spectroscopy

M1
M2
N BS
=) .
LS
\Y
L1 o
< = Fig. 10.10. Optical path in a
Michelson interferometer; (LS: light
source, L: lenses, M: mirrors; BS:
D beam splitter)

Fourier spectroscopy is based on the Michelson interferometer shown in
Fig. 10.10. The white light from the source located at the focus of lens L; is
separated into two parts by the beam splitter. The reflected part is focused
onto the detector D after reflection from the stationary mirror My and after
a second split by the beam splitter. The transmitted part of the light is also
focused onto the detector after it was reflected from the mirror My and split
again by the beam splitter. The mirror My is mobile and can glide a distance
Azx. In this way interference fringes develop at the detector. Their intensity
I(z) depends on the position x of the mirror My. I(z) is termed interfero-
gram function. In contrast to the multiple beam interference occurring with
diffraction from the gratings or from Fabry—Perot plates, here the interference
is only between two beams.

If the incident wave is monochromatic of the form E(z,t) = Eq cos(kx—wt)
the field Ep at the detector is

ED = %{EO COS(kol‘ — wot) + EO COS[]C()(I + QASC) - WQt]} 3 (106)

where 2Ax is the optical path difference between the two beams (twice the
shift of the gliding mirror). Choosing = = 0 and replacing 2Ax by 2x yields
from (2.46) for the intensity at the detector

I(z) = coeo(E?) = %Egu + cos(4mrz)] (10.7)
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where we have replaced kg by 271. Rewriting this equation by using a spectral
intensity I(v) = eocoEZ0(v — 19)/2 yields

I(z) = ;/OOO I(v)[1 4 cos(4mva)]dy . (10.8)

Generalizing this equation to an arbitrary intensity spectrum I(v) yields the
basic relationship for Fourier spectroscopy

I'(z) =1(x) — 1/000 I(v)dv = ;/OOO I(v) cos(4mva)dv . (10.9)

The interferogram function I(z) or I’(x) contains the whole information about
the spectrum I(v). In fact, I’(x) is the Fourier transform of I(v) performed
with a cosine function. The observed intensity I(z) oscillates around an av-
erage intensity [ I(v)dv/2 = I;/2 which is exactly half of the original total
intensity of the beam. For x = 0 it reaches its maximum value of I as im-
mediately seen from (10.8). This position corresponds to zero optical path
difference. It is called the white light position. For © — oo the coherence of
the radiation is lost. According to Fig. 10.10 the intensity at the detector
becomes then /2. A Fourier transformation of I'(z) yields for z = y/2

/ I'(y/2) cos(2mv/y)dy

1 1)

= 5/ I(V)du/cos(%wy) cos(2m'y)dy = 5 (10.10)
0

since the integration over y gives §(v — /).

This equation means we obtain the spectral components of the light di-
rectly from the interferogram by Fourier transformation, without any spec-
tral dispersion. As compared to dispersive spectroscopy the procedure has
two basic advantages, known as energy advantage and multiplexr advantage.
The energy advantage originates from the fact that during the whole pe-
riod of measurement nearly always the total beam intensity hits the detector.
This means the detection operates on a high signal level which improves the
signal-to-noise ratio, particularly for weak radiation sources. The multiplex
advantage originates from the simultaneous measurement of the full spectrum
during the whole period T" of detection. In contrast in dispersive spectroscopy
N parts of widths Av of the spectrum will be measured successively so that
for each part only the time 77 = T/N is available. The signal-to-noise ra-
tio would be smaller by 1/v/N. The need for a mathematical process in the
form of a Fourier transformation after registration of the interferogram is not
really a drawback. The dramatic developments in computer capacity enable
the transformations to be carried out in a very short time even for very large
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Fig. 10.11. Interferogram for transmission through a polyethylene film. The insert
shows the structure of the polymer
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data sets. Another great advantage of the Fourier spectrometers is their higher
brightness as derived from (10.15).

Figure 10.11 displays the interferogram for a transmission spectrum of a
polyethylene film. Of the 4096 points measured for every 0.632 pm only 950
points are plotted. As expected the signal has a maximum at the white-light
position in the center of the interferogram and reaches Iy /2 for large distances
x. The corresponding distribution of the IR light is shown in Fig. 10.12. The
upper curve is a single-beam spectrum obtained immediately after the Fourier
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transformation of the interferogram. The strong absorption lines at 2900, 1450,
and 730 cm~! are characteristic vibrational frequencies of the polymer. They
correspond to a CH-stretching, a CC-deformation, and a CH deformation
oscillation in the plane of the polymer backbone. The last two lines are split
by interchain interaction. This is not seen in the figure since the spectral
resolution is too low.

The overall shape of the curve (sb) in Fig. 10.12 is mainly determined
by the characteristics of the light source and by the characteristics of the
optical elements in the light path, including the detector. If the spectrome-
ter is operated under ambient conditions additional absorption lines appear
from COs and H50 in the atmosphere. Since these lines have nothing to do
with the properties of the solid the single-beam result is usually divided by
the background spectrum. The logarithm of this ratio is plotted versus the
light energy (in wave numbers or meV). The quantity obtained in this way
is the absorbance. It gives a much better characterization of the absorption
lines as compared to the single-beam spectrum. The absorbance is plotted in
Fig. 10.12 as the lower spectrum. The procedure anticipates that the observed
transmission is directly related to the absorption according to the Lambert
law (6.8), and reflections have only a minor influence on the spectrum.

10.3.2 Operating Conditions for Fourier Spectrometers

As for the dispersive spectrometers the resolution of the Fourier spectrometers
can be expected to depend on deviations from ideal conditions of operation.
Two facts are crucial: the finite value for the shift of the mirror and the limited
number of registrations during the scan.

Since the mirror cannot be shifted from —oo to oo the Fourier transfor-
mation is truncated. For a shift from the positions —Zpmax t0 Tmax and a
monochromatic light with I(v) = Ipd(v —vp) the calculated spectral intensity
I'(v') yields from (10.10)

I o0 Tmax
') = ?0 / / 5(v — ) cos(4mvz) cos(4mv'z) do dv
0

Tmax

_ Ipxmax sin[4nwmax (Vo — V)]

10.11
2 AT max(vo — V') ( )

instead of Ipd(v' — vg). Thus, for a monochromatic light wave the resulting
intensity spectrum is not a d-function but a function of the form sinz/x as
depicted in Fig. 10.13. Note that the evaluated intensity can have negative
values. This is, of course, a consequence of the approximation. The spectral
resolution is given by the distance v between the central maximum at v/ = 1
and the first minimum at v} ;. From (10.11) the minimum is found at
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At this value of vy — v/ the calculated intensity I'(v') is negative. A good
estimate and an easy to remember number for the resolution is the inverse of
the total scan width 2z, = Az or

Ro = é = Ay (10.13)

As expected the resolution increases directly with the scanning distance during
registration.

Optimum resolution is only obtained if the size of the entrance pinhole to
the interferometer and the focal length Fg, of lens L; in Fig. 10.10 are properly
tuned. From a theoretical analysis the required relationship is r = Fry,+/2/Rg
where r is the radius of the entrance pinhole and Ry is the resolution. This
yields for the brightness (etendue) of the interferometer

rPrA?  2mA? 27 A?

Ef = =
F; F2u RO v

S, (10.14)

where A is the beam diameter in the spectrometer. Comparing this value
with the brightness of the grating spectrometer from (4.22) gives convincing
evidence for the advantage of the Fourier spectrometers

E¥  2nFg,
EG H

(10.15)

where we have used Ry ~ A/d ~ A/ like in (4.22). Since H and Fg, were the
hight of the slit and the focal length of the grating spectrometer, respectively,
the ratio in (10.15) is of the order of 500. This enhancement for the bright-
ness of the Fourier spectrometers over the grating and prism spectrometers is
known as the Jacquinot advantage.

Besides the finite width of the line at the center position also the side max-
ima of the sinz/x curve are disturbing. They originate from the abrupt cutoff
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of the interferogram at —z,,x and z.x. To reduce this problem the jump can
be smoothed by multiplication of the interferogram with 1 — |x/zpax| or any
other appropriate function before subjecting it to the Fourier transformation.
Even though some of the resolution is lost by this process the side maxima
of the sinz/x curve are truncated, as shown by the dashed line in Fig. 10.13.
Because of the cutting of the side bands the process is called apodization.

Another problem for the analysis is the lack of an analytical function for
I(z). Since the interferogram is only known pointwise the Fourier transfor-
mation can only be performed with finite Fourier sums. For each frequency v/
the intensity is obtained from

N/2
I"(V') = xo Z I'(mxg) cos(4nv'mzo) . (10.16)
m=—N/2

The continuous variable x is replaced by the discrete values maxy where xg
is the sampling distance. Equation (10.16) can yield a wrong result if the
sampling distance and the band pass of the incident light are not properly
correlated. An intensity which is evaluated for a frequency v’ holds also for

l
"=V 4+ — l=1,2,... 10.1
S 2 (10.17)

since
cos[dn (V' £ 1/2x¢)mao] = cos(dnv'mzo + 2wlm) = cos(4mv'may) .

Thus, the solution is only single valued for the frequency interval 0 < v/ <
1/2x¢. If the bandwidth of the incident light is characteristically larger than
1/2x¢, the contribution from low wave numbers can lead to a wrong value for
I(v") for high values of v/ and the other way round.

Looking into the detail the situation is even worth. The results from (10.16)
are the same for v/ = [/4xg + v. Thus, the function I(v') reflects about
v = l/4xy and a particular spectrum appears repeatedly in the analysis of
increasing wave numbers with a folding frequency

1

vVp = — .
4550

This means the free spectral range is not 0 < v/ < 1/2z( but only 0 < v/ <
1/4xg. If zq is not chosen small enough the part of the spectrum for low wave
numbers will overlap the spectrum for high wave numbers and thus cause an
irritation. The described behavior is called aliasing derived from the Latin
word alius which means “an other”. It is the reason why Fourier spectroscopy
becomes more and more difficult, the more the visible or even the ultraviolet
spectral range is approached. If v is the highest frequency in the incident
light a probe interval z¢ < 1/4vp must be selected in order to avoid aliasing.
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This means the number of measurements N to reach a spectral resolution dv
for this spectrum is
yode e
o ov
In the FIR with vg = 500 this number is 2000 for a resolution of dv = 1
cm~!. For the same resolution in the visible with vp = 20000 the number
is already 80000. Such large sets of data make the Fourier transformation
more elaborate. Since, however, today’s computer capacity is nearly unlimited
Fourier spectrometers are already commercialized up to the frequency range
of the near ultraviolet. On the other hand, aliasing can be used to extend
a narrow frequency range at high frequencies by folding down into a lower
spectral range. To avoid aliasing a spectral range appropriate for the chosen
value of zy must be selected by filtering.

(10.18)
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Fig. 10.14. Resolution of a

@ Fourier spectrometer demonstrated

f . e . n for polyethylene. Spectra (1) were

650 700 750 800 13501400114501500 recorded for a distance Az four

Wave number (cm ) times larger than for spectra (2)

Figure 10.14 demonstrates the influence of the maximum shift Az on the
resolution of the Fourier spectrometer. The spectra (1) are the response of the
absorption of the CH deformation and of the CC deformation for polyethylene,
as already shown in Fig. 10.12, but with an extended scale for the frequency.
The splitting of the lines is now well observed. If instead of the 4096 probes
only 1024 probes are recorded for the same distance xg the spectra (2) are
obtained where the splitting is obviously not resolved any more. Today band-
pass resolution of 0.01 cm™! can be obtained which corresponds to a resolution
Ry = 10° for v/ = 1000cm™!.

Particular attention must be paid to the beam splitter. Since it usually
consists of a thin and transparent polymer film like mylar multiple-beam in-
terferences occur as discussed in Sect. 4.3.1. The multiple-beam interference
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contributes crucially to the transmission properties of the beam splitter. Using
the results of the plane parallel plate the intensity at the detector is obtained
from
2

1(d) = 8{;2 RQRE 2(2 COCSO(Z)‘Z;) Iy with ¢ =4dmndvcosd . (10.19)
R is the reflectivity of the interface, d the thickness of the film, n its index of
refraction, and 0" the angle of incidence (inside the beam splitter). For cos ¢
=1 all light is reflected and cannot reach the detector. The power observed is
thus a critical function of ¢ and consequently also of the thickness d. The latter
must be selected in a way to transfer optimum power to the detector for the
spectral range under investigation. The transmission is plotted in Fig. 10.15
for three different beam splitters. The broader the spectral distribution under

6um
e
s
c 12.5 um
o
7]
]
E
@
& 25 um
= H
/\ Fig. 10.15. Transmission through beam
h " L splitters with three different thicknesses for
0 100 200 3091 400 500 the spectral range from 0-500 cm™" as cal-
v(cm ) culated from (10.19)

investigation the lower are the values of d required for the beam splitter.

Figure 10.16 sketches the layout of a commercial Fourier spectrometer.
It consists essentially of four chambers: the light-source chamber, the beam
splitter chamber, the sample chamber, and the detector chamber. Advanced
spectrometers operate with two or even three different detectors which are
computer-controlled and available for the different spectral ranges. The same
holds for different beam splitters and light sources. The latter can even be
external. For measurements below 1000 cm™! it is necessary to evacuate all
chambers or to flush them with dry nitrogen to get rid of any traces of mois-
ture. The vibrational and rotational lines of water will otherwise fully cover
up the investigated spectra.

10.3.3 Fourier-Transform Raman Spectroscopy

Since Fourier spectroscopy is an excellent tool to analyze weak spectra it was
certainly tempting to apply it also to Raman spectroscopy. As we saw, the
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Fig. 10.16. Construction of a vacuum Fourier spectrometer for multiple use. (S:
light source, M: gliding mirror, FM: fixed mirror, BS: beam splitter, SP: sample,
DTGS, MCT, GB: detectors, EB: external beam, ES: external source). The layout
corresponds to the spectrometer IFS66v from Bruker. The arrows indicate possible
computer controlled flipping of the mirrors to select different light paths

brightness of the Michelson interferometer can be up to a factor 500 higher
than for good grating spectrometers with the same cross section of the beam.
This has basically to do with the much smaller focal length of the former with
respect to the latter. Unfortunately the multiplex advantage of conventional
Fourier spectroscopy turns into a multiplex disadvantage in the Raman exper-
iments due to stray light. Since in Fourier spectroscopy the whole spectrum
is always measured simultaneously the large amount of quasi-elastic scattered
light induces a strong noise proportional to /I () even on top of the weak part
of the spectrum. With the development of very efficient and very sharp cut-
ting filters it was possible to stop the largest part of the elastically scattered
light and to use the Fourier technique even in the case of Raman scattering.
Today such experiments can be performed down to 80 cm™! in the spectrum
for excitation with a Nd: YAG laser at 1064 nm. Fourier-transform Raman
spectroscopy has several advantages like a less critical sample alignment, ex-
citation at a much lower light energy and a large area sample illumination.
Several companies offer Raman equipment as an additional supply to conven-
tional Fourier spectrometers.

10.4 Intensities for Infrared Absorption

As the response of matter to IR radiation can have a purely electronic or a
purely vibronic character the approximations for a quantitative treatment of
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the interaction processes are different for the two cases and will be discussed
separately in the following.

10.4.1 Absorption for Electronic Transitions

The electronic transitions in the IR are fully analogous to the transitions in
the UV-vis spectral range. Therefore the relationships derived in Chaps. 6 and
7 hold also for the IR spectral range. The response to the radiation is partic-
ularly well described by a dielectric function of the form (6.35). Introducing
the oscillator strength of (6.39) we obtain for &

2
Swa

£=E€cot+ —3 (10.20)

wg — w? + iwy
where Aiwr is the transition energy. The oscillator strength is calculated from
the transition matrix element, as discussed in Chaps. 7 and 8. Absorption and
reflectivity are obtained as in Chap. 6.

10.4.2 Absorption for Vibronic Transitions

The response of the IR radiation to polar modes is likewise described by the
Kramers-Heisenberg dielectric function. For an evaluation of the oscillator
strength a treatment very similar to the case of Raman scattering is possible.
This was already indicated in the discussion of Fig. 9.4. Whereas the Raman
intensity was given by the dependence of the field-induced dipole xeqEV,
on the normal coordinate the IR absorption is given by the dipole moment
induced by the normal coordinate. Following the traditional assignments we
will use the symbol p instead of Pp for the molecular or microscopic dipole
moment. To proceed like in the case of Raman scattering we expand p(Q) in
a Taylor series

o= uo+Z—Qk+..... (10.21)

The square of the second term in the expansion is proportional to the IR
absorption intensity.

Using harmonic-oscillator wave functions we obtain the transition dipole
moment in analogy to the case of Raman scattering

[,u]ﬁ = <ka‘/11‘vk1> . (1022)

With the Taylor expansion from (10.21) the transition dipole moment for the
absorption of one phonon becomes

[pls = (v + 1] ( 8@ ) Qklvk) = (g“) (22k)1/2 (v +1)Y2 . (10.23)
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Averaging over the occupation numbers with the weight W (ey) from (9.31)
yields

2 h
2

op

2
h op
OQk (i +1) ‘ 0Qk

akoc' Q.Qk

(10.24)

The approximation adopted in the equation is good for hf2;, > kT where
(2, is the frequency for the transversal optical phonon. The square of the
transition matrix element (10.22) or equivalently the expression on the right-
hand side of (10.24) are a good values for the oscillator strength in a Kramers—
Heisenberg DF, such as (10.20), for a polar mode.

The use of the square of the transition matrix element (10.22) for the
oscillator strength in (10.20) is not fully self-consistent. The denominator in
the equation was obtained from a very simple model whereas the numerator
is now calculated quantum-mechanically. In a self-consistent description the
damping of the electric field F(t) is considered. The absorption is then given
from the Fourier transform of the field. The explicit result for a is obtained
from [10.6]

_ An 2 Yk
ap = Bcoh‘<..U}€f..|p,|..’ukl..>| (w—()k)z—i—'yﬁ .

(10.25)
This compares to the imaginary part of (10.20) which is proportional to the
absorption. From the evaluation the denominator becomes (27 —w?)?+w?+Z in
slight difference to the denominator in (10.25). This difference has no physical
meaning. It is a simple consequence of the different approaches.

In a more general and very fundamental treatment the IR absorption can
be evaluated from the dipole autocorrelation function (p(0)u(t)). As demon-
strated in Appendix 1.1 this yields a very important and very useful relation-
ship between the absorption coefficient o and the derived dipole moment in
the form

%

2 - IQQkCOEO / ak(w)
IQk

nqg w

dw . (10.26)

nq is the number of dipole moments per unit volume. Equation (10.26) is often
utilized to determine the derivative of the dipole moment with respect to the
normal coordinate from a measurement of the absorption coefficient.

10.5 Examples from Solid-State Spectroscopy
Solid-state physics has a large number of problems where IR spectroscopy

is very informative. They cover simple vibrational spectroscopy in polycrys-
talline material or the determination of bonding in organic solids as well as
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electronic properties like band gaps, impurity levels, or cyclotron resonance in
semiconductors. Even for the analysis of metallic systems and superconduc-
tors IR spectroscopy is used. Some examples will be described in the following
sections.

A convenient type of samples for IR transmission measurements is obtained
by preparing compressed pellets of some matrix material with small amounts
of the material to be investigated. An often used matrix is KBr powder. To
avoid signal distortion from granularity compactation must be performed at
high enough pressure which eventually renders almost transparent pellets.
Unfortunately the spectral range covered by this technique is limited by the
transparency of the matrix material which is cut off at 500 cm ™! in the case of
the KBr. An alternative matrix material is polyethylene, since this compound
has only one rather weak line at 72cm™! in the FIR. However, homogeneous
pellets are difficult to obtain. Alternatively to the pellet method the material
can be evaporated or cast as a thin film onto a highly reflecting metal surface.
Then, transmission through the film can be measured in reflection geometry.
For single crystals or smooth metal surfaces the recommended method is re-
flectivity measurements and a subsequent Kramers—Kronig transformation to
obtain the complex dielectric function.

10.5.1 Investigations on Molecules and Polycrystalline Material

As discussed extensively in Sect. 9.2, lattice modes or molecular vibrations
can be classified as Raman-active, IR-active and polar, or silent. The IR-
active species and the direction of their polarization can be looked up in
character tables. Since characteristic bonds have characteristic frequencies IR
spectroscopy is widely used to analyze chemical bonding and thus to analyze
structures or identify materials and components in mixed systems. For in-
organic materials the frequencies are concentrated in a rather narrow range
between 50cm™! and 800cm™!, which makes analysis difficult. In organic
material the frequencies extend up to 3500 cm ™! and the vibrational charac-
ter of many special atomic groups is very well known. Since IR spectroscopy
is easily performed such problems are now investigated in a special research
field of computer-assisted IR material analysis. For identification stretching
modes between the atoms are particularly useful since their frequencies are
characteristically different far the various bonds. This analytical method will
be increasingly supported in the future by Fourier-transform Raman spec-
troscopy. In Table 10.1 the most important and characteristic frequencies are
listed together with their visibility in IR and Raman spectra. It is common to
classify the vibrations into two groups, one above and one below about 1500
cm~!. The high-frequency group contains only stretching modes, the lower-
frequency group is called the finger print range since it covers the modes of the
molecular stage. For the characterization of normal coordinates the following
symbols are used:
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Table 10.1. Frequency range for important modes of organic material in the IR
and Raman spectrum; ( vs: very strong, s: strong, m: medium, w: weak, vw: very
weak)

stretching vibrations fingerprint range
vibration range intensity vibration  range intensity
(em™") IR Raman (em™) IR Raman
vCH 31002800 s w 0CHs 1370-1470 m m
vNH 3500-3300 m w vC-C arom. 1600 m s
vOH 3650-3000 s w 1500 ms m
vSiH 2250-2100 m s 1000 w VW
vPH 2440-2275 m s vC-C 1100650 m s
vSH 2600-2550 w s vN-N 865-800 w s
vC=C 22502100 w s V4asCOC 1150-1060 s w
vC=N 2255-2220 w m v,COC 970-800 w s
vC=C  1900-1500 w vs vS-S 550-430 w s
vC=0  1820-1680 vs w vC-F 1400-1000 s  w
vC=N  1680-1610 m s vC-S 800-600 m s
vN=0O 1590-1530s m vC-Cl 800-550 s s
vC-Br 700-500 s s
vC-1 660-480 s s
0sCF3 740 m s
0asCF3 540 m w

— v for stretching modes,

— ¢ for in-plane bending modes,

— v for out-of-plane bending modes, and
— 7 for rocking or torsion modes.

Besides the analysis of materials the documentation of thermodynamic
or chemical processes like phase transitions, phase separations, or oxidation
and reduction processes is a wide field in IR spectroscopy. Since the record-
ing of spectra with the Fourier technique may require only several seconds,
time-resolved spectroscopy is possible and often applied. Figure 10.17 shows
the modulation of the IR spectra during a cis-trans phase transition of poly-
acetylene. By watching the two bending modes at 740 and 1329 cm ™! in the
cis-form and the bending mode at 1050 cm™! in the trans-form the dynamics
of the isomerization process can be studied.

10.5.2 Infrared Absorption and Reflection from Crystals

Infrared absorption and reflection are basically determined by the complex
dielectric function e(w) from Sect. 6.3. To investigate the contributions of
the lattice modes the Kramers—Heisenberg model function of the form (6.35)
or (6.40) is appropriate. The reflection or the absorption is evaluated from
equations like (6.12), (6.19), (6.21), or (6.20).
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Fig. 10.17. Infrared transmission of cis-polyacetylene during the phase tran-
sition into the trans-form. cis-polyacetylene (a), intermediate phase (b), trans-
polyacetylene (c); after [10.7]

Considering the Kramers—Heisenberg dielectric function in more detail in-
teresting relations can be stated between the frequencies measured in the
Raman spectra and the IR intensities. For a real crystal with N atoms per
primitive unit cell the dielectric function must be derived in tensorial form.
Then, z and F are vectors, and M, e, and the effective charge e* are tensors.
It is convenient to include the mass M into an effective charge parameter Z
of the form

e*

Z:W (in 1/s) .

Z is now a 3N x 3-dimensional tensor with the components Zx, where k& and
a run over 1 to 3N and 3, respectively. Since e* and M are given per unit
volume Z is given in s~!'. Equation (6.35) has then the form

3N
VAVAN:
€ap = €ap(00) + E . -
i i = wito — w? +iwn

(10.27)

The sum in (10.27) runs over all phonon branches including the acoustic
modes. For crystals with orthorhombic or higher symmetry only diagonal
elements of € are non zero. This yields
3N
Z2
Eaa = gaa(OO) + 2 'ka 2
=1 WkTO +ilwyr —w

(10.28)



240 10 Infrared Spectroscopy

If the sum is taken only over the 3N — 3 optical modes the dielectric function
for constant strain €, 1s obtained. Introducing the oscillator strength Ska of
the form

Spo = ko (10.29)
* wiro
(10.28) becomes (for v = 0)
3N-3

aa T 50404(00) +
k=1

2
WiroSka

€ )
2 42
Wgrto — W

(10.30)

Introducing into the sum a common denominator and expressing the re-
sulting polynomial in the numerator by its zero positions wir,o yields €}, in
its factorized form

BN=3 o o
faa = faal) [| =0— (10.31)
k=1 kTO

which obviously represents a generalized form of the Lyddane-Sachs—Teller
relation (6.43). A similar relationship is obtained if the damping is included
which means (10.31) allows to calculate the dielectric function and thus the
reflectivity spectrum if the all LO and TO frequencies are known. If the polar
modes are Raman-active the latter can be determined from Raman spec-
troscopy. This means, the IR reflectivity can be fully evaluated from a simple
measurement of Raman frequencies. Figure 10.18 displays results for the re-
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g 40 Fig. 10.18. Infrared reflec-
g 30t tivity for the A;(z) species
20 in LiGaO2; experimental re-
10t sult (——) and calculated
from the LO and TO fre-

100 200 300 400 5_‘.;10 600 700 800 quencies of a Raman spec-
v(cm ) trum (—); after [10.8]

flectivity of the A;(z) species for the orthorhombic crystal LiGaOy with space
group Pna2,. The dashed line was measured with the IR spectrometer. The
solid line was calculated using the LO and TO mode frequencies determined
by Raman scattering. No fitting parameter is used for the comparison. The
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very good agreement between the measured and calculated result is a good
prove for the relationships derived above.

A comparison between (10.30) and (10.31) enables, in addition, to deter-
mine explicitly the oscillator strengths Sk, and with (10.29) also the effective
charge parameters. For the former the equation

W — wiio A0 Wi — w?
(OO) kLO y kTO ];TO — l2LO (1032)
WrkTo 1=1 k21 “kTO ~ ¥ITO

Skoz = €aa
is obtained. With this all parameters for the determination of the dielectric
function are known. A detailed analysis reveals that the obtained parameters

are even sufficient to determinate the nonlinear optical constants of the crystal
[10.8].

10.5.3 Attenuated Total Reflection

From the many possibilities to use IR spectroscopy for the analysis of molec-
ular and lattice vibrations one special technique should be mentioned where
the total reflection at a crystal boundary plays the fundamental role. The
method is known as attenuated total reflection since it makes use of special
properties of the dielectric function for the situation of total reflection. The
geometry of the experiment is sketched in Fig. 10.19. Light from the spec-

Fig. 10.19. Geometry for attenu-

i X
n, + lc, ated total reflection experiments

trometer hits the surface of the crystal with refraction index ng + iko after
passing the medium on top of it with the refractive index ny + iky. Let the
angle of incidence be a. Material 1 can be either air or vacuum or another
transparent crystal with a hemispheric form. The reflection depends critically
on the angle o and on the related component k, of the light wave vector. Two
alternative experiments are possible. Either the electric field or the magnetic
field of the light can be perpendicular to the plane of the beams. In the first
case the geometry is called transversal electric (TE) and in the second case it
is called transversal magnetic (TM). In both cases essentially the same results
are obtained. The reflectivity R is determined from the Maxwell equations
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and by considering the steady transition of the tangential component of the
electric field through the interface as was done for the derivation of the Fresnel
formulae in Appendix E.1. For the TE geometry one finds for non-dissipative
media

2

R= ET X H’" _ (w/co)n1 cosa — \/(w/co)2eay (w) — k2
E*x H* (w/co)nicosa + \/(w/cp)2eay (w) — k2

(10.33)

€9y and k; are the y-component of the dielectric tensor of the crystal and
the  component of the wave vector of the incident light, respectively. For
very small values of o (perpendicular incidence) this relation yields (6.19) for
k = 0. For a large conventional total reflection as it is known for a smooth
dielectric function is possible if /g2, < ni1. Then the expression under the
square root can become zero or even negative and the reflectivity will be 1.

If the dielectric function diverges for certain values of w the reflectivity
(10.33) becomes a complicated function of o and w. It depends again criti-
cally on whether the square root is real, imaginary, or dominates the numera-
tor and the denominator altogether. In the last two cases the numerator and
the denominator become equal, and R =~ 1 is expected. Starting the reflec-
tivity measurement for small enough angles o and w the reflectivity will be
conventional and low. As soon as the frequency of light has reached the TO
phonon ey, becomes very large. In this case the square root dominates the
fraction in (10.33), and R becomes 1. This holds even for negative values for
€9y at least up to the LO frequency where the dielectric function becomes
zero. Only when €9, becomes positive again the square root can turn to real
and the reflectivity will be reduced. When this will happen depends critically
on k, and thus on the angle of incidence a. Consequently, the drop in reflec-
tivity must be shifted to higher frequencies with increasing «. As shown in
Fig. 10.20, this is indeed the case.

100 — "]

Reflectivity (%)
8

o
o

/ Fig. 10.20. Reflectivity of ZnS as mea-
sured for a geometry of attenuated total

400 _, 500 reflection for various angles of incidence;
v(em ) after [10.9]

300
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The physical interpretation of these results reveals that one can use such
experiments to observe the upper branch of the polariton dispersion discussed
in Sect. 9.2.4. The first expression under the square root in (10.33) is a wave
vector of magnitude

w 2
2
= | — Eoy -
q <C0> 2y

According to (9.21) this corresponds exactly to the dispersion for the upper
branch of the polariton. The drop in reflectivity occurs exactly when the
expression under the square root becomes zero. This means the drop occurs
when the x component of the incident light equals the wave vector of the
polariton.

dpol = 2n sina . (10.34)

Since the corresponding frequency is obtained from the experiment according
to Fig. 10.20, the experimental relation between ¢ and w is available.

10.5.4 Applications in Semiconductor Physics

Except for general vibrational analysis application to semiconductors is the
most important field of IR spectroscopy. To keep the volume of this textbook
limited only a few characteristic examples will be described, and reference will
be given to special summarizing reports.

Because of the low value of the energy gap fundamental absorption ap-
pears in semiconductors often in the MIR or even in the FIR. In general, this
absorption is an intrinsic behavior of the crystals but for solid solutions of
two systems it can also depend on the concentration of the components. In
special cases €, can even drop to zero and finally re-increase for a continuous
variation of the concentration in a mixed-crystal system. This happens when
the valence band and the conduction band are mutually interchanged at the
two ends of the mixed system. Figure 10.21 gives an example. Pb;_,Sn,Te
can be grown as mixed crystals for a wide range of x. The energy gap for PbTe
is 0.22eV at 77K. The gap for SnTe is 0.26eV at the same temperature but
the valence band and the conduction band have interchanged. Accordingly,
with increasing x the gap decreases until it becomes nearly zero for x = 0.28.
For = as large as 1 the gap has considerably increased again.

In degenerate semiconductors where the Fermi energy has shifted into
the conduction band (or into the valence band) a transition into the lowest
(highest) band states is not possible since they are occupied. This leads to an
apparent up-shift of the absorption band with increasing carrier concentration
n of

6€g = EF(n) - 4kBT (1035)
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Fig. 10.21. Energy gap at 12 K and 77 K
for the mixed crystals Pbi_;Sn,Te versus
P R S S S concentration x; after [10.10]
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where ep(n) is the distance of the Fermi energy from the band edge. This
phenomenon is known as the Burstein shift and has been observed frequently
with IR spectroscopy.

Impurity levels in the gap are another very large field in semiconductor
IR spectroscopy. Figure 10.22 lists impurity levels for Si. Levels close to the

Li Sb P As Bi Ni S Mn Ac
yg—

0.0330039 57—
0.0440.049 5 568 018
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031 D
26 24
016222 024 022
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Fig. 10.22. Impurity levels for Si. The numbers are energetic distances to the
corresponding band edges in meV; after [10.11]

band edges are called shallow, those appearing more towards the center of the
gap are called deep. Shallow impurity levels exhibit a hydrogen-like bonding
for the electrons. The energy levels eg are independent of the impurity under
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consideration and given by

m*e?

_ _ 10.36
3272 (eeg)2h? ( )

€p

In addition, series of excited states exist and can be populated like in hydrogen.
The chemical nature of the impurity atom plays a minor role. It can lead to
a small deviation in energy from (10.36) known as chemical shift.

To investigate the impurity levels the induced photo conductivity can be
used rather than the absorption process itself. This is a particularly sensitive
probe since it does not need an extra IR detector. The sample itself is the
detector. The incident radiation must not necessarily fully ionize the impu-
rity level. It is enough if this occurs with thermal assistance. Figure 10.23

B — . OB ———

CB —

l

W

4 o
VB —— VB VB
@ (b) ©

Fig. 10.23. Excitation processes for electrons during photo absorption from im-
purities

shows how an electron can be excited from an impurity level and how it may
reach the conduction band. In part (a) of the figure the quantum energy of
the light is large enough to excite the electron directly into the conduction
band. In part (b) a thermal assistance of the amount k{2, is required for full
ionization, and in part (c) only an excitonic state is reached. In contrast to
the first two examples the electron recombines before it can contribute to the
photoconductivity. Processes according to the mechanism (a) and (b) give rise
to characteristic maxima in the spectrum of photoconductivity versus IR en-
ergy. Since photothermic ionization does not work for very low temperatures
an unusual result is obtained. The photoconductivity spectra can show a de-
tailed fine structure for elevated temperatures which disappears on cooling.
This is demonstrated in Fig. 10.24 for Sb-doped Ge. The spectrum observed
for 4.2K has no low-energy structures and photoconduction starts only at
around 10 meV. By raising the temperature to 10 K several well defined sharp
structures appear below the ionization energy of the impurity state. They
correspond to the excited levels of the state induced by Sb.

Plasma reflection was discussed in Sect. 6.3. Since plasma oscillations oc-
cur in semiconductors usually in the IR spectral range investigations for the
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position and width of the plasma edge are an important issue in IR spec-
troscopy. The determination of w, and 7 are alternative methods to obtain
the carrier concentration and the carrier mobility. An example of a plasma
reflection has already been given in Fig. 6.6.

Finally, IR investigations proved very important for magneto-transport
experiments. If a semiconductor with free carriers is accommodated in a mag-
netic field the carriers are forced on circular orbits determined by their thermal
velocity and the Lorentz force. The frequency of circulation is

eB

m*

We = (10.37)
known as the cyclotron-frequency. If light with the same frequency is irradi-
ated onto the semiconductor it is resonantly absorbed provided the cyclotron
frequency is larger then the carrier collision frequency 1/7. This phenomenon
is called cyclotron resonance and very useful to determine the effective masses
of carriers and thus the band structure in semiconductors. Since the condition
we > 1/7 requires high enough frequencies for resonance absorption FIR is
an appropriate spectral range for such experiments.

10.5.5 Properties of Metals in the Infrared

Because of the high carrier concentration the plasma frequency for metals is
above the visible spectral range. Only in the UV, beyond the plasma frequency,
transparency of metals is observed. The quality of the reflectivity in the visible
and in the IR is determined by the carrier concentration n and by the collision
time 7. It is very well described by the dielectric function for free carriers given
by (6.48). For frequencies much smaller than the collision frequency (wr < 1)
this relationship can be approximated as

Er = €00 — w372 = constant ,
w27' [o1)
g =L == (10.38)
w Eow
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o is the dc conductivity. Since €; increases with decreasing frequency finally
€; > €, is reached. Optical constants and reflectivity are then only determined
by the conductivity oy as

00

260&1 ’

R=1_2,/%%

(10.39)

g0

The corresponding spectral range is called Hagen—Rubens range. The Hagen—
Rubens relationship is often used to extrapolate reflectivity measurements of
metallic systems to zero frequency if the spectra are to be used for a Kramers—
Kronig transformation and results are not available down to low enough fre-
quencies.

The reflectivity of good metals is of the order of 99.9%. This high value
can make it difficult to determine the deviation from 100%. A possibility to
avoid this problem is to measure the emissivity of the metal in comparison to
a black body. According to the Kirchhoff law the emissivity is identical to the
absorptivity and for vanishing transmission we have A =1 — R.

On cooling to low temperatures many metals exhibit a 2nd-order phase
transition to a superconducting state. This state is characterized by a com-
plete loss of resistivity and by a diamagnetic behavior in a magnetic field.
The generally acknowledged theory for a microscopic description of this phe-
nomenon was developed by L. Bardeen, L.N. Cooper, and J.R. Schrieffer and
is known as BCS theory. The theory claims a pairing of two electrons on the
Fermi surface in the strain field of a phonon. Simultaneously with the pairing
process a reordering of the electronic states occurs in a way that for the ex-
citation spectrum a gap €, opens up at the Fermi surface. According to the
BCS theory the gap energy and the transition temperature T, are connected
by the famous relationship

eg = 3.5kpT, . (10.40)

Since for the conventional superconductors 7¢ is in the range of 0-20 K, € is
expected in the meV region. FIR is therefore an appropriate technique for the
determination of this energy gap. In contrast to the picture which we have
developed for semiconductors the superconducting metals are not transparent
even if the quantum energy of the light is lower than the gap energy! Due to
the loss of resistivity a high current is excited which is 90° phase shifted to the
field and thus does not dissipate energy. The radiation is reflected to 100%.
Only for quantum energies of light higher than e, breaking of the electron
pairs is possible and radiation can be absorbed.

For the experimental observation of the gap in the superconductors IR ra-
diation is guided to a cavity made of the material under investigation. A very
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Fig. 10.25. Change of in-
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small but very sensitive bolometer is fixed on the wall in order to register the
radiation in the cavity. If the cavity is in the superconducting state the power
incident on the bolometer is high as long as the energy of the radiation is too
small to break the pairs. In the normal state or if the quantum energy of the
light reaches the gap energy the radiation is absorbed and less power reaches
the bolometer. Figure 10.25 exhibits experimental results for the three metals
Pb, V, and Sn. Plotted is the relative difference of the bolometer signal in the
superconducting and in the normal state. Switching between superconducting
and the normal conducting state was performed by a magnetic field. The dif-
ference remains large for low light energies but goes to zero as soon as the gap
energy is reached. From the position at which the signal begins to drop the
values 20cm ™!, 13em ™!, and 9cm ™! are obtained for Pb, V, and Sn, respec-
tively. This corresponds to energies of 2.5, 1.62, and 1.13meV. Using (10.40)
the corresponding transition temperatures are 8.3 K, 5.37K, and 3.75 K. Val-
ues far T, from conductivity measurements are 7.19K, 5.38K, and 3.72 K.
The agreement is particularly good far V and Sn which are thus considered
to be typical BCS superconductors.

In cuprate superconductors like YBasCusO7 or BiSrCaCuO the energy
gap is at least a factor ten higher which allows conventional reflectivity mea-
surements for the determination of the energy gap. From such experiments
the relation (10.40) was found to have a different scaling factor. Instead of 3.5
a factor of 5-6 is frequently observed. This suggests that the high-temperature
oxidic superconductors are not BCS-like.

Problems

10.1 Discuss the emission of a black-body radiation source at 50, 100, 1000, and
6000 centigrade. How much light is emitted in the MIR (10-40 pum) spectral range?
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What is the ratio of the intensities for this emission to the emission in the visible
spectral range?
(Purpose of exercise: study the efficiency of IR sources.)

10.2 Show explicitly that the folding frequency for a discrete Fourier transformation
is 1/4xo where xo is the sampling distance.
(Purpose of exercise: understand the phenomenon of aliasing)

10.3 Using the results of Sect. 4.3.1 show that the intensity at the detector of a
Fourier spectrometer is given by

_ 8R(1— R)?(1 — cos ¢) .

1/1
/o [14+ R? —2Rcos ¢]?

Hint: Use the Airy formulae and consider that the two beams arriving at the detector
are coherent. Thus, the fields must be superimposed not just the intensities.
(Purpose of exercise: understand the mechanism of the beam splitter.)

10.4 Show that the dielectric function for several LO-TO split phonon branches can
be written in the factorized form of (10.31).
(Purpose of exercise: work with LO-TO splitting.)

10.5 Evaluate the Hagen—Rubens approach from the dielectric function for free
carriers in the limit wr < 1.
(Purpose of exercise: use the free carrier dielectric function.)

10.6 Copper has a conductivity of 6x10* 27" cm™', an electron mobility of 1 cm?/
Vs and €4 = 1. For which wavelengths is the Hagen-Rubens approach valid?
(Purpose of exercise: understand the Hagen—Rubens relation.)
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Magnetic Resonance Spectroscopy

The electronic and vibronic states investigated so far were obtained from
the Schrodinger equation where the Hamiltonian included only electronic and
lattice contributions. Whether the atoms on the lattice sites have a magnetic
moment or not was irrelevant, since the latter does not contribute to the total
energy of the system. The situation is different if a magnetic field is applied
or if the interaction of the magnetic moments with the internal magnetic
field is considered. In this case, magnetically degenerate electronic states will
split and new transitions become possible. As a consequence, the response
function will change. For magnetic fields up to several tesla, the new transition
energies are below the energy of FIR light, which means microwaves or even
high- frequency fields are appropriate for the excitation. Since the magnetic
moments of the atoms or molecules are immediately related to their spin,
the investigation of these transitions is called magnetic resonance or spin
resonance spectroscopy. The magnetic moments of interest can originate either
from the electrons or from the nuclei.

Like many spectroscopic techniques, the magnetic resonance method has
developed recently into one of the most important techniques for the investiga-
tion of new materials. This holds, in particular, for nuclear magnetic resonance
which has become an excellent tool for chemical analysis.

After a short introduction to the physical properties of magnetic moments
of atoms and nuclei, this chapter will discuss fundamental procedures and
applications of magnetic resonance spectroscopy. For a good part of this de-
scription a differentiation between electron spin resonance (ESR) and nu-
clear magnetic resonance (NMR) is not required. Only in the last three sec-
tions specific spin resonance techniques will be discussed explicitly. For de-
tails of more sophisticated applications special references must be consid-
ered [11.1,11.2,11.3,11.4].

11.1 Magnetic Moments of Atoms and Nuclei

All atoms have more or less strong magnetic moments, at least if they are
accommodated in a magnetic field. The moments originate either from the
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angular momentum of the electrons (electron spin, orbital angular momen-
tum, or induced angular momentum if a magnetic field is applied) or from the
nuclear spin. The magnetic moments of the electrons determine the magnetic
properties of the crystals. The nuclear spin or the magnetic moment of the
nuclei are the sum of the contributions from the neutrons and protons. They
are much smaller than the magnetic moments of the electrons. Magnetic mo-
ments and angular moments are connected for the electrons as well as for the
nuclei by the magnetogyric ratios v defined as

Pe=—YehJ  and  py=hI, (11.1)

respectively. p, and pn are the magnetic moments of electrons and nuclei.
hJd and RI are the angular moments. The magnetic moment of the electrons
is conveniently measured in units of the Bohr magneton pg:

h
s = 2670 = 9.27 x 10724 (Am?)

=5.79 x 1075 (eV/T) . (11.2)

In this unit it can be calculated in a simple way from the quantum number
J and the dimensionless g-factor

Le — goT. (11.3)
UB

The magnitude of the gyromagnetic ratio -, as expressed by g becomes

Yo = % (s7H/T) . (11.4)

For electrons in a (free) atom the g-factor is obtained from the quantum

numbers J, S, and L by the well known Lande formula

JJ+1)+S(S+1)—-L(L+1)
2J(J+1)

ge = grsy =1+ . (11.5)

For the free electron J = .5 = 1/2, so that g = 2 and the magnetogyric ratio
for the free electron becomes from (11.4)*

! Strictly speaking the g-factor of the free electron is not 2 but g. = go = 2.002319...
as it is derived from a quantum-electrodynamical discussion of the properties of
the electron. Accordingly, the fraction in (11.5) has to be multiplied by go — 1.
For details see Appendix J.1.
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2
Yo = T2 = 176 x 10" (s71/T) .

For nuclear angular moments the magnetogyric ratio is much smaller be-
cause of the larger mass of the nuclei. The magnetic moments are counted in
units of the nuclear magneton u, which is defined by

B eh
Fn =501

p

=5.05x 10727 (Am?)

=3.13x 1078 (eV/T). (11.6)

where M, is the mass of the proton. Hence for an arbitrary nucleus N we
define a g-factor and a magnetogyric ratio by

N7N = gNI and N = M .

Hn h
The definition of the nuclear magneton is arbitrary in a sense that it is neither
equal to the magnetic moment of the proton nor to the magnetic moment of
the neutron. For the nuclear magneton and I = 1/2 we obtain g, = 2 and

o = g“;“ = 0.956 x 10% (s~1/T) . (11.7)

For the proton the magnetic moment u,, is
fip = 2.79p, = 1.41 x 10726 (A m?) (11.8)
With this and according to the above definition, the g-factor for the proton is

9p = 2fip/ tin = 5.58 (11.9)

and the magnetogyric ratio becomes from (11.1)

2 n
o = % - gP}f; = 2.675 x 108 (s~1/T) . (11.10)

The magnetic moment for the neutron is

fime = —1.913p,, = —9.663 x 10727 (Am?) . (11.11)

11.1.1 Orientation of Magnetic Moments in a Field, and Zeeman
Splitting

Applying a magnetic field B to the dipole p yields the potential energy U
from
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U=—-uB. (11.12)
Maximum and minimum values for this energy are

Umax = 1B, and Umin = —uB

for anti-parallel and parallel orientation of the dipoles to the field. According
to quantum mechanics the magnetic dipoles can be aligned only in 2J + 1
or 21 + 1 well defined directions between the two limiting orientations of the
field. From this the possible energetic states are

Uy, = J.g.uBB, and Ui, = I.gnpun B (11.13)

for the electronic and nuclear dipoles, respectively. J, and I, can take the
values J,J—1,..0,...—Jand I,I —1,...0,... — I. This behavior of the energy
levels in a magnetic field is known as Zeeman splitting. Spin transitions are
allowed between neighboring values of U. This means AJ, = 1 or AI, = 1.
From (11.13) the transition energies are

AU;, = gepsB = hveB, and AU, = gnpunB =hwB .

(11.14)

Note that the transition energies do not depend on the quantum numbers J
or I but only on the g-factors.

As a consequence of the splitting electromagnetic radiation will be res-
onantly absorbed if its energy matches the energy difference of the Zeeman
levels given in (11.14). Thus, the frequency for resonance absorption is

wo =2mfo=7B. (11.15)

For a field of 1 T, and the values of v, and v, as given above, resonance
frequencies of 28.0 GHz and 42.6 MHz follow. Thus, microwaves or radio-
frequency waves are the appropriate energy range in the electromagnetic spec-
trum.
In general, in quantum mechanics, the expectation value must be used if
an observable is described. Thus, for the description of the magnetization,
J(J + 1) must be used rather than simply the quantum number J. This
means the magnetic moments of an atom or nucleus with quantum number
J, or I, respectively, are

po =/ J(J+1)  or  px=wh/I(I+1). (11.16)

In contrast to this energy levels and transitions in magnetic resonance spec-
troscopy are assigned directly by the quantum numbers.
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For finite temperatures the magnetic moments p, do not line up completely
in a magnetic field. The average magnetization M along the field direction is
given by My = n{u.) where n is the number of magnetic moments per unit
volume. As in the theory of magnetism this quantity is obtained from

My = npueL(x) = nue(cothx — 1/x) (11.17)

with = peB/kgT. L(x) is an approximation to the Brillouin function and
can be approximated for small by /3 which yields for M

_ npeB _
T 3kgT

gl B

nJ(J+1) ST

0 (11.18)

For large fields and low temperatures L(z) ~ 1, and the magnetization satu-
rates at My = ngeupJ.

In practice, the dimensionless g-factors and magnetogyric ratios are more
frequently used to describe the magnetic behavior of material as compared to
the magnetic moments p, or puyx themselves.

11.1.2 Magnetic Moments in Solids

In solids atoms are not free and the orbital quantum number L is not a well
defined quantity. The magnetic moments are mainly determined by the spin
quantum number S. This is a consequence of the anisotropy of the electro-
static crystal field (See also Sect. 7.5). However, the quenching of the orbital
moments is not complete due to spin-orbit coupling. A correction remains
for the determination of the magnetic moments from the g-factor and from
the spin quantum number. Thus the g-factor has an anisotropic spin-orbit
correction A;r. Some more details about spin-orbit coupling can be found in
Appendix J.6. As a consequence of the anisotropic spin-orbit correction the
the g-factor must be written as a tensor of the form

ik = ge(Oin + Ax) (11.19)

where J;; is the Kronecker symbol.

With respect to the electronic g-factor an exception of the above rule
holds for the ions of the three-valent rare-earth atoms which are well known
for their particular magnetic properties. Table 11.1 lists effective magnetic
moments in units of up for various rear-earth ions in comparison to ions of
transition metals. The columns “configuration” and “basic level” show the
electron configuration and the ground state of the ions. The configuration is
labeled by the symbol Ay, as it is used in molecular spectroscopy. A means
the orbital quantum number (S, P, D, F,... for L = 0,1,2,3,..), k the total
quantum number .J, and i the spin multiplicity. This yields, e.g., for the Sm3*
ion L =5,J =5/2, and S = 5/2. (Note that L + .S add up to J as vectors
and not as the numbers given here.) Columns 4 and 5 show the magnetic
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Table 11.1. Magnetic moments for various ions in units of ugp

Ton Configu- Basic  pe = e = u from

ration  level grss\/J(J +1) geiy/S(S + 1) experiment
Ce®T 4f155°p® *F5 ), 2.54 1.73 2.4
Pr3t 4f?55%p°  3H, 3.58 2.8 3.5
Sm®* 4f555°p® CHjy,s 0.84 5.9 1.5
Eudt 4f%5s%p5 "F, 0 2.0 3.4
Gd®T 4f755°p® 557, 7.94 7.94 8.0
Dy** 495s%p° ®Hy50 10.63 5.9 10.6
T3+ 3d" *Ds)s 1.55 1.73 1.8
Co’+ 3d" “Fys 6.63 3.87 4.8
Ni%+ 3d®  3F, 5.59 2.83 3.2
Cu?* 3d° 2Ds)s 3.55 1.73 1.9

moments considering the total quantum number J and only the spin quantum
number S, respectively. The last column is the experimental result. Obviously,
for transition metal ions the orbital quantum number is quenched and the
magnetic moments are indeed only determined by the spin of the atoms.

Important other magnetic moments in solids originate from nearly all de-
fects like color centers or isolated metal atoms in a matrix.

The magnetic moments of the nuclei are composed from the magnetic
moments of the protons and the neutrons. The resulting quantum numbers
are, in general, between 0 and 5. For nuclei with an even number of protons
and neutrons (g,g-nuclei) they are always zero. For g,u-nuclei they are always
an uneven multiple of 1/2. Table 11.2 lists important data for some nuclei used
in NMR experiments. Data for other nuclei can be looked up in, e.g., [11.1].
The use of the nuclear quadrupole moment for resonance experiments will be
discussed in Sect. 11.8.

g-factors which determine the magnetic moments of the nuclei are also
tensors which is a consequence of the anisotropic environment of the nuclei in
the crystals. This is known as chemical shift anisotropy.

In addition to electron spin resonance or electron paramagnetic resonance
(EPR) and nuclear magnetic resonance, various other magnetic resonance
techniques are used. Such are, e.g., spin wave resonance (SWR), nuclear
quadrupole resonance (NQR), optically detected magnetic resonance (ODMR).
Even double-resonance techniques are common like dynamic nuclear polariza-
tion (DNP) or electron nuclear double resonance (ENDOR) where nuclear and
electronic spins are excited simultaneously.

The following sections will discuss only the basic magnetic resonance pro-
cesses in some detail. NQR and double-resonance experiments will be touched
briefly.
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Table 11.2. Properties of nuclei of various isotopes used in NMR and in nuclear
quadrupole resonance experiments. yx is given in units of ~,

Nucleus Abundance np nx Spin N NMR Quadrupole

(%) () intensity ~ moment

(relat. to 'H) (1072* cm?)

H 99.98 1 0 1/2 1 1 -

H 001 1 1 10.1535 9.65E-3 2.8E-3

1o 1883 5 5  30.1075 1.99E-2  ~9.4E-2

1B 81.17 5 6 3/20.3208 0.165 3.6E-2

15c 1.10 6 7 1/20.2514 1.59E-2 -

N 99.63 7 7 10.0722 1.01E-3  ~4.5E-2

15N 036 7 8 1/20.1013 1.04E-3 -

g 100.00 9 10 1/2 0.9408 0.833 -

3lp 100.00 15 16 1/2 0.4048 6.63E-2 -

53Cu 69.17 29 34 3/20.2651 9.31E-2 -0.15
Hicd 12.90 48 63 1/2 0.2120 0.12 0.83

11.2 Magnetic Moments in a Magnetic Field

As in Sect. 11.1 the following description is valid for NMR as well as for ESR.
For simplicity, the indices to -, u, etc., have been dropped in this and in the
following two sections.

11.2.1 Motion of Magnetic Moments and Bloch Equations

We start by considering the equation of motion for a magnetic moment p in a
magnetic field B parallel to z. Let the magnetic moment be accompanied by
a mechanical angular moment h.J. Since the time derivative of this quantity
equals the acting torque pux B we have

dJ
h— =pxB. 11.20
g M (11.20)
Introducing the magnetization as magnetic moment per unit volume M =

n{p) and (11.1) yields (for electrons)

dM

=B xM). (11.21)

Equation (11.21) describes an undamped precession of M around z. It is
called the free Bloch equation. A relaxation of M to its equilibrium position
M = (0,0, Myp) with My o< B/T from (11.18) is not possible. This will only
happen if relaxation processes are included. If this is the case, the individual
magnetic moments precessing around the z axis will gradually relax to the
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equilibrium position. Assuming an exponential behavior for the relaxation
process it can be described by
dM, My — M, dM, M, dM, M,

= =4 11.22
dt A dt T dt T ( )

Since the relaxation of the z component changes the energy of the system, it
must proceed by an interaction with other quasi-particles like phonons or elec-
trons. The time constant T} is therefore called the longitudinal or spin-lattice
relaxation time. The name expresses that eventually all magnetic energy is
relaxed to the crystal lattice. The x and the y components of the magnetic
moment M relax to zero without a change in energy. They already become
zero when the individual magnetic moments loose their phase coherence, e.g.,
by spin-spin interaction or by inhomogeneities in the field. Thus, 75 is different
from T7, and called the transverse or spin-spin relaxation, or phase coherence
time. In general T, < T holds.

The combination of (11.21) and (11.22) yields the Bloch equations for the
motion of the magnetization including relaxation.

aM, Mo — M,
G =B X M)+ =

dM,, M,

Y — (B x M)y, — —2L 11.2
a VB XMy - = (11.23)

They describe the full time dependence of the magnetic moments and thus
also the time dependence of the spins in the magnetic field.

11.2.2 The Larmor Frequency

From the equation of motion without relaxation (T} = T» = oo in (11.23)) the
frequency of precession can be obtained directly. It is, however, here and for
many other problems of spin precession very useful to study the kinematics
of the magnetic moments not only in the laboratory system (z,y, z) but also
in a system (a/,y’, 2’) rotating with a frequency w around the z axis. The
geometries and the precession of the magnetization M are demonstrated in
Fig. 11.1. The connection between the change of the magnetization in the
laboratory system dM and in the rotating system d’M is given by

dM=dM —wdt x M . (11.24)

This follows from the general relation between vectors in a laboratory system
and in a rotating system (Appendix J.2). w in (11.24) is a vector (0,0,w)
pointing in the z direction. Thus, in the rotating system the equations of
motion without relaxation have the form
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Fig. 11.1. Rotating frame (z’,y’, 2’) and rotation
of a magnetic moment M in the laboratory frame
(x,y,2)

d'M
dt

=(vB-w)x M. (11.25)

The equation shows that the magnetic field is effectively reduced to the value
Byi=B—-2 . (11.26)
v

If the dashed coordinate system rotates with the precession frequency M
will be constant and thus d’M /d¢ = 0. This means from (11.25) that the
precession frequency or Larmor frequency of the magnetic moments is related
to B by

w=wo=7B (11.27)

and the effective field becomes zero.

A comparison with the transition energy for resonance absorption from
(11.14) shows that the magnetic system absorbs just at the Larmor frequency.
This is the reason why the search for the resonance positions can either be
performed by checking the induction of the rotating magnetic moments into
a sensor coil or by measuring the energy absorbed by the system.

11.3 Basic Concepts of Spin Resonance

In order to measure the Zeeman splitting two magnetic fields are needed. One
field By to generate the Zeeman levels and another field B;(t) to check the
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transitions. To investigate the spin resonance the induction of B into a detec-
tor coil can be studied and the energy transferred from the alternating field
B to the system can be measured. Alternatively the absorption of the radia-
tion between two Zeeman levels can be analyzed like in an optical absorption
experiment.

11.3.1 Induction into a Sensor Coil

The detection of the excited magnetic system with a sensor coil is the classical
technique of NMR, since in this case the frequency range is covered by RF
equipment. The excitation occurs via an ac magnetic field in the z direction
and the bias magnetic field in the z direction. The signal is detected with a
pickup coil in the y direction?. A schematic setup is depicted in Fig. 11.2. z
is pointing into the plane of the paper. The RF source can be tuned through
the resonance frequency.

Fig. 11.2. Schematic repre-
sentation of a setup for the
detection of magnetic reso-
nance by pickup coils. (Bg:
static field, B: coil for exci-
tation, By: coil for detection,
RF: RF source, D: detector);
D - recorder The inset shows the orienta-
tion

Since any linearly polarized field can be separated into two circularly polarized
fields with opposite directions of circulation, the following description is given
for circularly polarized fields. In fact, for such fields the motion of the magnetic
moments is much more transparent as compared to linear excitation.

The excitation field B; is assumed circularly polarized in the zy plane.
Then, the magnetization M precesses not only around z with the Larmor
frequency wg = vBy but also around the momentary direction of the field B,
with frequency wy = vB;. This is a rather complicated motion. Its analysis
turns out to be much more simple if performed first in a coordinate system
rotating with the excitation field By as shown in Fig. 11.3. In this system B;

2 In modern spectrometers excitation and detection are performed with a single
coil in the z or y direction.
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Fig. 11.3. Motion of the magnetization M in a static magnetic field Bol||z and a
field B circularly polarized in the z,y plane, as observed in the rotating system
(a); same motion in the laboratory system for resonance condition wy = vBy (b);
topography of the endpoint of M in real space (c); and the time dependence of
component M, at resonance condition (d)

is constant and oriented, e.g., in the 2’ direction. Since the static field along
z is reduced to the effective field of (11.26) the resulting reduced but static
field in the rotating system is

B}g = Bi€e/, + Begel, = Bie/, + (By —w/7v)el, (11.28)

with the magnitude

S = /B + (Bo —w/7)?.

e’ and e/, are unit vectors in the rotating system. The magnetization rotates in
the dashed system about Bj; as shown in Fig. 11.3a. Its components oscillate
there with the frequency yBJ;. The oscillation amplitudes are determined
by Bi/Beg. The amplitudes of the M, and M, components increase with
increasing ratio Bi/Beg = sinf until they reach a maximum value My for
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B¢ = Bi. Since they determine the signal in the pickup coil the latter depends
critically on Beg = By — w/7y. For returning to the laboratory system we just
have to rotate the z’ axis in Fig. 11.3a with the frequency w about 2’ = z.

The situation becomes particularly simple if the frequency w is tuned to
the Larmor frequency yBy. In this case B.g becomes zero and Bl; = Bj.
For Beg = 0 the angle 6 will be 90° so that the magnetization rotates on
a circle in the y'z’ plane with the component M, = 0 and the rotation
frequency wr = vyBi. This is sketched in Fig. 11.3b. In the laboratory system
the motion of M is twofold: it rotates rapidly about z with frequency wy =
vBy and slowly with frequency vB;, about the momentary direction of Bj.
This yields the spiral motion on the surface of a sphere shown in Fig. 11.3c.
The components M, and M, are double-modulated. They are subjected to
a rapid modulation from the rotation about z and to a slower “amplitude”
modulation with frequency yB;i. For the fully tuned case the amplitudes for
M, and M, reach |M|. Figure 11.3d displays the time dependence for M,.
M, is 90° phase-shifted.

The mathematical form for the time dependence in Fig. 11.3d is obtained
by solving the unrelaxed Bloch equations for the rotating system. This yields
for the resonance conditions

My =0, M, = My cos(wit), M. = Mysin(wqt) ,

and after back transformation to the laboratory system
M, = — My cos(w1t) sin(wot) ,
M, = My cos(wst) cos(wot) ,
M, = Mysin(wit) . (11.29)

Obviously M, and M, are phase-shifted by 90°. M, or M, is the signal which
is detected by the pickup coil. The central frequency for the observation is
Wobs = Wo = ’)/BO

The frequency wr = vBj is called the Rabi frequency, since in a classical
sense it determines how fast the magnetic moments change their orientation
in the magnetic field.

The oscillations of (11.29) as they are depicted in Fig. 11.3 are only good
for a relaxation free motion. If T} and T3 are finite a steady-state result is
obtained in the rotating frame as will be discussed in the next section. This
steady state is a consequence of the Larmor motion which drives the spins on
the spiral motion downwards and the relaxation which drives the spins back to
the z direction. Before we study the consequences of 77 and 75 in detail we will
demonstrate the usefulness of the above ideas about the spin kinematics for
a very important class of resonance experiment in which relaxation is already
included.
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11.3.2 Free Induction Decay

The detection of relaxation is possible in a straight forward way by applying a
pulsed field which pulls the magnetization away from its original z orientation
and observing the relaxation back to the initial state after termination of the
pulse. If, for example, a field By is applied at resonance for the time period t =
/2By, the magnetization has just arrived at the zy plane when the field is
turned off. After this 90° or 7/2-pulse the magnetization relaxes back to the z
orientation. For the z component this happens with the longitudinal relaxation
time T3 and for the x and y components with the transverse relaxation time 715.
The transverse components already disappear when the individual magnets or
spins have lost their mutual coherence by inhomogeneities in the sample or by
spin-spin interaction. With the pickup coil so-called free induction decay (FID)
is observed. It appears as an exponentially damped sine wave of frequency
vBy with a decay constant 1/T5. The time dependence of the pickup signal is
shown in Fig. 11.4. The mathematical expression for free induction decay is

M,
Mo
(\ !\ {\ W f\h}"i“f\iz‘/\\'fn‘t
I NARES S
] IR S
1_, 2t T Fig. 11.4. Free induction decay of
M, 1 | the signal in the pick-up coil after a
27fyB, 90° pulse

again readily obtained from solving the Bloch equations first for the rotating
system with B; = Beg = constant and then transforming the result back to
the laboratory system.

90°-Pulses and several other more sophisticated pulse sequences are often
employed in magnetic resonance spectroscopy to determine 77 and 75. This
holds, in particular, for NMR.

11.3.3 Tuning the Resonance

ESR as well as NMR are often performed in CW configuration. This holds
for experiments with induction in a pickup coil as well as for the absorption
measurements in a microwave cavity. Thus, we have to work out the conditions
for these cases, including relaxation.
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To find the absorption either the field By or the frequency w has to be
tuned. The speed of this tuning has an important consequence on the absorp-
tion behavior. It is measured with respect to the characteristic time constants
of the experiment such as 1/wg, T, and T7.

The change in the tuning parameter is called suddenly if it occurs faster
than the inverse Larmor frequency. This means no precessional motion occurs
during the change. An example would be a rapid switch of direction of the
magnetic field By by 90°. If the switch is faster than wy no energy will be
dissipated. Energy dissipation occurs only afterwards during the free induction
decay.

The contrary are very slow or adiabatic changes. In this case the system
is at any time in equilibrium. To reach this equilibrium energy must be dis-
sipated. The adiabatic processes can either be fast or slow, depending on
whether they are faster or slower than the time constants for transverse or
longitudinal relaxation. The 7/2-pulse described in Sect. 11.3.1 is an adiabatic
fast process provided yB; > 1/T5. The process of the free induction decay or
any CW resonance absorption experiments are adiabatic slow processes.

11.3.4 Susceptibility and Absorption of Power in CW Experiments

To describe absorption it is convenient to introduce a magnetic susceptibility.
We consider again the situation of a strong static (but tunable) field By in
z direction and a small rotating field B; perpendicular to it. The magnetiza-
tion rotates around the effective field B of Fig. 11.3. In the frame rotating
with B, it has a component M, and M, , both proportional to B; but not
necessarily equal in magnitude. We define two ratios x’ and "

Mac’,uO M7 "Ho
~ d (S 11.30
X B an X B, ( )

These ratios are not very useful for an unrelaxed motion of the magnetization,
since both, x and M/, M, are time-dependent. This is different for the case
where a relaxation of the magnetization is included. Then, the values for
M, and M, become stationary in the rotating frame and (11.30) defines a
susceptibility. Evidence of this change in kinetic behavior will be given below.

Since in this case M and B; rotate with the same frequency in the lab-
oratory system, the two relations from (11.30) can be expressed in the latter
by

oM = xBy ,

where a complex notation for M, By and x = x’ + ix” was introduced. Note
that M and B; are not necessarily in phase, so that M may be complex even
for real values of Bj.

The orientation of M in the rotating frame depends on the type of process
considered and must be evaluated in each case. We will restrict ourselves in
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the following to the most widely used case of adiabatic slow processes which
includes continuous-wave experiments.

The quantitative description of the kinetics of the magnetization is de-
duced from the Bloch equations. Represented in the rotating frame they read
in components and with the use of (11.23) and (11.28) for the effective field
By

dM, M,
= —(yBy — w)M, — ==
dt ('Y 0 w) Yy T2 )
dM,, M,
= (yBy — w)My — ByM, — =2 |
dt (’Y 0 W) x 1 T,
dM., Mo — M.,
=~BM, + —— . 11.31
a Myt (11.31)

w is assumed independent of ¢. This means w is either constant or at most
tuned adiabatically slow. Under these conditions (11.31) is a set of inhomoge-
neous linear differential equations of first order for M. We look for a steady
state solution. The general solution for the homogeneous equation is an ex-
ponentially decaying function which dies out for ¢ — oo. Thus, a particular
solution for the inhomogeneous equation is the only steady-state solution.
Such solution is possible if all derivatives with respect to time are zero on the
left side of (11.31). This means M is stationary (time-independent) in the
rotating frame. With this we obtain from (11.31) a set of algebraic equations
for M+, M, and M. The straightforward solution for M gives the complex
susceptibilities

) Mapo _ Y(yBo — w)T5 Mo po
X B1 1 + ("}/BO — w)2T22 + ’}/QB%TlTQ ’
M, Ty M,
Y = Zyho Y22 0H0 (11.32)

B, 1+ (’}/Bo — w)2T22 + ’72B%T1T2 ’
For small enough values of B; which means v2B3T1T, < 1 this approaches

, Y(yBo — w)T5 Mopo
YT (9B W)y
" v Mopo
1+ (yBy —w)2T%’

(11.33)

where x" and x” describe the linear response M, and M, to B;. Note that
susceptibilities derived for a linearly polarized field B; are a factor of two
smaller in comparison to the results from (11.33). Also, 77 does not enter into
(11.33) since it is assumed to be so small that all energy of the spin system can
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be transferred to the lattice. Only if 77 becomes large the resonance absorption
saturates and 77 determines the rate of energy transfer to the lattice. This
case is studied below in Sect. 11.3.6.

In the approach of (11.33) the susceptibility has the typical shape of a
response function of an oscillator. The imaginary part is Lorentzian with a
FWHM of 2/T5 and the real part has a zero crossing at resonance.

The change of energy density in the spin system per unit volume and per
unit time is given by

dw d dB BdM

~(-MB)=-M-—

At dt dt dt (11.34)

The first part on the right side of (11.34) originates from the time-varying
field which delivers power to the spin system and the second part describes the
energy delivered to the lattice. Since for an adiabatic slow process no energy
can be stored in the spin system the balance of (11.34) must be zero. In other
words, the second part and the first part are of equal magnitude but opposite
sign. Then the first part can be used to calculate the power dissipated to the
lattice. From (11.24) at resonance dB/dt = wo x By = wBie, has only a y
component with magnitude wBy. With M, = —x" B1 /o the dissipated power
is

dt

d
W = ( W) = x"wB} /o . (11.35)
diss

In combination with (11.32) this relation reveals a resonance absorption de-
creasing like 1/T as a consequence of the temperature dependence of M.
Also, W’ saturates for large values of B;. The reason for this saturation is
immediately evident from a statistical concept of the resonance absorption.
As a consequence of the absorption process more and more spins arrive in
the upper state until equal occupation is obtained. Under these conditions
absorption is saturated since an equal number of spins is excited by the radi-
ation from the lower level to the upper level and from the upper level to the
lower level (see also Sect. 11.3.6).

For practical reasons in experiments often dWW'/dB is determined instead
of W'. Alternatively the complex impedance can be measured which enables
X' and x” to be determined separately. In analogy to optics ¥’ and x” are
called the dispersive and the absorptive part of the susceptibility.

11.3.5 Resonance Absorption

To measure the absorbed power of the radiation directly a resonance cavity or
the immersion of the sample into a waveguide is appropriate. This technique
corresponds more closely to the picture of transitions between the Zeeman
levels. It is used, in particular, for ESR experiments as they are conducted in
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the spectral range of microwaves and the explicit handling of the electromag-
netic field is much more elaborate in this case. Measurements of incoming and
outgoing power is easier but still requires wave guides and resonator cavities.
Reflex klystrons and bolometers or diode crystals are the standard radiation
sources and detectors, respectively. Figure 11.5 shows a schematic experimen-
tal setup.

D

Fig. 11.5. Schematic setup for microwave absorption in magnetic resonance; (K:
klystron, Bo: magnet, D: detector)

The samples are inserted into a microwave cavity after they have been
sealed in a very thin quartz or pyrex tube. The tube material must be com-
pletely free from paramagnetic impurities. To find the resonance positions the
magnetic field is usually tuned by some extra windings on the static magnet
used for the Zeeman splitting.

11.3.6 The Resonance Excitation as an Absorption Process

From the above discussion and from the description of the spin resonance as
the transition between two Zeeman levels one would expect that the quantum-
mechanical model, as developed in Sect. 7.1 for the optical absorption, applies
here as well. This is indeed true. The golden rule for the transition probability
per unit time between two Zeeman levels becomes

2
Py, = %‘H/AUZF(S(AUZ — hw) . (11.36)

The matrix element must be evaluated for transitions between the lower and
upper Zeeman states which we labeled 1 and u in the following. There is,
however, one important difference to the case of optical absorption. Since the
difference in energy between the two states is only a few meV in ESR and
only a few peV in NMR the thermal population of the states is nearly equal.
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This means for the evaluation of the overall transition rate the probability
for the induced transitions from | to u as well as for the transitions from u
to 1 must be considered. The matrix elements for both transitions are equal.
(The square of the transition matrix elements corresponds to the Einstein
coefficients Bys and Bs; from Appendix C.5, equation (C.16)).

More details about the quantum-mechanical description of resonance ab-
sorption must be left to special textbooks [11.2]. In the following we will rather
discuss the consequences of the nearly equal population of the upper and lower
Zeeman levels on the rate equations.

The ratio between the population of energy levels | and u is given by the
Boltzmann factor

T _ eouB/kaT (11.37)

Ny
Since for not too low temperatures and for not too high fields the exponent
in (11.37) is < 1 the ratio of the two populations is well approximated by
(14 guB/ksT). Introducing the total number of spins per unit volume as n =
n) +ny the concentrations in the upper and lower levels are straightforwardly
evaluated as

nu = (n/2)(1 — guB/2ksT)
n = (n/2)(1 + guB/2ksT) . (11.38)
This yields for the relative difference in the population

An my—ny  guB

n n  2kgT '

(11.39)

Since for protons gppuy, is only 2.8 x 10726 Am? the difference in magnetic
energy gppnB is only 1.75x107* meV for a field of 1 T. At room temperature
the thermal energy is, on the other hand, 27 meV so that the two populations
differ only by a fraction of 3 x 1076.

We are interested in the energy absorbed by the spin system per unit time
and per unit volume. This rate is given by

dw

e Py (eq — €1) + nuPu(e — €q) = An(t)PAe (11.40)
where P = Py = P, and An(¢) are the transition probability from (11.36)
and the difference (n) — ny), respectively. The time dependence for An(t) is
readily obtained from the rate equation for the change of the population in
the levels 1 or u. For level 1 we have

d
% = nuPIu - nIPul = P(nu - nl) (1141)
which yields by combining it with a similar equation for n,
A
dAn _  opan@) . (11.42)

dt
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The solution of (11.42) is an exponentially decaying function which implies
that absorption goes to zero for increasing time. This is, of course, due to the
equal rate of up and down transitions as soon as the population of the upper
level and the lower level become the same. As in the case of the precessing
magnetization we obtain a different result if energy relaxation from the spin
system to the lattice is allowed. In this case the upper energy level is not only
depopulated by the induced transitions but also by the conversion of magnetic
energy to lattice energy. Using an exponential term for the relaxation as in
(11.23) or (11.31) we can rewrite (11.42) as

dAn An(t) — An(0)

—— = —-2PA — 11.4
= n(t) . (11.43)

where An(0) is the population difference at thermal equilibrium. For the
steady-state solution we immediately obtain

An(0)
An(t) = ———— 11.44
") =TT, (1L.44)
and thus from a combination with (11.40) the absorbed power
dWw P
— = An(0)Ae——— . 11.45
< at )diss nOA T 5, (11.45)

Since P is proportional to the incident power of the electromagnetic field, a
power for which 2PT; > 1 leads to a saturation of the absorption. This is
completely equivalent to the result of (11.35) with (11.32) for x” and large
values of Bj.

11.4 Relaxation Times and Linewidths for Magnetic
Resonance

As seen from (11.35) in combination with (11.33) the linewidth of the res-
onance absorption is determined by 75 even though the final relaxation of
the absorbed energy to the lattice is given by T;. It is the dephasing of the
individual magnetic moments after the time 75, which limits further absorp-
tion. Accordingly, T is also often called phase coherence time. What are the
physical processes to determine the relaxation behavior?

11.4.1 Dipole-Dipole Interaction and Transversal Relaxation Time
T3

The width of x” in a solid is to a first approximation given by the dipole-
dipole interaction of the individual spins. The magnetic field of a dipole is
well known from magnetostatics and has the form
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3r(ur) — pr
B — 11.46
1% 47D Ko ( )
where 7 is the vector pointing from dipole p to the field point. The interaction
energy between two magnetic moments p,; and g, with the distance ry is
therefore
; 3(pmi i
Ed(Zk) - _ B — l‘l’zl‘l’k (I‘I’Zr k)(l‘l’kr k;)/,LO (1147)

H; D 3 MO 5 )
dmrs) dmrs),

where By, is the field of the dipole p at the position of the dipole p;. r; is
the vector pointing from dipole p; to dipole .

In general, the field at dipole p; is the sum of all other randomly dis-
tributed dipoles in the system. Thus, the local field is subjected to ran-
dom fluctuations in space. The width of the resonance lines is determined
by these fluctuations. Its evaluation needs an averaging over the statistically
distributed moments. A simple but physically instructive approximation is
obtained by evaluating the maximum energy of one dipole in the field of an
equal dipole at distance ag. With p = gupJ this yields from (11.47)

U 2pPpo  pogPupd?

=uB, ~ = 11.48
€d = A5 4ral 2rad ( )

and a related equation for the nuclear spins. This quantity divided by 7% is
a good measure for the linewidth (in w) from the dipole-dipole interaction.
For J or I = 1/2 and n spins per unit volume it yields, except for a constant
factor of the order of 1 resulting from averaging procedures,

2
Sw = §(yB) = ”O;Th” . (11.49)

As an example we consider the nuclear spin of 1°F in CaFy. °F has I = 1/2
and yn = 2.5 x 10 s7! T~ With n = 5 x 10*® F~ ions/m?® we obtain a
linewidth of 6w = 1.5 x 10*s™! or 0.06 mT. Linewidths for electron spins are
usually much larger because of the larger magnetogyric ratio ve.

Even though the linewidth from dipole-dipole interaction is a good basis
linewidths are frequently observed to be much smaller than evaluated from
(11.49). Obviously there are mechanisms which lead to a narrowing of the res-
onance lines. Two of them are well known: motional narrowing and exchange
narrowing.

Motional narrowing of lines broadened by inhomogeneities results from a
cancellation of broadening interactions by spin diffusion or molecular rotation.
Since T3 for inhomogeneous broadening is determined by a local variation in
the precession frequency of the magnetic moments in space or time, the phase
coherence is pertained for a longer time if the spins diffuse around. In this case
spins which are advanced in their phase may arrive at a position with lower
local field and will thus be retarded. Other spins which are behind may be
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accelerated in their precession if they arrive at a spot with higher field. Thus,
on average the magnetic moments stay longer in phase and T will increase.
In such a case the dephasing will not proceed linear in time but diffusive with
the square root of the time. For a field with a fluctuation amplitude 0B and
a characteristic time constant 7 for one step in the spin diffusion the phase
difference after n steps is

A=/nTvéB . (11.50)

Assuming T3 is obtained for a dephasing of A = 1 rad the number of steps
needed is n = 1/(§B)?y2?72. Hence, Ty is given from

1/Ty = 1/n7 = (6B)*~*7 . (11.51)

Without diffusion the phase difference would increase linearly in time. This
means T5(0) = 1/v5B. Thus, for 77! > 6B (11.51) describes a remarkable
increase of Ty with a correlated narrowing of the resonance line.

Exchange interaction is a quantum-mechanical phenomenon which causes
an additional interaction energy with no counterpart in classical physics (see
also Appendix J.3). Phenomenologically it is described by an exchange con-
stant Ky characterizing the probability of the exchange of two electrons from
two atoms or the exchange of two spins from two lattice sites. If the width
of resonance absorption is determined by a dipole-dipole interaction and by
exchange interaction T, is obtained from

1 T 6(21
T, " onKg (11.52)
For Kg > ¢4 the half width 1/75 can become very small. The physical back-
ground for the exchange narrowing is a diffusion of the spins between states
split by exchange interaction. If N spins interact the resonance splits into IV
states between which the spins can diffuse. In this sense exchange narrow-
ing is also based on motional narrowing. For spin concentrations higher than
100 ppm considerable exchange narrowing can be expected.

In detail the transverse relaxation time 75 consists of a reversible and of an
irreversible part which means by reversing the driving field for the motion of
the magnetic moments only part of the magnetic moments can be recollected
into their original orientation. Formally, the relaxation rates are expressed as

L_ 11
T2 TQrev TZirrev ’

(11.53)

This has important consequences for spin-echo experiments to be discussed
later in this chapter.
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11.4.2 Shape of Resonance Lines

As a consequence of the tensorial character of g the resonance absorption
depends on the orientation of the crystal in the magnetic field. For crystal
powder the response from the differently oriented crystallites must be averaged
over the polar angles 6 and ¢ which yields (for diagonal g-tensors g;; = g;) an
effective g-value

Joff = \/gg cos? 0 + g2 sin? f cos? ¢ + g2 sin? fsin? ¢ (11.54)

The anisotropy of the g-tensor leads to a characteristic line shape. For a given
field the values of g; are related to the absorption frequencies w;, and the
line shapes are obtained as depicted in Fig. 11.6a for an axially symmetric
g-tensor (g, < gy = g.) and for a g-tensor with full anisotropy in Fig. 11.6b.
In the former case the line shape is obtained from

10=3 (Gaes w))m (11.55)

with I(w) =0 for w < w, and w > wy,.
Relations to calculate the line shape with full anisotropy are given in Ap-
pendix J.4.

r O =

Intensity (arb. units)
Intensity (arb. units)

6 7 8 910
o (arb. units)  (arb. units)

ot

0123 45¢6 738 910 012 3 4

Fig. 11.6. Idealized magnetic resonance powder spectrum with axial
anisotropy (a) and full anisotropy (b) in the g tensor. The frequencies used
to calculate the lines were w,, wy, w. equal to 2, 6, and 8 in arbitrary units,
respectively

Experimentally observed powder spectra can be reproduced by folding the
line from Fig. 11.6 with the spectrometer resolution function.
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Fig. 11.7. Spin-lattice relaxation via phonons. Energy diagram for a direct, a
Raman, and an Orbach process (a), and inverse of longitudinal relaxation time
T1 on a logarithmic scale versus inverse temperature for the electron spin of Nd
in LapMg3(NO3)12-24 H20 at 9.37 GHz; after [11.5]
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11.4.3 The Spin-Lattice Relaxation T}

To relax the z component of the excited magnetization energy must be trans-
ferred to the lattice. This energy can either be dissipated to the phonons or
to the electrons. For dissipation to phonons a direct process is possible. The
energy of the excited spin system is directly converted into a phonon. Since
the spin energy is rather low acoustic phonons are generated. The situation is
very similar to non-radiative recombination in semiconductors. The relaxation
rates are proportional to the temperature T like

Til — KT (11.56)
where wy is the transition frequency and K,y is the spin-lattice interaction
constant.

Other decay channels are possible and known as Raman or Orbach pro-
cesses. Figure 11.7a shows the two processes together with the direct relax-
ation in an energy scheme. According to the Raman mechanism an incident
phonon of frequency {2 is scattered and gains energy like in an antiStokes
Raman process. Since this is a scattering process all phonons independent of
their energy can participate. As the phonon density of states increases with
the phonon frequency a Raman process can be as likely as a direct process
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even though it is a four-particle event. The relaxation rate from a Raman
process is proportional to T or T9.

In the Orbach process the spin from the upper level is fist excited ther-
mally to a third level and relaxes only from there to the ground state by the
emission of a phonon. According to the thermal activation involved relaxation
by the Orbach process is proportional to exp(—A/kgT). Figure 11.7b shows
the relaxation rate for the spins of Nd impurities in a crystalline matrix. The
high temperature part of the curve shown is clearly exponential and thus
indicates the dominance of an Orbach process. Relaxation rates via lattice
deformations can be particularly strong close to structural phase transitions.

In systems with free carriers like metals longitudinal relaxation can also
occur by dissipation of energy to the electrons (or holes). This is known as
Korringa relazation. Korringa relaxation originates from the coupling of spins
to the fluctuating field the electrons generate at their position. In the case of
nuclear spins a Korringa relaxation is thus immediately related to the hyper-
fine interaction and to the Knight shift Kx = (wx — wg)/wo of the resonance
line to be discussed in Sect. 11.7. The relaxation energy is transferred from
the spin system of the nuclei to the spin system of the free electrons. As a con-
sequence of the Pauli principle, only the fraction kgT'/ep of electrons around
the Fermi energy can participate. This leads to the famous Korringa relation

Ax3
Thy2YEh g2 (ep)pd

TT\K: = (11.57)

where g, (er) is the density of states per unit volume at the Fermi level, xp is
the Pauli susceptibility, and Kk is the Knight shift. For a Sommerfeld electron
gas (11.57) can be simplified using

3n
ep) = 22 11.
gv(ex) e (11.58)
and
Yelt)?
Xp = ggv(er) o = ( 4) gv(er) o (11.59)

where n is the electron density. This yields the standard formulation of the
Korringa relaxation

1 drks (YN 2
- — K2 = g2 (X . 11.
T kS0 K7 (%) (11.60)

In metallic systems the Korringa relaxation dominates over the phonon re-
laxation. The lack of any temperature dependence for the product 77T is
therefore often used to check the metallicity of a spin system for low temper-
atures. This is possible even though a direct spin-lattice relaxation yields also
1/TT; independent of temperature. However, in metals the direct spin-lattice
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relaxation as well as the other spin-phonon relaxation mechanisms are always
much weaker than the Korringa relaxation.

Since T3 from Korringa relaxation is so short it becomes equal to T and
therefore often determines the spin resonance linewidth.

The Korringa mechanism is a typical process for the relaxation of nuclear
spins in metals but it also holds for the interaction of localized electron spins
with free carriers. In this case the coupling is by exchange interaction. If
the spins are not localized like in metals, relaxation follows the Elliott-Yafet
mechanism discussed in Sect. 11.6.

11.5 The Effective Spin Hamiltonian

To proceed further we will now discuss some special phenomena in ESR and
NMR. Since for magnetic resonance the origin of the electronic states of the
crystals is not the central problem and the relevant Hamiltonian is not the
one for the electrons and nuclei in the crystal as we used it in the previous
chapters. What is essential are the interactions of the magnetic moments
with an external field or with the internal field generated by them. These
interactions are the origin of the different types of observed line shifts and line
splittings. The Hamiltonian which describes the most important interaction
processes is known as the effective spin Hamiltonian and has the form

H=1Bg.S+SDS+SAI—p,BgyI+1IQI+..... (11.61)

S and I are the operators for the electronic and nuclear spin. According to the
comment given above about the quenching of the orbital quantum number J
was assumed equal to S. g, D, A, gn and Q are operators describing the
Zeeman splitting of electronic states (g ), the influence of the crystal field (fine
structure, D), the electron-nuclear spin interaction (hyperfine structure A),
the Zeeman splitting for the nuclear spins (gn) and the nuclear quadrupole
interaction (Q). With the various resonance techniques the different interac-
tions are probed. In principle, many other interaction Hamiltonians like the
one for spin-lattice interaction or the spin-orbit interaction, etc., can be added.
In the following section we will discuss the interactions to a large extent with-
out considering the operator character of the coupling terms. All operators
will be replaced by their Roman symbols and the interactions are described
by coupling constants. However, the tensor character of these constants has
to be retained for crystalline material as well as for molecules.
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11.6 Electron Spin Resonance

11.6.1 Zeeman Splitting and Crystal Field Effects

The simplest case of a magnetic resonance experiment is a study of the reso-
nance absorption of electron spins at the Zeeman energy. Only the first con-
tribution to the spin Hamiltonian from (11.61) is used. From (11.14) the field
for resonance absorption is

Br= (11.62)
JeliB

where the selection rule AS =1 was applied. For a field (given in tesla) and
for go = 2 this yields

frR = gepin/27h = 28 x 10°B [Hz] . (11.63)

Except for cubic crystals the tensor character of g, must be considered. The
effective g value is then given by the components of the g-tensor and the
orientation of the field with respect to the crystal axes. This orientation is
conveniently described by the direction cosines I, m,n of the angles the field
makes with the crystal axes. For Bravais lattices with trigonal or higher sym-
metry the g-tensor is diagonal and the effective g-factor is obtained from

g= \/12gg+m2g§+n2gg. (11.64)

Figure 11.8a shows the position of resonance absorption for the organic crystal
Qn(TCNQ)2 (quinolinium-tetracyanoquinodimethane) as a function of the

o' Ag

0 40 80

120 160 200

6 (degrees)
Fig. 11.8. Dependence of electron spin resonance position expressed as Ag of
the organic crystal Qn(TCNQ)2 on the orientation of the field in the crystal. The
resonance was measured versus a reference to increase accuracy; (e) field in yz
plane, (A) field in zy plane; 6 = 0 corresponds to B||z or Bl|z. (a); (b) shows the
TCNQ molecule with the coordinates for g;; after [11.6]
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orientation of the magnetic field relative to the crystal axes. Qn and TCNQ
are two large organic molecules accommodated in a trigonal Bravais lattice.
Thus, the tensorial character of g is retained for all electron spins and the
Zeeman splitting depends on the orientation of the field. The spin in the
system originates from a charge transfer of one electron between the two
molecules which renders TCNQ as a positive charged ion with one unpaired
electron. This electron gives rise to the ESR signal with S = 1/2. The diagonal
components of the g-tensor were found to be 2.00236, 2.00279, 2.00356.

Even in cubic systems the position of the energy levels for the spin states
depend very often on the orientation of the magnetic field with respect to the
crystallographic axes. This is, in particular, so if the spin is larger than 1/2.
In this case higher-order terms change the diagonal elements and introduce
nondiagonal contributions to the g-tensor.

Besides the pure Zeeman splitting the system described by

H = SDS + pupgeSB (11.65)

is the simplest case, in particular if the term SDJS is small. The crystal field
modifies the Zeeman levels vis spin-orbit interaction. (See also Sect. 11.6.3).
This does not only lead to a shift of the resonance absorption but also to an
additional splitting if S > 1/2. The splitting is a consequence of the depen-
dence of the shift on the individual Zeeman states.

040t c® in AICI, - 6 H,0
60.35 -
om b
025} b
0.20 e Fig. 11.9. Splitting and anisotropy
0] 30 60 90 of electron spin resonance of Cr®t

6 (degrees) with S=3/2 in AlCls; after [11.7]

Figure 11.9 shows the splitting of the ESR line of Cr?>* in AlCl; as a func-
tion of the orientation. € is the angle between [100] direction and a magnetic
field in a (011) plane. The threefold degeneracy of the transition between the
four Zeeman levels of the S = 3/2 spin of Cr®* is lifted.
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11.6.2 Hyperfine Interaction

The most important and thus also the most often investigated splitting of the
resonance lines originates from hyperfine interaction. The corresponding term
in (11.61) is

H = ge,uBSB + SAI . (1166)

A is the hyperfine interaction constant which is, at least for s-electrons, deter-
mined by the probability |1/(0)|? of the electron at the position of the nucleus.
It has the value

o= B0 i) (0. O)? (11.67)
™3

In this form A is known as Fermi-contact interaction. Fermi contact interac-
tion is also possible for orbitals where [¢)(0)|? is zero if they polarize an s-
orbital. Alternatively they can give a direct but much smaller and anisotropic
contribution from a dipole-dipole interaction. The Fermi-contact interaction
is isotropic as long as gy is isotropic like in hydrogen. However, due to chem-
ical shift anisotropies or dipole-dipole contributions this is generally not the
case and A is like g a tensor.

Because of the tensorial character of g and A the hyperfine interaction
cannot be read directly from (11.66). It must be calculated again for the dif-
ferent orientations of the field from the direction cosines I, m,n. As in (11.14)
the energy levels are given by the possible z components of the spins. For
diagonal A and g tensors the result is

Us.,1. = € = gepnBS: + aS: 1. (11.68)

with

1
0= _\[AZGRE + Agim? + Algin®

and

9=1/9 +9;+92

If g and A are isotropic like for the electron in hydrogen a = A.

The splitting of the levels for a system with S = 1/2 and I = 1 is displayed
in Fig. 11.10. The electronic levels split into 25 + 1 = 2 Zeeman components
and each of them splits into 2/ +1 = 3 nuclear Zeeman levels with the distance
aS, between two levels. Since the selection rules for transitions are again
AS, =1 the resonances occur for
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(11.69)

Br =

hw
gellB

al,
JellB

(11.70)

A strong signal is only obtained for AI, = 0. Thus the spin resonance line
splits into 27 + 1 components separated by a constant field a/goup. Equation

gs”B B

:
oI

a2
0
-a/2

-a/2
Fig. 11.10. Splitting of energy levels by
hyperfine interaction in a system with S =
a2 1/2and I =1

(11.69) is easily verified from Fig. 11.10.

The splitting obtained for AS, = 0, AI, = 1 is the nuclear Zeeman effect.

The hyperfine splitting is particularly simple for the electron in hydrogen.
From I = 1/2 for the proton a splitting into two lines results in with difference
in resonance frequency of a/2mh = 1420 MHz or 50.7mT. This corresponds
to an energy difference of ~ 1076eV or 6 pueV.

Figure 11.11 exhibits the hyperfine splitting of Mn2* in ZnS. The spectrum
is represented by the derivative of the absorbed power dW’/dB. Mn?* has
an electron spin and a nuclear spin of 5/2 each. Sweeping the field Br we

dw
dB

-

. Fig. 11.11. Hyperfine splitting of

30 electron spin resonance for Mn** in
ZnS; after [11.8]
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expect six resonance lines from (11.70) as shown in the figure. The Zeeman
splitting for the electronic spins gives six levels with equal distance. Thus, all
electronic Zeeman transitions give the same hyperfine pattern.

T T T T T T T T T

H Il (100)

020 030 031 032 033 0834 035 036 037
B (T)

Fig. 11.12. Electron spin resonance of hydrogen on a cubic interstitial site in
CaF2; The center to center distance between the two groups of peaks is 50.7mT
from the hyperfine interaction of the hydrogen electron with the nuclear spin of
the proton; after [11.9]

A multiple splitting of the ESR signal occurs also if the electron spin
interacts with several equivalent nuclear spins I. Since the nuclear spins can
be added to yield an effective nuclear spin with maximum value NI, 2NT +
1 possible lines follow where N is the number of equivalent nuclear spins.
Figure 11.12 shows the ESR spectrum of hydrogen in CaFs. In this crystal
the F~ ions are accommodated on the edges of a cube. In every other center of
the cubes are the Ca™™ ions. The free cubes can accommodate the hydrogen
atoms which have thus 8 F~ neighbors. Since °F has spin 1/2 the resonance
splits into nine lines. However, the absorption of the lines do not have the same
intensity since the probability for generating a particular effective spin is not
the same for the different configurations. The maximum effective total spin
is obtained by only one configuration where all equivalent nuclear spins are
parallel. Smaller effective total spins are obtained by several or even many spin
configurations. Therefore, the central lines of the splitting are the strongest.
Away from the center the lines become weaker and weaker.

The hyperfine interaction between electron and nuclear spin of the hydro-
gen leads in CaFs, in addition to the nine fold splitting, to a doubling of the
absorption lines where both components have the same intensity. The two
components interact independently with the eight nearest neighbor nuclear
spins of 1°F.

If the wave function of the electron spin is extended over several nuclei
the discrete lines of the hyperfine splitting are washed out and a broad line
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centered around I = 0 appears. Motional narrowing or exchange interaction
can again reduce the width of this line but the splitting is lost. Figure 11.13
depicts the behavior for electron-proton interaction. Spectrum (a) is the re-

@ ﬂ AB=% ﬂ

(b)

Fig. 11.13. Line shape of the electron spin
() resonance with hyperfine interaction; local-
ized spins (a), delocalized spins (b), delo-
calized spins with motional narrowing (c)

sponse for a localized electron spin with a splitting of a/2up and spectrum (b)
is for a delocalized spin. In spectrum (c) the resonance line appears narrowed
from spin diffusion. The hyperfine interaction is fully averaged out.

11.6.3 Spin-Orbit Interaction

Spin-orbit (SO) interaction is a very colorful phenomenon which is important
for many characteristic observations in ESR such as anisotropy of the g-factor,
spin-lattice interaction, shift or splitting of resonance lines, lifetime of excited
states, and others. It is based on the interaction of the spin magnetic moment
te of the electron with the magnetic field generated by the orbital motion
of the electron in the electric field of other charged particles like the nuclei
and other electrons. For electrons in atoms and equivalently for localized elec-
trons in a solid this interaction is given by the Pauli SO Hamiltonian as first
introduced by E.I. Rashba et al. [11.10].

o

HSO _

= -o . 11.71
T (VU0 xp-o (11.71)

mo, P, ¢, Ug, and o are the electron mass, its momentum, the light velocity,
the Coulomb potential of the atomic core, and the vector of the Pauli matrices
(04,04,0:) , respectively. For the meaning of o see also Appendix J.5. (11.71)
is derived from HSO = f,ueBSO by using the classical formula for the field
B generated by an electron moving in the field E

vxE _ vx(VlUo) _ px(Vl)
2 2 -

B%© = (11.72)
C

ec moec?

and the magnetic moment of the electron given as
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He = %MB o~ % o. (11.73)
In order to arrive at (11.71) an additional factor 1/2 was added which takes
care for the so called Thomas precession due to the non-inertiality of the
electron rest frame.

For free or quasi free electrons in a solid the momentum p is given by
Tik and moc? has to replaced by the gap energy e, = A which yields for the
SO-Hamiltonian

1
HC = — B xhk-p . (11.74)

The SO interaction for localized spins is often expressed in terms of the an-
gular momentum operators L = r x p and the spin operator S = %ha as
demonstrated in Appendix J.6. In this case the eigenvalues of the spin-orbit
operator for hydrogen like orbitals scale as Z* where Z is the number of
charges providing the Coulomb potential Up. As a consequence of this very
strong dependence of the spin-orbit coupling on the Coulomb charge the cou-
pling increases strongly with atomic number. This holds as well for SO in-
teraction in solids even though the coupling has to be calculated explicitly
in each case. It is often described by a coupling constant A\ which increases
dramatically with atomic number of the constituents of the solid.

The dependence of SO on the atomic number is well demonstrated by
the spin-orbit splitting Aq of the valence bands with S = 1/2 and S = 3/2
in group IV and III-V semiconductors. Table 11.3 gives an example for non
polar and polar semiconductors. The table also demonstrates a much larger

Table 11.3. Energy gap and spin-orbit splitting Ao in eV and ionicity for non polar
semiconductors and for various III-V compounds; Modified from [11.14]

Compound energy gap AJ® A ionicity

C (diamond) 5.45 0.006 0.006 0

Si 1.1 0.044 0.044 0

Ge 0.67 0.29 0.29 0
GaN 3.2 0.02 0.095 0.5
GaP 2.24 0.127 0.11 0.327
GaAs 1.47 0.34 0.34 0.310
GaSb 0.81 0.8 0.98 0.261

SO splitting for crystals which do not have inversion symmetry like the III-V
compounds.

Spin-orbit coupling contributes significantly to the spin-lattice relaxation.
Two mechanisms are relevant. The first was originally described by R.J. El-
liott [11.11] and is known as Elliott- Yafet mechanism. Due to SO interaction
the electronic wave functions are not any more tied to one spin type like 1 (k)
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or ¥_(k) (or ag+ and ap— in second quantization description) but are rather
a mixture of the two wave functions. This means the spin is not a good quan-
tum number any more and in scattering events the spin state is modulated
which contributes to spin relaxation. This relaxation process is dominating in
metallic systems as discussed below.

In structures which do not have inversion or mirror symmetry M.I.
D’yakonov and V.I. Perel described another SO interaction induced mech-
anism which determines the spin lattice relaxation [11.12]. It is now known as
D’yakonov-Perel relazation. Since this mechanism is linear in k it cancels for
centro-symmetric systems. The breaking of symmetry may either be due to
crystal structure or due to external strain or defects. The stronger SO split-
ting for the non centrosymmetric semiconductors in Tab. 11.3 can be traced
back to this interaction term.

Spin-orbit interaction also modulates (shifts) the Zeeman states in a mag-
netic field By as it adds to the Zeeman energy upBgeS. This means Zeeman
levels are determined by an effective field Beg = By + B5©. Even more, since
SO scales with the velocity of the electrons the Zeeman levels can be tuned
by an applied current. With increasing current the speed of the electrons in-
creases which shifts the resonance position. This is demonstrated in Fig. 11.14
where fits to the ESR signals from Si quantum wells are depicted for various
applied current densities. The shift of the Zeeman levels depends on the direc-

j,=-3mAlcm

Fig. 11.14. ESR res-
onance of a twodimen-
sional electron system in a
Si quantum well recorded

0,3381 0,3382 0,3383 0,3384 with 9.4421 GHz at 4K. A

. . current was applied to tune
Magnetic Field (T) the resonance; after [11.13]

EPR Derivative Signal (a.u.)

tion of the current and amounts to 27x107° T for a 1 mA /cm current density
and the field used. The asymmetry of the quantum well was induced by the
growth process.

In the case of spin carrying defects in a crystal the crystal field generated
from the charges around the defect (see also Chap. 7) causes a considerable
change of the apparent g-factor due to the SO field and contributes to the
tensorial shape to the g-factor.



284 11 Magnetic Resonance Spectroscopy

Spin-orbit interaction can also strongly enhance the g factor for conduc-
tion electrons in semiconductors. In the case of InSb values up to 50g. were
reported.

11.6.4 Free Carrier Spin Relaxation

The Elliott-Yafet mechanism is particularly efficient for spin-lattice relaxation
in conduction electron spin resonance of metals. Since the spin flip time 75 goes
along with the scattering of the electron one expects an immediate relation
between T and the electron momentum scattering time 7. The spin relaxation
by conduction electrons does not require lack of inversion symmetry. In simple
metals the relaxation process can be described by a two band process. The spin
flip is considered in this case as controlled by the mixing of the wave functions
from two neighboring bands of the same symmetry and with a separation Ae.
On the other hand the change Ag of the g-factor with respect to the free
electron g-factor of 2.0023 is also determined by SO coupling. Characterizing
this interaction by a coupling parameter \ the change Ag has been calculated
to be Ag = A/Ae. From an evaluation of the spin flip time 75 and of the
electron scattering time 7 the ratio between these two time constants is equal
to the square of Ag. This is known as the Elliott relation

Ty~ Ty ~7/Ag* . (11.75)

It describes spin relaxation in terms of SO coupling.
To check the Elliott relation one can get another relation between T, and
7 if the ESR linewidth AB = 2/+T5 is divided by the resistivity p = mq/ne?r.
This yields a linear relation between AB/p and Ag? of the form
2
AB_ e T g, (11.76)
p ymo T2

where C is a highly metal independent constant.

The linear relation between AB/p and Ag? has been verified experimen-
tally as depicted in Fig. 11.15 for simple metals. The observed linear relation
over a very wide range of magnetic fields is a good proof for the Elliott relation.

11.7 Nuclear Magnetic Resonance

From the value for p, a resonance frequency for NMR is in the range 10-100
MHz for a static field of the order 1 T. More precisely (11.62) yields (for B in
tesla) for protons

frR = gpinB/27h = 42.58 x 10°B [Hz] . (11.77)

Nuclear magnetic resonance experiments are usually carried out with a
setup shown in Fig. 11.2. The frequency is tuned instead of the field until all
positions of resonance absorption are detected.
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Fig. 11.16. Proton NMR-
signal for diethylamine
(CH3CH2)2NH. TMS is the cal-
ibration signal from tetramethyl
silane

Considering that the magnetic moments are only given by the spin of the
protons and the neutrons in the nucleus one would expect the same NMR
signal for all atoms or at least definitely the same signal for a particular
atom in various materials. This is not the case. Looking at the NMR signal
of diethylamine (Fig. 11.16) we find three resonances with a relative inten-
sity (area of lines) of 6:4:1, even though only the hydrogens contribute to the
resonance (proton NMR). The reason for this unexpected result originates
from the accommodation of the protons in three different chemical environ-
ments. The field in (11.77) is not the externally applied field but the effective
local field Bjo. which is given by the applied field and by the contributions
from the chemical environment. Since for each type of bonding a different
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chemical environment is expected several resonance frequencies are observed
for one nucleus. This effect is known as chemical shift. In diethylamine the
hydrogens are located in three different chemical environments which explains
the three different lines. Moreover, the ratio of the numbers of hydrogens in
the different chemical bonds is 6:4:1, exactly like the intensities of the reso-
nance absorption. Each nucleus contributes the same to the total oscillator
strength. This means that the NMR spectrum of a compound is a fingerprint
of the distribution of the hydrogen atoms or other NMR, active nuclei in the
material. NMR spectroscopy is therefore a very important tool for the analysis
or characterization of new compounds, particularly in organic chemistry.

The line assigned as TMS in Fig. 11.16 originates from protons in tetra-
methylsilane [TMS, (CHg3)4Si]. It serves as calibration. The chemical shift is
often given in relative units as

0= =2 x 10° (in ppm) . (11.78)

fo
Af is the distance of the resonance from the TMS signal and fy the excita-
tion frequency. For example the shift for *C in an sp? hybridization state is
150 ppm but only 50 ppm for 3C in an sp? hybridized state.

In general, the chemical shift at a particular position in a molecule or in
a crystal is also anisotropic. This means the shift depends on the orienta-
tion of the field with respect to the molecular axis. Thus, in poly-crystalline
samples the chemical shift anisotropy leads to a line broadening with a very
characteristic line shape as discussed in Sect. 11.4.2.

Chemical shift in NMR spectroscopy has been a very valuable tool for
the identification of isomeric structures. A good example are the fullerenes. In
Cgo all carbon atoms are in the same type of chemical environment. Therefore
Ceo has only one NMR line which, according to the almost sp? bonding of the
carbons, is located at 142.68 ppm. In contrast, in Cyg the carbons are in five
different chemical environments with occupancies 10, 20, 10, 20, 10. There-
fore 5 NMR lines are expected with relative intensities 1:2:1:2:1. Figure 11.17
depicts NMR spectra for the two molecules as recorded from the fullerenes
in solution. For the discovery of the fullerene structures H.-W. Kroto, R.E.
Smalley an