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Preface to the Second Edition

To write a second edition of a textbook is a very challenging enterprise for the
author in many aspects. First of all it gives the chance to back up the content
and the text from the previous edition with all the experience he has collected
after the first edition was distributed and to include the full set of advices and
recommendations he had received from colleagues and students. As important
is the possibility to include new developments in the subject of the book.
Solid-state spectroscopy was originally addressed to be most important for
our understanding of the solid sate. This promise has been more than fulfilled
as in the almost ten years after the publication of the first edition many
important technical developments of analytical tools has lead to better or
even new understanding of materials. Good examples of this progress are the
rapid development of synchrotron radiation as an omnipresent light source,
the increasing interest in spintronics which promoted the spectroscopy of spin
systems or the new subject of transport or electron addition spectroscopy
in nanostructures. These and many other subjects are now included in the
textbook or were rephrased according to the most recent developments.

Solid-state spectroscopy has still the character of an analytical tool but in
a few special cases as for example in the field of luminescence the breakthrough
to the market has occurred.

The format of the textbook as it was originally designed was retained in the
new edition. In the first and main part of the book basic concepts of the various
types of spectroscopy are described with particular emphasis on the physical
background of the methods. The sections on synchrotron radiation, photo
emission, and on spin resonance were extended and a new chapter was added
on spectroscopy of nanostructured solids. On the other hand the contributions
from positron annihilation and myon spin resonance were shortened in order to
limit the overall text to an acceptable volume. The dedication of the textbook
remains as given in the preface of the first English edition and can be inspected
there.

In the second part of the book which is again formatted as appendices to
the individual chapters, a more detailed presentation is provided to help the
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VI Preface to the Second Edition

advanced reader or teaching professors in finding the connections to theoreti-
cal interpretations. In some cases, where it was demanded from the progress
of understanding, parts of the presentations which were originally in the ap-
pendices were moved to the main text.

As for the problems new exercises were included to cover the new sub-
jects accepted in the second edition. The problem solutions are still available
from the author as an extra booklet with the ISBN number 963 463 268 8
published by H. Kuzmany, M. Hulman and J. Kürti at the Eötvös Univer-
sity in Budapest. New problems are assigned by an upperscale n. They are
unfortunately not included in the booklet.

Due to the lack of space many presentations could not be provided in
sufficient detail to allow for immediate application in research and technology.
Therefore to each chapter the list of references for further reading was updated
with most important recent literature.

Finally it is a great pleasure for me to acknowledge all colleagues who
contributed to the better understanding of this textbook by numerous dis-
cussions and recommendations during its preparation. Particularly valuable
contributions came from Prof. H. Grosse, Prof. Th. Pichler, Dr. R. Pfeiffer,
Dr. A. Grüneis, Dr. C. Kramberger, and Mag. W. Plank, Universität Wien,
Prof. F. Simon, University of Technology and Economics Budapest, Prof. W.
Jantsch, Universität Linz, and Prof. P. Jarillo-Herero, Massachusetts Institute
of Technology, Boston. I am also very grateful to our technicians A. Stangl
and Ch. Vlcek for helping to get new and updated illustrations for the text-
book. Finally, I very much acknowledge the editor-in-chief Dr. Ascheron from
Springer Verlag for his continuous stimulations during the preparation of the
manuscript and for his patience in receiving it.

Wien, April 2009 Hans Kuzmany



Preface to the First Edition

The dramatic increase of our knowledge about the solid-state in the last 10–20
years has come in great part from new spectroscopic experimental techniques.
In this context spectroscopy is used in a broad sense and covers various ex-
periments where energy analysis of a particle or electromagnetic radiation
is crucial. Accordingly, spectroscopic methods extend in the electromagnetic
spectrum from radio waves to γ radiation but also include particles after their
interaction with a solid. Each spectral range has its characteristic technique
and addresses particular properties of the solid. A fundamental knowledge of
the various methods is therefore a prerequisite for a successful investigation
of problems in a particular area.

The actual motivation for writing this textbook was the lack of any di-
dactic review summarizing the methods and applications of spectroscopy
with regards to solids. Many of the methods were well known from molec-
ular physics but, even there, reliable and comprehensive textbooks are not
available. Also, spectroscopic problems can be characteristically different in
molecules and crystalline material because of the periodic arrangements of
atoms and molecules in the latter.

The material presented here is a result of several postgraduate courses
on “Solid-State Spectroscopy” given by the author over the last few years.
The goal of these lectures was to supply a representative selection of spec-
troscopic techniques and to describe their field of application. This goal has
been retained as the concept of the current textbook. Accordingly, the inten-
tion is to provide a broad knowledge of the basic concepts, sufficient to follow
specialized lectures or specialized literature later on.

Another source of the subject to be discussed is a textbook written by
the author in 1989 in German and edited by Springer Verlag in 1989. In this
textbook the concept of presentation and didactic strategy was developed but
the elaboration of the material has been performed in much more detail in the
current version and the volume of subjects presented has been substantially
increased.
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VIII Preface to the First Edition

During the formulation of the text particular attention was paid to a
physical understanding of the spectroscopic problems rather than to their
formal description. To improve information transfer from the text the most
important results have been framed. This should be of particular help for the
application-oriented reader. To simplify presentation no vector or tensor nota-
tion is employed in general. Only in cases where the physical meaning requires
the specification of the rank of the variables, bulk letters, or indexed symbols
in script are used for vectors and tensors and bulk letters in Roman for oper-
ators. The bulk of the book deals with a description of current spectroscopic
techniques and their applications on an introductory level. This is backed up
by extensive appendices which contain several useful tables and a considerable
number of further details, including some mathematical formulations on an
advanced level. In this way a better link could be established with standard
textbooks and to formulations used in spectroscopic research. The book is
constructed, however, to allow reading and understanding without a study of
the appendices. In this context the latter can be used either as a source of
additional information for the lecturers or as part of the course work.

The first part of the textbook describes electromagnetic radiation, light
sources such as lasers and synchrotron radiation, and general concepts of
experimental techniques. The second part concentrates on individual spectro-
scopic methods using electromagnetic radiation and particles. The problems
collected at the end of each chapter are designed to further the understanding
of the text. Each of them is flagged for its instructive value. Discussion and
solution of the problems is highly recommended. Problems with an asterisk
are more difficult and may be considered as an extension of the subject cov-
ered by the book. Problems labeled with a superscript a require input from
the appendix.

During the specification of the problems I strongly benefited from valuable
discussions with colleagues and former students in my group. In this context
I am particularly grateful to Mag. J. Winter, Mag. R. Winkler, and Mag. M.
Hulman for their engagement in the discussion of the problems. A booklet
with solutions will be available from the author for interested readers.

The current textbook may be useful as a first text for senior undergraduate
students. However, it is particularly designed for postgraduates in physics,
chemistry, and material science, before they start to work in a special research
field. With the inclusion of the appendices the value of the book is extended to
a more knowledgeable audience such as students working on a thesis, academic
lecturers who intend to set up a similar course in solid-state spectroscopy, or
even researchers in the field.

Two years of education in general physics are a prerequisite for under-
standing this book. In addition, a basic knowledge of solid-state physics and
some background in the concepts of quantum mechanics will be very helpful.
At the end of each chapter references are given for readers who need additional
information on specific subjects and recent developments.



Preface to the First Edition IX

The subject covered by this textbook extends over a very broad field of
material science. Extended discussions with many specialists were therefore
extremely important. In this context I would like to acknowledge in partic-
ular Prof. G. Vogl and Prof. H. Grosse from the Universität Wien, Prof. M.
Mehring from the Universität Stuttgart, Prof. J. Fink from the Institut für
Festkörperphysik und Werkstofforschung in Dresden, and Prof. J. Kürti from
the Eötvös University in Budapest.

For critical reading and correction of special chapters I acknowledge Doz.
B. Sepiol from Wien, and Prof. Kürti and Prof. Mehring from Budapest
and Stuttgart, respectively. Also, I am particularly grateful to T. Leitner for
his continuous efforts to get the graphics of the textbook into a computer-
compatible shape and for designing the cover plate.

Finally, I acknowledge the Springer Verlag in Heidelberg, in particular
Dr. Lotsch and Mr. C.-D. Bachem, for their support and efforts during the
preparation of the manuscript.

It has been the idea of this book to provide an overview and an aid for new-
comers to the rapidly emerging and colorful field of solid-state spectroscopy.

Wien, January 1998 Hans Kuzmany
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1

Introduction

Spectroscopy of materials and processes is an extremely wide spread ana-
lytical tool in science. Material, biological, and chemical scientists benefit
from the continuously developing field as well as astrophysicists, mineralo-
gists, or even scientists working in medical research problems. As a definition
of the term spectroscopy any energy analysis of radiation after its interaction
with matter may be used, no matter whether the radiation is electromag-
netic, mechanical, or embodied in particles. In the case of electromagnetic
radiation the frequency range extends from radio frequencies to γ radiation
and the particle radiation includes electrons, neutrons, positrons, muons, and
even neutral or charged atoms. The energy range to be considered covers at
least ten orders of magnitude. Information on the matter is obtained from
the radiation spectrum modified by its interaction with the electronic and
magnetic configuration of molecules or crystals. This interaction can pro-
ceed either by two-particle interaction, such as the processes of absorption
or emission of radiation, or by three-particle interaction as in the process of
scattering.1

In fact, many electronic transitions in condensed matter are in the energy
range of 10−7 eV which allows absorption of radio waves in the MHz region.
Transitions of spin states of nuclei or atoms in a magnetic field are examples of
such low-energy processes. In the infrared, vibrational transitions or selected
transitions between electronic orbitals can be investigated. In the visible and
near visible spectral range band to band transitions or excitonic transitions
from localized states dominate. For even higher energies photoelectron spec-
troscopy from valence band states or atomic core levels appear in the spectra
and at the highest energies transitions at the nuclei level score. Inelastic scat-
tering processes of light and particles can give information on energy and
momentum of electrons and atoms.

This textbook deals primarily with spectra from solid-state materials. The
transition energy between two states in the solid is determined from the po-

1 In a quantum-mechanical notation absorption is a three-particle process and scat-
tering is a four-particle process.

H. Kuzmany, Solid-State Spectroscopy, DOI 10.1007/978-3-642-01479-6 1, 1
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2 1 Introduction

sition of a structure in a spectrum. The magnitude of the structure is related
to the rate of the transitions between the two states. This rate is always de-
termined by the product of probability for the transition and the number
of appropriate configurations for its realization. All process are subjected to
energy and momentum conservation which is the basis for the information
to be drawn. As such all spectroscopic methods rely on the same principle,
not only from a descriptive point of view, but also from a quantitative and
mathematical point of view manifested in Fermi’s golden rule.

Not only the theoretical background but also the experimental procedures
for the various spectroscopic techniques are strongly related. All of them are
based on the use of

a proper source for the probe beam,
the sample which interacts with the probe,
instrumentation for the analysis of the probe, and
a detection system for the probe.

Each of these items is subjected to highly advanced technologies or, in the
case of the samples, to an advanced theoretical description.

In the following chapters the various spectroscopic processes will be dis-
cussed. We will start by reviewing the concepts of electromagnetic radiation
and the various sources for its generation. Here synchrotrons and lasers play
a dominating role. A basic description for the experimental frame of classical
spectroscopic methods follows. The next three chapters are dedicated to the
simplest formulation of a “response function” of material, spectroscopy in the
visible spectral range and elements of group theory. In the rest of the book spe-
cial spectroscopic techniques are discussed such as Raman scattering, infrared
spectroscopy, magnetic resonance, and x-ray and γ-ray spectroscopy. The con-
cept of a linear response to a radiative perturbation holds, in principle, for
all these techniques. For scattering experiments with particles an extended
description of the linear response is required, as presented in Chap. 14. In
Chap. 16 an extensive description of spectroscopy of small particles follows,
including particles with size quantization.

One recurring problem in solid-state spectroscopy is its relation to spec-
troscopy with molecules. Many of the spectroscopic techniques have been ap-
plied previously to molecular systems. Some of the results from these studies
also apply to solids. However, the periodic arrangement of atoms in crystals
and the high density of electronic states for certain energies play an important
role in solid-state spectroscopy and, in many cases have required the devel-
opment of new concepts. The difference between molecular and solid-state
response is remarkable as in many examples the k vector of the probe and of
the objects play an important role. This holds for techniques such as optical
absorption, Raman scattering, luminescence, x-ray or γ-ray spectroscopy and
in all cases of spectroscopy with particles. On the other hand in solid-state
spectroscopy both the molecular and the solid-state points of view may be
important since very often properties of molecules are well retained as for
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example in molecular crystals or for localized electronic states. In addition
some trends in solid-state spectroscopy are oriented towards the analysis of
smaller and smaller units until the single molecule objects are reached. Obvi-
ously there the method meets with molecular spectroscopy.

There are many scientific descriptions and textbooks on the market which
discuss and describe the various spectroscopic methods. They will be refer-
enced in the corresponding chapters. However, only very few texts are available
which cover the full range of solid-state spectroscopy. In some reports parts
of the subject are discussed [1.1, 1.2].

A final remark should be made regarding the formal presentations in this
text. Since it emphasizes the experimental point of view international units
are used, even for formulas which were derived from purely theoretical con-
siderations. A list of the most important fundamental constants is given in
these units in Table A.1. On the other hand, different energy units are quite
common for the different spectroscopic techniques. Joules, electron volts, wave
numbers, frequencies, temperature, and even atomic energy units (Hartree)
are used. The values for the different units are correlated to each other in
Table A.2 of the appendix to this introductory chapter.



2

Electromagnetic Radiation

The main part of this textbook deals with spectroscopy utilizing electromag-
netic (EM) radiation. Thus, we will first review the most important proper-
ties of this particular probe. We will start with the idealized description of a
plane wave within Maxwell’s theory and continue with an explicit description
of more realistic fields, such as radiation from a dipole and from an arbitrarily
accelerated charge. In Sects. 2.3 and 2.4 Fourier transforms are discussed and
applied to the important case of radiation from sources with limited emission
time. These sections are rather short since the readers should be familiar with
such subjects. For those who need a tutorial or a review, a more detailed
treatment of the subject can be found in Appendix B.

2.1 Electromagnetic Waves and Maxwell’s Theory

As long as its wavelength is not too short radiation can be characterized by
the classical description of a plane EM wave in the form

E = E0 cos(kx − ωt) , (2.1)

or

E = E0ei(kx−ωt) . (2.2)

E is the electric field of the wave with the amplitude E0, wave vector k,
and angular frequency ω = 2πf where f is the frequency. The complex form
of the electric field (2.2) is often very convenient, but it should be kept in
mind that only its real part has a physical meaning. Thus, in order to be
correct, the complex conjugate must be added in all calculations. The real
field is then obtained as (E + E∗)/2. The sign of the imaginary symbol i is
arbitrary. It serves to describe the actual phase of the field. Only a consistent
sign convention is needed. Different sign conventions can lead to different signs
in relations derived from the field. This is the reason why formulas found in
the literature often deviate slightly from each other. By convention, a positive
sign is used throughout this book.

H. Kuzmany, Solid-State Spectroscopy, DOI 10.1007/978-3-642-01479-6 2, 5
c© Springer-Verlag Berlin Heidelberg 2009
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The correlation between the wave vector k, the wavelength λ, the wave
number ν, and the quantum energy ε of the radiation are given as follows:

k =
2π

λ
= 2πν =

nω

c0
=

nε

h̄c0
. (2.3)

Here, n = c0/c is the (real) index of refraction expressed as the ratio between
the velocity of light in vacuum and in the solid. Using these relations the calcu-
lated value of the wave vector for visible light is of the order of 105 cm−1. This
value is very small compared to typical wave vectors of quasi-particles excited
in the first Brillouin zone of real crystals, or as compared to wave vectors of this
zone in general. Typical values for the latter two quantities are q ≈ 108 cm−1.
This fact is of fundamental importance for solid-state spectroscopy and often
plays a dominating role in the selection rules of spectroscopic transitions.

Occasionally, general complex numbers A = Ac + iAs are used to describe
EM waves. Ac and As are called the components of a phasor, and A is the
complex amplitude of the wave. Ac and As are defined as the coefficients of
the cosine term and the sine term if a harmonic oscillation of the general form

E(x, y, z, t) = E(x, y, z) cos(ωt − φ)

is separated in its cosine and sine component. Phasors are useful if, for in-
stance, a linear superposition of waves is studied. The resulting wave is then
obtained as a summation of complex numbers.

The energy of EM waves is characterized by different quantities depending
on the spectral ranges. Often used are the wavelength λ given in Å, nm or
μm, the frequency f given in Hz, (the angular frequency in s−1 ), the wave
number ν given in cm−1, or the quantum energy h̄ω given in eV. For example,
lasers are usually characterized by their wavelength, electronic transitions by
their energy in eV, and vibrational excitations by wave numbers. The use
of different units is not as confusing as it may appear at a first glance since
usually only one type of them appears within a particular field of spectroscopy.
Thus, in this book the traditional units for the description of radiation and
transition energies will be used. It is nevertheless important to keep in mind
the quantitative relations between the various units for the description of
the energy as they are given in (2.3) or in Table A.2. For practical use it is
convenient to remember that

1 meV corresponds to about 8 cm−1

1 μm wavelength corresponds to 1.24 eV and
1 K corresponds to about 0.7 cm−1.

A summary of the energy units commonly used in the various ranges of the
EM radiation is given in Table 2.1. This table also lists the spectroscopic
techniques applied in the various spectral ranges. Abbreviations are explained
in the corresponding sections of this book.
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Table 2.1. The electromagnetic spectrum

Wavelength Wave Frequency Energy Spectroscopic
number techniques
(cm−1) (s−1) (eV)

Electric
waves ∞-0.03 cm 0-E12 ESR, EPR, NMR
Far infrared 3000-40 μm 3-400 (0.4-50)E-3 FTIR, abs., refl.
Infrared 40-0.8 μm 250-12 500 (7-400)E12 0.03-1.6 IR, FTIR
Visible light 0.8-0.4 μm (12-25)E3 1.6-3 abs., refl., ellipsom.
Ultraviolet 400-10 nm 3-120 abs., UPS
x-ray 10-0.01 nm 50-120E3 XPS, XAFS
γ radiation 10-0.1 pm (2-1200)E4 MB, PAC

The other characteristic quantities of EM radiation, like the electric field
E, the magnetic excitation H, the induction B, the vector potential A, etc.
can be expressed most conveniently in the SI units V, A, m, and s. These
quantities are listed in Table 2.2, together with descriptors for the radiation
intensity. Note that in the latter case we critically discriminate between the
“intensity” of a radiation source and the “intensity” of an irradiated object
(last line in the table). For the sake of generality the older cgs units are also
given.

Table 2.2. Characteristic quantities of the electromagnetic field

Quantity SI (VAms) cgs (cm g s) relations

Electric field (E) Vm−1 g1/2cm−1/2s−1 1 Vm−1 = (1/3)cgs
Magnetic

excitation (H) Am−1 g1/2cm−1/2s−1 1Am−1=0.0256Oe
Magnetic

induction (B) Vsm−2 g1/2cm−1/2s−1 1Vsm−2 =104G

Vector potential (A) Vsm−1 g1/2cm1/2s−1

(Radiant) power (P ) VA erg s−1

Energy density (W ) VAsm−3 erg cm−3 1VAm−2=103cgs

Intensity (radiant) (Φ)a,b VA ster−1 erg s−1 ster−1

Radiance
(brightness) (L)a VAm−2 ster−1

Intensity

(irradiance) (I)a,b VAm−2 erg cm−2s−1 1VAm−2=103cgs
aI, L and Φ can be normalized to unit band width. In this case the symbols are

supplied with an index labeling the variable used for the normalization.
b To follow intuition and to avoid confusion with the assignment of the electric
field the symbols I and Φ are used as given in the table in contrast to the often

used symbols E and I for irradiance and for radiant intensity.
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In addition to the above quantities, which were derived from the definition
of the EM wave, photometric (or physiological) quantities such as candela,
lumen, and lux are important. According to the most recent definition the
photometric quantities are based on the unit of the luminous intensity candela
(cd). It is defined as the light emitted from a source radiating at 540 nm with
a radiant intensity of 1/683 W/ster1. Thus the quantitative relation between
luminous intensity Ili (in candela) and radiant intensity Iri (in W/ster) is

Ili(λ) = 683.002y(λ)Iri(λ) , (2.4)

where y(λ) is the luminosity function given in Fig. 2.1 and Iri is taken from
the black body radiation (3.4), expressed in λ and averaged over the visible
spectral range. Even though in this way candela is related to watts it is con-
sidered as an SI unit by itself. The luminous flux or luminous power F is
measured in lumen (lm) and defined as candela×ster (or 1 cd = 1 lm/ster).
Km = 683.002 lm/W is the photometric radiation equivalent which relates
the above given definition of candela to the older definition of candela as the
emission (and detection by the human eye) of a 1, 67 × 10−6 m2 sized black
body at the temperature of melting Pt which is 2042 K. Appendix B.1 has the
details of these relations.

The luminous intensity decreases rapidly for wavelength longer or shorter
than 540 nm due to the loss of sensitivity of the human eye. This sensitivity
is depicted in Fig. 2.1 in relative units for the day light adapted eye (pho-
toptic luminosity function, y(λ)). According to the definitions above and the
luminosity function 1 W green light (540 nm), red light (650 nm), and blue
light (450 nm) correspond to 683 lm, 73 lm, and 26 lm, respectively. For the

Fig. 2.1. Relative sensitivity of the
human eye for daylight adaption
(luminosity function)

dark adapted eye (scotoptic vision) the luminosity function is redshifted. The
irradiant intensity (illuminance) is measured in lux (lx); 1 lx is 1 lm/m2.
1 ster (from steradian) is the unit for the solid angle Ω; 1 ster = 1/4π; dΩ =

sin θdθdφ; θ and φ are the nutation angle and the precession angle which can
extend from 0 to π and from 0 to 2π, respectively.
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The relationships between the quantities listed in Table 2.2 are obtained
from Maxwell’s equations, and the well known relationship between the vector
potential and the field B. For plane waves (2.2) and (B.3) yield

B =
1
ω

(k × E0)ei(kr−ωt) with H =
B

μμ0
. (2.5)

For example, for a wave propagating in the x direction with E ‖ z, the vector
B is ‖ − y and has the form

B = − k

ω
E0ei(kx−ωt)ey .

Similarly, the vector potential (Appendix B.3) is given by

A =
i
ω

E0ei(kr−ωt) (2.6)

and, for a wave propagating in the x direction, it has the form

A =
i
ω

E0ei(kx−ωt)ez .

From these results the energy density of the radiation becomes

W =
1
2
(ED + HB) =

εε0E
2

2
+

μμ0H
2

2
. (2.7)

where ε0 and μ0 are the dielectric constant and permeability of vacuum, and
E,D,H, and B have been assumed as real. ε0 and μ0 are related to the light
velocity and to the impedance of vacuum by

1
√

ε0μ0
= c0,

√
μ0

ε0
= 377Ohm.

The numerical values for ε0 and μ0 are compiled in Table A.1.
Since the energy spreads perpendicular to E and H and is equally dis-

tributed to the electric and to the magnetic field, the intensity I (irradiance)
is obtained from

I = Wc = εε0E
2 c0√

εμ
=

√
εε0E

√
μμ0H · c0√

εμ
= EH . (2.8)

Written as the Poynting vector I and for μ = 1

I = E × H = E × (k × E)
1

ωμ0
=

E2k

ωμ0
= E2c0

√
εε0ek , (2.9)

where ek is the unit vector in the direction of the wave propagation.
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In the above equations W, I, and I are time-dependent (with a term
cos2(kr − ωt) for plane waves). To obtain the time average a proper av-
eraging procedure must be performed. In the simple case of plane waves
the values of E2 and B2 are then replaced by their time average E2

0/2
and B2

0/2.
Using a complex notation for the fields, products of the vectors have to

be replaced by the product of one vector with the complex conjugate of the
other vector. In this way the sum of the squared components of the vectors
represent the square of the magnitude of the field.

The intensity of radiation is very often evaluated for complex fields E from
I = c0ε0EE∗. Since in this case the time dependence is lost only the time-
average intensity is obtained and its magnitude is two times the magnitude
of a real field with the same amplitude.

2.2 Radiation from Accelerated Charges

Even though plane waves are a good example to illustrate electromagnetic the-
ory and are indeed very often useful to describe the EM field locally, they are
not a very realistic form of the radiation. In reality EM radiation always orig-
inates from accelerated electric charges. The mode of acceleration determines
the wave field. Vibrating electric dipoles, such as a vibrating molecule with
a finite electric dipole moment, or excited molecular or solid systems provide
realistic acceleration and emission patterns. We will therefore first discuss the
basic properties of the Hertzian dipole and then make some general remarks
about radiation from arbitrarily accelerated charges.

2.2.1 The Hertzian Dipole

The radiation from an oscillating dipole is emitted by moving charges in a
pattern shown schematically in Fig. 2.2. A dipole with the length l, charge
±Q and oscillation amplitude Δl emits radiation in directions r defined by
the unit vector er. Thus, at an arbitrary point r a field E(r) will be observed.
If the oscillation is harmonic with angular frequency ω the time dependent
part of the dipole has the form

PD = PD0 cos ωt = QΔl cos ωt . (2.10)

A Hertzian dipole corresponds to the approximation Δl ≈ l and λ =
2πc0/ω � l. Its amplitude is therefore PD0 = Ql. In order to obtain the emit-
ted field we need to evaluate either the potential Φ from a Poisson equation
or the vector potential A from the time-retarded charges or time-retarded
currents as outlined in B.3. Since the vector potential by itself is enough to
obtain the B field, it is more convenient to calculate the current distribution
for the Hertzian dipole and use its time-retarded value in (B.9) rather than
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Fig. 2.2. Polar diagram for the emission of electromagnetic radiation from a dipole.
ID(r, θ) is the intensity observed at distance r under the angle θ. It has rotational
symmetric around the dipole axis. eφ looks into the plane of the paper

to calculate Φ directly from the retarded charge distribution. A is obtained
from

A(r, t) =
μμ0

4π

∫
j(r′, t − |r − r′|/c)

|r − r′| d3x′ , (2.11)

where r′ and t′ = |r − r′|/c represent the coordinates and the time of the
current density distribution and r the coordinates of the field distribution. 2

The time-dependent current distribution for the Hertzian dipole may be
derived from the time-dependent charge distribution. If the dipole is very
short and oriented in the z direction as in Fig. 2.2 we may consider the time-
dependent charge Q(t) = Q cos ωt as a source for a current in the z direction.
This current then has the form

i(t) =
dQ

dt
ez = −ωQ sin ωt ez . (2.12)

To evaluate A we need to integrate over the current density. Even though
the latter nearly diverges locally because of the small size of the electron its
integral is certainly finite. In a simplified form the integration along x′ and y′

yields the current i of (2.12), and the integration along z′ yields the length
of the dipole l. Here it is assumed that r′ � r for all points of interest so
that we can use the expression t − r/c for the retarded time and neglect r′

in the denominator of (2.11). With these approximations the vector potential
becomes

AD =
μμ0Qlω sin(kr − ωt)

4πr
ez , (2.13)

2 Note that here and for the remainder of the book limits for the integration extend
from −∞ to ∞ if not specified otherwise.
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or more generally

AD =
μμ0Qlω sin(kr − ωt)

4πr
eD , (2.14)

where eD is the direction of the dipole moment and k is the wave vector
(ω/c)er. The curl of AD yields the field BD

BD = curl AD = −μμ0Qlω2 sin θ cos(kr − ωt)
4πcr

eφ , (2.15)

or more generally

BD = curl AD = −μμ0Qlω2 cos(kr − ωt)
4πcr

(eD × er) , (2.16)

where in the first equation spherical polar coordinates er, eθ, and eφ have
been used as shown in Fig. 2.2. The result for BD in (2.16) has been obtained
by retaining only the term proportional to 1/r. This term dominates for large
distances as compared to a terms ∝ 1/r2. This approximation is therefore
only valid in the far field called the wave or radiation zone. For a more general
solution (static or intermediate zone) see [2.1, 2.2]. Results for the wave zone
are, in general, good enough for applications in spectroscopy.

The B field is independent of φ, perpendicular to er and eθ, and decreases
as 1/r with distance r from the radiating dipole. These proportions are evident
from the second part of (2.16) where sin θ eφ was replaced by (eD × er).

The other characteristic quantities for the field follow immediately from the
equations given in Sect. 2.1 and Appendix B.2. The electric field is calculated
from Maxwell’s equations

ED = −c2

ω
(k × BD) = −μμ0Qlω2 sin θ cos(kr − ωt)

4πr
eθ

= −μμ0Qlω2 cos(kr − ωt)
4πr

(er × (eD × er)) . (2.17)

The power per unit area reaching point r (irradiance) is given by the Poynting
vector evaluated from (2.8) and (2.9)

ID =
EDBD

μμ0
=

μμ0(Ql)2ω4 sin2 θ cos2(kr − ωt)
16π2cr2

er . (2.18)

The time average of this function is plotted in Fig. 2.2. The radiation per
differential solid angle dΩ is immediately obtained from this by

dP = |ID| dF = |ID|r2dΩ (in W) . (2.19)
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All quantities given above are time-dependent. To obtain time-average
values for the radiation power the cos2 functions in (2.18) and (2.19) have
to be replaced by their average value of 1/2. Finally, the total average power
emitted by the dipole is obtained from (2.19) by integration over the solid
angle

Ptot =
P 2

D0μμ0ω
4

12πc0
=

μμ0(Ql)2ω4

12πc
(in W) . (2.20)

If more than two charges oscillate the radiation field becomes more com-
plicated and is described by electric multipole radiation. For modern spec-
troscopic techniques quadrupole radiation is important. It has still a simple
structure. The magnitude of the quadrupole moment for an arrangement of
charges symmetric with respect to the z axis is3

(PQ)zz = PQ =
∑

i

Qi(3z2
i − r2

i ) . (2.21)

Charges arranged as shown in Fig. 2.3a therefore have a finite quadrupole
moment (but no dipole moment). If the positive and negative charges oscillate
180◦ out of phase and with equal frequency, they establish a time-dependent
quadrupole moment of the form PQ(t) = PQ0 cos ωt. As a consequence they
will emit a quadrupole radiation. The emitted electric field and magnetic

Fig. 2.3. Linear arrangement of charges, Q, with a finite quadrupole moment
−l2Q (a), and the radiation pattern for a harmonic time dependence of Q (b).
The pattern is rotationally symmetric about z

induction are given for the arrangement in the figure as

EQ = −eθ
μμ0ω

3PQ0 sin θ cos θ

16πcr
cos(kr − ωt)

BQ = −eφ
μμ0ω

3PQ0 sin θ cos θ

16πc2r
cos(kr − ωt) . (2.22)

3 For the definition of multipole moments, see Appendix B.4.
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As a result of these relations the emitted power is proportional to sin2 θ cos2 θ
where θ is the direction between the z axis and the direction of emission. The
radiation pattern for this geometry of the charges is depicted in Fig. 2.3b.

2.2.2 Emission from Arbitrarily Accelerated Charges

The Hertzian dipole described above may be considered as a special case of
radiation from an accelerated point charge Q. The emission from an arbitrarily
accelerated charge moving along r′(t) is also important. It is the basis for
the description of black-body radiation, x-ray bremsstrahlung or synchrotron
radiation. General expressions for the potential Φ and the vector potential
A for this charge are known as Lienard–Wiechert potentials and given in
Appendix B.6. From A and Φ the electric field E and the magnetic induction
B for arbitrarily accelerated charges can be derived. If the distance between
the field point P and the emitting charge is very large (s = r − r′ ≈ r in
Fig. B.1 or in Fig. 2.4) and the particle is nonrelativistic [(v/c0)r = (ṙ′/c0)r �
r] the radiation intensity observed at distance r (irradiance) under the angle
θ with respect to the direction of acceleration ea is given, for Q equal to the
elementary charge e, by

I(r, θ) =
e2 sin2 θ

16π2ε0c3
0r

2
|a|2 (in W/m2) , (2.23)

where a = d2r′/dt2 is the acceleration of the particle in Fig. B.1 or in Fig. 2.4.
The radiation pattern for this particle is exhibited in the latter figure. The

Fig. 2.4. Radiation characteristic
for a particle moving with an arbi-
trary acceleration a

emission of radiation is strongest perpendicular to the direction of the accel-
eration, but it is independent of the direction of the particle velocity. The
radiation pattern is, of course, directly related to the dipole radiation shown
in Fig. 2.2.

The total power (in watts) radiated from the particle is obtained by inte-
grating over the full angular space. This yields

P =
e2

6πε0c3
0

|a|2 . (2.24)
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This well-known formula for radiation emission from nonrelativistic, acceler-
ated charged particles had already been derived by Larmor at the end of the
19th century.

2.3 Fourier Transforms

The radiation pattern described above for a plane wave and for an oscillator
are still unrealistic as they assume a single value for the angular frequency
ω (or do not give any explicit frequency, as in the case of radiation from an
arbitrarily moving point charge). Realistic fields always encompass a frequency
spectrum with a given radiation energy per frequency interval. This means a
realistic radiation field can be described either by a function of time such as
E(t) or by the distribution of the radiation energy over frequencies determined
by the field E(ω). The relation between these two descriptions is given by the
Fourier transform (FT) of one type of function into the other. Since FT is
fundamental to modern spectroscopy we will review the basic concepts of this
mathematical technique in this section. More details are given in Appendix
B.7. Nearly all spectroscopic techniques described in the following chapters
use this mathematical tool in one way or another. One of the main reasons for
the importance of FT is the dramatic development in computer technology.
Even personal-size computers can perform a Fourier analysis of very large
numbers of data points in a very short time.

2.3.1 Fourier Theorem

In the usual terminology the Fourier theorem consists of two parts.

a) Any function h(u) periodic in u as h(u) = h(u+w) = h(u+2π/v) with the
period w = 2π/v can be represented by a sum of harmonic functions of the
form sin(nuv) and cos(nuv) or exp(inuv) with the fundamental angular
frequency v and overtone number n. The coefficients of the harmonic
functions in the sum can be evaluated in an unique way from the original
function h(u).

b) Statement (a) also holds for non periodic functions in the sense that the
sum is converted into an integral and the frequency range extends now
from −∞ to ∞. In other words, in this case, FT gives a rule for a well
defined transform converting a function h(u) in u-space to a corresponding
function g(v) in v-space. h(u) and g(v) are called Fourier pairs.

Since statement (b) actually includes periodic functions, it can be expected
to cover statement (a). Indeed, it is not very difficult to show that this is true.

Fourier transforms are utilized in various disciplines of science such as
optics, spectroscopy, communications, stochastic processes, solid-state science,
etc. In spectroscopy u usually represents the time t and v the frequency f or ω.
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However, the use of space coordinate x for u and the wave numbers ν for v is
also common. In solids FT is usually three-dimensional with space coordinate
r for u and the unit vector of the reciprocal lattice G0 for v.

The mathematical expressions for the Fourier theorem, as they will be
used in this text are:

a) A function E(t) periodic in time with period T which means E(t + T ) =
E(t), where 1/T = f , and 2πf = ω can be expressed by

E(t) =
∞∑

n=−∞
cnei2πnft

= C0 +
∞∑

n=1

[An cos(2πnft) + Bn sin(2πnft)] (2.25)

with

cn =
1
T

∫ t0+T

t0

E(t)e−i2πnft dt .

The coefficients cn are complex with c−n = c∗n, and t0 is arbitrary. The
relation between the complex representation and the real representation
given in (2.25) is obtained from a straight forward calculation and is left
to the reader as an exercise.

(b) For non-periodic functions E(t)

E(t) =
∫

E(f)ei2πftdf with

E(f) =
∫

E(t)e−i2πftdt . (2.26)

E(t) and E(f) are the Fourier pairs. When E(t) is even or odd in t, the
transform can be obtained using only sine or cosine functions, respectively.

2.3.2 Examples of Fourier Transforms

In general FTs used in spectroscopy are rather simple. Advanced computer
programs such as Mathematica can quite easily calculate FTs analytically on
personal computers. We will give here two examples which may serve as a
guide for related problems, and summarize some general properties of the
Fourier pairs in Appendix B.7.

Let E(t) be of the form A| cos 2πft| with f = 1/T . A graph of this function
is shown in Fig. 2.5a. Since the period of this function is T/2 the Fourier
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Fig. 2.5. Graph of the function A| cos 2πt/T | (a), and representation of the func-
tion by an increasing number of harmonic overtones (b). For clarity, curves for
n = 1 to 5 are shifted in (b)

coefficients can be calculated from

cn =
2A

T

∫ T/4

−T/4

cos(2πt/T )e−i2πn2t/T dt . (2.27)

The integration is performed by replacing the exponential by sine and cosine
functions, and using the appropriate trigonometric relationships. c0 is always
the time average of the periodic function. It is equal to 2/π in our case.
Since E(t) is even only the real parts of the coefficients cn are non zero.
Consequently, c−n = c∗n = cn. The explicit value of cn is

cn =
A sin[π(2n + 1)/2]

π(2n + 1)
+

A sin[π(2n − 1)/2]
π(2n − 1)

. (2.28)

Using these values, replacing 2πf by ω and recalling that the period of
| cos 2πft| is T/2 (2.25) yields

E(t) = A| cos 2πft| = A| cos ωt| =
2A

π
+

∞∑
n=1

4A

π

(−1)n−1

4n2 − 1
cos 2nωt . (2.29)

Figure 2.5b displays | cos ωt| represented by an increasing number of har-
monic contributions. Obviously, the first ten contributions already represent
the function E(t) very well.

The two-sided exponential decay of a sine wave (wave packet) is a good
example for FT of a non-periodic function. The function is given by

E(t) = Ae−γ|t| sin ω0t . (2.30)

From this expression, τ = 1/γ is the lifetime of the oscillation. To obtain the
FT we separate the Fourier integral into two parts

E(f) = A

∫ ∞

−∞
e−γ|t| sin ω0te−i2πftdt

= A

(
−
∫ −∞

0

eγt sinω0te−i2πftdt +
∫ ∞

0

e−γt sinω0te−i2πftdt

)
.(2.31)
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Substituting −t for the integration variable t in the first integral we are left
with two integrals which can be solved straightforwardly. We obtain for E(f)

E(f) =
iAγ

γ2 + 4π2(f + f0)2
− iAγ

γ2 + 4π2(f − f0)2
. (2.32)

The inverse transform according to (2.26) must give the original time function
for the whole time space. The frequency spectrum (2.32) is imaginary and odd.
In general, FTs of arbitrary functions E(t) are complex. This is not really a
problem. As we will see below, the distribution of the energy in the spectra
is given by the square of the magnitude of E(f) which is always real. Since
the energy distribution for negative frequencies does not contain any new
information products such as E(f)E∗(f) must always be even. This is indeed
the case in our example since the absolute square of any odd function is even.

The frequency spectra of harmonic functions are the δ functions. It is easy
to show that FT of E(t) = A cos ω0t is (A/2)[δ(f −f0)+ δ(f +f0)]. A similar,
but odd and imaginary FT is obtained for E(t) = A sin ω0t. The FT of a
time-independent function is δ(f).

More details about FTs, several examples and useful general rules for the
relations between Fourier pairs are given in Sect. 2.4 and Appendix B.7.

2.4 Radiation with a Finite-Frequency Spectrum

Let us return to radiation and apply a Fourier analysis to realistic radiation
fields. A strictly monochromatic field, as described in Sects. 2.1 or 2.2, is
only possible for waves which propagate fully undamped and extend in time
from −∞ to +∞. This is unrealistic. In reality radiation is either damped
(at least on an atomic scale) or switched on and off at certain points of time.
The consequences of these experimental constraints will be discussed in this
section for a damped harmonic oscillator and for a plane wave switched on
and off at times t = 0 and T , respectively.

2.4.1 Damped Harmonic Oscillator

In a classical description, the time-dependence for the emission of an electric
field E from a damped harmonic oscillator is given by

Ë + γĖ + ω2
0E = 0 (2.33)

The eigenvalues for this differential equation are

α1,2 = −γ

2
± i
√

ω2
0 − γ2/4 (2.34)

so that the general complex solution is a linear combination of the terms
exp α1t and expα2t with complex coefficients. Since we are only interested in
the real part of the field we take as the general solution
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Re{E} = C1e−γt/2 cos ωt + C2e−γt/2 sinωt (2.35)

where ω is the detuned frequency
√

ω2
0 − γ2/4. As long as the damping γ/2

remains smaller than ω0, this is a damped harmonic oscillation, where the
coefficients Ci serve to satisfy boundary conditions. If we want a maximum
field and a zero derivative of the field at t = 0, the solution has the form

E(t) = E0e−γt/2[cos ωt + (γ/2ω) sin ωt]. (2.36)

We can also find a simpler special solution for (2.33):

E(t) = E0e−γt/2 cos ωt for t ≥ 0
= 0 for t < 0. (2.37)

In this case we have applied a more restrictive boundary condition which shuts
the oscillator off for t < 0. A graph for this solution is displayed in Fig. 2.6.

Fig. 2.6. Damped harmonic oscil-
lation for t > 0 (—) and sym-
metrized form (−−−)

The function in (2.37) describing the damped wave field is often extended
to negative values of time and, as we will see later, also to negative values
of the frequencies. Also, a symmetric version with respect to t = 0 (replace t
by |t| for all values of t) is often used. Note that this new function is not a
solution for (2.33). It is, however, convenient for mathematical treatments and
therefore often used to describe the frequency spectrum of damped oscillations
or wave packets.

The frequency spectrum for any time-dependent function is obtained from
its FT as shown in the last subsection. Unfortunately the damped oscillation
of (2.37) has a rather complicated frequency spectrum because of the abrupt
change of the function at t = 0. The complex solution for the damped oscillator
which may be written as

E = E0e−γt/2eiωt for t ≥ 0
= 0 for t < 0 (2.38)

gives a more simple but instructive frequency spectrum. Renaming the tuned
frequency of the damped oscillator ω0, for convenience, and applying FT yields
for the frequency spectrum
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E(f) =
∫ ∞

0

E0e−γt/2eiω0te−i2πftdt

=
E0

γ/2 + i2π(f − f0)
. (2.39)

As will be shown in detail in Sect. 2.4.3, the experimentally observed fre-
quency distribution is obtained from the spectral intensity S(f) given by the
square of the magnitude of the frequency spectrum. Thus, returning to an-
gular frequencies, we obtain the spectral intensity for the emission from the
damped oscillator by

S(ω) = E(ω)E∗(ω) =
E2

0

(γ/2)2 + (ω − ω0)2
. (2.40)

This particular shape of the intensity spectrum is called a Lorentzian line. Its
spectral width is obviously determined by the magnitude of γ. The full width
half maximum (FWHM) in ω space is exactly equal to γ in the present case.

Frequency and intensity spectra for the real solution of (2.33) are similar
to (2.39) and (2.40).

Since γ is the spectral width (uncertainty in frequency) of the line as well
as the reciprocal lifetime τ of the oscillation in intensity (γ = 2π/τ) the
relationship between these two quantities is an expression of the uncertainty
relation in the following sense. The oscillator energy ε is only determined to
the accuracy δε = h̄δω = h̄γ. Thus, the relationship between τ and δε is

τδε = τ h̄δω = τ h̄γ = h . (2.41)

The relation between life time, or pulse length, and bandwidth is quite general
and very important. Pulses with a shorter lifetime have broader frequency
spectra. If, for example, the life time of the oscillation is 1 fs the band width
of the power spectrum is about 4.1 eV.

2.4.2 Frequency Spectrum for Electromagnetic Waves with a
Finite Radiation Time

The frequency analysis of a plane wave oscillating only in a time interval
from t = 0 to t = T is a straight forward extension of the discussion above.
Considering only the time-dependent part of the wave we have to study

E(t) = E0 cos ω0t for 0 ≤ t ≤ T

= 0 otherwise, (2.42)

or its exponential analog. The latter is again more convenient. With FT, as
demonstrated above, we obtain for the frequency spectrum

E(f) =
∫ T

0

E0ei2πf0te−i2πftdt

=
E0 sin[πT (f0 − f)]

π(f0 − f)
eiπ(f0−f)T . (2.43)
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The exponential term in this result is obviously a phase factor, since we
did not start with a packet symmetric about t = 0. The intensity spectrum
should, of course, not depend on this phase. This is indeed true as the product
E(ω)E∗(ω) yields for S(ω)

S(ω) =
4E2

0 sin2(ω0 − ω)T/2
(ω0 − ω)2

. (2.44)

The graph for the real part of the wave packet and the intensity spectrum (for
its complex form) are shown in Fig. 2.7. From (2.44) the width of the spectral

Fig. 2.7. Wave packet for a plane wave starting at time t = 0 and extending to
t = T (a) and intensity spectrum for its complex representation in time (b)

distribution is determined by the length T of the wave packet. For very large
values of T it approaches a monochromatic structure which can be described
by a delta function of the form δ(ω0 − ω). This function is a very useful tool
for the mathematical treatment of spectroscopic problems. Appendix B.8 lists
some of its most important properties. The FWHM for the frequency spectrum
of the wave packet is obtained from (2.44) by Δω ≈ 5.54/T . As in the case of
the damped waves shorter pulses have broader frequency spectra. A pulse of
one femtosecond duration has an approximate bandwidth h̄Δω = 3.65 eV.

2.4.3 Frequency Spectrum and Power Spectrum

As mentioned above, we do not have to worry about complex frequency spec-
tra. The physically meaningful quantity is the intensity or power spectrum
given as

S(f) = |E(f)|2 . (2.45)

From the above definition it is not obvious that S(f) is the relevant quantity
to describe the spectral intensity. Alternately one could have used the inten-
sity |E(t)|2 from any of the time functions given above and taken the FT.
The result would not be equal to E(f)E∗(f). The experimentally observed
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quantity is indeed S(f). The physical reason for this is that the electric field
of the radiation interacts with the electrons of the detector, not its “power”.

Note that the spectral intensity defined in (2.45) is not given in W/m2Hz.
We need to prove that E(f)E∗(f) is proportional to the intensity of the radi-
ation, and the factors of proportionality must be evaluated. For a stationary
field the intensity as measured with a detector over a period of time 2T is

I(T ) = ε0c0
1

2T

∫ T

−T

E(t)E∗(t)dt (T arbitrary) . (2.46)

The rational for this measurement is illustrated in Fig. 2.8. The quantity

Fig. 2.8. Measurement of radiation
intensity for a stochastic field

actually measured is zero for |t| ≥ T and originates from a field E(t, T ) with
a Fourier transform E(f, T ). For T large enough I(T ) does not depend on T ,
and (2.46) can be written as

I = lim
T→∞

ε0c0

2T

∫ T

−T

E(t, T )
∫

E∗(f, T )e−i2πftdfdt

= lim
T→∞

ε0c0

2T

∫ ∫ T

−T

E(t, T )e−i2πftdtE∗(f, T )df

= lim
T→∞

ε0c0

2T

∫
E(f, T )E∗(f, T )df =

ε0c0

2T

∫
S(f, T )df , (2.47)

where we have dropped the limits of integration in the last line, but understand
that T is large enough to have no influence on the measurement of the power.
The second Fourier transformation in (2.47) is exact since we are considering
a time function for the field E which is only finite between −T and T . The
derivation shows that S(f, T ) is indeed a spectral power and the intensity
per unit frequency range is obtained by multiplying it with ε0c0/2T . We may
define a spectral intensity I(f) explicitly as

If(f) =
ε0c0

2T
E(f, T )E∗(f, T ) (in W/m2Hz) . (2.48)
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For a pulse-like E field, the spectral intensity given in W/m2Hz may not be
very useful since, for example, in a damped oscillation, the intensity changes
continuously with time. In this case a more meaningful description is obtained
by considering the total energy WT of the pulse.

WT = ε0c0σ

∫
E2(t)dt (in Joule) ,

where σ is the cross section of the pulse. The spectral energy density in J/Hz
is then obtained from

W (f) = WT
|E(f)|2∫
|E(f)|2 df

= ε0c0σ|E(f)|2 , (2.49)

where Parceval’s theorem was used in the form∫
|E(t)|2dt =

∫
|E(f)|2df . (2.50)

The physical meaning of Parceval’s theorem is that energy is conserved
whether the total energy is expressed in time or in frequency space.

As we have seen, the intensity spectra are always real but we must still
address the question of negative frequencies. They are understood as frequen-
cies corresponding to negative times. This imposes a definite constraint on
the intensity functions. If the field E(t) is real, they must be even which is
indeed always the case. (Note that the intensity spectrum in Fig. 2.7 is not
even because the time function was complex.) Of course, the interpretation
of negative frequencies does not mean that the reverse transform of E(−f)
gives the part of the time function with negative values of t. In fact, the part
of E(f) or S(f) with negative f does not give any new information about the
intensity spectrum and is, in this sense, useless.

2.5 Coherence and Correlation

For the application of EM fields in spectroscopy some more of their properties
must be discussed. This section will summarize the concepts of coherence
and correlation in order to provide a basic knowledge of these quantities. It
will be sufficient for understanding the following chapters. Specialists in laser
spectroscopy or correlation spectroscopy will need to study these subjects in
greater depth.

2.5.1 Periodic and Non-Periodic Electromagnetic Fields

In Sect. 2.1 we discussed EM fields with periodic oscillations of infinite dura-
tion. This discussion was extended in Sect. 2.4 to non-periodic functions, most
of which vanish for t → ∞. Real radiation fields are different as the phases and
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amplitudes of the wave trains have a certain statistical or stochastic charac-
ter. This character exists for laser radiation as well as for black-body emission
even though it is much less prominent in the former. For convenience, we will
distinguish four different types of EM fields

(a) fully periodic fields, to be described by harmonic functions,
(b) quasi-periodic non-stationary fields which vanish for t → ∞, to be de-

scribed by damped oscillator functions, as discussed in Sect. 2.4,
(c) quasi-stochastic fields where amplitude and phase vary statistically with

time but the variations are weak. Such fields may be described by the real
part of

E(t) = A(t)eiα(t) with α(t) = 2πf0t + φ(t) , (2.51)

where the usual time-independent amplitude E0 and phase φ have been
replaced by more or less rapidly varying functions in time A(t) and φ(t),

(d) highly stochastic fields like those from black-body radiation or from a
stochastic generator.

A highly stochastic field may be visualized as a statistically emitted train of
damped oscillations as shown in Fig. 2.9. The coherence time for this light is
given by the lifetime of the wave.

Fig. 2.9. Stochastic light consisting of randomly generated trains of oscillations
with a life time tc

2.5.2 Coherent and Non-Coherent Superposition

The coherence of components in a wave field is of fundamental importance
for their superposition. This superposition may be coherent or incoherent.
The results are different and need careful consideration. The intensity of the
radiation field is proportional to E2 and is given by

〈E2〉 =
1

2T

∫ T

−T

E2(t)dt (2.52)

for an arbitrary function of time. 2T is the duration of the measurement,
as discussed in (2.46). For two superposed harmonic waves E1 and E2 with



2.5 Coherence and Correlation 25

amplitudes, frequencies and phases given by E01,2, f1,2 and φ1,2, respectively,
the intensity is

〈E2〉 = 〈(E1 + E2)2〉 = 〈E2
1〉 + 〈E2

2〉 + 2〈E1E2〉

=
E2

01

2
+

E2
02

2
+ 2E01E02〈cos α1 cos α2〉 , (2.53)

where α1,2 = 2πf1,2t + φ1,2. The first two terms in the equation represent the
intensities of the individual waves and the third term describes the interfer-
ence.

For α1 �= α2 the interference term vanishes from the time average, as it
can be expressed by cos-functions of the phase difference α1 − α2 and sum
α1 + α2. Then, the intensities of the two individual fields simply add.

For fields with equal amplitude and α the situation is different. Since the
amplitudes add to 2E0 the intensity increases from 2 × (E2

0/2) to 2E2
0 . This

result is also a direct consequence of (2.53), since the time average in the
interference term becomes 1/2. This surprising increase in energy seems to vi-
olate energy conservation. In practice, energy is, of course, conserved even in
an interference experiment of this type. Coherent and collinear superposition
of two equal waves is indeed only possible for beams oriented perpendicular
to each other and split into two equal parts each by inserting a beam splitter
of 45◦. In this case each of the original waves propagates, after leaving the
splitter, in two mutually perpendicular partial beams with field amplitude
E0/

√
2. The constructive interference can then only occur for one of the par-

tial beams, and superposition leads to an intensity of 〈(2E1/
√

2)2〉 = E2
0 at

maximum. Since in this case the intensity in the other superposed beam will
be zero due to destructive interference, energy is conserved.

2.5.3 Temporary Coherence and Correlation

A discussion of coherence needs a more precise definition of this concept.
Comparing one field with a second one which is shifted in space or time, is
probably a good example. Coherence as we understand it from this is a phase
correlation in time or space. In other words, we ask how well is E(r2, t2)
known for a general EM field E(r, t) if we know E(r1, t1). For small Δr and
Δt the question can often be answered but this will become harder as the two
functions move further apart in space and time. A good indicator to describe
the problem could be the mutual coherence or mutual correlation function
defined as

G(r1, r2, τ) = 〈E∗(r1, t)E(r2, t + τ)〉 , (2.54)

where 〈〉 refers to a time average. Spatial coherence is relevant for interference
experiments with light from extended sources. Since this will not be discussed
in the frame of this book, we will restrict ourselves to temporal coherence. In
this case coherence at the same point r in space is considered and the argument
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r for the coordinates can be dropped in (2.54). Then we obtain from (2.54)
the temporal coherence function or autocorrelation function explicitly

G(τ) = lim
T→∞

1
2T

∫ T

−T

E∗(t)E(t + τ)dt . (2.55)

The autocorrelation function is maximum for τ = 0 and may go to zero
for τ → ∞. The autocorrelation function for a partially or highly stochastic
light field vanishes for τ → ∞ since eventually E(t) and E(t + τ) become
random in phase and all contributions cancel due to the time averaging. The
autocorrelation functions do not have to become zero for τ → ∞ For example
the autocorrelation function for a constant E(t) = E0 is E2

0 �= 0 for all values
of τ . The autocorrelation function for a sin- or cos-wave is given by a cos-wave,
and remains oscillating for all values of τ .

Note that the definition of the autocorrelation function in (2.55) cannot be
used for non stationary fields like wave packets, etc. G(τ) would be identically
zero. In this case we have to define it as

G(τ) = lim
T→∞

∫ T

−T

E∗(t)E(t + τ)dt . (2.56)

For the case of a wave packet this function is indeed maximum for τ = 0 and
approaches 0 for τ → ∞. Since the only interesting behavior of G(τ) is its
dependence on the time shift τ , a normalized autocorrelation function of the
form

g(τ) = G(τ)/G(0) (2.57)

is often used. In this case discrimination between stationary and non-stationary
fields is not required.

The decay time of the autocorrelation function gives the coherence time
Δτ and the coherence length Δl = c0Δτ . There are several possible definitions
for the decay time of G(τ). The FWHM is one. Another straight forward defi-
nition is related to the variance (mean square deviation) of the autocorrelation
function or to the second moment of the absolute square of this function. In
the latter case the coherence time is defined by

(Δτv)2 =

∫
τ2|G(τ)|2dτ∫
|G(τ)|2dτ

. (2.58)

This definition may be paralleled by a definition for the spectral bandwidth of
the function E(t) as the variance of the absolute square of the power spectrum.

(Δfv)2 =

∫
(f − f0)2|S(f)|2df∫

|S(f)|2 df
. (2.59)
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The expressions for Δτ and Δf allow us to study the product of the two
quantities. As might be expected, there is a fundamental connection between
them. This connection can be investigated in a very general way through an
analysis of a field with a quasi-stochastic fluctuation given by (2.51). Splitting
the complex exponent α(t) into a harmonic part oscillating with the frequency
f0 and a fluctuating phase φ(t) we have

E(t) =
∫

E(f)ei2πftdf = A(t)eiφ(t)ei2πf0t ,

where E(f) is the Fourier transform of E(t). This expression can be used to
study explicitly the relationship between the fluctuation of E(t) in time and
its bandwidth. Multiplying both sides with exp(−i2πf0) yields

A(t)eiφ(t) =
∫

E(f)ei2π(f−f0)tdf . (2.60)

A very small bandwidth of E(t) allows only substantial values for E(f) if f is
very close to f0, which means (f−f0) very small or very slow fluctuations with
a long coherence. On the other hand, if E(f) gives substantial contributions
to the integral even for large values of (f − f0) rapid fluctuations with a short
coherence exist. Thus, bandwidth Δf and coherence Δt are inversely related.
The fundamental relationship

ΔtΔf = constant ≈ 1 (2.61)

is quite general. The constant is determined by the particular type of the
field as well as by the actual definition used for the bandwidth and for the
coherence. There are numerous examples for this relationship in the literature.
We will give only one and leave others as problems.

Let the field be the damped, one-sided complex exponential wave E(t) =
exp(−γt/2) exp(i2πf0t) where we assumed E0 = 1, for convenience. We eval-
uate the autocorrelation function G(τ) from (2.56) and use (2.58) and (2.59)
for the definition of Δτv and Δfv, respectively. This yields

G(τ) =
∫

E∗(t)E(t + τ) dt =
∫ ∞

0

e−γt/2e−γ(t+τ)/2ei2πf0τ dt

= e−γτ/2ei2πf0τ

∫ ∞

0

e−γt dt

=
1
γ

e−γτ/2ei2πf0τ for τ ≥ 0, and 0 otherwise (2.62)

Note that for negative τ the integration must be performed from −τ to ∞. The
power spectrum S(f) for the field under consideration was already evaluated
in (2.40) so that we can immediately calculate the correlation time Δτv and
the band width Δfv from
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(Δτv)2 =

∫
τ2|G|2dτ∫
|G|2dτ

=
(1/γ2)

∫∞
0

τ2e−γτdτ

(1/γ2)
∫∞
0

e−γτdτ

=
4/γ5

2/γ2
=

2
γ2

(2.63)

and

(Δfv)2 =

∫
(f − f0)2|S|2 df∫

|S|2 df

=
∫

(f − f0)2 df

[(γ/2)2 + (2π)2(f − f0)2]2

/∫
df

[(γ/2)2 + (2π)2(f − f0)2]2

=
1

(2π)22γ

γ3

2
. (2.64)

The square root of the product of the two quantities yields the well known
result

ΔτvΔfv =
1

2(2π)2
(2.65)

Note that the relationship we had in (2.41) between the life time of an
oscillation and its bandwidth is very similar to (2.65). Physically these rela-
tionships are indeed based on the same fundamental principle of uncertainty
but conceptually they are very different. The result from (2.65) can be com-
pared with the simple product of the decay time τ = 2/γ and the FWHM
Δf = γ/2π of the Lorentz line which yields

τΔf = 1/π (2.66)

2.5.4 The Wiener–Khintchin Theorem

In many applications both functions, the Fourier transform E(f) and the
correlation function G(τ) of a fluctuating field E(t) are needed. An exam-
ple was just given. It turns out that the two functions are not independent
but are correlated in a rather simple way known as the Wiener–Khintchin
theorem. This theorem states that the Fourier transform of the correlation
function G(τ) equals the power spectrum S(f) of a field E(t), and vice versa.
In mathematical terms this means that

∫
G(τ)e−i2πfτdτ = S(f) and
∫

S(f)ei2πfτdf = G(τ) . (2.67)

The proof of the theorem is rather simple for non stationary fields. Using the
definition for the Fourier transform of G(τ) and writing it as
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G(τ)e−i2πfτdτ =

∫
E∗(t)E(t + τ)e−i2πfτ (e−i2πftei2πft)dtdτ

=
∫

E∗(t)ei2πftE(t + τ)e−i2πf(t+τ)dtd(t + τ)

= E∗(f)E(f) , (2.68)

which is exactly the power spectrum S(f). The proof for stationary fields is
similar but more laborious. The Wiener–Khintchin theorem is fundamental in
coherent signal processing.

Problems

2.1 Show that the relation between the E field and the B field for an electromagnetic
plane wave is given as B = (1/ω)(k × E0) exp i(kr − ωt).

(Purpose of exercise: use of Maxwell’s equations)

2.2 Show that the wave equation, as derived from Maxwell’s equations for a con-
ducting system, is given by

ΔE =
εμ

c2
0

∂2E

∂t2
+ μμ0σ

∂E

∂t

Discuss the equation for a good metal and study the behavior of E for a plane wave
solution by performing a back substitution.

(Purpose of exercise: use of Maxwell’s formalism)

2.3 Calculate the magnetic induction and the Poynting vector for a Hertzian dipole
of the radiation zone from the vector potential.
Hint: Use spherical polar coordinates and neglect terms ∝ 1/r2.

(Purpose of exercise: use of spherical polar coordinates.)

2.4 Two positive and two negative charges are linearly arranged with the two neg-
ative charges coinciding at z = 0 and the two positive charges at z = ±l. Calculate
the electric dipole moment, the electric quadrupole moment and the quadrupole
radiation field if the charges vary harmonically as Q = Q0 cos ωt.
Hint: For the evaluation of the field add the contributions from the two oppositely
oriented dipole radiators.

(Purpose of exercise: multipole radiation; Pick the right approximation.)

2.5 Show that E = exp(−γt/2) cos ωt for t > 0 and E = 0 for t < 0 is a solution for
the damped harmonic oscillator but E = exp(−γ|t|/2) cos ωt is not a solution.

(Purpose of exercise: understanding damped oscillation.)

2.6∗ Show that the integral form of the Fourier theorem includes the representation
of periodic functions as a sum of harmonic functions and evaluate the coefficients in
the sum from the integral theorem.
Hint: Separate the integral from −∞ to ∞ into a sum of integrals over the range
equal to the period.

(Purpose of exercise: get a feel for the Fourier theorem.)
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2.7∗ Evaluate the relationships between the complex Fourier coefficients cn and the
coefficients for the real representation An and Bn in (2.25). Show that

c0 =
1

T

∫ t0+T

t0

E(t) dt, An =
2

T

∫ t0+T

t0

E(t) cos nωt dt,

Bn =
2

T

∫ t0+T

t0

E(t) sin nωt dt, (2.69)

(Purpose of exercise: equivalence of real and complex formalism of Fourier trans-
forms.)

2.8 Calculate the difference in the Fourier transform of two functions generated from
each other by an arbitrary shift in time.

(Purpose of exercise: get an understanding for the spectroscopic meaning of a
time shift.)

2.9 Show that the FT of the intensity I(t) ∝ |E(t)|2 for an asymmetric exponential
decay E(t) = Ae−γt is different from the power spectrum S(ω).

(Purpose of exercise: get convinced of the difference between the two quantities.)

2.10∗ Calculate the Fourier transform for the exponential decay E(t) = Ae−γt for
t ≥ 0, E(t) = 0 otherwise and show that the inverse Fourier transform gives the
correct time function.
Hint: Use integration in the complex plane for the inverse transformation.

(Purpose of exercise: to prove that the full details of the time spectrum are
retained when the inverse transform is taken.)

2.11 Calculate the autocorrelation function for a sin-wave and for a cosine-wave.
(Purpose of exercise: use correlation functions.)

2.12 Calculate the product of the coherence time Δτ and the bandwidth Δf for a
Gaussian line with the definitions of (2.58) and (2.59).

(Purpose of exercise: verify the relation between coherence length and band-
width.)
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Light Sources with General Application

The light sources initially used in spectroscopy were tungsten lamps or more
generally glowing solids and gas-discharge lamps. The emission of glowing
solids is based on Planck’s and Kirchhoff’s law, whereas in gas-discharge lamps
the radiation from characteristic transitions of valence electrons is used as well.
Thus, in the latter a high density of radiation can be obtained in a narrow
frequency range. Recently, the broad-band radiation emitted from synchrotron
sources has been increasingly employed in various fields of spectroscopy. On
the other hand, the rapid development of various types of lasers, particularly
those relying on emission from semiconductor diodes, has opened up many new
spectroscopic techniques such as laser ultraviolet or far-infrared applications,
frequency tuning, or sub-picosecond resolution spectroscopy.

In this chapter we will discuss light sources with applications to different
spectroscopic experiments. These sources may be classical, like black-body
radiation and gas-discharge lamps, or more advanced, like synchrotron radia-
tion and lasers. Radiation sources like microwave emission or x-ray and γ-ray
sources with application to special spectroscopic methods will be discussed in
the respective chapters.

3.1 Black Body Radiation and Gas-Discharge Lamps

Black-body radiation is the oldest man-made light source and was used in
spectroscopy from the beginning. Basically it originates from electrons which
are statistically accelerated and decelerated by collisions and thus represent a
system of emitting charges like the ones we discussed it in Sect. 2.2.2 (and in
Appendix B.6). For the purpose of this text it is sufficient and more convenient
to use a classical resonator model and some simple results from statistical
thermodynamics to obtain a good description of black-body radiation. Within
this approximation the radiation emitted is determined from the density of
the transversal electromagnetic eigenmodes n(ω) of a black-body radiator.

We consider the momentum p of a photon and phase space elements dx and
dp. From statistical physics the number dN of distinguishable states in the
volum dp dx is dp dx/h. This yields for three dimensions and for an isotropic
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distribution of the states

dN = 2
4πp2dpd3x

h3
=

p2dpd3x

π2h̄3 . (3.1)

The factor 2 in front of the fraction takes care of the two possible states of
polarization. Expressing the momentum of the photons by their frequency as
p = h̄ω/c0 the differential density of photon states per unit volume is derived
from (3.1) as

dn(ω) = nω(ω)dω =
ω2dω

π2c3
0

. (3.2)

Multiplication of this quantity with the energy of the photons ε = h̄ω and the
thermodynamic probability for the occupation of the state yields the well-
known density of radiation of a black body. The occupation is given by the
Bose–Einstein distribution fE(ω, T )

fE(ω, T ) =
1

exp(h̄ω/kBT ) − 1
. (3.3)

From this, the radiance (or brilliance) Lω(ω) dω of radiation emitted per unit
area to the outside of the black body, normal to the surface and into a solid
angle of 1 steradian in the frequency interval dω is given by Planck’s radiation
law

Lω(ω, T ) dω =
c0

4π
nω(ω)h̄ωfE(ω, T )dω

=
ω2

4π3c2
0

h̄ω dω

exp(h̄ω/kBT ) − 1
.

(3.4)

Lω(ω, T ) is expressed in Wm−2ster−1s. If the emission is under an angle θ it
is reduced by a factor cos θ. (See for details [3.1]). The total energy emitted
per second, square meter, and steradian is obtained by integration over ω.
The result is the Stefan–Boltzmann radiation law

L(T ) =
1
2π

(
π2k4

B

60h̄3c2
0

)
T 4 (in W/m2ster) . (3.5)

The expression between the parentheses is the Stefan–Boltzmann radiation
constant R with the value R = 5.67 × 10−8 W/m2K4.

Equation (3.4) is represented graphically in Fig. 3.1 where the temperature
is the parameter for the curves, and the wavelength is used instead of the
angular frequency as the abscissa. Note that the maximum in plotting (3.4)
versus temperature for a certain frequency range does not appear for the same
temperature as if the equation is plotted for a certain range in wavelengths.
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Fig. 3.1. Logarithm of black-body
radiation power Lf per cm2 steradian
and 1Hz bandwidth for various tem-
peratures, as indicated in K

The graphs in Fig. 3.1 are typical emission characteristics for glowing solids
like tungsten filaments. Tungsten-filament lamps are particularly useful as
light sources in the visible and near IR spectral range if a broad-band emission
is required. To increase the lifetime of high-power lamps small amounts of
halogen gases are often added to the low-pressure noble gas filling. Such lamps
are known as tungsten-halogen filament lamps. The filament temperatures can
be as high as 3300 K.

Gas discharges also emit a continuous spectrum similar to that shown
in Fig. 3.1 because electrons are accelerated and decelerated by scattering
processes in the gas plasma. The advantage of gas-discharge sources compared
to solid sources is the possibility of reaching higher temperatures and using
a smaller size for the emitting element. For example, the temperature in a
mercury-arc lamp can be as high as 6000 K for a plasma pressure of 1–2 atm.
This yields a very strong emission in the visible spectral region and a color
temperature close to sunlight. The emitting arc in a Xe arc discharge lamp can
be as small as (0.3× 0.3) mm2. If the pressure and temperature are very high
broadening and overlapping of electronic states occurs in the excited atoms
which results in a broad-band light emission. Whereas the efficiency given as
the ratio between output light power in the visible spectral range to input
electrical power does not exceed 10% for filament lamps, gas-discharge lamps
can have efficiencies of up to 50% if their glass compartment is supplied with
a phosphorescent layer. If gas-discharge lamps are used in the UV region, the
covering glass must be quartz to allow transmission of the UV light.
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Gas-discharge lamps filled with mercury, hydrogen or helium are employed
for spectroscopy in the UV. In this case the radiation from characteristic
transitions of the atoms is often used as it has a quite high intensity in a
narrow spectral region.

High-power gas-discharge lamps (arc discharge) can operate at gas pres-
sures as high as 100 bar (10 MPa) and need therefore an extra electrode for
ignition. If the high gas pressure is only established as a consequence of the
heat release after start up, ignition is possible with an extra electrode for
glow discharge. If the pressure is high from the beginning ignition must be
obtained with an extra electrode connected to a high-voltage pulse. Lamps
up to 1000 W with a brightness up to 250 W/cm2 are commercially available.
Models for gas-discharge lamps are illustrated in Fig. 3.2.

Fig. 3.2. Gas discharge lamps for UV
radiation; (SW: starter wire, SC: start-
ing coil)

Note that ultra-violet radiation is very dangerous for the eyes and for the
skin! When working with such sources absorbing goggles and skin protectors
should always be worn. In addition, UV radiation below 250 nm generates
toxic ozone from the oxygen in the air. This means these types of high-power
lamps must be well vented when used in closed rooms. Finally, lamps operated
at very high pressure can be an explosion hazard.

Figure 3.3 compares the emission spectrum from a high-power filament
lamp with spectra from a mercury and a xenon lamp. The irradiance Iλ in μW
per cm2 and bandwidth is plotted for a distance of 50 cm. Note the particularly
strong emission for the gas discharge lamps in the UV spectral region.

3.2 Spectral Lamps, and Shape of Spectral Lines

Gas-discharge lamps can also be built to predominantly emit spectral lines.
The most common line shapes for these emissions and spectral line shapes in
general, will be discussed in the following section.
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Fig. 3.3. Spectral distribution of irradiance Iλ for commercial high-power light
sources. The dashed line labels the cut off in air due to ozone generation

3.2.1 Low-Pressure Spectral Lamps

To obtain spectral lines a low gas pressure is used and the lamps are operated
in the glow-discharge region without ignition. Sources with slightly higher gas
pressure are known as spectral lamps and need filament heating to provide
enough electrons for the start up. Spectral lamps are very important in spec-
troscopy for wavelength calibration. They are absolute standards. Typical line
widths are fractions of one Å. Usually, the lamps are filled with noble gases
like Ne, Ar, Kr, and Xe or special metal vapors. The emission lines for these
gases are well known and tabulated. A recommended source for spectral lines
is Landolt-Börnstein [3.2] and references therein. Some of the most important
spectral lines are listed in Table 3.1.

3.2.2 Shape of Spectral Lines

Spectral lines are examples of a radiation field with a rather narrow frequency
spectrum. The radiation originates from electrons returning to the ground
state after having been excited into a higher orbital. The recombination to
the ground state occurs after a certain lifetime and with a certain transition
probability. Formally the spectral light may be considered as the emission
from a damped (elementary) oscillator. The intensity spectrum of this pro-
cess was described Sect. 2.4 and had the form of a Lorentzian line. Since this
line is fundamental for emission or absorption it is also called the natural line.
Normalized to unit area in ω-space, it has the form

IL(ω − ω0) =
γ/2π

(ω − ω0)2 + (γ/2)2
. (3.6)
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Table 3.1. Selected spectral lines in nm in the visible and near-visible spectral
ranges. The numbers in parentheses are relative intensities. L indicates lines appro-
priate for stimulated emission

Neon Argon Argon+ Krypton Krypton+ Xenon Mercury

.. 404.66

415.86 427.40 417.18 434.75

420.07 434.80(50) 431.96 435.84

433.36 454.50(25L) 437.61 462.43

457.93(25L) 445.39 468.04(L) 473.42

465.79(25L) 469.44

533.08 487.98(30L) 482.52(L) 480.70

540.06 506.20(30) 557.03 484.56 546.07

585.25 514.53(25L) 501.65 576.96

621.73 617.23(40) 520.83(L)

633.44 696.54 664.37(100) 521.79

647.09(L)

717.39 727.29 663.82(50) 758.74 752.55

753.58 763.51 668.43(50) 819.01 799.32 823.16

γ is the FWHM of the line. A graph of a Lorentzian line is depicted in Fig. 3.4a.
The dots correspond to the emission from a krypton laser.

The Lorentzian line is not the only lineshape observed in experiments. If,
for example, all emitting oscillators do not have exactly the same energy but
are rather statistically distributed in energy, the emission line is statistically
broadened. A typical example is a Gaussian distribution of emitters which
may be due to the thermal motion of atoms or molecules. In this case the
spectral line has the form

Fig. 3.4. Three spectral lines commonly observed in spectroscopic experiments. Full
drawn: Lorentzian line (a), Gaussian line (b), Fano line (c); Dots in (a) and (b)
are experimental results for the emission from a laser. Dots in (c) are results from
light-scattering experiments on GaAs with ν0 = 15 451 cm−1; after [3.3]
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IG(ω − ω0) =
2
√

ln 2
γ
√

π
exp

− ln 2(ω − ω0)2

(γ/2)2

=
1

σ
√

2π
exp

−(ω − ω0)2

2σ2
with σ2 =

γ2

8 ln 2
, (3.7)

where γ = 2.35× σ is again the FWHM of the line and (3.7) is normalized to
one. σ2 is the second moment (with respect to the mean value ω0) or the vari-
ance of the Gaussian distribution. Since the velocities of the ions in an emitting
gas plasma have a Maxwellian distribution, the spectral lines are very often
Gaussian due to the Doppler effect. Even though in solids the atoms cannot
undergo translational motion, Gaussian profiles are quite usual. They are due
to perturbations of the energy levels of the electrons by lattice defects. A nor-
malized Gaussian line is shown in Fig. 3.4b. For equal FWHM the Gaussian
lines converge more rapidly to zero with increasing distance from the center
as compared to the Lorentzian lines. The experimental results of the krypton
laser undoubtedly match a Gaussian profile better than a Lorentzian profile.

Besides Lorentzian and Gaussian lines other line shapes are known and
often used. An example is the Voigtian profile which represents a combination
of a Gaussian and a Lorentzian line (Appendix C.2). Observed line shapes
and line widths may originate from experimental conditions, and may not
necessarily represent the shape and width of the line from the original source.
For example, the instrumental response G(ω) (i.e., the spectrum obtained
from the instrument for a strictly monochromatic input spectrum) or, in a
scattering experiment, the width of the line used for excitation may distort or
broaden the original line. In this case a deconvolution process is necessary to
obtain the intrinsic line shape. In the simplest case of a combination of two
Lorentzian lines or two Gaussian lines of widths γ1 and γ2 the resulting lines
are again Lorentzian or Gaussian. More details about the convolution process
are in Appendix C.2.

For systems which consist of one or several discrete oscillators close to (or
on top of) a continuum transition, interference effects may occur and lead
to special emission characteristics known as Fano lines. These lines have an
asymmetric shape, as shown in Fig. 3.4c. The experimental dots are from a
light-scattering experiment. Fano lines can be observed for light emission, light
absorption and light scattering. A necessary condition for their occurrence is a
coupling between the states responsible for the discrete and continuous tran-
sitions. A formal description for the simplest case of a Fano line (one discrete
and undamped oscillator, energy independent coupling and energy indepen-
dent continuum transition strength) is obtained (for Γ,Q �= 0) from

IF(ω − ω0) = C
(Q + ε)2

1 + ε2
with ε =

ω − ω0 − Δ

Γ/2
. (3.8)
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Δ describes the shift of the line position for the discrete transition from its
position without interaction, and Γ is the damping (reciprocal lifetime) due
to the interaction U and given as Γ = 2πU2. Q is equal to U−1 normalized
by the relative strength of the (modified) discrete oscillator to the strength of
the continuum transition. In Fig. 3.4c ω0 + Δ is used on the abscisssa instead
of ω0, for simplicity, and the abscissa is scaled in wave numbers. Depending
on the sign of Q the minimum of the intensity can appear to the left or to the
right of the peak. More details on the Fano effect are in Appendix C.3.

3.3 Synchrotron Radiation

Synchrotron radiation is a special type of radiation which has become readily
available in the past and has found many useful applications. In the last ten
years the peak brilliance of the synchrotron facilities had a particular steep
increase and raised by three orders of magnitude. Likewise the overall world
wide synchrotron light emission has dramatically increased as many storage
rings especially dedicated to spectroscopy were set up. More than 60 dedicated
rings are available and their number and capacity is continuously increasing.

Spectroscopically synchrotron radiation is very similar to black-body emis-
sion. With respect to the geometry of the beam it is very different from the lat-
ter. Synchrotron radiation is widely used as a powerful UV and x-ray source for
structural analysis, photoelectron spectroscopy, chemical reactions, or photo
lithography. Special sources have even been designed for IR spectroscopy. The
synchrotron light source ELETTRA in Trieste has also a Raman and Brillouin
scattering facility.

3.3.1 Synchrotron Light Sources

Synchrotron radiation is the electric field emitted from charged particles in
linear or circular accelerators like synchrotrons, storage rings, or special syn-
chrotron facilities. The acceleration characteristics determine the spectral na-
ture of the radiation. In synchrotrons the energy of the particles changes
continuously which is not very convenient for spectroscopy. It is more appro-
priate to store a bunch of charges in an extra ring and let them circulate
with a constant velocity. In these storage rings the particles are accelerated
by purely radial forces. This guarantees a very stable light source.

Synchrotrons and storage rings were originally developed for high-energy
physics experiments. At that time synchrotron radiation was considered a
waste product, as it was responsible for a continuous and non negligible en-
ergy loss of the particles. To keep the particles circulating this energy must
be provided by an accelerating ac electric field. Today many rings are spe-
cially built as a light source and are dedicated to spectroscopic experiments.
Practically all those rings use electrons as the charge carrying particles and
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a storage ring as the region where particles circulate. Only such systems will
be considered here.

The advantage of synchrotron radiation for spectroscopy originates from
the following characteristic properties:

very high emission density from a small spot,
very small beam divergence, such as for lasers,
very large bandwidth with the central position tunable by the particle
energy,
highly polarized radiation,
very short light pulses.

A synchrotron light source has the following three main components: a particle
source with a linear accelerator, a synchrotron for the circular acceleration of
the electrons to relativistic velocities and a storage ring where the electrons
circulate as a guided beam with several 100 MeV or several GeV.

Figure 3.5 is a schematic of a synchrotron light source. On the left is the
synchrotron where the electrons from the source are first linearly accelerated
to several MeV and then boostered in the circular region to a final energy
of several GeV. Data given in the figure are typical for a medium-size light
source.

The storage ring consists of a sequence of curved and straight magnetic
lenses. It is evident from this constructive detail that the radius of curvature
and the circumference of the ring are not directly related. Synchrotron radia-
tion emitted in the curved parts is allowed to exit from the tube trough a win-
dow. Special components like wigglers or undulators may be accommodated
in the straight sections. Large synchrotron sources such as the European Syn-
chrotron Radiation Facility (ESRF) in Grenoble or the National Synchrotron
Light Source (NSLS) in Brookhaven can have more than 80 windows or beam

Fig. 3.5. Schematic view of a synchrotron with storage ring. (S,A: electron source
with linear accelerator, HF: high frequency power supply, AC: acceleration facilities,
M: magnets, W: windows)



40 3 Light Sources with General Application

lines and several special facilities. It is also possible for a single synchrotron to
support more than one storage ring as is the case at the NSLS at Brookhaven
or at MAX-lab in Sweden.

Since the circulating electrons must be pumped continuously to balance
the radiation losses they have to arrive with a well defined phase at the acceler-
ation electrodes. Thus, they can only circulate in bunches. These bunches can
be accumulated to provide a current of several 100 mA which may circulate
for many hours in the storage ring. Eventually as more and more electrons get
lost, the electron beam dies out and the storage ring must be refilled. Beam
life times from 10 to 50 h are not uncommon. Typical widths of the bunches
are 100 to several 100 ps and the circulation time is of the order of millisec-
onds. Since the velocity of the particles is always close to c0 the circulation
frequency f0 is c0/l, l being the circumference of the electron track. Note that
several bunches, in some rings up to 1000, can circulate simultaneously.

Beamlines are usually equipped with technologically top level instrumen-
tation which is shared by all users. Most lines are designed and optimized
for certain applications extending from the IR spectral range to hard x rays
and used by chemists, physicists, material scientists, biologists, and electronic
engineers.

3.3.2 Generation and Properties of Synchrotron Radiation

The emission of radiation by an arbitrarily accelerated charge was discussed
in Sect. 2.2 and in Appendix B.6. The formulas derived there are, however,
limited to non-relativistic particles. The extension to a relativistic description
is not straight forward. Without extensive calculations only a relationship for
the total emitted power can be derived from Larmor’s formula in Sect. 2.2 by
introducing relativistic expressions for time, momentum, mass, and energy.
With

β = v/c , γ =
1√

1 − β2
, ε = γm0c

2
0 ,

where ε is the total relativistic energy and m0c
2
0 = 0.5 MeV is the rest energy

of the electron, the total emitted power for highly relativistic particles turns
out to be

P =
e2c0(βγ)4

6πR2
=

e2(βε)4

6πm4
0c

7
0R

2
(in W) , (3.9)

where R is the radius of the bending magnet. Thus, for β ≈ 1 the total energy
emitted increases with the 4th power of the particle energy ε.

From (3.9) the input power can be estimated which is needed to balance the
emission. For a 2-GeV synchrotron with radius of R = 5.5 m and no straight
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segments the emission is 3.7×10−7 W/electron. If the storage ring is operated
with 1 A the number N of circulating electrons is N = 2πR/1.6×10−19c0 and
hence the total emitted power

P =
3.14 × 11

1.6 × 10−19 × 3 × 108
3.7 × 10−7 = 0.25 (MW) .

The emission pattern differs radically from that for a non-relativistic particle
shown in Fig. 2.4. Due to the relativistic Doppler effect, it is highly directional
with a strong peak in the forward direction and the polarization is strictly
confined to the plane defined by a = r̈′ and v = ṙ′. Figure 3.6 exhibits the
characteristic emission pattern of a radially accelerated relativistic particle.
As in the case of non-relativistic propagation of Fig. 2.4 polar coordinates have
been used. The direction of particle propagation is the polar axis. The figure
demonstrates the characteristic difference for the two types of radiation. For a
relativistic particle nearly all radiation is emitted forward whereas for a non-
relativistic particle forward and backward emission are almost the same. Note
that the diagram does not have rotational symmetry any more. Symmetry is
only retained with respect to the plane of the storage ring and the sagittal
plane normal to it.

Fig. 3.6. Emission characteristic
for a radially accelerated charge
with relativistic speed

The angular width (half width half maximum) of the emitted radiation
can be estimated from

Δθ ≈ 1
γ

=
m0c

2
0

ε
. (3.10)

For a 1 GeV electron the angular spread is only 0.5 mrad which corresponds
to a linear aperture of 10−3. The intrinsic angular spread is, of course, only
observable perpendicular to the circulation plane because emission is smeared
out for observation in the plane.

The tangential emission discussed above and its consequences for the de-
tection of the light are depicted in Fig. 3.7. The left part of the figure shows the
angular spread of the emitted light for directions normal and parallel to the
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Fig. 3.7. Tangential light emission for electrons circulating with relativistic ve-
locities (a) and resulting observation geometry for the relativistically chirped light
pulses (b)

electron orbit. The right part demonstrates the limited time interval during
which the emission can be detected by an observer.

One of the big advantages of synchrotron light is the extremely small
emission area. This area is determined by the intrinsic width of the electron
beam hh and hv, and by diffraction limits. Typical values for hh × hv are
0.15 × 0.03 mm2 if the source is dedicated.

The effective size of the beam is given by the variance of the beam width
σx,y and of the angular spread of the electrons σθ for an assumed Gaussian
distribution. The product of the two quantities is called the emittance ε =
σx,yσθ given in nm×rad. The smaller the emittance the better the radiation
source. Emittances for good undulators are of the order of 10 nm rad.

Diffraction limits the emission area to Hh (horizontal width) and Hv (ver-
tical width) given by

Hh,v =

√
h2

h,v +
(

λ

θh,v

)2

+
(

Rθh,v

8

)2

, (3.11)

where R is the radius of the electron orbit and θ is the full angle of emis-
sion either in plane (h) or perpendicular to the plane (v) of the orbit. The
brightness or brilliance L is determined by the emitted photons per second
and conventionally given in photons/s mm2 mrad2 10−3 bandwidth.

With special lenses, so called multilayer Laue lenses synchrotron light of
20 KeV can be focused to a spot size of 30 nm diameter.

As already mentioned the emitted light is strongly polarized with the di-
rection of polarization in the plane of electron motion. This holds only for
emission precisely in the plane of the ring. With increasing angle Θv the emis-
sion becomes elliptically and finally circularly polarized.

The strongly forward peaked emission pattern also influences the time of
observation of the radiation. Figure 3.7b indicates, that the emission is only
observed for the short time during which the electron bunch passes between
the limiting positions A and B on their way around the storage ring. The
locations of A and B are determined by the direction of observation or, more
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precisely, by the angular spread Δθ of the emission. The observation time is
further reduced by a relativistic chirping effect. From the geometry in Fig. 3.7b
the time spread Δt is given by the angular width of the emission. It can be
estimated from

Δt = te − tc0 ≈ 2R

γv
− 2R sin(1/γ)

c0
=

4R

3c0γ3
. (3.12)

where te and tc0 are the time intervals which the electron and the light need
to travel from A to B. This interval corresponds to a typical frequency

ftyp =
1

Δt
=

3c0γ
3

4R
=

3ε3

4Rm3
0c

5
0

. (3.13)

For an electron with energy 1 GeV and a ring radius of 3 m this yields a fre-
quency of ≈ 6 × 1017 Hz or a radiation energy of 2.5 KeV.

The consequence of the short light pulses is a broad frequency spectrum.
The first detailed calculation of this spectrum was reported by Schwinger [3.4].
According to [3.5] the spectral power per unit bandwidth emitted by one
electron per second is

Pλ(λ) =
35/2e2c0γ

7λ3
c

64π3R3ε0λ3109

∫ ∞

λc/λ

K5/3(x)dx (in W/nm) , (3.14)

where K5/3 is a modified Bessel function, and

λc =
hc0

εc
= π

4R

3γ3
(3.15)

is a characteristic wavelength which determines the high-energy cut off of the
spectrum. A plot of the emission normalized to 1 steradian is displayed in
Fig. 3.8a for 1 Å bandwidth. The real advantage of synchrotron radiation is
the high power in the VUV and x-ray spectral ranges and the small size of
the emitting area. Therefore the brightness should be used to compare it with
conventional broad-band or x-ray sources. In Fig. 3.8b the spectral brightness
(brightness per unit bandwidth) of a medium-size synchrotron source is com-
pared with black-body radiation and with several narrow-band and continuous
x-ray sources. The advantage of the synchrotron light is obvious, in spite of
the rather large bandwidth of 1 eV used in the comparison. (The band width
of characteristic x-rays is typically between 0.5 and 0.8 eV.)

3.3.3 Special Synchrotron Facilities

Considerable enhancement in the intensity of the synchrotron light can be
obtained by special arrangements for the extraction of the light beam. One
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Fig. 3.8. Spectral energy distribution of synchrotron radiation for various particle
energies (a) and comparison of brightness with conventional light sources (b) (− · ·
black body, * x-ray and VUV, (−−−) x-ray continuum, (—) storage rings); after [3.6]

possibility is presented in Fig. 3.9. The electron beam passes several alternat-
ing magnets on a straight section of the storage ring. As a result radiation
is emitted at several positions and can be accumulated to form a beam with
N -fold intensity for N consecutive alternating magnets. This arrangement is
called a wiggler . If N is large the emission from the individual sections of
the wiggler can be coherent, and the setup operates as an undulator . In this
case the peak intensity is proportional to N2. Values of N are of the order of
30 but may extend to values as high as 250. The lengths of the undulators
are 2–5 m, in exceptional cases up to 25 m. Since the undulator operates like
an optical grating, interference occurs in certain directions correlated with
particular wavelengths. Thus, radiation energy is accumulated at a particu-
lar wavelength with a very narrow bandwidth. As such it is similar to light

Fig. 3.9. Schematic arrangement of
a wiggler. 2/γ is the aperture of the
emission
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emitted from laser oscillators, as will be discussed in Sect. 3.4. Constructive
interference is obtained for light of wavelength λn and direction Δθ from the
mean electron track if

λn =
λU

2γ2n
(1 +

K2

2
+ γ2Δθ2) . (3.16)

λU is the undulator period, n the overtone number, K the undulator parameter
given as eλUBU/2πm0c0, and BU the magnetic induction of the undulator
magnets.

Equation (3.16) is called the undulator equation. Very often the magnetic
poles in the undulator can be shifted to an arbitrary distance which means the
undulator wavelength λU can be tuned. The deviation y(x) of the electrons
from the axial direction x is

y(x) =
K

γ

λU

2π
sin
(

2πx

λU

)
(3.17)

This means for a 6 GeV (γ = 12.000) electron beam and an undulator field
BU = 0.5 T K becomes 2.3 and the maximum deviation αmax from the axial
motion is only 2 × 10−4 rad or 1.5 μm.

Also the divergence Δθu of the undulator beam is reduced as

Δθu =
1
γ

√
3
4π

1 + K2/2
nN

(3.18)

where N is the number of poles in the undulator. For the same parameters
as in the example above, N = 33, poles and the 7th overtone the divergence
is reduced by a factor 0.1. More details about the properties of an undulator
is in Appendix C.4.

Figure 3.10 compares the emission from two magnets with the emission
obtained with a 10-pole wiggler and several undulators at the ESRF.

3.3.4 Synchrotron Facilities World Wide

Synchrotrons of the first generation were not dedicated. Second- and par-
ticularly third-generation synchrotrons were especially constructed as light
sources. Third-generation synchrotrons have special facilities like wigglers and
undulators. Table 3.2 lists several well known third generation light sources.
Many of the facilities were used in high energy physics prior to their dedica-
tion. The largest synchrotrons are the European Synchrotron Radiation Fa-
cility (ESRF), the Advanced Photon Source (APS), the National Synchrotron
Light Source (NSLS), and the Japanese ring in Nishi Harima (SPring-8). The
latter has one of the highest brilliances of 1021. It is obtained from a 25 m long
undulator. Figure 3.11a has an explicit schematic of accelerators and beam line
arrangements for the APS facility in Argonne. Inside the storage ring one can
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Fig. 3.10. Spectral brightness of the synchrotron emission from two different mag-
nets compared to the emission from a wiggler and several undulators at the ESRF.
The dashed lines represent third harmonic emission from the undulators. The period
of the undulators are given in mm; after [3.12]

Table 3.2. Sources of synchrotron radiation. Listed are: name (acronym) and lo-
cation of the sources, year of start up, maximum beam energy εB, maximum beam
current I, circumference C, number of beamlines nBL, number of special facilities
nFA, spectral range of radiation, and number N of storage rings; Data are from
synchrotron facilities’s homepages, fall 2008

Name, Location Year εB (GeV) I(mA) C(m) nBL nFA Range N

ESRF, Grenoble 1994 6 200 844 40 20 < 200KeV 1

BESSY II, Berlin 1998 2 200 240 50 1

SLS, Villingen 2001 2.4 400 288 17 7 IR to x-ray 1

Diamond, Harwell 2007 3 300 562 7 1

ELETTRA, Trieste 1993 2.4 330 260 24 16 10–105 eV 1

MAX-lab II, Lund 1996 280 90 10 4 VUV – soft x-ray 3

APS, Argonne 1996 7 1104 68 27 1

NSLS II, Brookhaven 2.5 1000 170 < 4.3 KeV 2

KEK PF, Tsukuba 1997 2.5 450 187 22 8 VUV – x-ray 1

SPring-8, Nishi Harima 1997 8 1436 38 IR – 3 × 105 eV 1

see the electron source with the linear accelerator (LINAC) and the booster
synchrotron. Each beam line is equipped with dedicated high quality instru-
mentation. Figure 3.11b depicts a cross section of an undulator light beam
recorded in 40 m distance for the 7th overtone with an energy of 27.9 KeV.
The intensity is well approximated by an anisotropic Gaussian distribution.
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Fig. 3.11. Arrangement of beamlines for the APS in Argonne after [3.7] (top), cross
section (2 × 0.5 mm2) of an ESRF undulator beam in a false color code after [3.8]
(center), and undulator for a free-electron laser demonstrating the selfordering of
the electron bunches after [3.9] (bottom)

3.3.5 The Fourth Synchrotron Generation

While the efficiency of conventional dedicated light sources is still further
developing by inserting more beam lines and longer undulators the fourth
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generation is already on the way. The best chances has the hard x-ray laser
(free electron laser, FEL) based on very long undulators in high energy linear
accelerators of several Km length. Prototypes are already in operation and
some more are under construction.

The new lasers operate on the basis of self amplified spontaneous emis-
sion (SASE) of high energy electrons powered up in linear accelerators. The
emission comes from long undulators which already extend up to 30 m and
may be coupled in series. The spontaneous emission interacts with the electron
bunches and modulates their structure as depicted in Fig. 3.11c. In this process
emission becomes stimulated and strongly enhanced which results eventually
in a highly coherent radiation. No resonators or mirrors are used. The light
rather has the nature of a superradiation which makes the extension to the
x-ray spectral range easier. Brilliances are expected to increase by at least
10 orders of magnitude and may go up to 1034 [3.10]. In contrast the best
undulators at the ESRF have a brilliance of 1023.

One of the operating systems is the “FLASH” laser at DESY in Ger-
many. Electrons are linearly accelerated to almost 1 GeV and emit radiation
at 6.5 nm from a 30 m long undulator. The total length of the laser is 260 m.
Several other lasers with linear accelerators are operating in the IR spectral
range.

In US efforts are concentrating on the “Linac Coherent Light Source” with
15 GeV electrons leading to a 0.15 nm free-electron laser radiation. In Germany
a free-electron laser for 0.64 nm radiation is under construction at DESY. In
Italy the Fermi@Elettra FEL is under construction for a wave length between
100 and 10 nm.

Some more details about conventional FELs in action are in Sect. 3.4.6.

3.4 Lasers as Radiation Sources

Lasers are alternative light sources to tungsten-filament and to gas-discharge
lamps. The name laser is an acronym of light amplification by stimulated emis-
sion of radiation. The principle for coherent amplification of electromagnetic
waves was first discovered theoretically by C.H. Townes, N.G. Basov, and M.
Prokhorov who received the Nobel prize in 1964 for their work. In 1958 A.I.
Shawlow showed how to extend this principle to the optical spectral region and
also received a Nobel prize in 1981, together with N. Bloembergen. T. Maiman
demonstrated the first successful operation of an optical laser in 1960. Since
then, the number of applications in spectroscopy where lasers are used as the
preferred light source have been continuously increasing. Initially such appli-
cations were only possible in the visible spectral range for a few selected laser
lines and for some lines in the IR. Now applications have expanded far beyond
this range, a very large number of lines is available and significant parts of the
spectrum are covered by tunable lasers. In addition, spectral linewidths have
been reduced to the order of hundred Hertz and pulsed lasers are available
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with pulse lengths in the femtosecond (10−15 s) range or, for x-ray radiation
even in the attosecond (10−18 s) range [3.11].

3.4.1 Generation and Properties of Laser Radiation

A laser consists basically of an “optical resonator”, a “pump source”, and
an “optically active medium”. The optically active medium is established by
an “inversion” of population of electronic states. This means an electronic
state 2 with energy ε2 is populated with a higher number of electrons than an
electronic state 1 with a lower energy ε1. Optical activity is already obtained
if the ratio of the two population numbers N2 and N1 is larger than its value
in thermal equilibrium.

N2

N1
>

(
N2

N1

)
equ

= exp
(
−ε2 − ε1

KBT

)
. (3.19)

To obtain amplification N2/N1 > 1 must be satisfied. The active material can
either be a gas plasma, a crystal with optically active color centers or the
optically active region of a p-n junction in a semiconductor. In all cases the
inversion is established by a pump. Figure 3.12 illustrates the three classical
arrangements for lasers. In the case of a gas laser, an electrical discharge is re-
sponsible for the population inversion. The resonator consists of plane-parallel
or confocal highly-reflecting mirrors. The reflectivity of one of the mirrors is
slightly reduced to 98–99% which allows the laser beam to exit from the cav-
ity. The discharge tube is usually sealed with Brewster windows to minimize
surface reflection losses and to select one particular light polarization for the
laser operation. Optically pumped solid-state lasers operate similarly but the
inversion is established by flash lamps. For semiconductor lasers the cleaved
faces of the p-n junction crystal are usually directly used as the reflectors of
the cavity. The pump is the forward biased current and the active material
extends over the volume of the junction where non-equilibrium carriers are
generated by injection.

Fig. 3.12. Schematic representation of three classical laser systems; gas discharge
laser (a), optically pumped solid-state laser (b), and semiconductor laser (c); (M:
mirrors, A: active material, P: pump, L: laser beam)
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Laser light has the following characteristic properties:

(a) Very small beam divergence. Typical values for a gas laser are 10−4 rad.
(b)Very narrow linewidths. Special arrangements allow linewidths for gas

lasers to be as low as 10 KHz and even less. Solid-state lasers can have
linewidths as small as 150 Hz [3.13]. Here is a collection of typical line
widths:
– 150 Hz smallest linewidth for conventional lasers
– 100 KHz single mode HeNe laser, air cooling
– 100 MHz Single mode gas laser with water cooling
– 1500 MHz Multimode HeNe laser
– 7 GHz Multimode Ar ion laser
– 3 THz dye laser
– 550 THz sunlight
A narrow line is equivalent to a high coherence of the light. As discussed
in Sect. 2.5 coherence is a measure of the length over which a well defined
phase relation for the wave field exists. Since the line width Δf is approx-
imately the inverse of the coherence time τ the coherence length Δl for a
10 KHz bandwidth radiation can be estimated from

Δl = c0τ ≈ c0/Δf ≈ 30 Km .

(c) Very high light intensity per bandwidth. A reasonably good gas-discharge
laser can emit 7 W/line with a typical linewidth of 75 MHz in the vis-
ible. This represents an intensity of 0.1 W/MHz, as compared to 0.9 ×
10−12W/MHz for a black-body radiator at 3300 K for the same angular
width of 10−4 rad and for the same cross section of 2 mm2.

(d) If the active medium is terminated by Brewster windows the laser beam
is highly polarized in the sagittal plane, perpendicular to the plane of the
Brewster window.

These characteristic properties of the laser light are due to two important
facts of the experimental setup.

(a) The stimulated emission of radiation from the activated medium occurs in
a very narrow frequency region around a center frequency f0 determined
by a gain coefficient α(f − f0). (The gain coefficient α = dn/dx is defined
as the increase in photon concentration n (photon number per incident
photon) per unit of length.) The spectral distribution of α is given by the
lineshape function g(f − f0). For gas lasers the width of this function is
determined by the Doppler broadening of the electronic levels in the gas
molecules. For α larger than a certain threshold laser oscillation is possible.
This threshold is obtained from

2Lα − γ = 0 ,

where L is the length of the active medium, and γ is a loss coefficient
describing all sorts of losses during a round trip of the light. Details of
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the condition necessary for an effective stimulated emission process are in
Appendix C.5.

(b) The resonator system leads to mode selection. This selection refers, in
particular, to non-axial modes. Due to multiple reflections in the resonator
these modes leave the cavity before they reach their full intensity. For this
reason the divergence of the radiation is extremely narrow and, in most
cases, diffraction limited.

Since the active medium is a cavity, only standing waves can develop as longi-
tudinal resonator modes. In this case 2L must be equal to an integer number
of wavelengths, and the distance between two neighboring longitudinal modes
with wavelengths λ1 and λ2 is easily evaluated from

2L = nλ1 = (n + 1)λ2

to be

|δf | =
c

λ2
δλ =

c

2L
. (3.20)

For a medium-size He-Ne laser with a typical cavity length of 75 cm the dis-
tance between longitudinal modes is only 200 MHz or ≈ 10−2 cm−1.

The Doppler broadening of the energy levels is a consequence of the veloc-
ity distribution of the atoms in the plasma. The line-shape function and thus
also the gain coefficient α may be much broader than the mode distance. Un-
der these conditions several longitudinal modes can oscillate simultaneously.
The situation is schematically demonstrated in Fig. 3.13a. Since the Doppler
width for a He-Ne laser is typically 1500 MHz a considerable number of lon-
gitudinal modes can oscillate if the cavity is 75 cm long. These oscillations
are fluctuating as the light intensity statistically jumps between the various
possible modes. The total spectral width of the laser line is given by the width
of the gain curve and not by the width of the individual longitudinal modes.

Fig. 3.13. Gaussian gain coefficient α and longitudinal modes (a) and field distri-
bution of TEM-modes (b) in a laser resonator
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In order to obtain a laser with a strongly reduced bandwidth, the fluctu-
ations must be suppressed and the oscillations must be restricted to a single
mode. This can be established by inserting an etalon filter into the cavity and
tuning it to the frequency of one of the longitudinal modes. In this case the in-
verted population will be released in a single mode. The etalon or Fabry–Perot
interference filter consists of a plane plate of high-quality quartz or dynasil
1000 glass. The filter is tuned by tilting it perpendicular to the beam axis.
Due to multiple-beam interference in the plate only a very narrow frequency
band is viable for each tilt angle. Thus only one longitudinal mode can prop-
agate in the cavity. Etalon filters must be extremely flat (flatness of the order
of 0.02 s of arc) and require a temperature stability of the order of ±0.01◦C.
The theory of the Fabry–Perot etalon will be discussed in Sect. 4.3.

The width of the single modes is given by construction details which deter-
mine the temperature stability of the resonator size, the vibrational stability
of the mirrors, the plasma tube oscillations, etc. Gas cooled lasers have much
narrower lines than water cooled lasers because of the turbulence-induced
vibrations in the latter.

In addition to longitudinal modes, a laser also has certain transversal
modes of oscillation. These modes are represented by a particular distribution
of the electric field over the cross section of the beam and characterized with
the symbols TEMik (transversal electromagnetic modes). Examples of TEM
modes are exhibited in Fig. 3.13b. Dark areas characterize parts of the beam
with high electric field. The indices i and k count the zeros along the x and y
direction, respectively. In general, it is desirable to run the laser in a TEM00

mode since the possibilities for focusing are optimum in this case. A TEM00-
mode can be obtained by a proper construction of the discharge tube or by
inserting diaphragms to reduce the beam diameter.

The beam divergence θ is determined by diffraction at the exit mirror.
Thus it depends on the beam diameter D and the wavelength λ as

θ =
2λ

πD
. (3.21)

θ is the half angle of the cone over which the beam intensity has dropped
to 1/e of its maximum. A consequence of relation (3.21) is the possibility to
decrease the divergence θ by increasing the beam diameter with a telescopic
system.

An important advantage of the lasers is their excellent focusing charac-
teristics which is due to the small beam divergence. For a lens with a given
focal length F the beam can be focused to a spot with diameter d and extent
l (Fig. 3.14) according to

d = 2θF =
4λF

πD
and l =

16λF 2

πD2
. (3.22)
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Fig. 3.14. Focusing of a laser beam by a collec-
tion optic; (D: beam diameter, F : focal length,
d, l: diameter and length of focal area)

For D = 0.15 cm, F = 10 cm, and λ = 500 nm, d is 4× 10−3 cm, which results
in an increase of the light intensity by a factor 103.

The good focusing characteristics of lasers are particularly useful for ap-
plications in micro-mechanic machining or surgery. Conversely, they result in
serious eye hazards. Intensities smaller than 1 mW are enough to damage the
retina because of the very good focusing characteristic of the eye lens.

3.4.2 Continuous-Wave Lasers

The He-Ne laser is a good example to study the principle of population in-
version and stimulated emission. The electronic levels involved for the He and
the Ne atoms are shown in Fig. 3.15. The active medium consists of a mixture
of 100 Pa He and 12 Pa Ne. A large number of He atoms are excited by a gas
discharge into the metastable 23s and 21s levels. By collisions with Ne atoms
the latter are stimulated and 3s2 and 2s2 levels become occupied in a resonant
energy transfer process. This results in a population inversion with respect to
the non-excited Ne states 2p4 and 3p4. The transition between the s levels
and the p levels of the Ne atoms is dominated by stimulated emission. As
indicated in Fig. 3.15, the transitions correspond to the wavelengths 3391 nm,
1152 nm, and 632.8 nm, respectively. Since the occupation of the Ne p4 levels
are short-lived and rapidly decay to the Ne 1s2 level by spontaneous transi-
tion, the inversion is maintained at least as long as the gas discharge is on,
and laser radiation can be emitted if the amplification factor α becomes large

Fig. 3.15. Energy-level scheme and emission processes for the He-Ne laser. The
lower case symbols in the scheme for Ne assign excited atomic levels
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Table 3.3. Emission lines for two krypton-ion gas lasers with different power

single line multiple lines

wavelength power (W) wavelength power (W)

weak strong (nm) weak strong

799.3 0.03 1.2 752.5–799.3 0.25 3.8

752.5 0.1 3.0

676.4 0.12 2.5 647.1–676.4 0.6 10.0

647.1 0.5 7.0

568.2 0.2 2.5 520.8–568.2 7.5

530.9 0.2 3.0

482.5 0.05 1.0 468.0–530.9 6.0

476.2 0.05 1.0

468.0 0.8 406.7–422.6 3.0

413.1 2.4 333.9–356.4 2.5

enough. A selection of the eventually excited laser lines can be made by using
wavelength selective mirrors or a dispersive prism in the cavity.

The He-Ne gas mixture was one of the first systems which were utilized for
stimulated emission of radiation in a laser cavity. Today a very large number of
other gas mixtures are available. Some of them can provide much higher laser
powers and oscillate on a large number of lines for a given gas mixture. Emis-
sion lines for two krypton-ion lasers with different output power are compiled
in Table 3.3. Single-line or multi-line operation can be selected by choosing
the proper mirrors or by inserting a prisma for dispersion. More than 15 W of
power on one line can be obtained with these lasers. However, to obtain 7 W
for the red line at 647.1 nm 76 KW of input power for the gas discharge are
needed, as shown in Table 3.4. Thus, the absolute efficiency for light genera-
tion is very low. However, the total power is not as important for spectroscopy

Table 3.4. Technical data for two typical krypton ion lasers

property weak strong

light noise level (2 MHz bandwidth) 0.2% 0.5%

long time stability (30 min) ±0.5% ±0.5%

frequency stability 60.0 MHz/K 330 MHz/K

beam diameter 1.23 mm 1.6 mm

beam divergence 0.78 mRad 0.6 mRad

cavity length 1 m 3.44 m

longitudinal mode extent 150 MHz (0.05 cm−1) 43.5 MHz (0.014 cm−1)

weight 105 kg 411 kg

electrical input power 13.1 KW 76 KW

cooling requirements 8.4 l/min 26.5 l/min
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Table 3.5. Gas lasers and solid-state lasers used in solid-state spectroscopy. (YAG
stands for YAl-Garnet (Y3Al5O12))

active species matrix most important lines

Cd helium 325, 441.6 nm

Ar+ argon 351.1, 488.0, 514.5 nm

Kr+ krypton 799.3, 647.1, 413.1 nm

Ne helium 632.8, 1153, 3390 nm

N2 nitrogen 337 nm

CO2 helium, nitrogen 10.2 μm (several lines)

HCN gas with C, H, N 311, 337 μm

Cr3+ Al2O3 (ruby) 694.3 nm

Sa3+ CaF2 708.3 nm

Nd3+ glass or YAG 1064 nm

Ti3+ Al2O3(sapphire) 700–1100 nm

Cr3+ BeAl2O4 (alexandrite) 720–800 nm

as the stability, bandwidth, beam diameter, etc. Table 3.4 lists some techni-
cal data for the type of krypton lasers characterized in Table 3.3. Data for
argon-ion lasers are similar. In both cases it is the positively charged rare gas
ion which provides the energy level system for the lasing process. Krypton
and argon lasers are most commonly used for continuous-wave (CW) spec-
troscopy. For UV, IR, or pulsed laser spectroscopy many other systems are
available. Table 3.5 lists selected gas and solid-state lasers used in solid-state
spectroscopy, together with their most important lines. The visible and the
near-IR spectral range are well covered by the various laser lines. In the mid-
and far-IR various semiconductor lasers are used, particularly those based on
III–V compounds and PbTe. They will be discussed in the next subsection
and in Sect. 10.1. The highest possible intensities in CW operation can be
obtained with CO2 lasers where powers of 27× 1012 W are reached. However,
such powerful lasers are not used in spectroscopy. They were developed for
nuclear-fusion experiments.

Strong intentions exist to build lasers in the vacuum UV. This spectral
range can be reached either by repeated frequency doubling or by the use of
excimer lasers. Frequency doubling relies on the nonlinear optical properties
of crystals described by the second-order susceptibility χikl. This and the
higher-order susceptibilities are defined by the generalized nonlinear response
for the polarization P .

Pi = χ
(1)
ik ε0Ek + χ

(2)
iklε0EkEl + ... . (3.23)

Since the response from EkEl has a frequency of 2ω, crystals with high values
of χ(2) are often used for frequency doubling. Up to the 13th harmonic with
a wavelength of 80 nm has been observed for Nd:YAG radiation. However, a
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high degree of frequency multiplication can only be obtained for very high
power and pulsed systems.

Excimer lasers – the name is derived from “excited dimer lasers” – or exci-
plex lasers use rare-gas halogen mixtures. Wavelengths down to 120 nm have
been obtained. Excimer lasers usually operate as superradiators. Besides in
spectroscopy such lasers are used in material processing such as laser sput-
tering. Operating these lasers under ambient conditions is dangerous, since
the high-energy light quanta generate the hazardous gas ozone with a high
efficiency.

3.4.3 Semiconductor Lasers

The development of semiconductor lasers has proceeded rapidly. These lasers
benefit from the continuous progress in semiconductor technology, from their
easy integrability into electronic circuits, and from their small size. Semicon-
ductor lasers can be operated as pulsed systems but also in CW systems, in
spite of the very large currents needed for an efficient operation. For example,
conventional GaAs lasers oscillating at 840 nm need currents of 3× 108 Am−2

(300 Amm−2). Efficient cooling of the laser diodes is required and is achieved
by mounting the diode on a good heat sink.

In the last few years significant progress was made by the development of
heterojunction and quantum well laser diodes (See also Appendix F.5). For
the near IR and red spectral range GaAs/AlGaAs systems are mostly used
which can have power conversion efficiencies of 25% and more. Theshold cur-
rent densities and operating current densities were reduced by two orders of
magnitude and range around 106 Am−2. This allows for easy CW operation
at ambient conditions. An other breakthrough was obtained for laser emission
in the green and blue spectral range. In this case mainly GaN derived het-
erojunction diodes or quantum well structures are used. Diodes with output
powers up to 200 mW at λ = 405 nm are commercially available.

Laser diodes can be arranged in arrays or several arrays in parallel with
several hundert diodes on a chip and output powers up to 900 W with 45%
conversion efficiency in the red. Coupling is either direct or by guiding the
light from the individual units with a glass fiber to a bundle. In both cases a
strong gain in emitted power can be obtained.

Table 3.6 lists data for a selection of commercial available semiconductor
lasers operating in the visible and near-IR spectral range.

The advantages of the semiconductor lasers are unfortunately accompanied
by several drawbacks. Since the optical transitions in the semiconductors are
rather broad, of the order of 2 nm, a line shape function is obtained with a
width of the order of

δf =
c0Δλ

λ2
≈ 900GHz = 30 cm−1.

for λ = 840 nm. Since the lasing crystals are usually rather short, of the order
of 0.1 cm, the longitudinal mode separation is of the order of 150 GHz. Finally,
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Table 3.6. Semiconductor lasers for the visible and near-IR spectral range. (QW:
quantum well, QWI: quantum well intermixing, QCW: quasi CW, ECL: external
cavity, BLA: bars of laser arrays, dHJ: double-hetero junction); Data for commercial
laser diodes are from manufacturer data sheets

type junction spectral range power threshold manufacturer

(nm) (W) (A)

SLD1332V AlGaInP-QW 660–680 0.5 0.4 Sony

HDP1300 GaInAsP-QWI 670–690 1 0.5 Laser 2000

ARR21P300 BLA-QCW 790–1550 300 16 Northrop

ZnMgSSe/ZnSSe 460 few mW [3.14]

NDHV220APA AlGaInN-dHJ 405 0.2 0.1 Nichia

ECL 670 ± 8 0.01 Laser 2000

since the active zone at the junction is rather small, of the order of 20 μm, the
beam divergence evaluated from (3.21) is as large as 2.5 × 10−2 rad.

Semiconductor lasers with an external cavity (external cavity lasers, ECL)
can be tuned by about ±10 nm for emission in the deep red. For specially con-
structed lasers (vertical cavity surface emitting lasers, VCSEL) light emission
can be parallel to the current flow through the junction.

3.4.4 Pulsed Lasers

In order to obtain very high power either pulsed excitation systems or systems
where the stimulated emission occurs only for a very short time are utilized. In
the early days of pulsed lasers a static mirror and a rapidly rotating 180◦ re-
flecting prism were used for the termination of the laser resonator. In this case
laser oscillation is only possible for the very short time in which the reflection
from the mirror and from the prism are collinear and the whole inversion accu-
mulated from a flash lamp can be used for light generation. Lasers operating
in such a mode are called Q-switched (Q describes the quality of a resonator
cavity). If these lasers had a power of 1 W for quasi-CW operation (1 s flash)
100 ns pulses would already yield a power of 10 MW, provided the full inver-
sion of the flash can be converted in the short time. Ruby lasers, Nd(YAG)
lasers, and nitrogen lasers are particularly useful for this mode of operation.
Ruby lasers can produce 250 J of light energy within 5 ns which corresponds
to a power of 50 GW. Very large intensities can be obtained by focusing the
light. For a 50 KW neodymium laser peak intensities of 1012 W/cm2 are quite
common. This corresponds to a field strength of 2× 109 V/m. Such lasers are
used to study nonlinear optical properties of materials. For neodymium lasers
intensities up to 1020 W/cm2 were produced for nuclear-fusion experiments.

By improved Q-switches and other techniques such as mode coupling, pulse
lengths of the order of 10−15 s can be reached with corresponding high light
power. This has given rise to a new field in spectroscopy known as picosecond
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or femtosecond spectroscopy. For the application of such lasers to study chem-
ical reactions Achmet Zeweil received the Nobel prize in chemistry in 1999.

As we have already mentioned in Sect. 3.4.1, the intensities of the various
longitudinal laser modes fluctuate statistically unless they are reduced to a
single oscillator by an etalon filter. Another option to suppress the fluctuations
and to obtain some order in the mode structure is mode locking . In contrast
to the insertion of a frequency selective absorber, the relative phases of the
modes in the cavity are coupled. In this way the phase fluctuations between
modes are eliminated. To understand how this works we must recall that
any radiation field can be represented in its time domain by E(t) and I(t)
or in its frequency domain by E(f) and I(f). Both, E and I occur with
fluctuating phase φ. (See for this description also Sect. 2.5.1.) Figure 3.16
shows the situation for the intensity fluctuations and for the phase fluctuations
in the case of a free oscillating laser and a laser with mode locking, respectively.
As long as there is no phase correlation between the oscillator modes their
intensity in the frequency domain fluctuates under the gain curve and the
radiation fluctuates in the time domain like thermal noise about a mean value
(Fig. 3.16a). A similar situation holds for the phases. They oscillate between
±π in the frequency as well as in the time domain. In both cases there is a
general relation between the time scale of the fluctuations and the bandwidth
of the spectrum as it will be discussed in the next section in detail.

If phase coupling exists, each mode is amplified according to its position
under the gain curve and the intensity does not fluctuate (Fig. 3.16b). Note
the completely different time pattern for the intensity in the two cases. In
Fig. 3.16a the intensity fluctuations extend over all time whereas in Fig. 3.16b
a single spike is formed.

Fig. 3.16. Schematic representation of the intensity and the phase of laser oscilla-
tions in the frequency domain and in the time domain for a free laser (a) and for a
mode-locked laser (b)
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In practice, phase locking is performed by an appropriate modulation of
the gain curve. As a consequence a train of extremely short spikes occurs with
a period (repetition time) T equal to twice the transition time of the light in
the resonator

T =
2L

c
. (3.24)

Active or passive mode-coupling techniques are used to establish the phase
locking. In either case a modulation of the gain curve is induced with a fre-
quency c/2L corresponding to the reciprocal turn-around time of the light in
the resonator or, likewise, the distance of the longitudinal modes. For pas-
sive mode coupling a saturable absorber is inserted in the cavity. In this
case absorption is minimum (or gain is maximum) for peak light intensities.
This means that light pulses are shaped with a repetition rate equal to the
round-trip transition time in the cavity. Active mode coupling is obtained by
inserting a piezoelectric crystal into the resonator which operates as an ampli-
tude modulator. Side bands develop for each longitudinal mode ωs. The side
bands are tuned to coincide with the closest neighboring longitudinal mode
of frequency ωs±1. Thus, they contribute to the stimulated emission of the
neighboring mode and all modes under the gain curve will be coupled.

The mathematical formulation for the establishment of picosecond-pulse
trains results in both cases from an amplitude modulation of the longitudinal
modes. It is most easily discussed for the case of the active mode locking. The
modulation of mode s can be described in this case by a harmonic wave

Es = TMEs0 cos ωst with TM = 1 − δ(1 − cos Ωt) ≤ 1. (3.25)

δ is the depth of modulation, TM the transmission coefficient for the piezo
modulator, and Ω its drive frequency. Simple trigonometric manipulations
yield the side bands E(±s) for the mode number s at ω(±s) = ωs ± Ω by

E(±s) =
Es0δ

2
cos(ωs ± Ω). (3.26)

When Ω is tuned to 2πc/2L, the side bands of ωs coincide with the modes
ωs±1. The number m of coupled modes is given by the ratio between the
width of the gain curve and the longitudinal mode distance. For simplicity,
we assume a rectangular gain curve which means all Es0 in (3.25) are equal
and the contribution of the side bands is negligible compared to the mode
amplitude. Counting all modes with frequencies ωs = ω0 + sΩ = ω0 + sπc0/L
from a central frequency ω0 yields the total field as a superposition of all
modes:

E =
m∑

s=−m

E0 cos(ω0 + sΩ)t . (3.27)
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Considering I(t) ∝ E(t)2 yields from this

I(t) ∝ E2
0 sin2[(2m + 1)Ωt/2]

sin2(Ωt/2)
cos2 ω0t , (3.28)

which is, indeed, in the limit of large m a pulse train with the repetition pe-
riod T = 2L/c and the pulse width δT

δT =
2L

mc
. (3.29)

m is the number of coupled modes equivalent to the number of modes under
the gain curve and L is the resonator length. A plot of the amplitude in (3.28)
for m = 100 is presented in Fig. 3.17a.

The more modes are coupled the shorter are the resulting laser pulses.
For generation of very short pulses a large bandwidth or equivalently a broad
gain curve of the laser is needed. Bandwidth γ and pulse length τ are related
by the usual formula γτ ≈ 1 (Sects. 2.4 and 3.2). A light pulse for which
the duration is only determined by the bandwidth is called bandwidth limited
with a natural linewidth. The bandwidth of an Ar+ laser is, e.g., 7 GHz which
would give a natural pulse width of 140 ps. In contrast, the bandwidth of a
dye laser is 3 THz for which a natural pulse width of 0.3 ps can be obtained.
If the length of the cavity of the laser is 1 m 2000 modes are coupled.

The detection of laser pulses in the ps time range is not trivial. Even though
the photoelectric effect has a time constant of only 10−14 s this time can not
be resolved, since oscilloscopes are limited to 5 GHz allowing for a maximum
resolution of 70 ps. Photodiodes also have time constants of at least 100 ps
which excludes a direct measurement of pulse lengths in the picosecond or

Fig. 3.17. Light pulses from a mode-coupled laser (a), and experimental setup for
measuring ps laser pulses by two-photon luminescence (b); (BS: beam splitter, OR:
overlap region, NLD: nonlinear dye, C: camera)
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sub-picosecond region. A realistic possibility for the detection of such pulses
consists in the nonlinear excitation of luminescence by a two-photon fluores-
cence (TPF) process according to Fig. 3.17b. In this experiment the light pulse
is divided into two parts by a beam splitter. Subsequently both parts are again
superposed colinearily but in opposite directions in a nonlinear medium. A
strong luminescence which can be observed with a camera is emitted only
during the time at which both pulses are at the same position in the crystal.

A streak camera (Fig. 3.18) can also be used to detect picosecond pulses.
Electrons are freed from the photocathode by the very fast external photoelec-
tric effect. They are observed after a strong acceleration towards the anode
and a subsequent deflection by a time-ramped electric field. It is immediately
evident that the resolution in time depends only on the velocity distribution
of the freed electrons. Figure 3.19 shows a streak photograph and the corre-
sponding densitometer readings for two picosecond pulses of width 1.5 ps and
60 ps apart.

Fig. 3.18. Schematic view of a streak camera;
(C: cathode, F: focussing plates, A: anode, DP:
deflection plates with time ramp, S: screen)

Fig. 3.19. Streak-photo (a) and densitometer reading (b) for two picosecond pulses;
after [3.15]

3.4.5 Tunable Lasers

Initially the disadvantage of laser sources was their restriction to the emission
of a few single and narrow lines. Early in the development process, and in
addition as the result of recent work, lasers were devised which avoid this
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problem and allow wavelength tuning at least in a limited spectral range.
These systems are known as dye lasers. They use a gas laser or a pulsed solid-
state laser to pump an active medium in an extra cavity. Originally the active
media were dyes like rhodamine, coumarine, or stilbene, etc., with broad op-
tical transitions. The broad transitions originate from splitting of electronic
levels by rotational states which are themselves broadened by intermolecular
interactions. In this way a quasi-continuum of electronic transitions is estab-
lished, at least within a limited spectral range. Only the lowest rotational
levels are populated in thermal equilibrium so that a population inversion can
be obtained for recombination into higher rotational states. This may lead
to stimulated emission and eventually to a non linear coherent amplification.
Figure 3.20 shows the luminescence of rhodamine 6G after excitation from
the S0 ground state to an S1 excited state (solid line). This luminescence is
more than 10 nm wide.

In many cases the excited state relaxes by intersystem crossing into a
long-living triplet state T1. This state introduces an additional destructive
absorption process into the system. It overlaps partly the luminescence and
therefore decreases the overall gain for the nonlinear amplification. The prob-
lem can be solved by adding a triplet quencher to the dye which transfers the
triplet states back to the S1 state by collisions. Alternatively, the dye can be
excited in a rapidly flowing jet stream where the molecules leave the active
volume before the triplet state is generated.

The schematic construction of a dye laser is shown in Fig. 3.21. The pump
light is introduced into the resonator cavity by the pump mirror and excites

Fig. 3.20. Luminescence (—) and
triplet absorption (− − −) for rho-
damine 6G after excitation from the
S0 ground state to a S1 excited state.
The insert shows the rhodamine 6G
molecule; after [3.16]

Fig. 3.21. Schematic arrangement for
a dye laser; (FM: folding mirror, PM:
pump mirror, RM: reflector mirror,
OC: output coupler, F: tuning filter)
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Fig. 3.22. Emission of dye lasers in various spectral ranges for pumping with a 4 W
krypton laser in the blue-green range; after [3.17]

the dye which is injected by a jet with a speed of about 10 m/s. The cavity
is folded and consists of a reflector, a folding mirror, and an output coupler.
The wavelength for resonance is tuned by a birefringent Lyot filter. Figure 3.22
displays efficiencies for various commercial dyes. From this figure it is evident
that a large number of different dyes are needed to cover even the visible
spectral range.

Special developments in the field of dye lasers refer to tunable ring lasers
and solid-state lasers. In a ring laser the cavity is not terminated by a system
of reflectors but consists of a closed optical ring. Instead of the build up of
standing waves as in normal cavities propagating waves are generated. This
results in a more efficient spatial geometry for the release of the inversion and
thus gives a higher gain. Ring lasers are more powerful than conventional dye
lasers but require a better alignment and stabilization.

Solid-state tunable lasers are frequently used because they have a high
efficiency and are simpler to operate. A widely used system is a Ti:sapphire
cavity pumped by an argon laser. The optical active ion in the sapphire is
Ti3+ which is embedded in a crystalline Al2O3 matrix (Table 3.5). Pumping
with an all line argon laser of 5 W yields emission of several 100 mW in the
spectral range of 700–1000 nm. High-power Nd:YAG after frequency doubling
can be utilized as an alternative pump systems. (For details see also Sect. 3.4.7
below). Nd:YAG lasers excited with a lamp can reach 100 W in CW. Thus,
even after frequency doubling to 532 nm with a KTP crystal considerable
pump power is available for the Ti:sapphire system. Figure 3.23 presents the
output power of a Ti:sapphire laser for three different resonator mirrors (a)
and line intensities after frequency doubling with a 15 W pump. Frequency
doubling was performed in this case with a BBO (β-barium borate, BaB2O4)
crystal.
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Fig. 3.23. Output of a Ti:sapphire laser versus wavelength for a 5 W all line argon
pump (a) and output after frequency doubling for a 15 W pump (b); SW, MW, and
LW refer to short, medium long, and long wavelengths, respectively

3.4.6 Free-Electron Lasers

The free-electron laser is an alternative to conventional tunable laser systems
and operates in vacuum. It is based on the stimulated emission of synchrotron
radiation from electrons in an undulator, and has very good tuning properties.
In principle, it could be used from the IR to the UV spectral range. The
active medium is the electron beam of the synchrotron. It is guided through
the laser cavity which contains the undulator. Figure 3.24 sketches a setup.
The radiation from the wiggles adds up like the partial beams of a grating.
If the timing is such that after one round trip in the cavity, a photon pulse,
emitted from an electron bunch in the undulator, passes the undulator again
at exactly the same time as the next bunch arrives, stimulated emission of
synchrotron radiation occurs. This is possible because the electrons acquire a
weak transverse velocity component from the undulator, which is sufficient to
initiate the stimulated emission process. Since the laser operates in vacuum
no inversion in a classical sense is generated. If the gain from the stimulated
emission is larger than the total loss during one round trip laser oscillations
turn on.

The problem with the free-electron laser is the rapid decrease of the gain
coefficient with increasing electron energy ε. α is obtained from

α = C
λ3

UN3K2F

ε3
, (3.30)

where C is a constant, N the number of periods in the undulator, and F a
filling factor between the volume of light propagation and electron propaga-

Fig. 3.24. Schematic setup for a free-
electron laser; (N and S: magnets of
the undulator, (—): electron beam
from the storage ring, (− − −): laser
light)
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tion. λU and K have the same meaning as in (3.16). Since, from the same
equation, the wavelength for constructive interference decreases as 1/ε2 high
energies are requested for short wavelength free-electron laser oscillation and
for high energies α is small. So, most FELs operate in the IR or red spectral
range [3.18].

Free-electron lasers with linear accelerator work well in the IR spectral
range. One example is the ELBE light source in Dresden-Rossendorf with
undulators for 4–250 μm radiation. For other free electron lasers which use
linear accelerators see the discussion on the forth generation of synchrotron
radiation in Sect. 3.3.5.

3.4.7 New Developments

Recent developments in laser technology have concentrated more and more on
solid-state lasers. In particular the Nd:YAG laser attracts the interest of laser
engineers because of its very high efficiency. This system operates at 1064 nm
but is easily frequency doubled to 532 nm with, e.g., a MgO:LiNbO3 crystal.
Lamp pumping and diode pumping are still in competition for the excitation of
the Nd:YAG crystal. Krypton-arc lamps certainly have a high power and can
produce multi-mode CW or mode-locked laser radiation from Nd:YAG with a
power of more than 100 W [3.19]. On the other hand, diode-pumped Nd:YAG
lasers operate with very high efficiency since the emission of GaAs diodes
can be tuned exactly to the main absorption line in the Nd:YAG system at
808 nm, as shown in Fig. 3.25. The emission line matches exactly the transition
energy between the ground state and the 4F states in Nd3+. The pump may
be either a single diode, a diode laser, or even a diode-laser array. Since the
diodes of the III–V compounds operate very efficiently in this spectral range,
an all over laser efficiency of the order of 25% can be expected. In contrast,
for broad-band excitation with a lamp all energy not matching this transition
is wasted. In addition, the stability of the diode-pumped systems is an order
of magnitude better than for lamp-pumped systems. Commercially available
systems have powers of 10 W CW for a 1064 nm radiation. Line widths can be
less than 5 KHz, even after frequency doubling. For 532 nm radiation powers

Fig. 3.25. Energy matching between Nd3+ ex-
citation in Nd:YAG lasers and diode emission;
after [3.13]
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of 500 mW are available. All these systems work with wall-plug powers and
without water cooling.

The rapid development of the diode-pumped Nd:YAG lasers suggests an
all solid-state laser system as the coming source in laser spectroscopy, even
for the visible spectral range. Such systems consist of a diode array as a pump
and a Nd:YAG laser with frequency doubling which provides a suitable pump
for the tunable Ti:sapphire laser (Fig. 3.26). The cavity of the latter contains
a Lyot filter for frequency tuning. The advantage of the all solid systems is
their compact construction and their stability.

Fig. 3.26. All solid-state tunable laser system; (DA: diode array, ND: Nd:YAG
pump laser, FD: frequency doubler, TS: Ti:sapphire laser, LF: Lyot filter); The
numbers are the instantaneous laser wavelengths in nm

Problems

3.1. Use the Stefan-Boltzmann law to estimate the solar constant for the
temperature of the sun (T ≈ 6000 K), the distance between sun and earth
≈ 150 × 106 Km, and the radius of the sun about 6.9×105 Km.
Purpose of exercise: emission of radiation.

3.2. Calculate the total emitted power per unit area for a black-body radiator
from Planck’s law.
Purpose of exercise: difference between spectral power and total power.

3.3. Show that the FWHM for a Gaussian line equals
√

σ28 ln 2.
Purpose of exercise: spectral line shapes.

3.4. Calculate the convolution of two Lorentzian lines and show that the re-
sulting linewidth is the sum of the individual widths.
Purpose of exercise: performing convolutions.

3.5. Discuss the maximum and the minimum position for a Fano line. What
happens for weak coupling?
Subject of training : nature of Fano line.

3.6. n Show from the approximation used in (3.12) that the typical emission
frequency of a bending magnet is given by this equation.
Subject of training : Collect experience in using approriate approximations to
obtain meaningful physical results.
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3.7. n Derive the validity of the undulator equation (3.16) from simple geo-
metrical considerations for the track of relativistic electrons.
Hint : Use first the approximation K � 1 (The electron oscillates only in y
direction) and remember that the electron sees in its moving frame a magnetic
field with Lorentz contracted period of λu/γ. The corresponding frequency is
further modulated for the observer in the laboratory frame by the Doppler
shift. This results eventually in a wave length of

λ =
λu

2γ2
(1 + γ2Δφ2) (3.31)

Now assume K ≈ 1. Then the mean velocity of the electron along x is reduced
to v∗ = vλu/S where S is the length of the arc between the period λu. The
reduction of v → v∗ transforms β → β∗ and γ → γ∗ and eventually yields the
quested result.
Subject of training : Understanding the undulator motion and undulator emis-
sion.

3.8. The velocities of atoms in a light-emitting gas are distributed according
to a Maxwellian distribution. Show that the Doppler effect for the frequency
shift leads to a Gaussian linewidth for the emitted radiation. How large is the
width for the lines in an argon plasma of 3000 K?
Hint : Neglect the intrinsic linewidths of the atoms.
Purpose of exercise: study the origin of spectral line shapes.

3.9. A laser operating at a wavelength of 633 nm has a beam diameter of 2 mm,
a spectral width of 10 KHz, a power of 5 W, and a divergence of 0.1 mrad. How
much brighter is the laser compared to the sun for equal bandwidth?
Purpose of exercise: characterization of laser light.

3.10. ∗ Evaluate the superposition of the side bands with the longitudinal
resonator modes according to (3.27) and discuss the resulting pulse train on
a personal computer.
Purpose of exercise: summation of field components, presentation of calculated
results on a personal computer.
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Spectral Analysis of Light

Information from a light beam after its interaction with a solid is obtained
from an analysis of the change in its intensity spectrum. Usually monochroma-
tors or interferometers are applied to perform this analysis. These instruments
will be discussed in the current chapter. It is often useful to “preprocess” the
light on its way from the light source to the analyzer or from the analyzer
to the detector. Optical elements like reflectors, lenses, filters, polarizers, etc.,
are appropriate for this process. Light pipes or fiber optics are convenient
means to guide the light. Thus, before discussing in detail spectrometers and
interferometers we will review some useful optical elements.

4.1 Optical Elements

Only optical elements not described in standard textbooks or elements of
particular use in spectroscopy such as filters and polarizers will be discussed.
Since much progress has been made recently in the field of fiber optics, this
topic will also be addressed.

4.1.1 Optical Filters

Optical filters are transmission elements which are only transparent in a well
defined spectral range. They are available for the whole visible and near visi-
ble spectral range. Filters are often used to remove unwanted spectral compo-
nents from the light beam. They can be categorized either according to their
construction (glass filters, or interference filters) or according to their spectral
transmission range (narrow-band filters, line filters, broad-band filters, edge
filters, heat filters, and neutral-density filters). Broad-band, edge, and neutral
density filters are usually glass filters containing special color centers. In con-
trast, line or narrow-band filters are usually interference filters. They can be
either all dielectric or metal dielectric. To obtain sharp cut offs an interference
type of construction is used even for edge filters. Indeed, interference can be
used as a basis for any filter. The drawback of interference filters compared to
conventional ones is their high price and lower resistance to irradiation load.

H. Kuzmany, Solid-State Spectroscopy, DOI 10.1007/978-3-642-01479-6 4, 69
c© Springer-Verlag Berlin Heidelberg 2009



70 4 Spectral Analysis of Light

Filters are characterized by a filter function defined as the transmission
T (λ)

T (λ) =
IT (λ)
I(λ)

, (4.1)

where I(λ) and IT (λ) are the incident and the transmitted light intensity. The
filter function defines the wavelength of maximum transmission, the maximum
transmission itself, the half width of the transmission band, the wavelength of
cut on and cut off, and the blocking range. Another important characteristic
of a filter is the maximum allowable irradiation load.

Interference filters consist of several thin layers with varying index of re-
fraction. The extinction of light is based on the interference from layers with
thickness λ/4. This superposition of layers can either lead to a transmission
of a narrow spectral range or to a suppression of the transmission in a well de-
fined range. Narrow-band interference filters can be built with a half width as
low as 1 nm. In this case the maximum transmission is reduced by 50%. Figure
4.1 shows filter functions for a heat filter and for two different narrow-band
filters. Narrow-band filters can be slightly tuned by rotation of the filter out of

Fig. 4.1. Filter functions for a heat filter (a) and for a narrow-band filter (b).
The full width half maximum is indicated for the latter

the plane of normal incidence. The tuning range is about 10 nm for a filter with
a FWHM of 10 nm. Tuning by rotation is only possible towards wavelengths
longer than that of the center line for normal incidence, since the optical
wavelengths can only be increased. Narrow-band filters can be made for any
specific wavelength. Standard filters exist for the most important laser lines.
Narrow-band interference filters are particularly important in spectroscopy
with gas lasers since they can suppress the plasma lines originating from the
gas discharge.
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Interference filters with particularly sharp etches are now frequently used
in inelastic light scattering spectroscopy. They are called notch filters or super
notch filters and have etch width of only 75 cm−1 for a band pass of ±175 cm−1

(corresponding to ±4 nm) and a light suppression of 10−6 beyond the etch.
Of course they work only for a particular wavelength.

In addition to the filters mentioned above, filters using materials in the
vapor phase play an important role in spectroscopy. A good example is the
iodine filter. Iodine has a rotational absorption spectrum with one line at
514.537 nm. This absorption line nearly coincides with the green line of the
argon laser at 514.532 nm. If the cavity of the laser is tuned with an etalon
filter to the longitudinal mode which coincides with the rotational absorp-
tion band of the vapor an extremely narrow-band filter for the laser line is
obtained. The situation is shown in Fig. 4.2. With such a filter, elastically

Fig. 4.2. Laser gain curve and spectral
lines for the iodine filter; (LM: longi-
tudinal laser mode, RA: rotational ab-
sorption of iodine)

scattered stray light can be effectively suppressed in a light scattering exper-
iment (Raman or Brillouin scattering) while the inelastically scattered light
remains unattenuated.

4.1.2 Polarizers and Phase Plates

Polarizers are valuable optical elements because information on the structure
of solids can be inferred from the change in the state of polarization of the
light after interaction with the solid. Polarizers consist of two prisms of an uni-
axial optical material glued together by a liquid with an appropriate index of
refraction. The unwanted polarization component is deflected out of the beam
by total reflection at the interface between the two prisms. Details about the
optical path of the light can be found in standard textbooks. The prisms are
known as Nicols or Glan–Thomsen prisms and are commercially available from
companies selling optical accessories. With such prisms polarization ratios

Rp =
I⊥
I‖
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of the order of 10−5 and a very good throughput for the light can be obtained.
The disadvantage of the Nicol prisms is their high price, in particular if they
are needed with a large cross section. Sheet polarizers are another option for
polarization elements. They are constructed from sheets of highly oriented
organic polymers which only allow transmission for light with polarization
perpendicular to the orientation of the aligned polymer chains. Polarization
ratios for such polarizers are as good as for crystal polarizers but their through-
put is lower. Also, since the suppression of the unwanted component of light
is by absorption, resistance to light intensity is low. They are not appropriate
for laser powers beyond about one watt.

Very often, instead of polarized light, a completely random polarization
is desirable. In this case a polarization scrambler can be used. A polarization
scrambler consists of a birefringent material which generates arbitrary ellip-
tically polarized light. Scramblers only work properly for linearly polarized
incident light.

Finally, transformation of linearly polarized light to circularly or ellipti-
cally polarized light, or vice versa, may be required. In this case again plates
of birefringent material can be used. Linearly polarized light incident with
its direction of polarization under 45◦ to the material’s optical axis becomes
elliptically or circularly polarized by traversing a plate cut parallel to the op-
tical axis. This is immediately evident from the phase difference generated
between the two polarization components oriented parallel to the directions
with the refractive indices ne and no, respectively, as shown in Fig. 4.3a. The

Fig. 4.3. Geometric arrangement for generating circular polarized light from
linearly polarized light by a λ/4 plate (a) and compensator arrangement consisting
of two perpendicularly oriented phase plates (b); (OA: optical axis)

phase difference Δφ is

Δφ =
2π(ne − no)d

λ
. (4.2)

For Δφ = π/2 circular polarized light is obtained.
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For the arrangement of Fig. 4.3b an arbitrary and adjustable amount of
phase difference between the ordinary beam (Eo) and the extraordinary beam
(Ee) can be obtained. This means the phase shift can be adjusted to give linear
polarized light for any elliptically polarized light.

4.1.3 Glass Fibers and Light Pipes

The technology of glass fibers or light pipes for light transmission has improved
dramatically over the last few years and gained considerable importance in
spectroscopy. Instead of moving the spectrometer and the light source to the
object for spectroscopy the fibers allow the light to be guided easily to the
latter.

Optical fibers consist of a highly transparent glass or quartz core sur-
rounded by a ”cladding” with a lower index of refraction. Then, up to a cer-
tain angle of incidence the incoming light is totally reflected at the interface
between core and cladding, and thus guided through the fiber. The geometri-
cal constraints for a single fiber are shown in Fig. 4.4. The minimum internal

Fig. 4.4. Structure and optical path for the
innermost part of an optical fiber

angle β for which total reflection is possible is related to the ratio between
the index of refraction of the cladding and the core by sinβ = ncl/nc. From
this the angle of the external acceptance cone is immediately obtained from
the geometry of the fiber.

sin α =
1
n0

√
n2

c − n2
cl , (4.3)

where n0 is the index of the medium outside the fiber. The value given by
(4.3) is the numerical aperture of the fiber. For reasonable differences between
the refractive indices of the two components of the fiber, numerical apertures
close to 1 can be obtained. Standard commercial fibers usually have apertures
of 0.5 or less. For single-mode fibers the apertures in use are even smaller.
Instead of the numerical aperture the F/number is often quoted. It is related
to the aperture by

F/number =
1

2 tan α
.
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The fibers must be thin to remain flexible. As a consequence light transfer
from extended sources requires several thousand fibers which may be packed
into a bundle. Under these circumstances the following types of fibers can be
considered:

–single fibers (actually single-mode fibers),
–randomly oriented fiber bundles,
–coherent bundles for imaging.

Coherent fiber bundles are used in imaging systems. Typically 10 000 light
points per mm2 can be transferred coherently in one bundle. Imaging light
detectors which will be discussed in the next chapter use such systems.

Randomly oriented fiber bundles are standard and low price light trans-
mitters. Typical transmission curves for a 1-m glass fiber and a 50-cm quartz
fiber are shown in Fig. 4.5a. The transmission losses are due mainly to the

Fig. 4.5. Transmission of a 1-m standard glass fiber optic with 3.2 mm diameter
(− − −), and of a fused silica fiber optic, 0.5 m long (—) (a), and a bifurcated
cable (b)

(non-transparent) interfaces between the individual fibers. Standard fibers can
be connected easily by optical coupling elements called ferruels. Standardized
input and output couplers with appropriate collection optics are available.
Bifurcated or trifurcated cables with two or three outlets on one end and a
common out let on the other end (Fig. 4.5b) are often used. For example, for
an input light coming through one branch stray light or reflected light can be
detected by the other branch. Coupling a circular to a rectangular cable is
possible. This change of cross section may be useful for optimum adaption to
the slit of a spectrometer.

Single-mode fibers are real optical waveguides. They can be used to trans-
fer single-mode laser light without destroying its typical characteristics. Even
the polarization direction can be preserved. Like in any waveguide the core
diameter is the principal constraint. For a single-mode fiber conserving po-
larization and operating in the blue/green spectral range, the fiber diameter
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must not exceed 3 μm, otherwise coupling to other modes and thus multi-
mode transfer will occur. The normalized frequency number, also called the
V -number, is a useful specification for a fiber.

V =
2πa sin α

λ
, (4.4)

where sin α and a are the numerical aperture and the radius of the core, re-
spectively. V is 2 for typical single-mode fibers. It determines the maximum
number of modes which can propagate in the fiber or the maximum size of the
laser focus required for optimum coupling into the fiber. The maximum num-
ber of modes is V 2/2 and the focus must not exceed the core diameter by more
than 30%. The numerical apertures of single-mode fibers are usually rather
low, of the order of 0.1 which means a difference in the indices between core
and cladding of only 0.02. Since single-mode fibers are used for telecommuni-
cations they are manufactured with very low loss. The standard attenuation is
0.1 dB/Km (for the minimum absorption in the spectrum, which is at 1.3μm).
The very small diameter of the fibers requires a very careful alignment of the
laser focus far optimum light input.

4.2 Monochromators and Spectrometers

Light can be analyzed with monochromators or spectrometers. The termi-
nology spectrometer is used for the whole setup whereas the monochromator
is the optical element itself. The monochromator can be dispersive or non-
dispersive. In dispersive systems like prisms or gratings, a spatial separation
is obtained for the spectral components of the light beam. An example of
a non-dispersive element is the interferometer used in Fourier spectroscopy.
Fourier spectroscopy has been applied for a long time in the far-IR, since there
are neither strong light sources nor sensitive detectors for this spectral region.
Even though it is used today from the far-IR to the near-UV, this technique
will be discussed only together with IR spectroscopy in Chap. 10.

4.2.1 Characteristics of Monochromators

As it is shown schematically in Fig. 4.6, a monochromator consists of an en-
trance slit, a dispersive element and an exit slit. The entrance slit is imaged
onto the exit slit by a set of mirrors or lenses with focal length F . For con-
venience, the height H and the width W are assumed equal for the two slits.
The most important properties for the monochromator are its brightness and
its resolution. The brightness is given by the ratio A/F and is equal to the
etendue E

E =
WHA2

F 2
(in m2) (4.5)
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Fig. 4.6. Schematic arrangement of a
monochromator; (ES: entrance slit, A:
aperture, D: dispersive element, EX:
exit slit, F: focal length)

of the instrument. The power P (in Watts) transmitted through the spec-
trometer is obtained from the incident light intensity I0 and E by

P = T (λ)I0E , (4.6)

where T (λ) is the transmission coefficient of the instrument. If A2/F 2 in (4.5)
is expressed in steradian E is called the optical conductance G = WHΩ =
WHπA2/F 2.

The resolution is determined by diffraction effects or by the nature of the
multiple-beam interference. The Rayleigh criterion is the basis for defining
the resolution. Two beams with wavelengths λ and λ + δλ are resolved if the
maximum of the diffraction pattern (or the constructive interference) for one
beam coincides with the minimum of the diffraction pattern (or the destructive
interference) for the other beam. With this definition of δλ the resolution is

R0 =
λ

δλ
=

f

δf
=

ν

δν
. (4.7)

Its value is the same whether the spectral distribution is given in wavelengths
λ, frequencies f , or wave numbers ν.

4.2.2 The Prism Monochromator

Prism monochromators rely on the dispersion of light propagating in solids.
This dispersion is determined by the oscillations of bound charges within the
material. As will be shown in Chap. 6, the dispersion as well as the absorption
of light strongly increases close to such oscillators.

The brightness and resolution of a prism monochromator depend only on
the size and dispersion of the prism. The resolution is given by the Frauenhofer
diffraction

I(θ, δθ) = I(θ, 0)
sin2 πνAδθ

(πνAδθ)2
. (4.8)
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Here I(θ, δθ) means the distribution of the light intensity as shown on Fig. 4.7,
ν is the light frequency in wave numbers, A the aperture, and I(θ, 0) the

Fig. 4.7. Optical path through a prism monochromator

intensity at the maximum. The angular dispersion depends on the dispersion
of the prism dn/dν and is given by1

dθ

dν
=

dθ

dn

dn

dν
=

sin ε

cos α2 cos β1

∣∣∣∣dn

dν

∣∣∣∣ . (4.9)

For a symmetric transition with a total angle of deflection θ we have α1 =
α2 = α = (θ + ε)/2, β1 = β2 = β = ε/2, and sinα/ sin β = n. Then

dθ

dν
=

2 sin(ε/2)
[1 − n2 sin2(ε/2)]1/2

dn

dν
=

d

A

λ2dn

dλ
. (4.10)

From the Frauenhofer diffraction pattern the distance between the maximum
and minimum diffraction intensity is

δθ =
1

νA
. (4.11)

With this and (4.10), the Rayleigh criterion yields for the resolution

R0 =
ν

δν
= Aν2 2 sin(ε/2)

cos((θ + ε)/2)

∣∣∣∣dn

dν

∣∣∣∣ = ν2d
dn

dν
(4.12)

or

R0 = λ/δλ = d
dn

dλ
, (4.13)

1 For a derivation of this relation see [4.1].
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where d is the base of the prism. Consequently, for a high resolution, a prism
must have a wide base and be made of a material with a high dispersion.
Thus, the resolution increases as the wavelength of the light approaches the
absorption lines for phonons. However, with this the absorption increases so
that finally no more light is transmitted. This limits the use of the prism.
Note that the brightness of a prism increases with height. Thus, large prisms
are necessary for good monochromators.

Prism monochromators are still used for the near-UV, visible, and the near-
IR spectral range in simple instruments. Compared to grating spectrometers
their advantage is the dispersion of the light into only one spectral order.
This means all light of a particular wavelength is deflected by the same angle.
In contrast, in the case of a grating spectrometer, only a certain fraction
of the light is diffracted and this fraction is distributed to several orders of
diffraction.

A prism spectrometer’s usefulness is limited to long wavelengths by phonon
absorption. In reality prisms can be applied down to wave numbers of 280
cm−1, or in special cases to wave numbers as low as 180 cm−1.

4.2.3 The Grating Monochromator

In general, grating monochromators are superior to prism monochromators. It
is obviously more difficult to make large prisms than to make large gratings.
Moreover, the spectral resolution depends on the number of lines rather than
on the size of the grating. To calculate the spectral resolution we have to
start from the equation for the difference in optical wavelength for the partial
beams of the grating, which can be read directly from Fig. 4.8.

Δlopt = d(sin θi ± sin θd) . (4.14)

θi, θd, and d are the angle of incidence, the angle of diffraction, and the grating
constant, respectively. The positive or the negative sign is used depending on
whether the diffracted beam is on the same or on the opposite side of the

Fig. 4.8. Diffraction geometry for a
grating and spectral resolution; (F :
focal length, d: grating constant)
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incident beam with respect to the grating normal. Constructive interference
is obtained for Δlopt = mλ.

To sum the partial beams their relative phase difference φ must be con-
sidered, i.e.,

φ = 2π
Δlopt

λ
=

2πd

λ
(sin θi − sin θd) . (4.15)

With the reflection coefficient R, the total field in the diffracted beam is

Er =
√

R

N∑
s=1

E0e
isφ =

√
RE0

1 − eiNφ

1 − eiφ
(4.16)

for a grating with N lines. Since the average intensity in the beam is EE∗,
the interference pattern has the form

Ir = RI0
sin2(Nφ/2)
sin2(φ/2)

. (4.17)

In the directions for which φ/2 = 0 or mπ Ir is maximum which means
constructive interference. Figure 4.9 exhibits interference fringes as a function

Fig. 4.9. Multiple-beam interference
for a grating with N = 20 lines (a)
and with N = 5 lines (b) from (4.17)

of φ for N = 20 and N = 5. The spectral resolution is determined by the width
of the constructive interference line. If δλ is the minimum distance between
two lines which can be resolved, the spectral resolution for the m-th order
spectrum is

R0 =
λ

δλ
= Nm . (4.18)
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For good gratings N is of the order of 2×105 which, in first order, corresponds
to a resolution, expressed as a band pass δν, of 0.1 cm−1 for visible light. In
Fig. 4.9 all orders have the same peak intensity. In reality this is not so. As a
consequence of diffraction of the individual partial beams by the entrance slit
higher order spectra are suppressed as 1/m2.

In practice, the spectrum is recorded by rotating the grating and measuring
the light passing through a small slit on the exit side of the spectrometer.
This step by step method of recording is called single channel detection. In
contrast, for multichannel recording wide parts of the spectrum are recorded
simultaneously, as discussed below and in Chap. 5.

The spectral resolution of a grating spectrometer is not only determined
by the resolution of the grating itself but also by the width of the slits. This
is illustrated by the dashed lines in Fig. 4.8. The reflected light is imaged on
the exit slit by an optical element of focal length F . Hence, the distance δx
of two images generated by a beam with wavelengths λ and λ+ δλ is Fδθ. To
resolve the two images they must be separated by more than the slit width.
This means, δx = Fδθ must be at least equal to the width W of the slit.
Hence2

W = δx =
δx

δλ
δλ = F

∣∣∣∣dθ

dλ

∣∣∣∣ δλ (4.19)

Using (4.14) for Δlopt = mλ the spectral resolution is obtained for very small
angles of incidence as

R0 =
λ

δλ
=

λFm

Wd cos θ
. (4.20)

This yields the spectral bandpass of

δν =
Wd

λ2F
. (4.21)

For the numerical values d = 5 × 10−5 cm, W = 100μm, F = 100 cm, λ =
0.5μm, θ = 0◦, and m = 1 the resolution, expressed as a spectral bandpass,
is δν = 2 cm−1.

The resolution allows to express the etendue by the parameters of the
spectrometer. From (4.5) and (4.20) we have for λ ≈ d

Egr =
WHA2

F 2
=

A2H

F

δλ

λ
=

AR0Hδλ

F
, (4.22)

where we have used R0 = λ/δλ ≈ A/d.
The amount of light transmitted through the spectrometer is determined

by the brightness and the transmission coefficient. The latter depends strongly
2 This equation holds as well for the spectral resolution in a prism spectrometer.
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Fig. 4.10. Efficiency of holographic
gratings with 180 000 lines for unpo-
larized (U), parallel polarized (P) and
perpendicularly polarized (S) light

on the direction of polarization of the incident light with respect to the ori-
entation of the ruling on the grating. Figure 4.10 plots the relative intensities
observed through a spectrometer with holographic gratings versus light wave-
length for a given incident intensity. Obviously light at 647.1 nm is much easier
to observe if it is polarized perpendicularly to the ruling compared to light
with a polarization parallel to the ruling. For blue light it is just opposite.
This characteristic of the response must definitely be taken into account if
intensities for the two directions of polarization are compared. In addition
any partial polarization of the light in either direction may result in incorrect
relative intensities along a spectrum. To avoid this problem it is possible to
use a scrambler, as described in Sect. 4.1. Unfortunately a scrambler only
works properly for highly linearly polarized light.

The distribution of the diffracted light over the different orders is a dis-
advantage of grating monochromators since there is less energy in any single
order. The distribution can be avoided by using special gratings called echel-
let gratings. Since such gratings are mainly employed in the IR they will be
discussed in Chap. 10.

In modern spectroscopy usually multiple monochromators are employed.
They can either be operated in an additive or in a subtractive mode.
Figure 4.11 sketches the setup for a double monochromator in an additive
mode for a Cherny—Turner arrangement. In this case two gratings, three
slits, and four concave mirrors are needed. The incoming light is two times

Fig. 4.11. Schematic setup of a double
monochromator; (M: mirrors, G: grat-
ings, S: slits)



82 4 Spectral Analysis of Light

additively dispersed by the gratings G1 and G2. Scanning occurs by syn-
chronous rotation of both gratings. The resolution and suppression of stray
light is greatly improved compared to a single monochromator.

For further improvement a third monochromator can be arranged behind
the exit slit resulting in a triple monochromator system. The third monochro-
mator must be tuned to be synchronous with the two other gratings. Such
systems are often used for spectroscopic analyses in the immediate vicinity of
a very strong line such as a laser line. In this case the third monochromator
operates with a wide slit and a sharp cut off towards the laser line.

For a subtractive mode the first two monochromators have oppositely di-
rected spatial dispersions. This means after passing the first two monochroma-
tors the light which satisfies the band pass condition is refocused on the exit
slit which serves as the entrance slit of the third monochromator. Only the
latter provides the spatial dispersion. The path of the light beam is sketched
in Fig. 4.12a for the additive and for the subtractive mode. The design is for
use with an optical multichannel analyzer described in the next chapter. For
the additive mode the slit S3 is wide, the linear dispersion and the resolution
are about a factor three higher than for the subtractive mode but the detector
can only record a small part of the spectrum. For the subtractive mode the slit
S3 is narrow, the linear dispersion and the resolution are low but the detector

Fig. 4.12. Schematic drawing of the light path for a triple monochromator op-
erating in the additive (AD) and in the subtractive (SU) mode (a), and ratio of
background scattering IB to grating scattering IG versus distance ν from a laser
line for various multiple monochromators in the additive mode and single-channel
detection, after [4.2] (b); Mi and Si refer to the three monochromators and to the
three slits in use
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can record a much larger part of the spectrum. Stray light rejection is also
much better for the subtractive option. When using an optical multichannel
analyzer the gratings are not rotated.

The suppression of stray light for a single, double, and triple monochro-
mator is compared in Fig. 4.12b. As, for example, in Raman-scattering exper-
iments a stray-light suppression of 10−10 is needed with a double monochro-
mator the laser line can be approached to about 100 cm−1 and with a triple
monochromator to about 20 cm−1.

Grating spectrometers can be used for light energies up to 100 eV, in spe-
cial cases up to 1 KeV.

4.3 Interferometers

If a very high spectral resolution, albeit on a rather narrow spectral range,
is required interferometers must be applied. High quality Fabry–Perot inter-
ferometers which are commercially available are the most frequently used
instruments for this purpose. We will therefore restrict the discussion to this
type and start with a study of plane and parallel plates which are its basic
constructive elements.

4.3.1 Multiple-Beam Interference for a Parallel Plate

The Fabry–Perot interferometer relies on the interference of light multiply
reflected and refracted by a plane parallel plate. As shown in Fig. 4.13, the
EM wave is split on the front and back side of the plate into partial beams
with the amplitudes Er,i and Et,i, respectively. The phase difference φ between

Fig. 4.13. Reflection and transmission
on a plane-parallel plate of thickness d;
(E: partial beam amplitudes)

two consecutive partial beams is

φ =
4πnd

λ
cos θ′i , (4.23)

where d and θ′i are the thickness of the plate and the internal diffraction angle,
respectively, and n is the refractive index of the plate. The partial beams are
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subjected to interference resulting in an enhancement or quenching of the
reflected and transmitted light. Performing a phase coherent summation of
the field amplitudes and then taking the absolute square of the resulting field
the intensities of the two beams are

Ir

I0
=

4R sin2(φ/2)
(1 − R)2 + 4R sin2(φ/2)

, (4.24)

It

I0
=

(1 − R)2

(1 − R)2 + 4R sin2(φ/2)
. (4.25)

R is the reflection coefficient at the interface from outside to inside the plate.
With increasing phase angle φ both equations yield a periodic structure

(with sharp peaks and broad minima in the transmission) representing the
increasing order of the interference.

The relations (4.24) and (4.25) are known as the Airy formulae. Any ab-
sorption in the plate is neglected. The derivation of the formulae is given in
Appendix D.1.

It is common practice to introduce the symbol F for the expression 4R/(1−
R)2. Then (4.24) and (4.25) have the simpler forms

Ir

I0
=

F sin2(φ/2)
1 + F sin2(φ/2)

, (4.26)

It

I0
=

1
1 + F sin2(φ/2)

. (4.27)

The quantity F ∗ which is directly related to F by

F ∗ =
π

2

√
F =

π
√

R

1 − R
(4.28)

is called the finesse of the interference. Since for good mirrors R ≥ 0.99, F ∗

can be of the order of 300.
In general, d � λ so that phase differences between the different partial

beams are large. Then, for components of the spectrum located at ν1 and ν2

the maximum for the m-th order of interference for the first frequency may
coincide with the maximum for the m + 1-th order for the second frequency.
In this case we can obviously not discriminate between these two frequencies.
The minimum distance ν1 − ν2 = Δν where this happens is obtained from
(4.23) and the Airy formulae. For perpendicular incidence it occurs where
Δφ = 2π = 4πndΔν or

Δν =
1

2nd
. (4.29)

Since for this and any larger value of the difference between frequencies the
individual frequencies can not be identified, Δν is called the free spectral range
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of the interferometer plate. On the other hand (4.26) and (4.27) define also the
full width at half maximum φH = φ1−φ2 = φ(ν1)−φ(ν2) for the interference
pattern by

It(φ1) = It(φ2) = I0/2 .

Expressed in phase angles this yields, for reasonably large values of R (F or
F ∗ � 1)

φH =
4√
F

, (4.30)

or, expressed in wave numbers,

(δν)H = (πnd
√

F )−1

Since the free spectral range expressed in phase angles is 2π we obtain for the
ratio between the free spectral range and the half width

Δν

(δν)H
=

2π

φH
=

π

2

√
F = F ∗ , (4.31)

with (δν)H = ν1 − ν2 Thus, the finesse has a very intuitive meaning. It is the
ratio of the distance of two consecutive interference fringes to their width.
Hence, it determines also the spectral resolution ν/δν of the interference. If
we define two frequencies as being resolved if their separation δν is ≥ the half
width of their interference fringes (δν)H, δν equals 1/πnd

√
F . From this we

obtain

ν

δν
=

νF ∗

Δν
= νF ∗2nd . (4.32)

4.3.2 The Fabry–Perot Interferometer

The Fabry–Perot interferometer relies on a multiple-beam interference from
a parallel plate of air contained between two highly reflecting mirrors. Fig-
ure 4.14a is a schematic of the interferometer. The light is multiply reflected
between the mirrors M1 and M2, and the transmitted fraction is imaged on
a screen. For a cylindrical geometry and monochromatic radiation circular
fringes are generated as a result of the constructive and destructive interfer-
ences for off-axis partial beams. The off-axis beams are a consequence of the
finite extension of the light source. The distance between the rings determines
the free spectral range of the interferometer and the width of the rings the
resolution δν. Since n = 1 in the present case the two quantities are given by

Δν =
1
2d

(4.33)
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(b)(a)

Fig. 4.14. Schematic drawing of a single-pass Fabry–Perot interferometer (a) and
interference fringes for the yellow line of Na vapor (b); (L: light source, M1, M2:
mirrors, S: screen, PH: pinhole, PM : photomultiplier)

and

δν =
Δν

F ∗ =
1

2dF ∗ . (4.34)

The finesse F ∗ of the interferometer is again given by the ratio between the
free spectral range and the resolution Δν/δν. Figure 4.14b shows the fringes
for a spectral line with a doublet structure. The small distance between the
concentric rings in one fringe gives the amount of splitting.

Equation (4.25) can be used to evaluate the transmission of the inter-
ferometer, but the absorption A of the mirrors must be taken into account.
Because of the large value of R (R is very close to 1) a large number of re-
flections occurs and even small losses at each reflection cannot be neglected.
The absorption is given by A = 1−R− T where T is the transmission coeffi-
cient. The absorption is taken into account by multiplying (4.25) with T 2/T 2

0

where T 2
0 = (1 − R)2 is the square of the transmission without absorption.

The correction factor contains the square of the transmission ratio because
there are two reflections per round trip. With this correction the transmission
is obtained from

It

Ii
=

1 − 2A/(1 − R)
1 + (4F ∗2/π2) sin2(2πd/λ0)

. (4.35)

The spectral bandpass δν is directly related to the inverse of the finesse,
as can be seen from (4.34). Thus, the resolution improves as the finesse or
equivalently the reflectivity of the mirrors increases.

Very often as, for instance, in inelastic light scattering experiments, we
whish to study a very weak line very close to a very strong line. In these cases
it is crucial for the light extinction ratio between the interference fringes to be
very high. This is described by the contrast C of the interferometer, obtained
from (4.35) by
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C =
I(max)
I(min)

= 1 +
4F ∗2

π2
. (4.36)

This means a high finesse gives also a good contrast. However, it is important
to recall that with increasing R the maximum for the transmission is reduced
by 1− 2A/(1−R). Typical values for a good Fabry–Perot interferometer are:

R = 0.985 F ∗ = 207 Δν = 0.5 cm−1

d = 1 cm C = 5 × 104 δν = 1/2dF ∗ = (1/414) cm−1

A = 0.002

Thus, the resolution of these instruments is of the order of 0.002 cm−1 or
3 × 10−4 meV.

For the practice of spectroscopy it is convenient to have one of the mir-
rors in Fig. 4.14 on a piezoelectric translation stage. Then, the length of the
cavity can be tuned and the interference rings move from or to the center of
the screen. The fringes and the space between them can be tuned very accu-
rately by replacing the screen in Fig. 4.14 with a pinhole and watching the
transmission through it with a photomultiplier. The latter records a signal, as
shown in Fig. 4.15, where the light was assumed to consist of a main line and

Fig. 4.15. Output of a Fabry–Perot
interferometer recorded with a photo-
multiplier

a small satellite close by. This is a very convenient way to record the spectrum
electronically. The physical meaning of the finesse as the ratio between Δν
and δν is particularly evident in this picture.

4.3.3 The Multipass Fabry–Perot Interferometer

Since the contrast in the interferometers described above is only 104, several
attempts were made to improve it by arranging two or more interferometers in
series. The most successful instrument along this line is the multipass Fabry–
Perot interferometer where the interference process is repeated several times
by inserted corner cube reflectors. A possible set up of a five-pass interferome-
ter is illustrated in Fig. 4.16. The diaphragms D were inserted to reduce stray
light. As can be expected, the overall contrast is increased as
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Fig. 4.16. Schematic drawing of a five-pass interferometer; (M: mirrors, CC:
corner cube reflectors, B: diaphragm with pinholes); after [4.3]

C = Cp
1 , (4.37)

where p is the number of passes, and C1 is the contrast for a single pass. The
finesse increases as

F ∗ =
F ∗

1√
21/p − 1

. (4.38)

However the transmission decreases as

T

T0
=
(

1 − A1

1 − R

)2p

. (4.39)

For multipass operation of the interferometers a contrast of the order of 1010 is
easily obtained. This is already very close to stray-light suppression in double
monochromators. As a result multipass Fabry–Perot interferometers are, for
example, widely used for inelastic light-scattering spectroscopy from acoustic
phonons.

Problems

4.1 A doublet structure of a spectral line in the green spectral range has a peak-
to-peak separation of 3 cm−1. Which slit width is needed to resolve it in first order
with a F = 1 m grating monochromator for a 10 cm size grating with 180 000 lines.

(Purpose of exercise: use of an important formula for practical work.)

4.2 Show that for the interference on a plane parallel plate the ratio of the amplitudes
from two consecutive partial beams Er,m+1/Er,m equals the reflection coefficient
R = Ir/I0 for m ≥ 2.

(Purpose of exercise: get familiar with reflection and transmission geometry for
a plane parallel plate.)

4.3 A thin film with index of refraction n = 1.4 shows interference patterns for
excitation with red light close to the line of a HeNe-laser. The next neighbor distance
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of the fringes is 50 cm−1. How thick is the film if the light incidence is normal to the
film surface? Note: In a wave number linear representation the distance between the
fringes is independent of the wave number ν of the light.

(Purpose of exercise: application of interference relationships to thin film optics.)

4.4 Express the free spectral range and the half width for the interference fringes of
a Fabry–Perot interferometer in wavelengths and show that the ratio is again equal
to the finesse.

(Purpose of exercise: change from phase angles to wave numbers and wave-
lengths.)

4.5 Show that the contrast for a Fabry–Perot interferometer is given by 1+4F ∗2/π2.
(Purpose of exercise: use of Airy formulae.)

4.6∗ Show that the finesse for the multipass Fabry–Perot interferometer is given by
F ∗ = F ∗

1 /
√

21/p − 1 where p is the number of passes.
Hint: The interference fringes from (4.24) and (4.25) narrow down as (Ir/I0)

p,
(It/I0)

p for p consecutive passes.

(Purpose of exercise: get familiar with multipass problems.)
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Detection of Electromagnetic Radiation

The radiation used in spectroscopic experiments needs to be measured. Due to
the wide field of applications, radiation detectors must satisfy a large number
of different constraints. Requirements can be high sensitivity, large bandwidth,
high speed, high stability, etc. Hence, a large number of different concepts and
technical realizations exist for the detectors. Their characteristic and basic
properties are:
– the quantum efficiency,
– the signal response,
– the detection limit, and
– the speed.

As in the previous section we will first discuss general forms of radiation
detectors applicable to various spectroscopic techniques. Detectors dedicated
to special spectroscopic methods will be discussed in the corresponding chap-
ters.

5.1 Signal and Noise

Since the radiation intensities in spectroscopic experiments are usually very
low, noise and statistical errors play an important role. The signal to noise
ratio is the quantity which characterizes this problem. The question is very
general and applies to photographic films as well as to photon counting or
photoelectric detection. Figure 5.1 gives an example from a scattering experi-
ment. The figure shows a signal intensity of about 26 counts per second, sitting
on a background signal from the detector of about 23 counts. The noise of the
background is about 4 counts. This gives a signal to noise ratio of 6.5.

The detection of light is determined by the quantum nature of the radi-
ation. The photon is either absorbed in a process relevant to the detection
scheme or not. These are the only two possibilities. The probabilities of such
processes are thus similar to the probabilities of tossing a coin. For coins ei-
ther head or tail may occur and these are exclusive events. The only difference
with the photon absorption is that the probabilities of the two events p and
q = 1 − p are equal in the coin tossing experiment. Each of them is 1/2. For
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Fig. 5.1. Light signal from a scatter-
ing experiment; (S: signal intensity, B:
a background, D: dark signal, N: noise)

the photon absorption the probability p for contributing to the detection pro-
cess may be much smaller than 1. Considering the problem of light detection
in a form appropriate for a description by probability theory we call “signal”
the number of events k of photon absorption processes out of a number of
n ≥ k incident photons. Each single absorption process has a probability p
and q = 1− p is the probability that no absorption occurs or that absorption
does not contribute to the signal. This approach is valid for a wide range of dif-
ferent radiation detectors. The probability for the “constructive” absorption
of k photons is given by the binominal distribution

P (k, n, p, q) =
(

n

k

)
pkqn−k (5.1)

This distribution peaks for k = kmax ≈ p(n + 1). The total signal scales, of
course, with n. For small values of p the binominal distribution can be well
approximated by the Poisson distribution

P (k, n) =
yk

k!
e−y, with y = np ≈ 〈k〉 . (5.2)

For n large enough y is the mean value 〈k〉 of the distribution or the average
magnitude of the signal. Since P is a probability other values of k may be
observed as well. This means the mean signal 〈k〉 is dressed with noise. The
square root of the variance σ2 of the distribution P should be a good definition
for the noise. A rather simple calculation yields 〈k〉 for the variance of the
Poisson distribution. This means the variance is equal to the mean value.
Then, according to the definition above the noise is

σ =
√

〈(k − 〈k〉)2〉 =
√

〈k2〉 − 〈k〉2 =
√

〈k〉 . (5.3)



5.2 Photographic Films 93

Since the signal 〈k〉 increases linearly with the length of the measuring time T ,
the noise increases as the square root of T . The important quantity defining
the accuracy of the measurement is the signal-to-noise ratio which accordingly
increases as

√
T .

5.2 Photographic Films

Photographic films are common light detectors used in the spectral range
from the near-IR to x rays. A large variety of emulsions has been developed
which vary in spectral sensitivity, granularity, speed, resolution, etc., to satisfy
specific requirements. The basic process of the photographic recording is a
reduction of a silver-halide salt during light exposure according to a reaction
of the type

AgBr + h̄ω → Ag + Br.

The latent image created in this way is amplified by the developing process of
the film in which additional silver-halide is reduced, particularly at the sites
of the latent image. The process is terminated by a stopping reaction. In a
final process the unreacted salt is removed from the emulsion and a stable
image is obtained.

The most important signature of an emulsion is its quantum efficiency
η. It determines which fraction of the incoming light quanta participates in
the reduction process. Typical values for η are between 0.01 % and 1 %. The
quantum efficiency depends strongly on the light wavelength and on the grain
size of the emulsion.

From a practical view point the sensitivity equal to the signal response, the
spectral sensitivity and the resolving power are the important characteristics
of the emulsion. The sensitivity is defined as the optical density of the film
after development for a given light exposure. The light exposure is measured
in incident light power times irradiation time, technically described in units
of (candela meter seconds). Figure 5.2 shows the relation between the optical
density and the logarithm of the exposure for a commercial emulsion (Kodak
103a-0). The working range of the emulsion is the part of the curves where
optical density and logarithm of exposure are linearly related. The gradient
(steepness) of the curves can be slightly varied by changing the developing
time. The spectral sensitivity is the change in quantum efficiency with the
light wavelength. For the emulsion 103a-0 the quantum efficiency starts to
decrease rapidly for wavelengths longer than 500 nm.

The resolution is determined by the grain size: the smaller the grain the
higher the resolution. The sensitivity decreases, on the other hand, with de-
creasing grain size so that the grains must not be too small. Resolutions of
50-100 lines/mm are standard.
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Fig. 5.2. Optical density D versus
logarithm of exposure E for a Ko-
dak 103a-0 emulsion. The parame-
ter of the curves is the developing
time

The advantage of the film detectors is the simultaneous recording of all
spectral components of a light beam, provided these components were “dis-
persed” in space by a dispersive spectrometer. Photographic recording is still
widely used in x-ray diffraction experiments. Its disadvantages are mainly the
laborious processing of the films, and the cumbersome and inaccurate eval-
uation procedures of the recorded data. Nowadays direct electrical recording
with photoelectric detectors (photoconductors, photodiodes or diode arrays)
or photomultipliers presents a significant advantage over the photographic
techniques.

5.3 Photomultipliers

In the visible and near-visible spectral range the photomultiplier is the de-
tector of choice in spite of its complicated construction and the related high
manufacturing costs. The simple reason for this is its extremely high sensitiv-
ity. A schematic drawing of a photomultiplier tube is illustrated in Fig. 5.3.
The main parts of the tube are:

Fig. 5.3. Schematic drawing of a pho-
tomultiplier tube; (PC: photocathode, D:
dynodes, A: anode)

– the photocathode,
– the dynodes, and
– the collector (anode).
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Electrons are released at the photocathode by an external photoelectric
effect. Hence, the photocathode must consist of a material with a very low
work function. Multi-alkali compounds are widely used. Semiconductors like
GaAs or InGaAs are employed in more recent models. With such electrodes
a much higher sensitivity is obtained, particularly in the deep-red or near
IR spectral region. Photocathodes are classified according to their chemical
composition like bialkali, trialkali or semiconducting and according to their
spectral sensitivity. The quantum efficiency η is the fraction of released elec-
trons per incident photon. It can be as high as 35 %. In the near IR the
quantum efficiency drops rapidly to zero. The maximum wavelength where a
photomultiplier can be used is 1.2μm. At this wavelength only a photocathode
of S1 type is appropriate with a quantum efficiency of only 0.004 %.

The radiation sensitivity or absolute sensitivity E(λ) represents the sig-
nal response. It is characteristic for the photomultiplier and can be derived
immediately from the quantum efficiency.

E(λ) =
Ic

P
=

eη(λ)N
Nh̄ω

=
eη(λ)
h̄ω

(in A/W) , (5.4)

where Ic is the current at the photocathode, P the incident light power (in
watts), and N the number of incident photons/sec. A cathode sensitivity in
(amperes/lumen) is defined in a similar way. Typical magnitudes for these
quantities are 80 mA/W or 90 A/lm. Figure 5.4 displays the sensitivity versus
wavelength for various photocathodes. The main disadvantage of photomul-

Fig. 5.4. Radiation sensitivity E of various photocathodes versus light wavelength

tipliers is the rapid drop of the sensitivity in the near IR. This drop results
from the drop in the quantum efficiency. If the photomultiplier is used for UV
radiation, the entrance window must be made of quartz.

The second most important characteristic of the photocathode is the dark
current due to the thermal emission of electrons (Richardson emission). It
is determined by the work function ΦA, the temperature, and the size of the
cathode. Thus, small dark currents can be obtained by cooling the photocath-
ode and by reducing its size. In general, cooling to −40 ◦C is good enough to



96 5 Detection of Electromagnetic Radiation

lower the dark current to 1-10 electrons per second and cm2. Cooling in this
range is easily performed with Peltier elements. By reducing the area of the
photocathode to the order of one mm2, a dark current of the order of 0.1 to
1 electrons/s can be obtained. Then signals of the order of 1 photon/s or less
can be measured. This is the detection limit. Dark current characteristics for
several photocathodes are shown in Fig. 5.5.

Fig. 5.5. Photomultiplier dark cur-
rent density jD versus temperature
for various cathodes

Photomultipliers are extremely light-sensitive. After irradiation with day-
light their dark current may be enhanced by several orders of magnitude. It
is therefore quite common to keep photomultipliers cool and in the dark for
several months. Windows made of quartz glass usually give a lower dark cur-
rent than windows of commercial glass because of radioactive inclusions in
the latter.

Electrons emitted from the photocathode are multiplied by secondary
emission at the dynodes. The dynode surfaces are made of CsSb which has a
high coefficient for secondary emission. The potential at each dynode is pinned
by a voltage divider. The construction of the latter determines speed, sensi-
tivity, linearity, etc., of the system. The cross current through it must be at
least an order of magnitude larger than the current along the dynodes to guar-
antee linearity of the detector. Typical operating values for photomultipliers
are 1500 V at the cathode and 1 mA current at the anode. The multiplication
factor G for the electrons is given by the coefficient of secondary emission δ
and by the number n of dynodes

G = δn . (5.5)

A typical value of δ is 5 which, for 10 dynodes gives a gain of 510 ≈ 107. δ
depends, of course, strongly on the voltage applied.

At the anode the arriving electrons are measured either as a current or,
for very low incident light intensities, as a charge pulse per incoming photon.
The total sensitivity of the detector is defined by A/lumen, where A is the
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current at the anode and lumen the incident light flux. Maximum acceptable
power dissipation at the anode is usually 1 W for a resistor RA = 50Ω.

The speed of the detector is determined by RA and the capacitance CA

of the anode. These stray capacitances can be as low as 10 pF which yields
a time constant of 0.5 ns. This is, however, a lower limit. An average time
resolution for a good photomultiplier is of the order of 2 ns.

For very low light intensities a photon counting system is appropriate. In
this case the charge pulses arriving at the anode are counted. Discrimination
of the pulse height with respect to a certain threshold enables background
contributions to be suppressed to a large degree.

Photomultipliers are not only used for the detection of visible light but also
for the detection of electrons, x rays or γ rays. In the last two applications
the high energy of the light quanta must be transformed first to lower values
by a scintillation process. A discussion of such system will be given in Chap.
12.

5.4 Photoelectric Detectors

The continuous progress in semiconductor technology has led to an ever in-
creasing use of photoelectric detectors. This has been the case for the near-
IR, IR, and far-IR spectral range but photoconductors and photodiodes are
also becoming serious competitors to the photomultipliers even in the visi-
ble spectral range. Diode arrays and charge-coupled devices are particularly
attractive.

In this section we will first discuss some fundamental properties of the pho-
toelectric detectors and then study specifically photoconductors, photodiodes,
and diode arrays.

5.4.1 Fundamentals of Photoelectric Detectors

For photoelectric detectors the signal response and the detection limit are
known as responsivity and detectivity . The responsivity is defined as

R =
ΔVS

ΔPI
(in V/W) , (5.6)

where ΔVS is the change in the detector output signal far a change ΔPI in
the incoming light power. To characterize the detectivity we need the noise
equivalent power (NEP ) defined as the light power (in watts) which generates
a signal (in volts) equal to the signal produced by the noise. The inverse of the
NEP is the detectivity D. Obviously this quantity does not only depend on
the magnitude of the generated signal but also on the intensity of the noise.
There are many origins for noise in photoelectric detectors. The noise power
is very often proportional to the square root of the detection bandwidth ΔfR
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and to the square root of the detector area A. It is therefore common practice
to characterize a detector material by its specific detectivity D∗ where

D∗ =
√

ΔfR

NEP

√
A (in m/s1/2W) . (5.7)

D∗ is a standard symbol for this quantity. Since the electric noise is, like any
noise, of statistical origin, the noise signal increases with the square root of the
duration of the measurement. Thus, as discussed before, the signal-to-noise
ratio increases with the square root of the duration of the measurement.

For the detectors to be discussed in this section, as well as for those to be
treated in Chap. 10, the following mechanisms are the most important sources
of noise.

a) Johnson noise (Nyquist noise): The Johnson noise is due to the thermal
motion of the carriers in the resistor. The mean square noise voltage 〈V 2

R〉
across a resistor RD is determined by the temperature from

〈V 2
R〉 = 4kBTRDΔf . (5.8)

Δf is the bandwidth of the detection system. The noise voltage is the
square root of this quantity. It is always present, even without radiation
incident on the resistor. For example, the noise voltage is 5 nV for a 1 KΩ
resistor at room temperature and a 1-Hz bandwidth detection.

b) Generation-recombination noise: This noise, similar to the shot noise in
diodes, is generated by thermal generation and recombination of carriers.
Generation-recombination noise is only observed if current flows through
the detector.

c) 1/f noise : 1/f noise is determined by the detector surface. It is obviously
dominant at low frequencies.

d) Amplifier noise: Each signal amplifier also amplifies the noise at the in-
put. The noise figure of the amplifier measures the amplified input noise
compared to the noise on the output side. The noise figure should be close
to 1.

e) Background noise: Background light incident on the detector is an other
source of noise. This noise is particularly important for the far-IR since
in this spectral range the room temperature radiation already leads to a
considerable noise. The background noise can be reduced by using a cold
filter. If the square of the background noise voltage is larger than the sum
of the squares of the other contributions to the noise the detector is called
ideal or background limited with the acronym BLIP (background limited
photodetector).

5.4.2 Photoconduction Detectors

Photoconduction (PC) detectors play a dominating role, particularly in IR
spectroscopy. For intrinsic photoconduction electrons are excited from the
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valence band to the conduction band by the absorbed photon as shown in
Fig. 5.6a. The conductivity increases with the increased number of carriers

Fig. 5.6. Intrinsic photo excitation between the valence band (VB) and the con-
duction band (CB) of a semiconductor (a) and circuit for a photoconduction de-
tector (b); (RL: load resistor, RD: intrinsic detector resistor, V0: applied voltage,
VS: signal voltage)

in the conduction band and in the valence band. The process of excitation
is possible provided the quantum energy of the radiation is larger than the
energy gap εg of the semiconductor. Obviously, like in photomultipliers, there
is also a hard quantum limit below which the PC detectors can not be used.
Fortunately, there are numerous semiconductors with rather small bandwidths
so that the condition h̄ω ≤ εg is de facto not a real limiting relation. In
addition, photoexcitation of electrons or holes from impurities can also lead
to photoconductivity and is therefore appropriate for radiation detection. The
real limitation for PC detectors comes from the thermal excitation of the
carriers across the gap or from the impurity levels. If there is a large dark
current the sensitivity of the photodetector becomes low.

An electric circuit representing PC detectors is shown in Fig. 5.6b. From
this the signal can be obtained by determining the change of the conductance
ΔG

ΔG =
ΔσA

l
(5.9)

of the resistor RD induced by the incident light. Δσ is the change of the
conductivity of the detector due to irradiation, and A and l are its cross
section and length, respectively. The signal ΔVS is finally obtained from Fig.
5.6b by

ΔVS =
V0RLR2

DΔG

(RD + RL)2
=

V0RLR2
DA

(RD + RL)2l
Δσ . (5.10)

At least for the range of linear photoconductivity ΔG is proportional to the
incident light intensity I0. Then, from (5.10) the signal is maximum for RD =
RL.

The change of the conductivity Δσ is evaluated from the generation
rate g
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g =
αηI0

h̄ω
(in 1/m3 s) (5.11)

and the equation of continuity for the equilibrium state

Δn = gτn, Δp = gτp (5.12)

as

Δσ = eμnΔn + eμpΔp ∝ g ∝ I0 , (5.13)

where α, η, τn, and τp are the absorption coefficient, the quantum efficiency,
and the lifetimes for the generated carriers. Δn and Δp are the number of
carriers generated by the light per unit volume. Obviously, the lifetimes play
a crucial role in determining the sensitivity of the detector. As τ increases so
does the sensitivity of the detector. We can define an amplification factor for
the photoconductor as the ratio between the number of photo carriers passing
the electrode and the number of generated photo carriers, both per unit time.
Amplification factors for good photoconductors are as high as 104.

The lifetime also controls the speed of the detector since it determines the
time scale for the change of the carrier concentration with changing light for
non-steady-state conditions. In this case the equation of continuity yields for
Δn(t)

Δn(t) = Δn(0)e−t/τn , (5.14)

where Δn(0) is the light-induced carrier concentration at t = 0. If τn is large,
only slow changes in the light intensity can be detected. This is a general rule.
The speed of the detection and its sensitivity are inversely related.

In (5.11) to (5.13) it was assumed that the distribution of the photo carriers
is homogeneous which implies a weak light absorption. For strong absorption
the carrier distribution will be inhomogeneous and carrier diffusion becomes
important. The basic properties of the detector such as linearity, sensitivity
and speed are, however, retained. The same holds for photodetectors on the
basis of an extrinsic photoconduction.

The best-known photoconduction detectors are CdS for the visible spec-
tral range and PbS for the IR. For specific applications, particularly in the
IR and far-IR a large number of more sophisticated detectors are available.
Each of them covers only a limited spectral range. Characteristics for selected
photoconduction detectors are presented in Fig. 5.7, together with some pho-
todiodes. From the figure it is evident that several detectors are needed to
cover the spectral range from the visible to the far-IR. For long wavelengths
cooling of the detectors to liquid-He temperatures is required.

5.4.3 Photodiodes

Photodiodes are becoming more and more important. They are widely used
in the IR spectral region but are also useful for high-energy radiation. Diode
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Fig. 5.7. Specific detectivity D∗

versus wavelength for various pho-
toelectric detectors. Photodiodes
are labeled PD. The dashed lines
are ideal values for 77 K and 300
K, respectively; after [5.1]

arrays or imagers also make extensive use of photodiodes. Photodiodes are
usually operated in a reverse-biased mode where the change of the very small
reverse current due to light-induced carrier generation is measured. An alter-
native but rarely used possibility is to measure the light-induced photovoltaic
effect for an unbiased diode. With respect to light absorption, lifetime, and
quantum limit the same relationships apply as for photoconductors. The active
volume is the depletion layer of the pn junction. Unfortunately this volume
is usually very small so that the probability of absorbing a photon is quite
low. The situation can be improved by inserting a small intrinsic conducting
region between the p-type semiconductor and the n-type semiconductor. Such
devices are called p-i-n diodes. The acceptable dimension of the intrinsic layer
is given by the lifetime and diffusion or drift length of the carriers. If the car-
riers recombine before they have left the active zone they will not contribute
to the photocurrent.

Alternatively the sensitivity of the diodes can be improved by using a
solid-state type photomultiplier. This is possible since free carriers can accept
energy from an applied field and generate secondary carriers by impact ion-
ization across the energy gap or from impurity centers. If the applied voltage
is high enough, avalanche-type multiplication occurs. Such devices are called
avalanche photodiodes. Unfortunately the amplification process applies also
to the dark current which means that the noise increases as well. As a conse-
quence the detectivity decreases for too high an avalanche multiplication. This
effect could be suppressed by the discriminator in the case of the photomul-
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tipliers. Since suppression is not possible in avalanche photodiodes, the latter
are not as sensitive as the photomultipliers but they have a faster response.
One can not reach a high amplification without loss in bandwidth. Response
times down to 10−10 seconds and amplification factors up to 104 are com-
mon. The amplification-bandwidth product for good avalanche photodiodes
is 100 GHz. With improved p-i-n structures of the form pipn the speed can
be further increased and amplification-bandwidth products of 250 GHz can be
obtained. These are the RAPD diodes (reach through avalanche photodiodes).
For very fast detection Schottky diodes (metal-semiconductor junctions) are
more appropriate.

5.4.4 Detector Arrays and Imagers

Arrays of very narrowly spaced diodes can be prepared with modern semicon-
ductor technology. The arrangements of the diodes can be one-dimensional,
quasi-one-dimensional or two-dimensional. In a one-dimensional arrangement
the diodes are lined up exactly in one row (diode array). In quasi-one-
dimensional detectors several arrays are used shifted in the direction per-
pendicular to the array. In two-dimensional detectors the diodes are arranged
in a true two-dimensional matrix. This latter arrangement allows a complete
imaging of a two-dimensional signal. The big advantage of the array detectors
is the simultaneous recording of a whole spectrum if the light was dispersed
in the spectrometer. This obviously saves measuring time or equivalently re-
sults in a gain in signal-to-noise ratio. Detectors of this type are called optical
multichannel analyzers with the acronym OMA.

Figure 5.8 presents the effective quantum yield (counts per photon, not
photoelectrons per photons) for one standard and two intensified diode arrays
of silicon. Even though the quantum yield for the single Si diode is between

Fig. 5.8. Quantum yield for a stan-
dard diode array (DA) and for two
intensified diode arrays (IDA)

70 % and 80 % the effective quantum yield is less than the one for photomul-
tipliers even for the intensified array. However, if the array consists of 512
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diodes a factor of about 500 is gained in measuring time. Another advantage
of such detectors is the much better response in the deep red and near-IR as
compared to photomultipliers. This is evident from the figure. Si diode-array
detectors cover a spectral range from 185 to 1100 nm. Typical dimensions for
the diodes (pixels) are 25μm×2.5 mm with a pixel distance of 25μm. With
fast scanning diode arrays scan times down to 13 μs/diode can be obtained
which means 70 spectra per second with a 1024 pixel array.

The low effective quantum efficiency of the diodes can be raised dramati-
cally by image intensifiers as demonstrated in Fig. 5.8. Intensified diode arrays
are hybrid constructions between photomultipliers and array detectors. The
basic concept is illustrated in Fig. 5.9. The light enters the system through

Fig. 5.9. Construction details of
a diode array detector with image
intensifier; (W: window, C: cath-
ode, CP: channel plate, S: screen,
DA: diode array). The horizontally
hatched areas represent fiber optics

a window and gets absorbed by an external photo effect at the photocath-
ode. The released photoelectrons are accelerated by about 250 V towards the
micro-channel plate. The photocurrent gets amplified in the micro channels
across which 700 V are applied. The micro channels act like a photomultiplier
with continuous dynodes. The important point of the imaging plates is the
conservation of the spatial distribution of the light pattern during all pro-
cesses. From the channel plate the electrons are accelerated to a luminescence
screen by 6 KeV to yield an intensified image. This image is finally detected
with the diode array. The photonic gain can be as high as 5×103. Coupling
from the screen to the diode array can be performed with a coherent fiber
optic.

Quasi-one-dimensional detectors are very often constructed as charge cou-
pled devices (CCD detectors). Figure 5.10a shows a schematic picture of a
CCD system. Closely spaced MOS diodes are arranged on a SiO substrate
and biased to establish a depletion layer in the underlying p-Si semiconduc-
tor. Light generates minority carriers under the semitransparent electrodes
which can be read out eventually by transporting them step by step to a col-
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Fig. 5.10. Schematic drawing of a CCD-system (a) and quantum yield η for a
standard and a back thinned chip (b)

lector electrode. This is indicated in Fig. 5.10a by the dashed line. The signal
is the response from either one or several diode lines.

CCD detectors were introduced in light measuring techniques in 1970. A
typical pixel size is 5 × 25μm2 with 512 or 1024 pixels per array. Thus, the
total width of the device is 5 mm for about 1000 pixels. CCD detectors are
characterized by very high sensitivity and an extremely low dark current. For a
liquid nitrogen-cooled CCD system the dark current is as low as 1 electron per
pixel per hour. The read out process is accompanied by a noise of 5 to 6 counts.
The quantum efficiency of a CCD camera is about 40 % in the red, and the
acceptable spectral range is 420 to 1000 nm. In contrast to diode arrays, with
a good electronic an efficiency of 1 count per photoelectron can be obtained.
Quantum efficiency and spectral range can be increased by back-thinning the
CCD chip. In this case the chip is thinned from the back by chemical etching
until even UV light can reach the active zone of the MOS units. Illumination
occurs in these systems from the back. The quantum efficiency can be raised
in this way to 70 % in the whole visible spectral range. With an UV option
the chip can be used down to 200 nm. Quantum efficiencies for a standard
and for a back-thinned CCD chip are shown in Fig. 5.10b. Since for high
gain 1 count per photoelectron is obtained the total effective efficiency can be
0.7 in contrast to 5×10−4 for the diode array. The spectral resolution of the
detector is limited. As for all multichannel systems it is determined by the
spectral range incident on one pixel. This depends, of course, on the pixel size
and on the amount of spatial dispersion generated by the spectrometer.

In very recent technical developments peak quantum efficiensied of 95%
are obtained for EMCCDs (electron multiplication CCDs). This was possible
by inserting electron multipliers operating like avalanche diodes between the
pixels of the CCD and the output amplifier.
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Problems

5.1 Show that the variance for the Poisson distribution equals its mean.
(Purpose of exercise: handle probability distributions.)

5.2 The probability distribution for a signal is a Poisson distribution, the measuring
time available is 10 hours. An optimum signal to noise ratio should be obtained. Is
it better to accumulate one signal for 10 hours or to accumulate 10 1-hour signals
and take the average?

(Purpose of exercise: a very practical measuring problem.)

5.3 Calculate the signal ΔVS for a photoconduction detector with internal resistance
RD and working resistance RL and show that the highest signal is obtained for
RD = RL.

(Purpose of exercise: importance of circuit parameters.)

5.4∗ In a strongly absorbing semiconductor carriers are generated close to the sur-
face. Calculate the steady state distribution of carriers as a function of depth and
the resulting total current for a given applied voltage, a lifetime τ , and a mobility
μ of the carriers.

(Purpose of exercise: recall inhomogeneous carrier distribution.)
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The Dielectric Response Functions

The dielectric function and the functions directly related to it are fundamental
in solid-state spectroscopy. Their derivation is based on a very general descrip-
tion of the reaction of a system to an external force. As long as the reaction
is linear, the response is obtained according to a linear response model and
the relations describing the reactions are called the linear response functions.
Thus, the linear response functions are properties of the solid-state system
itself and are independent of the driving force. This concept is applicable to
the whole spectral range from radio waves to γ rays as well as to spectroscopy
with particles. The linear response is formulated in time and space. Since the
response is, in general, frequency- and wave vector-dependent and since it is
convenient to operate with harmonic functions, a discussion in Fourier space,
both with respect to time and coordinates, is more appropriate. Thus, rather
than studying the response function directly the linear relation between the
Fourier transform of the driving force and the Fourier transform of the system
response are considered. One of the most fundamental response functions is
the electric susceptibility which describes the polarization P (q, ω) generated
by an incident electric field E(q, ω).

P (q, ω) = χ(q, ω)ε0E(q, ω) , (6.1)

which is simply a generalization of the definitions given in Appendix B.2 in
connection with the Maxwell theory.

Another important example for a response function is the relationship
between the displacement D and an applied field E

D(q, ω) = ε(q, ω)ε0E(q, ω) . (6.2)

ε(q, ω) is known as the dielectric function (DF) or relative permittivity of
the solid. Note that we have used in both equations a scalar terminology for
convenience even though field and polarization are vectors and susceptibility
and DF are second-rank tensors. Also, for the purpose of this chapter we will
simplify the problem and use response functions χ(ω) and ε(ω) which depend
only on the frequency. An introduction to a more general description of the
linear response is given in Chap. 14 and in Appendix L.
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We start this chapter by recalling some general relationships between the
optical constants including the Kramers–Kronig relation and continue with
a description of the response of the solids by several simple DF models. For
an extended discussion of DFs of solids in the context of many-body theory
special textbooks like [6.1, 6.2] must be studied.

6.1 Optical Constants, and Kramers–Kronig Relations

6.1.1 Optical Constants

From the Maxwell equations some important relationships can be derived for
optical constants and for the propagation of EM waves in homogeneous media.
Using the wave equation from Appendix B.2 for a non-conducting and non
magnetic medium in one dimension

∂2E(x, t)
∂x2

=
ε

c2
0

∂2E

∂t2
, (6.3)

together with the complex representation of a plane wave from (2.2) we obtain
the dispersion relation for the propagation of the EM wave from

k2 =
ω2

c2
0

ε(ω) . (6.4)

Obviously, ε(ω) determines the dispersion of the wave. Note that in Appendix
B.2 we have used a relationship in the time domain for the definition of ε.
However, this definition does not change if we go to the frequency domain,
since so far ε was only used for harmonic waves. Expressing the propagation
constant k by the index of refraction, as it was done in (2.3), we obtain

kc =
Nω

c0
with N =

√
ε(ω) . (6.5)

We have used the symbols kc and N for the propagation constant and for the
index of refraction since we now allow also complex values for both, and hence
also for the DF. The two functions may be represented as

N(ω) = n(ω) + iκ(ω) , and ε(ω) = εr(ω) + iεi(ω) .

(6.6)

The sign for the imaginary part may be chosen either positive or negative.
We have selected the positive sign, for convenience, in the formulae used later
on. The complex notation for the index of refraction leads immediately to EM
waves damped in space of the form
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E(x, t) = E0ei[(Nω/c0)x−ωt]

= E0e−(2πκ/λ0)xei(kx−ωt) . (6.7)

The expression 2πκ/λ0 describes the attenuation of the field and λ0 is the light
wave length in vacuum. Since the absorption coefficient is usually defined by
the attenuation in intensity written in the form of Lambert’s law

I(x) = EE∗ = I0e−αx (6.8)

we obtain for the relationship between κ and α

α =
4πκ

λ0
. (6.9)

From Maxwell’s relationship N =
√

ε the real and the imaginary parts of
the two functions N(ω) and ε(ω) are correlated via

εr = n2 − κ2, εi = 2nκ (6.10)

or

n =

√
εr + |ε|√

2
, κ =

√
−εr + |ε|√

2
. (6.11)

With these relationships the absorption coefficient α(ω) can be expressed by
the imaginary part of the DF as

α(ω) =
ωεi(ω)
c0n(ω)

. (6.12)

According to its definition the electric susceptibility χ(ω) = ε(ω) − 1 is a
complex function as well.

Finally, even the conductivity defined from j(ω) = σ(ω)E(ω) may be con-
sidered as a linear response function in a conducting medium. To be general
enough we may, in this case, express the displacement current ∂D/∂t in the
first Maxwell equation by the polarization in the form

∂D

∂t
=

∂(ε0E + P )
∂t

=
∂(ε0E)

∂t
+ j ,

where j = ∂P/∂t represents the current density from the polarization of the
bound carriers. Since there is no real need to discriminate between bound and
free carriers as bonding may be arbitrarily weak or strong, we can write the
total current density as the time-derivative of the polarization

j = jfree + jbound + ... =
∂P

∂t
. (6.13)
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P consists of a contribution Pfree = −jfree(0)/iω from the truly free carri-
ers and another contribution Pbound from the more or less bonded carriers.
Likewise, both the susceptibility from P = χε0E and the conductivity from
j = σE will include both components. With this terminology and assuming a
time dependence for the field of the form exp(−iωt) we can write

j =
∂P

∂t
=

χε0∂E

∂t
= −χε0iωE = σE .

This yields

σ(ω) = −iωε0χ(ω) (6.14)

and

ε(ω) = χ(ω) + 1 = 1 +
iσ(ω)
ωε0

. (6.15)

The frequency-dependent conductivity is now also a complex function with
the components σr and σi. Finally, it is very useful to express the absorption
from (6.12) as a function of the conductivity. Inserting from (6.15) yields

α(ω) =
σr(ω)

n(ω)ε0c0
. (6.16)

Accordingly, a material with a low resistivity has a high absorption.

6.1.2 Reflection and Transmission

Since information about solid materials is very often obtained from reflection
experiments, the propagation of EM waves across planar interfaces between
materials with different optical properties must be studied. This can be done
by considering the continuous transitions of the tangential component of the
E and H fields, and the conservation of energy. For the special case of inci-
dence perpendicular to the boundary between two media with relative index
of refraction N(ω) these conditions are

Ei−Er = Et (continuity) and Hi+Hr = Ht (energy conservation) , (6.17)

where i, r, and t refer to the components of the incident, reflected, and trans-
mitted fields, respectively. The minus sign in the relationship for the electric
field follows from the assumption that the reflection occurs at the boundary
to a medium with higher optical density. If the reflection was at a bound-
ary to a medium with lower optical density, the minus sign would be for
Hr. The expression for the energy conservation in (6.17) is obtained from
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EiH i = ErHr + EtHt by replacing the electric fields with the H-fields from
the second Maxwell equation. Using the relation between E and H from (2.5)
(6.17) yields for the complex field reflection coefficient rc

rc =
Er

Ei
=

N − 1
N + 1

. (6.18)

The reflectivity is the reflection coefficient for the intensities and immediately
obtained from (6.18) as

R = rcr
∗
c =

(n − 1)2 + κ2

(n + 1)2 + κ2
. (6.19)

For a non-perpendicular light incidence a more general treatment is re-
quired. The reflection coefficients for the field are then given by the Fresnel
formulae. Appendix E.1 discusses these formulae in more detail.

The situation becomes much more complicated if the radiation is transmit-
ted through a parallel plate. In this case transitions at two boundaries (from
medium 1 to medium 2 and from medium 2 to medium 3) and multiple-
beam interference has to be considered. The geometrical situation is similar
to the case of the Fabry–Perot interferometer discussed in Sect. 4.3, but it
is more complicated because absorption now plays an essential role. Even for
perpendicular incidence the equations become rather complicated. However,
experiments of this type are very important and are often applied to measure
absorption coefficients of solids. Generalized relations for transmission and
reflection are discussed in Appendix E.2.

For the special case where medium 1 and 3 are the same and the interfer-
ence fringes are not resolved, simplified formulae can be given for the averaged
transmission 〈T 〉 and reflection 〈R〉. In the case of a plate with thickness d we
have

〈T 〉 =
(1 − R)2(1 + κ2/n2)e−αd

1 − R2e−2αd
(6.20)

and

〈R〉 = R(1 + 〈T 〉e−αd) . (6.21)

Here averaging means that the transmission or reflection coefficient is aver-
aged over the phase angle for the partial beams. This averaging may occur
automatically in the experiment if the surfaces are not smooth enough or the
absorption is too strong to allow for the development of interference fringes.
A more general discussion of the optical response from optical multi-layers is
given in [6.3].

6.1.3 Kramers–Kronig Dispersion Relations

The Kramers–Kronig dispersion relations are integral relationships between
real and imaginary parts of a function f(ω) defined in the complex frequency
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plane. The linear response functions such as ε(ω), χ(ω), N(ω), etc., are exam-
ples. A generalized description including the conditions for which Kramers–
Kronig relations hold is given in Appendix L.1. One of the requirements for
the relationships to be valid is that the response function vanishes for ω → ∞.
This can be expected for the susceptibility since the DF approaches 1 for very
high frequencies. The Kramers–Kronig dispersion relations for the suscepti-
bility can be written in the form

χr(ω0) =
2
π

P
∫ ∞

0

ωχi(ω)
ω2 − ω2

0

dω (6.22)

and

χi(ω0) = −2ω0

π
P
∫ ∞

0

χr(ω)
ω2 − ω2

0

dω . (6.23)

P represents the principal value of the integral. Similar relationships are avail-
able for the DF and for N(ω). With these relationships one component of the
response function can be calculated step by step if the other component is
known for the whole spectral range. This is extremely important since often
only one component can be determined easily from an experiment. However,
this component must be known for the whole frequency range. Since the full
frequency range cannot be covered experimentally proper extrapolations are
required.

To see how good the Kramers–Kronig relationships work even for a finite
range of integration we give an example in Fig. 6.1 for the case of ε(ω). It is

Fig. 6.1. Dielectric function
for a damped harmonic os-
cillator; (—) εr, (−−−) εi as
calculated from the function
(6.24), and (...) εi as cal-
culated from the Kramers–
Kronig relation

assumed to have the form

ε(ω) = 1 +
A

ω2
T − ω2 − iγω

(6.24)
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with A= 2250, γ = 20, and ωT = 50. We can of course calculate the real
part and the imaginary part and plot them as shown in Fig. 6.1. Alterna-
tively we may insert the real part into a Kramers–Kronig relation for the DF
and calculate εi numerically. To mimic experimental errors the function was
only integrated up to the frequency 600. Despite this the reproduction of the
imaginary part is very good.

A technique used very often to find the DF of a solid is to measure the
reflectivity R(ω) over a wide frequency range. The square root of this value
equals the amplitude of the complex field reflectivity rc. Thus, with rc = |rc|eiφ

and (6.19) we find

ln rc(ω) = ln
√

R(ω) + iφ(ω) , (6.25)

where rc(ω) is given by (6.18). φ(ω) is the phase of rc(ω). The real part and
the imaginary part of (6.25) are Kramers–Kronig related in the form

φ(ω0) = −2ω0

π
P
∫ ∞

0

ln
√

R(ω) − ln
√

R(ω0)
ω2 − ω2

0

dω . (6.26)

This means, from a measurement of R1/2 we can determine the phase φ(ω),
and, in turn, n(ω) and κ(ω) or the DF ε(ω).

Another important response function is the energy loss function Im{−1/ε(ω)}.
It is related to ε(ω) by

Im
{
− 1

ε(ω)

}
=

εi(ω)
ε2
r (ω) + ε2

i (ω)
(6.27)

and describes the loss of energy of particles or quasi-particles on their way
through the solid. We will return to this function and to more details about
DFs in Chaps. 14 and 15.

A listing of Kramers–Kronig transformations for often used response func-
tions is given in Appendix E.3.

6.2 Physical Origin of Contributions to the Dielectric
Function

The DF is determined by the possible excitations of the solid. These exci-
tations can be of very different nature depending on the frequency range
considered. Qualitatively the following processes, listed by increasing spectral
energy, can be expected to dominate the DF:
– dielectric relaxation processes,
– lattice vibrations (optical phonons and librons),
– free carrier absorption,
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– excitons and absorption across the energy gap,
– valence electron polarization and interband transitions,
– valence band plasmon absorption (only in second order for optical absorp-
tion),
– transitions into higher bands,
– transitions from core levels.
In principle, even magnetic excitations on the low-energy side and nuclear
excitations on the high-energy side could be added to the list. In some ranges
of the spectrum and for some applications it is enough to characterize the
DF by its imaginary part and thus to study only the optical absorption ver-
sus excitation energy. In these cases we can schematically plot the absorption
coefficient α versus excitation energy (Fig. 6.2).

Fig. 6.2. Schematic representation of the absorption coefficient in solids for the
various excitation processes; low-energy range (a), high-energy range (b)

All transitions require the conservation of energy and momentum. Since, at
least for the visible spectral range and below, the wave vector of the photons
is very small only excitations with wave vectors q ≈ 0 can contribute to the
DF. This condition is, of course, not required for excitations with electrons,
neutrons, x ray or γ quanta. The DF for the latter cases will be discussed in
Chaps. 12–15 and 17.

6.3 Model Dielectric Functions

Since in general, it takes a lot of effort to calculate the DF directly from the
electronic structure model DFs are very useful.

6.3.1 Dielectric Function for Harmonic Oscillators

A simple but very useful DF can be derived for a set of damped harmonic
oscillators. A harmonic electric field E(t) excites a harmonic oscillator with
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mass m, charge e, damping γ and eigenfrequency ωT. In a one-dimensional
picture the equation of motion reads

mẍ + mγẋ + mω2
Tx = eE1e−iωt . (6.28)

The subscript T indicates a transverse oscillator frequency since only for such
modes a coupling to the transverse electric field is possible. The representation
(6.28) is very general. It is useful for the description of lattice modes as well
as for electronic transitions and, in the limit of ωT → 0, even for free carriers.
A particular solution of (6.28) is x = x0 exp(−iωt). Inserting into (6.28) yields

x =
e

m

E1 exp(−iωt)
ω2

T − ω2 − iωγ
. (6.29)

If there are n oscillators per unit volume we obtain for the polarization P

P = nex (6.30)

and from the relationship between electric field and polarization

P = χε0E = (ε − 1)ε0E (6.31)

the susceptibility for the oscillators as

χosc =
ne2/mε0

ω2
T − ω2 − iωγ

. (6.32)

The corresponding DF is χosc + 1.
To be general enough for a realistic system a contribution from the defor-

mation of the ion cores by the electric field must be added to the polarization
of (6.30). This contribution is described by an optical susceptibility χopt (or
χ∞). While the contributions of the oscillators dominate the susceptibility in
a frequency range close to ωT, the polarization from the ion cores dominate
at high frequencies. The corresponding DF given as χ∞ + 1 is therefore often
assigned as ε∞. The DF from the ion cores is determined by the relation of
Clausius and Mosotti

ε∞ = χ∞+1 =

∑
j njαP,jε0

ε0 +
∑

j(njαP,jε0/3)
+1 =

∑
j njαP,j

1 +
∑

j(njαP,j/3)
+1 , (6.33)

where αP,j (in m3) and nj (in m−3) are the atomic polarizabilities and the
density of the atoms of type j in the crystal, respectively. This relationship
holds at least as long as the generated local field is given by the Lorentz
equation [6.4]. For very high frequencies, that is in the spectral range of x
rays, α becomes 0 and ε∞ becomes 1.

As described here αP is a local response function which creates the dipole
moment P in an atom or in a molecule by an applied field as
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P = αPε0E . (6.34)

It is related to the DF by αP = V (ε(ω) − 1), where V is the volume of the
atom or molecule. This holds as long as depolarization effects are not relevant.

Considering the additivity of the polarization we can write a very useful
model DF as

ε = χ∞ + χosc + 1 = χosc + ε∞ ,

or explicitly

ε = ε∞ +
ne2

ε0m

1
(ω2

T − ω2 − iωγ)
= ε∞ +

ω2
p

(ω2
T − ω2 − iωγ)

, (6.35)

where the plasma frequency ωp was introduced as

ωp =

√
ne2

ε0m
. (6.36)

Relation (6.35) is often called the Kramers–Heisenberg or dipole dielectric
function with real and imaginary part as

εr = ε∞ + ω2
p

ω2
T − ω2

(ω2
T − ω2)2 + ω2γ2

,

εi = ω2
p

ωγ

(ω2
T − ω2)2 + ω2γ2

. (6.37)

In the case of a mechanical oscillator, like a phonon, ωp is the ion plasma
frequency and e and m are the effective charge and the reduced mass of the
oscillator.

The Kramers–Heisenberg DF can easily be generalized to an arbitrary
number of different oscillators, as for example, for a set of polar lattice modes.
In this case and by separating real and imaginary part we obtain

ε = ε∞ +
∑

j

(
ω2

jp(ω2
jT − ω2)

(ω2
jT − ω2)2 + ω2γ2

j

+ i
ωω2

jpγj

(ω2
jT − ω2)2 + ω2γ2

j

)
. (6.38)

An important further generalization of the Kramers–Heisenberg DF is ob-
tained by introducing a generalized oscillator strength. From (6.35) and (6.38)
ω2

p = ne2/ε0m obviously determines the strength of the response of the system
to the electric field. Thus, instead of just counting the number of oscillators
we may replace ω2

p by a generalized function S which describes the strength of
the response. It turns out to be convenient to introduce S as the dimensionless
(reduced) oscillator strength

Sj = ω2
jp/ω2

jT (6.39)
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The Kramers–Heisenberg DF has then the generalized form

ε = ε∞ +
∑

j

(
Sjω

2
jT(ω2

jT − ω2)
(ω2

jT − ω2)2 + ω2γ2
j

+ i
Sjωω2

jTγj

(ω2
jT − ω2)2 + ω2γ2

j

)
. (6.40)

In this form the oscillator strength Sj is used as a parameter or may be
calculated eventually from a quantum mechanical model.

Returning to the simple form of the DF given in (6.35) or (6.37) we note
that an imaginary part in the DF is only obtained for γ �= 0. In contrast, the
imaginary part κ of the index of refraction can be nonzero even for γ = 0. In
this case εi = 0 but κ may be �= 0 if εr = −κ2 is negative. For these conditions
n will be zero from (6.11) and the reflectivity will be 1 from (6.19). Following
(6.37) this situation is indeed possible for ω2 > ω2

T. With ω increasing further,
however, the contribution of ω4 in the denominator makes εr again positive.
The frequency for which εr becomes 0 is labeled ωL and called the longitudinal
component of the oscillator. From (6.37) ωL is obtained for γ = 0 as

ω2
L = ω2

T + ω2
p/ε∞ . (6.41)

In the spectral range where εr is negative, i.e. between ωT and ωL reflection is
very strong. Since multiple reflections from an interface selectively emphasizes
this spectral range, it is called Reststrahlenbande. If ωT lies in the far-IR as it
is the case for optical phonons, the multiple reflections can be used to select
a narrow band of far-IR radiation.

Inserting ωL for ωp in (6.37) we obtain for γ = 0

εr = ε∞
ω2

L − ω2
T

ω2
T − ω2

+ ε∞ = ε∞
ω2

L − ω2

ω2
T − ω2

. (6.42)

In this form a discussion of the DF is particular instructive. A qualitative plot
of the equation is shown in Fig. 6.3. εr becomes negative for ωT ≤ ω ≤ ωL.
For negative εr and vanishing εi n will be zero from (6.11) and thus the
reflectivity will be 1 from (6.19). Between TO and LO frequency the light is
totally reflected.

The famous Lyddane–Sachs–Teller relation follows immediately from (6.42).

ε(0)
ε∞

=
ω2

L

ω2
T

. (6.43)

Since ε(0) is always larger than ε∞, ωL > ωT follows.
When discussing the dispersion of the prism we already mentioned the

influence of the lattice oscillator on the propagation constant n(ω). Note also
that the function used in Sect. 6.1.3 to demonstrate the Kramers–Kronig re-
lation obviously had the form of a Kramers–Heisenberg DF. Finally, it should
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Fig. 6.3. Real part of the Kramers–
Heisenberg dielectric function for an
undamped oscillator

Fig. 6.4. Measured reflectivity R of a sin-
gle crystal CdS and calculated components
n and κ of the index of refraction; after
[6.5]

be stressed again that it is enough to know the frequency dependence for one
of the functions εr, εi, χr, χi, n, κ, αr, αi, or R to obtain the full DF. Figure
6.4 shows the experimentally observed reflectivity for a CdS single crystal
together with two components of the index of refraction as evaluated from
(6.26) and (6.18).
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6.3.2 The Dielectric Function for Free Carriers

The dielectric response function for free carriers can be derived immediately
from (6.28) by taking ωT = 0. Again, as for the Kramers–Heisenberg DF,
this response function is strongly simplified as it does not take into account
any dependence of the excitations in the electron gas on the wave vector of
the electrons. The differential equation (6.28) can be reduced to first order by
introducing the particle velocity ẋ = v. Expressing γ by an inverse collision
time as γ = 1/τ it yields

m∗v̇ + m∗v/τ = eE1e−iωt . (6.44)

For v = v0 exp(−iωt) the amplitude j of the current density becomes for n
carriers per cm3

j = nev =
ne2

m∗
τE1

1 − iωτ
= σE1 . (6.45)

With σ0 = ne2τ/m∗, the conductivity is

σ =
σ0

1 − iωτ
=

σ0

1 + ω2τ2
+ i

σ0ωτ

1 + ω2τ2
. (6.46)

Using the relationship (6.15) between DF and conductivity from Sect. 6.1.1,
the DF for the free carriers is

εD(ω) = ε∞ +
iσ0

ε0ω(1 − iωτ)
, (6.47)

or

εD(ω) = ε∞ +
iω2

pτ/ω

1 − iωτ
= ε∞ −

ω2
p

ω2 + iω/τ
, (6.48)

where for the purpose of generality the contribution of the core electrons
was added. This DF corresponds to the Drude model for free carriers and is
therefore often called the Drude dielectric function. Separating the real and
imaginary part yields

εD = εDr + iεDi = ε∞ −
ω2

pτ2

1 + ω2τ2
+ i

ω2
pτ/ω

1 + ω2τ2
. (6.49)

An important special case of (6.49) is obtained for a loss-free plasma which
means τ = ∞. In this case εD(ω) is real and has the value

εD(ω) = ε∞ −
ω2

p

ω2
. (6.50)
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The zeros of this DF correspond to the longitudinal plasma oscillation with fre-
quency ωpl = ωp/

√
ε∞. This oscillation is a possible excitation of the plasma

in the form of a quantized quasi-particle called the plasmon. In first order
the plasmon cannot be excited by an EM wave because of its longitudinal
character. Thus, it does not immediately contribute to the response for EM
radiation. More details about the response and the dispersion of plasmons will
be given in Sect. 15.1.

Equation (6.50), and in a related way also (6.49), define a frequency range
for which ε = εr ≤ 0. In this range the index of refraction will be purely
imaginary and thus R will be 1. The corresponding range is limited by the
longitudinal plasma oscillation frequency ωpl. This behavior is called a plasma
reflection and is very well known in semiconductor and metal physics. For the
undamped plasma it starts approximately at the plasma oscillation frequency
and extends to zero frequency. Since τ was assumed ∞ ( γ = 0) plasma
reflection takes place without energy loss. It is due to a powerless current of
the electrons.

Fig. 6.5. Reflection for systems with free carriers; n = 1022 cm−3, ε∞ = 1 (a)
and n = 1017 cm−3, ε∞ = 11 (b). The dashed lines are for finite damping. The
numbers indicate ωpτ

Interestingly the shape of the plasma reflection depends strongly on the
magnitude of ε∞, as shown in Fig. 6.5 for various values of ωpτ . Therefore it
has different character for semiconductors and metals. For the latter ε∞ ≈ 1
and the reflection drops rapidly from 1 at ωp but approaches 0 only for very
large frequencies. In contrast, for semiconductors where ε∞ is large, ωp is
quite different from ωpl. The reflectivity drops sharply to zero close to ωpl

(for τ = ∞) and increases back to the value given by ε∞. Figure 6.6 exhibits
experimental results for the plasma reflection of aluminum and heavily doped
InSb. The large value for the plasma edge for Al is due to its high carrier
concentration. The plasma reflection passes through zero in the case of InSb
(Fig. 6.6b).
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Fig. 6.6. Plasma reflection for aluminum, after [6.6] (a), and for heavily doped
InSb, adapted from [6.7] (b). The carrier concentration for Al is n = 18 ×
1022 cm−3, the concentration for InSb is given in units of 1018 cm−3

For another limit which is often observed in semiconductors the absorption
coefficient α as given by (6.12) can be approximated for ωτ � 1 (collision-free
plasma) and ωp � ω. In this case n(ω) ≈ √

ε∞ and

α =
ω2

pλ2
0

4π2
√

ε∞τc3
0

∝ ω2
pλ2

0 . (6.51)

An example for a free carrier absorption under these conditions is presented
in Fig. 6.7 for InAs. The linear relationship between λ and α in the double
logarithmic plot confirms the power law of (6.51). The slope for the lines

Fig. 6.7. Free carrier absorption in InAs
for different carrier concentrations given in
units of 1017 cm−3; after [6.8]
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is about 2.7. For n = 2.5 × 1017 cm−3, λ = 15μm and α = 30 cm−1 (as
taken from Fig. 6.7) τ becomes 10−10 s for a typical value of 10 for ε∞ and
an effective mass for InAs of 3 × 10−2m0. With these values the limiting
conditions ωτ = 10 � 1 and ωp = 1012 s−1 � ω = 1013 s−1 are well satisfied.

The quantity ωp is determined by the density of oscillators which, in the
present case, is the density of free carriers in the conduction band. More gener-
ally the value of ωp depends on the energy range considered or, more precisely,
on the energy range which can be excited in the solid. As an example, for low-
energy excitation, only the electrons and holes from the conduction band and
from the valence band contribute to ωp. For higher excitation energies the
relevant plasma is established by all valence electrons. If the solid is excited
in the energy range of 20-30 eV even electrons from the lower orbitals (for in-
stance, the d electrons in Ge) contribute to the plasma frequency. This means
several plasma oscillations can be excited in a solid. However, a high plasma
reflection which extends to zero frequency can only originate from free carriers
since it implies a vanishing oscillator energy for the single-particle excitation.

6.3.3 Dielectric Functions for Combined Free Carrier and
Oscillator Response

An other very often studied combination of DFs is constructed from a Drude
response and a response from band to band oscillators. In almost all metals
experiments show a rather strong deviation from a Drude behavior for large
enough light energies. For gold this deviation occurs already in the visible spec-
tral range where d-band transition start to contribute to the DF. Figure 6.8

ωp ωT γ
(in eV)

Drude 8.8 0.08
s = 1 0.8 2.6 0.2
s = 2 1.3 2.8 0.3
s = 3 3.5 3.1 0.9
s = 4 8.6 4.5 2
ε∞ 1.25

Fig. 6.8. Left: εr and εi for gold crystals. Symbols are experimental results,
after [16.7]. The full lines are fits with a combined Drude and oscillator re-
sponse. The dashed line is a Drude fit. Right: Parameters for the Drude and
for the oscillator contributions
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depicts some experimental results (symbols) for the DF as obtained from re-
flectivity measurements.

The DF exhibits a good Drude behavior up to almost 2 eV. For higher
energies the d-band transitions contribute. These transitions must be evalu-
ated quantum-mechanically but formally one may replace them by oscillator
contributions. The full drawn lines in the figure were obtained from

ε = ε∞ −
ω2

p

ω2 + iωγ
+

4∑
s=1

[
ω2

spT

(ω2
sT − ω2 − iωγsT)

]
(6.52)

with parameter values as depicted in Fig. 6.8, right. A response function for
gold covering an even wider spectral range is depicted in Chap. 15, Fig. 15.8.

6.3.4 Oscillator Strength and Sum Rules

In Sect. 6.3.1 a constant S was introduced to provide a generalized description
for the strength of the oscillators. The same could have been done in Sect. 6.3.2
for the transitions of the free carriers. Physically S is related to the probability
f that an oscillator is actually excited. Hence, another quantity f is often
defined from S by

S =
ω2

pf

ω2
T

.

The total activity of the oscillators for the whole frequency range is described
by the sum of all oscillators and can be expressed by a sum rule ( or f-sum
rule) for the oscillator strengths. Several sum rules exist. An often used rule
which holds for the first moment of the imaginary part of the DF has the form

∫ ∞

0

ωεi(ω) dω =
∑

j

πω2
jTSj

2
. (6.53)

This relation is independent of the form of εi. The integral on the left-hand
side of the equation can be determined from a numerical evaluation of an
experiment. The result can be used to calibrate the experiment on an absolute
scale. If only one oscillator is considered the right-hand side of (6.53) yields
πω2

p/2 for S inserted from (6.39). For free carriers in a Drude model ωp is the
plasma frequency given by (6.36). For phonons the corresponding ion plasma
frequency ωip with

ω2
ip =

ne∗2T

ε0MR
(6.54)

must be used, where n is the concentration of the oscillators, MR their reduced
mass, and e∗T the effective transverse charge. Phonons which have an effective
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transverse charge �= 0 create a dipole moment and are called polar. Only
polar modes can interact (directly) with the light. The sum rule for εi is
easily rewritten for the real part of the conductivity σ as

∫ ∞

0

σr(ω) dω =
πε0ω

2
p

2
. (6.55)

Another important sum rule is obtained from the Kramers–Kronig relation
for the DF of lattice modes

εr − ε∞ =
2
π

∫ ωc

0

ωεidω

ω2 − ω2
0

. (6.56)

where ωc is a frequency above the lattice modes but below optical transitions.
For ω0 = 0

∫ ωc

0

εi(ω)
ω

dω =
π

2
[ε(0) − ε∞]. (6.57)

follows. This shows that the difference between the static and the optical
dielectric constant comes from the integrated activity of the oscillators at
finite frequency.

6.4 Experimental Determination of Dielectric Functions
(Ellipsometry)

As we have learned above, it is enough to measure one of the components
of the DF and use the Kramers–Kronig transformation to obtain the other
component. This process may still be cumbersome since the one component
must be measured over the whole frequency range. In alternative methods
both components of the DF are determined simultaneously over a limited
frequency range. In this case a Kramers–Kronig analysis is not needed. A
standard procedure for this approach consists in the analysis of elliptically
polarized light obtained after reflection from a plane surface of the material
under investigation. Accordingly, this technique is called ellipsometry.

Figure 6.9 shows schematically a setup for an ellipsometer. The basic ele-
ments are the polarizer which gives linearly polarized light, the compensator
which provides a well defined ellipticity, the sample surface to be investigated
and the analyzer to check the ellipticity of the light after reflection. These
instruments are called PCSA ellipsometers according to the main elements of
the system. In addition to these basic elements, a broad band light source, a
monochromator, and a detector are needed for spectroscopy.

To fully characterize elliptically polarized light of frequency ω seven pa-
rameters are needed. Three parameters define the orientation of the wave in
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Fig. 6.9. Schematic set up for a PCSA ellipsometer; (LS: light source, M:
monochromator, P: polarizer, C: compensator, S: sample surface, A: analyzer, D:
detector); PCSA is the acronym for polarizer, compensator, surface, and analyzer

space and the remaining four describe the intrinsic polarization properties.
In the following discussion propagation in z direction is assumed. Then, the
remaining four parameters determine the orientation of the ellipse described
by the electric-field vector in the xy plane, the shape of the ellipse, and the
magnitude and absolute phase angle (as seen from the origin) of the electric
field. These parameters are used to express the two components of the field
in the x and y direction as a plane wave

Ex = E0xei(kz−ωt−δx)

Ey = E0yei(kz−ωt−δy) . (6.58)

To describe the state of polarization of the wave only the two amplitudes
E0x and E0y and the two phases δx and δy are necessary. Thus, any state of
polarization can be characterized by a two dimensional vector of the form

E = (E0xeiδx , E0yeiδy ) , (6.59)

where the two components are complex numbers. These vectors are called
Jones vectors and are utilized in ellipsometry to describe elliptically polarized
light. The intensity of the light is given by the product EE∗. The Jones
vectors for light linearly polarized parallel to x or y and for left-circularly
polarized light are

E(‖x) = E0(1, 0),
E(‖y) = E0(0, 1),

E(lcp) =
E0√

2
(1,−i) . (6.60)

Note that the relative magnitude |Ey/Ex| and the phase difference exp[i(δy −
δx)] are enough to characterize the ellipticity of the light.

If light is transmitted or reflected by an optical element which is active
with respect to the state of polarization, the Jones vector will be changed
to another Jones vector. Typical examples of such elements are polarizer,
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phase plates or any type of reflectors, including the reflecting surface of the
sample to be investigated. Since the transformation of one vector into another
is performed by a matrix, each optical element is represented by a matrix T
which is called the Jones matrix. As an example the Jones matrix for a phase
plate of thickness d is given in diagonalized form by

T =
(

exp(−iδ1) 0
0 exp(−iδ2)

)
,

with δj = 2πnjd/λ. j = 1, 2 stands for the extraordinary and for the ordinary
beam, respectively. The matrix is diagonal for x and y oriented parallel and
perpendicular to the optical axis of the phase plate.

For each optical element there exists a state of polarization which remains
unchanged upon transmission. The corresponding Jones vector is called an
eigenvector of the Jones matrix for the element. For example, the Jones vectors
for polarization directions parallel and perpendicular to the plane of incidence
are eigenvectors for any reflection element. Each Jones matrix has eigenvalues
which are calculated from the diagonalization procedure in the usual way. For
a reflection element the eigenvalues are the complex reflection coefficients for
the amplitudes of waves polarized parallel and perpendicular to the plane of
incidence, defined as

rp =
Er,p

Ei,p
= |rp|eiδp rn =

Er,n

Ei,n
= |rn|eiδn . (6.61)

If the light traverses several optical elements the product of the corresponding
Jones matrices describes the total change of polarization. The change in the
state of polarization in the set up of Fig. 6.9 can be calculated as the product
of the matrices for the elements P, C, S, and A from which the Jones matrix
for the surface of the sample can be determined. The ratio rs = rp/rn of the
complex eigen values of the resulting Jones matrix written in the form

rs =
rp

rn
= tan ψeiΔ (6.62)

with

tan ψ =
∣∣∣∣rp

rn

∣∣∣∣ and Δ = δp − δn

is used to determine the DF ε(ω). Equation (6.62) is called the ellipsometer
equation and ψ and Δ are the ellipsometric angles. Physically tan ψ is the
ratio of the field attenuation upon reflection for light polarized parallel and
perpendicular to the plane of incidence, and Δ gives the corresponding phase
difference. From the ratio of the eigenvalues of the Jones matrix the DF is
obtained from
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ε(ω) = sin2 φ + sin2 φ tan2 φ

(
1 − rs

1 + rs

)2

, (6.63)

where φ is the angle of incidence of the light with respect to the sample surface
and the reflection is versus vacuum. (Note: φ = 90◦ is not allowed since it does
not define a plane of incidence and therefore rs can not be evaluated.)

For the explicit experimental determination of rs either a zero method
(zero ellipsometer) or a rotating analyzer (rotating analyzer ellipsometer) is
used. An extensive description of ellipsometry can be found in [6.9].

Like all reflectivity measurements ellipsometry is very sensitive to contam-
ination of the surface of the sample. Hence this technique is also very useful
for the analysis of thin films on a surface.

Problems

6.1∗ Determine the reflection coefficient R at an interface for perpendicular incidence
using energy conservation and the continuity of the electric field at the transition.

(Purpose of exercise: derivation of a very important quantity in spectroscopy.)

6.2 The frequency dependence of the absorption coefficient is often directly related to
the frequency dependence of εi. Discuss to what extent this is justified by evaluating
α(ω) and εi(ω) explicitly for a Kramers–Heisenberg DF with strong absorption.

(Purpose of exercise: prove an often used approximation.)

6.3a Specify the equations for the reflection from thin films on a substrate for
the case of a plane-parallel plate in vacuum and thus provide a proof for the Airy
formulae.

(Purpose of exercise: training in thin film optics.)

6.4 Show how the DF can be obtained from the magnitude and the phase angle for
field reflection.

(Purpose of exercise: gain experience with Kramers–Kronig transformations.)

6.5 Show explicitly that the Kramers–Kronig relation holds for a Kramers–Heisenberg
DF.

(Purpose of exercise: gain experience with Kramers–Kronig transformations.)

6.6 Show that the reflectivity from a Drude DF has a minimum for semiconductors
but not for metals.
(Hint: Study the simplified case for τ = ∞) and show that the reflectivity becomes
zero for ω2 = ω2

p/(ε∞ − 1) in this case.
(Purpose of exercise: use of the Drude DF.)

6.7 Give a proof of the sum rule for the real part of the conductivity for the Drude
DF and for the Kramers–Heisenberg DF of a polar phonon.

(Purpose of exercise: gain experience with sum rules.)

6.8 Show that λ/4 platlets generate circularly polarized light from linearly polarized
light by using the formalism of Jones vectors and Jones matrices.

(Purpose of exercise: gain some experience with the Jones formalism)
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Spectroscopy in the Visible and Near-Visible
Spectral Range

The spectral range where spectroscopy has been used for the longest time and
where it is still most often applied is the visible and near-visible. In this range
spectroscopy can be performed with the naked eye without any scientific in-
struments. However, even here, highly sophisticated experimental techniques
have been applied and have revealed many details about electronic struc-
tures. In the present chapter we review first some details about the quantum-
mechanical description of optical absorption and then apply this formalism
to absorption in systems with extended states such as semiconductors and to
systems with localized states like color centers, defect states and transitions
in molecular crystals. An introduction to luminescence processes is presented
in the last section. More details about the quantum-mechanical formalisms
used can be found in Appendices F.1 to F.3.

7.1 Quantum-Mechanical Description of Optical
Absorption

Optical absorption is dominated by the imaginary part of the DF. This is
true for the absorption across the energy gap in a semiconductor as well as
for the absorption by defects or by deep laying electronic levels. It is therefore
convenient to discuss first a general quantum-mechanical description of the
absorption process and then apply the results to various special configurations
in a solid.

The strength of an absorption process is determined by the quantum-
mechanical probability for the transition rate of a system, changing from an
initial electronic state i to a final electronic state f. In general the initial state
is the ground state and the final state is an excited state. The transition prob-
ability is proportional to the square of the magnitude of the matrix element
H ′

fi(0), where H ′ is the perturbation driving the transition. The transition en-
ergy is h̄ωfi. In the present chapter the perturbation is an EM radiation with
vector potential A(x, t). For small EM fields the perturbation is explicitly
given (in operator form) by

H. Kuzmany, Solid-State Spectroscopy, DOI 10.1007/978-3-642-01479-6 7, 129
c© Springer-Verlag Berlin Heidelberg 2009
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H′ = − e

m
pA , (7.1)

where p is the momentum operator for the electrons. (For proof of this see
Appendix F.2). The wave functions and the matrix elements of the perturbed
system are usually obtained by first-order perturbation theory, as outlined in
Appendices F.1 and F.2. With the matrix elements H ′

fi(0) of the perturbation
the golden rule of quantum mechanics gives the probability for a transition
per unit of time

Pfi =
2π|H ′

fi(0)|2

h̄2 δ(ωfi − ω) . (7.2)

The matrix element H ′
fi(0) is evaluated from the time-dependent matrix ele-

ment of the perturbation

H ′
fi = 〈f|H′|i〉 = − e

m
〈f|pA|i〉 (7.3)

The time-dependent part of this matrix element yields the δ function in (7.2)
(see Appendix F.2). It describes the density of allowed final states. The transi-
tion to these states is subjected to energy conservation. The time-independent
part leads to the multipole approximation. Within the dipole approximation
A= A0eikx is replaced by its amplitude A0 which yields

H ′
fi(0) = −eA0

m
〈f|p|i〉 = −eA0

m
pfi (7.4)

In this case, the transition matrix element is given in the momentum repre-
sentation by the momentum matrix elements

(pj)fi = −ih̄
∫

ψ∗
f

∂ψi

∂xj
d3x, j = 1, 2, 3 . (7.5)

This yields for the j-component of the perturbation matrix element

(Hj)′fi(0) =
eA0ih̄

m

∫
ψ∗

f

∂ψi

∂xj
d3x (7.6)

Note that these matrix elements are the components of a vector. ψf and ψi are
eigen functions of the excited state and of the ground state, respectively. The
transition matrix element H ′

fi can be expressed in the dipole representation
(Appendix F.3) by replacing the momentum matrix element with the dipole
matrix element (Mj)fi. This matrix element is defined from

(pj)fi = iωfi
m

e
(Mj)fi = iωfi

m

e

∫
ψ∗

f exjψi d3x . (7.7)
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Again, the dipole matrix elements are vectors with x, y and z components.
Representing the square of the vector potential of the radiation by the

intensity I(ω) = nA2
0ε0c0ω

2 the absolute square of the matrix elements of the
perturbation become

|H ′
fi|2 = |〈f|H′|i〉|2 =

e2I(ω)|pfi|2
m2ε0c0ω2n

, (7.8)

where n is the refractive index.
The δ function on the right-hand side of (7.2) selects a single transition

and insures energy conservation. If there are several states in the immediate
vicinity of the initial and the final state, a summation is required over all states
with equal distance in energy. This is, for example, the case for transitions
between two energy bands.

For states which are characterized by a k vector conservation of momen-
tum requires, in addition, that

∑
ki = 0 where the sum extends over all

k vectors contributing to the transition process. Momentum conservation is
automatically fulfilled when the transition matrix element is evaluated.

From (7.2) the absorption may be evaluated as the ratio between the rate
at which energy is absorbed per volume V and the rate at which energy is
incident per unit area

α(ω) =
h̄ωPfi

I(ω)V . (7.9)

This definition is equivalent to the formal definition given in (6.8). Using (7.2),
(7.4), and (7.8) we find

α(ω) =
2π

V
e2|pfi|2

m2
0ε0c0nω

δ(h̄ωfi − h̄ω) . (7.10)

With (7.10) and the relationship between α and the imaginary part of ε(ω)
given by (6.12), the latter becomes

εi(ω) =
2π

V
e2|pfi|2
m2

0ε0ω2
δ(h̄ωfi − h̄ω) . (7.11)

7.2 Absorption from Extended States in Semiconductors

Absorption by extended states plays a dominant role in semiconductors. The
transition for electrons from the valence band to the conduction band starts
abruptly for a quantum energy of the radiation h̄ω which exceeds the energy
gap εg. The corresponding increase of the absorption by several orders of
magnitude is called the fundamental absorption or the absorption edge. The
energies at which the absorption edges occur, range from several meV to more
than 10 eV. Table 7.1 lists some examples.
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Table 7.1. Lowest energetic distance between valence band and conduction band
for various solids

crystal εg (eV) crystal εg (eV) crystal εg (eV)

αSn 0.08 GaAs 1.47 ZnO 3.3
PbTe 0.19 GaP 2.24 BaO 4.4
InSb 0.23 NiO 2.3 LiGaO2 5.2
PbS 0.29 CdS 2.5 CaO 6.5
Bi2Te3 0.31 SiC 2.8 Quarz 6.7
Ge 0.67 ZnSe 2.8 KCl 8.69
Si 1.10 SrTiO3 3.3 Al2O3 10
InP 1.37 – – KF 10.9

7.2.1 The Physical Background and the Shape of the Absorption
in Semiconductors

Figure 7.1 exhibits the absorption coefficient for three different semiconduc-
tors. It starts at a well defined energy and increases immediately like an edge
by several orders of magnitude. At higher energies the increase slows down
and characteristic structures appear. Details at the edge depend on the band
structure and the nature of the electronic transitions. In special cases, such
as for GaAs, the initial slope on an α versus ω diagram is 1/2 when a double
logarithmic plot is used. The corresponding transition is called allowed and
direct. An allowed transition corresponds to a finite dipole matrix element

Fig. 7.1. Absorption coefficient α for the
semiconductors Ge, Si, and GaAs close to
the absorption edge; after [7.1]
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at the position of minimum distance between valence band and conduction
band. Direct transitions are possible if the maximum of the valence band and
the minimum of the conduction band occur for the same k vector, as shown
schematically in Fig. 7.2a. A structure on the band edge as, for example, in

Fig. 7.2. Direct electronic transitions between two simple bands (a) and indirect
transitions including the absorption or emission of a phonon (b); (VB: valence
band, CB: conduction band)

the case of Ge in Fig. 7.1 indicates phonon assistance for the electronic tran-
sition. This is always the case if the minimum of the conduction band and the
maximum of the valence band do not occur for the same k vector. An example
is sketched in Fig. 7.2b. The full arrow drawn from the valence band to the
conduction band indicates the transition with minimum energy. This case is
called an indirect transition. In the first step of the transition the electron is
excited to a virtual intermediate state where it stays for a very short time.
From there a phonon with wave vector qph is required to finally transfer it to
the real state for which energy and momentum is conserved.

The shape of the absorption curve beyond the edge is determined by tran-
sitions starting from deeper in the valence band or ending higher in the con-
duction band. Eventually also transitions into bands beyond the conduction
band or from bands below the valence band contribute to the absorption.
Analysis of structures in the absorption can give detailed information on the
shape of the bands.

The fundamental absorption is of particular interest. In this case, i and f
in (7.2) and (7.9) correspond to the valence band and the conduction band. In
addition, the electronic states are characterized by their k vector in the band,
and wave vector conservation is required for any transition. Since the wave
vector of the light is small compared to the wave vector of the electrons, k con-
servation is only possible for perpendicular (direct) transitions which means
kV + kC ≈ 0 for any transition. In other cases like in Fig. 7.2b phonons must
assist to establish k-conservation. As shown in Fig. 7.2a the direct transitions
need not start at k = 0. Since for a given energy difference many transitions
starting from various values for k are possible, the density of states in the
initial and in the final band are important.
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7.2.2 Direct and Allowed Transitions at the Absorption Edge

In this subsection we will study direct and allowed transitions in more detail.
Whether a transition is allowed or not depends on the symmetry of the initial
and final states. (Further discussion of this problem will be found in Chap. 8).
For example, transitions between s-waves or between s- and d-waves are dipole
forbidden. Transitions between s- and p-waves are dipole allowed. For the
evaluation of the matrix elements in (7.5) or in (7.7) the Bloch functions for
the valence-band electrons and for the conduction-band electrons

ψi = uV(r)eikVr, ψf = uC(r)eikCr (7.12)

are required. The explicit evaluation of the matrix elements is difficult since
the exact band structure and the correct wave function must be known. Ap-
proximations such as free carrier wave functions instead of Bloch functions
are common. Details of such calculations can be found in special books on
semiconductor physics [7.2, 7.3].

Since the matrix elements depend only weakly on the energy, the shape of
the absorption curve at the edge is mainly determined by the joint density of
states σCV(ω) between the valence band and the conduction band. The joint
density of states σCV(ω) is the density of states available for a given transition
energy h̄ω. Thus, the value of α obtained from (7.10) must be integrated over
all states in k space which satisfy the energy conservation. These states are
defined by the δ function in (7.10). Since the δ function is the only strongly
k-dependent part in the equation, the integration can be restricted to this
function.

σCV(ω) =
2V
8π3

∫
δ[h̄ωCV(k) − h̄ω] d3k

=
V

4π3

∫
δ[h̄ωC(k) − h̄ωV(k) − h̄ω] d3k . (7.13)

With this the absorption coefficient α is given by

α(ω) =
2π

V
e2|pCV|2

m2
0ε0c0nω

σCV(ω) . (7.14)

In the case of absorption, h̄ω is the quantum energy of the incident light. For
a spherical band we can replace d3k by 4πk2 dk and integrate explicitly using
the special property # 5 of the δ function given in Appendix B.8 with

g(k) = h̄[ωC(k) − ωV(k) − ω] .

The result is

σCV(ω) = V k2

π2

(
dεC(k)

dk
− dεV(k)

dk

)−1

. (7.15)
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If the band is spherical and parabolic the relations between ε and k are 1

εV =
h̄2k2

2m∗
V

and εC =
h̄2k2

2m∗
C

+ εg .

From this the joint density of states for a crystal with the volume V results to

σCV(ω) = V (2m∗
r)

3/2

2π2h̄3

√
h̄ω − εg . (7.16)

mr is the reduced mass obtained from the effective mass of the holes and of
the electrons in the bands.

This result agrees well with the observation of the square root depen-
dence of the absorption constant on the light energy described above. (See
Subsect. 7.2.1 for the direct allowed transitions). Thus, for this case α has the
form

α(ω) = B
√

h̄ω − εg for h̄ω ≥ εg

= 0 for h̄ω ≤ εg, (7.17)

where B is a constant given from equations (7.2) to (7.16) by

B =
e2(2m∗

r )
3/2

12π5m2
0nε2

0c0h̄
3 |pCV|2 .

7.2.3 Forbidden Transitions and Phonon-Assisted Transitions

A transition is dipole forbidden if the dipole matrix element is zero at k = 0. It
may be nonzero for other wave vectors. In this case an analysis similar to that
presented above yields for the energy dependence of the optical absorption

αforb(ω) = C(h̄ω − εg)3/2 for h̄ω ≥ εg

= 0 for h̄ω ≤ εg . (7.18)

For semiconductors with an indirect band gap the energy dependence at
the absorption edge is still different. Famous examples are Ge and Si. For
Ge the valence band has its maximum at the center of the Brillouin zone
(Γ point). The minimum of the conduction band is at the zone boundary (L
point). The difference in energy is only 0.67 eV. Electronic transitions between
the two points are only possible if a zone-boundary phonon is simultaneously
absorbed or emitted to balance the momentum-conservation. If the phonon is
absorbed, the net photon energy can be even smaller than the gap energy by
the amount of the phonon energy h̄Ω. Therefore, in indirect semiconductors
the optical absorption starts at a quantum energy h̄Ω lower than the energy
1 If the bands are not spherical and parabolic k must be considered as a vector and

the derivatives with respect to k must be replaced by ∇k
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gap. For light with a quantum energy higher than h̄Ω + εg phonon emission
and absorption are possible. Accordingly, a similar calculation as above yields

αindir = 0 for h̄ω < εg − h̄Ω

=
A(h̄ω − εg + h̄Ω)2

exp(h̄Ω/kBT ) − 1
for εg + h̄Ω ≥ h̄ω ≥ εg − h̄Ω

=
A(h̄ω − εg + h̄Ω)2

exp(h̄Ω/kBT ) − 1

+
A(h̄ω − εg − h̄Ω)2

1 − exp(−h̄Ω/kBT )
for h̄ω > εg + h̄Ω . (7.19)

With the light energy further increasing even direct transitions across the gap
at the Γ point may be possible. Quantitative details about the evaluation of
the absorption for forbidden transitions and for indirect transitions can be
obtained from [7.4].

Because of the selective behavior of the absorption information on the band
structure can be obtained from an analysis of the band edge. Since the lower
part of the edge is determined by phonon-assisted transitions even phonon
energies can be determined. This is a possibility to analyze nonzone-center
phonons. It works particularly well for indirect semiconductors at low tem-
peratures. Figure 7.3 shows the low-energy edge of the indirect semiconductor
GaP. Several acoustical and optical modes can contribute to the absorption.

Fig. 7.3. Low energy part of the absorption edge in GaP for three different tem-
peratures plotted as

√
α vs. light energy; (TO, LO: transversal and longitudinal

optical modes, TA, LA: transversal and longitudinal acoustic modes); the dashed
lines are guides for the eye; after [7.5]
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The structures are particularly prominent for the data at 77 K. The subscripts
A and E identify the symmetry of the phonons to be discussed in Chap. 8.

7.2.4 Absorption from Higher Transitions

For excitation of the solid with energies higher than εg transitions into higher
bands become important, as well as vertical transitions at positions in k space
where the energy separation is larger than the gap. In this case structure in the
absorption function is obtained for energies where the joint density of states
(7.13) has singularities or critical points. These points are called van Hove
singularities in analogy to the singularities in the phonon density of states.
The gaps are assigned as M0,M1,M2 or M3 depending on their analytical
structure in k space. M0 gaps refer to local minima, M1 and M2 to saddle
points, and M3 to maxima in the band-to-band distance for a given k vector.
Figure 7.4a shows the measured and the calculated imaginary parts of the

Fig. 7.4. Imaginary part of the DF for germanium, (—) as measured [7.6], and
(- - -) as calculated [7.7] (a) and band structure of germanium; after [7.8] (b)

dielectric function for Ge. The assigned transitions correspond to the critical
points in the corresponding density of states. The Arabic and Greek letters
identify points in the first Brillouin zone where the transitions occur. (For
the assignment of symmetry points and symmetry directions in the Brillouin
zone see also Sects. 8.4 and 12.4.) The discrepancy between the experimental
result and calculation for the Λ3 → Λ1 transition is artificial. The splitting of
the band in the experiment is due to a spin-orbit interaction which was not
taken into account in the calculation. The corresponding band structure with
the symmetry points is displayed in Fig. 7.4b.
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7.3 Absorption from Localized States

In addition to band-to-band transitions, also transitions between localized
states can be important even for solids. These transitions may be intrinsic to
the solid such as excitons or transitions between molecular units in the crystal
or they may originate from crystal point defects. As will be discussed below,
the basic concepts are the same as those considered in the last section but
experimental features and quantitative formulations are different.

7.3.1 Absorption of Extended and Localized Excitons

In classical semiconductors exciton absorption occurs close to the fundamen-
tal absorption. Thus, excitonic features as well as phonon sidebands can cover
the true shape of the fundamental absorption. Excitons are fundamental and
intrinsic excitations of electrons (or holes) for which a certain amount of
Coulomb interaction between the electron and the hole is retained. Differ-
ent types of excitons are defined depending on how far apart the electron and
the hole are. Weakly bonded excitons where the two particles are separated
by many lattice constants are of the Wannier–Mott type. Strongly bonded
excitons which correspond to highly localized pairs are of the Frenkel type.
In classical semiconductors excitons are of the Wannier–Mott type because
the high dielectric constant strongly shields the Coulomb interaction and the
effective masses are usually much smaller than the free electron mass. Frenkel
type excitons are usually observed in wide-band ionic semiconductors, molec-
ular crystals, or noble-gas crystals. The electronic states of Wannier–Mott
excitons are schematically shown in Fig. 7.5a. They are well described by a

Fig. 7.5. Energy levels for exciton transitions in a semiconductor (a) and exciton
absorption for CuO2 at 77 K, plotted as the logarithm of the transmission T ;
after [7.9] (b). The down-arrows in (a) indicate the binding energy
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hydrogen model using the reduced mass m∗
r = m∗

em
∗
h/(m∗

e + m∗
h) where m∗

e

and m∗
h are the effective masses of electrons and holes, respectively. Counting

the binding energy from the bottom of the conduction band downwards yields

δεexc = − 1
n2

m∗
r e

4

2h̄2(4πεε0)2
n = 1, 2, 3, .... (7.20)

Similarly, the radius aexc of the exciton is obtained from

aexc =
εm0

m∗
r

4πh̄2ε0

m0e2
. (7.21)

Except for the factor εm0/m∗
r the right-hand side of (7.21) is equal to the

Bohr radius of the hydrogen atom. Exciton binding energies are usually a few
meV. Figure 7.5b shows the exciton absorption of CuO2 measured at 77 K.
The different absorption lines correspond to different values for n in (7.20).

Wannier–Mott excitons are extended, neutral, and highly mobile particles
which have a momentum kex and kinetic energy εex subjected to a dispersion
relation εex(kex). In contrast to electrons and holes excited to the bands, exci-
tons do not contribute to photoconductivity. They are observed in absorption
as well as in emission. Thus, they will be further discussed in Sect. 7.6.

For non-metallic solids with a low dielectric constant like noble gases or al-
kali halides the exciton energies can be more than one eV with binding energies
of several 10 meV. The oscillator strengths are also larger, and the reflection
or absorption spectra are dominated by exciton series. In Fig. 7.6a,b a typi-
cal absorption spectrum for KBr is shown together with the band structure.
Obviously the Γ excitons and the L-excitons are more strongly expressed than
the band transitions at Γ (Γ 3/2

15 → Γ1) and the L-band transitions (L3′ → L2

and L3′ → L1).

7.3.2 Absorption by Defects

Electronic transitions between two localized states in the gap are also very im-
portant. Such states originate from defects like impurity atoms, vacancies, or
interstitials. We already saw some examples in the case of Cr ions in Al2O3 or
for the various attributes to the filter glasses. In general in many of these cases
luminescence turns out to be of more practical importance but absorption is
more fundamental. The color centers played, for example, a fundamental role
in the early days of solid-state spectroscopy. In particular, color centers in al-
kali halides have been studied in depth. They consist of lattice defects which
develop special optical properties by capturing an electron. The most promi-
nent example is the F-center in NaCl which has an absorption line at 480
nm. As shown in Fig. 7.7, it consists of a Cl-vacancy which has captured an
electron. The dipole transitions of this electron determine the absorption. The
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Fig. 7.6. Optical density for KBr measured at 80 K (a) and band structure for
the corresponding lattice (b); after [7.10]

Fig. 7.7. Color centers in alkali halides; F-center (a), Vk-center (b)

same lattice defect occurs in other alkali halides with absorption at a slightly
shifted position. The positions for maximum absorption of the F-centers de-
pend quadratically on the inverse of the lattice constant:

h̄ωmax = Cd−2 . (7.22)

This is known as the Molwo relation.
The other defect shown in Fig. 7.7 is the famous Vk-center. It is represented

by a Cl−2 molecule or, in other words, by two Cl− ions which have captured a
hole. The absorption line for the Vk-center is in the UV spectral range.

Experimental results for the optical absorption from F-centers in various
alkali halides are presented in Fig. 7.8. At these low temperatures the vibronic
sidebands to the electronic transitions are prominent as discussed in the next
section. LiF has the lowest and NaCl the highest vibronic coupling. This type
of absorption spectra are also observed for impurity states in semiconductors
and for molecular crystals like anthracene or benzene. In the latter systems the
excitations remain localized due to weak interactions between the molecules.

Color centers can be generated by irradiation of crystals with UV light
or with x rays. Historically they were the first systems in solids for which
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Fig. 7.8. Optical absorp-
tion for the F-center in var-
ious alkali halides at 4.2 K;
after [7.11]. The strong lines
at the long wavelength sides
of the spectra are the 0-
phonon transitions

theoretical concepts could be compared with experiments. For a long time such
investigations were purely academic. However, recently, light emission from
color centers has found an interesting technical application in the development
of lasers.

7.4 Theoretical Description of Absorption by Localized
States

For a theoretical treatment of the absorption from color centers as well as for
absorption from the other localized states (7.10) from Sect. 7.1 is an appropri-
ate starting point. Using the dipole matrix elements instead of the momentum
matrix elements we start with

αfi =
2π

V
ω2

fi|Mfi|2
ε0c0ωn

δ(h̄ωfi − h̄ω) . (7.23)

In this case the matrix element is the crucial term for the energy dependence.
Since the localized state has no periodicity, Bloch functions cannot be used to
evaluate αfi. In contrast to the behavior of extended states, any change in elec-
tronic structure due to excitation leads to a change in the local configuration
of the center. The center relaxes as a consequence of the excitation. This phe-
nomenon is represented by a configuration interaction since in a calculation
the relaxed state is represented by a superposition of different configurations.
Identification of the relaxed state is crucial since in (7.3) |i〉 corresponds to
the wave function for the ground state but 〈f| to the wave function for the



142 7 Spectroscopy in the Visible and Near-Visible Spectral Range

relaxed excited state which is not simply equal to the wave function for the
state 〈f| in the ground-state configuration. This situation implies that for the
calculation of the matrix elements wave functions are required which describe
both the electrons and the lattice.

In addition, changes in local geometry induced by phonons contribute
to the energy of the localized state and to the matrix elements much more
strongly than was the case for the extended states. These local lattice vibra-
tions are called vibrons. In contrast to phonons, they do not have a wave
vector and thus wave vector conservation is not required. Therefore, vibra-
tional contributions to the electronic transitions are the rule rather than the
exception.

Referring to the situation described above the wave functions must de-
scribe the vibronic and the electronic system simultaneously. Calculations of
this generality cannot be performed, and one relies on good approximations.
The most important simplification is the adiabatic or Born–Oppenheimer ap-
proximation where the total wave function ψ(r,R) for electrons with the co-
ordinates r and atoms with the coordinates R is factored into a wave function
for the electrons ϕ(r,R) and one for the atoms ρ(R).

ψ(r,R) = ϕ(r,R)ρ(R) . (7.24)

The wave function for the electrons may still contain the atomic coordinates
R as a parameter. Then, the eigenvalues for these wave functions will also
depend on R. The wave functions for the atoms are harmonic-oscillator wave
functions. (For a summary see Appendix F.4). A further simplification is ob-
tained from the Condon approximation. Here the matrix elements for the pure
electronic transitions are assumed to be independent of the atomic coordinates
R. In this case we can write the dipole matrix element (7.23) as

(Mj)fi = e

∫
ρ∗f (R)ϕ∗

f (r,R)xjϕi(r,R)ρi(R)d3xd3X

= (Mel
j )fi

∫
ρ∗f (R)ρi(R)d3X , (7.25)

where (Mel
j )fi is the pure electronic matrix element. Note that the integral

on the right-hand side of the equation is not zero even though integration is
performed over a product of two different harmonic-oscillator wave functions.
The two oscillators are different as one is in the ground-state configuration
and the other in the excited-state configuration. This situation is conveniently
described by the adiabatic potentials expressed in a configuration coordinate
Q. The configuration coordinate (given in meters) is similar but not identical
to a normal coordinate (given in meters/

√
kg). The adiabatic potentials for the

excited state Uf can be obtained from the adiabatic potentials for the ground
state Ui through a Taylor series expansion and by adding the transition energy
εfi for the unrelaxed system.
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Fig. 7.9. Adiabatic potentials for the
ground state i and for the excited state f as
a function of the configuration coordinate

Ui(Q) = MΩ2Q2/2 and
Uf(Q) = Ui(Q) + εfi + AQ = εfi + AQ + MΩ2Q2/2 . (7.26)

A = ∂Ui/∂Q describes the linear coupling between the excited electronic state
and the lattice. The oscillator frequency Ω is assumed to be the same for the
ground and the excited states. The right-hand side of (7.26) is the potential
for a harmonic oscillator up-shifted in Q by ΔQ = A/MΩ2 and down-shifted
in energy by Δε = A2/2MΩ2. Accordingly, the adiabatic potentials can be
drawn as in Fig. 7.9. The configuration coordinate is assumed to be zero for
the minimum of the ground-state oscillator. At this point it is convenient to
introduce another dimensionless coupling constant a by

a =
A

h̄Ω

(
h̄

MΩ

)1/2

. (7.27)

a is called the Franck–Condon or electron-vibration coupling constant. With
this the magnitude of the shift for the excited-state oscillator is easily evalu-
ated from (7.26) and (7.27) as

ΔQ = a

(
h̄

MΩ

)1/2

. (7.28)

Thus, the Franck–Condon shift ΔQ is another signature of the strength of the
electron-vibron interaction.

The final approximation for the calculation of the absorption utilizes the
so called semiclassical Franck–Condon principle. According to the latter the
electronic transition from i to f is so fast that the atoms do not have time to
relax into the state f. As a result, with respect to the relaxed excited state,
the electrons end up in a higher vibronic state.

The quantum-mechanical eigenvalues for the motion of atoms in the adi-
abatic potentials of Fig. 7.9 are

εiα = (α + 1/2)h̄Ω ,

εfβ = (β + 1/2)h̄Ω + εfi − a2h̄Ω/2 . (7.29)

The last term in (7.29) describes the decrease in transition energy due to re-
laxation. It is easily evaluated from the excited-state oscillator by considering
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the loss in energy for a shift of ΔQ. The horizontal lines in Fig. 7.9 give the
vibronic excitations for the ground state i and for the excited state f in units
of h̄Ω. α and β are the vibronic quantum numbers.

Instead of the coupling a sometimes the quantity

S =
a√
2

(7.30)

is used. S is called the Huang–Rhys factor.
The transition shown in Fig. 7.9 is not the only one which can occur.

From each vibronic state α a transition to a vibronic state β is possible, and
the probability for this transition is given by the square of the corresponding
matrix element (7.25). Thus, the δ-function in (7.23) must be replaced by
δ(εfβ − εiα − h̄ω). The matrix element is a product of a pure electronic part,
and the overlap integral for the ground-state and excited-state harmonic oscil-
lator wave functions. The latter are usually given in terms of the dimensionless
quantity q = x

√
MΩ/h̄ which has exactly the same structure as the Franck–

Condon coupling constant a in terms of the shift ΔQ of the configuration
coordinate. Thus, the wave functions in (7.25) are expressed by Hermite poly-
nomials, as outlined in Appendix F.4, for Q normalized to q = Q

√
MΩ/h̄.

The arguments for the ground-state and for the excited-state functions are q
and q + a, respectively. The relevant integrals

〈β|α〉 = Fβα =
∫

ρ∗β(q + a)ρα(q)dq (7.31)

are called the Franck–Condon integrals. They can be evaluated analytically
in terms of the associated Laguerre polynomials and are given in Appendix
F.4. The Franck–Condon integral for α = 0 is

Fβ0 = (−1)β aβ exp(−a2/4)
2β/2(β!)1/2

. (7.32)

To obtain the observed absorption all transitions from the state i with
various values for α to the state f with various values for β must be considered
with their individual matrix elements. For zero temperature only the state
with α = 0 is occupied in the ground state. Thus only contributions from
α = 0 to the various values of β have to be considered in the δ-function of
(7.23). Hence, the absorption has the form

αfi(ω, T = 0) = K|M el
fi |2
∑

β

|Fβ0|2δ(εfβ − εi0 − h̄ω) , (7.33)

where K represents the constant factor in (7.23) and M el
fi is the appropriate

component of the dipole matrix element, determined by the polarization of the
light. Contributions to the absorption for the different transitions are indicated
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Fig. 7.10. Optical absorption of a localized state in relative units for T = 0 and
various values of the electron-vibron coupling

in Fig. 7.10 for various values of the Huang–Rhys factor. The figure shows
clearly that the strongest contribution to absorption does not necessarily come
from the 0-0 vibronic transition. In fact, it shifts to higher values of β with
increasing electron-phonon coupling. This is due to the dependence of the
maximum overlap between the wave function for α = 0 and arbitrary values
of β on the magnitude of the shift in the configuration diagram of Fig. 7.9.
For a practical calculation the δ function in (7.33) may be replaced by an
oscillator with a certain damping constant γe. This yields for the absorption

αfi(ω, 0, γe) = K|M el
fi |2
∑

β

(γe/π)|Fβ0|2
[h̄ω − (εfi − a2h̄Ω/2 + βh̄Ω)]2 + γ2

e

. (7.34)

For finite temperatures several vibronic levels in the ground state are occu-
pied. Therefore the results of (7.33) and (7.34) have to be extended to finite
values for α and a thermal averaging must be performed. Thermal averag-
ing means that the contributions from the various vibronic states α must be
included and weighted by their thermal occupation. A distribution of the form

W (α, T ) = exp(−αh̄Ω/kBT )

is appropriate for the averaging. Thus, the temperature- and frequency-
dependent absorption is finally obtained from

αfi(ω, T ) = K|Mel
fi |2
∑
β,α

W (α, T )|Fαβ |2δ(εfβ − εiα − h̄ω) . (7.35)

The equations derived above are only valid for the case of a linear coupling
as assumed in (7.26). If A becomes zero, which may happen for symmetry
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reasons, quadratic coupling must be considered. In this case the difference
between the harmonic oscillators in the ground state and in the excited state
is important.

7.5 Crystal Field and Ligand Field Induced Absorption

Very often the color centers are not intrinsic like vacancies or interstitials but
rather consist of an extra atom or several atoms in a certain charge state which
act as a chromophore. In such cases where the relevant electronic structure is
still localized, it is convenient to consider first the electronic structure of the
atom and study subsequently the influence of the crystalline environment. If
the chromophoric ion or radical binds to a set of other atomic groups as neigh-
bors the latter are called ligands and the electric field generated by the ligands
is the ligand field. In an useful model the ligands are replaced by character-
istic charges which are arranged symmetrically around the chromophore and
generate the crystal field. The symmetry of the crystal field breaks the sym-
metry of the chomophore and group theory as it will be discussed in the next
chapter, determines which transitions are allowed. The crystal field model or
ligand model also holds if the chromophore is not an impurity but a part of
the lattice.

Fig. 7.11. Electron density for atomic d-orbitals (a), C≡N ligands surrounding
an Fe2+ ion (b), and the resulting splitting of the fivefold degenerated d-level
(c). The new levels in (c) are assigned by their Mullikan symbols eg and t2g as
they will be discussed in Chap. 8

Chromophores which were intensively investigated are transition metal
ions where the d-electrons are responsible for the color. Such systems are
often encountered in minerals but they can also be used as laser crystals. In
an atom the d-orbitals are fivefold degenerated and have the shape as shown
in Fig. 7.11a. Inserted into a crystal the degeneracy is lifted and the levels
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split according to the reduction of symmetry. In the following description some
results of the chapter on group theory are anticipated.

A good example for ligand field splitting is [Fe(CN)6]4− as it occurs in
potassium ferrocyanide. Here the Fe2+ ion is the chromophore which is sur-
rounded by the six ligands C≡N or six corresponding charges in an octahedral
arrangement as depicted schematically in Fig. 7.11b. With the ionization Fe
is left in a 3d6 state. In the octahedral crystal field the fivefold degenerated
d-orbitals are first upshifted by the Madelung energy and then split into a
downshifted threefold degenerated t2g state consisting of the original dxy, dxz,
and dyz orbitals and into a further upshifted twofold degenerated eg state con-
sisting of the original dz2 and dx2−y2 orbitals. From the total splitting energy
Δo a fraction of 3/5 is used for the upshift and 2/5 are used for the down-
shift. Δo is the crystal field parameter. The index o stands for octahedral 2.
For crystal fields of other symmetries corresponding indices are in use. If the
symmetry of the CF is lower than cubic more than one crystal field parameter
is required for a proper description. The value of the CF parameter depends
on the charges of the ligands and in particular on the distance of the charges
from the chromophoric ion.

The upshift of the dz2 and dx2−y2 orbitals can be understood from purely
electrostatic considerations. The electron density for both orbitals is oriented
along the coordinates and thus points directly to the ligand charges. This
means they feel the CF strongest. In contrast the dxy, dxz, and dyz electron
densities are arranged in dihedral directions to the coordinates and thus the
interaction is relaxed. Applying similar arguments to a tetrahedral or cubic
crystal field leads to a reversed result. dz2 and dx2−y2 shift downwards and
the dxy, dxz, and dyz orbitals are upshifted.

The difference in energy obtained from the up-shift and down-shift of the
levels is the crystal field stabilization energy. To evaluate this energy it must
be known which levels are occupied by the electrons. This is determined by
Hund’s rules and leads for low CFs to the so called high spin state where the
spin multiplicity is maximum. (As many spins are parallel as possible). For
high CFs the energy gap between lower and upper level is too large and the
lower level states become double occupied before the electrons go to the upper
level (low spin state). The CF stabilization energy εstab for the octahedral CF
is

εstab = nu
3
5
Δo − nl

2
5
Δo , (7.36)

2 In the special literature the crystal field parameter is often given in units Dq.
Δi = 10Dq, for i equal o, t, or c for octahedral, tetrahedral or cubic crystal fields.
Dq stands for the product of an expression D which contains the charge of the
ligand and the distance of this charge to the central atom and q represents the
average of the 4th power of the radial distance of the d-electron from the nuclei.
For details see [7.12].
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where nu and nl are the occupancies of the upper and lower electron levels.
In the case of [Fe(CN)6]4− we have a high CF and thus a low spin state where
all 6 electrons occupy the lower t2g levels. This means nu = 0, nl and the CF
stabilization energy is 12/5 Δo.

Electronic (dipole) transitions are allowed between the split states if the
symmetry of the corresponding wave functions yield finite dipole matrix ele-
ments and if the states are properly occupied. In the case of t2g and eg levels
transitions are symmetry allowed in the octahedral group which means op-
tical absorption can take place and the transition energies are in this simple
one electron picture equal to Δo. In reality several additional interactions
like electron-electron correlation, spin-orbit coupling, spin-spin coupling, and
others must be considered to explain the observed spectra in detail.

The absorptions (and luminescences) of ruby crystals (α-Al2O3:Cr3+) are
one of the best investigated ligand filed systems. α-Al2O3 crystallizes in the
trigonal space group R3c(D6

3d) and the chromium ions replace some of the Al
cations. The 6 oxygen anions are arranged in CrO6 octahedra and provide a
corresponding ligand field. This field splits the highly degenerate many elec-
tron ground state 4F3/2 into A2g, T2g, and T1g levels as indicated in the insert
of Fig. 7.12. Transitions from A2g to T2g and to T1g are allowed. The main
part of the figure shows the corresponding absorption spectrum of ruby be-
tween 1.5 and 4 eV for two directions of light polarization. The dependence of
details of the response on the orientation of the electric field is a consequence
of the crystal field which further reduces the symmetry around the chromium
ion from Oh to C3.

Fig. 7.12. Absorption spectrum for a synthetic ruby crystal α-Al2O3(Cr3+)
for two different orientations of the field vector with respect to the threefold
axis. The insert shows the splitting of the many electron 4F ground state in
an octahedral ligand filed established by 6 oxygen ions; modified from [7.13]
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7.6 Luminescence

Luminescence is in some sense the inverse of absorption. Whereas in absorp-
tion a light quantum is destroyed by the excitation of an electron, luminescence
is a consequence of the radiative recombination of the excited electrons. In
competition with luminescence other, non-radiative recombination processes
may occur. For luminescence to be efficient the radiative recombinations must
dominate over the non-radiative recombinations.

Luminescence from solids is not only of scientific but also of considerable
technological interest. There are two main reasons for this:

1) Luminescence is the basis for the construction of solid-state lasers. This is,
in particular, true for luminescence from impurity states in semiconduc-
tors.

2) Luminescence from inorganic and organic semiconductors is important for
displays in electronic equipment and nowadays even for lamps.

The process of luminescence requires a non-equilibrium carrier concentra-
tion in the electronic bands or in the electronic states of a defect structure.
If the non-equilibrium is obtained by irradiation with light the radiative re-
combination is called photo luminescence, if it is obtained electronically, for
instance, by forward biasing a p-n junction, it is called electro luminescence.
In Fig. 7.13 several possible processes for radiative and nonradiative recom-
binations are illustrated. The first three radiative processes and the last non-

Fig. 7.13. Radiative and nonradia-
tive recombination processes for ex-
cited electrons; (E: exciton, A: ac-
ceptor, D: Donors, Tr: trapping cen-
ter, R: recombination center)

radiative process are intrinsic, whereas for the others at least one impurity is
required. Reactions 1 and 2 are band-band recombinations which are usually
not very efficient, reaction 3 is the exciton luminescence already mentioned.
Reaction 6 gives rise to donor-acceptor pair spectra, as will be discussed be-
low. The trapping centers labeled Tr in the figure can be very efficient for
luminescence since they can first capture and localize an electron or hole
which then strongly increases the probability of capturing the other partner
for the radiative recombination. The last type of radiative recombination is
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particularly important for laser processes in the visible spectral range and for
chromophores in organic crystals.

Nonradiative recombination occurs either via recombination centers or by
Auger processes. Recombination centers are usually deep impurity levels close
to the center of the gap. In Auger processes the energy released as a conse-
quence of the recombination is transferred to another electron. This electron
gets excited into a higher state in the band from where it can stepwise return
to its ground state without radiation. Auger processes represent a very general
phenomenon and occur in many different configurations3 For example, the ra-
diative recombination from the band states to the impurities in Fig. 7.13, #4
and #5 have to compete with the corresponding Auger processes. The likeli-
hood of Auger processes increases as the electrons become closer in space, that
is as the electron density increases. In an n-type semiconductor the probability
of an Auger process is proportional to n2p = nn2

i . For carrier concentrations
n > 1018 cm−3 Auger recombination is usually dominant. This is a serious
problem for the construction of efficient electro-luminescence devices. To ob-
tain a large number of active species high concentrations of electrons and holes
are required. The increase in the concentrations is unfortunately limited by
the onset of Auger recombination.

The dominant process for the recombination is determined by its lifetime
in the excited state. The process with the shortest life time wins. The quantum
efficiency for a radiative transition is defined as

η =
1/τR

1/τR + 1/τ0
=

τ0

τR + τ0
, (7.37)

where τR is the life time of a radiative transition and τ0 that of a nonradiative
transition.

7.6.1 Luminescence from Semiconductors

Luminescence from semiconductors is particularly important. Van Roosebroek
and Shockley provided the first reasonable useful theory in 1954 for the lifetime
of excited quasi-particles [7.14]. Basically, the same relationships are valid for
emission from a luminescence transition as for emission from a black body. The
equilibrium between absorption and emission must be retained. For example,
the band-to-band emission starts for an energy which corresponds to the band
gap. The lifetime for this transition is strongly dependent on the magnitude
of the gap. According to van Roosbroeck and Shockley it is well described by

τBB = C exp
(

εg
kBT

)
. (7.38)

3 For more about Auger processes see also Sect. 12.3.
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This implies that the band-to-band luminescence becomes very weak for trans-
parent crystals. The line shape of the luminescence or, in other words, the
luminescence spectrum is obtained from

I(ω) = C ′α(ω) exp
(
− h̄ω

kBT

)
, (7.39)

where α(ω) is the absorption constant. This equation clearly reveals the con-
nection between absorption and emission. All relations for absorption obtained
above can therefore be used for evaluating emission as well.

Basically, the lifetime for a radiative process is much shorter for a semicon-
ductor with a direct gap compared to semiconductors with indirect gaps. This
is true at least for band to band emission. Therefore, initially semiconductors
with a direct band gap were preferred as sources of electroluminescence. Typ-
ical examples of such sources are the Ill-V compounds such as GaAs for which
a reasonably good technology has been developed. Most of these compounds
are direct semiconductors but unfortunately their gap hardly reaches the red
spectral range. Many of the III-V compounds are actually narrow gap semi-
conductors such as InSb. With decreasing size of the atoms the gap widens
and can even extend into the green spectral range for GaP. Unfortunately,
here the band structure has changed to an indirect configuration with a very
low efficiency for luminescence.

In order to avoid the problem with indirect gaps localized states can be
included into the luminescence process. The nitrogen impurity in GaP is a well
known and important example. Since nitrogen is isoelectric to phosphorus it
creates only a very shallow impurity state just below the conduction band.
Luminescence from this level has nearly the same energy of 2.22 eV as the band
gap for pristine GaP (εg = 2.24 eV). Since the state of the N-center is localized,
momentum selection rules are of no relevance and the luminescence efficiency
can be high. Also, nitrogen is neither an acceptor nor a donor but rather a
trapping center which enhances the cross section for radiative recombination
even further.

Enhancement of luminescence in indirect semiconductors like GaP is also
possible by collecting recombination light from donor–acceptor pairs. Realistic
examples are depicted in Fig. 7.14. The GaP crystal in (a) was doped with
Cd acceptors and S donors. In addition to these two impurity levels the Cd
atoms generate an impurity complex Cd-O which gives rise to hole excitons.
An observed broad photo-luminescence around 1.83 eV comes from the exciton
and a luminescence at 1.78 eV originates from the pair recombination between
Cd-O complex and Cd. A green luminescence is observed between the S donor
and the Cd acceptor, again by pair recombination.

A similar luminescence pattern can be observed for Te (donor) and Zn (ac-
ceptor) doped and forward biased GaP p-n junctions as depicted in Fig. 7.14b.
The red emission is assigned to a Zn-O (or Zn-O – Zn) pair band and the green
emission to a pair recombination involving the Te donor.
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Fig. 7.14. Electronic level diagram for a Cd and S doped GaP. εn, εA, and εD
are the binding energies for the exciton, the acceptor, and the donor, respectively.
(a); after [7.15]. Emission spectrum from a GaP p-n junction with Te, (donors)
and Zn (acceptors) (b); after [7.16]

The donor-acceptor pair luminescence can have an interesting structure
if there remains a Coulomb interaction between the charged donors and the
charged acceptors and if the emission lines are enough narrow. Well known
examples are pairs of Zn and O discussed above, or Si and Te in GaP. Figure
7.15 represents the electronic levels for the Zn and O doped crystal in (a) and
the pair spectrum for Si/Te at 1. 6 K in (b). Independent Zn and O impurity

Fig. 7.15. Energy levels for Zn and O in GaP (a), and pair spectrum for GaP
doped with Si/Te complexes (b). The numbers at the peaks are distances in units
of the lattice constant; adapted from [7.17]

levels have an energetic distance of 1.27 eV and would give rise to luminescence
in the IR. If the impurities are close enough in space they interact and the
energy level separation rises to 1.8 eV. Thus, the luminescence is shifted to the
visible and strongly enhanced due to the interaction. The exact difference in
energy depends on the strength of the interaction and is therefore determined
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by the spatial distance between the two impurity centers. The luminescence
resonates in this case for the energies

h̄ωi = εg − (εA + εD) +
e2

4πεε0ri
. (7.40)

The last term in the equation represents the Coulomb interaction between the
donor and acceptor for a distance ri. Since ri are multiples of the lattice con-
stant this term gives rise to a long series of sharp lines on the high-frequency
side of the luminescence spectrum. It can be observed experimentally for emis-
sion at very low temperatures as shown in Fig. 7.15b.

The interaction between impurity centers can give rise to other phenom-
ena. At low temperatures a radiative transition can be effective between donor
D and acceptor. At higher temperatures the electrons from the donor state

Fig. 7.16. Thermal quenching of a lu-
minescence from a donor-acceptor re-
combination; (D,D′: donors, A: accep-
tor)

can be drained to another donor state D′ from where they recombine nonra-
diatively (Fig. 7.16). In this case the luminescence will be quenched for higher
temperatures.

Another thermodynamically interesting phenomenon originates from an
interaction between excitons in highly excited semiconductors. Excitons ex-
hibit a luminescence close to the band gap energy. At low temperatures and
for high excitations the excitons interact strongly and can even condense into
a liquid state. Exciton droplets grow and the exciton luminescence changes
suddenly. This is due to the high carrier concentration in the droplets which
shields the Coulomb interaction. As a result, the excitons are not stable any
more and decay into an electron-hole micro plasma. This plasma has a charac-
teristic recombination spectrum different from that of free excitons. An exam-
ple is presented in Fig. 7.17 for highly excited Ge at three different tempera-
tures. For the given excitation 2.78 K is above the condensation temperature.
Thus only the line for the free excitons at 714.2 meV is observed. At 2.52 K a
new strong line at 709.6 meV suddenly appears which corresponds to excitons
in the droplets. However, the emission from the free excitons is still there.
For still lower temperatures like 2.32 K it has completely disappeared, and
the droplets are the only radiating species. Exciton droplets have only been
observed for indirect semiconductors since it is only in these systems that a
high enough concentration of excitons can be obtained. Direct semiconductors
form bound exciton states (exciton molecules) at high excitation.
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Fig. 7.17. Luminescence of Ge at low temperatures and high excitation; after
[7.18]

Very strong efforts were applied to the enhancement of luminescence in-
tensity and to shift the emission into the blue spectral range. The former was
possible by using semiconductor hetero p-n junctions, particularly for the III-
V compounds. In a hetero p-n junction a semiconductor with a slightly smaller
gap is squeezed inbetween two semiconductors with a larger gap. Then, for
the forward biased junction, electrons an holes are confined to the small area
of the junction and radiative electron-hole recombination is enhanced. If the
junction is very narrow, a quantum well is formed where recombination is even
further enhanced. For more details see Appendix F.5 and Refs. [7.19,7.20].

The shift of the emission into the blue spectral range was managed by
GaN derived III-V semiconductors. GaN is a semiconductor with a direct gap
of 3.5 eV between the conduction band and the highest valence band at the Γ
point. The valence band is split by the crystal field (6 meV) and by spin-orbit
coupling (37 meV).

Luminescence diodes are already commercialized and used for illumination,
traffic lights, or all sorts of display panels. Even diodes from organic material,
so called OLEDs (organic light emitting diodes) which can be printed or spray
deposited are ready for use and promise very low price applications. Figure
7.18 depicts some examples from the colorful field of light emitting diodes.

7.6.2 Luminescence from Point Defects in Insulators

The relation between absorption and emission is valid for point defects as for
extended states. This means, in particular, that we can apply the adiabatic
approximation and the Franck–Condon principle to study the luminescence
from point defects. The corresponding processes can be described with the
same adiabatic potentials, as shown in Fig. 7.9 and redrawn in Fig. 7.19 for
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Fig. 7.18. Demonstration of light emitting diodes: Illumination of the Stone
Bridge in Regensburg (Germany) with 142 red, green and blue diodes made
from III-V nitride semiconductors (top); after [7.21]. Pulsed laser light emission
from an InGaN multi-quantumwell laser (center); after [7.19] and blue, green
and red light panels from organic light emitting diodes (bottom); after [7.22]
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Fig. 7.19. Adiabatic potentials for the
luminescence process; (A: absorption, R:
emission, H: hot luminescence)

the case of luminescence. The origin of the transition processes is however
different. Although absorption can start from any vibronic level α and can
end at any vibronic level β, emission always starts from the lowest vibronic
level β = 0 in the lowest excited state. This is independent of the level to
which the electron was excited by the incident light, and is well established
experimentally. It is known as Kahsa’s rule and due to the overlap of the wave
functions between the excited state and the ground state. Note that the most
likely transition occurs between two singlet states (S0, S1) which implies spin
conservation. This is true for absorption as well as for emission from the S1

state, as shown in the figure. The spin of the absorbed or emitted photon is
converted to an angular momentum of the electron as Δl = 1 is required for
this type of optical transition.

Radiative and non-radiative processes are in competition here likewise as
for transitions from extended states. The situation is well described by the
Jablonski diagram (Fig. 7.20). If no paramagnetic centers are present, the

Fig. 7.20. Jablonski diagram for
luminescence processes from local-
ized states; (IC: internal conversion,
ISC: intersystem crossing, Si: sin-
glet states, Ti: triplet states)

ground state is, in general, a singlet S0. The excited states are again sin-
glets S1, S2, S3, etc. combined with any vibronic state β. From this state
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the excitation relaxes at first mainly by an interaction with the lattice into
the corresponding pure electronic state with β = 0. Now, the next lower
electronic state with a high value for β becomes occupied by a process of in-
ternal conversion (IC), and relaxation into the corresponding state with β = 0
starts again. This process continues until the lowest excited electronic state is
reached (state S1 in Fig. 7.20). From there three processes are possible. Either
the relaxation via the lattice continues and the electron returns to the ground
state without radiation, or it returns to the ground state by emission of a pho-
ton or, alternatively, it undergoes a process of intersystem crossing (ISC) with
a spin flip to a triplet state and finite β. After relaxation to the lowest triplet
state it either recombines radiatively to the ground state or nonradiatively
via another internal conversion. The radiative recombination from the singlet
state is very fast. It occurs spontaneously within picoseconds or nanoseconds
and is called a luminescence process. The radiative recombination from the
triplet state is considerably delayed since it involves a spin flip. It occurs only
after microseconds or milliseconds and is called a phosphorescence process.
According to Kahsa’s rule radiative recombination is very difficult before the
lowest excited state is reached. If it happens it is called hot luminescence.

In contrast to the case of semiconductors where the excitation is usually
from a forward biased p-n junction, color centers or chromophores are excited
optically. Hence, two types of spectra can basically be measured: the total (or
even energy selective) emission as a function of the spectral excitation, and the
spectral distribution of the emitted light itself. A spectrometer for fluorescence
consists therefore of two monochromators operating in parallel. One is used
for the spectral selection of the exciting light, the other for the analysis of the
emitted light. Figure 7.21a represents schematically the operational layout for
these spectrometers. The light for the excitation of the crystal is spectrally
selected by monochromator 1 and the emitted light is spectrally analyzed by
monochromator 2.

The immediate correlation between optical absorption and emission can
often be seen by comparing excitation and emission spectra. Figure 7.21b plots
the excitation and emisson spectra for polystyrol at 77 K. The right part of
the spectrum represents the spectral distribution of the emission from a T1-S0

transition. The peaks correspond to the individual vibronic Franck–Condon
modes. The energetic distance of the maxima indicates that they originate
from a C=O stretching vibration. Since there is no C=O bond in polystyrol
the corresponding chromophore must be a defect. The left part of Fig. 7.21b
is, except for the intensity, a mirror image of the right side and shows the
excitation spectrum for the S0-S1 transition. The energetic difference between
the first maximum of the phosphorescence and the first maximum of the ex-
citation corresponds to the energy difference between the zero vibron states
of S1 and T1. The strong structures in the excitation spectrum at 300 nm are
due to excitations of the monomer.

The process of absorption from point defects is evidently always localized.
However, if the density of the chromophores is high enough a migration of the
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Fig. 7.21. Schematic setup for measuring the excitation and the emission spec-
trum of a luminescence; (S: source, G: grating, SA: sample, λ: drive, Re: recorder,
D: detector) (a), and excitation spectrum (left) and emission spectrum (right) for
polystyrol at 77 K (b); after [7.23]

excitation is possible. This occurs, in particular, if the absorption spectrum of
one chromophore overlaps the emission spectrum of the other chromophore.
Then the first center can act as a donor (with respect to excitation energy) and
the second center as an acceptor. The energy transfer occurs by dipole-dipole
interaction and not by emission and re-absorption. Therefore this energy mi-
gration is only possible for centers located within a critical distance rF which
is called the Förster radius. The probability of energy transfer decreases with
the 6th power of the distance. This energy transfer is particularly important
for polymers since in this case singlet excitations can migrate step by step over
wide distances. Special chromophores can be attached to the backbone and
act as transmitters for the excitons. If the conformation of the chain changes
with progression along the chain, the orientation of the dipole moment for
the emission is continuously changing. This means the conformation of the
polymer can be studied by an investigation of the time resolved polarization
of the luminescence.

Problems

7.1 Prove that the absorption given in (7.10) has its correct value in SI units.
(Purpose of exercise: convince yourself of the meaning of all symbols in the

equation.)
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7.2a Starting from (7.13) evaluate the joint density of states for spherical and
parabolic bands.
Hint: Use the relation #5 in Appendix B.8.

(Purpose of exercise: use of δ function, obtain final results for simple band struc-
tures)

7.3n Show that relation (7.26) for the adiabatic potential corresponds to a shift of
the oscillator by ΔQ in the co-ordinate and by Δε in energy.

(Purpose of exercise: understand the schedule of adiabatic potentials)

7.4 Show that the relation between the Franck–Condon coupling constant a and the
shift in the configuration coordinate ΔQ is a = ΔQ

√
MΩ/h̄. What is the value of

the relaxation energy expressed in units of a?
(Purpose of exercise: get insight into the meaning of the adiabatic potentials)

7.5 Study the optical absorption from a localized state as a function of the Huang–
Rhys factor for zero temperature using a personal computer.

(Purpose of exercise: probe the relationship between electron-vibron coupling
and maximum response for the absorption)

7.6 Evaluate the real part of (7.11) from a Kramers–Kronig transformation.

(Purpose of exercise: a useful example for the application of the Kramers–Kronig

relation.)
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Symmetry and Selection Rules

Many laborious calculations in solid-sate physics can be simplified if the sym-
metry of the system under consideration is properly included. Furthermore,
statements about possible transition processes can very often be made just
from symmetry considerations, without any calculation. We had plenty of ex-
amples in the last chapter. In these symmetry considerations group theory
plays a fundamental role. This chapter summarizes the symmetry properties
of molecules and crystals, and reviews some elements of group theory. Selec-
tion rules for electronic and vibronic transitions will be discussed. An extended
summary of group theory, the character tables for the point groups, and more
about transformation of coordinates are given in Appendix G.

8.1 Symmetry of Molecules and Crystals

Symmetry and symmetry operations of figures or objects can be defined for-
mally. For extended work a mathematical description is recommended.

8.1.1 Formal Definition and Description of Symmetry

The symmetry of a figure or of an arrangement of points is the set of consid-
ered or mechanically performed operations which transform the object into
a position where it cannot be discriminated from its initial position. An ex-
ample is given in Fig. 8.1. It shows in part (a) a triangle stepwise rotated by
120◦. If the corners of the triangle are identical, the three positions cannot be
discriminated. The operation C3 has transformed the triangle into positions
undistinguishable from the initial position. The same would happen for a re-
flection with the mirror plane perpendicular to the plane of the triangle, and
intersecting one corner and the midpoint of the opposite edge. We designate
this operation as σv, where σ means the mirror plane and the index v indicates
its vertical orientation to the rotation axis for the operation C3. C3 and σv

are symmetry operations (SO) for the triangle in the above definition. If the
corner 1 is different from the corners 2 and 3 the reflection with the mirror
plane through 1 is still a SO but C3 is not a SO any more. However, a mirror
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Fig. 8.1. Symmetry operations for a triangle: point symmetry (a), and transla-
tional symmetry (b)

plane in the plane of the triangle is certainly a SO for both systems. We call
it σh as it is oriented horizontally to the rotation axis.

The translation of the triangle to a different position in space is not a SO
since in the new position it can be discriminated from the initial position.
The situation is different if we consider an infinite arrangement of triangles as
shown in Fig. 8.1b. If we shift the triangle 1, 2, 3 by a well defined translation
vector t to the position 1′, 2′, 3′, the new arrangement cannot be distinguished
from the initial arrangement. Thus, t is a SO of the object in Fig. 8.1b. Since
in the former type of SO at least one point of the object remains unchanged
we have a point symmetry, whereas the latter type is called translational sym-
metry.

SOs are characterized by symmetry elements such as n-fold rotation axes,
mirror planes, etc. The possible symmetry elements are listed in Table 8.1,
together with their symbolic representation in the Schönflies and in the inter-
national notation. The first four symmetry elements refer to point symmetry,

Table 8.1. Symmetry elements in crystals

symmetry element Schönflies international

rotation axes Cn(Un) n = 1, 2, 3, 4, (5), 6, (...)
mirror planes σh,σv,σd, m
inversion I 1
rotatory reflection axes Sn n (rotation inversion) = 1, 2, 3, 4, 6
translations tn tn

screw axes Ck
n nk

glide planes σg a, b, c, n, d

the last three elements are only applicable for infinitely extended objects. For
symmetries which allow translations the counting of the rotational axes can
only be 1, 2, 3, 4, and 6. The index k for the screw axes indicates how many
translations are accomplished for one rotation by 360◦. In other words, per
SO k/n translations are performed. More details about symmetry elements
and their properties and geometrical symbols can be found in corresponding
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reference data [8.1]. In the following pages we will restrict ourselves to the
operations for point symmetry.

Symmetry operations can be carried out successively and the result is a
new SO of the object. This means SO can be combined or multiplied. We may
write this formally as

SO(1) ◦ SO(2) = SO(3) or simply
SO(1)SO(2) = SO(3) (8.1)

For example, a reflection by a mirror plane through point 1 of the triangle in
Fig. 8.1a and a successive reflection by a mirror plane through point 2 (in its
new position) gives the same result as the rotation by 120◦, or

σv(1)σv(2) = C3 .

For the combination of several SOs the associative law holds. This is a con-
sequence of the validity of the associative law for the transformation of coor-
dinates. As we will see in detail later SOs can be represented by such trans-
formations. The SO which leaves the object unaltered can be taken as a unit
element E. Since the object returns to its initial position after a finite number
of successive SOs an inversion element exists within the set of the SOs for one
object. The above properties of elements in a set define a group in a mathe-
matical sense. Thus the symmetry elements of a finite object are elements of
a group.

The total number of different groups including all subgroups which can
be constructed from the point symmetry elements of Table 8.1 is 32. This
anticipates the exclusion of symmetry elements like C∞ (rotational symmetry)
or molecular symmetries like C5, C7, etc. Since the elements of the groups
are point symmetry operations the groups are called point groups. The point
groups are well known and well tabulated. For the assignment of the point
groups the Schönflies as well as the international symbols are used. Table 8.2
presents the 32 point groups in both notations as they are distributed over
the seven crystallographic systems or the 14 Bravais lattices. In Appendix G.1
more extensive information on the groups is given in the form of character
tables. These tables show the point groups, their elements, the irreducible
representations, and their characters. Details about these quantities will be
discussed below.

For the following we need a few more definitions and notations from group
theory which are more or less self explanatory.

a) The order of the group is the number of elements in the group.
b) Most of the 32 point groups are not commutative. This means the group

element obtained from the combination AB is not equal to the element
from the combination BA if A and B are elements of group G.

c) A group may consist of several subgroups.
d) Two elements A,B ⊂ G are conjugated if an element X exists in the

group for which XAX−1 = B holds. If X runs over all elements of G we
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Table 8.2. Point groups for the 7 crystal classes

tricline monocline trigonal tetragonal hexagonal cubic
mp,mc (rhombohedral) tp,tb cp,cf,cb

C1 1 C2 2 C3 3 C4 4 C6 6 T 23
Ci 1 Cs m C3i 3 S4 4 C3h 6

C2h 2/m C4h 4/m C6h 6/m Th m3
orthorhombic C3v 3m C4v 4mm C6v 6mm

op,oc,oi,of
C2v mm2 D3d 3m D2d 42m D3h 6m2 Td 43m
D2 222 D3 32 D4 422 D6 622 O 432
D2h mmm D4h 4/mmm D6h 6/mmm Oh m3m

obtain a set of elements conjugated to A. Since all these elements are also
conjugated to each other the set is called a class of conjugated elements.

e) Each group consists of classes of conjugated elements. In other words,
each element of G belongs to exactly one class. For example, the unit
element E is only conjugated to itself. It always generates its own class.
The symmetry elements for the point groups are given as distributed into
individual classes (Appendix G.1).

8.1.2 The Mathematical Description of Symmetry Operations

The mathematical description of SOs is obtained by the matrices for orthog-
onal transformation of coordinates in three-dimensional space. If φ describes
the rotation around the z axis these matrices have the form

R(φ) =

⎛
⎝ cos φ − sin φ 0

sinφ cos φ 0
0 0 ±1

⎞
⎠ . (8.2)

Similar matrices are obtained for rotations about the x and the y axis. Al-
lowing a minus sign for the Rzz component of the matrix includes improper
rotations (reflections and inversion). A particular transformation of the type
(8.2) is a SO of the object if it transforms the object onto itself. In this sense
R(φ) represents the rotations Cn with φn = 360/n, n = 1, 2, 3, 4, 6 including
the unit element E for the positive sign of Rzz, and the reflection and the
inversion with φ = 0 and 180◦, respectively for the negative sign of Rzz. If
the rotation is about an arbitrary axis (8.2) must be subjected to an orthog-
onal transformation. It is most important to note that the trace dR for the
transformation matrix (8.2) is always

dR = 2 cos φ ± 1 . (8.3)
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This is independent of any orthogonal transformation.

8.1.3 Transformation Behavior of Physical Properties

For the evaluation of the selection rules the transformation behavior for the
description of physical properties and of mathematical expressions with re-
spect to SOs is important. They are explained and listed in the following.

Scalar quantities such as the density or the temperature are independent
of transformations of coordinates. Polar vectors such as electric fields or dipole
moments behave like coordinates and transform therefore according to (8.2).
For axial vectors transformations of the proper rotations are performed with
R from (8.2) but transformations for the improper rotations are transformed
with −R. Tensors such as the dielectric constant εik transform like products
of coordinates.

For a transformation matrix Ckl the above statements can be formulated
mathematically by the following expressions:

x′
m =

∑
k

Cmkxk ,

x′
mx′

n =
∑
k,l

CmkCnlxkxl ,

εmn =
∑
k,l

CmkCnlεkl . (8.4)

As a simple example we study the transformation of the coordinates of the
triangle in Fig. 8.1 by a rotation of 120◦ about z. The rotation matrix is

R(2π/3) =

⎛
⎝−1/2 −

√
3/2 0√

3/2 −1/2 0
0 0 +1

⎞
⎠ .

The x, y coordinates are assumed to cross at the center of gravity, and
one of them is assumed parallel to one side of the triangle. The sides of the
triangle have the length 1. Using the first equation in (8.4) it is straightforward
to show that the coordinates (−1/2,−

√
3/6) for the corner 1 transform to

(1/2,−
√

3/6), which are exactly the initial coordinates of corner 2.
The second equation in (8.4) is general enough to construct a product for

two (squared) matrices with an arbitrary number of lines and columns. The
dimensions of the two matrices may even be different. The product CmkCnl

of the transformation matrices Ckl, or more generally the product CmkDnl

defines the Kronecker product of the two matrices. The Kronecker product
can be written again as a square matrix. The arrangement of the new matrix
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elements is such that the product matrix consists of the submatrices CmkD
where each matrix element of D is multiplied by Cmk. If the dimensions of
the two original matrices are M and N , respectively, the dimension of the
product matrix is M × N . For example, the Kronecker product for a matrix
with 3 lines and 3 columns with a matrix with 2 lines and 2 columns yields
a square matrix with 6 lines and 6 columns. The trace of the product matrix
equals the product of the traces of the two original matrices.

8.2 Representation of Groups

A representation of a group is a mapping of the group G on a group of matrices
G′. The mapping between the elements of the two groups is defined in the
following way. If for the elements A,B,C ⊂ G the relation

A ◦ B = C (8.5)

holds the corresponding relationship must also hold for the matrices M(A),
M(B), and M(C) from G′

M(A) ◦ M(B) = M(C) (8.6)

but the correspondence between the elements does not have to be bijective.
Each element form G corresponds exactly to one element of G′ but each
element of G′ may correspond to several elements of G. This type of mapping
is known as a homomorphism.

The simplest, so called trivial representation is a mapping of each element
of G on the matrix (1). A slightly more complicated but still very simple
mapping is obtained for a correlation of the symmetry elements to the matrices
(1) or (−1). For example, using (8.5) and (8.6) together with the information
on the point group C3v from the tables in Appendix G.1 it is easy to show
that the following mapping is correct:

E → (1), C3 → (1), C2
3 → (1) , (8.7)

σv1 → (−1), σv2 → (−1), σv3 → (−1) . (8.8)

In other words, the one-dimensional matrices (1), (1), (1), (−1), (−1), (−1)
are a representation of the point group C3v. A pyramid with a regular triangle
as the basis is a geometrical representation of this group. Note that the sum
over all matrices is zero! This is a special result of a very general sum rule
which originates from the orthogonality of the representation matrices explic-
itly expressed by (G.2). In order to check the mapping defined in (8.8), it is
convenient to set up two multiplication tables. In these tables all products of
symmetry elements of the group and their representations are inserted, which
allows the validity of (8.5) and (8.6) to be profen by comparison.
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In principle, the result of a multiplication of symmetry elements can be
obtained from a multiplication of the matrices for the orthogonal transforma-
tions given in (8.2). In a more simple procedure it can also be obtained from
geometrical considerations by following the change of the positions of the co-
ordinates as a consequence of the SO. In Fig. 8.2 two examples are shown:
Application of the inversion to point 1 in part (a) of the figure transforms

Fig. 8.2. Combination of sym-
metry elements. I ◦C2 = σh (a),
I ◦ C4 = S3

4 (b)

it to point 1′ and a subsequent application of a rotation by φ = π around z
yields the point 1′′. Altogether the transformation is a reflection on the xy
plane. This is similar in part (b) of the figure. Starting with an inversion a
subsequent rotation by π/2 yields a 3π/2 rotation-reflection.

Some of the most important definitions and properties for the representa-
tion of groups are listed in Appendix G.2. Details can be found in [8.2, 8.3].
In particular, the following statements are valid, most of them can easily be
profen by group theory:

a) The dimension of the representation is the dimension of the correlated
matrix. For example, the matrices for the orthogonal transformations are
a three-dimensional representation.

b) For each group an infinite number of representations exists. A d-dimensional
representation for a group G of order g can be obtained from an equation
for a transformation of d linear independent coordinates xk of the form

x′
i =

d∑
k=1

Dikxk . (8.9)

The transformation matrices Dik are a representation of the group if for
all elements R ⊂ G the coordinates xk are mapped onto themselves or
onto a linear combination of themselves. The homomorphic mapping is
then defined as

Dik(R) = Dik
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In other words, the set of coordinates x′
i in (8.9) is the same set as the

coordinates xk or a linear combinations of the coordinates xk. The coor-
dinates xk are called a basis for the d-dimensional representation D(R) of
group G.
Let us consider as an example the representation for C2v with the SO
(E,C2, σx, σy). The matrices (1) and (−1) transform the x axis (or the
y, z axis) either onto itself or onto minus itself. Thus, the x axis (or the
y, z axis) is a basis for a one-dimensional representation. Since the matri-
ces which transform the x axis are (1), (−1), (−1), (1) we readily identify
this representation from the character tables in Sect. G.1 as B2. The z axis
is a basis for the trivial representation since all transformation matrices
are (1). If we had selected an other group e.g. C3v the rotation C3 does
not transform the x axis onto itself. The x axis is therefore not a basis for
a representation of C3v. If we, however, select the x and y axis all SO of
C3v transform these two coordinates onto themselves or on linear combi-
nations of themselves. Therefore (x, y) are a basis for a two-dimensional
representation of C3v.
Other representations can be obtained from the coordinates of geometrical
figures by applying the symmetry operations of the figures, as explained
in Appendix G.3.

c) Applying orthogonal transformations to the matrices Dik(R) we obtain
other representations of G. The traces of the matrices for the various ele-
ments R are the same for all these representations as the traces of matrices
are invariant versus orthogonal transformations. The traces are therefore
called the character χ(R) of the element R in the representation D(R). A
trivial but nevertheless important statement results: The character of the
unit element equals the dimension of the representation.

d) Since the matrices for the representations of G can have an arbitrary
dimension, an infinite number of representations exists. However, for any
set of matrices there is an orthogonal transformation which groups the
matrix elements in a optimum way around the diagonal elements for all
R. We call this new set a fully reduced representation of G. An example is
given below.

D(R) =

⎛
⎜⎜⎜⎜⎜⎝

N
(1)
d1

. . . .

. N
(2)
d2

. . .
. . � . .
. . . � .

. . . . N
(l)
dl

⎞
⎟⎟⎟⎟⎟⎠

. (8.10)

The symbols N
(j)
dj

are dj-dimensional sub-matrices, the points are ma-

trices of zeros, and the empty diamonds are matrices like N
(j)
dj

. In this
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case already smaller subsets of the coordinates in (8.9) are mapped onto
themselves and we have assigned them to the matrices N

(j)
dj

with the
dimension dj . Since these matrices cannot be further reduced they are
called irreducible. From this description we conclude immediately, that
any d-dimensional representation Γ = D(R) can be presented by a sum
of irreducible representations. Formally we can write

Γ = D(R) =
∑
α

nαΓ (α) , (8.11)

where nα counts how often a particular irreducible representation Γ (α)

occurs in the total representation.
e) From (8.10) and (8.11) we learn immediately that the character χ(Γ )(R)

of the total representation Γ is the sum of the characters of the irreducible
representations occurring in Γ .

χ(Γ )(R) =
∑
α

nαχ(α)(R) (8.12)

f) There is a well defined number of irreducible representations for each point
group. This number turns out to be equal to the number of classes in the
group.

g) The irreducible representations are denoted by the Mullikan symbols
A,B,E, F , with subscripts 1, 2, g, u and superscripts ′ and ′′. The sym-
bols have the following meaning. A and B are one-dimensional represen-
tations. A labels representations symmetric with respect to the main ro-
tations (χ(Cn) = 1), B stands for representations antisymmetric with
respect to the main rotations (χ(Ck

n = (−1)k). E and F label two- and
three-dimensional representations. g and u refer to symmetry and anti-
symmetry with respect to the inversion and 1 and 2 denote symmetry and
antisymmetry with respect to additional rotation or rotory-reflection axes
and mirror planes. Finally, ′ and ′′ indicate symmetry and antisymmetry
to additional mirror planes. Note that three-dimensional representations
are often also assigned as T instead of F , as e.g. in Fig. 7.12.
The irreducible representations for the 32 point groups, for the icosahedral
group, and for the full orthogonal rotation group are listed in Appendix
G.1 together with the corresponding characters of the symmetry elements.
Since the characters for elements of the same class are equal only the
characters for the various classes are given.

h) There are several orthogonality relations. (For more details see Appendix
G.2.) The most important relation holds for the characters χ(α)(R) and
χ(β)(R) of two irreducible representations Γ (α) and Γ (β)

∑
R

χ∗(α)(R)χ(β)(R) = gδαβ . (8.13)

The summation extends over all symmetry elements of G.
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i) There are several sum rules.
The sum of the squares of the dimensions of the irreducible representations
equals the order of the group.
For more sum rules see Appendix G.2.

j) Using the orthogonality relations for the characters one can immediately
derive a formula which counts how often a particular irreducible represen-
tation Γ (α) with characters χ(α)(R) occurs in an arbitrary d-dimensional
reducible representation with characters χ(R). This number nα is given
by the famous magic counting formula

nα =
1
g

∑
R

χ∗(R)χ(α)(R) . (8.14)

g is the order of the group.
As an example, the three-dimensional representation for the orthogonal
transformations Γ (R) has the characters (3,0,1) in the point group C3v for
the three classes of the group. This representation is of course reducible,
since the sum of the squares of the characters is 12 whereas the order of
the group is only 6. Applying the magic counting formula it is easily shown
that the three-dimensional representation decays into the one-dimensional
representation A1 and the two-dimensional representation E such that

Γ (R) = ΓA1 + ΓE . (8.15)

k) The Kronecker product of the matrices for the two representations Γ (n)

and Γ (m) is again a representation. If the set of coordinates xn and xm

form a basis for the two representations the products xnxm form a basis for
the product representation. The characters of the product representation
are the products of the characters of the two original representations:

χ(n×m)(R) = χ(n)(R)χ(m)(R) . (8.16)

l) Finally, the Kronecker product of two different irreducible representa-
tions never contains the trivial representation. The Kronecker product
of two equal irreducible representation contains the trivial representation
exactly once. Note in this connection: The Kronecker product of the rep-
resentations Γ (α) and Γ (β) may neither contain the representation Γ (α)

nor the representation Γ (β)! For example, for the group D4 the product
A2 ◦ B1 = B2 and does therefore neither contain A2 nor B1.

The three most important statements h) to j) follow immediately from the
definition for a representation by (8.9), the orthogonality of the characters,
and the definition of the Kronecker product.
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We can now proceed to the first application of group theory in spec-
troscopy.

8.3 Classification of Vibrations

Lattice or molecular vibrations are represented by a total energy H = T + U
as

H =
1
2

∑
n,i

u̇2
i (n)Mn +

1
2

∑
i,j,m,n

amn
ij ui(n)uj(m) (8.17)

where i, j runs from 1 to 3 and m,n over all atoms N in the molecule or in the
crystal. ui(n) are the displacement coordinates for atom n with mass Mn, and
amn

ij are the second derivatives of the crystal potential U with respect to these
displacements. Applying a proper orthogonal transformation and using mass-
weighted coordinates for the displacements the total energy can be represented
in normal coordinates Qk for N mass points as

H =
1
2

3N∑
k=1

(Q̇2
k + Ω2

kQ2
k) (8.18)

where Ωk are the normal oscillations of the ensemble. If several normal coor-
dinates Q1 to Qdα

belong to the same Ωα the normal mode is degenerate to
the degree dα. In this case (8.18) has the form

H =
1
2

(
3N∑
k=1

Q̇2
k +
∑
α

Ω2
α

∑
kα

Q2
kα

)
. (8.19)

Since the energy of an ensemble does not change if a SO of its point group is
applied each normal coordinate Qk in (8.18) must be mapped on itself or on
−Qk and in (8.19) all Qkα

of one normal mode must be mapped on themselves
except for the sign. In both cases the normal coordinates are therefore a basis
for a representation according to the definition of (8.9). Since the number of
normal coordinates is 3N the representation is 3N dimensional and therefore,
in general, reducible. (As written in (8.18) and (8.19) it is already presented in
a fully reduced form). Using (8.14) it can be decomposed into the irreducible
representations of the point group. This means all vibrations (including the
translations and the rotations) can be classified according to the irreducible
representations of the point groups. The usual way of expressing this fact is to
assign the vibrations to a particular symmetry type or symmetry species. As a
consequence the vibrations are denoted with the same Mullikan symbols as the
irreducible representations. Figure 8.3 shows the possible in-plane vibrations
for a square together with the assignment of their symmetry species. A1g is
totally symmetric whereas B1g is antisymmetric with respect to the rotation.
Eu is two-dimensional and antisymmetric with respect to the inversion.
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Fig. 8.3. Vibrations of a square with symmetry D4h. (a) and (b) are described
by one normal coordinate. (c) is a twofold degenerate oscillation and therefore
needs two normal coordinates

For the classification of the vibrations of N mass points it is not necessary
to know any of the infinite 3N -dimensional representations and to reduce the
matrix according to (8.10). It is enough to know the traces of the represen-
tation matrices for each symmetry element R. The traces or characters χ(R)
are the sum of the matrix elements on the main diagonal. A simple consid-
eration which is explicitly demonstrated in Appendix G.3 shows that a mass
point contributes only to the main diagonal of M(R) if it is not moved by
the application of the R. In this case the displacements of the mass point are
transformed onto themselves and the matrix of (8.2) applies for the transfor-
mation. For these considerations it is convenient to return from the normal
coordinates to Cartesian coordinates which is no problem since the character
for the representations will remain the same. Also, since we need only the
traces of the representation matrices it does not matter whether we regard
rotation or reflection in z or x or any other direction. The traces remain the
same and are always given by (8.3). If the number of atoms which remain
unchanged for the application of the symmetry element R is Nc(R) the char-
acters of the 3N -dimensional representation are

χ(3N)(R) = Nc(R)dR = Nc(R)[±1 + 2 cos φ(R)] . (8.20)

In this way the characters for all SOs of the ensemble can be evaluated. From
these values for χ(R) (8.14) allows immediately to decompose the total rep-
resentation into the vibrational symmetry species. The 3N -dimensional rep-
resentation Γ (3N) is alternatively called the total representation Γ (tot). Since
the normal coordinates for the pure translations and for the pure rotations
correspond to particular transformations both can be selected from the total
irreducible representations found from the application of (8.14). The trans-
formations for the pure translations and for the pure rotations are those for
the polar vectors (or coordinates) and for the axial vectors, respectively, as
discussed in Sect. 8.1. In many character tables like in those of Appendix G.1
the corresponding irreducible representations are already identified with the
letters x, y, z for the translations and with the letters X,Y,Z for the rotations.
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To demonstrate the described procedure a simple example is appropriate.
Let us consider the water molecule H2O (Fig. 8.4). The molecule has 3N = 9

Fig. 8.4. Geometry and symmetry elements of
the water molecule

motional degrees of freedom and the symmetry elements E,C2, σv, σv′ . This
means the molecule has C2v point symmetry and the corresponding irre-
ducible representations can be taken from Appendix G.1. It is convenient to
set up a table like Table 8.3 where the important data and partial results from
the calculation are inserted. The first line in the table lists the point group

Table 8.3. Classification of motional degrees of freedom for H2O

C2v E C2 σv σv′

dR 3 -1 1 1
Nc 3 1 3 1

χ(3N) 9 -1 3 1

χ(tr) = ±1 + 2 cos φ (translations) 3 -1 1 1

χ(rot) = 1 ± 2 cos φ (rotations) 3 -1 -1 -1
[χ]2 = 2 cos φ(±1 + 2 cos φ) (sym. tensors) 6 2 2 2

and the symmetry elements in the group separated into classes of conjugated
elements. The second line contains the trace dR of the symmetry elements,
the third line the number of stationary atoms for the particular SO and the
fourth line the characters for the total representations according to (8.20).
The fifth and sixth lines give the characters for the translations and for the
rotations. Finally, line 7 presents the characters for the representation accord-
ing to which the symmetry tensors transform. The importance of this set of
characters will be discussed later. To reduce the total representation we use
the magic counting formula (8.14). We may ask, for example, how often is
the irreducible representation A1 of C2v contained in the total representation
Γ (3N). With (8.14) we find

nA1 = (1/4)[(+9) · (1) + (−1) · (1) + (3) · (1) + (1) · (1)] = 3 .
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A1 occurs 3 times in Γ (3N). Similarly we obtain for nB2 , nA2 , and nB1 the
values 3, 1, and 2. Hence the composition of Γ (3N) is

Γ (3N) = 3A1 + 3B2 + A2 + 2B1 . (8.21)

To obtain the vibrations of the water molecule we must find out which of
these representations are covered by the pure translations and by the pure
rotations of the molecule. This means we have to check which irreducible
representations are contained in the representations for the translations and
for the rotations (lines 5 and 6 in Table 8.3). Alternatively we can look into
the character tables and find the representations for the translations and for
the rotations of the point group C2v. In both ways we find

Γ (tr) = A1 + B2 + B1

for the translations and

Γ (rot) = A2 + B2 + B1

for the rotations. Note that the total representations for the translations and
for the rotations are always three-dimensional. The irreducible representations
for the translations and for the rotations have to be subtracted from the total
set given in (8.21). Thus, the pure vibrations are distributed on the three
remaining species

Γ (vib) = 2A1 + B2 . (8.22)

8.4 Infinitely Extended Ensembles and Space Groups

Very similar considerations as discussed above apply to infinitely extended
ensembles of points in crystals. However, three additional symmetry elements
have to be considered: translations, screw axes, and glide planes. All SOs are
now composed of translations and rotations. Formally they are written as

{R/tn}

where R is a symmetry element of the point groups and tn a translation. tn is
not necessarily a multiple of a primitive translation vector of the lattice. In the
case of n-fold screw axes non-primitive translations τR = ka/n are possible
where k can obtain the values 1,2,... n and a is a primitive translation in
the direction of the screw axis. As a consequence, translations are always
represented by

tn = tp + τR (8.23)

where tp are the primitive translations of the lattice.



8.4 Infinitely Extended Ensembles and Space Groups 175

From the symmetry elements for the infinitely extended periodic ensem-
bles again groups can be constructed in a mathematical sense. The total of
available elements enables the construction of 230 different space groups Si.
The order of the space groups is always ∞ since the number of translations
is always ∞. The pure translations with the symmetry elements {E/tp} are
a subgroup T of the space groups. Space groups which contain only symme-
try elements with primitive translations are called symmorphic. There are 73
symmorphic and 157 non-symmorphic space groups. Dropping the primitive
translations from the space groups yields space group elements of the form
{R/τR}. They are again elements of a set of groups called the groups of the
unit cell. These groups are isomorphic to the groups of point symmetry ele-
ments which appear in the space group elements. The latter are assigned as
the crystallographic point groups. Both types of groups have, of course, finite
order. The third type of isomorphic related groups are the factor groups de-
fined as Si/T . They are obtained by a group-theoretically defined division of
the space groups by the translation groups.

The space groups are again labeled with Schönflies or international sym-
bols. The Schönflies notation counts the space groups belonging to the same
point group. D6

3d would be the 6th space group with the point group D3d.
The international notation uses at first a symbol for the Bravais lattice. (F
for fcc, I for bcc, R for rhombohedric, etc.), then a set of the most important
symmetry elements follows. The space group D6

3d is labeled as R3c. All space
groups are listed in the International Tables of Crystallography [8.1].

In solid-state physics often Arabic or Greek letters are used to label the
irreducible representations of symmetry points in the Brillouin zone, instead
of the Schönflies or international symbols. Table 8.4 compares the different no-
tations of the most important symbols according to [8.2]. Other notations are
used as well. The first, second and third column of the table lists the symme-
try groups in the Schönflies notation, several selected symmetry points in the
Brillouin zone, and the possible irreducible representations in the Schönflies
notation. The lower line in the third column contains possible subscripts to
the symmetry points to correlate them to the Schönflies symbols. For exam-
ple, Γ25′ has F2g symmetry or, Γ25 has F1 symmetry in T d but F2u symmetry
in Oh.

If the analysis of vibrations in crystals is restricted to wave vectors with
q ≈ 0 it is sufficient to study the finite groups related to the space group. In
this case one can proceed in a very similar way as demonstrated above for the
finite ensembles. The characters for the glide planes and for the screw axes
are identical to those for the corresponding rotation axes and mirror planes.
For the determination of the stationary atoms Nc space-group elements of the
unit cell must be used. This means Nc is always zero for screw axes and glide
planes. In addition, an atom is still regarded as stationary if it is moved by
a SO from its position in one cell to an identical position in the neighboring
cell. As an example in Appendix G.4 a vibrational analysis is performed for
the crystal CaCO3.
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Table 8.4. Symmetry points in different notations

group symmetry point notation

Oh A1g A1u A2g A2u Eg Eu F1g F1u F2g F2u

Γ, R, H 1 1′ 2 2′ 12 12′ 15′ 15 25′ 25
Td A1 A2 E F1 F2

Γ 1 2 3 25 15
C4h A1g A1u A2g A2u B1g B1u B2g B2u Eg Eu

X, M 1 1′ 4 4′ 2 2′ 3 3′ 5 5′

C4v A1 A2 B1 B2 E
T, Δ 1 1′ 2 2′ 5

D2d A1 A2 B1 B2 E
W 1 2 1′ 2′ 3

D3d A1g A1u A2g A2u Eg Eu

L 1 1′ 2 2′ 3 3′

C3v A1 A2 E
Λ, F 1 2 3

D2h Ag Au B1g B1u B2g B2u B3g B3u

N 1 2′ 2 1′ 4 3′ 3 4′

C2v A1 A2 B1 B2

Σ, K 1 2 4 3
G, D, S, U, Z 1 2 3 4

The irreducible representations of the translations correspond to the acous-
tic modes since for q = 0 the latter are pure displacements. The irreducible
representations for the rotations are now real eigenmodes of the crystals since
the unit cell is not any more free to move. In molecular crystals the represen-
tations for the librational modes (hindered rotations of the molecules) are the
irreducible representations of the rotations.

8.5 Quantum-Mechanical Selection Rules

Quantum-mechanical selection rules control the calculation of the transition
probability for a system changing from a state i to a state f. The relevant
quantity is the matrix element

Mfi =
∫

ψ∗
f Pψidx , (8.24)

where ψi and ψf are the wave functions for the initial and the final state,
respectively, and P is the operator driving the transition.

In order to be able to make predictions about the magnitude of Mfi it is
necessary to generalize the definition for the representations given by (8.9). If
we have a set of d linear independent functions ψk(x) which are mapped onto
themselves by the application of transformations of the form
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ψi =
∑
R

Dik(R)ψk (8.25)

for all SO R ⊂ G these function form the basis for a d-dimensional represen-
tation Dik(R) of G. Since, in particular, the Schrödinger equation

Hψk = εkψk

is invariant versus symmetry operations of the system under consideration the
wave functions to a particular eigenvalue are mapped onto themselves and are
thus a basis for an (irreducible) representation. This means the eigenvalues
of the system can be classified according to the irreducible representations of
the group G.

A very important property of the basis functions follows. If ψ
(ρ)
i (x) is a

basis function for a (irreducible or reducible) representation Γ (ρ) of G the
relation∫

ψ
(ρ)
i (x)dx �= 0 (8.26)

is only possible for Γ (ρ) being the trivial representation or containing the
trivial representation.

We can always consider ψ
(ρ)
i in (8.26) as the product of basis functions

from several representations

ψ
(ρ)
i (x) =

∏
ρk

ψ
(ρk)
i . (8.27)

Then ψ
(ρ)
i is the basis for the representation obtained from the Kronecker

product of the representations Γ (ρk). With this assumption we can immedi-
ately check under which conditions (8.26) is valid. As discussed above the
Kronecker product of two different irreducible representations never contains
the trivial representation, whereas the Kronecker product of two equal irre-
ducible representations always contains the trivial representation exactly once.
Thus, if Γ (ρ) is the Kronecker product of two representations and (8.26) is
valid it means two equal representations are contained in this product, and
vice versa. If two equal representations are contained in the Kronecker product
the integral in (8.26) must be finite.

Since all operators transform like particular basis functions we can consider
the integral in (8.24) as the triple product of basis functions representing
the basis for a representation obtained from the Kronecker product of three
representations. Because of the validity of the associative law we can, in this
case, at first evaluate the Kronecker product of the first two representations
and determine the irreducible contributions. Then the Kronecker product for
each of these contributions with the last representation is investigated. If in
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any of these products the trivial representation is contained the integral in
(8.26) is �= 0, and we say the transition from state i to state f is allowed.

The above results can be used immediately to establish selection rules for
various processes. If the operator P is a scalar it transforms according to
the trivial representation. In this case only matrix elements for transitions
between energy levels with equal symmetry are �= 0.

For IR absorption the operator P is a dipole moment and transforms
therefore according to the coordinates. The corresponding irreducible repre-
sentations are assigned as x, y, z in the character of Appendix G.1. For the
process of IR absorption by phonons or vibrons we can assume the initial
state to be the zero-phonon state. This means the vibration is created from
the vacuum state and the process of absorption does not depend on the initial
electronic states or any other vibronic state. In this case the initial state is
characterized by the trivial representation. The final state is a one-phonon
state with the symmetry of the phonon characterized by its irreducible rep-
resentation. Since we need two equal representations to make the integral in
(8.26) �= 0 IR absorption is only possible for phonons with an irreducible rep-
resentation equal to at least one of the representations of the coordinates. In
other words, the irreducible representation assigned in the character tables
with x, y, z are exactly the representations for the IR active phonons or vi-
brations of the corresponding point group. The coordinates given refer to the
polarization of the phonon. As an example, in the point group Oh all phonons
with irreducible representation F1u but none of the others are IR active.

For the optical absorption P is the same dipole operator as for IR absorp-
tion. However, the initial state is not characterized by the trivial representa-
tion. It is rather determined by the symmetry of the electronic ground state
represented by Γ (α). The integral in (8.24) or in (8.26) is taken over the prod-
uct of basis functions corresponding to the representation Γ (β)Γ (coord)Γ (α).
According to the above analysis transitions from state α are possible to all
states β for which the irreducible representations Γ (β) occur in the product
Γ (coord)Γ (α) since then two equal representations are present and the integral
in (8.26) will be finite. This statement is expressed by

Γ (β)
(
Γ (coord)Γ (α)

)
= Γ (β)

(∑
nδi

Γ (δi)

)
,

where Γ (δi) are the irreducible representations contained in Γ (coord)Γ (α). If
one of the representations Γ (δi) equals Γ (β) the sum contains Γ (β)Γ (β) which
contains Γ (1).

Let us analyze as an example the possible transitions for the point group O
with the irreducible representation Γ (δi) = A1, A2, E, F1, F2. The coordinates
transform according to F1. Thus, all products F1Γ

(δi) must be analyzed with
respect to their irreducible components where Γ (δi) is any of the irreducible
representations of O. A transition from Γ (δi) to any of these components will
be optically allowed. For the transitions between states with equal symmetry
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the symmetric product [Γ (δi)]2 must be used. The characters for the symmetric
product are

[χ(α)(R)]2 =
1
2

[
(χ(α)(R))2 + χ(α)(R2)

]
. (8.28)

If Γ (coord) occurs in this product the product Γ (coord)Γ (δi) contains two equal
representations and therefore also the trivial representation. In the case of the
group O none of the transitions between states with the same symmetry con-
tains F1 which means none of them is allowed. The following matrix scheme
gives a summary for the allowed and forbidden transitions in O. The represen-
tation Γ (i) in the first column of the scheme is either the representation for the
coordinates F1 (for the off diagonal transitions) or the representation under
consideration (for the diagonal transitions). In the latter case the symmetric
product must be considered.

A1 A2 E F1 F2

A1Γ
(i) 0 0 0 M14 0

A2Γ
(i) 0 0 0 0 M25

EΓ (i) 0 0 0 M34 M35

F1Γ
(i) M41 0 M43 0 M45

F2Γ
(i) 0 M52 M53 M54 0 .

For Mik finite the transition is allowed. For example, F1F1 contains A1 +E +
F2. Therefore transitions from F1 to A1, E, and F2 are possible but [F1]2 does
not contain F1. Hence a transition from F1 to F1 is forbidden.

Also the splitting of degenerate states by an interaction with an external
perturbation as it was discussed in Sect. 7.5 can be determined from group
theory. This is possible if the symmetry of the perturbation U is lower than
the symmetry of the system under consideration, and the symmetry group of
U is a subgroup of the symmetry group of the system. The Hamiltonian for
the perturbed system has the form

H = H0 + U (8.29)

with the symmetry of U . The wave functions which represent a basis for an
irreducible representation of H0 are certainly also a basis for a representation
of H. However, since the symmetry group of H has less elements than the one
of H0 a smaller set of eigenfunctions may already be mapped onto itself. Thus,
a representation of dimension s which is irreducible for the symmetry group
of H0 may be reducible for the group of H. This means the corresponding
s-fold degenerated energy levels are split.

Let us consider threefold degenerated energy level with symmetry F2 in
group T d. The symmetry elements of T d and the characters for F2 can be
obtained from Appendix G.1 and are listed in Table 8.5 with changed order.
The system be subjected to a perturbation U with symmetry C3v. C3v has the
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Table 8.5. Splitting of energy level F2 from T d by a perturbation U with symmetry
C3v

Td E 8C3 6σd 3C2 6S4

χ(F2) 3 0 1 −1 −1

C3v E 2C3 3σv

χ(red) 3 0 1

symmetry elements E, 2C3, 3σv also given in Table 8.5. Since only part of the
symmetry elements from T d are available in C3v the truncated representation
is reducible in C3v. Reduction yields the components A1+E. Thus the energy
level F2 splits into levels with symmetry A1 + E in C3v.

Another good example for the lifting of degeneracy due to symmetry break-
ing is visualized by the splitting of atomic orbital levels due to the crystal or
ligand field as discussed in Sect. 7.5.

The splitting of the irreducible representations of a group into the repre-
sentations of all regular subgroups can be found in correlation tables such as
e.g. in [8.4].

Finally, we want to study the selection rules if P is a tensor. Since a
tensor transforms like the product of coordinates we must work out the rep-
resentation for the product of the coordinates and determine its irreducible
components. These irreducible representations determine the allowed transi-
tions.

If we consider as a special case the selection rules for Raman scattering we
have to keep the symmetric nature of the Raman tensor in mind. Thus, only
the symmetric part of the product representations has to be checked. The
characters for this part are evaluated from (8.28). Using as a representation
for the transformations of the coordinates the matrices (8.2) the characters
for the symmetric product of two (equal) representations is explicitly given
by

[χ(R)]2 = 2 cos φ(±1 + 2 cos φ) . (8.30)

If again like in the case of the IR absorption the representation for the initial
state is the trivial representation all irreducible representations occurring in
the symmetric product of the coordinates are the representations of the al-
lowed vibrations. So, finally all that needs to be done is to apply the magic
counting formula (8.14) to the characters [χ(R)]2 of (8.30). For the point
group C2v these characters have already been evaluated above and are listed
in Table 8.3. Reducing with respect to the irreducible representation of C2v

yields

Γ [χ]2 = 3A1 + A2 + B1 + B2 .
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This means all irreducible representations of C2v are contained in the rep-
resentation for the symmetric tensor product or all vibrational species are
Raman active.

In many character tables the irreducible representations which are con-
tained in the representation for the symmetric tensor products are assigned for
all point groups. In the tables of Appendix G.1 this assignment was dropped
for simplicity and to avoid duplications. Instead, attention is directed at this
point to Appendix H.1 where the various irreducible representations are listed
together with the Raman tensors for the various point groups.

Problems

8.1 Prove that the two symmetry elements C4 and C3
4 belong to the same class in

C4v but not in C4h.
(Purpose of exercise: understand the meaning of classes.)

8.2 Show that the trace for the Kronecker product of a matrix A with dimension a
and matrix B with dimension b is the product of the traces of matrix A and matrix
B.

(Purpose of exercise: understand the Kronecker product.)

8.3 Show explicitly the homomorphic character of the mapping in (8.8) by estab-
lishing two multiplication tables.

(Purpose of exercise: understand homomorphism)

8.4 Consider the coordinates x, y, and z as a basis and find a three-dimensional
representation for the point group C3v by using (8.9).

(Purpose of exercise: understand the meaning of a set of coordinates establishing
a basis for a representation.)

8.5a Derive the magic counting formula from the orthogonality of the characters for
different irreducible representations.

(Purpose of exercise: understand orthogonality relations.)

8.6 Find the vibrational modes of a tetrahedron and discuss the degeneracy of the
modes.

(Purpose of exercise: perform a simple vibrational analysis and understand the
degeneracy.)

8.7 Show that for a crystal with crystallographic point group O the transition from
a state with symmetry E to a state with symmetry F2 is allowed but the transition
from E to E is forbidden.

(Purpose of exercise: understand selection rules.)

8.8a Calculate the Kronecker square for the representations of group D4 and demon-
strate its difference to the symmetrized direct products.

(Purpose of exercise: understand the symmetrized Kronecker product.)

8.9∗ Let ψ
(m)
i be a basis function of the (reducible) representation Γ (m). Show that

the relation
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∫
ψ

(m)
i dx 	= 0 (8.31)

holds only if Γ (m) is the trivial representation or contains the trivial representation.
Hint: Show first that the integral disappears if ψ

(m)
i is a basis for an irreducible repre-

sentation which is not the trivial representation. Use: the integral over the full space
must remain constant versus any symmetry transformation and

∑
R D

(α)
ik (R) = 0

from the orthogonality of the representation matrices.
(Purpose of exercise: prove a fundamental statement for the application of rep-

resentation of group theory.)

8.10 Show that for a reduction of the symmetry Ih to Th a fivefold degenerate
vibration decays into a twofold degenerate vibration Eg and a threefold degenerate
vibration Fg.

(Purpose of exercise: study lifting of degeneracy by reduction of symmetry.)

8.11n Show that the fivefold degenerate atomic d orbitals split into orbitals with
Eg and F2g symmetry if the atom is inserted into a crystal with Oh symmetry.

(Purpose of exercise: understand the character of the full orthogonal rotation

groups SO(3) and O(3).)



9

Light Scattering Spectroscopy

So far the propagation of light was assumed to be straight or, at most, straight
with a discontinuous change in the direction of propagation at a flat boundary
between two media with different indices of refraction. Straight propagation
of light holds only as long as the medium is homogeneous. If this is not the
case and if the inhomogeneities are, in particular, of the size of the light wave-
length scattering into arbitrary or well defined directions occurs. For purely
geometrical or local inhomogeneities with no time dependence the scatter-
ing is elastic which means without a change of the light energy. Depending
on the size and nature of the optical inhomogeneity the processes are called
Tyndall scattering, Mie scattering, or Rayleigh scattering. For time-dependent
inhomogeneities the scattering process is inelastic and for inhomogeneities pe-
riodic in time sidebands to the excitation line occur. This is the case for the
various forms of Brillouin scattering and Raman scattering. Such scattering
experiments give valuable information on the electronic and vibrational states
of the material.

9.1 Instrumentation and Setup for Light Scattering
Experiments

In light-scattering experiments the spectral distribution of the scattered light
is analyzed relative to the spectrum of the incident light. In the case of Raman
or Brillouin spectroscopy the changes in the spectrum are very close in energy
to the energy of the incident light but usually many orders of magnitude
smaller in intensity. Therefore, a very good suppression is required for the
elastically or quasi-elastically scattered light. Lasers are optimum as light
sources for excitation, and double monochromators or triple monochromators
as they were described in Sect. 4.2 are optimum for analysis. Recently also
single monochromators with notch filters to suppress the primary light beam
became relevant. If the expected changes in the spectrum are as close as
a few wave numbers to the exciting line single-mode lasers and a Fabry–
Perot interferometer are recommended for the excitation and for the analysis,
respectively. This is usually the case in Brillouin spectroscopy.

H. Kuzmany, Solid-State Spectroscopy, DOI 10.1007/978-3-642-01479-6 9, 183
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For the purposes of light analysis various optical elements like polarizers,
analyzers, λ/4-platelets, etc., can be inserted into the beam of the incident and
of the scattered light. For a quantitative analysis of the scattering intensity
the use of a scrambler is recommended in order to account for the very strong
difference in spectral sensitivity of the gratings for parallel and perpendicular
polarized light, as was described in Sect. 4.2.

For a good resolution in the spectrometer with a simultaneous high light
intensity the source of the scattered light must be small. Thus, in general, the
laser is concentrated onto the sample by a strongly focusing lens. Figure 9.1
presents several possible geometries. Part (a) is the classical 90◦-scattering

Fig. 9.1. Various geometries for light-scattering experiments: 90◦ scattering for
transparent crystals (a), 90◦ scattering for absorbing crystals (b), 180◦ backscat-
tering (c), 0◦ forward scattering (d), and line focus (e); (S: sample, M1,2: mirrors)

geometry for transparent crystals. Incident as well as scattered light inten-
sities are increased by a factor of two by the two mirrors M1 and M2. Part
(b) of the figure represents a 90◦ scattering geometry for highly absorbing
material. Excitation and scattering occurs only close to the crystal surface.
A variation to this arrangement is shown in (c) where the scattered light, is
observed in 180◦ backscattering. Because of its well defined geometry with re-
spect to the propagation of the incident and scattered light this arrangement
is particularly useful to study selection rules in single crystals. In special cases
scattering in the forward direction with scattering angles ≈ 0◦ (Fig. 9.1d) can
also be important. The directly transmitted beam must be deflected from
the scattered light beam by a small prism or a small mirror. Finally, if the
crystal under investigation is light-sensitive a cylindrical lens can be used for
focusing (Fig. 9.1e). This geometry is appropriate as long as a spectrometer
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is used with a slit for the light entrance. The local irradiance on the crystal is
highly reduced due to the linear spread of the focus but the scattering output
remains high if the line focus is properly oriented with respect to the slit.

The classical detectors for Brillouin and Raman experiments are the pho-
tomultipliers operating as photon counters. However, today, multichannel sys-
tems, as they were described in Sect. 5.4, become more and more important.

In the case of light scattering by spatial inhomogeneities (Mie scattering) a
broad-band spectrum is investigated, in general. This means a broad-band ex-
citation source is appropriate as in the case of optical-absorption spectroscopy,
and the spectrometers do not need to have the high resolution required for
Raman or Brillouin scattering. Since the light intensity is high, usually no
high-sensitivity light detection is needed. Instead, the application of a micro-
scope can be very useful since it may enable the analysis of single scattering
centers. If an investigation of the angular distribution of the scattered light is
required laser excitation is advantageous even in this type of experiment.

With the recent increasing interest in small particles of dimensions in the
nm range light scattering from metallic colloides became of great relevance and
will be discussed in some detail in Chap. 16 and the corresponding appendix.

9.2 Raman Spectroscopy

Raman spectroscopy is based on the analysis of inelastically scattered light.
Scattering occurs from optical modes of quasi-particles. Classical scatterers
are optical phonons but other quasi-particles like optical magnons, plasmons
or even electronic excitations provide similar sources for the Raman process.
For the experimental discovery of this type of inelastic light scattering C.V.
Raman received the Nobel prize in physics in 1930.

9.2.1 Fundamentals of Raman Scattering

Raman scattering originates from a change in the polarizability of molecules
or the susceptibility of crystals by the excited quasi-particles. The optical
phonons are the most often investigated species. In contrast to absorption
spectroscopy it is the modulation of the response by the vibrations which is
important, rather than the contribution of the vibronic oscillators themselves.
The effect is demonstrated in Fig. 9.2 for a two-atom molecule. For an applied
field E(ω) the polarizability α0 of the orbitals shown leads to a dipole moment
PD(ω) = α0E(ω) which acts as a source for the evanescing EM wave. If the
molecule is vibrating with frequency Ω the distance between the atoms A and
B changes periodically and the polarizability will be modulated. In this case
the total dipole moment has the form1

1 Note: The presentation given here is for a single molecule. Thus, α has the units
A s m2/V.
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Fig. 9.2. Schematic demonstration of
the Raman effect for a two-atomic
molecule

P D(ω) = (α0 + α1 cos Ωt)E0 cos ωt . (9.1)

Application of trigonometric sum rules yields

P D(ω) = α0E0 cos ωt + (α1E0/2)[cos(ω + Ω)t + cos(ω − Ω)t] . (9.2)

Thus, the evanescing light oscillates not only with the frequency ω but also
at sidebands with frequencies ω ± Ω. Since ω for visible light is of the order
of 20 000 cm−1 and the phonon frequencies can be as low as a few cm−1

the line shifts can be very small. In addition, α1 is always many orders of
magnitude smaller than α0, which means that the sidebands are usually very
weak. Nevertheless todays spectroscopic techniques enable the measurement
of the Raman sidebands for more or less all solid systems which exhibit Raman
active excitations.

In crystals the situation is more complicated since the phonons have peri-
odic structures and scattering from different parts of the crystal will interfere.
A constructive interference occurs for the condition

2Λ sin(θ/2) = nλ . (9.3)

Λ and λ are the wavelengths of the phonon and of the light, respectively, n is
the order of diffraction, and θ the angle between the incident and the scattered
beam. Equation (9.3) means that scattering occurs in a well defined direction
for a given phonon and for a given wavelength of the incident light.

The classical formulation of the scattering process is easily reinterpreted
in a quantum-mechanical picture. In this case the scattering geometry is de-
termined by momentum conservation as shown in Fig. 9.3 and the sidebands

Fig. 9.3. Momentum conservation for a light-scattering
process with phonon generation; ki, ks, and q: wave vec-
tor for incident and scattered photon and for the phonon,
respectively

are interpreted as emission or absorption of a phonon by the light with con-
servation of energy. The corresponding mathematical relationships are
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h̄ωi = h̄ωs ± h̄Ω ,

h̄ki = h̄ks ± h̄q . (9.4)

The indices s and i refer to the scattered and incident light, respectively. The
+ sign is for phonon generation and the − sign is for absorption. As can be
seen from Fig. 9.3, the direction of the phonon participating in the scattering
process depends on the direction of observation. Also, scattering can only
occur for quasi-particles with very small values of q as compared to the size
of the Brillouin zone. For 180◦ backscattering the maximum allowed value of
q is obtained. It is related to ks and ki by

qmax = ki + ks ≈ 2ki . (9.5)

Since for the visible spectral range ki is of the order of 105 cm−1 only scattering
with phonons from the center of the Brillouin zone with q ≈ 0 is allowed.
Depending on whether the quasiparticle is absorbed or emitted, the energy
of the scattered light is higher or lower than the energy of the incident light.
In the first case we speak about antiStokes scattering and in the second case
about Stokes scattering.

Fig. 9.4. Selection rules for Raman and for infrared activity of vibrations; after
[9.1]

A phonon can only contribute to a Raman process if it induces a change
in the polarizability. This is not necessarily the case for any vibration but
rather depends on the mechanical deformation induced in the molecule or in
the unit cell of a crystal. The situation can be demonstrated with the model
molecules listed in Fig. 9.4. The figure shows which deformations Q lead for
symmetric diatomic, asymmetric diatomic and symmetric triatomic molecules
to a change in the polarizability. In addition, the geometric deformations are
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indicated which lead to a change of the dipole moment P D of the molecule.
Vibrations of the latter type are infrared active. Column 2 and 3 refer to the
change of the polarizability and the dipole moment of diatomic molecules,
and column 4 shows the same for three different vibrations of a triatomic
molecule. From the symmetry of the vibrations in column 2, 3 and also for
the symmetric vibration in column 4 the polarizability is changed by the
displacement of the atoms. Therefore these vibrations lead to a Raman effect
and are called Raman active. This is not so for the asymmetric vibrations
of the triatomic molecule. In first order the changes induced by one part of
the molecule are compensated by the other part, and the derivative of the
polarizability with respect to the normal coordinate Q is zero at Q = 0. The
oscillations are Raman inactive. Similar considerations can be applied with
respect to infrared activity. Only the oscillation shown in column 3 and the
asymmetric oscillations of column 4 induce a dipole moment and are therefore
infrared active. Obviously a vibration can be either only Raman active or only
infrared active or active to both probes. In fact, vibrations can also be inactive
or silent to both spectroscopic techniques.

The analysis exemplified above relies completely on geometrical considera-
tions. The geometry of the displacement of the atoms must be known. This is
in contrast to the analysis of Raman activity and infrared activity discussed in
Sect. 8.5. The final results with respect to the activity of the various vibrations
is, of course, the same.

The intensity of the light in the sidebands is proportional to the incident
intensity. This means the ratio of the two intensities defines a scattering cross
section of the form

dσ

dΩ
=

1
Ii

dΦs

dΩ
(differential scattering cross section) ,

or

S =
1
V

dσ

dΩ
(Raman cross section) , (9.6)

where dΦs means the light power (in watts) scattered into the solid angle
dΩ, Ii the intensity of the incident light (irradiance) in watts/m2 and V the
scattering volume. S is a cross section per unit volume and thus a property
of the material. Alternately to (9.6), often the derivative of S with respect to
the light frequency or spectral energy is used as a cross section.

The normalization of the Raman cross section to the scattering volume
is important for strongly absorbing materials where the scattering volume is
determined by the penetration depth of the light. For a comparison of Raman
intensities obtained for excitation with different laser lines a correction to the
observed results is required. If R and α are the reflectivity and the absorption
coefficients of the material, the Raman cross section is given by
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S =
1
Ii

dΦs

dΩ

(αi + αs)/F

(1 − Ri)(1 − Rs)
, (9.7)

where F means the cross section of the laser focus or more generally the
cross section of the scattering volume. Equation (9.7) is derived for strongly
absorbing materials in 180◦ back scattering. Modified equations must be used
for less strongly absorbing materials [9.2].

9.2.2 Classical Determination of Scattering Intensity and Raman
Tensor

For description of the Raman process and for evaluation of the Raman inten-
sity we can proceed analogous to (9.1). Instead of the scalar polarizability α we
use the susceptibility tensor χjl in the case of the crystals. The displacements
of the atoms are replaced by the normal coordinates Qk of the oscillations. The
susceptibility can then be expanded with respect to the normal coordinates
Qk and one obtains in analogy to α in (9.1)

χjl = (χjl)0 +
∑

k

(
∂χjl

∂Qk

)
0

Qk +
∑
k,m

(
∂2χjl

∂Qk∂Qm

)
0

QkQm + ... , (9.8)

where the sum runs over all normal coordinates. ∂χjl/∂Qk is a component
of the derived polarizability tensor. This tensor is also known as the Raman
tensor and often written as

(χjl)k or simply as χjlk or χjl,k .

The intensity of the scattered light is proportional to the square of the Raman
tensor. The components of the tensor have three indices. j and l extend over
the coordinates 1 to 3 and k runs over the 3N − 3 normal coordinates for the
vibrations, where N is the number of atoms in the unit cell. In other words, k
runs over all optical modes with wave vector q = 0. The Raman tensor which
refers to all zone-center vibrations thus has rank three. For an individual mode
this tensor is given by a matrix with three rows and three columns determined
from the derived susceptibilities. This quantity is called the Raman tensor of
a particular mode.

Group theory allows to determinate which vibrational species can have
non-vanishing components in their Raman tensor (Sect. 8.5). Since the Raman
intensities are described by symmetric tensors exactly those species are Raman
active for which the representations are contained in the representation for the
symmetric tensors. Group theory can predict even more. It determines which
components of the Raman tensors must be zero in the various point groups and
which are finite. Thus, the structures of the Raman tensors can be evaluated
for all vibrational species and for all point groups. The tensors are tabulated
in many books. Appendix H.1 gives a listing following the work of Poulet and
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Mathieu [9.3]. For example, the Raman tensor for a highly symmetric mode
(Ag-vibration) in the cubic point group Oh has the form

(χ)Ag
=

⎛
⎝a 0 0

0 a 0
0 0 a

⎞
⎠ . (9.9)

As we already saw from Fig. 9.4, vibrations can be Raman active as well as
infrared active. For point groups with inversion symmetry Raman activity and
infrared activity is mutually excluded.

By expanding the susceptibility into normal coordinates the Raman inten-
sity is obtained quantitatively from the vibration-induced polarization. In the
linear approximation the susceptibility is according to (9.8)

χjl = (χjl)0 + (χjl,k)0Qk (9.10)

with

Qk = Qk0 cos Ωkt .

We consider the emission from an elementary oscillator. With a harmonic
incident field Ei

l(t) the induced dipole moment which accounts for the emission
in the side bands is

P s
Dj(ω ± Ωk) = χjl,kε0VuEi

l0Qk0 cos(ω ± Ωk)t (in A s m) (9.11)

where Vu is the volume of the unit cell. χjl,k has the dimension of a reciprocal
normal coordinate.

For the explicit calculation of the scattering intensity it is convenient to
select a special geometry2. For the case shown in Fig. 9.5 light is incident

Fig. 9.5. Beam and sample geom-
etry for 90◦ scattering; (full drawn
arrows: (‖,⊥)-geometry, dashed ar-
rows: (⊥, ‖)-geometry)

in z direction and observed in x direction. Thus, the scattering plane is the
2 Note: Intensities are given as radiance in watts per steradian rather than as watts

per area.
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xz plane. The polarization for the incident light is in the x direction (full
drawn arrow) which means in the scattering plane. The scattered light is y
polarized, i.e., perpendicular to the scattering plan. Other allowed orientations
for the incident and for the scattered light in this geometry are indicated
in the figure as dashed arrows. It is convenient to describe orientations of
the incident and scattered light polarization with respect to the scattering
plane using the symbols ‖ and ⊥. The scattering geometry ExPDy given by
the full arrows in Fig. 9.5 is then labeled ‖Φ⊥. Using (2.19) and (2.18) with
μ = 1 and θ = 90◦ together with (9.11) the time-averaged scattering intensity
per elementary unit cell and unit solid angle can be evaluated. For a total
scattering volume V, consisting of N = V/Vu unit cells, the intensities from
elementary oscillators are incoherently superimposed. This yields

d‖Φ⊥

dΩ
=

(ω ± Ωk)4Vuχ2
yx,kε0E

2
x0Q

2
k0V

32π2c3
0

. (9.12)

It is often more convenient to deal with the intensity Ii of the incident light
instead of its field. With (2.9) we obtain

d‖Φ⊥

dΩ
=

(ω ± Ωk)4Vuχ2
yx,kQ2

k0IiV
16π2c4

0

(in W/ster). (9.13)

For the Raman scattering cross section (9.6) yields

Syx =
(ω ± Ωk)4Vuχ2

yx,kQ2
k0

16π2c4
0

. (9.14)

Similar equations can be derived for other polarizations and for unpolarized
light.

Equations (9.12) to (9.14) describe the observed scattering intensity only
in a very phenomenological way. For example, the amplitude of the normal
coordinates Qk0 is not known. It depends strongly on the temperature and is,
in fact, the most significant temperature-dependent factor in the equations.
This factor can be calculated from a rather simple quantum-mechanical con-
sideration, to be demonstrated in Sect. 9.2.5. The Raman tensor χjl,k is also
used in a completely phenomenological way. Its calculation needs the evalu-
ation of transition matrix elements similar to those discussed in Chap. 7 but
perturbation theory of second order is required.

For the characterization of the scattering geometry the directions of the
incident and scattered light as well as the directions of the corresponding
polarizations are important. It is convenient to describe these directions with
the symbol

a(bc)d ,

where the letters refer to Cartesian coordinates x, y, and z. a and d give the
directions for the incident and scattered light, and b and c the directions for
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the corresponding polarizations. This assignment is known as Porto notation.
The Porto notation for the scattering geometry of the full drawn arrows in
Fig. 9.5 is z(xy)x.

For many experiments it is enough to determine the components of the
Raman tensor which contribute to the scattering intensity. For example, to
analyze the symmetry species of a vibrational mode it is enough to check which
components of the Raman tensor are nonzero. Since from (2.19) the (radiant)
scattering intensity is proportional to the square of the dipole moment P s

D, it
is given for the mode k and for a selected direction of polarization es of the
scattered light by the absolute square of the projection of the P s

D on es.

Φ(k) = C| es P s
D|2 = C|

∑
j

es
jP

s
Dj(k)|2 , (9.15)

where P s
Dj are the components of the dipole moment induced by the Raman

effect. This dipole moment is given according to (9.11) by

P s
Dj =

∑
l

χjl,kei
lE0Vuε0Qk .

ei
l are the components of the unit vector of polarization for the incident light.

Thus, for a scattering geometry where the polarizations for the incident and
scattered light are given by arbitrary vectors ei and es the scattering intensity
is

Φ(k) = C ′|es(χkei)|2 = C ′|
∑
j,l

es
jχjl,kei

l|2E2
0 . (9.16)

If the modes are degenerate, summation of intensities originating from the
various Raman tensors corresponding to the same mode is required. Equa-
tion (9.16) shows immediately the possibility to select any component of the
Raman tensor by properly choosing the polarization of the incident and the
scattered light. If the observation for the scattering geometry of Fig. 9.5 is
for y polarization but the excitation is for a polarization under 45◦ to the y
direction, the recorded intensity is proportional to (χyy,k + χyx,k)2E2

0/2.
Let us consider experimental results for a scattering experiment with cal-

cite (CaCO3). As discussed in Appendix G.4 the crystal has D3d point sym-
metry with two formula units per unit cell. This yields 27 optical modes
distributed over the irreducible representations of D3d as

Γ (3N−3) = A1g(R) + 3A2g + 4Eg(R) + 2A1u + 3A2u(IR) + 5Eu(IR) .

A2g and A1u are silent species. From the table of Raman tensors in Appendix
H.1 we find the form of the Raman tensors for the A1g and for the Eg modes
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Fig. 9.6. Raman spectra of calcite for different scattering geometries. The four
lines in (a) can be either A1g or Eg. From (b) the mode at 1088 cm−1 is A1g, from
(c) the modes at 156 and 283 cm−1 are Eg, and thus the mode at 714 cm−1 is
also Eg; after [9.4]

A1g :

⎛
⎝a 0 0

0 a 0
0 0 b

⎞
⎠ , Eg1 :

⎛
⎝ c 0 0

0 −c d
0 d 0

⎞
⎠ , Eg2 :

⎛
⎝ 0 −c −d

−c 0 0
−d 0 0

⎞
⎠ .

The twofold degenerate Eg modes have two different Raman tensors. Figure 9.6
exhibits spectra for different scattering geometries. For the geometry z(xx)y
the Raman lines of the A1g and of the Eg species can be observed propor-
tional to a2 and to c2, respectively. For a scattering geometry y(zz)x only the
A1g-modes proportional to b2 can be observed. In this way the different sym-
metry species and the individual components of the tensors can be determined
experimentally.

9.2.3 Longitudinal and Transversal Optical Modes

Optical modes with q �= 0 can be longitudinal (LO) or transverse (TO), de-
pending on the direction of the displacement with respect to q. As long as
the modes do not carry a dipole moment the LO and the TO components
are degenerate. They are electrically inactive and do not contribute to the
dielectric function. The situation is different for polar modes which carry a
dipole moment and are electrically active. The polar modes are the IR-active
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species. Since the longitudinal electric field contributes much more strongly
to the force constants than the transverse field, the LO - TO degeneracy is
lifted with the LO frequency always higher than the TO frequency. This was
already evident from the Lyddane–Sachs–Teller relation (6.43) (for ωL = ωLO)
in Sect. 6.3. Note that the differentiation between LO and TO modes needs
the definition of a direction of propagation. There is no LO-TO splitting in
the above sense for q = 0. For the polar modes the direction of polarization is
assigned with x, y, and z in the character tables and can be taken from there
right away.

Using well defined scattering geometries in a Raman experiment the LO
and the TO components of a mode can be studied separately. Figure 9.7

Fig. 9.7. Scattering geometry for the observation of the TO and the LO compo-
nent for the A1(z) mode in C2v ; (a) and (b) is for 180◦ back scattering, (c) for
90◦ scattering

sketches different scattering geometries of the z polarized A1 species in the
point group C2v. According to Appendix H.1 the Raman tensor has the form

A1(z) =

⎛
⎝a 0 0

0 b 0
0 0 c

⎞
⎠ .

For the geometries in part (a) and (c) of Fig. 9.7 only the TO component is
observed whereas for the geometry of part (b) only the LO component is seen.

Difficulties arise if we want to observe the LO component of the B1(x)
species in the same point group. It needs a measurement with incident and
scattered light propagating in the x direction. The Raman tensor for B1(x)
has the form

B1(x) :

⎛
⎝ 0 0 e

0 0 0
e 0 0

⎞
⎠

which requires a xz polarization. Both conditions cannot be fulfilled simultane-
ously because of the transversal nature of the light polarization. In transparent
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crystals the problem can be solved by using a 0◦ forward scattering geome-
try. In this case the incident beam is shielded by a beam stop and the scat-
tered light is observed through a small pinhole under a very small angle θ
in the nearly-forward direction (Fig. 9.8). As the vector diagram in the fig-

Fig. 9.8. Schematic arrangement for forward scattering to determine the LO
and the TO component of a polar mode (a). The light is incident in y direction,
scattering is for a small angle θ. (b) shows the scattering diagrams for LO and
TO phonon observation; (B: beamstop)

ure demonstrates, for light incident and observed along the y direction and
a (xz) polarization the LO component of the B1(x) mode is observed if the
(xy) plane is the scattering plane. Rotating the beamstop by 90◦ renders the
(yz) plane as the scattering plane and the TO component of the same mode
is observed. In this way all Raman active polar species can be investigated
and the LO-TO splitting can be determined. The LO-TO splitting can be
between a fraction of a wave number and several tens of wave numbers. It is
an important measure for the longitudinal electric field of the mode.

9.2.4 Polaritons

Since the LO - TO splitting does not exist for q = 0, the behavior of the
modes must change dramatically for approaching the zero wave vector. This is
indeed the case. Since the TO component has a transverse polarization which
is equivalent to a transverse electric field it has not only mechanical but also
electromagnetic character. Thus, the description of the polar modes needs not
only lattice dynamics but also Maxwell’s equations. With the relationships

D = ε0E + P , P = E0 cos(qx − Ωt), E = E0 cos(qx − Ωt)

the latter yield for the electric field accompanying the wave

E =
(Ω2/c2

0)P − q(qP )
ε0(q2 − Ω2/c2

0)
. (9.17)

From this equation the electric field for the LO mode with P ‖ q and for the
TO mode with P⊥ q is obtained, as expressed by the polarization P , from
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ELO =
−P

ε0
,

ETO =
Ω2E

ε0(q2c2
0 − Ω2)

. (9.18)

Since q2c2
0 � Ω2, ETo ≈ 0 except for very small values of q. The behavior

of the modes for q → 0 can be checked if P is replaced in (9.17) by ε0χE. This
yields a homogeneous equation for the determination of the field E. Nontrivial
solutions of the equation imply the condition

δij +
qi

∑
qkχkj(Ω) − (Ω2/c2

0)χij(Ω)
q2 − Ω2/c2

0

= 0 . (9.19)

This equation is the dispersion relation for the polar modes. Assuming the
phonon parallel to the i direction yields for the ii-component of the equation
(LO modes)

1 + χ(Ω) = ε(Ω) = 0 , (9.20)

or Ω = ΩLO. This means, the dispersion for the LO phonons is zero. For the
field component perpendicular to the q vector of the phonon (jj-component
or TO modes) (9.19) yields

1 − (Ω2/c2
0)χ(Ω)

q2 − Ω2/c2
0

= 0 . (9.21)

This equation has two solutions. For small values of q either Ω → ΩLO (as-
suming q = 0 in (9.21) upper branch of the TO modes) or q2 → Ω2ε(0)/c2

0 (for
the fraction in (9.21) approaching 1, lower branch for the TO modes). ε(0) is
the static dielectric constant. For large values of q either χ(Ω) ( lower branch)
or Ω (upper branch) must go to ∞ which means Ω becomes either ΩTO or
∞. Between these limits (9.21) yields the proper dispersion. The modes prop-
agating according to this equation are called polaritons. Figure 9.9 depicts
the dispersion behavior schematically. For small values of q the TO mode ex-
hibits indeed a strong dependence of the frequency on the wave vector and
approaches for q → 0 an EM wave with the propagation velocity c0/

√
ε(0).

The upper branch of the TO mode approaches the LO frequency for q → 0. For
large values of q it corresponds to a true light wave with propagation velocity
c0/

√
ε∞. Polaritons occur in all crystals with polar modes and have partly

electromagnetic and partly mechanical character. If the crystal has more than
one polar mode the different branches must not intersect. This means only
the branch with the highest frequency approaches the light wave. Figure 9.10
shows experimental results for the polariton dispersion in GaP. The values for
the frequency and for the wave vector were obtained from Raman scattering
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Fig. 9.9. Schematic presentation of
LO-TO splitting and polariton disper-
sion

Fig. 9.10. Polariton dispersion of GaP as measured by Raman scattering in the
forward direction. The dashed lines give the dispersion for the uncoupled photons
and phonons. The angles indicated refer to the scattering geometry; after [9.5]

in forward direction to guarantee small enough wave vectors. For scattering
angles smaller than 3◦ a clear dispersion for the TO mode is observed.

The upper branch of the TO modes can be measured by IR spectroscopy.

9.2.5 A Simple Quantum-Mechanical Theory of Raman Scattering

For the quantum-mechanical calculation of the Raman process excitation of
an electron by a photon is anticipated. This excitation is followed by a recom-
bination with the simultaneous emission of a photon of different energy. Since
energy and momentum must be conserved, the generation or absorption of
an additional quasi-particle is required during these two processes. The final
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state f is reached from the initial state i via an intermediate state z. It dif-
fers from the initial state by the generation or absorption of a quasi-particle
with energy h̄Ω (Fig. 9.11). In the following the quasi-particle is assumed to
be a phonon (or vibron) even though it could be any particle for which the
selection rules allow a Raman process.

Fig. 9.11. Energy level diagram for a Raman pro-
cess

To calculate the probability of the two optical transitions second-order per-
turbation theory is required, as it is discussed in many special books [9.3,9.1].
In addition, the generation or absorption of the phonon must be considered.
The following description is a simplified version where only the vibrational
part is evaluated explicitly. The optical transitions are treated phenomeno-
logically in a way similar to Sect. 7.4 for the optical absorption.

To discuss the inelastic scattering processes shown in Fig. 9.11 we must
evaluate the matrix element for the transition between state i and f. For the
scattering process the transitions are driven by the polarization induced by
the light P= χε0E. The matrix element has therefore the form

P fi = 〈f|P |i〉 = 〈f|ε0χE|i〉 . (9.22)

Since 〈f| and 〈i| are generalized wave functions the integration runs over all
electronic and nuclear coordinates. If the wavelength of the light is much
larger than the interatomic distances the electric field can be considered to
be constant in (9.22) so that we can extract from the equation a generalized
form of the susceptibility known as the transition susceptibility

[χmn]fi = 〈f|χmn|i〉 . (9.23)

χmn is a material-specific quantity determined by the electronic orbitals in
the crystal. If the final and initial states are both the ground state, it turns
into the susceptibility as we have discussed it so far. The situation for Raman
scattering is different. We proceed similarly as in Sect. 7.4 by applying the
adiabatic approximation (7.24):

[χmn]fi =
∫

ρ∗f (X)ϕ∗
f (x,X)χmnϕi(x,X)ρi(X) dxdX . (9.24)
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First we consider the integration over the electron coordinates x. Assuming
that the final and the initial electronic states are the same renders for this
integral the electronic part χmn(X) of the transition susceptibility. In con-
trast to Sect. 7.4 we did not apply the Condon approximation. This means
the susceptibility still depends on the nuclear coordinates X. If we introduce
normal coordinates Qk, we can expand the electronic part of the susceptibility
with respect to the normal coordinates. Considering only the linear term of
the expansion and extracting the expansion coefficient from the integral we
obtain

[χmn]fi = (χmn)0〈..vfk..|..vik..〉 +
∑

k

(
∂χmn

∂Qk

)
0

〈..vfk..|Qk|..vik..〉 . (9.25)

The bra and ket symbols represent total vibrational wave functions from the
integral in (9.24). They are expressed as the product of harmonic-oscillator
wave functions with the occupation numbers vfk or vik.

〈vf1, ..vfk, ..vfn| =
∏
k

〈vfk|

〈vi1, ..vik, ..vin| =
∏
k

〈vik| , (9.26)

where 〈vfk| and 〈vik| are the harmonic-oscillator wave function for occupation
numbers vfk and vik, respectively, as given in Appendix F.4. Since we do
not use the Franck–Condon principle the oscillators are unshifted and the
expectation values in (9.24) are

〈vfk|vik〉 =
{

0 for vfk �= vik

1 for vfk = vik

(9.27)

and

〈vfk|Qk|vik〉 =

⎧⎨
⎩

0 for vfk = vik

(vik + 1)1/2
√

h̄/2Ωk for vfk = vik + 1
(vik)1/2

√
h̄/2Ωk for vfk = vik − 1 .

(9.28)

Because of the orthogonality of the wave functions all expectation values from
(9.25) can be factorized into relationships like (9.27) and (9.28). Then, the first
term in (9.25) is only different from zero if vfk = vik for all k. This means, the
quantum-state of the system has not changed. If (χmn)0 is properly calculated
it describes the process of absorption or Rayleigh scattering. The second term
is responsible for the Raman process which is evident from the appearance of
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the derived susceptibility. According to (9.27) and (9.28) it is only nonzero if
for all k′ �= k vfk′ = vik′ and for the mode k vfk = vik ± 1 holds. In this case
the transition susceptibility (9.25) has the form

[χmn]vik+1,vik = (vik + 1)1/2
√

h̄/2Ωk

(
∂χmn

∂Qk

)
0

(9.29)

and

[χmn]vik−1,vik = (vik)1/2
√

h̄/2Ωk

(
∂χmn

∂Qk

)
0

. (9.30)

Equation (9.29) and (9.30) obviously describe the Stokes and the antiStokes
Raman processes. From a comparison with (9.8) for the classical evaluation
of the Raman intensity the equivalence between the tensor for the transition
susceptibility and the derived susceptibility multiplied with the amplitude
of the normal coordinate is evident. In the quantum-mechanical calculation
the amplitude of the latter is replaced by its quantum-mechanical equivalent√

h̄vk/2Ωk. We have dropped here the index i, for simplicity, and will do this
also in the following equations.

For a comparison with the experimental results attention must be paid to
the dependence of the intensities on the vibronic occupation number vk. Since
the latter is determined by a Boltzmann factor

W (εk) =
exp(−εk/kBT )

Z
=

exp[−h̄Ωk(vk + 1/2)/kBT ]∑
vk

exp[−h̄Ωk(vk + 1/2)/kBT ]
, (9.31)

a thermal averaging of the form
∑
vk

(vk + 1)W (εk)

is required to obtain the effective square of the Raman tensor from (9.29) and
(9.30). This is similar to the thermal averaging used for the evaluation of the
optical absorption from localized wave functions (7.35).

In the case of Stokes scattering the average is nk + 1 where nk is given by
the Bose–Einstein distribution for the mode k

nk = fE(Ωk) =
1

exp(h̄Ωk/kBT ) − 1
. (9.32)

For antiStokes scattering the average yields nk. Thus, the scattering intensity
per steradian is derived from (9.13) for the incident intensity Ii by replacing
Q2

ko with the square of the quantum-mechanical amplitude h̄vk/2Ωk and the
factor for thermal averaging (nk + 1).

d‖Φ⊥

dΩ
=

h̄(ω − Ωk)4Vuχ2
yx,k(nk + 1)IiV

32π2c4
0Ωk

. (9.33)

A corresponding relation is obtained for antiStokes scattering.
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9.2.6 Temperature Dependence of Raman Scattering

The temperature dependence of the Raman intensity is immediately obtained
from (9.33) by the dependence of nk on T . A conveniently measured quantity
is the ratio between antiStokes and the Stokes intensities of one mode

Φ′
a

Φ′
s

=
(

ω + Ωk

ω − Ωk

)4

exp
(
−h̄Ωk

kBT

)
. (9.34)

The dash at the symbol for the intensity stands for the derivation with respect
to the solid angle. Equation (9.34) provides a good check on the temperature
in the laser focus on the crystal. Figure 9.12a shows experimental results

Fig. 9.12. Ratio of antiStokes to Stokes Raman intensities for Si versus temper-
ature; • experiment, — calculated from (9.34) (a), and width of the Raman line
in Si versus temperature: • experiment, — calculated (b); after [9.6]

for the Stokes/antiStokes ratio in Si for the optical phonon at 525 cm−1 in
comparison to the behavior calculated from (9.34).

The widths of the Raman lines also change with temperature. In many
cases the line shape is Gaussian or Lorentzian with FWHM Γ . The value of
Γ depends on the decay mechanism of the phonons. The most simple but
often observed process is a decay of the optical phonon into two longitudinal
acoustic modes. In this case the width of the Raman line is

Γ (Ωk, T ) = Γ (Ωk, 0)
(

1 +
2

exp(h̄Ωk/2kBT ) − 1

)
. (9.35)

Alternative shapes for the temperature dependence may occur if the phonons
couple to rotational modes or to diffuse motions. Since such motions are ther-
mally activated, line shapes have a temperature dependence of the form
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Γ (Ωk, T ) = Γ (Ωk, 0) exp(−EA/kBT ) , (9.36)

where EA is the activation energy for the diffuse motion. Figure 9.12b displays
the line width of the optical mode in Si. The full drawn line has been calculated
according to (9.35).

A particularly strong temperature dependence of the Raman lines can be
observed if the phonons themselves exhibit a strong temperature dependence.
This occurs frequently at structural phase transitions if at least one component
of the oscillation coincides with the vector driving the phase transition. For
approaching the temperature Tc of the phase transition the energy of the
mode vanishes like

h̄Ω ∝ (Tc − T )α

Tc
(9.37)

and the mode does not exist above Tc. α is called the critical exponent of
the soft mode Ω. Figure 9.13 exhibits the temperature dependence of two
Raman active modes in SrTiO3 for approaching the temperature of the phase
transition at 110 K.

Fig. 9.13. Raman line position for two soft
modes in SrTiO3; after [9.7]

9.2.7 Raman Scattering from Disordered Structures

For polycrystalline solids, for disordered polymers, or for molecules in solu-
tion a selection of vibrational species is not possible in the sense of Sect. 9.2.2,
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but even in this case valuable information can be obtained from the observed
vibrations. One possibility is to correlate the vibrational features with the
structure of the chemical bonds. Characteristic bonds give rise to character-
istic frequencies. This is particularly useful for organic compounds where the
bonds are well defined. The procedure is similar to the analysis used in IR
spectroscopy and will therefore be discussed in more detail in Chap. 10. As
compared to IR, classical Raman spectroscopy has the disadvantage of relying
on a very delicate instrumentation such as high-power ion lasers and photon-
counting systems. With the development of Fourier-transform Raman systems
the situation changed and Raman spectroscopy has become as convenient for
industrial application as IR spectroscopy. Fourier-transform Raman systems
will also be discussed in Chap. 10.

To obtain a relation between the Raman tensors and the scattering inten-
sities even for disordered systems the tensors must be subjected to orthogonal
transformations with arbitrary angles, and the results must be averaged over
the whole angular space 4π. The transformation of a tensor from a system
with the coordinates x′, y′, z′ into a system with the coordinates x, y, z is per-
formed by multiplication of the tensor components with the corresponding
product of the direction cosines cos(mm′) cos(nn′)

χmn,k =
∑

m′,n′

χm′n′,k cos(mm′) cos(nn′) . (9.38)

To make writing easier the index k will be dropped in the following. It is
understood that all equations listed below hold for the derived susceptibility
and for each vibration separately.

Since we are dealing with orthogonal transformations the trace 3a and the
anisotropy τ remain constant with

a = (χ11 + χ22 + χ33)/3
τ2 =

[
(χ11 − χ22)2 + (χ22 − χ33)2 + (χ33 − χ11)2

]
/2

+
[
6(χ2

12 + χ2
23 + χ2

13)
]
/2 . (9.39)

On the other hand, the tensor expressions obtained after transformation and
averaging must also be independent of any transformation. This means it must
be possible to express the tensors after averaging by a and τ2. This is, indeed,
possible for the averaged products of the tensor components χnn (Appendix
H.2). The relations can be summarized in the following way:

χ2
11 = χ2

22 = χ2
33 = (45a2 + 4τ2)/45 ,

χ2
12 = χ2

23 = χ2
31 = τ2/15 ,

χ11χ22 = χ22χ33 = χ33χ11 = (45a2 − 2τ2)/45 .

(9.40)

All other averaged components of the Raman tensor are zero. Using equations
of the form (9.40) and (9.13) the Raman intensities can be evaluated for the
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different scattering geometries from the components of the Raman tensor,
even in the case of disordered systems. For the ‖,⊥ scattering geometry we
obtain for example

d‖Φ⊥

dΩ
= ‖Φ′

⊥ =
h̄(ω − Ω)4VuVτ2(n + 1)Ii

240π2c4
0Ω

. (9.41)

Looking at Fig. 9.5 we note that for 90◦ scattering a ‖, ‖ scattering geom-
etry gives the same intensity as ‖,⊥ or ⊥, ‖.

Since absolute scattering intensities cannot be determined very accurately,
often the ratio of the intensities for different scattering geometries is investi-
gated. The corresponding quantities are obtained for each mode from

ρ‖ =
‖Φ′

⊥
‖Φ′

‖
, ρ⊥ =

⊥Φ′
‖

⊥Φ′
⊥

, and ρn =
nΦ′

‖
‖Φ′

⊥
. (9.42)

The various forms of ρ are the depolarization factors since they determine how
much of a polarization is retained for the scattered light after the interaction
of the incident light with a phonon. For oriented crystals the depolarization
factors are simple ratios of the two components of the Raman tensor and are
obtained from equations like (9.13). For the averaged tensors one obtains for
90◦ scattering

ρ‖ = 1 for τ �= 0 ,

ρ⊥ =
3τ2

45a2 + 4τ2
, 0 < ρ⊥ < 3/4 ,

ρn =
6τ2

45a2 + 7τ2
, 0 < ρn < 6/7 (9.43)

The limitation of the depolarization factors to the values indicated is a
consequence of the possibility for τ and a to become zero. In particular, a line
is called depolarized if ρ⊥ = 3/4 (a = 0) and fully polarized if ρ⊥ = 0. From
the Raman tensors in Appendix H.1 it is evident that only totally symmetric
modes can have a nonzero trace. This means, only for these modes ρ⊥ can
be very small whereas for all others ρ⊥ = 3/4. Thus, at least the totally
symmetric modes can be distinguished from the non-symmetric species.

Note: in the case of resonance scattering the depolarization ratios can be
dramatically different from the values given above.

9.2.8 Resonance Raman Scattering and Electronic Raman
Scattering

So far the Raman process has been described as the excitation of an electron
by the incident photon and the subsequent recombination of the electron
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with the simultaneous emission of another photon. During these processes a
phonon is absorbed or emitted. The question whether the intermediate state is
an eigenstate of the system has not been considered. For the magnitude of the
transition susceptibility this is, however, of crucial relevance. Transitions into
eigenstates have a much larger matrix element, and the intermediate states
have a much longer lifetime as compared to transitions into virtual states. As
a consequence the probability of the generation of a phonon is much larger
for the former, and the Raman scattering intensities can be many orders of
magnitude larger. A Raman process of this type is called resonance enhanced.
The lifetime of an excitation into a virtual intermediate state is determined by
the Heisenberg uncertainty principle. The closer the intermediate state comes
to an eigenstate the less energy conservation is violated and the more stable
is the excitation.

Fig. 9.14. Raman spectra
of polydiacetylene-TS as ex-
cited with different lasers of
equal intensity; after [9.8].
Insert: chemical structure of
the polymer

For a resonance scattering process discrete excited states or critical points
in the density of states are relevant, very similar to optical absorption. Res-
onances of the first type are frequently observed in molecules but also in
molecular crystals and for excitonic excitations in solids. Resonances at criti-
cal points in the density of states are frequently found in semiconductors.

Figure 9.14 exhibits Raman spectra for polydiacetylene excited with dif-
ferent lasers. Polydiacetylene is a conjugated polymer which can be prepared
in macroscopic single crystals. It has a quasi-one-dimensional band structure
with a strong exciton transition close to 2 eV. The more the exciting laser
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approaches this transition the stronger the light scattering intensity. Raman
lines shown in the figure correspond to stretching modes of the C=C bond
(1495 cm−1) and of the C≡C bonds (2090 cm−1), and to a deformation vi-
bration of the chain (946 cm−1).

Fig. 9.15. Resonance Ra-
man cross section for the op-
tical mode at 365 cm−1 in
GaP. The full drawn line is
calculated; after [9.9]

In Fig. 9.15 the scattering cross section for GaP is depicted. In this case
the resonance is at a critical point in the density of states. By approaching
this point the scattering intensity increases by more than a factor of ten. The
maximum of the resonance has two peaks since two critical points exist: One
for the energy ε0 corresponding to transitions from the valence band to the
conduction band, and another for an energy ε0 + Δ0 where Δ0 is the split-off
energy from the valence band due to spin-orbit coupling.

The calculation of the resonance Raman intensities is often simpler than
the calculation for nonresonant scattering since only one electronic transition
has to be considered. The resonance is expressed by a resonance denomina-
tor in the transition susceptibility. Resonance Raman scattering allows, in a
particularly simple way, to determine the interband electron-phonon coupling
constant or the Franck–Condon coupling constant.

A frequently discussed question regards the difference between a Raman
process and a luminescence process. In a Raman process the recombination
always starts directly from the excited electronic state whereas for the lumi-
nescence a strong relaxation from this state always occurs first according to
Kahsa’s rule. In contrast to conventional luminescence, the hot luminescence,
where the emission starts from an excited state, is immediately related to the
Raman process.

So far only phonons were considered as quasi-particles excited in the Ra-
man process. This limitation is not necessary. Even free electrons or plasmons
can interact with the excited state via a Raman process. For a nondegen-
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Fig. 9.16. Raman spectrum for GaAs with a carrier concentration n = 1.75 ×
1017 cm−3 for two different scattering geometries; after [9.10] (a), and single-
particle scattering continuum for n = 1.3 × 1018 cm−3 (b). The dashed line in
(b) is an estimated contribution from a luminescence emission; after [9.11]

erate electron gas free carriers obey a Maxwellian velocity distribution. The
Doppler effect occurring during the interaction with the light gives rise to a
continuous up shift or downshift of the stray light spectrum in the immediate
neighborhood of the exciting laser.

If the concentration of the free carriers is large enough longitudinal plasma
oscillations can be excited. The frequency for these oscillations coincides for
q = 0 with the plasma frequency ωpl =

√
ne2/εε0m∗ of the system. The

plasmons can be another source for a Raman process and appear as side-
bands to the exciting laser line in the spectra. Figure 9.16 displays spectra for
GaAs excited with a Nd:YAG laser at 1.06 μm. The carrier concentration of
n = 1.75× 1017 cm−3 corresponds to a plasmon mode at ωpl = 8.2× 1012 s−1

(νpl = 130 cm−1). The spectrum in (a) at the top was taken for x(yz)y scatter-
ing and reveals sharp maxima for the LO and TO components of the threefold
degenerate polar mode of the semiconductor as well as the single particle spec-
trum close to the exciting laser. For the zz polarization shown at the bottom
the excitation of the phonon lines is strongly suppressed and the plasmon at
130 cm−1 is clearly observed instead. The plasmon shifts to higher frequen-
cies with

√
n. As soon as it approaches the polar mode it interacts strongly

with the LO component and coupled plasmon-phonon modes propagate with
the frequencies ω− and ω+. Such modes have been observed extensively with
Raman scattering [9.10]. An example of this behavior is shown in Fig. 14.4 in
Sect. 14.2.3.
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In Fig. 9.16b a blown up spectrum for single-particle scattering is shown.
The carrier concentration was high enough to shift the Fermi level into the
conduction band. Under this condition single-particle scattering extends as
far as

νel ≈ qvF/2πc0 ,

where q is the scattering vector and νel is given in cm−1. For non-degenerate
conduction electrons where the Fermi level is still in the energy gap single-
particle scattering extends only as far as

νel ≈ qvth/c0 = (q/c0)
√

2kBT/m∗ .

The scattering vector is in both cases approximately equal to the wave vector
of the light.

Interference effects can have a strong influence on the scattering spectra if
in a certain range of the spectrum contributions from the single-particle con-
tinuum or from any other continuum and the response from discrete phonon
lines overlap and if the two systems of quasi-particles interact. The phonon
response appears then with a distorted line shape of the Fano type, as was
discussed in Sect. 3.2 and demonstrated in Fig. 3.4.

9.2.9 Raman Scattering in the Time Domain

When we discussed time resolved light sources in Sect. 3.4 we learned that
recording is in real space and not in frequency space. As it turns out one
can record Raman spectra also in time space by applying femtosecond spec-
troscopy. Indeed, recording vibrational spectra is just a special application
of femtosecond (fs) pump-probe spectroscopy. In this technique the sample is
excited with a strong laser pulse. The relaxation of the system is subsequently
probed with a split off fraction of the same pulse for well defined delay times.
A possible set up is shown schematically in Fig. 9.17. The strong fs laser pulse
is first split with 95% to 5% ratio into the pump and probe beam. The for-
mer irradiates the sample while the later runs over a tunable delay line and
eventually probes the sample by transmission or reflection.

With respect to recording vibrational spectra the technique is in some
sense complimentary to Fourier Raman spectroscopy. It works very well for
very low vibrational modes but becomes more and more difficult with in-
creasing mode frequency. If phonons are studied, the probe beam measures
the modulation of the susceptibility χ(ω,Qk) with the normal co-ordinate Qk

of the phonon. This is exactly the same as in Raman spectroscopy except
for the fact that non-equilibrium phonons are observed which are generated
during the relaxation process of the excited sample.
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Fig. 9.17. Set up for fs pump-
probe experiments. The time de-
lay (microtranslator) of the probe
beam and the reflectivity response
set the x and y axes for the spectra

The frequency range which can be covered by this technique is limited on
the low frequency side by the length of the microtranslator and its stability.
At least two or three oscillations should be observed. 30 cm long delay lines
cover a time delay of 1 ns and thus allow frequencies of the order of 1 GHz
(equivalent to 1/30 cm−1) to be recorded. Since at least 3 waves should be
detected a lower limit of 0.1 cm−1 is well reached. On the high frequency side
the width of the femtosecond pulse is the limit for the proper time resolution.
100 to 200 cm−1 are reached with standard systems.

Figure 9.18 has some results for the temperature dependence of the phonon
spectra in (NbSe4)3I. (NbSe4)3I forms a quasi-onedimensional crystal with
D6

4h(P4/mnc) space group which undergoes a phase transition to D4
2d(P421c)

at 274 K and an other, displacive phase transition around 100 K. The left part

Fig. 9.18. Low energy phonons for (NbSe4)3I as recorded with pump-probe
technique for various temperatures. Recording in time domain (a) and after
Fourier transformation to the frequency domain (b); modified from [9.12]
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of the figure has the measurements in the time domain for various temper-
atures. Part (b) has the frequency spectrum obtained from Fourier transfor-
mation. Both phase transitions are well recognized in the vibrational spectra.
Note that Raman lines to below 3 cm−1 are well resolved.

9.3 Brillouin Scattering and Rayleigh Scattering

Brillouin scattering is closely related to Raman scattering. According to a
classical definition scattering by optical phonons is a Raman process and scat-
tering by acoustic phonons is a Brillouin process. Definitions from molecular
physics according to which Raman scattering originates from molecular vibra-
tions which change the polarizability of the molecules and Brillouin scattering
originates from thermodynamic fluctuation of the density of the system is not
applicable to solids. A transverse acoustic mode can well contribute to a light
scattering process but does not induce density fluctuations.

A basic difference between Raman scattering and Brillouin scattering
comes from the dispersion relation of the quasiparticle generated. We talk
about a Brillouin process if the frequency is zero for q = 0 (ω(q = 0) = 0) and
about a Raman process if ω(q = 0) �= 0.

9.3.1 Fundamentals of Brillouin Scattering

Like in Raman scattering in most experiments visible light is used for the exci-
tation in Brillouin scattering. The frequency range of the probed excitations is
10−5–1 cm−1. This means only long-wavelength modes will be excited where
phonons have still the same dispersion as the sound waves. Thus, sound ve-
locities and elastic constants can be determined together with their response
to physical processes in the material.

Conservation of energy and momentum must be retained like in Raman
scattering (Fig. 9.3) and the same phenomenological description holds for the
classical picture. The modulation of the response function creates sidebands.
Instead of the susceptibility usually the dielectric function

ε(ω, q,Ω) = ε(ω, 0) + Δε(ω, q,Ω) (9.44)

is considered. The wave vector is now included since we consider “acoustic”
modulations which definitely require q �= 0. For classical Brillouin scattering
density fluctuations in the material are usually considered as the source of
the modulation. The corresponding induced polarization P s(ω) which is the
source of the scattered light is obtained from

P s(ω) = ε0ΔχE = Δε(ω, q,Ω)E(ω)ε0 =
∂ε(ω)

∂ρ
Δρ(q,Ω)E(ω)ε0 . (9.45)

For dielectric solids the real displacement field uk(r, t) or more precisely the
Fourier transform of the strain tensor
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Skl(q,Ω) =
1
2
[uk,l(q,Ω) + ul,k(q,Ω)] (9.46)

has to be considered. In (9.46) uk,l(q,Ω) is the Fourier transform of the derived
displacement ∂uk(r, t)/∂xl. The modulation of the DF is then expressed by
the photoelastic tensor pmnkl. This tensor is defined by the strain-induced
change of the index of refraction

1
n2

mn

− 1
n2

mn0

= pmnklSkl . (9.47)

With this definition we obtain for the modulation of ε

Δεij(ω, q,Ω) = −εim(ω)εnj(ω)(Δε−1(q,Ω))mn , (9.48)

where

(Δε−1(q,Ω))mn = pmnklSkl(q,Ω) . (9.49)

For a longitudinal acoustic strain in an isotropic medium Skk = Δρ/ρ. This
yields

Δε(ω, q,Ω) = ε2(ω)p1122
Δρ(q,Ω)

ρ
. (9.50)

From the induced polarization (9.45) the same relations can be used to calcu-
late the scattered intensity as described in Sect. 2.2 or as given for the Raman
scattering in (9.12) to (9.14). The Porto notation is applicable as well.

Labeling the scattering geometry by the unit vectors ei and es for the inci-
dent and scattered light, respectively, we obtain for the light energy scattered
per unit of time and per steradian for a scattering volume V

dei
Φes

dΩ
=

(ω − Ω)4Vu|esΔεei|2IiV
16π2c4

0

. (9.51)

In a more general treatment of the problem thermodynamic fluctuations
must not only be considered for the density ρ but also for the temperature T .
In the case of solids rotational deformations Rjl may also add to the modu-
lation of ε.

To proceed further a quantum-mechanical treatment of the electronic and
structural transitions is needed. Instead of doing this we will introduce a ther-
modynamic approach and thus obtain at least the temperature dependence
of the scattering process as in the case of the Raman effect.

The energy spectrum of the scattered light is obtained from the space
average (ensemble average) of the absolute square of the scattered field
|Es(r, ω ± Ω)|2 at the point of observation. This quantity is directly related
to the average of the absolute square of the fluctuations. For the case of lon-
gitudinal acoustic modes (density fluctuations) in an isotropic material the
energy spectrum becomes
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d2(ei
Φes)

dεdΩ
=

(ω − Ω)4V|esei|2Ii

16π2c4
0

∣∣∣∣∂ε(ω)
∂ρ

∣∣∣∣
2

Sρ(q,Ω) (9.52)

with

Sρ(q,Ω) =
1

2πh̄τobs
|Δρ(q,Ω)|2 , (9.53)

where τobs is the time of observation. Sρ(q,Ω) is called the spectral density
or the power spectrum of the fluctuations or alternatively the dynamic form
factor of the system and relates directly to the power spectrum given by
(2.48). It is a very general and very important quantity widely used to study
scattering phenomena. It appears likewise in advanced descriptions of Raman
scattering, Brillouin scattering, inelastic neutron scattering or electron scat-
tering, and will be used again in a more general context in Chaps. 15 and
17. The Wiener–Khintchine theorem (2.68) relates the power spectrum to the
autocorrelation function of the density fluctuations.

To describe the scattering process in crystals the spectral density (9.53) has
to be expressed by the dynamical form factor for the displacement gradients

Su(q,Ω) ≡ 1
2πτobs

|
∑
k,l

uk,l(q,Ω)|2 . (9.54)

In this case we have to replace Δε in (9.51) with (9.48) and (9.49). Note that
the dynamical form factors in (9.53) and in (9.54) become independent of the
time of observation if τ is long enough since the average of the square of the
fluctuations increases linear with the observation time (see also Sect. 5.1).

To proceed further the dynamical form factor must be calculated. This was
done for the first time by A. Einstein in 1910 for liquids. The result obtained
for the (Ω integrated) dynamical form factor is

Sρ(q) = Vρ2βTkBT , (9.55)

where βT is the isothermal compressibility (in m2/N). The dynamical form
factor for crystals is similarly

Su(q) =
VkBT

2ρv2
s

, (9.56)

where vs is the appropriate sound velocity. For a particular component of
ε and S the expression for Δε/Sik becomes ε2p which yields finally for the
scattering intensity per steradian and a scattering volume V

dΦs

dΩ
=

(ω − Ω)4

c4
016π2

n8p2VkBT

2ρv2
s

Ii . (9.57)

Inserting approximate numerical values into (9.57) yields Φ′
s/Ii ≈ 10−8–

10−10, per unit volume.
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The Brillouin scattering process is likewise often used to study the prop-
agation of coherent sound waves. If S is the strain amplitude of the sound its
intensity is Isound = ρv3

s S2/2. The scattering intensity for a sound beam of
width B is given in this case by

Φ′
s

Ii
=

(ω − Ω)2

4π2c2
0v

2
s

n6p2B2Isound . (9.58)

This case is known as Debye–Sears scattering or the Raman–Nath limit. Since
in this case Isound can be very large scattering of light can be very efficient.
Such systems are used for light modulation or for sweeping of light beams.

9.3.2 Experimental Results of Brillouin Scattering

Fig. 9.19. Brillouin spectrum of
SbSI as measured with a five-pass
Fabry–Perot interferometer. (T1,
T2: transversal acoustic modes, L:
longitudinal acoustic mode); after
[9.13]

Figure 9.19 shows a Brillouin spectrum of SbSI as measured with a multi-
pass Fabry–Perot interferometer. T1, T2, and L label the sidebands originating
from an inelastic scattering by the two transverse acoustic and the longitu-
dinal acoustic phonon modes. From the scattering geometry the q vector of
the phonons can be determined, which enables the calculation of the sound
velocities from the shift of the sidebands with respect to the central line.
The sidebands which are not assigned in the spectrum are replicas originat-
ing from the small value of less than two wave numbers chosen for the free
spectral range of the interferometer.
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9.3.3 Rayleigh Scattering

Rayleigh scattering is a diffuse propagation of light with hardly any frequency
shift. The temperature-induced fluctuations of the density are responsible for
the modulation of the response function. Accordingly Rayleigh scattering is
observed very close to the excitation line.

Problems

9.1 Which geometry is required to observe the B1g species in D2h?
(Purpose of exercise: learn to use selective geometries for scattering experiments

(easy example).)

9.2 The Raman scattering is observed for a calcite crystal (space group D3d) in
180◦ back scattering in the [110] direction and for geometries (‖, ‖) and (‖,⊥).
Which modes can be seen and which components of the Raman tensor contribute?
Hint: For 180◦ back scattering ‖ and ⊥ refer only to the relative orientations of the
E vector for the incident and scattered light.

(Purpose of exercise: learn to use selective geometries for the scattering experi-
ment (advanced example).)

9.2∗ A polymer with the point group D2h is investigated for a 180◦ back scattering.
The chains are oriented along z by stretching but randomly arranged in the xy
plane. Which modes become visible as compared to the fully oriented polymer?

(Purpose of exercise: training of selection rules for analysis of experiments.)

9.4 Using Maxwell’s equations show that the electric field of a polar mode is given
by (9.17).

(Purpose of exercise: recall the usefulness of Maxwell’s equations.)

9.5∗ Calculate the dispersion relation Ω = f(q) for polar modes by using the
Kramers–Heisenberg dielectric function and evaluate explicitly the behavior for very
large and very small q.
(Purpose of exercise: explore the usefulness of a simple DF.)

9.6 Show that the average of the occupation numbers (vk + 1)W (εk) is nk + 1.
Hint: Use the relation a exp(−ax) = −d exp(−ax)/dx.

(Purpose of exercise: prove a very important relation.)

9.7 Calculate the transition probability (decays per second) for the decay process
of an optical phonon Ω(0) into two LA modes with frequency Ω′ = Ω′′ = Ω(q)/2.
Hint: The probability Γ = dw/dt is proportional to the difference in the product of
the final and initial occupation numbers. These products are (n+N)(n′

q +1)(n′′
q +1)

and (n+N+1)(n′
q)(n

′′
q ), respectively. The equilibrium occupation numbers nq, n

′
q, n

′′
q

are given by the Bose–Einstein factor (9.32). N is a small perturbation to the thermal
population of n.

(Purpose of exercise: learn to handle occupation numbers.)

9.8 Discuss the depolarization factors ρ‖ and ρ⊥ for a 180◦ back scattering geometry.
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(Purpose of exercise: note the differences for back scattering and 90◦ scattering.)

9.9 The carrier concentration in a sample of YBaCu3O7+δ) is 7×1021 cm−3. Up to
which wave number can scattering from free carriers be expected if the excitation is
performed with a green laser?

(Purpose of exercise: estimate experimental conditions for light scattering.)
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Infrared Spectroscopy

Infrared spectroscopy is one of the most popular spectroscopic techniques in
solid-state physics. The simple reason for this is that nearly all materials ex-
hibit a more or less expressed structure of the absorption in the IR spectral
range. The origin of these structures has already been discussed to some ex-
tent in Chap. 7. Absorption processes due to transitions across the energy gap,
from excitons or from impurity states, are found in the visible spectral range
as well as in the IR. Important additional sources for absorption and reflection
are the IR active phonons or vibrational modes which can give valuable sup-
plementary information to results from Raman scattering. In Chaps. 8 and 9
we have already discussed under which conditions vibrational modes are ob-
servable in an IR spectrum and in Sect. 6.3 we have even given a mathematical
description of the response function in the form of the Kramers–Heisenberg
dielectric function. In the present chapter particular attention will be paid to
special instrumentation not discussed previously, to advanced problems and
to several examples from solid-state physics. The first two sections elucidate
the characteristic difference between radiation sources, optical components,
spectrometers, and detectors for the visible and for the IR spectral ranges. To
do this it is useful to divide the spectral range into three sections:

– near infrared (NIR) 0.8–10 μm
– middle infrared (MIR) 10–40 μm
– far infrared (FIR) 40–1000 μm

The breakthrough in modern IR spectroscopy was the development of
Fourier spectrometers. With this spectroscopic technique it is no longer nec-
essary to disperse the probing light into its spectral components. The whole
light energy is always measured simultaneously, and only after the experi-
ment disentangled mathematically into its spectral components. According
to its dominating role Fourier spectroscopy will be discussed extensively in
a special section. Finally, examples from solid-state physics will be used to
demonstrate the power and broadness of applications of this technique.

H. Kuzmany, Solid-State Spectroscopy, DOI 10.1007/978-3-642-01479-6 10, 217
c© Springer-Verlag Berlin Heidelberg 2009
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10.1 Radiation Sources, Optical Components, and
Detectors

As in the visible spectral range standard radiation sources are black-body
emitters at high temperatures. Even though the maximum of radiation is
shifted to shorter wavelengths with increasing temperature (Fig. 3.1), the
absolute amount of emission in the IR still increases about linearly with T .
This means even here high-temperature sources are an advantage, but for an
efficient radiator in the spectral range around 100μm very good filtering of
the emission in the visible is required. A simple source operating on the basis
of the black-body radiation is the glowbar. As the name indicates, it consists
of a SiC rod with the dimensions 2 cm (length)× 0.5 cm (diameter), which is
heated by about 5 A to 1450 K. The glowbar is generally used in the spectral
range up to 40μm, in extreme cases even up to 100 μm. Since it is small and
extends in one direction, it can easily be imaged onto the entrance slit of a
monochromator. The glowbar is operated in vacuum.

For more sophisticated applications or for applications in the FIR gas plas-
mas must be used as radiation sources. Hot gas plasma emits a long wavelength
continuum, in addition to the characteristic lines of the atoms. This contin-
uum originates from collisions of electrons with ions or neutral particles. The
special advantage of plasma radiators is their smaller emissivity in the visible
or NIR as compared to a black body at the same temperature. Only in the
FIR the emission becomes equivalent so that the ratio between emission in
the FIR and the emission in other spectral ranges is much higher than that
of a solid black-body radiator.

The plasma emission has a characteristic spectrum. For fully ionized
plasma it is independent of the wavelength but proportional to n2

ed/
√

T ,
where ne is the density of the electrons and d the thickness of the plasma.
A drop in the emission intensity on the short-wavelength side starts only at
h̄ωT = hc/λTkBT . On the long-wavelength side the emission starts to drop if
either the emission of the black body or the plasma edge at

λp = 2πc0/ωp = 2π
√

c2
0ε0me/nee2 (10.1)

is reached. The plasma is highly reflecting for wavelengths larger than λp and
has therefore also a low emissivity. This is an immediate consequence of the
Kirchhoff laws. Figure 10.1 shows the calculated emission from two plasmas
with different thicknesses as a function of the wavelength. The straight line on
the long-wavelength side of the emission represents the black-body radiation.
The flat tops of the curves in the central part represent the above-mentioned
independence of the emission from the wavelength. The dashed curve is an
experimental result.

Even though the plasma emission decreases as 1/
√

T in reality it is advan-
tageous to choose the temperature of the plasma as high as possible. This is
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Fig. 10.1. Schematic representation for the emission of a plasma with high thick-
ness (h) and with low thickness (l). The dashed line is the observed emission from
a mercury arc; after [10.1]

due to the fact that the degree of ionization of the plasma for realistic temper-
atures is still far from complete. The gain in electron density with increasing
temperature more than outweighs the loss due to the factor 1/

√
T .

A high-pressure mercury arc lamp in a quartz tube, as discussed in
Sect. 3.1, is an appropriate representation of a plasma source. However, even
though the temperature reaches 6000 K the degree of ionization is only 1%. In
spite of this, the spectral distribution of the emission follows well the idealized
behavior discussed above, as seen from the dashed line in Fig. 10.1. Besides
thermic sources lasers play an important role in the whole IR spectral range.
Their dominance is, however, not as clear as was the case for Raman scat-
tering. The lack of the possibility to tune lasers over a sizable spectral range
is the big drawback. On the other hand, semiconductor lasers cover a wide
spectrum not only in the near but also in the MIR or even in the FIR spec-
tral range if properly constructed. The advantage of such laser systems was
already mentioned in Sect. 3.4. Since the absorption lines of several MIR and
FIR lasers cover the spectral positions of important gas molecules applications
in gas analysis or pollution detection in the atmosphere are widespread. Laser
systems on the basis of PbTe or CdxHg1−xTe are appropriate. This is demon-
strated in Fig. 10.2 where the range of emission for several laser systems is
compared with the absorption characteristics of important gases.

For cyclotron-resonance experiments HCN lasers (372 μm) or H2O lasers
(47–220 μm) are important. Finally, the CO2 laser with an emission around
10 μm is one of the most powerful laser systems altogether, as already dis-
cussed in Sect. 3.4. Because of the many other broad-band sources in this
spectral range the importance of the CO2 laser for spectroscopy has decreased.

The possibility to obtain tunable and still highly monochromatic radia-
tion comes from frequency doubling of microwaves. Microwave generators like
clystrons or magnetrons can be very powerful which enables the generation
of overtones up to the 15th order. This means that from a 58 GHz magnetron
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Fig. 10.2. Spectral range of various semiconductor lasers, and position of absorp-
tion for various gases; after [10.2]

source radiation with 500μm wavelength can be obtained. Tuning the mag-
netron and selection of the appropriate overtone allows a continuous tuning
in a wide frequency range.

Fig. 10.3. Transmission range of infrared window material. Note that KRS-5
material is poison

Using optical components in an IR beam line attention must be paid to
the transmission properties of the materials. The longer the wavelength of
the radiation the more difficult it becomes to find appropriate materials for
windows and lenses. The limitation in the transmission originates from the
reststrahlen absorption by lattice vibrations. The heavier the atomic compo-
nents of the materials the further to the FIR the material can be used. On
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the other hand, organic materials like polyethylene have no strong absorption
lines in the FIR and are therefore well accepted for optical components below
about 600 cm−1. Figure 10.3 shows transmission ranges in the IR for various
materials.

All materials for which the transmission drops suddenly to zero at a par-
ticular wavelength are appropriate for edge filters. In the FIR wire meshes can
be used. High reflectivity starts for wire meshes when the wavelength of the
light increases beyond the dimension of the meshes. Figure 10.4 is an example.
If one component of the mesh is omitted (only linear wires) the system acts

Fig. 10.4. Wire mesh grating as edge filter for far-infrared radiation. The numbers
indicate distances between the wires in μm; after [10.3]

as a linear polarizer.
The large value for the wavelength in the FIR allows to use even simple, highly
polished tubes for guiding the light. If the tube is conical the propagating light
can be concentrated to a spot.

IR detectors were already discussed in Chap. 5 in connection with photo-
electric detectors. Because of the low sensitivity of the latter, particularly in
the FIR, and because of the low light powers available in this spectral range
other detectors are also frequently used. Examples are various forms of ther-
mal detectors like bolometers or pyroelectric crystals. An often-used system
is the Golay detector (Fig. 10.5). It operates on a pneumatic principle. The
incident IR light is absorbed by a thin film. The generated heat increases the
pressure in the gas chamber, which drives a mirror. The mirror is part of an
optical system which images a grating onto itself. Any small motion of the
mirror leads to a change in the overlap between grating and image and thus
gives a signal to the detector. As compared to low-temperature bolometers
the Golay detector has a low detectivity of only 5× 109 W−1 and is rather
slow. On other hand, it is simple to operate and can be used up to 1000μm.
The detector can only be employed for alternating signals, at best between 3
and 10 Hz.
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Fig. 10.5. Schematic arrangement of a Golay detector. (IR: far-infrared beam,
F: film, GC: gas chamber, M: mirror, G: grating, IG: image of grating, L: light
source (visible), D: detector ); after [10.4]

Another simple but often used detector works on the basis of the pyro-
electric effect. Crystals with a permanent electric dipole moment respond to a
sudden change in the dipolar order with the generation of compensating sur-
face charges. IR or heat pulses can be the origin of such induced disorder. The
voltage accompanying the compensation charges can be used to detect the IR
or heat pulse. A well known crystal for such detectors is triglycine sulphate
(TGS). Figure 10.6 shows the basic components. A good heat sink on the

Fig. 10.6. Basic components of a pyroelectric
detector. (IR: IR beam, PC: pyroelectric crystal,
TE: transparent electrode, HS: heat sink, A: am-
plifier)

backside electrode is important. Even though the detector relies on a thermic
effect it can be rather fast. The time constant is given by the ratio between
heat capacity H and heat conductance G to the heat sink. Time constants
can be as short as 10−5 s with a sensitivity of 100 V/Watt and a detectivity
of 108–109 W−1.

More sophisticated but also more elaborate detectors are the low tempera-
ture Ge or Si bolometers. Their operation is based on the temperature-induced
change in the conductivity of the crystal cooled to 4.2 K. Figure 10.7 illus-
trates the basic construction for a Ge bolometer. The IR light hits the Ge
crystal through a cold filter which is supposed to reduce the background radi-
ation from the environment. The change of the current through the crystal is
measured by the voltage drop across a cooled resistor. A widely used dopand
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Fig. 10.7. Construction of a Ge
bolometer for constant current sig-
nal detection. (Ge: Ge crystal, CF:
cold filter, LR: load resistor, CS:
current supply, A: amplifier)

for the Ge crystal is Ga. In a broad spectral band around 100μm BLIP con-
dition is reached, which means a detectivity of 1012 W−1. For a spectral range
of 1000μm even 1014 W−1 can be obtained. This value already approaches the
detectivity of photomultipliers in the visible. However, the signal level is very
low which means low noise amplifiers are required to reach high detectivity.
This limits the bandwidth for the measurement to 10 Hz. By counterdoping
with Sb the detectivity is slightly reduced but the bandwidth increases to
500 Hz. More recently similar detectors with Si as the sensing element are
frequently used.

Really fast experiments with time constants of the order of 10−8 s can only
be performed with detectors based on photoconduction. Ge doped with Cu,
Zn, or Ga leads to flat impurity levels with ionization energies between 10
and 40 meV. Such detectors can be operated at 4.2 K up to 150μm (60 cm−1).
In InSb detectors the strong temperature dependence of the carrier mobility
rather than the change of the carrier concentration is used to probe the heat-
ing of the sample. Such systems are known as InSb-transformer detectors.
Figure 10.8 compares various detectors which are particularly useful in the
FIR.

10.2 Dispersive Infrared Spectroscopy

Like optical spectroscopy IR spectroscopy can be performed with dispersive
instruments. Prism spectrometers and grating spectrometers from Chap. 4
are appropriate. Both spectrometers are problematic, particularly in the FIR.
Away from the absorption range the prisms have a very low dispersion which
leads to very low light intensities for a required band pass δλ. According to
(4.6) the power in the spectral bandpass δλ incident on the detector is

Pλδλ = TI0Eδλ = TI0
A2

F 2
WHδλ , (10.2)
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Fig. 10.8. Detectivity for far in-
frared detectors; after [10.5]

where according to (4.19) δλ = (dθ/dλ)−1(W/F ). Using W from this relation
yields

Pλδλ = TI0
A2

F
H(δλ)2

dθ

dλ
. (10.3)

This means for small values of dθ/dλ the energy available for a predefined band
pass becomes very small. A prism which is very good at 180 cm−1 because it
has a high dispersion can be very bad at 1000 cm−1. Another disadvantage
of the prisms is the limited applicability in the FIR because of reststrahlen
absorption as already discussed in Sect. 4.2.2. Appropriate crystalline ma-
terials with their frequency limit in parentheses are NaCl (650 cm−1), KBr
(400 cm−1), CsBr (280 cm−1), and CsI (180 cm−1).

Using (10.3) and the definition for the etendue in (4.5) together with (4.6),
(4.10), and (4.13) we can find this value for the prism spectrometers from

EPr =
A2

F
Hδλ

dθ

dλ
=

AR0H

F
δλ

=
AR0H

Fν2
δν . (10.4)

Apparently, this is formally the same result as was derived for the grating
spectrometers in (4.22).

Due to the larger wavelength of the IR light for grating spectrometers the
requirements on the gratings are not as severe as they are in the visible spectral
range. On the other hand the gratings must be much larger to accommodate
the required number of lines for a good interference. Dimensions of 30×30 cm2

and 100 lines per grating are quite common.
To avoid the distribution of light intensity on the different orders of diffrac-

tion, gratings which are blazed for a particular wavelength (echellet gratings)
are in use. As shown in Fig. 10.9, such gratings have a stepped surface. For
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these gratings the intensities are no longer distributed to all orders of diffrac-
tion, rather they are concentrated to the order which comes closest to the spec-
ular reflection of the long part of the step. For a constructive interference the

Fig. 10.9. Diffraction of an echellet
grating

grating equation (4.14) and simultaneously also the relationship θi+α = θd−α
must be satisfied as can be inferred from Fig. 10.9. Thus the equation for the
echellet grating is

mλ = 2d sin α cos(θi − α) . (10.5)

To record spectra fixed slits and a rotating grating are used as in opti-
cal spectroscopy. The light path is limited to an angular spread of θi + θd =
2(θi + α) ≈ 20◦. Since measurements are usually performed in first order,
(10.5) defines an optimum wavelength λb termed the blase wavelength. Radi-
ation with wavelength λb can be analyzed in an optimum way in first order.
If λ becomes much smaller, e.g., equal to λ/2 also light from second-order
diffraction will hit the detector, or more generally, radiation with wavelength
λ/m will be observed in the m-th order. This means using echellet gratings
only small ranges of the spectrum of the order of

2
3
λb ≤ λ ≤ 3

2
λb

can be analyzed. The rest must be cut off with filters. This is not a serious
problem in the visible since with λb ≈ 0.6μm the whole visible spectral range
is covered. To cover, on the other hand, the spectral rang from 5-240 cm−1

five gratings blazed for 1300, 650, 325, 160, and 80μm are required for given
values of α and θi + θd. In addition, for each grating the other spectral ranges
must be filtered. This means that spectroscopy becomes very laborious and
difficult. Accordingly spectrometers in this spectral range are only operated
down to 30 cm−1.

10.3 Fourier Spectroscopy

It is obvious from the above that in the MIR and FIR spectral range non-
dispersive spectrometers have a great advantage. As a consequence of the high
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capacity and speed of today’s computers this non-dispersive or interferometric
spectroscopy is already entering the visible spectral range as well and is known
as Fourier spectroscopy. In the following the basic principles and the operation
conditions for this very important spectroscopic technique will be discussed.

10.3.1 Basic Principles of Fourier Spectroscopy

Fig. 10.10. Optical path in a
Michelson interferometer; (LS: light
source, L: lenses, M: mirrors; BS:
beam splitter)

Fourier spectroscopy is based on the Michelson interferometer shown in
Fig. 10.10. The white light from the source located at the focus of lens L1 is
separated into two parts by the beam splitter. The reflected part is focused
onto the detector D after reflection from the stationary mirror M1 and after
a second split by the beam splitter. The transmitted part of the light is also
focused onto the detector after it was reflected from the mirror M2 and split
again by the beam splitter. The mirror M2 is mobile and can glide a distance
Δx. In this way interference fringes develop at the detector. Their intensity
I(x) depends on the position x of the mirror M2. I(x) is termed interfero-
gram function. In contrast to the multiple beam interference occurring with
diffraction from the gratings or from Fabry–Perot plates, here the interference
is only between two beams.

If the incident wave is monochromatic of the form E(x, t) = E0 cos(kx−ωt)
the field ED at the detector is

ED =
1
2
{E0 cos(k0x − ω0t) + E0 cos[k0(x + 2Δx) − ω0t]} , (10.6)

where 2Δx is the optical path difference between the two beams (twice the
shift of the gliding mirror). Choosing x = 0 and replacing 2Δx by 2x yields
from (2.46) for the intensity at the detector

I(x) = c0ε0〈E2〉 =
c0ε0

4
E2

0 [1 + cos(4πν0x)] (10.7)
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where we have replaced k0 by 2πν0. Rewriting this equation by using a spectral
intensity I(ν) = ε0c0E

2
0δ(ν − ν0)/2 yields

I(x) =
1
2

∫ ∞

0

I(ν)[1 + cos(4πνx)]dν . (10.8)

Generalizing this equation to an arbitrary intensity spectrum I(ν) yields the
basic relationship for Fourier spectroscopy

I ′(x) = I(x) − 1
2

∫ ∞

0

I(ν)dν =
1
2

∫ ∞

0

I(ν) cos(4πνx)dν . (10.9)

The interferogram function I(x) or I ′(x) contains the whole information about
the spectrum I(ν). In fact, I ′(x) is the Fourier transform of I(ν) performed
with a cosine function. The observed intensity I(x) oscillates around an av-
erage intensity

∫
I(ν)dν/2 = I0/2 which is exactly half of the original total

intensity of the beam. For x = 0 it reaches its maximum value of I0 as im-
mediately seen from (10.8). This position corresponds to zero optical path
difference. It is called the white light position. For x → ∞ the coherence of
the radiation is lost. According to Fig. 10.10 the intensity at the detector
becomes then I0/2. A Fourier transformation of I ′(x) yields for x = y/2

∫
I ′(y/2) cos(2πν′y)dy

=
1
2

∫ ∞

0

I(ν)dν

∫
cos(2πνy) cos(2πν′y)dy =

I(ν′)
2

, (10.10)

since the integration over y gives δ(ν − ν′).
This equation means we obtain the spectral components of the light di-

rectly from the interferogram by Fourier transformation, without any spec-
tral dispersion. As compared to dispersive spectroscopy the procedure has
two basic advantages, known as energy advantage and multiplex advantage.
The energy advantage originates from the fact that during the whole pe-
riod of measurement nearly always the total beam intensity hits the detector.
This means the detection operates on a high signal level which improves the
signal-to-noise ratio, particularly for weak radiation sources. The multiplex
advantage originates from the simultaneous measurement of the full spectrum
during the whole period T of detection. In contrast in dispersive spectroscopy
N parts of widths Δν of the spectrum will be measured successively so that
for each part only the time T ′ = T/N is available. The signal-to-noise ra-
tio would be smaller by 1/

√
N . The need for a mathematical process in the

form of a Fourier transformation after registration of the interferogram is not
really a drawback. The dramatic developments in computer capacity enable
the transformations to be carried out in a very short time even for very large
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Fig. 10.11. Interferogram for transmission through a polyethylene film. The insert
shows the structure of the polymer

Fig. 10.12. Single-beam spectrum
(sb) and absorbance (abs) for the
interferogram of Fig. 10.11

data sets. Another great advantage of the Fourier spectrometers is their higher
brightness as derived from (10.15).

Figure 10.11 displays the interferogram for a transmission spectrum of a
polyethylene film. Of the 4096 points measured for every 0.632μm only 950
points are plotted. As expected the signal has a maximum at the white-light
position in the center of the interferogram and reaches I0/2 for large distances
x. The corresponding distribution of the IR light is shown in Fig. 10.12. The
upper curve is a single-beam spectrum obtained immediately after the Fourier
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transformation of the interferogram. The strong absorption lines at 2900, 1450,
and 730 cm−1 are characteristic vibrational frequencies of the polymer. They
correspond to a CH-stretching, a CC-deformation, and a CH deformation
oscillation in the plane of the polymer backbone. The last two lines are split
by interchain interaction. This is not seen in the figure since the spectral
resolution is too low.

The overall shape of the curve (sb) in Fig. 10.12 is mainly determined
by the characteristics of the light source and by the characteristics of the
optical elements in the light path, including the detector. If the spectrome-
ter is operated under ambient conditions additional absorption lines appear
from CO2 and H2O in the atmosphere. Since these lines have nothing to do
with the properties of the solid the single-beam result is usually divided by
the background spectrum. The logarithm of this ratio is plotted versus the
light energy (in wave numbers or meV). The quantity obtained in this way
is the absorbance. It gives a much better characterization of the absorption
lines as compared to the single-beam spectrum. The absorbance is plotted in
Fig. 10.12 as the lower spectrum. The procedure anticipates that the observed
transmission is directly related to the absorption according to the Lambert
law (6.8), and reflections have only a minor influence on the spectrum.

10.3.2 Operating Conditions for Fourier Spectrometers

As for the dispersive spectrometers the resolution of the Fourier spectrometers
can be expected to depend on deviations from ideal conditions of operation.
Two facts are crucial: the finite value for the shift of the mirror and the limited
number of registrations during the scan.

Since the mirror cannot be shifted from −∞ to ∞ the Fourier transfor-
mation is truncated. For a shift from the positions −xmax to xmax and a
monochromatic light with I(ν) = I0δ(ν − ν0) the calculated spectral intensity
I ′(ν′) yields from (10.10)

I ′(ν′) =
I0

2

∫ ∞

0

∫ xmax

−xmax

δ(ν − ν0) cos(4πνx) cos(4πν′x) dxdν

=
I0xmax

2
sin[4πxmax(ν0 − ν′)]

4πxmax(ν0 − ν′)
, (10.11)

instead of I0δ(ν′ − ν0). Thus, for a monochromatic light wave the resulting
intensity spectrum is not a δ-function but a function of the form sinx/x as
depicted in Fig. 10.13. Note that the evaluated intensity can have negative
values. This is, of course, a consequence of the approximation. The spectral
resolution is given by the distance δν between the central maximum at ν′ = ν0

and the first minimum at ν′
min. From (10.11) the minimum is found at
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Fig. 10.13. Spectral intensity eval-
uated for monochromatic light with
a Fourier transformation over a lim-
ited range in space; (—) without
apodization, (−−−) with apodiza-
tion

δν = ν0 − ν′
min ≈ 0.7

2xmax
. (10.12)

At this value of ν0 − ν′ the calculated intensity I ′(ν′) is negative. A good
estimate and an easy to remember number for the resolution is the inverse of
the total scan width 2xmax = Δx or

R0 =
ν

δν
= Δxν . (10.13)

As expected the resolution increases directly with the scanning distance during
registration.

Optimum resolution is only obtained if the size of the entrance pinhole to
the interferometer and the focal length FFu of lens L1 in Fig. 10.10 are properly
tuned. From a theoretical analysis the required relationship is r = FFu

√
2/R0

where r is the radius of the entrance pinhole and R0 is the resolution. This
yields for the brightness (etendue) of the interferometer

EFu =
r2πA2

F 2
Fu

=
2πA2

R0
=

2πA2

ν
δν , (10.14)

where A is the beam diameter in the spectrometer. Comparing this value
with the brightness of the grating spectrometer from (4.22) gives convincing
evidence for the advantage of the Fourier spectrometers

EFu

EGr
=

2πFGr

H
, (10.15)

where we have used R0 ≈ A/d ≈ A/λ like in (4.22). Since H and FGr were the
hight of the slit and the focal length of the grating spectrometer, respectively,
the ratio in (10.15) is of the order of 500. This enhancement for the bright-
ness of the Fourier spectrometers over the grating and prism spectrometers is
known as the Jacquinot advantage.

Besides the finite width of the line at the center position also the side max-
ima of the sinx/x curve are disturbing. They originate from the abrupt cutoff
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of the interferogram at −xmax and xmax. To reduce this problem the jump can
be smoothed by multiplication of the interferogram with 1 − |x/xmax| or any
other appropriate function before subjecting it to the Fourier transformation.
Even though some of the resolution is lost by this process the side maxima
of the sinx/x curve are truncated, as shown by the dashed line in Fig. 10.13.
Because of the cutting of the side bands the process is called apodization.

Another problem for the analysis is the lack of an analytical function for
I(x). Since the interferogram is only known pointwise the Fourier transfor-
mation can only be performed with finite Fourier sums. For each frequency ν′

the intensity is obtained from

I ′′(ν′) = x0

N/2∑
m=−N/2

I ′(mx0) cos(4πν′mx0) . (10.16)

The continuous variable x is replaced by the discrete values mx0 where x0

is the sampling distance. Equation (10.16) can yield a wrong result if the
sampling distance and the band pass of the incident light are not properly
correlated. An intensity which is evaluated for a frequency ν′ holds also for

ν′′ = ν′ ± l

2x0
, l = 1, 2, ..... (10.17)

since

cos[4π(ν′ ± l/2x0)mx0] = cos(4πν′mx0 ± 2πlm) = cos(4πν′mx0) .

Thus, the solution is only single valued for the frequency interval 0 ≤ ν′ <
1/2x0. If the bandwidth of the incident light is characteristically larger than
1/2x0, the contribution from low wave numbers can lead to a wrong value for
I(ν′) for high values of ν′ and the other way round.

Looking into the detail the situation is even worth. The results from (10.16)
are the same for ν′ = l/4x0 ± ν. Thus, the function I(ν′) reflects about
ν = l/4x0 and a particular spectrum appears repeatedly in the analysis of
increasing wave numbers with a folding frequency

νF =
1

4x0
.

This means the free spectral range is not 0 ≤ ν′ ≤ 1/2x0 but only 0 ≤ ν′ ≤
1/4x0. If x0 is not chosen small enough the part of the spectrum for low wave
numbers will overlap the spectrum for high wave numbers and thus cause an
irritation. The described behavior is called aliasing derived from the Latin
word alius which means “an other”. It is the reason why Fourier spectroscopy
becomes more and more difficult, the more the visible or even the ultraviolet
spectral range is approached. If νF is the highest frequency in the incident
light a probe interval x0 ≤ 1/4νF must be selected in order to avoid aliasing.
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This means the number of measurements N to reach a spectral resolution δν
for this spectrum is

N =
Δx

x0
=

4νF

δν
. (10.18)

In the FIR with νF = 500 this number is 2000 for a resolution of δν = 1
cm−1. For the same resolution in the visible with νF = 20 000 the number
is already 80 000. Such large sets of data make the Fourier transformation
more elaborate. Since, however, today’s computer capacity is nearly unlimited
Fourier spectrometers are already commercialized up to the frequency range
of the near ultraviolet. On the other hand, aliasing can be used to extend
a narrow frequency range at high frequencies by folding down into a lower
spectral range. To avoid aliasing a spectral range appropriate for the chosen
value of x0 must be selected by filtering.

Fig. 10.14. Resolution of a
Fourier spectrometer demonstrated
for polyethylene. Spectra (1) were
recorded for a distance Δx four
times larger than for spectra (2)

Figure 10.14 demonstrates the influence of the maximum shift Δx on the
resolution of the Fourier spectrometer. The spectra (1) are the response of the
absorption of the CH deformation and of the CC deformation for polyethylene,
as already shown in Fig. 10.12, but with an extended scale for the frequency.
The splitting of the lines is now well observed. If instead of the 4096 probes
only 1024 probes are recorded for the same distance x0 the spectra (2) are
obtained where the splitting is obviously not resolved any more. Today band-
pass resolution of 0.01 cm−1 can be obtained which corresponds to a resolution
R0 = 105 for ν′ = 1000 cm−1.

Particular attention must be paid to the beam splitter. Since it usually
consists of a thin and transparent polymer film like mylar multiple-beam in-
terferences occur as discussed in Sect. 4.3.1. The multiple-beam interference
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contributes crucially to the transmission properties of the beam splitter. Using
the results of the plane parallel plate the intensity at the detector is obtained
from

I(d) =
8R(1 − R)2(1 − cos φ)
(1 + R2 − 2R cos φ)2

I0 with φ = 4πndν cos θ′ . (10.19)

R is the reflectivity of the interface, d the thickness of the film, n its index of
refraction, and θ′ the angle of incidence (inside the beam splitter). For cosφ
= 1 all light is reflected and cannot reach the detector. The power observed is
thus a critical function of φ and consequently also of the thickness d. The latter
must be selected in a way to transfer optimum power to the detector for the
spectral range under investigation. The transmission is plotted in Fig. 10.15
for three different beam splitters. The broader the spectral distribution under

Fig. 10.15. Transmission through beam
splitters with three different thicknesses for
the spectral range from 0–500 cm−1 as cal-
culated from (10.19)

investigation the lower are the values of d required for the beam splitter.
Figure 10.16 sketches the layout of a commercial Fourier spectrometer.

It consists essentially of four chambers: the light-source chamber, the beam
splitter chamber, the sample chamber, and the detector chamber. Advanced
spectrometers operate with two or even three different detectors which are
computer-controlled and available for the different spectral ranges. The same
holds for different beam splitters and light sources. The latter can even be
external. For measurements below 1000 cm−1 it is necessary to evacuate all
chambers or to flush them with dry nitrogen to get rid of any traces of mois-
ture. The vibrational and rotational lines of water will otherwise fully cover
up the investigated spectra.

10.3.3 Fourier-Transform Raman Spectroscopy

Since Fourier spectroscopy is an excellent tool to analyze weak spectra it was
certainly tempting to apply it also to Raman spectroscopy. As we saw, the
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Fig. 10.16. Construction of a vacuum Fourier spectrometer for multiple use. (S:
light source, M: gliding mirror, FM: fixed mirror, BS: beam splitter, SP: sample,
DTGS, MCT, GB: detectors, EB: external beam, ES: external source). The layout
corresponds to the spectrometer IFS66v from Bruker. The arrows indicate possible
computer controlled flipping of the mirrors to select different light paths

brightness of the Michelson interferometer can be up to a factor 500 higher
than for good grating spectrometers with the same cross section of the beam.
This has basically to do with the much smaller focal length of the former with
respect to the latter. Unfortunately the multiplex advantage of conventional
Fourier spectroscopy turns into a multiplex disadvantage in the Raman exper-
iments due to stray light. Since in Fourier spectroscopy the whole spectrum
is always measured simultaneously the large amount of quasi-elastic scattered
light induces a strong noise proportional to

√
I(t) even on top of the weak part

of the spectrum. With the development of very efficient and very sharp cut-
ting filters it was possible to stop the largest part of the elastically scattered
light and to use the Fourier technique even in the case of Raman scattering.
Today such experiments can be performed down to 80 cm−1 in the spectrum
for excitation with a Nd: YAG laser at 1064 nm. Fourier-transform Raman
spectroscopy has several advantages like a less critical sample alignment, ex-
citation at a much lower light energy and a large area sample illumination.
Several companies offer Raman equipment as an additional supply to conven-
tional Fourier spectrometers.

10.4 Intensities for Infrared Absorption

As the response of matter to IR radiation can have a purely electronic or a
purely vibronic character the approximations for a quantitative treatment of
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the interaction processes are different for the two cases and will be discussed
separately in the following.

10.4.1 Absorption for Electronic Transitions

The electronic transitions in the IR are fully analogous to the transitions in
the UV-vis spectral range. Therefore the relationships derived in Chaps. 6 and
7 hold also for the IR spectral range. The response to the radiation is partic-
ularly well described by a dielectric function of the form (6.35). Introducing
the oscillator strength of (6.39) we obtain for ε

ε = ε∞ +
Sω2

T

ω2
T − ω2 + iωγ

(10.20)

where h̄ωT is the transition energy. The oscillator strength is calculated from
the transition matrix element, as discussed in Chaps. 7 and 8. Absorption and
reflectivity are obtained as in Chap. 6.

10.4.2 Absorption for Vibronic Transitions

The response of the IR radiation to polar modes is likewise described by the
Kramers-Heisenberg dielectric function. For an evaluation of the oscillator
strength a treatment very similar to the case of Raman scattering is possible.
This was already indicated in the discussion of Fig. 9.4. Whereas the Raman
intensity was given by the dependence of the field-induced dipole χε0EVu

on the normal coordinate the IR absorption is given by the dipole moment
induced by the normal coordinate. Following the traditional assignments we
will use the symbol μ instead of PD for the molecular or microscopic dipole
moment. To proceed like in the case of Raman scattering we expand μ(Q) in
a Taylor series

μ = μ0 +
∑ ∂μ

∂Qk
Qk + .... . (10.21)

The square of the second term in the expansion is proportional to the IR
absorption intensity.

Using harmonic-oscillator wave functions we obtain the transition dipole
moment in analogy to the case of Raman scattering

[μ]fi = 〈..vkf ..|μ|..vki..〉 . (10.22)

With the Taylor expansion from (10.21) the transition dipole moment for the
absorption of one phonon becomes

[μ]fi = 〈vk + 1|
(

∂μ

∂Qk

)
Qk|vk〉 =

(
∂μ

Qk

)(
h̄

2Ωk

)1/2

(vk + 1)1/2 . (10.23)
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Averaging over the occupation numbers with the weight W (εk) from (9.31)
yields

αk ∝
∣∣∣∣ ∂μ

∂Qk

∣∣∣∣
2

h̄

2Ωk
(nk + 1) ≈

∣∣∣∣ ∂μ

∂Qk

∣∣∣∣
2

h̄

2Ωk
. (10.24)

The approximation adopted in the equation is good for h̄Ωk > kBT where
Ωk is the frequency for the transversal optical phonon. The square of the
transition matrix element (10.22) or equivalently the expression on the right-
hand side of (10.24) are a good values for the oscillator strength in a Kramers–
Heisenberg DF, such as (10.20), for a polar mode.

The use of the square of the transition matrix element (10.22) for the
oscillator strength in (10.20) is not fully self-consistent. The denominator in
the equation was obtained from a very simple model whereas the numerator
is now calculated quantum-mechanically. In a self-consistent description the
damping of the electric field E(t) is considered. The absorption is then given
from the Fourier transform of the field. The explicit result for α is obtained
from [10.6]

αk =
4π

3c0h̄
|〈..vkf ..|μ|..vki..〉|2

γk

(ω − Ωk)2 + γ2
k

. (10.25)

This compares to the imaginary part of (10.20) which is proportional to the
absorption. From the evaluation the denominator becomes (Ω2

k−ω2)2+ω2γ2
k in

slight difference to the denominator in (10.25). This difference has no physical
meaning. It is a simple consequence of the different approaches.

In a more general and very fundamental treatment the IR absorption can
be evaluated from the dipole autocorrelation function 〈μ(0)μ(t)〉. As demon-
strated in Appendix I.1 this yields a very important and very useful relation-
ship between the absorption coefficient α and the derived dipole moment in
the form

∣∣∣∣ ∂μ

∂Qk

∣∣∣∣
2

=
12Ωkc0ε0

nd

∫
αk(ω)

ω
dω . (10.26)

nd is the number of dipole moments per unit volume. Equation (10.26) is often
utilized to determine the derivative of the dipole moment with respect to the
normal coordinate from a measurement of the absorption coefficient.

10.5 Examples from Solid-State Spectroscopy

Solid-state physics has a large number of problems where IR spectroscopy
is very informative. They cover simple vibrational spectroscopy in polycrys-
talline material or the determination of bonding in organic solids as well as
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electronic properties like band gaps, impurity levels, or cyclotron resonance in
semiconductors. Even for the analysis of metallic systems and superconduc-
tors IR spectroscopy is used. Some examples will be described in the following
sections.

A convenient type of samples for IR transmission measurements is obtained
by preparing compressed pellets of some matrix material with small amounts
of the material to be investigated. An often used matrix is KBr powder. To
avoid signal distortion from granularity compactation must be performed at
high enough pressure which eventually renders almost transparent pellets.
Unfortunately the spectral range covered by this technique is limited by the
transparency of the matrix material which is cut off at 500 cm−1 in the case of
the KBr. An alternative matrix material is polyethylene, since this compound
has only one rather weak line at 72 cm−1 in the FIR. However, homogeneous
pellets are difficult to obtain. Alternatively to the pellet method the material
can be evaporated or cast as a thin film onto a highly reflecting metal surface.
Then, transmission through the film can be measured in reflection geometry.
For single crystals or smooth metal surfaces the recommended method is re-
flectivity measurements and a subsequent Kramers–Kronig transformation to
obtain the complex dielectric function.

10.5.1 Investigations on Molecules and Polycrystalline Material

As discussed extensively in Sect. 9.2, lattice modes or molecular vibrations
can be classified as Raman-active, IR-active and polar, or silent. The IR-
active species and the direction of their polarization can be looked up in
character tables. Since characteristic bonds have characteristic frequencies IR
spectroscopy is widely used to analyze chemical bonding and thus to analyze
structures or identify materials and components in mixed systems. For in-
organic materials the frequencies are concentrated in a rather narrow range
between 50 cm−1 and 800 cm−1, which makes analysis difficult. In organic
material the frequencies extend up to 3500 cm−1 and the vibrational charac-
ter of many special atomic groups is very well known. Since IR spectroscopy
is easily performed such problems are now investigated in a special research
field of computer-assisted IR material analysis. For identification stretching
modes between the atoms are particularly useful since their frequencies are
characteristically different far the various bonds. This analytical method will
be increasingly supported in the future by Fourier-transform Raman spec-
troscopy. In Table 10.1 the most important and characteristic frequencies are
listed together with their visibility in IR and Raman spectra. It is common to
classify the vibrations into two groups, one above and one below about 1500
cm−1. The high-frequency group contains only stretching modes, the lower-
frequency group is called the finger print range since it covers the modes of the
molecular stage. For the characterization of normal coordinates the following
symbols are used:
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Table 10.1. Frequency range for important modes of organic material in the IR
and Raman spectrum; ( vs: very strong, s: strong, m: medium, w: weak, vw: very
weak)

stretching vibrations fingerprint range

vibration range intensity vibration range intensity
(cm−1) IR Raman ( cm−1) IR Raman

νCH 3100–2800 s w δCH3 1370–1470 m m
νNH 3500–3300 m w νC-C arom. 1600 m s
νOH 3650–3000 s w 1500 ms m
νSiH 2250–2100 m s 1000 w vw
νPH 2440–2275 m s νC-C 1100–650 m s
νSH 2600–2550 w s νN-N 865–800 w s
νC≡ C 2250–2100 w s νasCOC 1150–1060 s w
νC≡ N 2255–2220 w m νsCOC 970–800 w s
νC=C 1900–1500 w vs νS-S 550–430 w s
νC=O 1820–1680 vs w νC-F 1400–1000 s w
νC=N 1680–1610 m s νC-S 800–600 m s
νN=O 1590–1530 s m νC-Cl 800–550 s s

νC-Br 700–500 s s
νC-I 660–480 s s
δsCF3 740 m s
δasCF3 540 m w

– ν for stretching modes,
– δ for in-plane bending modes,
– γ for out-of-plane bending modes, and
– τ for rocking or torsion modes.

Besides the analysis of materials the documentation of thermodynamic
or chemical processes like phase transitions, phase separations, or oxidation
and reduction processes is a wide field in IR spectroscopy. Since the record-
ing of spectra with the Fourier technique may require only several seconds,
time-resolved spectroscopy is possible and often applied. Figure 10.17 shows
the modulation of the IR spectra during a cis-trans phase transition of poly-
acetylene. By watching the two bending modes at 740 and 1329 cm−1 in the
cis-form and the bending mode at 1050 cm−1 in the trans-form the dynamics
of the isomerization process can be studied.

10.5.2 Infrared Absorption and Reflection from Crystals

Infrared absorption and reflection are basically determined by the complex
dielectric function ε(ω) from Sect. 6.3. To investigate the contributions of
the lattice modes the Kramers–Heisenberg model function of the form (6.35)
or (6.40) is appropriate. The reflection or the absorption is evaluated from
equations like (6.12), (6.19), (6.21), or (6.20).
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Fig. 10.17. Infrared transmission of cis-polyacetylene during the phase tran-
sition into the trans-form. cis-polyacetylene (a), intermediate phase (b), trans-
polyacetylene (c); after [10.7]

Considering the Kramers–Heisenberg dielectric function in more detail in-
teresting relations can be stated between the frequencies measured in the
Raman spectra and the IR intensities. For a real crystal with N atoms per
primitive unit cell the dielectric function must be derived in tensorial form.
Then, x and E are vectors, and M, ε, and the effective charge e∗ are tensors.
It is convenient to include the mass M into an effective charge parameter Z
of the form

Z =
e∗

(ε0M)1/2
(in 1/s) .

Z is now a 3N × 3-dimensional tensor with the components Zkα where k and
α run over 1 to 3N and 3, respectively. Since e∗ and M are given per unit
volume Z is given in s−1. Equation (6.35) has then the form

εαβ = εαβ(∞) +
3N∑
k=1

ZkαZkβ

ω2
kTO − ω2 + iωγk

. (10.27)

The sum in (10.27) runs over all phonon branches including the acoustic
modes. For crystals with orthorhombic or higher symmetry only diagonal
elements of ε are non zero. This yields

εαα = εαα(∞) +
3N∑
k=1

Z2
kα

ω2
kTO + iωγk − ω2

. (10.28)
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If the sum is taken only over the 3N − 3 optical modes the dielectric function
for constant strain εs

αβ is obtained. Introducing the oscillator strength Skα of
the form

Skα =
Z2

kα

ω2
kTO

(10.29)

(10.28) becomes (for γ = 0)

εs
αα = εαα(∞) +

3N−3∑
k=1

ω2
kTOSkα

ω2
kTO − ω2

. (10.30)

Introducing into the sum a common denominator and expressing the re-
sulting polynomial in the numerator by its zero positions ωkLO yields εs

αα in
its factorized form

εs
αα = εαα(∞)

3N−3∏
k=1

ω2
kLO − ω2

ω2
kTO − ω2

(10.31)

which obviously represents a generalized form of the Lyddane–Sachs–Teller
relation (6.43). A similar relationship is obtained if the damping is included
which means (10.31) allows to calculate the dielectric function and thus the
reflectivity spectrum if the all LO and TO frequencies are known. If the polar
modes are Raman-active the latter can be determined from Raman spec-
troscopy. This means, the IR reflectivity can be fully evaluated from a simple
measurement of Raman frequencies. Figure 10.18 displays results for the re-

Fig. 10.18. Infrared reflec-
tivity for the A1(z) species
in LiGaO2; experimental re-
sult (−−) and calculated
from the LO and TO fre-
quencies of a Raman spec-
trum (—); after [10.8]

flectivity of the A1(z) species for the orthorhombic crystal LiGaO2 with space
group Pna21. The dashed line was measured with the IR spectrometer. The
solid line was calculated using the LO and TO mode frequencies determined
by Raman scattering. No fitting parameter is used for the comparison. The
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very good agreement between the measured and calculated result is a good
prove for the relationships derived above.

A comparison between (10.30) and (10.31) enables, in addition, to deter-
mine explicitly the oscillator strengths Skα and with (10.29) also the effective
charge parameters. For the former the equation

Skα = εαα(∞)
ω2

kLO − ω2
kTO

ω2
kTO

3N−3∏
l=1,k 	=l

ω2
kTO − ω2

lLO

ω2
kTO − ω2

lTO

(10.32)

is obtained. With this all parameters for the determination of the dielectric
function are known. A detailed analysis reveals that the obtained parameters
are even sufficient to determinate the nonlinear optical constants of the crystal
[10.8].

10.5.3 Attenuated Total Reflection

From the many possibilities to use IR spectroscopy for the analysis of molec-
ular and lattice vibrations one special technique should be mentioned where
the total reflection at a crystal boundary plays the fundamental role. The
method is known as attenuated total reflection since it makes use of special
properties of the dielectric function for the situation of total reflection. The
geometry of the experiment is sketched in Fig. 10.19. Light from the spec-

Fig. 10.19. Geometry for attenu-
ated total reflection experiments

trometer hits the surface of the crystal with refraction index n2 + iκ2 after
passing the medium on top of it with the refractive index n1 + iκ1. Let the
angle of incidence be α. Material 1 can be either air or vacuum or another
transparent crystal with a hemispheric form. The reflection depends critically
on the angle α and on the related component kx of the light wave vector. Two
alternative experiments are possible. Either the electric field or the magnetic
field of the light can be perpendicular to the plane of the beams. In the first
case the geometry is called transversal electric (TE) and in the second case it
is called transversal magnetic (TM). In both cases essentially the same results
are obtained. The reflectivity R is determined from the Maxwell equations
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and by considering the steady transition of the tangential component of the
electric field through the interface as was done for the derivation of the Fresnel
formulae in Appendix E.1. For the TE geometry one finds for non-dissipative
media

R =
Er × Hr

Ei × Hi
=

∣∣∣∣∣
(ω/c0)n1 cos α −

√
(ω/c0)2ε2y(ω) − k2

x

(ω/c0)n1 cos α +
√

(ω/c0)2ε2y(ω) − k2
x

∣∣∣∣∣
2

. (10.33)

ε2y and kx are the y-component of the dielectric tensor of the crystal and
the x component of the wave vector of the incident light, respectively. For
very small values of α (perpendicular incidence) this relation yields (6.19) for
κ = 0. For α large conventional total reflection as it is known for a smooth
dielectric function is possible if √

ε2y < n1. Then the expression under the
square root can become zero or even negative and the reflectivity will be 1.

If the dielectric function diverges for certain values of ω the reflectivity
(10.33) becomes a complicated function of α and ω. It depends again criti-
cally on whether the square root is real, imaginary, or dominates the numera-
tor and the denominator altogether. In the last two cases the numerator and
the denominator become equal, and R ≈ 1 is expected. Starting the reflec-
tivity measurement for small enough angles α and ω the reflectivity will be
conventional and low. As soon as the frequency of light has reached the TO
phonon ε2y becomes very large. In this case the square root dominates the
fraction in (10.33), and R becomes 1. This holds even for negative values for
ε2y at least up to the LO frequency where the dielectric function becomes
zero. Only when ε2y becomes positive again the square root can turn to real
and the reflectivity will be reduced. When this will happen depends critically
on kx and thus on the angle of incidence α. Consequently, the drop in reflec-
tivity must be shifted to higher frequencies with increasing α. As shown in
Fig. 10.20, this is indeed the case.

Fig. 10.20. Reflectivity of ZnS as mea-
sured for a geometry of attenuated total
reflection for various angles of incidence;
after [10.9]
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The physical interpretation of these results reveals that one can use such
experiments to observe the upper branch of the polariton dispersion discussed
in Sect. 9.2.4. The first expression under the square root in (10.33) is a wave
vector of magnitude

q2 =
(

ω

c0

)2

ε2y .

According to (9.21) this corresponds exactly to the dispersion for the upper
branch of the polariton. The drop in reflectivity occurs exactly when the
expression under the square root becomes zero. This means the drop occurs
when the x component of the incident light equals the wave vector of the
polariton.

qpol = 2n1 sinα . (10.34)

Since the corresponding frequency is obtained from the experiment according
to Fig. 10.20, the experimental relation between q and ω is available.

10.5.4 Applications in Semiconductor Physics

Except for general vibrational analysis application to semiconductors is the
most important field of IR spectroscopy. To keep the volume of this textbook
limited only a few characteristic examples will be described, and reference will
be given to special summarizing reports.

Because of the low value of the energy gap fundamental absorption ap-
pears in semiconductors often in the MIR or even in the FIR. In general, this
absorption is an intrinsic behavior of the crystals but for solid solutions of
two systems it can also depend on the concentration of the components. In
special cases εg can even drop to zero and finally re-increase for a continuous
variation of the concentration in a mixed-crystal system. This happens when
the valence band and the conduction band are mutually interchanged at the
two ends of the mixed system. Figure 10.21 gives an example. Pb1−xSnxTe
can be grown as mixed crystals for a wide range of x. The energy gap for PbTe
is 0.22 eV at 77 K. The gap for SnTe is 0.26 eV at the same temperature but
the valence band and the conduction band have interchanged. Accordingly,
with increasing x the gap decreases until it becomes nearly zero for x = 0.28.
For x as large as 1 the gap has considerably increased again.

In degenerate semiconductors where the Fermi energy has shifted into
the conduction band (or into the valence band) a transition into the lowest
(highest) band states is not possible since they are occupied. This leads to an
apparent up-shift of the absorption band with increasing carrier concentration
n of

δεg = εF(n) − 4kBT (10.35)
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Fig. 10.21. Energy gap at 12 K and 77 K
for the mixed crystals Pb1−xSnxTe versus
concentration x; after [10.10]

where εF(n) is the distance of the Fermi energy from the band edge. This
phenomenon is known as the Burstein shift and has been observed frequently
with IR spectroscopy.

Impurity levels in the gap are another very large field in semiconductor
IR spectroscopy. Figure 10.22 lists impurity levels for Si. Levels close to the

Fig. 10.22. Impurity levels for Si. The numbers are energetic distances to the
corresponding band edges in meV; after [10.11]

band edges are called shallow, those appearing more towards the center of the
gap are called deep. Shallow impurity levels exhibit a hydrogen-like bonding
for the electrons. The energy levels εβ are independent of the impurity under
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consideration and given by

εβ =
m∗e4

32π2(εε0)2h̄2 . (10.36)

In addition, series of excited states exist and can be populated like in hydrogen.
The chemical nature of the impurity atom plays a minor role. It can lead to
a small deviation in energy from (10.36) known as chemical shift.

To investigate the impurity levels the induced photo conductivity can be
used rather than the absorption process itself. This is a particularly sensitive
probe since it does not need an extra IR detector. The sample itself is the
detector. The incident radiation must not necessarily fully ionize the impu-
rity level. It is enough if this occurs with thermal assistance. Figure 10.23

Fig. 10.23. Excitation processes for electrons during photo absorption from im-
purities

shows how an electron can be excited from an impurity level and how it may
reach the conduction band. In part (a) of the figure the quantum energy of
the light is large enough to excite the electron directly into the conduction
band. In part (b) a thermal assistance of the amount h̄Ωq is required for full
ionization, and in part (c) only an excitonic state is reached. In contrast to
the first two examples the electron recombines before it can contribute to the
photoconductivity. Processes according to the mechanism (a) and (b) give rise
to characteristic maxima in the spectrum of photoconductivity versus IR en-
ergy. Since photothermic ionization does not work for very low temperatures
an unusual result is obtained. The photoconductivity spectra can show a de-
tailed fine structure for elevated temperatures which disappears on cooling.
This is demonstrated in Fig. 10.24 for Sb-doped Ge. The spectrum observed
for 4.2 K has no low-energy structures and photoconduction starts only at
around 10 meV. By raising the temperature to 10 K several well defined sharp
structures appear below the ionization energy of the impurity state. They
correspond to the excited levels of the state induced by Sb.

Plasma reflection was discussed in Sect. 6.3. Since plasma oscillations oc-
cur in semiconductors usually in the IR spectral range investigations for the
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Fig. 10.24. Low tempera-
ture extrinsic photoconduc-
tivity for Sb-doped Ge at
10K and at 4.2 K. The sym-
bols assign the excited levels
of the Sb-induced impurity
state; after [10.12]

position and width of the plasma edge are an important issue in IR spec-
troscopy. The determination of ωp and τ are alternative methods to obtain
the carrier concentration and the carrier mobility. An example of a plasma
reflection has already been given in Fig. 6.6.

Finally, IR investigations proved very important for magneto-transport
experiments. If a semiconductor with free carriers is accommodated in a mag-
netic field the carriers are forced on circular orbits determined by their thermal
velocity and the Lorentz force. The frequency of circulation is

ωc =
eB

m∗ . (10.37)

known as the cyclotron-frequency. If light with the same frequency is irradi-
ated onto the semiconductor it is resonantly absorbed provided the cyclotron
frequency is larger then the carrier collision frequency 1/τ . This phenomenon
is called cyclotron resonance and very useful to determine the effective masses
of carriers and thus the band structure in semiconductors. Since the condition
ωc � 1/τ requires high enough frequencies for resonance absorption FIR is
an appropriate spectral range for such experiments.

10.5.5 Properties of Metals in the Infrared

Because of the high carrier concentration the plasma frequency for metals is
above the visible spectral range. Only in the UV, beyond the plasma frequency,
transparency of metals is observed. The quality of the reflectivity in the visible
and in the IR is determined by the carrier concentration n and by the collision
time τ . It is very well described by the dielectric function for free carriers given
by (6.48). For frequencies much smaller than the collision frequency (ωτ � 1)
this relationship can be approximated as

εr = ε∞ − ω2
pτ2 = constant ,

εi =
ω2

pτ

ω
=

σ0

ε0ω
. (10.38)
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σ0 is the dc conductivity. Since εi increases with decreasing frequency finally
εi � εr is reached. Optical constants and reflectivity are then only determined
by the conductivity σ0 as

n ≈ κ ≈
√

σ0

2ε0ω
,

R = 1 − 2
√

2ε0ω

σ0
. (10.39)

The corresponding spectral range is called Hagen–Rubens range. The Hagen–
Rubens relationship is often used to extrapolate reflectivity measurements of
metallic systems to zero frequency if the spectra are to be used for a Kramers–
Kronig transformation and results are not available down to low enough fre-
quencies.

The reflectivity of good metals is of the order of 99.9%. This high value
can make it difficult to determine the deviation from 100%. A possibility to
avoid this problem is to measure the emissivity of the metal in comparison to
a black body. According to the Kirchhoff law the emissivity is identical to the
absorptivity and for vanishing transmission we have A = 1 − R.

On cooling to low temperatures many metals exhibit a 2nd-order phase
transition to a superconducting state. This state is characterized by a com-
plete loss of resistivity and by a diamagnetic behavior in a magnetic field.
The generally acknowledged theory for a microscopic description of this phe-
nomenon was developed by L. Bardeen, L.N. Cooper, and J.R. Schrieffer and
is known as BCS theory. The theory claims a pairing of two electrons on the
Fermi surface in the strain field of a phonon. Simultaneously with the pairing
process a reordering of the electronic states occurs in a way that for the ex-
citation spectrum a gap εg opens up at the Fermi surface. According to the
BCS theory the gap energy and the transition temperature Tc are connected
by the famous relationship

εg = 3.5kBTc . (10.40)

Since for the conventional superconductors Tc is in the range of 0-20 K, εg is
expected in the meV region. FIR is therefore an appropriate technique for the
determination of this energy gap. In contrast to the picture which we have
developed for semiconductors the superconducting metals are not transparent
even if the quantum energy of the light is lower than the gap energy! Due to
the loss of resistivity a high current is excited which is 90◦ phase shifted to the
field and thus does not dissipate energy. The radiation is reflected to 100%.
Only for quantum energies of light higher than εg breaking of the electron
pairs is possible and radiation can be absorbed.

For the experimental observation of the gap in the superconductors IR ra-
diation is guided to a cavity made of the material under investigation. A very
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Fig. 10.25. Change of in-
frared absorption of metals
in the superconducting state
as a function of the quantum
energy of the radiation, af-
ter [10.13]

small but very sensitive bolometer is fixed on the wall in order to register the
radiation in the cavity. If the cavity is in the superconducting state the power
incident on the bolometer is high as long as the energy of the radiation is too
small to break the pairs. In the normal state or if the quantum energy of the
light reaches the gap energy the radiation is absorbed and less power reaches
the bolometer. Figure 10.25 exhibits experimental results for the three metals
Pb, V, and Sn. Plotted is the relative difference of the bolometer signal in the
superconducting and in the normal state. Switching between superconducting
and the normal conducting state was performed by a magnetic field. The dif-
ference remains large for low light energies but goes to zero as soon as the gap
energy is reached. From the position at which the signal begins to drop the
values 20 cm−1, 13 cm−1, and 9 cm−1 are obtained for Pb, V, and Sn, respec-
tively. This corresponds to energies of 2.5, 1.62, and 1.13 meV. Using (10.40)
the corresponding transition temperatures are 8.3 K, 5.37 K, and 3.75 K. Val-
ues far Tc from conductivity measurements are 7.19 K, 5.38 K, and 3.72 K.
The agreement is particularly good far V and Sn which are thus considered
to be typical BCS superconductors.

In cuprate superconductors like YBa2Cu3O7 or BiSrCaCuO the energy
gap is at least a factor ten higher which allows conventional reflectivity mea-
surements for the determination of the energy gap. From such experiments
the relation (10.40) was found to have a different scaling factor. Instead of 3.5
a factor of 5-6 is frequently observed. This suggests that the high-temperature
oxidic superconductors are not BCS-like.

Problems

10.1 Discuss the emission of a black-body radiation source at 50, 100, 1000, and
6000 centigrade. How much light is emitted in the MIR (10–40 μm) spectral range?
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What is the ratio of the intensities for this emission to the emission in the visible
spectral range?

(Purpose of exercise: study the efficiency of IR sources.)

10.2 Show explicitly that the folding frequency for a discrete Fourier transformation
is 1/4x0 where x0 is the sampling distance.

(Purpose of exercise: understand the phenomenon of aliasing)

10.3 Using the results of Sect. 4.3.1 show that the intensity at the detector of a
Fourier spectrometer is given by

I/I0 =
8R(1 − R)2(1 − cos φ)

[1 + R2 − 2R cos φ]2
.

Hint: Use the Airy formulae and consider that the two beams arriving at the detector
are coherent. Thus, the fields must be superimposed not just the intensities.

(Purpose of exercise: understand the mechanism of the beam splitter.)

10.4 Show that the dielectric function for several LO-TO split phonon branches can
be written in the factorized form of (10.31).

(Purpose of exercise: work with LO-TO splitting.)

10.5 Evaluate the Hagen–Rubens approach from the dielectric function for free
carriers in the limit ωτ � 1.

(Purpose of exercise: use the free carrier dielectric function.)

10.6 Copper has a conductivity of 6×104 Ω−1 cm−1, an electron mobility of 1 cm2/

V s and ε∞ = 1. For which wavelengths is the Hagen–Rubens approach valid?

(Purpose of exercise: understand the Hagen–Rubens relation.)
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Magnetic Resonance Spectroscopy

The electronic and vibronic states investigated so far were obtained from
the Schrödinger equation where the Hamiltonian included only electronic and
lattice contributions. Whether the atoms on the lattice sites have a magnetic
moment or not was irrelevant, since the latter does not contribute to the total
energy of the system. The situation is different if a magnetic field is applied
or if the interaction of the magnetic moments with the internal magnetic
field is considered. In this case, magnetically degenerate electronic states will
split and new transitions become possible. As a consequence, the response
function will change. For magnetic fields up to several tesla, the new transition
energies are below the energy of FIR light, which means microwaves or even
high- frequency fields are appropriate for the excitation. Since the magnetic
moments of the atoms or molecules are immediately related to their spin,
the investigation of these transitions is called magnetic resonance or spin
resonance spectroscopy. The magnetic moments of interest can originate either
from the electrons or from the nuclei.

Like many spectroscopic techniques, the magnetic resonance method has
developed recently into one of the most important techniques for the investiga-
tion of new materials. This holds, in particular, for nuclear magnetic resonance
which has become an excellent tool for chemical analysis.

After a short introduction to the physical properties of magnetic moments
of atoms and nuclei, this chapter will discuss fundamental procedures and
applications of magnetic resonance spectroscopy. For a good part of this de-
scription a differentiation between electron spin resonance (ESR) and nu-
clear magnetic resonance (NMR) is not required. Only in the last three sec-
tions specific spin resonance techniques will be discussed explicitly. For de-
tails of more sophisticated applications special references must be consid-
ered [11.1, 11.2, 11.3, 11.4].

11.1 Magnetic Moments of Atoms and Nuclei

All atoms have more or less strong magnetic moments, at least if they are
accommodated in a magnetic field. The moments originate either from the
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angular momentum of the electrons (electron spin, orbital angular momen-
tum, or induced angular momentum if a magnetic field is applied) or from the
nuclear spin. The magnetic moments of the electrons determine the magnetic
properties of the crystals. The nuclear spin or the magnetic moment of the
nuclei are the sum of the contributions from the neutrons and protons. They
are much smaller than the magnetic moments of the electrons. Magnetic mo-
ments and angular moments are connected for the electrons as well as for the
nuclei by the magnetogyric ratios γ defined as

μe = −γeh̄J and μN = γNh̄I , (11.1)

respectively. μe and μN are the magnetic moments of electrons and nuclei.
h̄J and h̄I are the angular moments. The magnetic moment of the electrons
is conveniently measured in units of the Bohr magneton μB:

μB =
eh̄

2m0
= 9.27 × 10−24 (A m2)

= 5.79 × 10−5 (eV/T) . (11.2)

In this unit it can be calculated in a simple way from the quantum number
J and the dimensionless g-factor

μe

μB
= geJ . (11.3)

The magnitude of the gyromagnetic ratio γe as expressed by ge becomes

γe =
geμB

h̄
(s−1/T) . (11.4)

For electrons in a (free) atom the g-factor is obtained from the quantum
numbers J, S, and L by the well known Lande formula

ge = gLSJ = 1 +
J(J + 1) + S(S + 1) − L(L + 1)

2J(J + 1)
. (11.5)

For the free electron J = S = 1/2, so that gel = 2 and the magnetogyric ratio
for the free electron becomes from (11.4)1

1 Strictly speaking the g-factor of the free electron is not 2 but ge = g0 = 2.002319...
as it is derived from a quantum-electrodynamical discussion of the properties of
the electron. Accordingly, the fraction in (11.5) has to be multiplied by g0 − 1.
For details see Appendix J.1.
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γel =
2μB

h̄
= 1.76 × 1011 (s−1/T) .

For nuclear angular moments the magnetogyric ratio is much smaller be-
cause of the larger mass of the nuclei. The magnetic moments are counted in
units of the nuclear magneton μn which is defined by

μn =
eh̄

2Mp
= 5.05 × 10−27 (A m2)

= 3.13 × 10−8 ( eV/T) . (11.6)

where Mp is the mass of the proton. Hence for an arbitrary nucleus N we
define a g-factor and a magnetogyric ratio by

μN

μn
= gNI and γN =

gNμn

h̄
.

The definition of the nuclear magneton is arbitrary in a sense that it is neither
equal to the magnetic moment of the proton nor to the magnetic moment of
the neutron. For the nuclear magneton and I = 1/2 we obtain gn = 2 and

γn =
gnμn

h̄
= 0.956 × 108 (s−1/T) . (11.7)

For the proton the magnetic moment μp is

μp = 2.79μn = 1.41 × 10−26 (A m2) (11.8)

With this and according to the above definition, the g-factor for the proton is

gp = 2μp/μn = 5.58 (11.9)

and the magnetogyric ratio becomes from (11.1)

γp =
2μp

h̄
=

gpμn

h̄
= 2.675 × 108 (s−1/T) . (11.10)

The magnetic moment for the neutron is

μne = −1.913μn = −9.663 × 10−27 (A m2) . (11.11)

11.1.1 Orientation of Magnetic Moments in a Field, and Zeeman
Splitting

Applying a magnetic field B to the dipole μ yields the potential energy U
from



254 11 Magnetic Resonance Spectroscopy

U = −μB . (11.12)

Maximum and minimum values for this energy are

Umax = μB, and Umin = −μB

for anti-parallel and parallel orientation of the dipoles to the field. According
to quantum mechanics the magnetic dipoles can be aligned only in 2J + 1
or 2I + 1 well defined directions between the two limiting orientations of the
field. From this the possible energetic states are

UJz
= JzgeμBB, and UIz

= IzgNμnB (11.13)

for the electronic and nuclear dipoles, respectively. Jz and Iz can take the
values J, J − 1, ...0, ...− J and I, I − 1, ...0, ...− I. This behavior of the energy
levels in a magnetic field is known as Zeeman splitting. Spin transitions are
allowed between neighboring values of U . This means ΔJz = 1 or ΔIz = 1.
From (11.13) the transition energies are

ΔUJz
= geμBB = h̄γeB, and ΔUIz

= gNμnB = h̄γNB .

(11.14)

Note that the transition energies do not depend on the quantum numbers J
or I but only on the g-factors.

As a consequence of the splitting electromagnetic radiation will be res-
onantly absorbed if its energy matches the energy difference of the Zeeman
levels given in (11.14). Thus, the frequency for resonance absorption is

ω0 = 2πf0 = γB . (11.15)

For a field of 1 T, and the values of γe and γp as given above, resonance
frequencies of 28.0 GHz and 42.6 MHz follow. Thus, microwaves or radio-
frequency waves are the appropriate energy range in the electromagnetic spec-
trum.

In general, in quantum mechanics, the expectation value must be used if
an observable is described. Thus, for the description of the magnetization,√

J(J + 1) must be used rather than simply the quantum number J . This
means the magnetic moments of an atom or nucleus with quantum number
J , or I, respectively, are

μe = γeh̄
√

J(J + 1) or μN = γNh̄
√

I(I + 1) . (11.16)

In contrast to this energy levels and transitions in magnetic resonance spec-
troscopy are assigned directly by the quantum numbers.
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For finite temperatures the magnetic moments μe do not line up completely
in a magnetic field. The average magnetization M along the field direction is
given by M0 = n〈μe〉 where n is the number of magnetic moments per unit
volume. As in the theory of magnetism this quantity is obtained from

M0 = nμeL(x) = nμe(coth x − 1/x) (11.17)

with x = μeB/kBT . L(x) is an approximation to the Brillouin function and
can be approximated for small x by x/3 which yields for M0

M0 =
nμ2

eB

3kBT
= nJ(J + 1)

g2
eμ2

BB

3kBT
. (11.18)

For large fields and low temperatures L(x) ≈ 1, and the magnetization satu-
rates at M0 = ngeμBJ .

In practice, the dimensionless g-factors and magnetogyric ratios are more
frequently used to describe the magnetic behavior of material as compared to
the magnetic moments μe or μN themselves.

11.1.2 Magnetic Moments in Solids

In solids atoms are not free and the orbital quantum number L is not a well
defined quantity. The magnetic moments are mainly determined by the spin
quantum number S. This is a consequence of the anisotropy of the electro-
static crystal field (See also Sect. 7.5). However, the quenching of the orbital
moments is not complete due to spin-orbit coupling. A correction remains
for the determination of the magnetic moments from the g-factor and from
the spin quantum number. Thus the g-factor has an anisotropic spin-orbit
correction Δik. Some more details about spin-orbit coupling can be found in
Appendix J.6. As a consequence of the anisotropic spin-orbit correction the
the g-factor must be written as a tensor of the form

gik = ge(δik + Δik) (11.19)

where δik is the Kronecker symbol.
With respect to the electronic g-factor an exception of the above rule

holds for the ions of the three-valent rare-earth atoms which are well known
for their particular magnetic properties. Table 11.1 lists effective magnetic
moments in units of μB for various rear-earth ions in comparison to ions of
transition metals. The columns “configuration” and “basic level” show the
electron configuration and the ground state of the ions. The configuration is
labeled by the symbol iAk as it is used in molecular spectroscopy. A means
the orbital quantum number (S, P,D, F, ... for L = 0, 1, 2, 3, ..), k the total
quantum number J , and i the spin multiplicity. This yields, e.g., for the Sm3+

ion L = 5, J = 5/2, and S = 5/2. (Note that L + S add up to J as vectors
and not as the numbers given here.) Columns 4 and 5 show the magnetic
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Table 11.1. Magnetic moments for various ions in units of μB

Ion Configu- Basic μe = μe = μ from

ration level gLSJ

√
J(J + 1) gel

√
S(S + 1) experiment

Ce3+ 4f15s2p6 2F5/2 2.54 1.73 2.4
Pr3+ 4f25s2p6 3H4 3.58 2.8 3.5
Sm3+ 4f55s2p6 6H5/2 0.84 5.9 1.5
Eu3+ 4f65s2p6 7F0 0 2.0 3.4
Gd3+ 4f75s2p6 8S7/2 7.94 7.94 8.0
Dy3+ 4f95s2p6 6H15/2 10.63 5.9 10.6
Ti3+ 3d1 2D3/2 1.55 1.73 1.8
Co2+ 3d7 4F9/2 6.63 3.87 4.8
Ni2+ 3d8 3F4 5.59 2.83 3.2
Cu2+ 3d9 2D5/2 3.55 1.73 1.9

moments considering the total quantum number J and only the spin quantum
number S, respectively. The last column is the experimental result. Obviously,
for transition metal ions the orbital quantum number is quenched and the
magnetic moments are indeed only determined by the spin of the atoms.

Important other magnetic moments in solids originate from nearly all de-
fects like color centers or isolated metal atoms in a matrix.

The magnetic moments of the nuclei are composed from the magnetic
moments of the protons and the neutrons. The resulting quantum numbers
are, in general, between 0 and 5. For nuclei with an even number of protons
and neutrons (g,g-nuclei) they are always zero. For g,u-nuclei they are always
an uneven multiple of 1/2. Table 11.2 lists important data for some nuclei used
in NMR experiments. Data for other nuclei can be looked up in, e.g., [11.1].
The use of the nuclear quadrupole moment for resonance experiments will be
discussed in Sect. 11.8.

g-factors which determine the magnetic moments of the nuclei are also
tensors which is a consequence of the anisotropic environment of the nuclei in
the crystals. This is known as chemical shift anisotropy.

In addition to electron spin resonance or electron paramagnetic resonance
(EPR) and nuclear magnetic resonance, various other magnetic resonance
techniques are used. Such are, e.g., spin wave resonance (SWR), nuclear
quadrupole resonance (NQR), optically detected magnetic resonance (ODMR).
Even double-resonance techniques are common like dynamic nuclear polariza-
tion (DNP) or electron nuclear double resonance (ENDOR) where nuclear and
electronic spins are excited simultaneously.

The following sections will discuss only the basic magnetic resonance pro-
cesses in some detail. NQR and double-resonance experiments will be touched
briefly.
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Table 11.2. Properties of nuclei of various isotopes used in NMR and in nuclear
quadrupole resonance experiments. γN is given in units of γp

Nucleus Abundance nP nN Spin γN NMR Quadrupole
(%) (γp) intensity moment

(relat. to 1H) (10−24 cm2)
1H 99.98 1 0 1/2 1 1 -
2H 0.01 1 1 1 0.1535 9.65E-3 2.8E-3

10B 18.83 5 5 3 0.1075 1.99E-2 ≈9.4E-2
11B 81.17 5 6 3/2 0.3208 0.165 3.6E-2
13C 1.10 6 7 1/2 0.2514 1.59E-2 -
14N 99.63 7 7 1 0.0722 1.01E-3 ≈4.5E-2
15N 0.36 7 8 1/2 0.1013 1.04E-3 -
19F 100.00 9 10 1/2 0.9408 0.833 -
31P 100.00 15 16 1/2 0.4048 6.63E-2 -

63Cu 69.17 29 34 3/2 0.2651 9.31E-2 -0.15
111Cd 12.90 48 63 1/2 0.2120 0.12 0.83

11.2 Magnetic Moments in a Magnetic Field

As in Sect. 11.1 the following description is valid for NMR as well as for ESR.
For simplicity, the indices to γ, μ, etc., have been dropped in this and in the
following two sections.

11.2.1 Motion of Magnetic Moments and Bloch Equations

We start by considering the equation of motion for a magnetic moment μ in a
magnetic field B parallel to z. Let the magnetic moment be accompanied by
a mechanical angular moment h̄J . Since the time derivative of this quantity
equals the acting torque μ×B we have

h̄
dJ

dt
= μ × B . (11.20)

Introducing the magnetization as magnetic moment per unit volume M =
n〈μ〉 and (11.1) yields (for electrons)

dM

dt
= γ(B × M) . (11.21)

Equation (11.21) describes an undamped precession of M around z. It is
called the free Bloch equation. A relaxation of M to its equilibrium position
M = (0, 0,M0) with M0 ∝ B/T from (11.18) is not possible. This will only
happen if relaxation processes are included. If this is the case, the individual
magnetic moments precessing around the z axis will gradually relax to the



258 11 Magnetic Resonance Spectroscopy

equilibrium position. Assuming an exponential behavior for the relaxation
process it can be described by

dMz

dt
=

M0 − Mz

T1
,

dMx

dt
= −Mx

T2

dMy

dt
= −My

T2
. (11.22)

Since the relaxation of the z component changes the energy of the system, it
must proceed by an interaction with other quasi-particles like phonons or elec-
trons. The time constant T1 is therefore called the longitudinal or spin-lattice
relaxation time. The name expresses that eventually all magnetic energy is
relaxed to the crystal lattice. The x and the y components of the magnetic
moment M relax to zero without a change in energy. They already become
zero when the individual magnetic moments loose their phase coherence, e.g.,
by spin-spin interaction or by inhomogeneities in the field. Thus, T2 is different
from T1, and called the transverse or spin-spin relaxation, or phase coherence
time. In general T2 < T1 holds.

The combination of (11.21) and (11.22) yields the Bloch equations for the
motion of the magnetization including relaxation.

dMz

dt
= γ(B × M)z +

M0 − Mz

T1
,

dMx,y

dt
= γ(B × M)x,y − Mx,y

T2
. (11.23)

They describe the full time dependence of the magnetic moments and thus
also the time dependence of the spins in the magnetic field.

11.2.2 The Larmor Frequency

From the equation of motion without relaxation (T1 = T2 = ∞ in (11.23)) the
frequency of precession can be obtained directly. It is, however, here and for
many other problems of spin precession very useful to study the kinematics
of the magnetic moments not only in the laboratory system (x, y, z) but also
in a system (x′, y′, z′) rotating with a frequency ω around the z axis. The
geometries and the precession of the magnetization M are demonstrated in
Fig. 11.1. The connection between the change of the magnetization in the
laboratory system dM and in the rotating system d′M is given by

d′M = dM − ωdt × M . (11.24)

This follows from the general relation between vectors in a laboratory system
and in a rotating system (Appendix J.2). ω in (11.24) is a vector (0,0,ω)
pointing in the z direction. Thus, in the rotating system the equations of
motion without relaxation have the form
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Fig. 11.1. Rotating frame (x′, y′, z′) and rotation
of a magnetic moment M in the laboratory frame
(x, y, z)

d′M

dt
= (γB − ω) × M . (11.25)

The equation shows that the magnetic field is effectively reduced to the value

Beff = B − ω

γ
. (11.26)

If the dashed coordinate system rotates with the precession frequency M
will be constant and thus d′M/dt = 0. This means from (11.25) that the
precession frequency or Larmor frequency of the magnetic moments is related
to B by

ω = ω0 = γB (11.27)

and the effective field becomes zero.
A comparison with the transition energy for resonance absorption from

(11.14) shows that the magnetic system absorbs just at the Larmor frequency.
This is the reason why the search for the resonance positions can either be
performed by checking the induction of the rotating magnetic moments into
a sensor coil or by measuring the energy absorbed by the system.

11.3 Basic Concepts of Spin Resonance

In order to measure the Zeeman splitting two magnetic fields are needed. One
field B0 to generate the Zeeman levels and another field B1(t) to check the
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transitions. To investigate the spin resonance the induction of B1 into a detec-
tor coil can be studied and the energy transferred from the alternating field
B1 to the system can be measured. Alternatively the absorption of the radia-
tion between two Zeeman levels can be analyzed like in an optical absorption
experiment.

11.3.1 Induction into a Sensor Coil

The detection of the excited magnetic system with a sensor coil is the classical
technique of NMR, since in this case the frequency range is covered by RF
equipment. The excitation occurs via an ac magnetic field in the x direction
and the bias magnetic field in the z direction. The signal is detected with a
pickup coil in the y direction2. A schematic setup is depicted in Fig. 11.2. x
is pointing into the plane of the paper. The RF source can be tuned through
the resonance frequency.

Fig. 11.2. Schematic repre-
sentation of a setup for the
detection of magnetic reso-
nance by pickup coils. (B0:
static field, Bx: coil for exci-
tation, By: coil for detection,
RF: RF source, D: detector);
The inset shows the orienta-
tion

Since any linearly polarized field can be separated into two circularly polarized
fields with opposite directions of circulation, the following description is given
for circularly polarized fields. In fact, for such fields the motion of the magnetic
moments is much more transparent as compared to linear excitation.

The excitation field B1 is assumed circularly polarized in the xy plane.
Then, the magnetization M precesses not only around z with the Larmor
frequency ω0 = γB0 but also around the momentary direction of the field B1

with frequency ω1 = γB1. This is a rather complicated motion. Its analysis
turns out to be much more simple if performed first in a coordinate system
rotating with the excitation field B1 as shown in Fig. 11.3. In this system B1

2 In modern spectrometers excitation and detection are performed with a single
coil in the x or y direction.
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Fig. 11.3. Motion of the magnetization M in a static magnetic field B0||z and a
field B1 circularly polarized in the x, y plane, as observed in the rotating system
(a); same motion in the laboratory system for resonance condition ω0 = γB0 (b);
topography of the endpoint of M in real space (c); and the time dependence of
component Mx at resonance condition (d)

is constant and oriented, e.g., in the x′ direction. Since the static field along
z is reduced to the effective field of (11.26) the resulting reduced but static
field in the rotating system is

B∗
eff = B1e

′
x + Beffe′

z = B1e
′
x + (B0 − ω/γ)e′

z (11.28)

with the magnitude

B∗
eff =

√
B2

1 + (B0 − ω/γ)2 .

e′
x and e′

z are unit vectors in the rotating system. The magnetization rotates in
the dashed system about B∗

eff as shown in Fig. 11.3a. Its components oscillate
there with the frequency γB∗

eff . The oscillation amplitudes are determined
by B1/Beff . The amplitudes of the My and Mz components increase with
increasing ratio B1/Beff = sin θ until they reach a maximum value M0 for
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B∗
eff = B1. Since they determine the signal in the pickup coil the latter depends

critically on Beff = B0 − ω/γ. For returning to the laboratory system we just
have to rotate the x′ axis in Fig. 11.3a with the frequency ω about z′ = z.

The situation becomes particularly simple if the frequency ω is tuned to
the Larmor frequency γB0. In this case Beff becomes zero and B∗

eff = B1.
For Beff = 0 the angle θ will be 90◦ so that the magnetization rotates on
a circle in the y′z′ plane with the component Mx′ = 0 and the rotation
frequency ωR = γB1. This is sketched in Fig. 11.3b. In the laboratory system
the motion of M is twofold: it rotates rapidly about z with frequency ω0 =
γB0 and slowly with frequency γB1, about the momentary direction of B1.
This yields the spiral motion on the surface of a sphere shown in Fig. 11.3c.
The components Mx and My are double-modulated. They are subjected to
a rapid modulation from the rotation about z and to a slower “amplitude”
modulation with frequency γB1. For the fully tuned case the amplitudes for
Mx and My reach |M |. Figure 11.3d displays the time dependence for Mx.
My is 90◦ phase-shifted.

The mathematical form for the time dependence in Fig. 11.3d is obtained
by solving the unrelaxed Bloch equations for the rotating system. This yields
for the resonance conditions

Mx′ = 0, My′ = M0 cos(ω1t), Mz′ = M0 sin(ω1t) ,

and after back transformation to the laboratory system

Mx = −M0 cos(ω1t) sin(ω0t) ,

My = M0 cos(ω1t) cos(ω0t) ,

Mz = M0 sin(ω1t) . (11.29)

Obviously Mx and My are phase-shifted by 90◦. My or Mx is the signal which
is detected by the pickup coil. The central frequency for the observation is
ωobs = ω0 = γB0.

The frequency ωR = γB1 is called the Rabi frequency, since in a classical
sense it determines how fast the magnetic moments change their orientation
in the magnetic field.

The oscillations of (11.29) as they are depicted in Fig. 11.3 are only good
for a relaxation free motion. If T1 and T2 are finite a steady-state result is
obtained in the rotating frame as will be discussed in the next section. This
steady state is a consequence of the Larmor motion which drives the spins on
the spiral motion downwards and the relaxation which drives the spins back to
the z direction. Before we study the consequences of T1 and T2 in detail we will
demonstrate the usefulness of the above ideas about the spin kinematics for
a very important class of resonance experiment in which relaxation is already
included.
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11.3.2 Free Induction Decay

The detection of relaxation is possible in a straight forward way by applying a
pulsed field which pulls the magnetization away from its original z orientation
and observing the relaxation back to the initial state after termination of the
pulse. If, for example, a field B1 is applied at resonance for the time period t =
π/2γB1, the magnetization has just arrived at the xy plane when the field is
turned off. After this 90◦ or π/2-pulse the magnetization relaxes back to the z
orientation. For the z component this happens with the longitudinal relaxation
time T1 and for the x and y components with the transverse relaxation time T2.
The transverse components already disappear when the individual magnets or
spins have lost their mutual coherence by inhomogeneities in the sample or by
spin-spin interaction. With the pickup coil so-called free induction decay (FID)
is observed. It appears as an exponentially damped sine wave of frequency
γB0 with a decay constant 1/T2. The time dependence of the pickup signal is
shown in Fig. 11.4. The mathematical expression for free induction decay is

Fig. 11.4. Free induction decay of
the signal in the pick-up coil after a
90◦ pulse

again readily obtained from solving the Bloch equations first for the rotating
system with B1 = Beff = constant and then transforming the result back to
the laboratory system.

90◦-Pulses and several other more sophisticated pulse sequences are often
employed in magnetic resonance spectroscopy to determine T1 and T2. This
holds, in particular, for NMR.

11.3.3 Tuning the Resonance

ESR as well as NMR are often performed in CW configuration. This holds
for experiments with induction in a pickup coil as well as for the absorption
measurements in a microwave cavity. Thus, we have to work out the conditions
for these cases, including relaxation.
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To find the absorption either the field B0 or the frequency ω has to be
tuned. The speed of this tuning has an important consequence on the absorp-
tion behavior. It is measured with respect to the characteristic time constants
of the experiment such as 1/ω0, T2, and T1.

The change in the tuning parameter is called suddenly if it occurs faster
than the inverse Larmor frequency. This means no precessional motion occurs
during the change. An example would be a rapid switch of direction of the
magnetic field B0 by 90◦. If the switch is faster than ω0 no energy will be
dissipated. Energy dissipation occurs only afterwards during the free induction
decay.

The contrary are very slow or adiabatic changes. In this case the system
is at any time in equilibrium. To reach this equilibrium energy must be dis-
sipated. The adiabatic processes can either be fast or slow, depending on
whether they are faster or slower than the time constants for transverse or
longitudinal relaxation. The π/2-pulse described in Sect. 11.3.1 is an adiabatic
fast process provided γB1 � 1/T2. The process of the free induction decay or
any CW resonance absorption experiments are adiabatic slow processes.

11.3.4 Susceptibility and Absorption of Power in CW Experiments

To describe absorption it is convenient to introduce a magnetic susceptibility.
We consider again the situation of a strong static (but tunable) field B0 in
z direction and a small rotating field B1 perpendicular to it. The magnetiza-
tion rotates around the effective field B∗

eff of Fig. 11.3. In the frame rotating
with B1 it has a component Mx′ and My′ , both proportional to B1 but not
necessarily equal in magnitude. We define two ratios χ′ and χ′′

χ′ =
Mx′μ0

B1
and χ′′ =

My′μ0

B1
. (11.30)

These ratios are not very useful for an unrelaxed motion of the magnetization,
since both, χ and Mx′ ,My′ are time-dependent. This is different for the case
where a relaxation of the magnetization is included. Then, the values for
Mx′ and My′ become stationary in the rotating frame and (11.30) defines a
susceptibility. Evidence of this change in kinetic behavior will be given below.

Since in this case M and B1 rotate with the same frequency in the lab-
oratory system, the two relations from (11.30) can be expressed in the latter
by

μ0M = χB1 ,

where a complex notation for M , B1 and χ = χ′ + iχ′′ was introduced. Note
that M and B1 are not necessarily in phase, so that M may be complex even
for real values of B1.

The orientation of M in the rotating frame depends on the type of process
considered and must be evaluated in each case. We will restrict ourselves in
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the following to the most widely used case of adiabatic slow processes which
includes continuous-wave experiments.

The quantitative description of the kinetics of the magnetization is de-
duced from the Bloch equations. Represented in the rotating frame they read
in components and with the use of (11.23) and (11.28) for the effective field
B∗

eff

dMx′

dt
= −(γB0 − ω)My′ − Mx′

T2
,

dMy′

dt
= (γB0 − ω)Mx′ − B1Mz′ − My′

T2
,

dMz′

dt
= γB1My′ +

M0 − Mz′

T1
. (11.31)

ω is assumed independent of t. This means ω is either constant or at most
tuned adiabatically slow. Under these conditions (11.31) is a set of inhomoge-
neous linear differential equations of first order for M . We look for a steady
state solution. The general solution for the homogeneous equation is an ex-
ponentially decaying function which dies out for t → ∞. Thus, a particular
solution for the inhomogeneous equation is the only steady-state solution.
Such solution is possible if all derivatives with respect to time are zero on the
left side of (11.31). This means M is stationary (time-independent) in the
rotating frame. With this we obtain from (11.31) a set of algebraic equations
for Mx′ ,My′ , and Mz′ . The straightforward solution for M gives the complex
susceptibilities

χ′ =
Mx′μ0

B1
=

γ(γB0 − ω)T 2
2 M0μ0

1 + (γB0 − ω)2T 2
2 + γ2B2

1T1T2
,

χ′′ =
My′μ0

B1
=

γT2M0μ0

1 + (γB0 − ω)2T 2
2 + γ2B2

1T1T2
. (11.32)

For small enough values of B1 which means γ2B2
1T1T2 � 1 this approaches

χ′ =
γ(γB0 − ω)T 2

2 M0μ0

1 + (γB0 − ω)2T 2
2

,

χ′′ =
γT2M0μ0

1 + (γB0 − ω)2T 2
2

, (11.33)

where χ′ and χ′′ describe the linear response Mx and My to B1. Note that
susceptibilities derived for a linearly polarized field B1 are a factor of two
smaller in comparison to the results from (11.33). Also, T1 does not enter into
(11.33) since it is assumed to be so small that all energy of the spin system can
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be transferred to the lattice. Only if T1 becomes large the resonance absorption
saturates and T1 determines the rate of energy transfer to the lattice. This
case is studied below in Sect. 11.3.6.

In the approach of (11.33) the susceptibility has the typical shape of a
response function of an oscillator. The imaginary part is Lorentzian with a
FWHM of 2/T2 and the real part has a zero crossing at resonance.

The change of energy density in the spin system per unit volume and per
unit time is given by

dW

dt
=

d
dt

(−MB) = −M
dB

dt
− B

dM

dt
. (11.34)

The first part on the right side of (11.34) originates from the time-varying
field which delivers power to the spin system and the second part describes the
energy delivered to the lattice. Since for an adiabatic slow process no energy
can be stored in the spin system the balance of (11.34) must be zero. In other
words, the second part and the first part are of equal magnitude but opposite
sign. Then the first part can be used to calculate the power dissipated to the
lattice. From (11.24) at resonance dB/dt = ω0 × B1 = ωB1ey has only a y
component with magnitude ωB1. With My = −χ′′B1/μ0 the dissipated power
is

W ′ =
(

dW

dt

)
diss

= χ′′ωB2
1/μ0 . (11.35)

In combination with (11.32) this relation reveals a resonance absorption de-
creasing like 1/T as a consequence of the temperature dependence of M0.
Also, W ′ saturates for large values of B1. The reason for this saturation is
immediately evident from a statistical concept of the resonance absorption.
As a consequence of the absorption process more and more spins arrive in
the upper state until equal occupation is obtained. Under these conditions
absorption is saturated since an equal number of spins is excited by the radi-
ation from the lower level to the upper level and from the upper level to the
lower level (see also Sect. 11.3.6).

For practical reasons in experiments often dW ′/dB is determined instead
of W ′. Alternatively the complex impedance can be measured which enables
χ′ and χ′′ to be determined separately. In analogy to optics χ′ and χ′′ are
called the dispersive and the absorptive part of the susceptibility.

11.3.5 Resonance Absorption

To measure the absorbed power of the radiation directly a resonance cavity or
the immersion of the sample into a waveguide is appropriate. This technique
corresponds more closely to the picture of transitions between the Zeeman
levels. It is used, in particular, for ESR experiments as they are conducted in
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the spectral range of microwaves and the explicit handling of the electromag-
netic field is much more elaborate in this case. Measurements of incoming and
outgoing power is easier but still requires wave guides and resonator cavities.
Reflex klystrons and bolometers or diode crystals are the standard radiation
sources and detectors, respectively. Figure 11.5 shows a schematic experimen-
tal setup.

Fig. 11.5. Schematic setup for microwave absorption in magnetic resonance; (K:
klystron, B0: magnet, D: detector)

The samples are inserted into a microwave cavity after they have been
sealed in a very thin quartz or pyrex tube. The tube material must be com-
pletely free from paramagnetic impurities. To find the resonance positions the
magnetic field is usually tuned by some extra windings on the static magnet
used for the Zeeman splitting.

11.3.6 The Resonance Excitation as an Absorption Process

From the above discussion and from the description of the spin resonance as
the transition between two Zeeman levels one would expect that the quantum-
mechanical model, as developed in Sect. 7.1 for the optical absorption, applies
here as well. This is indeed true. The golden rule for the transition probability
per unit time between two Zeeman levels becomes

PΔUz
=

2π

h̄
|H ′

ΔUz
|2δ(ΔUz − h̄ω) . (11.36)

The matrix element must be evaluated for transitions between the lower and
upper Zeeman states which we labeled l and u in the following. There is,
however, one important difference to the case of optical absorption. Since the
difference in energy between the two states is only a few meV in ESR and
only a few μeV in NMR the thermal population of the states is nearly equal.
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This means for the evaluation of the overall transition rate the probability
for the induced transitions from l to u as well as for the transitions from u
to l must be considered. The matrix elements for both transitions are equal.
(The square of the transition matrix elements corresponds to the Einstein
coefficients B12 and B21 from Appendix C.5, equation (C.16)).

More details about the quantum-mechanical description of resonance ab-
sorption must be left to special textbooks [11.2]. In the following we will rather
discuss the consequences of the nearly equal population of the upper and lower
Zeeman levels on the rate equations.

The ratio between the population of energy levels l and u is given by the
Boltzmann factor

nl

nu
= egμB/kBT . (11.37)

Since for not too low temperatures and for not too high fields the exponent
in (11.37) is � 1 the ratio of the two populations is well approximated by
(1+gμB/kBT ). Introducing the total number of spins per unit volume as n =
nl +nu the concentrations in the upper and lower levels are straightforwardly
evaluated as

nu = (n/2)(1 − gμB/2kBT )
nl = (n/2)(1 + gμB/2kBT ) . (11.38)

This yields for the relative difference in the population

Δn

n
=

nl − nu

n
=

gμB

2kBT
. (11.39)

Since for protons gpμn is only 2.8 × 10−26 A m2 the difference in magnetic
energy gpμnB is only 1.75×10−4 meV for a field of 1 T. At room temperature
the thermal energy is, on the other hand, 27 meV so that the two populations
differ only by a fraction of 3 × 10−6.

We are interested in the energy absorbed by the spin system per unit time
and per unit volume. This rate is given by

dW

dt
= nlPul(εu − εl) + nuPlu(εl − εu) = Δn(t)PΔε , (11.40)

where P = Pul = Plu and Δn(t) are the transition probability from (11.36)
and the difference (nl − nu), respectively. The time dependence for Δn(t) is
readily obtained from the rate equation for the change of the population in
the levels l or u. For level l we have

dnl

dt
= nuPlu − nlPul = P (nu − nl) (11.41)

which yields by combining it with a similar equation for nu

dΔn

dt
= −2PΔn(t) . (11.42)
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The solution of (11.42) is an exponentially decaying function which implies
that absorption goes to zero for increasing time. This is, of course, due to the
equal rate of up and down transitions as soon as the population of the upper
level and the lower level become the same. As in the case of the precessing
magnetization we obtain a different result if energy relaxation from the spin
system to the lattice is allowed. In this case the upper energy level is not only
depopulated by the induced transitions but also by the conversion of magnetic
energy to lattice energy. Using an exponential term for the relaxation as in
(11.23) or (11.31) we can rewrite (11.42) as

dΔn

dt
= −2PΔn(t) − Δn(t) − Δn(0)

T1
, (11.43)

where Δn(0) is the population difference at thermal equilibrium. For the
steady-state solution we immediately obtain

Δn(t) =
Δn(0)

1 + 2PT1
(11.44)

and thus from a combination with (11.40) the absorbed power

(
dW

dt

)
diss

= Δn(0)Δε
P

1 + 2PT1
. (11.45)

Since P is proportional to the incident power of the electromagnetic field, a
power for which 2PT1 � 1 leads to a saturation of the absorption. This is
completely equivalent to the result of (11.35) with (11.32) for χ′′ and large
values of B1.

11.4 Relaxation Times and Linewidths for Magnetic
Resonance

As seen from (11.35) in combination with (11.33) the linewidth of the res-
onance absorption is determined by T2 even though the final relaxation of
the absorbed energy to the lattice is given by T1. It is the dephasing of the
individual magnetic moments after the time T2, which limits further absorp-
tion. Accordingly, T2 is also often called phase coherence time. What are the
physical processes to determine the relaxation behavior?

11.4.1 Dipole-Dipole Interaction and Transversal Relaxation Time
T2

The width of χ′′ in a solid is to a first approximation given by the dipole-
dipole interaction of the individual spins. The magnetic field of a dipole is
well known from magnetostatics and has the form
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Bμ =
3r(μr) − μr2

4πr5
μ0 , (11.46)

where r is the vector pointing from dipole μ to the field point. The interaction
energy between two magnetic moments μi and μk with the distance rik is
therefore

εd(ik) = −μiBk =
μiμk

4πr3
ik

μ0 −
3(μirik)(μkrik)μ0

4πr5
ik

, (11.47)

where Bk is the field of the dipole μk at the position of the dipole μi. rik is
the vector pointing from dipole μi to dipole μk.

In general, the field at dipole μi is the sum of all other randomly dis-
tributed dipoles in the system. Thus, the local field is subjected to ran-
dom fluctuations in space. The width of the resonance lines is determined
by these fluctuations. Its evaluation needs an averaging over the statistically
distributed moments. A simple but physically instructive approximation is
obtained by evaluating the maximum energy of one dipole in the field of an
equal dipole at distance a0. With μ = gμBJ this yields from (11.47)

εd = μBμ ≈ 2μ2μ0

4πa3
0

=
μ0g

2μ2
BJ2

2πa3
0

, (11.48)

and a related equation for the nuclear spins. This quantity divided by h̄ is
a good measure for the linewidth (in ω) from the dipole-dipole interaction.
For J or I = 1/2 and n spins per unit volume it yields, except for a constant
factor of the order of 1 resulting from averaging procedures,

δω = δ(γB) =
μ0γ

2h̄n

8π
. (11.49)

As an example we consider the nuclear spin of 19F in CaF2. 19F has I = 1/2
and γN = 2.5 × 108 s−1 T−1. With n = 5 × 1028 F− ions/m3 we obtain a
linewidth of δω = 1.5 × 104 s−1 or 0.06 mT. Linewidths for electron spins are
usually much larger because of the larger magnetogyric ratio γe.

Even though the linewidth from dipole-dipole interaction is a good basis
linewidths are frequently observed to be much smaller than evaluated from
(11.49). Obviously there are mechanisms which lead to a narrowing of the res-
onance lines. Two of them are well known: motional narrowing and exchange
narrowing.

Motional narrowing of lines broadened by inhomogeneities results from a
cancellation of broadening interactions by spin diffusion or molecular rotation.
Since T2 for inhomogeneous broadening is determined by a local variation in
the precession frequency of the magnetic moments in space or time, the phase
coherence is pertained for a longer time if the spins diffuse around. In this case
spins which are advanced in their phase may arrive at a position with lower
local field and will thus be retarded. Other spins which are behind may be
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accelerated in their precession if they arrive at a spot with higher field. Thus,
on average the magnetic moments stay longer in phase and T2 will increase.
In such a case the dephasing will not proceed linear in time but diffusive with
the square root of the time. For a field with a fluctuation amplitude ±δB and
a characteristic time constant τ for one step in the spin diffusion the phase
difference after n steps is

Δ =
√

nτ γδB . (11.50)

Assuming T2 is obtained for a dephasing of Δ = 1 rad the number of steps
needed is n = 1/(δB)2γ2τ2. Hence, T2 is given from

1/T2 = 1/nτ = (δB)2γ2τ . (11.51)

Without diffusion the phase difference would increase linearly in time. This
means T2(0) = 1/γδB. Thus, for τ−1 � γδB (11.51) describes a remarkable
increase of T2 with a correlated narrowing of the resonance line.

Exchange interaction is a quantum-mechanical phenomenon which causes
an additional interaction energy with no counterpart in classical physics (see
also Appendix J.3). Phenomenologically it is described by an exchange con-
stant KE characterizing the probability of the exchange of two electrons from
two atoms or the exchange of two spins from two lattice sites. If the width
of resonance absorption is determined by a dipole-dipole interaction and by
exchange interaction T2 is obtained from

1
T2

=
π

2h̄

ε2d
KE

. (11.52)

For KE � εd the half width 1/T2 can become very small. The physical back-
ground for the exchange narrowing is a diffusion of the spins between states
split by exchange interaction. If N spins interact the resonance splits into N
states between which the spins can diffuse. In this sense exchange narrow-
ing is also based on motional narrowing. For spin concentrations higher than
100 ppm considerable exchange narrowing can be expected.

In detail the transverse relaxation time T2 consists of a reversible and of an
irreversible part which means by reversing the driving field for the motion of
the magnetic moments only part of the magnetic moments can be recollected
into their original orientation. Formally, the relaxation rates are expressed as

1
T2

=
1

T2rev
+

1
T2irrev

. (11.53)

This has important consequences for spin-echo experiments to be discussed
later in this chapter.



272 11 Magnetic Resonance Spectroscopy

11.4.2 Shape of Resonance Lines

As a consequence of the tensorial character of g the resonance absorption
depends on the orientation of the crystal in the magnetic field. For crystal
powder the response from the differently oriented crystallites must be averaged
over the polar angles θ and φ which yields (for diagonal g-tensors gii = gi) an
effective g-value

geff =
√

g2
z cos2 θ + g2

y sin2 θ cos2 φ + g2
x sin2 θ sin2 φ (11.54)

The anisotropy of the g-tensor leads to a characteristic line shape. For a given
field the values of gi are related to the absorption frequencies ωi, and the
line shapes are obtained as depicted in Fig. 11.6a for an axially symmetric
g-tensor (gx < gy = gz) and for a g-tensor with full anisotropy in Fig. 11.6b.
In the former case the line shape is obtained from

I(ω) =
1
2

(
1

(ωx − ωy)(ω − ωy)

)1/2

(11.55)

with I(ω) = 0 for ω < ωx and ω > ωy.
Relations to calculate the line shape with full anisotropy are given in Ap-

pendix J.4.

Fig. 11.6. Idealized magnetic resonance powder spectrum with axial
anisotropy (a) and full anisotropy (b) in the g tensor. The frequencies used
to calculate the lines were ωx, ωy, ωz equal to 2, 6, and 8 in arbitrary units,
respectively

Experimentally observed powder spectra can be reproduced by folding the
line from Fig. 11.6 with the spectrometer resolution function.
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Fig. 11.7. Spin-lattice relaxation via phonons. Energy diagram for a direct, a
Raman, and an Orbach process (a), and inverse of longitudinal relaxation time
T1 on a logarithmic scale versus inverse temperature for the electron spin of Nd
in La2Mg3(NO3)12·24 H2O at 9.37 GHz; after [11.5]

11.4.3 The Spin-Lattice Relaxation T1

To relax the z component of the excited magnetization energy must be trans-
ferred to the lattice. This energy can either be dissipated to the phonons or
to the electrons. For dissipation to phonons a direct process is possible. The
energy of the excited spin system is directly converted into a phonon. Since
the spin energy is rather low acoustic phonons are generated. The situation is
very similar to non-radiative recombination in semiconductors. The relaxation
rates are proportional to the temperature T like

1
T1

= Kphω2
0T , (11.56)

where ω0 is the transition frequency and Kph is the spin-lattice interaction
constant.

Other decay channels are possible and known as Raman or Orbach pro-
cesses. Figure 11.7a shows the two processes together with the direct relax-
ation in an energy scheme. According to the Raman mechanism an incident
phonon of frequency Ω is scattered and gains energy like in an antiStokes
Raman process. Since this is a scattering process all phonons independent of
their energy can participate. As the phonon density of states increases with
the phonon frequency a Raman process can be as likely as a direct process
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even though it is a four-particle event. The relaxation rate from a Raman
process is proportional to T 7 or T 9.

In the Orbach process the spin from the upper level is fist excited ther-
mally to a third level and relaxes only from there to the ground state by the
emission of a phonon. According to the thermal activation involved relaxation
by the Orbach process is proportional to exp(−Δ/kBT ). Figure 11.7b shows
the relaxation rate for the spins of Nd impurities in a crystalline matrix. The
high temperature part of the curve shown is clearly exponential and thus
indicates the dominance of an Orbach process. Relaxation rates via lattice
deformations can be particularly strong close to structural phase transitions.

In systems with free carriers like metals longitudinal relaxation can also
occur by dissipation of energy to the electrons (or holes). This is known as
Korringa relaxation. Korringa relaxation originates from the coupling of spins
to the fluctuating field the electrons generate at their position. In the case of
nuclear spins a Korringa relaxation is thus immediately related to the hyper-
fine interaction and to the Knight shift KK = (ωK − ω0)/ω0 of the resonance
line to be discussed in Sect. 11.7. The relaxation energy is transferred from
the spin system of the nuclei to the spin system of the free electrons. As a con-
sequence of the Pauli principle, only the fraction kBT/εF of electrons around
the Fermi energy can participate. This leads to the famous Korringa relation

TT1K
2
K =

4χ2
P

πkBγ2
eγ2

Nh̄3g2
v(εF)μ2

0

, (11.57)

where gv(εF) is the density of states per unit volume at the Fermi level, χP is
the Pauli susceptibility, and KK is the Knight shift. For a Sommerfeld electron
gas (11.57) can be simplified using

gv(εF) =
3n

2εF
(11.58)

and

χP = μ2
Bgv(εF)μ0 =

(γeh̄)2

4
gv(εF)μ0 (11.59)

where n is the electron density. This yields the standard formulation of the
Korringa relaxation

1
T1T

= K2
KS0 = K2

K

4πkB

h̄

(
γN

γe

)2

. (11.60)

In metallic systems the Korringa relaxation dominates over the phonon re-
laxation. The lack of any temperature dependence for the product T1T is
therefore often used to check the metallicity of a spin system for low temper-
atures. This is possible even though a direct spin-lattice relaxation yields also
1/TT1 independent of temperature. However, in metals the direct spin-lattice
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relaxation as well as the other spin-phonon relaxation mechanisms are always
much weaker than the Korringa relaxation.

Since T1 from Korringa relaxation is so short it becomes equal to T2 and
therefore often determines the spin resonance linewidth.

The Korringa mechanism is a typical process for the relaxation of nuclear
spins in metals but it also holds for the interaction of localized electron spins
with free carriers. In this case the coupling is by exchange interaction. If
the spins are not localized like in metals, relaxation follows the Elliott-Yafet
mechanism discussed in Sect. 11.6.

11.5 The Effective Spin Hamiltonian

To proceed further we will now discuss some special phenomena in ESR and
NMR. Since for magnetic resonance the origin of the electronic states of the
crystals is not the central problem and the relevant Hamiltonian is not the
one for the electrons and nuclei in the crystal as we used it in the previous
chapters. What is essential are the interactions of the magnetic moments
with an external field or with the internal field generated by them. These
interactions are the origin of the different types of observed line shifts and line
splittings. The Hamiltonian which describes the most important interaction
processes is known as the effective spin Hamiltonian and has the form

H = μBBge S + SDS + SAI − μnBgN I + IQ I + .... . (11.61)

S and I are the operators for the electronic and nuclear spin. According to the
comment given above about the quenching of the orbital quantum number J
was assumed equal to S. ge, D, A, gN and Q are operators describing the
Zeeman splitting of electronic states (ge), the influence of the crystal field (fine
structure, D), the electron-nuclear spin interaction (hyperfine structure A),
the Zeeman splitting for the nuclear spins (gN) and the nuclear quadrupole
interaction (Q). With the various resonance techniques the different interac-
tions are probed. In principle, many other interaction Hamiltonians like the
one for spin-lattice interaction or the spin-orbit interaction, etc., can be added.
In the following section we will discuss the interactions to a large extent with-
out considering the operator character of the coupling terms. All operators
will be replaced by their Roman symbols and the interactions are described
by coupling constants. However, the tensor character of these constants has
to be retained for crystalline material as well as for molecules.
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11.6 Electron Spin Resonance

11.6.1 Zeeman Splitting and Crystal Field Effects

The simplest case of a magnetic resonance experiment is a study of the reso-
nance absorption of electron spins at the Zeeman energy. Only the first con-
tribution to the spin Hamiltonian from (11.61) is used. From (11.14) the field
for resonance absorption is

BR =
h̄ω

geμB
, (11.62)

where the selection rule ΔS = 1 was applied. For a field (given in tesla) and
for ge = 2 this yields

fR = geμB/2πh̄ = 28 × 109B [Hz] . (11.63)

Except for cubic crystals the tensor character of ge must be considered. The
effective g value is then given by the components of the g-tensor and the
orientation of the field with respect to the crystal axes. This orientation is
conveniently described by the direction cosines l,m, n of the angles the field
makes with the crystal axes. For Bravais lattices with trigonal or higher sym-
metry the g-tensor is diagonal and the effective g-factor is obtained from

g =
√

l2g2
x + m2g2

y + n2g2
z . (11.64)

Figure 11.8a shows the position of resonance absorption for the organic crystal
Qn(TCNQ)2 (quinolinium-tetracyanoquinodimethane) as a function of the

Fig. 11.8. Dependence of electron spin resonance position expressed as Δg of
the organic crystal Qn(TCNQ)2 on the orientation of the field in the crystal. The
resonance was measured versus a reference to increase accuracy; (•) field in yz
plane, (�) field in xy plane; θ = 0 corresponds to B||z or B||x. (a); (b) shows the
TCNQ molecule with the coordinates for gik; after [11.6]
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orientation of the magnetic field relative to the crystal axes. Qn and TCNQ
are two large organic molecules accommodated in a trigonal Bravais lattice.
Thus, the tensorial character of g is retained for all electron spins and the
Zeeman splitting depends on the orientation of the field. The spin in the
system originates from a charge transfer of one electron between the two
molecules which renders TCNQ as a positive charged ion with one unpaired
electron. This electron gives rise to the ESR signal with S = 1/2. The diagonal
components of the g-tensor were found to be 2.00236, 2.00279, 2.00356.

Even in cubic systems the position of the energy levels for the spin states
depend very often on the orientation of the magnetic field with respect to the
crystallographic axes. This is, in particular, so if the spin is larger than 1/2.
In this case higher-order terms change the diagonal elements and introduce
nondiagonal contributions to the g-tensor.

Besides the pure Zeeman splitting the system described by

H = SDS + μBgeSB (11.65)

is the simplest case, in particular if the term SDS is small. The crystal field
modifies the Zeeman levels vis spin-orbit interaction. (See also Sect. 11.6.3).
This does not only lead to a shift of the resonance absorption but also to an
additional splitting if S > 1/2. The splitting is a consequence of the depen-
dence of the shift on the individual Zeeman states.

Fig. 11.9. Splitting and anisotropy
of electron spin resonance of Cr3+

with S=3/2 in AlCl3; after [11.7]

Figure 11.9 shows the splitting of the ESR line of Cr3+ in AlCl3 as a func-
tion of the orientation. θ is the angle between [100] direction and a magnetic
field in a (011) plane. The threefold degeneracy of the transition between the
four Zeeman levels of the S = 3/2 spin of Cr3+ is lifted.



278 11 Magnetic Resonance Spectroscopy

11.6.2 Hyperfine Interaction

The most important and thus also the most often investigated splitting of the
resonance lines originates from hyperfine interaction. The corresponding term
in (11.61) is

H = geμBSB + SAI . (11.66)

A is the hyperfine interaction constant which is, at least for s-electrons, deter-
mined by the probability |ψ(0)|2 of the electron at the position of the nucleus.
It has the value

As =
μ0

4π

8π

3
(gNμn)(geμB)|ψ(0)|2 (11.67)

In this form A is known as Fermi-contact interaction. Fermi contact interac-
tion is also possible for orbitals where |ψ(0)|2 is zero if they polarize an s-
orbital. Alternatively they can give a direct but much smaller and anisotropic
contribution from a dipole-dipole interaction. The Fermi-contact interaction
is isotropic as long as gN is isotropic like in hydrogen. However, due to chem-
ical shift anisotropies or dipole-dipole contributions this is generally not the
case and A is like g a tensor.

Because of the tensorial character of g and A the hyperfine interaction
cannot be read directly from (11.66). It must be calculated again for the dif-
ferent orientations of the field from the direction cosines l,m, n. As in (11.14)
the energy levels are given by the possible z components of the spins. For
diagonal A and g tensors the result is

USz,Iz
= ε = geμBBSz + aSzIz (11.68)

with

a =
1
g

√
A2

xg2
xl2 + A2

yg2
ym2 + A2

zg
2
zn2

and

g =
√

g2
x + g2

y + g2
z

If g and A are isotropic like for the electron in hydrogen a = A.
The splitting of the levels for a system with S = 1/2 and I = 1 is displayed

in Fig. 11.10. The electronic levels split into 2S + 1 = 2 Zeeman components
and each of them splits into 2I+1 = 3 nuclear Zeeman levels with the distance
aSz between two levels. Since the selection rules for transitions are again
ΔSz = 1 the resonances occur for
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h̄ω = geμBB + aIz (11.69)

and the resonance field is at

BR =
h̄ω

geμB
− aIz

geμB
. (11.70)

A strong signal is only obtained for ΔIz = 0. Thus the spin resonance line
splits into 2I + 1 components separated by a constant field a/geμB. Equation

Fig. 11.10. Splitting of energy levels by
hyperfine interaction in a system with S =
1/2 and I = 1

(11.69) is easily verified from Fig. 11.10.
The splitting obtained for ΔSz = 0,ΔIz = 1 is the nuclear Zeeman effect.
The hyperfine splitting is particularly simple for the electron in hydrogen.

From I = 1/2 for the proton a splitting into two lines results in with difference
in resonance frequency of a/2πh̄ = 1420 MHz or 50.7 mT. This corresponds
to an energy difference of ≈ 10−6 eV or 6 μeV.

Figure 11.11 exhibits the hyperfine splitting of Mn2+ in ZnS. The spectrum
is represented by the derivative of the absorbed power dW ′/dB. Mn2+ has
an electron spin and a nuclear spin of 5/2 each. Sweeping the field BR we

Fig. 11.11. Hyperfine splitting of
electron spin resonance for Mn2+ in
ZnS; after [11.8]
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expect six resonance lines from (11.70) as shown in the figure. The Zeeman
splitting for the electronic spins gives six levels with equal distance. Thus, all
electronic Zeeman transitions give the same hyperfine pattern.

Fig. 11.12. Electron spin resonance of hydrogen on a cubic interstitial site in
CaF2; The center to center distance between the two groups of peaks is 50.7 mT
from the hyperfine interaction of the hydrogen electron with the nuclear spin of
the proton; after [11.9]

A multiple splitting of the ESR signal occurs also if the electron spin
interacts with several equivalent nuclear spins I. Since the nuclear spins can
be added to yield an effective nuclear spin with maximum value NI, 2NI +
1 possible lines follow where N is the number of equivalent nuclear spins.
Figure 11.12 shows the ESR spectrum of hydrogen in CaF2. In this crystal
the F− ions are accommodated on the edges of a cube. In every other center of
the cubes are the Ca++ ions. The free cubes can accommodate the hydrogen
atoms which have thus 8 F− neighbors. Since 19F has spin 1/2 the resonance
splits into nine lines. However, the absorption of the lines do not have the same
intensity since the probability for generating a particular effective spin is not
the same for the different configurations. The maximum effective total spin
is obtained by only one configuration where all equivalent nuclear spins are
parallel. Smaller effective total spins are obtained by several or even many spin
configurations. Therefore, the central lines of the splitting are the strongest.
Away from the center the lines become weaker and weaker.

The hyperfine interaction between electron and nuclear spin of the hydro-
gen leads in CaF2, in addition to the nine fold splitting, to a doubling of the
absorption lines where both components have the same intensity. The two
components interact independently with the eight nearest neighbor nuclear
spins of 19F.

If the wave function of the electron spin is extended over several nuclei
the discrete lines of the hyperfine splitting are washed out and a broad line
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centered around I = 0 appears. Motional narrowing or exchange interaction
can again reduce the width of this line but the splitting is lost. Figure 11.13
depicts the behavior for electron-proton interaction. Spectrum (a) is the re-

Fig. 11.13. Line shape of the electron spin
resonance with hyperfine interaction; local-
ized spins (a), delocalized spins (b), delo-
calized spins with motional narrowing (c)

sponse for a localized electron spin with a splitting of a/2μB and spectrum (b)
is for a delocalized spin. In spectrum (c) the resonance line appears narrowed
from spin diffusion. The hyperfine interaction is fully averaged out.

11.6.3 Spin-Orbit Interaction

Spin-orbit (SO) interaction is a very colorful phenomenon which is important
for many characteristic observations in ESR such as anisotropy of the g-factor,
spin-lattice interaction, shift or splitting of resonance lines, lifetime of excited
states, and others. It is based on the interaction of the spin magnetic moment
μe of the electron with the magnetic field generated by the orbital motion
of the electron in the electric field of other charged particles like the nuclei
and other electrons. For electrons in atoms and equivalently for localized elec-
trons in a solid this interaction is given by the Pauli SO Hamiltonian as first
introduced by E.I. Rashba et al. [11.10].

HSO =
h̄

4m2
0c

2
(∇U0) × p · σ . (11.71)

m0, p, c, U0, and σ are the electron mass, its momentum, the light velocity,
the Coulomb potential of the atomic core, and the vector of the Pauli matrices
(σx, σy, σz) , respectively. For the meaning of σ see also Appendix J.5. (11.71)
is derived from HSO = −μeB

SO by using the classical formula for the field
B generated by an electron moving in the field E

BSO = −v × E

c2
=

v × (∇U0)
ec2

=
p × (∇U0)

m0ec2
(11.72)

and the magnetic moment of the electron given as
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μe =
ge

2
μB σ ≈ eh̄

2m0
σ . (11.73)

In order to arrive at (11.71) an additional factor 1/2 was added which takes
care for the so called Thomas precession due to the non-inertiality of the
electron rest frame.

For free or quasi free electrons in a solid the momentum p is given by
h̄k and m0c

2 has to replaced by the gap energy εg = Δ which yields for the
SO-Hamiltonian

HSO = − 1
Δ

E × h̄k · μe . (11.74)

The SO interaction for localized spins is often expressed in terms of the an-
gular momentum operators L = r × p and the spin operator S = 1

2 h̄σ as
demonstrated in Appendix J.6. In this case the eigenvalues of the spin-orbit
operator for hydrogen like orbitals scale as Z4 where Z is the number of
charges providing the Coulomb potential U0. As a consequence of this very
strong dependence of the spin-orbit coupling on the Coulomb charge the cou-
pling increases strongly with atomic number. This holds as well for SO in-
teraction in solids even though the coupling has to be calculated explicitly
in each case. It is often described by a coupling constant λ which increases
dramatically with atomic number of the constituents of the solid.

The dependence of SO on the atomic number is well demonstrated by
the spin-orbit splitting Δ0 of the valence bands with S = 1/2 and S = 3/2
in group IV and III-V semiconductors. Table 11.3 gives an example for non
polar and polar semiconductors. The table also demonstrates a much larger

Table 11.3. Energy gap and spin-orbit splitting Δ0 in eV and ionicity for non polar
semiconductors and for various III-V compounds; Modified from [11.14]

Compound energy gap Δexp
0 Δcalc

0 ionicity

C (diamond) 5.45 0.006 0.006 0
Si 1.1 0.044 0.044 0
Ge 0.67 0.29 0.29 0
GaN 3.2 0.02 0.095 0.5
GaP 2.24 0.127 0.11 0.327
GaAs 1.47 0.34 0.34 0.310
GaSb 0.81 0.8 0.98 0.261

SO splitting for crystals which do not have inversion symmetry like the III-V
compounds.

Spin-orbit coupling contributes significantly to the spin-lattice relaxation.
Two mechanisms are relevant. The first was originally described by R.J. El-
liott [11.11] and is known as Elliott-Yafet mechanism. Due to SO interaction
the electronic wave functions are not any more tied to one spin type like ψ+(k)
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or ψ−(k) (or ak+ and ak− in second quantization description) but are rather
a mixture of the two wave functions. This means the spin is not a good quan-
tum number any more and in scattering events the spin state is modulated
which contributes to spin relaxation. This relaxation process is dominating in
metallic systems as discussed below.

In structures which do not have inversion or mirror symmetry M.I.
D’yakonov and V.I. Perel described another SO interaction induced mech-
anism which determines the spin lattice relaxation [11.12]. It is now known as
D’yakonov-Perel relaxation. Since this mechanism is linear in k it cancels for
centro-symmetric systems. The breaking of symmetry may either be due to
crystal structure or due to external strain or defects. The stronger SO split-
ting for the non centrosymmetric semiconductors in Tab. 11.3 can be traced
back to this interaction term.

Spin-orbit interaction also modulates (shifts) the Zeeman states in a mag-
netic field B0 as it adds to the Zeeman energy μBBgeS. This means Zeeman
levels are determined by an effective field Beff = B0 + BSO. Even more, since
SO scales with the velocity of the electrons the Zeeman levels can be tuned
by an applied current. With increasing current the speed of the electrons in-
creases which shifts the resonance position. This is demonstrated in Fig. 11.14
where fits to the ESR signals from Si quantum wells are depicted for various
applied current densities. The shift of the Zeeman levels depends on the direc-

Fig. 11.14. ESR res-
onance of a twodimen-
sional electron system in a
Si quantum well recorded
with 9.4421 GHz at 4K. A
current was applied to tune
the resonance; after [11.13]

tion of the current and amounts to 27×10−6 T for a 1 mA/cm current density
and the field used. The asymmetry of the quantum well was induced by the
growth process.

In the case of spin carrying defects in a crystal the crystal field generated
from the charges around the defect (see also Chap. 7) causes a considerable
change of the apparent g-factor due to the SO field and contributes to the
tensorial shape to the g-factor.
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Spin-orbit interaction can also strongly enhance the g factor for conduc-
tion electrons in semiconductors. In the case of InSb values up to 50ge were
reported.

11.6.4 Free Carrier Spin Relaxation

The Elliott-Yafet mechanism is particularly efficient for spin-lattice relaxation
in conduction electron spin resonance of metals. Since the spin flip time T2 goes
along with the scattering of the electron one expects an immediate relation
between T2 and the electron momentum scattering time τ . The spin relaxation
by conduction electrons does not require lack of inversion symmetry. In simple
metals the relaxation process can be described by a two band process. The spin
flip is considered in this case as controlled by the mixing of the wave functions
from two neighboring bands of the same symmetry and with a separation Δε.
On the other hand the change Δg of the g-factor with respect to the free
electron g-factor of 2.0023 is also determined by SO coupling. Characterizing
this interaction by a coupling parameter λ the change Δg has been calculated
to be Δg = λ/Δε. From an evaluation of the spin flip time T2 and of the
electron scattering time τ the ratio between these two time constants is equal
to the square of Δg. This is known as the Elliott relation

T2 ≈ T1 ≈ τ/Δg2 . (11.75)

It describes spin relaxation in terms of SO coupling.
To check the Elliott relation one can get another relation between T2 and

τ if the ESR linewidth ΔB = 2/γT2 is divided by the resistivity ρ = m0/ne2τ .
This yields a linear relation between ΔB/ρ and Δg2 of the form

ΔB

ρ
=

ne2

γm0

τ

T2
≈ CΔg2 , (11.76)

where C is a highly metal independent constant.
The linear relation between ΔB/ρ and Δg2 has been verified experimen-

tally as depicted in Fig. 11.15 for simple metals. The observed linear relation
over a very wide range of magnetic fields is a good proof for the Elliott relation.

11.7 Nuclear Magnetic Resonance

From the value for μn a resonance frequency for NMR is in the range 10–100
MHz for a static field of the order 1 T. More precisely (11.62) yields (for B in
tesla) for protons

fR = gpμnB/2πh̄ = 42.58 × 106B [Hz] . (11.77)

Nuclear magnetic resonance experiments are usually carried out with a
setup shown in Fig. 11.2. The frequency is tuned instead of the field until all
positions of resonance absorption are detected.
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11.7.1 The Chemical Shift

Fig. 11.16. Proton NMR-
signal for diethylamine
(CH3CH2)2NH. TMS is the cal-
ibration signal from tetramethyl
silane

Considering that the magnetic moments are only given by the spin of the
protons and the neutrons in the nucleus one would expect the same NMR
signal for all atoms or at least definitely the same signal for a particular
atom in various materials. This is not the case. Looking at the NMR signal
of diethylamine (Fig. 11.16) we find three resonances with a relative inten-
sity (area of lines) of 6:4:1, even though only the hydrogens contribute to the
resonance (proton NMR). The reason for this unexpected result originates
from the accommodation of the protons in three different chemical environ-
ments. The field in (11.77) is not the externally applied field but the effective
local field Bloc which is given by the applied field and by the contributions
from the chemical environment. Since for each type of bonding a different
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chemical environment is expected several resonance frequencies are observed
for one nucleus. This effect is known as chemical shift. In diethylamine the
hydrogens are located in three different chemical environments which explains
the three different lines. Moreover, the ratio of the numbers of hydrogens in
the different chemical bonds is 6:4:1, exactly like the intensities of the reso-
nance absorption. Each nucleus contributes the same to the total oscillator
strength. This means that the NMR spectrum of a compound is a fingerprint
of the distribution of the hydrogen atoms or other NMR active nuclei in the
material. NMR spectroscopy is therefore a very important tool for the analysis
or characterization of new compounds, particularly in organic chemistry.

The line assigned as TMS in Fig. 11.16 originates from protons in tetra-
methylsilane [TMS, (CH3)4Si]. It serves as calibration. The chemical shift is
often given in relative units as

δ =
Δf

f0
× 106 (in ppm) . (11.78)

Δf is the distance of the resonance from the TMS signal and f0 the excita-
tion frequency. For example the shift for 13C in an sp2 hybridization state is
150 ppm but only 50 ppm for 13C in an sp3 hybridized state.

In general, the chemical shift at a particular position in a molecule or in
a crystal is also anisotropic. This means the shift depends on the orienta-
tion of the field with respect to the molecular axis. Thus, in poly-crystalline
samples the chemical shift anisotropy leads to a line broadening with a very
characteristic line shape as discussed in Sect. 11.4.2.

Chemical shift in NMR spectroscopy has been a very valuable tool for
the identification of isomeric structures. A good example are the fullerenes. In
C60 all carbon atoms are in the same type of chemical environment. Therefore
C60 has only one NMR line which, according to the almost sp2 bonding of the
carbons, is located at 142.68 ppm. In contrast, in C70 the carbons are in five
different chemical environments with occupancies 10, 20, 10, 20, 10. There-
fore 5 NMR lines are expected with relative intensities 1:2:1:2:1. Figure 11.17
depicts NMR spectra for the two molecules as recorded from the fullerenes
in solution. For the discovery of the fullerene structures H.W. Kroto, R.E.
Smalley and R.F. Curl were awarded the Noble Prize in Chemistry in 1996.

NMR has been used very successfully in chemical analysis of compounds
for more than 40 years. Although new fields of application are ever appearing
it took a considerable amount of time to learn how to use this spectroscopic
tool in solid systems and eventually in medicine. Some examples of new de-
velopments such as the different forms of pulsed NMR, artificial narrowing of
resonance lines, cross polarization double resonance, two-dimensional NMR,
and NMR tomography are discussed below.
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δ 

Fig. 11.17. 13C NMR signal from C60 (bottom) and C70 (top) in solution.
The five lines in the case of C70 correspond to the five possible chemical envi-
ronments of the carbon atoms; after [11.16], modified

Fig. 11.18. NMR-signal of a spin system with two resonance positions after a
π/2-pulse (a), and absorption spectrum evaluated by Fourier transformation (b)

11.7.2 Pulsed Nuclear Magnetic Resonance

In the case of pulsed NMR the free induction decay is observed after the spin
system has been excited by an RF pulse as described in Sect. 11.2. Detection
is with a sensor coil. From the drop in the signal the transverse relaxation time
is immediately obtained. Since the time dependence of the damped oscillation
consists of a superposition of eigen frequencies of the precessing moments it
contains all information about the resonance positions of the system. Thus,
from a Fourier transformation of F (t) of the pickup signal the full NMR
spectrum can be determined. This is known as Fourier transform NMR spec-
troscopy. Figure 11.18a shows the measured FID of a spin system with two
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resonances. In part (b) of the figure the NMR spectrum is displayed as ob-
tained from a Fourier transformation.

Besides the simple Fourier analysis of the FID, several procedures exist in
which spins are excited with a well defined sequence of RF pulses of varying
duration. Figure 11.19 shows two possibilities. In case (a) the spin system is

Fig. 11.19. Pulse sequence
for a time resolved NMR
spectroscopy; spin echo se-
quence (a), and pulse se-
quence for the determina-
tion of T1 (b)

first excited by a π/2-pulse. Within or immediately after the transverse relax-
ation time but definitely well within T1 a second pulse is applied which rotates
the magnetization by 180◦ (π-pulse). After the first pulse and the subsequent
decay of the phase coherence of the individual spins they are still well inclined
with respect to the z axis. The second pulse inverts the direction of precession
of the spins so that their phase coherence increases again. If the π-pulse is ap-
plied after a time τ the original signal is retained as an echo after the time 2τ ,
though with somewhat lower intensity due to the irreversible contributions to
T2. The irreversible losses come amongst others from T1 processes and from
coupling to spins of equivalent nuclei (homonuclear dipole coupling). The re-
versible contributions to the echo come from inhomogeneities in the chemical
environment. The π/2− π sequence is known as a Hahn sequence. The signal
of the echo is decreased by exp(−2τ/T2) from the original pulse. More pre-
cisely it is the homogeneous contribution to T2 which can be seen in the echo.
However, often T2,hom ≈ T2.

For the other case shown in Fig. 11.19b the second pulse is again π/2 and
applied after a time interval τ with T2 < τ < T1. Since the individual magnetic
moments are already dephased but not yet returned to the z axis the observed
free induction decay after the second pulse is smaller. It originates only from
the spins which had already returned to the z axis. From a measurement
of the signal height just after the second pulse for different values of τ the
longitudinal relaxation time can be determined.
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A large number of other pulse sequences have been studied and are
presently used in NMR. Details can be looked up in special references [11.18].

11.7.3 Magic-Angle Spinning NMR

The use of high resolution NMR in solid-state physics was delayed initially
since the linewidths were very large as a consequence of the anisotropy of the
spin-spin interaction and the chemical shift. Motional narrowing as in liquids
is observed in solids only at high temperatures. Since the spin-spin interaction
is a dipole-dipole coupling and thus well defined in its geometry a trick can
be used to bring the effective spin-spin interaction to zero.

If all spins are oriented in one direction by a magnetic field the spin-spin
interaction becomes zero if the vector rik pointing from one spin to the other
makes a magic angle of 54◦ 44′ to the orienting field. For this orientation the
z component of the field of magnetic moment μi at the position of moment
μk

Bik,z =
μi

4πr3
ik

(3 cos2 Θik − 1)μ0 (11.79)

becomes zero. The geometrical situation for the quenching of the spin-spin
coupling is demonstrated in Fig. 11.20.

Fig. 11.20. Geometric arrange-
ment of magnetic moments μi and
μk for zero interaction

Even though in reality the spins are distributed on the lattice sites a very
fast rotation of the crystal around the magic angle of 54◦ 44′ with respect
to the field B0 generates a geometry where the connection lines between the
spins are on average oriented under 54◦ 44′ to B0. The rotation must be faster
than the inverse of the spectral widths to be investigated. Or, more precisely,
the spinning speed must be larger than the highest anisotropy in the g-tensor.
Then the interactions from the different positions relative to B0 obtained
successively during the rotation cancel on average and the spins appear as
non-interacting. If the spinning speed is to low, spinning induced sidebands
appear in addition to the NMR absorption line.
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Fig. 11.21. Spinning of nuclear moments about the magic angle. 1,2 and i, k are
arbitrarily selected nuclear magnetic moments (a). Proton NMR lines of Reigning
resin (b): static spectrum in the solid phase (top), spectrum recorded by magic
angle spinning (center), solution spectrum (bottom); after [11.17]

The situation for a MAS geometry is shown in Fig. 11.21a. The cancellation
holds also for broadening from the chemical shift anisotropy as a consequence
of a motional narrowing. Thus, the resonance linewidths become very narrow
even for solids. An example is depicted in Fig. 11.21b. The spectrum on top is
a conventional NMR response for polysulfone MW6700 or Reigning resin. The
lines are very broad and not very useful for analysis. In contrast the spectrum
in the center is obtained for a sample rapidly rotating around the magic angle.
The gain in resolution is obvious from the figure. In praxis spinning speeds of
several KHz are used. NMR spectra from nuclei in solutions exhibit still more
narrow lines as seen from the spectrum at the bottom of the figure.

11.7.4 Cross Polarization

Besides magic angle spinning cross-polarization is another frequently used
technique in solid-state NMR spectroscopy. Some nuclei suffer in spectral in-
tensity from a low magnetogyric ratio or from a low natural abundance. The
idea is to generate a strong magnetization in the xy plane in such cases which
can be used for further spin manipulation.

In cross polarization experiments the strong polarization of a nucleus with
high γ and high abundance such as 1H or 19F is transferred to nuclei with
low spectral intensity or low natural abundance such as 13C. This is possi-
ble in a double resonance experiment where the magnetization is transferred
via heteronuclear dipole interaction. For protons as the pump the increase
of spectral intensity of a nucleus X is proportional to γ1H/γX. Another ad-
vantage of the cross-polarization is that spin relaxation occurs by the proton
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spin reservoir which often shows fast spin-lattice relaxation. This means high
repetition frequencies and high power can be used without saturation.

To understand cross-polarization magnetization is considered in the rotat-
ing frames of the proton (or pump) system in resonance and in the rotating
frame of the nucleus X. First the magnetization of the protons is turned by a
π/2 pulse into the xy plane in −y direction. In this orientation they are locked
by a so called contact pulse B1(1H), also oriented in −y direction. B1(1H) is
stationary in the rotating frame and acts for this direction as a quantization
axis like the field B0 is a quantization axis in the laboratory system. Since B0

is large there is a strong magnetization along the z direction (the difference
in occupation of spin up states and spin down states is large) which is taken
along during the π/2 pulse. Now, in the rotating frame with the 103 smaller
quantization field B1(1H) there is a strong nonequilibrium occupation for the
upper and lower spin states. The situation is described in Fig. 11.22a. The
Zeeman splitting with respect to B1(1H) in the rotating frame is equal to the

Fig. 11.22. Orientation of magnetic fields and spin occupations for cross-
polarization NMR experiments. (a): Field direction, magnetization and spin
occupancy for the protons in the 1H rotating frame. (b): Same for the nucleus
X in the X-rotating frame. (c): Same for the protons in the 1H rotating frame
after spin flips to equilibrium. (d): Same for the nucleus X after spin flip to a
non equilibrium state with high magnetization
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Rabi frequency for the protons. For the X-nuclei we do not apply a π/2 pulse
but just the contact pulse B1(X). Therefore, due to the small value of this
field, the magnetization in the rotating frame for the nuclei X is almost zero
as depicted in Fig. 11.22b and the Zeeman splitting is h̄γXB1(X). To make
the energy gaps for the protons and for the X-nuclei in their rotating frames
equal the Hartman-Hahn condition

ωrf = γHB1(1H) = γXB1(X) (11.80)

must be satisfied. This is possible by tuning the amplitudes of the fields B1(1H)
and B1(X). Under the Hartman-Hahn conditions a one to one exchange of spin
flips while conserving energy can occur between proton and X spins by het-
eronuclear dipole interaction. The large number of spins in the proton system
equilibrate (Fig. 11.22c) while the magnetization of the X-spins increases.

Cross polarization experiments can be combined with MAS and are known
as cross polarization magic angle spinning NMR (CPMAS NMR) experiments.

11.7.5 Electron-Nuclear Double Resonance

The arrangement of the energy levels in Fig. 11.10 allows an other type of
double-resonance experiments. While exciting the spins with microwaves be-
tween the electronic Zeeman levels an RF frequency can be applied to induce
transitions between the levels of the nuclear spin. Since both excitations start
or end at the same levels there is a strong interaction between the two res-
onance transitions. Such experiments are known as electron-nuclear double
resonance (ENDOR) or dynamic nuclear polarization (DNP).

11.7.6 Knight Shift

The hyperfine interaction between electron spin and nuclear spin can also be
observed in NMR. It appears as the influence of the field of the magnetic
moments of the electrons at the position of the nuclei. A shift in resonance
position and a splitting of lines can occur. The former is very well investigated
in metals and known as the Knight shift.

The appropriate Hamiltonian is again the one for hyperfine interaction
with the electron Zeeman interaction replaced by the nuclear Zeeman inter-
action, i.e.,

H = USz,Iz = −gNμnBIz + aIzSz = −gNμnIz

(
B − aSz

gNμn

)
. (11.81)

The second contribution in parentheses on the right hand side is the effective
local field produced by the electrons at the position of the nucleus. It is as-
sumed to be isotropic which means Aik = a. In reality, only the mean value
of Sz is effective. Thus, the shift in the field of resonance is given by
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ΔB =
a〈Sz〉
gNμn

. (11.82)

The quantity 〈Sz〉 is a thermal average and can be calculated from the bulk
magnetic susceptibility χ′

el of the electrons since

M0 = χ′
elB/μ0 = ngeμB〈Sz〉 ,

where n is the overall carrier density. Thus, the relative shift in the resonance
field (or frequency) is

ΔB

Bres
=

χ′
ela

nμ0geμBgNμn
. (11.83)

The hyperfine coupling constant a can be related to the local density ρN of
the electron spins (in m−3) at the position of the nucleus by

a =
2
3
geμBgNμnμ0ρN . (11.84)

This finally yields the Knight shift

K =
ΔB

Bres
=

2
3
χel

ρN

n
. (11.85)

The classical case of a Knight shift in metals is obtained if the Pauli sus-
ceptibility χP is used for χel. It enables the determination of the electron
concentration ρN at the position of the nucleus.

The Knight shift can be observed explicitly by studying the NMR for a
metal atom in a metallic crystal and in a nonmetallic compound. For 63Cu
the Knight shift is 0.237%. Since γN/2π for 63Cu is 11.28×106 Hz T−1 the line
shifts by 26.73 KHz for a field of 1 T.

11.7.7 Two-Dimensional NMR and NMR Tomography

For more complex pulse sequences in NMR experiments the detected magne-
tization can be a function of several independently varying time scales. For
example, in a two-dimensional NMR experiment the magnetization would be
a function of the form M(t1, t2). Fourier transformation with respect to t1
and t2 yields a two-dimensional spectrum S(ω1, ω2).

A typical example of a two-dimensional NMR spectrum is the detailed
analysis of a pulsed NMR experiment. The procedure can be divided into three
parts. The first is the preparation period, the second the development period,
and the third the detection period. In the first period the spins are prepared,
e.g., by applying a π/2-pulse. In the second period the spin system develops
for various time intervals given by t1. In the third period the magnetization
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is detected as a function of time t expressed as t2 = t − t1. t1 acts as a
parameter. If the number of experiments with different values for t1 is big
enough the magnetization can be considered as a two-dimensional function
M(t1, t2).

Another multi-dimensional NMR spectroscopy refers to the spatial reso-
lution of the distribution of NMR-active nuclei. In this case a magnetic field
with a constant gradient is applied to the sample. This means a 1:1 relation
between resonance frequency and position in space is established. Then, from
the observed intensity for each frequency the distribution of the active nuclei
can be determined. If this is done for several nuclei and for several directions a
computer can calculate the distribution and plot it as a three-dimensional im-
age. This procedure is known as NMR-tomography and widely used in medical

Fig. 11.23. NMR-tomogram of a
human head; after [11.19]

analyses. It enables pictures to be made of the interior of biological systems
in vivo without the use of the dangerous x rays. Figure 11.23 exhibits the
NMR tomogram of a human head.

11.8 Nuclear Quadrupole Resonance

The last contribution in the spin Hamiltonian (11.61) describes the interac-
tion of an electric nuclear quadrupole moment with an electric field gradient.
The field gradient is generated at a particular nucleus from the surrounding
valence electrons and from the other nuclei. This means nuclear quadrupole
resonance (NQR) spectroscopy does not need an external field. The nuclear
quadrupole moment PQ is given by the distribution of the charges in the
nucleus. According to (B.14) it has the form

PQ =
∫

(3z2 − r2)ρ(r)d3x (in A s m2) . (11.86)



11.8 Nuclear Quadrupole Resonance 295

Only nuclei with I > 1/2 can have a quadrupole moment. If U is the local
potential energy the field gradient is a second-rank tensor with the compo-
nents ∂2U/∂xi∂xk. If the tensor has axial symmetry only the component Uzz

contributes to the quadrupole splitting. From a first order perturbation cal-
culation the resonance transition occurs for

h̄ωQ =
3PQUzz

2I(2I − 1)
. (11.87)

Table 11.2 lists quadrupole moments for various nuclei. Since nuclear quadru-
pole moments are known for most nuclei Uzz at the position of the nucleus
can be determined. Its value depends strongly on the shielding effect of the
valence electrons. The quadrupole splitting of the nuclear magnetic levels can
be larger or smaller then the Zeeman splitting for conventional fields. For
iodine in ICN the splitting due to the field gradient is 2.42 GHz. Since NQR
spectroscopy does not need a static magnetic field it can be used outside of
laboratories as sensitive detection technique for explosives and drugs.

Problems

11.1 Show that the magnetic moment for an electron in the first Bohr orbit of
hydrogen is −eh̄/2m0.

(Purpose of exercise: recall connection between circular motion of charge and
magnetic moments.)

11.2 Evaluate the g factor and the magnetogyric ratio γne for the neutron.
(Purpose of exercise: remember important definitions in NMR.)

11.3 Solve the relaxation-free Bloch equations and evaluate from this the Larmor
frequency.

(Purpose of exercise: recall the description of circular motion.)

11.4 Show that the z-component returns to its original value M0 after a 90◦ pulse
with an exponential function and a time constant T1. Similarly, find the expression
for the x- and y-components.

(Purpose of exercise: practice transformation between rotating and laboratory
coordinate system.)

11.5 Use a PC to calculate the anisotropy of the Zeeman splitting for TCNQ with
the values given for the g-tensor in Sect. 11.6.

(Purpose of exercise: get familiar with anisotropic systems.)

11.6 Calculate the hyperfine coupling constant a for hydrogen from the Bohr orbital
of the electron. Why is the result not very good?

(Purpose of exercise: remember the shortcomings of the Bohr model.)

11.7 Find the energy levels and the line splitting due to hyperfine interaction for a
system with S = 3/2, J = 5/2.
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(Purpose of exercise: understand the multiplicity of the transitions.)

11.8 Evaluate the population for the Zeeman levels for μgB � kBT . At which
temperature is this approximation no longer appropriate for electrons in a 1T field?

(Purpose of exercise: get a feeling for the difference in population of Zeeman
levels in ESR.)

11.9 Show explicitly that the dipole-dipole interaction is zero if the line connecting
the two dipoles makes an angle of 54◦ 44′ with the magnetic field.

(Purpose of exercise: understand the magic angle condition.)

11.10∗ An electronic spin interacts with 8 equivalent nearest-neighbor nuclear spins
of 1/2. Calculate the relative intensities for the resulting resonance lines.
Hint: The intensities are proportional the number of representations for each of the
2NI + 1 allowed orientations of the total spin.

(Purpose of exercise: become familiar with composition of spins.)
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Ultraviolet and X-Ray Spectroscopy

The higher the energy of the electromagnetic radiation the deeper we can
look into the atoms and into the band structure of solids. Thus, for ultraviolet
radiation and x rays a new area opens up for spectroscopy. It becomes possible
to analyze the structure of the valence band and of lower bands down to the
core levels.

The classical application of x rays is elastic diffraction used for the analysis
of crystal structures and x-ray absorption and x-ray fluorescence for chemi-
cal analysis. Since elastic diffraction is not a spectroscopy in the sense of an
energy analysis, it is not included into this textbook. x-ray absorption (XAS)
and x-ray fluorescence (XFS) are standard techniques for the elemental analy-
sis of compounds. x-ray fluorescence is also known as electron dispersive x-ray
analysis (EDX). Also, photoelectron spectroscopy (PES) in its various forms
and including inverse photoemission (IPS) has gained fundamental impor-
tance since the technical development of good electron spectrometers. Most
recently very good progress was made in angle-resolved photoemission spec-
troscopy (ARPES) to study band structures and many body effects in solids.

Other very recently developed spectroscopic techniques in the field of x-ray
absorption are extended x-ray absorption fine structure (EXAFS), near-edge
x-ray absorption fine structure (NEXAFS), and x-ray absorption near edge
structure (XANES).

Since PES of the core levels is very sensitive to the chemical environment of
the atoms it is an appropriate technique for the chemical analysis of material.
Hence it is often discussed under the acronym ESCA which means electron
spectroscopy for chemical analysis. For the development of this analytical tool
K.M. Siegbahn received the Nobel prize in physics in 1981.

At present strong efforts are being made to apply synchrotron radiation
to inelastic scattering experiments for the detection of phonons, other quasi-
particles, or electronic excitations. The technique is similar to the Raman or
Brillouin experiments discussed in Chap. 9 but does not suffer from the lim-
iting conditions q ≈ 0. It is known as inelastic x-ray scattering spectroscopy
(IXS) or even resonant inelastic x-ray scattering (RIXS). If recorded in an
angle-resolved geometry it allows to determine full dispersion relations. The
problem for these experiments is the energy resolution. Since the excitation
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energy for quasi-particles in the solid, at least for the phonons, is several meV
and the x-ray energy is several KeV, a resolution of the order of 10−6 is re-
quired while, the primary light intensity is still ten orders of magnitude higher
than the scattered light intensity.

12.1 Instrumentation for Ultraviolet and X-Ray
Spectroscopy

Ultraviolet and x-ray spectroscopy needs special instrumentation which is
available today with a very high degree of perfection. This refers to radia-
tion sources as well as to spectrometers and detectors. For radiation sources
x-ray tubes are the classical sources. However, synchrotron radiation as it was
described in detail in Chap. 3 is gaining more and more importance. Spec-
trometers and detectors must be designed for the analysis of x rays as well as
for the analysis of electrons.

12.1.1 X-Ray Sources and X-Ray Optics

The conventional x-ray sources are x-ray tubes where high energy electrons are
decelerated when they hit a metal anode. Two types of radiation are emitted as
a consequence. From the deceleration of the electrons a continuous spectrum is
generated. If the energy of the incident electrons was several KeV the emitted
light will be in the x-ray range. Alternatively the incoming electrons can
eject electrons from core orbitals of the target material by ionization. As
a consequence characteristic x-ray lines are emitted from the recombination
between the generated holes and electrons from higher orbitals.

From the discussion in Sect. 2.2 we know that the emitted power of a
decelerated charge is proportional to the square of the absolute value of the
deceleration v̇ and given by (2.24). Since the deceleration occurs along a very
short distance of the order of 1μm after the electron has entered the anode, v̇
is very large and high-energy light can be emitted. The high-energy limit for
the emitted light is given by

h̄ωmax =
m0v

2
0

2
, (12.1)

where v0 is the velocity the electrons have gained from the acceleration in the
tube. The emission of the x-ray light should be highly oriented in a well de-
fined direction and polarized as we know from the emission characteristics of
dipoles (Fig. 2.2). This is usually not the case since the deceleration proceeds
in several steps while the electron undergoes a diffuse motion. If the acceler-
ation voltage is higher the 30 KV relativistic velocities are obtained and the
emission characteristic turns to the forward direction as for the particles in
synchrotron radiation. For a simplified model where the deceleration occurs
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continuously with constant v̇ anti parallel to v and extends from v = v0 to
v = 0. Sommerfeld derived a relation for the total emitted energy per particle
observed per unit area at a distance r under an angle θ from the direction of
the velocity. For relativistic particles this energy/area is

εtot(θ) =
e2v̇ sin2 θ

4π2ε0c3
0r

2

∫ β0

0

c0dβ

(1 − β cos θ)5

=
e2v̇ sin2 θ

16π2ε0c2
0r

2 cos θ

(
1

(1 − β0 cos θ)4
− 1
)

, (12.2)

where β0 = v0/c0 is the normalized velocity of the electrons at the beginning
of the deceleration. For β0 � 1 I(θ) is proportional to sin2 θ. With increasing
energy of the electrons the emission turns more and more to the forward
direction and finally reaches the relativistic limit of Fig. 3.6.

The frequency spectrum of the emitted light depends strongly on the en-
ergy of the decelerated electrons. Figure 12.1 plots calculated total intensities
versus wavelength for different acceleration voltages applied to the x-ray tube.
The similarity of the curves to those of Figs. 3.1 and 3.8 is noteworthy but
not really surprising. It is in all cases the deceleration (or the acceleration) of
electrons which is the origin of the emission. A semi-empirical description of
the frequency spectrum expressed in wavelengths of the emitted radiation is

Itot(λ) = CZ
(λ − λmin)

λminλ3
. (12.3)

Z is the nuclear charge of the anode material, C a constant and λmin is
obtained from (12.1).

Fig. 12.1. Spectral intensity Itot for the emis-
sion of the x-ray continuum from a tungsten
anode. The parameter for the curves is the ac-
celeration voltage in KV; after [12.1]
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Fig. 12.2. Characteristic x-ray
emission series of atoms

The other type of radiation emitted from the anode is a narrow line char-
acteristic for the material of the cathode. The cascades of recombination with
one particular hole are known as the x-ray emission series and assigned with
the Greek letters α, β, γ, etc. Depending on the position of the hole the emis-
sion is called K-, L-, M -, N -,.... series. The transitions are schematically shown
in Fig. 12.2. Since for shells with main quantum number n > 1 the orbitals
are split according to different quantum numbers l the characteristic emission
lines show a fine structure. For example, the L-shell orbitals are split into
three sublevels L(I), L(II), and L(III) where the orbital quantum number is 0
for L(I) and 1 for the other two. Since the selection rules for the transitions
are

Δn �= 0, Δl = ±1, Δj = 0,±1 ,

this leads to the well known splitting of the lowest line in the K-series into
two components Kα1 and Kα2.

The energy of the emission depends on the nuclear charge Z of the material
selected for the anode and on the particular transition.

εfi = h̄ω = Ry(Z − σf)2
(

1
n2

f

− 1
n2

i

)
. (12.4)

nf and ni assign the initial and the final shell for the recombination, σf is a
screening parameter, and Ry is the Rydberg constant

Ry =
m0e

4

64ε2
0π

3h̄3 = 13.607 eV .

For nf = 1 the K-series is obtained. The linear scaling of the square root of the
emission frequency with the nuclear charge Z is known as Moseley’s law. The
energy in (12.4) extends from the hard UV to the hard x-ray spectral range.
A list of representative lines is given in Table 12.1. Linewidths are typically
0.5–0.8 eV for the x-ray range and one to two orders of magnitude smaller in
the UV range.
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Table 12.1. Characteristic ultraviolet and x-ray lines used in PES. (λ (nm)×ε (KeV)
= 1.23985; for a complete listing of lines see [12.2])

Atom ε (KeV) λ (nm) Atom ε (KeV) λ (nm) Atom ε (KeV) λ (nm)

He I 0.021 58.428 Cr Kα1 5.4055 0.2294 Mo Kα1 17.4795 0.0709
He II 0.041 30.373 Cr Kα2 5.4148 0.2290 W Kα1 8.4330 0.1470
Y Mζ 0.132 9.3715 Fe Kα1 6.4039 0.1936 W Lβ3 9.8189 0.1263
Al Kα 1.487 0.8340 Cu Kα1 8.0478 0.1541 W Lγ2 11.6081 0.1068

Cu Kα2 8.0279 0.1544

With the wide range of energies for the emission lines spectroscopy can be
carried out from the outer valence band range down to the lowest core levels,
as shown schematically in Fig. 12.3.

Todays x-ray tubes operate in high vacuum with a tungsten filament for
the emission of the electrons. Tube currents are in the range of several 100 μA
to several 10 mA with acceleration voltages of several 10 KV. The photon
efficiency is very low. Usually less than 1% of the electrical power used can
be transformed into light. A 100μA current gives about 1012 photons/s. The
power consumption is high. 50 KV acceleration at 20 mA current yields 1000
W input power. Thus, efficient water cooling or rotating anodes are required.

An appropriate window material for the x-ray range is beryllium because
of its mechanical stability and low atomic mass. The thickness of the windows
can be as low as 30 μm to allow for optimum transmission. Filters can be
made from various metals which usually have very sharp and well expressed
edge structures in the absorption. Al has proven to be an excellent filter and
window material for the VUV spectral range. The transmission for a thin Al

Fig. 12.3. Schematic representation for the excitation of atoms with hard elec-
tromagnetic radiation
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Fig. 12.4. Transmission for
a 300 nm film of aluminum

film is displayed in Fig. 12.4. The low-energy cutoff is given by the plasma
reflection from the free carriers. On the high-energy side the first core-level
absorption (Al 2p level) limits further transmission.

12.1.2 X-Ray and Electron Spectrometers

x-ray spectroscopy needs spectrometers for the high-energy photons and for
the generated photoelectrons. The photons from the x-ray tubes are, in gen-
eral, sufficiently monochromatic to be used directly on the input side of the
experiment. x rays from synchrotron sources need a monochromator on the
input side and, for x-ray spectroscopy, also on the exit side. The monochroma-
tors work on the basis of a constructive interference from crystal diffraction,
as given by the Bragg equation

nλ = 2d sin θ . (12.5)

d is the spacing of the lattice planes, and θ the Bragg angle measured between
the incident ray and the deflecting planes. For the simplest case of one plane
analyzing crystal the angular dispersion is obtained from (12.5) for n = 1 by

dθ

dλ
=

1
2d cos θ

=
tan θ

λ
. (12.6)

As in the case of optical spectroscopy, two lines are considered as resolved if
their diffracted beams at the distance L from the crystal surface are separated
by more than the width W of the exit slit. If the analyzing crystal must be
rotated by δθ = W/2L to obtain glancing-angle diffraction for the two beams
the resolution of the spectrometer is

λ

δλ
=

2L tan θ

W
. (12.7)

For a slit width of 0.01 cm, θ = 20◦, and a spectrometer length of L = 100
cm a resolution of 7×103 is obtained. With this the α1 and α2 components of
Cu Kα are easily resolved.
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Fig. 12.5. Various crystal monochromators: double monochromator (a) in the
additive mode (1), in the subtractive mode (2), and in two subtractive but pairwise
additive arrangements (3); (b) exhibits a bent crystal spectrometer. (XB: x-ray
beam, O: central focus, B: focus for the off-axis beam)

For advanced x-ray spectrometers two or even four crystals are used or the
crystals are bent to obtain a focusing effect (Fig. 12.5). The additive mode
of Fig. 12.5a gives a higher dispersion and thus a higher resolution but the
direction of the beam changes during scanning. For the subtractive mode the
beam direction is constant and the brightness is higher as a consequence of the
smaller dispersion. The spectrometer presented in Fig. 12.5a at the bottom
has the advantages of (1) and (2) but still low brightness. The spectrometer
in Fig. 12.5b uses a thin bent crystal in transmission. The diffracted light of
different wavelengths can be shown mathematically to be more or less focused
on a circle with radius R/2 where R is the bending radius of the crystal. This
more or less means the diffracted light arrives at the focus within a small
caustic circle.

For an energy analysis of the emitted electrons dispersive or non-dispersive
spectroscopy is possible. Non-dispersive spectrometers use a vacuum tube in
which the electrons are slowed down by an electric potential barrier between
two grids. The potential is tuned until no more electrons can pass. The corre-
sponding voltage directly gives the kinetic energy of the electrons. The spectral
resolution of these systems is only of the order of 0.2 to 0.3 eV.

Dispersive spectrometers use either an electric field or a magnetic field
oriented perpendicular to the motion of the electrons. Electric spectrometers
are most common. Advanced systems employ concentric cylinders connected
to different electric potentials to deflect the electrons. The latter propagate
either perpendicular (cylindrical deflection analyzer, CDA) or parallel (cylin-
drical mirror analyzer, CMA) to the cylinder axis. High resolution but not a
very good transmission is obtained for the CDA geometry of Fig. 12.6a. In
this geometry the incoming electrons can be focused (with respect to their an-
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Fig. 12.6. Energy analyzers for electron spectroscopy. Cylinder deflection ana-
lyzer (a) and cylinder mirror analyzer (b); (ES: entrance slit, EX: exit slit, Ri, Ro:
radii of curvature, V : applied voltage, l0: length of spectrometer)

gular spread) to an exit slit if the sector of the cylinder is 127◦. For electrons
of energy ε0 the condition for focusing is

2eV = ε0
Ro

Ri
,

where V is the applied voltage difference, and Ro and Ri are the outer and
inner radius of the cylinders. High transmission but low resolution is obtained
for the CMA geometry from Fig. 12.6b. In this case the electrons have to
enter the space between the cylinders from the inner cylinder under an angle
of 42.3◦ in a 2π geometry and propagate in the direction of the cylinder axis.
For

eV = 1.3ε0 ln
(

Ro

Ri

)
and l0 = 6.1Ri

they are refocused at a distance l0 from their entrance. The required angle of
incidence is established by electric lenses.

A more recently developed and often used spectrometer configuration is
the hemispherical deflector in which twodimensional point to point focusing
occurs after 180◦ deflection between two concentric spheres. For a radius R0

averaged between inner and outer hemisphere the energy ε0 is transmitted if
the conditions Vo = ε0[3−2(R0/Ro)] and Vi = ε0[3−2(R0/Ri)] where Ro and
Ri are the outer and inner radius of the hemispheres. With these analyzers
today resolutions in energy of 1 meV can be obtained. This means energies of
typical phonons in solids can be easily analyzed.

For experiments of photoemission with synchrotron radiation combined
spectrometers must be used. Figure 12.7 illustrates a setup. The spectrometer
utilizes a bent Ge crystal Ge1 in reflection to focus the beam of a synchrotron
onto the entrance slit (ES) of the x-ray spectrometer. The spectrometer oper-
ates with another bent crystal Ge2. Light of a given wavelength is now focused
to the position EX on the focusing circle of the crystal Ge2. This is the po-
sition of the exit slit of the spectrometer. The sample to be investigated is
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Fig. 12.7. Crystal monochromator for synchrotron radiation and electron spec-
trometer for the analysis of photoelectrons; (SB: synchrotron beam, Ge1, Ge2:
bent germanium crystals, R: radius of focusing circle, ES: entrance slit, EX: exit
slit, S: sample, EES, EEX: entrance and exit slit for electrons, PD: photon detec-
tor, ED: electron detector)

mounted exactly there. The two Ge crystals Ge1 and Ge2 enable the selection
of x rays with varying wavelengths from the synchrotron beam. The photo-
emitted electrons are entering the electron spectrometer at the slit EES and
are analyzed there with respect to their energy.

12.1.3 X-Ray and Electron Detectors

The emitted electrons as well as the x rays must be detected. For x rays several
systems are possible. Classical techniques are photographic films, scintillation
counters or proportional detectors.

Scintillation counters are solid-state detectors where the high-energy quan-
tum excites a luminescence process in a scintillation crystal. In this way the
energy of the quantum is transformed to a lower level in the near-UV or blue
spectral range. This light can be detected subsequently and with high effi-
ciency by a photomultiplier. Common scintillator crystals are NaI activated
with Tl. The heavy I− ion is good for x-ray (and γ-ray) absorption. Up to
0.02 nm wavelength nearly 100% efficiency can be obtained in the absorp-
tion process. The excitation energy is transferred from the I− ion to the Tl
atom from where 410 nm radiation is emitted. This means for one quantum of
CuKα1 radiation at 0.1541 nm 410/0.1541 = 2670 blue light quanta are gen-
erated. NaI(Tl) scintillation counters are only good for light energies higher
than 6 KeV.

In addition to the scintillation counters on the basis of NaI(Tl) plastic
scintillators are common.
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Proportional counters employ discharge chambers filled with gas such as
Ar-CH4. The applied voltage is high enough to allow for impact ionization.
Each electron generated by ionization from the absorption of a light quantum
can generate other electrons. The number of secondary electrons generated is
proportional to the voltage applied. Thus, if the quantum energy of the light
and the ionization energy of the gas are h̄ω and Ui, respectively, the charge
arriving at the electrode wire per incident light quantum is

N = A
h̄ω

Ui
= A′V

h̄ω

Ui
. (12.8)

A is the gain factor of the gas which can be tuned with the applied voltage
V over several orders of magnitude. Even though the ionization energy of
the gases in use is rather high (several 10 eV) and therefore the number of
primary charges generated is not very large, finally a strong signal can be
detected at the electrode. Proportional counters can be utilized for energies
as low as 100 eV.

Both the scintillation counter and the proportional counter do not only
allow to determine the number of incoming high-energy light quanta but also,
though in general with low resolution, the energy of the quanta. In both cases
the signal height is proportional to the quantum energy of the light. The
counters are therefore called dispersive. Proportional counters have an energy
resolution of about 10% for a 6 KeV radiation.

Very good x-ray and γ detectors are available on the basis of semiconductor
p-n junctions. p-i-n diodes from Si and Ge are in use where the intrinsic part
is obtained by compensation. The diodes are biased in reverse direction. The
light quanta absorbed in the intrinsic region give rise to a photocurrent. In
a Si(Li) detector about 3.8 eV are needed to generate one electron-hole pair.
This means from one quantum of CuKα radiation about 2150 electron-hole
pairs can be created. The Si (Li) detectors must be kept at liquid nitrogen
temperature throughout to prevent the Li from diffusing out of the intrinsic
zone in the diode.

The sensitivity of the various detectors depends strongly on the spectral
range. This is demonstrated in Fig. 12.8. The quantum efficiency used in
Fig. 12.8 is defined as the ratio between the number of primary excitations
generated per unit of time and the number of incident light quanta per unit
of time. (η = 1 if each light quantum makes a contribution to the excitation).
The number of incident light quanta is the incident power divided by the
quantum energy of the light.

Finally, Table 12.2 compiles some details and technical data about x-ray
and γ-ray detectors. Since detectors are often utilized for dispersionless spec-
tral analysis the resolution in energy, space, and time is included in the table.
CCD detectors and array detectors operate in the same way as described in
Sect. 5.4.4.

For the detection of electrons by simple systems an electron collector is
used and the current generated by the external photoelectrons is observed.
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Fig. 12.8. Quantum ef-
ficiencies for various de-
tectors. The K-absorption
edges are marked with sym-
bols for the elements. The
response for the Si(Li) de-
tector is shown for a 220-Å
gold layer and a 7.5-μm Be
window; after [12.3]

Table 12.2. Detectors for x and γ radiation

Detector Resolution Ampli- Remark
Energy Space Time fication
(Δε/ε) (μm) (ns)

Photographic films 0.3 Sensitivity decreases with ε
Ionization chamber 1 for high intensities
Proportional counter 0.1 20 E5 for small ε

Plastic scintillator 0.6 1 E8 High sensitivity
Crystal scintillator 20 20 E8 High sensitivity

p+nSi-, Ge-diodes 0.05 10 1 Cooling required
pin Si(Li) diodes 0.02 10 1 Cooling required
p+nSi array detectors 0.1 5 10 1 High electronic effort
CCD from MOS-diodes 0.1 5 10 1 ε < several KeV required

If the emission rates are very low the use of an electron amplifier is ap-
propriate. The electron amplifier operates like a photomultiplier but without
a photocathode. The electrons hit the dynodes directly and induce secondary
electron emission. The dynodes are continuous and consist of curved chan-
nels with glassy side walls from where the secondary electrons are released.
Such amplifier tubes are called channeltrons. The detection speed for chan-
neltrons is about an order of magnitude higher than for photomultipliers. The
channeltron operates similarly to the channelplates of the image amplifier in
Fig. 5.9.

12.2 X-Ray Absorption and X-Ray Fluorescence

x-ray absorption and x-ray fluorescence are the classical spectroscopic meth-
ods in the energy range of x rays.
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In x-ray absorption spectroscopy the continuum of x-ray tube brems-
strahlung is used as a light source and the transmission through the sam-
ple is studied like in optical absorption. Alternatively synchrotron radiation
can be applied which allows for a large energy range and high light power.
Depending on the energy range excitation into unoccupied energy levels or
ionization from different shells of the atoms can contribute to the absorp-
tion. This means as a function of radiation energy absorption edges given
by the core electron binding energies are observed in the transmitted light.
Position of these edges are element specific but depend also in the chemical
environment of the atoms. This means the method can be used for elemen-
tal and chemical analysis. Impurity concentrations down to 10 ppm can be
traced.

x-ray absorption decreases with decreasing wavelength of the radiation.
A phenomenological description of this decrease is given by the Victoreen
formula

α(ε) =
a

ε3
+

b

ε4
, (12.9)

where a and b are parameters. Examples of absorption edges are depicted in
Fig. 12.9.

Fig. 12.9. x-ray absorp-
tion for Pb in the spectral
range of the K shell and of
the L shells. The insert de-
picts the energy levels

The development of high power x-ray sources like synchrotrons has led
to a further development of the XAS technique into special high resolution
spectroscopies as they are discussed in Sect. 12.6.

x-ray fluorescence (EDX) is the other most traditional spectroscopic tech-
nique in the x-ray regime. The fluorescence spectra are excited by photoion-
ization of an electron from an inner shell. The hole created is refilled by a
recombination process with electrons from higher levels. The recombination
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Fig. 12.10. Light emission in x-ray fluorescence (a), and calculated transition
rates Ktr to the K-shell for the two competing effects of Auger emission and fluo-
rescence, versus nuclear charge Z (b); ((....) Auger transitions, (- - -) fluorescence,
and (—) sum of both transitions)

occurs either radiative with the emission of a light quantum with an energy
equal to the recombination energy, or by an Auger process. The energy-level
diagram for the fluorescence process is illustrated in Fig. 12.10a. The radia-
tive recombination of outer-shell or valence electrons with an inner-shell hole
is dominated by a dipole transition. The same relationships apply as they were
derived in Sect. 7.1. The transition probability between shell ni and shell nf

per unit time is

Pfi =
ω3

fi

3πε0h̄c3
0

|M |2 (12.10)

with the dipole matrix element (Mj)fi from (7.7). For an element with nuclear
charge Z the magnitude of the matrix element is proportional Z−1. However,
since ωfi scales as Z2 from Eq. 12.4 the transition probability turns out to
be ∝ Z4. This strong dependence on the nuclear charge is the reason for the
rather low efficiency of x-ray luminescence in low atomic weight material.

The shape for the core-emission lines is Lorentzian or Gaussian with a half
width determined by the lifetime of the excited state. From the proportionality
of the intensity to Z4 one can expect the lifetime of the hole state to be
proportional to Z−4. This means for a lifetime-determined linewidth a scaling
of the latter with Z−4 is expected. This is indeed in good agreement with
experimental results for Z > 30.

For the light elements the process of luminescence has to compete with the
Auger process according to which recombination is nonradiative. The lifetime
is not only determined by the matrix elements for the radiative transitions
but also by the transition due to the Auger process. This holds likewise for
the intensity of the emission. Figure 12.10b compares the dependence of the
transition rates on the nuclear charge Z of the anode material. Obviously the
Auger process is important for material with nuclear charges smaller than 30.
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The efficiency of a radiative recombination was given in (7.37). Applied to the
competition between luminescence and the Auger process this means

ηx =
Pfi

Pfi + PAug
=

bZ4

bZ4 + a
, (12.11)

where PAug is the transition probability for the Auger process. For Z > 30
this probability becomes nearly independent from Z and was approximated
by the constant a in (12.11), in agreement with the dotted line in Fig. 12.10b.
Thus, for large Z the quantum efficiency for radiative emission becomes 1.
This result is also well confirmed experimentally.

Since the fluorescence emission is characteristic for each element of the
periodic table, x-ray fluorescence is widely applied in chemical analysis. So-
phisticated techniques have reduced the detection limit to several 10−15 g of
material. The hole in the core shell can be generated either by irradiation
with x rays or with electrons. Excitation with x rays has the advantage of
a higher penetration of the light and allows irradiation at ambient condi-
tions. With electron excitation a very high spatial resolution of less than 1μm
can be obtained for the analysis but the irradiation needs ultrahigh vacuum.
Figure 12.11 shows a core-level fluorescence of several impurities on a Si wa-
ver after excitation with 10-KeV radiation. From the position and intensity
of the peaks the type and concentration of the radiating atoms can be de-
termined. The mass for the Ni metal observed in Fig. 12.11 is 10 pg. The
detection limit for Ni on Si was 13 fg. Because of the factor Z4 in the emission
intensity this technique becomes less appropriate for elements lighter than
oxygen.

Fig. 12.11. x-ray core level fluorescence of several impurities on Si for excitation
with 10KeV synchrotron radiation and a 10 μm aluminum film as a detector filter;
after [12.4]
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For not too deep core levels the exact energy of the core hole depends
on the chemical environment. Thus, in this case even more details about the
chemical structure can be obtained if the energy resolution of the spectrometer
is high enough. This phenomenon holds likewise for photoemission and will
be discussed in detail in the next section.

12.3 X-Ray and UV Electron Spectroscopy

In x-ray and UV electron spectroscopy electrons in the solid are excited by high
energy photons or by other electrons from an external source. The excitation
energy must be high enough to allow for the electrons to leave the solid either
by an Auger process or by external photoemission. The kinetic energy of the
electrons is subsequently measured in an electron spectrometer. Figure 12.12
shows the two emission processes schematically together with an energy level
diagram for the energy balance. In order to get the electron out of the solid
its energy has to be raised only to the spectrometer level in both cases. This
is in general less effort than raising it to the vacuum level

Fig. 12.12. Process of Auger electron emission (a), photoelectron emission (b)
and energy level diagram for the emission processes into vacuum or into the spec-
trometer (c). (Φw, Φsp: work functions with respect to the vacuum level and with
respect to the spectrometer, h̄ω: energy of the incident photon which is transfered
to the emitted electron, εfi: total energy available for Auger electron, εF: Fermi
level, εB(PE): binding energy of photoelectron, εB(A): binding energy of Auger
electron, εvac: vacuum level)

12.3.1 Auger Spectroscopy

In the Auger process the energy of the electron which is subjected to the
recombination process is transferred to another electron which is emitted.
The energy of the latter is equal to the recombination energy but reduced by
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the sum of its binding energy εB(A) and the work function of the solid with
respect to the spectrometer level. It is thus obtained from

εAug = εfi − [εB(A) + Φsp] . (12.12)

As demonstrated in Fig. 12.12c Φsp is measured from the Fermi level to the
spectrometer level and εB(A) is measured from the Fermi level to the level
from where the recombination started. The process is only possible if the
resulting kinetic energy εAug is finite. The electron which is emitted can come
from any of the shells equal or higher than the shell of the hole. Thus a
signal can be observed for all binding energies. An often used nomenclature
to describe the Auger process is FIY . F labels the shell of the hole, I the
shell from where the recombination starts, and Y the shell from where the
Auger electron is emitted. Thus, processes in which electrons from the L-shell
recombine with a hole in the K-shell are called KLY . The special process
depicted in Fig. 12.12a is assigned KLL. If the initial and the final hole state
are on the same shell (but in different orbitals), like LILIIIMI, the process is
said to be of the Coster–Kronig type. For LILIIIMI an electron recombines
from LIII to LI and the energy is transferred to an electron in MI from where
it is emitted. Note that the atom is left in a state with two holes after the
Auger process.

For Auger emission satellite lines are often observed in addition and close
to the main lines. Such lines originate from a general disturbance of the valence
electrons as a consequence of the dramatic change in electronic structure from
the emission of one core electron. Such lines are known as shake-up satellites.

12.3.2 Basic Principles of Photoelectron Spectroscopy

Like in x-ray fluorescence and Auger spectroscopy in PES a hole is created at
a certain level of the core or valence orbitals. Instead of detecting the radiation
emitted from a recombination process or the Auger electron the kinetic energy
of the emitted electrons is directly analyzed. The basic process is shown in
Fig. 12.12b.

Photoelectron spectroscopy was originally used mainly for the determi-
nation of the bonding in molecules. Today it is the dominating technique to
analyze the electronic structure in solids. The technique benefited strongly
from the development of synchrotron-radiation sources.

The kinetic energy of the electron has to be measured again with respect
to the spectrometer level Φsp. Its value is therefore

εkin = h̄ω − [εB(PE) + Φsp] . (12.13)
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Like in Auger spectroscopy Φsp is a spectrometer constant which has to be
calibrated with a well known sample such as Au or Cu. The similarity between
equation (12.13) and (12.12) is evident.

The experimental requirements for PES are those discussed in Sects. 12.2
and 12.3.1. In particular, the primary electron can be generated either by light
quanta or by electrons but in any case UHV conditions are required.

Since the number of photoelectrons emitted at a particular energy is given
by the density of states of the electrons in the crystal, core level photoemission
and valence band photoemission give different types of spectra. For core level
emission high energy x rays are required, at least for more heavy atoms,
and the spectra consist of sharp lines. This is known as x-ray photoelectron
spectroscopy (XPS). In contrast, for the emission of valence electrons or for
the emission of core electrons in light atoms only soft x rays or hard UV
radiation in an approximate energy range 3 eV ≤ h̄ω ≤ 100 eV is required. In
this case we talk about ultraviolet photoelectron spectroscopy (UPS). Again,
core level spectra are sharp lines whereas valence band spectra are broad with
characteristic structures.

The width of the lines observed for the core levels is given by the lifetime
of the intermediate state during the emission process or by broadening due to
phonons and not by the density of states itself. The lines often have a slightly
asymmetric form. This asymmetry is mainly observed for metals and results
from a screening effect by the conduction electrons. If ε0 is the center of the
energy distribution curve (EDC) for a core line it can often be described by
a Doniach-Sunjic lineshape

I(ε − ε0) =
Γ (1 − α) cos[πα/2 + (1 − α) arctan(ε − ε0)/γ]

[(ε − ε0)2 + γ2](1−α)/2
(12.14)

where α and γ are two parameters and Γ is the Γ function. The electrons
escaping from the core levels will interact in addition with the valence elec-
trons and excite plasma oscillations. Accordingly, in solids core lines are often
accompanied by satellites which represent the energy loss by excitation of
plasmons.

The basic property to be determined in the XPS and UPS experiments
are the binding energies of the electrons. If PES is used in an angle-resolved
mode even the full band structure ε(k) of the electrons can be measured as
discussed in Sect. 12.4.

The binding energies are well known for the free atoms. Table 12.3 gives
selected examples for frequently used atoms. In molecular or solid compounds
the energies are subjected to a chemical shift according to the various chemical
environments. Similar to NMR this allows to determine not only the concen-
tration of atomic species but also their chemical bonding and many other
details about a material.

The advantage of PES over x-ray fluorescence for the analysis of electronic
structures is due to the easier handling of the photoelectrons and the better
resolution in energy.
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Table 12.3. Binding energies in eV for core levels of selected free atoms.
VE means valence orbital. (More binding energies can be obtained from
www.webElements.com)

Atom 1s 2s 2p1/2
1H 16.0
2He 24.59
3Li 54.7 VE
6C 284.5 VE VE
7N 409.9 37.3 VE
8O 543.1 41.6 VE
9F 696.7 VE VE

Atom 1s 2s 2p1/2 2p3/2 3s 3p1/2 3p3/2
11Na 1071.4 63.6 30.6 30.4 VE
13Al 1562.3 118.5 72.7 72.3 VE VE VE
14Si 1839.0 149.8 99.8 VE VE VE

Atom 2s 2p1/2 2p3/2 3s 3p1/2 3p3/2 3d3/23d5/24s
23V 627.2 521.1 513.4 66.4 37.2 VE
26V 848.7 720.4 707.2 91.6 53.0 VE
29Cu 1097.5 952.3 932.7 122.4 77.2 14.9 VE

12.3.3 X-Ray Photoemission

A instructive XPS spectrum is presented in Fig. 12.13. The response of core
levels, valence-band levels and Auger electrons are presented for Mg2Sn after
excitation with AlKα at 1.486 KeV. To the left, which means at very high

Fig. 12.13. XPS and Auger spectrum for Mg2Sn after excitation with 1.486 KeV
x rays. Left part: XPS spectrum, right part Auger spectrum. The symbols in the
Auger spectrum correspond to the definition given in Sect. 12.3.1; after [12.7]
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kinetic energies of the electrons, the Fermi edge and the continuing valence
band structure is seen. The sharp lines originate from core levels according
to the given assignment. Lines assigned with P are plasmon satellites to the
preceding core line. The stepwise increase in the background with decreasing
electron energy originates from higher order scattering processes and shake-
ups. The steps always start at the position of the core lines. In the Auger part
of the spectrum we see two valence band replica, for the recombination of the
LII and LI electrons, respectively.

Another important application of core-level spectroscopy is the analysis
of structural properties from the chemical shift. This shift is well expressed
for not too deep core levels. Figure 12.14 exhibits the chemical shift for the
2p and 3d core levels due to the generation of GeO. Since the spectra come

Fig. 12.14. Binding energy for 2p
and 3d electrons in pure Ge and in
GeO; after [12.7]

mainly from the surface, the core lines from pure Ge as well as those from Ge
in GeO are observed. Due to the reaction with oxygen the binding energy for
the 3d level is shifted from 28.7 eV to 31.1 eV. For the 2p electrons the shift is
from 1217.5 eV to 1219.8 eV, respectively. Interestingly, the relative intensity
between the line from Ge and GeO is different for the two levels. For the
2p electrons the GeO dominates the spectrum whereas the Ge is dominating
for the 3d electrons. The reason is the different energy of the electrons and
the corresponding difference in the escape depth. The 2p electrons have a
higher binding energy and therefore a lower energy when they escape from
the surface. Thus, they are more strongly absorbed and originate on average
from a lower depth with a higher concentration of GeO.

Another useful example for the application of core level spectroscopy is the
observation of phase transitions. The crystal KC60 has a rock salt structure
at temperatures higher than 400 K, where C60 is a large highly symmetric
molecule consisting of 60 carbon atoms which are arranged in a football-like
shape. The K atoms are accommodated at the octahedral interstitial lattice
sites of the fcc lattice. The K 2p core-level lines are observed for binding ener-
gies of 297.3 and 294.6 eV as demonstrated in Fig. 12.15 curve (1). The split-
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Fig. 12.15. XPS spectra for the 2p elec-
trons of K in KxC60, x ≈ 1, for two differ-
ent temperatures; above 400 K (1), below
400 K (2); after [12.11]

ting originates from a spin-orbit interaction for the 2p1/2 and 2p3/2 electrons.
For temperatures below 400 K a pair of split lines is observed as indicated by
the arrows in the figure. This means the potassium is now accommodated in
two different chemical environments. These environments are provided by the
octahedral and the two tetrahedral interstitial sites of the fcc lattice. One can
conclude the system KC60 undergoes a phase transition into a new structure
where some of the K atoms have moved from octahedral to tetrahedral sites
on cooling to below 400 K. The process is fully reversible. For heating back
up to 400 K the spectrum (1) reappears.

12.3.4 Ultraviolet Photoemission

If the binding energy is small enough as it is the case for light atoms, core
level excitation can even be performed by UPS where the lower energy scale
provides better energy resolution. Figure 12.16 shows a core line for the Na 2s
level with plasmon satellites. The plasmon energy is 6 eV. The small shoulders
next to the plasmon lines originate from surface plasmons.

Beyond simple determination of binding energies ultraviolet photoelectron
spectroscopy has been employed very successfully to study the structure of the

Fig. 12.16. Core line for
the Na 2s level and plasmon
satellites. The energy axis
is scaled to the core line.
The full drawn line is as cal-
culated with the Doniach-
Sunjic formula. BG is the
background used for the fit;
after [12.6]
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valence or the conduction band of crystals. In an angle-integrated geometry
only the density of states as a function of the energy can be measured.

Emission intensities from the top of the valence band are often rather weak
as is evident from Fig. 12.13. Blown up and expanded representations of such
spectra are very informative about the nature of the valence or conduction
bands. In Fig. 12.17 spectra for several simple metals are shown. The top two
presentations are for Ag and Ni. The full drawn line represents a calculated
density of states multiplied with the Fermi function. The valence band for Ag
consists of ten 4d and one 5s derived orbitals. The 5s electrons give rise to
the shoulder just below the Fermi edge. For Ni the top orbitals are occupied
with two s electrons so the shoulder is pulled up.

Figure 12.17c shows explicitly that emission is only possible from below
the Fermi energy, except for a small tail from thermal excitation given by
the Fermi function. Accordingly the emission has a sharp edge (Fermi edge)
for very low temperatures. This holds only for 3D electronic systems which
follow a Fermi liquid behavior. In low dimensional systems with strong electron
correlation the Fermi edge can be washed out leading to a spectral function
increasing with binding energy as εα. Systems following this behavior are
known as Tomonaga–Luttinger liquids.

Fig. 12.17. Photoemission for simple metals: Ag (a) and Ni (b), (—) calculated
response; blow up of UPS response at the Fermi energy for Ag at room temperature
with h̄ω = 21.2 eV and 25meV resolution, (—) Fermi function (c); (a) after [12.8],
(b) after [12.9], and (c) after [12.10]
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A full analysis of the electronic states in k space is not possible for angle-
integrated PES. Since UPS is very sensitive to surface states, very clean sur-
faces have to be used. Also the experimental result should always be compared
with calculations to confirm clean experimental conditions.

An example of the analysis of band structures is presented in Fig. 12.18.
The calculated band structure, the density of states derived from it, a density
of states folded with the resolution of the spectrometer, and the experimental
result are shown for three semiconductors Ge, GaAs, and ZnSe, respectively.
The good agreement between experiment and calculation for all three crystals
confirms the clean condition for the experiments. In the case of ZnSe the core
level of the Zn 3d electrons appears in the experiment. It is missing in the
calculated spectra, since the calculation was performed without contributions
from core levels.

The extremely high resolution now available in UPS experiments opens
several new fields for its application. One of them is the measurement of the
gap energy in even conventional superconductors where the gap energies are
in the range of one meV. Figure 12.19 depicts an example for Pb which has
a transition temperature of Tc = 7.19 K and a corresponding gap of 2Δ =
2.7 meV. The gap was determined experimentally by fitting a Dynes function
to the recorded data. The Dynes functions describes the BCS density of states
in the superconducting state including a broadening parameter. Temperature
dependences and even anisotropies of the gap parameter can be measured.

Fig. 12.18. Calculated band structure ε(k), density of states g(ε), g′(ε) as derived
from it and after folding it with the instrumental resolution, and observed UPS
spectrum for three semiconductors; after [12.12]
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Fig. 12.19. UPS spectra of Pb near the
Fermi edge just above and below the tran-
sition temperature. (—-) fit by a thermally
broadened BCS density of states with gap
and broadening parameters 1.35 meV and
0.1 meV, respectively; after [12.13]

12.4 Angle-Resolved Photoemission (ARPES)

In recent years angular resolved photoemission has developed into an ex-
tremely powerful tool to analyze electronic structures and full band structures
ε(k) in solids. Therefore an extra section will be dedicated to this technique.

To obtain explicit information on ε(k) angle-resolved recording of photo-
electrons is required. This has been recently developed to a high standard
and became the most important tool in solid-state band structure analysis.
The method works surprisingly well even though in general UPS in the en-
ergy range between 10 and 100 eV must be used for excitation to obtain the
requested high resolution in energy. Accordingly the energy of the photoelec-
trons is rather low and the correlated escape depth for the electrons is only
two to five Å. Note that the electrons must not be scattered before they leave
the crystal in order to have their momentum preserved.

12.4.1 Basic Concepts of Angle-Resolved Photoemission

To study ARPES one has to record the escaping electrons in a well defined
direction given by a polar and azimutal angle θ and φ, respectively with good
angular resolution dΩ. This is indicated in Fig. 12.20a. Then the crystal must
be oriented in a well defined direction with respect to the recording. Note
that we orient the crystal with respect to the direction of recording in real
space but we need to define the k directions also in reciprocal space as it is
indicated in Fig. 12.20b. From the experimental set up in Fig. 12.20a and
from a measurement of the kinetic energy εkin of the emitted electrons we can
immediately determine their propagation vector K outside the crystal.
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Fig. 12.20. Geometrical arrangement for the angle-resolved recording of pho-
toelectrons (a) and related orientation of the first Brillouin zone for the case
of a fcc lattice (b). The angle of beam incidence ψ and the beam polarization
A are relevant for intensities but not for determination of ε(k)

Kx =
1
h̄

√
2mεkin sin θ cos φ

Ky =
1
h̄

√
2mεkin sin θ sinφ

Kz =
1
h̄

√
2mεkin cos θ , (12.15)

where K =
√

2mεkin/h̄ is the length of the electron K vector. The goal is to
determine the full momentum h̄k of the electrons inside the crystal. Then we
obtain with (12.13) the full ε(k) relation.

The problem comes from the k-conservation request

kf = ki + G , (12.16)

which is valid as long as the electron is inside the crystal. ki and kf are wave
vectors for the initial and final state of the electron inside the crystal and G
is a reciprocal lattice vector. The momentum of the light was neglected as it
is much smaller than the other k vectors involved for the photon energy range
under consideration. Quantum mechanics requires a continuous transition of
wave functions through any boundary. Since translational symmetry inside
and outside the crystal is conserved, for the parallel direction the matching
of the Bloch waves inside the crystal and the free electron waves outside the
crystal requests conservation of the parallel components of k on transition
through the crystal surface. This means K‖ = k‖. However, this is not so
for the perpendicular component k⊥. Indeed the determination of ε(k) for
two-dimensional crystals is straight forward from a measurement of the prop-
agation vectors outside the crystal but for the band structure of 3D crystals
we need to determine k⊥ as well.
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Details of the photoemission can be described in a three step process and
in the sudden approximation. In the first step the photon is absorbed by an
electron and the latter is excited to a higher band. In the reduced zone scheme
of the bands this means the electrons get potential energy of the amount h̄ω.
Photoemission is often studied in the extended zone scheme. In this case the
electron has increased its kinetic energy as a reciprocal lattice vector is added
to its momentum. In the second step the excited electron travels to the surface
and finally, in the third step, it escapes through the latter into the vacuum
with some altered kinetic energy. Since k⊥ is not conserved also the direction
of propagation has changed. The process is considered fast enough (sudden)
so that the whole system does not relax during this processes.

The band to which the electron is excited is usually assumed to be of nearly
free electron type. This is justified since the excitation energy is rather high
and the excited electron does not feel the periodic lattice potential any more.
Figure 12.21a has a schema for the processes. The excitation is vertically at
ki to a higher band. In the extended zone scheme the kinetic energy of the
electron is increased due to the increase in k vector to kf = ki + G which
confirms k conservation. V0 = |ε0| + eΦ is the inner potential. As seen from
Fig. 12.21 the final state energy, referenced to the Fermi level, is now

εf(k) =
h̄2

2m
k2 − |ε0| =

h̄2

2m
(k‖

2 + k⊥
2) − |ε0| . (12.17)

Fig. 12.21. (a) Schematic for the photoemission process for the three step
nearly free electron model. εi, εF, εv, εf , εB are the initial energy, the Fermi
level (equal to zero as usual), the vacuum level, the final energy of the elec-
tron, and the upper edge of the nearly free electron band, respectively. ε0 is
the bottom of the band under investigation. (b) Momentum conservation for
normal emission; modified from [12.14]
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With the use of (12.15) for the parallel component and (12.13) we can evaluate
k⊥ as

k⊥ =
1
h̄

√
2m(εkin cos2 θ + V0) . (12.18)

Equation 12.18 shows that k⊥ is known for an experimentally determined
kinetic energy of the photoelectrons and thus also the bonding energy is known
from (12.13) except for the constant V0.

There are several ways to determine V0. One possibility is to measure the
kinetic energy of the photoelectrons for a quasi-continuous and rather large
set of excitation energies using synchrotron radiation. As can be seen from
Fig. 12.21 with increasing the excitation energy h̄ω beyond the distance to
the lowest nearly free electron band (in the reduced zone scheme) the struc-
ture of the valence band appears repeatedly. A fit to this periodic response
yields the value for V0. Such measurements are particularly easy if performed
perpendicular to the crystal surface i.e. for θ = 0 as demonstrated in the
next subsection. In this case the horizontal axis in Fig. 12.21a would be k⊥
Fig. 12.21b has the explicit configuration for momentum conservation.

12.4.2 Band Structure of 3D Crystals

An elegant demonstration for the determination of the full 3D band structure
was performed by X.H. Chen et al. [12.15] using a cylindrical Ge crystal with
cylinder axis oriented in [110] direction. This means the main crystallographic
directions [100], [110], and [111], or expressed in reciprocal space, the Γ X,
the Γ K, and the Γ L direction are oriented perpendicular to the cylinder
axis. Thus in perpendicular detection geometry the band structure can be
measured for the different directions using synchrotron radiation excitation of
varying energy. Figure 12.22a depicts the EDC as measured for radiation in
the energy range between 12 and 100 eV for the [110] (or Γ K) direction. The
individual curves show several peaks some of which, e.g. the peaks labeled
“D” and “C” shift periodically with the excitation energy. These peaks are
from valence band electrons. Peak “A” was assigned to the Ge MVV Auger
emission. Other peaks, without dispersion, were assigned to electrons from
surface states or from Ge core levels.

If we follow the peak C for increasing excitation energy we observe a max-
imum for 36 eV excitation, a minimum for 59 eV, a maximum for 78 eV, and
so on. For an assignment of −8.8 eV to V0 and choosing the correct recip-
rocal lattice vectors in [110] direction the k vectors to all observed energies
were determined. This resulted in the full dispersion of the heavy hole band
along the Γ K direction as depicted in Fig. 12.22b. Similarly the dispersions
for the other main crystallographic directions were determined as they are
depicted in Fig. 12.22. 3D band structures for a large number of metals and
semiconductors were measured in such or in related experiments [12.16].
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Fig. 12.22. Energy distribution curves versus bonding energy (energy below va-
lence band edge) for Ge oriented in [110] direction for different excitation energies
as indicated. Only the peaks connected by the dashed red lines originate from
band states (a). ε(k) relation for germanium as obtained from (a) (symbols) and
calculated (full lines) for different main direction in the first Brillouin zone (b).
The branches C and D are obtained from the dashed red lines in (a); modified
from [12.15]

12.4.3 Direct Recording for ε(k)

ε(k) for 2D or quasi 2D crystal structures are more easy to determine, since k‖
is conserved when the electron leaves the crystal and k⊥ does not exist or is
very small and dispersionless. Thus, from a measurement of the kinetic energy
of the electrons and from the orientation of the detector to the crystal sur-
face ε(k) is obtained immediately. Even more, in especially constructed hemi-
spherical analyzers and for multichannel detection with channeltron plates
a direct recording of the dispersion relation is possible. Figure 12.23 depicts
a schematic of such instruments. The electrons are photo emitted from the
sample in various directions and guided to the entrance slit (S). The width of
the slit determines the angular resolution which can be as small as 0.2◦. The
length of the slit determines the momentum range covered in one recording
event. If a wider momentum range is requested the sample must be tilted to
change φ. The hemispherical recorder splits the beam with respect to angle in
y direction (momentum) and with respect to energy in x direction. The result-
ing energy distribution map (EDM) is shown in part (b) as I(k, εkin) where
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Fig. 12.23. (a) Hemispherical electron energy analyzer which allows direct
recording of ε(k) in 2D crystals. (L: lenses, H: hemispherical detector, S: en-
trance slit, CP: channel plate with momentum recording in y direction and
energy recording in x direction). (b) resulting energy distribution map from
sample. (c) corresponding band structure; modified from [12.14]

k is represented by the angle and I by the brightness. The figure displays
already the band structure ε(k).

In a similar manner as the EDM one can also map, for a selected en-
ergy ε, the observed moments in a momentum distribution map (MDM) as
I(kx, ky, εkin). Since in 2D systems the “bands” are energy surfaces above the
2D k space, constant energy surfaces such as e.g. the Fermi surface are lines.

Graphite is a good example, since it has a simple band structure which,
at least for the in plane part, can be approximated by the band structure of
graphene as shown in Fig. 12.24 (top left). The first Brillouin zone is shown by
the hexagon. The valence band and the conduction band touch at the six K
points and form trigonally warped cones. In the experiment n-doped graphite
was used. Therefore the K-points are downshifted to −1.36 eV with respect
to the Fermi level This can be seen in the top right part of the figure which
depicts the EDM for the bands which were filled by doping to KC8. The center
of the figure has the MDM recorded at the Fermi energy for one of the cones.

Figure 12.24 depicts also a more complex Fermi surface for a high tem-
perature superconductor at the bottom. Recording was with a 2 meV energy
resolution and a 0.2◦ angular resolution. Since the superconductor studied is
highly twodimensional the energy surfaces are cylinders perpendicular to the
paper plane and do not exhibit any dispersion.
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Fig. 12.24. Band structure for graphene (top left), experimental results for
the band structure of intercalated graphite KC8 (top right), and momentum
distribution map (MDM) for the Fermi surface of KC8 (center). Green symbols
and black line are calculated, crosses and color code presentation are exper-
iments; after [12.17]. Momentum distribution map of the Fermi surface for a
high temperature superconductor (bottom). The white dashed square marks
the first Brillouin zone; after [12.18]
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In the case of intercalated graphite one can even measure the 3D band
structure when the recording of the spectra is performed for different excita-
tion energies like in the case of Ge, and the sample is simultaneously tilted in
a way that the components of k‖ remain constant. This means for increasing
light energy the polar angle must be decreased in a controlled manner. In z
direction only a weak dispersion is observed.

12.5 Inverse Photoemission

Photoemission only has access to states below the Fermi energy, since occu-
pation of the states is required. The empty states in the conduction band or
in even higher bands cannot be studied. The investigation of such states is
possible with inverse photoemission. As demonstrated in Fig. 12.25a in IPES
the crystal is irradiated with electrons which can settle at the empty orbitals
of the bands above the Fermi level. If this happens the total energy of the
incoming electron is increased by the work function Φw of the crystal plus the
(negative) binding energy at the particular level. This total energy is emitted
as a light quantum h̄ω.

h̄ω = εkin + (Φw + εB) . (12.19)

In early work electrons of varying energy were used for the excitation
and only one photon energy was detected. This technique is known as
Bremsstrahlung-Isochromate Spectroscopy (BIS). When ever εkin is such that
Eq. 12.19 is satisfied, a peak appears in the spectrum. In contrast, in real

Fig. 12.25. Electronic levels and recombination processes for inverse photoemis-
sion (a) and photoemission and inverse photoemission for C60 (1) and K3C60

(2) (b); The Mullikan symbols hu and t1u label the symmetry of the bands; (b)
after [12.20]
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IPES work excitation is with monochromatic electrons and the spectrum of
the emitted photons is detected. This spectrum is again a replica of the den-
sity of states but now for the unoccupied higher bands. Figure 12.25b depicts
the photoemission on the left side of the Fermi energy and the inverse photoe-
mission on the right side of the Fermi energy for the two materials C60 (1) and
K3C60 (2). All peaks on the left side of εF originate from the occupied bands,
all peaks on the right side of εF originate from the empty bands. For C60 the
density of states at the Fermi level is zero since the system is an insulator.
The energy difference between the peaks labeled hu and t1u is the gap energy.
K3C60 is a metal. Thus PES and IPES overlap and the t1u band appears in
both, PES and IPES.

Angle-resolved measurements as they were described for photoemission are
also possible for inverse photoemission.

12.6 X-Ray Absorption Fine Structure

The development of powerful x-ray sources with broad emission spectra and
the availability of high resolution x-ray spectrometers triggered the develop-
ment of additional spectroscopic techniques which are based on high resolution
x-ray absorption at the absorption edges. This is known as x-ray absorption
fine structure (XAFS). Specifications of the spectroscopies are classified ac-
cording to the energy range or energy distance from the edge. Extended x-ray
absorption fine structure (EXAFS) covers a relative wide energy range of the
order of 500 eV from the edge. A characteristic fine structure is observed as
shown in Figure 12.26 for metallic copper close to the K-edge. The investiga-
tion of this fine structure gives information on the interaction between next
neighbors and short range order in the lattice. NEXAFS (near edge x-ray ab-
sorption fine structure) is restricted to energies closer to the edge and covers
a range of about 30 to 50 eV [12.22] with a 50-meV resolution. Even closer to

Fig. 12.26. Fine structure of x-ray absorption at 77 K for metallic copper at the
K-edge, after [12.21] (a) and demonstration for the generation of the fine structure
(b). (—) evanescing and (- - -) reflected electron wave
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the edge the XANES approach (x-ray absorption near edge structure) is used.
Both, XANES and NEXAFS allow to study the structure of the unoccupied
levels in the bands before the electron is eventually ionized out of the crystal.

The fine structure in Fig. 12.26 originates from details of the absorption
process which we have not considered so far. To emit the photoelectron it
must not only be released from its orbital but it must also travel through the
crystal until it finally reaches the vacuum (or spectrometer) level, or ends up in
a higher unoccupied state. Even without inelastic scattering the wave function
pattern of the electron will be influenced by elastic scattering from neighboring
atoms and resulting interference phenomena. To calculate the matrix element
for the absorption process the total wave function must be used. Since both
the wave function of the released electron and the partial wave functions from
its reflected components depend on the energy of the incident photon the
matrix element for the absorption varies with the photon energy, particularly
in the interference region close to the edge. This behavior is illustrated in a
simplified form in Fig. 12.26b. The full drawn circles represent the zeros for
the evanescent wave of the released electron. The dashed circles are the zeros
for the wave reflected from the neighboring atoms. The interference between
evanescent and reflected waves leads to a modulation of the absorption edge.

The experimental results are usually described by the dimensionless rela-
tive modulation of the absorption after subtraction of the main background
in the form

χ(ε) =
α(ε) − α0

Δαedge
. (12.20)

α0 is the smooth absorption without interference as calculated from the Vic-
toreen formula (12.9) and Δαedge is the jump in absorption at the edge, i.e.,
the contribution from the new absorption channel opened up at the edge. In-
stead of representing χ as a function of the energy ε in general the wave vector
ke of the evanescing electron is used as an argument. The two quantities are
related by

k2
e =

2me

h̄2 (ε − ε0) , (12.21)

where ε0 is the photon energy for which the kinetic energy of the electron is
zero (the vacuum level or the edge energy). The modulation can be expressed
by the influence of the next nearest neighbors j on the activated atom i. As a
simplifying assumption only one type of atom may surround the atom i. If the
distribution of the neighboring atoms is described by a radial function pij(r)
with one peak at an average nearest neighbor distance ri the modulation χ(k)
can be expressed by

keχij(ke) =
2
√

2π

r2
i

Re{Pij(ke)Λij(ke, ri)} . (12.22)

Pij(ke), and Λij(kr) are the Fourier transform of the radial distribution
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Pij(k) =
1√
2π

∫ ∞

0

ei2krpij(r)dr

and the influence of the interacting electrons on the absorption, respectively.
It is important to note that the Fourier pairs in this case are ke and 2r in
contrast to conventional elastic scattering where the pairs are k and r. For a
Gaussian distribution of Ni atoms with a width σi around a mean distance ri

the simplified version for keχ(ke) is obtained in the form

keχ(ke) =
Ni

r2
i

|Λ(ke, ri)|e−2(σike)
2
2 cos[2keri + ΦΛ] , (12.23)

where ΦΛ is the phase of Λ(k, ri) and ri is the average nearest neighbor dis-
tance. For |Λ| ≈ constant this is a function oscillating in ke with the period
2ri and decaying with a Gaussian profile for k2

e ∝ ε − ε0 > 0.
Figure 12.27 shows the experimentally determined spectrum χ(ke) for the

K-edge absorption Cu. The full drawn line is as calculated for a simple nearest
neighbor response.

Fig. 12.27. Fine structure for the K-
edge absorption of Cu. (- - -) as mea-
sured, (—) as calculated; after [12.23]

12.7 Inelastic Scattering of X-Rays

The development of the synchrotron light sources combined with high resolu-
tion spectrometers opened the field for inelastic x-ray scattering. It has been
applied to study dispersions of optical phonons in a Raman process with an
energy resolution of about 3 meV. Determination of the q vectors come from
the scattering geometry. Figure 12.28 gives an example for graphite. Only the
inplane phonons are depicted. The high resolution was obtained from a 60 m
long monochromator consisting of a double crystal Si(111) premonochromator
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Fig. 12.28. Phonon dispersion for graphite in various crystallographic direc-
tions. Filled symbols are experimental results, open dots and lines are cal-
culated from ab initio models. Excitation was with 17.794 keV and 3.1 meV
resolution; after [12.24]

and a Si(999) backscattering reflection in the main monochromator. Selection
of special reciprocal lattice vectors is necessary to satisfy selection rules for
x-ray scattering.

Inelastic x-ray scattering has also been used to study electronic transitions
between states below and above the Fermi level. To get enough scattering yield
resonance excitation very close to a fundamental edge absorption is used. Thus
the technique was called a resonant inelastic x-ray scattering process (RIXS).
In RIXS experiments an electron from a core level is resonantly excited to a
higher state in the unoccupied part of the band structure. When it relaxes back
to its original state x-rays are emitted. However, at least to some extent, the
recombination occurs in two processes. First an electron from a soft core state
below the Fermi level is excited to a state above the Fermi level. This process
is of course k conserving and needs some energy Δε as depicted in Fig. 12.29a.
This energy is missing for the recombination process of the originally excited
electron. Therefore the re-emitted light suffers from an energy loss Δε. In this
sense the process is very similar to electron energy loss spectroscopy as it will
be discussed in Chap. 15. Changing the excitation energy around the resonace
allows to study the energy loss for different electron k vectors.

In the example of Fig. 12.29 electrons from the Cu1s core level in the
compound CuGeO3 are excited to the empty Cu4p state. The recombination
back to the Cu1s level occurs simultaneously with the excitation of an electron
from below the Fermi level in the Cu3d-O2p band to above the Fermi level
in the band. The x-ray intensity as a function of this energy loss is plotted
in Fig. 12.29b for different k vectors. The insert shows the CuK-edge and
the exact localization of the x-ray energy used for the scattering process.
Structures in the edge correspond to different final Cu4p states. Note that in
this case Δk is determined by scattering geometry. There are other examples
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Fig. 12.29. Energy schedule for resonant inelastic x-ray scattering for the
special case of CuGeO3 (a). Energy loss from inelastic scattering of 8.995 eV
photons in CuGeO3 for various k vector (b). The peaks correspond to different
transitions in the Cu3p-O2p band. The dashed lines indicate the dispersion.
Insert in (b): CuK-edge as recorded from luminescence emission; after [12.25]

where Δk is obtained form changing the excitation energy. At the right edge
of the spectrum the very strong elastically scattered light is seen.

A disadvantage of the RIXS method is the low energy resolution which
today reaches only 300 meV. On the other hand, the big advantage is that it
works also for nonconducting materials.

Problems

12.1 Discuss the emission characteristic of an electron which is decelerated with a
constant value for v̇ as a function of the electron energy.

(Purpose of exercise: Study the relativistic effect on the emission.)

12.2 Show that for the wave functions of a hydrogen model and the LIII → K
transition Pfi ∝ Z4.
Hint: Use standard wave functions for the hydrogen atom and remember that ωfi

enters to the 3rd power into the transition probability
(Purpose of exercise: Practice evaluation of matrix elements.)

12.3 Show that the Doniach-Sunjic lineshape converts to a Lorentzian line for α → 0.
(Purpose of exercise: Study various lineshape functions.)
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12.4 The Fermi energy of Ag is 5.5 eV. Using a PC compare the PE spectrum from
the Fermi edge at 400 K with the emission from a system with a conduction band
width of 0.5 eV, filled to 1/3 with electrons at the same temperature.
Hint: Use a free electron model in both cases.

(Purpose of exercise: Recognize strong temperature effects on narrow metallic
bands.)

12.5n Looking at the top left graph of Fig. 12.24 we learn that the band structure
ε(k) of graphene has an approximately conical shape. The band parameters can be
derived from ε(kx, ky = 0) = h̄vFkx.
a) Write down the ε(k) relation for this structure.
b) For a photon energy of 100 eV evaluate the polar and azimutal angles θ and φ
which are needed to determine the k vectors for 6 different states around one of the
K points and which have a constant binding energy εB = 1 eV.
Hint: Remember that the first Brillouin zone for graphene is a hexagon in k space
which is rotated by 90◦ to the hexagonal unit cell in real space. The work function
into the spectrometer Φsp, the graphen lattice constant a, and the Fermi velocity vF

are 4.5 eV, 0.24 nm, and 8 × 105 m/s, respectively.

(Purpose of exercise: Understand the basic experiments in ARPES.)
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Spectroscopy with γ Rays

Increasing the quantum energy beyond the x rays leads to the spectral range
of γ radiation. This radiation originates from a relaxation of excited and
quantized states of the nuclei. Even with these very hard light quanta spec-
troscopy in solids can be very useful. The subject was triggered in 1958 when
R. Mößbauer reported for the first time recoil free resonance absorption for γ
rays. This technique is now known as Mößbauer spectroscopy. Additional spec-
troscopic methods were developed on the basis of an angular correlation of γ
rays which enable information to be obtained about the chemical environment
of special nuclei inserted into the lattice.

13.1 Mößbauer Spectroscopy

The importance of Mößbauer spectroscopy extends over wide areas of physics.
For example, it was used to determine for the first time the mass of light
quanta. For the discovery of this spectroscopic method Mößbauer was awarded
the Nobel prize for physics in 1961.

13.1.1 Fundamentals of Mößbauer Spectroscopy

The principle of Mößbauer spectroscopy can be explained from Fig. 13.1. The
left part of the figure refers to a macroscopic picture, the right part to the
atomistic model.

In the macroscopic model the test person cannot succeed to jump from
one boat to the other since he looses recoil energy when he jumps off. If there
are strong waves he will be successful from time to time since the boat can
support him with an additional momentum by chance. If the tow boats are
frozen in ice the test person will always be successful (unless the ice is too
thin and the recoiled boat breaks the ice).

The atomistic model is indeed similar. If the γ quantum is emitted from a
nucleus in an excited state with energy ε0 above the ground state part of the
energy available from returning to the ground state must be transferred to
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Fig. 13.1. Phenomenological de-
scription of recoil free nuclear
resonance absorption; macroscopic
model (a), atomistic model with en-
ergy relations (top), emission and
absorption for T > 0 (center) and
quantized vibronic states (bottom),
(b); (E: emission, A: absorption)

the nucleus as a recoil energy εR. This means the emission energy is smaller
than ε0. From conservation of momentum it follows

εR =
p2
M

2M
=

p2
γ

2M
=

ε2γ
2Mc2

0

≈ ε20
2Mc2

0

. (13.1)

M, pM, pγ , and εγ are the mass of the nucleus, the momentum of the nucleus,
and the momentum and the energy of the γ quantum, respectively. Since

εγ = ε0 − εR ≈ ε0

(
1 − ε0

2Mc2
0

)
< ε0 , (13.2)

the emitted quantum cannot be reabsorbed by another nucleus at T = 0
(Fig. 13.1b, top). If the atom is under thermal motion the emission lines and
the absorption lines are subjected to a Doppler broadening. From the overlap
between the emission and the absorption a certain probability arises for the
re-absorption of the γ quantum (Fig. 13.1b, center). According to this model
the effect of resonance absorption or resonance fluorescence should increase
with increasing temperature. The opposite is observed in the experiment, at
least for solids. Mößbauer explained the unexpected result by a partial recoil-
free and thus particularly efficient resonance absorption at low temperatures.
The atoms are frozen due to the quantization of the lattice energy and the γ
quantum emitted from one nucleus can be absorbed by an equivalent nucleus.
It can jump from one nucleus to the other if the recoil energy is smaller than
the vibronic energy (Fig. 13.1b, bottom).

To describe the freezing of the atoms the quantum nature of the lattice
motions must be considered in detail. For a classical oscillator of frequency
Ωp the total energy ε is given by

ε = kBT = M〈x2〉Ω2
p (13.3)
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where 〈x2〉 is the average of the squared oscillation amplitude which can accept
any value. According to quantum mechanics this is not so. The energies can
only have the discrete values from (7.29)

εα = h̄Ωp(α + 1/2) ,

where α is the quantum number of the oscillation.
The discussion of the Mößbauer effect is simplest for the Einstein model of

lattice oscillators. This means there is only one frequency ΩE and the energy
scale has only discrete values with distances h̄ΩE. The lowest energy level is
h̄ΩE/2. If εR � h̄ΩE the emission of the γ quantum is accompanied by the
excitation of a large number of oscillations and the loss by recoil energy will
be non negligible. For εR < h̄ΩE recoil-free emission occurs. In general for
a finite temperature only a certain fraction f of the quanta will be emitted
without recoil. This fraction can be determined for εR � h̄ΩE in a first ap-
proximation from the average energy of the oscillator given by its averaged
square amplitude in the lowest quantum-mechanically allowed state of energy
h̄ΩE/2. The average transferred recoil energy is under these conditions

〈εR〉 = (1 − f)h̄ΩE .

Using (13.1) for εR and 〈x2〉 = h̄/2MΩE for the classical amplitude of the
lowest Einstein oscillator we obtain for f

f = 1 − εR
h̄ΩE

= 1 − h̄2k2

2Mh̄ΩE
= 1 − k2〈x2〉 , (13.4)

where k is the wave vector of the γ quantum. A more exact value of f derived
for an Einstein oscillator and temperatures larger than the Debye temperature
is

f(T ) = exp(−k2〈x2〉) = exp
(
−k2kBT

MΩ2
E

)
. (13.5)

f(T ) corresponds physically and also formally exactly to the Debye-Waller fac-
tor used for the description of diffraction intensities of x-ray patterns. Only
those quanta contribute to the interference pattern for which no phonon ex-
citation was involved in the scattering process. Equation (13.5) shows that
the fraction of recoil-free emitted quanta increases with increasing mass and
frequency of the oscillator and with decreasing temperature and wave vector
of the γ quantum. If a Debye model is used to describe the lattice modes
(see Appendix K.1) more complicated formulas are obtained but the physical
meaning and the dependence of f on εR, Ω and T remain the same.

The natural linewidth Γ for the absorption is determined from the lifetime
τ for the excited nuclear state

Γ =
h̄

τ
= h̄

ln 2
t1/2

(13.6)
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where t1/2 = τ ln 2 is the half time of the excitation. If the Mößbauer atoms
are in thermal motion the linewidth is still intrinsic but broadened from the
Doppler effect. If the thermal energy is of the same order or larger than the
recoil energy a good value for it is

Γ ≈ 2
√

εthεR, εth =
3kBT

2
. (13.7)

Since εR is 1.9 meV for 57Fe the linewidth for this source is intrinsic.

13.1.2 Experimental Set Up and Instrumentation for Mößbauer
Spectroscopy

For a Mößbauer experiment three components are needed: a Mößbauer source,
an appropriate absorber in which the recoil-free resonance absorption is per-
formed, and a detector which measures the transmitted radiation. Possible
arrangements and the reaction steps during the resonance absorption exper-
iment are shown in Fig. 13.2. As a starting material for the source a nucleus
is appropriate, which becomes only Mößbauer active after a nuclear reaction
from a mother nucleus. The resonance transition in the absorber can either
be studied by a change in the transmission (resonance absorption) or by ob-
servation of a resonance scattering (resonance fluorescence). In the latter case
the incident γ quantum excites the absorber but is afterwards re-emitted in
an arbitrary direction. Mößbauer experiments in scattering geometry do not
need a sample preparation in the form of very thin films which is an advantage
compared to absorption experiments. To tune the frequency of the radiation
to the resonance transition the Doppler effect is used. Either the source or the
absorber is shifted with a constant velocity until resonance absorption occurs.
Since the shift in energy from the Doppler effect is Δε = εv/c0, the energy
balance for the radiation is

εγ = ε0 − εR + εD with εD = ε0
v

c0
. (13.8)

Fig. 13.2. Schematic representation of nuclear transitions in a Mößbauer exper-
iment
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The spectral distributions for the emission of a γ quantum and for the
absorption of the quantum are well described by Lorentzian lines of width Γ .
Hence, in a resonance experiment where a Lorentzian emission line is shifted
across the position of absorption with equal width and shape the response has
the form

σ = σ0
(Γ/2π)2

(Γ/2)2 + (ε − ε0)2
. (13.9)

σ0 is evaluated to

σ0 =
2πc2

0h̄
2(2Ie + 1)

ε0(Ig + 1)(α + 1)
.

Equation (13.9) is the result of the folding of two Lorentzian lines. Ie and
Ig are nuclear spins for the excited state and for the ground state and a is
the total conversion coefficient for the nuclear transition. The finally observed
absorption for a particular nucleus K is

αK(T ) = σKf(T )nKaKd , (13.10)

where nK, aK, and d are the number of nuclei per unit volume, the isotope
concentration, and the thickness of the sample, respectively. f(T ) is the frac-
tion of recoil-free emitting nuclei from (13.5) or the corresponding value from
a Debye model.

The Doppler energy for tuning can be superimposed on the resonance
process either by a mechanical or by an electromechanical or piezoelectric
shift. The source or the absorber may be moved. Depending on the Mößbauer
source shifts are required from several μm/second to several m/second.

The best known example of a Mößbauer source is 57Fe with a γ-ray com-
ponent at 14.4 KeV. The component is part of a decay pattern for 57Co as
shown in Fig. 13.3.

The Co nucleus has a lifetime of 270 days versus a transition to 57Fe by
electron capture. The resulting Fe nucleus has three radiative transitions in

Fig. 13.3. Decay scheme of 57Co
into 57Fe by electron capture (EC)
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the γ range. The one appropriate for the Mößbauer experiments has a half
time t1/2 of 97.7 × 10−9 seconds. This corresponds to a natural linewidth Γ
of only 4.6×10−9 eV. Since shifts of the order of 1% of the half width of a line
can be detected relative shifts of the order 10−2Γ/εγ ≈ 10−13 can be observed.
This is a resolution which has never been obtained before in spectroscopy. For
many nuclei this resolution is several orders of magnitude higher than their
hyperfine interaction energy or their quadrupole interaction energy. Thus,
these phenomena which are introduced by the crystal field (or more generally
by the electrons in their bonding orbitals) can be investigated. This makes
Mößbauer spectroscopy another member of experiments where the analysis of
the chemical shift yields microscopic information on the materials.

A review on parameters essential for Mößbauer spectroscopy as well as
their energy range is shown in Fig. 13.4. If the Debye energy is larger than
the recoil energy the system is appropriate for Mößbauer experiments. This
condition is well satisfied for 57Fe. Also the hyperfine splitting is two orders
of magnitude larger than the natural line width.

Table 13.1 compiles several important Mößbauer sources and their char-
acteristic parameters. The line width is given in units of mm/s as it refers to
experiments where the energy is tuned by a Doppler shift. The linewidth in
eV is obtained from (13.8) by 2Γ (eV) = ε0 (eV)2Γ (mm/s)/c0.

The detector in the Mößbauer experiment is a γ counter which must be
adapted to the energy range of the radiation used. Proportional counters,
scintillation counters or p-i-n semiconductor detectors are appropriate as dis-
cussed in Sect. 12.1 and as they are compiled in Table 12.2. For very high
quantum energies only the scintillation counter is useful. For low energies the
proportional counter and the Si(Li) detector are more appropriate because

Fig. 13.4. Characteristic energy ranges for Mößbauer spectroscopy. The arrows
assign the values for 57Fe
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Table 13.1. Mößbauer sources and their characteristic data; adapted from [13.1].
(a: isotope abundance, ε0: transition energy, t1/2: half time, Ie,g: nuclear spins for
the excited and ground state, σ0: cross section, 2Γ : linewidth, εR: recoil energy, ΩD:
Debye frequency)

Isotope a ε0 t1/2 Ie Ig σ0 2Γ εR ΩD

(%) (KeV) (ns) (E-20 cm2) (mm/s) (meV) (cm−1)
40K 0.011 29.4 4.26 3 4 28.97 2.18 11.6 62
57Fe 2.19 14.41 97.81 3/2 1/2 256.6 0.19 1.95 312
61Ni 1.25 67.40 5.06 5/2 3/2 72.12 0.80 39.99 295
67Zn 4.11 93.31 9150 3/2 5/2 10.12 3E-5 69.78 213
73Ge 7.76 13.26 4000 5/2 9/2 361.2 5E-4 1.29 295
73Ge 7.76 68.752 1.86 7/2 9/2 22.88 2.13 34.77 295
119Sn 8.58 23.87 17.75 3/2 1/2 140.3 0.64 2.57 136
121Sb 57.25 37.15 3.5 7/2 5/2 19.70 2.10 6.12 123
184W 30.64 111.19 1.26 2 0 26.04 1.95 36.08 238

of their better efficiency. In recent Mößbauer experiments with synchrotron
radiation avalanche photodiodes are used.

13.1.3 Results of Mößbauer Spectroscopy

Because of its very high resolution in energy and its local character Mößbauer
spectroscopy is particularly useful for probing the local environment of the
active nucleus as a function of temperature, pressure, defects, phase transi-
tions, etc. As for IR spectroscopy from defects, for magnetic resonance, or
for photoemission the chemical shift of the Mößbauer absorption lines gives
information on the local structure. The electron density at the position of the
nucleus is important. This is in particular so for the often investigated hyper-
fine splitting of the energy levels in the nuclei. Figure 13.5 shows Mößbauer

Fig. 13.5. Mößbauer spectrum of pure Fe (−−) and of carbon rich Fe after
quenching from 850◦C (...); after [13.2]
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spectra for pure Fe and for Fe with 4.2% carbon after quenching from 850◦C.
The six equidistant lines originate from the hyperfine splitting of the Fe nu-
clei. Note that the number of lines is reduced from the expected eight lines
according to the nuclear spin splitting to six by selection rules. The central
line for the quenched sample comes from the austenitic phase which is retained
during the quenching process. (The austenitic phase is fcc and only stable at
high temperatures.) The concentration of this phase retained after cooling is
an important control parameter for steel production.

The strong temperature dependence of the resonance absorption as dis-
cussed above is demonstrated in Fig. 13.6a. It refers to the intensity via the
Debye–Waller factor as well as to the linewidth Γ . For the high temperatures
indicated the latter is intrinsic and caused by a Doppler shift as a consequence
of the diffuse motion of the atoms. It is therefore related to the diffusion co-
efficient D as

Γ ∝ h̄

τD
=

6h̄D

a2
,

Fig. 13.6. Lineshape of resonance absorption in δ-Fe at various temperatures as
indicated and after cooling to the austenitic phase (γ-Fe) (a); after [13.3], and
absorption for 57Fe with polarized γ quanta (b). The magnetic fields at source
and absorber are parallel and perpendicular to each other for the two displayed
spectra; after [13.1]
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where 1/τD and a are the jump rate and jump width for the diffusion process,
respectively. Accordingly, such experiments are appropriate to determine the
diffusion coefficient on a microscopic level [13.4].

Mößbauer spectroscopy can also be performed with polarized γ radiation.
The possibility to obtain polarized γ quanta is based on the anisotropy of the
emission process. The emission depends on the orientation of the nuclear spin.
It is maximum perpendicular to the spin direction. If the spins are oriented
by a magnetic field B the emission is perpendicular to B. The polarization is
either perpendicular to B (for transitions with ΔIz = 0) or parallel to B (for
transitions with ΔIz = ±1). Depending on the orientation of the field in the
absorber relative to the field in the emitter either transitions with ΔIz = 0 or
transitions with ΔIz = ±1 are observed. Figure 13.6b shows experiments with
polarized γ radiation for which the different behavior of the two geometries is
clearly seen.

13.1.4 Mößbauer Spectroscopy in the Time Domain

Recently Mößbauer experiments became possible in the time domain by using
synchrotron radiation. In such experiments the Mößbauer nucleus is pumped
into an excited state by a highly monochromatized 14.4 KeV synchrotron
beam from where it emits recoil free γ quanta. These quanta are detected as
a function of time and represent the frequency spectrum in the time domain.
Here very fast recording in the ns scale is required. Fourier transformation
yields the spectrum in the frequency domain in absolute energies. No Doppler
analysator is needed. From the line positions information on the chemical
environment of the Mößbauer atom is obtained.

Due to its high efficiency and high energy resolution vibrational spectra of
atomic monolayers can be measured if the synchrotron radiation is incident
with a glancing angle.

13.2 Perturbed Angular Correlation

Another microscopic method for the probing of the neighborhood of a par-
ticular atom in a lattice uses the subsequent emission of two γ quanta in a
cascade. The direction of emission is perturbed by local electric and magnetic
fields. Thus, the technique is called the perturbed angular correlation (PAC) of
γ radiation. The analysis of the emission characteristic yields the information
on the local fields.

13.2.1 Basic Description of the Perturbed Angular Correlation

The basic idea of experiments using perturbed angular correlation originates
from the anisotropy of the emission of γ quanta with respect to the orientation
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Fig. 13.7. Energy levels and transitions for perturbed
angular correlation; Ii, Iτ and If : nuclear spins in the ini-
tial, intermediate and final state, respectively

of the nuclear spins. This anisotropy is not observed right away since the nuclei
are not oriented and any anisotropy is averaged out. If the nuclei are oriented
by the application of a magnetic field B observation of the anisotropy for the
γ emission is possible. Such experiments are well known in nuclear physics.
The emission of polarized γ radiation as it was discussed in the last section
for Mößbauer quanta is a good example. The procedure in the case of PAC
is different. According to Fig. 13.7 nuclei are used which emit a cascade of
at least two quanta in a series. From the direction of detection for the first
quantum a certain manifold of spins with a particular direction is selected. The
anisotropy of the emission for the second quantum is now investigated by an
angular correlated coincidence experiment. If the nuclear spins interact with
local magnetic fields they process around the local field and the anisotropy
of the emission for the second γ quantum processes likewise. Even though
the probability of emission of the second quantum decays with the lifetime
of the intermediate state it can still be significant for many revolutions. The
precession is sustained by thermal activation of the spins from the ground
state. In the latter all spins are aligned along the local field. The activation is
still relevant to below 1 K.

Figure 13.8 demonstrates the basic features of the emission process. The
dashed line represents the anisotropy W (θ) for the emission of γ quanta. The
emission is strongly reduced along the direction of the spin but independent of
the azimuth angle φ. By the detection of γ1 with detector D1 (Fig. 13.8a) the

Fig. 13.8. Time delayed coincidence measurement for the investigation of the
perturbed angular correlation; starting geometry (a), geometry at the time when
the second quantum is emitted (b) and time dependence of the intensity for the
detection of the second quantum (c). The field in (a) and (b) is assumed perpen-
dicular to the plane of the paper
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initial position of a particular nucleus is defined. With time the spin moves
from this position by precession around the local field. For simplicity the
latter is assumed in the figure as perpendicular to the spin direction. After a
time t when the second quantum is observed with detector D2 the spin has
rotated by an angle θ = ωt and the orientation for observation has become
less favorable (Fig. 13.8b). Finally, after a time period t = π/ω the spin has
returned to an orientation for optimum detection with respect to the counter
D2. This means a signal oscillating with the delay time of the coincidence
will be detected at the counter D2. The oscillation frequency is the precession
frequency of the spins in the local field. Thus, the anisotropy W (θ) of the γ
emission is studied for a constant geometry in space but varying angle θ in
time. This is in contrast to the classical experiments of unperturbed angular
correlation in nuclear physics where W (θ) is studied explicitly for t = 0 with
the angle θ varying in space and no precessing spins. Because of the finite
lifetime τ of the intermediate state the overall signal decays exponentially
with time. This yields for the signal observed at D2 a time dependence of the
form

I(θ, t) = I0e−t/τW (θ(t)) (13.11)

with

W (θ(t)) ≈ W (θ0 + ωt) .

Thus, on a logarithmic scale the overall intensity decreases linearly with t
with a superimposed modulation as shown in Fig. 13.8c. W (θ) is given by
the Legendre polynomials in cos θ and depends on the spins in the initial,
intermediate, and final state. For Ii and If = 0 and I = 1 one obtains

W (θ) = 1 +
1
2
P2(cos θ) = 1 +

1
4
(3 cos2 θ − 1) . (13.12)

For the time-dependent experiments θ has to be replaced by θ0 +ωt where θ0

is the angle between the two detectors. This means the oscillation in (13.11)
follows a variation in time as cos2(ωt).

According to the severe constraints on the character of the emission not
so many nuclei are available for the experiments as, for example, in the case
of Mößbauer spectroscopy. The most important mother/daughter pairs are
Pd/Rh, In/Cd, and Hf/Ta. The decay diagram and the total spectrum of γ
radiation emitted are depicted for the first two pairs in Fig. 13.9. In both cases
the nucleus for the PAC experiments is obtained from the mother nucleus by
electron capture. The actual nuclear spins are indicated by the numbers on
the left side of the decay diagram. The energies for the emitted γ cascade
and the lifetime of the intermediate state is shown on the right side of the
diagram. From the many emitted lines in Fig. 13.9b only two are acceptable
for the PAC experiments.
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Fig. 13.9. Mother/daughter pairs for use in PAC experiments (a) and observed
γ spectra (b); after [13.5]

The mother nucleus must be accommodated in the crystal on a lattice site.
It acts there as a microscopic probe. 1011–1012 nuclei are enough to obtain an
activity of the order of 10 μCi as is required for the experiment.

For the detection of the γ quanta at least two, but better four, detectors
are required. The quanta must be resolved according to their energy (for iden-
tification) as well as according to their time of arrival. Appropriate detectors
are again scintillation counters on the basis of NaI(Tl). For a properly de-
signed electronic each detector can be used for the detection of the quanta γ1

and γ2. If Iij(θ0, t) is the coincidence spectrum between two detectors i and
j out of four detectors on a circle, the ratio

I13(180, t)I24(180, t)
I14(90, t)I23(90, t)

=
(

W (180, t)
W (90, t)

)2

is a good measure for the change of the orientation of the nuclei. In the
expression the initial intensity I0 as well as the exponential decay exp(−t/τ)
have cancelled. Another commonly used expression for the oscillating part of
the signal is

R(t) =
2
3

(
W (180, t)

W (90, t) − 1

)
. (13.13)

R(t) is known as the time spectrum of the PAC experiment.
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13.2.2 Experimental Results from Perturbed Angular Correlation

From the time spectrum and a subsequent Fourier transformation the local
magnetic field or the local electric field gradient at the position of the nucleus
is obtained from the precession frequencies. Experiments can be performed
with an applied magnetic field or without field. In the first case the change in
time spectra with changing local field conditions is studied. In the second case
the local field is monitored directly. Figure 13.10 shows results for a rhodium
nucleus in Cu. Part (a) represents the directly measured coincidence rate for
two directions + and − of an applied magnetic field.

The result corresponds exactly to the schematic presentation in Fig. 13.8c.
From the two coincidence measurements the ratio

R(t) =
I+ − I−
I+ + I−

(13.14)

can be constructed in which the initial intensity I0 as well as the exponential
time dependence has cancelled as in (13.13). Accordingly an oscillation in time
such as cos2 ωt is obtained as shown in Fig. 13.10b.

Without external field the hyperfine interaction of the electrons at the po-
sition of the nucleus is sufficient to excite the nuclear spins to a precession.
Figure 13.11 shows a time spectrum for 111Cd in polycrystalline ferromag-
netic Ni. The Fourier analysis yields two Larmor frequencies ω0 and 2ω0. The
observation of two frequencies is a consequence of the statistical disorder of
the magnetic fields in the sample.

Fig. 13.10. Coincidence
spectra of 100Rh in Cu for
two magnetic fields in op-
posite directions (a) and ac
part of the spectrum ac-
cording to (13.14) (b); after
[13.6]
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Fig. 13.11. Time spectrum for 111Cd in Ni; after [13.7]

The precession of the nuclear spins can also originate from an interaction of
the nuclear quadrupole moment with the electric field gradient at the position
of the nucleus. This is shown in Fig. 13.12 from time spectra for 111Cd in
different noncubic metals of the 5th period. It is immediately evident from
the figure that the field gradients are very different for the three metals. Since
the quadrupole moment for 111Cd is known to be 0.83×10−24 cm2 one can
even determine their value quantitatively using (11.87) from Chap. 11. From
the spectra shown for Cd, Sn, and In the time constants are τ = 55, 179,
and 358 ns, respectively. Accordingly the field gradients are 5.45, 1.5, and
0.74×1017 V/cm2.

Fig. 13.12. Time spectra for 111Cd
in various metals. The spin preces-
sion originates from an interaction
of the quadrupole moment of 111Cd
with an electric field gradient; af-
ter [13.8]



13.2 Perturbed Angular Correlation 347

Problems

13.1a Compare the recoil free emission of γ quanta for the Debye model and the
Einstein model using a personal computer.

(Purpose of exercise: observe the difference between Debye model and Einstein
model.)

13.2 Find an approximation for the fraction of recoil free emission of an Einstein
system at low temperatures and discuss the result for the case of 40 K. What is the
result for f from the Debye system under the same conditions?

(Purpose of exercise: study the possibilities to observe a Mößbauer effect at very
low temperatures.)

13.3 Show that the correlation of two Lorentzian lines is different to the convolution
of two Lorentzian lines.

(Purpose of exercise: remember difference between correlation and convolution.)

13.4 For which temperature would the thermal absorption of γ quanta equal the
recoil free absorption?
Hint: use numerical data for Ge from Table 13.1

(Purpose of exercise: note the two different types of absorption; one of them is
dominating.)

13.5 Calculate the field gradients in Cd, Sn, In by using the results of Fig. 13.12

(Purpose of exercise: evaluate a fundamental parameter of the electronic struc-

ture from an experiment.)
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Generalized Form of Response Functions

In this chapter we will discuss generalized forms of response functions. This is
necessary since we will discuss in the following chapters not only excitations of
the solids by electromagnetic radiation. In particular, excitation with charged
and neutral particles will be important. In such cases not only the energy but
also the momentum of the perturbing probe and of the excited quasi-particles
must be discussed. A generalized dielectric function must consider all such
excitations.

In the first two sections of this chapter we will still use a phenomeno-
logical approach and expand the dielectric response ε(q, ω) in a way which
includes the moments of the quasi-particles. Then, in the following chapters,
the concept of linear response theory will be discussed, including the quantum-
mechanical representation of correlation functions, generalized density-density
response functions, fluctuation-dissipation theorem, and response functions
for charged particles. Beyond the descriptions given here there exists a large
number of textbooks in which linear response theory is explicitly described as
for example in [14.1, 14.2].

14.1 The Momentum Dependence of the Dielectric
Function

The model dielectric functions discussed in Sect. 6.3 are only useful for exci-
tations with zero or very small momentum. They do not consider finite values
of q vectors of excited quasi-particles. The following description takes care of
some of these shortcomings. It concentrates on systems with free carriers.

Since quasi-particles in a solid have well defined energy and momentum,
the generalized response functions such as χ(q, ω) or ε(q, ω) must depend
on both q and ω. As a consequence of the particle dispersion ω itself is a
function of q. The type of quasi-particles excited depends on the nature of the
exciting perturbation. For example, the transverse nature of electromagnetic
radiation does not allow the excitation of longitudinal polarized plasmons. In
contrast, plasmons are excited with a high probability by an electron beam

H. Kuzmany, Solid-State Spectroscopy, DOI 10.1007/978-3-642-01479-6 14, 349
c© Springer-Verlag Berlin Heidelberg 2009



350 14 Generalized Form of Response Functions

Fig. 14.1. Redistribution of free carriers as a con-
sequence of a potential δU/e

but both types of probes can interact with phonons of well defined symmetries
as discussed in Sect. 10.4 and Sect. 15.1.

In Chap. 6 the dielectric response was investigated for q = 0 and ω �= 0.
Here we start the discussion with a particular case which is alternative to these
conditions. We choose ω = 0 and q �= 0. These conditions describe a static
rearrangement of the charges as a response to an applied potential energy
δU(x) with Fourier components δUq. The number of redistributed charges is
δn(x) with Fourier components δnq. From Fig. 14.1 δnq is estimated to be

δnq = −gv(εF)δUq (14.1)

where gv(εF) is the density of states at the Fermi level per unit volume.
The Poisson equation relates δnq to the induced potential δΦ with Fourier
components δΦq

−q2δΦq = − e

ε0
δnq =

e

ε0
gv(εF)δUq . (14.2)

As a consequence of δΦ the resulting potential is not δU/e but δΦ′ or

δΦ′
q = δU/e − δΦq . (14.3)

The response function ε(q) is defined as the ratio between the resulting
potential δΦ′ and the applied potential δU/e. Combining (14.2) and (14.3) we
obtain

δΦ′
q =

(
1 +

e2gv(εF)
q2ε0

)
δUq

e
. (14.4)

The resulting response function is called Thomas–Fermi dielectric function
and has the form

εTF(q) = 1 +
e2gv(εF)

q2ε0
= 1 +

q2
TF

q2
(14.5)

The Thomas–Fermi screening length is

λTF =
1

qTF
=
(

2εFε0

3n0e2

)1/2

, (14.6)
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where in the last part of the equation gv(εF) has been replaced by its
value for free carriers gv(εF) = 3n0/2εF. For a nondegenerate electron system
screening is determined by the Debye screening length

λD =
1
qD

=
(

ε0kBT

e2n0

)1/2

. (14.7)

To derive the generalized response functions ε(q, ω) or χ(q, ω) we proceed
similarly but allow δU and δΦ to be periodic in space and time

δU ∝ ei(qr−ωt)e−αt

δΦ ∝ ei(qr−ωt)e−αt. (14.8)

For particles interacting by a Coulomb potential the relationship between
δΦq and δUq can be worked out within the random phase approximation
(RPA). (The concept of this approximation is described in Appendix L.5).
The result is

eδΦq =
e2

ε0Vq2

∑
k

fF(k) − fF(k + q)
ε(k) − ε(k + q) + h̄ω + iαh̄

δUq , (14.9)

where

fF(k) =
1

exp[(ε(k) − μ)/kBT ] + 1
(14.10)

is the Fermi distribution function for the chemical potential μ. Using the
relation between δU, δΦ′, and δΦ as before the dielectric response function is
obtained in the form

ε(q, ω) = εL(q, ω) = 1 − e2

ε0q2V χ0(q, ω) , (14.11)

where V is the sample volume and χ0(q, ω) is the generalized susceptibility or
density-density response function for neutral fermionic particles given by

χ0(q, ω) =
∑

k

fF(k) − fF(k + q)
ε(k) − ε(k + q) + h̄ω + iαh̄

. (14.12)

The concept of generalized susceptibility is described in more detail in
Sect. 14.3. The factor in front of χ0(q, ω) in (14.11) is the Fourier transform
of the Coulomb energy. The generalized response function εL(q, ω) for α = 0
is known as the Lindhard dielectric function. (Note that α in (14.12) is not a
damping constant but rather a convergency parameter).

Since the Lindhard DF is the general form of the DF for charged particles
it must reduce to the Drude DF and to the Thomas–Fermi DF for q = 0, ω �= 0
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and q �= 0, ω = 0, respectively. The latter is easily proven by replacing the
sum over all k states by an integral in k space as

∑
k = V/(2π)3

∫
d3k and by

expressing the differences in the numerator and in the denominator of (14.12)
by gradients. Finally the resulting derivative of the Fermi distribution function
is replaced by a δ function fF(ε) = −δ(ε − εF). With this and for ω = α = 0
we obtain successively

fF(k) − fF(k + q) = −qf ′
F(k) = −q

∂fF

∂ε
∇kε(k) ,

and

−ε(k + q) + ε(k) = −q∇kε ,

which finally yields from (14.11) the same result for εTF as (14.5).

εTF =
e2

ε0q2V
V

(2π)3

∫
f ′
F(ε)d3k =

e2nv(εF)
ε0q2

+ 1 . (14.13)

Similarly, the Drude DF εD(0, ω) can be derived from (14.11). The explicit
calculation is left as an exercise.

14.2 Excitations of the Electronic System

A number of different excitations from the Fermi surface exist in a system of
free carriers. Most important are the single pair excitations and the plasmons.
In the former an electron is excited from the Fermi sea and a hole remains.
The plasmons are collective modes with a longitudinal polarization as already
described in Sect. 6.3.2. The spectral range of the various excitations (with
a given q vector) is shown schematically in Fig. 14.2. The intensity of the
excitation is represented by the dynamic form factor S(q, ω). Multiple pair
excitations have a rather low probability.

Fig. 14.2. Schematic repre-
sentation of the spectral ex-
citations S(q, ω) of a Fermi
liquid
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14.2.1 Plasmons and Plasmon Dispersion

Plasmons are longitudinal excitations of the electronic system. Their eigenfre-
quency ωpl was derived for the Drude model from the zeros of the dielectric
function εD(ω). In general the plasmon also has a dispersion ωpl(q). Similar
to the Drude case it can be derived from the Lindhard DF by evaluating the
zeros of εL(q, ω). For small values of q (14.11) can be expanded and yields

ε(q, ω) = ε∞ −
ω2

p

ω2
− 6εF

5m∗ω2
p

q2 + ... . (14.14)

For ε(q, ω) = 0 the plasmon dispersion

ωpl(q) = ωpl(0) +
3εFq2ωpl(0)
5m∗ω2

pε∞
+ ... (14.15)

follows. ωp is the plasma frequency determined by the particle concentration
and particle effective mass as given in Sect. 6.3. Plasmons can originate from
various sets of electrons such as conduction electrons, valence electrons, etc.,
provided the binding energy for these electrons is much smaller than the plas-
mon energy. If the energy range of the set includes an electronic gap the gap
energy adds to the plasmon energy like

h̄2ω2
pl =

h̄2ne2

ε0m∗ε∞
+ ε2g . (14.16)

14.2.2 Single-Particle Excitation

Single-particle excitations with dispersion ε(q) are possible for a wide con-
tinuum in energy and momentum. However, conservation rules and the Pauli
principle impose characteristic limitations. Excitation of an electron with wave
vector k from below the Fermi surface to a state with wave vector k + q above
the Fermi surface needs the energy

h̄ω(q) =
h̄2(k + q)2

2m
− h̄2k2

2m
=

h̄2kq

m
+

h̄2q2

2m
. (14.17)

From this and from the schematic drawing of the excitations in Fig. 14.3a the
following limits for the excitations can be easily verified:

0 ≤ ε(q) ≤ h̄2kFq

m
+

h̄2q2

2m
for q < 2kF

− h̄2kFq

m
+

h̄2q2

2m
≤ ε(q) ≤ h̄2kFq

m
+

h̄2q2

2m
for q > 2kF . (14.18)
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The lower graph in Fig. 14.3a shows the limiting case where k = kF is
oriented in the opposite direction to the excitation q. Figure 14.3b shows the
acceptable excitation range in an energy-wave vector diagram as hatched area.

Fig. 14.3. Single-particle excitations for a Fermi liquid; excitations from the Fermi
sphere (a) and excitation diagram (b). εpl(q) represents a plasmon dispersion and
εph(q) the dispersion for an optical phonon. (The phonon is upshifted in energy
for clarity). The hatched area in (b) covers the range of allowed single-particle
excitations

The plasmon is only stable in the area which is not accessible to single
particle excitation. In the hatched area the plasmon decays rapidly into an
electron-hole pair. Similar arguments are valid for the phonons. As soon as the
dispersion relation εph(q) crosses the border line to single particle excitations
the decay of the phonon into an electron-hole pair is an active channel (Landau
damping) and results in a strong broadening of phonon lines in Raman, EELS,
or neutron scattering.

14.2.3 Combination of the Dielectric Response

Since the susceptibilities discussed above or in Chap. 6 describe polarizations,
they are additive and can contribute as a sum to the DF. An important and
often observed example is the interaction of LO phonons and plasmons. The
DF (for q = γ = 0, and τ = ∞) is

ε(0, ω) = 1 + χ∞ + χp + χosc = ε∞ − ε∞
ω2

p

ω2
+ ε∞

ω2
L − ω2

T

ω2
L − ω2

. (14.19)

For ε(0, ω) = 0 a combined phonon-plasmon mode is obtained with two char-
acteristic frequencies ω±

ω± = {ω2
p + ω2

L ± [(ω2
p − ω2

L)2 + 4ω2
p(ω2

L − ω2
T)]1/2}/2 . (14.20)
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Since the plasma frequency shifts with the square root of the particle density
n the behavior of the coupled phonon-plasmon mode scales with the latter.
Figure 14.4 shows experimental results from Raman scattering on GaAs. The
position of the modes is plotted versus the carrier concentration.

Fig. 14.4. Frequency of coupled phonon-plasmon modes ω+ and ω− in GaAs
versus carrier concentration. The horizontal lines are the bare LO and TO phonon
frequencies; after [14.3]

From the figure the plasmon and the LO phonon remain independent as
long as they are far enough apart in energy. With increasing carrier concen-
tration the plasmon approaches the LO mode which starts to shift upwards.
Finally, the lower branch of the combined mode merges with the TO mode
and only the upper branch moves on.

Small particles with a DF ε1 suspended in a matrix with DF εM are an-
other example of a combined dielectric function. If the particles are sufficiently
dilute, metallic and of the size of the light wavelength the resulting DF is given
by

εMG = εM

(
1 + 3f

εD(ω) − εM
εD(ω) − 2εM

)
, (14.21)

where εD is the Drude DF and f the fill factor. The DF of (14.21) is known
as the Maxwell–Garnett dielectric function. Such functions can be used to
determine particle sizes from transmission and reflection experiments. For
more details and applications of this function see [14.4].
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14.3 Generalized Response Functions and Correlation
Functions in Linear Response

In order to describe the interaction of a system with a perturbation in an even
more general form concepts of generalized response functions and correlation
functions were developed. Eventually they can be specified to yield the results
we discussed in the last sections.

In the following discussion a linear response is again assumed but in a
more general way as it was presented in Chap. 6.

14.3.1 Linear Response Theory and Kramers–Kronig Relations

A general response function ΦAB is defined by the response of a system to a
perturbation B = h(t) where the response is observed by the variable A. If
the perturbation is small the response is linear and has the form

A(t) = 〈A〉 +
∫ t

−∞
dt′ΦAB(t − t′)h(t′) = 〈A〉 +

∫ ∞

0

dτΦAB(τ)h(t − τ) .

(14.22)

where in the last part of the equation t − t′ was substituted by τ . The
average 〈〉 is taken over the ensemble in space without perturbation. We as-
sume 〈A〉 = 0 in the following and understand A(t) = 〈A〉 as the change in A
induced by the perturbation h(t). h(t) is assumed to be a real force so that
ΦAB(t) is also real. The definition of the response function in (14.22) implies
causality. The response at time t is determined by the perturbation acting
the full time interval from −∞ to t. Considering the Fourier transform of
(14.22) and remembering that the Fourier transform for a convolution of two
functions is the product of the transformed functions we have

〈A(ω)〉 = ΦAB(ω)h(ω) = χAB(ω)h(ω) , (14.23)

with

χAB(ω) =
〈A(ω)〉
h(ω)

=
∫ ∞

0

dtΦAB(t)eiωt . (14.24)

χAB(ω) is called the generalized susceptibility and (14.23) is a generalized form
of (6.1) from Chap. 6. While ΦAB(t) is real χAB(ω) is complex of the form

χ(ω) = χr(ω) + iχi(ω) , (14.25)

where we have dropped the indices AB for simplicity. From the definition for
χ(ω)
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χ(−ω) = χ∗(ω)

follows immediately. Considering the real part and the imaginary part of χ
separately we find

χr(−ω) = χr(ω), χi(−ω) = −χi(ω) . (14.26)

In other words, χr(ω) is an even and χi(ω) is an odd function of the frequency
ω.

From the definition of the generalized susceptibility in (14.24), which im-
plies causality between the perturbation of a system and its response a very
important property of the linear response functions can be derived. As explic-
itly shown in Appendix L.1 an integral representation of the form

χ(ω0) = − i
π

P
∫

χ(ω)
ω − ω0

dω . (14.27)

exists for the generalized susceptibility χ(ω), where P is the principal value of
the integral.

The above relation leads immediately to the famous Kramers–Kronig re-
lations when we write the relation separately for the real part and for the
imaginary part of χ(ω). In this case we obtain

χr(ω0) =
1
π

P
∫

χi(ω)
ω − ω0

dω ,

χi(ω0) = − 1
π

P
∫

χr(ω)
ω − ω0

dω . (14.28)

The relations even hold when the response function has a pole of the form
χ = iA/ω at ω = 0. In this case the point ω = 0 on the real axis must also
be excluded from the integration and contributes a value of −iπA/ω to the
integral in (14.27).

Considering that χr(ω) and χi(ω) are even and odd, respectively, one ar-
rives readily at the Kramers–Kronig relations from Sect. 6.1.3.

14.3.2 The General Response Function

To obtain a general analytical expression for the response function we restrict
ourselves to the linear response of the particle density n(r) and a scalar and
velocity independent interaction energy U(r, t) of a probe particle. The energy
is assumed periodic in time with frequency ω and with Fourier components
Uq = VU(q, ω) where U(q, ω) is given in units of energy. Since the perturba-
tion is assumed small the response is not only expected to be linear but also
selective in q. This means Fourier components can be studied.
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The density for a discrete distribution of N particles is

n(r) =
1
N

∑
j

δ(r − rj) (14.29)

with the dimensionless Fourier transform nq

nq =
∫

n(r)e−iqr d3x

=
1
N

∑
j

∫
δ(r − rj)e−iqr d3x =

1
N

∑
j

e−iqrj . (14.30)

The Fourier components of the total interaction energy have the form

Hint(q, ω) = U(q, ω)nq .

The interaction Hamiltonian written as an operator with time dependence
given by the frequency ω is

Hint = n+
q U(q, ω)e−iωteαt . (14.31)

α is a small stability parameter to guarantee adiabatic boundary conditions.
It can be reduced to zero in final results.

With the interaction of (14.31) the system is transferred from the ground
state |0〉 to any of the excited states |l〉 while the momentum of the probe is
changed from ppr to ppr − q. The matrix elements for these transitions are

〈l|Hint|0〉 = U(q, ω)〈l|n+
q |0〉 = U(q, ω)(n+

q )l0 . (14.32)

The golden rule of quantum mechanics determines the probability for the
transition. In the limit α → 0 this yields

P (q, ω) =
2π

h̄

∑
l

|〈l|Hint|0〉|2δ(h̄ω − h̄ωl0)

=
2π

h̄
|U(q, ω)|2

∑
l

|(nq)l0|2δ(h̄ω − h̄ωl0) . (14.33)

The sum extends over the complete set of eigenstates of the system as it
is requested in quantum mechanics. h̄ωl0 are the transition energies, and the
relevant matrix elements (nq)l0 are given by the interaction Hamiltonian from
(14.31)

Equation (14.33) determines the generalized response function or gener-
alized susceptibility. According to (14.23) the Fourier components 〈n(q, ω)〉
of the resulting particle density are related to the generalized susceptibility
χ(q, ω) by

〈n(q, ω)〉
U(q, ω)

= χ(q, ω) , (14.34)
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where the expectation value 〈n(q, ω)〉 is a dimensionless quantity defined as

〈n(q, ω)〉 = 〈ψ+(r, t)|nqeiωt|ψ(r, t)〉 ∝ U(q, ω) . (14.35)

The wave functions in (14.35) are the system wave functions including the
wave function of the probing particle. Within linear response the expectation
value is proportional to the perturbation U(q, ω).

The function in (14.34) is called the density-density response function.
The wave functions in (14.35) must be evaluated from the time-dependent
Schrödinger equation. For a linear response this can be done by first order
perturbation theory as it is demonstrated in Appendix L.2. The result yields
the following expression for χ

χ(q, ω) =
∑

l

|(nq)l0|2
2h̄ωl0

(h̄ω + ih̄α)2 − h̄2ω2
l0

. (14.36)

The very famous result of (14.36), which expresses the linear response
function in terms of the true eigenstates of the system, was first reported by
R. Kubo in 1956. The type of calculation is quite general and not restricted
to a density-density response. Similar results have been obtained for a vector
potential as a perturbation of charged particles. In this case a current-current
response function is obtained.

The density-density response function for neutral particles which
follow Fermi statistics

For the explicit evaluation of the matrix elements (nq)l0 and transition
energies h̄ωl0 of a particular system quantum-mechanical calculations are re-
quired. An instructive example for the above model is the generalized suscep-
tibility for noninteracting and neutral particles which follow Fermi statistics.
The allowed states of the particles are given by the Fermi distribution function
fF(k) where h̄k is the momentum of the particles. The perturbation induces
transitions from states |k〉 to states |k + q〉 with transition matrix elements
(nq)l0 = (nq)k+q,k = (nq)qk and transition energies

h̄ωl0 = h̄ωk+q,k = h̄[ω(k + q) − ω(k)] = h̄ωqk .

The square of the matrix element |(nq)qk|2 must be calculated explicitly. This
has been done by Hartree–Fock calculation or within a random phase ap-
proximation [14.1]. The correct result can also be obtained intuitively. The
probability for a transition from state |k〉 to state |k + q〉 is given, at finite
temperatures, by the product for the probabilities that state |k〉 is occupied
and state |k + q〉 is empty. This product is fF(k)[1− fF(k + q)]. Since the sum
in (14.36) extends over all eigenstates k, we obtain for a given vector q

χ0(q, ω) =
∑

k

fF(k)[1 − fF(k + q)]
2h̄ωqk

(h̄ω + ih̄α)2 − h̄2ω2
qk

. (14.37)
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By separating the fraction into a sum of two fractions where the denominator
is linear in energy and renormalizing the index which counts the k vectors in
the second fraction in a suitable way (14.37) becomes

χ0(q, ω) =
∑

k

fF(k) − fF(k + q)
h̄ω + ε(k) − ε(k + q) + ih̄α

. (14.38)

This is the final form for the density-density response function. Note that
the dimension of χ0(q, ω) is an inverse energy.

14.3.3 Dynamic Form Factor and Correlation Functions

The response of a system is closely linked to the correlations which exist
between the positions and momenta of different particles. To describe such
correlations it is common practice to introduce an additional function S(q, ω)
which describes the dynamical structure of the system. This dynamic structure
factor or dynamic form factor is defined from (14.33) by

P (q, ω) =
2π

h̄
|U(q, ω|2S(q, ω) (14.39)

where

S(q, ω) =
∑

l

|(nq)l0|2δ(h̄ω − h̄ωl0) (in Joul−1) . (14.40)

S(q, ω) is a very fundamental function of the solid, since it describes all pos-
sible excitations for a particular probe. It is always real and positive and
vanishes for ω < 0. The latter is a consequence of the δ function in (14.40).

Like for all spectral excitations of solids, sum rules exist for the dynamic
structure factor. One example is
∫ ∞

0

ωS(q, ω)dω =
Nq2

2m
. (14.41)

A realistic example for the above situation would be a scattering exper-
iment with neutrons in liquid He4. However, as we will see in the following
the dynamic structure factor is likewise obtained for charged particles and the
concept is applicable to inelastic scattering of neutrons, electrons, light, and
even to absorption, in a large variety of media such as crystals, amorphous
solids, liquids, etc.

As we may expect from the above discussion the dynamic structure factor
is closely related to the density correlations and to the generalized susceptibil-
ity χ(q, ω). This relation is obtained by introducing the integral representation
of the δ function from Appendix B.8 as
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δ(ω) =
1
2π

∫
e−iωtdt

and representing the time evolution of the density excitations in the Heisen-
berg picture. This procedure is again very common in spectroscopy. From
(14.40) we obtain

S(q, ω) =
1

2πh̄

∫ ∑
l

|(nq)l0|2e−i[ωt+(εl/h̄−ε0/h̄)t] dt

=
1

2πh̄

∫ ∑
l

〈0|e−iHt/h̄nq(0)e+iHt/h̄|l〉〈l|n+
q (0)|0〉e−iωt dt

=
1

2πh̄

∫
S(q, t)e−iωt dt , (14.42)

where H is the total system Hamiltonian and S(q, t) stands for

∑
l

〈0|e−iHt/h̄nq(0)e+iHt/h̄|l〉〈l|n+
q (0)|0〉 .

The first part of this expression is independent of l and can therefore be re-
moved from the sum. It is the Heisenberg representation for the time depen-
dent operator nq(t). The remaining sum is over a complete set of eigenstates
l and therefore equal to one1. It therefore represents n+

q (0)|0〉. Thus, S(q, t)
describes the dynamic correlation between the particle density at the time
t = 0 and at t by

S(q, t) = 〈0|nq(t)n+
q (0)|0〉 = 〈nq(t)n−q(0)〉 . (14.43)

Formally the center part of this equation is a definition for the averaging pro-
cess indicated at the right part of the equation. As it is written it refers to
T = 0. In practice the symbols 〈〉 include also thermal averaging in the sense
of (L.11). The expression on the right side of the equation is the density-
density correlation function. Note the difference between the correlation func-
tion defined here on a quantum-mechanical basis and the classical correlation
function we used in Sect. 2.5. Going back to (14.42) we obtain the final and
very fundamental result

S(q, ω) =
1

2πh̄

∫
eiωt〈nq(t)n−q(0)〉dt . (14.44)

Expressed in words: the dynamic form factor is the Fourier transform of
the density-density correlation or S(q, ω) is the spectral density of the state

1 Remember from quantum mechanics: If |l〉 is a complete set of eigenstates of a
system |ψ〉 =

∑
l |l〉〈l|ψ〉 .
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nq(t)|0〉. Note that (14.44) is the quantum-mechanical analogue to the Wiener–
Khintchin theorem (2.67).

The similarity between the definition of S(q, ω) and the generalized suscep-
tibility χ(q, ω) implies an immediate relationship between the two functions.
Using (14.36) for the generalized susceptibility and the expression (14.40) for
the dynamic form factor it is indeed straightforward to show that

χ(q, ω) =
∫ ∞

0

dω′S(q, ω′)
{

1
ω − ω′ + iα

− 1
ω + ω′ + iα

}
. (14.45)

The density-density response function can be calculated immediately from the
dynamic form factor. In contrast to S(q, ω), χ(q, ω) = χr(q, ω) + iχi(q, ω) is
complex. The relations can be written in a more explicit form by comparing
the real and the imaginary part in (14.45) and using the Dirac relation (B.25)
for x − a = ω − ω′. The result of the evaluation is

χr(q, ω) = P
∫ ∞

0

dω′S(q, ω′)
(

2ω′

ω2 − ω′2

)
,

χi(q, ω) = −π[S(q, ω) − S(q,−ω)] . (14.46)

As required χr is an even function of ω while χi is odd. Since S(q, ω) is
determined by the real transitions induced by the perturbation it describes the
dissipative part of the interaction process. Thus the dissipative part involves
the imaginary part of the response function2. As discussed in the next section
S(q, ω) describes the energy transfer from the probe to the system whereas
S(q,−ω) describes the energy transfer from the system to the probe. Hence
for zero temperature S(q,−ω) is zero and the dynamic form factor becomes
−(1/π)χi(ω).

At finite temperatures a similar relation between S(q, ω) and χ(q, ω) can
be obtained as shown in Appendix L.3. It has the form

S(q, ω) = − 1
π

[1 − e−βh̄ω]−1χi(q, ω) =
1
π

[1 + fE(ω, T )]χi(q, ω) ,

(14.47)

where fE(ω, T ) is the Bose–Einstein distribution.
Equation (14.47) is very famous and known as the fluctuation-dissipation

theorem.
2 Note: χ(q, ω) is complex, even for vanishing α in (14.31). α is a convergency

parameter and has nothing to do with dissipation of energy from the probing
particle to the system. This dissipation is described by χi.
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14.3.4 The Generalized Dielectric Function for Charged Particles

We proceed now to charged particles and evaluate the dielectric response
function. The standard definition of the DF ( appendix B.2), written in Fourier
components, is

D(q, ω) = ε(q, ω)ε0E(q, ω) . (14.48)

Alternative but equivalent definitions using the charge density are more
appropriate to study the linear response explicitly. The Poisson equations
expressed by the electric displacement D(q, ω) or by the internal field E(q, ω)
are

iqD(q, ω) = ene(q, ω) (14.49)

and

iqE(q, ω) =
e

ε0
ne(q, ω) +

e

ε0
〈n(q, ω)〉 , (14.50)

respectively. ene(q, ω) is the density of external charges (probes) and e〈n(q, ω)〉
is the expectation value for the resulting induced charges (response). Replacing
the E field in (14.50) by using (14.48) and (14.49) we can express 1/ε(q, ω)
by the external charges ne and obtain

1
ε(q, ω)

= 1 +
〈n(q, ω)〉
ne(q, ω)

. (14.51)

To obtain ε(q, ω) in terms of the density–density response function we proceed
as in Sect. 14.1. Details of this calculation are found in Appendix L.4. The
result is

1
ε(q, ω)

= 1 +
e2

q2ε0V
χ(q, ω) . (14.52)

If we introduce instead of Uq a screened Coulomb potential Uq/ε(q, ω) and
apply the random phase approximation (RPA) we yield the result of (14.11)
in Sect.14.1 as

ε(q, ω) = 1 − e2

q2ε0V
χ0(q, ω) , (14.53)

where χ0(q, ω) is given by (14.12).
To find the relation between ε(q, ω) and S(q, ω) we express the inverse of

the DF in terms of the exact eigenstates of the electron system. This means
we express χ(q, ω) in (14.52) from (14.45) and find

1
ε(q, ω)

= 1 +
e2

ε0q2V

∫ ∞

0

S(q, ω′)
{

1
ω − ω′ + iα

− 1
ω + ω′ + iα

}
dω′
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(14.54)

Hence the dynamic structure factor S(q, ω) represents the spectral density of
1/ε(q, ω). Like χ(q, ω), ε(q, ω) is complex and can be written as

ε(q, ω) = εr(q, ω) + iεi(q, ω) . (14.55)

The imaginary part of 1/ε(q, ω) is then obtained in analogy to (14.46)

Im
{

1
ε(q, ω)

}
=

εi(q, ω)
|ε(q, ω)|2 =

e2π

ε0q2V [S(q, ω) − S(q,−ω)] . (14.56)

For T = 0 S(q,−ω) = 0 so that S(q, ω) becomes

S(q, ω) =
q2ε0V

e2

εi(q, ω)
|ε(q, ω)|2 = −q2ε0V

e2π
Im
{

1
ε(q, ω)

}
. (14.57)

Since S(q, ω) describes the energy dissipated by the propagating probe, the
expression Im{−1/ε(q, ω)} is called the energy-loss function.

Problems

14.1 Calculate the screening length for a non-degenerate electron gas.
(Purpose of exercise: observe the difference between degenerate and non-

degenerate electron gas.)

14.2 Show that the Fourier transform of the Coulomb potential in three dimensions
is e/ε0q

2.
Hint: Evaluate first the Fourier transform for the screened Coulomb potential Φ(r) =
(1/r) exp(−a/r) and then reduce the screening to zero.

(Purpose of exercise: derive a very important relationship.)

14.3∗ Derive the Drude DF from the Lindhard DF for a Fermi liquid by specifying
for q = 0, ω 	= 0.

(Purpose of exercise: training in the evaluation of sums in k space.)

14.4 Discuss the possibility to find a broadening of lines in a light scattering exper-
iment on acoustic phonons in heavily doped Si. Take as an example Si with a hole
concentration of n = 1024 m−3.
Hint: The light and heavy hole mass in Si are 0.16 m0 and 0.5 m0, respectively. The
electron gas is degenerate so that the free-electron model applies. The sound velocity
of Si is 8 × 103 m/s.

(Purpose of exercise: understand the meaning of the single pair excitation
regime.)

14.5 Discuss the relation between the frequency of the coupled phonon-plasmon
mode and the carrier concentration for very high and very low carrier concentrations.

(Purpose of exercise: understand the limiting behavior of the curves in Fig. 14.4.)
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14.6 Calculate the real part and the imaginary part of the density-density response
function from (14.12) for α → 0 and discuss the physical meaning of the result.
Hint: Use the Dirac relation

lim
α→0

∫
f(x)dx

x − a + iα
= P

∫
f(x)dx

x − a
− iπ

∫
f(x)δ(x − a)dx .

(Purpose of exercise: understand the meaning of the real and imaginary part of
a response function.)

14.7 n Calculate the dispersion of the surface plasmon for small values of q.
(Purpose of exercise: Get familiar with ε(q, ω).)



15

Spectroscopy with Electrons, Positrons and
Muons

Spectroscopy as discussed so far has been for electromagnetic radiation inter-
acting with solids. According to the previous chapters a beam of charged or
magnetic particles will also interact with the electronic system and can thus
be used for spectroscopy. The most important experimental techniques in this
field are electron energy loss spectroscopy (EELS), tunneling spectroscopy (TS),
positron annihilation spectroscopy (PAS), and muon spin rotation (μSR).

In (EELS) the energy loss of an electron is studied on its way through
a crystal. The loss can be accomplished by any excitation of quasi-particles
which couple to the moving electron. Formally the processes are similar to
Raman scattering. A basic difference between the two comes from the request
to generate an intermediate electron-hole pair in Raman spectroscopy. It is
this pair which interacts with the quasi-particles of the solid whereas in EELS
the probing electron interacts directly. In addition, spectroscopy with elec-
trons extends the possible range of excitations dramatically. The much larger
momentum of the electrons as compared to photons for the same energy en-
ables not only the energy of the excitations but also their momentum to be
measured.

Since tunneling through a barrier depends critically on the density of states
on both sides of the junction recording current-voltage characteristics or the
corresponding differential conductance is particularly appropriate to measure
energy gaps and density of sates in general. For phonon assisted tunneling
even phonon density of states can be investigated. In more recent experiments
electrons are allowed to tunnel over small distances outside the solid which
enables a scanning process. This special type of TS is known as scanning
tunneling spectroscopy (STS).

Besides the stable electrons also several other leptons with rather short
lifetime have been used successfully in solid-state spectroscopy. Most impor-
tant are positrons in PAS and muons for μSR. If a positron is accommodated
in a solid its lifetime depends critically on the environment and enables thus
information to be drawn about the latter.

Muons have a magnetic moment which can be used to detect local mag-
netic fields in crystals. Similar to the nuclei in the experiments of perturbed
angular correlation these moments precess in a solid around the local field.

H. Kuzmany, Solid-State Spectroscopy, DOI 10.1007/978-3-642-01479-6 15, 367
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 15.1. Energy-wave
vector diagram for spec-
troscopy with electromag-
netic radiation and with par-
ticles; (1 nm−1 = 107 cm−1

), (IR: infrared, VIS: visible,
UV: ultraviolet, X: x rays,
γ: γ radiation)

The rotation frequency can be determined from the angular distribution of
muon decay products. The technique is known as μSR.

15.1 Electron Energy Loss Spectroscopy (EELS)

In EELS a beam of electrons is transmitted through or reflected from a crystal
and the change in energy and direction is measured. The interaction between
the electron beam and the electrons in the system is due to the Coulomb
potential. Thus, the possible excitations are similar to those in light-scattering
spectroscopy or optical absorption. On the other hand with electrons quasi-
particles can be excited in the whole Brillouin zone as the wave vector for a
10-eV electron is about 2 × 108 cm−1 whereas it is only 5 × 105 cm−1 for a
10-eV photon.

It is interesting at this point to compare the spectral range in energy and
momentum which is accessible to the various spectroscopic techniques. Re-
sults are shown in Fig. 15.1 for absorption of electromagnetic radiation, light
scattering, x-ray scattering, inelastic neutron scattering and inelastic electron
scattering. The outlined areas represent the limits in energy and momentum
where the particular spectroscopic technique is possible. The figure clearly
demonstrates the complimentary ranges for spectroscopy with radiation in the
visible spectral range and with electrons or neutrons. The lower limit on the
energy scale for electron spectroscopy is determined by the energy resolution
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of the detection systems. The upper limit is given by the handling of high
energy electrons and the condition that energy transferred in a scattering ex-
periment should be much smaller than the energy of the exciting particle.
Neutron scattering has a very good energy resolution for low energy scatter-
ing. This enables excitation energies of quasi-particles as low as 0.1 meV to
be detected.

Momentum resolutions are determined by the magnitude of the angle
which can be resolved in forward scattering. For one degree angular reso-
lution in Brillouin or Raman scattering this is 103 cm−1. On the contrary,
for neutron or electron scattering the momentum resolution is only of the
order of 106 to 107 cm−1. Upper limits for momentum transfer are for 180◦

backscattering.

15.1.1 Electron Energy Loss

Since EELS is based on an inelastic scattering process, all relationships con-
cerning conservation of energy and momentum are valid as discussed in
Chap. 9. There is in particular independent access to energy transfer and
momentum transfer as demonstrated for Brillouin scattering experiments. In
classical EELS experiments the electron energy was < 100 eV which limited
the range of excitations to ≈ 10 eV in energy and to 107 cm−1 in momentum.
With respect to transferred momentum this is already much larger than for ex-
periments with light but still does not cover the whole Brillouin zone. In more
recent EELS experiments the primary energy of the electrons is 100–200 KeV
which corresponds to wave vectors of 2×109 cm−1. This is much larger than
the first Brillouin zone and means dispersion relations can be measured over
the whole zone.

Figure 15.2 shows the scattering geometry for EELS experiments. The
incident electron beam has energy and momentum εi and h̄ki, respectively.
Scattering occurs with an energy loss Δε � ε and momentum change q � ki

so that the scattering angle θ remains small. From energy and momentum
conservation we find

q⊥ = ks sin θ ≈ kiθ

q‖ ≈ ki − ks ≈ ki
Δε

2εi
� q⊥ . (15.1)

Fig. 15.2. Scattering geometry in
electron energy-loss spectroscopy.
q‖ and q⊥ are indicated by dashed
arrows
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q⊥ and q‖ refer to the directions perpendicular and parallel to the electron
beam. (15.1) implies that the angle θ is a good measure for the total trans-
ferred momentum.

For a formal description of the scattering intensities results can be used
which were obtained in Chap. 9 for light scattering. Similar to (9.6) we define
a scattering cross section d2σ/dΩdh̄ω as the number of scattered electrons
observed per unit of time, solid angle and energy interval for a given incident
intensity (in electrons per unit of time and area). The evaluation of the scat-
tering intensity needs a quantum-mechanical perturbation calculation. It is
usually performed in the Born approximation. The resulting cross section is
given by the dynamical form factor S(q, ω) as defined in Sect. 14.3 by (14.40)
and as already used in the description of Brillouin scattering with (9.52).

In the above approximation the scattering cross section is

d2σ

dΩdh̄ω
=
(

dσ

dΩ

)
el

S(q, ω) , (15.2)

where (dσ/dΩ)el is the elastic contribution to the scattering process. The
dynamical form factor for the electronic system is

S(q, ω) =
q2ε0V

e2
Im
{
− 1

ε(q, ω)

}
. (15.3)

Im{−1/ε(q, ω)} is the energy loss function. The factor in front is the scattering
volume and the inverse of the Fourier transform of the Coulomb interaction

U−1
q =

ε0q
2

e2
. (15.4)

(15.3) is a special case of the fluctuation-dissipation theorem for particles
subjected to a Coulomb interaction. For the elastic scattering the classical
Rutherford cross section(

dσ

dΩ

)
el

=
4

r2
Bq4

(15.5)

is appropriate, where rB is the Bohr radius.
The resulting relationship between cross section and loss function as given

by (15.2), (15.3) and (15.5) is

d2σ

dΩdh̄ω
=

4ε0V
e2r2

Bq2
Im
{
− 1

ε(q, ω)

}
. (15.6)

It enables the imaginary part of 1/ε(q, ω) to be determined from the scattering
experiment. Finally, ε(q, ω) is obtained from a Kramers–Kronig analysis.
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Fig. 15.3. Dielectric function and energy loss function for a free electron system
according to (6.47) for ωp = 1400, τ = 0.005 and two different values for ε∞, (a)
and for a Kramers–Heisenberg oscillator function according to (6.37) for ωT =
500, ωp = 200, γ = 200 (b); frequencies are in arbitrary units; (- - -) εi, (—) εr

Since Im{−1/ε(q, ω)} is the energy loss of the electrons while passing
through the crystal it is interesting to compare this function with the imag-
inary part of the DF which describes the absorption of the beam. The loss
function has the explicit form

Im
{
− 1

ε(q, ω)

}
=

εi(q, ω)
ε2
r (q, ω) + ε2

i (q, ω)
. (15.7)

As long as εi � εr it scales with εi, like the absorption α(ω). This is not sur-
prising since both originate from the same DF and from the same dynamical
form factor. The possible excitations of the electronic system are the basic
properties which enter both response functions.

The difference (or similarity) between loss function and εi can be studied
by plotting the relevant relations for simple DFs. This is done in Fig. 15.3a,b
for the Drude DF and for the Kramers–Heisenberg DF from Chap. 6. The two
functions represent the response from free carriers and from dipole transitions,
respectively. According to part (a) of the figure the shape of the loss function
is dramatically different from εi(ω). It always has a maximum which depends
strongly on ε∞. The maximum appears for the frequency where εr crosses
zero which is for ω = ωpl in the case of the Drude DF. The response functions
for the oscillator are different. Both, the loss function and εi(ω) exhibit a
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maximum as shown in Fig. 15.3b. Whereas the maximum for εi occurs at the
transition energy ωT of the dipole the maximum for the loss function occurs
for ω2 = ω2

T + ω2
pl, where ωpl is determined by the number of oscillators in

the system and by ε∞ (ω2
pl = ω2

p/ε∞). A typical example of the oscillator DF
is the fundamental transition in a semiconductor with a wide gap and narrow
bands. Such semiconductors are often found in organic materials.

The similarity of the loss function for the free carriers and for the oscillator
as shown in Fig. 15.3 is striking. A simple calculation shows, however, that
the functional dependences of Im{1/ε(ω)} and of εi(ω) are different so that
the Kramers–Kronig transformation gives the correct result for εr(ω) in both
cases.

15.1.2 Spectrometers and Detectors

The first spectrometers for the determination of the energy loss of an electron
beam in the solid were constructed for energies below 100 eV since only for this
range a satisfactory resolution could be reached. Experiments were carried out
in backscattering or for very thin foils because of the strong absorption of the
electrons. Also the constructions did not allow the measurement of the angular
distribution of the scattered electrons. Such spectrometers were discussed in
Sect. 12.1.2. Spectrometers using more than 100 KeV electron energy allow
transmission through samples with a thickness up to 100 nm and more. In the
sense of solid-state physics this is bulk material.

Figure 15.4 sketches a spectrometer for high voltages. After emission from
the source the electrons are deflected by 180◦ in an electrostatic monochroma-
tor and monochromatized to 0.05 eV. The energy resolution of the monochro-
mator is

Fig. 15.4. Spectrometer for the analysis of electron energy loss; (ES: electron
source, MO: monochromator, AC: accelerator, S: sample, DP: deflection plates,
DC: decelerator, AN: analyzer, B: electron beam. D: detector); after [15.1]
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Δε = ε

(
W

2R
+ α2

)
, (15.8)

where W, R, and α are the aperture of the entrance stop, the radius of the
spectrometer and the divergency of the emerging electrons, respectively. After
leaving the monochromator the electrons are accelerated to 170 KeV and hit
the sample with this energy. The transmitted electrons can be selected with
respect to their angular distribution by deflection plates. In the following stage
the high energy electrons are decelerated to allow for an appropriate energy
analysis. For the deceleration the same voltage is used as for the acceleration
but with inverted sign. The application of the same voltage source for accel-
eration and deceleration is important for a good energy resolution since any
noise in the voltage with frequency lower than the inverse transit time is elim-
inated. In this way a final energy resolution of 0.05 eV can be obtained. The
analyzer is constructed equivalent to the monochromator and the detector is
a channeltron, or, for high currents, a Faraday coup. The spectrometer needs
a vacuum of 10−5 to 10−6 Pa.

15.1.3 Applications of Electron Energy-Loss Spectroscopy

In the classical EELS experiments plasmons in metals were investigated for
q = 0. Results for Mg after excitation with 2-KeV electrons are shown in
Fig. 15.5. The series of peaks corresponds to multiple excitations. The double
character of the peaks indicates two types of oscillations: a surface plasmon
and a volume plasmon. The plasmon energies derived from the spectrum are
9.5 and 11.5 eV for the surface plasmon and for the volume plasmon, respec-
tively. This yields from the latter a carrier concentration of 9×1022 cm−3 if
ε∞ is assumed to be one and the effective mass of the electrons is the free
electron mass, in very good agreement with reported values of 8.9×1022 cm−3

for bulk Mg metal.
The wide range of applications for EELS can be seen from Fig. 15.6. Part

(a) shows spectra of Al in the energy range between 1 eV and 2000 eV and

Fig. 15.5. Energy loss of 2 KeV electrons
after excitation of volume plasmons and
surface plasmons in Mg; after [15.2]
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Fig. 15.6. Electron energy loss for Al between 1 eV and 2000 eV (a) and tran-
sitions in a schematic band picture (b); (IB: intraband, SP: surface plasmon, P:
volume plasmon, 2p, 2s: valence band transitions, 1s: core transitions); after [15.1]

part (b) the corresponding transitions. The various transitions are explained in
the figure caption. The spectrum starts with low energy intraband excitations
followed by the dominating scattering from surface and volume plasmons.
Again multiple excitation is observed for the plasmons. With increasing energy
transitions appear from the 2p and 2s valence bands to the conduction band
above the Fermi energy. Finally, for energies as high as 1600 eV transitions
from the 1s core levels can be observed.

In contrast to photoelectron spectroscopy where only occupied states can
be investigated EELS allows the study of the unoccupied states of a solid. Fig-
ure 15.7 shows observed electron intensities from scattering experiments with
TiC and VC. Transitions are from the conduction band into states above the
Fermi edge. The dashed lines are calculated joint densities of states between
the conduction band and higher bands.

Fig. 15.7. Intensity of electrons scattered from TiC and VC versus distance from
above the Fermi edge, as measured (—) and as calculated (- - -); after [15.1]



15.1 Electron Energy Loss Spectroscopy (EELS) 375

Fig. 15.8. Energy loss func-
tions for gold as obtained
from EELS (—), after [15.3],
and from optical measurements
(- - -), after [15.4]

The equivalency of the loss function obtained from EELS and from optical
absorption is another important prerequisite of linear response theory. The
agreement between two corresponding results is demonstrated in Fig. 15.8 for
gold. The broad background in the two spectra originates from free carrier
excitation. Even though EM radiation cannot excite plasmons due to the
longitudinal polarization of the latter and the matrix element for plasmon
excitation is very large for electrons the same DF results.

Finally, Fig. 15.9 shows the plasmon dispersion in highly oriented, trans-
polyacetylene. Undoped polyacetylene is a quasi-one-dimensional insulator
with an energy gap of 1.4 eV. The fully occupied valence band (π band) and
the empty conduction (π∗ band) are constructed from the pz valence orbitals

Fig. 15.9. Energy loss function for ori-
ented polyacetylene for wave vectors of the
excited π-band plasmon between 1 and
12 nm−1 as indicated; after [15.1]
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of carbon which are not involved in the sp2 hybridization. Thus, the plasmon
originates from excitations of the π electrons and corresponds to the example
discussed in Fig. 15.3b. For wave vectors qc larger than 10 nm−1 the plasmon
decays into single-particle excitations as discussed in Fig. 14.3 in Sect. 14.2.

15.2 Tunneling Spectroscopy (TS)

In the case of tunneling spectroscopy electrons intrinsic to the solid are used
for an energy analysis. The electrons do not leave the solid or leave it only for
submicroscopic distances from the surface. Subjected to an applied external
field or potential they can propagate through areas of the crystal which are
not accessible by drifting or by diffusion due to potential barriers. This prop-
agation is established by a tunneling process. Tunneling is a typical quantum-
mechanical transport phenomenon which allows the transmission of particles
through a barrier with a certain probability, even if they do not have enough
energy to cross the barrier. It relies basically on the probability distribution
|ψ(x)|2 of a particle which is continuous in space, even for abrupt changes
of a potential Φ(x) which is supposed to confine the particle. For example
the electron density of a metal is not zero just above its surface, but rather
penetrates into the space above the surface and decays there exponentially.
By approaching the surface with a second metal, electrons can tunnel from
one to the other in both directions. The potential barrier is in this particular
case the work function of the metal. The probability of the tunneling process
is enhanced if the following three conditions are fulfilled:

− Tunneling must occur between equal energy levels.
− The density of states must be high with states occupied on the one side

of the tunnel junction and high with states empty on the other side of the
junction.

− The barrier must be low and narrow or must be lowered by an applied
field.

Thus, for the case where the Fermi energy is located within one band the
determination of the tunneling current versus applied voltage V is a good
measure of the density of unoccupied states at the energy ε = eV above the
Fermi edge.

Well known examples for the tunneling transport in solids are Esaki diodes.
Esaki diodes are p-n junctions with the p-type and the n-type semiconductor
doped to degeneracy. This means the respective Fermi energies are in the
valence band and in the conduction band. Also metal-semiconductor junctions
(Schottky diodes), where the semiconductor is doped to degeneracy show a
tunneling characteristic. In both cases the carrier concentration must be high
enough to make the tunneling current exceed the transport by carrier diffusion.
Tunneling spectroscopy is of particular importance for the investigation of
superconductors with structures of the type metal-insulator-superconductor
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(tunneling of quasi-particles) or with structures of the type superconductor-
insulator-superconductor (tunneling of Cooper pairs). L. Esaki, I. Giaever,
and B.D. Josephson received the Nobel prize in 1973 for their fundamental
research work in connection with the problem of tunneling in solids.

Tunneling between a metal tip which is carefully approached to a con-
ducting substrate was studied in great detail by Binning and Rohrer who also
received the Nobel prize for their fundamental work in 1981. Since then the
method has been further developed and is now used as a standard technique for
scanning tunneling microscopy (STM) and scanning tunneling spectroscopy.

15.2.1 The Tunneling Effect in Solids

Very generally the tunneling process through a barrier Φ(x, V ) is described by
a decay of the wave function amplitude with a decay constant κ of the form

κ(x) =
√

2m/h̄2
√

Φ(x, V ) − εx (15.9)

where tunneling is assumed to start at an energy εx, proceeds in x direction,
and the potential barrier is tunable by an applied voltage V .

The essential features of a tunneling process between two metals 1 and
2 separated by an oxide layer are shown in Fig. 15.10. Conventionally the
energy is measured from the bottom of the left-side conduction band. Thus,
the barrier is given as

Φ(x, V ) = μ1 + Φw − eV x/d (15.10)

Fig. 15.10. Propagation and damping of a wave function across a rectangular
potential barrier Φ(x, V ) with applied voltage V between two metals 1 and 2.
The metals are separated by an oxide layer with valence band and conduction
band edges εv and εc, respectively
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where μ1 is the chemical potential, Φw the work function (energy needed for
the electrons to enter the conduction band of the oxide) and d the thickness
of the barrier. The Fermi levels εF1 ≈ μ1 and εF2 ≈ μ2 are separated by
eV due to the applied field. Even though tunneling is at equal energy the
wave vectors in 1 and 2 are different, since their distance to the Fermi level is
different. Since the decay constant is x-dependent an integrated value of the
form

K =
∫ d

0

κ(x, εx)dx .

has to be used to describe the transmission factor D

D(εx, V ) = ge−2K with g =
16k1k2κ

2

(k2
1 + κ2)(k2

2 + κ2)
(15.11)

where εx is the kinetic energy of the electrons on the side of the barrier from
where the tunneling process starts. g is a constant of the order one which
depends on the shape of the potential. k1 and k2 are the wave vectors of the
electrons on the tow sides of the barrier [15.5]. The value of (15.11) holds
for the rectangular potential shown in Fig. 15.10. For the parabolic potential
g was found to be 1 by G. Wenzel, H.A. Kramers, and L. Brillouin (WKB
approximation).

From the transmission factor D the current density j1,2 from 1 to 2 and
j2,1 from 2 to 1 is obtained by integration of D over all states k1 = k weighted
with the group velocity vx and multiplied with the probability that the state
is occupied on the one side of the barrier and empty on the other side of the
barrier as

j1,2 =
2e

(2π)3

∫
d2kyzdkxvxDfF1(ε(k))[1 − fF2(ε(k)) + eV )] ,

j2,1 =
2e

(2π)3

∫
d2kyzdkxvxDfF2(ε(k)) + eV )[1 − fF1(ε(k))] . (15.12)

The Fermi functions for the two sides of the junction can be read from
Fig. 15.10 for εx = ε and μ1 − μ2 = eV as

fF1(ε) =
[
exp
(

ε − μ1

kBT

)
+ 1
]−1

,

fF2(ε) =
[
exp
(

ε − μ2

kBT

)
+ 1
]−1

=
[
exp
(

ε + eV − μ1

kBT

)
+ 1
]−1

. (15.13)

The factor 2 in front of the integral in (15.12) represents the spin degeneracy
and 1/(2π)3 gives the number of states per unit volume in k space. The
observed current density j is the difference between j1,2 and j2,1.

j =
2e

(2π)3

∫ ∞

0

dkxvx[fF1(ε) − fF2(ε + eV )]
∫ ∞

0

d2kyzD(εx, V ) .

(15.14)
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Equation (15.14) represents the tunneling current under explicit inclusion
of the transverse components of the momentum. Within the approximation
where the transverse components are not explicitly taken into account the
integration can be performed over the energy ε if vx is replaced by (2εx/m∗)1/2

and d3k by k2dk. m∗ is the effective mass of the tunneling particle. Introducing
the density of states on either side of the barrier yields the tunneling current
from 1 to 2 as

j1,2 =
2eπ2h̄3

m∗2V2

∫ ∞

0

g1(ε)g2(ε)DfF1(1 − fF2)dε ,

and a similar equation for the current from 2 to 1. From this finally the density
of the tunneling current follows from

j =
2eπh̄3

m∗2V2

∫ ∞

0

g1(ε)g2(ε)D(ε, V )[fF1(ε) − fF2(ε + eV )]dε . (15.15)

This relationship can be specified for the various forms of the tunneling junc-
tions. In the experiments the differential conductance

G(V ) =
dI(V )
dV

is often used to characterize the tunneling process.

15.2.2 The Tunneling Diode

The tunneling diode is the most traditional tunneling system in solids. The
junction connects a highly doped p-type and a highly doped n-type semicon-
ductor as is the case in the Esaki diodes. High doping is required to make the
junction sufficiently narrow. Only under such conditions the tunneling current
exceeds the thermal current through the junction.

Figure 15.11a,b shows energy diagrams for p-n diodes; (a) is for the unbi-
ased junction and (b) for the forward biased junction. The left part in each
graph represents the p-type semiconductor, the right part the n-type semicon-
ductor. In both cases the Fermi energy is within the band as a consequence
of the strong doping. Both semiconductors are degenerated. For the unbiased
junction fully occupied states on both sides are facing each other. If the junc-
tion is biased in forward direction with a small voltage V the Fermi energy on
the right side is raised by eV . Now occupied states from the conduction band
of the n-type semiconductor are facing empty states from the valence band of
the p-type semiconductor. As a consequence a tunneling current (from left to
right) is generated. To a first approximation this current is proportional to the
relative shift of the two Fermi levels and thus raises linearly with V as shown
in the current-voltage diagram Fig. 15.11c. A peak in the current is reached
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Fig. 15.11. Energy diagram (a), (b) and current-voltage characteristic (c) for
the tunneling process in an Esaki diode. Part (a) is for the unbiased diode and
part (b) for forward biasing with a voltage V . The arrow in (b) indicates the
direction of tunneling for electrons. (TC: tunneling current, EC: excess current,
ThC: thermal current.)

when the full fraction of the occupied conduction band faces the full fraction
of the empty valence band at a voltage Vpeak. For a further increase of the
bias voltage the occupied part of the conduction band and the empty states
of the valence band each start to face the gap region of the other partner of
the junction. This reduces the tunneling current which finally reaches more
or less zero. As a consequence the current-voltage characteristic develops a
minimum at some applied voltage Vmin. In an idealized case the valley cur-
rent in the minimum comes only from thermal excitation of carriers over the
barrier. In reality some excess current at Vmin originates also from tunneling
into band tails or via impurity levels. Increasing the bias voltage beyond Vmin

raises the current exponentially as expected from the Shockley equation for a
conventional p-n diode.

Reverse biasing will immediately lead to a current which increases linearly
with the bias voltage. This follows straightforwardly from graphs like (a) and
(b) in Fig. 15.11 with the bias voltage in the other direction. Hence a tunneling
diode transmits current well in the reverse biased mode!

Observation of the maximum in the diode current is typical for a tunnel-
ing process and the width of the maximum is a good measure of the distances
of the Fermi energies from the band edges. A quantitative description of the
maximum can be obtained from (15.15). Tunneling transitions in both direc-
tions are only possible in the range of potentials between the lower edge of
the conduction band εCn of the n-type conductor and the upper edge of the
valence band εVp of the p-type conductor. Hence integration can be limited to
this range. For 1 assigned to the p-type conductor, 2 to the n-type conductor,
and V to the applied voltage (15.15) yields

j = C

∫ εVp

εCn

gV(ε)gC(ε)D[fFC(ε) − fFV(ε)]dε . (15.16)
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The Fermi levels in the two Fermi funtions differ by eV so that εFn−εFp = eV .
The barrier is given by the intrinsic field E as eΦ = eEd. For a triangular
shaped potential described by a transition width d and an intrinsic field E =
(εg+εVp−εCn)/ed, D is given within the approximation used to derive (15.15)
by

D = exp

(
−4ε

3/2
g (2m∗)1/2

3eh̄E

)
.

Within the approximation of parabolic bands we use for the densities of states

gC(ε) ∝ (ε − εCn)1/2 and gV(ε) ∝ (εVp − ε)1/2 .

If the distances of the Fermi energies from the band edges are less than 2kBT
the integration can be performed analytically. In this case the Fermi functions
are approximated by

fFC ≈ 1
2
− (ε − εFn)

4kBT
and fFV ≈ 1

2
+

(εFp − ε)
4kBT

.

The current density is obtained from the integration

j = CD
eV

kBT
(ζFn + ζFp − eV )2 , (15.17)

where ζFn = εVp − εF and ζFp = εF − εCn are the distances of the Fermi
levels from the corresponding band edges. Note that both values are counted
as positive. Equations (15.16) and (15.17) show first an increase and then a
drop in the current density in agreement with the schematic representation of
Fig. 15.11.

Fig. 15.12. Tunneling diode with impurity states in the gap (a) and correspond-
ing current-voltage characteristic (b)

Tunneling is also possible into impurity states in the gap as shown schemat-
ically in Fig. 15.12. The current-voltage characteristic exhibits several inter-
mediate peaks of excess current in the valley before finally raising exponen-
tially according to the Shockley equation. In this way electronic states in the
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Fig. 15.13. Current-voltage characteristic for a Si tunneling diode at low temper-
atures. The structures in the current correspond to the energies of the phonons at
the zone boundary; after [15.6]

gap can be analyzed. Less developed structures can be resolved by measuring
the first or the second derivative of the current with respect to the voltage or
vice versa.

A tunneling process can be supported from interaction with phonons. The
current-voltage characteristic then exhibits a characteristic structures corre-
sponding to phonon assisted tunneling transitions. An example is demon-
strated in Fig. 15.13 for a forward biased Si tunneling diode at 4.2 K. Such
transitions will always occur in an indirect semiconductor like Si. They are
a consequence of conservation of momentum for transitions from zone center
carriers in the valence band of the p-type conductor to off zone center carriers
in the conduction band of the n-type conductor (or vice versa). This and the
discussion about the impurity states from above shows that tunneling spec-
troscopy allows not only the determination of gap energies and positions of
the Fermi level but also position and concentrations of impurity levels and
phonon energies.

Tunneling characteristics for metal-semiconductor junctions (Schottky
diodes are similar to those for the Esaki diodes as long as the semiconductor
is nondegenerate. Schottky diodes are very fast. They can be used for cir-
cuits up to 100 GHz. In contrast to the p-n diodes only a turning point is
observed in the forward biased current-voltage characteristic. The convention
for forward bias in metal-semiconductor contacts is the configuration which
reduces the barrier seen from the semiconductor. The energy level diagram for
a (reversed biased) metal-semiconductor junction (with a degenerate n-type
semiconductor) is shown in Fig. 15.14a. eΦb is the work function of the metal.

For a forward biased Schottky diode of a metal with a nondegenerate semi-
conductor transport by diffusion yields an exponentially diverging differential
conductivity dI/dV with increasing voltage. A reverse biased diode exhibits
a minimum in dI/dV for a certain voltage, before it also diverges to infinity.



15.2 Tunneling Spectroscopy (TS) 383

Fig. 15.14. Schematic representation of a Schottky diode (a) and experimental
(—) and calculated (- - -) differential conductivity versus voltage for T = 4.2 K
and n = 7.51018 cm−3 if the current is determined by tunneling. The dotted line
separates reverse bias from forward bias. (b); (eΦb: barrier hight, εFm, εFs: Fermi
level of metal and semiconductor, respectively); after [15.8]

If the transport across the junction occurs by tunneling the behavior is just
the other way around. The differential conductivity goes to infinity for the
reverse biased diode and passes a minimum for forward biasing. This case is
shown in Fig. 15.14b.

Calculations of the current-voltage characteristics for these junctions are
difficult and need a detailed knowledge about the nature of the barrier. An ex-
act solution was derived by Conley et al. [15.7] for a junction with a degenerate
semiconductor and a barrier of the form

eΦ(x, V ) =
e2ND[d(V ) − x]2

2εε0
+ eV − εFS , (15.18)

and

d(V ) =
[
2εε0(Φb + εFs/e − V )

eND

]1/2

.

d(V ) and ND are the thickness of the barrier and the doping concentration in
the semiconductor, respectively. eΦ(x, V ) is measured from the Fermi level of
the semiconductor. Figure 15.14b shows the result of the calculation for the
differential conductivity in comparison to experimental results for a Pb-Ge
Schottky diode. Note that for V = 0 I is of course zero but dI/dV �= 0 is
possible. For forward biasing dI/dV decreases since the density of states gCS

of the semiconductor decreases as the band edge is approached. The minimum
of dI/dV at forward bias was found exactly for eV = εFs in the calculation.
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The minimum for dI/dV observed in the experiment thus allows to determine
the distance of the Fermi energy εFs from the band edge εC .

15.2.3 Tunneling Spectroscopy in Superconductors

Tunneling spectroscopy between metals is particularly useful for the analysis
of the density of states in the superconducting phase. In this case the junc-
tions consist of at least three components: two metallic contacts separated
by a very thin insulating layer. The two metals can be the same or differ-
ent. The insulating layer is usually a metal oxide film. At least one of the
metals has to be in the superconducting state. Such structures are known as
superconductor-insulator-normal conductor or SIN junctions. If both metals
are in the superconducting state the structures are SIS or S1IS2 junctions.
In SIN junctions only quasi-particles (excited electrons) can tunnel. For SIS
junctions both, quasi-particles and Cooper pairs can tunnel.

The density of states at the Fermi level of a metal changes characteristically
at the transition to superconductivity. According to the theory of J. Bardeen,
L. Cooper, and R.J. Schrieffer (BCS theory) a gap of width 2Δ opens at εF and
the density of states for the electrons (or holes) excited from the condensed
pair state diverges right at the edges of the gap. This is shown schematically
in Fig. 15.15. For T = 0 all electrons are in the paired ground states and the
quasi-particle states are empty. For T > 0 some of the quasiparticle states
above the superconducting gap are filled and corresponding holes appear for
the states below the gap. As in the case of tunneling with semiconductors
the current through a superconducting tunneling junction depends critically
on the relative positions of the superconducting gaps and the relevant Fermi
levels.

Figure 15.16 shows the energy diagrams with the density of states for
the quasi-particles corresponding to the various junctions, together with the
relevant current-voltage characteristics. The presentation is for finite temper-
atures which means some of the Cooper pairs are broken up and quasi-particle
states are occupied. The hatched areas in the density of states indicate occu-
pied levels.

Fig. 15.15. Schematic density of states gS for a BCS
superconductor at T = 0. The energy is counted from
the Fermi level, gN (dashed vertical line): density of
states in the normal state
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Fig. 15.16. Energy diagram (with energy plotted in y direction and den-
sity of states plotted in x direction) and current-voltage characteristic for var-
ious tunneling junctions at finite temperatures: metal-insulator-superconductor
(a), superconductor-insulator-superconductor (b), superconductor 1-insulator-
superconductor 2 (c)

Part (a) of the figure represents the NIS structure with the left side of the
junction in the normal state and the right side in the superconducting state.
Except for the response from some thermally activated carriers an increase
in the current is only observed for a voltage higher than a critical voltage
Vc = Δ/e. For the SIS structure shown in Fig. 15.16b the situation is similar.
The Fermi levels of the two metals must be shifted at least by V = 2Δ/e before
effective tunneling is possible. For finite temperatures the current below 2Δ/e
increases but the onset of the full tunnel current at 2Δ/e remains sharp.
Finally, for the case of S1IS2 junctions depicted in Fig. 15.16c a current can
already start to flow for low voltages and reaches an intermediate maximum
for V = (Δ2−Δ1)/e. For a final continuous increase of the current V ≥ (Δ1+
Δ2)/e is required since only for this voltage the fully occupied states from the
superconductor on the left side faces the empty states of the superconductor
on the right side. The small peak in the current at V = (Δ2−Δ1)/e originates
from tunneling into states which were thermally depopulated. For T = 0 this
maximum does not exist. The figure shows that experimental results for the
current-voltage characteristic allow the determination of the various energy
gaps, even as a function of the temperature.

A mathematical description of the tunneling processes of quasi-particles
in superconducting junctions was first given by Giaever [15.9] and Nicol et
al. [15.10]. The density of states in Fig. 15.15 is obtained from the BCS theory
by

gS(ε) =
gN(0)|ε|√
ε2 − Δ2

, (15.19)
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where gN(0) is the density of states at the Fermi energy in the normal state
and ε is counted from the Fermi level. The tunneling current is obtained from
(15.15)

I(V ) =
GNN

eg2
N(0)

∫
gM(ε + eV )gS(ε)[fF(ε + eV ) − fF(ε)]dε , (15.20)

where GNN is the tunneling conductance (in units of A/V) in the normal state
and gS(ε) is the density of states from (15.19). (The transmission factor D is
included in GNN). gM is the density of states for the metal on the left side of
the junction. This metal can either be in the normal state (for a NIS junction)
or in a superconducting state (for a SIS or S1IS2 junction). The integral in
the equation is not solvable analytically but numerous good approximations
exist.

For the NIS junctions the density of states from the superconductor dom-
inates the energy dependence so that only gS remains relevant in (15.20). In
this case and for the voltage range 0 < V < 2Δ/e the current density is

I(V ) =
2GNNΔ

e

∞∑
m=1

(−1)m+1K1

(
mΔ

kBT

)
sinh

(
meV

kBT

)
, (15.21)

where K1 is the first order modified Bessel function of the second kind. For
the SIS structure and the same voltage range the current density is

I(V ) =
2GNN

e
exp
(
−Δ

kBT

)√
2Δ

eV + 2Δ
(eV + Δ)

× sinh
(

eV

2kBT

)
K0

(
eV

2kBT

)
, (15.22)

where K0 is the zero order modified Bessel function of the second kind. For
the current in a heterogeneous SIS junction approximations reveal for T = 0
a logarithmic singularity at eV = Δ2 − Δ1. This corresponds exactly to the
peak in the current shown in Fig. 15.16 for finite temperatures.

For higher voltages the current increases linearly with applied voltage in
all cases.

Figure 15.17 shows experimental results for the three different types of
tunneling junctions from Fig. 15.16. Tc for Pb and Al is 7.19 K and 1.18 K,
respectively. Part (a) and (b) can be described quantitatively with (15.21)
and (15.22). For NIS structures very often the ratio between differential con-
ductivity in the superconducting and in the normal state

(dI/dV )NS

(dI/dV )NN
=

GNS

GNN

is plotted as a function of the applied voltage. From (15.20) together with the
density of states for the BCS superconductor (15.19) we obtain
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Fig. 15.17. Current-voltage characteristic for different tunneling junctions; NIS
junction for Al-Pb; after [15.10] (a), SIS junction for Al-Al; after [15.11] (b), and
S1IS2-junction (c); after [15.12]

GNS

GNN
=
∫ |ε|

(ε2 − Δ2)1/2

[
−∂fF(ε + eV )

∂eV

]
dε . (15.23)

The derivative of the Fermi function −f ′(ε) is sharply peaked at ε = 0 with a
width 3.5kBT . For small values of T it approaches the δ function of the form
δ(εF − (ε + eV ) = δ(ε + eV ) which allows a simple integration of (15.23). We
obtain the very important result for the normalized conductance σ(V )

σ(V ) =
GNS

GNN
= 0 for eV < Δ

=
|eV |

[(eV )2 − Δ2]1/2
for eV > Δ and T ≈ 0 . (15.24)

The equation shows that the normalized conductivity measures directly the
density of states of the superconductor and the experimental results exhibit
the shape of Fig. 15.15 with the voltage as the y axis and the differential
conductivity as the x axis.
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An analysis of the fine structure of the current between 0 < eV < Δ often
allows to draw additional information on defect states in the superconductor
or on higher order tunneling processes. Such experiments yield spectra which
are very similar to those shown in Fig. 15.12 for the Esaki diode.

Another important application of tunneling spectroscopy refers to strong
coupling superconductors where the BCS theory does not hold any more. For
these materials G.M. Eliashberg and Y. Nambu have established an extended
theory which differs from the BCS theory mainly by a better consideration of
the phonon spectrum. An important parameter in the theory is the so called
Eliashberg function α2(Ω)ρ(Ω) where α is an electron-phonon coupling con-
stant and ρ(Ω) is the density of states for the phonons. For superconductors
with strong coupling a fine structure appears in the normalized tunneling
conductivity GNS/GNN for applied voltages larger than several Δ/e. These
structures are superimposed on a BCS-like density of electronic states and
can be extracted by normalizing the experiment on the latter. The struc-
tures are directly connected to the Eliashberg function and to the phonon
density of states. W.L. McMillan and J.M. Rowell have worked out an iter-
ation procedure which allows the extraction of the Eliashberg function from
such experiments [15.13]. Figure 15.18 shows a tunneling spectrum for Pb
at 0.3 K (a) and the extracted Eliashberg function (b). The spectrum in (a)
obviously has the form of Fig. 15.15 as expected from (15.24). If α depends
only weakly on Ω the Eliashberg function is identical to the phonon density of
states. This is indeed confirmed in part (b) of the figure where the extracted
function is compared with a density of states for Pb obtained from inelastic
neutron scattering. This means for strong coupling superconductors phonon

Fig. 15.18. Normalized tunneling conductance versus applied potential in units
eV/Δ for Pb; after [15.14] (a), and extracted Eliashberg function (—) as compared
to a phonon density of states from inelastic neutron scattering (- - -); after [15.15]
(b)
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densities of states can be determined. The technique described is known as
McMillan–Rowell spectroscopy.

The analysis of phonons by tunneling spectroscopy can also be applied to
non-superconducting materials or weak coupling superconductors, since su-
perconductivity can be induced using sandwich structures. A material N can
become superconducting in junctions of the form SNS even though it would
never be superconducting on its own. The tunneling junctions for such exper-
iments consist usually of a metallic contact, an insulator, a normal conductor
and a superconductor (CINS junctions). Spectroscopy with such junctions is
known as proximity electron tunneling spectroscopy or PETS.

15.2.4 Scanning Tunneling Spectroscopy

Scanning tunneling spectroscopy has developed recently into a very active
field of nanoresolution surface analysis. The technique employs a very fine
tip which is approached to the surface until a tunnel current is recorded.
Atomic resolution can be obtained for the scanning process. Alternatively a
current-voltage characteristic can be measured for the tunnel current, again
with atomic resolution. The technique is used extensively to study energy
gaps, impurity states, and quantum wells in semiconductor superlattices such
as Ga(1−x)AlxAs/GaAs [15.16]. Recently it has been applied also for the anal-
ysis of electronic levels splitted up as a consequence of quantum-size effects
and for single-electron transport measurements in quantum wires and carbon
nanotubes [15.17]. This will be discussed in the next chapter.

15.3 Positrons Annihilation Spectroscopy (PAS)

Positrons are the antiparticles to electrons and nearly identical to them except
for the charge and for their very short lifetime. It is indeed the decay of the
positron in the crystalline environment which allows the study the structure of
the crystals and their electronic system. The technique is unique in the sense
that energy and momentum of the electrons in the bands can be determined
explicitly. Therefore for long time PAS was the preferred technique to measure
band structures. Today the importance of PAS has decreased since angular
resolved photoemission yields in general better results on this problem.

Positrons are produced during the radioactive decay of certain nuclei sim-
ilar to the production of α or β particles. The positron is generated by the
conversion of a proton into a neutron. The positive charge of the proton is
carried away by the positron with the simultaneous generation of a neutrino.
Thus, the positron spectrum looks like a β spectrum. The positron lifetime in
a metallic solid is only 10−10 s. The best known positron source is 22Na with
a positron emission energy of 545 KeV. These high-energy particles can be
radiated into a solid and will be thermalized by inelastic scattering and exci-
tations of the electronic system. A typical activity of a positron source is 0.1
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Ci (1 Ci = 3.7 ×1010 decays/s) which means there will only be one positron in
the crystal at the time, on average. For the thermalization a period of 10−11 s
is sufficient which means the single positron will be fully thermalized during
its lifetime in the crystal and therefore occupy its ground state with negligible
values for energy and momentum in comparison to the values of the electrons.

The most likely decay channel for the positrons in the solid is an electron-
positron annihilation process with a simultaneous emission of γ quanta. En-
ergy, momentum, charge, angular momentum, and parity must be conserved
for this process. Hence, at least two γ quanta must be emitted for electron-
positron pairs with total spin 0 (para configuration) and at least three γ
quanta must be emitted for the ortho configuration where the total spin of
the pair is 1. In the first case the two emitted quanta have opposite spin and
511 KeV energy each. In the second case the quanta are subjected to an en-
ergy distribution and their total spin must be 1. The cross section σ for the 2γ
annihilation process of nonrelativistic positrons is known from nuclear physics
to be πr2

0c0/v where r0 is the free electron radius and v the particle velocity.
The annihilation cross section for a 3γ process is a factor 370 smaller. This
means the only relevant process for spectroscopy with positron annihilation
is the 2γ decay channel.

The annihilation rate α for the positrons is independent of the particle
velocity but proportional to the electron density n0 = |ψ(0)|2

α = σv|ψ(0)|2 = πr2
0n0c0 . (15.25)

The sensitivity of the annihilation rate on the electron density is the reason
why positron annihilation attracted so much attention in solid-state physics.
The particular importance of this spectroscopic technique results from the
fact that the angular distribution of the generated γ quanta carries the whole
information on energy and momentum of the electrons participating in the
annihilation process. The emission of the two γ quanta does not occur under
an angle of 180◦ as one might expect from the very low momentum of the
positron. Small deviation from the 180◦ emission are due to the contributions
to the total momentum from the electron involved in the annihilation pro-
cess. Also, the energy of the two quanta is not exactly equal since there is
a superimposed Doppler shift from the emitting electron. (The Doppler shift
from the positron is zero). Finally, the lifetime τ of the positrons depends
on the local electron density according (15.25) and thus on the local crystal
structure where the electron-positron pairing takes place. Thus, the lifetime
can be used to study this structure. Measurements of the lifetime can be par-
ticularly convenient if a γ quant is emitted simultaneously with the positron.
This quantum can be used as a time-setting for the positron annihilation.

According to the possibilities for spectroscopy with positron annihilation
discussed above, three different types of experiments are possible. A corre-
sponding setup is shown in Fig. 15.19. The process starts with the emission



15.3 Positrons Annihilation Spectroscopy (PAS) 391

Fig. 15.19. Schematic
representation of emission
and detection processes
for positron annihilation
spectroscopy; (S: source,
D1, D2: detectors, γ1, γ2:
γ quanta produced by the
annihilation process, γstart:
signal quantum)

of a positron from the source S. The positron enters the sample and decays
by pair annihilation. The two γ quanta γ1 and γ2 are emitted in opposite
direction and measured in coincidence. The deviation from a 180◦ geometry
is of fundamental importance. This type of experiments is known as angular
correlation of annihilation radiation (ACAR).

An analysis of the linewidth of the emitted γ radiation yields information
on the Doppler broadening from the velocity distribution of the electrons in the
direction of the emitted quanta. The lifetime for the positron in the sample is
obtained from the time interval between the observation of the signal quantum
γstart to the detection of the quantum γ1 from the annihilation process.

The probability Γ (p) that the pair annihilation occurs under the emis-
sion of two γ quanta with total momentum p= pγ1+ pγ2 is of fundamental
importance for all experiments. From conservation of momentum and from
the smallness of the momentum p+ of the positron it is obvious from intu-
ition that the pair momentum equals approximately the electron momentum.
p = ppair ≈ pk− + p+ ≈ pk− . To avoid confusion with positive holes in
the bands here and for the rest of this chapter electrons and positrons are
characterized by the symbols − and + instead of e and p, respectively.

A more fundamental but still highly simplified discussion of the pair-
momentum distribution can be performed in a single-particle picture. In this
case the initial state is characterized by the product of the positron wave
function and the single-particle electron wave functions and Γ (p)dp has the
form

Γ (p)dp =
α

(2π)3n0
Λ(p)dp with (15.26)

Λ(p) =
∑
k−

∣∣∣∣
∫

e−ipr/h̄ψ+(r)ψk−(r) dr

∣∣∣∣
2

,

where Λ is the photonpair-momentum density or just the momentum density
and ψ+ and ψk− are the wave functions for the positron and for the elec-
trons in the crystal. The momentum density is the Fourier transform of the
electron-positron overlap summed over all occupied states. The integral can
be evaluated for low enough temperatures where the positron is in its ground
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state with p+ = 0 and the electrons occupy states up to k = kF. The pair dis-
tribution function represents the moments of the electrons. It is the function
which should be determined in the experiments.

15.3.1 Positron Sources and Spectrometer

The main parameters for positron spectroscopy are the decay yield and the
lifetime for the positron emission. The most frequently used source is 22Na
which is obtained from a 24Mg(d,α) reaction. 22Na emits a γ quantum at
1.28 MeV simultaneously with the positron. This means the source is also
applicable for lifetime experiments. Other known sources are e.g. 44Ti, 68Ge,
or 58Co.

For the measurement of the ACAR two γ detectors are required which must
be arranged in an 180◦ geometry as shown in Fig. 15.20. The positron source is
shielded from the detectors and irradiates the sample. γ quanta resulting from
the positron annihilation process and propagating in x direction are recorded
with an angular resolution of 0.2–0.5 mrad in z direction. For the particular
arrangement shown in Fig. 15.20 the signal is integrated in y direction over a
wide angular range to keep the counting rate on a reasonable level. Thus, the
geometry allows only a resolution of the momentum density in z direction.
The emitted quanta are registered in coincidence by the two NaI detectors. In
very elaborate instruments a point geometry is used for the detection and the
registration occurs in the full yz plane. This allows a momentum resolution in
two directions. The detectors are two-dimensional diode arrays as discussed in
Sect. 5.4 or Anger cameras. The latter consist of a large plate of a NaI crystal
with a set of photomultipliers mounted on the backside.

Fig. 15.20. Experimental arrangement for the determination of the angular corre-
lated positron annihilation process with long-slit geometry; (S: source, P: sample,
D: detector, A: shielding, C: counter)
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15.3.2 Experimental Results from Positron Annihilation
Spectroscopy

None of the spectrometers discussed above can measure Γ (p) explicitly. For
the long-slit geometry integration occurs over the x as well as over the y
component of the distribution. For the point geometry integration is still over
the x component. A possibility to determine all three components will be
discussed later in this section. The observed count rates for the long-slit and
for the point geometry, respectively, are

N(pz)Δpz = Δpz

∫
Γ (p)dpxdpy (15.27)

and

N(pz, py)ΔpzΔpy = ΔpzΔpy

∫
Γ (p)dpx . (15.28)

Figure 15.21 shows the Fermi surface of a metal and the disk in k-space which
contributes to the annihilation signal. In the case of (15.27) integration is over
the whole disc but only over the small distance Δpz in z direction. In the case
of point geometry (15.28) the disc is further divided along the y direction
into small prisms as shown in the figure. In both cases the maximum of N is
obtained for z = 0 and N becomes zero for pz = pF. For a spherical Fermi
surface with radius pF the relations between N and p are

N(pz) = C(p2
F − p2

z) (15.29)

for the long-slit geometry and

N(pz, py) = C ′
√

p2
F − p2

z − p2
y (15.30)

Fig. 15.21. Fermi surface of a metal
and selected volume fractions probed by
positron annihilation spectroscopy with a
long-slit and a point geometry
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Fig. 15.22. Momentum density distribu-
tion N(pz) versus z component of the pair
momentum for Mg as measured with a
longslit geometry. pz is defined by the an-
gle θz in Fig. 15.20; after [15.18]

for the point geometry, respectively. Within the approximation p = pk− the
observed momentum density distribution is therefore a parabola for the long-
slit geometry and a semi-sphere for the point geometry. Experimental results
for Mg are shown in Fig. 15.22 as obtained for a long-slit geometry. The
count rate N(pz) is not exactly zero for pz = h̄kF, since the signal from the
conduction band electrons is superposed on small contributions from the core
electrons.

The momentum density distribution observed for a point geometry can be
plotted as a two-dimensional diagram over py and pz. Results are shown in
Fig. 15.23a for Al. The momentum of the electrons is given in units of m0c0.
In Fig. 15.23b a cut for py = 0 is presented together with the derivative of
the distribution with respect to pz. The result represents roughly a quarter
of a circle as expected from (15.30). In detail deviations are observed from
the simple circle. The deviations are more clearly seen from the plot of the
derivative. They indicate a deviation of the Fermi surface from the one for a
free electron system. The full drawn line is obtained from a band calculation.

15.4 Muon Spin Rotation (μSR)

Since muons are similar to protons in several aspects and since the spin of the
muon plays an important role, similar questions and similar problems can be
treated as for proton nuclear resonance. The information about the solid is
obtained from the interaction of the spins with internal or external magnetic
fields. The interaction appears as a rotation of the muon spin from where the
name muon spin rotation is derived. The advantage of μSR spectroscopy over
NMR spectroscopy results from the absence of any perturbing skin effect in
the former and from the fact that only small external fields are requested, or
no external fields at all. A disadvantage is the lack of small-scale muon sources.
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Fig. 15.23. Two-dimensional momentum density distribution for Al (a). The
orientation of the crystal is determined by the orientation of the first Brillouin
zone (insert to (a)). Part (b) shows the distribution along a cut for py = 0. m0c0

is the product of electron mass and light velocity; after [15.19]

Muon beams can be produced only from big accelerators. This spectroscopic
technique is therefore limited to a few large laboratories.

Spectroscopy with μSR is mainly used for the investigation of diffusion
processes in solids, of local magnetic fields, and of defects in the crystal lattice.

15.4.1 Muons and Muon Spin Rotation

Muons are available as positively charged and as negatively charged parti-
cles, μ+ and μ−, respectively. Experiments in solid-state spectroscopy are
performed nearly exclusively with μ+ particles. Muons are generated by the
irradiation of light targets such as Be with high energy particles. They have
spin 1/2 with a strong spin polarization antiparallel to the direction of their
momentum in the muon beam. This polarization is retained after thermal-
ization of the particles in the solid. The mass mμ of the muon at rest is
1.84 × 10−28 Kg. This is about 10% of the proton mass. The magnetic mo-
ment is μμ = μB(m0/mμ) = 4.49 × 10−26 J/T and the magnetogyric ratio is
γμ = 1.354 × 108 1/sT.

The muon decays after 2.2×10−6 s into a positron and a neutrino and
antineutrino by a process of weak interaction. As a consequence of the parity
violation for processes with weak interaction, the positron emission is not
isotropic. The angular distribution has the form

W (θ) = 1 + a(x) cos θ (15.31)
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with

a(x) =
2x − 1
3 − 2x

.

x is the positron energy in units of the maximum positron energy. An averaged
value for x would be 0.33. θ is the angle between spin orientation of the muon
and positron emission.

Fig. 15.24. Arrangement
for the determination of
muon spin rotation in a
transverse field geometry;
(Bz: magnetic field, ωμ: ro-
tation frequency, θ: orienta-
tion of emission at t = 0)

As soon as the muons are accommodated in the solid they precess in an
external or internal field which causes a periodic signal at a fixed detector.
A schematic setup for the observation of the spin rotation in a transverse
field geometry is shown in Fig. 15.24. Transverse means the magnetic field is
perpendicular to the direction of the incoming muons and to the direction of
observation.

After passing a muon telescope (a muon monitor) at time t = 0 the muon
penetrates into the crystal and starts to rotate in the local magnetic field with
a frequency ωμ = γμB. After a defined time t the rate of positrons emitted
from the muon decay process is recorded for the direction perpendicular to
the field and to the incident muon beam. According to the precession of W (θ)
a signal periodic with ωμ is observed. The signal is damped because of the in-
creasing dephasing of the spin precession with time. This signal is superposed
on an exponentially decaying background originating form the finite lifetime
of the muon. The dephasing of the spin rotation is completely analogous to the
transverse relaxation of the spin excitations in the case of NMR spectroscopy.
It is characterized by a dephasing factor Pt(t).

For a longitudinal field geometry the positron detector is on the axis of
the incident muon and the external field is collinear with this axis. For this
geometry a precession is only possible if the local field has a transverse com-
ponent. For an original orientation of the spins antiparallel to the field they
will reorient by spin-lattice relaxation. This effect is again analogous to the
longitudinal spin-lattice relaxation in NMR spectroscopy. The reorientation
of the spins is described by another spin depolarization function Pl(t). This
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function is obtained experimentally from a difference of the signal with the
positron detector in a 0◦ forward direction and in a 180◦ backward direction.

The positron count rates for the transversal and for the longitudinal ge-
ometry are

Nt(t, φ) = N0(φ)e−t/τ [1 + a(x)Pt(t) cos(ωμt + φ)] ,

Nl(t, φ) = N0(φ)e−t/τ [1 + a(x)Pl(t) cos φ] . (15.32)

τ is the lifetime of the muon and Pt(t) and Pl(t) are the relaxation function and
the depolarization function which describe the dephasing and the reorientation
of the spins. N0(φ) is a normalization factor for the experiment if carried out
under a certain angle φ. In Fig. 15.24 φ is 90◦.

15.4.2 Influence of Internal Fields

The relevant experimental results in μSR spectroscopy are the dependence of
the rotation frequency on the internal magnetic fields and the spin relaxation
or the spin polarization. For the internal contributions to B dipole fields are
important to first order. This means B can be expressed as

B = Bext + Bdip .

For zero external field the precession frequency is given by ωdip = γμBdip and
the spin depolarization originates from the fluctuation in the local field. As in
NMR spectroscopy it makes no difference whether this is due to a fluctuation
of the local field in time or due to the diffusion of the muon through the
crystal.

For slow fluctuations which means for fluctuations with a correlation time
τc large in comparison to 1/ωdip the relaxation function and the depolarization
function are given by

Pt(t) = Pt(0) exp
{
−2σ2τ2

c

[
exp
(
−t

τc

)
− 1 +

t

τc

]}
,

Pl(t) = Pl(0)
[
1
2

+
2
3
(1 − 2σ2t2) exp(−σ2t2)

]
. (15.33)

σ is the van Fleck linewidth due to a static dipole-dipole interaction known
from NMR as

σ2 = γ2
μ〈B2

dip〉 . (15.34)

The relationship for Pt(t) is known as the Abragam formula. The brackets
mean averaging with respect to the square of the dipole field. Pt(t) in (15.33)
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yields a Gaussian profile for small values of t(t � τc) and an exponential
decay for large values of t(t � τc).

15.4.3 Experimental Results

Figure 15.25a shows positron count rates as a function of time for a muon
decay in a copper crystal at different temperatures. The exponential decay of
the signal due to the muon lifetime is compensated. For low temperatures the
oscillations are clearly damped. For high temperatures the damping is not ob-
served since the muons can diffuse more rapidly. By this process the dephasing
of the spins is slowed down by motional narrowing as in the case of NMR. The
inverse damping time is shown in Fig. 15.25b as a function of temperature.
According to (15.33) this quantity is directly related to the coherence time τc.
Since τc is on the other hand basically the time the muon stays at a certain
crystal site such experiments are useful to study the elementary processes of
diffusion for the muon.

Fig. 15.25. Positron counting rates from Cu single crystals after irradiation of the
crystal with muons at various temperatures and for a transversal field geometry
(a) and inverse damping time 1/te versus temperature (b); after [15.22]

Problems

15.1 Show by expansion of the Lindhard DF that in the limit of T → 0 and for
small q the dispersion of the plasmon is given by h̄ωp(q) = h̄ωp + (3h̄εF/5m0ωp)q2.

(Purpose of exercise: training in handling a complicated DF)
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15.2 Calculate the frequency dependence of the energy loss function for the DF of
free carriers and of an oscillator. Convince yourself that they are different and differ
from the frequency dependence of εi.

(Purpose of exercise: get used to work with response functions.)

15.3 For a semiconductor with gap energy εg the damping constant for a triangular
tunneling barrier is determined by

κ(x) =

√
2m∗(εg/2 − eEx)/h̄2 .

Show that the transmission coefficient for this barrier is

D = exp

(
−4(2m∗)1/2ε

3/2
g

3eh̄E

)
.

(Purpose of exercise: recall the meaning of the transmission coefficient.)

15.4 Use the transmission coefficient from problem 15.3 to show that the current-
voltage characteristic for parabolic bands has the form I = aV (b − V )2.

(Purpose of exercise: solve a simple problem in tunneling theory.)

15.5 Using a personal computer discuss the shape of the current-voltage character-
istic for a SIS junction and for a NIS junction.

(Purpose of exercise: training in handling a complex function on a personal
computer.)

15.6 Show that the derivative of the Fermi function approaches a sharply peaked
function of width 3.5kBT at ε = 0.

(Purpose of exercise: understand a very fundamental approximation used in
(15.23).

15.7 Discuss an experimental arrangement for angular resolved positron annihilation
which allows an energy resolution of 0.1 KeV in z direction.

(Purpose of exercise: get familiar with the geometric constraints in ACAR ex-

periments.)



16

Spectroscopy of Mesoscopic and Nanoscopic
Solids

Mesoscopic and nanoscopic solids are systems where the size and the geometric
shape have a significant influence on the physical properties. This influence
may originate from explicit quantum effects such as size quantization but
may as well be of pure geometrical and thus classical nature. Examples for
the first group are semiconductor quantum dots or quantum wires, carbon
nanotubes, or more generally, two dimensional or one dimensional electron
systems. Classical behavior for mesoscopic or nanoscopic systems which is
still significantly different to behavior of macroscopic solids has been observed
particularly for small metallic particles.

16.1 Classical Nanoscopic Systems

The best known classical nanoscopic systems are metallic particles where char-
acteristic dimensions are equal to or smaller than the light wavelength. The
resonance excitation of local electronic modes leads to characteristic colors of
the particles. In fact the spectroscopy of colloidal metallic particles is almost
as colorful as the spectroscopy of chromophoric molecules and metallic col-
loids have been used for many centuries as dyes in paintings and mosaics. In
spite of their similar appearance the physical background between the two dye
systems is very different. Whereas the colors in molecular chromophors origi-
nate from quantum-mechanically determined electronic transitions, the colors
of the colloids are classical phenomena, at least as long as a phenomenological
DF is used for their description.

The small capacitance of the nanoparticles leads on the other hand to
unusual transport behavior like Coulomb blockade and transport quantiza-
tion. These effects can eventually be used for high resolution spectroscopy of
electronic states. Since this spectroscopy is particularly important in systems
with size quantization it will be discussed in connection with the latter.

H. Kuzmany, Solid-State Spectroscopy, DOI 10.1007/978-3-642-01479-6 16, 401
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16.1.1 Optical Properties of Small Metallic Particles in the
Classical Limit

Light interaction with small metallic particles as already discussed in a pre-
vious chapter, is based on Mie theory. This theory was derived for spherical
metallic particles and describes absorption and scattering of light by scat-
tering and extinction coefficients. The diameter d of the particles and the
dielectric response εM(ω) and εs(ω) of the metallic particle and of the sur-
rounding host matrix, respectively, are the only parameters which enter into
the description. The response of the incident light is determined by excitation
of local collective dipole or multipole resonances of the electron system, some-
times also called multipole plasmon resonances. These resonances are quite
different from the longitudinal plasmon excitations described in Sect. 6.3. As
for example due to their local nature these modes have no k-vector. In this
sense the excitations are molecular like. Some details of the Mie theory are
discussed in the Appendix M.1.

If the particle size is much smaller than the light wavelength (d � λ)
the description becomes simple as long as the particles are spherical. In this
case the evaluation can be performed in the so called electrostatic limit which
means retardation effects are neglected and the strength of the electric field is
constant across the particle. In this case the polarizability is given by Lorentz’s
well know expression

αP = V εM − εs

εM + 2εs
, (16.1)

where V is the volume of the particle. It describes the dipole moment generated
by the light in the particle as PD = αPε0E(ω) like in a molecule. Since in
metals the real part of the DF becomes negative for small enough frequencies
and in general εM,i � εM,r the polarizability resonates for εM,r(ω) = −2εs.
As can be seen for the small particles in the electrostatic limit the position of
the resonance does not depend on the diameter of the particle.

The extinction of light propagating through the particle comes from ab-
sorption and scattering. In the dipole approximation it has the form

Cext = kIm{αP} +
k4

6π
|αP|2 , (16.2)

where k is the wave vector of the light in the host medium. The first and
the second term in (16.2) describe the losses by absorption and scattering,
respectively. If the particles are not spherical special geometry factors must
be considered which describe the depolarization.

In order to evaluate the extinction one must use an enough generalized DF.
For nanosized gold particles we may use a relation from Sect. 6.3 which takes
care for free carrier and d-band transitions. Figure 16.1 depicts calculated
results for gold particles in different environments and of different shape.
The response for the non spherical particles was obtained from equations in
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Fig. 16.1. Extinction cross section for gold nanoparticles; (1), (2): spherical
particles in host medium with εs equal 1 and 1.8, respectively; (3), (4): oblate
particles with b/a ratios equal to 0.7 and 0.2, respectively. The electric field
is polarized perpendicular to the particle symmetry axis and the DF for Au
from Sect. 6.3 was used

Appendix M.1. Increasing the eccentricity can obviously strongly shift the
resonance to the red and thus tune the extinction.

If the particle size approaches the optical wave length or becomes even
larger, higher multipole excitations become important.

16.1.2 Coulomb Oscillations and Coulomb Diamonds for Classical
and for Quantized Nanostructures

Transport experiments offer another possibility to study the size effect in
small metallic particles. Such experiments are usually performed in a field
effect transistor (FET) geometry (See Appendix M.2) where source and drain
contacts are clamped to the particle and the position of the energy levels in the
particle is tuned by a gate voltage. The source and drain contacts are tunnel
junctions so that the whole system operates as a double tunnel junction.
Figure 16.2a depicts a schematic drawing of this experimental configuration.
For an applied source-drain or bias voltage VB electrons may tunnel through
the first junction and settle on the particle. From there they will continue
to tunnel through the second junction and eventually arrive at the drain
electrode.

A problem arises when the capacity C of the particle is so small that
charging up by one electron already leads to a substantial potential increase
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of the particle. As discussed below the charging energy for one electron is
εC = e2/C. It leads to the opening up of a Coulomb gap for the electronic
states at the particle which prevents the transfer of further electrons. This
effect is known a Coulomb blockade. In this sense Coulomb blockade is a fully
classical phenomenon but applies likewise to classical and quantized systems.
The situation is depicted in Fig. 16.2b for a classical metallic particle (upper
pattern) and for a particle where size quantization has introduced discrete
energy levels (lower pattern). For simplicity levels for the quantized system
are shown as equidistant with value Δεqs and possible twofold occupancy 1

Fig. 16.2. Double tunnel junction and Coulomb gap for small particles and
quantum dots: Schematic of the experiment with indicated source S, drain D,
and gate G (a); Energy level scheme for zero bias (b); Top and bottom pattern
in (b) are for a classical metallic particle and for a quantum dot, respectively.
εF: Fermi level of the metal contacts. e2/C and Δεqs: level separation due to
Coulomb charging and quantum size effects, respectively. (c) Conductance G
versus gate voltage in units of charge (Coulomb oscillations, bottom), number
N of charges on the dot (center), and parabolic particle potential U(N, VG)
(top)

1 This picture is often used to demonstrate Coulomb blockade. It is misleading in
a sense that the two electrons on the same orbital are actually separated in their
energy by the charging energy e2/C. See also Fig. 16.3.
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Coulomb blockade is only efficient if the thermal energy is much smaller
than the charging energy which means if kBT � e2/C is satisfied and uncer-
tainty broadening Δε does not lead to leaking out of the electron from the
particle. This means the life time Δt of the electron on the dot must be large
enough. From the uncertainty principle the latter condition is equivalent to
h < ΔεΔt � (e2/C)RC = e2R or R � h/e2 = R0. R0 is the resistance quan-
tum per spin with value 25.812 KΩ (von Klitzing constant). R is the total
resistance of the double tunnel junction.

For a spherical particle the charge induced energy barrier ΔεC for one
electron is half the charging energy and thus

ΔεC =
e2

2C
=

e2

4πεε0d
(16.3)

where d is the diameter of the particle and ε is the relative DF of the particle in
a dielectric environment. The condition for Coulomb blockade can be satisfied
if the temperature is low enough and the particle size is small enough. If we
consider for example a gold particle with diameter 40 nm and a zero frequency
dielectric constant of 4 the charging energy from (16.3) is 9 meV. To make
Coulomb blockade observable the temperature must therefore be reduced to
less than 100 K so that kBT becomes smaller than the charging energy.

The positions of the energy levels of the particle can be tuned by the
gate voltage VG. If this is done in a way that the state above the Coulomb
gap levels with the Fermi level εF of the contacts equal energy tunneling is
possible and the electron can fluctuate between source and drain. Conductivity
is enabled and already for a very small bias voltage current can flow. Since this
configuration can be established periodically with period e/CG (or e/CG +
Δεqs/e for a quantized system) it is called Coulomb oscillation. A schematic
picture of the oscillation is shown in Fig. 16.2c (bottom).

By tuning the gate voltage continuously each time it is big (or small)
enough an electron adds to the particle (or escapes from the particle) as
depicted in Fig. 16.2c (center). Thus the total Coulomb energy of the extra
charges on the particle is always almost compensated by the gate voltage.

Between the potential values for finite conductance the current is blocked.
Since in the high conductance regions only one electron at the time can occupy
the particle, transport is established by single electrons in only one channel.
The circuit of the type depicted in Fig. 16.2a is therefore called a single elec-
tron transistor (SET) which is switched on and off by the gate voltage. Since
at least for metallic particles transport on the particle can be assumed ballistic
and if R is not too big, conductance can approach the quantum conductance
G0 = 1/R0 = e2/h = 38.74μS. Therefore in experiments conductance is often
plotted in units of G0.

To be more quantitative the constant interaction model (CI model) has
turned out to be very useful. This model makes two important assumptions.
First, the capacity which determines the Coulomb interaction on the dot is
given by a single constant value of C = CS + CD + CG where CS, CD, and CG
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are the capacities of the particle versus source, drain, and gate, respectively.
Second, the discrete energy spectrum is independent of the number of electrons
on the dot.

Under the above conditions the total energy of N extra electrons on the
particle with zero bias and constant gate voltage VG is

U(N,VG) =
(−eN + CGVG)2

2C
+ ΣN

n=1εn. (16.4)

CG is generally much smaller than C and we may replace it in (16.4) by
αC. Then α = CG/C gives the fraction of VG which eventually arrives at
the particle due to capacitive voltage division. Very often α is of the order of
0.1. The last term in (16.4) is a sum over the occupied single-particle energy
levels εn. For classical particles this term is zero. For a quantized system in
the simplest case where all states have equal distance Δεqs it has the form
Δεqs(N+1)N/2. Equation (16.4) represents a set of parabolas which have their
summit in the center between two Coulomb peaks as depicted in Fig. 16.2c
(top). Where ever two neighboring parabolas intersect the energies for N and
N + 1 or N − 1 electrons on the dot are equal. Thus the electron can tunnel
to and from the dot. As soon as U(N,VG) has passed this point by increasing
(decreasing) VG the electron is fully added to (or depleted from) the dot.

To describe spectroscopy in transport experiments it is more convenient
to use the chemical potentials μ(N), defined as the minimum energy required
to add an electron to the particle. Thus, for N electrons on the particle (16.4)
yields

μ(N) = U(N,VG)−U(N −1, VG) =
e2

C
(N −1/2)−αeVG +NΔεqs . (16.5)

For constant gate voltage the chemical potential increases linearly with N .
The increment between consecutive values of the chemical potential is the
addition energy εadd(N) mentioned above. Its value can be evaluated from
(16.5) to be

εadd = μ(N + 1) − μ(N) =
e2

C
+ Δεqs . (16.6)

We can plot the chemical potentials in a similar way as we had plotted the
states of the electrons on the particle. This yields a scheme for the double
barrier tunnel junction as depicted in Fig. 16.3a. The levels for the various
particle occupations are equally spaced, at least for non quantized systems.
Figure 16.3a(1) represents the Coulomb blockade. The number of electrons on
the particle is fixed to N − 1. Note that in contrast to Fig. 16.2b the assigned
energies in this figure are chemical potentials, not orbitals. They change with
each extra electron. In (2) the level μ(N) was tuned to the chemical potential
of the contacts which allows for conduction. The number of electrons on the
dot is now fluctuating between N − 1 and N . A small bias Δ is applied which
allows to measure a current.



16.1 Classical Nanoscopic Systems 407

Fig. 16.3. (a) Chemical potential μ of the particle under various conditions
of applied voltages. (1) potential tuned to the Coulomb blockade state; (2)
level μ(N) tuned to the finite conductance value with a small bias VB = Δ
applied; (3) The bias is increased so that an additional non intrinsic channel
(dashed line) has opened; (4) strongly increased bias so that eventually two
electrons can simultaneously tunnel to and from the dot. (b) Schematics for the
transport behavior as a function of gate voltage for finite bias: Conductance
G (bottom), Coulomb diamonds (center), asymmetric Coulomb diamond with
additional tunneling channels (top). The dotted line between the graph in the
center and at the bottom relates the threshold bias voltage to the width of the
conductance peak. The horizontal dashed line is for an applied bias VB = Δ1

By tuning the gate voltage occupations N can reach rather large numbers.
10 to 15 are normal but even numbers up to 80 or 90 were reported. The
occupation numbers alternate between odd and even. In the former case the
particle has a spin 1/2. Note that for the spin singlet states as depicted in
Fig. 16.2b the Coulomb peaks are not equidistant. When we go from an odd
to an even occupation no extra orbital quantum energy Δεqs is required.
This means the addition energy for the extra electron is just the charging
energy e2/C. In contrast, when going from an even to an odd occupation a
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new quantum level must be filled up and the addition energy is the sum of
charging energy and level splitting as evaluated in (16.6).

If the bias voltage is tuned instead of the gate voltage a conducting state
can also be reached if the bias becomes as large as e/C. Coulomb blockade is
washed out in this case.

More interesting is the case of tuning the gate voltage and bias voltage
simultaneously as shown in Fig. 16.3b. If the bias is increased (or decreased)
from zero to a finite value ±VB current transport starts for lower gate voltages
than e/CG and extends to higher gate voltage. The corresponding Coulomb
oscillations are depicted in Fig. 16.3b (bottom). In fact a bias voltage VB = Δ
opens up a window for the conductivity and allows for currents in a range of
gate voltages given by

μ − eχVB < ε(N + 1) − ε(N) < μ + e(1 − χ)VB . (16.7)

χ is a number between 0 and 1 which characterizes the voltage drop over the
drain junctions. For χ = 1 the opening of the gap is completely on the drain
side. For χ = 0.5 the double tunnel junction is symmetric.

It is instructive to plot the operation of the SET on a 2D diagram with
axes VG and VB and the current or the conductance as a gray scale or as a
color scale. A schematic result is depicted in Fig. 16.3b (center). The gray
areas define conditions where current can flow. In the white diamond shaped
areas current is blocked by Coulomb blockade. The plotted figures are called
Coulomb diamonds 2. For zero bias (x axis) current can flow only for the
discrete values of VG which represent the Coulomb oscillations. As discussed
above, for finite values of VB the area where current can flow increases until,
for VB = e/C (or VB = e/C +Δεqs/e for the quantized systems) the blockade
region has decreased to zero. The presentation in Fig. 16.3b (center) is ide-
alized in a sense that full symmetry between source and drain was assumed
(χ = 0.5) and no other tunneling processes take place. In the experiments
this is usually not the case. Rather processes like phonon assisted tunneling,
higher order tunneling (co-tunneling of several particles in leaky junctions),
or tunneling from excited states occurs. A schematic example for the appear-
ance of additional channels for the tunneling process is depicted in Fig. 16.3b
(top). Δε is the position of an additional energy level inside the Coulomb gap.
Of course, still only one electron at the time can occupy a level on the dot.
This behavior gives the Coulomb diamonds a colorful structure and allows to
draw a lot of information from them about the energy levels of the dot.

Eventually, if the bias voltage becomes larger than 2 × εadd tunneling by
two electrons at the same time is possible as depicted in Fig. 16.3a(4).

Since this type of transport experiments reveals the electronic levels of
small particles it is often called transport or capacitance spectroscopy. The
2 In experiments often the differential conductance dI/dVB is plotted on the color

scale. Then the diamonds appear as bright diamond lines instead of diamond
areas.
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value of the bias voltage sets the resolution of the spectroscopy. For a bias
of Δ = 1 meV and low temperatures high resolution spectroscopy of quasi-
particle states is possible.

Coulomb blockade effects have been observed for small metallic particles
in the classical limit but most of the research work has been done on quasi-
metallic systems and semiconductors in the quantum dot limit. Therefore
experimental demonstrations of these effects are shifted to the next section.

16.2 Spectroscopy in Systems with Size Quantization

High resolution spectroscopy becomes of particular value if the particles shrink
to a dimension where quantum size effects are relevant. Since the energy for
Coulomb charging scales as 1/d and the energy for quantum size effects scales
as 1/d2 it is evident, that the latter become more and more important for
decreasing particle size. Structures, where quantum size effects are relevant
are called quantum dots or quantum wires. As it will be discussed below for
semiconductors the quantum dot regime is much easier reached than for met-
als.

If the geometrical extensions of particles become very small wave functions
of the quasi-particles are confined and energy levels of the eigenstates are not
any more quasi continuously distributed. Optical spectroscopy and transport
spectroscopy are excellent tools to investigate these states. Basic concepts of
the tunneling process as described in Chap. 15 are retained and transport is
always through double tunnel junctions.

In the following we will discuss optical spectroscopy of very small metallic
dots and transport spectroscopy for quasi metallic systems such as carbon
nanotubes and for semiconductors. In the last subsection the splitting of en-
ergy levels by a magnetic field will be elucidated which eventually leads to
Landau level formation, Shubnikov–de Haas oscillations, and quantum Hall
effects.

16.2.1 Size Quantization

The confinement of wave functions changes physical properties dramatically.
Consequences depend explicitly on the dimension of the confinement. Confine-
ment in all three directions x, y, and z leads to quantum dots with discrete
energy levels for wave functions in all three directions. If the confinement
is only in two directions x and y we talk about quantum wires where the
electronic states for wave functions along the z direction are still quasi con-
tinuously distributed. However, states for wave functions in both transverse
directions are discrete. This leads to a distribution of the density of states
into one-dimensional van Hove singularities. Each allowed k state in x and y
direction is dressed with such a singularity. For size quantization in only one
direction a two dimensional manifold of quasi-continuous k-states in the other
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two directions is allowed. A detailed description of quantum-confined systems
in various dimensions is discussed in Appendix 1.6.

16.2.2 Spectroscopy in Quasi-Metallic Quantum Dots

Due to the high density of states near the Fermi level metallic particles must
be very small of the order of 1 nm to allow for the observation size quan-
tization. For several metals such particles can be prepared chemically with
reasonable narrow diameter distribution. To stabilize these metallic dots they
are often covered with organic molecules and called core/shell structures. Ex-
tinction spectra of the decorated dots reveal a structure which is related to
size determined energy level splitting. An example is depicted in Fig. 16.4
which shows the imaginary part of the DF for gold particles of different mean
size. The spectra were obtained from extinction measurements with a subse-
quent Kramers–Kronig transformation. The gold particles were covered with
a monolayer of organic molecules to prevent coagulation. Besides the well
known response from the dipole oscillation (full line in Fig. 16.4) εi shows
additional structure especially for the smallest particle which had a diameter
of only about 1 nm. This structure is a response to the splitting up of energy
levels due to size quantization. For the smallest particle εi has a first peak at
1.2 eV excitation which is determined by the gap at the Fermi level induced
by the size reduction of the particle to 1 nm. For rectangular particles the
lowest energy level in a box of d nm is of the order Δεqs = 3h2/(8md2) which

Fig. 16.4. Imaginary part of DF
for Au cluster consisting of vari-
ous numbers of atoms as indicated.
The full drawn line is for crystalline
gold. 8 KD corresponds to a cube
with side length 0.9 nm; after [16.1]
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is ≈ 1.1 eV for a 1 nm diameter particle. This is of the right order of mag-
nitude but quantitatively the eventually evaluated gap it is too large as the
level spacing in a 3D box increases with the number of electrons N in the box.
As evaluated from the plasma frequency for Au this number might be as high
as 60 in a simple one electron model for a particle size of 1 nm. The resulting
transition energy from the highest occupied to the lowest unoccupied level
would then be more than 2 eV.

For the described nanosized gold particles a spherical box potential might
be more appropriate. In this case the position for the allowed energy levels are
obtained from the zeros of the spherical Bessel function. The energy for the
lowest energy level is Δεqs = h2/(2md2) which yields 1.48 eV for d = 1 nm
which is even larger as compared to the rectangular box. The lack of full
agreement is not unexpected as the particle in the box picture is only a crude
approximation to the real electronic structure of the Au particle.

Quasi metallic quantum dots can also be obtained from metallic quan-
tum wires if the wires have a finite length. Single-walled carbon nanotubes
(SWCNT) are a famous example.

Single-walled carbon nanotubes can be visualized as long stripes of a
graphene sheet rolled up to tubes which, depending on the roll up direction,
are either metallic or semiconducting. Typical tube diameters dt are 1.4 nm so
that transverse size quantization is well expressed. Both, the metallic and the
semiconducting tubes exhibit van Hove singularities in their density of states.

If the nanotube is cut to a finite length L it becomes a quantum dot with
a longitudinal level splitting given by

Δεqs =
hvF

2L
(16.8)

This yields for a Fermi velocity of 8 × 105 m/s and a length of 1μm a level
splitting of almost 2 meV.

A cut to the tube is already established if the tube is mounted across two
contacts on a Si waver with a distance L. The Si waver itself may act as a gate
in an appropriate circuit. Since the capacity of the carbon nanotube may be
estimated to be the capacity of a wire of length L and diameter dt at distance
b from a metal plate it is

Ct =
2πεε0L

ln(4b/dt)
≈ εε0L . (16.9)

This yields for a standard tube of length 1μm and ε = 1 a capacity of 9 ×
10−18 F and thus a charging energy of 1.1 meV. Accordingly, level splitting
from size effects and from Coulomb charging are similar.

Finite length single-walled carbon nanotubes provide a good example for
the power of transport spectroscopy as depicted in Fig. 16.5 (upper panel).
For metallic tubes, as a consequence of their special structure, two bands cross
the Fermi level. Therefore this level is expected to be fourfold degenerated, a
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twofold degeneracy from orbitals and a twofold degeneracy from spin occupa-
tion. Due to the opening of the gap by interaction energies such as exchange
interaction J , Coulomb repulsion UC for electrons on the same orbital, and
band asymmetry δ the degeneracy is lifted. On the other hand the contribution
Δεqs to the addition energy is not necessary equal for each of the four electrons
added. Therefore the conductance peaks in the Coulomb oscillations are not
equidistant but exhibit quadruples where the four peaks should appear with
different distances. This is indeed observed in the experiment as depicted in
the lower part of the upper panel of Fig. 16.5. The quadruple consists of peaks
where the distance between three of them is almost constant but the distance
to the fourth peak is enhanced. Consequently the Coulomb diamonds in the
upper panel have different sizes. From the evaluated four different addition
energies in combination with tunneling through excited states all parameters
of the nanotube quantum dot can be determined. The charging energy εC and
the level splitting were in particular found to be 2 meV and 3 meV in very
good agreement with the simple evaluation from (16.9) and (16.8).

Coulomb diamonds and Coulomb oscillations are also observed for semi-
conducting quantum dots as depicted in the bottom panel of Fig. 16.5 as
discussed below.

16.2.3 Spectroscopy in Semiconducting Quantum Dots

In semiconducting quantum dots transport spectroscopy and optical spec-
troscopy are equally appropriate to observe the influence of size quantization
on the energy levels. Transport spectroscopy even allows to study the artificial
atom nature of the dots.

In semiconductors transport spectroscopy is often performed using quan-
tum dots in a quantum well structure. This means a semiconductor is squeezed
between two semiconductors with slightly larger gaps. An example would be
a very thin layer of a several nm diameter (InGa)As squeezed between two
(AlGa)As semiconductors as depicted in Fig. 16.5, left part of bottom panel
and as described in Appendix M.3 and F.5. The difference in the gap en-
ergy between (InGa)As and (AlGa)As confines the electrons (or holes) to the
squeezed (InGa)As. If circuited in a FET geometry Coulomb oscillations and
coulomb diamonds are observed in a similar way as described in Sect. 16.1.2
for carbon nanotubes. The addition energy is again determined by the charg-
ing energy e2/C plus the energy from size quantization ΔCB and ΔVB for the
valence and conduction band, respectively. Since the states from size quanti-
zation are not equidistant Coulomb oscillations are not necessarily periodic
and Coulomb diamonds can have different sizes. Figure 16.5, right part of
bottom panel, depicts some results for the above described quantum well
structure. The size of the Coulomb diamonds represents the shell structure
of the system. For 2, 6, and 12 extra electrons on the dot the structures are
closed shell. Therefore the addition energy is larger and the structures are
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Fig. 16.5. Coulomb oscillations and Coulomb diamonds (differential conduc-
tance) for SWCNT of length 500 nm and diameter 1.3 nm, measured at 300mK
(top). Dotted lines correlate the peaks in the conductance with the edges of
the Coulomb diamonds for zero bias. The numbers are charges on the dot
counted per quadruple. The dashed lines assign co-tunneling behavior; modi-
fied from [16.2]. Coulomb diamonds for an (InGa)As quantum well (bottom).
Schematic of experimental setup (left), differential conductance versus gate
voltage VG and source-drain voltage VB (right); after [16.4]
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often called artificial atoms. The striations outside the Coulomb diamonds
represent tunneling processes via excited states.

Tunneling spectroscopy with a STM tip allows to determine the energy
levels of the dot in great detail. Figure 16.6 depicts some results for tunneling
spectra recorded with an STM tip at 4.2 K for a 3.2 nm InAs crystal stabilized
with a mono layer organic shell and linked to a gold electrode by hexanedithiol
molecules. The current-voltage characteristic exhibits a zero current region
around zero bias which defines the quantum dot gap energy εg(d). Beyond
this region characteristic steps occur on the positive and on the negative
bias side which originate from the tunneling states. These states are easily
recognized by taking the derivative dI/dV as depicted in the bottom part of
the figure. The first two peaks on the positive bias side come from the 1S level
occupied with two electrons. The states are for particles in a spherical box as
described in Appendix M.4.2. The degeneracy is lifted by the charging energy
εC. The next set of 6 peaks come from the 1P states again degeneracy lifted
by εC. The separation between the two groups of peaks is the sum of level
spacing ΔCB = 1Pe − 1Se and the charging energy. Similar assignment can
be obtained for the valence band if the bias is negative. The level structure
is more complex due to the heavy hole band and the split off valence band in
InAs.

Fig. 16.6. Tunneling
through a core/shell InAs
quantum dot. Upper panel:
current-voltage character-
istic with STM image of
the dot (upper left insert)
and experimental arrange-
ment (lower right insert).
DT: hexanedithiol linker
molecules. Lower panel:
Differential conductance
depicting the different en-
ergy levels on the dot. ΔCB

and ΔVB: spacing between
the levels in the conduction
band and in the valence
band. εC: charging energy;
after [16.5]
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Analyses as described above can be used to demonstrate explicitly the
nature of the wave functions on the dot by scanning tunneling spectroscopy
(STS). This is done by setting the bias to any of the peaks in the differential
conductance of Fig. 16.6 and scanning the dot. Since the tunnel current is
proportional to the electron density it provides immediately a picture of the
square of the radial wave function. Either the 1S states or the 1P states can
be addressed. An example is depicted in Fig. 16.7 for a InAs/ZnSe core/shell
structure. Since in a spherical quantum dot the extra electrons occupy orbitals
given by the radial Schrödinger equation such systems appear like artificial
atoms with S, P, D, etc. like wave functions. For the 0.9 V bias the spherical S-
type wave function density is obtained. 1.4 V and 1.9 V bias depict the p2

x +p2
y

and the p2
z orbitals, respectively. The cut through the recording with 1.4 V

bias provides explicitly the evidence for the doughnut nature of the p2
x + p2

y

electron distribution.
To obtain a more quantitative feeling for the dependence of the gap on the

particle size one may in a good approximation describe the energy dispersion

Fig. 16.7. Features of an artificial atom consisting of an InAs/ZnSe core/shell
structure with a six mono-layer shell and core diameter of about 3 nm. Top
left depicts the differential conductance versus bias voltage. The insert has
the energy levels for the confined S and P electrons. Arrows indicate bias
settings for which the wave function densities were probed. Top right has three
signal curves recorded by scanning across the dot. The panels at the bottom
depict the signal in a grey scale for the full scan across the dot. This signal is
proportional to |ψ|2; modified from [16.5]
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Fig. 16.8. Quantum size effect in semiconductors. Parabolic bands for bulk
semiconductor (left) and discrete energy level scheme with enhanced gap for
quantum dots (right). d is the size of the dot, εg(d) its renormalized gap energy

for valence band and conduction band of the bulk materials as parabolic
with quasi-continuous state distribution and a gap εg between the two bands.
Quantum size effects increase the gap as the state with k ≈ 0 is not allowed
any more. This is demonstrated in Fig. 16.8 for a three-dimensional cubic dot
with extension d. The dot states are the eigenvalues for standing plane waves
given by

εnx,ny,nz
=

(n2
x + n2

y + n2
z)h

2

8m∗
ed

2
. (16.10)

where m∗
e is the effective mass in the conduction band and a similar relation

for the valence band with effective hole mass m∗
h. The lowest energy level in

the conduction or in the valence band is therefore 3h2/8m∗
e,hd2 as obtained

for nx = ny = nz = 1.
To evaluate the renormalized gap energy the upshift of the edge in the

conduction band and the downshift of the edge in the valence band must be
considered as depicted in Fig. 16.8. Thus, finally the renormalized gap εg(d)
for the rectangular quantum dot is obtained from

εg(d) = εg + εe1,1,1 + εh1,1,1 + εC = εg + 3h2/8m∗
rd

2 − 1.8e2/2πεε0 , (16.11)

where m∗
r = m∗

em
∗
h/(m∗

e + m∗
h) is the reduced mass for electrons and holes.

The last term in the equation originates from a small remaining Coulomb
interaction between electron and hole which becomes relevant due to the small
size of the particle.
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If the quantum dot is spherical the Schrödinger equation for a particle in a
spherical box must be evaluated. The resulting eigenfunctions are the Bessel
functions jl(r) and the energy eigenvalues εnl are obtained from

εnl =
β2

nlh
2

2π2m∗d2
(16.12)

where βnl are the nth zeros of the lth spherical Bessel function jl. β00 = π
and represents the 1S ground state. β01 = 4.5 represents the 1P state and so
on. The gap enhancement from the size quantization is in this case obtained
by replacing ε1,1,1 in (16.11) by ε00 = h2/2m∗d2. For more details about the
eigenstates of the spherical box see Appendix M.3.

Figure 16.9 depicts optical absorption spectra for semiconducting CdSe
quantum dots with different mean diameters and suspended in a liquid.
Whereas for 11.5 nm diameter almost bulk absorption with an edge at 700 nm
is observed, the 1.2 nm colloidal particles exhibit the edge around 420 nm.

Fig. 16.9. Optical absorption for sus-
pended colloidal CdSe quantum dots of
different diameters. The latter are indi-
cated in Å; after [16.3]

16.2.4 Landau Levels and Quantum Hall Effect

In a two-dimensional electron gas such as the electrons in the channel of a
field effect transistor or the electrons in a graphene sheet electronic states are
only quantized in z direction. In the plane of the 2D electron system kx and ky

can accept any value. Thus, the eigenvalues of the system are quasicontinuous
bands in the x, y direction which form a set of subbands shifted by the discrete
energies of the 1D particle in the box system in z direction. This yields, if the
bands are parabolic,
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Fig. 16.10. Density of
states versus energy for two-
dimensional electrons with-
out magnetic field (dashed
line) and with magnetic field
showing Landau levels (full
line)

εnx,ny,nz
(k) =

h̄2k2
x

2m∗ +
h̄2k2

y

2m∗ +εnz
, kx = 2πnx/L, ky = 2πny/L (16.13)

with nx, ny = 0, 1, 2, 3, ... and

εnz
=

h̄2π2n2
z

2m∗d2
z

, with nz = 1, 2, 3, ....

The k states in x and y direction are given by the large extension L in the
plane whereas the allowed states in z direction are determined by the small
size dz of the system in this direction.

If a magnetic field B is applied perpendicular to the plane this is not any
more so. The electrons in the plane are forced to move on cyclotron orbits
with frequency ωc = |e|B/m∗

‖ where m∗
‖ is the effective mass of the electrons

in the plane of orbiting. Since a circular motion is equivalent to an oscillatory
motion in x and y direction the eigenvalues of the cyclotron motion are

εnz,m,s = εnz
+(m+1/2)h̄ωc+sgμBB, nz = 1, 2, 3.. , s = ±1/2 (16.14)

The last term comes from spin degeneracy. If Zeeman splitting is small the
spins remain quasi-degenerate. Equation (16.14) shows that the continuum
of states in the x, y plane is now jammed into discrete Landau levels. The
separation between the Landau levels is h̄ωc. Figure 16.10 depicts a schematic
of the Landau levels as a set of δ-like peaks in a density of states diagram.
In contrast, the DOS for 2D electrons without magnetic field are given by an
energy independent value D0 = m∗

‖/2πh̄2. All Landau levels below εF are full
and they are empty above εF. Since the number of states must be conserved
all states from in between the Landau levels are shifted to the next level and
thus create a degeneracy of

NL = h̄ωcD0 = eB/h = 2.42 × 1024(m−2T−1)B , (16.15)
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Thus, with increasing B the degeneracy of the Landau levels increases and so
does the separation between the levels. The lowest Landau level is at (1/2)h̄ωc.
Since ωc increases with B it eventually reaches εF and all states are in this
level. This is called the quantum limit.

To further discuss transport spectroscopy we must remember that in a
classical Hall experiment with current in i direction and Hall voltage in j
direction the conductance σij and resistance Rij must be written in tensor
form as, e.g.

Rxx =
σxx

σ2
xx + σ2

xy

, (16.16)

where σxx = Ix/Vx and σxy = Ix/Vy. If, while scanning the field B, the Fermi
level is in between two Landau levels the density of states at εF is zero and thus
σxx is zero. Then, according to (16.16) Rxx also disappears. In contrast, if εF
coincides with a Landau level, σxx and thus also Rxx have a maximum. This
means the magneto resistance Rxx oscillates and always has a maximum when
the Fermi level passes a Landau level. This behavior is known as Shubnikov–de
Haas oscillations.

In a similar way one can study the transverse resistance Rxy. With the
current Ix = bNevx and the Hall voltage eVy = evxBb where b is the width
of the sample, we obtain

Rxy =
B

Ne
. (16.17)

N is the total number of carriers accommodated in the Landau levels below
εF. This are νNL carriers. ν is the Landau level index which counts the number
of Landau levels blow εF. With increasing field ν decreases until the lowest
Landau level arrived at the Fermi level for ν = 1. Rxy remains constant as long
as the Fermi level stays in between two Landau levels but increases stepwise
when εF passes a Landau level. By replacing N by νNL we obtain

Rxy =
B

νNLe
=

h

e2

1
ν

ν = 1, 2, 3, ... (16.18)

This equation holds for neglecting spin degeneracy. If the original degeneracy
of electronic states is gs the Hall resistance Rxy and the corresponding Hall
conductance become

Rxy =
h

gse2

1
ν

, σxy = R−1
xy =

gse
2

h
ν ν = 1, 2, 3, ... (16.19)

This means the step heights in σxy are constant and of universal nature. They
are the signature of the quantum Hall effect as discovered by K. von Klitzing
in 1980 [16.10]. The value of h/e2 = R0 is 25.812807 KΩ is the von Klitzing
constant. Figure 16.11 depicts experimental results for the magneto resistance
and for the quantum Hall effect for a GaAs/(Ga0.3Al0.7)As heterostructure.
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Fig. 16.11. Shubnikov–
de Haas oscillations and
quantum Hall effect for
a GaAs/(GaAl)As het-
erostructure measured at
1.5 K; after [16.11]

Since in this case the spin degeneracy is lifted due to the strong field, gs = 1
and the Hall plateaus appear in Rxy at h/e2, h/2e2, etc. Where ever the Hall
resistance Rxy has a step the longitudinal resistance Rxx exhibits a maximum
as predicted.

A detailed explanation for the widths of the Hall plateaus needs to include
localized states for the electrons in between the free electron states in the
Landau Levels.

Increasing the field B beyond the quantum limit would shift the Landau
level beyond the Fermi level. To prevent this a new distribution of Landau
levels is arranged which leads to the fractional quantum Hall effect.

Interestingly there are 2D electron systems where the quantum Hall effect
and Shubnikov–de Haas oscillations behave differently to the above described
model. In graphene (a single layer of graphite) the electrons follow the Fermi-
Dirac equation rather than the Schrödinger equation. In this case the distri-
bution of Landau levels in a magnetic field is given for electrons and holes,
respectively by

εm = ±(2eh̄v2
FB(m + 1/2 ± 1/2))1/2 (16.20)

instead of εm = (m+1/2)ωc from (16.14). This means the Landau levels scale
nonlinear in m and the lowest Landau level is at ε = 0 as obtained for m = 0.
Therefore the quantum limit can not be reached in graphene and the quantum
Hall effect remains integer for all fields. However, the plateaus in Rxy and the
peaks in Rxx are phase shifted. The Hall plateaus appear at

Rxy =
h

gse2

1
ν + 1/2

ν = 0, 1, 2, 3, ... (16.21)

with gs = 4. This means they appear at h/2e2, h/6e2, h/10e2 etc.
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Problems

16.1∗ Using the plasma frequency of gold from Sec. 6.3 calculate the energy for the
transition between the highest occupied and the lowest unoccupied electronic level
in a particle in the box picture for gold for a = 1nm (cubic box) and d = 1 nm
(spherical box).

(Purpose of exercise: Get a feeling for the effect of size quantization in the particle
in the box model.)

16.2 Show that (16.8) can be derived from a simple particle in the box model if the
dispersion is ε(k) = vFh̄k as it holds for carbon nanotubes.

(Purpose of exercise: Derive a very often used relation between level splitting
and Fermi velocity in special quantum dots.)

16.3 Show that for equidistant size induced energy levels the last term in (16.4)
equals Δεqs(N + 1)N/2. How would the evaluation of this term look like for a 1D
quantum dot? What would be the contribution (in eV) to the potential in (16.4) for
a dot of size 2 nm?

(Purpose of exercise: Get convinced what the last term in (16.4) means.)

16.4 Consider a 2D electron gas which is restricted to a small area of length L.
Discuss the quantum Hall effect for this system. What would be the degeneracy in
the Landau levels? What is the degeneracy for the lowest Landau level?

(Purpose of exercise: Get a better insight in the physics of quantum Hall effect

and size quantization.)
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Neutron Scattering

Neutron scattering is one of the most often used experimental techniques in
condensed matter analysis even though nowadays new developments are not as
booming as they are for spectroscopy with synchrotron radiation. The appli-
cation of neutron scattering extends far beyond solid-state physics and plays
an important role in fields such as structure of liquids, biophysics, biology,
medicine, or environmental research.

The usefulness of neutron scattering originates from the comparatively
simple and weak interaction of the neutrons with condensed matter and their
well adapted mechanical (energy and momentum) properties to the micro-
scopic and energetic structure of matter. The interaction is simple in com-
parison to the interactions relevant for light scattering or electron scattering
because it is based on mechanical forces. The weakness of the interaction
renders the system in the ground state for elastic scattering or in a well de-
fined excited state for inelastic scattering. The hazard involved in degrading
the samples is much lower as for example in the case of light scattering. The
mechanical properties of the neutrons are appropriate since the de Broglie
wavelength for thermal neutrons is of the order of inter-atomic distances and
their energy compares well with the fundamental excitations in condensed
matter. In addition the spin and magnetic moment of the neutron allow for
special applications in magnetic materials and for the analysis of a random
distribution and motion of isotopes.

It is useful at this point to compare the relationships between energy and
wavelength for the various quasi-particles used for scattering experiments in
condensed matter. According to de Broglie

λ =
2πh̄√
2Mεkin

, (17.1)

where M and εkin are the particle mass and kinetic energy, respectively. The
following table compares the behavior of neutrons with electrons and photons.
From it the advantage of the neutrons for atomistic resolution in space is
evident. A disadvantage is the rather low resolution in energy which causes
problems for the measurement of high energy phonons.

H. Kuzmany, Solid-State Spectroscopy, DOI 10.1007/978-3-642-01479-6 17, 423
c© Springer-Verlag Berlin Heidelberg 2009
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Table 17.1. Energies and wavelength for quasi-particles

Neutrons Electrons Photons

wavelength λ (nm) 0.028/
√

εkin (eV) 1.2/
√

εkin (eV) 1240/ε (eV)

energy for λ = 1 nm 10 meV 1.5 eV 1.24 KeV

wavelength for 26 meV 0.17 nm 50 nm 100 μm

speed for 26 meV 2200 m/s 2×104 m/s 3×108 m/s

energy resolution 5×10−2 5×10−2 10−5

Neutron scattering has many applications in structural analysis where
scattering is purely elastic. Like in the case of x-ray diffraction, this is not a
central subject of this textbook. However, experimental and theoretical con-
cepts for the elastic and inelastic scattering process are very similar and the
same type of instrumentation is used. This means no strict differentiation will
be pursued in the first part of this chapter which covers instrumentation and
scattering processes in general.

The chapter can only give an introduction to the subject. For extended
information additional literature must be consulted. A good reference for the
description of the theoretical background is the book by Lovesey [17.1]. Sum-
maries of instrumentation and experimental procedures are in [17.2] and [17.3].
A more simple but still valuable summary is given in [17.4]. An instructive de-
scription of spallation sources can be found in [17.5]. A compressed discussion
of neutron scattering from magnetic excitation is given in [17.6].

17.1 Neutrons and Neutron Sources

Even though neutrons are the most abundant particles in the universe they
are not easily obtained as a particle beam with high concentration. For the
purpose of spectroscopy high flux reactors are the most widely used source. As
an alternative spallation sources are gaining considerable importance because
they can provide a higher neutron flux for the experiments in a certain spectral
range.

17.1.1 Neutrons for Scattering Experiments

The elementary properties of the neutron are:

mass 1.675×10−27 Kg,
radius 6×10−16 m,



17.1 Neutrons and Neutron Sources 425

spin 1/2,
magnetic moment-0.9×10−26 Am2 = 1.9μn,
charge 0

Interestingly the lifetime of the free neutron is only 932 seconds while it
is fortunately practically infinite in condensed matter.

It is useful to divide the neutrons in the following categories according to
their energy:

ultra cold and very cold : below 0.5 meV (T < 20 K)
cold : 0.5–2 meV (10 < T < 50 K)
thermal : 2–100 meV (30 < T < 1100 K)
epithermal : > 0.1 eV, (T > 1100 K

Neutrons with much higher energy are produced during the process of
nuclear fission in the reactor and have to be cooled (moderated) to thermal
energy to be useful for spectroscopy.

17.1.2 Thermal Neutron Sources

The most widely used sources for thermal neutrons are high flux reactors. The
fission of 235U produces in the reactor a total of 1018–1019 neutrons per second
with an energy of several MeV each. These neutrons must be slowed down in a
moderator to thermal energy of about 26 meV for scattering experiments. High
flux reactors can develop a thermal flux of more than 1015 neutrons/cm2s.
Unfortunately only a fraction of about 10−8 from this can be made available
for scattering experiments. The dramatic loss of neutrons is due to the large
spatial distribution of the neutrons in the reactor core, to the limitations
when extracting the neutrons from the core into a beam, to the required
selection in the process of monochromatization, and to all other beam handling
requirements.

Table 17.2 lists some of the most important reactors for scattering experi-
ments together with their power, thermal flux and instrumentation. The latter
refers to cold sources and various spectrometers.

The extraction of the neutrons from the interior of the reactor proceeds
by a beam hole with a corresponding collimator called the beam tube. Figure
17.1 shows the arrangement of the beam tubes and beam holes in the high
flux reactor in Grenoble. The beam hole must be well sealed with filters and
several shields to prevent high energy neutrons and γ radiation escaping from
the reactor and propagating in the beam. Appropriate filters are beryllium
plates due to the low wavelength cutoff for Bragg scattering in Be at λ = 4 Å.

From the beam hole the neutrons are guided to the experiment by the
beam tube which allows the transfer of neutrons over distances of several
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Table 17.2. High flux neutron sources available for neutron scattering experiments:
reactors (upper part of table, capacity given in MW), spallation sources (lower part
of table, capacity given in μA)

Name Location Capacity Thermal flux Cold source Instruments
(MW)/(μA) (1014/cm2s) Number Number

HFR ILL,Grenoble 57 15 2 25
HFBR Brookhaven 60 9 1 11
HFIR Oak Ridge 100 10 10
NBSR NIST, Washington 20 4 1 14
JRR-3 JAERI,Tokai 20 2 1 21
NRU Chalk River 130 4 8
ORPHEE Saclay 14 3 2 24

KENS-1 KEK, Tsukuba 4 3 1 17
ISIS RAL, Chilton 200 1 13
SINQ Villingen 1000 1.5 1 20
LANSCE Los Alamos 100 1 5

Fig. 17.1. Arrangement of beam tubes
in the high flux reactor in Grenoble.
The tubes assigned CS and HS are cold
and hot sources, respectively. Black
lines from H1 and H2 are connected
to neutron guides for remote scattering
experiments. IH3 and IH4 are vertical
tubes

meters without substantial loss. A beam tube consists of a Ni tube or a tube
with Ni-plated walls which reflect the neutrons of a particular wavelength.
The smaller the cross section of beam tube and collimator the less divergent
the neutron beam, but the lower the flux available for the experiment.

Specially constructed beam tubes can act as wave guides for the neutrons
and allow transportation of the neutron beam over 50-100 m without sub-
stantial loss. Neutrons with high k vectors can be transported if the walls are
plated with supermirrors instead of Ni.

Alternative facilities to supply beams with a high neutron flux are spalla-
tion sources. Spallation sources are not restricted to special nuclei since they
do not rely on a chain reaction. In contrast to the reactors energy is consumed
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to initiate and sustain the spallation process. This has the advantage of an
easier control of the reaction. The energy is supplied in the form of a proton
beam of several hundred μA and several 100 MeV energy which hits a target
and initiates the spallation reaction in the nuclei. As soon as the current is
turned off the reaction stops. The protons penetrate into the nuclei of the tar-
get and transfer energy to the protons and neutrons of the nuclei. The latter
heat up and start to release neutrons (and also protons). Neutrons (or pro-
tons) directly emitted from the collision process (cascade particles) contribute
to the heating of other nuclei. As in reactors the neutrons are released with
a very high energy of several MeV and must be moderated. Moderation is
easier in spallation sources since in contrast to the case of nuclear reactors no
sophisticated balance for the concentration of thermal neutrons is required.
The number N of neutrons released per incident proton can be estimated from

N = a(A + 20)(ε − b) , (17.2)

where A is the atomic weight of the target, ε is the energy of the proton
and a and b are constants referring to constructive details. For a target of
lead with 10 cm diameter and 60 cm length a and b are 0.1 (GeV)−1 and
0.12 GeV, respectively. This yields about ten neutrons per proton for 600 MeV
primary protons. Close to the target a flux of thermal neutrons of the order
of 2 × 1010 neutrons/cm2s can be reached. This flux is guided to the outside
of the moderator tank by beam tubes as in the case of a reactor. By special
constructive details a very fast moderation can be obtained. This allows spal-
lation sources to be operated in a pulsed mode with pulse times as short as
30 μs.

17.1.3 Cold and Hot Neutron Sources

For both the nuclear reactor and the spallation source the concentration of
low energy neutrons can be considerably increased in a certain spectral range
by inserting cooling units into the center of the source. These units operate
usually with liquid hydrogen or liquid deuterium. The energy distribution in
the cold neutron beam is shifted to lower values. The peak wavelength in the
distribution of the thermal neutrons is at about 0.12 nm. This wavelength can
be shifted to more than 1 nm for super cold neutrons. The downshift can be
an advantage for the analysis of low-energy excitations since the resolution in
energy scales with the energy of the neutrons.

In some cases hot sources can be of advantage. Some reactors are there-
fore supplied with hot cells where the neutrons can be equilibrated at high
temperatures. The hot source of the high flux reactor in Grenoble consists of
a graphite block heated to 2400 K which results in a downshift of the peak
wavelength of the neutrons to 0.08 nm. Figure 17.2 shows the energy distribu-
tion of neutrons (plotted as a function of their wavelength) at several beam
tubes for the reactor in Grenoble.
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Fig. 17.2. Spectral distribution of neu-
trons at various beam tubes and guide
facilities at the high flux reactor in
Grenoble; (H3: hot, H12,H22: thermal,
IH1: cold, H15-H18: very cold guides);
after [17.7]

17.2 Neutron Spectrometer and Detectors

As in all other spectroscopic techniques the probe beam emerging from the
sample must be analyzed with respect to its energy and intensity. Since the
direction of the scattered neutrons is an important parameter and the inci-
dent beam needs a high degree of monochromatization neutron spectrometers
require a considerable technical effort. In addition the weak interaction of the
neutrons with matter makes their detection much more laborious as compared
to light or electron detection.

17.2.1 Neutron Spectrometer

Neutron spectrometers consist of two elaborate components: A facility to se-
lect monochromatic neutrons and the analyzing system including the detector.
For the monochromator two concepts are in use. Bragg scattering from a high
quality and large single crystal allows the selection of different neutron ener-
gies by choosing an appropriate geometry for elastic scattering of the neutrons
from the beam hole. Bent crystals allow a focusing of the neutron beam. Alter-
natively, a mechanical chopper can be used for selection. Mechanical choppers
consist of a rotor with axially or tangentially mounted blades and operate by
selection of neutron velocity. If the chopper has a set of axial blades it ro-
tates parallel to the flight direction of the neutrons and the blades must be
twisted. Only neutrons with an appropriate transit time across the chopper
can pass. Thus, the chopper generates a continuous beam of neutrons with
a quasi-monochromatic energy distribution (mechanical velocity chopper). If
the rotation axis of the chopper is perpendicular to the flight direction of the
neutrons a monochromatic and pulsed beam is obtained (Fermi chopper).
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Fig. 17.3. Schematic representation of a three-axis neutron spectrometer (a)
and a time of flight spectrometer (b); (RC: reactor core, BH: beam hole with
collimator, MC: monochromator crystal, Sh: shielding, S: sample, AC: analyzer
crystal, D: detector, DA: detector array, F: Fermi chopper)

One possibility to obtain full information on the wave vector and energy
of the scattered neutrons is analysis with a three-axis spectrometer shown in
Fig. 17.3a. The spectrometer has three axes where six angles can be selected
independently. With the beam hole and the collimator a beam of neutrons
is extracted from the reactor core and monochromatized with crystal MC.
The diffracted beam hits the sample S and the analyzer crystal is arranged
to receive the beam after the inelastic scattering process in the sample. By
rotating the analyzer and the detector the energy of the scattered neutrons
can be investigated. In practice scans are usually performed for constant value
of q or constant energy (see also Fig. 17.5).

Alternative to the use of an analyzer crystal the energy resolution can be
obtained from a time-of-flight experiment. The setup is sketched in Fig. 17.3b.
After a first monochromatization by the monochromator crystal MC the Fermi
chopper generates a pulsed neutron beam and sets a time scale for each pulse.
As a consequence of the inelastic scattering process in the sample S the emerg-
ing neutrons arrive at the detector after different times of flight. From the
distances between chopper, sample and detector this time is easily converted
to energy. Using a detector array scattering from quasi-particles with different
wave vectors can be recorded simultaneously as discussed below.

Very high (angular) resolution can be obtained with spectrometers oper-
ating in a backscattering geometry.
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17.2.2 Neutron Detectors

The scattered neutrons are detected from fission products after a reaction
with either boron or 3He. These detectors rely on the nuclear reactions

B(n, α)7Li and
3He(n,p)T .

Boron is usually provided as BF3 gas. The charged particles from the
reaction are emitted with an energy of the order of MeV and can be detected
in a proportional counter. To make the detection of the scattered neutrons
more efficient one or two dimensional arrays of detectors with several hundred
units are in use.

17.3 The Process of Neutron Scattering

The scattering of thermal neutrons is the basic process to extract information
from the solids. The scattering process can be elastic or inelastic. In the latter
case excitation of quasi-particles occurs in the solid. In both cases the process
is well described by a scattering cross section similar to Raman or electron
scattering.

17.3.1 The Scattering Cross Section

Neutrons penetrate material easily because of their weak interaction. The in-
teraction length is only of the order of 10−13 cm. This means the wavelength of
the neutron is always much larger then the size of the scatterer which implies
isotropic or s-wave like scattering. As a consequence the scattering can be
characterized by a single parameter b called the scattering length. The square
of the scattering length determines the scattering cross section (see below).
The distance between the nuclei is, on the other hand, much larger than their
size which means scattering from all nuclei is just additive. The scattering
length does not necessarily scale with the size of the nucleus. The coherent
scattering lengths for carbon and titanium are, for example, 0.665× 10−12 cm
and −0.344×10−12 cm, respectively. In contrast, the covalent radii of the two
atoms are rcov(C) = 0.77× 10−8 cm and rcov(Ti) = 1.32× 10−8 cm. This lack
of scaling with the size of the scatter is in contrast to x-ray diffraction where
the scattering cross section increases continuously with the atomic order and
thus with the covalent radius of the atoms. In Fig. 17.4 scattering of x rays
and neutrons is compared for several elements and isotopes. The diameters
of the circles in part (a) represent scattering amplitudes for x-ray diffraction.
The circles in the first row of part (b) are scaled to the scattering length for
neutron diffraction. Even different isotopes of the same chemical element can
have very different scattering lengths. This is demonstrated in part (b) for
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Fig. 17.4. Scattering efficiency for x rays (a) and thermal neutrons (b) for several
elements and their isotopes

the isotopes of H, Ti, Fe, and Ni. The dramatic difference in their scatter-
ing lengths means that even a chemically homogeneous or coherent material
looks very inhomogeneous or incoherent for the penetrating neutrons. As a
consequence in the experiments and for the theoretical analysis coherent and
incoherent scattering must be differentiated.

17.3.2 Coherent and Incoherent Scattering in the Born
Approximation

The concept of coherent and incoherent neutron scattering can be understood
from a basic description of the scattering process within first-order perturba-
tion theory or the Born approximation.

As in the case of optical absorption the golden rule allows the calculation
of the probability Pk,k′ for the transition of an initial state to a final state.
The latter are in the present case characterized by the wave vector k for the
incident and k′ for the scattered neutron. With a density of final states ρk′

we have

Pk,k′ =
2π

h̄

∣∣∣∣
∫

d3xψ∗
k′Uψk

∣∣∣∣
2

ρk′ . (17.3)

ψk′ and ψk are the wave functions for the incident and for the scattered
neutron and U is the interaction potential. The absolute value of the matrix
element in (17.3) is the scattering amplitude|Ukk′ |. The scattering cross section
is defined as the ratio between the probability Pk,k′ of (17.3) and the incident
neutron flux Φ.

For the simplest case of normalized plane waves for the incident and scat-
tered neutrons
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ψk =
1

L3/2
eikr and ψk′ =

1
L3/2

eik′r ,

the flux per neutron is

Φ =
vn

L3
=

h̄k

MnL3
. (17.4)

The scattering cross section is therefore

dσ

dΩ
=

Pk,k′

Φ
=

2π

h̄

MnL3

h̄k
ρk′ |Ukk′ |2 .

Inserting from (17.3) and (17.4) and using

ρk′ =
(

L

2π

)3
Mnk′

h̄2 (17.5)

for the density of states per unit solid angle for the scattered plane waves
yields

dσ

dΩ
=

k′

k

(
L3Mn

2πh̄2

)2

|Ukk′ |2 . (17.6)

Elastic scattering is obtained for k′ = k.
An explicit evaluation of the scattering cross section is instructive for an

interaction potential expressed by a δ function for an assembly of scatterers
at rigid positions rl with individual scattering length bl. For this (repulsive)
interaction the Fermi pseudopotential can be used which is given by

U(r) =
2πh̄2

Mn

∑
l

blδ(r − rl) (in J) . (17.7)

For this potential the elastic scattering cross section is obtained from (17.6)

dσ

dΩ
=
∑
ll′

b∗l′bl eiq(rl−rl′ ) , (17.8)

where q = k − k′ is the scattering vector and b∗l′ is the complex conjugate
to bl′ . The average is taken over all particles, isotopes, and spin orientations
participating in the scattering process and has the following meaning.

If l and l′ refer to different sites there is no correlation between bl and bl′ .
Thus

b∗l′bl = b∗l′ bl = |b|2 for l �= l′

but
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b∗l′bl = |bl|2 = |b|2 for l = l′ .

This means in the latter case the square of the scattering lengths of the dif-
ferent components of the assembly of scatterers must be considered. We call
the components with l �= l′ in the sum of (17.8) the coherent contributions
and the components with l = l′ the incoherent contributions to the scattering
cross section. The general form for the averaged product of the scattering
lengths is therefore

b∗l′bl = |b|2 + δll′(|b|2 − |b|2) . (17.9)

With this we can express the scattering cross section as the sum of a coherent
and an incoherent component

dσ

dΩ
=
(

dσ

dΩ

)
coh

+
(

dσ

dΩ

)
incoh

= |b|2
∣∣∣∣∣
∑

l

eiqrl

∣∣∣∣∣
2

+ N |b − b|2 . (17.10)

The equation shows that only the coherent part can lead to interferences
for plane waves emerging from different nuclei.

The second part of (17.10) shows that σincoh is proportional to the mean
square deviation of the scattering lengths for the different nuclei involved.
This deviation can be very large. In the case of hydrogen σcoh = 1.8 bn, for
example, and σincoh = 80 bn. 1 bn (barn) is the unit for cross sections and
amounts to 10−24 cm2.

Table 17.3 lists scattering lengths b and total scattering cross sections σ as
well as absorption cross sections for a selected number of elements and their
isotopes. Note that the scattering lengths are complex for strongly absorbing
nuclei and the real part of b can be negative. The total and the coherent cross
section are σ = 4π|b|2 and σcoh = 4π|b|2, respectively.

17.3.3 Inelastic Neutron Scattering and Scattering Geometry

The scattering cross section from (17.6) can be used to describe an inelastic
scattering process. If the system changes from an initial state i to a final f with
energies εi and εf , respectively the process is controlled by energy conservation
which is guaranteed by multiplying the matrix element in (17.6) with a δ
function. The differential scattering cross section scattering (per unit angle
and per unit energy range) is then expressed by

d2σ

dΩdε′
=

k′

k
|〈k′, f|U|k, i〉|2δ(h̄Ω + εi − εf) , (17.11)
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Table 17.3. Coherent scattering lengths b, total scattering cross sections σ and ab-
sorption cross section σa for selected atoms. (av) refers to a natural isotope mixture;
after [17.1]

Atom Mass Abundance b σ σa

AMU % (10−12 cm) (10−24 cm2) (10−24 cm2)

H 1 100 −0.374 81.67 0.333
2 0.015 0.667 7.63 0.0005

He av 0.326 1.21 0.001
3 0.0001 0.574 5.6 5333.
4 100 0.326 1.21 ≈ 0

B av 0.535−i0.021 5.01 767.
10 20 0.0−i0.11 0.98 3837.
11 80 0.666 5.8 0.006

C av 0.665 5.564 0.004
12 98.9 0.665 5.564 0.004
13 1.11 0.62 5.5 0.001

N av 0.93 11.5 1.9
14 99.63 0.937 11.5 1.9
15 0.37 0.644 5.21 ¡0.001

Al 27 100 0.349 1.506 0.231
Si av 0.415 2.173 0.171

28 92.23 0.411 2.119 0.177
29 4.67 0.47 2.9 0.1
30 3.1 0.458 2.65 0.107

Au 197 100 0.763 7.81 98.65

where h̄Ω is the energy difference of the neutron before and after the inelastic
collision.

As in the case of Raman scattering or electron energy loss processes the
scattering geometry is determined by the conservation of energy and momen-
tum

h̄k = h̄k′ + h̄q

h̄Ω =
h̄2

2m
(k2 − k′2) . (17.12)

Positive values for Ω mean generation of quasi-particles or Stokes scattering.
There are two important differences to light scattering and electron scattering:

a) the difference in the magnitude of k and k′ can be very large since the
neutron can exchange a considerable part of its energy. This means the
fraction k′/k is important in neutron scattering.

b) The scattering vector q is not equal to the q vector of the excited quasipar-
ticle but can in addition contain any reciprocal lattice vector G. Equation
(17.12) is therefore only correct if G is chosen to be zero. To be sufficiently
general and in agreement with most of the literature on neutron scattering
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we will assign the scattering vector −k′+ k in the following as

k − k′ = G + q = κ

In other words, the analysis of quasi-particle excitation can be performed
close to any diffraction spot of the reciprocal lattice. The scattering geome-
try is shown schematically in Fig. 17.5. If the scattered neutron is observed
in direction OA” any quasi-particle vector q shown satisfies the momentum
conservation but only for one selected vector is the energy conservation simul-
taneously valid. |k′|−|k| determines the energy of the excited quasi-particle. If
|k′| is scanned for constant direction of observation the quasi-particles satisfy-
ing the conditions for detection are scanned as well. In this case the scanning
is along the dashed line in Fig. 17.5 and a wide range of energies given by
|k′| will satisfy the geometrical scattering conditions. If k′ is larger than k
only antiStokes scattering is possible. In practice scanning for the spectrum
of the scattered neutrons is either for a constant value of q (energy scan) or
for a constant value of Ω (wave vector scan). In both cases a well defined
synchronous motion of the analyzing crystal and of the detector is required
but selective excitations in energy and momentum can be studied.

Fig. 17.5. Scattering geometry
for inelastic neutron scattering. G
and q are vectors of the recipro-
cal lattice and of the excited quasi-
particle, respectively

17.4 Response Function and Correlation Function for
Inelastic Neutron Scattering

Neutron scattering is conveniently described in the frame of linear response
theory. Most of the results from the discussion of the generalized susceptibil-
ity in Chap. 14 and from EELS in Sect. 15.1 can be used. The situation is
even more simple since the particles are uncharged and non-interacting in the
present case.

The relationship for the inelastic scattering cross section at finite temper-
atures is immediately obtained from (17.11) in the form
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d2σ

dΩdε′
=

k′

k

∑
i,f

W (εi)|〈k′, f|U|k, i〉|2δ(h̄Ω + εi − εf) , (17.13)

where W (εi) is the probability of the occupation of the initial state of energy
εi. The cross section describes the probability of the scattering of a neutron
from initial state 〈k| and any system energy εi to a final state 〈k′| with sys-
tem energy εf for an interaction potential U and conservation of energy and
momentum.

The matrix element and the δ function in (17.13) can be expressed by the
dynamical form factor from Chap. 14. For a polynuclear interaction potential
of the general form

U =
2πh̄2

Mn

∑
j

Uj(r − rj) (17.14)

and a total of N independent scatterers (17.13) becomes

d2σ

dΩdε′
= N

k′

k
|Uj(κ)|2S(κ, Ω) . (17.15)

The cross section is expressed by three components: a geometry factor Nk′/k,
the Fourier component of the scattering potential Uj(κ) and S(κ, Ω) which
describes the intrinsic structural and dynamical properties of the scatterer.
For a particle density

n(r, t) =
1
N

∑
j

δ[r − rj(t)] (17.16)

S(κ, Ω) can be expressed by the Fourier transform of the density-density
correlation function between nucleus j at time 0 and nucleus j′ at time t. As
in (14.44) the dynamical form factor becomes in this representation

S(κ, Ω) =
1

2πh̄

∫
dt exp(−iΩt)〈nκn−κ(t)〉 . (17.17)

The above concept can be used to calculate the scattering cross section
for phonons in a crystal. In this case the density-density correlation function
is evaluated in terms of r + u and the interaction potential is periodic. The
cross section for coherent Stokes scattering for one phonon with frequency Ωj

becomes
(

d2σ

dΩdε′

)
st

=
Nσch̄k′

8πMnk
exp[−2W (κ)]|κσj |2

fE(Ωj(q)) + 1
Ωj(q)

δ[h̄Ω+h̄Ωj(q)] ,

(17.18)

where k′ = k−q−G and ε′ are the wave vector and the energy of the scattered
neutron, σc is the coherent cross section, exp − 2W (κ) is the Debye–Waller
factor with
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2W (κ) =
3h̄2κ2kBT

M(kBΘD)2
,

and σj is the polarization of the phonon with frequency Ωj . M and ΘD are
the mass of the nucleus and the Debye temperature, respectively. Integration
of (17.18) over the energy ε′ yields the total scattering cross section

(
dσ

dΩ

)
st

=
Nσch̄k′

8πMnk
exp[−2W (κ)]|κσj |2

fE(Ωj(q)) + 1
Ω(qj)

×
{

1 − h̄

2ε′
k′∇Ωj(q)

}−1

, (17.19)

Evaluation of (17.19) yields for ambient conditions and phonons in metals a
cross section of the order of 10−3 bn.

17.5 Results from Neutron Scattering

Inelastic neutron scattering is extensively used to study lattice vibration or
magnetic excitations. Figure 17.6 exhibits the dispersion of acoustic phonons
in lead as measured with a three-axis spectrometer. Shown are longitudinal
(L) and transverse (T) components in different crystallographic directions. No
optical phonons are observed since lead has only one atom per primitive unit
cell. The maximum frequency is about 1012 Hz or 3.5 meV. This is typical for
metals. Frequencies for optical phonons in inorganic nonmetallic crystals are
about one order of magnitude higher.

Fig. 17.6. Phonon dispersion in lead for different crystallographic directions;
after [17.8]
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Fig. 17.7. Time-of-flight neutron spectrum for copper. The resolution in energy
is represented by the widths of the central line; after [17.5]

Figure 17.7 shows a time-of-flight spectrum recorded for copper. The cen-
tral line represents the elastically scattered neutrons. Neutrons from an an-
tiStokes scattering process arrive earlier, while those from a Stokes process
arrive later. Note the nonlinear relation between time and energy. The spec-
tral structure represents a phonon density of states.

In the case of more complicated crystals with several optical modes neutron
scattering can detect all dispersion relations and the corresponding density of
states. An example is depicted in Fig. 17.8 for β-AgI. This crystal has two

Fig. 17.8. Phonon dispersions (a) and density of phonon states (b) for acous-
tic and optic modes of β-AgI. Symbols are from neutron scattering, full drawn
lines from a model calculation; after [17.9]
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formula units per unit cell and therefore 3 acoustic and nine optical modes.
Full drawn lines are from a valence shell calculation. The right part of the
figure depicts the phonon density of states which has the expected peaks
where the phonon dispersions are flat.

Problems

17.1 Show that the density of states for a plane wave in a volume L3 is given by
(17.5)

(Purpose of exercise: recall the meaning of the density of states for the outgoing
wave.)

17.2 Show that the total scattering cross section for a Fermi potential with a single
scattering center is

σ = 4π|b|2

(Purpose of exercise: Use the simplest version of a scattering potential in the
Born approximation.)

17.3 For a time of flight spectrometer with thermal neutrons the distances from
chopper to sample and sample to detector are 3 and 4 meters, respectively. Estimate
the time of the arrival of the neutrons at the detector after inelastic scattering with
optical phonons in classical semiconductors.

(Purpose of exercise: Understand the time to energy conversion in time-of-flight
spectrometers.)

17.4 Calculate the cross section for scattering of thermal neutrons by transverse
acoustic phonons in Si. Consider two different points in the reciprocal lattice.

(Purpose of exercise: Using (17.19) convince yourself which parameters of the
scattering experiment are most important for the scattering intensity.)

17.5∗ Calculate the dynamical form factor S(Ω) for the damped harmonic oscillator.

(Purpose of exercise: Apply a sophisticated mechanism to a simple example to

understand the meaning of the dynamical form factor.)
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Spectroscopy with Atoms and Ions

Scattering of atoms and ions from solid surfaces is a good example for the
development of an excentric experiment into a very useful and important
technique for material analysis. These types of experiments are the youngest in
the family of spectroscopy with particles. Also, the masses of the particles used
as a probe are up to two orders of magnitude larger than those for the heavy
particles discussed so far. Since the penetration of the atoms and ions into
the solid material is very small very thin films or surfaces can be investigated.
Hence the booming activities in surface science has naturally contributed to
the development and to applications of this analytical technique.

Basic elements in the field of spectroscopy with atoms and ions are
the instrumentation, energy loss of the particles within the target material,
backscattering of atoms, and secondary ion emission. Since the range of par-
ticle masses and the range of particle energies used is very wide, an extended
set of instrumentation is required. The range of the former extends from pro-
tons to heavy atoms like iron or gold, the range of the latter from several
KeV to several tens of MeV. According to this wide range of energies a wide
range of penetration depths can be obtained as demonstrated in Fig. 18.1.
For very high energy particles, as they are used in Rutherford backscattering
experiments, penetration can be as high as 100 nm. This is already considered
as the bulk of the material. On the other hand, for heavy ions and energies
in the KeV range penetration is only of the order of 1 nm which allows pure
surface analysis.

Two classes of experiments can be distinguished at present. If the energy of
the incident particle is very high, in the range of several MeV, the information

Fig. 18.1. Range of parti-
cle penetration and analysis
for spectroscopy with atoms
and ions
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about the atoms in the target is drawn from the backscattered particles or from
particles recoiled from the target. Such experiments are known as Rutherford
backscattering (RBS) and elastic recoil detection (ERD). In both cases energy
resolution is low and low mass particles are used for the beam. Alternate
experiments employ low energy for the incident atoms but a wide range of
masses and very high energy resolution for secondary emitted ions. These
experiments are summarized as secondary ion mass spectroscopy (SIMS). The
following sections will give an introduction to the instrumentation and to the
applications of the different techniques available at present in the two classes.

18.1 Instrumentation for Atom and Ion Spectroscopy

The instrumentation for atom and ion beam spectroscopy must cover a wide
range of specifications. For some techniques very high particle energies in the
range of several tens of MeV are required but energy resolution for the beam
after its interaction with the sample may not be so crucial. Other techniques
like SIMS uses very high mass resolution and sophisticated ion sources but
much lower energies for the primary ion beam. Instrumentation consists of
the following basic components:

– ion beam sources including ion extractor
– accelerator and beam handling facilities
– energy analyzer and particle detector

18.1.1 Ion Beam Sources

For the supply of the ion beam three concepts are in use: sources from the gas
phase, sources using surface ionization, and liquid-metal sources. The most
common type of the gas phase source is the duoplasmatron, where a gas dis-
charge is used to generate the ions. The source operates at a rather high gas
pressure of 10−11 Pa, so that a hot and dense gas plasma is generated. The
duoplasmatron can be constructed with a hot or with a cold electrode. It is
particularly useful where high beam currents are required. Figure 18.2 dis-
plays a schematic drawing. Constructive elements are the magnetic coils and
the intermediate electrode to confine the ions, the orifice for extraction of
the ion beam, and the extractor. As the name says, there are two discharge
regimes, one between the cathode and the intermediate electrode and a sec-
ond between the latter and the anode. The orifice has a typical diameter of
300 μm and current densities are of the order of 20–150 mA/cm2. Cold cath-
ode duoplasmatrons are more suitable for the supply of reactive ions like Cs+

or O+.
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Fig. 18.2. Schematic drawing of an ion gun using a hot cathode plasma discharge;
(M: magnetic coils, F: filament, cathode, IE: intermediate electrode with channel,
A: anode, O: orifice, E: ion extractor)

The other frequently used type of ion gun is based on surface ionization.
Surface ionization means the spontaneous (or more exactly the thermal) ion-
ization of adatoms on a metal surface if the ionization potential of the adatom
is much smaller than the work function of the metal. Thus, high work func-
tion metals like tantalum, tungsten, or rhenium are appropriate as supporting
surface and alkali metals are good for the ionization process. Cs+ ions emitted
from a porous tungsten plug are commercial sources. They can be operated
with a very small spot size and small energy distribution of only 0.2 eV for
the emitted ions. This means a high beam current density and a high beam
brightness up to 500 mA/cm2ster as compared to 100–200 mA/cm2ster for a
duoplasmatron.

18.1.2 Accelerators and Beam Handling

After the ions are extracted from the source they must be accelerated to the
required energy and guided to the target. For acceleration up to about 50 KeV,
as it is required for SIMS experiments, conventional electronics is appropriate.
For higher voltages, up to about 400 KeV, voltage multiplication similar to
the original suggestion of Cockcroft and Walton are required. Accelerators up
to this voltage can still be operated on air. Higher voltages need a van de
Graaff generator and the power supply must be insulated by high pressure
gases like SF6. Acceleration of the ions can be performed in an one stage or in
a tandem system. In the latter the particles are first accelerated as negative
ions. Half way down the acceleration path the applied voltage and the charge
of the ions are reversed and their accelerations continues as positive ions.

Before the particle beam hits the target it must be cleaned from impurities
and components with an undesired degree of ionization. For many applications
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like SIMS also monochromatization is required. This is done with magnetic
filters.

After interaction with the target the outgoing ions must be again collected
and finally guided to the energy (or mass) analyzer and to the detector.

18.1.3 Analyzer and Detectors

If the constraints on resolutions for energy and masses of the emitted atoms
or ions are not so high, as for example in the case of RBS, energy analyzer and
detector can be the same. In this case standard systems are semiconductor
surface-barrier detectors followed by a pulse height analyzer. Surface barrier
detectors are reverse biased p-n junctions where the region of the junction (de-
pletion layer) is very close to the surface of the crystal. High-energy particles
penetrating into this junction excite electron-hole pairs which are detected by
the following electronic. For light particles a very good linear relation exists
between the deposited energy and the number of generated electron-hole pairs.
This energy is 3.6–3.7 eV per electron-hole pair for protons and He+ ions if
the particle energy is high enough. High enough means the electronic com-
ponent must dominate the stopping power. Thus, a 2 MeV He+ ion creates a
charge of about 8× 10−14 A s and the result of the pulse height analysis is the
spectrum of the particles. Resolution in energy is rather low, of the order of
10–20 KeV. For particles with higher masses deviation from linearity occurs.
This is known as pulse height defect and makes the analysis more difficult.

For higher mass and better energy resolution detection must be performed
in combination with a mass spectrometer. Very good resolution is obtained
with time-of-flight (TOF) systems, even for very high energy ions. An exam-
ple is shown in Fig. 18.3. The carbon foil at the spectrometer entrance emits

Fig. 18.3. Time of flight mass spectrometer for high energy ions; (CF: 2 μg/cm2

carbon foil, CD: channeltron detector, CFD: constant fraction discriminator),
(−−−) ion beam, (....) electrons
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electrons as soon as it is hit by an incoming ion. The electrons are immedi-
ately detected with the channeltron which sets the start pulse. The second
channeltron sets the stop pulse when the ion is registered. Channeltrons are
very fast electron detectors. They were described in Sect. 12.1.3. The high
speed of operation is needed since the time of flight for a 2 MeV He+ ion is
only about 500 ns per meter. The fast detection is routed to a fast electronic
operating with constant fraction discriminators and time-to-amplitude con-
verters as described in Sect. 15.3.2. This type of electronic allows for a time
resolution of 150 ps.

If the particle energy is not so high as, e.g., in SIMS experiments, timing
of the ions is easier and can be carried out with more precision. A system
often employed uses reflection of the ions from a repeller after they have
traveled a certain distance and detection after returning the same distance.
The energy distribution in the particle beam is deduced from the different
times of flight for ions with slightly different energies. Such reflectron TOF
spectrometers allow for a very good resolution in energy. In contrast to the
TOF spectrometer shown in Fig. 18.3 the time ramp in TOF spectrometers
for SIMS is usually triggered by a pulsed ion gun.

If the very high resolution of the TOF spectrometer is not required con-
ventional electrical quadrupole or magnetic sector field mass spectrometer are
used. A typical application for these spectrometers are SIMS systems dedi-
cated to depth profile analysis.

18.2 Energy Loss and Penetration of Heavy Particles in
Solids

As soon as the ions from the probe beam hit the surface of a solid they start
to collide with the atoms and loose energy. The interaction is based on the
Coulomb potential. For low particle energies the energy loss is predominately
by collision with atoms. For higher energies the efficiency for this process
decreases as 1/ε and drops to about 1% for particles with 200 KeV/amu where
amu stands for atomic mass units. For particles with velocities v > 0.1v0

energy loss is predominantly by collision with individual electrons. v0 is the
Bohr velocity (velocity of the 1s electron in hydrogen). It corresponds to the
velocity of a 25-KeV proton. If the particle velocity is much larger than the
Bohr velocity electrons are striped off so that the degree of ionization of the
particle increases.

A quantitative description for the energy loss of the beam particles is per-
formed in terms of the stopping power or specific energy loss dε/dx. Considered
with respect to the density of particles n in the target a stopping cross section
is defined by

σ =
1
n

dε

dx
. (18.1)
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This cross section depends mainly on the atomic numbers Z0 and Z1 of the
beam particles and target atoms, respectively, and on the beam particle en-
ergy. The cross sections for frequently used atomic beams like protons or 4He
are tabulated for various targets in corresponding handbooks [18.1].

As long as the beam particles do not penetrate into the target atoms the
energy loss is well described by a classical Rutherford scattering based on
the repulsive Coulomb interaction. Due to the statistical fluctuation in this
scattering process the energy of the particles is spread out along its path in
the target. This phenomenon is called energy straggling.

If the particle energy is high enough to allow for penetration into the
target atoms deviation from Rutherford scattering is observed and finally
nuclear reactions may occur. The spectroscopy of nuclear reaction products
or of emitted γ radiation is another possibility to analyze the material (nuclear
reaction analysis, NRA). In any case experimentalists must be alert for nuclear
reaction hazards if they use very high energy particle beams.

18.3 Backscattering Spectroscopy

Instead of being completely stopped in the target the beam particle can be
backscattered after an inelastic collision with an atom of the target. Analysis of
backscattered particles is the basis of Rutherford backscattering spectroscopy
(RBS). Alternatively, recoiled particles ejected from the target can be analysed
which is the basis for elastic recoil detection spectroscopy (ERD). The two
different scattering processes are sketched in Fig. 18.4.

Fig. 18.4. Experimental
geometry for Rutherford
backscattering (a) and
elastic recoil detection (b)

As long as the beam particles do not penetrate into the target atoms the
kinematic of the scattering process is well described by the classical law for
the scattering of two particles with masses M0 and M1 and a scattering angle
θ. From the number and energy of the backscattered atoms the concentration
and distribution of the atoms in the target can be determined, at least to the
penetration depth of the particle beam.

A possible geometry for backscattering from a thin film is shown in
Fig. 18.5a. The film is assumed to consist of two elements A and B which are
homogeneously distributed and have relative concentrations m and n. The
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Fig. 18.5. Backscattering from a thin film consisting of two elements A and B
with concentrations m and n (a) and backscattering spectrum with integrated
count rates XA and XB (b)

corresponding backscattering spectrum is shown schematically in Fig. 18.5b.
It is plotted as counts per channel number where the latter is proportional to
the particle energy measured after backscattering. The spectrum consists of
several flat-topped peaks and a low energy continuum. Each peak corresponds
to a particular element in the film. The widths of the peaks is a consequence
of the energy loss of the particles on their way through the film until they hit
their partner for the backscattering process. The elements can be identified
from the kinetic factor K of the scattering process defined, for the ith element,
by

Ki =
εi

ε0
, (18.2)

where ε0 and εi are the energies of the incident particle and the particle
after backscattering, respectively. The latter is taken from the high-energy
edge of the flat-topped response peak as shown in Fig. 18.5b. To identify the
scattering element i a relationship is needed between its mass Mi and Ki. For
an incident particle with mass M0 and a scattering angle θ = 180 − (θ1 + θ2)
this relation is obtained from energy and momentum conservation.

Ki =
εi

ε0
=
[
(M2

i − M2
0 sin2 θ)1/2 + M0 cos θ

M0 + Mi

]2
. (18.3)

The area density nai = nid, where d is the thickness of the layer, can be
determined from the integrated count rate Xi by

nai =
Xi cos θ

ΦΩσi(ε0, θ)
, (18.4)

if the other parameters of the scattering experiment such as the number of
incoming particles per second, Φ, the detector collection angle Ω and the
scattering cross section σi(ε0, θ) are known well enough. If the scattering is of



448 18 Spectroscopy with Atoms and Ions

Rutherford type (pure Coulomb scattering) then σi(ε0, θ) can be calculated
from

σiR =
(

Z0Zie
2

16πε0ε0

)2 4
[
(M2

i − M2
0 sin2 θ)1/2 + Mi cos θ

]2
Mi sin4 θ(M2

i − M2
0 sin2 θ)1/2

. (18.5)

If the films are thick so that the incident particles have lost considerable
energy before they are backscattered an averaged energy ε < ε0 must be used.

Deviation from Rutherford scattering is observed for low particle energies
where screening effects of the electrons in the target atoms become important
and for high particle energies where interpenetration of the scattering partners
occurs and nuclear forces start to contribute to the interaction.

The resolution for the separation of two different masses is obtained from
a combination of (18.2) and (18.3) by

δMi =
δε

ε0

(
dKi

dMi

)−1

, (18.6)

where δε is the energy resolution of the spectrometer. The relation indicates a
much better mass resolution for high energy particles if the resolution of the
analyzer is kept constant. Also, the evaluation of dKi/dMi reveals a better
resolution for heavier beam particles.

If the energy resolution for the scattered particles is high enough and the
broadening from the straggling phenomenon is low enough even the thickness
of the layered structures can be determined from the width of the response
peak.

18.3.1 Rutherford Backscattering Spectroscopy

For Rutherford backscattering spectroscopy the description given above holds
in principle, except that particle energies are often rather high and thus be-
yond the Rutherford limit. Most of the RBS experiments are performed either
with 1H or with 4He. Two scattering geometries are in use and assigned as the
IBM configuration and the Cornell configuration, respectively. In the former
the incident beam, the surface normal of the target and the scattered beam
are in the same horizontal plane (as shown in Fig. 18.5). In the latter the inci-
dent beam and the surface normal of the target are horizontal as well but the
scattered beam is detected immediately below the incident beam. This means
the three directions determining the scattering process are not coplanar.

Figure 18.6 shows the RBS spectra from a 50-bilayer film of Fe/Mo
on a sapphire substrate. The total thickness of the film was 380 nm. The
upper spectrum was excited with 1.9 MeV He atoms with a resolution of
δε = 15 KeV. The responses from the Mo and from the Fe atoms overlap but
can be disentangled to yield an area density of naMo = 114× 1016 atoms/cm2

and naFe = 142 × 1016 atoms/cm2 for the two atoms. As shown in the lower
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Fig. 18.6. Backscattering
spectrum for 50 bilayers of
FeMo on Al2O3 after ex-
citation with 1.9 MeV 4He
(a) and after excitation with
3.8 MeV 4He (b); adapted
from [18.1]

spectrum the resolution can be improved by increasing the energy of the in-
cident He particles to 3.8 MeV. At this energy the scattering for Mo and Fe
are still Rutherford. Note that the channel numbers are the same for the two
experiments but the energies assigned to the channels are about a factor of
two larger in the second spectrum. The peak at channel 130 in the second
spectrum is from a resonance in the He-O scattering cross section.

18.3.2 Elastic Recoil Detection Spectroscopy

The alternate method for depth profiling is elastic recoil detection spec-
troscopy. It is particularly useful for the analysis of light atoms in the target
with order numbers up to Z ≈ 9. Since the mass of the incident particle must
be larger than the mass of the ejected particle heavier atoms are often used
as a projectile and the beam energies are of the order of 1 MeV/amu. As far
as the kinematic of the energy and momentum transfer, the stopping power,
straggling, or depth profiling is concerned the same fundamental processes
are valid for ERD and for RBS, respectively, except that in case of the former
the kinematic factor and the energy loss must be considered for the ejected
particle.

The intermediate steps in an ERD process are best described by an ex-
ample. A 28 MeV Si+6 projectile hits the surface of a Si3N4 sample which
contains hydrogen. The Si probe looses energy from ε0 to ε′0 determined by
the stopping power SSi = 480 eV/Å. As it hits a hydrogen atom the latter is
recoiled with an energy εH = Kε′0 ≈ Kε0 ≈ 2.8 MeV since K ≈ 0.1 for forward
scattering. On traveling through the target the hydrogen atom looses energy
εH → ε′H according to a stopping power SH ≈ 3 eV/Å. Finally it is detected
and energy analyzed by a surface barrier detector. In front of the detector a
particle filter (range foil) is usually mounted to prevent the primary particles
from hitting the detector and thus spoiling the signal. The range foil must
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have a very high stopping power for the heavy primary particle and a low
stopping power for the light and ejected particle. Appropriate range foils are
thin mylar or aluminum sheets.

Composition analysis and depth profiling can be performed with ERD in
a similar way as with RBS. Optimum conditions for the resolution in mass
separation and depth profile can be obtained for a sophisticated selection of
energy and mass of the primary particle and of the material and thickness of
the range foil.

18.4 Secondary Ion Mass Spectroscopy

Secondary ion mass spectroscopy has been developed as an extremely sensitive
tool for the elemental analysis of material. As the name indicates secondary
ions are generated from a primary particle beam hitting the sample surface.
The ions are subsequently analyzed with respect to their mass and energy.
The difference to the systems described before comes from the application of
lower energies for the primary particles. This energies are of the order of 0.5 to
50 KeV and allow the use of mass spectrometers for the analysis of the emitted
ions, thus leading to a dramatic increase in resolution. Excitation sources and
elemental analyses are not restricted to a special group of materials. The
full periodic system from hydrogen to uranium can be used as a primary ion
beam and the full periodic system can be analyzed in the target. The method
is extremely sensitive. Detection limits can be as low as 10−9, and 104–105

sputtered ions are enough for a signal.
There are two major disadvantages of the method. The first is the inherent

destructive character of the technique which is not so serious because of the
extremely small amount of masses needed for the analysis. The second disad-
vantage is more serious. A quantitative analysis can be very difficult as the
emission characteristics do not only differ for the various elements but also
depend on their chemical environment and on the matrix in general.

The basic process in SIMS is the sputtering of target atoms. The incident
ions interact with the atoms and transfer energy by nuclear collision. The
atoms are displaced and a small fraction receives enough energy to leave the
sample as a neutral or as a charged particle. Computer simulation and ex-
periments revealed an emission depth of the order of 0.3 nm. This means the
primary application of SIMS is surface analysis.

Recent developments in SIMS are concerned with high resolution imaging
of sample surfaces. This imaging can be performed with ion optics or by
scanning techniques. Lateral resolution down to 20 nm is possible.

Another branch of the development is directed towards a discrimination
between static SIMS and dynamic SIMS. The intention in the first case is
to reduce the destructive nature of the method to a minimum. This means
doses of primary ions are kept extremely low, of the order of 1013 ions/cm2.
In the case of dynamic SIMS the idea is opposite. High doses of the order
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of 1017 ions/cm2 and more are used. The sample is eroded with time to a
well defined depth. This allows a depth profile for distributed elements to be
determined. Again depth resolution can be very high, of the order of 1–2 nm.
Together with the lateral resolution this allows a 3-D imaging of the distri-
bution of elements. The dynamical range of the depth profiling is very large.
Concentrations from 5×1022−5×1012 atoms/cm3 can be studied. Figure 18.7
gives an example. The depth profile of 11B in Si is shown after 1016 atoms/cm2

11B were implanted with 70 KeV. The figure demonstrates a dynamical range
of six orders of magnitude for the detection of the boron atoms in the silicon
matrix.

Fig. 18.7. Depth profile for boron in
silicon after random implantation with
70 KeV. The primary ions are 12KeV O+

2 ;
after [18.2]

Problems

18.1 Show that the Rutherford velocity is equal to the velocity of a 25 KeV proton.
(Purpose of exercise: remember that v0 is a critical value in atomic scattering

spectroscopy.)

18.2 Show that the kinetic factor K for Rutherford backscattering is given by (18.3).
(Purpose of exercise: derive the most fundamental relation for backscattering

spectroscopy.)

18.3∗ Calculate the kinematic factor K for an elastic recoil detection experiment
for a heavy mass M0 with energy ε0 and a light mass Mi at rest.

(Purpose of exercise: extend the information from the text to another funda-

mental technique in ion scattering spectroscopy.)
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To Chapter 1, Introduction

Table A.1. Fundamental physical constants

Name Value (SI) SI units1) Other units

Planck constant/2π h̄ 1.0546E-34 VAs2 6.582 E-16 eVs
Boltzmann constant kB 1.381E-23 VAs/K 8.616E-5 eV/K
Elementary charge e 1.602E-19 As 4.77E-10 cgs
Dielectric constant of vacuum ε0 8.854E-12 As/Vm
Permeability of vacuum μ0 1.257E-06 Vs/Am
Mass of free electron m0 9.110E-31 VAs3/m2 9.110E-28 g
Mass of protons Mp 1.673E-27 VAs3/m2 1.673E-24g
Mass of neutron Mn 1.675E-27 VAs3/m2 1.675E-24g
Mass of muon mμ 1.840E-28 VAs3/m2 1.8400E-25g
Bohr radius 4πh̄2ε0/m0e

2 rB 0.529E-10 m
Rydberg m0e

4/32π2ε2
0h̄

2 Ry 2.180E-18 VAs 13.607 eV
Radius of electron e2/4πε0m0c

2
0 r0 2.82E-15 m

Bohr magneton μB 9.273E-24 Am2 VAs/T
Nuclear magneton μn 5.051E-27 Am2 VAs/T
Magnetic moment of proton μp 1.409E-26 Am2 VAs/T
Magnetic moment of muon μμ 4.49 E-26 Am2 VAs/T
Magnetic moment of neutron μne -9.663E-27 Am2 VAs/T
Magnetogyric ratio of

electron γe 1.76E+11 m2/s2V 1/sT2)

proton γp 2.675E+8 m2/s2V 1/sT
muon γμ 1.354E+8 m2/s2V 1/sT

Hyperfine constant for H K 9.412E-25 VAs
.
=1420 MHz

Fine structure constant e2/4πε0h̄c0 α 7.297E-3 - (= 1/137.039)
1 Curie Ci 3.7E+10 1/s

1) VAms are used as SI units for convenience to application.
2) Note: multiplication of γ with B (in Tesla) yields angular frequencies, not Hz.

H. Kuzmany, Solid-State Spectroscopy, DOI 10.1007/978-3-642-01479-6 19, 453
c© Springer-Verlag Berlin Heidelberg 2009
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Table A.2. Relations between energy units

Ws1) eV2) cm−1 K cal Ry3)

Ws 1 6.242E18 5.031E22 7.245E22 0.239 4.587E17
eV 1.602E-19 1 8060 1.116E4 3.829E-20 0.0735
cm−1 1.988E-23 1.240E-4 1 1.44 4.75E-24 9.12E-6
K 1.381E-23 8.617E-5 0.694 1 3.299E-24 6.333E-6
cal 4.186 2.611E19 2.103E23 3.031E23 1 1.920E18
Ry 2.18E-18 13.607 1.096E5 1.579E5 5.208E-19 1

1)The energy in erg is obtained by multiplication of the value in Ws with 107.
2)Energies of chemical bonds are often given in Kcal/Mol: 1 eV

∧
= 23.04 Kcal/Mol.

3)The energy in Hartree is obtained by multiplication of the value in Ry with 1/2.
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To Chapter 2, Electromagnetic Radiation

B.1 Photometric Radiation Equivalent

From the definition in Sec. 2.1 the photometric radiation equivalent is ob-
tained from

Ili = Km

∫ 780

380

y(λ)L∗
λdλ , (B.1)

where L∗
λ is the brilliance of (3.4) expressed in λ, for a temperature of melting

Pt, an area of 6× 10−5 m2, and perpendicular to the surface (cos θ = 1). The
explicit shape of L∗

λ is

L∗
λ =

1
6 × 105

4πh̄ c2
0

λ5

[
exp
(

2πh̄

λkB2042

)
− 1
]−1

, (B.2)

in units of (W ster−1 m−1). Using the values of Fig. 2.1 for y(λ) in (B.1)
yields 1/683 in (W ster−1) from a numerical integration. Thus, if Km is set
to 683 lm/W the old definition of candela (or lumen) is retained. A detailed
description of photometric and radiometric quantities is given in [2.5].

B.2 The Maxwell Equations

The Maxwell equations in SI units are

1. curl H = j +
∂D

∂t
, 2. curl E = −∂B

∂t
, (B.3)

3. div D = ρ , 4. div B = 0 . (B.4)

where the five vectors E, D, H, B, j and the polarization P are connected
by the additional relations

455



456 B To Chapter 2, Electromagnetic Radiation

D = εε0E, B = μμ0H, j = σE, P = (ε − 1)ε0E .

Elimination of E or B from (B.3) and (B.4) leads for zero charge (ρ = 0)
and nonconducting material (σ = 0) to the following wave equations for the
electric and the magnetic field:

ΔE =
εμ

c2
0

∂2E

∂t2
, ΔB =

εμ

c2
0

∂2E

∂t2
. (B.5)

A related equation can be obtained for conducting material with conductivity
σ:

ΔE =
εμ

c2
0

∂2E

∂t2
+ μμ0σ

∂E

∂t
. (B.6)

It becomes particularly simple if the ohmic current density σE strongly
exceeds the displacement current density.

B.3 Potentials for the Electromagnetic Field

In the static case E and B can be derived from a scalar potential Φ and from
a vector potential A by

E = −grad Φ , B = curl A , (B.7)

where Φ(r) is determined except for an arbitrary constant and A is determined
except for an additive function grad χ where χ is an arbitrary function of r.

Rather than to solve the Maxwell equations for E and B for a given
distribution of charges ρ(r) and currents j(r) it is often more convenient to
calculate the potentials Φ and A directly from these distributions and then
evaluate E and B with the help of the relationships in (B.7). The evaluation
of Φ and A is possible using the Poisson equations

ΔΦ = −ρ/εε0 , ΔA = −μμ0j , (B.8)

or their integral forms

Φ(r) =
1

4πεε0

∫
ρ(r′)

|r − r′|d
3x′, A(r) =

μμ0

4π

∫
j(r′)

|r − r′|d
3x′ , (B.9)

where d3x′ is the three-dimensional volume differential of r′-space.

B.4 Expansion of the Potential in Multipole Moments

The integral for the scalar potential in (B.9) can be evaluated by an expansion
in spherical harmonics. The potential is then represented by



B.5 Time-Retarded Potentials 457

Φ(r) =
∞∑

l=0

l∑
m=−l

4π

2l + 1
Plm

Ylm(θ, φ)
rl+1

, (B.10)

where Plm are the multipole moments of the charge distribution given by

Plm =
∫

Y ∗
lm(θ′, φ′)r′lρ(r′) d3x′ (B.11)

The lowest order multipole moments can be expressed by the total charge Q
(monopole moment, l = m = 0), the dipole moment P D (l = 1,m = 0,±1)

P D =
∫

r′ρ(r′) d3x′, (B.12)

and the quadrupole moment (quadrupole tensor)

(PQ)ij =
∫

(3x′
ix

′
j − r′2δij)ρ(r′)d3x′. (B.13)

For rotational symmetry around the z axis the tensor has only one indepen-
dent component (PQ)33.

(PQ)33 = PQ =
∫

(3z′2 − r′2)ρ(r′)d3x′ . (B.14)

Note that this equation immediately transforms to (2.21) for a discrete charge
distribution. The multipole moments can also be used to expand the potential
into a Taylor series in cartesian coordinates. In this case we obtain the relation

Φ(r) =
Q

r
+

P Dr
r3

+
1
2

∑
i,j

(PQ)ij
xixj

r3
+ .... . (B.15)

B.5 Time-Retarded Potentials

If the charge distribution and the current density is time dependent the equa-
tions from appendix B.3 become more complicated. This is due to the finite
propagation velocity of light even in vacuum. The field which exists at point
r at time t was generated from a charge distribution ρ(r′, t′) which appears
retarded to t by the propagation time τ = (r−r′)/c. Thus, the expressions in
(B.9) can still be used but ρ(r′) and j(r′) have to be replaced by their time-
dependent and retarded quantities ρ(r′, t−|r−r′|/c) and j(r′, t−|r−r′|/c).
The geometrical configuration is drawn in Fig. B.1. Also, in general the elec-
tric field is no longer obtained from the gradient of the potential in the simple
form of (B.7). For the time-dependent charges and currents these equations
change to
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Fig. B.1. Configuration for the
retardation of the potential at
point P with respect to the po-
sition of the charge Q

E = −grad Φ − ∂A
∂t

, and B = curl A . (B.16)

Their new forms implicate that we are no longer quite as free to choose the
additive functions for the vector potentials A as grad χ(r, t). In fact we can
still choose any such function but we have to recalibrate Φ simultaneously with
−∂χ/∂t as it is immediately proved by inserting the renormalized potentials
into the (B.16). It is, on the other hand, straightforward to show that the
fields from (B.16) satisfy the second and fourth Maxwell equation. From the
first and third equation, which contain the source terms ρ and j, both types
of sources turn out to be needed for the evaluation of the potentials Φ and
A. Only for the special choice of the calibration function χ, for which the
potentials Φ and A satisfy the Lorentz condition

div A +
1
c2

∂Φ

∂t
= 0 , (B.17)

Φ and A are decoupled. In this case they can be evaluated independently, as
it is implicated in (B.9) by using the time-retarded forms of ρ and j. This is
known as the Lorentz gauge. In this special gauge the differential equations
for A and Φ have the simplified and decoupled form

Δ A − 1
c2

∂2A

∂t2
= −μμ0j and Δ Φ − 1

c2

∂2Φ

∂t2
= − ρ

εε0
. (B.18)

B.6 Radiation from an Arbitrarily Accelerated Charge

The radiation from a charge moving with an arbitrarily varying velocity can
also be calculated from the formalism described in the above section by using
the relations in (B.9) with retarded charges and currents. The field observed
at point r and time t is determined by the position of the charge at the
retarded time t′ = t − |r − r′(tr)|/c = t − s/c. The symbols have the same
meaning as in Fig. B.1 from the above section. This problem is discussed in
standard textbooks for electrodynamics like Jackson [2.3] or Feynman [2.2].
The evaluation yields for Φ and A the relations
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Φ(r, t) =
Q

4πεε0|r − r′|
1

(1 − v(t′)/c)
and

A(r, t) =
μμ0Q

4π|r − r′|
v(t′)

(1 − v(t′)/c)
. (B.19)

These are the Lienard–Wiechert retarded potentials for a single charge Q
with coordinates r′(t′). v is the particle velocity dr′(t′)/dt′ at the retarded
time t′. The Lienard–Wiechert potentials enable the calculation of the electric
and magnetic fields as a function of r and r′(t). For large distances between
the charge and the field point the vector s giving the distance and direction
between charge and field point at the retarded time, can be replaced by the
vector r′(t) − r at the actual time. Then the emitted fields are given by

E(r, t) =
μμ0Q

4π|r − r′(t)| (es × (es × a)) (B.20)

and

B(r, t) = es × E/c . (B.21)

a is the acceleration d2r′/dt2 of the charge and es is the unit vector in s
direction. Within the above approximation a is taken at the actual time t
and s is assumed ‖ r. The approximation is only good for non-relativistic
particles. From (B.20) a complete polarization of the electric field in the plane
given by the vectors a and s is evident. This result is very important for the
emission of synchrotron radiation as it will be discussed in the next chapter.

Since

|es × (es × a)| = a sin θ ,

where θ is the angle between s and the acceleration a, the emission is strongest
in the direction perpendicular to a. The pointing vector I for an actual dis-
tance s in direction es is

I =
μμ0Q

2 sin2 θ

16π2cs2
a2es . (B.22)

B.7 Fourier Transformations

We summarize some more results on FTs and properties of Fourier pairs. This
will be limited to the integral version of the Fourier theorem. For more details
the book of Brigham [2.4] or other special textbooks on FT may be consulted.

The Fourier theorem is very often written in the form

E(t) =
1
2π

∫
eiωt dω

∫
E(t′)e−iωt′ dt′ , (B.23)
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where the second integral represents the Fourier transform E(ω) of the time
function E(t). There is unfortunately some discrepancy in the various text-
books with respect to the factor 1/2π. It may be either included into E(ω)
or into the back-transformation to E(t). Alternately, it may be split into two
factors of 1/

√
2π each of them in front of the two integrals. The advantage of

the latter formulation is the symmetry for the transformation with respect to
the back-transformation. The way we were using the theorem in Sect. 2.3 is
even more convenient. The factor (1/2π) was included into the differential dω
yielding the differential df .

Proving the Fourier theorem as it is written in (B.23) is straightforward by
interchanging the two integrations and considering the integral representations
for the δ function from Appendix B.8.

Fourier pairs exist for a wide variety of functions. A sufficient condition for
their existence is the absolute integrability of the function but even functions
which are not integrable, like E(t) = constant, can have a Fourier transform.
More relaxed constraints are Dirichlet’s conditions which require monotonic
behavior in a finite number of intervals and left and right continuity at the po-
sitions of discontinuity. For a more detailed discussion of the existence problem
special books on Fourier transformation must be checked.

Fourier pairs are subjected to several constraints which are quite useful to
remember and in general very easy to prove. We summarize a few of them
in Table B.1. Note that the intensity spectrum E(f)E(f)∗ is real, even, and

Table B.1. Properties of Fourier transforms

Time function Frequency function
E(t) E(f)

Real Real part even, imaginary part odd
Imaginary Real part odd, imaginary part even
Real part even, imaginary part odd Real
Real part odd, imaginary part even Imaginary
Real and even Real and even
Real and odd Imaginary and odd
Complex and even Complex and even
Complex and odd Complex and odd

positive in all cases where the time spectrum is real.
Another interesting list of relations holds between Fourier pairs of com-

posed functions. These relations are likewise easy to prove and helpful to
remember. Some of them are listed in Table B.2 where E(t) and E(f) are
assumed to be Fourier pairs.

Finally, Table B.3 gives a listing of Fourier pairs for some representative
functions.
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Table B.2. Fourier pair relations for composed functions

Type Time function Frequency function

Summation E1(t) + E2(t) E1(f) + E2(f)
Time scaling E(at) (1/|a|)E(f/a)
Time shift E(t − t0) E(f) exp(−i2πft0)
Modulation E(t) exp i2πf0t E(f − f0)
Multiplication E1(t)E2(t) E1(f) ∗ E2(f)(convolution)

Table B.3. Fourier pairs for some selected functions

Function E(t) Range E(f)

Constant A −∞ to ∞ Aδ(f)
Cosine 2 cos 2πf0t −∞ to ∞ δ(f − f0) + δ(f + f0)
Rectangular pulse A |t| ≤ T0 2AT0(sin 2πT0f)/(2πT0f)

0 elsewhere
Truncated cosine A cos 2πf0t |t| ≤ T0 A2T0[Q(f + f0) + Q(f − f0)]

0 elsewhere Q(f) = (sin 2πT0f)/(2πT0f)
Exponential decay exp(−γ|t|) −∞ to ∞ (2γ2)/[γ2 + (2πf)2]
Gauss line γ/

√
π exp(−γt2) −∞ to ∞ exp(−π2f2/γ2)

Damped wave, compl. exp(−γ|t|/2) exp iω0t −∞ to ∞ 1/[γ/2 + i2π(ω − ω0)]
Damped wave, real exp(−γ|t|/2) cos ω0t −∞ to ∞ 2/(γ + 2iω−) + 2/(γ + 2iω+)

with ω−,+ = ω ∓ ω0

B.8 The δ Function

The δ function is one of the most important mathematical tools in spec-
troscopy and spectroscopy-related calculations. The reason for this is evident
from our findings in Sect. 2.3 that the FT of an idealized and continuously
propagating plane wave is a δ function with the two components δ(f − f0)
and δ(f +f0). In simple terms the δ function is zero everywhere except at the
position where the argument is zero. At this single point the function becomes
infinite to an extent that its integral is one as long as the point of divergence
is included in the integration. Actually, this can be taken as a definition for
the δ function. More exactly speaking the δ function is a distribution to be
described by a series of functions. The limit of the series must have the prop-
erties described above. Accordingly, we have many choices to represent a δ
function.

B.8.1 Representations of the δ function

In the following we give four convenient representations of the δ function.

(a) ga(x) is a set of rectangular pulses of the form

ga(x) = 1/a for − a/2 < x < a/2 and zero elsewhere.
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In the limit a → 0 this function becomes infinite for x = 0 and zero
everywhere else. Since its integral is always one it represents δ(0).

(b) The set of functions

ga(x − x0) =
√

a

π
e−a(x−x0)

2

with variable a represent δ(x − x0) in the limit a → ∞ since in this case
it is zero everywhere except at x = x0 where it becomes infinite and its
integral is normalized to 1.

(c) Similarly, δ(x − x0) is represented by the set of the functions

ga(x − x0) =
sin a(x − x0)
π(x − x0)

for a → ∞

and the functions
(d)

ga(x − x0) =
a/π

a2 + (x − x0)2
for a → 0.

As a consequence of these representations it is straightforward to show some
integral representations for the δ function.∫

cos 2πftdt = δ(f) = 2πδ(ω) ,

∫
e−2πift dt = δ(f) ,

∫
e2πift df = δ(t) equivalent to

∫
eiωt dω = 2πδ(t) , (B.24)

and finally

iπ
∫

f(x)δ(x − a)dx = P
∫

f(x)dx

x − a
− lim

η→0

∫
f(x)dx

x − a + iη
. (B.25)

The latter equation is known as the Dirac relation.

B.8.2 Some Properties of the δ Function

We summarize some of the most important properties of the δ function. The
limits of the integration are always considered to include the position of the
divergence. Otherwise the integrals are zero.

1)
∫ b

−b
g(x)δ(x − a) dx = g(a) ;

2) δ(ax) = (1/|a|)δx; consequently: δ(x − a) = δ(a − x) ;
3)
∫

g(x)δ′(x − a) dx = −g′(a) ;
4) δ[g(x)] = [1/g′(x)]δ(x − a) ; provided g(a) = 0 ;
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5) or more general
δ[g(x)] =

∑n
i=1 δ(x − xi)/|g′(xi)|, where g(x) is a scalar function with

zeros at x1, ..., xn and derivatives g′(xi) non-zero at these positions.
6) Immediately derived from (5) is∫

f(r)δ[g(r)] d3x =
∫

g(r)[f(r)/|∇g(r)|]dS(r) .



C

To Chapter 3, Light Sources with General
Application

C.1 Moments of Spectral Lines

The n-th moment of a spectral distribution I(ω) is defined as

σn =
∫

ωnI(ω) dω . (C.1)

The first moment is the mean or expectation value ω0. The second moment
with respect to the expectation value is the variance defined as

σ2 =
∫

(ω − ω0)2I(ω) dω . (C.2)

The square route of the variance is the mean deviation from the expectation
value.

C.2 Convolution of Spectral Lines

A spectral line as observed from an experiment may have a different shape
as compared to the emitted spectrum. This is due to deviations from ideal
transmission by the instrument. If the input to the spectrometer is a δ function
of the form δ(ω − ω0) the output may be a function G(ω − ω0). In this case
the observed shape gcon(ω) of a spectral line with lineshape g(ω) is given by
the convolution between the transfer functions G(ω) and g(ω)

gcon(ω′) =
∫

G∗(ω − ω′)g(ω) dω . (C.3)

The linewidth resulting from the convolution can be calculated analytically
in some simple cases. A straightforward calculation shows in particular to
the convolution of two Gaussian functions with FWHM linewidth γ1 and γ2

results in a Gaussian function of width γ with
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γ =
√

γ2
1 + γ2

2 . (C.4)

Similarly, for two Lorentzian functions the resulting linewidth is

γ = γ1 + γ2 . (C.5)

The convolution between a Gaussian line and a Lorentzian line is a Voigtian
line which can not be represented analytically. If γL and γG are the widths for
the Lorentzian and for the Gaussian lines, respectively, the resulting linewidth
is approximately given by

γ = 0.5346γL +
√

0.2156γ2
L + γ2

G . (C.6)

An approximate description for the Voigtian line was given in Ref. [3.21] as a
superposition of four generalized Lorentzian lines.

Remember the difference between convolution and correlation. The corre-
lation between G(ω) and g(ω) is

gcor(ω′) =
∫

G∗(ω + ω′)g(ω) dω . (C.7)

C.3 Fano Lines

The physical meaning of the parameters for the Fano lines can be obtained
from the original work of Fano [3.20] in which the energy loss of electrons
scattered in He was studied.

The condition where Fano’s theory applies is shown in Fig. C.1. Transitions
from a ground state g are possible to either a single discrete state s with energy
εs and described by a wave function ϕs or to a continuum of states ε′ described
by wave functions ψε′ . The discrete state and the continuum are interacting
by a Hamiltonian Hv with matrix elements Vsε′ = 〈ψε′ |Hv|ϕs〉. From this
interaction the discrete state is renormalized to a new state described by a
wave function Φs and energy εs = εs − F (ε) given by

Fig. C.1. Energy schedule for interference
effects between excitations from a ground
state g to a single discrete level εs and to
a continuum ε′
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Φs = ϕs + P
∫

dε′
Vsε′

ψε′
and

F (ε) = P
∫

dε′
|Vsε′ |2
ε − ε′

, (C.8)

where P indicates the principal value of the integral. The total interacting
system is described by wave functions Ψε. The lineshape for any transition in
the total system originating from a perturbation T can be described by the
renormalized and reduced energy ε

ε =
ε − εs − F (ε)

π|Vsε′ |2
=

ε − εs − F (ε)
Γ/2

, (C.9)

where Γ = 2π|Vsε′ |2 is the spectral width of the interacting discrete state, and
by the line shape parameter Q

Q =
〈Φs|T |g〉

πVsε′〈ψε′ |T |g〉 . (C.10)

Expressing the lineshape as the ratio between the transition probability in
the total system to the transition probability for the unperturbed continuum
yields (3.8) in the form

|〈Ψ |T |g〉|2
|〈ψε′ |T |g〉|2 =

(Q + ε)2

1 + ε2
. (C.11)

A more detailed description with further references is given in [3.3].

C.4 Electron Motion in Special Synchrotron Facilities:
Wiggler and Undulator

Let us assume the B-field of the facility magnets is oriented in z direction and
the facility extends along the x direction. This means

B = (0, 0, 1)B0 sin(2πx/λU) (C.12)

and the equations of motion for the electron in x and y direction are

m0γÿ = eẋB0 sin(2πx/λU)
m0γẍ = eẏB0 sin(2πx/λU) (C.13)

These equations describe a motion of the electron with coupled x and y com-
ponent. For small enough fields (small values of K) we can have the two
equations decoupled by assuming that ẋ ≈ v = βc0 ≈ c0. Then ÿ is replaced
by c2

0d
2y/dx2 and the equation for the electron becomes

m0γc2
0

d2y

dx2
= ec0B0 sin(2πx/λU) (C.14)
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Integration of this equation yields for the angle α describing the deviation of
the electron from the x direction

α ≈ tan α =
dy

dx
=

eB0λU

2πm0c0γ
cos(2πx/λU) =

K

γ
cos(2πx/λU) (C.15)

where K is the undulator parameter which we know already from subsection
3.3.1 If K is small, typically ≤ 1 which means the maximum deviation angle
αmax in C.15 is smaller than the light cone 1/γ, the light emitted from the
individual magnets overlaps and interference occurs. This is the undulator
regime where (3.16) holds.

If K << 1 the approximation of C.14 is very good and the electron moves
on a almost perfect sinoidal trac in y direction and the undulator emits in
its fundamental mode which is typically several KeV. If K gets larger and
eventually approaches 1 this motion becomes distorted and emission from
higher harmonics becomes important. Due to the multiple beam interference
of the partial beams the linewidth of the emission becomes very narrow, of
the order of 1/nN where n is the order of the overtone and N is the number
of poles. Since the distance between the overtones is much larger than the line
width a full spectral range can only be covered by the undulator radiation if
the distance between the poles can be tuned with high precision.

If αmax becomes too large which means K >> 1 the partial beams do not
overlap any more - for constant λ Δφ is small if K is large - and the device
works as a wiggler.

C.5 Stimulated Emission of Laser Radiation

In a system consisting of two states with inverted electronic population (state
1 with lower energy and state 2 with higher energy) three processes with re-
spect to light interaction are possible: light induced absorption, light induced
(stimulated) emission, and spontaneous emission. Each of them is determined
by the corresponding Einstein coefficient B12, B21, and A21 = 1/τsp, respec-
tively, where 1/τsp is the lifetime versus spontaneous emission. For reasons
of thermodynamic equilibrium the following two relations hold between the
Einstein coefficients:

B21 = B12 and A21 =
8πh

λ3
B21 , (C.16)

where λ determines the transition energy. The Einstein coefficients for the
stimulated processes may be defined as the number of excitation processes n
per unit volume and time for a given spectral energy density Lf(f) as, for
example, given by (3.4). This means

dn1,2

dt
= −B21n1,2Lf(f) , (C.17)
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where 1,2 refers to the absorption and to the stimulated emission process,
respectively. The units of B21 are m3/J s2. For the definition of the gain coef-
ficient α it is convenient to consider the increase in photon concentration per
one incident photon and per unit of length. This increase is identical to the
number of net excitations (1/c0)d(n2 − n1)/dt. Thus,

α =
d(n2 − n1)

dx
=

dn

c0dt
= −B21nhfg(f)

c0
, (C.18)

where the spectral intensity distribution for the single photon is described
by a normalized line shape function g(f). Expressed by the lifetime versus
spontaneous emission this yields with the help of (C.16)

α = nσ(f) = n
λ2

8πτsp
g(f) . (C.19)

σ has the dimension of m2 and defines a cross section for the absorption or
emission process. From the gain coefficient the total net gain is obtained for
one round trip of length 2L by

Gn(f) = e2Lα−γ . (C.20)

where γ summarizes all radiation losses during round trip. The spontaneous
emission is considered to be small and contributes to the noise of the otherwise
coherent radiation.
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To Chapter 4, Spectral Analysis of Light

D.1 Multiple Beam Interference for a Plane-Parallel
Plate

The beam configuration shown in Fig. 4.13 enables the following relationships
between the amplitudes for the reflected and transmitted partial beams to be
obtained:

Er,1 =
√

RE0 , Er,2 =
√

R(1 − R)E0 , Er,n+1 = REr,n , for n ≥ 2 (D.1)

and

Et,1 = (1 − R)E0, Et,n+1 = REt,n for n ≥ 1 , (D.2)

where R(θi) = Ir/I0 is the reflection coefficient for an arbitrary angle of in-
cidence θi. The phase difference φ between two consecutive partial beams is
as given in (4.23). The first reflected partial beam has a phase shift φ = π
with respect to the incident light because of the reflection at the interface to a
material with a higher optical density. Thus, the phase factor between E0 and
E1 is eiπ = −1. This factor must not be considered for any of the other partial
beams, neither in reflection nor in transmission. With this the two sums for
the partial beams can be written explicitly in the form

Er = −
√

RE0 + (1 − R)
√

RE0e
iφ + (1 − R)

√
RRE0e

i2φ + ... (D.3)

and

Et = (1 − R)E0 + (1 − R)RE0e
iφ + ... . (D.4)

Separating E0

√
R(1 − R)eiφ in (D.3) and E0(1 − R) in (D.4) yields

Er = E0

√
R

(
(1 − R)eiφ

1 − Reiφ
− 1
)

(D.5)
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and

Et = E0
(1 − R)
1 − Reiφ

. (D.6)

Evaluating E∗E in both cases yields (4.24) and (4.25).
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To Chapter 6, The Dielectric Function

E.1 Reflection and Transmission at an Interface for
Arbitrary Incidence (Fresnel Equations)

If the direction of incidence for a light beam is not perpendicular to the (plane
and flat) surface (6.18) and (6.19) become more complicated. In this case a
different behavior is obtained for the polarization parallel (Ep) or normal
(En) to the plane of incidence. If N and N ′ and θ and θ′ are refractive indices
and angles between beam and surface normal on the side of incidence and
refraction, respectively, the ratios between the amplitudes of the propagating
fields and the incident field Ei are

rp =
Er,p

Ei,p
=

N ′ cos θ − N cos θ′

N ′ cos θ + N cos θ′
=

tan(θ − θ′)
tan(θ + θ′)

,

rn =
Er,n

Ei,n
=

N cos θ − N ′ cos θ′

N cos θ + N ′ cos θ′
=

sin(θ′ − θ)
sin(θ + θ′)

(E.1)

for the reflected wave and

tp =
Et,p

Ei,p
=

2N cos θ

N cos θ′ + N ′ cos θ
=

2 sin θ′ cos θ

sin(θ + θ′) cos(θ − θ′)
,

tn =
Et,n

Ei,n
=

2N cos θ

N cos θ + N ′ cos θ′
=

2 sin θ′ cos θ

sin(θ + θ′)
(E.2)

for the transmitted wave. These equations are known as the Fresnel formulae.
For normal incidence (θ, θ′ = 0) and N = 1, N ′ = N equation (6.18) is
immediately obtained.

The coefficients Rp and Rn for the reflected intensities are the square of
the magnitude of rp and rn. The transmitted intensities are obtained from
1 − R.

In general N ′ is complex. In this case the angle for the refracted light also
becomes complex, since the generalized Snellius law of refraction

N sin θ = N ′ sin θ′ (E.3)
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requires complex angles θ′. As long as n′2 � κ′2 the reflection coefficients for
parallel and normal polarization can be obtained (for N = 1, N ′ = N) from

Rp = Rn
(N − sin θ tan θ)2 + κ2

(N + sin θ tan θ)2 + κ2
and

Rn =
∣∣∣∣ (N − cos θ)2 + κ2

(N + cos θ)2 + κ2

∣∣∣∣ . (E.4)

For most non-metallic materials the anticipated condition is rather well sat-
isfied, even in the range of fundamental absorption. It holds in particular for
conventional semiconductors, where n is of the order of 3 and κ of the order
of 1.

E.2 Reflection and Transmission Through Plane and
Parallel Plates

In many spectroscopic experiments transmission or reflection is studied from
a triple layer of parallel plates with three different refractive indices N0, N1,
and N2, respectively. We will give in the following a few summarizing and
useful formulae for three special cases: a plan crystal plate in air, a thin film
on a reflecting mirror, and a thin film on a thick but non-absorbing layer.

The general formulae for the total field transmission and field reflection
including multiple reflection are

teiθ =
t1eiθ1t2eiθ2e−iΔ

1 + r1e−iθ1r2eiθ2e−iΔ

reiθ =
r1eiθ1 + r2eiθ2e−iΔ

1 + r1e−iθ1r2eiθ2e−iΔ
, (E.5)

where the phase shift Δ is complex and for normal incidence of the form

Δ = δ − iβ = 2πn1d/λ − i2πκ1d/λ

with

β = α1d/2 = 2πκ1d/λ .

The quantities tjeiθj and rjeiθj are the complex field transmission and field
reflection coefficients at the various interfaces. j = 1 and 2 refer to the interface
0/1 and 1/2. The field transmission and field reflection coefficients are given
by the Fresnel formulae (E.1) and (E.2) for normal incidence and complex N .
Note that from t in (E.5) the reflectivity and the transmittance are obtained

t2 =
t21t

2
2e

2β

1 + r2
1r

2
2e4β + 2r1r2e2β cos φ

r2 =
r2
1 + r2

2e
4β + 2r1r2e2β cos φ

1 + r2
1r

2
2e4β + 2r1r2e2β cos φ

(E.6)
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with

φ = 2δ + θ1 − θ2 .

The response without interference is obtained from averaging over φ from 0
to 2π. This yields finally

〈T 〉 =
t21t

2
2e

2β

1 − r2
1r

2
2e4β

,

〈R〉 =
r2
1 + r2

2e
4β − 2r2

1r
2
2e

4β

1 − r2
1r

2
2e4β

. (E.7)

These equations are enough general to cover the above-mentioned experimen-
tal geometries.

For the free crystal plate r2
1 = r2

2 and t22 = t21(1+κ2
1/n2

1) which immediately
gives (6.20) and (6.21).

For the film on a metal surface r2 = 1 and t2 = 0. Accordingly, 〈T 〉 = 0
and

〈R〉 =
e−2αd + Rfilm(1 − 2e−2αd)

1 − Rfilme−2αd
, (E.8)

where Rfilm and α are the reflectivity of the film/air interface and the absorp-
tion coefficient of the film, respectively. If Rfilm and 2αd are small compared
to 1 〈R〉 can be used to determine αd.

Finally, for a film on a thick transparent substrate (as, e.g., on Si) the
reflectivity can be evaluated from (E.7) with N0 = 1, N1 = n1 + iκ1 and
N2 = n2. The total transmittance cannot be evaluated from the given formulae
because it is necessary to consider a four layered structure.

E.3 Kramers–Kronig Transformations

Here is a list of Kramers–Kronig transformations for conventional response
functions.

general formulation

χ(ω0) = − i

π
P
∫

χ(ω) dω

ω − ω0
(E.9)

susceptibility, for positive frequency space

χr(ω0) =
2
π

P
∫ ∞

0

ωχi(ω) dω

ω2 − ω2
0

χi(ω0) = −2ω0

π
P
∫ ∞

0

χr(ω) dω

ω2 − ω2
0

(E.10)
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dielectric function

εr(ω0) = ε∞ +
2
π

P
∫ ∞

0

ωεi(ω) dω

ω2 − ω2
0

εi(ω0) = −2ω0

π
P
∫ ∞

0

εr(ω) dω

ω2 − ω2
0

(E.11)

reflectivity
rc = Er(ω)/Ei(ω) =

√
R(ω) exp(iφ) with |rc|2 = R

φ(ω0) = −ω0

π
P
∫ ∞

0

(
ln
√

R(ω) − ln
√

R(ω0)
)
dω

ω2 − ω2
0

(E.12)

optical conductivity

σi(ω0) = −2ω0

π
P
∫ ∞

0

σr(ω) dω

ω2 − ω2
0

(E.13)

loss function

Re
(

1
ε(ω0)

)
= 1 +

2
π

P
∫ ∞

0

ω Im(1/ε(ω)) dω

ω2 − ω2
0

(E.14)

refractive index

n(ω0) = n∞ +
2
π

P
∫ ∞

0

ωκ(ω) dω

ω2 − ω2
0

κ(ω0) = −2ω0

π
P
∫ ∞

0

n(ω) dω

ω2 − ω2
0

(E.15)
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To Chapter 7, Spectroscopy in the Visible and
Near-Visible Spectral Range

F.1 Matrix Elements and First-Order Perturbation
Theory

In quantum mechanics physical states and physical quantities are described by
wave functions and operators, respectively. The eigenvalues of the operators
are the values observable in an experiment. Each operator A has eigenfunc-
tions uk(x), k = 1, 2, ...j, ...l, ... which can be used to construct the matrix
elements

Afi =
∫

u∗
f Auidx = 〈f|A|i〉 . (F.1)

The diagonal matrix elements are the eigenvalues of the operators. The non-
diagonal matrix elements are zero because of the orthogonality of the wave
functions. If A is the Hamilton operator H the corresponding eigenfunctions
can be obtained from the Schrödinger equation and the eigenvalues are the
stationary states of the system.

The non-diagonal matrix elements become important if the system con-
sidered is subjected to a perturbation which transfers it from one state into
another. This perturbation is in general time-dependent and characterized
by an operator A′ which is added to the original operator A. The original
eigenfunctions 〈f| are now no longer eigenfunctions of the system. After all,
this is not possible because the new system is time-dependent and therefore
needs time-dependent wave functions for its characterization. If again A is
the Hamilton operator the new wave functions can be determined by solving
the time-dependent Schrödinger equation for the operator H+H′. Since this
is not possible in general approximations are necessary. One possibility is to
perform a perturbation calculation. This anticipates that the perturbation H′

is small as compared to the relevant energies of the system.
In perturbation calculations the new wave functions are expanded with

respect to the wave functions of the unperturbed system and the time-
dependence is considered by adding a factor exp(iωfit) where h̄ωfi is the energy
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difference between the initial and the final state. Within first-order perturba-
tion theory the absolute square of the coefficient of the first term in the devel-
opment a

(1)
fi (t) determines the probability that a transition has occurred. This

probability is expected to increase linearly in time. From inserting the new
wave functions into the time-dependent Schrödinger equation the off diago-
nal matrix elements constructed from the total Hamiltonian and the original
wave functions turn out to give the main contributions to a

(1)
fi (t). Because

of the orthogonality of the original wave functions these matrix elements are
identical to the matrix elements constructed for the perturbation itself:

〈f|H + H′|i〉 = 〈f|H′|i〉 = H ′
fi(t) . (F.2)

For a perturbation H′ periodic in time with frequency ω first-order per-
turbation theory yields for the coefficient of the first term in the development

a
(1)
fi (t) = −H ′

fi(0){exp[i(ωfi − ω)t] − 1}
h̄(ωfi − ω)

, (F.3)

where H ′
fi(0) is the time-independent part of the perturbation matrix element.

The absolute square of this quantity is the transition probability Pfi(t)

Pfi(t) = |a(1)
fi (t)|2 =

4|H ′
fi(0)|2{sin2[(ωfi − ω)t/2]}

h̄2(ωfi − ω)2
. (F.4)

In the limit of very large t the frequency-dependent part on the right hand
side of the equation approaches πt/2 times a δ function for the difference in
the frequencies. This yields finally for the transition probability per unit of
time

Pfi =
Pfi(t)

t
=

2π|H ′
fi(0)|2
h̄

δ(h̄ωfi − h̄ω) , (F.5)

known as the golden rule of quantum mechanics. The δ function represents
the density of allowed final states. In the present problem it guarantees energy
conservation for the transition.

F.2 Transitions Induced by Electromagnetic Radiation

Transitions between two energy eigenstates of a system can be performed
by an incident electromagnetic radiation. In the sense of Appendix F.1 the
radiation is a perturbation of the system. It is convenient to describe the
radiation by its vector potential A and its scalar potential Φ from Appendix
B.3. The Hamiltonian for the perturbed system has then the well known form

H =
1

2m
(p − eA)2 + eΦ + U , (F.6)
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where U is part of the unperturbed Hamiltonian. For the evaluation of the
expression in parentheses the quantum-mechanical definition for the momen-
tum

p = −ih̄∇

and the commutation relations

Ap − pA = −ih̄∇A

must be considered. With this we obtain for the Hamiltonian

H =
p2

2m
+

ih̄e

m
A∇− ih̄e

2m
∇A +

e2

2m
A2 + eΦ + U . (F.7)

If there are no static space charges and no currents ∇A and Φ are zero in
the Lorentz gauge (see Appendix B.5, (3.6)). Also, since A is small the term
proportional to A2 can be neglected as compared to the term linear in A
which renders the latter as the only relevant perturbation in H.

H′ = − e

m
Ap +

e

m
pA =

ih̄e

m
A∇ . (F.8)

Since the perturbation is a plane wave, we use for A

A = A0ei(kx−ωt) . (F.9)

The matrix element for the time-independent part of the perturbation Hamil-
tonian H′(0) in (F.3) and (F.5) then has the form

H ′
fi(0) =

ieh̄
m

〈f|A0eikx∇|i〉 =
ieh̄
m

∫
u∗

f e
ikxA0∇ui d3x , (F.10)

where the wave functions uf and ui are the explicit eigenfunctions of the
unperturbed system.

For the evaluation of the transition probability it is convenient to replace
the square of the vector potential by the intensity I(ω) of the radiation. This
can be done using (2.9) and (2.6) and yields

A2
0 =

I(ω)
ε0c0ω2n

. (F.11)

From this the transition probability per unit time is

Pfi =
1
t
|a(1)

fi (t)|2 =
2πe2I(ω)

nm2ε0c0ω2

∣∣∣∣
∫

u∗
f e

ikxgrad ui d3x

∣∣∣∣
2

δ(ωfi − ω) .

(F.12)
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As long as the wavelength of the radiation is large compared to the peri-
odicity of the electronic wave functions which means large compared to the
dimension of the crystal unit cell the term eikx can be expanded into a Taylor
series. The zero order contribution to the series is already a good approx-
imation if the resulting matrix element is finite. In this case the transition
probability per unit of time with the resonance conditions ωfi = ω has the
form

Pfi =
2πe2I(ω)

nm2ε0c0ω2
fi

∣∣∣∣
∫

u∗
f grad ui d3x

∣∣∣∣
2

δ(ωfi − ω)

= C|pfi|2I(ω)δ(ωfi − ω) , (F.13)

where

C =
2πe2

nm2ε0c0ω2
fih̄2 ,

and pfi is the matrix element for the momentum operator

pfi = −ih̄
∫

u∗
f grad uid3x . (F.14)

Since the matrix element for the momentum operator is proportional to
the matrix element for the dipole operator (see also Sect. F.3) the zero-order
approximation described above is called the dipole approximation. If the zero-
order transition matrix element is zero at least the next term in the expan-
sion of exp ikx must be considered. It has the form ikx and describes the
quadrupole interaction. Accordingly, the higher terms (ikx)n/n! in the expan-
sion yield the matrix elements for the higher multipole interactions.

F.3 Matrix Elements in Dipole Representation

The relation between the momentum matrix elements and the dipole matrix
elements can be obtained from the Heisenberg equation of motion for an
operator A.

Ȧ = − i
h̄

[AH] = − i
h̄

(AH − HA) . (F.15)

If |f〉 and |i〉 are eigenfunctions of H the matrix elements for the operator Ȧ
are

Ȧfi = − i
h̄

(AH − HA)fi = − i
h̄
{(AH)fi − (HA)fi}

= − i
h̄
{〈f|AH|i〉 − 〈f|HA|i〉} = − i

h̄
(εi − εf)Afi . (F.16)

Using for A the operator x with ẋ = p/m (F.16) yields
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p
m

=
−ih̄∇

m
= iωfix , (F.17)

or for the matrix elements

pfi =
imωfi

e
exfi . (F.18)

exfi = Mfi is the matrix element for the dipole moment. The relation (F.18)
allows to use the dipole matrix element to calculate the transition probability
in a similar way as the momentum matrix element

Pfi = C ′|Mfi|2I(ω)δ(ωfi − ω) (F.19)

with

C ′ =
2π

ε0c0h̄
2 .

F.4 Quantum Mechanics of the Harmonic Oscillator

The Hamiltonian for the harmonic oscillator is

H = − h̄2∇2

2M
+

Cx2

2
, (F.20)

with C = MΩ2. To find the solutions for the corresponding Schrödinger
equation we introduce dimensionless coordinates

q = x

√
MΩ

h̄
(F.21)

and the abbreviation

d =
(

Ω

h̄

)1/2

. (F.22)

In this formulation the eigenvalues and the eigenfunctions are obtained from

εα = (n + 1/2)h̄Ω (F.23)

and

uα(q) =
(

d

π1/22nn!

)1/2

exp(−q2/2)Hα(q) . (F.24)

Hα(q) are the Hermit polynomials defined as

Hα(q) = (−1)αeq2 dα

dqα
e−q2

. (F.25)
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The first three polynoms have the explicit form

H0(q) = 1, H1(q) = 2q, H2(q) = 4q2 − 2 .

Note that the wave functions in (F.24) are not normalized in q but normalized
in the normal coordinate

Q =
q

d
= xM1/2 . (F.26)

The eigenfunctions in (F.24) are certainly orthogonal in q but the integral
over the product of two different eigenfunctions becomes nonzero if one of
them is shifted from the origin by a constant value a. These integrals are
called Franck–Condon integrals and can be evaluated analytically as

Fβα =
∫

u∗
β(q + a)uα(q)dq

= e−a2/4

(
α!
β!

)1/2 (
− a

21/2

)β−α

Lβ−α
α

(
a2

2

)
, (F.27)

where Lm
n (x) are the associated Laguerre polynomials. They are derived from

Lm
n (x) =

1
n!

exx−m dn

dxn
e−xxm+n . (F.28)

For the evaluation of the Raman intensities the integrals 〈β|α〉 and 〈β|Q|α〉
are required with integration over Q. The first integral is of course δβα since we
consider unshifted wave function in this case. To show this and to evaluate the
second integral it is useful to represent the Hermit polynomials by a generating
function S(q, s). The derivation is given in standard textbooks of quantum
mechanics.

F.5 Diodes for Blue Luminescence

The efforts to obtain semiconductor diodes which emit in the blue spectral
range were eventually successful when the technology was developed to grow
p-n junctions and p-n heterojunctions of the nitride III-V semiconductors
with the main representatives AlN (εgap = 6.25 eV), GaN (εgap = 5.5 eV), and
InN (εgap = 0.8 eV). All three compounds crystallize usually in the hexagonal
wurtzite structure and can be grown with an arbitrary alloy concentration.
In the alloys the lattice constants and the energy gaps scale with the concen-
tration in a nearly linear way. This means energy gaps can be engineered by
molecular beam epitaxy crystal growth. Figure F.1 has the energy gaps and
lattice constants a0 as a function of alloy concentration x. The large enegy dif-
ference between the AlGaN alloy and the InGaN active area guarantees very
good confinement of the carriers in the junction. If the junction becomes very
narrow, it behaves as a quantum well. More sophisticated constructions like
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Fig. F.1. Energy gaps and
lattice constants for var-
ious alloys between AlN,
GaN, and InN; after [7.20],
modified. Inset: p-n double-
hetero junction for InGaN
with high Ga concentration
between two AlGaN confine-
ment layers

multiple heterostructures or multiple quantum wells give even better quantum
efficiencies.

The type of luminescence diodes described above have very long life times,
high power to light efficiencies and very good selectivity with respect to red,
green or blue colors. Therefore they are increasingly used for illumination as
e.g. in traffic lights, cars, or for screens.



G

To Chapter 8, Symmetry and Selection Rules

G.1 Character Tables of Point Groups

Table G.1. Character tables for 32 point groups, Ih, and SO(3). The top line
in each subtable shows the point group and the symmetry elements as distributed
among the classes.
(ε = exp(2πi/3), ω = exp(2πi/6), x, y, z refer to translations, X, Y, Z refer to rota-
tions)

triclinic

C1 E Ci E I
A 1 Ag 1 1 X, Y, Z

Au 1 −1 x, y, z

monoclinic

C1h/Cs E σh C2 E C2 C2h E C2 I σh

A′ 1 1 x, y;Z A 1 1 z;Z Ag 1 1 1 1 Z
A′′ 1 −1 z;X,Y B 1 −1 x, y;X,Y Bg 1 −1 1 −1 X,Y

Au 1 1 −1 −1 z
Bu 1 −1 −1 1 x, y

orthorhombic

C2v E C2 σy σx D2 = V E C2z C2y C2x

A1 1 1 1 1 z A 1 1 1 1
A2 1 1 −1 −1 Z B1 1 1 −1 −1 z, Z
B1 1 −1 1 −1 x, Y B2 1 −1 1 −1 y, Y
B2 1 −1 −1 1 y,X B3 1 −1 −1 1 x,X

485
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D2h = Vh E C2z C2y C2x I σz σy σx

Ag 1 1 1 1 1 1 1 1
B1g 1 1 −1 −1 1 1 −1 −1 Z
B2g 1 −1 1 −1 1 −1 1 −1 Y
B3g 1 −1 −1 1 1 −1 −1 1 X
Au 1 1 1 1 −1 −1 −1 −1
B1u 1 1 −1 −1 −1 −1 1 1 z
B2u 1 −1 1 −1 −1 1 −1 1 y
B3u 1 −1 −1 1 −1 1 1 −1 x

trigonal

C3 E C3 C2
3 C3i/S6 E C3 C2

3 I S5
6 S6

A 1 1 1 zZ Ag 1 1 1 1 1 1 Z
E(1) 1 ε ε∗ (x, y); (X,Y ) Eg(1) 1 ε ε∗ 1 ε ε∗ (X,Y )
E(2) 1 ε∗ ε (x, y); (X,Y ) Eg(2) 1 ε∗ ε 1 ε∗ ε (X,Y )

Au 1 1 1 −1 −1 −1 z
Eu(1) 1 ε ε∗ −1 −ε −ε∗ (x, y)
Eu(2) 1 ε∗ ε −1 −ε∗ −ε (x, y)

C3v E 2C3 3σv D3 E 2C3 3C2

A1 1 1 1 z A1 1 1 1
A2 1 1 −1 Z A2 1 1 −1 z, Z
E 2 −1 0 (x, y); (X,Y ) E 2 −1 0 (x, y); (X,Y )

D3d E 2C3 3C2 I 2S6 3σd

A1g 1 1 1 1 1 1
A2g 1 1 −1 1 1 −1 Z
Eg 2 −1 0 2 −1 0 (X,Y )
A1u 1 1 1 −1 −1 −1
A2u 1 1 −1 −1 −1 1 z
Eu 2 −1 0 -2 1 0 (x, y)

tetragonal

C4 E C4 C2 C3
4 S4 E S4 C2 S3

4

A 1 1 1 1 z, Z A 1 1 1 1 Z
B 1 −1 1 −1 B 1 −1 1 −1 z
E(1) 1 i −1 −i (x, y) E(1) 1 i −1 −i (x, y)
E(2) 1 −i −1 i X,Y E(2) 1 −i −1 i X,Y



G.1 Character Tables of Point Groups 487

C4h E C4 C2 C3
4 I S3

4 σh S4

Ag 1 1 1 1 1 1 1 1 Z
Bg 1 −1 1 −1 1 −1 1 −1
Eg(1) 1 i −1 −i 1 i −1 −i X,Y
Eg(2) 1 −1 −1 1 1 −1 −1 1 X,Y
Au 1 1 1 1 −1 −1 −1 −1 z
Bu 1 −1 1 −1 −1 1 −1 1
Eu(1) 1 i −1 −i −1 −i 1 i x, y
Eu(2) 1 −i −1 i −1 i 1 −i x, y

D4 E 2C4 C2 2C ′
2 2C ′′

2 C4v E 2C4 C2 2σv 2σd

A1 1 1 1 1 1 A1 1 1 1 1 1 z
A2 1 1 1 −1 −1 z;Z A2 1 1 1 −1 −1 Z
B1 1 −1 1 1 −1 B1 1 −1 1 1 −1
B2 1 −1 1 −1 1 B2 1 −1 1 −1 1
E 2 0 −2 0 0 x, y;X,Y E 2 0 −2 0 0 x, y;X,Y

D2d/Vd/S4u E 2S4 C2 2C ′
2 2σd

A1 1 1 1 1 1
A2 1 1 1 −1 −1 Z
B1 1 −1 1 1 −1
B2 1 −1 1 −1 1 z
E 2 0 −2 0 0 x, y;X,Y

D4h E 2C4 C2 2C ′
2 2C ′′

2 I 2S4 σh 2σv 2σd

A1g 1 1 1 1 1 1 1 1 1 1
A2g 1 1 1 −1 −1 1 1 1 −1 −1 Z
B1g 1 −1 1 1 −1 1 −1 1 1 −1
B2g 1 −1 1 −1 1 1 −1 1 −1 1
Eg 2 0 −2 0 0 2 0 −2 0 0 (X,Y )
A1u 1 1 1 1 1 −1 −1 −1 −1 −1
A2u 1 1 1 −1 −1 −1 −1 −1 1 1 z
B1u 1 −1 1 1 −1 −1 1 −1 −1 1
B2u 1 −1 1 −1 1 −1 1 −1 1 −1
Eu 2 0 −2 0 0 −2 0 2 0 0 (x, y)
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hexagonal

C6 E C6 C3 C2 C2
3 C5

6

A 1 1 1 1 1 1 zZ
B 1 −1 1 −1 1 −1
E1(1) 1 ω −ω∗ −1 −ω ω∗ x, y;X,Y
E1(2) 1 ω∗ −ω −1 −ω∗ ω x, y;X,Y
E2(1) 1 −ω∗ −ω 1 −ω∗ −ω
E2(2) 1 −ω −ω∗ 1 −ω −ω∗

C3h E C3 C2
3 σh S3 S5

3

A′ 1 1 1 1 1 1 Z
E′(1) 1 ε ε∗ 1 ε ε∗ x, y
E′(2) 1 ε∗ ε 1 ε∗ ε (x, y)
A′′ 1 1 1 −1 −1 −1 z
E′′(1) 1 ε ε∗ −1 −ε −ε∗ (X,Y )
E′′(2) 1 ε∗ ε −1 −ε∗ −ε (X,Y )

C6h E C6 C3 C2 C2
3 C5

6 I S2
3 S5

6 σh S6 S3

Ag 1 1 1 1 1 1 1 1 1 1 1 1 Z
Bg 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
E1g(1) 1 ω −ω∗ −1 −ω ω∗ 1 ω −ω∗ −1 −ω ω∗ X,Y
E1g(2) 1 ω∗ −ω −1 −ω∗ ω 1 ω∗ −ω −1 −ω∗ ω X, Y
E2g(1) 1 −ω∗ −ω 1 −ω∗ −ω 1 −ω∗ −ω 1 −ω∗ −ω
E2g(2) 1 −ω −ω∗ 1 −ω −ω∗ 1 −ω −ω∗ 1 −ω −ω∗

Au 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 z
Bu 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
E1u(1) 1 ω −ω∗ −1 −ω ω∗ −1 −ω ω∗ 1 ω −ω∗ x, y
E1u(2) 1 ω∗ −ω −1 −ω∗ ω −1 −ω∗ ω 1 ω∗ −ω x, y
E2u(1) 1 −ω∗ −ω 1 −ω∗ −ω −1 ω∗ ω −1 ω∗ ω
E2u(2) 1 −ω −ω∗ 1 −ω −ω∗ −1 ω ω∗ −1 ω ω∗

D6 E 2C6 2C3 C2 3C ′
2 3C ′′

2

A1 1 1 1 1 1 1
A2 1 1 1 1 −1 −1 z, Z
B1 1 −1 1 −1 1 −1
B2 1 −1 1 −1 −1 1
E1 2 1 −1 −2 0 0 x, y;X,Y
E2 2 −1 −1 2 0 0
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C6v E 2C6 2C3 C2 3σv 3σd

A1 1 1 1 1 1 1 z
A2 1 1 1 1 −1 −1 Z
B1 1 −1 1 −1 1 −1
B2 1 −1 1 −1 −1 1
E1 2 1 −1 −2 0 0 x, y;X,Y
E2 2 −1 −1 2 0 0

D3h E 2C3 3C2 σh 2S3 3σv

A′
1 1 1 1 1 1 1

A′
2 1 1 −1 1 1 −1 Z

E′ 2 −1 0 2 −1 0 x, y
A′′

1 1 1 1 −1 −1 −1
A′′

2 1 1 −1 −1 −1 1 z
E′′ 2 −1 0 −2 1 0 X,Y

D6h E 2C6 2C3 C2 3C ′
2 3C ′′

2 I 2S3 2S6 σh 3σd 3σv

A1g 1 1 1 1 1 1 1 1 1 1 1 1
A2g 1 1 1 1 −1 −1 1 1 1 1 −1 −1 Z
B1g 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
B2g 1 −1 1 −1 −1 1 1 −1 1 −1 −1 1
E1g 2 1 −1 −2 0 0 2 1 −1 −2 0 0 X,Y
E2g 2 −1 −1 2 0 0 2 −1 −1 2 0 0
A1u 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
A2u 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 z
B1u 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1
B2u 1 −1 1 −1 −1 1 −1 1 −1 1 1 −1
E1u 2 1 −1 −2 0 0 −2 −1 1 2 0 0 x, y
E2u 2 −1 −1 2 0 0 −2 1 1 −2 0 0

cubic

T E 4C3 4C2
3 3C2 Td E 8C3 3C2 6S4 6σd

A 1 1 1 1 A1 1 1 1 1 1
E(1) 1 ε ε∗ 1 A2 1 1 1 −1 −1
E(2) 1 ε∗ ε 1 E 2 −1 2 0 0
F 3 0 0 −1 x, y, z;X,Y,Z F1 3 0 −1 1 −1 X,Y,Z

F2 3 0 −1 −1 1 x, y, z
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Th E 4C3 4C2
3 3C2 I 4S6 4S2

6 3σh

Ag 1 1 1 1 1 1 1 1
Eg(1) 1 ε ε∗ 1 1 ε ε∗ 1
Eg(2) 1 ε∗ ε 1 1 ε∗ ε 1
Fg 3 0 0 −1 3 0 0 −1 X,Y,Z
Au 1 1 1 1 −1 −1 −1 −1
Eu(1) 1 ε ε∗ 1 −1 −ε −ε∗ −1
Eu(2) 1 ε∗ ε 1 −1 −ε∗ −ε −1
Fu 3 0 0 −1 −3 0 0 1 x, y, z

O E 8C3 3C2 6C4 6C ′
2

A1 1 1 1 1 1
A2 1 1 1 −1 −1
E 2 −1 2 0 0
F1 3 0 −1 1 −1 x, y, z;X,Y,Z
F2 3 0 −1 −1 1

Oh BSW K E 8C3 3C2 6C4 6C ′
2 I 8S6 3σh 6S4 6σd

A1g Γ1 Γ+
1 1 1 1 1 1 1 1 1 1 1

A2g Γ2 Γ+
2 1 1 1 −1 −1 1 1 1 −1 −1

Eg Γ12 Γ+
3 2 −1 2 0 0 2 −1 2 0 0

F1g Γ15′ Γ+
4 3 0 −1 1 −1 3 0 −1 1 −1 X,Y,Z

F2g Γ25′ Γ+
5 3 0 −1 −1 1 3 0 −1 −1 1

A1u Γ1′ Γ−
1 1 1 1 1 1 −1 −1 −1 −1 −1

A2u Γ2′ Γ−
2 1 1 1 −1 −1 −1 −1 −1 1 1

Eu Γ12′ Γ−
3 2 −1 2 0 0 −2 1 −2 0 0

F1u Γ15 Γ−
4 3 0 −1 1 −1 −3 0 1 −1 1 x, y, z

F2u Γ25 Γ−
5 3 0 −1 −1 1 −3 0 1 1 −1

In column 2 an 3 of this table alternative assignments (BSW) for
Bouckaert-Smoluchowski-Wigner notation and (K) for Koster notation) for
the irreducible representations are included as they are often used in
solid-state physics.



G.1 Character Tables of Point Groups 491

Icosahedral

Ih E 12C5 12C2
5 20C3 15C2 I 12S10 12S3

10 20S6 15σ
Ag 1 1 1 1 1 1 1 1 1 1
F1g 3 1+

√
5

2
1−

√
5

2 0 −1 3 1−
√

5
2

1+
√

5
2 0 −1 X,Y,Z

F2g 3 1−
√

5
2

1+
√

5
2 0 −1 3 1+

√
5

2
1−

√
5

2 0 −1
Gg 4 −1 −1 1 0 4 −1 −1 1 0
Hg 5 0 0 −1 1 5 0 0 −1 1
Au 1 1 1 1 1 −1 −1 −1 −1 −1
F1u 3 1+

√
5

2
1−

√
5

2 0 −1 −3
√

5−1
2

−
√

5−1
2 0 1 x,y,z

F2u 3 1−
√

5
2

1+
√

5
2 0 −1 −3 −

√
5−1
2

√
5−1
2 0 1

Gu 4 −1 −1 1 0 −4 1 1 −1 0
Hu 5 0 0 −1 1 −5 0 0 1 −1

Full Orthogonal rotation group

SO(3) 0 ← φ → 2π
≡ E

Γ1 1
Γ2 3
Γ3 5
.
.
.
Γl+1 (2l + 1) sin(2l+1)φ/2

sin φ/2

.

.

.

The group SO(3) has an infinite number of classes and therefore an infinite
number of representations. The inversion and reflection are not included. To
obtain the full orthogonal group O(3) which includes the non proper
rotations one must evaluate the Kronecker product between SO(3) and Ci.

SO(3) × Ci = O(3) . (G.1)

The full orthogonal rotation groups are useful to check the splitting of
degenerated atomic orbitals if the atoms are inserted into a crystal at a site
with reduced symmetry.
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G.2 Some More Elements of Representation Theory

The following statements and relations about representations of groups hold
and are in most cases easily proved by group theory. To some extent they are
supplements to the statements already given in Chap. 8.

1) Two representations are called independent or non-equivalent if their ma-
trix groups are not conjugated. Conjugated means in this case the matrices
are not related to each other by an orthogonal transformation.

2) Groups are composed of classes of conjugated elements. Since the elements
of a class are related by orthogonal transformations, the characters for the
elements of one class are equal.

3) Not only the characters of the irreducible representations are orthogonal
as stated in Sect. 8.2. Orthogonality holds also for the corresponding rep-
resentation matrices.
∑
R

Dα∗
ik (R)Dβ

lm(R) =
g

(dαdβ)1/2
δαβδilδkm , (G.2)

where dα and dβ are the dimensions of the representations. The orthogo-
nality of the characters follows immediately from the orthogonality of the
matrices.

4) There are several additional sum rules:
– The sum of the squared absolute values of the characters of an ir-

reducible representation equals the order of the group. This follows
immediately from (8.13) and is a convenient way to check whether a
representation is reducible or irreducible.

– Except for the trivial representation, the sum over equivalent matrix
elements of an irreducible representation is zero.

5) The sum rules and orthogonalities can be checked from the following table
which presents the matrices for the irreducible representations explicitly
for the point group D4.

D4 E C4 C2 C3
4 C2x C2y C2xy C2x′y′

Γ (1) 1 1 1 1 1 1 1 1
Γ (2) 1 1 1 1 −1 −1 −1 −1
Γ (3) 1 −1 1 −1 1 1 −1 −1
Γ (4) 1 −1 1 −1 −1 −1 1 1

Γ (5) 1 0
0 1

0 −1
1 0

−1 0
0 −1

0 1
−1 0

1 0
0 −1

−1 0
0 1

0 1
1 0

0 −1
−1 0

Note that C4 and C3
4 , C2x and C2y, and C2xy and C2x′y′ belong to the

same class each.
Note also, that the two coordinates x and y are a basis for the represen-
tation Γ 5 and z is a basis for the representation Γ 2.
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G.3 Representation of Groups by Displacement
Coordinates

In Sect. 8.3 we used a very simple procedure to evaluate the characters for the
3N -dimensional representation of the normal coordinates. This calculation is
based on the following consideration.

Instead of using the 3N normal coordinates we can as well use the 3N
cartesian displacements as the basis for the representation. This is possible
since both representations are connected by an orthogonal transformation
which leaves the traces of the representation matrices unchanged. The carte-
sian displacements are vectors and transform therefore like coordinates. The
transformation behavior is best explained for a simple geometrical figure like
the water molecule. Figure G.1 depicts the molecule with arbitrary displace-
ment vectors u(1) to u(3). The displacement vectors have three coordinates
each which yields 9 coordinates altogether. The water molecule with displaced
atoms does certainly not satisfy the SO for the C2v point group. We can nev-
ertheless apply them and check how the displacement vectors transform. If
we apply e.g. the rotation C2 the displacement u(2) is mapped on u(3) and
vice versa. In addition the coordinates are transformed by this operation.
The displacement for atom 1 is mapped onto itself but its coordinates are
interchanged. Similar results are obtained for the other SO of C2v. So, the 9
displacement coordinates are mapped onto themselves for the SO of the group.
This is not surprising since we know they form a basis for a 3N -dimensional
representation of the group. The construction of the representation matrix is
now rather easy. All coordinates transform with the 3×3 matrix Rik(φ) of
(8.2).

Fig. G.1. Water molecule with displacement vectors

To get the correct mapping of the displacements from one atom to the other
the 3×3 matrices must be properly arranged within the 9×9 transformation
matrix for the total system of atoms. For the case of C2 the transformation
equation is easily verified to have the form
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⎛
⎝u′(1)

u′(2)
u′(3)

⎞
⎠ =

⎛
⎝R(φ) O O

O O R(φ)
O R(φ) O

⎞
⎠
⎛
⎝u(1)

u(2)
u(3)

⎞
⎠ (G.3)

The displacement vectors u are written as matrices with one column, the
symbols R and O are 3×3 matrices representing the orthogonal transfor-
mation and zeros, respectively. Thus, (G.3) is a 9×9 matrix equation. The
matrix on the right side is a 9-dimensional representation of C2v. Looking
at the shape of the matrix in (G.3) it is immediately evident that only sta-
tionary atoms, i.e. atoms, which are not moved by the SO contribute to the
trace of the representation matrix. Also, the traces for the individual matrices
R do not depend on a particular orientation of the symmetry element under
consideration. Thus, generally (8.2) is appropriate for their evaluation.

G.4 Vibrational Species of Rhombohedric CaCO3

The space group for rhombohedric CaCO3 is D6
3d or R3c with two formula

units per unit cell. The geometrical arrangement for the two molecules is
shown in Fig. G.2. The crystallographic point group is D3d with the symmetry
elements E, 2C3, 3C2, I, 2S6, 3σd and the irreducible representations A1g, A2g,
Eg, A1u, A2u, Eu. In the space group σd is a glide-mirror plane.

Fig. G.2. Unit cell for rhombohedric CaCO3; (©: Ca, •: C,
◦: O)

At first the atoms which are stationary to the SO of the group of the unit
cell must be determined. To do this it is convenient to number the atoms in
the unit cell as shown in Fig. G.2 and to list their mapping in a table. The
z axis is assumed to connect the two Ca atoms and the x axis is oriented
symmetrically between the oxygen atoms 9 and 10. In Table G.2 the motions
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Table G.2. Effect of SO of space group D6
3d on the position of the atoms in the

unit cell of CaCO3

symmetry element stationary non-stationary atoms
atoms initial final

E 1 to 10
2C3||z 120◦ 1,2,3,4 8,9,10,5,6,7 10,8,9,7,5,6

240◦

3C2||x or equivalent C2(1) 3,4,5,8 1,2,6,7,9,10 2,1,7,6,10,9
axis in C2(2) 3,4,6,9 1,2,5,7,8,10 2,1,7,5,10,8
xy plane C2(3) 3,4,7,10 1,2,5,6,8,9 2,1,6,5,9,8
I inversion in 1 I 1,2 3,4,5,8,6,9,7,10 4,3,8,5,9,6,10,7
2S6||z with reflection S6(1) 1,2 3,4,5,9,7,8,6,10 4,3,9,7, 8,6,10,5
on a plane ||xy in 1 S6(2) 1,2 3,4,5,10,6,8,7,9 4,3, 10,6,8,7,9,5
3σg reflection on zy σg(1) 1,2,3,4,5,8 2,1,4,3,8,5
or equivalent 6,10,7,9 10,6,9,7
plane with gliding σg(2) 1,2,3,4,5,10 2,1,4,3,10,5
(a + b + c)/2 6,9,7,8 9,6,8,7

σg(3) 1,2,3,4,5,9,6,8,7,10 2,1,4,3,9,5,8,6,10,7

of the atoms are summarized. For the determination of the invariant atoms
attention must be paid to atoms which transform to an equivalent position
in the neighboring cell. Such atoms are counted as stationary. This happens,
e.g., for the SO S6 and concerns one of the Ca atoms.

Next the character table for the point group D3d is used and Table G.3
is set up for the traces dR of the tree-dimensional orthogonal transformations
and for the total representation.

Table G.3. Traces and characters for the vibrational analysis of CaCO3

R E 2C3 3C2 I 2S6 3σg
d

fR 3 0 −1 −3 0 1
Nc 10 4 4 2 2 0

χ(3N) 30 0 -12 -6 0 0

Reducing χ(3N) according to the irreducible representations of D3d yields

Γ (tot) = A1g + 3A2g + 4Eg + 2A1u + 4A2u + 6Eu . (G.4)

From the character tables the species for the translations are A2u and Eu. The
same species represent the IR active modes. From the tables for the Raman
tensors the A1g and the Eg species are Raman active. This yields finally for
the vibrational analysis

Γ (vib) = A1g(R) + 3A2g + 4Eg(R) + 2A1u + 3A2u(IR) + 5Eu(IR) . (G.5)

The total number of vibrational degrees of freedom is, as it must be, 3N −3 =
27.
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To Chapter 9, Light Scattering Spectroscopy

H.1 Raman Tensors for the 32 Point Groups

Table H.1. Raman Tensors for vibrational species

monoclinic ∣∣∣∣∣∣
a d .
d b .
. . c

∣∣∣∣∣∣
∣∣∣∣∣∣

. . e

. . f
e f .

∣∣∣∣∣∣
Oz ‖ C2 C2 A, z B, x, y
Oz ⊥ σh C1h A′, x, y A′′, z
Oz ‖ C2 C2h Ag Bg

orthorhombic ∣∣∣∣∣∣
a . .
. b .
. . c

∣∣∣∣∣∣

∣∣∣∣∣∣
. d .
d . .
. . .

∣∣∣∣∣∣

∣∣∣∣∣∣
. . e
. . .
e . .

∣∣∣∣∣∣

∣∣∣∣∣∣
. . .
. . f
. f .

∣∣∣∣∣∣
Ox, Oy, Oz ‖ C2x, C2y, C2z D2 A B1, z B2, y B3, x
Oz ‖ C2z, Ox ‖ σy C2v A1, z A2 B1, x B2, y
Oz ‖ C2z, Ox ‖ σy D2h Ag B1g B2g B3g
trigonal ∣∣∣∣∣∣

a . .
. a .
. . b

∣∣∣∣∣∣

∣∣∣∣∣∣
c d e
d -c f
e f .

∣∣∣∣∣∣

∣∣∣∣∣∣
d -c -f
-c -d e
-f e .

∣∣∣∣∣∣
Oz ‖ C3 C3 A, z E, x E, y

C3 A, z E, x E, y

↓

∣∣∣∣∣∣
c . .
. -c d
. d .

∣∣∣∣∣∣

∣∣∣∣∣∣
. -c -d
-c . .
-d . .

∣∣∣∣∣∣
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Oz ‖ C3, Ox ‖ C2 D3 A1 E, x E, y
D3d A1g Eg, 1 Eg, 2

↓

∣∣∣∣∣∣
c . d
. -c .
d . .

∣∣∣∣∣∣
∣∣∣∣∣∣

. -c .
-c . d
. d .

∣∣∣∣∣∣
Oz ‖ C3, Ox ‖ σv C3v A1, z E, x E, y
tetragonal ∣∣∣∣∣∣

a . .
. a .
. . b

∣∣∣∣∣∣

∣∣∣∣∣∣
c d .
d -c .
. . .

∣∣∣∣∣∣

∣∣∣∣∣∣
. .e
. . f
e f .

∣∣∣∣∣∣

∣∣∣∣∣∣
. . -f
. . e
-f e .

∣∣∣∣∣∣
Oz ‖ C4 C4 A, z B E, x E, y

C4h Ag Bg Eg, 1 Eg, 2

↓ ↓ ↓

∣∣∣∣∣∣
. . f
. . -e
f -e .

∣∣∣∣∣∣
Oz ‖ S4 S4 A B, z E, x E, y

↓

∣∣∣∣∣∣
c . .
. -c .
. . .

∣∣∣∣∣∣

∣∣∣∣∣∣
. . d
d . .
. . .

∣∣∣∣∣∣

∣∣∣∣∣∣
. . e
. . .
e . .

∣∣∣∣∣∣

∣∣∣∣∣∣
. . .
. . e
. e .

∣∣∣∣∣∣
Oz ‖ C4, Ox ‖ σv C4v A, z B1 B2 E, x E, y

↓ ↓ ↓

∣∣∣∣∣∣
. . .
. . e
. e .

∣∣∣∣∣∣

∣∣∣∣∣∣
. . -e
. . .
-e . .

∣∣∣∣∣∣
Oz ‖ C4, Ox ‖ C′

2 D4 A1 B1 B2 E, x E, y
D4h A1g B1g B2g Eg, 1 Eg, 2

↓ ↓ ↓

∣∣∣∣∣∣
. . e
. . .
e . .

∣∣∣∣∣∣
Oz ‖ S4, Ox ‖ C′

2 D2d A1 B1 B2, z E, x E, y
hexagonal ∣∣∣∣∣∣

a . .
. a .
. . b

∣∣∣∣∣∣

∣∣∣∣∣∣
. . c
. . d
c d .

∣∣∣∣∣∣

∣∣∣∣∣∣
. . -d
. . c
-d c .

∣∣∣∣∣∣

∣∣∣∣∣∣
e f .
f -e .
. . .

∣∣∣∣∣∣

∣∣∣∣∣∣
f -e .
-e -f .
. . .

∣∣∣∣∣∣
Oz ‖ C6 C6 A, z E1, x E1, y E2, 1 E2, 2
Oz ‖ C3 C3h A′ E′′, 1 E′′, 2 E′, x E′, y
Oz ‖ C6 C6h Ag E1g, 1 E1g, 2 E2g, 1 E2g, 2

↓

∣∣∣∣∣∣
. . .
. . c
. c .

∣∣∣∣∣∣

∣∣∣∣∣∣
. . -c
. . .
-c. .

∣∣∣∣∣∣

∣∣∣∣∣∣
d . .
. -d .
. . .

∣∣∣∣∣∣

∣∣∣∣∣∣
. -d .
-d . .
. . .

∣∣∣∣∣∣
Oz ‖ C6, Ox ‖ C′

2 D6 A1 E1, x E1, y E2, 1 E2, 2
Oz ‖ C6, Ox ‖ C′

2 D6h A1g E1g, 1 E1g, 2 E2g, 1 E2g, 2
Oz ‖ C3, Ox ‖ C2 D3h A1 E′′, 1 E′′, 2 E′, x E′, y

↓

∣∣∣∣∣∣
. . c
. . .
c . .

∣∣∣∣∣∣

∣∣∣∣∣∣
. . .
. . c
. c .

∣∣∣∣∣∣ ↓ ↓

Oz ‖ C6, Ox ‖ σv C6v A1, z E1, x E1, y E2, 1 E2, 2
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cubic ∣∣∣∣∣∣
a . .
. a .
. . a

∣∣∣∣∣∣

∣∣∣∣∣∣
b + c

√
3 . .

. b-c
√

3 .
. . -2b

∣∣∣∣∣∣

∣∣∣∣∣∣
c-b

√
3 . .

. c + b
√

3 .
. . -2c

∣∣∣∣∣∣

∣∣∣∣∣∣
. . .
. . d
. d .

∣∣∣∣∣∣

∣∣∣∣∣∣
. . d
. . .
d . .

∣∣∣∣∣∣

∣∣∣∣∣∣
. d .
d . .
. . .

∣∣∣∣∣∣
Ox, Oy, Oz ‖ T A E, 1 E, 2 F, x F, y F, z
C2x, C2y, C2z, Th Ag Eg, 1 Eg, 2 Fg, 1 Fg, 2 Fg, 3

↓

∣∣∣∣∣∣
b . .
. b .

. . -2b

∣∣∣∣∣∣

∣∣∣∣∣∣
-b
√

3 . .

. b
√

3 .
. . 0

∣∣∣∣∣∣ ↓ ↓ ↓

Ox, Oy, Oz ‖ O A1 E, 1 E, 2 F2, 1 F2, 2 F2, 3
C4 or S4 Td A1 E, 1 E, 2 F2, x F2, y F2, z

Oh A1g Eg, 1 Eg, 2 F2g, 1 F2g, 2 F2g, 3

The first and the second column in the table give the geometry and the
point group, respectively, for which the Raman tensors are listed. The follow-
ing columns give the vibrational species and the corresponding Raman tensors.
A down arrow means the Raman tensor from the species above can be used.
The coordinates x, y, z next to the Mullikan symbols assign the polarization
of the mode.

H.2 Averaging of Raman-Tensor Components

The average value of a tensor component is obtained by averaging over all
orientations in space. This is done by evaluating the tensor component for
an arbitrary orientation in space using Euler angles ψ, θ, φ. The definition
of the Euler angles as they are used here is given in Fig. H.1. Orthogonal
transformation of the Raman tensor χmn,k with a general rotation matrix
O(ψ, θ, φ) gives the tensor for arbitrary orientation. Written in operator form
this means

χ′ = OχOT . (H.1)

The matrix O can be obtained from several successive rotation of the following
form.

Fig. H.1. Euler angles for the rotation of
coordinates by arbitrary angles
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O = Oz′(φ)OA(θ)Oz(ψ) , (H.2)

with

OA(θ) = Oz(ψ) Ox(θ)Oz(−ψ)
Oz′(φ) = OA(θ) Oz(φ)OA(−θ) . (H.3)

Inserting (H.3) into (H.2) yields

O(ψ, θ, φ) = Oz(ψ)Ox(θ)Oz(φ) . (H.4)

This means the matrix for the general rotation is obtained from rotations
around the z axis and around the x axis by the angles ψ, θ, and φ. The
individual rotation matrices are given by (8.2). With the abbreviations

cos θ = c1, cos ψ = c2, cos φ = c3

sin θ = s1, sin ψ = s2, sin φ = s3

we obtain from the matrix multiplication

O(ψ, θ, φ) =

⎛
⎝ c2c3 − c1s2s3 s2c3 + c1c2s3 s1s3

−c2s3 − s1s2c3 −s2s3 + c1c2c3 s1c3

s1s2 −s1s2 c1

⎞
⎠ . (H.5)

We verify as an example the first relation in (9.40) for χ33,k. The index k is
dropped for simplicity in the following. The relation to prove is

χ′2
33 = a2 +

4
15

τ2

=
1
5
(χ2

11 + χ2
22 + χ2

33) +
2
15

(χ11χ22 + χ22χ33 + χ33χ11) +
4
15

(χ2
12

+χ2
23 + χ2

31) . (H.6)

The transformed component χ′
33 is obtained from (H.1) and (H.5) by

χ′
33 =

∑
kl

O3kO3lχkl

= χ11s
2
1s

2
3 + χ22s

2
1c

2
3 + χ33c

2
1

+2χ12s
2
1s3c3 + 2χ23s1c1c3 + 2χ31c1s1s3 . (H.7)

The square of this expression has to be averaged over the Euler angles in the
form

χ′2
33 =

1
2π

∫ 2π

0

dφ
1
2π

∫ 2π

0

dψ
1
2

∫ π

0

sin θdθχ′2
33

=
1
4π

∫ 2π

0

dφ

∫ 1

−1

d(cos θ)χ′2
33 . (H.8)
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The explicit expression for (χ′
33)

2 is obtained in a straightforward way from
(H.7). It consists of a sum of products of powers of sine and cosine functions
with products of tensor components χik. From the averaging all contributions
cm
3 , sn

3 with uneven m,n can be dropped. The rest are simple integrals over
powers of sine and cosine terms. The calculation is cumbersome but straight-
forward and finally yields

χ′2
33 =

1
5
(χ2

11 + χ2
22 + χ2

33) +
2
15

(χ11χ22 + χ22χ33 + χ33χ11)

+
4
15

(χ2
12 + χ2

23 + χ2
31) . (H.9)
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To Chapter 10, Infrared Spectroscopy

I.1 Line-Shape Function from the
Fluctuation-Dissipation Theorem

The relationship between the absorption α and the autocorrelation function
〈μ(0)μ(t)〉 is based on a very general relationship between a linear response
function and the autocorrelation function of a generalized displacement. It
is known as the fluctuation-dissipation theorem (see (14.47) in Sect. 14.3.3).
The generalized response function T (ω) is obtained from the relation between
a generalized force F (ω) and the generalized displacement X(ω). The theo-
rem relates the power spectrum of the displacement to the imaginary part of
the linear response function. For more details on the fluctuation-dissipation
theorem special text books or references must be considered [10.14, 10.15].
Since α(ω)/ω is related to the imaginary part of the dielectric function and
the dipole moment is a special case of the generalized displacement, the rela-
tionship between the two quantities is covered by the fluctuation-dissipation
theorem. A detailed evaluation in [10.15] yields

αvkivkf (ω + Ωk)
(ω + Ωk)(1 − e−h̄(ω+Ωk)/kBT )

=
πnd

3h̄c0ε0

[∫
eiωt〈[μ]vkivkf (0)[μ]vkivkf (t)〉dt

]
. (I.1)

The transition dipole matrix elements may be those of (10.23). The brackets
on the right-hand side of the equation indicate an ensemble average. For an
ergodic system this average is identical to the correlation function as defined in
(14.43). Thus, the integral is the Fourier transform for the correlation function
of the dipole moments or equal to their dynamical structure factor S(ω).
Indeed, comparing the left hand side of (I.1) with the results of (14.47) for
the dynamical form factor yields a basic understanding of the relation. Fourier
back transformation of (I.1) yields
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〈[μ]vkivkf (0)[μ]vkivkf (t)〉

=
3h̄c0ε0

2πnd

∫
band

e−iωtαvkivkf (ω + Ωk)
(ω + Ωk)(1 − e−h̄(ω+Ωk)/kBT )

dω . (I.2)

As in the case of optical absorption thermal averaging over the occupation
numbers is required. This yields the absorption coefficient αk for mode Ωk

from αvkivkf on the right-hand side of the equation.
The correlation function on the left-hand side is evaluated by replacing

it with the transition matrix element from (14.43). This matrix element is
approximated for t = 0 by (10.22) together with (10.23). For h̄Ωk > kBT the
square of the matrix element becomes

|μfi|2 =
∣∣∣∣ dμ

dQk

∣∣∣∣
2

h̄

2Ωk
.

With a appropriate transformation of the integration variable on the right-
hand side we obtain finally, for t = 0
∣∣∣∣ ∂μ

∂Qk

∣∣∣∣
2

=
12Ωkc0ε0

nd

∫
αk(ω)

ω
dω .



J

To Chapter 11, Magnetic Resonance
Spectroscopy

J.1 g-Factor for the Free Electron

From a quantum-mechanical description the magnetic moment μ of an elec-
tron with orbital and spin angular momentum is given by

μ = g
eh̄

2m
Q (J.1)

where Q is the quantum number of the electron angular momentum and g
is the gyromagnetic g-factor. If Q is an orbital angular momentum quantum
number L, the g-factor is 1. If Q is a spin quantum number S g must be
evaluated from quantum-electrodynamics, which involves the interaction of
the electron with a radiation field. From this one obtains for ge

ge = 2(1 +
α

2π
+ 0.328

α2

π2
+ ...) , (J.2)

where α = e2/4πε0h̄c0 = 1/137.036 is the fine-structure constant. The first
correction term inside the parentheses of (J.2) originates from an interaction
of the electron with zero-point vibrations of a radiation field. In other words
the electron emits and reabsorbs in a fluctuating manner a photon which
renormalizes its g-factor. The second, smaller, correction term originates from
the relativistic motion of the electron. In an atom or in solids other corrections
to g are relevant which originate from spin-orbit interaction as discussed in
Appendix J.6.

Note that for orbital quantum numbers L the quanum-mechanical derived
magnetic moment is equal to the classical magnetic moment

μ =
Ir2

2
=

Iωr2m

2ωm
=

eL

2m
,

where in this case L = mr2ω is the angular momentum of the circulating
electron with mass m which gives rise to the current I = eω.
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J.2 Transformation of Velocities Between Laboratory
System and Rotating System

We consider the general case of a coordinate system with origin O′ moving in
a laboratory system with origin O as depicted in Fig. J.1. The mathematical

Fig. J.1. Geometry for the motion of a mass point
M in the laboratory system O and in the moving
system O′

relationship between a vector r in the laboratory system and the same vector
r′ in the moving system is

r = r0 + r′ = r0 +
∑

x′
iei

′ , (J.3)

where ei
′ and x′

i are the unit vectors and the components of r′ in the moving
system and r0 is the vector between O and O′. The absolute velocity (i.e. the
velocity in the laboratory system) is

vl =
dr

dt
=

dr0

dt
+
∑

x′
i

dei
′

dt
+
∑ dx′

i

dt
ei

′ . (J.4)

The last sum in (J.4) is the relative velocity dr′/dt in the moving frame. The
time derivatives in the first sum describe the rotation of the frame O′.

de′
i

dt
= ω × e′

i . (J.5)

Thus, the general relation between the time derivatives of a vector r in the
two systems is

dr

dt
=

dr0

dt
+

dr′

dt
+ ω × r′ . (J.6)

For the special case where O′ coincides with O and the translational velocity
dr0/dt is zero relation (J.6) simplifies to

dr

dt
=

dr′

dt
+ ω × r′ . (J.7)
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J.3 Exchange Interaction

The exchange interaction is a characteristic phenomenon of quantum me-
chanics. In a system of at least two nuclei a and b and two electrons 1 and 2
with distance r12 the interaction energy between the electrons is not only the
Coulomb energy UC but also the exchange energy of the form

K =
∫

ψ∗
ab(x1)ψab(x2)

e2

r12
dx1dx2 (J.8)

with

ψab(xi) = ψa(xi)ψb(xi) .

ψa and ψb are the wave functions for nucleus a and b with electrons 1 and
2, respectively. Thus, the wave function ψab is given by the product of the
wave function for the electron 1 in the orbit ψa times the fraction which this
electrons occupies from orbit ψb. To obtain a sizable exchange interaction an
overlap between the wave functions ψa(x1) and ψb(x2) must exist at least
in a certain range of space. The higher the concentration of the exchanged
electrons the higher is the interaction energy.

A classical example for an exchange interaction by a spin-spin coupling is
the Heisenberg model for the ferro magnetism. The spin orientation and thus
also the energy U of the system is given by an exchange interaction between
spin Si from atom i with spin j from atom j. In this case the exchange energy
has the form

U = −2KSiSj . (J.9)

J.4 Line Shape for Powder Spectra in Magnetic
Resonance

In the case of full anisotropy of the g-tensor with gx < gy < gz the line shape
function I(ω) has two branches. For ωx ≤ ω < ωy it is given by

I(ω) =
1
π

(
1

(ωz − ω)(ωy − ω1)

)1/2

K(m) , (J.10)

with

m =
(ω − ωx)(ωz − ωy)
(ωz − ω)(ωy − ωx)

.

K(m) is the elliptic integral of first kind. A similar relation holds for the
higher frequency branch of the line with ωy < ω ≤ ωz.
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I(ω) =
1
π

(
1

(ω − ωx)(ωz − ωy)

)1/2

K(m) , (J.11)

with

m =
(ωy − ωx)(ωz − ω)
(ωz − ωy)(ω − ωx)

.

J.5 Pauli Spin Matrices

The Schrödinger equation is only an appropriate relation to describe electronic
states if the electrons behave non relativistic and their spin is neglected. If
this is not the case the more general Dirac equation must be used. In solids
relativistic effects are usually not relevant but the influence of electron or hole
spins are often important. Therefore the wave functions will not only depend
on space and time but also on the spin state u. While space coordinates and
time are continuous variables u has only discrete values, namely, for a spin
state S there are 2S + 1 values for u. For J = S = 3/2 theses values are e.g.
3/2, 1/2, −1/2, −3/2. Alternatively expressed, instead of one wave function we
must describe the state of the electron with a set of 2S+1 wave functions. This
set is called a spinor. Accordingly, the time dependent Schrödinger equation
now becomes a set of differential equations of the form

ih̄
∂ψ

∂t
= Hψ =

(
(σ · π)2

2m0
+ U(x)

)
ψ , (J.12)

where U(x) is the spin independent lattice potential and σ is a vector of 2S+1
dimensional matrices. π = p− eA is the generalized electron momentum if a
magnetic field with vector potential A is present and ψ is a 2S+1 dimensional
vector (spinor) of wave functions. In the case of J = S = 1/2 σ has the form((

0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

))
,

where the vector components are known as Pauli matrices. (J.12) is known
as Pauli equation. The Pauli matrices describe e.g. the spin operator of the
system as S = 1

2 h̄ · σ. In this case the spinors have two components and are
usually assigned (in second quantization formalism) as ak+ and ak−.

J.6 Spin-Orbit Interaction

The SO Hamiltonian can be rewritten in a form where the angular momentum
operator L = r × p and the spin operator S = 1

2 h̄ · σ appear explicitly if we
assume that the potential is radially symmetric and proportional to 1/r. On
evaluating the Nabla operator one obtains
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HSO = −μeB
SO =

μB

2m0ec2

1
r

dU(r)
dr

r×p ·σ =
μB

h̄m0ec2

1
r

dU(r)
dr

L ·S (J.13)

The factor in front to L·S is the spin-orbit coupling parameter λ, in units of h̄2.
Since in the Bohr model the Coulomb potential scales with the nuclear charge
Z and in the evaluation of the eigenstates of H Z enters to the fourth power,
spin-orbit coupling is strongly enhanced for heavy atoms. This holds also for
solids, since the coupling is strongest close to the atom core where atomic
potentials rather than band potentials determine the electronic structure.
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To Chapter 13, Spectroscopy with γ Rays

K.1 Oscillator Models for Recoil-Free Emission of γ
Radiation

The evaluation of the recoil-free fraction of γ quanta emitted from a nucleus
needs the consideration of all phonon states. Let us label the phonons with s
and their frequencies and occupation numbers with Ωs and ns, respectively.
The fraction of recoil-free emission is then

f = exp

[
− h̄k2

3NM

∑
s

1
Ωs

(ns + 1/2)

]
, (K.1)

where N is the number of oscillators. This equation can be reformulated using
the recoil energy from (13.1), replacing the sum by an integral, and introducing
a density of states ρ(Ω) for the phonons. This yields

f = exp

[
− 2εR

3Nh̄

∫ Ωmax

0

1
Ω

[n(Ω) + 1/2]ρ(Ω)dΩ

]
, (K.2)

where n(Ω) is given by the Bose–Einstein factor of (9.32). Equation (K.2)
allows to calculate the fraction of recoil free emission for various lattice-
dynamical models. In the simplest case we can use the Einstein oscillators
with a density of states

ρE(Ω) = 3Nδ(Ω − ΩE) . (K.3)

Inserting the delta function into the integral of (K.2) yields

f = exp
[
− εR

kBΘE
coth

(
ΘE

2T

)]
, (K.4)

where ΘE is the temperature equivalent to the oscillator. For T � ΘE f can
be approximated by
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f = exp
[
− εR

kBΘE

(
2T

ΘE
+

ΘE

6T

)]
. (K.5)

The latter equation approaches (13.5) for high temperatures.
In the case of a Debye model for the lattice oscillators the density of states

is

ρD(Ω) =
9N

Ω3
D

Ω2 for Ω < ΩD

= 0 for Ω > ΩD . (K.6)

Using this density of states in (K.2) yields

f(T ) = exp
(
−3εR

1 + 4(T/ΘD)2I(ΘD/T )
2kBΘD

)
,

with

I(T/ΘD) =
∫ ΘD/T

0

xdx

ex − 1
.

ΘD = h̄ΩD/kB is the Debye temperature of the system.
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To Chapter 14, Generalized Dielectric Function

L.1 The Kramers–Kronig Relations

From (14.24) which implies causality between the perturbation of a system
and its response two very important properties of the linear response functions
can be derived. To discuss these properties we consider the response functions
on the complex ω plane ωr + iωi.

Firstly, χ(ω) turns out to be always analytic (without poles) in the upper
halve of this plane.

Secondly, and even more important, a fundamental relation exists between
the real part and the imaginary part of χ(ω). We assume an arbitrary value
of ω = ω0 on the real axis and consider the path integral along C

I =
∫

C

χ(ω)
ω − ω0

dω . (L.1)

The path is a closed loop as displayed in Fig. L.1. It is chosen along the real
axis from −∞ to ∞ and closed by a half-circle in the upper complex plane. The
pole of the integrand in (L.1) at ω = ω0 is excluded by an infinitely small half-
circle. Since the integrand is analytic along and within the integration path
the value of the integral is zero. χ(ω) is assumed to vanish for infinitely large
values of ω so that the contribution of the half-circle in the upper complex

Fig. L.1. Path of integration to
calculate the integral in (L.1)
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plane to the integral vanishes1. The contribution of the infinitely small circle
around ω0 to the integral is −iπχ(ω0). This enables (L.1) to be rewritten in
the form

I = lim
ρ→0

{∫ ω0−ρ

−∞

χ(ωr)dωr

ωr − ω0
+
∫ ∞

ω0+ρ

χ(ωr)dωr

ωr − ω0

}
− iπχ(ω0) = 0 . (L.2)

The expression within the curly brackets is known as the principal value P
of the integral from −∞ to ∞. Relabeling ωr as ω we obtain the complex
dispersion relation

χ(ω0) = − i
π

P
∫

χ(ω)
ω − ω0

dω . (L.3)

Separating real and imaginary part yields the famous Kramers–Kronig rela-
tions

χr(ω) =
1
π

P
∫

χi(ω)
ω − ω0

dω ,

χi(ω) = − 1
π

P
∫

χr(ω)
ω − ω0

dω . (L.4)

Considering that χr(ω) and χi(ω) are even and odd, respectively, one ar-
rives readily at the Kramers–Kronig relations from Sect. 6.1.3.

L.2 Evaluation of Expectation Value for Particle Density

To evaluate the expectation value in (14.34) we have to find the correct wave
functions from the Schrödinger equation

i
∂

∂t
|ψ(t)〉 = (H + Hint)|ψ(t)〉 . (L.5)

The solution must be consistent with the causal boundary condition that for
t → −∞ the system is in the ground state |0〉. The procedure outlined below
follows closely the presentation in Ref. [14.1]. Following the rules of pertur-
bation theory we project |ψ(t)〉 onto the eigenstates |n〉 of H with eigenvalues
El.

|ψ(t)〉 =
∑

l

al(t)e−iElt . (L.6)

Inserting this into (L.5) and keeping only the terms of first order in U one
obtains
1 If χ(∞) is finite we can always consider χ(ω) − χ(∞) as the response function

which vanishes for ω = ∞
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al(t) =
{

(n+
q )loU(q, ω)

ω − ωl0 + iη
e(−iω+iωl0+η)t − (nq)loU(q, ω)

ω + ωl0 − iη
e(iω+iωl0+η)t

}
.

(L.7)

Using this result in (L.6) and evaluating from this the expectation value ac-
cording to (14.35) leads first to

〈n(q, t)〉 = U(q, ω)e(−iω+η)t
∑

l

{
|(n+

q )l0|2
ω − ωl0 + iη

−
|(n+

q )l0|2
ω + ωl0 + iη

}
. (L.8)

Considering that

〈n(q, t)〉 = 〈n(q, ω)〉e(−iω+η)t

we find the expectation value for the particle density as

〈n(q, ω)〉 = U(q, ω)
∑

l

|(n+
q )l0|2

{
1

ω − ωl0 + iη
− 1

ω + ωl0 + iη

}
. (L.9)

From the definition for χ(q, ω) in (14.34) we arrive immediately at (14.36).

L.3 The Fluctuation-Dissipation Theorem

At finite temperatures one can proceed in a similar way with the definition
of the generalized susceptibility and the dynamic form factor. Two important
differences must be considered, however. First, a finite number of initial states
|i〉 will be occupied. The probability W (εi) for the occupation is determined
by the energy εi and given by the Boltzmann factor from statistical mechanics
(see also the discussion in Chap. 7, (7.35)):

W (εi) =
1
Z

e−βεi , (L.10)

with β = 1/kBT and Z =
∑

i e
−βεi . Second, energy exchange between probe

and particle system will occur in both directions, from the probe to the system
and vice versa, in a well defined balance. A good example for this behavior is
the process of Stokes and antiStokes Raman scattering where in the first case
energy from the photon probe is given to the lattice and in the second case
from the lattice to the photon.

The dynamical form factor at finite temperatures is given by

S(q, ω) =
1
Z

∑
l,i

e−βεi |(nq)li|2δ(h̄ω − h̄ωli) . (L.11)

It describes the energy transfer from the probe to the system. A similar form
factor S(q,−ω) describes the energy transfer from the system to the probe.
The detailed balance between the two functions can be worked out to be
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S(q, ω) = eβh̄ωS(q,−ω) . (L.12)

An example where the principle of detailed balance applies was already
discussed above when we investigated the generalized susceptibility χ0(ω) for
a noninteracting system of Fermions at finite temperatures.

Inserting S(q,−ω) from (L.12) into the second part of (14.46) yields

S(q, ω) = − 1
π

[1 − e−βh̄ω]−1χi(ω) =
1
π

[1 + fE(ω, T )]χi(ω) ,

(L.13)

where fE(ω, T ) is the Bose–Einstein distribution.

L.4 The Generalized Dielectric Function for Charged
Particles

To obtain ε(q, ω) in terms of the density–density response function starting
from (14.51) we proceed as in Sect. 14.1 by introducing an interaction be-
tween the probing particles and the system particles. For the present case the
Coulomb interaction with the Fourier components

Uq =
e2

q2ε0
ne(q, ω) (L.14)

is appropriate. With this we find from (14.51)

1
ε(q, ω)

= 1 +
e2

q2ε0

〈n(q, ω)〉
Uq

. (L.15)

With the definition of the density–density response function from (14.34) and
considering U(q, ω) = Uq/V with Uq from (L.14) we obtain

1
ε(q, ω)

= 1 +
e2

q2ε0V
χ(q, ω) . (L.16)

If we want to introduce screening effects into the expressions for the re-
sponse functions, as we have done it for q �= 0, ω = 0 and q = 0, ω �= 0
in Sect. 14.1 and in Sect. 6.3. The simplest way to do this is to replace the
unscreened potential Uq by a screened potential Uq/ε(q, ω). With this the
density–density response function for the electron liquid becomes

χsc =
V〈n(q, ω)〉

Uqne(q, ω)/ε(q, ω)
= ε(q, ω)χ(q, ω) . (L.17)

Combining this with (14.52) yields for the DF
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ε(q, ω) = 1 − e2

q2ε0V
χsc(q, ω) . (L.18)

Within the RPA χsc is replaced by the density–density response function
for non-interacting electrons χ0(q, ω) which yields the result of (14.11) in
Sect. 14.1 as

ε(q, ω) = 1 − e2

q2ε0V
χ0(q, ω) , (L.19)

where χ0(q, ω) is given by (14.12).

L.5 Random Phase Approximation

The random phase approximation (RPA) was developed as an approximation
in calculations for screening and collective excitations in Fermi liquids in the
1950s. Since then its usefulness led to a large number of applications in various
problems of many particle systems. According to the concept of RPA contri-
butions with random phases to a summation over the number of particles,
usually occurring in product terms, can be neglected as compared to the total
number of particles N . This simplifies expressions like

∑
i

ei(k−k′)xi ≈ Nδk,k′ (L.20)

A useful example for the application of the RPA is the calculation of the
screened generalized susceptibility for interacting particles. If the interaction
energy is U(q) the screened susceptibility evaluated within the RPA becomes

χRPA(q, ω) =
χ0(q, ω)

1 − U(q)χ0(q, ω)
. (L.21)
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To Chapter 16, Spectroscopy of Mesoscopic
and Nanoscopic Solids

M.1 Appendix: Basic Concepts of Mie Theory

In 1908 G. Mie published a paper in which he demonstrated that colors of
colloidal metallic particles in transmission or scattering depend on their di-
ameter if the latter is of the order of the light wavelength. [16.6] He derived
a complete electromagnetic theory, valid for spherical particles, and based on
Maxwell’s equations. The theory provides expressions for the extinction cross
section Cext and for the scattering cross section Csca in the form

Cext =
2π

k2

∞∑
m=1

(2m + 1)Re{am + bm} (M.1)

Csca =
2π

k2

∞∑
m=1

(2m + 1)(|am|2 + |bm|2) , (M.2)

where k = 2πns/λ0 is the wave vector of the light in the surrounding medium
with refractive index ns. am and bm are expressions in spherical Bessel func-
tions of order m with argument kd/2 and in the relative index of refraction
nM/ns where nM is the complex refractive index of the metal. m assigns the
multipole oscillations so that m = 1 represents the dipole oscillations. am and
bm describe the electric and the magnetic contribution to the cross sections.
Explicit expressions for am and bm and a simplified formulation of Mie’s the-
ory can be obtained from Ref. [16.8]. Figure M.1 depicts the schematic field
distribution for multipole excitations (a) and calculated extinction coefficients
for Au particles (b) of indicated diameter with the model DF for gold from
Sec. 6.3. The normalized extinction cross section is the cross section from
(M.2) divided by the cross section of the sphere. For very small particles
(d ≤ 40 nm) the resonance at 510 nm is independent of diameter and origi-
nates only from dipole oscillations. With increasing diameter the dipole reso-
nance shifts to longer wavelengths, broadens, and can reach almost 570 nm for
80 nm diameter particles. Beyond this octopole and quadrupole (at 700 nm)
oscillations start to contribute from the short wavelength side. For 180 nm
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Fig. M.1. Multipole oscillations of spherical nanoparticles (a) and normalized
extinction cross section for spherical gold nanoparticles of diameter as indicated
in nm (b)

diameter the three contributions can be seen at 530 nm (octopole), 700 nm
(quadrupole) and 950 nm (dipole).

For very small particles where only the electric dipole oscillations con-
tribute, the corresponding coefficient a1 in (M.1) and in (M.2) is

a1 = −2ik3d3

24
ε − 1
ε + 2

(M.3)

This expression immediately leads to the expression (16.2) in Chap.16.
If the particles are not spherical analytical solutions for extinction and

scattering exist only for spheroides in the small diameter limit. Results are
different for oblate (flat, b < a = c) spheroides and prolate (extended, b >
a = c ) spheroides, where b is along the symmetry axis of the spheroid. In
addition the polarizability depends on the orientation of the field vector to the
symmetry axis of the spheroid. The main reason for the difference originates
from an efficient depolarization which has to be considered in the evaluation
of the polarizability.

For the case of spheroides we have to replace the polarizability of (16.1)
by

αP =
V

4π

(εM/εs) − 1
1 + (εM/εs) + 1)PD/4π

(M.4)

where PD is the dimensionless depolarization factor. Depolarization factors are
different for extended and flat spheroides and also depend on the orientation of
the electric field. For extended spheroides PD for fields parallel to the rotation
axis is
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PD(‖, p) = 4π
1 − e2

e2

[
1
2e

ln
(

1 + e

1 − e

)
− 1
]

, (M.5)

where e = (1− a2/b2)1/2 is the eccentricity of the spheroid. A similar relation
holds for the field perpendicular to the rotation axis.

PD(⊥, p) = (4π − PD(‖, p))/2 (M.6)

For the flat spheroides e = (1 − b2/a2)1/2 and the depolarization factors are

PD(‖, o) =
4π

e2

(
1 − (1 − e2)1/2arcsin(e)

e

)
. (M.7)

For the perpendicular polarization we have to replace PD(‖, p) in (M.6) by
PD(‖, o) from (M.7). The depolarization factors for spheres is 1/3 as evidenced
by comparing (M.4) with (16.1).

M.2 Appendix: Field Effect Transistors

A classical field effect transistor is frequently used in semiconductor devices. It
works with a sequence of differently doped semiconductors which are arranged
in series as depicted in Fig. M.2. For an untuned gate voltage and a bias
VB = VS − VD of any polarity no current can flow since always one of the
pn-junctions is reverse biased. At the surface between source and drain and
just below a depletion layer may exist due to surface charges. By tuning the
gate voltage carriers can be induced in this small channel between source and
drain. From simple capacity theory the number of induced charge carriers N ,
is

n = VGC/e = VG
εε0A

dGe
, (M.8)

Fig. M.2. Schematic for a n-channel metal-oxide-semiconductor FET
of Si. The two p-areas in the corners represent p-doped Si and serve
as source S and drain D. The intermediate part is n-doped. The gate
electrode G is separated by a metal oxide layer from the n-type Si
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where VG and C are the applied gate voltage and the capacity of the gate,
respectively. The second part of the equation is formulated for a FET with
area A and oxide thickness dG.

For a positive voltage electrons are induced into the channel and the FET
remains non conducting. For a high enough negative gate voltage the channel
can become n-type and the transistor switches to the “on” state. Since the
current I for a given bias voltage can be easily measured and the concentration
of carriers (in As/m−2) is obtained from (M.8) as n = N/A, the field effect
mobility of the carriers in the channel can be evaluated from the conductance
G = I/VB as

μFE =
G

ne
=

I

VBne
. (M.9)

In the case of a quantum dot the transitions between n-type and p-type
conductor are tunnel junctions and the gate electrode has a capacity CG by
itself. The gate voltage is divided by the two capacitors in series CG and Cdot.
Therefore only a fraction of V = VGCdot/CG can be used to load the dot with
charge.

M.3 Appendix: Quantum Wells, Quantum Wires, and
Dots

Systems where geometrical dimensions are so small that descriptions by quan-
tum mechanics leads to discrete sets of eigenstates represent a particular class
of solids. Such systems can be quasi-twodimensional, quasi-onedimensional,
or dot-like. Famous examples for the first case are channel structures in
field effect transistors as discussed in Sec. M.2, thin layers of electrons or
holes squeezed between two semiconductors with different gap as e.g. in a
GaAs/(AlGa)As structure, or graphene. A very thin layer of a semiconduc-
tor between two other semiconductors with different gap energy is called a
quantum well. Quasi-one dimensional structures are semiconductor quantum
wires or carbon nanotubes. Quantum dots are of particular importance and
very interesting objects for spectroscopy. They are structures intermediate be-
tween large objects and polynuclear molecules and are therefore often called
artificial atoms.

Quantum dots can either be prepared lithographically as a transient or
static structures, by self assembling, or chemically. Transient quantum dots
are introduced into a semiconductor layer which is on top of a semiconductor
with slightly different lattice constant. At the interface between semiconductor
and layer a two-dimensional electron system develops. Using gate electrodes
parts of this layer can be depleted from carriers as depicted in Fig. M.3a.
From the left contact or from the right contact electrons can still tunnel
to and from the dot. The depleted areas act as tunnel barriers. Often used
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(a) (b)

(c) (d)

Fig. M.3. Quantum dots for semiconductors and metals. Transient dot struc-
ture (a), vertical quantum dot for a GaAs/(GaAl)As/GaAs/ (GaAl)As/GaAs
structure (b), self-assembled quantum dots, recorded by STM (c), and chem-
ically prepared metallic or semiconducting dots with core/shell structure (d)

semiconductors are (GaAl)As on top of GaAs. The alloy (GaAl)As has the
same lattice constant as GaAs and grows therefore easily on top of the GaAs
crystal. Since it has a slightly different electronic gap which even changes with
the Al content, electrons are confined to the interfacial layer. The structure
(b) shows a lithographically prepared and vertically aligned quantum dot of
GaAs sandwitched between two thin layers of (GaAl)As which serve as tunnel
barrier. If a gate electrode is attached from the side structures like this can
be wired as a FET. The dot size of lithographically prepared quantum dots
is limited by the resolution of lithography. This means at present structures
can be made as small as about 20 nm. (c) depicts a self-assembled system
of quantum dots made from InAs. Such dots grow from a material if a very
thin, so called wetting layer is deposited on a crystal which has a slight lattice
mismatch to the epitaxial material. In this case, if its thickness becomes too
large, the wetting layer assembles eventually into a set of small particles. In
part (d) of Fig. M.3 chemically prepared colloidal particles are depicted in a
core/shell structure. Very small particles down to 1 nm can be prepared by
wet chemistry. Usually they are covered with a shell of surfactant molecules
to prevent coagulation.
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The problem with all quantum dots described is the lack of uniformity if
a large number of dots is assembled or if dots are repeatedly grown. Even
though, spectroscopy, particularly such as luminescence or capacitance and
transport spectroscopy of individual dots or coupled dots is possible and pro-
vides results of fundamental importance for quantum systems.

M.4 Appendix: Size Quantization

In objects of very small size the geometrical dimensions determine the nature
of the wave functions for all quasi-particles. If the boundaries of the objects
are given by an infinitely high potential the particles are described by stand-
ing waves which have nodes at the boundary. Wave functions can be either
plane waves for rectangular particles or spherical harmonic waves for spherical
particles.

M.4.1 Size Quantization in Rectangular Boxes

If the size of the object is limited only in z-direction with value dz but macro-
scopic in x and y direction with dx, dy � dz, the k states and thus the eigen-
values for the energy are quasi continuously distributed in this plane. For
periodic boundary conditions v the allowed k vectors are still ±nx,y2π/dx,y

with n = 0, 1, 2, ... as in a bulk solid. In contrast, in z direction the particle
in the box model applies where the wave functions are standing waves with
k-values nzπ/dz, n = 1, 2, 3, .... Thus, in k-space the allowed k-states con-
sist of a set of quasi-continuous planes in kx and ky direction, separated by
Δkz = π/dz.1 This means the corresponding energy values are

εnx,ny,nz
(k) =

h̄2k2
x

2m
+

h̄2k2
y

2m
+

h̄2k2
z

2m
= εnx,ny

+
h2n2

z

8md2
z

, (M.10)

where εnx,ny
are the allowed energies for a macroscopic object and nx, ny, nz

are the quantum numbers of the system.
Similarly, for quantum wires extending e.g. in x direction, the allowed k

states are quasi-continuously distributed only along this direction while they
exhibit discrete values for ky and kz. To each of the discrete k-values a quasi-
continuous set of k values exists in kx direction. The energy levels are in
analogy to (M.10)

εnx,ny,nz
(k) = εnx

+
h2n2

y

8md2
y

+
h2n2

z

8md2
z

. (M.11)

1 In principle even for the macroscopic solid the particle in the box model applies
with no state for k = 0. However, if the box is large enough it makes no difference
whether the state for n = 0 with k = 0 is added and the model with periodic
boundary conditions is often more convenient and therefore usually preferred.
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Finally, for the quantum dots, where the objects are confined in all three
directions, the allowed energies are particle in the box states in all three
directions which means

εnx,ny,nz
(k) =

h2n2
x

8md2
x

+
h2n2

y

8md2
y

+
h2n2

z

8md2
z

. (M.12)

The lowest energy state is in this case obtained for nx = ny = nz = 1 and
thus equals 3h2/8md2 if dx = dy = dz = d.

For the interpretation of experimental results very often the number of
allowed states within a certain range Δk, or even more important, the number
of allowed states within a certain energy range Δε is needed. This is the well
know density of states (DOS) given in units of inverse energy or, alternatively,
in inverse energy per unit volume or per unit cell.

For a three-dimensional object the number of k states in a certain inter-
val Δk increases quadratically with k since the surface of a sphere increases
quadratically with the diameter. From this it is easy to show that the density
of allowed states in energy increases as the square root of the energy such that
D3D(ε) ∝ √

ε. This behavior is depicted in Fig. M.4a.
For objects extending in two directions the number of k states in a certain

interval Δk increases only linearly with k since the circumference of a circle
increases linearly with the diameter. It follows, that the number of allowed
energies D2D(ε) = constant and independent of the energy. Each sheet cor-
responding to the various kz states contributes. This means the overall DOS
for the quasi-two dimensional objects is a step like function as depicted in
Fig. M.4b.

Fig. M.4. Schematic for the density of states D of solid state objects with
varying confinement. (a) 3D solid, (b), (c), and (d): solids with confinement
in one, two, and three directions, respectively
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If the objects are linear the number of k states are independent of k. It
just increases with Δk. As a consequence the DOS for these objects scale like
D1D(ε) ∝ 1/

√
ε. This means they diverge for ε approaching zero and become

zero for ε → ∞. Again for each state ky and kz such diverging behavior for
the DOS is expected. A schematic plot for the DOS of 1D systems is depicted
in Fig.M.4c. The divergences in the DOS are called van Hove singularities.

Finally, for quantum dots only discrete values for the k vectors and thus
also for the allowed electronic states are possible. The resulting DOS is a set
of δ-functions as depicted in Fig. M.4d. This pattern already resembles to the
discrete energy states of the molecules.

M.4.2 Size Quantization for Spherical Boxes

For quantum dots often a description as spherical objects is more appropriate
than by rectangular objects. In this case it is useful to solve the Schrödinger
equation for spherical polar coordinates. Due to the spherical symmetry the
total wave function can be separated into a radial and an angular part of the
form

ψ(r, θ, φ) = Rl(r)Yl,m(θ, φ) (M.13)

The wave functions can be obtained by separately solving the Schrödinger
equation for the angular and for the radial part. From the solution of the
angular part we obtain an equation for the wave function which does not any
more contain θ and φ but has the angular momentum quantum number l.
{
− h̄2

2m

[
d2

dr2
+

2
r

d

dr

]
+ V (r) +

l(l + 1)h̄2

2mer2

}
Rl(r) = εRl(r) (M.14)

The expression l(l + 1)h̄2/2mr2 is the contribution of the circular motion to
the potential. For a spherical quantum dot a potential of the form

V (r) = 0 for r < a

= ∞ for r ≥ a , (M.15)

is appropriate, where a is the radius of the particle. Solutions are obtained in
form of spherical Bessel functions jl(qr) as

R(r) = Ajl(qr) for r < a

= 0 for r ≥ a , (M.16)

where A is a constant and

q =
(

2mε

h̄2

)1/2

. (M.17)

Similar to the case of the rectangular box the condition for continuity at r = a
requires
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jl(qa) = 0 (M.18)

which yields with the help of (M.17) the allowed energy states on the quantum
dot. The zeros of the spherical Bessel functions represent the radial quantum
numbers 1 to N . The eigenvalues of the quantum dot are expressed in terms
of the coefficient βnl where n = N − 1 as

εnl =
h̄2

2m

(
βnl

a

)2

. (M.19)

The following table depicts the lowest values for βnl with the standard assign-
ment for the angular momentum states. From the table we can line up the

Table M.1. Zeros of spherical Bessel functions in qa = βnl

l : 0 1 2 3 4 5
N S P D F G H

1 3.14 4.49 5.76 6.99 8.18 9.36
2 6.28 7.73 9.10 10.42
3 9.42

state of the quantum dot with respect to energy as

1S, 1P, 1D, 2S, 1F, 2P, 1G, 2D, 1H, 3S, 2F, ...

For a more explicit description of the quantization in a spherical box see
standard textbooks of quantum mechanics such as e.g. [16.13]. Selection rules
for dipole transitions are

ΔN = 0, Δl = 1 or
ΔN = 1, Δl = −1 . (M.20)

Level degeneracy with respect to magnetic quantum number m is as usual
equal to 2l + 1.
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To Chapter 17, Neutron Scattering

N.1 Coherent and Incoherent Scattering for Hydrogen
and Deuterium

The coherent and incoherent scattering cross sections for hydrogen are known
to be very different whereas they are approximately equal for deuterium. It is
very instructive to look at the reason for this.

As expected from the relation (17.10) in Sect. 17.3.2 incoherent scattering
from a chemically homogeneous material can originate from scattering by
isotopes l with different scattering length bl. If the concentration of the lth
isotope is cl the relevant averaged quantities are

b =
∑

l

clbl and |b|2 =
∑

l

cl|bl|2 .

Scattering can also be incoherent for one and the same isotope since the scat-
tering length depends on the relative orientation of the spins of the particles
participating in the scattering process. If the nucleus has spin I the neutron
can be scattered with a total spin I+1/2 or I−1/2 with corresponding scatter-
ing lengths b+ and b−. Since we have 2I + 2 and 2I possible spin orientations
for the first and second case, respectively, the probability for scattering in the
two configurations is

2I + 2
(2I + 2) + 2I

=
I + 1
2I + 1

and
2I

(2I + 2) + 2I
=

I

2I + 1
.

This yields for the relevant averaged scattering lengths

b =
(

I + 1
2I + 1

)
b+ +

(
I

2I + 1

)
b− (N.1)

and

529
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|b|2 =
(

I + 1
2I + 1

)
|b+|2 +

(
I

2I + 1

)
|b−|2 . (N.2)

For neutron scattering by hydrogen we have b+ = 1.04 × 10−12 cm and b− =
−4.74 × 10−12 cm. This yields

b =
3
4
b+ +

1
4
b− = − 0.38 × 10−12 cm and

|b|2 =
3
4
|b+|2 +

1
4
|b−|2 = + 6.49 bn .

From the definition of the total cross section and the coherent cross section
we obtain finally for hydrogen

σc = 1.8 bn and σ = 81.7 bn .

For deuterium b+ and b− are 0.95×10−12 and 0.1×10−12, respectively, which
yields

σc = 5.6 bn and σ = 7.6 bn .

The incoherent cross section is the difference between the total cross section
and the coherent cross section. The very large value of σinc for hydrogen is well
established in neutron scattering experiments. In organic materials often the
hydrogen is substituted by deuterium to avoid the dominance of incoherent
scattering.
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15.21 W. Trifthäuser: in Microscopic Methods in Metals, U. Gonser (ed.), p.249,

Topics Curr. Phys., Vol.40 (Springer, Berlin, Heidelberg 1986)
15.22 V.G. Grebinnik, I.I. Gurevich, V.A. Zhukov, A.P. Manych, E.A. Meleshko,

I.A. Muratowa, B.A. Nikolskii, v.I. Selivanov, V.A. Suetin: Soviet Phys. JETP
41, 777 (1976)

15.23 R.S. Hayano, Y.J. Uemura, J. Imazato, N. Nishida, K. Nagamine, T. Ya-
mazaki, Y. Ishikawa, H. Yasuoka: J. Phys. Soc. Japan 49, 1773 (1980)

Additional Reading

Electron energy loss

Fink J.: Advances in Electronics and Electron Physics 79, 155 (1989)
Fink J. et al.: J. Electron Spectroscopy 66, 395 (1994)



References 543

Schülke W.: in Handbook on Synchrotron Radiation, Vol.3, p 565, G.S. Brown, D.E.
Moncton (eds.) (North-Holland, Amsterdam 1991)

Ahn C.C.: Transmission Electron Energy Loss Spectrometry in Material Science and
EELS Atlas (Wiley–VCH, New York 2005)

Tunneling Spectroscopy

Hansma P.K.: Tunneling Spectroscopy: Capabilities, Applications and New Tech-
niques (Plenum, New York 1982)

Smoliner J.: Semicond. Sci. Technol. 11, 1 (1996)
Soethout L.L., Van Kempen H., Van de Walle: Advances in Electronics and Electron

Physics 79, 155 (1990)
Wolf E.L.: Principles of Electron Tunneling Spectroscopy (Oxford Univ. Press, Ox-

ford 1985)

Spectroscopy with positrons and muons

Brandt W., Dupasquier A. (eds.): Positron Solid State Physics (North-Holland, Am-
sterdam 1983)

Chappert J., Yaouanc A.: Muon spectroscopy, in Microscopic Methods in Metals U.
Gonser (ed.), p.297, Topics Curr. Phys., Vol.40 (Springer, Berlin, Heidelberg
1986)

Hautojärvi P. (ed.): Positrons in Solids, Topics Curr. Phys., Vol.12 (Springer, Berlin,
Heidelberg 1979)

Schatz G., Weidinger A.: Nukleare Festkörperphysik (Teubner, Stuttgart 1992)
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Additional Reading

Baruchel J., Hodeau J.L., Lehman M.S., Regnard J.R., Schlenker C.: Neutron and
Synchrotron Radiation for Condensed Matter Studies, (Springer, Berlin, Hei-
delberg 1993)

Hippert F., Geissler E., Hodeau J.L.: Neutron and X-Ray Spectroscopy (Springer,
Berlin, Heidelberg 2005)

Ibel K.: Guide to Neutron Research Facilities at the Institute Laue–Langevin (Insti-
tut Laue–Langevin, Grenoble 1994)

Mitchell P.C.H., Parker S.F., Ramirez-Cuesta A.J.: Vibrational Spectroscopy With
Neutrons: With Application in Chemistry (World Scientific, New Jersey, Lon-
don 2005)

Chapter 18

18.1 J.R. Tesmer, M. Nastasi: Handbook of Modern Ion Beam Materials Analysis
(Materials Research Society, Pittsburgh 1995)

18.2 K. Wittmack, J.B. Clegg: Appl. Phys. Lett. 37, 285 (1980)

Additional Reading
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Hahn sequence, 288
Hartman-Hahn condition, 292
Heisenberg

- representation, 361
- uncertainty principle, 205

Heisenberg equation of motion, 480
high flux reactors, 425
homomorphism, 166
homonuclear dipole coupling, 288
Huang–Rhys factor, 144
hyperfine interaction, 278–280, 292
hyperfine splitting, 338, 340

IBM configuration, 448
impurity levels, 99

- for Si, 244
- tunneling, 380

index of refraction, 108, 117
- for CdS, 118
- strain induced, 211

inelastic x-ray scatering, 329
infrared active, 188, 190
inner potential, 321
intensity fluctuations, 58
interference

- constructive, 45, 79, 186, 302
- multiple-beam, 52, 79, 232, 471

interferogram function, 226
interferometer

- Fabry–Perot, 83, 85
- Fabry–Perot, multipass, 87
- Michelson, 226, 234

internal conversion, 156, 157
intersystem crossing, 62, 156
inverse photoemission, 326
invesion of population, 49

Jablonski diagram, 156
Jacquinot advantage, 230
Jones vector, matrix, 126
junction

- metal-semiconductor, 376, 382
- p-i-n, 338
- p-n, 306, 376, 444
- tunneling, 384

Kahsa’s rule, 156
kinetic factor, 447
Kirchhoff laws, 218, 247
Knight shift, 292
Kramers–Kronig relation, 108, 111, 113,

357, 514
Kramers–Kronig transformation, 124,

247, 410, 475
Kronecker product, 165, 170, 177

- symmetrized, 181

Lambert’s law, 109
Landau levels, 418
Lande formula, 252
Larmor frequency, 258, 259
Larmor’s formula, 40
laser

- He-Ne, 53
- Nd:YAG, 63, 65
- all solid-state, 66
- continuos-wave, 53
- diode array, 65
- dye, 62, 63
- excimer, 56
- free-electron, 47, 48, 64
- krypton-ion gas, 54
- mode-locked, 58
- pulsed, 57
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- ring, 63
- semiconductor, 56, 57
- solid-state, 49, 63

laser gain, 71
Laue lenses, 42
Lienard–Wiechert potentials, 14, 459
lifetime

- determined linewidth, 309
- excited state, 150, 309
- for nuclear transition, 337
- of oscillation, 17
- spontaneous emission, 468

ligand field, 146
linewidth, lasers, 50
linewidth, natural, 60, 338
LO-TO splitting, 194
localized states, 138, 156
longslit geometry, 394
Lorentz expression, 402
Lorentz gauge, 458, 479
Lorentzian line, 35, 466
lumen, 8
luminescence, 149

- band-to-band, 151
- blue, 482
- electro, 149
- hot, 157, 206
- pair, 151
- photo, 149

lux, 8
Lyddane–Sachs–Teller relation, 117, 240

Mößbauer spectroscopy, 343
magic angle spinning (MAS), 289
magic counting formula, 170, 173
magnetic moment

- for ions, 256
- general, 251, 453

magnetic susceptibility, 264, 293
magneto-transport, 246
magnetogyric ratio, 252

- muon, 395
matrix element

- dipole, 130, 309
- momentum, 130, 481
- transition, 130, 235

Maxwell’s
- equations, 9
- relationship, 109

Maxwellian velocity distribution, 207
McMillan–Rowell spectroscopy, 389
Mie scattering, 185
mode locking, 58
mode, for spectrometer

- additive, 81, 303
- subtractive, 82, 303

modes, in solids
- librational, 176
- optical, 202, 206
- polar, 214
- rotational, 201
- soft, 202
- transverse, 115, 437

Molwo relation, 140
momentum distribution map, 324
Moseley’s law, 300
mother/daughter pairs, 343
motional narrowing, 270, 289, 398
Mullikan symbols, 146, 169
multichannel analyzer, 102, 185
multiplex advantage, 227
multiplication tables, 166
multipole interactions, 480
multipole moment, 456, 457
muon spin rotation, 394
muon telescope, 396

nanoscopic systems, 401
NMR

- tomography, 294
- two dimensional, 293

noise
- and statistical error, 91
- equivalent power (NEP), 97
- in light scattering, 234
- signal to n. ratio, 91, 227

noise, for laser radiation, 469
normal coordinates, 171, 172, 237
nuclear magneton, 253
nuclear quadrupole resonance (NQR),

294
nuclear reaction analysis (NRA), 446
numerical aperture, 73

OLEDs, 154
optical

- activity, 49
- conductance, 76
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- density, 93, 110, 140
- phonons, 117, 210, 437

optical absorption, 114
optical fibers, 73, 74
optical resonator, 49
optically detected manetic resonance

(ODMR), 256
Orbach process, 274
oscillator

- Einstein, 335
- damped, 19, 24
- harmonic, 481

oscillator strength, 116, 123, 240
oscillator strength, IR absorption, 235

Parceval’s theorem, 23
particle in the box, 524
particle in the spherical box, 417, 526
passive mode coupling, 59
Pauli equation, 508
Pauli matrices, 508
perturbation calculation, 295, 370
perturbation theory

- first-order, 431, 478
- second-order, 198

perturbed angular correlation (PAC),
341

phase coherence time, 258
phase fluctuations, 58
phase plates, 71, 126
phase transition, 274, 315
phasor, 6
phosphorescence, 157
photoconductivity, 99, 245, 246
photodiodes, 60, 100, 101

- RAPD, 102
- avalanche, 101
- p-i-n diodes, 101

photoelastic tensor, 211
photometric quantities, 8
photomultiplier, 94, 305
photon counting, 97
pickup coils, 260
Planck’s radiation law, 32
plasma frequency, 116, 353
plasma frequency, of metals, 246
plasma oscillation, 120
plasma reflection, 120, 302
plasmon, 353

- phonon p. coupling, 355
- satellites, 316
- surface, 316, 373

Poisson equation, 350
polar modes, 236
polarizability, 185
polarizability, derived, 189
polarizers, as optic element, 71
Porto notation, 192
positron annihilation, 389, 390
potential barrier, tunneling, 377
potential, time-retarded, 457
power spectrum, 21, 27, 212, 503
Poynting vector, 9
prism

- Glan–Thomsen, 71
- Nicol, 72

prism monochromator, 76
proportional counter, 338
proximity electron tunneling spec-

troscopy (PETS), 389
pulse height defect, 444
pump-probe spectroscopy, 208

Q-switch, 57
quadrupole moment, 13, 295, 346
quadrupole radiation, 13
quantum dot, 409
quantum efficiency, 93

- for CCD camera, 104
- for x-ray detector, 306

quantum Hall effect, 419
quantum limit, 419
quantum well, 522
quantum yield, 102
quasi-stochastic fields, 24

Rabi frequency, 262, 292
radiation

- black-body, 31, 33, 43
- laser, 53, 468
- synchrotron, 38, 44, 64

radiation sensitivity, 95
radiation zone, 12
radiative recombination, 149, 150, 309
Raman

- activity, 188, 189
- process, NMR, 273
- scattering, 185, 355



Index 553

- scattering, resonance, 205, 206
- scattering, theory, 197
- tensor, 191, 192

Raman–Nath limit, 213
Raman-IR exclusion, 190
random phase approximation, 363
Rayleigh criterion, 77
Rayleigh scattering, 199, 214
recoil energy, 334, 335
recombination center, 150
reflectron, 445
representation

- 3N -dimensional, 172, 493
- irreducible, 169, 170, 178, 180
- matrix, 493
- non-equivalent, 492
- trivial, 166, 168, 177, 492

resolving power, 93
resonant inelasic x-ray scattering, 330
resonator modes, 51, 56, 59, 71
response

- density-density, 359, 362, 517
- instrumental, 37
- linear, 107, 109, 265, 357, 359, 435,

513
response function, generalized, 356
Reststrahlenbande, 117
rotating system, 258, 262, 506
rotation matrices, 164
rotations, - hindered, for librational

modes, 176
rotations, for tensor transformation, 500
rotations, in character tables, 172, 485
Rutherford backscattering (RBS), 446

scanning tunneling spectroscopy, 367,
377, 415

scattering amplitude, 431
scattering length, 430, 432, 529
scintillation counters, 305
scrambler, 72, 184
selection rules

- for NMR, 276
- for core transitions, 300
- for hyperfine splitting, 278
- for tensor operators, 180
- quantum-mechanical, 176

self amplified spontaneous emission, 48
self-assembling, 522

sensitivity
- IR detectors, 222
- radiation, 95
- spectral, 93
- x-ray detectors, 306

shake-up satellites, 312
Shockley equation, 150, 380, 381
Shubnikov–de Haas oscillations, 419
SIMS, 442, 445

- dynamic, 450
single electron transistor, 405
single-particle excitation, 353, 376
single-particle scattering, 208
spallation sources, 424, 426
specific energy loss, 445
spectral

- bandpass, 80, 86, 223
- density, 212, 361
- lamps, 35
- lines, 34–36
- lines, moments, 465

spectral resolution
- electron spectrometers (UPS), 303
- for grating spectrometer , 78
- for interferometer , 85
- for multichannel detector, 104
- for prism spectrometer, 80

spin Hamiltonian, effective, 275
spin wave resonance, 256
spin-lattice relaxation, 258, 273, 396
spin-orbit interaction, 137, 277, 316
spin-spin interaction, 289
spin-spin relaxation time, 258
spinor, 508
spontaneous emission, 468
stabilization energy, 147
Stefan–Boltzmann radiation law, 32
Stokes scattering, 434
stopping power, 445, 449
storage ring, 38, 39, 41
stray light, 71, 83, 207, 234
streak camera, 61
sudden approximation, 321
sum rule, 123, 124
sum rules, group theory, 170
supermirror, 426
suprradiation, 48
surface ionization, 443
surfactant, 523
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susceptibility

- generalized, 351, 357, 360

- higher-order, 55

symmetry

- operation, 161, 162, 164, 495

- species, 171, 172, 193

- translational, 162

symmetry elements, 162

- group properties, 163

- mapping to matrices, 166

symmetry operation, 161

symmorphic, 175

synchrotron radiation, 304, 310

three-axis spectrometer, 429, 437

time domain, 58, 108

time retarded current, 10

time spectrum, 344, 460

time-of-flight experiment, neutron, 429

time-of-flight system, mass spectrome-
ter, 444

Tomomaga–Luttinger liquid, 317

trace, 164, 166, 173

trace, in total representations, 494

transfer function, 465

transformation

- orthogonal, 164, 171, 492

- orthogonal, Raman tensor, 499

transition

- allowed, 132

- band-to-band, 138

- electronic, 62, 142, 235

- indirect, 136

- phonon-assisted, 136

- radiative, Mößbauer, 337

transition matrix element, 268

transition probability, 35, 310, 467, 478

transition susceptibility, 198, 206

translations, in character tables, 172,
485

transport spectroscopy, 408
triple monochromator, 82
triplet quencher, 62
tunneling current, 376, 379
two-photon fluorescence (TPF), 61

uncertainty relation, 20
undulator, 39, 44, 46, 64, 467
undulator equation, 45

Vk-center, 140
valley current, 380
van de Graaff generator, 443
van Fleck linewidth, 397
van Hove singularities, 137, 409, 411,

526
variance, 26, 92, 465
vibrons, 142
Victoreen formula, 308
Voigtian line, 37, 466
von Klitzing constant, 419

wave guide, 74, 267
wave packet, 17, 21, 26
white light position, 227
Wiener–Khintchin theorem, 28, 362
wiggler, 39, 44, 46, 467
work function, 95, 326, 443
work function, tunneling, 382

x-ray
- continuum, 299
- luminescence, 309
- sources, 43, 298
- spectroscopy, 298, 302
- tube, 299

Zeeman splitting, 254, 267
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