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All figures submitted in color are published in full color in the electronic version on
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Aims and Scope

Since 1980, The Handbook of Environmental Chemistry has provided sound

and solid knowledge about environmental topics from a chemical perspective.

Presenting a wide spectrum of viewpoints and approaches, the series now covers

topics such as local and global changes of natural environment and climate;

anthropogenic impact on the environment; water, air and soil pollution; remediation

and waste characterization; environmental contaminants; biogeochemistry; geo-

ecology; chemical reactions and processes; chemical and biological transformations

as well as physical transport of chemicals in the environment; or environmental

modeling. A particular focus of the series lies on methodological advances in

environmental analytical chemistry.
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Series Preface

With remarkable vision, Prof. Otto Hutzinger initiated The Handbook of Environ-
mental Chemistry in 1980 and became the founding Editor-in-Chief. At that time,

environmental chemistry was an emerging field, aiming at a complete description

of the Earth’s environment, encompassing the physical, chemical, biological, and

geological transformations of chemical substances occurring on a local as well as a

global scale. Environmental chemistry was intended to provide an account of the

impact of man’s activities on the natural environment by describing observed

changes.

While a considerable amount of knowledge has been accumulated over the last

three decades, as reflected in the more than 70 volumes of The Handbook of
Environmental Chemistry, there are still many scientific and policy challenges

ahead due to the complexity and interdisciplinary nature of the field. The series

will therefore continue to provide compilations of current knowledge. Contribu-

tions are written by leading experts with practical experience in their fields. The
Handbook of Environmental Chemistry grows with the increases in our scientific

understanding, and provides a valuable source not only for scientists but also for

environmental managers and decision-makers. Today, the series covers a broad

range of environmental topics from a chemical perspective, including methodolog-

ical advances in environmental analytical chemistry.

In recent years, there has been a growing tendency to include subject matter of

societal relevance in the broad view of environmental chemistry. Topics include

life cycle analysis, environmental management, sustainable development, and

socio-economic, legal and even political problems, among others. While these

topics are of great importance for the development and acceptance of The Hand-
book of Environmental Chemistry, the publisher and Editors-in-Chief have decided
to keep the handbook essentially a source of information on “hard sciences” with a

particular emphasis on chemistry, but also covering biology, geology, hydrology

and engineering as applied to environmental sciences.

The volumes of the series are written at an advanced level, addressing the needs

of both researchers and graduate students, as well as of people outside the field of

xi



“pure” chemistry, including those in industry, business, government, research

establishments, and public interest groups. It would be very satisfying to see

these volumes used as a basis for graduate courses in environmental chemistry.

With its high standards of scientific quality and clarity, The Handbook of Envi-
ronmental Chemistry provides a solid basis from which scientists can share their

knowledge on the different aspects of environmental problems, presenting a wide

spectrum of viewpoints and approaches.

The Handbook of Environmental Chemistry is available both in print and online

via www.springerlink.com/content/110354/. Articles are published online as soon

as they have been approved for publication. Authors, Volume Editors and Editors-

in-Chief are rewarded by the broad acceptance of The Handbook of Environmental
Chemistry by the scientific community, from whom suggestions for new topics to

the Editors-in-Chief are always very welcome.

Damià Barceló

Andrey G. Kostianoy

Editors-in-Chief
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Volume Preface

A watershed depicts a geographic boundary where the precipitation falling within

the bounded land area flows to streams, rivers, and lakes or seeps into the subsur-

face water system situated within the watershed. Thus, in a watershed, a strong

dynamic interaction exists between land and natural water systems, which can

significantly impact water availability and water quality for various human uses

and ecosystem health. Water resource managers and researchers have deployed the

watershed concept in water assessment studies since the 1960s. However, recent

advances in geospatial analysis, satellite imagery, electronics, computer software,

and wireless and Internet technologies have facilitated a revolutionary change from

limited (spatially and temporally) manual and discrete methods of assessment to

real-time and broad-spatial-coverage-capable methods of assessment. Research and

development in these new technologies provide tremendous and exciting opportu-

nities for watershed assessment, sustainable management of land and water

resources, and ecosystem preservation around the world.

This volume presents a discussion of concepts, methods, and case studies of

innovative and evolving technologies in the arena of watershed assessment. Themes

discussed in this volume include (1) development and applications of geospatial,

satellite imagery, and remote sensing technologies for land monitoring, (2) devel-

opment and applications of satellite imagery for monitoring inland water quality,

(3) development and applications of water sensor technologies for real-time moni-

toring of water quantity and water quality, and (4) advances in biological monitor-

ing and microbial source tracking (MST) technologies.

This volume contains ten chapters. The chapter “Land Use/Land Cover Moni-

toring and Geospatial Technologies: An Overview” discusses remote sensing, its

technological evolution, and remote sensing applications in land use and land cover

mapping and monitoring. The chapter “Using Remote Sensing to Map and Monitor

Water Resources in Arid and Semiarid Regions” provides an overview of satellite

and airborne remote sensing technologies and applications to management of water

resources and drought monitoring in arid and semiarid regions. The chapter “Imag-

ing Spectrometry of Inland Water Quality in Italy Using MIVIS: An Overview”
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presents examples of applications of using Multispectral Infrared and Visible

Imaging Spectrometer (MIVIS) imagery for monitoring inland water quality para-

meters and detecting submerged vegetation, cyanobacteria blooms, and floating

materials of terrestrial origin (e.g., oil). The chapter “Using Remote Sensing to

Assess the Impact of Human Activities on Water Quality: Case Study of Lake

Taihu, China” demonstrates the potential of remote sensing for detecting harmful

algal blooms and using the technology for integrated assessment of watershed

dynamics. The chapter “Remote Sensing for Regional Lake Water Quality Assess-

ment: Capabilities and Limitations of Current and Upcoming Satellite Systems”

discusses satellite imagery advances and limitations for regional scale measure-

ments of lake water characteristics.

The chapter “InteractiveGeospatial Analysis Tool for EstimatingWatershed-Scale

Consumptive Use: Potomac River Basin Case Study,” presents a basin-wide analysis

and mapping tool that incorporates water use data frommultiple political jurisdictions

and estimates consumptive water use for effective management of water resources.

The chapter “Advances in Water Sensor Technologies and Real-Time Water Moni-

toring” is an overview of state-of-the-art technologies in water sensor technologies for

water quantity and water quality measurements, data collection, and transport plat-

forms. The chapter “Instrumenting Caves to Collect Hydrologic and Geochemical

Data: Case Study from James Cave, Virginia” presents information about the instru-

mentation, data collection, processing, andmanagement andmakes recommendations

for hydrologic and geochemical monitoring of cave systems in karst environments.

The chapter “Principles for the Development of Contemporary Bioassessment Indices

for Freshwater Ecosystems” discusses bioassessment, the use of ecological assem-

blages, primarily fish, macroinvertebrates, and algae, as indicators of anthropogenic

impairment in aquatic systems, and focuses on analytical approaches for improving

the effectiveness of bioassessment indices for detecting anthropogenic impairment in

freshwater ecosystems. The chapter “Microbial Source Tracking—Advances in Re-

search and a Guide to Application” discusses the main drivers of MST and the

evolving MST research development and technology and presents a guideline for

decision-making on where, when, and how to deploy MST.

In “Land Use/Land Cover Monitoring and Geospatial Technologies: An Over-

view,” Parece and Campbell state that the availability of multispectral satellite data

beginning in 1972 has significantly advanced the ability of researchers to systemat-

ically monitor and evaluate land use/land cover changes and their impacts on water

quality and quantity. In that context, practitioners have developed classification

schemes specifically tailored for use with remotely sensed imagery and for system-

atic assessment of land use change. Land observation technologies in the twenty-

first century include the use of lasers for 3D analyses and unmanned aerial systems.

Such technologies have enabled land use assessment to contribute not only to its

original focus in urban and regional planning but to a broad range of environmental

and social issues.

In “Using Remote Sensing to Map and Monitor Water Resources in Arid and

Semiarid Regions,” Klemas and Pieterse state that in arid environments, the

exploration and monitoring of water resources is a prerequisite for water
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accessibility and rational use and management. Authors argue that conventional

land-based techniques must be complemented by using satellite and airborne

remote sensors. Authors describe using various technology applications: multispec-

tral and radar sensors for mapping surface water systems, microwave radiometers

for sensing soil moisture in the unsaturated zone, multispectral cameras for

mapping freshwater wetlands, thermal infrared radiometers for detecting freshwater

springs, and satellite remote sensors and satellite gravitational surveys with ancil-

lary data analysis to infer groundwater behavior from surface expressions and to

estimate groundwater aquifer storage.

In “Imaging Spectrometry of Inland Water Quality in Italy Using MIVIS: An

Overview,” Giardino, Bresciani, Matta, and Brando state that airborne imaging

spectrometry is a powerful tool to investigate key biophysical parameters in inland

waters. Authors present examples of applications using airborne MIVIS imagery of

Italian inland waters acquired at a spatial resolution varying from 3 to 5 m.

Examples include the retrieval of water quality parameters (i.e., chlorophyll-a,
suspended particulate matter, and colored dissolved organic matter), the detection

and monitoring of submerged vegetation, the observation of cyanobacteria bloom

in productive lakes, and the signal reflected by floating materials of terrestrial origin

(i.e., pollens and oil).

In “Using Remote Sensing to Assess the Impact of Human Activities on Water

Quality: Case Study of Lake Taihu, China,” Villa, Duan, and Loiselle state that the

capacity of remote sensing to deliver spatial and temporal information about

fundamental environmental dynamics makes it an ideal tool for performing an

integrated assessment of water quality stressors and the causes of water quality

deterioration at watershed scale. Authors focus on harmful algal blooms in Lake

Taihu, as a case study. The temporal and spatial variabilities of the conditions in

Lake Taihu and its watershed were derived from satellite data to produce a monthly

time series of algal bloom coverage, aquatic vegetation extent, and land cover.

Environmental features related to nutrient loading, climate conditions, and agricul-

tural practices were also used to analyze the driving forces of algal blooms.

In “Remote Sensing for Regional Lake Water Quality Assessment: Capabilities

and Limitations of Current and Upcoming Satellite Systems,” Olmanson, Brezonik,

and Bauer state that remote, satellite-based, sensing is a cost-effective way to gather

information needed for regional water quality assessments in lake-rich areas. For

example, in the Midwest United States, historic and recent Landsat water clarity

assessments have been conducted on >20,000 lakes to investigate spatial and

temporal patterns and explore factors that affect lake water quality. Advances over

the past decade have enabled the use of satellite imagery for regional scale measure-

ment of lake characteristics, such as clarity and chlorophyll. The spatial character-

istics of Landsat imagery allow for the assessment of all lakes greater than ~4 ha, but

the broad nature and placement of its spectral bands have assessments limited

largely to water clarity. Improvements of the recently launched Landsat-8 and the

upcoming ESA Sentinel-2 and Sentinel-3 satellites will expand capabilities further

and enable assessment of other optically related water quality characteristics, such

as colored dissolved organic matter and mineral-suspended solids.
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In “Interactive Geospatial Analysis Tool for Estimating Watershed-Scale Con-

sumptive Use: Potomac River Basin Case Study,” Ducnuigeen, Ahmed, Bencala,

Moltz, Nagel, and Schultz state that temporal and spatial watershed-scale informa-

tion is needed on both the total amount of water withdrawal and the portion of

withdrawn water which is not returned to the source for effective water resource

management decisions. Authors present a case study of consumptive water use

model developed for the Potomac River Basin in the United States. The model and

associated tools consist of a basin-wide analysis and mapping tool that incorporates

monthly water use data from multiple political jurisdictions, estimates consumptive

water use, displays raw and summary information in an interactive geospatial

format, and shares information with stakeholders via an interactive web-based

mapping tool.

In “Advances in Water Sensor Technologies and Real-Time Water Monitoring,”

Younos and Heyer state that traditional discrete water quantity measurements and

water quality sampling do not provide sufficient data to capture temporal and

spatial changes that occur during episodic events. In recent decades, significant

advances in water-monitoring technologies have occurred; sensors, remote moni-

toring, and data-transfer technologies allow real-time and continuous water moni-

toring and can capture temporal changes and provide broader spatial coverage of

water quantity and quality in a watershed. Authors present and discuss various types

of sensors for water quantity and water quality measurements, examples of com-

mercially available water quantity and water quality monitoring devices, data

collection and transport platforms, and data management and quality assurance/

quality control for water monitoring. Authors conclude that water sensor technol-

ogies and associated computer hardware/software and telemetry technologies are

evolving fields of research and technology development and discuss some of the

limitations of existing technologies.

In “Instrumenting Caves to Collect Hydrologic and Geochemical Data: Case

Study from James Cave, Virginia,” Schreiber, Schwartz, Orndorff, Doctor, Eagle,

and Gerst state that karst aquifers are productive groundwater systems, supplying

approximately 25 % of the world’s drinking water. Sustainable use of this critical

water supply requires information about rates of recharge and quality in karst

aquifers. Caves are an important feature in karst environments. Authors provide

detailed information about the instrumentation, data processing, and data manage-

ment and show examples of collected hydrologic and geochemical datasets for an

instrumented cave study site in Virginia, United States. The cave has been instru-

mented for continuous measurement of the temperature and rate of precipitation;

water temperature, specific conductance, and rate of epikarst dripwater; tempera-

ture of the cave air; and temperature, conductivity, and discharge of the cave

stream. The chapter provides recommendations on instrumentation and methods

of measurement for cave water.

In “Principles for the Development of Contemporary Bioassessment Indices for

Freshwater Ecosystems,” Garey and Smock define “bioassessment” as the use of

biota to assess the nature and magnitude of anthropogenic impacts to natural water

systems. Authors particularly focus on an important and specific type of
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bioassessment: the use of ecological assemblages, primarily fish, macroinverte-

brates, and algae, as indicators of anthropogenic impairment in aquatic systems.

Authors provide an introduction to the process of developing assemblage-level

indices that provide quantitative estimates of the ecological integrity of freshwater

ecosystems and discuss recent developments that have improved the effectiveness

of bioassessment strategies. Authors conclude that developments, such as advanced

predictive modeling techniques, coupled with emerging technologies and the de-

velopment of large-scale bioassessment programs will continue to improve our

understanding of how aquatic assemblages are affected by anthropogenic im-

pairment.

In “Microbial Source Tracking—Advances in Research and a Guide to Applica-

tion,” Badgley and Hagedorn state that MST is a still-new and developing disci-

pline that allows users to discriminate among the many potential sources of fecal

pollution in environmental waters. Authors further explain that the main area of

research in MST focuses on the identification of source-specific genetic markers

that can be used to detect contributions from different hosts such as humans,

livestock, and wildlife. Authors discuss the main drivers of MST and how these

have shaped the development of past and present methodological approaches, plus

current research initiatives such as community analysis that could usher in yet

another new and improved methodological basis for the entire field of MST.

Finally, a tiered system is presented as a recommended means to navigate the

multiple options for MST analyses that will assist the reader in how best to use

MST within the context of more traditional approaches. This chapter can serve as a

guide for decision-making on where, when, and how to deploy MST.

Chapters presented in this volume primarily focus on advanced methods of land

and water monitoring in aquatic ecosystems. Except for limited application in

“Interactive Geospatial Analysis Tool for Estimating Watershed-Scale Consump-

tive Use: Potomac River Basin Case Study,” this volume does not include water-

shed models, another avenue of important research relevant to watershed

assessment and management. However, spatial and temporal land- and water-

monitoring technologies and analysis discussed in this volume will significantly

contribute to developing improved watershed models, model verification, and

applications.

We hope this volume serves as a textbook and reference material for graduate

students and researchers involved in watershed science and environmental studies.

Equally, we hope this volume serves as a valuable guide to experts in governmental

agencies who are concerned with water availability and water quality issues and

engineers and other professionals involved with the design of land- and water-

monitoring systems.

Blacksburg, VA Tamim Younos

Blacksburg, VA Tammy E. Parece

Volume Preface xvii



.



Contents

Land Use/Land Cover Monitoring and Geospatial Technologies:

An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Tammy E. Parece and James B. Campbell

Using Remote Sensing to Map and Monitor Water Resources

in Arid and Semiarid Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Victor Klemas and Aline Pieterse

Imaging Spectrometry of Inland Water Quality in Italy Using MIVIS:

An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Claudia Giardino, Mariano Bresciani, Erica Matta, and Vittorio E. Brando

Using Remote Sensing to Assess the Impact of Human Activities

on Water Quality: Case Study of Lake Taihu, China . . . . . . . . . . . . . . . . . . . . . . . 85

Paolo Villa, Hongtao Duan, and Steven Arthur Loiselle

Remote Sensing for Regional Lake Water Quality Assessment:

Capabilities and Limitations of Current and Upcoming

Satellite Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Leif G. Olmanson, Patrick L. Brezonik, and Marvin E. Bauer

Interactive Geospatial Analysis Tool for Estimating Watershed-Scale

Consumptive Use: Potomac River Basin Case Study . . . . . . . . . . . . . . . . . . . . . . . 141

Jan Ducnuigeen, Sarah N. Ahmed, Karin R. Bencala,

Heidi L.N. Moltz, Andrea Nagel, and Cherie L. Schultz

Advances in Water Sensor Technologies and Real-Time Water

Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Tamim Younos and Christopher J. Heyer

xix



Instrumenting Caves to Collect Hydrologic and Geochemical Data:

Case Study from James Cave, Virginia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Madeline E. Schreiber, Benjamin F. Schwartz, William Orndorff,

Daniel H. Doctor, Sarah D. Eagle, and Jonathan D. Gerst

Principles for the Development of Contemporary Bioassessment

Indices for Freshwater Ecosystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Andrew L. Garey and Leonard A. Smock

Microbial Source Tracking: Advances in Research and a Guide

to Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Brian Badgley and Charles Hagedorn

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

xx Contents



Land Use/Land Cover Monitoring

and Geospatial Technologies: An Overview

Tammy E. Parece and James B. Campbell

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Land Use/Land Cover Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Definition of Land Use and Land Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Land Use and Land Cover Classification Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Sources of Land Use/Land Cover Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Electromagnetic Radiation Use in Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 History of Mapping and Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Mapping Using Aerial Photography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.3 Mapping Using Satellite Imagery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Significance of Land Use/Land Cover Mapping for Hydrologic Studies . . . . . . . . . . . . . . . . . . 16

5.1 Land Use and Curve Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.2 Urban Land Use and Hydrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Future Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.1 Lidar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.2 Hyperspectral Imagery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.3 Unmanned Aerial Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Abstract Accurate and detailed land use and land cover information forms an

important resource for hydrologic analysis; remote sensing forms a critical resource

for acquiring and analyzing broad-scale land use information. Although aerial

photography is an important resource for land use information, it was the availabil-

ity of multispectral satellite data beginning in 1972 that significantly advanced the
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ability of remote sensing researchers to systematically monitor and evaluate land

use/land cover changes and their impacts on water quality and quantity. In that

context, practitioners developed classification schemes specifically tailored for use

with remotely sensed imagery and for systematic assessment of land use change.

Since then, land observation technologies have evolved to allow extensive and

intricate land use monitoring techniques, and now, in the twenty-first century,

include the use of lasers for 3-D analyses and unmanned aerial systems. Such

technologies have enabled land use assessment to contribute not only to its original

focus in urban and regional planning but to a broad range of environmental and

social issues. This chapter provides an overview of remote sensing, its techno-

logical evolution, and remote sensing applications in land use and land cover

mapping and monitoring, with a focus upon implications for watershed assessment

and management.

Keywords Electromagnetic spectrum • Land cover • Land use • Remote sensing •

Water resources

1 Introduction

Land use and land cover mapping date back to Egyptian and Babylonian civil-

izations thousands of years BC [1] and have long formed essential components to

understanding Earth’s resources including water, its most vital resource. Approxi-

mately, 70 % of Earth’s surface is covered with water versus 30 % land cover. And,

it’s estimated that, over time, humans have modified over 50 % of the natural land

cover [2], thereby creating conditions that affect natural water resources and its

quality.

Key land use changes that adversely impact water resources include defores-

tation, desertification, and urbanization. Deforestation outcomes typically change

to either agricultural or urban land uses. Although land conversion from forests to

agriculture impacts water quality, the level of impact is highly dependent on

agricultural practices (i.e., tillage technique, chemical use versus organic practices,

or size and type of conservation easements). Current agricultural practices have a

greater impact on water quantity because of over-withdrawal from groundwater

supplies (estimated up to 35 %) or diversion of water into water-poor areas for

irrigation purposes [3, 4].

Urbanization is the most extreme form of land cover and land use changes as it

results in losses of agricultural and forested lands coupled with notable expansion

of impervious surface cover [5, 6]. These effects, combined with associated

decreases in vegetative cover, result in significant local hydrologic modifications

[7–9] and habitat destruction [10]. Hydrologic modifications represent the most

significant water quality and quantity issues present today [7, 9, 11]. Stormwater

runoff from impervious surfaces in urban areas degrades water quality through
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higher water temperatures, increased runoff volume and rate, and elevated levels of

contaminants in surface waters [8, 9, 12, 13]—effects which extend well beyond

specific urban regions, vitiating downstream waterbodies [14].

Remote sensing techniques can be used to map and monitor changes in land use

and land cover locally and over large expanses and to evaluate impacts of these

changes. Remote sensing techniques involve collecting data from a distance, then

analyzing and interpreting collected data for specific purposes. In this chapter,

remote sensing refers to collection and analysis of information using aerial pho-

tography and/or satellite imagery for the purpose of monitoring the Earth’s surface.
With the capacity to remotely sense the Earth’s surface, the science of land use/land
cover mapping has gained the ability to evaluate large areas at economical costs.

In this chapter, we present methods for classifying land use and land cover and

sources of land use and land cover data; discuss remote sensing principles and use

of the electromagnetic spectrum in classification and analyses of land use and land

cover; provide a brief history of remote sensing and introduce two types of

imagery—aerial photos and satellite imagery; present how remotely sensed land

use and land cover is used in hydrological analyses; and finally introduce the newest

remote sensing technologies and their applications for land use and land cover

monitoring.

2 Land Use/Land Cover Classification

2.1 Definition of Land Use and Land Cover

Land use and land cover are terms frequently used interchangeably. However, these

terms have significantly different meanings and applications. Land cover refers to

physical features on the surface of the Earth—vegetation, water, the built-up land.

Whereas, land use specifically refers to the human (economic) utility of what is on

the Earth’s surface. In some instances, terms used to describe land cover can also

describe land use, for example, forest describes the type of vegetated cover but also

describes a use for industries such as forest products. Although remote sensing can

be used to identify both, often we can think of broad-scale imagery (e.g., satellite

imagery) as primarily portraying land cover, whereas the fine detail of aerial

photography or similar imagery might be required for identification of land use.

Land use mapping is accomplished by partitioning an image into units, usually

polygons, and then assigning each unit to a specific category. Land use/land cover

classifications are strictly naming systems such that each classification contains a

description defining uses falling within a system of mutually exclusive categories.

As an example—a definition for a water classification is Open Water—all areas of
open water, generally with less than 25 % cover of vegetation/land cover [15].

Land Use/Land Cover Monitoring and Geospatial Technologies: An Overview 3



2.2 Land Use and Land Cover Classification Systems

The precision in a land use classification (known as taxonomic detail) should match

to the intended use of the analysis and is usually defined by the map user. For

example, in Fig. 1, the left-hand image shows fine detail subdividing forest cover to

represent forested wetlands (light green) and deciduous forest (dark green), as

might be required to support ecological or hydrological analyses. The right-hand

image, representing a coarser classification, symbolizes forest cover as a single

class, as might support an analysis of regional land use.

Thus, the value of land use and land cover information resides in application of a

systematic classification system with a structure organized to support the user’s
application of the information for its intended purpose. An important modern

milestone marks the beginnings of systematic uses of geospatial data for land use

information, when in the 1960s, the State of New York (USA) recognized the

importance of mapping land use and its natural resources. In conjunction with

researchers at Cornell University, the Land Use and Natural Resources Inventory

(LUNR) mapping project was completed with one hundred different land use

classes [16]. Significant detail was required for this mapping project as it was

subsequently used for urban planning, economic development, and environmental

planning. In the early 1970s, the State of Minnesota (USA) also completed a state-

wide land use map but only for nine different land use categories (Orning and Maki

1972, as referenced in [17]). Such projects introduced important advances in

systematizing the classification of land use data for large areas, but retained a

local, often ad hoc, character that inhibited application to multi-temporal analysis

or to applications that encompass broad-scale land areas.

In 1976, Anderson et al. [17] introduced a framework for standardization of land

use and land cover tailored for remote sensing classification. The Anderson classi-

fication system, the most widely used classification scheme today, consists of

multiple levels of classification designed to be compatible with remotely sensed

imagery acquired at varied scales and levels of detail. It is comprised of a hierarchal

Fig. 1 Effects of taxonomic detail in land use classification—fine detail (left) and coarse detail

(right). Source: Landsat 5 imagery from the United States Geological Survey, processed by the

second author for specific land cover/land use classes
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grouping of three levels, allowing for applicability at multiple resolutions. Level

1 can be used when finer details are not needed, such as for national or regional

scales, and is more appropriate for land cover identification. Yet, Level 3 is

available when finer detail is needed at a local scale and can be more readily

described as land uses (Table 1).

Without a standard classification framework, it is difficult to identify changes

occurring over time, compare between places, and to avoid duplication of efforts.

As such, the Anderson system has been used as the basis for many other classifi-

cation systems in the United States. For instance, classifications used by the Multi-

Resolution Land Characteristics Consortium (MRLC) for the National Land Cover

Database (NLCD) for the coterminous United States is a modified Anderson system

[18]. One difference between the Anderson system and the NLCD scheme is that

water is defined in three categories under Anderson (Table 1), but the NLCD limits

it to one—open water [15].

Caution should be exercised when comparing datasets from the same source as

classification methods may have changed over time. NLCD data have been pre-

pared from analysis of satellite data (specifically Landsat Thematic Mapper,

discussed later in this chapter) for 1992, 2001, 2006, and 2011. The history of the

NLCD forms an example of the hazards of changing classification methods, as

improvements implemented to prepare the 2001 data prevent systematic compari-

son of results between the 2001 and the 1992 datasets. Therefore, changes made for

the 2001 classification mean that the 1992 and 2001 classes are not compatible for

Table 1 Samples of classification Levels 1, 2, and 3 from [17]

Level 1 Level 2 Level 3

1 Urban or built-

up land

11 Residential 111 Single-family units

113 Group quarters

116 Transient lodging

13 Industrial

17 Other urban

2 Agricultural

land

21 Cropland and

pasture

211 Cropland

212 Pasture

23 Confined feeding

operations

4 Forestland 41 Deciduous

forestland

43 Mixed forestland

5 Water 51 Streams and canals 511 Intracoastal waterway

512 Canals associated with residential development

513 Canals associated with utility, commercial, or

industrial development

52 Lakes 521 Freshwater ponds

54 Bays and estuaries 541 Tidal marshes

542 Open water

Land Use/Land Cover Monitoring and Geospatial Technologies: An Overview 5



compiling land cover change [19–21]. More generally, land use change studies, or

regional mosaics, require compatibility with respect to the classification system,

level of detail, spatial scale, date, and projection. Analysts, therefore, should devote

special attention to consistency in land use classification in such situations.

2.3 Sources of Land Use/Land Cover Data

For any specific region, there are likely to be several sources for acquiring land use

or land cover data derived from remotely sensed imagery, with alternative dates,

coverage, and classification systems. For the United States, the NLCD (mentioned

above) provides land cover data with broad-scale coverage (e.g., national, regional,

or state levels). For finer scales, such as cities or comparable local areas, more

detailed data completed from sensors with finer spatial resolution is readily avail-

able in most jurisdictions. However, the data, likely organized by political or

administrative boundaries, will not match to drainage basin (watershed) boundaries.

Data for other countries each follow procedures and classification strategies

specific to local needs and traditions. In considering national land cover mapping

systems, the analyst will encounter wide variations in costs, dates, availability,

classification, and completeness of coverage. Some examples:

The Canada Land Inventory, available for rural Canada, provides data covering

land use and cover categories for agriculture, forestry, wildlife, and recreation. The

maps were generated in the 1960s, 1970s, and early 1980s and many Canadian

jurisdictions still use them for land use planning [22].

The European Environment Agency provides downloadable land use and land

cover data for Pan-European urban areas with populations greater than 100,000

people. The Urban Atlas was completed using multispectral data, and the categories

are based on the European Coordination of Information on the Environment

(CORINE) classification system [23].

The Centre for Ecology and Hydrology provides land cover mapping data for the

United Kingdom (for 1990, 2000, and 2007 [24]), but each of these three maps has

been produced as a number of different products with varying data formats and

spatial resolutions. The United Kingdom also has generalized land use data avail-

able through their generalized land use website [25].

Land cover maps for Africa have been generated by both the US Geological

Survey [26] and the European Space Agency [27].

3 Electromagnetic Radiation Use in Remote Sensing

Sensors that measure the sun’s electromagnetic radiation provide the foundation for

obtaining and analyzing aerial photographs and other imagery used to monitor the

Earth’s surface. Electromagnetic energy from the sun that is reflected off the Earth’s
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surfaces and that portion which is absorbed and reradiated as thermal energy are

both used in remote sensing analyses. The reflective portion of the spectrum

(0.38–3.0 μm1 wavelengths) has direct application in remote sensing analyses,

and different wavelength ranges have different applications. Sensors record this

data as images for scientific analysis. Remote sensing methods that measure the

sun’s electromagnetic radiation form the basis for passive remote sensing.
In optical remote sensing, sensors record reflected solar energy as brightness values,

thereby detecting features (both natural and man-made) on the Earth’s surface.
In active remote sensing, instruments transmit man-made radiation to illuminate

the Earth’s surface. The man-made energy reflects off features (both natural and

man-made) and is received and analyzed to form an image. Sonar, radar, and Lidar

are examples of such remote sensing systems. The main focus of this chapter is on

passive remote sensing, i.e., optical remote sensing.

A major consideration for optical remote sensing is atmospheric interference

with incoming radiation—scattering. Scattering specifically refers to radiation

reflected by particles in the atmosphere before it reaches the surface of the Earth.

The level of interference depends on many factors, including:

• The altitude of the aircraft or satellite, i.e., sensors on low-flying aircraft have

less atmosphere to penetrate.

• The wavelength of the radiation—the shorter, blue wavelengths are scattered

about four times as much as the longer, red wavelengths (specifically designated

Rayleigh scattering, caused by larger atmospheric molecules).

• The presence of dust, pollen, water droplets, and smoke (designated Mie

scattering).

• The presence of larger airborne particles (designated non-selective scattering).

All factors noted above cause scattering but the form and magnitude of the

scattering vary.

Another key consideration is the amount of reflected radiation from the features

(both natural and man-made) on the surface of the Earth. When energy reaches the

Earth’s surface, it is either reflected, retransmitted, or absorbed. Different objects

and features reflect or re-emit radiation in various ways. Observing or measuring

these properties establishes spectral properties of individual objects (their spectral

signatures). A particular object’s spectral properties vary either over the course of a
day, from night to day, over the course of a year, or over the course of several years.

Variation in spectral properties allows remote sensing analysis to distinguish

objects/features from one another and compare changes between the same object/

feature over time.

Figure 2 shows the spectral properties of two features—healthy vegetation and

clear, calm water. The y-axis represents percent of reflected energy. The x-axis

1All wavelength ranges discussed within this chapter are approximations. Different disciplines

define the specific divisions of the electromagnetic spectrum in various wavelengths. Most

definitions are extremely close in value.
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represents four segments of the electromagnetic spectrum—blue visible, green

visible, red visible, and the near infrared (NIR). As this figure demonstrates, the

percent of radiation that is reflected from water is very low across all portions of the

visible spectrum. Whereas for vegetation, reflectance has a slight peak in the green,

drops off in the red, but substantially increases in the near infrared (NIR).

As stated earlier, optical sensors measure returned energy and record it as a

brightness value for the object. In the case of absorption, the energy recorded is

greatly reduced. The brightness of the object also depends on many other factors.

For instance, the surface of the object (rough or smooth) as is related to the

wavelength of the energy will redirect the energy in different ways. If the surface

is rough, the energy will be redirected in multiple directions; if smooth, the energy

is redirected mostly in the same direction. This redirected energy may or may not be

in the direction of the sensor and thus affects the amount of returned energy

recorded by the sensor.

Figure 3 is an example of how a passive or optical sensor records the brightness

values of different objects/features. This is a portion of a satellite image, Landsat

5 (natural color image, Path 17, Row 34), acquired over the Commonwealth of

Virginia (USA) on April 4, 2010. The dark object in the lower right is Smith

Mountain Lake. Since water absorbs and re-emits only a very small percent of

energy that reaches it, the lake shows as an object darker than the surrounding

vegetation. Urban areas (the City of Roanoke is in the upper left) are very bright

because they reflect strongly across the entire visible spectrum and because the

smooth surfaces of roads and some roofs are reflecting more energy directly back to

the sensor.

The first remotely sensed images acquired were aerial photos. Early aerial

photos were produced as black and white images, formed from brightness across

the three visible portions of the electromagnetic spectrum. Prevailing technology

allowed display only as a single black and white image (a one-band image).

Fig. 2 Spectral signatures of vegetation and water [28] (Permissions, Campbell_Guilford_

4_June_2014)
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As technology improved, sensors were not only able to collect the data in multiple

bands2 (initially just across the visible spectrum—blue, green, and red) but also able

to display images as natural color. These multispectral images advanced remote

sensing analyses by using spectral signatures of different features, as defined by

individual spectral bands.

Additional advances in technology permitted sensors to collect radiation outside

the visible spectrum, first in the near infrared (NIR) and later the longer wave-

lengths, mid (MIR) and far infrared (FIR). Human eyes cannot see these portions of

the spectrum, but cameras and other image sensors can measure this radiation and

record it as brightness values. These brightness values can then be represented using

the colors of the visible spectrum. Thus, we can use visible radiation to display the

nonvisible. Specialized software is used for this display and the user chooses which

bands are displayed in the software’s view screen. Specific images will be discussed

in later sections of this chapter.

Software used to display remotely sensed images is also used for analyzing the

images for specific applications. Each pixel of an individual band of an image has a

set of brightness values, representing a feature’s spectral signature within that pixel.
These values can be enhanced in various ways, which forms the basis of remote

sensing analyses. The features can be analyzed within an individual band but

multiband analyses are more robust. Some of the most frequently used techniques

in spectral enhancement are spectral ratios and indices. For example, when using

Fig. 3 Natural color scene,

Smith Mountain Lake

(lower right) is much darker

than the surrounding

vegetation. The City of

Roanoke, Virginia (USA)

(upper left), and smaller

urban areas appear very

bright. Source: Landsat 5
imagery acquired on

April 4, 2010, from the

United States Geological

Survey and processed by

first author as a natural color

image

2 The number of bands of an image refers to how many divisions of the electromagnetic spectrum

were used to create that image. For the exact electromagnetic spectral divisions for each band, you

must refer to the metadata that accompanies the image.
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Landsat imagery, dividing band 4 (NIR) by band 3 (red) enhances the presence and

vigor of vegetation.

Aerial cameras typically collect up to four bands (blue, green, red, and NIR).

Sensors for other multispectral images can be located on satellites or placed on an

aircraft for a specific collection campaign. Further advances in the design of

imaging systems permit separation of finer subdivisions of the spectrum to form

hyperspectral imagery by using more than 200 very specifically defined segments of

the electromagnetic spectrum. Hyperspectral applications are discussed later in this

chapter (Sect. 6.2).

4 History of Mapping and Remote Sensing

4.1 Background

Land use and land cover mapping in our current understanding dates at least to the

late 1600s when estate managers in Western Europe began to map landowners’
forests, fish ponds, croplands, and pastures [29]. Such maps were prepared through

direct ground surveys and manual drawings. Many significant mapping projects

were accomplished with these methods. The mapping of the Americas during the

European Age of Exploration (1400s–1800s) and the mapping of the western

United States by Lewis and Clark in the early 1800s form two major examples.

These missions were undertaken to explore, identify, and map land areas, but

ultimately these maps were used to determine the land’s potential uses for settle-
ments, transportation hubs, agriculture, and natural resource extraction.

Systematic mapping, specifically for land use inventory, began in the early

twentieth century. L. Dudley Stamp produced the Land Utilization Survey for

Britain in the 1930s [30]. This broad-scale inventory was generated from informa-

tion provided by volunteers who reported land use information for their home

regions. With technological advances, i.e., the development of cameras, computers,

and space exploration, by mid-century remote sensing potential and applicability

became the primary avenue of land use/land cover mapping and monitoring.

Initially, availability of suitable aerial photography focused applications of

remote sensing mainly to urban settings, most often, to support planning and

economic development programs. However, over time, improved access to

higher-quality imagery, and especially the routine availability of satellite imagery,

expanded applications to include rural regions and wildland landscapes, enabling

acquisition of broad-scale land use data to support hydrologic analysis.

4.2 Mapping Using Aerial Photography

Aerial photography has been in existence for over 100 years using kites, balloons,

airplanes, and most recently unmanned aerial vehicles (commonly called drones).
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During the 1930s, scientists at the Tennessee Valley Authority (TVA) in the United

States developed methods for systematic interpretation of aerial photography to

extract land use and agricultural information, as well as rural settlement patterns

[31, 32]. Those methods are no longer used but form the foundation for extracting

land use information from aerial photographs.

Aerial photos can be taken in three different forms. Panchromatic is a one-band

image; the visible portion of the electromagnetic spectrum is combined to produce a

black and white image. A natural color image is taken using the three visible

portions (red, green, and blue—abbreviated RGB) of the spectrum, each in a

separate band, and then overlaid to produce a color photo. A color infrared (CIR)

photo is taken with the green and red visible bands and also the near infrared section

of the spectrum; such photos are displayed as color infrared photos. Applications

for these three different types of aerial photos vary but all are useful for mapping

land use.

Figure 4 provides a side-by-side comparison of the three types of aerial photos

for the northwest region of the City of Roanoke, Virginia (USA). On the far left is a

panchromatic image from 1960 acquired by the United States Geological Survey

(USGS). The CIR image (middle) was obtained by the United States Department of

Agriculture (USDA) as part of its National Agricultural Imagery Program (NAIP)

in 2008. For this image, NIR is being displayed in red, the red portion of the

spectrum as green, and the green portion as blue. Since NIR is being displayed as

the red band (as stated in Sect. 3, vegetation has the highest reflection in NIR),

vegetation shows as red in the image. CIR imagery is extremely useful for evalu-

ating and analyzing vegetation land cover. The 2011 natural color image (on right)

was taken as part of the Virginia Base Mapping Program, which acquires annual

aerial photos of the Commonwealth of Virginia (USA).

Developing a land use map from an aerial photo is accomplished in different

ways. In the 1930s TVA project, it was accomplished with hand-drawn annotations

on the aerial photos. As technology changed, this process also changed. A combi-

nation of photo-overlay technique and a computer database was used in the LUNR

Fig. 4 1960 panchromatic image (left), 2008 color infrared image, bands 4-3-2 (middle), and 2011
natural color image (right) of northwest Roanoke, Virginia, USA. Sources identified in text

Land Use/Land Cover Monitoring and Geospatial Technologies: An Overview 11



project (mentioned earlier in Sect. 2.2); most specifically, mapping of land use and

identification of natural resources for New York State (USA) were accomplished by

using Mylar transparencies overlaid on aerial photographs [33], for 1 km2 cells

[28], and hand-drafted [17]. The land use identified from the aerial photos was then

combined with reference data from other sources (public records, direct obser-

vation, etc.); a computerized map was produced from the results [1, 17].

With the increase in computing power, hand delineation of land use from aerial

photos is no longer necessary, and it can be accomplished in either of two ways.

One technique employs computer software that uses specialized algorithms to

evaluate the spectral properties of the image, looking for similarities. Simply put,

once these similarities are identified, the program will assign all pixels with these

spectral values to specific classes. The algorithms will also assign unidentified pixel

values to a specific class, depending on the algorithm’s parameters. Specifics of

these algorithms’ methodologies are beyond the scope of this chapter (see [28] for

some specifics).

Another technique employs computer software to apply the photo-overlay

method. Aerial photos, georeferenced3, are added to the program, and each land

use polygon is delineated by the user within a geographic information system (GIS)

using the aerial photo as a guide. Figure 5 is such an example; man-made objects

(impervious surface land cover) are represented as cyan polygons to assist in

Fig. 5 An example of the photo-overlay technique in GIS, delineating man-made surface cover

(cyan polygons) to help identify a transportation land use within an urban area. Completed within

GIS using high-resolution (15 cm by 15 cm pixel size) 2008 aerial photos from the Virginia Base

Mapping Program. Area location is northwest Roanoke, Virginia, USA; the airport dominates the

photo. Source: Image provided by the first author

3 Georeferencing means to define a specific location on the surface of the Earth for an image,

usually with a specific geographic coordinate system.
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identification of a specific land use class (transportation) within an urban region

(City of Roanoke, Virginia, USA).

In addition to identifying specific land use classes, aerial photos enable time

series mapping of land use changes, an important analysis to identify how land use

has impacted water quality and quantity. Figure 3 (noted earlier) shows a compar-

ison of the northwestern part of the City of Roanoke from 1960 to 2011. The 1960

photo shows some urban development for residential areas but also large expanses

of agricultural lands.

The two later images in Fig. 3 (2008 and 2011) show that urban land has replaced

former agricultural lands and includes additional residential areas throughout the

region, an airport, a large shopping mall, and other commercial areas. This time

series shows that permeable land surfaces have been extensively replaced by imper-

vious surfaces, greatly altering the hydrologic characteristics of the land. These

changes, agriculture to urban, have greatly degraded the water quality of streams

within the Roanoke River watershed. The City of Roanoke has substantial drainage

problems and experiences frequent flooding due to increased stormwater runoff from

impervious surfaces. The Virginia Department of Environmental Quality has listed

several segments of the Roanoke River system within the city as impaired, i.e., they

do not meet established water quality standards due to the presence of contaminants

such as Escherichia coli, heavy metals, and high water temperature [34].

4.3 Mapping Using Satellite Imagery

The 1950s was the beginning of a race into space as governments across the world

established satellite systems for telecommunications, defense initiatives, and

weather monitoring. During the 1960s, astronauts from the US’ Gemini and Apollo

missions created a large archive of photos of the Earth from space. In the late 1960s,

one of the first broad-scale land cover maps was created from these photos

[35]. This map, of the southwestern United States, demonstrated the capability of

remotely sensing land cover employing imagery acquired from outside the Earth’s
atmosphere.

Weather satellites can be used to monitor the Earth’s surface, but their major

purpose is monitoring weather patterns using data at coarse spatial resolutions,

relative to the needs for land surface analysis. The first land observation satellite

was launched in 1972 (Landsat 1), a joint project of the USGS, the USDA, and the

US National Aeronautics and Aerospace Administration (NASA). With the advent

of land observation satellites, land use/land cover mapping and monitoring changed

dramatically. This system established the utility of satellites to acquire imagery

over large areas, to provide a continuous stream of images, and to record multi-

temporal images over the same area.
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Figure 6 shows portions of two Landsat 5 Thematic Mapper (TM) scenes (Path

231, Row 68) acquired over the same region of the Amazon rainforest in 1992

(a) and 2002 (b). The images are displayed as CIR (bands 4-3-2) to enhance the

presence of vegetation. The darkest areas of red are dense forest, the white areas are

settlements including roads, and the light red or pink areas are agriculture. A stream

is visible in the middle of the image. Comparing 2002 to 1992, a substantial

reduction in forest area has occurred. The stream is more prominent in the 2002

image as much of the forest canopy, which would have reflected the radiation, is

now gone and the radiation is being absorbed by the water.

Landsat is the longest continuous program of land observation satellites in the

world. The most recent Landsat satellite (Landsat 8) was launched in February of

2013. Sensors aboard each satellite have been improved as technology has

advanced and new uses for the imagery established. Landsat images (and images

from other land observation satellites) are acquired, again, using the electro-

magnetic spectrum and most are equipped with passive remote sensors. The

Landsat satellites have acquired more than 3.5 million images of the Earth’s land
surfaces since 1972. The USGS manages the Landsat imagery archives and all

Landsat images are freely available to the public since 2009 [36].

France, in collaboration with European partners, launched its first land obser-

vation satellite (SPOT) in 1986. SPOT is a series of satellites with the most recent

launch in 2012. Many other countries today have land observation satellites in orbit,

each with specific characteristics and capabilities; Table 2 provides an outline of

characteristics for a selection of these satellites. The nature of the images varies

with respect to sensors, numbers of bands and bandwidths, spatial resolutions

(pixel size), and land area covered in a single scene (image swath).

Fig. 6 Portions of two Landsat 5 TM scenes acquired over the same region of the Amazon

rainforest in 1992 (a) and 2002 (b). Dark red is the forested area and the images show substantial

deforestation from 1992 to 2002. Source: United States Geological Survey, processed by the first

author and displayed as CIR (bands 4-3-2)

14 T.E. Parece and J.B. Campbell



These satellites can carry one or more sensors, and sensors from satellite to

satellite can vary in design and capabilities. Satellite sensors can be either active or

passive (see Sect. 3). Passive sensors can be multispectral (acquiring images across

several different segments of the electromagnetic spectrum) or hyperspectral

(acquiring images across hundreds of segments of the electromagnetic

spectrum—see Sect. 6.2). Passive sensors collect reflective shortwave radiation or

emitted longwave (thermal) radiation. Active sensors can include sonar or radar

(both beyond the scope of this chapter) or Lidar (see Sect. 6.1). The characteristics

of a specific sensor depend on the purposes of the satellite system for which it is

being designed. Multispectral sensors can be designed to acquire reflected radiation

in a very limited range of the electromagnetic spectrum (e.g., blue, green, and red

visible) or a much wider range (the blue visible through the far infrared).

Different models of passive sensors acquire images, basically, in the same way.

The sensor records the energy from either the reflected or re-emitted radiation over

a specific area of the Earth’s surface. Such an area is defined by two parameters—

the image swath, which represents the area of land covered in one orbital pass of the

satellite, and the pixel size, which represents the smallest area that forms an

individual brightness value on the image. This returned energy is directed by a

mirror onto instruments that focus and transmit the energy to detectors. The

detectors record the energy as brightness values in the form of digital numbers.

Sensors vary in their capability to record a range of brightness values; brightness

values are in binary format. For example, Landsats 4–7 use 8 bits, and Landsat

8 uses 12 bits. (An 8-bit sensor can record up to 256 different brightness values for

each pixel, whereas a 12-bit sensor can record up to 4,096.)

The data is transmitted to ground stations positioned in different areas of the

world, depending on the satellite system. The images are rectangular arrays of

pixels. Most images are available for a fee. Processing of Landsat or any other

satellite image requires specialized imaging software. Governments, corporations,

and educational institutions each use a variety of software packages to display and

analyze satellite images. Two private corporations—Google and ESRI—have each

Table 2 A select listing of land observation satellites

Satellite (launch year) Sponsoring entity (website)

Resolution (pixel

size) (m)

Image swath

(km)

Landsat system (1972–

present)

United States [37] 15–120 170

IKONOS (1999) Satellite Imaging Corpo-

ration [38]

1 and 4 11.3–13.8

SPOT system (1986–

2012)

France [39] 10 and 20 3,600

CBERS (1 and 2) (1999) China/Brazil [40] 260 890

DEIMOS 1 (2009) Elecnor [41] 22 600

MODIS (1999) United States [42] 250, 500, and 1,000 2,330
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processed a complete set of all Landsat images for land use/land cover changes,

which are readily available for time series viewing over the Internet.

Table 2 provides only a selection of existing systems; many other land obser-

vation satellites are in orbit. The specifics listed in Table 2 are important when

choosing imagery for a specific application. Larger pixel sizes facilitate faster

processing, especially with analyses over large areas. However, a larger pixel size

means that the land use spatial detail within that pixel is more likely coarser, and it

represents a mixture of land uses or land covers, especially in urban areas.

5 Significance of Land Use/Land Cover Mapping

for Hydrologic Studies

Land use impacts hydrology largely through its influence upon the natural hydro-

logic cycle. Vegetated surfaces, especially during the growing season, will redirect

rainfall through the ability of leaves, branches, and trunks to intercept raindrops and

to delay water movement to the soil surface. Forest soils act like sponges, retaining

water so that it is slowly released to groundwater or to flow to streams and rivers

over days, weeks, and months. Open, grassy surfaces likewise capture and slow the

movement of water and retain soil moisture. In contrast, pavement and compacted

or indurated soils impede infiltration and increase surface runoff. Runoff from

impervious surfaces consequently flow to streams, rivers, and storm sewers and

contribute to flooding and contamination of surface waters.

5.1 Land Use and Curve Numbers

Land use impact is significant for hydrologic analysis because it is a key variable in

hydrologic models that predict surface runoff from precipitation events. In tradi-

tional hydrologic analysis developed by the USDANatural Resources Conservation

Service (NRCS), this relationship is described by the runoff curve number (CN), an
empirical approximation of the runoff from a precipitation event in a specific

drainage basin.

Curve numbers have been derived for a variety of surfaces and categorized by

climate and by land use (both broadly and specifically defined) (Table 3) [43]. For

each drainage area examined, analysts examine aerial imagery (often aerial photo-

graphy, although uses of other forms of imagery may soon increase as their

availability increases) to characterize surface conditions and hydraulic properties

of local land cover, on a parcel-by-parcel basis. Analysts select curve numbers for

each parcel of interest using methods outlined by NRCS, including:

• Land use (from designated classes)

• Hydrologic soil group, defined to identify hydrologic behavior of local soils

(as selected from tables that represent soil units)
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• Additional specifics of each site (such as soil parcel size, characteristics of

impervious surfaces, climate, local condition of the surface, or hydrologic

condition)

From such analyses, hydrologists can model the hydrologic behavior of land-

scapes to form the basis for maintaining water quality and management of runoff.

Two examples of using remotely sensed imagery to identify land use in hydro-

logic analyses are provided below.

Carlson [45] used Landsat 5 TM images to extract land use for the Spring Creek

Watershed in central Pennsylvania (USA) for two separate years—1986 and 1996.

He used these classified images in an urban growth model to project land use for

2025. Then, using CNs for each land use classification, he calculated actual runoff

coefficients, urban flood ratios, and peak flow rates (using a 25-year storm) for each

year—1986, 1996, and 2025.

In a second example, Melesse and Wang [46] used Landsat imagery to extract

land use to document changes over time in comparing two different hydrologic

models. For one study site—the Red River, North Dakota (USA)—Landsat images

(1974–2001) were used to classify land cover to determine that urban extent had

Table 3 Selected land use classes and NRCS curve number designations [43]

Land use

Runoff curve numbers by hydrologic soil groups

A B C D

Rural

Fallow 76 85 90 93

Row crop (contoured) 65 75 82 86

Small grain 63 75 83 87

Pasture 49 69 79 84

Close-seeded legumes or rotation meadow 64 75 83 85

Meadow 30 58 71 78

Woods 43 65 76 82

Impervious surfaces (paved) 98 98 98 98

Urban

Residential housing 46 65 77 82

Commercial and business 89 92 94 95

Industrial 81 88 91 93

Streets and roads 98 98 98 98

Open areas 49 69 79 84

Connected impervious areas 98 98 98 98

Arid/semiarid

Herbaceous – 71 81 89

Oak-Aspen – 48 57 63

Pinyon-juniper – 58 73 80

Curve numbers were selected from a much larger set of options for local conditions and usually

represent median conditions/designations when possible. Curve number values are for specified

land use classes and hydrologic soil groups (larger values for CNs indicate faster runoff [44])
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increased by 54 %. Monthly precipitation data was then used to determine river

discharge for two time frames, 1974–1992 and 1993–2002. The results showed a

higher runoff to precipitation ratio for the later period. For their second study site,

Simms Creek watershed in Florida (USA), they used Landsat imagery (2000 and

1984) to identify urban land use. This time, they used Manning’s roughness

coefficient, SCS-CNs, and simulated rainfall. They found more areas of 100 %

impervious surfaces in 2000 than in 1984 and also found an increase in peak

discharge and reduced time to peak in 2000 as compared to 1984.

5.2 Urban Land Use and Hydrology

Hydrology of urban areas is extremely complex [47]. Urban hydrology includes

stormwater runoff from impervious surfaces, less evapotranspiration, less ground-

water infiltration, treatment and distribution of potable water, and wastewater

treatment and discharge. The initial focus of urban hydrology planning was identifi-

cation of the most efficient ways to redirect stormwater flow in the shortest amount

of time [48]. This strategy increased impervious surface area designations beyond

those designed for roadways and buildings, and which channelized streams above

and below the ground surface (Figs. 7 and 8).

Urbanization, therefore, often creates unfavorable hydrologic regimes character-

ized by rapid runoff, urban flooding, and reduced water quality. Urban planners,

hydraulic engineers, and environmentalists agree that the spatial distribution of

impervious surfaces has significant effects on water quality [49]. Thus, managing

and reducing urbanization’s impacts, identifying runoff volumes and rates, identi-

fying the extent of contaminant sources, and tracking temporal changes in urban

hydrology are first addressed by evaluating the extent of impervious surfaces [48].

One of the most extensive remote sensing analyses of impervious surfaces was

completed by the Multi-Resolution Land Characteristics Consortium (MLRC) as

Fig. 7 Reedy Creek,

Richmond, Virginia (USA).

Impervious surfaces have

replaced the natural stream

channel and habitat. The

channel was designed to

remove stormwater from

residential, commercial, and

industrial land uses (Photo

by the first author)
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part of the NLCD (mentioned in Sect. 2). This dataset is the most widely utilized in

the United States for impervious surfaces and was developed to identify “percent

developed imperviousness” [50]. The 2006 dataset was developed using regression

tree software from both leaf-on and leaf-off Landsat images and images from

National Oceanic and Atmospheric Administration’s (NOAA) Defense Meteoro-

logical Satellite Program [50]. The National Land Cover Database Impervious

Surfaces (NLCD IS) dataset is a continuous layer with a gradient of imperviousness

from 0 to 100 %, whereby the value of each 30 m2 pixel is the percent of impervious

surfaces present within that pixel [21]. A new NLCD IS was released in April 2014

after a 2011 update and subsequent validation (for specifics on the update—see

[19]). Figure 9 shows the extent of impervious surfaces for northwest Roanoke,

Virginia (USA), in 2006 (a) and 2011 (b), and the areas of change between the two

datasets (c).

Individual researchers have developed different methods for extracting imper-

vious surfaces from remotely sensed imagery. As previously mentioned, pixel size

varies from sensor to sensor, and within an urban environment, land use/land cover

is extremely variable and creates a fine-scale heterogeneity in spectral values due to

mixed pixels.4 In most case studies, researchers are evaluating the extent or change

in impervious surfaces and the resultant impact on water quantity and quality.

For example, one study evaluated changes in impervious surface cover in three

sub-watersheds in Atlanta, Georgia (USA)—the Line, Flat, and Whitewater Creek

sub-watersheds—to determine if increasing urbanization was impacting the fresh-

water mussel population [51]. Investigators used three Landsat images (1979, 1987,

and 1997) to calculate changes in impervious surfaces. They also conducted four

mussel inventories in the 1990s and used pre-1992 historical records to determine if

any change occurred in mussel populations over time. They then used changes in

Fig. 8 Stroubles Creek,

Blacksburg, Virginia

(USA). The stream channel

is redirected underground

beneath the town’s central
business district and the

university (Virginia Tech)

campus (Photo by the first

author)

4 A mixed pixel means that more than one land use/land cover type is present within the spatial

extent of the pixel; as such the spectral value cannot be matched to one specific feature.
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impervious surfaces as an ecological indicator to assess the impacts on water

quality and mussel populations. Their study of fourteen different sites determined

that the sub-watershed with the highest rate of change in impervious surfaces also

had the highest decline in mussel species diversity.

For the second example, researchers using Landsat 5 TM images from 1987,

1999, 2000, and 2007 analyzed impervious surface changes as an environmental

health indicator for Lake Kasumigaura Basin, Japan (Lake Kasumigaura is the

second largest lake in Japan) [52]. Their results showed that, by 1987, the watershed

had already been impacted by land use change (all sub-basins had at least 10 %

impervious surfaces). They also found that, by 2007, nine of the 22 sub-basins had

greater than 25 % imperviousness and qualified as a degraded watershed. They

concluded that if the trend continues, by 2017 more than 50 % of the Lake

Kasumigaura Basin will fall into the degraded category.

Fig. 9 The NLCD IS for Roanoke, Virginia (USA), and the per pixel impervious percent, from

0 to 100. (a) Impervious surfaces in 2006, (b) impervious surfaces in 2011, (c) the locations of

change in per pixel percent imperviousness from 2006 to 2011. Source identified in text
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6 Future Applications

Accurate and timely land use data, and land use change data, form important

components of addressing land use planning and land use policy for the twenty-

first century. Remote sensing provides one of the most important tools for acquiring

and analyzing such data. In this context, we can expect changes to current strate-

gies. Changes may promote integration of information and target acquisition of

imagery to acquire land use data of smaller regions at greater spectral and spatial

detail. For example, investigations of the urban heat island can benefit from

integration of land use data with detailed thermal data to better define the role of

land use in urban temperatures (e.g., see [53, 54]). Likewise, hyperspectral data, not

normally employed for land use survey, can play a role in detecting regions where

there is a legacy of contaminated soils, environmental hazards, and related risks to

public health.

This section will explore three nascent technologies for remote sensing of land

cover—Lidar, hyperspectral images, and unmanned aerial systems. The technolo-

gies, themselves, are not new, but researchers are exploring new applications in the

context of land use/land cover assessment.

6.1 Lidar

Lidar (light detecting and ranging) is a form of active remote sensing. Lidar

technology is based on applications of lasers (Fig. 10). Light is generated by the

laser (1) which travels through fiber optic cables to a rotating mirror (2). The light is

directed through bundled optical cables (3), which are twisted to provide a directed

beam through lenses to the feature(s)/object(s) of interest. Reflected light is

returned to the sensor (4), through a separate set of bundled fiber optic cables, to

a second rotating mirror, and then transmitted (5) via fiber optic cables to the

receiver (6). The transmission of the laser beam and the registration of the returns

are controlled by the electronics.

The Lidar sensor records the time it takes for the returned (reflected) light to

reach the sensor and translates the time delay as distance to the object. After

processing of the returns, in aerial systems this distance then determines the height

of that particular feature above ground. In ground-based (terrestrial) systems, the

measurement is the distance from the sensor. Analysis of these distances, using

appropriate software, results in surface elevation models, forest modeling, and other

applications. The Lidar sensors are also equipped with geographic referencing

equipment so the returns can be spatially located on the Earth’s surface. Lidar

sensors can be placed on aircraft, satellites, in ground-based vehicles, or on a

stationary tripod on the ground (Fig. 11).

Because Lidar transmits light energy, as photons, the pulses penetrate even the

smallest openings. The number of pulses per second and time delays between pulses
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depend upon the design of each individual sensor. Sensors can be designed to either

transmit light as waveform or as discrete returns. For discrete returns, sensors

record the time and intensity of individual returns (from 1 to 5) of each pulse.

The number of returns depends also on the complexity of the terrain, i.e., in an open

area, only one return may be recorded after the pulse hits the ground, whereas a

Fig. 10 A schematic of a Lidar scanner [28] (Permissions, Campbell_Guilford_11_August_2014)

Fig. 11 Airborne Lidar system on the left. Terrestrial Lidar system on the right. Sources: left,
USGS; right, second author
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forest could have multiple returns after hitting leaves and branches of trees,

underlying shrubs, and then the ground.

Figure 12 shows examples of discrete-return Lidar of a Canadian segment in the

boreal forest. Images (a) and (b) are airborne Lidar, (a) point cloud from above and

(b) point cloud as seen from the side. Gaps in the point cloud are areas where pulses

were absorbed by water. Images (c) and (d) are ground-based Lidar acquisitions,

(c) point cloud viewed from above, the energy originates from sensor (bottom of the

image) and spreads out the farther it gets from the sensor. Gaps in this image are

areas where the pulse hit an impenetrable object—tree trunks. Image (d) is the point

cloud as seen from the ground-based Lidar sensor. The colors within each image

represent differing elevations, as assigned by the software user.

For waveform Lidar, the sensor records the entire returned pulse; the image of

the waveform is dependent on the terrain. The return’s pulses appear as a point

cloud when displayed with software (Fig. 13a), but when examining an individual

pulse, the terrain is displayed as a wave with varying intensities, as portions of the

Fig. 12 Lidar point clouds over a Canadian region of the boreal forest. Images (a) and (b) are

airborne Lidar, (a) point cloud from above and (b) point cloud as seen from the side. Images (c)

and (d) are ground-based acquisition, (c) point cloud from above, and (d) point cloud as seen from

the sensor’s origin (Credit: First author using V. Thomas data)

Fig. 13 LVIS waveform Lidar acquired over the Patuxent Watershed, Maryland, USA, (a)

overhead view displays as a point cloud, (b) represents a pulse that hit a road, and (c) represents

a pulse for a forested area (Credit: First author using data downloaded from LVIS website [55])
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pulse returns to the sensor after hitting features on the surface of the Earth. Figure 13

shows the display of Laser Vegetation Imaging Sensor (LVIS) [55] waveform Lidar

which was acquired over the Patuxent Watershed, Maryland (USA), in 2003 and

2004. Overhead view displayed as a point cloud (a). When viewing the data for a

specific point, it displays as one wavelength—(b) represents a pulse that hit a road

(a low, flat surface), and (c) represents a pulse for a forested area (several vegetation

layers at different elevations).

Because of Lidar’s ability to show differing heights, it is useful for three-

dimensional modeling, for distinguishing between different tree species, to see

into areas shadowed from nearby taller features/objects, and for providing fine-

scale delineation between features (the latter is dependent upon the density of the

point cloud). Some examples of applications of Lidar for land use or land cover

identification include:

In coastal mapping for Camp Lejeune, North Carolina (USA), researchers fused

elevations extracted from Lidar with IKONOS imagery to classify roads, water,

marshes, roofs, trees, and sand [56]. Investigators opined that fine-scale classifi-

cation was needed to distinguish features with similar spectral characteristics. They

found that using Lidar surface elevations along with the multispectral imagery

increased their accuracy for these classifications.

In applications to distinguish features within shadowed areas, researchers have

used Lidar data with aerial images to extract land use for rural Spain [57]. These

researchers found that the combination of these two types of data allowed extraction

of land uses within shadowed areas. In a second study, researchers successfully

used aerial photos and Lidar to identify land use in shadows within an urban area—

the City of Alcalá, Madrid, Spain [58].

For another urban study, researchers used the combination of Lidar and aerial

photos to enhance urban land use analysis for Austin, Texas (USA) [59]. Most

specifically, they used a building detection algorithm to identify buildings from

Lidar data and then used seven spatial characteristics of these buildings to help

classify varying residential land uses.

In a watershed study, for the Garonne and Allier River watersheds in France,

researchers used airborne Lidar and SPOT images for land cover classification

[60]. Nine separate land cover types were classified—five different types of riparian

forests, along with gravel, low vegetation, water, and bare earth.

6.2 Hyperspectral Imagery

Hyperspectral remote sensing is the collection of spectral data forming images with

hundreds of bands, each band no more than a few nanometers wide. Hyperspectral

data does not necessarily cover a broad region of the electromagnetic spectrum, but

divides the spectrum into smaller segments. As an example, Fig. 14 shows differ-

ences in bandwidths and total wavelength coverage between images acquired with

Landsats 7 and 8—multispectral sensors and Airborne Visible/Infrared Imaging
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Spectrometer (AVIRIS) [61]—a hyperspectral sensor. Landsat acquires images

using only 11 noncontiguous bands: nine bands between 0.43 and 2.29 μm and

two bands from 10.6 to 12.51 μm. In contrast, AVIRIS acquires images in 224 con-

tiguous bands from 380 to 2,500 nm (or 0.38–2.5 μm), each band only 10 nm wide.

Dividing the electromagnetic spectrum into smaller divisions allows for com-

parison of spectral properties gathered for specific features to match to spectra

gathered in the field (many such spectra are already recorded in spectral libraries).

Such comparisons permit detailed analyses of specific biophysical properties,

which characterize land use or land cover to permit more precise identification.

Hyperspectral evaluations have long been used by energy companies to identify

landforms characteristic of mineral-rich regions. Some examples of using

hyperspectral imagery in very detailed land use analyses are described below.

One study, of two different regions in Italy, analyzed Multispectral Visible and

Infrared Imaging Spectrometer (MIVIS) imagery [62]. For the Tessera region

near Venice, researchers differentiated several types of cultivated vegetation—

soybeans, corn, sugar beets, alfalfa, wheat stubble, along with mixed woods,

water, and urban. For the second location, the Pollino Mountain of Basilicata,

they differentiated between several uncultivated vegetative areas—mixed beech

forest, fir wood, pine wood, holm oak wood, along with high mountain prairies,

xerophilous prairies, and barren and urban lands.

Fig. 14 Comparison of spectral channels for Landsat (multispectral, depicted by colored shapes,

bottom) and AVIRIS (a hyperspectral sensor with 224 narrow channels, top). Shaded patterns
represent wavelengths where the atmosphere will transmit electromagnetic radiation. Inset repre-

sents detail of hyperspectral channels (Landsat diagram credit: USGS; AVIRIS annotations by

second author)
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Two different studies in Greece used Hyperion imagery [63]. For an area north

of Athens, Greece, researchers differentiated several forest types—conifers and

broad-leaved—and identified transitional woodland/scrubland, heterogeneous agri-

cultural areas, scrubland to herbaceous vegetation, sparsely vegetated areas, bare

rocks, urban, burnt areas, and sea [64]. For the island of Crete, researchers differ-

entiated between sparsely vegetated areas, permanent crops, heterogeneous agri-

cultural areas, sclerophyllous vegetation, natural grasslands, bare land, and sea [65].

And, for a specific hydrologic analysis, a study for the Woluwe catchment in

Belgium [66] analyzed CHRIS-Probe imagery [67]. Researchers differentiated

eight land cover classes—forest, agriculture and grassland, water, bare soil, con-

struction site, white buildings, city buildup, and dark buildings. In this study, the

color of man-made objects can affect the accuracy of the land cover classification

schemes and, as such, the resultant hydrologic model. These researchers used the

land cover results as inputs into the WetSpass model to evaluate groundwater

recharge.

6.3 Unmanned Aerial Systems

Unmanned aerial systems (UAS) are lightweight aerial vehicles (both fixed and

rotary winged, commonly called drones) that carry cameras or other imaging

sensors (either passive or active). The vehicles are piloted from a remote location

and, typically, the ground-based pilot uses a wireless link to visually monitor the

imaged area in real time. UAS origins are found from military uses (dating back to

World War I) and from radio-controlled model airplanes used by hobbyists. Images

acquired by UAS are saved on a storage device contained within the airborne

vehicle and then downloaded after landing or streamed live to the remote operator.

Figure 15 is an example of UAS using a fixed-wing aircraft, sensors are located on

the wings of the aircraft.

Fig. 15 Fixed-wing UAV

(Photo by the second

author)
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In some situations, UAS offer many advantages over other aerial (aircraft and

satellite)-borne sensors:

• Rapid deployment [68], e.g., fine-scale inspection of hydrologic behavior of

varied land use classes, associated storm drains, and drainage systems during

and immediately after rainfall/snowmelt events.

• More economical mapping [69, 70], especially over small areas [71–73], e.g.,

spot updates of areas within broader surveys (such as the NLCD) believed to

have changed since original compilation.

• Flown at very low altitudes (as low as a several hundred millimeters) and thus

obtain extremely fine detail of a specific area [74].

• Used as a substitute for manual field data collection, such as animal surveys [48],

situations harmful to human life [75], or validation of information derived from

the coarser detail acquired from higher altitudes.

• Used to investigate problematic areas not clearly identifiable on conventional

imagery, e.g., flown under cloud cover [70, 76] or in areas masked by shadows or

large buildings.

Some specific examples of existing UAS remote sensing applications include:

• Slope and small stream mapping within Universiti Teknologi Malaysia

precinct [71].

• Elephant population survey in Burkina Faso, Africa. Researchers found that

UAVs were extremely useful in monitoring elephant populations, and of special

importance, the elephants seemed to ignore the UAS as they were flying

overhead [77].

• Marine mammal survey in Shark Bay, Western Australia. Researchers were able

to identify several species of mammals, fly the UAS repeatedly within the same

flight time over multiple altitudes, and repeat the flight pattern over the course of

several consecutive days [69].

• Test flights over Mt. Etna, Italy. Researchers analyzed gas composition of

volcanic plumes (where gaseous plumes are fatal to humans) [75].

• Orthoimages and digital surface model development at an 11 cm spatial resolu-

tion for an agricultural region in C�ordoba, Spain. Researchers used the resultant

images to classify two types of agricultural land uses—terraces and

non-terraces [78].

• Rangeland vegetation species classification in southern New Mexico

(USA) [79].

We anticipate that future applications of UAS technology in environmental and

land use observations will be especially useful in urban areas, where the use of

manned vehicles is restricted due to space and safety concerns, for imaging large-

scale agricultural fields (where locating a small area of insect infestation may be

difficult at higher altitudes), and in forest evaluations (where a tree canopy may

prevent observation by sensors from above).
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7 Conclusions

Monitoring the health of water—Earth’s most precious resource—relies upon an

astute understanding of the land surfaces which supply, transport, filter and store

water, and regulate water temperatures as it flows to lakes, rivers, and aquifers.

Remote sensing’s use of airborne and satellite sensors forms the foundation of our

ability to monitor large expanses of the Earth’s surface and, in fine detail, to record
variations in water resources.

These capabilities provide a better understanding of the impacts of human

alterations to the Earth’s surface upon water quality and water supply. The spatial

perspective of remotely sensed imagery provides insight into interactions between

varied land covers and land uses. It allows anticipating threats of hazardous

materials for water quality, forecasting variations in water supply, and assessing

diversions for agriculture, industry, recreation, and other confining impacts of

hazardous spills along with mitigating such threats. Remote sensing technologies

have significant potential for understanding climate change impacts.

The land use and land cover analyses outlined in this chapter provide some of the

most important tools for sustaining, and improving, our ability to monitor the extent

and quality of water resources. Employed in coordination with other capabilities

described in this chapter, remote sensing can form a framework for understanding

interrelationships between the many dimensions of water resources and for illumi-

nating their spatial and temporal variations.

With continued launching of land observation satellites, our ability to map and

monitor the Earth’s changing surface will become more robust. As sensor techno-

logies continue to change and additional analyses of existing imagery are identified,

the ability to classify land cover and land use will be accomplished in even finer

detail across broader regions, with greater flexibility in timing, and in acquiring

sequential coverage. Greater computing power will allow us to store greater

volumes of data over time, acquire larger volumes of data in the future, and fuse

various data sources with imagery to perform superior evaluations of water quantity

and quality. Looking forward with these advances, as outlined in Sect. 6, Lidar will

enhance our ability to visualize and analyze in three dimensions, hyperspectral

imagery will allow us to identify spectral signatures of features/objects at finer

details, and unmanned aerial systems will be able to map land cover and identify

land uses in areas previously not accessible to humans.
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57. Buján S, González-Ferreiro E, Reyes-Bueno F, Barreiro-Fernández L, Crecente R et al (2012)

Land use classification from Lidar data and ortho-images in a rural area. Photogramm Rec

27(140):401–422

58. de Agirre AM, Malpica JA (2012) Detecting shadows in a segmented land use land cover

image with LIDAR data. IGARSS 33rd Canadian symposium on remote sensing, Munich,

22–27 July 2012, pp 5458–5461

59. Meng X, Currit N, Wang L, Yang X (2010) Object-oriented residential building land-use

mapping using lidar and aerial photographs. American society of photogrammetry and remote

sensing 2010 annual conference, San Diego, 26–30 Apr 2010

60. Antonarakis A, Richards K, Brasington J (2008) Object-based land cover classification using

airborne LiDAR. Remote Sens Environ 112(6):2988–2998

61. NASA Jet Propulsion Laboratory (2014) Airborne visible/infrared imaging spectrometer.

http://aviris.jpl.nasa.gov/. Accessed 5 June 2014

62. Amato U, Antoniadis A, Carfora MF, Colandrea P, Cuomo V et al (2013) Statistical classifi-

cation for assessing PRISMA hyperspectral potential for agricultural land use. IEEE J Sel

Topics Appl Earth Observ Remote Sens 6(2):615–625

63. United States Geological Survey (2011) Earth observing, sensors—hyperion. http://eo1.usgs.

gov/sensors/hyperion. Accessed 6 June 2014

64. Petropoulos GP, Arvanitis K, Sigrimis N (2012) Hyperion hyperspectral imagery analysis

combined with machine learning classifiers for land use/cover mapping. Exp Syst Appl 39(3):

3800–3809

65. Petropoulos GP, Kalaitzidis C, Prasad Vadrevu K (2012) Support vector machines and object-

based classification for obtaining land-use/cover cartography from Hyperion hyperspectral

imagery. Comput Geosci 41:99–107

66. Ampe EM, Vanhamel I, Salvadore E, Jef D, Bashir I et al (2012) Impact of urban land-cover

classification on groundwater recharge uncertainty. IEEE J Sel Topics Appl Earth Observ

Remote Sens 5(6):1859–1867

Land Use/Land Cover Monitoring and Geospatial Technologies: An Overview 31

http://www.mrlc.gov/nlcd06_data.php
http://lvis.gsfc.nasa.gov/
http://lvis.gsfc.nasa.gov/
http://aviris.jpl.nasa.gov/
http://eo1.usgs.gov/sensors/hyperion
http://eo1.usgs.gov/sensors/hyperion


67. European Space Agency (2014) Earth online. https://earth.esa.int/web/guest/-/proba-chris-

level-1a-1488. Accessed 18 June 2014

68. Berni J, Zarco-Tejada PJ, Suarez L, Fereres E (2009) Thermal and narrowband multispectral

remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans

Geosci Remote Sens 47(3):722–738

69. Hodgson A, Kelly N, Peel D (2013) Unmanned aerial vehicles (UAVs) for surveying Marine

Fauna: a Dugong case study. PLoS One 8:1–15

70. Herwitz SR, Johnson LF, Dunagan SE, Higgins RG, Sullivan DV et al (2004) Imaging from an

unmanned aerial vehicle: agricultural surveillance and decision support. Comput ElectronAgric

44(1):49–61

71. Ahmad A, Tahar KN, Udin WS, Hashim KA, Darwin N, et al (2013) Digital aerial imagery of

unmanned aerial vehicle for various applications, Penang, 29 Nov–1 Dec 2013, pp 535–540

72. Primicerio J, Di Gennaro S, Fiorillo E, Genesio L, Lugato E et al (2012) A flexible unmanned

aerial vehicle for precision agriculture. Precis Agric 13:517–523

73. Shim DH, Han J, Yeo H-T (2009) A development of unmanned helicopters for industrial

applications. In: Oh P, Piegl L, Valavanis K (eds) Unmanned aircraft systems. Springer,

The Netherlands, pp 407–421

74. Anderson K, Gaston KJ (2013) Lightweight unmanned aerial vehicles will revolutionize

spatial ecology. Front Ecol Environ 11(3):138–146

75. Astuti G, Giudice G, Longo D, Melita CD, Muscato G et al (2009) An overview of the “Volcan

Project”: an UAS for exploration of volcanic environments. In: Oh P, Piegl L, Valavanis K

(eds) Unmanned aircraft systems. Springer, The Netherlands, pp 471–494

76. Lu H, Li Y-S, Lin X-C (2011) Classification of high resolution imagery by unmanned aerial

vehicle. Sci Surv Mapp 36(6):106–108

77. Vermeulen C, Lejeune P, Lisein J, Sawadogo P, Bouché P (2013) Unmanned aerial survey of
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Abstract Life on Earth depends on water. Yet water resources are severely

stressed by the rapid growth of the human population and activities. In arid

environments the exploration and monitoring of water resources is a prerequisite

for water accessibility and rational use and management. To survey large arid areas

for water, conventional land-based techniques must be complemented by using

satellite and airborne remote sensors. Surface water systems can be mapped using

multispectral and radar sensors; soil moisture in the unsaturated zone can be

remotely sensed with microwave radiometers using indirect indicators, such as
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microwave emissivity; freshwater wetlands can be mapped using multispectral

cameras; and freshwater springs can be detected using thermal infrared radiome-

ters. Satellite remote sensors and satellite gravitational surveys can be used in

combination with ancillary data analysis to infer groundwater behavior from

surface expressions and to estimate groundwater aquifer storage. This chapter

provides an overview of satellite and airborne remote sensing techniques for

managing water resources and monitoring drought in arid and semiarid regions.

Keywords Groundwater exploration • Remote sensing springs • Soil moisture

sensing • Water remote sensing • Wetland mapping

1 Introduction

Only a small fraction of the Earth’s water is available as freshwater, a key resource
in many economic activities ranging from agriculture to industrial production. At

present, water resources are severely stressed and particularly scarce in arid regions

of the world. In many arid and semiarid regions, water shortage is a major obstacle

to sustainable development and poverty alleviation and the cause of serious con-

flicts between some countries. Water shortage in arid regions can be further

aggravated by the global climate change that is predicted to severely impact these

regions. Thus, exploration, mapping, and monitoring of water resources are a

prerequisite for the availability, accessibility, fair utilization, and rational manage-

ment of water resources in arid and semiarid regions [1–3].

Since water availability in arid regions is both sporadic and variable in intensity,

traditional water resources assessment relying on ground-based techniques and data

can often lead to poor estimates of key drivers of hydrologic processes [4]. For

example, most ground-based rain gauge networks are inadequate to capture spatial

and temporal heterogeneity of precipitation [5]. Therefore, conventional hydrolog-

ical measurements combined with satellite and airborne remote sensors can be

useful and cost-effective and for mapping and monitoring water resources. Further-

more, remotely sensed data can be used in large-scale geologic/hydrologic models

to simulate hydrologic processes, quantify the spatial and temporal water distribu-

tion, and prepare maps of groundwater potential zones [3, 6–8].

A key to remote sensing of groundwater is the realization that shallow ground-

water flow is often driven by surface forcing parameterized by geologic properties

inferred from surface data [9]. Thus, satellite data is especially effective if it is used

with ancillary data analysis to infer groundwater behavior from surface expressions.

Groundwater and surface water are closely connected in both arid and humid

environments [10]. In arid environments, streams and lakes can be separated from

the water table by a large vadose zone. During wet seasons, groundwater may

become perched below surface water and then dissipate during dry seasons.

Because water typically controls the growth of vegetation in arid areas, an
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outcropping of groundwater can usually be identified in remotely sensed images by

its vegetative spectral signature. The problem in arid environments is that much of

the groundwater flow emerging at the surface is intermittent. Therefore, time series

of ground data and multiple remotely sensed images are required to distinguish

steady groundwater flow from storm-driven or seasonal behavior [9].

Topographically driven groundwater flow implies that groundwater will be

recharged over broad upland areas and discharged at relatively focused lowlands

as surface water. In arid areas, evapotranspiration may also play a role. From a

remote sensing point of view, water can thus be present in many forms, where each

requires a different remote sensing approach in order to be detected and mapped.

Exposed surface water can be mapped using visible, near-infrared and radar

imagers. Soil moisture is best measured with microwave radiometers or radar.

Vegetation indicating the presence of springs can be mapped with multispectral

imagers, while freshwater springs entering water bodies can be detected with

thermal infrared (TIR) sensors. Gravitational surveys from satellites have been

used to estimate groundwater aquifer storage.

The objective of this chapter is to review the most effective remote sensing

techniques for detecting and mapping water resources in arid and semiarid envi-

ronments. This chapter has been divided into sections addressing application of

remote sensing technologies to detecting exposed surface waters, groundwater, soil

moisture, freshwater springs, wetlands, and monitoring drought and potential

drought conditions in arid and semiarid regions.

2 Identification and Mapping of Arid and Semiarid

Regions

Identification and mapping of arid and semiarid regions is a prerequisite for water

availability, accessibility, fair utilization, and rational management. Gamo

et al. [11] developed a method for classifying arid lands. The objective of that

project was to prepare internally consistent maps of arid regions on a global scale in

an effort to understand the conditions of existing arid regions, especially deserts and

soil degradation areas. They delimited arid regions on a global scale by combining

climate data, i.e., aridity index (AI), and vegetation data, i.e., vegetation index (VI).

The AI shows the degree of climatic dryness and the VI denotes the abundance of

vegetation. The annual AI was estimated by the ratio of mean annual precipitation

to mean annual potential evapotranspiration, using the Thornthwaite method. The

VI was derived on a global scale in real time from satellite remote sensing images

produced by the NASA/NOAA Advanced Very High Resolution Radiometer

(AVHRR) visible and near-infrared bands. The long-term mean of yearly maximum

normalized difference vegetation index (NDVI) (ymx) was used as an indicator of

vegetation condition.
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Arid regions of the world were classified by Gamo et al. [11] into four

categories:

• Category A, severe deserts, where both aridity and vegetation indices are very

small

• Category G, semiarid regions, where the VI is proportionally related to the AI

• Category I, irrigated areas and oases, where the vegetation is relatively abundant

despite severe dryness

• Category S, soil degradation areas, where the vegetation is poor despite rela-

tively humid conditions

The standard deviation of NDVI (ymx) is very small for severe deserts and much

larger in semiarid areas. Thus, the Sahara desert (Category A) was clearly distin-

guished from the Sahel; the latter belongs to Category G and drought occurs

frequently there between rainy seasons. Desert areas were further classified into

severe deserts (Category A), grassland deserts (Category G), and soil degradation

deserts (Category S). As a result, a map was produced showing the global distri-

bution of arid regions using these unified criteria with both physical and biological

meaning [11].

3 Detecting and Mapping Inland Surface Waters

Surface waters include streams, rivers, ponds, lakes, and other exposed inland water

bodies. Remote sensing provides an effective means for mapping the location,

extent, and changes of surface water bodies over time [12, 13]. For example,

remotely sensed seasonal changes of lake water extent can be combined with

available topographic data to estimate water volumetric storage changes and thus

more accurately manage water resources [14–16].

A variety of passive and active remote sensors with visible and microwave bands

can be used to estimate inundation area and delineate water boundaries [17]. The

land–water boundary can be easily defined using the near-infrared radiation (NIR)

region of the electromagnetic spectrum. Land appears much brighter than water

because water strongly absorbs the NIR. Most multispectral and hyperspectral

sensors include suitable NIR bands. Moderate resolution satellites, such as Landsat

Thematic Mapper (TM) and SPOT (Satellite Pour l’Observation de la Terre), have

been used to study surface water bodies and determine their extent in arid and

semiarid regions. For example, Sharma et al. [2] used the Landsat TM to map small

surface water bodies in arid areas of India and compared them to Survey of India

topographical maps. They found major reductions in areal extent of the water

bodies over 28 years, mainly due to cultivation and urbanization in these desert

regions. Data from high-resolution commercial satellites, such as IKONOS and

QuickBird, have been used to produce more detailed maps of small freshwater

areas. Figure 1 shows a high-resolution NIR IKONOS satellite image, containing

bogs, lakes, and wetlands in northern Wisconsin, USA.
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In African arid and semiarid regions, rainfall amounts vary drastically within a

season and between seasons; as such, surface water availability can radically

change. Detecting the change when surface water sites are filled by rainfalls and

when they are drained out is key information for the assessment of water availabil-

ity and environmental conditions, providing alerts on vector-/insect-borne diseases

or managing human activities. Combal et al. [18] used the VEGETATION instru-

ment onboard SPOT satellites to detect surface water, using the NIR at a resolution

of 1 km over Africa. The surface water was detected every 10 days and broadcast to

users by means of the EUMETCast broadcasting system operated by EUMETSAT.

EUMETCast is a multiservice dissemination system that uses geostationary satel-

lites to multi-cast data to a wide user community. The detection of surface water

coupled with the broadcasting system provided the capacity for operational mon-

itoring of surface water at continental to regional scales. The continuity of surface

observations allowed for seasonal assessment of water availability [18].

Where clouds, trees, and other vegetation obscure the water surface, synthetic

aperture radar (SAR) can be used to detect surface water. SAR can penetrate clouds

to detect standing water through emergent aquatic plants and forest canopies

[19]. Water bodies scatter the pulses emitted by radars. Since most SAR sensors

use a side-looking antenna, open waters appear dark as the radar pulses are not

returned (backscattered) to the radar antenna. If a wet surface is covered by

vegetation, the radar pulse bounces between the vegetation and wet surface, and

the backscattered return signal will be stronger than if the surface would have been

dry [20]. Table 1 shows the characteristics of some typical SAR satellites. Note the

good ground resolution and different polarization features. Some newer satellites

are also operating in the L-band (15–30 cm) and X-band (2.4–3.75 cm).

Fig. 1 High-resolution near-infrared IKONOS satellite image of bogs (a), lakes (b), and wetlands

(c) of northern Wisconsin, USA, spring 2005. Image courtesy of Space Imaging Corp
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Radar altimetry has been used to obtain point measurements of water surface

elevation in order to determine volumetric water storage [16, 21]. For example,

Cazenave et al. [22] and Kostianoy et al. [23] report using satellite altimetry data to

investigate seasonal, interannual, and space-time variability of the level of water

bodies in arid areas of Turkmenistan, including the Caspian Sea water level. They

were able to monitor the water level (filling) of the Altyn Asyr Lake since its

construction began in July 2009. The synergistic application of combined radar and

optical remote sensing was shown to be particularly effective for the analysis of the

morphometric characteristics and sea (lake) level of these water bodies.

Airborne bathymetric Lidar has also been used to map water surfaces and to

estimate the water volume of lakes by producing elevation models for the water

surface and the lake bottom [24, 25]. Some airborne Lidar systems combine near-

infrared wavelengths for topography and green wavelengths for bathymetry,

allowing water depths to be determined with accuracies of about 10 cm. Bathy-

metric Lidars can penetrate down to about the equivalent of three Secchi depths and

provide bathymetric data down to 6 m depths in lakes of low turbidity.

4 Detecting Subsurface Waters

Subsurface water consists of soil moisture (unsaturated or vadose zone) and

groundwater aquifer (saturated zone).

4.1 Determining Soil Moisture

Soil moisture is an indicator of subsurface water that is found in the unsaturated

zone above the water table. Soil moisture has an important role in the calculation of

water and energy budgets needed for climate studies. Soil moisture improves

meteorological and climate predictions and is important for assessing agricultural

Table 1 Overview of synthetic aperture radar (SAR) satellites

Satellite ERS-1 and ERS-2 RADARSAT Envisat

Sensor SAR SAR ASAR

Launch dates (s) July 17, 1991 Nov 4, 1995 Mar 1, 2002

Apr 20, 1995

Frequency 5.3 GHz 5.3 GHz 5.3 GHz

Wavelength 5.6 cm 5.6 cm 5.6 cm

Polarization VV HH VV, HH, VH, HV

Incidence angle 20–26� 10–59� 15–45�

Swath width 100 km 50–500 km 100–405 km

Ground resolution 25� 25 m 8� 100 m 25� 25 m
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conditions, irrigation management, and studies of desertification, all of which are

especially important in arid and semiarid regions.

Soil moisture also plays a significant role in forecasting arid region droughts. In

dry regions of the world, like the Sahel, cloud formation and the rate and distribu-

tion of precipitation are partly controlled by the wetness of the soil [26]. The

wetness of the terrain influences how much energy it absorbs from the Sun,

which in turn affects atmospheric convection, cloud formation, and precipitation.

This relationship creates a feedback loop, where rainfall affects the chances of

additional precipitation in the days that follow. Thus, a positive feedback would

promote floods and drought.

Because microwave radiation is sensitive to soil moisture, microwave remote

sensors provide a unique capability for mapping soil moisture over large areas of

the Earth’s land surface [27]. Both active radars and passive microwave systems

can sense soil moisture. Microwave radiometers detect the brightness temperature,

which equals the product of the emissivity and the surface temperature of the soil.

At frequencies below 5 GHz the emissivity of soils varies over a wide range from

about 0.6 for wet, saturated soils to greater than 0.9 for dry soils. Figure 2 shows the

strong relationship between soil moisture and emissivity in the 21 cm microwave
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band for different values of soil roughness. The microwave radiometer measure-

ment of soil moisture is also affected by the density of any vegetative cover,

including grass, shrubs, and trees.

Radars measure the backscattering coefficient, which is a measure of reflectivity.

Passive and active methods are related through Kirchhoff’s law, e¼ 1�r, where e is
the emissivity and r is the reflectance. Since an increase in soil moisture decreases

its emissivity, it simultaneously increases the radar reflectivity or backscatter.

Radar is more sensitive to surface roughness and dense vegetation structure than

optical sensors but is less affected by surface temperature and provides good spatial

resolution.

Early remote sensing of soil moisture was performed from aircraft [29–

31]. More recently satellite sensors are numerous and able to provide information

on surface soil moisture. Remotely sensed surface soil moisture data sets have been

acquired with scatterometer observations of the Active Microwave Instrument

(AMI) on the European Remote Sensing satellites (ERS-AMI) and the Advanced

Scatterometer (ASCAT) on MetOp. Multifrequency radiometers have also been

used, including the Advanced Scanning Microwave Radiometer (AMSR-E), the

Scanning Multichannel Microwave Radiometer (SMMR), and the Microwave

Imager (TMI) on the Tropical Rainfall Measuring Mission (TRMM). Yet despite

the importance of soil moisture information, until recently there have been no

projects specifically dedicated to measuring soil moisture globally with adequate

temporal or spatial sampling [32–34].

With the launch of microwave radiometers on the Soil Moisture and Ocean

Salinity (SMOS) and AQUA satellites, soil moisture (along with other parameters

such as sea surface salinity) can now be obtained nearly continuously over a large

fraction of the Earth’s surface [35, 36]. AQUA is a sister satellite to Terra, the first

of the large Earth observation satellites (EOS), launched in 1999 to monitor the

“health of the planet,” with Terra emphasizing land and AQUA emphasizing water.

AQUA and SMOS data are providing information on the moisture content of the

soil, vegetation conditions (heavily dependent on water), and on many other aspects

of the Earth’s climate system.

The L-band 2-D interferometric radiometer on SMOS receives the radiation

emitted from the Earth’s surface, which then can be related to the moisture content

in the first few centimeters of soil over land [36–39]. Microwave measurements are

largely unaffected by solar illumination and cloud cover, yet accurate soil moisture

estimates are still limited to regions that have either bare soils or low amounts of

vegetation cover. In the absence of significant vegetation cover, soil moisture

dominates the signal received by a microwave radiometer [40, 41]. The

low-frequency microwave range of 1–3 GHz (10–30 cm wavelength) is considered

best for soil moisture sensing due to its sensitivity to soil moisture, reduced

atmospheric attenuation, and greater vegetation penetration at these longer wave-

lengths. Since mid-July 2010, SMOS has been delivering images of “brightness

temperature” to the science community, which are used to produce global maps of

soil moisture every 3 days (along with maps of ocean salinity) averaged over

30 days.
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The combined use of satellite data from multispectral and TIR radiometers has

also shown promise for the retrieval of latent and sensible heat, as well as surface

soil moisture variations. These data are important for monitoring plant growth and

productivity, irrigation management, modeling atmospheric and hydrological

cycles, and improving the accuracy of weather forecast models.

Blending optical data, passive microwave emissivity, and radar backscatter, the

Global Inundation Extent from Multi-Satellite (GIEMS) data set is one of the most

comprehensive data sets of surface wetness [12, 13]. GIEMS is a coarse scale data

set with about 25 km spatial resolution and monthly time-steps available for almost

two decades. Recently both high-resolution SAR data [42] and optical images from

the MODIS imagery [43] have been used for downscaling GIEMS.

Detecting water in arid regions by means of soil moisture remote sensing still

faces many challenges. The spatial resolution over land needs to be improved. As

stated earlier, accurate soil moisture estimates are limited to regions that have either

bare soils or low amounts of vegetation cover. Better corrections for surface

roughness, vegetation cover, soil temperature, and topography must be devised.

Until recently, the moisture in only the top few centimeters of the soil could be

detected. The Soil Moisture Active Passive (SMAP) satellite mission, planned for

the 2015–2020 time frame, is designed to use advanced modeling and data assim-

ilation to provide data on deeper root-zone soil moisture and net ecosystem

exchange of carbon [44, 45].

4.2 Detecting Groundwater

Groundwater accounts for about 98 % of the total freshwater budget on Earth. The

remaining 2 % is divided between rivers, lakes, freshwater wetlands, and moisture

in the atmosphere. Groundwater supplies about 40 % of the drinking water in the

USA and 70 % in China and is the main source of domestic water supply in most

European countries [46]. Groundwater exists within the matrix of sedimentary

rocks, occupying pore spaces between sediment grains, housed within rock frac-

tures, or held within large underground caverns [10, 47].

Shallow-layer groundwater within a few centimeters of the surface may be

detected by SAR microwave radiometry or TIR imagery in certain geologic settings

[48]. However, groundwater aquifers located deep below the land surface cannot be

detected directly by electromagnetic remote sensors and are usually surveyed with

gravitational techniques. Groundwater discharges to the surface via springs that

feed rivers, lakes, and wetlands and can be mapped by many different remote

sensing systems, as described in later sections of this chapter. In arid environments,

the surface discharge of groundwater may also be indirectly detected by remote

sensing, if the discharge produces areas of unusually dense vegetation [49].

High-resolution gravitational surveys have been used to estimate groundwater

storage [50, 51]. However, gravitational instruments have no vertical resolving

power, so that measurement of subsurface water pools requires removing the
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influence of water stored in the unsaturated soil zone. For aerial surveys, corrections

must also be made for water stored in vegetation. For satellite gravity surveys, one

must correct the water effects of the atmosphere in addition to the vegetation.

At present, there is only one satellite mission that can directly estimate the

quantity of groundwater stored deep beneath the Earth’s surface. It accomplishes

this by measuring the Earth’s gravity field which is influenced by the quantity of

groundwater below the surface. As groundwater is consumed or recharged, water-

induced gravity anomalies change through time. The Gravity Recovery and Climate

Experiment (GRACE) mission, launched in 2002, consists of two identical satel-

lites orbiting in unison at the same altitude but with a separation of 220 km. The two

satellites monitor the relative position of each other using microwave-ranging

instruments. As they pass over a gravity anomaly, the leading spacecraft

approaches and speeds up due to higher angular momentum. This causes the two

satellites to increase separation. After the first spacecraft passes the anomaly, it

slows down again; meanwhile the following satellite accelerates, then decelerates

over the same point. By recording satellite separation, gravity is mapped; cycles of

growing/shrinking separation indicate the size and strength of the gravity anoma-

lies, from which the quantity of groundwater can be estimated [49].

Due to atmospheric variability and observational errors, accurate estimates of

water mass can only be obtained for regions that are several hundreds of kilometers

or more in scale [52]. Thus, estimating water storage changes in large aquifer

systems is currently feasible [53]. Rodell and Famiglietti [54] used computer

simulations and GRACE performance parameters to show that groundwater storage

changes as small as 9 mm could be measured in the US High Plains aquifer system.

As shown in Fig. 3, in the High Plains the magnitude of annual groundwater storage

changes averaged 19.8 mm between 1987 and 1998. They expected that the
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uncertainty in deriving estimates of aquifer storage changes from GRACE obser-

vations would arise mainly from the removal, via land surface modeling, of the

effects of soil moisture changes from the gravity signal. Rodell and Famiglietti [54]

were predicting the total uncertainty to be about 8.7 mm. Comparing the 4-year

groundwater storage change bars with the estimated GRACE uncertainty bars in

Fig. 3, one can see that such estimates would have been useful for tracking

groundwater changes in the High Plains aquifer during most 4-year periods.

Yirdaw et al. [55] investigated the Canadian Prairie drought by employing total

water storage anomalies obtained from the GRACE remote sensing satellite mis-

sion. The obtained GRACE-based total water storages were validated using stor-

ages estimated from the atmospheric-based water balance P-E (precipitation-

evaporation) computation in conjunction with measured streamflow records. The

results from their study corroborated the potential of the GRACE-based technique

as a useful tool for the characterization of the 2002/2003 Canadian Prairie droughts.

Li et al. [56] assimilated anomalies of terrestrial water storage (TWS) observed

by the GRACE satellite mission into the NASA Catchment land surface model in

western and central Europe for a 7-year period. GRACE data assimilation led to

improved runoff estimates (in temporal correlation and root mean square error)

even in basins smaller than the effective resolution of GRACE. Signals of drought

in GRACE TWS correlated well with the MODIS NDVI in most areas. Although

they detected the same droughts during warm seasons, drought signatures in

GRACE-derived TWS exhibited greater persistence than those in NDVI throughout

all seasons, in part due to limitations associated with the seasonality of

vegetation [56].

To derive estimates of aquifer storage changes from GRACE observations, one

faces the challenge of removing the effects of soil moisture changes from the

gravity signal by means of land surface modeling. Plans for a follow-on mission

to GRACE may result in groundwater storage estimates that are more accurate and

of greater relevance to typical large aquifer systems [57]. The GRACE follow-on

mission is scheduled for 2017 and would refly the identical GRACE spacecraft and

instruments but supplement the micrometer-level accuracy microwave measure-

ment with a laser interferometer with nanometer-level accuracy.

Models are being developed to identify groundwater potential zones [6–8]. For

example, Asadi et al. [1] have performed a model study for sites in the Hyderabad

and other districts of India, which identifies groundwater potential zones using

IRS-ID PAN and LISS-III satellite geocoded data on a 1:50,000 scale. The infor-

mation from base maps, drainage maps, watershed maps, geomorphology maps,

groundwater table maps, and groundwater infiltration maps were used as data layers

in a GIS to prepare a database. Then the relationships between the GIS data layers

were analyzed and integrated to prepare the groundwater potential zones map.

Machiwal et al. [58] used ten thematic layers in a GIS, including data obtained

by remote sensing, and multi-criteria decision-making techniques (MCDM) to

delineate groundwater potential zones in the Udaipur district of Rajasthan, India.

The GIS layers included topographic elevation, land slope, geomorphology, geol-

ogy, soil type, pre- and post-monsoon groundwater water depths, annual net
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recharge, annual rainfall, and proximity to surface water bodies. These thematic

layers were studied by principal component analysis techniques to select the most

influential layers for groundwater prospecting. Seven thematic layers were selected,

and their features were assigned suitable weights according to their relative impor-

tance with regard to groundwater occurrence. The selected thematic maps were

integrated by weighted linear combination methods in a GIS environment to

generate the groundwater potential maps [58].

A recent example of successfully combining traditional geology and cutting-

edge digital tools to reveal underground aquifers in drought-stricken areas is

described by Gramling [59]. Accordingly, a scientific team led by geologist Alain

Gachet, head of Radar Technologies International (RTI), found large water aquifers

in northwestern Kenya where a drought was devastating the land, causing crops to

collapse, livestock to die, and prompting a food crisis that affected millions of

inhabitants in Kenya, Somalia, South Sudan, and Ethiopia. The team is part of the

UNESCO Groundwater Resources Investigation for Drought Mitigation in Africa

Program.

The area explored by Gachet’s team, Turkana County, Kenya, is bordered in the

east by Lake Turkana, a water-filled depression that is part of the East African Rift,

a region having a stretched and fractured crust. Between the fractures, sunken

blocks of land called grabens form sediment-filled troughs that are several kilome-

ters deep. The troughs were a primary target, because they are potential traps for

groundwater. To identify them, RTI used powerful computer programs to merge

refined geological knowledge with large samples of data from ground sensors and

space-based remote sensors. The data used included traditional geologic maps,

hydrologic data, satellite images, and gravity and seismic survey data. Gachet’s
team also used commercial satellite radar images to detect soil moisture. RTI

developed image-processing technology, WATEX, which “erases” obstacles,

such as rocks and villages that can obscure the images, to reveal traces of moisture

that can suggest the presence of an aquifer. WATEX helped identify five likely

aquifers under the desert, each more than 100 m below the surface, containing water

resources totaling at least 250 billion cubic meters. So far, drilling has confirmed

existence of two of the aquifers. The RTI team expects to find many more deeply

buried groundwater aquifers in arid regions, such as South Sudan and Sudan’s
Darfur state [59].

5 Detecting Freshwater Springs and Biomass

Freshwater springs can occur on dry land, in wetlands, and along the coast. Springs

occur when groundwater is confined by a low-permeability geologic formation,

which constrains water to a focused discharge point. Fractures in hard rock and

confining clay units are typical conduits for spring flow [60]. Springs may discharge

at the land surface or below the open water surface. In arid areas, freshwater springs

and irrigated areas induce the growth of a dense vegetation cover, including trees,
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shrubs, or grasses. Detecting biomass production is a common approach used to

identify the presence of freshwater springs.

5.1 Detecting Freshwater Plumes

Where groundwater enters a lake or coastal waters, it may display a thermal,

chemical, or vegetation signature that can be sensed remotely. To detect and map

freshwater plumes, remote sensors exploit differences in temperature, salinity,

turbidity, or color from ambient background water [61, 62]. Groundwater dis-

charges in submarine springs have been detected using airborne and satellite TIR

sensors [63, 64]. Thermal anomalies on beaches or in coastal waters are often

associated with freshwater springs.

In the United Arab Emirates, a critical shortage of water is the limiting factor in

municipal, industrial, and agricultural development. Most of the precipitation of up

to 400 mm falls in some of the higher mountainous areas and much of it infiltrates

into the ground. Thomson and Nielsen [65] did a study to determine to what extent

this water was infiltrating into the sea and was therefore lost to human use and

where such losses were occurring. The period of February to March was considered

the best time of the year to conduct an airborne TIR study for locating springs, since

the sea surface temperatures were at a minimum during this time of the year. Two

flights were conducted in the early morning to minimize effects of surface heating

by the sun and to take advantage of low tide conditions [66]. The sea state was

moderate and winds were light during both flights. Coincident with the airborne

data, surface temperatures of several different materials were measured at a number

of locations along the coast, including asphalt roads, sand, etc. Aerial photos at a

scale of 1:60,000 were also analyzed to aid in the identification of possible

groundwater discharge sites. At the time of the airborne data collection, ground-

water temperatures were about 13 �C higher than the sea surface temperature, and

any groundwater discharges would appear warmer than the surrounding sea water.

Colder discharges would indicate surface runoff from recent storms. Analysis of the

thermal imagery indicated eight possible areas of groundwater discharge which

were pinpointed on a topographic map and each identified with the name of the

nearest village [65]. All groundwater discharges occurred at the shoreline-seawater

interface, and no offshore springs were detected.

Groundwater discharges are usually not uniformly distributed but are strongest

near the shoreline and decrease exponentially away from the shoreline. The spatial

distribution of spring discharges into streams, bays, and lakes has been studied

using TIR and multispectral sensors on aircraft and satellites [9]. Multi-beam sonar

has also been used to characterize submarine freshwater springs down to depths of

tens of meters [67].
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5.2 Determining Biomass Production

Figure 4 shows a Terra MODIS image of the Nile River, which brings much-needed

water and silt to the Nile Valley, turning it into an oasis of agriculture and life. The

reason that the Nile River and some of the oases in Egypt are highly visible in this

image is because the river and springwater irrigate the soil and produce dense

vegetation that contrasts strongly with the surrounding arid land. At the apex of the

delta is Cairo, which appears as a gray-brown spot. The leaf-shaped patch of green

branching off the western side of the Nile is a depression that has been used as

irrigated agricultural area since 1800 BC.

Arid areas generally have sparse vegetation showing little biomass production.

However, where a freshwater spring emerges, biomass production is usually much

higher than normal. Aboveground biomass is usually evaluated by using one of

several vegetation indices [68, 69]. The most common index used is the NDVI,

which is expressed as the difference between the red and NIR reflectances divided

Fig. 4 True color Terra

MODIS image from August

23, 2003 of the Nile River

Valley with snakes in a

vegetated green line from

Lake Nasser in southern

Egypt to the edge of the

Mediterranean Sea, where it

widens out into a highly

productive, vast delta.

Credits: NASA
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by their sum [70, 71]. These two spectral bands represent the most detectable

spectral characteristics of green plants. This is because the red radiation is absorbed

by the chlorophyll in the surface layers of the plant (palisade parenchyma) and the

NIR is reflected from the inner leaf cell structure (spongy mesophyll) as it penetrates
several leaf layers in a canopy. Since the NIR reflectance depends on the abundance

of plant tissue and the red reflectance indicates the leaf surface health condition of

the plant, the NDVI can be related to plant biomass or stress. It has been shown by

researchers that time series of remote sensing data can be used effectively to

identify long-term trends and subtle changes of NDVI by means of principal

component analysis [68, 72, 73]. However, the NDVI must be used with caution

in areas with less than 20 % vegetation cover because the vegetation spectra will be

distorted by the soil reflectance. Care must also be used in areas where the

vegetation fraction is higher than 50 % and the signal is pushed into the saturated

region of the nonlinear transfer curve.

Visible, infrared, and microwave sensors have varying sensitivities to above-

ground vegetation biomass. Optical and radar remote sensing methods and empir-

ical and statistical regression models, some using NDVI, have been applied to

estimate the amount and variability of aboveground biomass [74–78]. Remote

sensing has been used to collect large amounts of biomass data on a global scale

for forested areas, such as upland forests, forested wetlands, and mangroves

[79]. Extensive work is under way with L-band SAR to develop operational

biomass programs across a range of countries, using an approach that is effective

over a biomass range of 0–200 tons/ha [80].

5.3 Biomass as a Drought Indicator

Drought is a gradual phenomenon, slowly taking hold of an area and stressing its

vegetation. In severe cases, drought can last for many years with devastating effects

on agriculture and water supplies. The underlying cause of most droughts, defi-

ciency in precipitation, can be related to variations in large-scale atmospheric

circulation patterns and the locations of anticyclones, or high pressure systems.

Sometimes, whirling masses of air separate from the main westerly airflow and

effectively prevent the usual west to east progression of weather systems. When

these “blocking systems” persist for extended periods of time, weather extremes

such as drought, floods, heat waves, and cold snaps can occur [81].

One of the worst droughts of the twentieth century occurred in the Horn of Africa

in 1984 and 1985. Figure 5 shows the NDVI anomaly for August 1984. Within this

figure, dark red/brown indicates the most severe drought, light yellow areas are

normal, and green areas have denser than normal vegetation. This figure demon-

strates the widespread areas of severe drought that can be mapped using remote

sensing techniques.

The NDVI anomaly indicates the vigor of vegetation relative to the long-term

average. Using NOAA’s AVHRR, scientists have been collecting images of the
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Earth’s surface. By carefully measuring the wavelengths and intensity of visible

and near-infrared light reflected by the land surface back up into space, scientists

use the “Vegetation Index” (NDVI) to quantify the concentrations of green leaf

vegetation around the globe [82]. Then by combining the daily Vegetation Indices

into 8-, 16-, or 30-day composites, scientists create detailed maps of the Earth’s
green vegetation density that identify where plants are thriving and where they are

under stress (i.e., due to lack of water). To obtain the NDVI values for vegetation

biomass or stress studies in smaller areas, higher resolution satellite systems, such

as Landsat TM or SPOT, are being used [69].

6 Detecting and Mapping Wetlands

Freshwater wetlands include bottomland hardwoods, riparian forests, bogs, vernal

pools, and emergent marshes.

Freshwater wetlands greatly influence water quality, increase detention times of

floodwaters, provide habitat for wildlife, serve as spawning and nursery grounds for

fish, and contribute to the aquatic food chain [85, 86]. Wetlands also provide flood

protection, protection from storm and wave damage, water quality improvement

through filtering of agricultural and industrial waste, and recharge of aquifers

Fig. 5 This image shows the Normalized Difference Vegetation Index (NDVI) anomaly of the

Horn of Africa for August 1984. The NDVI anomaly indicates the vigor of vegetation relative to

the long-term average. Dark red/brown indicates the most severe drought, light yellow areas are

normal, and green areas have denser than normal vegetation. Courtesy: NOAA National Weather

Service
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[4]. Freshwater wetlands can be an important source of groundwater recharge and

water in arid and semiarid areas [87]. However, wetlands have been exposed to a

wide range of stress-inducing alterations, including dredge and fill operations,

hydrologic modifications, pollutant runoff, eutrophication, impoundments, and

fragmentation by roads and ditches.

For more than three decades, remote sensing techniques have been used effec-

tively to detect, map, and monitor tidal wetlands [88–92]. For instance, the US Fish

and Wildlife Service (FWS) through its National Wetlands Inventory has provided

federal and state agencies and the private sector with scientific data on wetlands

location, extent, status, and trends. To accomplish this important task, FWS has

used multiple sources of aircraft and satellite imagery and on-the-ground observa-

tions [92]. Most states have also created a wide range of tidal wetland inventories,

using both aircraft and satellite imagery. The aircraft imagery frequently included

natural color and color infrared images. The satellite data consisted of both high-

resolution (1–4 m) and medium-resolution (10–30 m) multispectral imagery.

The Landsat TM has been a reliable source for land cover data [93]. Its 30 m

resolution and spectral bands have proven adequate for observing land cover

changes over large areas (e.g., the Horn of Africa). Freshwater wetlands have

been mapped using Landsat TM and other medium-resolution data [94–97]. The

availability of high spatial resolution (0.4–4.0 m) satellite data has significantly

improved the capacity for mapping isolated and upstream freshwater wetlands [89,

98, 99]. However, the cost per sq. km. of imagery and its analysis increases very

rapidly from using medium-resolution to high-resolution imagery. Therefore, large

wetland areas or entire watersheds should be mapped using medium-resolution

sensors, such as Landsat TM at 30 m, and only small, critical areas should be

examined with high-resolution sensors, such as IKONOS at 1–4 m resolution [98].

Airborne geo-referenced digital cameras providing color and color infrared

digital imagery are particularly suitable for accurate mapping of small freshwater

wetland sites or interpreting satellite data. For example, in Fig. 6, the wetlands map

shown on the left was derived from an airborne ADS-40 digital camera image

shown on the right. At a spatial resolution of 0.5 m, the ADS-40 digital imagery was

able to identify three key species of marsh vegetation (i.e., Phragmites, Typha, and
Spartina). Digital cameras are often used on small aircraft flown at low altitudes

(e.g., 200–500 m) and can be used to guide and supplement field data collection [98,

100]. Most digital cameras are capable of recording reflected visible to near-

infrared light. In some cases digital camera spectral bands can be matched with

specific satellite imaging band, e.g., blue, green, red, and near-infrared bands

matching the bands of the IKONOS satellite multispectral imager [101]. Digital

camera imagery can be integrated with GPS information and used with geographic

information system software for a wide range of modeling applications [102].

Groundwater discharges in wetlands can also be identified by the unique vege-

tation species they may support. For example, in Spartina alterniflora tidal marshes

groundwater discharges have been identified because they decrease the local

salinity and thus attract other species to grow, such as invasive Phragmites australis
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[103]. Since most freshwater discharges in wetlands and in shallow waters are

small, high spatial resolution remote sensors must be used to detect them.

New advanced techniques have been developed for mapping wetlands and even

identifying wetland types and plant species indicating the presence of water [91, 98,

104–107]. The integration of hyperspectral imagery and Lidar-derived elevation

has also significantly improved the accuracy of mapping wetland vegetation.

Hyperspectral images help distinguish wetland species, and the Lidar data help

separate species by their height [108]. Major plant species within a complex,

heterogeneous wetland have been classified using multi-temporal high-resolution

QuickBird satellite images, field reflectance spectra, and Lidar height information

[109]. Using Lidar, hyperspectral and radar imagery, and narrow-band vegetation

indices, researchers can discriminate between some wetland species and also

estimate biochemical and biophysical parameters of wetland vegetation, such as

water content, biomass, and leaf area index [69, 109–112].

SAR sensors on satellites provide the increased spatial resolution that is neces-

sary in regional wetland mapping. SAR data have been used extensively for this

purpose [113–118].

The sensitivity of microwaves to water and their ability to penetrate vegetative

canopies make SAR also ideal for the detection of hydrologic features below the

vegetation [119–125]. The presence of standing water interacts with the radar signal

Fig. 6 The wetlands map shown on the left was derived from an airborne ADS-40 digital camera

image on the right. Note that three different marsh vegetation species were identified. Credits:
NOAA National Ocean Service, Charleston, SC, USA
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differently depending on the dominant vegetation type/structure [20] as well as the

biomass and condition of vegetation [126, 127]. In areas of open water without

vegetation, specular reflection occurs and a dark signal (weak or no return) is

observed [128]. Specular reflectance also occurs in wetlands dominated by lower

biomass herbaceous vegetation when a layer of water is present [129]. Conversely,

the radar signal is often increased in forested wetlands when standing water, such as

flooding, is present due to the double-bounce effect, i.e., the radar pulse is reflected

strongly by the water surface away from the sensor (specular reflectance) but is then

redirected back towards the sensor by a second reflection from a nearby tree trunk

[128, 130].

Wetland InSAR is a unique application of the interferometric synthetic aperture

radar (InSAR) technique that detects elevation changes of aquatic surfaces. Most

other InSAR applications detect displacements of solid surfaces [131]. The tech-

nique works because the radar pulse is backscattered twice (double bounce) from

the water surface and vegetation. Wetland InSAR provides high spatial resolution

hydrologic observations of wetlands and floodplains that cannot be obtained by any

terrestrial-based methods. InSAR observations of wetlands have been acquired over

various wetland environments using L-, C-, and X-bands and different polarizations

[132, 133]. L-band data are most suitable for the wetland InSAR applications.

However, the X- and C-band radar signals, which primarily interact only with the

upper sections of the vegetation, were also found to be useful. In general, promising

applications of InSAR for wetland observations include high spatial resolution

water level monitoring, detection of flow patterns and flow discontinuities, and

constraining high-resolution flow models [131].

7 Drought Monitoring and Prediction

Accurate mapping and monitoring of drought severity is important for water

management and drought mitigation efforts. A system for drought monitoring and

prediction can be a vital tool to facilitate drought response while saving money,

time, and lives [134]. Drought indicators can be based on one variable or a

combination of variables. Different indicators describe various aspects of droughts;

however, holistic, comprehensive drought assessment requires multiple indicators.

Drought indices integrate large amounts of data, such as precipitation, vegetation

condition, snowpack, streamflow, and other water presence/supply indicators, to

monitor drought severity in a comprehensive framework and to measure how much

the climate in a given period has deviated from historically established normal

conditions [135, 136]. These indicators can be obtained from different sources,

including satellite observations, model simulations, and reanalysis of past data.

One example of a system for monitoring and predicting drought is the Global

Integrated Drought Monitoring and Prediction System (GIDMaPS) developed in

2012 by researchers at the University of California, Irvine [83]. The system gathers

and synthesizes land-atmosphere model simulations and remote sensing
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observations to generate 1- to 4-month drought predictions. The system helps

farmers, commodity investors, local governments, and global relief organizations

plan for and react to droughts [84].

GIDMaPS is designed as a cyber-infrastructure system to facilitate drought

analysis based on multiple indicators and input data sets. The system can support

advanced data management, acquisition, storage, and visualization. The system

integrates data from multiple institutions and provides historical and near-real-time

drought conditions as well as probabilistic future forecasts [83]. Currently the

monitoring and prediction information are based on three indicators: standardized

precipitation index (SPI) as a measure of meteorological drought, standardized soil

moisture index (SSI) as indicator of agricultural drought, and the multivariate

standardized drought index as a composite agro-meteorological drought index.

From the main interface, users can select the input data, drought indicator, year,

and month to visualize or download drought information [84]. Other investigators

have been able to predict agricultural drought through the prediction of agricultural

yield using models based on the SPI and the NDVI [137].

Recent advances in remote sensing from satellites and radar, as well as the use of

thousands of daily in situ precipitation measurements, have significantly improved

drought monitoring capabilities [138]. Significant advances in mitigating drought

impacts have also been made by forecasting the conditions that result in drought.

Meteorologists at the NOAA Climate Prediction Center (CPC) are using medium-

range forecast models to predict soil moisture 2 weeks into the future. For the

longer term, meteorologists are using statistical techniques and historical drought

information to construct analogues to current conditions. They then create forecasts

up to several seasons ahead of time based on past events. CPC is also using

sophisticated computer models that link ground and ocean conditions to the over-

lying atmosphere to create forecasts of temperature, precipitation, and soil moisture

months in advance [138].

8 Conclusions

In arid and semiarid environments, the exploration, detection, mapping, and mon-

itoring of water resources are a prerequisite for freshwater availability, accessibil-

ity, fair utilization, and rational management. Arid lands, including soil degradation

and irrigated areas, have been classified based on vegetation and aridity indices

using remotely sensed data. The arid regions have been delimited on a global scale

by combining climate data, i.e., aridity index (AI), and vegetation data, i.e.,

vegetation index. Maps of the global distribution of arid regions have been pro-

duced using these unified criteria that have both physical and biological meaning.

To monitor and predict droughts, systems exist that use multiple drought indicators

to allow users to visualize and download drought information. Significant advances

in mitigating drought impacts have also been made by forecasting the conditions

that result in drought.
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Satellite and airborne remote sensing has proven to be a relatively cost-effective

and useful approach for detecting, mapping, and monitoring surface and subsurface

water as compared to conventional hydrological methods. Moderate resolution

satellites, such as Landsat TM and SPOT, and high-resolution satellites, such as

IKONOS and QuickBird, have been used to study surface water bodies and

determine their extent in arid and semiarid regions. Remotely sensed seasonal

changes of lake water area/extent can be combined with available topographic

data to estimate water volumetric storage changes. Where clouds, trees, and other

vegetation obscure the water surface, SAR is being used, since it can penetrate

clouds and vegetation to detect standing water. Radar altimetry has been applied to

obtain point measurements of water surface elevation in order to determine volu-

metric water storage.

Soil moisture is an indicator of subsurface water that is found in the unsaturated

zone above the water table. Soil moisture information is required to improve

meteorological and climate predictions and for assessing agricultural conditions,

irrigation management, hydrologic problems, and studies of desertification. Both

active radars and passive microwave systems can sense soil moisture. However, soil

moisture remote sensing still faces many challenges: the spatial resolution over land

needs improvement, accurate soil moisture estimates are limited to regions with

either bare soils or low amounts of vegetation cover, and better corrections for

surface roughness, vegetation cover, soil temperature, and topography must be

devised. Until recently, the moisture in only the top few centimeters of the soil

could be detected. The SMAP satellite mission, planned for the 2015–2020 time

frame, is designed to use advanced modeling and data assimilation to provide

information on deeper root-zone soil moisture.

To identify groundwater potential zones, powerful computer programs are being

developed to merge refined geological knowledge with large samples of data from

ground sensors and space-based remote sensors. The data used include traditional

geologic maps, hydrologic data, satellite images, and gravity and seismic survey

data. Thematic layers in a GIS, including remote sensing data, and multi-criteria

decision-making (MCDM) techniques are being used to delineate groundwater

potential zones. The selected thematic maps can then be integrated by weighted

linear combination methods in a GIS environment to generate the groundwater

potential maps.

Only one satellite mission can directly estimate/measure the quantity of ground-

water stored deep beneath the Earth’s surface. The GRACE mission accomplishes

this by measuring the Earth’s gravity field which is influenced by the quantity of

groundwater below the surface.

Freshwater springs can occur on dry land, in wetlands, and along the coast.

Springs may discharge at the land surface or below the water surface. In arid areas,

freshwater springs and irrigated areas induce the growth of a dense vegetation

cover, including trees, shrubs, or grasses. Vegetated areas can be detected by

remote sensors on aircraft and satellites and thus help find locations of freshwater

springs.
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Freshwater wetlands can be an important source of groundwater recharge and

water in arid and semiarid areas. High spatial resolution (0.6–4.0 m) satellite and

airborne hyperspectral sensors have significantly improved the capacity for map-

ping freshwater wetlands. However, the cost per sq. km. of imagery and the

accompanying analysis rises very rapidly as one goes from medium-resolution

(e.g., 30 m) to high-resolution imagery. Airborne geo-referenced digital cameras

are particularly suitable for mapping small freshwater wetland sites. To detect

changes of water level in wetlands, InSAR is being used. InSAR provides high

spatial resolution hydrologic observations of wetlands and floodplains that cannot

be obtained by any terrestrial-based methods.

Airborne and satellite remote sensors are showing considerable promise for

detecting, mapping, and monitoring surface water, soil moisture, freshwater

springs, and associated vegetation in arid and semiarid regions of the Earth.

Satellite-based remote sensing of groundwater is still an unresolved problem. At

present, the best that can be achieved with satellite sensors is to determine the

spatial distribution of groundwater discharge and recharge areas, storage changes

over large areas, or measurement of surface water heads in large water bodies.

Combining satellite measurements with physically based models seems to offer

renewed hope for detecting groundwater aquifers.
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Abstract Airborne imaging spectrometry is a powerful tool to investigate key

biophysical parameters in inland waters. High spectral resolution data forms a

contiguous spectrum that enables the detection and identification of a variety of

key water quality indicators (e.g. cyanobacteria pigments). High spatial resolution

imagery is suitable for fine-scale observation (e.g. the patchy spatial distribution of
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phytoplankton in productive waters). Airborne observations ensure flexible flight

paths that allow observations of unexpected events to be acquired promptly. In this

chapter, we present an overview of remote sensing techniques, by focusing on

imaging spectrometry, for assessing water quality parameters in inland waters such

as lakes, streams, rivers, reservoirs and ponds (defined ‘Case-2 waters’ according to
a traditional remote sensing terminology). Then, we present examples of appli-

cations by using airborne Multispectral Infrared and Visible Imaging Spectrometer

(MIVIS) images of Italian inland waters acquired at a spatial resolution varying

from 3 to 5 m. Those examples include the retrieval of water quality parameters

(i.e. chlorophyll-a, suspended particulate matter and coloured dissolved organic

matter), the detection and monitoring of submerged vegetation, the observation of a

cyanobacteria bloom in productive lakes and the investigation of the signal

reflected by floating materials of terrestrial origin (i.e. pollens and oil).

Keywords Airborne • Cyanobacteria • Hyperspectral data • Lakes • Rivers • Water

quality

1 Introduction

Inland natural waters are complex physical–chemical–biological systems including

living and non-living materials that may be present in aqueous solutions or in

aqueous suspensions. Together with air bubbles, foams and scum besides inhomo-

geneity resulting from small-scale water eddies, these components determine the

bulk optical properties of inland waterbodies [1]. Such a complexity can be optically

defined as ‘Case-2’ waters according to water classification established by Morel

and Prieur [2]. These waters are influenced not just by phytoplankton and related

particles (e.g. organic particles from death and decay of phytoplankton) but also by

other substances introduced from outside the water column that vary independently

from phytoplankton (e.g. resuspension of bottom particles in shallow areas, inor-

ganic and organic suspended matter from land drainages and tributary) [3].

Balance and interaction of water components determines the quality of these

delicate inland water ecosystems, whose quality is threatened by substances and

factors of different origin: for instance, the content of nutrients, suspended parti-

culate matter (SPM) originating from soil erosion, the presence of heavy metals and

pesticides continuously added by anthropogenic sources. The quality of surface

water in lakes, rivers and reservoirs is a major concern around the world. Eutrophi-

cation of surface waters from human and agricultural wastes and nitrification of

groundwater from agricultural practices have affected large parts of the world, with

unpredictable consequences on the quality and preservation of ecosystem goods

and services [4].

When deterioration of inland water quality is caused by optically active sub-

stances, the effect of these changes can be observed with optical remote sensing
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instruments. The nature and magnitude of these changes are controlled by the total

amount of absorption and scattering occurring into the water volume that may be

attributable to each optically significant organic and inorganic, suspended and

dissolved, living and non-living component contained in the natural waterbody.

At present, a variety of water quality parameters have been identified in literature as

detectable by modern passive sensors onboard satellites: e.g. chlorophyll-a (chl-a)

[5, 6] and phycocyanin (PC) [7, 8], SPM [9, 10], coloured dissolved organic matter

(CDOM or yellow substances) [11, 12] or the diffused attenuation coefficient as

measure for water transparency [13].

Floating materials such as oils (e.g. [14]), cyanobacteria scum (e.g. [15]), pollen

or vegetation (e.g. [16]) can also be detected from remotely sensed imagery. The

capacity of remote sensing in detecting those materials is relevant, because what-

ever is floating on the water surface might be the consequence of unusual events

(e.g. oil spill, massive blooms of cyanobacteria) and might have relevant impacts on

the landscape (e.g. [17]). Furthermore, when water transparency allows light to

reach the bottom, the backward signal reaching the sensor also includes spectral

information about the substrate. In such cases, the spectral signature of the bottom

and the water depth are detectable from remote sensors. From these measures, the

next ecological relevant information may be derived: total area of plant coverage,

broadness of the littoral zone covered by macrophytes, growth cycle of the macro-

phytes or species compositions (e.g. [18–22]).

2 Methods: An Overview

Conceptually, remote sensing of water quality is simple: sunlight, whose spectral

properties are known, enters a natural waterbody. The sunlight’s spectral character
is then altered, contingent upon the absorption and scattering properties of the

waterbody (which, of course, depends on type and concentration of the various

constituents composing that particular waterbody). Part of the altered sunlight

eventually makes its way back out of the water and can be detected from a sensor

aboard an aircraft or satellite. Knowing how different substances spectrally alter

sunlight, for example, by wavelength-dependent absorption/scattering or by fluore-

scence, makes it possible to assess which substances are present in the water and in

what concentration.

When spectral characteristics of the parameters of interest are known, semi-

empirical methods are generally used. This knowledge is included in the statistical

analysis by focusing on well-chosen spectral areas and appropriate wavebands used

as correlates. Recently, Odermatt et al. [23] provided a review of the remote sensing

algorithms, currently adopted to retrieve water quality parameters. They distin-

guished semi-empirical [24, 25] from spectral inversion procedures, the latter built

on matching spectral measurements with bio-optical forward model-derived signa-

tures by means of inversion techniques.

Imaging Spectrometry of Inland Water Quality in Italy Using MIVIS: An Overview 63



As an example, semi-empirical methods are widely used in productive waters to

assess chl-a concentration. These methods employ band ratios between the second-

ary chl-a absorption maximum (at around 675 nm) and adjacent spectral bands not

affected by phytoplankton absorption, such as the near-infrared reflectance peak

near 700 nm [26, 27]. In other cases they use a combination of bands in the same red

near-infrared regions [28, 29]. Matthews et al. [15] implemented an algorithm

named ‘Maximum Peak Height’ in order to map the chl-a concentrations from

remotely sensed images in hypertrophic conditions created by cyanobacteria

proliferation.

Spectral inversion procedures are more generic and might be applicable inde-

pendently of ground measurements and sensor characteristics. In the analytical

approach, the concentrations of water quality parameters are related to the bulk

inherent optical properties (IOPs) via the specific inherent optical properties

(SIOPs). The IOPs of the water column are then related to the water reflectance

and, hence, to the top-of-atmosphere radiance, such as described by the radiative

transfer theory [30, 31]. The analytical method involves inverting all those associ-

ations to determine the water quality from remotely sensed data. Approaches used

to invert bio-optical models may include matrix inversion methods [32, 33], neural

networks [34, 35], look-up tables [36, 37], optimisation techniques [38–42] or

classification-based approaches whose end-members are created by forward runs

of the bio-optical model [43]. An example of such approach, using hyperspectral

satellite data, Hyperion, acquired in Case-2 waters for chl-a, tripton and CDOM

retrieval can be found in Brando and Dekker [32] and Giardino et al. [44]. In their

work a linear matrix inversion method was used to invert a bio-optical model,

which was parameterised according to the SIOPs in both study areas, starting from

the atmospherically corrected Hyperion reflectance.

Quantitatively, the relationships developed to assess water quality in lakes

within semi-empirical approaches are often site dependent and can be only applied

to those images from which relationships are derived. Well-calibrated and validated

spectral inversion procedures are instead applicable to every site acquired over the

selected waterbody (presuming constant SIOPs), giving the opportunity to assess

water quality independently from ground measurements. The procedure is also

transferable to other systems, for which the optical characterisation of the

waterbody is known. Nonetheless, they are used less because of the difficulties,

or inaccuracies, in obtaining the parameters and the efforts required in calibrating

the model [45].

Whatever approach is chosen, the assessment of water quality in inland water,

from remote sensing, usually requires the transformation from sensor radiance to

surface reflectance values to remove the atmospheric effect. The atmospheric effect

is a dominant disturbance in remote observation of water quality, and imprecise

corrections may produce large errors in obtaining water reflectance and conse-

quently in retrieving concentrations of water quality parameters [33]. As a mini-

mum, bidirectional effects of scattering and absorption in the atmosphere under

varying aerosol optical depth are usually accounted for. Then to retrieve the water

reflectance, correction for adjacent scattering from land into the light path, and/or
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multiple scattering of light on water surface, might need to be accomplished. As

inland waters are typically delimited by land, the contribution of reflections from

the surrounding environment on the water surface might interfere with the esti-

mations of signals coming from water. The remotely sensed signals coming from

water might be finally affected by the illumination and acquisition geometries. The

effect of wave-induced sun glint may happen and obscure the radiance originating

from the water. Such glint, which is particularly noticeable with high spatial

resolution sensors, hence hindering the mapping of water quality and benthic

features, can be corrected according to published procedures [46–49].

3 Imaging Spectrometry

Algorithms for assessing water quality in optically complex waters perform best if

they can make use of hyperspectral data. Hyperspectral remote sensing, or imaging

spectroscopy, provides measurements across numerous discrete narrow bands,

forming a contiguous spectrum that enables detection and identification of key

biophysical properties of water column and bottom. For example, in case the chl-a

concentration is estimated according to band ratio which makes use of red (680 nm)

to near-infrared (700 nm) bands, the advantage of having a signal on a contiguous

spectrum relies on the ability to define the algorithm according to the shift of the

near-infrared reflectance band to be used [3]. Figure 1 shows the subsurface water

reflectance computed from forward run of the bio-optical model [50] for chl-a

concentration changing from 5 to 50 mgm�3. With increasing chl-a concentrations,

Fig. 1 Subsurface water reflectance provided by a bio-optical model [50] run for concentration of

chl-a varying from 5 to 50 mgm�3 (shown by the arrows). In the near-infrared region, the

wavelength position of the peak, adopted in band-ratio algorithms for chl-a estimation, shifts

from 694 to 706 nm
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both the appearance and intensification of peak around 700 nm and the shift of

reflectance peak wavelength position from 694 to 706 nm are noticeable.

However, for spectral inversion procedures, a hyperspectral dataset could facilitate

a physics-basedmodelling approach to quantitatively retrievemultiple constituents of

interest (e.g. PC, chl-a, SPM, CDOM, phytoplankton functional types and benthic

composition) ([51] and references therein). In fact, hyperspectral remote sensing

provides essential data to de-convolve the remotely sensed signal and, thence, to

detect the water components that could bemissed bymultispectral instruments, e.g. if

the dataset contains many narrow spectral bands, then hyperspectral measurements

can make the direct detection of the PC pigment easier ([52] and references therein).

Modern space-borne hyperspectral sensors (e.g. Hyperion, Hyperspectral Imager

for the Coastal Ocean (HICO)) showed increasing capabilities in water quality [53–

55], but they still present some inaccuracies in monitoring environments that are

highly variable in space, e.g. especially in inland and near coastal waters. Özesmi

and Bauer [56] observed how spatial resolution is one of the primary limiting factors

in the application of satellite remote sensing to freshwater ecosystems. High spatial

and spectral resolution data are essential attributes to provide accurate retrieval of

water quality in both optically deep and shallow waters (e.g. [22]). The signal-to-

noise ratio of the sensor is also critical in making accurate measurements of water

quality parameters but, for the sake of brevity, will be not discussed in this chapter. In

this context, high-resolution airborne hyperspectral sensors (e.g. Airborne Imaging

Spectrometer for Applications (AISA), MIVIS, Airborne Visible/InfraRed Imaging

Spectrometer (AVIRIS), Compact Airborne Spectrographic Imager (CASI),

HYperspectral MAPper (HYMAP)) represent enhanced mapping tools (e.g. [16,

38, 39]) and also preliminary tests to design satellite-based systems (e.g. PRecursore

IperSpettrale della Missione Applicativa (PRISMA), Environmental Mapping and

Analysis Programme (EnMAP), Hyperspectral Infrared Imager (HyspIRI)). For

example, in previous years, Koponen et al. [57] andGiardino et al. [58] used airborne

AISA and MIVIS images, respectively, for simulating MERIS data on lakes.

4 MIVIS Applications in Italian Inland Waters

Generally inland waters include freshwater bodies as lakes, streams, rivers, reser-

voirs and ponds. In this study some Italian natural lakes, one fluvial lake and one

river were considered. Italy has the highest number of lakes among Mediterranean

countries; its most important lacustrine region is located in Northern Italy and

includes deep subalpine lakes and some small–medium lakes. These lakes represent

more than 90 % of the total Italian freshwater volume [59, 60]. The largest Italian

subalpine lakes have morphometric characteristics in common: they are narrow,

with north–south elongated shapes, and their floors lie below sea level.

The Italian subalpine lakes have high ecological and environmental value and are

valuable resources of water within densely inhabited areas.Management and conser-

vation of water quality and maintenance of biodiversity currently represent topics of

major importance because of the need for technical support and scientific data for

planning needed interventions.Within such a frame, imaging spectrometry definitely
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represents a modern technology. In particular, since late 1990s airborne MIVIS

hyperspectral data have been mainly used in Italy to assess inland water quality [61].

The hyperspectral Multispectral Infrared Visible Imaging Spectrometer

(MIVIS) sensor [62, 63] is a Daedalus modular system composed of four imaging

spectrometers which simultaneously record radiation coming from the Earth in

102 spectral channels from the visible to thermal infrared red spectral range

(wavelengths ranging between 0.43 and 12.7 μm). MIVIS has been demonstrated

to be a powerful instrument for mapping purposes in many different natural

contexts, including lakes, lagoons and wetlands (e.g. [64, 65]). Results showed

the great potential of the MIVIS sensor to clarify complex dynamics between

primary producers [66], track their evolution [67], evidence complex patterns in

the distribution of submerged aquatic vegetation and SPM [68], map macrophyte

distribution and changes [67, 69, 70] and finally provide useful information to

ecologists and environmental managers.

Figure 2 shows the location of the waterbodies considered in this study: three

natural lakes (Garda and Idro in northern Italy and Trasimeno in central Italy), a

system of three small fluvial lakes in Mantua and the Po River (where it receives the

Fig. 2 Position and names of waterbodies and MIVIS imagery data shown in the table (map
source: Global Lakes and Wetlands Database)
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waters from Lambro River). For those sites, MIVIS imagery has been acquired

(cf. the table in Fig. 2) and analysed to investigate their water quality, as discussed

in the following paragraphs.

4.1 Data Processing

The processing of MIVIS imagery, used in this study, is performed to correct data

for atmospheric effects and subsequently, for some applications, to retrieve water

quality parameters, substrate types and bottom depth.

The atmospheric correction was achieved with either ATCOR-4 [71] or 6S

(Second Simulation of a Satellite Signal in the Solar Spectrum, vector version

n. 1) [72] codes. ATCOR-4 is an atmospheric correction code used for the atmo-

spheric correction of small and wide Field Of View (FOV) airborne sensors.

ATCOR-4 uses look-up tables generated by MODerate resolution atmospheric

TRANsmission (MODTRAN) [73, 74], relating sensor radiances and albedo for

various atmospheric and geometric conditions. The 6S code is a basic radiative

transfer code which enables accurate simulations of satellite and plane observation,

accounting for elevated targets, use of anisotropic and Lambertian surfaces and

calculation of gaseous absorption. The 6S also performs the atmospheric correction

that, starting from the top-of-atmosphere radiance (or reflectance), allow the atmo-

spherically corrected reflectance to be computed.

The retrieval of the optical properties of water column and bottom from atmo-

spherically corrected imagery was achieved with BOMBER (Bio-Optical Model

Based tool for Estimating water quality and bottom properties from Remote sensing

images), a software package [75] based on the works from [41, 76, 77], which

makes a spectral inversion of bio-optical models for optically deep and optically

shallow waters. Several menus allow the user to choose the model type, to specify

the input and output files and to set all of the variables involved in the model

parameterisation and inversion. The inversion is performed with an optimisation

technique [78] that simultaneously produces the maps of chl-a, SPM, CDOM and,

in case of shallow waters, bottom depth and distributions of up to three different

types of substrate. For both deep and shallow water models, a map of the relative

error involved in the inversion procedure is also given.

In this study, both ATCOR-4 and 6S were run with rural and continental aerosol

models, respectively, and by setting the target’s altitude and the solar-target geo-

metry; in all cases the aerosol concentration (or the visibility range) was derived

from in situ measurements of the aerosol optical thickness. Then, the parameter-

isation of the bio-optical model implemented in BOMBERwas carried out based on

in situ measurements collected in the study areas.
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4.2 Water Quality in Lake Trasimeno

Lake Trasimeno, a post-tectonic lake situated in central Italy, is the fourth largest

Italian lake (124 km2). The lake is almost round with a diameter of about 11 km,

three small islands and an open bay colonised by aquatic vegetation in the south-

eastern part. Tourism, agriculture and livestock breeding are the most important

activities in the Trasimeno area: cultivated lands cover about 70 % of its catchment

area (intensive agriculture with irrigational needs is only present in 28 % of the

area). Lake Trasimeno is a closed lake, with shallow unstratified waters (average

bottom depth is 4.5 m; maximum depth is 6 m). The lake shows from mesotrophic

to eutrophic conditions, where principal critical parameters are phosphorous and

chl-a, despite biological evidence of eutrophic–hypertrophic conditions. Important

ecological constraints are recurring sediment resuspension phenomena and phyto-

plankton blooms, including those of cyanobacteria [79].

The concentrations of chl-a, SPM and CDOM were estimated using MIVIS data

acquired on 12 September 2009 in the eastern portion of Lake Trasimeno. The

atmospheric correction of MIVIS data was carried out using ATCOR-4. Then, the

conversion of water reflectance into concentrations was based on a spectral inver-

sion procedure implemented in BOMBER. The bio-optical model implemented in

BOMBER was parameterised with data gathered from fieldwork activities

performed in 2008 and 2009.

Figure 3 shows the BOMBER-retrieved products in the optically deep waters

describing the concentrations of SPM, chl-a and aCDOM(440). The average values

of SPM, chl-a and CDOMwere, respectively, 5.9 gm�3 (standard deviation (SD)¼
1.0 gm�3), 1.1 mgm�3 (SD¼ 0.5 mgm�3) and 0.35 m�1 (SD¼ 0.06 m�1). These

values are reliable for the season, as in late spring lake waters have acceptable

quality that degrades from mid-summer until mid-autumn, when the lake is affected

by phytoplankton blooms [80]. Figure 4 shows the scatter plots of chl-a vs. SPM,

chl-a vs. CDOM and SPM vs. CDOM. The correlation is poor for each pair of water

quality parameters, confirming that Lake Trasimeno is typical Case-2 water.

4.3 Cyanobacteria Bloom in Lakes of Mantua

The lakes of Mantua are three small and shallow lakes surrounding the city of

Mantua; the Upper Lake is 3.7 km2 and has a mean depth of 3.6 m, the Middle Lake

is 1.1 km2 with a mean depth of 3.0 m and the Lower Lake is 1.5 km2 with a mean

depth of 3.3 m. The system of lakes is fed by the Mincio River, the emissary of Lake

Garda that was dammed during the twelfth century. The average flow of the Mincio

River usually decreases in summer (up to �90 %) from the combination of

upstream water deviation for irrigation purposes and less frequency of rain, with

consequent water stagnation and increased residence time [81].
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The water column hosts phytoplankton communities typical of eutrophic and/or

hypertrophic systems rich in organic matter (e.g. diatoms in spring, cyanobacteria

and chlorophytes in summer and autumn; [81]). Water stagnation favours phyto-

plankton blooms and chl-a can peak up to 200 mgm�3 in conjunction with the

minimum river flows (~2 m3s�1). The presence of cyanobacteria is a major concern

of the study area due to the potentiality of containing or releasing toxins into the

water when the algae die and decay.

Fig. 3 Three BOMBER-retrieved products obtained from MIVIS data acquired on 12 September

2009 (the shallow waters are masked and printed in black)

Fig. 4 Moving from left to right scatter plots of chl-a vs. CDOM, SPM vs. CDOM and SPM

vs. chl-a (each point is a MIVIS pixel)
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Kutser [52] made a review of passive optical remote sensing methods and

techniques for assessing cyanobacteria and other intense phytoplankton blooms in

coastal and inland waters. Most of the methods used to detect cyanobacteria are

based on the spectral characteristics of their accessory pigments (e.g. phycocyanins,

phycoerythrin) associated with different algal species (e.g. Microcystis spp.,

Planktothrix spp.). According to Kutser [43], MIVIS bands 10 (620 nm) and

11 (640 nm) allow PC absorption feature near 630 nm and a small peak in

reflectance spectra near 650 nm characteristic to cyanobacteria containing PC to

be detected.

MIVIS data were acquired on 26 July 2007, with a sun elevation of 63� and an

orientation of the sensor that unfortunately produced wave-induced sun glint

patterns in some parts of the image (for the purposes of this study, those glint

patterns were masked). Glint-free data were transformed into water reflectance

using the empirical line method calibrated with in situ water reflectance collected

during the MIVIS overpass as described in Bresciani et al. [82] and Giardino

et al. [83]. MIVIS data were further elaborated to assess the spatial distribution of

cyanobacteria. Figure 5 shows the map depicting the relative abundance of

cyanobacteria (according to filed observation, it was mainly composed of

Oscillatoria sp., Microcystis sp. and Aphanizomenon sp.).

4.4 Macrophyte Beds in Lake Garda

Lake Garda, located in the subalpine lake district, is the largest Italian lake

(368 km2). Its water volume is 49 km3 and has an average depth of 133 m (to a

maximum of 350 m). Lake Garda represents a valuable renewable resource,

Fig. 5 Cyanobacteria abundance map of Mantua lakes derived fromMIVIS data (glinted areas are

masked in black)
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because of the multiple uses of its waters. Similar to other subalpine lakes

(e.g. Maggiore, Como, Iseo and Idro), it represents an essential strategic water

supply for agriculture, industry, fishing and drinking. In its southern part, Lake

Garda is characterised by gentle slopes which facilitate the growth of submerged

macrophytes and the emergent Phragmites australis in the coastal zone. This

ecosystem is highly vulnerable to anthropogenic perturbations (e.g. water level

variations for agriculture and energy use and navigation), and according to the

European rules [84] rigorous monitoring of the lake is required. In this context, high

spatial and high spectral resolutions provide opportunities for cost-effective quali-

tative and quantitative analyses of the macrophyte distribution and change.

MIVIS imagery was acquired on 16 September 1997, 27 July 2005, 15 July 2010

and 27 June 2011 for the southern part of Lake Garda (Sirmione Peninsula). During

the airborne campaign performed on 27 June 2011, a flight plan consisting of

12 runs was successfully accomplished covering the entire coastline of Lake

Garda. The airborne campaigns were always performed synchronously with field-

work activities aiming to gather data for the calibration of a bio-optical model and

assessing the MIVIS-derived products.

MIVIS data were corrected for atmospheric effects with either 6S or ATCOR-4,

the latter used in the latest acquisitions. The classification of submerged macro-

phytes and uncolonised sandy substrates was achieved by the spectral inversion of

the atmospherically corrected MIVIS reflectances. Similarly to Lake Trasimeno,

the spectral inversion was achieved with BOMBER where the implemented

bio-optical model for shallow waters was parameterised with data gathered from

fieldwork activities—in excess of 60 days over 10 years of in situ measurements.

The bottom cover identification has been mapped considering bottom depths

(i.e. those estimated with BOMBER synchronously with retrieval of bottom

types) lower than 7 m, according to Giardino et al. [69], which is the limit of

sensitivity of the model in Lake Garda waters.

Figure 6 shows the distribution of macrophytes in the whole Lake Garda: in the

northern and in the central parts, the presence of macrophytes is small because the

morphological characteristics (slopes descending fast to the lake) are not suitable

for the growth of macrophytes; conversely depth gradients in the southern Lake

Garda facilitate the growth of macrophytes. About 20.5 km2 of shallow waters

(i.e. bottom depth <7 m) has been mapped: approximately 17 km2 is characterised

by the presence of macrophytes, even if in some cases sparse.

Figure 7 shows the histogram depicting the height of the water column above the

canopy in the Sirmione Peninsula area (cf. Fig. 6, zoom with the red frame) as

derived by the MIVIS data collected from 1997 to 2011, according to the procedure

described above (for more details refer to Bresciani et al. [67] and Giardino

et al. [69]). The height of the water column above macrophytes is plotted together

with water level fluctuation and water clarity (both derived from in situ measure-

ments); the macrophyte distribution along the littoral zone of the Sirmione Penin-

sula might be linked to those two physical parameters; thus, the macrophyte change

is then a consequence of both the anthropogenic pressure and meteo-climatic

variations.
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4.5 Floating Materials in Lake Idro

Lake Idro is located in the subalpine district, west of Lake Garda, at an altitude of

368 m above sea level. The lake surface area is 11.03 km2, maximum depth about

124 m and lake volume approximately 0.85 km3. According to its trophic status, the

Fig. 6 Macrophytes (in green) cover map, up to 7 m depth, as estimated from MIVIS imagery

acquired on 27 June 2011

Fig. 7 The histogram bars show the height of the water column above the macrophyte bed in the

Sirmione Peninsula area (cf. Fig. 6, red box) as derived by the MIVIS data collected from 1997 to

2011. The two lines show water level fluctuation and water clarity for the same period
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lake is meso-eutrophic and belongs to the meromictic type of circulation. The lake

provides an important economic source for the local population mainly in terms of

tourism recreation. It is the first Italian natural lake entirely transformed to a

hydroelectric reservoir in 1929. Throughout the past decade, the progressive

stabilisation of the water levels has enhanced the development, maintenance and

proliferation of dense macrophyte stands all around the littoral zone, as a probable

consequence of nutrient and organic matter accumulation in surface sediments. The

steep slopes surrounding the lake are colonised by a mixed deciduous forest.

Depending on the season, pollens, dead leaves and other terrestrial material might

be easily transported into the air and deposited in the lake.

Beyond the reproductive function, the role of pollen in ecosystems, including

Lake Idro, is poorly investigated. There are few evidences for its trophic function

[85] or for its ability to convey harmful substances and/or toxins. There are

numerous species, genera and families characterised by the production of allergenic

pollen, among these the Pinaceae. The family Pinaceae includes many genera

distributed throughout the Italian territory, anticipated pollen production in late

autumn. An example is represented by Cedrus (such as C. libani and C. deodara), in
the basin of Lake Idro, that during windy days is likely to be also transported on the

water surface.

The accumulation of floating materials on the water surface might lead to

complications for water-related interpretation and studies due to potential problems

of specular reflection and other influences on colour and brightness. Since floating

materials (e.g. plants) might have a significantly different spectra signal from that

of water, the detection of those materials can be remotely sensed. Commonly, the

algorithms which allow those materials to be detected from passive remote sensing

make use of the near-infrared wavelength as it is expected that in this region the

signal coming from water is usually relatively low. Villa et al. [86] showed how

good floating vegetation monitoring capabilities are ensured by the use of simple

and straightforward approaches based on vegetation indices.

Figure 8 shows a deposition phenomenon of terrestrial origin on Lake Idro

observed by MIVIS data acquired on 3 December 2009: because it was early

December, most likely the Cedrus species are responsible for the observed pheno-

menon. The atmospherically corrected reflectance obtained with ATCOR-4 shows

(cf. pasted graph in Fig. 8) the different behaviour of the signal coming from the

Lake Idro waters with respect to those where the pollen was floating. The spatial

dimension of the phenomenon underlines the possible local impact of the dispersion

of pollen and the role it may have in ecosystems, especially aquatic ecosystems.
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4.6 Oil Spill in Confluence of Lambro and Po Rivers

The Po River, 652 km in length, is the main Italian river. The Po watershed drains

70,000 km2, and land use is both industrial and agricultural. The Lambro River, a

tributary of the Po River (ca. 350 km from the mouth), flows through the most

heavily industrialised and densely populated portion of the Po River basin. The

stretch of the Po River, located immediately downstream from the confluence of the

Lambro River, does not receive any other major tributary for about 21 km along its

course. The approximate annual mean flow of the two waterbodies is ~70 m3s�1 for

the Lambro River and ~580 m3s�1 for the Po River in its middle reach [87]. Despite

the implementation of a sewage treatment plant built in 2002, the Lambro River

water quality remains poor [88].

On 23 February 2010, the contents of several silos containing oil and other

hydrocarbons poured into the river north of Milano. This oily mass (estimated over

2.5 million litres) flowed down the entire length of the Lambro River, and despite

both local authorities’ and civil defence’s efforts to stop the flow, on 24 February

the oil entered the Po River. This disaster, of course, caused considerable damage to

wildlife and vegetation in both rivers.

Airborne human observations can meet the primary need to identify an oil spill

but, when airborne observations are combined with imaging spectrometry, a

detailed map of the oil spill can be generated. Leifer et al. [89] made a substantial

review on oil spill remote sensing, including a segment on airborne imaging

spectrometry (cf. Table 2 in [89]). The electromagnetic spectrum, almost entirely,

from the ultraviolet toward the thermal infrared wavelengths (and further beyond

the microwave region), can be used for deriving information on oil spill events.

Fig. 8 The false colour MIVIS image of Lake Idro clearly shows floating materials of terrestrial

origin (i.e. pollen from C. libani and C. deodara). The graph shows the atmospherically corrected

MIVIS reflectance derived from the lake surface from pixels where the pollen is floating (i.e. black
line) or absent (gray line)
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Within the visible near-infrared wavelengths, the detection of areas affected by a

floating oil spill can make use of spectral differences between oil and water

[90]. With respect to satellite, airborne hyperspectral and thermal infrared data

have free-overcast collection and free-scheduling advantages. In particular, the

timeframe for collecting and processing the data is important for oil spill surveil-

lance and monitoring; data should be available in real-time and permit easy

interpretation and use. Time is particularly critical for an oil spill occurring in

rivers as water current can rapidly spread the oil over a long area in a short time.

We mapped the distribution of the oil spill flows from MIVIS data acquired on

24 February 2010; the flight was undertaken in the study area due to the alert status

happening in Lambro River the day before. MIVIS data were collected from an

altitude of 1,500 m with a spatial resolution of 3 m. Figure 9 shows a true colour

Fig. 9 The true colour MIVIS image clearly shows the transport of oil from Lambro into Po,

where the red line outlines the oil flow in the Po River. The graph shows the atmospherically

corrected MIVIS reflectance of the two rivers from pixels outlined in the image (white and black
squares for Lambro and Po, respectively)
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composition of the oil flowing from Lambro into Po River. The atmospherically

corrected reflectance achieved with ATCOR-4 shows the different behaviour of the

signal coming from the very turbid Po River waters with respect to those of Lambro

River, where the oil film produce a spectral signature that is comparable to literature

data [89].

In this application, the clear advantages of MIVIS were the flexibility of timing

of flight and its spatial resolution. Further studies would need to better investigate

the hyperspectral signal coming from oil in order to fully exploit the capabilities of

this sensor which spans from visible to near-short wave and thermal infrared.

5 Conclusions

The quality of surface water in lakes, streams and reservoirs is a major concern

around the world. Inland waters might be often strongly affected by changes due to

the increasing anthropogenic pressure and meteo-climatic variations [91,

92]. These ecosystems are inestimable renewable natural resources for biodiversity

and may also represent an essential strategic water supply for agriculture, industry,

fishing and drinking water. In many countries lakes are an important resource for

recreation and tourism with attractive landscape, mild climate and safe water

quality. Therefore, any effort placed for preserving and/or improving the quality

of these resources is justified.

In such a framework, remote sensing offers a useful tool for a variety of studies

which need multi-scale analyses. Because imaging spectrometry provides a conti-

nuous signal of reflected radiation from visible to infrared wavelengths, it provides

a means to investigate a variety of key bio-physical parameters such as phyto-

plankton pigments or bottom substrata types. In particular, airborne imaging spectro-

metry gathers data with a spatial resolution often more suitable for the fine-scale

studies developed for freshwater aquatic ecology [93].

This chapter presented an overview of imaging spectrometry for Case-2 opti-

cally complex waters that, besides marine coastal zones, also include inland waters.

The case studies of Italian lakes and rivers show how data acquired from the

airborne MIVIS sensors can be used to: (1) assess chl-a, SPM and CDOM concen-

trations; (2) detect cyanobacteria bloom; and (3) map submerged macrophyte

colonisation patterns and their recent changes. Two applications using MIVIS to

recognise floating materials are presented by focusing on the advantages of a fine

spatial scale and a flexible flight path, which are mandatory to monitor water quality

in rivers and streams because of temporally dynamic conditions [94].

Hyperspectral airborne observations will keep contributing to freshwater aquatic

ecology studies and water quality monitoring as a very efficient means to extend

laboratory and ground-based measurements at local and regional scales. To fill the

gap in scale from regional to global, satellite missions that deploy imaging spectro-

meters for regular acquisitions (e.g. Landsat) are instead required (e.g. HyspIRI).
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Future research priorities that improve the exploitation of airborne imagery for

water quality purposes might include: (1) a need to investigate the improvements

gained from the synergistic use of different sensors in shallow waters (e.g. the use

of aerial LiDAR bathymetry adds data on geomorphic features for the benthic

habitat mapping achieved by imaging spectrometry); (2) a need of advanced

spectral inversion techniques to simultaneously retrieve the concentrations of

phytoplankton pigments (e.g. chl-a, phycocyanin and phycoerythrin); (3) a need

of unmanned aerial vehicles equipped with hyperspectral sensors to make the tool

more cost-effective and thence routinely used technique for water quality at local

scale.
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deterioration. This chapter focuses on harmful algal blooms in Lake Taihu (China),

as a case study, demonstrating the potential of remote sensing for integrated

assessment of watershed dynamics. The temporal and spatial variability of the

conditions in Lake Taihu and its watershed were derived from satellite data to

produce a monthly time series of algal bloom coverage, aquatic vegetation extent,

and land cover from 2000 to 2013. Environmental features related to nutrient

loading, climate conditions, and agricultural practices were also used to analyze

the driving forces of algal blooms. Two distinct temporal patterns were identified.

Prior to 2006, bloom initiation date was sensitive to agricultural activities (winter

crop productivity and nutrient loading). After 2006–2007, an inversion of this

relationship was observed, suggesting nutrient saturation with a shift to other

watershed scale stressors, mainly climate related. After 2009, a return to pre-2006

conditions was shown. These results demonstrate how remote sensing can be used

to monitor watershed dynamics as a whole, especially in conjunction with in situ

environmental data.

Keywords Algal blooms • Aquatic vegetation • Lake Taihu • Land cover • Remote

sensing • Water quality

1 Introduction

Inland water quality and consequently human health can be strongly affected by

human activities on a watershed scale. An integrated assessment and identification

of water quality stressors are needed to understand interactions and relations

between land use, human activities, and water quality. Remote sensing can deliver

a wide range of spatial–temporal information on environmental dynamics, making

it a fundamental tool for monitoring and management of complex ecosystems [1].

Lake Taihu, the third largest freshwater lake in China, serves as a primary

drinking water source for 40 million people in the Jiangsu and Zhejiang provinces

as well as the Shanghai municipality [2]. However, the Taihu watershed has

undergone tremendous change (driven by anthropic activities) during the past two

decades. In 1990, algal blooms caused the closure of 116 factories and the cessation

of water supplies to three million people in Wuxi [3]. In May 2007, a massive

cyanobacterial bloom of Microcystis led to water supply problems for over one

million people. These events brought the algal blooms of Lake Taihu to both

national and international attention [2, 4–6].

The increased occurrence of harmful algal blooms (HABs), mainly caused by

cyanobacteria, is a global issue and a serious threat to inland freshwater ecosystems.

Many genera of cyanobacteria produce toxins with adverse effects on human health

and aquatic life [7] and posing a threat to drinking and irrigation water supplies

[8]. Algal blooms have often been associated with eutrophication due to excessive

inputs of nutrients [9–11]. Nutrient inflow management actions have been put into
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place in many areas, often focusing on phosphorous (P) load limitations. But the

spread of non-nitrogen-fixing cyanobacteria (e.g., Microcystis, as in our case study

of Lake Taihu) and the influence of climatic variables (mainly temperature and

solar radiation) on bloom formation have introduced new factors, which need to be

taken into account when setting up management strategies aimed at reducing the

impact of HABs [12, 13].

The integration of remote sensing information about changes in both the aquatic

and terrestrial compartments can provide new insights into the assessment of inland

water bodies and coastal areas ecosystems. The objective of this chapter is to

demonstrate the capabilities of remote sensing in providing multi-temporal infor-

mation for water color and water quality (e.g., bio-optical parameters) as well as for

environmental drivers of water quality threats, such as HABs. Specifically, the

chapter focuses on HABs in Lake Taihu (China) to demonstrate the potential of

remote sensing for integrated assessment of watershed dynamics.

2 Study Area

The Lake Taihu watershed is located in one of the most important developing areas

of China and has experienced enormous changes in land use and land cover over the

past three decades. From 1990 to 2010, the population of Taihu watershed has more

than doubled, and economic growth brought along an increasing number of indus-

tries. The GDP of the area has seen a sharp increase, from 847 billion Yuan (RMB)

in 1998 to 2,662 billion Yuan (RMB) in 2007 [2].

The Taihu watershed occupies the southern part of Jiangsu Province (Sunan),

part of Zhejiang Province and Shanghai Municipality (Fig. 1). The Eastern China

lake region (around 36,900 km2), along the course of the lower Yangtze River, is

currently one of the most densely populated areas in the world and therefore subject

to significant anthropogenic pressures. More than 150 million people live in the

three provinces of this region, Anhui, Jiangsu, and Shanghai, where a large part of

national GDP is produced through industrial and agricultural activities. The local

per capita GDP is three times the national average and the population density

(averaging 600 per km2) is seven times higher than national average.

This region contains one of the most abundant surface water resources in China.

Hundreds of large and small lakes exist in the region, but most have undergone

significant eutrophication over the past three decades. Lake Taihu is the largest and

most endangered lake in the region, suffering from high nutrient loads and eutro-

phic condition, low water level, and frequent problems of massive anoxia and algal

blooms. These issues jeopardize basic ecosystem services for local population and

water resources for drinking water supplies, agriculture, fishing, fish farming, and

aquaculture.

High water levels in Lake Taihu generally occur during late August to

September, at the end of monsoon season, while low levels occur during November

to May (winter and spring), the dry season. Lake sediment cores have shown that
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sediment particle size has become coarser over the last century [14]. The concen-

tration of heavy metals, total organic carbon, and nutrients in the lake has also

increased since 1970s [14]. The largest nutrient inflow into Lake Taihu originates

from the southwestern sub-basin area (40–50 % of incoming TN and 60–70 % of

TP) and the northwestern sub-basin area (15–20 % of incoming TN and 15–20 % of

TP) [15].

The phytoplankton community during spring and summer seasons is dominated

by the presence of Microcystis cyanobacteria. This dominance has been attributed

to nutrient (N/P) ratios, underwater light availability, temperature, and zooplankton

grazing [16]. Cyanobacteria blooms occur on a regular basis with the highest

intensity in the northwestern bays (Meiliang Bay, in particular) where N-limiting

conditions (and excess P) are frequent [16]. Light availability was found to be

important in the deeper and more turbid central part of the lake on phytoplankton

composition and biomass [17].

For Microcystis, the dominant cyanobacterial species in Lake Taihu, Liu

et al. [18] assessed a high correlation between temporal dynamics and total

nitrogen-to-total phosphorus ratio (TN:TP), nitrogen composition, water tempe-

rature, and pH. Under such conditions, phytoplankton composition shows signs of

rapid replacement of chlorophyta (mainly Ulothrix) by cyanobacteria (mainly

Microcystis) [19]. These phenomena are more critical in the northern parts of the

lake (e.g., Meiliang Bay, near Wuxi city) than in the central part of the lake, because

of low water level, favorable currents, and boat traffic [17].

The effects of climatic variables and nutrient loading on formation and charac-

teristics of HABs in Lake Taihu have been studied by several research groups.

These researchers assessed the influence of increased temperature and decreased

concentration of nitrogen during the hot season on cyanobacteria biomass [19],

considering the dual control of both climate factors and nutrients on the risk of

bloom events [20]. In an earlier study, Chen et al. [21] identified temperature, wind,

Fig. 1 Study area, Lake Taihu, and its surrounding areas, with the location of Meiliang Bay,

Gonghu Bay, and Zhushan Bay
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and turbidity as the main driving factors for the formation of short-term phyto-

plankton blooms, while longer-term algal biomass dynamics were mostly corre-

lated with the level of nutrients available.

In 2007, an extraordinary algal bloom event occurred in Lake Taihu. It was

preceded by an anomalously mild winter season, which resulted in favorable

conditions for overwintering of phytoplankton biomass and cyanobacterial blooms

[17]. The 2007 bloom led to a drinking water shortage for more than one million

people when HABs caused temporary closure of water treatment facilities in

northern Lake Taihu. This event further raised the awareness of public authorities

to the elevated environmental and human costs of HABs [22].

In this framework, remote sensing approaches were developed to map algal

bloom spatial–temporal dynamics and their relation with environmental variables,

to better understand those phenomena and mitigate their effects [2, 13, 23, 24]. A

retrospective analysis by remote sensing and in situ measured data, focusing on

bloom duration and dating back to 1987, was carried out by Duan et al. [2,

25]. Their study showed three distinct trends: from 1987 to 1997, blooms occurred

later each year, while from 1997 to 2007 the trend was reversed, with blooms

starting earlier each year, and after the 2007 bloom event, initiation occurred later

each year. Bloom initiation date was found to correlate well with winter tempe-

rature minima and TN:TP ratios [23].

More recently, black water blooms, occurring in particular conditions of dissolved

organic matter and phytoplankton combination in water column, and favored during

springtime conditions in the macrophyte-dominated areas of the lake’s hyper-

eutrophic bays, were studied using remote sensing [25]. From this preliminary

study, the authors conclude that this phenomenon and its connection with

cyanobacteria and other algal blooming events needs to be further investigated.

Eutrophication and algal blooms have been partially attributed to climatic

influences, such as the increasing temperature, and anthropogenic influences such

as nutrient loading, but quantitative exploration of the main drivers has not been

performed on a watershed scale. An integrated assessment of water quality stressors

is fundamental to understand the relationship between land use, human activities,

and ecosystem degradation, with the ultimate goal of promoting a more sustainable

lake environment.

3 Remote Sensing of Lake Taihu Watershed

3.1 Dataset and Derived Features

In our study, the relationship between human activities and water quality of Lake

Taihu was investigated through remote sensing to better understand the links

between driving forces and dynamics of algal blooms. This was achieved by

using low to mid-resolution multi-temporal and multi-seasonal satellite images
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covering the period 2000–2013, specifically Landsat TM-ETM+, HJ-CCD 1A-B,

and Terra MODIS data and products. Table 1 provides an overview of remotely

sensed images used in the study.

Landsat 5 TM data acquired in September 2000 and September 2010 were used

to explore macrophytes’ spatial distribution and to assess aquatic vegetation

changes during the decade 2000–2010. Multi-seasonal Landsat TM-ETM+ and

HJ-CCD 1A-B data were used to assess phenological characteristics of aquatic

vegetation for the same decade.

MODIS vegetation indices covering February 2000 to November 2013 were

used to identify environmental features related to land cover and water quality.

MODIS 16-day Normalized Difference Vegetation Index (NDVI) composites were

summarized into a time series of NDVI monthly mean scores. These data were used

to create three sets of environmental features, i.e., products related to algal bloom,

winter crop phenology, and land cover of the Lake Taihu watershed.

Using the multi-temporal remotely sensed images, three products were derived

for the monitoring of Lake Taihu and its watershed: (1) algal bloom spatial and

temporal dynamics (2000–2013), described in Sect. 3.2; (2) aquatic vegetation

distribution (2000–2010), described in Sect. 3.3; and (3) land cover evolution in

the watershed (2000–2013), described in Sect. 3.4.

For algal bloom multi-temporal features, we derived (1) the maximum areal

extent of algal blooms, (2) the mean annual areal extent of algal blooms, and (3) the

starting date of bloom events (for which the mapped algal bloom area is >50 km2)

(Fig. 2).

Table 1 Satellite datasets used and their characteristics

Sensor Product

Spatial

resolution

No. of

scenes Dates Data content

Landsat

5 TM

L1G (TOA

calibrated)

30 m 7 2000 (13 June, 31 July,

17 September, 04 November,

06 December)

Multispectral

reflective bands

(VIS-NIR-

SWIR, 6 bands)2010 (24 May,

21 September)

Landsat

7 ETM+

L1G (TOA

calibrated)

30 m 5 2000 (01 March, 17 March,

04 May, 20 May,

11 October)

Multispectral

reflective bands

(VIS-NIR-

SWIR, 6 bands)

HJ-

CCD

1A-1B

L2 (TOA

calibrated)

30 m 10 2010 (22 February,

26 March, 30 April, 12 May,

06 June, 31 July, 13 August,

17 October, 27–

29 November, 09 December)

Multispectral

reflective bands

(VIS-NIR,

4 bands)

Terra

MODIS

MOD13Q1 250 m 318 February 2000–November

2013

Vegetation Indi-

ces (16-day

composites)
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For winter crop seasonality and phenology, we derived (1) the NDVI peak value

for agricultural winter crop season (April mean value) and (2) the NDVI loading as

an accumulated value of NDVI greater than 0.5 during winter season, as a proxy of

crop productivity (Fig. 3).

For features related to temporal land cover evolution, the multi-temporal evo-

lution of five main land cover classes was taken into account—urban dense, urban

sparse, agricultural medium intensity, agricultural high intensity, and natural vege-

tation—for each year from 2000 to 2013.

In addition to the environmental features derived from satellite data described

above, in situ datasets were collected to characterize the environmental dynamics of

Fig. 2 Areal extent derived from monthly satellite time series for 2002 algal blooming features

Fig. 3 NDVI peak as derived from monthly satellite time series for 2002 winter crop conditions
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the Lake Taihu watershed, including information about climatic condition and

nutrient loadings.

Monthly mean air temperature data from 2000 to 2012 were collected from the

weather station situated on Xishan Island, located on Lake Taihu. Previous studies

have determined that a critical water temperature for cyanobacterial blooms ranges

from 18 to 25 �C [18, 26, 27]. In studies of vegetation growth, crop dynamics and

insect outbreaks, measures of accumulated temperature, expressed as the sum of

degrees by which temperature changes in relation to a fixed level over a prolonged

period, have been often used [28, 29]. In the present study, we used the effective

accumulated temperature [20] during the hot season, expressed as follows: (1) the

temperature >20 �C, a sum of mean monthly temperature minus 20 �C for the

hottest months (May to September) of each year, and (2) the duration of the period

for which monthly mean temperature was over 20 �C (Fig. 4).

Total phosphorus (TP) and total nitrogen (TN) concentrations were determined

from monthly water samples collected from the center of two Lake Taihu sections

(Central and Meiliang Bay) at a depth of 0.5 m, from 2000 to 2010. TP and TN in

water samples were measured using combined persulfate digestion and spectro-

photometric analysis for soluble reactive phosphorus and nitrate at the Taihu

Laboratory for Lake Ecosystem Research (TLLER) [25].

Results of previous studies have demonstrated that the Lake Taihu system goes

from a P-limited condition in winter months to an N-limited condition during the

spring and summer seasons, when N-fixing cyanobacteria blooms occur [30]. Nutri-

ent loading during the year is generally characterized by a spring peak in TN

concentrations, which is probably linked to agricultural runoff (winter crops and

paddy rice starting season) [31]. For characterization of yearly nutrient loading

dynamics, we used in situ data of nutrient concentrations for deriving two distinct

features: (1) total nitrogen (TN) concentration accumulated during winter and early

Fig. 4 Mean temperature derived from monthly in situ time series for 2002
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spring, before bloom events generally start (around May), and (2) total phosphorus

(TP) annual mean concentration (Fig. 5).

3.2 Algal Bloom Monitoring

In past studies, the mean areal extent of algal bloom events from February 2000 to

November 2013 was determined using the Floating Algae Index (FAI) algorithm

[24, 25] with MODIS Level-0 data. Bloom initiation date was defined as the first

observation of surface bloom area larger than 150 km2. Considering Lake Taihu as

a whole, the spatial extent of the yearly maximum algal bloom extent was shown to

remain relatively constant from 2000 to 2003 (~400 km2), increased to 900 km2 in

2005, and reached a maximum of 1,500 km2 in 2006. The maximum area remained

relatively stable at 1,000–1,200 km2 for each year in the period 2007–2011, with the

exception of 2009 when it dropped to 550 km2.

Bloom extension of individual lake sections demonstrated a high heterogeneity.

In general, open lake areas showed lower bloom extent until 2006, while the bays

maintained a high spatial extent throughout the study period. The bloom extent

dynamics of Gonghu Bay were more similar to those of the open waters than the

eutrophic bays.

Algal blooms were first observed in Meiliang Bay and Gonghu Bay in June,

1987. In each year over the past two decades, the algal blooms were first observed

14 times in Meiliang Bay and 6 times in Zhushan Bay. The initial algal blooms were

seen simultaneously in Meiliang Bay and Zhushan Bay in 1991, 1994, 1997, and

2003. Since 2000, the initial algal blooms were found in the western and northern

bays and appear to begin to spread out in southward direction (see Fig. 1 for

Meiliang, Zhushan, and Gonghu Bays’ location).

Fig. 5 Total nitrogen (TN) and total phosphorus (TP) derived from monthly in situ time series

for 2002
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In our study, algal blooms were derived from NDVI monthly mean from

preprocessing of MODIS 16-day NDVI composites. By exploiting sensitivity of

NDVI to vegetation spectral features [32], an area within Lake Taihu is identified as

algal bloom in a specific month through a simple threshold approach separating

clear water, characterized by strongly negative NDVI values, by very high phyto-

plankton concentration (mean monthly NDVI> 0.05). Note that these are surface

accumulations and initiation date is not intended to identify the start of

cyanobacteria bloom within a water column.

Figure 6 shows the complete monthly time series of algal bloom areal extent

derived from algal bloom maps produced from 2000 to 2013. Algal blooms usually

start during spring season (April–May) and extend into late summer and early

autumn (September–November). The time series shows limited bloom extent for

years 2000 to 2005 and highlights the exceptional 2007 event, which was preceded

by a shorter 2006 bloom with a similar spatial extent. The overall intensity for 2008

to 2013 was less than 2007 but higher than pre-2006 conditions. The annual peak

distribution area of algal blooms was relatively constant around 62 km2 in 1987–

2000, with a significant increase to 317 km2 in 2005 and 806 km2 in 2006. The 2007

peak of 979 km2 occurred in late June, with a second peak with 855 km2 in

September [2].

Figures 7 and 8 show the spatiotemporal variation of algal blooms across Lake

Taihu (blooms are represented by purple color in Fig. 7 and cyan in Fig. 8), derived

from MODIS NDVI data at 250 m spatial resolution for 2 years with very different

characteristics: 2001, characterized by a low-intensity blooms, and the extreme

HAB event of 2007. From these figures, we can observe some distinct spatio-

temporal patterns; the 2001 bloom occurred in spring (May) and summer season

(August–September) and was particularly concentrated in the northern part of the

lake, where blooms have frequently occurred. The 2007 bloom started earlier

(between March and April) and lasted longer (almost until December). In 2007,

the maximum area covered by algal blooms was 900 km2 (nearly 40 % of the entire

Lake Taihu surface) extending from the northern bays to the central and even

southern part of the lake, which had been free from blooms in the past.
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Fig. 6 Algal bloom mean monthly extent series for 2000–2013
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3.3 Aquatic Vegetation Mapping and Changes

Aquatic vegetation or macrophytes are fundamental components of aquatic eco-

systems, providing numerous ecological functions. Littoral vegetation, mainly

constituted by common reed beds (Phragmites sp.) in Lake Taihu, provides nitro-

gen transformation and nitrogen loss functions [33], while floating macrophytes

(in particular Trapa sp.), present in abundance in eastern Lake Taihu, control

sediment resuspension and influence the lake’s phosphorous cycle [34]. Ma

et al. [35] mapped the extent and temporal changes of aquatic vegetation commu-

nities throughout Lake Taihu by remote sensing, identifying a reduction of 90 km2

between 2001 and 2007, with a loss of nearly 20 % of total macrophytes biomass in

the lake [35]. Remote sensing can provide crucial information about specific land

cover change features from multi-temporal datasets [e.g., 36].

In this case study, we explored changes in macrophytes coverage in 2000 and

2010, using data from the peak macrophytes extent in 2000 and 2010: Landsat

5 TM, acquired on 17 September 2000, and Landsat 7 ETM+, acquired on

21 September 2010.

January February March April

May June July August

September October November December

Fig. 7 Algal bloom mean monthly extent maps for year 2001 (low-level blooming example)
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Aquatic vegetation present in the Lake Taihu was classified into four macro-

classes: (1) emergent macrophytes, (2) floating macrophytes (including floating-

leaved plants), (3) submerged macrophytes, and (4) algal bloom, to which an open

water class was finally added. The approach adopted was a binary cascade decision

tree with expert-based threshold and input features using multispectral satellite data

described below:

• NDAVI—Normalized Difference Aquatic Vegetation Index: aquatic vegetation

greenness and vigor spectral index [37]

• SVI—Soil and Vegetation Index: terrain land cover perviousness index [38]

• NDWI—Normalized Difference Water Index: vegetation water content index

[39]

• Chl-a: concentration value according to the algorithm derived from the work of

Ma and Dai [40], calibrated using in situ data of two monitoring stations

The results indicate dramatic changes in the spatial distribution and abundance

of macrophytes during the decade, especially in eastern Taihu Lake (Fig. 9). Some

of these changes were associated to the increased activities of aquaculture and fish

farming in this region of the lake since 2000. Significant changes in the areal

January February March April

May June July August

September October November December

Fig. 8 Algal bloom mean monthly extent maps for year 2007 (peak event of the decade)
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coverage of submerged and floating vegetation classes occurred in the eastern part

of the lake (Table 2). The analysis of algae class was found to be strongly dependent

on algal bloom seasonality for the specific year (2000–2010) and was not consi-

dered in the aquatic vegetation analysis focusing on macrophytes.

Multi-temporal data were also used for the reconstruction of a time series for

phenology of different aquatic vegetation types. An example is given in Fig. 10,

where multi-seasonal profiles for 2000 and 2010 are shown for different macro-

phytes classes (identified through classification of satellite features). Using Landsat

TM-ETM+ (2000) and HJ-CCD 1A-1B (2010) datasets, we derived vegetation

greenness and vigor expressed as NDAVI scores [37] and chlorophyll-a (Chl-a)
content in water background calculated according to Ma and Dai [40].

3.4 Land Cover Change Assessment

Land cover change in the Lake Taihu watershed plays an important role in the

environmental dynamics of the area. The primary pollution source of the Lake

Taihu is related to wastewater discharge and nonpoint source nutrients from

agricultural activities [41]. The main agricultural crops in the Taihu watershed

are wheat and rapeseed during winter and paddy rice during summer [42]. Aqua-

culture is common in areas near the lake shore, and even in the lake itself, especially

in eastern and southeastern regions. The development of aquaculture activities,

which has grown considerably in the past 15 years (with the swamping of East

September 2000 September 2010

Fig. 9 Aquatic vegetation classification in Lake Taihu, derived from Landsat TM-ETM+ for the

years 2000 (left) and 2010 (right), in peak vegetation season (September)
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Taihu Bay), has resulted in eutrophication and water supply problems and a

reduction in the flood control capabilities of the Lake Taihu system [41].

Remote sensing is an effective tool for assessing land cover change in the

watershed [36, 43]. In this study, multi-temporal (yearly) land cover maps were

NDAVI (2000)
a

NDAVI (2010)
b

Chl-a (2000)
c

Chl-a (2010)
d
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Fig. 10 Aquatic vegetation seasonal phenology assessment (2000–2010), using Landsat

TM-ETM+ for the year 2000 and HJ-CCD 1A-1B for the year 2010: (a) NDAVI series for

2000, (b) NDAVI series for 2010, (c) Chl-a series for 2000, (d) Chl-a series for 2010
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Fig. 11 Multi-temporal profiles of NDVI derived from MODIS satellite data for different land

cover classes, showing the seasonal patterns characteristics of natural vegetation, agricultural

crops, and more temporally stable target such as urban areas (example based on 2006)
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produced at a 250 m spatial resolution, covering the Taihu watershed area from

2000 to 2013. The interannual temporal dynamics (Fig. 11) for five land cover

macro-classes were chosen as classification targets (urban dense, urban sparse,

agricultural low intensity, agricultural high intensity, natural vegetation). For

each year, two synthetic multi-temporal features were extracted: NDVI annual

mean value and NDVI annual standard deviation of the monthly mean. Annual

NDVI features (NDVImean and NDVIstdev) were clustered into the five categories

using ISODATA algorithm and were subsequently labeled according to this

classification scheme.

2000 2005

2009 2013

Fig. 12 Land cover maps produced starting from MODIS composites for specific years in the

range 2000–2013
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The expansion of the three main cities (Changzhou, Wuxi, and Suzhou) in the

region was particularly significant (Fig. 12). Changes in land cover (Fig. 13) show a

stable natural vegetation class, while the two urban cover classes increased from

little more than 20 % in 2000 to around 30 % of the entire basin (in particular for

sparse urban fabric) in 2013. Cropland, as the sum of the two agricultural land cover

classes, was reduced from about 70 % in 2000 to 60 % in 2013.

4 Algal Blooms Driving Forces

Algal blooms in Lake Taihu have been studied in the past, but most of the scientific

literature focused on specific areas, or specific drivers (e.g., nutrients). Globally,

bloom events have been shown to be influenced by multiple factors, including pH

level and CO2 concentration [44], salinity [45, 46], light intensity [47–49], and

temperature [13, 22, 50, 51]. Among the environmental factors that favor HABs in

Lake Taihu, studies have shown that factors such as water temperature, winter

climate, nutrient composition, nutrient loading, internal nutrients cycling, water

level, thermal stratification, reduced water transparency, and pH influence bloom

events [e.g., 18, 47, 52–54]. Among these factors, three are considered the most

important in Lake Taihu: temperature (climate factor), nutrient loading (nutrient

availability factor), and human activities (anthropogenic factor).

4.1 Temperature

Temperature, for both air and water, is a major environmental factor for phyto-

plankton growth. A positive correlation was found between initial bloom date and

winter season air temperature when the previous year’s winter temperature was
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examined [2, 22]. The correlation of initial blooms was most significant when

compared to minimum temperature (P¼ 0.048). These results were consistent with

another study [55] in which temperature was reported as a major factor in the growth

of phytoplankton. In addition, a tight correlation between algal recruitment and

cumulative temperatures during winter and spring was reported both in laboratory

and field studies in Lake Taihu [27]. The correlation between algal blooms and

temperature is related to enzymatic activities responsible for algal blooms [56],

as well as the stimulus effects of winter temperature on algal recruitment, one of

the important stages for algal blooms in the following year [57]. The winter of 2007

was one of the warmest winters, and the mean temperature from January to March

was higher than the mean monthly temperature in the preceding 25 years, with

increments of 0.36 �C in January, 2.78 �C in February, and 1.98 �C in March; this

increase may explain the massive algal blooms occurring in the summer of 2007 [4].

4.2 Nutrient Loading

Algal blooms have been attributed to excessive nutrient loading, mainly nitrogen

and phosphorus. It is hypothesized that Lake Taihu HAB events are associated with

the nutrient loading resulting from human activities. For the time period, 1991–

1996, the annual average of total nitrogen concentration increased from 1.18 to

3.62 mg/L, and total phosphorus concentration increased from 0.10 to 0.18 mg/L

[58]. Moreover, the concentrations of total nitrogen and total phosphorus in 2006

were found to be 200 and 150 % higher than the prior decade. Inputs of total

nitrogen and total phosphorus from the Taihu watershed area increased from around

43,150 and 1,750 metric tons in 2002 to around 44,700 and 1,850 metric tons in

2003, respectively. The spatial dynamics of algal blooms indicated the influence of

nutrients on algal blooms. The increased coverage of algal blooms in the south part

of the Lake Taihu was likely a result of the declining gradient of nutrient concen-

tration from nutrient loading in the northwest area of Lake Taihu. For example, the

total phosphorus loading from the northwest catchments area accounted for 55 % in

2002 and 53 % of the total lake loading in 2003, and the total nitrogen loading

accounted for 65 % in 2002 and 72 % in 2003. A southward flow of nutrients would

help explain the increasing occurrences of algal blooms in the center and south of

Lake Taihu. Previous studies confirm that Meiliang Bay and Zhushan Bay are the

most eutrophic bays of the Lake Taihu [16].

4.3 Human Activities

Elevated nutrient loading is most often the result of a combination of human

activities, e.g., sewerage, livestock waste drainage, and fertilizer runoff from

agricultural lands [59, 60]. For example, Duan et al. [2] used human population

and gross domestic production (GDP) per capita to establish a relationship between
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anthropogenic activities and algal blooms in Lake Taihu, where GDP was found to

be strongly correlated to the initial bloom date (R2¼ 0.99), and GDP per capita was

correlated to annual bloom duration (R2¼ 0.75). These findings imply that anthro-

pogenic factors may substantially outweigh climatic factors. The GDP in the Lake

Taihu watershed increased from 848 billion Yuan (RMB) in 1998 to 2,662 billion

Yuan (RMB) in 2007 and the GDP per capita from 2� 104 to 6� 104 Yuan (RMB)

(not adjusted for inflation) [2]. Correspondingly, the number of months of detected

algal blooms increased from two in 1998 to ten in 2007, and the initial bloom date

advanced more than 100 days. Given the expected growth in human activity in this

area in the coming decades, urgent efforts are needed to better identify the causes of

Lake Taihu’s degradation.

4.4 Integrated Assessment

Integrating remotely sensed and in situ data of the Taihu watershed, a multi-temporal

analysis of HAB dynamics (maximum bloom area, mean bloom area, and bloom

starting date) was performed. In situ data (temperature, nutrients, and chlorophyll-a
concentration) and remotely sensed environmental factors (land cover change and

agricultural practices as a proxy of anthropogenic influence) were used.

The available data covered two periods: for 2000–2010, a full set of environ-

mental data was available (including in situ data on nutrient concentrations); and

for the 2011–2013 temporal range, only features derived from satellite data and

meteorological data. Figure 14 shows the mean monthly profiles of Lake Taihu

covering the temporal range of 11 years, from 2000 to 2010, for some environmen-

tal parameters derived from in situ data—mean monthly air temperature (T ),
chlorophyll-a concentration (Chl-a), dissolved total nitrogen (TN), and dissolved

total phosphorus (TP)—compared with corresponding mean monthly profiles of

information extracted from MODIS satellite data for agricultural crop phenology

(in terms of NDVI monthly mean) and mean monthly algal bloom areal extent.

From monthly profiles, the environmental dynamics in Lake Taihu and its

watershed indicate that:

• Temperature cycles were characterized by very hot summers (mean monthly

temperature for July and August ~30 �C) and relatively cold winters (mean

monthly temperature for January ~5 �C), with a notable variability in spring

temperature and in hot season duration (T> 20 �C).
• TN concentrations were highest in the winter (maximum loadings observed from

2004 to 2008), with decreasing TN concentrations in the late spring (May–June)

and increasing TN concentrations in the autumn (October–November); TP

concentrations increased in the summer (July–September), with particular max-

ima in recent years (2004, 2005, 2006, 2009).

• Chl-a concentrations, as a proxy of phytoplankton abundance, were lowest in the
winter (December to March) and highest in the spring and summer, which in

some cases could be attributed to cyanobacterial blooms.
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Fig. 14 Monthly profiles of Lake Taihu area covering 11 years (2000–2010): mean temperature

(�C/100), Chl-a (10e�2 μg/L), TN (10e�1 mg/L), TP (mg/L), compared with agricultural crop

phenology dynamics (NDVI) and algal bloom extent derived from MODIS data
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• A double cropping agricultural practice, with wheat as dominant winter crop

(mean monthly NDVI peak occurring in early spring, from April to May),

followed by a summer crop mainly consisting of paddy rice agriculture (mean

monthly NDVI peak occurring in summer, from July to September depending on

the year). Intensity and position of crop peak conditions were variable in relation

to meteorological conditions as well as agricultural practices (i.e., differences in

crop varieties and fertilization practices).

• Algal bloom extent generally initiated in the spring and extended into the late

summer and autumn (see Fig. 6). Algal blooms coverage was relatively low from

2000 to 2005, followed by elevated and long-lasting HABs in 2006 and in 2007;

after which, a more stable condition occurred, with bloom extent higher than

pre-2006.

Yearly features described in Sect. 3.1 were derived from mean monthly profiles

(Fig. 14) and temporal series of environmental variables from 2000 to 2011

(Fig. 15). The environmental time series included the following: the effective

accumulated monthly temperature (T> 20 �C), the duration of the high temperature

season (with T> 20 �C), total nitrogen (TN) accumulation during the winter–spring

season (January to April) in lake water, total phosphorus mean concentration

throughout the year, the agricultural vegetation productivity for winter crops at

the peak of season (accumulated NDVI> 0.5 in February–May range, derived from

MODIS), and winter crop vigor and greenness intensity at the peak of season

(NDVI value for April, derived from MODIS). These environmental factors were

00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

Al
ga

l b
lo

om
 a

re
a 

(y
ea

rly
 m

ea
n)

 [k
m

2/
10

00
]

Al
ga

l b
lo

om
 m

ax
im

um
 a

re
a 

[k
m

2/
10

00
]

Al
ga

l b
lo

om
 s

ta
rti

ng
 d

at
e 

(5
0 

km
2)

 [D
O

Y/
36

5]

T>
20

˚C
 c

um
ul

at
ed

 -
T>

20
˚C

 d
ur

at
io

n 
[fr

ac
tio

n 
of

 y
ea

r]
TN

 c
um

ul
at

ed
 (j

an
-a

pr
) [

m
g/

l/1
00

] -
TP

 y
ea

rly
 m

ea
n 

[m
g/

l]
Ag

ric
ul

tu
ra

l v
eg

 v
ig

ou
r (

w
in

te
r c

ro
p)

 [N
D

VI
>0

.5
, j

an
-m

ay
]

Ag
ric

ul
tu

ra
l v

eg
 p

ea
k 

(w
in

te
r c

ro
p)

 [N
D

VI
 a

pr
il]

T>20 T>20°C duration [yearly fraction] TN_cumulated (january-april) [mg/l]
TP mean Agricultural VI (winter crop) [NDVI>0.5] VI april
Algal Bloom area yearly mean [Km2] Bloom MAX Algal bloom 50 km2 date [DOY]

Fig. 15 Yearly variations of environmental features of Lake Taihu area covering 11 years (2000–

2010), derived from monthly profiles shown in Fig. 12: duration of hot season (T> 20 �C),
nitrogen (TN) accumulation during the winter–spring season (from January to April), algal

bloom areal extent (yearly average, mapped from MODIS), agricultural vegetation productivity

for winter crops at peak of season (cumulated NDVI> 0.5 in February–May range, fromMODIS),

algal bloom starting date (lake area covered by algae >50 km2, derived from MODIS)
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compared to algal bloom dynamics extracted from the MODIS temporal series data.

These included the algal bloom starting date (lake area covered by algae>50 km2),

the algal bloom mean areal extent as yearly average, and the maximum monthly

area bloom extent for each year.

The temporal series (Fig. 15) shows the anomalous behavior of 2006–2007,

which marked a turning point for the Lake Taihu environmental system. This

turning point was preceded by continuous increase of TN loading during winter

and spring and an anomalous winter cropping season for 2006 (with a clear drop in

NDVI >0.5 accumulated value, compared to 2005 and pre-2005 conditions),

followed by a strong rebound in the winter crop productivity in 2007. Two distinct

patterns emerged from the analysis of environmental factors shown in Fig. 15: one

preceding the extreme blooms of 2007 and one following it. Before 2006, the algal

bloom starting date was correlated to the winter crop productivity, an increase in

winter productivity corresponded to a later HAB start. Starting with the 2006–2007

blooms, the relationship reverses (Fig. 15) and an increase in winter crop produc-

tivity corresponds to an earlier HAB start. This may be related to a shift from

nutrient-limiting conditions (TN, in particular), which controlled pre-2006 algal

blooms, to conditions of nutrient saturation (due to the simultaneous increase of

both TN and TP from 2000 to 2006), where climatic and anthropic factors (tempe-

rature and winter crop seasonality) controlled algal dynamics. After the two

extreme blooms of 2006–2007, the system appears to have stabilized, but a decrease

in TN concentrations or another extended hot season like that of 2006 could lead to

a new shift.

Some signs of the shift after 2010 were evident in temperature data (up to

November 2012), as well as remotely sensed winter crop phenology and algal

bloom characteristics, as mean and maximum extent, or starting date (Fig. 16).

The time series after 2011 indicated that HAB events were less intense than

those of previous years, both in terms of mean and maximum extent, even if the
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Fig. 16 Monthly profiles of Lake Taihu area covering the last 3 years (2011–2013), derived from

MODIS data: agricultural crop phenology dynamics (NDVI) and algal bloom extent
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starting date demonstrated an earlier bloom initiation. Bloom behavior may be

realigning to pre-2006 dynamics (bloom starting date is influenced by winter crop

season productivity). Therefore, 2010–2011 could be identified as another turning

point for the environmental system, after the 2006–2007 event, connected to a drop

in accumulated temperature and hot season duration in 2011 compared to previous

years (2009 and 2008).

5 Conclusions

Remote sensing provides crucial information on inland water quality, as well as the

environmental factors that cause changes in water quality and ecosystem dynamics.

Algal bloom events are strongly connected to human activities within a watershed,

such as agriculture, demographic change, and economic development. Water qual-

ity and algal bloom management can no longer be limited to nutrient discharge

control, but needs to take into account indirect factors related to watershed manage-

ment (e.g., agriculture and aquaculture), as well as local and regional short-term

climatic effects [30]. It is important that more complex scenarios are taken into

account, requiring an integrated approach to data acquisition and information

availability on finer spatial and temporal scales.

In this case study, we used an integrated watershed approach, based on remote

sensing, to gather information about the environmental dynamics of a complex lake

watershed (Lake Taihu), where algal blooms have caused a significant loss of

ecosystem services and other uses of water. Our integrated analysis identified two

distinct temporal patterns of algal bloom events, with an associated change in land

use and environmental conditions. Prior to 2006, algal bloom initiation date was

linked to land cover, in particular to winter crop productivity and the subsequent

nutrient loading into the lake. After 2007, there was an inversion in this relationship

between land cover and algal bloom dynamics, suggesting that nutrient saturation

had occurred and other environmental factors, such as temperature and winter crop

seasonality, became more important. After 2008, the situation seems to have

returned to pre-2006 conditions with less intense bloom events up to 2013.

Our results indicate not only that remote sensing can provide crucial information

for monitoring Lake Taihu watershed dynamics but also provides new insights into

an integrated approach to monitoring and managing inland water bodies. Future

research on the integrated assessment at a watershed scale could build on this

approach by including additional environmental features: hydrology (e.g., water

level, inflowing river regimes), meteorology (e.g., winds, precipitation time series),

and sediment biogeochemistry. Additional information would provide further

insights when placed within a comprehensive framework for watershed assessment.

Eventually, a sub-watershed scale of analysis of environmental features within the

watershed would help to identify localized phenomena.
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Abstract Remote, satellite-based sensing is a cost-effective way to gather infor-

mation needed for regional water quality assessments in lake-rich areas. A major

advantage is that it enables retrieval of current and historic information on lakes that

were not part of ground-based sampling programs. Advances over the past decade

have enabled the use of satellite imagery for regional-scale measurement of lake

characteristics, such as clarity and chlorophyll. For example, in the Midwest USA,
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historic and recent Landsat water clarity assessments have been conducted on more

than 20,000 lakes to investigate spatial and temporal patterns and explore factors

that affect water quality. The spatial characteristics of Landsat imagery allow for

the assessment of all lakes larger than ~4 ha, but the broad nature and placement of

its spectral bands have limited assessments largely for water clarity. European

Space Agency (ESA) MERIS imagery with spectral bands that were selected for

water has been used to assess chlorophyll for about 900 of Minnesota’s large lakes
(those > 150 ha). Improvements of the recently launched Landsat 8 and upcoming

ESA Sentinel-2 satellites will expand our capabilities further enabling assessment

of other optically related water quality characteristics, such as chlorophyll, colored

dissolved organic matter (CDOM), and mineral suspended solids for all lakes, and

upcoming Sentinel-3 will continue these capabilities for large lakes.

Keywords CDOM • Chlorophyll a • Lake water quality • Satellite imagery

Landsat • Secchi depth • Sentinel

1 Introduction

Inland water bodies, such as lakes and reservoirs, are important natural resources

for sustenance, recreation, and aesthetic enjoyment, and they add to the economic

vitality and quality of life of regions where they occur. Water quality properties,

such as chlorophyll a, total suspended matter, turbidity, colored dissolved organic

matter (CDOM), and nutrients, are used by regulatory and resource management

agencies to guide management and public safety decisions. In situ point sampling is

the conventional method for collecting information on water quality variables. For

effective lake management, it is important to have long-term water quality infor-

mation on a synoptic scale. The “big picture” view of water quality allows man-

agers to take into account not only differences among lakes but also changes

through time for the whole lake and surrounding water bodies within a watershed

or typically much larger areas. Unfortunately, only a small percentage of inland

waters are regularly monitored by conventional methods, and historical water

quality data are lacking for most inland waters. The “big picture” view of water

quality is not practical with conventional point sampling methods due to limited

resources, and historic water quality data are sparse. Satellite remote sensing has

become a viable option for current synoptic measurements and historic assessments

of important water quality variables due to improved computer software and

hardware, as well as the availability of free or inexpensive satellite imagery.
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2 Rationale for Optical Remote Sensing Using Satellite

Imagery

Satellite remote sensing has the potential to provide synoptic and frequent water

quality measurements of inland waters. Remote sensing satellites such as the

Landsat series have been collecting and archiving imagery regularly since the

early 1970s, which allows for the assessments of some historic water quality

information even on inland waters lacking historical ground-based data. Satellite

systems planned for launch in the next few years will allow better characterization

of inland water quality on regional-to-global scales.

Optical remote sensing (ORS) using satellite imagery can be used to measure

water quality of inland, marine, and coastal waters. Although there are many

similarities between ORS applied to inland waters and ORS applied to marine

systems, there also are profound differences. For example, spatial resolution

requirements are much lower for the broad expanses of the oceans and most coastal

areas than are needed for small inland water bodies. Several generations of satellite

sensors acquire images with large pixel sizes (~0.3–1 km) that provide adequate

spatial resolution for oceanic and most coastal studies but are too coarse for small

inland water bodies. For perspective, the smallest water body that can be measured

by a satellite sensor with a pixel size of 1 km is ~1,000 ha [1]. The spatial resolution

of Landsat satellites, 30 m, generally allows measurements on water bodies larger

than ~4 hectares (ha). As pixel size increases, the likelihood decreases that an image

will have at least one pixel (preferably four or more) focused solely on open water

and not affected by terrestrial and shallow near-shore areas. The smaller pixel size

also allows for better characterization of bays and narrow portions of complex lake

systems

A second difference relates to the optical complexity of inland waters. Remote

sensing scientists focusing on marine systems are able to use increasingly sophisti-

cated instrumentation such as the Moderate Resolution Imaging Spectroradiometer

(MODIS) aboard the Aqua and Terra satellites to develop analytical and semi-

analytical algorithms that retrieve chlorophyll levels from the oceans, and this has

become a routine, global-scale operation [2, 3]. Remote sensing scientists focusing

on inland waters have had to develop procedures primarily using other satellites like

Landsat, which have adequate spatial resolution but at the same time have critical

deficiencies in spectral and temporal resolution. The blue and green spectral bands

used to retrieve chlorophyll levels from oceanic waters are not so useful for such

purposes in optically complex inland waters [4–7]. These deficiencies have limited

development of retrieval algorithms for inland water quality variables by satellite

imagery mostly to empirical and semiempirical (described in Sect. 3.1) approaches.

More sophisticated ground-based and aircraft-mounted spectroradiometers also

have been used in recent years to advance the science of inland water ORS.

In summary, the requirements for spatial resolution, most effective spectral bands,

ability to use analytical (versus empirical) approaches, and ranges of interest for

water quality variables like chlorophyll and CDOM are different between inland
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waters and marine systems; these differences resulted in the development of two

closely related but separate fields of study (e.g., also see [8]).

2.1 Inherent and Apparent Optical Properties
and the Radiative Transfer Equation

When a photon of light interacts with matter, it can either disappear (energy

converted to heat or a chemical bond), which is called absorption, or it can change

its direction and/or energy, which is called scattering. The absorption and scattering

properties of natural waters are the basis for use of ORS in measurement of inland

water quality and can be expressed in terms of inherent optical properties (IOPs) and

apparent optical properties (AOPs). IOPs depend only on the water medium and are

independent of the available light field. Three important IOPs relative to ORS are the

absorption coefficient, volume scattering function, and beam attenuation coefficient,

all of which are wavelength dependent. The beam attenuation coefficient “c” is the

sum of terms for the absorption “a” and scattering “b” of light in the medium:

c λð Þ ¼ a λð Þ þ b λð Þ ð1Þ

where (λ) means a term is a function of wavelength; both a(λ) and b(λ) are functions
of the nature and concentrations of substances in natural waters.

AOPs depend on the IOPs and also on the directional structure of the ambient

light field in the medium. The most important AOPs relative to ORS are the

irradiance reflectance and various diffuse attenuation coefficients. Signals received

by satellite sensors for ORS ultimately get converted to irradiance reflectance

values and to a closely related property called “remote sensing reflectance,”

hereafter referred to as Rrs. Radiative transfer theory provides the connection

between IOPs and the AOPs [9] and thus is the basis for relating Rrs to concen-

trations of substances in water that affect light absorption and/or light scattering.

The basic radiative transfer equation is [10, 11]:

Rrs ¼ G λð Þ bb λð Þ
a λð Þ þ bb λð Þ ð2Þ

where

a λð Þ ¼ aw þ a�ph λð ÞCchla þ aCDOM λð Þ þ a�NAP λð ÞCNAP ð3Þ
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and

bb λð Þ ¼ 0:5bw λð Þ þ b�b,ph λð ÞCchla þ b�b,NAP λð ÞCNAP ð4Þ

G(λ) is a scaling factor accounting for geometrical conditions (e.g., solar zenith

angle) and the state of the air-water interface; a(λ) is the total absorption coefficient,
which is the sum of absorption coefficients for water itself, phytoplankton, CDOM,

and non-algal particles (NAP); a�ph(λ) is a chlorophyll-specific absorption coeffi-

cient for phytoplankton; Cchla is the concentration of chlorophyll a; a�NAP(λ) is the
specific absorption coefficient for NAP; CNAP is the concentration of NAP; and

bb(λ) is the total backscattering coefficient, which similarly is composed of scat-

tering terms for water itself, phytoplankton, and NAP. The backscattering coeffi-

cient for pure water is equal to one-half of the total scattering coefficient of pure

water; it is assumed that there is equal probability of scattering in the forward and

backward directions [11]. Equations (2)–(4) assume that the absorption and scat-

tering properties of a water body depend on contributions from four components:

pure water, phytoplankton, CDOM, and NAP. Ultimately, analytical and semi-

analytical models for retrieval of water quality information on these variables are

based on these equations.

2.2 Water Quality Variables Amenable to Measurement
by Optical Remote Sensing

2.2.1 Currently Measured Variables

To be measurable by ORS, a water quality constituent must affect at least one of the

two principal optical properties that control the amount of light reflected back to a

sensor from the water body: absorption and scattering. Because pure water strongly

absorbs incoming radiation in the ultraviolet (UV) range and also (but to a some-

what lesser extent) in the infrared (IR) range, the portion of the electromagnetic

spectrum useful for remote sensing of water quality is limited to the visible range

(~400–700 nm) plus the near UV (roughly 360–400 nm) and the near IR (~700–

900 nm). Beyond this range, absorption of incoming radiation is so strong that

essentially nothing is reflected back into the atmosphere. Consequently, the water

quality constituents amenable to measurement by ORS must absorb or scatter light

within this wavelength range.

Constituents like plant pigments, especially chlorophyll a, and humic sub-

stances, which constitute much of the CDOM in water bodies, are the most

important examples of light-absorbing substances amenable to measurement by

ORS. CDOM is usually reported by limnologists and remote sensing scientists in

terms of its light absorptivity at specific wavelengths, commonly 420 and 440 nm,

e.g., a440 (m
�1), but chloroplatinate units (CPU) are still used by some water quality
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scientists and engineers. Although many synthetic organic compounds used in

modern society are colored (i.e., absorb light in the visible range), they do not

occur in natural waters at sufficient concentrations, except in very rare pollution

events, to be measurable by ORS. Similarly, a variety of metal ions and metal-ion

complexes are visibly colored (e.g., species of Cr, Cu, and Mn), but their concen-

trations in natural waters, especially in forms that are colored, are far too low to

affect reflectance spectra. A possible exception, iron (Fe), is discussed below in the

context of CDOM measurements.

Suspended particles, including phytoplankton, organic detritus derived from

microbial decomposition and secondary production, and mineral suspended solids

such as aluminosilicate clays and soil particles (SSmin), are the primary constituents

in natural waters that affect scattering. Because the spectral characteristics of light

scattering by various types of suspended particles are not sufficiently unique, ORS

techniques generally are not able to distinguish among the types of suspended

particles causing scattering and thus affecting reflectance. Phytoplankton cells,

because of their chlorophyll content, are an exception, but results normally are

presented in terms of chlorophyll concentrations and not cell counts or cell volume.

Light-scattering water quality constituents measured by ORS thus are “lumped

parameters” like total suspended solids (TSS) and turbidity. Light scattering

depends on a complicated set of factors, including particle numbers, sizes, shapes,

and surface properties; no universal relationship between the reflectance of light

and TSS (in mg/L) thus should be expected. Rather, such relationships are time and

place specific depending on the properties of the suspended particles, as mentioned

above. Because turbidity measured by a laboratory turbidimeter or nephelometer is

directly related to the scattering of light in water bodies that produces the reflected

light measured by optical remote sensors, development of universal or quasi-

universal ORS relationships for turbidity may be possible. A few studies have

reported on the measurement of turbidity by ORS and are discussed further in

Sect. 2.2.4.

Secchi depth (SD), an important optical property of natural waters, is affected by

both light scattering and light absorption. In most water bodies, scattering caused by

phytoplankton and plankton-derived particles controls SD, and thus it serves as a

common and simple measure of lake trophic status. Many studies have shown

strong correlations between SD�1 and chlorophyll levels (or log SD versus log

[chlorophyll]) in lakes [1, 12]. CDOM and SSmin also affect SD in some waters, and

proper interpretation of SD data depends on what factors are affecting water clarity.

Brezonik [13] quantified the influence of CDOM on SD using in situ experiments in

which a concentrated source of CDOM-like material was added incrementally to

low-CDOM and low turbidity lake water in mesocosm-scale “limnobags.” At a

measured CDOM of 200 CPU, equivalent to a440� 20 m�1, representative of

highly colored bog lakes, and negligible SSmin, the SD was ~1.5 m; at CDOM¼ 70

CPU (a440� 7 m�1), representative of moderately colored lakes, the SD was 4.5 m.

Preisendorfer [14] showed that SD�1 is proportional to the sum of two fundamental

optical properties: α+Kd, where α is the beam attenuation coefficient (measured by

an underwater transmissometer) and Kd, the diffuse attenuation coefficient
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(determined by measuring the amount of incident light remaining as a function of

depth with an underwater light meter). Kd and α are spectrally and depth averaged

values for a given water body.

Values of Kd at specific wavelengths, most commonly Kd,490, have been

retrieved from ORS data by marine scientists as part of efforts to develop analytical

methods to retrieve water quality information from satellite imagery (e.g., [10, 15,

16]). Plug-in algorithms to compute Kd,490 were developed for several MERIS

processors in the BEAM software system, including the Case 2 Regional and Boreal

lakes processors [17–19]. Kd is not a common water quality variable in inland

waters, however, and there seems to have been little interest among freshwater

remote sensing scientists in using the algorithms for Kd in inland lakes. This

situation is likely to change when improved satellite sensors (see Sect. 2) that

allow for more analytical retrieval methods become available for inland water

ORS measurements.

In summary, only a few water quality variables are amenable to direct measure-

ment by ORS, but they include two variables, chlorophyll a and CDOM, that are

critically important for understanding lake metabolism and carbon cycling. A third

variable, SD, probably is the most widely measured lake water quality parameter

because its simplicity and low cost facilitates use by citizen monitoring programs.

SD also is important because it is related directly to water quality as perceived by

lake users and to trophic conditions and chlorophyll levels. TSS and turbidity round

out the common water quality variables amenable to measurement by ORS.

2.2.2 Potential Variables with Improved Spectral Characteristic

Sensors

As noted above, a few other variables could become important in applications of

ORS to regional-scale measurements of inland lake water quality when sensors with

improved spectral characteristics and adequate spatial resolution become available.

These include SSmin, Kd, and specific plant pigments indicative of various classes of

algae (e.g., see [10]), such as phycocyanin for cyanobacteria. Identification and

measurement of the abundance of submerged and emergent aquatic plants also can

be achieved using ORS [20–22], but details of this topic are beyond our scope.

2.2.3 Non-optical Variables Sometimes Correlated with Variables

Having Optical Properties

Many examples can be found in the remote sensing literature that claim the ability

to measure water quality variables that do not directly affect light reflectance or are

present in natural waters at such low concentrations that they do not affect reflec-

tance signals measured by satellite sensors. Examples include mercury, bacteria

(e.g., Escherichia coli) [23], and total phosphorus (TP) [24, 25]. In all cases, the

reported relationships involve empirical regression equations. Despite the fact that
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high r2 values sometimes are reported, the relationships “work” only because the

“non-optical” variable is correlated in the water bodies used to develop the relation-

ship with an optical variable that affected reflectance. For example, the bacterial

indicator of fecal contamination, E. coli, is found in waters contaminated by human

activities, and correlation of E. coli abundance with TSS and turbidity might be

expected. Similarly, phosphorus often is the limiting nutrient for algal growth in

lakes, and correlations between chlorophyll and TP or SD and TP thus are common

(e.g., [12]). Such relationships cannot be applied reliably beyond the database from

which they were derived because no intrinsic or causative relationship exists

between the non-optical and optical variables or between the non-optical variable

and reflectance.

The use of empirical relationships that depend on secondary correlations has led

to criticisms that remote sensing scientists are “overselling” their technology (e.g.,

[8, 26]). A more transparent and defendable approach is to develop relationships

between reflectance data and variables that directly affect reflectance and then

separately determine whether a sufficiently close relationship exists between the

optical variable retrieved from imagery and a non-optical variable of interest.

Applications of such empirical relationships still should be limited to the data

sets on which they are based, but situations exist in which useful information can

be obtained by this approach. For example, evaluation of a suite of environmental

conditions retrieved from satellite imagery was found useful in predicting outbreaks

of waterborne diseases even though the disease-causing microorganisms do not

directly affect satellite imagery signals [27]. Similarly, atmospheric scientists have

estimated transport of specific pollutants like mercury (Hg) from Asia across the

Pacific Ocean to North America by tracking atmospheric dust using satellite

imagery and independent measurements of the pollutant (e.g., Hg) concentrations

in atmospheric dust over the Pacific.

Relationships between DOC (dissolved organic carbon) and reflectance also

have been reported (e.g., [28]), but insofar as DOC per se is not an optical variable

and does not itself affect reflectance, these also are the results of indirect corre-

lations. To the extent that such relationships work, they rely on the fact that a

fraction of DOC (CDOM) affects reflectance. For some waters good correlations

exist between CDOM and DOC, but as Brezonik et al. [29] recently showed, no

single DOC-CDOM relationship applies across a broad spectrum of surface waters.

Some sources of DOC, e.g., autochthonous organic matter and anthropogenic

organic matter derived from wastewater, have low color per unit of carbon. As a

result, CDOM and DOC are poorly correlated in many natural waters. For example,

Spencer et al. [30] found that r2 values for DOC-CDOM relationships were �0.5 in

11 of 30 large North American rivers, and four rivers (the Colorado, Columbia, Rio

Grande, and St. Lawrence) had r2< 0.2. Factors giving rise to poor DOC-CDOM

relationships include the extent to which the DOC is autochthonous or anthro-

pogenic and the extent to which allochthonous DOC has been photodegraded.
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The following three sections summarize the spectral basis for retrieval of the

three most important water quality characteristics—clarity, chlorophyll, and

CDOM—from remote sensing imagery.

2.2.4 Water Clarity Variables

Three water clarity variables discussed here include Secchi depth (SD), turbidity,

and TSS.

Water clarity, whether measured as light scattering in laboratory turbidimeters,

as the in situ depth of disappearance of a white disk (SD), or as the slope of the

logarithm of light attenuation with depth (Kd) in a water body, provides critically

important information to both users of water bodies and to water resource man-

agers. Fortunately, because of their close relationship to both IOPs and AOPs of

water, clarity parameters are well suited to measurement by ORS.

In part because of the widespread availability of calibration data from citizen and

agency monitoring programs, SD has been the subject of many ORS studies (see

Sect. 4 for details). Retrieval of SD from satellite imagery also is facilitated by the

fact that the broad Landsat bands are suitable for SD retrieval. Numerous studies

have yielded good relationships for SD that involve bands 1 and 3 in two-term

equations like ln(SD)¼ a(TM1/TM3) + bTM1+ c [31], where ln(SD) is the natural
logarithm of Secchi depth; a, b, and c are regression coefficients; and TM1 and

TM3 are reflectance values for thematic mapper bands 1 and 3. As SD decreases,

reflectance in the red band (TM3) increases. The blue band (TM1) tends to

normalize brightness in the red and improves algorithm performance. R2 values

for such equations are in the range 0.71–0.96 for lakes in Minnesota [32]; others

[33] reported similar ranges of fit. Olmanson et al. [1] found that MERIS and

Landsat imagery worked equally well for SD, but the coarser spatial resolution of

MERIS allowed assessment of only about 8 % of the Minnesota lakes accessed by

Landsat.

Models for turbidity and TSS in optically complex waters, where phytoplankton,

CDOM, and SSmin all may affect IOP features, should avoid the absorption

characteristics of chlorophyll in the red and CDOM in the blue region and use the

scattering peak at ~705 nm or band combinations in the NIR or green regions

(where plant pigments have minimal absorption). For example, Gitelson et al. [34]

found that a difference ratio algorithm (R560�R520)/(R560 +R520) was highly

correlated with TSS in lakes and rivers with TSS values < 66 mg/L. Phytoplankton

absorption is at a minimum near 560 nm, but reflectance at this wavelength is

sensitive to TSS; in contrast, reflectance at 520 nm is relatively insensitive to

changes in TSS [35].

Numerous studies have shown the usefulness of NIR bands for turbidity and TSS

(for reviews, see [10, 35]). The scattering peak at ~700 nm was found to be strongly

correlated with TSS by many studies (e.g., [36–38]), and Senay et al. [39] reported a

good relationship for turbidity. The difference in reflectance at 710 and 740 nm was
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found useful by Shafique et al. [40]. The scattering peak at ~700 by itself also was

found to work well for NVSS (nonvolatile SS, essentially equivalent to SSmin) [41].

Olmanson et al. [42] found strong relationships between reflectance at 705 nm

and both turbidity and TSS (r2¼ 0.77–0.93 for both) using airborne hyperspectral

imagery to assess water quality in the optically complex waters of the Minnesota,

Mississippi, and St. Croix Rivers in the Minneapolis-St. Paul region. Depending on

location and time, CDOM, phytoplankton, and/or SSmin all may dominate the

optical properties of these rivers. They also found a predictive equation

(r2¼ 0.80–0.90) for volatile suspended solids, VSS, a measure of organic

suspended matter, using the ratio of reflectance at 705 to 670 nm. For SSmin they

found that using band at 705 nm and the ratio of reflectance at 705 to 670 nm, a

combined model (TSS and chlorophyll a), yielded an r2 of 0.85–0.97 for SSmin. The

resulting maps clearly distinguished phytoplankton-based turbidity from SSmin

(Fig. 1 [42]: reprinted with permission from the publisher). The transition from

phytoplankton-dominated water at location “a” (Fig. 1B) to inorganic sediment-

dominated water at location “e” is captured in the reflectance spectra extracted from

the imagery (Fig. 2). Absorption characteristics of chlorophyll are distinctly visible

at location “a” but become more moderate toward location “e.” This example

demonstrates the massive quantity of information obtainable from a single image

that would have been missed by traditional monitoring, which would probably

involve only one sample for the entire area.

Fig. 1 Maps of Pig’s Eye Lake, St. Paul, Minnesota, showing transition from conditions domi-

nated by inorganic sediment to conditions dominated by phytoplankton: (A) turbidity, (B) chloro-

phyll a, and (C) NVSS/TSS (% SSmin); August 30, 2007. Reprinted from Olmanson et al. [42] with

permission of the publisher
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2.2.5 Chlorophyll and Other Pigments

Predictive models that use ORS to estimate a water quality variable should use

wavelengths that identify key spectral characteristics of the variable without inter-

ference from competing optical features of other variables. For chlorophyll, this

means that algorithms commonly used for the open oceans, which involve reflec-

tance in the blue and green regions, do not work well for inland waters because

these waters are influenced by TSS and CDOM. This makes them optically more

complex [43] than open ocean waters, where chlorophyll and chlorophyll-related

properties are the primary factors affecting reflectance. CDOM and SSmin have

overlapping absorption features with chlorophyll a in the blue region.

Successful chlorophyll models for inland waters thus use absorption character-

istics in the red wavelengths—a reflectance trough at ~670 nm caused by a peak in

absorption by chlorophyll a and a reflectance peak at the red edge (~700–710 nm)

caused by scattering by phytoplankton; absorption by CDOM and suspended solids

is minimal at these wavelengths [44, 45]. Many studies (e.g., [34, 46–50]) have

reported strong relationships between chlorophyll a and the reflectance ratio for

~700 nm and ~670 nm in a variety of inland waters and over a wide range of

concentrations (e.g., 0.1–350 μg/L; [35]). The usefulness of the red-edge signal for
chlorophyll a estimation in optically complex river waters also was shown by

Fig. 2 Reflectance spectra of the transition zone for conditions dominated by inorganic sediment

in the Mississippi River to conditions dominated by phytoplankton in Pig’s Eye Lake, August

30, 2007 (Fig. 1b). Tabulated chl a, turbidity, and NVSS/TSS values were calculated from

reflectance spectra using the best predictive models. Reprinted from Olmanson et al. [42] with

permission of the publisher
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Olmanson et al. [42] using airborne hyperspectral imagery on waters of the Minne-

sota, Mississippi, and St. Croix Rivers. For chlorophyll a, the ratio of reflectance at
705 to 670 nm yielded r2 values of 0.75–0.93. Of the recently or currently available
and forthcoming satellite sensors, only MERIS and the Sentinel-2 and Sentinel-3

satellites have appropriately narrow red-edge bands.

Despite the above comments, it must be noted that many studies have reported

strong empirical relationships between the broad bands of Landsat sensors and

chlorophyll a (e.g., [1]); typical predictive equations involve the ratio of TM or

ETM+ bands 1 and 3. Absorption by chlorophyll a is strong in bands 1 (450–

520 nm) and 3 (630–690 nm). Nonetheless, increased scattering by phytoplankton

cells counteracts some of the absorption effects and leads to increased reflectance

with increasing chlorophyll a levels in band 1 and even larger increases in band 3. If
it is known that the optical properties of the water bodies being studied are

dominated by phytoplankton, the use of these empirical relationships may be

considered acceptable. However, for regional assessments where specific water

quality characteristics are not known, lakes with high CDOM and/or SSmin may

be misclassified.

As an example, when we used Landsat 8 imagery to estimate chlorophyll a and

SD in lakes of northeastern Minnesota for August 31, 2013, we found strong

relationships for both variables (r2¼ 0.70 and 0.77; RMSE 0.758 and 0.406,

respectively). Calibration data (�3 days) for the images are from the Minnesota

Pollution Control Agency (for chlorophyll a, n¼ 99; for SD, n¼ 258) [51]. For

most Minnesota lakes, the results are believed accurate because phytoplankton

dominates their optical properties. When we used the same models for the

St. Louis River Estuary (SLRE), where optical properties of the waters are domi-

nated by CDOM and SSmin, however, the resulting maps misrepresented SSmin as

chlorophyll (Fig. 3 zoomed into Duluth, MN & Superior, WI area: SLRE at the

western edge of Lake Superior). Consequently, we believe it is best to limit

regional-scale assessments using Landsat to water clarity or turbidity, which is

appropriate for the spectral characteristics of the Landsat sensors, unless indepen-

dent data are available to verify that SSmin and CDOM are not important factors in

the lakes being assessed.

The characteristics of Landsat, MERIS, and MODIS sensors for regional water

quality measurements were analyzed by Olmanson et al. [1]. Imagery from the three

sensors was compared for spatial and spectral characteristics, and empirical models

were developed for chlorophyll a using various bands and band ratio combinations

as dependent variables. MERIS provided a better fit for chlorophyll a (R2¼ 0.85,

n¼ 90) than Landsat andMODIS (R2¼ 0.79 for both, n¼ 177 and 42, respectively).

The red-edge band at 708 nm improved the fit and allowed discrimination between

phytoplankton and SSmin, but the Landsat and MODIS results misclassified high

SSmin levels as chlorophyll a, similar to Fig. 3.

Phycocyanin, a pigment occurring in cyanobacteria (formerly known as blue-

green algae), can serve as a marker for the presence of these microorganisms in

surface waters and is amenable to measurement by ORS. Cyanobacteria are com-

mon in eutrophic water bodies, and some species produce substances that are toxic
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to animals. Thus, there has been much interest by water resource managers in

methods for real- or near real-time assessment of the abundance and spatial

distribution of cyanobacterial blooms. Phycocyanin has a strong absorption peak

near 620 nm, which leads to a characteristic dip in reflectance spectra around 600–

630 nm for water bodies with cyanobacteria blooms (e.g., Fig. 4). Several

researchers have reported empirical algorithms for cyanobacterial abundance

using hyperspectral measurements and reflectance ratios around this wavelength

range [52, 53]. Unfortunately, this wavelength range represents a gap in coverage

by the sensors of the Landsat satellites (for OLI of Landsat 8, band 3 has a range of

530–590 nm and band 4 a range of 640–70 nm). Vincent et al. [54] claimed to be

able to measure phycocyanin and trace cyanobacterial blooms in Lake Erie using

Landsat. They reported an r2 of 0.77 for the relationship, but this is thought to be an
example of indirect correlation (e.g., [35]). The retrieval equation probably was

responding to chlorophyll signals; cyanobacteria were the dominant algae in the

lake at the time of the measurements, and a high correlation could be expected

between phycocyanin and chlorophyll levels. Several groups (e.g., [55–58]) have

found that the narrower bands of MERIS are suitable for retrieval of phycocyanin

concentrations. In these cases, the fluorescence of phycocyanin at ~681 nm is

detected using a semiempirical second derivative function that also uses reflectance

data for nearby bands at 709 and 665 nm.

Fig. 3 Maps of chlorophyll a and SD in the St. Louis River Estuary (SLRE) at west end of Lake

Superior created from an Aug. 31, 2013, Landsat 8 image. Spectral characteristics of the OLI

sensor do not allow discrimination of phytoplankton from SSmin in optically complex waters. The

SSmin dominated waters of Pokegama Creek and Allouez Bay are misclassified as having high

chlorophyll a. Models were developed for the entire path 27 row 27 Landsat image using available

lake data, n¼ 260 for SD, 71 for chlorophyll a within 3 days of the image
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2.2.6 Colored Dissolved Organic Matter

Interest among aquatic scientists has increased greatly over the past decade in ORS

applications to measure CDOM in surface waters. In part, this reflects a growing

interest in quantifying the role of lakes and other surface water bodies in the global

carbon cycle, along with the understanding that CDOM represents a large fraction

of the total DOC in many aquatic systems.

A wide range of approaches, including analytical, semi-analytical, matrix inver-

sion, and empirical techniques, have been used to retrieve CDOM values for fresh

and marine waters by satellite imagery. The most successful algorithms for marine

conditions (including coastal waters) involve semi-analytical matrix inversion

methods (e.g., [59–61]); but such approaches have been used only a few times for

freshwaters (e.g., [11, 62]). The most common retrieval methods for lakes are

empirical reflectance-ratio equations that involve nonlinear (power) equations.

For example, the equation of Kutser et al. [4] uses the ratio of Advanced Land

Imager (ALI) band 2 (525–605 nm) to band 3 (630–690 nm): a420¼ 5.13(ALI2/

ALI3)2.67. ALI bands 2 and 3 have approximately the same wavelength ranges as

Landsat TM and ETM+ bands 2 and 3 and Landsat 8 OLI bands 3 and 4. Menken

et al. [49] independently found a similar relationship using ground-based

hyperspectral reflectance data, a440¼ 146.4(R670/R550)
2.08, and Ficek et al. [63]

also used a similar equation.

Using in situ reflectance hyperspectra and associated water quality measure-

ments on ~30 Minnesota and Wisconsin lakes with wide ranges of CDOM, chloro-

phyll, and TSS, Brezonik et al. [29] recently found that the best band ratio models

used similar wavelengths for Landsat 8 bands. With the larger selection of Sentinel-

2 and Sentinel-3 bands, a different ratio using ~500 nm:~750 nm worked best.

Fig. 4 Reflectance spectra for a eutrophic stretch of the Mississippi River downstream of St. Paul,

Minnesota. Data redrawn from Brezonik et al. [29]
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Simulated Landsat 8, Sentinel-2, and Sentinel-3 bands calculated from the

hyperspectra yielded r2¼ 0.84–0.86 for a440. The broader Landsat 8 bands worked

nearly as well as the narrower Sentinel bands and hyperspectral bands, probably

because CDOM lacks specific peaks or troughs in absorbance or reflectance. These

r2 values generally are considered very good for remote sensing predictive equa-

tions. Nonetheless, the average for absolute values of percent difference between

measured and predicted CDOM across the four best predictive models was 31 %.

Although some of the differences can be attributed to sampling variability and

measurement uncertainty, the largest source likely is model error. Such large

uncertainties should serve as a cautionary note to limnologists and remote sensing

scientists.

The effectiveness of predictive equations based on longer wavelengths is coun-

terintuitive given that CDOM absorptivity increases quasi-exponentially with

decreasing wavelength and is increasingly diminished in the green and red regions.

Although the physical basis for the relationships is still uncertain, the higher band

(ALI3, OLI4) centered at 670 nm probably corrects for effects of chlorophyll on

reflectance, and the lower band (ALI2, OLI3) centered at ~560 nm probably

measures the influence of CDOM. It is important to realize that the small absor-

bance values measured in laboratory spectrophotometers involve much shorter light

paths (1–10 cm) than those of interest in lakes. For example, as noted earlier, a

CDOM level of a440¼ 20 m�1 implies a Secchi depth of ~1.5 m. Based on

UV-visible absorbance spectra we have measured on similar waters, such a sample

would have an absorbance (A) of ~0.022 at 560 nm in a 1 cm cell. Given that the

Beer-Lambert law applies, the value of A that would apply to a light path of 1.5 m

would be ~3.3, and converting to percent of incident light at 560 nm remaining at a

depth of 1.5 m yields a value of ~3 %. Light reflected back to the air-water interface

from the white surface of the Secchi disk again must travel 1.5 m through the

absorbing medium, and thus much less than 1 % of the incident light at 560 nm

arrives back at the water surface. Clearly, even small absorbance values measured

in the laboratory have large effects on reflectance when the long light paths of lake

water columns are considered.

Brezonik et al. [29] found a CDOM-dependent difference in slopes of reflectance

spectra in the range of ~570–650 nm. For low-CDOMwaters, reflectance decreased

with increasing wavelength, but for high-CDOM waters reflectance increased with

increasing wavelength. Even though CDOM absorbance is low in this range, it does

affect reflectance, as the calculation in the preceding paragraph demonstrated.

Other constituents that affect reflectance spectra (notably plant pigments) have

minimal effects in this wavelength region.

CDOM levels are much lower in marine waters than in freshwaters; absorptivity

at 412 nm, a412, generally is < 1 m�1 in coastal waters and < 0.1 m�1 in the open

ocean. In contrast, a440 values < ~2 m�1 in lakes generally are considered negli-

gible, although remote sensing scientists are starting to take interest in measuring

CDOM in low-CDOM lakes [29]. Values in lakes that are considered “humic

colored” commonly are in the range of ~5–20 m�1 and may range up to 40 m�1

or even more in highly colored bogs. Concentrations of TSS and chlorophyll also
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tend to be higher in freshwaters than in the oceans, and most freshwaters thus are

optically very complex. As noted earlier for chlorophyll, remote sensing methods

used for marine waters are not always applicable to freshwaters, and this situation

also applies to CDOM. For example, marine scientists interested in CDOM look

forward to using a band in the near UV (~380 nm) that will be available on a

forthcoming NASA sensor for ocean CDOM. Plant pigment absorbance decreases

greatly below ~400 nm, but CDOM absorbance continues to increase exponentially.

This band thus avoids interference between the absorbance of plant pigments and

CDOM that precludes using bands in the blue region for CDOM retrieval. Bands in

the near UV likely would not be useful for inland waters, however, because light

absorption by the typically higher levels of CDOM is so strong that there is

essentially no reflectance signal (all incoming light is absorbed).

Finally, one of the main reasons for measuring CDOM by ORS is the possibility

of using the values to estimate DOC in lakes at regional-to-global scales. As

discussed in Sect. 2.2.3, this is not straightforward because DOC-CDOM corre-

lations are not always high. Even when they are, a relationship that works well for

one set of lakes may not be the same for a different set of lakes. A further

complication in DOC-CDOM relationships is the recent finding that complexation

of DOM by dissolved iron enhances the color intensity of the organic substances

[64, 65]. Scientists interested in using CDOM to estimate DOC at regional-to-

global scales should recognize that DOC-CDOM relationships are site specific and

perhaps time specific [29]. Additional predictor variables likely will be needed to

develop more robust predictive relationships between CDOM and DOC. In addition

to a possible need to account for the iron content of the water, water residence time

would help account for photobleaching of CDOM [66], the CDOM spectral slope

(S) would help define the quality or structural nature of CDOM [67, 68], and

various climatic and landscape metrics [69, 70] may account for DOC loadings to

lakes.

3 Current and Upcoming Remote Sensing Systems

for Regional Water Quality Assessment

A large number of airborne and space-borne sensors are potentially available for

remote sensing of water resources (Table 1), but none is ideally suited for moni-

toring inland waters, especially regarding our primary interest for this chapter—

water quality assessments of all lakes (above some nominal size) at regional scales.

Systems that are expensive, need to be tasked to collect specific imagery, cover only

small areas, or have coarse spatial resolution may be suitable for special projects

but not for routine synoptic lake monitoring. Moreover, sensors with only a few

broad bands do not provide reflectance data useful for accurate retrieval of water

quality measures like chlorophyll across a broad range of water quality conditions,

i.e., for optically complex inland waters. Characteristics of systems suitable for

regional aquatic assessments include spatial resolution appropriate for lakes > 4 ha

(i.e., spatial resolution or pixel size of 5–50 m2), regular collection of imagery
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(preferably at least weekly but every 2–3 days is better), appropriate spectral bands

(discussed further below), and images that are inexpensive or available for free. As

Table 1 indicates, all current sensors fail to meet one or more of these criteria. The

Medium Resolution Imaging Spectrometer (MERIS) sensor on the European satel-

lite Envisat came closest to meeting the above criteria, but it has not been ope-

rational since 2012, and its pixel size (300 m2) limited it to moderately large lakes

(> 150 ha [~370 ac]). For Minnesota, its spatial resolution provided measurements

for only ~8 % of the state’s lakes [1].
This situation leaves Landsat and related satellites (Table 1) as the current

“default systems” for inland lake monitoring by ORS. The Landsat series was

designed primarily for land features and has been hugely important for land

use/land cover analyses, vegetation condition, and agricultural applications, but

Landsat sensors also have been used for over 30 years to estimate some water

quality variables on inland lakes [71–76]. The biggest drawback of the Landsat

sensors, aside from low temporal resolution (repeat coverage every 16 days), is

their limited and coarse spectral resolution (only 3–4 bands in the visible range

(e.g., for Landsat 5 and 7: band 1, 450–520 nm; band 2, 520–600 nm; band 3, 630–

690 nm; Landsat 8 added a new band 1, 430–450 nm, and slightly narrowed the

ranges for the earlier three bands, which now are designated band 2 through band

4). As described in Sect. 2.2.5, this may hinder the accurate retrieval of data on

important variables like chlorophyll in waters with complex optical properties and

also limits the types of algorithms applicable to Landsat data.

A class of multispectral sensors with high spatial resolution (Table 1) could be

used for more locally based regions, such as city-scale projects. This imagery can

be fairly expensive, but for important areas and projects, it has the advantage of

being able to monitor smaller water bodies than Landsat can. For example, Sawaya

et al. [21] found that IKONOS imagery worked as well as Landsat for water clarity

(SD) assessment, and a single image was able to assess the clarity of 236 lakes and

ponds as small as 0.08 ha in the City of Eagan, Minnesota. In contrast, Landsat

imagery was able to assess only 48 of the water bodies (minimum size of 1.5 ha).

The spatial resolution of IKONOS and QuickBird images has made them parti-

cularly useful for aquatic plant surveys [21, 22]. Several high-resolution systems

are now operational (Table 1), but WorldView-2 and WorldView-3 with 8 and

28 spectral bands, respectively, may be particularly useful for water quality

assessments.

Launched in February 2013 with a new Operational Land Imager (OLI) sensor,

Landsat 8 has several improvements over the Thematic Mapper (TM) and

Enhanced Thematic Mapper (ETM+) instruments on previous Landsat satellites.

The OLI sensor has improved signal-to-noise ratio, radiometric resolution (12-bit

vs. 8-bit for Landsat 5 and 7), and two new spectral bands—a shorter wavelength

blue band (see above) and a shortwave infrared band positioned to detect cirrus

clouds. These advancements should improve the ability to map variables like water

clarity and CDOM but may not improve the discrimination of chlorophyll from

SSmin. Landsat 7 launched in 1999 continues to collect imagery and can be used for

water clarity assessments.

US government agencies have made significant investments in systems like the

Coastal Zone Color Scanner (CZCS), Sea-viewing Wide Field-of-view Sensor
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(SeaWiFS), and MODIS, to monitor oceans and coastal areas. Each sensor yielded

advances in sensor technology, and as noted earlier, they provide useful infor-

mation on chlorophyll and other optically related variables using analytical and

semi-analytical algorithms. Their spatial resolutions, however, are suitable only for

large lakes (> 900, 1,100, and 400 ha, respectively). MODIS has been used

effectively for water quality studies on some of the Laurentian Great Lakes [77,

78]. Another important problem regarding inland lake applications of these sensors

is that their spectral bands were designed for marine waters. They lack a critically

important red-edge band needed for most inland water studies.

The next advancement for remote sensing of regional water quality of lakes will

come from the European Space Agency (ESA) Sentinel-2 satellites, which at the time

of this writing are scheduled for launch in April 2015 (Sentinel-2A) and approximately

one year later for Sentinel-2B. Although these satellites were designed primarily for

land observations, their improved spatial resolution (10, 20, and 60 m), spectral bands

(narrower green and red, red edge, and 3 NIR bands), and temporal coverage (every

3–5 days) will greatly enhance the capabilities to assess optically related water quality

characteristics (e.g., chlorophyll, CDOM, SSmin) in inland lakes. Landsat 8 and

Sentinel-2 have specific SWIR bands selected for atmospheric corrections and cloud

screening that will greatly enhance their use for routine monitoring.

An example of water quality maps for chlorophyll a and CDOM created from

Sentinel-2 bands is shown in Fig. 5 for the SLRE. In this case, the band information

Fig. 5 CDOM and chlorophyll a maps for the St. Louis River Estuary at west end of Lake

Superior created from an Aug. 31, 2013, HICO image using simulated Sentinel-2 bands. Spectral

characteristics of Sentinel-2 sensor allow discrimination of phytoplankton from SSmin in optically

complex waters. The SSmin dominated waters of Pokegama Creek and Allouez Bay are classified

correctly as having low chlorophyll a and high CDOM. Models were developed using data from

the St. Louis River Estuary and Lake Superior. Background imagery: Aug 31, 2013, Landsat

8 image
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was simulated from imagery obtained by the Hyperspectral Imager for the Coastal

Ocean (HICO) on the International Space Station. The spectral characteristics of the

simulated Sentinel-2 imagery allowed for accurate measurements of chlorophyll in

optically complex waters in contrast to the limitations encountered with Landsat

8 bands (Fig. 3; see Sect. 2.2.5) which misrepresented SSmin as chlorophyll a.

3.1 Empirical and Semi-analytical Approaches
to Lake Water Quality Assessment

The algorithms used to retrieve water quality data for inland waters from satellite

imagery are empirical to semi-analytical. Empirical algorithms statistically model

relationships between measured water quality variables and spectral bands and/or

combinations of spectral bands. Strictly empirical algorithms require no under-

standing of the physics required to model atmospheric and underwater optical

properties. Thus, they are relatively simple to perform and are well represented in

the literature. This approach is also where many have “oversold” what can be

sensed with remote sensing (i.e., when imagery is used for measurements of vari-

ables that have no optical properties, such as phosphorus, DOC, or bacteria [23, 24,

79, 80]).

A better approach involves semi-empirical methods, which use bands that are

selected based on knowledge of how optically active parameters affect reflectance

in various spectral bands. Once such models are identified, they can be applied and

used for routine monitoring, as has been done for water clarity assessments of over

20,000 lakes in Minnesota [32], Wisconsin [81], and Michigan [82, 83]. These

assessments used field data within a few days of the Landsat image acquisition to

calibrate models using the ratio of the Landsat TM1/TM3 bands plus band TM1 as

predictor variables. Matthews [35] recently provided a thorough review of the

literature on empirical and semi-empirical methods using ORS to measure inland

water quality, and that paper should be accessed for further details.

Theoretically, once systemic and atmospheric correction is accurately applied to

imagery allowing for a true water-leaving reflectance product, universal algorithms

could be developed for specific sensors and water quality variables, which would

reduce the need for contemporaneous field data. Unfortunately, accurate atmo-

spheric correction for inland water quality is difficult on a regional basis and

needs further development to be operational [1, 84].

Analytical methods are theoretically derived and use complex approaches such

as radiative transfer or bio-optical modeling, and semi-analytical methods use

analytical techniques that are empirically parameterized with in situ data. Semi-

analytical methods to estimate water quality variables are thought by some to be the

pathway to global water quality products using ORS [84]. However, many chal-

lenges remain with parameterization of the algorithms, and at present there are no

successful validated regional assessments using semi-analytical methods in the
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literature. Semi-analytical methods are typically region specific and applied to one

lake or a few lakes. They require ground-based measurements of the IOPs of each

lake for proper model calibration. More recent “adaptable” inversion algorithms

[59, 85] are more robust and have the potential to be able to be applied for regional

assessments of hundreds to thousands of lakes [84].

4 Regional Lake Water Quality Assessment: Case Studies

4.1 Water Quality of Inland Lakes

Early studies using Landsat imagery for water quality assessment were largely

exploratory and involved only one or a few lakes [71–76]. An exception is the work

of Martin et al. [86], who used semiautomated procedures to assess the trophic

status of around 3,000 lakes in Wisconsin using Landsat Multispectral Scanner

(MSS) imagery. The first regional assessment using Landsat TM imagery was

completed in the Twin Cities Metropolitan Area (Minnesota, USA) on the water

clarity of over 500 lakes [87]. Kloiber et al. [31, 88] followed with a temporal

assessment and statistical analysis of SD in those same lakes for the 1973 to 1998

period. A decrease in imagery costs corresponding with the launch of Landsat 7 in

April 1999, and the establishment of a NASA-funded Upper Midwest Regional

Earth Science Applications Center (RESAC) also in 1999, allowed for statewide

SD assessments for Minnesota, Wisconsin, and Michigan by the University of

Minnesota, University of Wisconsin-Madison, and Michigan State University.

After RESAC funding ended in 2003, Olmanson et al. [32] continued the remote

sensing for SD in Minnesota over eight periods from 1975 to 2008. A statistical

analysis of the spatial and temporal trends was recently published [89] (see

Sect. 4.2). Minnesota lake water clarity data can be accessed in the Lake

Browser [90].

The Wisconsin Department of Natural Resources also continued statewide

Landsat water clarity assessments on approximately 8,000 Wisconsin lakes annu-

ally [81]. All available clear late summer images are being processed for water

clarity assessment on an interannual basis (S. Greb, Wisconsin Department of

Natural Resources, personal communication, 2014). Wisconsin lake water clarity

data can be accessed in the Lakes and AIS Mapping Tool [91].

Since the original water clarity assessment of Michigan lakes in 2002 [82], the

United States Geological Survey (USGS) has continued statewide water clarity

assessments for ~3,000 lakes. The 2003–2005 and 2007–2008 assessments were

documented by Fuller et al. [83]. Since then, the USGS has conducted annual

assessments of water clarity in Michigan with 2009–2010 and 2011 completed

and 2013–2014 and 2000 assessments underway. Michigan water clarity data can

be accessed in the Michigan Lake Water Clarity Interactive Map Viewer [92].
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In Maine, McCullough et al. [93] combined watershed characteristics with

Landsat data to assess the water clarity of ~1,500 lakes. This approach was also

used to investigate temporal trends in water clarity [94], which found that water

clarity declined in Maine’s lakes during the 1995–2010 period.

4.1.1 Remote Sensing of Great Lakes Water Clarity

The Great Lakes are a good example of water resources for which remote sensing

has been used to compensate for the paucity of in situ data. Binding et al. [95]

showed the advantage of remote sensing over ground-based monitoring with

substantial increase in spatial and temporal coverage. Results using CZCS for the

1979–1985 period and the SeaWiFS for the 1998–2006 period showed seasonal and

interannual variability in SD due to phytoplankton blooms, resuspension of bottom

sediments, and whiting events. The satellite observations document how long-term

impacts can be monitored. The findings indicate that the reduction of nutrient

loading and particulate removal by the introduction of zebra mussels through filter

feeding significantly changed water clarity for Lake Erie and Lake Ontario. For

Lake Erie, SD increased in the eastern basin but decreased in the western basin. SD

in Lake Ontario more than doubled to> 4 m after the introduction of zebra mussels.

The study also indicated a reduction in the frequency and intensity of whiting

events due to the effects of calcium uptake by increased mussel populations.

4.2 Geospatial and Temporal Analysis of Minnesota’s
10,000 Lakes

Landsat imagery provides a reliable method to obtain comprehensive spatial and

temporal coverage of an important water quality variable, water clarity. Traditional

ground-based monitoring programs generally target larger recreational lakes and

thus are not randomly selected. Using such data to extrapolate to the larger

population could lead to biased conclusions [89]. Fortunately, the use of such

data to calibrate Landsat imagery for regional assessments allows for the entire

population to be studied.

In Minnesota the water clarity database for more than 10,500 lakes for time

periods centered around 1985, 1990, 1995, 2000, and 2005 was analyzed statisti-

cally for spatial distributions, temporal trends, and relationships with morphometric

and watershed factors that potentially affect lake clarity [89]. The analysis found

that water clarity is lower in southern and southwestern Minnesota and clearer in

the northern and northeastern portions of the state. Temporal trends were detected

in ~11 % of the lakes with 4.6 % having improving clarity and 6.2 % decreasing

clarity. Small and shallow lakes appeared to be more susceptible to decreasing

clarity trends than large and deep lakes. Deep lakes generally had higher clarity
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than shallow lakes overall and when grouped by watershed land cover percentages.

Lakes in agriculturally dominated ecoregions in southern and western Minnesota

were more susceptible to decreasing clarity than the rest of the state. Statewide

water clarity remained stable from 1985 to 2005 but decreased in ecoregions where

agricultural is the main land use. Water clarity decreased as agriculture and/or

urban percentages increased and forested land was associated with higher water

clarity.

5 Conclusions

ORS using satellite imagery can be used to measure water quality of inland, marine,

and coastal waters. ORS in marine waters is well established with a large invest-

ment in several generations of increasingly sophisticated satellite sensors acquiring

images with large pixel sizes that are ideal for oceanic and most coastal studies but

are too coarse for most inland water bodies. With these systems sophisticated

analytical and semi-analytical algorithms have been developed that retrieve chloro-

phyll levels from the oceans on a routine, global-scale basis.

Remote sensing scientists focusing on inland waters have had to rely on other

satellites like Landsat, which have adequate spatial resolution but critical deficien-

cies in spectral and temporal resolution. The spectral bands used to retrieve

chlorophyll levels from oceanic waters do not work in optically complex inland

waters. These deficiencies have limited development of retrieval algorithms for

inland water quality variables by satellite imagery mostly to empirical and semi-

empirical approaches.

Therefore, use of remote sensing for regional inland water quality has progressed

slowly since the launch of the first Landsat satellite in 1972. Although there have

been many successful regional water quality assessments, these have largely been

limited to water clarity due to the available spectral bands and/or to only very large

lakes (due to the large pixel size of sensors designed to study the oceans). Landsat

8 (launched in 2013) has some significant improvements over its predecessors, but

its spectral and temporal characteristics remain largely unchanged, except for a

shorter wavelength blue band. The next big advancement for remote sensing of

regional water quality of lakes will come from the ESA Sentinel-2 and Sentinel-3

satellites. Improvements in spectral and temporal characteristics of these satellites

will allow for better characterization of chlorophyll, CDOM, and SSmin in optically

complex waters.

For effective lake management, it is essential to have long-term water quality

information on a synoptic scale. Combining Landsat and Sentinel satellite imagery

will greatly improve the ability to acquire imagery when needed and should

significantly improve the utility and usefulness of ORS for water resource man-

agers. Landsat 8 and Sentinel-2 imagery can be used for the assessment of all lakes,

and Sentinel-3 can be used for large lakes more often with its higher temporal

resolution. Once reliable water quality products can be produced in a timely fashion
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on a regional basis, their adoption and use by resource managers should increase

significantly. The increased use of remote sensing will greatly improve the man-

agement of our water resources and should ultimately lead to better remote sensing

systems for monitoring these important natural resources.
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(2007) A case study of airborne and satellite remote sensing of a spring bloom event in the

Gulf of Finland. Cont Shelf Res 27:228–244. doi:10.1016/j.csr.2006.10.006

39. Senay GB, Shafique NA, Autrey BC, Fulk F, Cormier SM (2001) The selection of narrow

wavebands for optimizing water quality monitoring on the Great Miami River, Ohio using

hyperspectral remote sensor data. J Spatial Hydrol 1:1–22

40. Shafique NA, Autrey BC, Fulk FA, Flotemersch JE (2003) Hyperspectral remote sensing of

water quality parameters for large rivers in the Ohio River Basin. In: First interagency

conference on research in the watersheds, Benson, Arizona, October 27–30, 2003. USDA

Agricultural Research Service, Washington DC

41. Ammenberg P, Flink P, Lindell T, Pierson D, Strombeck N (2002) Bio-optical modelling

combined with remote sensing to assess water quality. Int J Remote Sens 23(8):1621–1638.

doi:10.1080/01431160110071860

42. Olmanson LG, Brezonik PL, Bauer ME (2013) Airborne hyperspectral remote sensing to

assess spatial distribution of water quality characteristics in large rivers: the Mississippi River

and its tributaries in Minnesota. Remote Sens Environ 130:254–265

43. Morel A, Prieur L (1977) Analysis of variations in ocean color. Limnol Oceanogr 22:709–722

44. Gitelson A (1992) The peak near 700 nm on reflectance spectra of algae and water: relation-

ships of its magnitude and position with chlorophyll concentration. Int J Remote Sens 13(17):

3367–3373

45. MosesWJ, Gitelson AA, Perk RL, Gurlin D, Rundquist DC, Leavitt BC, Barrow TM, Brakhage

P (2011) Estimation of chlorophyll-a concentration in turbid productive waters using airborne

hyperspectral data. Water Res 46(4):993–1004. doi:10.1016/j.watres.2011.11.068

46. Duan HT, Zhang YZ, Zhan B, Song KS, Wang ZM (2007) Assessment of chlorophyll-a

concentration and trophic state for Lake Chagan using Landsat TM and field spectral data.

Environ Monit Assess 129:295–308. doi:10.1007/s10661-006-9362-y

47. Gons HJ (1999) Optical teledetection of chlorophyll a in turbid inland waters. Environ Sci Tech

33:1127–1132. doi:10.1021/es9809657

48. Mittenzwey K, Gitelson A, Ullrich S, Kondratiev K (1992) Determination of chlorophyll a of

inland waters on the basis of spectral reflectance. Limnol Oceanogr 37:147–149

49. Menken K, Brezonik PL, Bauer ME (2006) Influence of chlorophyll and humic color on reflec-

tance spectra of lakes: implications for measurement of lake-water properties by remote sensing.

Lake Reserv Manag 22(3):179–190

50. Moses WJ, Gitelson AA, Berdnikov S, Povazhnyy V (2009) Satellite estimation of chloro-

phyll-a concentration using the red and NIR bands of MERIS—the Azov Sea case study.

IEEE Geosci Remote Sens Lett 6:845–849. doi:10.1109/LGRS.2009.2026657

51. Minnesota Department of Natural Resources (2014) LakeFinder. http://www.dnr.state.mn.us/

lakefind/index.html. Accessed 28 Aug 2014

52. Schalles J, Yacobi Y (2000) Remote detection and seasonal patterns of phycocyanin, caro-

tenoid and chlorophyll pigments in eutrophic waters. Archives Hydrobiology, special issues.

Adv Limnol 55:153–168

Remote Sensing for Regional Lake Water Quality Assessment: Capabilities and. . . 137

http://dx.doi.org/10.1016/S0048-9697(00)00685-9
http://dx.doi.org/10.1016/j.csr.2006.10.006
http://dx.doi.org/10.1080/01431160110071860
http://dx.doi.org/10.1016/j.watres.2011.11.068
http://dx.doi.org/10.1007/s10661-006-9362-y
http://dx.doi.org/10.1021/es9809657
http://dx.doi.org/10.1109/LGRS.2009.2026657
http://www.dnr.state.mn.us/lakefind/index.html
http://www.dnr.state.mn.us/lakefind/index.html


53. Randolph KL, Wilson J, Tedesco L, Li L, Pascual L, Soyeux E (2008) Hyperspectral remote

sensing of cyanobacteria in turbid productive water using optically active pigments, chloro-

phyll a and phycocyanin. Remote Sens Environ 112:4009–4019

54. Vincent RK, Qin X, McKay RM, Miner J, Czajkowski K, Savino J, Bridgeman T (2004)

Phycocyanin detection fromLandsat TM data for mapping cyanobacterial blooms in Lake Erie.

Remote Sens Environ 89(3):381–392

55. Wynne TT, Tomlinson MC, Warner RA, Tester PA, Dyble J, Fahnensteil GL (2008) Relating

spectral shape to cyanobacterial blooms in the Laurentian Great Lakes. Int J Remote Sens 29:

3665–3672

56. Wynne TT, Stumpf RP, Tomlinson MC, Dybleb J (2010) Characterizing a cyanobacterial

bloom in western Lake Erie using satellite imagery and meteorological data. Limnol Oceanogr

55:2025–2036

57. Wynne TT, Stumpf RP, Tomlinson MC, Fahnenstiel GL, Dybleb J, Schwab DJ, Joseph-Joshi S

(2013) Evolution of a cyanobacteria bloom forecast system in western Lake Erie: development

and initial evaluation. J Great Lakes Res 39:90–99. doi:10.1016/j.jgir.2012.10.003

58. Lunetta RS, Schaeffer BA, Stumpf RP, Keith D, Jacobs SA, Murphy MS (2014) Evaluation of

cyanobacteria cell count detection derived from MERIS imagery across the eastern USA.

Remote Sens Environ. doi:10.1016/j.rse.2014.06.008

59. Brando VE, Dekker AG, Park YJ, Schroeder T (2012) Adaptive semianalytical inversion of

ocean color radiometry in optically complex waters. Appl Optics 51:2808–2833

60. Carder KL, Chen FR, Lee ZP, Hawes SK, Kamykowski D (1999) Semianalytic moderate-

resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical

domains based on nitrate-depletion temperatures. J Geophys Res Oceans 104:5403–5421

61. Hoge FE, Lyon PE (1996) Satellite retrieval of inherent optical properties by linear matrix

inversion of oceanic radiance models: an analysis of model and radiance measurement errors.

J Geophys Res Oceans 101:16631–16648

62. Zhu W, Yu Q, Tian YQ, Chen RF, Gardner GB (2011) Estimation of chromophoric dissolved

organic matter in the Mississippi and Atchafalaya river plume regions using above‐surface
hyperspectral remote sensing. J Geophys Res 116, C02011. doi:10.1029/2010JC006523

63. Ficek D, Zapadka T, Dera J (2011) Remote sensing reflectance of Pomeranian lakes and

the Baltic. Oceanologia 53:959–970

64. Xiao YH, Sara-Aho T, Hartikainen H, Vähätalo AV (2013) Contribution of ferric iron to light

absorption by chromophoric dissolved organic matter. Limnol Oceanogr 58:653–662
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Abstract Human water use around the globe continues to increase while available

water supplies are threatened by contamination, climate change, and aging infra-

structure. Effective management of water resources is essential to ensure that water

is available when and where it is needed. A necessary first step is quantifying the
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amount of water needed and making this information readily available to decision-

makers. Specifically, information is needed on both the total amount of water

withdrawn and the portion of that water which is not returned to the source, at a

spatial and temporal scale that will support management decisions. Quantifying this

water loss (i.e., consumptive use) is important for gauging impacts to downstream

water users and to maintaining functioning ecosystems. This effort can be chal-

lenging in large basins where water use data may be collected in various formats by

numerous agencies utilizing different metrics. The objective of this chapter is to

present a case study model developed for the Potomac River Basin in the United

States. The model consists of a basin-wide analysis and mapping tool that incorpo-

rates monthly water use data from multiple political jurisdictions, estimates con-

sumptive water use, displays raw and summary information in an interactive

geospatial format, and shares information with stakeholders via an interactive

web-based mapping tool. The developed tool is expected to assist in long-term

local, state, and basin-wide comprehensive water resources planning; real-time

drought management; and a better understanding of human impacts on water

resources.

Keywords Consumptive use • Geospatial tool • Open source • Return flow • Water

planning • Water use • Web-based mapping

1 Introduction

There are heightened concerns about water availability in many parts of the world

in the face of population growth and changes in the global climate [1]. Approxi-

mately 20 % of the world’s population deal with water shortages and another 25 %

do not have sufficient supplies due to a lack of infrastructure [2]. As a result,

tensions may arise between groups of water users with competing interests. Con-

currently, human water withdrawals alter natural hydrology to a degree that causes

adverse impacts on the health of aquatic communities [3, 4]. In the world’s major

river and lake systems, watersheds often span multiple governmental jurisdictions

and include large and diverse groups of users and ecosystems dependent on

adequate water supplies.

To balance a diverse array of needs, a collaborative approach can be an effective

means for developing a water resources management plan [5–7]. Such an approach

requires that stakeholders have confidence in the scientific methods used to formu-

late the plan and in the data upon which analyses are based [8]. In systems where

water scarcity, actual or potential, is an issue, data on water use for human purposes

is a key piece of information. Who is withdrawing water, in what quantity, and

where? How much of a given water withdrawal is later returned to the system, and

where is it returned? How have water withdrawals and return flows changed over

time, and how are they projected to change in the future?
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Until recently, water use studies across the United States, and around the world,

have been done at relatively coarse spatial and temporal resolutions, primarily

because of data limitations. Temporal resolution has typically been annual or

decadal, and spatial resolution has been generally at the national scale for global

studies [9] and at the county or state scale for US studies [10]. However, water use

analyses at finer scales are desirable because of the high variability of water

availability in most regions [11, 12].

The Potomac River Basin (Fig. 1) spans multiple governmental (state) jurisdic-

tions that include the states of Maryland, Pennsylvania, Virginia, and West Virginia

and the District of Columbia (Washington, DC). Considering these complex and

politically challenging environmental and water resource issues, stakeholders often

rely on the Interstate Commission on the Potomac River Basin (ICPRB) to facilitate

dialog and provide input on possible solutions. The question of how to gauge

current and potential future impacts of consumptive use, i.e., net water withdrawals,

at the watershed and sub-watershed levels has long challenged resource managers

Fig. 1 Location of the Potomac River Basin and upper Potomac River Basin. Sources: Sub--
basins—USDA/NRCS; river segments—Chesapeake Bay Program; rivers—USEPA/USGS;

coastline—NOAA; state boundaries—US Census
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in the basin. To support collaborative planning, ICPRB is developing an interactive,

web-based geospatial–temporal water use analysis and mapping tool for the drain-

age area of the freshwater portion of the river, referred to in this study as the upper

Potomac River Basin.

The objective of this chapter is to describe tools that will enable water resource

managers to gather multiple governmental (state) jurisdictions’ water withdrawal
data, estimate watershed-scale consumptive use of water, and make the information

available to water resource managers and stakeholders via an interactive web-based

mapping tool.

2 Project Scope and Objective

2.1 Study Area

The Potomac River is the primary source of water for the Washington, DC,

metropolitan area; the river and its tributaries supply many of the rapidly growing

upstream communities. The region faces continuing population growth and poten-

tial changes in water availability from climate change [13–15]. Flow in the river is

seasonal, typically dropping to its lowest levels of the year in summer and early fall.

The river usually meets water supply and environmental needs. But over the past

century, droughts have occurred which reduced the river’s natural flow to levels that

would not meet today’s demands or those anticipated in the future.

The headwater streams of the Potomac River originate in Maryland, Pennsyl-

vania, Virginia, and West Virginia. The freshwater portion of the river extends to

the head of tide, located a few kilometers below Little Falls dam near Washington,

DC. The drainage area for the upper Potomac River Basin, the nontidal portion

(Fig. 1), is 29,950 square kilometers (km2). Figure 2 shows major tributaries and

sub-basins for the upper Potomac River Basin. The Potomac River flows past

Washington, DC, through the Potomac Estuary and into the Chesapeake Bay, an

ecologically rich and economically productive estuary on the eastern coast of the

United States.

The Washington, DC, metropolitan area has a cooperative system of water

supply management designed to assure adequate water supplies during drought.

This system is governed by a set of agreements entered into by the region’s major

water suppliers in the early 1980s and includes shared storage facilities and

coordinated operations during periods of low flows. It has served the metropolitan

area well over the past 30 years, successfully meeting demands and environmental

flow requirements during the two moderate droughts in 1999 and 2002. However,

recent demand and water availability forecasts indicate that significant changes to

this system will be needed by the end of the next 30-year planning horizon, 2040,

because of anticipated growth in metropolitan area water demand and upstream

consumptive use of water.
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Many small and mid-sized communities in the Potomac River Basin found their

water supplies strained during the droughts of 1999 and 2002. This prompted new

water supply planning initiatives in all four states within the basin. At the same

time, studies are conducted throughout the basin to determine the relationship

between stream flows and aquatic health and to develop environmental flow

thresholds to inform water withdrawal permit decisions [16–18]. Such environ-

mental flow thresholds could limit the amount of water available to public water

suppliers and other users during low flow conditions. The renewed focus on water

supply and stream flows in the basin by the four states, metropolitan area suppliers,

upstream jurisdictions, and environmental organizations has prompted the ICPRB

to propose a basin-wide approach to water supply management as an integral part of

a new comprehensive water resources plan for the basin [19].

An important component of the data support necessary for this effort is infor-

mation on water use. The states’ new water supply planning initiatives have

significantly increased the amount of available water use data in the basin. Though

Maryland and Virginia have had water withdrawal data collection programs in

Fig. 2 Map of upper Potomac River Basin, showing sub-basins, river segments, and major rivers.

Sources: Sub-basins—USDA/NRCS; river segments—Chesapeake Bay Program; rivers—

USEPA/USGS; coastline—NOAA; state boundaries—US Census
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place since the 1980s, all four basin states now have reporting requirements for

users whose withdrawals exceed specified thresholds.

2.2 Objective

The objective of the ICPRB project is to develop a comprehensive, flexible, and

transparent analysis and mapping tool for water withdrawals and consumptive use

in the upper Potomac River Basin to ultimately facilitate collaborative water

resources planning in the region. The tool is being designed to support development

of a basin-wide water supply management strategy, including existing water supply

planning efforts. It will provide a long-term time series of monthly water use data

and allow for analyses of seasonality and inter-annual variability as well as trends.

The tool will make data, at the watershed scale, easily accessible to water managers

in all basin states. It will also provide information on consumptive use in the upper

Potomac Basin from 1985 to the present, in a monthly time step at the small

watershed scale. The project comprises three components: (1) a relational database

containing a compilation of available monthly water withdrawal data from basin

states, supplemented by 5-year datasets of annual withdrawals aggregated to the

county level by the US Geological Survey (USGS); (2) a Water Balance Convey-

ance Model which computes consumptive use, including the effects of inter-

watershed transfers of water; and (3) an interactive web-based mapping tool to

readily share information. Each of these components is discussed in subsequent

sections of this chapter.

Such information will help governmental agencies evaluate the impact of poten-

tial water withdrawal permitting decisions in the sub-watersheds within the basin

and those that cross state boundaries. It will improve estimates of cumulative

consumptive use upstream of the Washington, DC, metropolitan area water sup-

pliers’ Potomac River intakes, an important input for the area’s long-term planning

and operational models. The information will also assist multiple stakeholders with

local, state, and basin-wide planning.

3 Methods

The major focus of this chapter is on consumptive use of water. The analysis and

mapping tool described here provides estimates of consumptive water use at a

spatial and temporal resolution commensurate with planning needs in the Potomac

River Basin. Details of the methods are provided below.
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3.1 Chesapeake Bay Program Watershed Model

The spatial units of analysis for this ICPRB project are the watershed-based “river

segments” (Fig. 2) developed for the Chesapeake Bay Program (CBP) Watershed

Model [20, 21]. The CBP Watershed Model, an open-source modeling tool based

on the Hydrologic Simulation Program—FORTRAN (HSPF), simulates flows and

concentrations of nutrients and sediment in streams flowing within the Bay water-

shed, which includes the Potomac River Basin. Several organizations, including

ICPRB, have adopted the CBP Watershed Model as a water supply planning tool

[13, 18]. The CBP Watershed Model’s streamflow and pollutant concentration

estimates are provided by river segment, and some model inputs, including water

supply withdrawals and wastewater treatment plant discharges, are also aggregated

by river segment. The delineation of the river segments is based primarily on

considerations of data availability. The choice of the river segments as spatial

units of analysis for our project provides a convenient interface with the CBP

Watershed Model.

3.2 Water Balance Conveyance Model

To compute consumptive use for a given spatial unit, a Water Balance Conveyance

Model was constructed to route water flow from raw water withdrawal points to

wastewater discharge points and to track consumptive losses and return flows along

the way. This model was developed specifically to address the complexities often

present in public water supply and wastewater treatment systems and the inter-

actions of public systems with self-supplied facilities or with other public systems.

The tool for consumptive use relies on withdrawal data provided by each state

within the Potomac Basin. However, the states’ data differ in the time period of data

availability, collection methods, and categorization of water uses. One benefit of

this effort is the compilation of state data into a single location that allows Potomac

water use to be understood as a whole.

The developed tool incorporates three features to facilitate a collaborative

planning process: transparency, flexibility, and accessibility. The interactive map-

ping component of the tool will promote transparency by allowing stakeholders to

view and access basin-wide water use data. The underlying database incorporates a

flexible design that allows the addition of site-specific water consumption data as it

becomes available, and in the absence of site-specific data, relies on regional and

national data. Finally, the tool is being developed using open-source database and

mapping software, making it widely accessible to all stakeholders. Section 3.6

provides details of the ICPRB Water Balance Conveyance Model configuration.
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3.2.1 Data Identification

The data used include monthly time series of consumptive use estimates for 1985–

2012 by water use type (e.g., public water supply, commercial, industrial). This

captures the seasonal variation of water use in the basin and long-term trends and

allows for comparisons of water use in drought and non-drought years. Streamflow

from the upper basin is measured at the USGS gauge on the Potomac River at Little

Falls.

3.3 Definition of Consumptive Use

For this effort, consumptive water use is defined as the amount of water associated

with a withdrawal for water supplies (domestic, industrial, and agricultural uses)

from a given resource that is not returned to the same resource and is thus

unavailable to other users or aquatic communities [10, 22–26]. Return flows may

be less than withdrawals for a variety of reasons: losses due to evaporation or

transpiration, incorporation of water into products or crops, or consumption by

humans or livestock [22]. This definition of consumptive water use includes all

types of “blue” water (water present in aquifers, lakes, reservoirs, and streams) but

excludes “green” water (water stored in the soil or within vegetation that is

ultimately evaporated and transpired) [27, 28]. The definition is limited to blue

water since its use in the Potomac Basin is subject to influence by management

strategies. Consumptive use from blue water sources used for irrigation is also

considered in this study. By the above definition of consumptive use, a withdrawal

may also be consumptive if it occurs from a given resource and its associated return

flow is discharged to a different resource (often referred to as an inter-basin

transfer). Thus, the specification of spatial scale is integral to the concept of

consumptive use.

For an individual facility, for example, a commercial or industrial facility that

withdraws, uses, and discharges (return flow) water at the same location, consump-

tive use can be expressed by a simple water balance equation:

CU ¼ W � R ð1aÞ

where

CU¼ consumptive use

W¼water withdrawn

R¼water returned

Equation (1a) can be used to compute the facility’s consumptive use when

withdrawal and discharge data are available and under the assumption that inflows

and outflows due to leakage are not significant. Consumptive use results computed
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using Eq. (1a) are sometimes reported in terms of consumptive use coefficients, that

is, consumptive loss as a percent of total withdrawal:

CU coefficient %ð Þ ¼ 100� W � Rð Þ=W ð1bÞ

More generally, for a given resource of interest, for example, a lake, aquifer, or

river, consumptive use is the sum of all withdrawals from the resource minus the

sum of all return flows to the same resource. In this study, consumptive use is

estimated for each river segment in the upper Potomac Basin, that is,

CUA ¼
X

all i where Wi is located in A
Wi �

X
all j where Rj is located in A

Rj ð2Þ

where

CUA¼ consumptive use in river segment, A

Wi¼withdrawal, i
Rj¼ return flow, j

Because watersheds are aggregates of river segments, calculation of consump-

tive use by river segment from Eq. (2) allows estimates of consumptive use to be

made by watershed, thus providing information on the impact of upstream with-

drawals on downstream users and ecosystems.

Application of Eq. (2) is straightforward if accurate data on withdrawals and

return flows are available. However, this is generally not the case at the regional

scale. Withdrawal and corresponding return flow data is often lacking for individual

industrial facilities and commercial establishments and is rarely available for

agricultural enterprises. Return flows from public systems are comingled with

rainwater and groundwater that enter the networks of pipes that collect wastewater,

as described in Sect. 3.5.2. Public supply or wastewater systems may have inter-

connections with other public systems or with industrial systems. The approaches

used to address these problems are described in the following sections.

3.4 Water Withdrawal and Return Flow Data

Water withdrawal data for this project were obtained from four states in the

Potomac Basin and compiled into a single relational database. Maryland and

Virginia, which comprise 56 % of the upper Potomac Basin, have relatively

continuous records of monthly withdrawals by large quantity users (for Maryland,

beginning in 1979, and for Virginia, beginning in 1982). Pennsylvania has conti-

nuous records beginning in 2005 and West Virginia beginning in 2003.

Water withdrawal data are reported by water use type (categories of end uses).

Although the various state datasets differ in their water use categories and defini-

tions, sufficient overlap exists to provide values of water withdrawals for the
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following nine use categories: aquaculture (AQU), self-supplied commercial facil-

ities (COM), self-supplied industrial facilities (IND), crop and nursery irrigation

(IRR-C), golf course irrigation (IRR-G), livestock production (LIV), mining

(MIN), thermoelectric power generation (PP), and public water supply systems

(PWS).

The withdrawal data available from the states has significant data gaps over the

time period of the study, 1985–2012. To fill these gaps, annual water use data

compiled by the USGS are used. Starting in 1985 and every 5 years thereafter, the

USGS estimates total annual water use at the county level by water use type [29]. In

addition to the eight water use categories given above, the USGS data provide

estimates of self-supplied domestic water use (SSD). For this study, values of

average annual withdrawals from the USGS datasets are interpolated to provide

time series of monthly withdrawals at the county level, and these are disaggregated

by river segment and weighted by area or in some cases by land use area to obtain

monthly time series of average withdrawals by water use type by river segment.

Return flow (discharge) data for wastewater treatment plants (WWTPs) in the

Chesapeake Bay watershed are available from the CBP. These data include monthly

flows and nutrient concentrations from municipal and county wastewater treatment

facilities and certain large industrial facilities. As described below, the CBP

discharge dataset is used in this study to determine the locations of the WWTPs

associated with public water supply systems and to estimate site-specific consump-

tive use coefficients for selected large industrial facilities for which paired with-

drawal and discharge data are available.

3.5 Consumptive Use Estimate Methods

This study uses a variety of methods to estimate consumptive use in the upper

Potomac Basin, depending on water use type and on data availability and quality.

For selected industrial and commercial facilities for which both withdrawal and

discharge data are readily available, site-specific consumptive use coefficients are

computed from Eq. (1b). For all other cases, consumptive use is estimated from

withdrawal data and non-site-specific consumptive use coefficients: (a) for public

water supply systems, consumptive use coefficients are computed from upper

Potomac Basin withdrawal data using the “winter base rate” method; (b) for other

use types, coefficients from the published literature are used.

The relational database used in this study has been designed to facilitate the

addition of site-specific consumptive use coefficients as more data becomes avail-

able. Details of consumptive use estimate methods are provided below.
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3.5.1 Published Consumptive Use Coefficients

When available data to compute site-specific consumptive use coefficients are

insufficient, consumptive use is often estimated using published coefficients calcu-

lated by other studies conducted in regions with similar climates and water use

patterns [30]. This approach requires water withdrawal amounts categorized by

end-use type (e.g., domestic, commercial, irrigation) and the related coefficients.

The accuracy of this method is limited since the coefficients were originally

calculated for a specific set of use categories and are then applied uniformly

throughout the study area. Nonetheless, use of published coefficients does provide

estimates for planning purposes that would not otherwise be available.

For non-PWS use types, this study incorporates calculated consumptive use

coefficients available for three states in the Great Lakes region of the United States,

i.e., Indiana, Ohio, and Wisconsin [22]. This is the largest scale study conducted to

date in the United States that provides consumptive use coefficients at monthly time

scale. Shaffer [22] compiled available monthly withdrawal and return flow data for

water users in Ohio and withdrawal data for Indiana and Wisconsin for the years

1999–2004. Shaffer computed monthly and annual consumptive use coefficients

using the water balance equation, Eq. (1b), for the Ohio water users that provided

both withdrawal and return flow data. The dataset included 196 commercial

records, 471 industrial records, 289 thermoelectric power records, 59 golf course

records, 20 crop and 42 nursery irrigation user records, 18 livestock records,

33 aquaculture records, and 418 mining site records, where the number of records

refers to a facility and year in which both monthly withdrawal and return flow data

were available. This ICPRB study applies Shaffer’s monthly coefficients to with-

drawal time series that do not have site-specific consumptive use coefficients in the

following use categories: AQU, COM, IND, IRR-GOLF, IRR-CROP, LIV, and

PP. Because mining withdrawals in the upper Potomac Basin are primarily for

dewatering purposes, consumptive use coefficients for the MIN use category are set

equal to zero. Consumptive use for PWS is calculated from upper Potomac Basin

data using methods described below.

3.5.2 Consumptive Use Estimates for PWS Systems

Shaffer [22] and others have noted that the simple water balance equation, expressed

by Eqs. (1a) and (1b), does not provide meaningful estimates of consumptive use

when used with withdrawal and discharge data from a public water supply system

and associated wastewater treatment system. Municipalities and counties distribute

potable water and collect wastewater via complex networks of pipes that are subject

to losses and gains not typically measured and difficult to quantify. Gains and losses

experienced by wastewater collection systems are particularly difficult to character-

ize because of the effects of inflow and infiltration (I/I). During wet weather periods,

inflows from direct connections to a wastewater collection system, such as rooftop
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downspouts, sump pumps, and unsealed manhole covers, or infiltration of storm-

water via leaks in underground pipes, valves, and connections can cause peak flows

which may be many times the typical dry weather flows [31–33]. During dry weather

periods, collection systems may interact with groundwater, experiencing net infil-

tration or, alternatively, exfiltration [34], depending on the level of the water table in

relation to the conveyance pipes. Inflow and infiltration (I/I), which is in part

associated with deteriorating infrastructure, is an important and costly problem for

the wastewater industry because it can cause sanitary sewer overflows that affect

water quality in receiving streams. Also, any additional flowmust be accounted for in

the design capacity of wastewater treatment plants.

In the initial stages of this project, an effort was made to estimate the “wet

weather” portion of I/I so that it could be accounted for in the estimate of PWS

consumptive use from withdrawal and discharge data. Simple linear regressions

demonstrated that monthly WWTP discharges from municipal facilities increase

significantly with monthly precipitation. However, further analyses, using multiple

regressions of monthly discharge on total monthly precipitation and on season,

indicated that discharges are also strongly correlated with season. Results for two

upper Potomac communities are plotted in Fig. 3. The graphs show that mean

monthly discharge and estimated “dry weather discharge” both have a seasonal

variation, with discharges highest in the winter months (December, January, and

February) and lowest in the summer months (June, July, and August). Dry weather

discharge is the estimated discharge not attributable to precipitation. In the exam-

ples shown, all model coefficients were significant at the 95 % confidence level.

Note that without I/I, discharges would be expected to be relatively constant,

reflective of indoor water use rates, and to be less than withdrawals, reflecting

consumptive and nonconsumptive losses. The seasonal dependence evident in

Fig. 3 can be attributed to the variation in dry weather infiltration/exfiltration into

wastewater collection pipes due to fluctuating groundwater levels, which are

significantly higher in the upper Potomac Basin in the winter than in the summer.

These analyses suggest that monthly discharge data from municipal WWTPs

cannot be used to obtain estimates of consumptive use for Potomac Basin commu-

nities because water use return flows are comingled with wet weather inflows and

groundwater infiltration/exfiltration. Though it might be feasible in some cases to

estimate and account for the wet weather component of discharge, no procedure is

currently available to estimate the effects of dry weather infiltration or exfiltration

that appears to occur due to fluctuating groundwater levels.

Because municipal WWTP discharge data is not reflective of water use return

flows, an alternative method for estimating consumptive use, the winter base rate

(WBR) method, is often used [22, 35–38]. The method is applicable in regions with

a temperate climate where it is reasonable to assume that consumptive use is

primarily due to outdoor water use in non-winter months. This method does not

rely on WWTP discharge data, but rather estimates consumptive use solely from

monthly water withdrawal data. The winter base rate method is based on the

following assumptions: (1) no significant consumptive use occurs in the winter

months; and (2) the observed difference between wintertime withdrawals and
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withdrawals in other months of the year is due to outdoor water use, which is

completely or largely consumptive. The consumptive use coefficient from the

winter base rate method is given by Eq. (3):

CU coefficient %ð Þ ¼ monthly withdrawal� winter withdrawalð Þ=
monthly withdrawalð Þ � outdoor use CU coefficientð Þ ð3Þ

Fig. 3 Total monthly withdrawals and wastewater discharges are plotted for two small- to

medium-sized communities in the upper Potomac Basin. Also plotted are dry weather discharges,

estimated as the coefficients, b1, b2, b3, and b4, of the regression model,

discharge¼ b1� x1 + b2� x2 + b3� x3 + b4� x4 + b5� precipitation. The xi are binary variables

which ¼1 if month is in Season i, or ¼0 otherwise
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An appropriate definition of the winter withdrawal requires consideration of

regional conditions and characteristics. For example, in an Illinois study by LaTour

[35], winter withdrawals were computed as an average of November through April

withdrawals and assumed outdoor use was 80 %. For Ohio, Indiana, and Wisconsin,

Shaffer [22] defined the winter withdrawals as the average of December through

February withdrawals and assumed that outdoor use is 100 % consumptive. In this

study, because water main breaks are common in the winter months due to freezing

conditions, a system’s winter withdrawal in a given water year is computed as the

minimum of the December, January, and February total withdrawal, with outdoor

use assumed to be 100 % consumptive.

The winter base rate method has some obvious limitations. It ignores consump-

tive use that does not vary seasonally, as might occur for a public supply system that

supplies a large industrial facility whose consumptive use is constant throughout

the year. It would not give accurate results for a system with significant seasonal

variations in user population, for example, a community that experiences a large

influx of tourists during the summer months. In addition, no systematic evaluations

of the method have been conducted, partly because an alternative methodology is

not available for the PWS use type. However, Shaffer [22] did apply the method to

commercial as well as public supply users, and for commercial facilities, she

compared results from the winter base rate method with those obtained from the

simple water balance approach, Eqs. (1a) and (1b). Shaffer found that the annual

consumptive use coefficient for both Ohio and Indiana from the winter base rate

method was 30 %, which fell between the median and average of the annual

consumptive use coefficients for facilities in Ohio computed using Eq. (1b),

which were 17 and 42 %.

3.6 Configuration of the Water Balance Conveyance Model

As described above, this study estimates consumptive use primarily by application

of non-site-specific consumptive use coefficients to water withdrawal quantities

rather than by using return flow data. The coefficients are obtained from

literature values or, in the case of PWS, computed using the winter base rate

method. In a few instances when sufficient data were available, the water balance

equation, Eq. (1b), was used. However, return flows are often discharged at

locations some distance away from original withdrawal points. Therefore, in

order to estimate consumptive use by this study’s spatial unit of analysis, the

river segment, a means of representing the routing of water from withdrawal points

to discharge points was needed. An available water routing model and database

structure, the New England Water-Use Data System [39] was considered, but it was

determined that its data needs were too intensive for a region the size of the upper

Potomac Basin.
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The Water Balance Conveyance Model was developed for this project to capture

the effects of inter-watershed transfers. The model can route water from withdrawal

points to discharge points and represent evaporative and other consumptive losses

and return flows occurring throughout a complex system. The model has sufficient

flexibility to represent situations common in the upper Potomac Basin, such as

interconnections between two or more water distribution systems or wastewater

collection systems, and where self-supplied industrial and commercial users ulti-

mately discharge to public wastewater collection/treatment systems. It can repre-

sent both consumptive loss and return to the resource which may occur at the point

of water use. It can represent the losses that often take place at water treatment

plants where the treatment process may involve consumptive evaporative losses

and/or discharges of residual process water back to streams. Finally, it can represent

consumptive losses that may occur at WWTPs in cases where a portion of discharge

is reused for irrigation or other purposes.

The model structure is depicted in Fig. 4. It represents four types of sites,

denoted Sm, where m¼ 1 to 4, and three types of conveyance structures that link

the sites, Cm m+1, for m¼ 1 to 3:

• S1—raw water withdrawal sites: surface water intakes and groundwater wells.

• C12—raw water conveyances: pipes from withdrawal points to water treatment

facilities.

• S2—raw water treatment sites: this includes no treatment in some cases, onsite

treatment at some groundwater wells, and industrial or municipal and county

water treatment facilities.

• C23—treated water conveyances: conveyance pipes from water treatment facili-

ties to users.

• S3—water users: water users may be represented as individual users, e.g., an

individual industrial facility, or by a group of users, say, the residents, commer-

cial establishments, and minor industrial facilities located within a town’s water
service area.

• C34—wastewater conveyances: conveyance pipes of sanitary sewer systems

from users to wastewater treatment facilities.

• S4—wastewater treatment: this includes onsite septic systems of some users and

municipal, commercial, and industrial wastewater treatment facilities.

Each site in the model has associated spatial data, and the model represents

consumptive losses and return flows via time-dependent loss and return factors

associated with each site. The model also includes conveyance factors that repre-

sent the fraction of water from a given site of type, Sm, that is conveyed to a

C12: raw 
water 
conveyance

C23: treated 
water 
conveyance

C34: 
wastewater 
conveyance

S2: raw 
water 
treatment

S1: raw 
water
withdrawal

S4: waste -
water 
treatment

S3: water 
use

Fig. 4 Schematic of the components of the Water Balance Conveyance Model (Source: Authors)
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destination site of type Sm+1. The loss, return, and conveyance factors are estimated

from available information, including county and municipal water and sewer

planning documents.

Denoting the nm sites of node type, Sm, as Sm
1 , S

m
2 , . . . , S

m
nm

at locations

xm1, xm2, . . . , xmnm , where the x may be points, or extended locational data types,

that is, lines or polygons, then, for each node type, Sm, consumptive losses and

return flows at each of the sites Sm
im
have time-dependent values,

Lm
im

tð Þ¼ consumptive loss fraction at site Sm
im
at time, t, im¼ 1, 2, . . . , nm

Rm
im

tð Þ¼ return flow fraction at site Sm
im
at time, t, im¼ 1, 2, . . . , nm

Each of the three conveyance types, Cm m+1, can have up to (nm� nm + 1)

conveyances. For example, conveyance type C2 3 comprises the systems conveying

treated water from the treatment plants to users. It would be possible, in the case of

a highly interconnected system, for each of the n3 users to obtain some portion of

their water from all of the n2 treatment plants. Finally, the portion of the water from

siteSm
im
that is conveyed to siteSmþ1

imþ1
at time, t, after losses and return flows at siteSm

im
,

is given by a conveyance factor, c, where cmmþ1
im imþ1

tð Þ is the fraction of water leaving

site Sm
im

that is conveyed to site Smþ1
imþ1

at time, t, with im¼ 1, 2, . . . , nm and

im+1¼ 1, 2, . . . , nm+1 and where the condition is imposed that

Xnmþ1

imþ1¼1

cmmþ1
im imþ1

tð Þ ¼ 1 ð4Þ

that is, that 100 % of the water leaving site Sm
im
, after losses and return flows at the

site are subtracted, is accounted for.

Wi1 ¼ Wi1 tð Þ be the value of the withdrawal at withdrawal site S1i1 at time, t,

where i1 = 1, 2, . . ., n1. Several withdrawal sites may contribute to water at a

subsequent site, Sm
im
, where m = 2, 3, or 4, and water from each Wi1 may have

traveled through multiple conveyance paths before arriving at a subsequent site.

The total amount of water arriving at Sm
im
, where m = 2, 3, or 4, is the product of all

conveyance factors, c, times the product of all factors representing water remaining

after losses and return flows at sites or conveyances, summed over all potential

withdrawal sites and all potential paths. Then the total loss and total return flows at

site Sm
im
, for m = 1 to 4, are given by

Loss at Sm
im
¼

Xn1
i1

. . .
Xnm�1

im�1

Wi1 �
Ym�1

p¼1

1� Lp
ip
� Rp

ip

� �
� Cp pþ1

ip ipþ1

h i
� Lm

im
ð5Þ
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Return at Sm
im
¼

Xn1
i1

. . .
Xnm�1

im�1

Wi1 �
Ym�1

p¼1

1� Lp
ip
� Rp

ip

� �
� Cp pþ1

ip ipþ1

h i
� Rm

im
ð6Þ

If it is assumed that all of the water that reaches a wastewater treatment site, S4i4 ,

which represents an endpoint of the system, is accounted for, that is, that the sum of

the fraction of loss and return at each of these endpoint sites is one,

L4i4 þ R4
i4
¼ 1 for i4 ¼ 1 to n4 ð7Þ

then it can be verified that the expressions for system losses and return flows given

in Eqs. (5) and (6) satisfy global water balance. The global water balance equation

requires that the sum of all withdrawals is equal to the sum of all losses and returns,

or, in terms of the quantities defined in Eqs. (5) and (6), that

Xn1
i1¼1

Wi1 ¼
X4
m¼1

Xnm
im

Loss at Sm
im
þ Return at Sm

im

� �" #
ð8Þ

Equation (8) can be shown to be satisfied by substituting Eqs. (5) and (6) and

simplifying using the expressions given by Eqs. (4) and (7).

In developing the Water Balance Conveyance Model, an attempt was made to

strike a balance between model complexity and data availability. For many of the

Basin’s municipal and county systems, information is publicly available in water

and sewer planning documents on water and wastewater treatment facilities, water

and sewer service areas, and on interconnections between systems. Information in

these documents often allow estimates to be made of the approximate percentages

of water routed from a given point in a system to a subsequent point, for example,

from a water treatment plant to various water service areas. However, detailed

measurements of flow between system components are generally not available.

Figure 5 shows sites and conveyance structures in a hypothetical inter-watershed

system. This figure illustrates a number of complexities that can be represented by

the Water Balance Conveyance Model: (1) a public supply stream intake and an

associated WWTP located in different watersheds, resulting in an inter-watershed

transfer, and (2) a public water service area with a boundary that does not match

that of the sewer service area, resulting in a portion of users discharging wastewater

to individual septic and some self-supplied industrial and commercial users

discharging to the sewer service area for the public WWTP.
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3.7 Interactive Mapping Tool

The tool under development for this project includes an online interactive map

interface which displays time series of total monthly consumptive use in user-

selected watersheds and also enables the users to access and review underlying

data. Consumptive use in each watershed is computed according to Eq. (2), using

spatial queries, as the sum of all withdrawals minus the sum of all estimated return

flows occurring in the watershed. Return flows are estimated from withdrawal data

and consumptive use coefficients and routed using the Water Balance Conveyance

Model described in the previous section.

In order to meet budget constraints and provide a system that could be easily

shared, open-source software was selected for the mapping tool architecture. Open-

source software is generally defined as software that can be used, modified, and

redistributed without any restrictions, limitations, or royalty payments and usually

includes the source code for the software [40]. Using a variety of open-source

software, a prototype system has been developed that is flexible in accommodating

a wide array of data formats and spatial data types, but also scalable for large

volumes of data.

Fig. 5 Example application of the Water Balance Conveyance Model (WTP water treatment

plant, WWTP wastewater treatment plant, SSW self-supplied withdrawal) (Source: Authors)
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The mapping tool is designed to display estimates of cumulative consumptive

water use at the terminus of predetermined watersheds upstream of a watershed of

interest. The end user interacts with the system using a web browser and, upon first

page load, is presented with a web-mapping interface. When the user clicks on a

watershed, the system sends a query request to a backend database containing both

spatial and nonspatial data. The query extracts withdrawal data and consumptive

use estimates and returns a rendered map and summary calculations of withdrawals

and consumptive use upstream of the selected watershed. These results are

displayed to the end user in the form of a map with the upstream watersheds and

withdrawal sites highlighted, tables of information on those withdrawal sites, and

summary information on total water withdrawals and consumptive water use within

the originally selected watershed. The returned display also includes a chart of

withdrawals over time.

The architecture of this tool, shown in Fig. 6, consists of three main components:

the map user interface, the application server and web server, and the spatial

database. The map user interface is a browser-based JavaScript mapping library

called OpenLayers [41]. This library is called from an html web page and displays

background terrain data from a modified version of OpenStreetMap data (provided

by Stamen Design [42] terrain tile server in an interactive frame) allowing the user

to pan, scroll, or zoom the terrain view. The OpenLayers map also shows overlay

polygon elements depicting the boundaries of watersheds, streams, and water

withdrawal sites. These three elements are stored as geometry layers within the

spatial database and are delivered to the OpenLayers map interface as tile overlays

through a Web Map Service (WMS) from the rendering engine of the application

Fig. 6 Architecture of the

interactive mapping tool

(Source: Authors)
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server, or GeoServer [43]. The Apache Tomcat [44] is a web server software which

runs in conjunction with the application server to provide browser-based activity in

the form of html web pages commonly found in any Internet-driven application.

The spatial database consists of the robust and scalable PostgreSQL [45] relational

database. Its capacity to store geometry for the watersheds and withdrawal points

within the database is aided by an extension called PostGIS [46].

These three components of the system take user input in the form of map clicks,

communicate with each other through a series of scripts to retrieve data from the

spatial database, and deliver it back to the user interface in the form of map feature

highlights, tabular data in tables, and interactive charts. While there are numerous

methods and software architectures that can accomplish the same tasks as described

in this section, this architecture was chosen for its use of open-source software and

scalability.

4 Results and Discussion

4.1 Water Withdrawals in the Upper Potomac Basin

The tool developed for this project allows analysis of total withdrawals and

consumptive use in the upper Potomac Basin, including trends in time and differ-

ences during drought and non-drought years. This is of interest to Washington, DC,

metropolitan area water supply planners as water consumptively used upstream will

not be available at their downstream intakes. As an example, Fig. 7 shows a graph

of total withdrawals by public water suppliers, who are responsible for the majority

of consumptive water use occurring in the upper basin during the summer months.

The figure shows time series plots of withdrawals by the Washington, DC,

Fig. 7 Total upper Potomac Basin withdrawals for Washington, DC, metropolitan area (WMA)

public water suppliers and withdrawals and consumptive use of upstream suppliers
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metropolitan area suppliers and by the suppliers upstream of the metropolitan area.

The graph also shows the consumptive use of the upstream suppliers.

4.2 Significance of Inter-Watershed Transfers

The significance of inter-watershed transfers in some parts of the Potomac Basin is

illustrated in Fig. 8, which shows consumptive use in the Monocacy sub-basin

computed by two different methods. The Monocacy sub-basin includes portions of

Frederick and Carroll counties in Maryland and Adams County in Pennsylvania.

Figure 8a shows consumptive use in August 2012 estimated assuming onsite return

flow, i.e., assuming that any discharge of wastewater occurs in the same watershed

as the associated withdrawal. Figure 8b shows consumptive use for the same month,

computed using the Water Balance Conveyance Model described in Sect. 3.6. The

results capture the significant transfers of water that occurs in this sub-basin.

Municipalities and other users in Frederick County, who formerly relied upon the

Monocacy River, are increasingly turning to the Potomac River as a more reliable

water supply. However, most municipal WWTPs in the county still discharge to the

Monocacy River and its tributaries.

Fig. 8 Consumptive use in the Monocacy sub-basin by river segment, calculated assuming onsite

return flow for all withdrawals (a) and by the Water Balance Conveyance Model (b). A negative

consumptive use value indicates a net importation of water into the area (Source: River segments

from CBP)
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4.3 Prototype Version of Mapping Tool

A desktop prototype version of the interactive mapping tool was constructed to test

methods for developing an Internet browser-based mapping application and

backend relational database to hold and display withdrawal data and consumptive

use estimates. In this prototype, sample data were used and onsite return flows were

assumed for all withdrawals. Development of the tool has provided an opportunity

to better understand the complexities of web-based interactive architectures and

lays the groundwork for developing a more advanced tool to incorporate the full

Water Balance Conveyance Model.

The tool provides the user with summary cumulative upstream withdrawal data

and consumptive use estimates. Therefore, the system must be able to uniquely

identify the watershed within which the user has clicked and the withdrawal points

contained only within that selected watershed. When the user first loads the map

user interface, OpenLayers, in a web browser, the watersheds and withdrawal point

elements are loaded automatically onto the screen map using JavaScript program-

ming within the html page. Figure 9 shows the boundary of several nested water-

sheds in red and overlaid on the Stamen terrain background. Withdrawal points are

shown as white dots. The boundary of each of these watersheds is stored as an

individual geometry within the PostgreSQL spatial database, with each containing

an attribute table. The attribute table includes a unique watershed identification

Fig. 9 Map user interface showing an OpenLayers map with a Stamen terrain background,

overlaid by watershed boundaries in red and withdrawal points as white dots (Sources: water-
sheds—authors; map tiles and data—Stamen Design and OpenStreetMap)
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number and the watershed area. Withdrawal points are also independent geometry

elements stored in the spatial database.

A person utilizes the tool by clicking on a location of interest, such as a

watershed with a potential future withdrawal, to obtain spatial and tabular outputs.

When the user initiates the process by clicking in a watershed on the mapping

interface, a series of scripts are run to perform two major tasks. In the first task, the

system must correctly identify the watershed within which the user has clicked.

This is accomplished through a series of actions that select the smallest nested

watershed under the clicked point and the associated unique identification number.

The second task performed after a user clicks on the map is to return summary

information to the user interface about withdrawal and consumptive use within the

watershed. Using the unique ID of the selected watershed determined from the first

task, a series of additional JavaScript functions, Java Server Page scripts, and

Structured Query Language (SQL) statements are built and sent to the spatial

database to perform a spatial query of the withdrawal points contained within the

selected watershed and calculate the summary information. The spatial database

responds to these queries by returning the geometry of the selected watershed, the

geometry of the withdrawal points within the watershed, as well as the summary of

consumptive use estimates. The information is displayed in the user interface in

four different ways. First, the elements are highlighted on the map (Fig. 10). This

onscreen display of the selected features is intended to provide the user with visual

confirmation of which watershed and withdrawal points were selected.

Fig. 10 The map user interface showing the highlighted watershed and withdrawal points as

detected from the user’s mouse click (Sources: watersheds—authors; map tiles and data—Stamen

Design and OpenStreetMap)
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The queried information is also displayed in the user interface as a tabular and

graphical summary of water use information for the withdrawal points contained

within the selected watershed. An example tabular display is shown in Fig. 11,

iframe 1. This table allows the user to see the names, county, and other attribute

information for each withdrawal. Tabular summary information is also provided

including monthly withdrawals and consumptive use for the selected watershed

(Fig. 11, iframe 2). These same calculations are then plotted utilizing an open-

source JavaScript plotting library, FLOT [47] (Fig. 11, iframe 3).

Fig. 11 Screenshot of three of the user interface elements (Source: Authors)
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These four user interface responses (shown in Figs. 10 and 11) comprise the

prototype interactive web elements designed to provide users with watershed-scale

water use information. A user may further click any point on the screen within a

watershed, and the system will (1) dynamically remove any results from the

previous map click, (2) refresh the map, and (3) repopulate the three iframes with

updated information and calculations.

4.4 Discussion

Quantifying water use, and the portion not returned to a resource after use, is an

essential component of sustainably managing water resources. This information

forms the basis for current decision-making as well as proactive planning efforts to

ensure sustainable supplies under future environmental, economic, social, and

technological conditions. Particularly in watersheds that span multiple jurisdic-

tions, such as the Potomac, compiling and assessing data can have the added benefit

of encouraging communication across political boundaries to manage a shared

resource.

Many interactive watershed data analysis and/or mapping tools have been

constructed in the United States, generally for individual states. Some, but not all,

of these tools have a web-based component. The USGS StreamStats program has

interactive maps either fully implemented or under development for most states

[48]. StreamStats primarily provides streamflow statistics and watershed character-

istics for user-delineated watersheds. The Maryland StreamStats application [49],

constructed in collaboration with the Maryland Department of Environment, also

provides information on withdrawals and discharges for a particularly vulnerable

portion of the state, to select users only. Because of security concerns, water

withdrawal data with associated locational information cannot be made publicly

available in the United States, and web-based tools are generally password

protected. Pennsylvania [50] and Virginia [51] also have water use mapping tools

available to select users for data entry and data access. West Virginia [52] and

Michigan [53] have online tools available to the public to help users assess the

impact of potential withdrawals. Colorado’s Decision Support System website [54]

provides a suite of tools to access and analyze water availability and water use data.

A regional water resource planning effort has been underway for many years in

the Great Lakes Basin, led by the Great Lakes Commission. For the Great Lakes

Basin (including the Canadian portion), data collection is driven by ongoing

resource concerns that have led to interstate and international agreements and

significant financial support. The online Great Lakes Regional Water Use Database

[55] does not have a visual map interface, but it does allow registered users to

upload and manage data and the public to generate water use summary reports.

Another regional-based effort in the United States has been initiated by the Sus-

quehanna River Basin Commission, which is also developing an interstate

web-based, consumptive use tool [56].
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5 Conclusions

In the Potomac River Basin, the database, Water Balance Conveyance Model, and

interactive mapping tool described in this chapter may be used for a number of

purposes, and other basins may benefit from using a similar approach. Specifically,

the Water Balance Conveyance Model is easily adaptable to an endless array of

water use systems as well as spatial and temporal changes to those systems. This

model was developed to provide consumptive use estimates at the watershed scale

by representing transfers of water from withdrawal points to discharge points. The

model structure, which represents four types of sites (water withdrawal sites, water

treatment facilities, end users, and wastewater treatment facilities), is sufficiently

flexible to address the level of complexity of interactions and water transfers

present in the upper Potomac River Basin. But the water balance equations,

Eqs. (5), (6), and (8), for N¼ 4 site types could be easily extended to a more

general model with N site types to represent other situations. Also, it is relatively

straightforward to add losses and return flows from conveyances to the equations if

the model were applied to regions with data to support representation of these types

of losses and returns.

The interactive mapping tool provides an easily understandable and readily

accessible way to make complex datasets available to diverse stakeholder interests.

Since these products are generated utilizing open-source software, the cost is

negligible and the system can be developed to accommodate local complexities.

Advances in technology that are available and usable by anyone are allowing water

resource agencies with limited budgets to undertake more sophisticated analyses for

use in decision-making and planning.

Select stakeholders may also utilize the tool to evaluate potential consequences

of changing water use. For example, when coupled with water availability data

(e.g., streamflows) from sources such as the Chesapeake Bay Program Watershed

Model and USGS’ StreamStats [48], the tool’s water use summaries may be utilized

to understand the water supply–water demand relationship. Similarly, the tool may

also be used to inform local, state, and basin-wide water resources planning efforts.

Challenges faced during the development of this tool are not unique to the

Potomac River Basin. They include (1) combining different water use datasets

into a common database format, (2) incorporating flexibility into the conveyance

model that is able to capture losses and returns to the system through various

processes, and (3) accommodating the considerable staff time and effort required

to obtain necessary programming skills to work with the open-source software

components.

The pilot version of the Water Balance Conveyance Model is implemented with

Microsoft Access for the Monocacy sub-basin. The next version will be

implemented in PostgreSQL, to interface with the interactive mapping tool. The

prototype mapping tool currently calculates consumptive water use using sample

withdrawal data and consumptive use coefficients, with the assumption of onsite

return flows. The next version of the mapping tool will make use of the withdrawal
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and estimated return flow values computed by the Water Balance Conveyance

Model and will be completed by extending the application of the geospatial tools

beyond the test watershed to the entire basin. The functionality of the prototype

system is readily scalable to the Potomac Basin by simply appending new water-

shed geometries and associated tables for withdrawals and consumptive use esti-

mates. In addition, water availability metrics, which have been simulated by the

Chesapeake Bay Program Watershed Model for the river segments, will be incor-

porated into the next version of the tool to allow users to assess the impact of

consumptive use on streamflow.
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Abstract Measurements of natural water quality and water quantity are essential to

make informed decisions for sustainable management of water resources and eco-

system protection. During the late nineteenth and early twentieth centuries,manual or

discrete water monitoring techniques were developed and refined for water quality

and quantity measurements, and many of these techniques are still used around the
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world. Discrete water quantity measurements and water quality sampling are

conducted at regular time intervals (e.g., monthly) and do not provide sufficient

data to capture temporal and spatial changes that occur during episodic events. In

recent decades, there have been significant advances in water monitoring technolo-

gies that include sensor technologies, remote monitoring technologies, and data

transfer technologies. These technologies allow water resource managers and

researchers to capture real-time water quantity and quality data during episodic

events such as major storms. Real-time and continuous water monitoring can capture

temporal changes and provides broader spatial coverage of water quantity and quality

in a watershed. Furthermore, it allows data collection when it is normally impractical

with discrete sampling (e.g., during major storm events, nighttime, remote, and

dangerous locations). This chapter presents an overview of advances in water sensor

technologies. Topics discussed include various types of sensors for water quantity

and water quality measurements, examples of commercially available water quantity

and water quality monitoring devices, data collection and transport platforms, and

data management and quality assurance/quality control for water monitoring.

Keywords Biosensors • Chemical sensors • Data platform • Optical sensors •

Physical sensors • Telemetry • Water level sensors • Water monitoring

1 Introduction

Measurements of natural water quantity and water quality are essential to make

informed decisions for sustainable management of water resources and ecosystem

protection. Measurements of the quantity of water are required for drought and

flood management; for estimating the availability of water supplies for municipal,

industrial, and agricultural uses; and for estimating pollutant loads in surface

waters. Water quality measurements are required to assess the overall health of a

watershed, the suitability of the watershed to support living resources and provide

ecosystem services, and to identify potential threats to human health.

During the late nineteenth and early twentieth centuries, manual or discrete

water monitoring techniques were developed and refined for water quality and

quantity measurements, and many of these techniques are still used around the

world. Discrete water quantity measurements and water quality sampling

conducted at regular time intervals (e.g., monthly) provide a broad view of seasonal

changes of water quantity and quality but do not provide sufficient data to capture

temporal and spatial changes that occur during episodic events such as precipitation

and major storm events, pollutant discharges and spills, and harmful algal blooms.

In order to capture the impacts of these episodic events, temporally and spatially

intensive monitoring techniques need to be applied.

In recent decades, there have been significant advances in water monitoring

technologies that include sensors technologies, remote monitoring technologies,

and data transfer technologies [1]. These technologies allow regulatory agencies/

water resources managers and researchers to capture real-time data for water
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quantity and quality changes during episodic events. Real-time and continuous

water monitoring programs can provide broader temporal and spatial coverage

than discrete monitoring programs and allow for the collection of data during

times when it is impractical (e.g., night) or dangerous (e.g., during storm events)

to send sampling crews into the field. Some noted applications of real-time water

monitoring technologies include flood forecasting, drinking water source protec-

tion, nonpoint source pollution control, ecosystem management, and real-time

response to potentially catastrophic events.

This chapter presents an overview of advances in water sensor and real-time

monitoring technologies. Topics discussed include various types of sensors for

water quantity and water quality measurements, examples of commercially avail-

able water quantity and water quality monitoring devices, data collection and

telemetry platforms, and data management and quality assurance/quality control

for water monitoring.

2 Monitoring Water Quantity

Streamflow, also known as discharge, is one of the most commonly reported

parameters in watershed monitoring programs and has origins dating to the late

1800s. Direct measurement of continuous streamflow is not practical. However,

streamflow (Q) can be calculated from parameters that can be measured directly,

i.e., water velocity (V ) and stream cross-sectional area (A). Discrete water velocity
in the stream cross section is measured using a velocimeter. The stream geometry

(depth and width) is also measured at the same points to calculate the stream cross-

sectional area. From these measures, discrete discharge can be calculated using the

equation: Q ¼ A� V. In order to estimate streamflow continuously, these discrete

discharge measurements need to be related to a parameter that can easily be

measured continuously such as water level. Measurements of discrete discharge

and water level are made over the entire flow regime in order to establish a good

relationship between stage (surface water elevation above a datum) and streamflow

(discharge). This relationship is known as a stage–discharge relationship or a rating

curve. Once established, a rating curve can be applied to a station to continuously

estimate discharge based on continuously measured water level (stage).

Stage–discharge relationships work well for unidirectional streamflows. How-

ever, when there are tidal influences, bidirectional flow or backflow, an accurate

stage–discharge relationship cannot be established by water level measurements

alone, and an index velocity rating needs to be developed. To establish an index

velocity rating, continuous velocity and water level measurements are made with a

deployed velocimeter and water level sensor at a stable location on a stream or

river. Computing discharge using the index velocity method differs from the

discrete stage–discharge method by separating velocity and area into two rat-

ings—the index velocity rating and the stage-area rating. The outputs from each

of these ratings, mean stream velocity (V ) and cross-sectional area (A), are then
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multiplied together to compute a streamflow. For the index velocity method, V is a

function of such parameters as streamwide velocity, stage, and cross-stream veloc-

ity, and A is a function of stage and cross-sectional shape. These measurements are

made over the entire flow regime in order to establish a good relationship between

stage and area and between index velocity and mean velocity.

Technologies discussed in this section include water level sensors for continuous

stage measurements in surface water applications and acoustic Doppler technology

for measuring discrete and continuous water velocity to calculate discharge.

2.1 Water Level Sensors

Major sensor types for continuous water level measurements include submersible

pressure transducers, shaft encoders, bubbler systems, or noncontact RADAR

systems. Tables 1 and 2 describe major types of water level sensors, function

mechanisms, typical sensor accuracy, and sensor suitability versus site character-

istics. Major types of water level sensors are described in the following sections.

As a cautionary note, all sensors depicted in Table 2 can measure water level in

brackish water. However, as stated earlier, it would be difficult to establish an

accurate stage–discharge relationship for tidal bidirectional flows. In those situa-

tions, using an alternative method such as the index velocity rating is preferred.

Table 1 Continuous water level measurement sensor types and accuracies

Sensor type

Pressure sensor

(transducers) Bubbler system Shaft encoder RADAR level

Function

mechanisms

Measures water

level from

pressure change

in response

to change in the

water level

Measures pressure

required to push

air through the

water and

calculates water

level from the

measured pressure

Measures the rise

and fall of water

using a float,

weight, and pulley

Measures water

level by propa-

gating microwave

energy and

calculates water

level from pulse

travel time

Onsite

installation

location

Pressure sensor

is installed at

a fixed depth in

the water

Airline orifice tube

is installed at a

fixed depth in the

water; bubbler,

pressure sensor

electronics, and

DCP are installed

above the water

Stilling well pipe

is installed in the

water, and shaft

encoder is

installed inside the

stilling well

Installed on a

bridge or other

fixed structures

spanning the

water, using

mounting arm

Typical

accuracy

(mm)

�2 �2 �0.073 �3
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2.1.1 Submersible Pressure Transducers

Submersible pressure transducers are used extensively in groundwater level mea-

surements, but their use has been expanded to surface water applications [2]. The

submersible pressure transducer is deployed at a fixed depth—it measures pressure

change in response to change in the water level and translates pressure change to

water level through calibration. Submersible pressure transducers can be catego-

rized as absolute sensors and vented sensors. Absolute sensors are not vented to the

atmosphere, and therefore water level measurements can be biased by changes in

atmospheric pressure.

Water level data collected with an absolute submersible pressure transducer

should either be corrected in real time with measurements using an atmospheric

barometric pressure sensor or post-corrected based upon logged atmospheric baro-

metric pressure. In contrast to absolute sensors, vented submersible pressure trans-

ducers have a vent tube that vents the sensor to the atmosphere. This venting

eliminates any potential bias on water level from changes in atmospheric pressure

and therefore results in a higher accuracy sensor (Fig. 1).

Table 2 Continuous water level measurement sensor-type capabilities and limitations

Site properties

Pressure sensor

(transducers)

Bubbler

system

Shaft

encoder

RADAR

level

Brackish water o o o o

Flash floods o o * *

Large debris in water o o o *

Snow/ice cover and

flows

* * o –

Migrating channels o o o *

Unstable banks – – – *

Stilling well * o * –

Bridge * * * *

Weir/flume * * * o

Symbols: (*) perfect match, (o) sensor will work, (–) limited
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2.1.2 Bubbler Systems

Bubbler systems consist of three major components: a pressurized air source to

push air through an orifice tube, an orifice tube whose open end is mounted at a

fixed depth, and a pressure sensor (Fig. 2). Bubblers force a bubble or air through

the orifice line and measure the pressure it takes to expel the air bubble out the

submerged end of the line. The pressure required to move the air directly corre-

sponds to water depth. Bubbler systems simultaneously compensate to changes in

barometric pressure to ensure the highest accuracy measurement.

While bubbler systems have been in use for several decades, modern systems are

self-contained and typically include a small compressor to generate the pressure

needed and ensure a continuous flow of air through the orifice line. Some bubbler

systems on the market today contain built-in data loggers, while others require

connection to a separate data logger. Because only an orifice line is exposed to the

water and the other major components can be protected in a gauge house, these

sensors tend to last longer than submersible sensors.

Fig. 1 Example of submersible pressure transducer for continuous water level measurement.

Source: USGS [2] (public domain)

176 T. Younos and C.J. Heyer



2.1.3 Shaft Encoders

Shaft encoders are deployed inside of stilling wells and consist of five major

components: a pulley and shaft, an encoder which counts and interprets the shaft

rotations, a float, a cable, or tape which passes over the pulley and is connected to

the float on one end and a counterweight on the other end, and a counterweight

(Fig. 3). As the water level in the stilling well changes, the float goes up and down

which in turn rotates the pulley and the shaft. The shaft rotations are translated by

the shaft encoder into meaningful water level values.

Fig. 2 Illustration of a typical bubbler system installation. Source: Second author
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2.1.4 Noncontact RADAR Sensors

A newer sensor technology for water level measurement available on the market is

noncontact RADAR sensors. These sensors are mounted above the water on a

bridge or other structures and have zero contact with the water. A microwave

pulse is transmitted towards the water, and the time for the pulse echo to return is

directly related to the distance from the sensor to the water surface.

Figure 4 shows a tide gauge RADAR-based water level sensor combined with a

data logger installed on NOAA (National Oceanic and Atmospheric Administra-

tion) Pier in Scituate, Massachusetts (USA) [3]. Recently, NOAA published an

updated version of the field installation and design analysis guide for microwave

water level sensors [4]. Figure 5 shows the RADAR-based water level sensor

system typical output. Water level measured values (blue) are plotted against the

predicted (green). The tide gauge logs data every 6 min and posts to a website every

15 min.

Fig. 3 Illustration of a typical shaft encoder installation. Source: Second author
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Fig. 5 Example data collected by a RADAR-based noncontact water level sensor system. Source:
NOAA, National Weather Service [4] (public domain)

Fig. 4 Tide gauge RADAR-based water level sensor mounted on a pier. Primary components: (A)
RADAR sensor, (B) solar panel, (C) data collection platform (DCP). Source: NOAA [3, 4] (public

domain)
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2.2 Acoustic Doppler Technology

Acoustic Doppler current profiler (ADCP) allows accurate measurements of

streamflow from a boat, bridge, or cableway. The ADCP uses the Doppler effect

to determine water velocity by sending a sound pulse into the water and measuring

the change in frequency of the sound pulse reflected back to the ADCP by

suspended sediment or other particulates transported in surface water. The change

in frequency, or Doppler shift, measured by the ADCP, is translated into water

velocity. The sound is transmitted into the water from a transducer to the bottom of

the river and receives return signals throughout the entire depth (Fig. 6). The ADCP

also uses acoustics to measure water depth by measuring the travel time for a pulse

of sound that reach the river bottom and return back to the ADCP [5].

The river-bottom tracking capability of the ADCP acoustic beams is combined

with a global positioning system (GPS) and real-time kinematic (RKT) survey to

track the progress of the ADCP across the river and provide velocity and river width

and depth measurements. The river flow (Q) is computed from A (cross-sectional

area)�V (velocity) relationship. The use of ADCPs reduces time to determine

discharge (flow rate) and makes it possible to measure river discharge under

flooding conditions. Furthermore, the ADCP provides a detailed profile of water

velocity and direction for the river cross section and increases accuracy of flow

measurements. Figure 7 shows an example of using ADCP for velocity measure-

ment and water turbidity.

The ADCPs can also be deployed in various configurations (upward-looking,

side-looking, and downward-looking) to continuously measure water velocity,

currents, and waves and calculate discharge. These instruments often utilize a

built-in pressure transducer for secondary water level measurement and wave

measurement (through the use of specialized software). Most ADCP instruments

feature at least two beams, one beam for measuring water velocity and a second

beam for measuring water level.

Fig. 6 Illustration of acoustic Doppler current profiler (ADCP) measurements (left) and photo of a
moving boat measurement with an ADCP (right). Source: USGS [5] (public domain)
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Several types of commercially available ADCPs are shown in Fig. 8. ADCPs are

commonly used in monitoring locations where a stage–discharge relationship

cannot be established because of bidirectional flow or a backwater situation

(Fig. 9). Discharge is calculated from the continuously measured velocity which

is used as an index of the mean velocity in a river or stream channel and the

continuously measured water level. Most ADCPs can be preprogrammed using

channel dimensions (depth and width) to continuously calculate channel cross-

sectional area. These ADCPs can be configured to measure velocity at set sampling

intervals with set averaging periods (for details, see [6]).

Fig. 7 Example time series plot of tidal channel discharge and turbidity measurements using

ADCP, cross-sectional area, and real-time kinematic global positioning system (RTK-GPS) survey

methods. Source: USGS [5] (public domain)

SonTek IQ+; Source: SonTek, a 
Xylem, Inc. brand

Teledyne RD Instruments ChannelMaster H-
ADCP; Source: Teledyne RD Instruments

SonTek Argonaut SL; Source: SonTek, a Xylem, Inc. 
brand

Fig. 8 Various types of fixed ADCPs for continuous measurements of water velocity and

continuous discharge calculation. Source: SonTek and Teledyne RD Instruments (with permis-

sions from Xylem and Teledyne)
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2.3 Real-Time Flow Monitoring

Two examples of real-time water level sensor applications are illustrated below.

The US Geological Survey (USGS) has established a network of real-time water

level monitoring stations on rivers across the United States (Fig. 10). In these

stations, real-time water level is typically recorded at 15- to 60-min intervals

using a combination of the water level sensors described below. Data are stored

on data loggers installed at each station and then transmitted to the USGS offices

every 1–4 h via satellite, telephone, and/or radio telemetry. Typical weekly output

is shown in Fig. 11.

Fig. 9 Illustration of a side-looking ADCP deployed in a small tidal stream with bidirectional

flow for continuous measurement of velocity and water level and continuous calculation of

discharge. Source: SonTek, a Xylem Inc. (with permissions from Xylem)
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Fig. 11 Recorded water level data from the New River at Radford, Virginia (USGS Site:

03171000), for the period 4–11 June 2014. Source: USGS National Water Information Web

Interface (public domain)

Fig. 10 Illustration and photo of a typical USGS water level monitoring station. Source: USGS
[2] (public domain)
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3 Monitoring Water Quality

Water quality sensors are used to measure parameters that indicate the symptoms of

possible water degradation. For example, very low dissolved oxygen concentration is

a good indicator of a possible anaerobic condition, which can have a detrimental

impact on aquatic living resources. Diagnostic water quality monitoring is often

performed to obtain baseline water quality information that identifies the possible

causes of water quality degradation. Commonly monitored parameters include mea-

surements of water temperature, pH and conductance, dissolved oxygen content,

turbidity, and algal biomass. Results of diagnostic monitoring are usually used to

plan more elaborate water monitoring programs for water pollution control purposes.

Discrete water quality monitoring involves limited onsite measurements, point

water sampling, and laboratory analysis. Discrete water quality monitoring does not

capture sudden temporal changes in water quality (e.g., spills). Furthermore, dis-

crete measurements are usually implemented during the day when it is practical to

deploy field crews. Because discrete water quality measurements are usually made

during the day, problems such as nighttime changes in dissolved oxygen, hypoxia,

or anoxia often go undetected.

Various types of water quality sensors have been developed for water quality

monitoring. These include physical sensors, chemical sensors, optical sensors, and

biosensors. Water quality sensors can be part of single- or multiparameter handheld

instruments for discrete water quality monitoring, a component of a multiparameter

data sonde which is typically used for continuous and unattended water quality

monitoring, or they can be a single sensor connected to a data collection platform

(DCP) for real-time monitoring. An overview of water quality sensors and their

application is provided below.

3.1 Physical Sensors

Physical sensors can measure physical properties of water such as water tempera-

ture and electrical conductivity.

3.1.1 Water Temperature Sensors

Chemical and biological process rates in natural water are temperature dependent

and affect the optimal health of living resources in water. The dissolved oxygen

content of water, rates of photosynthesis and respiration, and living resource

sensitivity to diseases, parasites, and toxins are all temperature dependent. Thermal

stress on living resources can lead to the migration of living resources out of an area

in search of more optimal conditions and in some cases death [7]. Water temper-

ature is a not only a staple measurement for water resource managers, but it is also a

critical sensor in most multiparameter instruments because other sensor measure-

ments are temperature dependent and need to be temperature corrected.
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Water temperature sensors measure temperature with a high-precision thermis-

tor. Thermistors contain a resistor, whose resistance changes with temperature,

housed inside a thin-walled sleeve of heat conductive, corrosion-resistant material

(e.g., titanium). The change in resistance is directly proportional to the change in

temperature and the resistivity of the resistor material, which is a constant. A

low-voltage direct current (DC) is passed through the resistor to measure a voltage

drop, and the related temperature is calculated from a manufacturer-specific algo-

rithm. Since initial invention, the core sensing technology of thermistors has largely

remained unchanged; however, advances in electronics and microprocessors have

made today’s sensors more accurate and stable than their predecessors.

3.1.2 Conductance Sensors

Conductance or electrical conductivity is a measure of water’s ability to pass an

electric current which can be used as an indicator of water quality. Streams and rivers

usually have a constant range of baseline conductivity. The baseline conductivity in

streams and rivers is affected by the chemical composition of the water, which is

primarily determined by the geology of the stream/river bank and bed. Sediments

which contain salts and inorganic dissolved solids that readily ionize in water result in

high conductivity, while inert material, such as granite bedrock that does not ionize in

water results in low conductivity. Change in baseline conductivity is an indicator of

change in water quality that may be caused by evaporation, flooding, pollutant

intrusion via stormwater runoff, or other contaminant discharges into surface water

systems. For example, an oil spill would result in reduced conductivity levels because

of the presence of hydrocarbons and alcohols, while an untreated sewage discharge

would increase conductivity levels due to the presence of nitrates and phosphates [8].

Conductivity is directly related to water temperature, and therefore it is often

expressed as conductivity at 25 �C, otherwise known as specific conductance.

Conductivity sensors measure an electrical current flow through one or more

pairs of electrodes and the water sample. A voltage is applied between a pair of

electrodes that are a known distance apart from one another. The resistance of water

and its chemical composition results in a voltage drop which is indirectly related

to the conductivity of water, measured per centimeter, and expressed in units of

μS/cm. Like thermistors, the core sensing technology of conductivity sensors has

largely remained unchanged since the 1950s. However, these sensors have become

more stable and accurate due to advances in electronics and microprocessors.

Other water quality parameters that can be calculated from conductivity are

salinity and total dissolved solids (TDS). Salinity and conductivity are strongly

correlated, and salinity is commonly calculated from conductivity and temperature

measurements by manufacturer algorithms that follow Standard Methods for the

Examination of Water and Wastewater (Standard Method #2520 [9]). TDS, com-

monly expressed in mg/L concentrations, is calculated from conductivity and a

monitoring location-specific empirically determined coefficient (Standard Method

#2510 [9]). Many sensor manufacturers provide capability to automatically
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calculate TDS concentrations from that empirically determined coefficient that the

user inputs into the instrument.

3.2 Chemical Sensors

Chemical sensors are used to measure chemical properties of water such as pH,

dissolved oxygen, and some pollutants such as nitrate, ammonium, and chloride.

3.2.1 pH Sensors

By definition, pH is a measure of hydrogen ion concentration and indicates level of

acidity or alkalinity in water. pH is measured on a log scale from 0 to 14; each

whole pH unit represents a tenfold change in the concentration of hydrogen (H+)

and hydroxide (OH�) ions. The pH of water has a direct impact on living resources

and can affect the toxicity and solubility of chemicals, heavy metals, and other

pollutants such as phosphorous and other nutrients [10]. In freshwater lakes,

changes in pH can increase nutrient solubility and plant uptake, resulting in

increased plant growth and ultimately eutrophic conditions. Fluctuations in pH

levels are often caused by anthropogenic sources of pollution, such as the combus-

tion of fossil fuels, smelting and mining operations, agricultural runoff, and waste-

water and industrial discharge. In many fish species, reproduction is impacted at pH

levels below 5.0, and death often occurs when levels drop below 4.0, while gill and

skin damage can occur at higher pH levels [11].

Historically, pH sensors have consisted of a glass sensing bulb filled with a

stable pH solution (usually 7) that experiences constant binding of H+ ions, a

reference electrode, and a potentiometer. When the sensor is placed into the

water where the H+ ions vary, the differential of H+ ions creates an electrical

potential (mV) which is compared to the stable potential of the reference electrode.

The electrical potential is related to pH values through a form of the Nernst

equation, a formula that describes the potential of the electrochemical cell as a

function of the concentrations of the ions taking part in the reaction. Through the

continued miniaturization of electronics and microprocessors, the signal processing

electronics in today’s sensors have been placed in very close proximity to the

sensing element, resulting in decreased interference and increased sensitivity,

accuracy, and stability.

3.2.2 Dissolved Oxygen Sensors

Dissolved oxygen is one of the most critical water quality parameters. Natural water

systems produce and consume oxygen, and therefore, dissolved oxygen levels

exhibit diurnal variability as well as seasonal variability. Atmospheric exchange

and plant photosynthesis add oxygen to the systemwhile respiration, decomposition,
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and biochemical demand consume oxygen. Typical daily dissolved oxygen peak in

natural waters occurs in the late afternoon at the height of photosynthesis and

minimum level at dawn after a night of respiration. When algal blooms are fueled

by nutrient enrichment, these daily variations in dissolved oxygen can be significant

and can result in fish kills if dissolved oxygen level drops below critical thresholds.

Seasonal variation of dissolved oxygen can result in hypoxic and anoxic conditions

in natural waters during the warm summer months when water temperature reaches

maximum levels and algal biomass peaks, which can stress and kill living resources.

The first practical dissolved oxygen sensor for field measurement was developed

in the early 1960s. These early sensors required continuous replenishment of

oxygen through the membrane which was achieved by either moving the sensor

through the water column or by using an electric stirrer to move oxygen across the

membrane. These sensors remained largely unchanged until the early 1990s when

stirring-independent electrochemical dissolved oxygen sensors were developed,

thereby enabling more efficient unattended continuous water quality monitoring.

Electrochemical dissolved oxygen sensors consist of a gold cathode and silver

anode in an electrolyte solution that is trapped over the sensing elements by an

oxygen permeable membrane. Oxygen molecules diffuse through the membrane at

a rate proportional to the pressure difference across the membrane and are reduced

at the gold cathode producing an electrical signal between the cathode and the

anode. The partial pressure of oxygen in the water is proportional to the amount of

oxygen diffusing through the membrane. The partial pressure of oxygen can be

barometrically compensated to yield a percent saturation value, which can then be

converted to a dissolved oxygen concentration value by compensating for temper-

ature and salinity [12]. These electrochemical sensors require some level of flow in

order to replenish the oxygen through the membrane resulting in electrochemical

reduction of oxygen molecules. More advanced optical dissolved oxygen sensors

which eliminate that problem are described under optical sensors.

3.2.3 Nitrate, Ammonium, and Chloride Ion-Selective Electrode

Sensors

Nitrate, ammonium, and chloride are important measures of aquatic health and can

have significant impacts on living resources. Excess levels of nitrate can lead to

eutrophication, and excess levels of ammonium and chloride can lead to living

resource toxicity. Additionally, excess levels of chloride can lead to impacts

comparable to excessive TDS levels. Similar in design to pH sensors, there are a

range of ion-selective electrodes (ISEs) available for the measurement of parame-

ters, most commonly nitrate, ammonium, and chloride. These sensors work exactly

like pH sensors except that a PVCmembrane, selective for the analyte, is used rather

than a glass bulb that is selective for H+ ions. The sensor module contains a static

concentration of the analyte, which binds to the inner membrane. The measured

electrical potential is related to the analyte values through a form of the Nernst

equation. These sensors only work in freshwater due to ion interferences. Optical

nitrate sensors offer several advantages over ISEs and are described in Sect. 3.3.5.
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3.3 Optical Sensors

Optical sensors, the most advanced technology for water monitoring, are used to

measure water quality parameters such as dissolved oxygen, pH, turbidity, chloro-

phyll, cyanobacteria, dissolved organic matter, hydrocarbons, and nitrate. Figure 12

shows a typical optical sensor design. Optical sensors offer several advantages

over electrochemical sensors, particularly in terms of calibration stability, anti-

fouling capability, and long-term deployment capability. However, these sensors

can be susceptible to optical interference and may require a high level of ground

truthing which means more field technician involvement and verification. Addi-

tionally, results from these sensors are not always comparable between manu-

facturers, and universally recognized calibration standards may not be available

[13]. Despite those challenges, optical sensors provide a significant opportunity

for long-term monitoring and evaluating the status and trends of water quality at

fixed water monitoring locations. Some typical optical sensor applications are

described below.

Fig. 12 Typical optical

sensor design for

multiparameter sondes

showing the emitting light

source (LED), optics, and

the detector (photodiode).

Source: Second author
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3.3.1 Optical Dissolved Oxygen Sensors

In the mid-2000s, optical dissolved oxygen sensors became widely available.

Optical dissolved oxygen sensors use a permeable membrane through which

dissolved oxygen molecules diffuse without electrochemical reduction of oxygen

molecules. These sensors utilize a special dye, light-emitting diodes (LEDs), and

photoreceptors; the dye luminesces red when excited with a blue LED and is

detected by the photoreceptor. The dye’s ability to luminesce is quenched in the

presence of oxygen. Stability and accuracy of the sensor is increased by using a

secondary reference red LED which is reflected back to the photoreceptor. The

partial pressure of oxygen in the water is proportional to the amount of oxygen

diffusing through the membrane and can be measured by the lifetime of the

luminescence from excitation by the blue light compared to that of the reference

value (red light). The partial pressure of oxygen can be barometrically compensated

to yield a percent saturation value, which can then be converted to a dissolved

oxygen concentration value by compensating for temperature and salinity [11].

Optical dissolved oxygen sensors are almost exclusively smart sensors, each

with their own microprocessor housed within the sensor. These sensors are also

typically designed for use with antifouling systems such as wipers, making them an

ideal solution for long-term monitoring. Optical sensors have significantly low

maintenance requirement and increased support for long-term deployments.

These sensors are incredibly stable and exhibit significantly less calibration drift

than the electrochemical sensors.

3.3.2 Turbidity Sensors

Turbidity sensors measure the clarity of water and can be used as a surrogate for the

amount of suspended material in the water (e.g., soil particles, plankton, and

microbes). Increased levels of turbidity absorb more heat and can result in warmer

water temperatures. Excess turbidity reduces light availability which can have an

impact on submerged aquatic vegetation and photosynthesis and dissolved oxygen

production. Suspended materials in the water column can also add stress to living

resources through gill blockage and increased disease susceptibility. Benthic

macroinvertebrates, fish eggs, and bivalves can be smothered as particles settle

out of the water column. Common causes of high turbidity include runoff from

urban stormwater, construction sites, agricultural practices, logging activity, and

point source discharges [14].

Turbidity can be measured by one of the three main methods: transmissometer,

backscatter, and nephelometer (Fig. 13). All of these methods measure turbidity by

illuminating the water sample volume with a light source and measuring the

intensity of light scattered by the particles in the water at a set angle with an optical

detector (e.g., photodiode). Most multiparameter water quality sondes utilize sen-

sors that measure turbidity via the nephelometric method. For this method, the light
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source is typically infrared and the angle of particle reflection is 90�. The measure-

ment units of these sensors are Nephelometric Turbidity Units (NTUs) or Formazin

Nephelometric Units (FNUs).

Fig. 13 Turbidity measurement methods: (a) transmissometer method, (b) backscatter method,

and (c) nephelometric method. Source: Second author
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3.3.3 Chlorophyll and Cyanobacteria Sensors

Chlorophyll and cyanobacteria sensors measure the amount of algal biomass in the

water, which is an indication of the primary production capability of the system,

and the overall health of the water body. Too little algae in the system can result in a

lack of food for larger zooplankton and a lack of dissolved oxygen. An

overabundance of algae in the system can be indicative of eutrophication and can

result in reduced light penetration and sags in dissolved oxygen during peak periods

of respiration or when the algae die off and are decomposed by the microbial loop.

Some algal blooms can also produce toxins which may be harmful to living

resources and/or human health. Algal biomass is measured by exciting the chloro-

phyll and phycobilin pigments in the algal cells with an LED of specific wave-

lengths and measuring the intensity of the emitted light, which is proportional to the

concentration of the algal biomass. The excitation and emission wavelengths of

these sensors vary for different manufacturers; as an example, for YSI EXO total

algae sensors, the emission is 685� 20 nm, the chlorophyll excitation is

470� 15 nm, and the phycocyanin excitation is 590� 15 nm.

3.3.4 Optical Nitrate Sensors

Optical nitrate sensors operate on the principle that nitrate ions absorb ultraviolet

(UV) light (wavelengths less than 220 nm) which is measured by a photometer and

then converted to a nitrate concentration. Optical nitrate sensors are designed to

convert spectral absorption properties measured to a nitrate concentration by using

laboratory calibrations and integrated algorithms that account for interferences

from other absorbing ions and organic matter. These sensors allow for real-time

nitrate measurements without the need for chemical reagents and demonstrate good

in-stream accuracy, typically within 3–5 % of laboratory data [15].

Optical sensors offer numerous advantages over ion-selective electrodes (ISEs)

and wet chemistry analyzers including higher resolution, accuracy, precision,

measurement range, chemical-free operation, faster response time, and the benefit

of additional spectral information. However, these instruments are currently very

power hungry and require some form of infrastructure for deployment (e.g., DCP

station with solar power). Figure 14 illustrates the results of real-time nitrate

concentrations measured by optical nitrate sensors (reported as nitrogen) and

streamflow (discharge) in Smith Creek near New Market, Virginia (USGS Site

01632900).
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3.3.5 CDOM Sensors

Fluorescence-based optical sensors are designed to measure the fluorescent fraction

of colored dissolved organic matter (CDOM). Therefore, these sensors are typically

referred to as FDOM sensors. FDOM sensors can be used to assess terrestrial

influences in streams and rivers, to track pollution discharge, to map plumes of

high or low dissolved organic carbon (DOC) in adjacent waters, to assess the

amount of light absorbed by dissolved constituents in the water, and to assess the

dispersion of point source pollution from anthropogenic wastes. Similar in design to

chlorophyll and cyanobacteria sensors, FDOM sensors use a UV light source to

excite organic matter particles and measure the emission. Some FDOM sensors are

available that have been specifically tuned to both refined and crude hydrocarbons.

3.4 Biosensors

A biosensor is a device that detects, records, and transmits information regarding a

physiological change or the presence of various chemical or biological materials in

Fig. 14 Real-time nitrate measurements (in mg/L as nitrogen) collected with an optical nitrate

sensor and calculated discharge (cubic feet per second) from Smith Creek near New Market, VA,

USA (USGS Site 01632900), for the period 27 March–23 April 2014. Source: USGS National

Water Information Web Interface. Source: USGS (public domain)
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the environment; it integrates a biological component, such as a whole bacterium or

a biological product (e.g., an enzyme or antibody) with an electronic component to

yield a measurable signal [16]. A biosensor system consists of bio-recognition layer

or receptor, transducer, and electronic display system.

Biosensor systems are categorized according to the type of transducer used in the

system: optical, electrochemical, and acoustic. Optical biosensors use fiber-optic

probes that detect change in optical density for a range of wavelengths (~750 nm)

that can be correlated to analyte concentration. Some optical sensors such as surface

plasmon resonance (SPR) sensors use fluorescence to amplify the signal and

increase the sensitivity of the sensor. Electrochemical biosensors use electrodes

that measure the electric current produced by the oxidation or reduction of

electroactive species. Electrodes are made of metals such as platinum, gold, silver

and stainless steel, or carbon-based materials that are inert at the potentials at which

the electrochemical reaction takes place. Acoustic biosensors use membranes made

of chemically interactive material that detect changes in resonant frequency of an

antigen. Acoustic sensors contain a crystal resonator, usually quartz, connected to

an amplifier whose resonant frequency is a function of the properties of the

membrane.

Biosensors are applied in a wide variety of fields such as medical diagnostics,

bioweapons, agricultural and food processing industries, and environmental sci-

ences. The integration of biosensor technology in real-time water quality monitor-

ing is an upcoming technology. As typical applications, uses of biosensors to detect

pathogens and toxins are discussed below.

3.4.1 Pathogen Detection

Technologies for early warning and rapid detection of pathogens are critical for

human health protection. E. coli, a pathogenic microorganism, is often used as an

indicator of fecal contamination in water. Several advanced techniques such as PCR

(polymerase chain reactions) and RNA (ribonucleic acid) probes that identify

E. coli DNA are developed to detect E. coli presence in water. However, these

techniques can take up 1 or 2 days to obtain results. Only a few technologies have

been developed that allow real-time or rapid detection of E. coli. Although there

have been significant advances in biosensor technology during the last decade, there

are still several shortcomings of biosensors. The most widespread problems include

limited capability for real-time and spatial measurements, as well as durability,

specificity, and the cost of the technology. Typical examples from available scien-

tific literature are discussed below.

Radke and Alocilja [17] developed a technique for real-time detection of E. coli
O157:H7 in water. The technique is called nucleic acid sequence-based amplifica-

tion (NASBA) method. The system consists of a high-density gold microelectrode

array biosensor fabricated from silicon with a 2-μm layer of thermal oxide as an

insulating layer with an active area of 9.6 mm2. To create a biological sensing

surface, the sensor surface is functionalized for bacterial detection using heterobi-

functional cross-linkers and immobilized polyclonal antibodies. Bacteria in the
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water sample become attached to the immobilized antibodies, and the change in

impedance caused by the bacteria is measured over a frequency range of 100 Hz–

10 MHz. Heijnen and Medema [18] also developed a rapid real-time NASBA

method for the detection of E. coli in water. In their method, a fragment of the

clpB-mRNA is amplified, and a specific molecular beacon probe is used to detect

the amplified mRNA fragment during the NASBA reaction. This method can

produce results within 3–4 h. These studies demonstrate that the NASBA method

has high potential as a rapid test for microbiological water quality monitoring.

Nanotechnology has opened new avenues of research for early warning and

detecting pathogens in water. In the United States, NASA’s exploratory efforts to

detect water and biological traces on the planet Mars have delivered important

discoveries that are applicable to developing ultrasensitive biosensors [19]. The

major components of the biosensor are carbon nanotubes: tubes of graphite about

1/50,000th the diameter of a human hair. These biosensors use nucleic acids bound

to E. coli or other pathogens of interest to create an electrical change and send a

signal. Early Warning, Inc., a spin-off from NASA’s Research Center, has devel-

oped a working version of the NASA biosensor calibrated to detect the bacteria

strain E. coli O157:H7 in water, and its commercial Biohazard Water Analyzer can

be configured to test for a suite of waterborne pathogens including E. coli, Cryp-
tosporidium, Giardia, and other bacteria, viruses, and parasitic protozoa. The

biosensor operates in the field via a wired or wireless network allowing for rapid

detection of pathogenic contaminants [19].

3.4.2 Toxin Detection

Microorganisms are increasingly used as specific devices for sensing biologically

relevant concentrations of pollutants [20]. For example, Fiorentino et al. [21]

developed a whole-cell bacterial biosensor for measuring aqueous concentrations

of aromatic aldehydes.

Recent research exploits the known characteristics of photosystems, which

convert light energy into chemical energy, to detect changes in the process of

photosynthesis of algae in water under environmental stress. Algae are sensitive

to toxins in water. Using chlorophyll, a biological molecule found in photosynthetic

organisms such as algae, fluorescence to detect toxins in water is a relatively new

idea. The chlorophyll fluorescence detection provides information about the effi-

ciency of photosynthesis as well as insight on how tolerant the organism is under

certain environmental stresses and the effect of those stresses on the photosynthetic

process.

Researchers at the Oak Ridge National Laboratory (ORNL) in the United States

have utilized naturally free-living algae in water to investigate the impact on the

chlorophyll fluorescence produced by algae in the presence of the chemicals

[22]. Results are reported for paraquat, methyl parathion, potassium cyanide,

diuron, and atrazine concentrations in water. The study shows that algae are capable

of detecting very minute concentrations of the toxins in water.
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3.4.3 Futuristic Biosensors

Research and development of innovative and real-time biosensor technologies are

underway. For example, the system called TIGER (Triangulation Identification for

the Genetic Evaluation of Risks) is a type of mass biosensor that detects microor-

ganisms in the water and evaluates their potential risk [23]. Automated water

analyser computer supported system (AWACSS) which is based on immunochem-

ical technology can measure a variety of organic pollutants in water at the low

nanogram per liter level in a single few-minutes analysis without the need of any

pre-concentration or pretreatment steps [24]. AWACSS is equipped with a software

package for remote control and web-based networking between the measurement

and control stations, global management, trend analysis, and early warning appli-

cations. Lu et al. [25] reported on detecting E. coli O157:H7 in water that use a

remote query (wireless) magnetoelastic sensor platform. Researchers are also

developing robotic biosensors that imitate the appearance of fish and are capable

of moving around in the water and sensing water properties (e.g., [26]).

4 Water Quality Monitoring Devices

Electronic handheld instruments for discrete water temperature and conductivity

measurements have been around since the 1950s, but more advanced sensors such

as dissolved oxygen and pH became available in the early 1960s. These instruments

range the gamut from simple single parameter thermistors for measuring water

temperature to more complex multiparameter instruments (described below) capa-

ble of being equipped with multiple physical, chemical, and optical sensors. Many

of today’s instruments are capable of being calibrated by the end user with known

standards and feature digital displays, data logging capability, and in some cases

built-in GPS for data georeferencing. Historically, these instruments have been

used for fixed period measurement regimes (e.g., daily, weekly, or monthly) and

have augmented water quality sample collection for subsequent laboratory analysis.

As a result of electronic and sensor developments over the last 60+ years, these

instruments have become extremely accurate and are standard for many monitoring

programs today (Fig. 15).

The first multiparameter data sondes were introduced in the late 1960s, but their

early use was primarily limited to discrete water quality measurements. It wasn’t
until the late 1980s/early 1990s that multiparameter data sondes advanced to the

point that they were practical to use for continuous unattended water quality

monitoring, providing temporally intensive data records (e.g., every 15 min).

Multiparameter water quality sondes are capable of being equipped with multi-

ple physical, chemical, and optical sensors (Fig. 16). These instruments typically

feature a built-in data logger, internal batteries for unattended deployment, anti-

fouling capabilities (e.g., copper alloys and wipers) for increased deployment
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duration, and are capable of being calibrated by the end user with known standards.

These instruments also feature multiple communication options for setup, calibra-

tion, deployment configuration, data downloading, and connection to a DCP or

telemetry system (e.g., Bluetooth, RS-232, SDI-12, RS-485).

Over the past 60 years, electronics and sensor technology have advanced from

analog to digital, resulting in more stable electronics and higher sensor accuracies.

This in turn has resulted in instruments that are more accurate (due to reduced

signal interference), hold their user calibration longer without drift, and have

become more widely accepted as alternatives to laboratory analysis. These

advances have also resulted in the advent of smart sensors. Smart sensors typically

will have a microprocessor in the same sensor housing as the sensing electronics,

making them digital instruments that store their own calibration, allowing them to

be transferred from one multiparameter instrument to another without the need to

recalibrate. Some of these smart sensors can even be connected directly to a DCP, in

some cases negating the need for a multiparameter data sonde all together.

Fig. 15 Examples of handheld water quality instruments for discrete measurements. Source: YSI
and Xylem [with permissions from YSI and Xylem]

Fig. 16 Examples of multi-parameter water quality instruments and smart sensors for continuous

monitoring. Source: YSI and Eureka [with permissions from YSI, Xylem and Eureka]
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5 Data Collection and Transfer Platforms

Discrete water quality measurement programs only provide a snapshot in time

much like a photograph. Continuous and unattended water quality monitoring

programs provide a stream of data on conditions, similar to a movie, which results

in a better understanding of environmental processes and the ability to capture data

during episodic events, especially at times when it is impractical and dangerous to

be in the field. Temporally intensive monitoring programs yield a wealth of data to

water resource managers and provide valuable insight into the impacts of intense

storms, low dissolved oxygen events, fish kills, and harmful algal blooms, among

others.

Temporally intensive, continuous water monitoring programs are valuable for

understanding and assessing water quality conditions and living resource habitats

and guiding watershed restoration activities. A common observance among mon-

itoring programs, after the implementation of continuous water quality monitoring,

is the true magnitude of daily dissolved oxygen fluctuations. Many conventional

shallow water monitoring programs sample dissolved oxygen during the day when

it is practical to sample, often measuring at the peak of photosynthesis and find

dissolved oxygen levels that are considered sufficient for supporting living

resources. However, these programs miss measuring nighttime dissolved oxygen

levels. With continuous monitoring, water resource managers have found that many

of these shallow water systems have large daily swings in dissolved oxygen

concentration and, actually, go hypoxic or anoxic at night when photosynthesis

ceases and respiration significantly increases. These large fluctuations can lead to

fish kills in waters affected by algal blooms due to excess nutrients. Figure 17 shows

an example of daily dissolved oxygen fluctuations.

While some multiparameter water quality data sondes operate off of internal

batteries and have their own internal data logger, many other sensors do not.

Therefore, many monitoring stations utilize a DCP. The DCPs integrate multiple

sensors together and provide power, data logging and control capability, and in

many cases data telemetry. At their most basic level, DCPs consist of a data logger,

one or more 12 VDC batteries, a solar regulator, and a telemetry module housed

inside of a weatherproof enclosure, with one or more external solar panels, a

telemetry antenna, and some form of lightning protection. The data logger is the

heart of the system and initiates sensor measurements and controls functions based

on time or events; controls external devices such as autosamplers, pumps, or valves;

logs data; provides onboard data processing and computations; and interfaces with

telemetry devices such as telephone modems (including cellular and voice synthe-

sized), line-of-site radio transceivers, satellite transmitters, and Ethernet and Wi-Fi

interfaces.

The data loggers, attached sensors, and telemetry devices are powered by

12 VDC batteries that are continuously charged by the external solar panels

whose voltage is regulated by the solar regulator down to safe levels. The telemetry

devices are connected to external antennas appropriate for the telemetry method.
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The DCPs are grounded and protected to some extent from lightning strikes with

the use of in-line lightning protectors in the telemetry antenna cables and in-line

fuses in the sensor power feeds. Figure 18 shows a water quality monitoring station

that includes a data logger, cellular telemetry system, solar panel, solar regulator,

battery, water quality sensors, and meteorological sensors.

While standalone, temporally intensive monitoring programs provide a wealth

of data and information not observed with discrete monitoring programs, they do

not provide timely information. Telemetry is a great addition to any DCP because it

provides real-time eyes on your data for quality assurance/quality control and for

immediate decision support. Real-time data ensures that the user is collecting the

highest quality data. For example, if a sensor drifts as a result of fouling, the user

will know about it from observing the real-time data, and they can proceed to

correct the problem by cleaning and recalibrating the sensor (or replace the drifting

sensor with a freshly calibrated one) right away rather than waiting until the normal

maintenance cycle only to find that some of the data are bad. It’s inefficient and
sometimes costly to deploy sensors (without real-time data) for a few weeks and

then learn about a problem when the data is downloaded from the data logger.

Telemetry also provides real-time alarming and alerting to changing conditions

Fig. 17 Dissolved oxygen diurnal variability at Sycamore Point on the Corsica River in

Centreville, Maryland (USA). Data were collected with a YSI 6600V2-4 data sonde and YSI

ROX optical dissolved oxygen sensor suspended at 1 m below the surface (floating rig). Source:
Maryland Department of Natural Resources (Source: Eyes on the Bay website [27]) (public

domain)
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(e.g., the onset of algal blooms or changes in water quality due to illicit discharges).

Real-time alarming and alerting provides water resource managers with the infor-

mation needed to make adaptive sampling and management decisions. For exam-

ple, based on real-time data sampling, crews may be dispatched to collect additional

data and water samples, or recreational water use bans may be implemented to

protect public health from events such as harmful algal blooms.

6 Data Management and Quality Assurance/Quality

Control

Data quality should be paramount above all else with a monitoring program. After

all, in most cases monitoring programs are developed to collect data, so informed

water resource management decisions can be made. Those management decisions

will ultimately only be as good as the data they are based on. With all of the recent

advancements in water sensor technology, it is easy to get heavily focused on the

deployment, operations and maintenance of monitoring instrumentation, and the

collection of massive amounts of temporally and spatially intensive data. Unfortu-

nately, many monitoring programs get so focused on the physical collection of the

Fig. 18 Example of real-

time water quality and water

level monitoring, DCPs for

Watershed Monitoring.

Source: Second author
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data; they fail to devote adequate time and effort required to quality assure (QA),

quality control (QC), manage, and ultimately utilize those data.

Fortunately, advances in software to acquire, process, model, and publish water

data have resulted in simplified data management, analysis, and information sharing

to enable better decisions for the sustainable management of water resources.

Common components of these software suites include capabilities for time series

and discrete data analysis and management, rating curve development, modeling

and forecasting, and data publishing with real-time alarming and alerting capability

for changing conditions. Modern software systems can be deployed both in the

cloud and in traditional enterprise environments (e.g., see Fig. 19). These software

suites allow water resource managers to consolidate and protect their data, avoid

inaccuracies, and facilitate adaptive management and collaboration. Users benefit

from improved reporting and better decision making that will allow for the devel-

opment of strategies and policies based on real-time checked and validated infor-

mation. Additionally, water resource managers utilizing these software packages

benefit from secure and QA/QC assured data that is auditable and defensible, giving

stakeholders confidence in the decisions made based on those data. Water resource

managers can use their resources wisely and efficiently and get the most from their

sampling costs. Furthermore, these systems enable water resource managers to

provide their stakeholders with information and insight, not just raw data.

Fig. 19 Example of AQUARIUS Time-Series software for the acquisition, processing, quality

assurance/quality control (QA/QC), modeling, and publishing of water data. Source: Second
author
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7 Limitations

Despite significant advances in technologies discussed in this chapter, not all water

quality parameters of interest can be accurately and reliably measured with in situ

sensor technology. In fact, most of the water quality parameters of interest still need

to be analyzed in the laboratory from collected and processed water samples.

There are some instruments available that are a hybrid between in situ sensors

and laboratory analyses. These instruments bring the laboratory to the field. Micro

volumes of whole water samples are collected by these analyzers via pumps, and

then the sample is mixed with analyte-specific reagents to induce a chemical

reaction. A colorimetric measurement is then made by the analyzer to determine

the concentration of the analyte in the water sample. These instruments are avail-

able from a handful of manufacturers to measure phosphate, nitrate, nitrite, ammo-

nia, silicates, total phosphorous, total nitrogen, total dissolved iron, and sulfide.

Many of these instruments measure only one parameter; however, some of these

instruments can measure up to four parameters sequentially. The two largest

drawbacks to these instruments are sample processing time and the necessity to

deal with chemical reagents and wastes. For these reasons, these instruments have

not been as widely accepted into monitoring programs as sensor technologies.

While this chapter covers advances in water monitoring technologies, it does not

address topics such as which monitoring techniques are most appropriate for data

collection needs or how to deploy and maintain monitoring technologies in the

field. There are many resources available on these topics, particularly from sensor

manufactures, state and federal monitoring organizations, and independent

workgroups. One particularly useful resource is the Field Deployment Guide

developed by the Aquatic Sensor Workgroup (ASW) which is part of the Advisory

Committee on Water Information’s (ACWI) Methods and Data Comparability

Board [28].

8 Conclusions

This chapter provides an overview of advanced in water sensor and real-time

monitoring technologies and associated applications. Technologies discussed

include various types of sensors for water quantity and water quality measurements,

examples of commercially available water quantity and water quality monitoring

devices, data collection and transport platforms, and data management and quality

assurance/quality control for water monitoring. These technologies allow water

resource managers and researchers to capture real-time water quantity and quality

data during episodic events such as major storms. Real-time and continuous water

monitoring can capture temporal changes and provides broader spatial coverage of
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water quantity and quality in a watershed. Furthermore, it allows data collection

when it is normally impractical with discrete sampling. Telemetry is a great

addition to sensor technologies and DCP because it provides to user real-time

data and ensures that the user is collecting the highest quality data. Advances in

software to acquire, process, model, and publish water data have resulted in

simplified data management, analysis, and information sharing to enable better

decisions for the sustainable management of water resources.

In conclusion, water sensor technologies, associated computer hardware/soft-

ware, and telemetry technologies are evolving fields of research and technology

development. New and advanced technologies, for example, biosensors and various

integrated technologies, provide exciting opportunities and challenges for futuristic

water monitoring programs and aquatic ecosystem preservation.

Disclaimer This chapter provides an overview of water sensor technologies and associated fields.

References are provided for informational purposes only and do not constitute endorsement of any

manufacturers, websites, or other sources cited in this chapter.
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Abstract Karst aquifers are productive groundwater systems, supplying approxi-

mately 25 % of the world’s drinking water. Sustainable use of this critical water

supply requires information about rates of recharge to karst aquifers. The overall

goal of this project is to collect long-term, high-resolution hydrologic and geo-

chemical datasets at James Cave, Virginia, to evaluate the quantity and quality of

recharge to the karst system. To achieve this goal, the cave has been instrumented

for continuous (10-min interval) measurement of the (1) temperature and rate of

precipitation; (2) temperature, specific conductance, and rate of epikarst dripwater;

(3) temperature of the cave air; and (4) temperature, conductivity, and discharge of

the cave stream. Instrumentation has also been installed to collect both composite

and grab samples of precipitation, soil water, the cave stream, and dripwater for

geochemical analysis. This chapter provides detailed information about the instru-

mentation, data processing, and data management; shows examples of collected

datasets; and discusses recommendations for other researchers interested in hydro-

logic and geochemical monitoring of cave systems. Results from the research,

briefly described here and discussed in more detail in other publications, document

a strong seasonality of the start of the recharge season, the extent of the recharge

season, and the geochemistry of recharge.

Keywords Cave • Dripwater • Epikarst • Karst • Recharge • Subsurface monitoring

1 Introduction

Karst aquifers form from dissolution of soluble rock, including limestone and

dolostone, by groundwater. Dissolved carbon dioxide promotes dissolution of

these rocks, which enlarges fractures to form conduits and caves. Karst aquifers

are vital water resources, providing approximately 40 % of drinking water supplies

in the United States [1]. An estimated 25 % of the global population uses freshwater

derived in part or entirely from karst sources [2].

Characterizing how karst aquifers are recharged is crucial for sustaining this

critical groundwater resource. However, recharge processes in karst systems are

difficult to characterize due to heterogeneity of the epikarst. Epikarst is defined as

the interval of weathered and fractured bedrock that extends from the base of the

soil zone to less weathered bedrock below [2]. The epikarst is often called the

“skin” of karst aquifers [3], as it is a critical zone that significantly influences karst

hydrology, water quality, and ecosystems. The epikarst controls both the quantity

and quality of autogenic (internal) recharge to karst aquifers and, as a result, is a

particularly important component of the system.

Due to the highly variable flow velocities and residence times within the

epikarst, traditional methods to determine recharge generally do not work in

epikarst, thus requiring specialized techniques. Continuous monitoring of physical

and chemical characteristics of cave dripwater is one approach that can be used to

test hypotheses and answer a variety of scientific questions about the epikarst

system, including the biodiversity of epikarst communities (e.g., [4]), epikarst
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hydrologic properties (e.g., [5]), epikarst hydrogeochemical properties (e.g., [6–8]),

the influence of drip rates on isotopic composition of speleothems used for

paleoclimate interpretation (e.g., [9–11]), and the impact of seasonal climatic vari-

ations on cave dripwater (e.g., [12, 13]), among other topics.

Approaches to measure cave drip rates include manual measurement of the timing

between water droplets (e.g., [6, 14]); automated counting of water droplets by some

triggering mechanism, such as a drum (e.g., [15, 16]), or passage by an electro-

luminescent diode (e.g., [12]); manual timed volumetric measurement by collection

into a vessel of known volume; and automated volumetric measurement using a

tipping bucket style gauge, generally amodified rain gauge ([5], amongmany others).

Drop-counting methods suffer from the assumption of known and consistent volume

per drop. This has been shown experimentally to vary, but there is a general mathe-

matical relation between drop mass and the radius of curvature of the drip point of

detachment [17]. The tipping bucket gauge approach is preferred for moderate to

high-flow dripwater, but may suffer from inaccuracies at very high discharges.

Decisions to use one method over another should consider these limitations.

One major advantage of using automated methods for hydrologic research in

karst systems is the ability to collect high-resolution datasets over long time

periods, from years to decades. Automated methods have greatly expanded over

the past several decades as sensor, data storage, and battery technologies have

improved. Data loggers can hold millions of data points, allowing for deployment

of equipment for months at a time, depending on temporal measurement frequency.

Thus, automated equipment has allowed for both higher resolution and longer term

monitoring. Researchers can address more detailed research questions and return to

repeatedly “mine” the dataset as additional questions regarding data of varying

temporal resolutions emerge.

In addition to cave drip rates, sensors that measure specific conductance can be

deployed in caves and programmed to collect data as frequently as needed,

depending on the research need and available data storage. For example, Baldini

et al. [10] and Shade and Veni [18] collected data on the rate and specific conduc-

tance of cave dripwater to examine connections between discharge and geochemical

composition. Sensors for temperature, relative humidity, and barometric pressure

are also available, easily deployable, and relatively robust under cave conditions.

Other sensors, such as those for dissolved oxygen and pH, are currently less robust

for use in caves and, depending on sensor type, can require more frequent calibration

and may be subject to fouling. Sensors for turbidity, a parameter of interest at many

sites affected by surface water, are available and robust, but are generally an order of

magnitude more expensive than the aforementioned sensors.

Many studies on epikarst and cave dripwater have included geochemical sam-

pling of the dripwater for a variety of constituents, including major ions, alkalinity,

trace elements, organic carbon, and isotopes of water, strontium, and dissolved

inorganic and organic carbon (e.g., see [6, 8, 13, 16, 19, 20]). Methods for sample

collection of cave dripwater for geochemical analysis in these studies vary

depending on whether individual or groups of stalactites are being targeted for

sampling, the time period of collection, and the analytes of interest, many of which
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can require specialized methods of collection (e.g., dissolved gases require

gas-tight sampling methods; unstable analytes may require pre-preservation with

acids or chemicals).

Although there have been many advances in cave instrumentation over the past

several decades, there are few detailed descriptions of the instrumentation and data

collection, processing, and management, leaving each new researcher to “reinvent

the wheel.” The objective of this chapter is to describe instrumentation for conti-

nuous measurement of hydrologic and geochemical parameters of cave dripwater,

other hydrologic inputs such as precipitation and soil water, and outfalls such as a

cave stream or spring. The instrumentation described herein was designed and

deployed in James Cave, located in the doline-dominated karst systems of the

Appalachian Great Valley in southwestern Virginia (USA). The overall goal of

the James Cave research program is to evaluate the quantity and quality of recharge

in karst systems. More details about the James Cave program are included in

graduate theses by S. Eagle [21] and J. Gerst [22].

2 Study Site

The case study site, James Cave, is located in Pulaski County, Virginia (USA)

(Fig. 1). James Cave is an ideal study site for three primary reasons: it is represen-

tative of caves in the Appalachian Great Valley; it is a short drive from the Virginia

Tech campus; and it is accessible for installation and maintenance of instruments.

These are important factors in selection of a site where frequent visits and equip-

ment maintenance may be required. The study area is in a temperate climate zone,

with an average annual temperature of 11.3 �C and an average annual precipitation

of 92.4 cm (period of record: 1969–2009) [23].

James Cave is developed in limestones and dolostones of the Cambro-

Ordovician Conococheague Formation (Fig. 2) in the Valley and Ridge physio-

graphic province. Bedrock fracturing/jointing developed primarily as a result of the

Pulaski fault system, a complex series of ENE-trending low-angle thrust faults [24,

25]. Soils overlying the cave are composed of Lowell silt loam and the Wurno–

Newbern–Faywood silt loam [26], derived from residuum from weathered lime-

stone and shale. Soils range in thickness from 0.25 to 2 m and rest directly on

relatively unweathered bedrock with little saprolite development.

James Cave consists of approximately 2.3 km of cave passage, with a smaller

section instrumented for this project (Fig. 3). There are two entrances to the cave,

both located within sinkholes (Fig. 4). The source of the stream within James Cave

is not well known. Based on the lateral extent of limestone around the field site and

the lack of perennial sinking surface streams on the sinkhole plain, it appears that

the cave stream is derived entirely from autogenic sources (i.e., dripwaters). During

large storm events, it has been observed that overland flow enters the two entrances

as well as other sinkholes within the likely watershed of the cave stream.
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Fig. 1 Location map of James Cave and geologic map. Geologic data from Schultz and

Bartholomew [25]
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3 Instrumentation Methods

3.1 Instrumentation Design

The instrumentation of James Cave was designed to collect data to meet the main

research objective, which was to characterize the quantity and quality of recharge,

i.e., epikarst dripwater. During early discussions of study design, the research team

consulted literature and experts working in similar settings and also used

Fig. 2 Outcrop of a portion of the Conococheague Limestone above James Cave. A 30 cm thick

dolomite bed caps the limestone, which contains thin dolomitic layers. Two knee pads, each about

20 cm long, are shown for scale (Source: Author)

Fig. 3 Survey of James Cave monitoring stations. Data from T. Malabad
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professional judgment to guide the choice of equipment. As temporal patterns were

a priority, the decision was made to pursue automated monitoring to allow for

collection of high-frequency data. Capturing the spatial patterns of dripwater rates

in the cave was initially a priority, but the goal was impractical as there are only a

few regions in the cave that have actively dripping stalactites.

During the planning stages, there was careful consideration given to the type of

equipment to be installed, as both equipment and supplies had to withstand the

continuous 100 % humidity and splashy conditions of a cave environment. Prefer-

ence was given to off-the-shelf equipment, as equipment could then be easily

modified, serviced, or replaced as needed. Also during planning, standard operating

procedures for maintaining equipment, sampling, sample analysis, and data man-

agement were developed. These procedures are periodically revised and updated to

reflect current conditions and evolving project objectives.

The final design for monitoring stations included a total of five stations with

automated monitoring equipment: one surface station to collect climate data, three

in-cave stations to collect dripwater data, and one stream station to collect stream

data. Equipment was installed to collect continuous and grab water samples for

geochemical analysis. Water samples were collected for precipitation, soil water,

dripwater, and the stream. Table 1 shows the location of instrumentation and the

parameters measured at James Cave. Table 2 provides details on the instru-

mentation, including manufacturer and part/model numbers. Table 3 presents the

chronology of instrumentation from 2007 to 2012. The instrumentation has not

changed since July 2012. Table 4 shows the data types for the data collected using

the automated instrumentation. To date (2014), 7 years of hydrologic and geo-

chemical data have been collected at the James Cave site. The discussion below

provides details of the instrumentation and of instrument maintenance.

Fig. 4 Sinkhole entrance of James Cave (Source: Author)
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3.2 Surface Instrumentation

3.2.1 Climate Data

Climate data, including precipitation rate, air temperature, and relative humidity,

are collected outside the cave entrance with a tipping bucket rain gauge and an

air temperature/relative humidity sensor. Both instruments are connected to a

microstation for data logging at 10-min intervals. Precipitation data represent the

potential hydrologic input to the epikarst. The air temperature and relative humidity

data are combined with other climate data (wind speed, solar radiation) collected at

nearby Virginia Tech Kentland Farm, to calculate potential evapotranspiration

(using the Penman–Monteith method), a parameter needed to estimate recharge to

the karst system. Although this study was designed to collect climate data at the

site, other studies may be able to fully rely on data collected from nearby weather

stations, thus eliminating the need to install surface equipment.

3.2.2 Precipitation Samples

Precipitation samples were collected near the cave entrance on a monthly basis

from summer 2008 to early 2012 to provide information on chemical and isotopic

inputs to the epikarst. Samples were collected using a closed system precipitation

collector, designed to channel precipitation through a funnel in which a circular

float was placed to minimize evaporation (modeled after [27]) (Fig. 5, top).

Precipitation samples were collected using two different approaches, described

below. From 2008 to 2011, the funnel was attached via plastic tubing to the bottom

Table 2 James Cave instrumentation, including manufacturer and part/model number

Item Manufacturer Part/model number

Multiparameter sonde Hanna Instruments HI9828

Tipping bucket rain gauge Onset HOBO RGB-M002

Microstation data logger Onset HOBO H21-002

Level logger Solinst 3001

Air temperature Onset HOBO S-TMB-M002

Temperature/relative humidity Onset HOBO S-THB-M002

Barometric pressure logger Solinst 3001

Water level logger Onset HOBO U20-001-01

Barometric pressure logger Onset HOBO U20-001-01

Specific conductance logger Onset HOBO U24-001

Reed switch Texas Electronics 120-0018

Terminal block Texas Electronics 009-0059

Pendant logger Onset HOBO UA-003-64

Pulse adaptor Onset HOBO S-UCD-M001

Tension lysimeter Soil Moisture 1900L
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Table 3 Chronology of instrumentation changes at James Cave

Date Site(s) Description

09/2007 Surface Rain gauge with temperature, relative humidity

sensor installed

09/2007 MS1, MS2 Suspended tarps and rain gauges installed;

multiparameter sondes installed

02/2008 MS3 Suspended tarp and rain gauge installed;

multiparameter sonde installed

08/2008 Surface Precipitation collector installed

03/2009 Stream weir Stream weir installed

03/2009 Stream weir Solinst pressure transducers (level and

barometric loggers) installed

07/2009 Soil2, Soil3, soil entrance Tension lysimeters installed (1 m depth)

04/2010 Stream Multiparameter sonde installed

01/2011 Stream Sonde moved upstream from weir to near

entrance

01/2011 MS1, MS2, MS3 Sondes removed; specific conductance loggers

installed

01/2011 Stream weir Stream weir replaced with concrete V-notch

weir

06/2011 Stream Sonde removed; specific conductance logger

installed

02/2012 All sites Cease composite geochemical sampling

05/2012 MS1, MS2, MS3 Replaced microstation and smart sensor rain

gauge with reed switch and pendant logger

combination

05/2012 Stream weir Replaced Solinst level and barometric loggers

with Onset loggers

06/2012 Surface Replaced smart sensor rain gauge with reed

switch and pendant logger combination

07/2012 MS1, MS2, MS3 Replaced pendant logger with pulse adaptor

and microstation combination

Table 4 Data types and units

for continuous data collection
Data type Recording units

Precipitation/drip mm/in or counts

RH %

Air temperature �C or �F
Drip SC μS/cm
Drip temperature �C or �F
Stream stage Water and barometric pressure
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of a sealed PVC collection device with a vent tube at the top. The vent tube was

coiled with water in the coils to prevent evaporation while still allowing air to

escape as the tube filled during rain events. A second collection device, dis-

connected from the funnel, was used as a control to determine the influence of

evaporation on isotope fractionation. Deionized (DI) water was poured into the

control device between sample collection dates. Control samples were collected at

the beginning and end of each monthly period to test for evaporitic enrichment in

liquid water stable isotopes. Results of this comparison showed fractionation due to

evaporation during the summer months, thus necessitating a different collection

Fig. 5 Precipitation

collectors. Top: funnel
attached to PVC tubes for

precipitation (left) and
isotopic control (right),
used from 2008 to 2011.

Bottom: modified design,

used from 2011 to 2012.

Precipitation from surface

routed into the cave

entrance with tubing (right)
fitted with airlock. Isotopic

control with airlock shown

at left (Source: Author)
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system. Another problem with this design was that winter freeze-thaw cycles

caused the PVC tubes to crack and leak.

To remedy the dual problems of isotopic fractionation due to evaporation in the

tubes and the cracking of the tubes in the winter, the precipitation collector system

was retrofitted in 2011. The new system still relied on the funnels at the surface to

collect the precipitation, but the funnels were drained into the cave via tubing to a

carboy fitted with an airlock. This system also included an isotopic control (Fig. 3,

bottom). Because the cave air temperature remains relatively constant (12–13 �C)
over the year, the vessels did not experience freeze-thaw cycles. In addition, the

narrow range in temperature of the cave reduced sample evaporation.

3.3 Soil Water Monitoring

Soil water data were collected from 2009 to 2012 to examine the chemical charac-

teristics of water entering the epikarst. Samples were collected from porous cup

tension lysimeters, installed at 1 m depths in three locations: the bottom of the

sinkhole containing the cave entrance, the surface overlying MS2, and the surface

overlying MS3. Lysimeters were sampled monthly by applying a vacuum to the

lysimeter using a handheld pump, waiting 2 h, then purging the lysimeter sample

with positive pressure applied using a handheld bicycle pump.

3.4 Cave Monitoring

Within the cave, instrumentation has been installed to collect nearly continuous

(10 min) measurements of dripwater rates, specific conductance, and temperature;

cave air temperature and relative humidity; and cave stream discharge, specific

conductance, and temperature. Dripwater rates and stream discharge data provide

critical information about recharge to the karst system, which is one of the focal

points of the James Cave research project. In addition to hydrologic characteristics,

the experimental apparatus was designed to allow for collection of dripwater and

stream samples for geochemical analysis.

Dripwater monitoring sites were installed where cave ceilings are within 15 m of

the cave surface, which is within the known vertical range of the epikarst observed

in most karst regions [28]. Data from a survey (see Fig. 3) was used to locate the

three dripwater sites (MS1, MS2, and MS3) and to determine the thickness of the

epikarst overlying the stations. Results show that MS1 and MS2 are 15 m apart,

located ~50 m west of the cave entrance. MS3 is ~60 m east of the cave entrance.

The sites are located far enough from the cave entrance that the influence of surface

environmental conditions is minimized. Depths of drip monitoring stations below

ground surface are 8 m (597 m above mean sea level (AMSL)) at MS1, 10.7 m

(595.1 m AMSL) at MS2, and 7 m (593 m AMSL) at MS3.
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3.4.1 Drip Rate

In 2007–2008, suspended tarp systems were built to collect dripwater in three areas

with active speleothems (Fig. 6; design modified from [18]). The tarps are built with

plastic sheeting suspended from frames constructed of lightweight 1 in. PVC

tubing. Frames are supported by a combination of resting on the cave wall and

suspension from anchors set in the cave wall and/or ceiling. The three drip tarps

drain to a tipping bucket rain gauge to measure and log drip rates (Figs. 7 and 8).

Initially, the rain gauges were used as-built, but due to frequent corrosion of

exposed circuitry and subsequent failure, the rain gauges were retrofitted in 2012

with a reed switch connected to a pulse input adapter and data logger. The

combination of these four items (tipping bucket rain gauge, reed switch, pulse

adapter, and data logger) provides for both reliable measurement and storage of

dripwater rates in the cave environment.

3.4.2 Drip Chemistry

Methods for continuous measurement of basic geochemical characteristics of

dripwater have evolved over the course of the project. In 2007–2008, when the

dripwater sites were first instrumented, waters from individual stalactites were

drained directly into a sealed flow cell using latex balloons and silicone tubing. A

multiparameter sonde was sealed in the flow cell and measured and logged

dripwater pH, temperature, DO, and specific conductance. This design created a

Fig. 6 Tarp system constructed to capture dripwater from speleothems (Source: Author)
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closed, airtight system, which minimized atmospheric interaction. An overflow

tube from each sonde was connected to a sampling container fitted with an airlock.

Composite samples were collected monthly from this container for geochemical

analysis.

The sondes were dismantled in 2011 due to problems with maintaining and

calibrating the sensors and the monthly replacement of batteries. The pH and DO

sensors required more frequent calibration than was practical for this project and

were also subject to fouling. For example, calcite precipitated on the DO mem-

brane, resulting in unreliable measurements. For the purposes of the James Cave

project, these parameters were of lower level importance, but if pH and DO are

Fig. 7 Current dripwater site instrumentation. Sarah Eagle in background (Source: Author)
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critical parameters to measure, there are newer technologies, such as rapid pulse

and optical DO sensors, which may be more practical for long-term deployment.

Another challenge with the sonde was the battery power requirements (four 6 V

lead acid batteries for each sonde), which required monthly replacement after

charging.

In 2011, the sondes were replaced with a specific conductance/temperature (SCT)

logger. The SCT logger contains a long-lasting internal battery (3 years with 1 min

logging), avoiding the problem of monthly replacement of heavy batteries. In

addition, the SCT logger contains a sensor with a titanium oxide coating, which

prevents direct contact with water, thus preventing corrosion and fouling.

Also in 2011, at the same time the sondes were replaced with the SCT loggers,

the design of the drip collection system was also modified to funnel dripwaters from

the tarps into a reservoir containing the SCT logger before overflowing into the rain

gauge. The rain gauge drains to a composite sample bottle outfitted with an airlock

and overflow (Fig. 7). The time period integrated by the composite sample varies

significantly over time, but can range from several days during the dry period to less

than 2 min during large recharge events. The purpose of changing the design was to

create a singular collection system for dripwater from multiple stalactites for

measurement of both dripwater rate and chemistry. This works well for the James

Cave project, where the focus is on recharge quantity and quality, but for cave

monitoring projects with a focus on geochemical controls on speleothem growth

and especially in caves where drip rates are slow, collection of dripwater on a tarp

Pressure transducer location

Fig. 8 James Cave stream weir with location of stilling well and pressure transducer noted.

Barometric logger is not included in picture but is used to correct the transducer data for changes in

barometric pressure (Source: Author)
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would not be recommended due to calcite precipitation on the tarp and detention of

flow that could cause shifts in certain geochemical parameters.

3.4.3 Stream Discharge

Discharge of the cave stream is measured using a 90� V-notch weir and a pressure

transducer to measure the hydraulic head behind the weir (Fig. 8). The V-notch weir

was constructed in 2009 and was retrofitted using concrete in 2011 to prevent

leakage. Transducer measurements are recorded every 10 min to calculate dis-

charge. In 2012, the transducers were replaced with transducer and barometric

loggers from the same manufacturer as other equipment in the cave to allow for

use of one data shuttle and software package for all instrumentation in the cave. The

benefits of using instrumentation and software from one manufacturer are discussed

in more detail below.

3.4.4 Stream Chemistry

A multiparameter sonde was installed in the stream from 2010 to 2011. Similar to

the dripwater sites, it was difficult to maintain and calibrate the sensors and, as a

result, the sonde was replaced in 2011 with an SCT logger.

3.4.5 Cave Atmosphere

Cave air temperature is monitored at each dripwater site using a temperature sensor

connected to a data logger. The barometric logger installed near the stream weir

also measures cave air pressure.

3.5 Instrumentation Maintenance

An important consideration of cave monitoring projects is maintenance of equip-

ment and instrumentation. Maintenance is conducted on a monthly or bimonthly

basis in conjunction with data download from logging sensors. As instruments can

fail, and transportation to the site and within the cave takes time and effort, it is

useful to have at least one extra of commonly used equipment (i.e., rain gauge, data

logger, SCT logger) readily accessible. Tools, instrument manuals, and replace-

ment batteries are essential to bring for each monitoring event, to allow for routine

maintenance and troubleshooting in the cave.

3.5.1 Sensor and Instrument Maintenance

As discussed above, maintenance of sensors in the multiparameter sonde became

challenging due to requirements of frequent calibration and fouling. The change to

220 M.E. Schreiber et al.



the sealed SCT loggers ameliorated some of these issues. Because sealed sensors/

loggers are generally not built for in-field calibration, raw data are software-

corrected to values measured in the field with a calibrated conductivity meter at

the time of data download. The software applies a linear drift correction using a

two-point calibration with values measured in the field at the beginning and end of

each logging period.

Another challenge in karst is precipitation of calcite and other carbonate min-

erals on sensors, as dripwater is often saturated with respect to these minerals.

Calcite acts as an insulator and depresses the electrical conductivity measured by

the SCT logger. Maintenance procedures include gentle cleaning of the SCT

loggers with a soft brush prior to rinsing with a weak acid (acetic) and rinsed

with DI water to remove calcite buildup after download and prior to redeployment.

These cleaning procedures are effective at removing mineral buildup and biofilms

that may form on the sensor surface. All chemical solutions used in rinsing cave

equipment are collected and removed from the cave.

Another complication for in-cave monitoring is the development of biofilms on

instrument or collection-material surfaces, such as the collection tarp, and growth

of bacterial masses in the sample chamber. During each trip to the cave, sample

chambers are visually inspected for biofouling. If biofouling is identified, the

material is physically removed and the chamber disinfected with acetic acid.

3.5.2 Site Maintenance

Sediment buildup in the drip collection systems is a constant concern, especially

during the recharge season with high dripwater flows through the epikarst. Sedi-

ment can clog the systems, causing tarp sagging, which can result in tarp collapse.

Sediment buildup can also block flow to the sample collectors at the downstream

end of the system. Clearing the system of sediment is accomplished by

disconnecting the outfall hoses below the tarp funnel, the sample chamber, and

the rain gauge. Each of these is rinsed and back-flushed as appropriate to clear and

restore flow pathways and then reconnected and flushed with dripwater. The

interval for which such maintenance is required varies between sites and depends

on sediment yield from the epikarst over time.

4 Sample Collection and Analysis

In addition to the continuous measurements discussed above, samples of precipi-

tation, soil water, dripwater, and stream water were collected monthly for geo-

chemical analyses (anions, cations, alkalinity, dissolved organic carbon, water

isotopes, and carbon isotopes of organic and inorganic carbon) from July 2008 to

January 2012. Samples were brought back to the Virginia Tech laboratories for

processing and analysis. More details on sampling and analytical procedures,

as well as results, can be found in two graduate theses [21, 22].
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In the laboratory, water samples were filtered (0.2 μm polysulfone GD/X) and

separated into subsamples for analysis of cations, anions, alkalinity, dissolved

organic carbon (DOC), and dissolved inorganic carbon (DIC) and water isotopes.

Cation samples were preserved with HNO3 and analyzed for Al, Ca, K, Mg, Na, Si,

and Sr via inductively coupled plasma atomic emission spectrometry. Anion sam-

ples were analyzed for Cl, NO3, and SO4 via ion chromatography. Alkalinity was

determined using Gran titration [29]. DOC samples were preserved with HCl and

analyzed via catalytic oxidation. Samples for stable carbon isotopic composition

(δ13C) of DIC were collected without headspace in vials sealed with low-diffusion

butyl rubber septa and were preserved with copper sulfate. Analysis of the δ13C-
DIC was conducted at the Reston Stable Isotope Laboratory of the US Geological

Survey [30]. Liquid water stable isotopes (δD and δ18O) were analyzed using a

liquid water isotope analyzer at Texas State University-San Marcos.

5 Data Collection and Management

5.1 Data Recording and Downloading

Nearly continuous time series data are recorded at 10-min intervals and data are

stored either on the equipment or on separate data loggers. Instruments with internal

storage include the SCT loggers, the pressure transducers, and the barometric

pressure loggers. Instruments with external data storage devices include rain gauges

and air temperature and temperature/relative humidity sensors.

Time series data are downloaded on monthly or bimonthly intervals. Because of

the range of instrumentation, there is an associated range of software that has been

used at the James Cave site both to offload data from loggers and to post-process

data. Software that we used at the start of the project included (a) HOBOware for

Onset instrumentation,1 (b) Hanna Instruments software for Hanna instrumentation,

and (c) Level Logger software for Solinst pressure transducers. With the aforemen-

tioned changes in instrumentation, HOBOware is the only software currently

(2014) needed to program and download data from all cave instruments.

5.2 Data Processing

Data collected by a variety of instruments and methods may result in data in a

variety of units and formats, requiring consistent naming conventions and clearly

outlined data processing procedures. Eagle [21] outlines the data management and

processing procedures used for the James Cave project. Initially, for the project,

1 The use of product or trade names is for descriptive purposes only and does not constitute

endorsement by the US government.
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spreadsheets were used for data organization, manipulation, and editing. As the

collected data became more numerous and unwieldy for use in spreadsheets, we

purchased AQUARIUS Workstation [31] in 2011 for time series aggregation,

manipulation, and preprocessing. After each monitoring event, data downloaded

from the data loggers onto data shuttles are imported into HOBOware and

converted to CSV files, which are then imported into Aquarius. Within Aquarius,

the data are appended to previous datasets. Aquarius has tools to join datasets, trim

outliers (i.e., in the case of instrument failure), convert units and do other calcula-

tions, resample the data at different time intervals (e.g., hourly, daily, monthly), and

conduct descriptive statistics, in addition to other functions. As the datasets at

James Cave currently contain an excess of several million data points, using a

software package that can integrate and process the data has eased data manage-

ment considerably.

5.3 Data Storage

The use of multiple data storage options and sharing data allows for maximum

availability and collaborative efforts. For the James Cave project, both raw and

processed data are stored on hard drives at Virginia Tech, on a cloud server, and on

a project management system at Virginia Tech to allow for exchange between

researchers. The stored datasets are public domain and can be accessed by

contacting the corresponding author of this chapter.

6 Results and Discussion

This section outlines the datasets that have been collected at James Cave as an

example of a comprehensive and integrated cave monitoring program. The section

also presents selected results from the James Cave project thus far and includes

recommendations for establishing and maintaining a long-term cave monitoring

project.

6.1 James Cave Datasets

At James Cave, the following data are collected at 10-min intervals (2007–current

(2014)):

• Precipitation at the surface

• Air temperature and relative humidity at the surface

• Drip rate at three drip sites (Fig. 9)
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Fig. 9 James Cave drip hydrographs between late 2007 and early 2013. Note the different scales

on drip rates for the three sites
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Fig. 10 Specific conductance datasets for the three drip sites (MS1, MS2, MS3) at James Cave

from Jan 2011 to Feb 2013. Missing data reflect periods of instrument failure
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• Cave air temperature at three drip sites

• Dripwater-specific conductance at three drip sites (Fig. 10)

• Dripwater temperature at three drip sites

• Cave stream level at the weir

• Cave air barometric pressure at the weir

Geochemical analyses were conducted for samples collected from 2008 to 2012 for:

• Composite samples of precipitation (calcium shown in Fig. 11)

• Composite samples of cave dripwater (calcium shown in Fig. 11)

• Grab samples of soil water

• Grab samples of cave stream

The above datasets allow for calculation of the following parameters:

• Penman–Monteith potential evapotranspiration, using climate data from James

Cave and Kentland Farm

• Excess precipitation (also called water excess), using precipitation data and

calculated potential evapotranspiration values

• Cave stream discharge, using cave stream level and cave air barometric pressure

data

Fig. 11 Calcium concentrations (mmol/L) in precipitation and dripwaters at the three drip sites in

James Cave from June 2008 to January 2012. Note both spatial (between the different sites) and

temporal variabilities in Ca concentrations
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• Recession coefficients on drip and cave stream hydrographs, using hydrograph

recession analysis

• Saturation indices of specific minerals in cave dripwater, using geochemical data

More detailed presentation and interpretation of these datasets are included in

two graduate theses [21, 22]. The reader may consult these sources to learn more

about current findings at James Cave. Presentation of selected datasets with brief

interpretation is presented below.

6.2 Dripwater Hydrology

Based on recurring patterns in the drip dataset (Fig. 9), Eagle [21] divided the drip

record into three hydrologic seasons: (1) a dry period during which there is no

response to precipitation events and the discharge is at or near zero; (2) a subse-

quent recharge period characterized by high drip rates and responses to precipi-

tation events; and (3) a recession period during which drip rates decline with no

response to precipitation events until reaching base flow, marking the onset of the

next dry period. Eagle [21] also examined the changes in the start and duration of

the hydrologic seasons, dividing the record into hydrologic years (HY) beginning

with the start of dry period, typically early October. For example, HY2010 refers to

the period October 2009–September 2010.

Over the period of record at James Cave, the onset of the dry period was the most

consistent seasonal marker, occurring in late September to early October and

followed by a dry season lasting 1–6 months. The recharge season has started in

December (HY2010, 2012), January (HY2009, 2013), February (HY2008), and

March (HY2011). The duration of the recharge season ranged from 2 (HY2008) to

6 months (HY2009, 2012). The recession period generally began in late spring to

early summer and lasts from 3 to 5 months before onset of the next dry period and

start of the next hydrologic year.

6.3 Dripwater Geochemistry

6.3.1 Specific Conductance of Dripwater

The specific conductance dataset is essentially a high-resolution time series record

of total solute concentrations in dripwater (Fig. 10). These patterns show significant

variation over the period of record with short-term perturbations and longer-term

(multiple month) trends. For example, MS3 has consistently higher conductivity,

while MS1 and MS2 generally have similar and lower conductivity values. Worth

noting are three prominent patterns: (1) the decline in conductivity in the fall of

both 2011 and 2012, (2) the increase (more prominent at MS3) from spring to
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summer, and (3) the response of specific conductance to initiation of the recharge

season. At the initiation of recharge, there is a small but measurable increase in

conductivity, followed by a sudden drop, then gradual increase. For subsequent

fluxes in drip discharge, only the sudden drop in conductivity and gradual increase

are observed. The first increase likely represents a pulse of water with high

dissolved solids that was stored in the epikarst and flushed at the onset of recharge.

Later events are likely dominated by newer water or direct recharge along hydrauli-

cally conductive “wetted” or “primed” flow paths.

6.3.2 Geochemical Characteristics of Dripwater

Examining concentrations of select analytes over time can provide information

about seasonal geochemical processes. For example, Fig. 11 shows Ca concen-

trations in drips from 2008 to early 2012. This time series shows a pattern of

seasonal variability, with higher concentrations observed in the late summer

(August–September) and lowest concentrations observed in late fall and early

winter (November–January) when the deep epikarst is the driest and likely well

ventilated, resulting in calcite precipitation in the epikarst. The Ca concentration

data, in combination with the continuous specific conductivity datasets, were used

by Eagle [21] to infer patterns of calcite dissolution and precipitation in the epikarst.

6.4 Successes and Pitfalls

Instrumentation of the James Cave site has been an iterative process that continues

to be refined. For example, at the start of the project, a multiparameter sonde was

installed to collect pH and DO, in addition to specific conductance and temperature

of the dripwater. After a series of probe failures, the sonde was exchanged for a

more robust specific conductivity/temperature logger. As technological advances in

this field continue at a rapid pace, affordable, reliable, and robust loggers capable of

measuring parameters such as pH and DO, and others, are likely to become avail-

able. Improvement in sensor durability and reliability may in the future facilitate

collection of parameters such as these and allow calculation of important geo-

chemical parameters such as calcite and dolomite saturation and partial pressures of

dissolved gases.

Failure of rain gauges was a source of frustration for the project. Initially, off-

the-shelf gauges were deployed, but after circuit boards corroded and failed, despite

additional protective shellacking prior to deployment, the rain gauges were

retrofitted with simple reed switches in 2012 (see Table 2 for details). Since this

retrofit, the gauges have not failed.

Downloading of data and software requirements for different instruments was a

project challenge. Initially, instruments from multiple manufacturers were used,

each with their own equipment for downloading data (e.g., data shuttles and special
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cables) and each with their own software. Over time, all instrumentation has been

replaced with equipment from one manufacturer. This approach greatly simplified

the process of data download, data processing, and troubleshooting of instrument

malfunctions in the field. Standardizing equipment as much as possible within data

quality and budgetary considerations is recommended.

Data management is an ongoing challenge for high-resolution time series data

such as those associated with cave monitoring projects. Collection of closely spaced

data from multiple locations and of different types can quickly yield large amounts

of data. At James Cave, collection of precipitation, drip rates, stream stage/dis-

charge, air and drip temperature, and drip-specific conductance has generated

several millions of data points. Specific software options (such as Aquarius, used

for this project) are available and designed to facilitate integration and processing

of large, time series datasets. Other approaches, such as custom software, may be

possible if in-house capacity exists for their development, modification, and main-

tenance. Cave monitoring projects are likely to be data rich, which requires

planning for data management, ideally before initiating data collection.

Last, installation and maintenance of equipment for cave monitoring projects

often requires substantial labor. For the James Cave project, labor was supplied by

researchers, students, and volunteers, some with limited caving experience. The

field crew had to navigate cave passages including tight confined spaces and

exposed climbs and tote equipment from the surface to sites in the cave and back

out again. Because workers have no way to communicate with anyone on the

surface, development of a communication (sign-out) protocol as part of the health

and safety plan is a critical element of any cave project.

7 Conclusions

Collecting long-term, high-resolution datasets in caves is a challenging endeavor,

as it involves not only installation of instrumentation but also long-term main-

tenance of the equipment. An additional challenge is the storage, processing, and

management of the data. However, with careful planning, design, and flexibility to

alter instrumentation during the course of the project, these rich datasets can be

applied to answer a variety of scientific questions. For example, results derived

from the James Cave datasets have provided insight into hydrologic and geo-

chemical processes that influence recharge to the underlying karst aquifer.

Continued research on recharge in karst systems is needed to accurately

characterize the important water resources they contain. Improvements in sensor

technology, data storage, and data processing are critical for collecting long-term

high-quality datasets that can be used to address theoretical and applied ques-

tions about water and chemical flow in karst. The resulting information will

assist scientists and planners in making the informed decisions that are required

for effective management of karst aquifer systems and for water supply planning

for domestic, agriculture, municipal, and industrial applications.
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Abstract Bioassessment can be broadly defined as the use of biota to assess the

nature and magnitude of anthropogenic impacts to natural systems. We focus on an

important and specific type of bioassessment: the use of ecological assemblages,

primarily fish, macroinvertebrates, and algae, as indicators of anthropogenic

impairment in aquatic systems. Investigators have long known that biota provide

spatially and temporally integrative indicators of impairment. This chapter provides

an introduction to the process of developing assemblage-level indices that provide
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quantitative estimates of the ecological integrity of freshwater ecosystems.

We discuss important developments made in the latter half of the twentieth century

which are still relevant and useful for bioassessment, as well as more recent

developments that have improved the effectiveness of bioassessment strategies.

Throughout the chapter, we focus on analytical approaches for improving the

effectiveness of bioassessment indices for detecting anthropogenic impairment. In

the concluding section of the chapter, we widen our perspective and include

excerpts from discussions with three expert practitioners on topics that are more

broadly applicable to the assessment of the ecological integrity of aquatic systems.

The major challenge for all bioassessment programs is to separate the effects of

anthropogenic impairment on biota from the effects of natural environmental

variability unrelated to impairment. Analytical developments, such as advanced

predictive modeling techniques, coupled with emerging technologies and the

development of large-scale bioassessment programs will continue to increase our

ability to meet this challenge and to improve our understanding of how aquatic

assemblages are affected by anthropogenic impairment.

Keywords Aquatic ecosystems • Bioassessment • Biomonitoring • Biotic assem-

blages • Predictive modeling

1 Introduction

The US Environmental Protection Agency (USEPA) defines biological assessment

as the “. . .evaluation of the condition of a waterbody using biological surveys and

other direct measurements of the resident biota in surface waters” [1]. Investigations

that fall under this broad definition may be focused on any level of biological

organization, from studies of subcellular effects of toxic compounds [2] to

ecosystem-scale assessments using multiple taxonomic assemblages [3]. The

terms biological assessment, bioassessment, biological monitoring, and

biomonitoring are often used interchangeably. For clarity, we restrict our discussion

to the term bioassessment.

The value of aquatic organisms as pollution indicators has been recognized by

scientists for over 100 years. The Saprobiensystem of Kolkwitz and Marsson [4],

most probably the first bioassessment index, was a system for quantitatively rating

the tolerance of aquatic organisms to sewage pollution, much akin to modern

pollution tolerance values. This concept has been adapted and modified many

times, and both the concept and use of the word “saprobity” persist in contemporary

literature [5, 6]. The practice of bioassessment invokes the concept of biological

integrity, defined as “the capability of supporting and maintaining a balanced,

integrated, adaptive community of organisms having a species composition, diver-

sity, and functional organization comparable to that of natural habitat of the region”

[7, 8]. Practitioners conducting bioassessments assume that biotic integrity reflects
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overall ecological integrity, which describes the state of an ecosystem with respect

to biology as well as physical and chemical factors [8]. Therefore, the purpose of

using biota to assess environmental conditions is that they integrate the effects of all

environmental factors to which they are exposed over their entire life-spans and

habitat ranges [8, 9]. However, because biota are responsive to such a multitude of

environmental factors acting over multiple temporal and spatial scales, determining

clear and unambiguous relationships between biota and anthropogenic impairment

remains a challenging and active area of research.

This chapter addresses the development of numerical indices, based on biolog-

ical assemblage-level data, to make inferences regarding anthropogenic stress to

freshwater ecosystems. We follow the framework of Fauth et al. [10] in defining the

terms community and assemblage. Communities refer to all organisms within the

spatial boundaries of the system of interest. For bioassessment, the spatial bound-

aries of communities are generally artificial constructs, rather than distinct, natural

boundaries, and are chosen based on some combination of scientific, logistical, and

political criteria. The term assemblage refers to a taxonomically defined subset of a

given community, for example, the benthic macroinvertebrate assemblage of a

stream system.

The general objective of all bioassessments is to separate the signal of anthro-

pogenic impairment effects from the noise of effects related to natural variations in

space and time that are not related to anthropogenic impairment. Evaluation of the

relative importance of these two effects requires measurement or estimation of

variables related to anthropogenic impairment, which we refer to hereafter as

stressors, as well as those related to natural variation, which we refer to as natural

environmental variables.

The assemblages chosen for bioassessments depend on the expertise and

resources available to investigators, public interest, and on those that are most

expected to respond to anthropogenic stress. Algae, fish, and macroinvertebrates are

the most commonly used assemblages, and numerous examples of useful

bioassessment indices exist for each. Investigations comparing these assemblages

commonly show that they respond differently to anthropogenic stress, and each

represents a unique aspect of ecological integrity [11–13]. Therefore, we focus on

describing the analytical methods used for the development of contemporary

indices, not on comparing the usefulness of different assemblages. We do not

address descriptions of field and laboratory methods, but do note that sampling

methodology [14, 15], sampling effort [16, 17], and taxonomic resolution [18, 19]

have important and well-documented effects on bioassessments. Our focus is on

perennial streams and rivers, as these systems dominate the literature and are the

focus of most bioassessment programs. We also provide examples from lakes,

impoundments, and wetlands when they enhance our discussion. The analytical

methods presented here are also applicable to other aquatic systems and assemblage

types.

Biological integrity is defined by one or a series of bioassessment metrics, which

are quantitatively defined aspects of assemblages that are expected to vary in

response to impairment. Some investigators favor the use of multiple metrics,

Principles for the Development of Contemporary Bioassessment Indices for. . . 235



Table 1 Selected fish, macroinvertebrate, and algae metrics used as indicators of anthropogenic

impairment

Metric

category Assemblage Metric

Impairment

response Description

Composition

and diversity

Fish Percent of

nonnative

species [20]

Increase Percent of species that

are nonnative

Macroinvertebrates EPT richness

[21]

Decrease Number of taxa (genera

or species) in the orders

Ephemeroptera,

Plecoptera, and

Trichoptera

Algae Similarity to

reference [22]

Decrease Bray–Curtis similarity

index of test site com-

pared to reference sites

Trait based Fish Percent

lithophilic

spawners [17]

Decrease Percent of individuals

that spawn on coarse

gravel substrate

Macroinvertebrates Percent

collector–

gatherer taxa

[23]

Increase Percent of taxa in the

collector–gatherer

functional feeding group

Algae N-heterotro-

phic taxa [24]

Increase Number of taxa that

derive nitrogen from the

uptake of amino acids

Pollution

tolerance

Fish Tolerance

value [25]

Increase Weighted average toler-

ance value based on an

impairment gradient

derived by principal

components analysis

(PCA)

Macroinvertebrates Percent toler-

ant taxa [23]

Increase Percent of individuals

with tolerance value >6

(10-point scale, increas-

ing with tolerance).

Tolerance values derived

based on best profes-

sional judgment and

literature review

Algae Alkaliphilous

taxa richness

[26]

Increase Number of taxa (genera

or species) primarily

occurring at pH> 7

Individual

condition

Fish Percent of

individuals

with anoma-

lies [27]

Increase Percent of individuals

with deformities, ero-

sion, lesions, or tumors

Macroinvertebrates Toxic score

index [28]

Increase Index of effluent toxicity

based on mentum defor-

mities of Chironomus
spp.

Algae Percent

deformed

cells [29]

Increase Percent of diatom frus-

tules with deformities
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which are aggregated within a multimetric index (MMI). MMIs provide a checks-

and-balances system to account for variable responses of metrics to multiple

stressors. Others prefer single-metric indices, most notably the observed-to-

expected (O/E) index, which we introduce in Sect. 3.1. Developers of MMIs

commonly group metrics based on the general type of ecological information

they express. Metrics from different ecological categories are included in MMIs

in order to reduce the redundancy of information and increase the explanatory

power of indices. In practice, a vast array of assemblage-level metrics has been used

for aquatic bioassessments.

To provide relevant examples, we have assembled a short list of fish,

macroinvertebrate, and algae metrics, which we group into four broad categories

(Table 1). Diversity and composition metrics are taxonomy-based metrics associ-

ated with assemblage characteristics such as richness, evenness, diversity, and

dominance. Trait-based metrics incorporate information on ecological habits, hab-

itats, morphology, life history, and life cycle characteristics of populations in the

assemblage of interest. Pollution tolerance metrics are numerical ratings of the

degree to which individuals in the assemblage are tolerant to stressors. Individual

condition metrics are associated with visually apparent morphological anomalies of

individual specimens. In addition to these general metric types, the absolute

abundance of fish and biomass of algae are also sometimes used, although the

absolute abundance of macroinvertebrates is rarely used.

In Sect. 2, we introduce the most widely used method for bioassessment, the

Reference Condition Approach (RCA) [30–32]. In Sect. 3, we discuss predictive

modeling of aquatic assemblages, which is conducted to control for the effects of

natural environmental variation in order to obtain an unambiguous determination of

anthropogenic effects. Once selected and properly calibrated for natural environ-

mental variation, metrics are used individually, or are aggregated within anMMI, to

provide a scoring system that reflects the assemblage-inferred level of anthropo-

genic impairment at a given study site. This process, as well as methods for

evaluating the performance of metrics and indices, is reviewed in Sect. 4. In

Sect. 5, we take a broader perspective and present interviews with three experts

who provide valuable insights into some of the most important emerging issues and

challenges in the field of bioassessment.

2 The Reference Condition Approach

Reference conditions serve as surrogates for negative controls, representing the

assemblage characteristics at test sites that would occur in the absence of impair-

ment. Following the RCA, reference conditions are derived from assemblage data

at least-disturbed reference sites (sensu Stoddard et al. [32]). In comparison to

experimental studies, where variation among replicates is carefully controlled and

expected to be minimal, variation among reference site assemblages is high and

difficult to predict. Replicate samples from the same site are generally insufficient
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to account for this variation. Therefore, the RCA calls for the use of multiple

reference sites in order to adequately account for the effects of natural environ-

mental variation on assemblages [30–32].

We use the term reference to broadly encompass streams considered to be in

least-impaired conditions, though as discussed in Sect. 2.2, the actual level of

impairment at reference sites is highly variable among studies [32]. We use the

term impaired to refer, in general, to sites that are subject to the deleterious effects

of stressors and the term test sites to refer to those of unknown impairment status

(i.e., those for which bioassessments are needed). This chapter focuses on the RCA,

although alternative approaches for estimating reference conditions may be used

when system conditions and data availability warrant (Sect. 2.1). Application of the

RCA proceeds by first screening multiple potential reference sites to determine if

they reflect appropriate least-impaired conditions (Sect. 2.2), then classifying the

screened reference sites as to expected or quantified patterns of variability among

their biotic assemblages (Sect. 2.3).

2.1 Alternatives to the Reference Condition Approach

Though not often available, data describing past assemblages may provide valuable

information for inferring reference conditions. Investigations of sediment records,

historical accounts of landscape conditions, and museum records have been used to

infer past environmental conditions and assemblage composition in aquatic systems

[33–36]. Historical approaches, while important, lack broad applicability for

bioassessment. In lotic ecosystems, sediment deposition is generally insufficient

to provide a historical record. Moreover, data that describe assemblage composition

before anthropogenic development occurred may reflect conditions that are no

longer attainable given the effects of factors acting at large spatial and temporal

scales such as atmospheric deposition of pollutants and global climate change.

When anthropogenic impacts are spatially discernable, a paired-site approach

may be useful. For example, lotic sites impacted by point source pollution such as

mine effluent [37, 38] or municipal wastewater [39] may be paired with upstream

sites above the source of stressors. Plafkin et al. [40] referred to paired upstream

sites as controls, though this implies that confounding natural environmental factors

on the upstream–downstream comparison are being actively controlled, which is

generally not feasible. For bioassessments conducted over large spatial scales (e.g.,

ecoregions), the paired-site approach is problematic because much assemblage

variation is driven by local-scale differences in natural environmental variables

[41, 42]. Assemblage variation among reference sites, that is, variation that is not

likely caused by impairment, is typically much larger than variation among repli-

cate samples collected at a single site. Therefore, comparisons of replicate samples

from a single reference and test site pair often do not provide a realistic represen-

tation of the effects of impairment on assemblage characteristics [43].
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2.2 Reference Site Screening

Reference site screening is the process of estimating the degree of anthropogenic

impairment at study sites, such that those with acceptably low stress levels may be

designated as reference sites. Screening criteria vary among studies based on both

data availability and on the opinions of investigators as to which criteria are most

appropriate. Some have advocated for the use of professional judgment regarding

whether observed assemblages represent reference conditions [44, 45]. Professional

judgment may also be applied to the environmental conditions at the sites, provid-

ing a more independent, and potentially less biased, means of estimating impair-

ment status [46]. Advocates of professional judgment often favor consensus

opinions among groups of experts [45, 47]. Potential criticisms of such approaches

include a lack of empirical support for decisions regarding reference designations

and circular logic when sites are designated as reference based on the assemblage

that is also used for bioassessment. However, Davies and Jackson [45] recently

showed that the opinions of trained experts were highly consistent when rating

ecological integrity based on assemblage data, leading the authors to assert that

well-informed professional opinions provide reliable, ecologically relevant bench-

marks for bioassessment.

Independent stressor variables (i.e., those not related to the assemblage used for

bioassessment) are often used to estimate impairment status. Screening approaches

that employ both professional judgment and independent stressor variables produce

reference sites that are of higher ecological integrity than those selected using either

approach alone [48]. Variables used to estimate anthropogenic stress include

physicochemical water quality parameters, land-cover features derived using a

geographic information system (GIS) that indicate development, and physical

habitat quality assessments based on site observations. Studies often employ a

filtering approach, whereby threshold levels for each measured stressor variable

are set to designate sites as reference or impaired [21, 49]. The filtering criteria used

to select reference sites are generally evaluated with an all approach for reference

sites and any approach for non-reference sites. For example, Blocksom et al. [49]

required that sites meet all of the reference criteria listed in Table 2 to be designated

as reference, but considered sites impaired if any one of the impaired criteria was

met.

The level of anthropogenic impairment considered acceptable varies greatly

among studies, and many authors fail to provide clear descriptions of how reference

conditions are defined. Recognizing this problem, Stoddard et al. [32] advocated for

the use of the terms minimally disturbed condition (MDC) to describe expected

conditions in the absence of substantive anthropogenic disturbance, least-disturbed

condition (LDC) to describe the best available conditions present under current

disturbance regimes, and best attainable conditions (BAC) to describe the expected

conditions when all avoidable sources of anthropogenic influence are removed

(BAC is generally intermediate between LDC and MDC). MDC sites, within

virtually unimpacted, near pristine watersheds, are rarely available, and most

Principles for the Development of Contemporary Bioassessment Indices for. . . 239



often reference sites are chosen based on the best available conditions (LDC sites;

e.g., [50, 51]).

The reliability of bioassessments depends largely on the existence of a sufficient

number of reference sites to encompass the range of natural variability in the study

region. Given the pervasiveness of human impacts on aquatic ecosystems, achiev-

ing a sufficient number of reference sites is often difficult, and may be impossible

if standards regarding the acceptable level of impairment are unrealistically high

[50, 51]. Impairment is highly variable among geographic regions because devel-

opment pressure is nonuniform. Recognizing this, Yates and Bailey [50] developed

a novel strategy for selecting reference sites that allowed for flexibility in the

standards used for screening to select LDC sites within study regions exposed to

different impairment regimes. This is a pragmatic strategy, as flexibility in the level

of impairment allowed is unavoidable in areas where impairment is pervasive;

however, clear comparisons of bioassessment results among studies are hindered

when the standards used to select reference sites vary.

2.3 Reference Site Classification

Reference sites that successfully pass the screening process are used to predict

assemblage conditions under minimal impairment. Classification of reference sites

is intended to increase the precision and accuracy of these predictions by grouping

sites inhabited by similar ecological assemblages. Broadly, there are two major

types of classification systems: (1) typologies, wherein sites are grouped based on

spatial proximity and/or similarity in their natural environmental variation, and

(2) biotic classifications, which employ statistical analyses on assemblage data to

group sites. We begin by discussing the two as distinct approaches, although

bioassessment programs often use elements of both to develop the best site classi-

fications. Throughout this section, we discuss analytical techniques that are

Table 2 Filtering criteria

used by Blocksom et al. [49]

to differentiate between

reference and impaired

streams in the Mid-Atlantic

Highlands (USA)

Criterion Reference Impaired

pH NA <5

Sulfate <400 μeq/l >1,000 μeq/l
Acid neutralizing capacity >50 μeq/l NA

Chloride <1,000 μeq/l >1,000 μeq/l
Total phosphorus <20 μeq/l >100 μeq/l
Total nitrogen <750 μeq/l >5,000 μeq/l
Mean RBP score >15 <10

RBP refers to the rapid bioassessment habitat protocol of Barbour

et al. [1], where scores range from 0 to 20

It is possible for sites to have intermediate characteristics and

therefore fall between the two classes

NA no filter specified
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specialized for the analysis of assemblage data. McCune and Grace [52] and

Legendre and Legendre [53] present additional details on most of the analytical

methods presented here. Software for conducting most of the techniques is avail-

able free of cost in the R statistical programming language [54].

The objective of classification is to maximize assemblage similarity within clas-

ses, while maintaining sufficient replication to allow for statistical comparisons of

test sites with the reference classes. Many measures of assemblage similarity exist

[52, 53]. The Bray–Curtis coefficient [55] for abundance data and the Sorenson

coefficient [56, 57], the equivalent of Bray–Curtis for presence-or-absence data, are

most commonly used. Both are well suited to the numerical structures of assemblage

datasets. Similarity may also be calculated using bioassessment metric values in place

of taxonomic data (a sound but under-used technique, [58]).

Similarity is summarized as the mean within-class similarity (W, the mean of all

pairwise similarities of sites within classes) and the mean between-class similarity (B,

the mean of all pairwise similarities of sites not in the same class). The precision of a

classification is described by the relationship of W to B, referred to as the classifica-

tion strength [58]. High classification strength is indicated by a large positive

difference or large ratio of within- to among-class similarity (i.e., high W–B or

W/B). Predictions regarding assemblage conditions are most reliable when classifi-

cation strength is high. Multivariate techniques such as MEANSIM [58], analysis of

similarity [59], multiresponse permutation procedure [60], and nonparametric, mul-

tivariate analysis of variance [61] are used to test the hypothesis that classification

strength is higher than expected by chance, providing an indication of whether the

classification improves the reliability of predictions regarding reference conditions.

2.3.1 Typological Site Classification

Typological site classifications are based on a priori judgments regarding the

site conditions that best group reference sites with similar assemblages. Early

typological approaches focused on coarse-scale, map-based classifications (e.g.,

ecoregions) [62, 63]; however, typological classifications that do not account for

the effects of local-scale variables typically exhibit much lower classification

strength than biotic classifications [43, 64, 65]. Typological classifications are a

convenient and useful tool that should be at least considered as an initial step

toward site classification [65, 66]. Like all classifications, the effectiveness of a

priori-defined typologies should be assessed by a posteriori, quantitative evalua-

tions of the assemblages of interest [66]. For example, investigators in Virginia

(USA) observed a striking difference in stream macroinvertebrate assemblage

structure between low-gradient coastal plain sites and upland piedmont and moun-

tain sites, requiring the use of separate bioassessment indices for coastal and

non-coastal sites (Fig. 1) [67, 68]. Because assemblages are affected by both

regional- and local-scale environmental factors, typological classifications that

consider smaller spatial-scale variables as well as large-scale zones may provide

comparable, or greater, classification strength than biotic classifications [64, 69].
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2.3.2 Biotic Site Classification

Biotic classification of reference sites came to prominence with the introduction of

the River Invertebrate Prediction and Classification System (RIVPACS, [70, 71]).

Agglomerative cluster analysis is used in many variations of the RIVPACS

approach, including those developed for the USA [72] and the Australian River

Assessment Scheme (AUSRIVAS, [73]), both of which employ presence/absence

data for clustering, and the Benthic Assessment of Sediment (BEAST) method of

Canada [74] which clusters based on abundance data. Agglomerative clustering

proceeds from the bottom up, progressively grouping sites of increasingly dissim-

ilar taxonomic composition. Most investigators cluster sites based on Bray–Curtis

or Sorenson dissimilarity [72–76], although other measures such as Euclidean

distance can be employed [77]. Figure 2 shows a cluster analysis of 46 Kentucky

(USA) stream reference sites where genus-level macroinvertebrate data were col-

lected by the USEPA.

The standard RIVPACS approach classifies sites using two-way indicator spe-

cies analysis (TWINSPAN, [79]). In contrast to agglomerative cluster analysis,

TWINSPAN is a divisive technique, whereby sites are progressively divided based

on taxa (indicator species) that best differentiate them. Also unlike agglomerative

clustering, the user cannot choose a dissimilarity measure [80]. TWINSPAN has

Fig. 1 Nonmetric multidimensional scaling ordination of macroinvertebrate assemblages, iden-

tified at the family level, from 269 least-impaired, reference Virginia stream sites. Symbols: (open
triangles) coastal plain sites; ( filled circle) non-coastal sites. Distances between sites correspond

to their proximity in Bray–Curtis distance space. Percentages indicate the percent of variance in

the Bray–Curtis coefficients explained by the axis coordinates. Adapted from Dail et al. [67] with

permission
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received criticism for poor performance and seemingly arbitrary methodology

[52, 81]. However, based on comparisons with other techniques, the developers

of RIVPACS concluded that TWINSPAN performed well, and the method is still

used within the current RIVPACS framework [80].

Relationships among sites can be visualized using a variety of ordination

techniques, which reduce the n-dimensional hyperspaces created by ecological

distance matrices to fewer (usually 2 or 3) dimensions that best explain the overall

pattern of variability (Fig. 1) [52, 53]. When assemblage–environment responses

are assumed to be linear, principal components analysis (PCA) is commonly used,

whereas when responses are assumed to be unimodal, reciprocal averaging-based

techniques such as correspondence analysis (CA) and detrended correspondence

analysis (DCA) are often used. We agree with others [52, 82] in preferring

nonmetric multidimensional scaling (NMS) to these techniques because NMS

includes no assumptions regarding the underlying data distribution and is highly

effective at explaining assemblage structure while reducing dimensionality. Ordi-

nations are often used for exploratory purposes, for example, to confirm classifica-

tions made using other analyses [76], but also may be used directly for site

classification [67, 83].

Fig. 2 Agglomerative cluster dendrogram generated using the flexible-beta method (β¼�0.30)

on a Bray–Curtis dissimilarity matrix of genus-level macroinvertebrate data at 46 least-impaired

Kentucky stream sites. Branch lengths correspond to dissimilarities between sites and clusters.

Bioregions are regional classifications as described by Pond et al. [78]: (open triangle)—Moun-

tain; ( filled circle)—Miss. Valley-Interior River; (open square)—Pennyroyal; (open circle)—
Bluegrass. The Mountain and Bluegrass regions separate perfectly. Some overlap occurs for other

bioregions because Julian day and latitude (not included in the analysis) were also important

variables related to assemblage structure in these bioregions. Data courtesy of Gregory Pond,

USEPA
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Multivariate analyses on assemblage data aid in showing the user where distinc-

tions between classes may occur. However, subjectivity in drawing distinctions

among classes is unavoidable, as investigators must decide on the appropriate level

of similarity at which to consider sites within the same class [84]. The final decision

is made as a compromise between including as many reference classes as possible,

while still including enough replicate sites within classes to adequately represent

within-class assemblage variability among sites. Bowman and Somers [85] recom-

mend “a minimum of 20, but preferably 30–50 reference sites per group,” though

this may be overly optimistic given the data constraints experienced in many

studies.

2.3.3 Conclusions Regarding Site Classification

Hawkins et al. [43] and Melles et al. [86] draw distinctions between geography-

based methods in which reference classes can be clearly delineated within discrete

spatial units and geography-independent methods driven by patterns in assemblage

variation regardless of physical location. Typological classifications which include

map-based delineations of classes are geography dependent, whereas biotic classi-

fications, focused on patterns of assemblage variation, are geography-independent.

However, the most effective classifications consider both geography-dependent and

geography-independent factors, for example, limitations on the spatial scale over

which biotic classifications are developed can increase their classification strength

[87]. While biotic classifications provide precise descriptions of the patterns of

variability with respect to the assemblage of interest, the resulting classifications

may not be applicable to other assemblages. Inclusion of geography-dependent

variables that implicitly encompass a wide range of environmental factors provides

a more comprehensive classification of sites [88]. A priori typological classification

based on large-scale variables (e.g., ecoregions) provides useful, convenient, and

easily communicated initial classifications of sites, though classifications are often

improved when supplemented by smaller-scale variables that are not spatially

discrete (e.g., flow regime; [89]) or not associated with geography (e.g., sampling

date; [75]). Good scientific practice requires that the effectiveness of a priori

approaches be evaluated with a posteriori evaluations of relationships between

classes and biota [64–67, 88].

3 Predictive Modeling of Aquatic Assemblages

The objective of predictive modeling for bioassessment is to control for the

confounding effects of natural environmental variables so that the effects of

stressors on metrics can be clearly evaluated. The methods used to meet this

objective are as diverse and varied as the assemblages themselves. As an introduc-

tion to the core concepts in predictive modeling, we outline the basic steps of the
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RIVPACS framework and present an example of its use in Table 3 and Fig. 3.

Although now 30 years old, the framework remains relevant and is still used

with little modification of the original methodology [70, 75, 80]. The conceptual

basis and technical details of RIVPACS have been described thoroughly by others

[71, 72, 90]. Following our introduction to RIVPACS, we present several promising

recent advancements in predictive modeling.

Table 3 Example calculation of O/E based on biotic classes and distances in environmental space

shown in Fig. 2

Reference class

Distance from test site

in discriminant space

Class probability

of test site

Probabilities of capture

at reference sites

Taxon A Taxon B Taxon C

1 4.4 0.47 0.70 0.20 0.10

2 5.2 0.31 0.70 0.25 0.05

3 5.9 0.20 0.20 0.50 0.10

Probability of capture at test site: 0.59 0.29 0.09

Expected richness at test site (E): 0.97

Data were simulated for example purposes only

Distances were converted to class probabilities following equations 2 and 3 in Clarke et al. [90]

(distances are D2 values as described in [90])

All classes contain 20 sites

The probability of capturing a taxon at the test site is given by multiplying the class probabilities of

the test site for each reference class by the corresponding probabilities of capture of the taxon at

sites within each reference class

For example, the probability of capturing Taxon A at the test site is 0.47� 0.70 + 0.31�0.70

+ 0.20� 0.20¼ 0.59
The probabilities of capture for each taxon are summed to give the expected richness (E) at the test site

Fig. 3 Reference and test

sites displayed in

environmental distance

space as defined by two

discriminant function axes.

Discriminant function

scores were simulated from

normal distributions with

variance¼ 1. Symbols:
( filled circle) reference
class centroids, (open
circle) test site, (1, 2, 3)
reference sites, (d1, d2, d3)

distances in discriminant

function space between test

sites and reference class

centroids
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3.1 The Observed-to-Expected (O/E) Index

The standard metric derived from RIVPACS-type predictive modeling

approaches is the observed-to-expected ratio (O/E), a single-metric index that

compares the observed taxonomic richness at a study site to the expected richness

under minimally impaired conditions. The O/E ratio indicates the degree of

“taxonomic completeness” (sensu Hawkins [91]) of the test site. O/E values

less than one indicate that taxa expected to be present if the sites were unimpaired

are absent.

Following biotic classification of reference sites, RIVPACS employs Multiple

Discriminant Analysis (MDA) to develop linear functions that best describe the

relationships of natural environmental variables to the biotic classes. The discrim-

inant functions are used to determine the distance, in environmental variable space,

of the test site to the biotic reference classes, which in turn are used to estimate the

probabilities that the test site belongs in each reference class (referred to here as

class probabilities). For all native taxa in the study region, the proportion of

reference sites within a given biotic class where a taxon is present represents the

probability of observing that taxon at a site in that class (referred to as the

probabilities of capture). The probabilities of capture of a given taxon within

each reference class, and the class probabilities of the test site for each reference

site, are used to estimate the probability of capturing the taxon at the test

site assuming unimpaired conditions. The expected richness at the test site

(the E in O/E) is given by summing probabilities of capture at the test site for all

taxa (see Fig. 3 and Table 3 for additional details).

O/E values greater or less than one indicate departures from what is predicted

under unimpaired conditions. Simpson and Norris [92] recommended that O/E
values below the tenth percentile of the reference site distribution indicate impair-

ment, with the extent of impairment increasing as the ratio decreases. They also

postulated thatO/E values greater than one may indicate areas of exceptionally high

natural biodiversity or those subject to mild impairment that artificially increases

richness.

A common modification to the basic framework is to exclude rare taxa from the

analysis, as their inclusion can result in a site receiving an O/E score near one when

the assemblage observed deviates considerably from statistical expectations.

Several authors have indicated that excluding taxa with probabilities of capture

less than 0.5 (producing the O/E0.5 index) improves accuracy and precision [72, 93,

94]. As an alternative, Van Sickle [93] adapted the Bray–Curtis dissimilarity

measure to compare observed and expected assemblages (referred to as BC) and

showed that BC was generally more accurate than O/E for identifying impairment

across a wide range of assemblages and study systems. O/E0.5 and BC indices

developed for Appalachian stream macroinvertebrate assemblages exhibited simi-

lar accuracy and precision [75].
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3.2 Advances in Predictive Modeling

The widespread application of RIVPACS-type models has inspired many alterna-

tive approaches. Recognizing that assemblages occur along continuous environ-

mental gradients, investigators have developed nearest neighbor methods that

compare the environmental similarity of test sites to each individual reference

site, rather than to the average assemblage of each class as is done using RIVPACS

[83, 95]. Modeling approaches often skip the biotic classification step and predict

assemblage characteristics at reference sites directly using natural environmental

variables [96–98]. Direct prediction approaches may allow for different sets of

environmental variables to be used as predictors for each taxon. Though appealing

in this respect, the development of separate models for each taxon may be overly

complex for taxon-rich systems.

In contrast to the long history of predictive modeling for O/E indices [70], until

recently, developers of MMIs rarely employed predictive modeling to account for

natural environmental variability. McCormick et al. [99] used linear regression to

control for the effects of watershed size on a fish MMI. Equations derived from the

regression of metric values on watershed size at reference sites were applied to test

sites, and the residuals from the regression were used to indicate deviations from the

expected metric values in the absence of impairment. Oberdorff et al. [100]

expanded this approach, modeling metrics based on a suite of natural environmental

variables using logistic regression (for presence/absence metrics) and multiple

linear regression (for abundance-based metrics). Variations on this residualization

technique have been developed for more advanced modeling strategies such as

prediction tree approaches (discussed below), improving both the accuracy and

precision of MMIs by removing the confounding effects of natural environmental

variables [21, 101, 102].

Although conventional techniques such as MDA and linear and logistic regres-

sion have provided utility for predictive modeling, several newer methods better

account for the variable, often nonlinear and interactive effects of environmental

predictors on biota. The generalized additive modeling approach of Yuan [103]

shows the flexibility of this nonparametric regression technique for predicting

variable responses among different taxa to a suite of environmental factors. Bayes-

ian frameworks provide a comprehensive evaluation of uncertainty in predictive

models [104–106] and have been used for this purpose in MMI development.

Machine learning techniques, including artificial neural networks (ANNs) and

ensemble prediction trees, where models are iteratively trained at prediction to

minimize error, have received much recent attention for predictive modeling in

ecology [107–110]. Though the method is not yet widely used, support vector

machines have performed favorably compared with other machine learning tech-

niques for predicting the occurrence of macroinvertebrate taxa [111, 112].

ANNs structure predictor–response relationships in a manner similar to verte-

brate neurological systems. Variables are represented as neurons connected by a

multitude of axons representing the possible interrelationships among variables
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[113]. ANNs have shown substantial improvement over traditional RIVPACS-type

models for predicting the richness of macroinvertebrate and fish assemblages

[97, 114].

Prediction tree approaches such as classification and regression trees account for

the complex effects of both continuous and categorical predictors by recursively

bisecting the dataset into groups that are increasingly similar with respect to the

response variable after each division [52, 53, 115]. Ensemble prediction tree

approaches such as random forests and boosted regression trees combine the results

of hundreds to thousands of trees to reduce prediction error. Random forests have

been used to model assemblage metrics directly [21, 101, 116] and to define

relationships between environmental variables and predefined biotic classes, effec-

tively replacing MDA as used in RIVPACS [12, 101]. Comparisons of random

forests to boosted regression trees, a related ensemble tree method, indicate that the

latter may provide superior performance [108, 117].

In the absence of suitable reference sites, investigators have used whole-set

approaches that employ all sites in the dataset, rather than only reference sites, to

control for the effects of natural environmental variables. Most whole-set

approaches involve the use of regression techniques to model the responses of

metrics to stressors and then to estimate metric values at the point where the model

estimates that no impairment occurs [118, 119]. Because few to no minimally

impaired sites are included in these analyses, they are effectively estimates by

extrapolation of a stressor–response gradient and therefore may be subject to

greater prediction errors than models for which reference sites are available. Such

errors, however, may be unavoidable when test sites cannot be matched with

comparable reference sites. As an alternative whole-set approach, Chessman and

Royal [120] estimated the tolerance limits and preferences of macroinvertebrates to

substrate, temperature, and flow conditions across an extensive dataset of

Australian rivers. These limits were then used to predict the presence of taxa and

derive O/E values at test sites, which exhibited stronger correlations with stressor

gradients than O/E values derived using the AUSRIVAS method.

A case for using the whole-set approach as a replacement for the RCA was

recently presented [121]. Data simulations were conducted to model scenarios in

which natural environmental variables and stressors affected biotic metrics inde-

pendently and also interactively. Metrics that were model-adjusted using the whole-

set approach exhibited more accurate and precise relationships with the simulated

stressor gradient than metrics adjusted using the RCA. The difference in perfor-

mance was greatest when stressors and natural environmental variables interacted,

as the RCA cannot account for such interactions. While the authors present a

compelling case, additional field-based empirical comparisons of the whole-set

approach to the RCA are needed.
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4 Index Development and Performance Evaluation

We begin this section by discussing methods for evaluating the performance of

metrics and indices (Sects. 4.1–4.4). For MMIs, these characteristics should be

evaluated in order to include the best-performing metrics in the final index. Final

metric selection, scoring, and aggregation are discussed in Sect. 4.5. After scoring

and aggregation of metrics within an MMI or alternatively the development of an

O/E index, performance should be re-evaluated using the finished index scores,

ideally using independent data not used for index construction (Sect. 4.5). Further

information on MMI development has been presented by others [1, 32, 122]. For

clarity, these works present index development in a stepwise manner; however, it is

important to note that index development is an iterative, rather than a linear process.

Metrics that are acceptable based on one criterion (e.g., numerical range, Sect. 4.1)

may subsequently be considered unacceptable based on another criterion

(e.g., accuracy, Sect. 4.2), requiring the evaluation of new metrics.

4.1 Numerical Range

Assemblage data are often plagued with abundant zeros due to the patchy distribu-

tion of biota among habitats, and metrics related to rare taxa typically have narrow

numerical ranges. Metrics with limited ranges, and those for which many sites in

the dataset exhibit the same value, are unlikely to exhibit clear numerical responses

to stressors [123]. Others have presented guidelines for acceptable numerical ranges

for metrics, though these vary among studies [123–125]. Simple distribution plots

of metric values often provide clear indications of highly limited metrics (e.g., see

Fig. 2 in [122]).

4.2 Accuracy and Precision

We broadly define accuracy as the degree to which a given metric or index is

quantitatively related to variations in anthropogenic stress. Accurate metrics and

indices exhibit low Type II error rates by correctly identifying impairment and low

Type I error rates by correctly identifying reference conditions. As others have

indicated [126], the precise impairment state of a system, and therefore the absolute

accuracy of metrics, can never be truly known. We therefore use the term accuracy

to refer to estimated accuracy for identifying impairment, as indicated by relation-

ships of metrics with a priori-selected stressor variables.

Relationships between metrics with continuously varying stressor variables

may be expressed using correlation analysis. The objective is often to assess the

responsiveness of metrics to overall stressor gradients. PCA is commonly used
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to aggregate individual stressor variables into a comprehensive index of impair-

ment. Metrics and indices can then be evaluated as to the strength of their

correlation with this aggregate stressor index [124, 127, 128]. Tests of whether

metrics differ significantly from reference conditions provide binary results

regarding whether a metric classifies sites correctly. Standard approaches such

as ANOVA, however, may indicate statistically significant differences that are

not biologically meaningful [123, 129]; therefore, specialized techniques have

been developed that are more practical for determining whether metrics differ

from reference conditions [129–131]. The magnitude of the departure from

reference conditions is most important, regardless of statistical significance.

To this end, test statistics such as ANOVA F-statistics or t-scores, rather than

p-values, are used to determine the degree to which metrics differentiate

between reference and stressed sites [116, 123, 125]. Estimates of Type II

error rates are given by choosing a threshold value in the reference site

distribution that indicates impairment (e.g., 5th or 25th percentile for metrics

that decrease with stress and the 95th or 75th percentile for those that increase

with stress) and determining the proportion of impaired sites where metric

scores exceed this threshold (for metrics that increase with stress), indicating

that impairment has not been correctly identified [132]. Barbour et al. [133]

developed a similar, graphical approach for evaluating the degree to which

metrics and indices discriminate between reference and impaired conditions

(Fig. 4). Distribution-based methods such as these are especially susceptible to

the confounding effects of outliers, which should be carefully scrutinized to

determine whether they are caused by imprecise metrics or site misclassification.

Measures of precision describe the reliability of metrics and indices for consis-

tently indicating site conditions. Those that exhibit high variability that is not

attributable to environmental predictors are not useful for bioassessment. Precision

is expressed by measures of variability in metric or index values among samples,

most commonly as the standard deviation (SD) or coefficient of variation (CV).

Variance partitioning is conducted to determine the relative importance of the three

primary sources of variation: among-site spatial variation, within-site spatial vari-

ation, and temporal variation [29, 134].

Temporal precision is often evaluated using the signal-to-noise ratio (S/N ) [135],

which is the ratio of metric variance among sites to variance among multiple visits

at the same site. When evaluated using both stressed and reference sites, S/N reflects

both accuracy and temporal precision. Stevenson et al. [125] set S/N> 2 as the

acceptable ratio for diatom metrics. Stoddard et al. [123] indicated that acceptable

S/N values should vary, based on organisms’ generation times, from>1 for algae to

>4 for fish (though these preliminary guidelines require further evaluation).

Within-site spatial precision is reflected by metric variability in samples collected

at the same site and time, which may be affected by sampling error among spatially

or temporally replicated samples [134, 136] or by variation among bioassessments

employing different protocols [134, 137].
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The among-site precision of metrics and indices may be assessed among sites

within the same reference class, thus limiting the confounding effects of environ-

mental variability on the evaluation. For both O/E indices and MMIs, the ratio of

observed-to-expected metric values at reference sites should differ negligibly from

one, and thus the standard deviation (SD) for this ratio should be nearly equal to its

coefficient of variation (CV). The distribution of observed-to-expected metric or

index values provides a graphical illustration of both accuracy and precision

(Fig. 5) [72].

Fig. 4 Box plots of simulated data illustrating the method of Barbour et al. [133] for evaluating

the discriminatory power of metrics and indices. Boxes represent 25th and 75th percentiles;

whiskers represent non-outlier maximum and minimum values. The metric is expected to decrease

with impairment. Top left: discriminatory power¼ 0 (lowest), as the reference and impaired site

interquartile ranges (IQRs) overlap and include both medians. Top right: discriminatory power¼ 1

because the IQR overlap includes only one median value. Bottom left: discriminatory power¼ 2

because the overlap does not involve either median. Bottom right: discriminatory power¼ 3

(highest) because the IQRs do not overlap
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4.3 Metric Redundancy

Redundant metrics may respond in the same manner to stress and if used together

result in overly complex indices that include metrics that do little to increase (and

may decrease) accuracy. The problem of redundancy has long been recognized,

although the best approach for minimizing it remains unclear. Some investigators

prefer to focus on ecological redundancy by including metrics from different

ecological categories [122, 128], while others focus on reducing statistical redun-

dancy by evaluating pairwise correlations among metrics and choosing only one

metric within each pair that is correlated [124]. Combinations of these approaches

may be employed, which consider both ecological and statistical redundancy [138].

Correlations among metrics generally reduce MMI precision and accuracy, but

these characteristics appear to be most related to the mean pairwise correlation

rather than the maximum correlation among metrics in an index [139]. To best

Fig. 5 A graphical comparison of the accuracy and precision of two O/E indices (after methods in

[72]). Figure panels depict frequency distributions of O/E values for two indices at reference sites.

The data were simulated for example purposes only. The O/E index in the top panel is relatively
accurate (mean¼ 1.01) and precise (SD¼ 0.08). In contrast, the index depicted in the bottom panel
is less accurate (mean¼ 0.70) and less precise (SD¼ 0.16, also note the greater spread of the

distribution). This approach can be modified to assess the value distribution of any metric or index

at reference sites (e.g., [125])
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reduce the mean correlation among a group of potential metrics, multivariate

analyses such as PCA and cluster analysis can be used to aggregate correlated

metrics [21, 101, 102]. The correlation of metric errors (e.g., residuals of stressor–

metric regressions) rather than the correlation of metric values may be more

appropriate for judging redundancy, a concept whose applicability should be

further evaluated [140].

4.4 Metric Aggregation and Scoring

MMI development is completed by aggregating the best-performing metrics to

derive an index score. The number of metrics used in the index varies among

studies, and the choice is rarely supported by clear empirical justification [139].

Professional judgment is often used to select metrics based on best overall perfor-

mance, although ordered stepwise processes have been recommended and present

more comprehensive and objective options [139, 140]. To express metrics on an

equivalent numerical scale, raw values are commonly rescaled to reflect percent or

proportional comparability to values in the reference site distribution or to the

distribution of all sites producing metric scores on continuous 0–100 or 0–1 point

scales that increase with impairment. Blocksom [49] reviewed the details of these

and other common scoring methods. After scoring, metrics are nearly always

aggregated into an index by simple averaging, although other methods, such as

differential weighting based on relative importance [131, 141] or to account for

variations in metric precision [131], have been used. Alternative aggregation

strategies for MMIs represent yet another area where additional research is needed.

4.5 Index Validation

Validation of the index with independent data provides the most comprehensive

evaluation of performance. Validation typically proceeds by randomly selecting

subsets of impaired and reference sites, which are excluded from the dataset used

for index development and used for a posteriori evaluation of the performance

characteristics described above. The feasibility of index validation depends on the

amount of data available, as statistical power is compromised by dividing datasets

for this purpose. Categorical approaches for validating index accuracy are data

expensive, as the validation set must be divided according to impairment status.

When only a few sites are available, index accuracy may be validated by analyzing

for correlations of index scores with stressor gradients, which requires fewer

validation sites. This approach is especially useful in highly developed landscapes

where there are few reference sites [127, 142]. Index accuracy is often prioritized

over other performance characteristics, although more thorough validation strate-

gies also evaluate precision [21, 106, 143]. Evaluation of index bias, as indicated by
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relationships between indices and natural environmental variables, provides further

information on index performance [21, 101, 106, 116].

The effectiveness of predictive models used for reference site classification is

often evaluated using cross-validation by constructing models using only subsets of

the available data. Leave-one-out cross-validation is a data-efficient method in

which reference sites are excluded from the dataset one at a time. After each

exclusion, the classification and modeling process is repeated. Each left-out site

is then classified using the model constructed without that site. The proportion of

agreements between original and cross-validated classifications, relative to the total

number of reference sites, is a measure of the effectiveness of the model. This

technique can be used with any site classification approach [114, 134, 144]. Null

models, which are constructed by predicting metric values across all reference sites,

with no classification, are useful for evaluating all types of classifications. If

classification strength does not exceed that of the null model, then the classification

provides no advantage [145].

5 Expert Interviews: Challenges and Important

Considerations in Bioassessment

To provide a broader and more comprehensive perspective, we conducted inter-

views with three expert practitioners and developers of bioassessment programs.

Their responses to our questions, provided here in a question-and-answer format,

have been summarized with a focus on emerging issues relevant to bioassessment in

aquatic systems.

Expert 1 Michael Barbour, Ph.D.—Adjunct Senior Scientist, Mote Marine Labo-

ratory, Sarasota, FL, USA, and retired Director, Center for Ecological Sciences,

Tetra Tech, Inc., Owings Mills, MD, USA

Q: What factors limit the potential for increased use of genetic information in

bioassessment surveys? Is it likely that molecular genetic analysis will replace

traditional taxonomic approaches, or will these processes be used in conjunction

with each other?

A: A major challenge in the use of genetic data for bioassessment will be in

determining how reference conditions are expressed and how to account for the

effects of natural environmental variability on reference populations. It is unlikely

that genetic analysis will replace traditional taxonomic approaches in the near

future. Evolving DNA methods, however, should help to decrease taxonomic

uncertainty and improve our evaluations of aquatic assemblages.

Q: What are the most important factors to consider in developing a

bioassessment program?

A: Adherence to the Critical Elements Process in the design and implementation

of bioassessment protocols should provide an objective means of evaluating the

rigor of regulatory assessment programs and a basis for comparing data quality
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among programs [146]. This process is used to evaluate programs with respect to

13 critical elements within three general categories: study design, methods imple-

mentation, and data interpretation. The process considers logistic feasibility and

cost-effectiveness, calling for the highest methodological and data-quality stan-

dards that are reasonably attainable given existing technological and monetary

constraints. When high-quality methods exist, new bioassessment programs should

employ methods consistent to these to maximize efficiency (i.e., use of preexisting

datasets) and historical significance.

Q: What are the most important recent developments that have improved

comparability among assessment programs?

A: In addition to the critical elements process, the Biological Condition Gradient

approach (BCG, [45]) provides a framework for developing consistent, meaningful,

and understandable aquatic life use standards and is applicable to a wide variety

of monitoring strategies and assemblages. The BCG establishes a baseline by

employing best professional judgment within an organized framework whereby

experts assign bioassessment samples to ecological condition tiers. Biologists

trained to use the BCG produce highly consistent evaluations of site conditions.

The use of the BCG should greatly facilitate the comparability of bioassessments

conducted by different agencies and using different protocols.

Large-scale monitoring programs, such as the USEPA National Aquatic

Resource Survey, are of great importance. This nationwide assessment program

includes standardized sampling protocols and a probabilistic study design for the

assessment of US streams, rivers, lakes, wetlands, and coastal waters. The ongoing

intercalibration exercise, a key component of the European Union (EU) Water

Framework Directive (EC 2000/60/EC; [147]), and resulting multi-country aquatic

ecosystem surveys are other important examples. The major advantage of these

programs is the development of consistent and rigorous protocols that allow for

large-scale biological assessments of aquatic ecosystems.

Expert 2 Simone D. Langhans, Ph.D.—Humboldt Research Fellow, Leibniz Insti-

tute of Freshwater Ecology and Inland Fisheries, Berlin, Germany

Q: What factors are most important in limiting comparability among

bioassessment schemes?

A: Variability in the definition of reference conditions (i.e., the allowable amount

of impairment within the reference dataset) can hinder the comparison of index

scores from different assessment programs. Index scores are typically an expression

of how similar a site is from the reference state; therefore, the use of similar

reference criteria facilitates comparability among assessment indices.

The expression of index scores in a continuous manner, rather than as categorical

ratings, is helpful when aggregating scores derived from different assessment

schemes. Due to their discrete nature, categorical ratings may differ for scores

that are actually quite similar; therefore, the most reliable aggregated indices are

based on continuous scoring systems. For management purposes, categorical

ratings can be applied after aggregation. Langhans et al. [141] present a method

for standardizing metric scores or attribute measures among indices to a continuous
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0–1 scale. The method can be applied to both categorical and continuous scales and

preserves the best professional judgment of developers regarding the interpretation

of score or measurement values.

Q: What aspects of the relationships of anthropogenic activities and ecological

integrity are most misunderstood by nonscientists?

A: The watershed (or catchment) concept is of great importance, though often

not understood by the layperson. Following from the simple concept that water

flows downhill, water bodies integrate the effects of human activities everywhere

within their watersheds. Responsible management of aquatic ecosystems must

consider not only in-stream and local effects but also effects at much larger spatial

scales. The range of relevant spatial scales that should be considered increases with

the size of the water body, with the largest river systems integrating the effects of

anthropogenic activities over thousands of square kilometers.

Q: In considering streams in different natural settings and at different positions

along the general gradient of impairment, which are the most important candidates

for preservation or restoration?

A: How best to prioritize conservation and restoration efforts for aquatic eco-

systems is currently a popular and important topic in the EU. A strategy that

considers the conservation of existing ecological integrity and the restoration of

impaired systems simultaneously is best. When biological assemblage objectives

are given high priority, the most effective areas for restoration are those in close

proximity to high-quality conservation areas because the conservation areas pro-

vide sources for recolonization. For example, Tonkin et al. [148] evaluated

the likelihood of recolonization by invertebrates at 21 river restoration sites in

Germany. They determined that the density of occurrence of a taxon at surrounding

sites (proportion of sites with the taxon present) and the distance to the nearest

potential source site were important factors for predicting recolonization.

Expert 3 Gregory J. Pond, M.S.—Aquatic Biologist, USA Environmental Protec-

tion Agency, Region III, Wheeling, WV, USA

Q: Given the myriad protocols currently employed to conduct assemblage-level

assessments, what considerations should be made by investigators and managers to

select the most accurate, precise, and cost-effective strategies?

A: Protocols should be flexible, thoroughly documented in standard operating

procedures, and based on the varying assessment goals, characteristics of the

system being studied and available funding. For example, species-level

macroinvertebrate data may in some cases produce the most effective assessment

results. In other situations, temporal variation among samples may produce confu-

sion at high levels of taxonomic resolution, for example, if errors in identification

increase at times of the year when early instars predominate in the samples. In such

cases, coarser taxonomic resolution at the genus or family level may be necessary to

avoid inconsistency among samples.

If assessment on a large spatial scale is a priority, investigators may use less

time-intensive methods to assess a greater number of sites within the time and

monetary constraints of the project. In an attempt to provide a spatially
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comprehensive assessment of Pennsylvania (USA) waters, the state’s Department

of Environmental Protection (DEP) conducted rapid surveys focused on

macroinvertebrate assemblage characteristics that could be evaluated in the field

by trained biologists without the need of extensive sampling and laboratory

processing. This protocol allowed DEP to conduct an initial screening of several

thousand stream sites over a 2-year period within budgetary constraints. However,

the accuracy and precision of field-based rapid surveys such as this are likely far

lower than would be expected from more intensive sampling and processing pro-

tocols that produce quantitative, genus- or species-level datasets.

Data consistency and comparability are also of great concern. When USEPA

conducts bioassessments, the protocols developed by the state are typically

followed. This insures that the data collected are comparable with those produced

by state biologists and that the methods have been calibrated for the region of

interest. Natural variability of system-specific characteristics should also be con-

sidered. For example, Virginia (USA) is currently developing a new protocol for

swamp streams, which have not been previously assessed for regulatory purposes.

Q: What are your thoughts regarding the use of continuous environmental vari-

ables within a predictive modeling framework versus typological approaches for

reference site classification?

A: Large-scale typological approaches have generally been insufficient in

accounting for the variation in natural environmental factors that affect biota

among aquatic systems. Typological approaches, however, are convenient, easy

to use and understand, and can be effective within relatively small and homogenous

geographic regions. Natural environmental gradients often persist within typolog-

ical categories, and care should be taken to ensure that typological approaches do

not oversimplify these gradients. Predictive modeling is more analytically intensive

and requires more precise data, but generally provides more reliable results in

highly heterogeneous regions. In the development of an O/E model for Central

Appalachian streams, Pond and North [75] determined that subecoregion [149],

Julian day and latitude were the most important natural predictors of reference

macroinvertebrate assemblages. For that study region, a predictive modeling

approach was chosen as the best strategy, given the importance of the continuous

variables Julian day and latitude. A typological approach, where reference condi-

tions are developed at the subecoregion level, could also be effective; however, the

effects of latitude and seasonality should be carefully observed and potentially

controlled.

6 Conclusions

In this chapter, we provided an introduction to the major components of

assemblage-level bioassessments of aquatic systems. Macroinvertebrates, fish,

and algae are the most commonly used assemblages, although the methods

described here are applicable to, and have been successfully used with, other biotic
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assemblages [150–152]. One emerging strategy is in the use of prokaryote assem-

blages, which has historically been limited because many prokaryotes are not

readily cultured in the laboratory. However, emerging technologies that allow for

quantification of assemblage composition through DNA sequencing have largely

removed this limitation, making prokaryote assemblage assessments an emerging

new option for bioassessment of aquatic systems [152, 153]. Rapidly evolving

DNA sequencing methods have the potential to greatly enhance not only

bioassessments using prokaryotes but also those using assemblages that have

traditionally been evaluated by identification of specimens based on morphological

characteristics [154–157].

Regardless of the assemblage type chosen or the methods used for identifying

taxa in the assemblage, the most challenging aspect of bioassessments has been, and

remains, the difficulty in separating environmental effects on assemblages that are

the result of naturally varying factors such as climate and geology from those

caused by anthropogenic factors. The use of the RCA, coupled with advanced

predictive modeling methods such as machine learning techniques, has enhanced

our ability to predict how assemblages should vary based on natural environmental

factors. Such enhanced predictive power should ultimately allow for more accurate

determination of assemblage variation patterns that indicate impairment. Despite

these advancements, predictive modeling and the use of the RCA are greatly

confounded by the lack of suitable reference sites in many regions. To this end,

alternative strategies that employ both impaired and reference sites to derive

expected reference conditions have been proposed [118–121] and warrant further

evaluation to determine their widespread applicability. Because of the scarcity of

reference sites in many regions and the high potential for complex interactions

between natural environmental factors and stressors, the development of additional

data-efficient methods for predicting expected assemblages under unimpaired con-

ditions and for quantifying deviations from these expectations is much needed.

An additional challenge for contemporary bioassessment programs is the

shifting baseline syndrome (sensu Hawkins et al. [43]) wherein future climate

change is likely to alter temperature and precipitation regimes globally, thus

changing the assemblage compositions that might reasonably be expected under

minimally impaired conditions. To meet this challenge, spatially and temporally

extensive monitoring is essential to derive realistic reference conditions. Several

large-scale assessment programs have been recently developed, such as the EU

Water Framework Directive, the US Geological Survey’s National Water Quality

Assessment program, the US EPA’s National Aquatic Resources Survey, the US

National Science Foundation’s National Ecological Observatory Network, and the

Canadian Biological Monitoring network. These programs include rigorous and

thoroughly documented bioassessment protocols focused on monitoring aquatic

assemblages over large spatial and long temporal scales. Data produced by these

important programs will enhance our ability to overcome the inherent challenges in

evaluating ecological integrity when least-impaired reference conditions are rare,

highly variable among regions, and changing in response to global climate change.
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Abstract Microbial source tracking (MST) is a still-new and developing discipline

that allows users to discriminate among the many potential sources of fecal

pollution in environmental waters. As MST continues to transition from the realm

of research to that of application, it is being widely used in beach monitoring, total

maximum daily load (TMDL) assessment of pollution sources, and any other
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waters that do not meet designated use criteria as determined by high densities of

fecal indicator bacteria (FIB). The main area of research activity in MST focuses on

the identification of source-specific genetic markers that can be used to detect

contributions from different hosts such as humans, livestock, and wildlife. How-

ever, a variety of other accessible approaches can also be used including detailed

investigations of the watershed and infrastructure, chemical tracers and leak tests,

and increased FIB sampling. This chapter can serve as a guide for decision-making

on where, when, and how to deploy MST. Included are discussions of the main

drivers of MST and how these have shaped the development of past and present

methodological approaches, plus current research initiatives such as community

analysis that could usher in yet another new and improved methodological basis for

the entire field of MST. Finally, a tiered system is presented as a recommended

means to navigate the multiple options for MST analyses that will assist the reader

in how best to use MST within the context of more traditional approaches.

Keywords DNA-based source markers • Fecal indicator bacteria • Fecal pollution •

Microbial community analysis • Microbial source tracking • Recreational water

quality

1 Introduction

The new and expanding field of microbial source tracking (MST) typically involves

sensitive and specific DNA‐based methods that use either presence–absence poly-

merase chain reaction (PCR) or quantitative PCR (qPCR) to detect and quantify

particular gene fragments that have been found to be relatively source specific (e.g.,

humans, cattle, birds, dogs). These gene fragments are often referred to in the MST

literature as source-specific “markers” [1–3] and frequently exist in the bacterial

genus Bacteroides. Two recent endeavors by the MST community are available that

cover the entire field in detail. The first was a comprehensive book on MST that

included 26 chapters written by 74 authors and coauthors representing 17 countries

and demonstrated the development and application of MST at the international

level [4]. The second was the Source Identification Protocol Project (SIPP), under-

taken to identify the best DNA-based methods from 41 that have been developed

within approximately the past decade. This large undertaking involved 27 labs and

resulted in a series of 12 articles published in a special edition of Water Research
[5]. In addition, the SIPP study generated a fecal source identification guidance

manual that framed MST within the context of more conventional and less expen-

sive methodologies and presented a tiered approach for using different methods in a

step-wise and cost-effective manner [6]. This chapter will summarize the lessons

learned within these three key documents, supplemented by recent publications, to

provide practitioners and water quality managers with advice on when, where, and

how to best use MST.
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1.1 Fecal Indicator Bacteria Monitoring in the USA

Recent monitoring data compiled annually across the USA shows that many

interior and coastal waters are chronically polluted with fecal indicator bacteria

(FIB) [7]. The situation has actually worsened in recent years along heavily

urbanized coastlines [8]. As an example, in 2006 FIB levels in US waters were

the highest in 17 years, with over 25,000 advisories and recreational closures

nationwide, 30 % higher than in 2004 [9]. The dry summer of 2007 was also a

problem, with 22,571 days of closings and advisories for US oceans, bays, and

Great Lakes beaches [10]. These examples are alarming, as high FIB concentrations

indicate unhealthy waters and cause economic losses to local communities [11,

12]. Advisories posted by state agencies for recreational waters are typically

covered by the news media and have a negative impact on the public perceptions

of water safety and the agencies responsible for protecting public health [13].

Many beach studies have demonstrated that direct contact with water and sand

contaminated with fecal pollution can result in gastrointestinal illnesses that can be

severe, especially for immunocompromised individuals [14–16]. Swimming, espe-

cially total immersion in recreational waters, is an activity that allows transmission

of waterborne pathogens by the fecal–oral route [17]. Although there are pathogens

from non-human sources that can be harmful to humans (e.g., livestock and

wildlife), the greatest risk of illness is fecal contamination from human sources,

which may contain enteric viruses and parasites not normally found outside of

human hosts [14]. Direct monitoring for waterborne human pathogens is impracti-

cal due to the wide variety of pathogens that might be present, low concentrations

that make detection difficult, and the high cost of laboratory analysis [18]. Instead,

water monitoring strategies target FIB, which were chosen based on their presence

in the feces of warm-blooded animals, low rates of survival and/or low natural

occurrence in extra-intestinal habitats, and their association with human pathogens

of concern [19]. Because these indicators of fecal contamination are found in the

intestines of all warm-blooded animals, they can be helpful in locating general

sources of pollution, but they are not useful in differentiating between environmen-

tal, agricultural, and human sources of pollution [20].

Water quality criteria based on FIB were originally adopted because epidemio-

logical research linked increased swimmer illness to raw sewage discharges

[21]. Today most wastewater in the USA is treated to secondary standards, but

FIB, including DNA-based Enterococcus measurements, still indicates that many

waters are unhealthy as per epidemiological relationships [15]. While FIB are

legitimately the “gold standard” in food and potable water safety, they are imperfect

tracers for threats to public health from pathogen-containing fecal material in

environmental waters [22]. One reason for this is because culture-based assays

require 18–24 h incubation, during which contamination and field conditions can

change. To address this problem, newer culture-independent methods for quantita-

tive PCR (qPCR) of Enterococcus spp. are now available that allow FIB measure-

ments in 4–6 h [23]. However, a second challenge, related to using FIB as tracers, is

Microbial Source Tracking: Advances in Research and a Guide to Application 269



that they can arise from many non-human sources and subsequently persist in the

environment [3]. More broadly, FIB in coastal urban regions could arise from a

variety of different sources [7] including leaking sewer lines [24], decaying wrack

[25], beach sands [16], algae [26] and aquatic vegetation [27], or coastal wetlands

with birds and waterfowl [28]. Septic systems in non-sewered areas are sometimes a

source as well [29], as are livestock in agricultural areas [30] and pets in suburbia

[31]. Urban development generally correlates with high FIB in surface waters

arriving via runoff or dry-weather drains, but individual sources are mostly

unknown [32, 33]. Evaluating recreational waters by FIB assays is further compli-

cated because FIB survive differently than most pathogens [34], leading to unnec-

essary beach closures, and they can become non‐culturable but still viable, giving
an erroneous illusion of safe water [35].

Clearly, with the many different potential FIB sources in recreational waters,

effective water quality management requires more information than FIB monitor-

ing data alone can provide. Fortunately, new MST methodologies and approaches

developed and tested over the past decade are now available that provide reason-

ably accurate differentiation of specific sources of fecal pollution [3, 5, 36].

2 The Drivers for Microbial Source Tracking

2.1 Total Maximum Daily Load Program

In the USA much of the MST research and application has occurred in the

development of TMDLs to meet the requirements of the US Clean Water Act

[37–39]. A TMDL is a regulatory term that describes the maximum amount of a

pollutant that a body of water can receive and still meet established water quality

standards. Waters that do not meet regulatory standards for designated uses are

listed as impaired waters. Designated uses of waters include fishing, swimming,

aquatic life support, and drinking water. A TMDL assessment report is required for

impaired waters. A TMDL assessment report is followed by developing a TMDL

implementation plan with the goal of improving the quality of a water body listed as

impaired.

High FIB concentrations in the USA are typically the major cause of surface

water impairments and are subject to the TMDL regulatory program. For example,

in Virginia (USA) concentrations of FIB cause the largest number of impairments;

50 % of assessed rivers/streams, 1.3 % of assessed lake areas, and 3.4 % of assessed

estuarine waters are listed as impaired for recreational use [40]. Across a watershed,

a variety of potential FIB sources can exist, including livestock and poultry

operations, urban runoff, leaking sanitary and storm sewers, large wildlife and

migratory bird populations, and pets such as dogs and cats. Identifying the different

sources of fecal contamination in a watershed is needed for developing and

implementing TMDLs and to evaluate the effectiveness of best management
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practices (BMPs) for improving water quality [41]. In a watershed where fecal

contamination sources are not clearly known, MST can often identify the source of

fecal bacteria. Options for bacterial source identification include determining

whether the source is human or non-human, or identifying the non-human species

(e.g., cow, dog, deer), and then eliminating insignificant sources of fecal bacteria.

Developing accurate and implementable TMDLs relies on identifying and appro-

priately characterizing the pollutant sources causing the impairment [42].

Regular monitoring for FIB and using MST can often assist in determining

trends and sources of impairments related to nutrients and aquatic life use [41]. In

Virginia, 30 % of assessed rivers/streams, 43 % of assessed lake areas, and 92 % of

assessed estuarine waters are listed as impaired for aquatic life use due to nutrient

enrichment and low dissolved oxygen [40]. Nutrient enrichment or eutrophication

contributes to the formation of oxygen-depleting algae blooms and hypoxia. Low

dissolved oxygen is a common impairment cause in Virginia, impacting lakes and

estuarine waters, especially the Chesapeake Bay.

In addition to the assessment process, MST can also support pollutant source

allocation analysis and the development of a TMDL implementation plan

[41]. More specifically, MST can help identify the sources that contribute to the

observed impairment, determine which sources are likely dominant in the water-

shed of interest, and focus management actions through targeting implementation

and identifying controls that are appropriate and relevant to the identified sources.

MST can also be useful for obtaining stakeholder buy-in for supporting watershed

management activities during TMDL implementation in locales with contentious

issues. MST can provide more acceptable or concrete evidence to stakeholders

regarding their role in bacterial inputs and resulting impairments, often facilitating

acceptance of responsibility and subsequent implementation of BMPs.

Many of the TMDLs in Virginia and the US mid-Atlantic region have been

developed as part of the initiative to improve water quality of the Chesapeake Bay,

the largest estuary in the USA. The Chesapeake Bay TMDL program is the most

prominent in the USA to date, and about 90 % of the estuarine water category in

Virginia represents waters of the Chesapeake Bay [43]. These estuarine waters have

additional uses underneath the umbrella of “aquatic life use.” These “sub-uses” are

specific to the diverse assemblages of aquatic organisms that live in the Bay. One

special sub-use is the shallow-water submerged aquatic vegetation (SAV) use. As

the name suggests, this use supports conditions favorable to the growth and survival

of submerged vegetation. SAV provides critical nursery habitat for blue crabs and

fishes. Reduced water clarity due to shoreline erosion and suspended sediments is

the major cause of impairment for the shallow-water SAV use. Currently, 53 % of

SAV use in the entire Bay system is impaired. MST has been useful in identifying

sources of pollution that impact SAV use [44].
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2.2 Beach Water Pollution

Beaches across the USA are regularly monitored for FIB to protect the public from

waterborne diseases associated with fecal contamination, as required by the

Beaches Environmental Assessment and Coastal Health (BEACH) Act [45,

46]. When FIB concentrations exceed regulatory standards, swimming advisories

are issued and beaches may be closed to recreational use. Closed beaches lead to

frustration for beachgoers and substantial economic losses for associated commu-

nities. To protect public health, regulatory officials and beach managers need fast

and reliable tests for analyzing the bacteriological quality of beach waters. To meet

this need, a qPCR method for enterococci is now available as a rapid analytical

USEPA-approved tool for testing beach water quality. Test results can be obtained

in 2–4 h as compared to 18–24 h for conventional culture-based methods [23, 47,

48]. A second benefit is that deployment of a qPCR-based protocol for Enterococ-
cus enumeration makes it relatively easy to use a qPCR-based MST marker for

human-source contamination. This second source-specific assay could be run either

in tandem or as a same-day follow-up to enterococci counts that were determined to

exceed the regulatory standard earlier in the day [6]. Similar to watersheds, a

variety of sources of fecal pollution potentially exist at recreational beaches. It is

therefore important to place the highest priority on evaluating whether human fecal

pollution contributes significantly to the FIB load, as human fecal material contains

a greater number of human pathogens and represents the greatest potential health

threat.

3 Microbial Source Tracking Methods

3.1 Library-Dependent Approach

Throughout the history of MST development, two basic strategies for host identi-

fication have been employed. Many early studies used a library-dependent approach

that involves constructing a database of FIB isolate types from known fecal sources

[19, 49]. Typing of indicator bacteria can be done in a variety of ways, including

antibiotic resistance [50, 51], carbon source utilization [52], or genetic diversity

[53, 54]. Isolates of FIB from water samples can then be similarly typed and

classified to a particular source by referencing the library. While this approach

showed some early success and is abundant in the literature, it is not currently

recommended for general application. Initial construction of the reference library is

costly, and geographic and temporal variability in FIB subtypes can result in

incorrect source classification as well as the need for constant library maintenance

and validation [55].
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3.2 Library-Independent Approaches

Library-independent analyses target the presence or concentration of genetic

markers associated with specific fecal sources in a water sample, typically using

qPCR and thereby requiring no reference database [56, 57]. Currently, this

approach is generally considered to be simpler to employ and validate and is widely

recommended as the best approach to begin any project that might include MST.

For obtaining the equipment and setting up a lab to perform qPCR, an initial

capital investment (approximately $100K) is required; the subsequent cost for

supplies totals roughly $50 per sample; and a competent technician can process

more than 40 samples in one day (following DNA extraction). The USEPA is

currently developing standard methods for two human-associated qPCR markers

(HF183 and HumM2), based largely on the protocols developed during the SIPP

method evaluation study [5, 6]. The combined use of the two qPCR-based

approaches to measure FIBs and make a rapid determination for the presence of

human-source pollution should further reduce the analytical time needed and

increase affordability and accuracy of monitoring recreational waters. Because of

the many methodological nuances of qPCR, those desiring to adopt this technology

would be best served by partnering with a university research program for guidance

and training until the needed level of expertise has been reached.

3.3 DNA-Based Markers

At present, many DNA‐based marker assays have been developed for MST, and

application results have been published in the scientific literature [57–60]. New

assays that target human and other waste sources are continuously being developed

and reported [61]. Around a dozen DNA-based markers for detecting human

sources have been developed over the last decade. Additional assays are applicable

for tracing fecal wastes of other sources such as different types of livestock,

wildlife, domestic pets, and birds [57, 59]. Also, advances in PCR technology

have stimulated reevaluation of earlier markers for their sensitivity (detecting the

correct host fecal material when it is present) and specificity (no detection of any

other fecal sources; 62, 63). Thus, it is important to keep up to date with emerging

scientific literature that publicizes new assays and their performance or new

developments on older assays. All the markers recommended in this chapter use

PCR directed towards bacterial targets. In general, this process includes sample

collection, filtering, DNA extraction, amplification, and data analysis. The majority

of markers use qPCR for the amplification step, meaning they provide information

about the relative amount of target material in a particular water sample. Those

assays termed “end-point” or conventional PCR provide only qualitative (presence

or absence) data. When both quantitative and end-point PCR assays exist for a

given assay, the quantitative is always preferred.
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The human and non-human markers included in this chapter are summarized in

Table 1 and restricted to those that performed the best in the California SIPP study,

the most comprehensive method comparison and evaluation project conducted to

date. The SIPP guidance manual includes the detailed protocols for all of the

recommended DNA-based markers [6] and is available on the Southern California

Coastal Water Research Project website (www.sccwrp.org). This does not mean

that only the SIPP-validated markers can be used, but they should be the first ones

considered. For example, the human viruses lack sensitivity but are almost

completely host specific, so there may be situations such as highly urban coastal

environments where it would be appropriate to include a human viral assay (see

following section). The European source tracking project has also done method

comparison studies and continues to use and recommend host-specific bacterio-

phage assays [64]. Also, a research lab might have had success with an assay that

either did not perform well in the SIPP study or was not included. There is no

problem in partnering with such a lab as long as use of the assay can be supported

by meeting certain performance criteria either as described in the SIPP study [5] or

by other equally rigorous measures [36, 55].

3.4 Human-Source Markers

The California SIPP study evaluated 41 MST assays and identified several that met

or exceeded the design performance criteria [5, 75]. The human marker HF183-

Taqman® [65] performed best overall of the 23 human methods tested, and a

slightly less sensitive but highly specific human marker, HumM2 [66], also

performed well, making it a good choice for an alternative or backup marker to

Table 1 Source-specific DNA-based markers covered in this chapter and recommended based on

performance in the SIPP validation study [5]

Marker name Source Quantitative? Original reference

HF183 Human Yes [65]

HumM2 Human Yes [66]

Adenovirus Human Yes [67, 68]

Polyomavirus Human Yes [69]

Gull2SYBR Gull/birds Yes [70]

LeeSeaGull Gull/birds Yes [71]

Dog-Bact Dog Yes [72]

BacCan-UCD Dog Yes [59]

HoF597 Horse No [1]

CowM2 Cow Yes [73]

Rum2Bac General ruminant Yes [74]

Pig2Bac Pig Yes [74]

Updated protocols for some are available in the SIPP guidance manual [6]
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HF183. The HF183 marker is the recommended starting point for detecting human

fecal material because it provides the best combination of sensitivity and specific-

ity. Although it was ranked as the best on sensitivity among the human markers

tested, it has been shown to occasionally detect (“cross-react”) both chicken and

dog feces. If those sources pose a concern in the watershed under investigation, or if

managers simply desire to add certainty about the results, HF183 can be paired with

HumM2.

A different approach that is worth considering is adding human virus measure-

ments to validate bacterial marker results [76]. If cross-reactivity has occurred with

the human bacterial markers or if the cost of mitigation is high, as is typical in urban

coastal cities, the costs might justify additional verification for the presence of

human fecal material, especially municipal sewage. Human viruses have a very

high specificity to human waste and almost no cross-reactivity with other fecal

sources. Of the many fecal viruses that exist, markers for DNA viruses such as

human adenovirus [67, 68] and human polyomavirus [68] are among the more

sensitive and robust. These viruses are fairly widespread among humans and a

sizable portion of the population sheds polyomaviruses passively. However, the

low-density occurrence of viruses in water and the difficulty of concentrating them

efficiently with the current technology provide barriers to routinely use viral

markers. Detection may be enhanced by collecting and concentrating large volumes

of water samples, up to 1,000 times more water than the typical 100 mL sample

needed for bacterial source markers. Such large sample volumes add logistical

challenges and expense as the sample must be processed on-site or transported to

the laboratory in large volumes. Due to the specialized steps required in virus

concentration and recovery, partnering with an experienced research laboratory is

mandatory if virus detection is used as part of an ongoing MST effort [6, 76, 77].

3.5 Non-human-Source Markers

The SIPP study identified markers that sufficiently meet the design performance

criteria and are recommended for source identification from birds, dogs, horses,

cattle/ruminants, and pigs.

At present, four bird markers (Gull2SYBR, LeeSeaGull, Gull2Taqman,

Gull2Endp) from several sea bird-associated assays have been evaluated and

published [78, 79]. Of these four markers, the Gull2SYBR [70] and the LeeSeaGull

[71] markers were considered best for routine use because these markers consis-

tently displayed sensitivity and specificity across participating laboratories. All four

bird markers detected gull and sometimes goose and pigeon feces. Also, the

distribution of the bird marker bacterium (Catellicoccus marimammalium) among

all the various species of shorebirds is not known. Therefore, the Gull2SYBR and

LeeSeaGull markers should be considered general “bird” assays and not necessarily

specific to gulls. Several new bird-associated MST assays for gulls, Canada geese,

ducks, and chickens were reported too late for inclusion in the SIPP study, but may

Microbial Source Tracking: Advances in Research and a Guide to Application 275



prove superior to Gull2SYBR and LeeSeaGull, and will require a comparable

evaluation before adoption for widespread use [80].

At present, several dog-associated qPCR and end-point PCR marker assays have

been published. Two assays were included and evaluated in the SIPP study,

DogBact [72] and BacCan-UCD [59]; both performed equally well when dogs

were a potential fecal source [81]. Though highly sensitive and specific, both

markers occasionally cross-react with other species such as humans and cattle,

and such potential cross-reactions should be evaluated with local fecal material in

whatever region these two recommended dog markers are desired to be used.

Horse-associated markers are relatively uncommon to date, and only two have

been published. Only one PCR-based horse marker, conventional HoF597 (1), was

included in the SIPP study, and it was adequately sensitive and specific. Its use is

recommended when horses are present in the watershed and all other potential

sources have been already ruled out. The horse marker does not show as much

sensitivity as most other host-associated assays. Since another quantitative horse

assay has not yet been thoroughly evaluated for inclusion in the SIPP study, the

conventional HoF597 assay remains the recommended horse marker for now.

Multiple cow- and ruminant-associated DNA marker assays have been devel-

oped in the past decade, and several evaluation studies have been conducted to

validate their performance. Three qPCR assays have consistently performed well in

locales around the world and were included in the SIPP validation: BacR, CowM2,

and Rum2Bac. Although the performances of all three markers were good [82],

CowM2 [73] is the recommended cattle marker, and it is expected to become the

USEPA-approved method in the near future. When a non-bovine ruminant fecal

source such as deer or goat is suspected, Rum2Bac [74] should be used instead of

CowM2. When both cattle and other ruminants live in the watershed, both CowM2

and Rum2Bac markers are recommended. Rum2Bac occasionally demonstrates

false-positive results with septage, so in watersheds containing both septage and

ruminant sources, septage presence should be conclusively ruled out before

employing Rum2Bac.

Relatively few pig-specific markers have been developed to date and two pig

markers, one based on conventional PCR (PF163) (1) and one quantitative

(Pig2Bac) [74], were included in the SIPP study. Due to its demonstrated high

sensitivity, Pig2Bac performs better than PF163 and is the recommended method

for detection of pig feces. However, Pig2Bac sometimes cross-reacts with human/

septage and dogs so these would either need to be ruled out first or accounted for

when employing Pig2Bac.

4 Microbial Community Analysis Approach

In spite of the considerable progress that has been achieved employing DNA-based

MST markers described in Sect. 3, they share one disadvantage with traditional FIB

measurements in that they are still based on a single marker. This is limiting
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because (a) a single marker can only be used to identify one particular type of fecal

source and (b) it is unlikely that any one marker will ever be found to be 100 %

sensitive and specific for a particular source in all environments. As a result, a

multivariate “toolbox” approach to MST has been advocated where multiple

markers are measured to obtain a stronger weight of evidence for a particular

source [83]. More recently, an emerging extension of this concept has been to

simply characterize the entire microbial community in a water sample and deter-

mine any potential similarities with fecal microbial communities from suspected

sources [84, 85].

Microbial communities are complex assemblages of populations representing

hundreds to thousands of microbial taxa, which is the primary attraction of using

community analysis in MST. These taxa can not only be considered as numerous

potential individual markers, but whole assemblages of taxa may also be identified

that provide higher resolution in discerning sources of fecal pollution than any

single indicator or marker alone. The underlying rationale is based on the evidence

that different host species typically contain measurably and consistently different

microbial communities in the gut and feces, which differ from environmental

communities [86, 87]. Therefore, when fecal contamination occurs, the shift in

the presence and abundance of microbial taxa can be detected and used to help

discern the source. The use of community analysis in MST is a very recent

development and remains an active research area; its use should not be considered

established or routine. This is largely because methods to characterize whole

microbial communities without dependence on laboratory culture (which typically

fails to detect >90 % of microbial taxa) are a new and novel development. As a

result, the methods by which microbial communities can be characterized are

rapidly evolving, and at least three different approaches have been used recently

for MST. Cao et al. [88] employed terminal restriction fragment length polymor-

phism (TRFLP), a community-scale genetic “fingerprinting” approach, to identify

human sources of contamination. Dubinsky et al. [89] used the PhyloChip micro-

array, which can simultaneously assay a sample against numerous genetic probes

for known microbial taxa, to discern animal and human sources of fecal contam-

ination in marine waters. Finally, Unno et al. [84] and McLellan et al. [86] both

identified sources of fecal contamination in river and lake systems, respectively,

using next-generation pyrosequencing, which is quickly becoming the gold stan-

dard for microbial community analysis [90, 91].

Most recently, Cao et al. [92] simultaneously employed all three of these

methods to identify fecal sources present in the SIPP challenge samples to evaluate

the performance of evolving community analysis methods. All three approaches

correctly identified dominant fecal sources in >90 % of the samples and rarely

detected a source that was not present, illustrating the potential power of commu-

nity analysis method. This study also identified two other benefits of this approach

to conventional MST methods. Firstly, community analysis has the potential to

discern different sources of the same host-associated marker. For example, all three

methods were able to distinguish septage from human feces and sewage. Secondly,

community analysis can be used to identify sources for which no suitable marker
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has been developed, such as deer or chicken. Finally, other studies have highlighted

the potential for community analysis to partition assemblages within microbial

communities to known sources and quantify the contribution of those sources to

the total sample [93]. Refinement of this approach for fecal sources would be a

powerful MST tool.

It is important to note that the use of community analysis for MST is in its

infancy so it is necessary to be aware of method limitations. For example, the

typical approach is to characterize microbial community structure in known sources

and then compare these to unknown samples. This approach is very similar to

earlier library-dependent MST methods and therefore has similar limitations such

as the need to collect, analyze, and maintain data on known sources, as well as

dealing with temporal and geographical variability. In addition, the methods are

expensive (although costs are dropping rapidly) and require considerable expertise

to analyze and interpret. Often, this expertise will not be locally accessible and will

require collaboration with a research laboratory. Community analysis simulta-

neously characterizes hundreds to thousands of markers; thus, it is not particularly

sensitive for detecting individual markers and is not suitable for detecting very low

levels of a particular source [94].

Newer methods (e.g., next-generation sequencing) may potentially overcome

this limitation and improve sensitivity, but they also require the highest level of

expertise for managing and analyzing large, complex data sets. As a result of these

limitations, community analysis should be considered a method of last resort, only

to be employed when it is suspected that information that can be gained could not be

gathered from simpler and more cost-effective approaches. It is likely best suited to

large TMDL projects or waters of high economic value where potential benefits

justify the required resources. In these situations, community analysis can be a

potentially powerful tool for discerning sources of fecal contamination. As DNA

sequencing and other culture-independent methods continue to evolve, community

analysis will likely continue to become a more universally accessible tool for MST.

5 The Tiered Approach for Microbial Source Tracking

When deciding to use MST, it is important to recognize that there are still deficien-

cies with every type of MST approach [63]. First, no single DNA-based marker

accounts for FIB, human waste, and pathogens; if such exists, it has not yet been

discovered. Second, most assays are insufficiently tested to know their absolute

specificity to host fecal material, especially in geographical areas different from

coastal California, the region included in the SIPP study [95]; third, the environ-

mental fate, mainly degradation over time, of most DNA‐based fecal markers is

unknown, so linking quantities (e.g., via fate and transport modeling) to far‐
upstream sources or predicting the health consequences is not feasible at this

point [96, 97]. These deficiencies indicate that DNA‐based assays for determining
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the presence of human and other fecal sources are increasingly powerful tools for

source tracking, but considerable guidance is needed for when and how to best

use them.

The SIPP manual identifies and describes six tiered steps to implement a

program that will identify the sources of fecal pollution, while conserving resources

through progressive deployment [6]. It is not until step 4 that the DNA-based assays

are brought into play, and steps 1–3 should be performed or accounted for prior to

using the assays.

Step 1: Fully characterize the watershed by obtaining infrastructure and topo-

graphical maps, interviewing relevant local experts, and conducting visual inspec-

tions to develop a list of potential fecal pollution sources in the watershed. This step

should include developing hypotheses about the most likely fecal sources and

conditions under which they contribute pollution to the watershed.

Step 2: Examine all available historical and current FIB monitoring data for

spatial, temporal, and seasonal trends to help identify conditions that result in

elevated FIB levels (e.g., tides, precipitation) and look for any potential linkages

in elevated FIB levels to what appears to be the largest likely sources of fecal

contamination in the watershed. Examples of likely sources include: the presence of

seasonal migratory birds, hot summer days when livestock and wildlife are attracted

to water; large number of seasonal bathers at recreational waters; and combined

sewer overflow (CSO) events associated with precipitation (if a CSO system is

present). At this point, localized intensive sampling for FIB may be appropriate.

Such additional sampling can provide considerable clarification about potential

sources of FIBs and should support or disprove hypotheses developed in step

1. Some reevaluation will be needed for any initial hypotheses that are not

supported. Even though numerous case studies have demonstrated the utility of

progressing through the tiered approach in the step-wise sequence, if intensive

sampling is necessary at this point, then it may be appropriate to jump to step 4 and

employ one or more DNA markers to confirm or disprove the presence of pollution

from a highly suspected source.

Step 3: When leakage or cross-connections from a sanitary system is a potential

source, it should best be investigated at this point using traditional tools such as

smoke testing, tracer dyes, or camera inspection. Smoke and dye testing are also

useful in rural watersheds where leaking or failing septic tank and drainfield

systems may be a problem. This testing may also involve additional sampling for

FIB and might include the human markers, sewage-specific chemicals, or even the

new approach of canine scent tracking. Sewage-specific chemicals include optical

brighteners in laundry detergents, caffeine, fecal sterols that are metabolic

by-products of human digestion processes, and a metabolite of nicotine (cotinine)

excreted by tobacco users. However, these methods are rarely used because they

tend to be quickly diluted to levels below detection limits once the waste stream

enters the ambient environment. Also, the cost to measure the organic chemicals is

high and requires both specialized equipment and trained personnel. However, for

those with the necessary instruments for detailed chemical analysis, chemical

methods might be useful for independently confirming human fecal sources in a
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cost-effective manner. More detailed recommendations on chemical source track-

ing are found in the SIPP manual [6] and Hagedorn and Weisberg [98]. Canine

scent tracking is a new and novel field approach that involves dogs trained to

respond to the scent of municipal wastewater [99]. Only a few reports of fecal

scent tracking with dogs are available, but the reports indicate reasonable success.

A major advantage of canine scent tracking is that it provides instant, on-the-ground

results. At this point, canine scent tracking appears to be a promising tool for

screening and prioritizing sampling locations before DNA-based and other simi-

larly expensive assays are used to confirm human fecal contamination.

Step 4: Where steps 1–3 have indicated that human sources are a likely contrib-

utor, waters should be tested for the human-source-specific genetic markers

described in Sect. 3.4 (even if traditional or novel tools have not identified a leaking

sanitary or CSO system). The highest priority at this point is placed on either

detecting or confirming a human fecal source as human fecal pollution poses the

greatest relative health risk to people. Sampling for this purpose might consist of

routine sampling schemes in ambient waters or involve more intensive sampling

around precipitation or tidal events.

Step 5: Where human sources have been documented (or dismissed if conclu-

sively proven not present) and the relative human loadings are better understood

and/or animal fecal pollution sources are likely (e.g., birds or dogs at beaches,

agricultural runoff in rural watershed areas), then waters should be tested using the

non-human (animal) source-specific markers described in Sect. 3.5. Like the human

markers, such sampling might be in ambient waters or more intensive sampling

around precipitation or tidal events.

Step 6: If fecal sources are suspected where markers have yet to be developed

(sources not included in Sect. 3.5), then testing waters with community analysis

methods as described in Sect. 4 should be considered. Another potential use of

community analysis methods may be to differentiate human fecal sources between

municipal sewage and rural septage. Community methods may be complemented

with chemical methods (as appropriate) to provide additional independent infor-

mation, particularly when sewage or other human waste is a suspected source or

when multiple major sources are suspected.

6 Ongoing Research

Substantial efforts have been undertaken over the past decade to identify and

remove human sources of fecal contamination in recreational waters, especially

in urban coastal environments in California and the Great Lakes [100]. However,

numerous beaches and other recreational waters still have persistent advisories due

to high FIB counts [101]. Further improvement in water quality at such locations

requires two necessary developments [102]. First, establishing with a high degree of

certainty whether or not the remaining fecal signature is human or non-human in

origin (as described in Sects. 3, 4, and 5). Second, identifying what is needed to
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deploy site-specific options such as quantitative microbial risk assessment (QMRA)

or natural source exclusion (NSE) that are becoming part of the regulatory frame-

work [103–105].

6.1 Quantitative Microbial Risk Assessment

The goal of quantitative microbial risk assessment (QMRA) is to quantify the

relative risks to humans from exposure to recreational water impacted by different

sources of fecal contamination and to clarify which pathogens cause illnesses to

swimmers in water bodies that are impacted by specific sources of fecal contami-

nation. To accomplish this, it will be necessary to determine the degree to which

risks of illness depends on or varies with the source(s) of contamination. The

context for regulators and the regulated community is to assess if the relative risk

differences are sufficient to warrant consideration for alternative (yet equivalent)

water quality standards. While QMRA has proven useful for increasing the under-

standing of apparent and relative human health risks from exposure to various

sources of fecal pollution, regulators currently do not have the information neces-

sary to develop nationally applicable water quality criteria based on different

sources of fecal contamination. However, it may be possible to develop site-

specific criteria protective of recreational use that take into account the relative

risk of sources, provided the sources affecting a specific water body are well

understood both spatially and temporally.

6.2 Natural Source Exclusion

The goal of NSE is to implement alternative site-specific FIB objectives for water

quality, assuming that dischargers (1) control all anthropogenic sources of indicator

bacteria to a water body, (2) demonstrate that all anthropogenic sources of indicator

bacteria to a water body are controlled, and (3) demonstrate that the remaining

indicator bacteria densities do not indicate a health risk. When the sources can be

proven less risky to recreational users, a different (larger) criterion value for FIB

might be appropriate. Like QMRA, regulators do not yet have sufficient informa-

tion to develop such new water quality criteria as each case will be geographically

specific. Any case-by-case consideration for NSE must be scientifically defensible,

well documented, and supported with data and information and provide for public

comment and access to information.
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7 Conclusions

The MST field is still evolving rapidly and the associated evaluation tools described

in Sects. 3, 4, and 6 are in various stages of development, and it is unknown at

present what direction future methodological approaches might take. The SIPP

study was a success as it identified a select group of DNA-based markers (Sect. 3)

that are suitable for deployment, especially in California coastal waters. How well

these same markers might perform in other regions is not clear, so the SIPP study

makers (as well as any new ones that are developed) should be used with caution

until sensitivity and specificity have been evaluated outside of California. Also,

interpretation of results and subsequent management decisions are very difficult

without knowing how various DNA-based markers age and degrade over time in

different environmental matrices. Such SIPP-level aging studies are badly needed

as the results could have a major impact on just how useful DNA-based markers

really are. Many researchers are now investigating community analysis (Sect. 4) as

the next big improvement in MST approaches, but community analysis is very new

and it may or may not turn out to have much application in source tracking. Lastly,

before other new approaches like NSE and QMRA can be implemented with

confidence (Sect. 6), there are additional research questions that need to be

addressed including (a) the overall accuracy of present techniques for determining

whether the fecal signature at a given site is human or non-human in origin, (b) the

relative health risks associated with human and non-human fecal sources, and

(c) the level of scientific uncertainty in using this information in a management

context [105]. Such new approaches will likely be controversial wherever they are

considered for implementation. However, such consideration is only possible when

the science is able to fully support their feasibility in problematic recreational

waters [106]. The best overall approach at present is to follow the tiered system

(Sect. 5) that places MST within the proper context of a larger suite of methods that

are all useful in their appropriate context for accurately identifying the sources of

fecal pollution in water [6].
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