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The life-cycle cost (LCC) of a structure in seismic regions, which includes the initial and the post-
earthquake repair cost, is a critical parameter for structural engineers and other stakeholders. The LCC 
analysis has been gaining prominence in recent years since civil infrastructure sustainability has been 
identified as one of the grand challenges for engineering in the 21st century. The objective of this chapter 
is to first identify the components in LCC evaluation that directly affect the outcomes, and propose strate-
gies to improve the reliability of the analysis. The shortcomings of existing studies on LCC optimization 
of structures are identified. These shortcomings include simplified analysis techniques to determine the 
structural capacity and earthquake demand, use of generalized definitions for structural limit states, 
and inadequacies in treating uncertainty. In the following, the problem formulation and a brief review 
of existing literature on LCC optimization of structures are provided. A LCC model is presented, and 
techniques are proposed to improve the above mentioned shortcomings. Finally, LCC analysis of an 
example reinforced concrete (RC) structure is employed to illustrate the methodology.
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An approach is presented to structural optimization for performance-based design in earthquake engineer-
ing. The objective is the minimization of the total cost, including repairing damage produced by future 
earthquakes, and satisfying minimum target reliabilities in three performance levels (operational, life 
safety, and collapse). The different aspects of the method are considered: a nonlinear dynamic structural 



analysis to obtain responses for a set of earthquake records, representing these responses with neural 
networks, formulating limit-state functions in terms of deformations and damage, calculating achieved 
reliabilities to verify constraint violations, and the development of a gradient-free optimization algorithm. 
Two examples illustrate the methodology: 1) a reinforced concrete portal for which the design parameters 
are member dimensions and steel reinforcement ratios, and 2) optimization of the mass at the cap of a 
pile, to meet target reliabilities for two levels of cap displacement. The objective of this latter example 
is to illustrate model effects on optimization, using two different hysteresis approaches.

Chapter 3
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The reliability-based design optimization of structural systems under stochastic excitation involving discrete 
sizing type of design variables is considered. The design problem is formulated as the minimization of an 
objective function subject to multiple reliability constraints. The excitation is modeled as a non-stationary 
stochastic process with uncertain model parameters. The problem is solved by a sequential approximate 
optimization strategy cast into the framework of conservative convex and separable approximations. To 
this end, the objective function and the reliability constraints are approximated by using a hybrid form 
of linear, reciprocal, and quadratic approximations. The approximations are combined with an effective 
stochastic sensitivity analysis in order to generate explicit expressions of the reliability constraints in 
terms of the design variables. The explicit approximate sub-optimization problems are solved by an ap-
propriate discrete optimization technique. Two example problems that consider structures with passive 
energy dissipation systems under earthquake excitation are presented to illustrate the effectiveness of 
the approach reported herein.

Chapter 4
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This chapter provides a comprehensive procedure for the time-dependant structural performance evalua-
tion and life-cycle cost analysis of reinforced concrete highway bridges located in extreme chloride-laden 
environments. The penetration of chloride ions into the concrete is simulated through a finite difference 
approach, which takes into account all the parameters that can affect the corrosion process. From simula-
tion results, the corrosion initiation time is predicted and the extent of structural degradation is calculated 
over the entire life of bridge. A group of detailed bridge models with various structural attributes are 
developed to evaluate the changes in the structural capacity and seismic response of corroded bridges. 
For the purpose of the probabilistic seismic risk assessment of bridges, the seismic fragility curves are 
generated and updated at regular time intervals. The time-dependent fragility parameters are employed to 
investigate the life-cycle cost of bridges by introducing a performance index which combines the effects 
of probable seismic events and chloride-induced corrosion. The proposed approach provides a multi-
hazard framework, which leads to more realistic performance and cost estimates. It also indicates the 
inspection and maintenance intervals in a way that the inspection and maintenance costs are optimized, 
while the safety of bridge is ensured.
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Uncertain Bounded System Parameters .............................................................................................. 105
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An efficient robust design optimization (RDO) procedure is proposed in the framework of an adap-
tive response surface method (RSM) for structures subjected to earthquake load and characterized by 
uncertain but bounded system parameters. The basic idea of the proposed RDO approach is to improve 
the robustness of a design by using a new dispersion index which utilizes the relative importance of the 
gradients of the performance function. The same concept is also applied to the constraints. The repeated 
computations of stochastic responses and their sensitivities for evaluating the stochastic constraint of 
the associated optimization problem are efficiently obtained in the framework of an adaptive RSM. The 
proposed RDO approach is elucidated through the optimization of a three-storied concrete frame struc-
ture. The numerical study depicts that the proposed RDO results are in conformity with the conventional 
RDO results. However, definite improvements are achieved in terms of robustness and computational 
time requirements indicating its efficiency over the conventional RDO approach.
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Damage Assessment of Inelastic Structures under Simulated Critical Earthquakes .......................... 128

Abbas Moustafa, Minia University, Egypt

Damage of structures can be significantly reduced through robust prediction of possible future earth-
quakes that can occur during the life-time of the structure and through accurate modeling of the non-
linear behavior of the structure under seismic loads. Modern seismic codes specify natural records and 
artificially generated ground accelerations as input to the nonlinear time-history analysis of the structure. 
The advantage of using natural records is the inclusion of all important characteristics of the ground 
motion (fault properties, path effects and local soil condition) in the design input. This option requires 
selecting and scaling a set of proper accelerograms from the available records. However, the site under 
consideration may have limited or scarce earthquake data. In such case, numerically simulated ground 
motions can be employed as input to the dynamic analysis of the structure. This chapter deals with the 
damage assessment of inelastic structures under numerically simulated critical earthquakes using non-
linear optimization, inelastic time-history analysis, and damage indices.
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Optimization is a field where extensive research has been conducted over the last decades. Many types 
of problems have been addressed, and many types of algorithms have been developed, while their 
range of applications is continuously growing. The chapter is divided into two parts; in the first part, 
the life-cycle cost analysis is used as an assessment tool for designs obtained by means of prescriptive 
and performance-based optimum design methodologies. The prescriptive designs are obtained through a 
single-objective formulation, where the initial construction cost is the objective to be minimized, while 



the performance-based designs are obtained through a two-objective formulation where the life-cycle 
cost is considered as an additional objective also to be minimized. In the second part of the chapter, the 
problem of inspection of structures and routing of the inspection crews following an earthquake in densely 
populated metropolitan areas is studied. A model is proposed and a decision support system is developed 
to aid local authorities in optimally assigning inspectors to critical infrastructures. A combined particle 
swarm – ant colony optimization based framework is implemented, which proves to be an instance of a 
successful application of the philosophy of bounded rationality and decentralized decision-making for 
solving global optimization problems.

Chapter 8
Optimal Performance-Based Seismic Design ..................................................................................... 174

Hamid Moharrami, Tarbiat Modares University, Iran

In this chapter, the reader gets acquainted with the philosophy of performance-based design, its principles, 
and an overview of the procedures for performance evaluation of structures. The essential prerequisites of 
optimal performance-based design, including nonlinear analysis, optimization algorithms, and nonlinear 
sensitivity analysis, are introduced. The methods of nonlinear analysis and optimization are briefly pre-
sented, and the formulation of optimal performance-based design with emphasis on deterministic type, 
rather than probabilistic- (or reliability)-based formulation is discussed in detail. It is revealed how real 
performance-based design is tied to optimization, and the reason is given for why, without optimization 
algorithms, multilevel performance-based design is almost impossible.

Chapter 9
Optimal Seismic Performance-Based Design of Reinforced Concrete Buildings .............................. 208

Xiao-Kang Zou, AECOM Asia Company Ltd., Hong Kong

In order to meet the emerging trend of the performance-based design approach and to improve the design 
efficiency, this chapter presents a numerical optimization technique for both minimum material cost and 
life-cycle cost design of building structures subject to multiple levels of linear elastic and nonlinear elastic 
seismic drift performance design constraints. This chapter firstly introduces an elastic seismic drift design 
of reinforced concrete (RC) building structures based on elastic response spectrum analysis method; 
and then presents the inelastic design optimization based on the nonlinear pushover analysis method. 
Finally, the optimal seismic performance-based design of RC buildings is posed as a multi-objective 
optimization problem in which the life-cycle cost of a building is to be minimised subject to multiple 
levels of seismic performance design criteria. The computer based optimization methodology developed 
provides a powerful numerical design tool for performance-based design of RC building structures.

Chapter 10
Applications of Topology Optimization Techniques in Seismic Design of Structure ........................ 232

Kazem Ghabraie, University of Southern Queensland, Australia

During the last two decades, topology optimization techniques have been successfully applied to a wide 
range of problems including seismic design of structures. This chapter aims to provide an introduction 
to the topology optimization methods and a review of the applications of these methods in earthquake 
engineering. Two well-established topology optimization techniques are introduced. Several problems 
including eigenfrequency control of structures, compliance minimization under periodic loading, and 
maximizing energy absorption of passive dampers will be addressed. Numerical instabilities and ap-
proaches to overcome them will be discussed. The application of the presented approaches and methods 
will be illustrated using numerical examples. It will be shown that in seismic design of structures, topol-
ogy optimization methods can be useful in providing conceptual design for structural systems as well 
as detailed design of structural members.
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resistant strategies are presented to achieve economical, applicable, and valid seismic design of local 
components of bridges working in a nonlinear state: the adoption and the study on a new cable sliding 
friction aseismic bearing, the study on the seismic capacities of single-column bridge piers wholly and 
locally reinforced with steel fiber reinforced concrete (SFRC), the study on the seismic capacities, and 
the hysteretic performance and energy dissipation capabilities of bridge pile group foundations strength-
ened with the steel protective pipes (SPPs). Research results show that these seismic design strategies 
are effective to improve the seismic performance of bridges.
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using the hierarchical clustering (HRC) algorithm, while its consequent parameters are optimized via the 



weighted linear least squares estimation. The performance of the proposed model is investigated using 
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(MR) damper subject to earthquake disturbances. Furthermore, the impact of the HRC algorithm on 
the performance of the MIMO ARX-TS fuzzy model is compared with that of the subtractive and the 
fuzzy C-means clustering algorithms. The equivalence of the original and identified data is numerically 
shown to prove that the HRC MIMO ARX-TS fuzzy model introduced here is effective in estimating 
nonlinear behavior of a seismically excited building-MR damper system.
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in this chapter. Bond graph (BG) is an energy-based graphical-modeling tool for physical dynamic 
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systems with interacting components from multiple domains. Discrete structures are modeled using one-
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nificant reduction in computations. Quantitative identification of damage size is performed by analyzing 
the substructure containing the damaged component, using the nonlinear least-squares optimization 
technique, thus reducing the computations. The health assessment algorithm developed in this chapter 
combines the Generic Modeling Environment (GME), the Fault Adaptive Control Technology (FACT) 
software, and Matlab Simulink®. Numerical illustrations on BG modeling of a hydraulic actuator and 
system identification of a fifteen-story shear building and a high-rise structure under earthquake loads 
are provided.
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Foreword

Earthquake engineering and aseismic structural design for many years was based on conventional meth-
ods of analysis, statistical description of earthquakes and very much engineering experience. Design 
engineers smugly say that the medium quality of ordinary structures, the low or uncontrollable quality 
of materials and the lack of guaranteed, maintenance in most parts of the world, did not justify the use 
of more sophisticated methods. On the other hand modern methods for the optimal design of structures, 
reliability analysis, and the most advanced methods of computational mechanics found their way into, 
mainly, mechanical engineering applications. Integration of electronics and control, resulting in the so-
called smart structures, is another area with fruitful results. The existence of sensors allows us to think 
on structural health monitoring and much more. All these techniques stayed away from the seismic 
design of structures, although the safety of structures in which most of the population in earthquake-
affected countries lives and works is of obvious importance.

I am happy to see that this gap is gradually closing. Technology and knowledge becomes available to 
broader parts of the population and is being applied to more ‘classical’ fields. The present edited volume 
contributes towards this direction. By studying selected topics of structural optimization, reliability-
based, performance-based, robust design and life cycle cost structural analysis the authors of the book 
clearly demonstrate that sophisticated structural analysis and design tools slowly find their way in the 
design of ordinary structures. Both users of buildings and infrastructure and professional engineers will 
benefit from this development.

Georgios E. Stavroulakis 
Technical University of Crete, Greece
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Preface

Since the early seventies, optimization has been the subject of intensive research and several different 
approaches have been advocated for the optimal design of structures in terms of optimization methods 
or problem formulations. Most of the attention of the engineering community has been directed towards 
the optimum design of structures with the assumption of linear elastic structural behavior under static 
loading conditions. However, for a large number of real-life structural design problems, the assumption 
of linear response may lead to vulnerable structural configurations, while seismic loading has also to be 
taken into account in order to design earthquake resistant real-world structures. Parts of the book are 
devoted to the formulation of design optimization frameworks in the field of earthquake engineering.

In recent years, probabilistic-based formulations of the optimization problem have been developed 
in order to account for the uncertainty and randomness. The development of stochastic analysis methods 
over the last two decades has stimulated the interest for the probabilistic optimum design of structures. 
There are two distinguished design formulations that account for the probabilistic system response: 
Robust Design Optimization (RDO) and Reliability-Based Design Optimization (RBDO). RDO meth-
ods primarily seek to minimize the influence of stochastic variations on the nominal dimensions and 
values of the material properties of the design. On the other hand, the main goal of RBDO methods is 
to design for minimum weight, while satisfying the limit on the allowable probability of failure. Parts 
of the book are devoted to the formulation of optimization problems considering uncertainties under 
earthquake loading conditions.

The research fields described above define “hot” topics of Earthquake Engineering involving the use 
of advanced optimization tools. The basic idea of this book is to include all the aforementioned research 
topics into a volume taking advantage of the connecting link between them, which is optimization. In 
this direction, the book consists of 15 chapters in total. In the first chapter, the components in life-cycle 
cost (LCC) evaluation are identified that directly affect the outcomes and propose strategies to improve 
the reliability of the analysis, while the shortcomings of existing studies on LCC optimization of struc-
tures are identified.

In the second chapter an approach is presented to structural optimization for performance-based 
design in earthquake engineering where the objective is the minimization of the total cost, including 
repairing damage produced by future earthquakes, and satisfying minimum target reliabilities in three 
performance levels. In the next chapter the reliability-based design optimization of structural systems 
under stochastic excitation involving discrete sizing type of design variables is considered; while it is 
formulated as the minimization of an objective function subject to multiple reliability constraints.

In the fourth chapter, a comprehensive procedure for the time-dependent structural performance 
evaluation and life-cycle cost analysis of reinforced concrete highway bridges located in extreme 



  xv

chloride-laden environments is provided. The chapter also indicates the inspection and maintenance 
intervals in a way that the inspection and maintenance costs are optimized while the safety of bridge is 
ensured. In the next chapter, an efficient RDO procedure is proposed in the framework of an adaptive 
response surface method for structures subjected to earthquake load and characterized by uncertain but 
bounded system parameters.

The sixth chapter deals with the problem of damage assessment of inelastic structures under nu-
merically simulated critical earthquakes, implementing nonlinear optimization, inelastic time-history 
analysis, and damage indices. In the next chapter the life-cycle cost analysis is used as an assessment 
tool for designs obtained by means of prescriptive and performance-based optimum design methodolo-
gies; furthermore, the problem of inspection of structures and routing of the inspection crews following 
an earthquake in densely populated metropolitan areas is studied.

In the eighth chapter, the reader gets acquainted with the philosophy of performance-based design, 
its principles, and an overview of the procedures for performance evaluation of structures, while the 
essential prerequisites of optimal performance-based design, including nonlinear analysis, optimization 
algorithms, and nonlinear sensitivity analysis, are also introduced.

The ninth chapter presents a numerical optimization technique for both minimum material cost and 
life-cycle cost design of building structures subject to multiple levels of linear elastic and nonlinear 
elastic seismic drift performance design constraints. The next chapter aims at providing an introduction 
to the topology optimization methods and a review of the applications of these methods in earthquake 
engineering.

In the eleventh chapter, the overall conceptual seismic design and the local seismic capacity design 
methods are proposed to give clear and correct directions for seismic design optimization of bridges 
in order to obtain uniform and rational seismic demands and improved seismic capacities of structural 
components. The next chapter deals with the optimum design of structures for earthquake induced loads 
by taking into account the nonlinear time history structural response.

In the thirteenth chapter, a nonlinear modeling framework to identify nonlinear behavior of smart 
structural systems under seismic excitations is presented; to this end, multi-input-multi-output autore-
gressive exogenous input models and Takagi-Sugeno fuzzy models are coalesced.

In the fourteenth chapter of the book, a hybrid qualitative-quantitative health assessment of struc-
tures using the bond graph theory is presented. In the last chapter, a probabilistic framework based on 
stochastic simulation is presented for optimal design of supplemental dampers for multi-span bridge 
systems supported on abutments and intermediate piers through isolation bearings.

Vagelis Plevris
School of Pedagogical and Technological Education, 
Greece National Technical University of Athens, Greece

Chara Ch. Mitropoulou
Institute of Structural Analysis and Seismic Research, 
National Technical University of Athens, Greece

Nikos D. Lagaros
Institute of Structural Analysis and Seismic Research, 
National Technical University of Athens, Greece Hellenic Army, Greece
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INTRODUCTION

Structural optimization problems may be divided 
into three classes: sizing, shape and topology opti-
mization. In sizing optimization, the locations and 
number of the structural elements are fixed and 
known. Usually, the problem is reduced to optimi-

zation of the properties of individual elements to 
find the optimal solution. In shape optimization, 
the contour of the boundary of a structural domain 
is optimized while keeping the connectivity of 
the structure the same, in other words, no new 
boundaries are formed. Topology optimization 
is the most general in the sense that both the size 
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Life Cycle Cost Considerations 
in Seismic Design 

Optimization of Structures

ABSTRACT

The life-cycle cost (LCC) of a structure in seismic regions, which includes the initial and the post-
earthquake repair cost, is a critical parameter for structural engineers and other stakeholders. The 
LCC analysis has been gaining prominence in recent years since civil infrastructure sustainability has 
been identified as one of the grand challenges for engineering in the 21st century. The objective of this 
chapter is to first identify the components in LCC evaluation that directly affect the outcomes, and pro-
pose strategies to improve the reliability of the analysis. The shortcomings of existing studies on LCC 
optimization of structures are identified. These shortcomings include simplified analysis techniques to 
determine the structural capacity and earthquake demand, use of generalized definitions for structural 
limit states, and inadequacies in treating uncertainty. In the following, the problem formulation and 
a brief review of existing literature on LCC optimization of structures are provided. A LCC model is 
presented, and techniques are proposed to improve the above mentioned shortcomings. Finally, LCC 
analysis of an example reinforced concrete (RC) structure is employed to illustrate the methodology.
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and location of structural members are determined 
and formation of new boundaries are allowed. The 
number of joints in the structure, the joint support 
locations, and number of members connected to 
each joint are unknown. In other words, topology 
and shape of the structure are optimized in addi-
tion to the shape of individual elements. Figure 
1 illustrates the sizing and topology optimization 
problems for a structural frame. The structure 
being optimized may vary significantly from a 
component of a mechanical device to a member 
of a full-scale structure depending on the problem. 
Most problems in structural earthquake engineer-
ing fall into the category of sizing optimization 
and deal with full-scale structures.

The problems in structural optimization may 
also be classified based on the number of objec-
tives, i.e. single- and multi-objective. For single-
objective seismic design optimization problems, 
the objective is usually selected as the initial cost 
for reinforced concrete (RC) and total weight for 
steel structures; and the performance is determined 
based on the conformance to the requirements of 
a seismic design code. The code provisions are 
usually introduced to the problem as constraints. 
Some example studies include Moharrami and 
Grierson (1993), Adamu et al. (1994), Memari 
and Madhkhan (1999), Zou and Chan (2005) and 

Sahab et al. (2005). As a consequence of the 
formulation of the problem, the majority of the 
single-objective optimization methods provide a 
single optimal solution (which minimizes the 
objective and satisfies the constraints). However, 
the decision maker does not have a broad view 
of to what extend the constraints are satisfied. 
Thus, she has to either accept or reject the optimal 
solution. On the other hand, since more than one 
objective is considered in multi-objective optimi-
zation problems, commonly a set of equivalently 
optimal solutions are obtained which provides the 
decision maker the flexibility to tradeoff between 
the solutions and she may base her selection on 
rather transparent results. Some example multi-
objective studies include Li et al. (1999) and Liu 
et al. (2006).

It is natural to include multiple objectives (e.g. 
structural performance, initial and life-cycle costs) 
in the LCC optimization of structures; however, 
the number of objectives is not usually the only 
difference between LCC and initial cost optimiza-
tion problems. The former necessitates the use of 
probabilistic formulations to evaluate the failure 
probability at different limit states in addition to 
the derivation of the probabilistic seismic hazard 
at different intensities. Whereas, in the latter 
the evaluation of the structural performance at 

Figure 1. Example illustration of (a) sizing, and (b) topology optimization problems
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predefined hazard level(s) is sufficient. A brief 
review of existing literature on LCC optimization 
of structures is provided in the following section. 
The objective of this chapter is to emphasize the 
importance of the following in LCC optimization:

1.  Use of advanced analysis, which provides 
the most rigorous assessment of structural 
capacity and earthquake demand,

2.  Evaluation of the structural capacity (that 
has direct impact on the LCC) by taking 
into account not only the global behavior 
of the structure but also the local response, 
such as reinforcement yielding and concrete 
crushing,

3.  Use of system-specific limit states (rather 
than fixed value or generic limit states) to 
define the structural capacity,

4.  Consideration of all major sources of 
uncertainty, from seismogenic source 
characteristics to material properties and 
structural modeling in calculating the limit 
state exceedance probabilities.

The majority of existing work on structural op-
timization uses either elastic dynamic or nonlinear 
static analysis for seismic performance assessment 
of structures. In cases where inelasticity is mod-
eled, lumped plasticity models are adopted. The 
first item in the list above is significant because 
the oversimplification of the structural assess-
ment, even though the optimization framework is 
robust and sound, might yield unrealistic results. 
This chapter highlights the importance of utiliz-
ing distributed inelasticity approach using which 
structural capacity and earthquake demand are 
evaluated through nonlinear pushover analysis and 
inelastic dynamic time history analysis, respec-
tively. Widespread use of optimization tools for 
seismic design of structures can only be achieved 
by having practical and reliable approaches that 
can predict the structural performance with rea-
sonable accuracy.

The second item is critical to the evaluation of 
LCC in that the repair cost (after an earthquake 
event) is more directly related to the local behavior, 
rather than the global. There is existing literature 
on relating the global structural response to local 
parameters (an example is predicting the damage 
state of a vertical member based on the interstory 
drift); however, it is not accurate to generalize 
these relationships to structural configurations 
other than that they are derived for. Therefore, 
in order to accurately evaluate the LCC proper 
response metrics need to be chosen.

As for the third item, the capacity of a structure 
depends on various factors, most importantly on 
the force resisting system employed in design. 
The limit state values for a bearing wall system 
will be significantly different from those for a 
frame system. It is simpler to use generic limit 
states, which also reduces computational demand; 
however, accurate evaluation of the structural ca-
pacity is key to seismic design and it warrants full 
consideration. In other words, structural capacity 
has to be evaluated specifically for the considered 
structural configuration.

Finally, for the fourth item, the sources of 
uncertainty have to be defined clearly. The uncer-
tainty in exceedance probabilities of the structural 
damage states is mainly governed by the vari-
ability in ground motion processes; nevertheless, 
it is required to take into account the variability 
in material properties, and other capacity related 
parameters.

In the following, first the background informa-
tion on structural optimization that will allow the 
reader to follow the rest of the chapter is provided. 
Then a framework for LCC optimization of struc-
tures that includes the definition of seismic hazard, 
evaluation of structural capacity and earthquake 
demand, LCC model and optimization algorithm, 
is proposed. Finally, the framework is applied to 
an example RC structural frame.
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BACKGROUND ON 
STRUCTURAL OPTIMIZATION

In this section, first the terminology that is used 
in the chapter is described. Then an overview of 
the most commonly used optimization algorithms, 
with a focus on the advantages and shortcomings, 
is provided. Finally, existing work on LCC opti-
mization of structures is briefly reviewed.

Terminology

• Objective (merit) Function: A function 
that measures the performance of design. 
For every possible design, the objective 
function takes a different value. Examples 
include the maximum interstory drift and 
initial cost.

• Design (decision) Variables: A vector that 
specifies design. Each element in the vec-
tor describes a different structural property 
that is relevant to the optimization prob-
lem. The design variables take different 
values throughout the optimization pro-
cess. Examples include section dimensions 
and reinforcement ratios.

• Performance Levels: Predefined levels 
that describe the performance of the struc-
ture after an earthquake. Usually the fol-
lowing terminology is used to define the 
damage state (performance) of the struc-
ture: immediate occupancy, life safety and 
collapse prevention. Occurrence of each 
damage state is determined based on the 
exceedance of a threshold value in terms 
of structural capacity.

• Hazard Levels: Predefined levels used to 
describe the earthquake intensity that the 
structure is subjected to. Hazard levels are 
usually described by earthquake return 
periods (or annual frequencies of exceed-
ance) and represented by acceleration re-
sponse spectrum. It is required to consider 
multiple levels of hazard to calculate LCC 

of a structure. Each hazard level is usually 
directly mapped to a single or multiple per-
formance levels.

• Space of Design (decision) Variables 
or Search Space: The boundaries of the 
search space are defined by the ranges of 
the design variables. The dimension of the 
search space is equal to the number of de-
sign variables in the problem. The search 
space can be continuous for continuous 
design variables and discrete for discrete 
design variables or certain dimensions can 
be continuous and the rest can be discrete.

• Solution (objective function) Space: 
Usually the solution space is unbounded or 
semi-bounded. The dimension of the solu-
tion space is equal to the number of objec-
tive functions in the optimization problem. 
The optimal solution(s) is defined in the 
solution space. The set of optimal solu-
tions in the solution space is referred to as 
Pareto-front or Pareto-optimal set, as de-
scribed below.

• Pareto-Optimality: To define Pareto-
optimality, consider the function 
f k l: ℜ → ℜ  which assigns each point, x 
in the space of decision variables to a point, 
y = ( )f x  in the solution space. Here f 
represents the objective functions, k is the 
number of decision variables and l is the 
number of objective functions to assess the 
performance of each, x (or equal to the di-
mension of f). The Pareto-optimal set of 
solutions is constructed by comparing the 
points in the solution space based on the 
following definition: a point y in the solu-
tion space strictly dominates another point 
y  if each element of y is less than equal to 

the corresponding parameter of y  (that is 
y yi i≤ ) and at least one element, i*, is 

strictly less (that is y yi i* *< ), assuming 
that this is a minimization problem. Thus, 
the Pareto-front is the subset of points in 
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the set of Y = f(X), that are not strictly 
dominated by another point in Y. The 
Pareto-optimality is illustrated in Figure 2, 
the plot is in the solution space, and the fig-
ure axes are two objective functions, f1 and 
f2. Assuming that the objective is minimi-
zation of both f1 and f2 the Pareto-front lies 
at the boundary that minimizes both objec-
tives as shown in the figure.

Review of Most Commonly Used 
Optimization Algorithms

The algorithms used in structural optimization 
may be divided into two categories: gradient-
based and heuristic approaches. The earlier studies 
on structural optimization utilized conventional 
gradient-based algorithms to obtain the optimal 
solution (e.g. Bertero & Zagajeski, 1979; Cheng 
& Truman, 1985; Pezeshk, 1998). The most 
commonly used algorithms include optimality 
criteria, linear and nonlinear programming, fea-
sible directions, and state-space steepest descent. 
Although the gradient-based approaches are 

computationally efficient, the problems that could 
be solved are limited due to fact that the objec-
tive functions, constraints and their sensitivities 
should be expressed explicitly in terms of the 
design variables. The latter condition imposes a 
restraint on the analysis procedure that could be 
selected for structural assessment. Furthermore, 
the design variables should be continuous over 
the search domain. In other words, discrete de-
sign variables such as the reinforcement ratio in 
RC structures cannot directly be accounted for 
in gradient-based optimization algorithms. As a 
consequence, researchers used methods such as 
the principle of virtual work in order to express 
the objective function as well as the constraints 
analytically (e.g. Chan & Zou, 2004).

With the immense increase in available com-
putational power in the recent years, researchers 
started to incorporate more accurate analysis tools 
in structural optimization such as the static push-
over and dynamic time history analysis through 
finite element modeling. However, due to the fact 
that these analysis techniques required algorithms 
that do not entail the continuity of functions as 
well as the existence of derivatives, researchers 

Figure 2. Illustration of Pareto-optimality
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had to abandon the conventional gradient-based 
approaches. Heuristic optimization algorithms 
progressively became popular in structural opti-
mization (Foley & Schinler, 2003; M. Fragiadakis, 
Lagaros, & Papadrakakis, 2006b; N. D. Lagaros 
& Papadrakakis, 2007; Min Liu, et al., 2006). The 
most commonly used approaches include genetic 
algorithms (GA), simulated annealing (SA), taboo 
search (TS), and shuffled complex evolution. A 
further advantage of the heuristic algorithms is 
that they are very effective in terms of finding 
the global minimum of highly nonlinear and/or 
discontinuous problems where the gradient-based 
algorithms are usually trapped at a local minimum.

Review of Studies on LCC 
Optimization of Structures

LCC analysis of structures has gained importance 
in the recent years due to concerns related to 
the civil infrastructure sustainability; therefore, 
studies on LCC optimization of structures are 
relatively new compared to the rest of the lit-
erature on structural optimization. Below, a brief 
review of existing studies on LCC optimization 
is provided. The section is not intended to be 
comprehensive; the goal is to highlight some of 
the critical components of seismic LCC analysis 
that are addressed in more detail in this chapter.

Wen and Kang (2001a) developed an analyti-
cal formulation to evaluate the LCC of structures 
under multiple hazards. The methodology is then 
applied to a 9-story steel building to find the 
minimum LCC under earthquake, wind and both 
hazards (Wen & Kang, 2001b). In this study, the 
simplified method based on an equivalent single-
degree-of-freedom (SDOF) system developed by 
Collins et al. (1996) was used for structural assess-
ment. Liu et al. (2003) investigated the optimal 
performance-based seismic design (PBSD) of 
steel moment frame structures. Merit functions 
were selected as the initial material and lifetime 
seismic damage costs. Reducing design complex-
ity was also incorporated in the algorithm. Code 

provisions were followed to determine the validity 
of design alternatives. Static pushover analysis 
was used to derive an equivalent SDOF system 
which was utilized in computing the maximum 
interstory drift ratios. Liu et al. (2004) studied 
the PBSD of steel moment-resisting frames us-
ing GA. Three merit functions were defined: the 
initial material and lifetime seismic damage costs, 
and the number of different steel section types. 
Maximum interstory drift was used for the per-
formance assessment of the frames through static 
pushover analysis. Code provisions were taken 
into account in design. Different sources of uncer-
tainty in estimating seismic demand and capacity 
were incorporated into analysis using the SAC/
FEMA guidelines (Cornell, Jalayer, Hamburger, 
& Foutch, 2002). The results were presented as 
Pareto-fronts for competing merit functions. Final 
designs obtained from the optimization algorithm 
were assessed using inelastic dynamic time his-
tory analysis. Liu (2005) formulated an optimal 
design framework for steel structures based on the 
PBSD. The considered objectives were the mate-
rial usage, initial construction expenses, degree 
of design complexity, seismic structural perfor-
mance and lifetime seismic damage cost. Design 
variables were section types for members of the 
frames. The validity of designs was performed 
based on the existing code provisions. A lumped 
plasticity model was used for structural modeling. 
Both static pushover and inelastic dynamic (only 
when structural response parameters were directly 
taken as objective functions) analysis were used. 
Fragiadakis et al. (2006b) used evolutionary strate-
gies for optimal design of steel structures. Initial 
construction and life cycle costs were considered 
as the two merit functions. The constraints were 
based on the provisions of the European design 
codes. A fiber-based finite element model was used 
to conduct static pushover analysis to determine 
the inelastic response of structures. Deterministic 
structural damage states based on the maximum 
interstory drift was employed; however, probabi-
listic formulations were adopted for calculating 
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the life cycle costs. Zou et al. (2007) used the 
method of virtual work to achieve an explicit 
formulation for multi-objective optimization of 
RC frames. Then, optimality criteria method was 
used to minimize the initial material cost and the 
expected damage loss in a Pareto optimal sense. 
The method was formulated in two stages: first 
elastic response spectrum analysis was performed 
where the cross-sectional dimensions were consid-
ered as the only design variables, second section 
sizes were kept constant and the reinforcement 
ratio was taken as the design variable for the 
static pushover analysis through which inelastic 
drift responses were calculated.

Although, LCC was not considered in the fol-
lowing studies, these studies are mentioned here 
because they are related to methods or derivations 
in this chapter by considering uncertainty, multiple 
hazard levels or advanced structural analysis to 
obtain the seismic demand on structures. In Liu 
et al. (2005) conflicting objectives were defined 
as the initial material cost (including the cost due 
to design complexity as a function of the number 
of different structural shapes) and the seismic 
performance. Two hazard levels were used and 
the performance criterion was selected as the 
maximum interstory drift. Structural assessment 
was conducted using static pushover analysis 
determined from seismic code provisions. GA 
were employed to solve the optimization prob-
lem. Fragiadakis et al. (2006a) used evolutionary 
strategies for optimal PBSD of steel structures. 
Minimization of cost subjected to constraints on 
interstory drift was targeted. Both inelastic static 
and inelastic dynamic analysis were employed. 
Discrete beam and column sections were selected 
as design variables. 10 earthquake records were 
used to represent each hazard level and mean 
structural response was taken as the performance 
measure. Uncertainty associated with structural 
modeling was also taken into account. Lagaros et 
al. (2006) evaluated modal, elastic and inelastic 
dynamic time history analysis in an optimization 
framework taking the European seismic design 

code as a basis. Steel structures were considered 
and evolutionary strategies were used to solve the 
optimization problem. A fiber-based finite element 
modeling approach was adopted. Either 10 natural 
or 5 artificial records were used to represent the 
hazard. Material weight was selected as the design 
objective. It was observed that lighter structures 
could be obtained when inelastic dynamic time 
history analysis (instead of elastic dynamic time 
history or modal analysis) and natural records 
(instead of artificial records that were compatible 
with a certain design spectrum) were used. Fragia-
dakis and Papadrakakis (2008) studied the optimal 
design of RC structures. Both deterministic and 
reliability-based approaches were evaluated and 
the latter was found to provide more economical 
solutions as well as more flexibility to designer. 
The total cost of the structure was taken as the 
objective function and compliance with Euro-
pean design codes was applied as a condition. 
Evolutionary strategies were used to solve the 
optimization problem. Three hazard levels were 
considered. To reduce the computational time, 
fiber-based beam-column elements were used only 
at the member ends and inelastic dynamic analysis 
was performed only if non-seismic checks per-
formed through a linear elastic analysis were met.

LCC oriented seismic design optimization of 
structures is a relatively new subject, a review of 
existing literature, as provided above, indicates 
that there is still need for further research due to 
following: (1) only a limited number of studies 
utilized advanced computational tools, structural 
performance assessment was usually performed 
using code-based formulations or elastic analysis, 
simplified modeling techniques were adopted 
whenever inelastic analysis was conducted; (2) 
existing studies overwhelmingly focused on the 
optimization of steel structures due to well defined 
design variables (i.e. section types) and availabil-
ity of structural modeling tools; (3) most of the 
research effort was devoted to the development 
of optimization methods; the real engineering 
problem to be solved remained faint.
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In the following section a LCC formulation 
is developed for optimal seismic design of RC 
structures. Fiber-based finite element modeling 
is used to construct the structural models. In-
elastic dynamic time history analysis and static 
pushover analysis are used to accurately obtain 
the earthquake demand and structural capacity, re-
spectively. In addition, randomness due to ground 
motion variability (aleatory uncertainty) and errors 
in structural modeling and inherent variability in 
material properties (epistemic uncertainty) are 
taken into account.

LIFE-CYCLE COST FORMULATION

Definition of the Seismic Hazard

In order to evaluate the LCC of a structure due to 
repair in future earthquakes, one has to evaluate 
the probability of demand exceeding capacity for 
the whole-life time of the structure. There is more 
than one way of defining the seismic hazard that a 
structure could experience throughout its life time. 
The most commonly used methods to evaluate 
the earthquake hazard for a given location with 
known historical seismicity are the deterministic 
and probabilistic seismic hazard analysis (DSHA 
and PSHA). The main difference between the two 
approaches is that PSHA incorporates the ele-
ment of time in hazard assessment. It is beyond 
the scope of this chapter to assess and validate 
the two approaches for seismic hazard analysis; 
however, PSHA has well made its way into the 
seismic design codes. As examples, UBC (ICBO, 
1997) and FEMA 450 (FEMA, 2003) represented 
design response spectrum based on probabilistic 
zonation maps. Therefore, here PSHA is used to 
characterize the seismic hazard for a selected site, 
while DSHA is also a valid option.

In PSHA mean annual frequency of exceedance 
(or probability of exceedance) is calculated for a 
range of a selected intensity measure that repre-
sents the earthquake hazard. The most commonly 

used intensity measures in seismic design are the 
peak ground acceleration (PGA) and spectral ac-
celeration (Sa) at the fundamental period of the 
structure. Example hazard curves for PGA and Sa 
are shown in Figure 3(a). These curves are site 
specific and they can be obtained from PSHA for 
seismic design purposes.

For certain types of structural analysis such 
as modal response spectrum and time history 
analysis, it is required to obtain the design spec-
trum. The design spectrum could be obtained from 
the hazard curves depicted in Figure 3(a) at dif-
ferent return periods. The return period of an 
earthquake, TR is simply the inverse of the mean 
annual frequency of exceedance, v, i.e. TR = 1/v. 
As examples, design spectra at different return 
periods obtained from the hazard curves shown 
in Figure 3(a) are given in Figure 3(b). These are 
also referred to as uniform hazard spectra (UHS) 
because each spectral ordinate has the same prob-
ability of exceedance. As an alternative, the design 
spectra could be obtained from seismic design 
codes. Although, most codes provide the necessary 
information to draw design spectra for the maxi-
mum considered earthquake only (e.g. ICC, 2006) 
and it is not possible obtain the hazard at different 
return periods which is required for LCC analysis, 
more detailed seismic zonation maps have been 
developed in the recent years and design spectra 
for earthquake hazards with different probabilities 
of occurrence are now available (USGS, 2008).

Evaluation of the Structural 
Capacity and Earthquake Demand

As described in the previous section, the continu-
ous probabilistic hazard at a selected site, Figure 
3(a), is discretized at certain probabilities, repre-
sented with return period in Figure 3(b). The objec-
tive behind this manipulation is to have a means 
of evaluating the probability of failure; that is the 
probability of earthquake demand exceeding the 
structural capacity. By having the design spectra 
at different return periods, the hazard levels are 
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very well defined. The more challenging part is 
the definition of structural limit states and their 
correspondence to hazard levels. Studies on PBSD 
try to answer a similar question.

As opposed to traditional seismic codes that aim 
to provide structures with adequate strength and 
ductility for life safety, and stiffness for service-
ability limits states, PBSD is a broader approach 
where the objective is to achieve stated perfor-
mance objectives (levels) when the structures are 
subjected to stated seismic hazard levels. Using the 
multilevel (in terms of hazard) and multi-criteria 
(in terms of performance) approach offered by the 
PBSD it is aimed that the structural design will be 
under direct and explicit control and the expecta-
tions of stakeholders for more explicit codes for 
defining design objectives will be fulfilled. This 
is the very same reason for PBSD lending itself 
for use in LCC optimization of structures.

Vision 2000 (SEAOC, 1995) has been one of 
the key documents in the development of PBSD 
concepts. In Vision 2000, the hazard levels were 
expressed in terms of return periods as shown in 
Table 1. A performance level was defined as the 
maximum allowable damage to a building for a 
given earthquake design level. The performance 

levels were determined by the condition of both 
the structural and nonstructural components. 
Four performance levels were defined: fully 
operational, operational, life-safety, and near 
collapse. Damage states of structural components 
were mapped to performance levels. Finally, a 
design performance objective was described as 
the desired performance level for the building for 
each earthquake design level. Design performance 
objectives were dependent on the building’s oc-
cupancy, the importance of functions occurring 
within the building, economic considerations 
related to repair due to building damage and busi-
ness interruption, and importance of the building 
as a historical or cultural asset. Recommended 
design performance objectives for buildings were 
mapped onto earthquake design levels as shown 
in Figure 4.

In FEMA 273 (FEMA, 1997) a similar frame-
work to that of Vision 2000 (SEAOC, 1995) was 
presented. However, different design performance 
objectives and earthquake design levels were 
adopted (Figure 5). Threshold values for struc-
tural and nonstructural components at various 
performance levels were tabulated for various 
building types including steel, RC, masonry and 

Figure 3. (a) Example hazard curves for different intensity measures obtained from PSHA, (b) design 
spectra at different return periods obtained from PSHA (YRP: years return period) 
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wood. System performance levels were described 
in terms of local (individual element) performance 
levels.

It is concluded from the review of documents 
Vision 2000 and FEMA 273 that conceptually 
PBSD framework is very similar. In other words, 
it is agreed that seismic design should be based 
on multiple performance objectives for stated 
earthquake hazard levels, however, the definition 
for earthquake design and performance levels 
show considerable variation. Furthermore, there 
is consensus neither on metrics to be selected as 
the indicators of performance levels, nor their 
relation to different damage states. However, 
interstory drift is mostly preferred since it is 
closely related to the development of P-Δ instabil-

ity (a system level indicator) and to the amount 
of local deformation imposed on the vertical ele-
ments and beam-column connections (component 
level indicators).

In this study the structural performance is de-
fined in three levels: immediate occupancy (IO), 
life safety (LS) and collapse prevention (CP); and 
these performance levels are mapped onto the 
three hazard levels with return periods 75, 475 
and 2475 years, respectively. The attainment of 
each performance level is described by reaching 
or exceeding a threshold value that defines the 
respective performance level (or structural limit 
state). It is noteworthy that the mapping between 
the performance and hazard levels does not indi-
cate that the respective hazard level is considered 
only in evaluating the probability of attaining 
a given performance level. As described in the 
next section on the LCC model, first the fragility 
curve is derived and then it is integrated over the 
entire range of the earthquake intensity measure 
to obtain the probability of reaching or exceeding 
each structural limit (or damage) state.

The structural capacity and earthquake demand 
are coupled. In other words, the capacity of a 
structure is not independent from the earthquake 

Table 1. Earthquake design levels in Vision 2000 
(SEAOC, 1995) 

Earthquake 
Design Level

Return Period Probability of 
Exceedance

Frequent 43 years 50% in 30 years

Occasional 72 years 50% in 50 years

Rare 475 years 10% in 50 years

Very Rare 970 years 10% in 100 years

Figure 4. Recommended performance objectives for buildings in Vision 2000 (Adapted from SEAOC, 1995)
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demand imposed on the structure. The capacity 
varies during the strong ground shaking which 
also influences the seismic forces acting on the 
structure. The most elegant way of evaluating 
the failure probabilities is through the joint prob-
ability density function of capacity and demand 
which can be derived by Monte Carlo simulation 
(MCS). However, there are various sources of 
uncertainty in evaluation of the failure probabili-
ties including the inherent variability of ground 
motions and randomness in material properties. 
Accounting for all the variability through MCS 
requires a large number of structural analyses. At 
the same time, accurate prediction of structural 
capacity and earthquake demand is critical for 
seismic design, and it is required to use analysis 
methods that yield reliable estimates. Performing 
MCS becomes infeasible when computationally 
demanding methods such as inelastic dynamic 
time history analysis is used. Therefore, here it 
is assumed that structural capacity is independent 
from earthquake demand and pushover analysis is 
used to evaluate the former while the latter is ob-
tained by inelastic dynamic time history analysis.

Finite element model (based on distributed 
inelasticity) of the structure under consideration 
is built and pushover analysis is conducted. In 
order to establish the limit state threshold values 
that define the structural capacity, the response 
metrics obtained from the analysis such as stresses, 
strains, and interstory drifts are correlated to 
previously mentioned performance levels. Here 
only structural damage is considered; however, 
nonstructural damage could also be incorporated 
into the performance level definitions as suggested 
by Vision 2000 (SEAOC, 1995). Local (e.g. 
stresses and strains) and global (e.g. interstory 
drift) response measures could be combined to 
define different performance levels. Here, only the 
strains in longitudinal reinforcement and the core 
concrete are used as the criterion and the threshold 
values are represented in terms of interstory drift 
by mapping the strains onto the pushover curves. 
A typical pushover curve is shown in Figure 6(a) 
alongside the limit state points based on strains 
in the longitudinal reinforcement and the core 
concrete.

Figure 5. Recommended rehabilitation objectives for buildings in FEMA 273 (Adapted from FEMA, 1997)
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The LCC Model

Once the hazard and performance levels are 
defined, the next step is the calculation of the 
damage state probabilities, i.e. the probability of 
the structure attaining the pre-defined damage 
states throughout its lifetime. Once the damage 
state probabilities are calculated the cost of repair 
for each damage state is evaluated and the LCC 
of the structure is easily found. In the following 
the full derivation of a LCC model is provided.

The expected LCC of a structure is calculated as

E C t C t C PLC i i
i

N

( )



 = + ⋅

=
∑0

1

 (1)

where C0 is the initial construction cost, t is the 
service life of the structure, N is the total number 
of limit-states considered, Pi is the total probability 
that the structure will be in the ith damage state 
throughout its lifetime, and Ci is the corresponding 
cost as a fraction of the initial cost of the structure. 
Pi is given by

P P Pi D C i D C i= >( )− >( )+∆ ∆ ∆ ∆, , 1  
(2)

where ΔD is the earthquake demand and ΔC,i is the 
structural capacity, usually in terms of drift ratio, 
defining the ith damage state, as described in the 
previous section. The probability of demand being 
greater than capacity is evaluated as

P P IM im
dv IM

dIM
dIMD C i D C i∆ ∆ ∆ ∆>( ) = > =( ) ( )∞

∫, , |
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(3)

where the first term inside the integral is the con-
ditional probability of demand being greater than 
the capacity given the ground motion intensity, IM. 
This term is also known as the fragility function. 
The second term is the slope of the mean annual 
rate of exceedance of the ground motion intensity. 

ν(IM) in Eqn. (3) defines the hazard curve, where 
IM is PGA for this study. The conditional prob-
ability of demand being greater than the capacity 
(or fragility) is

P IM im P IM im f dD C i D C i∆ ∆ ∆> =( ) = > =( ) ( )
∞

∫, ,| |δ δ δ
0

 

(4)

where δ is the variable of integration and fC,i is the 
probability density function for structural capacity 
for the ith damage state. This formulation assumes 
that the demand and the capacity are independent 
of each other (as discussed in the previous section). 
Structural capacity is assumed to be lognormally 
distributed with ΔC,i and βC that are, respectively, 
the mean and the standard deviation of the cor-
responding normal distribution. As an example, 
the lognormal probability density functions for 
structural limit states are shown in Figure 6(b). In 
Figure 6(b), three limit states IO, LS, and CP with 
threshold values of 1%, 2.5% and 7% interstory 
drift, respectively, are assumed and βC is taken as 
0.3. The uncertainty in capacity (here represented 
with βC) accounts for factors such as modelling 
error and variation in material properties. A more 
detailed investigation of capacity uncertainty is 
available in Wen et al. (2004) and Kwon and 
Elnashai (2006).

The structural demand is also assumed to fol-
low a lognormal distribution and the probability of 
demand exceeding a certain value, δ, is given by

P IM imD
D IM im

D

∆ Φ> =( ) = −
( )−















=δ
δ λ

β
|

ln |1  

(5)

where Ф[·] is the standard normal cumulative 
distribution, λD is the natural logarithm of the 
mean of the earthquake demand as a function of 
the ground motion intensity, and βD is the standard 
deviation of the corresponding normal distribu-
tion of the earthquake demand. Although, βC and 
βD are dependent on ground motion intensity, in 
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most studies they are taken as constants due to 
lack of information.

The dispersion in earthquake demand (here 
represented with βD) due to variability in ground 
motions is established here using a simple struc-
tural system (2-story 1-bay RC frame) and three 
sets of earthquake ground motions each represent-
ing a different hazard level at return periods of 
75, 475 and 2475 years. Each set includes seven 
ground motions which are selected from the PEER 
database (PEER, 2005) to represent the hazard at 
a selected site in San Francisco, CA (more details 
are given in the example application below). The 
correspondence between the hazard levels and the 
ground motions is achieved using three different 
methods. In the first method, the natural records 
are used without any modification. In the second 
method, the records are scaled based on PGA to 
match the PGA of the respective hazard level (in 
this case 75, 475 and 2475 years return period 
earthquakes are represented with a PGA of 0.24 g, 
0.51 g and 0.78 g, respectively). And in the third 
method, spectrum matching is used to make the 
acceleration response spectrum of each record 
compatible with the UHS corresponding to each 
return period shown in Figure 3(b). The results 

are shown in Figure 7. It is seen that although the 
mean of demand from three different methods 
are similar, a higher dispersion is obtained when 
natural and scaled ground motions are used. 
The dispersion also increases with increasing 
ground motion intensity (i.e. earthquake return 
period). The focus of this chapter is optimal 
seismic design of structures considering the LCC 
(not assessment); therefore, the use of spectrum 
compatible records is suggested. For assessment 
purposes, the use of unmodified (natural) records 
is recommended.

The mean, µD, and standard deviation, σD, of 
earthquake demand, as continuous functions of 
the ground motion intensity could be described 
using (Aslani & Miranda, 2005)

µD
c IM cIM c IM c c IM( ) = ⋅ ⋅1 1 2
2 3 or  (6)

σD IM c c IM c IM( ) = + ⋅ + ⋅4 5 6
2  (7)

where the constants c1 through c3 and c4 through 
c6 are determined by curve fitting to the data 
points that match the PGA of the ground motions 
records with the mean and standard deviation, 

Figure 6. (a) A typical pushover curve and the limit state points that delineate the performance levels, 
(b) illustration of lognormal probability distributions for the three structural limit states (IO: immediate 
occupancy, LS: life safety, CP: collapse prevention)
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respectively, of earthquake demand evaluated 
using inelastic dynamic analysis. The mean and 
standard deviation are the parameters of the cor-
responding normal distribution that describes 
the earthquake demand. The curve fitting to the 
earthquake demand obtained from the spectrum 
compatible records that are mentioned above for 
the mean and standard deviation using the first 
option in Eqn. (6) and Eqn. (7), respectively, is 
shown in Figure 8.

The hazard curve can also be described in 
mathematical form

v IM c e c ec IM c IM( ) = ⋅ + ⋅⋅ ⋅
7 9

8 10  (8)

where c7 through c10 are constant to be determined 
from curve fitting to the hazard curve.

With the above described formulation each 
term in Eqn. (3) is represented as an analytical 
function of the ground motion intensity, IM. Thus, 
using numerical integration the desired probabili-
ties of Eqn. (2) can easily be calculated. The cost 
of repair for the IO, LS, and CP limit states, Ci, 
are usually taken as a fraction of the initial cost 
of the structure. Finally, the LCC is evaluated 
through Eqn. (1).

The Optimization Algorithm

A brief review of most commonly used optimiza-
tion algorithms is provided above. The objectives 
of the optimization problem considered here are 
highly nonlinear (due to the inelastic dynamic 
analysis that is used to predict earthquake de-
mand) and the derivatives with respect to the 
design variables are discontinuous. Furthermore, 
the design variables (i.e. section sizes and rein-
forcement ratios) are discrete. Therefore, the use 
of gradient-based optimization algorithms is not 
well suited. The evolutionary algorithms have 
shown to be very efficient in solving combinatorial 
optimization problems as reviewed above. Here, 
the taboo search (TS) algorithm is selected and 
discussed in more detail. The same algorithm is 
also used to obtain the optimal solutions for the 
example application provided in the next section.

TS algorithm, first developed by Glover (1989, 
1990), then it is adapted to multi-objective opti-
mization problems by Baykasoglu et al. (1999a, 
1999b). An advantage of TS algorithm is that a set 
of optimal solutions (Pareto-front or Pareto-set) 
could be obtained rather than a single optimal 
point in the objective function space. The meth-
odology presented in Baykasoglu et al. (1999a, 
1999b) is used here with further modifications as 
described below.

Figure 7. Dispersion in earthquake demand for different representations of the earthquake hazard using: 
(a) natural, (b) scaled, and (c) spectrum compatible records
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TS algorithm has also been applied to structural 
optimization problems. Bland (1998) applied TS 
algorithm to weight minimization of a space truss 
structure with various local minima and showed 
that TS algorithm was very effective in finding 
the global minimum when both reliability and 
displacement constraints were applied. Mano-
haran and Shanmuganathan (1999) investigated 
the efficiency of TS, SA, GA and branch-and-
bound in solving the cost minimization steel truss 
structures. It was concluded that TS produced 
solutions better than or as good as both SA and 
GA and it arrives at the optimal solution quicker 
than both methods. In a more recent study, Ohsaki 
et al. (2007) explored the applicability of SA and 
TS algorithms for optimal seismic design of steel 
frames with standard sections. It was concluded 
that TS was more advantageous over SA in terms 
of the diversity of the Pareto solutions and the 
ability of the algorithm to search the solutions 
near the Pareto front.

To describe the modified TS algorithm used 
here, first, it is required to make the following 
definitions. The taboo list includes points in the 
design space for which the objective functions are 
evaluated for. Since inelastic dynamic time history 
analysis is computationally costly, this list is used 

to avoid multiple runs with the same combination 
of design variables. That is, a point in the taboo 
list is not evaluated again. The Pareto list includes 
the points that are not dominated by other points 
within the set for which the evaluation of objective 
functions is performed (i.e. the taboo list). The 
seed list includes the points around which optimal 
solutions are looked for. The latter are called as 
the neighboring points and they are basically the 
adjacent elements of the multidimensional array, 
that defines the decision (or design) variables, 
around the given seed point. The modified TS 
algorithm works as follows:

A.  Start with the minimum cost combination 
(or initial design), evaluate the objective 
function and add this point into taboo, seed 
and Pareto lists. Use this point as the initial 
seed point.

B.  Find the neighboring points around the cur-
rent seed. Here the number of neighboring 
points is chosen equal to the number of 
design variables and selected randomly 
amongst all the adjacent elements of the 
multidimensional array that defines the 
design variables.

Figure 8. Curve fitting to obtain the (a) mean and (b) standard deviation of earthquake demand in 
continuous form
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C.  Evaluate the objective function for all the 
neighboring points and add these into taboo 
list.

D.  Find the Pareto-front using the set of points 
for which the objective function is evaluated 
and update the Pareto list as the current 
Pareto-front.

E.  Amongst the neighboring points for the cur-
rent iteration choose the one that is on the 
Pareto-front and minimizes the cost function 
as the next seed point and add this point into 
the seed list. If there is no point which satis-
fies these conditions choose randomly one 
of the points from the Pareto list amongst 
the ones that are not already in the seed list.

F.  Check if the predetermined maximum 
number of objective function evaluations 
is exceeded; if yes stop, if not go to Step b.

The steps required to perform LCC oriented 
seismic design optimization according to the 
methodology presented in the preceding sections 
is outlined in Figure 9.

EXAMPLE APPLICATION

In this section, the formulations presented in the 
preceding sections are applied to a building as an 
illustration of the framework on LCC oriented 
seismic design optimization. The 2-story 2-bay 
RC frame structure show in Figure 10 is selected 

for the application. Seven design variables are 
defined for the optimization problem as given in 
Table 2, alongside the minimum and maximum 
values and increments. The combination of these 
design variables results in 30000 cases which 
constitute the search space. The objectives of 
the optimization problem are selected as initial 
and life-cycle cost, and structural performance in 
terms of maximum interstory drift. No constraints 
are defined because of the fact that code-based 
seismic design is not performed. The initial cost 
of the frames considers only the material costs. 
The unit prices for concrete and steel are assumed 
to $0.13/liters and $0.66/kg, respectively.

A site at the intersection of 2nd and Market 
Streets in San Francisco, CA (with coordinates 
37° 47´ 21.58´´ N, 122° 24´ 04.77´´ W) is se-
lected and the site-specific seismic hazard is 
consistently derived. The soil conditions might 
significantly alter the characteristics of the ground 
motions at a site, therefore, the soil conditions are 
also taken into account in the development of the 
hazard curves. The soil at the selected site is 
determined as D on the NEHRP (FEMA, 2003) 
scale with a shear wave velocity in the range from 
180 m/sec to 360 m/sec. Site specific hazard curve 
for PGA is shown in Figure 11(a). UHS for three 
different return periods (i.e. 75, 475, and 2475 
years) are obtained, see Figure 11(b), for record 
selection and scaling purposes. These return pe-
riods are mapped onto three structural limit states 
IO, LS and CP, respectively. One earthquake 

Table 2. Design variables and ranges for the considered structural frame 

Minimum Maximum Increment

Column Reinforcement Ratio 1.0% 2.5% 0.50%

Beam Reinforcement Ratio 0.5% 2.0% 0.50%

Width of Exterior Columns (mm) 660.4 863.9 50.8

Width of Interior Columns (mm) 711.2 914.4 50.8

Depth of Columns (mm) 457.2 660.4 50.8

Width of Beams (mm) 508 711.2 50.8

Depth of Beams (mm) 406.4 508 50.8
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ground motion is selected for each return period 
(see the section “The LCC Model” for more in-
formation) and spectrum matching (Abrahamson, 
1993) is used to achieve direct correspondence 
between the records and the hazard levels. The 
acceleration response spectra of the records after 
spectrum matching are shown in Figure 11(b).

The life-time of the structure, t, is considered 
as 50 years. The cost of repair for the IO, LS, and 
CP limit states, Ci, are taken as 30, 70 and 100 
percent of the initial cost of the structure based 
on the correspondence of the limit states defined 
previously and the information provided by Fra-
giadakis et al. (2006b). The hazard curve as a 
function of PGA is shown in Figure 11(a). The 
functional form in Eqn. (8) is fitted to the hazard 
curve to allow for the numerical integration of 
Eqn. (3). The demand side of fragility relationship 
given in Eqn. (4), i.e. the first term, as a function 
of PGA, is obtained by finding the maximum 
interstory drift under the three hazard levels 
through inelastic dynamic analysis and it is rep-

resented analytically by curve fitting to mathe-
matical form in Eqn. (6). The dispersion in 
earthquake demand, βD, is quantified as 0.25, 0.35 
and 0.45 for the three hazard levels with 75, 475 
and 2475 years return period, respectively, by 
running additional analysis. The details of this 
derivation are omitted here for the sake of brev-
ity. As mentioned earlier, the structural limit states 
are also established by carefully investigating 
different design alternatives in the search space 
by conducting pushover analysis and considering 
local response measures, i.e. strains in the longi-
tudinal reinforcement and concrete core. The 
structural capacity is evaluated for a range of 
design variables and the mean values for the three 
limit states IO, LS and CP are obtained as 0.4%, 
2% and 3.5% interstory drift. The uncertainty in 
capacity is assumed to be equal to 0.35 taking 
previous research as a reference (Wen, et al., 
2004). First the conditional probability (fragility) 
in Eqn. (4), then the total probability in Eqn. (3) 
is calculated. The damage state probabilities are 

Figure 9. Steps for performing LCC oriented seismic design optimization
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found from Eqn. (2) and the expected LCC of the 
structure is obtained from Eqn. (1).

During the optimization process, TS algorithm 
is allowed to search 10% of the search space. In 
other words, the maximum number of objective 
function evaluations is set 3000 for each hazard 
level. Figure 12(a) shows the combinations of the 
design variables (in the solution space) that are 
searched by the TS algorithm to obtain the Pareto-
front which is also shown in the same figure with 
a solid line with circle marks. It is seen that the 
algorithm is very effective in terms of narrowing 
down the search space to the points that are close 

to the Pareto-front. The initial and the total costs 
of the building vs. the maximum interstory drift 
under the 2475 years return period earthquake is 
shown in Figure 12(b) [only for optimal solutions]. 
It is seen that there is a compromise between 
the initial cost, LCC and structural performance 
(represented with maximum interstory drift). As 
the initial cost increases it approaches the LCC 
and the maximum interstory drift is reduced (bet-
ter structural performance) while the LCC and 
the maximum interstory drift are significantly 
higher for lower initial cost solutions. This type 
of a representation is very important for the use 

Figure 10. RC frame structure used for the example application

Figure 11. (a) Site specific hazard curve, (b) UHS and spectrum compatible earthquake records
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of LCC oriented seismic design optimization by 
the decision makers such as owners and engineers 
as well as for its implementation in future seismic 
design codes, as the presentation of results in 
the Pareto-optimal form gives flexibility in the 
decision making process and can accommodate 
changes to the performance requirements through-
out the course of design.

FUTURE RESEARCH DIRECTIONS

There are two major issues in LCC oriented 
seismic design of structures that requires further 
research. The first one is the application of the 
concept developed here to structural models with 
significant number design variables. The size of 
the search space increases exponentially with 
increasing number of design variables and without 
a compromise from the accuracy of structural as-
sessment it becomes very difficult to cope with the 
computational demand. Although simplified struc-
tural models and analysis techniques are always 
an option, these undermine the main objective of 
the seismic design optimization by introducing 
additional uncertainty into the procedure.

The second issue is sensitivity of the LCC 
results to the assumptions made in the derivations. 

Most importantly, for the formulation provided 
in this paper, the constants Ci in Eqn. (1) which 
define the cost of repair for the ith damage state 
as a fraction of the initial cost have strong influ-
ence on the LCC. As discussed earlier, it is not 
straightforward to determine damage states for 
structures and the associated cost of repair. The 
effect of other parameters such as the dispersion 
in capacity and demand on the LCC should also be 
investigated. Eqn. (4) assumes that the structural 
capacity is independent of earthquake demand 
which is another simplification that is usually 
adopted. The evaluation of workmanship cost is 
difficult as it is dependent on various parameters 
(especially the local cost of labor). Finally, the 
cost of non-structural damage after an earthquake 
might exceed several times the cost of structural 
damage and this also needs to be investigated.

CONCLUSION

Optimization in structural design is a growing sub-
ject due to increased awareness of the community 
regarding the sustainability of civil infrastructure 
and the use Earth’s nonrenewable resources. And 
the recent incidents have shown us once again that 
the initial cost of a structure is not a satisfactory 

Figure 12. (a) Example Pareto-front obtained using TS algorithm, (b) initial and LCC of the building
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criterion for the economy objective of seismic 
design, as the repair and indirect costs due to 
damage in future earthquakes might be signifi-
cantly higher than the initial cost, therefore the 
life-cycle cost (LCC) should also be considered. 
In this chapter the LCC considerations in seismic 
design optimization of structures is discussed 
emphasizing the importance of the following: (1) 
use of advanced analysis, which provides the most 
rigorous assessment of structural capacity and 
earthquake demand, (2) evaluation of the struc-
tural capacity by taking into account not only the 
global behavior of the structure but also the local 
response, (3) use of system-specific limit states 
to define the structural capacity, and (4) consid-
eration of all major sources of uncertainty, from 
seismogenic source characteristics to material 
properties and structural modeling in calculating 
the limit state exceedance probabilities. A LCC 
formulation is provided where each component 
from seismic hazard, to structural assessment, LCC 
model and optimization algorithm are rigorously 
addressed. An example application is included to 
allow for easy implementation of the framework 
presented here.
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INTRODUCTION

Structural optimization for performance-based 
design in earthquake engineering aims at finding 
optimum design parameters (e.g.,dimensions of 
structural members, steel reinforcement ratios 
for concrete structures, characteristics of energy 
dissipation devices) corresponding to a minimum 

objective (e.g.,the total cost), with constraints 
specifying minimum reliability levels for each 
performance requirement. Three performance 
levels are normally considered in earthquake en-
gineering: serviceability, life safety and collapse.

The objective of the present Chapter is to pres-
ent a procedure for performance-based optimiza-
tion of a preliminary design, taking into account the 
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Seismic Design:

A Search-Based Cost Optimization 
with Minimum Reliability Constraints

ABSTRACT

An approach is presented to structural optimization for performance-based design in earthquake engineer-
ing. The objective is the minimization of the total cost, including repairing damage produced by future 
earthquakes, and satisfying minimum target reliabilities in three performance levels (operational, life 
safety, and collapse). The different aspects of the method are considered: a nonlinear dynamic structural 
analysis to obtain responses for a set of earthquake records, representing these responses with neural 
networks, formulating limit-state functions in terms of deformations and damage, calculating achieved 
reliabilities to verify constraint violations, and the development of a gradient-free optimization algo-
rithm. Two examples illustrate the methodology: 1) a reinforced concrete portal for which the design 
parameters are member dimensions and steel reinforcement ratios, and 2) optimization of the mass at 
the cap of a pile, to meet target reliabilities for two levels of cap displacement. The objective of this 
latter example is to illustrate model effects on optimization, using two different hysteresis approaches.
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uncertainties in the ground motion and structural 
properties, and at the same time minimizing the 
total cost. This includes, in addition to the initial 
cost of construction, that associated with repairs 
following each of a series of earthquakes within a 
given time interval. The preliminary design may be 
the result of applying capacity design approaches, 
according to existing Codes, in order to satisfy 
the performance levels.

The subsequent sections of this Chapter discuss 
the different aspects of the proposed design opti-
mization process, including: 1) the quantification 
of the seismic hazard or possible ground motions 
at the site; 2) the use of a structural dynamics 
analysis model that represents, as best as possible, 
the nonlinear response and the hysteretic energy 
dissipation mechanisms; 3) the calculation of a 
response database for the estimated ranges of 
the different intervening input random variables 
and design parameters; 4) a functional represen-
tation for the discrete databases, using neural 
networks response surfaces; 5) implementation 
of the response surfaces in the calculation of the 
reliability levels achieved, at each performance 
level, for specific values of the design parameters; 
6) representation of these reliability levels by 
neural networks in terms of the design param-
eters, in order to achieve an efficient calculation 
of reliability constraint violations and, finally, 7) 
an optimization algorithm that would search for 
a minimum total cost objective under minimum 
reliability constraints for each performance level.

Earthquakes show large ground motion un-
certainties which must be coupled with those in 
the structural capacities, and the demands will 
likely trigger a nonlinear structural response. 
For each performance level, the formulation of 
the limit-state functions requires the estimation 
of maximum responses (e.g., maximum inter-
story drift) during the duration of the earthquake. 
Since only discrete values can be obtained by 
numerical analyses for specific combinations of 
the variables and parameters, the responses need 
to be given a continuous functional representation 

for optimization and reliability estimation. Each 
of the responses of interest can be approximately 
represented by using response surfaces which, 
when properly adjusted, can be used as substi-
tutes for the dynamic analysis (Hurtado, 2004). 
Different forms for approximating surfaces have 
been studied (Möller et al., 2009b), and neural 
networks have been shown to offer advantages 
of flexibility and adaptability. Regardless of the 
type of response surface used, a major advantage 
of the substitute is the computational efficiency 
achieved with Monte Carlo-type simulations when 
estimating probabilities of non-performance.

The approach chosen in the optimization prob-
lem must consider the presence of constraints, 
the dimensionality and the form and number of 
objective functions. Optimization methods can use 
different approaches (Pérez López, 2005; Swisher 
et al., 2000), some requiring the calculation of 
gradients (steepest descent, conjugate gradients, 
Newton or quasi-Newton schemes) and others, not 
using gradients, implementing genetic or search 
algorithms. This Chapter proposes an efficient 
search-based algorithm which also accounts for 
constraints given by specified minimum reliability 
levels at each performance level. The optimiza-
tion approach presented in this Chapter is based 
on previous work by the authors (Möller et al., 
2007, 2008, 2009a,c), and introduces additional 
contributions as follows:

• The optimization process is started from a 
preliminary, deterministic seismic design;

• The previous search-based algorithm by 
the authors has been modified to mini-
mize the possibility of encountering local 
minima;

• The damage repair costs introduced into 
the objective function take into account the 
occurrence of multiple seismic events dur-
ing the life of the structure.

The optimization approach presented here is 
illustrated with two performance-based design 
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examples. The first is for a simple, reinforced con-
crete portal frame, for which the design parameters 
are the column and beam dimensions, as well as 
the steel reinforcement ratios. The optimality of 
the preliminary design is discussed, as well as the 
efficiency of the proposed optimization process. 
This example also considers the sensitivity of the 
optimal solution to the assumed relationship be-
tween calculated damage and repair costs, as well 
as to the reliability levels prescribed as minimum 
constraints for each of the performance levels.

Reliability estimates and optimization results 
are conditional on the analysis models used. The 
second example is the optimization for the permis-
sible pile-cap mass carried by a pile foundation. 
This main objective in this example is to discuss 
the importance of the analysis model formulation 
in the final optimization results. Two different 
models are used, based on two different formula-
tions for hysteretic energy dissipation.

1. THE OPTIMIZATION 
FORMULATION

1.1 General Objective

The aim of the optimization considered here is 
to find values for the design parameters, grouped 
in a vector xd, to minimize the objective function 
C(xd). This function is the total cost, and it is given 
by the sum of the initial construction cost C0(xd) 
and the damage repair cost Cd(xd), required after 
the occurrence of earthquakes during the service 
life of the structure. That is,

C C Cd d d d( ) ( ) ( )x x x= +0  (1)

The minimum total cost must correspond to a 
structure that also satisfies minimum reliability 
requirements for different performance levels:

β βj d jT j( ) , , ,x ≥ = 1 2 3  (2)

in which βj(xd) are the reliability indices achieved 
with the design parameters xd for each of the three 
performance levels j: “operational”, “life safety 
or controlled damage” and “collapse”, with βjT 
being the corresponding prescribed minimum 
targets over the design life TD.

The design parameters xd could be, for example, 
either dimensions, steel reinforcement ratios, or 
statistical parameters for some of the random 
variables in the problem (e.g., the mean value of 
the required steel yield strength).

Given a procedure to verify reliability constrain 
compliance, as described in Section 2.2, an opti-
mization technique is then applied to minimize the 
total cost while satisfying the minimum reliability 
indices for each performance level. The optimiza-
tion algorithm proposed here is a gradient-free, 
search-based approach, as described in Section 5.

1.2 The Methodology for 
Reliability Evaluation

The optimization process requires the calcula-
tion of reliability levels achieved with the design 
parameters xd. This is implemented through the 
following steps, all prior to the optimization proper. 
These steps, to be addressed in the following sec-
tions, include:

A.  Definition of the random variables X in the 
problem, and their corresponding upper and 
lower bounds;

B.  Selection of combinations for the variables 
X within their corresponding bounds, using 
design of experiments;

C.  Construction of a structural response data-
base: for each variable combination in b), 
and for each record in a set of earthquakes 
considered likely to occur at the site, determi-
nation of the maximum structural responses 
Ri(X) that enter in the formulation of the 
performance functions, using a nonlinear 
dynamic time-step analysis;
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D.  For each variable combination, determina-
tion of the mean maximum structural re-
sponse and corresponding standard deviation 
over the set of earthquake records, followed 
by an approximation of these means and 
standard deviations by explicit, continuous 
neural network response surface functions 
Fi(X).

E.  Using the mean and standard deviation 
for each maximum response to represent 
its corresponding cumulative probability 
distribution by a lognormal. In turn, with 
these distributions, implementing the neural 
networks from d), to calculate the probabili-
ties of non-performance or the associated 
reliability indices βj. for any given set of 
design parameters.

F.  For a set of parameters xd, chosen within their 
bounds, approximation of the discrete results 
from e) by means of neural network response 
surface functions for the reliabilities βj(xd). 
Using these approximations directly, during 
the optimization, to calculate the reliability 
achieved at each performance level for a 
particular vector xd, in order to efficiently 
evaluate constrain violations.

2. NONLINEAR DYNAMIC 
ANALYSIS MODEL

The optimization requires the development of a 
response database in terms of the random variables 
X, for each earthquake record considered. This 
calculation implies the application of a nonlinear 
dynamic analysis and a step by step integration of 
the equations of motion over the duration of the 
earthquake. The focus of this Chapter is not on 
the details of the particular structural nonlinear 
dynamic analysis used. Many modeling techniques 
have been proposed, aiming at achieving an ad-
equate balance between accuracy and simplicity. 
It is important to emphasize, however, that each 
approach has an associated modeling error, and 

that the development of a response database is the 
task involving the greatest computational effort. 
A nonlinear model for reinforced concrete, based 
on bar elements, has been discussed elsewhere 
(Möller, 2001; Möller and Foschi, 2003) and 
has been used in the first application example 
presented here in Section 7.

The reliability and, ultimately, the optimization 
results, are conditional on the adequacy of the 
analysis model, and a proper “model error” vari-
able must be included in the random set X. Some 
of the issues to be addressed in the formulation of 
the dynamic analysis relate, for example, to how 
the hysteretic energy dissipation is represented. 
This issue is considered in the second application 
example in Section 8, a soil/structure interaction 
problem which highlights the dependence of the 
optimization results on the assumptions made in 
the analysis model.

3. RESPONSE REPRESENTATION 
BY NEURAL NETWORKS

3.1 Neural Networks

Neural networks are algorithms for the transmis-
sion of information between input and output. 
This technique has been used here to represent the 
structural response databases. Because the neural 
networks literature is quite extensive, only a brief 
description of the type of network used here is 
included for completeness.

Several input parameters are assumed to oc-
cupy individual “neurons” in an “input layer” and, 
similarly, several outputs can form the “output 
layer” containing the “output neurons”. The in-
formation between input and output is assumed to 
flow through intermediate or hidden neurons, the 
strength of the information between two neurons 
j and i being given by weight parameters Wji. The 
architecture of the network is shown in Figure 
1, for N inputs and K outputs. The information 
received by a hidden or output neuron is modi-
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fied by a transfer function h(t) before being sent 
forward along the network. The mathematical 
expression for this algorithm is

R F h W h W X W Wkj ji i
i

N

j k
j

J

( ) ( ) ( ( ) )X X≅ = + +
==
∑∑

1
0 0

1

 

(3)

in which, in our case, R(X) is the “true” value for 
the structural response obtained with the dy-
namic analysis for the input vector X, with com-
ponents Xi, F(X) is the neural network approxima-
tion, Wkj and Wji are the weight parameters, and 
h(t) is the transfer function applied at the hidden 
and output neurons. This function could take dif-
ferent forms, and in this Chapter we use a sigmoid:

h t
t

( )
.

( exp( ))
=

+ −
1 0

1
 (4)

The weights W must be obtained in such a 
way that the differences between R(X) and F(X) 
be minimized. This optimization is defined 
as the “training” of the network, and different 
minimization algorithms can be implemented, 

either gradient- or search-based. For example, the 
back-propagation or other Newtonian algorithms 
implement steepest descent with either a controlled 
or a calculated step. Although back-propagation is 
the commonly used training method, this Chapter 
presents in Section 4.2 a gradient-free search 
algorithm as a straight-forward approach to the 
training optimization.

3.2 Search-Based Optimization 
as a Training Algorithm

The following describes a gradient-free, search-
based optimization algorithm for the neural 
network weights W. The optimization strategy is 
called OPT. Let N be the number of input variables 
and NP the number of input data combinations. 
The input values are then X0(i,k), with i = 1, N and 
k = 1, NP. Before proceeding, the data are scaled 
to values X(i,k), between the limits 0.01 and 0.99, 
in order to eliminate potential problems with dif-
ferent units and magnitudes. Similarly, the output 
results from the response analysis, T0(k), are also 
scaled to values T(k) between 0.01 and 0.99, tak-

Figure 1. Neural network architecture
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ing into account that the sigmoid transfer function 
h(t) de Eq.(4) produces values between 0 and 1.

To start the optimization for the weights W, 
initial values are chosen randomly from an uni-
form distribution between -5 and 5. These limits 
are arbitrarily chosen, but are considered to be 
sufficiently wide to lead to a wide range in the 
predicted outputs Y(k). For each weight selection 
(e.g., 5000 combinations in this Chapter) the 
corresponding prediction error E is calculated 
from Eq.(5),

E Y k T k
k

NP

= −( )
=
∑ ( ) ( )

2

1

 (5)

keeping the combination of weights W0 which 
correspond to the minimum among the calculated 
errors E.

The absolute value of the NP errors (Y(k) – 
T(k)), corresponding to the weights W0, are ranked 
from smallest to largest. The set corresponding 
to 80% of the data with the largest errors is used 
for the network training, with the remaining 20% 
available for validation.

With W0 representing an “anchor” point with 
corresponding error E0 over the training set, new 
values for the weights W are randomly chosen 
within a neighborhood of W0, and the correspond-
ing errors E are calculated with Eq.(5). Whenever 
a set W is found for which E < E0, this set becomes 
the new W0 and the search process is repeated 
around this new anchor. The maximum number 
of repetitions is limited to a prescribed number 
(500 in the work presented here).

The number of samples of weights W around 
a given anchor W0 is limited, e.g., to 1000. If this 
limit is reached and all errors satisfy E > E0, then 
convergence has been achieved and the mínimum 
solution is estimated to be in correspondence with 
the anchor W0.

If either convergence has been achieved, or 
the number of repetitions has exceded the stipu-
lated maximum, then the NP individual errors 
are calculated and ranked, re-initiating the search 

for the new 80% of the data corresponding to the 
greatest errors in absolute value. This process is 
repeated NREP times (100 in the work presented 
here), looking for the possibility of local minima. 
The final solution corresponds to that W0 with the 
minimum overall error E0.

3.3 Subsequent Optimization 
Using Gradients

The search-based algorithm described in 4.2 can be 
complemented with a gradient-based optimization 
starting from the final weights W0. The following 
alternatives may be pursued:

A.  Search for weights W trying to zero out the 
error E

If the error E is approximated as a linear func-
tion around E0,

E E= + −0 0 0G W WΤ ( )  (6)

in which Go is the gradient vector at Wo,

G
E
Wi

i W

0

0

=
∂
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 (7)

the objective is to find W to make E = 0. Thus, the 
vector W – W0 is taken along the gradient direction 
(but in the negative direction):

( )W W G− = −0 0λ  (8)

The step magnitude λ is then calculated from

E E
E

= + − = → =0 0 0
0

0 0

0G G
G G

Τ
Τ( )λ λ  

(9)

giving a new W as
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W W
G G

G= −0
0

0 0
0

E
Τ  (10)

Eq.(10) can be used to implement an iterative 
process which, however, may not converge. The 
process can be stopped when the new calculated 
error is greater tan the previous one. To improve 
convergence, it is sometimes useful to advance 
only a fraction of λ.

B.  Search for weights W trying to zero out the 
gradient G

A zero gradient is associated with a minimum 
value of the error E. Since, in general, the network 
predictions will not all agree exactly with the input 
data, searching for a minimum error is better than 
searching for E = 0. In this case, the gradient G is 
expressed as a linear function around the gradient 
G0 evaluated for the weights W0,

G G H W W= + −0 0 0( )  (11)

in which H0 is now the Hessian matrix
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The search is now for a new vector W – W0, 
also in the gradient direction, with the objective 
of achieving G = 0. Thus,

( )W W G− = −0 0λ  (13)

The step magnitude λ is now obtained from

λ =
G G
G H G

0 0

0 0 0

Τ

Τ  (14)

giving a new W as

W W
G G
G H G

G= −0
0 0

0 0 0
0

Τ

Τ  (15)

Eq.(15) can also be used to implement an 
iterative process, and convergence is improved 
if only a fraction of the step λ is applied. As a 
simplification, the full Hessian matrix can be 
replaced by using only its diagonal terms.

C.  Combination of optimization approaches

The gradient-free search OPT described in 
4.2 can be utilized to obtain a first solution for 
the optimum weights W. This approach can be 
subsequently combined with either the strategy 
described in a) or b), in an attempt to improve the 
optimization results. This can be done after each 
of the NREP repetitions of OPT.

The components of the gradient or of the Hes-
sian matrix are calculated numerically.

4. SEARCH-BASED OPTIMIZATION 
FOR THE DESIGN PARAMETERS

The optimization process OPT described in 4.2 
for the training of neural networks can also be 
adapted to the problem of determining optimum 
design parameters, minimizing the total cost and 
satisfying the required minimum reliability con-
straints. Thus, the numerical procedure follows 
the steps represented in Figure 2.

The starting point or anchor, xd0, is the result 
of a preliminary design for the structure. This first 
step normally utilizes deterministic, simpler 
methods and may follow capacity design guide-
lines specified in the Codes. For this preliminary 
choice of the design parameters, the neural net-
works for the reliability indices are used to estimate 
the achieved levels βj(xd0) and, using Eq.(1), the 
total cost C(xd0), Figure 2(a). This Figure shows, 
as a schematic illustration, the case of just two 
design parameters, xd(1) and xd(2), which could 
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either satisfy the reliability constraints or not. 
Should the preliminary design parameters xd0 not 
satisfy the reliability constraints, a search is made 
according to the following steps, Figure 2(b), 
until one combination xd is found satisfying the 
constraints. This combination is then taken as the 
initial anchor.

Next, n combinations of xd are chosen randomly 
in the neighborhood of xd0, Figure 2(c), choosing 
each of the design parameters, xdi, within the inter-
val xd0i ± r1 xd0i (initially r1 = 0.1). The reliability 
constraints are verified for each combination, 
choosing a new combination if the constraints are 
not satisfied. The total cost is calculated for the 
n combinations, keeping the one corresponding 
to the lowest cost. If this cost is lower than the 
one corresponding to the anchor, then the corre-
sponding combination becomes the new anchor 
and the process is re-initiated. The work for this 
Chapter used n = 100.

If none of the n combinations leads to a cost 
lower than the one corresponding to the anchor, the 
search is densified by choosing more combinations 
within the interval, until one is found leading to a 
lower cost. The work for this chapter restricted the 
number of combinations to a maximum of n = 500.

If still no combinations are found leading to 
a cost lower than that for the anchor, the search 
factor radius r1 is amplified to r2 = r1 + Δr, with 
Δr = 0.3 used in this work. A number m of com-
binations xd is chosen within the amplified search 
volume, satisfying the reliability constraints, and 
maintaining the same density as in the previous 
search domain corresponding to the radio r1. Of 
the m combinations (maximum of 2000), the 
first that is associated with a cost lower than that 
for the anchor is retained and used as the new 
anchor. This sequence is repeated three times in 
order to reduce the possibility of encountering a 
local minimum.

The search process is stopped when no com-
bination is found, satisfying the constraints, with 
a cost lower than for the anchor.

5. OBJECTIVE FUNCTION: 
THE TOTAL COST

Costs associated with the occurrence of earth-
quakes and associated damage have been discussed 
by Lagaros et al. (2010). Here, the total cost C(xd) 
in Eq.(1) includes the initial construction cost 

Figure 2. Schematic for the design parameters’ optimization process
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C0(xd) and the damage repair cost Cd(xd), assum-
ing that the structure will be completely repaired 
after each earthquake that could occur during the 
service life.

5.1 Initial Cost

For a reinforced concrete structure, the initial 
cost is determined as a function of the concrete 
volumes V and steel weights W in beams and 
columns, and the unit costs of these items. Thus, 
if CUC is the unit cost for concrete, and CUS is 
the corresponding cost for steel,

C V V CUC W Wd c beam d c col d s beam d s col0( ) ( ) ( ) ( ) (, , , ,x x x x= +



 + + xxd CUS)





 
(16)

The concrete volumen and steel weight are 
functions of the design parameters xd. The unit 
costs should include not only those for materials 
but also for forming and labor. For the first appli-
cation example in this Chapter, unit costs of 1500 
$/m3 and 500 $/KN have been used respectively, 
for concrete and steel.

5.2 Repair Costs

The repair costs, converted to present values, 
depend on the level of damage inflicted during 
the earthquakes, the uncertainty as to when these 
will occur and the number of earthquakes occur-
ring during the life time TD, and the interest rate 
to be applied to repair funds accumulated from 
the time of construction.

The nonlinear dynamic analysis should include 
a parallel calculation of the damage accumulated 
during the shaking. The analysis software used for 
the first application in this Chapter (Möller, 2001; 
Möller and Foschi, 2003) quantifies the global 
structural damage by means of an index DIES. If 
Cf (DIES) is the function used to estimate the cost 
of repairing a damage DIES, and assuming that 

this damage occurs at a time t, the present value 
Cf0(DIES) is given by

C DIES C DIES r tf f0( ) ( ) exp( )= −  (17)

in which r is the interest rate. The expected value 
of Cf0(DIES) can be calculated once the probability 
density function (PDF) for the time t is known. 
For this, a Poisson arrival process is assumed, 
with mean arrival rate ν. Thus, the PDF for the 
time t to the first earthquake event, t1, is

f t tt 1
( ) exp( )= −ν ν  (18)

which allows the calculation of the mean for the 
time t1 as

t t f t dtt1

0
1

1
= =

∞

∫ ( )
ν

 (19)

The probability P(t2 > t) that the time to the 
second event, t2, be greater than a time t must 
consider two posibilities: either that there are no 
events before t or that there is only one. Thus,

P t t t t t( ) exp( ) exp( )2 > = − + − ν ν ν  
(20)

from which the cumulative distribution Ft2(t) for 
t2, and its PDF ft2(t) become

P t t t t F t f t t tt t( ) ( ) exp( ) ( ) ( ) exp( )2
21 1

2 2
≤ = − + − = → = −ν ν ν ν  

(21)

The expected time to the second event is

t t f t dtt2

0
2

2
= =

∞

∫ ( )
ν

 (22)
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A similar reasoning allows the determination 
of the PDF for the arrival time tn of the nth event, 
and its mean value:

f t
t

n
t t t f t dt

n
t

n n

n tn n
( )

( )!
exp( ) ( )=

−
− → = =

− ∞

∫
ν

ν
ν

1

0
1

 

(23)

Under the assumption that the structure is fully 
repaired after each event, the total expected cost 
(at present values and conditional on the damage 
index DIES) becomes:

C C C Cd DIES DIES DIES n DIES
= + + +1 2   

(24)

in which

C C DIES f t dt

C C DIES f t dt
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2 0
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Introducing Eq.(17) and (23) into Eq.(24) the 
final expected cost Cd|DIES, conditional on a dam-
age level DIES, becomes

C C DIES
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i
i
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Eq.(26) is still conditional on the number n of 
earthquakes during the service life TD.This number 
is itself a random quantity and, assuming that it 
obeys a Poisson distribution, the probability of n 
events in TD is

P X n
T

n
TT

D

n

DD
( )

!
exp( )= =

( )
−

ν
ν  (27)

Finally,
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(28)

In general, the costs Cn increase with n, but this 
is compensated by the diminishing probability of 
occurrence of an increasing number of n events in 
TD. Thus, the outcome from Eq.(28) converges to a 
finite number as n is increased. In the application 
results in this Chapter, the summation in Eq.(28) 
was truncated when the relative contribution of 
the last term was less than 0.001.

The function relating the cost Cf to the damage 
index DIES (which ranges between 0 and 1) was 
assumed to be of the form

C DIES C
DIES

DIES

C DIES C

f

b

f

( )
.

.

( )

=








 ≤

=

α

α

0

0

0 60
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(29)

in which C0 is the total replacement cost and the 
coefficient α = 1.20 is assumed to contemplate 
extra costs for demolition and cleanup. Eq.(29) 
further assumes that complete replacement would 
be required should the damage index exceed a 
value DIESLIM = 0.60. The exponent b needs to 
be set by calibration to practical experience, and 
in the applications in this Chapter has been as-
sumed to be b = 1.

Finally, the total expected repair cost must 
consider the PDF for the damage index DIES,

C C f DIES d DIESd d d DIES DIES( ) ( ) ( )x = ⋅ ⋅
∞

∫
0

 

(30)
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The PDF fDIES(DIES) in Eq.(30) is calculated 
by obtaining first, and then differentiating, the 
cumulative distribution of DIES, using simulation 
and the neural networks for the response DIES. 
This is represented by a Beta distribution, given 
that the damage index is bounded by 0 and 1.

In general, an earthquake does result in addi-
tional costs beyond those limited to the structure: 
losses associated with contents or non-structural 
components, cost for interruption of service, 
insurance and losses for injury or casualties. 
These additional costs can be taken into account 
within the format proposed here, but have not 
been considered in the applications shown next 
in this Chapter.

6. APPLICATION EXAMPLE1: 
OPTIMIZATION OF A SIMPLE 
PORTAL FRAME

6. 1 Random Variables, 
Response Databases, and Neural 
Network Representations

The structure chosen for this application example 
is a simple reinforced concrete portal frame, shown 
in Figure 3.

The main input variables for the determination 
of the response databases are shown in Table 1 
with their corresponding bounds.

Within the bounds, 450 variable combinations 
were generated by experimental design (Zhang, 
2003). For each combination, 10 sub-combinations 
were generated for the following secondary vari-
ables: (a) a set of random phase angles to gener-
ate an artificial earthquake record (Möller, 2001; 
Shinozuka, 1967), with the resulting record then 
scaled to the peak acceleration aG included in the 
particular combination; and (b) the concrete and 
steel strength as they affect the variability in the 
parameters for the hysteretic relationship moment-
curvature for beam and columns cross-sections 
(Möller et al., 2006).

The nonlinear dynamic analysis was then 
carried out for each of the combinations and for 
each sub-combination, obtaining a database for 
the following response parameters:

• UMAX: The maximum displacement at 
the top of the portal

• DIST: The maximum inter-story drift
• DILO: A maximum local damage index
• DIES: A maximum global damage index

Thus, to each of the response results Ri (i = 
1, 450) obtained for the 450 combinations, cor-
responded NS = 10 results Rki (k = 1, 10) for the 
set of sub-combinations. These results can be used 
to obtain the mean and the standard deviation of 
each Ri over the set of secondary variables (differ-
ent earthquake records and hysteretic properties):

R
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R
NS

R Ri k
k

NS

R k i

k
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i i i
= =

−
−

= =
∑ ∑1 1

11 1

2σ ( )  

(31)

The data for these statistics form two databases, 
each with NP = 450 entries. Both databases are 
represented by neural networks with the main 
variables as input.

The training of the networks used the OPT 
algorithm, with a subsequent attempt to improve 
the solution by using a gradient-based approach 
as described in Secion 4.3. This additional step 
only produced a small improvement in the results. 
The agreement between the data T and the neural 
network outputs Y, are shown in Figure 4 for the 
response DIST as a typical case. To quantify the 
goodness of the regression, the linear correlation 
coefficient ρYT is calculated,

ρ
σ

σ σ
σY T

Y T

Y T
Y T k

k

NP

kNP
Y Y T T= =

−
− −

=
∑where

1
1 1

( ) ( )  

(32)

The results in Figure 4 show a very good 
agreement and a correlation coefficient very close 
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to unity. Nevertheless, the lack of fit between the 
approximation F(X) and the actual data R(X) can 
be quantified by calculating the standard deviation 
of the relative error,

σεr NP

Y T

Y
k k

kk

NP

=
−

−

=
∑1

1 1

2( )  (33)

in which Yk is the value calculated by the network, 
Tk is the target data from the nonlinear dynamic 
analysis and NP = 450, the size of the database.

The neural network predictions can then be 
corrected to account for the lack of fit, as follows:

F Y X Xi i m N F Y Ni i
= + = +( . ) ( . )1 1

1 2
σ σ σ σε εσ

 
(34)

in which Y i Yi
, σ  are, respectively, the mean 

value and the standard deviation calculated with 
the corresponding neural network, and σ σε εσm ,  
are the corresponding standard deviations of the 
relative errors. XN 1, XN 2 are two additional random 
variables associated with the fit error and assumed 
to be Standard Normals.

6.2 Performance Functions 
and Neural Networks for 
Reliability Estimates

The performance function Gi for the ith-limit state 
can be written, in general, as

G RLIM R RLIM Fi i i i i( ) ( ) ( )X X X= − ≅ −  
(35)

Eqs.(36) through (43) show the performance 
functions for the maximum relevant response 
parameter and for three performance levels: op-
erational, life safety and collapse. Each of the 
capacity terms in these functions show, in paren-
theses, the mean and the coefficient of variation 
( , )RLIM COVRL . In G11, uy indicates the mean 
yield displacement for the frame, below which 
the structure remains elastic.

Operational:
• Elastic displacement limit

G u UMAXy11 0 10( ) ( , . ) ( )X X= −  (36)

Figure 3. Portal frame
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• Interstory drift
G DIST12 0 005 0 10( ) ( . , . ) ( )X X= −  (37)

Life safety:
• Interstory drift

G DIST21 0 015 0 10( ) ( . , . ) ( )X X= −  (38)
• Maximum local damage index

G DILO22 0 60 0 10( ) ( . , . ) ( )X X= −  (39)
• Maximum global damage index

G DIES23 0 40 0 10( ) ( . , . ) ( )X X= −  (40)

Collapse:
• Interstory drift

G DIST31 0 025 0 10( ) ( . , . ) ( )X X= −  (41)
• Maximum local damage index

G DILO32 1 00 0 10( ) ( . , . ) ( )X X= −  (42)
• Maximum global damage index

G DIES33 0 80 0 10( ) ( . , . ) ( )X X= −  (43)

In these performance functions, each response 
demand F(X) is a function of the main random 
variables X, and is represented with a lognormal 

distribution over the sub-combinations. Thus, in 
general,
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(44)

in which RN1 is a Standard Normal variable that 
introduces the variability over the sub-combina-
tions. F( )X  and σF ( )X are, respectively, the mean 
and the standard deviation of the response calcu-
lated from the corresponding neural networks, 
using Eq.(34) to account for the regression error. 
Eq. (44) is applied to each response, for example, 
whether F(X) is the maximum displacement 
UMAX(X) or the maximum interstory drift 
DIST(X).

Since the damage indices DILO(X) and 
DIES(X) are limited between 0 and 1, the F(X) 
in these cases are represented by Beta distributions 
with the same limits, with the mean F( )X  and 
standard deviation σF ( )X . These, in turn, are 

Table 1. Application 1, main random variables, and definitions 

    Variable Lower 
bound

Upper 
bound     Definition

    X(1) = m (KN s2 / cm2)     2.15x10-4     7.14x10-4     Applied mass per unit length

    X(2) = bb (cm)     15     30     Width of the beam cross-section

    X(3) = hb (cm)     40     70     Height of the beam cross-section

    X(4) = bc (cm)     20     40     Width of the column cross-section

    X(5) = hc (cm)     40     100     Depth of the column cross-section

X(6) = ρ span     0.00298     0.01389     Steel reinforcement ratio, beam span

X(7) = ρend     0.00298     0.01389     Steel reinforcement ratio, over beam support

X(8) = ρcol     0.008     0.04286     Steel reinforcement ratio, columns

X(9) = f fr c/ ′0     0     0.15     Normalized concrete confinement pressure

    X(10) = aG (cm / s2)     25     1200     Ground peak acceleration

    X(11) = fg (Hz)     2     3     Soil central frequency
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obtained from the corresponding neural networks. 
The Beta distribution for each of the damage 
indices requires the introduction of an additional 
random variable, U1, uniformly distributed be-
tween 0 and 1.

The uncertainty in each of the capacities RLIM 
is modeled with a normal distribution, introduc-
ing an additional Standard Normal variable XN 3:

RLIM RLIM COVRL XN= +( . )1
3

 (45)

A summary of the random variables, with 
their distribution types and parameters, is shown 
in Table 2. The statistics for the peak ground ac-
celerations aG correspond to the seismicity for 
the city of Mendoza, Argentina, as provided by 
INPRES (1995).

Figure 4. Neural networks agreement for the response DIST

Table 2. Random variables 

    Variable     X     σX     Type     Variable     X     σX     Type

    X(1) = m     5.1x10-4     5.1x10-5     Normal X(10) = aG     94 cm/s2     130cm/s2     Lognormal

    X(2) = bb     20 cm     1 cm     Normal     X(11) = fg     2.50 Hz     0.375 Hz     Normal

    X(3) = hb     ? cm 0.05 X     Normal X(12) = σaG
    0     0.25     Normal

    X(4) = bc     30 cm     1.5 cm     Normal     X(13) = aG     X(13) = X(10) [1.0+X(12)]

    X(5) = hc     ? cm 0.05 X     Normal     X(14) = RN 1     0     1     Normal

X(6) = ρ span     ? 0.10 X     Lognormal     X(15) = U1     0     1     Uniform

X(7) = ρend     ? 0.10 X     Lognormal     X(16) = XN 1     0     1     Normal

X(8) = ρcol     ? 0.10 X     Lognormal     X(17) = XN 2     0     1     Normal

X(9) = f fr c/ ′0     0.10     0.01     Normal     X(18) = XN 3     0     1     Normal
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Each of the question marks (?) in this Table 
indicates an optimization design parameter (the 
mean values for the depth of the beams and col-
umns, and for the longitudinal steel reinforcement 
ratios).

The reliability assigned to each performance 
level corresponds to a series system reliability for 
all the performance functions G included in that 
performance. Thus, the reliability for collapse cor-
responds to that of a series system consisting of the 
three limit states given by Eqs.(41) through (43).

Databases for achieved reliabilities are devel-
oped, as described, as a function of the design 
parameters, utilizing the performance functions 
and the response neural networks, These databases 
are themselves represented by neural networks, 
permitting the efficient estimation of reliabilities 
achieved for any choice of input design parameters 
(within their bounds). The databases included 
data from 180 design parameter combinations. 
Neural network agreement with the input data is 
shown in Figure 5 for the reliability índices β1, β2, 
β3 corresponding to the three performance levels.

The dispersion or lack of agreement error is 
represented by a normal distribution following 
the same approach as described for Eq.(34). Fig-
ure 5 shows the very good approximation of the 
reliability data by means of the trained neural 
networks.

6.3 Preliminary Design: Initial 
Values for the Design Parameters

The preliminary design for the portal frame was 
achieved according to the procedure described by 
Rubinstein et al. (2006), followed by application 
of the capacity design guidelines specified in the 
Argentine norms INPRES-CIRSOC 103, Parte II 
(2005). The results of this preliminary calculation 
are shown in Table 3, and provide the first anchor 
combination xd0 for the optimization.

The design parameters satisfy additional con-
straints to provide adequate resistance to the 
gravitational loads on the top beam. Thus, fol-
lowing Argentina’s norm requirements,

ρ ρspan end
b

b b y

q l

b h f
+ ≥

1 4

6 48

2

2

.

.
 (46)

Furthermore, to ensure a minimum ductility in 
the beam cross-sections, the steel reinforcement 
ratios satisfy

0 5 2. ρ ρ ρend span end≤ ≤  (47)

Figure 5. Neural network agreement with data for the reliability indices β1, β2, β3
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6.4 Optimization Constraints: 
Minimum Reliability Levels

Minimum target reliabilities for each performance 
level are specified in terms of tolerable annual 
probabilities of non-performance, Pfannual. Using 
a Poisson arrival process, with a mean arrival 
rate ν, the exceedence probability Pfannual can be 
converted to a probability of non-performance Pf 
for the earthquake event, and finally expressed 
as a target event reliability index β:

Pf P P Panual f f f= − −

 → → ≅ − −1 1. exp ( )ν β Φ  

(48)

A mean arrival rate ν = 0.20, for earthquakes 
with magnitudes M ≥ 5, was used for the city of 
Mendoza, Argentina. Table 4 shows annual and 
event target probabilities as recommended by 
Paulay and Priestley (1992). In this application, 
more stringent targets were also considered, as 
shown in Table 5, to evaluate the sensitivity of 
the optimization outcome to the levels used for 
the targets.

6.5 Optimization Results

The total cost and the reliability levels correspond-
ing to the initial preliminary design are shown in 

Table 6. It is seen that the reliability levels for this 
design already satisfy the minimum values shown 
in Tables 4 and 5. Starting from these preliminary 
parameters, the optimization process was applied, 
as described, using the target minimum reliabili-
ties from Table 4 (Paulay y Priestley, 1992). The 
optimization took into account the bounds for 
the design parameters (minimum and maximum 
cross-sectional dimensions and steel reinforce-
ment ratios) specified in Table 1 and used in the 
development of the response databases.

The final design parameters obtained are shown 
in Table 7, with the final total cost and the reli-
ability levels achieved for each of the performance 
levels.

It is interesting to compare the optimum solu-
tions obtained when the optimization is started 
from conditions other than the preliminary design. 
With this purpose, Table 8 shows five different 
initial combinations of design parameters, two of 
them “over-dimensioned in comparison to the 
preliminary design” and two “under-dimen-
sioned”.

The evolution of the total cost during the op-
timization, in terms of the number of steps, is 
shown in Figure 6. Each step corresponds to one 
evaluation of total cost with all reliability con-
straints being satisfied. This figure shows that the 
optimization converges to approximately the same 
final total cost, regardless of the choice for the 
initial design parameters. Those corresponding 
to the preliminary design provide a cost solution 
which is already quite close to the optimum, 
showing the adequacy of the methodology em-
ployed for the preliminary estimation.

When the optimization starts from an under-
designed combination, the first cost that is calcu-
lated is controlled by the requirement to satisfy 
the reliability constraints. It can be observed in 
Figure 6 that the number of steps needed to achieve 
the optimal solution varies, implying a varying 
number of anchor combinations and process 
repetitions. In each case, no lower total cost was 
found when the optimization search radius r1 was 

Table 3. Initial values for the design parameters 

Design parameter Initial value

xd (1) = X( )3 = hb [ cm ]     50

xd (2) = X( )5 = hc [ cm ]     45

xd (3) = X span( )6 = ρ     0.00804

xd (4) = X end( )7 = ρ     0.01143

xd (5) = X col( )8 = ρ     0.03148
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expanded, indicating that at least a local minimum 
had been found.

The different initial conditions lead eventually 
to essentially the same optimum total cost, but 
the solutions contain different optimal combina-
tions of the individual parameters. This implies 
that the cost function may have different local 
minima, but that in this case these minima are 
approximately of the same magnitude, with the 
largest difference in total cost being only of the 
order of 2.1%. However, the difference in the 
column steel reinforcement ratio, for example, 
between using initially either the preliminary 
design or the Under-design 1, is closer to 81%. 
The final optimum results are shown in Table 9. It 
should be emphasized that all these different solu-
tions satisfy the minimum reliability constraints, 
and that Table 9 implies a trade-off between the 
optimal depth of the beam, for example, and the 
optimal amount of steel used. If the constraints 
had been formulated in terms of specified narrow 
reliability intervals, rather than just only minima, 
the number of optimum design possibilities would 
have been correspondingly narrowed.

6.6 Optimization Sensitivity to 
Specified Minimum Target 
Reliabilities

In this section we discuss the influence that the 
definition of the minimum reliability constraints 
may have in the optimum solution. Figure 7 shows 
the evolution of the total cost either for the target 
reliabilities (β) in Table 4 (Paulay and Priestley, 
1992) or for those proposed in Table 5. In both 
cases the starting configuration is the preliminary 
design. Figure 8 shows higher total costs as a result 
of imposing higher target reliability constraints, 
as expected.

At the optimum solution, the constraints for 
the different performance levels are met but not 
to the same degree. For example, for the minimum 
targets in Table 4, β1 = 1.276, β2 = 2.326 and β3 = 
3.090, the final (optimum) reliability levels in 
Table 7 show β1 = 1.697, β2 = 2.422 and β3 = 3.102. 
Thus, the constraint is just met for the collapse 
performance level, and satisfied with a greater 
margin for performance levels 1 and 2.

Similar results are obtained using the proposed 
target reliabilities from Table 5 (β1 = 1.642, β2 = 
2.576 and β3 = 3.291). In this case, the reliability 
levels achieved at the optimum solution are β1 = 
1.691, β2 = 2.749 and β3 = 3.296.

Table 4. Target minimum reliability levels (Paulay and Priestley, 1992) 

    Performance level     Pf annual     β annual     Pf     β

    Operational     2 x 10-2     2.054     0.10101 x 100     1.276

    Life safety     2 x 10-3     2.878     0.10010 x 10-1     2.326

    Collapse     2 x 10-4     3.540     0.10001 x 10-2     3.090

Table 5. Target minimum reliability levels proposed 

    Performance level     Pf annual     β annual     Pf     β

    Operational     1 x 10-2     2.326     0.50252 x 10-1     1.642

    Life safety     1 x 10-3     3.090     0.50025 x 10-2     2.576

    Collapse     1 x 10-4     3.719     0.50003 x 10-3     3.291
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We analyze now the effect of changing the 
more significant constraints, 2 and 3, using as a 
base the minimum targets specified in Table 4. 
Thus, β2 and β3 are each individually changed by 
± 10%, with the corresponding results shown in 
Figure 8.

When β2 is decreased by 10%, the results 
are identical to those shown in Figure 7, since 
constraint 2 is more easily met and constraint 3 
remains the determinant one. On the other hand, 
if β2 is increased by 10%, constraints 2 and 3 now 
become jointly important, leading to different 
combinations of the design parameters but still 
with similar minimum total cost.

If the target β3 is increased by 10%, the total 
cost for the optimum solution also increases as 
constraint 3 was already the most important. On the 
other hand, if β3 is decreased by 10%, constraints 
2 and 3 now have a similar influence, resulting 
again in a similar minimum total cost but with a 
different combination of design parameters.

6.6 Optimization Sensitivity to the 
Assumed Damage-Cost Relationship

Finally we consider the effect on the optimization 
of the form used for the cost-damage relationship 
(Eq.(29)). While maintaining b = 1, the relationship 
is modified by changing the level of damage index 
DIESLIMIT at which the structure is considered to be 
destroyed and needs to be replaced. Thus, from the 
value assumed for the base results, DIESLIMIT = 0.6, 
two different possibilities were considered: 0.4 or 
0.8. In the first, the cost increases more rapidly as 
a function of damage, while the reverse occurs in 
the second case. The results are shown in Figure 
9, with corresponding differences of 15% and -7% 
with respect to the minimum total cost for the base 
relationship. However, the optimum values for the 
design parameters remain unaffected.

Table 6. Initial costs and reliabilities, preliminary design 

    Costs [$]     Performance level     β

    Initial C0(xd)     2839     Operational     1.837

    Repair Cd(xd)     1113     Life safety     2.846

    Total     3952     Collapse     3.489

Table 7. Optimum results starting from the preliminary design 

    Design parameter     Optimal 
value     Costs [$]     Performance 

    level     β

xd (1) = X( )3 = hb [ cm ]     57.0     Initial C0(xd, )     2601     Operational     1.697

xd (2) = X( )5 = hc [ cm ]     40.3     Repair Cd(xd)     1020     Life safety     2.422

xd (3) = X span( )6 = ρ     0.00617     Total     3621     Collapse     3.102

xd (4) = X end( )7 = ρ     0.01028

xd (5) = X col( )8 = ρ     0.02130
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7. APPLICATION EXAMPLE 2: 
OPTIMIZATION OF THE PILE-CAP 
MASS FOR A PILE FOUNDATION, 
AND SENSITIVITY TO THE ANALYSIS 
MODEL USED

The second application example illustrates the 
influence that the modeling approach may have 
in the optimization results. With this objective, 
Figure 10 shows a pile steel tube, of diameter D, 
wall thickness t and length L, supporting a pile-cap 
mass M. The pile is embedded into a sandy soil 
layer with relative density DR. Under earthquake 
excitation, the mass will displace a maximum 

amount Δ. The problem is the assessment of the 
probability that the displacement Δ (the response 
of interest) will exceed given levels, expressed 
as fractions of the pile diameter D. Furthermore, 
the mass M is to be optimized so that the prob-
ability of the displacement Δ exceeding a target 
be as specified.

The performance function G is defined as

G X d  D a T M D rG S R( , ) , , , , , )= λ ω -  (∆  
(49)

in which

Table 8. Different combinations of initial design parameters 

    Design parameter     Preliminary 
    design

    Over 
design 1

    Over 
design 2

    Under 
design 1

    Under 
design 2

xd (1) = X( )3 = hb [ cm ]     50     60     65     45     45

xd (2) = X( )5 = hc [ cm ]     45     80     60     45     45

xd (3) = X spam( )6 = ρ     0.00804     0.01100     0.01300     0.00600     0.00390

xd (4) = X end( )7 = ρ     0.01143     0.01222     0.01011     0.00600     0.00390

xd (5) = X col( )8 = ρ     0.03148     0.03950     0.03950     0.00950     0.00890

Figure 6. Evolution of the total cost for different initial design parameters
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λ = capacity factor, fraction of D defining the 
limit displacement;

aG = peak ground acceleration;
ωS = soil frequency in the Kanai-Tajimi Power 

Spectral Density function;
T = duration of the strong motion part of the ac-

celerogram record;
M = applied mass;
DR = soil relative density;
r = nominal variable representing the different 

ground motion records.

The pile is considered as an elasto-plastic 
beam on a nonlinear foundation. The pressure on 
the soil, p(w), is a function of the displacement w 
which varies along the length L.

The structural analysis for the pile-cap dis-
placement Δ can be done by considering the 
dynamic equilibrium of the mass M as a single 
degree of freedom system. Using a beam finite 
element model of the pile, the restoring hysteretic 
force F(Δ) can be calculated by integration of 
the reactions p(w), after the deflected shape w is 
determined. The nonlinear, compression-only, soil 
reactions p(w) take into account the development 
of gaps between the pile and the surrounding soil. 

The resulting model, developed for the similar 
problem of a metal fastener in wood (Foschi, 2000) 
depends solely on mechanical properties of the 
pile and the soil, and produces the hysteretic loop 
for any input excitation, automatically developing 
the pinching and degradation characteristics. The 
p(w) relationship used here was taken from Yan 
and Byrne (1992),

p w

E w w D

E D
w
d

w D
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in which α = 0.5 (DR)-0.8 and DR is the soil relative 
density. The modulus Emax depends on the specific 
weight of the soil and the depth of the soil layer 
and it is detailed by Yan and Byrne (1992). In this 
work only the relative density was considered to 
be a random variable.

The calculation of Δ can be integrated directly 
into the reliability calculation using the perfor-
mance function in Eq.(49) or into the optimization 
for the mass M which can be sustained to match a 
prescribed reliability level. As a modeling alter-

Table 9. Optimum results starting from different initial design parameters as per Table 8 

    Design parameter     Preliminary 
    design

    Over 
design 1

    Over 
design 2

    Under 
design 1

    Under 
design 2

xd (1) = X( )3 = hb [ cm ]     57.0     58.4     56.5     53.6     58.0

xd (2) = X( )5 = hc [ cm ]     40.3     41.1     40.3     45.6     40.4

xd (3) = X span( )6 = ρ     0.00617     0.00586     0.00813     0.00711     0.00644

xd (4) = X end( )7 = ρ     0.01028     0.01122     0.01300     0.01303     0.01051

xd (5) = X col( )8 = ρ     0.02130     0.01672     0.01553     0.01152     0.01814

    Initial cost C0(xd, ) [$]     2601     2569     2559     2546     2568

    Repair cost Cd(xd) [$]     1020     1008     1004     999     1007

    Total cost [$]     3621     3577     3563     3545     3575
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native, a different formulation could be used in 
describing the hysteresis behavior. Thus, it could 
be matched to the response of the pile to a given 
cyclic displacement history for the pile-cap. This 
history, obtained by either experiments or by cal-
culation, can then be fitted with a set of rules that 
permit the reproduction of the hysteresis observed 
for the specific cyclic displacements.

Many such set of rules are contained in dynamic 
analysis software packages. However, although a 

good fit can be obtained for the cyclic response 
used for the matching, there is no guarantee that 
a similar good representation would be achieved 
when using the same fitted rules for any other 
cyclic history or earthquake record. Perhaps the 
most sophisticated of these calibrated approaches 
to hysteresis representation is to use cyclic data to 
determine parameters of a first-order differential 
equation, the solution of which, for a given history, 
can represent loops with pinching and degradation 

Figure 7. Evolution of the total cost for different minimum target betas

Figure 8. Influence of β2 and β3 in the total cost
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characteristics. This model is commonly known 
as BWBN (Bouc, 1967; Baber et al., 1981, 1985).

The objective in this second application is a 
comparison of the influence that the two differ-
ent hysteretic modeling techniques have in either 
reliability assessment or structural optimization.

The pile has a diameter D = 0.356m, with 
wall thickness t = 0.10m, and a length L = 30m. 
Yield strength and elastic modulus of the steel 
were assumed deterministic and to have nominal 
values (respectively, 250 Mpa and 200000 Mpa). 
Twenty earthquake records were simulated as sta-
tionary processes using a spectral representation 
based on the Clough-Penzien power spectrum 
density function (Clough and Penzien, 1975), an 
envelope modulation function (Amin and Ang, 
1968), and twenty different sequences of random 
phase angles.

For different combinations of the intervening 
variables, databases were constructed for the 
mean response Δ and its standard deviation over 
the twenty records. These databases were then 
used to train corresponding neural networks, as 

previously discussed. Finally, the response Δ in 
Eq.(49) was represented by using the lognormal 
format and the error representation as shown in 
Eqs.(44) and (34).

The pile was subjected to the displacement 
history Δ(t) in Figure 11. The finite element ap-
proach was used to calculate the hysteresis loop in 
Figure 12. This response was used to calibrate the 
parameters of a BWBN model, with the resulting 
loop shown in Figure 13.

Dynamic analyses for the different earthquake 
records were carried out with either the BWBN 
representation of the hysteretic restoring force or, 
alternatively, calculating each time the hysteresis 
via the finite-element model. In both cases, the 
neural network methodology previously described 
was applied.

Table 10 shows the statistical data assumed 
for the intervening variables, and Table 11 the 
reliability results obtained for different values of 
the capacity factor λ.

The parameters ωS and T define, respectively, 
the Clough-Penzien power spectrum density func-

Figure 9. Influence of the cost-damage relationship used
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tion and the duration T of the strong motion in 
the modulation function. The statistics for the 
peak ground acceleration aG correspond to the 
event occurrence, and are consistent with a design 
acceleration (475 years return period) of 0.31g, 
assuming that earthquakes have a Poisson arrival 
rate of 0.2 (one every five years).

Although the agreement between Figures 12 
and 13 may be considered to be satisfactory, Table 
11 shows that the calculated reliabilities, if not 
drastically different, clearly depend on the model 
used for the analysis.

A similar conclusion may be reached if an 
optimization is carried out to determine the mass 
M that, optimally, will satisfy two performance 
criteria: a displacement associated with moderate 
damage level, with λ = 0.40, and another associ-
ated with more substantial damage, λ = 1.0. Target 
reliability levels are prescribed: β = 2.5 for the first 
criterion, and β = 4.5 for the second. The design 

parameter is the mean value of the mass M, al-
lowing for a coefficient of variation of 0.10. The 
results are shown in Table 12, comparing again 
results corresponding to the two approaches for 
analysis. It is seen that the model used has now a 
rather substantial effect on the optimal solution.

8. CONCLUSION

• This Chapter has considered different is-
sues involved in performance-based design 
and optimization in earthquake engineer-
ing, using performance criteria specified in 
terms of displacements and damage. The 
study has led to a proposal for a systematic 
method of analysis, integrating the ground 
motion, a nonlinear dynamic analysis of 
the problem, neural network representation 
for the calculated responses and for the 
achieved reliabilities and, finally, a simple, 
search-based, optimization algorithm to 
minimize the total cost under minimum re-
liability constraints.

• Earthquake engineering design normally 
follows procedures and prescriptions given 
in Code guidelines. A design earthquake is 
used, which has been chosen with a rela-
tively low probability of being exceeded 
(e.g., 0.02 in 50 years). The calculated 
structural responses for this earthquake 
are then modified by a set of coefficients 
which should be calibrated to lead to a 
desired performance reliability. For rein-
forced concrete structures, this preliminary 
design includes the determination of cross-
sectional dimensions and steel reinforce-
ments using a capacity design approach. 
The work presented in this Chapter con-
sidered the assessment of the reliability 
achieved for different performance crite-
ria, and the possibility of optimizing the 
design in terms of the total cost, includ-
ing construction and the repair of damage 

Figure 10. Pile foundation under earthquake 
excitation a(t)
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caused by an uncertain number of earth-
quakes during the service life.

• The performance criteria must involve 
maximum structural displacement repons-
es and the associated damage, the calcula-
tion of which requires a nonlinear dynamic 
analysis. This produces discrete values for 
the responses for different combinations 
of the intervening random variables. For 
reliability assessment and optimization, 
these discrete results must be represented 

by continuous, smooth functions, and this 
Chapter has discussed the use of neural 
networks as an efficient approach to re-
sponse representation.

• The random variables have been divided 
into two groups: a first set of main vari-
ables and a second set of secondary ones 
including those associated with the ground 
motion. An approach has been presented 
by means of which the analysis data are 
the mean and the standard deviation of 

Figure 11. Cyclic displacement history

Figure 12. Loop for cyclic displacement history, finite element approach
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the responses over the set of secondary 
variables. These means and standard de-
viations are then represented by neural 
networks with the main variables as the 
input. This approach facilitates the use of 
simulation in the estimation of the non-
performance probabilities, at a great com-
putational saving.

• The reliability indices β associated with 
the performance criteria are thus calculated 
in terms of the design parameters, and neu-
ral networks for the reliabilities are trained 
with those parameters as input.

• The design optimization is carried out for 
minimum total cost with minimum reli-
ability constraints for each of the perfor-

mance criteria. The Chapter has described 
a search-based algorithm for the optimiza-
tion, not requiring the calculation of gra-
dients. The optimization requires initial 
values for the design parameters, and the 
work has considered initial values to be 
those from a preliminary design. Further, 
the Chapter considered the sensitivity of 
the optimal solution to the initial condi-
tions, with the conclusion that the final 
result for total cost was essentially insensi-
tive, but that the corresponding individual 
design parameters could be quite different. 

Figure 13. BWBN model regression for cyclic displacement history

Table 10. Statistical data for the intervening 
variables 

Variable Distribution Mean Standard 
Deviation

aG (m/sec2) Lognormal 1.0 0.6

ωS (rad/sec) Normal 4π π

T (sec) Normal 12 2

M (kN.
sec2/m) Normal 150 15

DR Normal 0.5 0.1

Table 11. Reliability results and comparison be-
tween hysteretic representation approaches 

Limit 
displacement, 

capacity factor λ
Reliability index β

Hysteresis: Finite 
Element

Hysteresis: 
BWBN

0.1 -0.143 0.716

0.2 1.097 1.724

0.4 2.509 2.379

0.6 3.197 2.675

0.8 3.730 2.892

1.0 4.243 3.082
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The optimization is then a problem which 
could admit multiple solutions. In practi-
cal terms, the design engineer has then 
the possibility of choosing from differ-
ent alternatives, taking into account other 
practical requirements. It is also possible 
to add to the optimization additional con-
straints among the design parameters, ori-
enting the optimum solution towards, for 
example, desired mechanisms for energy 
dissipation.

• Data are required on the relationship be-
tween a calculated damage and the corre-
sponding repair cost. There is substantial 
uncertainty in this relationship, and the 
Chapter has also explored the sensitivity 
of the optimal solution to the form of the 
damage-cost function. For the first applica-
tion example, it has been shown that there 
is a significant influence in the optimum 
minimum total cost, while the optimum 
design parameters are not affected. Further 
research is therefore needed to quantify the 
relationship, a task that must be guided by 
experiments and expert assessments.

• The Chapter has also explored the sensitiv-
ity of the optimal solution to the minimum 
target reliability levels prescribed for each 
performance criteria. In general, it can be 
concluded that the results show higher total 
costs as the minimum targets are increased. 
This is expected. However, since the de-

gree with which each minimum reliability 
constraint is met may vary, the relationship 
between the optimal solution and the pre-
scribed targets is not simple. Increasing or 
decreasing a single target may affect the 
importance of another constraint, and the 
total cost for the optimal solution may or 
may not be affected.

• The assessment of reliability, and the op-
timization itself, are conditional on the 
quality of the response analysis model, 
particularly the quantification of the hys-
teretic energy dissipation during the shak-
ing. In order to illustrate this influence, a 
second application example has been dis-
cussed involving the earthquake response 
of a steel pile foundation in a sandy soil. 
Two hysteretic representations are used: 
one implementing a calculation of the 
soil-structure interaction and the hyster-
etic force by means of a nonlinear finite 
element model; the other using a hysteresis 
model fitted to results from a cyclic dis-
placement of the pile-cap. While the first 
model can self-adapt to different excitation 
histories or different earthquakes, the sec-
ond approach can only be said to provide 
a good representation for the history to 
which it was fitted. The example consid-
ered the question of how significant is the 
influence of these different analyses on the 
reliability and optimization results. It was 

Table 12. Performance-based design 

Hysteresis: Finite element

Optimal Mean Mass (kN.sec2/m) Performing criterion λ Target reliability β Achieved reliability β

139.83
0.4 2.5 2.59

1.0 4.5 4.51

Hysteresis: BWBN

Optimal Mean Mass (kN.sec2/m) Performing criterion λ Target reliability β Achieved reliability β

102.19 0.4 2.5 2.76

1.0 4.5 4.42
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concluded that indeed there is an influence, 
pointing to the use of an analysis as accu-
rate as possible, or a careful evaluation of a 
model error to be used in conjunction with 
the approximate approach. This is contrary 
to the common assumption that structural 
or hysteretic modeling is not so important 
because any uncertainty associated with it 
is overwhelmed by the uncertainty in the 
ground motion.

• Sometimes it is proposed that reliabil-
ity assessment in earthquake engineering 
should split the capacity from the hazard 
demand. Thus, in this alternate approach, 
the total probability of non-performance 
would be obtained by integrating the vul-
nerability, or probability of non-perfor-
mance conditional on a hazard level, with 
the probability density for the hazard. This 
approach has not been considered in this 
Chapter because different vulnerabilities 
would have to be calculated each time that 
the design parameters are changed during 
the optimization process, with no savings 
in computational effort when compared to 
the approach proposed in this chapter.
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Discrete Variable 
Structural Optimization of 
Systems under Stochastic 

Earthquake Excitation

ABSTRACT

The reliability-based design optimization of structural systems under stochastic excitation involving discrete 
sizing type of design variables is considered. The design problem is formulated as the minimization of an 
objective function subject to multiple reliability constraints. The excitation is modeled as a non-stationary 
stochastic process with uncertain model parameters. The problem is solved by a sequential approximate 
optimization strategy cast into the framework of conservative convex and separable approximations. To 
this end, the objective function and the reliability constraints are approximated by using a hybrid form 
of linear, reciprocal, and quadratic approximations. The approximations are combined with an effective 
stochastic sensitivity analysis in order to generate explicit expressions of the reliability constraints in 
terms of the design variables. The explicit approximate sub-optimization problems are solved by an ap-
propriate discrete optimization technique. Two example problems that consider structures with passive 
energy dissipation systems under earthquake excitation are presented to illustrate the effectiveness of 
the approach reported herein.
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INTRODUCTION

In a large number of practical design situations 
the design variables must be selected from a list 
of discrete values. Standard methods address 
discrete variable design optimization problems 
by employing discrete or integer variable algo-
rithms to treat the problem directly in the primal 
variable space (branch and bound techniques, 
combinatorial methods, evolution-based optimiza-
tion techniques, etc.) (Kovács, 1980; Goldberg, 
1989; Scharage, 1989).These methods are quite 
general but are associated with a large number 
of function calls (evaluation of objective and 
constraint functions). On the other hand, in many 
practical applications the applied loads and system 
parameters may be subjected to uncertainty or 
variability. Under uncertain conditions the field 
of reliability-based optimization (RBO) provides 
a realistic and rational framework for structural 
design and optimization (Enevoldsen and Sø-
rensen, 1994). Schemes for discrete structural 
optimization considering uncertainties have not 
been addressed as frequently as their deterministic 
counterpart. In most studies, ad hoc optimization 
algorithms have been integrated directly with 
a reliability method. For example, in (Hassan 
and Crossley, 2008), the problem of optimiza-
tion under uncertainty has been approached by 
means of genetic algorithms and direct Monte 
Carlo simulation. As both the optimization and 
the reliability algorithms require a large number 
of function calls, numerical costs can be very 
high. In order to reduce the computational efforts 
related to reliability analysis, the application of 
optimization methods in combination with the 
first-order reliability methods was investigated 
in, for example, (Tolson et al, 2004, Gunawan 
and Papalambros, 2007). Another approach for 
reducing computational efforts is the application 
of meta-models, such as artificial neural networks 
(see, e.g. (Papadrakakis and Lagaros, 2002; 
Lagaros et al., 2008)). These approaches have 
been applied to solve RBO problems of a series 

of physical systems characterized by uncertainty 
models of small and medium sizes (less than 30 
random variables).

In this work attention is directed to discrete 
reliability-based optimization of structural sys-
tems under stochastic excitation. In particular, 
excitation models defined in terms of hundreds 
or thousands random variables (high dimensional 
models) are considered here. One of the difficulties 
in this type of problems is the high computational 
cost involved in the reliability analyses required 
during the optimization process. This is due to the 
fact that the reliability estimation of stochastic 
dynamical systems involves the estimation of 
failure probabilities in high-dimensional uncertain 
parameter spaces (Jensen et al., 2009; Valdebenito 
and Schuëller, 2011). The objective of this work 
is to present a general framework for solving this 
class of reliability-based optimization problems. 
The approach is based on the use of approximation 
concepts, the application of an effective stochastic 
sensitivity analysis, and the implementation of a 
globally convergent optimization scheme. Special 
attention is focused on the analysis and design of 
structures protected by means of passive energy 
dissipation systems. The basic function of these 
devices when incorporated into the structure is 
to absorb a portion of the input energy, thereby 
reducing energy dissipation demand on structural 
members and minimizing possible structural dam-
age. In this regard, the consideration of discrete 
optimal design processes for protected structural 
systems is one of the novel aspects of this work. 
This type of problem is relevant from a practical 
point of view since the potential advantages of 
modern structural protective systems have lead 
to the design and construction of an increasing 
number of protected structures for the purpose 
of mitigating seismic impact.

The reliability-based optimization problem is 
formulated as the minimization of an objective 
function subject to multiple reliability constraints. 
All uncertainties involved in the problem (system 
parameters and loading) are considered explicitly 
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during the design process. The basic mathematical 
programming statement of the structural optimi-
zation problem is converted into a sequence of 
explicit approximate primal problems. For this 
purpose, the objective function and the reliability 
constraints are approximated by using a hybrid 
form of linear, reciprocal and quadratic approxi-
mations. An approximation strategy based on an 
incomplete quadratic conservative approximation 
is considered in the present formulation (Groen-
wold et al., 2007; Prasad, 1983). An adaptive 
Markov Chain Monte Carlo procedure, called 
subset simulation (Au and Beck, 2001), is used 
for the purpose of estimating the failure prob-
abilities. The information generated by subset 
simulation is also used to estimate the sensitivity 
of the reliability constraints with respect to the 
design variables. The above information is com-
bined with an approximation strategy to generate 
explicit expressions of the objective and reliability 
constraints in terms of the design variables. The 
explicit approximate primal problems are solved 
either by standard methods that treat the problem 
directly in the primal variable space (Goldberg, 
1989; Kovács, 1980; Scharage, 1989; Tomlin, 
1970) or by dual methods (Fleury and Braibant, 
1986; Haftka and Gürdal, 1992; Jensen and Beer, 
2010). The proposed optimization scheme exhibits 
monotonic convergence that is, starting from an 
initial feasible design, the scheme generates a 
sequence of steadily improved feasible designs. 
This ensures that the optimal solution of each ap-
proximate sub-optimization problem is a feasible 
solution of the original problem, with a lower 
objective value than the previous cycle.

The structure of the chapter is as follows. First, 
the design problem considering discrete sizing 
type of design variables is presented. Next, the 
structural and excitation models are discussed in 
detail. The solution strategy of the problem in the 
framework of conservative convex and separable 
approximations is then discussed. This is followed 
by the consideration of some implementation is-
sues such as reliability and sensitivity estimation. 

Finally, two numerical examples that consider 
structures with passive energy dissipation systems 
as structural protective systems are presented.

FORMULATION

Consider a structural optimization problem de-
fined as the identification of a vector { }y of design 
variables that minimizes an objective function, 
that is

Minimize f y({ })  (1)

subject to design constraints

h y j nj c({ }) , , ...,≤ =0 1  (2)

where hj represents a constraint function defined 
in terms of reliability measures, and nc is the 
number of constraints. As previously pointed out 
a pure discrete variable treatment of the design 
problem is considered here. Thus, the side con-
straints for the discrete design variables are writ-
ten as

y Y y l n i ni i i
l

i d∈ = = ={ , , ..., }, , ...,1 1  (3)

where the set Yi represents the available discrete 
values for the design variable yi , listed in ascend-
ing order, and nd is the number of design variables. 
It is assumed that the available values are distinct 
and they correspond to quantities such as cross 
sectional areas, moments of inertia, etc. The par-
ticular quantity to be used depends on the problem 
at hand. It is noted that alternative formulations 
to the one proposed here should be considered 
for cases where the possible values of the discrete 
design variables are linked to a number of proper-
ties simultaneously, for example, section groups 
in steel structures.
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The objective function is defined in terms of 
initial, construction, repair, or downtime costs. 
In the context of reliability-based optimization 
of structural systems under stochastic excitation 
a reliability constraint can be written as

h y P y Pj F Fj j
({ }) ({ }) *= − ≤ 0  (4)

where P yFj
({ }) is the probability of occurrence 

of the failure event Fj evaluated at the design { }y

, and PFj

* is the corresponding target failure prob-
ability. The failure probability function P yFj

({ })

evaluated at the design { }y can be expressed in 
terms of the multidimensional probability integral

P y q p d dF
yj

Fj

({ }) ({ }) ({ }) { } { }
({ })

= ∫Ω θ ξ ξ θ  

(5)

where ΩFj
y({ }) is the failure domain correspond-

ing to the failure event Fj evaluated at the design 
{ }y .  The vectors { }, , , ...,θ θi ui n= 1 ,  and 
{ }, , , ...,ξ ξi Ti n= 1 represent the vector of uncer-
tain structural parameters and random variables 
that specify the stochastic excitation, respec-
tively. The uncertain structural parameters { }θ
are modeled using a prescribed probability den-
sity function q({ })θ while the random variables 
{ }ξ are characterized by a probability density 
functionp({ })ξ . The failure probability function 
P yFj

({ })accounts for the uncertainty in the system 
parameters as well as the uncertainties in the 
excitation. It is noted that for structural systems 
under stochastic excitation the multidimensional 
integral (5) involves in general a large number of 
uncertain parameters (in the order of thousands). 
Therefore the reliability estimation for a given 
design constitutes a high dimensional problem 
which is extremely demanding from a numerical 
point of view. Finally, it is noted that constraint 
functions defined in terms of deterministic per-

formance functions can also be considered in the 
above formulation.

STRUCTURAL MODEL

A quite general class of dynamical systems under 
ground acceleration can be cast into the follow-
ing form

[ ]{ ( )} [ ]{ ( )} [ ]{ ( )}

[ ]{ } ( ) { ({ ( )},

M x t C x t K x t

M g x t f x t
g

 



+ +
− −

=
{{ ( )})}z t  (6)

where { ( )}x t denotes the displacement vector of 
dimension n , { ( )}x t the velocity vector, { ( )}x t
the acceleration vector, { ({ ( )},{ ( )})}f x t z t the 
vector of non-linear restoring forces, { ( )}z t the 
vector of a set of variables which describes the 
state of the nonlinear components, and x tg( ) the 
ground acceleration. The matrices M[ ] , C[ ] , and 
K[ ]describe the mass, damping, stiffness, respec-

tively. The vector { }g couples the base excitation 
to the degrees of freedom of the structure. All 
these matrices are assumed to be constant with 
respect to time. This characterization of the non-
linear model is particularly well suited for cases 
where most of the components of the structural 
system remain linear, and only a small part behaves 
in a nonlinear manner. For a more general case, 
the formulation can still be applied at the ex-
penses of more computational efforts due to pos-
sibly necessary updating of the damping and 
stiffness matrices of the system with respect to 
time. In general, the matrices involved in the 
equation of motion depend on the vector of design 
variables and uncertain system parameters and 
therefore the solution is also a function of these 
quantities. The evolution of the set of variables 
{ ( )}z t is described by a first-order non-linear 
differential equation

{ ( )} { ({ ( )},{ ( )},{ ( )})} z t h x t x t z t=  (7)
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where { }h is a non-linear vector function that 
characterizes the behavior of the non-linear com-
ponents. From the last equation it is seen that the 
set of variables { ( )}z t is a function of the displace-
ments { ( )}x t and velocities { ( )}x t , that is, 
{ ({ ( )},{ ( )})}.z x t x t

Numerical Integration

Since the differential equation that satisfy the 
variables { ( )}z t is non-linear in terms of the re-
sponse{ ( )}x t , Equations. (6) and (7) must be 
solved in an iterative manner. Equation (6) is 
solved first by any suitable step-by step integra-
tion scheme, leading from the solution at time t
at the one at timet t+∆ ,  that is

[ ]{ ( )} [ ]{ ( )} [ ]{ ( )}

[ ]{ } (

M x t t C x t t K x t t

M g x t tg

 



+ + + + + =
− +

∆ ∆ ∆
∆ )) { ({ ( )},{ ( )})}− + +f x t t z t t∆ ∆

 

(8)

It is seen that in order to compute the solution 
at timet t+∆ , provided that the solution at time 
t is known, the value of { (·)}z is required at time
t t+∆ . To this end, at the beginning of the it-
eration within the time interval[ , ],t t t+∆  it is 
assumed that ( j = 0 ) 

{ ({ ( )},{ ( )})} { ({ ( )},{ ( )})}( )z x t t x t t z x t x tj + + =∆ ∆ 

(9)

The solution of Equation. (8), gives the re-
sponses { ( )}( )x t tj+ +1 ∆ and{ ( )}( )

x t tj+ +1 ∆ . 
Then, the nonlinear differential Equation (7) can 
be integrated to obtain new estimates for
{ ({ ( )},{ ( )})},z x t t x t t+ +∆ ∆  and the right 
hand side { ({ ( )},{ ( )})}f x t t z t t+ +∆ ∆ in 

Equation (8). The iteration starting with solving 
Equation. (8) needs to be repeated until the norm 
of the vector { ( )}z t t+∆ is in two consecutive 
iterations sufficiently close. Numerical experience 
shows that in general only few iterations are re-
quired within each time interval [t t+∆ ].The 
solution of the equation for the evolution of the 
set of variables { }z is obtained by a modified 
Runge-Kutta method of fourth order. The solution 
at time t t+∆ is written in Box 1, 2, and 3.

For actual implementation, the characterization 
of the vector of non-linear restoring forces is 
modeled in local component specific coordinates 
(local displacements and velocities) with a mini-
mal number of variables. Therefore, the relation-
ships given by Equations (11) and (12) are 
evaluated in local displacements and velocities 
increasing in this manner the efficiency of the 
above numerical integration scheme.

EARTHQUAKE EXCITATION MODEL

The ground acceleration is modeled as a non-
stationary stochastic process. In particular, a 
point-source model characterized by the moment 
magnitude M and epicentral distance r is con-
sidered here (Atkinson and Silva, 2000; Boore, 
2003). The model is a simple, yet powerful, means 
for simulating ground motions and it has been 
successfully applied in the context of earthquake 
engineering. The time-history of the ground ac-
celeration for a given magnitude M and epicen-
tral distance r is obtained by modulating a white 
noise sequence by an envelope function and sub-
sequently by a ground motion spectrum through 
the following steps:

Box 1.  

{ ( )} { ( )} [{ } { } { } {( ) ( ) ( ) ( )z t t z t k k kj j j j+ + + ++ = + + + +1
1

1
2

1
3

11
6

2 2∆ kk j
4

1( )}]+  (10)
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1.  Generate a discrete-time Gaussian  
white noise sequence 
ω ξ( ) / , , ..., ,t I t j nj j T= =∆ 1 where 
ξj Tj n, , ...,= 1 , are independent, identi-
cally distributed standard Gaussian 
random variables, I is the white noise 
intensity, ∆t is the sampling interval, and 
nT is the number of time instants equal to 
the duration of the excitation T divided 
by the sampling interval

2.  The white noise sequence is modulated by 
an envelope function e t M r( , , ) at the discrete 
time instants

3.  The modulated white noise sequence is 
transformed to the frequency domain

4.  The resulting spectrum is normalized by the 
square root of the average square amplitude 
spectrum

5.  The normalized spectrum is multiplied by 
a ground motion spectrum (or radiation 
spectrum) S f M r( , , ) at discrete frequencies 
f l T l nl T= =/ , , ..., /1 2

6.  The modified spectrum is transformed back 
to the time domain to yield the desired ground 
acceleration time history. Details of the 
characterization of the envelope function 

e t M r( , , ) and the ground acceleration spec-
trum S f M r( , , ) are provided in the subse-
quent sections.

The probabilistic model for the seismic hazard 
at the emplacement is complemented by consid-
ering that the moment magnitude M and epicen-
tral distance r are also uncertain. The uncer-
tainty in moment magnitude is modeled by the 
Gutenberg-Richter relationship truncated on the 
interval M Mmin max, ,[ ]  which leads to the prob-
ability density function (Kramer, 2003)

p M
b e

e e
M MM

bM

b b
( ) ,

. . maxmin=
−

≤ ≤
−

− −6 0 8 0
 

(13)

where b is a regional seismicity factor. For the 
uncertainty in the epicentral distancer,  a lognor-
mal distribution with mean value r (km) and 
standard deviation σr (km) is used. The point 
source stochastic model previously described is 
well suited for generating the high-frequency 
components of the ground motion (greater than 
0.1Hz). Low-frequency components can also be 
introduced in the analysis by combining the above 

Box 2.   

{ } { ({ ( )},{ ( )},{ ( )})}

{ } { ({

( )

( ) (

k t h x t x t z t

k t h x

j

j j

1
1

2
1

+

+ +

=

=

∆

∆
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1
2
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(
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{

t t x t t z t k

k

j j

j

+ + ++ +

+

∆ ∆

)) ( ) ( ) (} { ({ ( / )},{ ( / )},{ ( )} {= + + ++ +∆ ∆ ∆t h x t t x t t z t kj j j1 1
22 2

1
2



++

+ + += + +

1

4
1 1 1

)

( ) ( ) ( )

})}

{ } { ({ ( )},{ ( )},{ ( )k t h x t t x t t z tj j k∆ ∆ ∆ }} { })}( )+ +k j
3

1

 (11)

Box 3.   

{ ( / )}
{ ( )} { ( )}

, { ( / )}( )
( )

( )x t t
x t x t t

x t tj
j

j+
+

++ =
+ +

+ =1
1

12
2

2∆
∆

∆

{{ ( )} { ( )}( )
 x t x t tj+ ++1

2
∆  (12)
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methodology with near-fault ground motion 
models (Mavroeidis and Papageorgiou,2003).

Envelope Function

The envelope function for the ground accelera-
tion is represented by (Saragoni and Hart, 1974; 
Boore, 2003)

e t M r a
t
t

e
n

a
a

t
tn( , , )=











−










1

2
3

 (14)

where
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a
e
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=

−

+ −
= =
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(15)

The envelope function has a peak equal to 
unity when t tn= 0 2. , and e t M r( , , ) .= 0 05
when t tn= , with t Tn gm= 2 0. , where Tgm is the 
duration of ground motion, expressed as a sum 
of a path dependent and source dependent com-
ponent T r h fgm a= + +0 05 0 52 2. . / ,where r
is the epicentral distance, and the parameters h
and fa (corner frequency) are moment dependent 
g i v e n  b y  log( ) . .h M= −0 15 0 05 a n d 
log( ) . .f Ma = −2 181 0 496 (Atkinson and Silva, 
2000).

Ground Motion Spectrum

The total spectrum of the motion at a site 
S f M r( , , ) is expressed as the product of the 
contribution from the earthquake sourceE f M( , ),  
pathP f r( , ),  site G f( ) and type of motion I f( ),  
i.e.

S f M r E f M P f r G f I f( , , ) ( , ) ( , ) ( ) ( )=  (16)

The source component is given by

E f M C M M S f Ma( , ) ( ) ( , )= 0  (17)

where C is a constant, M M M
0

1 5 10 710( ) . .= + is the 
seismic moment, and the factor Sa is the displace-
ment source spectrum given by (Atkinson and 
Silva, 2000)

S f M
f

f

f

f

a

a b

( , ) =
−

+

+

+


















1

1 1

2 2

ε ε  (18)

where the corner frequencies fa and fb, and the 
weighting parameter ε are defined, respectively, 
as

log( ) . . ,f Ma = −2 181 0 496  
log( ) . . ,f Mb = −2 41 0 408  and 
log( ) . . .ε = −0 605 0 255M  

T h e  c o n s t a n t  C  i s  g i v e n  b y 
C UR VF Rs s= Φ / ,4 3

0πρ β where U  is a unit 
dependent factor, RΦ  is the radiation pattern, V
represents the partition of total shear-wave en-
ergy into horizontal components, F  is the effect 
of the free surface amplification, ρs  and βs  are 
the density and shear-wave velocity in the vicin-
ity of the source, and R0  is a reference distance. 
Next, the path effect P f r( , )  which is another 
component of the process that affects the spectrum 
of motion at a particular site is represented by 
functions that account for geometrical spreading 
and attenuation

P f r Z R r e fR r Q f s( , ) ( ( )) ( )/ ( )= −π β  (19)

where R r( )  is the radial distance from the hypo-
center to the site given by R r r h( ) .= +2 2  The 
at tenuat ion quanti ty Q f( ) is  taken as 
Q f f( ) .= 180 0 45 and the geometrical spreading 
function is selected as Z R r R r( ( )) / ( )= 1 if 
R r( ) .< 70 0km and Z R r( ( )) / .= 1 70 0 other-
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wise (Atkinson and Silva, 2000). The modification 
of seismic waves by local conditions, site effect
G f( ),  is expressed by the multiplication of a 
diminution function D f( )and an amplification 
functionA f( ).  The diminution function accounts 
for the path-independent loss of high frequency 
in the ground motions and can be accounted for 
a simple filter of the form D f e f( ) .= −0 03π (An-
derson and Hough, 1984). The amplification 
function A f( ) is based on empirical curves given 
in (Boore et al., 1997) for generic rock sites. An 
average constant value equal to 2.0 is considered. 
Finally, the filter that controls the type of ground 
motion I f( ) is chosen as I f f( ) ( )= 2 2π for ground 
acceleration. The particular values of the different 
parameters of the stochastic ground acceleration 
model considered in this contribution are given 
in Table 1. For illustration purposes Figure 1 
shows the envelope function, the ground motion 
spectrum and a corresponding sample of ground 
motion for a nominal distance r = 20km, and 
moment magnitude M= 7.0. For a detailed discus-
sion of this point-source model the reader is re-
ferred to (Atkinson and Silva, 2000; Boore, 2003).

SEQUENTIAL OPTIMIZATION

The solution of the reliability-based optimiza-
tion problem given by Equations (1, 2 and 3) 
is obtained by transforming it into a sequence 
of sub-optimization problems having a simple 
explicit algebraic structure. Thus, the strategy 
is to construct successive approximate analyti-
cal sub-problems. To this end, the objective and 
the constraint functions are represented by using 
approximate functions dependent on the design 
variables. In particular, a hybrid form of linear, 
reciprocal and quadratic approximations is con-
sidered in the present formulation (Haftka and 
Gürdal, 1992). For the purpose of constructing the 
approximations all design variables are assumed 
to be continuous.

First and Second-Order 
Approximations

Let p y({ })be a generic function involved in the 
optimization problem, i.e. the objective or con-
straint functions, and y0{ } a point in the feasible 
design space. The function p y({ }) is first ap-
proximated about the point { }y0 by using a hybrid 

Table 1. Parameters for the stochastic ground acceleration model 

Parameter Numerical Value Parameter Numerical Value

r (km) 20.0 σr (km) 9.0

b 1.8 U 10 20−

ρs (gm/cc) 2.8 βs (km/s) 3.5

V 1/ 2 RΦ 0.55

F 2.0 R0 (km) 1.0

T (s) 20.0 ∆t (s) 0.01

Mmin 6.0 Mmax 8.0
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form of linear and reciprocal approximations. In 
particular, the following approximation is con-
sidered

p y p y p y

p y
y

y y y y

cl

ii
pl i i i i

({ }) ({ }) ({ })

({ })
( , )( )

≈ =

+
∂
∂

−∑

0

0
0 0δ

 
(20)

where

δpl i i
i

x y
p y

y
( , )

({ })
,0

0

1 0=
∂
∂

≥if  and  

δpl i i
i

i i

x y
y

y
p y

y
( , )

({ })0
0 0

0=
∂
∂

<if  (21)

An attractive property of this approximation, 
called convex linearization, is that it yields the 
most conservative approximation among all pos-
sible combinations of direct/reciprocal variables 
(Fleury and Braibant, 1986). In principle, convex 

linearization is not guaranteed to be conservative 
in an absolute sense. That is, it is not known that 
the approximations are more conservative than 
the original functions. One way to affect the con-
servatism of the approximation is by considering 
second-order terms. For example, introducing 
diagonal quadratic terms in the convex approxi-
mation (20) yields

p y p y y y y ycq cl pq
i

i i i i({ }) ({ }) ( , )( )= + −∑ δ 0 0 2  

(22)

where δpq i iy y( , )0 are the coefficients of the second-
order diagonal terms. These coefficients are de-
fined in terms of the second-order derivatives of 
the convex approximation p ycl ({ }) at the point 
{ }y0 as

δ χpq i i i
cl

i

y y
p y

y
( , )

({ })0
2 0

2
=

∂
∂

 (23)

Figure 1. Envelope function, ground acceleration spectrum and sample ground motion for epicentral 
distance r=20 km and moment magnitude M=7
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and χi  is a user-defined positive scalar. The 
purpose of this parameter is to enforce the con-
servatism of the approximation. For continu-
ously differentiable functions the manipulation 
of the higher-order curvatures will ensure the 
conservatism of the approximations at least lo-
cally (Groenwold et al., 2009). The enforcement 
of the conservatism will be carried out during 
inner loops throughout the optimization process 
(see Solution Scheme section). The conservatism 
of the approximations is important since affect 
the global convergence of the optimization process 
(Svanberg, 2002). It ensures that the optimal 
solution of the sub-optimization problem is a 
feasible solution of the original problem, with a 
lower objective value than the previous iteration. 
In this manner, the process generates a sequence 
of steadily improved feasible designs if the process 
starts from an initial feasible design. This prop-
erty is significant from a practical view point since 
the optimization process can be stopped at any 
stage still leading to better designs than the initial 
feasible estimate.

Approximate Objective Function

Applying the above approximation approach to 
the objective function yields the following ap-
proximate function to be minimized as in Box 4.
where the group ( )i+ contains the variables for 
which the partial derivative of the objective func-
tion is positive and group ( )i− includes the remain-
ing variables.

Approximate Constraint Functions

The construction of approximate constraint func-
tions is based on the approximation of transformed 
failure probability functions. Specifically, the 
following transformation is considered (Jensen 
and Beer, 2010)

h y P y j nj
t

F cj
({ }) ln[ ({ })], , ...,= = 1  (26)

The transformed failure probability functions 
are approximated by using the approximation ap-
proach previously defined. That is,
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with

Box 4.   
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where 
ij
+( )
∑ and 

ij
−( )
∑ mean summation over the 

variables belonging to group ( )ij
+ and ( ),ij

− re-
spectively. Then, the approximate reliability 
constraints can be written as

h y h y P j ncqj cqj
t

F cj
({ }) ({ }) ln[ ] , , ...,*= − ≤ =0 1  

(29)

Approximate Optimization Problem

Using the above approximations for the objective 
and constraint functions, the approximate sub-
optimization problem defined at the point{ }y0 , 
P

y{ }
,0 takes the form in Box 5 and 6.

P
y{ }0 : Minimize (see Box 5) subject to (see 

Box 6) j nc= 1, ..., , where all terms have been 
previously defined.

Solution Scheme

The solution scheme of the optimization process 
proceeds as follows:

1.  Start from a feasible design. At the beginning 
of the kth design cycle (k = 0 1 2, , , ... ) the 
objective function f y({ }) and constraint 
functions h y j nj c({ }), , ...,= 1 are approxi-
mated by using the approach introduced 
previously. The approximations require 
f u n c t i o n  e v a l u a t i o n s  ( f yk({ }) , 
h y j nj

k
c({ }), , ...,= 1 ) and sensitivity analy-

ses (∇ ∇ =f y h y j nk
j

k
c({ }), ({ }), , ...,1 ). In 

this step, all design variables are assumed 
to be continuous.

2.  Using this information an explicit sub-
optimization problem is constructed. The 
explicit sub-optimization problem can be 
solved either by standard methods that treat 
the problem directly in the primal design 
variable space (branch and bound techniques, 
combinatorial methods, evolution-based 
optimization techniques, etc.) or by dual 
methods (Fleury and Braibant, 1986). In the 
present implementation, a genetic algorithm 
is applied to solve the sub-optimization 
problem.

Box 5.   
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Box 6.   
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3.  The new point { }*y k is tested if it is ac-
ceptable in terms of a conservative 
criterion, i.e. if f y f ycq

k k({ }) ({ })* *≥ and 
i f  h y h y j ncqj

k
j

k
c({ }) ({ }), , ... .* *≥ = 1 I f 

these conditions are satisfied (conserva-
tive step) the point { }*y k is used as the 
current design for the next cycle, that 
is, { } { }.*y yk k+ =1 If the design { }*y k

does not represent a conservative step 
an inner loop is initiated to effect con-
servatism. For functions which are not 
conservative at { }*y k the corresponding 
coefficients of the second-order diagonal 
terms are increased by multiplying the 
scalars χi by a constant greater than one. 
The modified approximations are used 
to construct a new sub-optimization 
problem to obtain a new point.

4.  The overall design process is continued until 
some convergence criterion is satisfied.

It is noted that the requirement of a conserva-
tive step in the algorithm can be relaxed and 
demand that a feasible descent step is made instead, 
i . e .  i f  f y f yk k({ }) ({ })* *( )< −1 a n d  i f 
h y j nj

k
c({ }) , , ... .* ≤ =0 1 In this case, the con-

servatism is only enforced when a feasible descent 
step could not be made. This approach which is 
called, relaxed conservatism, inherits the global 
convergence properties of the algorithm that 
enforces conservatism at each design cycle. In 
general the above optimization scheme is very 
effective when the curvatures of the functions 
involved in the optimization problem are not too 
large and relatively uniform throughout the design 
space. For other cases, methods based on local 
response surfaces, trust regions and line search 
methodologies may be more appropriate (Alex-
androv et al., 1998; Bucher and Bourgund, 1990; 
Jensen et al., 2009).

STOCHASTIC ANALYSIS

The characterization of the sub-optimization 
problems P k

yk{ }
, , , , ...= 0 1 2 requires the estima-

tion of failure probabilities and their sensitivities. 
For that purpose an advanced simulation technique 
is adopted and implemented in the present for-
mulation.

Reliability Estimation

Subset simulation is adopted in this formulation 
for the purpose of estimating the corresponding 
failure probabilities during the design process (Au 
and Beck, 2001). In the approach, the failure 
probabilities are expressed as a product of con-
ditional probabilities of some chosen intermediate 
failure events, the evaluation of which only re-
quires simulation of more frequent events. There-
fore, a rare event simulation problem is con-
verted into a sequence of more frequent event 
simulation problems. For example, the failure 
probability P yFj

({ }) can be expressed as the 
product

P y P F y P F y F yF j
k

m

j k j kj

Fj

({ }) ( ({ })) ( ({ }) / ({ })), , ,=
=

−

+∏1
1

1

1
 

(32)

where F y F yj m jFj
, ({ }) ({ })=  is the target failure 

event and:

F y F yj m j mFj Fj
, ,({ }) ({ })⊂ −1 ... ({ }),⊂ F yj 1

is a nested sequence of failure events. Equation 
(32) expresses the failure probability P yFj

({ }) as 
a product of P F yj( ({ })),1 and the conditional 
probabilities:

P F y F y k mj k j k Fj
( ({ }) / ({ })), , ...,, ,+ = −1 1 1 .
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 It is seen that, even if P yFj
({ }) is small, by choos-

ing mFj
 and F y k mj k Fj, ({ }), , ...,= −1 1appro-

priately, the conditional probabilities can still be 
made sufficiently large, and therefore they can be 
evaluated efficiently by simulation because the 
failure events are more frequent. The intermediate 
failure events are chosen adaptively using infor-
mation from simulated samples so that they cor-
respond to some specified values of conditional 
failure probabilities (Au and Beck, 2001).

Sensitivity Estimation

As previously pointed out the approximation of 
the reliability constraints requires the estimation 
of the gradient of the transformed failure probabil-
ity functionshj

t .  For the purpose of estimating 
the gradients, it is assumed that the optimization 
variables can have non-discrete values during the 
solution process. Therefore, all design variables 
are treated as continuous during the first step of 
the optimization process (see Solution Scheme 
section). The sensitivity of the transformed failure 
probability functions with respect to the design 
variables is estimated by an approach recently 
introduced in (Valdebenito and Schuëller, 2011). 
The approach is based on the approximate repre-
sentation of two different quantities. The first 
approximation involves the performance function 
κj while the second includes the failure probabil-
ity function. Recall that the failure domain ΩFj

for a given design { }y is defined as

ΩF jj
y y({ }) {{ },{ } ({ },{ },{ }) }.= ≤θ ξ κ θ ξ| 0  

(33)

If { }yk is the current design, the performance 
function is approximated in the vicinity of the 
current design as

κ θ ξ κ θ ξ δκj j
k

j
Ty y y({ },{ },{ }) ({ },{ },{ }) { } { }= + ∆  

(34)

where { } { } { }y y yk= + ∆ and { }δκj is a vector 
of constant, real valued coefficients. For samples 
({ },{ }), , ...,θ ξi i si m= 1 near the limit state sur-
face, that is, κ θ ξj i iy({ },{ },{ }) ≈ 0 the perfor-
mance function is evaluated at n q ms s s= × points 
in the neighborhood of{ }yk . That is, for each 
sample ({ },{ }),θ ξi i qs designs are defined. These 
points are generated as

{ } { } { }
{ }

{
, , ...,

}
y y y R l nlk k l

l
s− = = =∆

η
η

1  

(35)

where the components of the vector { }ηl are in-
dependent, identically distributed standard Gauss-
ian random variables, and R is a user-defined 
small positive number. This number defines the 
radius of the hypersphere ({ } / { )}η ηl l R centered 
at the current design{ }yk . The coefficients { }δκj
are computed by least squares. To this end the 
following set of equations is generated

κ θ ξ κ θ ξ

δκ
η

η

j
lk

i i j
k

i i

i
T l

l

y y

R

l i

({ },{ },{ }) ({ },{ },{ })

{ }
{ }

{ }

=

+

= + (( ) , ,..., , , ...,q m q q i m
s s s

− × = =1 1 1
 

(36)

where the index l indicates a double loop in terms 
of the indices i and q . Since the samples 
({ },{ }), , ...,θ ξi i si m= 1 are chosen near the 
limit state surface the approximate performance 
function κj is expected to be representative, on 
the average, of the behavior of the failure domain 
ΩFj

in the vicinity of the current design { }yk

(Jensen et al., 2009). Next, the failure domain 
ΩFj

for a given design { }y can also be defined in 
terms of the normalized demand function as
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ΩF jj
y D y({ }) {{ },{ } ({ },{ },{ }) }.= ≥θ ξ θ ξ| 1  

(37)

where D y yj j({ },{ },{ }) ({ },{ },{ }).θ ξ κ θ ξ= −1  
The failure probability function, evaluated at the 
current design{ }yk , is approximated locally as 
an explicit function of the normalized demand 
around Dj

* = 1as

P D y D e

D

j
k

j
D

j

j({ },{ },{ }) ,

[ , ]

* ( )

*

*

θ ξ

ε ε

ψ ψ≥



 ≈

∈ − +

+ −0 1 1

1 1
 (38)

where Dj
* is a threshold of the normalized demand 

(in the neighborhood of one) and ε represents a 
small tolerance. The coefficients ψ0 and ψ1 can 
be calculated by least squares with samples of the 
performance function κj (or normalized demand 
functionDj ) generated at the last stage of subset 
simulation (Valdebenito and Schuëller, 2011). The 
gradient of the j -th transformed failure probabil-
ity function at { }yk (see Equation (26)) is given 
by

∂

∂
= ×

∂

∂

= …
= =

h y

y P y

P y

y

l

j
t

l y y F
k

F

l y yk j

j

k

({ })

({ })

({ })

, ,
{ } { } { } { }

1

1 nnd

 

(39)

where nd is the total number of design variables. 
On the other hand, the gradient of the j -th failure 
probability function can be estimated by means 
of the limit:

∂

∂
=

+ −

=
→

P y

y

P y l y P yF

l y y
x

F
k

l F
k

j

k
l

j j
({ })

lim
({ } { ( )} ) ({ })

{ } { }
∆

∆
0

δ

∆∆y

l n

l

d

,

, ,= …1

 

(40)

where { ( )}δ l is a vector of length nd with all 
entries equal to zero, except for the l -th entry, 

which is equal to one. Considering the definition 
of failure probability in terms of the performance 
function, the linear expansion of the performance 
function in (34), and the approximation of the 
failure probability function given in (38), the 
partial derivatives of the j -th transformed failure 
probability function can be expressed as (Jensen 
et al., 2009)

∂

∂
≈ ×

−

=
→

+h y

y P y

e ej
t

l y y F
k y

y

k j
l

lj l({ })

({ })
lim

{ } { }

1
0

0 1 0

∆

∆

∆

ψ ψ δκ ψ

yy

l n
l

djl
= = …ψ δκ

1
1,  , ,  

(41)

where δκjl is the l -th element of the vector { },δκj
and all other terms have been previously defined. 
It is noted that the previous approach for estimat-
ing the gradients of the failure probability functions 
requires a single reliability analysis plus the 
evaluation of the performance functions in the 
vicinity of the current design. Validation calcula-
tions have shown that this approach is quite ef-
ficient for estimating the sensitivity of failure 
probability functions with respect to design vari-
ables (Jensen et al., 2009; Valdebenito and 
Schuëller, 2011).

NUMERICAL EXAMPLES

Example No.1

Description

Consider the reliability-based optimization of the 
two-story frame structure under earthquake load-
ing shown in Figure 2. The floor masses are 
mi = 107 kg, i = 1 2, , and the initial linear inter-
story stiffnesses are K1

99 0 10= ×. N/m and 
K2

97 0 10= ×. N/m. A 3%  of critical damping 
is assumed in the model. The damping ratio is 
treated as uncertain and modeled as a log-normal 
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random variable with a coefficient of variation of 
40% . This high coefficient of variation accounts 
for the considerable uncertainty in estimating 
damping ratios in real structural systems.

For an improved earthquake resistance, the 
model is reinforced with a passive energy dissipa-
tion system (shear panel) at each floor. The shear 
panels follow the inter-story restoring force law

r t k t q t q td( ) ( ) ( ) ( )( )= − +δ 1 2  (42)

where kd denotes the initial stiffness of the device, 
δ( )t is the relative displacement between floors, 
and q t1( )and q t2( )denote the plastic elongations 
of the device. Using the auxiliary variable 
u t t q t q t( ) ( ) ( ) ( ),= − +δ 1 2 the plastic elongations 
are specified by the differential equations



 q t t g t u t ii
i i( ) ( ) ( ( ), ( )), ,= =λ δ δ 1 2  (43)

where the nonlinear functions gi are specified by 
(Pradlwarter and Schuëller, 1993)

g t u t H t

H u t u
u t u

u u

H u

i i

i y
i y

p y

p

( ( ), ( )) ( ( ))

( ( ) )
( )

(

[

 δ λ δ

λ
λ

= ×

−
−

−

−λλ λ
i i p
u t H u t u( )) ( ( ) )]+ −  

(44)

where λi
i i= − =−1 1 21( ), , , H(·) denotes the 

Heaviside step function, uy is a parameter speci-
fying the onset of yielding, and k ud p is the 
maximum restoring force of the device. The val-
u e s  up = × −6 0 10 3. m ,  u uy p= 0 7. , a n d 
kd = ×6 0 108. N/m are used for each nonlinear 
element. Because of the yielding, energy dissipa-
tion due to hysteresis is introduced in the struc-
tural response. For illustration purposes the be-
havior of the friction devices at the initial design 
(K1

99 0 10= ×.  N/m, andK2
97 0 10= ×.  N/m) 

is shown in Figure 3. In this figure typical dis-
placement-restoring force curves of the friction 
devices at the first and second floor are presented. 
The non-linear incursion of the devices is clear 
from the figure. In general the overall effect of 
the dissipation system is to decrease the response 
of the structural system. The system is subjected 
to a ground acceleration that is modeled as de-
scribed in a previous Section. Note that the dura-
tion of the excitation is 20 s and the sampling 
interval is equal to 0.01 s (see Table (1)). There-
fore the number of random variables involved in 
the characterization of the excitation is equal to 
2000. This in turn implies that the estimation of 
the failure probability for a given design represents 
a high dimensional reliability problem.

Discrete Optimization Problem

The objective function is defined in terms of an 
initial cost which is assumed to be proportional 
to the linear interstory stiffnesses. The reliability 
constraints are given in terms of the interstory 
drift ratios. Failure is assumed to occur when the 

Figure 2. Structural system with a passive energy 
dissipation system under ground acceleration
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interstory drift ratio reaches some critical level 
for the first time. A threshold level value equal to 
0.02 m is considered in this case, and the failure 
events are defined as

F t ii t T i= > =∈max [ , ] | ( ) | . , ,0 0 02 1 2δ  (45)

where δ1( )t and δ2( )t are the relative displacements 
of the first and second floor, respectively. The 
target failure probability is taken equal to 10 3− .  
The optimization variables are the linear inter-
story stiffnesses K1 and K2,with initial design 
K01

99 0 10= ×. N/m and K02
97 0 10= ×. N/m. 

The optimization problem is written as

Min f K K K K( , )1 2 1 2= +  (46)

subject to

P K K P jF Fj j
( , ) , ,*

1 2 1 2≤ =  (47)

with side constraints

K1
910

3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0 7 5

8 0 8 5 9

∈ { . , . , . , . , . , . , . , . , . , . }

{ . , . ,


.. , . , . , . , . , . , . }0 9 5 10 0 10 5 11 0 11 5 12 0 N/m

 

(48)

K2
910

3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0 7 5

8 0 8 5 9

∈ { . , . , . , . , . , . , . , . , . , . }

{ . , . ,


.. , . , . , . , . , . , . }0 9 5 10 0 10 5 11 0 11 5 12 0 N/m

 

(49)

The problem is solved by using the sequential 
approximate optimization approach previously 
described. Subset simulation is used to estimate 
the failure probabilities and their sensitivities. To 
smooth the variability of the estimates, the aver-
age of failure probability estimates over five in-
dependent simulation runs is considered at each 
design. The value of the parameter that controls 
the curvature of the second-order terms in the 
approximations is taken asχ = 0 5. .  It is noted 

Figure 3. Typical displacement-restoring force curves of the shear panels at the initial design. The first 
and the second floor
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that the optimal choice of this parameter from the 
algorithm performance point of view depends on 
the particular type of problem. The reader is re-
ferred to (Svanberg, 2002) for a general discussion 
of the values of this parameter in the context of 
conservative, convex and separable approxima-
tions.

Results

The iteration history of the optimization process in 
terms of the objective function and the reliability 
constraints is shown in Figure 4 and figure 5, re-
spectively. For comparison, the results obtained 
with the deterministic model are also shown in 
the figures. In this context, the deterministic 
model considers the damping ratio equal to its 
most probable value. The objective function is 
normalized by the cost of the initial design. It is 
seen that, starting from a feasible initial design, 
the process converges in less than four iterations. 
Therefore, the entire optimization process takes 
few excursion probability and sensitivity estima-

tions. It is observed that the value of the objective 
function at the final design of the uncertain model 
is greater than the corresponding value of the 
deterministic model. This in turn implies that the 
structural components (columns) of the uncertain 
model are bigger than the corresponding compo-
nents of the deterministic model. This result can 
be seen from Figure 6, where the final designs of 
the deterministic and uncertain models are shown 
in the design space corresponding to the uncertain 
model. Note that the final design obtained from 
the deterministic model is not feasible. Finally, 
it is seen from Figures 4 and 5 that the method 
generates a series of steadily improved feasible 
designs that move toward the optimum.

Example No.2

Structural Model

A four-story reinforced concrete building under 
earthquake motion is considered for analysis. A 
3D view of the system is shown in Figure 7. Each 

Figure 4. Iteration history in terms of the objective function. Deterministic and uncertain models(Example 1)
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Figure 5. Iteration history in terms of the reliability constraints. Deterministic and uncertain models 
(Example 1)

Figure 6. Final designs of the deterministic and uncertain models in the design space
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of the four floors is supported by 43 columns of 
circular cross section. All floors have a constant 
height equal to 3.0 m, leading to a total height of 
12.0 m. It is assumed that each floor may be 
represented sufficiently accurately as rigid 
within the x y− plane when compared with the 
flexibility of the columns. Hence, each floor can 
be represented by three degrees of freedom, i.e. 
two translatory displacements in the direction of 
the x axis and y axis, and a rotational displace-
ment. The associated active masses in the x and 
y direction are taken constant for all floors and 
equal to 658 ton, while the mass moment of in-
ertia is equal to 1 8 105. × ton-m 2  for all floors. 
The Young’s modulus E and the modal damping 
ratios ρi of the structural model are treated as 
uncertain system parameters. The Young’s 
modulus is modeled as a Gaussian random vari-
able with most probable value E = ×2 5 1010. N/
m 2,  and coefficient of variation of 20%,while 
the damping ratios are modeled by independent 
Log-normal random variables with mean values 
ρi = 0 05. and coefficients of variation of 40% . 
The structural model is excited horizontally by a 
ground acceleration applied at 45°with respect 
to the plan of the system. The induced ground 

acceleration is modeled as described in a previous 
Section.

Dissipation Model

For an improved earthquake performance the 
structural system is enforced with vibration con-
trol devices.

Ten devices connected to the structure every 
two floors as indicated in Figure (7) are placed 
in the structural system. A typical configuration 
of the devices is shown in Figure (8). They con-
sist of brace and plate elements as indicated in 
the figure. Between the plates there are a series 
of dissipators in the form of metallic U-shaped 
flexural plates (UFP).

The devices exhibit a one-dimensional hys-
teretic type of non-linearity modeled by the restor-
ing force law

r t n r tufp ufp( ) ( )=  (50)

where nufp is the number of U-shaped flexural 
plates in the device and r tufp( ) is the dissipator 
force given by

Figure 7. Four-story building model under earthquake excitation
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r t k t k U z tufp e e
y( ) ( ) ( ) ( )= + −α δ α1  (51)

where ke is the pre-yield stiffness, U y is the yield 
displacement, α is the factor which defines the 
extent to which the restoring force is linear, z t( )
is a dimensionless hysteretic variable, and δ( )t
is the relative displacement between the floors 
where the device is connected. The nonlinear 
restoring force of the device acts between the 
floors where it is placed with the same orientation 
as the relative displacement δ( ).t  The hysteretic 
behavior of each U-shaped flexural plate is defined 
in terms of the auxiliary variable z t( ) which sat-
isfies the first-order non-linear differential equa-
tion

U z t t z t t z ty


 ( ) ( ) ( )( ( ( )) ( ( )))= − +



δ β β δ β1 2 3sgn sgn  

(52)

where β1,  β2  and β3  are dimensionless quanti-
ties that characterize the properties of the hys-
teretic behavior, sgn(·)  is the sign function, and 
all other terms have been previously defined. 
The quantities β1,  β2  and β3  correspond to 
scale, loop fatness and loop pinching parameters, 
respectively. The above characterization of the 
hysteretic behavior corresponds to the Bouc-Wen 
type model (Baber and Wen, 1981). The values 

ke = ×4 108  N/m, U y = × −5 10 3  m, α = 0 01. ,
β1 1 0= . ,  β2 2 0= . ,  β3 0 5= − .  are used in this 
case. These model parameters generate hyster-
etic behaviors similar to the one observed from 
experimental data (De La Llera et al., 2004)

Design Problem

The design variables denoted byd i ni d, , ..., ,= 1
are the diameters of the reinforced concrete column 
elements. Each floor is associated to one design 
variable and therefore nd = 4  in this example. 
The objective function f  is proportional to the 
total volume of the resistant elements (columns), 
while the failure events are defined in terms of 
the interstory drift ratios, and given by

F d

t d
i

t k i kk

({ },{ },{ })

max | ( ,{ },{ },{ }) |
, ,..,

*

θ ξ

δ θ ξ δ

=

>=1 2001  (53)

where δ θ ξi kt d( ,{ },{ },{ }) is the relative displace-
ment between the ( , )i i−1 -th floor evaluated at 
the design { },d tk are the discrete time instants, 
δ* is the critical threshold level and equal to 0 00. 6
m (0.2%  of the floor height), { }θ is the vector 
that represents the uncertain structural parameters 
(Young’s modulus and damping ratios), and { }ξ

Figure 8. Vibration control device and metallic U-shape flexural plates
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is the vector that specifies the stochastic excita-
tion. The corresponding multidimensional prob-
ability integrals involved in the estimation of the 
probabilities of failure include more than two 
thousand random variables in this case. Thus, as 
in the previous example the estimation of the 
failure probability for a given design represents 
a high-dimensional reliability problem. The reli-
ability-based optimization problem is written as

Min f d({ })  (54)

subject to

P d P iF Fi
({ }) , , ,*≤ = =−10 1 2 3 43  (55)

with side constraints

d D ii i∈ =, , ...,1 4  (56)

where the set Di represents the available discrete 
values for the design variable di . The setDi  is 
defined as Di = { }0 40 0 41 0 75. , . , , . m. It is 
seen that each of the design variables can be 
chosen from a discrete set of 36 diameters. There-
fore, the discrete set of design variables involves 
more than 106 possible combinations. The opti-
mization problem is solved by the sequential 
approximate optimization strategy discussed in 
previous sections.

Final Designs

The initial and the final designs of the structural 
system are presented in Table 2. The correspond-
ing iteration history of the optimization process 
in terms of the objective function is shown in 
Figure 9. Note that the initial design is an inte-
rior point in the design space, as it is required by 
the algorithm (see first step of the Solution Scheme 
section). For comparison the final design of the 
system without vibration control devices is also 

indicated. The objective function is normalized 
by its value at the initial design. From Table 2 and 
figure 9 it is observed that the dimensions of the 
column elements at the final design of the system 
without the vibration control devices are greater 
than the corresponding elements of the model 
with the devices, as expected. The total weight of 
the unprotected model increases almost 40%  with 
respect to the weight of the enforced model. This 
result highlights the beneficial effects of the vibra-
tion control devices in protecting the structural 
system. For illustration purposes Figure 10 shows 
a typical displacement-restoring force curve of 
one of the U-shaped flexural plates at the final 
design. The nonlinear incursion of the dissipator 
is clear from the figure.

It is found that the process converges in less 
than four iterations in this case and therefore the 
design process takes few excursion probability 
and sensitivity estimations. This computational 
cost is substantially different for the case of direct 
optimization. In that case the number of excursion 
probability and sensitivity estimations increases 
dramatically with respect to the proposed ap-
proach. In direct optimization the excursion prob-
abilities and their sensitivities need to be esti-
mated for every change of the design variables 
during the optimization process. As in the previ-
ous example the method generates a series of 
steadily improved feasible designs that moves 
toward the final design. That is, the design process 
has monotonic convergence properties.

CONCLUSION

A general framework for reliability-based design 
optimization of a class of stochastic systems in-
volving discrete sizing type of design variables 
has been presented. The reliability-based design 
problem is formulated as an optimization prob-
lem with a single objective function subject to 
multiple reliability constraints. The high compu-
tational cost associated with the solution of the 
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optimization problem is addressed by the use of 
approximate reliability analyses during portions 
of the optimization process. This is achieved 
by implementing a sequential optimization ap-
proach based on global conservative, convex 
and separable approximations. The combined 
use of approximation concepts, advanced simu-
lation techniques, efficient sensitivity analyses 
and discrete optimization techniques provides 
an effective reliability-based design optimiza-
tion strategy for sizing problems which involve 
discrete design variables. The proposed approach 

takes into account the uncertainty in structural and 
excitation model parameters explicitly during the 
optimization process. The design scheme exhibits 
monotonic convergence that is, starting from an 
initial feasible design the scheme generates a se-
quence of steadily improved feasible designs. This 
property is important from a practical view point 
since the optimization process can be stopped at 
any stage still leading to better designs than the 
initial feasible estimate. Recall that each design 
cycle involves a considerable computational effort 
for complex structural systems. Numerical results 

Table 2. Final designs 

Design variable Initial design

Final design

ND D

d1 (m) 0.75 0.71 0.62

d2 (m) 0.70 0.68 0.59

d3 (m) 0.65 0.64 0.54

d4 (m) 0.60 0.56 0.44

Normalized objective function 1.00 0.92 0.66

ND= without devices, D= with devices

Figure 9. Iteration history in terms of the objective function (Example 2)
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obtained from the example problems and from ad-
ditional validation calculations have shown that the 
number of reliability estimations required during 
the optimization process is in general very small. 
The results have also indicated that the presence 
of passive vibration control devices has a positive 
impact on the reliability and global performance 
of systems under stochastic loading. In fact, the 
results of this study highlight the beneficial effect 
of these devices in protecting structural systems 
under environmental loads such as earthquake 
excitations. Based on the previous observations 
it is concluded that the proposed methodology 
can be very advantageous from a numerical point 
of view for solving discrete variable structural 
optimization problems of an important class of 
stochastic dynamical systems.
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ABSTRACT

This chapter provides a comprehensive procedure for the time-dependant structural performance evalua-
tion and life-cycle cost analysis of reinforced concrete highway bridges located in extreme chloride-laden 
environments. The penetration of chloride ions into the concrete is simulated through a finite difference 
approach, which takes into account all the parameters that can affect the corrosion process. From 
simulation results, the corrosion initiation time is predicted and the extent of structural degradation is 
calculated over the entire life of bridge. A group of detailed bridge models with various structural attri-
butes are developed to evaluate the changes in the structural capacity and seismic response of corroded 
bridges. For the purpose of the probabilistic seismic risk assessment of bridges, the seismic fragility 
curves are generated and updated at regular time intervals. The time-dependent fragility parameters 
are employed to investigate the life-cycle cost of bridges by introducing a performance index which 
combines the effects of probable seismic events and chloride-induced corrosion. The proposed approach 
provides a multi-hazard framework, which leads to more realistic performance and cost estimates. It 
also indicates the inspection and maintenance intervals in a way that the inspection and maintenance 
costs are optimized, while the safety of bridge is ensured.
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1. INTRODUCTION

From a long-term point of view, the durability 
of reinforced concrete (RC) highway bridges is 
significantly impacted by the deterioration of 
their structural members. When investigating 
the damaged bridges, the deterioration caused 
by the corrosion of reinforced concrete members 
is usually found to be one of the main sources 
of structural degradation which may eventually 
result in the serviceability failure of bridges under 
service or extreme loading conditions. An accurate 
estimation of the extent of degradation during the 
structure’s life-cycle provides both engineers and 
decision-makers with valuable information which 
helps to ensure the safety of bridges while reduc-
ing the associated costs. Towards this goal, the 
current chapter focuses on the corrosion process 
caused by the chloride ions attack and evaluates 
its effects on the life-cycle performance and cost 
of RC bridges.

Chloride-induced corrosion is one of the 
deterioration mechanisms caused by the rapid 
intrusion of chloride ions into the concrete. This 
mode of corrosion is expected when the bridge 
is exposed to aggressive environments (e.g., 
coastal environments or the application of deicing 
salts). The penetration profile of chloride ions in 
a reinforced concrete member demonstrates the 
highest chloride content near the surface with a 
decreasing trend towards the depth of the member. 
The chloride transport mechanism in concrete is 
a complex phenomenon that may occur in several 
forms, such as ionic diffusion, capillary suction, 
and permeation. When the concentration of chlo-
ride ions in the pore solution within the vicinity of 
reinforcing bars becomes high enough to depas-
sivate the protection film of the reinforcement, the 
layers of rust start to form on the reinforcing bar 
surface and the corrosion of steel begins.

In this chapter, an integrated computational 
methodology is developed to simulate the penetra-
tion of chloride ions into the reinforced concrete 
members. Through a comprehensive study, the 
effects of various influential parameters, such as 

water-to-cement ratio, ambient temperature, rela-
tive humidity, concrete age, free chloride content, 
and binding capacity, are considered to obtain a 
precise prediction of the chloride content in dif-
ferent depths of RC members with the progres-
sion of time. By comparing the chloride content 
values with certain critical thresholds suggested 
in the literature, the corrosion initiation time is 
estimated. After corrosion initiation, the time-
dependent characteristics of corroded bridges are 
identified through the extent of the cracking and 
spalling of the concrete cover, reduction of the 
steel bar cross-section area, and decrease in the 
yield strength of reinforcing bars. Based on that, 
the probabilistic life time fragility parameters of 
a group of RC bridges with different structural at-
tributes are evaluated over the time using fragility 
analysis procedure.

Furthermore, the life-cycle cost of RC bridges 
under corrosion attack is studied in this chapter. 
The total life-cycle cost of the bridge is calculated 
from the present value of the construction cost, 
inspection and maintenance costs, serviceability 
and earthquake-induced failure costs, and finally 
user costs associated with them. These costs are 
reviewed in detail and the relevant assumptions 
are discussed to provide a more realistic estimation 
of the total cost. Among the mentioned costs, a 
special attention is paid to the serviceability and 
earthquake-induced failure cost. The serviceability 
failure cost is incurred from necessary repair and 
replacement actions due to the concrete cover 
spalling and steel rebar corrosion while the earth-
quake-induced failure cost is due to the repair and 
rehabilitation actions after a specific seismic event 
and is dependent on the occurrence probability of 
different damage states. This cost is estimated here 
from the results of probabilistic life-time fragil-
ity analysis by introducing a performance index 
which represents the expected performance of a 
corroded bridge under a particular seismic hazard 
risk. This index is updated regularly over the time 
and takes into account the combined effects of 
seismic hazard and chloride-induced corrosion in 
the calculation of life-cycle cost of RC bridges.
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2. CORROSION INITIATION 
AND PROPAGATION

Chloride-induced corrosion is identified as one 
of the major causes for the structural deteriora-
tion of reinforced concrete bridges. This type of 
corrosion is initiated by the ingress of chloride 
ions into structural concrete members during the 
concentration and diffusion cycles. The sources 
of chloride ions are mainly air-borne sea-salts 
in coastal areas and deicing salts used in winter 
times. This chapter focuses on the corrosion 
resulting from sea-salt particles floating in the 
air and assumes that the diffusion process is the 
dominant mode of chloride intrusion. In order to 
study the diffusion process, it is essential to find 
the changes in the chloride content at different 
depths of the concrete member. The total chloride 
content refers to the total acid-soluble chloride in 
concrete, which is the summation of free chlorides 
and bound chlorides. The relationship among the 
total, Ct, free, Cf, and bound, Cb, chloride content 
in unsaturated concrete is as follows:

C C w Ct b e f= +  (1)

where we is the evaporable water content (m3 of 
evaporable water per m3 of concrete). According 
to the Fick’s second law which is based on the 
mass conservation principle, the diffusion process 
is expressed as the change in the free chloride 
content over the time, t (Equation 2).
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where DCl is the chloride diffusion coefficient and 
∂ ∂( )C Cb f/  is the binding capacity. The chloride 

binding capacity characterizes the relationship 
between the free and bound chloride ions in con-
crete at a constant temperature and it is also referred 
to as the binding isotherm. Martin-Perez et al. 

(2000) suggest an idealized isotherm which 
simulates the exposure conditions of marine 
structures. This isotherm is called Freundlich 
isotherm and its relationship can be expressed as:
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F F= →
∂
∂

= −α α ββ β� � � � � � �1  (3)

where αF and βF are the Freundlich binding con-
stants equal to 1.05 and 0.36, respectively. The 
chloride diffusion coefficient in Equation 2, DCl, 
is calculated by taking into account the effects 
of major influential parameters, such as water 
to cement ratio, ambient temperature, relative 
humidity, age of the concrete, free chloride con-
tent, and chloride binding capacity. The chloride 
diffusion coefficient can be determined from a 
diffusion coefficient estimated for a reference 
temperature and humidity, DCl,ref, multiplied by 
the modification factors as below:

D D F T F h F t F CCl Cl ref e f= ( ) ( ) ( ), ( )1 2 3 4  (4)

where F1(T) accounts for the dependence of 
chloride diffusion coefficient on the ambient 
temperature, F2(h) represents the influence of 
relative humidity, F3(te) denotes the influence 
of concrete age, and F4(Cf) considers the effects 
of free chloride content. Table 1 summarizes the 
mathematical expressions for the modification 
factors used in Equation 4 (Bažant and Najjar, 
1972, Saetta et al., 1993, Bamforth and Price, 
1996, Xi and Bažant, 1999, Martin-Perez et al., 
2001, and Kong et al., 2002).

In Table 1, F1(T) is calculated using the tem-
perature data, T, gathered for a specific region 
where the structure is located. In the current study, 
the temperature data of the Los Angeles area dur-
ing last 15 years (from 1995 to 2009) has been 
collected from the National Oceanic and Atmo-
spheric Administration (NOAA). It is evident 
from this database that the temperature has a 
periodic trend over the year and a sinusoidal func-
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tion can be fit very well to that. The temperature 
at the j-th day of the year can be found from 
Equation 5:

T K j( ) /° = − ( )291 15 2 365sin π  (5)

Similar to the ambient temperature, the local 
humidity information is needed for F2(h). The 
average monthly relative humidity data for the 
Los Angeles area has been obtained from NOAA 
to find the annual trend of humidity. The relative 
humidity is periodic in nature and is repeated 
throughout the years. Hence, it can be simulated 
for the j-th day by a half-sinusoidal function as 
below:

h j% . . ( / )( ) = +0 65 0 13 365sin π  (6)

A review of Table 1 shows that the chloride dif-
fusion coefficient is a nonlinear parameter which 
varies over the time. Hence, the governing partial 
differential equation given by Equation 2 cannot 
be solved without using appropriate numerical 

methods. In the current study, a finite difference 
algorithm is developed to evaluate the chloride 
diffusion process at different time steps by con-
stant updating of the diffusion coefficient. This 
algorithm considers the effects of all influential 
parameters and provides a more accurate estima-
tion of chloride content in the concrete.

For the numerical solution, it is assumed that 
the free chloride content in the concrete is zero 
at the initial condition. This value will gradually 
increase by the intrusion of chloride ions over the 
time. On the other hand, the free chloride content 
is always constant at the concrete surface. The 
surface chloride content, Cs, depends on various 
parameters, such as the composition of the con-
crete, location of the structure, orientation of its 
surface, chloride concentration in the environment, 
and general conditions of exposure with regard to 
rain and wind (Bertolini, 2008). A range of 2.95 
kg.m-3 (McGee, 1999) to 7.00 kg.m-3 (Val, 2004) 
has been suggested for the surface chloride content 
at bridges located near coastlines. In this study 
the average value of 5.00 kg.m-3 is assigned to Cs.

Table 1. Summary of modification factors used for the estimation of chloride diffusion coefficient 

Formulation Parameters Assigned values
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Using the developed finite difference algo-
rithm, a set of simultaneous equations are solved 
in one-day time steps to determine the chloride 
content in the concrete. Assuming that the water 
to cement ratio is equal to 0.5, the calculated 
free chloride content at the depth of 50 mm has 
been shown in Figure 1. After obtaining the free 
chloride content at each time step, the bound and 
total chloride contents can be calculated using 
Equations 1 and 3. The changes in bound and 
total chloride contents during a 30-year period 
can also be found in Figure 1.

The calculated free chloride content at differ-
ent time steps can be used to estimate the corrosion 
initiation time, ti. The corrosion initiation time is 
determined as the time when the chloride concen-
tration near the reinforcing bars reaches the 
threshold chloride concentration. This means:

C t d Cf i c critical,( ) =  (7)

where dc is the depth at which the reinforcing bars 
are placed (usually equal to the concrete cover 
depth). In Equation 7, the Ccritical is the threshold 

chloride concentration causing depassivation of 
the concrete protection film and initiation of the 
corrosion process. There have been many research 
efforts during the past three decades to determine 
an appropriate threshold for the critical chloride 
content. It had been first suggested that the critical 
value should be determined by investigating the 
free chloride concentration, but the study of Glass 
and Buenfeld (2000) on the chemical aspects of 
chloride binding capacity showed that the bound 
chloride should also be taken into account. As a 
result, the threshold value is expected to represent 
the total chloride content. Figure 2 demonstrates 
a summary of data available in the literature 
regarding the measured or suggested values for 
the critical chloride concentration. For this study, 
the critical chloride concentration is considered 
to be 1% of the cement weight which is assumed 
to equal 350 kg.m-3.

The total chloride content profile given in 
Figure 1 can be used to evaluate the corrosion 
initiation time. Assuming the threshold value as 
3.5 kg.m-3 (1% of cement weight), the initiation 
time can be estimated accordingly as 12.66 year 
for. It is evident that different chloride binding 

Figure 1. Change in the free, bound, and total chloride contents during a 30-year period
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isotherms result in some change in the estimation 
of the corrosion initiation time, which indicates 
the importance of a reasonable choice for the 
chloride binding model. The initiation time for 
different cover depths of 40, 50, and 60 mm would 
respectively be 7.23, 10.40, and 14.20 years 
(Figure 3). It can be seen that the values of cor-
rosion initiation time obtained from the developed 
algorithm lie well within the range of 7 to 20 
years, observed by Kong et al. (2002).

3. STRUCTURAL DEGRADATION 
DUE TO CORROSION

After the corrosion initiation time, the protection 
film of the reinforcing bar is depassivated and the 
transport of iron ions starts. This results in the 
formation of rust layers around the rebar during 
the corrosion process. This process continues until 
the volume of rust reaches a level that causes the 
concrete to crack due to the excessive expansion 
of rust layers. In this study the crack initiation 
time is calculated using the Faraday’s law which 

relates the mass of steel consumed over the time 
to the amount of current that flows through the 
electrochemical corrosion cell. The rate of mass 
loss per unit length of bar subjected to the corro-
sion, ΔMloss (gr.cm-1), for a time step of Δt (sec) 
can be described as:

∆ ∆M t k D t i tloss corr( ) = π ( )  (8)

where D(t) is the reduced diameter of reinforc-
ing bar during the corrosion process, k, the mass 
transport coefficient equal to 2.893×10-9, and icorr, 
the current per unit area of the reinforcing bar. For 
the icorr in Equation 8, a range of 10 to 25 μA.cm-2 
has been suggested by Rodriguez et al. (1994). 
This range corresponds to the high reinforcement 
corrosion risk because it is larger than 1 μA.cm-2 
(Andrade et al., 1993). In the current study, icorr is 
assumed to equal 10 μA.cm-2. By taking the steel 
mass density, ρs, equal to 7.8 (gr.cm-3), the change 
in the volume of corroded steel, ΔVloss (cm3.cm-1), 
can be simply calculated from ΔMloss. The reduced 
rebar diameter after each time step of corrosion 
is calculated as:

Figure 2. Summary of data available in literature for the critical chloride concentration required to 
initiate the corrosion process
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D t D V tloss( ) ( ) /= −0
2 4∆ π  (9)

where D0 is the initial diameter of the rebar.
The residual strength of corroded reinforcing 

bars was investigated experimentally by Du et 
al. (2005a and b). They conducted both acceler-
ated and simulated corrosion tests on the bars 
embedded in the concrete and concluded that 
the strength of steel bars decreases significantly 
with chloride penetration. Their test results are 
in reasonable agreement with other studies, such 
as Andrade et al. (1991), Lee et al. (1996), and 
Morinaga (1996). Therefore, the below empirical 
equation proposed by Du et al. (2005a and b) is 
used to estimate the time-dependent loss of yield 
strength in corroded reinforcing bars:

f t m t fy y( ) = − ( )( )1 0 005 0.  (10)

where fy(t) is the yield strength of corroded rein-
forcement at each time step, fy0, the yield strength 
of non-corroded reinforcement, t, the time elapsed 
since corrosion initiation (year), and m(t), the 
percentage of steel mass loss over the time. The 

m(t) is equal to the consumed mass of steel per 
unit length divided by the original steel mass. 
The reduced diameter and the remaining yield 
strength of rebars are calculated at different time 
steps during the life-cycle of the bridge (Table 2). 
These values are used to update the characteristics 
of bridge models during the structural capacity 
estimation and seismic performance evaluation 
of corroded bridges.

Through a step-by-step analysis, the time in 
which the concrete starts cracking is determined 
as the time when the percentage of steel mass 
loss, m(t), becomes equal to a critical level, mcritical. 
The mcritical which can be defined as a function of 
rebar dimensions and concrete properties (El 
Maaddawy and Soudki, 2007) is calculated in the 
present study equal to 20%. Based on this critical 
level, the crack initiation time is found to be 51 
days (0.14 year) for the structures under consid-
eration. To calculate the crack width after crack 
initiation, wcrack (mm), the analytical equation 
proposed by Vidal et al. (2004) can be used:

w t K A t Acrack crack s( ) ( )= −( )∆ ∆ 0  (11)

Figure 3. Estimation of corrosion initiation time for the cover depths of 40, 50, and 60 mm
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where ΔAs(t) is the steel loss of the rebar cross 
section during the corrosion process (mm2), ΔA0, 
the steel loss of the cross section needed for crack 
initiation (mm2), and Kcrack, an empirical coeffi-
cient equal to 0.0577. Assuming the crack width 
of 0.3 mm as one of the first serviceability limits, 
the time in which this limit is exceeded has been 
calculated to equal 117 days (0.32 year). Compar-
ing the time to crack initiation (0.14 year) and the 
time to exceed the crack width of 0.3 mm (0.32 
years) with the time to corrosion initiation (10.40 
years), it can be clearly seen that the two former 
times are negligible within the whole life-cycle 
of the bridge. Hence, considering the fact that the 
crack initiation occurs shortly after the corrosion 
initiation time, it is assumed that the time corre-
sponding to the serviceability threshold is equal 
to the corrosion initiation time. Furthermore, it is 
widely accepted that a crack width of more than 
1 mm indicates the performance failure of the 
concrete cover. The time required for reaching 
this crack width limit has also been calculated to 
equal 542 days (1.48 year) after corrosion initia-
tion. Since the capacity of structures under study 
will be evaluated every 5 years after the corrosion 
initiation time, it is assumed that the concrete 
cover is destroyed from the first analysis interval.

4. BRIDGE MODELING

To develop the probabilistic life time fragility pa-
rameters of RC bridges located in chloride-laden 
environments, a group of 9 box girder bridge 
models are developed and analyzed in this study. 

This group consists of two-span bridges with three 
variations in the span lengths, representing the 
short-, medium-, and long-span bridges. All the 
bridges have two columns at each bent and their 
height varies from 7.5 to 12.5 m. This provides a 
range of span length-to-column height ratios from 
1.2 to 6.0. For the purpose of this study, the effect 
of skewness is not considered and as a result, the 
skew angle is assumed to equal zero degrees. 
A schematic view of the bridges under study is 
illustrated in Figure 4 and their dimensions are 
summarized in Table 3.

OpenSees (2009) is used in this study to carry 
out a series of static and dynamic analyses which 
can provide a comprehensive performance assess-
ment of the bridges subjected to the time-depen-
dent corrosion process. At different bridge ages, 
the remained structural capacity and expected 
seismic response are calculated by analyzing the 
bridge mathematical models which consist of a 
variety of elements defined for the superstructure, 
pier, abutment, and foundation. The developed 
models are representative of the bridge geometric 
characteristics, boundary conditions, material 
properties, mass distribution, and nonlinear be-
havior of selected components. The detailed as-
sumptions made for each of the bridge components 
are discussed below.

1.  Material Properties: The compressive 
strength of concrete, fc

' , is assumed to equal 
35 MPa for the bridge columns and super-
structure. The Poisson’s ratio is 0.2 and the 
concrete modulus of elasticity, Ec, is calcu-
lated for the normal weight concrete using: 

Table 2. Reduction in the mass, diameter, and yield strength of reinforcing bars at 5-year time intervals 

Time* (year) 0 5 10 15 20 25 30 35 40 45 50

(Mloss/M0)x100 0.00 6.38 12.24 18.10 23.96 29.82 35.68 41.54 47.40 53.26 59.12

D (mm) 35.80 34.75 33.61 32.46 31.32 30.17 29.03 27.88 26.74 25.59 24.45

fy/fy0 1.00 0.97 0.94 0.91 0.88 0.85 0.82 0.79 0.76 0.73 0.70

*after corrosion initiation
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E fc c= 4700 '  (ACI-318, 2008). To capture 
the effects of confinement in columns, the 
properties of confined and unconfined con-
crete are both taken into account following 
the equations given by Mander et al. (1988). 
For the reinforcing bars, the yield strength 
is assumed to equal 470 MPa before corro-
sion begins. As discussed in the previous 
section, the steel yield strength decreases 
over the time due to the corrosion progress 
(Equation 10).

2.  Superstructure Model: The bridge super-
structure has been designed for four traffic 
lanes, two in each direction (as it can be seen 
in Figure 4). The roadway width is equal 
to 23.0 m and the concrete cross-sectional 
area is 12 m2. The bridge deck is modeled 
by linear-elastic beam-column elements 
placed at the centroid of the deck cross sec-
tion. These elements are subjected to linear-
distributed loads which represent the bridge 
mass per unit length. Since the columns and 
abutments are designed to experience the 
nonlinear behavior, no nonlinear properties 
are assigned to the superstructure elements 
and they always remain in the elastic range. 
Furthermore, because the concrete super-
structure always experiences some cracks 
due to loading conditions, the flexural stiff-
ness of deck section is modified by a factor 
of 0.75 according to the recommendation 
of Caltrans seismic design criteria (SDC, 
2006).

3.  Pier Columns: A nonlinear three dimen-
sional beam-column element is used to 
model the bridge columns. This element 
is based on the iterative force formulation 
and considers the spread of plasticity along 
the column (OpenSees, 2009). The concrete 
cross section is discretized into a number 
of fibers (total of 18 wedges and 20 rings) 
defined by the fiber module available in 
OpenSees (2009) and the steel reinforcement 

is considered by two additional circular 
layers of rebars.

4.  Abutments: The bridge abutment is modeled 
using a rigid element with a length equal to 
the superstructure width, connected to the 
superstructure centerline through a rigid 
joint. This element is supported at each end 
by three springs in longitudinal, transverse, 
and vertical directions. While an elastic 
spring is used for the vertical direction, the 
longitudinal and transverse springs are ex-
pected to present a nonlinear behavior. For 
this purpose, nonlinear zero-length elements 
are placed in the perpendicular horizontal 
directions with the properties determined 
from the Caltrans seismic design criteria 
(SDC, 2006). The abutment stiffness and 
maximum resistance are dependent upon the 
material properties of abutment backfill and 
account for an expansion gap, here assumed 
to equal 5 cm.

As discussed earlier, the corrosion process may 
cause a significant structural capacity loss which 
directly affects the bridge performance under any 
service and extreme loading conditions. From a 
multi-hazard point of view, the combined effects 
of a natural event, here an earthquake, and an 
environmental stressor, here chloride-induced 
corrosion, are studied over the time and the vulner-
ability of bridge as one of the key infrastructure 
components is evaluated. Towards this goal, the 
nonlinear time-history analysis is employed to 
estimate the seismic response of various bridges at 
different ages. Obtained results will be used later 
for the probabilistic life-time fragility analysis.

In order to perform nonlinear time-history 
analysis, a suite of 60 earthquake ground motions 
is selected. These ground motions were originally 
generated through the FEMA/SAC project (1997) 
for the Los Angeles area and include records from 
historic earthquakes as well as artificially-gener-
ated time histories. The selected suite consists of 
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three sets of records corresponding to earthquakes 
with 4.04×10-4, 2.10×10-3, and 1.39×10-2 annual 
frequency of exceedance, which are equivalent 
to 2%, 10%, and 50% probability of occurrence 
in 50 years. Figure 5 shows the spectral accelera-
tion values over a range of natural periods for the 
three categories mentioned. For each category of 
records, the median spectral acceleration has also 
been indicated which represents the expected level 
of seismic demand.

Using the selected suite of ground motions, 
the dynamic response of the bridge cases are 
evaluated. A series of 60 nonlinear time-history 
analysis is performed for each bridge case and 

response time-histories are recorded as forces and 
displacements at various bridge components. For 
the sake of brevity, the current study demonstrates 
the seismic response only in terms of deck drift 
ratio which is one of reliable response measures 
among diverse response parameters. The deck 
drift ratio (DDR) is defined as the relative dis-
placement of deck centroid divided by the column 
height. This ratio is calculated in both longitudi-
nal and transverse directions, but since the ground 
motions are applied in the longitudinal direction, 
the transverse DDR can be neglected compared 
to the longitudinal one. The distribution of lon-
gitudinal DDR at different time steps is shown in 

Figure 4. A schematic view of the two -span bridges under study

Table 3. Main dimensions of the reinforced concrete bridges under study 

Bridge Case No. Number of Spans Span Length (m) Column Height (m) Column Diameter (m)

1 2 15-15 7.5 1.3

2 2 15-15 10 1.3

3 2 15-15 12.5 1.3

4 2 30-30 7.5 1.6

5 2 30-30 10 1.6

6 2 30-30 12.5 1.6

7 2 45-45 7.5 1.9

8 2 45-45 10 1.9

9 2 45-45 12.5 1.9
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Figure 6 for the bridge with medium span length 
and column height of 10.0 m. The review of the 
drift data at each time step indicates that a log-
normal distribution can be fit very well to the 
DDR response. It can be seen that both the me-
dian and standard deviation of the obtained dis-
tributions increase as the corrosion progresses 
and the scatter plot tends to the higher DDRs.

5. PROBABILISTIC LIFE-TIME 
FRAGILITY ANALYSIS

Fragility analysis is considered as a powerful 
tool for the probabilistic seismic risk assessment 
of highway bridges. Through this analysis, a set 
of fragility curves is developed to estimate the 
conditional probability statements of the bridge 
vulnerability as a function of ground motion in-
tensity measure. The damageability of the bridge 
can be assessed by expert opinions (ATC, 1985), 
empirical data from past earthquakes (Basoz and 
Kiremidjian, 1999 and Shinozuka et al., 2000a), 
and analytical methods (Mander and Basoz, 1999 
and Shinozuka et al., 2000b). The current study 
uses the later approach and defines four limit states 
of damage. The definitions of damage states are 
derived from HAZUS-MH (2007) and can be sum-
marized as: (at least) slight, E1, (at least) moderate, 
E2, (at least) extensive, E3, and complete damage, 
E4. Based on these damage states, the analytical 
fragility curves of the bridge cases are generated 
at different ages after the corrosion initiation time.

To perform fragility analysis, the column 
curvature ductility is taken here as the primary 
damage measure. The curvature ductility is 
defined as the ratio of maximum column cur-
vature recorded from a nonlinear time-history 
analysis to the column yield curvature obtained 
from moment-curvature analysis. Following the 
procedure given by Priestley et al. (1996), the 
curvature ductility values of all the bridge cases 
are calculated under the set of 60 ground motions 
and then compared with damage limit states. In 

this study, the damage limit states are assumed to 
equal the ductility of 1.0, 2.0, 4.0, and 7.0 for the 
slight, moderate, extensive, and complete damage 
states, respectively. The estimation of these limit 
states are beyond the scope of this chapter, but 
the suggested values are in accordance with the 
limit states available in the literature for similar 
bridges (Hwang et al., 2000, Choi et al., 2004, 
and Yang et al., 2009).

Under a ground motion excitation with the 
peak ground acceleration of PGAi (here i = 1,..., 
60), a bridge sustains failure in a specific dam-
age state if its ductility is larger than the ductility 
corresponding to that damage state. Depending 
on whether or not the bridge sustains the state 
of damage under different ground motions, the 
parameters of each fragility curve (i.e., median, 
ck and log-standard deviation, ζk) are estimated 
using the maximum likelihood procedure given 
in Shinozuka et al. (2000b). For the k-th damage 
state (k = 1, 2, 3, and 4), the fragility curve is 
developed following the formula below:

F PGA c
PGA c

k i k k
i k

k

( | , )
ln( / )

ζ
ζ

=










Φ  (12)

where Fk is the probability of exceeding the 
damage state of k and Φ[.] is the standard normal 
distribution function. The fragility curves of the 
intact two-span bridges with the column height 
of 10.0 m, having a range of short, medium, and 
long span lengths, are illustrated in Figure 7. 
Additionally, the estimated median values (ck) of 
the fragility curves developed for all the bridges 
under study are summarized in Table 4 for the 
four damage states considering the intact bridge 
conditions before the corrosion initiation time. For 
the log-standard deviation (ζk), it is seen that dif-
ferent deviation values may result in intersecting 
the fragility curves of different damage states. To 
avoid any intersection, Shinozuka et al. (2000b) 
suggest considering one common deviation value 
for all the damage states. In this study, since the 
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estimated log-standard deviations are very close to 
each other (ranging from 0.50 to 0.70), the median 
value of log-standard deviations (equal to 0.60) is 
selected as the identical log-standard deviation.

To evaluate the effects of chloride-induced 
corrosion on the seismic damageability of RC 
bridges, the fragility curves are generated for the 
case-study bridges at different time steps during 
their life-cycle. Considering the extent of struc-
tural degradation (as discussed in Section 3), the 
median and log-standard deviation of fragility 
curves are estimated for the corroded bridges 
following the procedure described for the intact 
bridges. The change in the median values of fra-
gility curves is shown in Figure 8 for all the 
bridges with the column height of 10.0 m. This 
figure indicates that after 50 years, the overall 
average of median values obtained for the four 
damage states drops by 38%. For further illustra-
tion, the time-dependent fragility curves of the 
bridges with medium span length and column 
height of 10.0 m are depicted in Figure 9. It can 
be understood from this figure that for a specific 
PGA value, the probability of exceeding any 
damage state increases over the time due to the 
corrosion process. This increases the seismic 
damageability of bridge and makes it more vul-
nerable to natural hazards. The time-dependent 
fragility curves developed in this section will also 
be used to predict the life-cycle cost of bridges 
in a multi-hazard framework.

6. LIFE-CYCLE COST ANALYSIS OF 
DEGRADED BRIDGES

The life-cycle cost (LCC) of a structure is defined 
as the total cost of the structure from the begin-
ning of planning for construction to the end of 
its service life time. The LCC analysis provides 
a framework that helps to allocate appropriate 

Figure 5. Spectral acceleration plots developed 
for three sets of 20 ground motions with differ-
ent seismic hazard levels: (a) 50% probability 
of occurrence in 50 years; (b) 10% probability 
of occurrence in 50 years; (c) 2% probability of 
occurrence in 50 years
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resources for design, construction, and operation of 
the structure. The focus of the current study is on 
the LCC analysis of RC bridges located in extreme 
chloride-laden environments. From the resources 
point of view, it is important to optimize the inspec-
tion and maintenance schedules in a way so that 
the total cost of structure is minimized while the 
structure satisfies the performance requirements.

The LCC of a bridge consists of a one-time 
initial cost associated with design and construction 
of the bridge and regular inspection and mainte-
nance costs necessary at certain time intervals. 
The general formula for LCC analysis can be 
expressed as follows:

LCC C C C C C Cc IN M M
u

sf sf
u= + + + + +[ ] [ ]  
(13)

where Cc is the initial construction cost, CIN, the 
inspection cost, CM, the maintenance cost, CM

u , 
the user cost associated with the maintenance 
procedure, Csf, the bridge service failure cost, and 

Csf
u , the user cost associated with the probable 

service failure. The inflation is also taken into 
account by dominating future maintenance ex-
penditures in base year prices. These recurrent 
maintenance costs are combined by weighing 
them according to a discount factor that takes into 
account the time value of the money. The discount 
factor, z(t), is defined as:

z t r t( ) = + −( )1  (14)

where r is the discount rate indicating the expected 
market rate of return on an investment. The choice 
of discount rate is often disputable in LCC analy-
sis. In practice, the discount rate ranges from 2% 
to 8%. Generally, choosing a high discount rate 
favors short service life time while a low discount 
rate encourages a longer service life time.

The initial cost of construction is assumed to 
be the summation of the costs of the bridge com-
ponents. The cost of the deck is computed as the 

Figure 6. The distribution of DDR response over the time for the two-span bridge with the medium span 
length and column height of 10 m
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total area of the deck multiplied by a cost per unit 
deck area. Caltrans contract cost data (2008) sug-
gests $380 per m2 for deck construction cost. For 

bridge piers, the construction cost includes the cost 
of steel work and concrete work. After calculating 
the total volumes of the steel and concrete, the 

Figure 7. Fragility curves developed for different damage states of the intact two-span bridges with the 
medium span length and column height of 10 m: (a) at least slight damage state; (b) at least moderate 
damage state; (c) at least extensive damage state; (d) complete damage state

Table 4. Median values of the fragility curves estimated for all the bridge cases under different damage 
states 

Two-Span short-span medium-span long-span

Damage State E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4

Hcol = 7.5 m 0.38 0.90 2.46 6.0* 0.32 0.68 1.36 1.90 0.42 0.78 1.36 1.90

Hcol = 10.0 m 0.42 1.28 2.46 6.0* 0.34 0.82 1.64 2.84 0.36 0.76 1.48 2.46

Hcol = 12.5 m 0.66 1.66 2.84 6.0* 0.38 0.82 2.46 6.0* 0.36 0.88 1.56 3.36

* indicates that no case of complete damage, E4, was observed.
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pier cost can be estimated by assuming $4 per kg 
of steel and $840 per m3 of concrete according to 
Caltrans contract cost data (2008). The average 
total construction cost of short-, medium-, and 
long-span bridges under study can be seen in 
Table 5. Their inspection and maintenance costs 
as well as their failure costs will be discussed in 
the upcoming sections.

6.1. Inspection and Maintenance 
Costs

The cost of inspection and maintenance is expected 
to be incurred at regular time intervals, Δt. The 
inspection cost is calculate as:

C S i tIN
i

n

=
=
∑

1

z( )∆  (15)

where S is the cost of each inspection, n, the num-
ber of maintenance intervals, and z, the discount 
factor from Equation 14. It can be seen that by 
increasing the number of inspections, n, during 
the life-cycle of the bridge, the inspection cost 
rises accordingly. For the bridges under study, 
the inspection cost is assumed to equal 0.5% of 
the construction cost. The maintenance cost over 
a structure’s life span can be expressed as:

Figure 8. Time-dependant median values of fragility curves obtained for the two -span bridges with the 
column height of 10 m: (a) at least slight damage state; (b) at least moderate damage state; (c) at least 
extensive damage state; (d) complete damage state
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Figure 9. Time-dependant fragility curves for the two-span bridge with the medium span length and 
column height of 10 m; (a) at least slight damage state; (b) at least moderate damage state; (c) at least 
extensive damage state; (d) complete damage state

Table 5. Life-cycle cost of short-, medium-, and long-span bridges under study, including initial con-
struction cost, inspection and maintenance costs, and service failure costs 

Bridge Case short-span medium-span long-span

Cc $361,151 $500,117 $639,083

CIN $122,557 $169,716 $216,874

CM $154,744 $214,288 $273,832

CM
u $95,171 $95,171 $95,171

Csf $90,085 $124,749 $159,412

Csf
u $45,471 $45,471 $45,471

Ctotal $869,179 $1,149,512 $1,429,843
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C Mz i tM
i

n

=
=
∑

1

( )∆  (16)

where M is the cost of maintenance activity in 
base year prices. The maintenance cost is usually 
assumed between 0.5% to 1.0% of the construction 
cost, but since it is expected that the maintenance 
cost increases as the bridge ages, it is assumed here 
that the maintenance cost has a linear increasing 
trend from 0.5% to 1.0% during the structure’s 
service life time.

In addition to the direct maintenance costs, the 
user cost associated with the temporary closure 
of facilities should also be considered. The actual 
user cost during the regular maintenance work 
depends on the extent and duration of service 
disruption (Chang and Shinozuka, 1996). This 
can be expressed as:

C t b uz i tM
u

i

n

=
=
∑

1
m m ( )∆  (17)

where tm is the duration of maintenance activities, 
and bm, the index of usage disruption (0 ≤ bm ≤ 
1). For example, if maintenance entails closure 
of one of the two lanes of a bridge, bm would be 
0.5. In Equation 17, u is the unit user cost which 
depends on the volume and type of traffic crossing 
the bridge as well as the availability of convenient 
alternative routes. The user cost also typically 
includes the increased costs associated with travel 
delays and accidents. In the current study, it is 
assumed that for the maintenance program, only 
1/4 of bridge is closed at each period of time for 
one week. Hence, the average hourly user cost is 
calculated to be $8.75 per vehicle. The annual traf-

fic is assumed to be 100,000 hour.vehicle.year-1, 
which makes the user cost of the maintenance 
program equal to $875,000. It is also assumed 
here that the inspection procedure is so short that 
it leads to negligible disruptions on bridge traffic, 
and as a result, it causes no user cost.

6.2. Service Failure Costs

The expected value for the service failure cost 
of a bridge can be calculated using Equation 18:

C C z i t p isf
i

n

f f= ( )
=
∑

1

� � ( )∆ ∆  (18)

where Cf is the repair cost due to the service 
failure, assumed to be equal to 20% of the con-
struction cost. In order to obtain the expected 
service failure cost, the repair cost should be 
multiplied by the relevant probability of failure 
during each time interval of the bridge life-cycle. 
Since the current chapter studies the effects of the 
corrosion process on LCC of bridges, the prob-
ability of failure due to the corrosion process 
between (i-1)-th and i-th time intervals, Δpf(i), 
has been calculated using a recursive formula 
suggested by Val and Stewart (2003) in Box 1:
where p is the cumulative distribution function 
for the time of service failure. Since the crack 
initiation and propagation time (calculated in 
Section 4.2) is small comparing to the corrosion 
initiation time, the service failure is assumed to 
occur after the corrosion initiation time. The 
values of Δpf(i) have been calculated for different 
inspection intervals and are shown in Figure 10 
for the entire life-cycle of the bridge, which is 

Box 1.   
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assumed to be 50 years after the corrosion initia-
tion time. It is evident that as the number of in-
spections decreases, the probability of failure due 
to the corrosion process increases. According to 
Chang and Shinozuka (1996), the expected user 
cost associated with the probable service failure 
can be calculated as below:

C t b uz i t p isf
u

i

n

sf sf f= ( )
=
∑

1

� � � � ( )∆ ∆  (20)

where tsf is the duration of repair activities after 
failure, and bsf, the usage disruption parameter 
due to the service failure. In this study, it is as-
sumed that it takes one month for the bridge to 
be repaired and during this time half of the bridge 
will be closed to traffic.

6.3. Optimized Inspection and 
Maintenance Intervals

Based on the total construction cost of the short-, 
medium-, and long-span bridge cases, the inspec-

tion and maintenance costs as well as the service 
failure costs of all the bridges are calculated and 
the average costs are summarized in Table 5. The 
values of Table 5 are obtained with the assumption 
of 4% annual inflation rate and scheduling an-
nual inspection and maintenance program. This 
table shows that the user associated costs, CM

u  
andCsf

u , do not change for different bridge types, 
which indicates that they are independent of the 
construction cost.

In order to evaluate the effects of inspection 
and maintenance intervals on the LCC of bridges, 
different inspection and maintenance strategies 
have been examined. In this study, it is assumed 
that the inspection and maintenance intervals are 
the same and can be scheduled every 1, 2, 3, 4, or 
5 years. Table 6 indicates the average inspection, 
maintenance, and service failure costs for the 
medium-span bridge inspected and maintained 
according to the proposed time schedules. The ratio 
of different cost types to the initial construction 
cost are depicted in Figure 11. Referring to Table 
6 and Figure 11, when the inspection intervals 

Figure 10. Probability of service failure due to the corrosion process for various inspection intervals
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increase, the costs associated with the inspec-
tion and maintenance decrease but this causes 
a significant increase in the service failure cost. 
The total LCC of the bridge has been shown in 
Figure 12, considering the decreasing trend of 
inspection and maintenance costs and increas-
ing trend of the service failure costs. From this 
figure, it can be understood that the total LCC of 
the bridge can be minimized if the inspection and 
maintenance intervals are scheduled for every 2 
or 3 years. This schedule optimizes the inspection 
and maintenance costs while ensuring the safety 
of the bridge.

6.4. Earthquake-Induced Failure Cost

This section focuses on the LCC analysis of RC 
bridges considering the combined effects of natu-
ral hazards and environmental stressors on the 
estimation of the LCC. The extent of structural 
degradation and capacity loss due to the corrosion 
process were discussed in the previous sections 
and it is evident that an optimized plan for the 
inspection and maintenance of bridges is necessary 
to avoid any structural failure under the service 
or seismic loads. To satisfy overall performance 
requirements while minimizing the total resource 
costs, the LCC of bridges is evaluated in this study 
by taking into account the structural performance 
criteria in addition to the key cost parameters.

As mentioned earlier the total LCC of the 
bridge includes a one-time initial cost required 
for the design and construction of the bridge, 
some regular inspection and maintenance costs 
necessary at certain time intervals, and the costs 
associated with the serviceability failure of the 
corroded bridge due to earthquake events. Based 
on the mentioned costs, Equation 13 is updated 
as follows to account for the earthquake-induced 
failure cost for the degraded bridges.

LCC C C C C C Cc IN M M
u

ef ef
u= + + + + +[ ] [ ] 
(21)

where Cef is the bridge failure cost due to earth-
quake event, and Cef

u , the user cost associated 
with the probable bridge failure.

The failure cost is assumed to equal the cost 
associated with the repair and replacement of the 
damaged parts of a bridge during probable natural 
hazards. Since the current chapter evaluates the 
seismic performance of corroded bridges, the state 
of damage after an earthquake event can be consid-
ered as an assessment measure for the estimation 
of failure cost. Through a probabilistic approach, 
the expected service failure cost is calculated for 
each of the damage states and the results are then 
combined with appropriate weighting factors. 
This procedure is repeated over the entire life-
cycle of the bridge (n time intervals) to calculate 
the total failure cost by taking into account the 
failure probabilities which are updated at each 
time interval based on the corrosion process. The 
general formula for the estimation of failure cost 
is as below:

C PI d i t r z i t Cef
i

n

k
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where rk is the damage ratio (will be discussed 
later) and PI is the performance index for the 
damage state of dk (k = 1, 2, 3, and 4) at i-th time 
interval. The performance index represents the 
overall performance of a particular corroded state 
of the bridge under a specified seismic hazard risk 
and it can be determined in terms of the annual 
probability of exceeding a given damage state 
considering the effects of deteriorating mecha-
nisms. This index is calculated from Equation 
23, as follows:

PI d i t P DS d x
dH x

dx
dxk k i k, |
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∫
0

 

(23)
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where Pk,i is the probability of suffering the damage 
state of dk (i.e., DS > dk) under the ground motion 
intensity (here PGA) of x. This probability can be 
obtained at each time interval from the updated 
fragility curve developed for that damage state. 
On the other hand, the probability of exceeding 
the ground motion intensity of x during the service 
life-time of the bridge can be calculated from a seis-
mic hazard curve, H(x), generated for the specific 

location of the bridge. For further clarification, 
the current chapter demonstrates an application 
of the explained approach in the calculation of 
the failure cost of the case study bridges. It is 
assumed that these bridges are located at three 
different parts of the Los Angeles area which are 
similar in terms of exposure to chloride ions but 
are different in terms of the seismic hazard risk. 
The seismic hazard curves corresponding to these 

Table 6. Effects of inspection/maintenance intervals on the life cycle cost of the medium-span bridge 

Interval annual 2-year 3-year 4-year 5-year

Cc $500,117 $500,117 $500,117 $500,117 $500,117

CIN $169,716 $86,887 $54,368 $39,966 $32,798

CM $214,288 $112,618 $69,391 $51,288 $43,249

CM
u $95,171 $48,723 $30,488 $22,412 $18,392

Csf $124,749 $237,982 $340,877 $431,840 $500,949

Csf
u $45,471 $86,744 $124,249 $157,405 $182,595

Ctotal $1,149,512 $1,073,071 $1,119,490 $1,203,028 $1,278,100

Figure 11. Ratio of different cost items to the initial construction cost
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locations have been extracted from the USGS 
database and shown in Figure 13. For the purpose 
of this study, these hazard curves represent high, 
medium, and low hazard risks and indicate a PGA 
of 0.48, 0.32, and 0.20g for 10% probability of 
exceedance in 50 years, respectively.

Using Equation 23, the performance indices 
for the three levels of seismic hazard risk are 
calculated in different states of damage at a range 
of PGA values. The obtained results are multiplied 
by damage ratios, rk, which are employed as 
weighting factors to adjust the economic loss due 
to the different damage states. HAZUS-MH (2007) 
provides some ranges for damage ratios and also 
suggests the best estimates within each range for 
the slight, moderate, extensive, and complete 
damage states (Table 7). By repeating the explained 
procedure for all time steps, the earthquake in-
duced failure cost is estimated from Equation 22. 

The required steps for this procedure have also 
been schematically illustrated in Figure 14.

In addition to the failure cost which is di-
rectly related to the repair and replacement costs 
of a bridge, there are user costs associated with 
the closure of part or whole of a bridge to traffic 
after an earthquake. Similar to the user cost of the 
maintenance procedure, the total user cost of the 
bridge failure is calculated based on a unit user 
cost, u, which is assumed to be identical in both 
cases. By taking into account the time- and 
damage-dependent performance indices obtained 
from Equation 16, the total user cost of the bridge 
failure, Cef

u , can be expressed as:

C PI d i t t d b d u z i tef
u

i

n

k
k f k f k= ( ) ( ) ( )





= =
∑∑
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4

, ( )∆ ∆  

(24)

Figure 12. Total LCC of the medium-span bridge obtained for different inspection and maintenance 
intervals
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where tf is the duration of repair activity and bf is 
the usage disruption parameter due to the seismic 
damage (0 ≤ bf ≤ 1). These two parameters depend 
on the state of damage, dk, and the values assigned 
to them are summarized in Table 8.

The summation of failure cost and its associ-
ated user cost is calculated for each of the bridge 
cases and then the total failure cost is normalized 
to the relevant initial construction cost for com-
parison purposes. There are also three assumptions 

for the regular inspection and maintenance ac-
tivities, which include 1-, 2-, and 5-year time 
intervals. Considering three levels of seismic 
hazard risk, the ratio of total failure cost to initial 
construction cost is shown in Figure 15 for all the 
bridge cases. As it can be seen from this figure, 
the obtained ratios have an increasing trend when 
the inspection and maintenance activities are less 
frequent and as a result, the bridges have become 
more vulnerable to seismic events. As a case in 

Figure 13. Seismic hazard curves for three different locations in the Los Angeles area (USGS)

Table 7. Damage ratios for RC highway bridges (HAZUS-MH,2007) 

Damage State Range of Damage Ratios Best Estimate Damage Ratio

slight 0.01-0.03 0.03

moderate 0.02-0.15 0.08

extensive 0.10-0.40 0.25

complete 0.03-1.00 1.00*

*If the number of spans is greater than two, then the best estimate
damage ratio for complete damage is [2/(number of spans)]
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Figure 14. Summary of required steps for the calculation of the failure cost of corroded bridges due to 
probable earthquake events
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point, the ratio of total failure cost increases be-
tween 5% to 19% for various bridge cases as the 
inspection and maintenance interval changes from 
every 1 year to every 5 years. On the other hand, 
planning for more frequent inspection and main-
tenance intervals may cause an increase in the 
total life-cycle cost of a bridge. Selecting the 
two-span bridge with the medium span length and 
column height of 10.0 m as the case-study, it is 
found that the ratio of total life-cycle cost (LCC) 
to initial construction cost is equal to 2.7, 2.4, and 
3.3 for the inspection and maintenance intervals 
of 1, 2, and 3 years, respectively. This indicates 
that a 2-year interval would be probably an opti-
mized interval which saves more money while 
limiting the probability of bridge failure.

As discussed earlier, the current chapter pro-
vides a multi-hazard framework for the estimation 
of the total life-cycle cost of bridges. But one may 
question the importance of the proposed frame-
work considering the efforts required to take into 
account the deterioration process in addition to 
the seismic hazard risk. To respond to this concern, 
a comparison has been made between the ratios 
of total failure cost to initial construction cost 
calculated with and without the effects of the 
corrosion process (Figure 16). It can be found that 
this ratio is underestimated by a factor of 47% on 
average in case that the corrosion process is ig-
nored. This indicates that the accuracy of life-
cycle cost estimations can be improved signifi-
cantly through the developed framework.

In order to simplify the evaluation of the cor-
rosion process and easily incorporate it into the 

Figure 15. Ratio of total failure cost to initial 
construction cost for three levels of seismic hazard 
risk (Note: The geometric characteristics of each 
bridge case number can be found in Table 3): 
(a) low seismic hazard risk; (b) medium seismic 
hazard risk; (c) high seismic hazard risk

Table 8. Values assumed for bf and tf at different 
damage states 

Damage State bf tf

slight 0 0

moderate 0.25 1 month

extensive 0.50 6 months

complete 1.00 24 months
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life-cycle cost analysis, adoption of some relation-
ships which predict the extent of change in the 
performance of a bridge over the time is proposed. 
For this purpose, the performance index is chosen 
here as an appropriate measure since it considers 
the combined effects of corrosion and earthquake 
scenarios and can be directly used in the calcula-
tion of the life-cycle cost. For the bridges consid-
ered in the current study, with the given struc-
tural degradation rate and seismic hazard risk, a 
series of linear regression analysis is conducted 
to provide the users with an equation which updates 
the value of the performance index over the life-
cycle of the bridge. This Equation can be expressed 
as follows:

PI d t PI d A d tk k k,( ) = ( )+ ( )0  (25)

where PI0(dk) is the performance index calculated 
for a bridge in the intact condition (no deteriora-
tion) and A(dk) is the slope of the line which shows 

the rate of change in the performance index value 
over the time given a specific state of damage 
(dk). The expected values of A(dk) obtained from 
the detailed analysis of the bridge cases for dif-
ferent seismic hazard risks and damage states are 
summarized in Table 9. The performance indices 
extracted from Equation 18 can be used to predict 
the failure costs in bridge cases with similar dete-
rioration scenarios and seismic hazard conditions.

7. CONCLUSION

Reinforced concrete highway bridges are continu-
ously exposed to different environmental stressors 
during their service life time. Chloride-induced 
corrosion is one of deterioration mechanisms that 
causes serious structural degradation and may 
result in the service failure of the entire bridge. 
This chapter develops a comprehensive framework 
to study the chloride intrusion mechanisms and 

Figure 16. Comparison between the ratios of total failure cost to initial construction cost calculated with 
and without the effects of corrosion (Note: The geometric characteristics of each bridge case umber 
can be found in Table 3)
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predict the progress of corrosion in reinforced 
concrete members. Through this study, the effects 
of various influential parameters, such as water 
to cement ratio, ambient temperature, relative 
humidity, concrete age, free chloride content, and 
binding capacity, are carefully considered for an 
accurate estimation of the chloride penetration 
profile in deteriorating structural members over 
the time.

The corrosion initiation time is estimated by 
comparing the chloride content values in the vi-
cinity of reinforcing bars with critical thresholds. 
After the determination of the corrosion initiation 
time, the rate of reduction in geometry and material 
properties due to the corrosion process is calculated 
at different time steps. This chapter specifically 
considers the reduction rate of diameter and yield 
strength of reinforcing bars in corroded members. 
The crack initiation and propagation in concrete 
cover is also investigated in order to modify the 
confinement assumptions required for capac-
ity evaluation. Based on the updated structural 
characteristics of corroded members, the capacity 
loss of a group of RC bridges with short, medium, 
and long spans is evaluated. In addition to the 
structural degradation, the effects of the corrosion 
process on the life-cycle cost of bridges are also 
studied. From the detailed calculation of construc-
tion, inspection, maintenance, and service failure 
costs of the bridges, this chapter examines various 
inspection and maintenance strategies and sug-
gests the optimized inspection and maintenance 
intervals. The proposed procedure minimizes the 

total life-cycle cost of the bridge while maintains 
its expected structural performance.

This chapter also provides a multi-hazard 
framework that evaluates the life-cycle perfor-
mance and cost of reinforced concrete highway 
bridges. The bridges under consideration are lo-
cated in seismic areas and they are continuously 
exposed to the attack of chloride ions. As a result, 
it is necessary to study the combined effects of a 
natural hazard and an environmental stressor over 
the time. The time-dependent seismic fragility 
curves of the bridges are then generated using a 
set of damage states for the purpose of seismic 
risk assessment. In addition to the probabilistic 
structural evaluation, the results of fragility analy-
sis are employed to estimate the total life-cycle 
cost of the bridges. To consider both earthquake 
and corrosion scenarios, a performance index is 
introduced which represents the vulnerability of a 
corroded bridge under a specified seismic hazard 
risk. Comparing the life-cycle costs calculated with 
and without the effects of corrosion, it is found 
that the suggested performance index plays a key 
role in obtaining more realistic estimates of the 
total costs and it provides valuable information to 
optimize the inspection and maintenance intervals. 
The time-dependent variation of this index is also 
formulated to be directly used in the life-cycle cost 
analysis of similar cases without going through 
the detailed corrosion models.

Table 9. Suggested values for A(dk) in Equation 25 

Seismic Hazard Risk

Damage State Low Medium High

slight 3.26 × 10-05 5.44 × 10-05 9.93 × 10-05

moderate 5.53 × 10-06 1.05 × 10-05 2.38 × 10-05

extensive 1.66 × 10-06 3.74 × 10-06 9.12 × 10-06

complete 5.46 × 10-07 1.43 × 10-06 3.66 × 10-06
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ABSTRACT

An efficient robust design optimization (RDO) procedure is proposed in the framework of an adaptive 
response surface method (RSM) for structures subjected to earthquake load and characterized by un-
certain but bounded system parameters. The basic idea of the proposed RDO approach is to improve 
the robustness of a design by using a new dispersion index which utilizes the relative importance of the 
gradients of the performance function. The same concept is also applied to the constraints. The repeated 
computations of stochastic responses and their sensitivities for evaluating the stochastic constraint of 
the associated optimization problem are efficiently obtained in the framework of an adaptive RSM. The 
proposed RDO approach is elucidated through the optimization of a three-storied concrete frame struc-
ture. The numerical study depicts that the proposed RDO results are in conformity with the conventional 
RDO results. However, definite improvements are achieved in terms of robustness and computational 
time requirements indicating its efficiency over the conventional RDO approach.
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INTRODUCTION

The response of a structural system under en-
vironmental loads such as wind, water wave, 
earthquake, etc. is highly uncertain and can be best 
modelled as a stochastic process. The optimization 
of structure under such loads is normally dealt in 
the literature in the form of standard nonlinear 
optimization problem. The dynamic responses 
to define the stochastic constraints of the related 
optimization problem are obtained by random 
vibration theory. Subsequently, a standard non-
linear optimization problem is formulated where 
the weight of the structure or a desired stochastic 
response quantity is minimized. The procedure is 
termed as stochastic structural optimization (SSO). 
The details of the relevant developments can be 
found in (Nigam, 1972), Kang et al. (2006). It may 
be underlined here that in a typical SSO procedure 
the dynamic load is considered to be the only 
source of randomness in many cases and all other 
system parameters are assumed to be determinis-
tic. But, uncertainty in the system parameters is 
inevitable to model a realistic structural system 
and incorporation of such uncertainty creates an 
interaction between the stochastic descriptions of 
the loads and the uncertain parameters (Jensen, 
2002). Furthermore, the effect of system parameter 
uncertainty is important as the safety of structure 
may be endangered due to this (Chaudhuri, & 
Chakraborty, 2006) and can affect the final optimal 
design significantly (Schuëller, & Jensen, 2008). 
Thus, there is a growing interest to consider the 
effect of uncertainty in the optimization process 
for economic design of structure ensuring neces-
sary safety requirements.

The developments in the optimum design of 
structure under uncertainty can be divided into 
three broad categories: (i) performance based 
design optimization (PBDO), (ii) reliability based 
design optimization (RBDO), and (iii) robust 
design optimization (RDO). The limitation of the 
PBDO is quite obvious as it optimizes the mean 

or nominal value of a performance function disre-
garding its variation due to uncertainty. The RBDO 
ensures a target reliability of a design for a specific 
limit state. An efficient RBDO was presented for 
linear (Jensen, 2005) and nonlinear (Jensen, 2006) 
deterministic dynamic systems under earthquake 
load. Jensen et al. (2008) have further extended 
the approach to include the randomness in the 
system parameters. Lagaros et al. (2008) proposed 
an RBDO procedure for computationally intensive 
system under earthquake load and random system 
parameters. Mohsine et al. (2005) presented an 
RBDO method where solution has been achieved in 
a hybrid design space (HDS) considering probabi-
listic variations of parameters under deterministic 
dynamic load. The HDS considers reliability level 
in the same design space of the objective func-
tions and constraints. An optimum seismic design 
criterion was proposed by Marano et al. (2006) 
for elastic structures considering deterministic 
system parameters. The optimum design of struc-
ture considering system parameter uncertainty as 
discussed above is mainly accomplished in the 
framework of RBDO to ensure a target reliability 
of structure with respect to desired performance 
modes. It may be noted here that the studies on 
the optimization of dynamic system considering 
system parameter uncertainty primarily apply 
the total probability theory concept to obtain the 
unconditional response or the failure probability 
of the system which is subsequently used as the 
performance measure. However, the optimization 
has been performed without any consideration to 
the possible variation of the performance of the 
structure due to system parameter uncertainty. It 
may be realized that such a design approach not 
necessarily corresponds to an optimum design in 
terms of minimum dispersion of the performance 
objective of the design. Rather, the system may 
be sensitive to the variations of the system pa-
rameters due to uncertainty. In order to obtain a 
more viable optimum design, the RDO approach 
is more desirable which optimizes a performance 
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index expressed in terms of the mean value of the 
performance function (obtained by the so called 
RBDO approach) as well as its dispersion due to 
uncertainty. Thereby, a design configuration of the 
structure can be achieved so that the performance 
objective is less sensitive to the variations due to 
system parameter uncertainty. Furthermore, the 
RBDO of structure, based on a probabilistic de-
scription of uncertain parameters attains its limita-
tion when sufficient reliable data are not available 
for describing the system parameter uncertainty 
of a real life system. In fact, often a probabilistic 
description of uncertainty arising from insufficient 
information is warned in order to incorporate our 
partial knowledge about the system. A preferable 
approach is to model the system parameters as 
uncertain but bounded (UBB) type. In such a case, 
the RDO approach becomes an attractive alterna-
tive to the RBDO approach. The RDO approach 
is fundamentally concerned with minimizing the 
effect of uncertainty in the Design Variables (DVs) 
(the specific system parameters designer needs 
to optimize to achieve a desired performance) 
and the Design Parameters (DPs) (which cannot 
be controlled by the designer or are difficult and 
expensive to control). The subject of the present 
chapter is the RDO of structures under stochastic 
load (earthquake to be specific) considering UBB 
type system parameters.

BACKGROUND

To present the proposed RDO approach, it will be 
informative to discuss the background of RDO of 
structures with emphasis on optimization of sto-
chastic dynamic system. In doing so, the related 
developments in the field of RDO are presented 
first to justify the relevance of the present study. 
Subsequently, the concept of conventional RDO 
approach, the SSO under earthquake load as-
suming deterministic system parameters and the 
metamodelling based approximation of stochastic 
dynamic responses are briefly presented.

The RDO Method: Developments

The concepts of RDO have been developed 
independently in different scientific disciplines 
and the developments in the recent past are note-
worthy as evident from the works of Park et al. 
(2006); Beyer, & Sendhoff (2007). The limited 
information on uncertainty is usually integrated 
with a nondeterministic optimization framework 
to obtain an RDO (Park, Lee, & Hwang, 2006). 
This approach is often referred as sensitivity 
based approach. There are various such RDO 
approaches adopted by different researchers e.g. 
robust counterpart approach (Lewis, 2002), semi-
definite programming (Ben-Tal, & Nemirovski, 
2002; Bertsimas, & Sim, 2004), worst case sensi-
tivity region concept (Gunawan, & Azarm, 2005), 
minimization of sensitivity matrix (Al-Widyan, & 
Angeles, 2005) etc. A new semi-analytical method 
to calculate the sensitivity of stability boundary 
for a system of delay differential equations was 
presented by Kurdi et al. (2008). Guo et al. (2009) 
proposed a bi-level programming technique us-
ing a semi-definite programming to solve RDO 
problem under non-probabilistic and non-convex 
stiffness and load uncertainties. The study on 
RDO procedure in the field of stochastic dynamic 
systems is comparatively a less attempted area 
compared to the deterministic design optimization 
(DDO) and the RBDO procedures. Hwang et al. 
(2001) minimized the mean and the variance of 
displacement at the first resonance frequency of 
an automobile mirror considering system param-
eter uncertainty. Zang et al. (2005) reviewed the 
applications of optimization of dynamic system 
and presented an RDO procedure for a vibration 
absorber considering mass and stiffness uncertain-
ties under deterministic sinusoidal load. Son and 
Savage (2007) proposed a probabilistic design of 
vibration absorber parameters to reduce the mean 
as well the variance of dynamic performance 
measure. Marano et al. (2008) investigated RDO 
solution for a tuned mass damper (TMD) system 
in seismic vibration mitigation. Taflanidis and 
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Beck (2008) proposed an RDO procedure for 
a base-isolation system under earthquake load 
considering system parameter uncertainty. The 
unconditional performance function was evaluated 
through stochastic simulation. Guedri et al. (2009) 
proposed a stochastic metamodel based approach 
integrated with an RDO procedure to reduce the 
cost of uncertainty analysis. In a recent study, 
Marano et al. (2010) presented an RDO criterion 
for a TMD system in seismic vibration control of 
structures. Taflanidis (2010) presented an RDO 
procedure of a linear dynamic system under 
stochastic stationary excitation using simulation 
based approach.

The review of currently available literature 
reveals that the developments in the field of 
RDO procedures have been taken place in three 
distinct areas: (i) mathematical formulation of 
RDO procedure as a SSO problem or deterministic 
programming (Du, & Chen, 2000; Lee, & Park, 
2001; Gunawan, & Azarm, 2005), (ii) solution 
strategies (Du, Sudijianto, & Chen, 2004; Beyer, 
& Sendhoff, 2007), and (iii) assessment of robust-
ness (Huang, & Du, 2007). The literature on RDO 
procedures largely indicates that the applications 
of RDO procedures in dynamics is lesser compared 
to its applications in static. Moreover, in many 
such applications, the dynamic load is consid-
ered to be deterministic in nature. It is generally 
observed that the existing RDO formulations put 
equal importance to each individual gradient of 
the performance function and constraints. But, it 
is well-known to the structural reliability com-
munity that all the gradients of a performance 
function are not of equal importance (Gupta, & 
Manohar, 2004; Haldar, & Mahadevan, 2000). 
In fact, when a large numbers of DVs and DPs 
are involved in a structural reliability analysis 
problem, the dominant parameters having rela-
tively stronger influence on the reliability are 
identified by using the relative importance of the 
gradients. The concept has been successfully used 
in the reduction of number of random variables 
in large scale reliability analysis problems. Thus, 

it is intuitively expected that the importance of 
the individual gradient should also provide use-
ful information to measure the robustness of the 
performance of a design and the concept can be 
applied in the RDO procedure. In this regard, 
it is of worth mentioning that most of the engi-
neering design problems are strongly based on 
computationally expensive complex computer 
code and numerical analysis. For a large-scale 
system design, a preferable strategy is to utilize 
the metamodelling technique to approximate the 
implicit performance functions and constraints 
(Jurecka, Ganser, & Bletzinger, 2007). However, 
the accuracy of the metamodel based optimization 
approach relies on how accurate the response sur-
face method (RSM) is in capturing the performance 
variations during the iteration cycles of a typical 
numerical optimization procedure (Jin, Chen, & 
Simpson, 2001). Generally, the RSM is based on 
the least-squares method (LSM) which is primar-
ily a global approximation of scatter position data 
(Myers, & Montogmery, 1995). It is well-known 
that the LSM is one of the major sources of error 
in the response approximation by the RSM. The 
moving least-squares method (MLSM), basically 
a local approximation approach is found to be 
more efficient in this regard (Kim, Wang, & Choi, 
2005). However, the studies addressing the RDO 
of structure using the MLSM based metamodel-
ling technique is observed to be scarce than the 
applications of the MLSM addressing the RBDO 
or the DDO procedures.

The focus of the present chapter is on an 
improved RDO strategy for structures subjected 
to stochastic earthquake load and characterized 
by UBB type DVs and DPs. The formulation is 
proposed in the framework of MLSM based adap-
tive RSM. The basic idea of the proposed RDO 
approach is to improve the robustness of the per-
formance function using a new dispersion index, 
which utilizes the weight factors proportional to 
the importance of each gradient of the performance 
function. The same concept is also applied to the 
constraints. The repeated computations of the 
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stochastic dynamic responses and their sensitivi-
ties for evaluating the stochastic constraint of the 
related optimization problem have been avoided 
by applying the MLSM based adaptive RSM. The 
proposed RDO approach is elucidated through the 
optimization of a three-storied concrete frame. The 
numerical results obtained by the conventional 
and the proposed RDO approaches are presented 
to demonstrate the effectiveness of the proposed 
RDO approach.

The Conventional RDO Approach

Most of the developments in the field of RDO as 
discussed in the previous section primarily use 
the weighted sum method (WSM) for examples as 
adopted by Du &Chen (2000), Lee & Perk (2001). 
This approach is termed in the present study as 
‘the conventional RDO approach’ in which the 
robustness of a design performance is expressed 
in terms of the dispersion of performance function 
from its nominal value.

Let, u = (x, z) is a vector composed of n-di-
mensional DVs, x = [ , , .. ]x x xn1 2 and l-dimen-
sional DPs, z = [ , , .., ]z z zl1 2 . The lower and 
upper bounds of the ith UBB type DV or DP, ui

I

are denoted by ui
l and ui

u , respectively. In interval 
mathematics ui

I is expressed in Box 1 (Moore, 
1979).

In the above, ui is the nominal value ofui , and 
∆ui denotes the maximum variation of ui from 
its’ nominal value, termed as dispersion. If a 
practical estimate of the nominal value is avail-
able, it can be directly assigned toui . In absence 
of that, ui is usually taken as, u ui

l
i
u+( )/ 2 . Then, 

for a performance function, f (u), its nominal 
value is obtained as: f f= (u) , where u is a vec-
tor comprising of nominal values of u. Generally, 
the RDO is performed by improving the robust-
ness of the performance function by minimizing 
a gradient index obtained through first-order 
Taylor series expansion (Lee, & Perk, 2001) as 
defined below:

∆ ∆f
f
u

u
ii

N

i=
∂
∂=

∑
1

 (2)

where, N is the total number of DVs and DPs and 
∆ui quantifies their uncertainty amplitudes. The 
objective of an RDO is to achieve optimum per-
formance of the design as well as its less sensitiv-
ity with respect to the variations of DVs and DPs 
due to uncertainty. This leads to a dual criteria 
performance function. This dual criteria perfor-
mance function is transformed to an equivalent 
single objective function as following:

minimize: 0( ) ,
* *

1 1− + ≤ ≤α α α
f
f

f
f
∆
∆

 

(3)

where,α  is a weighting factor in the above bi-
objective optimization problem, f * and ∆f * are 
the optimal solutions at two ideal situations ob-
tained for α =1.0 and 0.0, respectively. The 
maximum robustness will be achieved for α =0.0, 
and α = 1.0 indicates optimization without any 
consideration for robustness.

Box 1.   

u u u u u u u u u u ui
I

i
l

i
u

i i i i i i i i= = − + = + −[ ] [ ] [ ] [ ], , , ,∆ ∆ ∆ ∆                (1)
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The constraint functions are exactly satisfied 
in a DDO. However, these are expected to vary 
due to the presence of uncertainty in the DVs and 
DPs. As a consequence, the final design obtained 
by the DDO approach may become infeasible in 
presence of uncertainty and the constraint func-
tions are required to be revised to include the 
effect of their variations due to uncertainty. The 
robustness of a constraint is the feasibility of the 
constraint that needs to be guaranteed for the 
considered uncertainty ranges of the DVs and 
DPs. Further details of this can be found in the 
works of Lee, & Park (2001); Wang, Peng, Hu, 
& Cao (2009). When the DVs and DPs are char-
acterized by random variables with known prob-
ability density function (pdf), the probabilistic 
feasibility of the constraint can be approximated 
ensuring a target reliability level for the considered 
constraint (Zang, Friswell, & Mottershead, 2005). 
A general probabilistic feasibility formulation for 
j th  constra int  can be  expressed as : 
P g P j mj oj  [ ] , , ....,u( ) ≤ ≥ =0 1 , where, Poj is 
the probability one desires to satisfy for the jth 
constraint feasibility. Assuminggj u( )  to be nor-
mally distributed, this probabilistic feasibility of 
the constraint can be approximated as 
g kj j gj

( )u + ≤σ 0 , where, gj ( )u and σgj
are the 

mean and standard deviation of gj u( ) . The pen-
alty factor, kj is used to enhance the feasibility of 
gj u( ) and can be obtained from, kj= ¦ -1( )Poj , 
where ¦ -1(.) is the inverse of the cumulative 
density function of a standard normal distribution. 
For example, to ensure a reliability level of Poj

=99.87%, one should take kj=3.0.
However, when the DVs and DPs are of UBB 

type, above probabilistic feasibility formulation 
for the constraints cannot be adopted. In order to 
enhance the feasibility of the jth constraint, an 
additional quantity (∆gj ) is introduced to con-
sider the effect of uncertainty in the DVs and DPs. 
The maximum variation (∆gj ) of the jth constraint 
with respect to its nominal value, g gj j= (u) due 

to uncertainty in the DVs and DPs can be esti-
mated through first-order Taylor series expansion 
of the constraint function (Du, & Chen, 2000) as:

∆ ∆g
g

u
uj
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ii

N

i=
∂

∂=
∑

1

 (4)

To further enhance the quality of robustness 
of the constraint, it is multiplied by a penalty 
factor, kj and the constraint function can be ex-
pressed as (Lee, & Park, 2001):

g g k gj j j j( )u = + ≤∆ 0  (5)

It may be noted that a direct relationship to 
ensure a target reliability level can not be achieved 
in case of UBB type DVs and DPs and the value 
of kj is introduced in equivalence to the probabi-
listic feasibility formulation, thereby indirectly 
ensuring safety requirement of a design. The 
selection of kj is somewhat ad hoc. Obviously, 
the larger value of kj means one is more conser-
vative to enhance the feasibility of the associated 
constraint.

Finally, the conventional RDO formulation 
is expressed by combining Eqs. (3) and (5) as:

minimize: 0

such that:      

( ) ,

,

* *
1 1

0 1

− + ≤ ≤

+ ≤ =

α α α
f
f

f
f

g k g jj j j
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∆ ,, , ......, .2 m

 

(6)

The conventional RDO approach as presented 
above and also by the proposed RDO formulation 
to be presented in the later part of the chapter are 
based on linear perturbation based approximation 
of response functions about the mean values of the 
UBB parameters. The accuracy and efficiency of 
such linear perturbation based approach are well 
documented in stochastic finite element literatures 
(Vanmarcke et al., 1986; Ghanem, & Spanos, 1990; 
Kleiber, & Hien, 1992). The study of accuracy 
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of perturbation based approach for evaluation of 
nominal response and its dispersion in this regard 
may be found in Chen, Song, & Chen, (2007). 
It has been numerically shown that the error in 
estimation by linear perturbation approximation 
goes up as the amplitude of uncertainty of the 
interval variables increases. Thus, the approach 
will be applicable for systems having small de-
gree of uncertainty so that the linear perturbation 
based analysis will be satisfactory. An extension 
to the linear perturbation analysis is to use higher 
order perturbation method. Stochastic simulation 
approach may be also applied for larger ampli-
tude of uncertainty (Datta, 2010). However, the 
stochastic simulation will require assumptions 
of pdf functions. One may choose conservative 
uniform distribution for this purpose. This aspect 
needs further study and it is beyond the scope of 
the present chapter.

Stochastic Structural 
Optimization (SSO)

As already discussed, the SSO procedure under 
random earthquake load involves solution of a 
nonlinear optimization problem involving sto-
chastic performance measure. The constraint in 
a generic form can be stated as, the probability 
of not to exceed a given threshold of a stochastic 
response measure in a given time period, must be 
greater than some prescribed minimum value. The 
related formulation of stochastic dynamic analysis 
to obtain the constraint of the related optimization 
problem is briefly presented here.

The dynamic equilibrium equation of a linear 
multi degree of freedom (MDOF) system under 
seismic excitation can be written as,

M Y C Y K Y M L[ ] ( ){ }+ [ ] ( ){ }+ [ ] ( ){ } = −[ ]{ } ( ) 

t t t u tg
 

(7)

Where, M[ ], C[ ] and K[ ] are the global mass, 
damping and stiffness matrix, respectively. Y t( )

is the vector comprising of displacements of the 
MDOF system due to ground motion u tg ( )at 
base of the system. L{ } is the influence coefficient 
matrix. The displacement of the system subjected 
to ground motion,  u t u eg g

i t( ) = ( )ω ω can be as-
sumed  as Y HYt ei t( ){ } = ( ){ }ω ω ,  where 
H
Y
ω( ){ } is the complex frequency response func-

tion (FRF) vector. Using this, the equation of 
motion can be expressed in the frequency domain 
as following:

K M C H M L D HY Y[ ]− [ ]+ [ ]( ) ( ){ } = −[ ]{ } ( ) ( )



 ( ){ω ω ω ω ω ω2 i ug i.e. }} = ( ){ }F ω .

 
(8)

In the above, D ω( )



 is the dynamic stiffness 

matrix, F ω( ){ } is the forcing vector and ug ω( )
is the Fourier amplitude of ground motion. In Eq. 
(8), HY ω( ){ } is a function of u and can be ex-
plicitly re-written as,

D u H u F u H u D u F uY Yω ω ω ω ω ω, , , , , ,( )



 ( ){ } = ( ){ } ( ){ } = ( )




−

 or 
1
(( ){ }  

(9)

For a linear dynamic system, the power spec-
tral density (PSD) function S uYY ω,( )



 of any 

response variable Y(t) can be readily obtained as 
(Lutes, & Sarkani, 1997; Datta, 2010),

S u H u H uYY Y Yω ω ω ω, , ,*( )



 = ( ){ } ( ) ( ){ }Su u

T

g g 

 
(10)

Where, H uY
* ,ω( ){ } is the complex conjugate 

of H uY ω,( ){ } and Su ug g 

ω( ) is the known PSD 
function of stochastic ground motion.

The records of the ground motion at site are 
necessary for realistic seismic reliability analy-
sis. However, in scarcity of sufficient data for 
statistical descriptions, various statistical models 
are developed to describe the stochastic ground 
motion process. The simplest such stochastic 
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model is the well-known stationary white noise 
process, whose correlation function is Delta Dirac 
and associated PSD function is constant at each 
frequency. However, it cannot sufficiently describe 
the spectral behaviour of many real stochastic 
dynamic loads. To improve the spectral charac-
terization of ground motion, a second order filter 
is introduced to colour the white noise, known as 
the Kanai-Tajimi model (Tajimi, 1960). This model 
has been widely applied in the random vibration 
analysis of structures as it provides a simple way 
to describe the ground motion characterized by 
a single dominant frequency. However, actual 
earthquake recorded data show a non-stationary 
nature both in the amplitude and frequency 
contents and a more generalized non-stationary 
model obtained by enveloping the stationary input 
stochastic process should be used for more refined 
analysis. The Kanai-Tajimi PSD function used in 
the present study is represented by,

S Su u
g g g

g g g
g g 

ω
ξ ω ω ω

ω ω ξ ω ω
( ) =

+

− +0

2 2 2 4

2 2 2 2 2 2

4

4

( )

( )
 (11)

where, ωg and ξg denote the natural frequency and 
damping ratio of the soil layer, respectively. The 
PSD of the white noise process at bed rock, S0  can 
be related to the peak acceleration, ( xg max, ) by,

S
xg g max

g g

0

2

2

0 0707

1 4
=

+( )
. ,ξ
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 (12)

The spectral moments (λj ) and the associated 
root mean square (RMS) values (σY  andσ

Y
) of 

the responses useful for reliability evaluation can 
be evaluated as,

λ ω ω ω

σ λ σ λ

j

j

o

du S u

u u u u

YY( ) = ( )

= ( ) = ( )
−∞

∞

∫ , ,

Y Y
( ) and ( )

 2

 

(13)

The reliability of the structure based on the 
first passage failure criterion for double barrier 
problem can be obtained as,

r T r h t dt
T

( ) = −









∫   ( )0 exp
0

 (14)

where, r0 is the survival probability at time, t=0 
and h t( ) is the hazard function and T is the dura-
tion of the ground motion. Following the Poisson’s 
assumption of rare and independent threshold 
crossings events, h(t) can be replaced with un-
conditional threshold crossing rate, ν Y+which can 
be expressed as:

ν β
π
σ
σ

β
σY

Y

Y Y

+ ( ) = −












1
2

1
2

2 ( )  (15)

In the above, β is the first time bi-lateral dis-
placement crossing barrier. If the failure is due to 
double symmetric threshold crossing (as consid-
ered herein), the threshold crossing rate can be 
given by,

ν β ν β( ) = ( )+2 Y        (16)

The applicability of the above is limited to 
the assumptions that the structure can recover 
immediately after suffering failure (threshold 
crossing) and such failures arrive independently, 
that is, they constitute a Poisson process. More 
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details may be found in Lutes, & Sarkani, (1997); 
Datta, (2010).

The limit state corresponds to the first excur-
sion of a structural response Y u( ),t can be ex-
pressed as, G [Y(u, t)] > 0, where G is a function. 
For a stationary stochastic process, the reliability 
of structure can be written as,

R t P G t t T( ) { [ ( )] }., , |u Y u= ≥ <0  (17)

The optimum DVs must satisfy one or more 
probabilistic constraint(s) consisting of limiting 
the failure probability for a given value of reli-
ability,Rmin . For a specified threshold barrier (β
), the stochastic constraint becomes,

R P G t T Rt T( ) [ ( ) ] ( ( ) ){ }β ν β,T, , exp , minu Y u u= ≥ = − ≥<0  
(18)

Using Eqs. (15) and (16), the constraint can 
be finally expressed in Box 2.

Finally, the SSO problem under stationary 
earthquake model can be expressed in Box 3.

In the above, f ( )u is the objective function 
of the optimization problem. Usually the weight 
of the structure or some important stochastic re-
sponse measure is considered as the objective 
function. The SSO presented here is based on the 

stochastic dynamic response of structure under 
earthquake load modelled as stationary stochastic 
process. However, application of the proposed 
RDO presented in this chapter is not restricted to 
such stochastic random process only and extension 
to non-stationary earthquake model will be straight 
forward. However, this will involve time depen-
dent response statistics evaluations and subse-
quently to deal with time dependent performance 
function in the optimization procedure.

Stochastic Dynamic 
Response Approximation

It can be noted that in a typical SSO procedure, 
the safety measures are required to be evaluated 
several times to obtain an optimal design. The 
evaluations of safety measures for every change 
of the DVs require several evaluations of the 
dynamic responses of a structural system. The 
dynamic responses as described by Eq. (9) are 
implicit function of u and normally obtained by 
numerical methods like the finite element proce-
dure. Furthermore, the formulations described in 
the previous section assume that all the DVs and 
DPs are deterministic. If the effects of uncer-
tainty are considered in the analysis, D uω,( )
and thereby the FRF vector will also involve 
uncertainty. Therefore, the analysis will require 

Box 2.   
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complex sensitivity analysis of the stochastic 
dynamic system (Chaudhuri, & Chakraborty, 
2004) as the RDO problem requires the gradients 
of the objective function and associated con-
straints. For systems of practical interest, re-
peated evaluations of dynamic responses and their 
sensitivities will be extremely time-consuming. 
Thus, the use of direct optimization procedure is 
not suitable to perform RDO under stochastic 
excitation. In the present study, an alternative to 
the direct optimization methods is proposed. An 
RSM based approximation is adopted judicious-
ly to approximate the dynamic response required 
to obtain the stochastic constraint of the related 
SSO problem. The MLSM, a local approximation 
approach is observed to be elegant in this regard 
(Kim, Wang, & Choi, 2005) is adopted in the 
present study. The essential concept of the MLSM 
is briefly described here in order to outline the 
procedure. The further details about this may be 
found elsewhere (Kim, Wang, & Choi, 2005; 
Bhattacharjya, & Chakraborty, 2009; Kang, Koh, 
& Choo, 2010).

The MLSM based RSM is a weighted LSM 
that has varying weight functions with respect to 
the position of approximation. The weight associ-
ated with a particular sampling point xi decays 
as the prediction point x moves away from xi. 
The weight function is defined around the predic-
tion point x and its magnitude changes with x. If 
yi is the ith response (i=1,2,….,q) with respect to 

the variable xij, which denotes the ith observation 
of the jth variable xj obtained by a suitable design 
of experiments (DOE), following matrix form can 
express the relationship between the responses (
y ) and the variables (x ),

y xa y= + µ  (21)

In the above, x , y , a and µy are the design 
matrices containing the input data obtained by 
the DOE, the response vector, the unknown coef-
ficient vector and the error vector, respectively. 
The least-squares function L xy( )can be defined 
as the sum of the weighted errors,

L x w x xy i
i

q

i( )= ( ) ( ) ( )( )T T

=
∑ = = − −

1

2ε µ µW y xa W y xa  

(22)

where,W( )x is the diagonal matrix of the weight 
function. It can be obtained by utilizing the weight-
ing function such as constant, linear, quadratic, 
higher order polynomials, exponential functions, 
etc. (Kim, Wang, & Choi, 2005), as described in 
Box 3.

 RI is the approximate radius of the sphere of 
influence, chosen as twice the distance between 
the centre point and extreme most experimental 
point. The value of RI is chosen to secure sufficient 
number of neighbouring experimental points to 
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avoid singularity. An exponential form of weight 
function has been adopted in the present nu-
merical study. Eventually, a weight matrix W(x) 
can be constructed by using the weighting func-
tion in the diagonal terms as:

W( )=

( - ) 0 0 0

( - )

( - )

1

2

x

w x x

w x x

w x xn

0 0

0 0
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(24)

By minimizing the least-squares estimators
L xy( ) , the coefficients a x( )can be obtained by 
the matrix operation as below,

a x W x x W y( ) ( ) ( )x x xT T= 


−1

 (25)

It is important to note here that the coefficients 
a( )x are the function of the locationx , where the 
approximation is sought. Thus, the procedure to 
calculate a( )x is a local approximation and “mov-
ing” processes performs a global approximation 
throughout the whole design domain.

The Proposed RDO APPROACH

As mentioned earlier, the present chapter deals 
with an efficient RDO procedure for structures 
subjected to stochastic earthquake load and char-
acterized by UBB type DVs and DPs. A heuristic 
algorithm is proposed here which allows the use 
of importance factor obtained using the respec-
tive sensitivity information of the performance 
function and constraints. In the following sub-
sections, the related theoretical developments, 
implementation of the algorithm and numerical 
study are presented.

Theoretical Formulation

It is well-known that the sensitivity information 
are useful to a designer as it provides a measure 
of performance deviations in a design associated 
with an increase or decrease of the respective vari-
ables. To reduce the number of significant random 
variables before in reliability evaluation process 
the use of importance measure as given below is 
quite common (Bjerager, & Krenk, 1989; Haldar, 
& Mahadevan, 2000; Gupta, & Manohar, 2004):
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where, G is the failure surface defining the safe 
and unsafe regions and N is the total number of 
random variables in a generic structural reliability 
analysis problem. The applicability of the above 
form of importance measure was studied by 
Gupta, & Manohar (2004) through Monte Carlo 
Simulation (MCS) study. Based on the entries of 
Ii’s, the uncertain variables can be grouped into 
‘important’ and ‘unimportant’ variables. The un-
certain variables for which the failure surface is 
more sensitive are identified as dominant variables. 
This is hinged on the fact that all the gradients 
are not equally important in the expression of 
the failure surface in a typical reliability analysis 
problem. This intuitively indicates that all the 
gradients do not have equal importance in the 
expression of the dispersion of the performance 
function as defined by Eq. (2). Hence, it is ap-
parent that the importance measure should also 
play a role to indicate the measure of robustness 
of the performance.

It can be readily realized from Eq. (2) that 
the dispersion ∆f depends on two factors: (i) 
the amplitude of uncertainty in the DVs and DPs 
represented by the corresponding dispersion, 
∆ui ' s and (ii) the gradients of the performance 
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function, ∂ ∂f ui/ ' s . If the amplitudes of un-
certainty, i.e. the dispersions of DVs and DPs 
do not change, the dispersion of the performance 
function ∆f will solely depend on the gradients
∂ ∂f ui/ ' s . It is obvious that a change in the 
dispersion ∆fi (due to the variation of the ith DV 
or DP) will be more than∆fj  (due to the varia-
tion of the jth DV or DP) if the associated im-
portance measure I Ii j>  or vice versa. Hence, 
it seems to be more logical to use the importance 
measure of the associated gradients as well in 
defining the measure of robustness. A new mea-
sure of robustness is thus proposed in the present 
RDO study by redefining the performance dis-
persion as following:
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In the above, ∆fw is the new dispersion index 
and I fi is the importance factor for the ith DV or 
DP. It is to be noted here that the importance fac-
tor as defined above is multiplied by the total 
number (N) of the DVs and DPs. However, the 
summation of all such factors will be always equal 
to N, whatever is the individual value of the im-
portance factor. This will keep the consistency of 
the definition of this index to measure the robust-
ness with the usual dispersion index used in the 
conventional RDO approach.

The basic idea to improve the robustness of the 
performance function using the new index utilizing 
the importance factors proportional to the impor-
tance of the gradients of the performance function 
can be readily extended to the constraints as well. 
A new dispersion index to achieve the robustness 
of jth constraint feasibility is defined as:
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Integrating the information presented so far, the 
proposed RDO scheme can be finally represented 
as an equivalent DDO problem as following:

minimize:

such that: 
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In the above, kj is as defined in Eq. (5). The 
above nonlinear optimization problem can be 
solved by available optimization techniques. Once 
the optimum design point is obtained by the pro-
posed importance factor based RDO approach, 
the dispersion of the performance function can 
be evaluated at the optimum design point using 
Eq. (2). It may be noted that the importance fac-
tors are directly incorporated in the optimization 
formulation and such factors are evaluated at 
updated design point during each iteration cycle 
of the optimization process. Doing so, more sen-
sitive DVs and DPs are automatically got re-
amplified yielding a better robust solution in 
lesser computational time. Basically, the incor-
poration of the importance factors changes the 
feasible domain of the original optimization 
problem and captures the more flat zone of the 
performance function. In this regard, it is worth 
mentioning that many researchers adopt a separate 
sub-problem to find a search direction for a quick 
convergence towards the robust optima (Lee, & 
Park, 2001; Wang et al., 2009). The search direc-
tion should emphasize on the more sensitive 
variables for an efficient and quick convergence 
to the robust optima. As the importance factor 
based dispersion index includes this aspect of 
assigning more importance to more sensitive DVs 
and DPs, the proposed RDO procedure con-
verges to robust optima efficiently without requir-
ing any such separate sub-problem for direction 
finding.
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Implementation of the 
RDO Approach

The implementation procedure of the proposed 
RDO for linear dynamic system is demonstrated 
through a flow chart in Figure 1. The procedure 
is basically a three-stage interlinked procedure, 
viz.: i) stochastic dynamic analysis of the finite 
element model for selected set of input variables 
as per the DOE to obtain the required stochastic 
responses and subsequently the constraint of the 
optimization problem, ii) evaluation of the con-
straint function at the iteration point following 
the MLSM based RSM during each iteration of 
the optimization process utilizing the computed 

responses as per the DOE in step (i), and iii) finally 
checking the convergence to obtain the robust 
optimum solution. It can be noted from the flow 
chart that during each update of the DVs in the 
optimization process the MLSM based response 
approximation is re-called and a new approxima-
tion function is formed. However, this is not the 
case for the LSM based RSM, where a single ap-
proximation function gets operated throughout the 
optimization process. It is worth mentioning here 
that the choice of initial solution is an important 
issue in metamodel based optimization procedure. 
For the conventional LSM based RSM approach, 
a poor initial guess not only increases the number 
of iterations, but also warns the convergence of 

Figure 1. Implementation of the proposed RDO
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the optimization problem. As the MLSM based 
approximation technique can capture the actual 
response even beyond the sampling zone, the 
convergence is faster than the conventional LSM 
based techniques (Kim, Wang, & Choi, 2005).

Numerical Study

A three storied concrete building frame (as shown 
in Figure 2) subjected to earthquake motion is 
taken up to elucidate the effectiveness of the 
proposed RDO approach. The frame structure is 
idealized by fifteen two-nodded plane frame ele-
ments having three degrees of freedom at each 
node. Both the DVs and DPs are considered to 
be of UBB type and are described by their respec-
tive dispersions, ∆ui , representing the maximum 
possible ranges of variations expressed in terms 
of the percentage of the corresponding nominal 
values. The necessary information with associ-
ated notations are summarized in Table 1. The 
deterministic dimension L and h are taken as 6.0 
m and 4.0 m, respectively. The natural frequency 
(ωg ) and the damping ratio ( ξg ) of the soil layer 
are considered to be 18.85 rad/sec and 0.65, re-
spectively. The peak ground acceleration ( xg ,max ) 
is taken as 0.2g, where g is the acceleration due 
to gravity.

The objective function f(u) considered in the 
present study is the weight of the frame. Apart 
from the stochastic constraint, as discussed ear-
lier, a size constraint (g2) limiting the ratio between 
the depth and width of the beam members is also 
considered in the SSO formulation. The SSO 
formulation under earthquake load with deter-
ministic DVs and DPs can be defined as:

find   to minimize: ( )
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Unless mentioned specifically R Tmin ,  and β
are taken as 0.99, 10 sec and 3σY (σY is the 
maximum RMS displacement), respectively. The 
MLSM based adaptive RSM technique as dis-
cussed previously is used to approximate the 
constraint function. In the present numerical study, 
the second-order polynomial without cross terms 
is considered. The DOE is constructed consider-
ing the centre and axial points following the 
Saturated Design (SD) method (Bucher, & Macke, 
2005). However, the points chosen are at the 
nominal value (xi ) of the input variable (xi) and 
at axial points xi = xi ± hi∆xi , where hi is a 
positive integer. For each input variable six axial 
points (hi=1, 2, … 6) are considered on each axis 
taking ∆xi as 5% of xi to cover the different 
amplitude levels of uncertainty. Thus, for the 
present study, the number of required training 
points with respect to dimension of the input vec-
tor (N) is: (6x2N+1) i.e. the total number of 
sampling points is sixty one with five input vari-
ables. As more axial points are considered than 
that required by the SD method, the design be-
comes a redundant design (Bucher, & Macke, 
2005). To study the effectiveness of the MLSM 
based adaptive RSM, the computed responses are 
compared with that obtained by the conventional 
LSM based RSM. The maximum RMS displace-
ment of the frame is shown for a wide range of 
column size in Figure 3. The results obtained by 
the direct random vibration analysis are also shown 
in the same figure for ease in comparison. It can 
be readily observed from the figure that the pre-
dicted responses by the MLSM based RSM better 
matches with the direct random vibration analysis 
results. The error using the conventional LSM 
based RSM drastically increases beyond the range 
of data points which are used in the DOE to con-
struct the metamodel. During the iteration stage 
of any gradient-based optimization algorithm, the 
DVs may take values outside the sampling range 
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depending on the specific nature of the optimiza-
tion problem. This is a potential problem in it-
erative optimization process and warns the ap-
plicability of the LSM based RSM approach for 
RDO of complex dynamic system under stochas-
tic load. Furthermore, to study the suitability of 
the proposed adaptive RSM, the statistical metrics 
as described below have been also computed 
(Bouazizi, Ghanmi, & Bouhaddi, 2009):

The Root Mean Square Error (RMSE) is de-
fined as:

RMSE
y y

p
i i

i
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In the above, ŷi is the predicted response ob-
tained by the considered LSM or MLSM based 
metamodel andyi is the actual response obtained 
by the direct MCS for ith sample. The sample 
size, p is taken as 1000 for the present numerical 
investigation.

The coefficient of determination (R2 ) is de-
fined as:
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where, yi is the mean value of the actual response. 
The value of this coefficient close to one represents 
a good metamodel for response approximation.

The average prediction error ( εm ) is defined as,

εm
i i

i

y y

y
=

−
100

ˆ
 (33)

Table 2 shows the results of the statistical test 
for both the LSM and MLSM based metamodels. 
It can be observed that the lesser RMSE and εm
values and the higher R2 value are attained by the 
MLSM based RSM compared to the LSM based 
RSM. This clearly indicates the accuracy of the 
MLSM based RSM over the LSM based RSM. 
The CPU time required for complete generation 
of all yi by the direct MCS is about 2.5 hrs, 
whereas the CPU time needed for computation 
of ŷi  is only 11 minutes by the LSM based RSM 
and 12 minutes by the MLSM based RSM. The 
MLSM based RSM needs more computational 
time compare to the LSM based RSM due to the 
fact that the MLSM based approach needs re-
peated evaluation of the response surface as it is 
required to be generated afresh for each updated 
DV set. Whereas, the LSM based approach may 
need more rigorous DOE compare to the MLSM 
based RSM to obtain a comparable accuracy 
level. It may be noted here that one needs to 
evaluate the structural responses analysis at all 
these training points involving the solution of a 
system having number of unknowns in the order 
of few thousands to million. This obviously in-

Figure 2. The building frame
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Table 1. The details of the uncertainty in the DVs and DPs 

DPs Nominal values Dispersion

Density of concrete,ρc 2400 kg/m3 10%

Modulus of Elasticity 
of concrete, Ec

20 GPa 10%

DVs

Size of square column, bc To be optimized 10%

Depth of beam, db To be optimized 10%

Width of beam, bb To be optimized 10%

Figure 3. The comparison of RMS displacement by the LSM and MLSM based RSM

Table 2. Performance of the LSM and MLSM based RSM 

RMSE R2 εm

LSM based RSM 7.91% 0.97 2.5%

MLSM based RSM 4.72% 0.99 0.07%



121

Efficient Robust Optimization of Structures Subjected to Earthquake Load

creases the time requirement by the LSM based 
approach. Thus the computational involvement 
with regard to generation of training data point 
will be substantially high whereas, there is a 
higher computational demand with regard to re-
peated evaluation of response surface. Of course, 
it needs further study to comprehend which one 
will be more efficient.

Now, the optimization task is performed by 
the sequential quadratic programming (SQP) us-
ing built-in MATLAB routine. The weight of the 
frame is optimized by the proposed importance 
factor based RDO approach as described by Eq. 
(29) and the conventional RDO approach as de-
scribed by Eq. (6) considering uncertainty in both 
the DVs and DPs. The results are studied through 
Figures 4, 5, 6, 7 and 8. The optimal weight of 
the frame versus the dispersion of the DVs and 
DPs are plotted in Figure 4. For comparison, the 
results obtained by the conventional RDO ap-
proach are also shown in the same figure. The 
variations of the optimal weight of the frame 
(indicates the measure of robustness) versus the 
dispersion of the input DVs and DPs, as obtained 
by the proposed and conventional RDO ap-
proaches are depicted in Figure 5. The value of 

the penalty factor, kj and the bi-objective weight 
factor, α are considered to be 1.0 and 0.5, respec-
tively. It can be noted that the optimization results 
obtained by the proposed approach indicate an 
improved robustness compared to the conven-
tional RDO method.

The optimal weight and its dispersion are plot-
ted in the Figures 6 and 7, respectively, with respect 
to the upcrossing level, β for different values of 
kj. The dispersion of the inputs and α are set as 
10% and 0.5, respectively. It can be noted from 
these figures that the same nature of variations 
and improvement are observed for all the values 
of kj considered in the study. In general, it has 
been observed that the effect on the robustness is 
more prominent for smaller values of β. This is 
obvious as the smaller value of β represents more 
stringent failure criterion and makes the constraints 
more critical. Thus, the effect of the importance 
of the sensitivity derivatives introduced by the 
proposed RDO approach becomes more.

One of the important tasks in an RDO proce-
dure like any other multi-objective optimization 
problem is to obtain the Pareto front (Deb, 2001). 
It is generally observed that there is a trade-off 
between the objective value of a design and its 

Figure 4. The optimal weight of the frame with increasing range of uncertainty
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robustness. If one desires more robustness, the 
design will be further away from its ideal optimal 
value. The situation can be studied further in terms 
of Pareto-front. The Pareto-front is one where any 
improvement in one objective can only achieve 
through worsening of at least one other objective. 
If one chooses a design that is not Pareto-optimal, 
one essentially forfeits improvements that would 
otherwise entail no compromise. The Pareto fronts 
obtained by the proposed and the conventional 

RDO approaches are plotted in Figure 8. The 
uncertainty ranges of the DVs and DPs are taken 
as per Table 1 and kj is considered to be 1.0 to 
develop this figure. The Pareto front is determined 
by evaluating the optimal solutions (the objective 
function and its associated dispersion) for differ-
ent settings of α . Maximum robust solution is 
obtained when α is1.0. The designer puts maxi-
mum emphasis on optimal objective, not on its 
robustness, if α is zero. Thus, the designer can 

Figure 5. The variation of optimal weight of the beam with increasing range of uncertainty

Figure 6. The optimal weight of the frame with varying upcrossing level
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tune the robustness of a solution through suitable 
choice of this parameter. It can be clearly observed 
from the figure that for a specific level of disper-
sion Δf, if the desired objective is to minimize the 
weight of the frame, the proposed RDO approach 
always yields lesser weight compared to the con-
ventional RDO approach. Furthermore, for a 
prescribed weight of the frame, the dispersion of 
the optimal weight Δf obtained by the proposed 

RDO approach is also observed to be lesser than 
that obtained by the conventional RDO approach. 
To quantify the computational involvement of the 
proposed RDO approach, the CPU time required 
to generate the complete Pareto front by both the 
approaches are computed. It is observed that the 
proposed RDO approach needs 25 minutes 
whereas the conventional RDO approach needs 
40 minutes for this purpose. This clearly indicates 

Figure 7. The dispersion of optimal weight of the frame with varying upcrossing level

Figure 8. Comparison of Pareto front as obtained by the proposed and the conventional RDO approaches
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the efficiency of the proposed RDO approach. In 
this regard, it is worth mentioning here that one 
may fail to identify the complete Pareto front by 
the present WSM approach for non-convex Pa-
reto front. This is a potential drawback of WSM 
and to overcome this limitation Evolutionary 
algorithms like Non-domination Sorting Genetic 
Algorithm-II (Deb, 2001) can be applied.

SUMMARY AND CONCLUSION

An efficient RDO procedure for structural system 
subjected to stochastic earthquake load and char-
acterized by UBB type DVs and DPs is presented. 
The associated stochastic constraint is derived 
by imposing a limit on the failure probability. To 
exclude the complexity of repeated evaluations 
of random dynamic responses and their sensi-
tivities (required for RDO solution), the implicit 
constraint function is approximated through a 
potentially superior MLSM based adaptive RSM 
method. The proposed RDO approach improves 
the robustness of the performance function using 
a new dispersion index which utilizes the weight 
factors proportional to the importance of the gra-
dients of the performance function with respect 
to uncertain DVs and DPs. The improvement 
is achieved in terms of more robustness in the 
optimization by allowing more importance to the 
uncertain variables which influence the variations 
of the performance function and the constraint 
violations. Numerical results indicate that the 
trends and variations of the optimization results 
are in conformity with the well-known two criteria 
RDO results. It can be noted that the economy is 
not affected in achieving better robustness, as the 
proposed RDO approach yields more reduction of 
weight for a specified dispersion of the weight. 
This implies that the importance factor based RDO 
approach captures the optimal design point on a 
comparatively flat region than the optimal point 
captured by the conventional RDO approach. 
However, how much improvement in robustness 

is possible to achieve compare to the conventional 
RDO approach is problem dependent. It will spe-
cifically depend on the nature of the performance 
function and the entire solution domain, i.e., the 
nature of the variation of the objective function 
and constraints. This of course needs further 
study. The results shown in the numerical example 
are for some specific values of the bi-objective 
weight factor and penalty factor. However, the 
general trend is observed to be similar for other 
values. The proposed RDO approach is generic 
in nature and can be applied to optimum RDO of 
structures under other stochastic dynamic load, 
like wind, wave, etc.
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Chapter  6

1. INTRODUCTION

Damage indices describe the state of the structural 
damage and correlate well with actual damage 
displayed during earthquakes. The critical ground 
motion for a give structure is estimated by solving 
an inverse nonlinear dynamic problem in time 
domain using constrained nonlinear optimiza-

tion techniques. The critical excitation method 
relies on the high uncertainty associated with 
the occurrence of the earthquake phenomenon 
and on the safety requirements of important and 
lifeline structures. The earthquake input is taken to 
maximize the damage index of the structure while 
satisfying predefined constraints that are quanti-
fied from the earthquake data available at the site. 
Numerical illustrations for damage assessment of 
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one-storey and two-storey plane frame structures 
under possible future earthquakes are presented.

Earthquakes continue to claim thousands of 
lives and to damage structures every year (Comar-
tin et al, 2004). Each earthquake brings out new 
surprises and lessons with it. In fact, the unexpected 
loss of lives and the severe damage of infrastruc-
tures and buildings during past strong earthquakes 
(e.g., 1994 Northridge, 1995 Kobe, 2010 Haiti and 
the most recent 2011 Tohoku earthquakes) have 
raised significant concern and questions on life 
safety and performance of engineering structures 
under possible future earthquakes. The occurrence 
of strong earthquakes in densely populated regions, 
especially in developing countries with vulnerable 
building stock and fragile infrastructure, could 
lead to catastrophic consequences. A notable 
example is the 2010 Haiti earthquake that killed 
250,000 people and left a long-term suffering for 
the residents of this developing country (USGS/
EERI 2010). On the other hand, the severe dam-
age caused by the 2011 Tohoku earthquake and 
associated tsunami in Japan has raised significant 
challenges to one of the most developed countries 
as well (Takewaki et al, 2011). Hence, the assess-
ment of seismic performance of structures under 
strong ground motions is an important problem in 
earthquake engineering. Structures need to resist 
unknown future earthquakes which adds more 
complexity to the problem (Moustafa 2011, 2009, 
Moustafa & Takewaki 2010a, Abbas & Manohar 
2007, Takewaki 2002a, 2007). The consideration 
of the earthquake inherent uncertainty, the vari-
ability in the structure parameters and modeling 
the nonlinear behavior of the structure is essential 
for the accurate prediction of the actual response 
of the structure. Earthquake uncertainties include 
time, location, magnitude, duration, frequency 
content and amplitude, referred to as aleatory 
uncertainties.

The earthquake-resistant design of structures 
has been an active area of research for many 
decades (e.g., Penelis & Kappos 1997). The struc-
tural engineer aims to ensure safe performance of 

the structure under possible future earthquakes 
while maintaining optimal use of the construc-
tion material. The design objectives in current 
seismic building codes are to ensure life safety 
and to prevent damage of the structure in minor 
and moderate frequent earthquakes, and to control 
local and global damage (prevent total collapse) 
and reduce life loss in a rare major earthquake. 
This can be achieved through: (1) robust predic-
tion of expected future strong ground motions 
at the site, (2) accurate modeling of the material 
behavior under seismic loads, and (3) optimal 
distribution of the construction material.

Early works on seismic design have dealt 
with the specification of earthquake loads using 
the response spectrum method, the time history 
of the ground acceleration or using the theory of 
random vibrations. The nonlinear time-history 
analysis method is recognized as the most accurate 
tool for dynamic analysis of structures (Pinho, 
2007). Many researchers have also established 
deterministic and probabilistic hazard spectra 
for the site (Reiter, 1990, McGuire, 1995). The 
development of mathematical models to describe 
the hysteretic nonlinear behavior of the structure 
during earthquakes has also been pursued in 
several studies (e.g., Takeda et al, 1970, Otani, 
1981, Akiyama, 1985). New design concepts 
and methods, such as energy-, performance- and 
displacement-based design, base-isolation and 
structural control have been recently developed 
(Priestely et al, 2007, Takewaki, 2009, Fardis, 
2010). Similarly, the optimal design of the struc-
tures under earthquake loads has been investigated 
in several studies (Fardis, 2010, Elishakoff & 
Ohsaki, 2010, Plevris, 2009, Haldar, 2006, Liang, 
2005). The evaluation of the current procedures 
and new practical procedures for ground motion 
selection and modification are provided in the 
recent special issue on earthquake ground motion 
selection and modification for nonlinear dynamic 
analysis of structures (Kalkan & Luco, 2011). The 
two edited books by Papadrakakis et al (2009) 
and Tsompanakis et al. (2008) and the doctoral 
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thesis by Plevris (2009) present the state-of-the-art 
on advances and applications of optimal seismic 
design of structures considering uncertainties.

The definition of the worst (also known as 
critical) ground motion represents a major chal-
lenge in earthquake-resistance design of structures. 
This is because of the high uncertainty involved 
in the occurrence of the earthquake phenomenon 
compared to the relatively low variability in the 
structure’s properties. Strasser & Bommer (2009) 
pose an important question on whether we have 
seen the worst ground motion yet, and the answer 
is not. They identify the worst ground motions as 
those having large amplitude. It may be empha-
sized that the worst ground motion for a structure 
may not be the worst input for a different structure. 
For example, the 2002 earthquake of magnitude 
7.9 occurred along Alaska’s Denali fault killed 
no one and did a little serious damage (Worth 
2005), while the 1995 Kobe earthquake of 6.9 
magnitude killed 5,100 people and caused billion 
of dollars in structural damage. Early studies on 
defining severity of strong ground motion and 
earthquake capability to create large damage have 
focused on the earthquake intensity, peak values 
of ground acceleration, velocity and displacement 
(PGA, PGV, PGD), effective PGV, etc. (Housner, 
1970, Housner & Jennings, 1976). Near-field 
ground motion with pulse-like characteristic is a 
phenomenon representing one scenario of sever-
ity in the near-field region. Other scenarios of 
earthquake severity include repeated occurrence of 
ground motion in sequences (Elnashai et al, 1998, 
Moustafa & Takewaki 2009). Deep soft soils can 
also amplify earthquake amplitudes and modify 
frequency content. Secondary causes include also 
the travel path effects. In reality, some of these 
causes could exist together.

To carry out nonlinear time-history analysis, a 
set of suitable accelerograms need to be selected 
from available records (see, e.g., PEER, 2011). In 
this context, the criteria based on which records 
are selected and scaled represents an interest-
ing subject. A notable effort in this direction 

and other related subjects has been extensively 
investigated by several researchers, especially 
at Stanford University (e.g., Baker & Cornell, 
2006, Moustafa et al, 2010, Baker, 2011, Baker et 
al, 2011, Haselton et al, 2011, Buratti et al 2011, 
Bommer & Acevedo 2004). If the number of the 
available records is small, records from other 
sites with similar soil condition or artificially 
simulated ground motions could be employed. 
The critical excitation method provides another 
alternative in case of scarce, inhomogeneous or 
limited earthquake data at the site. This method 
has been used to assess the structure’s response 
under mathematically simulated earthquake inputs 
representing possible worst future earthquakes 
(e.g., Moustafa, 2011, 2009, Takewaki, 2002a, 
2007). The method relies on the high uncertainty 
associated with the occurrence of the earthquake 
phenomenon, associated characteristics and also 
on the safety requirements of important and lifeline 
structures (nuclear plants, storage tanks, industrial 
installations, etc.). The critical earthquake input 
for a given structure is computed by minimizing 
the structure’s performance while satisfying pre-
defined constraints observed in real earthquake 
records. The structural performance may be de-
scribed in terms of the structure’s response or in 
terms of reliability measures or damage indices 
(Abbas & Manohar, 2007, Moustafa, 2009). The 
optimum design of the structure under varying 
critical earthquake loads has also been studied 
(e.g., Fujita et al, 2010, Saikat & Manohar, 2005, 
Takewaki, 2002b). Several practical applications 
have evolved from the concept of critical excita-
tions. This includes design of structures to critical 
excitations, deriving critical response spectra for 
the site, estimating critical cross power spectral 
density functions of multi-point and spatially-
varying ground motions, and reliability analysis of 
structures to partially specified earthquake loads. 
The method of critical excitations has also been 
employed in identifying resonant accelerations and 
in selecting critical recorded accelerograms based 
on the notion of the entropy principle (Moustafa, 
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2009, 2010). Comprehensive reviews on these 
aspects can be found in Moustafa (2011).

This chapter deals with the damage assess-
ment for inelastic structures under worst future 
earthquakes using the critical excitations method. 
The novelty of this research is in combining 
damage indices, for the first time, with nonlinear 
optimization and nonlinear time-history analysis 
for assessing the structural performance under 
possible future ground motions. The use of dam-
age indices provides a quantitative measure for 
damage and necessary repair for the structure. 
Bilinear and elastic-plastic force-displacement 
relationships are taken to model the material 
nonlinearity, and thus the present work is lim-
ited to non-deteriorating structures. Numerical 
examples for one-storey and two-storey plane 
frames without irregularities are provided. Future 
practical applications of the proposed methodol-
ogy in seismic analysis and design of structures 
are also discussed.

2. DAMAGE ASSESSMENT 
OF INELASTIC STRUCTURES 
UNDER EARTHQUAKE LOADS

Damage assessment for structures is generally 
based on the nonlinear response quantities under 
earthquake loads (see Table 1). The bilinear and 
the elastic-plastic models are shown in Figure 1. 
The evaluation of the structural damage is usu-
ally carried out using damage indices which are 
quantified in terms of the structure response and 
the associated absorbed energy. Therefore, the 
quantification of damage indices is carried out after 
performing nonlinear time-history analysis for the 
structure. The nonlinear time-history analysis for 
the structure is performed by solving the equations 
of motions using numerical integration schemes 
(Moustafa, 2009, Hart & Wong 2000).

2.1 Energy Dissipated by Inelastic 
Structures

The energy dissipated by an N multi-degree-of-
freedom (MDOF) structure under the ground 
acceleration x t( )can be computed by integrating 
the equations of motion as follows (Zahrah & 
Hall, 1984, Akiyama, 1985, Uang & Bertero, 
1990, Takewaki, 2004, Kalkan & Kunnath, 2008):
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where, M, C, are the mass and damping matrices 
of the structure, respectively, f tsi( ) is the ith hys-
teretic restoring force, X(t) is the structure dis-
placement vector and dot indicates differentiation 
with respect to time. The quantities EK(t), ED(t), 
Es(t) and EH(t) represent the kinetic, damping, 
strain and hysteretic energies, respectively 
(Moustafa, 2009). For viscous damping models, 
t h e  d a m p i n g  e n e r g y  r e d u c e s  t o
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Note that equations (1) provide the relative 
energy terms. Note also that, by the end of the 
earthquake duration the kinetic and elastic strain 
energies diminish. Thus, the earthquake input 
energy to the structure is dissipated by hysteretic 
and damping energies. The next section demon-
strates the use of the structure’s response and the 
hysteretic energy in developing damage indices.
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2.2 Damage Measures for 
Inelastic Structures

The literature on damage measures for structures 
under earthquake loads is vast (e.g., Cosenza et 
al, 1993, Ghobarah et al, 1999). Damage indices 
are quantified in terms of a single or a combina-
tion of structural response parameters. Table 1 
summarizes several damage measures that are 
based on a single response parameter (Powell & 
Allahabadi 1988, Cosenza et al, 1993). The first 
measure represents the ultimate ductility produced 

during the ground shaking. This measure does not 
incorporate information on how the earthquake 
input energy is imparted on the structure nor how 
this energy is dissipated. Earthquake damage oc-
curs due to the maximum deformation or ductil-
ity and the hysteretic energy dissipated by the 
structure. Therefore, the definition of structural 
damage in terms of the ductility is inadequate. 
The last three measures indicate the rate of the 
earthquake input energy to the structure (i.e., how 
fast the input energy EI is imparted by the earth-

Table 1. Response descriptors for inelastic buildings under earthquake ground motion 

Response parameter Definition

Maximum ductility 

Number of yield reversals 

Maximum normalized plastic deformation range 

Normalized cumulative ductility 

Residual (permanent) ductility 

Normalized earthquake input energy 

Normalized total hysteretic energy dissipated 

Ratio of total hysteretic energy to input energy 

Maximum rate of normalized input energy 

Maximum rate of normalized damping energy 

Maximum rate of normalized hysteretic energy
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quake and how fast it gets dissipated). Damage 
indices can be estimated by comparing the re-
sponse parameters demanded by the earthquake 
with the structural capacities. Powell & Alla-
habadi (1988) proposed a damage index in terms 
of the ultimate ductility (capacity)µu and the 
maximum ductility attained during ground shak-
ing µmax :

DI
x x

x x
y

u y u
µ

µ
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−

−
=

−
−

max max 1

1
 (2)

However DIµ does not include effects from 
hysteretic energy dissipation. Additionally, this 
damage index may not be zero for undamaged 
structures. A damage index that overcomes this 
problem has been proposed by Khashaee (2004):
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Fajfar (1992) and Cosenza et al., (1993) quan-
tified damage based on the structure hysteretic 
energy EH :
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A robust damage measure should include not 
only the maximum response but also the effect 
of repeated cyclic loading. Park and co-workers 
developed a simple damage index, given as (Park 
et al, 1985, Park & Ang 1985, Park et al, 1987):
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Here, x EHmax, are the maximum absolute 
displacement and the dissipated hysteretic energy 
excluding elastic energy. xu is the ultimate defor-
mation capacity under monotonic loading and β
is a positive constant that weights the effect of 
cyclic loading on structural damage. Note that if 
β = 0, the contribution to DIPA from cyclic load-
ing is omitted.

The state of the structure damage is defined 
as: (a) repairable damage, when DIPA < 0 40. , 
( b )  d a m a g e d  b e y o n d  r e p a i r,  w h e n 
0 40 1 0. .≤ <DIPA , and (c) total or complete 

Figure 1. (a) Force-displacement relation for nonlinear materials
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collapse, when DIPA ≥ 1 0. . These criteria are 
based on calibration of DIPA against experimen-
tal results and field observations in earthquakes 
(Park et al., 1987). Note that Eq (5) reveals that 
both maximum ductility and hysteretic energy 
dissipation contribute to the structural damage 
during earthquakes. Eq. (5) expresses damage as 
a linear combination of the damage caused by 
excessive deformation and that contributed by 
repeated cyclic loading effect. Note also that the 
quantities x EHmax, depend on the loading history 
while the quantitiesβ, ,x fu y are independent of 
the loading history and are determined from ex-
perimental tests. It should also be emphasized 
that Eqs (2-5) can be used to estimate damage for 
a member in a structure which defines the local 
damage. To estimate the global damage of the 
structure, a weighted sum of the local damage 
indices need to be estimated (Park et al, 1987). 
In this chapter, Eq (5) is adopted in quantifying 
the structural damage. The next section develops 
the mathematical modeling of critical future 
earthquake loads.

3. DERIVATION OF WORST 
FUTURE EARTHQUAKE LOADS

The worst future ground acceleration is repre-
sented as a product of a Fourier series and an 
envelope function in Box 1.

Here, A0 is a scaling constant and the param-
eters α α1 2, impart the transient trend to x tg( ) . 
Ri and ϕi are 2Nf unknown amplitudes and phase 
angles, respectively and ωi fi N, , , ..., = 1 2 are 
the frequencies presented in the ground accelera-

tion which are selected to span satisfactory the 
frequency range of x tg( ) . In constructing critical 
seismic inputs, the envelope function is taken to 
be known. The information on energy E, peak 
ground acceleration (PGA) M1, peak ground 
velocity (PGV) M2, peak ground displacement 
(PGD) M3, upper bound Fourier amplitude spec-
tra (UBFAS) M 4( )ω , and lower bound Fourier 
amplitude spectra (LBFAS) M5( )ω are also taken 
to be available which enables defining the fol-
lowing nonlinear constraints (Abbas & Manohar, 
2002, Abbas, 2006):
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Here, Xg( )ω is the Fourier transform of x tg( )

. Note that the constraint on the earthquake en-
ergy is related to the Arias intensity (Arias 1970). 
The spectra constraints aim to replicate the fre-
quency content and amplitude observed in past 
recorded accelerograms on the future earthquake. 
The ground velocity and displacement are obtained 
from Eq. (6) and seen in Box 2:

Making use of the conditions xg( )0 0= and 
lim ( )
t gx t
→∞

→ 0 (Shinozuka & Henry, 1965), the 

constants in the above equation can be shown to 
be given as (Abbas & Manohar, 2002, Abbas, 
2006):
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The constraints of Eq (7) can be expressed in 
terms of the variables R i Ni i f, , , , ...,ϕ = 1 2 (see 
Box 3)

Here i = −1 . To quantify the constraints 
quantities E, M1, M2, M3, M 4( ),ω and M5( )ω it 
is assumed that a set of Nr earthquake records 
denoted by v t i Ngi r( ), , , ...,= 1 2 are available for 
the site under consideration or from other sites 
with similar geological soil conditions. The values 
of energy, PGA, PGV and PGD are obtained for 
each of these records. The highest of these values 
across all records define E, M1, M2 and M3. The 
available records are further normalized such that 
the Arias intensity of each record is set to unity 

(i.e., [ ( ) ] ,/
v t dtgi
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∫ = Arias, 1970), and are 

denoted by{ }vgi i
Nr
=1 . The bounds M 4( )ω and 

M5( )ω are obtained as:
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Here V i Ngi r( ), , , ...,ω = 1 2 denotes the Fou-
rier transform of the ith normalized accelerogram 
v tgi( ) . The bound M 4( )ω has been considered 
earlier (Shinozuka, 1970, Takewaki, 2001, 2002). 
The lower bound was considered by Moustafa 
(2002) and Abbas & Manohar (2002).

Finally, the problem of deriving critical future 
earthquake loads on inelastic structures can be 
posed as determining the optimization variables
y R R RN N

t

f f
= { , , ..., , , , ..., }1 2 1 2ϕ ϕ ϕ such that the 

damage index DIPA is maximized subjected to 
the constraints of Eq (10). The solution to this 
nonlinear constrained optimization problem is 
tackled by using the sequential quadratic program-
ming method (Arora, 2004). The following con-
vergence criteria are adopted:

| | ; | |, ,f f y yj j i j i j− ≤ − ≤− −1 1 1 2ε ε  (12)

Herein, fj is the objective function at the jth 
iteration, yi,j is the ith optimization variable at the 
jth iteration and ε ε1 2, are small quantities to be 
specified. The structure inelastic deformation is 
estimated using the Newmark β-method which is 
built as a subroutine inside the optimization pro-
gram. The details of the optimization procedures 
involved in the computation of the critical earth-
quake and the associated damage index are shown 
in Figure 2. Further details can also be found in 
Abbas (2006).

It may be emphasized that the quantities µ( )t
and E tH ( )do not reach their respective maxima 
at the same time. Therefore, the optimization is 
performed at discrete points of time and the op-
timal solution
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is the one that produces the maximum DIPA across 
all time points. The critical earthquake loads are 
characterized in terms of the critical accelerations 
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and associated damage indices, inelastic deforma-
tions and energy dissipated by the structure. The 
next section provides numerical illustrations for 
the formulation developed in this section.

In the numerical analysis, the constraints 
quantities E, M1, M2, M3, M 4( ),ω and M5( )ω
are estimated using past recorded earthquake data. 
This approach is considered to be consistent with 
the aspirations of the ground motion models that 
are commonly used by engineers, which, aim to 
replicate the gross features of recorded motions, 
such as, amplitude, frequency content, nonsta-
tionarity trend, local soil amplification effects, 
and duration. It is of interest to note in this context 
that, predictive or physical models for ground 
motions, which take into account several details, 
such as, fault dimension, fault orientation, rupture 
velocity, magnitude of earthquake, attenuation, 
stress drop, density of the intervening medium, 
local soil condition and epicentral distance, have 

also been developed in the existing literature, 
mainly by seismologists (see, e.g., Brune, 1970, 
Hanks & McGuire, 1981, Boore, 1983, Queck et 
al, 1990). In using these models, one needs to 
input values for a host of parameters and the suc-
cess of the model depends on how realistically 
this is done. It is possible to formulate the critical 
earthquake models based on the latter class of 
models in which one can aim to optimize the 
parameters of the model so as to realize the least 
favorable conditions. Note that the class of admis-
sible functions, in the determination of critical 
excitations, in this case, becomes further con-
strained by the choice that one makes for the 
physical model. The approach adopted in this 
study, in this sense, is nonparametric in nature. A 
comparison of results based on this approach with 
those from ‘model-based’ approaches is of inter-
est; however, these questions are not considered 
in the present study.

Box 3.   
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4. NUMERICAL EXAMPLES

4.1 Bilinear Inelastic Frame Structure

A SDOF frame structure with mass 9×103 kg, 
initial stiffness k1 = 1.49×105 N/m and viscous 
damping of 0.03 damping ratio is considered 
(initial natural frequency = 4.07 rad/s). The strain 
hardening ratio is taken equal to 0.05. These 

parameters are changed later to study their influ-
ence on the estimated worst earthquake loads and 
the associated damage. The yield displacement is 
taken as 0.10 m and the structure is taken to start 
from rest. The objective function is adopted as 
the Park and Ang damage index DIPA given by 
Eq (5). The parameters of the Newmark β-method 
are taken as δ α= =1 2 1 6/ ; / and ∆t = 0 005.
s.

4.1.2 Quantification of Constraints

A set of 20 earthquake records is used to quan-
tify the constraint bounds E, M1, M2, M3, M 4( )ω
and M5( )ω (COSMOS, 2005). Table 2 provides 
information on these records. Based on numerical 
analysis of these records, the constraints were 
computed as E = 4.17 m/s1.5, M1 = 4.63 m/s2 
(0.47 g), M2 = 0.60 m/s and M3 = 0.15 m and the 
average dominant frequency was about 1.65 Hz. 
The envelope parameters were taken as A0 = 2.17, 
α1 = 0.13, and α2 = 0.50. The convergence limits 
ε ε1 2, were taken as 10-6 and the convergence 
criterion on the secant stiffness is taken as 10-3 
N/m. The frequency content for x tg( ) is taken as 
(0.1-25) Hz. Additionally, in distributing the 
frequenciesωi fi N, , , ...,= 1 2  in the interval
( . , )0 1 25 , it was found advantageous to select 
some of these ωi to coincide with the natural 
frequency of the elastic structure and also to place 
relatively more points within the modal half-
power bandwidth.

The constraint scenarios considered in deriv-
ing the worst earthquake inputs are listed in Table 
3. The constrained nonlinear optimization problem 
is solved using the sequential quadratic optimiza-
tion algorithm ‘fmincon’ of the Matlab optimiza-
tion toolbox (Caleman et al, 1999). In the nu-
merical calculations, alternative initial starting 
solutions, within the feasible region, were exam-
ined and were found to yield the same optimal 
solution. To select the number of frequency terms 
Nf a parametric study was carried out and Nf = 

Figure 2. Flowchart for deriving critical earth-
quake loads
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51 was found to give satisfactory results. Figure 
3 depicts the influence of Nf on the convergence 
of the objective function for constraints scenarios 
1 and 4 (see Table 3).

4.1.3 Numerical Results and 
Discussions

The numerical results obtained are presented in 
Figures 4, 5, 6, 7, 8 and 9 and Table 4. Figure 4 
shows results for constraint scenario 1 and similar 
results for case 4 are shown in Figure 5. Each of 
these figures shows the Fourier amplitude spec-
trum of the worst ground acceleration, the inelastic 
deformation, the hysteretic force and the energy 
dissipated by the structure. Figure 6 shows the 
time history of the ground acceleration. Based 
on extensive analysis of the numerical results, 
the major observations are summarized below.

The frequency content and Fourier amplitude 
of the worst earthquake are strongly dependent 
on the constraints imposed (see Table 3). If avail-
able information on earthquake data is limited to 

the total energy and PGA, the worst input is nar-
row band (highly resonant) and the structure 
deformation is conservative (see Figure 4 and 
Table 4). Furthermore, most of the power of the 
Fourier amplitude is concentrated at a frequency 
close to the natural frequency of the elastic struc-
ture. This amplitude gets shifted towards a 
higher frequency when the strain hardening ratio 
increases. The Fourier amplitudes at other frequen-
cies are low and uniformly distributed. This result 
is substantially different from that for the elastic 
structure where all power of the acceleration 
amplitude is concentrated around ω0 with no 
amplitude at other frequencies (Abbas & Manohar, 
2002). Additional constraints on the Fourier am-
plitude spectra (see Table 3) force the Fourier 
amplitude of the worst acceleration to get distrib-
uted across other frequencies. The critical accel-
eration possesses a dominant frequency that is 
close to the average dominant frequency observed 
in past records (see Figure 5). The realism of the 
earthquake input is also evident from the maximum 
damage index it produces. For instance, the dam-

Table 2. Information on past recorded ground motion records for a firm soil site 

Earthquake date Magnitude Epic. Dist. 
(km)

Comp- 
onent

PGA  
(m/s2)

PGV 
(m/s)

PGD 
(m)

Energy* 
(m/s1.5)

Site

Mamoth lakes 
05.25.1980 
Loma prieta 
10.18.1989 
Morgan hill 
04.24.1984 
San Fernando 
02.09.1971 
Parkfield 
12.20.1994 
Caolinga 
05.02.1983 
Northridge 
01.17.1994 
Cape Mendocino 
04.25.1992 
Westmorland 
04.26.1981 
Imperial valley 
10.15.1979

6.2 
 
7.0 
 
6.1 
 
6.6 
 
5.0 
 
6.5 
 
6.7 
 
7.0 
 
5.0 
 
6.4

1.5 
 
9.7 
 
4.5 
 
27.6 
 
9.1 
 
30.1 
 
5.9 
 
5.4 
 
6.6 
 
17.4

W 
S 
W 
S 
S60E 
S30W 
N69W 
N21E 
W 
S 
W 
N 
S74E 
S16W 
W 
S 
E 
S 
S45W 
N45W

4.02 
3.92 
3.91 
4.63 
3.06 
1.53 
3.09 
2.66 
2.88 
3.80 
2.83 
2.20 
3.81 
3.43 
3.25 
2.89 
4.35 
3.54 
2.68 
1.98

0.21 
0.23 
0.31 
0.36 
0.40 
0.30 
0.17 
0.28 
0.44 
0.10 
0.26 
0.26 
0.60 
0.34 
0.45 
0.24 
0.33 
0.44 
0.22 
0.19

0.05 
0.05 
0.07 
0.11 
0.07 
0.02 
0.04 
0.10 
0.01 
0.01 
0.10 
0.10 
0.12 
0.09 
0.15 
0.08 
0.11 
0.15 
0.10 
0.15

3.73 
4.01 
3.82 
2.61 
2.33 
1.64 
2.07 
2.47 
1.33 
1.74 
2.67 
2.14 
4.17 
3.50 
2.44 
2.31 
3.26 
3.25 
2.30 
2.14

Convict Greek 
 
Capitola 
 
Halls valley 
 
Castaic old ridge 
 
Parkfield fault 
 
Cantua creek 
 
Canoga park 
 
Petrolia general 
 
Westmorland fire 
 
Calexico fire

* E v t dtg=
∞

∫[ ( ) ] /


2

0

1 2 (Arias, 1970).
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age index for case 4 is 0.37 which is substan-
tially smaller than 1.15 for case 1 (Table 4). The 
constraints on PGV and PGD were not found to 
be significant in producing realistic critical inputs 
compared to the constraints on UBFAS and LB-
FAS. Also, the realism of the critical acceleration 
for case 4 can be examined by comparing the 
Fourier amplitude spectra and frequency content 
of the worst acceleration (Figures 4, 5) with the 
Fourier amplitude spectra of past recorded earth-
quakes (Figure 7). Note that, while the constraint 
scenario 1 leads to pulse-like ground motion, such 
scenario is observable in past recorded earthquakes 
(e.g., 1971 San Fernando, 1985 Mexico, and 1995 
Kobe earthquakes). Resonant or pulse-like earth-
quakes are also observable in near-field ground 
motion with directivity focusing, known as for-
ward- and backward-directivity ground motion 
(Housner & Hudson, 1958, Kalkan & Kunnath, 
2006, He & Agrawal, 2008, Moustafa 2008). The 
realism of worst earthquake loads can be also 

examined by comparing maximum response from 
these accelerations with those from past recorded 
ground motions. Thus, the maximum ductility 
factor of the structure from the worst earthquake 
is about 3.9 (case 1) and 2.6 (case 4) times that 
from the Kobe earthquake and is 2.7 (case 1) and 
1.5 (case 4) times that from the San Fernando 
earthquake.

To examine the effect of the strain harden-
ing ratio on the design earthquake acceleration 
computed, limited studies were carried out. The 
value of α was changed and the critical input 
was determined by solving a new optimization 
problem. Namely, α was taken as 0.20, 0.10, 0.05, 
and 0.01. The strain hardening ratio was not seen 
to significantly influence the frequency content 
of the critical earthquake input. It was observed, 
however, that the inelastic structure with lower 
values of α yields more frequently compared to the 
same system with higher α values. Accordingly, 
the cumulative hysteretic energy dissipated was 
observed to decrease for higher values of α (Fig-
ure 8(a)). This feature is particularly remarkable 
at the end of the earthquake duration. It was also 
observed that the results on critical earthquake 
accelerations for bilinear inelastic structure with 
α = 0.01 are close to those for the elastic-plastic 
structure (Abbas, 2006).

Table 3. Nomenclature of constraint scenarios 
considered 

Case Constraints imposed

1 
2 
3 
4

Energy and PGA 
Energy, PGA, PGV and PGD 
Energy, PGA and UBFAS 
Energy, PGA, UBFAS and LBFAS

Figure 3. Convergence of objective function in terms of frequency terms Nf (a) Case 1 (b) Case 4
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To investigate the influence of the damping 
ratio on the computed worst earthquake load, 
limited studies were carried out. The damping 
ratio was changed, namely, 0.01, 0.03 and 0.05, 
while all other parameters were kept unchanged. 
The critical earthquake is computed by solving a 
new optimization problem for each case. The ef-
fect of the change in η0 was seen to be similar to 
that due to α. In other words, the value of the 
damping ratio was not seen to significantly influ-
ence the frequency content of the earthquake 
acceleration. It was observed, however, that the 
ductility ratio and the maximum inelastic defor-
mation of the structure decrease for higher damp-
ing ratios. Thus, the ductility ratio decreases to 
2.43 when the damping ratio is taken as 0.05 while 
the ductility ratio increases to 2.89 when the 
damping ratio reduces to 0.01. It was also observed 
that the inelastic structure with higher damping 
ratio dissipates more energy through damping 

compared with the same structure with lower 
damping ratio (see Figure 8(b)). The damage 
index also reduces when the damping ratio in-
creases.

To assess the structure safety, Eq. (5) was used 
to estimate the damage index of the structure 
subjected to the critical earthquake load. The ef-
fect of the parameter β on the damage index is 
examined first. Based on experimental tests, it 
was reported that β ranges between 0.05 and 0.20 
with an average value of 0.15 as suggested by 
Park et al, (1987). Figure 9(a) shows the influence 
of β on the damage index. To study the effect of 
the initial natural frequency of the structure on 
the damage index, the structure stiffness was 
varied while keeping all other parameters un-
changed and the critical earthquake was com-
puted for each case. Subsequently, the value of 
DIPA was calculated for each case. In the nu-
merical calculations β was taken as 0.15 and 

Figure 4. Optimal earthquake input and associated structural responses for case 1 (a) Fourier ampli-
tude of the ground acceleration (b) Normalized inelastic deformation (c) Hysteretic restoring force (d) 
Dissipated energy
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xmax max,µ are taken as 0.10 m and 2.64, respec-
tively.

The value of µu was taken as 6 in Figures. 9(a) 
and 8 in Figure 9(b). It was found that the damage 
index for the structure with initial natural fre-
quency smaller than 1.65 is higher than 0.40 and 
thus either total collapse or damage beyond repair 

of the structure is expected. The value of DIPA 
for the structure with ω0 greater than about 1.70 
Hz is less than 0.40 and thus the structure does 
not experience total damage but repairable dam-
age. This observation is consistent since the site 
dominant frequency is around 1.65 Hz and since 
the Fourier amplitude of the ground acceleration 

Figure 5. Optimal earthquake input and associated structural responses for case 4 (a) Fourier ampli-
tude of the ground acceleration (b) Normalized inelastic deformation (c) Hysteretic restoring force (d) 
Dissipated energy

Figure 6. Optimal earthquake acceleration and velocity (a) Case 1 (b) Case 4
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Figure 7. Fourier amplitude of recorded earthquakes (a) San Fernando 1971 (b) Hyogoken-Nanbu 1995

Figure 8. (a) Effect of strain hardening ratio on dissipated yield energy (b) Effect of damping on dis-
sipated damping energy

Figure 9. (a) Effect of the value ofβ on the damage index (b) damage spectra for inelastic SDOF build-
ings
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is seen to be located in the stiff side of the initial 
frequency of the inelastic structure.

4.2 Inelastic Two-Story 
Frame Structure

A two-story braced building frame is considered 
to demonstrate the formulation developed in this 
chapter for MDOF inelastic structures (Moustafa 
2009). The material behavior of the braces is 
taken as bilinear (k k2 1= γ ) as shown in Figure 
1(a).  The floor masses are taken as 
m m1 2

51 75 10= = ×. Ns2/m, the cross-section-
al areas of the braces areA A1 2

46 45 10= = × −.
m2, the Young’s modulus =2 59 1011. ×  N/m2, and 
the strain hardening ratio = 0.10 (i.e., ratio of the 
post-yield stiffness to the pre-yield stiffness). 
When both braces are behaving elastically, the 
stiffness matrixK Ks el= , if brace 1 yields
K Ks = 1 , if brace 2 yields K Ks = 2 and if both 
braces yieldK Ks = 12 . These matrices are given 
in Moustafa (2009). The structure is assumed to 
start from rest. The first two natural frequencies 
of the elastic structure were computed as 
ω1 6 18= . rad/s and ω2 16 18= . rad/s. A Rayleigh 
proportional dampingC M K= +a b s with a = 
0.2683, b = 0.0027 is adopted. These values are 
selected such that the damping ratio in the first 
two modes is 0.03. This implies that the damping 
forces in braces are nonlinear hysteretic functions 
of the deformed shape of the structure. Let the 
yield strain of the braces εy = 0 002. for both 
tension and compression. The braces will yield 
at a relative displacement

x Ly y= =ε θ/ cos .0 0381 m. 

Thus, brace 1 yields when | | .x1 0 0381 =
m and brace 2 yields when | | .x x2 1 0 0381− = 
m. The objective function is taken as the weight-
ed damage indices in braces 1 and 2. In the nu-
merical analysis, the parameters of the Newmark 
β-method were taken as δ α= =1 2 1 6/ ; / and 
the time step ∆t = 0 005. s.

The results of this example are shown in Fig-
ures 10 and 11. In general, the feature observed 
for the future earthquakes in the previous example 
was also observed in this example. However, the 
inelastic deformation and the associated damage 
were seen to depend on the two vibration modes. 
Thus, the maximum ductility ratio μ for case 1 is 
4.34 while that produced from constraint case 4 
is 2.27. Similarly, the maximum response reduces 
from 0.15 m to 0.08 m when the constraints on 
UBFAS and LBFAS are brought in. The earthquake 
input energy to the inelastic system is mainly dis-
sipated by yielding and nonlinear damping of the 
structure. The hysteretic and damping energies are 
significantly higher than the recoverable strain and 
kinetic energy. The kinetic and recoverable strain 
energies are small and diminish near the end of the 
ground shaking. The energy dissipated by yield-
ing is significantly higher than that dissipated by 
damping. The weighted damage index for case 1 
was about 0.96 implying total collapse while for 
case 4 the damage index was about 0.35 implying 
repairable damage.

It may be noted that the numerical illustrations 
of the formulation developed in this paper were 
demonstrated for simple structures with bilinear 

Table 4. Response parameters for alternative constraint scenarios (α = 0.05, ζ = 0.03) 

Case xmax (m) μmax xp (m) Nrv* DIPA Damage status

1 
2 
3 
4

0.47 
0.45 
0.41 
0.26

4.65 
4.53 
4.14 
2.64

0.07 
0.06 
0.07 
0.05

60 
54 
49 
44

1.15 
0.97 
0.72 
0.37

Total collapse 
Damaged beyond repair 
Damaged beyond repair 
Repairable damage

* Nrv = number of yield reversals (see Table 1)
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and elastic-plastic force-deformation laws. The 
application of the proposed method to more com-
plex structures and the use of more detailed 
degradation models (e.g., trilinear degradation, 
Takeda and Clough models) need to be investi-
gated. Additionally, in this paper Park and Ang 
damage index has been used to assess the structure 
performance. It may be emphasized that this dam-
age index has some limitations (Mehanny & 
Deierlein, 2000, Bozorgenia & Bertero 2003). 

This includes: (1) the weak cumulative component 
for practical cases given the typical dominance 
of the peak displacement term over the accumu-
lated energy term, (2) the use of a linear combina-
tion of deformation and energy in spite of the 
obvious nonlinearity of the problem and the inter-
dependence of the two quantities, and (3) the lack 
of considering the loading sequence effect in the 
cumulative energy term. Furthermore, when EH 
= 0 (elastic behavior), the value of DIPA should 

Figure 10. Critical acceleration x tg( ) for inelastic structure for case 1 (a) Time history (b) Fourier 
amplitude spectrum

Figure 11. Critical acceleration x tg( ) for inelastic structure for case 2 (a) Time history (b) Fourier 
amplitude spectrum
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be zero. However, the value of DIPA computed 
from Eq (5) will be greater than zero. Similarly, 
when the system reaches its maximum mono-
tonic deformation, while DIPA should be 1.0, 
however, Eq (5) leads to DIPA greater than 1.0. 
Chai et al (1995) proposed modification to DIPA 
to correct for the second drawback only. The study, 
also, examined experimentally the implication of 
the energy-based linear damage model of DIPA. 
Despite the drawbacks of DIPA, it has been exten-
sively used by many researchers, mainly due to 
its simplicity and the extensive calibration against 
experimentally observed seismic structural dam-
age during earthquakes (mainly for reinforced 
concrete structures). Bozorgenia & Bertero (2003) 
proposed two improved damage indices that 
overcome some of the drawbacks associated with 
DIPA.

In this chapter, worst earthquakes that maxi-
mize the structure’s damage were obtained using 
deterministic methods. Critical earthquakes can 
be formulated using stochastic processes, random 
vibration theory and reliability analysis which 
provides a powerful alternative to the methodol-
ogy developed here (see, e.g., Abbas & Manohar, 
2005, 2007).

5. CONCLUDING REMARKS

A methodology for assessing damage in structures 
under critical future earthquake loads is developed 
in this chapter. The novelty of this research lies 
in combining damage indices, nonlinear opti-
mization and nonlinear time-history analysis in 
assessing the structural performance under future 
earthquakes. Damage descriptors are introduced 
in deriving the worst earthquake ground motion. 
The structural damage is quantified in terms of 
Park and Ang damage indices. As is well known, 
damage indices describe the damage state of the 
structure and correlate well with the actual damage 
displayed during earthquakes. The quantification 
of the structure’s damage using damage indices 

is of substantial importance in deriving critical 
earthquake loads for inelastic structures. This is 
because damage indices imply that the structure 
is damaged by a combination of repeated stress 
reversals and high stress excursions. This also 
facilitates assessing the safety of the structure by 
providing a quantitative measure on the neces-
sary repair.

In this chapter, the worst earthquake load is 
derived based on available information using 
inverse nonlinear dynamic analysis, optimization 
techniques and damage indices. It was seen that if 
available information is limited to the energy and 
PGA, the resulting earthquake is highly resonant 
and produces conservative damage. When extra 
information on the Fourier amplitude spectra is 
available, more realistic earthquake loads (in 
terms of frequency content, amplitude, inelastic 
deformations and damage indices produce) are 
obtained. The influences of the strain hardening 
and damping ratios on the estimated design loads 
were studied. Critical damage spectra for the site 
were also established. These spectra provide upper 
bounds on the structural damage and necessary 
repair under possible future earthquakes. The 
formulation developed in this chapter was dem-
onstrated for inelastic frame structures modeled 
with bilinear and elastic-plastic force-deformation 
laws. In other words, non-deteriorating structures 
are only considered. Future extension of the 
present research requires the use of nonlinear 
degradation models that facilitate the development 
of plastic hinges in the structure. In this case the 
computations will increase considerably due to the 
complexity in estimating the structural response. 
Finally, it may be emphasized that in the present 
work, the structural properties have been kept 
unchangeable. It is possible to apply the proposed 
methodology for optimal design of the structure 
under future earthquakes. Herein, an initial guess 
for the dimensions of the structure’s members 
needs to be assumed and an iterative procedure 
has to be carried out leading to the optimal de-
sign of the structure, the system-dependent worst 
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earthquake and the associated damage (Takewaki, 
2002b, 2007, Saikat & Manohar, 2005, Fujita et 
al, 2010).
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ABSTRACT

Optimization is a field where extensive research has been conducted over the last decades. Many types 
of problems have been addressed, and many types of algorithms have been developed, while their range 
of applications is continuously growing. The chapter is divided into two parts; in the first part, the 
life-cycle cost analysis is used as an assessment tool for designs obtained by means of prescriptive and 
performance-based optimum design methodologies. The prescriptive designs are obtained through a 
single-objective formulation, where the initial construction cost is the objective to be minimized, while 
the performance-based designs are obtained through a two-objective formulation where the life-cycle 
cost is considered as an additional objective also to be minimized. In the second part of the chapter, the 
problem of inspection of structures and routing of the inspection crews following an earthquake in densely 
populated metropolitan areas is studied. A model is proposed and a decision support system is developed 
to aid local authorities in optimally assigning inspectors to critical infrastructures. A combined particle 
swarm – ant colony optimization based framework is implemented, which proves to be an instance of a 
successful application of the philosophy of bounded rationality and decentralized decision-making for 
solving global optimization problems.
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INTRODUCTION

Earthquake loading transfers large amounts of en-
ergy in short periods of time, which might produce 
severe damages on the structural systems. During 
the last century, significant advances have been 
made towards the improvement of the seismic 
design codes. The philosophy underlying modern 
codes is that the building structures should remain 
elastic for frequent earthquake events. Under 
rare earthquakes, however, damages are allowed 
given that life safety is guaranteed. Hence, the 
main task of the design procedures is to achieve 
more predictable and reliable levels of safety 
and operability against natural hazards. Through 
extensive research studies it was found that the 
Performance-Based Design (PBD) concept can 
be integrated into a structural design procedure in 
order to obtain designs that fulfill the provisions 
of a safety structure in a more predictable way 
(ATC-40,1996, FEMA-350, 2000, ASCE/SEI 
Standard 41-06, 2006, FEMA-445, 2006, ATC-
58, 2009). According to the PBD framework the 
structural behavior is assessed in multiple hazard 
levels of increased intensity. Consequently, it is 
very important to use robust and computation-
ally efficient methods for predicting the seismic 
response of the structure in order to assess its 
capacity under different seismic hazard levels.

In the first part of the chapter, 3D reinforced 
concrete (RC) buildings with regular and ir-
regular plan views were considered in order to 
examine the sensitivity of life-cycle cost value 
with reference to the analysis procedure (static or 
dynamic), the number of seismic records imposed, 
the performance criterion used and the structural 
type (regular or irregular). In particular, nonlin-
ear static analysis and multiple stripe analysis, 
which is a variation of IDA, were applied for the 
calculation of the maximum inter-story drift and 
the maximum floor acceleration. The life-cycle 
cost was calculated for both regular and irregular 
in plan test examples taking into consideration 
the damage repair cost, the cost of loss of con-
tents due to structural damage, quantified by the 

maximum inter-story drift and floor acceleration, 
the loss of rental cost, the income loss cost, the 
cost of injuries and the cost of human fatalities. 
Furthermore, the influence of uncertainties on the 
seismic response of structural systems and their 
impact on Life Cycle Cost Analysis (LCCA) is 
examined. In order to take into account the uncer-
tainty on the material properties, the cross-section 
dimensions and the record-incident angle, the 
Latin hypercube sampling method is integrated 
into the incremental dynamic analysis procedure. 
In addition, the LCCA methodology is used as an 
assessment tool for the designs obtained by means 
of prescriptive and performance-based optimum 
design methodologies. The prescriptive design 
procedure is formulated as a single-objective op-
timization problem where the initial construction 
cost is the objective to be minimized; while the 
performance-based design procedure is defined 
as a two-objective optimization problem where 
the life-cycle cost is considered as an additional 
objective also to be minimized.

Infrastructure networks are vital for the well-
being of modern societies; national and local 
economies depend on efficient and reliable net-
works that provide added value and competitive 
advantage to an area’s social and economic growth. 
The significance of infrastructure networks in-
creases when natural disasters occur since restora-
tion of community functions is highly dependent 
on the affected regions receiving adequate relief 
resources. Infrastructure networks are frequently 
characterized as the most important lifelines 
in cases of natural disasters; recent experience 
from around the World (hurricanes Katrina and 
Wilma, Southeastern Asia Tsunami, Loma Prieta 
and Northridge earthquakes and others) suggests 
that, following a natural disaster, infrastructure 
networks are expected to support relief opera-
tions, population evacuation, supply chains and 
the restoration of community activities.

Infrastructure elements such as bridges, pave-
ments, tunnels, water and sewage systems, and 
highway slopes are highly prone to damages 
caused by natural hazards, a result of possible 
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poor construction or maintenance, of design 
inconsistencies or of the shear magnitude of the 
natural phenomena themselves. Rapid network 
degradation following these disasters can severely 
impact both short and long run operations resulting 
in increased fatalities, difficulties in population 
evacuation and the supply of clean water and food 
to the affected areas. Much of the state of the art 
in this research area indicates that attention must 
be given to three important actions: (i) Fail-safe 
design and construction of infrastructure facili-
ties; (ii) Effective maintenance and management 
of the available facilities; and, (iii) Planning and 
preparing actions to deal with rapid reparation 
of infrastructure following the disasters (Altay 
et al. 2006, Dong et al., 1987, Peizhuangm et 
al. 1986, Tamura et al., 2000, Mendonca et al., 
2001, Mendonca et al., 2006, Karlaftis et al. 2007, 
Lagaros et al., 2011).

The second part of the chapter focuses on is-
sues that are related to inspecting and repairing 
infrastructure elements damaged by earthquakes, a 
highly unpredictable natural disaster of consider-
able importance to many areas around the world. 
An explicit effort is made to initiate the develop-
ment of a process for handling post-earthquake 
emergency response in terms of optimal infrastruc-
ture condition assessment, based on a combined 
Particle Swarm Optimization (PSO) – Ant Colony 
Optimization (ACO) framework. Some of the 

expected benefits of this work include improve-
ments in infrastructure network restoration times 
and minimization of adverse impacts from natural 
hazards on infrastructure networks.

LIFE-CYCLE COST 
ASSESSMENT OF OPTIMALLY 
DESIGNED REINFORCED 
CONCRETE BUILDINGS 
UNDER SEISMIC ACTIONS

In the framework of the present study, two multi-
story 3D RC buildings, shown in Figure 1 (a) and 
(b), have been optimally designed to meet the 
Eurocode (EC2 (2004) and EC8 (2004)) or the 
PBD requirements. Furthermore, the two buildings 
(optimally designed according to EC2 and EC8) 
have been considered in order to study the influ-
ence of various factors on LCCA procedure and 
to perform critical assessment of seismic design 
procedures. Therefore, the investigation presented 
in this study is composed by three parts. In the 
first part the single and multi-objective optimiza-
tion problems are solved, in the second part the 
influence of various parameters on the LCCA 
procedure is quantified while in the last part a 
critical assessment of the two design procedures 
with reference to the life-cycle cost is presented.

Figure 1. Test cases: (a) Eight-story 3D view, (b) Five-story 3D view
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Single and Multi-Objective 
Optimization Problems

In the following paragraphs, the single and the 
two-criteria design optimization problems and the 
optimum designs obtained are presented.

Problem Formulations

The mathematical formulation of the optimization 
problem for the single-objective formulation, as it 
was presented in (Lagaros et al., 2004), is defined 
as follows:

min         ( )

where         
s s

s s s
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where s represents the design vector, F is the 
feasible region where all the serviceability and 
ultimate constraint functions (gSERV and gULT) 
are satisfied. In this formulation the boundaries 
of the feasible region are defined according to 
the recommendations of the EC8. The single 
objective function considered is the initial con-
struction cost CIN, while Cb(s), Csl(s), Ccl(s) and 
Cns(s) correspond to the total initial construction 
cost of beams, slabs, columns and non-structural 
elements, respectively. The term “initial cost” of 
a new structure corresponds to the cost just after 
construction. The initial cost is related to material, 
which includes concrete, steel reinforcement, and 
labor costs for the construction of the building. The 
solution of the resulting optimization problem is 
performed by means of Evolutionary Algorithms 
(EA) (Mitropoulou, 2010).

In practical applications of sizing optimiza-
tion problems, the initial cost rarely gives a 
representative measure of the performance of 
the structure. In fact, several conflicting and 
usually incommensurable criteria usually exist 

in real-life design problems that have to be dealt 
with simultaneously. This situation forces the 
designer to look for a good compromise among 
the conflicting requirements. Problems of this kind 
constitute multi-objective optimization problems. 
In general, a multi-objective optimization problem 
can be stated as follows:
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where s represents the design vector, F is the 
feasible region where all the constraint functions 
gCapacity and gPBD are satisfied for the PBD formula-
tion. The objective functions considered are the 
initial construction cost CIN and the life-cycle 
cost CLS. Several methods have been proposed for 
treating structural multi-objective optimization 
problems (Coello, 2000, Marler & Arora, 2004). 
In this work, the Nondominated Sorting Evolu-
tion Strategies II (NSES-II) algorithm, proposed 
by Lagaros and Papadrakakis (2007), is used in 
order to handle the two-objective optimization 
problem at hand. This algorithm is denoted as 
NSES-II(μ+λ) or NSES-II(μ,λ), depending on the 
selection operator.

Various sources of uncertainty are considered: 
on the ground motion excitation which influences 
the level of seismic demand and on the model-
ing and the material properties which affects the 
structural capacity. The structural stiffness is 
directly connected to the modulus of elasticity 
Es and Ec of the longitudinal steel reinforcement 
and concrete respectively, while the strength is 
influenced by the yield stress fy of the steel and 
the cylindrical strength for the concrete fc and the 
hardening b of the steel. In addition to the mate-
rial properties, the cross-sectional dimensions are 
considered as random variables. Thus, both for 
beams and columns four random variables are 
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considered; the modulus of elasticity (Es and Ec), 
the yield and cylindrical strength stresses (fy and 
fc), the hardening parameter b of the stress-strain 
curve and the cross-sectional dimensions (B and 
H). One random variable is considered for both 
confined and unconfined concrete. Furthermore, 
one random variable is considered for the ground 
motion excitation and one for the incident angle. 
In order to account for the randomness of the in-
cident angle, the ground motions are applied with 
a random angle with respect to the structural axes 
uniformly distributed in the range of 0 to 180 de-
grees. The characteristics of the random variables 
are given in Table 1, i.e. probability density func-
tion (PDF), mean value, coefficient of variation 
(CoV) and type. Therefore, the total number of 
random variables considered is: 54 (4+2 groups 
of structural elements times 9 random variables) 
for the eight-story RC building (since 4 groups of 
columns and 2 groups of beams are considered) 
and 45 (3+2 groups of structural elements times 9 
random variables) for the five-story RC building 
(since 3 groups of columns and 2 groups of beams 
are considered) plus one random variable for the 
seismic record and one for the incident angle.

Optimum Design Results

For both formulations the designs variables of 
the optimization problems are defined through 
the dimensions of the columns’ and beams’ cross-
section. The columns are chosen to be rectangular 
and they are grouped into four categories (C1, C2, 
C3 and C4) for the eight-story test example while 
they are grouped into three categories (C1, C2 
and C3) for the five-story test example, while the 
beams for both test examples are grouped into two 
categories (more details can be found in a study of 
Lagaros et al. (2004)). The two dimensions of the 
columns/beams along with the longitudinal, trans-
verse reinforcement and its spacing are the five 
design variables that are assigned to each group 
of the columns/beams. Therefore, the structural 
elements (beams and columns) are separated into 
14 groups, 12 groups for the columns and 2 for 
the beams, resulting into 70 design variables for 
the eight-story test example; while for the five-
story test example the structural elements (beams 
and columns) are separated into 10 groups, 8 for 
the columns and 2 for the beams, resulting in 50 
design variables in total.

Table 1. Random variables (Ellingwood et al., 1980, Dolsek, 2009) 

Random 
variable Distribution (PDF) Mean CoV Type

Earthquake Uniform - - aleatory

Incident angle* Uniform - - aleatory

Material

mean fc Lognormal 20 MPa 4% epistemic

fc Lognormal mean fc 15% aleatory

Ec Lognormal 2.9×107 kN/m² 15% aleatory

mean fy (steel) Lognormal 500 MPa 4% epistemic

fy (steel) Lognormal mean fy 5% aleatory

Es (steel) Lognormal 2.1×108 kN/m² 5% aleatory

b (steel) Lognormal 1% 5% aleatory

Design variables
b Normal design value 5% aleatory

h Normal design value 5% aleatory

* In the Range of 0 to 180 degrees.
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Based on the prescriptive seismic design for-
mulation, both buildings have been designed for 
minimum initial cost following an optimization 
strategy proposed by Mitropoulou et al. (2010). 
In particular, for the solution of the single objec-
tive optimization problem formulated as shown 
in Eq. (4) the EA(μ + λ) optimization scheme is 
employed (Lagaros et al. 2004) with ten parent 
and offspring (μ=λ=10) design vectors for both 
test examples. On the other hand, the second op-
timization problem is formulated as a two-criteria 
design optimization problem, as presented in Eq. 
(5) where the initial construction cost CIN and the 
life-cycle cost CLS are the two objectives both to 
be minimized, while for solving the problem the 
NSES-II(100+100) optimization scheme was 
employed.

Solving the optimization problem of Eq. (4) 
results to a single design denoted as Ddescr corre-
sponding to the prescriptive design procedure. On 
the other hand, solving the optimization problem of 
Eq. (5) results to a group of designs that define the 
Pareto curve. In order to compare the behavior of 
the different designs of the Pareto front curve two 
characteristic designs were selected, correspond-
ing to the PBD optimum designs, which they are 
denoted as DPBD1 obtained from the region where 

the initial cost is the dominant criterion and DPBD2 
obtained from the region where the life-cycle cost 
is the dominant criterion. The steel and concrete 
quantities for the columns and the beams along 
with the RC frame cost and total initial cost, for 
the three optimum designs, are presented in Tables 
2 and 3 corresponding to the designs of the eight-
story and five-story test example, respectively.

For the eight-story symmetric test example, 
as shown in Table 2, it can be said that compared 
to Ddescr the DPBD1 requires 9% more concrete both 
for beams and columns while it requires 22% and 
31% more longitudinal steel reinforcement for 
the beams and the columns, respectively. On the 
other hand, DPBD2 requires 37% and 30% more 
concrete for beams and columns, respectively; 
while it requires 70% and 56% more longitudinal 
steel reinforcement for the beams and the columns, 
respectively. Furthermore, with reference to the 
RC frame initial cost, where the cost of the plates 
is also included, it can be said that DPBD1 is by 
10% more expensive compared to Ddescr; while 
DPBD2 is by 26% more expensive. On the other 
hand though, with reference to the initial cost, the 
three designs vary by 2% and 4% only.

The five-story non-symmetric test example has 
a similar trend. Based on the concrete and steel 

Table 2. Eight-story test example: comparison of steel and concrete quantities in the three designs 

Design 
procedure

Columns Beams CIN, RC Frame 
(103MU)

CIN
(103MU)Concrete (m3) Steel (kg.) Concrete (m3) Steel (kg.)

Ddescr 1.68E+02 1.84E+04 2.27E+02 1.06E+04 2.40E+02 1.44E+03

DPBD1 1.84E+02 2.41E+04 2.48E+02 1.29E+04 2.64E+02 1.46E+03

DPBD2 2.19E+02 2.87E+04 3.11E+02 1.80E+04 3.03E+02 1.50E+03

Table 3. Five-story test example: comparison of steel and concrete quantities in the three designs 

Design 
procedure

Columns Beams CIN, RC Frame 
(103MU)

CIN
(103MU)Concrete (m3) Steel (kg.) Concrete (m3) Steel (kg.)

Ddescr 8.86E+01 5.20E+03 6.57E+01 1.45E+03 1.11E+02 7.36E+02

DPBD1 1.04E+02 6.87E+03 7.40E+01 1.75E+03 1.20E+02 7.45E+02

DPBD2 1.27E+02 8.24E+03 9.16E+01 2.50E+03 1.33E+02 7.58E+02
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reinforcement quantities and initial costs given 
in Table 3, it can be said that compared to Ddescr 
the DPBD1 requires 13% and 18% more concrete 
for beams and columns, respectively; while it 
requires 21% and 32% more longitudinal steel 
reinforcement for the beams and the columns, 
respectively. On the other hand, DPBD2 requires 39% 
and 43% more concrete for beams and columns, 
respectively; while it requires 72% and 59% more 
longitudinal steel reinforcement for the beams 
and the columns, respectively. Furthermore, with 
reference to the RC frame initial cost, where the 
cost of the plates is also included, it can be said 
that DPBD1 is by 8% more expensive compared to 
Ddescr; while DPBD2 is by 19% more expensive. On 
the other hand though, with reference to the initial 
cost, the three designs vary by 1% and 3% only.

Prescriptive vs Performance-
Based Design

The difference between EC8 and PBD formula-
tions is demonstrated in terms of the life-cycle 
cost analysis of selected designs. The EC8 for-
mulation implements a linear analysis procedure 
where the behavioral factor q is used to take into 
account the inelastic behavior of the structure. 
Most of the contemporary seismic design codes 
rely on the ability of the structure to absorb energy 
through inelastic deformation using the reduction 
or behavior factor q. The capacity of a structure 
to resist seismic actions in the nonlinear range 
generally permits the design seismic loads to be 
smaller than the loads corresponding to a linear 

elastic response. Thus, the seismic design loads 
are reduced by the behavior factor q. According 
to EC8, the nonlinear deformation of the structure 
caused by the seismic load is equal to q times the 
corresponding deformation of the linear analysis.

In accordance to the previous section, the three 
designs are also considered for the comparative 
study with reference to the life-cycle cost and the 
impact of the various sources of randomness of 
the LCCA procedure. The median values of the 
life-cycle cost of the three designs are shown in 
Tables 4 to 7 corresponding to the deterministic and 
probabilistic formulations, while the histograms of 
Figures 2 and 3 show the probabilistic distribution 
of the life-cycle cost values for the deterministic 
and probabilistic formulations implemented into 
the Multi-Stripe Dynamic Analysis (MSDA) for 
the three different designs along with the 90% 
confidence bounds.

For the eight-story symmetric test example, 
comparing the histograms of Figures 2(a) and 
2(b) it can be noticed that the width of the 90% 
confidence bounds of the life-cycle cost values 
of design DPBD2, is much narrower compared to 
the other two confidence bounds both for the 
deterministic and probabilistic formulations. 
Furthermore, it can be said that with reference to 
the mean value of the life-cycle cost (as shown 
in Table 4) DPBD1 is by 18% less expensive com-
pared to Ddescr; while DPBD2 is by 52% less expen-
sive when the deterministic formulation is imple-
mented for 60 records. On the other hand, as 
shown in Table 5, it can be said that design DPBD1 
is by 5% less expensive compared to Ddescr; while 

Table 4. Eight-story test example: median value of the life-cycle cost (103 MU) for the four cases and 
the three designs for the deterministic formulation 

Design
Number of records

10 20 40 60

Ddescr 3.13E+03 2.73E+03 2.61E+03 2.72E+03

DPBD1 2.87E+03 2.02E+03 1.83E+03 2.30E+03

DPBD2 1.91E+03 1.82E+03 1.79E+03 1.79E+03
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DPBD2 is by 57% less expensive when the proba-
bilistic formulation is also implemented for 60 
records. For the five-story symmetric test ex-
ample, comparing the histograms of Figure 3(a) 
it can be noticed that the width of the 90% con-
fidence bounds of the life-cycle cost values, of 
design Ddescr, is much narrower compared to the 
other two confidence bounds both for the deter-
ministic formulation while for the probabilistic 
one it is DPBD2 design that shows the narrower 
confidence bounds. Furthermore, it can be said 
that with reference to the mean value of the life-
cycle cost (as shown in Table 6) DPBD1 is by 38% 
less expensive compared to Ddescr; while DPBD2 is 

by 52% less expensive when the deterministic 
formulation is implemented for 60 records. On 
the other hand, as shown in Table 7, it can be said 
that design DPBD1 is by 40% less expensive com-
pared to Ddescr; while DPBD2 is by 53% less expen-
sive when the probabilistic formulation is also 
implemented for 60 records. Comparing the de-
terministic with the probabilistic formulation with 
reference to the median values, they appear to be 
increased by 12% to 30% for the eight-story test 
example and by 11% to 13% for the five-story 
building.

Figure 2. Eight-story test case – Prescriptive vs PBD (a) frequency of occurrence deterministic approach 
and (b) frequency of occurrence probabilistic approach, all for the case of 60 records

Figure 3. Five-story test case – Prescriptive vs PBD (a) frequency of occurrence deterministic approach 
and (b) frequency of occurrence probabilistic approach, all for the case of 60 records
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METAHEURISTIC OPTIMIZATION 
FOR THE INSPECTION SCHEDULING 
OF BUILDINGS

Natural hazards such as earthquakes, floods and 
tornadoes can cause extensive failure of critical 
infrastructures including bridges, water and sewer 
systems, gas and electricity supply systems, and 
hospital and communication systems. Follow-
ing a natural hazard, the condition of structures 
and critical infrastructures must be assessed and 
damages have to be identified; inspections are 
therefore necessary since failure to rapidly inspect 

and subsequently repair infrastructure elements 
will delay search and rescue operations and relief 
efforts. The objective of this work is scheduling 
structure and infrastructure inspection crews 
following an earthquake in densely populated 
metropolitan areas. A model is proposed and a 
decision support system is designed to aid lo-
cal authorities in optimally assigning inspectors 
to critical infrastructures. A combined Particle 
Swarm – Ant Colony Optimization based frame-
work is developed which proves an instance of 
a successful application of the philosophy of 
bounded rationality and decentralized decision-

Table 6. Five-story test example: median value of the life-cycle cost (103 MU) for the four cases and the 
three designs for the deterministic formulation 

Design
Number of records

10 20 40 60

Ddescr 5.10E+03 3.54E+03 3.28E+03 4.18E+03

DPBD1 4.70E+03 3.17E+03 2.84E+03 3.04E+03

DPBD2 4.37E+03 2.58E+03 2.27E+03 2.75E+03

Table 5. Eight-story test example: median value of the life-cycle cost (103 MU) for the four cases and 
the three designs for the probabilistic formulation 

Design
Number of records

10 20 40 60

Ddescr 3.16E+03 3.04E+03 3.08E+03 3.14E+03

DPBD1 3.25E+03 2.97E+03 2.95E+03 2.98E+03

DPBD2 2.05E+03 2.00E+03 1.99E+03 2.00E+03

Table 7. Five-story test example: median value of the life-cycle cost (103 MU) for the four cases and the 
three designs for the probabilistic formulation 

Design
Number of records

10 20 40 60

Ddescr 4.79E+03 4.71E+03 4.47E+03 4.72E+03

DPBD1 3.90E+03 3.26E+03 3.17E+03 3.36E+03

DPBD2 3.66E+03 3.00E+03 2.90E+03 3.08E+03
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making for solving global optimization problems 
(Plevris et al., 2010).

Problem Formulation

A general formulation of a nonlinear optimization 
problem can be stated as follows
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where x is the design variables vector of length 
n, f(x): Rn→R is the objective function to be 
minimized, the vector of m inequality constraint 
functions g(x): Rn→Rm and xL, xU are two vectors 
of length n defining the lower and upper bounds 
of the design variables, respectively.

The main objective of this work is to formulate 
the problem of inspecting the structural systems 
of a city/area as an optimization problem. This 
objective is achieved in two steps: in the first step, 
the structural blocks to be inspected are optimally 
assigned into a number of inspection crews (as-
signment problem), while in the second step the 
problem of hierarchy is solved for each group of 
blocks (inspection prioritization problem). In the 
formulation of the optimization problems consid-
ered in this work, the city/area under investigation 
is decomposed into NSB structural blocks while 
NIG inspection crews are considered for inspect-
ing the structural condition of all structural and 
infrastructure systems of the city/area.

STEP 1: OPTIMUM 
ASSIGNMENT PROBLEM

The assignment problem is defined as a nonlinear 
programming optimization problem as follows
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where nSB
i( )  is the number of structural blocks al-

located to the ith inspection crews, d(SBk,Ci) is the 
distance between the SBk building block from the 
centre of the ith group of structural blocks (with 
coordinates xC and yC), while D(k) is the demand 
for the kth building block defined as the product 
of the building block total area times the built-up 
percentage (i.e. percentage of the area with a 
structure). This is defined as a discrete optimiza-
tion problem since the design variables x are in-
teger numbers denoting the inspection crews to 
which each built-up block has been assigned and 
thus the total number of the design variables is 
equal to the number of structural blocks and the 
range of the design variables is [1, NIG].

STEP 2: INSPECTION 
PRIORITIZATION PROBLEM

The definition of this problem is a typical Travel-
ling Salesman Problem (TSP) (Colorni et al., 1992) 
which is a problem in combinatorial optimization 
studied in operations research and theoretical 
computer science. In TSP a salesman spends his 
time visiting N cities (or nodes) cyclically. Given 
a list of cities and their - pair-wise - distances, 
the task is to find a Hamiltonian tour of minimal 
length, i.e. to find a closed tour of minimal length 
that visits each city once and only once. For an N 
city asymmetric TSP if all links are present then 
there are (N-1)! different tours. TSP problems are 
also defined as integer optimization problems, 
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similar to all problems that have been proven to 
be NP-hard (Lawler, 1985).

Consider a TSP with N cities (vertices or 
nodes). The TSP can be represented by a complete 
weighted graph G=(N,A), with N the set of nodes 
and A the set of arcs (edges or connections) that 
fully connects the components of N. A cost func-
tion is assigned to every connection between two 
nodes i and j, that is the distance between the two 
nodes di,j (i≠j). In the symmetric TSP, it is di,j=dj,i. 
A solution to the TSP is a permutation p={p(1), 
…, p(N)} of the node indices {1, …, N}, as every 
node must appear only once in a solution. The 
optimum solution is the one that minimizes the 
total length L(p) given by

L d dp i p i
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p N p( ) ( ), ( ) ( ), ( )p = ( )++
=

−

∑ 1
1

1

1  (5)

Thus, the corresponding prioritization problem 
is defined as follows
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where d(SBk, SBk+1) is the distance between the 
building block SBk and k+1th. The main objective 
is to define the shortest possible route between 
the structural blocks that have been assigned in 
Step 1 to each inspection group.

PARTICLE SWARM 
OPTIMIZATION ALGORITHM

In a PSO formulation, multiple candidate solutions 
coexist and collaborate simultaneously. Each solu-
tion is called a “particle” that has a position and 
a velocity in the multidimensional design space. 
A particle “flies” in the problem search space 
looking for the optimal position. As “time” passes 
through its quest, a particle adjusts its velocity 

and position according to its own “experience” 
as well as the experience of other (neighbouring) 
particles. Particle’s experience is built by tracking 
and memorizing the best position encountered. 
As every particle remembers the best position it 
has visited during its “flight”, the PSO possesses 
a memory. A PSO system combines local search 
method (through self-experience) with global 
search method (through neighbouring experience), 
attempting to balance exploration and exploitation.

Mathematical Formulation of PSO

Each particle maintains two basic characteristics, 
velocity and position, in the multi-dimensional 
search space that are updated as follows

v vj j j j j( ) ( ) ( ) ( )t w t c t c t+ = + −( )+ −( )1 1 1 2 2r x x r x x 

Pb, Gb  
(7)

x xj j j( ) ( ) ( )t t t+ = + +1 1v  (8)

where vj(t) denotes the velocity vector of particle 
j at time t, xj(t) represents the position vector of 
particle j at time t, vector xPb,j is the personal ‘best 
ever’ position of the jth particle, and vector xGb is 
the global best location found by the entire swarm. 
The acceleration coefficients c1 and c2 indicate 
the degree of confidence in the best solution found 
by the individual particle (c1 - cognitive param-
eter) and by the whole swarm (c2 - social param-
eter), respectively, while r1 and r2 are two random 
vectors uniformly distributed in the interval [0, 
1]. The symbol “ ” of Eq. (7) denotes the Had-
amard product, i.e. the element-wise vector or 
matrix multiplication.

Figure 4 depicts a particle’s movement, in 
a two-dimensional design space, according to 
Eqs. (7) and (8). The particle’s current position 
xj(t) at time t is represented by the dotted circle 
at the lower left of the drawing, while the new 
position xj(t+1) at time t+1 is represented by the 
dotted bold circle at the upper right hand of the 
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drawing. It can be seen how the particle’s move-
ment is affected by: (i) it’s velocity vj(t); (ii) the 
personal best ever position of the particle, xPb,j, 
at the right of the figure; and (iii) the global best 
location found by the entire swarm, xGb, at the 
upper left of the figure.

In the above formulation, the global best loca-
tion found by the entire swarm up to the current 
iteration (xGb) is used. This is called a fully con-
nected topology (fully informed PSO), as all 
particles share information with each other about 
the best performer of the swarm. Other topologies 
have also been used in the past where instead of 
the global best location found by the entire swarm, 
a local best location of each particle’s neighbour-
hood is used. Thus, information is shared only 
among members of the same neighbourhood.

The term w of Eq. (7) is the inertia weight, 
essentially a scaling factor employed to control 
the exploration abilities of the swarm, which 
scales the current velocity value affecting the 
updated velocity vector. The inertia weight was 
not part of the original PSO algorithm (Kennedy 

& Eberhart,1995), as it was introduced later by 
Shi and Eberhart (1998) in a successful attempt 
to improve convergence. Large inertia weights 
will force larger velocity updates allowing the 
algorithm to explore the design space globally. 
Similarly, small inertia values will force the veloc-
ity updates to concentrate in the nearby regions 
of the design space.

The inertia weight can also be updated during 
iterations. A commonly used inertia update rule is 
the linearly-decreasing, calculated by the formula:

w w
w w

t
tt+ = −

−
⋅1 max

max min

max

 (9)

where t is the iteration number, wmax and wmin are the 
maximum and minimum values, respectively, of 
the inertia weight. In general, the linearly decreas-
ing inertia weight has shown better performance 
than the fixed one.

Particles’ velocities in each dimension i (i = 1, 
…,n) are restricted to a maximum velocity vmax

i. 
The vector vmax of dimension n holds the maximum 

Figure 4. Visualization of the particle’s movement in a two-dimensional design space
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absolute velocities for each dimension. It is more 
appropriate to use a vector rather than a scalar, as 
in the general case different velocity restrictions 
can be applied for different dimensions of the 
particle. If for a given particle j the sum of ac-
celerations of Eq. (7) causes the absolute velocity 
for dimension i to exceed vmax

i, then the velocity 
on that dimension is limited to ±vmax,i. The vector 
parameter vmax is employed to protect the cohesion 
of the system, in the process of amplification of 
the positive feedback. The basic PSO has only few 
parameters to adjust. In Table 8 there is a list of 
the main parameters, their typical values as well 
as other information (Perez & Behdinan, 2007).

Convergence Criteria

Due to the repeated process of the PSO search, 
convergence criteria have to be applied for the 
termination of the optimization procedure. Two 
widely adopted convergence criteria are the 
maximum number of iterations of the PSO algo-
rithm and the minimum error requirement on the 
calculation of the optimum value of the objective 
function. The selection of the maximum number 
of iterations depends, generally, on the complexity 
of the optimization problem at hand. The second 

criterion presumes prior knowledge of the global 
optimal value, which is feasible for testing or fine-
tuning the algorithm in mathematical problems 
when the optimum is known a priori, but this 
is certainly not the case in practical structural 
optimization problems where the optimum is not 
known a priori.

In our study, together with the maximum 
number of iterations, we have implemented the 
convergence criterion connected to the rate of 
improvement of the value of the objective function 
for a given number of iterations. If the relative 
improvement of the objective function over the 
last kf iterations (including the current iteration) is 
less or equal to a threshold value fm, convergence is 
supposed to have been achieved. In mathematical 
terms, denoting as Gbestt the best value for the 
objective function found by the PSO at iteration t, 
the relative improvement of the objective function 
can be written for the current iteration t as follows

Gbest Gbest

Gbest
f

t k t

t k
m

f

f

− +

− +

−
≤

1

1

 (10)

In Table 9 there is a list of the convergence 
parameters of the PSO used in this study with 
description and details.

Table 8. Main PSO parameters 

Symbol Description Details

NP Number of particles A typical range is 10 – 40. For most problems 10 particles is sufficient 
enough to get acceptable results. For some difficult or special prob-
lems the number can be increased to 50-100.

n Dimension of particles It is determined by the problem to be optimized.

w Inertia weight Usually is set to a value less than 1, i.e. 0.95. It can also be updated 
during iterations.

xL, xU Vectors containing the lower and upper 
bounds of the n design variables, respec-
tively

They are determined by the problem to be optimized. Different ranges 
for different dimensions of particles can be applied in general.

vmax Vector containing the maximum allowable 
velocity for each dimension during one 
iteration

Usually is set half the length of the allowable interval for the given 
dimension: vmax

i = (xU
i - x

L
i)/2. Different values for different dimen-

sions of particles can be applied in general.

c1, c2 Cognitive and social parameters Usually c1=c2=2. Other values can also be used, provided that 0 < 
c1+c2 < 4 (Perez & Behdinan, 2007)
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PSO for Integer Optimization

Since both problems defined in previous section 
are integer optimization problems, discrete opti-
mization algorithms are required. For the Step 1 
optimization problem described in previous sec-
tion, a discrete version of the PSO algorithm is 
employed. In the continuous version of the PSO 
method, both particle positions and velocity are 
initialized randomly. In this work, the particle 
positions are generated randomly over the design 
space using discrete Latin Hypercube Sampling, 
thus guaranteeing that the initial particle positions 
will be integers in the acceptable range. Further-
more, in the case of discrete optimization and in 
particular in integer programming, at every step 
of the optimization procedure, integer particle 
positions should also be generated. In order to 
satisfy this, Eq. (7) is modified as follows

v vj j j j j( ) ( ) ( ) ( )t w t c t c t+ = + −( )+ −( )
1 1 1 2 2round r x x r x x 

Pb, Gb 

 

(11)

where the vector function round(x) rounds each 
element of the vector x into the nearest integer.

ANT COLONY OPTIMIZATION

The Ant Colony Optimization (ACO) algorithm 
is a population-based probabilistic technique for 
solving optimization problems, mainly for finding 
optimum paths through graphs (Dorigo, 1992). 

The algorithm was inspired by the behaviour of 
real ants in nature. In many ant species, individu-
als initially wander randomly and upon finding 
a food source return to their colony, depositing 
a substance called pheromone on the ground. 
Other ants smell this substance, and its presence 
influences the choice of their path, i.e. they tend 
to follow strong pheromone concentrations rather 
than travelling completely randomly, returning 
and reinforcing it if they eventually find food. 
The pheromone deposited on the ground forms 
a pheromone trail, which allows the ants to find 
good sources of food that have been previously 
identified by other ants.

As time passes, the pheromone trails start to 
evaporate, reducing their strength. The more time 
it takes for an ant to travel down a path and back 
again, the more time the pheromone trail has to 
evaporate. A short path gets marched over faster 
than a long one, and thus the pheromone density 
remains high as it is laid on the path faster than 
it can evaporate. If there was no evaporation, the 
paths chosen by the first ants would tend to be 
excessively attractive to the following ants and 
as a result the exploration of the solution space 
would be constrained. In that sense, pheromone 
evaporation helps also to avoid convergence to 
a locally optimal solution. Positive feedback 
eventually leads to most of the ants following a 
single “optimum” path.

The idea of the ant colony algorithm is to mimic 
this behaviour with simulated ants walking around 
the graph representing the problem to solve. The 

Table 9. PSO convergence parameters 

Symbol Description Details

tmax Maximum number of iterations for the 
termination criterion.

Determined by the complexity of the problem to be optimized, in 
conjunction with other PSO parameters (n, NP).

kf Number of iterations for which the relative 
improvement of the objective function satis-
fies the convergence check.

If the relative improvement of the objective function over the last kf 
iterations (including the current iteration) is less or equal to fm, con-
vergence has been achieved.

fm Minimum relative improvement of the value 
of the objective function.
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first algorithm was aiming to search for an optimal 
path in a graph. The original idea has since diversi-
fied to solve a wider class of numerical problems 
and, as a result, several problems have emerged, 
drawing on various aspects of the behaviour of 
ants. The initial applications of ACO were in the 
domain of NP-hard combinatorial optimization 
problems, while it was soon also applied to rout-
ing in telecommunication networks.

In ACO, a set of software agents called artificial 
ants search for good solutions to the optimization 
problem of finding the best path on a weighted 
graph. The ants incrementally build solutions by 
moving on the graph. The solution construction 
process is stochastic and it is biased on a phero-
mone model, that is, a set of parameters associated 
with graph components (either nodes or edges) 
whose values are modified at runtime by the ants.

To apply ACO to the TSP, the construction 
graph is considered, defined by associating the 
set of cities with the set of vertices on the graph. 
The construction graph is fully connected and 
the number of vertices is equal to the number of 
cities, since in the TSP it is possible to move from 
any given city to any other city. The length of the 
edges (connections) between the vertices are set to 
be equal to the corresponding distances between 
the nodes (cities) and the pheromone values and 
heuristic values are set for the edges of the graph. 
Pheromone values are modified during iterations at 
runtime and represent the cumulated experience of 
the ant colony, while heuristic values are problem 
dependent values that, in the case of the TSP, are 
set to be the inverse of the lengths of the edges.

During an ACO iteration, each ant starts from 
a randomly chosen vertex of the construction 
graph. Then, it moves along the edges of the 
graph keeping a memory of its path. In order to 
move from one node to another it probabilisti-
cally chooses the edge to follow among those 
that lead to yet unvisited nodes. Once an ant has 
visited all the nodes of the graph, a solution has 
been constructed. The probabilistic rule is biased 
by pheromone values and heuristic information: 

the higher the pheromone and the heuristic value 
associated to an edge, the higher the probability 
the ant will choose that particular edge. Once all 
the ants have completed their tour, the iteration is 
complete and pheromone values on the connec-
tions are updated: each of the pheromone values 
is initially decreased by a certain percentage and 
then it receives an amount of additional phero-
mone proportional to the quality of the solutions 
to which it belongs.

Ant Colony Optimization Algorithm

Consider a population of m ants where at each 
iteration of the algorithm every ant constructs a 
“route” by visiting every node sequentially. Ini-
tially, ants are put on randomly chosen nodes. At 
each construction step during an iteration, ant k 
applies a probabilistic action choice rule, called 
random proportional rule, to decide which node to 
visit next. While constructing the route, an ant k 
currently at node i, maintains a memory Mk which 
contains the nodes already visited, in the order 
they were visited. This memory is used in order 
to define the feasible neighbourhood Nk

i that is 
the set of nodes that have not yet been visited by 
ant k. In particular, the probability with which ant 
k, currently at node i, chooses to go to node j is

p ji j
k i j i j

i i

i
k

i
k

,
, ,
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( ) ( )

( ) ( )
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where τi,j is the amount of pheromone on con-
nection between i and j nodes, α is a parameter 
to control the influence of τi,j, β is a parameter to 
control the influence of ηi,j and ηi,j is a heuristic 
information that is available a priori, denoting the 
desirability of connection i,j, given by

ηi j
i jd,
,

=
1  (13)
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According to Eq. (13), the heuristic desirability 
of going from node i to node j is inversely propor-
tional to the distance between i and j. By definition, 
the probability of choosing a city outside Nk

i is 
zero. By this probabilistic rule, the probability of 
choosing a particular connection i,j increases with 
the value of the associated pheromone trail τi,j and 
of the heuristic information value ηi,j.

The selection of the superscript parameters α 
and β is very important: if α=0, the closest cities 
are more likely to be selected which corresponds 
to a classic stochastic greedy algorithm (with 
multiple starting points since ants are initially 
randomly distributed over the nodes). If β=0, only 
pheromone amplification is at work, that is, only 
pheromone is used without any heuristic bias (this 
generally leads to rather poor results (Dorigo & 
Stützle, 2004).

Pheromone Update Rule

After all the m ants have constructed their routes, 
the amount of pheromone for each connection 
between i and j nodes, is updated for the next 
iteration t+1 as follows

τ ρ τ τi j i j i j
k

k

m

t t t i j, , ,( ) ( ) ( ), ( , )+ = −( )⋅ + ∀ ∈
=
∑1 1

1

∆ A  

(14)

where ρ is the rate of pheromone evaporation, a 
constant parameter of the method, A is the set of 
arcs (edges or connections) that fully connects 
the set of nodes and Δτk

i,j(t) is the amount of 
pheromone ant k deposits on the connections it 
has visited through its tour Tk, typically given by

∆τi j
k k
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i j

, ( )
)

=





1

0

T
Tif connection ( ,  belongs to 

otherwise






 

(15)

The coefficient ρ must be set to a value <1 to 
avoid unlimited accumulation of trail (Colorni et 

al., 1992). In general, connections that are used 
by many ants and which are parts of short tours, 
receive more pheromone and are therefore more 
likely to be chosen by ants in future iterations of 
the algorithm.

CASE STUDY

The real world case study considered is the city of 
Patras in Greece, which is used in order to define 
both the problem of the inspection assignment and 
the inspection prioritization. The city of Patras 
is decomposed into 112 structural blocks having 
different areas and built-up percentages, while 
two different sets of inspection groups (crews of 
inspectors) are considered. A non-uniform distri-
bution of damages is examined with respect to the 
damage level encountered on the structures due 
to a strong earthquake. Four areas with different 
structural damage levels are considered: (i) Level 
0 – no damages, (ii) Level 1 – slight damages, 
(iii) Level 2 – moderate damages and (iv) Level 
3 – extensive damages. The subdivision of the city 
of Patras into 112 structural blocks and the mean 
damage level for each region are shown in Figure 
5. Damages are assumed to follow the Gaussian 
distribution with mean value 0, 1, 2 and 3 for the 
four zones of Figure 5. The final distribution of 
damages over the structural blocks can be seen in 
Figure 6, where a big circle denotes severe damage.

In order to account for the influence of the 
distribution of the damages in the city’s regions, 
the formulation of the optimal assignment problem 
given in Eq. (4) is modified as follows

min ( , ) ( ) ( )
( )

d SB C D k DF kk i
k

n

i

N SB
i

IG

⋅ ⋅[ ]
==
∑∑

11

 (16)

where DF(k) is the damage factor corresponding to 
each damage level, as shown in Table 10. Figures 
7(a) and 7(b) depict the solutions obtained for the 
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optimum allocation problem for the two different 
numbers of inspection crews.

In the second step, the inspection prioritization 
problem defined in Eq. (6) is solved by means of 
the Ant Colony Optimization algorithm. Figures 
8(a) and 8(b) depict the optimum routes achieved, 
corresponding to the least time consuming route 
required for each inspection group imitating from 
their base. The base is the same for every inspec-
tion crew. The distances for the first and second 
group are 17121 and 31540 respectively for the 
two inspection groups while for the four are 9633.7, 
10939, 11383 and 15740.

Figure 9 depicts the convergence histories of 
the ACO algorithm. The vertical axis is the 
minimum distance path among the ants for every 
iteration.

CONCLUSION

In this study the application of metaheuristic op-
timization and in particular Evolution Strategies, 
Particle Swarm Optimization and Ant Colony 
Optimization is examined in two problems of 
great significance, the structural seismic design 
optimization problem and the inspection schedul-
ing problem after a seismic hazard attack.

In the first problem examined in this study it 
was found that with reference to the factors in-
fluencing the life-cycle cost estimation it can be 
concluded that 10 to 20 records are not enough to 
obtain reliable life-cycle cost analysis prediction 
results. The structural type of the building affects 
its structural performance. It has been verified that 
a symmetrical structure sustains less damage and 
therefore less repair cost during its life compared 
to a non-symmetric structure. In both test examples 
the effect of the other sources of uncertainty like 
material properties, damping and mass proper-
ties is very significant varying considerably the 
mean, the standard deviation and the fractiles of 
the seismic response. Neglecting the influence of 
modeling uncertainties (i.e. material properties and 
design variables) in the prediction of the seismic 
response can significantly underestimate the val-
ues of the seismic damage indices considered. As 
a result the estimated value of the life cycle cost 
varies considerably (up to 30%) compared to the 
case where the cumulative impact of all sources 
of randomness is considered. Furthermore, it has 
been shown that designs obtained in accordance 
to the European seismic design code are more 

Table 10. Damage Factor (DF) corresponding to 
each damage level 

Damage level Damage Factor (DF)

0 1.0

1 1.2

2 1.5

3 2.0

Figure 5. City of Patras – Subdivision into struc-
tural blocks and the mean damage level distributed 
over the structural blocks
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Figure 6. City of Patras – Distribution of the damage levels

Figure 7. City of Patras - Subdivision into structural blocks (a) two and (b) four inspection crews
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Figure 8. City of Patras – Best route (a) two and (b) four inspection crews

Figure 9. City of Patras – Optimization history of the last group (a) for the case of two and (b) the case 
of four inspection crews
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vulnerable to future earthquakes compared to 
similar designs, in terms of initial construction 
cost, obtained with the performance-based design 
procedure. This vulnerability increases for designs 
selected from the part of the Pareto front curves 
where the initial construction cost is the dominant 
criterion. Even though these conclusions cannot 
be generalized, they provide an indication of the 
quality of the designs obtained according to a 
prescriptive design code and to a performance-
based design procedure.

On the other hand following a natural hazard, 
the condition of the critical infrastructures must 
be assessed and damages have to be identified. 
Inspections are therefore necessary, immediately 
after the catastrophic event, since failure to quickly 
inspect, repair and/or rehabilitate the infrastructure 
system, particularly in densely populated metro-
politan regions, might delay search and rescue 
operations and relief efforts, which increases the 
suffering of the survivors. Specialized crews must 
be dispatched and inspect critical infrastructures. 
The objective of the present work was to schedule 
critical infrastructures inspection crews following 
an earthquake in densely populated metropolitan 
regions. In this work two formulations have been 
successfully implemented: in the first, the struc-
tural blocks are assigned to different inspection 
groups with an effort to equally distribute the 
workload between the groups, while in the second 
the optimal route for each group was determined 
with an effort to minimize the distance that each 
inspection group has to cover. A Particle Swarm 
Optimization and an Ant Colony Optimization-
based framework were implemented for dealing 
with the problem at hand and they both resulted 
in tractable and rapid response models.
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Chapter  8

INTRODUCTION

According to the archaeologists’ discoveries the 
ancient Egyptians believed that to keep a ceiling 
safely supported by columns, the columns have 
to have one third of area of the ceiling. Since 
ever, the effort of engineers has been devoted to 
minimizing the size of columns to retrieve more 
space. This indicates that engineering has an intui-

tive meaning of optimization; i.e., the degree of 
professionality of any engineering design can be 
measured based on its degree of optimality. This 
aspiration has been followed in two directions: 
1) A better understanding from the behaviour of 
structure for enhancing design knowledge and 
2) Achieving the best (optimum) design in the 
framework of structural design knowledge.

Hamid Moharrami
Tarbiat Modares University, Iran

Optimal Performance-
Based Seismic Design

ABSTRACT

In this chapter, the reader gets acquainted with the philosophy of performance-based design, its principles, 
and an overview of the procedures for performance evaluation of structures. The essential prerequisites 
of optimal performance-based design, including nonlinear analysis, optimization algorithms, and nonlin-
ear sensitivity analysis, are introduced. The methods of nonlinear analysis and optimization are briefly 
presented, and the formulation of optimal performance-based design with emphasis on deterministic 
type, rather than probabilistic- (or reliability)-based formulation is discussed in detail. It is revealed 
how real performance-based design is tied to optimization, and the reason is given for why, without 
optimization algorithms, multilevel performance-based design is almost impossible.

DOI: 10.4018/978-1-4666-1640-0.ch008



175

Optimal Performance-Based Seismic Design

Improving Design Practice

In the traditional design of structures, attention was 
mostly paid to strength of structure and the defor-
mation control was often a secondary check. The 
designer aimed to design a structure in such a way 
that it withstands the applied loads with sufficient 
reserved resistance capacity. The structure was in 
fact designed for amplified loads and checked for 
deflection or side-sway. It is not too far that the phi-
losophy of design changed to load and resistance 
factored design (LRFD) in which reduced ultimate 
strengths of structural elements are compared to 
the corresponding amplified internal forces. In this 
method, different loads are amplified differently 
based on the reliability of their evaluation; and 
the resistance is decreased differently for bending 
moment, shear, etc. for similar reasoning. After 
California earthquakes, including the 1989 Loma 
Prieta and 1994 Northridge events, the need for a 
better control on performance of structure became 
more serious. Seismic-related optimization was 
supposed to address this problem. Alternatively, 
Performance-Based Design (PBD) of structures 
that aims to design a structure for required duc-
tility and targeted displacement in expected risk 
levels was proposed to satisfy this need. This 
latter new design philosophy is so attractive that 
has the potential of being the next generation of 
design philosophy.

In this new design philosophy, the structure 
is expected to be such designed that it behaves 
nonlinearly under severe loadings while it behaves 
linearly under service loads, small wind and minor 
earthquake effects. The design has to have enough 
ductility to tolerate specified drift for severe wind 
and earthquakes. Depending on behaviour of mate-
rial used in the structure, being ductile or brittle, 
the importance of the structure, the risk level and 
the severity of loading, different design criteria 
may apply. In other words, different performances 
may be expected from a structure with different 
material and different load intensities including 

wind, earthquake, etc. In this chapter, we will learn 
how to find the performance level of a structure. 
To that end, since some methods of performance-
based designs require nonlinear analysis, a brief 
introduction to nonlinear analysis procedures is 
also provided to complete the discussion.

Optimizing the Design 
for Seismic Effects

The desire of optimum design has a long history 
and goes back to the time of Galileo and even be-
fore. However, the new era of structural optimiza-
tion starts with the time of emergence of electronic 
computers. Considerable research works can be 
found in the literature that have focused on the 
structural optimization under static loading. Many 
of them have suggested efficient algorithms with 
relatively good degrees of success.

As the design practice evolved and the de-
mand for structural design under earthquake 
effects increased, the research on optimizing the 
structural design for seismic effects increased. 
The primary works in this field were devoted 
to structural optimization under dynamic loads. 
Most of research works in the field considered 
the elastic behaviour of structures. The degree 
of success was not fully satisfactory because of 
the complexity of the problem, objectives to be 
optimized, mathematical formulation, and the 
solution schemes for nonlinear optimization 
problems. Among these research works some 
attempted to suggest a mathematical model for 
a better solution of optimization problems and 
speed up of the solution process; some tried to 
change the dynamic behaviour of the structure. 
Among the others, some recent papers by Masson 
et al. (2002), Besset and Jezequel(2007), Chen, 
et al. (2002), and Mills-Curran (1985), may be 
consulted in this field. Park et al. (2003, 2005 
& 2010) suggested an equivalent static loading 
procedure that generates the same response field 
in linear static analysis that nonlinear dynamic 



176

Optimal Performance-Based Seismic Design

analysis does. Moharrami and Alavinasab (2006) 
proposed a method for structural optimization 
under equivalent static and pseudo-dynamic 
earthquake loading. In their method, the effect of 
change of structural components on the amplitude 
of equivalent static loading (because of change in 
natural period of the structure) was accounted for. 
In this way, they could end up to a solution that 
had maximum ductility leading to minimum lateral 
earthquake loads and consequently lowest cost.

A different approach to seismic-related op-
timization was also followed in seismic design, 
by considering the uncertainties that encounter 
in demand and capacity assessment. This topic 
attracted considerable research works in differ-
ent branches. Some researchers considered the 
uncertainties involved in the response and per-
formance prediction of a structure during its life. 
This type of problem formulation that is called 
life-cycle design optimization is a more general 
aspect of optimal design, and may be considered 
as an overall performance-based design optimiza-
tion. The optimization of the structural system on 
life-cycle performance has to consider the initial 
cost of construction of a building, vulnerability 
of damage to structural components, its expected 
costs of preventive maintenance, the expected 
costs of inspection, the estimated costs of repair or 
rehabilitation, and predicted costs of consequences 
of failure. This in turn, requires some deep study 
on risk-related engineering applications including 
studies about risk analysis on system survival and 
possibilities of partial or total collapse of a structure 
and corresponding damage assessment. It is also 
necessary to have a highly efficient and robust 
algorithm to estimate the deformation capacity 
of the structure and evaluate the damage to the 
structure for given deformation. To that end, some 
vulnerability and damage functions have to be 
defined in monetary terms that take into account 
not only the damage and rehabilitation-related 
costs, but also the cost of social consequences of 
structural collapse related to human life.

Since the goal of this chapter is to promote 
the readers in particular young researchers and 
practicing engineers to become acquainted with 
practical performance-based design optimization, 
and on the other hand, from the practical point of 
view the life-cycle design optimization requires 
development of quantitative definitions for quali-
tative subjects that are not yet well documented, 
this second type of performance-based design, 
despite its generality, is not covered in this chapter. 
However, for those readers who are interested in 
having more information in this field, among many 
others, the papers by Frangopol (2011), Fragia-
dakis and Lagaros (2011), Lagaros et al (2008), 
Jalayer and Cornell (2009), Cornell(2008), and 
Esteva et al. (2010) are suggested to start with.

With the promotion of deterministic perfor-
mance-based design philosophy, some researchers 
in the field of structural optimization focused their 
attention to various aspects of this new subject 
with different approaches to the problem. Since 
optimal performance-based design is the main 
subject of this chapter, some selected research 
works in the field will be reviewed in more detail 
in the forthcoming sections.

When we seek the optimum performance-based 
seismic design (OPBSD), we need to know: how 
to formulate our optimization problem, what are 
the prerequisites of the problem formulation, 
how to choose the design variables and how to 
choose the optimization algorithm to solve it. In 
this chapter, all these items will be discussed. 
The prerequisites of the OPBSD will be briefly 
explained to enable the reader write his own com-
puter program for his especial type of structure and 
material properties. Special attention will be paid 
to the sensitivity analysis that is a fundamental 
tool for classical optimization algorithms. Two 
types of formulations of sensitivity analysis for 
2D steel and reinforced concrete structures will be 
discussed. The differences between the sensitivity 
analyses will be presented by some samples from 
the literature.
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INTRODUCTION TO 
PERFORMANCE-BASED DESIGN

As was mentioned before, the performance-based 
design integrates the design for deformation 
with the design for strength. In this new design 
philosophy, the “ductility of structure” and the 
“resistance for the internal forces” have the same 
order of importance. It is expected from the design 
engineer, to design the structure in such a way 
that it exhibits different desired behaviours under 
different intensities of loads. Although this design 
strategy is general, it is mainly proposed and used 
for design of structure under earthquake excita-
tion. Accordingly in this chapter our discussion 
is limited to this field of application.

Although Japanese are likely the first who 
proposed and used the performance-based design, 
the studies made in the United States of America 
are the best known and the most referred ones. 
Since this design philosophy is not yet mandatory 
for newly designed structures, but is essential in 
rehabilitation of buildings, most of research works, 
practical recommendations and applications are 
made in seismic rehabilitation of buildings. As an 
introduction to the research activities in this field, 
one may consult a paper by Ghobarah (2001) who 
has reviewed the serious challenges up to 2001.

ASCE41 (2007) that is the latest published 
recommendations for rehabilitation, considers 
four levels of performances for structures. These 
performance levels that are virtually adopted 
worldwide are:

A.  Operational (OP), which is the level of per-
formance in which no damage is accepted for 
the structure, and it behaves elastically under 
service loads, minor wind, and earthquake 
effects.

B.  Immediate Occupancy (IO), that is the 
level of performance in which little damage 
may occur in the structure, and it is safe to 
be reoccupied immediately following the 
earthquake.

C.  Life Safety (LS), in which the structure 
tolerates sever damage, but it remains safe 
for the occupants to evacuate the building.

D.  Collapse Prevention (CP). This level of 
performance is the final stage of life of a 
structure in which the structure has reached 
its instability level, and an increase in load or 
deflection results in collapse of the structure.

Depending on the degree of importance of a 
structure, it may be desirable to have different 
levels of performances for different levels of 
earthquake intensities. For example, it may be 
desirable to design a hospital so that even for se-
vere earthquake excitations, its performance does 
not go beyond life safety (LS) situation. This is 
because hospitals are to serve to the people after 
earthquake. For a residential building, it may be 
uneconomic to be designed similar to a hospital; 
therefore, it may be designed such that it experi-
ences CP situation for severe earthquakes. Table 
1 shows an example of this kind of strategies.

FEMA356 (2000) suggests a more general 
definition as in Table 2 for rehabilitation objec-
tives. Here, we call it performance objectives.

According to FEMA356, the basic safety 
objective (BSO) for an ordinary building is to 
satisfy the K+P criteria. i.e., every building has 
to be safe enough to satisfy LS criteria under an 
earthquake with the probability of 10% per fifty 
years, and withstand the earthquake with the 
probability of 2% per fifty years with CP condi-
tion. Any design that satisfies either of M, N or 
O alone, or satisfies any of A, E, I, B, F, and J in 
addition to K+P, is considered to have enhanced 
performance objective. Reversely, if a design does 
not meet K or P criteria is designated as limited 
performance objective. A design that uses a 
lower seismic hazard or lower target Building 
Performance Level than the BSO may be called 
a reduced performance design.

To design a structure for specified performance 
level, the design engineer needs to know the target 
displacement; i.e., the extent of deformations that 



178

Optimal Performance-Based Seismic Design

the structure has to tolerate for the specified per-
formance level. Some publications in the literature 
claim that once the target displacement is known, 
it is possible to determine the design base shear 
and consequently to design the structure for the 
base shear. A book by Priestley et al. (2007), that 
instructs the direct displacement-based seismic 
design methodology, and research works by Fajfar 
(2000) that propose the N2 method, and research 
works by Aschheim (1999) that suggest YPS 
method may be consulted in this regard. Since 
these methods have not yet been adopted by design 
codes, the iterative performance-based design is 
often used. The iterative process consists of assum-
ing a trial design, finding its performance level, 
modifying the design and repeating the process 
again and again until the required specifications 
that meet the performance criteria are obtained.

How to Find the Performance 
Level of a Structure

The spirit of almost all seismic evaluation methods 
is a comparison between the capacity of structure 

and the demand that an earthquake imposes to it, 
in respect to its strength and ductility character-
istics. This comparison is made in member level 
as well as structure level.

The capacity of a structure is a resultant of 
capacity of its components. If a force-deformation 
relation is defined for elements of a structure, the 
capacity of structure can be found from nonlinear 
analysis. Since computer programming for non-
linear analysis is difficult and is time consuming, 
engineers prefer to conduct a linear analysis. Four 
methods of analyses are accepted for seismic 
evaluation of a structure:

1.  Linear static analysis
2.  Linear dynamic analysis
3.  Nonlinear static analysis
4.  Nonlinear dynamic analysis

If a static type of analysis is performed, a 
modification factor has to be applied to the results 
to make them reflect the nonlinear behavior. This 
will be discussed later.

Table 1. A sample of desired performances for different buildings 

Earthquake hazard level OP IO LS CP

The most severe in 72 years

The most severe in 225 years

The most severe in 474 years

The most severe in 2475 years

Unimportant building such as a sunshade

Ordinary buildings such as residential buildings

Important buildings such as hospitals

Table 2. Performance objectives (FEMA356, 2000) 

Earthquake hazard level OP IO LS CP

50% per 50 years A B C D

20% per 50 years E F G H

10% per 50 years I J K L

2% per 50 years M N O P
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The Vertical Distribution of Lateral Load

To perform a linear or nonlinear static analysis, 
the distribution of base shear or pseudo-lateral 
force over the storys in the vertical direction of a 
building, has to be such applied that it simulates 
the earthquake effect accounting for dynamic 
characteristics. According to ASCE41, the base 
shear should be vertically distributed according 
to the following equations.

F C Vx vx=  (1)
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where

Cvx = vertical distribution factor;

k = 2.0 for T ≥ 2.5 sec; k= 1.0 for T≤ 0.5 sec 
and linear interpolation shall be used to calcu-
late values of k for intermediate values of T.

V = Base shear or pseudo-lateral force;

wi = portion of the effective seismic weight W 
located on or assigned to floor level i;

wx = portion of the effective seismic weight W 
located on or assigned to floor level x;

hi = height from the base to floor level i; and hx 
= height from the base to floor level x.

Linear Analyses

Among the above four methods, the first one is the 
most accessible method for engineers. However, 
there are some limitations on its use for irregular 
structures. The distribution of demands predicted 
by a linear dynamic analysis (the 2nd method), is 

usually more accurate than those predicted by the 
linear static analysis; accordingly compared to the 
first method, there are fewer limitations on use 
of linear dynamic analysis. Whenever applicable, 
either of the response spectrum method or time 
history method may be used for linear dynamic 
analysis.

When the linear type of analysis is used for 
demand evaluation, the structure is loaded to the 
extent that reaches the target displacement. At 
this stage, every structural component experi-
ences a deformation and corresponding internal 
force. All structural components have to be 
checked against acceptance criteria pertaining 
to the desired performance level. Discussion 
on “how the acceptance criteria are obtained” 
is out of the scope of this chapter, but it worth 
knowing that these criteria are specified using 
actual laboratory test results, supplemented by 
the engineering judgment of various development 
teams of FEMA1. Acceptance criteria are different 
for deformation-controlled (ductile) and force-
controlled (inductile) members. They also vary 
depending on the type of structural component, 
(i.e., beam, column etc.), its material, physical 
properties, and performance level. Acceptance 
criteria are given differently for the results of lin-
ear and nonlinear type of structural analyses. For 
forced controlled members, depending on the type 
of structural element and the performance level 
in question, if a linear type of analysis is used, 
the internal force of member due to lateral load is 
multiplied by a reduction factor, to rationalize it 
for the given performance level. Alternatively for 
deformation controlled components, the strength 
of structural component is multiplied by an m-
factor and checked against design forces due 
to the gravity and earthquake loads. FEMA356 
(2000) recommends the following formula for 
deformation-controlled components:

mkQ QCE UD≥  (3)
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where, m is the component or element demand 
modifier (factor), to account for expected ductility 
associated with this action at the selected Structural 
Performance Level; i.e., the m-factors modify 
the results so as to be similar to the results of a 
nonlinear analysis. The m-factors are specified in 
Chapters 4 through 8 of FEMA356.

QCE is the expected strength of the component 
or element at the deformation level under consid-
eration for deformation-controlled actions.

QUD is Deformation-controlled design action 
due to gravity loads and earthquake loads.

k is the Knowledge factor (0.75 0r 1.0) de-
pending on the accuracy of collected data and 
performance objectives.

For a force-controlled structural component, 
in the absence of either a nonlinear or limit state 
analysis the following formula applies to the 
design force, QUF.

Q Q
Q

C C C JUF G
E= ±

1 2 3

 (4)

QUF is the Force-controlled design force due 
to gravity plus earthquake loads. J is Force-
delivery reduction factor defined by FEMA356 
and is greater than 1. Coefficients C1, C2, and 
C3 are amplification factors and are defined in 
FEMA356. They are used to amplify the design 
base shear for achieving displacement target at 
the desired performance level. This pre-standard 
recommends the following formula for forced 
controlled members.

kQ QCL UF>  (5)

k was previously defined. QCL is Lower-bound 
strength of a component or element at the deforma-
tion level under consideration for force-controlled 
actions.

If structural components have capacities more 
than the demand, it satisfies the performance level 

in question. Otherwise, a lower performance level 
is examined.

Nonlinear Analyses

Parallel and simultaneous improvements in com-
putational facilities in commercial software and 
the theories supporting nonlinear static seismic 
(pushover) analysis, is making the pushover 
method more accessible and reliable for engineers, 
and from a practical point of view, it is foreseen 
to be the most popular analysis procedure in the 
future for performance-based seismic design. 
The outcome of pushover analysis is the inelastic 
capacity curve of the structure. This curve defines 
the capacity of the building independent of any 
earthquake. To make it useful for evaluation of 
performance point for a given earthquake, this 
curve has to be converted to spectral ordinates. 
This will be discussed later.

On the other hand because of its complexity, 
the nonlinear dynamic analysis (the 4th method) 
is hardly used by engineers. However, since it 
is a reliable analysis method, it is more often 
used for research purposes. When this method 
is used the demand data can be directly used for 
evaluation of performance of the structure. Design 
optimization using nonlinear dynamic analysis is 
an extraordinarily difficult subject that is not yet 
used for practical design problems.

When nonlinear analysis is used for demand 
evaluation, similar to deformations, the internal 
forces obtained for components, are used without 
substantial modification. One should realize that 
unlike to nonlinear dynamic analysis, nonlinear 
static (pushover) analysis does not fully reflect 
the nonlinear behaviour of a structure. It does not 
account for cycle strength and stiffness degrada-
tion. Also, the ductility demand concentration of 
individual stories is not tracked in this method. 
Two accepted methods i.e., the method of coef-
ficients and method of capacity spectrum have 
been proposed to convert the outcome of nonlinear 
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pushover analysis, the capacity curve, to usable 
data as of nonlinear dynamic analysis.

The Coefficient Method

In the coefficient method that is recommended by 
FEMA273, FEMA356 and ASCE41, the target 
displacement, δt at roof level, shall be calcu-
lated in accordance with an equation similar to 
Eq. (6). The internal forces and deformation of 
every component will be accordingly obtained. 
The coefficients Ci and Sa, have slightly differ-
ent definitions in these references, but they are 
essentially the same. According to ASCE41, that 
is believed to provide better results compared to 
FEMA356, the target displacement is obtained 
from the following equation.

δ
πt a
eC C C S

T
g= 0 1 2

2

24
 (6)

where:
Te is the effective fundamental period of build-

ing in the direction under consideration. (clause 
3.3.3.2.6)

C0 is the modification factor to relate spectral 
displacement of an equivalent SDOF system to the 
roof displacement of the MDOF building system.

C1 is modification factor to relate expected 
maximum inelastic displacements to displace-
ments calculated for linear elastic response. It is 
calculated from the following equation. According 
to ASCE41, some limitations apply.
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α is site class factor given by ASCE41.

R is the ratio of elastic strength demand to cal-
culated yield strength.

R
S

V W
Ca

y
m=  (8)

Vy is yield strength calculated using nonlinear 
static pushover analysis.

W is effective seismic weight.

Cm is effective mass factor and is given in a  
table in ASCE41. 

Sa is the response spectrum acceleration, at the 
effective fundamental period and damping ratio of 
the building in the direction under consideration. 
It is shown graphically in Figure 1 in which Ts 
is characteristic period of response spectrum and 
B1 is obtained from B1 = 4/[5.6 - ln(100β)] and 
β is effective viscose damping ratio.

C2 is the adjustment factor to represent the 
effect of pinched hysteretic shape, cyclic stiffness 
degradation and strength deterioration on maxi-
mum displacement response. For Te>0.7 sec, 
C2=1.
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1
1

800
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= +
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Figure 1. General horizontal response spectrum
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With this target displacement, the internal 
forces and deformation of structural components 
are obtained and checked to the acceptance criteria. 
From this comparison, the performance level of 
structure is known. The checking process is simi-
lar to linear analysis, but with different criteria; 
i.e., it is similar in the sense that it depends on 
the properties of structural component whether 
it is deformation-controlled or force-controlled 
component.

The Capacity Spectrum Method

In the capacity spectrum method that is recom-
mended by ATC40, the performance point that is 
alternatively called the target point is obtained by 
intersecting the capacity spectrum and demand 
spectrum. The capacity spectrum is indeed the 
capacity curve converted from force-displacement 
ordinates to spectral acceleration-spectral dis-
placement ordinates. This is done by converting 
the base-shear to Sa and displacement to Sd. The 
following formulae apply.
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Having the capacity curve converted to capac-
ity spectrum curve it remains to draw the demand 
response spectrum in the same coordinate. Noting 
that response spectrum as specified by a design 
code is a curve specified in Sa-T coordinates, and 
we need demand spectrum in Sa-Sd coordinates, 
the horizontal axis should be transformed to Sd 
simply noting that Sd=T2/4π2Sa g. The outcome of 
this conversion is an acceleration-displacement 
response spectrum (ADRS) curve.

As building yields in response to seismic de-
mand, it dissipates energy with hysteretic damping; 
that means its damping increases. With an increase 
in damping, the demand spectrum reduces. i.e., 
the ADRS curve is not unique, and it depends on 
the effective damping property of the structure. 
According to ATC 40, the effective equivalent 
viscose damping, is obtained from βeq=β0+0.05 
in which 0.05 is the inherent viscose damping of 
the structure that is considered to be constant. β0 
is the hysteretic damping represented as viscose-
equivalent hysteresis damping and is calculated 
from: β0=ED/(4πES0) in which ED is the damping 
dissipated energy and ES0 is the maximum strain 
energy. According to ATC 40 (section 8.2.2), 
ED and ES0 are calculated based on performance 
point that is the intersection of the ADRS curve 
and the reduced demand spectrum. This implies 
that the performance point is obtained through an 
iterative process.

There are several techniques for finding this 
intersection. Here, we explain one of them. Since 
the intersection of demand and capacity spectra, 
(the target/performance point) is not known a 
priori, an initial target point is assumed on the 
capacity spectrum curve. Then with the infor-
mation of this point and the capacity spectrum 
curve, the corresponding viscose-equivalent 
hysteresis damping β0 and βeq are obtained and 
the corresponding reduced demand spectrum is 
constructed and intersected to capacity spectrum 
curve to produce a new performance/target point. 
If the obtained target point is close enough to the 
assumed one, the performance point is found; 
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otherwise a new target point has to be assumed 
on capacity spectrum, and the process should be 
repeated. Figure 2 illustrates the procedure.

Having the nonlinear demand obtained via any 
of aforementioned analyses and subsequent tech-
niques, and comparing it to the specification of 
acceptance criteria at desired performance level(s) 
identifies the performance level of a structure.

A BRIEF LOOK INTO 
NONLINEAR ANALYSES

Any nonlinear analysis procedure requires the 
establishment of nonlinear set of equations of 
equilibrium as follows:

K x P( , )∆ ∆[ ]{ } = { }  (14)

This in turn, necessitates the definition of a 
force-deformation relation in member level. If 
the force-deformation relation is known in its ex-
plicit mathematical form, the assembly of explicit 
nonlinear stiffness matrix is theoretically possible, 
otherwise, as it often happens, the stiffness matrix 
will be a numerically established matrix that is an 
implicit function of deformation.

If for a certain degree of freedom at a node, 
the internal forces of all members connected to 
that node are summed up and equated to the corre-
sponding external load, an equation of equilibrium 
for that particular degree of freedom will be gen-
erated. If this is done for all degrees of freedoms, 
a set of nonlinear equations can be obtained. The 
nonlinear analysis procedure is the art of finding 
a displacement vector that satisfies the set of all 
nonlinear equations of equilibrium in Eq.(14), 
simultaneously. Once the displacement vector 
in Eq.(14) is obtained, it remains to calculate the 
internal forces in all members. At this stage, the 
pre-defined force-deformation relation is used to 
obtain internal forces.

Since the performance-based design in its 
general form requires nonlinear analysis, design 
engineers in this field are recommended to study in 
details some useful publications before employing 
any commercial software. This will help to under-
stand the merits of different nonlinear schemes 
with respect to each other. Crisfield (2000) and 
Owen and Hinton (1980) have cited good sum-
maries of classical nonlinear analysis techniques. 
A brief description of some of these methods that 
are suitable for monotonically increasing curves is 
provided hereunder and summarized graphically 
in Figure 3.

Figure 2. Capacity spectrum method
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• Incremental Scheme: As shown in Figure 
3a, in this method, displacement is found 
by gradual loading and modification of the 
stiffness matrix of the structure at the be-
ginning of each load increment. To get a 
satisfactory result from this method, load-
ing increments should be quite small; oth-
erwise, it results in incorrect displacement 
values.

• Initial Stiffness method: In this method, 
which is shown in Figure 3b, the structure 
is analyzed with its initial stiffness. After 
each analysis, internal forces of members, 
which can be measured by the previously 
obtained displacement, are used to find 
the unbalanced forces in nodes. The un-
balanced forces are then applied again to 
the structure with its initial stiffness. The 
process of analysis of structure under un-
balanced forces is repeated until external 
and internal forces and moments reach 
equilibrium.

• Newton-Raphson method: As Figure 3c 
shows, this method is similar to the ini-

tial stiffness method in the sense that both 
methods start with the initial stiffness and 
continue analysis with unbalanced loads, 
however, Newton Raphson method uses 
tangential stiffness of the structure at the 
beginning of each analysis instead of ini-
tial stiffness. In this method too, the pro-
cess continues until the unbalanced load 
becomes infinitesimally small.

• Combined Methods: To achieve a more 
efficient method, the above techniques 
can be combined. For example, Figure 3d 
demonstrates the combination of the initial 
stiffness method with the incremental so-
lution. Figure 3e shows Newton Raphson 
method in conjunction with the incremen-
tal loading scheme. A combination of three 
methods can also be seen in Figure 3f. In 
this latter method, loading on structure is 
divided into several segments. At the be-
ginning of every loading increment, stiff-
ness matrix of structure is established/
modified and displacement vector of struc-

Figure 3. A schematic presentation of nonlinear analysis
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ture is obtained using iterative initial stiff-
ness technique.

There are also some other techniques that have 
been established for inelastic analysis of structures 
based on theorems of Structural Variation. Struc-
tural variation theory studies the effect of change 
of properties, or even removal, of a member on 
the entire structure. It takes advantage of linear 
analysis and sensitivity of structure to some self 
equilibrating unit loads that are applied at the 
end nodes of changing members. This technique 
has been applied to analysis of several types 
of inelastic skeletal structures including space 
trusses, frames, and grids, etc. It has been also 
extended to nonlinear finite elements analysis. 
Although this method takes advantage of initial 
stiffness matrix and does not require a change 
in the stiffness matrix of structure during the 
analysis process, it is a hierarchical and step by 
step method of analysis in which every step uses 
information from the previous step and is not 
a proper nonlinear analysis that is to be joined 
to a performance-based design program. As an 
example in this field one may start with a paper 
by Saka (1997)

Nonlinear analysis of structures by the math-
ematical programming is another field of research 
in this ground. De Donato (1977) presented 
fundamentals of this method for both holonomic 
(path independent) and nonholonomic material 
behaviors. In this method, it is assumed that dis-
placement of nodes of an elasto-plastic structure 
comprises two parts namely elastic and plastic 
parts. Then, the problem of finding total displace-
ment vector of a structure is formulated in the 
form of a quadratic programming (QP) problem 
with some complementary yield constraints. These 
yield constraints state that individual members 
either are stressed within elastic limits and do not 
accept plastic deformations or, are stressed up to 
yield limit, and as a result, undergo some plastic 
deformations. The output of this sub-problem is 
linear and nonlinear deformation of the structure. 

Despite its robustness, this method suffers from 
the considerable number of variables that enter 
in the QP sub-problem. Recently Tin Loi has 
improved this technique. Among others, a paper 
by Tangaramvong and Tin Loi (2011) may be 
consulted in this field.

DESIGN OPTIMIZATION

The traditional design as shown in Figure 4a 
consists of a cycle of four components. They 
are: Design, Analysis, Feasibility-check and 
Design improvement. If the initial design is not 
satisfactory or feasible, a revision on the initial 
design is made, and the design cycle is repeated. 
The process stops when the design is deemed 
satisfactory. A design that is obtained in this way 
may be satisfactory but not optimum. If, as shown 
in Figure 4b, in the design cycle an optimization 
component is added to enhance the design intel-
ligently, the outcome of the design cycle may be 
both satisfactory and optimum.

Therefore, the design optimization may be 
defined as a mathematical means that is used to 
evolve a structure from its initial form to a final 
form with characteristics of being the optimum. 
This process may be employed for a member by 
member optimization or whole-structure. To 
optimize a design, it should be written in the form 
of the standard optimization problem as follows:

Minimize Z x

Subject to g x j m

h x k
j

k

( )

: ( ) ; , , ...,

( ) . ; ,







≤ =

= =
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(15)

where x is the generalized vector of design vari-
ables including x1 to xn. The design variables 
establish the design space. Z is the objective func-
tion. g and h are inequality and equality design 
constraints, respectively. Design constraints divide 
the design space into feasible and infeasible sec-
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tions. The solution of constrained optimization 
problem places within feasible space. The feasible 
space for problems with equality constraints is 
the boundary constructed by the intersection of 
all equality constraints. In the engineering design 
problems, we rarely confront to problems with 
equality constraints. Considerable research effort 
has been paid to propose some solution algorithms 
that efficiently solve the problem. Depending on 
the order of derivatives that optimization algo-
rithms use for solution, Haftka (1992) divides 
them into three main groups. They are: zero order, 
first order and second order algorithms.

Zero order algorithms do not use any derivative 
of objective functions or constraints. There are a 
few zero order classical algorithms, but there are 
many hierarchical and probabilistic algorithms 
such as Genetic Algorithms, Particle Swarm Op-
timization, Ant Colony, etc. Most of zero order 
algorithms are used for unconstrained optimization 
problems. Since almost all engineering design 
optimization problems are constrained problems, 
to use a zero order algorithm for their solution, 
the constrained optimization problems have to be 
converted to unconstrained optimization problems 
via one of Penalty Function methods. A book by 
Arora (2004) will assist in this regard. The first 
order algorithms use the first order derivatives of 
constraints. This group of algorithms comprise 

a large part of body of classical optimization 
and are most commonly used. The second order 
optimization algorithms that use the second or-
der derivatives of constraints are fairly efficient 
algorithms, but because of calculation of second 
order derivatives, they are not proper algorithms 
for problems with numerous design variables.

Many attempts have been made to formulate 
the optimization problem in such a way that it 
is easily solved. Optimization problems may be 
categorized into linear and nonlinear. If the con-
straints and objective function of a problem are 
linear, the problem is called a linear programming 
problem and may be solve by Simplex method. 
Most of structural design optimization problems 
are naturally nonlinear problems because of the 
nonlinear nature of indeterminate structures. For 
determinate structures, the fully stressed design 
(FSD) optimization or similar algorithms (such as 
simultaneous failure mode (SFM), etc.) which are 
a member to member optimization strategy may 
be used. In most of engineering problems, the 
design constraints cannot be defined in explicit 
form in terms of design variables. Accordingly, 
the Taylor series expansion is used to express the 
constraints in explicit form as follows:

Figure 4. Design cycles: a) traditional, b)optimal
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F x F x F x x x F x xT T( ) ( ) ( ) ( ) ...
     

= +∇ + ∇ +0 0 2 01
2

∆ ∆ ∆  

(16)

where, x is the vector of deign variables; ∇F x( )
0

is the gradient of the function F at the current 
point and ∇2 0F x( )

 is the matrix of second order 
derivatives, named Hessian matrix of the function. 
Although the design constraint may be implicit 
function of design variables, its derivatives can 
be numerically obtained by sensitivity analysis. 
The calculation of Hessian of a function, particu-
larly if it is a function of numerous design variables 
is relatively difficult and computationally time 
consuming. Some algorithms such as DFP and 
BFGS use the first order derivatives to gradually 
construct the Hessian matrix or its inverse from 
its first order derivatives.

If a function is approximated with its first two 
terms of Taylor series, it is called linearized form 
of the function. Keeping the first three terms of 
Taylor series approximates the function with a 
quadratic form. Except for problems with a few 
design variables, the quadratic term is rarely used. 
Expressing the constraints and objective function 
in their linear form, makes it possible to define 
a Linear Programming (LP) sub-problem and 
solve it by Simplex algorithm. Objective func-
tion is usually given explicitly in terms of design 
variables. If the objective function is written in 
quadratic form and the constraints expressed in 
linear form, a Quadratic Programming (QP) prob-
lem is established. The solution of an optimization 
problem can be sought by converting it to LP or 
QP sub-problem and solving it. The QP and LP 
problems have a straight-forward solution scheme 
and most of mathematical programming software 
have these solution options. The outcome of LP 
or QP sub-problem will not necessarily insure the 
feasibility and optimality of the solution because 
the constraints of these problems are some ap-
proximation of actual design problem. Therefore, 
the process of establishing and solution of LP or 

QP sub-problems should be repeated. These strat-
egies are called Sequential Linear Programming 
(SLP) and Sequential Quadratic Programming 
(SQP), respectively. Although SLP and SQP can 
often capture the optimum solution, they are not 
so much efficient algorithms. Considerable effort 
has been paid to find efficient and robust optimiza-
tion algorithms. Among successful optimization 
algorithms are Dual method and Conlin algorithm 
by Fleury (1983 and 1989) and DOT algorithm 
by Vanderplatts (1997). The degree of success 
for an optimization algorithm somehow depends 
on the nature of the optimization problem. An 
algorithm may work very well for a problem and 
not well for another. There is not a firm conclu-
sion about the efficiency and robustness of any 
especial optimization algorithm. An optimization 
algorithm may solve one optimization problem 
efficiently, and not solve another. For example if 
an optimization problem is expressed in terms of 
reciprocals of design variables, it may be solved 
in an excellent way, but if it is defined in terms 
of direct design variables it may not be solved 
properly. This may happen vice versa.

As a conclusion, the choice of the optimization 
algorithm for a design optimization problem does 
not have a certain rule. However, some algorithms 
have shown that in many applications are often 
more efficient than the others. Optimality Criteria 
(OC) methods are believed to be more efficient 
than other classical optimization algorithms. These 
methods do not directly consider the objective 
function in the solution process. They seek the 
optimality of the solution in satisfaction of some 
predefined criteria. The FSD and SFM methods 
are among this group of optimization algorithms. 
Some research works focused their attempt to 
combine the principals of OC methods with those 
of classical optimization algorithms. The Kuhn-
Tucker-based OC method is an example of this 
kind. In this type of OC algorithm, the necessary 
conditions for optimality of a design point that 
are called Kuhn-Tucker conditions, are chosen 
as a basis for the establishment of recursive for-
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mulae for updating design variables. Moharrami 
(2006) improved the convergence of this type of 
OC algorithm by establishing and solving a QP 
sub-problem for finding the Lagrange Multipliers. 
This improvement completes the efficiency and 
robustness of the algorithm.

SENSITIVITY ANALYSIS

The change in a behaviour Bj of structure due to 
change in a design variable di that is expressed as

∂

∂

B

d
j

i

is called the sensitivity of Bj with respect to di. 
The sensitivity calculation is performed in several 
ways. Here, we point to some of them.

Finite Difference Method

As was mentioned before, the behaviour B is usu-
ally implicit function of design variable. Therefore, 
it is not possible to find the sensitivity via a direct 
differentiation of a function. As a remedy for this 
problem, the Finite Difference (FD) method has 
been widely used. In this method, the difference 
between the values of a function at two adjacent 
points are used to find the approximate slope of the 
curve (sensitivity) at the desired point as follows:
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∂
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The numerator of the right side of Eq.(17) is 
the difference between the values of Bj at two 
adjacent design points d1 and d2 where all com-
ponents of vector of design variables remain 
unchanged except di that can assume any value 
of d di i

1 ± δ i.e., the current point and a point before, 
or current point and the point after, or the points 
before and after the current point. The accuracy 

of FD method depends on the degree of nonlinear-
ity of the function and the value of δdi . Habibi 
and Moharrami (2010) showed that FD method 
not only does not give accurate sensitivity values 
but also sometimes results in false evaluation.

Analytical Sensitivity Analysis

Another way of evaluating the sensitivity of a 
structural behavior is to differentiate the basic 
equation from which that behavior is evaluated.

As an example, the sensitivity of the displace-
ment vector when a structure behaves linearly can 
be derived as follows:

The basic equation that the displacement vector 
is calculated from is:

K P∆ =  (18)

Differentiating this equation with respect to 
any generic design variable, di results in:
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Rearranging the above equation for ∂ ∂∆ di

results in the sensitivity equation as follows:
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Note that all terms in the right hand side of 
the above equation is known and although Δ is 
not known explicitly in terms of design variables, 
its derivatives can be calculated accurately. To 
calculate the sensitivity ∂ ∂∆ di from the above 
equation efficiently, the paper by Arora and 
Haug,(1979) is recommended for study.

As another example, consider the evaluation 
of sensitivity of a number of vibrating frequencies 
of a structure. The basic equation for calculating 
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the frequencies and modal shapes is the follow-
ing equation:

K M−

 =ω ϕ2 0  (21)

Differentiating the above equation with respect 
to the design variable, di, and rearranging the terms 
results in the following equation.
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If the above equation is pre-multiplied by ϕT

and noted that 

ϕ ω ω ϕT K M K M−

 = −


 =

2 2 0 , 

then the following equation is obtained:
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If the vector f is normalized in such a way that 
ϕ ϕTM = 1 , then the sensitivity of frequency can 
be obtained easily from the following expression:
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Nonlinear Sensitivity Analysis

In the sensitivity calculations in Eqs.(18-20), since 
the structure is in its linear behaviour state, the 
stiffnesses of structural members do not depend 
on the deformation, Δ, and therefore, ∂ ∂K di

and consequently ∂ ∂∆ di are easily calculated. 
However, if the structure is in nonlinear behavior 
state, the equation of equilibrium becomes as in 
Eq.(14) that is repeated here.

K d P( , )∆ ∆[ ]{ } = { }   (14)

That is the stiffness matrix itself becomes a 
function of displacement. Provided that the non-
linear relation of the stiffness matrix with the 
displacement vector is explicitly known, theo-
retically saying, the equation of equilibrium can 
be solved by mathematics and the specific dis-
placement vector can be obtained in terms of 
design variables. However, if the relation is not 
known explicitly, the calculation of displacement 
vector Δ and its derivative∂ ∂∆ di  has to be fol-
lowed in a different manner. Differentiating the 
above equation with respect to any design variable 
di, results in the following complicated equation:
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Obviously the above equation cannot be eas-
ily solved for∂ ∂∆ di ; therefore, a different 
strategy has to be followed for the sensitivity of 
structural nonlinear behavior. There are a number 
of papers that have paid attention to this problem. 
For the sake of illustrations, the sensitivity cal-
culations in moment resisting steel frames by 
Gong (2003) is explained and compared to those 
of reinforced concrete frames by Habibi and 
Moharrami (2010).

A Sensitivity Analysis Procedure 
for Nonlinear Steel Frame

In his research for performance-based design, 
Gong used a special nonlinear static (pushover) 
analysis scheme proposed by Hasan et al.(2002). 
In this nonlinear analysis, the progressive degrada-
tion of stiffness of a frame structure is referenced 
to its plastification. As the bending moment, M, 
goes beyond the yielding moment My, a partial 
plasticity (Plastification) develops in the section. 
As the plastification increases, the rigidity of the 
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section decreases. Hasan et al. simulated the partial 
plasticity in a section with a semi-rigid connection 
in which the rigidity of connection is progres-
sively decreased as the moment in the section is 
increased. In particular, a potential plastic-hinge 
section was simulated with a semi-rigid connec-
tion whose stiffness variation is measured by a 
plasticity-factor p that ranges from unity, for ideal 
elastic, to zero, for fully plastic. If this degrada-
tion is monitored, its influence on the nonlinear 
behavior of the member and the overall behavior 
of a structure under increasing lateral load can be 
traced. Hasan et al. assumed an elliptic moment-
curvature relation for post elastic behavior of a 
section. Then he replaced the plasticity factor 
with rigidity factor and performed the nonlinear 
analysis in an incremental scheme. As the lateral 
load is gradually increased in infinitesimal steps, 
the stiffness matrix of the structure is deteriorated. 
This deterioration is considered by modifying the 
Cs and Cg coefficient matrices in the following 
formula based on plasticity factors.

K S C G CS g= ⋅ + ⋅  (26)

where, S is the standard elastic stiffness matrix; 
CS is a correlation matrix expressed in terms of 
plasticity factors; G is the standard geometric 
stiffness matrix and Cg is corresponding correction 
matrix, formulated in terms of plasticity factors. 
In this way, they could obtain the magnitude of 
overall deformation of the whole-structure as well 
as all members.

The sensitivity analysis that Gong proposed 
for his problem is defined in this framework of 
analysis. Since the sensitivity of displacement is 
the basis of evaluation of sensitivities of other 
structural behaviours, it is usually found first. To 
obtain sensitivity of displacement vector, Eq. (14) 
was written in the following form.

F d P d( , ) ( )∆ =  (27)

This is to say that sum of internal forces at a 
node is equal to external loads. Differentiating 
Eq.(27) with respect to any design variable di 
results in the following relation.
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Noting that ∂ ∂F ∆ is actually the global 
tangential stiffness matrix, Eq.(28) can be written 
as:
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As per above explanations, the tangential stiff-
ness matrix, KT, for a given displacement vector 
is easily calculated. Therefore, the sensitivity of 
displacement can be obtained from the following 
equation that is similar to Eq.(20) except that the 
calculation of ∂ ∂P di and ∂ ∂F di requires 
further consideration.
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In the above equation, the first term in pa-
renthesis is indeed the change in the external 
earthquake forces. Recalling Eq.(1), this may be 
interpreted in two ways. First, the change in the 
base shear V, that may occur due to change in the 
stiffness of the structure, as a result of change in 
design variables. The second, the change in the 
vertical distribution factor Cvx. However, since 
in the nonlinear pushover analysis, the load level 
is invariant of design variables, the sensitivity 
of lateral load depends on sensitivity of vertical 
distribution of lateral loads that is a function of 
parameter k in Eq.(2) and k is given in terms of 
natural period of the structure. See FEMA356 or 
ASCE41 in this regard. Therefore, utilizing chain 
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rule in differentiation, the sensitivity of lateral 
load distribution becomes as follows:
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If Eq.(24) is used for finding the sensitivity 
of natural period of the structure, and the change 
of the mass of the structure due to change in the 
design variables is ignored, one can easily find:
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The second term in the parenthesis of Eq.(30), 
however, is the variation of internal forces due to 
a change in design variable when there is no 
change in external loads. This is in fact, the main 
challenge in nonlinear sensitivity analysis. To 
calculate this quantity, Gong pointed out that 
internal forces in members are the accumulation 
of their incremental forces, δF , induced in mem-
bers during incremental analysis procedure i.e.:
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Therefore, the sensitivity of internal force can 
be accumulatively obtained at every load step as 
follows:
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Noting that KT
n is the tangential stiffness ma-

trix at iteration n and is an explicit function of 
plasticity index that in turn is a function of inter-
nal forces in members, one can easily calculate 
the value of ∂ ∂K dT

n
i . Having δ∆n calculated 

from analysis at the iteration n, the second term 
in the right hand side of Eq.(34) is known, and 

the value of ∂ ∂F dn
i can be computed in an ac-

cumulative process. It is now sufficient to substi-
tute for ∂ ∂F di and ∂ ∂P di in Eq.(30) to obtain 
the sensitivity of displacement vector to change 
in a design variable.

A Sensitivity Analysis procedure for 
nonlinear reinforced Concrete frame

In this section the sensitivity analysis proposed by 
Habibi and Moharrami (2010), will be described 
to show a different sensitivity analysis procedure 
and emphasize on the fact that formulation of 
any design sensitivity analysis has to be derived 
based on assumptions made on the corresponding 
nonlinear analysis.

As per any nonlinear analysis of structures that 
requires the stiffness-displacement relation for as-
sembling Eq.(14), and requires force-displacement 
relation for solution of nonlinear Eq.(14) in the 
form of Eq.(27), it is necessary to define a non-
linear moment-curvature and a stiffness-curvature 
relation for concrete structural elements. Habibi 
adopted a tri-linear moment-curvature relation, 
proposed by Park and Ang (1985) as shown in 
Figure 5. This assumption helps to achieve the 
amount of curvature for a given moment and 
amount of the moment for a given curvature.

The first line represents the without-crack 
situation. The second line stands for post-crack 
to yielding state and the third line corresponds to 
yield to the ultimate state. With the help of these 
definitions, the distribution of curvature of a beam 
under applied loads can be obtained and plotted 
as per Figure 6a. The distribution of curvature 
makes it possible to create a nonlinear model at 
the element level. Park et al. (1987) proposed a 
nonlinear model for R/C members (used in IDARC 
software) in which the flexural stiffness in any 
section is related to its curvature. Since both 
flexural deformation and flexibility have recipro-
cal relation with stiffness of element, there will 
be an analogy between flexibility of the section 
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and its flexural deformation. Accordingly Figure 
6b can be considered for the flexibility distribution 
in the RC elements. In Figure 6b, EIA and EIB
are the flexural stiffness of the section at end ‘A’ 
and end ‘B’, respectively, and EI0 is the initial 
stiffness of the element; αA and αB are the yield 

penetration coefficients, and ′L is the free length 
of the element. Having αA and αB together with 
EIA and EIB , facilitates obtaining the flexibility 
curve of a member and its corresponding defor-
mation, etc.

Figure 5. A trilinear moment curvature relation

Figure 6. (a) Curvature distribution along a RC element, (b) flexibility assumption along a RC element
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Habibi and Moharrami (2010) adopted the 
Park’s nonlinear model and modified it to take 
the axial force into account and formulated the 
nonlinear stiffness matrix of the nonlinear concrete 
elements based on these assumptions. For a rein-
forced concrete frame under gravity and lateral 
loads, it was assumed that prior to execution of 
lateral loads, the structure behaves linearly. The 
nonlinear behavior starts when the lateral loads 
are applied and increased to a certain level. 
Similar to nonlinear analysis of steel frames, it is 
assumed that in the reinforced concrete frame, 
the unloading does not happen. Habibi (2008) 
used the Modified Newton Raphson method for 
nonlinear analysis. In this form of nonlinear 
analysis, the internal forces in members are ob-
tained using tangential stiffness matrix. At the 
beginning of every load step, as shown in Figure 
3f the tangential stiffness matrix, Kl, is updated, 
and the displacement vector is obtained assuming 
an elastic behavior for the structure. With the 
displacement found, the internal forces in all 
members are obtained from the following equation 
and the equilibrium is checked in all nodes.

δF Ke
l j

e
l

e
j, = −∆ 1  (35)

where, ∆e
j−1 is the displacement sub-vector for 

the element at (j-1)th iteration of load step l. Real-
izing that the internal forces in members at any 
analysis stage is the sum of increments, the fol-
lowing equation is used.
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l j, ,= +−1 δ  (36)

If equilibrium is not satisfied in any node, the 
unbalanced force in the node is calculated and the 
structure is analyzed for unbalanced forces in all 
nodes. This gives the increment in the displace-
ment vector. This process is repeated several times 
until the unbalance forces in all nodes become 

negligible. The following equations are used 
to find the displacement vector in the nonlinear 
Modified Newton Raphson method.
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(37)
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where, KT
l is the tangential stiffness matrix at the 

beginning of load step l ; δ∆j is the incremental 
displacement due to the unbalanced force 
( )P Fl j− −1 at the jth iteration of the lth load step; 
∆l is the subtotal displacement for the load step 
l and D l

l

=∑∆ is the total displacement for all 

load steps, up to load level l.
The sensitivity analysis proposed by Habibi 

and Moharrami (2010) is based on the foregoing 
nonlinear analysis. Assuming linear behavior 
during every unbalanced force analysis, the 
Eq.(37) can be utilized to produce the sensitivity 
of incremental displacement δ∆j with respect to 
any design variable di as follows:
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Noting that during any load segment, the prop-
erties of tangential stiffness matrix and the load 
level presumably do not change, their derivatives 
remain unchanged within any load step. Therefore, 
Eq.(30) can be used during repeated analysis in 
any particular load segment, and the sensitivity 
of displacement vector at any level of loading can 
be obtained as follows:
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(40)

where, nl is the number of iterations of N-R pro-
cess at the relative load step l. The sensitivity 
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∂ ∂P xl
i can be calculated based on how it is 

obtained. For example, if Eq.(1) is used for its 
calculation, this equation should be differentiated 
with respect to design variables and Eqs.(31 & 
32 should be used. Since we know how to calcu-
late P in terms of design variables, its derivatives 
may be easily obtained.

The second term in Eq.(40) is derivative of 
the resultant of internal forces in nodes. It can 
be calculated by summing up the derivatives of 
internal forces in elements. The derivatives of in-
ternal forces in elements, in turn, can be calculated 
using Eq.(33) and (34). Note that in Eq.(40), the 
second term is the derivative of internal forces in 
the previous iteration, and from Eqs.(35 & 36 it 
is understood that the internal forces themselves 
are determined based of deformations of previ-
ous loadings.

The third term in the right hand side of Eq.(40), 
is easily calculated by assembling the derivatives 
of the stiffness matrix of all elements with respect 
to any design variable. This is because for any 
specific amount of deformation, the tangential 
stiffness matrix can be expressed explicitly, and 
its derivatives can be obtained accordingly.

Summing up the derivatives of displacements 
in all load segments, results the derivative of total 
displacement in a nonlinear force-displacement 
environment.

Discussion on Sensitivity Analyses

In previous sub-sections, two distinctive sensitiv-
ity analyses were briefly described. Here in this 
section some similarities and dissimilarities of the 
two methods are discussed to suggest any future 
research activities in this field.

A common point in these two methods was the 
fact that the formulation of nonlinear sensitivity 
analysis in both methods was established based 
on the nonlinear procedures that were followed 
for nonlinear analyses. For example, Gong who 
used an enhanced incremental method similar 

to Figure 3a, followed a similar procedure for 
sensitivity analysis of displacement. On the other 
hand, Habibi used the modified Newton-Raphson 
method as shown in Figure 3f. In this method, 
consideration of unbalanced forces is a must. 
Therefore, in the establishment of corresponding 
sensitivity analysis, this matter was taken care 
of. Another common point in the two sensitivity 
methods was the fact that sensitivity assessment 
was obtained through an accumulative calcula-
tion process. This is not to say that the sensitivity 
calculation is an iterative process, but is to say 
that during the analysis process, some derivatives 
have to be obtained and summed up for use in 
sensitivity computation in upcoming stages.

In Gong’s method of analysis, a lumped in-
elasticity was considered, and a plasticity factor 
was defined to simulate the partial plasticity with 
rigidity degradation in a semi-rigid connection. 
This particular model with all its circumstances 
was exactly used for sensitivity analysis. Obvi-
ously the outcome of the sensitivity analysis is 
consistent with the basic assumptions made. 
However, in Habibi’s nonlinear analysis, a spread 
plasticity model was adopted for consideration 
of nonlinear flexibility and nonlinear stiffness 
characteristics of a concrete beam column. There 
is no doubt that the corresponding sensitivity 
analysis procedure is fundamentally different from 
Gong’s method. Another difference between the 
two methods returns to the method of natural 
period evaluation. Gong used a Rayleigh method 
for determination of natural period of the structure 
while Habibi used the analytical method for 
evaluation of natural period. Of course, the sen-
sitivity calculations for ∂ ∂T di are remarkably 
different.

As a conclusion, the nonlinear sensitivity 
analysis formulation has to be built based on 
adopted nonlinear analysis procedure; otherwise, 
the results may not be consistent and may result 
in difficulty in convergence of the optimization 
algorithm. The similarities and dissimilarities of 
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the sensitivity procedures may be interpreted in 
the context of nonlinear analysis procedure.

OPTIMIZATION IN PERFORMANCE-
BASED DESIGN

To optimally design a structure, as was already 
mentioned, the design problem should be ex-
pressed mathematically in terms of design vari-
ables in the framework of a standard optimization 
problem, Eq.(15). To express design constraints 
in its explicit form, Eq.(16) is employed. The 
derivatives in this equation are obtained from 
sensitivity analysis. Some examples of sensitiv-
ity analysis were discussed. In this section, the 
general formulation of OPBSD is presented and 
some, not all, published research works in the 
field will be described.

General OPBSD Problem

For optimal Performance-based seismic design, 
the general standard optimization problem can be 
written in the form seen in Box 1.

In the above formulation, Z is the objective or 
cost function. C1 to C5 are groups of constraints. 
The superscript p relates to the performance 
level and np is the number of performance levels. 
If it is to design a structure for four performance 
levels, np=4. The superscript lp denotes the load 

pattern. The load pattern can be different for 
various levels of risks. It also can be different in 
a single risk level for different directions. The 
lateral earthquake load pattern can be either uni-
form, triangular, exponential, or etc.; FEMA356 
recommends the exponential form. To be in the 
safe side one may use more than one or two load 
patterns. nδ , nθ and ns are number of stories, 
number of sections that the plastic rotation has to 
be controlled, and number of sections for strength 
check, respectively. δ and δ are inter-story drift 
and its allowable upper limit. Similarly, θ and θ
are plastic rotation and its allowable upper bound. 
F and S are internal force and strength respec-
tively. DI stands for damage index for any load 
pattern and performance level; damage index 

should be less than the pre-specified value DI
p

.
The constraint group C1 and C2 are the main 

constraints in PBSD; they control the drift and 
plastic rotation. The constraint group C3 are 
strength constraints and for higher performance 
levels, may be considered as secondary perfor-
mance constraints. The C4 set of constraints are 
not used so much. They are optional and stand 
for limitations on damage index. One may adopt 
different upper bounds for different performance 
levels on a certain damage index. The C5 group of 
constraints are lower bound and upper bounds for 
design variables. Obviously some other constraints 
can be added to the optimization problem. For 
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example if it is desired to provide some constraint 
on protection of equipments and contents in a floor, 
some constraints such as limits on velocity or ac-
celeration of floors have to be added to the design 
optimization problem. Evidently the formulation 
of these particular constraints requires employing 
a nonlinear dynamic analysis. It is noted that the 
C1, C2, C3 and C4 group of constraints may be 
different for various levels of performances, and 
they all can enter into the optimization problem. 
The difference between research works on the 
OPBSD is a consequence of their assumption on 
the objective function, constraints and the solu-
tion procedure. Some examples of recent research 
works in this ground that utilize the classical 
optimization algorithms are discussed hereunder. 
Many other researches have been excluded not 
because of their scientific value, but because of 
their weak relation to the subject of this chapter. For 
example, Ganzerli et al. (2000), who were prob-
ably the first that incorporated pushover analysis 
and the performance-based design concept, used 
the idea of OPBSD for a one story one bay R/C 
frame with pushover analysis. They minimized the 
cost of R/C frame including costs of concrete and 
reinforcements under plastic rotation constraints 
at the ends of members. They considered perfor-
mance constraints at immediate occupancy, and 
checked for the satisfaction of design conditions 
in other levels. However, in their publication, 
there was no sensitivity analysis and no explicit 
design constraints. Therefore, their work is not 
presented here in detail.

Example 1

The procedure of OPBSD of reinforced concrete 
frames suggested by Zou and Chan (2005) is a 
good example to be presented here. These au-
thors decomposed the optimal design process 
into two single-criterion phases. The first phase 
involved an elastic design optimization in which 
the cost of concrete is minimized subject to elastic 
spectral displacement constraints due to a minor 

earthquake. The second phase involved mini-
mizing the cost of steel reinforcement subject to 
constraints on inelastic displacements. Pushover 
analysis was performed based on the assumption 
that the fundamental mode of vibration was the 
predominate response and did not change during 
nonlinear behavior.

The details of the first phase that produces the 
optimal dimensions of members for minor wind 
or earthquake loadings was previously addressed 
by Moharrami (1993) and is not the concern of 
this chapter. The detail of the second phase, as 
it is addressed by Zou and Chan, is presented 
hereunder. To establish a nonlinear analysis pro-
cedure, the following assumptions were made for 
the structural model of reinforced concrete frame.

1.  All inelastic deformations occur at the plastic 
hinges, which are located at the ends of each 
frame member and, members are perfectly 
elastic between the plastic hinges.

2.  Beam –column connections are rigid zone, 
and the plastic hinges are assumed to be 
frictionless and have zero length.

As a requirement for the solution of nonlinear 
equations of equilibrium, Eq.(14), the authors 
expressed the pushover displacement in two parts 
i.e. elastic and plastic (inelastic) displacements.

∆ ∆ ∆j j e j p= +, ,  (42)

In Eq.(42), j stands for the story number. Us-
ing the principle of virtual load method, Δj,e and 
Δj,p can be obtained from Eq.(43) and Eq.(44) 
respectively. It is to be noted that fs and ms are 
internal forces and moments due to application 
of a unit load in the direction in question, and Fs 
and Ms are internal forces due to applied loads.
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Zou and Chan (2005) also adopted the follow-
ing assumptions for relating the plastic rotation 
to the moment and reinforcements in the beam 
and column.

They assumed a bilinear M-θ relation similar to 
the one shown in Figure (7); accordingly a linear 
relation, as in Eq.(45), can be found between θp, the 
plastic rotation, and the moment in excess of My.

θ θp P
U y

U y

M M

M M
=

−

−











 (45)

Zou and Chan assumed M MU y= 1 1.  and 
could write θp as a function of M

Zou and Chan (2005) used an explicit rela-
tionship between My and reinforcement ratios ρ 
and ρ’ for beams, Eq.(46), and beam-columns, 
Eq.(47), as follows:
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in which nsc is the ratio of modules of elasticity of 
steel, Es and concrete Ec. ρ and ρ’ are the ratios 
of reinforcements in tensile and compression zone 
of concrete beam. Zou and Chan (2005) assumed 
that ρ and ρ’ are linearly dependent to each other. 
They were assumed equal in columns.

They expressed the relationship between plastic 
rotation and reinforcement ratios by second order 
Taylor series expansion as follows:

θ ρ θ ρ
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To find the derivatives of θp with respect to 
design variables it is noted that Eqs.(46 and 47 
provide explicit relation between M and ρ. There-
fore, using Eq.(45) θp can be expressed in terms 
of ρ and the derivatives can be easily obtained. 
Substituting θp from Eq.(48) into Eq.(44) and 
utilizing chain rule in differentiating, produces an 
explicit relation between pushover displacement 
and reinforcement ratios.

∆ ∆
∆ ∆

j i j i
j i

ii

N

i i
j i

ii

i

( ) ( )
( )

( )
( )

ρ ρ
ρ

ρ
ρ ρ

ρ

ρ
= +

∂

∂
− +

∂

∂= =
∑0

0

1

0
2 0

2

1
2 11

0 2
N

i i

i

∑ −( )ρ ρ  

(49)

Figure 7. A bilinear M-θ relation
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Upon establishing the explicit formulation of 
the inelastic displacement, Eq. (49), Zou and Chan 
could explicitly write the optimization problem 
of minimizing the steel construction cost of a 
multistory RC building with drift constraints in 
terms of the design variables, ρi.

In Zou and Chan’s study (2005), since the 
dimensions of frame elements were fixed, the 
objective function of the OPBSD problem Ws was 
the volume or weight of reinforcements. The drift 
constraints were written in terms of design vari-
ables, ρ, in the form of quadratic functions at the 
target displacement. The design optimization 
problem became in Box 2.  Where dj

U is the upper 
limit on story drift and ψ1i and ψ2i are first and 
second derivatives of differential displacement 
δ∆j with respect to ρ. They are expressed in terms 
of two end moments and first and second deriva-
tives of plastic hinge rotations, θ, with respect to 
ρ. (See Zou and Chan 2005).

The above optimization problem was solved 
utilizing Optimality Criteria method for a ten story 
2D frame of Figure (8), in which, the concrete 
cylinder strength and steel reinforcement yield 
strength, fy, for all members were assumed to be 
20 and 335 MPa, respectively.

The problem was solved for two different 
gravity loads, to show the effect of axial force on 
the pushover performance and capacity of frame-
work. The followings have been reported as the 
outcome of design optimization process.

In the load Case A, the gravity is 30 kN/m while 
that of Case B is 10 kN/m. The results show that, 
as expected, more reinforcements are required for 
the beams in Case A relative to Case B. This is 
because the gravity forces have more influence on 
bending moment of beams compared to columns. 
For columns, the situation is somehow differ-
ent. Most of columns in Case B required more 
reinforcement in comparison to Case A and there 
were more plastic hinges in columns of Case B 
compared to A. This might be because the gravity 
forces have a reverse effect compared to lateral 

loads on tensile reinforcement of columns. After 
design optimization, there were 45 plastic hinges 
in Case A while there were 55 plastic hinges in 
Case B. The distribution of plastic hinges was 
albeit different in the two Cases. Overall, the 
reinforcement in Case B was more than Case A.

Example 2

As the second example consider the three story 
2D frame in Figure (9) that was studied by Xu 
et al. (2006).

Figure 8. The ten story reinforced concrete frame, 
Example 1
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To optimize the design of this frame under 
applied earthquake load, Xu et al. (2006) consid-
ered a combination of two objective functions for 
this example. The first is F1, a measure of weight 
of the structure, and the second is F2, a measure 
of uniformity of distribution of relative drift (see 
Box 3).

In Eq.(51), Δ and H stand for lateral displace-
ment and height, respectively; r and s represent 
the roof and story;Ai

U is the upper bound of area 
Ai of member i. ω1 and ω2 are named combination 
factors, and for this example they were taken 
ω1=0.95 and ω2=0.05. The first objective function, 
F1, is an explicit function of design variables, A, 
while the second objective function, F2, is an 
implicit function of design variables. Xu et al. 

used one set of constraints, C1, in Eq.(41). The 
constraints of group C3 as well as C5, were 
treated as side constraints; i.e. they were checked 
after analysis; if they were violated, the design 
was scaled via a proper way.

The pushover analysis of Hasan (2002) was 
used for determining the displacements under ap-
plied earthquake load at IO, LS and CP levels. To 
express the objective function explicitly in terms 
of design variables, as a requirement of Eq.(16), 
the derivative of F2 had to be calculated using a 
proper sensitivity analysis technique. Xu et al. 
(2006) realized that a better approximation can be 
obtained using reciprocal variables. Accordingly, 
they reformulated the problem it terms of recip-
rocal variables and used the sensitivity analysis 
technique of Gong (2003), i.e. Eq.(30) for the 
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Figure 9. A three story four bay moment frame, (Xu et al. 2006)
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sensitivity calculations. Having the optimization 
problem fully defined, it was solved by the Dual 
method by Fleury (1983). Table 3 shows some 
of the history of the change in design variables 
during the optimization process.

Table 4 shows how the drift ratio for different 
performance levels varied during the optimization 
history.

The most critical constraint was satisfied with 
a response ratio of 1. The plastic states of the 
optimal design corresponding to the LS and CP 

Table 3. Example 2: primary design variable results (Xu et al. 2006) 

Cycle A1 A2 A3 A4 A5 A6 A7 A8 A9

index (mm2) (mm2) (mm2) (mm2) (mm2) (mm2) (mm2) (mm2) (mm2)

1 152.900 152.900 152.900 152.900 152.900 152.900 67.100 90.320 92.900

4 67.440 49.605 42.595 74.970 71.835 59.624 35.095 37.093 26.600

7 55.460 38.210 32.100 64.115 63.030 49.960 30.985 30.465 19.880

10 50.010 34.460 29.860 57.820 61.250 49.850 29.825 27.680 17.870

Discrete 48.770 33.420 33.420 58.970 65.160 48.770 31.930 28.060 17.900

Design W14×257 W14×176 W14×176 W14×311 W14×342 W14×257 W33×169 W30×148 W24×94
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Table 4. Design history for critical drift, objective functions f1 and F2 (Xu et al. 2006) 

Design 
Cycles

Δ/H Overall (roof) drift 
δS/hS Critical story drift

Structural 
Weight/Wmax

Ductility 
Demand

IO LS CP (f1) (f2)

1 { 0.0020 0.0027 0.0042 1.000 0.067

0.0024 [2]‡ 0.0033 [2] 0.0051 [2]

4 { 0.0058 0.0078 0.0162 0.402 0.045

0.0067 [2] 0.0089 [2] 0.0188 [2]

7 { 0.0067 0.0087 0.0305 0.333 0.037

0.0075 [2] 0.0098 [2] 00349 [2]

10 { 0.0070 0.0091 0.0476 0.311 0.026

0.0077 [3] 0.0101 [3] 0.0510 [2]

Discrete design 0.0069 0.0090 0.0456 0.319 0.022

0.0078 [3] 0.0102 [3] 0.0481 [2]
‡ The numbers in brackets show the critical story.
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performance levels _i.e., 2.5% and 5% roof drift 
can be compared in Figure 10A and figure 10B, 
respectively.

Example 3

Habibi (2008) whose method of nonlinear analysis 
and nonlinear sensitivity analysis were discussed 
earlier, formulated the OPBSD of reinforced 
concrete frame of example 1, a ten story two bay 
RC frame, in the form of the standard design 
optimization problem of Eq.(41). He wrote his 
own optimization software named CONOPT. This 

computer program utilizes the CONLIN optimi-
zation algorithm with some modifications made.

Habibi optimized the example 1, with 
CONOPT software, for several design assump-
tions. In his design optimization formulation, the 
dimensions of beams, columns as well as rein-
forcement ratios, were chosen as design variables; 
i.e. he nearly doubled the design variables and 
significantly increased the number of design 
constraints because of considering almost all 
groups of constraints in Eq.(41). He even entered 
the voluntary constraints of damage index into 
the design optimization problem. He used the 
stiffness degradation index DI k kj OP( ) = −( )1 /

Figure 10. Structural plastification: A) At LS level, B) At CP level, (Xu et al. 2006)
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suggested by Ghobarah (1999) as a damage index. 
He suggested and applied different damage indi-
ces for different performance levels. To investigate 
the effectiveness of design optimization algorithm, 
Habibi first assumed the same dimensions for 
frame elements that Zou and Chan had considered 
in their second phase optimization. The results 
were compared to the results of Zou-Chan and 
Asadi (2006) who optimized the same RC frame.

It worth to mention that Asadi sought the uni-
form inter-story drift for his measure of optimality 
of design, and similar to Zou and Chan assumed 
that distribution of rebars in R/C frames has a 
substantial effect on the drift control. Therefore, 
considering fixed values for dimensions of frame 
members and variable reinforcement, he indeed 
chose the same design variables as Zou and Chan’s 
but followed different design objective.

As an alternative design optimization, Habibi 
considered variable dimensions and considered 
the cost of formwork in addition to the cost of 
concrete and reinforcement. As a general rule, 
when the number of design variables increases, a 
more optimal design can be achieved. On the other 
hand, when the number of constraints increase, 
the cost function increases. Obviously Habibi 
could reduce the cost of material used in trade 
of more computational effort. Table 5 shows the 
comparison of the results.

To see what happens to performance point, the 
demand and capacity spectra have to be drawn 
after completion of design optimization. Evi-

dently the target point displaces from the initial 
point. Corresponding curves to Zou and Chan is 
shown in Figure 11-a while that of Habibi is in 
Figure 11-b.

This figure shows that in both solutions, the 
spectral accelerations and consequently the base 
shears have increased and corresponding target 
point or spectral displacements have been de-
creased. In the automated performance design, it 
is possible to impose any constraint on behavior 
of the structure. Here in this example the drift has 
been limited to 1% in both solution strategies. In 
both studies while the initial designs pertained to 
more expensive cost, they included some vio-
lated constraint but the optimal designs not only 
reduced the cost, but also satisfied all drift con-
straint. In fact, this is the advantage of automated 
optimum design that reduces the cost while satis-
fies user-defined conditions/constraints.

FUTURE RESEARCH DIRECTIONS

As was stated earlier, the trend of design phi-
losophy is towards performance-based design. 
The second and third examples, especially the 
comparison of the results from the first and the 
third example, clearly showed that to design a 
structure for several performance levels simulta-
neously, there is no way other than optimization. 
In fact, optimization puts the design problem in 
a mathematical framework and solves the design 

Table 5. Cost of initial and optimal design of ten story frame 

Cost basis (US$) Initial 
Design

Optimal Design

OC† UD‡ CONOPT 
(Fixed Dimensions)

CONOPT 
(Variable Dimensions)

Reinforcement 3386 3956 3204 2972 2333

Concrete +Formwork 3558 3558 3558 3558 3382

Total 6994 7515 6762 6530 5722

† Optimality Criteria algorithm used by Zou and Chan (2005)
‡ Uniform Ductility distribution criterion by Asadi (2006)
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problem mathematically. When we need simul-
taneous solution of a number of equalities and 
inequalities one way is to satisfy equalities and 
check for inequalities. This is the common practice 
in design offices. The design engineers satisfy 
equilibrium equalities and check for acceptance 
criteria inequalities for a structure. Another way 
to solve the set of equalities and inequalities is 
to get assisted by mathematics. The design opti-
mization is this second way. Design optimization 
helps the designer to design a structure in such 
a way that not only satisfies the equilibrium and 
acceptance criteria but also reduces the cost. In 
this methodology, the designer is allowed to put all 
self-interested conditions among the constraints. 
Albeit, the constraint limits require experience to 
be determined realistically. It is the responsibility 
of all Engineering faculties to consider the design 
optimization as a highly vital subject and put it 
among the obligatory courses. This will help more 
understanding about this subject and provides the 
ground for more developments in the field.

The OPBSD has a bright future. This method-
ology can be used as a powerful robust tool for 
scientist engineers, to revise their suggestions on 
acceptance criteria based on correlations that may 
be discovered between several aspects of opti-
mally designed structures. For example, a design 
engineer may have queries on the specification 
of a good design so as to have proper energy dis-
sipation, limited plastic rotations in connections, 
controlled relative drift, comfort of occupants, etc. 
These questions may be answered by a massive 
research on different types of optimally designed 
structure including different objectives and con-
straints. This tool may be also used to discover 
the controversy of different outcomes for different 
design criteria.

Preparing the ground for application of OPBSD 
can be followed in several directions:

A.  Enhancing the knowledge on the material 
nonlinearity models for better predicting 
the response of a structure.

Figure 11. The initial and final (optimal) target point. a)Zou and Chan(2005), used with permission, 
b)Habibi
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B.  Improving the nonlinear analysis and cor-
responding sensitivity analysis procedures.

C.  Developing more efficient optimization 
algorithms.

D.  Rationalizing acceptance criteria and corre-
lating them to structure’s overall behaviour 
with the help of OPBSD.

E.  Developing optimal performance-based 
seismic design criteria applicable in com-
bination with nonlinear dynamic analysis

F.  Establishing relations between expected 
values of the response and performance 
indicators, estimated by means of refined 
models of the system with those estimated 
with the aid of structural analysis and design 
ordinarily applied in typical structural design 
practice.

CONCLUSION

In this chapter, performance-based design and 
its prerequisites were briefly introduced. Due to 
shortage of space, and wideness of the field, we 
could only point to titles of the related subjects. 
However, this chapter provides a ground for 
more deep studies in the subject for the interested 
reader. The performance-based design philosophy 
and corresponding practical procedures were 
explained on the whole, to provide an overview 
of what is going on in design offices. The goal of 
design optimization and its application to some 
design problems was briefly presented. The 
sensitivity calculation that is an essential task in 
practical design optimization was explained. It 
was shown how nonlinear sensitivity calculation 
has to be built on nonlinear analysis assumptions 
and procedure. Some examples of the research 
activities in the field of Optimum Performance-
Based Seismic Design were presented, and various 
aspects of this progressing desire were discussed 
within the description of examples. The aim of 
the author was to help the interested reader to 
obtain an overall understanding of the subject, 

such that he/she could begin to write his own 
computer program for OPBSD. The start points 
for different parts of an OPBSD program includ-
ing the knowledge for starting performance-based 
design, nonlinear analysis, formulation of design 
optimization problem and sensitivity analysis were 
clearly introduced. The algorithms of optimiza-
tion, although were particularly relevant to the 
subject of this chapter, were not explained much 
because of shortage of space; however, some use-
ful references were introduced. If the interested 
reader establishes his own performance-based 
design optimization problem, its solution may 
be facilitated by one of available optimization 
software.
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Chapter  9

1. INTRODUCTION

The concept of performance-based design ap-
pears to be the future direction of seismic design 
codes (SEAOC 1995; ATC-40 1996; FEMA 
356 2000; FEMA 440 2005; FEMA 445 2006; 
ASCE41 2007). According to the newly developed 
performance-based seismic design approach, an 
acceptability analysis needs to be conducted at 
various design load levels in order to ensure that 
the corresponding performance objectives are 

satisfactory. The acceptability checking proce-
dures may employ various linear or nonlinear 
analysis methods to assess the seismic responses 
of structures in relation to the acceptable design 
criteria. Response spectrum analysis, which is 
one of the most common linear elastic methods, 
provides designers with a simple but rational 
basis for determining the responses of structures 
under minor or moderate earthquake loading. 
In the advent of advanced computational tech-
niques, nonlinear analysis procedures become 
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efficiency, this chapter presents a numerical optimization technique for both minimum material cost and 
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of reinforced concrete (RC) building structures based on elastic response spectrum analysis method; 
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significantly necessary to identify the pattern and 
level of damage and to understand the modes of 
failure of structures during severe seismic events. 
In assessing the nonlinear seismic behaviour of 
framework structures, pushover analysis has 
provided an effective means for distinguishing 
between good and bad seismic performance of 
structures (Krawinker 1994).

It has been recognized that the displacement or 
lateral drift performance of a multi-story building 
can be a good measure of structural and non-
structural damage of the building under various 
levels of earthquake motions (Moehle and Mahin 
1991). The performance-based seismic design 
provisions for multi-story buildings can be based 
upon controlling story drifts to prescribed limit 
states under different design levels of earthquakes. 
Lateral drift design requires the consideration of 
a proper distribution of the stiffness of all struc-
tural elements and, in a severe seismic event, also 
the occurrence and redistribution of plasticity in 
structure elements.

Numerous studies on structural optimization 
in the seismic design of structures have been pub-
lished in the past two decades, including Cheng 
and Botkin (1976), Feng et al. (1977), Bhatti and 
Pister (1981), Balling et al. (1983), Cheng and 
Truman (1982), Arora (1999). However, most of 
these previous research efforts were concerned 
with optimization through prescriptive-based 
design concepts. Recently, Beck and his associates 
(1998) developed an optimization methodology 
for performance-based design of structural sys-
tems operating in an uncertain dynamic environ-
ment. Foley (2002) provided a comprehensive 
literature review of current state-of-the-art 
seismic performance-based design procedures 
and presented a vision for the development of 
performance-based design optimization. It has 
been recognized that there is a pressing need for 
developing optimized performance-based design 
procedures for seismic engineering of structures 

(Charney 2000; Foley 2002). Zou (2002), Chan 
and Zou (2004), Zou and Chan (2001, 2005a, 
b), Zou et al (2007a, b), Zou (2008), Wang et al 
(2010) and Zou et al (2010) had been working at 
the performance-based seismic design optimi-
zation of RC building structure and developed 
an effective method for design optimization of 
buildings subject to seismic elastic and inelastic 
seismic drift performance criteria.

The traditional prescriptive design optimiza-
tion based on linear elastic techniques has been 
researched for many years. One major drawback of 
these elastic techniques is that it does not directly 
address structural inelastic seismic responses 
and thus cannot effectively deal with damage 
loss due to structural and non-structural failure 
during earthquakes. As a result, the long-term 
risk and benefit implications cannot be assessed 
using the traditional linear elastic design method. 
In seismic performance-based design, the design 
objective function may consist of two main parts: 
initial construction cost and expected future failure 
loss caused by earthquakes (SEAOC 1995; Foley 
2002). The final design should be established 
considering a good balance between the initial 
structural cost and its loss expectation in the design 
life period. Due to the fact that the life-cycle cost 
involves the consideration of construction cost and 
damage loss which are inherently conflicting, the 
minimum life-cycle cost design can be viewed as a 
multi-objective optimization problem. Given with 
the initial conditions of a building project, it is, 
in general, a relatively easy task to estimate the 
construction cost of the building. However, the 
estimation of the seismic damage to a building is 
such a complex problem that it involves not only 
engineering cost but also costs associated with 
social, economic, political, cultural and ethical 
aspects. A number of different damage loss models, 
established by numerous researchers (Park and 
Ang 1985; Gao and Bao 1985; Park et al. 1987; 
Ang et al. 1997; Wen and Kang 1997, 2001), in-
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volve realistic modelling of loading and resistance 
uncertainty, initial construction cost, damage cost, 
failure consequence cost, maintenance cost and 
discount cost of distant future failure. Cheng and 
Chang (1988), Cheng and Li (1997), Li (1998) 
and Zou et al (2007b) studied the application of 
minimum expected life-cycle cost. Recently, Liu 
et al. (2003) presented a multi-objective genetic 
algorithm for optimal seismic design of steel 
frames based on life cycle cost considerations. 
All these research efforts indicate the importance 
of consideration of a life-cycle cost on making 
rational design decisions.

This chapter presents an effective single- or 
multi-objective optimization technique for the 
elastic and inelastic seismic drift performance 
design of reinforced concrete buildings under 
response spectrum loading and pushover loading. 
Using the principle of virtual work, the modal drift 
response can be explicitly formulated in terms of 
element sizing variables and the peak drift values 
can be estimated by modal combination methods. 
With careful tracking of the location and extent of 
plastic hinge occurrence, the inelastic pushover 
drift can also be explicitly expressed in terms of 
the sizing variables using the same principle of 
virtual work and the Taylor series approximation. 
The total life-cycle cost optimization is formulated 
as a multi-objective optimization problem subject 
to seismic inelastic inter-story drift responses 
under pushover loading. Once the multi-objective 
function (including both the initial material cost 
and the predicted damage loss) and the design 
performance constraints are explicitly formulated, 
the ε–constraint method is then applied to produce 
a Pareto optimal set, from which the decision of the 
best compromise solution for the multi-objective 
design problem can be achieved. The optimization 
methodology for each Pareto optimal solution is 
basically established based on a rigorously derived 
Optimality Criteria (OC) approach. Finally, one 
RC building frame example is presented to il-
lustrate the effectiveness and applicability of the 
proposed automated optimization approaches.

2. SINGLE OBJECTIVE DESIGN 
OPTIMIZATION PROBLEM

In seismic design, it is commonly assumed that 
a building behaves linearly elastic under minor 
earthquakes and may work nonlinearly inelastic 
when subjected to moderate and severe earth-
quakes. Under such an assumption, the entire 
design optimization process can therefore be de-
composed into two phases (Zou and Chan 2001; 
Zou 2002). The first phase is an elastic design 
optimization in which the structural concrete cost 
can be minimized subject to elastic spectral drift 
responses under minor earthquake loading; and 
concrete member sizes are taken as design vari-
ables since concrete material plays a more domi-
nant role in improving elastic drift performance 
of a building. In this phase, all concrete sections 
are assumed to be uncracked and to behave linear-
elastically. Once the optimal structural member 
sizes are determined at the end of the first phase 
of the optimization, the steel reinforcement quan-
tities can then be considered as design variables 
in the second phase. In controlling the inelastic 
drift responses, steel reinforcement is the most 
effective element that provides the ductility of 
RC building structure beyond first yielding (Zou 
2002). In this second design phase or the so-called 
inelastic design optimization, the member sizes 
are kept unchanged and the cost of steel reinforce-
ment is minimized subject to inelastic inter-story 
drift performance constraints based on nonlinear 
pushover analysis.

2.1 First Phase: Elastic Design 
Optimization Problem

Consider a multi-story concrete framework hav-
ing i= 1, 2,…, Ni member (or member fabrication 
groups). Assuming that the concrete elements are 
uncracked and have rectangular cross sections 
such that the width (Bi ) and depth (Di ) are 
taken as design variables, the design objective of 
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the first phase elastic optimization is to minimize 
the concrete material cost of the structure as ex-
pressed explicitly in terms of design variables as

Minimize: concrete cost f w B Dc ci
i

N

i i

i

1
1

=
=
∑  

(1)

where wci is the unit cost coefficient of concrete 
for member i.

The intent of the elastic drift design is to ensure 
that a building remains operational or serviceable 
under the action of minor earthquakes. In checking 
the seismic drift response of a building, an elastic 
analysis procedure can be employed and the j = 
1, 2,…, Nj inter-story drift should comply with 
the following requirement:

∆u

h
j Nj

j
j j≤ =ψ     ( , , ..., )1 2  (2)

where ∆uj is the elastic inter-story drift of the jth 
story; hj is the jth story height and ψj is the 
specified inter-story drift ratio limit for the jth 
story.

Elastic linear response spectrum analysis 
method, widely used in modern building codes 
such as UBC (1997) and GB5011-2001 (2001), 
is adopted in this study. This method eliminates 
the time variable and provides a relatively simple 
method for determining the maximum structural 
responses in which individual modal responses 
are first calculated and the maximum responses 
are then obtained by combination rules.

Based on the modal response of a building, 
which is computed by commonly available engi-
neering software, the nth modal elastic displace-
ment at the jth floor level, uj

n( ) , can be expressed 
explicitly by the principle of the virtual work in 
Box 1.where Li is the length of member i; E and 
G are the axial and shear elastic material moduli; 
AX, AY, and AZ are the axial and shear areas for the 
cross-section; IX, IY, and IZ are the torsional and 
flexural moments of inertia for the cross-section; 
FX

n( ) , FY
n( ) , FZ

n( ) , MX
n( ) , MY

n( ) , and MZ
n( ) are the 

nth modal element internal forces and moments; 
fXj, fYj, fZj, mXj, mYj, and mZj are the virtual 
element forces and moments due to a unit of 
virtual load applied to the building at the location 
corresponding to the story displacement, uj.

Considering rectangular concrete elements 
with the width (Bi ) and depth (Di ) taken as 
design variables and expressing the cross section 
properties in terms of Bi and Di , the modal dis-
placement Eq. (3) can be simplified as
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β denotes the torsional coefficient that depends 
on the ratio value of depth to width of the element 
i .For typical rectangular sections, it can be ap-
proximately set to 0.2.

Once the modal story displacement is formu-
lated explicitly, the maximum value of the inter-
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story drifts can be expressed using the general 
and accurate complete quadratic combination 
(CQC) method as

∆u B D u u u uj i i CQC nm j
n

j
n

j
m

j
m

m

N

( , ) ( )( )( ) ( ) ( ) ( )



 = − −− −

=

ρ 1 1
1

 
nnn

n

N

∑∑
=1

   

(5)

where Nn denotes the total number of modes 
considered in the response spectrum analysis ; 
uj

n
−1

( ) ,uj
m
−1

( ),  uj
m( ) are the respective nth and mth 

modal elastic displacements at the (j-1)th and jth 
floor levels;ρnm  is a modal correlation coefficient 
for the nth and mth modes, which can be obtained 
from the following equation with the constant 
damping ratio, ξ , as

ρ
ξ β β

β ξ β βnm
nm nm

nm nm nm

=
+

− + +
8 1

1 4 1

2

2 2 2 2

3
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where

β ω
ωnm

n

m
= ≤ 1  (7)

Upon establishing the explicit formulation of 
the elastic inter-story drift Eqs. (4) and (5), based 
on the response spectrum analysis method, elas-
tic spectral inter-story drift constraints using the 
CQC method can be written in terms of the design 
variables, Bi and Di , as

Subject to:

g B D
h

u B D j Nj i i
j
e

j
j i i j( , ) ( , ) ( , , ..., )= ≤ =

1
1 1 2

ψ
∆    

(8)

Besides, the member sizing constraints can 
be defined as,

B B Bi
L

i i
U≤ ≤ ;D D Di

L
i i

U≤ ≤
( , , ..., )i Ni= 1 2          (9)

where Bi
L and  Bi

U , Di
L and  Di

U  correspond to 
the lower and upper size bounds specified for the 
section width, Bi , and depth, Di , respectively.

2.2 Second Phase – Inelastic 
Design Optimization Problem

2.2.1 Nonlinear Analysis Procedure

In the newly developed performance-based seismic 
design approach, nonlinear analysis procedures 
become important in identifying the patterns and 
levels of damage to assess a structure’s inelastic 
behaviour and to understand the modes of failure 
of the structure during severe seismic events. 
Pushover analysis is a simplified, static, nonlinear 
procedure in which a predefined pattern of earth-
quake loads is applied incrementally to framework 
structures until a plastic collapse mechanism is 
reached. This analysis method generally adopts a 
lumped-plasticity approach that tracks the spread 
of inelasticity through the formation of nonlinear 
plastic hinges at the frame element’s ends during 
the incremental loading process.

As graphically presented in Figure 1, the 
nonlinear static analysis procedure requires de-
termination of three primary elements: capacity, 
demand and performance. The capacity spectrum 
can be obtained through the pushover analysis, 
which is generally produced based on the first 
mode response of the structure assuming that the 
fundamental mode of vibration is the predominant 
response of the structure. This pushover capacity 
curve approximates how a structure behaves be-
yond the elastic limit under seismic loadings. The 
demand spectrum curve is normally estimated by 
reducing the standard elastic 5% damped design 
spectrum by the spectral reduction method. The 
intersection of the pushover capacity and demand 
spectrum curves defines the “performance point” 
as shown in Figure 1. At the performance point, 
the resulting responses of the building should then 
be checked using certain acceptability criteria. The 
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responses can be checked against acceptability 
limits on both global system levels (such as the 
lateral load stability and the inter-story drift) and 
local element levels (such as the element strength 
and the sectional plastic rotation) (ATC-40 1996). 
When the responses of a structure do not meet the 
targeted performance level, the structure needs to 
be resized and the design process repeated until 
a solution for the desired performance level is 
reached. In general, the determination of the satis-
factory performance response that fulfils both the 
system level response and element level response 
requires a highly iterative trial-and-error design 
procedure even with the aid of today’s finite ele-
ment analysis software.

2.2.2 Design Optimization Problem and 
Explicit Drift Formulation

While the concrete material plays an important 
role in controlling the elastic displacement re-
sponse of a RC building, the steel reinforcement 
can have a significant effect on the inelastic dis-
placement and ductility of the RC building beyond 
the linear elastic limit. Moreover, when an RC 
structure works in the inelastic stage, steel rein-
forcement is generally the more cost-effective 

element to be used to control the inelastic perfor-
mance of the structure. Based on these consider-
ations, in the second phase, the tension steel re-
inforcement ratio,ρi , and the compression steel 
reinforcement ratio, ′ρi , of rectangular cross sec-
tions are taken as design variables, for a flexural 
concrete building having i=1, 2,?, Ni members 
and 2Ni plastic hinges (assuming one hinge at 
each end of a member). The width Bi and depth 
Di of the cross section are fixed in this phase.

If the topology of a building structural system 
is predefined, the design objective of the reinforced 
concrete framework in the second inelastic design 
phase is to minimize the steel reinforcement cost
f s1 , which can be expressed in terms of steel re-
inforcement design variables:

Minimize: steel cost  

f w L Ls si si i si i
i

Ni

1
1

= + ′ ′
=
∑ ( )ρ ρ  (10)

where wsi is the cost coefficient for steel reinforce-
ments; and Lsi and ′Lsi are the lengths of the 
lower and upper steel reinforcements for member 
i. Herein, only the longitudinal reinforcement of 
member sections is considered as design variables 
and the transverse reinforcement is assumed to 

Figure 1. Nonlinear analysis procedure
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be invariant in the optimization under the presup-
position that adequate shear strength is provided 
for all members.

The total construction cost, f1 , of a reinforced 
concrete framework, which consists of the concrete 
cost f c1 given in Eq. (1) and the steel reinforcement 
cost f s1 shown in Eq. (10), can be expressed as

f B D f f w B D L w L Li i i c s ci i i i
i

N

si si i si

i

1 1 1
1

( ) (, , ,iρ ρ ρ′ = + = + + ′ ′
=
∑ ρρi

i

Ni

)
=
∑

1

 

(11)

It has been previously shown that, in the elas-
tic design optimization, the concrete material cost 
of the structure with respect to the width, Bi , and 
depth, Di , is minimized and is kept to the mini-
mum value in the inelastic design optimization. 
Under the condition that the concrete element 
dimensions are fixed to their minimum values, 
the steel material cost is to be minimized in the 
inelastic design stage.

In seismic performance-based design, it is 
necessary to check the “capacity” of a structure 
against the “demand” of an earthquake. At the 
performance point, where capacity equals demand 
as shown in Figure 1, the resulting responses 
of the building should then be checked using 
certain acceptability criteria. In this chapter, the 
inelastic drift responses at the performance point 
of a building, generated by a severe earthquake 
demand, are to be checked against appropriate 
limits corresponding to a given performance ob-
jective. The inelastic interstory drift constraint at 
the performance point is defined as below.

∆u

h

u u

h
j Nj

j

j j

j
j j=

−
≤ =−1 1 2ψ   ( , , ..., )  

(12)

where uj and uj−1 are the respective displacement 
of two adjacent j and j-1 floor levels; ψj is the 
specified inelastic inter-story drift ratio limit for 
the jth story in the inelastic design phase.

In order to facilitate a numerical solution of 
the drift design problem, it is necessary that the 
implicit story drift constraint Eq. (12) be expressed 
explicitly in terms of the design variables, ρi and 
′ρi . Before the drift formulation can be discussed, 

three assumptions must be made. The first is that 
all the inelastic deformation is assumed to occur 
at the plastic hinges, which are located at the ends 
of each frame member and members are fully 
elastic between the plastic hinges. Secondly, the 
plastic hinges are assumed to be frictionless and 
have zero length. The third assumption is that 
beam-column joints are much stronger than any 
adjacent framing components so that the joint 
region may be modelled as a stiff or rigid zone.

Based on the internal element forces and mo-
ments of the structure obtained from the pushover 
analysis at the performance point, the principle 
of virtual work can be employed to express the 
pushover displacement. The pushover story dis-
placement, uj , at the performance point includes 
the virtual work, uj memb, , produced by the struc-
tural members and the virtual work, uj hinge, , 
generated by the plastic hinges. That is,

u u uj j memb j hinge= +, ,  (13)

in which
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Considering rectangular concrete elements 
with width (Bi ) and depth (Di ) and expressing 
the cross sectional properties in terms of Bi and 
Di , the displacement, uj memb, , in Eq. (14) can be 
simplified in terms of Bi and Di , as shown in 
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Eq.(4). During the inelastic drift design optimiza-
tion process, uj memb, is kept unchanged since Bi

and Di of each member section are fixed. The 
emphasis here is on the displacement, uj hinge, , 
caused by the formation of the plastic hinges. In 
Eq. (15), mpjh

0 is the virtual end moment at the 
location of the hth hinge of a member; θph is the 
actual plastic rotation experienced by the hth 
plastic hinge, which is equal to zero when no 
plastic hinge is found. As shown in Figure 2, the 
behaviour of a plastic hinge is modelled as a bi-
linear curve: the elastic segment, AB, and the 
hardening segment, BC. Based on the line seg-
ments A-B-C, the plastic rotation, θp , can be 
given as follows

θ θ θp
y

u y
p
U

p
UM M

M M
=

−

−
≤  (16)

where θp
U is the ultimate plastic rotation which 

can be established based on experimental tests or 
can be obtained directly from design guidelines 
such as the ATC-40 (1996); M is the applied 
moment at the location of the plastic hinge; My

is the bending moment at the first yielding of the 
tensile steel; and Mu is the ultimate moment of 
resistance. Given the quantity of the steel rein-
forcement used in a concrete section, the values 
of My and Mu can then be determined. For sim-
plicity, Mu can be approximately related to My

as Mu = 1 1. My (ATC-40 1996). For the explicit 
problem formulation, it is necessary that the 
plastic rotation, θp , be accurately expressed in 
terms of the design variables (i.e., ρ and ρ ' ). 
Furthermore, a good formulation should reflect 
accurately the change in the plastic rotation, θp , 
due to a change in the design variables during the 
optimization resizing process. In other words, any 
change in the design variables, ρ and ′ρ , during 

the inelastic optimization process requires a cor-
responding update on the values of M and My .

In pushover analysis, pure moment hinges as 
well as axial moment hinges are widely used and 
are generally assigned to the two ends of each 
beam or column. In fact, the inelastic displace-
ment, uj hinge, , in Eq. (13) includes the displacement 
generated by moment hinges (usually in the beams) 
and that generated by axial moment hinges (usu-
ally in the columns). By the force equilibrium 
shown in Figure 3, where fc is the stress at the 
extreme compression concrete fibre, ′fs is the 
stress in the compression steel, fy is the yield 
strength of the tension steel, and d is the effective 
depth, which is equal to the distance from the 
extreme compression fibre to the centroid of the 
tension steel, My for a moment hinge (where there 
is no co-existent axial force) can be expressed in 
terms of design variables,ρ and ′ρ , as

M f Bkd
kd

d f Bd d dy c y= − + −0 5
3

. ( ') ( ')ρ  

(17)

where k is the neutral axis depth factor at the first 
yield and it is given as

Figure 2. Moment-rotation curve
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k n
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in which n E Esc s c= where Ec and Es are the 
moduli of elasticity of the concrete and the steel, 
respectively.

Similarly, My for an axial-moment hinge 
(wherein there is co-existent axial force) can be 
expressed in terms of design variables,ρ and ′ρ
as
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where k is given as
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To take into account the change in θp due to a 
change in ρ and ′ρ while maintaining an instan-
taneously fixed value of M, a second-order Tay-

lor series approximation for evaluating the value 
of θp is given as

θ ρ θ
θ

ρ
ρ ρ

θ

ρ
ρ ρ

ρ ρ ρ ρ ρ ρp p
p p( ) ( ) ( )= +
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− +
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2

2
01

2
2     

(21)

where the tension steel ratio, ρ , is considered as 
the major design variable; for simplicity, the 
compression steel ratio, ′ρ , is assumed to be 
linearly related to ρ for beams and to be the same 
as ρ for columns. Given the explicit expression 
of My as a function of ρ from Eqs. (17) and (19), 

the gradient, 
∂

∂

θ

ρ
p , and the second-order term, 

∂

∂

2

2

θ

ρ
p , can be analytically calculated from Eq. 

(16).
By substituting the explicit plastic rotation, 

θ ρp( ) , given in Eq. (21) into Eq. (15), the pushover 
displacement, uj , in Eq. (13) can also be explic-
itly expressed in terms of the design variable, ρi
in Box 2.

Figure 3. Double reinforced member section at first yield
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2.2.3 Plastic Rotation Constraint and 
Sizing Constraint

Besides checking the inter-story drift responses 
discussed above, local response quantities (i.e., 
sectional plastic rotation and strength of all mem-
bers) at the performance point also must not exceed 
appropriate response limits. Therefore, the plastic 
rotation, θph , at the hth end of member i (where 
the subscript h represents one end of a member 
and h=1,2) should be constrained in the optimiza-
tion by

θ θph p
U≤  (23)

where θp
U is the rotation limit of member i for a 

specific performance level. Once the designer 
determines the performance levels of the structure 
(e.g., Immediate Occupancy, Life Safety, Collapse 
Prevention), the corresponding limiting value of 
θp

U is then determined. In addition, in order to 
reduce the practical building design problem to 
a manageable size, the strength design of each 
member is not considered explicitly as a design 
constraint; rather, the strength-based steel rein-
forcement ratios in accordance with code speci-
fications are first calculated and these values are 
then taken as the lower size bound for each mem-
ber in the inelastic seismic drift design optimiza-
tion.

It is found from Figure 2 that, in order to 
maintain the relationship of 0 ≤ ≤θ θp p

U , the 
internal moment, M , leading to the occurrence 
of a plastic hinge must satisfy the following con-
dition:

M M My u≤ ≤  (24)

On the one hand, by setting M My = where 
My can be found from Eq. (17) for a moment 
hinge and Eq. (19) for an axial-moment hinge, 
the corresponding value of ρi can be solved and 
this value can then be taken as the instantaneous 
upper bound value of ρi such that  ρ ρi

U
i= . On 

the other hand, by setting M Mu = and assuming 
M Mu y= 1 1. , the instantaneous lower bound 

value of ρi can then be found such that  ρ ρi
L

i= . 
As a result, based on Eq. (24), the lower and up-
per bounds of ρi for each plastic hinge can be 
instantaneously established during the OC itera-
tive resizing process.

2.2.4 Design Optimization 
Problem Formulation

Upon establishing the explicit inelastic drift for-
mulation, Eq. (22), the optimization problem of 
minimizing the steel construction cost Eq.(10) 
can be explicitly written in terms of the design 
variable, ρi , as

Minimize: f ws si i
i

Ni
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In Eq. (25), ′wsi is the cost coefficient for the 
steel reinforcement, ρi ; ψj

p is the allowable in-
elastic inter-story drift ratio. Eq. (26) defines the 
set of seismic inelastic inter-story drift perfor-
mance constraints under specified earthquake 
ground motions. Eq. (27) defines the sizing con-
straints for the steel reinforcement, where ρi

L and 
ρi

U correspond to the lower and upper size bounds 
specified for the tensile steel reinforcement vari-
able, ρi , and they should be updated after each 
nonlinear pushover analysis. For the sake of 
simplicity, the compressive steel reinforcement, 
′ρi , has been assumed to be simply related to ρi

and therefore, it is not included in the explicit 
optimization problem Eqs. (25)-(29).

2.3 Design Procedure

The overall design optimization procedure for 
limiting lateral elastic and inelastic drifts of an 
RC building structure is listed as follows:

1.  Assume the initial member sizes and deter-
mine the design spectra corresponding to 
minor and severe earthquakes.

2.  In the first phase, i.e., the elastic design op-
timization, carry out the response spectrum 
analysis of the structure subject to a minor 
earthquake and conduct a static virtual load 

analysis using commercially available soft-
ware such as SAP2000 (2000).

3.  Read all the necessary input and output re-
sults of the analysis and establish the explicit 
elastic design optimization formulation of 
Eqs. (1) and (9).

4.  Apply the recursive OC optimization algo-
rithm to resize the concrete element sizes.

5.  Repeat Steps 2 and 4 for statically indeter-
minate structures until the concrete cost of 
the structure between two successive design 
cycles converges to be within certain accept-
able criteria (say, 0.5%).

6.  After the elastic design optimization, fix the 
optimal member sizes, Bi and Di , in the 
inelastic design optimization. Based on the 
member size derived from the elastic opti-
mization, determine the minimum and 
maximum size bounds of the steel reinforce-
ment ratios, ρi and ′ρi , in accordance with 
the strength-based code requirements.

7.  Carry out the nonlinear pushover analysis 
to determine the inelastic responses of the 
structure at the performance point.

8.  Read all the necessary input and output 
results of the pushover analysis, establish 
the lower and upper bounds of ρi for the 
members with plastic hinges using Eq. (24) 
and determine the values of the first-order 
and second-order derivatives of inelastic 
drift responses using Eqs (28) and (29).

9.  Establish the explicit inelastic inter-story 
drift constraints using a second-order 
Taylor series approximation and formulate 
the explicit inelastic design problem, Eqs 
(25)-(29).

10.  Apply the recursive OC optimization algo-
rithm to resize all steel reinforcement design 
variables.

11.  Repeat Steps 7 and 10 until the convergence 
of the values of the steel cost objective func-
tion and the inelastic drift design constraints 
is achieved.
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3. MULTIOBJECTIVE DESIGN 
OPTIMIZATION PROBLEM

3.1 Objective Function

In seismic performance based design, the total 
life-cycle cost of structures should be considered 
and the final design should be established based 
on a good balance between the initial structural 
cost and its loss expectation in the design life 
period. Due to the fact that the life-cycle cost 
involves the consideration of construction cost 
and damage loss which are inherently conflicting, 
i.e., the decrease of one increases the other, it is 
necessary to formulate the design optimization 
as a multi-objective optimization problem. In 
this research study, the initial construction cost 
of an RC building frame is estimated simply in 
terms of the material costs of the concrete mem-
ber sizes and steel reinforcements. In contrast, 
the establishment of an approximate but rational 
cost function to explicitly represent the expected 
damage loss of building structures in terms of 
sizing design variables remains one of the chal-
lenging difficulties.

If the topology of a building structural system 
is predefined, the design objective is to minimize 
the multi-objective life-cycle cost of the structure. 
Using F to denote the life-cycle cost function 
including the initial structure cost f1 and ex-
pected future damage loss f2 , the multi-objective 
function can be expressed as

Minimize: F f f= { }1 2,  (30)

In order to facilitate the numerical solution of 
the optimization problem, the implicit objective 
function in Eq. (11) needs to be first expressed 
explicitly in terms of the design variables. As 
presented previously, the initial structure cost f1
of an RC framework is simply assumed to be the 
summation of the concrete material cost f c1 and 

the steel reinforcement cost f s1 , as given in Eq.
(11).

3.2 Expected Future Structural Loss f2

The structural failure losses due to an earthquake 
attack consist of direct loss and indirect loss. The 
direct loss is the cost of repair or replacement of 
structural members, contents, non-structural 
components and equipment, and so on. The indi-
rect loss may include the losses associated with 
structural malfunction, injuries and fatalities, 
psychological and political influence, etc. The 
accurate estimation of both direct and indirect 
losses is generally a very complex task involving 
not only engineering analysis but also many 
other issues. The failure of each structural perfor-
mance may lead to a different failure loss. 
Herein, Li’s work (1998) is introduced as an 
example of derivation of the expected future 
structural loss f2 for convenient discussion in the 
following. According to the work by Li (1998), 
the total loss expectation can be defined by the 
summation of the product of the occurrence prob-
ability of earthquake and the system failure loss. 
That is, for Nr performance levels, the loss ex-
pectation function f2 can be stated as

f P Lr r
r

Nr

2
1

= ×
=
∑  (31)

where r denotes the seismic design level and 
r Nr= 1 2, , ...,  ; Pr is the occurrence probabil-
ity of an earthquake for the rth seismic design 
level, which can be determined from specified 
code requirements; Lr is the structural failure loss 
including direct and indirect losses under the rth 
seismic design level. In Li’s study (1998), the 
damage loss of a structure corresponding to dif-
ferent discrete levels of performance criteria is 
expressed in terms of the maximum inter-story 
drift index under minor, moderate and severe 
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earthquakes. Five classes of structural damage 
(namely negligible, slight, moderate, severe and 
complete damage) of a building are given based 
on the maximum inter-story drift value in accor-
dance with the Chinese code for seismic design 
of buildings (GB50011-2001). Due to the fact that 
the classification of the five different degrees of 
damage is discrete in nature and the set of inter-
story drift responses of a building is continuous, 
the fuzzy-decision theory is employed to best 
estimate the damage loss with specified proba-
bilities of occurrence of different levels of earth-
quakes. For simplicity, τ is used to represent the 
inter-story drift index such that τ = ×∆u R h , 
where ∆u is the inter-story drift; h is the story 
height; R is equal to 500 for concrete frames and 
1000 for concrete shear-wall structures and frame-
wall structures. Finally, the total structural damage 
loss f2 presented in Eq. (31) can be explicitly 
expressed in terms of the variable τ( )∆u as

f f P a u ar j
j
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2 1 1 2
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∑  (32)

where a1 and a2 are the coefficients of an ex-
pected failure loss, which depend on not only 
damage levels but also building classes and details 
are presented in Li (1998). For example, assum-
ing that the importance of a frame building belongs 
to Class B, the values of a1 and a2 can be derived 
as shown in Table 1. Details of derivation can be 
found in Zou (2002) and Zou et al (2007).

3.3 Explicit Multi-Objective Problem 
Formulation

Upon obtaining the explicit nonlinear objective 
function (i.e., the initial structure cost f1 in Eq. 
(11) and the damage loss f2  in Eq. (32)), and the 
explicit inelastic drift formulation in Eq. (22), the 
multi-objective design optimization problem can 
be written in terms of the design variables ρi as

Minimize:

F f f( ) ,ρi = { }1 2  (33)
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Eqs. (33) defines the life-cycle cost function 
F , which consists of the construction cost f1 and 
the damage loss f2 ; Eq. (34) defines the inelastic 
inter-story drift constraint at the structural perfor-
mance point for a specified ground motion; Eq. 
(35) defines the lower and upper size bounds 
specified for the design variables, ρi ; α1 and α2

are given in Eqs.(28)-(29).

Table 1. The coefficients of expected failure loss for a Class B building 

τ < 0 5. 0 5 1 5. .≤ <τ 1 5 3. ≤ <τ 3 7≤ <τ 7 10≤ <τ τ ≥ 10

a1 0.000 0.080 0.800 1.350 4.770 0.000

a2 0.02 -0.020 -1.100 -2.750 -26.667 21.000
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3.4 Multi-Objective 
Optimization Algorithm

The multi-objective optimization problem given in 
Eqs. (33)-(35) can be solved by a Pareto optimal 
set – formed by a large number (infinite number) 
of Pareto optimal solutions. The Pareto optimal 
set can provide an overview of all the tradeoffs 
to the designer. To establish a Pareto optimum 
point, multi-objective optimization algorithms 
should be constructed, one of which transforms 
the multi-objective problem into a single-objective 
optimization. The key to the transformation is 
that the solution of the single-objective problem 
should be a point in the Pareto set with respect to 
a feasible region and a set of objective functions. 
Among transformation methods, the ε–constraint 
method is one of the commonly used approaches in 
practical problems (Kaisa 1999; Marler and Arora 
2004). The ε–constraint method is a technique 
that transforms a multi-criteria objective function 
into a single criterion by retaining one selected 
objective function as the primary criterion to be 
optimized and treating the remaining criteria as 
constraints.

Herein, the construction cost, f i1( )ρ , is taken 
as a primary objective, while the damage loss, 
f i2( )ρ , is transformed into a design constraint. 
The reason for this consideration is that both the 
damage loss f i2( )ρ in Eq. (32) and the inter-story 
drift constraints in Eq. (34) are expressed explic-
itly in terms of the inter-story drifts. The similar-
ity may bring advantages in numerical calcula-
tions. Thus, the multi-objective optimization 
problem given in Eqs. (33)-(35) can be transformed 
as

Minimize: f i1( )ρ  (36)

Subject to: f i2 2( )ρ ε≤  (37)

g j Nj i j( ) ( , , ..., )ρ ≤ =1 1 2       (38)

ρ ρ ρi
L

i i
U

ii N≤ ≤ =     ( , , ..., )1 2  (39)

By varying the upper bound value, ε2 , for the 
objective f i2( )ρ  and minimizing the objective 
f i1( )ρ , all Pareto optimal points are, in principle, 
attainable. Theoretically, there is no limitation on 
the range of ε2 (−∞≤ ≤ +∞ε2 ) regardless of 
the convexity conditions. However, this may 
result in extensive computational time to find a 
Pareto set. In fact, the main difficulty of the ε–
constraint method lies in finding the range of 
reasonable values for the upper bound, ε2 . Details 
can be found in Zou (2002) and Zou et al (2007).

3.5 Multi-Objective Design 
Optimization Procedure

The multi-objective inelastic optimal design 
procedure is outlined as follows:

1.  The optimal member sizes Bi and Di are 
first found based on the elastic design opti-
mization, which are fixed in the inelastic 
design optimization. The initial reinforce-
ment ratios for each member are taken as 
the minimum values of the design variable, 
ρi , obtained from the elastic optimization 
results.

2.  Establish the explicit optimization problem 
given in Eqs. (33)-(35).

3.  Transfer multi-objective design problem Eqs.
(33)-(35) into a single objective optimization 
Eqs.(36)-(39).

4.  Change ε2 in Eq.(40) and generate one Pareto 
optimum solution by employing the OC 
method. The global convergence is checked 
based on the change in the objective function 
and the violation of the constraints.

5.  Repeat Steps 4 and 5 until the upper bounds 
of the active design variables are achieved.
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4. ILLUSTRATIVE EXAMPLE

A ten-story, two-bay planar frame is used to il-
lustrate the proposed optimal design method. The 
geometry of the example is given in Figure 4(a). 
Concrete with the cylinder strength of 20MPa and 
steel reinforcement with the yield strength, fy , of 
335MPa are used for all members. To illustrate 
the effectiveness of the optimal design technique, 
three cases are conducted in this example. Cases 
A and B are elastic and inelastic design optimiza-
tion for a single objective, respectively, while 
Case C considers life-cycle cost, i.e., multi-ob-

jective optimization where other conditions are 
the same as Case B.

4.1 A Single Objective Optimization 
(i.e., Cases A and B)

Two levels of earthquake loads are considered in 
this example. One represents a minor earthquake 
load with a peak acceleration of 0.32g according 
to the acceleration response spectrum in GB5011-
2001(2001), as shown in Figure 4(b). Another 
load level represents a severe earthquake with an 
initial peak acceleration of 1.4g. In the elastic 
phase of the optimization, the concrete cost of the 

Figure 4. A ten-story, two-bay frame
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structure is to be minimized subject to the elastic 
spectral drift constraints under the minor earth-
quake loading condition. The unit construction 
cost of concrete is assumed to be US$90/m3, 
including the concrete material cost and labour 
cost. Elastic inter-story drift constraints are taken 
into account with an allowable inter-story drift 
ratio limit of 1/450. The initial sizes are arbi-
trarily chosen to be 350×350mm for the columns 
and 200×350mm for the beams. Size bounds are 
defined as 350~1000mm for the depths and the 
widths of the columns, 200~350mm for the widths 
of the beams and 350~450mm for the depths of 
the beams.

In the inelastic phase of the optimization, the 
design objective is to minimize the steel reinforce-
ment cost subject to the performance-based in-
elastic drift constraints under the severe earthquake 
loading condition. The unit construction cost of 
steel reinforcement is assumed to be US$960/
tonne including the steel material cost and the 
labour cost. Inelastic inter-story drift constraints 
are considered with an allowable inter-story drift 
ratio limit of 1/100 and the P-Delta effect is con-
sidered in the example. Initial reinforcement ratios 
are calculated based on the strength requirements 
of members after the elastic phase design process. 
Such strength-based reinforcement ratios are 
taken as the lower bounds for the inelastic design 
process. Their upper bounds are assumed to be 
6.0% for columns and 4.0% for beams. For sim-
plicity, symmetrical arrangement of steel rein-
forcement is assumed such that ρ ρi i= ′ . Flex-
ural moment hinges and axial-moment hinges are 
assigned to the end locations of the beams and 
columns, respectively. The ultimate plastic hinge 
rotation, θp

U , is assumed to be 0.02 radian for the 
moment hinges on the beams and 0.015 radian 
for the axial-moment hinges on the columns.

Initial applied lateral loads applied in push-
over analysis are shown in Figure 4(a), which is 
proportional to the product of the story mass and 
the first mode shape of the elastic model of the 

structure. During the pushover analysis, the lateral 
loads are applied incrementally in proportion to the 
initial loads but the gravity loads, shown in Figure 
4(a), are assumed to be fixed. The design process 
is deemed to converge when the difference in the 
structure costs for two successive design cycles 
is within 0.5% and when the difference between 
the active inter-story drift value and its allowable 
limit at the performance point is within 0.5%.

Figure 5 presents the optimal design history 
for both the elastic and inelastic drift optimiza-
tion processes. In the elastic optimal design, 
rapid and steady convergence of the concrete cost 
from the initial US$1528 to the finial US$2205 
after 6 design cycles has been found. The rapid 
convergence can be explained by the fact that the 
member force distribution for such structures is 
somewhat insensitive to changes in member size. 
In contrast, the inelastic optimal design process 
converges quite slowly but steadily in 11 design 
cycles. Relatively slow, but steady, convergence is 
inevitable due to the need of maintaining a small 
change in the steel reinforced ratios during the 
nonlinear design optimization process. However, 
the OC design method is able to achieve a smooth 
and steady convergence to the optimal design as 
evidently shown in Figure 5.

In the elastic design optimization subject to 
elastic inter-story drift constraints, the total mate-
rial cost only includes the concrete cost, which is 
minimized from the arbitrary, initial US$1528 to 
the final US$2205. In the inelastic design opti-
mization subject to inelastic inter-story drift 
constraints, the initial total cost US$3898 consists 
of the steel reinforcement cost of US$1693 cal-
culated based on code-specified strength require-
ments and the concrete cost of US$2205, which 
is to be fixed in this inelastic phase of the opti-
mization. Since initial violations in inelastic inter-
story drift constraints are found in the strength-
based design, an increase in the steel reinforcement 
is necessary, resulting in a final total construction 
cost of US$4184. In addition, it is found from 
Case B that there is a relatively large increase of 



224

Optimal Seismic Performance-Based Design of Reinforced Concrete Buildings

16% in the steel cost from the initial US$1693 to 
US$1978.

Figure 6 presents the optimal steel reinforce-
ment ratios for Cases A and B. In the elastic phase, 
the member sizes are increased after the elastic 
design optimization since the initial design is 
found to be infeasible. The starting strength-based 
design, in the second inelastic design phase, is also 
found to be infeasible in terms of the assumed 
allowable inter-story drift limit. After the inelas-
tic design optimization, the steel reinforcement 
ratios of the beams greatly increase particularly 
in the lower levels of the structure, while those 
of columns are found with little changes for Case 
B. Reasons lie on that the columns of Case B are 
found to be mainly controlled by the minimum 
strength requirements with the final steel ratios 
being set to the initial strength based limits, 
whilst the beams are governed by the inelastic 
inter-story drift performance requirements with 
the final steel ratios being larger than the initial 
strength based limits.

The initial and final inter-story drift ratios are 
shown in Figure 7(a) for Case A and Figure 7(b) 
for Case B. The initial inter-story drift constraints 
at the second through the eighth floors are found 
to violate substantially the allowable inter-story 
drift ratio limit of 1/100 for both cases, resulting 
in the occurrence of the weak stories on the these 
floor levels of the building. However, these push-
over inter-story drift constraints are found to be 
close to and within the allowable values after the 
optimization, indicating that a rather uniform 
inter-story drift distribution over the height of the 
building has been achieved and the occurrence of 
weak story has been prevented at the final per-
formance point.

Figure 8(a) includes a table showing the num-
ber of plastic hinges at three different performance 
states, i.e., Immediate Occupancy (IO), Life 
Safety (LS) and Collapse Prevention (CP) for 
Case B. Figures 8(b)-(c) show the initial and final 
plastic hinge distributions under the pushover 
loading at the performance point of the structure. 

Figure 5. Design history of structural cost
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Figure 6. Optimal member sizes and reinforcement ratios for three cases

Figure 7. Interstory drift responses of three cases
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No plastic hinge rotation is found to exceed the 
specified threshold of plastic rotation, θp

U . As 
shown in Figure 8(b), the rotations of twenty 
plastic hinges of the initial design are found to be 
located between the LS-CP state. However, after 
the optimization, most of the plastic hinges are 
found to be in the B-IO and IO-LS states and only 
one hinge is in the LS-CP state, as can be observed 
from the optimized framework in Figure 8(c). 
Furthermore, the inter-story drifts along the height 
of the building are also found to be almost all 
fully constrained at the optimum, resulting in a 

rather linear deflected profile of the inelastic 
design. Such a result further indicates that the 
optimization method developed can automati-
cally resize the steel reinforcements of all mem-
bers to attain a uniform ductility demand along 
the height of the multi-story building.

4.2 Multi-Objective Optimization 
(Case C)

The occurrence probability Pr for the severe 
earthquake is assumed to be 3.9% according to 

Figure 8. Initial and final plastic hinge distribution of Case B
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the design return period of 50 years. This building 
frame is assumed to be a Class B building in this 
example and the coefficients of expected failure 
loss are shown in Table 1. Other conditions stay 
the same as Case B.

Figure 9 presents a Pareto optimal set, which 
provides the best compromise between the initial 
structure cost, f1 , and the damage loss, f2 . The 
minimum structure cost, f1 , for the single objec-
tive optimal design problem given in Eqs. (36)-
(39), i.e., corresponds to Point C0 in Figure 8 
where f1 = US$4184 and the corresponding dam-
age loss, f2 , is found to be US$7522 . The optimal 
steel reinforcement ratios corresponding to Point 
C0 are taken as initial steel ratios of members in 
the subsequent multi-objective inelastic design 
optimization (see Eqs. (33)-(35)) and the optimal 
Pareto set curve can then be generated. Besides, 
US$4184 at Point C0 is the minimum value of 
the initial structure cost, f1 , satisfying design 
constraints at this Pareto curve; correspondingly, 

US$7522 at Point C0 is the maximum value of 
the damage loss, f2 .

Firstly, it is observed from Figure 9 that an 
improvement in the damage loss leads to an in-
crease in the initial material cost of the structure. 
From the Pareto optimal set, a designer can have 
an overview of the tradeoffs. Secondly, any point 
in the Pareto optimal set can be selected as an 
optimum design, which represents a designer’s 
preference. A designer has many choices rather 
than only one and he/she may finally choose a 
particular solution, which he/she thinks, should 
be realized. Thirdly, the life-cycle cost can be 
further written as F f f= +ϕ ϕ1 1 2 2 , where ϕ1 and 
ϕ2 are the weighting factors and their magnitudes 
are dependent on a designer’s decision. A preferred 
balance of the initial and damage losses can 
therefore be obtained. It is worth noting that dif-
ferent values of ϕ1 and ϕ2 will lead to different 
minimum values of the life-cycle cost.

Figure 6 lists the optimal steel reinforcement 
ratios at Points C0 and C*, respectively. The steel 

Figure 9. A Pareto optimal set of Case C
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reinforcement ratios of beams are largely increased 
from the first to the eighth floors from Point C0 to 
Point C* (i.e., an increase of 17%~47%), while 
there is no change of steel reinforcement ratios 
in most columns due to no occurrence of plastic 
hinges. Such an increase indicates that steel rein-
forcement has a significant effect on improving 
inelastic drift performance and further reducing 
damage loss.

Figure 7(c) presents the results of the inter-
story drift ratios at Points C0 and C*, respectively. 
It is found that all the inelastic inter-story drift 
constraints are satisfied corresponding to either 
Point C0 or Point C*. In the optimal solution (i.e., 
corresponding to Point C0) of the single objective 
design optimization, the inter-story inelastic drift 
constraints from the second to the seventh floors 
are close to the limiting ratio of 1%. However, in 
the multi-objective design optimization (i.e., Point 
C*), all final drift constraints are not necessarily 
found to be close to the limiting ratio 1%. This 
is due to the fact that steel ratios of the structure 
members are further enhanced in order to meet the 
best balance between the initial structure cost and 
damage loss. Such a result seems to indicate that 
for the multi-objective design optimization, the 
lateral load resisting system can be automatically 
improved by the OC procedure to seek the best 
balance so that lateral drift constraints are satis-
fied simultaneously with the least life-cycle cost.

5. CONCLUSION

Using the principle of virtual work, both the elastic 
spectral drift constraints and the nonlinear push-
over inelastic drift constraints have been explicitly 
formulated in terms of the design variables. Rapid 
and steady convergence for elastic drift optimi-
zation has been found. In contrast, the inelastic 
optimal design process converges quite slowly 
but steadily. The restrictive move limit imposed 
on the steel reinforcement design variables is 

found necessary to ensure a smooth and steady 
convergence of the inelastic drift design process.

It has been demonstrated that steel reinforce-
ment plays a significant role in controlling the 
lateral drift beyond first yielding and in providing 
ductility to an RC building framework. It is also 
demonstrated that the OC design method is able 
to attain automatically and gradually the optimal 
performance-based inter-story drift design. At op-
timum, a uniform lateral drift or ductility demand 
over all stories of the building with the minimum 
cost is achieved, thus preventing the occurrence 
of soft story mechanisms in such structures.

The optimization technique developed for the 
nonlinear multi-objective design of inelastic drift 
performance of RC frameworks under pushover 
loadings provides a very effective way to simul-
taneously optimize the structural life-cycle cost 
while satisfying all drift performance design cri-
teria. A multi-objective optimization algorithm, 
the ε–constraint method, has been effectively 
applied to handle the conflicts between the initial 
structure cost and damage loss by producing a 
Pareto optimal set, from which a decision maker 
can directly select the best compromise solution.

It is believed that the single- and multi-
objective optimization methodology provides a 
powerful computer-based technique for seismic 
performance-based design of multi-story RC 
building structures. The proposed optimization 
methodology provides a good basis for more 
comprehensive performance-based optimization 
of structures as multiple levels of performance 
criteria and design objectives are to be considered.
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Chapter  10

1. INTRODUCTION

Solving optimization problems is an inherent part 
of engineering design where one seeks the best 
design to minimize or maximize an objective 

function subject to some constraints. In struc-
tural optimization, depending on the nature of 
the design variables, three different optimization 
categories can be recognized. Sizing optimization 
arises when the design variables are connected to 
the dimensions of the elements. It can be useful 
where the layout and the shapes of the members 
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are known and it is desired to find the optimum 
dimensions. On another level, one can choose 
the design variables to control the shape of the 
boundaries of the members. Such selection will 
lead to shape optimization. If the overall layout 
of the members is known and it is already decided 
where to put each member, in order to find the 
best shapes of the members, one can use shape 
optimization. In order to optimize the topology, 
connectivity, or layout of a system, topology 
optimization techniques should be used. In topol-
ogy optimization the design variables control the 
topology and connectivity of the design. Figure 
1 schematically illustrates these three categories 
of structural optimization.

Starting from topology optimization and feed-
ing the results to shape and sizing optimization 
routines will generally result in far greater savings 
than merely using shape and sizing optimization. 
Topology optimization techniques can thus be 
considered as important and powerful tools in 
hand of design engineers.

In this chapter we review the application of to-
pology optimization techniques in seismic design 
of structures. We start with a brief review of the 

history of topology optimization. Then we focus 
on two general optimization problems in seismic 
design of structures, the eigenvalue optimization 
problem and the problem of maximizing the en-
ergy absorption.

2. TOPOLOGY OPTIMIZATION

Initially addressed by Culmann (1866), the lay-
out optimization problem is not quite new. The 
interesting work of Michell (1904) laid down the 
principles of topology optimization of structures 
more than a century ago. After that, the field re-
mained untouched for nearly seven decades until 
Prager and Rozvany improved and generalized the 
Michell’s theory (e.g. refer to Prager 1969, 1974 
and Rozvany 1972a,b). Yet the field didn’t attract 
much attention until Bendsøe and Kikuchi (1988) 
proposed a finite element-based numerical method 
for topology optimization of continuum structures. 
Usually referred to as the homogenization method, 
this approach soon became a basis upon which 
other topology optimization techniques have been 
developed.

Figure 1. The three levels of structural optimization: top) sizing optimization; middle) shape optimiza-
tion; bottom) topology optimization
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In their approach, Bendsøe and Kikuchi consid-
ered special microstructures as the building cells 
of the structure and employed the homogenization 
method to find the macro-scale properties of the 
cells in terms of their micro-scale dimensions. 
By considering the dimensional properties of the 
microstructures as design variables, they reduced 
the topology optimization of the structure to sizing 
optimization of its microstructures.

Using the idea behind the homogenization 
method, Bendsøe (1989) introduced a simpler 
approach to optimize the topology of structures. 
In this new approach instead of using the micro-
structures and homogenization, Bendsøe proposed 
an artificial material interpolation scheme relating 
the material properties of the elements to their 
relative density. After Rozvany et al. (1992), this 
approach is referred to as ‘Solid Isotropic Micro-
structures with Penalization (SIMP)’. The SIMP 
approach is now one of the most established and 
popular methods in topology optimization.

A simple FE-based topology optimization 
technique was later proposed by Xie and Steven 
(1993). Named Evolutionary Structural Optimiza-
tion (ESO), the technique was based on the idea 
of evolving the structure towards an optimum 
design by progressively removing its inefficient 
elements. The Bi-directional ESO (BESO) was 
the main successor of the ESO method. Initially 
introduced by Querin (1997), Querin et al. (1998) 
and Yang et al. (1999a), the BESO algorithm was 
capable of adding as well as removing elements. 
This method is now a well-known topology op-
timization technique which is widely used due to 
its clear topology results and ease of application.

The SIMP and BESO techniques will be de-
tailed and used in later sections of this chapter. 
In the next section we investigate the equation of 
motion of a structural system to find out which 
parameters shape the responses of structures under 
dynamic loads.

3. STRUCTURAL RESPONSES 
UNDER DYNAMIC LOADS

Consider the equation of motion for a finite ele-
ment discretized linear system

Mu Cu Ku p + + =  (1.1)

where M, C and K are mass, damping and stiff-
ness matrices respectively and u and p are time-
dependent vectors of nodal displacement and nodal 
force respectively, i.e., u ≡ u(t) and p ≡ p(t). We 
assume a classical damping (Chopra 1995), for 
example Reyliegh damping of the form

C M K= +a aM K  (1.2)

where aM and aK are constants.
We now expand the displacements in terms of 

modal contributions

u( ) ( )t q tr r
r

Nd

=
=
∑ ϕϕ

1

 (1.3)

where Nd is the number of degrees of freedom and

q t C t S t r Nr r r r r d( ) cos sin , , ,= + =ω ω 1  
(1.4)

are harmonic functions and Cr and Sr are constants 
of integration associated with the rth degree of 
freedom. The natural frequencies ωr and natural 
modes φr are solutions of the following eigenvalue 
problem

K Mϕϕ ϕϕr r r= ω2  (1.5)

which represents the free vibration of the un-
damped system. For simplicity, we further require 
that the modes are M-orthonormal, i.e.,
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ϕϕ ϕϕn
T

r nr dn r NM = =δ , , , ,1  (1.6)

where δnr is the Kroneker’s delta which equals 1 
for n = r and 0 otherwise. Premultiplying Equa-
tion (1.5) by ϕϕn

T and using Equation (1.6) we get

ϕϕ ϕϕn
T

r r nr dn r NK = =ω δ2 1, , , ,  (1.7)

which means the modes are also K-orthogonal. 
Using Equation (1.3) in Equation (1.1) and pre-
multiplying by ϕϕn

T we obtain

ϕϕ ϕϕ ϕϕ ϕϕ ϕϕ ϕϕ ϕϕn
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(1.8)

We now make use of M-orthonormality of the 
modes and the classical damping Equation (1.2) 
to simplify Equation (1.8) to

 q q qn n n n n n n
T+ + =2 2ζ ω ω ϕϕ p  (1.9)

where ζ
ω

ωn
M

n

K
n

a a
= +

2
1

2
 is the damping ratio 

of the n-th mode (Chopra 1995).
According to Equation (1.9), the response of 

a structure under a dynamic load depends on its 
natural frequencies ωn and damping ratios ζn.

4. MAXIMIZING EIGENFREQUENCIES 
IN FREE VIBRATION

As seen in the previous section, controlling the 
response of structures can involve eigenfrequency 
optimization. In this section we address the prob-
lem of maximizing the fundamental frequency of 
a structure in free vibration. This problem was 
initially addressed by Díaz and Kikuchi (1992) 
using the homogenization method. Here, we for-
mulate the problem using the SIMP approach. This 
formulation can be simply extended to maximiz-

ing (or minimizing) any combination of natural 
frequencies. A practically useful example of such 
extensions will be briefly addressed in section 6. 
It is worth noting that maximizing fundamental 
frequency results in structures with a reasonable 
stiffness against static loads in general (Bendsøe 
and Sigmund 2003).

Damping effects are ignored and linear elastic 
material behavior is assumed in this section. Also 
all material parameters are taken as deterministic 
quantities. Random variability of material strength 
parameters can significantly affect the ductility 
and energy absorption capacities of structures 
subjected to seismic loading (Kuwamura and Kato 
1989, Elnashai and Chryssanthopoulos 1991). 
Uncertainties of variables can be considered 
in structural optimization by integrating Reli-
ability Analysis (see e.g. Kharmanda et al. 2004 
and Papadrakakis et al. 2005) or through Robust 
Optimization (see e.g. Beyer and Sendhoff 2007).

Using the finite element discretization and the 
SIMP approach we introduce the following mate-
rial interpolation scheme to express the Young’s 
modulus Ee of element e in terms of its relative 
density xe as

E x x Ee e e
p( )=  (1.10)

where E is the Young’s modulus of the base 
isotropic material. The power p > 1 is known as 
the penalty factor and is introduced to push the 
solutions towards a solid-void topology. A typical 
value for the penalty factor is p = 3 (Bendsøe and 
Sigmund 1999). The relative densities are chang-
ing in the range 0 ≤ xe ≤ 1 in which xe = 1 represents 
solids and xe = 0 represents void areas. In order 
to avoid singularities in the stiffness matrix of the 
system, Equation (1.10) may be replaced by

E x E x E Ee e e
p( ) ( )= + −  (1.11)

in which E  is a small elastic modulus assigned 
to voids. Based on Equation (1.10), the (local 
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level) stiffness matrix of the element e can be 
expressed as

K K K Ke e e e
p

e ex x( )= + −( )  (1.12)

in which Ke  and Ke  are the stiffness matrices of 
the element e when it is made of the base mate-
rial and void (in its solid and void states) respec-
tively. Similarly for the density and the mass 
matrix of the element e we can write

ρ ρe e ex x( )=  (1.13)

and

M Me e e ex x( )=  (1.14)

Where ρ  is the density of the base material and 
Me  is the mass matrix of the element e in its 
solid state.

Using these material interpolation schemes 
one can change element e from solid to void and 
backwards by changing the value of xe. Thus by 
choosing xe-s as design variables, one can produce 
different topologies without altering the finite 
element mesh.

We can now formulate the optimization prob-
lem. The fundamental frequency optimization 
problem can be stated as finding the best topol-
ogy of a structure to maximize its fundamental 
frequency given a fixed amount of material. The 
problem can thus be formulated as

max min

, , ,
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(1.15)

where λ ωj j dj N= =2 1, , ,  and N is the number 
of elements. The second constraint restricts the 
volume of the design to an upper limit denoted 
by v . In this statement ve is the volume of the 
element e.

4.1. Sensitivity Analysis

Solving Problem (1.15) requires finding the sen-
sitivities of λ1 with respect to design variables xe. 
Differentiating Kφj = λjMφj we can write

∂
∂

+
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∂
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∂
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(1.16)

Premultiplying by ϕϕj
T  and rearranging the 

terms we obtain
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(1.17)

Using the symmetry of K and M, we can read-
ily conclude that

ϕϕ ϕϕj
T

j j j

T
K M K M−( ) = −( )



 =λ λ 0 . 

We also use Equation (1.6) in Equation (1.17) 
to finally express the sensitivities as

∂

∂
=

∂
∂
−

∂
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λ
λj

e
j
T

e
j

e
jx x x

ϕϕ ϕϕ
K M  (1.18)

The stiffness and mass derivatives in Equa-
tion (1.18) can be calculated using Eqs. (1.12) 
and (1.14).

4.2. Solution Method

Having the sensitivities in Equation (1.18), the 
optimization problem (1.15) can be solved using 
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suitable gradient-based techniques. Noting that the 
number of design variables (number of elements) 
can be very large, one should adopt a solution 
method capable of solving large-scale problems. 
The method of moving asymptotes (MMA) 
proposed by Svanberg (1987) is a well-known 
solution method used in topology optimization 
problems. Another common approach is using 
optimality criteria (OC) based algorithms. In the 
following, after deriving the optimality criteria 
for the optimization problem (1.15), we propose 
a heuristic iterative fixed-point algorithm to solve 
the optimization problem based on the optimality 
criteria.

The eigenvalue equation, Kφj = λjMφj can be 
satisfied separately using finite element analysis. 
Excluding this equation, the Lagrangian of Prob-
lem (1.15) takes the form

 = + −








+ −( )+





= =
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1 1
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(1.19)

where Γ , γe and γe are Lagrange multipliers. 
Using Karush-Kuhn-Tucker results (Karush 1939; 
Kuhn and Tucker 1951), the necessary optimal-
ity conditions for Problem (1.15) can be expressed 
as follows
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If we define γ γ γe e e= −  and use it in Equa-
tion (1.20), we can rewrite the optimality criteria 
as
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(1.21)

To increase the fundamental frequency, we add 
a vector of increments ∆x = (∆x1, ∆x2,…, ∆xN) T 
to the design variables x = (x1, x2,…, xN)T. The 
subsequent change in the fundamental frequency 
and the design volume can then be evaluated as

∆ ∆λ λ1 1= ∇( )T x  (1.22)

∆ ∆v T= v x  (1.23)

where ∇ = ( )∂
∂

∂
∂

∂
∂λ λ λ λ

1
1

1

1

2

1

x x x

T

N
, , , is the gradient 

vector of λ1 and v = ( , , , )v v vN
T

1 2  .
Let us now define the increments of design 

variables as

∆ Γx D v= = ∇ −λ1  (1.24)

If the volume constraint is inactive, we will 
have Γ = 0 and thus ∆x = ∇λ1  which results in 
∆λ λ λ1 1 1= ∇( ) ∇ ≥

T
0  after substituting in 

Equation (1.22).
If the volume constraint is active, on the other 

hand, we will have

∆ ∆v T= =v x 0  (1.25)

Using Equation (1.24) in Equation (1.25) and 
solving for Γ we obtain
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Γ =
∇v
v v

T

T

λ1  (1.26)

If the boxing conditions are all inactive, i.e. if 
0 < xe < 1, we can use Equation (1.26) in Equa-
tion (1.24) and then Equation (1.24) in Equation 
(1.22) to write

∆λ λ λ
λ

1 1= ∇( ) ∇ −
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v v
 (1.27)

It can be easily verified that the right hand side 
of Equation (1.27) is a form of Cauchy–Bunya-
kovsky–Schwarz inequality and thus ∆λ1 0≥ .

Based on this discussion, we propose the fol-
lowing update scheme to solve Problem (1.15)
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(1.28)

Here the subscripts denote the iteration num-
ber and η is a tuning parameter defining the move 
limit. The vector D is defined in Equation (1.24). 
Note that p used here is the previously defined 
penalty power for stiffness. The value of the 
Lagrange multiplier Γ can be calculated using 
bisection method in an inner loop. In finding Γ, 
one should note that ∂ ∂ <v Γ 0.

Note that the same algorithm can be used 
to maximize any of the natural frequencies. To 
maximize the kth eigenvalue, for example, one 
needs to replace λ1 and φ1 by λk and φk respectively.

4.3. Numerical Instabilities

Most of the material distribution techniques, 
including homogenization, SIMP and BESO 
methods, are known to be prone to three major 
numerical instabilities, namely checkerboard 
problem, mesh dependency, and local minima 

(Sigmund and Petersson 1998). Checkerboard 
problem refers to the formation of alternating 
solid and void elements in a checkerboard-like 
pattern resulting in artificially high stiffness. Mesh 
dependency refers to obtaining different optimal 
topologies for the same problem using different 
mesh sizes. Local minima refers to the problem 
of obtaining different optimal topologies using the 
same mesh but different algorithmic parameters 
and/or initial design.

One of the simplest yet effective approaches 
to overcome checkerboard and mesh dependence 
problems is filtering sensitivities (Sigmund and 
Petersson 1998). In this approach the calculated 
sensitivities are replaced by filtered sensitivities 
which are calculated as a weighted average of 
the sensitivities of the neighboring elements. A 
simple linear filter takes the form
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in which wij = max{0, R – dij}. R is known as the 
filtering radius and dij denotes the distance between 
the centers of the elements i and j. The filtering 
scheme (1.29) can be activated by choosing the 
filtering radius R bigger than the size of elements 
h. This can eliminate the checkerboard problem.

In this scheme, the filtering radius R imposes a 
local minimum length scale to the solutions. More 
precisely, using this sensitivity filter, the width of 
bars appearing in the resulting topologies could 
not be smaller than 2R. This property is useful in 
achieving mesh independency. By defining R as 
a ratio of the actual length of the design domain, 
the mesh dependence problem can be rectified.

Unlike the first two types of numerical insta-
bilities, the local minima problem is mostly due to 
the use of gradient-based optimization algorithm 
which can be trapped in local minima of usually 
non-convex objective functions. On the other 
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hand, the extremely large size of the problems in 
topology optimization is a great barrier in using 
non-gradient-based optimization techniques such 
as Genetic Algorithm (GA) and Neural Networks. 
The continuation method is a simple approach 
used and suggested by many researchers to over-
come this problem in gradient-based optimization 
methods (Sigmund and Petersson 1998). In this 
approach, one would start solving the problem in a 
more relaxed form and gradually apply restrictions. 
For example, one can start the solution considering 
no penalty factor (p = 1) and gradually increase 
p upon convergence of the solution.

Apart from these three problems – which are 
common in all types of topology optimization 
problems – some numerical artifacts are unique 
to eigenvalue problems. The ‘artificial modes’ 
problem comes under this category. These are 
localized modes appearing in regions with rela-
tively high mass to stiffness ratio. Pedersen (2000) 
points that due to the interpolation schemes for 
stiffness and mass (Eqs. (1.12) and (1.14) respec-
tively), the mass to stiffness ratio rises steeply for 
small values of x which ultimately results in local-
ized modes. To overcome this problem, a modi-
fication in the stiffness interpolation scheme is 
suggested by Pedersen (2000) to limit the mass 
to stiffness ratio in low density areas (typically 
x < 0 1. ). Following the same principle, Du and 
Olhoff (2007) proposed a different approach by 
modifying the mass interpolation scheme. The 
latter approach is adopted here. To this end, we 
replace the original mass interpolation scheme, 
Equation (1.14), by

M
M

Me e
e e e

q
e
q

e e

x
x x

x x
( )

, .

, .
=

>

≤






−

0 1

10 0 11  (1.30)

with q = 2p. This ensures that the mass to stiffness 
ratio cannot exceed 10p-1.

4.4. Flowchart and 
Numerical Examples

A flowchart of the proposed solution algorithm 
is depicted in Figure 2. The solution starts from 
an initial guess design. A uniform distribution of 
material defined as x v v e Ne t= =/ , , ,1  with 
vt denoting the total volume of the design domain 
is usually used as an initial design. The main loop 
starts by analyzing the current design using finite 
element analysis. Based on FE results, the sensi-
tivities are calculated using Equation (1.18). The 
sensitivities are then filtered using Equation (1.29). 
The updated variables are calculated in an inner 
loop. In the inner loop, starting with a positive 
value for the Lagrange multiplier Γ, the updated 
variables are calculated using Equation (1.28). 
The volume of this new design is checked and 
the new value of Γ is adjusted using the bisection 
approach. The inner loop continues until the 
value of Γ converges. The updated design is then 
replaces the old one and the procedure is re-
peated until a convergence criterion is satisfied.

The convergence criterion used here is defined 
as
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where λ(i) is the value of the objective function at 
the i-th iteration and k denotes the last iteration. 
This condition compares the value of the objective 
function in the last and second last l iterations and 
assumes convergence is achieved when the rela-
tive error is smaller than a predefined tolerance 
0 1< ε .  In all examples reported here l = 5 
and ε = 0.001 were used.
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Example 1: Reinforcement 
of a Planar Frame

As the first example we consider a frame in plane 
stress. The maximum volume of used material 
should be limited to half of the volume of the 
whole frame (v vt/ %= 50 ). The initial design 
is depicted in Figure 3 (leftmost). The outer frame 
is fixed to be solid and is non-designable. Note 
that if we do not consider the non-designable 
outer frame, the optimization program will obvi-
ously shorten the frame.

The 3×12m domain is descretized using a 
30×120 mesh of 4 node square bi-linear elements. 
A consistent mass matrix formulation has been 
used (see e.g. Zienkiewicz et al. 2005). The stiff-
ness and density of the base material are assumed 
asE = ×2 105 MPa and ρ = 8000 kg/m3 re-
spectively. A penalty power of p = 4, a filtering 
radius of R = 30cm = 3h, and move limit of η = 
0.2 have been used. The ratio between the stiffness 
of solid and void areas is selected as E E: = 109 .

The obtained topologies at different iterations 
are shown in Figure 3.

Figure 2. The flowchart of the proposed solution algorithm
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Figure 4 shows the values of the fundamental 
frequency and the first eigenmode. The funda-
mental frequency has increased from 60.4 rad/s 
in initial design to 154.1 rad/s after 85 iterations 
showing 155% increase. Note that the values of 
the fundamental frequency also depend on the 
penalty factor. If we analyze these designs with 

p = 1, the initial and final eigenfrequencies will 
change to 105.2 rad/s and 174.0 rad/s respectively.

5. MULTIPLE EIGENFREQUENCIES

By steadily increasing (or decreasing) an eigenfre-
quency, it is possible that its value reaches adjacent 
eigenfrequencies resulting in multiple eigenfre-
quencies. The problem of multiple eigenvalues 
in structural optimization was first addressed by 
Olhoff and Rasmussen (1977). It is shown by Haug 
and Rousselet (1980) that the multiple eigenvalues 
are not differentiable in the Fréchet sense and can 
only be expected to be Gâteaux (directionally) dif-
ferentiable. This finding rules out the validity of 
sensitivities calculated by Equation (1.18) in case 
of multiple eigenfrequencies. Ignoring this fact in 
topology optimization will result in oscillation of 

Figure 3. The initial design and topologies of the 
first example at different iteration numbers

Figure 4. Evolution history of the fundamental frequency (a) and the first eigenmode of the optimal 
design (b) in example 1
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the objective function and suboptimal solutions 
as shown in the following example.

Example 2: Clamped-Clamped Beam

Consider the problem of maximization of the 
fundamental frequency of a clamped-clamped 
beam with volume fraction of 50% and material 
properties similar to example 1. All algorithmic 
parameters are similar to example 1. The structure 
has been discretized into 30×240 identical 4-node 
bi-linear square elements. The initial and the fi-
nal solutions and the evolution of the first three 
eigenfrequencies are shown in Figure 5.

It can be seen that after 29 iterations, the first 
two eigenfrequencies coalesce. Using the single 

modal sensitivities of Equation (1.18), decreases 
the objective function instead of increasing it. 
This produces oscillation after the point of coalesce 
and the algorithm converges at a suboptimal solu-
tion (Figure 5b).

5.1. Simple Approaches to Avoid 
Multiple Eigenfrequencies

A number of simple approaches can be used to 
avoid multiple eigenfrequencies. Kosaka and 
Swan (1999) proposed a symmetry reduction ap-
proach in which a symmetry condition is imposed 
on the design variables to ensure a symmetric 
solution. In their paper, Kosaka and Swan (1999) 
noted that in a symmetric structure, the multiple 

Figure 5. Example 2 without treatment: initial design (a), final solution (b), and evolution of the eigen-
frequencies (c)
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eigenvalues are differentiable (in the Fréchet 
sense). Note that in this approach the symmetry 
reduction is not applied in the analysis and the 
analysis is based on the full structure. Using 
symmetry reduced structure for analysis cannot 
be validated in eigenfrequency optimization since 
the eigenmodes are not necessarily symmetric 
even for a symmetric structure.

Another approach to avoid repeated eigenfre-
quencies is to add an extra condition to the optimi-
zation problem ensuring that the eigenfrequencies 
are distant from each other. For example one may 
reformulate problem (1.15) as follows (Bendsøe 
and Sigmund 2003).

max
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(1.32)

with α < 1, for example α = 0.95. This formulation 
is known as bound formulation. Note that with α = 
1, Problem (1.32) is equivalent to Problem (1.15).

It is also possible to turn around the multiple 
eigenvalue problem by including adjacent eigen-
frequencies in the objective function. For example 
Yang et al. (1999b) used the arithmetic mean of 
the eigenvalues as the objective function when 

Figure 6. Solving example 2, using mean eigenfrequency as objective function: final solution (a) and 
evolution of the objective function and the first three eigenfrequencies (b)
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they fell within a small distance from each other. 
A more generalized mean eigenvalue objective 
function has been considered by Ma et al. (1995). 
For example considering the harmonic mean of 
the first two eigenvalues, we can define the fol-
lowing objective function

λ λ λ∗ − − −
= +( )2 1

1
2

1 1
 (1.33)

Using this objective function in example 2 
results in a smooth increase for the first two ei-
genvalues. Figure 6 shows the final solution and 
the evolution history of the first three eigenvalues 
considering the objective function defined in 
Equation (1.33) in example 2.

5.2. Sensitivity Analysis of Multiple 
Eigenvalues

It is also possible to solve the multimodal eigen-
frequency optimization problems directly. Using 
a perturbation technique, Bratus and Seyranian 
(1983) calculated the sensitivities of multiple 
eigenvalues. Here we follow Seyranian et al. 
(1994) and Lund (1994) to present the sensitivity 
analysis of multiple eigenfrequencies.

Assume an m-fold multiple eigenvalue

λ λj j m= =� …, , ,1  (1.34)

Due to multiplicity, any linear combination 
of the corresponding eigenvectors will satisfy 
the main eigenvalue problem Kφj = λjMφj. Now 
assume the following linear combination
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where the coefficients αjk are unknown. If we 
apply a perturbation ε to the i-th optimization 
variable the vector of design variables changes 
to x + ε∆xi where ∆xi denotes a vector of size N, 

all of its components being zero except for its i-th 
component which is 1.

Due to this perturbation, the stiffness and mass 
matrices will change to
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and the eigenvalues and the eigenvectors will 
change to

λ ε λ εµ εj i j o j m( ) ( ), , ,x x+ = + + =∆ � …1  
(1.37)

ϕϕ ϕϕj i j j o j m( ) ( ), , ,x x+ = + + =ε ε ε∆ � …ν 1  
(1.38)

where μj and νj are the unknown sensitivities 
of the multiple eigenvalues and eigenvectors 
respectively. o(ε) indicates higher order terms. 
Note that μj ≡ μj(x, ∆xi) and νj ≡ νj(x, ∆xi), i.e. the 
sensitivities depend on ∆xi.

Using the perturbed values of Eqs. (1.36), 
(1.37), and (1.38) in the main eigenvalue problem, 
after ignoring the higher terms, one obtains
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Premult iplying Equation (1.39) by 
ϕϕs

T s m, , ,= 1 , the second term in the left-hand 
side will cancel out and one obtains the following 
m equations
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We now substitute Equation (1.35) in Equation 
(1.40) and use Equation (1.6) to write
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This linear system can be solved to calculate the 
coefficients αjk. A non-trivial solution only exists if
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This subeigenvalue problem can be solved to 
calculate the sensitivities μj, j = 1,…,m due to the 
increment of the i-th optimization variable.

If the vector of design variables undergo an 
increment of the form εe with e = (∆x1, ∆x2,…, 
∆xN)T and ||e|| = 1, one can easily generalize Equa-
tion (1.42) to

det , , , ,f esk
T

sk s k m−



 = =µδ 0 1  (1.43)

where
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are known as the generalized gradient vectors 
(Seyranian et al. 1994). Note that fsk are vectors 
of length N, thus f esk

T  are scalars. Also note that 
due to symmetry of the stiffness and mass matri-
ces fsk = fks.

The solutions of subeigenvalue problem of 
Equation (1.43) are the sensitivities of the multiple 
eigenvalues. This equation was initially introduced 
by Bratus and Seyranian (1983).

5.3. Solution Algorithm

Assume that Φ is an Nd×m matrix whose columns 
are the eigenvectors φ1,…, φm. Also consider the 
vector d = (d1,d2,…,dN)T defined as

d
x x

e Ne
e e

=
∂
∂
−
∂
∂

=
K M� …λ , , ,1  (1.45)

Then the subeigenvalue problem of Equation 
(1.43) can be stated in the following matrix form

A I− =µ 0  (1.46)

where A = ΦTΦdTe is a symmetric m×m matrix 
and Im×m is the unity matrix.

Following Cox and Overton (1992) and Over-
ton (1992), the necessary optimality conditions to 
solve problem (1.15) is that there exists an m×m 
symmetric positive semidefinite matrix Λ with 
trace(Λ) = 1 such that

�D d v

v x v v x v
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(1.47)

where the Frobenius matrix inner product is de-
fined as A:B = trace(ATB).

The proof of optimality conditions in (1.47) 
will not be presented here. Enthusiast reader is 
referred to Cox and Overton (1992), Overton 
(1992), and Seyranian et al. (1994).

Note that for the case of simple eigenvalues (m 
= 1), one should have Λ = 1 and optimality condi-
tions in (1.47) reduce to (1.21). Comparing (1.47) 
with (1.21), one may note that the only difference 
is that the sensitivities ∂λ/∂xe in (1.21) have been 
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replaced by Λ:(ΦTdeΦ) in (1.47). The only issue 
here is to find a suitable matrix Λ.

Similar to Equation (1.24), we consider the 
following increment vector

∆ Γx D d v e Ne e
T

e e= = ( )− =� …Λ Φ Φ: , , ,1  
(1.48)

To illustrate the calculation of Λ, we consider 
the simplest multiple case of m = 2. We assume 
that the two eigenvalues are repeated if

λ λ
λ

δ2 1

1

−
≤  (1.49)

with δ being a small positive tolerance. In this 
case we have

Φ = ( )ϕϕ ϕϕ1 2,  (1.50)

We also introduce the following positive 
semidefinite symmetric matrix

Λ∗
∗ ∗

∗ ∗
=










Λ Λ
Λ Λ

11 12

12 22

 (1.51)

based on which we define

Λ Λ
Λ

=
∗

∗trace( )
 (1.52)

to ensure that trace(Λ) = 1.
Substituting Equation (1.51) in Equation (1.48) 

and using Eqs. (1.45) and (1.44), we may rewrite 
Equation (1.48) in the following form

∆ Λ Λ Λ Γx f f f v= + + −∗ ∗ ∗
11 11 12 12 22 222  (1.53)

The change in the multiple eigenvalues ∆λ1 
and ∆λ2 due to ∆x can be calculated by solving the 

following quadratic equation which is emerged 
from Equation (1.43)

det
f x f x
f x f x
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12 22

0
T T

T T

∆ ∆ ∆
∆ ∆ ∆
−

−










=

λ
λ

 (1.54)

We are interested in finding Λij
∗  such that 

Equation (1.54) results in two positive eigenval-
ues ∆λ1 > 0 and ∆λ2 > 0. There are several ways 
to achieve this. Here we assume the following

∆ ∆λ1 11 1= =f xT  (1.55)

∆ ∆λ λ λ
λ2 22 1 2 1

1
= = − −f xT  (1.56)

f x12 0T∆ =  (1.57)

Equation (1.57) implies that the matrix in Equa-
tion (1.54) is diagonal, hence the eigenvalues are 
equivalent to the diagonal terms as stated in Eqs. 
(1.55) and (1.56). In Equation (1.55) we consid-
ered an increase of 1 for the lowest eigenvalue. 
If the two eigenvalues are different, the increase 
assigned to the second eigenvalue in Equation 
(1.56) will be slightly lower than 1. This is to 
reduce the difference between the two repeated 
eigenvalues.

Substituting Equation (1.53) in Eqs. (1.55) to 
(1.57), we obtain a set of three equations which 
can be solved to yield the three unknown coef-
ficients Λ11

∗ , Λ22
∗ , and Λ22

∗ . These equations can 
be summarized as

f f f f f f
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(1.58)

By solving Equation (1.58) one finds Λ* 
which is used in Equation (1.52) to find Λ and 
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subsequently ∆x from Equation (1.53). Like the 
single modal case, to find the value of the Lagrange 
multiplier Γ an inner bisection loop can be used.

Figure 7 shows the final solution and the evolu-
tion history of the first three eigenfrequencies of the 
problem of example 2 using the above approach. 
It can be seen that the multiple eigenvalues evolve 
smoothly and a better solution is achieved.

Table 1 compares the final value of the first 
three eigenfrequencies of example 2 obtained 
using the three approaches considered here. As 
expected, using the multiple eigenvalue sensi-
tivities yields the best result.

6. CONTROLLING THE NATURAL 
FREQUENCIES

In dynamic design of structures one usually re-
quires to control the natural frequencies rather 

than increasing them. For an objective function 
defined as a combination of natural frequencies, 
the optimization problem can usually be addressed 
by minimal modification of the eigenfrequency 
maximization problem. Typically one just needs 
to update the sensitivities. One example of such 
objective functions was defined in Equation (1.33) 
and dealt with in the preceding section. Other 
examples include maximizing the gap between 
two natural frequencies (see e.g. Du and Olhoff 
2007 and Zhao et al. 1997) or designing structures 
with a specified set of frequencies or eigenmode 
shapes (see e.g. Xie and Steven 1996, Yang et al. 
1999b, Maeda et al. 2006) among others.

A common practical case is where the excitation 
frequency is known and it is desired to move the 
natural frequencies as far away as possible from 
the excitation frequency. A suitable objective 
function can be defined as

Figure 7. Solving example 2, using multiple eigenvalue sensitivities: final solution (a) and evolution of 
the first three eigenfrequencies (b)
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f j
j J

= −
∈
∑ ω2 2Ω  (1.59)

in which Ω is the excitation frequency and 
J Nd⊆ { }1, ,  is a set of natural frequencies 
considered. If we only consider the closest natu-
ral frequencies to Ω, the problem reduces to 
maximizing the gap between the adjacent natural 
frequencies. Maximizing the fundamental fre-
quency is a special case of this problem with Ω 
= 0.

Maximizing the gap between two natural fre-
quencies can lead to multiple eigenfrequencies 
(Du and Olhoff 2007). The following example 
illustrates this.

Example 3: Planar Frame 
with Non-Structural Mass

A three-level planar frame is considered with 6 
non-structural masses of 20,000kg each attached 
to it as shown in Figure 8a. The ratio between the 
stiffness of solid and void areas is reduced to 
E E: = 100 . All other parameters are similar to 
example 1.

We fist maximize the fundamental frequency 
of the frame. The evolution history of the funda-
mental frequency and the final solution are shown 
in Figures 8b and 8c respectively. The fundamen-
tal frequency has increased by 85% from 40.2 to 
74.6rad/s.

Table 1. Comparison of the results of the three approaches used to solve example 2 

Approach ω1 (rad/s) ω2 (rad/s) ω3 (rad/s)

Using single eigenvalue sensitivities (1.18) 257.1 267.1 330.9

Using the mean eigenvalue (1.33) as objective function 248.0 424.4 540.2

Using multiple eigenvalue sensitivities (1.43) 273.5 284.0 337.6

Figure 8. Example 3: initial design (a), final solution (b), and evolution of the fundamental frequency (c)
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The first four natural frequencies of the initial 
structure are ω1 = 40.2, ω2 = 163, ω3 = 215, and 
ω4 = 326 (rad/s). We now assume an excitation 
frequency of 175 rad/s which falls between the 
second and the third natural frequencies, and try 
to move the natural frequencies of the structure 
away from this frequency. The problem can be 
simplified to maximizing the gap between the 
second and the third natural frequencies, i.e., 
maximizing the following objective function

f = −ω ω3
2

2
2  (1.60)

The solution procedure explained in section 
5.3 has been adopted. The optimal topology and 
the evolution history of the first four natural fre-
quencies are depicted in Figure 9. The optimiza-
tion algorithm, tries to increase the third natural 
frequency while decreasing the second natural 
frequency. After nearly 15 iterations, the third 
eigenfrequency coalesced with the fourth one but 

this multiple eigenfrequency has been handled 
well by the algorithm.

7. FORCED VIBRATION

In previous sections we have focused on free 
vibration and did not include external forces in 
our formulations. This section deals with topol-
ogy optimization in forced vibration where the 
external dynamic forces are explicitly considered 
in the problem formulation. Similar to previous 
sections we ignore damping effects, uncertainties 
of the forces, geometry, and materials and consider 
linear elastic material behavior.

Applications of topology optimization in 
forced vibration have been initially studied by 
Ma et al. (1993) and Ma et al. (1995) using a ho-
mogenization approach. Ma et al. (1995) briefly 
discussed the forced vibration problem under pe-
riodic loads and defined the dynamic compliance 

Figure 9. Maximizing the gap between the third and the second eigenfrequencies of the frame of example 
3: final solution (a) and evolution of the first four eigenfrequencies (b). The first four eigenfrequencies 
of the optimal structure are ω1 = 74.6, ω2 = 190, ω3 = 397, and ω4 = 408 (rad/s).
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as the objective function to be minimized. Min et 
al. (1999) minimized the dynamic compliance for 
structures under impulsive loads. The topology 
design of structures under periodic loads has been 
studied more extensively by Jog (2002) where he 
proposed a new positive-definite definition of 
dynamic compliance as the average input power 
over a cycle. Jog (2002) also studied the problem 
of minimizing the vibration amplitude at certain 
control points. Topology design of structures 
subjected to design-dependent dynamic loads 
(e.g. hydrodynamic pressure loading) has been 
addressed by Olhoff and Du (2005). In more recent 
publications in this area, alternative approaches 
in using topology optimization to control the 
structural responses in a frequency interval has 
been studied by Jensen (2007) and Yoon (2010b).

Consider a harmonic external force of form

p p= C tcosΩ  (1.61)

where pC does not depend on time. The equation 
of motion for a discretized undamped system in 
forced vibration takes the form

Mu Ku p + = C tcosΩ  (1.62)

To solve this problem, we consider u = uC cosΩt 
using which in Equation (1.62) gives

K M u p−( ) =Ω2
C C  (1.63)

or

K M u p−( ) =Ω2  (1.64)

Comparing with equilibrium equation in 
static state, K M−Ω2  can be termed as “dy-
namic stiffness”. Note that unlike the static stiff-
ness, the dynamic stiffness matrix is not neces-
sarily positive definite.

7.1. Objective Function and 
Problem Formulation

Under static loads, the compliance defined as

c T= p u  (1.65)

is proportional to the strain energy of the struc-
ture and is a typical objective function used in 
topology optimization of structures. Minimizing 
the compliance maximizes the stiffness of the 
structure. Under dynamic loads, the value of c 
defined in Equation (1.65) varies with time. For 
structures subjected to periodic loads, we consider 
the average of c over a cycle, i.e.

c tT= ∫
Ω Ω

2 0

2

π

π
p ud

/

 (1.66)

as the objective function to be minimized. Here T 
= 2π/Ω is the time period. Note that this measure 
is not always positive, and thus, in problem for-
mulation, one should consider the absolute value 
(or square) of average compliance as the objective 
function. Otherwise, for c < 0 , the optimization 
algorithm will push the structure towards resonance.

In absence of damping, u = uC cosΩt. Using this 
and p = pC cosΩt in Equation (1.66), we can write

c t dtC
T

C
C
T

C= =∫
Ω
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p u
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1
2

2

0

2
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π
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(1.67)

The average compliance minimization problem 
can now be formulated as follows

min
, , ,x x x m C
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C C
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7.2. Sensitivity Analysis

In order to calculate the sensitivities, we rewrite 
the dynamic compliance by adding an (arbitrary) 
adjoint vector multiplied by a zero function

cm C
T

C
T

C C= + −( ) −



p u u K M u p Ω2  

(1.69)

Differentiating with respect to the design 
variables and rearranging the terms, we obtain

∂
∂
= + −( )
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(1.70)

where sign() is the sign function. Sensitivities of 
the dynamic compliance can now be written as

∂
∂
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∂
∂
−

∂
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x x x
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e

T
Cu

K M
uΩ2  (1.71)

in which the adjoint vector is selected such that

K M u p−( ) = −Ω2
 sign( )c C  (1.72)

Comparing Equation (1.72) with Equation 
(1.63), the adjoint vector is found to be 
u p u u= −sign( )C

T
C C  which can be substituted 

in Equation (1.71) to simplify the latter to

∂
∂
= −

∂
∂
−

∂
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x
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x x
m

e
C
T

Csign( )u
K M

uΩ2  (1.73)

Having the sensitivities calculated, an ap-
propriate solution method such as the method of 
moving asymptotes (MMA) can be employed to 
solve the minimization problem. One can also 
use the OC-based solution procedure proposed 
in section 4.2. The optimality criteria to solve 
Problem (1.68) can be expressed as

D
c

x
v e Ne

m

e
e e= −

∂
∂
− = =Γ γ , , ,1  

(1.74)

with additional conditions similar to (1.21). The 
negative sign for ∂ ∂c xm  in Equation (1.74) is 
added because it relates to a minimization problem.

7.3. Examples

The frame in example 3 is considered under 
forced vibration. It is assumed that 6 identical 
horizontal periodic loads of magnitude p1 = 500 
kN and frequency of Ω are applied at locations of 
the concentrated masses as shown in Figure 10a. 
Note that for linear elastic materials, changing the 
force magnitude will only change the values of 
the objective function but the evolution pattern of 
the objective function values and the final topol-
ogy will remain unchanged. This is not true for 
nonlinear problems.

Deformed shapes of optimum topologies ob-
tained for different load frequencies are shown in 
Figure 10b-e. It can be seen that for high frequen-
cies, the optimum material distribution tends to 
form damping masses.

When the input frequency is greater than the 
fundamental frequency of the initial structure, the 
optimization algorithm reduces the fundamental 
frequency. This increases the static compliance 
and can lead to disintegrated designs (clearly 
observable in Figure 10e). To prevent this disin-
tegration, one can introduce an upper bound 
condition on static compliance in the problem 
formulation (Olhoff and Du 2005). One can also 
include the static compliance in the objective 
function as shown in Figure 10.

When the structure is subjected to a number 
of loads with different frequencies, one can define 
a multi-objective optimization problem to handle 
the case. This is of practical importance, for ex-
ample when one approximates a periodic load 
using Fourier series. In the following example, 
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we consider the structure to be subjected to a 
periodic load p p1 1

= C tcosΩ  and a static load 
p2 (with frequency of zero). The objective function 
is considered as

cm C
T

C
T= +p u p u

1 1 2 2  (1.75)

where

K M u p Ku p−( ) = =Ω2
2 21 1C C and  

(1.76)

Sensitivities of this objective function can be 
calculated as
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(1.77)

The previous example is considered under 
the dynamic loads (p1) in Figure 10a and the 
static loads (p2) shown in Figure 11a. The ratio 
between the magnitude of the loads is p2:p1 = 5. 
Various optimal topologies resulted from using 
various input frequencies of p1 are illustrated in 
Figure 11b-e.

In a similar manner one can optimize the topol-
ogy of a structure under any combination of static 
and periodic loads with different frequencies.

8. OTHER CONSIDERATIONS

So far we have simplified the optimization prob-
lems by ignoring the damping effects and non-
linear material behavior. We have also limited 
our study to small deformations. Considering 
large deformations will lead to geometrically 
non-linear problems.

Figure 10. Minimizing the dynamic compliance of the frame of example 3 under periodic loading: ex-
ternal periodic loads (a), and deformed shape of final topologies for different input frequencies; Ω = 0 
(static loading) (b), Ω = 60 rad/s (c), Ω = 175 rad/s (d), and Ω = 330 rad/s (e). The first four natural 
frequencies of the initial structure are ω1 = 40.2, ω2 = 163, ω3 = 215, and ω4 = 326 (rad/s).
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Including either geometrical or material non-
linearity in problems causes the stiffness matrix 
to be load-dependent. The equilibrium equations 
in such problems are commonly solved by the 
Newton-Raphson method. Finding eigenfrequen-
cies will require a subsequent modal analysis.

Sensitivity analysis of a general displacement-
based functional in a geometrically and materially 
non-linear system has been formulated by Jung 
and Gea (2004). This formulation can be used to 
calculate sensitivities of compliance-like objective 
functions. Similar procedure of deriving the sen-
sitivities of an energy functional for a non-linear 
system is presented in Section 9.1.

In geometrically non-linear problems, the ex-
tremely soft “void” elements of the SIMP material 
model can be troublesome showing zero or even 
negative tangent stiffness and causing serious 
convergence problems (see e.g. Buhl et al. 2000). 
A new approach called Element Connectivity 
Parameterization has been proposed by Yoon and 
Kim (2005) to address this problem. This approach 

proves to be useful in topology optimization of 
non-linear structures under dynamic loads (Yoon 
2010a, 2011). Another approach to solve this issue 
is eliminating the void elements (see Section 9.1).

Considering damping effects will also change 
the sensitivities of the objective functions consid-
ered. In the following we update the previously 
derived sensitivities in presence of damping.

8.1. Forced Vibration with Damping

The equation of motion under a periodic load 
takes the form

Mu Cu Ku p p + + = = C tcosΩ  (1.78)

Introducing the complex displacement 
z z z= +( )C S

i ti e Ω , and assuming u to be the real 
part of z, we rewrite this equation in the complex 
space as

Figure 11. Minimizing the dynamic compliance of the frame of example 3 under a combination of periodic 
loading of Figure 10a and static loading: external static loads (a), and final topologies for different input 
frequencies of the periodic load; Ω = 0 (b), Ω = 60 rad/s (c), Ω = 175 rad/s (d), and Ω = 330 rad/s (e)
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Mz Cz Kz p + + = C
i te Ω  (1.79)

Separating the real and imaginary parts, we 
obtain

Bz Cz p
Bz Cz

C S c

S C

− =
+ =






Ω
Ω 0

 (1.80)

where B = K – Ω2M. Calculating zS from the 
second equation in (1.80) yields

z CzBS C= − −Ω 1  (1.81)

After substituting in the first equation in 
(1.80), we get

K̂z pC C=  (1.82)

where

K̂ B CB C= + −Ω2 1  (1.83)

The displacement vector u is the real part of z, so

u z z z z= ℜ +( )( ) = ( ) −( )C S
i t

C Si e t tΩ Ω Ωcos sin  
(1.84)

Using this and p = pC cosΩt in Equation (1.66), 
we can write
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Differentiating with respect to design variable 
xe, we obtain
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But from Equation (1.82),
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which can be used in Equation (1.86) to yield
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We thus need to calculate ∂ ∂ˆ /K xe . Before 
proceeding we note that

B B I
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(1.89)

in which we used the fact that B is symmetric, 
i.e. BT = B. Differentiating Equation (1.83) and 
making use of Equation (1.89) and symmetry of 
B and C, we obtain
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Pre- and post-multiplying by zC and using 
Equation (1.81), we achieve
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Substituting in Equation (1.88) and replacing 
B by K – Ω2M, we obtain
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If we now define the objective function as 
c cm = 2 , for the sensitivities of this function 
we can write
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(1.93)

Ignoring damping effects, we have C = 0, zS 
= 0, and zC = uC, and thus the above equation 
reduces to Equation (1.73).

The vectors zC and zS in Equation (1.93) can 
be obtained by solving Equation (1.80). Given 
the damping matrix C, the term ∂C/∂xe is also 
calculable. For example, assuming the Reyliegh 
damping formulation of Equation (1.2), we have 
∂ ∂ = ∂ ∂ + ∂ ∂C M K/ / /x a x a xe M e K e . Having 
the sensitivities, one can solve the optimization 
problem using a suitable solution algorithm.

8.2. Free Vibration with Damping

Using a similar approach followed in the previous 
section, in case of free vibration, Eqs. (1.79) and 
(1.80) need to be changed to

Mz Cz Kz z z z + + = = +( )0, C S
i ti e ω ,  

(1.94)
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respectively where ω is a natural frequency and

B K M= −ω2  (1.96)

From the second equation in (1.95), for zS we 
can write

z CzBS C= − −ω 1  (1.97)

which after substituting in the first equation of 
(1.95), gives

ˆ , ˆKz K B CB CC = = + −0 2 1ω  (1.98)

Using Equation (1.98), we can now write
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Differentiating Equation (1.98), we get
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Pre- and post-multiplying this equation by zC 
and using Equation (1.97), we obtain
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Differentiating Equation (1.96), we have
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Substituting this equation in Equation (1.101) 
and rearranging yields
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If we normalize the vectors zC and zS with re-
spect to M, for sensitivities of λ = ω2, we can write
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It is easy to verify that in the without damping 
this equation reduces to Equation(1.18). Having 
the sensitivities, one can solve the optimization 
problem using a suitable solution algorithm.

9. MAXIMIZING ENERGY 
ABSORPTION

Apart from controlling natural frequencies and dy-
namic compliance, improving energy absorption 
characteristics is also of significant importance 
in seismic design of structures. In recent years, 
active and passive energy dissipating devices 
have been widely studied and utilized to increase 
energy absorption of structural systems (Soong and 
Spencer 2002). Topology optimization can be used 
to maximize energy absorption of these devices. 
In this section we consider the problem of maxi-
mizing the energy absorption of passive energy 
dissipaters which make use of yield deformation 
of metals to mitigate the excitation energy. These 
kinds of energy dissipating devices are popular 
due to low cost of fabrication and maintenance 
and easy installation (Ghabraie et al. 2010).

We consider an energy damping device which 
is made of a 100 mm-long cut of a standard struc-
tural wide-flange section with depth, flange width, 
web thickness, and flange thickness of 161.8, 
152.2, 8, and 11.5 mm respectively. This device 
can be installed in braces connections (Chan and 
Albermani 2008) or beam-column connections 

(Oh et al. 2009) as depicted in Figure 12a. In 
these installations the device will deform mainly 
in shear (Figure 12a). The design domain is the 
inner part of the web as shown in Figure 12b. The 
two 15 mm strips on the boundaries of the web 
are non-designable.

We use the BESO method here and introduce 
a simple technique to solve shape optimization 
problems using BESO. Restricting the topology 
of the design and performing shape optimization 
instead of topology optimization is useful when 
the fabrication cost is an important factor. We also 
address a simple approach to obtain periodic 
designs which are produced by repeating a fixed 
pattern.

Considering a volume constraint, the energy 
absorption maximization problem can be stated as
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where Πp is the total plastic dissipation. Because 
the problem involves plastic behavior, one needs to 
solve a non-linear equilibrium system of the form

r p p= − =ˆ 0  (1.106)

This requires an iterative solver to eliminate 
the residual force vector r defined as the differ-
ence between the external and internal force 
vectors, p and p̂  respectively.

The internal force vector is defined as

ˆ dp G B G q= =∫∑ ∑
= =

e
T

e
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e
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e
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e
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1 1

 

(1.107)
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where Ge is the matrix that transforms the local 
nodal values of element e to the global nodal 
values, B is the strain-displacement matrix and 
σ represents the local element stress vector. The 
stress vector can be expressed as

σ εe e e= D  (1.108)

with ε being the strain vector and D the stress-strain 
matrix. Similar to Eqs. (1.10) and (1.12) we can 
define the relationship between D and the design 
variables in the following form

D De e e ex x( )=  (1.109)

in which De  is the stress-strain matrix of element 
e in its solid state.

We consider the energy damping device to 
undergo a full loading cycle consisting of an 
upward displacement of 10 mm followed by a 
20 mm downward displacement and finally a 10 
mm upward displacement to its original position 
(Figure 12b). Due to this loading, the total plastic 
dissipation would be equal to the total strain energy

Π Πp e e
e

N

= = ⋅ = ⋅∫ ∫∑
=

p u p ud d
 

1

 (1.110)

Using the trapezoidal rule for integration, 
(1.110) can be written in the form

Πp n i
T

i
T

i i
i

n

= −( ) +( )
→∞ − −

=
∑lim ( ) ( ) ( ) ( )

1
2 1 1

1

u u p p  

(1.111)

Figure 12. A passive energy dissipating device: (a) Installation and deformation; (b) designable and 
non-designable domains and loading. Dimensions are in mm



258

Applications of Topology Optimization Techniques

where the subscripts in parentheses indicate the 
integration divisions.

9.1. Bidirectional Evolutionary 
Structural Optimization (BESO)

The BESO method has been used in eigenfre-
quency optimization (see e.g. Yang et al. 1999b, 
Huang et al. 2010) as well as in maximizing 
energy absorption (see e.g. Huang et al. 2007, 
Ghabraie et al. 2010). This method solves the 
topology optimization problem in two steps. At 
first, the optimization algorithm finds the most 
and least efficient elements to be added and re-
moved respectively. Then, it adjusts the number 
of adding and removing elements based on the 
volume constraint.

This method is capable of totally removing the 
elements, hence one does not require to represent 
voids with a very soft material. This approach, 
usually known as hard kill approach, results in 
faster solutions for only solid elements remain in 
the finite element model. Moreover, this approach 
works well in geometrically non-linear problems 
as it is not prone to the instabilities caused by soft 
elements in the SIMP material model (Buhl et al. 
2000, Yoon and Kim 2005). Zhou and Rozvany 
(2001) showed that in certain cases the hard kill 
approach may result in non-optimal solutions and 
thus this approach need to be applied with care. In 
shape optimization, however, using the hard kill 
approach will not cause such problems.

Another advantage of the BESO method is 
that the solutions will not contain any intermedi-
ate design variables (0 < x < 1) or grey areas. In 
this method the boxing constraints 0 ≤ xe ≤1, e = 
1,…,N change to binary constraints of the form 
xe ∈ {0,1}, e = 1,…,N. This is particularly help-
ful if one wants to impose shape restrictions as 
the boundaries of solids and voids can be clearly 
defined in the black-white solutions of BESO.

In BESO, the so-called sensitivity numbers are 
used to evaluate the efficiency of the elements. 
Sensitivity numbers might be assigned intuitively 

or calculated rigorously. Either way, they are 
defined such that a higher sensitivity number 
represents higher efficiency.

Considering the definition of the objective 
function in Equation (1.111), the sensitivities of 
this function can be calculated as
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The first term in the right hand side cancels out 
because on the boundaries with essential boundary 
conditions ∂u/∂x = 0 and elsewhere p = 0. Hence 
the above equation reduces to
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On the other hand, differentiating Equation 
(1.106) and using Eqs. (1.107) to (1.109), we obtain
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Substituting Equation (1.114) in Equation 
(1.113), we can write
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Using the trapezoidal numerical integration 
scheme and recalling the definition of the strain 
energy in Eqs. (1.110) and (1.111), the above 
equation reduces to
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where πe is the total strain energy of element e 
upon completion of the load cycle. Huang and Xie 
(2008) derived these sensitivities using the adjoint 
method and verified it using a simple example.

We may now define the sensitivity numbers 
for problem (1.105) as follows

α πe
p

e
ex

e N=
∂

∂
= =

Π
, , , ,1 2   (1.117)

Based on this definition and using first order 
approximation, we can write

∆Π ∆p e e
e

N

x=
=
∑α

1

 (1.118)

Note that in Equation (1.118) adding element 
e will be reflected by ∆xe = 1 – 0 = 1 and remov-
ing it results in ∆xe = –1. Thus during the solution 
procedure, if one introduces the ath element and 
removes the rth element, the change in the objec-
tive function can be estimated as
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Π Π

p
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a rx x

=
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−
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∂
= −α α  (1.119)

As we are interested in maximizing Πp it is 
clear from Equation (1.119) that the elements with 
highest sensitivity numbers should be added to 
the design domain while the elements with lowest 
sensitivity numbers should be removed.

9.2. Adding and Removing 
the Elements

After ranking the efficiency of the elements, the 
algorithm should select the number of elements 
to be added and removed such that the volume 
constraint is satisfied. Generally in BESO, one 
starts the solution with an initial volume which 
is not necessarily equal to the volume limit v . 
The design is then updated using the sensitivity 

numbers and the algorithm tries to move the 
volume towards the volume limit gradually. Thus, 
if the current volume is bigger than v the algorithm 
will increase the number of removing elements 
and vice versa. The procedure continues until no 
further significant improvement can be achieved.

The algorithms to update the solutions in the 
BESO method have been improved over time. 
One of the most recent algorithms is proposed by 
Huang and Xie (2007). In this algorithm, at each 
iteration k, the target volume of the next iteration 
is calculated using a small positive controlling 
parameter called the evolutionary volume ratio (Rv)

v v v v Rk k k
v

( ) ( ) ( )sign( )+ = + −( )1 1  
(1.120)

where superscripts enclosed in parentheses in-
dicate the iteration number. Then the number of 
adding and removing elements are calculated such 
that the volume of the next design becomes equal 
to v(k+1) and the total number of added elements 
do not exceed vadd = vt × Ra in which Ra is another 
controlling parameter known as the maximum 
allowable admission ratio.

If one starts BESO with an initial design vol-
ume equal to v , the volume will be kept constant 
during the optimization procedure and the number 
of adding and removing elements at each iteration 
would be equal to each other. In this case Rv will 
have no effect on the optimization procedure and 
the maximum number of adding and removing 
elements is only controlled by Ra. Thus with a 
fixed volume, the effect of the Ra factor is similar 
to the move limit η in Equation (1.28).

9.3. Mirroring and Filtering 
Sensitivity Numbers

Due to the nonlinear nature of Problem (1.105), 
the loading sequence affects the mechanical re-
sponses. As a result, the optimal shape flips by 
mirroring the loading sequence. In real life, how-
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ever, the direction of the load is uncertain. Thus 
one needs to consider two displacement cycles: a 
↑↓↑ cycle as well as a ↓↑↓ cycle. But knowing that 
the results of these two displacement cycles are 
mirrored images of each other, it is not necessary 
to analyze the model under both of these loading 
conditions. Instead, one can add the sensitivities 
of the mirrored elements together to account for 
both displacement cycles. The sensitivity numbers 
are thus corrected as

α α αe e e= +   (1.121)

where αe  is the corrected sensitivity number of 
element e and e  is the element which is located 
at the same location as e in the mirrored model.

Like the SIMP method, the BESO method is 
also prone to the formation of checkerboard pat-
terns and mesh dependency. A filtering technique, 
similar to Equation (1.29) can be employed to 
overcome these problems in the BESO algorithm
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Another significance of filtering in the BESO 
method is extrapolating the sensitivity numbers 
to void elements. If one uses a hard kill approach, 
void elements are removed from the structure and 
their sensitivities cannot be evaluated directly. 
In other words, all void elements will have a 
sensitivity number of zero. The filtering scheme 
in Equation (1.122) extrapolates the sensitivities 
to the void elements in the neighborhood of the 
solid elements. This extrapolation leads the BESO 
algorithm to add the elements in the vicinity of the 
elements with high sensitivity numbers.

9.4. Restricting the Topology

Topology optimization techniques like BESO 
can naturally introduce new holes or fill the 
current holes in the design domain. However 
this behavior might produce complicated shapes 
which might be costly to fabricate. To prevent the 
BESO algorithm from introducing new holes, we 
restrict the designable domain to the elements at 
the boundaries of the shape at each iteration. The 
designable domain at each iteration is defined as

D B= ∃ ∈ ∈ ∧ ≠{ }e i j i j e i j, : ,  
(1.123)

where   is the set of boundary nodes defined as

B S V= ∃ ∈ ∈ ∈{ }i e e i e em v m v, :   
(1.124)

with   and   denoting the sets of solid and void 
elements respectively.

9.5. Numerical Examples

In the following numerical examples we fix the 
volume to simplify the approach. Another benefit 
of using fixed volume is that the results of different 
iterations are comparable to each other.

The modulus of elasticity of the material is 
considered as 206.1 GPa and the tensile yield 
stress is assumed to be 334 MPa. The material 
model considered is depicted in Figure 13.

Example 4: Simple Damper

We use the proposed BESO algorithm to optimize 
the shape of a simple damper. The target volume 
is 82% of the design domain. The initial and the 
final solutions are depicted in Figures 14a and 14b 
respectively. The evolution history of the objective 
function is plotted in Figure 14c. It can be verified 
that the energy absorption of the optimal solution 
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is considerably higher (37.4% improvement) than 
the initial design.

Example 5. Slit Damper

We now consider shape optimization of a slit 
damper. The initial design is depicted in Figure 
14d. In order to preserve the periodicity of the 
design, one needs to impose an additional con-
straint to the optimization algorithm. To this end, 
we partition the design domain into four cells. To 
make the cells identical, the sensitivity numbers 
of elements are replaced by the mean value of 
sensitivity numbers of corresponding elements 
in all cells. Putting this mathematically, we write

α αi
cell

i j
j

N

N

cell

=
=
∑1

1
,  (1.125)

where αi is the average (corrected) sensitivity 
number of element i in all cells, Ncell is the number 
of cells, and αi,j is the (original) sensitivity number 
of the element i in cell j.

The obtained solution is illustrated in Figure 
14e. The evolution history of the objective func-
tion is plotted in Figure 14f. Again a significant 
improvement (64.3%) in energy absorption is 
observable.

Ghabraie et al. (2010) have used a smooth-
ing postprocessor based on Bézier curves to 

smooth the jagged boundaries of the solutions. 
The smoothed versions of the initial and optimal 
solution are analyzed and their stress distributions 
are compared in Figure 15. It can be seen that the 
optimal solution provides an even stress distribu-
tion and the stress concentration areas visible in 
the initial design have been dissipated. This even 
stress distribution improves the responses of this 
design against low cycle fatigue. This has been 
verified through experimental tests by Ghabraie 
et al. (2010).

Figure 16 compares the force-displacement 
curves of the initial and final solutions. The op-
timal solution shows a stiffer response than the 
initial design.

10. CONCLUSION

This chapter reviewed the application of topol-
ogy optimization techniques in seismic design of 
structures. Two established topology optimization 
methods, namely SIMP and BESO, have been in-
troduced and their application has been illustrated 
using numerical examples.

Eigenfrequency optimization of linear elastic 
structures in free vibration has been addressed 
using the SIMP method. Sensitivity analysis of 
eigenfrequencies has been explained and a simple 
solution procedure has been presented based on 
optimality criteria. Possible numerical instabili-
ties have been mentioned and possible treatments 
have been discussed.

The problems involving multiple eigenfrequen-
cies have been considered and simple approaches 
to bypass these problems have been discussed. 
The sensitivities of multiple eigenfrequencies 
have been calculated and the optimality criteria 
have been presented. A simple approach to solve 
these problems has been proposed and success-
fully applied to a simple problem. The problem of 
maximizing the gap between two eigenfrequen-
cies has also been addressed. This problem is of 
practical significance when it is desired to push 

Figure 13. The idealized material model used for 
modeling the energy dissipating device



262

Applications of Topology Optimization Techniques

Figure 14. Solutions of examples 4 and 5. The initial designs (a,d), the final designs (b,e), and the evolu-
tion history of the objective functions (c,f). Dark grey elements are non-designable
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eigenfrequencies of a structure away from a given 
excitation frequency.

Topology optimization of structures under 
periodic loads has been discussed. An average 
dynamic compliance measure has been consid-
ered as the objective function to be minimized. 
Sensitivities of this objective function have been 
computed. Numerical examples have been solved 
to illustrate the applications of the optimization 

method. Topology design of structures under a 
combination of periodic (and static) loads with 
different frequencies has been addressed. This 
is of practical importance, for example when a 
periodic load is expanded using Fourier series.

Issues and difficulties of considering the 
non-linear material and geometry behavior of 
the system have been briefly discussed. The 
sensitivities of eigenfrequencies and dynamic 

Figure 15. Comparing stress distribution in initial (a) and final (b) smoothed designs. Stresses are in MPa.

Figure 16. Comparing force-displacement graphs in initial and final smoothed designs
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compliance of structures in presence of damping 
have been derived.

The BESO technique has been modified and 
used to maximize the energy absorption of a pas-
sive metallic damper. Sensitivity analysis of the 
non-linear system has been presented. Simple 
approaches to achieve shape optimization and 
periodic solutions have been addressed. It has been 
illustrated that the optimized solution not only 
provides higher energy absorption capacities but 
also offers smoother stress distribution resulting 
in better fatigue resistance.

It has been shown that in seismic design of 
structures, topology optimization techniques can 
be useful in both conceptual design of structural 
systems (e.g. maximization of fundamental fre-
quency of a frame) and detailed design of structural 
members (e.g. maximization of energy absorption 
of passive dampers). These techniques are capable 
of dealing with different objective functions and 
different material models.
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KEY TERMS AND DEFINITIONS

Compliance Minimization: In structural 
optimization under static loads, minimizing the 
mean compliance is equivalent to maximizing 
the structural stiffness. Under dynamic loads, the 
average of mean compliance over a cycle can be 
considered as an objective function.

Eigenfrequency Control: Topology optimiza-
tion techniques can be used to increase or decrease 
any of natural frequencies of a structural system.

Passive Dampers: These devices are used 
to enhance the energy dissipation capability of 
structural systems to mitigate seismic hazard.

Sensitivity Analysis: In solving an optimiza-
tion problem, finding the derivatives of the objec-
tive function with respect to the design variables 
is sometimes referred to as sensitivity analysis.

Shape Optimization: Finding the best shape 
of the elements of a structural system in which 
the overall layout, topology and connectivity of 
the elements is previously determined is known 
as shape optimization.

Sizing Optimization: Finding the optimum 
dimensions of the elements in a structural system 
when the overall layout, connectivity and shape 
of the elements are fixed is termed as sizing 
optimization.

Topology Optimization: The problem of 
finding the best topology and layout of the ele-
ments of a structural system is known as topology 
optimization.
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ABSTRACT

From the perspective of “overall conceptual seismic design,” four design strategies are presented to 
decrease and balance the seismic force and displacement demands for some bridges working in a lin-
ear and elastic state: the adjustment of the layout and detail of piers and expansion joints for a typical 
long span continuous girder bridge, the adoption of a new-type spatial bridge tower for a long span 
cable-stayed bridge, the study on the isolation mechanism of an elastic cable seismic isolation device 
for another cable-stayed bridge, and the study on the seismic potential and performance for long span 
SCC (steel-concrete composite) bridges. From the perspective of “local seismic capacity design,” three 
earthquake resistant strategies are presented to achieve economical, applicable, and valid seismic design 
of local components of bridges working in a nonlinear state: the adoption and the study on a new cable 
sliding friction aseismic bearing, the study on the seismic capacities of single-column bridge piers wholly 
and locally reinforced with steel fiber reinforced concrete (SFRC), the study on the seismic capacities, 
and the hysteretic performance and energy dissipation capabilities of bridge pile group foundations 
strengthened with the steel protective pipes (SPPs). Research results show that these seismic design 
strategies are effective to improve the seismic performance of bridges.
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INTRODUCTION

To give clear and correct directions for seismic 
design optimization of bridges, the “overall con-
ceptual seismic design” and the “local seismic 
capacity design” methods are proposed to obtain 
uniform and rational seismic demands and im-
proved seismic capacities of structural components 
in seismic design of bridges.

There are many methods to realize seismic 
design optimization so as to improve the seismic 
performance of structures (Gong, 2003; Li, 1997; 
Liu, 2003; Vagelis, 2009; Zou, 2002). However, 
the structural seismic design optimization will be 
in wrong direction and invalid unless the initial 
structural seismic design itself is appropriate and 
rational. It is hoped that the strategies and methods 
proposed in the chapter are able to give clear and 
correct directions for seismic design optimization 
of bridges.

There are two paths to improve the seismic 
design of bridges so as to make the seismic 
demands more uniform and rational along struc-
tural components. One is to reduce the seismic 
demands as much as possible, and the other is to 
increase the seismic capacities. Correspondingly 
there are two design methods, the overall linear 
seismic conceptual design and the local nonlinear 
seismic capacity design. From overall to local 
design strategies, some new ideas and strategies 
of seismic design which can effectively improve 
seismic performance of bridges are proposed 
separately in this chapter.

Overall conceptual seismic design is a con-
ceptual design method applicable for the whole 
structure based on the linear seismic analysis. 
When the components of bridges work in an elas-
tic state during the earthquakes, the conceptual 
design will be an effective and efficient strategy. 
From the perspective of overall conceptual seismic 
design, four conceptual seismic design strategies 
are proposed focusing on the whole structure.

1.  Taking a long span continuous girder bridge 
as an example, an optimal design for the 
layout and detail of the bridge components, 
including geometry of piers, arrangement of 
piers, location of expansion joint or braking 
pier, is carried out so as to reduce the seismic 
demands in the transverse direction as much 
as possible. The seismic performance of the 
bridges with different adjustments in differ-
ent site conditions is calculated respectively. 
Based on the comparison of the results, the 
forms of some piers and the locations of 
expansion joints are required to be adjusted 
to improve the bending stiffness distribution 
for the bridge.

2.  Taking a long span cable-stayed bridge as an 
instance, the original design proposal makes 
use of the inverted Y shape bridge tower, 
while the seismic design dominated by the 
first longitudinal vibration mode may lead 
to overlarge relative displacement between 
the girder and the tower. In order to solve the 
critical problem, a new-type spatial bridge 
tower is proposed by integrated analyses 
of the structural dynamic characteristics, 
design displacement and seismic responses. 
Compared with the original tower, the new 
spatial tower improves the seismic perfor-
mance of the bridge significantly.

3.  With respect to the elastic cable seismic 
isolation device installed between the girder 
and the lower horizontal beam of the tower 
to mitigate excessive seismic effects, the 
influences of the elastic cable stiffness on 
the dynamic characteristics and the seismic 
demands are investigated by parametric fi-
nite element analyses of a real cable-stayed 
bridge. The seismic isolation mechanism of 
the elastic cables is discussed.

4.  Girders of the SCC bridge are composed 
of the structural steel and the concrete. 
Compared with a conventional concrete 
girder bridge with the same span, the su-
perstructure height and weight are gener-
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ally less. Therefore the substructure can be 
made of hollow or more flexible piers under 
earthquakes so that the total cost can be re-
duced greatly. Response spectrum analyses 
are carried out for two design proposals of 
a typical four-span continuous bridge, the 
“reinforced concrete bridge with solid col-
umn piers” and the “SCC bridge with hollow 
column piers”. Seismic responses of the two 
design proposals are compared with each 
other to discuss the seismic potential of the 
SCC bridge. The seismic performance of a 
long span SCC arch bridge is also studied 
by response spectrum analyses.

Because of the stochastic characteristics of 
earthquakes, keeping bridges work in an elastic 
state permanently is impossible and unreason-
able. When the components of a bridge locally 
become plastic, the overall conceptual seismic 
design method is not applicable because of the 
limitations of overall linear analyses. Compared 
with the overall design, the local seismic capac-
ity design is a method of great benefit for its 
economy, applicability and validity. It is a detail 
design strategy for local regions of components 
based on the nonlinear seismic analysis. From 
this perspective, three design strategies according 
to the local method are presented in the chapter.

1.  Excessive displacements and forces often 
cause damage or collapse of bridges under 
earthquakes. Taking a currently used fric-
tional isolation bearing as an example, the 
seismic forces can be reduced under severe 
earthquakes but the seismic displacements 
induced by lateral forces are generally un-
constrained. Therefore, a new aseismic bear-
ing system named as “cable sliding friction 
aseismic bearing” is developed for bridges. 
It combines the advantages of pot bearings 
with the excellent displacement restraining 
capabilities of cables. The performance 
criteria and several design parameters are 

determined for the new bearing by theoretical 
analyses, experimental testing and numeri-
cal simulations. A constructed girder-arch 
composite bridge installed with the new 
bearing is studied and evaluated.

2.  It is well known that the potential plastic 
hinge regions are vulnerable and crucial in 
bridge piers under earthquakes, while a struc-
ture made of steel fiber reinforced concrete 
(SFRC) has good ductility performance and 
energy dissipation capabilities. Therefore a 
new idea is put forward in that the SFRC is 
locally applied in the potential plastic hinge 
region of a bridge pier in an earthquake re-
gion both for saving cost and increasing the 
seismic capacities. Then a nonlinear material 
constitutive model is established for SFRC 
and applied to analyze the seismic capacities 
of single-column bridge piers reinforced with 
SFRC. Compared with the single-column 
bridge pier wholly reinforced with SFRC, 
the plastic hinge length and the reasonable 
range locally reinforced with SFRC are 
determined for the pier.

3.  Steel protective pipe (SPP) is a widely 
adopted measure to make the construction 
of pile group foundations convenient. But 
the influences of the SPPs on the seismic 
performance of the foundations need 
further studies. The seismic capacities of 
a pile group foundation strengthened by 
the SPPs are analyzed and compared with 
the normal pile group foundation with RC 
piles by the pushover method. By using the 
modified Park-Ang damage index (Park & 
Ang, 1985; Park, Ang, & Wen, 1985) and 
the fiber beam-column finite element model, 
the hysteretic performance and energy dis-
sipation capabilities are studied based on 
numerical simulations and low cycle loading 
experiments for the foundation.
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BACKGROUND

For the bridge engineers, the conceptual seismic 
design is the first but most important stage in a 
bridge design that involves numerous complex 
and time-consuming tasks. Any optimization in 
the conceptual design phase will lead to greater 
cost savings than those at the detail design stage 
when decisions become more restricted. Though 
in strict terms, the structural seismic design opti-
mization follows rigorous formulations and needs 
definite algorithms, the choices and adjustments 
of structural systems from the perspective of 
“overall conceptual seismic design” will inno-
vationally give meaningful enlightenments and 
correct directions for seismic design optimization 
of structures. Instead of deferring seismic analyses 
to the detail design stage, it is emphasized that 
adequate seismic planning should be implemented 
early in the conceptual design.

For continuous girder bridges, past conceptual 
design used to focus on the longitudinal seismic 
behavior, perhaps because most previous damage 
reports referred to longitudinal support unseating 
or structural collapse (Yang, 1999). However, 
some transverse damages have been caused in 
Wenchuan Earthquake because of the lack of 
transverse earthquake resistances (Yuan & Sun, 
2008). Pier’s vertical torsion under earthquakes 
also increases the transverse deformation of the 
girders. Although a bidirectional ductility design 
will be effective to increase pier’s torsional stiff-
ness and transverse ductility capacity so as to 
improve the transverse seismic performance, but 
it may decrease the shear resistance significantly 
(Fan, 1997). Therefore it is necessary to study the 
transverse seismic performance of a continuous 
girder bridge to select the best structural form 
under different site situations. Accordingly the 
structure’s dynamic characteristics should adapt to 
the site conditions and the demands should be uni-
form and rational along the structural components 
so as to decrease the overall seismic demands.

Generally the ductility approach and the seis-
mic mitigation and isolation approach are two 
common strategies in the conceptual design of 
a bridge. The ductility method requires detailed 
reinforced concrete design for shear resistances 
and confinement design at the potential plastic 
hinges of piers in order to resist earthquake ac-
tions (Fan & Zhuo, 2001). The seismic mitigation 
and isolation approach protects the substructure 
through additional means of energy dissipation 
by shifting the structural fundamental frequency 
away from the dominant frequencies of the ground 
motions. However, the above two methods are 
not satisfactory for a long span floating cable-
stayed bridge in view of the significant excessive 
displacement demands at the tower top and the 
girder ends under earthquakes. Hence a new con-
ceptual design strategy is formulated to improve 
the seismic performance of a long span floating 
cable-stayed bridge through rational configuration 
of bridge tower forms. Accordingly a new-type 
spatial tower is proposed to replace the generally 
used inverted Y shape tower for an optimal bal-
ance between the seismic force and displacement 
demands of the bridge.

Cable-stayed bridges are classified into differ-
ent categories by the connection types between the 
tower and the girder, such as the floating system 
(no restraint between the girder and towers), the 
semi-floating system (partial restraint between the 
girder and towers), the fixed system (full restraint 
between the girder and towers), and so on. They 
are widely constructed in seismic zones for their 
good seismic performance (Walther, Houriet, 
Isler, Moïa, & Klein, 1999). However, the floating 
connection may cause excessive seismic displace-
ment demands at the girder ends while the fixed 
connection may lead to excessive force demands 
at the tower bottom (Ye, Hu & Fan, 2004). So the 
seismic isolation connection types between the 
tower and the girder, especially the elastic cable 
connection, are adopted by more cable-stayed 
bridges. It is important to study the seismic iso-
lation mechanism of the elastic cables, since the 
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seismic performance is directly correlated with 
the cable stiffness for the floating cable-stayed 
bridge installed with them.

The SCC bridge combines the mechanical 
advantages of steel and concrete, making the 
bridge more reasonable and durable. Since 1950s, 
much research has been carried out to promote 
the development of SCC bridges. Many countries 
such as USA and Japan developed the design 
guidelines and specifications (Brozzetti, 2000; 
Hayward, 1988). Recently, a growing concern 
is mainly about the seismic performance of this 
kind of bridges during earthquakes. So a typical 
SCC continuous girder bridge and an SCC arch 
bridge are mainly studied to discuss the seismic 
potential and performance of SCC bridges.

Since the seismic mitigation and isolation de-
sign has received growing attention and become 
a major research topic, various isolation devices 
including rubber bearings, frictional bearings and 
roller bearings have been developed for bridges 
(Kunde & Jangid, 2003). Pot bearings are widely 
used in long span railway and highway bridges for 
their higher vertical load bearing capacities and 
better deformation ability. It can be assigned to be 
fixed or frictional in horizontal directions depend-
ing on the design demands of the bridges. How-
ever, the pot bearing cannot restrain the excessive 
seismic displacements when sliding, and cannot 
reduce the seismic forces when fixed. Considering 
the restraint measures of the pot bearing, a new 
seismic isolation bearing, known as cable sliding 
friction aseismic bearing is introduced. This type 
of bearings can be regarded as the combination of 
pot bearings and restraining cables and has both 
advantages of them.

Considering the seismic vulnerability of 
potential plastic hinge regions of bridge piers, 
more and more bridge piers are reinforced with 
SFRC in earthquake regions for its better ductil-
ity performance and energy dissipation capaci-
ties (Gao, 2009). For the simplest single-column 
bridge pier, the seismic performance of the piers 
globally and locally reinforced with SFRC are 

studied and compared. Also current seismic de-
sign guidelines of various countries give different 
proposals for estimating the plastic hinge length 
of a single-column pier reinforced with SFRC 
(Zhu, Fu, Wang, & Yuan, 2010). There is a need 
therefore to clarify these differences to facilitate 
the application of SFRC to bridge piers.

Pile group foundations are widely used in long 
span cable-stayed bridges and suspension bridges. 
Many post-earthquake damage investigations 
and theoretical studies show that the pile group 
foundations are usually vulnerable components 
under earthquakes (Zhou, 2008). Generally, they 
are considered to be strengthened with the steel 
protective pipes (SPPs) for the construction con-
venience. But the seismic performance is still not 
fully determined. Based on numerical simulations 
and scale-model experiments, seismic capacities, 
hysteretic behavior and energy dissipation capa-
bilities are reviewed in this chapter.

OVERALL CONCEPTUAL SEISMIC 
DESIGN FOR BRIDGES

In order to decrease the seismic demands in the 
conceptual design phase, the main concern of the 
engineers is to make an optimal arrangement of 
structural components to let the structure’s dy-
namic characteristics adapt to the site conditions 
and the seismic demands become more uniform 
and rational along structural components. Over-
all conceptual seismic design is applicable for 
the global structure design based on the linear 
seismic analysis. In the following sections, four 
design strategies are reviewed from the overall 
conceptual seismic design viewpoint: (i) optimal 
design for layout and detail of continuous girder 
bridge; (ii) design of towers for long span floating 
cable-stayed bridge; (iii) seismic isolation mecha-
nism of elastic cables in cable-stayed bridge; (iv) 
seismic potential and performance for long span 
SCC bridges.
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Optimal Design for Layout and 
Detail of Continuous Girder Bridge

The continuous girder bridge is one of the most 
commonly used bridge structural forms. The 
substructure has major effects on the bridge’s 
dynamic properties and the seismic demands 
in different site conditions. Considering both 
the longitudinal and transverse responses of the 
bridge, many efforts of the optimal design are put 
on the substructures, especially on piers. In view 
of the design acceleration response spectrum for 
normal bridges in Chinese code shown in Figure 1 
(Ministry of transport of the People’s Republic of 
China, 1989), the acceleration response spectrum 
varies according to the structural fundamental 
period and the type of site. So in designing a 
continuous girder bridge as a complete structure, 
the stiffness distribution of some piers can be ad-
justed to decrease seismic forces and improve the 
seismic performance for different site conditions.

In the design acceleration response spectrum, 
the amplifications of ground acceleration are 
respectively 2 25 0 2. ( / )× . T  and 2 25 0 45 0 95. ( / ) .× . T  
for soil type I and soil type III according to Chi-
nese code (Ministry of transport of the People’s 
Republic of China, 1989), which is only used as 
seismic inputs for the bridge. So the seismic im-

portance coefficient and the synthetic influence 
coefficient are both assumed to be 1.

For an example continuous girder bridge with 
25 spans, each span being 29 m long, the finite 
element model is shown in Figure 2. The structure 
is separated into 5 parts by 4 expansion joints. 
There are three types of piers, the solid single-
column pier (SSP), the hollow single-column pier 
(HSP) and the solid twin-column pier (STP), with 
heights ranging from 5.5 m to 48 m. The bridge is 
analyzed based on response spectrum method by 
a combination of transverse and vertical seismic 
action. The peak ground acceleration equals 0.41g.

For the original bridge, the response spectrum 
analysis results including the pier top displace-
ments, the pier bottom shear forces and normal 
stresses are displayed in Table 1 for both soil Type 
I (rock and stiff soils) and soil Type III (soft to 
medium clays and sands). It can be seen that both 
the response magnitudes and variations along 
these piers are relatively large due to the uneven 
distribution of the piers’ stiffness. New strategies 
are suggested in the following sections to adjust 
the piers’ stiffness distribution adapt to the site 
conditions and to avoid the uneven seismic force 
demands caused by the transverse rotation of 
girders so as to make the demands more uniform 
and rational along the structural components.

Conceptual Seismic Design Strategies 
for Soil Type I

From the code design response spectrum (Figure 
1), the specific period T

g
= 0 2. s  for soil Type I 

is relatively small, beyond which the acceleration 
amplification decreases rapidly. This means that 
any increase in the structural period can decrease 
the seismic force demands significantly, if the 
structural fundamental period exceed the spe-
cific period. Therefore, reducing the lateral flex-
ural stiffness (i.e. shifting to larger fundamental 
period) can efficiently enhance the seismic per-
formance in the transverse direction. Based on 

Figure 1. Design response spectrum (Ministry of 
transport of the People’s Republic of China, 1989)
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this consideration, a new-type pier, named as close 
twin-column pier (CTP), is proposed to upgrade 
some piers of the bridge (Figure 3). The CTP is 
built by vertically dividing the SSP into two parts 
along the axial symmetrical plane but close to 
each other. The pier’s transverse stiffness can be 
reduced by 45% to 50%, but the longitudinal 
flexural stiffness is still maintained. Hence the 
corresponding acceleration amplification is re-
duced greatly in the transverse direction. Accord-
ingly the piers No. 3, 8, 9 and 10 are selected to 

be replaced by the CTP and the response spectrum 
analysis results are shown in Table 2.

Comparing the results in Table 2 with Table 
1, it can be seen that all the stress demands and 
some displacement demands are greatly miti-
gated after some of the bridge piers are changed 
to the CTPs. Although the pier top displacement 
demands at pier No. 5 to pier No. 10 increase in 
some degree, the values themselves are still small 
and do not exceed the requirements of the code 
(Ministry of transport of the People’s Republic 

Figure 2. Finite element model of the continuous girder bridge

Table 1. Seismic demands of the original continuous girder bridge 

Pier No. Pier type

Bending 
stiffness(×103 

kN/m)

Soil type I condition Soil type III condition

Disp. 
(m)

Shear stress 
(MPa)

Normal stress 
(MPa)

Disp. 
(m)

Shear stress 
(MPa)

Normal stress 
(MPa)

1 STP 521.0 0.024 4.630 4.340 0.047 9.290 8.710

2 STP 52.60 0.047 0.960 1.170 0.095 1.890 2.320

3 SSP 7.640 0.071 0.390 7.630 0.140 1.460 15.800

4 HSP 3.170 0.066 0.071 4.740 0.130 0.220 8.960

5 HSP 2.800 0.061 0.079 4.380 0.120 0.220 7.760

6 HSP 2.490 0.055 0.110 4.890 0.110 0.280 7.470

7 HSP 2.800 0.050 0.082 3.840 0.100 0.200 6.180

8 SSP 6.320 0.047 0.260 4.160 0.095 0.660 7.410

9 SSP 11.70 0.043 0.260 4.820 0.086 0.880 9.850

10 SSP 29.20 0.039 0.650 9.160 0.078 2.590 18.290
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of China, 1989). Specially, the seismic demand 
variations along these piers decrease and this 
conceptual design strategy specifically makes the 
seismic demands more uniform and rational along 
the structural components and enhances the seis-
mic performance in the transverse direction ef-
ficiently.

Conceptual Seismic Design 
Strategies for Soil Type III

Compared with the soil Type I, the specific pe-
riod T

g
= 0 45. s  for soil Type III is relatively large. 

It is obvious that the large deformation becomes 
the critical problem for long span bridges in this 
soil type. So the above proposed upgrading mea-
sures for soil Type I would not be applicable. 

Figure 3. Conceptual design strategy for bridge pier in soil type I condition

Table 2. Seismic demands of the upgraded bridge for soil type I condition 

Pier No. Pier type Bending stiffness 
(×103 kN/m)

Disp. (m) Shear stress (MPa) Normal stress (MPa)

1 STP 521.0 0.022 4.340 4.070

2 STP 52.60 0.044 0.910 1.100

3 CTP 4.170 0.066 0.210 2.460

4 HSP 3.170 0.065 0.066 4.850

5 HSP 2.800 0.063 0.065 4.030

6 HSP 2.490 0.060 0.080 4.410

7 HSP 2.800 0.059 0.063 3.760

8 CTP 3.450 0.058 0.270 2.740

9 CTP 61.30 0.056 0.200 2.310

10 CTP 16.00 0.054 0.370 4.110
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Therefore for soil Type III, the conceptual design 
strategies are proposed as follows: (i) relocate the 
expansion joint at pier No. 10 to No. 8 in order 
to adjust the stiffness distribution of the super-
structure and to avoid the uneven seismic force 
demands caused by the transverse rotation of 
girders, (ii) separate the SSPs No. 8, 9 and 10 into 
STPs (Figure 4) to modify the transverse stiffness 
thus to restrict the seismic displacements for these 
piers. The seismic demands are listed in Table 3 
for the upgraded bridge.

From the comparison between the results in 
Table 3 and those in Table 1, it can be seen that 
the displacements, the shear and normal stresses 
are all reduced, indicating that the proposed con-
ceptual design strategies can improve the seismic 
performance of the bridge.

Design of Towers for Long 
Span Cable-Stayed Bridge

From the perspective of overall conceptual seismic 
design, both force and displacement demands 
should be taken into consideration. However the 
force and displacement responses are usually mu-
tually contradictive. As can be seen from the design 
response spectra (Figure 5) for a special bridge, 
the Sutong Yangtze River Bridge in China (Yan 
& Yuan, 2004), in the long period range the ac-
celeration amplification is relatively small and yet 
the displacement amplification may be too large 
to be tolerated. So for the flexible cable-stayed 
bridge, a structural period lengthening would be 
effective to reduce the force demands and yet 
ineffective to decrease the excessive displacement 
demands at the tower top and the deck ends. It is 
obvious that the flexural stiffness of the tower has 
a major influence on the fundamental period of 
the cable-stayed bridge. Therefore it is preferable 

Figure 4. Conceptual design strategy for bridge 
pier in soil type III condition

Table 3. Seismic demands of the upgraded bridge for soil type III condition 

Pier No. Pier type Bending stiffness 
(×103 kN/m)

Disp. (m) Shear stress (MPa) Normal stress (MPa)

1 STP 521.0 0.030 5.840 5.480

2 STP 52.60 0.060 1.200 1.460

3 SSP 4.170 0.089 0.920 9.360

4 HSP 3.170 0.098 0.180 6.790

5 HSP 2.800 0.110 0.210 7.320

6 HSP 2.490 0.120 0.270 8.310

7 HSP 2.800 0.130 0.250 8.680

8 STP 24.60 0.140 2.780 1.770

9 STP 30.50 0.120 2.840 2.310

10 STP 43.20 0.094 3.150 1.900
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to adopt an optimal tower type for the bridge’s 
fundamental period within a proper range so that 
acceptable force and displacement demands can be 
achieved in the seismic conceptual design phase.

The Sutong Yangtze River Bridge (Yan & 
Yuan, 2004), whose finite element model is shown 
in Figure 6, is a long span floating cable-stayed 
bridge originally with inverted Y shape bridge 
towers. The spans are 100 m, 100 m, 300 m, 1088 
m, 300 m, 100 m, 100 m and the superstructure 
is designed as a floating system without connec-

tions to the towers. The design acceleration and 
displacement response spectra are shown in Fig-
ure 5 and the peak value of the design horizontal 
ground acceleration is 0.197g, which is about 
twice of the vertical acceleration input.

Conceptual Seismic Design

Flexible structures always have relatively long 
fundamental periods. From dynamic analysis, 
the fundamental period of the above cable-stayed 
bridge is estimated as 13.40 s, a typical long period. 
Since the fundamental period is much affected by 
the flexural stiffness of the tower, a new-type spa-
tial tower scheme is proposed as shown in Figure 
7b after a series of response spectrum analyses 
and comparisons. The bending stiffness of the 
proposed alternative tower (65.5×103 kN/m) is 
9.66 times of the original tower (6.78×103 kN/m), 
while the weight (1.17×106 kN) is just 1.83 times 
of the original (0.638×106 kN). In conclusion the 
proposed spatial tower can significantly increase 
the flexural stiffness yet with relatively small 
additional material cost. The fundamental period 
of the bridge with the proposed spatial towers is 
reduced from 13.40 s to 5.87 s.

Figure 5. Design response spectra for the Sutong 
Yangtze River Bridge (Yan & Yuan, 2004)

Figure 6. Finite element model of the Sutong Yangtze River Bridge
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Comparison of Seismic Responses

By using the design response spectra (Figure 5) 
which are from the geological safety evaluation 
in the field and fit for the site situation for the 
bridge, the response spectrum analyses are con-
ducted respectively in the longitudinal direction 
and in the transverse direction under correspond-
ing horizontal and vertical ground motions. The 
displacement demand comparisons are shown in 
Table 4 for the original design tower model and the 
alternative spatial tower model. It can be seen that 
the maximum longitudinal seismic displacements 
at the deck end, the tower top and the midspan are 
reduced significantly for the spatial tower model. 
Since the spatial towers’ constraint to the deck 
becomes stronger, the transverse displacement 
at the midspan of the alternative model is also 
reduced. Although the transverse displacement of 

the tower top increases from 0.20 m to 0.41 m, this 
0.41 m figure is considered small and practically 
acceptable for the long span cable-stayed bridge.

The force demand comparisons are shown in 
Table 5 between the original inverted Y shape and 
the proposed spatial tower models. The total force 
demands at the spatial tower bottoms are slightly 
larger than those at the inverted Y tower, while 
the demands in each column No. 1, 2, 3 and 4 
(Figure 7) of the spatial tower model are less than 
or almost equal to those of the original one. It can 
be concluded that the conceptual design strategy 
for the cable-stayed bridge, which adopts the 
spatial tower to replace the original inverted Y 
shape tower, enables the seismic demands more 
uniform along the structural components and 
obtain a balance between the force and displace-
ment demands.

Figure 7. Original and alternative spatial bridge towers
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Seismic Isolation Mechanism of 
Elastic Cables in Cable-Stayed 
Bridge

The excessive seismic displacement of the girder 
end is one of the challenges to the cable-stayed 
bridge designers, since it may exceed the deforma-
tion capacities of expansion joints. There may also 
be excessive seismic bending moment at the tower 
bottom. Isolation devices are usually adopted to 
avoid excessive demands, including the system of 
elastic cables installed between the tower and the 
deck. For a floating cable-stayed bridge without 
elastic cables, the seismic force is transmitted 
from the deck to the tower mainly depending on 
the inclined cables. However, the elastic cables 
become one of the main force transmission paths 

once the bridge installed with them, which may 
change the overall seismic force distribution of 
the bridge.

As a case study, consider a long span float-
ing cable-stayed bridge with spans 55 m, 165 m, 
165 m and 55 m and the finite element model is 
shown in Figure. 8. There are sliding bearings 
at the subsidiary and side piers and no bearings 
between the tower and the deck girder from the 
original design scheme of the bridge.

Parametric Analyses

Based on dynamic analyses and parametric simula-
tions, in which the elastic cables are simulated as 
elastic bearing connection elements, the variations 
of the bridge fundamental period corresponding 
to the elastic cable stiffness are shown in Figure 9 
and the relationship between the vibration modes 
and the stiffness is shown in Table 6.

It can be seen that the fundamental period 
decreases rapidly when the elastic cable stiffness 
increases from 0 to 10×105 kN/m. At the stiffness 
values larger than 10×105 kN/m, the period 
variation is small. It is also shown in Table 6 that 
the vibration modes do not change when the cable 
stiffness increases from 0 to 5×105 kN/m. on the 
contrary, at stiffness of 30×105 kN/m, the first 
mode of vibration changes from a girder longitu-
dinal drift to a tower lateral bending in the same 
direction. This may be due to the rational elastic 
cable stiffness leading to a change in the dy-

Table 4. Seismic displacement comparisons 

Model Location Longitudinal 
displacement 

(m)

Transverse 
displacement 

(m)

Original 
inverted 
Y shape 
tower 
model

Girder 
end

1.030 -

Tower top 1.110 0.200

Span 
center

1.040 0.950

Alterna-
tive spa-
tial tower 
model

Girder 
end

0.440 -

Tower top 0.390 0.410

Span 
center

0.450 0.870

Table 5. Seismic force comparisons at the tower bottom 

Model Column 
number 

(Figure 7)

Longitudinal direction Transverse direction

Shear force 
(×103 kN)

Bending moment 
(×106 kN.m)

Shear force 
(×103 kN)

Bending moment 
(×106 kN.m)

(i)Original inverted Y 
shape tower model

1 (or 2) 30.90 2.290 47.60 1.670

(ii)Spatial tower 
model

1 (or 2) 32.20 2.030 42.60 1.300

3 (or 4) 32.20 2.030 32.00 1.220

((ii)-(i))/(i) (%) 1 (or 2) 4.2 -11.4 -10.5 -22.2

3 (or 4) 4.2 -11.4 -32.8 -26.9
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Figure 8. Finite element model of the cable-stayed bridge with elastic cables

Figure 9. Fundamental period versus elastic cable stiffness

Table 6. Vibration mode versus elastic cable stiffness 

Mode 
order

Elastic cable stiffness (kN/m)

0 5×105 30×105

1 Girder longitudinal drift Girder longitudinal drift Tower lateral bending in same direction

2 Tower lateral bending in same direction Tower lateral bending in same direction Reversely symmetric vertical bending

3 Reversely symmetric vertical bending Reversely symmetric vertical bending Tower lateral bending in different direc-
tion

4 Tower lateral bending in different direc-
tion

Tower lateral bending in different direc-
tion

Girder longitudinal drift
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namic characteristics, thus being able to reduce 
the seismic demands and improve the seismic 
performance of the bridge.

The variations of the girder end displacement 
demands are shown in Figure 10 for two differ-
ent site situations (Ministry of Transport of the 
People’s Republic of China, 2008), based on 
results from elastic response spectrum analyses. 
The relationships are shown in Figure 11 between 
the tower-girder relative displacement and the stiff-
ness. It can be seen that the displacement demands 
decrease rapidly as the cable stiffness increases 
from 0 to 30×105 kN/m and their decreasing rate 
becomes insignificant after the stiffness exceeds 
30×105 kN/m.

On the other hand, the variations of the tower 
bottom seismic force demands are shown in Fig-
ure 12 for the same two different site conditions. 
It can be seen that the bending moment demands 
fluctuate in relatively small amplitude when the 
cable stiffness increases, while the shear force 
demands monotonously increase.

Therefore it is concluded that the elastic cables 
change the seismic force transmission and distri-
bution significantly. The stiffness range from 
20×105 to 70×105 kN/m is practically acceptable 

for the elastic cables, in which the displacement 
demands are reduced significantly while the mo-
ment and shear force demands have little chang-
es. Thus the rational elastic cable stiffness adjust-
ing strategy may achieve the seismic demand 
uniformity along the structural components and 
a balance between the force and displacement 
demands during the conceptual design.

Seismic Isolation Mechanism

From the parametric analyses, it can be seen that 
if the cable stiffness increases the fundamental 
period of the bridge will decrease rapidly, the 
vibration modes will change, the displacements 
will decrease rapidly, the bending moments will 
fluctuate in small amplitude and the shear force 
will monotonically increase.

The above analyses reveal the core of the seis-
mic isolation mechanism of the elastic cables, the 
change of structure system and the transformation 
of the force transmission path in the bridge tower. 
Because of the limiting function of the elastic 
cables, a floating cable-stayed bridge gradually 
turns into a semi-floating system, and finally a 
tower-girder rigid connection system when the 

Figure 10. Girder end displacement versus elastic cable stiffness
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Figure 11. Tower-girder relative displacement versus elastic cable stiffness

Figure 12. Seismic force demands versus elastic cable stiffness
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cable stiffness increases. It is obvious that the 
change of the system, namely the increase of the 
bridge stiffness will cause a decrease of the fun-
damental period and an increase of the horizontal 
brake force of the girder. The transformation of the 
force transmission path is the main reason why the 
seismic demands change along the curves shown 
in Figure 10 to 12. For a floating cable-stayed 
bridge without elastic cables under earthquakes, 
the large horizontal forces produced by the girder, 
whose acting point is usually at upper zones of 
the tower, are all transmitted to the tower by the 
stayed-cables. But the elastic cables can share 
most of the seismic forces and transmit them to 
lower zones of the tower for a cable-stayed bridge 
installed with them.

Seismic Potential and Performance 
for Long Span SCC Bridges

To illustrate the advantage of steel-concrete com-
posite (SCC) system, a typical four span bridge 
with spans of 25 m, 30 m, 30 m and 25 m, deck 
18 m wide, and piers 7 m high was ever studied 
(Turkington, Carr, Cooke, & Moss, 1989). In 
this section, there are two design schemes for the 
bridge: (i) a conventional reinforced concrete (RC) 
continuous girder bridge supported by solid form 
piers and (ii) an SCC continuous girder bridge sup-
ported by hollow form piers, all basic properties 
being shown in Table 7. The seismic responses 
of both design schemes from elastic response 
spectrum analyses (Ministry of Transport of the 
People’s Republic of China, 2008) are also shown 
in Table 7. It can be seen that the SCC scheme 

with the same span and deck width has a lighter 
superstructure, less pier stiffness and fundamental 
period. The seismic shear force and bending mo-
ment at the pier bottom are 72.0% and 72.1% of 
those from the initial reinforced concrete scheme. 
Moreover, the pier top displacement is only 76.5% 
of that in design scheme (i). The seismic potential 
of the SCC bridge system is significant.

A major highway bridge located in the city of 
Hangzhou, China, the Jiubao Bridge consists of 
an SCC continuous girder system for the northern 
approach (55 m, 85 m, 85 m, 90 m), an arch with 
SCC girder system for the main bridge (three 210 
m spans) and another SCC continuous girder 
system for the southern approach (90 m, nine 85 
m, 55 m). The SCC deck is a reinforced concrete 
slab on top of steel box girders. The superstructure 
is supported by sliding and pot bearings, both 
types being fixed in the transverse direction. In 
the longitudinal direction the bearings are designed 
to be fixed at pier PN4, PS1, PS5, PS6 and PS7 
as shown in the finite element model in Figure 
13.

It was suggested that the girders of the SCC 
bridge might be replaced by equivalent concrete 
girders with weight twice as heavy as the SCC 
ones. Response spectrum analyses were performed 
(Cao, 2009) and the results are shown in Table 8 
for the bridge, and it is clear that the long span 
SCC bridge has lower seismic force and displace-
ment demands than the RC one. Hence, the SCC 
system has higher seismic potential and better 
seismic performance.

Table 7. Seismic response comparisons of RC and SCC continuous girder bridges 

Design 
scheme

Superstructure 
mass (×106 kg)

Pier area 
(m2)

Pier stiffness 
(×106 kN/m)

Period 
(s)

Shear 
(×103 kN)

Moment 
(×103 kN.m)

Disp. (m)

(i) RC 3.900 4.050 0.199 0.880 3.430 24.00 0.017

(ii) SCC 2.118 2.200 0.189 0.670 2.470 17.30 0.013

(ii)/(i) (%) 54.3 54.3 95.0 76.1 72.0 72.1 76.5
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Solutions and Recommendations

From the perspective of overall linear conceptual 
seismic design, several new design strategies have 
been presented. For a typical long span continuous 
girder bridge, the forms of piers and the locations 
of expansion joints are adjusted respectively for 
different site conditions to improve the stiffness 
distribution. Based on code design response 
spectra, theoretical analyses and numerical simula-
tions show that both the displacement and stress 
demands are greatly mitigated, and the demand 
variations along the piers are decreased as well 
after adopting the strategies.

For a long span floating cable-stayed bridge, 
a new-type spatial bridge tower is proposed to 
replace the originally designed inverted Y shape 
tower. Analysis results show that the longitudinal 
seismic displacements can be reduced significantly 
for a bridge with the spatial tower. The transverse 
displacement at the midspan of the spatial tower 
model is also reduced. Although the transverse 
displacement of the tower top increases to some 
extent, the magnitude of the displacement is 
relatively small and practically acceptable for 
the cable-stayed bridge. Moreover, the seismic 
force demands in each column of the spatial tower 
model are less than or almost equal to those of 
the original model.

Table 8. Seismic response comparisons of the arch bridges with RC and SCC girders 

Girder Southern approach Main bridge

Shear-PS6 
(×103 kN)

Moment-PS6 
(×103 kN.m)

Displacement of 
bearing-PS2 (m)

Shear-PS1 
(×103 kN)

Moment-PS1 
(×103 kN.m)

Displacement of 
bearing-PN1(m)

(i) RC 8.450 156.10 0.290 10.492 138.85 0.240

(ii) SCC 5.195 95.53 0.190 7.894 102.89 0.190

(ii)/(i) (%) 61.5 61.2 65.5 75.2 74.1 79.2

Figure 13. Finite element model of the Jiubao Bridge
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With respect to the elastic cable seismic 
isolation device, the isolation mechanism, the 
influences of the elastic cable stiffness on the 
bridge structural dynamic characteristics, the 
force transmission paths and the displacement and 
force demands have been discussed for another 
floating cable-stayed bridge. Numerical analysis 
results show that the fundamental period of the 
bridge decreases rapidly when the cable stiffness 
increases. The vibration modes will change if the 
cable stiffness increases to some extent, and the 
displacement demands decrease rapidly when the 
stiffness increases. The bending moment demands 
fluctuate in small amplitude, while the seismic 
shear force demands monotonically increase.

For the new-type SCC bridge, the seismic 
potential is further confirmed based on response 
spectrum analyses of a four span continuous 
girder bridge and a long span SCC arch bridge. 
Analysis results show that the SCC continuous 
girder bridge with same span and deck width has 
lighter superstructure, less pier stiffness and fun-
damental period. Also the shear force and bending 
moment at the pier bottom and the displacement 
at pier top all decrease significantly. For the long 
span SCC arch bridge, it also has lower seismic 
force and displacement demands than a reinforced 
concrete bridge.

LOCAL SEISMIC CAPACITY DESIGN 
FOR COMPONENTS OF BRIDGES

Earthquakes have a habit of identifying structural 
weaknesses and concentrating damage at these 
locations (Priestley, Seible & Calvi, 1992). Lots 
of investigations on earthquake disaster show 
that bridge damage caused by earthquakes mainly 
focuses on local regions and weak points of bridge 
components, such as bearing failures, pier failures, 
pile foundation failures, expansion joint failures, 
and so on. Considering the stochastic character-
istics of earthquakes, keeping bridges in elastic 
state permanently is impossible and unreasonable. 

When the components of bridge locally become 
plastic, the overall conceptual seismic design is 
not applicable because of the limitation of overall 
linear analyses. The local nonlinear seismic capac-
ity design is therefore beneficial for its economy, 
applicability and validity.

Innovation of Cable Sliding Friction 
Aseismic Bearing for Bridges

The girders of continuous bridges are generally 
supported by bearings which transmit loads to 
underlying piers and abutments. Bearing system 
generally comprises a fixed bearing on one pier and 
several frictional bearings on other piers. Under 
minor or moderate horizontal earthquake actions, 
almost all the superstructure’s earthquake-induced 
forces are transmitted to the fixed pier which may 
thus be damaged because of the excessive shear 
force or bending moment. If the fixed bearing is 
designed to fail under severe earthquakes so as 
to protect the pier system, all the other frictional 
bearings will be mobilized to slide so that the bridge 
system will be difficult to maintain equilibrium.

A new cable sliding friction aseismic bearing 
(Figure 14) is invented and presented, which is 
composed of the pot bearing, some cables and a 
shear bolt. Through reasonable design, the bearing 
may perform as same as a fixed bearing system, 
namely keep in service under minor or moderate 
earthquakes. Moreover, the shear bolt of the new 
bearing will fail during severe earthquakes, and 
then a bearing originally used as a fixed bearing 
will be converted into a frictional one. Hence, the 
seismic force can be shared by all the piers not 
only by the fixed pier, while the excessive seismic 
displacement can be restricted by the cables at-
tached to the base of the bearing.

As an improved type of frictional isolation 
devices, the new bearing is characterized by its 
insensitivity to the frequency content of earthquake 
excitations. It can be used in conventional girder-
system bridges, cable-stayed bridges, suspension 
bridges and other similar structures. Compared 
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to other isolation bearings, this bearing has the 
advantages of simplicity in principle, wide ap-
plication, mature technique, stable performance 
and low cost (Yuan, Cao, Cheung, Wang & Rong, 
2010).

Performance Criteria

Based on the above design strategies, three perfor-
mance objectives are proposed for a cable sliding 
friction aseismic bearing as follows.

1.  If the expected deformation of the bearing 
is less than the design free displacement, 
the cables should not be mobilized and the 
new bearing functions as a conventional pot 
bearing.

2.  Under minor and moderate earthquakes, the 
shear bolt in a fixed-type bearing should 
not break so that the bearing keeps service 
and need not be replaced. With respect to 
a sliding-type bearing, the friction capaci-
ties between the stainless steel plate and 
the Teflon plate should bear the horizontal 
ground motions and dissipate the seismic 
energy.

3.  Under severe earthquakes with the breaking 
of the shear bolt, the bearing should function 
as a frictional bearing to mitigate the seismic 
forces and dissipate the seismic energy, while 
excessive relative displacement between 

the superstructure and the pier should be 
restrained by the cables.

Design Parameters

Depending on the above performance objects, 
some important design parameters, such as the 
characteristics of the cables, the shear strength of 
the bolt and the integral stiffness of the bearing 
should be studied carefully as follows, except for 
the available characteristics of the pot bearing 
from the manufacturers.

1.  Characteristics of the cables

According to the geometry dimensions of the 
bearing, each cable’s length L  can be calculated 
as Eq. (1), where L

xy
 is the projective distance of 

the cable in horizontal plane, H  is the bearing 
total height, A  and B  are length and width of the 
upper plate, C  and D  are length and width of the 
lower plate, δx  and δ

y
 are the design displacement 

in the bearing’s longitudinal and transverse direc-
tion.

L A C B D

L H L

xy x y

xy

= + − + + −

= +








[ ( ) / ] [ ( ) / ]δ δ2 22 2

2 2
 

(1)

Figure 14. Schematic diagram of cable sliding friction aseismic bearing
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The axial stiffness of a cable member is defined 
as K EA L

2 1= , where E is the elastic modulus of 
the cables, A1 is the cable section area and L is 
the cable length.

2.  Shear strength of the bolt

Considering the requirements under service 
loads, the horizontal shear resisting capacity of 
the fixed-type pot bearing should not be less than 
10% of the vertical load bearing capacity (Cao, 
2009). Depending on the performance objects, 
the shear bolt should be out of service during 
severe earthquakes. So it is suggested that the 
shear strength of the bolt be within 10% to 15% 
of its vertical load capacity.

3.  Integral stiffness of the bearing

The lateral stiffness of a frictional bearing can 
be simplified as an ideal bilinear model as shown 
in Figure 15a, where K

1
 denotes the elastic stiff-

ness of the bearing and F
s
 denotes the critical 

friction force which is calculated as F N
s
= µ  where 

µ  is the friction coefficient and N is the vertical 
force on the bearing. The cables can be regarded 
as completely elastic material since they should 
not yield, whose load-displacement curve is shown 
in Figure 15b, where K

2
 is the stiffness of the 

cables, u
0
 denotes the design free displacement 

when the bearing is in normal service load and 
α  is the angle between the longitudinal direction 
of the cable when engages at a lateral displace-
ment of u

0
 and the direction of the horizontal 

relative displacement of the friction bearing. So 
combined with the characteristics of the fric-
tional bearing and the cables, the integral stiffness 
model of the cable sliding friction aseismic bear-
ing can be shown in Figure 15c, where n  is the 
number of cables and ϕ  is a coefficient that 
represents the equivalent linearization of cable 
stiffness under severe earthquakes.

Depending on pseudo-static cyclic loading 
experiments and finite element analyses for a 
prototype cable sliding friction aseismic bearing 
(Figure 16) where the maximum vertical load is 
5000 kN, the actual values of the bearing’s char-
acteristics, such as the static and dynamic friction 
coefficients of the bearing’s sliding surface, the 
cable stiffness, the experimental hysteretic curves 
of the bearing and the corresponding skeleton 
curves, can be obtained (Cao, 2009; Yuan, Cao, 
Cheung, Wang & Rong, 2010). The experimental 
results show that the static and dynamic friction 
coefficients decrease as the vertical load increas-
es. Through the experiments and calculations, the 
coefficient ϕ  is suggested to be 0.373 for its ap-
plication in theoretical analysis models of the new 

Figure 15. Stiffness models
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bearing. The results also show that the experi-
mental hysteretic curves agree with the numerical 
ones well and the displacement restraining capac-
ity of the cables is significant.

Application Study

From the above theoretical assumptions and 
analyses, the new cable sliding friction aseismic 
bearing seems sound and acceptable. After some 
conformation improvements in order to be fit for 
the requirements and convenience of manufac-
tures, the modified shop-manufactured bearing 
shown in Figure 17 is applied in a girder-arch 
composite bridge with spans of three 210 m, whose 
finite element model is shown in Figure 18 and 

the fixed pier is PS1. For the new cable sliding 
friction aseismic bearing used only on the fixed 
pier PS1 in the bridge, the vertical load bearing 
capacity is 35000 kN, the friction coefficient is 
0.02 and the shear strength of the shear bolt is 3500 
kN. The seismic responses are evaluated by using 
an artificial synthetic ground motion (Figure 19), 
whose excess probability is 3% in 100 years (Cao, 
2009). The artificial synthetic ground motion is 
applied in the longitudinal direction at the base of 
the piles and abutments, while the vertical ground 
motion is two thirds of it.

Since the stiffness of the cables is very impor-
tant for the new bearing, it is necessary to analyze 
the seismic demand variations of the bridge along 
with the stiffness of the cables. Parametric analy-
ses are conducted and the results are shown in 
Figure 20, in which the left vertical coordinate 
indicates the seismic shear force at the bottom of 
pier PS1 and the right one indicates the maximum 
longitudinal seismic displacement of the deck 
end. It can be seen that the seismic displacements 
of the deck end decrease rapidly, while the seismic 
shear forces at the bottom of pier PS1 do not in-
crease too much, as the cable stiffness increases. 
Yet the shear forces increases a little and the deck 
displacement changes slightly when the cable 
stiffness gradually increases from 1×105 to 3×105 
kN/m.

Figure 16. Prototype bearing

Figure 17. Modified shop-manufactured bearing



290

Overall Conceptual Seismic Design and Local Seismic Capacity Design

Figure 18. Finite element model of the girder-arch composite bridge

Figure 19. Synthetic seismic wave

Figure20. Seismic demands versus the cable stiffness
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For the nonlinear time history analysis of the 
bridge, two design schemes are considered, (i) 
the original design with the conventional fixed 
bearings on the fixed pier PS1; (ii) the alternative 
design with the cable sliding friction aseismic 
bearings on the same pier. Besides, all other bear-
ings are the same sliding ones for the two design 
schemes and the arrangement of the bearings is 
listed in Table 9.

Considering the seismic demand variations of 
the bridge along with the stiffness of the cables 
and many cables used in the new bearing resulting 
in the larger supplied stiffness, so the cable stiff-
ness in the horizontal direction is taken as about 
3.0×105 kN/m in the application study. After the 
analyses, shear force demands at pier bottoms and 
deck-pier relative displacements are shown in 
Table 10. Note that the shear force is normalized 
with the deck weight. For the shear force com-
parisons, the bearings at PS1 are of conventional 
fixed type in the theoretical models of the bridge, 
because the bearings in fixed conditions have 
relative more disadvantageous seismic force 
demands. For the deck-pier relative displacement 
comparisons, the fixed bearings are assumed to 
have lost fixity and be free to move during a severe 
earthquake, focusing the performance of the 
original and the new bearings. It can be seen that 
the shear force demand at PS1 is much larger than 
those at the other three piers by using the original 
bearing on the fixed pier PS1. Yet the excessive 

demands are significantly reduced by 59%, when 
the new bearing takes the place of the original 
one. And other shear forces are also reduced at 
the pier bottoms of other piers except for the almost 
equal shear forces at the pier bottoms of the pier 
PN2. Furthermore, the possible maximum dis-
placements of the deck relative to the piers during 
a severe earthquake that causes the conventional 
fixed bearings at pier PS1 to lose fixity may range 
from 268 mm to 280 mm. Yet the deck displace-
ments at all four piers are controlled to be less 
than 160 mm by using the new bearing.

Moreover, the seismic capacity checks are 
shown in Table 11 for the most unbeneficial pile 
of the bridge. It can be seen that the checks can-
not pass when the original bearing is used on the 
fixed pier PS1. However, the checks can pass 
when the new bearing replaces the original one. 
So it can be concluded that the new bearing can 
decrease the seismic demands and be effective to 
protect the bridge piers and foundations.

Seismic Performance of Bridge Piers 
Reinforced with SFRC

There have been numerous studies on steel fiber 
reinforced concrete (SFRC), most of which aimed 
at the constitutive behavior (Zollo, 1997). These 
studies generally ignored an important fact that 
the SFRC is more likely conducted in confined 
conditions. Ramesh, Seshu and Prabhakar have 
made experimental analyses of 90 specimens and 
pointed out that the SFRC confined by lateral ties 
has improved material properties (Ramesh, Seshu 
& Prabhakar, 2003). Then a constitutive model 
of SFRC, which has been widely accepted, is 
offered as Figure 21. The constitutive equations 
are also shown as Eq. (2), (3) and (4), in which 
C P P

i b bb
f f b sv c= −( )( )'  and RI  is the rein-

forced index.

P f C RI A f A
c i g y g

= + + +( ) ( )( )'

. . .1 0 55 1 0228 0 1024  
(2)

Table 9. Two different design schemes with dif-
ferent arrangements of bearings 

Design 
scheme

Pier 
PN2

Pier 
PN1

Pier PS1 Pier 
PS2

Original 
design

Slid-
ing 
bear-
ings

Sliding 
bearings

Conventional fixed 
bearings

Slid-
ing 
bear-
ings

Alterna-
tive 
design

Slid-
ing 
bear-
ings

Sliding 
bearings

Proposed cable slid-
ing friction 
aseismic bearings

Slid-
ing 
bear-
ings
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Table 10. Seismic demand comparisons of the bridge with different bearings 

Design scheme Pier location

Shear force demands of piers Deck-pier relative displacement

Base Shear (Wd) % of original Displacement (mm) % of original

Original 
design

PN2 0.0473 - 280 -

PN1 0.0545 - 273 -

PS1 0.0914 - 268 -

PS2 0.0524 - 268 -

Alternative 
design

PN2 0.0491 104% 152 54%

PN1 0.0474 87% 142 52%

PS1b 0.0537 59% 128 48%

PS2 0.0473 90% 113 42%

Table 11. Check comparisons of the unbeneficial pile for different bearings 

Design scheme Pier location

Seismic Demand Moment capacity 
(×103 kN·m) CheckAxis force (×103 kN) Moment (×103 kN·m)

Original 
design

PN2 9.633 18.45 22.15 Yes

PN1 10.872 15.39 22.59 Yes

PS1 1.546 22.94 18.64 No

PS2 9.591 18.48 22.13 Yes

Alternative 
design PS1 4.081 15.23 19.90 Yes

Figure 21. Constitutive model of SFRC
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ε ε
u c i

C RI= + +( ) ( )( )' . . .1 5 2 0 9899 0 2204  (3)

ε ε0 85 1 8847 0 121. . .u u RI= + ( )  (4)

Seismic Capacity of Section 
Reinforced with SFRC

To study the seismic capacity of a section reinforce 
with SFRC, a series of finite element models are 
established for some typical single-column piers 
reinforced with SFRC and for some alternative 
piers with plain confined concrete (CRC), whose 
section is shown in Figure 22 and design param-
eters are shown in Table 12 for the pier model M1, 
M2, M3 and M4. The longitudinal reinforcement 
ratio is 2.2% and the lateral reinforcement ratio is 
0.8% for these piers. For the SFRC, the yielding 
stress and strain are 50 MPa and 6.188×10-3 and 
the ultimate stress and strain are 42.5 MPa and 
13.88×10-3. The yielding stress and strain are 38 
MPa and 3.730×10-3 and the ultimate stress and 
strain are 32.3 MPa and 7.030×10-3 for the CRC.

For these typical single-column pier models, 
M1, M2, M3 and M4 reinforced with SFRC and 
CRC, pushover analyses are conducted for them 
respectively. Then the capacity curve comparisons 
are shown in Figure 23 and the curvature ductil-
ity comparisons are shown in Table 13. It can be 
seen that the bending strength is improved if the 
SFRC replaces the CRC for all the piers. It is also 
shown in Table 13 that the curvature ductility of 
sections adopting SFRC is better than those adopt-
ing CRC. The comparisons between the results 
in Table 13 and the ones in Figure 23 show that 
the improvement extent of the ductility is much 
higher than that of the bending strength after 
adopting the SFRC, which indicates that it’s a 

Figure 22. Section of single-column pier

Table 12. Typical single-column piers 

Pier model Concentrated load at the 
top of pier (×103 kN)

Height of pier 
(m)

M1 30 10

M2 30 15

M3 30 20

M4 30 25
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more effective way to improve the ductility 
rather than to enhance the bending strength.

Bridge Piers Reinforced with SFRC

From the above analysis results, it is clear that 
the SFRC can efficiently improve the ductility 
capacity of bridge piers. However, only partial 
regions of a bridge pier may enter plasticity under 

earthquakes from the capacity design principles 
(Priestley, Seible & Calvi, 1992). It means that the 
whole bridge pier reinforced with SFRC may be 
a tremendous waste. Therefore, it is necessary to 
study the seismic capacities of bridge piers wholly 
and locally reinforced with SFRC.

For a group of piers M3 and M4 (Table 12), 
the lengths of local region reinforced with SFRC 
(LR-SFRC) are assumed to be 4 m and 5 m respec-

Figure 23. Capacity curve comparisons between piers reinforced with SFRC and CRC

Table 13. Curvature ductility comparisons between piers reinforced with SFRC and CRC 

Pier model Yield 
curvature (×10-3)

Ultimate curvature 
(×10-3)

Curvature ductility 
factor

Ratio of curvature ductility 
factor (ii)/(i) (%)

(i) M1(CRC) 0.615 8.097 13.166 201.7

(ii) M1(SFRC) 0.654 17.381 26.576

(i) M2(CRC) 0.915 6.277 6.860 206.4

(ii) M2(SFRC) 0.997 14.112 14.154

(i) M3(CRC) 0.912 4.733 5.190 288.5

(ii) M3(SFRC) 0.999 12.085 12.097

(i) M4(CRC) 0.899 4.401 4.895 263.8

(ii) M4(SFRC) 1.046 10.769 10.295
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tively at the pier bottoms. For another compared 
group of piers M3 and M4 (Table 12), it is assumed 
that the piers are wholly reinforced with SFRC 
(WR-SFRC). Based on pushover analyses, the 
capacity curve comparisons are shown in Figure 
24 and the curvature ductility comparisons are 
shown in Table 14 between the piers wholly and 
locally reinforced with SFRC. It can be seen that 
applying the SFRC locally in a reasonable region 
at the bottom of the single-column pier almost 
has the same effect in improving the ductility and 
the bending strength as applying the SFRC in the 
whole pier. So considering the economy, it is more 
advantageous to applying SFRC in a local region 
of the bridge pier rather than applying SFRC in 
the whole pier.

Plastic Hinge Length and Reasonable 
Range Locally Reinforced with SFRC

For the third group of piers M3 and M4 (Table 
12), the lengths of the local region reinforced 
with SFRC are assumed to be 2.0 m and 2.5 m 
respectively at the pier bottoms. Based on push-
over analyses, the results show that a local CRC 
region above the CRC-SFRC interface has already 
yielded, while the pier bottom range reinforced 
with SFRC has not yet yielded. It is obvious that 
the local region reinforced with SFRC has not 
attained the predicted aim to increase the sec-
tion capacities for the third group of pier models 
because of the unreasonable range reinforced 
with SFRC.

So, it is very important to determine the reason-
able range of the local region reinforced with SFRC 
for bridge piers, namely the plastic hinge lengths. 
While referring to the present seismic guidelines 

Figure 24. Capacity curve comparisons between piers wholly and locally reinforced with SFRC

Table 14. Curvature ductility comparisons between piers wholly and locally reinforced with SFRC 

Pier model Yield 
curvature (×10-3)

Ultimate 
curvature (×10-3)

Curvature 
ductility factor

Ratio of curvature ductility 
factor (ii)/(i) (%)

(i) M3(WR-SFRC) 0.999 12.085 12.097 103.6

(ii) M3(LR-SFRC-4m) 1.047 13.111 12.522

(i) M4(WR-SFRC) 1.046 10.769 10.295 106.2

(ii) M4(LR-SFRC-5m) 1.038 11.344 10.929
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of several countries, it is shown in Table 15 that 
the plastic hinge lengths differ from each other 
greatly for the pier M3 and M4 reinforced with 
SFRC (Zhu, Fu, Wang & Yuan, 2010).

Then for a single-column bridge pier, the 
reasonable length lc of local region reinforced 
with SFRC is given as Eq. (5), in which f

cy
 and 

f
fy

 are respectively the compressive yield stress-
es of the original reinforced concrete and the 
SFRC.

l f f l
c cy fy
= −( )1  (5)

Considering the extra-strength of the original 
reinforced concrete, the equation can be modified 
as the following Eq. (6), where φ  is the extra-
strength coefficient. And the coefficient φ  is 
suggested to be 1.2 to 1.4.

l f f l
c cy fy
= −( )1 φ  (6)

Seismic Performance of 
Pile Group Foundations 
Strengthened with SPPs

The pile group foundations consisting of a group 
of piles and a cap supported by the pile group are 
widely used in large bridge projects. The pile group 
foundations are usually vulnerable components 
under earthquakes. Steel protective pipes (SPPs) 
are always used in construction as formworks for 
the underwater in situ concrete piles. After the 
bridge is completed, the SPPs can be of perma-

nently existence and be taken as a part of the piles 
and a strengthening measure for the pile. But the 
seismic performance is still not fully determined 
for the pile group foundations with SPPs.

Seismic Capacity

In order to investigate the effect of the SPPs on 
the seismic performance of the foundation, a real 
pile group foundation comprising of 9 reinforced 
concrete piles and a cap (Figure 25) is taken as 
an example. Four different scale-models are es-
tablished to study the seismic capacity of the pile 
group foundation: (i) Model 1, all piles without 
SPPs, (ii) Model 2, only edge piles strengthened 
with SPPs in local regions from the pile top to the 
second plastic hinge under the ground surface, (iii) 
Model 3, only the edge piles strengthened with 
SPPs along the total pile height, and (iv) Model 
4, all the piles strengthened with SPPs along the 
total pile height. For latter three models, the area 
of SPP accounts for 1.4% of the whole section 
area. Other parameters of the models are listed 
in Table 16.

Depending on the results of pushover analyses, 
the seismic capacity comparisons are shown in 
Figure 26 for Model 1 to 4. The seismic capacity 
variations for the edge pile in Model 3 are pre-
sented in Figure 27 along with the steel protective 
pipe ratio (SPPR) ranging from 0 to 2.5%. More-
over the section curvature variations in yielding 
state and in ultimate state are presented in Figure 
28 for edge piles in Model 3. It can be seen that 
the seismic capacities, including the ductility and 
the lateral resistance of the pile group foundation 
strengthened with SPPs, is better than those of 
the foundation without SPP. The lateral resistance 
of the edge piles increases, while the maximum 
curvature decreases significantly along with the 
increasing of the SPPR. Therefore the potential 
is significant for the pile group foundation 
strengthened with SPPs.

Table 15. Plastic hinge lengths according to dif-
ferent guidelines 

Pier model New 
Zealand

Euro Code 8 AASHTO

M3 3.750 1.840 1.890

M4 4.000 2.240 2.290
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Low Cycle Loading Experiments

From the above analyses results, it can be con-
cluded that the pile group foundation strengthened 
with SPPs has better seismic capacities than the 
foundation without the SPP. So it is necessary to 
further study the energy dissipation and hyster-
etic performance under earthquakes in order to 
promote the application of the pile group foun-
dation strengthened with SPPs. Then another 
four scale-models, Model 5 to 8, are established, 
whose design parameters are listed in Table 16 
too. Model 5 and 6 are normal reinforced concrete 
(RC) pile group foundations and Model 7 and 8 
are foundations strengthened with SPPs, whose 
pipe wall thickness is 0.1cm and length is 40cm 
beginning from the pile top. Moreover, the low 
cycle loading experiments (Figure 29) were con-
ducted for these models in the electro-hydraulic 
servo loading system in Tongji University. The 

amplitude of the cycles was variable from 2 mm 
to 80 mm and the frequency of the applied signal 
was equal to 0.02 Hz (Zhou, 2008).

Considering the modified Park-Ang damage 
index (Park & Ang, 1985; Park, Ang, & Wen, 
1985), the fiber beam element finite element 
model (Figure 30) was established for these mod-
els and the low cycle loading experiments were 
simulated by the finite element method.

After the experiments and finite element 
analyses, the numerical and experimental hyster-
etic curves between the lateral force and the pier 
top displacement are shown in Figure 31. It can 
be shown that the strength of the models strength-
ened with SPPs is about 1.77 times and the ultimate 
displacement is about 1.66 times of the ones of 
the RC models. Additionally, the hysteretic en-
ergy dissipation capabilities of the models 
strengthened with SPPs are more than 2.15 times 
of the RC models, while the equivalent viscous 

Figure 25. Pile group foundation system

Table 16. Design parameters of the pile group foundation models 

Model Scale Diameter
(cm)

Height
(cm)

Free
Segment 

height(cm)

Pile 
space(cm)

Main
reinforcement 

ratio

Hoop
reinforcement 

ratio

Vertical 
Force at 
the pier 
top (kN)

1-8 1:20 9.0 72.0 49.0 44.5 0.871 0.379 75.0
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Figure 26. Seismic capacity comparisons

Figure 27. Seismic capacity variations of the edge pile in Model 3

Figure 28. Section curvature variations of the edge pile in Model 3
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Figure 29. Low cycle loading experiments

Figure 30. Finite element model and fiber element sections
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damping ratio is reduced by 41.7%. The pinching 
effects of RC models are more obvious, while the 
hysteretic loops are plumper for models strength-
ened with SPPs. Comparisons between the ex-
perimental and numerical responses show that the 
numerical results agree with the experimental 
trends well.

Solutions and Recommendations

To realize more economical, applicable and valid 
seismic design of bridges, some local element 
seismic design strategies are presented to improve 
the seismic capacities for bridges. Considering the 
disadvantages of some typical isolation devices, 
a new cable sliding friction aseismic bearing 
is invented. Its performance criteria and some 

important design parameters are determined by 
theoretical analyses and experiment testing. The 
application of the new bearing in a girder-arch 
composite bridge shows that the relative seismic 
displacements between the girder and piers are 
reduced significantly and the seismic forces at 
almost all the pier bottoms are also reduced when 
the new bearing replaces the original frictional 
one on the fixed pier.

Based on the proposed nonlinear material 
constitutive model of SFRC, the seismic capaci-
ties of single-column bridge piers wholly and 
locally reinforced with SFRC are studied by the 
pushover method. Analysis results show that the 
bending strength and the curvature ductility of 
the piers are improved if the SFRC replaces the 
CRC. The improvement extent of the ductility is 

Figure 31. Hysteretic curves
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much higher than the bending strength. Seismic 
capacity comparisons between the piers wholly 
and locally strengthened with SFRC show that 
applying SFRC locally in a reasonable area of 
the single-column pier almost has the similar 
effect in improving the ductility and the bending 
strength as applying the SFRC in the whole pier. 
Then the plastic hinge length and the reasonable 
range locally strengthened with SFRC are clearly 
determined, considering that the present seismic 
guidelines of several countries have different 
definitions of the plastic hinge length for the 
single-column bridge pier reinforced with SFRC.

For pile group foundations reinforce with SPPs, 
the seismic capacities, the hysteretic performance 
and energy dissipation capabilities are studied 
by numerical simulations and low cycle loading 
experiments. The pushover analysis results show 
that the seismic capacity, including the ductility 
and the lateral resistance of the pile group foun-
dation reinforced with SPPs, is better than the 
original one without SPPs. The lateral resistance 
of the edge piles increases, while the maximum 
curvature decreases significantly along with the 
increasing of the SPPR. The experiments and the 
finite element analysis comparisons show that 
the strength and the ultimate displacement of the 
foundation models strengthened with SPPs are 
better those of the RC ones. The hysteretic energy 
dissipation capabilities of the models strengthened 
with SPPs are much better than those of the RC 
models, while the equivalent viscous damping 
ratio is reduced by 41.7%. The pinching effects of 
RC models are more obvious, while the hysteretic 
loops are plumper for models strengthened with 
SPPs. Comparisons between the experimental 
and numerical responses show that the numerical 
results agree with the experimental trends well.

FUTURE RESEARCH DIRECTIONS

As an important lifeline project, seismic design 
of bridges should be paid more and more atten-

tion. Undoubtedly, there are still many aspects 
need to be studied to obtain more optimal seismic 
performance for bridges, while this chapter mainly 
focuses on two methods: (i) the overall conceptual 
seismic design for whole bridges in a linear and 
elastic state; (ii) local seismic capacity design for 
components of bridges in a nonlinear and plastic 
state. The seismic design strategies proposed in the 
chapter consider the displacement requirements 
of bridges greatly, but they are still not enough to 
attain the complete displacement-based design. So 
the displacement-based design methods should be 
further promoted in the future, since the limitations 
of the force-based design methods are more and 
more obvious for bridges.

The overall conceptual seismic design mainly 
focuses on typical bridges in this chapter. With 
the increase of irregular bridges constructed in 
earthquake regions, more attention should be paid 
to their seismic performance, and how to conduct 
the overall conceptual seismic design and local 
seismic capacity design of them in the future. 
Moreover, the stochastic seismic performance of 
bridges with the cable sliding friction aseismic 
bearing should be emphasized in future research, 
since the determinate seismic performance has 
been carefully studied in the chapter. For the pile 
group foundation strengthened with SPPs, the 
erosion problem of steel pipes and its influences 
on the seismic design of foundations should be 
further promoted.

CONCLUSION

To give clear and correct directions for seismic 
design optimization of bridges, some new seismic 
design strategies are presented to obtain uniform 
and rational seismic demands and improved 
seismic capacities of structural components in 
seismic design of bridges, according to two design 
methods: the “overall conceptual seismic design” 
and the “local seismic capacity design”.
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From the perspective of overall linear concep-
tual seismic design for several typical bridges, 
four design strategies are mainly introduced in the 
chapter to make the structure’s dynamic character-
istics adapt to the site conditions and let the seismic 
demands become more uniform and rational along 
structural components: optimal design for layout 
and detail of continuous girder bridge, design of 
towers for long span floating cable-stayed bridge, 
seismic isolation mechanism of elastic cables in 
cable-stayed bridge, and seismic potential and 
performance for long span SCC bridges. For a 
long span continuous girder bridge, the optimal 
adjustments of the piers form and locations of 
expansion joints are proposed to make the stiff-
ness distribution better suit to the site conditions. 
For a long span cable-stayed bridge, a new-type 
spatial bridge tower is proposed to replace the 
original inverted Y shape tower based on elastic 
response spectrum analyses. The influences of 
the cable stiffness on the dynamic characteristics, 
seismic displacement and forces are investigated 
for another floating system cable-stayed bridge 
installed with the elastic cables seismic isolation 
device. For the new-type SCC bridge, the seismic 
potential is further confirmed based on response 
spectrum analyses of a four span continuous girder 
bridge and a long span SCC arch bridge. Amounts 
of numerical analyses and result comparisons 
show that the proposed overall conceptual seismic 
design strategies can decrease the seismic demands 
and achieve a balance between the seismic force 
and displacement, and thus improve the seismic 
performance for bridges.

From the perspective of local nonlinear seismic 
capacity design for components, three strategies, 
innovation of cable sliding friction aseismic 
bearing for bridges, bridge piers reinforced with 
SFRC and pile group foundations strengthened 
with SPPs are proposed to improve the seismic 
capacities for components of bridges. Based on the 
advantages of typical frictional isolation devices 
and displacement restraining capabilities of cables, 
a new cable sliding friction aseismic bearing is 

invented and its seismic performance is studied by 
the theoretical analysis and experimental testing. 
The seismic capacities of bridge piers wholly and 
locally reinforced with SFRC are studied based 
on the presented nonlinear material constitutive 
model of SFRC and the plastic hinge length and 
the reasonable range locally reinforced with SFRC 
are determined for the single-column bridge pier. 
For pile group foundations reinforced with SPPs, 
its seismic capacities, hysteretic performance 
and energy dissipation capabilities are studied 
by numerical simulations and low cycle loading 
experiments. Theoretical analyses, experimental 
studies and some effective comparisons show 
that the presented local seismic design strategies 
of components of bridges are economical, ap-
plicable and valid.
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KEY TERMS AND DEFINITIONS

Bridge Pier Reinforced with SFRC: The pier 
whose material is steel fiber reinforced concrete 
in the whole pier or in local regions.

Cable-Sliding Friction Aseismic Bearing: 
The new-type bearing which is composed of the 
pot bearing, some cables and a shear bolt.

Close Twin-Column Pier System: a pier 
system made up of two symmetrical adjoining 
parts (right and left part) which are half of the 
solid single-column pier divided along the verti-
cal mid-plane.

Elastic Cable Seismic Mitigation and Isola-
tion Device: The elastic cables equipped between 
the tower and the girder which can adjust the 
stiffness distribution of the cable-stayed bridges.

Local Seismic Capacity Design: A seismic 
design method which focuses on increasing the 
seismic capacities of components or local elements 
of a whole bridge in a nonlinear state.

Overall Conceptual Seismic Design: A con-
ceptual seismic design method which focuses on 
the optimal design of whole structural system in 
a linear and elastic state to make the structure’s 
dynamic characteristics adapt to the site conditions 
and achieve more uniform and rational seismic 
demands of structural components.

Pile Group Foundation Strengthened with 
SPPs: The pile group foundation whose piles are 
strengthened with the outer steel protective pipes 
in the whole pile or in local regions.

Spatial Tower: The tower model which is 
composed of four single columns in space to 
replace the inverted Y shape tower in plane.

Steel-Concrete Composite Bridge: The 
bridge whose girder is composed of structural 
steel and reinforced concrete.
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Chapter  12

INTRODUCTION

Optimum design of structures is a process of 
selecting the design variables such that an ob-
jective function is minimized while all of the 
design constraints are satisfied. During the last 
decades, structural optimization problems have 

been solved using gradient-based algorithms. As 
the mathematical programming based methods 
need gradient calculations, the considerable part 
of the optimization process is devoted to the sen-
sitivity analysis and the computational work of 
these methods is usually high. Optimal design of 
real-world structures subject to seismic loading is 
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one of the major concerns in the field structural 
engineering. When structures are subjected to 
sever earthquakes a huge amount of inertia loads is 
imposed to the structures. In this case, considering 
linear elastic behavior and ignoring the nonlinear 
structural responses during the optimization pro-
cess may lead to vulnerable structural systems. 
Therefore, seismic design codes suggest that, 
under severe earthquake events, the structures 
should be designed to deform inelastically. To 
achieve structural seismic design optimization 
it is necessary that the nonlinear structural time 
history analysis to be performed many times. In 
this case, the computational burden of the opti-
mal seismic design process is so large that could 
prevent designer from comprehensively exploring 
the design space, and could ultimately result in 
unsuitable structures. Consequently, it is neces-
sary to employ efficient computational strategies 
to achieve optimal seismic design of structures 
spending low computational costs.

In the last decades, soft computing procedures 
have been widely used to solve massive and 
complex engineering problems. Soft computing 
includes many components and the most attrac-
tive ones are meta-heuristic optimization algo-
rithms and neural networks. As meta-heuristic 
or evolutionary optimization algorithms need not 
gradient calculations they are more robust than 
the mathematical programming based techniques 
and usually present better global behavior. Be-
side the mentioned computational advantages, 
the disadvantage of these methods is a slow rate 
of convergence towards the global optimum. 
A neural network is an interconnected network 
of simple processing elements. The processing 
elements interact along paths of variable con-
nection strengths which when suitably adapted 
can collectively produce complex overall desired 
behavior. Neural networks operate as black box, 
model-free, and adaptive tools to capture and 
learn significant structures in data. Their com-
puting abilities have been proven in the fields of 
prediction, pattern recognition, and optimization. 

They are suitable particularly for problems too 
complex to be modelled and solved by classical 
mathematics and traditional procedures.

The main objective of this chapter is to propose 
a computationally efficient methodology to op-
timum design of structures subject to earthquake 
loading considering inelastic structural behaviour. 
To achieve this task, an efficient genetic algorithm 
(GA) based evolutionary optimization algorithm 
is employed to reduce the required analyses. Also, 
a hybrid neural network system is employed to 
effectively predict the nonlinear time history 
responses of structures during the optimization 
process.

BACKGROUND

During the last years, a number of researchers 
have employed evolutionary algorithms to optimal 
design of structures subject to dynamic loadings. 
Kocer and Arora (1999, 2002) employed GA for 
the optimal design of H-frame transition poles 
and latticed towers conducting nonlinear time-
history analysis. They proposed the use of GA 
and Simulated Annealing (SA) for the solution of 
discrete variable problems, although the computa-
tional time required was excessive. Salajeghehand 
Heidari (2005) incorporated wavelet transforms 
and neural networks into the GA-based optimiza-
tion processes to predict linear structural responses 
for a specific earthquake time history loading. 
Lagaros et al. (2006) examined the influence of 
various design procedures on the dynamic perfor-
mance of real-scale steel buildings. Gholizadeh 
and Salajegheh (2009) employed meta-heuristic 
particle swarm optimization (PSO) algorithm, 
fuzzy inference systems (FIS) and radial basis 
function (RBF) neural network for optimizing 
linear structures subject to earthquake loading. 
Gholizadeh and Salajegheh (2010a) incorporated 
wavelet RBF neural network into a hybrid PSO-
GA optimization algorithm for seismic optimi-
zation of a real-scale steel building considering 
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linear behavior. Computational performance of 
GA and PSO examined by Gholizadeh (2010) 
for dynamic design optimization of structures 
considering nonlinear responses while a sur-
rogate model employed to predict the structural 
responses during the optimization process. Also, 
Gholizadeh and Samavati (2011) designed struc-
tures subject to earthquake for optimum weight 
considering linear responses by a combination 
of wavelet transforms, RBF neural networks 
and an improved GA. Lagaros and Papadrakakis 
(2011) employed back-propagation (BP) neural 
network to predict nonlinear seismic responses 
of 3D frame structures. They specified that the 
predicted responses may be used in the frame 
work of performance based design of structures 
to reduce the computational effort. The proposed 
methodology in this chapter consists of two main 
computational strategies outlined as follows:

In the first strategy, an efficient evolutionary 
optimization algorithm is employed. The main 
drawback of the evolutionary algorithms, espe-
cially GA, is a slow rate of convergence. In the 
present chapter, a GA based structural optimiza-
tion algorithm that can increase the probability of 
achieving the global optimum with accelerated 
convergence emphasizing on structural nonlinear 
time history analysis reduction is employed. For 
this purpose, the concepts of cellular automata 
(CA) (Von Neumann, 1966) and GA are hybrid-
ized and the resulted hybrid algorithm is called 
cellular genetic algorithm (CGA). In the CGA, a 
small dimensioned grid is selected and the arti-
ficial evolution is evolved by a novel crossover 
and traditional mutation operations. In each itera-
tion, cellular crossover operation produces a new 
design at each site according to the fitness index 
of neighboring cells of each site. As the size of 
the population is small, the optimization process 
converges to a pre-mature solution. In each pro-
cess, the best solution is saved. For creating a new 
population the saved best solution is transformed 
to the new population and the remaining ones are 
randomly selected. Thereafter, the optimization 

process is repeated to achieve a new solution. The 
process of creating the new population with elite 
sites is continued until the method converges. 
However, employing the CGA the number of the 
required generations is considerably reduced dur-
ing the optimization process, but due to this fact 
that the seismic optimization process requires a 
great number of nonlinear time history analyses 
the overall time of the optimization process is 
still very long.

In the second strategy, in order to reduce the 
computational burden of the nonlinear time history 
analysis, a hybrid neural network system (HNNS) 
based on generalized regression neural network 
(GRNN) (Wasserman, 1993) is employed. In this 
case, instead of performing nonlinear dynamic 
analysis by finite element method (FEM) a neural 
network model is used to predict the necessary 
nonlinear time history responses during the 
optimization process. By employing the natural 
frequencies as the inputs of neural networks, 
better performance generality can be obtained. 
As the natural frequencies are required during 
the optimization process, evaluating of these by 
analytic methods can impose additional compu-
tational burden to the process. In order to prevent 
from this difficulty, another GRNN is employed 
to effectively predict the frequencies. During the 
optimization process many designs are examined 
and due to considering nonlinear response analysis 
it is probable that some of them lose their stabil-
ity during the ground motion and the nonlinear 
dynamic analysis fails to converge. It is evident 
that such designs should be rejected. As during 
the optimization process, GRNN is employed 
to evaluate the responses instead of the exact 
nonlinear time history analysis, it is necessary to 
detect such instable structures. For this purpose, a 
probabilistic neural network (PNN) (Wasserman, 
1993) is used. Using the PNN, evaluating the 
time history responses of the instable structures is 
ignored during the optimization process and this 
makes the optimization process more efficient.
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As a test example, a 72-bar space steel tower 
subjected to the El Centro earthquake is optimized 
considering nonlinear time history responses. 
The numerical results indicate that the hybrid 
methodology is a powerful and efficient tool for 
optimal design of structures subjected to earth-
quake loadings.

MAIN FOCUS OF THE CHAPTER

Main focus of the present chapter is to provide 
an efficient soft computing based methodology to 
achieve optimum design of structures subject to 
earthquake. The methodology is a serial integra-
tion of evolutionary algorithms for performing 
optimization and neural network for predicting 
nonlinear time history responses of structures. 
The various issues of the proposed methodology 
are described in the following subsections.

Optimal Design Problem Formulation

The dynamic equilibrium for a finite element 
system subjected to earthquake loading can be 
written in the following usual form:

M C K MI 

Z t Z t Z t u tg( ) ( ) ( ) ( )+ + =  
(1)

where M, C, K, I, Z t( ) , Z t( ) , Z t( ) , u tg ( )  
and t are mass matrix, damping matrix, stiffness 
matrix, unit matrix, acceleration vector, velocity 
vector, displacement vector, ground acceleration 
and the time, respectively.

The problem of structural optimization for 
earthquake induced loads can be formulated as 
follows:

Minimize f X( )  , X; X Ri
d∈ ; i n= 1, ,  

(2)

Subject to 
g X Z t Z t Z t t j mj ( , ( ), ( ), ( ), ) ; , ,     � �� �≤ =0 1  
           (3)

X X X i ni
L

i i
U≤ ≤ =; , ,1

where f, X, g, m and n are objective function, 
design variables vector, behavioral constraint, the 
number of constraints and the number of design 
variables, respectively. Also Xi

L and Xi
U  are 

lower and upper bounds on the ith design variable. 
A given set of discrete values is presented by Rd.

In this chapter, for the time-dependent nonlin-
ear optimization problems, only the displacement 
constraints are considered in Box 1.where dj and 
dj,all are the displacement of the jth node, and its 
allowable value, respectively.

To perform dynamic time history analysis con-
sidering geometrical and material nonlinearities, 
ANSYS software (ANSYS, 2006) are employed. It 
uses a step-by-step implicit numerical integration 
procedure based on Newmark’s method to solve 
the dynamic equilibrium. In order to consider the 
transient nature of earthquake loading a simple 
bilinear stress-strain relationship with kinematic 
hardening is adopted. As confirmed in (Lagaros 
et al., 2006) this law provides accurate results for 
many practical applications.

Box 1.   

g X Z t Z t Z t t
d X Z t Z t Z t t

j
j( , ( ), ( ), ( ), )
( , ( ), ( ), ( ),

    
    

 

 

=
))

; , ...,
,d

j m
j all

− ≤ =1 0 1              (4)
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As all the constraints are time-dependent the 
consideration of all the constraints requires an 
enormous amount of computational effort. Here, 
the conventional method (Arora, 1999) is em-
ployed to deal with time-dependent constraints. 
In this method the time interval is divided into ngp 
subintervals and the time-dependent constraints 
are imposed at each time grid point. Let the jth 
time-dependent constraint be written as:

g X Z t Z t Z t t t tj i( , ( ), ( ), ( ), ) ,      ≤ ≤ ≤0 0  
(5)

where ti is time interval over which the constraints 
need to be imposed.

Because the total time interval is divided into 
ngp subintervals, the constraint (5) is replaced by 
the constraints at the ngp+1 time grid points as:

g X Z t Z t Z t t nj gp( , ( ), ( ), ( ), ) ; , ,    α α α α α� �� �≤ =0 0  
(6)

The above constraint function can be evalu-
ated at each time grid point after the structure has 
been analyzed. The objective function of con-
strained structural optimization problems is de-
fined in Box 2.where ∆  and rp are the feasible 
search space, and an adjusting penalty factor re-
spectively.

Cellular Genetic Algorithm

Cellular automata (CA) represents simple math-
ematical idealizations of physical systems in which 

space and time are discrete, and physical quanti-
ties are taken from a finite set of discrete values. 
In its basic form, a cellular automaton consists of 
a regular uniform grid of sites or cells with a 
discrete variable in each cell which can take on a 
finite number of states. The state of the cellular 
automaton is then completely specified by the 
values si=si(t) of the variables at each cell i. Dur-
ing time, cellular automata evolve in discrete time 
steps according to a parallel state transition de-
termined by a set of local rules: the variables 
s s ti

k
i k

+
+=1

1( ) at each site i at time tk+1 are up-
dated synchronously based on the values of the 
variablessn

k

c
 in their nc neighborhood at the pre-

ceding time instant tk. The neighborhood nc of a 
cell i is typically taken to be the cell itself and a 
set of adjacent cells within a given radius r. Thus, 
the dynamics of a cellular automaton can be for-
mally represented as follows (Biondini et. al., 
2004):

s s s i r n i ri
k

i
k

n
k

cc

+ = − ≤ ≤ +1 θ( , ),  (8)

where the function θ is the evolutionary rule of 
the automaton.

A proper choice of the neighborhood plays 
a crucial role in determining the effectiveness 
of such a rule. In this chapter, the widely used 
Moore neighborhood (Von Neumann, 1966) of 
interaction, by r=1, is adopted.

The CA technique can be combined with the 
evolutionary algorithms to solve optimization 
problems. One of the most popular evolution-
ary algorithms is GA. In the field of structural 

Box 2.   
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optimization some of researchers (Canyurt & 
Hajela, 2005; Rajasekaran, 2001; Gholizadeh & 
Salajegheh, 2010b) have combined the concepts 
of CA and GA to create cellular genetic algorithms 
(CGA). The CGA presented in this chapter is a 
modified version of the CGA proposed by Gholiza-
deh and Salajegheh (2010b) and is denoted as 
modified cellular genetic algorithm (MCGA). In 
the MCGA, as well as the CGA, individuals of a 
selected population are set on discrete locations 
of a 2D grid. The state variables of each site are 
the design variables. In the MCGA, the evolution 
process is accomplished locally, with probabilistic 
interaction rules applied synchronously to each 
central site, and using information only from 
members of its Moore neighborhood. When the 
population has been updated, the evolutionary 
rules of the automaton are repeated until one of 
the stopping criteria is met. In both the CGA and 
MCGA, the objective function of the optimization 
problem is employed to define the fitness of each 
design vector. In the MCGA the evolutionary rule 
of the automaton includes the cellular crossover 
operation (CCO) and the mutation operation (MO) 
applied to the sites.

In the GA type evolutionary algorithms cross-
over operation creates one or more offspring from 
the selected parents. Many different methods have 
been proposed for crossing over in the GA such as 
point crossover method. In this simple method one 
or more points in the chromosome are randomly 
selected as the crossover points. Then the vari-
ables between these points are merely swapped 
between two parents. The problem with these point 
crossover methods is that no new information is 
introduced. But the blending methods mitigate this 
difficulty by finding ways to combine variables 
values from the two parents into new variable 
values in the offspring. For instance in (Haupt & 
Haupt, 2004) such method has been proposed so 
that a single offspring variable value XO is pro-
duced from combination of the two corresponding 
parents’ variable values as follows:

X X XO d m= − +( )1 β β  (9)

where β is a random number on interval [0, 1], 
Xd and Xm are variables in the father and mother 
chromosomes, respectively.

These types of crossovers can not provide suf-
ficient information for a comprehensive search of 
the design space in the complex and large-scaled 
problems. Therefore the found solutions are 
usually local optima. In the MCGA a powerful 
crossover operation is employed that provides 
sufficient information for comprehensive and fast 
exploration of the design space.

In the MCGA model, a population of potential 
designs is structured in a 2D grid. In this case, each 
site contains a real-valued string describing of a 
design and therefore the state of the cellular au-
tomaton in each site is a vector of design variables.

s X x x x i ni i n
T

c→ = ={ , , ..., } , , , ...,1 2 1 2  
(10)

The CCO acts on the design variables and 
combines the information available at the central 
sites and their immediate neighbors. In this case, a 
virtual individual is produced by using the fitness 
indices of the individual in the immediate neigh-
bors of each central site as follows (Gholizadeh 
& Salajegheh, 2010b):

X X X X f fi
best

i
best

i j
j

n

j j
j

nc c

= + −
= =
∑ ∑( ( ) ) /,

1 1

  

(11)

where Xbest is the best solution found up to current 
iteration. Xi

best is the best individual in immediate 
neighbors of ith central cell. Xi,j is the jth indi-
vidual in immediate neighbors of ith central cell 
and fj is its fitness value.

In creation of Xi the effect of individuals hav-
ing better fitness values is higher and vice versa. 
In each discrete time step, the CCO combines the 
central cell with the virtual individual and pro-
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duces a new design at each site according to the 
following equation:

s s s X X Xi
k

i
k

n
k

i
k

i
k

i
k

c

+ += → = − +1 1 1θ β β( , ) ( )  
(12)

The MO in the framework of the MCGA is 
similar to that used in the standard GA. In the 
real-valued model of mutation, the value of the 
mutated design variable is replaced by a ran-
domly selected value from theRd . It has been 
already demonstrated that the low values of mu-
tation probability (0.001 to 0.004) is more effec-
tive, therefore, in this chapter also the value of 
0.004 is considered.

The MCGA is elitism based multi-stage evo-
lutionary algorithm. In the optimization process 
by MCGA, n individuals of a randomly selected 
small initial population are set on locations of a 
2D grid and the search in the first process is com-
menced. As the size of the population is small, 
the optimization process rapidly converges and 
the best solution found in this stage, say 1Xbest , is 
saved. In the next stage, a new elite population is 
created based on the philosophy of giving more 
chance to survive the elite individuals. In this 
case, 1Xbest  is copied to the n  randomly se-
lected cells and the remaining cells are selected 
as follows:

2 1 1 1 2X N X X j n nj
best best= = −( , ), , , ...,( )σ  

(13)

where N X Xbest best( , )1 1σ represents a random 
number normally distributed with the mean of 
1Xbest  and the variance of σ 1Xbest . Various values 
for σ are examined and the best results are obtained 
byσ = 0 15. .

In this case a new optimization process is 
achieved. The process of selecting elite popula-
tions and achieving optimization processes are 
continued until the method converges. In fact in 
the CGA proposed by Gholizadeh and Salajegheh 

(2010b) the remaining cells are selected based on 
a pure random selection but in the MCGA these 
cells are selected by normal distribution about the 
elite individual of the previous stage. In this case, 
the MCGA compared with CGA can provide better 
performance for controlling the balance between 
exploration (global investigation of the search 
place) and exploitation (the fine search around a 
local optimum). Therefore, the MCGA increases 
the probability of founding better solutions spend-
ing lower computational cost. The flowchart of the 
proposed MCGA algorithm is shown in Figure 1.

Hybrid Neural Network System

A hybrid neural network system (HNNS) is em-
ployed to efficiently and accurately predict the 
nonlinear time history responses of the structures. 
In this neural system, GRNN and PNN, both from 
the radial basis function neural networks family, 
are serially integrated.

GRNN is a memory-based network that pro-
vides estimates of continuous and discrete vari-
ables and converges to the underlying regression 
surface. GRNN has a one pass learning algorithm 
with highly parallel structure. It does not require an 
iterative training procedure. The principal advan-
tages of GRNN are fast learning and convergence 
to the optimal regression surface as the number 
of samples becomes large. GRNN approximates 
any arbitrary function between input and output 
vectors, drawing the function estimate directly 
from the training data (Specht, 1990). GRNN is 
often used for function approximation. It is a two 
layer feed forward network. The first layer of GR 
consists of RBF neurons with Gaussian activation 
functions while the output layer consists of linear 
neurons. In the first layer it has as many neurons 
as there are input-output vectors in training set. 
Specifically, the first layer weight matrix is set to 
the transpose of the matrix containing the input 
vectors. The second layer also has as many neurons 
as input-output vectors, but here the weight matrix 
is set to the matrix containing the output vectors.
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W P1 =
T  (14)

W T2 =  (15)

where W1, W2, P and T are the first layer weight, 
the second layer weight, input and desired outputs 
matrices, respectively.

The PNN is mainly used for classification 
problems. To train the PNN a supervised train-
ing is accomplished. Typically, a PNN consists 
of an input layer, a RBF layer, and a competitive 
(C) layer.

During the training stage, a training set of NS 
data samples is used. The number of the neurons 
in the first layer is identical to NS. Also, the weight 
matrix of this layer is set to the transpose of the 
input matrix (Wasserman, 1993). The number of 
the neurons in the competitive layer, which is 

identical to the count of the classes, is denoted by 
NC. Based on these assignments, the PNN is cre-
ated with zero error on training samples (Wasser-
man, 1993). After training, a testing set of NT new 
data samples are used to test the generalization 
of the PNN. When a new input vector is pre-
sented, the RBF layer computes the distances 
between it and the training samples. Then RBF 
activation function is used to produce a vector 
whose elements indicate how close the input vec-
tor is to the training sample. Thus, the RBF layer 
neurons with weight vectors quite far from the 
input vector produce output values near zero, 
while neurons with weight vectors quite close to 
it provide output values near one. Typically, sev-
eral neurons may be active to varying degrees. 
The competitive layer sums these contributions 
for each class of inputs to produce a vector of 
probabilities. Finally, the second layer produces 

Figure 1. Flowchart of MCGA
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a 1 corresponding to the largest element of the 
RBF layer neurons and 0’s elsewhere. Thus, the 
network classifies the input vector into a specific 
k ( , , ..., )k NC= 1 2  class because that class has 
the maximum probability of being correct. The 
key advantage of PNN over the other networks 
is its rapid training. Since the number of layers 
in the PNN architecture is fixed and all the syn-
aptic weights are directly assigned using training 
samples, this procedure can be finished in only 
one epoch and no error correction procedure is 
necessary. It has been proved that with enough 
training data a PNN is guaranteed to converge to 
a Bayesian classifier, which usually owns the 
optimal classification capability (Wasserman, 
1993).

The first step in training of HNNS is to select 
a data set. In the sampling process, NS structures 
based on their design variable vectors are selected. 
The natural frequencies (Fi) and nonlinear time 
history responses (Ri) of all the selected struc-
tures are computed by the conventional FEM. In 
(Gholizadeh et. al., 2009) it has been demonstrated 
that the best candidates as the inputs of the neural 
networks for predicting the time history responses 
of structures are natural frequencies. In this chapter 
also the natural frequencies are employed as the 
inputs. During the optimization process evaluating 
of the frequencies by analytic methods increases 
the computational effort of the process. In order 
to prevent from this, a GRNN is trained to predict 
the natural frequencies. The inputs and outputs of 
this GRNN, denoted as frequency predictor, are 
design variables (Xi) and natural frequencies (Fi) 
of the selected structures, respectively. During the 
nonlinear time history analysis of a structure, it is 
probable that the structure loses its overall stabil-
ity and the analysis procedure can not converge. 
Thus, before training a neural network to predict 
the nonlinear responses, it is important to detect 
stable and instable structures. In this case, clas-
sifier neural networks can be employed. In the 
present chapter, a PNN is trained to achieve this 

important task. All of the NS selected structures 
are considered in the classification phase. Natu-
rally, considering stable and instable structures 
the number of classes, NC, is equal to 2. In the 
training phase of the PNN, the inputs are Fi and 
the output is 1 for stability and 2 for instability of 
the corresponding structure. Employing NS1 stable 
and NS2 instable structures, the PNN is trained to 
detect stable and instable structures during the 
optimization process.

The last stage in training the HNNS is to train 
a network to predict the nonlinear time history 
responses of the NS1 stable structures. For this 
purpose, another GRNN is considered. This net-
work is denoted as response predictor. The inputs 
and outputs of the GRNN are Fi and Ri of the NS1 
stable structures.

In order to evaluate the accuracy of the ap-
proximate nonlinear time history responses 
against their corresponding actual ones (obtained 
by conventional FE analysis), two evaluation 
metrics are used.

RRMSE
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where zi and zi  are the ith component of the 
exact and approximate responses, respectively. 
The mean value of exact vectors component is 
expressed byz .

In the normal mode when an unseen new 
sample (Xnew) is presented to the trained HNNS dur-
ing the optimization process, at first the frequency 
predictor GRNN predicts its natural frequencies 
(Fnew). Then these frequencies are presented to 
the PNN to recognize the stability or instability 
of the structure. If the structure is instable, it will 
be rejected else the response predictor GRNN 
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predicts the nonlinear time history responses of 
the structure (Rnew).

The outline of the HNNS in training and normal 
modes is shown in Figure 2.

Fundamental Steps of the 
Methodology

As explained, in the proposed methodology 
MCGA is employed to achieve optimization task 
while HNNS is employed to predict the required 
structural responses. Fundamental steps of the 
methodology are as follows:

Step1: Data generation: A number of structures are 
randomly selected and their natural frequen-
cies and nonlinear time history responses for 
earthquake loading are computed.

Step2: Structural identification: a PNN is trained 
to detect stable and instable structures based 
on their natural frequencies.

Step3: Frequency evaluation: a GRNN is trained 
to predict the natural frequencies of the 
structures during the optimization process.

Step4: Nonlinear responses evaluation: another 
GRNN is trained to predict the nonlinear time 
history responses of the structures during the 
optimization process.

Step5: Design optimization: optimal design 
process is achieved by MCGA incorporat-
ing HNNS.

Numerical Results

To show the computational advantages of the pro-
posed methodology a 72-bar truss subjected to 15 
seconds of the El Centro (S-E 1940) earthquake 
record is designed for optimal weight. The struc-
ture is shown in Figure 3. The earthquake record 
is applied in x direction. Young’s modulus, yield 
stress and mass density are 2.1×1010 kg/m2, 2.4×107 
kg/m2 and 7850 kg/m3, respectively. A simple 
bilinear stress-strain relationship with kinematic 
hardening by the modulus of 6.3×108 kg/m2 is 

considered. The mass of 10000 kg is lumped at 
nodes of 1 to 4 of the structure. The 72 structural 
members are divided into 9 groups, as follows: (1) 
A1-A4, (2) A5-A12, (3) A13-A16, (4) A17-A24, 
(5) A25-A28, (6) A29-A36 (7) A37-A40, (8) A41-
A48 and (9) A49-A72. The cross-sectional areas 
of the elements can be chosen from the standard 
Pipe profile list given as: (2.54, 11.2, 12.3, 13.9, 
15.2, 17.2, 18.9, 21.4, 25.7, 26.4, 32.1 and 33.1) 
10-4m2. As the nonlinear structural behavior is 
considered only the displacement constraints are 
included. In this case, the displacement of top 
node of the structure is limited to 2 cm. The con-
straints are checked at 750 grid points with time 
step of 0.02 seconds. The computational time is 
measured in terms of CPU time required by a PC 
Pentium IV 3000 MHz.

To train and test the HNNS a training set of 
161 samples are randomly selected and their 
natural frequencies and nonlinear time history 
responses are evaluated by the conventional FEM. 
During this process it is revealed that among all 
the selected structures, in case of 11 ones the 
nonlinear dynamic analysis does not converge. 
Therefore, in the data there are 150 stable struc-
tures (NS1=150) and 11 instable ones (NS2=11). 
The time spent to FE analysis of 165 structures 
is 320 min.

A GRNN is trained to predict the natural fre-
quencies of the structures during the optimization 
process. The inputs and outputs of the GRNN are 
design variables (Xi, i=1,2,…,161) and frequen-
cies (Fi, i=1,2,…,161) of the selected structures, 
respectively. Due to symmetry of the structure, its 
1st, 3rd and 5th natural frequencies are considered. 
From the 161 selected structures, 107 and 54 ones 
are randomly selected to train and test the network, 
respectively. In this case, the size of the GRNN is 
9-110-3. The results of testing the generalization 
of the GRNN are given in Table 1. The time spent 
to train and test the GRNN is 0.6 min.

In order to train the PNN, 107 samples includ-
ing 100 stable and 7 instable structures are con-
sidered. Also to test the PNN, 54 samples includ-
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ing 50 stable and 4 instable ones are considered, 
respectively. The testing results of PNN, shown 
in Figure 4(a), indicate that there is good confor-
mance between exact results and predicted ones 
by PNN. However by adding more instable struc-
tures to the data set the accuracy of the PNN can 
be improved. The time spent to train and test the 
PNN is 1.0 min.

In order to predict the top node displacement 
of the structure another GRNN is trained. As the 
instable structures will be rejected during the 
optimization process, therefore the GRNN is only 
trained to predict the nonlinear responses of the 
stable structures. In this case, the training set 
includes the NS1 stable structures including their 

corresponding natural frequencies as the inputs 
and the nonlinear time history displacements of 
the top node as the outputs. To train and test the 
network 100 and 50 samples are considered, re-
spectively. The size of the GRNN is 3-100-750. 
The results of testing the performance generality 
of the GRNN are shown in Figure 4(b). The time 
spent to train and test the network is 1.35 min. 
The results imply that the generalization of the 
GRNN is appropriate.

The optimization task is achieved by the CGA 
and MCGA with 30 individuals using the exact 
nonlinear dynamic Analysis (ENDA) and approxi-
mate analysis by HNNS (HNNS). The maximum 
number of generations is limited to 100. In each 
optimization case, ten independent optimal design 
processes are performed and the best solution 
found, the average number of generations and 
the average time of optimization are given as the 
final results. In the optimization process based 
on approximate analysis, to distinguish feasible 
and infeasible solutions, the criterion proposed 
by Vanderplaats (1999) is involved: if the sum 
of the violated constraints is less than 0.005, the 
corresponding solution is feasible, otherwise the 

Figure 2. Outlines of the HNNS in (a) training and (b) normal modes

Table 1. Testing errors of the GRNN 

Natural frequencies Mean error 
(%)

Maximum error 
(%)

f1 0.7320 2.1042

f3 0.1420 1.1308

f5 0.4792 1.6149

Average 0.4511 1.6166
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solution is infeasible. It should be noted that, in 
the optimization by CGA and MCGA incorporat-
ing HNNS, the necessary responses during the 
optimization are predicted by the HNNS and to 
assess the feasibility of the final optimal solution 
its responses are evaluated by the conventional FE 
time history nonlinear analysis. The final results 
of optimization are given in Table 2.

It is demonstrated that the MCGA is superior 
to the CGA. It can be also observed that the best 
solution is obtained by MCGA using HNNS in 
terms of weight, time, and accuracy. The top node 
time history displacements of the solutions 
achieved by HNNS (CGA+HNNS and 
MCGA+HNNS) are compared with their corre-
sponding actual ones in Figure 5. Also, the stress-
strain hysteretic curves corresponding to the ele-
ment 14 of the optimal structures are shown in 
Figure 6. These curves imply that the structural 
behavior is highly nonlinear.

DISCUSSION

Training of the HNNS includes three steps. In the 
first step, a GRNN is trained to predict the first, 
third and fifth natural frequencies of the structures. 
The training task is achieved in 0.6 min and the 
results show that the average error is 0.4511%. 
This means that the generalization of the trained 
GRNN is appropriate. In the second step, a PNN 
is trained to recognize stable structures from the 
instable ones. The time spent is 1 min and the nu-
merical results of testing indicate that accuracy of 
the PNN is good. As the final step, another GRNN 
is trained to predict the time history displacement 
the top node of the structure. In this case, the mean 
RRMSE and R2 of the predicted responses are 
0.0387 and 0.9971, respectively. The numerical 
results of testing reveal that the generality of the 
HNNS is proper to provide accurate and reliable 
results during the optimization phase.

Figure 3. 72-Bar space steel truss
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Table 2. Optimum designs 

Element Groups No. CGA MCGA

ENDA HNNS ENDA HNNS

1 1 1 1 1

2 1 1 1 1

3 1 1 1 1

4 2 2 2 2

5 2 3 3 2

6 2 2 2 2

7 6 4 3 3

8 2 2 2 2

9 1 1 1 1

Weight (kg) 1099.6 1089.1 1081.4 1076.2

The average number of generations 74 78 66 63

The sum of the violated constraints 0.0000 0.0000 0.0000 0.0020

The average Optimization time (min) 4110.0 1.22 3600.0 0.95

Data generating time (min) - 320.0 - 320.0

Training time (min) - 3.0 - 3.0

Overall time (min) 4110.0 324.2 3600.0 324.0

RRMSE, R2 - 0.0732, 0.9951 - 0.0668, 0.9975

Figure 4. (a) Testing results of PNN and (b) RRMSE and R2 of the predicted responses by GRNN
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The optimization task is achieved by CGA 
and MCGA incorporating ENDA and HNNS. The 
numerical results show that all of the solutions 
are feasible and the stress-strain hysteretic curves 
corresponding to the elements of the optimal struc-
tures imply that the structural behavior is highly 
nonlinear. The results obtained by MCGA are 
better than that of the CGA in terms of structural 
weight, required generations and prediction ac-
curacy. The weight of the optimal structure found 
by CGA using ENDA and its required generations 
are 1099.6 and 74, respectively while these of the 
MCGA are 1081.4 and 66, respectively. Also the 
corresponding weight and required generation 
to the CGA+HNNS are 1089.1 and 78 while for 
MCGA+HNNS process are 1076.2 and 63, respec-
tively. Therefore it can be observed that MCGA is 
superior to CGA and the best results are provided 
by the MCGA+HNNS process. According to the 
results the overall time of optimization using 
HNNS is significantly reduced by a factor of 0.09 
compared with the optimization using ENDA.

FUTURE RESEARCH DIRECTIONS

In this chapter, a single earthquake record is applied 
to the structure. For the future researches, a bank 
of natural or artificial records scaled according to a 
seismic design code and considering hazard levels 
may be used. Also, other optimization algorithms 
with higher performance may be investigated. To 
improve response prediction accuracy, other neural 
network models such as fuzzy network can be used. 
As the computational work of the methodology 
is low, it also can be used to solve the massive 
seismic reliability based optimization problems.

CONCLUSION

An efficient hybrid neural network based optimi-
zation algorithm is presented to achieve design 
optimization of structures subjected to earthquake 
time history loading with inelastic behavior. A 
modified cellular genetic algorithm denoted as 

Figure 5. The top node displacements of the optimal design found by (a) CGA+HNNS and (b) MCGA+HNNS 
compared with the corresponding actual ones
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MCGA is proposed for performing optimization 
task. The MCGA is a multi-stage optimization 
algorithm based on renewing the population in 
each stage using elitism. In order to mitigate the 
computational rigors of the nonlinear time history 
analysis, a hybrid neural network system termed 
as HNNS is employed. The PNN and GRNN are 
serially integrated in the framework of the HNNS. 
By using the HNNS the necessary nonlinear time 
history responses of the structures during the 
optimization process are accurately predicted. 
Optimization is achieved by CGA and MCGA 

using exact and predicted structural nonlinear 
responses. The numerical results imply that the 
computational performance of the MCGA is better 
than that of the CGA. Also it is observed that by 
employing the HNNS the overall time of optimi-
zation is about 0.09 times of the time required by 
exact optimization while the errors due to all the 
approximations are small. Therefore, it can be 
finally concluded that the proposed methodology 
is a powerful tool to design optimization of struc-
tures subject to earthquake loading considering 
nonlinear behavior.

Figure 6. The stress-strain hysteretic curves of the element 14 of the optimal structures (a) CGA+HNNS 
and (b) MCGA+HNNS
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ABSTRACT

In this chapter, a nonlinear modeling framework to identify nonlinear behavior of smart structural 
systems under seismic excitations is proposed. To this end, multi-input-multi-output (MIMO) autoregres-
sive exogenous (ARX) input models and Takagi-Sugeno (TS) fuzzy models are coalesced as the MIMO 
ARX-TS fuzzy model. The premised part of the proposed MIMO ARX-TS fuzzy model is optimized using 
the hierarchical clustering (HRC) algorithm, while its consequent parameters are optimized via the 
weighted linear least squares estimation. The performance of the proposed model is investigated using 
the dynamic response of a three-story shear planer frame structure equipped with a magnetorheological 
(MR) damper subject to earthquake disturbances. Furthermore, the impact of the HRC algorithm on the 
performance of the MIMO ARX-TS fuzzy model is compared with that of the subtractive and the fuzzy 
C-means clustering algorithms. The equivalence of the original and identified data is numerically shown 
to prove that the HRC MIMO ARX-TS fuzzy model introduced here is effective in estimating nonlinear 
behavior of a seismically excited building-MR damper system.



324

Fuzzy Identification of Seismically Excited Smart Systems

1. INTRODUCTION

The development of an accurate explicit math-
ematical model of dynamical systems is one 
of the most important tasks in structural health 
monitoring and control system design for hazard 
prediction and mitigation of dynamical systems 
because precise mathematical information related 
to the dynamic systems is used for damage predic-
tion and/or calculation of control forces (Kerber 
et al. 2007; Yen & Langari 1998; Lin et al. 2001; 
Bani-Hani 1999; Kim et al. 2011). However, it is 
still challenging to derive a mathematical model 
of nonlinear dynamic systems (Moon & Aktan 
2006). An example of such nonlinear dynamic 
systems can be sought when highly nonlinear 
hysteretic actuators/dampers are applied to struc-
tural systems for efficient energy dissipation: the 
structure integrated with the nonlinear control 
devices behaves nonlinearly although the structure 
itself is usually assumed to remain linear (Yi et al. 
2001; Ramallo et al. 2004). Because the structure 
integrated with the nonlinear hysteretic control 
device is intrinsically nonlinear, it is challenging 
to develop an appropriate mathematical model 
for the integrated nonlinear system including the 
interaction effects between the structural system 
and the nonlinear control device while it plays a 
key role in both structural health monitoring and 
controlling system (Dyke et al. 1998).

Such a challenging nonlinear problem has 
made a number of researchers pay a great deal of 
attention to system identification (SI) approaches 
in recent years (Adeli & Jiang 2006). The non-
linear SI methodologies can be categorized into 
two parts: parametric and nonparametric SI ap-
proaches (Bani-Hani et al. 1999). A parametric SI 
method is to directly identify physical quantities 
such as the stiffness and damping of the structural 
systems (Lin et al. 2001; Lin &Betti 2004; Yang 
& Lin 2004); while a nonparametric SI method 
is to train the input-output map of the structural 

systems (Hung et al. 2003). Among them, the 
nonparametric SI approach is effective for the 
complex nonlinear problems of large civil infra-
structures, in particular, one of the nonparametric 
nonlinear SI methodologies that have been widely 
used in the field of large civil structures is neural 
network (NN) because it is more readily useful 
than the parametric SI approach to identify in-
complete and incoherent measurements of large 
civil structures, in general (Smith & Chase 1993; 
Masri et al. 2000; Hung et al. 2003), although 
conventional NN models have drawbacks of the 
slow convergence rate and the potential to local 
minima due to the characteristics of the black-box 
model (Chassiakos & Masri 1996). On the other 
hand, another popular nonparametric SI method 
for modeling complex nonlinear dynamic systems 
is the fuzzy logic theory because it is effective to 
represent complex nonlinearities and uncertainties 
of dynamic systems in a more transparent way 
(Langari 1999). Since Zadeh’s paper(1965), the 
fuzzy logic has been widely applied to various SI 
problems (Wang & Langari 1995). In particular, 
there have been a number of studies on the TS 
fuzzy model in recent years, which provides an 
effective representation of nonlinear systems 
with the aid of fuzzy sets, fuzzy rules, and a set 
of local linear models (Filev 1991; Du & Zhang 
2008; Abonyi et al. 2000; Wang & Langari 1996; 
Johansen &Babuska 2003; Takagi & Sugeno 1985; 
Chen et al. 2007). On the other hand, the fuzzy 
logic theory in the field of large scale civil infra-
structures has been mainly used for nonlinear fuzzy 
control system design (Tani et al. 1998; Wang & 
Lee 2002; Ahlawat & Ramaswamy 2004; Dounis 
et al. 2007; Loh et al. 2003; Shook et al. 2008; 
Casciati 1997; Yan & Zhou 2006; Choi &Schurter 
& Roschke 2001; Zhou et al. 2003; Faravelli & 
Rossi 2002; Al-Dawod et al. 2004; Battaini et 
al. 2004; Symans & Kelly 1999; Subramaniam 
et al. 1996; Kim et al. 2004; Pourzeynali et al. 
2007; Kim et al. 2009; Nomura et al. 2007; Gu & 
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Oyadiji 2008). However, few investigations are 
found in the field of the nonlinear fuzzy SI for 
civil building structures subjected to earthquake 
loadings (Adeli & Jiang 2006; Jiang & Adeli 
2005). Adeli and Jiang developed a fuzzy wavelet 
neural network (FWNN) model for nonlinear SI 
of high-rise building structures. In their work, 
the multi-input-single-output (MISO) FWNN 
was trained by a hybrid Levenberg-Marquardt 
least-squares algorithm. However, their approach 
does not adopt a fuzzy model as an input-output 
mapping function, but uses a fuzzy C-mean 
clustering technique only as one of data mining 
methods for use in a neural network model. Fur-
thermore, no investigation has been conducted 
on a nonlinear Takagi-Sugeno (TS) fuzzy SI 
for use with building structures equipped with a 
highly nonlinear hysteretic control device such as 
magnetorheological (MR) damper. Without the 
TS fuzzy model for the nonlinear building-MR 
damper systems, it is very difficult to design a 
parallel distributed compensation (PDC)-based 
TS fuzzy control system for damage mitigation 
of seismically excited civil structures equipped 
with MR damper systems (Kim et al. 2009) and it 
would not be easy to develop a damage detection 
algorithm for the seismically excited structure-MR 
damper system. The reason is that the PDC-based 
TS fuzzy control design framework requires 
that a TS fuzzy controller, i.e., a nonlinear fuzzy 
controller, has the same premise parameters as 
a TS fuzzy model, i.e., dynamic model of the 
building-MR damper system (Kim et al. 2009; 
Kim et al. 2010). Therefore, this chapter proposes 
a fuzzy modeling framework based on the TS 
fuzzy model for identifying nonlinear behavior 
of the building-MR damper systems subjected to 
earthquake disturbances: hierarchical clustering-
based (HRC) multi-input, multi-output (MIMO) 
autoregressive exogenous (ARX) Takagi-Sugeno 
(TS) fuzzy model: HRC MIMO ARX-TS fuzzy 
model. The advantages of the proposed HRC 

MIMO ARX-TS fuzzy model can be summarized 
as follows: 1) The proposed modeling framework 
can be directly applied to the structure-MR damper 
system without the decoupling process because it is 
a nonlinear SI method; 2) it is more appropriate to 
identify incomplete and incoherent measurements 
of large civil structures than typical parametric 
SI approaches; and 3) it provides a systematic 
design framework for the PDC-based nonlinear 
TS fuzzy controller.

In the rest of this chapter, first the HRC MIMO 
ARX-TS fuzzy identification framework is de-
scribed, following by simulation results involving 
the time histories of the excitation input signals 
and the associated system output responses.

2. FUZZY LOGIC MODEL

In general, it is still challenging to develop a math-
ematical model for a dynamic model equipped 
with the MR damper system because the nonlinear 
dynamic system has multiple operating regions. In 
this section, a fuzzy modeling framework will be 
presented to model nonlinear behavior of structure-
MR damper systems: first, the fundamentals on 
fuzzy logic models are summarized; and then 
HRCARXTS fuzzy model is introduced; and 
finally, simulation results are discussed.

2.1. Membership Functions 
and Fuzzy Sets

Membership functions (MFs) and fuzzy sets are 
the cornerstone of a fuzzy logic-based system that 
is appropriate for modeling complex nonlinear 
systems with uncertain parameters. There exist 
always a variety of uncertainties in engineering 
problems, e.g., “the structural damage is very 
large” and “the performance of an MR damper 
is sensitive to high temperature.” However, ques-
tions would arise: “How much damage would be 
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thought as very large quantity?” or “Which degree 
of temperature is high?” In reality, it is impossible 
to model the uncertain variables in a conventional 
way; while, MFs can be used for modeling such 
variables as an element of a fuzzy set. Fuzzy sets 
are constructed from MFs. For example, a fuzzy 
set of the structural damage can be constructed as 
three MFs, e.g., small, medium, and large. This 
fuzzy set is used for constructing the premise part 
of IF-THEN rules, i.e., IF STATEMENT.

2.2. Fuzzy Rules

A fuzzy rule base has a set of fuzzy IF-THEN rules; 
e.g., “if a building structure has large damage, a 
controller is operated such that an alarm is rung 
twice”, “if the structural damage is medium, the 
controller is operated such that the alarm is rung 
once”, and “if there is no damage in the building 
structure, the controller is not operated.” The set 
of IF-THEN rules is blended into an integrated 
system through fuzzy reasoning methods.

2.3. Fuzzy Reasoning

Fuzzy reasoning is a mechanism to perform the 
fuzzy inference system that derives conclusions 
from a family of IF-THEN rules, i.e., fuzzy 
reasoning is a methodology to organize a set of 
the IF-THEN rules. Takagi and Sugeno (1985) 
developed a systematic methodology for a fuzzy 
reasoning using linear functions in the consequent 
part. Because the TS-fuzzy model uses linear func-
tions in the consequent part, the defuzzification 
procedure is not required. A typical fuzzy rule for 
the TS fuzzy model has the form

R If is and is and and is

Then

FZ
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2
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j j j
i
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y f z
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where wj is the fuzzy interpolation parameters; Nr 
is the number of the fuzzy rules. To appropriate 
model nonlinear behavior of dynamic systems, 
ARX input models are applied to the consequence 
part of the TS fuzzy model.

3. AUTOREGRESSIVE-
EXOGENOUS INPUT TAKAGI-
SUGENO FUZZY MODEL

A nonlinear dynamic system can be described 
by the following multivariable nonlinear model

z f z u= ( , , ),t  (3)

where t is the time variable; z is a state vector; u 
is an input vector; and f represents a multivariable 
nonlinear dynamic system. The nonlinear dynamic 
model can be described by the multiple multi-input 
multi output (MIMO) ARX input-based TS fuzzy 
model (MIMO ARX-TS) fuzzy model
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where n is the number of delay steps in the output 
signals; m is the number of delay steps in the 
input signals; y k( ) is the output; u k( ) is the input; 
ai j, and bi j, are the consequent parameters (see 
Box 1).

Note that the number of the fuzzy rules cor-
responds to the number of local linear MIMO 
ARX models, i.e., the mth local linear MIMO 
ARX dynamic model represents the mth fuzzy 
rule that describes behavior of a nonlinear dy-
namic system in a local linear operating region. 
However, a question would arise on how to blend 
the multiple local linear MIMO ARX dynamic 
models into an integrated nonlinear dynamic 
system model, i.e., how to construct a bridge 
across the multiple MIMO ARX models. One 
solution is found in the fuzzy logic-based inter-
polation (Yen & Langari 1998). The multiple 
local linear MIMO ARX models at the specific 
operating point z i

FZ can be blended
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whereµi j
iz, ( )FZ is the grades of membership of 

z i
FZ ; Nr is the number of local linear dynamic 

models; and ni is the number of premise variables. 
Once the MIMO ARX-TS fuzzy model is set up, 
the premise parameters Pi,j and the consequent 
parameters ai,j and bi,j are determined such that 
the MIMO ARX-TS fuzzy model describes be-
havior of a nonlinear dynamic system. In this 
study, the premise parameters are determined via 
clustering techniques, including the hierarchical, 
the fuzzy C-means, and the subtractive clustering 
algorithms, and the consequent part is optimized 
using the weighted linear least squares estimation 
algorithm.

4. OPTIMIZATION OF MIMO 
ARX-TS FUZZY MODEL

In the MIMO ARX-TS fuzzy identification model, 
the parameters of the premise and consequent parts 
are optimized such that the MIMO ARX-TS fuzzy 
model effectively represents nonlinear behavior of 
the physical system. In particular, it is desirable 
to group a large data set into subsets of data with 
similar patterns for efficient determination of the 
premise part, i.e., the small number of MFs but 
reasonable pattern recognition. Appropriate meth-

Box 1.   

 zFZ ∈ −( ) −( ) −( ) −( ) −( )y k y k n y k n u k u k m up p1 1 1 11 1, .., , .., , , .., , .., kk m−( ){ }.
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ods for the grouping are clustering techniques that 
extract the center information of the subset of data 
within a large data set. In this study, the hierarchi-
cal clustering algorithm is applied; and then, the 
solution is compared with the other benchmark 
clustering algorithms, such as the fuzzy C-means 
and the subtractive clustering algorithms.

4.1. Premise Part

The hierarchical clustering algorithm determines 
the membership of data to their clusters by con-
structing the hierarchical organization of a given 
set of data, revealing the membership of each 
datum differently at distinct hierarchy levels (Ward 
1963; Clauset et al. 2008). Once the hierarchy 
is established, one of the levels can be chosen 
either to yield a desired number of clusters or to 
optimize an objective function, depending on the 
problem at hand. To describe the algorithm, the 
dissimilarity or distance between a pair of data 
up is first considered as

d u I u JIJ p p= −( ) ( ) ,  (7)

where the definition of distance can take any 
well-behaved metric for distance. In addition, the 
distance between a pair of sets can be defined as 
a function of the distances of all the pairs of data 
which are extracted from respective sets, i.e.,

D F d I U J Vuv IJ p p= ∈ ∈{ : , },  (8)

where F can be the minimum, the maximum, the 
average, or any other functions of the elements, 
dIJ. In this study, we choose the Euclidean distance 
for dIJ and the minimum for F.

The algorithm starts with allocating each data 
point to its own set, so that each set contains only 
one data point. Then, the distances of all the pairs 

of sets are evaluated to find the minimum distance 
pair, and the sets thus found are merged into a set. 
By repeating this, the number of sets decreases by 
1 at each iteration, so the desired number Nq of 
the sets are obtained after (N-Nq) iterations. The 
center of each cluster can be calculated from the 
locations of data points composing it. Note that 
while the procedure described above is called the 
agglomerative hierarchical clustering, a divisive 
strategy can also be applied to obtain the same 
result. Note also that our choice of distance metrics 
produces the equivalent result as splitting the set at 
the (Nq-1) locations where the distances between 
adjacent data points are farthest, since we are 
concerned in the clustering of one dimensional 
data in this study.

4.2. Consequent Part

Once the premise part is optimized, the conse-
quent part parameters can be optimized with the 
weighted linear least squares algorithm. Based on 
Gauss’s celebrated principle of least square (Gauss 
1963), the linear least squares algorithm can be 
formulated as a quadratic optimization problem 
that minimizes the error between true values and 
estimated model outputs

Min TJ k k=
1
2
e e( ) ( ),  (9)

where e y y( ) ˆ( ) ( );k k k= −   i.e., the error e( )k is 
the difference between the estimation model ˆ( )y k
and the true values y( ).k Note that the normal 
linear least squares formulation can be easily 
extended into the weighted linear least squares 
by introducing a factor of weight. Thus, in what 
follows, the normal linear least squares estimator 
is derived first and then the weight factor is 
added into the normal least squares. A linear es-
timation model for use with the linear least squares 
algorithm is
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ˆ( ) ( ) .y Hk k j= ¸  (10)

where H( )k is a set of independent specified 
basis and ¸ j is the matrices of parameters to be 
estimated. On the other hand, the true model can 
be thought as a contaminated estimation model

y H e( ) ( ) ( ).k k kj= +¸  (11)

From Eq. (11), the error dynamics is given by

e y H( ) ( ) ( ) .k k k j= − ¸  (12)

Using the fact that a scalar equals its transpose, 
substituting Eq. (12) into Eq. (9) leads to the fol-
lowing objective function

J J k k k k k kj j j j= = − +



( ) ( ) ( ) ( ) ( ) ( ) ( ) .¸ ¸ ¸ ¸1

2
2  y y y H H HT T T T  

(13)

In this problem, the goal is to find ¸ j such that 
the objective function J is minimized. For mini-
mization of the quadratic function of Eq. (13), the 
following necessary condition can be derived

∇ = − =¸ ¸
j
J k k k kjH H H y( ) ( ) ( ) ( ) ,T T

 0  
(14)

where∇¸ j
J  is a Jacobian matrix, the first partial 

derivative of J with respect to ¸ j . For solution of 
this equation, the following analytical least squares 
estimator is available

θj k k k k= 


−

H H H y( ) ( ) ( ) ( ).T T1
  (15)

By simply adding an appropriate weighting 
parameter of wj

e , the linear least squares estima-

tion can be easily extended into a weighted least 
squares estimator

θj j
e

j
ek w k k w k= 



−

H H H y( ) ( ) ( ) ( ),T T1
  (16)

where wj
e is the appropriate weighting parameter 

and

H y y u u( ) [ ( ) , ..., ( ) , ( ) , ..., ( ) ]k k k n k k m= − − − −1 1T T T T  
(17)

and

θj j n j j m j= [ , ..., , , ..., ]., , , ,a a b b1 1  (18)

The nonlinear HRC MIMO ARX-TS fuzzy 
modeling approach proposed in this chapter 
can be summarized: 1) nonlinear behavior of a 
building-MR damper system are represented by 
a family of multiple MIMO ARX input models 
that are integrated into a nonlinear time-varying 
model through fuzzy rules; 2) the premise part 
of the multiple MIMO ARX-TS fuzzy model is 
determined by using the HRC algorithm; 3) the 
consequent part parameters are optimized by a 
family of weighted linear least squares. Finally, 
the effectiveness of the HRC MIMO ARX-TS 
fuzzy model is demonstrated from a benchmark 
building structure in the following section. Note 
that the proposed HRC MIMO ARX-TS fuzzy 
model was used for a semiactive nonlinear fuzzy 
control system design (Kim et al. 2009).

5. CASE STUDY

5.1. MR Damper

In recent years, smart control systems have been 
considered for large civil structures because it 
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combines the best features of both active and 
passive control systems. Smart control devices 
include variable-orifice dampers, variable-
stiffness devices, variable-friction dampers, 
controllable-fluid dampers, shape memory alloy 
actuators, piezoelectrics, etc. (Hurlebaus & Gaul 
2006). In particular, one of the controllable-fluid 
dampers, magnetorheological (MR) damper has 
attracted considerable attention in recent years 
due to its appealing characteristics. In general, 
an MR damper consists of a hydraulic cylinder, 
magnetic coils, and MR fluid comprising micron-
sized magnetically polarizable particles floating 
within oil-type fluid. The MR damper is operated 
as a passive damper; however, when a magnetic 
field is applied to the MR fluid, it is changed into 
a semi-solid state in a few milliseconds. This is 
one of the most unique aspects of the MR damp-
ers compared to active systems: the malfunction 
of the active control system might occur if some 
control feedback components, e.g., wires and sen-
sors, are broken for some reasons during severe 
earthquake events, while a semiactive system 
operates as a passive damping system although 
the control feedback components are not function-
ing properly. Its characteristics are summarized 
in Kim et al. (2009)

To fully use the best features of the MR 
damper, a mathematical model that portrays the 
nonlinear behavior of the MR damper has to be 
developed first. However, this is challenging 
because the MR damper is a highly nonlinear 
hysteretic device. In this study, a modified Bouc-
Wen model is used to predict the dynamic behav-
ior of the MR damper force because it accurately 
predicts the dynamic behaviors at both low and 
high velocity regions as shown in figure 1 (Spen-
cer et al. 1997), where the MR damper force 
f tMR( )predicted by the modified Bouc-Wen 
model is governed by the following differential 
equations

f c y k x xMR BW BW BW BW BW= + −1 1 0
 ( ),  (19)
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α α α= +a b BWu ,  (22)

c c c ua b
BW BW BW BW
1 1 1= + ,  (23)

c c c ua b
BW BW BW BW
0 0 0= + ,  (24)

u u vBW BW BW= − −η( ),  (25)

where zBW and α, called the evolutionary vari-
ables, describe the hysteretic behavior of the MR 
damper; cBW

0 is the viscous damping parameter at 
high velocities; cBW

1 is the viscous damping pa-
rameter for the force roll-off at low velocities; αa, 
αb, c a

BW
0 , c b

BW
0 , c a

BW
1 , and c b

BW
1 are parameters that 

account for the dependence of the MR damper 
force on the voltage applied to the current driver; 
kBW

0 controls the stiffness at large velocities; kBW
1

represents the accumulator stiffness; xBW
0 andxBW

are the initial and arbitrary displacements of the 
spring stiffness kBW

1 , respectively; γ, β, l and ABW

are adjustable shape parameters of the hysteresis 
loops, i.e., the linearity in the unloading and the 
transition between pre-yielding and post-yielding 
regions; vBW and uBW are input and output volt-
ages of a first-order filter, respectively; and η is 
the time constant of the first-order filter. Note that 
nonlinear phenomena occur when the highly 
nonlinear MR dampers are applied to structural 
systems for effective energy dissipation. Such an 
integrated structure-MR damper system behaves 
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nonlinearly although the structure itself is usu-
ally assumed to remain linear.

5.2. Building-MR Damper System

To demonstrate the effectiveness of the HRC 
MIMO ARX-TS fuzzy model proposed in this 
study, a 3-story shear planar frame structure em-
ploying an MR damper is investigated. An example 
of a building structure employing an MR damper 
is depicted in Figure 2. The associated equation 
of motion is given by

Mx Cx Kx f M wMR g   + + = ( )−“ ›t x x v, , , ,1 1 1  
(26)

where the system matrices are;
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is the stiffness matrix,
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is the MR damper force vector; wg denotes the 
ground acceleration, mi are the mass of the ith 
floor, ki is the stiffness of the ith floor columns, 
ci is the damping of the ith floor columns, the 
vector x is the displacement relative to the ground, 
x is the velocity, x  is the acceleration,x1  and x1

are the displacement and the velocity at the 1st 
floor level relative to the ground, respectively, v1

is the voltage level to be applied, and “ and ›  
are location matrices of control forces and distur-
bance signal, respectively. The second order 
differential equation can be converted into a set 
of first order differential equations in state space 
as

 z A z B f E w

y C
MR6 1 6 1 6 1 6 3 1 4 1 3 1 6 3 3 1

9 1

× × × × × × ×

×

= + ( ) −

=

* * *, , ,t z z v g

99 6 6 1 9 3 1 4 1 3 1 9 1× × × × ×+ ( ) +* * , , , ,z D f nMR t z z v
 

(31)

Figure 1. Modified Bouc-Wen model for MR 
damper
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where

A
0 I
M K M C

* =
− −











− −1 1  (32)

is the state matrix,
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is the input matrix,
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is the output matrix,

D
0
0
M F
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−1

 (35)

is the feed-through matrix,

E
0
F

* =









  (36)

Figure 2. A 3-story shear planer frame structure employing an MR damper



333

Fuzzy Identification of Seismically Excited Smart Systems

is the disturbance location matrix,

F =
−

−
−



















1 1 0

0 1 1

0 0 1

 (37)

is the location matrix that a Chevron brace is 
located within the building structure, n is the 
noise vector, z1 and z4 are the displacement and 
the velocity at the 1st floor level of the three-story 
building structure, respectively, I is the identity 
matrix, and 0 is the zero matrix. Note that in the 
earthquake engineering applications, the earth-
quake disturbance excites all the floor levels 
within the building structure as the inertia forces, 
i.e. is a 3 × 1 vector with the same component of 
the 1940 El-Centro earthquake. Properties of the 
three story building structure are adopted from a 
scaled model (Dyke et al. 1996) of a prototype 
building structure that was developed by Chung et 
al. (1989). The mass of each floor m1 = m2 = m3= 
98.3 kg; the stiffness of each story k1= 516,000 
N/m, k2 = 684,000 N/m, and k3= 684,000 N/m; 
and the damping coefficients of each floor c1 = 
125 Ns/m, c2 = 50 Ns/m, and c3= 50Ns/m. In ad-
dition, a SD-1000 MR damper whose parameters 
are given in Table 1 is installed on the 1st floor 
level using a Chevron brace, which leads to a 
nonlinear dynamic model, i.e., a building-MR 
damper system. Based on the physical model, a 
set of input-output data is generated for training 
the proposed HRC MIMO ARX-TS fuzzy system 
identification procedures. Note that it is challeng-
ing to identify M, C, and K matrices through a 
linear time-invariant (LTI) model framework 
because the building structures employing MR 
dampers are nonlinear time-varying systems. 
Therefore, it is recommended to develop a nonlin-
ear time-varying model framework for modeling 
the building-MR damper system.

5.4. Simulation Results

To demonstrate the effectiveness of the proposed 
HRC MIMO ARX-TS fuzzy models, a three-story 
building structure employing an MR damper is 
investigated. Two input signals, which are a dis-
turbance signal and a control signal, are applied 
to the benchmark three-story building structure to 
generate output data. Figure 3 shows the first input 
signal, which is an artificial earthquake used as 
a disturbance input signal such that the spectrum 
of the random signal includes the frequency char-
acteristics of the earthquake ground acceleration. 
The second input is the MR damper force signal 
as shown in Figure 4. On the other hand, the 3rd 
floor acceleration and the 1st floor displacement 
responses are selected as output signals.

The model order of the MIMO ARX-TS fuzzy 
model is chosen to be n = m = 2. Note that the 
number and the type of the MFs are determined 
via trial-and-errors. Although the architecture of 
the MIMO ARX-TS fuzzy model can be optimized 
via an optimization procedure (e.g., genetic algo-
rithm), it is beyond the scope of the present 
chapter. However, the authors intend to optimize 
the architecture of the MIMO ARX-TS fuzzy 
model in near future. Note that the performance 
of the identified model can be improved by in-
creasing either the order of the MIMO ARX-TS 
fuzzy model or the number of the MFs, resulting 
in the larger dimension of the fuzzy rule base. 
Figure 5 and Figure 6 compare the displacement 
and acceleration responses of the original simula-
tion model with those of the identified HRC MIMO 
ARX-TS fuzzy model, respectively. As can be 
seen from the figures, overall good agreements 
between the original values and the identified 
HRC MIMO ARX-TS fuzzy models are found in 
the time histories of both displacement and ac-
celeration responses.

Table 2 shows the error of the identified MIMO 
ARX-TS fuzzy model: represents the mean 
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Table 1. Parameters for SD-1000 MR damper model 

Parameter Value Parameter Value

c a
BW
0

21.0 Nscm-1 αa 140 Ncm-1

c b
BW
0

3.50 Nscm-1 V-1 αb 695 Ncm-1 V-1

kBW
0

46.9 Ncm-1 γ 363 cm-2

c a
BW
1

283 Nscm-1 β 363 cm-2

c b
BW
1

2.95 Nscm-1 V-1 ABW 301

kBW
1

5.00 Ncm-1 l 2

xBW
0

14.3 cm η 190 s-1

Figure 3. Artificial earthquake

Table 2. Error quantities of the MIMO ARX-TS fuzzy model

Fuzzy C-means Clustering Hierarchical Clustering Subtractive Clustering

ŷ1 ŷ2 ŷ1 ŷ2 ŷ1 ŷ2

E y y−( )





ˆ
2

3.194×10-4 0.468 3.685× −10 4
0.460 5.354× −10 4

0.666

1 100−
−

−
















×





y y

y y

ˆ
81.540 78.881 80.492 78.947 78.756 76.379
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Figure 4. Magnetorheological (MR) damper force

Figure 5. Comparison of original data and MIMO ARX-TS fuzzy model: Displacement

Figure 6. Comparison of original data and MIMO ARX-TS fuzzy model: Acceleration
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squared errors (MSE); is the fitting rate (FR), e.g., 
if the proposed fuzzy models produce the same 
responses as the simulation model, FR is 100; is 
the output of the proposed MIMO ARX-TS fuzzy 
models; and and are the output data from the 
simulation model and the associated mean value, 
respectively. The performance of the proposed 
HRC approach is compared with benchmark 
clustering algorithms, the fuzzy C-means and the 
subtractive clustering techniques. It is found from 
Table 2 that the proposed HRC MIMO ARX-TS 
fuzzy model outperforms over the other methods 
in terms of acceleration responses (i.e., ). The 
performance of identifying displacement (i.e., ) 
and acceleration responses using the proposed 
HRC MIMO ARX-TS fuzzy model is much bet-
ter than the one of the subtractive clustering-based 
approach. It is, however, shown from the table 
that the identified displacement response of the 
fuzzy C-means clustering-based approach is bet-
ter than that of the proposed HRC MIMO ARX-
TS fuzzy model. In other words, the proposed 
HRC-approach effectively identifies the accel-
eration responses while the fuzzy C-means clus-
tering approach better captures the behavior of 
displacement responses. Note that accelerometers 
are selected in the field of large-scale civil infra-
structures in general in order to implement struc-
tural control systems and/or structural health 
monitoring systems because the acceleration re-
sponses are readily available, compared to other 
quantities such as displacements and velocities.

6. FUTURE RESEARCH DIRECTIONS

In near future, the authors intend to optimize the 
architecture of the proposed HRC MIMO ARX-
TS fuzzy model. Also, it is recommended that the 
proposed models be validated using a variety of 
other disturbance signals.

7. CONCLUSION

In this chapter, a nonlinear fuzzy logic modeling 
framework has been proposed to model nonlinear 
behavior of structural systems employing smart 
control devices: the hierarchical clustering-based 
(HRC) multi-input, multi-output (MIMO) Au-
toregressive eXogenous (ARX) Takagi-Sugeno 
(TS) fuzzy model (HRC MIMO ARX-TS fuzzy 
model). The HRC MIMO ARX-TS fuzzy model 
is developed through the integration of the HRC 
technique, a family of local linear ARX input 
models, TS fuzzy model and weighted least squares 
estimator. The proposed modeling framework can 
be directly applied to the structure-MR damper 
system without the decoupling process because 
it is inherently a nonlinear system identification 
(SI) method; 2) it is more appropriate to iden-
tify incomplete and incoherent measurements 
of large civil structures than typical parametric 
SI approaches; and 3) it provides a systematic 
design framework for the parallel distributed 
compensation (PDC)-based nonlinear TS fuzzy 
controller. To demonstrate the effectiveness of the 
proposed HRC MIMO ARX-TS fuzzy model, a 
seismically excited building-MR damper system 
is investigated. It is demonstrated from the time 
history response analysis that the proposed fuzzy 
model is effective in identifying nonlinear behav-
ior of the building-MR damper system subjected 
to earthquakes.
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ABSTRACT

A hybrid qualitative-quantitative health assessment of structures using the bond graph theory is presented 
in this chapter. Bond graph (BG) is an energy-based graphical-modeling tool for physical dynamic 
systems, actuators, and sensors. BG provides domain-independent framework for modeling dynamic 
systems with interacting components from multiple domains. Discrete structures are modeled using one-
to-one bond graph elements, while continuous structures are modeled using finite-mode bond graphs. 
BG facilitates the construction of temporal causal graph (TCG) that links the system response to the 
damaged component or faulty sensor. TCG provides qualitative damage isolation, which is not possible 
using most existing system identification techniques. This leads to rapid isolation of damage and sig-
nificant reduction in computations. Quantitative identification of damage size is performed by analyzing 
the substructure containing the damaged component, using the nonlinear least-squares optimization 
technique, thus reducing the computations. The health assessment algorithm developed in this chapter 
combines the Generic Modeling Environment (GME), the Fault Adaptive Control Technology (FACT) 
software, and Matlab Simulink®. Numerical illustrations on BG modeling of a hydraulic actuator and 
system identification of a fifteen-story shear building and a high-rise structure under earthquake loads 
are provided.
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1. INTRODUCTION

This chapter proposes a graphical, domain-
independent, energy-based framework that is 
capable of modeling multidisciplinary systems 
with interacting components from structural, me-
chanical, electrical, and hydraulic domains. This 
framework is based on the bond graph (BG) theory 
introduced by Paynter (1961) and developed by 
Karnopp, Rosenberg and Margolis (Rosenberg & 
Karnopp 1983, Karnopp & Margolis, 2006). For 
example, an electrical circuit and a mechanical 
system can be described with the same bond graph 
model. The use of bond graphs in electrical and 
mechanical engineering is well established. This 
method, however, has not received significant 
research attention in civil engineering. The BG 
model of a dynamic system represents the system 
equations of motion implicitly in a graphical form 
using bond graph elements. These elements model 
inertial, stiffness, damping and external forces. BG 
elements include serial and parallel junctions that 
govern the dynamic equilibrium of the structure 
subsystems.

Civil structures deteriorate over time and 
experience damage due to natural events such 
as earthquakes and wind. Structural health 
monitoring (SHM) is a process that aims at pro-
viding accurate and in-time information of the 
structural health condition of existing structures. 
A comprehensive review on recent advances in 
health assessment of structures can be found in 
Doebling et al (1998), Alvin et al (2003), Chang 
et al (2003), Koh et al (2003), Lui & Ge (2005), 
Gonzalez & Zapico (2008) and Moustafa et al 
(2010). System identification (SI) techniques can 
be grouped into parametric and non-parametric 
methods. The parametric methods identify changes 
in the structure global parameters (e.g. natural 
frequencies, mode shapes and modal damping) 
or in the local parameters (e.g. members stiff-
nesses and damping) to characterize the structural 
damage (Doebling et al 1998, Alvin et al. 2003, 
Chang et al, 2003, Koh et al, 2003, Lui & Ge, 

2005). In general, the parametric methods can 
detect the damage location but require complete 
measurements and extensive computations for 
large structures. The non-parametric methods, on 
the other hand, require less measurement and have 
better adaptability to large structures but provide 
a global assessment on the health status of the 
structure (Gonzalez & Zapico, 2008).

Sensor performance also degrades with time 
under varying environmental conditions (Koh 
et al, 2003, De Oliveira et al, 2004, Elouedi et 
al, 2004, Blackshire et al, 2006, Glisic & In-
audi 2007). Different degradation mechanisms 
have been observed in different types of sensors 
(surface-bonded or fully-embedded) under various 
environmental effects such as temperature- and 
moisture-cycling (Elouedi et al, 2004, Blackshire 
et al, 2006, Glisic & Inaudi 2007). Sensor perfor-
mance is particularly relevant in the field of road 
infrastructure where the loading conditions affect-
ing the main structure (traffic loads, temperature 
cycling, etc.) also affect the sensor measurements. 
Details on recent sensor technologies can be found 
in (Ansari 2005, Manders et al, 2006). While sen-
sor faults are difficult to be handled using existing 
SI techniques, bond graphs are capable of model-
ing both the system components and the sensors. 
This enables damage detection in both structural 
components and sensors. Bond graphs facilitate 
also the extraction of damage signatures off-line 
before sensor data collection thus providing rapid 
identification of the damage location through 
qualitative comparison of predicted and observed 
signatures. The quantification of the damage size is 
performed by analyzing the substructure contain-
ing the damaged component only, thus, reducing 
the computational costs. The idea of using BG 
in system identification of frame structures was 
introduced by these authors (Moustafa et al, 2010).

The bond graph technique is different from 
most existing SI methods since it provides: (1) 
graphical-modeling tool for dynamic systems 
under time-varying loads, (2) domain-independent 
modeling tool for dynamic analysis and health 
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assessment of physical systems across multiple 
domains, (3) rapid qualitative identification of 
damage locations, (4) the ability to identify sensor 
faults, (5) the ability to perform online diagnosis 
based on continuous monitoring, (6) reduction of 
data processing errors due to absence of transfor-
mation to frequency domain or approximations in 
feature selection, and (7) rapid quantification of 
damage size since only the substructure containing 
damage is analyzed. Finally, it may be noted that 
the research carried out in this chapter represents 
a novel application of bond graphs and structural 
optimization to the health assessment of frame 
structures under earthquake loads. The next section 
provides a brief overview on bond graph theory.

2. BOND GRAPH THEORY 
AND TERMINOLOGY

Bond graph is a graphical domain-independent 
framework capable of modeling dynamic systems 
across multiple domains (e.g. structural, electrical, 
mechanical, and hydraulic), thus providing a uni-
fied framework for dynamic analysis and SI of 
multidisciplinary systems. For instance, a hydrau-
lic actuator composed of electrical, hydraulic and 
mechanical components can be modeled easily 
using bond graphs. Bond graph is a domain-in-
dependent framework. For instance, a SDOF 
mechanical system and an electrical circuit can 
be represented using the same bond graph model 
(an example is given later). The BG theory is 
based on the energy conservation and energy 
exchange among system components. Irrespective 
of the domain, power is the product of the two 
conjugate variables effort e and flow f. In struc-
tural and mechanical systems, e and f describe 
the force and velocity (for translation) or torque 
and angular velocity (for rotation) at a point in 
the system. In each domain there is such a com-
bination of variables for which a physical inter-
pretation exists. In electrical networks, e and f are 
voltage and current. In hydraulics, they are pres-

sure and volume flow, and for thermodynamic 
systems, they are temperature and entropy flow.

Bond graph elements consist of five primitives 
(passive elements), two ideal sources (active ele-
ments), and two junctions (see Figure 1). The five 
primitives are the Capacitance (C), the Inertance 
(I), the Resistor (R), the transformer (TF) and the 
Gyrator (GY). The source elements are the effort 
source Se and the flow source Sf , which produce 
energy. The two junctions are the serial junction 
(1-J) and the parallel junction (0-J), which connect 
various elements together. Bonds are energy 
transfer pathways that connect elements and junc-
tions and are represented as half arrows. This half 
arrow defines the positive direction of energy 
flow. Effort and flow signals are the information 
transferred through these pathways. Figure 2 
shows the tetrahedron state demonstrating the 
relations related by C-, I-, and R-elements in 
structural engineering setting (Paynter 1961). The 
vertices represent the pair, effort and momentum 
and the pair, flow and displacement. The associ-
ated directed arrows imply that momentum and 
displacement are computed by integrating effort 
and flow, respectively. I- and C-elements represent 
the state variables of the system that accumulate 
net flow (I-element stores momentum and C-el-
ement stores displacement). Brief descriptions of 
bond graph elements are provided below with 
emphasis on translating concepts to structural 
engineering (see Table 1 and Figure 1).

1.  C-element (Figure a(1)): C-element relates 
effort to time integral of flow (i.e., displace-
ment) and is used to model linear or rotational 
springs, or stiffness of a structural member. 
The constitutive relation for a spring mod-

eled as a C-element is e C f dt
t

=
−∞
∫1 /  , 

where e is the force in the spring, f is the 
v e l o c i t y  a n d  C i s  a  c o n s t a n t
(k C= =1 /  stiffness ). The C-element 
receives flow (cause) and produces effort 
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(effect). The small vertical line in Figure 
a(1) is the causal stroke representing the 
integral causality relation (constitutive equa-
tion). The half arrow defines the direction 
of power flow ( power = ×e f ).

2.  I-element (Figure 1(a2)): I-element models 
inertial effects in structural systems, and 
inductance effects in electrical or fluid sys-
tems. For a mass m subjected to a forcep , 

f m e dt m p dt
tt

= =
−∞−∞
∫∫( / ) ( / )1 1  . 

This relation represents the Newton’s second 
law of motion. Herein, the effort history is 
integrated to generate flow thus I-element 
receives effort (cause) and generates flow 
(effect).

3.  R-element (Figure 1(a3)): R-element mod-
els energy dissipation components, such as, 
dampers, dashpots, electrical resistors and 
valves or losses in fluid lines. For a linear 

damper, e and f are related through a linear 
relation (e R=  f ). R-elements can have 
the causal stroke at either ends.

4.  TF-element (Figure 1(a4)): TF-element 
can represent an ideal electrical transformer 
or a massless lever. It can also represent the 
mode shape at a point in the structure. TF-
element does not store or absorb energy. It 
conserves power and transmits the factors 
of power with power scaling as defined by 
the transformer modulus r. The balance rela-
tion between the power variables for the 
transformer of Figure 1(a4) is e f e f1 1 2 2= , 
which leads to f rf2 1= or e r e2 11= ( / ) . 

5.  GY-element (Figure 1(a5)): The gyrator 
establishes the relationship between flow to 
effort and effort to flow, gain keeping the 
power on the ports the same. The simplest 
gyrator is a mechanical gyroscope or an ideal 
DC motor. Gyrators are used when power 

Figure 1. Bond graph elements: (a) passive elements (b) active sources (c) junctions
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from one energy domain is transferred to 
another domain. The Gyrator modulus μ 
defines the relation between effort and flow. 
For the GY of Figure 1(a5), e f2 1= µ and 
e f1 = µ 2.

6.  Effort and flow sources (Se, Sf) (Figures 
1(b1) & 1(b2)): These are active BG ele-
ments since they produce energy. In struc-

tural systems, Se represents an external 
force, and Sf represents an input velocity to 
the system. The causal stroke implies that 
either the effort (force) or flow (velocity) is 
generated by the source and is imposed on 
the system. In either case, the half arrow is 
pointing away from the source indicating 

Figure 2. Tetrahedron of state showing the relations of state variables and the constitutive relations in 
structural engineering (Paynter 1961) 

Table 1. Conversion of Bond graph elements and terminology to structural engineering 

Bond graph term Corresponding term in structural engineering Units

Capacitance (C) 
Inductance (I) 
Resistance (R) 
Transformer (TF) 
Gyrator (GY) 
Effort (e )
Flow ( f )
Displacement 
Effort source Se
Flow source Sf
Power 
Energy E
Momentum P

Models member or spring stiffness k C= 1 /
Models inertia effects, mass m I=
Models damping, friction or resistance forces D R=
Massless lever or participation factor in modal analysis 
Mechanical gyrator or ideal DC motor 
Force or torque F t e t( ) ( )=
Velocity or angular velocity u t f t( ) ( )=

f dt ∫
A source that exerts a force on the system (e.g. an actuator) 
A source that exerts a velocity on the system 
Power  effort   flow    = × = ×e f

E e f dt= ∫   

P e dt   = ∫

N / m 
N s2 / m
N s / m 
-- 
-- 
N 
m / s 
m 
-- 
-- 
N m / s 
N m 
N s
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that power flows from the source into the 
system.

7.  Serial and parallel junctions (Figures 
1(c1) & 1(c2)): A serial or 1-junction has 
equality of flows (velocities), and efforts 
(forces) sum up to zero. The equality of 
velocities or displacements represents the 
continuity condition between substructures 
that is known in FEM analysis. The summa-
tion represents the D’ Alembert’s principle 
that implies dynamic equilibrium of forces 
acting on the system or a substructure of it. 
This junction represents a common veloc-
ity point in a structural system. Thus, a 1-J 
can model the velocity at a floor level in a 
multi-story building.

In a 1-junction only one bond, referred to as 
strong bond, brings the information of flow (ve-
locity) and other bonds receive it (i.e., only one 
bond is open ended and other bonds are stroked 
away from the junction). According to Figure 
1(c1), bond 3 is the strong bond and thus the flow 
is governed by bond 3 and is imposed on other 
bonds. Conversely, the effort is determined by 
other bonds and is imposed on bond 3. Strong 
bonds are used in constructing TCG from BG as 
demonstrated in the next section.

The constitutive relation of power for the 
1-junction of Figure 1(c1) is given by:

e f e f e f e f e f1 1 2 2 3 3 4 4 5 5 0− − − − =  (1)

Since the 1-junction has equality of flows, 
Eq. (1) leads to:

e e e e e1 2 3 4 5 0− − − − =  (2)

Eq. (2) represents the D’ Alembert’s dynamic 
equilibrium principle. The 0-junction (0-J) is the 
counterpart of the 1-junction and represents com-
mon effort (force) points in the system (Figure 
1(c2)). Thus a 0-J has equal efforts, and the flows 

sum to zero. In a 0-J, the strong bond determines 
the effort at the junction and is stroked nearer to the 
junction. The constitutive relations for the 0-J are:

e e e e e f f f f f1 2 3 4 5 1 2 3 4 5 0= = = = − − − − =;     
(3)

Equations (1, 2 and 3 and the constitutive 
equations for BG elements define the relations 
among the system parameters and responses, 
which represent the basis for the SI technique 
developed in this chapter.

This section provided a brief description of 
BG theory and terminology. The modeling of 
discrete systems, including SDOF and MDOF 
systems and an actuator composed of hydraulic 
and mechanical components, using bond graphs 
is developed in section 3. Continuous structures 
are tackled in Sections 3 and 4, respectively. The 
derivation of temporal causal graphs from bond 
graphs is explained in Section 5. Section 6 devel-
ops the modeling of sensors using the bond graph 
theory. The development of the health assessment 
methodology is presented in Sections 7 and 8. 
Numerical illustrations are provided in Section 9.

3. MODELING DISCRETE 
DYNAMIC STRUCTURES 
USING BOND GRAPHS

This section demonstrates the construction of 
bond graphs for discrete dynamic structures. 
First, we consider SDOF and MDOF structures. 
Subsequently, we demonstrate the modeling 
procedure for an actuator composed of hydraulic 
and mechanical components. Discrete structures 
are those structures having lumped properties 
(inertia, damping and stiffness). Verifications of 
bond graphs are provided by deriving the equa-
tions of motion of the structure from the bond 
graph model which are shown to be identical to 
those obtainable from structural dynamics theory.
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3.1 Single-Degree-of-
Freedom (SDOF) System

Figure 3(a) shows a SDOF system driven by an 
external dynamic load p(t).The system is charac-
terized by a single flow f3 (velocity x ) and is 
thus represented by a 1-junction with I-, C-, R- and 
Se-elements representing the inertial, spring, 
damping and external forces, respectively. Note 
that the 1-J has equal flows (f1 = f2 = f3 = f4) and 
efforts sum to zero (e1 – e2 – e3– e4 = 0). The BG 
model of Figure 3(c) represents the equation of 
motion of the system in an implicit form. To 
derive this equation from the BG of Figure 3(c), 
consider the inertial force e3 given by the consti-
tutive relation of the I-element as:

mf e e e e

3 3 1 2 4= − − =  (4)

Substituting



f x t3 = ( ) , e p t1 = ( ) ,  

e C f dt kx t2 21= =∫( / ) ( ) , and  

e R f R f D x t4 4 3= = =   ( ),  

where D is the damping coefficient, in the above 
equation, we get:

m x t D x t k x t p t    ( ) ( ) ( ) ( )+ + =  (5)

The free-body diagram of the forces acting 
on the SDOF system (dynamic equilibrium of 
the system using D’ Alembert principle) leads to 
Eq. (5) obtained from the BG model of Figure 
3(c). The electrical circuit of Figure 3(b) is also 
represented using the same bond graph model. 
This example demonstrates use of bond graphs 
as a unified tool for modeling dynamic systems 
from different energy domains. Note that Figure 
3(d) represents the Temporal Causal Graph (TCG) 
which will be discussed later.

3.2 Multi-Degree-of-Freedom 
(MDOF) Systems

3.2.1 Construction of 
Bond Graph Model

Figure 4(a) depicts an n-DOF system with each 
mass driven by a dynamic load p ti( ) and charac-
terized by a distinct flow or velocity x ti( ) . Refer-
ring to section 3.1 and Figure 4(a), the steps of 
constructing bond graphs for MDOF systems can 
be summarized as follows:

1.  Model each mass velocity as 1-J. Insert I- 
and Se-elements to model inertial and ex-
ternal forces.

Figure 3. Single-domain representation of mechanical and electrical systems using bond graphs
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Figure 4. BG and TCG representation of MDOF discrete dynamic systems and sensors
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2.  Insert 0-J between 1-J to accommodate force-
generating elements (stiffness and damping 
forces).

3.  Simplify the resulting bond graph by remov-
ing the zero velocity at the support points.

4.  Assign numbers, and directions to bonds 
using the half arrow (defines the direction 
of power).

5.  Assign causality to bond graph elements and 
bonds (details provided in next subsection).

These procedures result in the lumped pa-
rameters of damping (D1, D2, …, Dn), stiffness 
(k1, k2, …, kn) and inertia (m1, m2, …, mn) being 
interconnected using energy conserving junctions 
producing the topological bond graph model 
shown in Figure 4(b). Each mass is represented 
as a separate block connected to neighboring 
blocks through bonds. Sensors are also modeled as 
separate blocks for measuring displacements and 
are discussed in Section 6. Note that Figure 4(c) 
represents the TCG which will be discussed later.

3.2.2 Causality Assignment and 
Bond Graph Verification

To assign causality to BGs we assign fixed cau-
salities to sources. Integral causality is assigned 
to storage elements (I- and C-elements) and is 
propagated through junctions. I- and C-elements 
have integral causality since cause is integrated 
to provide effect. Causality is then assigned to 
R-elements and bonds connecting junctions. The 
procedure is continued until the entire BG is as-
signed causality.

The BG model of Figure 4(b) represents the 
equations of motion of the n-DOF system in an 
implicit form. The verification of the BG model 
is performed by deriving the system equations 
of motion from the BG and comparing them 
with those from structural dynamics theory. The 
derivation of the system equations from the bond 
graph is systematic and can be easily coded. The 
system state variables are associated with the 

energy storage elements. For the I-element, the 
state variable is flow and for the C-element the 
state variable is effort. The n-DOF system has 
2n state variables (e.g., e2, f3, e7, f11, e14, f18, …). 
Each flow variable represents the velocity of the 
associated mass and efforts represent the stiffness 
forces in the springs. The inertial force of the first 
mass is given as (bond 3) in Box 1.

Note the substitutions of equality of flows and 
balance of efforts at 1-junctions and equality of 
efforts and balance of flows at 0-junctions. 
Similarly, the inertial force in bond 11, (see Box 
2).

Considering the inertial force of the (n-1)th 
mass, one gets: (see Box 3).

Finally, the equilibrium equation of the forces 
acting on the n th mass can be shown to be shown 
in Box 4.

Combining Eqs. (6- 9), the equations of motion 
of the n-DOF structure is given in a matrix form 
in Box 5.

Eq. (10) represents the well known equation 
of motion of the n-DOF structure derivable using 
structural dynamics principles (Clough & Penzien 
2003, Chopra 2007). Note that, if the structure is 
subjected to ground acceleration y t( ) , the forces 
a t  t h e  f l o o r  l e v e l s  a r e  g i v e n  a s 
p t m y t i ni i( ) ( ); , , ...,= − =   1 2 .

Thus the BG is simply a topological represen-
tation of the system equations of motion, using 
elements that exchange efforts and flows. The BG 
model is correct only if the correct equations of 
motion of the system can be derived from it. The 
above example derived the equations of motion for 
an n-DOF system by hand for sake of explanation. 
This derivation can be also automated (Manders 
et al, 2006).

3.3 Hydraulic Actuator System

This section illustrates the modeling of multidis-
ciplinary dynamic systems using BG. Figure 5(a) 
shows a simplified model of a hydraulic actuator 
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Box 3.   

m x D x D D x D x k x k kn n n n n n n n n n n n− − − − − − − − −− + + − − + +1 1 1 1 1 1 1 1 1   ( ) ( nn n n n nx k x p t) ( )− −− =1 1      (8)

Box 4.   

m x D x D x k x k x p tn n n n n n n n n n n  − + − + =− −1 1 ( )                  (9)

Box 5.   
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Box 1.   

m f e e e e e p C f dt D f e p k x D f1 3 3 1 2 4 5 1 1 2 1 4 6 1 1 1 1 31 = = − − − = − − − = − − −∫( / )  ee e

p k x D x C f dt D f p k x D

7 8

1 1 1 1 1 2 7 2 8 1 1 1 11

−

= − − − − = − −∫          ( / ) xx k f dt D f

p k x D x k f f dt D f

1 2 6 2 6

1 1 1 1 1 2 5 9 2 5

− −

= − − − − −
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∫          ( ) ( −−
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p k x D x k x x D x x

m x
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1 1
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 DD D x D x k k x k x p t1 2 1 2 2 1 2 1 2 2 1+ − + + − =) ( ) ( ) 

              (6)

Box 2.   

m f e e e e e p e e e p e e2 11 11 9 10 12 6 2 13 7 8 2 14 15
 = = + − = + − = + + − −

          == + + − −

= −
∫ ∫( / ) ( / )
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2 1
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(used in aircrafts) with interacting components 
from mechanical and hydraulic domains. The 
actuator is composed of a single chamber and a 
piston of cross-sectional area A. The amount of 
fluid entering the chamber qin through a hydraulic 
pump is controlled by the control valve. The pres-
sure difference between right and left sides of the 
chamber (pr - pl) results in a force that controls 
the movement of the piston a distance u(t). The 
piston is attached by a rigid rod to a mass M that is 
connected to a spring and a damper which model 
the aerodynamic effects. The displacement is con-
trolled either manually or automatically based on 
a feedback system. The description of the actuator 
parameters are given in Table 2.

The bond graph model for the actuator of 
Figure 5(a) is shown in Figure 5(b). Note that 
Figure 5(c) represents the TCG which will be 
discussed later. The reservoir is represented by 
an effort source Se and the pump is represented 
by a transformer TF1 with efficiency parameter 
PE. The valve is represented by a resistor R1 = RV. 
The difference in the chamber’s pressure pr - pl 
(i.e. e3) is represented by a 0-Junction that ensures 
equal pressures (e3 = e4 = e5). The fluid com-
pressibility is represented by a C-element 
C V1 0= β . The pressure difference in bond 5 (e5 
= pr – pl = e3 = e4) is multiplied by the cross-
sectional area of the piston A to provide the force 
acting on the mass M. This is represented by the 
transformer element TF2, connecting bonds 5 and 
6, with the transformer parameter A. The inertial 
effect of the mass M is modeled by an I-element. 
The spring is represented by a C-element and the 
damper is represented by an R-element R2 = B. 
The displacement u(t) is the time integral of the 
flow (velocity) in bond 7. There are three state 

variables (two capacitors and one inductance) 
namely e4, e8 and f7. Thus the equation of motion 
is of a third order. To verify the BG model, the 
effort e4 can be calculated as the force in the first 
spring (bond 4) in Box 6.

Similarly, the equation governing the second 
capacitor is given as:

e C f kf8 1
2 8 7= =( / )  (12)

The equation for the inductance element is 
given as:

Mf e e e e Ae e e

      7 7 6 8 9 4 8 9= = − − = − −  
(13)

Substituting Eqs. (11) and (12) into Eq. (13) 
and making use of  e Bf9 7= , we get:

Mf C Aq A f kf Bfin
 

7
2

7 7 71= − − −( / )( )  (14)

Substituting f u t f u t f u t7 7 7= = =







( ), ( ), ( )

into Eq. (14) and simplifying leads to:
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=
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( )  

(15)

Equation (15) represents the equation of motion 
governing the dynamics of the hydraulic actuator 
that can be obtained using traditional mechanical 
system derivation. Therefore, the mathematical 
basis of bond graphs is the same as the classical 
dynamic theory. One should not, however, over-
look the advantages of bond graphs (e.g., topologi-
cal modeling tool, modeling sensors, qualitative 

Box 6.   

e C f C f f C Sf Af C qin Af4 1
1 4 1

1 3 5 1
1 7 1

1 7= = − = − = −( / ) ( / )( ) ( / )( ) ( / )( )              (11)
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Figure 5. Single domain representation of a hydraulic actuator having interacting components from 
mechanical and hydraulic domains
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damage identification, etc.) which are not provided 
by most existing system identifications methods. 
The next section demonstrates the modeling of 
continuous structures using bond graphs.

4. MODELING CONTINUOUS 
STRUCTURES USING FINITE-
MODE BOND GRAPHS

This section demonstrates the modeling of con-
tinuous structures such as beams and frames using 
bond graphs. The modeling methodology is based 
on the normal mode approach (Clough & Penzien 
2003, Chopra 2007) and is known as finite-mode 
bond graph (Karnopp et al, 2006). To do this, the 
external force (represented by an effort source Se) 
is connected to a 0-junction that is connected to 
n 1-junctions using transformers (Figure 6(a)). 
The 0-J decomposes the external forces into their 
modal components. The 1-junctions represent the 
vibration modes retained and the transformers 
represent the mode shape evaluated at the point 
of application of the external force. The displace-
ment of the ith 1-J represents the contribution to 
the structure response in the generalized coordi-
nates. The I-, C- and R-elements (inertia, stiffness 
and damping forces) connected to the 1-junction 
represent the modal forces.

Figure 6(a) depicts the modeling of continuous 
dynamic systems using the finite-mode bond 
graphs. The transformers ensure that each mode 
is excited by the corresponding modal force. The 
number of modes to be retained in the dynamic 
analysis varies based on the boundary conditions 
and the dynamic characteristics of the structure 
(Clough & Penzien 2003, Chopra 2007). The as-
sociated TCG is shown in Figure 6(b) and will be 
discussed later.

The dynamic analysis of continuous struc-
tures using the finite-mode bond graph approach 
requires performing free vibration analysis to 
determine the natural frequencies and mode shapes 
of the structure, see, e.g., Clough & Penzien, 2003 
and Chopra, 2007. The free vibration analysis is 
carried out based on the boundary conditions of 
the structure and can be performed analytically or 
numerically (e.g. using the finite element method). 
The natural frequencies and mode shapes are 
then used to quantify the parameters of the bond 
graph elements (I, C, R and TF) for each mode of 
vibration. In general, the first few modes usually 
provide fairly acceptable results.

5. CONSTRUCTING 
TEMPORAL CAUSAL GRAPH 
FROM BOND GRAPH

The step that follows the construction of the bond 
graph model is to use this model to develop a 
framework that facilitates damage detection and 
isolation. This is achieved by deriving the tem-
poral causal graph (TCG) from the bond graph 
(Mosterman & Biswas, 1999). The TCG repre-
sents the constitutive relations of BG elements 
and junctions in graphical form. More precisely, 
the TCG represents causal relations among the 
system variables and parameters. The TCG is a 
directed graph in which the vertices represent the 
system variables and the directed edges express 
the relation between the vertices. The labels on 
the edges determine the type of causal relation 

Table 2. Description of the actuator parameters 

Parameter Description

A
V0

β
Rv
Se
pr
pl
pr - pl
M
k
B
u(t)

Cross sectional area of the piston 
Volume of the chamber 
Bulk density of the fluid 
Resistance of the valve 
Effort source 
Chamber’s pressure at right side 
Chamber’s pressure at left side 
Pressure difference 
Mass 
Spring stiffness 
Damping coefficient 
Displacement of the mass
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between the variables. These relations are similar 
to the forms of Eqs. (1, 2 and 3 but in a qualita-
tive form (=, +1, -1). For instance, Eq. (3) reveals 
that the efforts e1 and e2 are equal, the flows f1 
and f2 have +1 relation (i.e., increase in f1 leads to 
increase in f2 and vice-versa) and f2 and f3 have -1 
relation (i.e., increase in f1 leads to decrease in f2 
and vice-versa). The directions of the arrows in the 
TCG are defined based on the strong bond. Thus, 
a strong bond in a 1-junction governs the flow of 
the strong bond with arrows directed towards the 
flows of other bonds. The efforts of other bonds 
will have arrows directed towards the effort of the 
strong bond. A strong bond in a 0-J governs the 
effort at the junction with arrows directed towards 
efforts of other bonds.

To construct the TCG for the SDOF system 
of Figure 3(a) from the BG model, it is first 
noted that the 1-J has equal flows and efforts sum 
to zero. We start with the external force p(t), be-
ing imposed on the system, directed towards e1. 
Since bond 3 is the strong bond, thus f3 determines 
the flow and e1, e2, e4 determine the effort at the 
junction. Therefore, the flow arrows are drawn 
directed from f3 to f2, f4 with equal signs (equal 
flow joint) and the efforts arrows are directed 
from e1, e2, e4 to e3. The labels on the arrows con-
necting efforts are determined from the equation 
e3 = e1 - e2 – e4. Thus, the arrow connecting e3 and 
e2 carries the label -1 indicating the – sign between 
e3 and e2. To complete the TCG model we trans-
late the constitutive relations for I-, C- and R-
elements. For the I-element e mf3 3=  or 
f m e dt3 31= ∫/ thus the label is dt/m (i.e. effort 

is integrated to provide flow). For the R-element, 
the equation is e Df4 4= and thus the label is D 
(being multiplied by f4 to give e4). For the C-
element, e k f dt2 2= ∫ , thus the arrow carries the 

label k. This completes the TCG of the SDOF 
system.

To build the TCG for the MDOF system of 
Figure4, we start by constructing the TCG for each 

mass and then the connecting bonds (e.g. bonds 5 
and 12). Note that the TCG for the second, third, 
…, nth masses are identical and that each bond 
graph block is represented by an associated TCG 
block. The procedures are systematic and can be 
coded (Manders et al, 2006).

The temporal causal graph for the actuator of 
Figure 5(a) is shown in Figure 5(c). The energy 
source Se defines the effort direction from e0 to e1 
operated by the pump efficiency PE. The direction 
of the flow takes the opposite direction (i.e. from 
f1 to f0). Bond 2 is the strong bond (indicated by 
the causal stroke or the perpendicular line away 
from the junction) at the 1-junction (common flow 
junction f1 = f2 = f3) and thus f2 defines the flow 
at the junction. Accordingly f2 is connected with 
f1 and f3 with arrows starting from f2 and pointing 
towards f1 and f3. Since f1 = f2 = f3, therefore = sign 
is shown in these arrows. Conversely, the effort 
is determined by e1 and e3 and thus the arrows are 
directed from e1 and e3 towards e2 due to the rela-
tion e1 - e2 – e3 = 0 (or e2 = e1 – e3) at the 1-junc-
tion, +1 and -1 signs are shown above the arrows 
that connect e2 with e1 and e3, respectively. Bond 
4 is the strong bond for the 0-junction (common 
effort junction e3 = e4 = e5). Therefore, the effort 
is defined by bond 4. Accordingly, e4 is con-
nected with e3 and e5 by arrows pointing to e3 and 
e5 with equality sign. The flow is determined by 
f3 and f5 (f3 – f4 – f5 = 0 or f4 = f3 – f5) and thus the 
arrows connect f3 and f5 to f4 with +1 and -1 signs, 
respectively. These signs are determined from the 
relation f4 = f3 – f5. The efforts e5 and e6 are re-
lated by the area of the piston with an arrow 
pointing from e5 to e6. The arrows for the flows 
f5 and f6 take the opposite direction. The strong 
bond of the last 1-junction (f6 = f7 = f8 = f9) is bond 
7 and thus the flow at this junction is defined by 
f7. Accordingly f7 is connected to f6, f8 and f9 by 
arrows pointing from f7 towards f6, f8 and f9 with 
equality sign. The effort at the junction is defined 
by e6, e8 and e9 and is shown by arrows connect-
ing these efforts to e7. The effort relation at the 
1-junction is e6 – e7 – e8 – e9 = 0 or e7 = e6 - e8 - e9. 
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Figure 6. Finite-mode BG and TCG representation of continuous dynamic systems and sensors
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Accordingly, the arrows carry the signs 1, -1 and 
-1, respectively. The constitutive relation for the 
resistor R1 is e R fv2 2= or f R ev2 21= /  which 
is represented by an arrow connecting e2 to f2 
and carries the constant 1/Rv. The constitutive 
r e l a t i o n  f o r  t h e  C - e l e m e n t  C 1  i s 
e C f  dt V f dt4 1 4 0 41 1= =∫ ∫/ ( / )β and is rep-

resented by an arrow connecting f4 to e4 and 
carries the constant ( )1 0/V β . The constitutive 
relation for the I-element is e Mf7 7=  or 
f M e dt7 71= ∫/  which is represented by an 

arrow connecting e7 and f7 pointing towards f7 
and carries the term 1/M dt. The constitutive rela-
t i o n  f o r  t h e  s e c o n d  C - e l e m e n t  i s 
e / C f dt k f dt8 2 8 81= =∫ ∫  and is represented 

by an arrow connecting f8 to e8 and carries the 
term k dt. The flow f7 is integrated to compute the 
displacement u(t). This completes the TCG 
model for the actuator.

The TCG model of the continuous systems 
derived from the bond graph model of Figure 
6(a) is shown in Figure 6(b). The derivation of 
the TCG follows the same procedures explained 
above. Again, each modal mass is represented by 
a separate TCG block. The modeling of a sensor 
that measures the structure tip displacement is 
also included and is explained in the next section.

6. MODELING SENSOR FAULTS 
USING BOND GRAPHS

A typical health monitoring system consists of 
a network of sensors that collect measurements 
data periodically or continuously during short or 
long terms. For civil structures, such as bridges, 
tunnels, dams, power plants, high-rise buildings 
and historical monuments, the most relevant 
measurement parameters are (Ansari, 2005, 
Manders et al, 2006): (a) Mechanical, such as, 
strain, deformation, displacement, crack opening, 
stress and forces, (b) Physical or environmental, 

such as, temperature, humidity, and pore pressure, 
and (c) Chemical, such as, chloride penetration, 
sulfate penetration, pH, carbonatation penetration, 
rebar oxidation, steel oxidation, and timber decay.

Conventional sensors based on mechanical and 
electrical transducers are able to measure most 
of these parameters. Fiber-optic sensors offer 
superior performance compared with conventional 
sensors and have been used during the last few 
years in SHM of civil structures. More details on 
recent sensor technologies can be found in Ansari 
(2005) and Manders et al (2006).

In general, sensor performance and reliability 
degrade with time under varying environmen-
tal conditions and externally applied loadings 
(Ansari, 2005, Blackshire et al, 2006, Manders 
et al, 2006, Glisic & Inaudi 2007). Different 
degradation mechanisms have been observed in 
different types of sensors (e.g. surface-bonded 
or fully-embedded) under various environmental 
effects such as temperature- and moisture-cycling 
(Blackshire et al, 2006, Glisic & Inaudi 2007). 
Deviations in measurements could result from 
damage in structural components or due to faults 
in the sensors. Sensor performance is particularly 
relevant in the field of road infrastructure where 
the loading conditions affecting the main structure 
(traffic loads, temperature cyclying, etc.) also 
affect the sensor measurements. In such situa-
tions, the use of traditional system identification 
methods may not provide accurate identification 
of actual damage cause since these methods do 
not account for sensor faults. On the other hand, 
bond graphs can easily model both the physical 
system and sensors (Daigle et al, 2006).

Faults in sensors could result in bias or drift 
in measured values. A biased measurement devi-
ates from its true value by a constant B. Drift is 
the growth of deviations over time. For a sensor 
measuring the displacement response, a bias fault 
implies that the actual measured displacement 
dm is the sum of the true displacement dt and the 
bias B . The sensor is modeled as a modulated 
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source of flow (MSf) representing the relation 
d t d t Bm t( ) ( )= + (Figure 4(b)). Thus, for the 
displacement sensor measuring the displacement 
of the first mass e7n-2= dm, e7n-1 = dt and e7n 
= B1. The C-element (C = 1 ) integrates the true 
velocity to give the true displacement. This leads 
to e d Bn n7 2 7 1 1− −= + ord t d t Bm t( ) ( )= + 1 . In 
case of drift, the bias quantity B1 is replaced 
w i t h  a  t i m e  d r i f t  f u n c t i o n  ( i . e . , 
d t d t d tm t drift( ) ( ) ( )= + ). Each sensor fault is 
represented by separate BG and TCG blocks.

7. EXTRACTION OF DAMAGE 
SIGNATURES FROM TEMPORAL 
CAUSAL GRAPH

This section describes the extraction of the damage 
signature matrix that lists the qualitative effects 
of changes in system components on system 
response measurements. This step is performed 
off-line using the TCG model before the collection 
of sensor data. The TCG is derived as described 
in Section 5. The TCG links damages to their 
causal effects on measurements, called damage 
signatures, which represent 0th through kth order 
derivative changes on a measurement residual at 
the instant of damage occurrence. They provide 
the discriminatory power in the damage isolation 
approach.

The damage signature derivation consists of 
two steps: backward propagation (BP) and forward 
propagation (FP). First, the TCG is used to per-
form a BP from possible deviant measurements to 
generate possible damage causes. This identifies a 
set of parameters that could be the reason for the 
damage (e.g. k and D in the SDOF example). It also 
determines whether the cause is above normal (+) 
or below normal (-). In the FP step we use each of 
these damage causes to derive its signatures on the 
system measurements (e.g. effect of decrease in 
k or D on x). The damage signature of the SDOF 
structure of Figure 4 is given in Table 3. Herein, 

the BP of positive deviation in x(t) leads identify-
ing the damage causes as reduction in either k or 
D. The FP for reductions in k and D leads to the 
damage signature 00+ (see table 3).

Consider the MDOF structure of Figure4. An 
example is shown in Figure 7(a) for a deviant 
displacement x1(t) being above normal. From the 
TCG of Figure 4(c), an increase in x1(t) initiates 
backward propagation along f xdt

3 1 → and 
implies that the first derivative of f3 is above 
normal (f3+). The step along f e3

1
3

+ → implies 
e3 above normal (e3+), and e e3

1
2

−←  implies 
e2 below normal and along e fk

2 2
1←  implies 

k1 below normal, and so on. Eventually, we arrive 
at k1, k2, k3, D1, D2, D3 below normal due to x1(t) 
being above normal.

The forward propagation starts from one of 
the damage causes identified in the previous step 
by propagating the change in this parameter and 
tracing its signature on the system measurements. 
An example of k1- (k1 below normal) is shown in 
Figure 7(b). The signature of k1- on x1 is derived 
by assuming that k1 decreases and following the 
path shown in Figure 7(b), extracted from Figure 
4(c). A decrease in k1 implies a decrease in e2 
from the relation e k f dt2 1 2= ∫ and is indicated 

with a downward arrow. This implies an increase 
in e3 since e e e e e2 1 3 4 5= − − − (shown with an 
upward arrow). The increase in e3 implies an 
increase in the first derivative of f3 from the rela-

tion f m e dt
t

3 31=
−∞
∫( / ) (shown with two upward 

arrows), and so on. Finally, this forward propaga-
tion implies an increase in the second derivative 
of x1 which is indicated by three upward arrows 
and the signature is 00+. The signatures of k2, k3, 
D1, D2, D3, B1, B2, B3, dr1, dr2 and dr3 on the sys-
tem responses x1, x2 and x3 are extracted following 
the same procedure and are shown in Table 4.

In Table 4, damage signatures are shown up 
to the first nonzero direction of change. Damage 
scenarios which produce discontinuities on the 
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measurements (0th order changes) provide ad-
ditional discriminatory power. Higher order effects 
eventually manifest as first order effects, and since 
we can only measure magnitude and slope reliably, 
only the first change (and whether it was discon-
tinuous) is useful. If we measure displacement, 
the damage signatures represent a qualitative 
measure that reflects how a displacement observa-
tion could be affected by a change in one of the 
structure parameters. It is observed from Table 4 
that the damage in the stiffness parameter of k1, 
k2 and k3 have different signatures on the mea-
surements x1 , x2 and x3 . On the other hand, the 

signature of damage in k1 is the same as the sig-
nature of damage in D1 (same observation is 
valid for k2 and D2). Considering that the MDOF 
system models a multi-story building, this obser-
vation is consistent since the reduction in either 
the stiffness or the damping coefficient implies 
damage to the columns of the same floor. When 
multiple causes are identified in the qualitative 
step, then all those causes are included in the 
quantification step which helps to discriminate 
between them.

Table 3. Damage signatures for the SDOF building up to the first non zero direction of change 

Damage type Damage in structural components Sensor faults

k- D- k+ D+ B- B+ dr- dr+

Damage signature (x) 00+ 00+ 00- 00- - + 0- 0+

Figure 7. Damage signature extraction
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8. HYBRID QUALITATIVE-
QUANTITATIVE SYSTEM 
IDENTIFICATION TECHNIQUE

The health assessment method developed here 
consists of damage detection, qualitative damage 
isolation, and quantitative damage identification 
(Figure 8). Here, p is the external load and r is 
the residual, the difference between the current 
structural response x , obtained from sensor 
measurements, and the undamaged structural 
response x̂ , determined using the BG model. 
Note that the BG and TCG models and the dam-
age signatures are derived before the sensor data 
collection. This makes the damage detection, 
isolation and quantification efficient and inexpen-
sive. The steps to be discussed in the next subsec-
tions are done after the collection of the sensor 
health monitoring data.

8.1 Damage Detection and Symbol 
Generation

The detection scheme is based on comparison of 
measurements from damaged and undamaged 
structures. This leads to estimating the residuals, 
which, when statistically significant, imply dam-
age occurrence. Since measurements contain 
noise, a statistical test (Z-test) is used to examine 
if the structure is damaged or not (Biswas et al, 
2003). The deviation of the residual r(t) from zero 
is defined for the last N2 samples and the variance 
of r(t) is estimated for a larger data points N1, 
whereN N1 2>>  as follows:

ˆ ( ) ( ) ˆ ( ) [ ( ) ( )]µ σ µN j i
i j N

j

N j i N jt
N

r t t
N

r t t
2

2

1 1

1 1

2

2

1

= = −
= −
∑  ;   

ii j N

j

= −
∑

1

 

(16)

The symbol generation step follows the 
comparison of the measurements from healthy 
and damaged structures. If the measurement of 
the damaged structure at a given point of time is 
above normal, a (+) symbol is assigned, and if 
below normal, a (–) symbol is assigned.

8.2 Qualitative Damage Isolation

The damage isolation step begins once damage is 
detected. Having developed the damage signatures 
matrix in Section 6, this step is a monitoring of 
system response measurements over time and 
comparison with the damage signatures matrix to 
identify possible damage causes. For the MDOF 
structure of Figure 4, the system measurements 
are the displacements x1, x2,…, xn. These measure-
ments are compared with those for the undamaged 
structure. The damage that matches the damage 
signature is the cause of damage. If multiple causes 
are identified, the quantitative step in next sec-
tion is used to discriminate between them. This 
qualitative approach is very fast, due to off-line 
development of the damage signature beforehand, 
and thus enables on-line health assessment.

Table 4. Damage signatures for the MDOF building up to the first non zero direction of change 

Response 
quantity

Damage in structural components Sensor faults

k1
- k2

- k3
- D1

- D2
- D3

- B1
+ B2

+ B3
+ dr1

+ dr2
+ dr3

+

x1 00+ 00+ 000- 00+ 00+ 000- + 0 0 0+ 00 00

x2 000+ 00- 00- 000+ 00- 00- 0 + 0 00 0+ 00

x3 0000+ 000- 00- 0000+ 000- 00- 0 0 + 00 00 0+
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8.3 Quantitative Damage 
Identification

The qualitative damage isolation described above 
identifies the damaged component without quan-
tifying the damage size. For discrete structures 
(i.e. the MDOF system that models a multi-story 
building), the qualitative isolation identifies which 
floor has damage. The damage size is quantified 
by applying nonlinear optimization using the least-

squares method to the substructure containing the 
damaged floor only. This offers substantial savings 
in the computational effort. For instance, if the 
damage is isolated in the columns of the first or 
the second floor we consider the substructure con-
taining the first two floors. Thus, the equations of 
motion for the first two floors are given in Box 7.

These two equations can be recast in a matrix 
form in Box 8.

Figure 8. Damage identification for dynamic systems

Box 7.   
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The number of unknown system parameters 
here is s = 6. If damage is qualitatively isolated 
in one of the columns of the top two floors, the 
equations governing the motion of the substructure 
containing the top two floors are given in Box 8.

In this case, s reduces to 4. If the damaged 
columns are located between the third floor and 
the (n-3)th floor, the equations of motion that 
describe the damaged substructure are given in 
Box 9.

Herein, s = 6 and 3 2≤ ≤ −i n . Equations 
(18), (19) or (20) can be written in matrix form 
as:

A R p( ) ( )t t
s s

[ ] [ ] = [ ]
× × ×2 1 2 1

 (21)

where, A(t) is a matrix of system responses, R is 
a vector of the unknown system stiffness and 
damping parameters, p(t) is a vector of the exter-
nal excitation and the inertia forces and s = 4 or 
6. Considering that the structural response is 
measured for a time duration T l t=  ∆ where l 

is the discrete number of time instants and ∆t is 
the time step, Eq. (21) can be rewritten as:

A R p( ) ( )t t
l s s l

[ ] [ ] = [ ]
× × × × ×( ) ( )2 1 2 1

 (22)

Alternatively, Eq. (22) can be expressed as:

A R p j , ,...,s lji
i

s

i j
=
∑ = = ×

1

; 1 2  (23)

Assuming R̂i is the predictor of the ith param-
eter Ri , the total error in this estimate is given 
by:

ε = −
==
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11

2
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To minimize the total error, ε is differentiated 
with respect to Rj and is set to zero which leads 
to:

Box 8.   
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Eq. (25) gives s (4 or 6) simultaneous algebraic 
equations which when solved provide the system 
parameters including the stiffness and damping 
coefficient of the damaged columns.

Thus, the quantitative damage identification 
is performed for the substructure that contains 
the damaged component by minimizing the er-
ror in the identified structural parameters. This 
offers tremendous savings in the computations. 
Damage quantification of continuous systems 
follows the same procedures and is discussed in 
the next section.

9. NUMERICAL ILLUSTRATIONS

Two numerical examples are considered to 
demonstrate the use of bond graphs for dynamic 
analysis and health assessment of discrete and 
continuous systems. The first example considers 
a 15-story building under earthquake load. The 
second example demonstrates the health assess-
ment of a high-rise building subjected to simulated 
Kanai-Tajimi acceleration using the finite-mode 
bond graphs.

The bond graph models of both structures are 
created using the Fault Adaptive Control Technol-
ogy (FACT) software (Mosterman & Biswas, 
1999) in the Generic Modeling Environment 
(GME-6, 2006) to generate a simulation model 
(Matlab Simulink model) (Mathworks, 1999) that 
is used to simulate the structural response. FACT 
contains a library of bond graph elements (i.e., I-, 
C-, R-, Se-, Sf-, TF- and GY-elements and con-
necting bonds) that are used to assemble the bond 
graph model in GME. The displacement, velocity, 
and acceleration responses for the building are 
computed using the simulation model. The bond 

graph damage detection, diagnosis and identifica-
tion algorithm is executed using Matlab.

9.1 Health Assessment of a 
Fifteen-Story Shear Building 
under Earthquake Load

This example studies dynamic analysis and health 
assessment of a 15-story shear building under the 
first horizontal acceleration of the 1995 Kobe 
earthquake (Takatori station) scaled to 0.30 g 
PGA (PEER, 2005). We investigate the dynamic 
analysis of the structure first. The numerical 
values of floor masses, columns stiffnesses and 
damping used in the BG simulation analyses are 
given in Table 5. This structure was modeled using 
a fifteen degree-of-freedom mechanical system 
with linear behavior.

9.1.1 Health Assessment of the 
Structure

Damage in structural components is simulated 
as reduction of 20% in the stiffness parameters 
of the fourteenth floor (case 1) and the first floor 
(case 2). Damage in the sensors is modeled as 
bias or drift in the fourteenth floor or first floor 
sensors. The procedures described in Sections 
3 and 5 are used to generate the BG and TCG 
models of the structure. The BG and TCG mod-
els are constructed from those shown in Figure 
4 by duplicating the blocks of the third floor and 
third sensor. The damage signatures are derived 
as described in Section 7.

9.1.1.1 Damage in Structural Components\

We first study damage in the structural compo-
nents. For noise-free measurements, a reduction 
of 20% is introduced to the stiffness of the four-
teenth floor. The damage criterion is taken as 
deviation in response measurements by more than 
5% from corresponding values of healthy structure. 
The damage was successfully detected to be in 
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the columns of the fourteenth floor due to devia-
tion of displacement measurements x14. Similar 
analyses with 2%, 4% and 6% noise level are also 
carried out and the identification algorithm detects 
and isolates the damage to be in the fourteenth 
floor. Herein, the Z-test is used to detect the dam-
age. The parameters N N1 2, ,αwere taken as 50, 
5 and 1.0, respectively. The quantitative identifi-
cation scheme described in Section 7 leads to 
identifying the stiffness and damping parameters 
of the last two floors, see Table 6. For noise-free 
measurements, the identified stiffness and damp-
ing parameter of the last two floors contain very 
small errors. For 2% noise measurements, the 
reduction in the stiffness was identified close 19%. 
The accuracy of the identified parameters was 
seen to decrease for higher values of noise (see 
Table 6). Denoising of sensor measurements will 
definitely improve the accuracy of the identified 
parameters.

It was found that the time step of the ground 
acceleration of 0.01 s provides inaccurate results. 
Therefore, interpolation of the ground acceleration 
at smaller time period of 0.005 s was performed. 
Similar analyses with damage simulated as reduc-
tion in the stiffness of the first floor columns were 
also conducted and the health assessment algo-
rithm was found to detect and isolate the damage 
successfully. Some of these results are provided 
in Table 6. Note that s = 6 in this case.

9.1.1.2 Faults in Sensors

Damage in sensors is performed by simulating 
sensor measurements of the fourteenth floor 
displacement as bias (0.02 m) or drift (0.002 t) 
functions from the true measurements at t = 5.0 
s (Figure 9). The diagnosis algorithm correctly 
detects the fault to be in the sensor at the four-
teenth floor, since no other damage cause provides 
similar damage signatures. To quantify the bias 
value, the two measurements at the fourteenth 
floor are subtracted. Notwithstanding that the 
bias function contains noise, the average value, 
however, was found to be about 0.019 m which 
is close to the correct value. Alternatively, the 
true and measured data can be denoised before 
computing the bias value. For the noise-free case, 
the difference leads to correctly quantifying the 
bias value to be 0.02 m.

Further numerical analyses with faults simu-
lated in the sensor measuring the displacement 
response of the first floor were also conducted. 
The health assessment algorithm successfully 
detects, isolates, and quantifies the correct damage 
to be in the first floor sensor.

9.2 Health Assessment of a High-
Rise Building under Simulated 
Kanai-Tajimi Acceleration

In the previous example discrete structures were 
modeled using one-to-one bond graph elements. 

Table 5. Numerical values for mass, stiffness and damping coefficient for the 15-story building 

Floor No. 1 2 3 4 5 6 7 8

Mass (kg) 

Stiffness×103 (N/m)
Damping (N s/m)

103.2 
64.5 
645

97.2 
63.4 
634

97.2 
72.7 
727

95.3 
72.1 
721

100.2 
68.7 
687

108.1 
52.3 
523

76.6 
48.5 
600

80.0 
51.5 
650

Floor No. 9 10 11 12 13 14 15

Mass (kg) 

Stiffness×103 (N/m)
Damping (N s/m)

90.0 
48.1 
700

90.0 
68.7 
687

108.1 
52.3 
523

76.6 
48.5 
600

80.0 
51.5 
650

90.0 
48.1 
700

70.0 
16.8 
168
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The modeling of continuous dynamic systems us-
ing bond graphs is carried out using finite-mode 
bond graphs as described before. This example 
demonstrates the health assessment of a reinforced 
concrete high-rise building using the finite-mode 
bond graphs. It may be recalled here that the 
modal analysis technique is used to model the 
continuous system with an equivalent discretized 
multi-degree-of-freedom system. The bond graph 
and temporal causal graph models of the building 
are shown in Figure 6. The bond graph and TCG 
graph model the structural components and the 
sensor as well. The structure is taken to be sub-
jected to a simulated Kanai-Tajimi random ground 
acceleration at the support points and the response 
measurement is taken as the displacement at the 
tip point of the structure. The input acceleration 
and simulated displacement measurements with 
5% noise are shown in Figure 10.

The structure properties used in simulating the 
sensor measurements are taken as h = 75.00 m, 
E = 2.0×1010 N/m2 and mass density of 2500 
kg/m3. The structure is taken to have a uniform 
cross sectional area of 8.00 m outer diameter and 
7.20 m inner diameter. A modal viscous damping 
of 5% damping ratio is assumed for all modes. 
The first 5 modes are considered in the health 

assessment analysis. The free vibration analysis 
was carried out analytically (Blevins, 1979).

Damage in the structural components is mod-
eled as a reduction of 20% in the stiffness of the 
structure. The sensor fault is modeled as either bias 
of 0.02 m or drift function of 0.002 t, at t = 5.0 
s. Figure 10 shows the input load and simulated 
noisy measurements (5% noise level). Possible 
damage scenarios are taken as changes in modal 
stiffness and damping in all modes. It should be 
noted here that the transformer index (TF = the 
participation factor) is a positive quantity for 
odd modes and is negative for even modes. For 
the case of structural damage, the identification 
algorithm detects damage and isolates it to be in 
the modal stiffness or modal damping. Similarly, 
the identification algorithm successfully isolates 
the sensor fault (bias or drift) to be the sensor.

In this example, damage detection and 
qualitative damage isolation are carried out. It is 
possible to perform damage quantification using 
the least-squares method to quantify the modal 
parameters. To do this, additional sensors should 
be placed for collecting required measurements 
for the quantification process. Given that changes 
in the modal parameters of the structure provide 
a measure of the structural damage at the global 

Table 6. Actual and identified parameters for the 15-story shear building due to structural damage 

Parameter Actual 
values

Identified values

Noise-free 2% noise 4% noise 6% noise

k14*
D14
k15
D15

38480 
700 
16800 
168

38469 (0.03%) 
695.36(0.66%) 
16797 (0.02%) 
166.34(0.99%)

38415 (0.17%) 
690.72 (1.33%) 
16761 (0.23%) 
164.68 (1.98%)

38291 (0.49%) 
676.87 (3.30%) 
16694 (0.63%) 
159.71 (4.94%)

38118 (0.94%) 
698.75 (4.57%) 
16610 (1.13%) 
155.89 (7.21%)

k1**
D1
k2
D2
k3
D3

51600 
645 
63400 
634 
72700 
727

51596 (0.01%) 
643 (0.31%) 
63392 (0.02%) 
632 (0.32%) 
72688 (0.02%) 
724 (0.41%)

51223 (0.73%) 
660.80 (2.46%) 
62935 (0.73%) 
656.15 (3.49%) 
72157 (0.75%) 
754.73 (3.81%)

50652 (1.84%) 
678.68 (5.22%) 
62230 (1.85%) 
682.05 (7.58%) 
71335 (1.88%) 
787.71 (8.35%)

50272 (2.57%) 
687.95 (6.66%) 
61760 (2.59%) 
696.09 (9.79%) 
70786 (2.63%) 
805.91 (10.85%)

Note: The numbers in parentheses indicates % error in identified parameter.
* Case 1: Damage in columns of fourteenth floor.
** Case 2: Damage in columns of first floor.
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Figure 9. Example 1: Sensor measurements with 5% noise (a) Fourteenth floor displacement with dam-
age in structural components (b) Fourteenth floor displacement with sensor bias

Figure 10. Example 2: Input-output measurements with 5% noise (a) Simulated Kanai-Tajimi accelera-
tion (b) Tip displacement with damage in structural components (15% reduction in ω1 ) (c) Tip displace-
ment with sensor bias 0.02 m (d) Tip displacement with sensor drift 0.002 t
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level and not at the local level, this step was not 
considered in this chapter.

10. CONCLUDING REMARKS 
AND FUTURE CHALLENGES

A new graphical energy-based framework for 
dynamic analysis and health assessment of dy-
namic systems is developed in this chapter. This 
framework is based on the bond graph theory, the 
associated temporal causal graphs, the derived 
damage signatures and the least-squares optimiza-
tion method. The framework is different from other 
frameworks in the sense that it enables performing 
qualitative system identification first, thus reduc-
ing the computations significantly. Subsequently, 
damage quantification is carried out if necessary. 
BG is shown to represent the system equations of 
motion in an implicit graphical form. The TCG 
links the system response to changes in the sys-
tem components and sensor measurements which 
facilitates deriving qualitative effects of changes 
in system response on system components. The 
advantages of the BG framework are: (1) Simple 
graphical-modeling tool for dynamic systems, 
(2) Unified (domain-independent) framework 
for dynamic analysis and health assessment of 
dynamic systems across multiple domains (e.g., 
structural, mechanical, electrical, hydraulic, etc.), 
(3) Rapid qualitative identification of the damage 
location, thus reducing the computations, (4) The 
ability to identify sensor faults, (5) The ability to 
perform online diagnosis, based on continuous 
monitoring, (6) Reduction of data processing, 
online computations and associated errors due 
to absence of transformation to other domain 
or approximations in feature selection, and (7) 
Rapid quantification of damage size since only 
the substructure containing damage is analyzed.

In this chapter, linear structural behavior and 
relatively simple structures are considered. More 
complex systems, continuum elements and non-

linear material behavior need to be studied. The 
study also considered a single damage to occur 
at a time. The inclusion of multiple damages will 
be considered in a future work. Notwithstanding 
these shortcomings, it is believed that bond graphs 
will open the door for new useful applications 
in system identification and structural control 
of engineering structures. The issue of sensor 
performance is particularly relevant in the field 
of road infrastructure where the loading condi-
tions affecting the main structure (traffic load, 
temperature cycling, etc.) affect also the sensor 
performance. It is difficult, however, to consider 
all these concerns in this chapter.
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Chapter  15

INTRODUCTION

Applications of seismic isolation techniques to 
bridges (Figure 1) have gained significant atten-
tion over the last decade (Jangid, 2008; Jónsson, 
Bessason, & Haflidason, 2010; Makris & Zhang, 
2004; Perros & Papadimitriou, 2009; Tsopelas, 
Constantinou, Okamoto, Fujii, & Ozaki, 1996; 

Wang, Fang, & Zou, 2010). Lead-rubber bearings 
or friction pendulum systems are selected for this 
purpose in order to isolate the bridge deck from 
its support, at the abutments and potentially at the 
locations of intermediate piers. This configura-
tion provides enhanced capabilities for energy 
dissipation during earthquake events while also 
accommodating thermal movements during the 
life-cycle of operation of the bridge. It is associ-
ated though with large displacement for the bridge 
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deck relative to its supports, especially under near 
fault earthquake ground motions (Dicleli, 2006; 
Dimitrakopoulos, Makris, & Kappos, 2010; Shen, 
Tsai, Chang, & Lee, 2004). These motions include 
frequently a strong, longer period component 
(pulse) that has important implications for flexible, 
isolated structures (Bray & Rodriguez-Marek, 
2004; Mavroeidis & Papageorgiou, 2003). For 
base-isolated bridge systems, such large displace-
ments under strong ground motions may lead to 
(i) large inelastic deformations and formation of 
plastic hinges at the piers and abutments and (ii) 
pounding of the deck between adjacent spans or to 
intermediate seismic stoppers or to the abutments 
supporting the ends of the bridge (Dimitrakopou-
los, Makris, & Kappos, 2009; Dimitrakopoulos et 
al., 2010; Ruangrassamee & Kawashima, 2003). 
Such pounding will then lead to high impact 
stresses and increased shear forces for both the 
bridge deck and its supports (abutments and piers).

This overall behavior associated with excessive 
vibrations will ultimately lead to significant dam-
ages that affect not only the serviceability but also 
the structural integrity of the bridge system. For 
controlling such vibrations, application of seismic 
dampers has been proposed and applied to iso-

lated bridges (Hwang & Tseng, 2005; Makris & 
Zhang, 2004; Ruangrassamee & Kawashima, 
2003). The explicit consideration of the hyster-
etic behavior of the isolators and the highly 
nonlinear behavior of the dampers in the design 
process, as well as the proper modeling of soil-
structure interaction at the foundations of the 
bridge are some of the main challenges encoun-
tered in the design of such dampers. Linearization 
techniques are frequently adopted for modeling 
the bridge system (Hwang & Tseng, 2005); this 
simplifies the analysis, but there is great doubt if 
it can accurately predict the combined effect of 
the non-linear viscous damping, provided by the 
dampers, along with the non-linear hysteretic 
damping, provided by the isolators, while ap-
propriately addressing the soil-structure interac-
tion characteristics and the nonlinearities intro-
duced by pounding effects. Another challenge is 
the explicit consideration of the variability of 
future excitations and of the properties of the 
structural system since a significant degree of 
sensitivity has been reported between these char-
acteristics and the overall system performance 
(Dimitrakopoulos et al., 2009; Perros & Papad-
imitriou, 2009).

Figure 1. Two-span base-isolated bridge
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This chapter presents a methodology that 
addresses all aforementioned challenges for the 
design of supplemental dampers for seismically 
isolated, short-spanned bridges. A probabilistic 
framework is proposed for addressing the various 
sources of uncertainty and quantifying the overall 
performance. This is established by characterizing 
the relative plausibility of different properties 
of the system and its environment (representing 
future excitations) by appropriate probability 
models. Seismic risk is then defined as the ex-
pected value of the system performance over these 
models. Stochastic simulation is implemented for 
evaluation of the multidimensional probabilistic 
integral representing seismic risk and an efficient 
algorithm (Kleinmann, Spall, & Naiman, 1999; 
Spall, 1998) is adopted for performing the as-
sociated optimization and selecting the optimal 
damper parameters. This establishes a versatile, 
simulation-based framework for detailed charac-
terization of seismic risk that puts no restrictions in 
the complexity of the modeling approach adopted. 
Thus, the bridge response is evaluated through 
nonlinear dynamic analysis allowing for direct 
incorporation of all important sources of nonlin-

earities into the model used at the design stage. A 
realistic model is also discussed for description of 
near-fault ground motions. This model establishes 
a direct link, in a probabilistic sense, between our 
knowledge about the characteristics of the seismic 
hazard in the structural site and future ground mo-
tions. An efficient probabilistic sensitivity analysis 
is also discussed for investigating the influence 
of each of the uncertain model parameters to the 
overall seismic risk.

PROBABILISTIC DESIGN 
FRAMEWORK

Evaluation of seismic risk for isolated bridges 
requires adoption of appropriate models for (i) 
the bridge system itself, (ii) the excitation (ground 
motion), and (iii) the system performance (Figure 
2). The combination of the first two models pro-
vides the structural response. The performance 
evaluation model assesses, then, the favorability 
of this response based on the selected performance 
criteria.

Figure 2. Schematic of augmented system and seismic risk description
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The characteristics of the models for the seis-
mically isolated bridge and for future earthquake 
excitations, described in the next two sections are 
not known with absolute certainty. Uncertainties 
may pertain to (i) the properties of the bridge 
system, for example, related to stiffness or damp-
ing characteristics and traffic loads; to (ii) the 
variability of future seismic events, i.e., the mo-
ment magnitude or the epicentral distance; to (iii) 
the predictive relationships about the character-
istics of the excitation given a specific seismic 
event, for example duration of strong ground 
motion or peak acceleration; or to (iv) parameters 
related to the performance of the system, for 
example, thresholds defining fragility of system 
components. A probability logic approach pro-
vides a rational and consistent framework for 
quantifying all these uncertainties and explicitly 
incorporating them into the system description. 
In this approach, probability can be interpreted 
as a means of describing the incomplete or miss-
ing information (Jaynes, 2003) about the system 
under consideration and its environment, repre-
senting the seismic hazard, through the entire 
life-cycle (Taflanidis & Beck, 2009a).

To formalize these ideas denote the vector of 
controllable system parameters, referred to 
herein as design variables, be ϕϕ ∈ ⊂ ℜΦ ϕn , where 
Φ denotes the admissible design space with vol-
ume VΦ. These variables are related to the adjust-
able characteristics of the damper application, for 
example viscosity properties or damper size. Let 
θ Θ θ∈ ⊂ ℜn , denote the augmented vector of 
model parameters where Θ represents the space 
of possible model parameter values. Vector θ is 
composed of all the model parameters for the 
individual structural system, excitation, and per-
formance evaluation models indicated in Figure 
2. The seismic performance of the bridge, for 
specific design φ and model description θ, is 
characterized by the performance measure 
h n x n
( , ) :ϕϕ θ ℜ → ℜ+ϕ θ  , which ultimately quan-

tifies seismic utility or risk according to the de-

signer criteria (an example is discussed in the 
illustrative application considered later). The 
conventions that lower values for h(φ,θ) corre-
spond to better performance, i.e. it is associated 
with risk and ultimately corresponds to a risk 
measure, is used herein.

For addressing the uncertainty in θ a prob-
ability density function (PDF) p(θ), is assigned to 
it, quantifying the relative likelihood of different 
model parameter values. This PDF incorporates 
our available knowledge about the structural 
system and its environment into the respective 
knowledge, and should be selected based on this 
knowledge (Jaynes, 2003). In this setting, the 
overall performance, i.e. seismic risk, is described 
by the following probabilistic integral that cor-
responds to the expected value of h(φ,θ)

C h p d( ) ( , ) ( )ϕϕ ϕϕ= ∫ θ θ θ
Θ

 (1)

Different selections for h(φ) lead to different 
characterization for seismic risk; for example, if 
h(φ,θ)=Cin(φ,θ)+Clif(φ,θ), where Cin(φ,θ) cor-
responds to the initial cost and Clif(φ,θ) to the 
additional cost over the lifetime due to repairs or 
downtime, then risk corresponds to life cycle cost 
(Taflanidis & Beck, 2009a), if h(φ,θ)=IF(φ,θ), 
where IF(φ,θ) is the indicator function for some 
event F (one if F has occurred and zero if not), 
then risk corresponds to the probability of unac-
ceptable performance (Taflanidis & Beck, 2009b).

The probabilistically-robust stochastic design 
(Taflanidis & Beck, 2008) is then established 
by selecting the design variables that minimizes 
seismic risk C(φ)

 arg minϕϕ ϕϕ ϕϕ
ϕϕ

* ( ) | ( )= ≥{ }
∈Φ

C fc 0  (2)

Where arg stands for “argument that mini-
mizes” and fc(φ) is a vector of deterministic 
constraints, related, for example, to location or 
space constraints for the dampers. Note that in this 
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formulation, all performance requirements against 
future natural hazards are directly incorporated in 
the objective function. Finally, the constraints in 
Equation 2 may be incorporated into the definition 
of admissible design space Φ, which leads to the 
simplified expression:

 arg minϕϕ ϕϕ
ϕϕ

* ( )=
∈Φ

C  (3)

For evaluation of Equation 1 and the optimiza-
tion in Equation 3 an approach based on stochastic-
simulation will be discussed in detail later. Along 
with the comprehensive risk quantification and 
the bridge and excitation models described next 
that establishes a versatile, end-to-end simulation 
based framework for detailed characterization and 
optimization of seismic risk. This framework puts 
no restrictions in the complexity of the models 
used allowing for incorporation of all important 
sources of nonlinearities and adoption of advanced 
models for characterization of the ground motion. 
Thus, it allows an efficient, accurate estimation 
of the seismic risk by appropriate selection of the 
characteristics of the stochastic analysis. Next we 
will discuss in detail the bridge and excitation 
models used in this study, and then proceed to 
the computational framework for performing the 
optimization in Equation 3.

BRIDGE MODEL

For simplicity of the analysis, we will assume a 
two-span (as in Figure 1), straight bridge, whose 
fundamental behavior in the longitudinal direc-
tion can be adequately characterized with a planar 
(two-dimensional) model. It is noted that the 
bridge is assumed to be parallel to the direction 
of the seismic wave propagation and also that it 
does not fall in the category of long-span bridges. 
The ideas discussed in the following sections, 
related to probabilistic modeling and design, can 
be directly extended, though, to more complex 

cases, for example, skewed bridges, for which a 
complete three dimensional model is required to 
accurately capture their response under seismic 
excitation. Each span of the bridge is modeled 
here as a rigid body. For appropriately address-
ing at the design stage the pounding between 
adjacent spans, soil-structure interaction charac-
teristics and the nonlinear behavior of isolators 
and dampers, nonlinear dynamic analysis is 
used (Makris & Zhang, 2004; Saadeghvaziri & 
Yazdani-Motlagh, 2008; Zhang, Makris, & Delis, 
2004). The pounding with the abutment and the 
dynamic characteristics of the latter are incorpo-
rated in the analysis by modeling the abutment 
as a mass (Saadeghvaziri & Yazdani-Motlagh, 
2008) connected to the ground by a spring and 
a dashpot, with stiffness and damping properties 
that are related to the local soil conditions (Zhang 
et al., 2004). The vibration behavior of the isola-
tors, the dampers and the pier is incorporated by 
appropriate nonlinear models (Ruangrassamee & 
Kawashima, 2003; Taflanidis, 2009; Taflanidis & 
Beck, 2009a; Zhang et al., 2004). The pounding 
between adjacent spans, or to the abutments, is 
approximated here as a Hertz contact force with 
an additional non-linear damper to account for 
energy losses (Muthukumar & DesRoches, 2006).

A schematic of the bridge model with two 
spans, supported by seismic isolators to the abut-
ments and to the intermediate pier is illustrated 
in Figure 3. The two spans and abutments are 
distinguished by using the convention right and 
left for each of them. The gap between the two 
spans is denoted by xo and the gap between the 
left or right span and the corresponding abutment 
by xol or xor, respectively. Let also xp, xsl, xsr, xal, 
xar, denote, respectively, the displacement relative 
to the ground of the pier, the left and right span 
of the bridge and the left and right abutment. The 
total mass for the pier, the left and right span of 
the bridge and the left and right abutment are 
denoted, respectively, by mp, msl, msr, mal, mar. 
This total mass includes both the weight of each 
component as well as the live loads due to ve-
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hicle traffic. Additionally let Cp, Cal, Car denote, 
respectively, the damping coefficient for the pier 
and the left and right abutment. The equation for 
the seismically isolated system is then derived by 
equilibrium conditions as:

m x f f f f f

m x f f f f
sl sl ial cl dl ipl c

sr sr iar cr dr





+ + +( )+ + =
+ + +( )+

0
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+ + − +

f f f f m x

m x C x f f f
al ial cl dl al g

ar ar ar ar ar iar cr



  ++( ) = −f m xdr ar g

 

(4)

where xg  is the ground acceleration; fc, fcl and fcr 
are the impact forces due to pounding between 
the two spans or between the spans and the left 
or right, respectively, abutments; fdl and fdr are the 
left and right damper forces; and fial, fipl or fiar, fipr 
are the forces of the isolators that support the left 
or right span of the bridge to the abutment and 
the pier, respectively; fp corresponds to the restor-
ing force for the pier which is modeled as hyster-
etic bilinear force with ultimate strength as de-
picted in Figure 3. Strength and stiffness 
deterioration may be additionally incorporated 

Figure 3. Schematic model for two-span bridge system with seismic isolators and supplemental dampers
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into this model (Taflanidis & Beck, 2009a). All 
these forces are discussed in more detail next.

The hysteretic behavior of each isolator is 
modeled by a Bouc-Wen model which is described 
by the following basic differential equation 
(Taflanidis, 2009):

δ α γ βyi is b is b is bz x z x z x   = − +2( sgn( ) )  (5)

where xb is the displacement of the isolator, which 
corresponds to the relative displacement of the 
span relative to its support; z is a dimensionless 
hysteretic state-variable that is constrained by val-
ues ±1; δyi is the yield displacement; and αis, βis, and 
γis are dimensionless quantities that characterize 
the properties of the hysteretic behavior. Typical 
values for these parameters are used here, taken 
as αis=1, βis=0.1, and γis=0.9 (Taflanidis, 2009). 
The isolator forces fi may be then described based 
on the state-variable z and the relative isolator 
displacement xb. For friction-pendulum isolators 
and lead-rubber bearings, these forces are given 
respectively, by (Taflanidis, 2009):

f k x N zi p b t= + µ  (6)

f k x k k zi p b e p yi= + −( )δ  (7)

where kp is the post yield stiffness, Nt the average 
normal force at the bearing, μ is the coefficient 
of friction, ke the pre yield stiffness. For the left 
span xb is given by xb=xsl-xal and xb=xsl-xp for the 
isolators supporting it to the abutment and the pier, 
respectively. For the right span the corresponding 
quantities are xb=xsr-xar, and xb=xsr-xp, respectively.

The force due to pounding between the adjacent 
spans is modelled as a single-sided Hertz contact 
force with an additional damper that incorporates 
in the analysis the energy dissipated during the 
contact (Muthukumar & DesRoches, 2006)

f
k x x x c x x
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=

− −( ) −( )
− <0

β
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; if
 

   x x xsl sr o− ≥








 

(8)

where kcc is the contact stiffness, ccc the non-linear 
damper coefficient and βc the contact exponent, 
taken here with the nominal value for Hertz type 
of impact, i.e. βc=1.5 (Muthukumar & DesRoches, 
2006). The damper coefficient may be expressed 
in terms of the ratio of relative velocities of the 
pounding bodies before and after the contact, 
called coefficient of restitution ecc, as (Muthuku-
mar & DesRoches, 2006):

c k
x x x

v
ecc cc

sl sr o

con
cc

c

=
− −

−0 75 1 2. ( )
β

 (9)

where vcon is the relative velocity at the initiation 
of contact. The contact stiffness is a function of 
the elastic properties and the geometry of the 
colliding bodies. For elastic contact between two 
isotropic spheres with radius R1 and R2 the follow-
ing relationship holds (Werner, 1960)

k
R R

R Rc = + +
4

3 1 2

1 2

1 2π δ δ( )
 (10)

where δi, i=1,2 is a material parameter for the ith 
body given by

δ
πi

i

i

v

E
=
−1 2

 (11)

with vi and Ei representing its Poisson’s ratio 
and modulus of elasticity, respectively. To cal-
culate(10) each of the spans can be roughly ap-
proximated as a sphere with radius (Muthukumar 
& DesRoches, 2006)

R
m

i
i=

3

4
3

πρ
 (12)
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where ρ is the material density and mi corresponds 
to the mass of the span. Ri and δi are calculated 
based on the total mass and material properties 
of each span and then the contact stiffness kcc is 
equal to kc given by Equation 10.

The force due to pounding of the left span to 
the left abutment is modeled as left-sided contact 
force in Box 1.and similar modeling holds for the 
pounding of the right span to the right abutment 
(see Box 2).

The contact parameters kcl, kcr and ccl, ccr are 
defined similarly to the case of contact between 
the spans, using the properties (mass, velocity) 
of the colliding bodies of interest. The restitution 
coefficients for collision of the left or right span 
to their neighboring abutments are denoted by ecl 
and ecr respectively.

The damper forces depend on the type of 
application. For simplicity only the case of 
passive viscous dampers is discussed here, but 
the framework presented in the next sections is 
directly extendable to the design of other type 
of dampers as well. For fluid viscous dampers 
the damper forces are a function of the relative 
velocity across the end points of the damper. For 
the damper connecting the left span to the cor-
responding abutment (Makris & Zhang, 2004) 
they may be described in Box 3.

f c x x x xdl d sl al sl al

ad= − −sgn( )     (15)

where cd is the damping coefficient and ad an 
exponent parameter. These adjustable charac-
teristics are the controllable damper parameters 
to de selected at the design stage. Note that for 
ad=1 relationship 15 corresponds to a linear 
viscous damper. Maximum forcing capabilities 
for the damper, related to cost constraints, may 
be incorporated into the model as a saturation of 
the damper force to fmax leading to (see Box 4).

For the damper connecting the right span to 
the abutment the damper force is similarly ex-
pressed in Box 4.

EXCITATION MODEL

The analysis and design of any seismic structural 
system needs to be performed considering poten-
tial damaging future ground motions. For base-
isolated bridges this translates to consideration 
of near-fault ground motions.

The last two decades numerous models have 
been proposed for ground motion modeling 
(Atkinson & Silva, 2000; Shinozuka, Deodatis, 
Zhang, & Papageorgiou, 1999) that incorporate 
important characteristics of the seismic source 
as well as of the earth medium. Other studies 

Box 1.   
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have focused on the estimation of the spatial 
variability of the seismic ground motions which 
is a result of the transmission of the waves from 
the source through the different earth strata to the 
ground surface (Zerva, 2008). The latter effect 
is considered to be very crucial in the design of 
elongated structures such as long – span bridges. 
An important factor of the spatial variability is 
the site response effect (i.e. the difference at the 
local soil conditions at two stations), especially 
for structures situated in regions with rapidly 
changing local soil conditions and for bridges with 
short or medium length spans (Der Kiureghian, 
1996). Moreover, other researchers have devel-
oped models that address the nonstationarity of the 
ground motions by accounting the time variation 
of both intensity and frequency content (Conte & 
Peng, 1997; Rezaeian & Der Kiureghian, 2008). 
An alternative tool for modeling uncertainty of 
future earthquake loads is the critical excitation 
method in which the ground motion is represented 
as a product of a Fourier series and an envelope 
function and in general involves estimating the 
excitation producing the maximum response 
from a class of allowable inputs (Abbas, 2011; 
Takewaki, 2002).

For the proposed probabilistic framework, a 
complete stochastic model for characterizing the 
acceleration time-history of near-fault excitations 
is required, that addresses all important sources of 

uncertainty. Such a model was proposed recently in 
(Taflanidis, Scruggs, & Beck, 2008) and is briefly 
discussed next. According to it the high-frequency 
and long-period components of the motion are 
independently modeled and then combined to 
form the acceleration time history. It is pointed 
out that the spatial variation of the seismic input 
is not been taken into account, because the bridge 
systems we focus on are relatively short-spanned.

High – Frequency Component

The fairly general, point source stochastic 
method (Boore, 2003) is selected for modeling 
the higher-frequency (>0.1–0.2 Hz) component 
of ground motions. This approach corresponds 
to ‘source – based’ stochastic ground motion 
models, developed by considering the physics 
of the fault rupture at the source as well as the 
propagation of seismic waves through the entire 
ground medium till the structural site. It is based 
on a parametric description of the ground motion’s 
radiation spectrum A(f;M,r), which is expressed as 
a function of the frequency, f, for specific values 
of the earthquake magnitude, M, and epicentral 
distance, r. This spectrum consists of many factors 
which account for the spectral effects from the 
source (source spectrum) as well as propagation 
through the earth’s crust up to the structural site. 
The duration of the ground motion is addressed 
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through an envelope function e(t;M,r), which 
again depends on M and r. These frequency and 
time domain functions, A(f;M,r) and e(t;M,r), 
completely describe the model and their charac-
teristics are provided by predictive relationships 
that relate them directly to the seismic hazard, i.e., 
to M and r. More details on them are provided in 
(Boore, 2003; Taflanidis et al., 2008). Particularly, 
the two-corner point-source model by Atkinson 
& Silva (2000) can be selected for the source 
spectrum because of its equivalence to finite fault 
models. This equivalence is important because 
of the desire to realistically describe near-fault 
motions and adaptation of a point-source model 
might not efficiently address the proximity of the 
site to the source (Mavroeidis & Papageorgiou, 
2003). The spectrum developed by Atkinson & 
Silva (2000) has been reported in their studies to 
efficiently address this characteristic.

The time-history (output) for a specific event 
magnitude, M, and source distance, r, is obtained 
according to this model by modulating a white-
noise sequence Zw=[Zw(iΔt): i=1,2,…, NT] by 
e(t;M,r) and subsequently by A(f;M,r) through 
the following steps: the sequence Zw is multiplied 
by the envelope function e(t;M,r) and then trans-
formed to the frequency domain; it is normalized 
by the square root of the mean square of the ampli-
tude spectrum and then multiplied by the radiation 
spectrum A(f;M,r); finally it is transformed back 
to the time domain to yield the desired accelera-
tion time history. The model parameters consist of 
the seismological parameters, M and r, describing 
the seismic hazard, the white-noise sequence Zw 
and the predictive relationships for A(f;M,r) and 
e(t;M,r). Figure 4 shows functions A(f;M,r) and 
e(t;M,r) for different values of M and r. It can be 
seen that as the moment magnitude increases the 
duration of the envelope function also increases 
and the spectral amplitude becomes larger at all 
frequencies with a shift of dominant frequency 
content towards the lower-frequency regime. 
Reduction of r primarily contributes to an overall 
increase of the spectral amplitude. Alternatively, a 

“record-based” stochastic ground motion could be 
used for modelling the high frequency component 
of the ground motion. An example of such a model 
is the one developed recently by Rezaeian & Der 
Kiureghian (2008), which has the advantage that 
additionally addresses spectral nonstationarities.

Long Period Pulse

For describing the pulse characteristic of near-
fault ground motions, the simple analytical model 
developed by Mavroeidis & Papageorgiou (2003) 
is selected. This model is based on an empirical 
description of near-fault ground motions and has 
been calibrated using actual near-field ground mo-
tion records from all over the world. According 
to it, the pulse component of near-fault motions 
is described through the following expression for 
the ground motion velocity pulse:
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(18)

where Ap, fp, νp, γp, and to describe the signal ampli-
tude, prevailing frequency, phase angle, oscillatory 
character (i.e., number of half cycles), and time 
shift to specify the envelope’s peak, respectively. 
Note that all parameters have an unambiguous 
physical meaning. A number of studies (Alavi 
& Krawinkler, 2000; Bray & Rodriguez-Marek, 
2004; Mavroeidis & Papageorgiou, 2003) have 
been directed towards developing predictive rela-
tionships that connect these pulse characteristics 
to the seismic hazard of a site. These studies link 
the amplitude and frequency of near-fault pulse 
to the moment magnitude and epicentral distance 
of seismic events, but they also acknowledge that 
significant uncertainty exists in such relationships. 
This indicates that a probabilistic characterization 
is more appropriate. For example, according to 
the study by Bray and Rodriguez-Marek (2004) 
the following relationships hold for the pulse 
frequency fp and the peak ground velocity Av
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ln ln  f f ep p f= +ˆ  (19)

 ln lnA A ev v v= +ˆ  (20)

where  f̂p  and Âv  are median values (provided 
through a regression analysis), and εp and εv are 
prediction errors following a Gaussian distribution 
with zero mean and large standard deviation. For 
rock sites the predictive relationships for the 
median values are (Bray & Rodriguez-Marek, 
2004)

ln  ˆ . .f Mp = −8 60 1 32  (21)

 ln ln(ˆ . . . )A M rv = + − +4 46 0 34 0 58 72 2  
(22)

whereas the standard deviation for the predic-
tion errors ef and ev is estimated as 0.4 and 0.39, 
respectively. Note that according to Equation 22 
the pulse amplitude, which is directly related to 
the peak ground velocity (Mavroeidis & Papageor-
giou, 2003), varies almost inversely proportional 
to the epicentral distance. This indicates a strong 

correlation between the existence of the pulse and 
the proximity of the structural site to the seismic 
source/fault. For epicentral distances larger than 
15-20 km the pulse component according to this 
equation is negligible (Bray & Rodriguez-Marek, 
2004).

For the rest of the pulse parameters, the phase 
and the number of half cycles, no clear link to the 
seismic hazard of the structural site has been yet 
identified. They need to be considered as indepen-
dent model parameters. The study (Mavroeidis & 
Papageorgiou, 2003) provides relevant values for 
these parameters by fitting Equation 18 to a suite 
of recorded near-fault ground motions.

Near-Fault Excitation Model

The stochastic model for near-fault motions is 
finally established by combining the above two 
components through the methodology initially 
developed in (Mavroeidis & Papageorgiou, 2003). 
The model parameters consist of the seismological 
parameters M and r, the additional parameters for 
the velocity pulse, νp, γp, the white noise sequence 
Zw, and the predictive relationships for fp, Av, and 

Figure 4. Radiation spectrum and envelope function, for various M, r
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for the characteristics of A(f;M,r) and e(t;M,r). The 
following procedure describes the final model:

1.  Generate the high-frequency component of 
the acceleration time history by the stochastic 
method.

2.  Generate a velocity time history for the near-
field pulse using Equation 18. The pulse is 
shifted in time to coincide with the peak of 
the envelope e(t;M,r). This defines the value 
of the time shift parameter to. Differentiate 
the velocity time series to obtain an accel-
eration time series.

3.  Calculate the Fourier transform of the ac-
celeration time histories generated in steps 
1 and 2.

4.  Subtract the Fourier amplitude of the time 
series generated in step 2 from the spectrum 
of the series generated in 1.

5.  Construct a synthetic acceleration time his-
tory so that its Fourier amplitude is the one 
calculated in step 4 and its Fourier phase 

coincides with the phase of the time history 
generated in step 2.

6.  Finally superimpose the time histories gener-
ated in steps 2 and step 5.

Figure 5 illustrate a near-fault ground motion 
sample for an earthquake M=6.7, r=5km and pa-
rameters for the near-fault pulse γp=1.7, νp=π/6. 
Both the acceleration and velocity time histories 
of the synthetic ground-motion are presented. The 
existence of the near-fault pulse is evident when 
looking at the velocity time history.

STOCHASTIC ANALYSIS, 
OPTIMIZATION, AND SENSITIVITY

Stochastic Analysis

Since the nonlinear models considered for the 
bridge and the excitation are complex and include 
a large number of uncertain model parameters the 

Figure 5. Sample near-fault ground motion; acceleration and velocity time histories
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multi-dimensional integral in Equation 1 defin-
ing seismic risk and involved in optimization 
in Equation 3 cannot be calculated, or even ac-
curately approximated, analytically. An efficient 
alternative approach is to estimate the integral by 
stochastic simulation (Taflanidis & Beck, 2008). 
Using a finite number, N, of samples of θ drawn 
from some importance sampling density pis(θ), an 
estimate for (1) is given by the stochastic analysis:

ˆ( ) ˆ( , ) ( , )
( )

( )
C C

N
h p

p
i

i

is
ii

N
ϕϕ ϕϕ ϕϕ θθ

θθ
θθ

= =
=∑Ω 1

1
 

(23)

where vector θi denotes the sample of the uncer-
tain parameters used in the ith simulation and Ω 
denotes the entire samples set {θi} used in the 
evaluation. As N →∞ , then Ĉ→C but even for 
finite, large enough N, Equation 23 gives a good 
approximation for the integral in Equation 1. The 
importance sampling density pis(θ) may be used 
to improve the efficiency of this estimation. This 
is established by focusing on regions of the Θ 
space that contribute more to the integrand of the 
probabilistic integral in Equation 1 (Taflanidis & 
Beck, 2008), i.e. by selecting a proposal density 
that resembles that integrand. If pis(θ)=p(θ) then 
the evaluation in Equation 23 corresponds to 
direct Monte Carlo integration. For problems with 
large number of model parameters, as the applica-
tion discussed here, choosing efficient importance 
sampling densities for all components of θ is 
challenging and can lead to convergence problems 
for the estimator of Equation 23; thus it is prefer-
able to formulate importance sampling densities 
only for the important components of θ, i.e. the 
ones that have biggest influence on the seismic 
risk, and use q(.)=p(.) for the rest (Taflanidis & 
Beck, 2008). For seismic risk applications the 
characteristics of the hazard, especially the mo-
ment magnitude or epicentral distance are gener-
ally expected to have the strongest impact on the 
calculated risk (Taflanidis & Beck, 2009a), so 

selection of importance sampling densities may 
preliminary focus on them.

Optimization for the Design 
Variables under Uncertainty

The optimal design choice is finally given by the 
optimization under uncertainty problem (Spall, 
2003):

 arg minϕϕ ϕϕ
ϕϕ

* ˆ( )=
∈Φ

C  (24)

The estimate of the objective function for this 
optimization involves an unavoidable estimation 
error and significant computational cost since N 
evaluations of the model response are needed for 
each stochastic analysis. These features that make 
this optimization problem challenging. Many nu-
merical techniques and optimization algorithms 
have been developed to address such challenges 
in design optimization under uncertainty (Royset 
& Polak, 2004; Ruszczynski & Shapiro, 2003; 
Spall, 2003). Such approaches may involve one 
or more of the following strategies: (i) use of 
common random numbers to reduce the relative 
importance of the estimation error when com-
paring two design choices that are “close” in the 
design space, (ii) application of exterior sampling 
techniques which adopt the same stream of random 
numbers throughout all iterations in the optimi-
zation process, thus transforming the stochastic 
problem into a deterministic one, (iii) simultaneous 
perturbation stochastic search techniques, which 
approximate at each iteration the gradient vector 
by performing only two evaluations of the objec-
tive function in a random search direction, and 
(iv) gradient-free algorithms (such as evolution-
ary algorithms) which do not require derivative 
information. References (Spall, 2003; Taflanidis 
& Beck, 2008) provide reviews of appropriate 
techniques and algorithms for such optimiza-
tion problems. The very efficient Simultaneous 
Perturbation Stochastic Approximation (SPSA) 



383

Optimal Design of Nonlinear Viscous Dampers for Protection of Isolated Bridges

with Common Random Numbers (CRN) will be 
employed in this study and is briefly reviewed next.

Simultaneous Perturbation 
Stochastic Approximation

Simultaneous-perturbation stochastic approxi-
mation (SPSA) (Kleinmann et al., 1999; Spall, 
2003) is an efficient stochastic search method. 
It is based on the observation that one properly 
chosen simultaneous random perturbation in all 
components of φ provides as much information 
for optimization purposes in the long run as a full 
set of one at a time changes of each component. 
Thus, it uses only two evaluations of the objective 
function, in a direction randomly chosen at each 
iteration, to form an approximation to the gradi-
ent vector. It also uses the notion of stochastic 
approximation (Kushner & Yin, 2003) which 
can significantly improve the computational ef-
ficiency of stochastic search applications (Spall, 
2003). The latter approximation is performed by 
establishing (through proper recursive formulas) 
an equivalent averaging across the iterations of the 
optimization algorithm, instead of getting higher 
accuracy estimates for the objective function at 
each iteration, that is averaging over one single 
iteration.

The implementation of SPSA takes the itera-
tive form:

ϕϕ ϕϕ ϕϕk k k k k k+ = − ( )1 α g ,Ω  (25)

where φ1∈ Φ is the chosen point to initiate the 
algorithm and the jth component for the Common 
Random Number (CRN) simultaneous perturba-
tion approximation to the gradient vector in the 
kth iteration, gk(φk,Ωk), is given by:
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where Ωk is the sample set used at iteration k and 
∆k

n
∈ ℜ ϕ  is a vector of mutually independent 

random variables that defines the random direction 
of simultaneous perturbation for φk and that satis-
fies the statistical properties given in (Spall, 2003). 
A symmetric Bernoulli ±1  distribution is typi-
cally chosen for the components of Δk. The selec-
tion for the sequences {ck} and {αk} is discussed 
in detail in (Kleinmann et al., 1999). A choice that 
guarantees asymptotic convergence to ϕϕ*  is 
αk = α/(k + w)β and ck = c1/k

ζ, where 4ζ – β > 0, 
2β – 2ζ > 1, with w, ζ > 0 and 0 1< ≤β . This 
selection leads to a rate of convergence that as-
ymptotically approaches k−β/2 when CRN is used 
(Kleinmann et al., 1999). The asymptotically 
optimal choice for β is, thus, 1. In applications 
where efficiency using a small number of itera-
tions is sought after, use of smaller values for β 
are suggested in (Spall, 2003). For complex design 
optimizations, where the computational cost for 
each iteration of the algorithm is high, the latter 
suggestion should be adopted. Note that the same 
set of random numbers is selected for the two 
estimates of the objective function at each itera-
tion used to calculate the gradient in Equation 26. 
This reduces the variance of the difference of 
these estimates thus creating a consistent estima-
tion error (Glasserman & Yao, 1992; Taflanidis 
& Beck, 2008) and improving the efficiency of 
the estimate in Equation 26 (reduces relative 
importance of estimation error). Across the itera-
tions of the optimization algorithm, though, this 
sample set is not the same; thus there is no de-
pendence of the optimal solution on it (i.e. the 
approach here does not correspond to an exterior 
sampling technique).

Regarding the rest of the parameters for the 
sequences {ck} and {αk}: w is typically set to 10% 
of the number of iterations selected for the algo-
rithm and the initial step c1 is chosen “close” to 
the standard deviation of the prediction error for 
the stochastic estimate in Equation 23. The value 
of α can be determined based on the estimate of 
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g1 and the desired step size for the first iteration. 
Some initial trials are generally needed in order 
to make a good selection for α, especially when 
little prior insight is available for the sensitivity 
of the objective function to each of the design 
variables. Convergence of the iterative process is 
judged based on the value ϕϕ ϕϕk k+ −1

 in the last 
few steps, for an appropriate selected vector norm. 
Blocking rules can also be applied in order to 
avoid potential divergence of the algorithm, es-
pecially in the first iterations (Spall, 2003).

Probabilistic Sensitivity Analysis 
for Model Parameters

An extension of the optimization framework may 
be established to additionally quantify the impor-
tance of each of the model parameters in affecting 
the overall risk. Foundation of this methodology 
is the definition of an auxiliary probability density 
function that is proportional to the integrand of the 
seismic risk integral for each design configuration

π( | )
( , ) ( )

( , ) ( )
( , ) ( )θ

θ θ θ
θ θϕϕ

ϕϕ θθ θθ

ϕϕ
ϕϕ= ∝

∫
h p
h p d

h p
Θ

 (27)

where ∝ denotes proportionality and the de-
nominator in π(θ|φ) is simply a normalization 
constant that will not be explicitly needed. The 
sensitivity analysis is established by comparing 
this auxiliary distribution π(θ|φ) and the prior 
probability model p(θ); based on the definition 
of π(θ|φ) in Equation 27 such a comparison pro-
vide information for h(φ,θ). Thus, bigger discrep-
ancies between distributions π(θ|φ) and p(θ) in-

dicate greater importance of θ in affecting the 
system performance, since they ultimately cor-
respond to higher values for h(φ,θ). More impor-
tantly, though, this idea can be implemented to 
each specific model parameter θi (or even to group 
of them), by looking at the marginal distribution 
π(θi|φ). This distribution is given by (see Box 5).
where xi corresponds to the rest of the components 
of θ, excluding θi. Comparison between this 
marginal distribution π(θi) and the prior distribu-
tion p(θi) expresses the probabilistic sensitivity 
of the seismic risk with respect to θi. Uncertainty 
in all other model parameters and stochastic ex-
citation is explicitly considered by appropriate 
integration of the joint probability distribution 
π(θ|φ) to calculate the marginal probability dis-
tribution π(θi|φ).

A quantitative metric to characterize this sen-
sitivity is the relative information entropy, which 
is a measure of the difference between probability 
distributions π(θi|φ) and p(θi) (Jaynes, 2003) over 
the entire space of possible model parameter values

D p
p
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i
iπ θ θ π θ

π θ
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( | )
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ϕϕ ϕϕ

ϕϕ( ) =








∫  
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The importance of each parameter (or sets of 
them) is then directly investigated by comparison 
of the relative information entropy value for each 
of them; larger values for the relative entropy 
indicate bigger importance.

An analytical expression, though, is not read-
ily available for the marginal distribution π(θi|φ) 
since evaluation of Equation 28 is challenging. 
An alternative stochastic-sampling approach is 

Box 5.   
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discussed next. This approach is based on exploit-
ing the information in samples of θ from the joint 
distribution π(θ|φ). Such samples may be obtained 
by any appropriate stochastic sampling algorithm, 
for example by the accept-reject method (Robert 
& Casella, 2004). Furthermore this task may be 
integrated within the stochastic analysis: each of 
the samples θi used for the estimation in Equation 
23 can be selected as a candidate sample θc in the 
context of the Accept-Reject algorithm. The re-
quired samples from π(θ|φ) are obtained at a small 
additional computational effort over the risk as-
sessment task, since they require no new simula-
tions for the bridge model response. Projection, 
now, of the samples from π(θ|φ) to the space of 
each of the model parameters provides samples 
for the marginal distributions π(θi|φ) for each of 
them separately. Thus using the same sample set 
this approach provides simultaneously informa-
tion for all model parameters. For scalar quantities, 
as in the case of interest here, the relative entropy 
may be efficiently calculated (Beirlant, Dudewicz, 
Gyorfi, & Van der Meulen, 1997; Mokkadem, 
1989) by establishing an analytically approxima-
tion for π(θi|φ), based on the available samples, 
through Kernel density estimation. This estimate 
will not necessarily have high accuracy, but it can 
still provide an adequate approximation for com-
puting the information entropy integral. A Gauss-
ian Kernel density estimator may be used for this 
purpose (Martinez & Martinez, 2002). Using the 
n available samples for θi, with θi

k  denoting the 
k-th sample and σsi the standard deviation for these 
samples, the approximation for π(θi|φ) would be 
(see Box 6).

For establishing better consistency in the 
relative information entropy calculation p(θi) may 
also be approximated by Equation 30 based on 
samples, even when an analytical expression is 
available for it. This way, any type of error intro-
duced by the Kernel density estimation is similar 
for both of the densities compared. The approxi-
mation for the relative information entropy is then 
(Beirlant et al., 1997)
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where the last scalar integral can be numerically 
evaluated, for example using the trapezoidal rule, 
and [bi,l, bi,u] is the region for which samples for 
π(θi|ϕϕ ) and q(θi) are available. This approach 
ultimately leads to an efficient sampling-based 
methodology for calculating the relative informa-
tion entropy for different parameters, which can 
be performed concurrently with the risk assess-
ment, exploiting the readily available system 
model evaluations for minimizing the computa-
tional burden. Comparing the values for this en-
tropy between the various model parameters leads 
then to a direct identification of the importance 
of each of them in affecting risk. Parameters with 
higher value for the relative entropy will have 
greater importance. Furthermore direct compari-
son of samples from the distributions π(θi|ϕϕ ) and 
p(θi) could provide additional insight about what 
specific values for each parameter contribute more 
to the risk (Taflanidis & Beck, 2009c).
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ILLUSTRATIVE EXAMPLE

Models and Uncertainty Description

The design of nonlinear viscous dampers for a 
two-span seismically isolated concrete bridge is 
considered as illustrative example. The model 
described previously is adopted for the bridge and 
probability distributions are established, based 
on our available knowledge, for all parameters 
that are considered as uncertain. All probability 
models are described here in terms of the mean 
(or median) value, characterizing most probable 
model, and the coefficient of variation, charac-
terizing the potential spread for each parameter. 
For variables whose values are expected to be 
correlated, such dependency is expressed through 
their correlation coefficient.

The length of the span of the bridges is equal 
to 30 and 34 m, respectively. The mass of the pier 
is taken as mp=100 ton. For the pier restoring force 
fp as illustrated in Figure 3, the initial stiffness kp, 
post-yield stiffness coefficient αp, over-strength 
factor μp and yield displacement δyp, have mean val-
ues 70 kΝ/mm, 10%, 30% and 0.04 m, respectively. 
All these parameters are treated as independent 
Gaussian variables with coefficient of variation 
10%. For the nominal, i.e. most probable, model 
this assumption corresponds to period of 0.237 
sec based on the initial stiffness. The damping 
coefficient Cp is selected based on modal damping 
assumption, using the initial period of the pier. The 
damping ratio ζp is treated as uncertain variable 
following a log-normal distribution with median 
3% and coefficient of variation 25%.

The mass of the left and right abutments are 
taken, respectively, as mal=400 ton, mar=500 ton. 
For the right and left abutment restoring forces far, 
fal the stiffness’s kar and kal, respectively, are mod-
elled as correlated Gaussian variables with mean 
value 2500 kN/mm (Saadeghvaziri & Yazdani-
Motlagh, 2008), coefficient of variation 15%, and 
correlation coefficient 50%. For the nominal, i.e. 
most probable, model this assumption corresponds 

to period of 0.079 sec for the left and 0.089 sec 
for the right abutment. Both damping coefficients 
Cal and Car are selected based on modal damping 
assumption. The damping ratios for each abutment 
ζal, ζar are treated as correlated uncertain variables 
following a log-normal distribution with median 
8%, coefficient of variation 20% and correlation 
coefficient 50%. The high correlation in the abut-
ment model parameter characteristics is attributed 
to the common soil properties.

For the left and right span of the bridge the 
self-weight of the deck is taken as 1000 and 1200 
ton respectively. Vehicle traffic is modeled as 
additional loads mtl and mtr for the left and right 
span, respectively, that follow independent expo-
nential distributions with mean value 20 ton. The 
isolators connecting each span to its supports are 
lead-rubber bearings modeled by Equation 7. All 
isolators have same properties; post-yield stiffness 
ke=3.0 kN/mm, pre-yield stiffness kp=30.0 kN/mm, 
and yield displacement δyi=2.5cm. These choices 
correspond to a natural period of 2.57 sec and 2.81 
sec for the right and left span, respectively, based 
on the post-yield stiffness and no vehicle traffic. 
The respective gap dimensions xo, xol, xor, whose 
potential variability is influenced by common 
weather conditions, are modeled as correlated 
log-normal variables with median 10 cm, coef-
ficient of variation 20%, and large correlation 
coefficient, 70%.

The contact stiffnesses kcc, kcl, kcr for the Hertz 
impact forces between the spans or between each 
span and the neighboring abutment are taken as 
independent log-normal variables with median 
value given by 10 and large coefficient of variation 
40%, again reflecting our limited knowledge. For 
calculating the median value of kc, Poisson’s ratio 
is taken as 0.15, the modulus of elasticity as 30 
GPa and the density 2.4 ton/m3. The equivalent 
sphere radius 12 for each span is calculated by 
considering their total mass, including vehicle traf-
fic. The coefficients for restitution for the energy 
dissipated during contact for each span are mod-
eled as independent, truncated in [0 1] Gaussian 
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variables with mean value 0.6 and coefficient of 
variation 20%.

The time-history for future near-fault ground 
motions is described by the excitation model pre-
sented earlier. The details for the functions A(f;M,r) 
and e(t;M,r) are the same as in (Taflanidis et al., 
2008). The uncertainty in moment magnitude for 
seismic events, M, is modeled by the Gutenberg-
Richter relationship truncated to the interval [Mmin, 
Mmax]=[6, 8]. Smaller than Mmin earthquakes are 
not expected to have significant impact on the 
base isolated structure [and also do not frequently 
contain a near-fault pulse component (Bray & 
Rodriguez-Marek, 2004)] whereas it is assumed 
that the regional faults cannot produce seismic 
events with larger than 8 magnitude. This choice 
leads to a truncated exponential PDF (Kramer, 
2003):

p M
b b M

b M b M
M M

M M

( )
exp( )

exp( ) exp( )min max

=
−

− − −
 

(32)

The selection for the regional seismicity fac-
tor is bΜ=0.9loge(10), corresponding to fairly 
significant seismic activity. For the uncertainty 
in the event location, the epicentral distance, r, 
for the earthquake events is assumed to be a log-
normal variable with median rm=10 km and large 
coefficient of variation 50%. For the near-field 
pulse, the pulse frequency fp and the peak ground 
velocity Av are selected according to the probabi-
listic models for the characteristics of near-field 
pulses in rock sites given earlier by Equations 
19 and 20. This is equivalent to fp and Av being 
log-normal variables with median value the ones 
in Equations 21 and 22 and coefficient of varia-
tion 0.4 and 0.39, respectively. Note that either 
fp and Av, or ef and ev can be used as the uncertain 
parameters addressing the uncertainty in the pulse 
frequency and ground velocity amplitude; the first 
set corresponds to a representation with an unam-
biguous physical meaning but is correlated to the 

moment magnitude and the epicentral distance, 
also uncertain parameters, through the conditional 
median values given by Equations 21 and 22. 
The second set corresponds to a more abstract 
representation but is independent of any other 
model parameters. Throughout the discussion in 
this paper both representations will be utilized, 
according to convenience, but the risk integral 
was actually formulated with respect to ef and ev. 
The probability models for the rest of the pulse 
model parameters, the number of half cycles and 
phase, are chosen, respectively, as truncated in [1, 
∞) Gaussian with mean value 2 and coefficient 
of variation 15%, and uniform in the range [-π/2, 
π/2]. These probability models are based on the 
values reported in (Mavroeidis & Papageorgiou, 
2003) when tuning the analytical relationship in 
Equation 18 to a wide range of recorded near-fault 
ground motions.

The uncertain model parameter vector in this 
design problem consists of the bridge model pa-
rameters θs=[kp αp μp δyp ζp kal kar ζal ζar mtl mtr xo, xol 
xor ecc ecl ecr kcc kcl kcr] the seismological parameter 
θg=[M r], the additional parameters for the near-
fault pulse θp=[ev ef γp vp] (with the former two 
related to Av and fp) and the white-noise sequence, 
Zw, so θ=[θs θg θp Zw]T. Table 1 reviews these 
parameters along with their probability models.

Damper Configuration and 
Performance Characteristics

Nonlinear viscous dampers are applied to the con-
nection of each of the two spans to its correspond-
ing abutment, as illustrated in Figures 1 and 3. 
They are modeled by Equation 16 with maximum 
force capability for each damper, representing cost 
constraints (Taflanidis & Beck, 2009a), selected 
as 4000 kN. Coefficients ad and cd correspond to 
the design variables for the problem and for cost 
reduction (bulk ordering) are chosen the same 
for all dampers. The initial design space for each 
of them is defined as ad∈[0.3,2] and cd∈[0.1, 30] 
MN (sec/m)ad.
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The optimization problem is defined by Equa-
tion 24, in which the objective function is the 
seismic risk given by Equation 23. The admis-
sible design space is defined in Box 7.where fdl 
and fdr correspond to the damper force for the left 
and right abutment, respectively.

A simplified design problem is also considered 
where ad is set to 1, corresponding to a linear 
viscous damper. This will allow for investiga-
tion of the performance improvement gained by 
considering nonlinear, rather than linear, damper 
implementation.

The bridge performance measure assumed in 
this study addresses potential seismic damages 
for all components of the bridge: the pier, the 
abutments, and the deck. The failure criteria used 
are: (i) the maximum pier shear Vp, associated 
with yielding and inelastic deformations for the 
pier, (ii) the maximum displacement for the left 
and right abutment zr and zl, respectively, associ-
ated with permanent deformations for the ground, 
and (iii) the maximum velocity for impact between 
the two spans vo or between each of the spans and 
the left or right abutment vl and vr, respectively, 
associated with the damages that occur during 
pounding (Davis, 1992). The fragility related to 

each of these quantities, i.e. the probability that 
the response will exceed some acceptable perfor-
mance μ, is used for describing the system per-
formance. These fragilities are assumed to have 
a lognormal distribution with median μ and coef-
ficient of variation β. The probabilistic description 
for the fragility incorporates into the stochastic 
analysis model prediction errors (Goulet et al., 
2007; Taflanidis & Beck, 2010). The seismic-risk 
occurrence measure is the average of these fra-
gilities, see Box 8.where Φg is the standard Gauss-
ian cumulative distribution function. The charac-
teristics for the median of the fragility curves are 
μp=2200 kN for the pier shear, μz=6 mm for the 
abutment displacement and μv=10 cm/sec for the 
impact velocity, whereas the coefficient of varia-
tion is set for all of them equal to βp=βz=βv=0.4. 
Seismic risk is finally given by the integral in 
Equation 1 which in this case corresponds to 
probability of unacceptable performance for the 
base-isolated bridge. The maximum value for 
C(φ) is one while the minimum value for C(φ), 
corresponding to best possible performance, is 
zero.

Table 1. Probability models for uncertain model parameters. In this table c.o.v=coefficient of variation, 
ρ= correlation coefficient, μ= mean value 

kp

Gaussian 
μ=70 kN/mm
c.o.v = 10%

ζal
ζar

Correlated log-normal 
median = 8%, 

c.o.v = 20%, ρ = 50%
r

Log-normal 
Median = 10km 

c.o.v = 50%

ζp

Log-normal 
median = 3% 
c.o.v = 25%

kal
kar

Correlated Gaussian 
μ=2500 kN/mm

c.o.v = 15%, ρ = 50%

M Truncated exponential in [6 8] with 
parameter 0.9loge(10)

vp Uniform in [0, π]

μp
Gaussian 

μ= 0.3 c.o.v = 10% xo
xol
xor

Correlated log-normal 
median = 10 cm 

c.o.v = 15%, ρ = 70%

αp
Gaussian 

μ= 0.1 c.o.v = 20%

δyp
Gaussian 

μ=0.03m c.o.v=10% γp
Gaussian 

μ=2.0 c.o.v=15%

mtl 
mtr

Independent Exponential 
Μ=20 ton

kcc
kcl
kcr

Independent log-normal 
median given by 10 

c.o.v = 40%,
fp

Lognormal 
Median Equation 21 

c.o.v = 40%

kal
kar

Correlated Gaussian 
μ=2500 kN/mm

c.o.v = 15%, ρ 50%

ecc
ecl
ecr

Independent Gaussian truncated in 
[0 1] 

μ= 0.6 c.o.v = 15%
Av

Log-normal 
Median Equation 22 

c.o.v = 39%
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Optimal Design

The bridge model, described by system of Equa-
tions 4, is created and analyzed in SIMULINK 
(Klee, 2007). The computations are performed 
for this study on the “Persephone” cluster at the 
HIgh Performance system Analysis and Design 
(HIPAD) laboratory at the University of Notre 
Dame (www.nd.edu/~hipad). The cluster is com-
posed of 42 nodes, each having eight 2.56GHz 
Nehalem cores. All stochastic simulations are 
performed in parallel mode, taking advantage of 
the multi-core capacities of the high-performance 
computing cluster.

SPSA is used for the design optimization 
with selection of N=2000 for the estimate of 
Equation 23 and importance sampling densities 
established only for the moment magnitude, M, 
which is anticipated to be the most influential 
parameter within the ones included in vector θ, 
based on results from previous studies on the risk 
assessment of flexible structures under near-fault 
excitations (Taflanidis & Jia, 2011). A truncated 
in [6 8] Gaussian with mean 6.8 and standard 
deviation 0.6 is selected for M.

Cumulative results from the optimization are 
presented in Table 2 which includes the optimal 

design configuration for both nonlinear and linear 
damper implementation, the overall objective 
function C(φ) as well as the expected fragility 
for each of the components. The results illustrate 
that the addition of the viscous dampers leads to 
significant improvement of fragility of the bridge; 
there is a big difference between the optimal 
C(φ*) and the uncontrolled performance C(0). 
All six components contributing to the overall 
fragility are characterized by a considerable 
reduction, with the maximum pounding veloci-
ties having by far the largest one. This illustrates 
that the viscous dampers can significantly reduce 
the undesirable collisions between the different 
spans, which can have devastating effects for the 
serviceability of the bridge, while simultaneously 
efficiently controlling other modes of failure for 
the bridge, as the pier shear or the abutment dis-
placements. It should be also pointed out that the 
optimal linear damper configuration provides still 
a significant improvement over the uncontrolled 
bridge performance. Implementation, though, of 
nonlinear dampers provides a further reduction 
in the seismic risk for the bridge, especially with 
respect to the pier and abutment failure criteria. 
The exponent coefficient for the dampers under 
optimal design is 0.66, which corresponds to a 

Box 7.  
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significant degree of nonlinearity. This illustrates 
the importance of a design methodology that can 
efficiently address damper nonlinearities, so that 
a truly optimal design is identified.

Stochastic Sensitivity Analysis

Results for the sensitivity analysis are finally 
discussed. Table 3 includes the maximum relative 
entropy Dm and the normalised entropy for each 
parameter for the uncontrolled or optimal damper 
configuration. The normalised entropy, Dn, is de-
fined by scaling the entropy for each parameter by 
the maximum, over all parameters, entropy. This 
is an explicit measure of the relative importance 
of each parameter to the seismic risk, with values 
closer to unity indicating higher importance.

The results in Table 3 illustrate that the pulse 
amplitude Av is the most influential parameter in 
affecting the overall seismic risk. The uncer-
tainty in the pulse amplitude, ev, the moment 
magnitude, M, and the epicentral distance, r, have 
also a significant impact. As pointed out earlier 
Av is actually influenced by all three previous ones, 
so the higher importance for it is anticipated. 
Similar remark holds for fp, which is shown, though, 
to have considerable influence in the seismic risk 
only for the bridge without the dampers. Since 
both Av and fp are directly related to the impact of 
the near-fault pulse on the structure (amplitude 
of pulse and unison conditions, respectively), 
these results, especially the high importance of 
Av and ev, indicate that seismic risk does indeed 
have a big correlation to the near-fault character-

Table 2. Optimization results; units for cd are MN (sec/m)ad 

Case φ* C(φ*) Probabilities of failure for individual components

Vp zl zr vo vl vr

Nonlinear 
Damper

cd 9.7 0.029 0.047 0.034 0.055 0.006 0.0205 0.0093

ad 0.66

Linear Damper cd 19.5 0.034 0.059 0.037 0.071 0.006 0.0208 0.0102

ad 1.00

No Damper cd 0 0.256 0.284 0.179 0.247 0.253 0.332 0.244

ad -

Table 3. Sensitivity analysis results (normalised entropy) for total risk 

No dampers (maximum relative entropy Dm=0.565)

M r ev ef γ v Av fp mtl mtr xol xor xo kcl

0.410 0.270 0.243 0.055 0.010 0.001 1.000 0.653 0.007 0.028 0.013 0.016 0.011 0.011

kcr kc ecl ecr ecc kal kar ζal ζar ζp kp Ap μp δyp

0.007 0.006 0.005 0.004 0.002 0.003 0.002 0.003 0.003 0.001 0.003 0.005 0.004 0.005

Optimal nonlinear dampers (maximum relative entropy Dm=1.08)

M r ev ef γ v Av fp mtl mtr xol xor xo kcl

0.089 0.402 0.491 0.086 0.012 0.009 1.000 0.016 0.009 0.026 0.003 0.004 0.002 0.005

kcr kc ecl ecr ecc kal kar ζal ζar ζp kp Ap μp δyp

0.006 0.007 0.003 0.001 0.001 0.031 0.026 0.003 0.002 0.005 0.004 0.003 0.004 0.002
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istics of the excitation for base-isolated bridge. 
All other excitation and structural parameters have 
negligible importance in affecting seismic risk. 
Only the gap sizes, contact stiffnesses, and live 
loads from the trucks seem to have some, small, 
significance.

The sensitivity pattern does change between 
the no-damper and optimal-damper-configuration 
cases. This is another important outcome of this 
study; it shows that addition of the dampers not 
only alters the seismic risk but also influences the 
risk factors that contribute more to this risk. Since 
addition of the dampers provides an overall reduc-
tion of seismic pounding occurrences (identified 
from the results of Table 2) the characteristics 
that have a stronger connection to this pound-
ing are impacted more. It is interesting that the 
second most important model parameter for the 
no-damper case, the pulse frequency, has small 

only importance for the system with optimized 
viscous dampers. This is an interesting outcome 
and can be attributed to resonance characteristics; 
the rigid type of connection to the abutments 
introduced through the dampers influences the 
vibration properties of the isolated-bridge and 
thus alters the frequencies of the near fault-pulse 
that have higher impact on it.

Sensitivity analysis results for individual com-
ponents of the total performance are presented in 
Table 4. In particular the maximum pier shear Vp, 
the maximum displacement for right abutment zr, 
and the maximum velocity for impact between the 
left span and abutment vl are reported. Only the 
interesting model parameters are included in this 
table. For obtaining these results the risk occur-
rence measure in Equation 34 is substituted by the 
fragility of the corresponding component. Since 
this fragility has been already computed when 

Table 4. Sensitivity analysis results for different response quantities 

No Dampers Optimal Nonlinear Dampers

V zr vl Vp zr vl

Dm 0.227 0.701 0.494 1.179 0.672 2.740

Dn M 0.48 0.404 0.551 0.144 0.071 0.125

r 0.30 0.251 0.214 0.372 0.540 0.245

ev 0.19 0.246 0.176 0.407 0.453 0.525

ef 0.15 0.042 0.080 0.034 0.155 0.053

γ 0.01 0.007 0.005 0.012 0.010 0.006

ν 0.03 0.001 0.007 0.004 0.008 0.021

Av 1.00 1.000 1.000 1.000 1.000 1.000

fp 0.81 0.646 0.919 0.039 0.022 0.070

mtl 0.031 0.007 0.010 0.004 0.009 0.003

mtr 0.073 0.023 0.016 0.012 0.011 0.005

kp 0.02 0.002 0.003 0.006 0.004 0.001

xol 0.011 0.011 0.024 0.004 0.005 0.008

xor 0.012 0.016 0.028 0.002 0.006 0.018

xo 0.04 0.011 0.021 0.001 0.002 0.010

kcl 0.027 0.009 0.007 0.011 0.007 0.001

kcr 0.040 0.005 0.008 0.005 0.006 0.002

kc 0.09 0.004 0.006 0.005 0.010 0.003
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calculating the initial risk occurrence measure, 
no new simulations are needed, and the results 
in Table 4 are obtained at a small additional 
computational cost (requiring only approxima-
tion of the densities through Kernel estimation 
and calculation of the relative entropy integral). 
These results demonstrate some significant vari-
ability, indicating that there is a big dependence 
of the sensitivity analysis and the importance of 
the various risk factors, on the exact performance 
quantification chosen. Especially interesting is 
the fact that for the bridge with the dampers, the 
epicentral distance and the pulse amplitude are 
the only important risk factors for all different 
quantifications.

FUTURE RESEARCH DIRECTIONS

The design of structural systems for seismic risk 
mitigation requires explicit consideration of the 
uncertainties for the characteristics of future ex-
citations as well as for the system properties. The 
constant advances in computer and computational 
science, especially the widespread implementa-
tion of distributed computing, have created a new 
era for computer simulation and it is currently 
acknowledged that Simulation-Based Engineer-
ing Science constitutes a critical new paradigm 
for uncertainty quantification and propagation 
and is providing great new potentials for detailed 
modeling and solution of problems that were until 
recently considered computationally intractable. 
Future research efforts need to exploit these char-
acteristics and focus on modeling approaches for 
quantification or seismic risk and computational 
frameworks for estimation of this risk that will 
explicitly address all important characteristics of 
the built systems and its environment, with no need 
to establish any type of approximations for com-
putational simplicity. This will only be established 
through development of high fidelity numerical 
models for the dynamic behavior of structural 
systems and adoption of complex probabilistic 

descriptions for the seismic hazard, exploiting an 
end-to-end simulation-based approach.

CONCLUSION

The design of supplemental dampers for seismic 
risk reduction of isolated multi-span bridges was 
the focus of this Chapter. The basis of the sug-
gested approach is a probabilistic framework that 
explicitly addresses all sources of uncertainty, 
related either to future excitations or to the struc-
tural configuration, by appropriate probability 
models. In this setting, seismic risk is expressed 
by a multidimensional integral, corresponding to 
the expected value of the risk occurrence measure 
over the space of the uncertain model parameters. 
Through appropriate definition of the risk occur-
rence measure this approach facilitates diverse 
risk quantifications. Stochastic simulation was 
suggested for evaluation of the multidimensional 
integral describing risk and an efficient algorithm 
was discussed for performing the associated 
design optimization and selecting the optimal 
parameters for the damper implementation. An 
efficient sampling-based probabilistic importance 
analysis was also presented, based on information 
entropy principles, for investigating the influence 
of each of the model parameters on the overall 
seismic risk.

Due to fact that the framework is based on 
stochastic simulation, consideration of complex 
nonlinear models for the bridge system and the 
excitation was feasible. The adopted bridge model 
explicitly addressed nonlinear characteristics of 
the isolators and the dampers, the dynamic behav-
ior of the abutments and the effect of pounding 
between the neighboring spans to each other as well 
to the abutments. A realistic probabilistic model for 
future near-fault excitations was also considered. 
An illustrative example was presented that con-
sidered the design of nonlinear viscous dampers 
for protection of a two-span bridge. The fragility 
of the bridge system related to seismic pounding 
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but also to failure modes associated with the pier 
shear and the abutment deformations were adopted 
as the risk occurrence measure, with seismic risk 
ultimately corresponding to the probability of 
unacceptable performance. The addition of the 
dampers was shown to provide considerable risk 
reduction, especially with respect to the vulner-
abilities associated with seismic pounding. Results 
from the sensitivity analysis demonstrated that the 
excitation properties, especially the amplitude of 
the pulse component of the ground motion, have 
the highest importance in affecting seismic risk 
and that the inclusion of the dampers did alter these 
sensitivity characteristics to a significant degree.

In closing, it is noted that the proposed method-
ology offers also significant practical advantages 
in real seismic design, since the optimal parameters 
of the viscous dampers can be efficiently esti-
mated through a probabilistic framework which 
incorporates the various sources of uncertainty, as 
well as, the various nonlinearities related with the 
different bridge components. It is stressed that by 
considering the nonlinear damper implementation, 
significant performance improvement is achieved 
which in general results to more economic design.
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KEY TERMS AND DEFINITIONS

Near-Fault Ground Motion: Seismic ground 
motions at small distances from epicenter of an 
earthquake that include a strong pulse compo-
nent, evident in the velocity time history of the 
excitation.

Optimization Under Uncertainty: Optimi-
zation algorithms appropriate for problems for 
which the objective function or the constraints are 
computed through stochastic simulation.

Probabilistic Design (Robust Design): 
Design of systems that explicitly addresses the 
uncertainties in their model description.

Risk Quantification and Assessment: Meth-
odologies for mathematical description of risk and 
for its evaluation.

Seismic Dampers: Devices used for energy 
dissipation (through mechanical or electrical 
means) in the vibration of structural systems due 
to seismic excitation

Seismic Isolation: Decoupling of structures 
(building, bridges) from the ground through use 
of flexible isolators, commonly lead-rubber or 
friction pendulum bearings.

Stochastic Simulation: Methodologies and 
algorithms that entail random sampling charac-
teristics.
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