
Developments in Mathematics

Guorong Wang · Yimin Wei   
Sanzheng Qiao

Generalized 
Inverses: 
Theory and 
Computations



Developments in Mathematics

Volume 53

Series editors

Krishnaswami Alladi, Gainesville, USA
Hershel M. Farkas, Jerusalem, Israel



More information about this series at http://www.springer.com/series/5834

http://www.springer.com/series/5834


Guorong Wang • Yimin Wei
Sanzheng Qiao

Generalized Inverses: Theory
and Computations

123



Guorong Wang
Department of Mathematics
Shanghai Normal University
Shanghai
China

Yimin Wei
Department of Mathematics
Fudan University
Shanghai
China

Sanzheng Qiao
Department of Computing and Software
McMaster University
Hamilton, ON
Canada

ISSN 1389-2177 ISSN 2197-795X (electronic)
Developments in Mathematics
ISBN 978-981-13-0145-2 ISBN 978-981-13-0146-9 (eBook)
https://doi.org/10.1007/978-981-13-0146-9

Jointly Published with Science Press, Beijing, China

The print edition is not for sale in China Mainland. Customers from China Mainland please order the
print book from: Science Press, Beijing, China.

Library of Congress Control Number: 2018938386

Mathematics Subject Classification (2010): 15A09, 65Fxx, 47A05

© Springer Nature Singapore Pte Ltd. and Science Press 2018
This work is subject to copyright. All rights are reserved by the Publishers, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publishers, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publishers nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publishers remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
part of Springer Nature
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore



Preface

The concept of the generalized inverses was first introduced by I. Fredholm [81] in
1903. He proposed a generalized inverse of an integral operator, called pseudoin-
verse. The generalized inverses of differential operators were brought up in
D. Hilbert’s [107] discussion of the generalized Green’s functions in 1904. For a
history of the generalized inverses of differential operators, the reader is referred to
W. Reid’s paper [189] in 1931.

The generalized inverse of a matrix was first introduced by E. H. Moore [166] in
1920, where a unique generalized inverse by means of projectors of matrices is
defined. Little was done in the next 30 years until the mid-1950s, when the dis-
coveries of the least-squares properties of certain generalized inverses and the
relationship of the generalized inverses to solutions of linear systems brought new
interests in the subject. In particular, R. Penrose [174] showed in 1955 that Moore’s
inverse is the unique matrix satisfying four matrix equations. This important dis-
covery revived the study of the generalized inverses. In honor of Moore and
Penrose’s contribution, this unique generalized inverse is called the Moore–Penrose
inverse.

The theory, applications, and computational methods for the generalized
inverses have been developing rapidly during the last 50 years. One milestone is the
publication of several books and monographs [9, 19, 92, 187] on the subject in
1970s. Particularly, the excellent volume by Ben-Israel and Greville [9] has made a
long-lasting impact on the subject. The other milestone is the publications of the
two volumes of proceedings. The first, edited by M. Z. Nashed, is the volume of the
proceedings [167] of the Advanced Seminar on the Generalized Inverses and
Applications held at the University of Wisconsin–Madison in 1973. It is an
excellent and extensive survey book. It contains 14 survey papers on the theory,
computations and applications of the generalized inverses, and a comprehensive
bibliography that includes all related references up to 1975. The other, edited by
S. L. Campbell, is the volume of the proceedings [18] of the AMS Regional
Conference held in Columbia, South Carolina, in 1976. It is a new survey book
consisting of 12 papers on the latest applications of the generalized inverses. The
volume describes the developments in the research directions and the types of the
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generalized inverses since the mid-1970s. Prior to this period, due to the applica-
tions in statistics, research often centered in the generalized inverses for solving
linear systems and the generalized inverses with the least-squares properties. Recent
studies focus on such topics as: infinite-dimensional theory, numerical computation,
matrices of special types (Boolean, integral), matrices over algebraic structures
other than real or complex field, systems theory, and non-equation solving gener-
alized inverses.

I have been teaching and conducting research in the generalized inverses of
matrices since 1976. I gave a course “Generalized Inverses of Matrices” and held
many seminars for graduate students majoring in Computational Mathematics in
our department. Since 1979, my colleagues, graduated students, and I have obtained
a number of results on the generalized inverses in the areas of perturbation theory,
condition numbers, recursive algorithms, finite algorithms, embedding algorithms,
parallel algorithms, the generalized inverses of rank-r modified matrices and
Hessenberg matrices, extensions of the Cramer’s rule, and the representation and
approximation of the generalized inverses of linear operators. Dozens of papers
have been published in refereed journals in China and other countries. They have
drawn attention from researchers around the world. I have received letters from
more than ten universities in eight countries, USA, Germany, Sweden, etc.,
requesting papers or seeking academic contacts. Colleagues in China show strong
interests and support in our work and request a systematic presentation of our work.
With the support of the Academia Sinica Publishing Foundation and the National
Natural Science Foundation of China, Science Press published my book
“Generalized Inverses of Matrices and Operators” [241] in Chinese in 1994. That
book is noticed and well received by researchers and colleagues in China. It has
been adopted by several universities as a textbook or reference book for graduate
courses. The book was reprinted in 1998.

In order to improve graduate teaching and international academic exchange, I
was encouraged to write this English version based on the Chinese version. This
English version is not a direct translation of the Chinese version. In addition to the
contents in the Chinese version, this book includes the contents from more than 100
papers since 1994. The final product is an entirely new book, while the spirit of the
Chinese version still lives. For example, Sects. 2, 3, and 5 of Chap. 3; Sect. 1 of
Chap. 6; Sects. 4 and 5 of Chap. 7; Sects. 1, 4, and 5 of Chap. 8, Chaps. 4, 10, and
11 are all new.

Yimin Wei of Fudan University in China and Qiao Sanzheng of McMaster
University in Canada were two of my former excellent students. They have made
many achievements in the area of the generalized inverses and are recognized
internationally. I would not be able to finish this book without their cooperation.

We would like to thank A. Ben-Israel, Jianmin Miao of Rutgers
University; R. E. Hartwig, S. L. Campbell, and C. D. Meyer, Jr. of North Carolina
State University; and C. W. Groetsch of University of Cincinnati. The texts [9],
[19], and [92] undoubtedly have had an influence on this book. We also thank
Erxiong Jiang of Shanghai University, Zihao Cao of Fudan University, Musheng
Wei of East China Normal University and Yonglin Chen of Nanjing Normal
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University for their help and advice in the subject for many years, and my doctoral
student Yaomin Yu for typing this book.

I would appreciate any comments and corrections from the readers.
Finally, I am indebted to the support by the Graduate Textbook Publishing

Foundation of Shanghai Education Committee and Shanghai Normal University.

June 2003 Guorong Wang
Shanghai Normal University
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Preface to the Second Edition

Since the first publication of the book more than one decade ago, we have wit-
nessed exciting developments in the study of the generalized inverses. We are
encouraged by colleagues, Science Press, and Springer to update our book. This
edition is the result of their encouragement. To include recent developments, this
edition has two new chapters on the generalized inverses of special matrices and an
updated bibliography. The new chapter six is about the generalized inverses of
structured matrices, such as Toeplitz matrix and more general matrices of low
displacement rank. It discusses the structure of the generalized inverses of struc-
tured matrices and presents efficient algorithms for computing the generalized
inverses by exploiting the structure. The new chapter ten studies the generalized
inverses of polynomial matrices, that is, matrices whose entries are polynomials.
Remarks and references are updated to include recent publications. More than
seventy publications are added to the bibliography.

To Science Press and Springer, we are grateful for their encouragement of the
publication of this new edition. We would like to thank the reviewers for their
constructive comments, which helped us improve the presentation and readability
of the book.

Also, we would like to thank National Natural Science Foundation of China
under grant 11171222 for supporting Wang Guorong, International Cooperation
Project of Shanghai Municipal Science and Technology Commission under grant
16510711200 for supporting Yimin Wei and Sanzheng Qiao, National Natural
Science Foundation of China under grant 11771099 and Key Laboratory of
Mathematics for Nonlinear Science of Fudan University for supporting Yimin Wei,
and Natural Science and Engineering Council of Canada under grant
RGPIN-2014-04252 for supporting Sanzheng Qiao.

Shanghai, China Guorong Wang
Shanghai, China Yimin Wei
Hamilton, Canada Sanzheng Qiao

Shanghai Normal UniversityNovember 2017
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Chapter 1
Equation Solving Generalized Inverses

There are various ways to introduce the generalized inverses. We introduce them by
considering the problem of solving systems of linear equations. Various generalized
inverses are introduced in terms of solving various systems of linear equations incon-
sistent and consistent systems. We also show how the generalized inverses can be
used for expressing solution of a matrix equation, common solution of two systems
of linear equations, and common solution of two matrix equations.

1.1 Moore-Penrose Inverse

In this section, theMoore-Penrose inverse is introduced. Its definition and some basic
properties are given in Sect. 1.1.1. Before establishing a relation between the Moore-
Penrose inverse and the full-rank factorization in Sect. 1.1.3, we briefly review the
concept of the range and null space of a matrix and some properties of the matrix
rank in Sect. 1.1.2. Finally, Sect. 1.1.4 shows how the Moore-Penrose inverse plays
a role in finding the minimum-norm least-squares solution of an inconsistent system
of linear equations.

Let C (R) be the field of complex (real) numbers, Cn (Rn) the vector space of
n-tuples of complex (real) numbers over C (R), Cm×n (Rm×n) the class of m × n
complex (real) matrices, Cm×n

r (Rm×n
r ) the class of m × n complex (real) matrices

of rank r , and R(A) = {y ∈ C
m : y = Ax, x ∈ C

n} the range of A ∈ C
m×n . It is

well known that for every nonsingular matrix A ∈ C
n×n
n there exists a unique matrix

X ∈ C
n×n
n satisfying

AX = In and X A = In,

where In is the identity matrix of order n. This X is called the inverse of A, denoted
by X = A−1. The nonsingular system of linear equations

Ax = b (A ∈ C
n×n
n , b ∈ C

n)
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G. Wang et al., Generalized Inverses: Theory and Computations,
Developments in Mathematics 53, https://doi.org/10.1007/978-981-13-0146-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0146-9_1&domain=pdf


2 1 Equation Solving Generalized Inverses

has a unique solution
x = A−1b.

In general, A may be singular or rectangular, the system may have no solution or
multiple solutions. Specifically, the consistent system of linear equations

Ax = b (A ∈ C
m×n, m < n, b ∈ R(A)) (1.1.1)

has many solutions. Whereas, the inconsistent system of linear equations

Ax = b (A ∈ C
m×n, b /∈ R(A)) (1.1.2)

has no solution, however, it has a least-squares solution.
Can we find a suitable matrix X , such that x = Xb is some kind of solution of the

general system Ax = b? This X is called the equation solving generalized inverse. A
generalized inverse should reduce to the regular inverse A−1 when A is nonsingular.
The Moore-Penrose inverse and the {i, j, k} inverses, which will be discussed in
Sect. 1.2, are the classes of the generalized inverses.

1.1.1 Definition and Basic Properties of A†

Let A∗ denote the complex conjugate and transpose of A. In the case when A ∈ C
m×n
n

is of full column rank, A∗ A is a nonsingular matrix of order n and the least-squares
solution x of the overdetermined system of linear equation (1.1.2) can be obtained
by solving the following normal equations

A∗ Ax = A∗b, (1.1.3)

specifically, x = (A∗ A)−1A∗b. Define

X = (A∗ A)−1A∗.

It can be verified that the above defined X is the uniquematrix satisfying the following
four conditions, known as the Penrose conditions,

(1) AX A = A,
(2) X AX = X ,
(3) (AX)∗ = AX ,
(4) (X A)∗ = X A.

The matrix X satisfying the above four conditions is called the Moore-Penrose
generalized inverse of A, denoted by A†. Thus the least-squares solution of (1.1.3)
is x = A†b.
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Especially, if m = n = rank(A), we have

A† = (A∗ A)−1 A∗ = A−1(A∗)−1 A∗ = A−1,

showing that the Moore-Penrose inverse A† reduces to the usual inverse A−1 when
A is nonsingular.

For a general m-by-n matrix A, we have the following definition.

Definition 1.1.1 Let A ∈ C
m×n , then the matrix X ∈ C

n×m satisfying the Penrose
conditions (1)–(4) is called the Moore-Penrose inverse of A, abbreviated as the M-P
inverse and denoted by A†.

The following theorem shows that the above defined generalized inverse uniquely
exists for any A ∈ C

m×n .

Theorem 1.1.1 The generalized inverse X satisfying the Penrose conditions (1)–(4)
is existent and unique.

Proof Let A ∈ C
m×n
r , then A can be decomposed as A = Q∗ R P (see for example

[1]), where Q and P are unitary matrices of orders m and n respectively and

R =
[

R11 O
O O

]
∈ C

m×n,

where R11 is a nonsingular upper triangular matrix of order r . Denote

R† =
[

R−1
11 O
O O

]
∈ C

n×m,

then X = P∗ R†Q satisfies the Penrose conditions (1)–(4). Indeed,

AX A = Q∗ R P P∗ R†Q Q∗ R P = Q∗ R P = A,

X AX = P∗ R†Q Q∗ R P P∗ R†Q = P∗ R†Q = X,

(AX)∗ = (Q∗ R P P∗ R†Q)∗ =
(

Q∗
[

Ir O
O O

]
Q

)∗
= AX,

(X A)∗ = (P∗ R†Q Q∗ R P)∗ =
(

P∗
[

Ir O
O O

]
P

)∗
= X A.

Therefore, for any A ∈ C
m×n
r , X = A† always exists.

The uniqueness of X is proved as follows. If X1 and X2 both satisfy the Penrose
conditions (1)–(4), then
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X1 = X1AX1 = X1AX2 AX1

= X1(AX2)
∗(AX1)

∗ = X1(AX1 AX2)
∗

= X1(AX2)
∗ = X1AX2

= X1AX2 AX2 = (X1A)∗(X2 A)∗ X2

= (X2 AX1A)∗ X2 = (X2 A)∗ X2

= X2 AX2 = X2.

This completes the proof. �

Now that we have shown the existence and uniqueness of the M-P inverse, we list
some of its properties.

Theorem 1.1.2 Let A ∈ C
m×n, then

(1) (A†)† = A;

(2) (λA)† = λ†A†, where λ ∈ C, λ† =
{

λ−1, λ �= 0,
0, λ = 0;

(3) (A∗)† = (A†)∗;

(4) (AA∗)† = (A∗)†A†; (A∗ A)† = A†(A∗)†;

(5) A† = (A∗ A)†A∗ = A∗(AA∗)†;

(6) A∗ = A∗ AA† = A†AA∗;

(7) If rank(A) = n, then A†A = In; If rank(A) = m, then AA† = Im;

(8) (U AV )† = V ∗ A†U ∗, when U and V are unitary matrices.

The above properties can be verified by using Definition 1.1.1. The proof is left as
an exercise.

1.1.2 Range and Null Space of a Matrix

Definition 1.1.2 For A ∈ C
m×n , we denote the range of A as

R(A) = {y ∈ C
m : y = Ax, x ∈ C

n}

and the null space of A as

N (A) = {x ∈ C
n : Ax = 0}.
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Using the above definitions, we can prove that

R(A)⊥ = N (A∗),

where R(A)⊥ is the orthogonal complementary subspace of R(A), i.e., the set of
all the vectors in C

m which are orthogonal to every vector in R(A). Every vector
x ∈ C

m can be expressed uniquely as the sum:

x = y + z, y ∈ R(A), z ∈ R(A)⊥.

Theorem 1.1.3 The basic properties of the range and null space:

(1) R(A) = R(AA†) = R(AA∗);
(2) R(A†) = R(A∗) = R(A†A) = R(A∗ A);
(3) R(I − A†A) = N (A† A) = N (A) = R(A∗)⊥;
(4) R(I − AA†) = N (AA†) = N (A†) = N (A∗) = R(A)⊥;
(5) R(AB) = R(A) ⇔ rank(AB) = rank(A);
(6) N (AB) = N (B) ⇔ rank(AB) = rank(B).

The proof is left as an exercise.
The following properties of rank are used in this book.

Lemma 1.1.1 Let A ∈ C
m×n, E A = Im − AA†, and FA = In − A†A, then

(1) rank(A) = rank(A†) = rank(A†A) = rank(AA†);
(2) rank(A) = m − rank(E A), rank(A) = n − rank(FA);
(3) rank(AA∗) = rank(A) = rank(A∗ A).

The proof is left as an exercise.

1.1.3 Full-Rank Factorization

The columns of a full column rank matrix form a basis for the range of the matrix.
Likewise, the rows of a full row rank matrix form a basis for the space spanned by
the rows of the matrix. In this subsection, we show that a non-null matrix that is of
neither full column rank nor full row rank can be expressed as a product of a matrix
of full column rank and a matrix of full row rank. We call a factorization with the
above property the full-rank factorization of a non-null matrix. This factorization
turns out to be a powerful tool in the study of the generalized inverses.

Theorem 1.1.4 Let A ∈ C
m×n
r , r > 0, then there exist matrices F ∈ C

m×r
r and G ∈

C
r×n
r such that

A = FG.
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Proof Let A = [a1, a2, · · · , an] and F be any matrix whose columns form a basis
for R(A), then F = [f1, f2, · · · , fr ] ∈ C

m×r
r and every column ai of A is uniquely

representable as a linear combination of the columns of F :

ai = g1i f1 + g2i f2 + · · · + gri fr , i = 1, 2, . . . , n.

Hence

A = [a1, a2, · · · , an]

= [f1, f2, · · · , fr ]

⎡
⎢⎢⎢⎣

g11 g12 · · · g1n

g21 g22 · · · g2n
...

... · · · ...

gr1 gr2 · · · grn

⎤
⎥⎥⎥⎦

≡ FG.

The matrix G ∈ C
r×n
r is uniquely determined. Obviously, rank(G) ≤ r . On the other

hand,
rank(G) ≥ rank(FG) = r.

Thus rank(G) = r . �

Let A = FG be a full-rank factorization of A and C ∈ C
r×r
r , then

A = (FC)(C−1G) ≡ F1G1,

which is also a full-rank factorization of A. This shows that the full-rank factorization
of A is not unique. A practical algorithm for the full-rank factorization is given in
Chap.5. MacDuffe [2] pointed out that a full-rank factorization of A leads to an
explicit formula for the M-P inverse A† of A.

Theorem 1.1.5 Let A ∈ C
m×n
r , r > 0, and its full-rank factorization A = FG, then

A† = G∗(F∗ AG∗)−1F∗ = G∗(GG∗)−1(F∗F)−1F∗. (1.1.4)

Proof First we show that F∗ AG∗ is nonsingular. From A = FG,

F∗ AG∗ = (F∗F)(GG∗),

and F∗F and GG∗ are r -by-r matrices. Also by Lemma 1.1.1, both are of rank
r . Thus F∗ AG∗ is the product of two nonsingular matrices, therefore F∗ AG∗ is
nonsingular and

(F∗ AG∗)−1 = (GG∗)−1(F∗F)−1.

Let
X = G∗(GG∗)−1(F∗F)−1F∗,
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the right side of (1.1.4). Using the above expression for X , it is easy to verify that X
satisfies the Penrose conditions (1)–(4). By the uniqueness of the M-P inverse A†,
(1.1.4) is therefore established. �

1.1.4 Minimum-Norm Least-Squares Solution

In Sect. 1.1.1, we introduced the definition of the Moore-Penrose inverse by consid-
ering the least-squares solution of an inconsistent system of linear equations, where
the coefficient matrix is of full column rank. In this subsection, we consider the
problem of solving a general inconsistent system of linear equations and its relation
with the Moore-Penrose inverse.

Let x = [x1, x2, · · · , x p]∗ ∈ C
p, then

‖x‖2 =
(

p∑
i=1

|xi |2
)1/2

= (x∗x)1/2

is the 2-norm of x. For simplicity, we set ‖x‖ = ‖x‖2.
If u, v ∈ C

p and (u, v) = 0, i.e., u and v are orthogonal, then

‖u + v‖2 = (u + v,u + v) = (u,u) + (v,u) + (u, v) + (v, v)

= ‖u‖2 + ‖v‖2,

which is the Pythagorean theorem.
Considering the problem of finding a solution x for the general system of linear

equations (1.1.2):
Ax = b (A ∈ C

m×n, b /∈ R(A)),

we look for an x minimizing the residual ‖Ax − b‖.
Definition 1.1.3 Let A ∈ C

m×n and b ∈ C
m , then a vector u ∈ C

n is called a least-
squares solution of Ax = b if ‖Au − b‖ ≤ ‖Av − b‖ for all v ∈ C

n .

A system of linear equations may have many least-squares solutions. In many
applications, the least-squares solution with minimum norm is of interest.

Definition 1.1.4 Let A ∈ C
m×n and b ∈ C

m , then a vector u ∈ C
n is called the

minimum-norm least-squares solution of Ax = b if u is a least-squares solution
of Ax = b and ‖u‖ < ‖w‖ for any other least-squares solution w.

When b ∈ R(A), the system of linear equations Ax = b is consistent, then the
solution and the least-squares solution of Ax = b obviously coincide.

The next theorem shows the relation between the minimum-norm least-squares
solution of (1.1.2) and the M-P inverse A†.
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Theorem 1.1.6 Let A ∈ C
m×n and b ∈ C

m, then A†b is the minimum-norm least-
squares solution of (1.1.2).

Proof Let b = b1 + b2, where

b1 = AA†b ∈ R(A) and b2 = (I − AA†)b ∈ R(A)⊥,

then Ax − b1 ∈ R(A) and

‖Ax − b‖2 = ‖Ax − b1 + (−b2)‖2 = ‖Ax − b1‖2 + ‖b2‖2.

Thus x is a least-squares solution if and only if x is a solution of the consistent system
Ax = AA†b. It is obvious that A†b is a particular solution. From Theorem 1.1.3,

N (A) = {(I − A†A)h : h ∈ C
n},

thus the general solution of the consistent system Ax = AA†b is given by

x = A†b + (I − A†A)h, h ∈ C
n.

Since

‖A†b‖2 < ‖A†b‖2 + ‖(I − A†A)h‖2
= ‖A†b + (I − A†A)h‖2, (I − A†A)h �= 0,

x = A†b is the minimum-norm least-squares solution of (1.1.2). �

In some applications, the minimality of a least-squares solution is important, in
others it is not important. If the minimality is not important, then the next theorem
can be very useful.

Theorem 1.1.7 Let A ∈ C
m×n and b ∈ C

m, then the following statements are equiv-
alent:

(1) u is a least-squares solution of Ax = b;
(2) u is a solution of Ax = AA†b;
(3) u is a solution of A∗ Ax = A∗b;
(4) u is of the form A†b + h, where h ∈ N (A).

Proof From the proof of Theorem 1.1.6, we know that (1), (2) and (4) are equivalent.
If (1) holds, then premultiplying Au = b with A∗ gives (3). On the other hand,
premultiplying A∗ Au = A∗b with A∗† gives

Au = AA†b,
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consequently,
u = A†(AA†b) + h = A†b + h, h ∈ N (A).

Thus (4) holds. �

Notice that the equations in statement (3) of Theorem 1.1.7 do not involve A† and
are consistent. They are called the normal equations and play an important role in
certain areas of statistics.

Exercises 1.1

1. Prove Theorem 1.1.2.
2. Prove that R(A) = N (A∗)⊥.
3. Prove that rank(AA∗) = rank(A) = rank(A∗ A).
4. Prove that R(AA∗) = R(A), N (A∗ A) = N (A).
5. Prove that

R(AB) = R(A) ⇔ rank(AB) = rank(A);
N (AB) = N (B) ⇔ rank(AB) = rank(B).

6. Prove Theorem 1.1.3.
7. Show that if A = FG is a full-rank factorization, then

A† = G†F†.

8. If a and b are column vectors, then
(1) a† = (a∗a)†a∗;
(2) (ab∗)† = (a∗a)†(b∗b)†ba∗.

9. Show that H † = H if and only if H∗ = H and H 2 = H .
10. If U and V are unitary matrices, show that

(U AV )† = V ∗ A†U ∗

for any matrix A for which the product U AV is defined.
11. Show that if A ∈ C

m×n and rank(A) = 1, then A† = α−1A*, where α =
tr(A∗ A) = ∑

i, j |ai j |2.
12. Show that if X ∈ C

m×n ,

x0 =

⎡
⎢⎢⎢⎣
1
1
...

1

⎤
⎥⎥⎥⎦ ∈ C

m, X1 = [x0 X ] ∈ C
m×(n+1),
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and

b ∈ C
n, β0 ∈ C, b1 =

[
β0

b

]
∈ C

n+1,

then b1 is a least-squares solution of X1b1 = y if and only if β0 = m−1x∗
0(y −

Xb) and b is a least-squares solution of

(I − m−1x0x∗
0)Xb = (I − m−1x0x∗

0)y.

1.2 The {i, j, k} Inverses

We discussed the relations between the minimum-norm least-squares solution of an
inconsistent system of linear equations (1.1.2) and the M-P inverse in Sect. 1.1. In
this section, we introduce the {i, j, k} inverses and their relations with the solution
of other linear equations and some matrix equations.

1.2.1 The {1} Inverse and the Solution of a Consistent System
of Linear Equations

If A ∈ C
n×n
n , then one of the characteristics of A−1 is that for every b, A−1b is the

solution of Ax = b. One might ask: for a general A ∈ C
m×n , what are the character-

istics of a matrix X ∈ C
n×m such that Xb is a solution of the consistent system of

linear equations (1.1.1)?
If AXb = b is true for every b ∈ R(A), it is clear that

AX A = A,

i.e., the Penrose condition (1) holds. Conversely, suppose X satisfies AX A = A.
For every b ∈ R(A) there exists an xb ∈ C

n such that Axb = b. Therefore AXb =
AX Axb = Axb = b for every b ∈ R(A). The following theorem is a formal state-
ment of the above argument.

Theorem 1.2.1 For A ∈ C
m×n, X ∈ C

n×m is a matrix such that Xb is a solution of
Ax = b for every b ∈ R(A) if and only if X satisfies

AX A = A.

Definition 1.2.1 Amatrix X satisfying the Penrose condition (1) AX A = A is called
the equation solving generalized inverse for AX A = A or {1} inverse of A and is
denoted by X = A(1) or X ∈ A{1}, where A{1} denotes the set of all {1} inverses
of A.
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1.2.2 The {1, 4} Inverse and the Minimum-Norm Solution
of a Consistent System

Similar to the {1} inverse, we define the {1, 4} inverse and show its relation with
minimum-norm solution of a consistent system. A consistent system of equations
may have many solutions. Suppose we seek X ∈ C

n×m such that, in addition to
being an equation solving inverse for consistent linear equations (1.1.1), for each
b ∈ R(A), it also satisfies ‖Xb‖ < ‖z‖ for all z �= Xb and z ∈ {x : Ax = b}. That
is, for each b ∈ R(A), Xb is the solution with minimal-norm.

Let A(1,4) denote a matrix satisfying the Penrose conditions (1) and (4). If b ∈
R(A), then AA(1,4)b = b and the solutions and the least-squares solutions of the
consistent system of linear equation (1.1.1) coincide. Therefore the least-squares
solutions satisfy

Ax = b = AA(1,4)b.

It is clear that A(1,4)b is a least-squares solution. Note that (I − A(1,4) A)h ∈ N (A).
So a general least-squares solution can be presented by

A(1,4)b + (I − A(1,4) A)h, h ∈ C
n.

Since
A(1,4)b = A(1,4)Ay = (A(1,4) A)∗y = A∗ A(1,4)∗y ∈ R(A∗),

we have
(A(1,4)b, (I − A(1,4)A)h) = 0.

By the Pythagorean theorem, we get

‖A(1,4)b‖2 ≤ ‖A(1,4)b‖2 + ‖(I − A(1,4)A)h‖2
= ‖A(1,4)b + (I − A(1,4) A)h‖2.

It then follows that A(1,4)b is the minimum-norm least-squares solution of (1.1.1)
and is also the minimum-norm solution of (1.1.1). Therefore, for each b ∈ R(A),
we require that Xb = A(1,4)b, that is,

X A = A(1,4)A,

which is equivalent to the Penrose conditions (1) and (4):

AX A = A and (X A)∗ = X A.

The next theorem is a formal statement of what we have just shown.

Theorem 1.2.2 Let A ∈ C
m×n and b ∈ R(A), then X is a matrix such that AXb = b

and ‖Xb‖ < ‖z‖ for all z �= Xb and z ∈ {x : Ax = b} if and only if X satisfies
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AX A = A, and (X A)∗ = X A.

Definition 1.2.2 A matrix X satisfying the Penrose conditions (1) and (4) is called
the generalized inverse for the minimum-norm solution of the consistent system of
linear equations (1.1.1) or the {1, 4} inverse of A, and is denoted by X = A(1,4) or
X ∈ A{1, 4}, where A{1, 4} denotes the set of all {1, 4} inverses of A.

1.2.3 The {1, 3} Inverse and the Least-Squares Solution
of An Inconsistent System

For A ∈ C
m×n , b ∈ C

m and b /∈ R(A), the vector A†b is the minimum-norm least-
squares solution of the inconsistent system of linear equations (1.1.2). In some appli-
cations, the minimality of the norm of a least-squares solution is not important, one
might settle for any least-squares solution without considering the size of its norm.

Suppose A ∈ C
m×n , let us try to determine the characteristics of a matrix X such

that Xb is a least-squares solution of (1.1.2).
Letb = b1 + b2, whereb1 ∈ R(A) andb2 ∈ R(A)⊥ = N (A∗), and denote A(1,3)

as a matrix satisfying the Penrose conditions (1) and (3). Since

AA(1,3)b1 = AA(1,3) Ay = Ay = b1

and
AA(1,3)b2 = (AA(1,3))∗b2 = A(1,3)∗ A∗b2 = 0,

we have
AA(1,3)b = AA(1,3)Ay = Ay = b1.

From

‖AXb − b‖2 = ‖(AXb − b1) + (−b2)‖2
= ‖AXb − b1‖2 + ‖b2‖2,

we can see that ‖AXb − b‖ is minimized when and only when AXb = b1 =
AA(1,3)b for all b ∈ C

m . It is clear that

AX = AA(1,3),

which is equivalent to the Penrose conditions (1) and (3):

AX A = A, (AX)∗ = AX.

The next theorem is a formal statement of the above discussion.
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Theorem 1.2.3 For A ∈ C
m×n, b ∈ C

m, and b /∈ R(A), the vector Xb is a least-
squares solution of (1.1.2) if and only if X satisfies

AX A = A and (AX)∗ = AX.

Definition 1.2.3 A matrix X satisfying the Penrose conditions (1) and (3) is called
the generalized inverse for solving the least-squares solution of the inconsistent
system of linear equations (1.1.2) or the {1, 3} inverse of A, and is denoted by
X = A(1,3) or X ∈ A{1, 3}, where A{1, 3} denotes the set of all the {1, 3} inverses
of A.

Since A(1,3)b is a particular least-squares solution and (I − A(1,3) A)z ∈ N (A),
for all z ∈ C

n , the general solution of the least-squares solution for (1.1.2) is

x = A(1,3)b + (I − A(1,3) A)z, where z ∈ C
n .

From Theorems 1.2.1, 1.2.2, and 1.2.3, one can see that each of the different types
of X matrices discussed above can be characterized as a set of matrices satisfying
some subset of the Penrose conditions (1) to (4). To simplify our nomenclature we
make the following definition.

Definition 1.2.4 For any A ∈ C
m×n , a matrix X ∈ C

n×m is called an {i, j, k} inverse
of A if X satisfies the i th, j th, and kth Penrose conditions, and is denoted by X =
A(i, j,k) or X ∈ A{i, j, k}, where A{i, j, k} denotes the set of all the {i, j, k} inverses
of A.

As shown above, the important types of the {i, j, k} inverses, such as the {1, 3}
inverse, {1, 4} inverse, and M-P inverse, are members of A{1}. They are all the
equation solving generalized inverses of A. Therefore, we give the basic properties
of the {1} inverse.
Theorem 1.2.4 For A ∈ C

m×n,

(1) (A(1))∗ ∈ A∗{1};
(2) λ†A(1) ∈ (λA){1}, λ ∈ C;
(3) rank(A(1)) ≥ rank(A);
(4) For nonsingular P and Q, Q−1A(1)P−1 ∈ (P AQ){1};
(5) If P is of full column rank, Q is of full row rank, then Q(1)A(1)P (1) ∈

(P AQ){1};
(6) If A is of full column rank, then A(1)A = In;

If A is of full row rank, then AA(1) = Im;
(7) AA(1) and A(1)A are idempotent, and rank(AA(1)) = rank(A) = rank(A(1)A);
(8) If A is nonsingular, then A(1) = A−1;
(9) If A∗ = A, then there exists a matrix X ∈ A{1} and X∗ = X;

(10) R(AA(1)) = R(A), N (A(1)A) = N (A), R((A(1)A)∗) = R(A∗).

The proof is left as an exercise.
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1.2.4 The {1} Inverse and the Solution of the Matrix
Equation AXB = D

From the above discussion, we have seen that all the important types of equation
solving inverses are the {1} inverse. For the rest of this section,we focus our discussion
on the {1} inverse as an equation solving inverse. In this subsection, we consider the
problem of solving the matrix equation AX B = D.

Theorem 1.2.5 Let A ∈ C
m×n, B ∈ C

p×q , and D ∈ C
m×q , then the matrix equation

AX B = D (1.2.1)

is consistent if and only if for some A(1) and B(1),

AA(1)DB(1)B = D. (1.2.2)

In which case the general solution is

X = A(1)DB(1) + Y − A(1)AY B B(1) (1.2.3)

for any Y ∈ C
n×p.

Proof If (1.2.2) holds, then X = A(1)DB(1) is a solution of (1.2.1). Conversely, if X
is any solution of (1.2.1), then

D = AX B = AA(1)AX B B(1)B = AA(1)DB(1)B.

Moreover, it follows from (1.2.2) and the definitions of A(1) and B(1) that everymatrix
X of the form (1.2.3) satisfies (1.2.1). On the other hand, let X be any solution of
(1.2.1), then clearly

X = A(1)DB(1) + X − A(1)AX B B(1)

which is of the form (1.2.3). �

In the special case of ordinary system of linear equations, Theorem 1.2.5 gives:

Corollary 1.2.1 Let A ∈ C
m×n, b ∈ C

m, then the system of linear equations Ax = b
is consistent if and only if for some A(1),

AA(1)b = b.

In which case the general solution of Ax = b is

x = A(1)b + (I − A(1)A)y, ∀ y ∈ C
n. (1.2.4)
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1.2.5 The {1} Inverse and the Common Solution
of Ax = a and Bx = b

Let A ∈ C
m×n , B ∈ C

p×n , a ∈ C
m , and b ∈ C

p, we consider the two systems

Ax = a and Bx = b (1.2.5)

of linear equations. The problem is to find an x ∈ C
n satisfying the two systems in

(1.2.5) simultaneously. It is clearly equivalent to solving the partitioned system

[
A
B

]
x =

[
a
b

]
. (1.2.6)

First of all, we find a {1} inverse of the above partitioned matrix.

Theorem 1.2.6 Let A ∈ C
m×n and B ∈ C

p×n, then a {1} inverse for the row parti-
tioned matrix

M =
[

A
B

]

is given by
X M = [Y Z ] (1.2.7)

where
Y = (I − (I − A(1)A)(B(I − A(1)A))(1)B)A(1)

and
Z = (I − A(1)A)(B(I − A(1)A))(1).

Let C ∈ C
m×r , then a {1} inverse for the column partitioned matrix

N = [A C]

is given by

X N =
[

A(1)(I − C((I − AA(1))C)(1)(I − AA(1)))

((I − AA(1))C)(1)(I − AA(1))

]
. (1.2.8)

Proof From (1.2.7), we have

M X M M =
[

A
B

]
[Y Z ]

[
A
B

]

=
[

A
B

]
(A(1)A − (I − A(1)A)(B(I − A(1)A))(1)B A(1)A

+ (I − A(1)A)(B(I − A(1)A))(1)B).
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Since
AA(1)A = A, A(I − A(1)A) = O,

and

−B(I − A(1)A)(B(I − A(1)A))(1)B A(1)A

+ B(I − A(1)A)(B(I − A(1)A))(1)B

= B(I − A(1)A)(B(I − A(1)A))(1)B(I − A(1)A)

= B(I − A(1)A),

we have

M X M M =
[

A
B A(1)A + B(I − A(1)A)

]
=

[
A
B

]
= M.

The proof of (1.2.8) is left as an exercise. �

The following theorem provides the common solution of the systems Ax = a and
Bx = b.

Theorem 1.2.7 Let A ∈ C
m×n, B ∈ C

p×n, a ∈ R(A) and b ∈ R(B). Suppose that
xa and xb are any two particular solutions for the two systems in (1.2.5) respectively.
Denote F = B(I − A(1)A), then the following three statements are equivalent:

The two systems in (1.2.5) possess a common solution; (1.2.9)

Bxa − b ∈ R(F) = BN (A); (1.2.10)

xa − xb ∈ N (A) + N (B). (1.2.11)

Furthermore, when a common solution exists, a particular common solution is given
by

xc = (I − (I − A(1)A)F (1)B)xa + (I − A(1)A)F (1)b (1.2.12)

and the set of all common solutions can be written as

{
xc + (I − A(1)A)(I − F (1)F)h : h ∈ C

n
}
. (1.2.13)

Proof The chain of the implications to be proven is (1.2.11) ⇒ (1.2.10) ⇒ (1.2.9)
⇒ (1.2.11).

Equation (1.2.11) ⇒ (1.2.10): Suppose that (1.2.11) holds, then

xa − xb = na + nb, where na ∈ N (A) and nb ∈ N (B).
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So
Bxa − b = B(xa − xb) = Bna ∈ R(F),

which gives (1.2.10).
Equation (1.2.10) ⇒ (1.2.9): If (1.2.10) holds, then the vector xc of (1.2.12) is a

common solution of (1.2.5). Since Axc = Axa = a and

Bxc = Bxa − F F (1)Bxa + F F (1)b, (1.2.14)

the statement (1.2.10) implies that

F F (1)(Bxa − b) = Bxa − b,

or
Bxa − F F (1)Bxa = b − F F (1)b.

Therefore (1.2.14) becomes Bxc = b. Thus xc is a common solution for the two
systems in (1.2.5).

Equation (1.2.9)⇒ (1.2.11): If there exists a common solution for the two systems
in (1.2.5), then the two solution sets must intersect, that is,

{xa + N (A)} ∩ {xb + N (B)} �= ∅.

Thus there exist vectors na ∈ N (A) and nb ∈ N (B) such that

xa + na = xb + nb,

and (1.2.11) follows.
To obtain the set of all solutions for (1.2.5), we rewrite the system, which is

equivalent to (1.2.6), as

{xc + N (M)} = {
xc + (I − X M M)h : h ∈ C

n
}
,

where

M =
[

A
B

]
and X M =

[
A
B

](1)

is given in (1.2.7). Now

I − X M M = (I − A(1)A)(I − F (1)B + F (1)B A(1)A)

= (I − A(1)A)(I − F (1)F)

which gives (1.2.13). �
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1.2.6 The {1} Inverse and the Common Solution
of AX = B and X D = E

We consider the common solution of the two matrix equations

AX = B and X D = E . (1.2.15)

Theorem 1.2.8 The matrix Eq. (1.2.15) have a common solution if and only if each
equation has a solution and AE = B D. If there exists a common solution, then a
particular common solution is

Xc = A(1)B + E D(1) − A(1)AE D(1)

and the general common solution is

Xc + (I − A(1)A)Y (I − DD(1)) (1.2.16)

for any A(1) ∈ A{1}, D(1) ∈ D{1}, and Y of the same size as X.

Proof IF: If each equation has a solution and AE = B D, by Theorem 1.2.5, we have

AA(1)B = B, E D(1)D = E,

and

AXc = A(A(1)B + E D(1) − A(1)AE D(1))

= B + AE D(1) − AE D(1)

= B

and

Xc D = (A(1)B + E D(1) − A(1)AE D(1))D

= A(1)B D + E − A(1)AE D(1)D

= A(1)B D + E − A(1)B DD(1)D

= E .

Therefore Xc is a common solution of (1.2.15).
Since

A(Xc + (I − A(1)A)Y (I − DD(1))) = B

and
(Xc + (I − A(1)A)Y (I − DD(1)))D = E,
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the matrix (1.2.16) is a common solution of (1.2.15). Suppose Xc is a common
solution of (1.2.15), it is easy to verify that

X = Xc + (I − A(1)A)(X − Xc)(I − DD(1))

is also a common solution. If we set Y = X − Xc, then X is of the form (1.2.16).
Thus the general common solution is (1.2.16).

ONLY IF: If X is a common solution, then AX = B and X D = E . Postmultiply-
ing AX = B with D and premultiplying X D = E with A, we get AE = B D. �

Exercises 1.2

1. Prove Theorem 1.2.4.
2. If X ∈ A{1}, then the following three statements are equivalent:

(1) X ∈ A{1, 2};
(2) rank(A) = rank(X);
(3) There exist X1 ∈ A{1} and X2 ∈ A{1} such that X1AX2 = X .

3. If rank(A∗V A) = rank(A), then

A(A∗V A)(1)(A∗V A) = A and (A∗V A)(A∗V A)(1)A∗ = A∗.

4. Prove that A(A∗ A)(1)A∗ = AA†.
5. For every A ∈ C

m×n and B ∈ C
n×p, there exist G ∈ A{1} and F ∈ B{1} such

that
FG ∈ (AB){1}.

6. For A ∈ C
m×n , prove that

A(1) = A† + H(I − AA†) + (I − A†A)K

for arbitrary H, K ∈ C
n×m .

1.3 The Generalized Inverses With Prescribed Range
and Null Space

Theorem 1.1.3 shows some properties of the range and null space of the Moore-
Penrose inverse. For example,R(A†) = R(A∗) andN (A†) = N (A∗). In this section,
we study the generalized inverses with prescribed range and null space.
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1.3.1 Idempotent Matrices and Projectors

A projector is associated with subspaces, so we begin with projectors and related
idempotent matrices. We will present their properties and establish a one-to-one
correspondence between them.

Definition 1.3.1 For E ∈ C
n×n , if E2 = E , then E is called an idempotent matrix.

Lemma 1.3.1 Let E ∈ C
n×n be idempotent, then

(1) E∗ and I − E are idempotent;
(2) The eigenvalues of E are 0 and 1, and the multiplicity of the eigenvalue 1 is

rank(E);
(3) rank(E) = tr(E);
(4) E(I − E) = (I − E)E = O;
(5) Ex = x if and only if x ∈ R(E);
(6) E ∈ E{1, 2};
(7) N (E) = R(I − E).

Proof Properties (1)–(6) are immediate consequences ofDefinition 1.3.1; (3) follows
from (2) and the fact that the trace of any square matrix is the sum of its eigenvalues
counting multiplicities; (7) is obtained by applying Corollary 1.2.1 to Ex = 0. �

Lemma 1.3.2 Let E = FG be a full-rank factorization of E, then E is idempotent
if and only if G F = I .

Proof If G F = I , then clearly

(FG)2 = FG FG = FG.

On the other hand, since F is of full column rank and G is of full row rank, by
Theorem 1.2.4,

F (1)F = GG(1) = I.

If FG FG = FG, multiplying on the left by F (1) and on the right by G(1) gives
G F = I . �

Now, we turn to projectors. Two subspaces L and M of Cn are called comple-
mentary ifCn = L ⊕ M . In this case, every x ∈ C

n can be expressed uniquely as the
sum

x = y + z (y ∈ L , z ∈ M). (1.3.1)

We shall then call y the projection of x on L along M .

Definition 1.3.2 Let PL ,M denote the transformation that maps any x ∈ C
n into its

projection on L along M . It is easy to verify that this transformation is linear. This
linear transformation can be represented by a matrix, which is uniquely determined
by the linear transformation and the standard basis of unit vectors. We denote PL ,M
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as both the linear transformation and its matrix representation. It is easy to verify
that this transformation is idempotent. The linear transformation PL ,M is called the
projector on L along M and PL ,M x = y.

The next theoremestablishes a one-to-one correspondence between an idempotent
matrix of order n and a projector PL ,M where L ⊕ M = C

n . Moreover, for any two
complementary subspaces L and M , a method for the construction of PL ,M is given
by (1.3.3).

Theorem 1.3.1 For every idempotent matrix E ∈ C
n×n, R(E) and N (E) are com-

plementary subspaces and
E = PR(E),N (E). (1.3.2)

Conversely, if L and M are complementary subspaces, then PL ,M is the unique
idempotent matrix such that

R(PL ,M) = L , and N (PL ,M) = M.

Proof Let E be idempotent and of order n, then it follows from (5) and (7) in
Lemma 1.3.1 and

x = Ex + (I − E)x

that Cn is the sum of R(E) and N (E). Moreover, R(E) ∩ N (E) = {0}. Since x ∈
R(E), x = Ex by (5) of Lemma 1.3.1, also x ∈ N (E) implies Ex = 0, then x = 0.
ThusCn = R(E) ⊕ N (E). It follows from x = Ex + (I − E)x that for every x, Ex
is the projection of x on R(E) along N (E). This establishes (1.3.2).

On the other hand, if L and M are complementary subspaces, suppose that
{x1, x2, · · · , xl} and {y1, y2, · · · , ym} are any bases for L and M , respectively. If
there exists PL ,M such that R(PL ,M) = L and N (PL ,M) = M , then

PL ,M xi = xi , i = 1, 2, ..., l,
PL ,M yi = 0i , i = 1, 2, ...,m.

Let X = [x1 x2 · · · xl] and Y = [y1 y2 · · · ym], then

PL ,M [X Y ] = [X O].

Since {x1, x2, ..., xl , y1, y2, ..., ym} is a basis forCn , the matrix [X Y ] is nonsingular.
Thus

PL ,M = [X O] [X Y ]−1. (1.3.3)

Since PL ,M [X Y ] = [X O], we have

P2
L ,M = PL ,M [X O] [X Y ]−1 = [X O] [X Y ]−1 = PL ,M ,

showing that PL ,M given by (1.3.3) is idempotent.



22 1 Equation Solving Generalized Inverses

The proof for the uniqueness of PL ,M is as follows.
If there exists another idempotent matrix E such thatR(E) = L andN (E) = M ,

then
Exi = xi , i = 1, 2, ..., l,
Eyi = 0, i = 1, 2, ...,m.

It is clear that E = [X O] [X Y ]−1 and E = PL ,M . �
Corollary 1.3.1 LetCn = L ⊕ M, then for every x ∈ C

n, the unique decomposition
(1.3.1) is given by

y = PL ,M x and z = (I − PL ,M)x.

The above corollary shows a relation between the projector PL ,M and the direct sum
C

n = L ⊕ M . The following corollary shows a relation between the {1, 2} inverse
and projectors.

Corollary 1.3.2 If A and X are {1, 2} inverses of each other, then AX is the projector
on R(A) along N (X) and X A is the projector on R(X) along N (A), i.e.,

AX = PR(A),N (X) and X A = PR(X),N (A). (1.3.4)

Proof The equations in (1.3.4) can be obtained by Theorems 1.3.1 and 1.2.4. �
Let L and M be complementary subspaces of Cn and consider the matrix P∗

L ,M .
By (1) of Lemma 1.3.1, it is idempotent and therefore a projector by Theorem 1.3.1.
Since N (A∗) = R(A)⊥,

R(P∗
L ,M) = N (PL ,M)⊥ = M⊥

and
N (P∗

L ,M) = R(PL ,M)⊥ = L⊥.

Thus, by Theorem 1.3.1,
P∗

L ,M = PM⊥,L⊥ ,

from which the next corollary follows easily.

Corollary 1.3.3 Let Cn = L ⊕ M, then M = L⊥ if and only if PL ,M is Hermitian.

Proof If P∗
L ,M = PL ,M , then

N (PL ,M) = N (P∗
L ,M) and M = L⊥.

Conversely, if M = L⊥, then

P∗
L ,M = PM⊥,L⊥ = PL ,M .

This completes the proof. �
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Just as there is a one-to-one correspondence between projectors and idempotent
matrices, Corollary 1.3.3 shows that there is a one-to-one correspondence between
orthogonal projectors and Hermitian idempotent matrices. The projector on L along
L⊥ is called the orthogonal projector on L and denoted by PL .

Now we discuss the conditions under which the sum, difference, and product of
two projectors are also projectors.

Theorem 1.3.2 Let P1 be the projector on R1 along N1, P2 the projector on R2

along N2, then P = P1 + P2 is a projector if and only if

P1P2 = P2P1 = O.

In this case, P is a projector on R = R1 ⊕ R2 along N = N1 ∩ N2.

Proof IF: Let P2
1 = P1 and P2

2 = P2. If P2 = P , then

P1P2 + P2P1 = O.

Multiplying the above on the left by P1 gives

P1(P1P2 + P2P1) = P1P2 + P1P2P1 = O.

Multiplying on the right by P1 gives

(P1P2 + P1P2P1)P1 = 2P1P2P1 = O.

Hence P1P2P1 = O. Substituting it into the previous equation, we have P1P2 = O
and P2P1 = O.
ONLY IF: If P1P2 = P2P1 = O, then

P2 = (P1 + P2)
2 = P2

1 + P2
2 = P1 + P2 = P

and P is a projector by Theorem 1.3.1.
Now we prove R = R1 ⊕ R2. Let u ∈ Ri (i = 1, 2), then

Pi u = u, Pu = P Pi u = P2
i u = Pi u = u, u ∈ R.

Thus Ri ⊂ R. Let u ∈ R1 ∩ R2, then

P1u = u, P2u = u, u = P1u = P2u = P2P1u = 0.

Thus R1 ∩ R2 = {0}. Any vector u ∈ R can be expressed as the sum

u = Pu = P1u + P2u, P1u ∈ R1, P2u ∈ R2,

so R = R1 ⊕ R2.
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Next we prove N = N1 ∩ N2. Let u ∈ N , then Pu = 0 and

0 = P1Pu = P2
1 u = P1u.

Thus u ∈ N1. The proof of u ∈ N2 is similar. Hence

N ⊂ N1 ∩ N2.

Conversely, let u ∈ N1 ∩ N2, then

P1u = 0, P2u = 0, Pu = P1u + P2u = 0.

Thus u ∈ N and
N1 ∩ N2 ⊂ N .

The proof is completed. �

Theorem 1.3.3 Under the assumptions in Theorem 1.3.2, P = P1 − P2 is a projec-
tor if and only if

P1P2 = P2P1 = P2. (1.3.5)

In this case, P is a projector on R = R1 ∩ N2 along N = N1 ⊕ R2.

Proof Noting that P is a projector if and only if I − P is a complementary projector.
Since I − P = (I − P1) + P2, by Theorem 1.3.2, I − P is a projector if and only
if (I − P1)P2 = P2(I − P1) = O. Thus (1.3.5) holds.

Next we prove that N = N1 ⊕ R2 and R = R1 ∩ N2. By Lemma 1.3.1 and The-
orem 1.3.2,

N = N (P) = R(I − P) = R(I − P1) ⊕ R(P2)

= N (P1) ⊕ R(P2) = N1 ⊕ R2

and

R = R(P) = N (I − P) = N (I − P1) ∩ N (P2)

= R(P1) ∩ N (P2) = R1 ∩ N2.

This completes the proof. �

Theorem 1.3.4 Under the assumptions in Theorem 1.3.2, if

P1P2 = P2P1, (1.3.6)

then P = P1P2 is a projector on R = R1 ∩ R2 along N = N1 + N2.
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Proof IF: If P1P2 = P2P1, then P2 = P , so P is a projector. Now we prove R =
R1 ∩ R2. Let u ∈ R, then

P1P2u = Pu = u.

Multiplying the above on the left by P1 gives

P1u = P2
1 P2u = P1P2u = u,

thus u ∈ R1. The proof of u ∈ R2 is similar, thus u ∈ R1 ∩ R2. Conversely, let u ∈
R1 ∩ R2, then

P1u = u and P2u = u,

thus
Pu = P1P2u = P1u = u.

Therefore u ∈ R. Thus R = R1 ∩ R2.
Next we prove N = N1 + N2. If u ∈ N , then

P1P2u = Pu = 0,

thus P2u ∈ N1. Moreover, P2(I − P2)u = 0, thus (I − P2)u ∈ N2. Since

u = P2u + (I − P2)u,

we have N ⊂ N1 + N2.
Conversely, if u ∈ N1 + N2, then u can be expressed as the sum

u = u1 + u2, u1 ∈ N1, u2 ∈ N2.

Since
Pu = P1P2u = P1P2u1 + P1P2u2 = P1P2u1 = P2P1u1 = 0,

we have u ∈ N . Thus N = N1 + N2. �

1.3.2 Generalized Inverse A(1,2)
T,S

Now we are ready for the generalized inverses with prescribed range and null space.
Let A ∈ C

m×n and A(1) be an element of A{1}. Suppose thatR(A) = L andN (A) =
M , and L ⊕ S = C

m and T ⊕ M = C
n , then AA(1) and A(1)A are idempotent and,

by Theorems 1.3.1 and 1.2.4,

AA(1) = PL ,S and A(1)A = PT,M .
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Next, we introduce a generalized inverse X which is the unique matrix satisfying
the following three equations

AX = PL ,S, X A = PT,M , and X AX = X.

First, we show the following lemma.

Lemma 1.3.3 There exists at most one matrix X satisfying the three equations:

AX = B, X A = D, and X AX = X. (1.3.7)

Proof The Eq. (1.3.7) may have no common solution. Now we suppose (1.3.7) have
a common solution. Let both X1 and X2 satisfy (1.3.7) and U = X1 − X2. Then
AU = O, U A = O, U B = U , and DU = U by (1.3.7). Thus

U ∗U = U ∗ D∗U B = U ∗ A∗ X∗
i U AXi = O, i = 1, 2.

Therefore U = O, i.e., X1 = X2. �
The following theorem gives an explicit expression for the {1, 2} inverse with

prescribed range and null space.

Theorem 1.3.5 Let A ∈ C
m×n, R(A) = L, N (A) = M, L ⊕ S = C

m, and T ⊕
M = C

n, then

(1) X is a {1} inverse of A such that R(X A) = T , N (AX) = S if and only if

AX = PL ,S, X A = PT,M ; (1.3.8)

(2) The general solution of (1.3.8) is

X = PT,M A(1)PL ,S + (In − A(1)A)Y (Im − AA(1)),

where A(1) is a fixed (but arbitrary) element of A{1} and Y is an arbitrary n × m
matrix;

(3) A(1,2)
T,S = PT,M A(1)PL ,S is the unique {1, 2} inverse of A having range T and

null space S.

Proof (1) IF: By the assumptions AX = PL ,S and R(A) = L , and Exercise 1.3.2,
we have

AX A = PL ,S A = A.

Thus X ∈ A{1}. Moreover,

N (AX) = N (PL ,S) = S and R(X A) = R(PT,M) = T .

ONLY IF: By Lemma 1.3.1, AX and X A are idempotent. By Theorems 1.3.1
and 1.2.4,
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AX = PR(AX),N (AX) = PL ,S and X A = PR(X A),N (X A) = PT,M .

(2) Set X0 = PT,M A(1)PL ,S . By R(PL ,S) = L = R(A), there exists Y such that
PL ,S = AY . By Exercise 1.3.2,

AX0 = APT,M A(1)PL ,S = AA(1)PL ,S = AA(1)AY = AY = PL ,S.

The proof of X0 A = PT,M is similar. Thus X0 is a common solution of (1.3.8). By
using Theorem 1.2.8, the general solution of (1.3.8) is

X = PT,M A(1)PL ,S + (In − A(1)A)Y (Im − AA(1)), ∀ Y ∈ C
n×m .

(3) Set X = PT,M A(1)PL ,S . It follows from (2) that X satisfies

AX A = PL ,S A = A.

Thus X ∈ A{1} and rank(X) ≥ rank(A). Since

rank(X) = rank(PT,M A(1)PL ,S) ≤ rank(PL ,S) ≤ rank(A),

rank(X) = rank(A). It is obvious that R(X A) ⊂ R(X). By Theorem 1.2.4,
rank(X A) = rank(A). ThusR(X A) = R(X) and there exists a Y such that X AY =
X . Multiplying X AY = X on the left by A gives

AX = AX AY = AY

and multiplying it on the left by X gives

X AX = X AY = X.

Therefore X ∈ A{2}.
Next, using (1.3.4), we have

R(X) = R(X A) = T and N (X) = N (AX) = S.

Thus X = A(1,2)
T,S . Since X satisfies

AX = PL ,S, X A = PT,M , and X AX = X,

by Lemma 1.3.3, there exists at most one matrix X satisfying the above three equa-
tions. Therefore A(1,2)

T,S is the unique {1, 2} inverse of A having range T and null
space S. �

Finally, we establish a relation between A(1,2)
T,S and A†.
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Theorem 1.3.6 Let A ∈ C
m×n, R(A) = L, and N (A) = M, then

A† = A(1,2)
R(A∗),N (A∗). (1.3.9)

Proof Clearly A† ∈ A{1, 2}. By (2) and (4) of Theorem 1.1.3,

R(A†) = R(A∗) and N (A†) = N (A∗).

It then follows from the uniqueness of A(1,2)
R(A∗),N (A∗) that (1.3.9) holds. �

This result means that the M-P inverse A† is the {1, 2} inverse of A having range
R(A∗) and null space N (A∗).

1.3.3 Urquhart Formula

The formulas in Theorem 1.3.5 are not convenient for computational purposes. Using
the results in [3], a useful formula for A(1,2)

T,S is given as follows.

Theorem 1.3.7 Let A ∈ C
m×n
r , U ∈ C

n×p, V ∈ C
q×m, and

X = U (V AU )(1)V,

where (V AU )(1) is a fixed but arbitrary element of (V AU ){1}, then

(1) X ∈ A{1} if and only if rank(V AU ) = r;
(2) X ∈ A{2} and R(X) = R(U ) if and only if rank(V AU ) = rank(U );
(3) X ∈ A{2} and N (X) = N (V ) if and only if rank(V AU ) = rank(V );
(4) X = A(1,2)

R(U ),N (V ) if and only if rank(V AU ) = rank(U ) = rank(V ) = r;

(5) X = A(2)
R(U ),N (V ) if and only if rank(V AU ) = rank(U ) = rank(V ).

Proof (1) IF: Since

r = rank(V AU ) ≤ rank(AU ) ≤ rank(A) = r,

we have
rank(AU ) = r = rank(A),

thus R(AU ) = R(A) and there exists a matrix Y such that A = AUY . Moreover,

rank(V AU ) = rank(AU ) = r,

by Exercise 1.3.3,
AU (V AU )(1)V AU = AU.
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Thus
AX A = AU (V AU )(1)V AUY = AUY = A,

i.e., X ∈ A{1}.
ONLY IF: Suppose that X ∈ A{1}, then

A = AX AX A = AU (V AU )(1)V AU (V AU )(1)V A,

thus rank(V AU ) ≥ rank(A). It is clear that rank(V AU ) ≤ rank(A). Therefore

rank(V AU ) = rank(A) = r.

(2) IF: By Exercise 1.3.3,

X AU = U (V AU )(1)V AU = U,

from which it follows that

X AX = X AU (V AU )(1)V = U (V AU )(1)V = X,

thus X ∈ A{2}. By X AU = U ,

rank(U ) ≤ rank(X) and R(U ) ⊂ R(X).

From X = U (V AU )(1)V ,

rank(X) ≤ rank(U ) and R(X) ⊂ R(U ).

Thus
rank(X) = rank(U ) and R(U ) = R(X).

ONLY IF: Since R(U ) = R(X) and rank(X) = rank(U ). By X ∈ A{2},

X = X AX = U (V AU )(1)V AU (V AU )(1)V .

Therefore
rank(U ) = rank(X) ≤ rank(V AU ) ≤ rank(U ).

Thus
rank(V AU ) = rank(U ).

(3) IF: By Exercise 1.3.3,

V AX = V AU (V AU )(1)V = V,
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from which it follows that

X AX = U (V AU )(1)V AX = U (V AU )(1)V = X,

thus X ∈ A{2}. By V = V AX ,

rank(V ) ≤ rank(X) and N (X) ⊂ N (V ).

Since X = U (V AU )(1)V ,

rank(X) ≤ rank(V ) and N (V ) ⊂ N (X).

Thus
rank(X) = rank(V ) and N (V ) = N (X).

ONLY IF: SinceN (X) = N (V ) and the number of the columns of both X and V is
m, we have rank(V ) = rank(X). By X ∈ A{2},

X = X AX = U (V AU )(1)V AU (V AU )(1)V,

thus
rank(V ) = rank(X) ≤ rank(V AU ) ≤ rank(V ).

Therefore
rank(V AU ) = rank(V ).

(4) Follows from (1), (2) and (3).
(5) Follows from (2) and (3). �

By Theorem 1.3.7, we can derive the formula of Zlobec [4].

A† = A∗Y A∗, (1.3.10)

where Y ∈ (A∗ AA∗){1}. Indeed, since

rank(A∗ AA∗) = rank(AA∗) = rank(A) = rank(A∗) = r,

by (4) in Theorems 1.3.6 and 1.3.7,

A∗(A∗ AA∗)(1)A∗ = A(1,2)
R(A∗),N (A∗) = A†.

Using Theorem 1.3.7, we can construct not only A(1,2)
R(U ),N (V ) but also the {2}

inverse of A with prescribed rangeR(U ) and null spaceN (V ). We discuss this kind
of generalized inverses in the following subsection.
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1.3.4 Generalized Inverse A(2)
T,S

In this subsection, we present a necessary and sufficient condition for the existence
of A(2)

T,S and then a condition for A(2)
T,S to be A(1,2)

T,S .

Theorem 1.3.8 Let A ∈ C
m×n
r , T be a subspace of Cn of dimension t ≤ r , and S a

subspace of Cm of dimension m − t , then A has a {2} inverse X such that R(X) = T
and N (X) = S if and only if

AT ⊕ S = C
m, (1.3.11)

in which case X is unique and denoted by A(2)
T,S.

Proof IF: Let the columns of U ∈ C
n×t
t form a basis for T and the columns of

V ∗ ∈ C
m×t
t form a basis for S⊥, that is,R(U ) = T andN (V ) = S, then the columns

of AU span AT . It follows from (1.3.11) that dim(AT ) = t , so

rank(AU ) = dim(R(AU )) = dim(AT ) = t. (1.3.12)

Another consequence of (1.3.11) is

AT ∩ S = {0}. (1.3.13)

Moreover, the t × t matrix V AU is nonsingular. If V AUy = 0, then AUy ∈
N (V ) = S and AUy ∈ R(AU ) = AT , thus AUy = 0 by (1.3.13). It follows from
(1.3.12) that AU is of full column rank, thus y = 0. Therefore

rank(V AU ) = rank(U ) = rank(V ) = t (≤ r). (1.3.14)

By (5) of Theorem 1.3.7,
X = U (V AU )−1V (1.3.15)

is a {2} inverse of A having range R(X) = R(U ) = T and null space N (X) =
N (V ) = S.

ONLY IF: Since X ∈ A{2}, i.e., A ∈ X{1}, AX is idempotent. By Theorem 1.3.1,

R(AX) ⊕ N (AX) = C
m .

Moreover, by (10) of Theorem 1.2.4,

R(AX) = AR(X) = AT and N (AX) = N (X) = S.

Thus AT ⊕ S = C
m holds.
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UNIQUENESS: Let X1 and X2 be {2} inverses of A having range T and null space
S, then A ∈ X1{1}, A ∈ X2{1},

X1A = PR(X1 A),N (X1 A) = PR(X1),N (X1 A) = PT,N (X1 A),

and
AX2 = PR(AX2),N (AX2) = PR(AX2),N (X2) = PR(AX2),S.

Since R(X2) = T and N (X1) = S, by Exercise 1.3.2,

X2 = PT,N (X1 A)X2 = X1 AX2 = X1PR(AX2),S = X1,

which completes the proof. �

The following corollary shows that if t = r , then A(2)
T,S = A(1,2)

T,S in Theorem 1.3.8.

Corollary 1.3.4 Let A ∈ C
m×n
r , T be a subspace of Cn of dimension r, and S a sub-

space of Cm of dimension m − r , then the following three statements are equivalent:

(1) AT ⊕ S = C
m;

(2) R(A) ⊕ S = C
m and N (A) ⊕ T = C

n;
(3) There exists an X ∈ A{1, 2} such that R(X) = T and N (X) = S.

Proof (1)⇒(3): If (1) holds, by (1.3.14),

rank(V AU ) = rank(U ) = rank(V ) = r.

It follows from (4) of Theorem 1.3.7 that X = U (V AU )−1V is a {1, 2} inverse of A
having range R(X) = T and null space N (X) = S.

(3)⇒(1): (1) is obtained by applying Theorem 1.3.8.
(1)⇒(2): If (1) holds, then rank(V AU ) = r . By Theorem 1.3.7, X ∈ A{1}. It

follows from Theorem 1.2.4 that

R(AX) = R(A)

and
AT = AR(X) = R(AX) = R(A).

Therefore R(A) ⊕ S = C
m by (1).

On the other hand, since (1)⇔(3), X ∈ A{1} and X ∈ A{2}, i.e., A ∈ X{1}. It
follows from Theorem 1.2.4 thatR(X A) = R(X) = T andN (X A) = N (A). Thus

X A = PR(X A),N (X A) = PT,N (A)

and T ⊕ N (A) = C
n by Theorem 1.3.1.
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(2)⇒(1): Since C
n = N (A) ⊕ T , it is easy to verify that R(A) = AT . In fact,

it is clear that R(A) ⊃ AT . Conversely, if x is any vector in R(A), then x = Ay,
y ∈ C

n . Setting y = y1 + y2, where y1 ∈ N (A) and y2 ∈ T , we have

x = Ay = Ay1 + Ay2 = Ay2 ∈ AT .

Thus R(A) = AT . Therefore AT ⊕ S = C
m holds by (2). �

Exercises 1.3

1. Let L and M be complementary subspaces of Cn , and PL ,M denote the transfor-
mation that carries any x ∈ C

n into its projection on L along M . Prove that this
transformation is linear.

2. Let L and M be complementary subspaces of Cn , prove that

(1) PL ,M A = A ⇔ R(A) ⊂ L;
(2) APL ,M = A ⇔ N (A) ⊃ M .

3. Prove that

(1) AB(AB)(1) A = A ⇔ rank(AB) = rank(A);
(2) B(AB)(1) AB = B ⇔ rank(AB) = rank(B).

4. Prove that I − PL ,M = PM,L .
5. Prove that (1.3.11) is equivalent to A∗S⊥ ⊕ T ⊥ = C

n .
6. Let L be a subspace of Cn and the columns of F form a basis for L . Show that

PL = F F† = F(F∗F)−1F∗.

7. Prove that A(2)
T,S = (PS⊥ APT )

†.

8. Prove that (A(2)
T,S)

∗ = (A∗)(2)S⊥,T ⊥ .
9. Prove that

(1) A(A(2)
T,S) = PAT,S;

(2) (A(2)
T,S)A = PT,(A∗ S⊥)⊥ .

1.4 Weighted Moore-Penrose Inverse

In Sects. 1.1 and 1.2, the relations between the generalized inverses A(1,4), A(1,3)

and A†, and the minimum-norm solution, least-squares solution and minimum-norm
least-squares solution are discussed. There, the vector 2-norm ‖x‖2 was used. Let
x, y ∈ C

n , then the inner product in C
n is defined by

(x, y) = y∗x.
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Moreover ,
‖x‖2 = (x, x)1/2 = (x∗x)1/2.

A matrix norm can be induced from a vector norm. For example, the 2-norm of a
matrix A can be defined by

‖A‖2 = max‖x‖2=1
‖Ax‖2.

In the vector 2-norm defined above, all the components of the vector are equally
important. In practice,wemaywant to give differentweights to the components of the
residual of the linear system Ax = b. A generalization of the standard least-squares
is the minimization of the weighted norm

‖Ax − b‖2M ≡ (Ax − b)∗M(Ax − b),

where M is a given Hermitian positive definite matrix. Now we discuss the weighted
norm and some related generalized inverses.

1.4.1 Weighted Norm and Weighted Conjugate Transpose
Matrix

Let M and N be Hermitian positive definite matrices of orders m and n respectively.
The weighted inner products in Cm and C

n are defined by

(x, y)M = y∗Mx, x, y ∈ C
m

and
(x, y)N = y∗Nx, x, y ∈ C

n

respectively. Correspondingly, the definitions of weighted vector norms are

‖x‖M = (x, x)1/2M = (x∗Mx)1/2 = ‖M1/2x‖2, x ∈ C
m

and
‖x‖N = (x, x)1/2N = (x∗Nx)1/2 = ‖N 1/2x‖2, x ∈ C

n

respectively. Let x, y ∈ C
m and (x, y)M = 0, then x and y are called M-orthogonal,

i.e., M1/2x and M1/2y are orthogonal. It is easy to verify that

‖x + y‖2M = ‖x‖2M + ‖y‖2M , x, y ∈ C
m, (1.4.1)

which is called the weighted Pythagorean theorem.
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The definitions of weighted matrix norm are:

‖A‖M N = max‖x‖N =1
‖Ax‖M , A ∈ C

m×n, x ∈ C
n

and
‖B‖N M = max‖x‖M =1

‖Bx‖N , B ∈ C
n×m, x ∈ C

m

respectively. Such a norm is sometimes called an operator norm subordinate to vector
norms. It is easy to verify that

‖A‖M N = ‖M1/2 AN−1/2‖2
and

‖B‖N M = ‖N 1/2B M−1/2‖2.

The next lemma shows the consistent property of the weighted matrix norm
induced from a weighted vector norm.

Lemma 1.4.1 Let A ∈ C
m×n, B ∈ C

n×m, x ∈ C
n, and y ∈ C

m, then

‖Ax‖M ≤ ‖A‖M N ‖x‖N ; (1.4.2)

‖By‖N ≤ ‖B‖N M‖y‖M ; (1.4.3)

‖AB‖M M ≤ ‖A‖M N ‖B‖N M .

Proof We give only the proof of last inequality and leave the rest for Exercise 1.4.2.
From the relation between the weighted matrix norm and 2-norm, we get

‖AB‖M M = ‖M1/2 AN−1/2N 1/2B M−1/2‖2
≤ ‖M1/2 AN−1/2‖2 ‖N 1/2B M−1/2‖2
= ‖A‖M N ‖B‖N M .

Let A ∈ C
n×n , x, y ∈ C

n , and A∗ be the conjugate transpose matrix of A, then

(Ax, y) = y∗ Ax = (A∗y)∗x = (x, A∗y).

This shows a relation between the inner product and the conjugate transpose matrix.
The weighted conjugate transpose matrix of A is the generalization of the conjugate
transpose matrix of A.

Definition 1.4.1 Let A ∈ C
m×n , and M and N be Hermitian positive definite matri-

ces of orders m and n respectively. The matrix X ∈ C
n×m satisfying
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(Ax, y)M = (x, Xy)N , for all x ∈ C
n, y ∈ C

m

is called the weighted conjugate transpose matrix and denoted by X = A#.

From the above definition,

A# = N−1A∗M, A ∈ C
m×n

B# = M−1B∗N , B ∈ C
n×m .

(1.4.4)

In the special case when A ∈ C
n×n , x, y ∈ C

n , and N is a Hermitian positive definite
matrix of order n, then

(Ax, y)N = (x, A#y)N ,

where
A# = N−1 A∗N . (1.4.5)

If (Ax, y)N = (x, Ay)N , then A# = A and A is called the weighted self-conjugate
matrix. The following lemmas list some useful properties of the weighted conjugate
transpose matrix and the weighted matrix norm.

Lemma 1.4.2

(A + B)# = A# + B#, A, B ∈ C
m×n; (1.4.6)

(AB)# = B# A#, A ∈ C
m×n, B ∈ C

n×m; (1.4.7)

(A#)# = A, A ∈ C
m×n; (1.4.8)

(A#)−1 = (A−1)#, A ∈ C
n×n
n . (1.4.9)

Proof These conclusions can be easily verified byusingDefinition 1.4.1, Eqs. (1.4.4),
and (1.4.5), and are left as exercises. �

Lemma 1.4.3 Let A ∈ C
m×n, then

‖A‖M N = ‖A#‖N M ; (1.4.10)

‖A‖2M N = ‖AA#‖M M = ‖A# A‖N N . (1.4.11)

Proof

‖A#‖N M = ‖N 1/2 A#M−1/2‖2 = ‖N−1/2 A∗M1/2‖2
= ‖M1/2 AN−1/2‖2 = ‖A‖M N ,

‖AA#‖M M = ‖M1/2 AA#M−1/2‖2
= ‖(M1/2 AN−1/2)(M1/2 AN−1/2)∗‖2
= ‖M1/2 AN−1/2‖22 = ‖A‖2M N .

The proof of ‖A# A‖N N = ‖A‖2M N is similar. �
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The relations between the weighted generalized inverses and the solutions of
linear equations are discussed in the following subsections.

1.4.2 The {1, 4N} Inverse and the Minimum-Norm (N)
Solution of a Consistent System of Linear Equations

Now that we have introduced the weighted norm in the previous subsection, we
consider a generalized inverse in terms of finding theminimalweighted norm solution
for a consistent system of linear equations. The following theorem gives a sufficient
and necessary condition for such solution.

Theorem 1.4.1 Let A ∈ C
m×n, b ∈ R(A), and N be a Hermitian positive definite

matrix of order n, then x = Xb is the minimum-norm (N) solution of the consistent
system of linear equations (1.1.1) if and only if X satisfies

(1) AX A = A,
(4N ) (N X A)∗ = N X A.

(1.4.12)

Proof By (1.2.4), the general solution of (1.1.1) is

x = Xb + (I − X A)y, ∀ y ∈ C
n,

where X ∈ A{1}. If Xb is the minimum-norm (N ) solution, then

‖Xb‖N ≤ ‖Xb + (I − X A)y‖N , ∀ b ∈ R(A), y ∈ C
n.

By Exercise 1.4.5,

‖X Au‖N ≤ ‖X Au + (I − X A)y‖N , ∀ u, y ∈ C
n

⇔ (X Au, (I − X A)y)N = 0, ∀ u, y ∈ C
n

⇔ (u, (X A)#(I − X A)y)N = 0, ∀ u, y ∈ C
n

⇔ (X A)#(I − X A) = O
⇔ (X A)# = X A
⇔ (N X A)∗ = N X A,

which completes the proof. �

Amatrix X satisfying (1.4.12) is called the generalized inverse for the minimum-
norm (N ) solution of the consistent system of linear equations (1.1.1), and is denoted
by X = A(1,4N ) or X ∈ A{1, 4N }, where A{1, 4N } denotes the set of all the {1, 4N }
inverses of A.
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1.4.3 The {1, 3M} Inverse and the Least-Squares (M)
Solution of An Inconsistent System of Linear Equations

Previously, we introduced weights to the solution norm and considered its associated
generalized inverse. We can also introduce weights to the residual norm, that is, we
consider the problem of finding the least-squares solution in a weighted residual
norm and its associated generalized inverse.

Theorem 1.4.2 Let A ∈ C
m×n, b ∈ C

m, and M be a Hermitian positive definite
matrix of order m, then x = Xb is the least-squares (M) solution of the inconsistent
system of linear equations (1.1.2) if and only if X satisfies

(1) AX A = A,
(3M) (M AX)∗ = M AX.

(1.4.13)

Proof IF:

‖AXb − b‖M ≤ ‖Ax − b‖M , ∀ x ∈ C
n, b ∈ C

m

= ‖AXb − b + Ax − AXb‖M , ∀ x ∈ C
n, b ∈ C

m

= ‖AXb − b + Aw‖M , ∀ b ∈ C
m, w = x − Xb ∈ C

n.

By Exercise 1.4.5, the above inequality holds if and only if

(Aw, (AX − I )b)M = 0, ∀ b ∈ C
m, w ∈ C

n

⇔ A#(AX − I ) = O

⇔ A# AX = A#. (1.4.14)

From (1.4.14), we have

(AX)# = X# A# = X# A# AX = (AX)# AX.

Thus (AX)# = AX , which is equivalent to (M AX)∗ = M AX , and

A = (A# AX)# = X# A# A = (AX)# A = AX A.

Therefore (1.4.13) holds.
ONLY IF: If (1.4.13) holds, then

A# AX = A#(AX)# = (AX A)# = A#,

i.e., (1.4.14) holds, equivalently, Xb is the least-squares (M) solution of (1.1.2). �

A matrix X satisfying (1.4.13) is called the generalized inverse for the least-
squares (M) solution of the inconsistent system of linear equations (1.1.2), and is
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denoted by X = A(1,3M) or X ∈ A{1, 3M}, where A{1, 3M} denotes the set of all
the {1, 3M} inverses of A.

1.4.4 Weighted Moore-Penrose Inverse and The
Minimum-Norm (N) and Least-Squares (M) Solution
of An Inconsistent System of Linear Equations

Finally, we introduce weights to both the solution norm and the residual norm and
its associated generalized inverse, that is, the weighted Moore-Penrose inverse for
expressing the minimal weighted norm and weighted least-squares solution.

Theorem 1.4.3 Let A ∈ C
m×n and b ∈ C

m, M and N be Hermitian positive definite
matrices of orders m and n respectively, then x = Xb is the minimum-norm (N) and
least-squares (M) solution if and only if X satisfies

(1) AX A = A,
(2) X AX = X,

(3M) (M AX)∗ = M AX,
(4N ) (N X A)∗ = N X A.

(1.4.15)

Proof ONLY IF: Since Xb is a least-squares (M) solution, (1) and (3M) of (1.4.15)
hold by Theorem 1.4.2. It is clear that the general solution of the least-squares (M)
solution of (1.1.2) is

Xb + (I − X A)z, X ∈ A{1, 3M}, ∀ z ∈ C
n .

From the meaning of the minimum-norm (N ) and least-squares (M) solution,

‖Xb‖N ≤ ‖Xb + (I − X A)z‖N , ∀ b ∈ C
m, z ∈ C

n

⇔ (Xb, (I − X A)z)N = 0, ∀ b ∈ C
m, z ∈ C

n

⇔ X#(I − X A) = O

⇔ X# = X#X A. (1.4.16)

By (1.4.16),
(X A)# = A#X# = A#X#X A = (X A)#X A.

Thus (X A)# = X A, which is equivalent to (N X A)∗ = N X A, and

X = (X#X A)# = (X A)#X = X AX.

Therefore (2) and (4N ) of (1.4.15) hold.
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IF: If (1.4.15) holds, (1) and (3M) show that Xb is a least-squares (M) solution of
(1.1.2) by Theorem 1.4.2. Equations (2) and (4N ) in (1.4.15) imply

X#X A = X#(X A)# = (X AX)# = X#.

Thus (1.4.16) holds, i.e., Xb is the minimum-norm (N ) and least-squares (M) solu-
tion of (1.1.2). �

Amatrix X satisfying (1.4.15) is called the generalized inverse for the minimum-
norm (N ) and least-squares (M) solution or the weighted Moore-Penrose inverse,
and is denoted by X = A†

M N . It is readily found that X is unique.
Theweighted least-squares andweightedminimum-normproblem can be reduced

to the standard least-squares and minimum-norm problem by some simple transfor-
mations [5].

Let A ∈ C
m×n , b ∈ C

m , x ∈ C
n , and M and N be Hermitian positive definite

matrices of orders m and n respectively. Set

Ã = M1/2 AN−1/2, x̃ = N 1/2x, and b̃ = M1/2b,

then it is easy to verify that

‖Ax − b‖M = ‖M1/2 Ax − M1/2b‖2 = ‖ Ã̃x − b̃‖2
and

‖x‖N = ‖̃x‖2.

Thus we reduce the weighted least-squares problem to the standard least-squares
problem:

min
x

‖Ax − b‖M = min
x̃

‖ Ã̃x − b̃‖2.

Moreover, there exists the least-squares solution generalized inverse X̃ satisfying

Ã X̃ Ã = Ã, ( Ã X̃)∗ = Ã X̃

such that X̃b is the least-squares solution of Ã̃x = b̃. Let

X = N−1/2 X̃ M1/2 or X̃ = N 1/2X M−1/2,

then
N 1/2x = x̃ = X̃ b̃ = N 1/2X M−1/2M1/2b = N 1/2Xb.

Thus
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x̃ = X̃ b̃ ⇔ x = Xb

Ã X̃ Ã = Ã ⇔ AX A = A,

( Ã X̃)∗ = Ã X̃ ⇔ (M AX)∗ = M AX.

It shows that there exists the least-squares solution generalized inverse X satisfying

AX A = A and (M AX)∗ = M AX

such that Xb is a least-squares (M) solution of Ax = b.
This result is the same as Theorem1.4.2. Theorems 1.4.1 and 1.4.3 can be obtained

by the same method. It is omitted here.
The weighted Moore-Penrose inverse A†

M N is a generalization of the Moore-
Penrose inverse A†. Specifically, when M = Im and N = In , A†

Im ,In
= A†.

Some properties of A†
M N are given as follows.

Theorem 1.4.4 Let A ∈ C
m×n. If M and N are Hermitian positive definite matrices

of orders m and n respectively, then

(1) (A†
M N )

†
N M = A;

(2) (A†
M N )

∗ = (A∗)†N−1,M−1 ;

(3) A†
M N = (A∗M A)†I N A∗M = N−1A∗(AN−1A∗)†M I ;

(4) R(A†
M N ) = N−1R(A∗) = R(A#),

N (A†
M N ) = M−1N (A∗) = N (A#);

(5) R(AA†
M N ) = R(A),

N (AA†
M N ) = M−1N (A∗) = N (A#),

R(A†
M N A) = N−1R(A∗) = R(A#),

N (A†
M N A) = N (A);

(6) If A = FG is a full-rank factorization of A, then

A†
M N = N−1G∗(F∗M AN−1G∗)−1F∗M;

(7) A†
M N = A(1,2)

N−1R(A∗),M−1N (A∗) = A(1,2)
R(A#),N (A#)

;

(8) A†
M N = N−1/2(M1/2 AN−1/2)†M1/2;

(9) A†
M N = A#Y A#, where Y ∈ (A# AA#){1}.

The proof is left to the reader as an exercise.

Exercises 1.4

1. Prove (1.4.1).
2. Prove (1.4.2) and (1.4.3).
3. Prove (1.4.6)–(1.4.9).
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4. Prove Theorem 1.4.4.
5. Let N be a Hermitian positive definite matrix of order n, L a subspace ofCn , and

R(B) = L , show that

‖x‖N ≤ ‖x + y‖N , ∀ y ∈ L
⇔ x∗Ny = 0, ∀ y ∈ L
⇔ x∗N B = 0T .

1.5 Bott-Duffin Inverse and Its Generalization

To conclude this chapter on the equation solving generalized inverses, we introduce
another type of generalized inverse called Bott-Duffin inverse in terms of solving
constrained linear systems.

1.5.1 Bott-Duffin Inverse and the Solution of Constrained
Linear Equations

Let A ∈ C
n×n , b ∈ C

n and a subspace L ⊂ C
n , the constrained linear equations

Ax + y = b, x ∈ L , y ∈ L⊥ (1.5.1)

arise in electrical network theory. It is readily found that the consistency of (1.5.1)
is equivalent to the consistency of the following linear equations

(APL + PL⊥)z = b. (1.5.2)

Also, the pair (x, y) is a solution of (1.5.1) if and only if

x = PLz, y = PL⊥z = b − APLz, (1.5.3)

where z is a solution of (1.5.2), and PL and PL⊥ are projectors on L and L⊥ respec-
tively. If thematrix APL + PL⊥ is nonsingular, then (1.5.2) is consistent for allb ∈ C

n

and the solution
x = PL(APL + PL⊥)−1b, y = b − Ax

is unique. This leads to another equation solving generalized inverses.

Definition 1.5.1 Let A ∈ C
n×n and L be a subspace of Cn . If APL + PL⊥ is non-

singular, then the Bott-Duffin inverse of A with respect to L , denoted by A(−1)
(L) , is

defined by
A(−1)
(L) = PL(APL + PL⊥)−1. (1.5.4)
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The basic properties of A(−1)
(L) are given in the following theorem.

Theorem 1.5.1 Suppose that APL + PL⊥ is nonsingular, then

(1) The constrained linear equations (1.5.1) has a unique solution

x = A(−1)
(L) b, y = (I − AA(−1)

(L) )b (1.5.5)

for any b ∈ C
n;

(2)

PL = A(−1)
(L) APL = PL AA(−1)

(L) , (1.5.6)

A(−1)
(L) = PL A(−1)

(L) = A(−1)
(L) PL; (1.5.7)

(3)
R(A(−1)

(L) ) = L , N (A(−1)
(L) ) = L⊥; (1.5.8)

(4)
A(−1)
(L) = (APL)

(1,2)
L ,L⊥ = (PL A)(1,2)L ,L⊥ = (PL APL)

(1,2)
L ,L⊥; (1.5.9)

(5)
(A(−1)

(L) )
(−1)
(L) = PL APL .

Proof (1) This follows from the equivalence of (1.5.4) and (1.5.1)–(1.5.3).

(2) Premultiplying (1.5.4) with PL and using P2
L = PL , we have

PL A(−1)
(L) = A(−1)

(L) . (1.5.10)

From (1.5.4),
A(−1)
(L) (APL + PL⊥) = PL . (1.5.11)

Postmultiplying (1.5.11) with PL and using PL⊥ PL = O, we get

A(−1)
(L) APL = PL . (1.5.12)

By (1.5.11) and (1.5.12), we have A(−1)
(L) PL⊥ = O, thus

A(−1)
(L) PL = A(−1)

(L) (I − PL⊥) = A(−1)
(L) (1.5.13)

and
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PL AA(−1)
(L) = PL APL(APL + PL⊥)−1

= PL(APL + PL⊥)(APL + PL⊥)−1

= PL . (1.5.14)

It follows from (1.5.12), (1.5.14), (1.5.10) and (1.5.13) that (1.5.6) and (1.5.7) hold.
(3) From (1.5.6) and (1.5.7),

dim(L) ≤ rank(A(−1)
(L) ) ≤ dim(L),

R(A(−1)
(L) ) ⊂ R(PL) = L ,

and
N (A(−1)

(L) ) ⊃ N (PL) = L⊥.

Therefore
rank(A(−1)

(L) ) = dim(L) (1.5.15)

and
R(A(−1)

(L) ) = L , N (A(−1)
(L) ) = L⊥. (1.5.16)

(4) Now, A(−1)
(L) is a {1, 2} inverse of APL . By (1.5.6) and (1.5.7),

A(−1)
(L) = A(−1)

(L) APL A(−1)
(L) . (1.5.17)

Premultiplying the first equality in (1.5.6) with APL gives

APL = APL A(−1)
(L) APL . (1.5.18)

From (1.5.16)–(1.5.18), we have

A(−1)
(L) = (APL)

(1,2)
L ,L⊥ .

The proof of
A(−1)
(L) = (PL A)(1,2)L ,L⊥ = (PL APL)

(1,2)
L ,L⊥

is similar.
(5) Firstly, we show that (A(−1)

(L) )
(−1)
(L) is defined, i.e., A(−1)

(L) PL + PL⊥ is nonsingular.
From (1.5.7),

A(−1)
(L) PL + PL⊥ = A(−1)

(L) + PL⊥ .

If (A(−1)
(L) + PL⊥)x = 0, then

A(−1)
(L) x = −PL⊥x ∈ L ∩ L⊥ = {0},
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thus
A(−1)
(L) x = PL⊥x = 0 and x ∈ L ∩ L⊥ = {0}.

Therefore x = 0, which implies that A(−1)
(L) + PL⊥ is nonsingular. Moreover,

A(−1)
(L) PL + PL⊥ is also nonsingular.

Secondly, by (1.5.9), PL APL and A(−1)
(L) are {1, 2} inverses of each other, and

rank(PL APL) = rank(A(−1)
(L) ) = dim(L)

by (1.5.15), which, together with

R(PL APL) ⊂ R(PL) = L and N (PL APL) ⊃ N (PL) = L⊥,

shows that
R(PL APL) = L and N (PL APL) = L⊥. (1.5.19)

It then follows from (1.5.7) and (1.5.9) that

PL APL = (A(−1)
(L) )

(1,2)
L ,L⊥ = (A(−1)

(L) PL)
(1,2)
L ,L⊥ = (A(−1)

(L) )
(−1)
(L) .

This completes the proof. �

1.5.2 The Necessary and Sufficient Conditions
for the Existence of the Bott-Duffin Inverse

In this subsection, we present some conditions equivalent to the nonsingularity of
APL + PL⊥ . Based on the equivalent conditions, we give more properties of the
Bott-Duffin inverse.

Theorem 1.5.2 Let A ∈ C
n×n and a subspace L ⊂ C

n, then the following state-
ments are equivalent:

(a) APL + PL⊥ is nonsingular;
(b) AL ⊕ L⊥ = C

n;
(c) PL AL ⊕ L⊥ = C

n;
(d) rank(PL APL) = rank(PL) = dim(L);
(e) rank(PL A∗ PL) = rank(PL) = dim(L);
(f) PL A∗L ⊕ L⊥ = C

n;
(g) A∗L ⊕ L⊥ = C

n;
(h) L ⊕ (A∗L)⊥ = C

n;
(i) A∗ PL + PL⊥ is nonsingular;
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(j) PL A + PL⊥ is nonsingular;
(k) PL APL + PL⊥ is nonsingular.

Thus, each of the above conditions is necessary and sufficient for the existence of
A(−1)
(L) , the Bott-Duffin inverse of A with respect to L.

Proof (a) ⇔ (b): If APL + PL⊥ is nonsingular, then A(−1)
(L) exists. By (1.5.7) and

(1.5.6),
A(−1)
(L) AA(−1)

(L) = A(−1)
(L) APL A(−1)

(L) = PL A(−1)
(L) = A(−1)

(L) ,

thus A ∈ A(−1)
(L) {1} and AA(−1)

(L) = PR(AA(−1)
(L) ),N (AA(−1)

(L) )
. Since

R(AA(−1)
(L) ) = AR(A(−1)

(L) ) = AL

and
N (AA(−1)

(L) ) = N (A(−1)
(L) ) = L⊥,

AL ⊕ L⊥ = C
n holds.

Conversely, if AL ⊕ L⊥ = C
n but APL + PL⊥ is singular, then (APL + PL⊥)

x = 0 for some nonzero x ∈ C
n , i.e., APLx + PL⊥x = 0. Since APLx ∈ AL , PL⊥x ∈

L⊥, and AL ⊕ L⊥ = C
n , APLx = 0 and PL⊥x = 0, thus x ∈ L and Ax = 0. Hence

dim(AL) ≤ dim(L) − 1. The contradiction establishes (a).

(a) ⇔ (c): If APL + PL⊥ is nonsingular, then A(−1)
(L) exists. By (1.5.9), A(−1)

(L) =
(PL A)(1,2)L ,L⊥ , thus

PL AA(−1)
(L) = PR(PL AA(−1)

(L) ),N (PL AA(−1)
(L) )

= PPL AR(A(−1)
(L) ),N (A(−1)

(L) )

= PPL AL ,L⊥

and PL AL ⊕ L⊥ = C
n .

Conversely, the proof of (c) ⇒ (a) is similar to that of (b) ⇒ (a).
(c) ⇔ (d): For any x ∈ PL AL , x = PL Aw, where w ∈ L . Thus

x = PL APLz ∈ R(PL APL).

Conversely, for all x ∈ R(PL APL), x = PL APLz. Thus

x = PL Aw, w ∈ L , and x ∈ PL AL .

Therefore R(PL APL) = PL AL . Thus

PL AL ⊕ L⊥ = C
n

⇔ rank(PL APL) = dim(PL AL) = dim(L) = rank(PL).
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(d) ⇔ (e): rank(PL APL) = rank((PL APL)
∗) = rank(PL A∗ PL).

(e) ⇔ (f): The proof is similar to (c) ⇔ (d).
(f) ⇔ (g): The proof is similar to (b) ⇔ (c).
(g) ⇔ (h): By orthogonal complement.
(g) ⇔ (i): The proof is similar to (a) ⇔ (b).
(i) ⇔ (j): By conjugate transposition.
(c) ⇔ (k): The proof is similar to (a) ⇔ (b). �

We show more properties of A(−1)
(L) .

Theorem 1.5.3 If A(−1)
(L) exists, then

(1)

A(−1)
(L) = PL(APL + PL⊥)−1

= (PL A + PL⊥)−1PL (1.5.20)

= (PL APL)
† (1.5.21)

= PL(PL APL + PL⊥)−1

= (PL APL + PL⊥)−1PL (1.5.22)

= (PL APL + PL⊥)−1 − PL⊥ (1.5.23)

= A(2)
L ,L⊥; (1.5.24)

(2) Let U be a matrix whose columns form a basis for L, then A(−1)
(L) exists if and

only if U ∗ AU is nonsingular, in which case

A(−1)
(L) = U (U ∗ AU )−1U ∗; (1.5.25)

(3)

(A(−1)
(L) )∗ = (A∗)(−1)

(L) , (1.5.26)

AA(−1)
(L) = PAL ,L⊥ , (1.5.27)

A(−1)
(L) A = PL ,(A∗ L)⊥ . (1.5.28)

Proof (1) From (1.5.4), A(−1)
(L) = PL(APL + PL⊥)−1. Since

(PL A + PL⊥)PL = PL(APL + PL⊥)

and APL + PL⊥ is nonsingular by (j) of Theorem 1.5.2,

A(−1)
(L) = PL(APL + PL⊥)−1 = (PL A + PL⊥)−1PL ,

i.e., (1.5.20) holds. From (1.5.9), (1.5.19) and (1.5.12),
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A(−1)
(L) = (PL APL)

(1,2)
L ,L⊥ = (PL APL)

†,

thus (1.5.21) holds.
Since

A(−1)
(L) = (PL(PL APL)PL)

† = (PL APL)
(−1)
(L) = PL(PL APL + PL⊥)−1

and
(PL APL + PL⊥)PL = PL(PL APL + PL⊥),

Eq. (1.5.22) holds.
Since

(PL APL + PL⊥)((PL APL)
† + PL⊥)

= (PL APL)(PL APL)
† + PL⊥

= PR(PL APL ) + PL⊥

= PL + PL⊥

= I,

we have
(PL APL + PL⊥)−1 = (PL APL)

† + PL⊥

and
A(−1)
(L) = (PL APL)

† = (PL APL + PL⊥)−1 − PL⊥ .

So (1.5.23) holds.
By (1.5.7) and (1.5.6),

A(−1)
(L) AA(−1)

(L) = A(−1)
(L) APL A(−1)

(L) = PL A(−1)
(L) = A(−1)

(L) , A(−1)
(L) ∈ A{2}.

From (1.5.16):R(A(−1)
(L) ) = L andN (A(−1)

(L) ) = L⊥, A(−1)
(L) = A(2)

L ,L⊥ , that is, (1.5.24)
holds.
(2) If A(−1)

(L) exists, from (b) of Theorem 1.5.2, AL ⊕ L⊥ = C
n . Let U be a matrix

whose columns form a basis for L , then L = R(U ) and L⊥ = N (U ∗). Now we
prove that U ∗ AU is nonsingular. Suppose U ∗ AUx = 0, then

AUx ∈ N (U ∗) = L⊥

and
AUx ∈ R(AU ) = AR(U ) = AL ,

thus
AUx ∈ AL ∩ L⊥ = {0}.
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It is clear that the columns of AU span AL and AU is of full column rank, thus
x = 0. Therefore U ∗ AU is nonsingular. In this case,

rank(U ∗ AU ) = rank(U ) = rank(U ∗).

By (5) of Theorem 1.3.7 and (1.5.24),

U (U ∗ AU )−1U ∗ = A(2)
R(U ),N (U ∗) = A(2)

L ,L⊥ = A(−1)
(L) .

(3) From (1.5.24),

(A(−1)
(L) )∗ = U (U ∗ A∗U )−1U ∗ = (A∗)(−1)

(L) ,

thus (1.5.26) holds. Since

R(AA(−1)
(L) ) = AR(A(−1)

(L) ) = AL and N (AA(−1)
(L) ) = N (A(−1)

(L) ) = L⊥,

we get AA(−1)
(L) = PAL ,L⊥ , which is (1.5.27). Since

R(A(−1)
(L) A) = R(A(−1)

(L) ) = L

and

N (A(−1)
(L) A)⊥ = R(A∗(A(−1)

(L) )∗) = A∗R((A(−1)
(L) )∗) = A∗R((A∗)(−1)

(L) ) = A∗L ,

we have
N (A(−1)

(L) A) = (A∗L)⊥.

Therefore A(−1)
(L) A = PL ,(A∗ L)⊥ , i.e., (1.5.28) holds. �

1.5.3 Generalized Bott-Duffin Inverse and Its Properties

Definition 1.5.1 of the Bott-Duffin inverse requires the nonsingularity of APL + PL⊥ .
In this subsection, we generalize the Bott-Duffin inverse by extending it to the case
when APL + PL⊥ is singular. We first give some slightly extended concepts related
to Hermitian positive definiteness and Hermitian nonnegative definiteness [6].

Definition 1.5.2 Let A∗ = A. If A satisfies the condition

x∗ Ax > 0, for all x ∈ L and x �= 0,

then A is called an L-positive definite (L-p.d.) matrix.
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Definition 1.5.3 Let A∗ = A. If A satisfies the two conditions:
(1) x∗ Ax ≥ 0 for all x ∈ L and
(2) x∗ Ax = 0, where x ∈ L , implies Ax = 0,

then A is called an L-positive semidefinite (L-p.s.d.) matrix.

Now we introduce the generalized Bott-Duffin inverse.

Definition 1.5.4 Let A ∈ C
n×n and a subspace L ⊂ C

n , then

A(†)
(L) = PL(APL + PL⊥)†

is called the generalized Bott-Duffin inverse of A with respect to L .

When APL + PL⊥ is nonsingular, A(†)
(L) exists and equals the Bott-Duffin inverse.

Naturally, before studying the generalized Bott-Duffin inverse, we investigate
APL + PL⊥ . Some expressions of the range and null space of APL + PL⊥ are given
in the following lemmas. We first consider the case of a general A.

Lemma 1.5.1 For any A ∈ C
n×n and a subspace L ⊂ C

n, we have
(1)

N (PL A + PL⊥) = N (PL APL + PL⊥) = (A∗L)⊥ ∩ L = N (PL APL) ∩ L ,

(2)

R(APL + PL⊥) = R(PL APL + PL⊥) = AL + L⊥ = PL AL ⊕ L⊥.

Proof (1) Firstly,

x ∈ N (PL APL + PL⊥) ⇔ PL APLx = −PL⊥x = 0

⇔ x ∈ N (PL APL) ∩ L .

Secondly,

x ∈ N (PL A + PL⊥) ⇔ PL Ax = −PL⊥x = 0

⇔ PL Ax = 0 and x ∈ L

⇔ PLx = x, x ∈ L and PL APLx = PL Ax = 0

⇔ x ∈ N (PL APL) ∩ L

⇔ x ∈ N (APL PL + PL⊥).

Thirdly, since
N (PL A)⊥ = R(A∗ PL) = A∗R(PL) = A∗L ,

N (PL A) = (A∗L)⊥. Thus
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x ∈ N (PL A + PL⊥) ⇔ x ∈ N (PL A) and x ∈ L

⇔ x ∈ (A∗L)⊥ ∩ L .

(2) Firstly, by (1) above,

(R(APL + PL⊥))⊥ = N (PL A∗ + PL⊥)

= N (PL A∗ PL + PL⊥)

= (R(PL APL + PL⊥))⊥.

Thus
R(APL + PL⊥) = R(PL APL + PL⊥).

Secondly,

x ∈ R(APL + PL⊥) ⇔ x = (APL + PL⊥)z = APLz + PL⊥z ∈ AL + L⊥.

Thirdly,

x ∈ R(PL APL + PL⊥) ⇔ x = PL APLz + PL⊥z ∈ PL AL ⊕ L⊥.

The proof is completed. �

Then we consider the case of an L-positive semidefinite A.

Lemma 1.5.2 Let A be L-p.s.d. (including p.d., p.s.d., and L-p.d.), then we have
(1)

N (APL + PL⊥) = N (PL A + PL⊥) = N (PL APL + PL⊥)

= N (A) ∩ L = N (APL) ∩ L ,

(2)

R(APL + PL⊥) = R(PL A + PL⊥) = R(PL APL + PL⊥)

= R(A) + L⊥ = PLR(A) ⊕ L⊥.

Proof (1) Firstly,

x ∈ N (APL + PL⊥) ⇔ APLx = −PL⊥x.

Multiplying the above equation on the left with PL , we get

PL APLx = PL(−PL⊥x) = 0.

Thus
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x∗ PL APLx = 0,

equivalently,
(PLx)∗ A(PLx) = 0.

Since A is L-p.s.d, we have
APLx = 0

and
PL⊥x = −APLx = 0,

thus

x ∈ N (APL + PL⊥) ⇔ APLx = −PL⊥x = 0

⇔ x ∈ N (APL) ∩ L .

Secondly,

x ∈ N (APL) ∩ L ⇔ x ∈ N (APL) and PLx = x, x ∈ L

⇔ 0 = APLx = Ax, x ∈ L

⇔ x ∈ N (A) ∩ L .

Thirdly,

x ∈ N (A) ∩ L ⇔ x ∈ N (PL A) and x ∈ L

⇔ PL Ax = 0 and PL⊥x = 0

⇔ x ∈ N (PL A + PL⊥).

Lastly, it is clear that

N (PL A + PL⊥) = N (PL APL + PL⊥)

by (1) of Lemma 1.5.1.
(2) Let A be L-p.s.d. and

N (APL + PL⊥)⊥ = N (PL A + PL⊥)⊥ = N (PL APL + PL⊥)⊥,

then we have

R(PL A + PL⊥) = R(APL + PL⊥) = R(PL APL + PL⊥).

On the other hand,
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x ∈ R(PL A + PL⊥) ⇔ x = PL Az + PL⊥z ∈ PLR(A) ⊕ L⊥

and
x ∈ R(APL + PL⊥) ⇔ x = APLz + PL⊥z ∈ R(A) + L⊥,

which completes the proof. �

Lemma 1.5.3 Let A be L-p.s.d. and S = R(PL A), then we have the following prop-
erties:

(1)

(APL + PL⊥)(APL + PL⊥)† = (APL + PL⊥)†(APL + PL⊥)

= PS + PL⊥;
(PL A + PL⊥)(PL A + PL⊥)† = (PL A + PL⊥)†(PL A + PL⊥)

= PS + PL⊥ .

(2)
PS = PL A(PL A + PL⊥)† = (APL + PL⊥)†APL;
PL⊥ = PL⊥(PL A + PL⊥)† = (APL + PL⊥)†PL⊥ .

(3)
PL(APL + PL⊥)†PL⊥ = O;
PL⊥(APL + PL⊥)†APL = O.

Proof (1) By Lemma 1.5.2 and Theorem 1.3.2,

(APL + PL⊥)(APL + PL⊥)† = PR(APL+PL⊥ ) = PR(PL A+PL⊥ )

= PS⊕L⊥ = PS + PL⊥ ,

(APL + PL⊥)†(APL + PL⊥) = PR((APL+PL⊥ )∗) = PR(PL A+PL⊥ )

= PS⊕L⊥ = PS + PL⊥ ,

(PL A + PL⊥)(PL A + PL⊥)† = PR(PL A+PL⊥ ) = PS + PL⊥ ,

and

(PL A + PL⊥)†(PL A + PL⊥) = PR((PL A+PL⊥ )∗) = PR(APL+PL⊥ )

= PS + PL⊥ .

(2) Since
PS PL = PS = PL PS and PS PL⊥ = O = PL⊥ PS,

multiplying the first equation in (1) on the right with PL and PL⊥ gives
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(APL + PL⊥)†APL = PS and (APL + PL⊥)†PL⊥ = PL⊥

respectively. Multiplying the second equation in (1) on the left with PL and PL⊥

gives
PL A(PL A + PL⊥)† = PS and PL⊥(PL A + PL⊥)† = PL⊥

respectively.
(3) Multiplying the first and second equations in (2) on the left with PL⊥ and PL

respectively gives
PL⊥(APL + PL⊥)†APL = PL⊥ PS = O

and
PL(APL + PL⊥)†PL⊥ = PL PL⊥ = O.

This completes the proof. �

The properties of A(†)
(L) are given as follows:

Theorem 1.5.4 Let A be L-p.s.d. and S = R(PL A) and T = R(APL), then A(†)
(L)

has the following properties:

(1)

A(†)
(L) = PL A(†)

(L) = A(†)
(L)PL = PL A(†)

(L)PL; (1.5.29)

A(†)
(L)APL = PL AA(†)

(L) = PS; (1.5.30)

R(A(†)
(L)) = S and N (A(†)

(L)) = S⊥; (1.5.31)

APS = APL and PS A = PL A; (1.5.32)

PL(A − AA(†)
(L)A) = (A − AA(†)

(L)A)PL = O. (1.5.33)

(2)

A(†)
(L) = A(2)

S,S⊥ = (APL)
(1,2)
S,S⊥ = (PL A)(1,2)S,S⊥

= (PL APL)
(1,2)
S,S⊥ = (PL APL)

†; (1.5.34)

AA(†)
(L) = PT,S⊥ and A(†)

(L)A = PS,T ⊥ . (1.5.35)

(3)

A(†)
(L) = PL(APL + PL⊥)† = (PL A + PL⊥)†PL (1.5.36)

= PL(PL APL + PL⊥)†

= (PL APL + PL⊥)†PL (1.5.37)

= (PL APL + PL⊥)† − PL⊥ . (1.5.38)
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(4)

A(†)
(L) = A(−1)

(S)

= PS(APS + PS⊥)−1

= (PS A + PS⊥)−1PS. (1.5.39)

Proof (1) From Definition 1.5.4, A(†)
(L) = PL(APL + PL⊥)†. The premultiplication

of PL gives PL A(†)
(L) = A(†)

(L). Also, by the first equation in (3) of Lemma 1.5.3, the
postmultiplication of PL gives

A(†)
(L)PL = PL(APL + PL⊥)†PL + PL(APL + PL⊥)†PL⊥

= PL(APL + PL⊥)†(PL + PL⊥)

= A(†)
(L).

Consequently,
PL A(†)

(L)PL = PL A(†)
(L) = A(†)

(L).

Thus (1.5.29) holds.
From the first equation in (1) of Lemma 1.5.3, we have

(APL + PL⊥)(APL + PL⊥)† = PS + PL⊥ .

Since PL PL⊥ = O and PL PS = PS , premultiplying the above equation with PL gives

PL APL(APL + PL⊥)† = PS.

Thus PL AA(†)
(L) = PS . Again, by the first equation in (1) of Lemma 1.5.3, multiplying

(APL + PL⊥)†(APL + PL⊥) = PS + PL⊥

on both the left and right by PL gives A(†)
(L)APL = PS . Thus (1.5.30) holds.

By (2) of Lemma 1.5.2,

R(A(†)
(L)) = PLR(APL + PL⊥)

= PL(R(A) + L⊥)
= PLR(A)

= R(PL A)

= S.

From (1.5.30), we have N (A(†)
(L)) ⊂ S⊥. Since
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dim(N (A(†)
(L))) = n − dim(R(A(†)

(L))) = n − dim(S) = dim(S⊥),

N (A(†)
(L)) = S⊥. Thus (1.5.31) holds.

Since PL A(PL A)†PL A = PL A,

(PL A)∗((PL A)(PL A)†)∗ = (PL A)∗;
⇒ APL(PL A)(PL A)† = APL;
⇒ APL A(PL A)† = APL;
⇒ APR(PL A) = APL .

Thus APS = APL .
The proof of PL A = PS A is similar to APL(APL)

†APL = APL . Thus (1.5.32)
holds.

It follows from (1.5.29) and (1.5.30) that

APL = APS = AA(†)
(L)APL and PL A = PS A = PL AA(†)

(L)A,

therefore, we have

(A − AA(†)
(L)A)PL = O and PL(A − AA(†)

(L)A) = O.

Thus (1.5.33) holds.
(2) From (1.5.29), (1.5.30), and (1.5.31), we have

A(†)
(L)AA(†)

(L) = A(†)
(L)APL A(†)

(L) = PS A(†)
(L) = A(†)

(L),

which implies that A(†)
(L) ∈ A{2} and A(†)

(L) = A(2)
S,S⊥ .

From (1.5.30) and (1.5.32),

APL A(†)
(L)APL = APL PS = APS = APL ,

therefore A(†)
(L) ∈ APL{1}.

From (1.5.29) and and A(†)
(L) ∈ A{2},

A(†)
(L)APL A(†)

(L) = A(†)
(L)AA(†)

(L) = A(†)
(L),

therefore A(†)
(L) ∈ (APL){2}. Thus A(†)

(L) = (APL)
(1,2)
S,S⊥ .

Similarly, we can prove A(†)
(L) = (PL A)(1,2)S,S⊥ and A(†)

(L) = (PL APL)
(1,2)
S,S⊥ .

Finally, since A is L-p.s.d.,
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x ∈ N (PL APL) ⇔ PL APLx = 0

⇔ x∗ PL APLx = 0

⇔ (PLx)∗ A(PLx) = 0

⇔ APLx = 0

⇔ x ∈ N (APL) = S⊥,

implying thatN (PL APL) = N (APL) = S⊥.Moreover,R(PL APL)=N (PL APL)
⊥

= S. It then follows that

A(†)
(L) = (PL APL)

(1,2)
S,S⊥

= (PL APL)
(1,2)
R(PL APL ),N (PL APL )

= (PL APL)
†.

Thus (1.5.34) holds.
Noting that

R(AA(†)
(L)) = AR(A(†)

(L)) = AS

= AR(PL A) = R(APL PL A)

= R(APL(APL)
∗) = R(APL)

= T

and
N (AA(†)

(L)) = N (A(†)
(L)) = S⊥,

we have AA(†)
(L) = PT,S⊥ .

The proof of A(†)
(L)A = PS,T ⊥ is similar. Thus (1.5.35) holds.

(3) From (1.5.34), we have (A(†)
(L))

∗ = (PL APL)
† = A(†)

(L) and

A(†)
(L) = (PL APL)

† = (PL(PL APL)PL)
†

= (PL APL)
(†)
(L) = PL(PL APL + PL⊥)†

= (PL APL + PL⊥)†PL ,

thus (1.5.37) holds. Since

A(†)
(L) = (PL APL)

† = (PL APL PL)
†

= (APL)
(†)
(L) = PL(APL + PL⊥)†

= (PL A + PL⊥)†PL ,

(1.5.36) holds.
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Note that

(PL APL + PL⊥)† = (PL APL)
† + PL⊥ = A(†)

(L) + PL⊥ .

Thus (1.5.38) holds.
(4) Since

AS = AR(A(†)
(L)) = R(AA(†)

(L)) and S⊥ = N (A(†)
(L)) = N (AA(†)

(L)),

we have
AS ⊕ S⊥ = R(AA(†)

(L)) ⊕ N (AA(†)
(L)) = C

n.

By Theorem 1.5.2, APS + PS⊥ is nonsingular, then A(−1)
(S) exists and

A(−1)
(S) = A(2)

S,S⊥ = (PS APS)
† = (PL APL)

† = A(†)
(L)

and
A(−1)
(S) = PS(APS + PS⊥)−1 = (PS A + PS⊥)−1PS.

Thus (1.5.39) holds. �

1.5.4 The Generalized Bott-Duffin Inverse and the Solution
of Linear Equations

The solution of the constrained linear equations (1.5.1) can be expressed by the
Bott-Duffin inverse A(−1)

(L) . The relations between the general solution of the linear
system {

Ax + B∗y = b,
Bx = d

(1.5.40)

and the generalized Bott-Duffin inverse are discussed in this subsection.
The consistency of (1.5.40) is given in following theorem.

Theorem 1.5.5 Let A ∈ C
n×n, B ∈ C

m×n, L = N (B), b ∈ C
n, and d ∈ C

m, then
(1.5.40) and the system

(APL + PL⊥)u = b − AB(1)d, d ∈ R(B) (1.5.41)

have the same consistency. A necessary and sufficient condition for the consistency
of (1.5.40) is

d ∈ R(B) and b − AB(1)d ∈ AL + L⊥. (1.5.42)
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If the condition (1.5.42) is satisfied, then the vector pair (x, y) is a solution of (1.5.40)
if and only if x and y can be expressed as

x = B(1)d + PLu (1.5.43)

y = (B(1))∗ PL⊥u + PN (B∗)v, for an arbitrary v, (1.5.44)

where u is a solution of (1.5.41).

Proof Let (x, y) be a solution pair of (1.5.40), then d ∈ R(B), B B(1)d = d, and x
and y satisfy

A(x − B(1)d) + B∗y = b − AB(1)d, (1.5.45)

B(x − B(1)d) = 0. (1.5.46)

Setu = (x − B(1)d) + B∗y.Now, from(1.5.46),x − B(1)d ∈ N (B) = L , and B∗y ∈
R(B∗) = N (B)⊥ = L⊥, we have

x − B(1)d = PLu, i.e., x = B(1)d + PLu,

which is (1.5.43). Since B∗y = PL⊥u, we have

y = (B(1))∗ PL⊥u + PN (B∗)v,

for an arbitrary v, which is (1.5.44). From (1.5.45), we obtain

APLu + PL⊥u = b − AB(1)d.

This shows that u is a solution of (1.5.41) and by Lemma 1.5.1

b − AB(1)d ∈ R(APL + PL⊥) = AL + L⊥,

which is (1.5.42).
On the other hand, let (x0, y0) be a solution pair of (1.5.40), then

x0 = B(1)d + (I − B B(1))x0
= B(1)d + PL(I − B B(1))x0
= B(1)d + PL((I − B B(1))x0 + B∗y0)

= B(1)d + PLu,

which is (1.5.43), and
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B∗y0 = b − Ax0
= b − A(B(1)d + PLu)

= b − AB(1)d − APLu

= b − AB(1)d − (b − AB(1)d − PL⊥u)

= PL⊥u

and

y0 = B(1)∗ PL⊥u + (I − B(1)∗ B∗)y0
= B(1)∗ PL⊥u + PN (B∗)y0,

which is (1.5.44).
Conversely, if the condition (1.5.42) is satisfied, then the system (1.5.41) is con-

sistent. Let u be a solution of (1.5.41) and x and y be expressed as in (1.5.43) and
(1.5.44), then

Bx = B(B(1)d + PLu) = B B(1)d = d.

Using (1.5.41) and

B∗(B(1))∗ = PR(B∗(B(1))∗),N (B∗(B(1))∗) = PR(B∗),M = PL⊥,M ,

where M = N (B∗(B(1))∗), we have

Ax + B∗y = AB(1)d + APLu + B∗(B(1))∗ PL⊥u + B∗ PN (B∗)v

= AB(1)d + APLu + PL⊥u

= AB(1)d + b − AB(1)d

= b.

This shows that (x, y) is a solution pair of (1.5.40). �
The general solution of (1.5.40) is given as follows.

Theorem 1.5.6 Let L = N (B). If the condition (1.5.42) is satisfied, then the general
solution of (1.5.40) is given by

x = A(†)
(L)b + (I − A(†)

(L)A)B(1)d + PL PN (APL+PL⊥ )z, (1.5.47)

y = (B(1))∗(I − AA(†)
(L))b + (B(1))∗(AA(†)

(L)A − A)B(1)d

− (B(1))∗ APL PN (APL +PL⊥ )z + PN (B∗)v, (1.5.48)

for arbitrary z ∈ C
n and v ∈ C

m.

Proof From (1.2.4), the general solution of (1.5.41) is

u = (APL + PL⊥)†(b − AB(1)d) + PN (APL +PL⊥ )z, (1.5.49)
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for an arbitrary z. Substituting u in (1.5.43) with the above equation, we obtain
(1.5.47).

By (1.5.42), we have

(APL + PL⊥)(APL + PL⊥)†(b − AB(1)d) = b − AB(1)d,

equivalently,

PL⊥(APL + PL⊥)†(b − AB(1)d) = (I − AA(†)
(L))(b − AB(1)d). (1.5.50)

From (APL + PL⊥)PN (APL+PL⊥ ) = O, we have

PL⊥ PN (APL+PL⊥ ) = −APL PN (APL +PL⊥ ). (1.5.51)

Substituting u in (1.5.44) with (1.5.49) and using (1.5.50) and (1.5.51), we get

y = (B(1))∗ PL⊥((APL + PL⊥)†(b − AB(1)d) + PN (APL +PL⊥ )z)

+ PN (B∗)v

= (B(1))∗(I − AA(†)
(L))(b − AB(1)d)

− (B(1))∗ APL PN (APL +PL⊥ )z + PN (B∗)v

= (B(1))∗(I − AA(†)
(L))b + (B(1))∗(AA(†)

(L)A − A)B(1)d

− (B(1))∗ APL PN (APL +PL⊥ )z + PN (B∗)v

for arbitrary z ∈ C
n and v ∈ C

m . Thus (1.5.48) holds. �

Corollary 1.5.1 If A is L-p.s.d. in Theorem 1.5.6, then the general solution of
(1.5.40) is simplified to

x = A(†)
(L)b + (I − A(†)

(L)A)B(1)d + PN (A)∩Lz,

y = (B(1))∗(I − AA(†)
(L))b + (B(1))∗(AA(†)

(L)A − A)B(1)d + PN (B∗)v,

for arbitrary z ∈ C
n and v ∈ C

m.

Proof If A is L-p.s.d., then

N (APL + PL⊥) = N (A) ∩ L ⊂ L ,

implying that
PL PN (APL +PL⊥ ) = PN (APL +PL⊥ ) = PN (A)∩L . (1.5.52)
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Since
R(AB(1)) ⊂ R(A) ⊂ R(A) + L⊥ = (N (A) ∩ L)⊥,

we have

(B(1))∗ APL PN (APL +PL⊥ )z = (B(1))∗ APN (A)∩Lz

= (PN (A)∩L AB(1))∗z

= 0. (1.5.53)

The proof is completed by substituting (1.5.52) and (1.5.53) into (1.5.47) and (1.5.48)
respectively. �

Exercises 1.5

1. Prove that
(1) PL⊥ A(−1)

(L) = O;

(2) A(−1)
(L) PL⊥ = O.

2. Let A be L-p.s.d. and S = R(PL A), then
(1) PS PL = PS = PL PS;
(2) PS PL⊥ = O = PL⊥ PS .

Remarks

This chapter surveys basic concepts and important results on the solution of linear
equations and various generalized inverses. Sections1.1, 1.2, 1.3 and 1.4 are based
on [5, 7, 8], Sect. 1.5 is based on [6, 9].

As for the linear least squares problem, there are several excellent books and
papers [10–13].

The ray uniqueness of the Moore-Penrose inverse is discussed in [14]. Some
results on the weighted projector and weighted generalized inverse matrices can be
found in [15].

The matrix Moore-Penrose inverse can be generalized to tensors [16, 17] and
projectors [18].

Other types of generalized inverses are studied, for example, outer generalized
inverse [19–22], MK-weighted generalized inverse [23], signed generalized inverse
[24–26], scaled projections and generalized inverses [27, 28], core inverses [29, 30],
and related randomized generalized SVD [31].

The analysis of a recursive least squares signal processing algorithm is given in
[32]. Applications of the {2} inverse in statistics can be found in [33].
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Chapter 2
Drazin Inverse

In Chap.1, we discussed the Moore-Penrose inverse and the {i, j, k} inverses which
possess some “inverse-like” properties. The {i, j, k} inverses provide some types
of solution, or the least-square solution, for a system of linear equations just as
the regular inverse provides a unique solution for a nonsingular system of linear
equations. Hence the {i, j, k} inverses are called equation solving inverses. However,
there are some properties of the regular inverse matrix that the {i, j, k} inverses do
not possess. For example, if A, B ∈ C

n×n , then there is no classC{i, j, k} of {i, j, k}
inverses of A and B such that A−, B− ∈ C{i, j, k} implies any of the following
properties:

(1) AA− = A−A;
(2) (A−)p = (Ap)− for positive integer p;
(3) λ ∈ λ(A) ⇔ λ† ∈ λ(A−), where λ(A) denotes the set of the eigenvalues of an

n × n matrix A;
(4) Ap+1A− = Ap for positive integer p;
(5) P−1AP = B ⇒ P−1A−P = B−.

TheDrazin inverse and its special case of the group inverse introduced in Sects. 2.1
and 2.2 possess all of the above properties. Moreover, in some cases, the Drazin
inverse and group inverse provide not only solutions of linear equations, but also
solutions of linear differential equations and linear difference equations. Hence, they
resemble the regular inverse more closely than the {i, j, k} inverses. The weighted
Drazin inverse presented in Sect. 2.3 is a generalization of the Drazin inverse for
rectangular matrices, with some interesting applications.

© Springer Nature Singapore Pte Ltd. and Science Press 2018
G. Wang et al., Generalized Inverses: Theory and Computations,
Developments in Mathematics 53, https://doi.org/10.1007/978-981-13-0146-9_2
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2.1 Drazin Inverse

The Drazin inverse is associated with matrix index, which is defined only for square
matrices. In this section,wefirst introduce the indexof a squarematrix before defining
the Drazin inverse. Then we present a matrix decomposition related to the Drazin
inverse.

2.1.1 Matrix Index and Its Basic Properties

The index of a square matrix is defined as follows.

Definition 2.1.1 Let A ∈ C
n×n . If

rank(Ak+1) = rank(Ak), (2.1.1)

then the smallest positive integer k for which (2.1.1) holds is called the index of A
and is denoted by

Ind(A) = k.

If A is nonsingular, then Ind(A) = 0; if A is singular, then Ind(A) ≥ 1.

In the following, we only consider the singular case.
The basic properties of the index of a square matrix are summarized in the fol-

lowing theorem.

Theorem 2.1.1 Let A ∈ C
n×n.

(1) If Ind(A) = k, then

rank(Al) = rank(Ak), l ≥ k; (2.1.2)

R(Al) = R(Ak), l ≥ k; (2.1.3)

N (Al) = N (Ak), l ≥ k. (2.1.4)

(2) Ind(A) = k if and only if k is the smallest positive integer such that

Ak = Ak+1X, (2.1.5)

for some matrix X.
(3) Ind(A) = k if and only ifR(Ak) andN (Ak) are complementary subspaces, that

is,
R(Ak) ⊕ N (Ak) = C

n. (2.1.6)
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Proof (1) It follows from rank(Ak+1) = rank(Ak) and Theorem 1.1.3 that

R(Ak+1) = R(Ak), N (Ak+1) = N (Ak).

Therefore Ak = Ak+1X holds for some matrix X , then multiplying on the left with
Al−k gives

Al = Al+1X, l ≥ k.

Hence rank(Al) = rank(Al+1). By Theorem 1.1.3, we have

R(Al+1) = R(Al) and N (Al+1) = N (Al), l ≥ k.

Thus (2.1.2)–(2.1.4) hold.
(2) Since rank(Ak) = rank(Ak+1) and Ak = Ak+1X are equivalent, (2.1.5) holds.
(3) Suppose that rank(Ak) > rank(Ak+1), equivalently, there exists some x ∈ C

n

such that
Ak+1x = 0 and Akx �= 0.

Let y = Akx ∈ R(Ak), then Aky = A2kx = 0. Thus

y ∈ N (Ak) and 0 �= y = Akx ∈ R(Ak) ∩ N (Ak),

which completes the proof. �

2.1.2 Drazin Inverse and Its Properties

In this section, we first define the Drazin inverse, then show its existence and unique-
ness and study its basic properties.

Definition 2.1.2 Let A ∈ C
n×n and Ind(A) = k, then the matrix X ∈ C

n×n

satisfying

(1k) Ak X A = Ak, (2.1.7)

(2) X AX = X, (2.1.8)

(5) AX = X A (2.1.9)

is called the Drazin inverse of A and is denoted by X = Ad or X = A(1k ,2,5).

It is easy to verify that (2.1.7)–(2.1.9) are equivalent to

Ak+1X = Ak,

AX2 = X,
AX = X A,
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and by Definition 2.1.1, we have

Al+1X = Al , l ≥ k.

If A is nonsingular, then Ad = A−1.
The existence and uniqueness of the Drazin inverse are given in the following

theorem.

Theorem 2.1.2 Let A ∈ C
n×n and Ind(A) = k, then the Drazin inverse of A is exis-

tent and unique.

Proof EXISTENCE: Since Ind(A) = k, by (2.1.6), R(Ak) ⊕ N (Ak) = C
n . Let

P = [v1, v2, . . . , vr , vr+1, vr+2, . . . , vn],

where v1, v2, . . . , vr and vr+1, vr+2, . . . , vn form the bases for R(Ak) and N (Ak)

respectively. Set

P = [P1 P2], P1 = [v1, v2, . . . , vr ], P2 = [vr+1, vr+2, . . . , vn].

Since R(Ak) and N (Ak) are invariant subspaces for A, there exist C ∈ C
r×r and

N ∈ C
(n−r)×(n−r) such that

AP1 = P1C and AP2 = P2N .

Thus A has the decomposition:

A = P

[
C O
O N

]
P−1. (2.1.10)

Since AkN (Ak) = O, we have O = Ak P2 = P2Nk . Thus Nk = O. Moreover

Ak = P

[
Ck O
O O

]
P−1

and
r = rank(Ak) = rank(Ck) ≤ r.

Thus rank(C) = r , that is, C is a nonsingular matrix of order r . Using (2.1.10), we
set

X = P

[
C−1 O
O O

]
P−1. (2.1.11)

It is easy to verify that X satisfies (2.1.7)–(2.1.9). Thus X = Ad .
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UNIQUENESS: Suppose both X and Y are the Drazin inverses of A. Set

AX = X A = E and AY = Y A = F.

It is clear that
E2 = E and F2 = F.

Thus

E = AX = Ak Xk = AkY AXk = AY Ak Xk = FAX = FE

F = Y A = Y k Ak = Y k Ak X A = Y AE = FE .

Therefore E = F and

X = AX2 = EX = FX = Y AX = Y E = Y F = Y 2A = AY 2 = Y,

meaning that the Drazin inverse is unique. �

If A is nonsingular, then it is easy to show that A−1 can be expressed as a poly-
nomial of A. Indeed, if A ∈ C

n×n
n , the characteristic polynomial of A is

f (λ) = det(λI − A)

= λn + a1λ
n−1 + · · · + an−1λ + an,

where I is the identity matrix of order n. By Cayley-Hamilton Theorem, f (A) = O
implies

A−1 = −(An−1 + a1A
n−2 + · · · + an−1 I )/an.

Hence A−1 is expressed as a polynomial of A. This property does not carry over to
the {i, j, k} inverses. However, the Drazin inverse of A is always expressible as a
polynomial of A.

Theorem 2.1.3 Let A ∈ C
n×n and Ind(A) = k. There exists a polynomial q(x) such

that
Ad = Al(q(A))l+1, l ≥ k. (2.1.12)

Proof By (2.1.10),

A = P

[
C O
O N

]
P−1,

where P and C are nonsingular and N is nilpotent of index k.
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Since C is nonsingular, there exists a polynomial q(x) such that C−1 = q(C).
Thus

Al(q(A))l+1 = P

[
Cl O
O O

]
P−1P

[
q(C) O
O q(N )

]l+1

P−1

= P

[
Cl(q(C))l+1 O

O O

]
P−1

= P

[
C−1 O
O O

]
P−1

= Ad ,

which completes the proof. �

The basic properties of the Drazin inverse are summarized in the following theo-
rem.

Theorem 2.1.4 Let A ∈ C
n×n and Ind(A) = k, then

R(Ad) = R(Al), l ≥ k, (2.1.13)

N (Ad) = N (Al), l ≥ k, (2.1.14)

AAd = Ad A = PR(Ad ),N (Ad ) = PR(Al ),N (Al ), l ≥ k, (2.1.15)

I − AAd = I − Ad A = PN (Al ),R(Al ), l ≥ k. (2.1.16)

Proof (1) Let Ad = X . From the definition of the Drazin inverse,

Ak = Ak+1X = X Ak+1.

Multiplication on the right by Al−k gives

Al = X Al+1, l ≥ k.

Thus R(Al) ⊂ R(X). From (2.1.12), R(X) ⊂ R(Al). Therefore, we have

R(X) = R(Al), l ≥ k.

(2) From (2.1.13), rank(X) = rank(Al). By (2.1.12), N (Al) ⊂ N (X). Thus

N (X) = N (Al), l ≥ k.

(3) Let X = Ad ∈ A{1k, 2, 5}, then X AX = X , X ∈ A{1} and AX = X A. Thus

R(AX) = R(X A) = R(X) and N (AX) = N (X).
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Since AX = X A is idempotent, it follows from Theorem 1.3.1 that

AX = X A = PR(AX),N (AX) = PR(X),N (X) = PR(Al ),N (Al ), l ≥ k.

(4) From (2.1.6), R(Al) ⊕ N (Al) = C
n . By Exercise 1.3.4,

PR(Al ),N (Al ) + PN (Al ),R(Al ) = I.

Thus
I − AAd = I − Ad A = PN (Al ),R(Al ).

This completes the proof. �

From the above theorem, we have

Ad = A(2)
R(Al ),N (Al )

,

which shows that the Drazin inverse Ad is the {2} inverse of A with rangeR(Al) and
null space N (Al).

Recall the Zlobec formula (1.3.10):

A† = A∗(A∗AA∗)(1)A∗

for A†, where the Moore-Penrose inverse A† is expressed by any {1} inverse of
A∗AA∗. Similarly, it is possible to express the Drazin inverse in terms of any {1}
inverse of A2l+1.

Theorem 2.1.5 Let A ∈ C
n×n and Ind(A) = k, then for any {1} inverse of A2l+1,

for each integer l ≥ k,
Ad = Al(A2l+1)(1)Al , (2.1.17)

in particular,
Ad = Al(A2l+1)†Al .

Proof Let

A = P

[
C O
O N

]
P−1,

where P and C are nonsingular, N is nilpotent of index k, then

A2l+1 = P

[
C2l+1 O
O O

]
P−1.
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If X is a {1} inverse of A2l+1, then it is easy to see that

X = P

[
C−2l−1 X1

X2 X3

]
P−1,

where X1, X2 and X3 are arbitrary. It can be verified that

Ad = Al X Al

by multiplying the block matrices. �

In Theorem 1.1.5, the Moore-Penrose inverse is expressed by applying the full
rank factorization of a matrix. The Drazin inverse can also be obtained by applying
the full rank factorization.

Theorem 2.1.6 Let A ∈ C
n×n. We perform a sequence of full rank factorizations:

A = B1C1, C1B1 = B2C2, C2B2 = B3C3, . . .

so that BiCi are full rank factorizations of Ci−1Bi−1, for i = 2, 3, . . .. Eventually,
there will be a pair of factors, Bk and Ck, such that either (Ck Bk)

−1 exists or Ck Bk =
O. If k is the smallest integer for which this occurs, then

Ind(A) =
{
k when (Ck Bk)

−1 exists,

k + 1 when Ck Bk = O.

When Ck Bk is nonsingular,

rank(Ak) = number of columns of Bk = number of rows of Ck

and
R(Ak) = R(B1B2 · · · Bk), N (Ak) = N (CkCk−1 · · ·C1).

Moreover

Ad =
{
B1 · · · Bk(Ck Bk)

−(k+1)Ck · · ·C1 when (Ck Bk)
−1 exists,

O when Ck Bk = O.
(2.1.18)

Proof If Ci Bi is p × p and has rank q < p, then Ci+1Bi+1 will be q × q. That is,
the size ofCi+1Bi+1 must be strictly smaller than that ofCi Bi whenCi Bi is singular.
It follows that there eventually must be a pair of factors Bk and Ck , such that Ck Bk

is either nonsingular or zero matrix. Let k be the smallest integer when this occurs
and write
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Ak = (B1C1)
k = B1(C1B1)

k−1C1

= B1(B2C2)
k−1C1 = B1B2(C2B2)

k−2C2C1

= · · ·
= B1B2 · · · Bk−1(BkCk)Ck−1Ck−2 · · ·C1,

Ak+1 = B1B2 · · · Bk(Ck Bk)CkCk−1 · · ·C1.

(2.1.19)

Assume that Ck Bk is nonsingular. If Bk ∈ C
p×r
r and Ck ∈ C

r×p
r , then rank(BkCk)

= r . Since Ck Bk is r × r and nonsingular, it follows that

rank(Ck Bk) = r = rank(BkCk).

Noting that Bi and Ci are of full column rank and full row rank respectively, for
i = 1, 2, 3, . . .. It follows from (2.1.19) that

rank(Ak+1) = rank(Ck Bk) = rank(BkCk) = rank(Ak).

Since k is the smallest integer for this to hold, it must be the case that Ind(A) = k.
We can clearly see that rank(Ak) equals the number of columns of Bk , which, in

turn, equals the number of rows of Ck .
By using the fact that Bi and Ci are full rank factors, for i = 1, 2, 3, . . ., it is not

difficult to show that

R(Ak) = R(B1B2 · · · Bk), N (Ak) = N (CkCk−1 · · ·C1).

If Ck Bk = O, then Ak+1 = O, rank(Ak+2) = rank(Ak+1) = 0. Thus Ind(A) =
k + 1.

To prove the formula (2.1.18), one simply verifies the three conditions (2.1.7)–
(2.1.9) of Definition 2.1.2. �

2.1.3 Core-Nilpotent Decomposition

If Ind(A) = k �= 1, then Ad is not always a {1} inverse of A ∈ C
n×n . Although

AAd A �= A, the product AAd A = A2Ad still plays an important role in the theory
of the Drazin inverse.

Definition 2.1.3 Let A ∈ C
n×n , then the product

CA = AAd A = A2Ad = Ad A
2

is called the core part of A.

Theorem 2.1.7 Let A ∈ C
n×n, Ind(A) = k, and NA = A − CA, then NA satisfies

Nk
A = O and Ind(NA) = k.
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Proof The theorem is trivial when Ind(A) = 0. Thus, assuming Ind(A) ≥ 1, we
have

Nk
A = (A − AAd A)

k = Ak(I − AAd)
k

= Ak(I − AAd) = Ak − Ak

= O.

Since Nl
A = Al − Al+1Ad �= O for l < k, we have Ind(NA) = k. �

Definition 2.1.4 Let A ∈ C
n×n , then the matrix NA = A − CA = (I − AAd)A is

called the nilpotent part of A and the decomposition

A = CA + NA

is called the core-nilpotent decomposition of A.

In terms of the decomposition (2.1.10) of A, we have the following results.

Theorem 2.1.8 Let A ∈ C
n×n be written as (2.1.10):

A = P

[
C O
O N

]
P−1,

where P and C are nonsingular and N is nilpotent of index k = Ind(A), then

CA = P

[
C O
O O

]
P−1

and

NA = P

[
O O
O N

]
P−1.

Proof The above two equations can be easily verified by using (2.1.11):

Ad = P

[
C−1 O
O O

]
P−1

and the definitions of CA and NA. �

The next theorem summarizes some of the basic relationships between A, CA,
NA and Ad .

Theorem 2.1.9 Let A ∈ C
n×n, the following statements are true.

(1) Ind(Ad) = Ind(CA) =
{
1 if Ind(A) ≥ 1,
0 if Ind(A) = 0;

(2) NACA = CANA = O;
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(3) NAAd = AdNA = O;
(4) CAAAd = AAdCA = CA;
(5) (Ad)d = CA;
(6) A = CA ⇔ Ind(A) ≤ 1;
(7) ((Ad)d)d = Ad;
(8) Ad = (CA)d;
(9) (Ad)

∗ = (A∗)d .

The proof is left to the reader as an exercise.

Exercise 2.1

1. Let T ∈ C
n×n , R ∈ C

r×n
n , and S ∈ C

n×s
n . Prove

rank(RT S) = rank(T ).

2. Prove Theorem 2.1.9.
3. Show that

(Al)d = (Ad)
l , l = 1, 2, . . . .

4. Prove that
rank(A) = rank(Ad) + rank(NA).

5. If A, B ∈ C
n×n and AB = BA, then

(AB)d = Bd Ad .

6. If A, B ∈ C
n×n , then

(AB)d = A((BA)2)d B

even if AB �= BA.
7. Let Ak+1U = Ak and V Al+1 = Al , prove that

(1) Ind(A) ≤ min{k, l};
(2) Ad = AkUk+1 = V l+1Al = V AkUk = V l AlU ;
(3) AAd = Ak+mUk+m = V l+n Al+n for all integers m ≥ 0 and n ≥ 0;
(4) V Ak+1 = Ak , if k ≤ l,

Al+1U = Al , if k ≥ l.

2.2 Group Inverse

Let A ∈ C
n×n . If Ind(A) = 1, then this special case of the Drazin inverse is known as

the group inverse. Notice that in this case, the condition (1k) becomes AAd A = A.
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2.2.1 Definition and Properties of the Group Inverse

We start with the definition of the group inverse.

Definition 2.2.1 Let A ∈ C
n×n . If X ∈ C

n×n satisfies

(1) AX A = A,
(2) X AX = X ,
(5) AX = X A,

then X is called the group inverse of A and denoted by X = Ag or X = A(1,2,5).

From Sect. 2.1.2, for every A ∈ C
n×n , Ad always uniquely exists. However, the

group inverse may not exist.

Theorem 2.2.1 Let A ∈ C
n×n be singular, then A has a group inverse if and only if

Ind(A) = 1. When the group inverse exists, it is unique.

Proof Let X = A(1,2,5), then X ∈ A{1, 2}. From Sect. 1.3,

AX = PR(A),N (X), and X A = PR(X),N (A).

Since AX = X A, we have

R(X) = R(A), N (X) = N (A),

and
X = A(1,2)

R(A),N (A). (2.2.1)

By Theorem 1.3.5, there is at most one such inverse, and such an inverse exists
if and only ifR(A) andN (A) are complementary subspaces. By (2.1.6),R(A) and
N (A) are complementary subspaces if and only if Ind(A) = 1. �

Another necessary and sufficient condition for the existence of the group inverse
is given in the next theorem.

Theorem 2.2.2 Let A ∈ C
n×n, then A has a group inverse if and only if there exist

nonsingular matrices P and C, such that

A = P

[
C O
O O

]
P−1.

Proof From Theorem 2.2.1, A has a group inverse Ag if and only if Ind(A) = 1. By
Theorem 2.1.9, Ind(A) = 1 if and only if

A = CA = P

[
C O
O O

]
P−1.
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The proof is completed by verifying that

Ag = P

[
C−1 O
O O

]
P−1

is the group inverse of A. �

From Theorem 2.1.3, the group inverse of A can be expressed as a polynomial of
A.

Corollary 2.2.1 Let A ∈ C
n×n and Ind(A) = 1, then there exists a polynomial q(x)

such that
Ag = A(q(x))2.

From Theorem 2.1.4, the basic properties of the group inverse are as follows.

Corollary 2.2.2 Let A ∈ C
n×n and Ind(A) = 1, then

R(Ag) = R(A),
N (Ag) = N (A),

AAg = AgA = PR(Ag),N (Ag) = PR(A),N (A),

I − AAg = I − AgA = PN (A),R(A).

From Theorem 2.1.5, the group inverse Ag can be expressed by any {1} inverse
of A3.

Corollary 2.2.3 Let A ∈ C
n×n and Ind(A) = 1, then

Ag = A(A3)(1)A.

In particular,
Ag = A(A3)†A.

From Theorem 2.1.6, the group inverse Ag can be expressed by applying the full
rank factorization of A.

Corollary 2.2.4 Let A ∈ C
n×n and Ind(A) = 1. If A = BC is a full rank factoriza-

tion, then
Ag = B(CB)−2C.

There are caseswhen the group inverse coincideswith theMoore-Penrose inverse.

Definition 2.2.2 Suppose A ∈ C
n×n and Ind(A) = r . If A†A = AA†, then A is

called an EPr , or simply EP, matrix.

Theorem 2.2.3 Let A ∈ C
n×n and Ind(A) = r , then Ag = A† if and only if A is an

EP matrix.



78 2 Drazin Inverse

Proof From (2.2.1) and (1.3.9), we have

Ag = A(1,2)
R(A),N (A), and A† = A(1,2)

R(A∗),N (A∗).

Thus

Ag = A† ⇔ R(A) = R(A∗)
⇔ PR(A) = PR(A∗)

⇔ A†A = AA†,

completing the proof. �

2.2.2 Spectral Properties of the Drazin and Group Inverses

As we know, if A is nonsingular, then A does not have 0 as an eigenvalue and

Ax = λx ⇔ A−1x = λ−1x,

that is, x is an eigenvector of A associated with the eigenvalue λ if and only if x is
an eigenvector of A−1 associated with the eigenvalue λ−1. Can we generalize this
spectral property of the regular inverse to the generalized inverses?

We first introduce a generalization of eigenvectors.

Definition 2.2.3 The principal vector of grade p associated with an eigenvalue λ is
a vector x such that

(A − λI )px = 0 and (A − λI )p−1x �= 0,

where p is some positive integer.

Evidently, principal vectors are a generalization of eigenvectors. In fact an eigen-
vector is a principal vector of grade 1.The term“principal vector of grade p associated
with the eigenvalue λ” is abbreviated to “λ-vector of A of grade p”.

It is not difficult to show that if A is nonsingular, a vector x is a λ−1-vector of A−1

of grade p if and only if it is a λ-vector of A of grade p, i.e.,

{
(A − λI )px = 0
(A − λI )p−1x �= 0

⇔
{
(A−1 − λ−1 I )px = 0
(A−1 − λ−1 I )p−1x �= 0.

We then generalize the above spectral property of the regular inverse to the group
inverse and Drazin inverse.



2.2 Group Inverse 79

Lemma 2.2.1 If Ind(A) = 1, then the 0-vectors of A are all of grade 1.

Proof Since Ind(A) = 1, we have rank(A2) = rank(A). ThusN (A2) = N (A). Let
x be a 0-vector of A of grade p, then

Apx = 0, i.e., A2(Ap−2x) = 0, implying Ap−2x ∈ N (A2) = N (A).

Thus Ap−1x = 0. Continuing the same process, we get Ax = 0. �

Lemma 2.2.2 Let x be a λ-vector of A of grade p, λ �= 0, then x ∈ R(Al), where l
is a positive integer.

Proof By the assumption, we have

(A − λI )px = 0.

Expanding the left side by the Binomial Theorem gives

p∑
i=0

(−1)iλiCi
p A

p−ix = 0.

Moving the last term to the right side and dividing the both sides by its coefficient
(−1)p−1λp �= 0, we get

p−1∑
i=0

(−1)i−p+1λi−pCi
p A

p−ix = x.

Set j = i + 1, then the above equation becomes

p∑
i=1

(−1) j−pλ j−p−1C j−1
p Ap− j+1x = x.

Set c j = (−1) j−pλ j−p−1C j−1
p , then the above equation gives

p∑
i=0

c j A
p− j+1x = x.

Hence
x = c1A

px + c2A
p−1x + · · · + cp Ax. (2.2.2)
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Successive premultiplication of (2.2.2) by A gives

Ax = c1Ap+1x +c2Apx + · · · + cp A2x
A2x = c1Ap+2x +c2Ap+1x + · · · + cp A3x

...

Al−1x = c1Ap+l−1x +c2Ap+l−2x + · · · + cp Alx.

(2.2.3)

Successive substitutions of the equations in (2.2.3) into the terms on the right side
of (2.2.2) eventually give

x = Alq(A)x,

where q is some polynomial. �

Lemma 2.2.3 Let A ∈ C
n×n and

X Al+1 = Al (2.2.4)

for some positive integer l, then every λ-vector of A of grade p for λ �= 0 is a
λ−1-vector of X of grade p.

Proof The proof will be by induction on the grade p. For p = 1, let λ �= 0 and x
be a λ-vector of A of grade 1, that is, Ax = λx, then Al+1x = λl+1x, and therefore
x = λ−l−1Al+1x, consequently, by (2.2.4),

Xx = λ−l−1X Al+1x = λ−l−1Alx = λ−1x.

Thus the lemma is true for p = 1.
Now, suppose that it is true for p = 1, 2, . . . , r , and let x be a λ-vector of A of

grade r + 1, then, by Lemma 2.2.2, x ∈ R(Al), i.e., x = Aly for some y. Thus

(X − λ−1 I )x = (X − λ−1 I )Aly

= X (Al − λ−1Al+1)y

= X (I − λ−1A)Aly

= X (I − λ−1A)x

= −λ−1X (A − λI )x. (2.2.5)

Since x is a λ-vector of A of grade r + 1,

(A − λI )r+1x = 0 and (A − λI )rx �= 0,

that is,

(A − λI )r ((A − λI )x) = 0, and (A − λI )r−1((A − λI )x) �= 0.
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Thus (A − λI )x is aλ-vector of A of grade r . By the induction hypothesis, (A − λI )x
is a λ−1-vector of X of grade r . Consequently,

(X − λ−1 I )r (A − λI )x = 0,

and
z ≡ (X − λ−1 I )r−1(A − λI )x �= 0. (2.2.6)

Thus (X − λ−1 I )z = 0 and
Xz = λ−1z. (2.2.7)

It is clear that
(X − λ−1 I )X = X (X − λ−1 I ). (2.2.8)

By using (2.2.5)–(2.2.8), we have

(X − λ−1 I )r+1x = (X − λ−1 I )r (−λ−1X (A − λI )x)

= −λ−1X (X − λ−1 I )r (A − λI )x

= 0,

and

(X − λ−1 I )rx = (X − λ−1 I )r−1(−λ−1X (A − λI )x)

= −λ−1Xz

= −λ−2z

�= 0.

This completes the induction. �

The following theorem shows the spectral property of the group inverse.

Theorem 2.2.4 Let A ∈ C
n×n and Ind(A) = 1, then x is a λ-vector of A of grade

p if and only if x is a λ†-vector of Ag of grade p.

Proof Since X = Ag , we have X A2 = A and AX2 = X , it then follows from
Lemma 2.2.3 that, for all λ �= 0, x is a λ-vector of A of grade p if and only if x
is a λ−1-vector of Ag of grade p. For λ = 0, since Ind(A) = 1 = Ind(Ag), from
Lemma 2.2.1, the 0-vectors of A and Ag are all of grade 1. Let x be a 0-vector of
A, then Ax = 0 and x �= 0. Thus x ∈ N (A) = N (Ag). Therefore Agx = 0, i.e., x is
also a zero vector of Ag and vice versa. �

The following theorem shows that the spectral property of theDrazin inverse is the
same as that of the group inverse with regard to nonzero eigenvalues and associated
eigenvectors, but weaker than the group inverse for 0-vectors.
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Theorem 2.2.5 Let A ∈ C
n×n and Ind(A) = k, then for all λ �= 0, x is a λ-vector

of A of grade p if and only if x is a λ−1-vector of Ad of grade p, and for λ = 0, x is
a 0-vector of A if and only if x is a 0-vector of Ad (with no regard to grade).

Proof By the assumption of Ind(A) = k, Ad satisfies

Ad A
k+1 = Ak and A(Ad)

2 = Ad .

From Lemma 2.2.3, for all λ �= 0, x is a λ-vector of A of grade p if and only if x is a
λ−1-vector of Ad of grade p. For λ = 0, from Theorem 2.1.9, we have Ind(Ad) = 1.
By using Lemma 2.2.1, the 0-vectors of Ad are all of grade 1. Let x be a 0-vector of
Ad , that is, Adx = 0 and x �= 0, then

x ∈ N (Ad) = N (Al), l ≥ k.

Therefore Alx = 0. So x is a 0-vector of A of grade l and vice versa. �

Exercises 2.2

1. Prove that (Ag)g = A.
2. Prove that (A∗)g = (Ag)

∗.
3. Prove that (Al)g = (Ag)

l, l = 1, 2, . . ..
4. Prove that (Ad)g = A2Ad .
5. Prove that Ad(Ad)g = AAd .
6. Prove that if A is nilpotent, then Ad = O.
7. Let A ∈ C

n×n , dim(N (A)) = 1, and x �= 0 and y �= 0 satisfy

Ax = 0 and A∗y = 0.

Prove that
(1) Ag exists ⇔ y∗x �= 0.

(2) If y∗x �= 0, then I − AAg = xy∗

y∗x
.

8. Let A ∈ C
n×n
n−r , Ind(A) = 1, and U ∈ C

n×r
r and V ∈ C

n×r
r satisfy

AU = O, A∗V = O, and V ∗U = I.

Prove that
(1) A† = (I −UU †)Ag(I − VV †).
(2) Ag = (I −UV ∗)A†(I −UV ∗).
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2.3 W-Weighted Drazin Inverse

In 1980, the definition of the Drazin inverse of a square matrix was extended to
rectangular matrix by Cline and Greville [1].

Definition 2.3.1 Let A ∈ C
m×n and W ∈ C

n×m , then the matrix X ∈ C
m×n satisfy-

ing

(AW )k+1XW = (AW )k, for some nonnegative integer k, (2.3.1)

XW AWX = X, (2.3.2)

AW X = XW A (2.3.3)

is called the W-weighted Drazin inverse of A and denoted by X = Ad,W .

It is clear that if W = I and A ∈ C
n×n , then X = Ad .

The existence and uniqueness of the W-weighted Drazin inverse are given in the
following theorems.

Theorem 2.3.1 Let A ∈ C
m×n. If there exists a matrix X ∈ C

m×n satisfying (2.3.1)–
(2.3.3) for some W ∈ C

n×m, then it must be unique.

Proof Suppose both X1 and X2 satisfy (2.3.1)–(2.3.3) for some nonnegative integers
k1 and k2 respectively. Let k = max(k1, k2), then

X1 = X1W AWX1

= X1W AWX1W AWX1

= AW X1W AWX1WX1

= AW AWX1WX1WX1

= (AW )2X1(WX1)
2

= · · ·
= (AW )k X1(WX1)

k

= (AW )k+1X2WX1(WX1)
k

= X2(W A)k+1WX1(WX1)
k

= X2(W A)kW AW X1WX1(WX1)
k−1

= X2(W A)kW X1W AWX1(WX1)
k−1

= X2(W A)kW X1(WX1)
k−1

= · · ·
= X2W AWX1.

Similarly,
X2 = (AW )k+1X2(WX2)

k+1.
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Postmultiplying (2.3.3) with W gives

(AW )(X2W ) = (X2W )(AW ).

Thus
X2W = (AW )k+1(X2W )k+2 = (X2W )k+2(AW )k+1.

Moreover,

X1 = X2W AWX1

= (X2W )k+2(AW )k+1AW X1

= (X2W )k+2(AW )k+1X1W A

= (X2W )k+2(AW )k A

= (X2W )k+1X2(W A)k+1

= (X2W )k X2WX2W A(W A)k

= (X2W )k X2W AWX2(W A)k

= (X2W )k X2(W A)k

= · · ·
= X2WX2W A

= X2W AWX2

= X2,

which completes the proof. �

To derive the conditions for the existence of the W-weighted Drazin inverse, we
need some results when Ind(W A) = k.

Theorem 2.3.2 Let A ∈ C
m×n, W ∈ C

n×m, and Ind(W A) = k, then

(AW )d = A(W A)2dW, and Ind(AW ) ≤ k + 1. (2.3.4)

Proof By the assumption of Ind(W A) = k, (W A)d satisfies

(W A)d(W A)k+1 = (W A)k,
(W A)2d(W A) = (W A)d ,
(W A)d(W A) = (W A)(W A)d .

(2.3.5)

Setting X = A(W A)2dW , we have
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(AW )k+2X = (AW )k+2A(W A)2dW

= A(W A)k+2(W A)2dW

= A(W A)kW

= (AW )k+1,

X2(AW ) = (A(W A)2dW )2AW

= A(W A)d(W A)dW

= X,

and

X (AW ) = A(W A)2dW AW

= AW A(W A)2dW

= AW X.

Consequently, X = (AW )d and Ind(AW ) ≤ k + 1. �

Corollary 2.3.1 Under the assumptions in Theorem 2.3.2, we have

W (AW )
p
d = (W A)pd W (2.3.6)

and
A(W A)pd = (AW )

p
d A, (2.3.7)

for any positive integer p.

Proof The proof is by induction on the positive integer p. The assertion (2.3.6) is
true for p = 1. It follows from (2.3.4) and (2.3.5) that

W (AW )d = W A(W A)2dW = (W A)2dW AW = (W A)dW.

Suppose that the assertion (2.3.6) is true for all the positive integer less than p, then
we have

W (AW )
p−1
d = (W A)p−1

d W,

implying that

W (AW )
p
d = W (AW )

p−1
d (AW )d

= (W A)p−1
d W (AW )d

= (W A)p−1
d (W A)dW

= (W A)pd W.

The proof of (2.3.7) is similar and is left to the reader as an exercise. �
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By using (AW )d and (W A)d , the W-weighted Drazin inverse Ad,W can be con-
structed as shown in the following theorem.

Theorem 2.3.3 Let A ∈ C
m×n, W ∈ C

n×m, and Ind(AW ) = k, then

Ad,W = A(W A)2d = (AW )2d A.

Proof Let X = A(W A)2d . It can be verified that X satisfies (2.3.1)–(2.3.3):

(AW )k+1XW = (AW )k+1A(W A)2dW

= A(W A)k+1(W A)2dW

= A(W A)k(W A)dW

= A(W A)kW (AW )d

= (AW )k+1(AW )d

= (AW )k,

XW AWX = A(W A)2dW AW A(W A)2d
= A(W A)d(W A)d
= X,

AW X = AW A(W A)2d
= A(W A)2dW A

= XW A.

Hence X = Ad,W . The proof of Ad,W = (AW )2d A is similar and is left to the reader
as an exercise. �

In particular, we have the following corollary.

Corollary 2.3.2 AdwW = (AW )d and W Adw = (W A)d .

The basic properties of the W-weighted Drazin inverse are as follows.

Theorem 2.3.4 ([2]) Let A ∈ C
m×n, W ∈ C

n×m, Ind(AW ) = k1, and Ind(W A) =
k2, then

(a) R(Adw) = R((AW )d) = R((AW )k1);
(b) N (Adw) = N ((W A)d) = N ((W A)k2);
(c) W AW Adw = W A(W A)d = PR((W A)k2 ),N ((W A)k2 );

AdwW AW = AW (AW )d = PR((AW )k1 ),N ((AW )k1 ).

Theorem 2.3.5 Suppose that A ∈ C
m×n andW ∈ C

n×m, and let k=max{Ind(AW ),

Ind(W A)}, then

Adw = (W AW )
(2)
R(G),N (G) = G(GW AWG)†G,

where G = A(W A)k .
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Proof The proof is left to the reader as an exercise. �

By using the core-nilpotent decompositions of AW and W A, we can obtain
another expression of Adw.

Theorem 2.3.6 ([3]) Suppose that A ∈ C
m×n, W ∈ C

n×m, and k = max{Ind(AW ),

Ind(W A)}, then

A = P

[
A11 O
O A22

]
Q−1, W = Q

[
W11 O
O W22

]
P−1,

and

Adw = P

[
(W11A11W11)

−1 O
O A22

]
Q−1,

where A11, W11, P, and Q are nonsingular matrices.

At last, a characteristic property of the W-weighted Drazin inverse is given as
follows.

Theorem 2.3.7 Let A, X ∈ C
m×n, then for some W ∈ C

n×m, X = Ad,W if and only
if X has a decomposition

X = AY AY A,

where Y ∈ C
n×m satisfies Ind(AY ) = Ind(Y A) = 1.

Proof If : Let
W = Y (AY )2d = (Y A)2dY,

then W A = (Y A)d . Since Ind(Y A) = 1 and X = AY AY A, we have

WX = W AY AY A = (Y A)dY AY A = Y A. (2.3.8)

By Theorem 2.1.9 and Ind(Y A) = 1,

Y A = ((Y A)d)d = (W A)d .

Substituting Y A in (2.3.8) with the above equation, we get

WX = (W A)d .

Similarly, since Ind(AY ) = 1 and X = AY AY A, we have

AW = (AY )d , AY = (AW )d ,

and
XW = AY AY AW = AY AY (AY )d = AY = (AW )d .
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It then follows that

(AW )k+1XW = (AW )k+1(AW )d

= (AW )k,

XW AWX = (AW )d A(W A)d
= (AW )d(AW )d A

= AY AY A

= X,

and

AW X = A(W A)d
= (AW )d A

= XW A.

Therefore X = Ad,W .
Only if : If X = Ad,W , for some W , then from Corollary 2.3.1,

X = A(W A)2d
= (AW )d A(W A)d
= (AW )(AW )2d A(W A)2d(W A)

= A(W A)2dW A(W A)2d(W A)

= AY AY A,

where Y = (W A)2dW . Thus AY = (AW )d and Y A = (W A)d . By Theorem 2.1.9,
we have

Ind(AY ) = Ind((AW )d) = 1

and
Ind(Y A) = Ind((W A)d) = 1.

The proof is completed. �

Exercises 2.3

1. Prove (2.3.7) in Corollary 2.3.1.
2. Prove that Ad,W = (AW )2d A.
3. Let A ∈ C

m×n and W ∈ C
n×m with Ind(AW ) = k1 and Ind(W A) = k2, show

(1) Ad,WW = (AW )d ; W Ad,W = (W A)d .
(2) R(Ad,W ) = R((AW )d) = R((AW )k1);

N (Ad,W ) = N ((W A)d) = N ((W A)k2).
(3) W AW Ad,W = W A(W A)d = PR((W A)k2 ),N ((W A)k2 );

Ad,WW AW = (AW )d AW = PR((AW )k1 ),N ((AW )k1 ).
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4. Prove that
Ad,W = (W AW )

(2)
R((AW )k ),N ((W A)k ),

where k = max{Ind(AW ), Ind(W A)}.

Remarks

The concept of the Drazin inverse is based on the associative ring and the semigroup
[4].Greville further investigated theDrazin inverse of a squarematrix in [5].As for the
applications of the Drazin inverse and group inverse, such as, in finite Markov chain,
linear differential equations, linear difference equations, the model of population
growth and optimal control can be found in [6–10].

A characterization and representation of theDrazin inverse can be found in [11]. A
characterization of the Drazin index can be found in [12, 13]. Full-rank and determi-
nantal representations can be found in [14]. The group inverse of a triangular matrix
is discussed in [15] and the group inverse of M-matrix is discussed in [16]. The
Drazin inverse of a 2 × 2 block matrix is presented by Hartwig et al. [17] and more
results in [12, 18–20]. Representations of the Drazin inverse of a block or modified
matrix can be found in [21–24].

References

1. R.E. Cline, T.N.E. Greville, A Drazin inverse for rectangular matrices. Linear Algebra Appl.
29, 54–62 (1980)

2. Y. Wei, A characterization for the W-weighted Drazin inverse and Cramer rule for W-weighted
Drazin inverse solution. Appl. Math. Comput. 125, 303–310 (2002)

3. Y. Wei, Integral representation of the W-weighted Drazin inverse. Appl. Math. Comput. 144,
3–10 (2003)

4. M.P. Drazin, Pseudo-inverses in associate rings and semigroups. Amer. Math. Monthly 65,
506–514 (1958)

5. T.N.E. Greville, Spectral generalized inverses of square matrtces. MRC Technical Science
Report 823 (Mathematics Research Center, University of Wisconsin, Madison, 1967)

6. C.D. Meyer, The role of the group generalized inverse in the theory of finite Markov chains.
SIAM Rev. 17, 443–464 (1975)

7. C.D. Meyer, The condition number of a finite Markov chains and perturbation bounds for the
limiting probabilities. SIAM J. Alg. Disc. Math. 1, 273–283 (1980)

8. A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications, 2nd edn.
(Springer Verlag, New York, 2003)

9. S.L. Campbell, C.D. Meyer Jr.,Generalized Inverses of Linear Transformations (Pitman, Lon-
don, 1979)

10. J.H.Wilkinson, Note on the practical significance of the Drazin inverse, in Recent Applications
of Generalized Inverses, ed. by S.L. Campbell (Pitman, London, 1982)

11. Y. Wei, A characterization and representation of the Drazin inverse. SIAM J. Matrix Anal.
Appl. 17, 744–747 (1996)

12. Q. Xu, Y. Wei, C. Song, Explicit characterization of the Drazin index. Linear Algebra Appl.
436, 2273–2298 (2012)

13. C. Zhu, G. Chen, Index splitting for the Drazin inverse of linear operator in Banach space.
Appl. Math. Comput. 135, 201–209 (2003)



90 2 Drazin Inverse
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Chapter 3
Generalization of the Cramer’s Rule
and the Minors of the Generalized
Inverses

It is well known that the Cramer’s rule for the solution x of a nonsingular equation

Ax = b (A ∈ C
n×n, b ∈ C

n, x = [x1, x2, . . . , xn]T )

is

xi = det(A(i → b))
det(A)

, i = 1, 2, . . . , n,

where A(i → b) denotes thematrix obtained by replacing the i th column of Awithb.
In 1970, SteveRobinson [1] gave an elegant proof of theCramer’s rule by rewriting

Ax = b as
A I (i → x) = A(i → b),

where I is the identity matrix of order n, and taking determinants

det(A) det(I (i → x)) = det(A(i → b)).

The Cramer’s rule then follows from det(I (i → x)) = xi , i = 1, 2, . . . , n.
Since 1982, the Robinson’s trick has been used to derive a series of the Cramer’s

rules for the minimum-norm solution and the minimum-norm (N ) solution of con-
sistent linear equations; for the unique solutions of special consistent restricted linear
equations; for theminimum-norm least-squares solution and theminimum-norm (N )
least-squares (M) solution of inconsistent linear equations; for the unique solutions
of a class of singular equations; and for the best approximate solution of a matrix
equation AXH = K [2–12].

The basic idea of these Cramer’s rules is to construct a nonsingular bordered
matrix by adjoining certainmatrices to the originalmatrix. The solution of the original
system is then obtained from the new nonsingular system.

© Springer Nature Singapore Pte Ltd. and Science Press 2018
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Asweknow, the j th columnof the inverse of a nonsingularmatrix canbe computed
by solving a linear system with the j th unit vector e j as the right-hand-side. Thus, by
applying the Cramer’s rule, the inverse of a nonsingular matrix A can be expressed in
terms of the determinants of A and modified A. This chapter presents determinantal
expressions of the generalized inverses.

3.1 Nonsingularity of Bordered Matrices

Given a matrix A, an associated bordered matrix

[
A B
C D

]

is an expanded matrix that contains A as its leading principal submatrix as shown
above. This section establishes relations between the generalized inverses and the
nonsingularity of bordered matrices.

3.1.1 Relations with A†
MN and A†

In 1986, Wang [8] showed the following results on a relation between A† and the
inverse of a bordered matrix.

Theorem 3.1.1 Let A ∈ C
m×n
r , M and N be Hermitian positive definite matrices of

orders m and n respectively, and the columns of U ∈ C
m×(m−r)
m−r and V ∗ ∈ C

n×(n−r)
n−r

form bases for N (A∗) and N (A) respectively, then the bordered matrix

A2 =
[

A M−1U
V N O

]

is nonsingular and its inverse

A−1
2 =

[
A†
MN V ∗(V NV ∗)−1

(U ∗M−1U )−1U ∗ O

]
. (3.1.1)

Proof Obviously, (V NV ∗)−1 and (U ∗M−1U )−1 exist and

V NV ∗(V NV ∗)−1 = In−r . (3.1.2)

It follows from AV ∗ = O that

AV ∗(V NV ∗)−1 = O (3.1.3)
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and from (1.4.15) that

V N A†
MN = V N A†

MN AA
†
MN

= V (N A†
MN A)

∗A†
MN

= V A∗(N A†
MN )

∗A†
MN

= O. (3.1.4)

Finally, let
F = M−1U (U ∗M−1U )−1U ∗ and E = AA†

MN ,

then E and F are idempotent, and therefore they are the projectors

E = PR(E),N (E) = PR(U )⊥,M−1R(U ),

F = PR(F),N (F) = PM−1R(U ),R(U )⊥ .

Since
PR(U )⊥,M−1R(U ) + PM−1R(U ),R(U )⊥ = Im,

we have
AA†

MN + M−1U (U ∗M−1U )−1U ∗ = Im . (3.1.5)

From (3.1.2)–(3.1.5),

[
A M−1U

V N O

] [
A†
MN V ∗(V NV ∗)−1

(U ∗M−1U )−1U ∗ O

]
=

[
Im O
O In−r

]
,

which is the desired result (3.1.1). �

Corollary 3.1.1 Let A ∈ C
m×n
r , and U ∈ C

m×(m−r)
m−r and V ∗ ∈ C

n×(n−r)
n−r be matrices

whose columns form the bases for N (A∗) and N (A) respectively, then

A1 =
[
A U
V O

]

is nonsingular and

A−1
1 =

[
A† V †

U † O

]
. (3.1.6)

Proof Applying Theorem 3.1.1 and

V † = V ∗(VV ∗)−1, U † = (U ∗U )−1U ∗,

we obtain (3.1.6) immediately. �
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Corollary 3.1.2 Let A ∈ C
m×n
r , M and N be Hermitian positive definite matrices

of orders m and n respectively, and U ∈ C
m×(m−r)
m−r and V ∗ ∈ C

n×(n−r)
n−r satisfy

AV ∗ = O, V NV ∗ = In−r ; A∗U = O, U ∗M−1U = Im−r ,

then

A2 =
[

A M−1U
V N O

]

is nonsingular and its inverse

A−1
2 =

[
A†
MN V ∗
U ∗ O

]
.

Corollary 3.1.3 ([2]) Suppose that A ∈ C
m×n
r , U ∈ C

m×(m−r)
m−r , and V ∗ ∈ C

n×(n−r)
n−r

satisfy
AV ∗ = O, VV ∗ = In−r , A∗U = O, U ∗U = Im−r ,

then

A1 =
[
A U
V O

]

is nonsingular and its inverse

A−1
1 =

[
A† V ∗
U ∗ O

]
.

3.1.2 Relations Between the Nonsingularity of Bordered
Matrices and Ad and Ag

In 1989,Wang [9, 13] showed relations between theDrazin inverse and group inverse
and the nonsingularity of bordered matrices.

Lemma 3.1.1 Let U ∈ C
n×p
p , V ∗ ∈ C

n×p
p , and R(U ) ⊕ N (V ) = C

n, then VU is
nonsingular.

Proof If (VU )x = 0, then Ux ∈ N (V ) and Ux ∈ R(U ). By the assumption,

Ux ∈ R(U ) ∩ N (V ) = {0}.

ThusUx = 0. SinceU is of full column rank, x = 0. This shows that VU has linearly
independent columns and VU ∈ C

p×p is nonsingular. �
The following results can be found in [9, 13].



3.1 Nonsingularity of Bordered Matrices 95

Theorem 3.1.2 Let A ∈ C
n×n, Ind(A) = k, rank(Ak) = r < n, and U, V ∗ ∈

C
n×(n−r)
n−r be matrices whose columns form the bases forN (Ak) andN (Ak∗

) respec-
tively, then

A4 =
[
A U
V O

]

is nonsingular and its inverse

A−1
4 =

[
Ad U (VU )−1

(VU )−1V −(VU )−1V AU (VU )−1

]
. (3.1.7)

Proof By the assumptions on U and V , we have

R(U ) = N (Ak) and N (V ) = R(Ak).

From Theorem 3.1.1 and Lemma 3.1.1, VU is nonsingular, thus its inverse (VU )−1

exists. Setting

X =
[

Ad U (VU )−1

(VU )−1V −(VU )−1V AU (VU )−1

]
,

we have

A4X =
[
AAd +U (VU )−1V (I −U (VU )−1V )AU (VU )−1

V Ad VU (VU )−1

]
.

Obviously,
VU (VU )−1 = In−r . (3.1.8)

Denoting G = (VU )−1V , we have UGU = U , G ∈ U {1}, and

G∗ = V ∗((VU )−1)∗, R(G∗) = R(V ∗) = N (Ak∗
), N (G) = R(Ak).

Since UG = U (VU )−1V is idempotent, it is a projector and

U (VU )−1V = UG = PR(UG),N (UG) = PR(U ),N (G) = PN (Ak ),R(Ak ).

Thus
AAd +U (VU )−1V = PR(Ak ),N (Ak ) + PN (Ak ),R(Ak ) = In. (3.1.9)

Since N (V ) = R(Ak), we have V Ak = O. It then follows from (2.1.17) that,

V Ad = V Ak(A2k+1)(1)Ak = O. (3.1.10)

Finally, setting F = U (VU )−1,weget Ak F = O, sinceR(F) = R(U ) = N (Ak).
It follows from (3.1.9) and (2.1.17) that
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(I −U (VU )−1V )AU (VU )−1 = AAd AF

= Ak+1(A2k+1)(1)Ak+1F

= O. (3.1.11)

From (3.1.8)–(3.1.11), we have A4X = I2n−r , which proves (3.1.7). �

Corollary 3.1.4 Let A ∈ C
n×n, Ind(A) = 1, rank(A) = r < n, and U, V ∗ ∈

C
n×(n−r)
n−r be matrices whose columns form the bases for N (A) and N (A∗) respec-

tively, then

A3 =
[
A U
V O

]

is nonsingular and its inverse

A−1
3 =

[
Ag U (VU )−1

(VU )−1V −(VU )−1V AU (VU )−1

]
.

3.1.3 Relations Between the Nonsingularity of Bordered
Matrices and A(2)

T,S, A
(1,2)
T,S , and A(−1)

(L)

Now, we investigate the relations between the nonsingularity of bordered matrices
and the generalized inverses A(2)

T,S , A
(1,2)
T,S , and A(−1)

(L) .

Theorem 3.1.3 ([3, 4]) Suppose A ∈ C
m×n
r , T ⊂ C

n, S ⊂ C
m, dim(T ) = dim

(S⊥) = t ≤ r and AT ⊕ S = C
m. Let B and C∗ be of full column rank such that

S = R(B) and T = N (C),

then the bordered matrix

A6 =
[
A B
C O

]

is nonsingular and

A−1
6 =

[
A(2)
T,S (I − A(2)

T,S A)C
†

B†(I − AA(2)
T,S) B

†(AA(2)
T,S A − A)C†

]
. (3.1.12)

Proof By Theorem 1.3.8 and the assumptions, we have

R(U ) = T = N (C) and N (V ) = S = R(B),

consequently,
CU = O and V B = O. (3.1.13)
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Set

X =
[

A(2)
T,S (I − A(2)

T,S A)C
†

B†(I − AA(2)
T,S) B

†(AA(2)
T,S A − A)C†

]
,

then

A6X =
[
PAT,S + BB†PS,AT A(I − A(2)

T,S A)C
† − BB†PS,AT AC†

CA(2)
T,S C(I − A(2)

T,S A)C
†

]
,

where
PAT,S = AA(2)

T,S and PS,AT = I − AA(2)
T,S.

Using (3.1.13) and
A(2)
T,S = U (V AU )−1V,

we have
CA(2)

T,S = CU (V AU )−1V = O. (3.1.14)

Noting that R(C†) = R(C∗) = T⊥ and C is of full row rank, we get

C(I − A(2)
T,S A)C

† = CC† = I. (3.1.15)

Moreover, since
BB† = PR(B) = PS

and
BB†PS,AT = PS PS,AT = PS,AT ,

we have
PAT,S + BB†PS,AT = PAT,S + PS,AT = I. (3.1.16)

Finally,
A(I − A(2)

T,S A)C
† − BB†PS,AT AC†

= (I − AA(2)
T,S)AC

† − PS,AT AC†

= O.
(3.1.17)

From (3.1.14)–(3.1.17), we have A6X = Im+n−t , hence (3.1.12) holds. �
When t = r in the above theorem, byCorollary 1.3.4, AT ⊕ S = C

m is equivalent
toR(A) ⊕ S = C

m andN (A) ⊕ T = C
n . In this case, A(2)

T,S becomes A(1,2)
T,S

, and we
have the following theorem.
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Theorem 3.1.4 ([14]) Let A ∈ C
m×n
r , T ⊂ C

n, S ⊂ C
m, dim(T ) = dim(S⊥) = r

and R(A) ⊕ S = C
m, N (A) ⊕ T = C

n, and B and C∗ be of full column rank such
that

S = R(B) and T = N (C),

then the bordered matrix

A5 =
[
A B
C O

]

is nonsingular and

A−1
5 =

[
A(1,2)
T,S (I − A(1,2)

T,S A)C†

B†(I − AA(1,2)
T,S ) O

]
.

By Theorem 1.5.1, the Bott-Duffin inverse A(−1)
L = A(2)

L ,L⊥ , thus we have the fol-
lowing theorem.

Theorem 3.1.5 ([15]) Let A ∈ C
n×n
r , U ∈ C

n×p
p , and L = N (U ∗), then

A7 =
[

A U
U ∗ O

]

is nonsingular if and only if

AN (U ∗) ⊕ R(U ) = C
n.

In this case the inverse of A7 is

A−1
7 =

[
A(−1)
L (I − A(−1)

L A)U ∗†

U †(I − AA(−1)
L ) U †(AA(−1)

L A − A)U ∗†

]
.

Exercises 3.1

1. Prove I − AA(2)
T,S = PS,AT .

2. Show the relation between A(†)
(L) and the nonsingularity of a bordered matrix.

3.2 Cramer’s Rule for Solutions of Linear Systems

Using the relations between the generalized inverses and nonsingular borderedmatri-
ces discussed in the previous sections, in this section, we give the Cramer’s rules for
the solutions of systems of linear equations and matrix equations.

We adopt the following notations and definitions.
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• Let A ∈ C
m×n , x ∈ C

m , and y ∈ C
n , A( j → x) denotes the matrix obtained by

replacing the j th column of A with x; A(y∗ ← i) denotes the matrix obtained by
replacing the i th row of A with y∗.

• Let A ∈ C
n×n , det(A) denotes the determinant of A.

• Rc(A) = {S : S ⊕ R(A) = C
m} and Nc(A) = {T : T ⊕ N (A) = C

n} denote
the complements of R(A) and of N (A) respectively.

3.2.1 Cramer’s Rule for the Minimum-Norm (N)
Least-Squares (M) Solution of an Inconsistent System
of Linear Equations

Let A ∈ C
m×n , b ∈ C

m , M and N are Hermitian positive definite matrices of orders
m and n respectively. The vector u ∈ C

n is called the least-squares (M) solution of
the inconsistent system of linear equations

Ax = b (A ∈ C
m×n, b /∈ R(A), x = [x1, x2, . . . , xn]T ), (3.2.1)

if
‖Au − b‖M ≤ ‖Av − b‖M , for all v ∈ C

n .

Thus the least-squares (M) solution of (3.2.1) is not unique. If u is the least-squares
(M) solution of (3.2.1) and

‖u‖N < ‖w‖N ,

for all the least-squares (M) solution w �= u of (3.2.1), then u is called the minimum-
norm (N ) least-squares (M) solution of (3.2.1).

We know that the minimum-norm (N ) least-squares (M) solution of (3.2.1) is
x = A†

MNb. The following theorem about the Cramer’s rule for finding the solution
x = A†

MNb is given by Wang [8].

Theorem 3.2.1 Let A ∈ C
m×n
r , and M ∈ C

m×m, N ∈ C
n×n be Hermitian positive

definite matrices, andU ∈ C
m×(m−r)
m−r and V ∗ ∈ C

n×(n−r)
n−r be matrices whose columns

form the bases forN (A∗) andN (A) respectively, then the minimum-norm (N) least-
squares (M) solution x of (3.2.1) satisfies

x ∈ N−1R(A∗), b − Ax ∈ M−1N (A∗), (3.2.2)

and its components are given by

x j =
det

[
A( j → b) M−1U

V N ( j → 0) O

]

det

[
A M−1U

V N O

] , j = 1, 2, . . . , n. (3.2.3)
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Proof Let A = FG be a full rank factorization. By Theorem 1.4.4,

A†
MN = N−1G∗(F∗MAN−1G∗)−1F∗M.

Thus
V Nx = V N A†

MNb ≡ Vh,

where
h = G∗(F∗MAN−1G∗)−1F∗Mb ∈ R(G∗).

Since G∗F∗ = A∗, we have R(A∗) ⊂ R(G∗). Because F∗ is of full row rank,
F∗F∗(1) = I . Thus

G∗ = A∗F∗(1), R(G∗) ⊂ R(A∗), h ∈ R(G∗) = R(A∗).

By the assumption R(V ∗) = N (A), we have

N (V ) = R(A∗) and Vh = 0.

Therefore
V Nx = 0. (3.2.4)

It then follows that

Nx ∈ N (V ) = R(A∗), x ∈ N−1R(A∗),

which proves the first statement in (3.2.2). Since

A∗MAA†
MN = A∗(MAA†

MN )
∗ = (MAA†

MN A)
∗ = (MA)∗ = A∗M,

we have

A∗Mb = A∗MAA†
MNb = A∗MAx and A∗M(b − Ax) = 0.

It then follows that

M(b − Ax) ∈ N (A∗) and b − Ax ∈ M−1N (A∗),

which proves the second statement in (3.2.2).
From M(b − Ax) ∈ N (A∗), we get

M(b − Ax) = Uz, z ∈ C
m−r .

Thus
b = Ax + M−1Uz.
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It then follows from (3.2.4) and the above equation that the minimum-norm (N )
least-squares (M) solution x of (3.2.1) satisfies

[
A M−1U

V N O

] [
x
z

]
=

[
b
0

]
. (3.2.5)

By Theorem 3.1.1, the coefficient matrix of (3.2.5) is nonsingular, and (3.2.3) follows
from the standard Cramer’s rule. �

The following corollary is a result in [2].

Corollary 3.2.1 Let A ∈ C
m×n
r , b ∈ C

m, b /∈ R(A), and U ∈ C
m×(m−r)
m−r , V ∗ ∈

C
n×(n−r)
n−r be matrices whose columns form the bases for N (A∗) and N (A) respec-

tively, then components of the minimum-norm least-squares solution x = A†b of
(3.2.1) are given by

x j =
det

[
A( j → b) U
V ( j → 0) O

]

det

[
A U
V O

] , j = 1, 2, . . . , n.

3.2.2 Cramer’s Rule for the Solution of a Class of Singular
Linear Equations

Let A ∈ C
n×n
r , r < n, and Ind(A) = k. We consider the following problem: For a

given b ∈ R(Ak) find a vector x ∈ R(Ak) such that

Ax = b. (3.2.6)

From (2.1.6), R(Ak) ⊕ N (Ak) = C
n , thus, for any x ∈ C

n ,

x = u + v, u ∈ R(Ak) and v ∈ N (Ak).

It follows from (2.1.15) that

AAdu = PR(Ak ),N (Ak )u = u,

AAdv = PR(Ak ),N (Ak )v = 0.

Therefore
AAdx = u, x ∈ C

n, u ∈ R(Ak). (3.2.7)

Set AI = A
∣∣R(Ak ) , that is, A is restricted toR(Ak). If u ∈ R(Ak), then u = Akz,

z ∈ C
n , and
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AIu = AI A
kz

= Ak+1z ∈ R(Ak+1) = R(Ak).

Clearly, the linear transformation AI : R(Ak) → R(Ak) is 1-1 onto and invertible.
Thus there exists A−1

I such that premultiplying (3.2.7) with A−1
I gives

Adx = A−1
I u, x = u + v ∈ C

n, u ∈ R(Ak), v ∈ N (Ak).

The linear transformation Ad defined by the above equation is called the Drazin
inverse of A. The proof of the equivalence between this definition and Definition
2.1.2 is given in the following theorem.

Theorem 3.2.2 Let A ∈ C
n×n, Ind(A) = k, then Ad is the Drazin inverse of A if

and only if
Adx = A−1

I u, for all x = u + v ∈ C
n, (3.2.8)

where u ∈ R(Ak) and v ∈ N (Ak).

Proof ONLY IF: It has been shown above.
IF: Firstly, from (3.2.8), we have Adv = 0, v ∈ N (Ak) and Adu = A−1

I u. Thus

AAdv = 0, v ∈ N (Ak),

AAdu = AA−1
I u = u, u ∈ R(Ak).

(3.2.9)

Obviously, v ∈ N (Ak), Akv = 0, Ak+1v = 0, and Av ∈ N (Ak) = N (Ad), thus

Ad Av = 0, v ∈ N (Ak). (3.2.10)

On the other hand, u ∈ R(Ak) and Au ∈ R(Ak+1) = R(Ak), thus

Ad Au = A−1
I Au = u, u ∈ R(Ak). (3.2.11)

It follows from (3.2.9)–(3.2.11) that AAdx = Ad Ax, for all x ∈ C
n , thus

AAd = Ad A. (3.2.12)

Secondly,

Ad AAdx = Ad AA
−1
I u = Adu = Ad(u + v) = Adx, for all x ∈ C

n, thus

Ad AAd = Ad . (3.2.13)

Finally,

Ak+1Adx = Ak AA−1
I u = Aku = Ak(u + v) = Akx, for all x ∈ C

n, thus
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Ak+1Ad = Ak . (3.2.14)

Therefore, the sufficiency is proved by (3.2.12)–(3.2.14). �
It follows that the unique solution of (3.2.6) is

x = A−1
I b = Adb.

TheCramer’s rule for the unique solution x = Adb of (3.2.6) is given in the following
theorem.

Theorem 3.2.3 ([9]) Suppose that A ∈ C
n×n, Ind(A) = k, rank(Ak) = r < n, and

U, V ∗ ∈ C
n×(n−r)
n−r bematrices whose columns form the bases forN (Ak) andN (Ak∗

)

respectively. Let b ∈ R(Ak), then the components of the unique solution x = Adb of
(3.2.6) are given by

x j =
det

[
A( j → b) U
V ( j → 0) O

]

det

[
A U
V O

] , j = 1, 2, . . . , n. (3.2.15)

Proof Since x = Adb ∈ R(Ak) and N (V ) = R(Ak), we have

V x = 0.

It follows from (3.2.6) and the above equation that the solution of (3.2.6) satisfies

[
A U
V O

] [
x
0

]
=

[
b
0

]
.

By Theorem 3.1.2, the coefficient matrix in the above equation is nonsingular. Using
(3.1.7),wehavex = Adb. Consequently, (3.2.15) follows from the standardCramer’s
rule. �

3.2.3 Cramer’s Rule for the Solution of a Class of Restricted
Linear Equations

Let A ∈ C
m×n
r , b ∈ R(A) and T ⊂ C

n . The Cramer’s rule for the unique solution of
a class of restricted linear equations:

Ax = b, x ∈ T (3.2.16)

is given by Chen [3].
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Theorem 3.2.4 The Eq. (3.2.16) have a unique solution if and only if

b ∈ AT and T ∩ N (A) = {0}.

Proof If b ∈ AT , then it is obvious that (3.2.16) has a solution x0 ∈ T . Let the
general solution of (3.2.16) be x = x0 + y ∈ T , where y ∈ N (A), then

y = x − x0 ∈ T .

Since T ∩ N (A) = {0}, we get y = 0. Therefore (3.2.16) has a unique solution x =
x0.

Conversely, let the general solution of (3.2.16) be x = x0 + y ∈ T , where y ∈
N (A) and x0 ∈ T is a particular solution of (3.2.16). Since (3.2.16) has a unique
solution, we have y = 0. Moreover,

x = x0 and b = Ax0 ∈ AT .

It follows from y ∈ N (A), y = x − x0 ∈ T , and y = 0 that T ∩ N (A) = {0}. �

Lemma 3.2.1 Let A ∈ C
m×n
r and T be a subspace of Cn, then the following condi-

tions are equivalent:

(1) T ∩ N (A) = {0};
(2) dim(AT ) = dim(T ) = s ≤ r;
(3) There exists a subspace S of Cm of dimension m − dim(T ) such that

AT ⊕ S = C
m

or equivalently
A∗S⊥ ⊕ T⊥ = C

n.

Proof (1)⇔(2): It follows from the equation:

dim(AT ) = dim(T ) − dim(T ∩ N (A)).

(2)⇒(3): If dim(AT ) = dim(T ) = s < r , then there exists S ⊂ C
m with dim(S) =

m − s such that AT ⊕ S = C
m . If dim(AT ) = dim(T ) = s = r , by the equation

dim(N (A)) = n − r , then, from the equivalence of (1) and (2) and T ∩ N (A) = {0},
T ⊕ N (A) = C

n . Since dim(R(A)) = r , there exists an S ⊂ C
m such thatR(A) ⊕

S = C
m , which is equivalent to AT ⊕ S = C

m by Corollary 1.3.4.
(3)⇒(2): From Exercise 1.3.9, AT ⊕ S = C

m is equivalent to A∗S⊥ ⊕ T⊥ = C
n .

Thus
T ⊕ (A∗S⊥)⊥ = C

n.

However,
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N (A) = R(A∗)⊥ ⊂ (A∗S⊥)⊥,

therefore
T ∩ N (A) = {0},

which is equivalent to
dim(AT ) = dim(T ) = s ≤ r

by the equivalence of (1) and (2). �

Theorem 3.2.5 Let A ∈ C
m×n
r , T ⊂ C

n, and the condition in Lemma 3.2.1 be sat-
isfied, then the unique solution of the restricted linear equations

Ax = b, x ∈ T

is given by
x = A(2)

T,Sb,

for any subspace S of Cm satisfying AT ⊕ S = C
m.

Proof Obviously, x = A(2)
T,Sb ∈ T . Since AA(2)

T,S is the projector PAT,S and b ∈ AT ,

we have Ax = AA(2)
T,Sb = b. Thus x = A(2)

T,Sb is a solution of (3.2.16).
By the condition in Lemma 3.2.1 and Theorem 3.2.4, the solution of (3.2.16) is

unique, independent of the choice of the subspace S. �

Corollary 3.2.2 Let A ∈ C
m×n
r , b ∈ AT , dim(AT ) = dim(T ) = r , T ⊕ N (A) =

C
n, and S ⊂ C

m satisfy
R(A) ⊕ S = C

m,

then the unique solution of the restricted linear Eq. (3.2.16) is given by

x = A(1,2)
T,S b (3.2.17)

for any subspace S of Cm satisfyingR(A) ⊕ S = C
m.

Proof From Theorem 3.2.5 and the note after Theorem 3.1.3, we obtain (3.2.17)
immediately. �

Now, we have the Cramer’s rule for the solution x = A(2)
T,Sb or x = A(1,2)

T,S b.

Theorem 3.2.6 Let A ∈ C
m×n
r , T ⊂ C

n, the condition in Lemma 3.2.1 be satisfied,
and both B and C∗ be of full column rank and satisfy

S = R(B) and T = N (C), (3.2.18)

then the components x j of the unique solution x = A(2)
T,Sb of (3.2.16) are given by
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x j =
det

[
A( j → b) B
C( j → 0) O

]

det

[
A B
C O

] , j = 1, 2, . . . , n. (3.2.19)

Proof From (3.2.18),

x = A(2)
T,Sb ∈ T = N (C) ⇔ Cx = 0.

Thus (3.2.16) can be rewritten as

[
A B
C O

] [
x
0

]
=

[
b
0

]
.

By Theorem 3.1.3, the coefficient matrix of the above equation is nonsingular. Thus
x = A(2)

T,Sb and y = 0 is the unique solution of the nonsingular linear equations

(
A B
C O

) (
x
y

)
=

(
b
0

)
.

Consequently, (3.2.19) follows from the standard Cramer’s rule for the above equa-
tion. �

Theorem 3.2.7 Let A ∈ C
m×n
r , T ⊂ C

n and S ⊂ C
m satisfy

R(A) ⊕ S = C
m and T ⊕ N (A) = C

n, (3.2.20)

and both B and C∗ be of full column rank and satisfy

S = R(B) and T = N (C),

then the components x j of the unique solution x = A(1,2)
T,S b of (3.2.16) are given by

x j =
det

[
A( j → b) B
C( j → 0) O

]

det

[
A B
C O

] , j = 1, 2, . . . , n. (3.2.21)

Proof Since dim(N (A)) = n − r and dim(R(A)) = r , we have

dim(T ) = r and dim(S) = m − r

by (3.2.20). Since (3.2.20) is equivalent to AT ⊕ S = C
m , we have AT = R(A),

b ∈ R(A) = AT and dim(T ) = dim(AT ) = r are satisfied. It follows from
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Corollary 3.2.2 that the unique solution of (3.2.16) is x = A(1,2)
T,S b. Consequently,

(3.2.21) follows from (3.2.19), which is the unique solution of (3.2.16). �

Corollary 3.2.3 Let A ∈ C
n×n
r and L ⊂ C

n satisfy

AL ⊕ L⊥ = C
n,

then the restricted equations

Ax + y = b, x ∈ L , y ∈ L⊥, (3.2.22)

have a unique pair of solutions x and y. Let U be of full column rank and satisfy

L = N (U ∗),

then the components of the solution x = A(−1)
(L) b of (3.2.22) are given by

x j =
det

[
A( j → b) U
U ∗( j → 0) O

]

det

[
A U
U ∗ O

] , j = 1, 2, . . . , n (3.2.23)

Proof From Theorem 1.5.1, the unique solution of (3.2.22) is x = A(−1)
(L) b. Since

A(−1)
(L) = A(2)

L ,L⊥ = A(2)
N (U ∗),R(U ), (3.2.23) follows from setting B = U andC = U ∗ in

(3.2.19). �

3.2.4 An Alternative and Condensed Cramer’s Rule
for the Restricted Linear Equations

In this section, we consider again the restricted linear Eq. (3.2.16):

Ax = b, x ∈ T,

where A ∈ C
m×n and T ⊂ C

n , and assume that the conditions in Lemma 3.2.1 are
satisfied.

Recall that a component of the unique solution of (3.2.16) is expressed by (3.2.19)
as the quotient of the determinants of two square matrices both of order m + n − r .
Because thesematrices are possibly considerably larger than A, the aimof this section
is to derive a condensed Cramer’s rule for the solution of (3.2.16).

First we give an explicit expression of the generalized inverse A(2)
T,S in terms of

the group inverse.
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Lemma 3.2.2 ([16]) Let A ∈ C
m×n
r , T ⊂ C

n, S ⊂ C
m, and dim(T ) = dim(S⊥) =

t ≤ r . In addition, suppose that G ∈ C
n×m satisfies

R(G) = T and N (G) = S.

If A has a {2}-inverse A(2)
T,S, then

Ind(AG) = Ind(GA) = 1. (3.2.24)

Furthermore, we have
A(2)
T,S = G(AG)g = (GA)gG.

Proof It is easy to verify

R(AG) = AR(G) = AT and S = N (G) ⊂ N (AG).

By Theorem 1.3.8, we have

dim(AT ) = m − dim(S)

= m − (m − t)

= t.

Now
dim(R(AG)) + dim(N (AG)) = m,

hence

dim(N (AG)) = m − dim(R(AG))

= m − dim(AT )

= m − t

= dim(S).

Thus N (AG) = S, implying that

R(AG) ⊕ N (AG) = AT ⊕ S = C
m .

By Theorem 2.1.1, we have
Ind(AG) = 1.

Let X = G(AG)g . We can verify
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X AX = G(AG)gAG(AG)g

= G(AG)g

= X,

and

R(X) = R(G(AG)g)

⊂ R(G)

= T ;
N (X) = N (G(AG)g)

⊃ N ((AG)g)

= N (AG)

⊃ N (G)

= S.

Obviously, rank(X) ≤ dim(T ). On the other hand,

rank(X) = rank(G(AG)g)

≥ rank(AG(AG)g)

= rank(AG)

= s

= dim(T ).

Thus, R(X) = T .
Similarly, we can show that N (X) = S, which is the desired result A(2)

T,S =
G(AG)g . Similarly, it follows that Ind(GA) = 1 and A(2)

T,S = (GA)gG. �

Theorem 3.2.8 Given A, T, S, and G as in Lemma 3.2.2, and

AT ⊕ S = C
m .

Suppose that the columns of V and U ∗ form the bases for N (GA) and N ((GA)∗)
respectively. We define

E = V (UV )−1U.

Then E satisfies

R(E) = R(V ) = N (GA) and N (E) = N (U ) = R(GA), (3.2.25)

and GA + E is nonsingular and its inverse

(GA + E)−1 = (GA)g + Eg.
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Proof From the assumptions on V and U , we have

R(V ) = N (GA), N (U ) = R(GA).

By Lemmas 3.2.2 and 3.1.1, we have

Ind(GA) = 1 ⇔ R(GA) ⊕ N (GA) = C
n

⇔ R(V ) ⊕ N (U ) = C
n

Thus UV is nonsingular and E = V (UV )−1U exists. It follows from E j = E , j =
1, 2, . . . , that

Ed = Eg = E .

From
R(E) = R(V ) = N (GA)

and
N (E) = N (U ) = R(GA) = R((GA)g),

we have
(GA)E = O and E(GA)g = O,

and

(GA + E)((GA)g + Eg) = (GA)(GA)g + EEg

= PR(GA),N (GA) + PR(E),N (E)

= PN (E),R(E) + PR(E),N (E)

= I.

This completes the proof. �

Theorem 3.2.9 Given A, T, S,G, V,U ∗, and E as above, and b ∈ AT , the
restricted linear Eq. (3.2.16)

Ax = b, x ∈ T

is equivalent to the nonsingular linear equations

(GA + E)x = Gb, x ∈ T . (3.2.26)

The components of the unique solution of (3.2.16) are given by

xi = det((GA + E)(i → Gb))
det(GA + E)

, i = 1, 2, . . . , n. (3.2.27)
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Proof From the assumptions, b ∈ AT = R(GA), then b = AGy for some y. By
(3.2.25), EGA = O, so

EGb = EGAGy = 0.

It follows from Theorem 3.2.8 and Lemma 3.2.2 that the unique solution of the
nonsingular linear Eq. (3.2.26) is

x = (GA + E)−1Gb

= ((GA)g + Eg)Gb

= (GA)gGb + EGb

= A(2)
T,Sb ∈ R(A(2)

T,S) = T .

From Theorem 3.2.5, the unique solution of the restricted linear Eq. (3.2.16)
is also x = A(2)

T,Sb. This completes the proof of the equivalence between (3.2.16)
and (3.2.26). Consequently, (3.2.27) follows from the standard Cramer’s rule for
(3.2.26). �

Corollary 3.2.4 Let A ∈ C
m×n
r , T = R(A∗), S = N (A∗), b ∈ AR(A∗) = R(A),

and the columns of V ∈ C
n×(n−r)
n−r form an orthonormal basis forN (A∗A). We define

E = VV ∗.

Then E satisfies

R(E) = R(V ) = N (A∗A), N (E) = N (V ∗) = R(A∗A),

and A∗A + E is nonsingular and

(A∗A + E)−1 = (A∗A)g + Eg

= (A∗A)† + E†.

The consistent restricted linear equations

Ax = b, x ∈ R(A∗) (3.2.28)

are equivalent to the nonsingular linear equations

(A∗A + E)x = A∗b, x ∈ R(A∗).

The components of the unique solution x = A†b of (3.2.28) are given by

xi = det((A∗A + E)(i → A∗b))
det(A∗A + E)

, i = 1, 2, . . . , n.
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Corollary 3.2.5 Let A ∈ C
m×n
r , M and N be Hermitian positive definite matri-

ces of orders m and n respectively, T = R(A#), S = N (A#), A# = N−1A∗M,
b ∈ AR(A#) = R(A), and the columns of V,U ∗ ∈ C

n×(n−r)
n−r form the bases for

N (A#A) and N ((A#A)∗) respectively. We define

E = V (UV )−1U.

Then E satisfies

R(E) = R(V ) = N (A#A) = N (A∗MA),

N (E) = N (U ) = R(A#A) = N−1(R(A∗MA)),

and A#A + E is nonsingular and

(A#A + E)−1 = (A#A)g + Eg.

The consistent restricted linear equations

Ax = b, x ∈ R(A#) (3.2.29)

is equivalent to the nonsingular linear equations

(A#A + E)x = A#b, x ∈ R(A#).

The components of the unique solution x = A†
MNb of (3.2.29) are given by

xi = det((A#A + E)(i → A#b))
det(A#A + E)

, i = 1, 2, . . . , n.

Corollary 3.2.6 Let A ∈ C
n×n, Ind(A) = k, rank(Ak) = r , T = R(Ak), S = N

(Ak), b ∈ R(Ak), and the columns of V,U ∗ ∈ C
n×(n−r)
n−r form the bases for N (Ak)

and N (Ak∗
) respectively. We define

E = V (UV )−1U.

Then E satisfies

R(E) = R(V ) = N (Ak), N (E) = N (U ) = R(Ak),

and Ak + E is nonsingular and

(Ak + E)−1 = (Ak)g + Eg.
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The restricted linear equations

Ax = b, x ∈ R(Ak) (3.2.30)

is equivalent to the nonsingular linear equations

(Ak + E)x = Ak−1b, x ∈ R(Ak).

The components of the unique solution x = Adb of (3.2.30) are given by

xi = det((Ak + E)(i → Ak−1b))
det(Ak + E)

, i = 1, 2, . . . , n.

Corollary 3.2.7 Let A ∈ C
n×n, Ind(A) = 1, rank(A) = r , T = R(A), S = N (A),

b ∈ R(A), and the columns of V,U ∗ ∈ C
n×(n−r)
n−r form the bases forN (A) andR(A)

respectively. We define
E = V (UV )−1U.

Then E satisfies

R(E) = R(V ) = N (A), N (E) = N (U ) = R(A),

and A + E is nonsingular and

(A + E)−1 = Ag + Eg.

The restricted linear equations

Ax = b, x ∈ R(A) (3.2.31)

is equivalent to the nonsingular linear equations

(A + E)x = b, x ∈ R(A).

The components of the unique solution x = Agb of (3.2.31) are given by

xi = det((A + E)(i → b))
det(A + E)

, i = 1, 2, . . . , n.

Exercises 3.2

1. Prove Corollary 3.2.2.
2. Prove Corollary 3.2.3.
3. Let A, T and S be the same as in Lemma 3.2.1, and both B ∈ C

s×m and C ∈
C

(n−s)×n be of full row rank and satisfy
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R(B∗) = S⊥ and R(C∗) = T⊥.

Prove that the matrix [
BA
C

]

is nonsingular and the components of the unique solution of (3.2.16) are given
by

x j =
det

[
(BA)( j → Bb)

C( j → 0)

]

det

[
BA
C

] , j = 1, 2, . . . , n.

3.3 Cramer’s Rule for Solution of a Matrix Equation

We consider the problem of solving the matrix equation AXB = D using the
Cramer’s rule. We start with the nonsingular case where an exact solution X can
be found, then a general case where a best approximation solution can be found.
Analogous to the linear systems in the previous section, we also study restricted
matrix equations and a condensed form of the Cramer rule for solving restricted
matrix equations.

3.3.1 Cramer’s Rule for the Solution of a Nonsingular
Matrix Equation

First, we discuss the Cramer’s rule for the unique solution of the matrix equation
AXB = D.

Lemma 3.3.1 (1)Let A ∈ C
n×n
n , and D = [d1,d2, . . . ,dp] ∈ C

n×p, then the unique
solution of the matrix equation

AY = D

is Y = A−1D = [y1, y2, . . . , yp] ∈ C
n×p, whose elements are given by

yik = det(A(i → dk))

det(A)
, i = 1, 2, . . . , n; k = 1, 2, . . . , p. (3.3.1)

(2) Let B ∈ C
p×p
p and I be the identity matrix of order p, then the unique solution

of the matrix equation
Z B = I (3.3.2)
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is Z = B−1 = [z1, z2, . . . , zp]T ∈ C
p×p, whose elements are given by

zk j = det(B(eTk ← j))

det(B)
, k = 1, 2, . . . , p; j = 1, 2, . . . , p.

Proof (1) It is easy to verify (3.3.1).
(2) It follows from (3.3.2) that

B∗Z∗ = I.

Let Z∗ = [̃z jk] ∈ C
p×p, then z̃ jk = zk j . By part(1),

z̃ jk = det(B∗( j → ek))
det(B∗)

.

Thus

zk j = det((B∗( j → ek))∗)
det(B)

= det(B(eTk ← j))

det(B)
,

which completes the proof. �
Now we have the Cramer’s rule for the matrix equation AXB = D when both A

and B are nonsingular.

Theorem 3.3.1 Let A ∈ C
n×n
n , B ∈ C

p×p
p , and D = [d1,d2, . . . ,dp] ∈ C

n×p, then
the unique solution of the matrix equation

AX B = D (3.3.3)

is X = A−1DB−1 = (xi j ) ∈ C
n×p, whose elements are given by

xi j =
∑p

k=1 det(A(i → dk)) det(B(eTk ← j))

det(A) det(B)
, (3.3.4)

where dk is the k-th column of D and ek denotes the p-vector whose k-th component
is unity and other components are zero.

Proof Let A−1D = Y and B−1 = Z , then

X = Y Z .
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It follows from Lemma 3.3.1 that the unique solution of (3.3.3) is X = [xi j ] ∈ C
n×p,

whose elements are given by

xi j =
p∑

k=1

yik zk j

=
∑p

k=1 det(A(i → dk)) det(B(eTk ← j))

det(A) det(B)
,

which is (3.3.4). �

3.3.2 Cramer’s Rule for the Best-Approximate Solution
of a Matrix Equation

The matrix equation AXB = D may not have exact solution when A and B are
rectangle matrices. In this general case, we find the best-approximate solution in the
following sense.

If X0 satisfies

(1) ‖AX0B − D‖F ≤ ‖AXB − D‖F , ∀X ;
(2) ‖X0‖F ≤ ‖X‖F ,∀X �= X0,where X satisfies‖AXB − D‖F = ‖AX0B − D‖F ,

then X0 is called the best-approximate solution of the matrix equation

AXB = D, (3.3.5)

where ‖P‖F = (tr(P∗P)) 1
2 is the Frobenius-norm of the matrix P .

The best-approximate solution of (3.3.5) is discussed in [17], and the Cramer’s
rule for it is given in [18].

Definition 3.3.1 Let A = [ai j ] ∈ C
m×n and B ∈ C

p×q , then the Kronecker product
A ⊗ B of A and B is the mp × nq matrix expressible in partitioned form:

A ⊗ B =

⎡
⎢⎢⎢⎣
a11B a12B . . . a1n B
a21B a22B . . . a2n B
...

...
...

am1B am2B . . . amn B

⎤
⎥⎥⎥⎦ .

The properties of the Kronecker product can be found in [19–21].
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Lemma 3.3.2 Let A, B, A1, A2, B1, and B2 be matrices whose orders are suitable
for the following operations, then

(1) O ⊗ A = A ⊗ O = O, where O is a zero matrix;
(2) (A1 + A2) ⊗ B = A1 ⊗ B + A2 ⊗ B;
(3) A ⊗ (B1 + B2) = A ⊗ B1 + A ⊗ B2;
(4) αA ⊗ βB = (αβ)(A ⊗ B);
(5) (A1A2) ⊗ (B1B2) = (A1 ⊗ B1)(A2 ⊗ B2);
(6) (A ⊗ B)−1 = A−1 ⊗ B−1;
(7) (A ⊗ B)∗ = A∗ ⊗ B∗,

(A ⊗ B)T = AT ⊗ BT ;
(8) (A ⊗ B)† = A† ⊗ B†;
(9) (A ⊗ B)†C,D = A†

MN ⊗ B†
PQ, where C = M ⊗ P, D = N ⊗ Q, and M, N,

P and Q are Hermitian positive definite matrices of orders suitable for the
operations;

(10) (A ⊗ B)d = Ad ⊗ Bd, where A and B are square matrices;
(11) (A ⊗ B)d,W = Ad,W1 ⊗ Bd,W2 , where W = W1 ⊗ W2.

An important application of the Kronecker product is that we can rewrite the
matrix Eq. (3.3.5) as a vector equation. For any X = [xi j ] ∈ C

n×r , let the vector
v(X) = [vk] ∈ C

nr be the transpose of the row vector obtained by lining the rows
of X end to end with the first row on the left and the last row on the right. In other
words,

vr(i−1)+ j = xi j , i = 1, 2, . . . , n, j = 1, 2, . . . , r.

It is easy to verify that
v(AXB) = (A ⊗ BT )v(X).

By using the above equation, the matrix Eq. (3.3.5) can be rewritten as the vector
equation:

(A ⊗ BT )v(X) = v(D). (3.3.6)

It is clear that the best-approximate solution of (3.3.5) is equivalent to the
minimum-norm least-squares solution of (3.3.6). It follows from Theorem 1.1.6 and
Lemma 3.3.2 that

v(X) = (A ⊗ BT )†v(D)

= (A† ⊗ (BT )†)v(D)

= v(A†DB†).

Thus, the best-approximate solution of (3.3.5) is simply

X = A†DB†. (3.3.7)

The Cramer’s rules for the best-approximate solutions of two special matrix equa-
tions AY = D and Z B = I are given in the following two lemmas.
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Lemma 3.3.3 Let A ∈ C
m×n
r , D = [d1,d2, . . . ,dw] ∈ C

m×w, and U ∈ C
m×(m−r)
m−r

and V ∗ ∈ C
n×(n−r)
n−r be matrices whose columns form the bases forN (A∗) andN (A)

respectively, then the best-approximate solution of the matrix equation

AY = D

is Y = A†D = [yik] ∈ C
n×w, whose elements are given by

yik =
det

[
A(i → dk) U
V (i → 0) O

]

det

[
A U
V O

] , i = 1, 2, . . . , n; k = 1, 2, . . . , w. (3.3.8)

Proof Let Y = [y1, y2, . . . , yw] be the column partition of Y . Since

‖D − AY‖2F =
w∑

k=1

‖dk − Ayk‖22

and

‖Y‖2F =
w∑

k=1

‖yk‖22,

the matrix Y is the best-approximate solution of AY = D if and only if yk , k =
1, 2, . . . , w, is the minimum-norm least-squares solution of Ayk = dk . Then (3.3.8)
follows from Corollary 3.2.1. �

Lemma 3.3.4 Let B ∈ C
q×w
p , Iw be the identitymatrix of orderw, and P ∈ C

q×(q−p)
q−p

and Q∗ ∈ C
w×(w−p)
w−p matrices whose columns form the bases for N (B∗) and N (B)

respectively, then the best-approximate solution of the matrix equation

Z B = Iw (3.3.9)

is Z = B† = [z1, z2, . . . , zw]T ∈ C
w×q , whose elements are given by

zk j =
det

[
B(eTk ← j) P(0 ← j)

Q O

]

det

[
B P
Q O

] , k = 1, 2, . . . , w; j = 1, 2, . . . , q.

(3.3.10)

Proof It follows from (3.3.9) that

B∗Z∗ = I.



3.3 Cramer’s Rule for Solution of a Matrix Equation 119

Let Z∗ = (̃z jk) ∈ C
q×w, then z̃ jk = zk j . Using Lemma 3.3.3, we have

z̃ jk =
det

[
B∗( j → ek) Q∗
P∗( j → 0) O

]

det

[
B∗ Q∗
P∗ O

] ,

which implies (3.3.10). �
Putting Lemmas 3.3.3 and 3.3.4 together, we have the following Cramer’s rule

for the best-approximate solution of (3.3.5).

Theorem 3.3.2 Let A ∈ C
m×n
r , B ∈ C

q×w
p , D = [d1,d2, . . . ,dw] ∈ C

m×w, andU ∈
C

m×(m−r)
m−r , V ∗ ∈ C

n×(n−r)
n−r , P ∈ C

q×(q−p)
q−p , and Q∗ ∈ C

w×(w−p)
w−p be matrices whose

columns form the bases forN (A∗),N (A),N (B∗), andN (B) respectively, then the
best-approximate solution of the matrix Eq. (3.3.5):

AX B = D

is X = [xi j ] ∈ C
n×q , whose elements are given by

xi j =
w∑

k=1

det

[
A(i → dk) U
V (i → 0) O

]
det

[
B(eTk ← j) P(0 ← j)

Q O

]

det

[
A U
V O

]
det

[
B P
Q O

] ,

i = 1, 2, . . . , n; j = 1, 2, . . . , q, (3.3.11)

where ek is the kth unit vector of dimension w.

Proof By (3.3.7), the best-approximate solution of (3.3.5) is X = A†DB†. Setting

A†D = Y and B† = Z ,

we get
X = Y Z .

Thus the best-approximate solution of (3.3.5) is X = [xi j ] ∈ C
n×q , whose elements

are given by

xi j =
w∑

k=0

yik zk j

and (3.3.11) follows from Lemmas 3.3.3 and 3.3.4. �
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3.3.3 Cramer’s Rule for the Unique Solution of a Restricted
Matrix Equation

The Cramer’s rule for the unique solution of the restricted matrix equation

AXB = D, R(X) ⊂ T, N (X) ⊃ S̃, (3.3.12)

is given as follows, where A ∈ C
m×n
r , B ∈ C

p×q
r̃ , D ∈ C

m×q , T ⊂ C
n , S ⊂ C

m ,
T̃ ⊂ C

q , and S̃ ⊂ C
p satisfy

dim(T ) = dim(S⊥) = t ≤ r, dim(T̃ ) = dim(S̃⊥) = t̃ ≤ r̃ (3.3.13)

and
AT ⊕ S = C

m equivalent to T ⊕ (A∗S⊥)⊥ = C
n

BT̃ ⊕ S̃ = C
p equivalent to T̃ ⊕ (B∗ S̃⊥)⊥ = C

q .
(3.3.14)

If we define the range and null space of a pair of matrices A and B as

R(A, B) = {Y = AXB : X ∈ C
n×p}

and
N (A, B) = {X ∈ C

n×p : AXB = O}

respectively, then the unrestricted matrix equation

AXB = D

has a solution if D ∈ R(A, B).
Now, we consider the solution of the restricted matrix Eq. (3.3.12).

Theorem 3.3.3 Given the matrices A, B and D, and the subspaces T , S, T̃ , and S̃
as above. Suppose that matrices G ∈ C

n×m and G̃ ∈ C
q×p satisfy

R(G) = T, N (G) = S, R(G̃) = T̃ , and N (G̃) = S̃. (3.3.15)

If
D ∈ R(AG, G̃B),

then the restricted matrix Eq. (3.3.12) has the unique solution

X = A(2)
T,SDB(2)

T̃ ,S̃
. (3.3.16)

Proof From the definitions of the range and null space of a pair of matrices, D =
AGY G̃B for some Y . Consequently,
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R(D) ⊂ R(AG) and N (D) ⊃ N (G̃B),

equivalently,
R(D) ⊂ AT and N (D) ⊃ (B∗ S̃⊥)⊥,

since R(AG) = AR(G) = AT and R(D∗) ⊂ R(B∗G̃∗) = B∗R(G̃∗) = B∗ S̃⊥.
Thus we can verify that

AA(2)
T,SDB(2)

T̃ ,S̃
B = PAT,SDPT̃ ,(B∗ S̃⊥)⊥ = D,

that is, X in (3.3.16) is a solution of the matrix Eq. (3.3.12). The solution A(2)
T,SDB(2)

T̃ ,S̃
also satisfies the restricted conditions because

R(X) ⊂ R(A(2)
T,S) = T and N (X) ⊃ N (B(2)

T̃ ,S̃
) = S̃.

Finally, we prove the uniqueness. If X0 is also a solution of the restricted matrix
Eq. (3.3.12), then

X = A(2)
T,SDB(2)

T̃ ,S̃

= A(2)
T,S AX0BB

(2)
T̃ ,S̃

= PT,(A∗S⊥)⊥ X0PBT̃ ,S̃

= X0,

sinceR(X0) ⊂ T and N (X0) ⊃ S̃. �
Next, we show a Cramer’s rule for solving the restricted matrix Eq. (3.3.12).

Theorem 3.3.4 Given the matrices A, B and D, and the subspaces T , S, T̃ and S̃
as above. Let

L ∈ C
m×(m−t)
m−t , M∗ ∈ C

n×(n−t)
n−t , L̃ ∈ C

p×(p−̃t)
p−̃t , and M̃∗ ∈ C

q×(q−̃t)
q−̃t

be matrices such that

R(L) = S, N (M) = T, R(L̃) = S̃, and N (M̃) = T̃ ,

then the elements of the unique solution X = [xi j ] of the restrictedmatrix Eq. (3.3.12)
are given by

xi j =

q∑
k=1

det

[
A(i → dk) L
M(i → 0) O

]
det

[
B(eTk ← j) L̃(0T ← j)

M̃ O

]

det

[
A L
M O

]
det

[
B L̃
M̃ O

] ,

i = 1, 2, . . . , n; j = 1, 2, . . . , p, (3.3.17)
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where dk is the kth column of D and ek is the kth column of the q × q identity matrix.

Proof Since X is the solution of the restricted matrix Eq. (3.3.12), we have

R(X) ⊂ T = N (M) and N (X) ⊃ S̃ = R(L̃).

It follows that
MX = O and X L̃ = O

and [
A L
M O

] [
X O
O O

] [
B L̃
M̃ O

]
=

[
AXB O
O O

]
=

[
D O
O O

]
. (3.3.18)

From Theorem 3.1.3, the two coefficient matrices on the left of the above equation
are nonsingular and

[
A L
M O

]−1

=
[

A(2)
T,S (I − A(2)

T,S A)M
†

L†(I − AA(2)
T,S) L

†(AA(2)
T,S A − A)M†

]

and [
B L̃
M̃ O

]−1

=
[

B(2)
T̃ ,S̃

(I − B(2)
T̃ ,S̃

B)M̃†

L̃†(I − BB(2)
T̃ ,S̃

) L̃†(BB(2)
T̃ ,S̃

B − B)M̃†

]
.

By usingR(X) ⊂ T and N (X) ⊃ S̃, we have

(I − A(2)
T,S A)X = P(A∗S⊥)⊥,T X = O

and
XB(I − B(2)

T̃ ,S̃
B) = X (I − BB(2)

T̃ ,S̃
)B = X PS̃,BT̃ B = O.

Therefore

[
X O
O O

]
=

[
A L
M O

]−1 [
D O
O O

] [
B L̃
M̃ O

]−1

=
[
A(2)
T,SDB(2)

T̃ ,S̃
O

O O

]
.

From the above equation, the unique solution of (3.3.12) is the same as that of
(3.3.18). Applying Theorem 3.3.1 to (3.3.18), we obtain (3.3.17) immediately. �

Corollary 3.3.1 Let A ∈ C
m×n
r , B ∈ C

p×q
r̃ , M, N, P, and Q be Hermitian pos-

itive define matrices of orders m, n, p, and q respectively, and U ∈ C
m×(m−r)
m−r ,

V ∗ ∈ C
n×(n−r)
n−r , Ũ ∈ C

p×(p−r̃)
p−r̃ and Ṽ ∗ ∈ C

q×(q−r̃)
q−r̃ be matrices whose columns form
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the bases for N (A∗), N (A), N (B∗), and N (B) respectively. Suppose that A# =
N−1A∗M, B# = Q−1B∗P and D ∈ C

m×q satisfy

D ∈ R(AA#, B#B). (3.3.19)

Then the restricted matrix equation

AX B = D, R(X) ⊂ N−1R(A∗), N (X) ⊃ P−1N (B∗),

has a unique solution
X = A†

MN DB†
PQ = [xi j ],

whose elements are given by

xi j =

q∑
k=1

det

[
A(i → dk) M−1U
V N (i → 0) O

]
det

[
B(eTk ← j) P−1Ũ (0T ← j)

Ṽ Q O

]

det

[
A M−1U

V N O

]
det

[
B P−1Ũ
Ṽ Q O

] ,

for i = 1, 2, . . . , n and j = 1, 2, . . . , p, where dk is the kth column of D and ek is
the kth column of the q × q identity matrix.

Corollary 3.3.2 Given the matrices A, B, U, V , Ũ , and Ṽ as above. Let D ∈ C
m×q

satisfy
D ∈ R(AA∗, B∗B), (3.3.20)

then the restricted matrix equation

AX B = D, R(X) ⊂ R(A∗), N (X) ⊃ N (B∗)

has a unique solution
X = A†DB† = [xi j ],

whose elements are given by

xi j =

q∑
k=1

det

[
A(i → dk) U
V (i → 0) O

]
det

[
B(eTk ← j) Ũ (0T ← j)

Ṽ O

]

det

[
A U
V O

]
det

[
B Ũ
Ṽ O

] ,

i = 1, 2, . . . , n; j = 1, 2, . . . , p,

where dk is the kth column of D and ek is the kth column of the q × q identity matrix.

Corollary 3.3.3 Let A ∈ C
n×n with Ind(A) = k, B ∈ C

p×p with Ind(B) = k̃, rank
(Ak) = r < n, rank(Bk̃) = r̃ < p, and U, V ∗ ∈ C

n×(n−r)
n−r and Ũ , Ṽ ∗ ∈ C

p×(p−r̃)
p−r̃ be
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matrices whose columns form the bases for N (Ak), N (Ak∗
), N (Bk̃), and N (Bk̃∗

)

respectively. Suppose that D ∈ C
n×p satisfies

D ∈ R(Ak+1, Bk̃+1). (3.3.21)

Then the restricted matrix equation

AX B = D, R(X) ⊂ R(Ak), N (X) ⊃ N (Bk̃)

has a unique solution
X = AdDBd = [xi j ],

whose elements are given by

xi j =

q∑
k=1

det

[
A(i → dk) U
V (i → 0) O

]
det

[
B(eTk ← j) Ũ (0T ← j)

Ṽ O

]

det

[
A U
V O

]
det

[
B Ũ
Ṽ O

] ,

i = 1, 2, . . . , n; j = 1, 2, . . . , p,

where dk is the kth column of D and ek is the kth column of the q × q identity matrix.

Corollary 3.3.4 Let A ∈ C
n×n with Ind(A) = 1, B ∈ C

p×p with Ind(B) = 1, rank
(A) = r < n, rank(B) = r̃ < p, and U, V ∗ ∈ C

n×(n−r)
n−r and Ũ , Ṽ ∗ ∈ C

p×(p−r̃)
p−r̃ be

matrices whose columns form the bases forN (A),N (A∗),N (B) andN (B∗) respec-
tively. Suppose that D ∈ C

n×p satisfies

D ∈ R(A2, B2). (3.3.22)

Then the restricted matrix equation

AX B = D, R(X) ⊂ R(A), N (X) ⊃ N (B)

has a unique solution
X = AgDBg = [xi j ],

whose elements are given by

xi j =

q∑
k=1

det

[
A(i → dk) U
V (i → 0) O

]
det

[
B(eTk ← j) Ũ (0T ← j)

Ṽ O

]

det

[
A U
V O

]
det

[
B Ũ
Ṽ O

] ,

i = 1, 2, . . . , n; j = 1, 2, . . . , p,
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where dk is the kth column of D and ek is the kth column of the q × q identity matrix.

Let A ∈ C
m×n , B ∈ C

p×q , T ⊂ C
n , and S ⊂ C

p, then the Bott-Duffin inverses

(A∗A)(−1)
(T ) = (A∗A)(2)T,T⊥ and (BB∗)(−1)

(S⊥) = (BB∗)(2)S⊥,S.

It is obviously that the orthogonal projectors PT and PS⊥ satisfy

T = R(PT ), T⊥ = N (PT ), S⊥ = R(PS⊥), S = N (PS⊥).

Thus, when setting G = PT and G̃ = PS⊥ in Theorem 3.3.3, we have the following
result immediately.

Corollary 3.3.5 Let A ∈ C
m×n, B ∈ C

p×q , D ∈ C
m×q , T ⊂ C

n and S ⊂ C
p. If

A∗DB∗ ∈ R(A∗APT , PS⊥ BB∗),

then the restricted matrix equation

A∗AXBB∗ = A∗DB∗, R(X) ⊂ T, N (X) ⊃ S (3.3.23)

has the unique solution

X = (A∗A)(−1)
(T ) A∗DB∗(BB∗)(−1)

(S⊥) .

By using Theorem 3.3.4, we have the Cramer’s rule for solving the restricted
matrix Eq. (3.3.23).

Corollary 3.3.6 Given A, B, D and the subspaces T and S as in Corollary 3.3.5.
Let

T = N (E), S = R(F)

and
T⊥ = R(E∗), S⊥ = R(F∗),

then the elements of the unique solution X = [xi j ] of the restrictedmatrix Eq. (3.3.23)
are given by

xi j =

q∑
k=1

det

[
A∗A(i → dk) E∗
E(i → 0) O

]
det

[
BB∗(eTk ← j) F(0T ← j)

F∗ O

]

det

[
A∗A E∗
E O

]
det

[
BB∗ F
F∗ O

] ,

i = 1, . . . , n, j = 1, . . . , p,

where dk is the kth column of A∗DB∗ and ek is the kth column of the q × q identity
matrix.
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3.3.4 An Alternative Condensed Cramer’s Rule
for a Restricted Matrix Equation

In this section, we revisit the restricted matrix Eq. (3.3.12):

AXB = D, R(X) ⊂ T, N (X) ⊃ S̃,

where A ∈ C
m×n
r , B ∈ C

p×q
r̃ , D ∈ C

m×q , T ⊂ C
n , S ⊂ C

m , T̃ ⊂ C
q , S̃ ⊂ C

p and
the conditions (3.3.13) and (3.3.14) are satisfied.

It follows from Lemma 3.2.2 and Theorem 3.2.8, we have the following results.

Lemma 3.3.5 Given B, T̃ , S̃ as above. In addition, suppose G̃ ∈ C
q×p such that

R(G̃) = T̃ and N (G̃) = S̃.

If B has a {2}-inverse B(2)
T̃ ,S̃

, then

Ind(BG̃) = Ind(G̃B) = 1.

Furthermore, we have
B(2)
T̃ ,S̃

= G̃(BG̃)g = (G̃B)gG̃. (3.3.24)

Theorem 3.3.5 Given B, T̃ , S̃, and G̃ as in Lemma 3.3.5, and

BT̃ ⊕ S̃ = C
p.

Let Ṽ and Ũ ∗ be matrices whose columns form the bases forN (BG̃) andN ((BG̃)∗)
respectively. We define

F = Ṽ (Ũ Ṽ )−1Ũ .

Then F satisfies

R(F) = R(Ṽ ) = N (BG̃), N (F) = N (Ũ ) = R(BG̃),

and BG̃ + F is nonsingular and

(BG̃ + F)−1 = (BG̃)g + Fg.

Next, we show a condensed Cramer’s rule for solving the restricted matrix
Eq. (3.3.12).

Theorem 3.3.6 Given A, B, T, S, T̃ , S̃,G, G̃, V,U ∗, Ṽ , Ũ ∗, E, and F as in
Theorems 3.2.8 and 3.3.5. If

D ∈ R(AG, G̃B),
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then the restricted matrix Eq. (3.3.12):

AX B = D, R(X) ⊂ T, N (X) ⊃ S̃

is equivalent to the nonsingular matrix equation

(GA + E)X (BG̃ + F) = GDG̃ (3.3.25)

and the entries of the unique solution X of (3.3.12) are given by

xi j =

p∑
k=1

det((GA + E)(i → d̃k))det((BG̃ + F)(eTk ← j))

det(GA + E) det(BG̃ + F)
,

i = 1, 2, . . . , n, j = 1, 2, . . . , p, (3.3.26)

where d̃k is the kth column of GDG̃ and ek is the kth column of the identity matrix
of order p.

Proof It follows from Theorems 3.2.8 and 3.3.5 that GA + E and BG̃ + F are
nonsingular, and that the unique solution of (3.3.25) is

X = (GA + E)−1GDG̃(BG̃ + F)−1

= (GA)gGDG̃(BG̃)g + (GA)gGDG̃Fg (3.3.27)

+ EgGDG̃(BG̃)g + EgGDG̃Fg.

From assumptions, we have

D = AGY G̃B for some Y,

and
N (E) = N (U ) = R(GA), R(F) = R(Ṽ ) = N (BG̃).

Thus
EGA = O and BG̃F = O,

implying

EgGD = EGAGY G̃B = O and DG̃Fg = AGY G̃BG̃F = O. (3.3.28)

It follows from (3.3.27) and (3.3.28), (3.2.24) and (3.3.24) that

X = (GA)gGDG̃(BG̃)g

= A(2)
T,SDB(2)

T̃ ,S̃
.
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The restricted matrix Eq. (3.3.12) has the unique solution

X = A(2)
T,SDB(2)

T̃ ,S̃

by Theorem 3.3.3, hence the restrictedmatrix Eq. (3.3.12) is equivalent to the nonsin-
gular matrix Eq. (3.3.25). Applying the Cramer rule (3.3.4)–(3.3.25), we can obtain
the expression (3.3.26) immediately. �

Similar to Corollaries 3.3.1–3.3.5, we have a series of condensed Cramer rules
for those corresponding restricted matrix equations, see [22]. It is omitted here and
left as an exercise.

Exercises 3.3

1. Prove (9), (10) and (11) of Lemma 3.3.2. (cf. [4])
2. Can we use the conditions

R(D) ⊂ R(A) and N (D) ⊃ N (B)

instead of the conditions (3.3.19) and (3.3.20) in Corollaries 3.3.1 and 3.3.2?
3. Can we use the conditions

R(D) ⊂ R(Ak) and N (D) ⊃ N (Bk̃)

instead of the condition (3.3.21) in Corollary 3.3.3?
4. Can we use the conditions

R(D) ⊂ R(A) and N (D) ⊃ N (B)

instead of the condition (3.3.22) in Corollary 3.3.4?

3.4 Determinantal Expressions of the Generalized Inverses
and Projectors

It is well known that if A is nonsingular, then the inverse of A is given by

A−1 = adj(A)

det(A)
,

where
(adj(A))i j = det(A(i → e j )), i, j = 1, 2, . . . , n.
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Let A−1 = [αi j ], then

αi j = det(A(i → e j ))

det(A)
i, j = 1, 2, . . . , n.

The determinantal expression of an ordinary inverse can be extended to the gener-
alized inverses. These results offer a useful tool for the theory and computations of
the generalized inverses.

By using the results in Sect. 3.1, the determinantal expressions of the generalized
inverses A†

MN , A
†, Ad , Ag , A

(2)
T,S , A

(1,2)
T,S , and A(−1)

(L) and the projectors A†A and AA†

are given in the following theorems.

Theorem 3.4.1 Let A ∈ C
m×n
r , M and N be Hermitian positive definite matrices of

orders m and n respectively, and U ∈ C
m×(m−r)
m−r and V ∗ ∈ C

n×(n−r)
n−r matrices whose

columns form bases for N (A∗) and N (A) respectively. Also, let

A2 =
[

A M−1U
V N O

]
and A1 =

[
A U
V O

]
,

and A†
MN = [α(2)

i j ] and A† = [α(1)
i j ], then

α(l)
i j = det(Al(i → e j ))

det(Al)
, l = 1, 2. (3.4.1)

Proof It follows from Theorem 3.1.1 and Corollary 3.1.1 that A2 and A1 are nonsin-
gular and the n × m submatrices in the upper-left corners of A−1

2 and A−1
1 are A†

MN
and A† respectively. Using Al A

−1
l = I , l = 1, 2, we obtain (3.4.1) immediately. �

Theorem 3.4.2 Let A ∈ C
n×n, Ind(A) = k and rank(Ak) = r < n, and U, V ∗ ∈

C
n×(n−r)
n−r bematrices whose columns form bases forN (Ak) andN (Ak∗

) respectively.
Let

A4 =
[
A U
V O

]
, k > 1, and A3 =

[
A U
V O

]
, k = 1,

and Ad = [α(4)
i j ] and Ag = [α(3)

i j ], then

α(l)
i j = det(Al(i → e j ))

det(Al)
, l = 3, 4. (3.4.2)

Proof It follows from Theorem 3.1.2 and Corollary 3.1.4 that A4 and A3 are non-
singular and the n × m submatrices in the upper-left corners of A−1

4 and A−1
3 are Ad

and Ag respectively. Using Al A
−1
l = I , l = 3, 4, we obtain (3.4.2) immediately. �

Theorem 3.4.3 Let A ∈ C
m×n
r , T ⊂ C

n, S ⊂ C
m, dim(T ) = dim(S⊥) = t ≤ r and

AT ⊕ S = C
m, and both B and C∗ be of full column rank and satisfy
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S = R(B) and T = N (C).

Let

A6 =
[
A B
C O

]
, t < r, and A5 =

[
A B
C O

]
, t = r,

and A(2)
T,S = [α(6)

i j ] and A(1,2)
T,S = [α(5)

i j ], then

α(l)
i j = det(Al(i → e j ))

det(Al)
, l = 5, 6. (3.4.3)

Proof It follows from Theorems 3.1.3 and 3.1.4 that A6 and A5 are nonsingular and
the n × m submatrices in the upper-left corners of A−1

6 and A−1
5 are A(2)

T,S and A(1,2)
T,S

respectively. Using Al A
−1
l = I , l = 5, 6, we obtain (3.4.3) immediately. �

Theorem 3.4.4 Let A ∈ C
n×n
r , U ∈ C

n×p
p satisfyN (U ∗) = L and AL ⊕ L⊥ = C

n,
and

A7 =
[

A U
U ∗ O

]
,

and A(−1)
(L) = [α(7)

i j ], then
α(7)
i j = det(A7(i → e j ))

det(A7)
. (3.4.4)

Proof It follows from Theorem 3.1.5 that A7 is nonsingular and the n × n subma-
trix in the upper-left corner of A7 is A(−1)

(L) . Using A7A
−1
7 = I , we obtain (3.4.4)

immediately. �
Finally, since the projectors A†A and AA† are the best-approximate solutions

of AY = A and Y A = A respectively, using Lemmas 3.3.3 and 3.3.4, we have the
following theorem.

Theorem 3.4.5 Let A = [a1, a2, . . . , an] ∈ C
m×n
r , A∗ = [̃a1, ã2, . . . , ãm] ∈ C

n×m
r ,

and U ∈ C
m×(m−r)
m−r and V ∗ ∈ C

n×(n−r)
n−r be matrices whose columns form the bases

for N (A∗) and N (A) respectively. Also, let

A†A = [ϕi j ] ∈ C
n×n and AA† = [ψi j ] ∈ C

m×m,

then

ϕi j =
det

[
A(i → a j ) U
V (i → 0) O

]

det

[
A U
V O

] , i, j = 1, 2, . . . , n.

and
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ψi j =
det

[
A(̃ai ← j) U (0 ← j)

V O

]

det

[
A U
V O

] , i, j = 1, 2, . . . ,m.

The determinantal expressions of the projectors A†
MN A, AA

†
MN , AAd , and AAg

are given in [21]. The determinantal expressions of the projectors A(1,2)
T,S A, AA(1,2)

T,S ,

A(2)
T,S A and AA(2)

T,S are left to the reader.

Exercises 3.4

1. Show the determinantal expressions of the generalized Bott-Duffin inverses A(†)
(L)

and the W-weighted Drazin inverse Ad,W [23].
2. Show the determinantal expressions of the projectors A(1,2)

T,S A, AA(1,2)
T,S , A(2)

T,S A,

AA(2)
T,S , W AW Ad,W and Ad,WW AW .

3. By using the Werner’s method [14], show the condensed Cramer rule for the
solutions of linear equations and matrix equations in Sects. 3.2 and 3.3.

3.5 The Determinantal Expressions of the Minors
of the Generalized Inverses

In this section, we study the minors, submatrices, of inverses. First, we introduce
notations and review the expressions of the minors of the regular inverse of a non-
singular matrix. Then we present the minors of various generalized inverses in the
following subsections.

If a matrix A ∈ R
n×n is nonsingular, then the adjoint formula for its inverse

A−1 = adj(A)

det(A)

has a well-known generalization, the Jacobi identity, which relates the minors of A−1

to those of A.
Denote the set of strictly increasing sequences of k integers chosen from {1, 2,

. . . , n} by

Qk,n = {α : α = (α1,α2, · · · ,αk), 1 ≤ α1 < α2 < · · · < αk ≤ n}.

For α,β ∈ Qk,n , we denote

A[α,β] the submatrix of A having row indices α and column indices β,
A[α′,β′] the submatrix obtained from A by deleting rows indexed α and columns

indexed β.
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Then the Jacobi identity [24] is: for any α,β ∈ Qk,n ,

det(A−1[β,α]) = (−1)S(α)+S(β) det(A[α′,β′])
det(A)

,

where S(α) is the sum of the integers in α. By convention,

det(A[∅,∅]) = 1.

We adopt the following notations from [25]. For any index sets I and J , let AI∗,
A∗J , and AI J denote the submatrices of A lying in the rows indexed by I , in the
columns indexed by J , and in their intersection, respectively. The principal submatrix
AJ J is denoted by AJ . For A ∈ R

m×n
r , let

I(A) = {I ∈ Qr,m : rank(AI∗) = r},
J (A) = {J ∈ Qr,n : rank(A∗J ) = r}, (3.5.1)

B(A) = {(I, J ) ∈ Qr,m × Qr,n : rank(AI J ) = r},

that is,
B(A) = I(A) × J (A),

be the index sets of maximal sets of linearly independent rows, columns andmaximal
nonsingular submatrices, respectively.

For α ∈ Qk,m , β ∈ Qk,n , let

I(α) = {I ∈ I(A) : α ⊂ I },
J (β) = {J ∈ J (A) : β ⊂ J }, (3.5.2)

B(α,β) = {(I, J ) ∈ B(A) : α ⊂ I, β ⊂ J },

that is,
B(α,β) = I(α) × J (β).

For α = (α1,α2, · · · ,αk) and β = (β1,β2, · · · ,βk), we denote

A(β → Iα)

the matrix obtained from A by replacing the βi th column with the unit vector eαi ,
i = 1, 2, . . . , k, and denote

A(β → O)

the matrix obtained from A by replacing the βi th column with the zero vector,
i = 1, 2, . . . , k.
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Finally, the coefficient (−1)S(α)+S(β) det(A[α′,β′]) of det(A[α,β]) in the Laplace
expansion of det(A) is denoted by

∂

∂|Aαβ | |A|. (3.5.3)

Using the above notations, (3.5.3) can be rewritten as

∂

∂|Aαβ | |A| = (−1)S(α)+S(β) det(A[α′,β′]) = det(A(β → Iα)) (3.5.4)

and the Jacobi identity as

det(A−1[β,α]) = det(A(β → Iα))

det(A)
(3.5.5)

= det(AT A(β → Iα))

det(AT A)
. (3.5.6)

As in [26], we define the volume of an m × n matrix A by

Vol(A) =
√ ∑

(I,J )∈B(A)

det2(AI J )

and in particular,

Vol(A) =
√
det(AT A) if A has full column rank (3.5.7)

and
Vol(A) =

√
det(AAT ) if A has full row rank. (3.5.8)

If A = FG is a full rank factorization of A, then

Vol(A) = Vol(F)Vol(G). (3.5.9)

Let A ∈ R
m×n
r , andU ∈ R

m×(m−r)
m−r andV T ∈ R

n×(n−r)
n−r bematriceswhose columns

form the orthonormal bases for N (AT ) and N (A) respectively, then

B =
[
A U
V O

]

is nonsingular by Corollary 3.1.3 and its inverse is

B−1 =
[
A† V T

UT O

]
. (3.5.10)



134 3 Generalization of the Cramer’s Rule and the Minors of the Generalized Inverses

If A is of full column (row) rank, then V (U ) is empty. Moreover, by [26],

det(BT B) = Vol2(A). (3.5.11)

In the following subsections, we study the determinantal expressions of theminors
of the various generalized inverses.

3.5.1 Minors of the Moore-Penrose Inverse

Theorem 3.5.1 ([25]) Let A ∈ R
m×n
r and 1 ≤ k ≤ r , then for any α ∈ Qk,m and

β ∈ Qk,n,

det(A†[β,α]) = (3.5.12)⎧⎨
⎩
0, if B(α,β) = ∅;
Vol−2(A)

∑
(I,J )∈B(α,β)

det(AI J )
∂

∂|Aαβ | |AI J |, otherwise.

Proof From (3.5.10) and (3.5.6), we have

det(A†[β,α]) = det(B−1[β,α])
= 1

det(BT B)
det(BT B(β → Iα)). (3.5.13)

Now

det(BT B(β → Iα))

= det

([
AT V T

UT O

] [
A(β → Iα) U
V (β → O) O

])

= det

([
AT V T

] [
A(β → Iα)
V (β → O)

])

=
∑

I∈I(A)
det

[
(AT )∗I V T

]
det

[
(A(β → Iα))I∗
V (β → O)

]

=
∑

I∈I(α)
det

[
(AI∗)T V T

]
det

[
AI∗(β → Iα)
V (β → O)

]
. (3.5.14)

In the above equation, the equality next to the last is by the Cauchy-Binet for-
mula, noting that the determinant of any n × n submatrix of [AT V T ] ∈ R

n×(m+n−r)
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consisting of more than r columns of AT is zero. The last equality holds because the
matrix [

A(β → Iα)I∗
V (β → O)

]

has at least one column of zeros if I /∈ I(α).
We claim (and prove later) that for any fixed I ∈ I(α),

det[(AI∗)T V T ] det
[
AI∗(β → Iα)
V (β → O)

]

=
∑

J∈J (β)

det(AI J ) det(AI J (β → Iα)). (3.5.15)

Then, using (3.5.11), (3.5.14) and (3.5.4), the Eq. (3.5.13) becomes

det(A†[β,α])
= 1

Vol2(A)

∑
I∈I(α)

∑
J∈J (β)

det(AI J ) det(AI J (β → Iα))

= 1

Vol2(A)

∑
(I,J )∈B(α,β)

det(AI J )
∂

∂|Aαβ| |AI J |.

Finally, we prove (3.5.15). For any fixed I ∈ I(α), the columns of V T form an
orthonormal basis for N (AI∗). Let

L =
[
AI∗
V

]
,

then, by Corollary 3.1.3, L is nonsingular and its inverse is

L−1 = [A†
I∗ V T ],

and

det((AI∗)†[β,α])
= det(L−1[β,α])
= 1

det(LT L)
det(LT L(β → Iα))

= 1

Vol2(AI∗)
det[(AI∗)T V T ] det

[
AI∗(β → Iα)
V (β → O)

]
. (3.5.16)

Writing (AI∗)T = C , we have
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det((AI∗)†[β,α]) = det((C†)T [β,α]) = det(C†[α,β]).

Let W be a matrix whose columns form an orthonormal basis for N (CT ) and

M = [C W ],

then, by Corollary 3.1.3, M is nonsingular and its inverse is

M−1 =
[
C†

WT

]
.

Thus
(MT )−1 = [(CT )† W ]

and

det((A†
I∗)[β,α])

= det((CT )†[β,α])
= det((MT )−1[β,α])
= det((M)−1[α,β])
= 1

det(MT M)
det(MT M(α → Iβ))

= 1

Vol2(AI∗)
det(AI∗(AI∗)T (α → Iβ))

= 1

Vol2(AI∗)

∑
J∈J (β)

det(AI J ) det((AI J )
T (α → Iβ))

= 1

Vol2(AI∗)

∑
J∈J (β)

det(AI J ) det(AI J (β → Iα)). (3.5.17)

The equality next to the last is by theCauchy-Binet formula, noting that, if J /∈ J (β),
then the submatrix of (AI∗)T (α → Iβ)whose rows are indexed by J has at least one
column of zeros.

Finally, (3.5.15) follows by comparing (3.5.16) and (3.5.17). �
Note thatB(α, β) = ∅ is equivalent to the linear dependence of either the columns

of A∗β or the rows of Aα∗.
As a special case, if α = I ∈ I(A) and β = J ∈ J (A), then B(α, β) contains

only one element, i.e., (I, J ). Now Theorem 3.5.1 gives the identity:

det(A†)I J = 1

Vol2(A)
det(AI J ), ∀(I, J ) ∈ B(α,β).



3.5 The Determinantal Expressions of the Minors of the Generalized Inverses 137

3.5.2 Minors of the Weighted Moore-Penrose Inverse

Let A ∈ R
m×n
r ,U ∈ R

m×(m−r)
m−r and V T ∈ R

n×(n−r)
n−r be matrices whose columns form

the bases for N (AT ) and N (A) respectively, and M and N be symmetric positive
definite matrices of orders m and n respectively, then

[
A M−1U

V N O

]

is nonsingular by Theorem 3.1.1 and its inverse is

[
A M−1U

V N O

]−1

=
[

A†
MN V T (V NV T )−1

(UT M−1U )−1UT O

]
.

Lemma 3.5.1 Let B ∈ R
r×n
r , V T ∈ R

n×(n−r)
n−r and BV T = O, then

[
B
V N

]

is nonsingular and its inverse is

[
B
V N

]−1

= [B†
I N V T (V NV T )−1]. (3.5.18)

Proof Since
B†
I N = N−1/2(BN−1/2)†,

we have

BB†
I N = BN−1/2(BN−1/2)† = I,

V N (V T (V NV T )−1) = I,

V N B†
I N = V N B†

I N BB
†
I N

= V (N B†
I N B)

T B†
I N

= V BT (N B†
I N )

T B†
I N

= O,

and
BV T (V NV T )−1 = O,

which imply (3.5.18). �
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Lemma 3.5.2 Let C ∈ R
n×r
r , W ∈ R

n×(n−r)
n−r and CTW = O, then

[C NW ]

is nonsingular and its inverse is

[C NW ]−1 =
[

C†
N−1,I

(WT NW )−1WT

]
. (3.5.19)

Proof Since

[C NW ]T =
[

CT

WT N

]
,

by using (3.5.18), we have

[
CT

WT N

]−1

=
[
(CT )

†
I,N W (WT NW )−1

]

=
[
(C†

N−1,I )
T W (WT NW )−1

]
.

Thus (3.5.19) holds. �

Lemma 3.5.3 Let A ∈ R
m×n
r and A = FG be a full rank factorization of A, and M

and N be symmetric positive definite matrices of orders m and n respectively. Then

A†
MN = G†

I N F
†
MI (3.5.20)

and
det(FT MF) det(GN−1GT ) = Vol2(M1/2AN−1/2). (3.5.21)

Proof By using Theorem 1.4.4,

A†
MN = N−1GT (FT MAN−1GT )−1FT M

= N−1GT (GN−1GT )−1(FT MF)−1FT M

= G†
I N F

†
MI .

Since
GN−1GT = (GN−1/2)(GN−1/2)T

and
FT MF = (M1/2F)T (M1/2F),

where M1/2F is of full column rank and GN−1/2 is of full row rank, using (3.5.7)–
(3.5.9), we have
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det(FT MF) det(GN−1GT )

= det((M1/2F)T (M1/2F)) det((GN−1/2)(GN−1/2)T )

= Vol2(M1/2F)Vol2(GN−1/2)

= Vol2(M1/2AN−1/2),

which completes the proof. �

Lemma 3.5.4 Let A ∈ R
m×n
r and A = FG be a full rank factorization of A, 1 ≤

k ≤ r , and ∀α ∈ Qk,m, ∀β ∈ Qk,n and ∀(I, J ) ∈ B(α,β), then

det(AI J (β → Iα))

=
∑

ω∈Qk,r

det((F(ω → Iα))I∗) det((G(β → Iω))∗J ). (3.5.22)

Proof From (3.5.5),

det(AI J (β → Iα)) = det(AI J ) det(A
−1
I J [β,α]). (3.5.23)

Since F is of full column rank and G is of full row rank, we have

det((F(ω → Iα))I∗) = det(FI∗(ω → Iα))

= det(FI∗) det(F−1
I∗ [ω,α]) (3.5.24)

and

det((G(β → Iω))∗J ) = det(G∗J (β → Iω))

= det(G∗J ) det(G−1
∗J [β,ω]). (3.5.25)

By using AI J = FI∗G∗J , we have

det(AI J ) = det(FI∗) det(G∗J ). (3.5.26)

It follows from A−1
I J = G−1

∗J F
−1
I∗ and the Cauchy-Binet formula that

det(A−1
I J [β,α]) =

∑
ω∈Qk,r

det(G−1
∗J [β,ω]) det(F−1

I∗ [ω,α]). (3.5.27)

Thus, (3.5.22) follows by (3.5.23)–(3.5.27). �

Theorem 3.5.2 ([27]) Let A ∈ R
m×n
r , and U ∈ R

m×(m−r)
m−r and V T ∈ R

n×(n−r)
n−r be

matrices whose columns form the bases for N (AT ) and N (A) respectively, and M
and N symmetric positive definitematrices of ordersm and n respectively, 1 ≤ k ≤ r ,
then for any α ∈ Qk,m and β ∈ Qk,n,
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det(A†
MN [β,α]) (3.5.28)

=
⎧⎨
⎩
0, if B(α,β) = ∅;
Vol−2( Ã)

∑
(I,J )∈B(α,β)

det((MAN−1)I J )
∂|AI J |
∂|Aαβ | otherwise,

where Ã = M1/2AN−1/2.

Proof Let A = FG be a full rank factorization. It follows from (3.5.20) and the
Cauchy-Binet formula that

det(A†
MN [β,α]) =

∑
ω∈Qk,r

det(G†
I N [β,ω]) det(F†

MI [ω,α]).

SettingGT = D, by the assumption AV T = O,wehaveGV T = O, i.e., DT V T =
O. From Lemma 3.5.2,

H = [D NV T ]

is nonsingular and its inverse

H−1 =
[

D†
N−1,I

(V NV T )−1V

]
.

Since
(D†

N−1,I )
T = (DT )

†
I,N = G†

I N ,

we have

det(G†
I N [β,ω])

= det((D†
N−1,I )

T [β,ω])
= det(D†

N−1,I [ω,β])
= det(H−1[ω,β])
= 1

det(HT N−1H)
det(HT N−1H(ω → Iβ))

= 1

det(GN−1GT ) det(V NV T )
det

[
GN−1GT (ω → Iβ) GV T

VGT (ω → Iβ) V NV T

]

= 1

det(GN−1GT )
det(GN−1GT (ω → Iβ))

= 1

det(GN−1GT )

∑
J∈J (β)

det((GN−1)∗J ) det((GT (ω → Iβ))J∗)

= 1

det(GN−1GT )

∑
J∈J (β)

det((GN−1)∗J ) det((G(β → Iω))∗J ). (3.5.29)
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The equality next to the last is by the Cauchy-Binet formula. Noting that, if
J /∈ J (β), then the submatrix of GT (ω ← Iα) whose rows are indexed by J has at
least one column of zeros.

From the assumption ATU = O, we have FTU = O. By Lemma 3.5.2,

P = [F M−1U ]

is nonsingular and its inverse is

P−1 =
[

F†
MI

(UT M−1U )UT

]
.

Thus

det(F†
MI [ω,α])

= det(P−1[ω,α])
= 1

det(PT MP)
det(PT MP(ω → Iα))

= 1

det(FT MF)
det(FT MF(ω → Iα))

= 1

det(FT MF)

∑
I∈I(α)

det((FT M)∗I ) det((F(ω → Iα))I∗)

= 1

det(FT MF)

∑
I∈I(α)

det((MF)I∗) det((F(ω → Iα))I∗). (3.5.30)

If I /∈ I(α), then the submatrix of F(ω ← Iα) whose rows are indexed by I has at
least one column of zeros.

It follows from (3.5.2), (3.5.4), (3.5.21), (3.5.22), (3.5.29) and (3.5.30) that the
second part in (3.5.28) holds.

Note that B(α,β) = ∅ is equivalent to linear dependence of either the columns
of A∗β or the rows of Aα∗. �

As a special case, if α = I ∈ I(A) and β = J ∈ J (A), then B(α,β) contains
only one element, which is (I, J ). Now Theorem 3.5.2 gives the identity:

det((A†
MN )J I ) = 1

Vol2( Ã)
det((MAN−1)I J ).
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3.5.3 Minors of the Group Inverse and Drazin Inverse

Definition 3.5.1 Let A ∈ R
m×n
r , 0 < k ≤ r , the kth compound matrix of A denoted

by Ck(A) is the

(
m
k

)
×

(
n
k

)
matrix whose elements are determinants of all k × k

submatrices of A in lexicographic order.

Some well known properties of compound matrices are listed below (see for
example [28]).

Lemma 3.5.5

(1) Ck(AT ) = Ck(A)T ;
(2) If A ∈ C

m×p, B ∈ C
p×n and rank(AB) = r , then

Ck(AB) = Ck(A)Ck(B), k ≤ min{m, r, n};

(3) rank(Ck(A)) =
(
r
k

)
;

(4) Ck(I ) = I (appropriate size identity matrix).

Lemma 3.5.6 Let A ∈ R
m×n
r . If A = CR is a full rank factorization of A, then

∂

∂|Aαβ | |AI J | =
∑

γ∈Qk,r

∂

∂|Cαγ | |CI∗| ∂

∂|Rγβ | |R∗J |,

for any α ∈ Qk,m, β ∈ Qk,n, and (I, J ) ∈ B(α,β).
Proof The result follows from the Cauchy-Binet formula

det(A[I \ α, J \ β])
=

∑
τ∈Qr−k,r

det(C[I \ α, τ ]) det(R[τ , J \ β])

=
∑

γ∈Qk,r

det(C[I \ α, r̃ \ γ]) det(R[̃r \ γ, J \ β]),

where r̃ = {1, 2, . . . , r}. �

Lemma 3.5.7 Let R ∈ R
r×n
r and C ∈ R

m×r
r . If E and F are a right inverse of R and

a left inverse of C respectively, that is, RE = I and FC = I , then

det(E[β, γ]) =
∑

J∈J (β)

det(EJ∗)
∂

∂|Rγβ | |R∗J |, (3.5.31)

for any γ ∈ Qk,r , β ∈ Qk,n, and
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det(F[γ,α]) =
∑

I∈I(α)
det(F∗I )

∂

∂|Cαγ | |CI∗|, (3.5.32)

for any α ∈ Qk,m, γ ∈ Qk,r .

Proof Let eβ,γ be the right-hand side of (3.5.31), then

eβ,γ =
∑

J∈J (β)

⎛
⎝ ∑

ξ∈Qk,r

det(E[β, ξ]) ∂

∂|Eβξ| |EJ∗|
⎞
⎠ ∂

∂|Rγβ | |R∗J |

=
∑

J∈J (β)

∑
ξ∈Qk,r

det(E[β, ξ])(−1)S(ξ)+S(γ)

· det(E[J \ β, r̃ \ ξ]) det(R[̃r \ γ, J \ β])
=

∑
τ∈Qr−k,n

τ∩β=∅

det(E[β, ξ])(−1)S(ξ)+S(γ)

· det(E[τ , r̃ \ ξ]) det(R[̃r \ γ, τ ]), (3.5.33)

noting that if τ ∈ Qr−k,n and τ ∩ β �= ∅, then
∑

ξ∈Qk,r

(−1)S(ξ) det(E[β, ξ]) det(E[τ , r̃ \ ξ]) = 0.

Thus (3.5.33) becomes

eβ,γ =
∑

ξ∈Qk,r

(−1)S(ξ)+S(γ) det(E[β, ξ]) ·
⎛
⎝ ∑

τ∈Qr−k,n

det(R[̃r \ γ, τ ]) det(E[τ , r̃ \ ξ])
⎞
⎠ . (3.5.34)

Now it follows from
Cr−k(R)Cr−k(E) = I,

that ∑
τ∈Qr−k,n

det(R[̃r \ γ, τ ]) det(E[τ , r̃ \ ξ]) =
{
0, if γ �= ξ;
1, if γ = ξ.

Putting the above equation and (3.5.34) together gives

eβ,γ = det(E[β, γ]).



144 3 Generalization of the Cramer’s Rule and the Minors of the Generalized Inverses

This completes the proof of (3.5.31). The proof of (3.5.32) is similar and left to the
reader as an exercise. �
Theorem 3.5.3 ([29]) Let A ∈ R

m×n
r . If G ∈ A{1, 2}, then

det(G[β,α]) =
∑

(I,J )∈B(α,β)

det(GJ I )
∂

∂|Aαβ | |AI J |, (3.5.35)

for any α ∈ Qk,m and β ∈ Qk,n, 1 ≤ k ≤ r .

Proof Let A = CR be a full rank factorization of A, E = GC , and F = RG. Since
G ∈ A{1}, we have CRGCR = CR, RGC = I . Thus RE = I and

FC = RGC = RE = I.

It follows from the assumption G ∈ A{2} that

EF = GCRG = GAG = G.

Denoting the right-hand side of (3.5.35) as gβα and using the above equation, we get

gβα =
∑

(I,J )∈B(α,β)

det(EJ∗) det(F∗I )
∂

∂|Aαβ| |AI J |.

It then follows from Lemmas 3.5.6 and 3.5.7 that

gβα

=
∑

γ∈Qk,r

⎛
⎝ ∑

J∈J (β)

det(EJ∗)
∂

∂|Rγβ | |R∗J |
⎞
⎠

⎛
⎝ ∑

I∈I(α)
det(F∗I )

∂

∂|Cαγ | |CI∗|
⎞
⎠

=
∑

γ∈Qk,r

det(E[β, γ]) det(F[γ,α]),

which equals det(G[β,α]). �
The following theorem is a special case of Theorem 3.5.3.

Theorem 3.5.4 Let A ∈ R
n×n
r . If Ind(A) = 1, then A has a group inverse Ag , and

det(Ag[β,α]) = ν−2
∑

(I,J )∈B(α,β)

det(AJ I )
∂

∂|Aαβ | |AI J |, (3.5.36)

for any α,β ∈ Qk,n, 1 ≤ k ≤ r , where

ν =
∑

J∈J (A)

det(AJ J ).
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Proof Let A = CR be a full rank factorization of A. By using Ag = C(RC)−2R and
the Cauchy-Binet formula, we have

det((Ag)J I ) = det((RC)−2) det(AJ I )

=
⎛
⎝ ∑

J∈J (A)

det(AJ J )

⎞
⎠

−2

det(AJ I )

= ν−2 det(AJ I ),

which implies (3.5.36) by Theorem 3.5.3. �

Theorem 3.5.5 ([30]) Let A ∈ R
n×n, Ind(A) = k and rank(Ak) = rk , then A has

a Drazin inverse Ad , and

det(Ad [β,α]) = (3.5.37)

ν−2
∑

ω∈Qh,n

∑
(I,J )∈B(ω,β)

det((Ak)J I ) det(A
k−1[ω,α]) ∂

∂|(Ak)ωβ | |(A
k)I J |,

for any α,β,ω ∈ Qh,n and I, J ∈ Qrk ,n, 1 ≤ h ≤ rk , where

ν =
∑

J∈J (Ak )

det((Ak)J J ).

Proof It is easy to verify that
(Ad)

k = (Ak)g.

Applying (3.5.36) and the above equation, we have

det((Ad)
k[β,α])

= det((Ak)g[β,α])
= ν−2

∑
(I,J )∈B(α,β)

det((Ak)J I )
∂

∂|(Ak)αβ | |(A
k)I J |,

where ν = ∑
J∈J (Ak ) det((A

k)J J ). Since Ad = (Ad)
k Ak−1, from the Cauchy-Binet

formula, we have

det(Ad [β,α])
=

∑
ω∈Qh,n

det((Ad)
k[β,ω]) det(Ak−1[ω,α])

= ν−2
∑

ω∈Qh,n

∑
(I,J )∈B(ω,β)

det((Ak)J I ) det(A
k−1[ω,α]) ∂

∂|(Ak)ωβ | |(A
k)I J |,
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which completes the proof. �
As a special case, when A ∈ R

n×n , Ind(A) = k and rank(Ak) = rk , we can show
that

det((Ad)J I ) = det((Ak)J I )∑
(I,J )∈B(Ak )

det(AJ I ) det((Ak)I J )
, (3.5.38)

for any (I, J ) ∈ B(Ak). Indeed, it follows from Theorem 2.1.6 that

A = B1C1, C1B1 = B2C2, C2B2 = B3C3, · · · ,

then

Ad ={
B1B2 · · · Bk(Ck Bk)

−1CkCk−1 · · ·C1, when (Ck Bk)
−1 exists,

O, when Ck Bk = O.

Set
B = B1B2 · · · Bk, C = CkCk−1 · · ·C1,

then
Ad = B(Ck Bk)

−(k+1)C = B(CAB)−1C

and

Crk (Ad) = Crk (B(CAB)−1)C) = Crk (BC)

det(CAB)
. (3.5.39)

It is easy to show that Ak = BC is a full rank factorization of Ak , and

Crk (BC) = Crk (A
k). (3.5.40)

Using the Cauchy-Binet formula, we have

det(CAB) =
∑

I∈Qrk ,n

∑
J∈Qrk ,n

det(C∗J ) det(AJ I ) det(BI∗)

=
∑

(I,J )∈B(Ak )

det(AJ I ) det((A
k)I J ).

Applying the above equation and (3.5.40)–(3.5.39), we obtain (3.5.38).
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3.5.4 Minors of the Generalized Inverse A(2)
T,S

In this subsection, we consider the expression of the determinant of a minor of the
generalized inverse A(2)

T,S . In 2001, Wang and Gao [31] gave an expression which
includes the group inverse as a special case. Later, in 2006, Yu [32] presented a for-
mula which unifies the expressions (3.5.12) for the Moore-Penrose inverse, (3.5.28)
for the weighted Moore-Penrose inverse, (3.5.36) for the group inverse, and (3.5.37)
for the Drazin inverse.

Theorem 3.5.6 ([32]) Let A ∈ C
m×n
r , T be a subspace of Cn of dimension s ≤ r ,

and S a subspace of Cm of dimension m − s. If A has the generalized inverse A(2)
T,S

and there exists a matrix G ∈ C
n×m such that R(G) = T and N (G) = S, then

det(A(2)
T,S[β,α]) = v−1

∑
(I,J )∈B(α,β)

det(GJ I )
∂

∂|Aα,β | |AI J |

for any α ∈ Qk,m, β ∈ Qk,n, 1 ≤ k ≤ s, where

v =
∑

J∈J (AG)

det((AG)J J ).

Proof From Lemma 3.2.2, A(2)
T,S = G(AG)g , so

det(A(2)
T,S[β,α]) = det(G(AG)g)[β,α].

Using the Cauchy-Binet formula and Theorem 3.5.4, we obtain

det(A(2)
T,S[β,α])

=
∑
�

det(G[β,�]) det((AG)g[�,α])

= v−2
∑
�

∑
(I,F)∈B(α,�)

det(G[β,�]) det((AG)F I )
∂

∂|(AG)α,�| |(AG)I F |,

where
v =

∑
J∈J (AG)

det((AG)J J ).

Note that for all I , for which α ∈ I , and all F ,

∑
�

det(G[β,�]) ∂

∂|(AG)α,�| |(AG)I F | = det(UI F ),
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where U is the matrix obtained from AG by replacing the β-rows of AG with
the α-rows of G. Let α = {α1,α2, . . . ,αk} and β = {β1,β2, . . . ,βk}. Then, if we
denote B as the matrix obtained from A by replacing the αi th row of A with the row
[0 · · · 0 1 0 · · · 0], where the βi th entry is 1, i = 1, 2, . . . , k, and all other entries
are zero, then we have U = BG. Hence

det(UI F ) =
∑
J

det(BI J ) det(GJF ).

Thus

det(A(2)
T,S[β,α])

= v−2
∑

(I,F)∈B(α,β)

∑
J

det(AG)F I det(BI J ) det(GJF )

= v−2
∑

(I,F)∈B(α,β)

∑
J

∑
L

det(AFL) det(GLI ) det(GJF ) det(BI J ).

Since rank(G) = s, (rank(Cs(G)) = 1, where Cs(G) is the sth compound matrix of
G. Thus, we can get

det(GLI ) det(GJF ) = det(GLF ) det(GJ I )

and so

det(A(2)
T,S[β,α])

= v−2
∑

(I,F)∈B(α,β)

∑
J

∑
L

det(AFL) det(GLF ) det(GJ I ) det(BI J )

= v−2
∑

(I,F)∈B(α,β)

∑
J

det((AG)FF ) det(GJ I ) det(BI J )

= v−1
∑
I

∑
J

det(GJ I ) det(BI J )

= v−1
∑

(I,J )∈B(α,β)

det(GJ I )
∂

∂|Aα,β | |AI J |,

which completes the proof. �

Exercises 3.5

1. Prove that if A = FG is a full rank factorization of A, then

Vol(A) = Vol(F)Vol(G).

2. Prove Lemma 3.5.5.
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3. Prove (3.5.32).
4. Prove that (Ad)

k = (Ak)g.
5. Prove that Ad = (Ad)

k Ak−1.
6. Prove that if A = CR ∈ C

n×n
r is a full rank factorization of A, then

det(RC) =
∑

J∈J (A)

det(AJ J ).

Remarks

The trick in Robinson’s proof was used by Ben-Israel [2] to derive a Cramer rule
for the least-norm solution of consistent linear equations. It is a pioneering work.
In this chapter, we survey the recent results in the field. Its application to parallel
computation of the generalized inverses is presented in Chap. 7. Werner [14] gave
the unique solution of a more general consistent restricted linear system. He also
presented an alternative condensed Cramer rule. The basic idea is to modify the
original matrix so that the new matrix is invertible, then solve the solution of the
original problem from the corresponding nonsingular system of linear equations.
The method is practical since it is easy to construct the nonsingular matrix of a low
order. Further discussions on this method can be found in [3, 10, 11, 33].

The singular values and maximum rank minors of the generalized inverses are
given in [25, 29, 34–36]. A Cramer rule for finding the unique W-weighted Drazin
inverse solution of special restricted linear equations is discussed in [23].

The generalized inverses of bordered matrices are discussed in [15, 37–39].
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Chapter 4
Reverse Order and Forward Order Laws
for A(2)

T,S

4.1 Introduction

The reverse order law for the generalized inverses of amatrix product yields a class of
interesting fundamental problems in the theory of the generalized inverses of matri-
ces. They have attracted considerable attention since the middle 1960s. Greville [1]
first studied the Moore-Penrose inverse of the product of two matrices A and B, and
gave a necessary and sufficient condition for reverse order law:

(AB)† = B†A†.

Since then more equivalent conditions for (AB)† = B†A† have been discovered.
Hartwig [2] and Tian [3, 4] studied reverse order law for the Moore-Penrose inverse
of a product of three and n matrices respectively.

On the other hand, the reverse order law for the weighted Moore-Penrose inverse
of a product of two and three matrices was considered by Sun and Wei [5] and
Wang [6], respectively. Greville [1] first studied the reverse order law for the Drazin
inverse of a product of two matrices A and B. He proved that

(AB)d = Bd Ad

holds under the condition AB = BA. The necessary and sufficient conditions for
the reverse order law for the Drazin inverse of the products of two and n matrices
were considered by Tian [7] and Wang [8] respectively. Djordjević [9] considered
the reverse order law of the form

(AB)(2)K L = B(2)
T S A

(2)
MN

for outer generalized inverse with prescribed range and null space. Reverse order law
for the generalized inverse A(2)

T,S of multiple matrix products has not been studied yet
in literature.
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In this chapter, by using the ranks of matrices, the necessary and sufficient con-
dition is given for the reverse order law

(A1A2 · · · An)
(2)
T,S = (An)

(2)
Tn ,Sn

· · · (A2)
(2)
T2,S2

(A1)
(2)
T1,S1

(4.1.1)

to hold. From the above equation, we can obtain the necessary and sufficient condi-
tions for the reverse order law of the Moore-Penrose inverse, the weighted Moore-
Penrose inverse, the Drazin inverse and the group inverse.

Throughout this chapter, all matrices are over the complex number field C and
the symbol RS(A) denotes the row space of A.

From Theorem 1.3.8, we have the following lemma.

Lemma 4.1.1 ([10]) Let A ∈ C
m×n
r , and the columns of U ∈ C

n×t
t form a basis for

T and the columns of V ∗ ∈ C
m×t
t form a basis for S⊥ (t ≤ r), that is,

R(U ) = T and N (V ) = S,

then rank(V AU ) = rank(V ) = rank(U ) = t , that is, V AU is nonsingular, and

X = U (V AU )−1V (4.1.2)

is a {2} inverse of A having range T and null space S, that is,

X = A(2)
T,S. (4.1.3)

The next lemma shows that the common four kinds of generalized inverses A†,
A†
MN , Ad and Ag are all the generalized inverse A(2)

T,S .

Lemma 4.1.2 ([10, 11])

(1) Let A ∈ C
m×n, then

(a) A† = A(2)
R(A∗),N (A∗) = A∗(A∗AA∗)†A∗;

(b) A†
MN = A(2)

R(A#),N (A#)
= A#(A#AA#)†A#,

where M and N are Hermitian positive definite matrices of order m and n,
respectively. In addition, A# = N−1A∗M.

(2) Let A ∈ C
n×n, then

(a) If Ind(A) = k, then Ad = A(2)
R(Ak ),N (Ak )

= Ak(A2k+1)†Ak;

(b) If Ind(A) = 1, then Ag = A(2)
R(A),N (A) = A(A3)†A.

Lemma 4.1.3 ([12]) Suppose that A, B, C and D satisfy the conditions:

R(B) ⊂ R(A) and RS(C) ⊂ RS(A)
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or
R(C) ⊂ R(D) and RS(B) ⊂ RS(D),

then

rank

[
A B
C D

]
= rank(A) + rank(D − CA†B) (4.1.4)

or

rank

[
A B
C D

]
= rank(D) + rank(A − BD†C).

Lemma 4.1.4 ([13]) Suppose B, C and D satisfy

R(D) ⊂ R(C) and RS(D) ⊂ RS(B),

then

M† =
[
O B

C D

]†

=
[−C†DB† C†

B† O

]
.

Lemma 4.1.5 Suppose Ai ∈ C
mi×ni , i = 0, 1, 2, . . . , n + 1, Bi ∈ C

mi×ni−1 ,
i = 1, 2, . . . , n + 1, satisfy

R(Bi ) ⊂ R(Ai ), RS(Bi ) ⊂ RS(Ai−1), i = 1, 2, . . . , n + 1, (4.1.5)

then the Moore-Penrose inverse of the (n + 2) × (n + 2) block matrix

Jn+2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

A0

A1 B1

. .
.
. .
.

An Bn

An+1 Bn+1

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.1.6)

can be expressed as

J †
n+2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F(n + 1, 0) F(n + 1, 1) · · · F(n + 1, n) F(n + 1, n + 1)

F(n, 0) F(n, 1) · · · F(n, n)

... . .
.

... . .
.

F(0, 0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.1.7)
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where

F(i, i) = A†
i ,

F(i, j) = (−1)i− j A†
i Bi A

†
i−1Bi−1 · · · A†

j+1Bj+1A
†
j , 0 ≤ j ≤ i ≤ n + 1.

(4.1.8)

Proof Weuse induction onn. Forn=0, from the conditions (4.1.5) andLemma4.1.4,
the Moore-Penrose inverse of J2 in (4.1.7) is

J †
2 =

[
O A0

A1 B1

]†

=
[−A†

1B1A
†
0 A†

1

A†
0 O

]
=

[
F(1, 0) F(1, 1)

F(0, 0) O

]
,

which shows that the lemma holds when n = 0. Now we assume that it is also true
for n + 1. In other words, under the conditions (4.1.5), the Moore-Penrose inverse
of Jn+1 in (4.1.6) is given by

J †
n+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F(n, 0) F(n, 1) · · · F(n, n − 1) F(n, n)

F(n − 1, 0) F(n − 1, 1) · · · F(n − 1, n − 1)

... . .
.

... . .
.

F(0, 0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.1.9)

Next we consider the Moore-Penrose inverse of Jn+2 in (4.1.6). First, partition Jn+2

in (4.1.6) into the form:

Jn+2 =
[

O Jn+1

An+1 H

]
,

where H = [Bn+1 O]. Then it is easy to see from the conditions (4.1.5) that the three
submatrices in the above Jn+2 satisfy the inclusions

R(H) ⊂ R(An+1) and RS(H) ⊂ RS(Jn+1).

Hence by Lemma 4.1.4,

J †
n+2 =

[−A†
n+1H J †

n+1 A†
n+1

J †
n+1 O

]
. (4.1.10)

Using the induction hypothesis (4.1.9), the structure of H , F(i, i) and F(i, j) in
J †
n+1, and (4.1.8), we obtain
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−A†
n+1H J †

n+1

= [−A†
n+1Bn+1F(n, 0) − A†

n+1Bn+1F(n, 1) · · · − A†
n+1Bn+1F(n, n)]

= [F(n + 1, 0) F(n + 1, 1) · · · F(n + 1, n)] (4.1.11)

and
A†
n+1 = F(n + 1, n + 1). (4.1.12)

Finally, substituting (4.1.9), (4.1.11), and (4.1.12) into (4.1.10) directly produces
(4.1.7). �

Next, we consider the product A = A0A1A2 · · · An An+1. Let

ni = mi+1, i = 0, 1, . . . , n, and m0 = m1, nn+1 = mn+1,

then

A0 ∈ C
m1×m1 , An+1 ∈ C

mn+1×mn+1 , Ai ∈ C
mi×mi+1 , i = 1, 2, . . . , n,

and
Bi ∈ C

mi×mi , i = 1, 2, . . . , n + 1.

Let Im1 and Imn+1 be identity matrices of orders m1 and mn+1 respectively and

P = [Imn+1 O], Q = [Im1 O]∗, (4.1.13)

then the (1, 1)-block in (4.1.7) has the form

F(n + 1, 0) = P J †
n+2Q = (−1)n+1A†

n+1Bn+1A
†
n Bn · · · A†

1B1A
†
0. (4.1.14)

If we replace A0 and An+1 in (4.1.6) with Im1 and Imn+1 respectively, and Ai with the
nonsingular matrices Vi AiUi , where

V ∗
i ∈ C

mi×ti
ti , Ui ∈ C

mi+1×ti
ti

and
R(Ui ) = Ti and N (Vi ) = Si

satisfy the conditions in Lemma 4.1.1 and

rank(Vi AiUi ) = rank(Vi ) = rank(Ui ) = ti , i = 1, 2, . . . , n,

then, when

B1 = V1, Bn+1 = Un, and Bi = ViUi−1, i = 2, 3, . . . , n,
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we have

R(B1) = R(V1) = R(V1A1U1),

R(Bi ) = R(ViUi−1) ⊂ R(Vi ) = R(Vi AiUi ), i = 2, 3, . . . , n,

R(Bn+1) = R(Un) ⊂ R(Imn+1),

RS(B1) = RS(V1) ⊂ RS(Im1), (4.1.15)

RS(Bi ) = RS(ViUi−1) ⊂ RS(Ui−1) = RS(Vi−1Ai−1Ui−1),

i = 2, 3, . . . , n,

RS(Bn+1) = RS(Un) = RS(Vn AnUn).

Thus it is obvious from the above equations that the conditions (4.1.5) in Lemma4.1.5
are satisfied.Hence theMoore-Penrose inverse of the (n + 2) × (n + 2)blockmatrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

Im1

V1A1U1 V1

V2A2U2 V2U1

. .
.

. .
.

Vn AnUn VnUn−1

Imn+1 Un

⎤
⎥⎥⎥⎥⎥⎥⎦

=
[
O E1

E2 N

]
, (4.1.16)

can be expressed as the form (4.1.7), where

E1 = [O Im1 ] and E2 = [O Imn+1]T ,

According to (4.1.7), (4.1.8), and (4.1.14), the (1, 1)-block F(n + 1, 0) in (4.1.7)
becomes

F(n + 1, 0)

= PM†Q

= (−1)n+1 I †mn+1
Un(Vn AnUn)

†VnUn−1(Vn−1An−1Un−1)
†Vn−1Un−2 · · ·

V2U1(V1A1U1)
†V1 I

†
m1

= (−1)n+1Un(Vn AnUn)
−1VnUn−1(Vn−1An−1Un−1)

−1Vn−1Un−2 · · ·
V2U1(V1A1U1)

−1V1

= (−1)n+1(An)
(2)
Tn ,Sn

(An−1)
(2)
Tn−1,Sn−1

· · · (A1)
(2)
T1,S1

. (4.1.17)
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From the structure of M in (4.1.16), we see that it has the following properties to be
used in the next section.

Lemma 4.1.6 Let M,Ui , Vi , P, and Q be given in (4.1.16) and (4.1.13), and let
Ai ∈ C

mi×mi+1 , i = 1, 2, . . . , n, A0 = Im1 and An+1 = Imn+1 . Then

rank(M) = m1 + mn+1 +
n∑

i=1

rank(Vi AiUi )

= m1 + mn+1 +
n∑

i=1

rank(Vi ) (4.1.18)

= m1 + mn+1 +
n∑

i=1

rank(Ui ),

and
R(Q) ⊂ R(M), RS(P) ⊂ RS(M). (4.1.19)

4.2 Reverse Order Law

In this section, we first give a sufficient and necessary condition for the reverse order
law (4.1.1). Then we discuss special case for the Moore-Penrose inverse, the Drazin
inverse, and the group inverse.

Theorem 4.2.1 ([14]) Suppose that Ai ∈ C
mi×mi+1 , for i = 1, 2, . . . , n,

A = A1A2 · · · An ∈ C
m1×mn+1 , X = (An)

(2)
Tn ,Sn

(An−1)
(2)
Tn−1,Sn−1

· · · (A1)
(2)
T1,S1

and

R(U ) = T, N (V ) = S,

R(Ui ) = Ti , N (Vi ) = Si , i = 1, 2, . . . , n,
(4.2.1)

and
rank(V AU ) = rank(U ) = rank(V ) = t,

rank(Vi AiUi ) = rank(Ui ) = rank(Vi ) = ti , i = 1, 2, . . . , n.

Then X = A(2)
T,S, that is, the reverse order law (4.1.1) holds, if and only if A, U, V

and Ai , Ui , Vi , i = 1, 2, . . . , n, satisfy the following rank conditions:
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rank

[
(−1)nV AU V E1

E2U N

]

= rank(U ) +
n∑

i=1

rank(Ui )

= rank(V ) +
n∑

i=1

rank(Vi ) (4.2.2)

= rank(V AU ) +
n∑

i=1

rank(Vi AiUi ),

where E1, E2 and N are defined in (4.1.16).

Proof From (4.1.17), X = (−1)n+1PM†Q, where

M =
[
O E1

E2 N

]
.

It is obvious that X = A(2)
T,S holds if and only if

0 = rank(A(2)
T,S − X) = rank((−1)n A(2)

T,S + PM†Q). (4.2.3)

Now using the matrices in (4.2.1) and (4.1.13), we construct the following 3 × 3
block matrix:

G =
⎡
⎣ M O Q

O (−1)nV AU V
P U O

⎤
⎦ .

It follows from (4.1.19) that

R
([

Q
V

])
⊂ R

([
M O

O (−1)nV AU

])
,

RS([P U ]) ⊂ RS

([
M O

O (−1)nV AU

])
.

Hence, by the rank formula (4.1.4), we have
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rank(G) = rank

[
M O

O (−1)nV AU

]

+ rank

⎛
⎝[P U ]

[
M O

O (−1)nV AU

]† [
Q
V

]⎞
⎠

= rank(M) + rank(V AU ) + rank(PM†Q + (−1)nU (V AU )−1V )

= rank(M) + rank(V AU ) + rank(PM†Q + (−1)n A(2)
T,S). (4.2.4)

Substituting the complete expression (4.1.16) of M and then calculating the rank of
G, we get

rank(G) = rank

⎛
⎜⎜⎝

⎡
⎢⎢⎣

O E1 O Im1

E2 N O O
O O (−1)nV AU V

Imn+1 O U O

⎤
⎥⎥⎦

⎞
⎟⎟⎠

= rank

⎛
⎜⎜⎝

⎡
⎢⎢⎣

O O O Im1

O N −E2U O
O −V E1 (−1)nV AU O

Imn+1 O O O

⎤
⎥⎥⎦

⎞
⎟⎟⎠

= m1 + mn+1 + rank

([
(−1)nV AU V E1

E2U N

])
.

Combining (4.1.18), (4.2.3), (4.2.4), and the above equation yields (4.2.2). �

Corollary 4.2.1 ([4]) Suppose Ai ∈ C
mi×mi+1 , for i = 1, 2, . . . , n,

A = A1A2 · · · An ∈ C
m1×mn+1 , X = A†

n · · · A†
2A

†
1, then X = A†, that is, the reverse

order law
(A1A2 · · · An)

† = A†
n · · · A†

2A
†
1

holds, if and only if

rank

[
(−1)n A∗AA∗ A∗E1

E2A∗ N

]

= rank(A∗) +
n∑

i=1

rank(A∗
i )

= rank(A) +
n∑

i=1

rank(Ai ),
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where E1 and E2 are defined in (4.1.16) and

N =

⎡
⎢⎢⎢⎢⎢⎢⎣

A∗
1A1A∗

1 A∗
1

. .
. A∗

2A
∗
1

A∗
n−1An−1A∗

n−1 . .
.

A∗
n An A∗

n A∗
n A

∗
n−1

A∗
n

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Corollary 4.2.2 Suppose that Ai ∈ C
mi×mi+1 , for i = 1, 2, . . . , n, Mi are mi ×

mi Hermitian positive definite matrices, i = 1, 2, . . . , n + 1, A = A1A2 · · · An ∈
C

m1×mn+1 , X = (An)
†
Mn ,Mn+1

· · · (A2)
†
M2,M3

(A1)
†
M1,M2

, then X = A†
M1,Mn+1

, that is, the
reverse order law

(A1A2 · · · An)
†
M1,Mn+1

= (An)
†
Mn ,Mn+1

· · · (A2)
†
M2,M3

(A1)
†
M1,M2

holds, if and only if

rank

[
(−1)n A#AA# A#E1

E2A# N

]

= rank(A#) +
n∑

i=1

rank(A#
i )

= rank(A) +
n∑

i=1

rank(Ai ),

where E1 and E2 are defined in (4.1.16),

A# = M−1
n+1A

∗M1, A#
i = M−1

i+1A
∗
i Mi , i = 1, 2, . . . , n,

and

N =

⎡
⎢⎢⎢⎢⎢⎢⎣

A#
1A1A#

1 A#
1

. .
. A#

2A
#
1

A#
n−1An−1A#

n−1 . .
.

A#
n An A#

n A#
n A

#
n−1

A#
n

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Corollary 4.2.3 ([8]) Let Ai ∈ C
m×m, for i = 1, 2, . . . , n, A = A1A2 · · · An ∈

C
m×m, X = (An)d · · · (A2)d(A1)d , and k = maxi {Ind(A), Ind(Ai )}, then X = Ad,

that is, the reverse order law

(A1A2 · · · An)d = (An)d · · · (A2)d(A1)d
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holds, if and only if

rank

[
(−1)n Ak AAk Ak E1

E2Ak N

]
= rank(Ak) +

n∑
i=1

rank(Ak
i ),

where E1 and E2 are defined in (4.1.16) and

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A2k+1
1 Ak

1

. .
. Ak

2A
k
1

A2k+1
n−1 . .

.

A2k+1
n Ak

n A
k
n−1

Ak
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Corollary 4.2.4 Suppose Ai ∈ C
m×m, i = 1, 2, . . . , n, A = A1A2 · · · An ∈ C

m×m,
Ind(Ai ) = Ind(A) = 1, X = (An)g · · · (A2)g(A1)g , then X = Ag , that is, the reverse
order law

(A1A2 · · · An)g = (An)g · · · (A2)g(A1)g

holds, if and only if

rank

[
(−1)n A3 AE1

E2A N

]
= rank(A) +

n∑
i=1

rank(Ai ),

where E1 and E2 are defined in (4.1.16) and

N =

⎡
⎢⎢⎢⎢⎢⎢⎣

A3
1 A1

. .
. A2A1

A3
n−1 . .

.

A3
n An An−1

An

⎤
⎥⎥⎥⎥⎥⎥⎦
.

From the above results, the conclusion of the reverse order law given in
[3, 6, 7] can be obtained easily. In [15], Sun and Wei give a triple reverse order
law for weighted generalized inverses.
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4.3 Forward Order Law

In this section, by using the concept of ranks, the necessary and sufficient condition
is given for the forward order law:

(A1A2 · · · An)
(2)
T,S = (A1)

(2)
T1,S1

(A2)
(2)
T2,S2

· · · (An)
(2)
Tn ,Sn

, (4.3.1)

from which we can obtain the necessary and sufficient conditions for the forward
order laws of the Moore-Penrose inverse, the weighted Moore-Penrose inverse, the
Drazin inverse, and the group inverse.

Apparently, the matrices A1, A2, . . . , An must be square and of the same order,
say m.

Lemma 4.3.1 Suppose Ai ∈ C
m×m, i = 0, 1, 2, . . . , n + 1, Bi ∈ C

m×m, i = 0, 1, 2,
. . . , n, satisfy

R(Bi ) ⊂ R(Ai ), RS(Bi ) ⊂ RS(Ai+1), i = 0, 1, 2, . . . , n, (4.3.2)

then the Moore-Penrose inverse of the (n + 2) × (n + 2) block matrix

Jn+2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

An+1

An Bn

. .
.
. .
.

A1 B1

A0 B0

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.3.3)

can be expressed as

J †
n+2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

F(0, n + 1) F(0, n) · · · F(0, 1) F(0, 0)
F(1, n + 1) F(1, n) · · · F(1, 1)

... . .
.

F(n, n + 1) F(n, n)

F(n + 1, n + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (4.3.4)

where

F(i, i) = A†
i , i = 0, 1, . . . , n + 1,

F(i, j) = (−1) j−i A†
i Bi A

†
i+1Bi+1 · · · A†

j−1Bj−1A
†
j ,

0 ≤ i ≤ j ≤ n + 1. (4.3.5)
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Proof We use induction on n. For n = 0, according (4.3.2) and Lemma 4.1.4, the
Moore-Penrose inverse of J2 in (4.3.3) is

J †
2 =

[
O A1

A0 B0

]†

=
[−A†

0B0A
†
1 A†

0

A†
1 O

]
=

[
F(0, 1) F(0, 0)

F(1, 1) O

]
,

which shows that the lemma is true for n = 0. Now suppose that it is true for n + 1,
that is, under the condition (4.3.2), the Moore-Penrose inverse of Jn+1 in (4.3.3) is

J †
n+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F(0, n) F(0, n − 1) · · · F(0, 1) F(0, 0)
F(1, n) F(1, n − 1) · · · F(1, 1)

... . .
.

... . .
.

F(n, n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.3.6)

Next, we consider the Moore-Penrose inverse of Jn+2 in (4.3.3). First, we partition
Jn+2 in (4.3.3) into the form

Jn+2 =
[

O An+1

Jn+1 H

]
,

where H = [B∗
n O]∗. Then it is easy to see from the conditions (4.3.2) that the three

submatrices in the above Jn+2 satisfy

R(H) ⊂ R(Jn+1) and RS(H) ⊂ RS(An+1).

Hence by Lemma 4.1.4,

J †
n+2 =

[−J †
n+1H A†

n+1 J †
n+1

A†
n+1 O

]
. (4.3.7)

According to the induction hypothesis (4.3.6) for J †
n+1 and the structure of H ,

F(i, i) and F(i, j) in J †
n+1, and (4.3.5), we obtain

− J †
n+1H A†

n+1 =

⎡
⎢⎢⎢⎢⎢⎣

−F(0, n)Bn A
†
n+1

−F(1, n)Bn A
†
n+1

...

−F(n, n)Bn A
†
n+1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

F(0, n + 1)

F(1, n + 1)

...

F(n, n + 1)

⎤
⎥⎥⎥⎥⎥⎦

(4.3.8)
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and
A†
n+1 = F(n + 1, n + 1).

Finally, substituting (4.3.6), (4.3.8) and the above equation into (4.3.7) directly pro-
duces (4.3.4). �

Let
P = [Im O] and Q = [Im O]T , (4.3.9)

then the (1, 1)-block in (4.3.4) has the form

F(0, n + 1) = P J †
n+2Q = (−1)n+1A†

0B0A
†
1B1 · · · A†

n Bn A
†
n+1. (4.3.10)

If we set A0 = Im , An+1 = Im , and Ai to the nonsingular matrix Vi AiUi , where

V ∗
i ∈ C

m×ti
ti and Ui ∈ C

m×ti
ti

satisfying the conditions

R(Ui ) = Ti and N (Vi ) = Si

in Lemma 4.1.1 and

rank(Vi AiUi ) = rank(Vi ) = rank(Ui ) = ti , i = 1, 2, . . . , n,

then, when

B0 = U1, Bi = ViUi+1, i = 2, . . . , n − 1, and Bn = Vn,

we have

R(B0) = R(U1) ⊂ R(Im) = R(A0),

R(Bi ) = R(ViUi+1) ⊂ R(Vi ) = R(Vi AiUi ),

i = 1, 2, . . . , n − 1,

R(Bn) = R(Vn) ⊂ R(Vn AnUn),

RS(B0) = RS(U1) = RS(V1A1U1),

RS(Bi ) = RS(ViUi+1) ⊂ RS(Ui+1) = RS(Vi+1Ai+1Ui+1),

i = 2, 3, . . . , n − 1,

RS(Bn) = RS(Vn) ⊂ RS(Im) = RS(An+1).
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It then follows from the above equations that the conditions (4.3.2) in Lemma 4.3.1
are satisfied.Hence theMoore-Penrose inverse of the (n + 2) × (n + 2)blockmatrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Im
Vn AnUn Vn

Vn−1An−1Un−1 Vn−1Un

. .
.

. .
.

V2A2U2 V2U3

V1A1U1 V1U2

Im U1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
O E1

E2 N

]
(4.3.11)

can be expressed in the form (4.3.4), where

E1 = [O Im] and E2 = [O Im]T .

According to (4.1.2), (4.1.3), and (4.3.10), the (1, 1)-block F(0, n + 1) in (4.3.4)
becomes

F(0, n + 1)

= PM†Q

= (−1)n+1 I †mU1(V1A1U1)
†V1U2(V2A2U2)

†V2U3 · · ·
Vn−2Un−1(Vn−1An−1Un−1)

†Vn−1Un(Vn AnUn)
†Vn I

†
m

= (−1)n+1 ImU1(V1A1U1)
−1V1U2(V2A2U2)

−1V2U3 · · · (4.3.12)

Vn−2Un−1(Vn−1An−1Un−1)
−1Vn−1Un(Vn AnUn)

−1Vn Im

= (−1)n+1(A1)
(2)
T1,S1

(A2)
(2)
T2,S2

· · · (An−1)
(2)
Tn−1,Sn−1

(An)
(2)
Tn ,Sn

.

From the structure of M in (4.3.11), we see that it has the following simple
properties to be used in the proof of the following Theorem 4.3.1.

Lemma 4.3.2 Let M, P, and Q be given in (4.3.11) and (4.3.9), and A0 = Im,
An+1 = Im, Ai ∈ C

m×m, i = 1, 2, . . . , n, and A = A0A1 · · · An ∈ C
m×m, then

rank(M) = 2m +
n∑

i=1

rank(Vi AiUi )

= 2m +
n∑

i=1

rank(Vi )

= 2m +
n∑

i=1

rank(Ui ) (4.3.13)
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and
R(Q) ⊂ R(M) and RS(P) ⊂ RS(M). (4.3.14)

Theorem 4.3.1 Suppose Ai ∈ C
m×m, i = 1, 2, . . . , n, A = A1A2 · · · An ∈ C

m×m,

X = (A1)
(2)
T1,S1

(A2)
(2)
T2,S2

· · · (An)
(2)
Tn ,Sn

,

R(U ) = T, N (V ) = S,

rank(V AU ) = rank(V ) = rank(U ) = t,
(4.3.15)

and
R(Ui ) = Ti , N (Vi ) = Si ,

rank(Vi AiUi ) = rank(Vi ) = rank(Ui ) = ti ,
i = 1, 2, . . . , n,

then X = A(2)
T,S, that is, the forward order law (4.3.1) holds, if and only if A, U, V

and Ai , Ui , Vi satisfy the following rank conditions:

rank

[
(−1)nV AU V E1

E2U N

]

= rank(U ) +
n∑

i=1

rank(Ui )

= rank(V ) +
n∑

i=1

rank(Vi ) (4.3.16)

= rank(V AU ) +
n∑

i=1

rank(Vi AiUi ),

where E1, E2, and N are defined in (4.3.11).

Proof From (4.3.12), X = (−1)n+1PM†Q, where

M =
[
O E1

E2 N

]
.

It is obvious that X = A(2)
T,S if and only if

0 = rank(A(2)
T,S − X) = rank((−1)n A(2)

T,S + PM†Q). (4.3.17)

Now using the matrices in (4.3.9) and (4.3.15), we construct the following 3 × 3
block matrix

G =
⎡
⎢⎣
M O Q

O (−1)nV AU V

P U O

⎤
⎥⎦ .
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It follows from (4.3.16), we have

R
([

Q

V

])
⊂ R

([
M O

O (−1)nV AU

])

and

RS([P U ]) ⊂ RS

([
M O

O (−1)nV AU

])
.

Hence, by the rank formula (4.1.4), we have

rank(G)

= rank

([
M O

O (−1)nV AU

])

+ rank

⎛
⎝[P U ]

[
M O

O (−1)nV AU

]† [
Q

V

]⎞
⎠

= rank(M) + rank(V AU ) + rank(PM†Q + (−1)nU (V AU )−1V )

= rank(M) + rank(V AU ) + rank(PM†Q + (−1)n A(2)
T,S). (4.3.18)

Substituting the complete expression of M in (4.3.11) and then calculating the rank
of G will produce

rank(G) = rank

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

O E1 O Im

E2 N O O

O O (−1)nV AU V

Im O U O

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

= rank

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

O O O Im

O N −E2U O

O −V E1 (−1)nV AU O

Im O O O

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

= 2m + rank

([
(−1)nV AU V E1

E2U N

])
.

Finally, combining (4.3.13), (4.3.17), (4.3.18), and the above equation yields (4.3.16).
�
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Applying the above theorem, from Lemma 4.1.2, we have the following forward
order laws for various generalized inverses.

Corollary 4.3.1 Suppose Ai ∈ C
m×m, i = 1, 2, . . . , n, A = A1A2 · · · An ∈ C

m×m,
X = A†

1A
†
2 · · · A†

n, then X = A†, that is, the forward order law

(A1A2 · · · An)
† = A†

1A
†
2 · · · A†

n

holds, if and only if

rank

([
(−1)n A∗AA∗ A∗E1

E2A∗ N

])

= rank(A∗) +
n∑

i=1

rank(A∗
i )

= rank(A) +
n∑

i=1

rank(Ai ),

where E1 and E2 are defined in (4.3.11) and

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A∗
n An A∗

n A∗
n

A∗
n−1An−1A∗

n−1 A∗
n−1A

∗
n

. .
.

. .
.

A∗
2A2A∗

2 A∗
2A

∗
3

A∗
1A1A∗

1 A∗
1A

∗
2

A∗
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Corollary 4.3.2 Suppose Ai ∈ C
m×m, i = 1, 2, . . . , n, A = A1A2 · · · An ∈ C

m×m,
Mi are m × m Hermitian positive definite matrices, i = 1, . . . , n + 1, and

X = (A1)
†
M1,M2

(A2)
†
M2,M3

· · · (An)
†
Mn ,Mn+1

,

then X = A†
M1,Mn+1

, that is, the forward order law

(A1A2 · · · An)
†
M1,Mn+1

= (A1)
†
M1,M2

(A2)
†
M2,M3

· · · (An)
†
Mn ,Mn+1

holds, if and only if
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rank

[
(−1)n A#AA# A#E1

E2A# N

]

= rank(A#) +
n∑

i=1

rank(A#
i )

= rank(A) +
n∑

i=1

rank(Ai ),

where
A# = M−1

n+1A
∗M1, A#

i = M−1
i+1A

∗
i Mi , i = 1, 2, . . . , n,

E1 and E2 are defined in (4.3.11), and

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A#
n An A#

n A#
n

A#
n−An−1A#

n−1 A#
n−1A

#
n

. .
.

. .
.

A#
2A2A#

2 A#
2A

#
3

A#
1A1A#

1 A#
1A

#
2

A#
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Corollary 4.3.3 Suppose Ai ∈ C
m×m, i = 1, 2, . . . , n, A = A1A2 · · · An ∈ C

m×m,
X = (A1)d(A2)d · · · (An)d , and k = max

i
{Ind(A), Ind(Ai )}, then X = Ad, that is,

the forward order law

(A1A2 · · · An)d = (A1)d(A2)d · · · (An)d

holds, if and only if

rank

[
(−1)n A2k+1 AkE1

E2Ak N

]
= rank(Ak) +

n∑
i=1

rank(Ak
i ),

where E1 and E2 are defined in (4.3.11) and

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A2k+1
n Ak

n

. .
. Ak

n−1A
k
n

A2k+1
2 . .

.

A2k+1
1 Ak

1A
k
2

Ak
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.
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Corollary 4.3.4 Suppose Ai ∈ C
m×m, i = 1, 2, . . . , n, A = A1A2 · · · An ∈ C

m×m,
Ind(Ai ) = Ind(A) = 1, and X = (A1)g(A2)g · · · (An)g , then X = Ag , that is, the
forward order law

(A1A2 · · · An)g = (A1)g(A2)g · · · (An)g

holds, if and only if

r

[
(−1)n A3 AE1

E2A N

]
= rank(A) +

n∑
i=1

rank(Ai ),

where E1 and E2 are defined in (4.3.11) and

N =

⎡
⎢⎢⎢⎢⎢⎢⎣

A3
n An

. .
. An−1An

A3
2 . .

.

A3
1 A1A2

A1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Corollary 4.3.5 Let A1, A2 ∈ C
m×m
m , A = A1A2 ∈ C

m×m
m , and X = A−1

1 A−1
2 , then

X = A−1, that is, the forward order law

(A1A2)
−1 = A−1

1 A−1
2

holds, if and only if
A1A2 = A2A1.

Proof Since

A−1 = A(2)
R(Im ),N (Im )

and A−1
i = (Ai )

(2)
R(Im ),(Im )

, i = 1, 2,

that is, U = V = Ui = Vi = Im . It follows from Theorem 4.3.1 that

(A1A2)
−1 = A−1

1 A−1
2

holds if and only if

rank

([
(−1)2A1A2 E1

E2 N

])

= rank(A1A2) + rank(A1) + rank(A2)

= 3m, (4.3.19)
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where

E1 = [O O Im], E2 = [O O Im]T , and N =
⎡
⎢⎣

O A2 Im

A1 Im O

Im O O

⎤
⎥⎦ .

From (4.3.19), we have

3m = rank

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

A1A2 O O Im

O O A2 Im

O A1 Im O

Im Im O O

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

= rank

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

O O O Im

O A1A2 A2 O

O A1 Im O

Im O O O

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

= 2m + rank

([
A1A2 A2

A1 Im

])

= 2m + rank

([
A1A2 − A2A1 O

O Im

])

= 3m + rank(A1A2 − A2A1),

which implies that rank(A1A2 − A2A1) = 0, that is, A1A2 = A2A1. �
Remarks
The reverse order law for {1}-inverse or {1, 2}-inverse of products of two or more
matrices can be found in [16–19]. A generalized triple reverse order law is presented
in [20]. More results on the reverse order law are given in [9, 21–23]. The reverse
order law for the Drazin inverse and the weighted M-P inverse is discussed in [5, 15,
24] and [25] respectively.
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Chapter 5
Computational Aspects

It follows from Chap. 1 that the six important kinds of generalized inverse: the M-P
inverse A†, the weighted M-P inverse A†

MN , the group inverse Ag , the Drazin inverse
Ad , the Bott-Duffin inverse A

(−1)
(L) and the generalized Bott-Duffin inverse A(†)

(L) are all

the generalized inverse A(2)
T ,S , which is the {2}-inverse of A with the prescribed range

T and null space S. Specifically, let A ∈ C
m×n, then

A† = A(2)
R(A∗),N (A∗),

A†
MN = A(2)

R(A#),N (A#)
,

where A# = N−1A∗M ,M and N are Hermitian positive

definite matrices of orders m and n respectively.

Let A ∈ C
n×n, then

Ag = A(2)
R(A),N (A),

Ad = A(2)
R(Ak ),N (Ak )

,

where k = Ind(A),

A(−1)
(L) = A(2)

L,L⊥ ,

where L is a subspace of C
n and satisfies AL ⊕ L⊥ = C

n,

A(†)
(L) = A(2)

S,S⊥ ,

where L is a subspace of C
n,PL is the orthogonal projector

on L, S = R(PLA), and A is L-p.s.d. matrix.

In this chapter, the direct methods for computing the generalized inverse A(2)
T ,S are

discussed. A direct method means that the solution for a problem is computed in

© Springer Nature Singapore Pte Ltd. and Science Press 2018
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finite steps. In practice, we can only compute in finite precision. So a direct method
can only compute an approximation of the exact solution.

If the matrices involved are small, then it is possible to carry out the calculations
exactly; if, however, the matrices are large, it is impractical to perform exact compu-
tation, then the conditioning of matrices and accumulation of rounding errors must
be considered. The purpose of this chapter is to offer some useful suggestions for
those who wish to compute the generalized inverses numerically.

The direct methods discussed in this chapter are based on the full rank factor-
ization, singular value decomposition and (M ,N )-singular value decomposition,
a variety of partitioned methods, the embedding methods, the finite methods, and
splitting methods.

5.1 Methods Based on the Full Rank Factorization

LetA ∈ C
m×n
r , two subspacesT ⊂ C

n and S ⊂ C
m, dim(T ) = dim(S⊥) = t ≤ r, and

G ∈ C
n×m such that

R(G) = T and N (G) = S.

Suppose that G = UV is a full rank factorization of G, then

T = R(G) = R(U ) and S = N (G) = N (V ).

It follows from (1.3.15) that

A(2)
T ,S = U (VAU )−1V . (5.1.1)

Let A ∈ C
m×n and A∗ = C∗B∗ be a full rank factorization of A∗. Using (5.1.1),

we have
A† = C∗(B∗AC∗)−1B∗ = C∗(CC∗)−1(B∗B)−1B∗. (5.1.2)

If A# = N−1A∗M = (N−1C∗)(B∗M ) is a full rank factorization of A#, then

A†
MN = N−1C∗(B∗MAN−1C∗)−1B∗M

= N−1C∗(CN−1C∗)−1(B∗MB)−1B∗M . (5.1.3)

Now, suppose that A ∈ C
n×n and Ind(A) = k, we have a sequence of full rank

factorizations:
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A1 = A = B1C1,

A2 = C1B1 = B2C2,

...

Ak = Ck−1Bk−1 = BkCk ,

then

Ak = (B1C1)
k

= B1(C1B1)
k−1C1

= B1(B2C2)
k−1C1

= B1B2(C2B2)
k−2C2C1

· · ·
= (B1B2 · · ·Bk−1Bk)(CkCk−1 · · ·C2C1)

is a full rank factorization of Ak . It then follows from (5.1.1) that

Ad = B1B2 · · ·Bk(CkCk−1 · · ·C2C1AB1B2 · · ·Bk)
−1CkCk−1 · · ·C2C1

= B1B2 · · ·Bk(CkCk−1 · · ·C2C1B1C1B1B2 · · ·Bk)
−1CkCk−1 · · ·C2C1

= B1B2 · · ·Bk(CkBk)
−(k+1)CkCk−1 · · ·C2C1. (5.1.4)

Especially, when A ∈ C
n×n, Ind(A) = 1 and A = B1C1 is a full rank factorization

of A, then
Ag = B1(C1B1)

−2C1. (5.1.5)

LetA ∈ C
n×n,U ∈ C

n×t and V ∈ C
n×t bematrices whose columns form the bases

forR(U ) = L and R(V ) = R(PLA) = S, respectively, then

A(−1)
(L) = U (U ∗AU )−1U ∗ (5.1.6)

and
A(†)

(L) = V (V ∗AV )−1V ∗. (5.1.7)

Thus, by applying the algorithm for the full rank factorization, we can compute the
generalized inverses A†, A†

MN , Ag , A
(−1)
(L) , and A(†)

(L) using the formulas (5.1.2)–(5.1.7).
There are several methods for performing full rank factorization. Since the matrix

A can always be row reduced to the row echelon form by elementary row operations,
one method is based on the row echelon form. The other two methods are based on
Gaussian elimination with complete pivoting and Householder transformation. The
method based on the row-echelon form is suitable for the case when the order of
the matrix is low and the calculations are done manually. The others are suitable for
the case when the calculations are carried out by a computer.
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5.1.1 Row Echelon Forms

In this subsection, we give a row echelon form based method for the full rank
factorization.

Definition 5.1.1 Let E ∈ C
m×n
r . If E is of the form

E =
[
C
O

]
, (5.1.8)

where O is an (m − r) × n zero matrix and C = [cij] ∈ C
r×n satisfies the following

three conditions:

1. cij = 0, when i > j;
2. The first non-zero entry in each row of C is 1;
3. If cij = 1 is the first non-zero entry of the ith row, then the jth column of C is

the unit vector ei whose only non-zero entry is in the ith position;

then E is said to have the row echelon form.

For example, the matrix ⎡
⎢⎢⎣
1 2 0 3 3
0 0 1 1 −2
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎦ (5.1.9)

is of the row echelon form. Below we state some properties of the row echelon form.
Their proofs can be found in [1].

Let A ∈ C
m×n
r , then

(1) A can always be row reduced to the row echelon form by elementary row oper-
ations, that is, there always exists a non-singular matrix P ∈ C

m×m such that
PA = EA is in the row echelon form;

(2) for a given A, the row echelon form EA obtained by reducing the rows of A is
unique;

(3) if EA is the row echelon form of A and the unit vectors in EA appear in columns
i1, i2, · · · , ir , then the corresponding columns ai1 , ai2 , · · · , air of A form a basis
for R(A). This particular basis is called the set of distinguished columns of A.
The remaining columns are called undistinguished columns of A. For example,
if A is a matrix whose row echelon form is given by (5.1.9), then the first and
third columns of A are distinguished columns;

(4) if EA is the row echelon form (5.1.8) for A, then N (A) = N (EA) = N (C).
(5) if (5.1.8) is the row echelon form of A and B ∈ C

m×r is the matrix consisting of
the distinguished columns of A, i.e., B = [ai1 , ai2 , · · · , air ], then A = BC, where
C is obtained from the row echelon form, is a full rank factorization.
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Now we show, through an example, how to find A† using the row echelon form
and (5.1.2). Suppose

A =

⎡
⎢⎢⎣
1 2 1 4 1
2 4 0 6 6
1 2 0 3 3
2 4 0 6 6

⎤
⎥⎥⎦ ,

we reduce A to the row echelon form:

EA =

⎡
⎢⎢⎣
1 2 0 3 3
0 0 1 1 −2
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎦ .

Next, we select the distinguished columns of A and place them as the columns of
a matrix B in the same order as they appear in A. In particular, the first and third
columns are distinguished. Thus

B =

⎡
⎢⎢⎣
1 1
2 0
1 0
2 0

⎤
⎥⎥⎦ .

Selecting the non-zero rows of EA and placing them as the rows of a matrix C in the
same order they appear in EA, we have

C =
[
1 2 0 3 3
0 0 1 1 −2

]
.

Finally, computing

(B∗B)−1 = 1

9

[
1 −1

−1 10

]
and (CC∗)−1 = 1

129

[
6 3
3 23

]

and applying the formula (5.1.2) for A†, we get

A† = C∗(CC∗)−1(B∗B)−1B∗

= 1

1161

⎡
⎢⎢⎢⎢⎣

27 6 3 6
54 12 6 12
207 −40 −20 −40
288 −22 −11 −22

−333 98 49 98

⎤
⎥⎥⎥⎥⎦ .
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5.1.2 Gaussian Elimination with Complete Pivoting

We describe a full rank factorization method based on the Gaussian elimination with
complete pivoting. Let A ∈ C

m×n
r . The basic idea of the method is as follows. The

matrix A = A0 is transformed in succession to matrices A1,A2, · · · ,Ar , where Ak ,
1 ≤ k ≤ r, is of the form

Ak =
[
Uk Vk

O Wk

]
∈ C

m×n, (5.1.10)

where Uk is a nonsingular upper triangular matrix of order k. Denoting the (i, j)-
element in Wk by wij, we determine the element in Wk with the largest modulus.
Suppose that wpq is such element. Interchange the pth and (k + 1)th rows, and qth
and (k + 1)th columns, so wpq is now in the (k + 1, k + 1) position. We denote the
elementary permutations Ik+1,p and Ik+1,q by Pk+1 and Qk+1, respectively. Forming
an elementary lower triangular matrix

Mk+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . . 0

1
−lk+2,k+1 1

...
. . .

−lm,k+1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, li,k+1 = wi,k+1

wk+1,k+1
,

we have

Ak+1 = Mk+1Pk+1AkQk+1 =
[
Uk+1 Vk+1

O Wk+1

]
,

where Uk+1 is a nonsingular upper triangular matrix of order k + 1. With exact
computation, the process will terminate with Ar:

Ar =
[
Ur Vr

O Wr

]
=

[
Ur Vr

O O

]
=

[
U
O

]
,

whereU is r × n upper trapezoidal with diagonal elements ui,i �= 0, i = 1, 2, · · · , r,
that is,

U =
⎡
⎢⎣
u1,1 · · · u1,r u1,r+1 · · · u1,n

. . .
...

...
...

ur,r ur,r+1 · · · ur,n

⎤
⎥⎦ .



5.1 Methods Based on the Full Rank Factorization 181

It follows from [2, 3] that

Ar = MrPrMr−1Pr−1 · · ·M1P1AQ1Q2 · · ·Qr

= MrMr−1 · · ·M1PrPr−1 · · ·P1AQ1Q2 · · ·Qr .

Let
PrPr−1 · · ·P1 = P, Q1Q2 · · ·Qr = Q,

and
(MrMr−1 · · ·M1)

−1 = M−1
1 M−1

2 · · ·M−1
r = [L L̃],

where L is m × r lower trapezoidal, with zeros above the principal diagonal, 1s on
the principal diagonal, and elements li,j below the diagonal in the jth column, that is,

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
l2,1 1
...

. . .

lr,1 · · · lr,r−1 1
lr+1,1 · · · · · · lr+1,r

...
...

lm,1 · · · · · · lm,r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
m×r
r .

Thus
PAQ = LU

and
A = (P∗L)(UQ∗)

is a full rank factorization of A. Consequently, the corresponding Moore-Penrose
inverse is

A† = QU †L†P,

where
U † = U ∗(UU ∗)−1 and L† = (L∗L)−1L∗. (5.1.11)

In the above argument it was assumed that rank(A) was exactly r, and that the
exact arithmetic was performed. In practice, however, rank(A)may not be known and
rounding errors occur. We have to decide, at the kth stage of the reduction, when A is
reduced to Ak of the form (5.1.10), whether the elements ofWk should be considered
as zero. In many practical situations it is sufficient to regard numbers less than a
predetermined small number ε as zero. We then say that A has a “computational
ε-rank” equal to r if the magnitude of all the elements of the computed Wr is less
than or equal to ε and at least one element ofWr−1 whose magnitude is greater than ε.
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If P and Q are identity matrices, then a stable method for computing (5.1.11) is
to solve the following two sets of Hermitian positive definite equations in turn

(L∗L)X = L∗,
(UU ∗)Y = X

(5.1.12)

and then form
A† = U ∗Y .

Equations (5.1.12) involve the solution of two sets of equationswithm different right-
hand sides. Another method for computing (5.1.11) solves only one set of equations.
We setU = DU1, where D is diagonal andU1 has unit diagonal. It follows from the
second equation in (5.1.12) that

DU1U
∗
1D

∗Y = X .

SettingD∗Y = Ỹ and substituting it into the first equation in (5.1.12), we get one set
of equations:

(L∗LDU1U
∗
1 )Ỹ = L∗. (5.1.13)

The coefficient matrix is no longer Hermitian. The solution Ỹ of (5.1.13) can be
obtained by using Gaussian elimination with partial pivoting. We then form

A† = U ∗
1 Ỹ .

5.1.3 Householder Transformation

Now,wegive a full rank factorizationmethod using theHouseholder transformations.

Definition 5.1.2 Let u ∈ C
n, u∗u = 1, then the n × n matrix

H = I − 2uu∗

is called a Householder transformation.

It is easy to show that H ∗ = H = H−1. Hence H is a unitary matrix.

Theorem 5.1.1 Let v ∈ C
n, v �= 0, u = v + σ‖v‖2e1, and

σ =
{+1, v1 ≥ 0;

−1, v1 < 0,

where v1 denotes the first element of v, then H = I − (2/‖u‖22)uu∗ is a Householder
transformation and Hv = −σ‖v‖2e1.



5.1 Methods Based on the Full Rank Factorization 183

Proof See for example [2]. ��
The above theorem shows that given a nonzero n-vector v we can find an n × n

Householder transformation H such that Hv = −σ‖v‖2e1, a scalar multiple of the
first unit vector e1.

Applying the above theorem, we can premultiply an arbitrarym × nmatrixAwith
an m × m Householder transformation H to produce a matrix HA, in which all the
elements in first column are zero except the first.

Theorem 5.1.2 Let A ∈ C
m×n
r . There is an m × m unitary matrix H and an n × n

permutation matrix P such that

HAP =
[
Ur Vr

O O

]
,

where Ur is r × r upper triangular with nonzero diagonal elements. The appropriate
null matrices are absent if r = m or n.

Proof Choose P1 so that the first r columns of A are linearly independent. Apply
an m × m Householder transformation H1 to AP1 such that the first column of the
resulting matrix is a scalar multiple of the first unit vector:

H1AP1 =
[
u11 vT1
O W1

]
.

LetH2 be an (m − 1) × (m − 1)Householder transformation that transforms the first
column of W1 to a multiple of an (m − 1) unit column vector e1. Thus

[
1 0T

0 H2

]
H1AP1 =

[
U2 V2

O W2

]
,

where U2 is a 2 × 2 upper triangular matrix. Proceeding in this way, we find an
m × m matrix

H =
[
Ir−1 O
O Hr

]
· · ·

[
1 0T

0 H2

]
H1

such that

HAP =
[
Ur Vr

O Wr

]
, (5.1.14)

where Ur is an r × r upper triangular matrix and P = P1P2 · · ·Pr . Since the first r
column of AP are linearly independent, the columns of Ur must be linearly inde-
pendent, i.e., the diagonal elements of Ur must be nonzero. The matrix Wr must be
zero since otherwise the rank of HAP would be greater than r, which contradicts the
assumption that the rank of A is r. ��
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Let

H−1 = H1

[
1 0T

0 H2

]
· · ·

[
Ir−1 O
O Hr

]
= [Q Q̃], (5.1.15)

where Q ∈ C
m×r and Q∗Q = Ir , and

[
Ur Vr

O O

]
=

[
R
O

]
. (5.1.16)

From (5.1.14)–(5.1.16), we have

AP = QR.

Thus
A = Q(RP∗)

is a full rank factorization of A and

A† = PR∗(RR∗)−1Q∗. (5.1.17)

A stable method for computing (5.1.17) is to solve the set of Hermitian positive
definite equations:

(RR∗)X = Q∗

and then form
A† = PR∗X .

SetR = DR1, whereD is diagonalmatrix of order r andR1 has unit on the diagonal
and |rij| ≤ 1. Thus

A† = PR∗
1(R1R

∗
1)

−1D−1Q∗.

Another method for computing (5.1.17) is to solve the set of Hermitian positive
definite equations:

(R1R
∗
1)X = D−1Q∗

and then form
A† = PR∗

1X .

The full rank factorization based methods for computing other generalized
inverses A(2)

T ,S are omitted here and left as exercises.
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5.2 Singular Value Decompositions and (M,N) Singular
Value Decompositions

This section discusses the singular value decomposition (SVD) based methods for
computing the generalized inverses.

5.2.1 Singular Value Decomposition

Definition 5.2.1 Let A ∈ C
m×n, u ∈ C

m, v ∈ C
n, and σ ≥ 0 such that

Av = σu and A∗u = σv, (5.2.1)

then σ is called the singular value of A, u and v are called the left and right singular
vectors of A respectively.

By (5.2.1),
A∗Av = σ2v and AA∗u = σ2u,

thus σ2 is an eigenvalue of A∗A or AA∗.

Theorem 5.2.1 Let A ∈ C
m×n
r , then there are unitary matrices U ∈ C

m×m and V ∈
C

n×n such that

A = U

[
� O
O O

]
V ∗, (5.2.2)

where � = diag(σ1,σ2, · · · ,σr), σi = √
λi and λ1 ≥ λ2 ≥ · · · ≥ λr > 0 are the

nonzero eigenvalues of A∗A, then σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the nonzero singular
value of A and (5.2.2) is called the singular value decomposition (SVD) of A, and

‖A‖2 = σ1 and ‖A†‖2 = 1/σr .

Proof Since A∗A ∈ C
n×n
r is Hermitian positive semidefinite, its eigenvalues are non-

negative. Suppose they are σ2
1,σ

2
2, · · · ,σ2

n , where σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 =
· · · = σn = 0. Let v1, v2, · · · , vn be the orthonormal eigenvectors corresponding to
σ2
1,σ

2
2, · · · ,σ2

n respectively and

V1 = [v1 v2 · · · vr], V2 = [vr+1 vr+2 · · · vn],

and
� = diag(σ1,σ2, · · · ,σr),

then
V ∗
1 (A∗A)V1 = �2 and V ∗

2 (A∗A)V2 = O,
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and consequently
�−1V ∗

1 A
∗AV1�

−1 = I and AV2 = O.

Now, let
U1 = AV1�

−1,

thenU ∗
1U1 = I , that is, the columns ofU1 are orthonormal. LetU2 be chosen so that

U = [U1 U2] is unitary, then

U ∗AV =
[
U ∗

1AV1 U ∗
1AV2

U ∗
2AV1 U ∗

2AV2

]
=

[
(AV1�

−1)∗AV1 O
U ∗

2 (U1�) O

]
=

[
� O
O O

]
.

Thus (5.2.2) holds. From (5.2.2), we have

A∗A = V

[
�2 O
O O

]
V ∗.

Thus the eigenvalues of A∗A are σ2
i = λi(A∗A), i = 1, 2, · · · , n, and

‖A‖22 = ‖A∗A‖2 = |λ1(A
∗A)| = σ2

1 .

So ‖A‖2 = σ1. It is easy to verify that

A† = V

[
�−1 O
O O

]
U ∗. (5.2.3)

Hence the non-zero singular values of A† are

1

σr
≥ 1

σr−1
≥ · · · ≥ 1

σ1
> 0.

Thus ‖A†‖2 = 1/σr . ��
The following perturbation theorem for the singular values is useful in Chap. 8.

Lemma 5.2.1 Let A and B = A + E ∈ C
m×n have singular values σ1(A) ≥ σ2(A)

≥ · · · ≥ σn(A) and σ1(B) ≥ σ2(B) ≥ · · · ≥ σn(B) respectively, then

σi(A) − ‖E‖2 ≤ σi(B) ≤ σi(A) + ‖E‖2, i = 1, 2, · · · , n.

Proof See for example [2]. ��
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5.2.2 (M,N) Singular Value Decomposition

Definition 5.2.2 Let A ∈ C
m×n
r ,M and N be Hermitian positive definite matrices of

orders m and n respectively, then the (M ,N ) singular values of A are the elements
of the set μMN (A) defined by

μMN (A) =
{
μ : μ ≥ 0, μ is a stationary value of

‖Ax‖M
‖x‖N

}
.

Next is a theorem of the (M ,N ) singular value decomposition.

Theorem 5.2.2 ([4, 5]) Let A ∈ C
m×n
r , M and N be Hermitian positive definite

matrices of orders m and n respectively, then there are matrices U ∈ C
m×m and

V ∈ C
n×n satisfying

U ∗MU = Im and V ∗N−1V = In,

such that

A = U

[
D O
O O

]
V ∗, (5.2.4)

where D = diag(μ1,μ2, · · · ,μr), μi = √
λi , λ1 ≥ λ2 ≥ · · · ≥ λr > 0 are the

nonzero eigenvalues of A#A = (N−1A∗M )A. Then μ1 ≥ μ2 ≥ · · · ≥ μr > 0 are the
nonzero (M ,N ) singular values of A and (5.2.4) is called the (M ,N ) singular value
decomposition of A, and

‖A‖MN = μ1 and ‖A†
MN‖NM = μ−1

r . (5.2.5)

Proof Let M = LL∗ and N = KK∗ be the Cholesky factorizations of M and N
respectively. Set C = L∗AK−∗ ∈ C

m×n
r (where K−∗ = (K−1)∗ = (K∗)−1) and let

C = Q

[
D O
O O

]
Z∗

represent the singular value decomposition of C, where

Q∗Q = Im, Z∗Z = In, and D = diag(μ1,μ2, · · · ,μr), μi > 0.

By defining U = L−∗Q and V = KZ , we have

U ∗MU = Im, V ∗N−1V = In,

and

A = U

[
D O
O O

]
V ∗.
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Thus (5.2.4) holds. It follows from (5.2.4) that

AA#U = AN−1A∗MU = U

[
D2 O
O O

]
.

So the squares of the (M ,N ) singular values μi of A are equal to the eigenvalues of
AA#. Moreover,

‖A‖2MN = ‖M 1
2AN− 1

2 ‖22
= ‖M 1

2AN− 1
2N− 1

2A∗M
1
2 ‖2

= ‖M 1
2 (AN−1A∗M )M− 1

2 ‖2
= ‖AA#‖2
= |λ1(AA

#)|
= μ2

1.

Thus ‖A‖MN = μ1. By using (5.2.4), it is easy to verify that

A†
MN = N−1V

[
D−1 O
O O

]
U ∗M . (5.2.6)

Hence the non-zero (M ,N ) singular values of A†
MN are μ−1

r ≥ μ−1
r−1 ≥ · · · ≥ μ−1

1 >

0. Thus ‖A†
MN‖NM = μ−1

r . ��
The following perturbation theorem for (M ,N ) singular values is useful in

Chap. 8.

Lemma 5.2.2 Let A,E ∈ C
m×n,μi(A + E) andμi(A) be the (M ,N ) singular values

of A + E and A respectively, then

μi(A) − ‖E‖MN ≤ μi(A + E) ≤ μi(A) + ‖E‖MN .

Proof Let Ẽ = M
1
2EN− 1

2 and Ã = M
1
2AN− 1

2 , then Ã + E = M
1
2 (A + E)N− 1

2 =
Ã + Ẽ. It follows from Lemma 5.2.1 that the singular values μi (̃A) and μi (̃A + Ẽ) =
μi(Ã + E) of Ã and Ã + Ẽ satisfy

μi (̃A) − ‖Ẽ‖2 ≤ μi(Ã + E) ≤ μi (̃A) + ‖Ẽ‖2.

This completes the proof, since ‖Ẽ‖2 = ‖E‖MN , μi (̃A) = μi(A), and μi(Ã + E) =
μi(A + E). ��
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5.2.3 Methods Based on SVD and (M,N) SVD

Let A ∈ C
m×n. If the singular value decomposition of A is (5.2.2), then (5.2.3) gives:

A† = V

[
�−1 O
O O

]
U ∗.

If the (M ,N ) singular value decomposition of A is (5.2.4), then we have (5.2.6):

A†
MN = N−1V

[
D−1 O
O O

]
U ∗M .

The algorithms and programs for computing (5.2.2) and (5.2.3) can be found in [2].
From these results and Theorem 5.2.2, the algorithms and programs for computing
(5.2.4) and (5.2.6) can be obtained easily.

When A ∈ C
n×n, the methods for finding Ad and Ag are given as follows.

Lemma 5.2.3 Let A ∈ C
n×n, Ind(A) = k, W ∈ C

n×n
n , and WAW−1 = R, then

Ad = W−1RdW, Ind(A) = Ind(R),

Core-rank(A) = Core-rank(R),
(5.2.7)

where Core-rank(A) = rank(Ak) is called the core-rank of A.

Proof See [6]. ��
Lemma 5.2.4 ([7]) Let

M =
[
A O
B C

]

be a block lower triangular matrix. If A is nonsingular, then

Ind(M ) = Ind(C).

Proof Let Ind(M ) = k, then rank(Mk) = rank(Mk+1), i.e.,

rank(Ak) + rank(Ck) = rank(Ak+1) + rank(Ck+1).

By the assumption, we have rank(Ak) = rank(Ak+1). Thus rank(Ck) = rank(Ck+1)

and so Ind(C) = k. ��
The algorithm for the Drazin inverse of block lower triangular matrices are given as
follows.
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Theorem 5.2.3 Let a block triangular matrix

M =
[
B1 O
B2 N

]
∈ C

n×n,

where B1 ∈ C
s×s
s and N = [nij] ∈ C

t×t is a strictly lower triangular matrix. Then

Md =
[
B−1
1 O

XB−1
1 O

]
,

where X is the solution of the Sylvester equation

XB1 − NX = B2. (5.2.8)

Let ri be the ith row of B2, then the rows xi of X can be recursively solved by:

x1 = r1B−1
1 and xi =

⎛
⎝ri +

i−1∑
j=1

nijxj

⎞
⎠B−1

1 .

Proof Let

Y =
[

B−1
1 O

XB−1
1 O

]
,

then we have

MY =
[
B1 O
B2 N

] [
B−1
1 O

XB−1
1 O

]
=

[
I O
X O

]
= YM

and

YMY =
[
B−1
1 O

XB−1
1 O

]
= Y .

Note that for any positive integer p,

[
B1 O
B2 N

]p

=
[

Bp
1 O

S(p) Np

]
, where S(p) =

p−1∑
i=0

Np−1−iB2B
i
1.

If p ≥ t, thenNp = O, becauseN is a strictly lower triangular matrix of order t. Thus
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M t+1Y = M t(MY )

=
[

Bt
1 O

S(t) O

] [
I O
X O

]

=
[

Bt
1 O

S(t) O

]

= M t .

Therefore Y = Md and (5.2.8) follows from MMd = MdM . ��
By using Theorem 5.2.3 and the singular value decomposition of A ∈ C

n×n, an
orthogonal deflation method for calculating Ad is given as follows.

Algorithm 5.2.1 ([6]) Given a matrix A ∈ C
n×n, this algorithm computes its Drazin

inverse Ad .

1. Compute the singular value decomposition of A:

A = U

[
� O
O O

]
V ∗.

If � ∈ R
n×n
n , then Ad = A−1 = V�−1U ∗. If Ind(A) > 0, write

V ∗AV = V ∗U
[

� O
O O

]
=

[
A(1)
11 O

A(1)
21 O

]
.

2. Now compute the singular value decomposition of A(1)
11 :

A(1)
11 = U1

[
�1 O
O O

]
V ∗
1 .

If A(1)
11 is nonsingular, go to step 4, otherwise

V ∗
1 A

(1)
11 V1 = V ∗

1 U1

[
�1 O
O O

]
=

[
A(2)
11 O

A(2)
21 O

]
.

Thus
[
V ∗
1 O
O I

]
V ∗AV

[
V1 O
O I

]

=
[
V ∗
1 A

(1)
11 V1 O

A(1)
21 V1 O

]

=
⎡
⎣A(2)

11 O O
A(2)
21 O O

A(2)
31 A(2)

32 O

⎤
⎦ , (5.2.9)
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where A(1)
21 V1 = [A(2)

31 A(2)
32 ] is partitioned accordingly.

3. Continue the procedure in step 2, at each step, compute the singular value decom-
position of A(m)

11 and perform the appropriate multiplication as in (5.2.9) to get
A(m+1)
11 . If some A(k)

11 = O, then Ad = O. If some A(k)
11 is nonsingular, go to step 4.

4. By Lemma 5.2.4, we now have k = Ind(A) and

WAW ∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A(k)
11 O · · · · · · O

A(k)
21 O · · · · · · O

A(k)
31 A(k)

32

. . .
...

...
...

. . .
...

A(k)
k+1,1 A

(k)
k+1,2 · · · A(k)

k+1,k O

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
[
B1 O
B2 N

]
,

where B1 = A(k)
11 is nonsingular,

B2 =

⎡
⎢⎢⎢⎢⎣

A(k)
21

A(k)
31
...

A(k)
k+1,1

⎤
⎥⎥⎥⎥⎦ and N =

⎡
⎢⎢⎢⎢⎣

O · · · · · · O

A(k)
32

. . .
...

...
. . .

...

A(k)
k+1,2 · · · A(k)

k+1,k O

⎤
⎥⎥⎥⎥⎦

is a strictly lower triangular matrix, thus Nk = O, and

W =
[
V ∗
k O
O I

] [
V ∗
k−1 O
O I

]
· · ·

[
V ∗
1 O
O I

]
V ∗

is unitary, that is, W ∗ = W−1. It then follows from Lemma 5.2.3 and Theo-
rem 5.2.3 that

Ad = W−1

[
B−1
1 O

XB−1
1 O

]
W,

where X is the solution of XB1 − NX = B2. Let N = [nij] and ri be the ith row
of B2, then the rows xi of X can be recursively solved by

x1 = r1B−1
1 and xi =

⎛
⎝ri +

i−1∑
j=1

nijxj

⎞
⎠B−1

1 .
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5.3 Generalized Inverses of Sums and Partitioned Matrices

Let

M =
[
A C
B D

]
,

where A,B,C,D are four matrices of appropriate dimensions, then A,B,C,D are
called conformable. Matrix M can be viewed in two ways. One is to view M as a
bordered matrix built from A. In this case, the blocks are considered fixed. If one is
trying to build M with certain properties, then one might choose a particular kind
of blocks. For example, in Chap. 3, if A ∈ C

m×n
r , and C ∈ C

m×(m−r)
(m−r) whose columns

form a basis forN (A∗), B ∈ C
(n−r)×n
(n−r) whose columns form a basis forN (A), and D

is an (n − r) × (m − r) zero matrix, thenM is nonsingular. Another is to viewM as
a partitioned matrix. In this case,M is considered fixed. Different partitions may be
considered to compute M from its blocks.

Consider the partitioned matrix M above. Suppose that the matrix M and the
block A are nonsingular and

M−1 =
[
E G
F H

]
,

then

H = (D − BA−1C)−1,

G = −A−1CH ,

F = −HBA−1,

E = A−1(I − CF).

As a special case, let the bordered matrix

An =

⎡
⎢⎢⎢⎣

a11 · · · a1,n−1 a1n
...

...
...

an−1,1 · · · an−1,n−1 an−1,n

an1 · · · an,n−1 an,n

⎤
⎥⎥⎥⎦ =

[
An−1 un
v∗
n ann

]

and An−1 be nonsingular, then

A−1
n =

[
A−1
n−1 + α−1

n A−1
n−1unv

∗
nA

−1
n−1 −α−1

n A−1
n−1un

−α−1
n v∗

nA
−1
n−1 α−1

n

]
, (5.3.1)

where
αn = ann − v∗

nA
−1
n−1un. (5.3.2)
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Thus, the inverse of An can be computed from the inverse of its submatrix An−1 and
its last column and last row.

Can we partition a matrix and compute its generalized inverses from the blocks?
This section is concerned with the computation of the generalized inverses of a
matrix from its blocks using various partitions. A related problem of computing the
generalized inverses of a sum of matrices is also discussed.

5.3.1 Moore-Penrose Inverse of Rank-One Modified Matrix

Let Ak ∈ C
m×k be partitioned and decomposed as the following:

Ak = [Ak−1 o1] + ak [oT2 1],

where o1 ∈ C
m and o2 ∈ C

k−1 are zero vectors and ak is the last column of Ak . Let
A = [Ak−1 o1], ak = c, d∗ = [oT2 1], then Ak = A + cd∗ is a rank-one modified
matrix of A.

In order to obtain an expression for A†
k = [Ak−1 ak ]†, we will now develop a

formulation for the Moore-Penrose inverse of a rank-one modified matrix A + cd∗.

Theorem 5.3.1 ([6]) Let A ∈ C
m×n, c ∈ C

m, d ∈ C
n,

k = A†c,

h∗ = d∗A†,

u = (I − AA†)c,

v∗ = d∗(I − A†A),

β = 1 + d∗A†c.

(Notice that c ∈ R(A) if and only if u = 0 and d ∈ R(A∗) if and only if v = 0.) Then
the Moore-Penrose inverse of A + cd∗ is as follows.

(1) If u �= 0 and v �= 0, then

(A + cd∗)† = A† − ku† − v∗†h + βv∗†u†.

(2) If u = 0, v �= 0 and β = 0, then

(A + cd∗)† = A† − kk†A† − v∗†h∗.

(3) If u = 0 and β �= 0, then

(A + cd∗)† = A† + 1

β̄
vk∗A† − β̄

σ1
p1q∗

1,
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where

p1 = −
(‖k‖2

β̄
v + k

)
, q∗

1 = −
(‖v‖2

β̄
k∗A† + h∗

)
,

and σ1 = ‖k‖2‖v‖2 + |β|2.
(4) If u �= 0, v = 0 and β = 0, then

(A + cd∗)† = A† − A†h∗†h∗ − ku†.

(5) If v = 0 and β �= 0, then

(A + cd∗)† = A† + 1

β̄
A†hu∗ − β̄

σ2
p2q∗

2,

where

p2 = −
(‖u‖2

β̄
A†h + k

)
, q∗

2 = −
(‖h‖2

β̄
u∗ + h∗

)
,

and σ2 = ‖h‖2‖u‖2 + |β|2.
(6) If u = 0, v = 0 and β = 0, then

(A + cd∗)† = A† − kk†A† − A†h∗†h∗ + (k†A†h∗†)kh∗.

Before proving Theorem 5.3.1, we state the following lemma.

Lemma 5.3.1 Let A, c,d,u, v, and β be the same as in Theorem 5.3.1, then

rank(A + cd∗) = rank

[
A u
v∗ −β

]
− 1.

Proof This follows immediately from the factorization

[
A + cd∗ c

0T −1

]
=

[
I 0
h∗ 1

] [
A u
v∗ −β

] [
I k
0T 1

] [
I 0
d∗ 1

]
,

which can be verified by the definitions of k,h,u, v, and β. ��
We now proceed to the proof of Theorem 5.3.1. Throughout, we assume c �= 0

and d �= 0.

Proof (1) Let X1 denote the right-hand side of the equation in (1) and

M = A + cd∗.

The proof consists of showing that X1 satisfies the four Penrose conditions. From
the definitions of k, v, and β, we have Av∗† = 0, d∗v∗† = 1, d∗k = β − 1, and
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c − Ak = u, which implies that

MX1 = AA† + uu†.

So the third Penrose condition holds. Using u†A = 0T , u†c = 1, h∗c = β − 1, and
d∗ − h∗A = v∗, one obtains

X1M = A†A = v∗†v∗

and hence the fourth condition holds. The first and second conditions follow easily.
(2) Let X2 denote the right-hand side of the equation in (2). By using Ak = c, Av∗† =
0, d∗v∗† = 1, and d∗k = β − 1, we can see that

(A + cd∗)X2 = AA†,

which isHermitian. From the equalitiesk†A†A = k†,h∗c = −1, andd∗ − h∗A = v∗,
it follows that

X2(A + cd∗) = A†A − kk† + v∗†v∗,

which is also Hermitian. The first and second Penrose conditions can now be easily
verified.
(3) This is the most difficult case. Since u = 0, c ∈ R(A) implying that R(A +
cd∗) ⊂ R(A). Since β �= 0, from Lemma 5.3.1, we have rank(A + cd∗) = rank(A).
Therefore, R(A + cd∗) = R(A) and

(A + cd∗)(A + cd∗)† = AA†, (5.3.3)

because AA† is the unique orthogonal projector onto R(A). Let X3 denote the right-
hand side of the equation in (3) and M = A + cd∗. Because q∗

1AA
† = q∗

1, it follows
from (5.3.3) that

X3MM † = X3AA
† = X3.

We claim that
M †M = X3M . (5.3.4)

Thus, we have
M † = (M †M )M † = X3MM † = X3.

Now we prove (5.3.4) by showing

M †M = A†A − kk† + p1p
†
1 (5.3.5)

and
X3M = A†A − kk† + p1p

†
1. (5.3.6)
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The matrix A†A − kk† + p1p
†
1 is Hermitian and idempotent. It is obvious that it

is Hermitian. The fact that it is idempotent can be verified by using the identities
A†Ak = A†c = k, A†Ap1 = −k, and kk†p1 = −k. Since the rank of an idempotent
matrix is equal to its trace,

rank(A†A − kk† + p1p
†
1) = tr(A†A − kk† + p1p

†
1)

= tr(A†A) − tr(kk†) + tr(p1p
†
1).

Now, kk† and p1p
†
1 are idempotent matrices of rank one and A†A is an idempotent

matrix whose rank is rank(A), so

rank(A†A − kk† + p1p
†
1) = rank(A + cd∗). (5.3.7)

Using the equalities Ak = c, Ap1 = −c, d∗k = β − 1, d∗p1 = 1 − σ1β̄
−1, and

d∗A†A = d∗ − v∗, we obtain

(A + cd∗)(A†A − kk† + p1p
†
1) = A + cd∗ − c(v∗ + βk† + σ1β̄

−1p†1).

Now, ‖p1‖2 = ‖k‖2σ1|β|−2, so σ1β̄
−1‖p1‖−2 = β‖k‖−2. Hence,

σ1β̄
−1p†1 = β‖k‖−2p∗

1 = −v∗ − βk†.

Thus,
(A + cd∗)(A†A − kk† + p1p

†
1) = A + cd∗.

Because A†A − kk† + p1p
†
1 is an orthogonal projector,

R(A∗ + dc∗) ⊂ R(A†A − kk† + p1p
†
1).

From (5.3.7), we conclude that

R(A∗ + dc∗) = R(A†A − kk† + p1p
†
1).

Consequently,
(A + cd∗)†(A + cd∗) = A†A − kk† + p1p

†
1,

which is equivalent to (5.3.7).
To show the Eq. (5.3.6), using the identities k∗A†A = k∗, q∗

1c = 1 − σ1β̄
−1, and

q∗
1A + d∗ = −‖v‖2β̄−1k∗ + v∗, we get
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X3M

= X3(A + cd∗)
= A†A + β̄−1vk∗ − β̄σ−1

1 p1q∗
1A + (k + β̄−1‖k‖2v)d∗ − β̄σ−1

1 p1q∗
1cd

∗

= A†A + β̄−1vk∗ − β̄σ−1
1 p1q∗

1A − p1d∗ − β̄σ−1
1 p1d∗ + p1d∗

= A†A + β̄−1vk∗ − β̄σ−1
1 p1(q∗

1A + d∗)
= A†A + β̄−1vk∗ − β̄σ−1

1 p1(v∗ − β̄−1‖v‖2k∗).

Writing v∗ as v∗ = −β‖k‖−2(p∗
1 + k∗), substituting this into the above expression

in parentheses, and using the fact that ‖p1‖−2 = |β|2σ−1
1 ‖k‖−2, we obtain

X3M = A†A + β̄−1vk∗ + p1p
†
1 + ‖k‖−2p1k∗.

Since
β̄−1v + ‖k‖−2p1 = β̄−1v − β̄−1v − ‖k‖−2k = −‖k‖−2k,

we have
X3M = A†A + p1p

†
1 − kk†,

that is, (5.3.6) holds.
(4) and (5) It is easy to see that (4) follows from (2) and (5) follows from (3) by taking
conjugate transposes and using the fact that for any matrix M , (M †)∗ = (M ∗)†.
(6) Both matrices AA† − h∗†h∗ and A†A − kk† are orthogonal projectors. The fact
that they are idempotent follows from AA†h∗† = h∗†, h∗AA† = h∗, A†Ak = k, and
k†A†A = k†. It is clear that they are Hermitian.

Moreover

rank(AA† − h∗†h∗) = tr(AA† − h∗†h∗)
= tr(AA†) − tr(h∗†h∗)
= rank(AA†) − rank(h∗†h∗)
= rank(A) − 1.

Similarly
rank(A†A − kk†) = rank(A) − 1.

Since u = 0, v = 0, and β = 0, from Lemma 5.3.1,

rank(A + cd∗) = rank(A) − 1.

Hence

rank(A + cd∗) = rank(AA† − h∗†h∗) = rank(A†A − kk†). (5.3.8)



5.3 Generalized Inverses of Sums and Partitioned Matrices 199

From AA†c = c, h∗c = −1, and h∗A = d∗, it is easy to see that

(AA† − h∗†h∗)(A + cd∗) = A + cd∗.

Hence R(A + cd∗) ⊂ R(AA† − h∗†h∗). Likewise, using d∗A†A = d∗, d∗k = −1,
and Ak = c, we have

(A + cd∗)(A†A − kk†) = A + cd∗.

Hence R(A∗ + dc∗) ⊂ R(A†A − kk†). It now follows from (5.3.8) that

(A + cd∗)(A + cd∗)† = AA† − h∗†h∗ (5.3.9)

and
(A∗ + dc∗)(A∗ + dc∗)† = A†A − kk†.

Taking conjugate transposes on the both sides of the above equation, we get

(A + cd∗)†(A + cd∗) = A†A − kk†. (5.3.10)

LetX4 denote the right-hand side of (6) andM = A + cd∗.Using (5.3.9) andh∗AA† =
h∗, we obtain

X4MM † = X4(AA
† − h∗†h∗) = X4.

On the other hand, Using k†A†A = k†, h∗A = d∗, h∗c = −1, and (5.3.10), we obtain

X4M = X4(A + cd∗) = A†A − kk† = M †M .

Hence
M † = (M †M )M † = X4MM † = X4,

which completes the proof. ��
Corollary 5.3.1 Let c ∈ R(A), d ∈ R(A∗), and β �= 0, then

(A + cd∗)† = A† − β−1A†cd∗A† = A† − β−1kh∗.

Proof Set v = 0 in (3) or u = 0 in (5) of Theorem 5.3.1. ��
The following is a special case when A and A + cd∗ are nonsingular.

Corollary 5.3.2 Let A and A + cd∗ be nonsingular, then

(A + cd∗)−1 = A−1 − β−1A−1cd∗A−1.
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TheMoore-Penrose inverse of a rank-rmodifiedmatrixM = A − CB is discussed
in [8], where rank(S) = r and S = BC is a full rank factorization. The Drazin inverse
of a rank-one modified matrixM = A + cd∗ is discussed in [9].

By using the generalized singular value decomposition, a more general weighted
Moore-Penrose inverse of a rank-r modified matrix A − CB is discussed in [10],
where CB need not be a full rank factorization. The Drazin inverse of a rank-r modi-
fiedmatrixM = A − CB is discussed in [11]. Cases similar to those in Theorem5.3.1
are considered in the derivation of the expressions of the weighted Moore-Penrose
inverse of a rank-rmodified matrix or the Drazin inverse of a rank-r modifiedmatrix.
See [10, 11] for details.

5.3.2 Greville’s Method

Let Ak ∈ C
m×k be partitioned as Ak = [Ak−1 ak ], where Ak−1 ∈ C

m×(k−1) and ak ∈
C

m is the last column. It is a simple partitionedmatrix called theGreville’s partitioned
matrix.

The Greville’s method [12] for computing the Moore-Penrose inverse A† is a
recursive algorithm. At the kth iteration (k = 1, 2, · · · , n) it computes A†

k , where Ak

is the submatrix of A consisting of its first k columns. For k = 2, 3, · · · , n, the matrix
Ak is partitioned as

Ak = [Ak−1 ak ],

where ak is the kth column of A. For k = 2, 3, · · · , n, let the vector dk and ck be
defined by

dk = A†
k−1ak ,

ck = ak − Ak−1dk = (I − Ak−1A
†
k−1)ak ,

then the following theorem gives an expression of A†
k in terms of A†

k−1, dk , and ck .

Theorem 5.3.2 Let A ∈ C
m×n, using the above notations, then the Moore-Penrose

inverse of Ak is given by

A†
k = [Ak−1 ak ]† =

[
A†
k−1 − dkb∗

k
b∗
k

]
, k = 2, 3, · · · , n,

and
A†
n = A†,

where

b∗
k =

{
c†k if ck �= 0,
(1 + d∗

kdk)
−1d∗

kA
†
k−1 if ck = 0.



5.3 Generalized Inverses of Sums and Partitioned Matrices 201

Proof Since Ak can be written as

Ak = [Ak−1 ak ] = [Ak−1 01] + ak [0T2 1],

where 01 ∈ C
m and 02 ∈ C

k−1 are zero vectors, Ak is in the rank-one modified matrix
form in Theorem 5.3.1. Let Ã = [Ak−1 01], c̃ = ak , and d̃∗ = [0T2 , 1], then

A†
k = (̃A + c̃̃d∗)†.

Using the notations in Theorem 5.3.1 and the equation

Ã† =
[
A†
k−1
0T

]
,

we have h̃∗ = d̃∗Ã† = 0T , so β̃ = 1 + d̃∗Ã†̃c = 1 and ṽ∗ = d̃∗(I − Ã†Ã) = d̃∗ �=
0T , ũ = (I − ÃÃ†)̃c = (I − Ak−1A

†
k−1)ak = ck . Thus, there are only two cases to

consider: ck �= 0 and ck = 0.
Case (1): If ũ = ck �= 0 and ṽ �= 0, then the case (1) in Theorem 5.3.1 is applied to
obtain A†

k . It is clear that

k̃ = Ã†c̃ =
[
A†
k−1ak
0

]
and (̃v∗)† = (̃d∗)† =

[
0
1

]
.

Thus

A†
k = Ã† − k̃ũ† − (̃v∗)†h̃∗ + β̃(̃v∗)†ũ†

=
[
A†
k−1
0T

]
−

[
A†
k−1akc

†
k

0T

]
− O +

[
O
c†k

]

=
[
A†
k−1 − dkc

†
k

c†k

]
.

Case (2): If ũ = ck = 0 and β̃ �= 0, then the case (3) in Theorem 5.3.1 is applied to
obtain A†

k . It is clear that

k̃ = Ã†̃c =
[
A†
k−1ak
0

]
=

[
dk
0

]
, σ̃1 = 1 + d∗

kdk ,

p̃1 = −
[

dk
d∗
kdk

]
, and q̃∗

1 = −d∗
kA

†
k−1.

Thus
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A†
k = Ã† + ( ¯̃β)−1ṽk̃∗Ã† − ¯̃β σ̃−1

1 p̃1q̃∗
1

=
[
A†
k−1 − (1 + d∗

kdk)
−1dkd∗

kA
†
k−1

(1 + d∗
kdk)

−1d∗
kA

†
k−1

]
.

The proof is completed by noting that b∗
k = (1 + d∗

kdk)
−1d∗

kA
†
k−1. ��

There are other proofs of the above theorem, see [13–16].
A method for computing the weighted Moore-Penrose inverse of Greville’s par-

titioned matrix is given as follows.

Theorem 5.3.3 ([17]) Let A ∈ C
m×n, M and N be Hermitian positive definite matri-

ces of orders m and n respectively. Denote Ak as the submatrix consisting of the first
k columns of A, ak as the kth column of A, and Ak = [Ak−1 ak ]. Suppose that

Nk =
[
Nk−1 lk
l∗k nkk

]
∈ C

k×k

is the kth leading principal submatrix of N and

Xk−1 = (Ak−1)
†
M ,Nk−1

and Xk = (Ak)
†
M ,Nk

are the weighted Moore-Penrose inverses of Ak−1 and Ak respectively. For k =
2, 3, · · · , n, define

dk = Xk−1ak ,

ck = ak − Ak−1dk = (I − Ak−1Xk−1)ak ,

then

Xk =
[
Xk−1 − (dk + (I − Xk−1Ak−1)N

−1
k−1lk)b

∗
k

b∗
k

]

and
Xn = A†

MN ,

where

b∗
k =

{
(c∗

kM ck)−1c∗
kM , if ck �= 0,

δ−1
k (d∗

kNk−1 − l∗k)Xk−1, if ck = 0,

and
δk = nkk + d∗

kNkdk − (d∗
k lk + l∗kdk) − l∗k(I − Xk−1Ak−1)N

−1
k−1lk .

Note that the initial X1 = (a∗
1M a1)−1a∗

1M and it is easy to compute N−1
k−1 by

(5.3.1) and (5.3.2).
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5.3.3 Cline’s Method

An extension of the Greville’s partitioned matrix is A = [U V ], whereU and V are
general conformable matrices and V no longer is just a column. The matrix [U V ]
is called the Cline’s partitioned matrix.

The Cline’s method for computing the Moore-Penrose inverse of partitioned
matrix A = [U V ] is given by the following theorem.

Theorem 5.3.4 ([18]) Let A = [U V ] ∈ C
m×n, where U ∈ C

m×p (p < n) and V ∈
C

m×(n−p), then

A† = [U V ]† (5.3.11)

=
[
U † −U †VC† −U †V (I − C†C)K−1

1 V ∗U †∗
U †(I − VC†)

C† + (I − C†C)K−1
1 V ∗U †∗

U †(I − VC†)

]
,

where
C = (I −UU †)V,

K1 = I + (I − C†C)V ∗U †∗
U †V (I − C†C).

(5.3.12)

If
(C†C)(V ∗U †∗

U †V ) = (V ∗U †∗
U †V )(C†C),

then from (5.3.11) and (5.3.12) we have

A† = [U V ]†

=
[
U † −U †VC† −U †V (I − C†C)K−1

2 V ∗U †∗
U †

C† + (I − C†C)K−1
2 V ∗U †∗

U †

]
, (5.3.13)

where
C = (I −UU †)V,

K2 = I + V ∗U †∗
U †V .

In 1971, an alternative representation of the Moore-Penrose inverse of the parti-
tioned matrix A = [U V ] was given by Mihalyffy in [19]:

A† = [U V ]† =
[

KU †(I − VC†)

T ∗KU †(I − VC†) + C†

]
,

where
C = (I −UU †)V,

T = U †V (I − C†C),

K = (I + TT ∗)−1.
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The reader should be aware that there are other ways of representing the Moore-
Penrose inverse for the partitioned matrix A = [U V ]. The interested reader is
referred to [20, 21].

Themethod for computing the weightedMoore-Penrose inverse of the partitioned
matrix A = [U V ] is given by the following theorem.

Theorem 5.3.5 ([22]) Let A = [U V ] ∈ C
m×n, where U ∈ C

m×p (p < n) and V ∈
C

m×(n−p), and M and N be Hermitian positive definite matrices of orders m and n
respectively. Partition N as

N =
[
N1 L
L∗ N2

]
,

where N1 ∈ C
p×p and let

D = U †
MN1

V,

C = (I −UU †
MN1

)V,

K = N2 + D∗N1D − (D∗L + L∗D) − L∗(I −U †
MN1

U )N−1
1 L,

then K is a Hermitian positive definite matrix and

A†
MN =

[
U †

MN1
− DH − (I −U †

MN1
U )N−1

1 LH
H

]
, (5.3.14)

where
H = C†

MK + (I − C†
MKC)K−1(D∗N1 − L∗)U †

MN1
.

Proof Let X denote the right-hand side of (5.3.14). It is easy to verify that the
following four conditions are satisfied:

AXA = A, XAX = X ,

(MAX )∗ = MAX , (NXA)∗ = NXA,

which completes the proof. ��
The following corollary follows from Theorem 5.3.5.

Corollary 5.3.3 Suppose that A, U and V are the same as in Theorem 5.3.5. Then

A† = [U V ]† (5.3.15)

=
[
U † −U †VC†

IK1
−U †V (I − C†

IK1
C)K−1

1 V ∗U †∗
U †

C†
IK1

+ (I − C†
IK1

C)K−1
1 V ∗U †∗

U †

]
,

where
C = (I −UU †)V,

K1 = I + V ∗U †∗
U †V .
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Comparing (5.3.13) with (5.3.15), C† in (5.3.13) is replaced by C†
IK1

in (5.3.15).
No additional conditions are necessary here.

5.3.4 Noble’s Method

An extension of the Cline’s partitioned matrix is the Noble’s partitioned matrix of
the form:

M =
[
A C
B D

]
, (5.3.16)

where A,B,C, and D are general conformable matrices.
The answer to “What is the Moore-Penrose inverse ofM ?" is difficult. However,

if we place some restrictions on the blocks inM , we can obtain some useful results.

Lemma 5.3.2 If A,B,C, and D in (5.3.16) are conformable matrices such that A is
square and nonsingular, and rank(M ) = rank(A), then D = BA−1C. Furthermore,
if P = BA−1 and Q = A−1C, then

M =
[
A C
B D

]
=

[
I
P

]
A [I Q]. (5.3.17)

Proof The factorization

[
I O

−BA−1 I

] [
A C
B D

] [
I −A−1C
O I

]
=

[
A O
O D − BA−1C

]
(5.3.18)

yields
rank(M ) = rank(A) + rank(D − BA−1C).

Therefore, it canbe concluded that rank(D − BA−1C) = 0, equivalently,D = BA−1C.
Then (5.3.17) follows from (5.3.18). ��
Theorem 5.3.6 Let A,B,C, and D in (5.3.16) be conformable matrices such that
A is square and nonsingular, and rank(M ) = rank(A), P = BA−1, and Q = A−1C,
then

M † =
[
A C
B D

]†

=
[

I
Q∗

]
((I + P∗P)A(I + QQ∗))−1[I P∗].

Proof Let A ∈ C
r×r
r ,

F =
[
Ir
P

]
A and G = [Ir Q].

then
rank(F) = rank(G) = rank(A) = rank(M ) = r.
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It follows from (5.3.17) thatM = FG. By Theorem 1.1.5 and the nonsingularity of
A, we have

M † = G†F†

= G∗(GG∗)−1(F∗F)−1F∗

=
[

I
Q∗

]
(I + QQ∗)−1(A∗(I + P∗P)A)−1A∗[I P∗]

=
[

I
Q∗

]
(I + QQ∗)−1((I + P∗P)A)−1[I P∗]

=
[

I
Q∗

]
((I + P∗P)A(I + QQ∗))−1[I P∗],

which completes the proof. ��
Let A,B,C, and D in (5.3.16) be conformable matrices such that M and A are

square. The Drazin inverse of the Noble’s partitioned matrix M is given by the
following theorem. First, we give two lemmas.

Lemma 5.3.3 Let T ∈ C
n×n, R ∈ C

r×n
n , and S ∈ C

n×s
n , then

rank(RTS) = rank(T ).

Proof Since R†R = In and SS† = In, we have

rank(RTS) ≤ rank(T ) = rank(R†RTSS†) ≤ rank(RTS),

implying that rank(RTS) = rank(T ). ��
Lemma 5.3.4 Let A ∈ C

r×r
r and

M =
[
A C
B D

]
.

If rank(M ) = rank(A) = r, then

Ind(M ) = Ind(A(I + QP)) + 1 = Ind((I + QP)A) + 1,

where P = BA−1 and Q = A−1C.

Proof From Lemma 5.3.2,

D = BA−1C and M =
[
I
P

]
A[I Q].

Thus for any integer i > 0,
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M i =
[
I
P

]
(A(I + QP))i−1A[I Q] (5.3.19)

=
[
I
P

]
A((I + QP)A)i−1[I Q].

Since the matrix [
I
P

]

is of full column rank and A[I Q] is of full row rank, from Lemma 5.3.3, we have
rank(Mm+1) = rank((A(I + QP))m). Thus

rank((A(I + QP))m) = rank((A(I + QP))m−1)

⇔ rank(Mm+1) = rank(Mm).

It then follows that Ind(A(I + QP)) + 1 = Ind(M ). The proof of Ind((I + QP)A)

+ 1 = Ind(M ) is similar. ��
Corollary 5.3.4 Under the same assumptions as Lemma 5.3.4,

Ind(M ) = 1 ⇔ I + QP is nonsingular.

Proof From Lemma 5.3.4,

Ind(M ) = 1 ⇔ Ind(A(I + QP)) = 0
⇔ A(I + QP) is nonsingular
⇔ I + QP is nonsingular.

The penultimate equivalence follows from the nonsingularity of A. ��
Now we have a theorem on the Drazin inverse.

Theorem 5.3.7 Let A ∈ C
r×r
r ,

M =
[
A C
B D

]
,

where Ind(M ) = m, rank(M ) = rank(A) = r, and P = BA−1, Q = A−1C, then

Md =
[
I
P

]
((AS)2)dA[I Q]

=
[
I
P

]
A((SA)2)d [I Q], (5.3.20)

where S = I + A−1CBA−1 = I + QP.
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Proof Setting

X =
[
I
P

]
((AS)2)dA[I Q]

and using (5.3.19), we have

Mm+1X =
[
I
P

]
(AS)m+1((AS)2)dA[I Q].

Since Ind(M ) = m, we have

Ind(AS) = Ind(A(I + QP)) = m − 1

by Lemma 5.3.4. Thus
(AS)m+1((AS)2)d = (AS)m−1.

Furthermore

Mm+1X =
[
I
P

]
(AS)m−1A[I Q] = Mm.

It is easy to verify that MX = XM and XMX = X , which is left to the reader as an
exercise. Therefore Md = X .

The proof of the second equality of (5.3.20) is similar, it is omitted here. ��
In Theorem 5.3.7, we have obtained an expression ofMd when A is nonsingular.

If A is a square and singular matrix, then an expression of Md is given as follows.

Theorem 5.3.8 ([23]) Let

M =
[
A C
B D

]
,

where A is a square and singular matrix, and

H = BAd , K = AdC,

P = (I − AAd )C, Q = B(I − AdA),

Z = D − BAdC.

If P = O, Q = O, and Z = O, then

Md =
[
I
H

]
((AS)d )

2A[I K]

=
[
I
H

]
A((SA)d )

2[I K],

where S = I + AdCBAd = I + KH.
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Proof From the assumptions, we have

M =
[
I
H

]
A[I K].

By using (5.3.19), we have

M i =
[
I
H

]
(AS)i−1A[I K].

Setting

X =
[
I
H

]
((AS)d )

2A[I K]

and noting that AS ∈ C
m×m and Ind(AS) ≤ m, we have

Mm+2X =
[
I
H

]
(AS)m+2((AS)d )

2A[I K]

=
[
I
H

]
(AS)mA[I K]

= Mm+1, (5.3.21)

MX =
[
I
H

]
AS((AS)d )

2A[I K]

=
[
I
H

]
((AS)d )

2ASA[I K]

=
[
I
H

]
((AS)d )

2A[I K]
[
I
H

]
A[I K]

= XM , (5.3.22)

and

XMX

=
[
I
H

]
((AS)d )

2A[I K]
[
I
H

]
A[I K]

[
I
H

]
((AS)d )

2A[I K]

=
[
I
H

]
((AS)d )

2A[I K]
= X . (5.3.23)

It then follows from (5.3.21)–(5.3.23) that Md = X . ��
An expression of the group inverse for the Noble’s partitioned matrix is given as

follows.
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Theorem 5.3.9 Let A ∈ C
r×r
r ,

M =
[
A C
B D

]
,

where Ind(M ) = 1 and rank(M ) = rank(A) = r. If P = BA−1 and Q = A−1C, then

Mg =
[
I
P

]
(SAS)−1[I Q]

=
[
I
P

]
S−1A−1S−1[I Q]

=
[
A
B

]
(A2 + CB)−1A(A2 + CB)−1[A C],

where S = I + A−1CBA−1 = I + QP.

Proof It follows from Corollary 5.3.4 that

Ind(M ) = 1 ⇔ S = I + QP is nonsingular.

By using Theorem 5.3.7 and the nonsingularity of AS, we have

Mg =
[
I
P

]
((AS)2)−1A[I Q]

=
[
I
P

]
(AS)−1(AS)−1A[I Q]

=
[
I
P

]
(SAS)−1[I Q]

=
[

I
BA−1

]
S−1A−1S−1[I A−1C]

=
[
A
B

]
A−1(A(A2 + CB)−1A)A−1(A(A2 + CB)−1A)A−1[A C]

=
[
A
B

]
(A2 + CB)−1A(A2 + CB)−1[A C].

This completes the proof. ��
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5.4 Embedding Methods

An embedding method for the Moore-Penrose inverse is given in [24] by Kalaba and
Rasakhoo. The basic idea of the embedding methods is that the original problem
is embedded in a problem with larger range, if we can get the solution of the later
problem, then the solution of the original problem can be found.

The embedding methods for the weighted Moore-Penrose inverse, the Moore-
Penrose inverse, the Drazin inverse and the group inverse are presented in [25], and
these methods have a uniform formula.

5.4.1 Generalized Inverse as a Limit

In this subsection, we will show how the generalized inverses A†
MN , A

†, Ad and Ag

can be characterized in terms of a limiting process.

Theorem 5.4.1 Let A ∈ C
m×n, rank(A) = r, and M and N be Hermitian positive

definite matrices of orders m and n respectively, then

A†
MN = lim

z→0−
(N−1A∗MA − zI)−1N−1A∗M , (5.4.1)

where z tends to zero through negative values.

Proof From the (M ,N )-singular value decomposition Theorem 5.2.2, there exist an
M -unitary matrix U ∈ C

m×m and an N−1-unitary matrix V ∈ C
n×n such that

A = U

[
D O
O O

]
V ∗,

where
U ∗MU = Im, V ∗N−1V = In,
D = diag(μ1,μ2, · · · ,μr), μi > 0, i = 1, 2, · · · , r,

and

A†
MN = N−1V

[
D−1 O
O O

]
U ∗M .

Let

N−1/2V = Ṽ = [v1 v2 · · · vn] and

M 1/2V = Ũ = [u1 u2 · · · um],

then
Ṽ ∗ = Ṽ−1, Ũ ∗ = Ũ−1
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and

A†
MN = N−1/2

(
r∑

i=1

μ−1
i viu∗

i

)
M 1/2.

Since

N−1A∗MA = N−1/2

(
r∑

i=1

μ2
i viv

∗
i

)
N 1/2

and the vectors v1, v2, · · · , vn form an orthonormal basis for C
n,

I =
n∑

i=1

viv∗
i = N−1/2

(
n∑

i=1

viv∗
i

)
N 1/2.

Therefore

N−1A∗MA − zI = N−1/2

(
r∑

i=1

(μ2
i − z)viv∗

i − z
n∑

i=r+1

viv∗
i

)
N 1/2.

Let Ã = M 1/2AN−1/2, then

Ã∗Ã = N 1/2(N−1A∗MA)N−1/2.

Since Ã∗Ã is Hermitian positive semidefinite and has nonnegative eigenvalues,
N−1A∗MA has nonnegative eigenvalues too. The matrix N−1A∗MA − zI is there-
fore nonsingular for z < 0. Its inverse is

(N−1A∗MA − zI)−1

= N−1/2

(
r∑

i=1

(μ2
i − z)−1viv∗

i −
n∑

i=r+1

z−1viv∗
i

)
N 1/2.

Next, form

(N−1A∗MA − zI)−1N−1A∗M = N−1/2

(
r∑

i=1

μi

μ2
i − z

viu∗
i

)
M 1/2.

Now, we take the limit and get
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lim
z→0

(N−1A∗MA − zI)−1N−1A∗M

= lim
z→0

N−1/2

(
r∑

i=1

μi

μ2
i − z

viu∗
i

)
M 1/2

= N−1/2

(
r∑

i=1

μ−1
i viu∗

i

)
M 1/2

= A†
MN ,

which is (5.4.1). ��
Corollary 5.4.1 Let A ∈ C

m×n, then

A† = lim
z→0

(A∗A − zI)−1A∗, (5.4.2)

where z tends to zero through negative values.

Theorem 5.4.2 Let A ∈ C
n×n with Ind(A) = k, then

Ad = lim
z→0

(Ak+1 − zI)−1Ak , (5.4.3)

where z tends to zero through negative values.

Proof From Theorem 2.1.2 of the canonical representations of A and Ad , there exists
a nonsingular matrix P such that

A = P

[
C O
O N

]
P−1, (5.4.4)

where C is nonsingular and N is nilpotent of index k, i.e., Nk = O, and

Ad = P

[
C−1 O
O O

]
P−1.

From (5.4.4),

Ak+1 − zI = P

[
Ck+1 − zI O

O −zI

]
P−1.

Since C is nonsingular, Ck+1 is also nonsingular, and z tends to zero from the left,
Ck+1 − zI is also nonsingular. Then
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lim
z→0

(Ak+1 − zI)−1Ak = lim
z→0

P

[
(Ck+1 − zI)−1Ck O

O O

]
P−1

= P

[
C−1 O
O O

]
P−1

= Ad ,

which leads to (5.4.3). ��
Corollary 5.4.2 Let A ∈ C

n×n with Ind(A) = 1, then

Ag = lim
z→0−

(A2 − zI)−1A. (5.4.5)

If A is nonsingular, then
A−1 = lim

z→0−
(A − zI)−1, (5.4.6)

where z tends to zero through negative values.

5.4.2 Embedding Methods

In order to find the generalized inverses A†
MN , A

†, Ad , Ag , and the regular inverse
A−1, from (5.4.1), (5.4.2), (5.4.3), (5.4.5) and (5.4.6), we must find the inverse of the
matrix Bt(z), an n × n matrix of z,

Bt(z) = [b(t)
ij ] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N−1A∗MA − zI , t = 1;
A∗A − zI , t = 2;
Ak+1 − zI , t = 3;
A2 − zI , t = 4;
A − zI , t = 5.

Let
Ft(z) = adj(Bt(z)) = [B(t)

ij ] and gt(z) = det(Bt(z)), (5.4.7)

where adj(Bt(z)) is the adjoint of the matrix Bt(z), whose elements B(t)
ij are the

cofactors of the jth row and ith column element of Bt(z), then

(Bt(z))
−1 = Ft(z)

gt(z)
. (5.4.8)

Theorem 5.4.3 Let Ft(z) and gt(z) be given by (5.4.7), then Ft(z) and gt(z) satisfy
the following ordinary differential equations
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dFt

dz
= −Ft tr(Ft) + F2

t

gt
, (5.4.9)

dgt
dz

= −tr(Ft), (5.4.10)

where Ft = Ft(z) and gt = gt(z).

Proof Denote Bt = Bt(z). Premultiplying both sides of (5.4.8) by the matrix Bt and
postmultiplying both sides by det(Bt), we have

det(Bt)I = Btadj(Bt), (5.4.11)

where I is the identity matrix. Also, by postmultiplying both sides of (5.4.8) by
Bt det(Bt), we have

det(Bt)I = adj(Bt)Bt . (5.4.12)

Differentiate both sides of (5.4.11) with respect to the parameter z:

(Bt)zadj(Bt) + Bt(adj(Bt))z = (det(Bt))zI .

Premultiplying both sides of the above equation by adj(Bt), we get

adj(Bt)(Bt)zadj(Bt) + adj(Bt)Bt(adj(Bt))z = adj(Bt)(det(Bt))z.

Applying (5.4.12) to the second term of the above equation, we obtain

adj(Bt)(Bt)zadj(Bt) + det(Bt)(adj(Bt))z = adj(Bt)(det(Bt))z.

Since det(Bt) is a scalar, from the above equation we find

adj(Bt)z = adj(Bt)(det(Bt))z − adj(Bt)(Bt)zadj(Bt)

det(Bt)
. (5.4.13)

Then differentiating det(Bt) with respect to z, we obtain

(det(Bt))z =
n∑

i,j=1

∂ det(Bt)

∂b(t)
ij

db(t)
ij

dz
. (5.4.14)

However, we have
∂ det(Bt)

∂b(t)
ij

= B(t)
ij (5.4.15)

and
dBt

dz
= −I . (5.4.16)
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Substituting the above (5.4.15) and (5.4.16) into (5.4.14) gives

(det(Bt))z =
n∑

i=1

B(t)
ii

db(t)
ii

dz
= −

n∑
i=1

B(t)
ii = −tr(Ft). (5.4.17)

By substituting (5.4.16) and (5.4.17) into the right-hand side of (5.4.13), we have

(adj(Bt))z = adj(Bt)(−tr(Ft)) + (adj(Bt))
2

det(Bt)
.

Finally, substituting (5.4.7) into the above equation and (5.4.17), we obtain (5.4.9)
and (5.4.10) immediately. ��

For a value of z suitably less than zero, z = z0, we can determine the determinant
and adjoint of the matrix Bt(z0) accurately by, for example, Gaussian elimination.
This provides initial conditions at z = z0 for the differential equations in (5.4.9) and
(5.4.10), which can now be integrated numerically with z going from z0 toward zero.

For convenience, we denote

A†
MN = A(1), A† = A(2), Ad = A(3), Ag = A(4), A−1 = A(5)

and if A ∈ C
m×n, let

D1 = N−1A∗M and D2 = A∗,

and if A ∈ C
n×n and Ind(A) = k, let

D3 = Ak , D4 = A, and D5 = I .

Then, as z tends to zero,
Ft(z)

gt(z)
Dt

yields an approximation of A(t), for t = 1, 2, · · · , 5.
Let us summarize the above in the form of a theorem.

Theorem 5.4.4 Let the matrix Ft and the scalar gt be determined by the differential
equations: ⎧⎪⎨

⎪⎩
dFt

dz
= F2

t − Ft tr(Ft)

gt
,

dgt
dz

= −tr(Ft),

(5.4.18)

with the initial conditions
{
Ft(z0) = adj(DtA − z0I),
gt(z0) = det(DtA − z0I),
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where

z0 < 0, |z0| < min
i∈S

|zi|, S = { i : zi �= 0 is an eigenvalue of DtA}.

By integrating this system from z0 to z = 0 and forming

Ft(z)

gt(z)
Dt, t = 1, 2, · · · , 5,

we obtain, in the limit, A(t).

5.5 Finite Algorithms

Let A ∈ C
n×n
n and the characteristic polynomial of A be

g(λ) = det(λI − A) = λn + g1λ
n−1 + · · · + gn−1λ + gn,

where I denotes the identity matrix of order n. Let the adjoint of λI − A be

F(λ) = adj(λI − A) = F1λ
n−1 + F2λ

n−2 + · · · + Fn−1λ + Fn,

where F1 = I , then

(λI − A)−1 = F(λ)

g(λ)
. (5.5.1)

A well-known finite algorithm attributed to Le Verrier [26] and Fadeev [27] per-
mits simultaneous determination of the coefficients gi andFi bymeans of the formula

F1 = I , g1 = −tr(A),

Fi = AFi−1 + gi−1I , gi = −i−1tr(AFi), i = 2, 3, · · · , n.

When λ = 0 in (5.5.1), then

A−1 = −Fn

gn
. (5.5.2)

The above algorithm is also called Le Verrier algorithm.
This scheme finds applications in linear control theory [28]. Using an extension

of this scheme, a finite algorithm for computing the Moore-Penrose inverse is given
by Decell [29], and a new proof of Decell’s finite algorithm for the generalized
inverse is given in [30]. The finite algorithm for computing the weighted Moore-
Penrose inverse A†

MN is given in [31]. A uniform formula for the finite algorithms for
computing the generalized inverses A†

MN , A
†, Ad , Ag , and regular inverse A−1 using

the embedding method is given in [25].
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Theorem 5.5.1 For A ∈ C
m×n
r , let M and N be Hermitian positive definite matrices

of orders m and n respectively and denote

A(1) = A†
MN , A(2) = A†, D1 = N−1A∗M , D2 = A∗.

For A ∈ C
n×n
r with Ind(A) = k, denote

A(3) = Ad , A(4) = Ag, A(5) = A−1,

D3 = Ak , D4 = A, D5 = I ,

and let
rank(Dt) = r ≤ n, t = 1, 2, 3, 4, rank(D5) = n,

and

Ft(λ) = adj(DtA − λI) (5.5.3)

= (−1)n−1(F (t)
1 λn−1 + F (t)

2 λn−2 + · · · + F (t)
n−1λ + F (t)

n ),

gt(λ) = det(DtA − λI) (5.5.4)

= (−1)n(g(t)
0 λn + g(t)

1 λn−1 + · · · + g(t)
n−1λ + g(t)

n ),

where F (t)
1 ,F (t)

2 , · · · ,F (t)
n are n × n constant matrices and g(t)

0 =1, and g(t)
1 , · · · , g(t)

n
are scalars, then

A(t) = −F (t)
r

g(t)
r

Dt, t = 1, 2, 3, 4, 5.

Proof From (5.4.1), (5.4.2), (5.4.3), (5.4.5), (5.4.6), (5.5.3) and (5.5.4), we have

(DtA − λI)−1 = Ft(λ)

gt(λ)
. (5.5.5)

Hence

A(t) = lim
λ→0−

(DtA − λI)−1Dt

= lim
λ→0−

(
−F (t)

1 λn−1 + F (t)
2 λn−2 + · · · + F (t)

n−1λ + F (t)
n

g(t)
0 λn + g(t)

1 λn−1 + · · · + g(t)
n−1λ + g(t)

n

)
Dt .

When g(t)
n �= 0, then

A(t) = −F (t)
n

g(t)
n

Dt .
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Next, consider the case when g(t)
n = 0 but g(t)

n−1 �= 0. Since the above limit exists,
according to Theorems 5.4.1 and 5.4.2 and Corollaries 5.4.1 and 5.4.2, we must have
F (t)
n Dt = 0, and then

A(t) = −F (t)
n−1

g(t)
n−1

Dt .

We know
rank(D2A) = rank(A∗A) = rank(A∗) = rank(D2) = r.

Similarly, we have

rank(D1A) = rank(N−1A∗MA)

= rank(N 1/2(N−1A∗MA)N−1/2)

= rank((M 1/2AN−1/2)∗(M 1/2AN−1/2))

= rank(M 1/2AN−1/2)

= rank(A)

= rank(D1)

= r.

Since Ind(A) = k, we obtain

rank(D3A) = rank(Ak+1) = rank(Ak) = rank(D3) = r,

rank(D4A) = rank(A2) = rank(A) = rank(D4) = r,

rank(D5A) = rank(A) = rank(D5) = n.

So the number of the nonzero eigenvalues of DtA should be r, and we that assume
λ1,λ2, · · · ,λr are nonzero andλr+1 = λr+2 = · · · = λn = 0. Since gt(λ) is the char-
acteristic polynomial of DtA, according to Vieta’s relations between the roots and
coefficients of a polynomial, we have

g(t)
r �= 0 and g(t)

r+1 = g(t)
r+2 = · · · = g(t)

n = 0.

Therefore

A(t) = −F (t)
r

g(t)
r

Dt .

The proof is completed. ��
Now we have the following finite algorithm for computing A(t).

Theorem 5.5.2 The coefficients F (t)
i and g(t)

i in (5.5.3) and (5.5.4) are determined
by the recurrence relations:
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F (t)
i+1 = DtAF

(t)
i + g(t)

i I , (5.5.6)

g(t)
i+1 = −(i + 1)−1tr(DtAF

(t)
i+1), (5.5.7)

i = 1, 2, · · · , r − 1. (5.5.8)

The initial conditions are

F (t)
1 = I ,

g(t)
1 = −tr(DtA).

Proof From (5.5.5), we have

(F (t)
1 λn−1 + F (t)

2 λn−2 + · · · + F (t)
n−1λ + F (t)

n )(DtA − λI)

= −(λn + g(t)
1 λn−1 + · · · + g(t)

n−1λ + g(t)
n )I . (5.5.9)

From Theorem 5.5.1, we have

g(t)
r+1 = · · · = g(t)

n = 0 and F (t)
j Dt = O, j = r + 1, · · · , n.

So
DtAF

(t)
j = F (t)

j DtA = O, j = r + 1, · · · , n.

By comparing the identical powers of λ on both side of (5.5.9), we see that (5.5.6)
holds and

F (t)
r+2 = F (t)

r+3 = · · · = F (t)
n = O.

To obtain (5.5.7), from (5.4.18) we have

(−1)n(nλn−1 + (n − 1)g(t)
1 λn−2 + · · · + (n − r)g(t)

r λn−r−1)

= −(−1)n−1(λn−1tr(F (t)
1 ) + · · · + λn−rtr(F (t)

r ) + λn−r−1tr(F (t)
r+1)).

Equating the coefficients of the like power of λ, we see that

(n − i)g(t)
i = tr(F (t)

i+1).

Now take the trace of both sides of (5.5.6) to obtain

tr(F (t)
i+1) = tr(DtAF

(t)
i ) + ng(t)

i .

It then follows that
g(t)
i+1 = −(i + 1)−1tr(DtAF

(t)
i+1),

which completes the proof. ��
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Remarks
As for the numerical computation of the generalized inverses, the book [13] gives
useful suggestions and a list of direct and iterative methods for computing the {1}-
inverse, {1, 2}-inverse, {1, 4}-inverse, Moore-Penrose inverse A†, Drazin inverse Ad ,
and group inverse Ag . But no perturbation analysis is given there. This chapter is
based on the computational methods for the regular inverse, we derive the numerical
methods for computing the four important generalized inverses: A†, A†

MN , Ad and
Ag . There are embedding method and finite algorithm for computing the generalized
inverse A(2)

T ,S [32, 33]. The finite algorithm can also be used to compute the inverse of
matrix polynomial λN In − λN−1A1 − · · · − λAN−1 and the inverses of the singular
pencils μE − A and μ2E − μA1 − A2 [34–36]. The Rump’s method for computing
the Moore-Penrose inverse is described in [37]. The gradient methods for computing
the Drazin inverse are presented in [38].

The Moore-Penrose inverse and the Drazin inverse of a 2 × 2 block matrix, the
weighted generalized inverse of a partitioned matrix, the Moore-Penrose inverse of
a rank-1 modified matrix, the Drazin inverse of a modified matrix, and the Drazin
inverse of a Hessenberg matrix are discussed in [8, 11, 39–44]. The algebraic per-
turbation method for the generalized inverse can be found in [45].

The limit representations of the generalized inverses and the alternative limit
expression of the Drazin inverse are given in [46, 47].

Recursive least squares (RLS) algorithm and fast RLS algorithm for linear pre-
diction problems are given in [48, 49]. The iterative methods are referred to Chap. 11
and [50].

It is well-known that the important generalized inverses A†
MN , A

†, Ad , Ag , Ad ,W ,
A(−1)

(L) and A(†)
(L) can be described as the generalized inverse A(2)

T ,S , which has the pre-
scribed range T and null space S, and is the outer inverse of A. A unified method for
computing the generalized inverse A(2)

T ,S such as the embedding method, (T -S) split-
ting method, or iterative method can be found in [32, 51–58]. A limit representation
of the outer inverse is given in [59].

The inverse and generalized inverse of a matrix polynomial often occur in the
control theory (see [60]). The finite algorithm in Sect. 5.5 also can be applied to the
computation of such kind of generalized inverse [61], since this kind of matrices is
a special case of block-matrices whose blocks can commute each other [62].

The representations and approximations of the Drazin inverse, weighted Moore-
Penrose inverse, and generalized inverse A(2)

T ,S are given in [53, 63–65].
Neural networks have been used for computing regular inverse [66], Moore-

Penrose inverse [67], outer inverse [68], Drazin inverse [69], weightedDrazin inverse
[70], and time-varying Drazin inverse [71].

Symbolic computation of the generalized inverses using Maple is presented in
[72].
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68. P.S. Stanimirović, I.S. Živković, Y. Wei, Neural network approach to computing outer inverses

based on the full rank representation. Linear Algebra Appl. 501, 344–362 (2016)
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Chapter 6
Structured Matrices and Their
Generalized Inverses

A matrix is considered structured if its structure can be exploited to obtain efficient
algorithms. Examples of structured matrices include Toeplitz, Hankel, circulant,
Vandermonde, Cauchy, sparse. A matrix is called Toeplitz if its entries on the same
diagonal are equal. For example,

A =

⎡
⎢⎢⎣
3 2 1
4 3 2
5 4 3
6 5 4

⎤
⎥⎥⎦ (6.0.1)

is a Toeplitz matrix. Thus anm × n Toeplitz matrix is determined by its first row and
first column, total of m + n − 1 entries. In comparison, a general m × n matrix is
determined bymn parameters. Thus, fast algorithms are expected for Toeplitz matri-
ces and other structured matrices. This chapter includes two aspects of structured
matrices and generalized inverses. One is about computing the generalized inverses
of structured matrices. Particularly, we present a fast algorithm for computing the
Moore-Penrose inverse of a Toeplitz matrix. The ideas can be applied to other gen-
eralized inverses of other structured matrices such as Hankel and sparse. The other
aspect is about the structure of the generalized inverses of structured matrices.

6.1 Computing the Moore-Penrose Inverse of a Toeplitz
Matrix

This section describes a Newton’s method for computing the Moore-Penrose inverse
of a Toeplitz matrix presented in [1]. How do we define the structure of a Toeplitz
matrix so that it can be exploited to develop fast algorithms? The displacement struc-
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ture, defined as follows, is commonly exploited in the computation of the generalized
inverses. A matrix A is said to have the displacement structure if we can find two
dimensionally compatible matrices U and V such that the rank of the Sylvester dis-
placement AU − V A or the Stein displacement A − V AU is much smaller than the
size of A [2]. For example, denoting the n × n shift-down (or shift-left) matrix

Zn =

⎡
⎢⎢⎢⎣

0 0
1 0

. . .
. . .

0 1 0

⎤
⎥⎥⎥⎦ , (6.1.1)

for the matrix A in (6.0.1), the rank of the Sylvester displacement

AZ3 − Z4A =

⎡
⎢⎢⎣
2 1 0
3 2 0
4 3 0
5 4 0

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣
0 0 0
3 2 1
4 3 2
5 4 3

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
1
0
0
0

⎤
⎥⎥⎦

[
2 1 0

] −

⎡
⎢⎢⎣
0
1
2
3

⎤
⎥⎥⎦

[
0 0 1

]

is two, called the Sylvester displacement rank of A. Also, the rank of the Stein
displacement

A − ZT
4 AZ3 =

⎡
⎢⎢⎣
3 2 1
4 3 2
5 4 3
6 5 4

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣
3 2 0
4 3 0
5 4 0
6 5 0

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦

[
6 5 4

] +

⎡
⎢⎢⎣
1
2
3
0

⎤
⎥⎥⎦

[
0 0 1

]

is two. In fact, as shown above, it can be proved that the displacement rank of a
Toeplitz matrix is at most two. This low displacement rank property can be exploited
to develop fast algorithms for triangular factorization, inversion, among others [2].
In [1], Wei, Cai, and Ng present a fast Newton’s method for computing the Moore-
Penrose inverse of a Toeplitz matrix by exploiting the displacement structure.

For an m × n Toeplitz matrix A, defining the Sylvester displacement operator

�(A) = Zm A − AZn,
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we have rank(�(A)) ≤ 2. The following theorem shows that A can be expressed as
a sum of k ≤ 2 structured matrices.

Theorem 6.1.1 ([3]) Suppose that k = rank(�(A)) and �(A) = ∑k
i=1 gih

∗
i , gi ∈

R
m and hi ∈ R

n, then A can be expressed as

A = L(Ae1) +
k∑

i=1

L(gi )U (−Znhi ),

where e1 is the first unit vector inRn, L(x) is the m × p, p = min(m, n), lower trian-
gular Toeplitz matrix whose first column is x and U (y) is the p × n, p = min(m, n),
upper triangular Toeplitz matrix whose first row is yT.

In particular, when �(A) = ∑k
i=1 σiuiv∗

i , where σi , ui , and vi are respectively
the i th singular value, left singular vector, and right singular vector, then

A = L(Ae1) +
k∑

i=1

σi L(ui )U (−Znvi ),

called the orthogonal displacement representation of A.
Note that L(x) and U (y) are Toeplitz matrices and Toeplitz matrix-vector multi-

plication can be efficiently computed by two FFTs, a componentwise multiplication
and one inverse FFT [4]. Thus the low displacement rank combined with the fast
Toeplitz-vector multiplication can be exploited to develop fast algorithms for com-
puting the Moore-Penrose inverse of a Toeplitz matrix. The method for computing
the Moore-Penrose inverse considered in [1] is the Newton’s iteration:

Xi+1 = 2Xi − Xi AXi , i = 0, 1, 2, ...

In [1], X0 is initialized to ρ−1A∗AA∗, where ρ is the spectral radius of AA∗AA∗,
which can be estimated by a few power iterations [5]:

qi = (AA∗AA∗)xi−1;
xi = qi/‖qi‖2; i = 1, 2, ...

λi = x∗
i (AA

∗AA∗)xi ;

with a random initial x0. It is proved in [1] that with the above initial X0, the Newton’s
method converges to the Moore-Penrose inverse A†.

Although A can be expressed as a sum of at most three terms, the number of terms
in the intermediate Xi grows quickly, as the Newton’s iteration proceeds. To control
the number of terms in the intermediate results, the idea of the truncated singular
value decomposition is applied. Specifically, the singular value decomposition of
Wi = 2Xi − Xi AXi is truncated, that is, its small singular values are set to zero,
before being set to the next Xi+1. We refer the details to [1]. For example, for
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efficiency, instead of Xi , the factor Yi in Xi = A∗Yi A∗ is used. Moreover, instead of
explicitly computing Yi , the factors in the orthogonal displacement representation of
Yi are computed and updated.

Algorithm 6.1.1 ([1]) Newton’s method for computing the Moore-Penrose inverse
of a Toeplitz matrix using the displacement structure.
Input: The first column and first row of the Toeplitz matrix.
Output: An approximation of the Moore-Penrose inverse.

1. Compute the factors in the orthogonal displacement representation of A∗AA∗;
2. Estimate the spectral radius ρ of AA∗AA∗;
3. Set Y0 = ρ−1A;

i = 0;
repeat

4. Compute the factors in the truncated orthogonal displacement representation of
Yi+1 by updating those in the orthogonal displacement representation of Yi ;

5. Xi+1 = A∗Yi+1A∗;
i = i + 1 until Xi satisfies a predetermined tolerance.

The experimental results presented in [1] show that the method achieves high
accuracy and performance. The running time grows linearly as the size of A increases.
This Newton’s method is applicable to any low displacement rank matrix. Example
of such matrices can be found in [2]. For more on the Newton’s iteration for the
generalized inverses of structured matrices, see [6, 7].

6.2 Displacement Structure of the Generalized Inverses

As pointed out in the previous section, the displacement rank of a Toeplitz matrix is at
most two. Is the inverse of a nonsingular Toeplitz matrix also structured with respect
to the displacement rank? The answer is: Yes. Indeed, the Sylvester displacement
rank of a nonsingular matrix A equals that of its inverse A−1, since, for two dimen-
sionally compatible matricesU and V , AU − V A = A(U A−1 − A−1V )A. In other
words, if A is structured with respect to the Sylvester displacement rank associated
with (U, V ), then its inverse A−1 is also structured with respect to the Sylvester
displacement rank associated with (V,U ). In particular, the Sylvester displacement
rank of the inverse of a nonsingular Toeplitz matrix is also at most two. How about
the generalized inverses? In [8], an upper bound for the displacement rank of the
group inverse is presented.

Theorem 6.2.1 ([8]) Let A,U, V ∈ C
n×n and Ind(A) = 1, then, for the group

inverse Ag of A, the Sylvester displacement rank is bounded by

rank(AgV −U Ag) ≤ rank(AU − V A) + rank(AV −U A).
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Proof Recall that if I nd(A) = 1, then there exists a nonsingular R of order n such
that

A = R

[
C O
O O

]
R−1,

where C is a nonsingular matrix and its group inverse Ag is given by

Ag = R

[
C−1 O
O O

]
R−1.

Defining the two projections

Q = AAg = R

[
I O
O O

]
R−1 and P = I − AAg = R

[
O O
O I

]
R−1, (6.2.1)

we have
Ag(AU − V A)Ag = QU Ag − AgV Q.

It then follows that the Sylvester displacement of Ag

AgV −U Ag

= AgV P + AgV Q − PU Ag − QU Ag

= AgV P − PU Ag − Ag(AU − V A)Ag,

implying that

rank(AgV −U Ag) ≤ rank(AU − V A) + rank(QV P) + rank(PUQ),

by the definitions of Q and P in (6.2.1). It then remains to show that

rank(QV P) + rank(PUQ) ≤ rank(AV −U A). (6.2.2)

Indeed, partitioning

R−1UR =
[
U11 U12

U21 U22

]
and R−1V R =

[
V11 V12

V21 V22

]
(6.2.3)

accordingly, we have

QV P = R

[
O V12

O O

]
R−1 and PUQ = R

[
O O
U12 O

]
R−1,

implying that

rank(QV P) + rank(PUQ) = rank(V12) + rank(U21). (6.2.4)
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On the other hand, applying the partitions (6.2.3), we have

rank(AV −U A) = rank

([
CV11 −U11C CV12

−U21C O

])
.

Comparing the above with (6.2.4) gives (6.2.2), which completes the proof, recalling
that C is nonsingular. ��

This theorem says that the Sylvester displacement rank of Ag associated with
(V,U ) is bounded above by the sum of the Sylvester displacement ranks of A asso-
ciated with (U, V ) and (V,U ). In particular, when A is a Toeplitz matrix of index
one, then the displacement rank of its group inverse Ag is at most four.

The above result is generalized to the Drazin inverse [9]:

rank(AdV −U Ad) ≤ rank(AU − V A) + rank(AkV −U Ak),

where k is the index of A. In [9], the above upper bound is applied to structured
matrices such as Toeplitz, close-to-Toeplitz, generalize Cauchy, among others.

An analogous upper bound for the Sylvester displacement rank of the weighted
Moore-Penrose inverse is presented in [10]:

rank(A†
MNV −U A†

MN ) ≤ rank(AU − V A) + rank(AU # − V #A),

recalling thatU # = N−1U ∗N and V # = M−1V ∗M are theweighted conjugate trans-
poses of U and V respectively.

Remarks

Heinig andHellinger [11] unified and generalized the Sylvester displacement and the
Stein displacement. The upper bounds for the Sylvester displacement rank of various
generalized inverses presented in Sect. 6.2 are all generalized to this generalized
displacement [8–10].

As we know, the Moore-Penrose inverse A† and the Drazin inverse Ad are both
special cases of A(2)

T S , the {2}-inverse with prescribed range T and null space S. In
[12], an upper bound for the Sylvester displacement rank as well as the generalized
displacement rank of A(2)

T S is established.
As shown in [9], by applying the upper bounds, the group inverse of some struc-

tured matrices, such as close-to-Toeplitz, generalized Cauchy, and Toeplitz-plus-
Hankel, have low displacement ranks. Thus the Newton’s method for the Moore-
Penrose inverse of a Toeplitz matrix described in Sect. 6.1 can be modified for the
group inverse of matrices of low displacement rank. For more on the Moore-Penrose
and group inverses of a Teoplitz matrix, see [13, 14].
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Chapter 7
Parallel Algorithms for Computing
the Generalized Inverses

The UNIVersal Automatic Computer (UNIVAC I) and the machines built in 1940s
and mid 1950s are often referred to as the first generation of computers.

From 1958 to 1964, the second generation of computers was developed based on
transistor technology. During this phase, IBM reengineered its 709 to use transistor
technology and named it the IBM7090. It was able to calculate close to 500,000
additions per second.

In 1964, the third generation of computer was born. The new generationwas based
on integrated circuit (IC) technology, which was invented in 1957. An IC device is
a tiny clip of silicon that hosts many transistors and other circuit components.

The Large-Scale Integration (LSI) and the Very Large-Scale Integration (VLSI)
technologies have moved computers from the third to new generations. The comput-
ers developed from 1972 to 1990 are referred to as the forth generation of computers;
from 1991 to present is referred to as the fifth generation.

The progress in increasing the number of transistors on single chip continues to
augment the computational power of computer systems, in particular that of the small
systems (personal computer and workstations). Today, multiprocessor systems are
common. When a computer has multiple processors, multiple instructions can be
executed on multiple processors in parallel. The processors can work independently
on multiple tasks or process different parts of a same task simultaneously. Such a
computer is referred to as a parallel computer.

Algorithms in which operations must be executed step by step are called serial or
sequential. Algorithms in which several operations may be executed simultaneously
are referred to as parallel.

Various approaches may be taken to design a parallel algorithm for a given prob-
lem. One approach is to attempt to convert a sequential algorithm to a parallel algo-
rithm. If a sequential algorithm exists for the problem, then inherent parallelism in
that algorithmmay be recognized and implemented. It should be noted that exploiting
inherent parallelism in a sequential algorithm might not always lead to an efficient

© Springer Nature Singapore Pte Ltd. and Science Press 2018
G. Wang et al., Generalized Inverses: Theory and Computations,
Developments in Mathematics 53, https://doi.org/10.1007/978-981-13-0146-9_7
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parallel algorithm. Another approach is to design a totally new parallel algorithm
that is more efficient than the existing one.

It follows from the unceasing progress of parallel computers, the research of the
parallel algorithms for many problems get rapid development (see [1–4]).

In recent years, the research of the parallel computation of the generalized inverses
is discussed in [5–9]. Some of our results are given in this chapter.

The model of parallel processors are briefly introduced as follows. The detail can
be found in [3, 10–13].

7.1 The Model of Parallel Processors

The parallel processors were constructed in 1970s. According to the computer archi-
tecture systems, there are array processor, pipeline processor and multiprocessor and
so on. Brief examples of them are given as follows.

7.1.1 Array Processor

The first parallel array computer Illiac IVwas constructed in 1972. Illiac IV consisted
of N = 64 fast processors, withmemories of 2048 64bit words connected in an 8 × 8
array as illustrated in Fig. 7.1. The individual processorswere controlled by a separate
control unit and all processors did the same instruction (or nothing) at a given time.

7.1.2 Pipeline Processor

Pipelining is oneway of improving the overall processing performance of a processor.
This architectural approach allows the simultaneous execution of several instructions.
The pipeline processor Cray I was constructed in 1976.

The pipeline design technique decomposes a sequential process into several sub-
processes, called stages or segments. A stage performs a particular function and
produces an intermediate result. It consists of an input latch, also called a register,
followed by a processing circuit. The processing circuit of a given stage is connected
to the input latch of the next stage (see Fig. 7.2).

An arithmetic pipeline is used for implementing complex arithmetic functions.
These functions can be decomposed into consecutive subfunctions. For example the
floating-point addition can be divided into three stages: mantissa alignment, mantissa
addition, and result normalization.

Figure7.3 depicts a pipeline architecture for floating-point addition of two num-
bers.
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Pi: Processor Mi: Memory

P56

M56

P57

M57
· · · P63

M63

P8

M8

P9

M9
· · · P15

M15

P0

M0

P1

M1
· · · P7

M7

...
...

...

��

��

��

��

��

��

Fig. 7.1 An 8 × 8 array processor

input
� Latch � Processing

circuit
� Latch � Processing

circuit
� Latch � Processing

circuit
�
output

Fig. 7.2 Pipeline

7.1.3 Multiprocessor

A multiprocessor architecture has a memory system that is addressable by each
processor. As such, the memory system consists of one or more memory modules
whose address space is shared by all the processors.

In addition to the central memory system, each processor might also have a small
cache memory. These cache also help reduce memory contention and make the
system more efficient.

A multiprocessor computer has one operating system used by all processors.
The operating system provides interaction between processors and their tasks at the
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Fig. 7.3 A pipeline architecture for floating-point addition

process and data element level. (The term processmay be defined as a part of program
that can run on a processor.) Each processor is capable of doing a large task on its
own.

A taxonomy of computer architectures was given by Flynn in 1966. He divided
machines into four categories: SISD (single instruction stream/single data stream),
SIMD (single instruction stream/multiple data stream), MISD (multiple instruction
stream/single data stream), and MIMD (multiple instruction stream/multiple data
stream).

Traditional sequential computers belong to SISD, since instructions are processed
sequentially and result in the movement of data from memory to functional unit and
back to memory; Array processors and pipeline processors belong to SIMD. Since
each processor executes the same instruction (or no instruction) at the same time
but on different data; Multiprocessors belong to MIMD, since the instructions may
differ across the processors, which need not operate synchronously.
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Although these categories give a helpful coarse division, the current situation
is more complicated, with some architectures exhibiting aspects of more than one
category. Indeed, many of today’s machines are really a hybrid design.

The design of parallel algorithms faces the SIMD or MIMD type machines. The
number of parallel processors p is an important parameter in a parallel system. On
SIMD machines, p processors can execute the same instruction at the same time but
on different data. On MIMD machines, instructions may differ across p processors,
which need not operate synchronously.

The parallel algorithms facing the SIMD andMIMDmachines are the algorithms
based on “p processors execute the same instruction at the same time but on differ-
ent data” and “instructions may differ across p processors, which need not operate
synchronously” respectively.

For convenience, three ideal assumptions for the model of parallel computers are
proposed as follows.

(1) The model has an arbitrary number of identical processors with independent
control at any time.

(2) The model has an arbitrary large memory with unrestricted access in any time.
(3) Each processor in the model is capable of taking its operands from the memory,

performing any one of the binary operations +, −, ×, ÷ and storing the result
in the memory in unit time. This unit time is called a step (the bookkeeping
overhead is ignored). Before starting the computation, the input data is stored in
the memory.

The SIMD and MIMD models can be constructed by SIMD and MIMD system
in addition to the above three ideal assumptions.

7.2 Measures of the Performance of Parallel Algorithms

Amathematical problem can be solved by several parallel algorithms, it is important
to analyze which algorithm is better than the others. This work is both practical and
theoretical.

Next we introduce some criteria for measuring the performance of parallel
algorithms.

The problem size n is the amount of computer storage required to store all the
data that define the problem instance. By the time complexity of an algorithm is
meant the worst case number of steps required for its execution, we assume that it is
a function of n, denoted by T (n). If the time required for computing n numbers using
some algorithm is cn2 steps, where c is a constant, then T (n) = O(n2). By the space
complexity of an algorithm is meant the upper bound of the processors required for
its execution, denoted by P(n). If the time and space complexity of two different
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parallel algorithms for solving same problem are T1(n), P1(n) and T2(n), P2(n)
respectively, and their products (cost-optimality) satisfy

T1(n) · P1(n) < T2(n) · P2(n),

then the former is better than the latter.
After one has obtained a parallel algorithm for the problemof size n, it is important

tomeasure its performance in someway. Themost commonly acceptedmeasurement
is speedup.

Let Tp(n) denote the execution time using the parallel algorithm on p (≥1) pro-
cessors, T1(n) denote the execution time using the fastest sequential algorithm on
one processor. Then

Sp(n) = T1(n)

Tp(n)

is called the speedup.
An algorithm with excellent parallel characteristics, that is, a high speedup factor

Sp, still might not yield much actual improvement on p processors as Sp would
indicate. Thus we have the following measurement.

The efficiency Ep(n) of p-processor system is defined by

Ep(n) = Sp(n)

p
.

The value of Ep(n) expresses, in a relative sense, how busy the processors are kept.
Evidently

0 ≤ Ep(n) ≤ 1.

If the speedup and efficiency of two different parallel algorithms for solving some
problem are Sp1(n), Ep1(n) and Sp2(n), Ep2(n) respectively, and their products
satisfy

Sp1(n) · Ep1(n) > Sp2(n) · Ep2(n),

then the former is more efficient than the latter.

7.3 Parallel Algorithms

Some basic parallel algorithms are first given before we discuss the parallel algo-
rithms for computing the generalized inverses. In the following the logarithm log p
denotes log2 p, �x� denotes an integer such that

x ≤ �x� < x + 1
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and �x� denotes an integer such that

x − 1 < �x� ≤ x .

7.3.1 Basic Algorithms

(1) The sum of n numbers
To compute the sum

S =
n∑

i=1

bi , (7.3.1)

a common parallel method is the binary tree method. For example, when n = 8, the
process is shown in Fig. 7.4.

This takes log 8 = 3 steps and 4 processors. In general, the model of parallel
computation assumes an arbitrary number of identical processors. The binary tree
method for computing the sum of (7.3.1) takes

T (n) = �log n�

steps and

P(n) =
⌈n
2

⌉

processors.
(2) The product of two matrices

Let A = [ai j ] be an m × p matrix and B = [bi j ] be a p × n matrix. The product
of A and B is the m × n matrix C = [ci j ] whose elements are given by

ci j =
p∑

k=1

aikbk j . (7.3.2)

b1 b2

b1 + b2

b3 b4

b3 + b4

b5 b6

b5 + b6

b7 b8

b7 + b8
�� ��

b1 + b2 + b3 + b4

�� ��

b5 + b6 + b7 + b8
�����

�����8∑

i=1
bi

Fig. 7.4 Binary tree method
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Let the i th row of A and the j th column of B be

ai,: = [ai1 ai2 · · · aip] and b j = [b1 j b2 j · · · bpj ]T

respectively, then

ci j = ai,:b j , i = 1, 2, · · · ,m, j = 1, 2, · · · , n,

is called the inner product of ai,: and b j .
To compute aikbk j (k = 1, 2, · · · , p) in parallel, it takes one step and p processors.

The algorithm for parallelly computing the sum (7.3.2) takes �log p� steps and p
processors.

If usingmnp processors, then the inner product algorithm for parallelly computing
the product of two matrices takes �log p� + 1 steps.

In the special case when m = n = p, the inner product algorithm for parallelly
computing the product C of the matrices A and B of order n takes �log n� + 1 =
O(log n) steps and O(n3) processors.

The multiplication of two n × n matrices can be done in parallel in time O(log n)
using nα/ log n processors, for some realα satisfying the obvious bounds 2 ≤ α ≤ 3.
The smallest feasible value of α is log 7. The details can be found in [14].

The middle product algorithm for computing the product of m × p matrix A and
p × n matrix B is described as follows. Let

C = AB

= A[b1 b2 · · · bn]
= [Ab1 Ab2 · · · Abn]

=
⎡

⎣
p∑

j=1

b j1a j

p∑

j=1

b j2a j · · ·
p∑

j=1

b jna j

⎤

⎦ ,

where a j denotes the j th column of A.
The following is the dual-middle product algorithm for computing C = AB:

C =

⎡

⎢⎢⎢⎣

a1,:B
a2,:B
...

am,:B

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p∑
j=1

a1 jb j,:
p∑

j=1
a2 jb j,:

...
p∑

j=1
amjb j,:

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where b j,: denotes the j th row of B.
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The outer product algorithm for computing the product C ofm × p matrix A and
p × n matrix B is given as the following:

C = AB

= [a1 a2 · · · ap]

⎡

⎢⎢⎢⎣

b1,:
b2,:
...

bp,:

⎤

⎥⎥⎥⎦

=
p∑

i=1

aibi,:

=
p∑

i=1

[bi1ai bi2ai · · · , binai ].

The following is the dual-outer product algorithm for computing C = AB:

C =
p∑

i=1

aibi,: =
p∑

i=1

⎡

⎢⎢⎢⎣

a1ibi,:
a2ibi,:

...

amibi,:

⎤

⎥⎥⎥⎦ .

The steps and the number of processors required by the above algorithms are left
to the reader as an exercise.
(3) The powers of an n × n matrix

The parallel algorithm for computing the set {B j | j = 1, 2, · · · , w} of powers of
a given n × n matrix B is given in [15].

Procedure POWERS(B, w)
Input: An n × n matrix B and a positive integer w
Output: {B j | j = 1, 2, · · · , w}
begin

1. if w = 1,
2. return B;
3. else
4. q ← �w/2�;
5. POWERS(B, q);
6. Bi = B�i/2�B�i/2�, i = q + 1, q + 2, · · · , w;

end.

We denote by P1(w) and T1(w) respectively the number of processors and steps
required by POWERS(B, w).

Let

T = O(log n) and P = nα

log n
, 2 ≤ α ≤ 3,
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be the steps and the number of processors required formultiplying two n × nmatrices
respectively, then

T1(w) = O(logw log n)

and

P1(w) =
⌊w
2

⌋ nα

log n
.

Notice that all the �w/2� matrix multiplications in step 6 can be executed in
parallel, given sufficient number of processors. Therefore, since q ≈ �w/2�, we
obtain the simple recurrence:

T1(w) = T1(w/2) + T

= T1(w/4) + 2T

= T1(w/4) + (log 4) T

= · · ·
= (logw) T .

Thus, POWERS(B, w) runs in time

T1(w) = logw O(log n) = O(logw log n)

with

P1(w) =
⌊w
2

⌋
P =

⌊w
2

⌋ nα

log n

processors.
By using POWERS(B, w), an improved parallel algorithm for computing the

powers of n × n matrices is given in [15].
Procedure SUPERPOWERS(B, t)
Input: An n × n matrix B and a positive integer t
Output: {B j | j = 1, 2, · · · , t}
begin

1. if t = 1
2. return B;
3. else
4. a ← �log t�;
5. b ← �t/a�; c ← t − �t/a� a;
6. POWERS(B, b);
7. for i ← 1 step 1 until a − 1 do

Bbi+ j ← Bb(i−1)+ j Bb, j = 1, 2, · · · , b;
8. Bba+k ← Bb(a−1)+k Bb, k = 1, 2, · · · , c;

end.
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We denote by P2(t) the number of processors and T2(t) the number of steps
required by SUPERPOWERS(B, t). It is easy to show that

T2(t) ≤ O(logw log n)

and

P2(t) = t
nα

log t log n
.

Notice that the steps required by SUPERPOWERS(B, t) satisfies the inequality

T2(t) ≤ T1(t) + aT,

where the first term on the right side is due to step 6 and the second is due to steps 7
and 8. Since a ≈ log t , b ≈ t/ log t and T = O(log n), we obtain

T2(t) ≤ T1(
t

log t
) + log t O(log n) = O(log t log n).

As the number of processors, step 6 requires

⌊
b

2

⌋
nα

log n
.

Steps 7 and 8 jointly involve the parallel execution,a ≈ log t steps, of bmatrix-matrix
multiplications, thereby requiring

b
nα

log n

processors. It follows that

P2(t) = b
nα

log n

=
⌊
t

a

⌋
nα

log n

≈ tnα

log t log n
.

(4) The solution of a lower triangular system
We now turn to the problem of solving the lower triangular linear system

Lx = f, (7.3.3)
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Fig. 7.5 Computation of x = MnMn−1 · · · M1f

where L = [li j ] is a nonsingular lower triangular matrix of order n. It follows from
Sect. 5.1.2, the inverse of a lower triangular matrix L can be written in the form

L−1 = MnMn−1 · · · M1,

where

Mi =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
l−1
i i

−l−1
i i li+1,i 1
...

. . .

−l−1
i i lni 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i = 1, 2, · · · n. (7.3.4)

Thus
x = MnMn−1 · · · M1f .

We introduce the following notations for computing x in parallel. Set s = 2 j and
μ = log n, assuming, without loss of generality, n = 2μ. Initially, M (0)

i = Mi , i =
1, 2, · · · , n − 1, and f (0) = f . For example, for n = 8, the computation process is
shown in Fig. 7.5.

It is easy to obtain a general computation process:

M ( j+1)
i = M ( j)

2i+1M
( j)
2i , j = 0, 1, · · · ,μ − 2, i = 1, 2, · · · , n

2s
− 1,

f ( j+1) = M ( j)
1 f ( j), j = 0, 1, · · · ,μ − 1,

x = Mnf (μ).
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(j)
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̂L
(j)
2i

̂L
(j)
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(j)
2i

̂L
(j)
2i+1U

(j)
2i

̂L
(j)
2i+1

S
(j)
2i+1 V

(j)
2i S

(j)
2i+1

S
(j)
2i+1U

(j)
2i

+ V
(j)
2i

Fig. 7.6 Multiplication of M ( j)
2i+1 and M ( j)

2i

The above matrix M ( j)
i can be written as a 3 × 3 block matrix of the form:

M ( j)
i =

⎡

⎢⎣
I ( j)i O O
O L̂( j)

i O
O S( j)i Î ( j)i

⎤

⎥⎦ ,

where L̂( j)
i is a lower triangular matrix of order s = 2 j , I ( j)i and Î ( j)i are two identity

matrices of orders q( j)
i = is − 1 and r ( j)i = (n + 1) − (i + 1)s respectively. It is

clear that

L̂(0)
i = 1

lii
and S(0)i = − 1

lii
[li+1,i li+2,i · · · ln,i ]T .

Partition

S( j)i =
[
U ( j)

i

V ( j)
i

]
∈ R

r (i)j ×s,

where U ( j)
i is an s × s matrix.

Multiplying the two partitioned matrices M ( j)
2i+1 and M ( j)

2i , shown in Fig. 7.6, we
have

L̂( j+1)
i =

[
L̂( j)
2i O

L̂( j)
2i+1U

( j)
2i L̂( j)

2i+1

]

and
S( j+1)
i = [S( j)2i+1U

( j)
2i + V ( j)

2i S( j)2i+1].

Let

f ( j) =
⎡

⎢⎣
g( j)1

g( j)2

g( j)3

⎤

⎥⎦ ,
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where g( j)1 and g( j)2 are (s − 1)-vector and s-vector respectively, then

f ( j+1) =
⎡

⎢⎣
g( j+1)
1

g( j+1)
2

g( j+1)
3

⎤

⎥⎦ =
⎡

⎢⎣
g( j)1

L̂( j)
1 g( j)2

S( j)1 g( j)2 + g( j)3

⎤

⎥⎦ ,

where the two leading vectors g( j)1 and g( j)2 form the leading 2s − 1 components of
the solution vector x of (7.3.3).

Next we discuss the number of processors and steps required by the above algo-
rithm.

(1) Forming Mi of (7.3.4) requires 2 steps, 1 step division and 1 step subtraction,
using n − i + 1 processors. Thus forming all Mi , for i = 1, 2, · · · , n, requires 2
steps and

n∑

i=1

(n − i + 1) = 1

2
n(n + 1)

processors.
The products L̂( j)

2i+1U
( j)
2i , S

( j)
2i+1U

( j)
2i , L̂

( j)
1 g

( j)
2 and S( j)1 g

( j)
2 can be computed in

parallel, requiring 1 + log s = 1 + j steps to compute the inner product of two s-
vectors. The sums S( j)2i+1U

( j)
2i + V ( j)

2i and S( j)1 g
( j)
2 + g

( j)
3 can be computed in parallel

requiring one step. Therefore at the ( j − 1)st level we require

τ ( j+1) = 2 + j

steps. In addition to the one step for computing Mn f (μ), in total, we require

T = 3 +
μ−1∑

j=0

τ ( j+1) = 3 + μ(μ + 3)

2

steps for solving the lower triangular linear system (7.3.3). Since μ = log n, we have

T = O(log2 n).

(2) First of all, we consider the processors for computing

M ( j+1)
i = M ( j)

2i+1M
( j)
2i ,

where L̂( j)
2i+1U

( j)
2i and S( j)2i+1U

( j)
2i in the product can be computed in parallel. To form

each column of L̂( j)
2i+1U

( j)
2i , we use

s∑

k=1

k = s(s + 1)

2
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processors to compute the s inner products of 1-vectors, 2-vectors, · · · , and s-vectors.
Thus forming all columns of L̂( j)

2i+1U
( j)
2i requires s2(s + 1)/2 processors.

At the same time, forming S( j)2i+1U
( j)
2i uses s2r ( j)2i+1 processors to compute sr ( j)2i+1

inner products of s-vectors. Therefore it requires

P ′ = 1

2
s2(s + 1) + s2r ( j)2i+1

= 1

2
(2n + 3)s2 − 1

2
(4i + 3)s3

processors.
Forming S( j)2i+1U

( j)
2i + V ( j)

2i uses sr ( j)2i+1, i.e.,

P ′′ = (n + 1)s − 2(i + 1)s2

processors. Hence the processors required for computing M ( j+1)
i is

P ( j+1)
i = max{P ′, P ′′} = P ′.

Similarly, we can show that the number of processors required for computing
f ( j+1) is

P ( j+1)
0 = 1

2
(2n + 3)s − 3

2
s2.

Hence at the ( j + 1)st level we require

P ( j+1) =
n/2s−1∑

k=0

P ( j+1)
k

= 3

2
s3 − 1

4
(5n + 12)s2 + 1

4
(n2 + 7n + 6)s,

for j = 0, 1, · · · ,μ − 2, processors.
Therefore the processors required for solving the lower triangular linear system

(7.3.3) is

P = max

{
max

0≤ j≤μ−2
(P ( j+1)),

n(n + 1)

2

}
.

Set

f (s) = 3

2
s3 − 1

4
(5n + 12)s2 + 1

4
(n2 + 7n + 6)s.
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Since the range of s = 2 j , j = 0, 1, · · · ,μ − 2, is {1, 2, · · · , n/4}, it is easy to show
that if n ≥ 16, the maximum value of f (x) can be reached at s = n/8. Thus

max
0≤ j≤μ−2

P ( j+1) = n

64

(
15

16
n2 + 11n + 12

)

and

P = n

64

(
15

16
n2 + 11n + 12

)
= 15

1024
n3 + O(n2).

Let us summarize the above in the following theorem.

Theorem 7.3.1 ([16]) Let L be a nonsingular lower triangular matrix of order n,
then there exists an algorithm for computing the solution of the lower triangular
linear system Lx = f in parallel requiring

T = 1

2
log2 n + 3

2
log n + 3

steps and

P = 15

1024
n3 + O(n2)

processors.

7.3.2 Csanky Algorithms

In 1976 Csanky proposed an algorithm for computing the inverse of an n × n matrix
in time O(log2 n) using O(n4) processors.

Algorithm 7.3.1 ([17]) Let A ∈ R
n×n , rank(A) = n. This algorithm computes the

inverse of A.

(1) Parallelly compute Ak = [a(k)i j ], k = 1, 2, · · · , n.
(2) Let λ1,λ2, · · · ,λn denote the roots of the characteristic polynomial a(λ) of A,

and the trace of Ak be

sk =
n∑

i=1

λk
i , k = 1, 2, · · · , n.

Parallelly compute

sk = tr(Ak) =
n∑

i=1

a(k)i i , k = 1, 2, · · · , n.
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(3) Let the characteristic polynomial of A be

a(λ) = det(λI − A)

=
n∏

i=1

(λ − λi )

= λn + c1λ
n−1 + · · · + cn−1λ + cn.

From the Newton formula

sk + c1sk−1 + · · · + ck−1s + kck = 0, k = 1, 2, · · · , n,

we have ⎡

⎢⎢⎢⎢⎢⎣

1
s1 2
s2 s1 3
...

...
...

. . .

sn−1 sn−2 sn−3 · · · n

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

c1
c2
c3
...

cn

⎤

⎥⎥⎥⎥⎥⎦
= −

⎡

⎢⎢⎢⎢⎢⎣

s1
s2
s3
...

sn

⎤

⎥⎥⎥⎥⎥⎦
.

Parallelly compute the solution of the above triangular system.
(4) It follows from the Cayley-Hamilton theorem that a(A) = 0 and

A−1 = − 1

cn
(An−1 + c1A

n−2 + · · · + cn−2A + cn−1 I ). (7.3.5)

Parallelly compute A−1 of (7.3.5).

Theorem 7.3.2 Let A ∈ R
n×n, rank(A) = n, then Algorithm 7.3.1 for computing

A−1 can be implemented in
I (n) = O(log2 n)

steps using

cP(n) = O

(
1

2
n4
)

processors.

Proof Suppose that the i th stage of Algorithm 7.3.1 can be implemented in Ti steps
using cPi processors.
(1) The parallel computation of Ak = [a(k)i j ], k = 1, 2, · · · , n, by the algorithm
POWERS(A, n) takes T1 = O(log2 n) steps and

cP1 = n

2
· nα

log n
≈ O

(
1

2
n4
)

processors.
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(2) The parallel computation of sk = ∑n
i=1 a

(k)
i i , k = 1, 2, · · · , n by the basic algo-

rithm for sum in Sect. 7.3.1 takes T2 = log n steps and cP2 = n2/2 processors.
(3) The parallel computation of ci , i = 1, 2, · · · , n by the basic algorithm for solving
lower triangular systems in Sect. 7.3.1 takes T3 = O(log2 n) steps and cP3 = O(n3)
processors.
(4) The parallel computation of A−1 takes T4 = log n + 2 steps and cP4 = n3/2
processors.

Thus
I (n) = T1 + T2 + T3 + T4 = O(log2 n)

and

cP(n) = max
1≤i≤4

{cPi } = O

(
1

2
n4
)
,

which completes the proof. �
It is easy to show that the formula (7.3.5) is the same as the finite algorithm formula

(5.5.2) for computing A−1. The finite algorithms for computing the generalized
inverses A†

MN , A
†, Ad and Ag are given in Chap. 5. Consequently we have the

following parallel algorithms for the generalized inverses [6, 18].

Algorithm 7.3.2 Let A ∈ R
m×n , rank(A) = r . This algorithm computes theMoore-

Penrose inverse A† of A.

(1) Parallelly compute B = AT A.
(2) Parallelly compute Bk = [b(k)i j ], k = 1, 2, · · · , r .
(3) Let λ1,λ2, · · · ,λn denote the roots of the characteristic polynomial b(λ) of B,

and the trace of Bk be

sk =
n∑

i=1

λk
i , k = 1, 2, · · · , r.

Parallelly compute

sk = tr(Bk) =
n∑

i=1

b(k)i i , k = 1, 2, · · · , r.

(4) Let the characteristic polynomial of B be

b(λ) = det(λI − B)

=
n∏

i=1

(λ − λi )

= λn + c1λ
n−1 + · · · + cn−1λ + cn.

Since rank(B) = rank(A) = r , cr+1 = cr+2 = · · · = cn = 0.
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From the Newton formula we have
⎡

⎢⎢⎢⎢⎢⎣

1
s1 2
s2 s1 3
...

...
...

. . .

sr−1 sr−2 sr−3 · · · r

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

c1
c2
c3
...

cr

⎤

⎥⎥⎥⎥⎥⎦
= −

⎡

⎢⎢⎢⎢⎢⎣

s1
s2
s3
...

sr

⎤

⎥⎥⎥⎥⎥⎦
.

Parallelly compute the solution of the above triangular system.
(5) Parallelly compute

A† = − 1

cr
((AT A)r−1 + c1(A

T A)r−2 + · · · + cr−1 I )A
T .

The steps and processors required by Algorithm 7.3.2 are given in [6].

Theorem 7.3.3 Let A ∈ R
m×n, rank(A) = r . Then Algorithm 7.3.2 for computing

A† can be implemented in

GI (m, n) = O(log r · log n) + logm + 2 log n = O( f (m, n, r))

steps using

GcP(m, n) =

⎧
⎪⎨

⎪⎩

n3r

2
, m <

nr

2
,

mn2, m ≥ nr

2

processors.

Proof Suppose that the i th stage of Algorithm 7.3.2 can be implemented in Ti steps
using GcPi processors.
(1) The parallel computation of B = AT A takes T1 = 1 + logm steps, one step for
multiplication, and logm steps for addition, using GcP1 = mn2 processors.
(2) The parallel computation of Bk , k = 1, 2, · · · , r , takes

T2 = log r(log n + 1) = O(log r · log n)

steps using GcP2 = O(rn3/2) processors.
(3) The parallel computation of sk = ∑n

i=1 b
(k)
i i , k = 1, 2, · · · , r , by the basic algo-

rithm for sum in Sect. 7.3.1 takes T3 = log n steps and GcP3 = rn/2 processors.
(4) The parallel computation of ck , k = 1, 2, · · · , r , by the basic algorithm for
solving lower triangular systems in Sect. 7.3.1 takes

T4 = 1

2
log2 r + 3

2
log r = O(log2 r)

steps and GcP4 = O(r3) processors.
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(5) Since B, B2, · · · , Br−1 are already available, the parallel computation of

Br−1 + c1B
r−2 + · · · + cr−1 I

takes 1 + log r steps and rn2/2 processors. The parallel computation of A† takes
log n + 2 steps, one step for multiplication, log n steps for addition, and one step for
division, using n2m processors. Thus

T5 = log n + log r + 3

and GcP5 = O(n2m).
It follows that

GI (m, n) =
5∑

i=1

Ti

= log r

(
log n + 7

2

)
+ 1

2
log2 r + 2 log n + logm + 4

= O(log r · log n) + logm + 2 log n

and

GcP(m, n) = max
1≤i≤5

(GcPi ) =

⎧
⎪⎨

⎪⎩

n3r

2
, m <

nr

2
,

mn2, m ≥ nr

2
.

The proof is completed. �

Algorithm 7.3.3 Let A ∈ R
m×n , rank(A) = r , M and N be symmetric positive def-

inite matrices of orders m and n respectively. This algorithm computes the weighted
Moore-Penrose inverse A†

MN of A.

(1) Parallelly compute N−1.
(2) Parallelly compute A# = N−1AT M and B = A#A = (N−1AT )(MA).
(3) Parallelly compute Bk = [b(k)i j ], k = 1, 2, · · · , r .
(4) Let λ1,λ2, · · · ,λn denote the roots of the characteristic polynomial of B, and

the trace of Bk be

sk =
n∑

i=1

λk
i , k = 1, 2, · · · , r.

Parallelly compute

sk = tr(Bk) =
n∑

i=1

b(k)i i , k = 1, 2, · · · , r.
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(5) Let the characteristic polynomial b(λ) of B be

b(λ) = det(λI − B)

= λn + c1λ
n−1 + · · · + cn−1λ + cn.

Since rank(B) = rank(A) = r , cr+1 = cr+2 = · · · = cn = 0. From the Newton
formula we have

⎡

⎢⎢⎢⎢⎢⎣

1
s1 2
s2 s1 3
...

...
...

. . .

sr−1 sr−2 sr−3 · · · r

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

c1
c2
c3
...

cr

⎤

⎥⎥⎥⎥⎥⎦
= −

⎡

⎢⎢⎢⎢⎢⎣

s1
s2
s3
...

sr

⎤

⎥⎥⎥⎥⎥⎦
.

Parallelly compute the solution of the above triangular system.
(6) Parallelly compute

A†
MN = − 1

cr
((A#A)r−1 + c1(A

#A)r−2 + · · · + cr−1 I )A
#.

The steps and processors required for Algorithm 7.3.3 are given in [6].

Theorem 7.3.4 Let A ∈ R
m×n, rank(A) = r , then Algorithm 7.3.3 for computing

A†
MN can be implemented in

WGI (m, n) = GI (m, n) + O(log2 n + logm)

steps using

WGcP(m, n) =

⎧
⎪⎨

⎪⎩

n4

2
, m ≤ n

2
(
√
1 + 2n − 1),

m2n + mn2, m >
n

2
(
√
1 + 2n − 1)

processors.

Proof Suppose that the i th stage of Algorithm 7.3.3 can be implemented in Ti steps
using WcPi processors.
(1) It follows from Theorem 7.3.2 that the parallel computation of N−1 takes T1 =
O(log2 n) steps and WcP1 = O(n4/2) processors.
(2) First, the parallel computation of N−1AT and MA takes 1 + logm or 1 + log n
steps andm2n + mn2 processors. Then the parallel computationof A# = (N−1AT )M
and B = (N−1AT )(MA) takes 1 + logm steps andm2n + mn2 processors. Thus the
parallel computation of A# and B takes T2 = 2(1 + logm) or 2 + logm + log n steps
and WcP2 = m2n + mn2 processors.



254 7 Parallel Algorithms for Computing the Generalized Inverses

(3) The parallel computation of Bk , k = 1, 2, · · · , r takes

T3 = log r(1 + log n) = O(log r · log n)

steps and WcP3 = O(n3r/2) processors.
(4) The parallel computation of sk , k = 1, 2, · · · , r takes T4 = log n steps and
WcP4 = rn/2 processors.
(5) The parallel computation of ck , k = 1, 2, · · · , r takes

T5 = 1

2
log2 r + 3

2
log r = O(log2 r)

steps and WcP5 = O(r3) processors.
(6) The parallel computation of A†

MN takes

T6 = log r + log n + 3

steps and WcP6 = n2m processors.
Thus

WGI (m, n) =
6∑

i=1

Ti

= GI (m, n) + O(log2 n + logm)

and

WGcP(m, n) = max
1≤i≤6

(WcPi ) =

⎧
⎪⎨

⎪⎩

n4

2
, m ≤ n

2
(
√
1 + 2n − 1),

m2n + mn2, m >
n

2
(
√
1 + 2n − 1).

The proof is completed. �

Remark By using the algorithm SUPERPOWERS(B, r) and some techniques, an
improved parallel algorithm for the generalized inverse A† is given in [8]. It shows
that, under the same assumptions as in [15], the time complexity and the number of
processors using the improved parallel algorithm are

G̃ I (m, n) = O(log r · log n)

and

G̃cP(m, n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2r1/2nα

log r · log n ,
m

n
≤ 2r1/2

log r
,

�m/n�nα

log n
,

m

n
>

2r1/2

log r
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respectively, and proves the cost-optimality

G̃cP(m, n)G̃ I (m, n) < GcP(m, n)GI (m, n).

By using the finite algorithms for theDrazin inverse and the group inverse, the cor-
responding parallel algorithms and their time complexities and the required numbers
of processors can be obtained. It is omitted here.

7.4 Equivalence Theorem

In 1976, Csanky not only proposed the parallel algorithm for computing the inverse
of an n × n matrix A but also gave an important theoretical result [17].

Let I (n), E(n), D(n), and P(n) respectively denote the parallel arithmetic com-
plexities of inverting a matrix of order n, solving a system Ax = b of n linear
equations with n unknowns, computing an order n determinant det(A), and find-
ing the characteristic polynomial a(λ) = det(λI − A) of an order n matrix A, then
I (n), E(n), D(n) and P(n) have the same growth rate as follows.

Lemma 7.4.1 2 log n ≤ I (n), E(n), D(n), P(n).

Proof The proof follows directly from the fact that in each case, at least one partial
result is a nontrivial function of at least n2 variables and fan in argument. �

Theorem 7.4.1

I (n) = O( f (n))

⇔ E(n) = O( f (n))

⇔ D(n) = O( f (n))

⇔ P(n) = O( f (n)).

Proof (1) D(n) ≤ E(n) + log n + O(1).
Let Dt denote an order t determinant and Dn be the determinant to be computed.
Define

xk = Dn−k

Dn−k+1
,

where 1 ≤ k ≤ n − 1 and Dn−k is a properly chosen minor of Dn−k+1. Since∏n−1
k=1 xk = D1/Dn ,

Dn = D1∏n−1
k=1 xk

.
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Thus to compute Dn ,we compute xk for all k in E(n − k + 1)parallel steps by solving
the corresponding system of equations, then in log n + O(1) additional steps, we can
compute Dn .
(2) E(n) ≤ I (n) + 2.
Transforming Ax = b into the form A′x = (I )∗1 in two steps by row operations,
where (A)∗ j denotes the j th column of A. Then invert A′ in I (n) steps and x =
((A′)−1)∗1.
(3) I (n) ≤ P(n) + 1.
It is well know that

A−1 = adj(A)

det(A)
, adj(A) = [A ji ],

where A ji is the algebraic cofactor of a ji , the ( j, i)-element of A = [ai j ]. There are
n2 determinants of order n − 1 and one determinant det(A) of order n for computing
A−1. These n2 + 1 determinants can be evaluated in parallel. Let the characteristic
polynomial of any square matrix B is

b(λ) = det(B − λI ),

then det(B) = b(0).
(4) P(n) ≤ D(n) + log n + O(1).
Let the characteristic polynomial of A be

a(λ) = λn + a1λn−1 + · · · + an−1λ + an,

and ω a primitive (n + 1)st root of unity. First compute a(ω j ) for all distinct ω j in
parallel by using the algorithm for computing determinants. This computation takes
D(n) + 1 steps, including one step for computing the diagonal elements of A − ω j I .
Let

F =

⎡

⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1
1 ω ω2 · · · ωn

1 ω2 ω4 · · · ω2n

...
...

...
...

1 ωn ω2n · · · ωn2

⎤

⎥⎥⎥⎥⎥⎦
, a =

⎡

⎢⎢⎢⎢⎢⎣

an
an−1
...

a1
1

⎤

⎥⎥⎥⎥⎥⎦
, b =

⎡

⎢⎢⎢⎢⎢⎣

a(1)
a(ω)
a(ω2)
...

a(ωn)

⎤

⎥⎥⎥⎥⎥⎦
,

then Fa = b. The coefficients a1, a2, · · · , an of a(λ) can be obtained by the fast
Fourier transform [19]. This takes log n + O(1) steps.

From Lemma 7.4.1 and the four inequalities above, the theorem follows. For
example, to prove I (n) ⇔ E(n), we have

I (n) ≤ P(n) + 1 ≤ D(n) + log n + O(1)

≤ E(n) + 2 log n + O(1) ≤ c1E(n),

E(n) ≤ I (n) + 2 ≤ c2 I (n),

where c1 and c2 are two nonzero constants. Hence I (n) ⇔ E(n). �
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In the remaining of the section, we discuss the generalized matrix defined shortly,
its parallel algorithm, relation with the generalized inverses, and equivalence theo-
rems.

Let A ∈ C
m×n
r , andU ∈ C

m×(m−r)
m−r and V ∗ ∈ C

n×(n−r)
n−r bematriceswhose columns

form bases for N (A∗) and N (A) respectively. It follows from Corollary 3.1.1 that

A1 =
[
A U
V O

]

is nonsingular and

A−1
1 =

[
A† V †

U † O

]
.

For convenience, A1 is called a generalized matrix (but not unique) of A. If A is
nonsingular, we adopt the convention A1 = A.

Let adj(A1) be the common adjoint matrix of A1. An n × m submatrix that lies
in the upper left-hand corner of adj(A1) is called a generalized adjoint matrix of A
and denoted by Adj(A1). If A is nonsingular, we adopt the convention Adj(A1) =
adj(A1). It is clear that

A† = Adj(A1)

det(A1)
. (7.4.1)

The row echelon form of amatrix is given in Chap. 5. A formwhich is very closely
related to the row echelon form is the Hermite echelon form. However, the Hermite
echelon form is defined only for square matrices.

Definition 7.4.1 Amatrix H ∈ C
n×n is said to be in the Hermite echelon form if its

elements hi j satisfy the following conditions:

(1) H is an upper triangular matrix, i.e., hi j = 0, i > j .
(2) hii is either 0 or 1.
(3) If hii = 0, then hik = 0 for all k, 1 ≤ k ≤ n.
(4) If hii = 1, then hki = 0 for all k �= i .

For example, the matrix

H =

⎡

⎢⎢⎣

1 2 0 2
0 0 0 0
0 0 1 1
0 0 0 0

⎤

⎥⎥⎦

is in the Hermite echelon form. Below are some facts about the Hermite echelon
form, the proofs can be found in [20].
Let A ∈ C

n×n , then

(1) A can always be row reduced to a Hermite echelon form. If A is reduced to its
row echelon form, then a permutation of rows can always be performed to obtain
a Hermite echelon form.
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(2) For a given matrix A, the Hermite echelon form HA obtained by row reducing
A is unique.

(3) H 2
A = HA.

(4) N (A) = N (HA) = R(I − HA) and a basis for N (A) is the set of nonzero
columns of I − HA.

Algorithm 7.4.1 Let A ∈ R
n×n
r , this algorithm computes a generalized matrix A1

of A.

(1) Row reduce A to its Hermite echelon form HA.
(2) Form I − HA and select its nonzero columns v1, v2, · · · , vn−r to form thematrix

V = [v1 v2 · · · vn−r ]T.
(3) Row reduce A∗ to its Hermite echelon form HA∗ .
(4) Form I − HA∗ and select its nonzero columns u1,u2, · · · ,un−r to form the

matrix U = [u1 u2 · · · un−r ].
(5) Form the nonsingular matrix

A1 =
[
A U
V O

]
.

Although the above algorithm is stated for square matrices, it is easy to modify it
for non-square ones. If A ∈ C

m×n , then we pad zero rows or zero columns such that

[A O] or

[
A
O

]

is square and use the identity

[A O]† =
[
A†

O

]
or

[
A
O

]†
= [A† O].

Let F(U, V ) denote the parallel arithmetic complexity of computing the sub-
matrices U and V in the generalized matrix A1 of A, then we have the following
bounds.

Lemma 7.4.2 ([6]) Let A ∈ C
n×n, rank(A) = r , and the number of processors used

in Algorithm 7.4.1 be
(n − 1)(2n − j1 − j∗1 ),

where j1 and j∗1 are the indices of the first nonzero columns of A and A∗ respectively,
then

4r ≤ F(U, V ) ≤ 2(n + r).

Proof The proof is left to the reader as an exercise. �

Let A ∈ C
m×n , rank(A) = r , b ∈ C

m , and let GI (m, n), GE(m, n), GP(m, n),
and GD(m, n) denote the parallel arithmetic complexity of computing A†, the
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minimum-norm least-squares solution of the inconsistent linear equations Ax = b,
and the characteristic polynomial and the determinant of orderm + n − r generalized
matrix A1, respectively. The the following lemmas show that GI (m, n), GE(m, n),
GP(m, n), and GD(m, n) have the same growth rate.

Lemma 7.4.3 GI (m, n) = D(m + n − r) + F(U, V ) + O(1).

Proof From (7.4.1), there are mn order m + n − r − 1 determinants and one order
m + n − r determinant to be computed. They can be computed in parallel. �

Lemma 7.4.4 GE(m, n) = D(m + n − r) + F(U, V ) + O(1).

Proof From Corollary 3.2.1, the components x j of the minimum-norm least-squares
solution of the inconsistent linear equations Ax = b are given by

x j = det(A1( j → b̃))
det(A1)

, j = 1, 2, · · · , n, (7.4.2)

where A1 is a generalized matrix of A, and

b̃ =
[
b
0

]

is an (m + n − r)-vector. From (7.4.2), there are n + 1 orderm + n − r determinants
to be computed. They can be computed in parallel. �

The following results are obvious.

Lemma 7.4.5

GD(m, n) = D(m + n − r) + F(U, V ),

GP(m, n) = P(m + n − r) + F(U, V ).

From Lemmas 7.4.3–7.4.5 and Theorems 7.4.1 and 7.3.4, we can immediately
obtain the following important result.

Theorem 7.4.2

GI (m, n) = O( f (m, n, r))

⇔ GE(m, n) = O( f (m, n, r))

⇔ GD(m, n) = O( f (m, n, r))

⇔ GP(m, n) = O( f (m, n, r)).

It follows from Theorem 3.1.1 that the matrix

A2 =
[

A M−1U
V N O

]
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is nonsingular and

A−1
2 =

[
A†
MN V ∗(V NV ∗)−1

(U ∗M−1U )−1U ∗ O

]
.

Let WGI (m, n),WGE(m, n),WGP(m, n), and WGD(m, n) denote the parallel
arithmetic complexity of computing the weighted Moore-Penrose inverse A†

MN , the
minimum-norm(N ) least-squares(M) solution x = A†

MNb of Ax = b, and the char-
acteristic polynomial and the determinant of orderm + n − r generalized matrix A2,
respectively. The following equivalence theorem is given in [6].

Theorem 7.4.3

WGI (m, n) = O(g(m, n, r))

⇔ WGE(m, n) = O(g(m, n, r))

⇔ WGD(m, n) = O(g(m, n, r))

⇔ WGP(m, n) = O(g(m, n, r)).

Remarks
Besides Algorithm 7.4.1 for computing the generalized inverse A†, Wang [9], Wang
and Wei [21, 22] presented a parallel Cramer rule (PCR) for computing A†, Ad and
A†
MN , which is an extension of the parallel Cramer rule for computing A−1 by Sridhar

[23].
A parallel algorithm for computing the Moore-Penrose inverse of a bidiagonal

matrix based on SIMDmachines is given in [7]. It uses n processors and O(n�log n�)
iterations. Parallel (M-N )SVD algorithm on the SIMD computers can be found
in [24].

Parallel successive matrix squaring algorithms for computing the Moore-Penrose
inverse, the Drazin inverse, and the weighted Moore-Penrose inverse are presented
in [25–27]. Recurrent neural networks for computing the regular inverse, the Moore-
Penrose inverse, and the weighted Moore-Penrose inverse are given in [28–30].

An improved parallel method for computing the weightedMoore-Penrose inverse
A†
MN is discussed in [31].
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Chapter 8
Perturbation Analysis of the
Moore-Penrose Inverse and the Weighted
Moore-Penrose Inverse

Let A be a givenmatrix.When computing a generalized inverse of A, due to rounding
error, we actually obtain the generalized inverse of a perturbed matrix B = A + E
of A. It is natural to ask if the generalized inverse of B is close to that of A when
the perturbation E is sufficiently small. Thus, it becomes an important subject to
study the perturbation analysis of the generalized inverses and find ways to reduce
the effect of the perturbation.

8.1 Perturbation Bounds

Recall the perturbation bound of a nonsingularmatrix A [1].We start with the identity
matrix.

Theorem 8.1.1 Let P ∈ C
n×n and ‖P‖ < 1, then I − P is nonsingular and

‖I − (I − P)−1‖ ≤ ‖P‖
1 − ‖P‖ . (8.1.1)

The inequality (8.1.1) tells us that for an identity matrix I , if the perturbation P
is small, then the error in the inverse (I − P)−1 is approximately of the size ‖P‖. In
other words, the error in the inverse of a perturbed identity matrix is about the same
as the perturbation. Now, for a general nonsingular matrix we have the following
theorem.

Theorem 8.1.2 (1) Let A, B = A + E ∈ C
n×n
n , then

‖B−1 − A−1‖
‖A−1‖ ≤ ‖B−1‖ ‖E‖.

© Springer Nature Singapore Pte Ltd. and Science Press 2018
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(2) If A is nonsingular, B = A + E and � = ‖A−1‖ ‖E‖ < 1, then B is also non-
singular and

‖B−1‖ ≤ ‖A−1‖
1 − �

and

‖B−1 − A−1‖
‖A−1‖ ≤ �

1 − �

= κ(A)‖E‖/‖A‖
1 − κ(A)‖E‖/‖A‖ , (8.1.2)

where κ(A) = ‖A‖ ‖A−1‖.
The left side of the inequality (8.1.2) is the relative error in B−1. If E is sufficiently

small, then the right side of the inequality (8.1.2) is about κ(A)‖E‖/‖A‖. Since
‖E‖/‖A‖ is the relative error in B = A + E , the inequality (8.1.2) implies that the
relative error in B may be magnified by a factor of κ(A) in the relative error in B−1.
We call κ(A) the condition number with respect to the inversion of the matrix A. If
κ(A) is large, then the problem of inverting A is sensitive to the perturbation in A.
It is called ill-conditioned. Since

κ(A) = ‖A‖ ‖A−1‖ ≥ ‖AA−1‖ = ‖I‖ = 1,

κ(A) is indeed an enlargement constant.
It follows from (8.1.2) that (A + E)−1 is close to A−1 when the inversion of the

matrix A is not ill-conditioned and the perturbation E is small enough. But it does
not hold for the Moore-Penrose inverse. For example, let

A =
[
1 0
0 0

]
, F =

[
0 1
0 0

]
, and G =

[
0 0
0 1

]
,

then

A† = A, (A + εF)† = 1

1 + ε2

[
1 0
ε 0

]
, (A + εG)† =

[
1 0
0 ε−1

]
.

Clearly, limε→0(A + εF)† = A†, however limε→0(A + εG)† does not exist.
The above example shows that the perturbation εF has little effect on the general-

ized inversion of A, but εG affects a big effect. Through direct observation, the pos-
sible reason is that rank(A + εF) = rank(A), whereas rank(A + εG) > rank(A).
We will discuss the effect of the change of the rank on the Moore-Penrose inverse
and the weighted Moore-Penrose inverse. In the following discussion, M and N rep-
resent Hermitian positive definite matrices of orders m and n, respectively. First, we
consider the weighted Moore-Penrose inverse.
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Theorem 8.1.3 Let A, E ∈ C
m×n, B = A + E, and rank(A) = r .

(1) If rank(B) > rank(A), then

‖B†
MN‖NM ≥ 1

‖E‖MN
. (8.1.3)

(2) If ‖A†
MN‖NM ‖E‖MN < 1, then

rank(B) ≥ rank(A). (8.1.4)

Proof (1) Suppose rank(B) = p > r , it follows from Lemma 5.2.2 that

μp(A + E) ≤ ‖E‖MN + μp(A).

Since rank(A) = r , we have μp(A) = 0. Using (5.2.5), we get

‖(A + E)
†
MN‖NM = 1

μp(A + E)
,

implying that (8.1.3) is true.

(2) If ‖A†
MN‖NM ‖E‖MN < 1, then

1

‖A†
MN‖NM

− ‖E‖MN > 0,

and
μr (A) − ‖E‖MN > 0.

From the (M, N ) singular value decomposition in Chap. 5,

μr (B) ≥ μr (A) − ‖E‖MN > 0.

Consequently, (8.1.4) holds. �

The Moore-Penrose inverse is a special case of the above theorem.

Corollary 8.1.1 Let A ∈ C
m×n
r and B = A + E.

(1) If rank(B) > rank(A), then

‖B†‖2 ≥ 1

‖E‖2 .
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(2) If ‖A†‖2 ‖E‖2 < 1, then
rank(B) ≥ rank(A).

Theorem 8.1.3 states that (1) if rank(B) > rank(A), even for B = A + E close to
A, that is, the perturbation E is small, ‖B†

MN‖NM can be large and B†
MN can be totally

different from A†
MN ; (2) if ‖E‖NM is small enough, and ‖A†

MN‖NM ‖E‖MN < 1, then
the rankof the perturbedmatrix B = A + E will not decrease. If rank(B) > rank(A),
the above example tells us that B† may not be close to A†, it may not even exist.
Thus, in the following discussion, we assume that rank(B) = rank(A), that is, the
perturbation maintains the rank.

For convenience, the following conditions are called Conditions I and II.

Condition I Let A, E ∈ C
m×n , B = A + E , rank(B) = rank(A) = r , and �1 =

‖A†
MN‖NM ‖E‖MN < 1.

Condition II Let A, E ∈ C
m×n , B = A + E , rank(B) = rank(A) = r , and�2 =

‖A†‖2 ‖E‖2 < 1.

Theorem 8.1.4 If Condition I holds, then

‖B†
MN‖NM ≤ ‖A†

MN‖NM

1 − �1
. (8.1.5)

Proof Suppose the non-zero (M, N ) singular values of A and B = A + E are
μ1(A) ≥ μ2(A) ≥ · · · ≥ μr (A) > 0 and μ1(A + E) ≥ μ2(A + E) ≥ · · · ≥
μr (A + E) > 0, respectively. It follows from Theorem 5.2.2 and Lemma 5.2.2 that

‖B†
MN‖−1

NM = μr (B)

≥ μr (A) − ‖E‖MN

= ‖A†
MN‖−1

NM − ‖E‖MN ,

implying that (8.1.5) holds. �

The Condition II is a special case of Condition I.

Corollary 8.1.2 If Condition II holds, then

‖B†‖2 ≤ ‖A†‖2
1 − �2

.

In order to derive a bound for the relative error

‖B†
MN − A†

MN‖NM

‖A†
MN‖NM

,

we give a decomposition of B†
MN − A†

MN .
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Lemma 8.1.1 Let A, E ∈ C
m×n, and B = A + E, then

B†
MN − A†

MN = −B†
MN E A†

MN + B†
MN (B†

MN )#E#(I − AA†
MN )

− (I − B†
MN B)E#(A†

MN )#A†
MN . (8.1.6)

Proof From the left side of (8.1.6),

B†
MN − A†

MN

= −B†
MN E A†

MN + (B†
MN − A†

MN ) + B†
MN (B − A)A†

MN

= −B†
MN E A†

MN + B†
MN (I − AA†

MN ) − (I − B†
MN B)A†

MN . (8.1.7)

Using
A∗M(I − AA†

MN ) = A∗M − A∗(A†
MN )∗A∗M = O,

we get

B†
MN (I − AA†

MN ) = B†
MN BB

†
MN (I − AA†

MN )

= B†
MNM

−1(MBB†
MN )∗(I − AA†

MN )

= B†
MNM

−1(B†
MN )∗(A + E)∗M(I − AA†

MN )

= B†
MNM

−1(B†
MN )∗E∗M(I − AA†

MN )

= B†
MNM

−1(B†
MN )∗NN−1E∗M(I − AA†

MN )

= B†
MN (B†

MN )#E#(I − AA†
MN ).

Similarly, from
(I − B†

MN B)N−1B∗ = O,

we get
(I − B†

MN B)A†
MN = −(I − B†

MN B)E#(A†
MN )#A†

MN . (8.1.8)

Thus, (8.1.6) follows. �

Lemma 8.1.2 If O �= P ∈ C
n×n and P2 = P = P#, then

‖P‖NN = 1.

Proof It follows from (1.4.11) that

‖P‖2NN = ‖P#P‖NN = ‖P2‖NN = ‖P‖NN ,

thus
‖P‖NN (‖P‖NN − 1) = O.
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Since P �= O, we get ‖P‖NN = 1. �

Now, we have a bound for the relative error in the weighted Moore-Penrose
inverse.

Theorem 8.1.5 If Condition I holds, then

‖B†
MN − A†

MN‖NM

‖A†
MN‖NM

≤
(
1 + 1

1 − �1
+ 1

(1 − �1)2

)
�1. (8.1.9)

Proof Since
(I − AA†

MN )2 = I − AA†
MN = (I − AA†

MN )#

and
(I − B†

MN B)2 = I − B†
MN B = (I − B†

MN B)#,

from Lemma 8.1.2, we have

‖I − AA†
MN‖MM = 1 and ‖I − B†

MN B‖NN = 1.

It then follows from Lemma 8.1.1, (1.4.10), and (1.4.11) that

‖B†
MN − A†

MN‖NM

≤ (‖A†
MN‖NM ‖B†

MN‖NM + ‖B†
MN‖2NM + ‖A†

MN‖2NM)‖E‖MN .

From Theorem 8.1.4, we obtain

‖B†
MN − A†

MN‖NM

≤
(

‖A†
MN‖2NM

1 − �1
+ ‖A†

MN‖2NM

(1 − �1)2
+ ‖A†

MN‖2NM

)
‖E‖MN ,

which implies (8.1.9). �

The above theorem says that if A has a small perturbation E and rank(A + E) =
rank(A), then the perturbation on A†

MN is small.

Corollary 8.1.3 If Condition II holds, then

‖B† − A†‖2
‖A†‖2 ≤

(
1 + 1

1 − �2
+ 1

(1 − �2)2

)
�2.

In this special case, if A has a small perturbation E , and rank(A + E) = rank(A),
then the perturbation on A† is small.

In the following, we derive another bound for the relative error of the weighted
Moore-Penrose inverse.
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Lemma 8.1.3 If Condition I holds, then

‖BB†
MN (I − AA†

MN )‖MM = ‖AA†
MN (I − BB†

MN )‖MM . (8.1.10)

Proof Suppose that the (M, N ) singular value decompositions of A and B are respec-
tively:

A = U1

[
D1 O
O O

]
V ∗
1 , and B = U2

[
D2 O
O O

]
V ∗
2 ,

where D1 = diag(μ1(A), . . . ,μr (A)), D2 = diag(μ1(B), . . . ,μr (B)), and

U ∗
1 MU1 = Im V ∗

1 N
−1V1 = In,

U ∗
2 MU2 = Im V ∗

2 N
−1V2 = In.

Thus, we have

A†
MN = N−1V1

[
D−1

1 O
O O

]
U ∗

1 M,

B†
MN = N−1V2

[
D−1

2 O
O O

]
U ∗

2 M,

AA†
MN = U1

[
Ir O
O O

]
U ∗

1 M = U1

[
Ir O
O O

]
U−1

1 ,

I − AA†
MN = U1

[
O O
O Im−r

]
U−1

1 = U1

[
O O
O Im−r

]
U ∗

1 M,

BB†
MN = U2

[
Ir O
O O

]
U ∗

2 M = U2

[
Ir O
O O

]
U−1

2 ,

I − BB†
MN = U2

[
O O
O Im−r

]
U−1

2 = U2

[
O O
O Im−r

]
U ∗

2 M.

Let Û1 = M1/2U1 and Û2 = M1/2U2, then (Û1)
∗Û1 = Im and (Û2)

∗Û2 = Im . Thus
Û1 and Û2 are unitary matrices, and

U ∗
2 MU1 = (Û2)

∗Û1 ≡ W

is also unitary. Partitioning

W =
[
W11 W12

W21 W22

]
r

m − r
,

r m − r

we have
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‖BB†
MN (I − AA†

MN )‖MM

=
∥∥∥∥U2

[
Ir O
O O

]
U ∗

2 MU1

[
O O
O Im−r

]
U ∗

1 M

∥∥∥∥
MM

=
∥∥∥∥M1/2U2

[
Ir O
O O

] [
W11 W12

W21 W22

] [
O O
O Im−r

]
U ∗

1 M
1/2

∥∥∥∥
2

=
∥∥∥∥
[
Ir O
O O

] [
W11 W12

W21 W22

] [
O O
O Im−r

]∥∥∥∥
2

=
∥∥∥∥
[
O W12

O O

]∥∥∥∥
2

= ‖W12‖2.

Similarly, we obtain

‖AA†
MN (I − BB†

MN )‖MM = ‖W21‖2.

To derive (8.1.10), it remains to show that ‖W21‖2 = ‖W12‖2. For any x ∈ C
m−r

with ‖x‖2 = 1, we set

y =
[
0
x

]
r
m − r

,

then, since W is unitary, we obtain

‖x‖22 = ‖y‖22 = ‖Wy‖22 = ‖W12x‖22 + ‖W22x‖22.

Thus ‖W12x‖22 = ‖x‖22 − ‖W22x‖22, consequently,

‖W12‖22 = max‖x‖2=1
‖W12x‖22

= 1 − min‖x‖2=1
‖W22x‖22

= 1 − σ2
m−r (W22),

where σm−r (W22) is the smallest singular value of W22.
Similarly, it follows from ‖x‖22 = ‖y‖22 = ‖W ∗y‖22 = ‖W ∗

21x‖22 + ‖W ∗
22x‖22 that

‖W21‖22 = ‖W ∗
21‖22 = 1 − min‖x‖2=1

‖W ∗
22x‖22 = 1 − σ2

m−r (W
∗
22).

Since σm−r (W22) = σm−r (W ∗
22), we have ‖W12‖2 = ‖W21‖2. �

Lemma 8.1.4 If Condition I holds, denoting G = B†
MN (I − AA†

MN ), then

‖G‖NM ≤ ‖B†
MN‖NM ‖A†

MN‖NM ‖E‖MN . (8.1.11)
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Proof It follows from G = B†
MN BB

†
MN (I − AA†

MN ) that

‖G‖NM ≤ ‖B†
MN‖NM ‖BB†

MN (I − AA†
MN )‖MM .

Notice that
B∗M(I − BB†

MN ) = O

and
(I − BB†

MN )2 = I − BB†
MN = (I − BB†

MN )#.

From Lemma 8.1.2, we have ‖I − BB†
MN‖MM = 1. Based on Lemma 8.1.3, we get

‖BB†
MN (I − AA†

MN )‖MM

= ‖AA†
MN (I − BB†

MN )‖MM

= ‖M1/2AA†
MN (I − BB†

MN )M−1/2‖2
= ‖M−1/2(MAA†

MN )∗(I − BB†
MN )M−1/2‖2

= ‖M−1/2A†
MN

∗
E∗M1/2M1/2(I − BB†

MN )M−1/2‖2
≤ ‖M−1/2A†

MN
∗
E∗M1/2‖2

= ‖M1/2E A†
MNM

−1/2‖2
= ‖M1/2EN−1/2N 1/2A†

MNM
−1/2‖2

≤ ‖M1/2EN−1/2‖2 ‖N 1/2A†
MNM

−1/2‖2
= ‖E‖MN ‖A†

MN‖NM .

Thus (8.1.11) follows. �

From (8.1.7), (8.1.8), Theorem 8.1.4, and Lemma 8.1.4, we have the following
relative perturbation bounds:

‖B†
MN − A†

MN‖NM

‖A†
MN‖NM

≤
(
1 + 2

1 − �1

)
�1 ≤ 3�1

1 − �1

and ‖B† − A†‖2
‖A†‖2 ≤

(
1 + 2

1 − �2

)
�2 ≤ 3�2

1 − �2
.

If we study the perturbation analysis carefully, we can get some special results.

Theorem 8.1.6 If Condition I holds, then

‖B†
MN − A†

MN‖NM

‖A†
MN‖NM

≤ C
�1

1 − �1
, (8.1.12)



272 8 Perturbation Analysis of the Moore-Penrose Inverse …

where

C =
⎧⎨
⎩

(1 + √
5)/2, if rank(A) < min{m, n},√

2, if rank(A) = min{m, n}, (m �= n),

1, if rank(A) = m = n.

(8.1.13)

Denote the three terms in (8.1.7) as

F = −B†
MN E A†

MN ,

G = B†
MN (I − AA†

MN ),

H = −(I − B†
MN B)A†

MN .

It follows from Theorem 8.1.4, Lemma 8.1.4, and (8.1.8) that

‖F‖NM , ‖G‖NM ≤ �1

1 − �1
‖A†

MN‖NM ,

‖H‖NM ≤ �1‖A†
MN‖NM ,

where
�1 = ‖A†

MN‖NM ‖E‖MN = ‖(A†
MN )#‖MN ‖E#‖NM .

Setting

α = �1

1 − �1
,

we have
‖F‖NM , ‖G‖NM , ‖H‖NM ≤ α‖A†

MN‖NM .

Proof (1) For any x ∈ C
m and ‖x‖M = 1, x can be decomposed as x = x1 + x2,

where x1 = AA†
MNx and x2 = (I − AA†

MN )x. clearly, x1 and x2 are M-orthogonal.
Thus 1 = ‖x‖2M = ‖x1‖2M + ‖x2‖2M and there exists a ϕ such that cosϕ = ‖x1‖M

and sinϕ = ‖x2‖M . From (8.1.7), we have

(B†
MN − A†

MN )x = Fx1 + Gx2 + Hx1 ≡ y1 + y2 + y3.

Using (I − B†
MN B)∗N B†

MN = O, it is easy to verify that y3 is N -orthogonal to both
y1 and y2. So,
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‖(B†
MN − A†

MN )x‖2N
= ‖y1 + y2‖2N + ‖y3‖2N
≤ α2‖A†

MN‖2NM((‖x1‖M + ‖x2‖M)2 + ‖x1‖2M)

= α2‖A†
MN‖2NM((cosϕ + sinϕ)2 + cos2 ϕ)

= α2‖A†
MN‖2NM(3 + 2 sin 2ϕ + cos 2ϕ)/2

≤ α2‖A†
MN‖2NM(3 + √

5)/2. (8.1.14)

Thus

‖B†
MN − A†

MN‖NM = max‖x‖M=1
‖(B†

MN − A†
MN )x‖N

≤ α‖A†
MN‖NM(1 + √

5)/2.

(2) When rank(B) = rank(A) = n < m, by B†
MN = (B∗MB)−1B∗M , we have I −

B†
MN B = O. Thus H = O and y3 = 0.
When rank(B) = rank(A) = m < n, by A†

MN = N−1A∗(AN−1A∗)−1, we have
I − AA†

MN = O. Thus G = O and y2 = 0.
It follows from (8.1.14), where either y2 or y3 is zero, that

‖(B†
MN − A†

MN )x‖2N ≤ 2α2‖A†
MN‖2NM .

Thus

‖B†
MN − A†

MN‖NM = max‖x‖M=1
‖(B†

MN − A†
MN )x‖N

≤ √
2α‖A†

MN‖NM .

(3) When rank(A) = m = n and rank(B) = m = n. From the proof in (2), we know
that G = O and H = O. Thus the third case in (8.1.13) follows immediately. �

Finally, the Moore-Penrose inverse is a special case of the weighted Moore-
Penrose inverse.

Corollary 8.1.4 If Condition II holds, then

‖B† − A†‖2
‖A†‖2 ≤ C

�2

1 − �2
,

where

C =
⎧⎨
⎩

(1 + √
5)/2 if rank(A) < min{m, n},√

2 if rank(A) = min{m, n}, (m �= n),

1 if rank(A) = m = n.
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The perturbation bound for the Moore-Penrose inverse can be found in [2, 3], the
bound for the weighted Moore-Penrose inverse can be found in [4], on which this
section is based.

8.2 Continuity

It follows from Theorem 8.1.2 that if E → O, i.e., B → A, we have ‖B−1 −
A−1‖2 → 0, i.e., B−1 → A−1. This implies that the inverse of a nonsingular matrix
is a continuous function of the elements of the matrix. If we replace matrix B with
sequence {Ak}, we have the following conclusion.

Theorem 8.2.1 Let A ∈ C
n×n
n , limk→∞ Ak = A, then for sufficiently large k, Ak is

nonsingular and
lim
k→∞ A−1

k = A−1. (8.2.1)

Proof Suppose Ek = Ak − A, then limk→∞ ‖Ek‖ = 0. Thus for sufficiently large
k, ‖A−1‖ ‖Ek‖ < 1. It follows from Theorem 8.1.2 that Ak is nonsingular and
limk→∞ ‖A−1

k − A−1‖ = 0, thus (8.2.1) holds. �

Just as the continuity of the inversion of nonsingular matrices, theMoore-Penrose
inverse and the weightedMoore-Penrose inverse of full column rank or full row rank
matrices are also continuous.

Theorem 8.2.2 Let A ∈ C
m×n
n , M and N be Hermitian positive definite matrices of

orders m and n, respectively, limk→∞ Ak = A, then for sufficiently large k, Ak is of
full column rank and

lim
k→∞(Ak)

†
MN = A†

MN . (8.2.2)

Proof Suppose Ek = Ak − A, then limk→∞ ‖Ek‖ = 0. Since A ∈ C
m×n
n , A∗A is

nonsingular and

A∗
k Ak = (A + Ek)

∗(A + Ek)

= A∗A
(
I + (A∗A)−1((A + Ek)

∗Ek + E∗
k A)

)
.

Since ‖Ek‖ → 0, we have ‖(A∗A)−1((A + Ek)
∗Ek + E∗

k A)‖ < 1, thus

I + (A∗A)−1((A + Ek)
∗Ek + E∗

k A)

is nonsingular, and so is A∗
k Ak , i.e., Ak is of full column rank. Also, it can be derived

that Ãk = M1/2AkN−1/2 is of full column rank. Denote
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Ãk = M1/2AkN
−1/2

= M1/2AN−1/2 + M1/2EkN
−1/2

≡ Ã + Ẽk .

Notice that Ẽk → O, as k → ∞,

lim
k→∞( Ã + Ẽk)

∗ = Ã∗,

lim
k→∞(( Ã + Ẽk)

∗( Ã + Ẽk))
−1 = ( Ã∗ Ã)−1.

Furthermore,

lim
k→∞ Ã†

k = lim
k→∞(( Ã + Ẽk)

∗( Ã + Ẽk))
−1( Ã + Ẽk)

∗

= ( Ã∗ Ã)−1 Ã∗

= Ã†

= (M1/2AN−1/2)†.

Thus

(Ak)
†
MN = N−1/2(M1/2AkN

−1/2)†M1/2

= N−1/2 Ã†
kM

1/2

→ N−1/2(M1/2AN−1/2)†M1/2

= A†
MN ,

as k → ∞. �

Corollary 8.2.1 Let A ∈ C
m×n
n , limk→∞ Ak = A, then for sufficiently large k, Ak is

of full column rank and
lim
k→∞ A†

k = A†.

Next we discuss the continuity of the Moore-Penrose inverse and the weighted
Moore-Penrose inverse of a rank-deficient matrix.

Theorem 8.2.3 Let A ∈ C
m×n
r , M and N be Hermitian positive definite matrices

of orders m and n, respectively. Suppose {Ak} is an m × n matrix sequence and
Ak → A, then the necessary and sufficient condition for (Ak)

†
MN → A†

MN is

rank(Ak) = rank(A). (8.2.3)

for the sufficiently large k.

Proof Let Ek = Ak − A. If Ak → A, then Ek → O.
Sufficiency: If rank(Ak) = rank(A), then Condition I holds. It follows from Theo-
rem 8.1.6 and Ek → O that ‖(Ak)

†
MN − A†

MN‖NM → 0, thus (Ak)
†
MN → A†

MN .
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Necessity: Suppose (Ak)
†
MN → A†

MN . If rank(Ak) �= rank(A), thenwe have rank(A)

< rank(A + Ek) = rank(Ak). It follows from Theorem 8.1.3 that ‖(Ak)
†
MN‖NM ≥

‖Ek‖−1
MN , which shows that if Ek → O, then (Ak)

†
MN does not exist. �

Corollary 8.2.2 Suppose A ∈ C
m×n
r , {Ak} is anm × n matrix sequence. If Ak → A,

then the necessary and sufficient condition for A†
k → A† is

rank(Ak) = rank(A)

for the sufficiently large k.

The continuity of the Moore-Penrose inverse can be found in [1, 5], that of the
weighted Moore-Penrose inverse can be found in [4], on which this section is based.

8.3 Rank-Preserving Modification

From the discussion in the previous section, we know that after the matrix A is
modified to B = A + E , if rank(B) > rank(A), it will cause the discontinuity of the
Moore-Penrose inverse or the weighted Moore-Penrose inverse. The modification E
can be computational errors. Therefore the computed result can be far from the true
solution, which is an serious issue in scientific computing. So, we are interested in
rank-preserving modifications. The rank-preserving modification of a rank deficient
matrix is discussed in [4, 5], which can overcome the discontinuity problem.

The basic idea behind rank-preservingmodification is to dealwith A + E suitably,
specifically, to construct its rank-preserving matrix AE such that when ‖E‖ → 0,

(1) AE → A;
(2) rank(AE ) = rank(A).

The tool used is the full-rank decomposition. Let A ∈ R
m×n
r . Without loss of

generality, suppose the first r columns of A are linearly independent. Let the full-
rank factorization of A be

A = QU,

where Q is a product of orthogonal (or elementary lower triangular) matrices of order
m, U is an m × n upper echelon matrix.

Set

Q = [Q1 Q2] and U =
[
R S
O O

]
,

where Q1 ∈ R
m×r , Q2 ∈ R

m×(m−r), R ∈ R
r×r an upper triangular matrix, and S ∈

R
r×(n−r), thus

A = Q1[R S].
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Suppose that the full-rankdecomposition of B = A + E = [a1 + e1 · · · an + en]
is

B = Q̃Ũ ,

where Q̃ is a product of orthogonal (or elementary lower triangular) matrices of order
m and Ũ is an m × n upper echelon matrix. Set

Q̃ = [Q̃1 Q̃2] and Ũ =
[
R̃ S̃
O Ŝ

]
,

where Q̃1 ∈ R
m×r , Q̃2 ∈ R

m×(m−r), R̃ ∈ R
r×r an upper triangular matrix, S̃ ∈

R
r×(n−r), and Ŝ ∈ R

(m−r)×(n−r). Construct

AE = Q̃1[R̃ S̃]. (8.3.1)

Obviously, when ‖E‖ → 0, Q̃1 → Q1 and [R̃ S̃] → [R S]. Therefore AE → A.
From the construction of the full-rank decomposition, when E is sufficiently small,
rank(AE ) = rank(A) = r . We call the definition (8.3.1) of AE the rank-preserving
modification of A + E , that is, AE is a modification of A + E that preserves the rank
of A. From Theorem 8.2.3 and Corollary 8.2.2, we have

lim‖E‖→0
(AE )

†
MN = A†

MN and lim‖E‖→0
A†
E = A†

respectively.
Example Let

A =
[
1 1
1 1

]
, E =

[
ε 0
0 0

]
, M =

[
1 0
0 4

]
, and N =

[
4 0
0 1

]
,

then

A†
MN = N 1/2(M1/2AN−1/2)†M1/2 = 1

25

[
1 4
4 16

]

and

(A + E)
†
MN = 1

ε

[
1 −1

−1 1 + ε

]
.

When ε → 0, B = A + E → A, however, B†
MN = (A + E)

†
MN does not exist. Now

consider the full-rank decomposition

A + E =
[
1 + ε 1
1 1

]
=

⎡
⎣ 1 0

1

1 + ε
1

⎤
⎦

[
1 + ε 1

0
ε

1 + ε

]

and modify it into the full-rank decomposition
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AE =
⎡
⎣ 1

1

1 + ε

⎤
⎦ [1 + ε 1] = FG

to reserve the rank of A. Then when ε → 0, we have

(AE )
†
MN = N−1GT (FT MAE N

−1GT )−1FT M

= 4(1 + ε)2

(4 + (1 + ε)2)2

⎡
⎢⎣
1 + ε

4
1

1
4

1 + ε

⎤
⎥⎦

→ 1

25

[
1 4
4 16

]

= A†
MN .

8.4 Condition Numbers

Based on the perturbation bounds presented in Sect. 8.1, this section gives condi-
tion numbers. As before, we start with the nonsingular case. When A ∈ C

n×n
n , from

(8.1.2), the perturbation bound for the inversion is

‖(A + E)−1 − A−1‖
‖A−1‖ ≤ κ(A)‖E‖/‖A‖

1 − κ(A)‖E‖/‖A‖ ,

where κ(A) = ‖A‖ ‖A−1‖ is the condition number with respect to the inversion of
matrix A.

When A ∈ C
m×n
r , from (8.1.12), the perturbation bound for the weighted Moore-

Penrose inverse is

‖(A + E)
†
MN − A†

MN‖NM

‖A†
MN‖NM

≤ C
‖A†

MN‖NM ‖E‖MN

1 − ‖A†
MN‖NM ‖E‖MN

.

Denoting
κMN (A) = ‖A‖MN‖A†

MN‖NM , (8.4.1)

we have the following result.

Theorem 8.4.1 If Condition I holds, then

‖(A + E)
†
MN − A†

MN‖NM

‖A†
MN‖NM

≤ C
κMN (A)‖E‖MN/‖A‖MN

1 − κMN (A)‖E‖MN/‖A‖MN
.
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This implies that if κMN (A) is small, then the effect of the perturbation E on
A†
MN is also small; if κMN (A) is large, E may have large effect on A†

MN . Therefore,
κMN (A) is called the condition number with respect to the weighted Moore-Penrose
inverse.

It follows from Lemma 8.1.4 that the perturbation bound for the Moore-Penrose
inverse is ‖(A + E)† − A†‖2

‖A†‖2 ≤ C
‖A†‖2 ‖E‖2

1 − ‖A†‖2 ‖E‖2 .

Denoting
κ2(A) = ‖A‖2‖A†‖2,

we have the following result:

Corollary 8.4.1 If Condition II holds, then

‖(A + E)† − A†‖2
‖A†‖2 ≤ C

κ2(A)‖E‖2/‖A‖2
1 − κ2(A)‖E‖2/‖A‖2 ,

and κ2(A) is called the condition number with respect to the Moore-Penrose inverse.

The classical normwise relative condition number measures the sensitivity of
matrix inversion. In this section, we will discuss the normwise relative condition
number for the weighted Moore-Penrose inverse and the Moore-Penrose inverse.
First, for a nonsingular A ∈ C

n×n
n with matrix norm ‖ · ‖, this normwise relative

condition number is defined by

cond(A) = lim
ε→0+

sup
‖E‖≤ε‖A‖

‖(A + E)−1 − A−1‖
ε‖A−1‖ .

That is, we look at an upper bound for the relative change in A−1 compared with
a relative change in A of size ε. We take the limit as ε → 0+. Hence a condition
number records the worst case sensitivity to small perturbations. When the matrix
norm is induced by a vector norm, cond(A) can be expressed by

cond(A) = κ(A) = ‖A‖ ‖A−1‖.

For more discussion of the condition numbers of nonsingular matrices, see [6].
Now, we give the normwise relative condition numbers for the weighted Moore-

Penrose inverse and the Moore-Penrose inverse.

Theorem 8.4.2 The condition number of the weighted Moore-Penrose inverse
defined by

cond(A) = lim
ε→0+

sup
‖E‖MN ≤ ε‖A‖MN

R(E) ⊂ R(A)

R(E∗) ⊂ R(A∗)

‖(A + E)
†
MN − A†

MN‖NM

ε‖A†
MN‖NM
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can be expressed by cond(A) = ‖A‖MN ‖A†
MN‖NM.

Proof From [7], the conditions ‖E‖MN ≤ ε‖A‖MN , R(E) ⊂ R(A), and R(E∗) ⊂
R(A∗), neglecting O(ε2) terms in a standard expansion, we get

(A + E)
†
MN − A†

MN = −A†
MN E A†

MN .

Let E = ε‖A‖MN Ê , then we have ‖Ê‖MN ≤ 1. Since

‖A†
MN Ê A†

MN‖NM ≤ ‖A†
MN‖NM ‖Ê‖MN ‖A†

MN‖NM

≤ ‖A†
MN‖2NM .

the result follows if we can show that

sup
‖Ê‖MN ≤ 1
R(Ê) ⊂ R(A)

R(Ê∗) ⊂ R(A∗)

‖A†
MN Ê A†

MN‖NM = ‖A†
MN‖2NM . (8.4.2)

From Theorem 5.2.2,

A = U

[
D O
O O

]
V ∗, A†

MN = N−1V

[
D−1 O
O O

]
U ∗M,

and M1/2U , N−1/2V , U ∗M1/2, and V ∗N−1/2 are all unitary matrices. Let ei be the
i th column of the identity matrix and Ê = Uere∗

r V
∗, then

‖Ê‖MN = ‖M1/2Uere∗
r V

∗N−1/2‖2 = ‖ere∗
r ‖2 = 1

and

‖A†
MN Ê A†

MN‖NM

=
∥∥∥∥N−1V

[
D−1 O
O O

]
ere∗

r

[
D−1 O
O O

]
U ∗M

∥∥∥∥
NM

=
∥∥∥∥N−1/2V

[
D−1 O
O O

]
ere∗

r

[
D−1 O
O O

]
U ∗M1/2

∥∥∥∥
2

=
∥∥∥∥
[
D−1 O
O O

]
ere∗

r

[
D−1 O
O O

]∥∥∥∥
2

= μ−2
r

= ‖A†
MN‖2NM .

It is easy to see thatR(Ê) ⊂ R(A) andR(Ê∗) ⊂ R(A∗) from the relations of A
and Ê . Thus, (8.4.2) is proved. �



8.4 Condition Numbers 281

In the special case when M = I ∈ C
m×m and N = I ∈ C

n×n , we have the fol-
lowing corollary.

Corollary 8.4.2 The condition number of the Moore-Penrose inverse defined by

cond(A) = lim
ε→0+

sup
‖E‖2 ≤ ε‖A‖2R(E) ⊂ R(A)

R(E∗) ⊂ R(A∗)

‖(A + E)† − A†‖2
ε‖A†‖2

satisfies cond(A) = ‖A‖2 ‖A†‖2.
Now we consider another weighted matrix norm:

‖A‖(F)
MN = ‖M1/2AN−1/2‖F , for A ∈ C

m×n

and
‖B‖(F)

NM = ‖N 1/2BM−1/2‖F , for B ∈ C
n×m .

Then we have the following condition numbers.

Theorem 8.4.3 The condition number of the weighted Moore-Penrose inverse
defined by

condF (A) = lim
ε→0+

sup
‖E‖(F)

MN ≤ ε‖A‖(F)
MNR(E) ⊂ R(A)

R(E∗) ⊂ R(A∗)

‖(A + E)
†
MN − A†

MN‖(F)
NM

ε ‖A†
MN‖(F)

NM

can be given by

condF (A) = ‖A‖(F)
MN ‖A†

MN‖2NM

‖A†
MN‖(F)

NM

.

Proof Analogous to the proof of Theorem 8.4.2, we need to show that

sup
‖Ê‖(F)

MN ≤ 1
R(Ê) ⊂ R(A)

R(Ê∗) ⊂ R(A∗)

‖A†
MN Ê A†

MN‖(F)
NM = ‖A†

MN‖2NM . (8.4.3)

The inequality ‖Ê‖(F)
MN ≤ 1 in (8.4.3) implies

‖A†
MN Ê A†

MN‖(F)
NM = ‖N 1/2A†

MN Ê A†
MNM

−1/2‖F

= ‖N 1/2A†
MNM

−1/2M1/2 Ê N−1/2N 1/2A†
MNM

−1/2‖F

≤ ‖A†
MN‖NM ‖Ê‖(F)

MN ‖A†
MN‖NM

≤ ‖A†
MN‖2NM ,
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where the inequalities ‖BC‖F ≤ ‖B‖2 ‖C‖F and ‖BC‖F ≤ ‖B‖F ‖C‖2 are used.
Let Ê = Uere∗

r V
∗, we have

‖Ê‖(F)
MN = 1

and
‖A†

MN Ê A†
MN‖(F)

NM = ‖A†
MN‖2NM .

It is easy to see thatR(Ê) ⊂ R(A) andR(Ê∗) ⊂ R(A∗). So (8.4.3) is proved. �
As a special case of Theorem 8.4.3, we have:

Corollary 8.4.3 The condition number of the Moore-Penrose inverse defined by

condF (A) = lim
ε→0+

sup
‖E‖F ≤ ε‖A‖FR(E) ⊂ R(A)

R(E∗) ⊂ R(A∗)

‖(A + E)† − A†‖F

ε ‖A†‖F

satisfies

condF (A) = ‖A‖F ‖A†‖22
‖A†‖F

.

Note that from Corollary 8.4.3 condF (A) �= ‖A‖F ‖A†‖F .
This section is based on [8].

8.5 Expression for the Perturbation of Weighted
Moore-Penrose Inverse

In this section, we consider a perturbation formula for the weighted Moore-Penrose
inverse of a rectangular matrix and give an explicit expression for the weighted
Moore-Penrose inverse of a perturbed matrix under the weakest rank condition.

Let B = A + E ∈ C
m×n . We know that rank(B) = rank(A) is the necessary and

sufficient condition for the continuity of the weighted Moore-Penrose inverse. We
first present a condition that is equivalent to rank(B) = rank(A).

Lemma 8.5.1 Let A ∈ C
m×n with rank(A) = r and B = A + E such that I +

A†
MN E is nonsingular, then rank(B) = rank(A) is equivalent to

(I − AA†
MN )E(I + A†

MN E)−1(I − A†
MN A) = O (8.5.1)

or
(I − AA†

MN )(I + E A†
MN )−1E(I − A†

MN A) = O. (8.5.2)

Proof Denote L = U ∗MBN−1V ∈ C
m×n . It follows from the (M, N ) singular value

decomposition Theorem 5.2.2 that L can be written as
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L =
[
L11 L12

L21 L22

]
=

[
D + P1Q1 P1Q2

P2Q1 P2Q2

]
r
m − r

, (8.5.3)

r n − r

where Pi = U ∗
i ME and Qi = N−1Vi , i = 1, 2 .

It is easy to show

I + A†
MN E = I + N−1V1D

−1U ∗
1 ME = I + Q1D

−1P1.

Thus, if I + A†
MN E is nonsingular, then so is D + P1Q1. Therefore, rank(B) =

rank(A) is equivalent to

rank(L) = rank(D + P1Q1) = rank(L11). (8.5.4)

From Lemma 4.1.3, we have

rank(L) = rank(D + P1Q1) + rank(P2Q2 − P2Q1(D + P1Q1)
−1P1Q2).

Combining (8.5.4) and the above equation, we see that rank(B) = rank(A) is equiv-
alent to

P2Q2 − P2Q1(D + P1Q1)
−1P1Q2 = O. (8.5.5)

Multiplying (8.5.5) with U2 on the left and V ∗
2 on the right, (8.5.5) is equivalent to

(I − AA†
MN )E(I − N−1V1(D +U ∗

1 MEN−1V1)
−1U ∗

1 ME)(I − A†
MN A)

= O. (8.5.6)

Using the Scherman-Morrison-Woodburg formula, we have

N−1V1(D +U ∗
1 MEN−1V1)

−1U ∗
1 M

= N−1V1(D
−1 − D−1U ∗

1 ME(I + N−1V1D
−1U ∗

1 ME)−1N−1V1D
−1)

U ∗
1 M

= A†
MN − A†

MN E(I + A†
MN E)−1A†

MN

= (I + A†
MN E)−1A†

MN . (8.5.7)

Substituting (8.5.7) into (8.5.6), we get

(I − AA†
MN )E(I − (I + A†

MN E)−1A†
MN E)(I − A†

MN A) = O,

that is,
(I − AA†

MN )E(I + A†
MN E)−1(I − A†

MN A) = O.
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Notice that E(I + A†
MN E) = (I + E A†

MN )E , the equivalence of (8.5.1) and (8.5.2)
is obvious and the proof is completed. �

Now, we are ready to give an expression of B†
MN , the main topic of this section.

Theorem 8.5.1 Let B = A + E ∈ C
m×n with rank(B) = rank(A) = r , M and N

be Hermitian positive definite matrices of orders m and n respectively. Assuming
that I + A†

MN E is nonsingular, we have

B†
MN

= (A†
MN A + N−1X∗N )(A†

MN A − X (N + X∗N X)−1X∗N )

(I + A†
MN E)−1A†

MN (AA†
MN − M−1Y ∗(M−1 + YM−1Y ∗)−1Y )

(AA†
MN + M−1Y ∗M), (8.5.8)

where
X = (I + A†

MN E)−1A†
MN E(I − A†

MN A)

and
Y = (I − AA†

MN )E A†
MN (I + E A†

MN )−1.

Proof It can be easily verified that B†
MN = N−1V L†U ∗M , where L is given in

(8.5.3). From [9, p. 34], we have

L†

=
[
L∗
11

L∗
12

]
(L∗

11 + L−1
11 L12L

∗
12)

−1L−1
11 (L∗

11 + L∗
21L21L

−1
11 )−1[L∗

11 L∗
21]

=
[

I
(L−1

11 L12)
∗

]
(I + L−1

11 L12(L
−1
11 L12)

∗)−1L−1
11

(I + (L21L
−1
11 )∗L21L

−1
11 )−1[I (L21L

−1
11 )∗].

Denote F = L−1
11 L12 and G = L21L

−1
11 . Then

L† =
[

I
F∗

]
(I + FF∗)−1L−1

11 (I + G∗G)−1[I G∗].

Hence, from V ∗
1 N

−1V1 = U ∗
1 MU1 = I , we have
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B†
MN

= (N−1V1 + N−1V2F
∗)(I + FF∗)−1L−1

11 (I + G∗G)−1(U ∗
1 M + G∗U ∗

2 M)

= (N−1V1 + N−1V2F
∗)V ∗

1 N
−1V1(I + FF∗)−1V ∗

1 N
−1V1L

−1
11

U ∗
1 MU1(I + G∗G)−1U ∗

1 MU1(U
∗
1 M + G∗U ∗

2 M)

= (A†
MN A + N−1V2F

∗V ∗
1 )N−1V1(I + FF∗)−1V ∗

1 N
−1V1L

−1
11

U ∗
1 MU1(I + G∗G)−1U ∗

1 M(AA†
MN +U1G

∗U ∗
2 M)

= (A†
MN A + B2)B4B1B5(AA

†
MN + B3), (8.5.9)

where

B1 = N−1V1L
−1
11 U

∗
1 M,

B2 = N−1V2F
∗V ∗

1 ,

B3 = U1G
∗U ∗

2 M,

B4 = N−1V1(I + FF∗)−1V ∗
1 ,

and
B5 = U1(I + G∗G)−1U ∗

1 M.

We now compute B1 to B5 individually. By (8.5.7), we get

B1 = (I + A†
MN E)−1A†

MN = A†
MN (I + E A†

MN )−1. (8.5.10)

Since

F = L−1
11 L12

= V ∗
1 N

−1V1L
−1
11 U

∗
1 MU1U

∗
1 MEN−1V2

= V ∗
1 (I + A†

MN E)−1A†
MN AA

†
MN EN−1V2

= V ∗
1 (I + A†

MN E)−1A†
MN EN−1V2. (8.5.11)

Similarly,
G = U ∗

2 MEA†
MN (I + E A†

MN )−1U1.

For B2 and B3, we have

B2 = N−1V2V
∗
2 N

−1(A†
MN E)∗(I + (A†

MN E)∗)−1V1V
∗
1

= N−1(I − A†
MN A)∗(A†

MN E)∗(I + (A†
MN E)∗)−1(A†

MN A)∗N

= N−1(I − A†
MN A)∗(I + (A†

MN E)∗)−1(A†
MN E)∗(A†

MN A)∗N

= N−1(I − A†
MN A)∗(A†

MN E)∗(I + (A†
MN E)∗)−1N

= N−1X∗N , (8.5.12)
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where
X = (I + A†

MN E)−1A†
MN E(I − A†

MN A)

and

B3 = M−1((I − AA†
MN )E A†

MN (I + E A†
MN )−1)∗M

= M−1Y ∗M, (8.5.13)

where
Y = (I − AA†

MN )E A†
MN (I + E A†

MN )−1.

From (8.5.11), we have

FF∗

= V ∗
1 (I + A†

MN E)−1A†
MN EN−1V2V

∗
2 N

−1((I + A†
MN E)−1A†

MN E)∗V1

= V ∗
1 (I + A†

MN E)−1A†
MN E(I − A†

MN A)N−1((I + A†
MN E)−1A†

MN E)∗V1

= V ∗
1 (I + A†

MN E)−1A†
MN E(I − A†

MN A)N−1(I − A†
MN A)∗

((I + A†
MN E)−1A†

MN E)∗V1

= V ∗
1 XN−1X∗V1.

Likewise,
G∗G = U ∗

1 Y
∗
1 MYU1,

using the Sherman-Morrison-Woodburg formula again, we have

(I + FF∗)−1 = (I + V ∗
1 XN−1X∗V1)

−1

= I − V ∗
1 XN−1(I + X∗V1V

∗
1 XN−1)−1X∗V1

= I − V ∗
1 X (N + X∗N X)−1X∗V1.

As for B4, we obtain

B4 = A†
MN A − X (N + X∗N X)−1X∗N . (8.5.14)

Finally,
B5 = AA†

MN − M−1Y ∗(M−1 + YM−1Y ∗)−1Y.

Substituting Eqs. (8.5.10)–(8.5.14) into (8.5.9) leads to (8.5.8). �

From Theorem 8.5.1, we can immediately obtain the following corollaries.

Corollary 8.5.1 Let B = A + E ∈ C
m×n with rank(B) = rank(A) = r . If I + A†E

is nonsingular, then
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B† = (A†A + X∗)(A†A − X (I + X∗X)−1X∗)(I + A†E)−1A†

(AA† − Y ∗(I + YY ∗)−1Y )(AA† + Y ∗),

where
X = (I + A†E)−1A†E(I − A†A)

and
Y = (I − AA†)E A†(I + E A†)−1.

Corollary 8.5.2 Let B = A + E ∈ C
m×n and I + A†

MN E be invertible.
(1) IfR(E∗) ⊂ R(A∗), then

B†
MN

= (I + A†
MN E)−1A†

MN (AA†
MN − M−1Y ∗(M−1 + YM−1Y ∗)−1Y )

(AA†
MN + M−1Y ∗M).

(2) IfR(E) ⊂ R(A), then

B†
MN

= (A†
MN A + N−1X∗N )(A†

MN A − X (N + X∗N X)−1X∗N )

(I + A†
MN E)−1A†

MN .

(3) [7] IfR(E) ⊂ R(A) and R(E∗) ⊂ R(A∗), then

B†
MN = (I + A†

MN E)−1A†
MN = A†

MN (I + E A†
MN )−1.

This section is based on [10].

Remarks

It is difficult to compute the condition numbers κ(A), κ2(A) and κMN (A). They
involve A−1, A†, and A†

MN or the eigenvalues λ1(A) and λn(A), singular values
σ1(A) and σr (A), (M, N ) singular values μ1(A) and μr (A). Many researchers have
tried to alleviate the difficulty by defining new condition numbers that are related to
the known condition numbers whereas easy to compute under certain circumstances.
Readers interested in this topic are referred to [6, 11–13]. Other researchers also
have investigated the minimal problem of condition numbers [7, 14, 15].

The condition numbers in this chapter are given in matrix norms. For more on the
condition numbers for the Moore-Penrose inverse, see [16] for Frobenius normwise
condition numbers, [17–19] for mixed and componentwise condition numbers, [20]
for condition numbers involving Kronecker products, and [21] for optimal perturba-
tion bounds.
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The bounds for the difference between the generalized inverses B† and A† is
discussed in [2, 22, 23] when B is an acute perturbation of A (R(A) and R(B) are
acute, so are R(A∗) and R(B∗)). More recent results on the acute perturbation of
the weighted M-P inverse can be found in [24].

The perturbation bounds of weighted pseudoinverse and weighted least squares
problem can be found in [25–27].

The continuity of the generalized inverse A(2)
T,S is given in [28] and the continuity

of {1} inverse is given in [29].
The condition numbers for the generalized inversion of structured matrices, such

as symmetric, circulant, and Hankel, can be found in [30]. Wei and Zhang [31]
presented a condition number related to the generalized inverse A(2)

T,S . Condition
numbers for the outer inverse can be found in [32].

There are more types of perturbation analysis, for example, smoothed analysis
[33, 34], weighted acute perturbation [35], multiplicative perturbation [36], stable
perturbation [37, 38], and level-2 condition number [39]. A study of null space
perturbation with applications in presented in [40]. There is a book on the condition
number for PDE [41].
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Chapter 9
Perturbation Analysis of the Drazin
Inverse and the Group Inverse

Having studied the perturbation of theM-P inverse and the weightedM-P inverse, we
now turn to the perturbation analysis of the Drazin and group inverses. Let A ∈ C

n×n

with Ind(A) = k. When B = A + E and E is small, we discuss whether the Drazin
inverse of B is close to that of A and how to reduce the effect of the perturbation.

9.1 Perturbation Bound for the Drazin Inverse

When we derived the perturbation bounds for the M-P inverse and the weighted M-P
inverse, we had B† → A† and B†

MN → A†
MN provided that B → A and rank(B) =

rank(A). In this section, we study the perturbation analysis of the Drazin inverse.
First, let us observe the following example. Let

A =

⎡
⎢⎢⎣
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ , E =

⎡
⎢⎢⎣

ε 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

and

B = A + E =

⎡
⎢⎢⎣

ε 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ ,

then B → A as ε → 0. It can be verified that

© Springer Nature Singapore Pte Ltd. and Science Press 2018
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Ad =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ and Bd = (A + E)d =

⎡
⎢⎢⎣

ε−1 ε−2 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ .

This shows that although rank(B) = rank(A) = 2, Bd �→ Ad as ε → 0.
Now we give a perturbation bound for the Drazin inverse. For convenience, we

denote the following condition as Condition (W).
Condition (W) B = A + E with Ind(A) = k, E = AAd E AAd , and� = ‖Ad E‖ <

1.

Lemma 9.1.1 If Condition (W) is satisfied, then R(Bk) = R(Ak) and N (Bk) =
N (Ak), where Ind(B) = k.

Proof From the condition, we have

B = A + E = A + AAd E = A(I + Ad E) (9.1.1)

= A + E Ad A = (I + E Ad)A, (9.1.2)

in which, since � = ‖Ad E‖ < 1, I + Ad E is nonsingular. Also, the eigenvalues of
Ad E are less than unity in absolute value, hence so are those of E Ad . Thus I + E Ad

is also nonsingular.
It follows from (9.1.1) and (9.1.2) thatR(B) = R(A) andN (B) = N (A). It then

remains to show that

rank(Bi ) = rank(Ai ), i = 1, . . . , k,

which follows by induction.
Likewise it follows by induction that

R(Bi ) ⊂ R(Ai ), i = 1, . . . , k,

from which we arrive at

R(Bi ) = R(Ai ), i = 1, . . . , k.

Similarly, we can obtain

N (B j ) = N (A j ), j = 1, . . . , k.

Thus
R(Bk) ⊕ N (Bk) = R(Ak) ⊕ N (Ak) = C

n,
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and
AAd = BBd ,

from which the conclusion follows. �

We are now ready to prove a theorem on a bound for ‖Bd − Ad‖/‖Ad‖.
Theorem 9.1.1 Suppose E = AAd E AAd and � = ‖Ad E‖ < 1, then

Bd = (I + Ad E)−1Ad = Ad(I + E Ad)
−1

and ‖Bd − Ad‖
‖Ad‖ ≤ �

1 − �
. (9.1.3)

Proof First, we have

Bd − Ad = −Ad EBd + Bd − Ad + Ad(B − A)Bd

= −Ad EBd + (Bd − Ad ABd) + (Ad BBd − Ad)

= −Ad EBd .

The last equality follows from Lemma 9.1.1. Thus,

(I + Ad E)Bd = Ad .

Similarly, we can prove Bd − Ad = −Bd E Ad and Bd(I + E Ad) = Ad . Since
‖Ad E‖ < 1, both I + Ad E and I + E Ad are nonsingular and

Bd = (I + Ad E)−1Ad = Ad(I + E Ad)
−1.

Consequently,

‖Bd‖ ≤ ‖Ad‖
1 − ‖Ad E‖ .

Next, applying the above inequality to

‖Bd − Ad‖ ≤ ‖Ad E‖ ‖Bd‖,

which can be obtained from Bd − Ad = −Ad EBd , we get the inequality (9.1.3). �

Corollary 9.1.1 If Condition (W) holds, then

‖Ad‖
1 + �

≤ ‖Bd‖ ≤ ‖Ad‖
1 − �

.
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Corollary 9.1.2 If, in addition to Condition (W), ‖Ad‖ ‖E‖ < 1, then

‖Bd − Ad‖
‖Ad‖ ≤ κd(A)‖E‖/‖A‖

1 − κd(A)‖E‖/‖A‖ ,

where κd(A) = ‖A‖ ‖Ad‖ is defined as the condition number with respect to the
Drazin inverse.

This section is based on [1].

9.2 Continuity of the Drazin Inverse

The continuity of the Drazin inverse is discussed in [2]. Let A ∈ C
n×n with Ind(A) =

k. From Chap. 2, the core-nilpotent decomposition

A = P

[
C O
O N

]
P−1

can be written as
A = CA + NA, (9.2.1)

where

CA = P

[
C O
O O

]
P−1, NA = P

[
O O
O N

]
P−1, (9.2.2)

P and C are nonsingular matrices of orders n and r , respectively, and N is nilpotent
matrix and Nk = O. It is easy to see that rank(Ak) = rank(CA) = rank(Ck), i.e., the
rank of Ak is the same as the rank of CA, we call rank(Ak) as the core-rank of A and
denote it by Core-rank(A). We will show how the continuity of Ad is related to the
core-rank of A.

First, we need the following two lemmas.

Lemma 9.2.1 Let A ∈ C
n×n
r with Ind(A) = k, then

rank(AAd) = Core-rank(A). (9.2.3)

Proof It follows from the core-nilpotent decomposition (9.2.1)–(9.2.2) that

Ak = P

[
Ck O
O O

]
P−1.

Thus
Core-rank(A) = rank(Ak) = rank(Ck) = r.
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Since

Ad = P

[
C−1 O
O O

]
P−1 and AAd = P

[
Ir O
O O

]
P−1,

where Ir is the identity matrix of order r ,

rank(AAd) = rank(Ir ) = r.

Hence (9.2.3) holds. �

Lemma 9.2.2 Suppose that the Pj and P are projectors, not necessarily orthogonal,
on C

n, and Pj → P, then there exists a j0 such that rank(Pj ) = rank(P) for j ≥ j0.

Proof Suppose that Pj → P , where P2
j = Pj and P2 = P . Since Pj → P , we

have rank(Pj ) ≥ rank(P) for large j from Corollary 8.1.1. Let E j = Pj − P , then
Pj = P + E j and E j → O, as j → ∞. Suppose that there does not exist a j0 such
that rank(Pj ) = rank(P) for j ≥ j0. Then there is a subsequence Pjk = P + E jk
such that rank(Pjk ) > rank(P), i.e., dim(R(Pjk )) > dim(R(P)). ButR(P) is com-
plementary to N (P). Hence for every jk , there exists a vector u jk �= 0 such that
u jk ∈ R(Pjk ) and u jk ∈ N (P), thus

u jk = Pjku jk = (P + E jk )u jk = E jku jk .

Let ‖ · ‖ denote an operator norm on C
n×n , then ‖E jk‖ ≥ 1 for all jk , which contra-

dicts the assumption that E jk → 0. Thus the required j0 exists. �

Next we present a theorem on the continuity of the Drazin inverse.

Theorem 9.2.1 Let A ∈ C
n×n, Ind(A) = k, and {A j } be a square matrix sequence

and lim j→∞ A j = A, then (A j )d → Ad if and only if there exists an integer j0 such
that

Core-rank(A j ) = Core-rank(A) f or all j ≥ j0. (9.2.4)

Proof Sufficiency: Suppose that A j = A + E j and E j → O. If (9.2.4) holds, then
the condition of Theorem 2 in [3] also holds. Thus if ‖E j‖ → 0, we have ‖(A j )d −
Ad‖ → 0, therefore (A j )d → Ad .
Necessity: Suppose that (A j )d → Ad , then (A j )(A j )d → AAd . Let Ind(A) = k and
Ind(A j ) = k j , then

Pj = (A j )(A j )d = PR(A
k j
j ),N (A

k j
j )

and P = AAd = PR(Ak ),N (Ak ).

It follows Lemma 9.2.1 that

rank((A j )(A j )d) = Core-rank(A j ), and rank(AAd) = Core-rank(A),

which implies Core-rank(A j ) = Core-rank(A) for large j from Lemma 9.2.2. �
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9.3 Core-Rank Preserving Modification of Drazin Inverse

It follows from the discussion in the previous section that when a matrix A is per-
turbed to A + E , if Core-rank(A + E) > Core-rank(A), discontinuity occurs and
the computed solution can be far from the true solution, which is a serious problem.
A core-rank preserving method is presented in [4], which alleviates the discontinuity
problem.

First, we state that if A j → A, j → ∞, then for sufficiently large j , we have

Core-rank(A j ) ≥ Core-rank(A)

and
Core-rank(A) = the number of the nonzero eigenvalues of A,

where repeated eigenvalues are counted repeatedly.
Suppose {A j } is a sequence of matrices of order n, A j → A, as j → ∞,

Core-rank(A) = l, and

Wj A jW
−1
j =

[
Bj C j

O N j

]
, (9.3.1)

where, for each j , Wj is a product of orthogonal or elementary lower triangular
matrices, N j is a strictly upper triangular matrix, Bj is a nonsingular matrix of order
l j . Let Core-rank(A j ) = l j , and l j ≥ l for sufficiently large j . Applying similarity
transformation to Bj

B j = Q j R j Q
−1
j ,

where R j is upper triangular and setting the l j − l small (in modular) diagonal
elements in R j to zero, we can get another matrix R̃ j . Thus Bj is modified into
B̃ j = Q j R̃ j Q

−1
j . Denote the diagonal matrix Dj = R j − R̃ j , then we have

lim
j→∞ Dj = O. (9.3.2)

In fact, let λi (A), i = 1, ..., n be the eigenvalues of A and

|λ1(A)| ≥ |λ2(A)| ≥ · · · ≥ |λl(A)| > |λl+1(A)| = · · · = |λn(A)| = 0.

By the assumptions A j → A and (9.3.1), when j → ∞, we have

λi (Bj ) = λi (A j ) → 0, i = l + 1, . . . l j .

Thus (9.3.2) holds.
We change A j to

Ã j = W−1
j

[
B̃ j C j

O N j

]
Wj . (9.3.3)
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Next we will prove A j → A, as j → ∞, then

Ã j → A. (9.3.4)

Indeed, from (9.3.1)–(9.3.3), we know that as j → ∞,

Ã j − A j = W−1
j

[
B̃ j − Bj O

O O

]
Wj → O

and
Ã j − A = ( Ã j − A j ) + (A j − A) → O,

that is, (9.3.4) holds.
It is easy to show that Core-rank( Ã j ) = Core-rank(A) for sufficiently large j .

Thus Ã j is called the core-rank preserving modification of A j .
According to the continuity of the Drazin inverse, Theorem 9.2.1, we have

lim
j→∞( Ã j )d = Ad .

It implies that the Drazin inverse is continuous after the core-rank preserving modi-
fication of A j .

Example Let

A =

⎡
⎢⎢⎣
1 2 4 0
0 −1 1 1
0 −1 1 0
0 0 0 0

⎤
⎥⎥⎦ and A + E =

⎡
⎢⎢⎣
1 2 4 0
0 −1 + ε 1 + ε 1
0 −1 − ε 1 + 3ε 0
0 0 0 0

⎤
⎥⎥⎦ ,

then

Ad =

⎡
⎢⎢⎣
1 −4 10 −4
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

and A + E → A, as ε → 0. But (A + E)d does not exist when ε → 0. Since
Core-rank(A + E) = 3 > Core-rank(A) = 1, we now make the core-rank preserv-
ing modification of A + E . Denote

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0

√
2

2
−

√
2

2
0

0

√
2

2

√
2

2
0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,
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then

QT (A + E)Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 3
√
2

√
2 0

0 2ε 2 + 2ε

√
2

2

0 0 2ε −
√
2

2
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Set

Ã + E = Q

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 3
√
2

√
2 0

0 0 2 + 2ε

√
2

2

0 0 0 −
√
2

2
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
QT .

Hence

( Ã + E)d =

⎡
⎢⎢⎣
1 −4 − 6ε 10 + 6ε −4 − 6ε
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ → Ad , as ε → 0.

9.4 Condition Number of the Drazin Inverse

The following condition number of the Drazin inverse Ad :

C(A) =
(
2

k−1∑
i=0

‖Ad‖i+1
2 ‖Ai‖2(1 + ‖A‖2‖Ad‖2) + ‖Ad‖2

)
‖A‖2 (9.4.1)

and the perturbation bound

‖Bd − Ad‖2
‖Ad‖2 ≤ C(A)

‖E‖2
‖A‖2 + O(‖E‖22)

can be found in [3]. This reflects that if the condition number C(A) is small, the
perturbation E of A has little effect on Ad ; if the condition number C(A) is large,
the perturbation E may have large effect on Ad .

In this section, we discuss the normwise relative condition number of the Drazin
inverse. We assume that

A = P

[
C O
O N

]
P−1
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is the Jordan canonical form of A and define

‖A‖P = ‖P−1AP‖2 and ‖A‖(F)
P = ‖P−1AP‖F .

Theorem 9.4.1 Let A, E ∈ C
n×n with Ind(A) = k. The condition number defined

by

condP(A) = lim
ε→0+

sup
‖E‖P ≤ ε‖A‖P
R(E) ⊂ R(Ak )

R(E∗) ⊂ R(Ak
∗
)

‖(A + E)d − Ad‖P

ε‖Ad‖P

can be given by condP(A) = ‖A‖P ‖Ad‖P .

Proof Following Theorem 9.1.1 and neglecting O(ε2) and higher order terms in a
standard expansion, we have

(A + E)d − Ad = −Ad E Ad .

Let E = ε‖A‖P Ê , where ‖Ê‖P ≤ 1, then

‖Ad Ê Ad‖P ≤ ‖Ad‖P ‖Ê‖P ‖Ad‖P ≤ ‖Ad‖2P .

It then remains to show that

sup
‖Ê‖P ≤ 1

R(Ê) ⊂ R(Ak )

R(Ê∗) ⊂ R(Ak
∗
)

‖Ad Ê Ad‖P = ‖Ad‖2P .

Indeed, set

Ê = P

[
y
0

]
[x∗ 0T ]P−1,

where ‖C−1y‖2 = ‖x∗C−1‖2 = ‖C−1‖2 and ‖x‖2 = ‖y‖2 = 1. Thus

‖Ad Ê Ad‖P

=
∥∥∥∥P

[
C−1 O
O O

]
P−1P

[
y
0

]
[x∗ 0T ]P−1P

[
C−1 O
O O

]
P−1

∥∥∥∥
P

=
∥∥∥∥
[
C−1 O
O O

] [
y
0

]
[x∗ 0T ]

[
C−1 O
O O

]∥∥∥∥
2

= ‖C−1y‖2 ‖x∗C−1‖2
= ‖C−1‖22
= ‖Ad‖2P .
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Since

Ê = P

[
y
0

]
[x∗ 0T ]P−1 = P

[
yx∗ O
O O

]
P−1,

it is easy to check that R(Ê) ⊂ R(Ak) and R(Ê∗) ⊂ R(Ak∗
). The proof is com-

pleted. �

Next we characterize the condition number of the F-norm.

Theorem 9.4.2 Let A, E ∈ C
n×n with Ind(A) = k. The condition number defined

by

cond(F)
P (A) = lim

ε→0+
sup

‖E‖(F)
P ≤ ε‖A‖(F)

P
R(E) ⊂ R(Ak )

R(E∗) ⊂ R(Ak
∗
)

‖(A + E)d − Ad‖(F)
P

ε‖Ad‖(F)
P

can be given by

cond(F)
P (A) = ‖A‖(F)

P ‖Ad‖2P
‖Ad‖(F)

P

.

Proof The proof is similar to that of Theorem 9.4.1. �

This section is adopted from [5].

9.5 Perturbation Bound for the Group Inverse

In this section, we present a perturbation bound for the group inverse. The details
can be found in [6, 7].

Lemma 9.5.1 Suppose that B = A + E with Ind(A) ≤ 1 and rank(B) = rank(A).
If

‖Ag‖ ‖E‖ <
1

1 + Ind(A)
√‖AAg‖

, (9.5.1)

then
Ind(B) = Ind(A) and ‖Y‖ < 1,

where
Y = Ag(I + E Ag)

−1E(I − AAg)E(I + AgE)−1Ag. (9.5.2)

Proof Without loss of generality, we assume that Ind(A) = 1 because Ind(A) = 0
implies that A + E is nonsingular and Y = O.
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It follows from (9.5.1) that ‖AgE‖ ≤ ‖Ag‖ ‖E‖ < 1 and

‖Ag‖ ‖E‖ Ind(A)
√‖AAg‖ < 1 − ‖Ag‖ ‖E‖.

Thus

‖Y‖ ≤ ‖Ag‖2‖E‖2 Ind(A)‖AAg‖
(1 − ‖Ag‖ ‖E‖)2 < 1.

Next we will show that Ind(A + E) = 1. Since Ind(A) = 1, there is a nonsingular
matrix P such that

A = P

[
D O
O O

]
P−1,

where D is a nonsingular matrix. Partition

P = [P1 P2] and P−1 =
[
Q1

Q2

]
,

where P1 and Q∗
1 have the same column dimensions as D. Let

P−1EP =
[
F11 F12

F21 F22

]
.

As shown in [6, Theorem 4.1], D + F11 is nonsingular and therefore we have

P−1(A + E)P =
[
D + F11 F12

F21 F22

]
=

[
I
S

]
(D + F11)[I T ], (9.5.3)

where T and S are defined and expressed as

T = (D + F11)
−1F12 = Q1AgE(I + AgE)−1P2, (9.5.4)

S = F21(D + F11)
−1 = Q2(I + E Ag)

−1E AgP1. (9.5.5)

It follows that T S = Q1Y P1 and

ρ(T S) = ρ(Y P1Q1) ≤ ρ(Y ) ≤ ‖Y‖ < 1,

which implies that I + T S is nonsingular. It follows from (9.5.3) and [2, Corol-
lary 7.7.5] that

Ind(B) = Ind(P−1(A + E)P) = 1,

which completes the proof. �

The following theorem gives a new general upper bound for the relative error ‖Bg −
Ag‖/‖Ag‖.
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Theorem 9.5.1 Let B = A + E such that Ind(A) ≤ 1 and rank(B) = rank(A). If
(9.5.1) holds, then

‖Bg − Ag‖
‖Ag‖

≤ (1 − ‖Ag‖ ‖E‖)(1 − ‖Ag‖ ‖E‖ + ‖Ag‖ ‖(I − AAg)E‖)
((1 − ‖Ag‖ ‖E‖)2 − ‖Ag‖2 ‖E(I − AAg)E‖)2

· (1 − ‖Ag‖ ‖E‖ + ‖Ag‖ ‖E(I − AAg)‖) − 1. (9.5.6)

Proof We give an outline of the proof and refer the details to [6, 7].
From (9.5.3), we have

Bg = P

[
I
S

]
(I + T S)−1(D + F11)

−1(I + T S)−1
[
I T

]
P−1. (9.5.7)

By the Eqs. (9.5.4) and (9.5.5) and the definition (9.5.2) of Y , we get I + T S =
Q1(1 + Y )P1. Consequently,

(I + T S)−1 = Q1(1 + Y )−1P1.

Applying the above equation and

(D + F11)
−1 = Q1Ag(I + E Ag)

−1P1 = Q1(I + AgE)−1AgP1

to (9.5.7), we obtain

Bg

= P

[
I
S

]
Q1(1 + Y )−1P1Q1Ag(I + E Ag)

−1P1Q1(1 + Y )−1P1
[
I T

]
P−1

= (P1 + P2S)Q1(1 + Y )−1Ag(I + E Ag)
−1(1 + Y )−1P1(Q1 + T Q2).

Expanding the right-hand side of the above equation, we get

Bg = (I + Y )−1(I + AgE)−1Ag(I + Y )−1

+ (I − AAg)(I + E Ag)
−1E Ag(I + Y )−1(I + AgE)−1Ag(I + Y )−1

+ (I + Y )−1Ag(I + E Ag)
−1(I + Y )−1AgE(I + AgE)−1(I − AAg)

+ (I − AAg)(I + E Ag)
−1E Ag(I + Y )−1Ag(I + E Ag)

−1(I + Y )−1

· AgE(I + AgE)−1(I − AAg). (9.5.8)

where Y is given in (9.5.2).
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Let the four terms in the summation on the right-hand side of (9.5.8) be denoted
by t1, t2, t3 and t4. Then

Bg − Ag = t1 − Ag + t2 + t3 + t4. (9.5.9)

Now,

t1 − Ag = (I + Y )−1((I + AgE)−1 − I )Ag(I + Y )−1

− (I + Y )−1AgY (I + Y )−1 − (I + Y )−1Y Ag,

then

‖t1 − Ag‖
‖Ag‖ ≤ ‖Ag‖ ‖E‖

(1 − ‖Y‖)2(1 − ‖Ag‖ ‖E‖) + 2‖Y‖ − ‖Y‖2
(1 − ‖Y‖)2

= 1

(1 − ‖Y‖)2(1 − ‖Ag‖ ‖E‖) − 1.

Similarly, we have

‖t2‖
‖Ag‖ ≤ ‖Ag‖ ‖(I − AAg)E‖

(1 − ‖Y‖2(1 − ‖Ag‖ ‖E‖)2
‖t3‖
‖Ag‖ ≤ ‖Ag‖ ‖E(I − AAg)‖

(1 − ‖Y‖)2(1 − ‖Ag‖ ‖E‖)2
‖t3‖
‖Ag‖ ≤ ‖Ag‖2 ‖(I − AAg)E‖ ‖E(I − AAg)‖

(1 − ‖Y‖)2(1 − ‖Ag‖ ‖E‖)3 .

Applying the above four inequalities to (9.5.9), we have

‖Bg − Ag‖
‖Ag‖

≤ 1

(1 − ‖Y‖)2(1 − ‖Ag‖ ‖E‖) + ‖Ag‖ ‖(I − AAg)E‖
(1 − ‖Y‖2(1 − ‖Ag‖ ‖E‖)2

+ ‖Ag‖ ‖E(I − AAg)‖
(1 − ‖Y‖)2(1 − ‖Ag‖ ‖E‖)2

+ ‖Ag‖2 ‖(I − AAg)E‖ ‖E(I − AAg)‖
(1 − ‖Y‖)2(1 − ‖Ag‖ ‖E‖)3 − 1.
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Simplifying the right-hand side of the above inequality, we obtain

‖Bg − Ag‖
‖Ag‖

≤ (1 − ‖Ag‖ ‖E‖ + ‖Ag‖ ‖(I − AAg)E‖)
(1 − ‖Y‖)2(1 − ‖Ag‖ ‖E‖)3

(1 − ‖Ag‖ ‖E‖ + ‖Ag‖ ‖E(I − AAg)‖) − 1. (9.5.10)

It is shown in [6] that

1

1 − ‖Y‖ ≤ (1 − ‖AgE‖)(1 − ‖E Ag‖)
(1 − ‖Ag‖ ‖E‖)2 − ‖Ag‖2 ‖E(I − AAg)E‖ .

The upper bound (9.5.6) then follows from the above inequality and (9.5.10). �

Remarks

The condition number C(A) in (9.4.1) is more complicated than those of regular
inverse, the M-P inverse, and the weighted M-P inverse: ‖A‖ ‖A−1‖, ‖A‖2 ‖A†‖2,
and ‖A‖MN‖A†

MN‖NM . In 1979, Campbell and Meyer discussed this problem in [2]
and pointed out:

If A = P J P−1 is the Jordan canonical form of A, P is nonsingular, and Ind(A) =
k, and we compute Ad by Ad = Ak(A2k+1)†Ak , then ‖A‖(‖Ad‖ + 1) or

C(A) = ‖P‖ ‖P−1‖(‖J‖k + ‖J †‖k)

can be regarded as the condition number.
More results on the continuity and perturbation analysis of the matrix Drazin

inverse and W-weighted Drazin inverse can be found in [8–17]. The sign analysis of
Drazin and group inverses is presented in [18, 19]. Some additive properties of the
Drazin inverse are given in [20, 21]. The stable perturbation of the Drazin inverse
is discussed in [16, 22] and acute perturbation of the group inverse in [23]. In [24],
perturbation bounds are derived by the separation of simple invariant subspaces.

Condition numbers of the Bott-Duffin inverse and their condition numbers are
presented in [25].

The perturbation theories of the Bott-Duffin inverse, the generalized Bott-Duffin
inverse, the W-weighted Drazin inverse and the generalized inverse A(2)

T,S are pre-
sented in [26–30].

Index splitting for the Drazin inverse and the singular linear system can be found
in [31–38].

The perturbation and subproper splitting for the generalized inverse A(2)
T,S are

discussed in [39, 40].
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Chapter 10
Generalized Inverses of Polynomial
Matrices

A polynomial matrix is a matrix whose entries are polynomials. Equivalently, a poly-
nomial matrix can be expressed as a polynomial with matrix coefficients. Formally
speaking, in the univariable case, (R[x])m×n and (Rm×n)[x] are isomorphic. In other
words, extending the entries of matrices to polynomials is the same as extending the
coefficients of polynomials to matrices. An example of a 3 × 2 polynomial matrix
of degree 2:

⎡
⎣

1 x2

x 0
x + 1 x2 − 1

⎤
⎦ =

⎡
⎣
0 1
0 0
0 1

⎤
⎦ x2 +

⎡
⎣
0 0
1 0
1 0

⎤
⎦ x +

⎡
⎣
1 0
0 0
1 −1

⎤
⎦ .

In this chapter, we study the Moore-Penrose and Drazin inverses of a polynomial
matrix and algorithms for computing the generalized inverses.

10.1 Introduction

We start with the scalar nonsingular case. Let A ∈ R
n×n be nonsingular and

p(λ) = det(λI − A) = c0λ
n + c1λ

n−1 + · · · + cn−1λ + cn, (10.1.1)

where c0 = 1, be the characteristic polynomial of A. The Cayley-Hamilton theorem
says

c0A
n + c1A

n−1 + · · · + cn−1A + cn I = O.

Thus, we have

A−1 = −c−1
n Pn = (−1)n−1 Pn

det(A)
,
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where
Pn = c0A

n−1 + c1A
n−2 + · · · cn−2A + cn−1 I,

which can be efficiently computed using the iterative Horner’s Rule:

P0 = O; c0 = 1; Pi = APi−1 + ci−1 I, i = 1, ..., n.

How can the coefficients ci , i = 1, ..., n be obtained efficiently? It turns out that

ci = − tr(APi )

i
, i = 1, ...n.

Putting all things together, the following algorithm, known as the Faddeev-LeVerrier
algorithm [1, 2] and presented in Sect. 5.5, efficiently computes the coefficients ci ,
i = 1, ..., n, of the characteristic polynomial of A.

Algorithm 10.1.1 Given a nonsingular matrix A ∈ C
n×n , this algorithm computes

the coefficients ci , i = 1, ..., n, of its characteristic polynomial (10.1.1) and its inverse
A−1.

1. P0 = O; c0 = 1;
2. for i = 1 to n

Pi = APi−1 + ci−1 I ;
ci = −tr(APi )/ i ;

3. A−1 = −c−1
n Pn = (−1)n−1Pn/ det(A);

As pointed out in Sect. 5.5, Decell generalized the above algorithm to general
scalar matrices and the Moore-Penrose inverse [3]. Let B = AA∗ and

f (λ) = det(λI − B) = a0λ
n + a1λ

n−1 + · · · + an−1λ + an, a0 = 1, (10.1.2)

be the characteristic polynomial of B. If k > 0 is the largest integer such that ak �= 0,
then the Moore-Penrose inverse of A is given by

A† = −a−1
k A∗(Bk−1 + a1B

k−2 + · · · + ak−1 I ).

If k = 0 is the largest integer such that ak �= 0, that is, a0 is the only nonzero coeffi-
cient, then A† = O.

Analogous to Algorithm 10.1.1, the following Decell’s algorithm computes A†.

Algorithm 10.1.2 [3] Given A ∈ C
m×n and k the largest integer such that ak in

(10.1.2) is nonzero, this algorithm computes the Moore-Penrose inverse of A.

1. if k = 0 return A† = O;
2. B = AA∗;
3. P0 = O; A0 = O; a0 = 1;
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4. for i = 1 to k

Pi = Ai−1 + ai−1 I ;
Ai = BPi ;
ai = −tr(Ai )/ i ;

5. A† = −a−1
k A∗Pk ;

In the following sections, we generalize the above algorithm to polynomial matri-
ces and their generalized inverses.

10.2 Moore-Penrose Inverse of a Polynomial Matrix

The definition of theMoore-Penrose inverse of a polynomial matrix is the same as the
scalar case, that is, it is the polynomial matrix satisfying the four Penrose conditions.

The Decell’s Algorithm 10.1.2 for computing the Moore-Penrose inverse is gen-
eralized to polynomial matrices [4]. Consider the polynomial matrix

A(x) = A0x
n + A1x

n−1 + · · · + An−1x + An,

where Ai ∈ R
m×n , i = 0, 1, ..., n. Let B(x) = A(x)A(x)T and

p(λ, x) = det(λI − B(x))

= a0(x)λ
n + a1λ

n−1 + · · · + an−1(x)λ + an(x), (10.2.1)

where a0(x) = 1, be the characteristic polynomial of B(x). It is shown in [4] that if
k is the largest integer such that ak(x) �= 0 and Z is the set containing the zeros of
ak(x), then the Moore-Penrose inverse A(x)† of A(x) for x ∈ R\Z is given by

A(x)† = −ak(x)
−1A(x)T

(
B(x)k−1 + a1(x)B(x)

k−2 + · · · + ak−1(x)I
)
.

If k = 0 is the largest integer such that ak(x) �= 0, then A(x)† = O. Moreover, for
each xi ∈ Z, if ki < k is the largest integer such that aki (xi ) �= 0, then the Moore-
Penrose inverse A(xi )

† of A(xi ) is given by

A(xi )
†

= −aki (xi )
−1A(xi )

T
(
B(xi )

ki−1 + a1(xi )B(xi )
ki−2 + · · · + aki−1(xi )I

)
.

The algorithm for computing the polynomial matrix A(x)† is completely analogous
to Algorithm 10.1.2, replacing the scalar matrices A, Ai , B, and Pi with the polyno-
mial matrices A(x), Ai (x), B(x), and P(x) respectively and the scalars ai with the
polynomials ai (x). Obviously, the algorithm involves symbolic computation. Also
in [4], a two-dimensional algorithm that avoids symbolic computation is presented.
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From the definition B(x) = A(x)A(x)T , the degree of B(x) can be as high as 2n.
Consequently, Ai (x), ai (x), and Pi+1(x) are of degrees up to 2in. Let

ai (x) =
2in∑
j=0

ai, j x
j , i = 1, ..., k,

where ai, j are scalars, and

Pi (x) =
2(i−1)n∑
j=0

Pi, j x
j , i = 1, ..., k,

where Pi, j are scalar matrices, then A(x)† can be written as

A(x)† = −
⎛
⎝

2kn∑
j=0

ak, j x
j

⎞
⎠

−1 ⎛
⎝

n∑
j=0

AT
j x j

⎞
⎠

⎛
⎝

2(k−1)n∑
j=0

Pk, j x
j

⎞
⎠

= −
⎛
⎝

2kn∑
j=0

ak, j x
j

⎞
⎠

−1 ⎛
⎝

(2k−1)n∑
j=0

j∑
l=0

(AT
j−l Pk,l)x

j

⎞
⎠ . (10.2.2)

Now we derive ai, j and Pi, j . Following Algorithm 10.1.2, first we have

Ai (x) = B(x)Pi (x)

=
⎛
⎝

n∑
j=0

A j x j

⎞
⎠

⎛
⎝

n∑
j=0

AT
j x j

⎞
⎠

⎛
⎝

2(i−1)n∑
j=0

Pi, j x
j

⎞
⎠

=
⎛
⎝

2n∑
j=0

⎛
⎝

j∑
p=0

A j−p A
T
p

⎞
⎠ x j

⎞
⎠

⎛
⎝

2(i−1)n∑
j=0

Pi, j x
j

⎞
⎠

=
2in∑
j=0

⎛
⎝

j∑
p=0

(
j−p∑
l=0

(A j−p−l A
T
l )

)
Pi,p

⎞
⎠ x j .

It then follows that

ai (x) = −i−1tr(Ai (x))

= −i−1
2in∑
j=0

tr

⎛
⎝

j∑
p=0

(
j−p∑
l=0

(A j−p−l A
T
l )

)
Pi,p

⎞
⎠ x j ,

which gives
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ai, j = −1

i
tr

⎛
⎝

j∑
p=0

(
j−p∑
l=0

(A j−p−l A
T
l )

)
Pi,p

⎞
⎠ , j = 0, ..., 2in. (10.2.3)

Moreover,

Pi (x) = Ai−1(x) − ai−1(x)I

=
2(i−1)n∑
j=0

⎛
⎝

j∑
p=0

(
j−p∑
l=0

(A j−p−l A
T
l )

)
Pi−1,p

⎞
⎠ x j +

2(i−1)n∑
j=0

ai−1, j x
j

=
2(i−1)n∑
j=0

⎛
⎝

⎛
⎝

j∑
p=0

(
j−p∑
l=0

(A j−p−l A
T
l )Pi−1,p

)⎞
⎠ + ai−1, j I

⎞
⎠ x j ,

which gives

Pi, j =
⎛
⎝

j∑
p=0

(
j−p∑
l=0

(A j−p−l A
T
l )Pi−1,p

)⎞
⎠ + ai−1, j I, (10.2.4)

for j = 0, ..., 2(i − 1)n.
Finally, we have the following two-dimensional algorithm for computing A(x)†.

Algorithm 10.2.1 [4] Given a polynomial matrix A(x) ∈ R
m×n[x] and k, the largest

integer such that ak(x) in (10.2.1) is nonzero, this algorithm computes the Moore-
Penrose inverse of A(x).

1. if k = 0 return A(x)† = O;
2. P0,0 = O; a0,0 = 1;
3. for i = 1 to k

compute Pi, j , j = 0, ..., 2(i − 1)n, by (10.2.4);
compute ai, j , j = 0, ..., 2in, by (10.2.3);

4. compute A(x)† by (10.2.2).

Note that in the above algorithm it is assumed that Pi, j = Owhen j > 2(i − 1)n.
This algorithm is called two-dimensional, since it involves the computation of two-
dimensional variables ai, j and Pi, j .

10.3 Drazin Inverse of a Polynomial Matrix

The definition of the Drazin inverse A(x)d of a polynomial matrix A(x) ∈ R
n×n[x]

is defined as the same as the scalar case, that is, A(x)d is the matrix satisfying the
three conditions:
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A(x)k+1A(x)d = A(x)k,

A(x)d A(x)A(x)d = A(x)d ,

A(x)A(x)d = A(x)d A(x),

where k = ind(A(x)), the index of A(x), defined as the smallest integer such that
rank(A(x)k) = rank(A(x)k+1).

Let

p(λ, x) = det(λI − A(x))

= a0(x)λ
n + a1(x)λ

n−1 + · · · + an−1(x)λ + an(x),

where a0(x) = 1, be the characteristic polynomial of A(x)k+1, then

ar+1(x) = ... = an(x) = 0, and ar (x) �= 0,

where r = rank(A(x)k+1). Let Z be the set containing the zeros of ar (x), then the
Drazin inverse A(x)d of A(x) for x ∈ R\Z is given by

A(x)d = −ar (x)
−1A(x)k((A(x)k+1)r−1 + a1(x)(A(x)

k+1)r−2 + · · ·
+ ar−2(x)A(x)

k+1 + ar−1(x)I ).

If r = 0, then A(x)d = O.
Following the Decell’s Algorithm 10.1.2, we have the following finite algorithm

for computing the Drazin inverse A(x)d of A(x) [5, 6].

Algorithm 10.3.1 [5] Given A(x) ∈ R
n×n[x], k = Ind(A(x)) and

r = rank(A(x)k+1), this algorithm computes the Drazin inverse A(x)d of A(x).

1. if r = 0 return A(x)d = O;
2. B(x) = A(x)k+1;
3. P0(x) = O; a0(x) = 1;
4. for i = 1 to r

Pi (x) = B(x)Pi−1(x) + ai−1(x)I ;
ai = −tr(B(x)Pi (x))/ i ;

5. A(x)d = −ar (x)−1A(x)k Pr (x).

Following derivation of the two-dimensional Algorithm 10.2.1, we can obtain a
two-dimensional algorithm for computing the Drazin inverse of a polynomial matrix
[5, 6].

Notice that the degrees of B(x) = A(x)k+1, A(x)k , Pi (x), and ai (x) are respec-
tively (k + 1)n, kn, (i − 1)(k + 1)n, and i(k + 1)n. Let

B(x) =
(k+1)n∑
j=0

Bj x
j , A(x)k =

kn∑
j=0

Â j x
j , Pi (x) =

(i−1)(k+1)n∑
j=0

Pi, j x
j ,
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where Bj , Â j , and Pi, j are scalar matrices, and

ai (x) =
i(k+1)n∑
j=0

ai, j x
j ,

where ai, j are scalars, then

A(x)d

= −
⎛
⎝

r(k+1)n∑
j=0

ar, j x
j

⎞
⎠

−1 ⎛
⎝

kn∑
j=0

Â j x
j

⎞
⎠

⎛
⎝

(r−1)(k+1)n∑
j=0

Pr, j x
j

⎞
⎠

= −
⎛
⎝

r(k+1)n∑
j=0

ar, j x
j

⎞
⎠

−1 ⎛
⎝

(kr+r−1)n∑
j=0

(
j∑

l=0

( Â j−l Pr,l)

)
x j

⎞
⎠ . (10.3.1)

Now we derive ai, j and Pi, j . Firstly,

ai (x) = −i−1tr(B(x)Pi (x))

= −i−1tr

⎛
⎝

⎛
⎝

(k+1)n∑
j=0

Bj x
j

⎞
⎠

⎛
⎝

(i−1)(k+1)n∑
j=0

Pi, j (x)x
j

⎞
⎠

⎞
⎠

= −i−1tr

⎛
⎝

i(k+1)n∑
j=0

(
j∑

l=0

Bj−l Pi,l

)
x j

⎞
⎠ ,

implying that

ai, j = −1

i
tr

(
j∑

l=0

Bj−l Pi,l

)
. j = 0, ..., i(k + 1)n. (10.3.2)

Secondly,

Pi (x) = B(x)Pi−1(x) − ai−1(x)I

=
⎛
⎝

(k+1)n∑
j=0

Bj x
j

⎞
⎠

⎛
⎝

(i−2)(k+1)n∑
j=0

Pi−1, j x
j

⎞
⎠ +

(i−1)(k+1)n∑
j=0

ai−1, j I x
j

=
(i−1)(k+1)n∑

j=0

(
j∑

l=0

Bj−l Pi−1,l

)
x j +

(i−1)(k+1)n∑
j=0

ai−1, j x
j

=
(i−1)(k+1)n∑

j=0

((
j∑

l=0

Bj−l Pi−1,l

)
ai−1, j I

)
x j ,
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implying that

Pi, j =
(

j∑
l=0

Bj−l Pi−1,l

)
+ ai−1, j I, j = 0, ..., (i − 1)(k + 1)n. (10.3.3)

Finally, we have the following two-dimensional algorithm for computing the
Drazin inverse A(x)d of A(x). Comparing with Algorithm 10.3.1, this algorithm
avoids symbolic computation.

Algorithm 10.3.2 [5] Given A(x) ∈ R
n×n[x], k = Ind(A(x)) and

r = rank(A(x)k+1), this algorithm computes the Drazin inverse A(x)d of A(x).

1. if k = 0 return A(x)d = O;
2. P0,0 = O; a0,0 = 1;
3. for i = 1 to k

compute Pi, j , j = 0, ..., (i − 1)(k + 1)n, by (10.3.3);
compute ai, j , j = 0, ..., i(k + 1)n, by (10.3.2);

4. compute A(x)d by (10.3.1).

In the algorithm, it is assumed that Bj = O, when j > (k + 1)n, and Pi, j = O,
when j > (i − 1)(k + 1)n.

Example 10.3.1 [5] Let

A(x) =

⎡
⎢⎢⎣
x − 1 1 0 0
0 1 x 0
0 0 0 x
0 0 0 0

⎤
⎥⎥⎦ ,

then n = 1.

It can be determined

rank(A(x)2) = rank(A(x)3) = 2, when x �= 1.

Thus r = k = 2. Initially, we have

P0,0 = O and a0,0 = 1.

When i = 1, P1,0 = I and

a1,0 = −tr(B0P1,0) = 0,

a1,1 = −tr(B1P1,0) = −3,

a1,2 = −tr(B2P1,0) = 3,

a1,3 = −tr(B3P1,0) = −1.
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When i = 2,

P2,0 = B0P1,0 + a1,0 I =

⎡
⎢⎢⎣

−1 1 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

P2,1 = B1P1,0 + a1,1 I =

⎡
⎢⎢⎣
0 −1 0 0
0 −3 1 0
0 0 −3 0
0 0 0 −3

⎤
⎥⎥⎦

P2,2 = B2P1,0 + a1,2 I =

⎡
⎢⎢⎣
0 1 1 1
0 3 0 1
0 0 3 0
0 0 0 3

⎤
⎥⎥⎦

P2,3 = B3P1,0 + a1,3 I =

⎡
⎢⎢⎣
0 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦

and

a2,0 = −1

2
tr(B0P2,0) = −1

a2,1 = −1

2
tr(B1P2,0 + B0P2,1) = 3

a2,2 = −1

2
tr(B2P2,0 + B1P2,1 + B0P2,2) = −3

a2,3 = −1

2
tr(B3P2,0 + B2P2,1 + B1P2,2 + B0P2,3) = 1

a2,4 = −1

2
tr(B3P2,1 + B2P2,2 + B1P2,3) = 0

a2,5 = −1

2
tr(B3P2,2 + B2P2,3) = 0

a2,6 = −1

2
tr(B3P2,3) = 0

Finally, we obtain

A(x)d = − 1

(x − 1)3

⎡
⎢⎢⎣

−(x − 1)2 (x − 1)2 x2(x − 1) x2(x2 − x + 1)
0 −(x − 1)3 −x(x − 1)3 −x2(x − 1)3

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

for x �= 1. The case when x = 1 can be dealt with as a special case. �
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Remarks

An algorithm for computing the Moore-Penrose inverse of a polynomial matrix
with two variables is presented in [4]. In [7], Karampetakis and Tzekis improved
Algorithm 10.2.1 for the case when there are big gaps between the powers of x , for
example, A(x) = A0x80 + A79x + A80. The above algorithms can be generalized to
rational matrices by using the least common denominator of Pi (x) [6].
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Chapter 11
Moore-Penrose Inverse of Linear
Operators

Before Moore introduced the generalized inverse of matrices by algebraic methods,
Fredholm, Hilbert, Schmidt, Bounitzky, Hurwitz and other mathematicians had stud-
ied the generalized inverses of integral operators and differential operators. Recently,
due to the development of science and technology and the need for practical prob-
lems, researchers are very interested in the study of the generalized inverses of linear
operators in abstract spaces.

In this and the following chapter, we will introduce the concepts, properties,
representation theorems and computational methods for the generalized inverses of
bounded linear operators in Hilbert spaces. This chapter is based on [1], Chap. 12
contains our recent research results [2, 3].

We introduce the following notations used in these two chapters: X1 and X2 are
Hilbert spaces over the same field; B(X1, X2) denotes the set of bounded linear
operators from X1 to X2; R(T ) and N (T ) represent the range and null space of
the operator T , respectively; σ(T ) and σr (T ) stand for the spectrum and spectral
radius of the operator T ; T ∗ is the conjugate operator of the operator T ; T |S is the
restriction of T on the subspace S; M⊥ represents the orthogonal complement of M .

11.1 Definition and Basic Properties

Suppose that X1 and X2 are Hilbert spaces over the same field of scalars.We consider
the fundamental problem of solving a general linear equation of the type

T x = b, (11.1.1)

where b ∈ X2 and T ∈ B(X1, X2).

© Springer Nature Singapore Pte Ltd. and Science Press 2018
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The most prevalent example of an equation of the type (11.1.1) is obtained when
X1 = R

n , X2 = R
m and T is an m-by-n matrix. If X1 = X2 = L2[0, 1], then the

integral operator defined by

(T x)(s) =
∫ 1

0
k(s, t)x(t)dt, s ∈ [0, 1],

where k(s, t) ∈ L2([0, 1] × [0, 1]), provides another important example.
If the inverse T−1 of the operator T exists, then the Eq. (11.1.1) always has the

unique solution x = T−1b. But in general such a linear equation may have more
than one solution whenN (T ) �= {0}, or may have no solution at all when b /∈ R(T ).
Even if the equation has no solution in the traditional meaning, it is still possible to
assign what is in a sense of a “best possible” solution to the problem. In fact, if we
let P denote the projection of X2 onto R(T ), then Pb is the vector in R(T ) which
is closest to b and it is reasonable to consider a solution u ∈ X1 of the equation

T x = Pb, (11.1.2)

as a generalized solution of (11.1.1).
Another natural approach to assigning generalized solutions to the Eq. (11.1.1) is

to find a u ∈ X1 which “comes closest” to solving (11.1.1) in the sense that

‖Tu − b‖ ≤ ‖T x − b‖,

for any x ∈ X1.
The next theorem shows the equivalence between (11.1.2) and the above problem.

Theorem 11.1.1 Suppose T ∈ B(X1, X2) has closed rangeR(T ) and b ∈ X2, then
the following conditions on u ∈ X1 are equivalent.
(1) Tu = Pb;
(2) ‖Tu − b‖ ≤ ‖T x − b‖ for any x ∈ X1;
(3) T ∗Tu = T ∗b.

Proof (1) ⇒ (2): Suppose Tu = Pb. Then by applying the Pythagorean theorem
and the fact that Pb − b ∈ R(T )⊥, we have

‖T x − b‖2 = ‖T x − Pb‖2 + ‖Pb − b‖2
= ‖T x − Pb‖2 + ‖Tu − b‖2
≥ ‖Tu − b‖2,

for any x ∈ X1.
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(2) ⇒ (3): If ‖Tu − b‖ ≤ ‖T x − b‖ for all x ∈ X1, then again by applying the
Pythagorean theorem and the equality Pb = T x for some x ∈ X1, we have

‖Tu − b‖2
= ‖Tu − Pb‖2 + ‖Pb − b‖2
= ‖Tu − Pb‖2 + ‖T x − b‖2
≥ ‖Tu − Pb‖2 + ‖Tu − b‖2.

Therefore Tu − Pb = 0 and

Tu − b = Pb − b ∈ R(T )⊥ = N (T ∗)

implying that T ∗(Tu − b) = 0.
(3) ⇒ (1): If T ∗Tu = T ∗b, then Tu − b ∈ R(T )⊥, therefore

0 = P(Tu − b) = Tu − Pb.

This completes the proof. �

Definition 11.1.1 A vector u ∈ X1 satisfying one of the three equivalent conditions
(1) to (3) of Theorem 11.1.1 is called a least squares solution of the equation T x = b.

Remark: Since R(T ) is closed, a least squares solution of (11.1.1) exists for each
b ∈ X2. Also, if N (T ) �= {0}, then there are infinitely many least squares solutions
of (11.1.1), since if u is a least squares solution, then so is u + v for any v ∈ N (T ).

It follows from Theorem 11.1.1 that the set of least squares solutions of (11.1.1)
can be written as

{u ∈ X1 : T ∗Tu = T ∗b},

which, by the continuity and linearity of T and T ∗, is a closed convex set. This
set contains a unique vector of minimal norm and we choose this vector to be the
least squares solution uniquely associated with b by way of the generalized inversion
process.

Definition 11.1.2 Let T ∈ B(X1, X2) have closed range R(T ). The mapping T † :
X2 → X1 defined by T †b = u, where u is the minimal norm least squares solution
of the equation T x = b, is called the generalized inverse of T .

We will refer to Definition 11.1.2 above as the variational definition, and denote
it by definition (V). Note that if the operator T is invertible, then we certainly have
T † = T−1.

The generalized inverse T † has the following basic properties.

Theorem 11.1.2 If T ∈ B(X1, X2) has closed range R(T ), then

R(T †) = R(T ∗) = R(T †T ).
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Proof Let b ∈ X2. First, we show that T †b ∈ N (T )⊥ = R(T ∗). Suppose

T †b = u1 + u2 ∈ N (T )⊥ ⊕ N (T ),

then u1 is a least squares solution of T x = b, since

Tu1 = T (u1 + u2) = T T †b = Pb.

Also, if u2 �= 0, By the Pythagorean theorem, we have

‖u1‖2 < ‖u1 + u2‖2 = ‖T †b‖2,

contradicting the fact that T †b is the least squares solution of minimal norm. There-
fore T †b = u1 ∈ N (T )⊥ = R(T ∗).

Second, suppose that u ∈ N (T )⊥. Let b = Tu. We claim that Tu = PTu = Pb.
Thus u is the least squares solution. Indeed, if x is another least squares solution,
then

T x = Pb = Tu

and hence x − u = û ∈ N (T ). It then follows that

‖x‖2 = ‖x − u + u‖2 = ‖̂u‖2 + ‖u‖2 ≥ ‖u‖2.

Hence u is the least squares solution of minimal norm, that is, u = T †b ∈ R(T †)

Thus we see that R(T †) = R(T ∗).
Note that for any b ∈ X2, T †b = T †Pb ∈ R(T †T ), thus R(T †) ⊂ R(T †T ). It

is obvious that R(T †T ) ⊂ R(T †) and hence R(T †) = R(T †T ). �

Corollary 11.1.1 If T ∈ B(X1, X2) has closed rangeR(T ), then T † ∈ B(X2, X1).

Proof First we prove that T † is linear. Let b, b̄ ∈ X2, then

T T †b = Pb and T T †b̄ = Pb̄.

Therefore
T T †b + T T †b̄ = P(b + b̄) = T T †(b + b̄)

and hence, by Theorem 11.1.2,

T †b + T †b̄ − T †(b + b̄) ∈ N (T )⊥ ∩ N (T ) = {0}.

Similarly, it can be shown that for any scalar α, T †(αb) = αT †(b).
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Next we show that T † is bounded. SinceR(T †) = R(T ∗) = N (T )⊥, there exists
a positive number m such that

‖T T †b‖ ≥ m‖T †b‖,

for all b ∈ X2. Since T T †b = Pb, it follows that

‖b‖ ≥ ‖Pb‖ ≥ m‖T †b‖, that is,
‖T †b‖
‖b‖ ≤ 1

m

and hence T † is bounded. �

Next we give some alternative definitions of the generalized inverse T † and prove
their equivalence.

Definition 11.1.3 If T ∈ B(X1, X2) has closed range R(T ), then T † is the unique
operator in B(X2, X1) satisfying

(1) T T † = PR(T ); (2) T †T = PR(T †).

Definition 11.1.4 If T ∈ B(X1, X2) has closed range R(T ), then T † is the unique
operator in B(X2, X1) satisfying

(1) T T †T = T ; (2) T †T T † = T †;
(3) (T T †)∗ = T T †; (4) T †T )∗ = T †T .

Definition 11.1.5 If T ∈ B(X1, X2) has closed range R(T ), then T † is the unique
operator in B(X2, X1) satisfying

(1) T †T x = x, x ∈ N (T )⊥;
(2) T †y = 0, y ∈ R(T )⊥.

We call Definitions 11.1.3, 11.1.4, and 11.1.5 as the Moore definition, Penrose
definition, and Desoer-Whalen definition, and denote them by definitions (M), (P)
and (D-W), respectively. Next we will prove the uniqueness of T †.

Theorem 11.1.3 There can be at most one operator T † ∈ B(X2, X1) satisfying the
definition (P).

Proof From (2) and (3) of the definition (P), we have

T † = T †(T T †)∗ = T †T †∗
T ∗. (11.1.3)



322 11 Moore-Penrose Inverse of Linear Operators

It follows from (2) and (4) of the definition (P) that

T † = (T †T )∗T † = T ∗T †∗
T †. (11.1.4)

By (1) and (3) of the definition (P), we have

T = (T T †)∗T = T †∗
T ∗T (11.1.5)

and therefore,
T ∗ = T ∗T T †. (11.1.6)

Finally, by (1) and (4) of the definition (P), we see that

T = T T †T = T T ∗T †∗
.

Therefore,
T ∗ = T †T T ∗. (11.1.7)

Suppose now that X andY are two operators in B(X2, X1) satisfying the definition
(P), then

X = XX∗T ∗ by (11.1.3)
= XX∗T ∗TY by (11.1.6)
= XTY by (11.1.5)
= XT T ∗Y ∗Y by (11.1.4)
= T ∗Y ∗Y by (11.1.7)
= Y by (11.1.4).

The proof is completed. �

Theorem 11.1.4 The definitions (M) and (P) are equivalent.

Proof If T † satisfies the definition (M), then we see that T T † and T †T are self-
adjoint. Also,

T T †T = PR(T )T = T

and
T †T T † = PR(T †)T

† = T †.

Hence T † satisfies the definition (P).
Conversely, if T † satisfies the definition (P), then

(T T †)(T T †) = T (T †T T †) = T T †.



11.1 Definition and Basic Properties 323

ThereforeT T † is a self-adjoint idempotent operator andhence is a projectionoperator
onto the subspace S = {

y : T T †y = y
}
. Since T T †T = T , it follows thatR(T ) ⊂

S. Also, if y ∈ S, then for any z ∈ N (T ∗),

(y, z) = (T T †y, z) = (T †y, T ∗z) = 0,

hence y ∈ N (T ∗)⊥ = R(T ) and S ⊂ R(T ). It follows that

T T † = PR(T ).

It remains to show that if T † satisfies the definition (P), then T †T = PR(T †). Its
proof is left as an exercise. �

It follows from Theorem 11.1.4 that the definitions (M) and (P) are equivalent
and we refer to these definitions as the Moore-Penrose inverse definition, denoted
by definition (M-P).

Theorem 11.1.5 The definitions (V), (M-P) and (D-W) are equivalent.

Proof (D-W) ⇒ (V): Suppose that T † satisfies the definition (D-W). Let

b = b1 + b2 ∈ R(T ) ⊕ R(T )⊥ = X2,

then T T †b = T T †b1. Since b1 ∈ R(T ), we have T x = b1 for some x ∈ N (T )⊥,
therefore

T T †b = T T †T x = T x = b1 = PR(T )b.

That is, T †b is a least squares solution. Suppose that u is another least squares
solution, then u − T †b ∈ N (T ). Also, since b = b1 + b2 ∈ R(T ) ⊕ R(T )⊥ and
T †b2 = 0, from (2) of the definition (D-W), we have

T †b = T †b1 = T †T x = x,

for some x ∈ N (T )⊥. Therefore, T †b ∈ N (T )⊥, implying that T †b ⊥ (u − T †b).
By the Pythagorean theorem, we have ‖T †b‖2 ≤ ‖u‖2 and hence T †b is the minimal
norm least squares solution, that is, T † satisfies the definition (V).
(V) ⇒ (M-P): If T † satisfies the definition (V), then clearly T T † = PR(T ). Also for
any x ∈ X1, by Theorem 11.1.2, we have

x = x1 + x2 ∈ N (T )⊥ ⊕ N (T ) = R(T †) ⊕ N (T ).
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Therefore
T T †T x = T T †T x1 = PR(T )T x1 = T x1,

and hence
T †T x − x1 ∈ N (T ) ∩ N (T )⊥ = {0},

that is,
T †T x = x1 = PR(T †)x,

which implies that T †T = PR(T †). Thus T † satisfies the definition (M-P).
(M-P) ⇒ (D-W): Suppose that T † satisfies the definition (M-P) and y ∈ R(T )⊥,
then

T †y = T †T T †y = T †PR(T )y = 0.

It remains to show that T †T x = x for x ∈ N (T )⊥. Indeed, since T T †T = T ,
it follows that T †T x − x ∈ N (T ) for any x ∈ X1. Now if x ∈ N (T )⊥, by the
Pythagorean theorem, we have

‖x‖2 ≥ ‖PR(T †)x‖2 = ‖T †T x‖2 = ‖T †T x − x + x‖2
= ‖T †T x − x‖ + ‖x‖2.

Therefore T †T x − x = 0 for x ∈ N (T )⊥, that is, T †T x = x. Hence T † satisfies the
definition (D-W). �

SinceR(T †) = N (T )⊥, if u is a least squares solution and v ∈ N (T ), then u + v
is also a least squares solution. Thus the set of the least squares solution of (11.1.1)
is T †b + N (T ).

If R(T ) is closed, it is well known that R(T ∗) is also closed. Suppose T̃ =
T ∗T

∣∣R(T ∗) , we have

(T̃ x, x) = ‖T x‖2 ≥ m2‖x‖2 (m > 0),

for x ∈ R(T ∗). Thus we can define T̃−1 onR(T̃ ), andR(T̃ ) = R(T ∗T ) = R(T ∗).
Thus T̃−1 ∈ B(R(T ∗),R(T ∗)), fromwhich it is easy to prove the following theorem.

Theorem 11.1.6 Suppose that T ∈ B(X1, X2) has closed range R(T ) and T̃ =
T ∗T

∣∣R(T ∗) , then
T † = T̃−1T ∗. (11.1.8)

Proof From (T̃−1T ∗)T x = x, for x ∈ N (T )⊥ = R(T ∗), and (T̃−1T ∗)y = 0, for y ∈
R(T )⊥ = N (T ∗), we have T̃−1T ∗ = T † by the definition (D-W). �
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11.2 Representation Theorem

In this section, we will present the representation theorem of the generalized inverse
T † of a bounded linear operator. It states that T † can be represented as the limit of a
sequence of operators.

Before the representation theorem, we provide some necessary background [4].
Suppose A ∈ B(X, X) and self-adjoint, A∗ = A, let

m = inf‖x‖=1
(Ax, x) and M = sup

‖x‖=1
(Ax, x).

If Sn(x) is a continuous real valued function on [m, M], then

‖Sn(x)‖ = max
x∈σ(A)

|Sn(x)| = σr (Sn(A)),

where σ(A) ⊂ � ⊂ (−∞, +∞). Let {Sn(x)} be a sequence of continuous real
valued functions on � with limn→∞ Sn(x) = S(x) uniformly on σ(A), then limn→∞
Sn(A) = S(A) uniformly on B(X, X).

Suppose T ∈ B(X1, X2) andR(T ) is closed. Let H = R(T ∗), then H is a Hilbert
space. Define the operator T̃ = T ∗T |H . The spectrum of the operator T̃ ∈ B(H, H)

satisfies σ(T̃ ) ⊂ (0, +∞). Indeed, H = R(T ∗) = N (T )⊥, for every x ∈ H , we
have

((T ∗T |H )x, x) = ‖T x‖2 ≥ m2‖x‖2, m > 0.

Thus T ∗T |H is a self-adjoint positive operator, and σ(T̃ ) ⊂ (0, +∞) holds.

Theorem 11.2.1 (Representation theorem) Suppose that the range R(T ) of T ∈
B(X1, X2) is closed and let T̃ = T ∗T |H , where H = R(T ∗). If � is an open set
such that σ(T̃ ) ⊂ � ⊂ (0, +∞) and {Sn(x)} is a sequence of continuous real valued
functions on � with limn→∞ Sn(x) = x−1 uniformly on σ(T̃ ), then

T † = lim
n→∞ Sn(T̃ )T ∗,

where the convergence is in the uniform topology for B(X2, X1). Furthermore,

‖Sn(T̃ )T ∗ − T †‖ ≤ sup
x∈σ(T̃ )

|xSn(x) − 1| ‖T †‖.

Proof Using the spectral theorem for self-adjoint linear operators, we have

lim
n→∞ Sn(T̃ ) = T̃−1
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uniformly in B(H, H). It follows from (11.1.8) that

lim
n→∞ Sn(T̃ )T ∗ = T̃−1T ∗ = T †.

To obtain the error bound, we note that T ∗ = T̃ T † and therefore

Sn(T̃ )T ∗ − T † = (Sn(T̃ )T̃ − I )T †.

Since T̃ is self-adjoint and Sn(x)x is a real-valued continuous function on σ(T̃ ),
Sn(T̃ )T̃ is also self-adjoint. Using the spectral radius formula for self-adjoint oper-
ators and the spectral mapping theorem, we have

‖Sn(T̃ )T̃ − I‖ = |σr (Sn(T̃ )T̃ − I )|
= sup

x∈σ(T̃ )

|Sn(x)x − 1|

and hence
‖Sn(T̃ )T ∗ − T †‖ ≤ sup

x∈σ(T̃ )

|Sn(x)x − 1| ‖T †‖.

The proof is completed. �
This theorem suggests that we construct an iterative process of computing a

sequence that converges to the generalized inverse. This is the basis for the com-
putational methods in the next section. Before that, we present the following bound
for σ(T̃ ) to be used in the computational formulas in the next section.

Theorem 11.2.2 Suppose T ∈ B(X1, X2) has closed range R(T ) and let T̃ =
T ∗T |H , where H = R(T ∗), then for each λ ∈ σ(T̃ ), we have

‖T †‖−2 ≤ λ ≤ ‖T ‖2.

Proof Since in the Hilbert space H = R(T ∗),

‖T ∗T |H ‖ ≤ ‖T ∗T ‖,

we have
‖T̃ ‖ ≤ ‖T ∗T ‖ ≤ ‖T ∗‖ ‖T ‖ = ‖T ‖2.

Thus
λ ≤ ‖T̃ ‖ ≤ ‖T ‖2.

On the other hand, if x ∈ H = R(T ∗), then

‖x‖2 = ‖PR(T ∗)x‖2 = ‖T †T x‖2
≤ ‖T †‖2 ‖T x‖2 = ‖T †‖2(T̃ x, x).



11.2 Representation Theorem 327

Therefore
(T̃ x, x) − ‖T †‖−2(x, x) ≥ 0,

that is,
T̃ ≥ ‖T †‖−2 I,

from which the result follows. �

11.3 Computational Methods

In this section,wewill describeEuler-Knoppmethods,Newtonmethods, hyperpower
methods and the methods based on interpolating function theory for computing the
generalized inverse T †. These methods are based on Theorem 11.2.1 (the Represen-
tation theorem).

11.3.1 Euler-Knopp Methods

Let

Sn(x) = α

n∑
k=0

(1 − αx)k (11.3.1)

be the Euler-Knopp transformation of the series
∑∞

k=0(1 − x)k [5], whereα is a fixed
parameter. Clearly,

lim
n→∞ Sn(x) = 1

x

uniformly on compact subsets of the set

Eα = {x : |1 − αx | < 1} = {x : 0 < x < 2/α} .

It follows from Theorem 11.2.2 that σ(T̃ ) ⊂ [ ‖T †‖−2, ‖T ‖2 ] ⊂ (0, ‖T ‖2 ], if we
choose the parameter α such that 0 < α < 2‖T ‖−2, then σ(T̃ ) ⊂ (0, ‖T ‖2 ] ⊂ Eα.
For such a parameter, applying the Representation theorem, we obtain

T † = lim
n→∞ Sn(T̃ )T ∗ = α

∞∑
k=0

(I − αT ∗T )kT ∗.
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Note that ifwe set Tn = α
∑n

k=0(I − αT ∗T )kT ∗, thenweget the iterative process:

{
T0 = αT ∗,
Tn+1 = (I − αT ∗T )Tn + αT ∗. (11.3.2)

Therefore limn→∞ Tn = T †. In order to apply Theorem 11.2.1 to estimate the error
between Tn and T †, we first estimate |xSn(x) − 1|. From (11.3.1),

{
S0(x) = α,

Sn+1(x) = (1 − αx)Sn(x) + α.
(11.3.3)

Thus we have
Sn+1(x)x − 1 = (1 − αx)(Sn(x)x − 1).

Therefore
|Sn(x)x − 1| = |1 − αx |n+1.

It follows from Theorem 11.2.2 that ‖T †‖−2 ≤ x ≤ ‖T ‖2 for x ∈ σ(T̃ ) and 0 <

α < 2‖T ‖−2, thus
|1 − αx | ≤ β,

where
β = max

{|1 − α‖T ‖2|, |1 − α‖T †‖−2|} . (11.3.4)

Therefore
|Sn(x)x − 1| ≤ βn+1. (11.3.5)

Since‖T ‖ ‖T †‖ ≥ ‖T T †‖ = ‖P‖ = 1,wehave2 > α‖T ‖2 ≥ α‖T †‖−2 > 0,which
implies 0 < β < 1. By Theorem 11.2.1 and (11.3.5), we get the estimate of the error

‖Tn − T †‖ ≤ ‖T †‖βn+1,

which implies that theEuler-Knoppmethoddefinedby (11.3.2) is afirst order iterative
method. Next we will present a faster convergent iterative sequence.

11.3.2 Newton Methods

Suppose that for α > 0, we define a sequence of functions {Sn(x)} by
{
S0(x) = α,

Sn+1(x) = Sn(x)(2 − xSn(x)).
(11.3.6)
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We will show that (11.3.6) converges to x−1 uniformly on the compact subset σ(T̃ )

of the set Eα = {x : 0 < x < 2/α}. Specifically,

xSn+1(x) − 1 = xSn(x)(2 − xSn(x)) − 1

= −(xSn(x) − 1)2.

Furthermore

|xSn(x) − 1| = |xSn−1(x) − 1|2 = · · · = |αx − 1|2n .

It follows from Theorem 11.2.2 that ‖T †‖−2 ≤ x ≤ ‖T ‖2 for x ∈ σ(T̃ ). Choose α
such that 0 < α < 2‖T ‖−2, then

|αx − 1| ≤ β < 1,

where β is given by (11.3.4). Thus

|xSn(x) − 1| = |αx − 1|2n ≤ β2n → 0 as n → ∞. (11.3.7)

Therefore limn→∞ Sn(x) = x−1 uniformly on σ(T̃ ).
Let the sequence of operators {Sn(T̃ )} defined by (11.3.6) be

{
S0(T̃ ) = αI,
Sn+1(T̃ ) = Sn(T̃ )(2I − T ∗T Sn(T̃ )),

then {Sn(T̃ )} ⊂ B(H, H), H = R(T ∗). Applying Theorem 11.2.1, we have

T † = lim
n→∞ Sn(T̃ )T ∗

uniformly on B(X2, X1).
Setting Tn = Sn(T̃ )T ∗, we obtain the iterative process

{
T0 = αT ∗,
Tn+1 = Tn(2I − T Tn).

(11.3.8)

Therefore limn→∞ Tn = T †. Applying Theorem 11.2.1 and (11.3.7), we get the fol-
lowing bound for the difference between Tn and T †:

‖Tn − T †‖ = ‖T †‖ sup
x∈σ(T̃ )

|xSn(x) − 1| ≤ ‖T †‖β2n .

Thus the Newton method determined by (11.3.8) is a second order iterative method.
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11.3.3 Hyperpower Methods

The so-called hyperpower method is a technique for extrapolating on the desirable
quadratic convergence property of the Newton methods. It has the pth order conver-
gence rate. But each iteration requires more computation than the Newton method
when p > 2.

Given an integer p ≥ 2, define a sequence of functions {Sp
n (x)} by

{
Sp
0 (x) = α > 0,
Sp
n+1(x) = Sp

n (x)
∑p−1

k=0 (1 − xS p
n (x))k .

(11.3.9)

If p = 2, (11.3.9) coincides (11.3.6). Noting that

|xS p
n+1(x) − 1| = |xS p

n (x) − 1|p,

we get
|xS p

n (x) − 1| = |αx − 1|pn .

It follows from Theorem 11.2.2 that ‖T †‖−2 ≤ x ≤ ‖T ‖2 for x ∈ σ(T̃ ). Choose α
such that 0 < α < 2‖T ‖−2, then

|αx − 1| ≤ β < 1,

where β is the same as in (11.3.4). Thus

|xS p
n (x) − 1| = |αx − 1|pn ≤ β pn → 0 as n → ∞. (11.3.10)

Therefore limn→∞ Sp
n (x) = x−1 uniformly on σ(T̃ ).

Let the sequence of operators {Sp
n (T̃ )} defined by (11.3.9) be

⎧⎨
⎩
Sp
0 (T̃ ) = αI,

Sp
n+1(T̃ ) = Sp

n (T̃ )
p−1∑
k=0

(I − T ∗T Sp
n (T̃ ))k .

Then {Sp
n (T̃ )} ⊂ B(H, H), where H = R(T ∗). Applying Theorem 11.2.1, we have

lim
n→∞ Sp

n (T̃ )T ∗ = T †

uniformly on B(X2, X1). Note that
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Sp
n+1(T̃ )T ∗ = Sp

n (T̃ )

p−1∑
k=0

(I − T ∗T Sp
n (T̃ ))kT ∗

= Sp
n (T̃ )T ∗

p−1∑
k=0

(I − T Sp
n (T̃ )T ∗)k .

Thus, defining T p
n = Sp

n (T̃ )T ∗, we get the iterative process
⎧⎨
⎩
T p
0 = αT ∗,

T p
n+1 = T p

n

p−1∑
k=0

(I − T T p
n )k .

Therefore limn→∞ T p
n = T †. Applying Theorem 11.2.1 and (11.3.10), we obtain the

following bound for the difference between T p
n and T †:

‖T p
n − T †‖ ≤ ‖T †‖ sup

x∈σ(T̃ )

|xS p
n (x) − 1| ≤ ‖T †‖β pn .

It is easy to see that the hyperpower method is a pth order iterative method.

11.3.4 Methods Based on Interpolating Function Theory

In this subsection, we shall use the Representation theorem and the Newton interpo-
lation and the Hermite interpolation for the function f (x) = 1/x to approximate the
generalized inverse T † and present its error bound.

First we introduce the Newton interpolation method. If pn(x) denotes the unique
polynomial of degree n which interpolates the function f (x) = 1/x at the points x =
1, 2, . . . , n + 1, then the Newton interpolation formula [6] gives the interpolating
polynomial

pn(x) =
n∑
j=0

(
x − 1

j

)
� j f (1),

where � is the forward difference operator defined by

� f (x) = f (x + 1) − f (x), � j f (x) = �(� j−1 f )(x),

and (
x − 1

j

)
= (x − 1)(x − 2) · · · (x − j)

j ! .
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It is easy to verify that � j f (1) = (−1) j ( j + 1)−1, which gives

pn(x) =
n∑
j=0

1

j + 1

j−1∏
l=0

(
1 − x

l + 1

)
. (11.3.11)

Here the product from 0 to −1 by convention is defined to be 1.A simple induction
argument shows that

1 − x pn(x) =
n∏

l=0

(
1 − x

l + 1

)
, n = 0, 1, 2, · · · . (11.3.12)

This statement is clearly true for n = 0. Assuming that it is true for n, we have

1 − xpn+1(x) = 1 − xpn(x) − x

n + 2

n∏
l=0

(
1 − x

l + 1

)

=
(
1 − x

n + 2

) n∏
l=0

(
1 − x

l + 1

)

=
n+1∏
l=0

(
1 − x

l + 1

)
.

Thus (11.3.12) holds for n + 1. Therefore we can prove that the sequence of poly-
nomials {pn(x)} satisfies limn→∞ pn(x) = 1/x uniformly on compact subsets of
(0, +∞).

If x > 0, then by (11.3.12)

1 − x pn(x) =
n∏

l=0

(
1 − x

l + 1

)
.

Hence it suffices to show that

lim
n→∞

n∏
l=0

(
1 − x

l + 1

)
= 0 (11.3.13)

uniformly on compact subsets of (0, +∞).
If x lies in a fixed compact subset of (0, +∞), then there is a constant K > 0

such that

0 < 1 − x

l + 1
< 1 − K

l + 1
,
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therefore to establish (11.3.13) it suffices to show that

∞∏
l=0

(
1 − x

l + 1

)
= 0.

Indeed this is a consequence of a well-known fact about infinite products. Namely, if
{al} is a sequence of numbers with 0 < al < 1 and

∑∞
j=0 a j = ∞, then the sequence∏n

j=0(1 − a j ) is non-increasing and positive and therefore has a limit a ≥ 0. It is
easy to show by induction that

a0 +
n∑

i=0

ai+1

i∏
l=0

(1 − al) = 1 −
n+1∏
l=0

(1 − al)

and hence

1 ≥ 1 −
n+1∏
l=0

(1 − al) = a0 +
n∑

i=0

ai+1

i∏
l=0

(1 − al) ≥ a
n∑

i=0

ai .

But it follows from
∑∞

j=0 a j = ∞ that a = 0, and so (11.3.13) holds.
Applying the Representation theorem, we conclude that

lim
n→∞ pn(T̃ )T ∗ = T †,

where T̃ = T ∗T |R(T ∗). To phrase this result in a form suitable for computation, from
(11.3.11) and (11.3.12), we note that

p0(x) = 1,

pn+1(x) = pn(x) + 1

n + 2

n∏
l=0

(
1 − x

l + 1

)

= pn(x) + 1

n + 2
(1 − xpn(x)).

Therefore, setting Tn = pn(T̃ )T ∗, we have the following Newton interpolation
method

T0 = T ∗,
Tn+1 = pn+1(T̃ )T ∗

= pn(T̃ )T ∗ + 1

n + 2
(T ∗ − T̃ pn(T̃ )T ∗)

= Tn + 1

n + 2
(T ∗ − T ∗T Tn).
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Thus limn→∞ Tn = T †. To obtain an asymptotic error bound for this method, we
estimate |1 − xpn(x)|. Note that for

x ∈ σ(T̃ ) ⊂ [ ‖T †‖−2, ‖T ‖2 ]

and l ≥ L = [ ‖T ‖2 ], we have

1 − x

l + 1
≤ exp

(
− x

l + 1

)
.

Therefore
n∏

l=L

(
1 − x

l + 1

)
≤ exp

(
−x

n∑
l=L

1

l + 1

)
, n ≥ L .

Also,
n∑

l=L

1

l + 1
≥

∫ n+2

L+1

dt

t
= ln(n + 2) − ln(L + 1),

and hence

exp

(
−x

n∑
l=L

1

l + 1

)
≤ (L + 1)x (n + 2)−x

= (‖T ‖2 + 1)x (n + 2)−x .

Therefore, if we set

c = max
x∈σ(T̃ )

∣∣∣∣∣(1 + ‖T ‖2)x
L−1∏
l=0

(
1 − x

l + 1

)∣∣∣∣∣ ,

then it follows from (11.3.12) that

|1 − xpn(x)| ≤ c(n + 2)−x .

Applying the Representation theorem, we get the following bound for the difference
between Tn and T †:

‖Tn − T †‖ ≤ c‖T †‖(n + 2)−‖T †‖−2
.

We now take the next natural step of investigating the use of the Hermite inter-
polation of the function f (x) = 1/x [7]. We seek the unique polynomial qn(x)
of degree 2n + 1 which satisfies qn(x) = 1/x and q

′
n(x) = −1/x2 at the points

x = 1, 2, · · · , n + 1. By the Hermite interpolation formula [6]
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qn(x) =
n∑

i=0

(2(i + 1) − x)
i∏

l=1

(
l − x

l + 1

)2

. (11.3.14)

Here the product from 1 to 0, by convention, is defined to be 1. We first show that

1 − xqn(x) =
n∏

l=0

(
1 − x

l + 1

)2

, n = 0, 1, 2, · · · . (11.3.15)

This statement is clearly true for n = 0. The left-hand side of (11.3.15) equals
1 − xq0(x) = 1 − x(2 − x) = (1 − x)2, which is the right-hand side of (11.3.15).
Assuming the conclusion holds for n, we have

1 − xqn+1(x)

= 1 − x qn(x) − x(2(n + 2) − x)
n+1∏
l=1

(
l − x

l + 1

)2

=
n∏

l=0

(
l + 1 − x

l + 1

)2

− ((2n + 4)x − x2)
n∏

l=0

(
((l + 1 − x)/(l + 1))2

(n + 2)2

)

=
n∏

l=0

(
l + 1 − x

l + 1

)2 (
1 − (2n + 4)x − x2

(n + 2)2

)

=
n+1∏
l=0

(
1 − x

l + 1

)2

.

Next, similar to the sequence of polynomials {pn(x)}, we can show that the
sequence of polynomials {qn(x)} satisfies

lim
n→∞ qn(x) = 1

x

uniformly on the compact subsets of (0, +∞).
Applying the Representation theorem, we have

lim
n→∞ qn(T̃ )T ∗ = T †,

where T̃ = T ∗T
∣∣R(T ∗) . To get the recurrence formula, by (11.3.14) and (11.3.15),

we get
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q0(x) = 2 − x,

qn+1(x) = qn(x) + (2(n + 2) − x)
n+1∏
l=1

(
l − x

l + 1

)2

= qn(x) + (2(n + 2) − x)
n∏

l=0

(
((l + 1 − x)/(l + 1))2

(n + 2)2

)

= qn(x) + 1

n + 2

(
2 − x

n + 2

)
(1 − xqn(x)).

Setting Tn = qn(T̃ )T ∗, we have the following Hermite interpolation method:

⎧⎨
⎩
T0 = 2T ∗ − T ∗T T ∗,

Tn+1 = Tn + 1

n + 2

(
2I − 1

n + 2
T ∗T

)
T ∗(I − T Tn).

Thus limn→∞ Tn = T †. Similar to the Newton interpolation we can show that

n∏
l=L

(
1 − x

l + 1

)2

≤ (1 + ‖T ‖2)2x (n + 2)−2x .

If we set

d = max
x∈σ(T̃ )

∣∣∣∣∣(1 + ‖T ‖2)2x
L−1∏
l=0

(
1 − x

l + 1

)2
∣∣∣∣∣ ,

then
|1 − xqn(x)| ≤ d(n + 2)−2x .

Applying the Representation theorem, we get the following bound for the difference
between Tn and T †:

‖Tn − T †‖ ≤ d‖T †‖(n + 2)−‖T †‖−2
.

Remarks

The steepest descentmethod, conjugate gradientmethod andTikhonov regularization
method for computing the generalized inverse T † of a bounded linear operator with
closed range can be found in [1]. A method for approximating infinite-dimensional
Moore-Penrose inverses by finite-dimensional settings is presented in [8] and gen-
erally [9] gives various approximation methods for the generalized inverses of
operators.

For a general perturbation theory of linear operators, there is an excellent book
[10]. In particular, the books [11, 12] are about the generalized inverses of linear
operators in Banach spaces. Perturbation analysis of the generalized inverse T † and
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least squares solution in Hilbert space and Banach space can be found in [13–20]
and perturbation analysis of oblique projections of operators can be found in [21].

Stable perturbations of operators are studied in [22]. In particular, the Moore-
Penrose inverses of stable perturbation of HilbertC∗-module operators are presented
in [23].

A semi-continuity of generalized inverses in Banach algebras is presented in [24].
In [25], generalized condition numbers of bounded linear operators in Banach spaces
are proposed.

Inner, outer and generalized inverses in Banach and Hilbert spaces are given in
[26]. A more recent study of the outer inverse in Banach spaces can be found in
[27]. The metric generalized inverses of linear operators in Banach spaces and their
perturbation analysis are presented in [28, 29].
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Chapter 12
Operator Drazin Inverse

Let X be a Hilbert space and L(X) be the vector space of the linear operators from X
into X . We denote the set of bounded linear operators from X into X by B(X). In this
chapter, we will investigate the definition, basic properties, representation theorem
and computational methods for the Drazin inverse of an operator T ∈ B(X),R(T k)

is closed, where k = Ind(T ) is the index of T .

12.1 Definition and Basic Properties

This section introduces the definition of the Drazin inverse of an operator, its unique-
ness, existence, and some basic properties.

Definition 12.1.1 Let T ∈ L(X). If for some nonnegative integer k ≥ 0, there exists
S ∈ L(X) such that

T ST k = T k, (12.1.1)

ST S = S, (12.1.2)

ST = T S, (12.1.3)

then S is called the Drazin inverse of T and denoted by T D . If k = 1, then S is called
the group inverse of T and denoted by Tg .

It is easy to prove the uniqueness of the Drazin inverse of T .

Theorem 12.1.1 If there exists the Drazin inverse of T , then it is unique.

© Springer Nature Singapore Pte Ltd. and Science Press 2018
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Proof Suppose both S and S′ satisfy (12.1.1)–(12.1.3), then

S = T S2 = T k Sk+1 = S′T k+1Sk+1

= (S′)k+1T 2k+1Sk+1 = (S′)k+1T k+1S = (S′)k+1T k

= S′,

which proves the uniqueness. ��
In order to show the existence of the Drazin inverse of an operator, we need the

concepts of the ascent and descent of an operator [1].

Definition 12.1.2 Let T ∈ L(X). If there exists the smallest nonnegative integer n
such thatN (T n) = N (T n+1), then this n is called the ascending index of T , denoted
by α(T ). If no such integer exists, then α(T ) = ∞.

If α(T ) = n, it is obvious that

N (T ) ⊂ N (T 2) ⊂ · · · ⊂ N (T n) = N (T n+1) = N (T n+2) = · · · ,

where ⊂ denotes strict inclusion.
If x ∈ N (T n+2) then T x ∈ N (T n+1) = N (T n), thus x ∈ N (T n+1) and

N (T n+2) ⊂ N (T n+1), while N (T n+1) ⊂ N (T n+2) is obvious, therefore N (T n+1)

= N (T n+2).

Definition 12.1.3 Let T ∈ L(X). If there exists the smallest nonnegative integer n
such thatR(T n) = R(T n+1), then this n is called the descending index of T , denoted
by δ(T ). If no such integer exists, then δ(T ) = ∞.

When δ(T ) = n, it is obvious that

R(T ) ⊃ R(T 2) ⊃ · · · ⊃ R(T n) = R(T n+1) = R(T n+2) = · · · .

Some properties of α(T ) and δ(T ) are listed in the following theorem.

Theorem 12.1.2 Let T ∈ L(X), then

(1) α(T ) = 0 if and only if T−1 exists;
(2) δ(T ) = 0 if and only ifR(T ) = X;
(3) If α(T ) < ∞ and δ(T ) < ∞, then α(T ) = δ(T ) = p, and X has the direct sum

decomposition X = R(T p) ⊕ N (T p);
(4) If X is finite dimensional, then α(T ) = δ(T ) = p and X = R(T p) ⊕ N (T p).

Proof See [1]. ��
Definition 12.1.4 Let T ∈ L(X), α(T ) < ∞, and δ(T ) < ∞, then the nonnegative
integer k = α(T ) = δ(T ) is called the index of the operator T , denoted by Ind(T ) =
k. In particular, if T is invertible, then Ind(T ) = 0. For the zero operator 0, we adopt
Ind(0) = 1 by convention.
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Now that we have defined the index of an operator, we are ready for the existence
theorem of the Drazin inverse of an operator.

Theorem 12.1.3 Let T ∈ B(X), if Ind(T ) = k < ∞, then there exists the Drazin
inverse T D ∈ L(X). Moreover, if R(T k) is closed, then T D ∈ B(X).

Proof Since Ind(T ) = k, X has the algebraic direct sum decomposition
X = R(T k) ⊕ N (T k). Set ˜T = T |R(T k ), then ˜T is a one-to-one mapping from
R(T k) ontoR(T k). If˜T x = 0, where x ∈ R(T k), then x ∈ N (T k+1) ∩ R(T k), how-
ever N (T k+1) = N (T k), thus x = 0. On the other hand, for any y ∈ R(T k), since
R(T k+1) = R(T k), there exists some x ∈ X such that

y = T T kx = ˜T (T kx) ∈ ˜TR(T k),

which proves the existence of ˜T−1 and ˜T−1 ∈ L(R(T k)). Set

T D = ˜T−1Q, (12.1.4)

where Q is the projector along N (T k) onto R(T k). Next we will show that T D is
the Drazin inverse of T . Since any x ∈ X can be uniquely decomposed as

x = x1 + x2 ∈ R(T k) ⊕ N (T k),

by (12.1.4), we have

T Dx1 = ˜T−1Qx1 = ˜T−1x1 and T Dx2 = ˜T−1Qx2 = 0.

Consequently,
T Dx = ˜T−1x1.

It then follows that

T T DT kx = T˜T−1T kx1 = T kx1 = T kx,

T DT T Dx = T DT˜T−1x1 = T Dx1 = T Dx,

T T Dx = T˜T−1x1 = x1 = ˜T−1T x1 = ˜T−1QT x1 = T DT x.

Thus T D = ˜T−1Q is theDrazin inverse of T . IfR(T k) is closed, then˜T−1 is bounded
and T D ∈ B(X). ��

From the above proof, we can deduce that

R(T D) = R(T k) and N (T D) = N (T k).

The proof is left as an exercise.
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Corollary 12.1.1 Let T ∈ B(X). If there exists the Drazin inverse T D, for some
nonnegative integer k, satisfying (12.1.1)–(12.1.3), then the smallest k is the index
of T .

Proof For x ∈ R(T k), there exists some y ∈ X such that x = T ky. Due to the exis-
tence of the Drazin inverse of T , which satisfies (12.1.1)–(12.1.3), we know x =
T ky = T k+1T Dy ∈ R(T k+1), therefore R(T k) = R(T k+1). On the other hand, for
x ∈ N (T k+1), T kx = T DT k+1x = 0, that is, x ∈ N (T k), thus N (T k) = N (T k+1).

It follows from Definition 12.1.4 that Ind(T ) ≤ k, but Ind(T ) cannot be less than
k. Indeed, if Ind(T ) = l < k, by Theorem 12.1.3, there exists a Drazin inverse of T
satisfying (12.1.1)–(12.1.3), which contradicts the assumption that k is the smallest,
so we have Ind(T ) = k. ��
Corollary 12.1.2 Let T ∈ B(X) and Ind(T ) = k, then the Drazin inverse of T is
the unique linear operator satisfying

T DT x = T T Dx = x, x ∈ R(T k), (12.1.5)

T Dy = 0, y ∈ N (T k). (12.1.6)

Proof In fact, (12.1.5) is equivalent to T D = (T |R(T k ))
−1 on R(T k) and (12.1.6)

means that T D maps N (T k) into the zero element. Since X = R(T k) ⊕ N (T k),
such T D is consistent with the T D in Theorem 12.1.3. ��
Now, we present some basic properties of the Drazin inverse of an operator.

Theorem 12.1.4 Let T ∈ B(X), Ind(T ) = k, and R(T k) be closed, then T DT =
T T D is the projector along N (T k) = N (T D) ontoR(T k) = R(T D), that is,

T DT = T T D = PR(T k ),N (T k ) = PR(T D),N (T D).

Proof Since T D satisfies (12.1.2), T DT = T T D is idempotent and

T DT = T T D = PR(T T D),N (T T D).

Since T D = (T DT )T D , we have R(T D) ⊂ R(T DT ), while R(T DT ) ⊂ R(T D) is
obvious, thus R(T D) = R(T DT ) = R(T T D). Similarly, we can prove N (T D) =
N (T T D). ��
Definition 12.1.5 Let T ∈ B(X), Ind(T ) = k, and R(T k) be closed, we call the
product T T DT the core part of T , denoted by CT . Let NT = T − CT , then

T = CT + NT

is the core-nilpotent decomposition of T .
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It follows from Definition 12.1.5 that NT is the nilpotent operator with index k,
since

(NT )k = (T − T T DT )k = T k(I − T DT ) = O,

and
(NT )l = T l(I − T T D) = O, for l < k.

Theorem 12.1.5 Let T ∈ B(X), Ind(T ) = k, and R(T k) be closed, then

(1) Ind(T D) = Ind(CT ) = 1, when Ind(T ) ≥ 1; 0, when Ind(T ) = 0;
(2) NTCT = CT NT = O;
(3) NT T D = T DNT = O;
(4) CT T T D = T T DCT = CT ;
(5) (T D)D = CT ;
(6) T = CT if and only if Ind(T ) ≤ 1;
(7) ((T D)D)D = T D;
(8) T D = (CT )D;
(9) (T D)p = (T p)D, where p is an arbitrary positive integer;
(10) (T D)∗ = (T ∗)D.

Proof It is left as an exercise. See [2]. ��
The above content is presented in [2], which introduces the concept of the Drazin

inverse of a linear operator, discusses the existence and uniqueness and some basic
properties, also studies its relationship with other generalized inverses, however,
it does not include the corresponding representation theorem and computational
methods presented in the following sections. In [3], these problems are partially
addressed.

12.2 Representation Theorem

In [4], a unified representation theorem of the Drazin inverse of a linear operator in
Hilbert space is given. First, we give an expression for T D , which is different from
(12.1.4).

Theorem 12.2.1 Let T ∈ B(X) with Ind(T ) = k and R(T k) be closed, then

T D = ˜T−1T kT ∗2k+1T k,

where ˜T = (T kT ∗2k+1T k+1)|R(T k ) is the restriction of T kT ∗2k+1T k+1 onR(T k).
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Proof It follows from [5, p. 247] that

T D = T k(T 2k+1)†T k,

where (T 2k+1)† is the Moore-Penrose inverse of T 2k+1. Also, it is easy to prove that

R(T kT ∗2k+1T k) = R(T D) and N (T kT ∗2k+1T k) = N (T D).

The conclusion then follows from [6, Theorem 2] and [7, Lemma 3.1]. ��
Remark The above theorem is a generalization of a result in [3] in that the conditions
N (T k) ⊂ N (T k∗

) and R(T k) ⊂ R(T k∗
) required in [3] are removed. Also, this

theorem generalizes Corollary 2.1 in [8] from matrices to linear operators.
Now we are ready to give the representation theorem.

Theorem 12.2.2 Let T ∈ B(X) with Ind(T ) = k and R(T k) be closed, and define
˜T = (T kT ∗2k+1T k+1)|R(T k ). If � is an open set such that σ(˜T ) ⊂ � ⊂ (0, ∞) and
{Sn(x)} is a sequence of continuous real valued functions on�with limn→∞ Sn(x) =
1/x uniformly on σ(˜T ), then

T D = lim
n→∞ Sn(˜T )T kT ∗2k+1T k .

Furthermore, for any ε > 0, there is an operator norm ‖ · ‖∗ on X such that

‖Sn(˜T )T kT ∗2k+1T k − T D‖∗
‖T D‖∗

≤ max
x∈σ(˜T )

|Sn(x)x − 1| + O(ε). (12.2.1)

Proof It follows from [9] that

σ(T kT ∗2k+1T k+1) = σ((T 2k+1)∗(T 2k+1))

is nonnegative. Thus the spectrum of ˜T is positive since ˜T is nonsingular. Using
[10, Theorem 10.27], we have

lim
n→∞ Sn(˜T ) = ˜T−1

uniformly in B(R(T k)). It then follows from Theorem 12.2.1 that

lim
n→∞ Sn(˜T )T kT ∗2k+1T k = ˜T−1T kT ∗2k+1T k = T D.

To obtain the error bound (12.2.1), we note that T kT ∗2k+1T k = ˜T T D . Therefore,

Sn(˜T )T kT ∗2k+1T k − T D = (Sn(˜T )˜T − I )T D.
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Also, for any ε > 0, there is an operator norm ‖ · ‖∗ such that ‖T ‖∗ ≤ ρ(T ) + ε, see
[11, p. 77]. Thus

‖Sn(˜T )T kT ∗2k+1T k − T D‖∗
≤ ‖Sn(˜T )˜T − I‖∗ ‖T D‖∗
≤ ( max

x∈σ(˜T )

|Sn(x)x − 1| + O(ε))‖T D‖∗,

which completes the proof. ��
To derive the specific error bounds, we need lower and upper bounds for σ(˜T )

given by the following theorem.

Theorem 12.2.3 Let T ∈ B(X) with Ind(T ) = k andR(T k) be closed. Define ˜T =
(T kT ∗2k+1T k+1)|R(T k ), then, for any λ ∈ σ(˜T ),

‖(T 2k+1)†‖−2 ≤ λ ≤ ‖T ‖4k+2.

Proof For any λ ∈ σ(˜T ),

0 < λ ∈ σ(˜T ) ⊂ σ(T kT ∗2k+1T k+1) = σ((T 2k+1)∗(T 2k+1)).

It is obvious that
Ind((T 2k+1)∗ T 2k+1) = 1

and

λ−1 ∈ σ(((T 2k+1)∗ T 2k+1)g) = σ(((T 2k+1)∗ T 2k+1)†)

= σ((T 2k+1)†(T 2k+1)†
∗
).

It then follows that

λ−1 ≤ ‖(T 2k+1)†(T 2k+1)†
∗‖ = ‖(T 2k+1)†‖2,

that is,
λ ≥ ‖(T 2k+1)†‖−2.

On the other hand, since

‖T kT ∗2k+1T k+1‖ ≥ ‖(T kT ∗2k+1T k+1)|R(T k )‖,

we get ‖˜T ‖ ≤ ‖T ‖4k+2. Thus λ ≤ ‖T ‖4k+2, for all λ ∈ σ(˜T ). ��
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12.3 Computational Procedures

In this section, we apply Theorem 12.2.2 to five specific cases to derive five specific
representations and five computational procedures for the Drazin inverse of a linear
operator in Hilbert space and their corresponding error bounds.

12.3.1 Euler-Knopp Method

Consider the following sequence:

Sn(x) = α

n
∑

j=0

(1 − αx) j ,

which can be viewed as the Euler-Knopp transform of the series
∑∞

n=0(1 − x)n .
Clearly limn→∞ Sn(x) = 1/x uniformly on any compact subset of the set

Eα = {x : |1 − αx | < 1} = {x : 0 < x < 2/α}.

By Theorem 12.2.3, we get

σ(˜T ) ⊂ [ ‖(T 2k+1)†‖−2, ‖T ‖4k+2
] ⊂ (0, ‖T ‖4k+2 ].

If we choose the parameter α, 0 < α < 2‖T ‖−(4k+2), such that
σ(˜T ) ⊂ (0, ‖T ‖4k+2] ⊂ Eα, thenwe have the following representation of theDrazin
inverse:

T D = α

∞
∑

n=0

(I − αT kT ∗2k+1T k+1)nT kT ∗2k+1T k .

Setting

Tn = α

n
∑

j=0

(I − αT kT ∗2k+1T k+1) j T kT ∗2k+1T k,

we have the following iterative procedure for the Drazin inverse:

{

T0 = αT kT ∗2k+1T k,

Tn+1 = (I − αT kT ∗2k+1T k+1)Tn + αT kT ∗2k+1T k .

Therefore limn→∞ Tn = T D . For the error bound, we note that the sequence {Sn(x)}
satisfies

Sn+1(x)x − 1 = (1 − αx)(Sn(x)x − 1).
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Thus
|Sn(x)x − 1| = |1 − αx |n |S0(x)x − 1| = |1 − αx |n+1.

If x ∈ σ(˜T ) and 0 < α < 2/‖T ‖4k+2, then we see that |1 − αx | ≤ β < 1, where

β = max
{|1 − α‖T ‖4k+2|, |1 − α‖(T 2k+1)†‖−2|} . (12.3.1)

Therefore,
|Sn(x)x − 1| ≤ βn+1 → 0, as n → ∞.

It follows from the above inequality and Theorem 12.2.2 that the error bound is

‖Tn − T D‖∗
‖T D‖∗

≤ βn+1 + O(ε).

12.3.2 Newton Method

Suppose that for α > 0, we define a sequence {Sn(x)} of functions by
{

S0(x) = α,

Sn+1(x) = Sn(x)(2 − xSn(x)).
(12.3.2)

Clearly, the sequence (12.3.2) satisfies

xSn+1(x) − 1 = −(xSn(x) − 1)2.

Iterating on the above equality, we have

|xSn(x) − 1| = |αx − 1|2n ≤ β2n → 0, as n → ∞,

for 0 < α < 2/‖T ‖4k+2, where β is given by (12.3.1).
One attractive feature of the Newton method is its quadratic rate of convergence

in general. Using the above argument combined with Theorem 12.2.2, we see that
the sequence {Sn(˜T )} defined by

{

S0(˜T ) = αI,
Sn+1(˜T ) = Sn(˜T )(2I − ˜T Sn(˜T ))

has the property that
lim
n→∞ Sn(˜T )T kT ∗2k+1T k = T D.
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Setting Tn = Sn(˜T )T kT ∗2k+1T k , we have the following iterative procedure for
the Drazin inverse:

{

T0 = αT kT ∗2k+1T k,

Tn+1 = Tn(2I − T Tn).

For the error bound, we have

‖Tn − T D‖∗
‖T D‖∗

≤ β2n + O(ε).

12.3.3 Limit Expression

We give another limit expression of the Drazin inverse given by Meyer [12]. Specif-
ically, for k = Ind(T ),

T D = lim
t→0+

(t I + T k+1)−1T k .

It can be rewritten as

T D = lim
t→0+

(t I + T kT ∗2k+1T k+1)−1T kT ∗2k+1T k .

Setting St (x) = (t + x)−1 (t > 0), for x ∈ σ(˜T ), we can derive the following
error bound for this method:

|xSt (x) − 1| = t

x + t
≤ t

‖(T 2k+1)†‖−2 + t
= ‖(T 2k+1)†‖2 t

1 + ‖(T 2k+1)†‖2 t .

Therefore, from Theorem 12.2.2, we have the error bound for the limit expression
of the Drazin inverse

‖(t I + T kT ∗2k+1T k+1)−1T kT ∗2k+1T k − T D‖∗
‖T D‖∗

≤ ‖(T 2k+1)†‖2 t
1 + ‖(T 2k+1)†‖2 t + O(ε).

The methods we have considered so far are based on approximating the function
f (x) = 1/x . Next, we will apply Theorem 12.2.2 to polynomial interpolations of
the function f (x) = 1/x to derive iterative methods for computing T D and their
corresponding asymptotic error bounds.
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12.3.4 Newton Interpolation

Let Pn(x) denote the unique polynomial of degree n which interpolates the function
f (x) = 1/x at the points x = 1, 2, . . . , n + 1.
Just as discussed in Sect. 11.3.4, we have

Pn(x) =
n

∑

j=0

1

j + 1

j−1
∏

l=0

(

1 − x

l + 1

)

. (12.3.3)

It is easy to verify that

1 − x Pn(x) =
n

∏

l=0

(

1 − x

l + 1

)

, n = 0, 1, 2, . . . , (12.3.4)

and the polynomials {Pn(x)} in (12.3.3) satisfy limn→∞ Pn(x) = 1/x uniformly on
any compact subset of (0, ∞). It follows from Theorem 12.2.2 that

lim
n→∞ Pn(˜T )T kT ∗2k+1T k = T D,

where ˜T = (T kT ∗2k+1T k+1)|R(T k ).
In order to phrase this result in a form suitable for computation, we derive

⎧

⎨

⎩

P0(x) = 1,

Pn+1(x) = Pn(x) + 1

n + 2
(1 − x Pn(x)).

Therefore, setting Tn = Pn(˜T )T kT ∗2k+1T k , we have the following iterative
method for computing the Drazin inverse T D:

⎧

⎨

⎩

T0 = T kT ∗2k+1T k,

Tn+1 = Pn+1(˜T )T kT ∗2k+1T k = Tn + T0
n + 2

(I − T Tn).

So, limn→∞ Tn = T D .
To derive an asymptotic error bound for this method, note that for

x ∈ σ(˜T ) ⊂ [‖(T 2k+1)†‖−2, ‖T ‖4k+2
]

and for l ≥ L = [‖T ‖4k+2
]

, we have

1 − x

l + 1
≤ exp

(

− x

l + 1

)

for all x ∈ σ(˜T ).
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Therefore,
n

∏

l=L

(

1 − x

l + 1

)

≤ exp

(

−x
n

∑

l=L

1

l + 1

)

, n ≥ L .

Also,

n
∑

l=L

1

l + 1
≥

∫ n+2

L+1

dt

t

= ln(n + 2) − ln(L + 1)

and hence

exp

(

−x
n

∑

l=L

1

l + 1

)

≤ (L + 1)x (n + 2)−x

= (1 + ‖T ‖4k+2)x (n + 2)−x .

If we set the constant

C = max
x∈σ(˜T )

∣

∣

∣

∣

∣

(1 + ‖T ‖4k+2)x
L−1
∏

l=0

(

1 − x

l + 1

)

∣

∣

∣

∣

∣

,

then from (12.3.3),
|1 − x Pn(x)| ≤ C(n + 2)−x .

Finally, it follows from Theorem 12.2.2 that

‖Tn − T D‖∗
‖T D‖∗

≤ C(n + 2)−‖(T 2k+1)†‖−2 + O(ε)

for sufficiently large n.

12.3.5 Hermite Interpolation

We consider approximating the Drazin inverse T D by the Hermite interpolation of
the function f (x) = 1/x and deriving its asymptotic error bound.

Consider the unique polynomial qn(x) of degree 2n + 1 satisfying

qn(i) = 1

i
and q ′

n(i) = − 1

i2
, i = 1, 2, . . . , n + 1,

then the Hermite interpolation formula yields the representation
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qn(x) =
n

∑

i=0

(2(i + 1) − x)
i

∏

l=1

(

l − x

l + 1

)2

, (12.3.5)

where, by convention, the product term equals 1 when l = 0.
From the definition of qn(x) in (12.3.5), an inductive argument gives

1 − xqn(x) =
n

∏

i=0

(

1 − x

l + 1

)2

.

The polynomials qn(x) in (12.3.5) satisfy limn→∞ qn(x) = 1/x uniformly on any
compact subset of (0, +∞). It follows from Theorem 12.2.2 that

lim
n→∞ qn(˜T )T kT ∗2k+1T k = T D,

where ˜T = (T kT ∗2k+1T k+1)|R(T k ).
Let

⎧

⎨

⎩

q0(x) = 2 − x,

qn+1(x) = qn(x) + 1

n + 2

(

2 − x

n + 2

)

(1 − xqn(x)),

and
Tn = qn(˜T )T kT ∗2k+1T k .

We obtain the following iterative method for computing the Drazin inverse T D:

⎧

⎨

⎩

T0 = (2I − MT )M,

Tn+1 = Tn + 1

n + 2

(

2I − 1

n + 2
MT

)

M(I − T Tn),

where M = T kT ∗2k+1T k and ˜T = MT .
Similar to the Newton interpolation method, we can establish the error bound as

follows. For

l ≥ L = [‖T ‖4k+2
]

and x ∈ σ(˜T ) ⊂ [‖(T 2k+1)†‖−2, ‖T ‖4k+2
]

,

we have
n

∏

l=L

(

1 − x

l + 1

)2

≤ (1 + ‖T ‖4k+2)2x (n + 2)−2x .
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Define the constant

d = max
x∈σ(˜T )

(1 + ‖T ‖4k+2)2x
L−1
∏

l=0

(

1 − x

l + 1

)2

,

then
|1 − xqn(x)| ≤ d(n + 2)−2x .

By Theorem 12.2.2, we arrive at the error bound

‖Tn − T D‖∗
‖T D‖∗

≤ d(n + 2)−2‖(T 2k+1)†‖−2 + O(ε),

for sufficiently large n.

12.4 Perturbation Bound

The perturbation properties of the Drazin inverse of a matrix were investigated by
Wei [13] and Wei and Wang [14] (see also Sects. 9.1 and 9.5 of Chap. 9).

In this section we study the perturbation of the generalized Drazin inverse intro-
duced byKoliha [15].We start with theBanach algebra setting, thenmove to bounded
linear operators.

We denote byA a complex Banach algebra with identity 1. For an element a ∈ A
wedenote byσ(a) the spectrumofa.Wewriteacc σ(a) for the set of all accumulation
points of σ(a). By qNil(A) we denote the set of all quasi-nilpotent elements of A.
An element x is called a quasinilpotent element ofA if x commutes with any a ∈ A
and 1 − xa ∈ Inv(A), the set of all invertible elements in A.

Definition 12.4.1 ([15]) Let a ∈ A, we say that a is Drazin invertible if there exists
an element b ∈ A such that

ab = ba, ab2 = b, and a2b − a ∈ qNil(A).

If such b exists, it is unique [15], it is called the generalized Drazin inverse of a, and
denoted by aD . If a2b − a is in fact nilpotent, then aD is the standard Drazin inverse
of a. The Drazin index ind(a) of a is equal to k if a2b − a is nilpotent of index k,
otherwise, ind(a) = ∞. If ind(a) = 1, then aD is denoted by ag and called the group
inverse of a. From this point on we use the term “Drazin inverse” for “generalized
Drazin inverse”. Recall [15] that a has a Drazin inverse if and only if 0 /∈ acc σ(a).

Leta ∈ AbeDrazin invertible. Following [14],we say thatb ∈ AobeysCondition
(W) at a if

b − a = aaD(b − a)aaD and ‖aD(b − a)‖ < 1. (12.4.1)
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We remark that the condition

b − a = aaD(b − a)aaD

is equivalent to the condition

b − a = aaD(b − a) = (b − a)aaD. (12.4.2)

Basic auxiliary results are summarized in the following lemma (see also [14,
Theorem 3.1 and 3.2]). For the sake of completeness we include a proof.

Lemma 12.4.1 Let a ∈ A be Drazin invertible and b ∈ A obey Condition (W) at
a, then

(1) b = a(1 + aD(b − a));
(2) b = (1 + (b − a)aD)a;
(3) 1 + aD(b − a) and 1 + (b − a)aD are invertible, and

(1 + aD(b − a))−1aD = aD(1 + (b − a)aD)−1. (12.4.3)

Proof To prove (1) and (2) let us remark that by (12.4.2) we have

b = a + (b − a) = a + aaD(b − a) = a(1 + aD(b − a))

and
b = a + (b − a) = a + (b − a)aDa = (1 + (b − a)aD)a.

Clearly, the condition ‖aD(b − a)‖ < 1 implies that 1 + aD(b − a) and 1 + (b −
a)aD are invertible. Finally, (12.4.3) follows by direct verification. ��

Now we show the main result of this section.

Theorem 12.4.1 Let a ∈ A be Drazin invertible and b ∈ A obey Condition (W) at
a, then b is Drazin invertible and

bbD = aaD, bD = (1 + aD(b − a))−1aD = aD(1 + (b − a)aD)−1,

and
ind(a) = ind(b).

Proof By Lemma 12.4.1 (3), we know that 1 + aD(b − a) and 1 + (b − a)aD are
invertible and

(1 + aD(b − a))−1aD = aD(1 + (b − a)aD)−1.
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Setting˜b = (1 + aD(b − a))−1aD = aD(1 + (b − a)aD)−1,weprove thatb isDrazin
invertible and bD = ˜b. First we prove that b and˜b are commutable. By Lemma 12.4.1
(1) we have

b˜b = a(1 + aD(b − a))(1 + aD(b − a))−1aD = aaD (12.4.4)

and
˜bb = aD(1 + (b − a)aD)−1(1 + (b − a)aD)a = aDa. (12.4.5)

Hence, we get
b˜b = ˜bb.

Therefore

˜b − b˜b2 = ˜b(1 − b˜b)

= (1 + aD(b − a))−1aD(1 − aDa)

= 0

and b˜b2 = ˜b. Finally, using (12.4.2) and (12.4.4), we get

b − b2˜b = b(1 − b˜b)

= b(1 − aaD)

= a(1 − aaD) + (b − a)(1 − aaD)

= a − a2aD, (12.4.6)

which is quasinilpotent. We conclude that b is Drazin invertible with bD = ˜b. The
Eqs. (12.4.4) and (12.4.5) show that bbD = aaD . From (12.4.6) we conclude that
ind(a) = ind(b). ��

We remark that the known result formatrices [14, Theorem 3.2 andCorollaries 3.1
and 3.2] is a direct corollary of Theorem 12.4.1.

Corollary 12.4.1 Let a ∈ A be Drazin invertible and b ∈ A obey Condition (W)

at a, then b is Drazin invertible and

‖bD − aD‖
‖aD‖ ≤ ‖aD(b − a)‖

1 − ‖aD(b − a)‖ .

Corollary 12.4.2 Let a ∈ A be Drazin invertible and b ∈ A obey Condition (W)

at a, then b is Drazin invertible and

‖aD‖
1 + ‖aD(b − a)‖ ≤ ‖bD‖ ≤ ‖aD‖

1 − ‖aD(b − a)‖ .
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Corollary 12.4.3 Let a ∈ A be Drazin invertible, b ∈ A obey Condition (W) at a,
and ‖aD(b − a)‖ ≤ 1/2, then b is Drazin invertible and a obeys Condition (W) at
b.

Corollary 12.4.4 Let a ∈ A be Drazin invertible, b ∈ A obey Condition (W) at a,
and ‖aD‖ ‖b − a‖ < 1, then b is Drazin invertible and

‖bD − aD‖
‖aD‖ <

κD(a)‖b − a‖/‖a‖
1 − κD(a)‖b − a‖/‖a‖ ,

where κD(a) = ‖a‖ ‖aD‖ is defined as the condition number with respect to the
Drazin inverse.

This section is based on [16].

12.5 Weighted Drazin Inverse of an Operator

The operator Drazin inverse discussed in the previous sections can be generalized
by introducing a weight operator, as in the matrix case. Cline and Greville [17]
introduced the concept of the W-weighted Drazin inverse of a rectangular matrix.
Qiao [18] proposed the concept of theW-weightedDrazin inverse of a bounded linear
operator and proved its existence, uniqueness and gave some basic properties.

In this section, we first introduce the definition, basic properties, and representa-
tions of theweighted operatorDrazin inverse, thenwepresent computationalmethods
and perturbation analysis.

Let X1 and X2 be Hilbert spaces andW ∈ B(X2, X1) a weight operator, then the
W-weighted Drazin inverse of a bounded linear operator A is defined as follows.

Definition 12.5.1 Let A ∈ B(X1, X2) and W ∈ B(X2, X1). If for some nonnega-
tive integer k, there exists S ∈ L(X1, X2) satisfying

(AW )k+1SW = (AW )k, (12.5.1)

SW AWS = S, (12.5.2)

AWS = SW A, (12.5.3)

then S is called the W-weighted Drazin inverse of A and denoted by S = Ad,W .

By comparing with Definition 12.1.1, we can see that the regular operator Drazin
inverse is a special case of the W-weighted operator Drazin inverse, where X1 =
X2 = X , A ∈ B(X), and W = I .

The following theorem shows the uniqueness of the W-weighted Drazin inverse.
Its proof is more involved than the proof of Theorem 12.1.1 of the uniqueness of the
regular operator Drazin inverse, as we have to deal with two spaces X1 and X2.
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Theorem 12.5.1 Let A ∈ B(X1, X2). If for some W ∈ B(X2, X1), there exists an
S ∈ L(X1, X2) satisfying the Eqs. (12.5.1)–(12.5.3), then it must be unique.

Proof Let S1, S2 ∈ L(X1, X2) satisfy theEqs. (12.5.1)–(12.5.3) for k1 and k2, respec-
tively. Set k = max{k1, k2}, it follows from Definition 12.5.1 that

S1 = (AW )2S1(WS1)
2

= · · ·
= (AW )k S1(WS1)

k

= (AW )k+1S2WS1(WS1)
k

= S2(W A)k+1WS1(WS1)
k

= S2(W A)kW (AWS1WS1)(WS1)
k−1

= S2(W A)kW S1(WS1)
k−1

= · · ·
= S2W AWS1.

Repeating the first part of the above deduction, we have

S2 = (AW )k+1S2(WS2)
k+1.

Using AWS2W = S2W AW , we obtain S2W = (S2W )k+2(AW )k+1. Thus

S1 = S2W AWS1
= (S2W )k+2(AW )k+1AWS1
= (S2W )k+2(AW )k+1S1W A

= (S2W )k+2(AW )k A

= S2(WS2)
k+1(W A)k+1

= (S2W )k+1S2(W A)k+1

= (S2W )k S2WS2W A(W A)k

= (S2W )k S2W AWS2(W A)k

= (S2W )k S2(W A)k

= · · ·
= (S2W )S2(W A)

= S2W AWS2
= S2,

which shows the uniqueness. ��
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Next, we will establish a relation between the W-weighted Drazin inverse Ad,W

and the regular Drazin inverse (AW )D . First, we derive some properties of (AW )D .

Theorem 12.5.2 Let A ∈ B(X1, X2) andW ∈ B(X2, X1). If there exists theDrazin
inverse of W A, then there exists the Drazin inverse of AW and

(AW )D = A((W A)D)2W (12.5.4)

and their indices have the relation:

Ind(AW ) ≤ Ind(W A) + 1.

Proof Since (W A)D exists, supposing Ind(W A) = k, we have

(W A)D(W A)k+1 = (W A)k, (12.5.5)

((W A)D)2(W A) = (W A)D, (12.5.6)

(W A)D(W A) = (W A)(W A)D. (12.5.7)

From the above Eqs. (12.5.5)–(12.5.7), it is easy to verify that

A((W A)D)2W (AW )k+2 = (AW )k+1, (12.5.8)

A((W A)D)2W (AW )A((W A)D)2W = A((W A)D)2W, (12.5.9)

A((W A)D)2W (AW ) = (AW )A((W A)D)2W. (12.5.10)

It then follows from Definition 12.1.1 and Theorem 12.1.1 that

A((W A)D)2W = (AW )D.

From Corollary 12.1.1, Ind(AW ) is the smallest nonnegative integer satisfying
(12.5.1)–(12.5.3). Thus from (12.5.8)–(12.5.10), we know

Ind(AW ) ≤ k + 1 = Ind(W A) + 1,

which completes the proof. ��
Theorem 12.5.3 Under the assumptions in Theorem 12.5.2, for any positive integer
p, we have

W ((AW )D)p = ((W A)D)pW (12.5.11)

and
A((W A)D)p = ((AW )D)p A. (12.5.12)
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Proof When p = 1, it follows from (12.5.4), (12.5.6) and (12.5.7) that

W (AW )D = (W A)((W A)D)2W

= ((W A)D)2W AW

= (W A)DW.

By the induction, (12.5.11) holds. Similarly, we can prove (12.5.12). ��
The following theorem shows an explicit expression of the W-weighted operator

Drazin inverse Ad,W in terms of the regular operator Drazin inverse (W A)D . Thus,
it proves the existence of the W-weighted operator Drazin inverse.

Theorem 12.5.4 Let A ∈ B(X1, X2), W ∈ B(X2, X1), and Ind(AW ) = k, then

Ad,W = A((W A)D)2 (12.5.13)

= ((AW )D)2A ∈ L(X1, X2).

Furthermore, ifR((AW )k) is closed, then Ad,W ∈ B(X1, X2).

Proof Since Ind(AW ) = k, it follows from Theorem 12.1.3 that there exists
(AW )D ∈ L(X2). ByTheorems12.5.2 and12.5.3, it is easy toverify that A((W A)D)2

satisfies

(AW )k+1A((W A)D)2W = (AW )k,

A((W A)D)2W AW A((W A)D)2 = A((W A)D)2,

AW A((W A)D)2 = A((W A)D)2W A.

It follows from the above equations and Theorem 12.5.1 of the uniqueness of the
W-weighted Drazin inverse that

Ad,W = A((W A)D)2 ∈ L(X1, X2).

IfR((AW )k) is closed, by Theorem 12.1.3, we have (AW )D ∈ B(X2). Similarly,
we can show

(W A)D = W ((AW )D)2A ∈ B(X1).

Thus
Ad,W = A((W A)D)2 ∈ B(X1, X2).

The other expression of Ad,W in (12.5.13) can be obtained similarly. The proof is
omitted here. ��

Theorem 12.5.4 gives an expression of Ad,W in terms of (W A)D . In the following
theorem, Ad,W is expressed in terms of A andW [19]. The theorem itself is analogous
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to Theorem 12.2.1, however, its proof is more involved than the proof of the regular
case, because we have to deal with two spaces X1 and X2. So, we give the theorem
and its proof.

Theorem 12.5.5 Suppose that A ∈ B(X1, X2), W ∈ B(X2, X1) with
k = max{Ind(AW ), Ind(W A)} and R((AW )k) is closed, then

Ad,W = ˜A−1A(W A)k(A(W A)2k+2)∗A(W A)k,

where
˜A = (A(W A)k(A(W A)2k+2)∗(AW )k+2)|R(A(W A)k )

is the restriction of A(W A)k(A(W A)2k+2)∗(AW )k+2 on R(A(W A)k).

Proof Setting G = A(W A)k , we know that R(G) is a closed subspace of X2. It is
obvious that R(GW AWG) ⊂ R(G). Since

R(G) = R(GW AW Ad,W ) = R(GW AWGG†Ad,W )

⊂ R(GW AWG),

we have R(GW AWG) = R(G). Similarly, we get N (GW AWG) = N (G).
Clearly, R(G†GW AWGG†) ⊂ R(G†). Now,

R(G†) = R(G†G) = R(G†GW AWG) = R(G†GW AWGG†G)

⊂ R(G†GW AWGG†)

impliesR(G†GW AWGG†) = R(G†). Now, it follows from [20, p. 70] that

Ad,W = (W AW )
(2)
R(G),N (G) = (PN (G)⊥W AW PR(G))

† = (G†GW AWGG†)†.

Next, we prove that Ad,W = G(GW AWG)†G. Set X = G(GW AWG)†G. By
direct computation, we have

G†GW AWGG†X = G†(GW AWG(GW AWG)†)G

= G†PR(GW AWG)G

= G†G,

and

XG†GW AWGG† = G((GW AWG)†GW AWG)G†

= GPR((GW AWG)∗)G
†

= GG†,

that is
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G†GW AWGG†X = (G†GW AWGG†X)∗

and
XG†GW AWGG† = (XG†GW AWGG†)∗.

On the other hand,

(G†GW AWGG†)X (G†GW AWGG†) =

and
X (G†GW AWGG†)X = G(GW AWG)†G = X.

Thus we arrive at Ad,W = G(GW AWG)†G.
Also, it is easy to prove

R(A(W A)k(A(W A)2k+2)∗A(W A)k) = R(Ad,W )

and
N (A(W A)k(A(W A)2k+2)∗A(W A)k) = N (Ad,W ).

The conclusion then follows from [21, Theorem 2.2]. ��
RemarkThe above theorem is a generalization of a result in [22] in that the conditions
N ((AW )k) ⊂ N ((AW )k

∗
) and R((AW )k) ⊂ R((AW )k

∗
) are removed.

12.5.1 Computational Methods

The following theorem says that if we have a sequence of real valued functions that
converges to x−1 then we can represent Ad,W as a limit of a sequence of operator
functions.

Theorem 12.5.6 Suppose that A ∈ B(X1, X2), W ∈ B(X2, X1)with k = max{Ind
(AW ), Ind(W A)} and R((AW )k) is closed. Define

˜A = (A(W A)k(A(W A)2k+2)∗(AW )k+2)|R(A(W A)k ).

If � is an open set such that σ(˜A) ⊂ � ⊂ (0, +∞) and {Sn(x)} is a sequence
of continuous real valued functions on � with limn→∞ Sn(x) = 1/x uniformly on
σ(˜A), then

Ad,W = lim
n→∞ Sn(˜A)A(W A)k(A(W A)2k+2)∗A(W A)k .
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Furthermore, for any ε > 0, there is an operator norm ‖ · ‖∗ on X1 such that

‖Sn(˜A)A(W A)k(A(W A)2k+2)∗A(W A)k − Ad,W‖∗
‖Ad,W‖∗

≤ maxx∈σ(˜A) |Sn(x)x − 1| + O(ε).

(12.5.14)

Proof Following the proof of Theorem 12.5.5 and replacing ˜T there with ˜A, we first
can show that the spectrum of ˜A is positive, then using [10, Theorem 10.27], we have

lim
n→∞ Sn(˜A) = ˜A−1

uniformly in B(R(A(W A)k)). It then follows from Theorem 12.5.5 that

lim
n→∞ Sn(˜A)A(W A)k(A(W A)2k+2)∗A(W A)k

= ˜A−1A(W A)k(A(W A)2k+2)∗A(W A)k

= Ad,W .

To obtain the error bound (12.5.14), we note that

A(W A)k(A(W A)2k+2)∗A(W A)k = ˜AAd,W .

Therefore,

Sn(˜A)A(W A)k(A(W A)2k+2)∗A(W A)k − Ad,W = (Sn(˜A)˜A − I )Ad,W .

Also, for any ε > 0, there is an operator norm ‖ · ‖∗ such that ‖˜A‖∗ ≤ ρ(˜A) + ε, see
[11, p. 77]. Thus

‖Sn(˜A)A(W A)k(A(W A)2k+2)∗A(W A)k − Ad,W‖∗
≤ ‖Sn(˜A)˜A − I‖∗ ‖Ad,W‖∗
≤ ( max

x∈σ(˜A)

|Sn(x)x − 1| + O(ε))‖Ad,W‖∗,

which completes the proof. ��
Similarly, replacing ˜T in Theorem 12.2.3 with ˜A, we can derive lower and upper

bounds for λ ∈ σ(˜A):

‖(A(W A)2k+2)†‖−2 ≤ λ ≤ ‖A‖2 ‖AW‖4k+4. (12.5.15)

Now, by using various sequences {Sn(x)} that converge to x−1, we can obtain
various methods for computing Ad,W .
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Euler-Knopp Sequence:

Sn(x) = α

n
∑

j=0

(1 − αx) j .

For α ∈ (0, 2/(‖A‖−2 ‖AW‖−(4k+4))), we have

Ad,W = α

∞
∑

n=0

(I − αA(W A)k(A(W A)2k+2)∗(AW )k+2)n

·A(W A)k(A(W A)2k+2)∗A(W A)k .

Setting

An = α

n
∑

j=0

(I − αA(W A)k(A(W A)2k+2)∗(AW )k+2) j

·A(W A)k(A(W A)2k+2)∗A(W A)k,

we have the following iterative procedure for computing the W-weighted Drazin
inverse:

⎧

⎨

⎩

A0 = αA(W A)k(A(W A)2k+2)∗A(W A)k,

An+1 = (I − αA(W A)k(A(W A)2k+2)∗(AW )k+2)An

+ αA(W A)k(A(W A)2k+2)∗A(W A)k .

For the error bound, we note that the sequence {Sn(x)} satisfies

Sn+1(x)x − 1 = (1 − αx)(Sn(x)x − 1).

Thus
|Sn(x)x − 1| = |1 − αx |n |S0(x)x − 1| = |1 − αx |n+1.

If x ∈ σ(˜A) and

0 < α <
2

‖A‖2 ‖AW‖4k+4
,

then |1 − αx | ≤ β < 1, where

β = max{|1 − α‖A‖2 ‖AW‖4k+4|, |1 − α‖(A(W A)2k+2)†‖−2|}. (12.5.16)

Therefore,
|Sn(x)x − 1| ≤ βn+1 → 0, as n → ∞.
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It follows from the above limit and Theorem 12.5.6 that the error bound is

‖An − Ad,W‖∗
‖Ad,W‖∗

≤ βn+1 + O(ε).

Newton’s Iteration:
{

S0(x) = α,

Sn+1(x) = Sn(x)(2 − xSn(x)),

for α > 0.
Applying Theorem 12.5.6, we get

lim
n→∞ Sn(˜A)A(W A)k(A(W A)2k+2)∗A(W A)k = Ad,W .

Setting
An = Sn(˜A)A(W A)k(A(W A)2k+2)∗A(W A)k,

we have the following Newton’s iterative procedure for computing the W-weighted
Drazin inverse:

{

A0 = αA(W A)k(A(W A)2k+2)∗A(W A)k,

An+1 = An(2I − W AW An),

for α ∈ (0, 2/(‖A‖2 ‖AW‖4k+4)), and an error bound

‖An − Ad,W‖∗
‖Ad,W‖∗

≤ β2n + O(ε),

where β is given by (12.5.16).
One attractive feature of the Newton method is its quadratic rate of convergence

in general.
Considering an alternative real valued function St (x) = (t + x)−1, t > 0, for x ∈

σ(˜A), we have another limit representation of the W-weighted Drazin inverse [23].
Let k = max{Ind(AW ), Ind(W A)}, then

Ad,W = lim
t→0+

(t I + (AW )k+2)−1(AW )k A,

which can be rewritten as

Ad,W = lim
t→0+

(t I + X (AW )k+2)−1X A(W A)k,

where
X = A(W A)k(A(W A)2k+2)∗.
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Furthermore, from

|xSt (x) − 1| = t

x + t

≤ t

‖(A(W A)2k+2)†‖−2 + t

= ‖(A(W A)2k+2)†‖2t
1 + ‖(A(W A)2k+2)†‖2t

and Theorem 12.5.6, we have the following error bound.

‖(t I + X (AW )k+2)−1X A(W A)k − Ad,W‖∗
‖Ad,W‖∗

≤ ‖(A(W A)2k+2)†‖2t
1 + ‖(A(W A)2k+2)†‖2t + O(ε).

Analogous to the regular Drazin inverse case, we can apply Theorem 12.5.6 to
polynomial interpolations of the function f (x) = 1/x to derive iterative methods for
computing Ad,W and their corresponding asymptotic error bounds.

Newton’s Polynomial Interpolation

Similar to Sect. 12.3.4, considering the Newton’s polynomial interpolation

Pn(x) =
n

∑

j=0

1

j + 1

j−1
∏

l=0

(

1 − x

l + 1

)

of f (x) = x−1 at x = 1, 2, ..., n + 1. It can be verified that

1 − x Pn(x) =
n

∏

l=0

(

1 − x

l + 1

)

.

Applying Theorem 12.5.6, we get

lim
n→∞ Pn(˜A)A(W A)k(A(W A)2k+2)∗A(W A)k = Ad,W ,

where
˜A = (A(W A)k(A(W A)2k+2)∗(AW )k+2)|R(A(W A)k ).

Setting
An = Pn(˜A)A(W A)k(A(W A)2k+2)∗A(W A)k,
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we have the following iterativemethod for computing theW-weightedDrazin inverse
Ad,W :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

A0 = A(W A)k(A(W A)2k+2)∗A(W A)k,

An+1 = Pn+1(˜A)A(W A)k(A(W A)2k+2)∗A(W A)k

= An + A0

n + 2
(I − W AW An),

To derive an asymptotic error bound for this method, note that for

x ∈ σ(˜A) ⊂ [ ‖(A(W A)2k+2)†‖−2, ‖A‖2 ‖AW‖4k+4 ]

and for l ≥ L ,where L = [‖A‖2 ‖AW‖4k+4] is the integer closest to‖A‖2 ‖AW‖4k+4,
we have

1 − x

l + 1
≤ exp

(

− x

l + 1

)

for all x ∈ σ(˜A).

Therefore
n

∏

l=L

(

1 − x

l + 1

)

≤ exp

(

−x
n

∑

l=L

1

l + 1

)

, n ≥ L .

Also,
n

∑

l=L

1

l + 1
≥

∫ n+2

L+1

dt

t
= ln(n + 2) − ln(L + 1),

hence

exp

(

−x
n

∑

l=L

1

l + 1

)

≤ (L + 1)x (n + 2)−x

= (1 + ‖A‖2 ‖AW‖4k+4)x (n + 2)−x .

If we set the constant

C = max
x∈σ(˜A)

(1 + ‖A‖2 ‖AW‖4k+4)x
L−1
∏

l=0

(

1 − x

l + 1

)

,

where L = [‖A‖2 ‖AW‖4k+4] is the integer closest to ‖A‖2 ‖AW‖4k+4, then

|1 − x Pn(x)| ≤ C(n + 2)−x .
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Finally, it follows from Theorem 12.5.6 that

‖An − Ad,W‖∗
‖Ad,W‖∗

≤ C(n + 2)−‖(A(W A)2k+2)†‖−2 + O(ε),

for sufficiently large n.

Hermite Interpolation

Similar to Sect. 12.3.5, consider the unique polynomial qn(x) of degree 2n + 1
which satisfies

qn(i) = 1

i
and q ′

n(i) = − 1

i2
, i = 1, 2, . . . , n + 1.

The Hermite interpolation formula yields the representation

qn(x) =
n

∑

i=0

(2(i + 1) − x)
i

∏

l=1

(

l − x

l + 1

)2

, (12.5.17)

where, by convention, the product term equals 1 when l = 0.
Applying Theorem 12.5.6 to the polynomials qn(x) in (12.5.17), we have

Ad,W = lim
n→∞ qn(˜A)A(W A)k(A(W A)2k+2)∗A(W A)k .

Setting
An = qn(˜A)A(W A)k(A(W A)2k+2)∗A(W A)k,

we get the following iterative method for computing the W-weighted Drazin inverse
Ad,W :

⎧

⎨

⎩

A0 = (2I − MW AW )M,

An+1 = An + 1

n + 2

(

2I − 1

n + 2
MW AW

)

M(I − W AW An),

where
M = A(W A)k(A(W A)2k+2)∗A(W A)k .

To derive an asymptotic error bound, for l ≥ L = [‖A‖2 ‖AW‖4k+4] and

x ∈ σ(˜A) ⊂ [(A(W A)2k+2)†‖−2, ‖A‖2 ‖AW‖4k+4],

we have
n

∏

l=L

(

1 − x

l + 1

)2

≤ (1 + ‖A‖2 ‖AW‖4k+4)2x (n + 2)−2x .
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Let the constant

d = max
x∈σ(˜A)

(1 + ‖A‖2 ‖AW‖4k+4)2x
L−1
∏

l=0

(

1 − x

l + 1

)2

,

then
|1 − xqn(x)| ≤ d(n + 2)−2x .

By Theorem 12.5.6, we arrive at the error bound:

‖An − Ad,W‖∗
‖Ad,W‖∗

≤ d(n + 2)−2‖(A(W A)2k+2)†‖−2 + O(ε),

for sufficiently large n.

12.5.2 Perturbation Analysis

In this section, we study the perturbation of the W-weighted Drazin inverse of a
bounded linear operator between Banach spaces. Specifically, suppose B = A + E
is a perturbed A, we investigate the error in Bd,W in terms of the perturbation E .

Fix W ∈ B(X2, X1). For A, B ∈ B(X1, X2), we define the W-product of A and
B by

A ∗ B ≡ AW B.

Also, for A ∈ B(X1, X2), we denote theW-product of Awith itselfm times by A∗m .
For A ∈ B(X1, X2), define

‖|A‖| ≡ ‖A‖ ‖W‖,

then (B(X1, X2), ∗, ‖| · ‖|) is a Banach algebra. If W is a one-to-one map of X2 to
X1, then W−1 ∈ B(X1, X2) is the unit of this algebra. If the inverse of W does not
exist, then we adjoin a unit to the algebra. In either case, we may assume that we are
working in a unital algebra. Now suppose that A, B ∈ B(X1, X2) satisfy:

(1) (AW )k+1BW = (AW )k ,
(2) BW AWB = B,
(3) AW B = BW A.

Postmultiplying (1) with A and then using (3), we have

(1’) (A)∗k+2 ∗ B = (A)∗k+1,
(2’) B ∗ A ∗ B = B,
(3’) A ∗ B = B ∗ A.
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Conditions (2’) and (3’) are (2) and (3) written in terms of the W-product. Thus, A
has a Drazin inverse in the algebra constructed above. In this case, we write B = AD

or more precisely B = Ad,W .
According to the matrix case [17], the unique solution, if it exists, of (1), (2)

and (3) is called the W-weighted Drazin inverse of A. In this case we say that A is
W-Drazin invertible.

In the following proposition, we give several equivalent conditions for the exis-
tence of the W-Drazin inverse.

Proposition 12.5.1 Let X1 and X2 be Banach spaces, A ∈ B(X1, X2) and W ∈
B(X2, X1), then the following five conditions are equivalent:

(1) A is W-Drazin invertible, that is the three equations:

(a) (AW )k+1XW = (AW )k , for some nonnegative integer k,
(b) XW AWX = X,
(c) AW X = XW A.

have a common solution X ∈ B(X2, X1);
(2) AW is Drazin invertible;
(3) W A is Drazin invertible;
(4) α(AW ) = p < +∞, R((AW )p+k) is closed for some k ≥ 1, and δ(W A) <

+∞, recalling that α(T ) is the ascending index of T defined in Definition 12.1.2
and δ(T ) is the descending index of T defined in Definition 12.1.3;

(5) α(W A) = q < +∞,R((W A)q+l) is closed for some l ≥ 1, and δ(AW ) < +∞.

If any of the five conditions is satisfied, then the above three Eqs. (a)–(c) have a
unique solution

X = Ad,W = A((W A)D)2 = ((AW )D)2A.

Open problem. In connection with Proposition 12.5.1 and the characteristics of the
Drazin inverse of a bounded operator on Banach space, it would be interesting to
prove or disprove that α(AW ) < +∞ and δ(W A) < +∞ imply that AW is Drazin
invertible.

Recalling (12.4.1), b ∈ A is said to obey Condition (W) at a if

b − a = aaD(b − a)aaD and ‖aD(b − a)‖ < 1.

For convenience, we state the main perturbation result from [16, Theorem 2.1].

Lemma 12.5.1 Let a ∈ A be Drazin invertible and b ∈ A obey Condition (W) at
a, then b is Drazin invertible,

bbD = aaD, bD = (1 + aD(b − a))−1aD = aD(1 + (b − a)aD)−1,

and
ind(a) = ind(b).
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Now, let A, B ∈ B(X1, X2) and W ∈ B(X2, X1). Suppose that A is W-Drazin
invertible and B satisfies Condition (W) at A, that is,

B − A = A ∗ AD ∗ (B − A) ∗ A ∗ AD and ‖|AD ∗ (B − A)‖| < 1,

which can be rewritten as

B − A = AW Ad,WW (B − A)W AW Ad,W and ‖Ad,WW (B − A)‖‖W‖ < 1.

Set the perturbation E = B − A. Now, based on the above lemma, we have the
following result

Theorem 12.5.7 Let A, B ∈ B(X1, X2), W ∈ B(X2, X1), A be W-Drazin invert-
ible and B obey Condition (W) at A, then B is W-Drazin invertible and

(BW )(Bd,WW ) = (AW )(Ad,WW ), Ind(BW ) = Ind(AW ),

and Bd,W can be given by

Bd,W = (I + Ad,WWEW )−1Ad,W = Ad,W (I + WEW Ad,W )−1 (12.5.18)

and
R(Bd,W ) = R(Ad,W ) and N (Bd,W ) = N (Ad,W ). (12.5.19)

Proof Note that (12.5.18) implies (12.5.19). Because B obeys Condition (W) at
A, we know that I + Ad,WWEW and I + WEW Ad,W are invertible. Now, from
Lemma 12.5.1, we complete the proof of the theorem. ��
The next corollary gives absolute and relative perturbation errors and lower and upper
bounds for ‖Bd,W‖.
Corollary 12.5.1 Under the assumptions in Theorem 12.5.7, B is W-Drazin invert-
ible and the absolute error

Bd,W − Ad,W = −Bd,WWEW Ad,W = −Ad,WWEWBd,W ,

the relative error ‖Bd,W − Ad,W‖
‖Ad,W‖ ≤ ‖Ad,WWEW‖

1 − ‖Ad,WWEW‖ ,

and ‖Ad,W‖
1 + ‖Ad,WWEW‖ ≤ ‖Bd,W‖ ≤ ‖Ad,W‖

1 − ‖Ad,WWEW‖ .

Next, we present a condition number that measures the sensitivity of Bd,W to the
perturbation E .
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Corollary 12.5.2 Under the assumptions in Theorem 12.5.7, we have

(1) if ‖Ad,W‖ ‖WEW‖ < 1, then B is W-Drazin invertible and

‖Bd,W − Ad,W‖
‖Ad,W‖ ≤ κd,W (A)‖WEW‖/‖W AW‖

1 − κd,W (A)‖WEW‖/‖W AW‖ ,

where κd,W (A) = ‖W AW‖ ‖Ad,W‖ is the condition number of the W-weighted
Drazin inverse of A;

(2) if ‖Ad,WWEW‖ < 1/2, then B is W-Drazin invertible and A obeys Condi-
tion (W) at B.

The following result is motivated by the index splitting of a matrix [24].

Theorem 12.5.8 Let A, U, V ∈ B(X1, X2) and W ∈ B(X2, X1). Suppose that
A = U − V is W-Drazin invertible, UW is Drazin invertible, Ind(AW ) = k1,
Ind(W A) = k2, Ind(UW ) = Ind(WU ) = 1, Ud,WWVW is a compact operator,
R((UW )D) = R((AW )k1) and N ((WU )D) = N ((W A)k2), then I −Ud,WWVW
is invertible and

Ad,W = (I −Ud,WWVW )−1Ud,W = Ud,W (I − WVWUd,W )−1. (12.5.20)

Proof To prove that I −Ud,WWVW is invertible it suffices to show that N (I −
Ud,WWVW ) = {0}. Suppose that x ∈ N (I −Ud,WWVW ), which means that
Ud,WWVWx = x. Since

(Ud,WWVW )(Ud,WWVW )x

= Ud,WW (U − A)WUd,WWVWx

= (Ud,WWUWUd,W )WVWx −Ud,WW AW (Ud,WWVWx)

= Ud,WWVWx −Ud,WW AWx,

we have

Ud,WW AWx = Ud,WWVWx − (Ud,WWVW )(Ud,WWVW )x

= Ud,WWVW (I −Ud,WWVW )x

= 0.

Thus we obtain

W AWx ∈ N (Ud,W ) = N ((WU )D) = N ((W A)k2) = N (Ad,W ),

and Ad,WW AWx = 0, thus x ∈ N (Ad,WW AW ) = N ((AW )k1). However,

x ∈ R((AW )k1) ∩ N ((AW )k1) = {0}.
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Hence, x = 0 and I −Ud,WWVW is invertible. Notice that

(I −Ud,WWVW )Ad,W

= (I −Ud,W (WUW − W AW ))Ad,W

= Ad,W −Ud,WWUW Ad,W +Ud,WW AW Ad,W

= Ud,W .

Thus, we get (12.5.20). ��
When W = I and A is a square matrix, Theorem 12.5.8 reduces to the results in

[24].

Corollary 12.5.3 Let A = U − V ∈ C
n×n and Ind(A) = k. Suppose that R(U ) =

R(Ak) and N (U ) = N (Ak), then I −UDV is invertible and

AD = (I −UDV )−1UD = UD(I − VUD)−1.

This section is based on [21].

Remarks

The representation theorem of the Drazin inverse of a linear operator in Banach space
is given in [2–4, 7, 25, 26] and more recent results on representations, properties,
and characterizations of the Drazin inverse of a linear operator are given in [26–28].
The necessary and sufficient condition for the existence of the Drazin inverse of a
linear operator in Banach space and the applications in infinite-dimensional linear
systems can be found in [29] and [30], respectively. The Drazin inverse of an element
of a Banach algebra is given in [31, 32]. Additional results for the generalized Drazin
inverse are presented in [33–35] and weighted g-Drazin in [36]. Wang [22, 37, 38]
first studied the iterative methods, the representations and approximations of the
operator W-weighted Drazin inverse in Banach space. Perturbation analysis of the
weighted Drazin inverse of a linear operator can be found in [16, 19, 21, 39–41].
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Hessenberg matrix, 221
Hilbert space, 317
Householder transformation, 182
Hyperpower, 330

I
Idempotent matrix, 20
Index, 66
Inner inverse, 337
Inner product, 240
Iterative method

pth order, 331
first order, 328
second order, 329

J
Jacobi identity, 132

K
Kronecker product, 116

L
Laplace expansion, 133
Least-squares (M) solution, 38
Least-squares solution, 7
Level-2 condition number, 288
Leverrier algorithm, 217
Limit expression

operator Drazin inverse, 348
W-weighted operatorDrazin inverse, 363

Limit representation of generalized inverses,
221

Linear difference equation, 89
Linear differential equation, 89
Linear operator, 317
Lower trapezoidal, 181
Lower triangular, 180

M
M-P inverse of Toeplitz, 225
Matrix equation, 14
Matrix norm, 34
Metric generalized inverse, 337
Middle product, 240
MIMD, 236
Minimum-norm (N ) least-squares (M) solu-

tion, 40
Minimum-norm (N ) solution, 37
Minimum-norm least-squares solution, 7
Minimum-norm solution, 11
Minor

A(2)
T,S , 146, 147

Drazin inverse, 142
group inverse, 142
Moore-Penrose inverse, 134
weighted Moore-Penrose inverse, 137
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Moore definition, 321
Moore-Penrose inverse(ab. M-P inverse), 3
Multiplicative perturbation, 288
Multiprocessor, 235

N
Newton formula, 249
Newton interpolation

Moore-Penrose inverse, 333
operator Drazin inverse, 349
W-weighted operatorDrazin inverse, 365

Newton method
Moore-Penrose inverse, 328
operator Drazin inverse, 347
W-weighted operatorDrazin inverse, 363

Noble’s method, 205
Norm

2-norm, 34
Frobenius-norm, 116
operator norm, 35
weighted norm, 34

Numerical computation of generalized
inverses, 221

O
Operator

ascent, 340
descent, 340
index, 340

Operator Drazin inverse, 339
Orthogonal displacement representation,

227
Outer generalized inverse, 62, 63
Outer inverse, 221, 337
Outer product, 241

P
Parallel (M-N )SVD algorithm, 260
Parallel algorithm, 233
Parallel arithmetic complexity, 255
Partitioned matrix, 193
Partitioned method, 176
Penrose conditions, 2
Penrose definition, 321
Perturbation

W-Weighted operator Drazin inverse,
367

Perturbation bound
Drazin inverse, 292
group inverse, 300
Moore-Penrose inverse, 274

nonsingular matrix, 263
weighted Moore-Penrose inverse, 278

Pipeline processor, 234
Polynomial matrix, 307

Drazin inverse, 2-D algorithm, 314
Drazin inverse, finite algorithm, 312
Drazin inverse, 311
M-P inverse, 309
M-P inverse, 2-D algorithm, 311

POWERS(B, w), 242
Prescribed range and null space, 19
Principal vector, 78
Projector, 21

difference, 23
product, 23
sum, 23

Pythagorean theorem, 7

R
Randomized GSVD, 62, 63
Rank-one modified matrix, 194
Rank-preserving modification, 276
Rational matrix, 316
Recursive least squares algorithm, 221
Representation theorem

Moore-Penrose inverse, 325
operator Drazin inverse, 344
W-weighted operatorDrazin inverse, 360

Restricted linear equation, 103
Restricted matrix equation, 120
Reverse order law, 154
Row echelon form, 178

S
Scaled generalized inverse, 62, 63
Self-adjoint, 322
Shift-down matrix, 226
Sign analysis, 304
Signed generalized inverse, 62, 63
SIMD, 236
Singular linear equation, 101
Singular value decomposition, 185
Smoothed analysis, 288
Space complexity, 237
Spectral mapping theorem, 326
Spectral radius, 317
Spectrum, 317
Speedup, 238
Splitting method, 176
Stable perturbation, 288, 304
Stein displacement, 226
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Successive matrix squaring algorithm, 260
SUPERPOWERS(B, t), 242
Sylvester displacement, 226

T
Tensor Moore-Penrose inverse, 62, 63
Time complexity, 237
Toeplitz matrix, 225

U
Unitary matrix, 3
Upper trapezoidal, 180

Upper triangular, 180
Urquhart formula, 28

V
Volume, 133

W
W-weighted Drazin inverse, 83
W-Weighted operator Drazin inverse, 355
Weighted acute perturbation, 288
Weighted conjugate transpose matrix, 35
Weighted Moore-Penrose inverse, 40
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