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Preface

Semiconductor electronics is commonplace in every household. Semiconductor
devices have also enabled economically reasonable fiber-based optical commu-
nication, optical storage and high-frequency amplification and have recently
revolutionized photography, display technology and lighting. Along with these
tremendous technological developments, semiconductors have changed the
way we work, communicate, entertain and think. The technological progress
of semiconductor materials and devices is evolving continuously with a large
worldwide effort in human and monetary capital. For students, semiconduc-
tors offer a rich, diverse and exciting field with a great tradition and a bright
future.

This book introduces students to semiconductor physics and semiconduc-
tor devices. It brings them to the point where they can specialize and enter
supervised laboratory research. It is based on the two semester semiconductor
physics course taught at Universität Leipzig in its Master of Science physics
curriculum. Since the book can be followed with little or no pre-existing
knowledge in solid-state physics and quantum mechanics, it is also suitable
for undergraduate students. For the interested reader some additional topics
are included in the book that can be covered in subsequent, more special-
ized courses. The material is selected to provide a balance between aspects of
solid-state and semiconductor physics, the concepts of various semiconductor
devices and modern applications in electronics and photonics.

The first semester contains the fundamentals of semiconductor physics
(Part I, Sects. 1–10) and selected topics from Part II (Sects. 11–19). Be-
sides important aspects of solid-state physics such as crystal structure, lattice
vibrations and band structure, semiconductor specifics such as technologi-
cally relevant materials and their properties, electronic defects, recombina-
tion, hetero- and nanostructures are discussed. Semiconductors with electric
polarization and magnetization are introduced. The emphasis is put on in-
organic semiconductors, but a brief introduction to organic semiconductors
is given in Sect. 16. Dielectric structures (Sect. 18) serve as mirrors, cavi-
ties and microcavities and are a vital part of many semiconductor devices.
Other sections give introductions to carbon-based nanostructures and trans-
parent conductive oxides (TCOs). The third part (Part III – Sects. 20–23)
is dedicated to semiconductor applications and devices that are taught in
the second semester of the course. After a general and detailed discussion of

VII
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various diode types, their applications in electrical circuits, photodetectors,
solar cells, light-emitting diodes and lasers are treated. Finally, bipolar and
field-effect transistors including thin film transistors are discussed.

In the present text of the second edition a few errors and misprints of
the first edition have been corrected. Many topics have been extended and
are treated in more depth, e.g. dopant diffusion, partial dislocations, etching
of semiconductors, double donors/acceptors, excess charge carrier profiles,
direct transitions in germanium, alloy broadening, nanowires, recombination
in organic semiconductors, depletion layers beyond the abrupt approxima-
tion, Schottky diodes with inhomogeneous barrier, multi-junction solar cells,
quantum dot and organic LEDs, LED degradation, strained channel transis-
tors, MOSFET scaling, memory concepts and thin film transistors. The two
chapters on carbon-based nanostructures and transparent conductive oxides
have been added.

The number of references has been doubled with respect to the first edi-
tion. The references have been selected to (i) cover important historical and
milestone papers, (ii) direct to reviews and topical books for further reading
and (iii) give access to current literature and up-to-date research. In Fig. 1,
the almost 1500 references in this book are shown by year. Roughly three
phases of semiconductor physics and technology can be seen. Before the re-
alization of the first transistor in 1947, only a few publications are notewor-
thy. Then an intense phase of understanding the physics of semiconductors
and developing semiconductor technology and devices based on bulk semi-
conductors (mostly Ge, Si, GaAs) followed. At the end of the 1970s, a new
era began with the advent of quantum wells and heterostructures, and later
nanostructures (nanotubes, nanowires and quantum dots) and new materials
(e.g. organic semiconductors, nitrides or graphene).

Fig. 1. Histogram of references in this book
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SET single-electron transistor, single electron tunneling
SGDBR sampled grating distributed Bragg reflector
SHG second-harmonic generation
si semi-insulating
SIA Semiconductor Industry Association
SIMS secondary ion mass spectrometry
SL superlattice
SLC single-level cell
SLG single layer graphene
s-o spin-orbit (or split-off)
SOA semiconductor optical amplifier
SPD spectral power distribution
SPIE International Society for Optical Engineering
SPS short-period superlattice
sRGB standard RGB
SRH Shockley–Read–Hall (kinetics)
SSR side-mode suppression ratio
STM scanning tunneling microscopy
SWNT single-walled (carbon) nanotube

TA transverse acoustic (phonon)
TAS thermal admittance spectroscopy
TCO transparent conductive oxide
TE transverse electric (polarization)
TED transferred electron device
TFET transparent FET, tunneling FET
TFT thin film transistor
TEGFET two-dimensional electron gas FET
TEM transmission electron microscopy
TES two-electron satellite
TF thermionic field emission
TFT thin-film transistor
TM transverse magnetic (polarization)
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TMAH tetramethyl-ammonium-hydroxide
TMR tunnel-magnetoresistance
TO transverse optical (phonon)
TOD turn-on delay (time)
TPA two-photon absorption
TSO transparent semiconducting oxide

UHV ultrahigh vacuum
UV ultraviolet

VCA virtual crystal approximation
VCO voltage-controlled oscillator
VCSEL vertical-cavity surface-emitting laser
VFF valence force field
VGF vertical gradient freeze (growth)
VIS visible
VLSI very large scale integration

WGM whispering gallery mode
WKB Wentzel–Kramer–Brillouin (approximation or method)
WS Wigner–Seitz (cell)

YSZ Yttria-stabilized zirconia (ZrO2)

X exciton
XX biexciton
XSTM cross-sectional STM

Z atomic number (Z = 2 for helium)
ZnPc zinc-phthalocyanine



Symbols

α Madelung constant, disorder parameter,
linewidth enhancement factor

α(ω) absorption coefficient
αm mirror loss
αn electron ionization coefficient
αp hole ionization coefficient
β used as abbreviation for e/(kB T ), spontaneous

emission coefficient
γ broadening parameter, Grüneisen parameter
Γ broadening parameter
γ1, γ2, γ3 Luttinger parameters
δij Kronecker symbol
Δ0 spin-orbit splitting
ε(ω) dielectric function
ε0 permittivity of vacuum
εi dielectric constant of insulator
εr relative dielectric function
εs dielectric function of semiconductor (= εr ε0)
εxy components of strain tensor
η quantum efficiency
ηd differential quantum efficiency
ηext external quantum efficiency
ηint internal quantum efficiency
ηw wall-plug efficiency
θ angle
ΘD Debye temperature
ΘB typical phonon energy parameter
κ imaginary part of index of refraction, heat conductivity
λ wavelength
λp plasma wavelength
μ mobility
μ0 magnetic susceptibility of vacuum
μh hole mobility
μn electron mobility

XXXI
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ν frequency
Π Peltier coefficient
πxy components of piezoresistivity tensor
ρ mass density, charge density, resistivity
ρxy components of resistivity tensor
σ standard deviation, conductivity, stress, effective mass ratio
Σn grain boundary type
σn electron capture cross section
σp hole capture cross section
σP polarization charge
σxy components of stress tensor, components of conductivity

tensor
τ lifetime, time constant
ΘD Debye temperature
φ phase
χ electron affinity, electric susceptibility
χex light extraction efficiency
χsc electron affinity (of semiconductor)
χ(r) envelope wavefunction
ψ angle
Ψ(r) wavefunction
ω angular frequency
Ω interaction parameter

a hydrostatic deformation potential
a acceleration
A area
A, A vector potential
A∗ Richardson constant
a0 (cubic) lattice constant
b bowing parameter, deformation potential
b Burger’s vector
B bimolecular recombination coefficient, bandwidth
B, B magnetic field
c velocity of light in vacuum, lattice constant (along c-axis)
C capacitance, spring constant
Cn, Cp Auger recombination coefficient
Cij elastic constants
d distance, shear deformation potential
di insulator thickness
D density of states, diffusion coefficient
D, D displacement field
De(E) electron density of states
Dh(E) hole density of states
Dn electron diffusion coefficient
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Dp hole diffusion coefficient
e elementary charge
E energy, electric field
E, E electric field
EA energy of acceptor level
Eb

A acceptor ionization energy
EC energy of conduction-band edge
ED energy of donor level, Dirac energy (in graphene)
Eb

D donor ionization energy
EF Fermi energy
EFn electron quasi-Fermi energy
EFp hole quasi-Fermi energy
Eg band gap
Em maximum electric field
EP energy parameter
EV energy of valence-band edge
Evac energy of vacuum level
EX exciton energy
Eb

X exciton binding energy
f oscillator strength
F free energy
F, F force
F (M) excess noise factor
FB Schottky barrier height
fe Fermi–Dirac distribution function
fi ionicity
Fn electron quasi-Fermi energy
fp hole population
Fp hole quasi-Fermi energy
FP Purcell factor
g degeneracy, g-factor, gain
G free enthalpy, generation rate
G vector of reciprocal lattice
gm transconductance
Gth thermal generation rate
h Planck constant
H enthalpy
H, H magnetic field
H Hamiltonian
� h/(2π)
i imaginary number
I current
Is saturation current
Ithr threshold current
j current density, orbital momentum
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js saturation current density
jthr threshold current density
k wavenumber, Boltzmann constant
k wavevector
kB Boltzmann constant
kF Fermi wavevector
l angular orbital momentum
L length of line element
L line vector (of dislocation)
LD diffusion length
Lz quantum-well thickness
m mass
m0 free electron mass
m∗ effective mass
mc cyclotron mass
M mass, multiplication factor
M, M magnetization
me effective electron mass
mh effective hole mass
mj magnetic quantum number
mr reduced mass
n electron concentration (in conduction band),

ideality factor
n normal vector
N(E) number of states
n∗ complex index of refraction (= nr + iκ)
NA acceptor concentration
Nc critical doping concentration
NC conduction-band edge density of states
ND donor concentration
ni intrinsic electron concentration
nif ideality factor due to image force effect
nr index of refraction (real part)
ns sheet electron density
Nt trap concentration
ntr transparency electron concentration
nthr threshold electron concentration
NV valence-band edge density of states
p pressure, free hole density
p, p momentum
P power
P, P electric polarization
pcv momentum matrix element
pi intrinsic hole concentration
q charge
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q, q heat flow
Q charge, quality factor, impurity-bound exciton localization

energy
r radius
r spatial coordinate
R resistance, radius, recombination rate
Rλ responsivity
R vector of direct lattice
rH Hall factor
RH Hall coefficient
s spin
S entropy, Seebeck coefficient, total spin, surface index, sur-

face recombination velocity
Sij stiffness coefficients
t time
tox (gate) oxide thickness
T temperature
u displacement, cell-internal parameter
unk Bloch function
U energy
v, v velocity
V volume, voltage, potential
V (λ) (standardized) sensitivity of human eye
Va unit-cell volume
Vbi built-in voltage
vg group velocity
vs velocity of sound, drift-saturation velocity
vth thermal velocity
w depletion-layer width
Wm work function
X electronegativity
Y Young’s module, CIE brightness parameter
Z partition sum, atomic order number



Physical Constants

constant symbol numerical value unit

speed of light in vacuum c0 2.99792458 × 108 m s−1

permeability of vacuum μ0 4π × 10−7 N A−2

permittivity of vacuum ε0 = (μ0c
2
0)

−1 8.854187817 × 10−12 F m−1

elementary charge e 1.60217733 × 10−19 C
electron mass me 9.1093897 × 10−31 kg
Planck constant h 6.6260755 × 10−34 J s

� = h/(2π) 1.05457266 × 10−34 J s
� 6.582122 × 10−16 eV s

Boltzmann constant kB 1.380658 × 10−23 J K−1

8.617385 × 10−5 meV K−1

von-Klitzing constant RH 25812.8056 Ω
Rydberg constant 13.6056981 eV
Bohr radius aB 5.29177249 × 10−11 m
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1 Introduction

The proper conduct of science
lies in the pursuit of Nature’s puzzles,

wherever they may lead.
J.M. Bishop [1]

The historic development of semiconductor physics and technology began in
the second half of the 19th century. Interesting discussions of the early history
of the physics and chemistry of semiconductors can be found in treatises of
G. Busch [2] and Handel [3]. The history of semiconductor industry can be fol-
lowed in the text of Morris [4] and Holbrook et al. [5]. In 1947, the realization
of the transistor was the impetus to a fast-paced development that created
the electronics and photonics industries. Products founded on the basis of
semiconductor devices such as computers (CPUs, memories), optical-storage
media (lasers for CD, DVD), communication infrastructure (lasers and pho-
todetectors for optical-fiber technology, high frequency electronics for mo-
bile communication), displays (thin film transistors, LEDs), projection (laser
diodes) and general lighting (LEDs) are commonplace. Thus, fundamental
research on semiconductors and semiconductor physics and its offspring in
the form of devices has contributed largely to the development of modern
civilization and culture.

1.1 Timetable

In this section early important milestones in semiconductor physics and tech-
nology are listed.

1782
A. Volta – coins the phrase ‘semicoibente’ (semi-insulating) which was trans-
lated then into English as ‘semiconducting’ [6].

1821
T.J. Seebeck – discovery of semiconductor properties of PbS [7].

M. Grundmann, The Physics of Semiconductors, 2nd ed., Graduate Texts 1
in Physics, DOI 10.1007/978-3-642-13884-3 1,
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1.1. Current through a silver–CuFeS2–silver structure as a function of the
current through the metal only, 1874. Data points are for different applied voltages.
Experimental data from [12]

1833
M. Faraday – discovery of the temperature dependence of the conductivity
of Ag2S (negative dR/dT ) [8].

1873
W. Smith – discovery of photoconductivity in selenium [9]. Early work on
photoconductivity in Se is reviewed in [10, 11].

1874
F. Braun1 – discovery of rectification in metal–sulfide semiconductor con-
tacts [12], e.g. for CuFeS2 and PbS. The current through a metal–semiconduc-
tor contact is nonlinear (as compared to that through a metal, Fig. 1.1), i.e.
a deviation from Ohm’s law. Braun’s structure is similar to a MSM diode.

1876
W.G. Adams and R.E. Day – discovery of the photovoltaic effect in sele-
nium [14].
W. Siemens – large response from selenium photoconductor [15], made by
winding two thin platinum wires to the surface of a sheet of mica, and then
covering the surface with a thin film of molten selenium. Resistance ratio be-
tween dark and illuminated by sunlight was larger than ten [15] and measured
to 14.8 in [16].

1879
E.H. Hall – measurement of the transverse potential difference in a thin
gold leaf on glass [17, 18]. Experiments were continued by his mentor H.A.

1F. Braun made his discoveries on metal–semiconductor contacts in Leipzig
while a teacher at the Thomasschule zu Leipzig [13]. He conducted his famous work
on vacuum tubes later as a professor in Strasbourg, France.
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Rowland [19]. A detailed account of the discovery of the Hall effect is given
in [20, 21].

1883
Ch. Fritts – first solar cell, based on an gold/selenium rectifier [16]. The
efficiency was below 1%.

1901
J.C. Bose – point contact detector for electromagnetic waves based on galena
(PbS) [22]. At the time, the term semiconductor was not introduced yet and
Bose speaks about ‘substances of a certain class (...) presenting a decreasing
resistance to the passage of the electric current with an increasing impressed
electromotive force’.

1906
G.W. Pickard – rectifier based on point contact (cat’s whisker) diode on sil-
icon [23–25]. Erroneously, the rectifying effect was attributed to a thermal
effect, however, the drawing of the ‘thermo-junction’ (TJ in Fig. 1.2) devel-
oped into the circuit symbol for a diode (cmp. Fig. 20.56a).

1907
H.J. Round – discovery of electroluminescence investigating yellow and blue
light emission from SiC [26].
K. Bädeker – preparation of metal (e.g. Cd, Cu) oxides and sulfides and
also CuI from metal layers using a vapor phase transport method [27].2

Fig. 1.2. Circuit diagram for a radio receiver with a point-contact diode (TJ).
Adapted from [23]

2This work was conducted as Habilitation in the Physics Institute of Universität
Leipzig. Bädeker became subsequently professor in Jena and fell in WW I. His
scientific contribution to semiconductor physics is discussed in [28].
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CuI is reported transparent (∼ 200 nm thick films) with a specific re-
sistivity of ρ = 4.5 × 10−2 Ω cm, the first transparent conductor.3 Also
CdO (films of thickness 100–200 nm) is reported to be highly conductive,
ρ = 1.2 × 10−3 Ω cm, and orange-yellow in color, probably the first reported
TCO (transparent conductive oxide). Anion deficiency in CuI causes insulat-
ing behavior.

1911
The term ‘Halbleiter’ (semiconductor) is introduced for the first time by
J. Weiss [29] and J. Königsberger and J. Weiss [30]. Königsberger preferred
the term ‘Variabler Leiter’ (variable conductor).

1925
J.E. Lilienfeld4 – proposal of the metal-semiconductor field-effect transis-
tor (MESFET) [33]) (Fig. 1.3). He was also awarded patents for a deple-
tion mode MOSFET [34] and current amplification with nppn- and pnnp-
transistors [35].

1927
A. Schleede, H. Buggisch – synthesis of pure, stoichiometric PbS, influence
of sulphur excess and impurities [36].
A. Schleede, E. Körner – activation of luminescence of ZnS [37, 38].

Fig. 1.3. Sketch of a field-effect transistor, 1926. From [33]

3CuI is actually a p-type transparent conductor; at that time the reverse sign
of the Hall effect could not be interpreted as hole conduction yet although Bädeker
considered positive charges [28].

4After obtaining his PhD in 1905 from the Friedrich-Wilhelms-Universität
Berlin, J.E. Lilienfeld joined the Physics Department of University of Leipzig and
worked on gas liquefaction and with Lord Zeppelin on hydrogen-filled blimps. In
1910 he became professor at the University of Leipzig where he mainly researched
on X-rays and vacuum tubes. To the surprise of his colleagues he left in 1926 to
join a US industrial laboratory [31, 32].
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1928
F. Bloch – quantum mechanics of electrons in a crystal lattice, ‘Bloch func-
tions’ [39].

1929
R. Peierls – explanation of positive (anomalous) Hall effect with unoccupied
electron states [40, 41].

1931
W. Heisenberg – theory of hole (‘Löcher’) states [42].
R. de L. Kronig and W.G. Penney – properties of periodic potentials in
solids [43].
A.H. Wilson – development of band-structure theory [44].
C. Zener – Zener tunneling [45].

1933
C. Wagner – excess (‘Elektronenüberschuss-Leitung’, n-type) and defect
(‘Elektronen-Defektleitung’, p-type) conduction [46]. Anion deficiency in ZnO
causes conducting behavior [47].

1936
J. Frenkel – description of excitons [48].

1938
B. Davydov – theoretical prediction of rectification in Cu2O [49].
W. Schottky – theory of the boundary layer in metal–semiconductor con-
tacts [50], being the basis for Schottky contacts and field-effect transistors.
N.F. Mott – metal–semiconductor rectifier theory [51].
R. Hilsch and R.W. Pohl – three-electrode crystal (KBr) [52].

1940
R.S. Ohl – Silicon-based photoeffect (solar cell, Fig. 1.4) [53] from a pn-
junction formed within a slab of polycrystalline Si fabricated with directed
solidification due to different distribution coefficients of p- and n-dopants (e.g.
boron and phosphorus, cmp. Fig. 4.7b) (J. Scaff and H. Theurer) [54, 55].

1941
R.S. Ohl – Silicon rectifier with point contact [56] (Fig. 1.5), building on work
from G.W. Pickard (1906) and using metallurgically refined and intentionally
doped silicon (J. Scaff and H. Theurer) [54].

1942
K. Clusius, E. Holz and H. Welker – rectification in germanium [57].

1945
H. Welker – patents for JFET and MESFET [58].
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Fig. 1.4. Spectral response of silicon pn-junction photoelement, 1940. The inset
depicts schematically a Si slab with built-in pn-junction formed during directed
solidification (cmp. Fig. 4.7). The arrow denotes the direction of solidification.
Adapted from [53]

Fig. 1.5. Characteristics of a silicon rectifier, 1941. Adapted from [56]

1947
W. Shockley, J. Bardeen and W. Brattain fabricate the first (point contact)
Transistor in the AT&T Bell Laboratories, Holmdel, NJ in an effort to im-
prove hearing aids [59].5 Strictly speaking the structure was a point-contact
transistor. A 50-μm wide slit was cut with a razor blade into gold foil over
a plastic (insulating) triangle and pressed with a spring on n-type germa-
nium (Fig. 1.6a) [63]. The surface region of the germanium is p-type due to

5Subsequently, AT&T, under pressure from the US Justice Department’s anti-
trust division, licensed the transistor for $25,000. This action initiated the rise of
companies like Texas Instruments, Sony and Fairchild.
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(a) (b)

Fig. 1.6. (a) The first transistor, 1947 (length of side of wedge: 32 mm). (b) Cut-
away model of a 1948 point contact transistor (‘Type A’) based on n-type bulk
Ge (n = 5 × 1014 cm−3) and common base circuit diagram. The surface region
(∼ 100 nm depth) of the Ge is p-type due to surface states and represents an inver-
sion layer. The two wires are made from phosphor bronze. Adapted from [61]

surface states and represents an inversion layer. The two gold contacts form
emitter and collector, the large-area back contact of the germanium the base
contact [61]. For the first time, amplification was observed [62]. Later models
use two close point contacts made from wires with their tips cut into wedge
shape (Fig. 1.6b) [61].6 More details about the history and development of
the semiconductor transistor can be found in [63], written on the occasion of
the 50th anniversary of its invention.

1948
W. Shockley – invention of the bipolar (junction) transistor [64].

1952
H. Welker – fabrication of compound semiconductors [65–68]
W. Shockley – description of today’s version of the (J)FET [69].

6The setup of Fig. 1.6b represents a common base circuit. In a modern bipolar
transistor, current amplification in this case is close to unity (Sect. 23.2.2). In the
1948 germanium transistor, the reversely biased collector contact is influenced by
the emitter current such that current amplification ∂IC/∂IE for constant UC was
up to 2–3. Due to the collector voltage being much larger than the emitter voltage,
a power gain of ∼125 was reported [61].
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1953
G.C. Dacey and I.M. Ross – first realization of a JFET [70].
D.M. Chapin, C.S. Fuller and G.L. Pearson – invention of the silicon solar
cell at Bell Laboratories [71]. A single 2-cm2 photovoltaic cell from Si, Si:As
with an ultrathin layer of Si:B, with about 6% efficiency generated 5 mW of
electrical power.7 Previously existing solar cells based on selenium had very
low efficiency (<0.5%).

1958
J.S. Kilby made the first integrated circuit at Texas Instruments. The sim-
ple 1.3 MHz RC-oscillator consisted of one transistor, three resistors and a
capacitor on a 11 × 1.7 mm2 Ge platelet (Fig. 1.7a). J.S. Kilby filed in 1959
for a US patent for miniaturized electronic circuits [72]. At practically the
same time R.N. Noyce from Fairchild Semiconductors, the predecessor of IN-
TEL, invented the integrated circuit on silicon using planar technology [73].
A detailed view on the invention of the integrated circuit can be found in [74].
Figure 1.7b shows a flip-flop with four bipolar transistors and five resistors.
Initially, the invention of the integrated circuit8 met scepticism because of
concerns regarding yield and the achievable quality of the transistors and the
other components (such as resistors and capacitors).

(a) (b)

Fig. 1.7. (a) The first integrated circuit, 1958 (germanium, 11×1.7 mm2). (b) The
first planar integrated circuit, 1959 (silicon, diameter: 1.5 mm)

7A solar cell with 1 W power cost $300 in 1956 ($3 in 2004). Initially, ‘solar
batteries’ were only used for toys and were looking for an application. H. Ziegler
proposed the use in satellites in the ‘space race’ of the late 1950s.

8The two patents led to a decade-long legal battle between Fairchild Semi-
conductors and Texas Instruments. Eventually, the US Court of Customs and
Patent Appeals upheld R.N. Noyce’s claims on interconnection techniques but gave
J.S. Kilby and Texas Instruments credit for building the first working integrated
circuit.
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emitter

base

collector

emitter
contact

base
contactbase

Fig. 1.8. Planar pnp silicon transistor, 1959. The contacts are Al surfaces
(not bonded)

1959
J. Hoerni9 and R. Noyce – first realization of a planar transistor (in silicon)
(Fig. 1.8) [76–79].

1960
D. Kahng and M.M. Atalla – first realization of a MOSFET [80, 81].

1962
The first semiconductor laser on GaAs basis at 77 K at GE [82] and at
IBM [83]. First visible laser diode [84].

1963
Proposal of a double heterostructure laser (DH laser) by Zh.I. Alferov [85]
and H. Kroemer [86].
J.B. Gunn – discovery of the Gunn effect, the spontaneous microwave os-
cillations in GaAs and InP at sufficiently large applied electric field (due to
negative differential resistance) [87].

1966
Zh.I. Alferov – report of the first DH laser on the basis of GaInP at 77 K [88].
C.A. Mead – proposal of the MESFET (‘Schottky Barrier Gate FET’) [89].

1967
W.W. Hooper and W.I. Lehrer – first realization of a MESFET [90].

1968
DH laser on the basis of GaAs/AlGaAs at room temperature, independently
developed by Zh.I. Alferov [91] and I. Hayashi [92].
GaP:N LEDs with yellow-green emission (550 nm) and 0.3% efficiency [93].

9The Swiss born Jean Hoerni also contributed $12 000 for the building of the
first school in the Karakoram Mountain area in Pakistan and has continued to build
schools in Pakistan and Afghanistan as described in [75].
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1968
SiC blue LED with efficiency of 0.005% [94].

1975
First monolithic microwave integrated circuit (MMIC) [95].

1995
S. Nakamura – blue GaN heterostructure LED with efficiency exceeding
10% [96].

1.2 Nobel Prize Winners

Several Nobel Prizes10 have been awarded for discoveries and inventions in
the field of semiconductor physics (Fig. 1.9).

1909
Karl Ferdinand Braun
‘in recognition of his contributions to the development of wireless telegraphy’

1914
Max von Laue ‘for his discovery of the diffraction of X-rays by crystals’

1915
Sir William Henry Bragg
William Lawrence Bragg
‘for their services in the analysis of crystal structure by means of X-rays’

1946
Percy Williams Bridgman
‘for the invention of an apparatus to produce extremely high pressures, and
for the discoveries he made therewith in the field of high pressure physics’

1953
William Bradford Shockley
John Bardeen
Walter Houser Brattain
‘for their researches on semiconductors and their discovery of the transistor
effect’

1973
Leo Esaki
‘for his experimental discoveries regarding tunneling phenomena in semicon-
ductors’

1985
Klaus von Klitzing
‘for the discovery of the quantized Hall effect’

10www.nobel.se
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1998
Robert B. Laughlin
Horst L. Störmer
Daniel C. Tsui
‘for their discovery of a new form of quantum fluid with fractionally charged
excitations’

2000
Zhores I. Alferov
Herbert Kroemer
‘for developing semiconductor heterostructures used in high-speed and opto-
electronics’
Jack St. Clair Kilby
‘for his part in the invention of the integrated circuit’

2009
Willard S. Boyle
George E. Smith
‘for the invention of an imaging semiconductor circuit – the CCD sensor’

2010
Andre Geim
Konstantin Novoselov
‘for groundbreaking experiments regarding the two-dimensional material
graphene’

1.3 General Information

In Fig. 1.10, the periodic table of elements is shown. In Table 1.1 the physical
properties of various semiconductors are summarized.
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2010

Andre Geim

(*1958)

2010

Konstantin Novoselov

(*1974)

Fig. 1.9. Winners of Nobel Prize in Physics and year of award with great impor-
tance for semiconductor physics
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2 Bonds

2.1 Introduction

The positively charged atomic nuclei and the electrons in the atomic shells
of the atoms making up the semiconductor (or any other solid) are in a
binding state. Several mechanisms can lead to such cohesiveness. First, we
will discuss the homopolar, electron-pair or covalent bond, then the ionic
bond and subsequently the mixed bond. We will only briefly touch on the
metallic bond and the van-der-Waals bond.

2.2 Covalent Bonds

Covalent bonds are formed due to quantum-mechanical forces. The prototype
covalent bond is the bonding of the hydrogen molecule due to overlapping of
the atomic shells. If several electron pairs are involved, directional bonds can
be formed in various spatial directions, eventually making up a solid.

2.2.1 Electron-Pair Bond

The covalent bond of two hydrogen atoms in a H2 molecule can lead to
a reduction of the total energy of the system, compared to two single (dis-
tant) atoms (Fig. 2.1). For fermions (electrons have spin 1/2) the two-particle
wavefunction of the two (indistinguishable) electrons A and B must be an-
tisymmetric, i.e. Ψ(A,B) = −Ψ(B,A) (Pauli principle). The wavefunction
of each electron has degrees of freedom in real space (r) and spin (σ),
Ψ(A) = Ψr(A)Ψσ(A). The two-particle wavefunction of the molecule is non-
separable and has the form Ψ(A,B) = Ψr(rA, rB)Ψσ(σA, σB). The binding
state has a wavefunction with a symmetric orbital and antiparallel spins, i.e.
Ψr(rA, rB) = Ψr(rB , rA) and Ψσ(σA, σB) = −Ψσ(σB , σA). The antisymmet-
ric orbital with parallel spins is antibinding for all distances of the nuclei
(protons).

2.2.2 sp3 Bonds

Elements from group IV of the periodic system (C, Si, Ge, . . .) have 4 elec-
trons on the outer shell. Carbon has the electron configuration 1s22s22p2.

M. Grundmann, The Physics of Semiconductors, 2nd ed., Graduate Texts 19
in Physics, DOI 10.1007/978-3-642-13884-3 2,
c© Springer-Verlag Berlin Heidelberg 2010
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A

S

(a) (b)

Fig. 2.1. Binding of the hydrogen molecule. (a) Dashed line: classical calculation
(electrostatics), ‘S’, ‘A’: quantum-mechanical calculation taking into account Pauli’s
principle (S: symmetric orbital, antiparallel spins, A: antisymmetric orbital, parallel
spins). The distance of the nuclei (protons) is given in units of the Bohr radius
aB = 0.053 nm, the energy is given in Rydberg units (13.6 eV). (b) Schematic
contour plots of the probability distribution (Ψ∗Ψ) for the S and A states

For an octet configuration bonding to four other electrons would be optimal
(Fig. 2.2). This occurs through the mechanism of sp3 hybridization.1 First,
one electron of the ns2np2 configuration is brought into a p orbital, such that

Fig. 2.2. Octet, the favorite card game of the ‘Atomis’ (trying to reach octet
configuration in a bond by swapping wavefunctions). The bubble says: ‘Do you
have a 2p?’. Reprinted with permission from [99], c©2002 Wiley-VCH

1It is debated in femtosecond chemistry whether the bond really forms in this
way. However, it is a picture of overwhelming simplicity.
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Fig. 2.3. (a) s orbital, (b,c,d) px, py and pz orbital, (e) hybridization, (f,g,h,i)
orbitals of the sp3 hybridization: (f) (s+px+py+pz)/2, (g) (s+px−py−pz)/2, (h)
(s−px+py−pz)/2, (i) (s−px−py+pz)/2

the outermost shell contains one s, px, py, and pz orbital each (Figs. 2.3a–e).
The energy necessary for this step is more than regained in the subsequent
formation of the covalent bonds. The four orbitals can be reconfigured into
four other wavefunctions, the sp3 hybrids (Figs. 2.3f–i), i.e.

Ψ++++ = (s + px + py + pz)/2 (2.1a)
Ψ++−− = (s + px − py − pz)/2 (2.1b)
Ψ+−+− = (s − px + py − pz)/2 (2.1c)
Ψ+−−+ = (s − px − py + pz)/2 . (2.1d)

These orbitals have a directed form along tetrahedral directions. The binding
energy (per atom) of the covalent bond is large, for H–H 4.5 eV, for C–C
3.6 eV, for Si–Si 1.8 eV, and for Ge–Ge 1.6 eV. Such energy is, for neutral
atoms, comparable to the ionic bond, discussed in the next section.

In Fig. 2.4a the energy of a crystal made up from silicon atoms is shown for
various crystal structures2 or phases (cf. Chap. 3). We note that the crystal
energy of further silicon structures are discussed in [98]). The lattice constant
with the lowest total energy determines the lattice spacing for each crystal
structure. The thermodynamically stable configuration is the phase with the
lowest overall energy for given external conditions.

The covalent bond of a group-IV atom to other group-IV atoms has
a tetrahedral configuration with electron-pair bonds, similar to the hydro-
gen molecule bond. In Fig. 2.4b the energy states of the n = 2 shell for

2Hexagonal diamond is wurtzite structure with two identical atoms in the base.
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(a) (b)

2p

2s

observed
lattice

constant

ygren
E

Fig. 2.4. (a) Energy per atom in silicon for various crystal structures. Adapted
from [100]. (b) Electron energy levels in (diamond structure) carbon as a function
of the distance of the atomic nuclei (schematic). Adapted from [101, 102]

tetrahedrally bonded carbon (diamond, see Sect. 3.4.3) are shown as a func-
tion of the distance from the nuclei. First, the energetically sharp states
become a band due to the overlap and coupling of the atomic wavefunctions
(cf. Sect. 6). The mixing of the states leads to the formation of the filled
lower valence band (binding states) and the empty upper conduction band
(antibinding states). This principle is valid for most semiconductors and is
shown schematically also in Fig. 2.5. The configuration of bonding and an-
tibinding p orbitals is depicted schematically in Fig. 2.6. The bonding and
antibinding sp3 orbitals are depicted in Figs. 2.7a,b and 2.13. We note that
the energy of the crystal does not only depend on the distance from the nuclei
but also on their geometric arrangement (crystal structure).

Per carbon atom there are (in the second shell) four electrons and four
unoccupied states, altogether eight. These are redistributed into four states
(filled) per atoms in the valence band and four states per atom (empty) in
the conduction band. Between the top of the valence band and the bottom
of the conduction band there is an energy gap, later called the band gap (cf.
Chap. 6).

Fig. 2.5. Schematic of the origin of valence and conduction band from the atomic
s and p orbitals. The band gap Eg and the position of the Fermi level EF are
indicated
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(a) (b)

Fig. 2.6. Schematic representation of (a) bonding and (b) antibinding p orbitals.
The signs denote the phase of the wavefunction

2.2.3 sp2 Bonds

Organic semiconductors (see Chap. 16) are made up from carbon compounds.
While for inorganic semiconductors the covalent (or mixed, cf. Sect. 2.4) bond
with sp3 hybridization is important, the organic compounds are based on the
sp2 hybridization. This bonding mechanism, which is present in graphite,
is stronger than the sp3-bond present in diamond. The prototype organic
molecule is the benzene ring3 (C6H6), shown in Fig. 2.8. The benzene ring is
the building block for small organic molecules and polymers.

In the benzene molecule neighboring carbon atoms are bonded within
the ring plane via the binding σ states of the sp2 orbitals (Fig. 2.8a). The
wavefunctions (Fig. 2.9) are given by (2.2a–c).
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Fig. 2.7. Schematic representation of (a,c) bonding and (b,d) antibinding sym-
metric (a,b) and nonsymmetric (c,d) sp3 orbitals

3Supposedly, the chemist Friedrich August Kekulé von Stadonitz had a dream
about dancing carbon molecules and thus came up with the ring-like molecule
structure [103]. Kekulé remembered: ‘During my stay in Ghent, I lived in elegant
bachelor quarters in the main thoroughfare. My study, however, faced a narrow
side-alley and no daylight penetrated it. . .. I was sitting writing on my textbook,
but the work did not progress; my thoughts were elsewhere. I turned my chair to
the fire and dozed. Again the atoms were gamboling before my eyes. This time the
smaller groups kept modestly in the background. My mental eye, rendered more
acute by the repeated visions of the kind, could now distinguish larger structures of
manifold conformation; long rows sometimes more closely fitted together all twining
and twisting in snake-like motion. But look! What was that? One of the snakes had
seized hold of its own tail, and the form whirled mockingly before my eyes. As if
by a flash of lightning I awoke; and this time also I spent the rest of the night in
working out the consequences of the hypothesis.’
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(a) (b) (c)

Fig. 2.8. Schematic representation of the (a) σ and (b) π bonds in benzene,
(c) schematic symbol for benzene

Ψ1 = (s +
√

2 px)/
√

3 (2.2a)

Ψ2 = (s −
√

1/2 px +
√

3/2 py)/
√

3 (2.2b)

Ψ3 = (s −
√

1/2 px −
√

3/2 py)/
√

3 . (2.2c)

The ‘remaining’ pz orbitals do not directly take part in the binding
(Fig. 2.8b) and form bonding (π, filled) and antibinding (π*, empty) orbitals
(see Fig. 2.10). The π and π* states are delocalized over the ring. Between
the highest populated molecular orbital (HOMO) and the lowest unoccu-
pied molecular orbital (LUMO) is typically an energy gap (Fig. 2.11). The
antibinding σ∗ orbitals are energetically above the π* states.
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Fig. 2.9. (a) s orbital, (b,c,d) px, py and pz orbital, (e) hybridization, (f,g,h) or-
bitals of the sp2 hybridization: (f) (s+

√
2 px)/

√
3, (g) (s−√

1/2 px +
√

3/2 py)/
√

3,

(h) (s−√
1/2 px −√

3/2 py)/
√

3
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Fig. 2.10. Orbitals due to binding and antibinding configurations of various π
orbitals

p
z

sp
2

6

18

}

}
HOMO

LUMO

Fig. 2.11. Schematic energy terms of the benzene molecule

2.3 Ionic Bonds

Ionic crystals are made up from positively and negatively charged ions. The
heteropolar or ionic bond is the consequence of the electrostatic attraction
between the ions. However, the possibly repulsive character of next neighbors
has to be considered.

For I–VII compounds, e.g. LiF or NaCl, the shells of the singly charged
ions are complete: Li: 1s22s1 → Li+: 1s2, F: 1s22s22p5 → F−: 1s22s22p6.
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Compared to ions in a gas, a Na–Cl pair in the crystal has a binding energy
of 7.9 eV that mostly stems from the electrostatic energy (Madelung energy).
Van-der-Waals forces (cf. Sect. 2.6) only contribute 1–2%. The ionization
energy of Na is 5.14 eV, the electron affinity of Cl is 3.61 eV. Thus the energy
of the NaCl pair in the solid is 6.4 (=7.9−5.1+3.6) eV smaller than in a gas
of neutral atoms.

The interaction of two ions with distance vector rij is due to the Coulomb
interaction

UC
ij =

qiqj
4πε0

1
rij

= ± e2

4πε0
1
rij

(2.3)

and a repulsive contribution due to the overlap of (complete) shells. This
contribution is typically approximated by a radially symmetric core potential

U core
ij = λ exp(−λ/ρ) (2.4)

that only acts on next neighbors. λ describes the strength of this interaction
and ρ parameterizes its range.

The distance of ions is denoted as rij = pijR, where R denotes the dis-
tance of next neighbors and the pij are suitable coefficients. The electrostatic
interaction of an ion with all its neighbors is then written as

UC
ij = −α e2

4πε0
1
R
, (2.5)

where α is the Madelung constant. For an attractive interaction (as in a
solid), α is positive. It is given (calculated for the i-th ion) as

(a) NaNa

NaNa Cl

Cl

Cl

Cl

(b) NaNa

NaNa Cl

Cl

Cl

Cl

Fig. 2.12. (a) Experimental and (b) theoretical charge distribution in the (100)
plane of NaCl. The lowest contour in the interstitial region corresponds to a charge
density of 7 e/nm3 and adjacent contours differ by

√
2. Differences are mainly due to

the fact that the X-ray experiments have been made at room temperature. Adapted
from [104]
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α =
∑

ij

±1
pij

. (2.6)

For a one-dimensional chain α = 2 ln 2. For the rocksalt (NaCl) structure
(cf. Sect. 3.4.1) it is α ≈ 1.7476, for the CsCl structure (see Sect. 3.4.2) it
is α ≈ 1.7627, and for the zincblende structure (see Sect. 3.4.4) it is α ≈
1.6381. This shows that ionic compounds prefer the NaCl or CsCl structure.
The charge distribution for NaCl is shown in Fig. 2.12. For tetragonal and
orthorhombic structures, the Madelung constant has been calculated in [105].

2.4 Mixed Bonds

The group-IV crystals are of perfectly covalent nature, the I–VII are almost
exclusively ionically bonded. For III–V (e.g. GaAs, InP) and II–VI com-
pounds (e.g. CdS, ZnO) we have a mixed case.

The (screened) Coulomb potentials of the A and B atoms (in the AB
compound) shall be denoted VA and VB . The origin of the coordinate system
is in the center of the A and B atom (i.e. for the zincblende structure (cf.
Sect. 3.4.4) at (1/8, 1/8, 1/8)a. The valence electrons then see the potential

Vcrystal =
∑

α

VA(r − rα) +
∑

β

VB(r − rβ) , (2.7)

where the sum α (β) runs over all A (B) atoms. This potential can be split
into a symmetric (Vc, covalent) and an antisymmetric (Vi, ionic) part (2.8b),
i.e. Vcrystal = Vc + Vi

Vc =
1
2

{
∑

α

VA(r − rα) +
∑

α

VB(r − rα)

+
∑

β

VB(r − rβ) +
∑

β

VA(r − rβ)

⎫
⎬

⎭
(2.8a)

Vi =
1
2

{
∑

α

VA(r − rα) −
∑

α

VB(r − rα)

+
∑

β

VB(r − rβ) −
∑

β

VA(r − rβ)

⎫
⎬

⎭
. (2.8b)

For homopolar bonds Vi = 0 and the splitting between bonding and an-
tibinding states is Eh, which mainly depends on the bond length lAB (and
the related overlap of atomic wavefunctions). In a partially ionic bond the
orbitals are not symmetric along A–B, but the center is shifted towards the
more electronegative material (Figs. 2.7c,d and 2.13).
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(a) (b)

Fig. 2.13. Schematic representation of (a) bonding and (b) antibinding sp3 or-
bitals. From [106]

The band splitting4 between the (highest) bonding and (lowest) antibind-
ing state Eba is then written as

Eba = Eh + iC , (2.9)

where C denotes the band splitting due to the ionic part of the potential
and depends only on VA − VB . C is proportional to the difference of the
electronegativities X of the A and B atoms, C(A,B) = 5.75(XA − XB). A
material thus takes a point in the (Eh,C) plane (Fig. 2.14). The absolute
value for the band splitting is given as E2

ba = E2
h + C2.

The ionicity of the bond is described with the ionicity (after Phillips) fi,
defined as [108]

fi =
C2

E2
h + C2

. (2.10)

The covalent part is 1 − fi. In Table 2.1 the ionicity is given for a num-
ber of binary compounds. The ionicity can also be interpreted as the angle
tan(φ) = C/Eh in the (Eh,C) diagram. The critical value of fi = 0.785
for the ionicity separates quite exactly (for about 70 compounds) the 4-fold
(diamond, zincblende and wurtzite) from the 6-fold (rocksalt) coordinated
substances (fi = 0.785 is indicated by a dashed line in Fig. 2.14).

For ionic compounds, an effective ionic charge e∗ is defined connecting
the displacement u of negative and positive ions and the resulting polar-
ization P = (e∗/2a3)u [109]. Connected with the ionicity is the so-called
s-parameter, describing the change of the charge upon change of bond length
b from its equilibrium value b0 [110]

4This energy should not be confused with the band gap ΔEcv, the energy sepa-
ration of the highest valence-band state and the lowest conduction-band state. The
energy splitting Eba is the energy separation between the centers of the valence and
conduction bands. Mostly, the term Eg is used for ΔEcv.
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Table 2.1. Ionicity fi (2.10) for various binary compounds

C 0.0 AlAs 0.27 BeO 0.60 CuCl 0.75

Si 0.0 BeS 0.29 ZnTe 0.61 CuF 0.77

Ge 0.0 AlP 0.31 ZnO 0.62 AgI 0.77

Sn 0.0 GaAs 0.31 ZnS 0.62 MgS 0.79

BAs 0.002 InSb 0.32 ZnSe 0.63 MgSe 0.79

BP 0.006 GaP 0.33 HgTe 0.65 CdO 0.79

BeTe 0.17 InAs 0.36 HgSe 0.68 HgS 0.79

SiC 0.18 InP 0.42 CdS 0.69 MgO 0.84

AlSb 0.25 AlN 0.45 CuI 0.69 AgBr 0.85

BN 0.26 GaN 0.50 CdSe 0.70 LiF 0.92

GaSb 0.26 MgTe 0.55 CdTe 0.72 NaCl 0.94

BeSe 0.26 InN 0.58 CuBr 0.74 RbF 0.96

e∗(b) = e∗(b0)
(
b

b0

)s

≈ e∗0 (1 + sε) , (2.11)

ε being the strain of the bond length, b/b0 = 1 + ε. It seems justified to
assume that e∗(b0) is always positive at the metal atom in III–V and II–VI
compounds. The relation of s with the ionicity fi is shown in Fig. 2.15 for
various compound semiconductors.

Fig. 2.14. Values of Eh and C for various ANB8−N compounds. The dashed line
fi = 0.785 separates 4-fold from 6-fold coordinated structures. Most data taken
from [107]
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Fig. 2.15. s-Parameter as defined in (2.11) as a function of the ionicity fi (2.10)
for various compound semiconductors. Dashed lines are guides to the eye. Data
from [111], value for CuCl from [110]

2.5 Metallic Bonding

In a metal, the positively charged atomic cores are embedded in a more
or less homogeneous sea of electrons. The valence electrons of the atoms
become the conduction electrons of the metal. These are freely moveable and
at T = 0 K there is no energy gap between filled and empty states. The
bonding is mediated by the energy reduction for the conduction electrons
in the periodic potential of the solid compared to free atoms. This will be
clearer when the band structure is discussed (Chap. 6). In transition metals
the overlap of inner shells (d or f) can also contribute to the bonding.

2.6 van-der-Waals Bonds

The van-der-Waals bond is a dipole bond that leads to bonding in the noble-
gas crystals (at low temperature). Ne, Ar, Kr and Xe crystallize in the densely
packed fcc lattice (cf. Sect. 3.3.5). He3 and He4 represent an exception. They
do not solidify at zero pressure at T = 0K due to the large zero-point energy.
This quantum-mechanical effect is especially strong for oscillators with small
mass.

When two neutral atoms come near to each other (distance of the nu-
clei R), an attractive dipole–dipole interaction −AR−6 arises (London in-
teraction) the van-der-Waals interaction. The quantum-mechanical overlap
of the (filled) shells leads to a strong repulsion +BR−12. Altogether, a
binding energy minimum results for the Lennard–Jones potential VLJ (see
Fig. 2.16)
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Fig. 2.16. Lennard–Jones potential (2.12) for A = 1 and two values of B

VLJ(R) = − A

R6
+

B

R12
. (2.12)

The energy minimum Emin = −A2/(2B) is at R = (2B/A)1/6.
The origin of the attractive dipole–dipole interaction can be understood

from a one-dimensional (1D) model as follows: Two atoms are modeled by
their fixed positively charged nuclei in a distance R and their negatively
charged electron shells that are polarizable, i.e. can be displaced along one
direction x. Additionally, we assume (two identical) 1D harmonic oscillators
for the electron motion at the positions 0 and R. Then, the Hamilton operator
H0 of the system without interaction (R is very large)

H0 =
1

2m
p2
1 + C x2

1 +
1

2m
p2
2 + C x2

2 . (2.13)

The indices 1 and 2 denote the two electrons of atoms. x1 and x2 are the
displacements of the electrons. Both harmonic oscillators have a resonance
frequency ω0 =

√
C/m, and the zero-point energy is �ω0/2.

Taking into account the Coulomb interaction of the four charges, an ad-
ditional term H1 arises

H1 =
e2

R
+

e2

R+ x1 + x2
− e2

R+ x1
− e2

R− x2
≈ −2e2

R3
x1 x2 . (2.14)

The approximation is valid for small amplitudes xi � R. A separation of
variables can be achieved by transformation to the normal modes

xs =
x1 + x2√

2
, xa =

x1 − x2√
2

. (2.15)
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Then we find

H=H0 +H1

=
[

1
2m

p2
s+

1
2

(
C− 2e2

R3

)
x2

s

]
+

[
1

2m
p2

a +
1
2

(
C − 2e2

R3

)
x2

a

]
. (2.16)

This equation is the Hamiltonian of two decoupled harmonic oscillators with
the normal frequencies

ω± =

√(
C ± 2e2

R3

)
/m ≈ ω0

[

1 ± 1
2

(
2e2

CR3

)
− 1

8

(
2e2

CR3

)2

+ . . .

]

.

(2.17)

The coupled system thus has a lower (zero-point) energy than the un-
coupled. The energy difference per atom is (in lowest order) proportional to
R−6.

ΔU = �ω0 − 1
2

(ω+ − ω−) ≈ −�ω0
1
8

(
2e2

CR3

)2

= − A

R6
. (2.18)

The interaction is a true quantum-mechanical effect, i.e. the reduction of the
zero-point energy of coupled oscillators.

2.7 Hamilton Operator of the Solid

The total energy of the solid, including kinetic and potential terms, is

H =
∑

i

p2
i

2mi
+

∑

j

P2
j

2Mj

+
1
2

∑

j,j′

Zj Zj′ e2

4πε0 |Rj − Rj′ | +
1
2

∑

i,i′

e2

4πε0 |ri − ri′ |

−
∑

i,j

Zj e
2

4πε0 |Rj − ri| , (2.19)

where ri and Ri are the position operators and pi and Pi are the momentum
operators of the electrons and nuclei, respectively. The first term is the kinetic
energy of the electrons, the second term is the kinetic energy of the nuclei.
The third term is the electrostatic interaction of the nuclei, the fourth term is
the electrostatic interaction of the electrons. In the third and fourth terms the
summation over the same indices is left out. The fifth term is the electrostatic
interactions of electrons and nuclei.

In the following, the usual approximations in order to treat (2.19) are
discussed. First, the nuclei and the electrons tightly bound to the nuclei
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(inner shells) are united with ion cores. The remaining electrons are the
valence electrons.

The next approximation is the Born–Oppenheimer (or adiabatic) approxi-
mation. Since the ion cores are much heavier than the electrons (factor ≈ 103)
they move much slower. The frequencies of the ion vibrations are typically in
the region of several tens of meV (phonons, cf. Sect. 5.2), the energy to excite
an electron is typically 1 eV. Thus, the electrons always ‘see’ the momentary
position of the ions, the ions, however, ‘see’ the electron motions averaged
over many periods. Thus, the Hamiltonian (2.19) is split into three parts:

H = Hions(Rj) +He(ri,Rj0) +He−ion(ri, δRj) . (2.20)

The first term contains the ion cores with their potential and the time-
averaged contribution of the electrons. The second term is the electron mo-
tion around the ion cores at their averaged positions Rj0 . The third term
is the Hamiltonian of the electron–phonon interaction that depends on the
electron positions and the deviation of the ions from their average position
δRj = Rj − Rj0 . The electron–phonon interaction is responsible for such ef-
fects as electrical resistance and superconductivity.
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3.1 Introduction

The economically most important semiconductors have a relatively simple
atomic arrangement and are highly symmetric. The symmetry of the atomic
arrangement is the basis for the classification of the various crystal struc-
tures. Using group theory [112], basic and important conclusions can be
drawn about the physical properties of the crystal, such as its elastic and
electronic properties. The presence of highly symmetric planes is obvious
from the crystal shape of the minerals and their cleavage behavior.

Polycrystalline semiconductors consist of grains of finite size that are
structurally perfect but have various orientations. The grain boundaries are a
lattice defect (see also Sect. 4.4.3). Amorphous semiconductors are disordered
on the atomic scale, see Sect. 3.3.7.

3.2 Crystal Structure

The crystals are built up by the (quasi-) infinite periodic repetition of iden-
tical building blocks. This lattice (Bravais lattice) is generated by the three
fundamental translation vectors a1, a2 and a3. These three vectors may not
lie in a common plane. The lattice (Fig. 3.1) is the set of all points R.

R = n1 a1 + n2 a2 + n3 a3 . (3.1)

(a) (b)

Fig. 3.1. (a) Two-dimensional lattice. It can be generated by various pairs of
translation vectors. (b) Elementary cells of the lattice. Primitive elementary cells
are shaded

M. Grundmann, The Physics of Semiconductors, 2nd ed., Graduate Texts 35
in Physics, DOI 10.1007/978-3-642-13884-3 3,
c© Springer-Verlag Berlin Heidelberg 2010
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Base

Fig. 3.2. Crystal structure, consisting of a lattice and a base

The crystal structure is made up by the lattice and the building block
that is attached to each lattice point. This building block is called the base
(Fig. 3.2). In the simplest case, e.g. for simple crystals like Cu, Fe or Al, this
is just a single atom (monoatomic base). In the case of C (diamond), Si or
Ge, it is a diatomic base with two identical atoms (e.g. Si–Si or Ge–Ge), in
the case of compound semiconductors, such as GaAs or InP, it is a diatomic
base with nonidentical atoms such as Ga–As or In–P. There exist far more
involved structures, e.g. NaCd2 where the smallest cubic cell contains 1,192
atoms. In protein crystals, the base of the lattice can contain 10,000 atoms.

In summary: Crystal structure = Lattice × Base.

3.3 Lattice

As described in Sect. 3.2 the lattice is spanned by three vectors ai. The lattice
symmetry is decisive for the physical properties of the semiconductor. It is
described by the appropriate groups of the symmetry operations.

3.3.1 Unit Cell

The choice of the vectors ai making up the lattice is not unique (Fig. 3.1).
The volume that is enclosed in the parallelepiped spanned by the vectors
a1, a2 and a3 is called the elementary cell . A primitive elementary cell is
an elementary cell with the smallest possible volume (Fig. 3.1b). In each
primitive elementary cell there is exactly one lattice point. The coordination
number is the number of next-neighbor lattice points. A primitive cubic (pc)
lattice, e.g. has a coordination number of 6.

The typically chosen primitive elementary cell is the Wigner–Seitz (WS)
cell that reflects the symmetry of the Bravais lattice best. The Wigner–Seitz
cell around a lattice point R0 contains all points that are closer to this lattice
point than to any other lattice point. Since all points fulfill such a condition
for some lattice point Ri, the Wigner–Seitz cells fill the volume completely.
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(a) (b)

Fig. 3.3. (a) Construction of a two-dimensional Wigner–Seitz cell, (b) filling of
space with WS cells

The boundary of the Wigner–Seitz cell is made up by points that have the
same distance to R0 and some other lattice point(s). The Wigner–Seitz cell
around R0 is constructed by drawing lines from R0 to the next neighbors
Rj , taking the point at half distance and erecting a perpendicular plane at
(Rj + R0)/2. The WS cell is the smallest polyhedra circumscribed by these
planes. A two-dimensional construction is shown in Fig. 3.3.

3.3.2 Point Group

Besides the translation there are other operations under which the lattice is
invariant, i.e. the lattice is imaged into itself. These are:

Identity. The neutral element of any point group is the identity that does
not change the crystal. It is denoted as 1 (E) in international (Schönfließ)
notation.

Rotation. The rotation around an axis may have a rotation angle of 2π,
2π/2, 2π/3, 2π/4 or 2π/6 or their integer multiples. The axis is then called
n = 1-, 2-, 3-, 4- or 6-fold, respectively, and denoted as n (international
notation) or Cn (Schönfließ). Objects with Cn symmetry are depicted in
Fig. 3.4.

Mirror operation with respect to a plane through a lattice point. Different
mirror planes are discerned (Fig. 3.5) (after Schönfließ) σh: a mirror plane
perpendicular to a rotational axis, σv: a mirror plane that contains a rota-

C3 C4 C6C1 C2

Fig. 3.4. Two-dimensional objects with perpendicular rotation axis Cn. Note that
the circles do not exhibit σh symmetry with respect to the paper plane, i.e. they
are different on the top and bottom side
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(a)

v

HH

O

C2

v

(b) FH

HF

C2

(c)

C2

d

C4

C2

Fig. 3.5. Mirror planes: (a) σv (at H2O molecule), (b) σh (at F2H2 molecule)
and (c) σd

tional axis, and σd: a mirror plane that contains a rotational axis and bisects
the angle between two C2 axes. The international notation is 2̄.

Inversion. All points around the inversion center r are replaced by −r.
The inversion is denoted 1̄ (i) in international (Schönfließ) notation.

Improper rotation. The improper rotation Sn is a rotation Cn followed
immediately by the inversion operation i denoted as n̄ in international no-
tation. There are 3̄, 4̄ and 6̄ and their powers. Only the combined operation
n̄ is a symmetry operation, while the individual operations Cn and i alone
are not symmetry operations. In the Schönfließ notation the improper rota-
tion is defined as Sn = σhCn, with σh being a mirror operation with a plane
perpendicular to the axis of the Cn rotation, denoted as Sn. There are S3,
S4 and S6 and 3̄ = S5

6 , 4̄ = S3
4 and 6̄ = S5

3 . For successive applications,
the Sn yield previously known operations, e.g. S2

4 = C2, S4
4 = E, S2

6 = C3,
S3

6 = i, S2
3 = C2

3 , S3
3 = σh, S4

3 = C3, S6
3 = E. We note that formally S1 is

the inversion i and S2 is the mirror symmetry σ. Objects with Sn symmetry
are schematically shown in Fig. 3.6.

These symmetry operations form 32 point groups. These groups are shown
(with their different notations and elements) in Table 3.1. The highest sym-
metry is the cubic symmetry Oh = O × i. The tetraeder group Td (methane
molecule) is a subgroup of Oh.

S6 S4 S3S1 S2

Fig. 3.6. Two-dimensional objects with perpendicular improper rotation axis Sn.
Note that the white and black circles do not exhibit σh symmetry with respect to
the paper plane, i.e. they are white on the top and black on the bottom. The circles
with a dot in the center exhibit σh symmetry, i.e. they look the same from top and
bottom
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Table 3.1. The 32 point groups. Nsg denotes the number of space groups

Class
System Inter- Schön- Nsg Symmetry elements

national fließ

triclinic
1
1̄

C1

Ci

1
1

E
E i

monoclinic
m
2
2/m

Cs

C2

C2h

3
4
6

E σh

E C2

E C2 i σh

orthorhombic
2mm
222
mmm

C2v

D2

D2h

9
22
28

E C2 σ′
v σ′′

v

E C2 C′
2 C′′

2

E C2 C′
2 C′′

2 i σh σ′
v σ′′

v

tetragonal

4
4̄
4/m
4mm
4̄2m
422
4/mmm

6
2
6
10
12
12
20

C4

S4

C4h

C4v

D2d

D4

D4h

E 2C4 C2

E 2S4 C2

E 2C4 C2 i 2S4 σh

E 2C4 C2 2σ′
v 2σd

E C2 C′
2 C′′

2 2σd 2S4

E 2C4 C2 2C′
2 2C′′

2

E 2C4 C2 2C′
2 2C′′

2 i 2S4 σh 2σ′
v 2σh

trigonal
(rhombohedral)

3
3̄
3m
32
3̄m

C3

S6

C3v

D3

D3d

4
2
7
6
6

E 2C3

E 2C3 i 2S6

E 2C3 3σv

E 2C3 3C2

E 2C3 3C2 i 2S6 3σd

hexagonal

6̄
6
6/m
6̄m2
6mm
622
6/mmm

C3h

C6

C6h

D3h

C6v

D6

D6h

6
1
2
6
4
4
4

E 2C3 σh 2S3

E 2C6 2C3 C2

E 2C6 2C3 C2 i 2S3 2S6 σh

E 2C3 3C2 σh 2S3 3σv

E 2C6 2C3 C2 3σv 3σd

E 2C6 2C3 C2 3C′
2 3C′′

2

E 2C6 2C3 C2 3C′
2 3C′′

2 i 2S3

2S6 σh 3σd 3σv

cubic

23
m3
4̄3m
432
m3m

T
Th

Td

O
Oh

5
7
8
6
10

E 4C3 4C2
3 3C2

E 4C3 4C2
3 3C2 i 8S6 3σh

E 8C3 3C2 6σd 6S4

E 8C3 3C2 6C′
2 6C4

E 8C3 3C2 6C2 6C4 i 8S6 3σh 6σd 6S4

Important for surface symmetries, there are 10 two-dimensional point groups.

3.3.3 Space Group

The space group is formed by the combination of the elements of the point
group with translations. The combination of a translation along a rotational
axis with a rotation around this axis creates a screw axis nm. In Fig. 3.7a,
a so-called 41 screw axis is shown. The first index n indicates the rotation
angle, i.e. 2π/n, the second index indicates the translation, i.e. cm/n, c being
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(a)

c

c/4

41 42 21

c/2

(b)

c/2

glide

Fig. 3.7. (a) Schematic drawing of a 41 and 42 screw axis. (b) Schematic drawing
of an axial glide reflection. The mirror plane is shown with dashed outline. Opposite
faces of the cube have opposite color. For comparison a 21 screw axis is shown

the periodicity along the axis. There are eleven crystallographically allowed
screw rotations.1

The combination of the mirror operation at a plane that contains a ro-
tational axis with a translation along this axis creates a glide reflection
(Fig. 3.7b). For an axial glide (or b-glide) the translation is parallel to the
reflection plane. A diagonal glide (or d-glide) involves translation in two or
three directions. A third type of glide is the diamond glide (or d-glide). There
are 230 different space groups, listed in Appendix B. A detailed treatment
can be found in [113].2

Important for surface symmetries, there are 17 two-dimensional space
groups.

3.3.4 2D Bravais Lattices

There are five two-dimensional (2D) Bravais lattices (Fig. 3.8) which are
distinct and fill all (2D) space. These are very important for the description
of symmetries at surfaces. The 2D Bravais lattices are the square, hexagonal,
rectangular and centered-rectangular lattice.

3.3.5 3D Bravais Lattices

In three dimensions, the operations of the point group results in fourteen 3D
Bravais lattices (Fig. 3.9), that are categorized into seven crystal classes (trig-
onal, monoclinic, rhombic, tetragonal, cubic, rhombohedral and hexagonal).

121, 31, 32, 41, 42, 43, 61, 62, 63, 64, 65.
2One should in particular consider the pitfalls pointed out in Appendix 10 of

this reference.
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a

b
a

b

a

b
a

b

a

b

(d)

(b)(a)

(c)

Fig. 3.8. The two-dimensional Bravais lattices with the primitive unit cells: (a)
square lattice (a = b, φ = 90◦), (b) hexagonal lattice (a = b, φ = 60◦), (c) rectan-
gular lattice (a �= b, φ = 90◦), (d) centered-rectangular lattice (a �= b, φ = 90◦, for
the (nonprimitive) rectangular unit cell shown on the right)

These classes are discerned by the conditions for the lengths and the mutual
angles of the vectors that span the lattice (Table 3.2). Some classes have sev-
eral members. The cubic crystal can have a simple (sc), face-centered (fcc)
or body-centered (bcc) lattice.

Table 3.2. Conditions for lengths and angles for the 7 crystal classes. Note that
only the positive conditions are listed. The rhombohedral system is a special case
of the trigonal class. Conditions for the trigonal and hexagonal classes are the
same, however, trigonal symmetry includes a single C3 or S6 axis, while hexagonal
symmetry includes a single C6 or S5

6 axis

System # lattice conditions for the

symbol usual unit cell

triclinic 1 none

monoclinic 2 s, c α = γ = 90◦ or α = β = 90◦

orthorhombic 4 s, c, bc, fc α = β = γ = 90◦

tetragonal 2 s, bc a = b , α = β = γ = 90◦

cubic 3 s, bc, fc a = b = c , α = β = γ = 90◦

trigonal 1 a = b , α = β = 90◦, γ = 120◦

(rhombohedral) 1 a = b = c , α = β = γ

hexagonal 1 a = b , α = β = 90◦, γ = 120◦
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bcc

tetragonal

monoclinic

rhombohedral

orthorhombic

triclinic

hexagonal

Fig. 3.9. The 14 three-dimensional Bravais lattices: cubic (sc: simple cubic,
bcc: body-centered cubic, fcc: face-centered cubic), tetragonal (simple and body-
centered), orthorhombic (simple, centered, body-centered and face-centered), mon-
oclinic (simple and centered), triclinic, rhombohedral and hexagonal

In the following, some of the most important lattices, in particular those
most relevant to semiconductors, will be treated in some more detail.

Cubic fcc and bcc Lattices

The primitive translation vectors for the cubic face-centered (fcc) and the
cubic body-centered (bcc) lattice are shown in Fig. 3.10 and Fig. 3.11, re-
spectively. Many metals crystallize in these lattices, e.g. copper (fcc) and
tungsten (bcc).

In the fcc lattice, one lattice point sits in the center of each of the six faces
of the usual cubic unit cell. The vectors spanning the primitive unit cell are
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a'

b'

c'

a

Fig. 3.10. Primitive translations of the fcc lattice. These vectors connect the origin
with the face-center points. The primitive unit cell is the rhombohedron spanned
by these vectors. The primitive translations a′, b′ and c′ are given in (3.2). The
angle between the vectors is 60◦

a′ =
a

2
(ex + ey) (3.2)

b′ =
a

2
(ey + ez)

c′ =
a

2
(ex + ez) .

In the bcc lattice, one extra lattice point sits at the intersection of the
three body diagonals at (a1 +a2 +a3)/2. The vectors spanning the primitive
unit cell are

a'

b'a c'

Fig. 3.11. Primitive translations of the bcc lattice. These vectors connect the
origin with the lattice points in the cube centers. The primitive unit cell is the
rhombohedron spanned by these vectors. The primitive translations a′, b′ and c′

are given in (3.3). The angle between the vectors is ≈ 70.5◦
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a′ =
a

2
(ex + ey − ez) (3.3)

b′ =
a

2
(−ex + ey + ez)

c′ =
a

2
(ex − ey + ez) .

Hexagonally Close Packed Lattice (hcp)

The 2D hexagonal Bravais lattice fills a plane with spheres (or circles) with
maximum filling factor. There are two ways to fill space with spheres and
highest filling factor. One is the fcc lattice, the other is the hexagonally close
packed (hcp) structure. Both have a filling factor of 74%.

For the hcp, we start with a hexagonally arranged layer of spheres (A),
see Fig. 3.12. Each sphere has six next-neighbor spheres. This could, e.g., be
a plane in the fcc perpendicular to the body diagonal. the next plane B is
put on top in such a way that each new sphere touches three spheres of the
previous layer. The third plane can now be added in two different ways: If
the spheres of the third layer are vertically on top of the spheres of layer A,
a plane A’ identical to A has been created that is shifted from A along the
stacking direction (normally called the c-axis) by

Fig. 3.12. Structure of the (a) hcp and (b) fcc lattice. For hcp the stacking (along
the c-axis) is ABABAB. . ., for fcc (along the body diagonal) it is ABCABCABC. . .
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chcp =
√

8/3 a ≈ 1.633 a . (3.4)

The hcp stacking order is ABABAB. . . for hcp, the coordination number is
12. In the fcc structure, the third layer is put on the thus far unfilled positions
and forms a new layer C. Only the forth layer is again identical to A and is
shifted by

cfcc =
√

6 a ≈ 2.45 a . (3.5)

The fcc stacking order is ABCABCABC. . ..
In the hexagonal plane of the fcc lattice (which will later be called a {111}

plane) the distance between lattice points is a = a0/
√

2, where a0 is the cubic
lattice constant. Thus c =

√
3 a0, just what is expected for the body diagonal.

For real materials with hexagonal lattice the ratio c/a deviates from the
ideal value given in (3.4). Helium comes very close to the ideal value, for Mg
it is 1.623, for Zn 1.861. Many hcp metals exhibit a phase transition to fcc
at higher temperatures.

3.3.6 Polycrystalline Semiconductors

A polycrystalline material consists of crystal grains that are randomly ori-
ented with respect to each other. Between two grains a (large-angle) grain
boundary (see also Sect. 4.4.3) exists. An important parameter is the grain
size and its distribution. It can be influenced via processing steps such as
annealing. Polycrystalline semiconductors are used in cheap, large-area ap-
plications such as solar cells (e.g. polysilicon, CuInSe2) or thin-film transis-
tors (poly-Si) or as n-conducting contact material in MOS diodes (poly-Si)
as shown in Fig. 3.13 (see also Fig. 20.26). Polycrystalline material can be
fabricated from amorphous material using annealing procedures as discussed
in Sect. 23.6.1 for silicon.

3.3.7 Amorphous Semiconductors

An amorphous material lacks the long-range order of the direct lattice. It is
disordered on the atomic scale. Amorphous silicon is denoted as ‘a-Si’.

The local quantum mechanics provides almost rigorous requirements for
the bond length to next neighbors. The constraints for the bond angle are less
strict. Covalently bonded atoms arrange in an open network with correlations
up to the third and fourth neighbors. The short-range order is responsible
for the observation of semiconductor properties such as an optical absorption
edge and also thermally activated conductivity. In Fig. 3.14a a model of a
continuous random network (with a bond-angle distortion of less than about
20%) of a-Si is depicted. The diameter dSR of the short-range order region is
related to the disorder parameter α via [114]

dSR =
a

2α
, (3.6)
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)c((a) (b)

Fig. 3.13. Transmission electron micrographs of polycrystalline silicon (poly-Si).
(a) As-deposited material from low-pressure chemical vapor deposition (LPCVD) at
about 620◦C, grain size is about 30 nm. (b) After conventional processing (annealing
at 1150◦C), average grain size is about 100 nm. (c) After annealing in HCl that
provides enhanced point defect injection (and thus increased possibility to form
larger grains), average grain size is about 250 nm. Adapted from [115]

where a is the next-neighbor interatomic distance. For a diamond structure
it is related to the lattice constant by a =

√
3 a0/4.

(a) (b)

Fig. 3.14. (a) A continuous random network model of amorphous silicon containing
a dangling bond in the center of the figure. Reprinted with permission from [116].
(b) Calculated radial atomic distribution functions of amorphous Ge (solid lines) for
three different values of the disorder parameter α (3.6) as labeled and experimental
result (dashed line). The positions of next, second-next and third-next neighbors
are indicted by vertical bars with numbers of their multiplicity (4, 12, and 12).
Adapted from [114]
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Typically, a significant number of dangling bonds exists. Bonds try to
pair but if an odd number of broken bonds exists locally, an unsaturated,
dangling bond remains. This can be passivated by a hydrogen atom. Thus, the
hydrogenation of amorphous semiconductors is very important. A hydrogen
atom can also break an overlong (and therefore weak) bond, saturate one
side and eventually leave a dangling bond.

Amorphous material can be (re-)crystallized into crystalline, mostly poly-
crystalline material upon annealing. This is technologically very important
for a-Si (see Sect. 23.6.1).

3.4 Important Crystal Structures

Now the crystal structures that are important for semiconductor physics
will be discussed. These are the rocksalt (PbS, MgO), diamond (C, Si, Ge),
zincblende (GaAs, InP, ...) and wurtzite (GaN, ZnO, ...) structures.

3.4.1 Rocksalt Structure

The rocksalt (rs, NaCl, space group 225, Fm3̄m) structure (Fig. 3.15a) con-
sists of a fcc lattice with the period a and a diatomic base in which the
Cl atom is positioned at (0,0,0) and the Na atom at (1/2,1/2,1/2)a with
a distance

√
3 a/2. Materials that crystallize (under normal conditions) in

the rocksalt lattice are, e.g., KCl, KBr, PbS (galena), PbSe, PbTe, AgBr,
MgO, CdO, MnO. AlN, GaN and InN undergo, under high pressure, a phase
transition from the wurtzite into the rocksalt structure.

(a) (b)

Fig. 3.15. (a) Rocksalt (NaCl) structure, (b) CsCl structure
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(a) (b)

Fig. 3.16. (a) Diamond structure and (b) zincblende structure (red spheres:
A atoms, green spheres: B atoms). The tetragonal bonds are indicated

3.4.2 CsCl Structure

The CsCl structure (space group 221, Pm3̄m) (Fig. 3.15b) consists of a simple
cubic lattice. Similar as for the rocksalt structure, the base consists of different
atoms at (0,0,0) and (1/2,1/2,1/2)a. Typical crystals with CsCl-structure are
TlBr, TlI, CuZn (β-brass), AlNi.

3.4.3 Diamond Structure

The diamond structure (C, space group 227, Fd3̄m) (Fig. 3.16a) has the fcc
lattice. The base consists of two identical atoms at (0,0,0) and (1/4,1/4,1/4)a.
Each atom has a tetrahedral configuration. The packing density is only about
0.34. The materials that crystallize in the diamond lattice are C, Ge, Si and α-
Sn. The diamond structure (point group Oh) has an inversion center, located
between the two atoms of the base, i.e. at (1/8,1/8,1/8)a. The radii of the
wavefunctions for various group-IV elements increases with the order number
(Table 3.3), and accordingly increases the lattice constant.

Table 3.3. Radii of the wavefunctions in the diamond structure, rs and rp are
related to s1p3, rd to s1p2d1 and lattice constant a0

rs (nm) rp (nm) rd (nm) a0 (nm)

C 0.121 0.121 0.851 0.356683

Si 0.175 0.213 0.489 0.543095

Ge 0.176 0.214 0.625 0.564613



3.4 Important Crystal Structures 49

(a) (b)

Fig. 3.17. (a) Unit cell of the zincblende structure with the indication of tetragonal
symmetries. The position of the small yellow (blue) sphere is the tetrahedrally
configured unoccupied positions of the A (B) sublattice, denoted with ‘T’ in part
(b). (b) Line along 〈111〉 in the zincblende structure. The positions of the A and
B atoms are denoted by red and green circles as labeled. Other positions are called
the bond center (‘BC’), antibonding (‘AB’) relative to A and B atoms (‘A–AB’,
‘B–AB’), hexagonal (‘H’) and tetrahedral position (‘T’, blue and yellow circles).
The point symmetries of the various locations are given in the lower line

In Fig. 3.17a the unit cell with tetragonal symmetry of three places along
the 〈111〉 direction is shown. In Fig. 3.17b the arrangement of atoms along
〈111〉 is depicted. The symmetry along this line is at least C3v. At the atoms
sites it is Oh. The bond center (BC) and the hexagonal (H) position are a cen-
ter of inversion and have D3d symmetry. The unoccupied ‘T’ positions have
Td symmetry. High-pressure phases of silicon are already found in indentation
experiments [117].

We note that α-Sn has little current importance. The diamond structure
α–Sn phase is stable below 13.2◦C. The addition of Ge inhibits the retrans-
formation to metallic tin up to higher temperatures (e.g. 60◦C for 0.75 weight
percent Ge). The properties of gray tin are reviewed in [118].

3.4.4 Zincblende Structure

The zincblende (sphalerite, ZnS, space group 216, F4̄3m) structure (Fig. 3.16b)
has a fcc lattice with a diatomic base. The metal (A) atom is at (0, 0, 0) and
the nonmetal (B) atom is at (1/4, 1/4, 1/4)a. Thus the cation and anion
sublattices are shifted with respect to each other by a quarter of the body di-
agonal of the fcc lattice. The atoms are tetrahedrally coordinated, a Zn atom
is bonded to four S atoms and vice versa. However, no inversion center is
present any longer (point group Td). In the zincblende structure the stacking
order of diatomic planes along the body diagonal is aAbBcCaAbBcC. . ..

Many important compound semiconductors, such as GaAs, InAs, AlAs,
InP, GaP and their alloys (cf. Sect. 3.7), but also the II–VI compounds ZnS,
ZnSe, ZnTe, HgTe and CdTe crystallize in the zincblende structure.
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(a) (b)

Fig. 3.18. (a) Top view (along the c-axis) and (b) side view of the wurtzite struc-
ture with the tetragonal bonds indicated. The top (bottom) surface of the depicted
structure is termed the Zn-face, (00.1) (O-face, (00.1̄))

Four-fold coordinated materials (zincblende and wurtzite) typically un-
dergo a phase transition into 6-fold coordinated structures upon hydrostatic
pressure [119]. For GaAs under pressure see [120].

3.4.5 Wurtzite Structure

The wurtzite structure (ZnS, space group 186, P63mc) is also called the
hexagonal ZnS structure (because ZnS has both modifications). It consists
(Fig. 3.18) of a hcp lattice with a diatomic base. The c/a ratio typically
deviates from the ideal value ζ0 =

√
8/3 ≈ 1.633 (3.4) as listed in Table 3.4.

The c-axis is a 63 screw axis.
The Zn atom is located at (0, 0, 0), the S atom at (0, 0,

√
3/8)a. This

corresponds to a shift of 3/8 c along the c-axis. This factor is called the
cell-internal parameter u. For the ideal wurtzite structure it has the value
u0 = 3/8 = 0.375. For real wurtzite crystals u deviates from the ideal value,

Table 3.4. c/a ratio of various wurtzite semiconductors. Listed is ξ = (c/a−ζ0)/ζ0.
Data based on [121]

material ξ (%) material ξ(%) material ξ (%) material ξ (%)

AlN −2.02 CdS −0.61 CuBr 0.43 BeO −0.61

GaN −0.49 CdSe −0.18 CuCl 0.55 ZnO −1.9

InN −1.35 CdTe 0.25 CuI 0.74 6H-SiC 0.49

ZnS 0.25 MgS −0.80 AgI 0.12 BN 0.74

ZnSe 0.06 MgSe −0.67 ZnTe 0.74 MgTe −0.67
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Fig. 3.19. Comparison of the tetragonal bonds in the (a) zincblende and (b)
wurtzite structure (i: inversion center, m: symmetry plane)

e.g. for group-III nitrides u > u0. The ZnS diatomic planes have a stacking
order of aAbBaAbB. . . in the wurtzite structure.

In Fig. 3.19 the different local structural environment of the atoms in the
zincblende and wurtzite structure is shown.

Many important semiconductors with large band gap crystallize in the
wurtzite structure, such as GaN, AlN, InN [122], ZnO [123], SiC [124], CdS
and CdSe.

3.4.6 Chalcopyrite Structure

The chalcopyrite [125] (ABC2, named after ‘fool’s gold’ CuFeS2, space group
122, I4̄2d) structure is relevant for I–III–VI2 (with chalcogenide anions)
and II–IV–V2 (with pnictide anions) semiconductors such as, e.g., (Cu,Ag)-
(Al,Ga,In)(S,Se,Te)2 and (Mg,Zn,Cd)(Si,Ge,Sn)(As,P,Sb)2. A nonmetallic
anion atom (‘C’) is tetrahedrally bonded to two different types of cation
atoms (‘A’ and ‘B’) as shown in Fig. 3.20. The local surrounding of each
anion is identical, two of both the A and B atoms. The structure is tetrag-
onal. The aspect ratio η = c/(2a) deviates from its ideal value 1; typically
η < 1 [126, 127].

If the C atom is in the tetrahedral center of the two A and two B atoms,
the bond lengths RAC and RBC of the A–C and B–C bonds, respectively, are
equal. Since the ideal A–C and B–C bond lengths dAC and dBC Are typically
unequal, this structure is strained. The common atom C is therefore displaced
along [100] and [010] such that it is closer (if dAC < dBC) to the pair of A
atoms and further away from the B atoms. The displacement parameter is

u =
1
4

+
R2

AC −R2
BC

a2
(3.7)

and it deviates from the ideal value u0 = 1/4 for the zincblende structure as
listed in Table 3.5 for a number of chalcopyrite compounds. In the chalcopy-
rite structure
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Fig. 3.20. Chalcopyrite structure, red and yellow spheres denote the metal species.
The bigger green spheres represent the nonmetal anion

RAC = a

√

u2 +
1 + η2

16
(3.8a)

RBC = a

√(
u− 1

2

)2

+
1 + η2

16
. (3.8b)

Table 3.5. Lattice nonideality parameters η and u (from (3.9)) of various chal-
copyrite compounds and their experimentally observed disorder stability (+/− indi-
cates compound with/without order–disorder (D–O) transition, respectively). Data
from [127]

η u D–O η u D–O

CuGaSe2 0.983 0.264 + ZnSiAs2 0.97 0.271 −
CuInSe2 1.004 0.237 + ZnGeAs2 0.983 0.264 +

AgGaSe2 0.897 0.287 − CdSiAs2 0.92 0.294 −
AgInSe2 0.96 0.261 + CdGeAs2 0.943 0.287

CuGaS2 0.98 0.264 ZnSiP2 0.967 0.272 −
CuInS2 1.008 0.236 + ZnGeP2 0.98 0.264 +

AgGaS2 0.895 0.288 − CdSiP2 0.92 0.296 −
AgInS2 0.955 0.262 CdGeP2 0.939 0.288 −
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Fig. 3.21. Experimental values uexp of the displacement parameter for various chal-
copyrites vs. the calculated value ucalc according to (3.9). The dashed line indicates
uexp = ucalc. Adapted from [128]

The minimization of the microscopic strain yields (in first order) [128]

u ∼= 1
4

+
3
8
d2
AC − d2

BC

d2
AC + d2

BC

. (3.9)

Compounds with u > uc, uc = 0.265 being a critical displacement parameter,
(or u < 1/2 − uc = 0.235) are stable with regard to cation disorder [127]. In
Fig. 3.21 the correlation of the calculated value for u according to (3.9) and
the experimental values is shown.

3.4.7 Fluorite Structure

Named after the minerale fluorite (CaF2, space group 225, Fm3m), this struc-
ture for binary ionic compounds occurs when the cation valence is twice the
anion valence, e.g. for (cubic) ZrO2 (zirconia) or HfO2. The lattice is fcc with
a triatomic base. At (0,0,0) is the cation (e.g. Zr4+), the anions (e.g. O2−)
are at (1/4, 1/4, 1/4) a (as in the zincblende structure) and (3/4, 3/4, 3/4) a
(Fig. 3.22). The anion atom positions are on a simple cubic lattice with
lattice constant a/2. Zirconia can crystallize in various phases [129], the
most prominent being the monoclinic, tetragonal and cubic phases. The cubic
phase can be extrinsically stabilized using yttrium [130, 131] (YSZ, yttria-
stabilized zirconia). Hafnium oxide has the remarkable property that the
HfO2/Si interface is stable and allows the fabrication of transistor gate ox-
ides with high dielectric constant (see Sect. 23.5.5).
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Fig. 3.22. Fluorite crystal structure, the cations are depicted as red speheres, the
anions as blue spheres

3.4.8 Delafossite Structure

The I–III–O2 materials crystallize in the trigonal delafossite (CuFeO2, space
group 166, R3̄m) structure (Fig. 3.23). This structure is also called caswell-
silverite (NaCrS2). In Table 3.6 the lattice parameters of some delafossite
compounds are given. The (Cu,Ag) (Al,Ga,In)O2 materials are transparent
conductive oxides (TCO). We note that Pt and Pd as group-I component

O

a

2uc

c

ES

DB

Ga

Cu

ES

Fig. 3.23. Hexagonal unit cell of delafossite CuGaO2. Oxygen atoms are bonded
to the Cu in a dumbbell (‘DB’) configuration. In the edge-sharing (‘ES’) layer the
Ga atoms are octahedrally configured as GaO6
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Table 3.6. Lattice parameters a, c, and u of some delafossite compounds. Theo-
retical values are shown with asterisk. Data from [132]

a (nm) c (nm) u (nm)

CuAlO2 0.2858 1.6958 0.1099

CuGaO2 0.2980 1.7100 0.1073∗

CuInO2 0.3292 1.7388 0.1056∗

create metal-like compounds because of the d9 configuration as opposed to
the d10 configuration of Cu and Ag.

3.4.9 Perovskite Structure

The perovskite structure (calcium titanate, CaTiO3, space group 62, Pnma)
(Fig. 3.24) is relevant for ferroelectric semiconductors (cf. Sect. 14.3). It is cu-
bic with the Ca (or Ba, Sr) ions (charge state 2+) on the corners of the cube,
the O ions (2−) on the face centers and the Ti (4+) in the body center. The
lattice is simple cubic, the base is Ca at (0,0,0), O at (1/2,1/2,0), (1/2,0,1/2)
and (0,1/2,1/2) and Ti at (1/2,1/2,1/2). The ferroelectric polarization is typ-
ically evoked by a shift of the negatively and positively charged ions relative
to each other. LaAlO3 (lanthanium aluminate) is available as substrate ma-
terial (space group 226, Fm3̄c [133]). Perovskites are also important for high
temperature superconductivity.

(a)

Ba

O

Ti

(b)
Ba 2+

O2–

Ti
4+

Fig. 3.24. Perovskite structure (BaTiO3), (a) A cell with 12-fold (cuboctahedrally)
configured Ba, (b) B cell with octahedrally configured Ti
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3.4.10 NiAs Structure

The NiAs structure (space group 194, P63/mmc) (Fig. 3.25) is relevant for
magnetic semiconductors, such as MnAs, and also occurs in the formation
of Ni/GaAs Schottky contacts [134]. The structure is hexagonal. The arsenic
atoms form a hcp structure and are trigonal prismatically configured with six
nearest metal atoms. The metal atoms form hcp planes and fill all octahedral
holes of the As lattice. For a cubic close packed, i.e. fcc, structure this would
correspond to the rocksalt crystal. The stacking is ABACABAC... (A: Ni,
B,C: As).

(a) (b)

Fig. 3.25. NiAs structure, metal atoms: dark grey, chalcogenide atoms: light grey

3.4.11 Further Structures

There are many other crystal structures that have relevance for semiconduc-
tor materials. Among them are the

• corundum structure (Al2O3, space group 167, R3̄c) occurring, e.g., for sap-
phire substrates used in epitaxy or for gallium oxide Ga2O3 (a multiphase
material [135])

• spinel structure (MgAl2O4, space group 227, Fd3̄m). A large variety of
ternary compounds of type AIIBIII

2CVI
4 crystallize in this structure, A:

Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Sn, B: Al, Ga, In, Ti, V, Cr, Mn, Fe,
Co, Rh, Ni, and C: O, S, Se, Te. As an example ZnGa2O4 (zinc gallate)
has received attention as interfacial layer in ZnO/GaAs epitaxy [136],
luminescent material [137], and as ferromagnetic semiconductor [138].
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ScAlMgO4 (SCAM) is available as substrate material. Also AVIBII
2CVI

4

compounds exist, e.g. GeB2O4 (with B=Mg, Fe, Co, Ni)
• inverted spinel structure for AIIBIII

2CVI
4 compounds, e.g. for magnetite

(Fe3O4), a material with high spin polarization, or MgFe2O4. Also
AVIBII

2CVI
4 compounds exist in this structure, e.g. SnB2O4 (with B=Mg,

Mn, Co, Zn), TiB2O4 (with B=Mg, Mn, Fe, Co, Zn), and VB2O4 (with
B=Mg, Co, Zn)

• quartz (SiO2) structures, α-quartz (space group 154, P3221) and β-quartz
(space group 180, P6222)

Space does not permit to discuss these and other structures in more detail
here. The reader should refer to textbooks on crystallography, e.g. [139, 140],
and space groups [113, 142]. A good source for information and images of
crystal structures on the web is [143].

3.5 Polytypism

In polytype materials the stacking order is not only hcp or fcc but takes
different sequences, such as, e.g., ACBCABAC as the smallest unit cell along
the stacking direction. A typical example is SiC, for which in addition to hcp
and fcc 45 other stacking sequences are known. The largest primitive unit cell
of SiC [124] contains 594 layers. Some of the smaller polytypes are shown in
Fig. 3.26. In Fig. 3.27 cubic diamond crystallites and metastable hexagonal
and orthorhombic phases (in silicon) are shown.

For the ternary alloy (cf. Sect. 3.7) Zn1−xCdxS the numbers nh of diatomic
layers with hexagonal stacking (AB) and nc of layers with cubic stacking
(ABC) have been investigated. CdS has wurtzite structure and ZnS mostly
zincblende structure. The hexagonality index α as defined in (3.10) is shown
in Fig. 3.28 for Zn1−xCdxS

α =
nh

nh + nc
. (3.10)

3.6 Reciprocal Lattice

The reciprocal lattice is of utmost importance for the description and investi-
gation of periodic structures, in particular for X-ray diffraction [144], surface
electron diffraction, phonons and the band structure. It is the quasi-Fourier
transformation of the crystal lattice. The crystal lattice is also called the
direct lattice, in order to distinguish it from the reciprocal lattice.
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Fig. 3.26. (a) Polytypes of the zincblende and wurtzite lattice (found in SiC), the
letters A, B and C denote the three possible positions of the diatomic layers (see
Fig. 3.12). (b) High resolution TEM image of 6H-SiC. For the enlarged view on the
left, the unit cell and the stacking sequence are indicated. Adapted from [145]

(c)(b)(a)

Fig. 3.27. Polytypes of diamond found in crystallites (metastable phases in sili-
con). (a) cubic type (3C) with stacking ABC, inset shows a diffractogram and the
alignment of the C and Si lattice, (b) rhombohedral 9R crystallite with ABCB-
CACABA stacking, (c) 9R phase with interface to a hexagonal 2H (AB stacking)
phase. Reprinted with permission fromNature [146], c©2001 Macmillan Magazines
Limited
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(a) (b)

Fig. 3.28. (a) Hexagonality index α (3.10) of Zn1−xCdxS for various ternary com-
positions. Dashed line is a guide to the eye. (b) Regions of different polytypes in
ZnSexS1−x. Adapted from [147]

3.6.1 Reciprocal Lattice Vectors

When R denotes the set of vectors of the direct lattice, the set G of the
reciprocal lattice vectors is given by the condition3

exp (iG · R) = 1 (3.11)

for all R ∈ R and G ∈ G. Therefore, for all vectors r and a reciprocal lattice
vector G

exp (iG · (r + R)) = exp (iG · r) . (3.12)

Each Bravais lattice has a certain reciprocal lattice. The reciprocal lattice
is also a Bravais lattice, since when G1 and G2 are two reciprocal lattice
vectors, then this is obviously true also for G1 +G2. For the primitive trans-
lation vectors a1, a2 and a3 of the direct lattice, the vectors b1, b2 and b3

that span the reciprocal lattice can be given directly as

b1 =
2π
Va

(a2 × a3) (3.13a)

b2 =
2π
Va

(a3 × a1) (3.13b)

b3 =
2π
Va

(a1 × a2) , (3.13c)

where Va = a1 ·(a2×a3) is the volume of the unit cell spanned by the vectors
ai. The volume of the unit cell in the reciprocal space is V ∗

a = (2π)3/Va.
The vectors bi fulfill the conditions

ai bj = 2π δij . (3.14)

3The dot product a · b of two vectors shall also be denoted as ab.
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Thus, it is clear that (3.11) is fulfilled. For an arbitrary reciprocal lattice
vector G = k1b1 + k2b2 + k3b3 and a vector R = n1a1 + n2a2 + n3a3 in
direct space we find

G · R = 2π (n1 k1 + n2 k2 + n3 k3) . (3.15)

The number in brackets is an integer. Additionally, we note that the reciprocal
lattice of the reciprocal lattice is again the direct lattice. The reciprocal lattice
of the fcc is bcc and vice versa. The reciprocal lattice of hcp is hcp (rotated
by 30◦ with respect to the direct lattice).

For later, we note two important theorems. A (sufficiently well behaved)
function f(r) that is periodic with the lattice, i.e. f(r) = f(r + R) can be
expanded into a Fourier series with the reciprocal lattice vectors according
to

f(r) =
∑

aG exp (iG · r) , (3.16)

where aG denotes the Fourier component of the reciprocal lattice vector G,
aG =

∫
V
f(r) exp (−iG · r) d3r. If f(r) is lattice periodic, the integral given

in (3.17) is zero unless G is a reciprocal lattice vector.
∫

V

f(r) exp (−iG · r) d3r =
{
aG
0,G /∈ G . (3.17)

3.6.2 Miller Indices

A lattice plane is the set of all lattice points in a plane spanned by two
independent lattice vectors R1 and R2. The lattice points on that plane
form a two-dimensional Bravais lattice. The entire lattice can be generated
by shifting the lattice plane along its normal n = (R1 × R2)/|R1 × R2|.
The plane belongs to the reciprocal lattice vector Gn = 2πn/d , d being the
distance between planes.

This correspondence between reciprocal lattice vectors and sets of planes
allows the orientation of planes to be described in a simple manner. The
shortest reciprocal lattice vector perpendicular to the plane is used. The
coordinates with respect to the primitive translation vectors of the reciprocal
space bi form a triplet of integer numbers and are called Miller indices.

The plane described by Gn · r = A fulfills the condition for a suitable
value of A. The plane intersects the axes ai at the points x1a1, x2a2 and
x3a3. Thus we find Gnxiai = A for all i. From (3.15) follows Gn · a1 = 2πh,
Gn · a2 = 2πk and Gn · a3 = 2πl, where h, k and l are integers. The triplet
of integer numbers (hkl), the reciprocal values of the axis intersections in the
direct lattice, are the Miller indices. An example is shown in Fig. 3.29.

Planes are denoted as (hkl) with parentheses. The (outward) normal di-
rection is denoted with [hkl] (square brackets). A set of equivalent planes is
denoted with curly brackets as {hkl}. For example, in the simple cubic lattice
(100), (010), (001), (−1 00), (0−1 0) are (00−1 ) equivalent and are denoted
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Fig. 3.29. The plane intersects the axes at 3, 2, and 2. The inverse of these numbers
is 1/3, 1/2, and 1/2. The smallest integer numbers of this ratio form the Miller
indices (233)

by {100}. (−1 00) can also be written as (1̄00). A set of equivalent directions
is denoted with 〈hkl〉.

In a cubic lattice the faces of the cubic unit cell are {001} and the planes
perpendicular to the area (body) diagonals are {110} ({111}) (Fig. 3.30). In
the zincblende lattice the {111} planes consist of diatomic planes with Zn
and S atoms. It depends on the direction whether the metal or the nonmetal
is on top. These two cases are denoted by A and B. We follow the convention

Fig. 3.30. Miller indices of important planes for the simple cubic (and fcc, bcc)
lattice
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that the (111) plane is (111)A and the metal is on top (as in Fig. 3.16b). For
each change of sign the type changes from A to B and vice versa, e.g. (111)A,
(11̄ 1)B and (1̄ 1̄ 1̄)B.

(a) (b)

Fig. 3.31. (a) Miller indices for the wurtzite (or hcp) structure. (b) Orientation
of the a-, r-, m-, and c-plane in the wurtzite structure

In the wurtzite lattice the Miller indices are denoted as [hklm] (Fig. 3.31).
Within the (0001) plane three indices hkl are used that are related to the
three vectors a1, a2 and a3 (see Fig. 3.31a) rotated with respect to each other
by 120◦. Of course, the four indices are not independent and l = −(h+k). The
third (redundant) index can therefore be denoted as a dot. The c-axis [0001]
is then denoted as [00.1]. Wurtzite (and trigonal, e.g. sapphire) substrates are
available typically with a ([11.0]), r ([01.2]), m ([01.0]) and c ([00.1]) surface
orientations (Fig. 3.31b).

3.6.3 Brillouin Zone

The Wigner–Seitz cell in reciprocal space is called the (first) Brillouin zone.
In Fig. 3.32, the Brillouin zones for the most important lattices are shown.
Certain points in the Brillouin zone are labeled with dedicated letters. The
Γ point always denotes k = 0 (zone center). Certain paths in the Brillouin
zone are labeled with dedicated Greek symbols.

In the Brillouin zone of the fcc lattice (Si, Ge, GaAs, ...) the X point
denotes the point at the zone boundary in [001] direction (at a distance 2π/a
from Γ ), K for [110] (at a distance

√
2π/a) and L for the [111] direction (at

a distance
√

3π/a). The straight paths from Γ to X, K, and L are denoted
as Δ, Σ, and Λ, respectively.
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Fig. 3.32. Brillouin zones and special k points for the (a) primitive cubic (pc),
(b) fcc, (c) bcc, and (d) hcp lattice. (e) Brillouin zone for chalcopyrite structure
with fcc Brillouin zone shown as dashed outline. (f) Brillouin zone for orthorhombic
lattice with one quadrant shown with dashed lines.

3.7 Alloys

When different semiconductors are mixed various cases can occur:

• The semiconductors are not miscible and have a so-called miscibility gap.
They will tend to form clusters that build up the crystal. The formation
of defects is probable.

• They form an ordered (periodic) structure that is called a superlattice.
• They form a random alloy.
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Fig. 3.33. Probability that a Si atom has n next-neighbor Ge atoms in a random
GexSi1−x alloy

3.7.1 Random Alloys

Alloys for which the probability to find an atom at a given lattice site is
given by the fraction of these atoms (i.e. the stoichiometry), independent
of the surrounding, are called random alloys. Deviations from the random
population of sites is termed clustering .

For a GexSi1−x alloy this means that any given atom site has the proba-
bility x to have a Ge atom and 1 − x to have a Si atom. The probability pn

that a Si atom has n next-neighbor Ge atoms is

pn =
(

4
n

)
xn (1 − x)4−n , (3.18)

and is depicted in Fig. 3.33 as a function of the alloy composition. The sym-
metry of the Si atom is listed in Table 3.7. If it is surrounded by four of the
same atoms (either Ge or Si), the symmetry is Td. If one atom is different

Table 3.7. Probability pn (3.18) and symmetry of an A atom being surrounded
by n B atoms in a tetrahedrally configured BxA1−x random alloy

n pn symmetry

0 x4 Td

1 4 x3 (1 − x) C3v

2 6 x2 (1 − x)2 C2v

3 4 x (1 − x)3 C3v

4 (1 − x)4 Td
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Fig. 3.34. (a) STM empty-state image (17.5 × 17.5 nm2) of the (11̄0) surface
of an MBE-grown In0.05Ga0.95As alloy on GaAs, (b) curvature-enhanced image.
(c) Schematic atomic arrangement of the first and second atomic layer. Adapted
from [148]

from the other three next neighbors, the symmetry is reduced to C3v since
one bond is singled out. For two atoms each the symmetry is lowest (C2v).

In an alloy from binary compound semiconductors such as AlxGa1−xAs
the mixing of the Al and Ga metal atoms occurs only on the metal (fcc)
sublattice. Each As atom is bonded to four metal atoms. The probability
that it is surrounded by n Al atoms is given by (3.18). The local symmetry
of the As atom is also given by Table 3.7. For AlAsxP1−x the mixing occurs
on the nonmetal (anion) sublattice. If the alloy contains three atom species
it is called a ternary alloy. In Fig. 3.34 the (11̄0) surface (UHV cleave) of
an In0.05Ga0.95As alloy is shown. Indium atoms in the first layer show up as
brighter round dots [149]. Along the [001]-direction the positions are uncor-
related, along [110] an anti-correlation is found, corresponding to an effective
repulsive pair interaction energy of 0.1 eV for the nearest neighbor In–In pairs
along the [110]-direction due to strain effects [148].

If the binary end components have different crystal structure, the alloy
shows a transition (or compositional transition range) from one structure
to the other at a particular concentration. An example is the alloy between
wurtzite ZnO and rocksalt MgO. The MgxZn1−xO alloy exhibits wurtzite
structure up to about x = 0.5 and rocksalt structure for x > 0.6 [150].

If the alloy contains four atom species it is called quaternary . A quaternary
zincblende alloy can have the mixing of three atom species on one sublattice,
such as AlxGayIn1−x−yAs or GaAsxPySb1−x−y or the mixing of two atom
species on both of the two sublattices, such as InxGa1−xAsyN1−y.

The random placement of different atoms on the (sub)lattice in an alloy
represents a perturbation of the ideal lattice and causes additional scattering
(alloy scattering). In the context of cluster formation, the probability of an
atom having a direct neighbor of the same kind on its sublattice is important.
Given a AxB1−xC alloy, the probability pS to find a single A atom surrounded
by B atoms is given by (3.19a). The probability pD1 to find a cluster of two
neighbored A atoms surrounded by B atoms is given by (3.19b).
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pS = (1 − x)12 (3.19a)
pD1 = 12x (1 − x)18 . (3.19b)

These formulas are valid for fcc and hcp lattices. For larger clusters [151, 152],
probabilities in fcc and hcp structures differ.

3.7.2 Phase Diagram

The mixture AxB1−x with average composition x between two materials A
and B can result in a single phase (alloy), a two-phase system (phase sep-
aration) or a metastable system. The molar free enthalpy ΔG of the mixed
system is approximated by

ΔG = Ω x (1 − x) + kT [x ln(x) + (1 − x) ln(1 − x)] . (3.20)

The first term on the right-hand side of (3.20) is the (regular solution)
enthalpy of mixing with the interaction parameter Ω, which can depend on
x. The second term is the ideal configurational entropy based on a random
distribution of the atoms. The function is shown for various ratios of kT/Ω
in Fig. 3.35a. In an equilibrium phase diagram (see Fig. 3.35b) the system is
above the binodal curve in one phase (miscible). On the binodal line Tb(x) in
the (x, T ) diagram the A- and B-rich disordered phases have equal chemical
potentials, i.e. ∂G/∂x = 0. For Ω independent of x the temperature Tb is
given by (3.21a). A critical point is at the maximum temperature Tmg and
concentration xmg of the miscibility gap. For Ω independent of x it is given by
Tmg = Ω/2 and xmg = 1/2. In the region below the spinodal boundary, the
system is immiscible and phases immediately segregate (by spinodal decom-
position). On the spinodal line Tsp(x) the condition ∂2G/∂x2 = 0 is fulfilled.

(a)

Ω

Δ

(b)

Fig. 3.35. (a) Free enthalpy ΔG of mixed binary system (3.20) in units of Ω for
Ω =const. and various values of kT/Ω as labeled. (b) Schematic phase diagram
for binary mixture. The temperature is given in units of Ω/k. The solid (dashed)
denotes the binodal (spinodal) line
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Fig. 3.36. Calculated phase diagrams for (a) AlxGa1−xAs and (b) GaPxAs1−x.
The binodal (spinodal) curve is shown as solid (dashed) line. Adapted from [153]

For Ω independent of x the temperature Tsp is given by (3.21b). The region
between the binodal and spinodal curves is the metastable region, i.e. the
system is stable to small fluctuations of concentration or temperature but
not for larger ones.

kTb(x) = Ω
2x− 1

ln(x) − ln(1 − x)
(3.21a)

kTsp(x) = 2Ω x (1 − x) . (3.21b)

In Fig. 3.36 calculated diagrams for GaAs-AlAs and GaAs-GaP [153] are
shown. The arrows denote the critical point. These parameters and the inter-
action parameters for a number of ternary alloys are given in Table 3.8. For
example, for AlxGa1−xAs complete miscibility is possible for typical growth
temperatures (>700 K), but for InxGa1−xN the In solubility at a typical
growth temperature of 1100 K is only 6% [154].

Table 3.8. Calculated interaction parameter Ω(x) (at T = 800 K, 1 kcal/mol=
43.39 meV), miscibility-gap temperature Tmg and concentration xmg for various
ternary alloys. Data for InGaN from [154], other data from [153]

alloy Tmg xmg Ω(0) Ω(0.5) Ω(1)

(K) (kcal/mol) (kcal/mol) (kcal/mol)

AlxGa1−xAs 64 0.51 0.30 0.30 0.30

GaPxAs1−x 277 0.603 0.53 0.86 1.07

GaxIn1−xP 961 0.676 2.92 3.07 4.60

GaSbxAs1−x 1080 0.405 4.51 3.96 3.78

HgxCd1−xTe 84 0.40 0.45 0.80 0.31

ZnxHg1−xTe 455 0.56 2.13 1.88 2.15

ZnxCd1−xAs 605 0.623 2.24 2.29 2.87

InxGa1−xN 1505 0.50 6.32 5.98 5.63
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3.7.3 Virtual Crystal Approximation

In the virtual crystal approximation (VCA) the disordered alloy ABxC1−x is
replaced by an ordered binary compound AD with D being a ‘pseudoatom’
with properties that are configuration averaged over the properties of the
B and C atoms, e.g. their masses or charges. Such an average is weighted
with the ternary composition, e.g. the mass is MD = xMB + (1− x)MC. For
example, the A–D force constant would be taken as the weighted average
over the A–B and A–C force constants.

3.7.4 Lattice Parameter

In the VCA for an alloy a new sort of effective atom is assumed that has an
averaged bond length that depends linearly on the composition. Typically,
Vegard’s law (3.22), which predicts that the lattice constant of a ternary alloy
AxB1−xC depends linearly on the lattice constants of the binary alloys AC
and BC, is indeed fulfilled

a0(AxB1−xC) = a0(BC) + x [a0(AC) − a0(BC)] . (3.22)

In reality, the bond length of the AC and BC bonds changes rather lit-
tle (Fig. 3.37a) such that the atoms in the alloy suffer a displacement from

(a) (b)

Fig. 3.37. (a) Near-neighbor distance (
√

3a0/4) of InxGa1−xAs as measured by
standard X-ray diffraction (Bragg reflection, solid squares) and VCA approximation
(dash-dotted line). Near-neighbor Ga–As and In–As distances as determined by
EXAFS (extended X-ray absorption fine structure, solid squares). Dashed lines are
guides to the eye. Data from [155]. (b) Second-neighbor distances for InxGa1−xAs
as determined from EXAFS, top: anion–anion distance (for As–As), bottom: cation–
cation distance (for In–In, Ga–Ga, and Ga–In). Solid lines in both plots are the
VCA (a0/

√
2). Data from [156]
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Fig. 3.38. Theoretical values (T = 0 K) for the cell-internal parameter u as a
function of the composition for group-III nitride alloys. The solid lines are quadratic
curves (bowing parameter b is shown) through the points for x = 0, 0.5, and 1.0.
Data from [158]

their average position and the lattice is deformed on the nanoscopic scale. In
a lattice of the type InxGa1−xAs the anions suffer the largest displacement
since their position adjusts to the local cation environment. For InxGa1−xAs
a bimodal distribution, according to the As–Ga–As and As–In–As configura-
tions, is observed (Fig. 3.37b). The cation–cation second-neighbor distances
are fairly close to the VCA.

While the average lattice parameter in alloys changes linearly with compo-
sition, the cell-internal parameter u (for wurtzite structures, see Sect. 3.4.5)
exhibits a nonlinear behavior as shown in Fig. 3.38. Therefore physical prop-
erties connected to u, such as the spontaneous polarization, will exhibit a
bowing.

3.7.5 Ordering

Some alloys have the tendency for the formation of a superstructure [160].
Growth kinetics at the surface can lead to specific adatom incorporation
leading to ordering. For example, in In0.5Ga0.5P the In and Ga atoms can
be ordered in subsequent (111) planes (CuPt structure) instead of being
randomly mixed (Fig. 3.39). This impacts fundamental properties such as the
phonon spectrum or the band gap. CuPt ordering on (111) and (1̄1̄1) planes
is called CuPtA, on (1̄11) and (11̄1) planes CuPtB ordering. In Fig. 3.40, a
TEM image of a Cd0.68Zn0.32Te epilayer is shown with simultaneous ordering
in the CuPt structure (doublet periodicity along [11̄1] and [1̄11]) and in the
CuAu-I structure4 (doublet periodicity along [001] and [1̄10]). The geometry
of different ordering types is shown in Fig. 3.41.

4The CuAu-I structure has tetragonal symmetry. There exists also the CuAu-II
structure that is orthorhombic.
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Fig. 3.39. CuPt-ordered ternary alloy In0.5Ga0.5P; the lattice symmetry is reduced
from Td to C3v

(a) (b)

Fig. 3.40. (a) Cross-sectional transmission electron microscope image along the
[110] zone axis of a Cd0.68Zn0.32Te epilayer on GaAs showing ordered domains
having a doublet periodicity on the {111} and {001} lattice planes. Two different
{111} variants are labeled ‘a’ and ‘b’. The doublet periodicity in the [001] is seen
in the ‘c’ region. (b) Selected-area diffraction pattern along the [110] zone. Strong
peaks are fundamental peaks of the zincblende crystal, weak peaks are due to CuPt
ordering, labeled A and B, and CuAu-I ordering, labeled C and D. The latter are
the weakest due to a small volume fraction of CuAu-ordered domains. Adapted
from [159]
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Fig. 3.41. Schematic diagrams of zincblende CdxZn1−xTe along [110] with (a)
CuAu-I type ordering and (b,c) two types of the CuPtB type ordering. Doublet
periodicity is along (a) [001] and [1̄10], (b) [11̄1] and (c) [1̄11]. Adapted from [159]



4 Defects

4.1 Introduction

In an ideal lattice each atom is at its designated position. Deviations from
the ideal structure are called defects. In the following, we will briefly discuss
the most common defects. The electrical activity of defects will be discussed
in Sects. 7.5 and 7.7. For the creation (formation) of a defect a certain free
enthalpy Gf

D is necessary. At thermodynamical equilibrium a (point) defect
density ∝ exp

(−Gf
D/kT

)
will always be present (cf. Sect. 4.2.2).

Point defects (Sect. 4.2) are deviations from the ideal structure involv-
ing essentially only one lattice point. The formation energy for line defects
(Sect. 4.3) or area defects (Sect. 4.4) scales with N1/3 and N2/3, respectively,
N being the number of atoms in the crystal. Therefore, these defects are not
expected in thermodynamic equilibrium. However, the path into thermody-
namical equilibrium might be so slow that these defects are metastable and
must be considered quasi-frozen. There may also exist metastable point de-
fects. By annealing the crystal, the thermodynamic equilibrium concentration
might be re-established.

4.2 Point Defects

4.2.1 Point Defect Types

The simplest point defect is a vacancy V, a missing atom at a given atomic
position. If an atom is at a position that does not belong to the crystal struc-
ture an interstitial I (or Frenkel defect) is formed. Depending on the position
of the interstitial different types are distinguished. An interstitial atom that
has the same chemical species as the crystal is called ‘self-interstitial’.

If an atom site is populated with an atom of different order number Z, an
impurity is present. An impurity can also sit on interstitial position. If the
number of valence electrons is the same as for the original (or correct) atom,
then it is an isovalent impurity and quasi fits into the bonding scheme. If the
valence is different, the impurity adds extra (negative or positive) charge to
the crystal bonds, which is compensated by the extra, locally fixed charge
in the nucleus. This mechanism will be discussed in detail in the context of

M. Grundmann, The Physics of Semiconductors, 2nd ed., Graduate Texts 73
in Physics, DOI 10.1007/978-3-642-13884-3 4,
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 4.1. Images of occupied (upper frames) and empty (lower frames) density
of states of typical defects on Si-doped GaAs (110) surfaces. (a1, a2) show a Ga
vacancy, (b1, b2) a SiGa donor, (c1, c2) a SiAs acceptor and (d1, d2) a SiGa–VGa

complex. Adapted from [160]

doping (Sect. 7). If in an AB compound an A atom sits on the B site, the
defect is called an antisite defect AB .

A Ga vacancy, a silicon impurity atom on Ga- and As-site and a SiGa-
vacancy complex at the (110) surface of Si doped GaAs are shown in Fig. 4.1
as observed with STM [160, 161]. Also antisite defects in GaAs can be ob-
served with STM [162, 163].

A point defect is typically accompanied by a relaxation of the surrounding
host atoms. As an example, we discuss the vacancy in Si (Fig. 4.2a). The
missing atom leads to a lattice relaxation with the next neighbors moving
some way into the void (Fig. 4.2b). The bond lengths of the next and second-
next neighbor Si atoms around the neutral vacancy are shown in Fig. 4.2c.
The lattice relaxation depends on the charge state of the point defect (Jahn–
Teller effect) which is discussed in more detail in Sect. 7.7. In Fig. 4.2d
the situation for the positively charged vacancy with one electron missing
is shown. One of the two bonds is weakened since it lacks an electron. The
distortion is therefore different from that for V 0. Also the (self-)interstitial
is accompanied with a lattice relaxation as shown in Fig. 4.3 for a silicon
interstitial at tetrahedral place. Self-interstitials in silicon and germanium
are reviewed and compared in [164] for their various charge states.

Point defects can cluster. An example of five nearby vacancies in silicon,
the so-called V5 cluster is shown in Fig. 4.4. A large number of clustered
vacancies is equivalent to a void. Also impurities cluster (see Sect. 4.2.5).

4.2.2 Thermodynamics

For a given temperature, the free enthalpy G of a crystal (a closed system
with regard to particle exchange)
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(a) (b)

(c) (d)

Fig. 4.2. (a) Schematic diamond lattice with vacancy, i.e. a missing Si atom without
relaxation. (b) Si with neutral vacancy (V 0), lattice relaxation and formation of two
new bonds. (c) Schematic diagram showing the (inward) relaxation of the neighbors
around the neutral Si vacancy defect site (empty circle) calculated by an ab initio
method. The distances of the outer shell of atoms (red circles) from the vacant
site is labeled (in nm). The bond lengths of the two new bonds and the second-
neighbor (blue circles) distance are also indicated. The bond length in bulk Si is
0.2352 nm, the second-neighbor distance 0.3840 nm. Adapted from [165]. (d) Si unit
cell with positively charged vacancy (V +). Parts (a,b,d) reprinted with permission
from [166]

Fig. 4.3. Silicon tetrahedral interstitial SiTi and its next atoms in ideal (white
spheres) and relaxed (black spheres) position. Adapted from [98]
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Fig. 4.4. Predicted configuration of the V5-cluster (five vacancies) in silicon. Yellow
spheres indicate more distorted atoms than the rest of the lattice atoms (white
spheres). Adapted from [167]

G = H − TS (4.1)

is minimum. H is the enthalpy and S the entropy. The enthalpy H = E+pV
is the thermodynamic potential for a system whose only external parameter
is the volume V . It is used when the independent variables of the system are
the entropy S and pressure p. The free enthalpy is used when the independent
parameters are T and p. G0 (H0) is the free energy (enthalpy) of the perfect
crystal. H f is the formation enthalpy of an isolated defect. This could be,
e.g., the enthalpy of a vacancy, created by bringing an atom from the (later)
vacancy site to the surface, or an interstitial, created by bringing an atom
from the surface to the interstitial site. In the limit that the n defects do not
interact with each other, i.e. their concentration is sufficiently small, they can
be considered independent and the enthalpy is given by

H = H0 + nH f . (4.2)

The increase of entropy due to increased disorder is split into the config-
urational disorder over the possible sites, denoted as Sd, and the formation
entropy Sf due to localized vibrational modes. The total change ΔG of the
free energy is

ΔG = G−G0 = n (H f − TSf) − TSd = nGf − TSd , (4.3)

where Gf = H f − TSf denotes the free enthalpy of formation of a single iso-
lated defect. In Table 4.1 experimental values for the formation entropy and
enthalpy are given for several defects. Surprisingly, despite their fundamental
importance in semiconductor defect physics, these numbers are not very well
known and disputed in the literature.

The defect concentration is obtained by minimizing ΔG, i.e.

∂ΔG

∂n
= Gf − T

∂Sd

∂n
= 0 . (4.4)
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Table 4.1. Formation enthalpy H f and entropy Sf of the interstitial (I) and va-
cancy (V ) in Si and the Ga vacancy in GaAs. Data for Si from [168, 169], for GaAs
from [170]

Material defect H f (eV) Sf (kB)

Si I 3.2 4.1

Si V 2.8 ∼ 1

GaAs VGa 3.2 9.6

The entropy Sd due to disorder is given as

Sd = kB lnW , (4.5)

where W is the complexion number, usually the number of distinguishable
ways to distribute n defects on N lattice sites

W =
(
N
n

)
=

N !
n! (N − n)!

. (4.6)

With Stirling’s formula lnx! ≈ x(lnx− 1) for large x we obtain

∂Sd

∂n
= kB

[
N

n
ln

(
N

N − n

)
+ ln

(
N − n

n

)]
. (4.7)

If n � N , ∂N/∂n = 0 and the right side of (4.7) reduces to kB ln(N/n).
The condition (4.4) reads Gf + kBT ln(n/N), or

n

N
= exp

(
− Gf

kBT

)
. (4.8)

In the case of several different defects i with a degeneracy Zi, e.g. a spin
degree of freedom or several equivalent configurations, (4.8) can be general-
ized to

ni

ZiN
= exp

(
− Gf

i

kBT

)
. (4.9)

In [171] the equilibrium concentration of interstitials Ceq
I in silicon has

been given as

Ceq
I =

(
1.0 × 1027 cm−3

)
exp

(
−3.8 eV

kT

)
, (4.10)

about 1014 cm−3 at 1200◦C. The vacancy concentration has been investigated
in [172]. Around a temperature of 1200◦C it is in the 1014–1015 cm−3 range.
Due to the reaction

0 � I + V , (4.11)

a mass action law holds for the concentrations of interstitials and vacancies

CI CV = Ceq
I Ceq

V . (4.12)
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4.2.3 Diffusion

The diffusion of point defects is technologically very important, in particular
for silicon as host material. Typically a dopant profile should be stable under
following technological processing steps and also during device performance.
Also defect annihilation is crucial after implantation processes. Diffusion of
an interstitial I and a vacancy V to the same site is prerequisite for recombi-
nation of defects (so called bulk process) according to the scheme I +V → 0.
We note that the process 0 → I + V is called Frenkel pair process.1 Also
the self-diffusion of silicon has been studied, e.g. using radioactively marked
isotopes [171]. The diffusion of point defects including dopants in silicon has
been reviewed in [173, 174]. Usually Fick’s law is applied, stating how the
flux J depends on the concentration gradient, for an interstitial it reads:

JI = −DI ∇CI , (4.13)

DI being the interstitial diffusion coefficient. For interstitials in Si it was
found [171] that

DI = 0.2 exp
(
−1.2 eV

kT

)
cm2/s . (4.14)

The diffusion of neutral vacancies occurs with [175]

DV = 0.0012 exp
(
−0.45 eV

kT

)
cm2/s . (4.15)

The temperature dependent diffusion coefficients of point defects and dopants
in silicon are shown in Fig. 4.5.

The self-diffusion coefficient of silicon has been determined from the an-
nealing of isotope superlattices (Sect. 11.5) of sequence 28Sin/30Sin, n = 20
to be [176]

DSD
Si =

[
2175.4 exp

(
−4.95 eV

kT

)
+ 0.0023 exp

(
−3.6 eV

kT

)]
cm2/s , (4.16)

the first (second) term being due to interstitial (vacancy) mechanism, dom-
inant for temperatures larger (smaller) than 900◦C. The enthalpy in the ex-
ponent, e.g. HV = 3.6+0.3

−0.1 eV [176], consists of the formation and migration
enthalpies,

HV = H f
V +Hm

V . (4.17)

Using the experimental value H f
V = 2.8± 0.3 eV [169] from Table 4.1, for the

migration enthalpy a value around Hm
V ≈ 0.8 eV is obtained.

1At higher temperatures a silicon atom can occasionally acquire sufficient energy
from lattice vibrations to leave its lattice site and thus an interstitial and a vacancy
are generated.
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Fig. 4.5. The temperature dependent diffusion coefficient of Si interstitials I, va-
cancies V and various impurities in silicon. Also the self-diffusion coefficient, labeled
with ‘Si’ is shown. Based on data from [173]

As an example for a dopant diffusion process that has been understood
microscopically, we discuss here boron in silicon. In Fig. 4.6a the lowest-
energy configuration of a boron-related defect in silicon is depicted, Bs–SiTi ,
i.e. boron on a substitutional site and a self-interstitial Si on the ‘T’ place
with highest symmetry2 (see Fig. 3.17). Due to its importance as an acceptor
in Si, the configuration and diffusion of B in Si has found great interest [177–
179]. The diffusion depends on the charge state of boron. The diffusion of
positively charged boron has been suggested [179] to occur via the following
route: The boron leaves its substitutional site and goes to the hexagonal
site (‘H’) (Fig. 4.6b) with an activation energy of about 1 eV (Fig. 4.6d).
It can then relax (∼ 0.1 eV) without barrier to the tetrahedral ‘T’ position
(Fig. 4.6c). The direct migration Bs–SiT+

i → BT+
i has a higher activation

energy of 1.12 eV and is thus unlikely. The boron atom can then diffuse
through the crystal by going from ‘H’ to ‘T’ to ‘H’ and so on (Fig. 4.6e).
However, long-range diffusion seems to be not possible in this way because
the kick-in mechanism will bring back the boron to its stable configuration.
The pair diffusion mechanism for neutral boron Bs–SiTi → BH

i → Bs–SiTi via
the hexagonal site has an activation energy of about 0.5 eV (Fig. 4.6d) while
the path via BT

i has a larger 0.9 eV barrier. The concentration dependence
of the diffusion mechanism has been discussed in [180].

Similarly, indium diffusion in silicon has been investigated suggesting
a minimum energy Ins–SiTi → InT

i → Ins–SiTi diffusion pathway via the

2The positive charge state is stable, the neutral charge state is metastable since
the defect is a negative-U center (see Sect. 7.7.5).
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(d) (e)

Fig. 4.6. Configurations of boron in Si: (a) Substitutional boron and Si self-
interstitial at ‘T’ site (BS–SiTi ). Interstitial boron at (b) ‘H’ (BH

i ) and (c) ‘T’ site
(BT

i ), each with the Si atoms on the Si lattice sites. The large bright ball represents
the boron atom, large and small dark balls represent Si atoms. (d) Lowest energy
barrier diffusion paths for positively charged and neutral B–Si states, total energy
vs. configuration. (e) Two diffusion pathways for positively charged B–Si, kick-
out (dashed line) and pair diffusion (solid line); the activation energy is labeled.
Adapted from [179]

tetrahedral site with 0.8 eV activation energy [181]. Microscopic modeling
has been reported also for diffusion of phosphorus [182].

4.2.4 Dopant Distribution

The introduction of impurities into a semiconductor (or other materials such
as glasses) is termed doping. The unavoidable incorporation of impurities
in the nominally pure (nominally undoped) material is called unintentional
doping and leads to a residual or background impurity concentration. Several
methods are used for doping and the creation of particular doping profiles (in
depth or lateral). All doping profiles underly subsequent diffusion of dopants
(Sect. 4.2.3).

Various methods of doping are used. A straightforward method of dop-
ing is the incorporation during crystal growth or epitaxy. For semiconductor
wafers a homogeneous doping concentration is targeted, both laterally and
along the rod from which the wafer is cut (Sect. 11.2.2). When a crystal is
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grown from melt, containing a concentration c0 of the impurity, the concen-
tration in the solid is given by (‘normal freezing’ case [183–185])3

c(x) = c0 k (1 − x)k−1 , (4.18)

where c(x) is the impurity concentration in the crystal at the freezing in-
terface, x is the frozen melt fraction (ratio of solid mass to total mass,
0 ≤ x ≤ 1). k is the distribution coefficient (or segregation coefficient) which
is the fraction of impurities that is built into the crystal at the liquid–solid
interface. Since the melt volume reduces during the solidification, the impu-
rity concentration rises over time. For small distribution coefficients (4.18)
can be approximated to

c(x) ≈ c0
k

1 − x
, (4.19)

An experimental example for Ge:In is shown in Fig. 4.7a.
In Table 4.2 the distribution coefficients for various impurities in Si, Ge

and GaAs is given. The modification of distribution coefficients in SiGe alloys

(a) (b)

Fig. 4.7. (a) Relative concentration of indium along a CZ-grown germanium crys-
tal. Absolute concentration is in the 1016 cm−3 range. Solid line follows (4.19) with
k = 1.2×10−3. Symbols are experimental data from [189]. (b) Impurity distribution
(relative concentration c(x)/c0) for CZ (4.18) (solid lines) and FZ (4.20) (dashed
lines, z = 0.01) silicon crystals for B (blue), P (red), and Al (green). Distribution
coefficients have been taken from Table 4.2. Note crossing of B and P lines and
possibly associated change from p-type to n-type (cmp. Fig. 1.4)

3Mass preservation of the impurities can be written at any time cm(1 − x) +∫ x

0
c(x′) dx′ = c0, where cm is the (remaining) concentration in the melt. At the

beginning cm(0) = c0. At the interface c(x) = k cm(x). Putting this into the mass
preservation, building c′(x) and solving the resulting differential equation c′ =
c(1 − k)/(1 − x) with c(0) = k c0 leads to (4.18).
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Table 4.2. Equilibrium distribution coefficients (at melting point) of various impu-
rities in silicon, germanium and GaAs. Data for Si from [185, 188], for Ge from [189–
192] and for GaAs from [192]

impurity Si Ge GaAs

C 0.07 > 1.85 0.8

Si 5.5 0.1

Ge 0.33 0.03

N 7 × 10−4

O ≈ 1 0.3

B 0.8 12.2

Al 2.8 × 10−3 0.1 3

Ga 8 × 10−3 0.087

In 4 × 10−4 1.2 × 10−3 0.1

P 0.35 0.12 2

As 0.3 0.04

Sb 0.023 3.3 × 10−3 < 0.02

S 10−5 > 5 × 10−5 0.3

Fe 6.4 × 10−6 3 × 10−5 2 × 10−3

Ni ≈ 3 × 10−5 2.3 × 10−6 6 × 10−4

Cu 8 × 10−4 1.3 × 10−5 2 × 10−3

Ag ≈ 1 × 10−6 10−4 0.1

Au 2.5 × 10−5 1.5 × 10−5

Zn 2.5 × 10−5 6 × 10−4 0.1

is discussed in [186]. Equilibrium values (keq) are obtained for ‘slow’ crystal
growth. For finite growth rates, k becomes a function of the growth rate and
is then called the effective distribution coefficient. For k < 1, keff > keq. keff

approaches 1 for high growth rates, i.e. all impurities at the rapidly moving
interface are incorporated.

(4.18) applies to Czrochalski growth where the crystal is pulled out of the
melt [187]. In float-zone (FZ) growth [187] a polycrystalline rod is transformed
into a crystalline one while a RF-heated and liquid ‘float’ zone is moved
through the crystal. In this case the impurity distribution is given by4

c(x) = c0

[
1 − (1 − k) exp

(
−k x
z

)]
, (4.20)

4When the float zone moves through the crystal, the change of mass of impurities
mm = cmz in the liquid is m′

m = c0 − kcm. The first term stems from the melting
of the polycrystalline part, the second from the solidification of the crystal. Solving
the resulting differential equation c′m = (c0 − kcm)/z with cm(0) = c0 and using
c(x) = kcm(x) yields (4.20).



4.2 Point Defects 83

where x is the ratio of the crystal mass to the total mass, i.e. crystal, liquid
and feed rod. z is the relative mass of the (liquid) float zone, i.e. the ratio
of liquid mass to the total mass. The impurity distribution for CZ and FZ
crystals is compared in Fig. 4.7b. Obviously the FZ process can create much
more homogeneous profiles.5

Using epitaxy arbitrary doping profiles along the growth directions can
be created by varying the impurity supply during growth. Impurities can
be introduced through the surface of the material by diffusion from a solid
or gas phase. In ion implantation [193] the impurity atoms are accelerated
towards the semiconductor and deposited with a certain depth profile due
to multiple scattering and energy loss events, depending on the acceleration
voltage (increasing deposition depth with increasing voltage, Fig. 4.8a) and
ion mass (decreasing deposition depth with increasing mass, Fig. 4.8b). The
depth profile is often investigated using secondary ion mass spectrometry
(SIMS) [194]. The profile also depends on the matrix material whose stopping
power depends on its density and atomic mass. While an implantation depth
of about 50 nm is reached for boron in silicon (A ≈ 28) for 10 keV, 20 keV are
necessary in germanium (A ≈ 72.6) [195]. The mean path length6 dm depends
also on the crystallographic direction (channeling effects, Fig. 4.9) [196]. A
simulation of the interaction of ions and solids can be performed using the
SRIM software [197, 198].

(a) (b)

Fig. 4.8. (a) Depth of peak concentration of boron implanted in silicon for vari-
ous acceleration voltages U . Data from various sources, for U < 1 keV from [199].
Dashed line is linear dependence. (b) Simulated depth profiles of impurity concen-
tration for B, P, As, and Sb implanted into crystalline silicon with U = 100 keV
and a dose of 1015 cm−2. Adapted from [200]

5We note that during directed solidification of Si:(B,P) a pn-junction forms due
to the different distribution coefficients of boron and phosphorus. This has been
used in [53].

6The mean path length is the distance integrated along the ion trajectory until
its direction deviates by more than 4◦ from the incident direction.
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Fig. 4.9. Simulated mean path length as a function of implantation direction
(azimuthal angle φ and polar angle θ) near [001] for 5 keV boron in silicon. The
[001] channeling peak appears as a ridge at the left side of the plot (θ = 0, any
value of φ). Adapted from [196]

4.2.5 Large Concentration Effects

Lattice Constant

At high doping concentration, a noticeable effect on the lattice constant a0 is
found. For silicon the atom density7 is NSi = 5×1022 cm−3. A doping level of
N = 1019 cm−3 corresponds thus to a dopant fraction of 0.02%. Such crystal
could also be considered a very dilute alloy. About each (NSi/N)1/3 ≈ 17-th
atom in a given direction is a dopant.

The effect of high doping on the lattice constant is due to different ionic
radius of the dopant and the hydrostatic deformation potential of the band
edge occupied by the free carriers [201]. In a linear approach, the effect is
summarized in the coefficient β via

β =
1
N

Δa0

a0
. (4.21)

The effect due to charge carriers on β is negative (positive) for p-doping (n-
doping). Experimental data for Si, Ge, GaAs and GaP are compiled in [202,
203] and theoretically discussed. The effect is in the order of β = ±(1–
10)×10−24 cm3. For example, in the case of Si:B, the shrinkage of the lattice
constant is mostly due to the charge carrier effect, for Si:P both effects almost
cancel. In [204] it is shown that boron incorporation in silicon changes the
lattice constant in various directions quite differently, e.g. d333 is shrank by
0.4% for a doping level of 1019 cm−3 while the {620} lattice constant remains
constant.

7Eight atoms per cubic unit cell of length a0 = 0.543 nm.
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Clustering

Typically a random distribution of dopants in the host is assumed (cmp.
Sect. 3.7.1 on random alloys). The introduction of several impurities can lead
to pairing effects, e.g. described for Se and B, Ga, Al or In in silicon [205]. A
high concentration of a single impurity makes the existence of clusters, i.e.
two or more neighboring dopant atoms, more probable. This effect has been
extensively studied for B in Si [206], showing that several boron atoms with
interstitials I form thermodynamically stable clusters, e.g. B3I2. This cluster
forms from B2I and BI with only 0.2 eV activation barrier [207] as shown in
Fig. 4.10. The formation is limited by diffusion of the smaller clusters to the
same site. The number of free carriers (here holes) released from such cluster is
smaller than the number of boron atoms since it forms a deep acceptor [206].
This autocompensation mechanism is thus limiting the maximum achievable
free carrier concentration due to doping and is technologically unfavorable.
Reactions between boron atoms and silicon self-interstitials often lead to
boron clustering in the peak region of an implantation profile and require
detailed optimization of the annealing process [208].

Solubility Limit

The steady-state impurity solubility can be defined as the maximum con-
centration of impurity atoms in a crystal allowing thermodynamic balance
between the crystal and another phase, e.g. a liquid phase, an extended de-
fect or a precipitate. Precipitates are small inclusions of a second phase in
a crystal, exhibiting a high concentration of ‘gathered’ impurities that can-
not be solved in the crystal. Solubility limits for impurities in silicon have

Fig. 4.10. Minimum energy path for the breakup of a B3I2 cluster into B2I and
BI. Silicon (boron) atoms are shown as yellow (blue) spheres. Adapted from [207]
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Table 4.3. Maximum solubility Ns of some impurities creating shallow levels in
silicon. Data for B, P, As, Sb from [215], other data from [212]

impurity Ns (1020 cm−3)

B 4

P 5

As 4

Sb 0.7

Al 0.13

Cu 1.4 × 10−2

Au 1.2 × 10−3

Fe 3 × 10−4

been first determined in [209] with a bulk of subsequent research [210] due
to its practical relevance in device fabrication. The solubility limit for a few
impurities in silicon are listed in Table 4.3. The temperature dependence is
depicted in Fig. 4.11a. The solubility depends also on the present strain [211].
The simple empirical relation xs = 0.1 k (Fig. 4.11b) between the maximum
molar solubility xs and the distribution coefficient k in silicon and germanium
has been pointed out in [212].

A typical example for the formation of precipitates is Fe in InP, used for
compensation of shallow donors in order to produce semi-insulating material
(Sect. 7.7.8). The solubility of Fe in InP is fairly low, about 1017 cm−3 at
growth temperature [213]. In Fig. 4.12 a high-resolution TEM image of a

(a) (b)

Fig. 4.11. (a) Steady-state solubility of impurities (P, As, B and Sb as labeled) in
silicon. Solid lines are theoretical model matching various experimental data. Arrow
denotes the melting point of silicon (1410◦). Adapted from [210]. (b) Maximum
molar solid solubility xs vs. the distribution coefficient for various impurities in
crystalline silicon and germanium. Solid line follows xs = 0.1 k. Adapted from [212]
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Fig. 4.12. High resolution TEM image of a FeP precipitate in iron-doped InP.
Adapted from [214]

precipitate in InP doped with 3× 1018 cm−3 Fe is shown. The precipitate ex-
hibits a lattice constant of d111 = 0.240 nm in [111]-direction, much different
from that of InP (dInP

111 = 0.339 nm). The angle between the [101] and [111]
direction is 50◦ instead of 35◦ for InP. This is consistent with orthorhombic
FeP [214]. Typically FeP and FeP2 precipitates are found in highly Fe-doped
InP [215].

4.3 Dislocations

Dislocations are line defects along which the crystal lattice is shifted by a
certain amount. The vector along the dislocation line is called line vector L.
A closed path around the dislocation core differs from that in an ideal crystal.
The difference vector is called the Burger’s vector b. Dislocation for which
the Burger’s vector is a vector of the lattice are called full dislocations. In
contrast, dislocations with Burger’s vectors that are not translation vectors
of the lattice are called partial dislocations. The history of dislocation theory
is described in [216].

Since the energy of a dislocation is proportional to b2, only dislocations
with the shortest Burger’s vector are stable. The plane spanned by L and b
is called the glide plane. In Fig. 4.13 a high-resolution image of the atoms
around a dislocation and the phase and amplitude of the (111) reflection are
shown. The phase corresponds to the atomic columns, the amplitude to the
displacement of the atoms at the dislocation core (see also Fig. 5.21).
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(a) (b)

(c) (d)

Fig. 4.13. (a) High-resolution transmission electron microscopy image (HRTEM)
in the 〈110〉 projection of a network of misfit dislocations at a GaAs/CdTe/ZnTe
interface. Substrate: GaAs (001), 2◦ off 〈110〉, ZnTe buffer layer is 2 monolayers
thick. (b) Fourier transform with round mask around the (111) Bragg reflection.
(c) Phase and (d) amplitude images for the mask from (b). From [217]

4.3.1 Dislocation Types

Edge Dislocations

For an edge dislocation (Fig. 4.14a) b and L are perpendicular to each other.
An extra half-plane spanned by L and b × L is inserted.

Screw Dislocations

For a screw dislocation (Fig. 4.14b) b and L are collinear. The solid has
been cut along a half-plane up to the dislocation line, shifted along L by the
amount b and reattached.
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(a)

L

b

(b)

Lb

Fig. 4.14. Model of (a) an edge and (b) a screw dislocation. The line vector L and
the Burger’s vector b are indicated

Around the intersection of a screw dislocation with a surface, the epitaxial
growth occurs, typically in the form of a growth spiral that images the lattice
planes around the defect (Fig. 4.15).

60◦ Dislocations

The most important dislocations in the zincblende lattice (Fig. 4.16) have
the line vector along 〈110〉. With the Burger’s vector a/2 〈110〉 three different
types of dislocations can be formed: edge, screw and 60◦ dislocations. The

(a) (b)

Fig. 4.15. (a) Atomic force microscopy image of growth spiral around a screw
dislocation on a silicon surface; image width: 4 μm. (b) STM image (width: 75 nm)
of a screw-type dislocation with a Burgers vector of [000-1] on the N-face of GaN.
The reconstruction is c(6×12). The c(6×12) row directions correspond to 〈1̄100〉.
Reprinted with permission from [218], c©1998 AVS
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L

(b) (c)(a)

[110]

α = 60° α = 90°α = 0° (d)

b
L

Fig. 4.16. Dislocations in the zincblende structure. The line vector is along [100].
The Burger’s vector a/2 〈110〉 can create an (a) edge dislocation, a (b) screw dis-
location, and (c) a 60◦ dislocation. (d) Atomistic structure of a 60◦ dislocation

vicinity of the core of the latter is shown in more detail in Fig. 4.16d. We
note that the atomistic structure of 60◦ dislocations is different for L along
[110] and [−1 10]; depending on whether the cation or anion are in the core,
they are labeled α or β dislocations.

Misfit Dislocations

When materials with different lattice constants are grown on top of each
other, the strain can plastically relax via the formation of misfit dislocations.
A typical network of such dislocations is shown in Fig. 4.17 for SiGe on Si.

Partial Dislocations

Partial dislocations, i.e. the Burger’s vector is not a lattice vector, must neces-
sarily border a two-dimensional defect, usually a stacking fault (Sect. 4.4.2).
A typical partial dislocation in diamond or zincblende material is the Shock-
ley partial dislocation (or just Shockley partial) with Burger’s vector b =
(a0/6) 〈112〉. Another important partial is the Frank partial with b =
(a0/3) 〈111〉. A perfect dislocation can be dissociated into two partials. This
is energetically favorable. As an example we consider the reaction (Fig. 4.18a)

1
2

[1̄01] → 1
6

[1̄1̄2] +
1
6

[2̄11] . (4.22)

The length of the full dislocation is a0/
√

2. The length of the Shockley partial
is a0/

√
6. Thus the energy E = Gb2 of the full dislocation is E1 = Ga2

0/2
and the sum of the energies of the partials is smaller, E2 = 2Ga2

0/6 = Ga2
0/3.

In Fig. 4.18b a TEM image of a Ge/Si interface with a Shockley partial is
shown.
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Fig. 4.17. Plan-view transmission electron microscopy image of a network of 〈110〉
dislocation lines in InGaAs on InP (001) with a lattice mismatch of about 0.1%.
The TEM diffraction vector is g = [22̄0]. Adapted from [219]

(a) (b)

Fig. 4.18. (a) Graphical representation of the dislocation reaction of (4.22). (b)
TEM image of the interface of a Ge/Si heterostructure with a [2̄11] /6 Shockley
partial dislocation. The image is overlayed with empty rod positions (as schemat-
ically shown in the lower left part of the figure) colored according to the stacking
position (A: blue, B: red, C: green). The arrows labeled ‘I’ denote the position of
the interface. Based on [221].
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4.3.2 Visualization of Dislocations by Etching

Defects can be made visible using etching techniques. This is particularly
popular for finding dislocations. Many etches are anisotropic, i.e. the etch ve-
locity varies for different crystal directions. As an example the result of etch-
ing a silicon sphere in molten KOH and a germanium sphere in a HNO3/HF
solution are shown in Fig. 4.19. The remaining bodies exhibit those planes
with low etching velocity. The etch velocity of various etch solutions has been
investigated in detail in particular for silicon (Fig. 4.20).

Fig. 4.19. (a) Resulting shape of Si sphere (‘Lösungskörper’) after 3 h at
100◦C in molten KOH. (b) Resulting shape of Ge sphere after etching in
HNO3:HF:CH3COOH, 35:30:35 weight percent. The octaedric form indicates {111}
faces. Markers are 1 mm. Adapted from [222]

(a) (b)

Fig. 4.20. (a) Etch rate of silicon for tetramethyl-ammonium-hydroxide (TMAH)
water solution (25%) at 86◦C and 40% KOH at 70◦C as a function of crystallo-
graphic direction. (b) Detail of the anisotropy around the (111) direction for TMAH
solutions with three different concentrations and 40% KOH, all at 86◦C. Adapted
from [223]
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Fig. 4.21. Etch pits on germanium with (a) (001) and (b) (111) surface ori-
entation. In both cases {111} facets are prepared by the etch. As etch in (b) a
HNO3/HF/CH3COOH solution with AgNO3 additive has been used. Width of the
triangular etch pits is about 100 μm. Adapted from [224]

In a planar geometry, etch pits indicate the presence of dislocations, as
shown in Fig. 4.21 for Ge of different orientation. The anisotropic etch pre-
pares {111} planes. The dislocation core is at the intersection of the planes.
In Fig. 4.22 hexagonal etch pits stretched along [11̄0] are developed by molten
KOH [220]. The sides of the base are along [110], 〈130〉 and 〈310〉. The depth
and width of the pits increases with increasing etching time. On the (001̄)
surface, the orientation of the pits is rotated by 90◦ because of the polar [111]-
axis of the zincblende structure [220]. Such etch pit develops at a dislocation

Fig. 4.22. Etch pits on GaAs (001) after (a) 3 min and (b) 10 min etch time in
molten KOH at 300◦C. Adapted from [220]
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with Burger’s vector a/2 [011] (inclined to the (001) surface) [225]. Other
types of etch pits indicate dislocations with other Burger’s vectors [225, 226].
Recipes how to wet chemically etch various semiconductors can be found
in [222, 224, 227, 228]. Other etching techniques include dry processes such
as plasma etching or reactive ion etching (RIE) [229–231].

4.3.3 Impurity Hardening

It has been found that the addition of impurities can lead to a substantial
reduction of the dislocation density. This effect is known as impurity hard-
ening and is caused by a hardening of the lattice due to an increase of the
so-called critical resolved shear stress [232]. In Fig. 4.23 the dependence of
the dislocation density in GaAs and InP is shown as a function of the carrier
density that is induced by the incorporation of (electrically active) group-II
or group-VI atoms (acceptors or donors, cf. Sect. 7.5). The high carrier con-
centration is unwanted when semi-insulating substrates (cf. Sect. 7.7.8) or
low optical absorption (cf. Sect. 9.7) are needed. Thus the incorporation of
isovalent impurities, such as In, Ga or Sb in GaAs and Sb, Ga or As in InP,
has been investigated and found to be remarkably effective. Material contain-
ing such impurities in high concentration (> 1019 cm−3) must be considered
a low-concentration alloy. The lattice constant is thus slightly changed, which
can cause problems in the subsequent (lattice-mismatched) epitaxy of pure
layers.

Fig. 4.23. Dislocation density (as revealed by etch pits) for GaAs and InP as a
function of the carrier concentration for various concentrations of impurities (S, Te,
and Zn). Adapted from [233].
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4.4 Extended Defects

4.4.1 Micro-cracks

If the stress in a material becomes too big to be accommodated by dislo-
cations, cracks may form to release strain energy.8 In Fig. 4.24 an example
is shown. In this case, micro-cracks have formed in a bulk mercury indium
telluride crystal upon incorporation of residual stress and thermal stress dur-
ing cooling of the material from growth temperature (about 1000 K) to room
temperature. See also Fig. 11.10 for micro-cracks in an epitaxial layer.

4.4.2 Stacking Faults

The ideal stacking of (111) planes in the zincblende structure, ABCABC. . .,
can be disturbed in various ways and creates area defects. If one plane is miss-
ing, i.e. the stacking is ABCACABC, an intrinsic stacking fault is present. If
an additional plane is present, the defect is called an extrinsic stacking fault,
i.e. ABCABACABC. An extended stacking fault in which the order of stack-
ing is reversed is called a twin lamella, e.g. ABCABCBACBABCABC. If
two regions have inverted stacking order they are called twins and their joint
interface is called a twin boundary, e.g. . . .ABCABCABCBACBACBA. . .
(Fig. 4.27). The various types of stacking faults are shown in Fig. 4.25. In
Fig. 4.26 a cross-sectional image of stacking faults in GaAs on Si is shown.
They block each other and thus partially annihilate with increasing thickness.

A stacking fault is bounded by two partial dislocations (Sect. 4.3.1) formed
by the dissociation of a perfect dislocation. A full (or perfect) dislocation with

Fig. 4.24. Micro-cracks in a mercury indium telluride crystal. Adapted from [234]

8We note that in elasticity theory a continuous deformation is assumed. Ob-
viously the separation (fracture) into two unstrained blocks is the lowest strain
energy state of a stressed piece of material.
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(a) (b)

Fig. 4.25. HRTEM images of (a) thin-film silicon with intrinsic (labeled ‘ISF’)
and extrinsic (‘ESF’) stacking faults and twin boundary (‘Twin’). (b) Six mono-
layer thick hexagonal (wurtzite) CdTe layer in cubic (zincblende) CdTe. Stacking
order (from bottom to top) is: ABCABABABABC. . . Reprinted with permission
from [242]

Fig. 4.26. Cross-sectional TEM image showing stacking faults in heteroepitaxial
GaAs on Si. Adapted from [243]

Fig. 4.27. High resolution TEM image of ZnS nanowire exhibiting periodical twin
structures. Adapted from [244]
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Fig. 4.28. Reduced stacking fault energy (stacking fault energy per bond) γ′ for
various compound semiconductors plotted as a function of the s-parameter. Dashed
line is guide to the eye. Data from [111]

Burger’s vector a/2[110] in a III–V compound is dissociated into two Shockley
partials according to (4.22) [235]. Since the dislocation energy is proportional
to |b|2, the dissociation is energetically favored (see Sect. 4.3.1).

The stacking-fault energy in pure silicon is γ = 47 mJ m−2 [236]. A
similar value is found for Ge, γ = 60 mJ m−2 [237] and undoped GaAs,
γ = 45 mJ m−2 [238]. In diamond a much larger value is found, γ =
285 mJ m−2 [239]. Impurity incorporation typically reduces the stacking fault
energy. The systematics of stacking fault energy for various III–V and II–VI
compounds has been discussed [111, 240, 241]. It can be correlated with the
s-parameter (2.11) as depicted in Fig. 4.28.

4.4.3 Grain Boundaries

The boundaries of crystal grains are called grain boundaries. They are defined
by five parameters, three rotation angles (e.g. Euler angles) to describe how
the orientation of grain II results from grain I and two parameters to define
the boundary plane of the two grains in the coordinate system of reference
grain I.

Such defects can have a large impact on the electric properties. They can
act as barriers for transport or as carrier sinks. Details of their structure
and properties can be found in [245, 246]. The two crystal grains meet each
other with a relative tilt and/or twist. The situation is shown schematically
in Fig. 4.29a for a small angle between the two crystals. A periodic pattern of
dislocations forms at the interface that is called a small-angle grain boundary
(SAGB) (Fig. 4.29b). In Fig. 4.30, experimental results for pure tilt SAGB
are shown. The dislocation spacing is inversely proportional to the tilt angle
θ. An image of a twist SAGB is shown in Fig. 4.31.
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(a)

α

(b) (c)

(d) (e) (f)

Fig. 4.29. Schemes of (a,b,c) pure tilt and (d,e,f) pure twist boundary, dislocation
formation in (c) pure tilt and (f) twist boundaries
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Fig. 4.30. (a) Scheme of a small-angle (pure tilt) grain boundary. (b) Model of
edge dislocations in a {110} plane in Ge. (c) Relation of dislocation distance d and
tilt angle θ for various small-angle grain boundaries in Ge. Solid line is relation
d = 4.0 × 10−8/θ. (d) Optical image of an etched (CP–4 etch) Ge sample with a
small-angle grain boundary. Adapted from [249]. (e) HRTEM image of a small-angle
grain boundary in Si with dislocations highlighted. From [250]
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Fig. 4.31. Bright-field TEM image of pure twist boundary with network of pure
twist dislocations fabricated by wafer bonding of two Si (001) surfaces with a relative
twist. Adapted from [251]

Special large angle boundaries possess (for a certain angle) a coincident
site lattice (CSL). Some of these grain boundaries have a low energy and are
thus commonly observed. The ratio of lattice points of the CSL and the lattice
unit cell is an odd integer number n; the corresponding grain boundary is
then labeled Σn. SABG are also termed Σ1. Σ3 grain boundaries are always
twin boundaries. An example with (111) grain boundary is schematically
shown in an example in Fig. 4.32a. A Σ3 (twin) boundary in silicon with
{112} grain boundary [247, 248] is depicted in Fig. 4.33 together with the
atomic arrangement of the grain boundary itself. A Σ5 (001) grain boundary
is schematically shown in Fig. 4.32b; the special angle is θ = arctan 3/4 ≈
36.87◦.

Real grain boundaries may not be flat, contain impurities or precipitates
and even consist of a thin amorphous layer.

4.4.4 Antiphase and Inversion Domains

Antiphase domains occur when one part of the crystal is shifted with respect
to another by an antiphase vector p. This does not form a twin. If the polar
direction changes between two domains they are called inversion domains.
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(a) (b)

Fig. 4.32. (a) Schematic of Σ3 (111) twin boundary in a diamond or zincblende
structure (cmp. Fig. 4.27). The grain boundary is marked by a dashed line shown
in side-view. The hexagonal and rectangular grey boxes have the same area. The
lattice points of the coincident site lattice (CSL) are shown with black circles in
the lower part of the figure. The unit cell of the CSL has three times the volume
of the unit cell of the fcc lattice. (b) Schematic of a Σ5 (001) grain boundary in a
(simple) cubic crystal shown in plane-view. The blue and the red lattice are rotated
by 36.86◦, the lattice points of the CSL are shown in black. The unit cell of the
CSL lattice (dark grey) has five times the volume of the cubic unit cell (light grey)

Fig. 4.33. TEM images in two magnifications of a Σ3 {112} boundary in silicon
together with a schematic of the atomic arrangement. Adapted from [248]
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In the zincblende structure the [110] and [1̄10] directions are not equiv-
alent. In one case there is a Zn-S lattice and in the other a S-Zn lattice.
Both lattices vary by a 90◦ rotation or an inversion operation (which is not
a symmetry operation of the zincblende crystal). If, e.g., a zincblende crystal
is grown on a Si surface with monoatomic steps (Fig. 4.34), adjoint regions
have a different phase; they are called antiphase domains (APD). The an-
tiphase vector is (0, 0, 1)a0/4. At the boundaries a two-dimensional defect,
an antiphase domain boundary, develops. The APD boundary contains bonds
between identical atom species. In Fig. 4.35, intertwinning APD boundaries
are shown on the surface of InP layers on Si. The antiphase domains can be
visualized with an anisotropic etch.

In Fig. 4.36a, inversion domains in iron-doped ZnO are shown. Between
domains the direction of the c-axis is reversed. The iron is found preferentially
in the inversion domain boundary (IDB) (Fig. 4.36b) and plays an important
role in its formation [252].

Fig. 4.34. Monoatomic step on the Si (001) surface and subsequent formation of
an antiphase boundary in InP (zincblende)

Fig. 4.35. Antiphase domains in InP on Si. HCl etchs InP anisotropically and
prepares A planes. The etch patterns of layers with (without) APDs are cross-
hatched (linear). Adapted from [253]



102 4 Defects

(a)

(0001)

(2115)

(b)
Fe

Fig. 4.36. Transmission electron microscopy of inversion domains in ZnO:Fe. (a)
Inversion domains in iron-doped ZnO (ZnO:Fe2O3 =100:1). Arrows denote the
orientation of the c-axis in the respective domains. (b) Top: bright field TEM,
bottom Fe distribution from energy-filtered image. Adapted from [254]

4.5 Disorder

Disorder is a general term for deviations from the ideal structure on a micro-
scopic scale. Examples are

– The presence of various isotopes of an element. This introduces disor-
der with regard to the mass of the atoms and impacts mostly phonon
properties (see, e.g., Fig. 8.19).

– The occupation of lattice sites in alloys (Sect. 3.7) ranging from a random
alloy, clustering to (partially) ordered phases.
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5.1 Introduction

The atoms making up the solid have an average position from which they
can deviate since they are elastically bonded. The typical atomic interaction
potential looks like the one shown in Fig. 2.1. The atoms thus perform a
vibrational motion and the solid is elastic. The potential is essentially asym-
metric, being steeper for small distances due to quantum-mechanical overlap
of orbitals. However, for small amplitudes around the minimum a harmonic
oscillator is assumed (harmonic approximation).

5.2 Lattice Vibrations

In the following we will discuss the dispersion relations for lattice vibrations,
i.e. the connection between the frequency ν (or energy hν = �ω) of the wave
and its wavelength λ (or k-vector k = 2π/λ). Acoustic and optical vibrations
are introduced in one-dimensional models. A detailed treatment of the physics
of lattice vibrations is given in [255].

5.2.1 Monoatomic Linear Chain

The essential physics of lattice vibrations can best be seen from a one-
dimensional model that is called the linear chain. The mechanical vibrations
will also be called phonons , although technically this term is reserved for the
quantized lattice vibrations resulting from the quantum-mechanical treat-
ment.

In the monoatomic linear chain the atoms of mass M are positioned along
a line (x-axis) with a period (lattice constant) a at the positions xn0 = na.
This represents a one-dimensional Bravais lattice. The Brillouin zone of this
system is [−π/a, π/a].

The atoms will interact with a harmonic potential, i.e. the energy is pro-
portional to the displacement un = xn − xn0 to the second power. The total
(mechanical) energy of the system is then:

U =
1
2
C

∑

n

(un − un+1)2 . (5.1)

M. Grundmann, The Physics of Semiconductors, 2nd ed., Graduate Texts 103
in Physics, DOI 10.1007/978-3-642-13884-3 5,
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 5.1. Visualization of transverse (‘T’) and longitudinal (‘L’) waves in a linear
monoatomic chain at different wavevectors

The model assumes that the mass points are connected via massless, ideal
springs with a spring constant C. If φ(x) is the interaction energy between
two atoms, C is given by C = φ′′(a). Again, the harmonic approximation
is only valid for small displacements, i.e. un � a. The displacement of the
atoms can be along the chain (longitudinal wave) or perpendicular to the
chain (transverse wave), see Fig. 5.1. We note that for these two types of
waves the elastic constant C must not be the same.

When the sum in (5.1) has a finite number of terms (n = 0,. . . ,N−1),
the boundary conditions have to be considered. There are typically two pos-
sibilities: The boundary atoms are fixed, i.e. u0 = uN−1 = 0, the boundary
conditions are periodic (Born–von Karman), i.e. ui = uN+i. If N  1, the
boundary conditions play no significant role anyway, thus those with the
greatest ease for subsequent math are chosen. In solid-state physics typically
periodic boundary conditions are used. Boundary phenomena, such as at
surfaces, are then treated separately.

The equations of motion derived from (5.1) are

Mün = Fn = − ∂U

∂un
= −C (2un − un−1 − un+1) . (5.2)

We solve for solutions that are periodic in time (harmonic waves), i.e.
un(x, t) = un exp(−iωt). Then the time derivative can be executed immedi-
ately as ün = −ω2un and we obtain:

Mω2 un = C (2un − un−1 − un+1) . (5.3)
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If, also, the solution is periodic in space, i.e. is a (one-dimensional) plane
wave, i.e. un(x, t) = v0 exp(i(kx−ωt)) with x = na, we find from the periodic
boundary condition exp(ikNa) = 1 and thus

k =
2π
a

n

N
, n ∈ N . (5.4)

It is important that, when k is altered by a reciprocal space vector, i.e.
k′ = k + 2πn/a, the displacements un are unaffected. This property means
that there are only N values for k that generate independent solutions. These
can be chosen as k = −π/a, . . . , π/a, so that k lies in the Brillouin zone of
the lattice. In the Brillouin zone there is a total number of N k values, i.e.
one for each lattice point. The distance between adjacent k values is

2π
Na

=
2π
L
, (5.5)

L being the lateral extension of the system.
The displacements at the lattice points n and n +m are now related to

each other via

un+m = v0 exp(ik(n+m)a) (5.6)
= v0 exp(ikna) exp(ikma) = exp(ikma)un .

Thus, the equation of motion (5.3) reads

Mω2un = C (2 − exp(−ika) − exp(ika))un . (5.7)

Using the identity exp(ika)+exp(−ika) = 2 cos(ka), we find the dispersion
relation of the monoatomic linear chain (Fig. 5.2):

ω2(k) =
4C
M

1 − cos(ka)
2

=
4C
M

sin2

(
ka

2

)
. (5.8)

The solutions describe plane waves that propagate in the crystal with a phase
velocity c = ω/k and a group velocity vg = dω/dk

vg =

√
4C
M

a

2
cos

( |k|a
2

)
. (5.9)

In the vicinity of the Γ point, i.e. k � π/a the dispersion relation is linear
in k

ω(k) = a

√
C

M
|k| . (5.10)

We are used to such linear relations for sound (and also light) waves. The
phase and group velocity are the same and do not depend on k. Thus, such
solutions are called acoustic. The sound velocity of the medium is given by
cs = a

√
C/M .
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Fig. 5.2. Dispersion relation for a monoatomic linear chain

It is characteristic of the nonhomogeneous medium that, when k ap-
proaches the boundary of the Brillouin zone, the behavior of the wave is
altered. For k = π/a the wavelength is just λ = 2π/k = 2a, and thus samples
the granularity of the medium. The maximum phonon frequency ωm is

ωm =

√
4C
M

. (5.11)

The group velocity is zero at the zone boundary, thus a standing wave is
present.

Since the force constants of the longitudinal and transverse waves can be
different, the dispersion relations are different. The transverse branch of the
dispersion relation is 2-fold degenerate, unless the two directions that are
perpendicular to x are not equivalent.

5.2.2 Diatomic Linear Chain

Now we consider the case that the system is made up from two different kinds
of atoms (Fig. 5.3). This will be a model for semiconductors with a diatomic
base, such as zincblende. We note that the diamond structure also needs to
be modeled in this way, although both atoms in the base are the same.

The lattice will be the same and the lattice constant will be a. Alternating
atoms of sort 1 and 2 with a relative distance of a/2 are on the chain. The
displacements of the two atoms are labeled u1

n and u2
n, both belonging to the

lattice point n. The atoms have the masses M1 and M2. The force constants
are C1 (for the 1–2 bond within the base) and C2 (for the 2–1 bond between
different bases).
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Fig. 5.3. Visualization of acoustic and optical waves in a diatomic linear chain

The total energy of the system is then given as

U =
1
2
C1

∑

n

(
u1

n − u2
n

)2
+

1
2
C2

∑

n

(
u2

n − u1
n+1

)2
. (5.12)

The equations of motion are

M1 ü
1
n = −C1

(
u1

n − u2
n

)− C2

(
u1

n − u2
n−1

)
(5.13a)

M2 ü
2
n = −C1

(
u2

n − u1
n

)− C2

(
u2

n − u1
n+1

)
. (5.13b)

With the plane-wave ansatz u1
n(x, t) = v1 exp (i(kna− ωt)) and u2

n(x, t) =
v2 exp (i(kna− ωt)) and periodic boundary conditions we find

0 = −M1 ω
2 v1 + C1 (v1 − v2) + C2 (v1 − v2 exp(−ika)) (5.14a)

0 = −M2 ω
2 v2 + C1 (v2 − v1) + C2 (v2 − v1 exp(ika)) . (5.14b)

These equations for v1 and v2 can only be solved nontrivially if the determi-
nant vanishes, i.e.

0 =
∣∣
∣∣
M1 ω

2 − (C1 + C2) C1 + e−ika C2

C1 + eika C2 M2 ω
2 − (C1 + C2)

∣∣
∣∣

= M1M2 ω
4 − (M1 +M2)(C1 + C2)ω2 + 2C1C2 (1 − cos(ka)) .(5.15)

Using the substitutions C+ = (C1 +C2)/2, C× =
√
C1C2, the arithmetic and

geometrical averages, and accordingly for M+ and M×, the solution is

ω2(k) =
2C×
γM×

[

1 ±
√

1 − γ2
1 − cos(ka)

2

]

, (5.16)
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Fig. 5.4. Dispersion relation for a diatomic linear chain with acoustic (blue) and
optical (green) branch

with
γ =

C×M×
C+M+

. (5.17)

The dispersion relation, as shown in Fig. 5.4, now has (for each longi-
tudinal and transverse mode) two branches. The lower branch (‘−’ sign in
(5.16)) is related to the acoustic mode; neighboring atoms have similar phase
(Fig. 5.3). For the acoustic mode ω = 0 at the Γ point and the frequency
increases towards the zone boundary. The maximum phonon frequency ωm

is in the upper branch (‘+’ sign in (5.16)) at the zone center

ωm =

√
4C×
γM×

= 2

√
C+M+

M2×
. (5.18)

The upper branch is called the optical mode (since it can interact strongly
with light, see Sect. 9.8) and neighboring atoms have opposite phase. In the
vicinity of the Γ point the dispersion of optical phonons is parabolic with
negative curvature:

ω(k) ∼= ωm

[
1 − 1

2

(γa
4

)2

k2

]
. (5.19)

Thus, four different vibrations exist that are labeled TA, LA, TO, and
LO. Both the TA and TO branches are degenerate.

At the zone boundary (X point) a frequency gap exists. The gap center
is at

ω̄X =
ωm√

2
, (5.20)

and the total width of the gap is
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ΔωX = ωm

√
1 − γ = 2

√
C+M+ − C×M×

M2×
. (5.21)

The group velocity is zero for optical and acoustic phonons at k = π/a
and for optical phonons at the Γ point.

Usually two cases are treated explicitly: (i) atoms with equal mass (M =
M1 = M2) and different force constants or (ii) atoms with unequal mass and
identical force constants C = C1 = C2. For the case C1 = C2 and M1 = M2,
γ = 1 and thus ΔωX = 0. Then the dispersion relation is the same as for the
monoatomic chain, except that the k space has been folded since the actual
lattice constant is now a/2.

M1 = M2

In this case, M+ = M× = M and the dispersion relation is

ω2 =
2C+

M

[

1 ±
√

1 − C2×
C2

+

1 − cos(ka)
2

]

. (5.22)

At the zone boundary the frequencies for the acoustic and the optical
branch are ωX,1 =

√
2C1/M with v1 = v2 and ωX,2 =

√
2C2/M with v1 =

−v2, respectively (assuming C2 > C1). The motion for k = π/a is phase
shifted by 180◦ for adjacent bases. Additionally, for the acoustic branch the
atoms of the base are in phase, while for the optical branch the atoms of the
base are 180◦ out of phase. The vibration looks as if only one of the springs
is strained.

C1 = C2

In this case, C+ = C× = C and the dispersion relation is

ω2 =
2CM+

M2×

[

1 ±
√

1 − M2×
M2

+

1 − cos(ka)
2

]

. (5.23)

At the zone boundary the frequencies for the acoustic and the optical
branch are ωX,1 =

√
2C/M1 with v2 = 0 and ωX,2 =

√
2C/M2 with v1 = 0,

respectively (assuming M2 < M1). In the vibration for k = π/a thus only
one atom species oscillates, the other does not move. Close to the Γ point
the atoms are in phase in the acoustic branch, i.e. v1 = v2. For the optical
branch, the frequency at the Γ point is given by ω =

√
2C/Mr (with the

reduced mass M−1
r = M−1

1 +M−1
2 = 2M+/M

2
×) and the amplitude ratio is

given by the mass ratio: v2 = −(M1/M2)v1, i.e. the heavier atom has the
smaller amplitude.
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5.2.3 Lattice Vibrations of a Three-Dimensional Crystal

When calculations are executed for a three-dimensional crystal with a mono-
atomic base, there are 3N equations of motion. These are transformed to
normal coordinates and represent 3 acoustic branches (1 LA phonon mode
and 2 TA phonon modes) of the dispersion relation. In a crystal with a base
with p atoms, there are also 3 acoustic branches and 3(p−1) optical branches.
For a diatomic base (as in the zincblende structure) there are 3 optical phonon
branches (1 LO phonon mode and 2 TO phonon modes). The total number of
modes is 3p. The dispersion ω(k) now has to be calculated for all directions
of k.

In Figs. 5.5 and 5.6, the phonon dispersion in silicon and GaAs is shown
along particular lines in the Brillouin zone (cf. Fig. 3.32b). The main differ-
ences are: (i) the degeneracy of the acoustic and optical branch at the X point
for the group-IV semiconductor is lifted for the III–V semiconductor due to
the different mass of the constituents, (ii) the degeneracy of the LO and TO
energies at the Γ point for the group-IV semiconductor is lifted for the III–V
semiconductor due to the ionic character of the bond and the macroscopic
electric field connected with the long-wavelength LO phonon (see Sect. 5.2.8).

We note that the degeneracy of the TA phonon is lifted for propagation
along the 〈110〉 directions (Σ) because the two transverse directions 〈001〉
and 〈11̄0〉 are not equivalent.

In boron nitride the masses of the two constituents are so similar that
no gap exists between acoustical and optical branches (Fig. 5.7). Also the

Fig. 5.5. Phonon dispersion in Si, experimental data and theory (solid lines: bond
charge model, dashed lines: valence force field model). Adapted from [192]
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Fig. 5.6. Phonon dispersion in GaAs, experimental data and theory (solid lines,
14-parameter shell model). ‘L’ and ‘T’ refer to longitudinal and transverse modes,
respectively. ‘I’ and ‘II’ (along [ζ, ζ, 0]) are modes whose polarization is in the
(1, 1̄, 0) plane. Adapted from [256]

Fig. 5.7. Phonon dispersion in BN (left panel), experimental data (symbols) and
theory (solid lines, first principles pseudopotential model). In the right panel the
density of states is depicted. Adapted from [257]

density of states (averaged over the entire Brillouin zone) is depicted (see
next Sect.).

The displacement of atoms is shown in Fig. 5.8 for the different phonon
modes present in wurtzite crystals.

The dependence of the phonon frequency on the mass of the atoms
(∝ 1/

√
M) can be demonstrated with the isotope effect, visualized for GaAs

in Fig. 5.9. The dependence of the phonon frequencies on the stiffness of the
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Fig. 5.8. Displacement of atoms for various phonon modes in wurtzite crystals.
Adapted from [258]

Fig. 5.9. (a) Raman spectra of GaAs with different isotope content as labeled. (b)
Energy of optical phonons in GaAs with different isotope content [using the Raman
spectra shown in (a)]. Reprinted with permission from [259], c©1999 APS

spring can be seen from Fig. 5.10; the smaller lattice constant provides the
stiffer spring.

5.2.4 Density of States

The density of states (DOS) tells how many of the total 3pN modes are in a
given energy interval. The states are spaced equally in k-space but not on the
energy scale (see also Sect. 6.11). As a simple example, the number of states
N(E′) from E = 0 up to E = E′ for the dispersion of the one-dimensional
acoustic phonons (5.8) is given as

N(E′) = k′
N

π/a
=
L

π
k′ , (5.24)
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Fig. 5.10. Optical phonon frequencies (TO: filled squares, LO: empty squares) for
a number of III–V compounds with different lattice constant a0. 1 meV corresponds
to 8.065 wave numbers (or cm−1). Adapted from [260]

with the wave-vector k′ fulfilling E′ = �ω(k′). Using (5.8), we find for one
polarization (Em = �ωm)

N(E) =
2N
π

arcsin
(
E

Em

)
. (5.25)

The DOS D(E) is given by

D(E) =
dN(E)

dE
=

2N
πEm

1
√

1 − (E/Em)2
. (5.26)

Often the density of states is scaled by the (irrelevant) system size and
given per atom (D/N) or per volume (D/L3) (per length (D/L) in a one-
dimensional system).

In a three-dimensional solid, (5.24) is modified to (for three degenerate
polarizations)

N(E′) =
4π
3

3
(2π/L)3

k′3 , (5.27)

taking into account all states within a sphere in k-space of radius k′. Assuming
a linear dispersion ω = vs k, we obtain

N(E) =
V

2π2

E3

�3 v3
s

. (5.28)

This is also the base for Debye’s law for the temperature dependence of the
heat capacity.



114 5 Mechanical Properties

5.2.5 Phonons

Phonons are the quantized quasi-particles of the lattice vibrations (normal
modes). The energy of a phonon can take the discrete values of a harmonic
oscillator

Eph =
(
n+

1
2

)
�ω , (5.29)

where n denotes the quantum number of the state, which corresponds to the
number of energy quanta �ω in the vibration. The amplitude of the vibration
can be connected to n via the following discussion. For the classical oscillation
u = u0 exp i(kx−ωt) the space and time average for the kinetic energy yields

Ekin =
1
2
ρV

(
∂u

∂t

)2

=
1
8
ρV ω2 u2

0 , (5.30)

where ρ is the density and V the volume of the (homogeneous) solid. The
energy of the oscillation is split in half between kinetic and potential energy.
From 2Ekin = Eph we find

u2
0 =

(
n+

1
2

)
4�

ρV ω
. (5.31)

The number of phonons with which a vibrational mode is populated is thus
directly related to the classical amplitude square.

Phonons act with a momentum �k, the so-called crystal momentum.
When phonons are created, destroyed or scattered the crystal momentum
is conserved, except for an arbitrary reciprocal-space vector G. Scattering
with G = 0 is called a normal process, otherwise (for G �= 0) it is called an
umklapp process.

5.2.6 Localized Vibrational Modes

A defect in the crystal can induce localized vibrational modes (LVM). The
defect can be a mass defect, i.e. one of the masses M is replaced by Md,
or the force constants in the neighborhood are modified to Cd. A detailed
treatment can be found in [261]. LVM are discussed, e.g., in [262–264].

First we consider the LVM for the one-dimensional, monoatomic chain. If
the mass at lattice point i = 0 is replaced by Md = M+ΔM (εM = ΔM/M),
the displacements are given by ui = AK |i|, A being an amplitude, with

K = −1 + εM
1 − εM

, (5.32)

and the defect phonon frequency ωd is

ωd = ωm

√
1

1 − ε2M
. (5.33)
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A real frequency is obtained for |εM| < 1. ωd is then higher than the
highest frequency of the bulk modes ωm =

√
4C/M (5.11). For εM < 0,

i.e. the mass of the defect is smaller than the mass of the host atoms, K is
negative and |K| < 1. Thus, the displacement can be written as

ui ∝ (−|K|)|i| = (−1)|i| exp (+ |i| log |K|) . (5.34)

The numerical value of the exponent is negative, thus the amplitude de-
creases exponentially from the defect and indeed makes a localized vibrational
mode. For small mass Md �M (5.33) yields approximately ωd =

√
2C/Md.

This approximation is the so-called one-oscillator model. Since typically the
extension of the localized mode is only a few lattice constants, the picture of
LVM remains correct for impurity concentrations up to ∼ 1018–1020 cm−3.
For higher concentrations the concept of alloy modes has to be invoked (cf.
Sect. 5.2.7).

For the case of group-III or -V substitutional impurities in group-IV semi-
conductors the change in force constants (treated below) can be neglected to
some extent. For silicon (M = 28) and germanium (M = 73) the effect of
various substitutions is shown in Fig. 5.11.

Now, additionally the force constants left and right of the defect are re-
placed by Cd = C +ΔC (εC = ΔC/C). The displacements are still given by
ui = AK |i|, now with

K = − (1 + εM) (1 + εC)
1 − εM − 2εC

. (5.35)

An exponential decrease of the LVM amplitude occurs for negative K
that is ensured for εM + 2εC < 0 (and εM > −1 and εC > −1). The defect

Fig. 5.11. Energy of local vibrational modes in Si and Ge. Experimental values
at T = 300 K (B in Ge: T = 80 K) taken from [261] and references therein and
from [265] (C in Ge). The dashed lines are the mass dependence according to (5.33)
scaled to the experimental frequency of the 10B LVM
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frequency is given by

ωd = ωm

√
(1 + εC) (2 + εC (3 + εM))
2(1 + εM) (2εC + 1 − εM)

. (5.36)

We note that for εC = 0 (5.32) and (5.33) are recovered.
For a given mass defect, the change of frequency with ΔC is (in linear

order, i.e. for εC � 1)

∂ωd(εM, εC)
∂εC

=
1 − 4 εM − ε2M

4(1 − εM)
√

1 − ε2M
εC . (5.37)

The linear coefficient diverges for εM → −1. For εM between −0.968 and
0 the linear coefficient varies between 2 and 1/4. Therefore, a larger force
constant (εC > 0) increases the LVM frequency of the defect, as expected for
a stiffer spring.

In a binary compound the situation is more complicated. We assume here
that the force constants remain the same and only the mass of the substitution
atom Md is different from the host. The host has the atom masses M1 and
M2 with M1 < M2. Substitution of the heavy atom with a lighter one creates
a LVM above the optical branch for Md < M2. Additionally, a level in the
gap between the optical and acoustic branch is induced. Such LVM is called
a gap mode. Substitution of the lighter atom of the binary compound induces
a LVM above the optical branch for Md < M1. A gap mode is induced for
Md > M1. The situation for GaP is depicted in Fig. 5.12. LVM in GaAs have
been reviewed in [262].

The energy position of a local vibrational mode is sensitive to the isotope
mass of the surrounding atoms. In Fig. 5.13, a high-resolution (0.03 cm−1)
spectrum of the 12CAs LVM in GaAs is shown together with a theoretical
simulation. The various theoretical peak positions are given as vertical bars,
their height indicating the oscillator strength. Five experimental peaks are
obvious that are due to a total of nine different transitions. The C atom can
experience five different surroundings (see Table 3.7) with the four neighbors
being 69Ga or 71Ga. The natural isotope mix is an ‘alloy’ 69Gax

71Ga1−xAs
with x = 0.605. The configurations with Td symmetry contribute one peak
each, the lowest (71Ga surrounding) and highest (69Ga surrounding) energy
transitions. The configurations with C3v and C2v symmetry contribute each
with 2 and 3 nondegenerate modes, respectively.

The vibrations of impurity complexes have been discussed in [267].

5.2.7 Phonons in Alloys

In an alloy of the type AB1−xCx the phonon frequencies will depend on the
ternary composition. For the binary end materials AB and AC clearly TO
and LO frequencies exist. The simplest behavior of the alloy is the one-mode
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Fig. 5.12. (a) Numerical simulation of a linear chain model for GaP (M1 = 31,
M2 = 70). Energy of local vibrational modes (dashed (solid) line): substitution
on P (Ga) site) in units of the optical phonon frequency at Γ (ωm = 45.4 meV).
The grey areas indicate the acoustic and optical phonon bands. Solid squares are
experimental data (from [261]), scaled to the theoretical curve for the 27AlGa LVM
frequency. (b) Differential transmission spectrum of GaP structure (nitrogen-doped
layer on zinc-doped compensated substrate) against pure crystal (T = 77 K). Data
from [266]
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Fig. 5.13. Experimental (Exp., T = 4.2 K, resolution 0.03 cm−1) and theoretical
(Th., artificial Lorentzian broadening) infrared spectra of LVM of 12CAs in GaAs.
The positions and oscillator strengths of the theoretical transitions involving dif-
ferent configurations with 69Ga and 71Ga isotopes are shown as vertical bars. Data
from [262]
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Fig. 5.14. Schematic behavior of phonon modes in an alloy. (a) Two-mode behavior
with gap mode and localized mode, (b,c) mixed-mode behavior, (b) only localized
mode allowed, (c) only gap mode allowed, (d) one-mode behavior with neither
localized mode nor gap mode allowed

behavior (Fig. 5.14d) where the mode frequencies vary continuously (and
approximately linearly) with the composition. The oscillator strength (LO–
TO splitting, (9.64)) remains approximately constant. In many cases, the
two-mode behavior is observed where the LO–TO gap closes (accompanied
by decreasing oscillator strength) and a localized vibrational mode and a gap
mode occur for the binary end materials (Fig. 5.14a). Also, a mixed-mode
behavior (Fig. 5.14b,c) can occur.

The masses of the three constituent atoms will be MA, MB, and MC.
Without limiting the generality of our treatment, we assume MB < MC.
From the considerations in Sect. 5.2.6 on LVM and gap modes, the condition

MB < MA,MC (5.38)

for two-mode behavior can be deduced. This ensures a LVM of atom B in the
compound AC and a gap mode of atom C in the compound AB. However, it
turns out that this condition is not sufficient, e.g. Na1−xKxCl fulfills (5.38)
but exhibits one-mode behavior. From a modified REI1 model (for k ∼ 0
modes) it has been deduced that

MB < μAC =
MAMC

MA +MC
< MA,MC (5.39)

is a necessary and sufficient condition (unless the force constants between
A–B and A–C are significantly different) for two-mode behavior [268]. A de-
tailed discussion is given in [269]. Equation (5.39) is a stronger condition

1random element isodisplacement
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Table 5.1. Atomic masses of the constituents of various ternary compounds, re-
duced mass μAC (5.39), fulfillment of the relation from (5.39) (‘+’: fulfilled, ‘−’:
not fulfilled) and experimental mode behavior (‘2’: two-mode, ‘1’: one-mode)

alloy A B C MA MB MC μAC rel. modes

GaP1−xAsx Ga P As 69.7 31.0 74.9 36.1 + 2

GaAs1−xSbx Ga As Sb 69.7 74.9 121.8 44.3 − 1

CdS1−xSex Cd S Se 112.4 32.1 79.0 46.4 + 2

CdxZn1−xS S Zn Cd 32.1 65.4 112.4 25.0 − 1

MgxZn1−xO O Mg Zn 16.0 24.3 65.4 12.9 − 1
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Fig. 5.15. Phonon energies of CdxZn1−xS and CdS1−xSex as a function of the
ternary composition. Experimental data (solid circles) are from [268], dashed lines
are guides to the eye

than the previous one (5.38). If (5.39) is not fulfilled the compound ex-
hibits one-mode behavior. As an example, we show the mass relations for
CdS1−xSex and CdxZn1−xS in Table 5.1 and the experimental phonon ener-
gies in Fig. 5.15. Also in Table 5.1 the masses for GaP1−xAsx (GaAs1−xSbx)
exhibiting two- (one-) mode behavior are shown.

5.2.8 Electric Field Created by Optical Phonons

Adjacent atoms oscillate with opposite phase in an optical phonon. If the
bond has (partial) ionic character, this leads to a time-dependent polariza-
tion and subsequently to a macroscopic electric field. This additional field
will influence the phonon frequencies obtained from a purely mechanical ap-
proach. We consider in the following the case k ≈ 0. The phonon frequency
for TO and LO vibrations is given by
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ω0 =
√

2C
Mr

, (5.40)

where Mr is the reduced mass of the two different atoms (cf. Sect. 5.2.2).
u is the relative displacement u1 − u2 of the two atoms in a diatomic base.
When the interaction with the electric field E (which will be calculated self-
consistently in the following) is considered, the Hamiltonian for the long-
wavelength limit is given by [270]:

Ĥ(p,u) =
1
2

(
1
Mr

p2 + b11 u2 + 2b12 u · E + b22 E2

)
. (5.41)

The first term is the kinetic energy (p stands for the momentum of the
relative motion of the atoms 1 and 2 in the base, p = Mru̇), the second the po-
tential energy, the third the dipole interaction and the fourth the electric-field
energy. The equation of motion for a plane wave u = u0 exp [−i(ωt− k · r)]
(ü = −ω2u) yields

Mr ω
2 u = b11 u + b12 E . (5.42)

Thus, the electric field is

E = (ω2 − ω2
TO)

Mr

b12
u . (5.43)

Here, the substitution ω2
TO = b11/Mr was introduced that is consistent

with (5.40) and b11 = 2C. ωTO represents the mechanical oscillation fre-
quency of the atoms undisturbed by any electromagnetic effects. Already now
the important point is visible. If ω approaches ωTO, the system plus electric
field oscillates with the frequency it has without an electric field. Therefore
the electric field must be zero. Since the polarization P = (ε−1)ε0E is finite,
the dielectric constant ε thus diverges.

The polarization is

P = −∇EĤ = − (b12 u + b22 E) . (5.44)

The displacement field is

D = ε0 E + P = ε0 E −
(
b22 − b212/Mr

ω2
TO − ω2

)
E = ε0 ε(ω)E . (5.45)

Therefore, the dielectric function is

ε(ω) = ε(∞) +
ε(0) − ε(∞)

1 − (ω/ωTO)2
. (5.46)

Here, ε(∞) = 1 − b22/ε0 is the high-frequency dielectric constant and
ε(0) = ε(∞) + b212/(b11ε0) the static dielectric constant. The relation (5.46)
is shown in Fig. 5.16.
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Fig. 5.16. Dielectric function according to (5.46) with ε(0) = 3 and ε(∞) = 2
(without damping). Grey area denotes the region of negative ε

From the Maxwell equation ∇ · D = 0 for zero free charge we obtain the
relation

ε0 ε(ω)∇ · E = 0 . (5.47)

Thus, either ε(ω) = 0 or ∇ · E = 0, i.e. u is perpendicular to k. In the
latter case we have a TO phonon and, neglecting retardation effects, using
∇×E = 0 we find E = 0 and therefore ω = ωTO, justifying our notation. In
the case of ε(ω) = 0, we call the related frequency ωLO and find the so-called
Lyddane–Sachs–Teller (LST) relation

ω2
LO

ω2
TO

=
ε(0)
ε(∞)

. (5.48)

This relation holds reasonably well for optically isotropic, heteropolar
materials with two atoms in the basis, such as NaI and also GaAs. Since at
high frequencies, i.e. ω  ωTO, only the individual atoms can be polarized,
while for low frequencies the atoms can also be polarized against each other,
ε(0) > ε(∞) and therefore also ωLO > ωTO. For GaAs, the quotient of the
two phonon energies is 1.07. Using the LST relation (5.48), we can write for
the dielectric function

ε(ω) = ε(∞)
(
ω2

LO − ω2

ω2
TO − ω2

)
. (5.49)

The (long-wavelength) TO-phonon does not create a long-range electric
field. Using ∇ · D = 0 and (5.45) and looking at the longitudinal fields, we
have
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ε0 E = b12 u + b22 E . (5.50)

This can be rewritten as

E = −ωLO

√
Mr

ε0

√
1

ε(∞)
− 1
ε(0)

u ∝ −u . (5.51)

The (long-wavelength) LO-phonon thus creates a long-range electric field
acting against the ion displacement and represents an additional restoring
force. This effect is also consistent with the fact that ωLO > ωTO.

5.3 Elasticity

The elastic properties of the semiconductor are important if the semicon-
ductor is subjected to external forces (pressure, temperature) or to lattice
mismatch during heteroepitaxy.

5.3.1 Thermal Expansion

The lattice constant depends on temperature. The (linear) thermal expansion
coefficient is defined as

α(T0) =
∂a0(T )
∂T

∣∣
∣∣
T=T0

(5.52)

and is temperature dependent. The temperature dependence of α for silicon
and germanium is shown in Fig. 5.17. α is approximately proportional to
the heat capacity (CV) except at low temperatures. The negative values are
due to negative Grüneisen parameters [271]. These anharmonicity effects are
discussed in detail in [255].

5.3.2 Stress–Strain Relation

In this section, we recall the classical theory of elasticity [272]. The solid is
treated as a continuous medium (piecewise homogeneous) and the displace-
ment vector is thus a continuous function u(r) of the spatial coordinates.
When the spatial variation ∇u of u is small, the elastic energy can be writ-
ten as

U =
1
2

∫
∂ul

∂xk
Cklmn

∂un

∂xm
d3r , (5.53)

where Cklmn is the (macroscopic) tensor of the elastic coefficients. 21 com-
ponents of this tensor can be independent. For crystals with cubic symmetry
the number of independent constants is reduced to 3. An exchange k ↔ l and
m ↔ n does not matter, only six indices have to be considered (xx, yy, zz,
yz, xz, and xy). The strain components εij are symmetrized according to
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Fig. 5.17. Linear thermal expansion coefficient of silicon (solid circles) and germa-
nium (open circles). Adapted from [271] based on experimental data from various
sources. Dashed lines are guide to the eyes

εij =
1
2

(
∂uj

∂xi
+
∂ui

∂xj

)
. (5.54)

The strains εxx are along the main axes of the crystal as visualized in
Fig. 5.18.

The stresses2 σkl are then given by

σkl = Cklmn εmn . (5.55)

The inverse relation is mediated by the stiffness tensor S.

εkl = Sklmn σmn . (5.56)

Typically, the strain components eij or ei are used with the convention
xx→ 1, yy → 2, zz → 3, yz → 4, xz → 5, and xy → 6:

eij = εij (2 − δij) . (5.57)

(b) (c) (d)(a)

Fig. 5.18. Deformation of a square (a). (b) Pure hydrostatic deformation (εxx =
εyy = 0.2, εxy = 0), (c) pure shear deformation (εxx = εyy = 0, εxy = 0.2), and (d)
mixed deformation (εxx = εyy = 0.1, εxy = 0.1)
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Then, σm = Cmnen with the Cij being the elastic constants, i.e. C11 =
C1111, C12 = C1122 and C44 = C1212. The x, y, and z directions are the main
axes of the cubic solid, i.e. the 〈100〉 directions. Then, we have explicitly

⎛

⎜⎜
⎜⎜⎜⎜
⎝

σ1

σ2

σ3

σ4

σ5

σ6

⎞

⎟⎟
⎟⎟⎟⎟
⎠

=

⎛

⎜⎜
⎜⎜⎜⎜
⎝

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎞

⎟⎟
⎟⎟⎟⎟
⎠

⎛

⎜⎜
⎜⎜⎜⎜
⎝

e1
e2
e3
e4
e5
e6

⎞

⎟⎟
⎟⎟⎟⎟
⎠

. (5.58)

Values for some semiconductors are given in Table. 5.2. The inverse relation
is given by the matrix

⎛

⎜⎜⎜
⎜⎜⎜
⎝

S11 S12 S12 0 0 0
S12 S11 S12 0 0 0
S12 S12 S11 0 0 0
0 0 0 S44 0 0
0 0 0 0 S44 0
0 0 0 0 0 S44

⎞

⎟⎟⎟
⎟⎟⎟
⎠

, (5.59)

with the stiffness coefficients in this notation given by

S11 =
C11 + C12

(C11 − C12) (C11 + 2C12)
(5.60a)

S12 =
C12

−C2
11 − C11C12 + 2C2

12

(5.60b)

S44 =
1
C44

. (5.60c)

Table 5.2. Elastic constants of some cubic semiconductors at room temperature.
ξ refers to (5.62) and is a measure for the isotropy, IK refers to the Keating crite-
rion (5.63). For MgO, the Keating criterion is not fulfilled because it has (six-fold
coordinated) rocksalt structure and is thus not tetrahedrally bonded

Material C11 (1010 Pa) C12 (1010 Pa) 2C44 (1010 Pa) ξ IK

C 107.64 12.52 57.74 −1.3 1.005

Si 16.58 6.39 7.96 −0.56 1.004

Ge 12.85 4.83 6.68 −0.40 1.08

BN 82.0 19.0 48.0 −0.63 1.11

GaAs 11.9 5.34 5.96 −0.20 1.12

InAs 8.33 4.53 3.96 0.08 1.22

AlAs 12.05 4.686 5.94 −0.48 1.03

ZnS 10.46 6.53 4.63 0.30 1.33

MgO 29.7 15.6 9.53 −0.96 0.80

2The stress is a force per unit area and has the dimensions of a pressure.
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We emphasize that in this convention (also called the engineering con-
vention), e.g. e1 = εxx and e4 = 2εyz. There is also another convention (the
physical convention) without this factor of two; in this case the matrix in
(5.58) contains the elements 2C44. Introducing

C0 = 2C44 + C12 − C11 , (5.61)

we note that for an isotropic material the isotropy parameter ξ is zero

ξ =
C0

C44
= 0 . (5.62)

This isotropy condition is not obeyed by real semiconductors as shown in
Table 5.2. Another relation, known as the Keating criterion [273, 274]

IK =
2C44 (C11 + C12)

(C11 − C12) (C11 + 3C12)
= 1 (5.63)

stems from the consideration of bending and stretching of the tetrahedral
bonds in the valence force field (VFF) model. It is closely fulfilled (Table 5.2),
in particular for the covalent semiconductors.

If C0 �= 0, the Young’s modulus (σnn = Y (n)εnn) is nonspherical (see
Fig. 5.19a for GaAs). Typically, the 〈100〉 directions are the softest. In terms
of the Euler angles (Fig. A.1) the angular dependence of the stiffness constant
S11 is (Fig. 5.19b,c)

S11(φ, θ)
S0

11

=
C11 − C12

C0 + C11 − C12
+

C0(21C11 + 10C12)
32(C0 + C11 − C12)(C11 + C12)

(5.64)

+
C0(C11 + 2C12)

32(C0 + C11 − C12)(C11 + C12)
×(4 cos 2θ + 7 cos 4θ + 8 cos 4φ sin4 θ) ,

where S0
11 is the stiffness along the 〈100〉 directions as given in (5.60a). We

note that the Young’s modulus Y (Y of (5.65a) is equivalent to 1/S11 of
(5.60a)) and the Poisson ratio ν used for isotropic materials3 are related to
the constants of cubic material by

Y = C11 − 2C2
12

C11 + C12
(5.65a)

ν =
C12

C11 + C12
. (5.65b)

3We note that Y , ν and Cij of typical materials are both positive. Materials with
negative Poisson ratio are called auxetic [275, 277]. Also materials with negative
compressibility are possible [278].
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(a)

[100]

[001]

[010]

(b) (c)

Fig. 5.19. The directional dependence of the inverse of the Young’s modulus
(1/Y (n)) for uniaxial stress (along the direction n) in GaAs. (a) 3D view, arbi-
trary units, (b) dependence on polar angle θ in the (01–1) plane (for φ = π/4,
normalized to S11), (c) dependence on polar angle θ in the (010) plane (for φ = 0,
normalized to S11)

For isotropic materials Lamé’s constants λ and μ are also used. They are
given by C11 = λ+ 2μ, C12 = λ and C44 = μ.

Beyond the dependence of the elastic constants on the bond length (as
materialized in the phonon frequencies in Fig. 5.10), they depend on the ion-
icity. In Fig. 5.20, the elastic constants of various zincblende semiconductors
are shown as a function of the ionicity fi. The values for the elastic constants
are normalized by e2/a4, a being the average nearest-neighbor distance.

For wurtzite crystals, five elastic constant are necessary for the stress–
strain relation that reads

Cij =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 1

2 (C11 − C12)

⎞

⎟⎟⎟⎟⎟
⎟
⎠

. (5.66)
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Fig. 5.20. Elastic constants as a function of ionicity for various semiconductors
with diamond or zincblende (circles) and wurtzite (squares) structure. Constants
are normalized by the modulus C0 = e2/d4, d being the average nearest-neighbor
distance. (a) Bulk modulus, B∗ = (C11 + 2C12)/(3C0), (b, c) shear moduli, (b)
C∗

S = (C11−C12)/C0, (c) C∗
44 = C44/C0. Solid lines are a simple model as discussed

in [281]. Adapted from [279]

Table 5.3. Elastic constants of some wurtzite semiconductors. All values in units
of 1010 Pa.

Material C11 C12 C13 C33 C44 Ref.

GaN 39.1 14.3 10.8 39.9 10.3 [284]

AlN 41.0 14.9 9.9 38.9 12.5 [285]

ZnS 12.4 6.02 4.55 14.0 2.86 [286]

ZnO 20.6 11.8 11.8 21.1 4.4 [287]

Experimental values for wurtzite materials are given in Table 5.3. The relation
of the elastic tensor of wurtzite and zincblende materials, in particular viewed
along the 〈111〉-direction has been discussed in [279, 280].

5.3.3 Biaxial Strain

In heteroepitaxy (cf. Sect. 11.2.5), a biaxial strain situation arises, i.e. layered
material is compressed (or expanded in the case of tensile strain) in the
interface plane and is expanded (compressed) in the perpendicular direction.
Here, we assume that the substrate is infinitely thick, i.e. that the interface
remains planar. Substrate bending is discussed in Sect. 5.3.5.

The simplest case is epitaxy on the (001) surface, i.e. e1 = e2 = ε‖.
The component e3 is found from the condition σ3 = 0 (no forces in the z
direction). All shear strains are zero. For zincblende material it follows
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ε100⊥ = e3 = −C12

C11
(e1 + e2) = −2C12

C11
ε‖ . (5.67)

For other crystallographic directions the formula is more involved [282]:

ε110⊥ = −2C12 − C0/2
C11 + C0/2

ε‖ (5.68)

ε111⊥ = −2C12 − 2C0/3
C11 + 2C0/3

ε‖ . (5.69)

In Fig. 5.21 the strain around misfit dislocations at a GaAs/CdTe het-
erointerface, as calculated from a TEM image (Fig. 4.13), is shown.

For wurtzite crystals and pseudomorphic growth along [00.1] the strain
along the c-axis is given by

ε0001⊥ = −C13

C33
(e1 + e2) = −2C13

C33
ε‖ , (5.70)

where ε⊥ = (c− c0)/c0 and ε‖ = (a− a0)/a0.

5.3.4 Three-Dimensional Strain

The strain distribution in two-dimensional or three-dimensional objects such
as quantum wires and dots (see also Sect. 13) is more complicated.

A simple analytical solution for the problem of a strained inclusion is only
possible for isotropic material parameters [283].

Fig. 5.21. Components

(
εxx εxz

εzx εzz

)
of the strain tensor (with respect to the

GaAs lattice constant) of the dislocation array shown in Fig. 4.13, red/blue: posi-
tive/negative value, white: zero. From [217]
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The solution for a sphere can be extended to yield the strain distribu-
tion of an inclusion of arbitrary shape. This scheme applies only for isotropic
materials and identical elastic properties of the inclusion and the surround-
ing matrix. The solution will be given in terms of a surface integral of the
boundary of the inclusion, which is fairly easy to handle. Several disconnected
inclusions can be treated by a sequence of surface integrals.

The strain distribution for the inner and outer parts of a sphere with
radius ρ0 is given (in spherical coordinates) by

εinρρ =
2
3
ε0

1 − 2ν
1 − ν

= εinθθ = εinφφ (5.71)

εout
ρρ =

2
3
ε0

1 + ν

1 − ν

(
ρ0

ρ

)3

= −2εout
θθ = −2εout

φφ , (5.72)

where ρ denotes the radius, ν the Poisson ratio, and ε0 the relative lattice
mismatch of the inclusion and the matrix. The radial displacements are

uin
ρ =

2
3
ε0

1 − 2ν
1 − ν

ρ (5.73)

uout
ρ =

2
3
ε0

1 − 2ν
1 − ν

ρ3
0

1
ρ2

. (5.74)

Dividing the displacement by the sphere’s volume, we obtain the displace-
ment per unit volume of the inclusion. From the displacement we can derive
the stress σ0

ij per unit volume.

σ0
ii =

1
4π

Y ε0
1 − ν

2x2
i − xj − xk

ρ5
(5.75)

σ0
ij =

3
2

1
4π

Y ε0
1 − ν

xixj

ρ5
, (5.76)

where i, j and k are pairwise unequal indices. Due to the linear superposition
of stresses, the stress distribution σV

ij for the arbitrary inclusion of volume V
can be obtained by integrating over V

σV
ij =

∫

V

σ0
ij (r − r0) d3r . (5.77)

The strains can be calculated from the stresses.
When ε0 is constant within V , the volume integral can be readily trans-

formed into an integral over the surface ∂V of V using Gauss’ theorem. With
the ‘vector potentials’ Aij we fulfill divAij = σij .

Aii = − 1
4π

Y ε0
1 − ν

xiei

ρ3
(5.78)

Aij = −1
2

1
4π

Y ε0
1 − ν

xiej + xjei

ρ3
. (5.79)
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Equation (5.79) is valid for the case i �= j. ei is the unit vector in the i-th
direction. However, special care must be taken at the singularity r = r0 if
r0 lies within V because the stress within the ‘δ-inclusion’ is not singular (in
contrast to the electrostatic analog of a δ-charge). Thus, we find

σV
ij(r0) =

∮

∂V

Aij dS + δij
Y ε0
1 − ν

∫

V

δ(r − r0) d3r . (5.80)

As an example, we show in Fig. 5.22 the numerically calculated strain
components [288] (taking into account the different elastic properties of the
dot and matrix materials) in the cross section of a pyramidal InAs quantum
dot in a GaAs matrix on top of a two-dimensional InAs layer. The strain
component εzz is positive in the 2D layer, as expected from (5.67). However,
in the pyramid εzz exhibits a complicated dependence and even takes negative
values at the apex.

5.3.5 Substrate Bending

If a lattice-mismatched layer is pseudomorphically grown on top of a substrate
it suffers biaxial strain. For finite substrate thickness part of the strain will
relax via substrate bending. If the substrate is circular, a spherical cap is
formed. If the lattice constant of the film is larger (smaller) than that of the
substrate, the film is under compressive (tensile) strain and the curvature is
convex (concave) with respect to the outward normal given by the growth
direction (Fig. 5.23a). Substrate bending can also be induced by a mismatch
of the thermal expansion coefficients αf

th and αs
th of the film and substrate,

Fig. 5.22. Strain components in an InAs pyramid (quantum dot with {101} faces),
embedded in GaAs. The cross section is through the center of the pyramid. The
lattice mismatch between InAs and GaAs amounts to ≈ −7%. Reprinted with
permission from [288], c©1995 APS
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(a)

tensilecompressive

(b)

ai

au

R

d

Fig. 5.23. (a) Schematic bending of a film/substrate system for compressive (left)
and tensile (right) film strain. (b) Schematic deformation of curved film of thickness
d. The lattice constants at the inner and outer surface are ai and au, respectively.

respectively. If a film/substrate system is flat at a given temperature, e.g.
growth temperature, a decrease of temperature, e.g. during cooling, will lead
to compressive (tensile) strain if αf

th is smaller (larger) than αs
th.

In a curved structure, the lattice constant in the tangential direction in-
creases from at

i at the inner surface (r = R = κ−1) to at
u at the outer surface

(r = R + d). Thus, the tangential lattice constant varies with the radial
position

at(r) = at
i (1 + r κ) , (5.81)

where d is the layer thickness (Fig. 5.23b). Therefore au = ai(1 + d/R). We
note that (5.81) holds in all layers of a heterostructure, i.e. the film and the
substrate.

The lattice constant in the radial direction ar, however, depends on the
lattice constant a0 of the local material and is calculated from the biaxial
strain condition, such as (5.67). The in-plane strain is ε‖ = (at − a0)/a0 (we
assume a spherical cap with ε‖ = εθθ = εφφ). For an isotropic material we
find ar = a0 (1+ε⊥) with ε⊥ = −2νε‖/(1−ν). The local strain energy density
U is given by

U =
Y

1 − ν
ε2‖ . (5.82)

The total strain energy per unit area U ′ of a system of two layers with
lattice constants a1, a2, Young’s moduli Y1, Y2 and thickness d1, d2 (we
assume the same Poisson constant ν in both layers) is

U ′ =
∫ d1

0

U1 dr +
∫ d2

d1

U2 dr . (5.83)

The total strain energy needs to be minimized with respect to ai and R
in order to find the equilibrium curvature κ. We find

κ =
6a1a2(a2 − a1)d1d2(d1 + d2)Y1Y2

a3
2d

4
1Y

2
1 + αY1Y2 + a3

1d
4
2Y

4
2

(5.84)

α = a1a2d1d2

[−a2d1(2d1 + 3d2) + a1(6d2
1 + 9d1d2 + 4d2

2)
]
.
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For a2 = a1 (1 + ε) we develop κ to first order of ε and find (χ =
Y2/Y1) [289, 290]

κ =
6χd1d2(d1 + d2)

d4
1 + 4χd3

1d2 + 6χd2
1d

2
2 + 4χd1d3

2 + χ2d4
2

ε . (5.85)

In the case of a substrate (ds) with a thin epitaxial layer (df � ds), the
radius of curvature is approximately (Stoney’s formula [290])

κ = 6 ε
df

d2
s

Yf

Ys
. (5.86)

Conversely, if the radius of curvature is measured [292], e.g. optically, the
film strain can be determined during epitaxy.

5.3.6 Scrolling

In some cases cylindrically scrolled structures are important, e.g. for thin-film
flexible electronics, nanotubes and nanoscrolls. The scrolling of thin layers
must be avoided by suitable strain management for thin layers that are lifted
off from their substrate for transfer to somewhere else. If the film remains
attached to its substrate, a scroll can be fabricated as schematically shown
in Fig. 5.24. Such structures were first reported in [293]. The shape of such
scroll is investigated in [294] without a priori assumptions on its shape.

If bending strain occurs only in one of the tangential directions, the energy
density is given by

U =
Y

2(1 − ν2)
(ε2t + ε2y + 2ν εt εy) , (5.87)

where εy is the strain in the unbent direction (cylinder axis) as shown in
Fig. 5.25a. For a strained heterostructure made up from two layers the cur-
vature is given by (calculated analogous to (5.85), χ = Y2/Y1 [290])

(a) (b) (c)

Fig. 5.24. Schematic representation of nanoscroll formation. (a) Strained hetero-
structure (blue/green) that is planar due to large substrate thickness, (b) starting
removal of sacrificial layer (black), (c) release of thin film into nanoscroll geometry
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(a)

y

Fig. 5.25. (a) Schematic representation of a cylindrically rolled sheet with radial
direction r, tangential direction t and direction along the cylinder axis y. (b) SEM
images of multiwall InGaAs/GaAs nanoscroll rolled up over about 50 μm. Part (b)
from [297]

κ =
6(1 + ν)χd1d2(d1 + d2)

d4
1 + 4χd3

1d2 + 6χd2
1d

2
2 + 4χd1d3

2 + χ2d4
2

ε , (5.88)

which differs from (5.85) only by the factor 1 + ν in the nominator.
For cubic material and a (001) surface the energy is given as

U100 =
C11 − C12

2C11

[
C11 (ε2t + ε2y + C12 (εt + εy)2)

]
(5.89)

for a scrolling direction along 〈100〉. When the (001)-oriented film winds up
along a direction 〈hk0〉 having an angle φ with the [100] direction (φ = 45◦

for 〈110〉), the strain energy is given by (C0 is given by (5.61))

Uφ = U100 + C0

(
εt − εy

2

)2

sin2(2φ) . (5.90)

The strain energy vs. bending radius (= κ−1) is shown for a SiGe nano-
scroll in Fig. 5.26. First, the relaxation along the cylinder axis plays a minor
role. The smallest strain energy is reached for scrolling along 〈100〉, also
yielding the smaller bending radius (larger curvature). Therefore, the film
preferentially scrolls along 〈100〉. This explains the observed ‘curl’ behavior
of scrolls winding up for φ �= 0 (Fig. 5.26b). The effect of surface strain needs
to be included to yield improved quantitative agreement with experimental
values of κ(ε, d) [295].

5.3.7 Critical Thickness

Strained epitaxial films are called pseudomorphic when they do not con-
tain defects and the strain relaxes elastically, e.g. by tetragonal distortion.
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(a) (b)

Fig. 5.26. (a) Strain energy (in units of the strain energy of the flat pseudomorphic
layers) of a scroll of a 4-layer SiGe structure (Si0.3Ge0.7, Si0.6Ge0.4 and Si0.8Ge0.2,
each 3 nm thick and a 1-nm Si cap) as a function of radius for winding directions
along 〈100〉 and 〈110〉. Top (bottom) curves without (with complete) strain relax-
ation along the cylinder axis. Vertical lines indicate the positions of the respective
energy minima [290]. (b) SEM image of curled InGaAs/GaAs nanoscroll rolled
φ = 14◦ off 〈100〉. The stripe from which the film was rolled off is indicated by
white dashed lines. Part (b) from [297]

When the layer thickness increases, however, strain energy is accumulated
that will lead at some point to plastic relaxation via the formation of defects.
In many cases, a grid of misfit dislocations forms at the interface (Figs. 4.17
and 5.27). The average distance p of the dislocations is related to the misfit

(a) (b)
g

002

Fig. 5.27. (a) Series of cross-sectional TEM images of 100-nm thick GexSi1−x layers
on Si(001) with different ternary compositions x = 0.1, 0.2, 0.5, and 1.0. The growth
temperature was 550◦C. The transition from commensurate to incommensurate
growth is obvious. Adapted from [298]. (b) Plan view 〈022〉 TEM bright field image
of a 250-nm Ge0.15Si0.85 layer on Si (001), annealed at about 700◦C. The arrow
denotes the position of a dislocation loop. Reprinted with permission from [299],
c©1989 AVS
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(a)

h1

h2

h3

ab

b

c

c

a

(b)

Fig. 5.28. Schematic formation of misfit dislocations by (a) elongation of a grown-
in threading dislocation and (b) by the nucleation and growth of dislocation half-
loops. (a) depicts a threading dislocation. Initially, for thickness h1 the interface
is coherent ‘a’, for larger thickness h2 the interface is critical and the force of the
interface on the dislocation is equal to the tension in the dislocation line, ‘b’. For
larger thickness, e.g. h3, the dislocation line is elongated in the plane of the interface,
‘c’. In (b) ‘a’ denotes a subcritical dislocation half-loop, ‘b’ depicts a half-loop being
stable under the misfit stress and for ‘c’ the loop has grown under the misfit stress
into a misfit dislocation line along the interface

f = (a1−a2)/a2 and the edge component b⊥of the Burger’s vector (for a 60◦

dislocation b⊥ = a0/
√

8)

p =
b⊥
f
. (5.91)

Two mechanisms have been proposed for the formation of misfit disloca-
tions (Fig. 5.28), the elongation of a grown-in threading dislocation [300] and
the nucleation and growth of dislocation half-loops [301]. For the modeling of
such systems a mechanical approach based on the forces on dislocations [300]
or an energy consideration based on the minimum strain energy necessary
for defect formation [301–303] can be followed. Both approaches have been
shown to be equivalent [304] (if a periodic array of dislocations is considered).
In [305] it was pointed out that the finite speed of plastic flow also has to be
considered to explain experimental data. Temperature affects the observed
critical thickness and a kinetic model is needed. Another way of introducing
dislocations is the plastic relaxation at the edge of coherent strained islands
(cmp. Fig. 13.26)

In the following, isotropic materials and identical elastic constants of sub-
strate and thin film are assumed, following [304]. The interface plane is the
(x,y)-plane, the growth direction is z. The energy Ed of a periodic dislocation
array with period p and Burgers vector b = (b1, b2, b3) is

Ed =
Y

8π(1 − ν2)
β2 (5.92)

β2 =
[
b21 + (1 − ν)b22 + b23

]
ln

(
p [1 − exp(−4πh/p)]

2πq

)

+
(
b21 − b23

) 4πh
p

exp(−4πh/p)
1 − exp(−4πh/p)
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−1
2
(
b21 + b23

)(
4πh
p

)2 exp(−4πh/p)
[1 − exp(−4πh/p)]2

+b23
2πh
p

exp(−2πh/p)
1 − exp(−2πh/p)

,

where h is the film thickness and q denotes the cutoff length for the dislocation
core, taken as q = b. The misfit strain including the relaxation due to dislo-
cations with Burger’s vectors b and b̂ in the two orthogonal interface 〈110〉
directions n and n̂. We chose the coordinate system such that n = (1, 0, 0)
and n̂ = (0, 1, 0) (the z direction remains). With respect to these axes the
Burger’s vectors are

(
± 1

2 ,
1
2 ,

1√
2

)
a0/

√
2. The misfit strain εmij is reduced due

to the dislocation formation to the ‘relaxed’ misfit strain εrij with

εrij = εmij +
binj + bjni

2p
+
b̂in̂j + b̂jn̂i

2p
, (5.93)

with an associated stress σij . The strain energy Es of the layer due to the
relaxed misfit is then

Es =
1
2
hσij ε

r
ij (5.94)

lim
p→∞Es = 2h

Y (1 + ν)
1 − ν

f2 . (5.95)

The total strain energy E is given by

pE = 2Ed + 2Ec + pEs (5.96)
E∞ = lim

p→∞E , (5.97)

with the core energy Ec of the dislocation that needs to be calculated with
an atomistic model (not considered further here). This energy is shown in
Fig. 5.29a for the material parameters of Ge0.1Si0.9/Si(001) (misfit −0.4%) for
various layer thicknesses as a function of 1/p. This plot looks similar to that
for a first-order phase transition (with 1/p as the order parameter). For a cer-
tain critical thickness hc1 the energy of the layer without any dislocation and
the layer with a particular dislocation density p1 are identical (E −E∞ = 0)
and additionally ∂E/∂p|p=p1 = 0. However, between p → ∞ and p = p0

there is an energy barrier. The critical thickness hc2 is reached when

∂E/∂p |p→∞ = 0 , (5.98)

i.e. the energy decreases monotonically for increasing dislocation density up
to the global energy minimum at a certain equilibrium dislocation spacing p2.
Equation (5.98) leads to the following implicit equation for the determination
of hc2:
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(a) (b)

Fig. 5.29. (a) Theoretical calculation for the strain energy vs. inverse dislocation
density for various thicknesses of Ge0.1Si0.9 layers on Si (001). The ordinate is b/2p,
b/2 being the edge component of the Burgers vector and p being the dislocation
spacing. The abscissa is the strain energy E scaled with E∞ (5.97). (b) Critical
thickness for GexSi1−x layers on Si (001). The solid line is theory (hc2) according
to (5.99). Data points are from [306] (squares, growth temperature of 750◦C) and
from [298] (triangles for growth temperature of 550◦C)

hc2 =
b
[−16 + 3b2 + 8(−4 + ν) ln (2hc2/q)

]

128 fπ (1 + ν)
, (5.99)

with the length of the Burgers vector b = a0/
√

2.
The theoretical dependence of hc2 for GexSi1−x/Si(001) with varying com-

position is shown in Fig. 5.29b together with experimental data. The critical
thickness for a fairly high growth temperature is much closer to the ener-
getic equilibrium than that deposited at lower temperature. This shows that
there are kinetic limitations for the system to reach the mechanical equilib-
rium state. Also, the experimental determination of the critical thickness is
affected by finite resolution for large dislocation spacing, leading generally to
an overestimate of hc.

In zincblende materials two types of dislocations are possible, α and β,
with Ga- and As-based cores, respectively. They have [1̄10] and [110] line di-
rections for a compressively strained interface. The α dislocation has the
larger glide velocity. Therefore, strain relaxation can be anisotropic with
regard to the 〈110〉 directions for zincblende material, e.g. InGaAs/GaAs
[307, 308].

5.4 Cleaving

The cleavage planes of the diamond structure are {111} planes. It is easiest
to break the bonds connecting the double layers in the 〈111〉 directions.
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The cleavage planes of the zincblende structure are {110} planes. Due to
the ionic character, breaking the bonds connecting the double layers in the
〈111〉 directions would leave charged surfaces, which is energetically unfavor-
able. The {100} planes contain only one sort of atom and would also leave
highly charged surfaces. The {110} planes contain equal amounts of A and
B atoms and are neutral.

Ideally, the cleaving plane is atomically flat or exhibits large mono-
atomically flat terraces. However, certain dopants in high concentrations,
e.g. GaAs:Te, can induce a rough surface due to lattice distortion [309].
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Silicon is a metal.
A.H. Wilson, 1931 [45]

6.1 Introduction

Valence electrons that move in the crystals feel a periodic potential

U(r) = U(r + R) (6.1)

for all vectors R of the direct lattice. The potential1 is due to the effect of
the ion cores and all other electrons. Thus a serious many-body problem is
present. In principle, the band structure can be calculated from the periodic
arrangements of the atoms and their atomic order number. We note that for
some problems, e.g. the design of optimal solar cells, a certain band structure
is known to be ideal and a periodic atomic arrangement, i.e. a material, needs
to be found that generates the optimal band structure. This problem is called
the inverse band structure problem.

6.2 Electrons in a Periodic Potential

6.2.1 Bloch’s Theorem

First, we will deduce some general conclusions about the structure of the so-
lution as a consequence of the periodicity of the potential. We first investigate
the solution of a Schrödinger equation of the type

H Ψ(r) =
[
− �

2

2m
∇2 + U(r)

]
Ψ(r) = E Ψ(r) (6.2)

for an electron. U will be periodic with the lattice, i.e. it will obey (6.1).

1In this book the form of the potential will never be explicitly given.

M. Grundmann, The Physics of Semiconductors, 2nd ed., Graduate Texts 139
in Physics, DOI 10.1007/978-3-642-13884-3 6,
c© Springer-Verlag Berlin Heidelberg 2010
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Bloch’s theorem says that the eigenstates Ψ of a one-particle Hamiltonian
as in (6.2) can be written as the product of plane waves and a lattice-periodic
function, i.e.

Ψnk(r) = A eikr unk(r) . (6.3)

The normalization constant A is often omitted. If unk(r) is normalized,
A = 1/

√
V , where V is the integration volume. The wavefunction is indexed

with a quantum number n and the wavevector k. The key is that the function
unk(r), the so-called Bloch function, is periodic with the lattice, i.e.

unk(r) = unk (r + R) (6.4)

for all vectors R of the direct lattice. The proof is simple in one dimension and
more involved in three dimensions with possibly degenerate wavefunctions,
see [310].

If Enk is an energy eigenvalue, then Enk+G is also an eigenvalue for all
vectors G of the reciprocal lattice, i.e.

En(k) = En (k + G) . (6.5)

Thus the energy values are periodic in reciprocal space. The proof is sim-
ple, since the wavefunction (for k + G) exp (i(k + G)r)un(k+G)(r) is for
un(k+G)(r) = exp (−iGr)unk(r) obviously an eigenfunction to k.

A band structure along one k-direction can be displayed in various zone
schemes as depicted in Fig. 6.1. The most frequently used scheme is the re-
duced zone scheme. In three dimensions, the band structure is typically shown
along particular paths in the Brillouin zone, as depicted, e.g., in Fig. 6.2c.

6.2.2 Free-Electron Dispersion

If the entire wavefunction (from (6.3)) obeys the Schrödinger equation (6.2),
the Bloch function unk fulfills the equation

(a) (b) (c)

Fig. 6.1. Zone schemes for a band structure: (a) extended, (b) reduced and (c)
repetitive zone scheme
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(a) (b) (c)
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1
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X

X W L K X

Fig. 6.2. Dispersion of free electrons (empty lattice calculation, U = 0, shown in
the first Brillouin zone) in (a) a one-dimensional lattice (G = n 2π/a), (b) a simple
cubic lattice (G = (h, k, l) 2π/a) and (c) in a fcc lattice. The energy is measured
in units of the energy at the X-point, EX = (�2/2m)(2π/a)2. The shaded circle in
(c) represents the region where the band gap develops for finite periodic potential
U �= 0

[
− 1

2m
(p + k)2 + U(r)

]
unk(r) = Enk unk(r) , (6.6)

which is easy to see from p = −i�∇.
First, we discuss the simplest case of a periodic potential, U ≡ 0. This

calculation is also called the empty lattice calculation. The solution of (6.6)
is then just constant, i.e. uk = c and Ψk(r) = c exp (ikr). The dispersion of
the free electron is then given by

E(k) =
�

2

2m
k2 , (6.7)

where k is an arbitrary vector in the reciprocal space. k′ is a vector from the
Brillouin zone such that k = k′ + G with a suitable reciprocal lattice vector
G. Because of (6.5) the dispersion relation can be written also as

E(k) =
�

2

2m
(k′ + G)2 , (6.8)

where k′ denotes a vector from the Brillouin zone. Thus, many branches of
the dispersion relation arise from using various reciprocal lattice vectors in
(6.8).

The resulting dispersion relation for the free electron is shown in Fig. 6.2a
for a one-dimensional system (k′ and G are parallel) and in Fig. 6.2b for the
simple cubic lattice (in the so-called reduced zone scheme). In Fig. 6.2c, the
(same) dispersion of the free electron is shown for the fcc lattice.
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6.2.3 Kronig–Penney Model

The Kronig–Penney model [43] is a simple, analytically solvable model that
visualizes the effect of the periodic potential on the dispersion relation of the
electrons, i.e. the formation of a band structure.

A one-dimensional periodic hard-wall potential of finite height is assumed
(Fig. 6.3a). The well width is a, the barrier width b and thus the period
P = a+ b. The potential is zero in the well (regions (0, a) + nP ) and +U0 in
the barrier. The Schrödinger equation

− �
2

2m
∂2Ψ

∂x2
+ U(x)Ψ(x) = E Ψ(x) (6.9)

has to be solved. The solutions for a single hard-wall potential well are well
known. In the well, they have oscillatory character, i.e. Ψ ∝ exp (ikx) with
real k. In the barrier, they have exponential character, i.e. Ψ ∝ exp (kx) with
real k. Thus we chose

Ψ(x) = A exp (iKx) +B exp (−iKx) (6.10a)
Ψ(x) = C exp (κx) +D exp (−κx) . (6.10b)

The wavefunction from (6.10a) is for the well between 0 and a with
E = �

2K2/2m. The wavefunction from (6.10b) is for the barrier between a
and a+ b with U0−E = �

2κ2/2m. From the periodicity and Bloch’s theorem
the wavefunction at x = −b must have the form Ψ(−b) = exp(−ikP )Ψ(a),
i.e. between the two wavefunctions is only a phase factor. The wavevector k
of the Bloch function (plane-wave part of the solution) is a new quantity and
must be carefully distinguished from K and κ.

Both K and κ are real numbers. As boundary conditions, the continuity
of Ψ and Ψ ′ are used.2 At x = 0 and x = a this yields

A+B = C +D (6.11a)
iKA− iKB = κC − κD (6.11b)

A exp(iKa) +B exp(−iKa) = C exp(κa) +D exp(−κa) (6.11c)
iKA exp(iKa)− iKB exp(−iKa) = κCexp(κa) − κDexp(−κa). (6.11d)

The continuity of Ψ and Ψ ′ at x = −b is used in the left sides of (6.11c,d).
A nontrivial solution arises only if the determinant of the coefficient ma-

trix is zero. This leads (after some tedious algebra) to

cos(kP ) =
[
κ2 −K2

2κK

]
sinh(κb) sin(Ka) + cosh(κb) cos(Ka) . (6.12)

2Generally, Ψ ′/m should be continuous, however, in the present example the
mass is assumed constant throughout the structure.
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Fig. 6.3. (a) One-dimensional periodic hard-wall potential (Kronig–Penney
model). (b) Transcendental function B(K) from (6.13) for β = 5. The dashed lines
indicate the [−1, 1] interval for which solutions exist for (6.13). (c) Band gap be-
tween first and second subband (in units of EX = �

2π2/(2ma2)) as a function of
β. For smaller β the band gap is ∝ β. For thick barriers (β → ∞) the band gap
saturates towards 3EX as expected for uncoupled wells. (d, e) The resulting energy
dispersion (in units of EX) as a function of the superlattice wavevector k for (d)
β = 5 and (e) β = 20 in (6.13). The dashed lines are the free-electron dispersion
(for β = 0) (see Fig. 6.2a)
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Further simplification can be reached by letting the barrier thickness b→0
and U0 → ∞. Then P → a. The limit, however, is performed in such a way
that the barrier ‘strength’ U0b ∝ κ2b remains constant and finite. Equa-
tion (6.12) then reads (for κb→ 0: sinh(κb) → κb and coth(κb) → 1):

cos(ka) = β
sin(Ka)
Ka

+ cos(Ka) = B(K) . (6.13)

The coupling strength β = κ2ba/2 represents the strength of the barrier.
Equation (6.13) only has a solution if the right side is in the interval [−1, 1]
(Fig. 6.3b). The function sin(x)/x oscillates with decreasing amplitude such
that for sufficiently high values of Ka a solution can always be found. The
resulting dispersion is shown in Fig. 6.3c. The dispersion is different from the
free-electron dispersion and has several separated bands. The band gaps are
related to the K values, i.e. energies for which (6.13) cannot be fulfilled. At
the zone boundary (k = π/a) the bands are split and the tangent is horizontal
(dE/dk = 0). The form of the dispersion is similar to the arccos function.

For large coupling between the potential wells (small β, β � 1) the band
gap E12 between the first and the second subband at the X-point is E12 =
4β/π2EX with EX = �

2π2/(2ma2). In this case, the width of the subbands is
wide. For small coupling (large β) the band gap E12 converges towards 3EX

as expected for decoupled potential wells with energy levels En = EXn
2 and

the width of the bands is small.

6.2.4 Lattice Vector Expansion

General Wave Equation

In this section, we will discuss the solution of a general wave equation for
electrons in a periodic potential. The solution is investigated particularly at
the zone boundary. The potential U is periodic with the lattice (6.1). It can be
represented as a Fourier series with the reciprocal lattice vectors (cf. (3.16)):

U(r) =
∑

G

UG exp (iGr) . (6.14)

Since U is a real function, U−G = U∗
G. The deeper reason for the success of

such an approach is that for typical crystal potentials, the Fourier coefficients
decrease rapidly with increasing G, e.g. for the unscreened Coulomb potential
UG ∝ 1/G2. The wavefunction is expressed as a Fourier series (or integral)
over all allowed (Bloch) wavevectors K,

Ψ(r) =
∑

K

CK exp (iKr) . (6.15)

The kinetic and potential energy terms in the Schrödinger equation
(6.6) are
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∇2Ψ = −
∑

K

K2 CK exp (iKr) (6.16a)

UΨ =
∑

G

∑

K

UG CK exp (i(G + K) r) . (6.16b)

With K′ = K + G, (6.16b) can be rewritten as

UΨ =
∑

G

∑

K′
UG CK′−G exp (iK′r) . (6.17)

Now, the Schrödinger equation can be written as an (infinite) system of
algebraic equations:

(λK − E)CK +
∑

G

UG CK−G = 0 , (6.18)

with λK = �
2 K2/(2m).

Approximate Solution at the Zone Boundary

The potential energy will have only one important Fourier coefficient U for
the shortest reciprocal lattice vector G. Also, we have U−G = UG. Thus, the
(one-dimensional) potential has the form U(x) = 2U cos(Gx). We consider
the solution at the zone boundary, i.e. in the vicinity of K = G/2. The kinetic
energy is then the same for K = ±G/2, i.e. λK = λK−G = (�2/2m) (G2/4).
CG/2 is an important coefficient of the wavefunction, thus C−G/2 will also
be important. We will now limit the K vectors for the series of (6.15) to just

these two. For the coefficient vector
(
CG/2

C−G/2

)
the determinant is

∣∣∣
∣
λ− E U
U λ− E

∣∣∣
∣ = (λ− E)2 − U2 = 0 , (6.19)

with λ = λK = λ−K = (�2/2m) (G2/4) for K = G/2. Thus the energy values
are

E± = λ± U =
�

2

2m
G2

4
± U . (6.20)

At the zone boundary, a splitting of the size E+ − E− = 2U occurs. The
center of the energy gap is given by the energy λK of the free-electron disper-
sion. The ratio of the coefficients is CG/2/C−G/2 = ∓1. The ‘−’ solution of
(6.20) (lower energy) is a standing cosine wave (Ψ−), the ‘+’ solution (Ψ+) is
a standing sine wave as visualized in Fig. 6.4. For the lower-energy (binding)
state the electrons are localized at the potential minima, i.e. at the atoms, for
the upper state (antibinding) the electrons are localized between the atoms.
Both wavefunctions have the same periodicity since they belong to the same
wavevector K = G/2. We note that the periodicity of Ψ is 2a, while the
periodicity of Ψ2 is equal to the lattice constant a.
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Fig. 6.4. Periodic potential U (one-dimensional cosine, black) and the squares of
the wavefunctions Ψ− (red) and Ψ+ (blue) for the wavevector at the zone boundary,
K = G/2 = π/a

Solution in the Vicinity of the Zone Boundary

In the vicinity of the zone boundary we rewrite (6.19) as
∣∣∣∣
λK − E U
U λK−G − E

∣∣∣∣ = 0 . (6.21)

We find two solutions

E± =
1
2

(λK + λK−G) ±
[
1
4

(λK − λK−G)2 + U2

]1/2

. (6.22)

For K in the vicinity of the zone boundary these solutions can be de-
veloped. Therefore, we use the (small) distance from the zone boundary
K̃ = K − G/2. With λ = (�2/2m) (G2/4) we rewrite still exactly (6.22):

E±
(
K̃

)
=

�
2

2m

(
1
4
G2 + K̃2

)
±

[

4λ
�

2K̃2

2m
+ U2

]1/2

. (6.23)

For small K̃ with �
2GK̃
2m � |U |, the energy is then approximately given

by

E±
(
K̃

) ∼= λ± U +
�

2K̃2

2m

(
1 ± 2λ

U

)
. (6.24)

Thus the energy dispersionin the vicinity of the zone boundary is par-
abolic. The lower state has a negative curvature, the upper state a positive
curvature. The curvature is
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m∗ = m
1

1 ± 2λ/U
≈ ±m U

2λ
, (6.25)

and will be later related to the effective mass. The approximation in (6.25)
is valid for |U | � 2λ. We note that in our simple model m∗ increases linearly
with increasing band gap 2U (see Fig. 6.23 for experimental data).

6.2.5 Kramer’s degeneracy

En(k) is the dispersion in a band. The time-reversal symmetry (Kramer’s
degeneracy) implies

En↑(k) = En↓(−k) , (6.26)

where the arrow refers to the direction of the electron spin. If the crystal is
symmetric under inversion, we have additionally

En↑(k) = En↑(−k) . (6.27)

With both time reversal and inversion symmetry the band structure fulfills

En↑(k) = En↓(k) . (6.28)

6.3 Band Structure of Selected Semiconductors

In the following, the band structures of various important and prototype
semiconductors are discussed. The band below the energy gap is called the
valence band; the band above the gap is the conduction band. The band gap
ΔEcv, mostly denoted as Eg, is the energy separation between the highest
valence-band state and the lowest conduction-band state. The maximum of
the valence band is for most semiconductors at the Γ point.

6.3.1 Silicon

For silicon, an elemental semiconductor (Fig. 6.5a), the minimum of the con-
duction band is located close to the X point at 0.85π/a in the 〈100〉 direction.
Thus, it is not at the same point in k space as the top of the valence band.
Such a band structure is called indirect . Since there are six equivalent 〈100〉
directions, there are six equivalent minima of the conduction band.

6.3.2 Germanium

Germanium, another elemental semiconductor (Fig. 6.5b), also has an in-
direct band structure. The conduction minima are at the L point in the
〈111〉 direction. Due to symmetry there are eight equivalent conduction-band
minima.
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(a) (b)

Fig. 6.5. Band structure of (a) silicon (indirect) and (b) germanium (indirect). In
Si, the minima of the conduction band are in the 〈100〉 direction, for germanium in
the 〈111〉 direction. From [192], based on [311]

6.3.3 GaAs

GaAs (Fig. 6.6a) is a compound semiconductor with a direct band gap since
the top of the valence band and the bottom of the conduction band are at the
same position in k space (at the Γ point). The next highest (local) minimum
in the conduction band is close to the L point.

(a) (b)

Fig. 6.6. Band structure of (a) GaAs (direct) and (b) GaP (indirect). For GaAs the
minimum of the conduction band is at Γ , for GaP in the 〈100〉 direction. From [192],
based on [311]
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6.3.4 GaP

GaP (Fig. 6.6b) is an indirect compound semiconductor. The conduction-
band minima are along the 〈100〉 directions.

6.3.5 GaN

GaN (Fig. 6.7) is a direct semiconductor that has wurtzite structure but can
also occur in the metastable cubic (zincblende) phase.

6.3.6 Lead Salts

The band gap of PbS (Fig. 6.8), PbSe and PbTe is direct and located at the L
point. The lead chalcogenide system shows the anomaly that with increasing
atomic weight the band gap does not decrease monotonically. At 300 K, the
band gaps are 0.41, 0.27 and 0.31 eV for PbS, PbSe and PbTe, respectively.

6.3.7 Chalcopyrites

The experimental band gaps of a number of chalcopyrite semiconductors are
listed in Table 6.1. The band structures of CuAlS2, CuAlSe2, and CuGaSe2

are compared in Fig. 6.9.
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Fig. 6.7. Band structure of GaN (direct) in zincblende (zb) modification (left) and
wurtzite (w) modification (right), both displayed in the wurtzite Brillouin zone to
facilitate comparison
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Fig. 6.8. Calculated band structure of PbS (direct). The energy gap is at the L
point. The forbidden band is shown in grey. Adapted from [312]

Table 6.1. Band gaps of various chalcopyrite semiconductors

material Eg (eV) Eg (eV) Eg (eV)

CuAlS2 3.5 CuGaS2 2.5 CuInS2 1.53

CuAlSe2 2.71 CuGaSe2 1.7 CuInSe2 1.0

CuAlTe2 2.06 CuGaTe2 1.23 CuInTe2 1.0–1.15

AgAlS2 3.13 AgGaS2 2.55 AgInS2 1.87

AgAlSe2 2.55 AgGaSe2 1.83 AgInSe2 1.24

AgAlTe2 2.2 AgGaTe2 1.1–1.3 AgInTe2 1.0

ZnSiP2 2.96 ZnGeP2 2.34 ZnSnP2 1.66

ZnSiAs2 2.12 ZnGeAs2 1.15 ZnSnAs2 0.73

CdSiP2 2.45 CdGeP2 1.72 CdSnP2 1.17

CdSiAs2 1.55 CdGeAs2 0.57 CdSnAs2 0.26

In Fig. 6.10, the theoretical band structure of GaN and its closest re-
lated chalcopyrite ZnGeN2 are compared, both shown in the chalcopyrite
(orthorhombic) Brillouin zone. The band gap of ZnGeN2 is smaller than that
of GaN and the difference of 0.4 eV is fairly well reproduced by the calcula-
tion3 (giving 0.5 eV).

3Due to the local density approximation (LDA) the absolute values of the band
gaps are too small by about 1 eV.
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CuAlSe2CuAlS2 CuGaSe2

NT NT NT

Fig. 6.9. Calculated band structures of CuAlS2, CuAlSe2, and CuGaSe2. Absolute
values of gaps are incorrect due to LDA. Adapted from [313]
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Fig. 6.10. Calculated (within LDA) band structures of ZnGeN2 and its related
III–V compound GaN, both displayed in the chalcopyrite (orthorhombic) Brillouin
zone to facilitate comparison. Adapted from [314]

6.3.8 Delafossites

In Fig. 6.11, the theoretical band structures of the delafossites CuAlO2,
CuGaO2, and CuInO2 are shown. The maximum of the valence band is not at
Γ but near the F point. The direct band gap at Γ decreases for the sequence
Al → Ga → In, similar to the trend for AlAs, GaAs and InAs. The direct
band gap at F and L, causing the optical absorption edge, increases, however
(experimental values are 3.5, 3.6, and 3.9 eV).
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Fig. 6.11. Band structures of CuAlO2, CuGaO2, and CuInO2, calculated with
LDA (underestimating the absolute value of the band gaps). The arrows denote the
maximum of the valence band that has been set to zero energy for each material.
Adapted from [135]

6.3.9 Perovskites

The calculated band structure of BaTiO3 in the tetragonal phase is shown
in Fig. 6.12. The minimum of the conduction band is at the Γ point. The
maximum of the valence band is not at the Γ point but at the M point.
The band gap of the LDA4 calculation is too small (2.2 eV) compared to the
experimental value ∼ 3.2 eV.

Fig. 6.12. Calculated energy band structure of BaTiO3 along the major symmetry
directions. The Fermi level (EF) is set at zero energy. Adapted from [315]

4local density approximation
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6.4 Alloy Semiconductors

In alloy semiconductors, the size of the band gap and the character of the
band gap will depend on the composition. The dependence of the band gap
on the ternary composition is mostly nonlinear and can usually be expressed
with a bowing parameter b that is mostly positive. For a compound AxB1−xC
the band gap is written as

Eg(AxB1−xC) = Eg(BC) + x [Eg(AC) − Eg(BC)] − b x (1 − x) . (6.29)

Even on the virtual crystal approximation (VCA) level (Sect. 3.7.3) a nonzero
bowing parameter b is predicted. However, a more thorough analysis shows
that the bowing cannot be treated adequately within VCA and is due to the
combined effects of volume deformation of the band structure with the alloy
lattice constant, charge exchange in the alloy with respect to the binary end
components, a structural contribution due to the relaxation of the cation–
anion bond lengths in the alloy and a small contribution due to disorder [316].

The SixGe1−x alloy has diamond structure for all concentrations and the
position of the conduction-band minimum in k-space switches from L to X
at about x = 0.15 (Fig. 6.13a). However, for all concentrations the band
structure is indirect. The InxGa1−xAs alloy has zincblende structure for all
compositions. The band gap is direct and decreases with a bowing parameter
of b = 0.6 eV [317] (Fig. 6.13b). This means that for x = 0.5 the band gap is
0.15 eV smaller than expected from a linear interpolation between GaAs and
InAs, as reported by various authors [318].

If one binary end component has a direct band structure and the other is
indirect, a transition occurs from direct to indirect at a certain composition.
An example is AlxGa1−xAs where GaAs is direct and AlAs is indirect. For all
concentrations the crystal has zincblende structure. In Fig. 6.13c, the Γ , L
and X conduction-band minima for ternary AlxGa1−xAs are shown. Up to an
aluminum concentration of x = 0.4 the band structure is direct. Above this
value the band structure is indirect with the conduction-band minimum being
at the X point. The particularity of AlxGa1−xAs is that the lattice constant
is almost independent of x. For other alloys lattice match to GaAs or InP
substrates is only obtained for specific compositions, as shown in Fig. 6.14.

If the two binary end components have different crystal structure, a
phase transition occurs at a certain composition (range). An example is
MgxZn1−xO, where ZnO has wurtzite structure and MgO has rocksalt struc-
ture. The band gap is shown in Fig. 6.13d. In this case, each phase has its
own bowing parameter.

All alloys of Fig. 6.13b–d have mixed cations. The band gap also varies
upon anion substitution in a similar way as shown in Fig. 6.15 for ternary
alloys with the cation Zn and the chalcogenides S, Se, Te and O.
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Fig. 6.13. (a) Band gap of SixGe1−x alloy (T = 296 K) with a change from the
conduction-band minimum at L (Ge-rich) to X. The inset depicts the transition
energy of the indirect (Γ–L) and direct (Γ–Γ ) absorption edge for low Si content.
Adapted from [320]. (b) Band gap (at room temperature) of InxGa1−xAs. The solid
line is an interpolation with bowing (b = 0.6 eV) and the dashed line is the linear
interpolation. Data from [317]. (c) Band gap (at room temperature) in the ternary
system AlxGa1−xAs. For x < 0.4 the alloy is a direct, for x > 0.4 an indirect,
semiconductor. Edd denotes the energy position of a deep donor (cf. Sect. 7.7.6).
Adapted from [321]. (d) Band gap (at room temperature) in the ternary system
MgxZn1−xO. Data (from spectroscopic ellipsometry [322, 323]) are for hexagonal
wurtzite phase (circles), and Mg-rich cubic rocksalt phase (squares). Dashed lines
are fits to data with a different bowing parameter for each phase
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Fig. 6.14. Band gap vs. lattice constant for GaxIn1−xP and AlxIn1−xP (lat-
tice matched to GaAs) as well as for InxAl1−xAs and InxGa1−xAs alloys (lattice
matched to InP)

Fig. 6.15. Band gap of various Zn-based alloys. The lines are fits with (6.29), the
bowing parameter b is labeled. Data for Zn(S,Se,Te) from [324], for Zn(O,Se/Te)
from [325]

6.5 Amorphous Semiconductors

In a perfectly crystalline semiconductor the eigenenergies of the states in
the bands are real. An amorphous semiconductor can be modeled using
a spectrum of complex energies [319]. In Fig. 6.16 the band structure of
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Fig. 6.16. (a) Calculated band structure of crystalline silicon. (b) Calculated band
structure of amorphous silicon with α = 0.05 (cf. (3.6)). The solid lines denote the
real part of the energy, the shaded areas denote the regions with a width of twice the
imaginary part of the energies centered around the real part. Adapted from [326]

crystalline silicon is shown next to that calculated for amorphous silicon with
α = 0.05.

6.6 Systematics of Semiconductor Band Gaps

The trends with regard to the size of the band gap for elemental, III–V
and II–VI semiconductors can essentially be understood in terms of the
bond strength and ionicity. In Fig. 6.17, the band gaps of many important

Fig. 6.17. Band gaps as a function of the lattice constant for various elemental,
III–V and II–VI semiconductors. The lattice constant of wurtzite semiconductors
has been recalculated for a cubic cell
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semiconductors are shown as a function of the lattice constant. For elemental
semiconductors, the band gap decreases with reduced bond strength, i.e.
lattice constant (C→Si→Ge). A similar trend exists both for the III–V and
the II–VI semiconductors.

For the same lattice constant, the band gap increases with increasing
ionicity, i.e. IV–IV→III–V→II–VI. The best example is the sequence Ge→
GaAs→ZnSe for which all materials have almost the same lattice constant.

This behavior can be understood within the framework of a modified
Kronig–Penney model [327] (Sect. 6.2.3). Double potential wells (b/a = 3)
are chosen to mimic the diatomic planes along the 〈111〉 direction in the
zincblende structure (Fig. 6.18a). Symmetric wells (depth P0) are chosen to
model covalent semiconductors and asymmetric wells with depths P0 ±ΔP
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Fig. 6.18. Kronig–Penney model (along 〈111〉, b/a = 3) for a (a) IV–IV semicon-
ductor and (b) for a III–V (or II–VI) semiconductor, (c) resulting band structure
(P0 = −3). d is the lattice constant (b + a). Adapted from [327]
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Fig. 6.19. Optical image of two inch wafers of GaAs (left), GaP (center) and ZnO
(right). A GaN wafer would look like the ZnO wafer.

to model partially ionic semiconductors. Results are shown in Fig. 6.18a for
P0 = −3. With increasing asymmetry, i.e. ionicity, the band gap increases,
mostly due to a downward shift of the valence band. The case of III–V (II–VI)
semiconductors is reached for ΔP ≈ 2 (4).

In Fig. 6.19, the visual impression of 2” wafers of GaAs, GaP and GaN
on white paper is shown. GaAs (and GaSb) is opaque since the band gap is
below the visible spectral range. GaP has a band gap in the green and appears
red, GaN has a band gap in the ultra-violet and thus appears transparent.
As can be seen from Table. 6.2, the anion sequence Sb, As, P, and N leads
to smaller lattice constant and higher ionicity.

We note that the band edge slightly depends on the isotope composition
of the semiconductor [328]

Table 6.2. Comparison of band gap, lattice constant and ionicity of gallium–
group V semiconductors for various anions. Lattice constant for GaN has been
recalculated for a cubic cell.

anion Eg (eV) a0 (nm) fi

N 3.4 0.45 0.50

P 2.26 0.545 0.33

As 1.42 0.565 0.31

Sb 0.72 0.61 0.26

6.7 Temperature Dependence of the Band Gap

The band gap typically decreases with increasing temperature (see Fig. 6.20
for Si and GaAs). The reasons for this are the change of electron–phonon
interaction and the expansion of the lattice. The temperature coefficient may
be written as
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Fig. 6.20. Temperature dependence of the band gap of (a) Si (data from [331]) and
(b) ZnO (experimental data from photoluminescence (triangles) and ellipsometry
(circles)). The solid lines are fits with (6.33) and the parameters given in Table 6.3
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∂Eg

∂T

)

V

− α

β

(
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∂p

)

T

, (6.30)

where α is the volume coefficient of thermal expansion and β is the volume
compressibility. A recommendable discussion of the thermodynamic role of
the band gap as chemical potential for the mass action law (7.17), entropy
contributions and its temperature dependence can be found in [329].

An anomaly is present for the lead salts (PbS, PbSe, PbTe) for which the
temperature coefficient is positive (Fig. 6.21a). Theoretical calculations [330]
show that both terms in (6.30) are positive for the lead salts. The L+

6 and
L−

6 levels (see Fig. 6.8) shift as a function of temperature in such a way that
their separation increases (Fig. 6.21b).

For many semiconductors the temperature dependence can be described
with the empirical, three-parameter Varshni formula [332],
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Fig. 6.21. (a) Band gap vs. temperature for PbS. (b) Theoretical position of L+
6

and L−
6 as a function of temperature for PbTe. Adapted from [312]
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Eg(T ) = Eg(0) − αT 2

T + β
, (6.31)

where Eg(0) is the band gap at zero temperature. A more precise and physi-
cally motivated formula (based on a Bose–Einstein phonon model) has been
given in [333]

Eg(T ) = Eg(0) − 2αBΘB

[
coth

(
ΘB

2T

)
− 1

]
, (6.32)

where αB is a coupling constant and kΘB is a typical phonon energy; typical
values are given in Table 6.3. This model reaches a better description of
the fairly flat dependence at low temperatures. However, experimentally the
dependence at low temperatures is rather quadratic.

The more elaborate model of [334] takes into account a more vari-
able phonon dispersion, including optical phonons, and proposes the four-
parameter formula

Eg(T ) = Eg(0) − αΘ

[
1 − 3Δ2

exp (2/γ) − 1
+

3Δ2

2

(
6
√

1 + β − 1
)]

(6.33)

β =
π2

3(1 +Δ2)
γ2 +

3Δ2 − 1
4

γ3 +
8
3
γ4 + γ6

γ = 2T/Θ ,

where α is the high-temperature limiting magnitude of the slope (of the order
of several 10−4 eV/K), Θ is an effective average phonon temperature and Δ
is related to the phonon dispersion (typically between zero (Bose–Einstein
model) and 3/4).

Table 6.3. Parameters for the temperature dependence of the band gap (6.32)
and (6.33) for various semiconductors

α Θ Δ αB ΘB

(10−4 eV/K) (K) (10−4 eV/K) (K)

Si 3.23 446 0.51 2.82 351

Ge 4.13 253 0.49

GaAs 4.77 252 0.43 5.12 313

InP 3.96 274 0.48

InAs 2.82 147 0.68

ZnSe 5.00 218 0.36

ZnO 3.8 659 0.54
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6.8 Electron Dispersion

6.8.1 Equation of Electron Motion

The equation of motion for the electron in the band structure is no longer
given by Netwon’s law F = d(mv)/dt as in vacuum. Instead, the propagation
of quantum-mechanical electron wave packets has to be considered. Their
group velocity is given by (vg = ∂ω/∂k)

v =
1
�
∇kE(k) , (6.34)

where ∇k is the gradient with respect to k. Through the dispersion relation
the influence of the crystal and its periodic potential on the motion enters
the equation.

An electric field E acts on an electron during the time δt the work
δE = −eEvgδt. This change in energy is related to a change in k via
δE = dE/dkδk = �vgδk. Thus, we arrive at �dk/dt = −eE . For an external
force we thus have

�
dk
dt

= −eE = F . (6.35)

Thus, the crystal momentum p = �k takes the role of the momentum. A
more rigorous derivation can be found in [310].

In the presence of a magnetic field B the equation of motion is:

�
dk
dt

= −ev × B = − e
�

(∇kE) × B . (6.36)

The motion in a magnetic field is thus perpendicular to the gradient of the
energy, i.e. the energy of the electron does not change. It oscillates therefore
on a surface of constant energy perpendicular to B.

6.8.2 Effective Mass of Electrons

From the free-electron dispersion E = �
2k2/(2m) the mass of the parti-

cle is inversely proportional to the curvature of the dispersion relation, i.e.
m = �

2/(d2E/dk2). This relation will now be generalized for arbitrary dis-
persion relations. The tensor of the effective mass is defined as

(m∗−1)ij =
1
�2

∂2E

∂ki∂kj
. (6.37)

The equation F = m∗v̇ must be understood as a tensor equation, i.e.
for the components of the force Fi = m∗

ijaj . Force and acceleration must
no longer be collinear. In order to find the acceleration from the force, the
inverse of the effective-mass tensor must be used, a = (m∗)−1 F.
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Fig. 6.22. Schematic diagram of the electron dispersion E(k) in a typical semi-
conductor (blue) and corresponding carrier velocity (∝ ∂E/∂k) (red) and effective
mass (∝ 1/(∂2E/∂k2)) (green)

In Fig. 6.22 the energy dispersion of the (lowest) conduction band in a
typical semiconductor, the related electron velocity and the effective mass
are shown schematically.

In (6.25) the ratio of the effective mass and the free-electron mass is of the
order of m∗/m ≈ U/λ, the ratio of the free particle energy and the band gap.
For typical semiconductors, the width of the (valence) band is of the order
of 20 eV, and the gap is about 0.2–2 eV. Thus, the effective mass is expected
to be 10–100 times smaller than the free-electron mass. Additionally, the
relation m∗ ∝ Eg is roughly fulfilled (Fig. 6.23).

From so-called k · p theory [331] (see Appendix F) the effective electron
mass is predicted to be related to the momentum matrix element pcv

pcv = 〈c|p|v〉 =
∫

Ω0

u∗c,k(r)puc, k(r) d3r , (6.38)
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Fig. 6.23. Effective electron mass (in units of the free-electron mass m0) as a
function of the (low-temperature) band gap for several (direct band gap) semicon-
ductors. The dashed line fulfills m∗/m0 = Eg/20 eV

with Ω0 being the unit cell volume and the Bloch functions |c〉 and |v〉 of the
conduction and valence band, respectively, given as

|c〉 = uc,kc(r) exp (ikcr) (6.39a)
|v〉 = uv,kv(r) exp (ikvr) . (6.39b)

Typically, the k-dependence of the matrix element is small and neglected.
The momentum matrix element will also be important for optical transitions
between the valence and conduction bands (Sect. 9.4). Other related quanti-
ties that are often used are the energy parameter EP

EP =
2 |pcv|2
m0

, (6.40)

and the bulk momentum matrix element M2
b that is given by

M2
b =

1
3
|pcv|2 =

m0

6
EP . (6.41)

The electron mass is given by5

m0

m∗
e

= 1 +
EP

3

(
2
Eg

+
1

Eg +Δ0

)
(6.42)

= 1 + EP
Eg + 2Δ0/3
Eg (Eg +Δ0)

≈ 1 +
EP

Eg +Δ0/3
≈ EP

Eg
.

5Δ0 is the spin-orbit splitting discussed in Sect. 6.9.2.
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Table 6.4. Longitudinal direction of effective mass ellipsoid, longitudinal and trans-
verse effective electron mass in several semiconductors. Values for ml and mt in
units of the free electron mass m0

long. dir. ml mt ml/mt Ref.

Si {110} 0.98 0.19 5.16 [339]

Ge {111} 1.59 0.082 19.4 [339]

ZnO [00.1] 0.21 0.24 0.88 [340]

CdS [00.1] 0.15 0.17 0.9 [341]

Comparison with the fit from Fig. 6.23 yields that EP is similar for all
semiconductors [336] and of the order of 20 eV (InAs: 22.2 eV, GaAs: 25.7 eV,
InP: 20.4 eV, ZnSe: 23 eV, CdS: 21 eV).

In silicon there are six conduction-band minima. The surfaces of equal en-
ergy are schematically shown in Fig. 6.24c. The ellipsoids are extended along
the 〈100〉 direction because the longitudinal mass (along the Δ path) is larger
than the transverse mass in the two perpendicular directions (Table 6.4). For
example, the dispersion relation around the [100] minimum is then given as
(k0

x denotes the position of the conduction-band minimum)

E(k) = �
2

(
(kx − k0

x)2

2ml
+
k2

y + k2
z

2mt

)

. (6.43)

For germanium surfaces of constant energy around the eight
conduction-band minima in the 〈111〉 directions are depicted in Fig. 6.24d.
The longitudinal and the transverse masses are again different. For GaAs, the
conduction-band dispersion around the Γ point is isotropic, thus the surface
of constant energy is simply a sphere (Fig. 6.24a). In wurtzite semiconductors
the conduction-band minimum is typically at the Γ point. The mass along
the c-axis is typically smaller than the mass within the (00.1) plane [337]
(ml/mt ≈ 0.9 for ZnO [338]), see Fig. 6.24b. In [337] also an anisotropy
within the (00.1) plane is predicted.

The directional dependence of the mass can be measured with cyclotron
resonance experiments with varying direction of the magnetic field. In
Fig. 6.25, the field B is in the (110) plane with different azimuthal directions.
When the (static) magnetic field makes an angle θ with the longitudinal axis
of the energy surface, the effective mass is given as [342]

1
m∗ =

√
cos2 θ
m2

t

+
sin2 θ

mtml
. (6.44)
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(a) (b)

(c) (d)

Fig. 6.24. Ellipsoids of constant energy in the vicinity of the conduction-band
minima for (a) GaAs with isotropic minimum at Γ point, (b) ZnO with anisotropic
minimum at Γ point (anisotropy exaggerated), (c) silicon with six equivalent
anisotropic minima (ml/mt = 5 not to scale) along 〈100〉 and (d) germanium
with eight equivalent anisotropic minima along 〈111〉. The cube indicates the 〈100〉
directions for the cubic materials. For the wurtzite material (part (b)) the vertical
direction is along [00.1]

6.8.3 Polaron Mass

In an ionic lattice, the electron polarizes the ions and causes a change of
their equilibrium position. When the electron moves, it must drag this ion
displacement with it. This process it called the polaronic effect and requires
additional energy [343, 344]. It leads to an increase of the electron mass to
the ‘polaron mass’ mp,6

mp = m∗
(
1 +

α

6
+ 0.025α2 + . . .

)
, (6.45)

6For the calculation, many-particle theory and techniques are needed; the best
solution is still given by Feynman’s path integral calculation [344–346].
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(a) (b)

Fig. 6.25. Cyclotron mass (at T = 4 K) in (a) Si and (b) Ge for the magnetic
field in the (110) plane and various azimuthal directions θ. Experimental data and
fits (solid lines) using (6.44) with (a) ml = 0.98, mt = 0.19 and (b) ml = 1.58,
mt = 0.082. Data from [339]

for α ≤ 1, with m∗ being the band mass as defined in Sect. 6.8.2 and α the
Fröhlich coupling constant7

α =
1
2
e2

�

√
2m∗

�ωLO

(
1
ε∞

− 1
ε0

)
. (6.46)

Often, the polaron mass is given as mp = m∗/(1 − α/6) which is the result
of perturbation theory [343] and an approximation to (6.45) for small α.

For large coupling parameter, α 1, the polaron mass is given by [345]

mp = m∗ 16
81π4

α4 . (6.47)

7This constant is part of the matrix element in the Hamiltonian of the electron–
phonon interaction and is related to the electric field created by LO phonons, as
given in (5.51).
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Table 6.5. Fröhlich coupling constant for various semiconductors. Data from [348]

GaSb GaAs GaP GaN InSb InAs InP InN

0.025 0.068 0.201 0.48 0.022 0.045 0.15 0.24

3C-SiC ZnO ZnS ZnSe ZnTe CdS CdSe CdTe

0.26 1.19 0.63 0.43 0.33 0.51 0.46 0.35

The energy of the electron is lowered due to the interaction with the
lattice. The energy E0 for k = 0 is given, relative to the uncoupled case,
by

E0 = − (
α+ 0.0098α2 + . . .

)
�ω0 , α ≤ 1 (6.48a)

E0 = − (
2.83 + 0.106α2

)
�ω0 , α 1 (6.48b)

Numerical results are reported in [347].
Polarons in semiconductors are typically ‘large’ or Fröhlich-type polarons,

i.e. the coupling constant is small (Table 6.5). The dressing with phonons (as
the ion displacement is called in a quantum-mechanical picture) is then only a
perturbative effect and the number of phonons per electron (≈ α/2) is small.
If α becomes large (α > 1, α ∼ 6), as is the case for strongly ionic crystals
such as alkali halides, the polaron becomes localized by the electron–phonon
interaction8 and hopping occurs infrequently from site to site.

6.8.4 Nonparabolicity of Electron Mass

The dispersion around the conduction-band minimum is only parabolic for
small k. The further away the wavevector is from the extremum, the more the
actual dispersion deviates from the ideal parabola (see, e.g., Fig. 6.6). This
effect is termed nonparabolicity. Typically, the energy increases less quickly
with k than in the parabolic model. This can be described in a so-called
two-level model with the dispersion relation

�
2k2

2m∗
0

= E

(
1 +

E

E∗
0

)
, (6.49)

where E∗
0 > 0 parameterizes the amount of nonparabolicity (a parabolic band

corresponds to E∗
0 = ∞). The nonparabolic dispersion for GaAs is shown in

Fig. 6.26a. The curvature is reduced for larger k and thus the effective mass

8One can think about it in the way that the electron strongly polarizes the
lattice and digs itself a potential hole out of which it can no longer move.



168 6 Band Structure
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Fig. 6.26. (a) Dispersion relations for the conduction band of GaAs. The solid
line is parabolic dispersion (constant effective mass). The dashed (dash-dotted) line
denotes the dispersion for k along [001] ([111]) from a five-level k ·p model (5LM).
(b) Cyclotron resonance effective mass of electrons in GaAs as a function of the
Fermi level (upper abscissa) and the corresponding electron concentration (lower
abscissa). The dashed line is from a 2LM according to (6.50) with E∗

0 = 1.52 eV.
The solid lines are for a 5LM for the three principal directions of the magnetic field.
The symbols represent experimental data from different sources. Data from [349]

is energy dependent and increases with the energy. Equation (6.49) leads to
the energy-dependent effective mass

m∗(E) = m∗
0

(
1 +

2E
E∗

0

)
, (6.50)

where m∗
0 denotes here the effective mass at k = 0. Theory and experimental

data for the effective electron mass of GaAs are shown in Fig. 6.26b.

6.9 Holes

6.9.1 Hole Concept

Holes are missing electrons in an otherwise filled band. A Schrödinger-type
wave-equation for holes (unoccupied electron states) was derived by Heisen-
berg [42] to interpret Hall effect data. The hole concept is useful to describe
the properties of charge carriers at the top of the valence band. The hole
is a new quasi-particle whose dispersion relation is schematically shown in
Fig. 6.27 in relation to the dispersion of electrons in the valence band.

The wavevector of the hole (filled circle in Fig. 6.27) is related to that of
the ‘missing’ electron (empty circle in Fig. 6.27) by kh = −ke. The energy is
Eh(kh) = −Ee(ke), assuming that EV = 0, otherwise Eh(kh) = −Ee(ke) +
2EV. The hole energy is larger for holes that are further away from the top
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k

E

ke
kh

Fig. 6.27. Hole dispersion (dashed line) in relation to the electron dispersion in
the valence band (solid line)

of the valence band, i.e. the lower the energy state of the missing electron.
The velocity of the hole, vh = �

−1dEh/dkh, is the same, vh = ve, and the
charge is positive, +e. The effective mass of the hole is positive at the top of
the valence band, m∗

h = −m∗
e . Therefore, the drift velocities of an electron

and hole are opposite to each other. The resulting current, however, is the
same.

6.9.2 Hole Dispersion Relation

The valence band at the Γ point is 3-fold degenerate. The band developed
from the atomic (bonding) p states; the coupling of the spin s = 1/2 electrons
with the orbital angular momentum l = 1 leads to a total angular momentum
j = 1/2 and j = 3/2. The latter states are degenerate at Γ in zincblende
bulk material and are called heavy holes (hh) for mj = ±3/2 and light holes
(lh) for mj = ±1/2 due to their different dispersion (Fig. 6.28a). The two
(mj = ±/2) states of the j = 1/2 state are split-off from these states by an
energy Δ0 due to spin-orbit interaction and are called split-off (s-o) holes.
The spin-orbit interaction increases with increasing atomic order number Z
of the anion since the electrons are located preferentially there (Fig. 6.29). A
detailed discussion of the spin-orbit splitting in zincblende semiconductors is
given in [350].

All three holes have different mass. In the vicinity of the Γ point the
dispersion for heavy and light holes can be described with (+:hh, −:lh)

E(k) = Ak2 ±
√
B2k4 + C2

(
k2
xk

2
y + k2

yk
2
z + k2

xk
2
z

)
. (6.51)

For heavy and light holes there is a dependence of the dispersion, i.e. the
mass, in the (001) plane. This effect, sketched in Fig. 6.28b, is called warping .
The warping at the GaAs valence-band edge is shown in Fig. 6.30. (6.51) can
also be expressed in terms of angular coordinates [351].
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(a) (b)

Fig. 6.28. (a) Simplified band structure with conduction band and three valence
bands and (b) three-dimensional visualization (E vs. (kx, ky)) of the valence bands
of Ge (including warping). Part (b) from [352]

Fig. 6.29. Spin-orbit splitting Δ0 for elemental (diamonds) and various III–V and
II–VI (circles) semiconductors. The data are plotted as empty (filled) circles as
a function of the cation (anion) order number. Obviously, Δ0 correlates with the
anion Z. The dashed line is proportional to Z2.
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Fig. 6.30. Dispersion at the valence band edge of GaAs for (a,b) heavy holes and
(c,d) light holes. (a,c) Constant energy surfaces and (b,d) isolines in the (kx, ky)-
plane ((b) and (d) have different energy scales)

The s-o holes have the dispersion

E(k) = −Δ0 +Ak2 . (6.52)

Values for A, B, C2 and Δ0 for a number of semiconductors are given in
Table 6.6. The valence-band structure is often described with the Luttinger
parameters γ1, γ2, and γ3 that can be represented through A, B, and C via

�
2

2m0
γ1 = −A (6.53a)

�
2

2m0
γ2 = −B

2
(6.53b)

�
2

2m0
γ3 =

√
B2 + C2/3

2
. (6.53c)

The mass of holes in various directions can be derived from (6.51).
The mass along the [001] direction, i.e. �

2/
(
∂2E(k)/∂k2

x

)
for ky = 0 and

kz = 0, is
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Table 6.6. Valence-band parameters (for (6.51)) A and B in units of (�2/2m0),
C2 in units of (�2/2m0)2, and Δ0 in eV. From [192, 353, 354]

material A B C2 Δ0

C −4.24 −1.64 9.5 0.006

Si −4.28 −0.68 24 0.044

Ge −13.38 −8.5 173 0.295

GaAs −6.9 −4.4 43 0.341

InP −5.15 −1.9 21 0.11

InAs −20.4 −16.6 167 0.38

ZnSe −2.75 −1.0 7.5 0.43

1
m100

hh

=
2
�2

(A+B) (6.54a)

1
m100

lh

=
2
�2

(A−B) . (6.54b)

The anisotropy of hole masses has been investigated with cyclotron res-
onance experiments (Fig. 6.31). For θ being the angle between the magnetic

(a) (b)

Fig. 6.31. Cyclotron resonance (T = 4 K) effective mass of (heavy and light)
holes in (a) Si and (b) Ge for the magnetic field in the (110) plane and various azi-
muthal directions θ. Experimental data (symbols) and fits (solid lines) using (6.55).
Adapted from [339]
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(a) (b)

Fig. 6.32. Luttinger parameters for various III-V semiconductors vs. their band
gap. (a) Inverse values of γ1 (squares) and γ2 (diamonds). Dashed lines are guides
to the eyes. (b) γ3 − γ2 vs. band gap

field and the [001] direction, the effective heavy hole (upper sign) and light
hole (lower sign) mass in cubic semiconductors is given by [339]

m∗ =
�

2

2
1

A±√
B2 + C2/4

(6.55)

×
⎧
⎨

⎩
C2 (1 − 3 cos2 θ)2

64
√
B2 + C2/4

[
A±√

B2 + C2/4
] + . . .

⎫
⎬

⎭
.

For C2 = 0 the hole bands are isotropic, as is obvious from (6.51). In this
case γ2 = γ3, the so-called spherical approximation. The average of the hole
masses over all directions is

1
mav

hh

=
2
�2

(
A+B

[
1 +

2C2

15B2

])
(6.56a)

1
mav

lh

=
2
�2

(
A−B

[
1 +

2C2

15B2

])
. (6.56b)

Similar to the correlation of the electron mass with the band gap
(Fig. 6.23), the Luttinger parameters are correlated with the band gap as
shown in Fig. 6.32. The parameters 1/γ1 and 1/γ2 increase about linearly
with Eg. The parameter γ3 − γ2, which is responsible for the valence band
warping, decreases with increasing band gap.

6.9.3 Valence-Band Fine Structure

In Fig. 6.33, the schematic structure of the band edges for zincblende struc-
ture semiconductors is shown. The s-o holes in the zincblende structure are
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Fig. 6.33. Schematic band structure of zincblende and the valence-band splitting
due to spin-orbit interaction Δso and crystal field splitting Δcf for chalcopyrites
(typically Δcf < 0, see Fig. 6.34) and wurtzites. For the wurtzites the situation
is schematically shown for CdS (Δso =67 meV, Δcf =27 meV) (or GaN) and ZnO
(Δso = −8.7 meV, Δcf =41 meV)

split-off due to the spin-orbit interaction Δso, the Γ8 band is degenerate
(heavy and light holes). Degeneracies for the holes are removed in the wurtzite
and chalcopyrite structures by the additional crystal field splitting Δcf due
to the anisotropy between the a- and c-axes. Typically, e.g. for CdS, the
topmost valence band in the wurtzite structure has Γ9 symmetry (allowed
optical transitions only for E ⊥ c); an exception is ZnO for which the two
upper bands are believed to be reversed. In the chalcopyrite structure opti-
cal transitions involving the Γ6 band are only allowed for E ⊥ c. The three
hole bands are usually labeled A, B, and C from the top of the valence
band.

The energy positions of the three bands (with respect to the position
of the Γ15 band) in the presence of spin-orbit interaction and crystal field
splitting are given within the quasi-cubic approximation [355] by

E1 =
Δso +Δcf

2
(6.57a)

E2,3 = ±
√(

Δso +Δcf

2

)2

− 2
3
ΔsoΔcf . (6.57b)

In chalcopyrites the crystal field splitting is typically negative (Fig. 6.34).
It is approximately linearly related to 1 − η (for η = c/2a see Sect.
3.4.6).
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Fig. 6.34. Crystal field splitting Δcf for various chalcopyrite compounds vs. the
tetragonal distortion 2−c/a = 2 (1−η). Dash-dotted line represents Δcf = 1.5 b (2−
c/a) for b = 1 eV. Data from [357]

In certain compounds the band gap can shrink to zero (zero-gap semicon-
ductor, cf. Sect. 17.1.2) and even become negative in the sense that the Γ6

symmetry (conduction) band is below the valence-band edge (Fig. 6.35). For
the zero-gap case, the dispersion of some bands is linear (cmp. Sect. 17.1.2);

0<0

0>0

77 7 7 7

8

6

6

6

6

8
88

zero-gap

0.00 0.02 0.06 0.080.04 0.12 0.140.10
x

Fig. 6.35. Schematic band structure of zincblende with vanishing energy gap for
the ternary compounds MnxHg1−xTe. Note the linear dispersion for the zero-gap
case at x ≈ 0.07
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this corresponds to a very strong non-parabolicity. The dielectric function of
zero-gap semiconductors is discussed in [356].

6.10 Strain Effect on the Band Structure

A mechanical strain (or equivalently stress) causes changes in the bond
lengths. Accordingly, the band structure is affected. These effects have been
exhaustively treated in [358, 359]. For small strain, typically ε � 0.01 the shift
of the band edges is linear with the strain, for large strain it becomes nonlin-
ear [360]. Often homogeneous strain is assumed, the effect of inhomogeneous
strain is discussed in [361].

6.10.1 Strain Effect on Band Edges

In a direct-gap zincblende material the position of the conduction-band edge
is only affected by the hydrostatic component of the strain

EC = E0
C + ac (εxx + εyy + εzz) = E0

C + ac Tr(ε) , (6.58)

where ac < 0 is the conduction-band hydrostatic deformation potential and
E0

C is the conduction-band edge of the unstrained material. Similarly, the
valence-band edge is

EV = E0
V + av Tr(ε) , (6.59)

where av > 0 is the valence-band hydrostatic deformation potential. There-
fore the band gap increases by

ΔEg = aTr(ε) = a (εxx + εyy + εzz) , (6.60)

with a = ac − av. Such linear behavior upon hydrostatic pressure has been
found for many semiconductors and is shown in Fig. 6.36a for Ga0.92In0.08As.
The anomaly for N-doping is discussed below in Sect. 6.10.3. In Fig. 6.37 the
dependence of the direct and indirect gaps of GaAs is shown. The dependence
of the direct gap on pressure is non-linear, that on the density is linear [362].

Biaxial and shear strains affect the valence bands and lead to shifts and
splitting of the heavy and light holes at the Γ point:

Ev,hh/lh = E0
v ± Eεε (6.61a)

E2
εε = b2/2

[
(εxx − εyy)

2 + (εyy − εzz)
2 + (εxx − εzz)

2
]

+d2
[
ε2xy + ε2yz + ε2xz

]
,

where E0
v denotes the bulk valence-band edge. b and d are the optical deforma-

tion potentials. For compressive strain the heavy-hole band is above the light-
hole band. For tensile strain there is strong mixing of the bands (Fig. 6.38).
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Fig. 6.36. (a) Dependence of the band gap of Ga0.92In0.08As alloy (squares) and
nitrogen-doped GaInAs on (compressive) hydrostatic pressure, determined by pho-
tomodulated transmission at T = 295 K. (b) Pressure dependence of band gap for
two GaInAsN samples together with model calculation (6.65). The coupling pa-
rameter is V = 0.12 eV (0.4 eV) for a nitrogen content of 0.9% (2.3%). Adapted
from [363]

In Table 6.7 the deformation potentials for some III–V semiconductors are
listed. Typical values are in the eV regime. In a wurtzite crystal, five defor-
mation potentials are needed that are termed a and D1–D4 [364, 365].

In Si and Ge, three deformation potentials, termed a, b, d, are needed
for the valence band and two for each conduction band minimum, Ξu and

Fig. 6.37. Dependence of the direct ΓV
15–ΓC

1 and indirect ΓV
15–XC

1 band gap of
GaAs (T = 300 K) on pressure. Solid lines are interpolations of experimental data,
dashed line is extrapolation to p = 0. The crossing of the direct and indirect band
gap occurs at 4.2 GPa. The arrow denotes the pressure of the phase transition from
zincblende to an orthorhombic structure around 17 GPa. Adapted from [362]
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Fig. 6.38. Schematic band structure of GaAs in unstrained state (center) and
under compressive and tensile biaxial strain as labeled. Dashed lines indicate shift
of band edges due to hydrostatic part of strain

Table 6.7. Deformation potentials for some III–V semiconductors. All values in eV.

material a b d

GaAs −9.8 −1.7 −4.6

InAs −6.0 −1.8 −3.6

Ξd [366]. The energy position of the i-th conduction-band edge (with unit
vector ai pointing to the valley) is

EC,i = E0
C,i +Ξd Tr(ε) +Ξu ai εai , (6.62)

where E0
C,i denotes the energy of the unstrained conduction-band edge. The

deformation potentials for Si and Ge are given in Table 6.8.

Table 6.8. Deformation potentials for silicon and germanium. All values in eV
from [367]

material Ξ
(Δ)
d Ξ

(Δ)
u Ξ

(L)
d Ξ

(L)
u a b d

Si 1.1 10.5 −7.0 18.0 2.1 −2.33 −4.75

Ge 4.5 9.75 −4.43 16.8 2.0 −2.16 −6.06
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6.10.2 Strain Effect on Effective Masses

In the presence of strain the band edges are shifted (cf. Sect. 6.10). Since the
electron mass is related to the band gap, it is expected that the mass will
also be effected. In the presence of hydrostatic strain εH the electron mass
is [368] (cf. to (6.42) for εH → 0)

m0

m∗
e

= 1 +
EP

Eg +Δ0/3

[
1 − εH

(
2 +

3a
Eg +Δ0/3

)]
, (6.63)

with a being the hydrostatic deformation potential and εH = Tr(ε). In [368],
formulas are also given for biaxial and shear strain and also for hole masses.
Since the effective mass enters the mobility, the electrical conductivity de-
pends on the stress state of the semiconductor (piezoresistivity, see
Sect. 8.3.11).

6.10.3 Interaction with a Localized Level

The normal dependence of the band gap on hydrostatic pressure is linear and
given by (6.60). GaInAs containing nitrogen exhibits a remarkable deviation
from this behavior as shown in Fig. 6.36a. This is due to the interaction of
the continuum states of the conduction band with the electron level of the
isoelectronic nitrogen impurity (Sect. 7.7.9) EN, being within the conduction
band. For GaAs it is 0.2 eV above the conduction band edge EC. This phe-
nomenon has been investigated theoretically within microscopic detail [369].
Within a simple two-level model, the coupling of the pressure-dependent con-
duction band edge EM and the nitrogen level can be obtained from solving
the eigenwert equation

∣∣
∣∣
E − EC V
V E − EN

∣∣
∣∣ = 0 , (6.64)

V being the coupling constant. The determinant vanishes for

E± =
1
2

(
EC + EN ±

√
(EC − EN)2 + 4V 2

)
. (6.65)

Here the weak pressure dependence of EN is neglected for simplicity. This
model can explain the pressure dependence of the band gap of GaInAs:N
fairly well [363] (Fig. 6.36b). The coupling parameter V is in the order of a
few 0.1 eV. In photomodulated reflection also the E+ levels can be observed.

6.11 Density of States

6.11.1 General Band Structure

The dispersion relation yields how the energy of a (quasi-) particle depends
on the k vector. Now we want to know how many states are at a given energy.
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This quantity is called the density of states (DOS) and is written as D(E). It
is defined in an infinitesimal sense such that the number of states between E
and E + δE is D(E)δE. In the vicinity of the extrema of the band structure
many states are at the same energy such that the density of states is high.

The dispersion relation of a band will be given as E = E(k). If several
bands overlap, the densities of state of all bands need to be summed up. The
density of states at the energy Ẽ for the given band is

D
(
Ẽ
)

dE = 2
∫

d3k
(2π/L)3

δ(Ẽ − E(k)) , (6.66)

where, according to (5.5), (2π/L)3 is the k-space volume for one state. The
factor 2 is for spin degeneracy. The integral runs over the entire k-space and
selects only those states that are at Ẽ. The volume integral can be converted
to a surface integral over the isoenergy surface S

(
Ẽ
)

with E(k) = Ẽ. The

volume element d3k is written as d2Sk⊥. The vector k⊥ is perpendicular to
S

(
Ẽ
)

and proportional to ∇kE(k), i.e. dE = |∇kE(k)|dk⊥.

D
(
Ẽ
)

= 2
∫

S(Ẽ)

d2S

(2π/L)3
1

|∇kE(k)| . (6.67)

In this equation, the dispersion relation is explicitly contained. At band
extrema the gradient diverges, however, in three dimensions the singularities
are integrable and the density of states takes a finite value. The corresponding
peak is named a van-Hove singularity. The concept of the density of states
is valid for all possible dispersion relations, e.g. for electrons, phonons or
photons.

The density of states for the silicon band structure (see Fig. 6.5a) is
shown in Fig. 6.39. If disorder is introduced, the density of states is modified
as shown in Fig. 6.40 for amorphous germanium. The defects, as compared
to the perfect lattice, introduced states in the band gap and generally wash
out the sharp features from the crystalline DOS.

6.11.2 Free-Electron Gas

In M dimensions, the energy states of a free-electron gas are given as

E(k) =
�

2

2m∗

M∑

i=1

k2
i . (6.68)

The ki can take the values ±πn/L (in the first Brillouin zone) with n ≤ N ,
N being the number of unit cells in one dimension. These values are equidis-
tant in k-space. Each M -dimensional k-point takes a volume of (2π/L)M .
The number of states N(EF) up to the energy EF = �

2

2mk
2
F (later used as

Fermi energy EF and Fermi vector kF) is
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Fig. 6.39. Density of states in the silicon valence- (blue) and conduction-band
(red) as obtained from theoretical calculation using empirical pseudopotentials.
Grey regions denotes the band gap. Critical points (cf. Fig. 6.5a) are labeled. In
the lower three graphs, the DOS is decomposed into contributions from different
angular momentum states (s (green), p (orange) and d (purple)). Top part adapted
from [370], bottom part adapted from [98]

N(EF) =
2

(2π/L)M

∫ |k|=kF

k=0

dMk . (6.69)

The factor 2 is for spin degeneracy, the integration runs over M dimensions.
The density of states is the derivative

D(E) =
dN
dE

. (6.70)

In the following, the density of states for M = 3, 2, 1 and zero dimensions
is derived. A visualization is given in Fig. 13.1.
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−8 −6 −4 −2 0
Energy (eV)

2 4

Fig. 6.40. Theoretical calculation for the density of states of amorphous Ge models
as obtained for various degrees of disorder α (3.6). α = 0.09 corresponds to a mean
short-range order distance of about 2.4 lattice constants (cmp. Fig. 3.14b). Adapted
from [114]

M = 3

This case relates to bulk material in which electrons are free to move in all
three dimensions. Performing the integral (6.69) for M = 3 yields

N3D =
V

3π2
k3
F =

V

3π2

(
2mEF

�2

)3/2

. (6.71)

Therefore, kF and EF are given by

kF =
(

3π2N

V

)1/3

(6.72)

EF =
�

2

2m∗

(
3π2N

V

)2/3

, (6.73)

and the density of states in three dimensions is

D3D(E) =
V

2π2

(
2m∗

�2

)3/2 √
E . (6.74)

M = 2

This case is important for thin layers in which the electron motion is confined
in one direction and free in a plane. Such structures are called quantum wells
(see Sect. 11.3.2). We find for the 2D density of states (for each subband over
which it is not summed here, including spin degeneracy)
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N2D =
A

2π
k2
F =

A

π

m∗

�2
E , (6.75)

where A is the area of the layer. The density of states is thus constant and
given by

D2D(E) =
A

π

m∗

�2
. (6.76)

M = 1

The case M = 1 describes a quantum wire in which the electron motion is
confined in two dimensions and free in only one dimension. For this case, we
find for a wire of length L

N1D =
2L
π
kF =

2L
π

(
2m∗E

�2

)1/2

. (6.77)

The density of states becomes singular at E = 0 and is given by (for one
subband)

D1D(E) =
L

π

(
2m∗

�2

)1/2 1√
E
. (6.78)

M = 0

In this case electrons have no degrees of freedom, as, e.g., in a quantum dot,
and each state has a δ-like density of states at each of the quantized levels.
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Über Halbleiter sollte man nicht arbeiten,
das ist eine Schweinerei,

wer weiß ob es überhaupt Halbleiter gibt.1

W. Pauli, 1931 [371]

7.1 Introduction

One cm3 of a semiconductor contains about 5 × 1022 atoms. It is practically
impossible to achieve perfect purity. Typical low concentrations of impurity
atoms are in the 1012–1013 cm−3 regime. Such a concentration corresponds
to a purity of 10−10, corresponding to about one alien in the world’s human
population. In the beginning of semiconductor research the semiconductors
were so impure that the actual semiconducting properties could only be used
inefficiently. Nowadays, thanks to large improvements in high-purity chem-
istry, the most common semiconductors, in particular silicon, can be made
so pure that the residual impurity concentration plays no role in the physical
properties. However, the most important technological step for semiconduc-
tors is doping, the controlled incorporation of impurities, in order to manage
the semiconductor’s conductivity. Typical impurity concentrations used in
doping are 1015–1020 cm−3. A milestone in the understanding of doping and
the spreading of semiconductor technology was the 1950 textbook by Shock-
ley [372].

7.2 Fermi Distribution

In thermodynamic equilibrium, the distribution function for electrons is given
by the Fermi–Dirac distribution (Fermi function) fe(E) (cf. Sect. E)

1One should not work on semiconductors. They are a mess. Who knows whether
semiconductors exist at all.

M. Grundmann, The Physics of Semiconductors, 2nd ed., Graduate Texts 185
in Physics, DOI 10.1007/978-3-642-13884-3 7,
c© Springer-Verlag Berlin Heidelberg 2010
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fe(E) =
1

exp
(

E−EF
kT

)
+ 1

, (7.1)

where k (or kB) denotes the Boltzmann constant, T is the temperature, and
EF is the Fermi level, which is called the chemical potential μ in thermody-
namics. The Fermi distribution is shown in Fig. 7.1 for various parameters.
The distribution function gives the probability that a state at energy E is
populated in thermodynamic equilibrium. For E = EF the population is 1/2
for all temperatures. At (the unrealistic case of) T = 0, the function makes
a step from 1 (for E < EF) to 0.

The high-energy tail of the Fermi distribution, i.e. for E −EF  kT , can
be approximated by the Boltzmann distribution:

fe(E) ∼= exp
(
−E − EF

kT

)
. (7.2)

If the Boltzmann distribution is a good approximation, the carrier distribu-
tion is called nondegenerate. If the Fermi distribution needs to be invoked,

(a) (b)

(c) (d)

Fig. 7.1. Fermi function for (a,b) different temperatures (for EF = 1.0 eV) and (c)
for different chemical potentials (for T = 300 K). (d) Fermi function (solid lines)
compared with Boltzmann approximation (dashed lines) for various temperatures
and EF = 1.0 eV on semilogarithmic plot
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the carrier ensemble is called degenerate. If the Fermi level is within the band
the ensemble is highly degenerate.

7.3 Carrier Concentration

Generally, the density of electrons in the conduction band is given by

n =
∫ ∞

EC

De(E) fe(E) dE , (7.3)

and accordingly the density of holes in the valence band is

p =
∫ EV

−∞
Dh(E) fh(E) dE . (7.4)

The energy of the top of the valence band is denoted by EV, the bottom of
the conduction band as EC. The distribution function for holes is fh = 1−fe.
Thus,

fh(E) = 1 − 1
exp

(
E−EF

kT

)
+ 1

=
1

exp
(−E−EF

kT

)
+ 1

. (7.5)

If several hole bands (hh, lh, so) are considered, the same distribution is valid
for all hole bands in thermal equilibrium.

We assume parabolic band edges, i.e. effective masses me and mh for
electrons and holes, respectively. The density of states in the conduction
band (per unit volume) is given (for E > EC) as (cf. (6.74))

De(E) =
1

2π2

(
2me

�2

)3/2 √
E − EC . (7.6)

If, in the previous consideration the Boltzmann approximation cannot be
applied, i.e. at high temperatures or for very small band gaps, the integral
over Df cannot be explicitly (or analytically) evaluated. In this case the
Fermi integral is needed that is defined2 as

Fn(x) =
2√
π

∫ ∞

0

yn

1 + exp(y − x)
dy . (7.7)

In the present case of bulk materials n = 1/2. For large negative argument,
i.e. x < 0 and |x|  1, F1/2(x) ∼= √

π/2 exp(x), which is the Boltzmann
approximation. F1/2(0) = 0.67809 . . . ≈ 2/3. For large argument, i.e. x  1,
F1/2(x) ≈ 2/3x3/2. Such fairly simple approximations are plotted in Fig. 7.2

2Equation (7.7) is restricted to n > −1. A form without restriction is Fn(x) =
1

Γ (n+1)

∫ ∞
0

yn

1+exp(y−x)
dy. The factor 2/

√
π is often omitted but must be then added

explicitly in, e.g., (7.8).
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(a) (b)

Fig. 7.2. Fermi integral F̂1/2 = (
√

π/2)F1/2 with approximations in three regions of
the argument: A1(x) = (

√
π/2) exp(x) for x < 2, A2(x) = (

√
π/2)(1/4+exp(−x))−1

for −2 < x < 2, A3(x) = 2/3x3/2 for x > 2. (a) linear, (b) semilogarithmic plot

in comparison with the Fermi integral. For computations, analytical [373–375]
or numerical approximations [376, 377] are used.

The derivative of the Fermi integral is given by F ′
n(x) = nFn−1(x), n > 0.

For n = 0, i.e. a two-dimensional system, the integral can be executed
explicitly, F0(x) = ln [1 + exp(x)].

With the Fermi integral F1/2 (7.15) and (7.16) then have the following
expressions for the free-carrier densities:

n = NC F1/2

(
EF − EC

kT

)
(7.8)

p = NV F1/2

(
−EF − EV

kT

)
, (7.9)

with

NC = 2
(
mekT

2π �2

)3/2

(7.10)

NV = 2
(
mhkT

2π �2

)3/2

, (7.11)

where NC (NV) is called the conduction-band (valence-band) edge density
of states. If the conduction-band minimum is degenerate, a factor gv (valley
degeneracy) must be included, i.e. gv = 6 for Si and gv = 8 for Ge (gv = 1 for
GaAs). This factor is typically included in the mass used in (7.10) that then
becomes the density of states mass md,e. If the conduction-band minimum
has cylindrical symmetry in k-space, such as for Si and Ge, the mass that
has to be used is

md,e = g2/3
v

(
m2

tml

)1/3
. (7.12)
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In the case of a degeneracy of the valence band, the states of several bands
need to be summed for NV. In bulk material, typically the heavy and light
hole bands are degenerate at the Γ point. If the split-off band is not populated
because of insufficient temperature, the valence-band edge density of states
is given by

NV = 2
(
kT

2π�2

)3/2 (
m

3/2
hh +m

3/2
lh

)
. (7.13)

Alternatively, the mass mh in (7.11) can be taken as the density of states
hole mass

md,h = (m3/2
hh +m

3/2
lh )2/3 . (7.14)

Values of NC,V for Si, Ge and GaAs are given in Table 7.1.
Now, we assume that the Boltzmann approximation (7.2) can be used,

i.e. the probability that a band state is populated is � 1. Then, the integral
(7.3) can be executed analytically and the concentration n of electrons in the
conduction band is given as

n = 2
(
mekT

2π�2

)3/2

exp
(
EF − EC

kT

)
= NC exp

(
EF − EC

kT

)
. (7.15)

For the Boltzmann approximation and a parabolic valence band, the density
of holes is given by

p = 2
(
mhkT

2π�2

)3/2

exp
(
−EF −EV

kT

)
= NV exp

(
−EF − EV

kT

)
. (7.16)

The product of the electron and hole density is

n p = NVNC exp
(
−EC − EV

kT

)
= NVNC exp

(
−Eg

kT

)
(7.17)

= 4
(
kT

2π�2

)3

(md,emd,h)3/2 exp
(
−Eg

kT

)
.

Table 7.1. Band gap, intrinsic carrier concentration, conduction band and valence-
band edge density of states at T = 300 K for various semiconductors

Eg (eV) ni (cm−3) NC (cm−3) NV (cm−3)

InSb 0.18 1.6 × 1016

InAs 0.36 8.6 × 1014

Ge 0.67 2.4 × 1013 1.04 × 1019 6.0 × 1018

Si 1.124 1.0 × 1010 7.28 × 1019 1.05 × 1019

GaAs 1.43 1.8 × 106 4.35 × 1017 5.33 × 1018

GaP 2.26 2.7 × 100

GaN 3.3 � 1
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(a) (b)

Fig. 7.3. (a) np for silicon at T = 300 K as a function of the position of the Fermi
level. The valence-band edge EV is chosen as E = 0. np is constant for the range
of Fermi energies given by (7.18) (4kT ≈ 0.1 eV). (b) n, p and

√
np as a function

of the Fermi level

Thus, the product np is independent of the position of the Fermi level, as
long as the Boltzmann approximation is fulfilled, i.e. the Fermi level is not
in the vicinity of one of the band edges within several kT :

EV + 4kT < EF < EC − 4kT . (7.18)

The relation (7.17) is called the mass-action law.
In Fig. 7.3, the product np is shown for silicon over a wide range of Fermi

energies. If EF is within the band gap, np is essentially constant. If the Fermi
level is in the valence or conduction band, np decreases exponentially.

7.4 Intrinsic Conduction

First, we consider the conductivity of the intrinsic, i.e. an ideally pure, semi-
conductor. At T = 0 all electrons are in the valence band, the conduction
band is empty and thus the conductivity is zero (a completely filled band
cannot conduct current). Only at finite temperatures do the electrons have a
finite probability to be in a conduction-band state and to contribute to the
conductivity. Due to neutrality, the electron and hole concentrations in the
intrinsic semiconductors are the same, i.e. each electron in the conduction
band comes from the valence band,

−n+ p = 0 , (7.19)

or ni = pi. Therefore

ni = pi =
√
NVNC exp

(
− Eg

2kT

)
(7.20)

= 2
(
kT

2π�2

)3/2

(memh)3/4 exp
(
− Eg

2kT

)
.
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The mass-action law

n p = ni pi = n2
i = p2

i (7.21)

will be essential also for doped semiconductors. The intrinsic carrier con-
centration is exponentially dependent on the band gap (Fig. 7.4). Thus,
in thermodynamic equilibrium intrinsic wide-gap semiconductors have much
smaller electron concentrations than intrinsic small-gap semiconductors (see
Table 7.1). The intrinsic carrier concentration of Si has been determined to
be (within 1%, T in K)

nSi
i = 1.640 × 1015 T 1.706 exp

(
−Eg(T )

2kT

)
(7.22)

for temperatures between 77 and 400 K [378, 379].
As we will see later in Part II, many semiconductor devices rely on regions

of low conductivity (depletion layers) in which the carrier concentration is
small. Since the carrier concentration cannot be smaller than the intrinsic
concentration (n + p ≥ 2ni), an increase of temperature leads to increasing
ohmic conduction in the depletion layers and thus to a reduction or failure
of device performance. The small band gap of Ge leads to degradation of
bipolar device performance already shortly above room temperature. For sil-
icon, intrinsic conduction limits operation typically to temperatures below
about 300◦C. For higher temperatures, as required for devices in harsh en-
vironments, such as close to motors or turbines, other semiconductors with
wider band gaps need to be used, such as GaN, SiC or even diamond.

From the neutrality condition for the intrinsic semiconductor (7.19) and
(7.15) and (7.16), the Fermi level of the intrinsic semiconductor can be de-
termined as

(a) (b)

Fig. 7.4. (a) Band gap of silicon vs. temperature. (b) Intrinsic carrier concentra-
tion of silicon vs. temperature. Solid line is (7.22) using Eg = 1.204 eV − (2.73 ×
10−4 eV/K) T [380], symbols are experimental data from [381]
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EF =
EV + EC

2
+
kT

2
ln

(
NV

NC

)
=
EV + EC

2
+

3
4
kT ln

(
mh

me

)
. (7.23)

Since the hole mass is perhaps a factor of ten larger than the electron
mass, the second term has the order of kT . Thus, for typical semiconductors
where Eg  kT , the intrinsic Fermi level, denoted by Ei, is close to the
middle of the band gap, i.e. Ei ≈ (EC + EV)/2.

The situation for an intrinsic semiconductor is schematically shown in
Fig. 7.5b.
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Fig. 7.5. Density of states (left column), Fermi distribution (center column) and
carrier concentration (right column) for (a) n-type, (b) intrinsic and (c) p-type
semiconductors in thermal equilibrium
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7.5 Shallow Defects

The electronic levels of a defect or an impurity can be within the forbidden
gap of the bulk host material. These levels can be close to the band edges
or rather in the middle of the band gap. In 1930 electrical conduction of
semiconductors was attributed solely to impurities [382]. However ‘chemically
pure’ substances become conductive upon deviation from stoichiometry, e.g.
historically found for changes in the anion concentration and conductivity in
CuI [27] (p-type) and ZnO [47] (n-type).

In Fig. 7.6, the positions of the energy levels of a variety of impurities are
shown for Ge, Si and GaAs. An impurity for which the long-range Coulomb
part of the ion-core potential determines the energetic level is termed a shal-
low impurity. The extension of the wavefunction is given by the Bohr radius.
This situation is in contrast to a deep level where the short-range part of the
potential determines the energy level. The extension of the wavefunction is
then of the order of the lattice constant.

We will consider first a group-IV semiconductor, Si, and (impurities)
dopants from the groups III and V of the periodic system. When these are
incorporated on a lattice site (with tetrahedral bonds), there is one electron
too few (group III, e.g. B) or one electron too many (group V, e.g. As).
The first case is called an acceptor , the latter a donor . The doping of III–V
semiconductors is detailed in [383].

7.5.1 Donors

Silicon doped with arsenic is denoted as Si:As. The situation is schematically
shown in Fig. 7.7. The arsenic atom has, after satisfying the tetrahedral
bonds, an extra electron. This electron is bound to the arsenic atom via
the Coulomb interaction since the ion core is positively charged compared to
the silicon cores. If the electron is ionized, a fixed positive charge remains
at the As site.

Without being in the silicon matrix, an arsenic atom has an ionization
energy of 9.81 eV. However, in the solid the Coulomb interaction is screened
by the dielectric constant of the material, typically εr is of the order of 10
for typical semiconductors. Additionally, the mass is renormalized (effective
mass) by the periodic potential to a value that is smaller than the free-
electron mass. Within effective-mass theory (Appendix G) Bohr’s theory of
the hydrogen problem is scaled with the (isotropic) effective mass m∗

e and
the dielectric constant εr, the binding energy (ionization energy) Eb

D of the
electron to the shallow donor is (relative to the continuum given by the
conduction-band edge EC)

Eb
D =

m∗
e

m0

1
ε2r

m0e
4

2(4πε0�)2
. (7.24)
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(a)

(b)

(c)

Fig. 7.6. Energetic position (ionization energy labeled in meV) of various impuri-
ties (A: acceptor, D: donor) in (a) Ge, (b) Si and (c) GaAs. Based on [384]

The absolute energy position of the level is ED = EC − Eb
D. The first

factor in the right side of (7.24) is the ratio of effective and free-electron
mass, typically 1/10, the second factor is typically 1/100. The third factor
is the ionization energy of the hydrogen atom, i.e. the Rydberg energy of
13.6 eV. Thus, the binding energy in the solid is drastically reduced by about
10−3 to the 10 meV regime. The excited states of the hydrogen-like spectrum
can also be investigated experimentally (Sect. 9.6).
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Si

Si Si

As

Si

Si

Si

Si

Fig. 7.7. Arsenic impurity in silicon. Arsenic donates one electron, and a fixed
positive charge remains

The extension of the wavefunction of the electron bound to the fixed ion
is given by the Bohr radius

aD =
m0

m∗
e

εr aB , (7.25)

where aB = 0.053 nm denotes the hydrogen Bohr radius. For GaAs aD =
10.3 nm. For semiconductors with a nonisotropic band minimum, such as Si,
Ge or GaP, an ‘elliptically deformed’ hydrogen problem with the masses ml

and mt has to be treated [385].
An impurity that fulfills (7.24) is called an effective-mass impurity. For sil-

icon we find, from (7.24), a donor binding energy of 6 meV. Using the correct
tensor of the effective masses, the result for the effective-mass donor binding
energy is 9.05 meV. Some experimentally observed values are summarized in
Table 7.2. Different impurities can have quite similar binding energies. They
can be distinguished, e.g., by electron spin resonance (ESR). At low temper-
atures the electron is localized on the impurity and the hyperfine interaction
with the nucleus can be resolved in ESR. In Fig. 7.8 data are shown for As
and P in germanium. The multiplets distinguish the nuclear spins I = 3/2
for arsenic (75As) and I = 1/2 for phosphorus (31P) [386].

For GaAs, the effective-mass donor has a binding energy of 5.715 meV,
which is closely fulfilled for several chemical species (Table 7.3). In GaP,
experimental values deviate considerably from the effective mass donor
(59 meV).

Table 7.2. Binding energies Eb
D of Li and group-V donors in elemental semicon-

ductors. Data for carbon from [387]. All values in meV

Li N P As Sb

C 1700 ≈ 500

Si 33 45 49 39

Ge 9.3 12.0 12.7 9.6
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Fig. 7.8. Electron spin resonance signal from As and P in Ge with the magnetic
field H parallel to [100], T ≈ 1.3 K. Adapted from [386]

Table 7.3. Binding energies Eb
D of donors in GaAs (data from [388]), GaP (data

from [389]) and GaN (low concentration limits, data from [390, 391]). All values in
meV

V site III site

GaAs S 5.854 C 5.913

Se 5.816 Si 5.801

Te 5.786 Ge 5.937

GaP O 897 Si 85

S 107 Ge 204

Se 105 Sn 72

Te 93

GaN O 39 Si 22

The donors are typically distributed statistically (randomly) in the solid.
Otherwise their distribution is called clustered. The concentration of donors
is labeled ND and usually given in cm−3.

The concentration of donors populated with an electron (neutral donors)
is denoted by N0

D, the concentration of ionized donors (positively charged) is
N+

D . Other conventions in the literature label the concentrations N1 and N0,
respectively:

N1 = N0
D = ND fe(ED) (7.26a)

N0 = N+
D = ND (1 − fe(ED)) , (7.26b)

with fe(ED) = [1 + exp(ED − EF)]−1. For the sum of these quantities the
condition
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ND = N+
D +N0

D (7.27)
holds.

The ratio of the two concentrations is first given as (caveat: this formula
will be modified below)

N0
D

N+
D

=
N1

N0
=

f

1 − f
= exp

(
EF − ED

kT

)
. (7.28)

Now, the degeneracy of the states has to be considered. The donor charged
with one electron has a 2-fold degeneracy g1 = 2 since the electron can take
the spin up and down states. The degeneracy of the ionized (empty) donor
is g0 = 1. Additionally, we assume here that the donor cannot be charged
with a second electron (cmp. Sect. 7.7.2). Due to Coulomb interaction, the
energy level of the possible N−

D state is in the conduction band. Otherwise,
a multiply charged center would be present. We also do not consider excited
states of N0

D that might be in the band gap as well. In the following, we
will continue with ĝD = g1/g0 = 2 as suggested in [392].3 We note that the
definition of the degeneracy factor for donors (and acceptors, see (7.45)) is
not consistent in the literature as summarized in [393]. Considering now the
degeneracy, (7.28) is modified to

N0
D

N+
D

=
N1

N0
= ĝD exp

(
EF − ED

kT

)
. (7.29)

This can be understood from thermodynamics (cf. Sect. 4.2.2), a rate analysis
or simply the limit T → ∞.

The probabilities f1 and f0 for a populated or empty donor, respectively,
are

f1 =
N1

ND
=

1
ĝ−1
D exp

(
ED−EF

kT

)
+ 1

(7.30a)

f0 =
N0

ND
=

1
ĝD exp

(−ED−EF
kT

)
+ 1

. (7.30b)

First, we assume that no carriers in the conduction band stem from the
valence band (no intrinsic conduction). This will be the case at sufficiently low
temperatures when ND  ni. Then the number of electrons in the conduction
band is equal to the number of ionized donors, i.e.

n = f0ND = N0 =
ND

1 + ĝD exp
(

EF−ED
kT

) (7.31)

=
n

n+ n1
ND =

1
1 + n1/n

ND ,

3We do not agree with the treatment of the conduction band valley degeneracy
in [392] for the donor degeneracy factor for Ge and Si.
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with n1 = (NC/ĝD) exp
(−Eb

D/kT
)
. The neutrality condition is

−n+N+
D = −n+N0 = 0 . (7.32)

Thus the equation (n is given by (7.15))

NC exp
(
EF − EC

kT

)
− ND

1 + ĝ exp
(

EF−ED
kT

) = 0 (7.33)

needs to be solved to obtain the Fermi level.4 The result is

EF = EC − Eb
D + kT ln

⎡

⎢
⎣

[
1 + 4ĝD ND

NC
exp

(
Eb

D
kT

)]1/2

− 1

2ĝD

⎤

⎥
⎦ . (7.34)

For T → 0 the Fermi level is, as expected, in the center between the
populated and unpopulated states, i.e. at EF = EC −Eb

D/2. In Fig. 7.9a the
position of the Fermi is shown for a donor with 45 meV binding energy in Si.
For low temperatures the solution can be approximated as (dashed curve in
Fig. 7.9b)

EF
∼= EC − 1

2
Eb

D +
1
2
kT ln

(
ND

ĝDNC

)
. (7.35)

The freeze-out of carriers in n-type silicon has been discussed in detail in [394],
taking into account the effects of the fine structure of the donor states. We

(a) (b)

Fig. 7.9. (a) Position of the Fermi level in Si:P (ND = 1015 cm−3, Eb
D = 45 meV, no

acceptors) as a function of temperature without consideration of intrinsic carriers.
Zero energy refers to the (temperature-dependent, Table 6.3) conduction-band edge
EC with approximative solutions for low (dashed line, (7.35)) and high (dash-dotted
line, (7.36)) temperatures. (b) Corresponding density of conduction-band electrons
as a function of temperature

4As usual, the Fermi level is determined by the global charge neutrality, see also
Sect. 4.2.2.
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note that the fairly high donor binding energy in silicon leads to freeze-out
of carriers at about 40 K and is thus limiting for the low-temperature perfor-
mance of devices. Ge has smaller donor ionization energies and subsequently
a lower freeze-out temperature of 20 K. For n-type GaAs, conductivity is
preserved down to even lower temperatures.

We note that the freeze-out of carriers involves the recombination of free
electrons with the ionized donors. This aspect is considered in Sect. 10.9.
Microscopically this process is equal to the emission of a (far infrared) pho-
ton [395, 396]. Similarly the release of an electron from the donor is due to
the absorption of a photon.

For higher temperatures, when the electron density saturates towards ND,
the approximate solution is (dash-dotted curve in Fig. 7.9a)

EF
∼= EC + kT ln

(
ND

NC

)
. (7.36)

The electron density n is given (still in the Boltzmann approximation) by

n = NC exp
(
−E

b
D

kT

)
[
1 + 4ĝD ND

NC
exp

(
Eb

D
kT

)]1/2

− 1

2ĝD
(7.37)

=
2ND

1 +
[
1 + 4ĝD ND

NC
exp

(
Eb

D
kT

)]1/2
.

The theoretical electron density as a function of temperature is shown in
Fig. 7.9b. It fits very well to experimental data for gallium doped germa-
nium [397] as shown in Fig. 7.10 (Arrhenius plot, lnn vs. 1/T ).

Fig. 7.10. Electron concentration as a function of temperature for three different
Ge:Ga samples in the 1014 cm−3 doping regime. Solid lines are fits to the data with
a donor binding energy of 11 meV. Adapted from [397]
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For low temperatures, the solution (7.38) is close to

n ∼=
√
NDNC

ĝD
exp

(
− Eb

D

2kT

)
=

√
n1ND . (7.38)

For high temperatures, n ∼= ND. This regime is called exhaustion or sat-
uration since all possible electrons have been ionized from their donors. We
note that even in this case np = nipi holds, however, n p.

While the characteristic energy for the ionization of electrons from donors
is Eb

D, at high enough temperatures electrons are transferred also from the
valence band into the conduction band. Thus, in order to make the above
consideration valid for all temperatures, the intrinsic conduction also has to
be considered. The neutrality condition (still in the absence of any acceptors)
is

−n+ p+N+
D = 0 . (7.39)

Using (7.15) and p = n2
i /n, the equation

NC exp
(
EF − EC

kT

)
− n2

i

NC exp(EF−EC
kT )

− ND

1 + ĝD exp(EF−ED
kT )

= 0 (7.40)

needs to be solved. The result is

EF = EC − Eb
D + kT ln

⎡

⎣
β
γ + γ

N2
C
− 1

3ĝD

⎤

⎦ , (7.41)

with

γ =

(
−N4

Cα+
√

(N4
Cα)2 − 4(N2

Cβ)3

2

)1/3

(7.42)

β = N2
C + 3ĝDNCND exp

(
ED

kT

)
+ 3ĝ2

Dn
2
i exp

(
2ED

kT

)

α = 2N2
C + 9ĝDNCND exp

(
ED

kT

)
− 18ĝ2

Dn
2
i exp

(
2ED

kT

)
.

The temperature-dependent position of the Fermi level is shown in
Fig. 7.11.

The carrier concentration is given by

n = NC exp
(
−E

b
D

kT

) β
γ + γ

N2
C
− 1

3ĝD
, (7.43)

with α, β and γ having the same meaning as in (7.41). The three important
regimes are the intrinsic conduction at high temperatures when ni  ND,
the exhaustion at intermediate temperatures when ni � ND and kT > ED,
and finally the freeze-out regime for kT � ED at low temperatures when the
electrons condense back into the donors. The three regimes can be seen in the
experimental data of Fig. 8.5a for donors (n-Ge) and Fig. 7.15 for acceptors
(p-Ge).
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(a) (b)

Fig. 7.11. (a) Position of the Fermi level in Si:P (ND = 1015 cm−3, Eb
D = 45 meV,

no acceptors) as a function of temperature. The temperature dependence of the
band gap (as given in Table 6.3) has been taken into account. Zero energy refers
to the conduction-band edge for all temperatures. The dotted curve shows Eg/2.
The dashed (dash-dotted) line shows the low- (high-) temperature limit according
to (7.35) and (7.23), respectively. (b) Corresponding electron concentration as a
function of temperature. The dashed line shows the intrinsic carrier density

A similar plot as in Fig. 7.11a is shown in Fig. 7.12. With increasing
temperature the Fermi level shifts from close to the band edge towards the
band center. At higher doping the shift begins at higher temperatures.

The electronic states of individual donors can be directly visualized by
scanning tunneling microscopy (STM) as shown in Fig. 7.13 for Si:P. For
small negative bias, tunneling occurs through the charged dopant that is

Fig. 7.12. Fermi level in silicon as a function of temperature for various doping
levels (n-type and p-type) of 1012, 1013, . . . , 1018 cm−3. The intrinsic Fermi level is
chosen as zero energy for all temperatures. The (temperature-dependent) conduc-
tion and valence band edges are shown as dashed lines
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(b)(a)

EF

EF

Si

D

tip

Fig. 7.13. Filled-state image of a phosphorus atom underneath a Si (001) surface
at a tunneling current of 110 pA. The doping level is 5×1017 cm−3. (a) Sample bias
−0.6 V, (b) sample bias −1.5 V between Si:P and tip. Image sizes are 22 × 22 nm2.
Reprinted with permission from [400], c©2004 APS. Lower row : Schematic band
diagrams for the two bias situations

located within the first three monolayers. At high negative bias the large
contribution from the filled valence band masks the effect of the donor. This
image, however, shows that the contrast attributed to the dopant atom is not
due to surface defects or absorbates.

7.5.2 Acceptors

A group-III atom in Si has one electron too few for the tetrahedral bond.
Thus, it ‘borrows’ an electron from the electron gas (in the valence band) and
thus leaves a missing electron (termed hole) in the valence band (Fig. 7.14).
The energy level is in the gap close to the valence-band edge. The latter
consideration is made in the electron picture. In the hole picture, the acceptor
ion has a hole and the hole ionizes (at sufficient temperature) into the valence
band. After ionization the acceptor is charged negatively. Also, for this system
a Bohr-like situation arises that is, however, more complicated than for donors
because of the degeneracy of the valence bands and their warping.
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Si

Si Si

B

Si

Si

Si

Si

Fig. 7.14. Boron impurity in silicon. Boron accepts one electron and a fixed neg-
ative charge remains

Table 7.4. Binding energies Eb
A of group-III acceptors in elemental semiconductors.

Data for diamond from [398, 399]. All values in meV

B Al Ga In

C 369

Si 45 57 65 16

Ge 10.4 10.2 10.8 11.2

In Table 7.4 the acceptor binding energies Eb
A for group-III atoms in C,

Ge and Si are listed. The absolute acceptor energy is given as EA = EV +Eb
A.

In Table 7.5 acceptor binding energies are listed for GaAs, GaP and GaN.

Table 7.5. Binding energies Eb
A of acceptors in GaAs, GaP and GaN (low concen-

tration values, data from [403, 404]). All values in meV

V site III site

GaAs C 27 Be 28

Si 34.8 Mg 28.8

Ge 40.4 Zn 30.7

Sn 167 Cd 34.7

GaP C 54 Be 57

Si 210 Mg 60

Ge 265 Zn 70

Cd 102

GaN C 230 Mg 220

Si 224 Zn 340

Cd 550
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While in GaAs some acceptors are close to the effective mass value of 27 meV,
in GaP the deviation from the effective mass value ≈50 meV is large.

When the conductivity is determined by holes or electrons, the material
is called p-type or n-type, respectively. We note that some metals also show
hole conduction (e.g. Al). However, for metals the conductivity type is fixed,
while the same semiconductor can be made n- or p-type with the appropriate
doping.

The acceptor concentration is denoted by NA. The concentration of neu-
tral acceptors is N0

A, the concentration of charged acceptors is N−
A . Of course

NA = N0
A +N−

A . (7.44)

The ratio of the degeneracy of the (singly) filled and empty acceptor level
is ĝA. In Ge ĝA = 4 since the localized hole wave function may be formed
in EMA with four Bloch wave functions (heavy and light holes) [401]. For
Si with its small split-off energy (Table 6.6) ĝA = 6 according to [402]. For
doubly ionized acceptors, e.g. Zn in Si and Ge (see Sect. 7.7.3), the more
shallow level (Zn− → Zn0) has ĝA = 6/4 = 1.5 in Ge [402]. A more general
discussion of the degeneracy factor for multiply charged acceptors can be
found in [392, 405]. Similar to the considerations for electrons and donors we
have

N0
A

N−
A

= ĝA exp
(
−EF − EA

kT

)
. (7.45)

The population of the acceptor levels is given by

N−
A =

NA

1 + ĝA exp
(−EF−EA

kT

) . (7.46)

The formulas for the position of the Fermi level and the hole density are
analogous to those obtained for electrons and donors and will not be explicitly
given here. The analogue to Fig. 7.11b is shown for data on p-doped Ge [406]
in Fig. 7.15. The acceptor activation energy is 11 meV which could be due
to various impurities (cf. Table 7.4). The different impurities (B, Al, Ga)
can be distinguished by photothermal ionization spectroscopy [406] (cmp.
Sect. 9.6).

In Fig. 7.12, the temperature dependence of the Fermi level is included
for p-type Si. With increasing temperature the Fermi level shifts from the
valence-band edge (For T = 0, EF = EV + Eb

A/2) towards the middle of the
band gap (intrinsic Fermi level).

Also, the wavefunction at acceptors can be imaged using scanning tun-
neling microscopy [407]. In [408] images of ionized and neutral Mn in GaAs
have been reported (Fig. 7.16b). The tunneling I–V characteristics are shown
in Fig. 7.16a. At negative bias, the acceptor is ionized and appears spheri-
cally symmetric due to the effect of the A− ion Coulomb potential on the
valence-band states. At intermediate positive voltages, tunneling is through
the neutral state. The wavefunction of A0 looks like a bow-tie due to the
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Fig. 7.15. Carrier concentration as a function of temperature for p-type Ge. The
net shallow level concentration is 2 × 1010 cm−3. Solid line is fit to the data, the
dashed line indicates the intrinsic hole concentration pi. Adapted from [406]

(a)
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GaAs:Mn
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EF

EF

GaAs

A

tip

A

Fig. 7.16. (a) Tunneling I–V characteristic of GaAs:Mn sample. Solid (dashed)
line is for pure GaAs (subsurface Mn on Ga site). UFB denotes the simulated flat-
band voltage. Adapted from [408]. (b,c) STM images of a Mn atom underneath a
GaAs (110) surface. The doping level is 3× 1018 cm−3. (b) Sample bias −0.7 V, (c)
sample bias +0.6 V. Below the images are schematic band diagrams of GaAs:Mn
and tip. Image sizes are (b) 8×8 nm2 and (c) 5.6×5 nm2. Reprinted with permission
from [408], c©2004 APS. Lower row under parts (a,b): Schematic band diagrams
for the two bias situations

admixture of d-wavefunctions [409]. The Mn atom is presumably in the third
subsurface atomic layer. At even higher positive bias the contrast due to the
dopant is lost because the image is dominated by a large tunneling current
from the tip to the empty conduction band.
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7.5.3 Compensation

When donors and acceptors are simultaneously present, some of the impuri-
ties will compensate each other. Electrons from donors will recombine with
holes on the acceptors. Depending on the quantitative situation the semi-
conductor can be n- or p-type. This situation can be invoked by intentional
doping with donors or acceptors or by the unintentional background of donors
(acceptors) in p-doped (n-doped) material. Also the formation of pairs, ex-
hibiting a new defect level different from the single donor or single acceptor,
has been described, e.g. for Se and B in silicon [205].

The charge-neutrality condition (now finally in its most general form)
reads

−n+ p−N−
A +N+

D = 0 . (7.47)

We will now discuss the case of the presence of donors and acceptors, but
limit ourselves to sufficiently low temperatures (or wide band gaps) such that
the intrinsic carrier density can be neglected. We assume Boltzmann statistics
and assume here ND > NA. Then it is a very good approximation to use
N−

A = NA since there are enough electrons from the donors to recombine with
(and thus compensate) all acceptors. Under the given assumptions regarding
the temperature p = 0 and the material is n-type. Thus, in order to determine
the position of the Fermi level, the charge-neutrality condition

n+NA −N+
D = 0 (7.48)

must be solved (compare to (7.33))

NC exp
(
EF − EC

kT

)
+NA − ND

1 + ĝ exp(EF−ED
kT )

= 0 . (7.49)

We rewrite (7.48) and find ND − NA − n = N0
D = N+

D ĝD exp
(

EF−ED
kT

)

using (7.29). Using again (7.48) and also (7.15), (7.49) can be written as

n (n+NA)
ND −NA − n

=
NC

ĝD
exp

(
−E

b
D

kT

)
, (7.50)

a form given in [410]. Analogously for compensated p-type material

p (p+ND)
NA −ND − p

=
NV

ĝA
exp

(
−E

b
A

kT

)
(7.51)

holds.
The solution of (7.49) is
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EF = EC − Eb
D + kT ln

⎡

⎢
⎣

[
α2 + 4ĝD ND−NA

NC
exp

(
Eb

D
kT

)]1/2

− α

2ĝD

⎤

⎥
⎦ (7.52)

α = 1 + ĝD
NA

NC
exp

(
Eb

D

kT

)
= 1 +

NA

β

β =
NC

ĝ
exp

(
−E

b
D

kT

)
.

The carrier density is best obtained from (7.50)

n =
√

(NA − β)2 + 4ND β − NA + β

2
. (7.53)

For NA = 0 we have α = 1 and (7.34) is reproduced, as expected. For
T = 0 the Fermi energy lies at EF = ED since the donor level is partially
filled (N0

D = ND−NA). For low temperatures the Fermi level is approximated
by

EF
∼= EC − Eb

D + kT ln
(
ND/NA − 1

ĝD

)
. (7.54)

The corresponding carrier density at low temperatures is

n =
NC

ĝD
exp

(
−E

b
D

kT

) (
ND

NA
− 1

)
. (7.55)

For higher temperatures (7.38) holds approximately for n > NA; the
slope is now given by Eb

D/2 as in the uncompensated case (Fig. 7.17b). For

(a) (b)

Fig. 7.17. (a) Position of Fermi level in partially compensated Si:P,B (ND =
1015 cm−3, Eb

D = 45 meV, Eb
A = 45 meV, solid line: NA = 1013 cm−3, dashed line:

NA = 0, dash-dotted line: NA = 1012 cm−3, short-dashed line: NA = 1014 cm−3,
dash-double dotted line: NA = 5 × 1014 cm−3) as a function of temperature. (b)
Corresponding electron concentration for NA = 1013 cm−3 as a function of tem-
perature (neglecting intrinsic carriers), dashed line for NA = 0 according to (7.38),
dash-dotted line approximation for n � NA as in (7.55)
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Fig. 7.18. Hole density in p-type silicon (NA = 7.4 × 1014 cm−3, Eb
A = 46 meV

(probably boron) and partial compensation with ND = 1.0 × 1011 cm−3). Adapted
from [411]

sufficiently high temperatures in the exhaustion regime (but still ni < n) the
electron density is given by

n ∼= ND −NA . (7.56)

At even higher temperatures the electron density will be determined by
the intrinsic carrier concentration. Only in this case p �= 0!

An experimental example is shown in Fig. 7.18 for partially compensated
p-Si (with ND � NA). The change of slope around p ≈ ND is obvious.

If donors are added to a p-type semiconductor, first the semiconductor re-
mains p-conducting as long as ND � NA. If the donor concentration becomes
larger than the acceptor concentration, the conductivity type switches from
p- to n-conduction. If the impurities are exhausted at room temperature,
the lowest carrier concentration is reached for ND = NA. Such a scenario
is shown for p-type InxGa1−xAs1−yNy doped with various concentrations of
Si in Fig. 7.19. At high Si incorporation, the number of charge carriers sat-
urates due to autocompensation (see Sect. 7.5.5) and the formation of Si
precipitates. Since the ionization energies of donors and acceptors are typi-
cally different, the situation for ND ≈ NA needs, in general, to be investigated
carefully and will depend on the temperature.

7.5.4 Multiple Impurities

If more than one donor species is present, (7.49) can be generalized, e.g. for
the case of two donors D1 and D2 in the presence of compensating acceptors,

n+NA − ND1

1 + ĝ1 exp(EF−ED1
kT )

− ND2

1 + ĝ2 exp(EF−ED2
kT )

= 0 . (7.57)
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Fig. 7.19. Carrier concentration and conductivity type (red circles: p, blue squares:
n) for MOVPE-grown InxGa1−xAs1−yNy layers on GaAs (001) (layer thickness
≈ 1 μm, x ≈ 5%, y ≈ 1.6%) doped with different amounts of silicon. The ordinate
is the ratio of the partial pressures of disilane and the group-III precursors (TMIn
and TMGa) in the gas phase entering the MOVPE reactor. Lines are guides to the
eye. Experimental data from [414]

This case is treated in [412]. Simple high and low temperature approximations
can be found where the trap with the larger and smaller activation energy,
respectively, dominates. The case for multiple acceptors (and compensating
donors) is treated analogously. As detailed in [413], the function dn/dEF has
a maximum at the donor level position; this can be used to visualize the
contribution of several donors (with sufficiently different binding energies)
from n(T ) as measured by Hall effect (Fig. 7.20).

(a) (b)

Fig. 7.20. (a) Electron concentration vs. temperature as determined from Hall
effect for a CdTe sample doped with indium. (b) −kT dn/dEF, as determined
from the experimental Hall data (symbols). The solid line is theory for three donor
levels (ED1 = EC − 0.37 eV, ND1 = 2.5 × 1012 cm−3; ED2 = EC − 0.24 eV, ND2 =
7.0×1011 cm−3; ED3 = EC−0.18 eV, ND3 = 2.5×1011 cm−3) whose energy positions
are indicated by dashed lines. Adapted from [413]



210 7 Electronic Defect States

7.5.5 Amphoteric Impurities

If an impurity atom can act as a donor and acceptor it is called amphoteric.
This can occur if the impurity has several levels in the band gap (such as Au
in Ge or Si). In this case, the nature of the impurity depends on the position
of the Fermi level. Another possibility is the incorporation on different lattice
sites. For example, carbon in GaAs is a donor if incorporated on the Ga-site.
On the As-site carbon acts as an acceptor.

Thus, e.g., crystal growth kinetics can determine the conductivity type.
In Fig. 7.21 the conductivity due to carbon background is shown for GaAs
grown using MOVPE under various growth conditions. At high (low) arsine
partial pressure incorporation of carbon on As-sites is less (more) probable,
thus the conductivity is n-type (p-type). Also, growth on different surfaces
can evoke different impurity incorporation, e.g., n-type on (001) GaAs and
p-type on (311)A GaAs, since the latter is Ga-stabilized.

The charge density at an impurity nucleus can be investigated via the
isomer shift as determined by Mössbauer spectroscopy [416, 417]. The incor-
poration of the isotope 119Sn can be controlled in III-V compounds to be on
cation or anion site as donor or acceptor, respectively. This is accomplished
by introducing 119In or 119Sb on group-III and group-V site, respectively,
both decaying into 119Sn without leaving their lattice site. The isomer shifts
of 119Sn in various III-V compounds are shown in Fig. 7.22. In [417] it is
concluded from these data that the tin donor is formed by a positive tin
ion and the electron charge transfer to its neighboring (group-V) atoms is
rather small. For tin as an acceptor, for the present conditions an ionized, i.e.
negatively charged acceptor, the isomer shift follows closely the trend from

Fig. 7.21. Background doping of GaAs due to carbon in MOVPE for different ratios
of the partial pressures of AsH3 and TMG (trimethylgallium). The conductivity
type (blue squares: n-type, red circles: p-type) depends on the incorporation of C
from CH3 radicals on Ga- or As-site. Lines are guides to the eye. Experimental
data from [415]
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Fig. 7.22. Isomer shift (relative to CaSnO3) of 119Sn in various group-IV and
III-V compound semiconductors as labeled. Dashed line is trend from isoelectronic
substitution. Experimental data from [417]

substitution in group-IV semiconductors. Therefore four electrons form the
tetrahedral bond, while the extra electron is located rather at the (positively
charged) group-III next neighbors and not in the impurity cell. The difference
to the point charge Coulomb distribution is called central-cell correction.

Deviation from the ideal stoichiometry introduces point defects that can
be electrically active and change conductivity type and carrier concentration.
In the case of CuInSe2, excess Cu could go on interstitial positions or pro-
mote selenium vacancies, both leading to n-type behavior. This material is
particularly sensitive to deviations from ideal stoichiometry for both Cu/In
ratio (Fig. 7.23) and Se deficiency [418].

7.5.6 High Doping

For low doping concentrations, the impurity atoms can be considered to be
decoupled. At low temperature, only hopping from one impurity to the next is
possible due to thermal emission or tunneling and the semiconductor becomes
an insulator.

With increasing concentration, the distance between impurities decreases
and their wavefunctions can overlap. Then, an impurity band develops
(Fig. 7.24). A periodic arrangement of impurity atoms would result in well-
defined band edges as found in the Kronig–Penney model. Since the impurity
atoms are randomly distributed, the band edges exhibit tails. For high dop-
ing, the impurity band overlaps with the conduction band. In the case of
compensation, the impurity band is not completely filled and contains (a
new type of) holes. In this case, conduction can take place within the impu-
rity band even at low temperature, making the semiconductor a metal. This
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Fig. 7.23. Carrier concentration and conductivity type (blue squares: n-type, red
circles: p-type) as a function of stoichiometry for CuInSe2 thin films. Lines are
guides to the eye. Experimental data from [418]

D(E)
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(a) (b) (c)

EC
ED
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D(E)
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D(E)
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Fig. 7.24. Principle of the formation of a (donor) impurity band. (a) Small dop-
ing concentration and sharply defined impurity state at ED, (b) increasing doping
and development of an impurity band that (c) widens further and eventually over-
laps with the conduction band for high impurity concentration. The shaded areas
indicate populated states at T = 0 K

metal–insulator transition has been discussed by Mott [419]. Examples for
highly doped semiconductors are transparent conductive oxides (Sect. 19),
the contact layer for an ohmic contact (Sect. 20.2.6) or the active layers in
a tunneling diode (Sect. 20.5.9). The physics, properties and preparation of
highly doped semiconductors are treated in detail in [420].
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Fig. 7.25. (a) Donor ionization energy in n-type Ge for various doping concen-
trations. Dashed line is a guide to the eye. The arrow labeled Eb

D denotes the
low-concentration limit (cf. Table 7.2). Experimental data from [421]. (b) Acceptor
ionization energy for ZnTe:Li and ZnTe:P as a function of the third root of the
ionized acceptor concentration. Data from [422]

The formation of the impurity band leads to a reduction of the impu-
rity ionization energy as known from (7.24). Typical results are shown in
Fig. 7.25a for n-type Ge [421] and Fig. 7.25b for p-type ZnTe [422]. At the
critical doping concentration of Nc = 1.5 × 1017, the activation energy for
the carrier concentration disappears. Similar effects have been observed for
Si [423] and GaAs [424]. The freeze-out of the carrier concentration (see
Fig. 7.9) disappears as shown in Fig. 7.26. Critical doping concentrations
are listed in Table 7.6. The decrease of the ionization energy Eb (donor or
acceptor) follows the dependence [421, 423]

Eb = Eb
0 − αN

1/3
i = Eb

0

[

1 −
(
Ni

Nc

)1/3
]

, (7.58)

where Ni is the concentration of ionized dopants.
The critical density can be estimated from the Mott criterion when the

distance of the impurities becomes comparable to their Bohr radius (7.25)

2aD =
3
2π

N1/3
c . (7.59)

The pre-factor 3/(2π) stems from the random distribution of impurities
and disappears for a periodic arrangement. The Mott criterion is (rewrit-
ing (7.59))

aDN
1/3
c ≈ 0.24 . (7.60)

For GaAs with aD = 10.3 nm, the criterion yields Nc = 1.2 × 1016 cm−3, in
agreement with experiment.

The achievable maximum concentration of electrically active dopants is
limited by the concentration dependence of the diffusion coefficient, Coulomb
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Fig. 7.26. Electron concentration vs. inverse temperature for Si:P for three dif-
ferent doping concentrations ((i): 1.2 × 1017 cm−3, (ii): 1.25 × 1018 cm−3, (iii):
1.8 × 1019 cm−3). Experimental data from [423]

Table 7.6. Critical doping concentration for various semiconductors (at room tem-
perature)

material type Nc (cm−3) Ref.

C:B p 2 × 1020 [399]

Ge:As n 1.5 × 1017 [421]

Si:P n 1.3 × 1018 [423]

Si:B p 6.2 × 1018 [423]

GaAs n 1.0 × 1016 [424]

GaP:Si n 6 × 1019 [426]

GaP:Zn p 2 × 1019 [427]

GaN:Si n 2 × 1018 [428]

GaN:Mg p 4 × 1020 [403]

Al0.23Ga0.77N:Si n 3.5 × 1018 [429]

ZnTe:Li p 4 × 1018 [422]

ZnTe:P p 6 × 1018 [422]

ZnO:Al n 8 × 1018 [430]

repulsion, autocompensation and the solubility limit [383]. In Table 7.7 the
maximum carrier concentrations for GaAs with various dopants are listed.
As an example we show the Ga-doping of epitaxial ZnO layers on sapphire
in Fig. 7.27. Under slightly Zn-rich (O-polar) conditions the growth mode is
two-dimensional and the carrier concentration increases linearly with the Ga
concentration, n ≈ cGa, up to high values in the 1020 cm−3 range. For O-rich
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Table 7.7. Maximum electrically active doping concentration for GaAs

material type Nc (cm−3) Ref.

GaAs:Te n 2.6 × 1019 [431]

GaAs:Si n 1.8 × 1019 [432]

GaAs:C p 1.5 × 1021 [433]

GaAs:Be p 2 × 1020 [434]

Fig. 7.27. Electron concentration as a function of gallium concentration in MBE
grown ZnO:Ga on sapphire for the two different polarities. Adapted from [425]

(Zn-polar) conditions the growth mode changes to three-dimensional growth
and the activation ratio of Ga donors becomes low [425].

7.6 Quasi-Fermi Levels

The carrier concentrations were given by (7.8) and (7.9). So far, we have only
considered semiconductors in thermodynamic equilibrium for which np = n2

i .
In a nonequilibrium situation, e.g. for external excitation or carrier injection
in a diode, the electron and hole densities can each take arbitrary values, in
principle. In particular, np will no longer be equal to n2

i and there is no Fermi
level constant throughout the structure. In this case, however, quasi-Fermi
levels Fn and Fp for electrons and holes, respectively, are defined via

n(r) = NC F1/2

(
Fn(r) − EC

kT

)
(7.61a)

p(r) = NV F1/2

(
−Fp(r) − EV

kT

)
. (7.61b)
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A quasi-Fermi level is sometimes called imref5 and can also be denoted
as EFn or EFp . We emphasize that the quasi-Fermi levels are only a means
to describe the local carrier density in a logarithmical way. The quasi-Fermi
levels can be obtained from the density via

Fn = EC + kT ln
(
n

NC

)
(7.62a)

Fp = EV − kT ln
(
p

NV

)
. (7.62b)

The quasi-Fermi levels do not imply that the carrier distribution is
actually a Fermi distribution. This is generally no longer the case in ther-
modynamical nonequilibrium. However, in ‘well-behaved’ cases the carrier
distribution in nonequilibrium can be approximated locally as a Fermi dis-
tribution using a local quasi-Fermi level and a local temperature, i.e.

fe(r, E) ∼= 1

exp
(

E−Fn(r)
kT (r)

)
+ 1

. (7.63)

Using the quasi-Fermi levels, np is given by

n(r) p(r) = n2
i exp

(
Fn(r) − Fp(r)

kT

)
. (7.64)

We note that for an inhomogeneous semiconductor or a heterostructure (cf.
Sect. 11), ni may also depend on the spatial position. In the case of ther-
modynamic equilibrium the difference of the quasi-Fermi levels is zero, i.e.
Fn − Fp = 0 and Fn = Fp = EF.

7.7 Deep Levels

For deep levels the short-range part of the potential determines the energy
level. The long-range Coulomb part will only lead to a correction. The term
‘deep level’ implies that the level is within the band gap and close to the
band edges. However, some deep levels (in the sense of the potential being
determined by the ion core) have energy levels close to the band edges or
even within a band. Details can be found in [166, 435–438].

The wavefunction is strongly localized. Thus, it cannot be composed of
Bloch functions, as has been done for the shallow levels for the effective-mass
impurity. The localization in r space leads to a delocalization in k space.
Examples are Si:S, Si:Cu or InP:Fe, GaP:N, ZnTe:O. Deep levels can also be
due to intrinsic defects such as vacancies or antisite defects.

5W. Shockley had asked E. Fermi for permission to use his name reversed. Fermi
was not too enthusiastic but granted permission.



7.7 Deep Levels 217

Due to the larger distance to the band edges, deep levels are not efficient at
providing free electrons or holes. Quite the opposite, they rather capture free
carriers and thus lead to a reduction of conductivity. Centers that can capture
electrons and holes lead to nonradiative recombination of electrons through
the deep level into the valence band (see also Sect. 10). This can be useful for
the fabrication of semi-insulating layers with low carrier concentration and
fast time response of, e.g., switches and photodetectors.

While the electronic properties of deep levels can be readily character-
ized, the microscopic origin is not immediately apparent. Next to theoretical
modeling of defects and correlation with experimental results, paramagnetic
hyperfine interactions have proven useful to identify the microscopic nature
of various defects [439].

7.7.1 Charge States

The level can have different charge states depending on the occupancy of
the levels with electrons. The energy position within the gap varies with
the charge state due to the Coulomb interaction. Also, the lattice relaxation
around the defect depends on the charge state and modifies the energy level.

The localized charge qd at the defect is the integral over the change Δρ
of the charge density compared to the perfect crystal over a sufficiently large
volume V∞ around the defect

qd =
∫

V∞
Δρ(r) d3r =

n e

εr
. (7.65)

In semiconductors, the charge qdεr is an integer multiple of the elementary
charge. The defect is said to be in the n-th charge state. Each charge state has
a certain stable atomic configuration Rn. Each charge state has a ground state
and excited states that can each have different stable atomic configurations.

Now, we discuss how the concentration of the various charge states de-
pends on the position of the Fermi level. The overall constraint of global
charge neutrality determines the chemical potential of the electron, i.e. the
Fermi level in Fermi–Dirac statistics. We use the approximation that the
concentration of defects is so small that the mutual interaction of defects
becomes negligible.

As an example, we treat the possible reaction V 0 � V + + e−, where V 0

denotes a neutral vacancy and V + is a positively charged vacancy, created
by the ionization of an electron from the vacancy into the conduction band.
The free energy G depends on the numbers n0 of neutral and n+ of positively
charged vacancies. The minimum condition is met by

dG =
∂G

∂n0
dn0 +

∂G

∂n+
dn+ = 0 . (7.66)

The neutrality constraint is dn0 + dn+ = 0 and therefore the minimum
condition reads
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∂G

∂n0
=

∂G

∂n+
. (7.67)

For noninteracting defects and using (4.9) we write

∂G

∂n0
= Gf(V 0) + kT ln

(
n0

N0

)
(7.68a)

∂G

∂n+
=
∂G(V +)
∂n+

+
∂G(e−)
∂n+

= Gf
V + + kT ln

(
n+

N+

)
+ μe− , (7.68b)

where N0 = NZ0 and N+ = NZ+ are the number of available sites, given
by the number N of atomic sites and including possible internal degeneracies
Z0 and Z+, respectively. Degeneracy factors of deep levels are not a simple
subject [402] and , e.g., the degeneracy factors of Au donor and acceptor levels
in Si are under discussion [440–442]. Gf denotes the free enthalpy of formation
of the respective defect, as in (4.3). We have written the free enthalpy of the
separated pair V + and e− as the sum G(V +) +G(e−). μe− = ∂G(e−)/∂n+

is (by definition) the chemical potential of the electron, i.e. the Fermi energy
EF of Fermi–Dirac statistics.6 From (7.68a,b) we find for the ratio of the
concentrations of defects c0 = n0/N and c+ = n+/N

c0
c+

=
Z+

Z0
exp

(
−G

f
V + −Gf

V 0 + EF

kT

)
=
Z+

Z0
exp

(
Et(V 0) − EF

kT

)
, (7.69)

where the trap level energy (for the particular charge transition), Et(V 0) =
Gf

V 0 −Gf
V + , is the free enthalpy of ionization of V 0. We note that c0 can be

obtained from (4.9) and EF is determined by the charge-neutrality condition.
As example experimental data on the charge transition Fe0 � Fe++e− of

interstitial iron (in tetrahedral position, Fig. 7.28a, cmp. Fig. 3.17) in silicon
is shown. The concentration of Fe0 is tracked via the EPR signal from the
neutral S = 1 state7 with g-factor g = 2.07 [443]. For n-type samples the iron
is in neutral state and the maximum EPR signal is found. For strongly p-type
samples, the Fermi energy is below the trap level and all iron is in Fe+ state,
yielding no EPR signal at the given g-factor. From the investigation of various
silicon samples with different doping levels and consequently different position
of the Fermi level, the trap (deep donor) energy is found to be EV +0.375 eV
as indicated in Fig. 7.28b.

7.7.2 Double Donors

An impurity that has two extra electrons available after bonding in the ma-
trix may give rise to a double donor. Typical examples are substitutional

6The chemical potential in a one-component system is μ = ∂G/∂n = G/n. In a
multicomponent system it is, for the i-th component, μi = ∂G/∂ni �= G/ni.

7The electron configuration is 3d8 with two paramagnetic electrons. Under uni-
axial stress along [100] the EPR line splits into a doublet. [443] Further details can
be found in [444].
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(a) (b)

Fig. 7.28. (a) Silicon cubic unit cell with an interstitial iron atom (red) at tetra-
hedral site. (b) EPR intensity (at T = 95 K from interstitial iron in neutral state,
Fe0 with S = 1) vs. Fermi level position for iron-doped silicon with varying Fermi
level due to different amounts of shallow impurity levels from to Al, B and P as
labeled. The shaded areas indicate the valence and conduction band. The dashed
line at Et = EV + 0.375 eV indicates the trap level. The inset shows a typical EPR
spectrum of Fe0. Adapted from [445], inset adapted from [446]

chalcogenide atoms (S, Se or Te) in silicon [447] and germanium [448], inter-
stitial impurities such as Mgi in Si [449], or group-V atoms on a group-III
site in a III–V compound (antisite defect), such as PGa in GaP [450] or AsGa

in GaAs [451].
The double donor is similar to a He atom. Due to the repulsive Coulomb

interaction of the two electrons on the neutral double donor, the (single)
ionization energy of D0 is smaller than of D+. For He and He+ the ratio of
ionization energies is 0.45; for chalcogenides in Si and Ge similar ratios have
mostly been found (Table 7.8).

The degeneracy factors for a double donor have been discussed in [392].
Typically, the degeneracy factor for the ionization of the double donor D0 →
D+ is ĝD = g2/g1 = 1/2 and for the ionization D+ → D++ is ĝD = g1/g0 =
2/1 = 2.

7.7.3 Double Acceptors

In analogy to double donor defects, double acceptors can introduce up to two
holes into the valence band. A typical example is Zn in silicon [452], exhibiting
its ‘normal’ acceptor level (Zn0/Zn−) at EV+0.31 eV. In moderately n-doped
silicon another level (Zn−/Zn2−) is observed at EC − 0.55 eV, when the n-
doping is sufficient to partially compensate the Zn and supply one electron
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Table 7.8. Binding energies (to conduction band) of double donor chalcogenide
impurities in Si and Ge. All energies in meV, data from [447, 448]

host state S Se Te

Si
D0

D+

318

612

307

589

199

411

Ge
D0

D+

280

590

268

512

93

330

for each Zn atom but not two (2NZn > ND > NZn). A similar situation has
been observed for Zn in germanium, exhibiting the levels EV + 0.03 eV and
EV + 0.09 eV [453]. In Fig. 7.29 three different Ge:Zn samples are compared.
If the additional Sb donor concentration (ND ≈ 3.4 × 1016 cm−3) is larger
than 2NZn (NZn ≈ 1.2×1016 cm−3), the sample is n-type (upper curve). The
slope is similar to the Ge:Sb donor binding energy (Table 7.2). If compensa-
tion with donors is weak (NZn > ND, middle curve) first the shallow donor
level with 0.03 eV activation energy is activated and subsequently the deeper
one with 0.09 eV activation energy, creating p-conduction with a saturated

Fig. 7.29. Inverse (absolute) Hall coefficient (cmp. Sect. 8.4) R−1
H , i.e. charge

concentration, for three Ge:Zn samples with different degree of compensation with
Sb donors as labeled. The dash-dotted lines indicate typical slopes. The dashed lines
sketch the Zn0 → Zn− and the Zn− → Zn−− processes. Adapted from [453]
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hole density of p ≈ 2NA − ND > NZn (negative Hall coefficient). The two
individual activation processes are sketched as dashed lines in Fig. 7.29. If the
Sb concentration is larger than NZn but smaller than 2NZn, the shallow ac-
ceptor level is filled with electrons, leaving still the only partially filled deeper
acceptor level available for ionization (lower curve). In this case the sample
is still p-type, but the saturation hole density is p ≈ 2NA −ND < NZn. The
degeneracy factors for Zn in Si and Ge have been discussed in [402].

7.7.4 Jahn–Teller Effect

The lattice relaxation can reduce the symmetry of the defect. Many defects,
such as a vacancy, a tetrahedral interstitial or an impurity, occupy initially
tetrahedral sites in the zincblende structure. The lattice relaxation reduces
the symmetry, e.g. to tetragonal or trigonal, and therefore causes initially
degenerate levels to split. Such splitting is called the static Jahn–Teller ef-
fect [435, 454]. The energy change in terms of the atomic displacement Q can
be denoted (using perturbation theory for the simplest, nondegenerate case)
as −I Q (I > 0). Including the elastic contribution with a force constant C,
the energy of a configuration Q is

E = −I Q+
1
2
C Q2 . (7.70)

The stable configuration Qmin, for which the energy is minimal (Emin), is
therefore given by

Qmin =
I

C
(7.71a)

Emin = − I2

2C
. (7.71b)

Several equivalent lattice relaxations may exist, e.g. a 3-fold minimum
for remaining C3v symmetry. The energy barrier between them has a finite
height. Therefore, e.g. at sufficient temperature, the defect can switch be-
tween different configurations and eventually again becomes isotropic (dy-
namic Jahn–Teller effect). The experimental observation depends on the re-
lation between the characteristic time of the experiment and the reorientation
time constant of the defect.

7.7.5 Negative-U Center

We explain the principle of a so-called negative-U center [455] for the Si
vacancy [456] (cf. Fig. 4.2). It was first proposed by Anderson to explain
the properties of amorphous chalcogenide glasses [457]. Many defectsin semi-
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conductors exhibit negative-U behavior, e.g. also the boron interstitial in
Si [456, 458]. Coulomb energy and the Jahn–Teller effect compete for the
position of the occupancy level for different charge states. U refers to the ad-
ditional energy upon charging of the defect with an additional electron. The
Coulomb repulsion of electrons leads to an increase of the energy, i.e. posi-
tive U , which has been calculated to be 0.25 eV for the Si vacancy [459] for
all charge states. The occupation level (cf. Sect. 4.2.2) E0(1, 2) (the index 0
indicates effects only due to many-electron Coulomb interaction), separating
the domination of V ++ and V + (Fig. 7.30) is 0.32 eV above the valence-band
edge. Therefore, the occupation level E0(0, 1) is expected to lie at about
0.57 eV about EV.

The Jahn–Teller effect may lead to a splitting of the otherwise 4-fold de-
generate states of the vacancy. A detailed experimental study using hyperfine
interactions can be found in [460]. The schematic level diagram for the Jahn–
Teller splitting is shown in Fig. 7.31. The V ++ state (A1 is always populated
with two electrons) is resonant with the valence band. The T2 state lies in the
band gap. When the Jahn–Teller effect (now on the T2 state) is included, the
energies of the different charge states depend on the configuration coordinate
(a mostly tetragonal distortion in the case of the Si vacancy).

V

V

V
0

V

V
0

E(1,2)

E0(0,1)

E0(1,2)

E(0,1)
E(0,2)

Fig. 7.30. Charge states of the vacancy in silicon. Left : level scheme without lattice
relaxation, right : level scheme including the Jahn–Teller effect. For a Fermi level
below (above) E(0, 2) the charge state V ++ (V 0) is dominant

V

T2

A1

V V0 V

Fig. 7.31. Jahn–Teller splitting for different charge states of the vacancy. A1 and
T2 refer to irreducible representations of the Td point symmetry group. A1 is nonde-
generate and therefore does not exhibit a Jahn–Teller effect. T2 is triply degenerate.
The arrows represent electrons and their spin orientation
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EV 0 = E(0, Q) = E(0, Q = 0) − 2IQ+
1
2
CQ2 (7.72a)

EV + = E(1, Q) = E(1, Q = 0) − IQ+
1
2
CQ2 (7.72b)

EV ++ = E(2, Q) = E(2, Q = 0) +
1
2
CQ2 . (7.72c)

For the n = 2 state the T2 gap state is empty and thus no degeneracy and
Jahn–Teller term arises. For n = 1 there is a linear Jahn–Teller term. The
occupation with two electrons (V 0) causes an approximately twice as large
Jahn–Teller splitting for the n = 0 state. The force constant is assumed to be
independent of the charge state. The energies for the minimum configurations
Qn

min are therefore

E(0, Q0
min) = E(0, Q = 0) − 4

I2

2C
(7.73a)

E(1, Q1
min) = E(1, Q = 0) − I2

2C
(7.73b)

E(2, Q2
min) = E(2, Q = 0) . (7.73c)

The Jahn–Teller energy EJT = I2/2C lowers the position of the occu-
pancy levels E0 calculated with Coulomb terms only. The occupancy levels
including the Jahn–Teller contribution are therefore given as

E(1, 2) = E0(1, 2) − EJT (7.74a)
E(0, 1) = E0(0, 1) − 3EJT . (7.74b)

For the vacancy in silicon the Jahn–Teller energy EJT is about 0.19 eV.
Thus the E(1, 2) level is lowered from 0.32 eV to 0.13 eV. The E(0,1) oc-
cupancy level, however, is reduced from 0.57 eV to 0.05 eV [456, 461] (see
Fig. 7.30). The occupancy level E(0, 2) is in the middle between E(0, 1) and
E(1, 2).

The relative concentrations of the three charge states are determined by
(7.69) (degeneracy and entropy terms have been neglected)

c(V ++)
c(V +)

= exp
(
E(1, 2) − EF

kT

)
(7.75a)

c(V +)
c(V 0)

= exp
(
E(0, 1) − EF

kT

)
. (7.75b)

Therefore, V ++ dominates if EF < E(0, 1) and V 0 dominates for EF >
E(1, 2). In the intermediate range E(0, 1) < EF < E(1, 2) we know from
(7.75a,b) that V + is dominated by V 0 and V ++. However, at this point it is
not clear whether V ++ or V 0 dominates overall. The ratio of the concentra-
tions of V ++ and V 0 is given by

c(V ++)
c(V 0)

= exp
(
E(1, 2) + E(0, 1) − 2EF

kT

)
= e2 exp

(
E(0, 2) − EF

kT

)
.

(7.76)
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The occupancy level E(0, 2) is thus given as

E(0, 2) =
1
2

[E(0, 1) + E(1, 2)] , (7.77)

and is shown in Fig. 7.30. V ++ dominates if EF < E(0, 2) and V 0 dominates
for EF > E(0, 2). V + is, for no position of the Fermi level, the dominating
charge state of the Si vacancy. We note that for n-doped Si the V − and
V −− can also be populated. The population of the V 0 state with an extra
electron introduces another Jahn–Teller splitting (Fig. 7.31) that has trigonal
symmetry.

Generally, the Jahn–Teller effect can make the addition of an electron
cause an effectively negative charging energy; in this case the center is termed
a negative-U center. We note that the single vacancy in germanium is not a
negative-U center due to smaller Jahn–Teller distortion and smaller electron-
lattice coupling [462].

7.7.6 DX Center

The DX center is a deep level that was first investigated for n-doped (e.g.
Si-doped) AlxGa1−xAs. It dominates the transport properties of the alloy for
x > 0.22. For smaller Al concentrations and GaAs the DX level lies in the
conduction band. DX-type deep levels have also been found for other alloys
and dopants, e.g. GaAsP:S.

It is experimentally found that the capture process of electrons into the
DX center is thermally activated. The capture energy Ec depends on the
AlAs mole fraction (Fig. 7.32). The (average) barrier for electron capture has
a minimum of 0.21 eV for x ≈ 0.35, near the crossover point between direct

0.5

0.4

0.3

0.2

0.1
0.3 0.4 0.5 0.6 0.7

AlxGa1-xAs:Si

Fig. 7.32. Energy barrier for electron capture Ec at the Si-DX center in
AlxGa1−xAs for various compositions. Experimental data from [463]
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and indirect band gap (cf. Fig. 6.13). For lower Al concentrations, the cap-
ture barrier increases to 0.4 eV for x = 0.27; for x > 0.35 the capture barrier
increases to about 0.3 eV for x around 0.7 [463]. The barrier for thermally re-
leasing carriers from the DX center has been determined to be about 0.43 eV,
independent of the Al mole fraction [463].

Carriers can be removed from the DX center by optical absorption of pho-
tons with energy larger than about 1.2 eV. If carriers are removed by optical
excitation at low temperatures the (re-)capture is so slow (σ < 10−30 cm2)
that the carriers remain in the conduction band and cause persistent photo-
conductivity (PPC). The PPC is only reduced upon increasing the sample
temperature. The concentration of the DX center is about the same as the
net doping concentration.

The properties of the DX center are reviewed in [464, 465]. So far, no
definite microscopic model of the DX center has been agreed on. Lang [466]
proposed that the DX center involves a donor and an unknown defect (prob-
ably a vacancy). It probably involves large lattice relaxation as in the config-
uration coordinates model of Fig. 7.33 where the donor binding energy Eb

D

with respect to the conduction-band minimum, the barrier for electron cap-
ture Ec, the barrier for electron emission Ee and the optical ionization energy
Eo are labeled. The donor binding energy is measured with Hall effect (cf.
Sect. 8.4) at temperatures sufficient to overcome the capture and emission
barriers, the emission barrier is measured with deep level transient spec-
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Fig. 7.33. (a) Schematic configuration coordinate diagram for the DX level with
large lattice relaxation. q0 is the configuration of the empty defect, qt is the config-
uration of the filled defect. The donor binding energy Eb

D, the barrier for electron
capture Ec, the barrier for electron emission Ee and the optical ionization energy
Eo are labeled. EC denotes the conduction-band edge. We note that in AlGaAs the
DX level is associated with the L conduction band (see Fig. 6.13). (b) Schematic
configuration coordinate diagram for the DX level in Al0.14Ga0.86As with the DX
level being degenerate with the (Γ -related) conduction band
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troscopy (DLTS). The capture barrier manifests itself in PPC experiments.
We note that the DX center is related to the L-conduction band. For small Al
mole fraction, the DX level is degenerate with the Γ -related conduction band
(see Fig. 7.33b).

Theoretical models and experimental evidence hint at a vacancy-intersti-
tial model for the Si-DX center [467]. The donor (Si) is displaced along the
〈111〉 direction from the Ga substitution site. The displacement is predicted
to be 0.117 nm and the distorted geometry can be viewed as a Ga vacancy
and a Si interstitial. The charge state of the (filled) DX center is proposed to
be a two-electron negative-U state.

7.7.7 EL2 Defect

The EL2 defect is a deep donor in GaAs. It is not related to impurities but
occurs for intrinsic material, in particular grown under As-rich conditions. It
has physical properties similar to the DX center. The bleaching of absorp-
tion due to EL2, i.e. the optical removal of electrons from the defect at low
temperatures, is shown in Fig. 7.34. The microscopic model [468] describes
the EL2 defect as an arsenic antisite defect, i.e. an arsenic atom on a Ga
site, AsGa. In the charged state the arsenic atom is displaced from the lattice
position and a complex of a Ga vacancy (symmetry T3d) and an interstitial
As (symmetry C3v) with 0.14 nm displacement along 〈111〉 forms (VGa-Asi).
The charged state is filled with two electrons.

2
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1

0

–1 GaAs

1.0 1.2 1.40.8

Fig. 7.34. Absorption spectrum of GaAs at low temperatures (T = 10 K) when
cooled in the dark (solid line). The dashed (dash-dotted) line is the absorption after
illuminating the sample for 1 min (10 min) with white light, leading to quenching
of the EL2-related absorption. Adapted from [471]
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7.7.8 Semi-insulating Semiconductors

Semiconductors with high resistivity (107–109 Ω cm) are called semi-insulating
(‘s.i.’ or ‘si’). Semi-insulating substrates are needed for high-speed devices.
The high resistivity should stem from a small free-carrier density at finite
temperature and not from a small mobility due to poor crystal quality. For
sufficiently wide band gap, the intrinsic carrier concentration is small and
such pure material is semi-insulating, e.g. GaAs with ni = 1.47 × 106 cm−3

and 5.05×108 Ω cm [469]. Since shallow impurities are hard to avoid, another
route is used technologically. Impurities that form deep levels are incorpo-
rated in the semiconductor in order to compensate free carriers. For example,
a deep acceptor compensates all electrons if NA > ND. Since the acceptor is
deep (Eb

A  kT ), it does not release holes for reasonable temperatures. Ex-
amples of suitable impurities for compensation of electrons are Si:Au [470],
GaAs:Cr [472] and InP:Fe [473]. A deep donor, e.g. InP:Cr [474], is necessary
to compensate p-type conductivity.

Figure 7.35a shows the terms of Fe in InP [475, 476]. An overview of
transition metals in III–V semiconductors can be found in [477]. The elec-
tron configuration of neutral Fe atoms is 3d64s2 (cf. Table 15.2). The Fe is
incorporated on the In site and thus has a Fe3+ state as a neutral accep-
tor (A0). The Fe3+ state has the electron configuration 3d5. The arrow in
Fig. 7.35a represents the capture of an electron from the conduction band
or from a shallow donor. The charge state of the Fe becomes Fe2+ (charged
acceptor, A−) with the electron configuration 3d6. The cubic crystal field (Td
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Fig. 7.35. (a) Schematic band diagram of InP with levels of Fe impurities in the 3+
and 2+ charge states at low temperature. All energies are given in eV. The arrow
denotes capture of an electron (from the conduction band or a shallow donor) on
the deep acceptor. Compare this figure also with Figs. 9.34 and 10.24. (b) Depth
profile of electron concentration in an InP:Sn/InP:Sn,Fe/InP:Sn structure. The
change Δn ≈ 4.5× 1016 cm−3 of electron concentration is due to the compensation
by Fe and corresponds to the chemical iron concentration determined by SIMS,
[Fe]=4.9 × 1019 cm−3. Part (b) adapted from [481]
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symmetry) splits this 5D Fe state8 into two terms [478] that exhibit further
fine structure [476]. The large thermal activation energy of 0.64 eV found
in the Hall effect on semi-insulating InP:Fe [473] corresponds to the energy
separation of the 5E level and the conduction band.

The maximum electron concentration that can be compensated in this
way is limited by the solubility of Fe in InP [479], about 1×1017 cm3. Higher
Fe incorporation leads to the formation of Fe (or FeP) precipitates and de-
grades the crystal quality. Only a fraction of the incorporated Fe may then
be electrically active and contribute to the compensation. The maximum
electrically active Fe concentration is found to be 5–6×1016 cm−3 [480]. The
compensation can be directly visualized via the depth profile of the electron
concentration in a n-si-n structure (Fig. 7.35b). The poor thermal stability of
Fe, i.e. high diffusion coefficient, has evoked proposals for more stable dopants
such as InP:Ru [482].

7.7.9 Isoelectronic Impurities

Isoelectronic impurities, generally represent a deep level with a short range
potential. The isoelectronic trap introduces a bound state for an electron or a
hole. Once a carrier has been captured, the defect becomes charged. The other
carrier type is then easily trapped, forming a bound exciton (Sect. 10.3.2).
The theory of isoelectronic impurities is outlined in [483]. A detailed theo-
retical treatment of N in GaAs and GaP is given in [369].

In GaP:N, an electron is spatially localized on the N impurity. Most of the
wave function is at the X-point. The nitrogen-bound electron level in GaP
(A1 symmetry) is close to the conduction band edge and within the band
gap. Important for the energy position is the lattice relaxation, leading to an
inward relaxation of the surrounding Ga atoms (Fig. 7.37). Due to the spa-
tial localization of the wave function it is delocalized in k-space (Fig. 7.36a)
and obtains a sizeable component at the Γ -point, facilitating zero-phonon
absorption from the valence band. This effect is present only when the lat-
tice relaxation around the impurity is considered; without relaxation the
Γ -component is zero, with relaxation about 1% [369]. The Γ -component of
the wave-function is larger for localization at an isoelectronic impurity than
at a shallow donor such as sulfur [484]. This way a large oscillator strength
for optical transitions occurs (Sect. 9.5.10, 10.3.2). The wavefunction of an
isolated single N impurity and a neighboring N–N pair (NN1) in GaP are
shown in Fig. 7.36b.

Isolated nitrogen impurities in (unstrained) GaAs introduce states only
within the conduction band (Fig. 7.37). The reason is that the GaAs con-
duction band edge is further from the vacuum level than that of GaP (see
Fig. 11.14). Only the NN1 and NN4 pair levels are theoretically expected to

8The notation is 2S+1J (multiplicity), with S being the total spin and J being
the total angular momentum.
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(a) (b)

Fig. 7.36. (a) Model calculation of the wave-vector dependence of the probability
density of an electron bound to a 10 meV deep isoelectronic trap (N) and to a
100 meV deep shallow donor (S) in GaP. Adapted from [484]. (b) Wavefunction
(isosurface at 20% of maximum) of isolated nitrogen (N) and neighboring N–N pair
(NN1) in GaP. Adapted from [369]

Fig. 7.37. Energy levels of nitrogen impurity states in GaP (left) and GaAs (right).
The energy scale is relative to the bulk GaP valence band maximum, the conduction
band minima (CBM) are thus shown relative to the vacuum level. The conduction
band is shown in grey. For both materials, (a) denotes the isolated N impurity level
calculated without lattice relaxation (dashed line), and (b) with lattice relaxation.
(c) denotes the position of N–N pair levels, m denoting the neighbor. (d) shows
selected experimental data. NN1 denotes the direct neighbor NN-pair. The other
NNn follow the usual nomenclature as in [490]. Data taken from [369]
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Fig. 7.38. Pressure dependence of the energy of excitons bound to isolated nitrogen
impurities in GaAs (circles), measured from the top of the GaAs valence band. The
dashed lines are the pressure dependent GaAs bulk band gaps (cmp. Fig. 6.37).
The solid (dash-dotted) line is a theoretical model for the nitrogen-bound exciton
(electron) level. Adapted from [487]

be within the GaAs band gap. The index denotes the n-th neighbor position.
The NN1 level has been experimentally observed [485, 486]. The isolated
nitrogen impurity level is forced into the GaAs band gap upon hydrostatic
pressure [486, 487] (Fig. 7.38). Further levels deeper within the band gap are
due to clusters containing more than two nitrogen atoms.

7.7.10 Surface States

The investigation of (semiconductor) surfaces is a large field with sophis-
ticated methods that allow real-space imaging with atomic resolution by
scanning probe microscopy and highly depth resolved electronic studies. The
surface represents first of all a break in the periodic crystal potential and
thus a defect of the bulk crystal. The unsatisfied bonds partly rearrange, e.g.
by building dimers, forming a surface reconstruction or remain as dangling
bonds. The surface exhibits a surface density of states. Such states can lie in
the band gap and capture electrons, leading to recombination and a deple-
tion layer. In this book, we will not get into details of semiconductor surface
physics and refer the reader to [488].

As an example of the formation of electronic states at surface defects we
show in Fig. 7.39 the comparison of topography and work function (measured
by Kelvin probe force microscopy [489]) at a surface step on a GaP(110) sur-
face that has been prepared by cleaving in-situ in ultrahigh vacuum (UHV).
The depletion-type band bending of the surface is about 0.4 eV. The further
increase of the position of the vacuum level at the step edge shows the pres-
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Fig. 7.39. Image of (a) topography (Δz = 2.8 nm) and (b) work function (Δφ =
4.21–4.26 eV) of a surface step along [111] on a n-GaP(110) surface cleaved in
UHV. Adapted from [489]. (c) and (d) show the corresponding linescans. Adapted
from [489]

ence of trap states in the band gap causing the conduction band to bend
upwards (cf. Sect. 20.2.1). Modeling of the effect shows that the charge den-
sity at the surface is 6 × 1011 cm−2 and at the step edge 1.2 × 106 cm−1.

7.8 Hydrogen in Semiconductors

The role of hydrogen in semiconductors was first recognized in studies of
ZnO [491]. It is now clear that hydrogen plays an important role in the passi-
vation of defects. As a ‘small’ atom, it can attach easily to dangling bonds and
form an electron-pair bond. Thus, surfaces, grain boundaries, dislocations and
shallow (donor and acceptor) and deep impurity levels become passivated. A
good overview and many details of the physics and technological use of hy-
drogen in semiconductors can be found in [492, 493]. The hydrogen must
be typically introduced as atomic species into semiconductors, e.g. from a
plasma in the vicinity of the surface or by ion irradiation.

With regard to silicon it is important to note that the Si–H bond is
stronger than the Si–Si bond. Thus a silicon surface under atomic hydrogen
exhibits Si–H termination rather than Si–Si dimers [494]. Due to the stronger
bond, the hydrogenation leads to an increase of the silicon band gap, which
can be used for surface passivation [495], leading to reduced reverse diode
current.

The hydrogen concentration in amorphous Si (a-Si) can be as high as
50% [496]. Electronic grade a-Si contains typically 10–30 atomic % hydrogen
and is thus rather a silicon–hydrogen alloy.



232 7 Electronic Defect States

(a)

–0.25

Si

0.0 0.25

0.5

0.0

–0.5

–1.0

–1.5

–2.0
–0.5

Si/B

BM

AB

Td T d

+

0

(b)

Fig. 7.40. (a) Energy for positions u of the hydrogen atom along the 〈111〉 direction
for H+ in pure Si (Si atom at u = −0.25) and neutral hydrogen (B atom at u =
−0.25). u is measured in units of

√
3a0. For all positions of the hydrogen atom the

positions of the other atoms have been relaxed in the calculation. Data from [521].
(b) Adiabatic potential energy in the (110) plane for hydrogen in Si:B. ‘BM’ denotes
the bond minimum site (high valence electron density), C and C’ are equivalent for
pure Si. Reprinted with permission from [497], c©1989 APS

Hydrogen in crystalline silicon occupies the bond-center interstitial po-
sition (see Fig. 3.17b) as shown in Fig. 7.40a. The complexes formed by
hydrogen with shallow acceptors and donors have been studied in detail. It is
now generally accepted that for acceptors (e.g. boron) in silicon the hydrogen
is located close to the bond-center position of the Si–B pair (BM, bond mini-
mum) as sketched in Fig. 7.41a. The boron atom forms an electron-pair bond
with three silicon atoms of the tetrahedra, the fourth silicon bonds to the
hydrogen atom. The complex therefore no longer acts as an acceptor. The
silicon atoms and the acceptor relax their positions. The adiabatic poten-
tial energy surface of hydrogen in Si:B is shown in Fig. 7.40b. The hydrogen
can sit on four equivalent sites (BM) along the 〈111〉 directions of the initial
B–Si4 tetrahedron. This reduces the symmetry, e.g. of H–B vibrations [498].
The energetic barrier for the hydrogen orientation has been determined to be
0.2 eV theoretically [497] for a hydrogen motion along the path BM–C–BM in
Fig. 7.40b. Stress (along [100] and [112]) reduces the symmetry and leads to
splitting of the local vibrational modes, now showing axial symmetry [499].
However, this preferential orientation disappears with an activation energy
of 0.19 eV, close to the theoretical value.

Hydrogen has experimentally been found to also passivate shallow donors.
The microscopic configuration is sketched in Fig. 7.41b. The hydrogen atom
sits on the Si–AB (antibonding) position and forms an electron-pair bond
with the silicon atom. The donor, e.g. phosphorus, is left with a double-filled
p-orbital (lone pair) whose level is in the valence band and thus no longer
contributes to conductivity. Molecular hydrogen can passivate the so-called A
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Fig. 7.41. Schematic model for hydrogen in silicon forming a complex with (a)
a shallow acceptor (boron, empty orbital) and (b) a shallow donor (phosphorus,
double-filled orbital)

(a) [110]

[001]

[110]
(b)

Fig. 7.42. (a) Structure of the V–O complex (A center) in silicon. The black sphere
represents the oxygen atom. Reprinted with permission from [501], c©2004 APS.
(b) Calculated ground-state structure for the V–O–H2 center in silicon. Oxygen is
over the C2 axis, and the two white spheres represent hydrogen. Reprinted with
permission from [500], c©2000 APS

center in Si, an oxygen–vacancy complex [500]. The atomistic configuration
of the V–O–H2 complex is shown in Fig. 7.42. The deep double donor S in Si
with a level at 0.3 eV below the conduction-band edge can also be passivated
by two hydrogen atoms [502].
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8.1 Introduction

Charge and heat energy can be transported through the semiconductor in the
presence of appropriate (generalized) forces. Such a force can be an electric
field or a temperature gradient. Both transport phenomena are coupled since
electrons can transport energy and charge through the crystal. First, we will
treat the charge transport as a consequence of a gradient in the Fermi level,
then the heat transport upon a temperature gradient and finally the coupled
system, i.e. the Peltier and Seebeck effects.

Practically all important semiconductor devices are based on the trans-
port of charge, such as diode, transistor, photodetector, solar cell and laser.

Carriers move in the semiconductor driven by a gradient in the Fermi
energy. We distinguish

• drift, as a consequence of an electric field E,
• diffusion, as a consequence of a concentration gradient ∇n or ∇p.

In inhomogeneous semiconductors for which the position of the band edges
is a function of position, another force occurs. This will not be treated here,
since later (cf. Sect. 11) it will be included as an additional, internal electric
field.

Many semiconductor properties, such as the carrier concentration and
the band gap, depend on the temperature. Thus, device properties will also
depend on temperature. During operation of a device typically heat is gen-
erated, e.g. by Joule heating due to finite resistivity. This heat leads to an
increase of the device temperature that subsequently alters the device perfor-
mance, mostly for the worse. Ultimately, the device can be destroyed. Thus
cooling of the device, in particular of the active area of the device, is essen-
tial. Mostly the thermal management of device heating limits the achievable
performance (and lifetime) of the device. In high-power devices quite high
energy densities can occur, e.g. the facet of a high-power semiconductor laser
has to withstand an energy density beyond 10 MW cm−2.

M. Grundmann, The Physics of Semiconductors, 2nd ed., Graduate Texts 235
in Physics, DOI 10.1007/978-3-642-13884-3 8,
c© Springer-Verlag Berlin Heidelberg 2010
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8.2 Conductivity

Under the influence of an electric field the electrons accelerate according to
(cf. (6.35))

F = m∗ dv
dt

= �
dk
dt

= qE = −eE . (8.1)

In the following, q denotes a general charge, while e is the (positive)
elementary charge. After the time δt the k vector of all conduction electrons
(and the center of the Fermi sphere) has been shifted by δk

δk = −eE
�
δt . (8.2)

In the absence of scattering processes this goes on further (similar to
an electron in vacuum). This regime is called ballistic transport. In a (peri-
odic) band structure, the electron will perform a closed cycle as indicated in
Fig. 8.1. Such motion is called a Bloch oscillation. However, in a bulk crystal
the period T of such an oscillation eET/� = 2π/a0 is of the order of 10−10 s
for E = 104 V/cm. This time is much longer than a typical scattering time
of 10−14 s. Thus, in bulk material the Bloch electron cannot reach the zone
boundary. However, in artificial superlattices (cf. Sect. 11) with larger pe-
riodicity (≈ 10 nm), high electric fields (≈ E = 106 V/cm) and high quality
(reduced collision time) such motion is possible. We note that in the absence
of scattering, electrons also perform a periodic oscillation in a magnetic field
(cyclotron motion).

In a real semiconductor, at finite temperatures, impurities, phonons
and defects (finally also the surface) will contribute to scattering. In the
relaxation-time approximation it is assumed that the probability for a scat-
tering event, similar to friction, is proportional to the (average) carrier ve-
locity. The average relaxation time τ is introduced via an additional term
v̇ = −v/τ that sums up all scattering events. Thus, the maximum velocity
that can be reached in a static electric field is given by (steady-state velocity)

v = −eE τ
m∗ . (8.3)

/a/a

Fig. 8.1. Schematic representation of a Bloch oscillation
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The current density per unit area is then linear in the field, i.e. fulfills Ohm’s
law

j = nqv =
ne2 E τ
m∗ = σ E . (8.4)

The conductivity σ in the relaxation-time approximation is given by

σ =
1
ρ

=
ne2τ

m∗ . (8.5)

The specific resistivity is the inverse of the conductivity. Metals have a
high conductivity (see Table 8.1), e.g. for Cu at room temperature
σ = 5.8 × 105 Ω−1 cm−1. At low temperatures (4 K) the conductivity is even
a factor of 105 higher. The mean free path d = τ vF is

d =
σm∗vF
n e2

, (8.6)

Table 8.1. Conductivity at room temperature for various metals, semiconductors,
insulators and liquids

material σ (Ω−1 cm−1)

Ag 6.25 × 105

Al 3.6 × 105

Au 4.35 × 105

Cu 5.62 × 105

Fe 1.1 × 105

Pt 1.02 × 105

Ge pure (ND ∼ 1013 cm−3) 10−2

Ge (ND ∼ 1015 cm−3) 1

Ge (ND ∼ 1017 cm−3) 2 × 101

Ge (ND ∼ 1018 cm−3) 2 × 102

Si pure 4.5 × 10−6

Si:As (ND ∼ 3 × 1019 cm−3) 4 × 102

Si:B (NA ∼ 1.5 × 1019 cm−3) 1.2 × 102

GaAs pure 1.4 × 10−7

ZnO:Al (highly doped) ≈ 1 × 104

pentacene 10−8 – 10−4

SiO2 ≈ 10−15

Al2O3 ≈ 10−16

H2O pure 4 × 10−8

hexane ≈ 10−18
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vF being the Fermi velocity (EF = m∗ v2
F/2). For copper, d = 3 mm at low

temperature (and thus susceptible to the sample geometry) while at room
temperature the mean free path is only about 40 nm. However, this becomes
an issue when the metal line width and height of interconnects in integrated
circuits approaches this length scale [503] (see Sect. 23.5.5).

In semiconductors, the carrier concentration depends strongly on the tem-
perature. At zero temperature the conductivity is zero. Also, the scattering
processes and thus the relaxation time constant exhibit a temperature de-
pendence. The conductivity spans a large range from insulating to almost
metallic conduction (see Table 8.1).

8.3 Low-Field Transport

First we consider only small electric fields. The real meaning of this will only
become clear in Sect. 8.5 on high-field transport. In the low-field regime the
velocity is proportional to the electric field.

8.3.1 Mobility

The mobility is defined (scalar terms) as

μ =
v

E . (8.7)

By definition, it is a negative number for electrons and positive for holes.
However, the numerical value is usually given as a positive number for both
carrier types. In an intrinsic semiconductor the mobility is determined by
scattering with phonons. Further scattering is introduced by impurities, de-
fects or alloy disorder. The conductivity is (8.4)

σ = q nμ (8.8)

for each carrier type. The mobility in the relaxation time approximation is

μ =
q τ

m∗ . (8.9)

and the conductivity thus

σ =
q2nτ

m∗ . (8.10)

In the presence of both electrons and holes,

σ = −enμn + epμp , (8.11)

where μn and μp are the mobilities for electrons and holes, respectively. In
the relaxation-time approximation these are given by μn = −eτn/m∗

e and
μp = eτp/m

∗
p.
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Table 8.2. Mobilities of electrons and holes at room temperature for various
semiconductors

material −μn (cm2/Vs) μp (cm2/Vs)

Si 1300 500

Ge 4500 3500

GaAs 8800 400

GaN 300 180

InSb 77,000 750

InAs 33,000 460

InP 4600 150

ZnO 230 8

As a unit, usually cm2/Vs is used. While Cu at room temperature has
a mobility of 35 cm2/Vs, semiconductors can have much higher values. In
two-dimensional electron gases (cf. Sect. 11), the mobility can reach several
107 cm2/Vs at low temperature (Fig. 11.29). In bulk semiconductors with
small band gap, a high electron mobility is caused by its small effective mass.
Some typical values are given in Table 8.2.

8.3.2 Microscopic Scattering Processes

The relaxation time constant summarizes all scattering mechanisms. If the
relaxation times τi of various processes are independent, the Matthiesen rule
can be used to obtain the mobility (μi = qτi/m

∗)

1
μ

=
∑

i

1
μi

. (8.12)

The different scattering mechanisms have quite different temperature de-
pendences such that the mobility is a rather complicated function of tem-
perature. In [504] the various mechanisms determining the low and high-field
transport properties of (cubic) semiconductors are reviewed.

8.3.3 Ionized Impurity Scattering

Theoretically, this problem is treated similar to Rutherford scattering.
A screened Coulomb potential is assumed, as the scattering potential

V (r) = − Ze

4πε0εr
1
r

exp
(
− r

lD

)
, (8.13)

where LD is the screening length. The problem has been treated classically
by Conwell and Weisskopf [505] and quantum mechanically by Brooks [506]
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and Herring. An expression for the mobility that encompasses the Conwell–
Weisskopf and Brooks–Herring results is derived in [507]. Further details are
given in [508, 509]. For the mobility it is found that

μion.imp. =
27/2(4πε0εr)2

π3/2Z2e3
√
m∗

(kT )3/2

Nion

1
ln(1 + b) − b/(1 + b)

, (8.14)

with b = 4k2l2D = 8m∗E(lD/�)2.

8.3.4 Deformation Potential Scattering

Acoustic phonons with small wavevector, i.e. a wavelength large compared
to the unit cell, can have TA or LA character. The TA phonons represent a
shear wave (with zero divergence), the LA phonons are a compression wave
(with zero rotation). The LA is a plane wave of displacement δR parallel to
the k-vector q,

δR = A sin (q · R − ωt) . (8.15)

The strain tensor is given by

εij =
1
2

(qi Aj + qj Ai) cos (qR − ωt) . (8.16)

It has a diagonal form εij = qiAj for q and ω → 0. Therefore, the LA
phonon creates an oscillatory volume dilatation (and compression) with am-
plitude q ·A. This volume modulation affects the position of the band edges.
For the conduction-band edge the energy change is related to the volume
change by the hydrostatic deformation potential Eac.def. = V ∂EC/∂V . Since
the modulation is small compared to the energy of the charge carriers, it
is mostly an elastic scattering process. The Hamilton operator for the LA
scattering is

Ĥ = Eac.def. (q · A) . (8.17)

The size of the LA amplitude is given by the number of phonons
in the mode that is given by the Bose–Einstein distribution, Nph(�ω) =
[
exp

(
�ω
kT

)]−1
. The mobility due to acoustic deformation potential scattering

is found to be

μac.def. =
2
√

2πe�4cl

3m∗5/2E2
ac.def.

(
1
kT

)3/2

, (8.18)

where cl = ρcLA
s , ρ being the density and cs being the sound velocity. The

acoustical deformation potential scattering is therefore important at high
temperatures. It is dominating in nonpolar semiconductors (Ge, Si) at high
temperatures (typically at and above room temperature).



8.3 Low-Field Transport 241

8.3.5 Piezoelectric Potential Scattering

In piezoelectric crystals (see Sect. 14.4), i.e. crystals that show an electric po-
larization upon strain, certain acoustic phonons lead to piezoelectric fields.
In GaAs, with 〈111〉 being the piezoelectric directions, this is the case for
shear waves. In strongly ionic crystals, e.g. II–VI semiconductors, the piezo-
electric scattering can be stronger than the deformation potential scattering.
The mobility due to piezoelectric potential scattering is

μpz.el. =
16
√

2π
3

�ε0εr

m∗3/2eK2

(
1
kT

)1/2

, (8.19)

with K = e2
p/cl

ε0εr+e2
p/cl

, ep being the piezoelectric coefficient.

8.3.6 Polar Optical Scattering

LO phonons are connected with an electric field antiparallel to the displace-
ment (5.51). In the scattering mechanism the absorbed or emitted phonon
energy �ω0 is comparable to the thermal energy of the carriers. Therefore,
the scattering is inelastic and the relaxation-time approximation does not
work. The general transport theory is complicated. If the temperature is low
compared to the Debye temperature, T � ΘD

μpol.opt. =
e

2m∗αω0
exp

(
ΘD

T

)
, (8.20)

where α = 1
137

√
m∗c2

2kΘD

(
1

ε(∞) − 1
ε(0)

)
is the dimensionless polar constant.

8.3.7 Dislocation Scattering

Dislocations can contain charge centers and thus act as scattering cen-
ters [510]. This has been first demonstrated for n-Ge crystals that have been
deformed [511, 512]. The deformation has introduced acceptor-type defects
reducing the mobility in particular at low temperatures (similar to ionized
impurity scattering). The mobility due to dislocation scattering in an n-type
semiconductor is given by [513, 514]

μdisl. =
30
√

2πε2d2(kT )3/2

Ndisl e3f2LD

√
m∗ ∝

√
n

Ndisl
T , (8.21)

d being the average distance of acceptor centers along the dislocation line, f
their occupation rate, Ndisl the area density of dislocations and
LD = (εkT/(e2n))1/2 the Debye screening length. The relation μ ∝ √

n/Ndisl

has been confirmed for various n-type GaN samples [515].
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8.3.8 Grain Boundary Scattering

The lowering of mobility due to transport across grain boundaries is an im-
portant effect in polycrystalline materials, such as poly-silicon for solar cells
or thin film transistors [516–519]. Grain boundaries contain electronic traps
whose filling depends on the doping of the bulk of the grains. Charges will
be trapped in the grain boundaries and a depletion layer will be created.1

At low doping the grains are fully depleted and all free carriers are trapped
in the grain boundaries. This means low conductivity, however, no electronic
barrier to transport exists. At intermediate doping, traps are partially filled
and the partial depletion of the grain leads to the creation of an electronic
barrier ΔEb (Fig. 8.2a) hindering transport since it must be overcome via
thermionic emission. At high doping the traps are completely filled and the
barrier vanishes again. Accordingly the mobility goes through a minimum as
a function of the doping concentration (Fig. 8.2b) [516]. In [520] these data
have been modeled with a 20 nm grain size, the value found in [516] from
TEM analysis.

The expression for the limitation of the mobility due to scattering at grain
boundaries is given by [519, 521]

μGB =
eLG√
8m∗πk

T−1/2 exp
(
−ΔEb

kT

)
, (8.22)

where LG is the grain size.

(a) (b)

Fig. 8.2. (a) Electronic barrier (ΔEb) for (hole) transport at a grain boundary
(GB). (b) Average hole mobility in poly-silicon, experimental data (symbols) and
theoretical model (solid line). The dependence for monocrystalline silicon is shown
for comparison as dashed line. Adapted from [516]

1The following arguments may only be followed once the concept of depletion
layers and band bending is understood, see Sect. 20.2.1.
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8.3.9 Temperature Dependence

The sum of all scattering processes leads to a fairly complicated temperature
dependence of the mobility μ(T ). In covalent semiconductors (Si, Ge) the
most important processes are the ionized impurity scattering (μ ∝ T 3/2) at
low temperatures and the deformation potential scattering (μ ∝ T−3/2) at
high temperatures (Fig. 8.3a). In polar crystals (e.g. GaAs) at high temper-
atures the polar optical scattering is dominant (Fig. 8.3b).

In Fig. 8.4 the electron mobility of bulk and thin-film ZnO is compared.
Since ZnO is polar the mobility at room temperature is limited by polar opti-
cal phonon scattering. In the thin film, grain-boundary scattering (Sect. 8.3.8)
additionally occurs and limits the mobility.

Since the carrier concentration increases with increasing temperature and
the mobility decreases, the conductivity has a maximum, typically around
70 K (see Fig. 8.5). At very high temperature, when intrinsic conduction
starts, σ shows a strong increase due to the increase in n.

8.3.10 Doping Dependence

The mobility decreases with increasing dopant concentration as shown in
Figs. 8.3a and 8.6. Thus, for bulk material high carrier density and high
mobility are contrary targets. A solution will be provided with the concept
of modulation doping where the dopants and the (two-dimensional) carrier
gas will be spatially separated (cf. Sect. 11.3.4).

(a) (b)

Fig. 8.3. (a) Temperature dependence of the electron mobility in n-doped Ge (for
various doping levels from ND ≈ 1018 for sample A to 1013 cm−3 for sample F in
steps of a factor of ten). Dashed line indicates T−3/2 dependence of deformation
potential scattering, solid lines are guides to the eye. Adapted from [421]. (b)
μn(T ) for n-type GaAs (ND ≈ 5 × 1013 cm−3, NA ≈ 2 × 1013 cm−3). Solid lines
are theoretical mobilities for various scattering mechanisms and combined mobility
according to (8.12). Adapted from [522]
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(a) (b)

Fig. 8.4. Temperature dependence of the electron mobility in n-type (a) bulk ZnO
and (b) a PLD-grown ZnO thin film on sapphire. In the latter, grain-boundary
scattering is limiting the mobility. Squares are experimental data, solid lines are
theoretical mobilities for various scattering mechanisms and combined mobility ac-
cording to (8.12). Experimental data from [523]

(a) (b)

Fig. 8.5. (a) Carrier concentration and (b) conductivity of n-type Ge as a function
of temperature. The doping level varies from ND ≈ 1013 to 1018 (samples A–F as
in Fig. 8.3a where the mobility of the same samples is shown). The dashed lines are
for intrinsic Ge. The solid lines are guides to the eye. Adapted from [421]
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Fig. 8.6. Room-temperature mobility as a function of dopant concentration for
Ge, Si, and GaAs. Solid lines (dashed lines) represent the electron (hole) mobility.
Adapted from [384]

The primary reason of the decrease of mobility with increasing doping
level is the increasing role of ionized impurity scattering. At high doping
level, it becomes more important at room temperature than phonon scatter-
ing [524]. The mobility of carriers in silicon with very high carrier concentra-
tions is depicted in Fig. 8.7.

Fig. 8.7. (a) Electron mobility in Si:P at room temperature over a wide range of
carrier concentrations. (b) Electron mobility in Si:P and hole mobility in Si:B for
various high carrier concentrations. Adapted from [525]
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8.3.11 Piezoresistivity

The dependence of resistivity on stress or strain is known as piezoresistive
effect, first described in [526]. It is a consequence of the modification of the
band structure upon stress and the change of effective masses (Sect. 6.10.2).
In a cubic material, the resistivity ρi for transport in cartesian direction i
changes compared to the unstrained state in a phenomenological description
according to

Δρi

ρi
= πij σj , (8.23)

where π is the piezoresistivity tensor (8.24) and the σj form the six-
component stress tensor (5.58),

π =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

π11 π12 π12 0 0 0
π12 π11 π12 0 0 0
π12 π12 π11 0 0 0
0 0 0 π44 0 0
0 0 0 0 π44 0
0 0 0 0 0 π44

⎞

⎟⎟⎟
⎟⎟⎟
⎠

. (8.24)

Values for the piezoelectric coefficients are given in Table 8.3 for Si, Ge and
GaAs.

The piezoelectric effect has been discussed in detail [527] and modeled for
p-type Si [528]. We shall only give a simple example which is particularly rele-
vant for advanced CMOS design (Sect. 23.5.5); the directional dependence of
the piezoresistive coefficient of silicon is shown for uniaxial stress within in the
(001) plane in Fig. 8.8. Uniaxial tensile stress increases hole resistivity along
〈110〉 stress directions, compressive stress thus increases hole conductivity.

Table 8.3. Piezoresistivity coefficients (in 10−11 Pa−1) for Si, Ge and GaAs at
room temperature

material ρ (Ω cm) π11 π12 π44 Ref.

p-Si 7.8 6.6 −1.1 138.1 [526]

n-Si 11.7 −102.2 53.4 −13.6 [526]

p-Ge (Ge:Ga) 15.0 −10.6 5.0 98.6 [526]

n-Ge (Ge:As) 9.9 −4.7 −5.0 −137.9 [526]

p-GaAs ∼ 10−3 −12.0 −0.6 46 [529]

n-GaAs ∼ 10−3 −3.2 −5.4 −2.5 [529, 530]



8.4 Hall Effect 247

Fig. 8.8. Piezoresistive coefficient for current parallel (perpendicular) to the stress
πl as blue lines(πt, red lines) for uniaxially stressed Si (001) at room temperature,
(a) for p-type Si, (b) for n-type Si. The upper (lower) halves of the graphs show pos-
itive (negative) values of the piezoresistive coefficient, i.e. resistivity increases (de-
creases) with tensile stress. The solid circle indicates the value of |π| = 10−9 Pa−1,
the dashed circle half that value. Adapted from [531]

8.4 Hall Effect

An electrical current along the x (longitudinal) direction in a perpendicular
magnetic field B = (0, 0, B) along z induces an electric field Ey along the
transverse (y) direction. The charge accumulation is due to the Lorentz force.
The related transverse voltage is called the Hall voltage and the resistivity
ρxy = E†/jx the Hall resistivity [17, 20, 21]. For the Hall geometry see Fig. 8.9.
For thin-film samples typically the van-der-Pauw geometry (Fig. 8.10) and
method is used [532–534].

B

VH

w I

x
y

z

v

F

B

Fig. 8.9. Scheme of the Hall-effect geometry. The movement of one electron in
the longitudinal electric current I is shown schematically. The coordinate system
(x, y, z) and the directions of the magnetic field B, the drift velocity of an electron
v and the resulting Lorentz force F are given. The transverse field Ey is given by
VH/w
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(a) (b)

(c) (d) (e)

Fig. 8.10. (a–d) Geometry for van-der-Pauw Hall measurements. (a) Best geome-
try (cloverleaf), (b) acceptable square geometry with small contacts on the corners,
(c,d) not recommended geometries with contacts on the edge centers or inside the
square, respectively. (e) Current distribution, as visualized by lock-in thermogra-
phy [535], in epitaxial ZnO layer on sapphire with Hall geometry as in part (b).
Grey dashed line indicates the outline of the 10 × 10 mm2 substrate, grey areas
indicate gold ohmic contacts

The steady-state equation of motion is

m∗v
τ

= q (E + v × B) . (8.25)

We note that this equation of motion is also valid for holes, given the
convention of Sect. 6.9.1, i.e. positive charge. With the cyclotron frequency
ωc = qB/m∗ the conductivity tensor is (j = qnv = σ E)

σ =

⎛

⎝
σxx σxy 0
σyx σyy 0
0 0 σzz

⎞

⎠ (8.26a)

σxx = σyy = σ0
1

1 + ω2
cτ

2
= σ0

1
1 + μ2B2

(8.26b)

σxy = −σyx = σ0
ωcτ

1 + ω2
cτ

2
= σ0

μB

1 + μ2B2
(8.26c)

σzz = σ0 =
q2nτ

m∗ = qnμ . (8.26d)

Perpendicular to the magnetic field, the conductivity (σzz) is given by
(8.10). If only one type of carrier (charge q, density n) is considered, the
condition jy = 0 leads to Ey = μBEx and jx = σ0Ex. The Hall coefficient is
defined as RH = Ey/(jxB) or more precisely as

RH =
ρxy

B
, (8.27)
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where the resistivity tensor ρ is the inverse of the conductivity tensor σ,

ρ = σ−1 =

⎛

⎝
ρxx ρxy 0
ρyx ρyy 0
0 0 ρzz

⎞

⎠ (8.28a)

ρxx = ρyy =
σxx

σ2
xx + σ2

xy

(8.28b)

ρxy = −ρyx =
σxy

σ2
xx + σ2

xy

(8.28c)

ρzz =
1
σzz

=
1
σ0

. (8.28d)

For a single type of carriers, the Hall coefficient is therefore given by

RH =
μ

σ0
=

1
q n

. (8.29)

It is negative (positive) for electron (hole) conduction. We note that electrons
and holes are deflected in the same y-direction by the magnetic field and
collect at the same electrode. Thus the Hall effect allows the determination
of the carrier density.2

If both types of carriers are present simultaneously, the conductivity is
given by the sum of electron and hole conductivity (8.11),

σ = σe + σh . (8.30)

The Hall constant (8.27) is then

RH =
1
e

−nμ2
e(1 + μ2

hB
2) + pμ2

h(1 + μ2
eB

2)
n2μ2

e(1 + μ2
hB

2) − 2npμeμh(1 + μeμhB2) + p2μ2
h(1 + μ2

eB
2)
.

(8.31)
Under the assumption of small magnetic fields,3 i.e. μB � 1, the Hall

coefficient is

RH =
1
e

[ −nμ2
e + pμ2

h

(−nμe + pμh)2
+
np(−n+ p)μ2

eμ
2
h(μe − μh)2

(−nμe + pμh)4
B2 + . . .

]
. (8.32)

For small magnetic field this can be written as

RH =
1
e

p− nβ2

(p− nβ)2
, (8.33)

with β = μe/μh < 0. For large magnetic fields, i.e. μB  1, the Hall coeffi-
cient is given by

2Using the Hall effect, the net free charge carrier concentration is determined.
We note that the concentration of fixed charges in semiconductors can be investi-
gated by depletion layer spectroscopy (Sect. 20.2.4).

3We note that for a mobility of 104 cm2/Vs, μ−1 is a field of B = 1 T.
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Fig. 8.11. (a) Conductivity and (b) absolute value of the Hall coefficient vs. inverse
temperature for four p-doped (A–D) and two n-doped (E, F) InSb samples. The
doping levels are given in (a). Adapted from [536]

RH =
1
e

p− n

(p+ n)2
. (8.34)

In Fig. 8.11, the absolute value of the Hall coefficient for InSb samples
with different doping concentrations is shown. The p-doped samples exhibit a
reverse of the sign of the Hall coefficient upon increase of temperature when
intrinsic electrons contribute to the conductivity. The zero in RH occurs for
n = p μ2

h/μ
2
e = ni/|β|. For high temperatures, the Hall coefficient for n-

and p-doped samples is dominated by the electrons that have much higher
mobility (Table 8.2).

In the derivation of the Hall coefficient we had assumed that all carriers
involved in the transport have the same properties, in particular that they
are subject to the same scattering time. This assumption is generally not
the case and we need to operate with the ensemble average of the discussed
quantities. The ensemble average of an energy-dependent quantity ζ(E) over
the (electron) distribution function f(E) is denoted as 〈ζ〉 and is given as4

〈ζ〉 =
∫
ζ(e)f(E)dE∫
f(E)dE

. (8.35)

4For this consideration it is assumed that the energy dependence is the decisive
one. Generally, averaging may have to be performed over other degrees of freedom
as well, such as the spin or, in the case of anisotropic bands, the orbital direction.
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In particular 〈τ〉2 is now different from 〈τ2〉. Considering the equation
〈j〉 = 〈σ〉E for the ensemble averaged current densities we find (for one type
of carrier, cf. (8.29))

RH =
1
q n

rH , (8.36)

with the so-called Hall factor rH given by

rH =
γ

α2 + ω2
cγ

2
(8.37)

α =
〈

τ

1 + ω2
cτ

2

〉

γ =
〈

τ2

1 + ω2
cτ

2

〉
.

The Hall factor depends on the scattering mechanisms and is of the order
of 1. For large magnetic fields the Hall factor approaches 1. For small magnetic
fields we have

RH =
1
q n

〈τ2〉
〈τ〉2 . (8.38)

The mobility calculated from (cf. (8.26d)) σ0RH is called the Hall mobility
μH and is related to the mobility via

μH = rH μ . (8.39)

It is assumed so far that the free carrier density and mobility are homo-
geneous in the volume of current transport. Also multi-layer models can be
fitted to experimental Hall data. In a two-layer model, contributions from
bulk and surface conduction can be separated. The magnetic field depen-
dence of σ can be used to separate contributions of carriers with different
density and mobility (including its sign) without assumptions and obtain the
mobility spectrum s(μ) (MSA, mobility spectral analysis),

σxx =
∫ ∞

−∞
s(μ)

1
1 + μ2B2

dμ (8.40a)

σxy =
∫ ∞

−∞
s(μ)

μB

1 + μ2B2
dμ , (8.40b)

(8.40c)

as a generalization of (8.30), (8.26b) and (8.26c) [537, 538].

8.5 High-Field Transport

8.5.1 Drift-Saturation Velocity

In the case of small electric fields the scattering events are elastic. The drift
velocity is linearly proportional to the electric field. The average thermal
energy is close to its thermal value 3kT/2.
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The scattering efficiency, however, is reduced already at moderate fields.
Then, the electron temperature becomes larger than the lattice temperature.
If the carrier energy is large enough it can transfer energy to the lattice by
the emission of an optical phonon. This mechanism is very efficient and limits
the maximum drift velocity. Such behavior is non-ohmic. The limiting value
for the drift velocity is termed the drift-saturation velocity. It is given by [539]

vs =

√
8
3π

√
�ωLO

m∗ . (8.41)

This relation can be obtained from an energy-balance consideration. The
energy gain per unit time in the electric field is equal to the energy loss by
the emission of an optical phonon.

q v · E =
�ωLO

τ
, (8.42)

where τ is the typical relaxation time constant for LO phonon emission.
Together with (8.3) we find (8.42) except for the pre-factor, which is close
to 1. The exact pre-factor results from a more exact quantum-mechanical
treatment. For Ge the drift-saturation velocity at room temperature is 6 ×
106 cm/s, for Si it is 1 × 107 cm/s (Fig. 8.12a). The carrier velocity also
depends on the crystallographic direction [540].

8.5.2 Negative Differential Resistivity

In GaAs there is a maximum drift velocity of about 2×107 cm/s and following
a reduction in velocity with increasing field (1.2 × 107 cm/s at 10 kV/cm,
0.6 × 107 cm/s at 200 kV/cm) as shown in Fig. 8.12a. This regime, above
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Fig. 8.12. Drift velocity at room temperature as a function of applied electric field
for (a) high-purity Si, Ge, and GaAs on a double-logarithmic plot and (b) on linear
plots for Si [543], Ge [544], GaAs [469], InP [545], InGaAs [546], GaN and ZnO [547]



8.5 High-Field Transport 253

Fig. 8.13. Charge-carrier distribution in a multivalley band structure (e.g. GaAs,
InP) for (a) zero, (b) small (E < Ea), (c) intermediate and (d) large (E > Eb)
field strength. The situation shown in (e) is reached temporarily during velocity
overshoot (see also Fig. 8.15)

the threshold field of ET = 3.2 kV/cm in GaAs, is called negative differential
resistivity (NDR) and was predicted in [541]. This phenomenon can be used
in microwave oscillators, e.g. the Gunn element (Sect. 20.5.11).

The effect occurs in a multivalley band structure (see Fig. 8.13, for values
cf. Table 8.4), e.g. in GaAs or InP, when the carrier energy is high enough to
scatter (Fig. 8.13c,d) from the Γ minimum (small mass and high mobility)
into the L valley (large mass and low mobility) [542].

The temperature dependence of the saturation velocity is shown in
Fig. 8.14. With increasing temperature the saturation velocity decreases since
the coupling with the lattice becomes stronger.

Table 8.4. Material parameters for multivalley bandstructure of GaAs and InP.
ΔE denotes the energetic separation of the two lowest valleys of the conduction
band, ET the threshold field for NDR and vP the peak velocity (at ET). Most values
from [548]

lower valley (Γ ) upper valley (L)

material Eg ΔE ET vP m∗ μn m∗ μn

(eV) (eV) (kV/cm) (107 cm/s) (m0) (cm2/Vs) (m0) (cm2/Vs)

GaAs 1.42 0.36 3.2 2.2 0.068 ≈ 8000 1.2 ≈ 180

InP 1.35 0.53 10.5 2.5 0.08 ≈ 5000 0.9 ≈ 100
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Fig. 8.14. Temperature dependence of the saturation velocity for Si (following
vs = vs0(1 + 0.8 exp(T/600 K))−1 with vs0 = 2.4 × 107 cm/s from [543]) and
GaAs [469, 550, 551]

8.5.3 Velocity Overshoot

When the electric field is switched on, the carriers are at first in the Γ min-
imum (Fig. 8.13a). Only after a few scattering processes are they scattered
into the L minimum. This means that in the first moments transport occurs
with the higher mobility of the lowest minimum (Fig. 8.13e). The veloc-
ity is then larger than the (steady-state) saturation velocity in a dc field.
This phenomenon is called velocity overshoot and is a purely dynamic effect
(Fig. 8.15). Velocity overshoot in GaN is discussed in [549]. It is an important
effect in small transistors.

8.5.4 Impact Ionization

If the energy gain in the field is large enough to generate an electron–hole pair,
the phenomenon of impact ionization occurs. The energy is ∝ v2. Momentum
and energy conservation apply. Thus, at small energies (close to the threshold
for impact ionization) the vectors are short and collinear to fulfill momentum
conservation. At higher energy, larger angles between the velocity vectors of
the impact partners can also occur. If the process is started by an electron
(Fig. 8.16a) the threshold energy is given by

Ethr
e =

2me +mhh

me +mhh
Eg . (8.43)

The threshold for impact ionization triggered by a s-o hole (shown
schematically in Fig. 8.16b) is

Ethr
h =

[
1 +

mso(1 −Δ0/Eg)
2mhh +me −mso

]
Eg . (8.44)
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Fig. 8.15. Time dependence of the electron velocity at room temperature upon
a step-like electric field (40 kV/cm) for GaAs (dash-dotted line), InP (dashed line)
and In0.53Ga0.47As (solid line)
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Fig. 8.16. Electron and hole transitions for impact ionization close to the threshold
energy. Ionization is triggered by (a) an electron and (b) a split-off hole of velocity vi
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Fig. 8.17. Impact ionization rates for electrons and holes as a function of the inverse
electric field for Si, Ge and other compound semiconductors at 300 K. Adapted
from [384]

The generation rate G of electron–hole pairs during impact ionization is
given by

G = αnnvn + αppvp , (8.45)

where αn is the electron ionization coefficient. It describes the generation of
electron–hole pairs per incoming electron per unit length. αp denotes the hole
ionization coefficient. The coefficients depend strongly on the applied electric
field. They are shown in Fig. 8.17. They also depend on the crystallographic
direction.

Fig. 8.18. Averaged rates for electron initiated impact ionization in GaAs (circles)
and GaN (squares). Adapted from [552]
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The energy dependence of the electron initiated impact ionization rate
has been calculated in [552] for GaAs, GaN and ZnS considering details and
anisotropy of the band structure. The rates averaged over the Brillouin zone
are compared in Fig. 8.18. Because of the large band gap of GaN, impact
ionization can only be generated by electrons in higher conduction bands.
The sharp increase of ionization rate for GaN around 5.75 eV correlates with
a large valence band DOS from hole states at the zone boundary.

8.6 High-Frequency Transport

The above consideration pertained to dc (or slowly varying) fields. Now, we
consider an ac field. It accelerates the carriers but at the same time the
dissipative force in the relaxation-time approximation is present, i.e. (for
electrons)

m∗v̇ = −eE −m∗v
τ
. (8.46)

For a harmonic field E ∝ exp(−iωt) the complex conductivity
(j = σE = nqv) is

σ =
ne2τ

m∗
1

1 − iωτ
=
ne2

m∗
i

ω + iγ
, (8.47)

with γ = 1/τ being the damping constant. Splitting into real and imaginary
parts yields

σ =
ne2τ

m∗

(
1

1 + ω2τ2
+ i

ωτ

1 + ω2τ2

)
. (8.48)

For small frequencies (ω → 0) the dc conductivity from (8.5) is recovered,
i.e. σ = ne2τ/m∗. For high frequencies (ωτ  1)

σ =
ne2τ

m∗

(
1

ω2τ2
+ i

1
ωτ

)
. (8.49)

8.7 Diffusion

A gradient of a particle concentration n leads to a particle current propor-
tional to −∇n. This diffusion law (Fick’s law) corresponds microscopically
to a random walk. The gradients of the semiconductor carrier densities ∇n
or ∇p thus lead to electron and hole currents, respectively:

jn = eDn∇n (8.50a)
jp = −eDp∇p . (8.50b)

The coefficients Dn and Dp are called the electron and hole diffusion coef-
ficient, respectively. Thus the total electron and hole currents in the presence
of an electric field E and diffusion are
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jn = −eμnnE + eDn ∇n (8.51a)
jp = eμppE − eDp ∇p . (8.51b)

This relation can also be deduced more generally from the gradient of the
Fermi level as

jn = −eμnnE − nμn ∇EF (8.52a)
jp = eμppE − pμp ∇EF . (8.52b)

Using (7.8) and (7.9) for the concentrations (valid also in the case of
degeneracy) and using dFj(x)/dx = Fj−1(x) we obtain

jn = −eμnnE − kTμn

F1/2(η)
F−1/2(η)

∇n (8.53a)

jp = eμppE − kTμp

F1/2(ζ)
F−1/2(ζ)

∇p , (8.53b)

with η = (EF−EC)/kT and ζ = −(EF−EV)/kT . If the pre-factor of the den-
sity gradient is identified as the diffusion coefficient we find the (generalized)
so-called ‘Einstein relations’ (β = e/(kT )) [410, 553]:

Dn = −β−1μn

F1/2(η)
F−1/2(η)

(8.54a)

Dp = β−1μp

F1/2(ζ)
F−1/2(ζ)

. (8.54b)

Useful analytical approximations have been discussed in [554]. We note that,
e.g., (8.54a) can also be written as [555, 556]

Dn = −β−1μn n
∂η

∂n
. (8.55)

In the case of nondegeneracy, i.e. when the Fermi level is within the band
gap and not closer than about 4kT to the band edges, the equation simplifies
to D = kT

q μ, i.e. the ‘regular’ Einstein-relations,

Dn = −β−1μn (8.56a)
Dp = β−1μp . (8.56b)

In this case, (8.51a,b) read

jn = −eμnnE − kTμn ∇n (8.57a)
jp = eμppE − kTμp ∇p . (8.57b)

We recall that both diffusion coefficients are positive numbers, since μn is
negative. Generally, the diffusion coefficient depends on the density. A Taylor
series of the Fermi integral yields

Dn = −β−1μn

[

1 + 0.35355
(
n

NC

)
− 9.9 × 10−3

(
n

NC

)2

+ . . .

]

. (8.58)
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8.8 Continuity Equation

The balance equation for the charge is called the continuity equation. The
temporal change of the charge in a volume element is given by the divergence
of the current and any source (generation rate G), e.g. an external excitation,
or drain (recombination rate U). Details about recombination mechanisms are
discussed in Sect. 10. Thus, we have

∂n

∂t
= Gn − Un − 1

q
∇· jn = Gn − Un +

1
e
∇· jn (8.59a)

∂p

∂t
= Gp − Up − 1

e
∇· jp . (8.59b)

In the case of nondegeneracy we find, using (8.51ab)

∂n

∂t
= Gn − Un − μnn∇· E − μn E∇n+DnΔn (8.60a)

∂p

∂t
= Gp − Up − μpp∇· E − μp E∇p+DpΔp . (8.60b)

In the case of zero electric field these read

∂n

∂t
= Gn − Un +DnΔn (8.61a)

∂p

∂t
= Gp − Up +DpΔp , (8.61b)

and if the stationary case also applies:

DnΔn = −Gn + Un (8.62a)
DpΔp = −Gp + Up . (8.62b)

8.9 Heat Conduction

We consider here the heat transport [557] due to a temperature gradient. The
heat flow q, i.e. energy per unit area per time in the direction q̂, is propor-
tional to the local gradient of temperature. The proportionality constant κ
is called, heat conductivity,

q = −κ∇T . (8.63)

In crystals, the heat conductivity can depend on the direction and thus
κ is generally a tensor of rank 2. In the following, κ will be considered as
a scalar quantity. The quite generally valid Wiedemann–Franz law connects
the thermal and electrical conductivities
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κ =
π2

3

(
k

e

)2

Tσ . (8.64)

The balance (continuity) equation for the heat energy Q is

∇· q = −∂Q
∂t

= − ρC ∂T

∂t
+A , (8.65)

where ρ denotes the density of the solid and C the heat capacity. A denotes
a source or drain of heat, e.g. an external excitation. Combining (8.63) and
(8.65), we obtain the equation for heat conductivity

ΔT =
ρC

κ

∂T

∂t
− A

κ
, (8.66)

which simply reads ΔT = 0 for a stationary situation without sources.
The random mixture of various atoms in natural elements represents a

perturbation of the perfectly periodic lattice. Since the mass of the nuclei
varies, in particular lattice vibrations will be perturbed. Thus we expect an
effect on the heat conductivity. In Fig. 8.19, the thermal conductivity of
crystals from natural Ge and enriched 74Ge are compared [558], the latter
having, as expected, the higher heat conductivity, i.e. less scattering. The
thermal conductivity of isotopically pure 28Si thin films has been measured
to be 60% greater than natural silicon at room temperature and at least 40%
greater at 100◦C, a typical chip operating temperature [559, 560].
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Fig. 8.19. Thermal conductivity of Ge vs. temperature. The enriched Ge consists of
96% 74Ge while the natural isotope mix is 20% 70Ge, 27% 72Ge, 8% 73Ge, 27% 74Ge
and 8% 76Ge. The dashed line shows the κ ∝ T 3 dependence at low temperatures
(Debye’s law). Adapted from [558]
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8.10 Coupled Heat and Charge Transport

The standard effect of coupled charge and heat transport is that a current
heats its conductor via Joule heating. However, more intricate use of ther-
moelectric effects can also be employed to cool certain areas of a device. For
further details see [561, 562].

For the analysis of coupled charge and heat transport we first sum the
electric field and the concentration gradient to a new field Ê = E + ∇EF/e.
Then, the heat flow and charge current are

j = σ Ê + L∇T (8.67)

q = M Ê +N ∇T , (8.68)

where Ê and ∇T are the stimulators for the currents. From the experimental
point of view there is interest to express the equations in j and ∇T since
these quantities are measurable. With new coefficients they read

Ê = ρ j + S∇T (8.69)
q = Π j − κ∇T , (8.70)

where ρ, S and Π are the specific resistance, thermoelectric power and Peltier
coefficient (transported energy per unit charge), respectively. The relations
with the coefficients σ, L, M , and N are given by

ρ =
1
σ

(8.71a)

S = −L
σ

(8.71b)

Π =
M

σ
(8.71c)

κ =
ML

σ
−N . (8.71d)

8.10.1 Seebeck Effect

Assume a semiconductor with a temperature gradient and in an open circuit,
i.e. j = 0. Then a field Ê = S∇T will arise. This effect is called the thermo-
electric or Seebeck effect. The voltage can be measured and used to determine
the temperature at one end if the temperature at the other end is known.
Electrons and holes have different sign of the thermoelectric coefficient (see
Fig. 8.20). A famous relation from irreversible thermodynamics connects it
to the Peltier coefficient via

S =
Π

T
. (8.72)

With the Seebeck effect the conductivity type of a semiconductor can be
determined. If the cold substrate is grounded, the sign of the voltage at a hot
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Fig. 8.20. Thermoelectric force Π of n- and p-silicon as a function of temperature.
Adapted from [563]

solder tip pressed (carefully) on the surface of the semiconductor yields the
conductivity type, n-type (p-type) for a negative (positive) voltage. However,
the semiconductor should not be heated so strongly that intrinsic conduction
arises.

8.10.2 Peltier Effect

In a semiconductor with a temperature gradient a current flow will be allowed
now (short circuit). The current leads via the charge transport also to a
heat (or energy) transport. This effect is called the Peltier effect. The Peltier
coefficient is negative (positive) for electrons (holes). The total amount of
energy P that is transported consists of the generation term and the loss due
to transport:

P = j · Ê −∇· q . (8.73)

With (8.69) and (8.70) we find

P =
j · j
σ

+ S j ·∇T −Π∇· q + κΔT . (8.74)

The first term is Joule heating, the second term is Thomson heating. The
third exists only when carriers are generated or when they recombine. The
fourth term is the heat conduction. In the Thomson term S j ·∇T heat is
generated in an n-type semiconductor if j and ∇T are in the same direction.
This means that electrons that move from the hotter to the colder part trans-
fer energy to the lattice. The effect can be used to construct a thermoelectric
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p-type
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n-type
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j

Fig. 8.21. Schematic Peltier cooler. The heat sinks (grey) and the cold junction
(black) on the left are metals that make ohmic contacts with the semiconductors.
The current flow is such that electrons move through the n-type semiconductor
from right to left

cooler, as shown in Fig. 8.21, that generates a temperature difference due to
a current flow. For optimal performance σ should be large to prevent excess
Joule heating and κ should be small such that the generated temperature
difference is not rapidly equalized.



9 Optical Properties

The interaction of semiconductors with light is of decisive importance for
photonic and optoelectronic devices as well as for the characterization of
semiconductor properties.

9.1 Spectral Regions and Overview

When light hits a semiconductor first reflection, transmission and absorption
are considered, as for any dielectric material. The response of the semicon-
ductor largely depends on the photon energy (or wavelength) of the light.
In Table 9.1 an overview of the electromagnetic spectrum in the optical
range is shown. The energy and wavelength of a photon are related by1

E = hν = hc/λ, i.e.

E [meV] =
1240
λ [nm]

. (9.1)

Table 9.1. Spectral ranges with relevance to semiconductor optical properties

Range wavelengths energies

deep ultraviolet DUV < 250 nm > 5 eV

ultraviolet UV 250–400 nm 3–5 eV

visible VIS 400–800 nm 1.6–3 eV

near infrared NIR 800 nm–2 μm 0.6–1.6 eV

mid-infrared MIR 2–20 μm 60 meV–0.6 eV

far infrared FIR 20–80 μm 1.6–60 meV

THz region THz > 80 μm < 1.6 meV

1The exact numerical value in (9.1) is 1239.84.

M. Grundmann, The Physics of Semiconductors, 2nd ed., Graduate Texts 265
in Physics, DOI 10.1007/978-3-642-13884-3 9,
c© Springer-Verlag Berlin Heidelberg 2010
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9.2 Reflection and Diffraction

From Maxwell’s equations and the boundary conditions at a planar interface
between two media with different index of refraction for the components of
the electric and magnetic fields the laws for reflection and diffraction are
derived. We denote the index of refraction as n and also nr in the following.
The interface between two media with refractive indices n1 and n2 is depicted
in Fig. 9.1. In the following we assume first that no absorption occurs.

Snellius’ law for the angle of diffraction is

n1 sinφ = n2 sinψ . (9.2)

When the wave enters the denser medium, it is diffracted towards the
normal. If the wave propagates into the less-dense medium (reversely to the
situation shown in Fig. 9.1), a diffracted wave occurs only up to a critical
angle of incidence

sinφTR =
n2

n1
. (9.3)

For larger angles of incidence, total internal reflection occurs and the wave
remains in the denser medium. Thus, the angle in (9.3) is called the critical
angle for total reflection. For GaAs and air the critical angle is rather small,
φTR = 17.4◦.

reflected
wave

interface

incident
wave

diffracted
wave

normal

Fig. 9.1. Reflection and diffraction of an electromagnetic wave at the transition
between medium ‘1’ and ‘2’, n2 > n1. The polarization plane is defined by the
surface normal and the k-vector of the light (plane of incidence). The parallel (‘p’)
polarized wave (TM-wave, electric field vector oscillates in the plane) is shown as
‘↔’; perpendicular (‘s’) polarization (TE-wave, electric field vector is perpendicular
to plane) is depicted as ‘·’
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The reflectance depends on the polarization (Fresnel formulas). The index
‘p’ (‘s’) denotes parallel polarized/TM (perpendicular polarized/TE) waves.

Rp =
(

tan(φ− ψ)
tan(φ+ ψ)

)2

(9.4)

Rs =
(

sin(φ− ψ)
sin(φ+ ψ)

)2

. (9.5)

The situation for GaAs and air is shown for both polarization directions
and unpolarized radiation in Fig. 9.2 for a wave going into and out of the
GaAs.

When the reflected and the diffracted wave are perpendicular to each
other, the reflectance of the p-polarized wave is zero. This angle is the Brew-
ster angle φB,

tanφB =
n2

n1
. (9.6)

If a wave has vertical incidence from vacuum on a medium with index of
refraction nr, the reflectance is given (both polarizations are degenerate) as

R =
(
nr − 1
nr + 1

)2

. (9.7)

For GaAs, the reflectance for vertical incidence is 29.2%.

ϕ

→

ϕ

→

Fig. 9.2. Reflectance of the GaAs/vacuum interface (close to the band gap, nr =
3.347) for radiation from vacuum/air (left panel) and from the GaAs (right panel),
respectively, as a function of incidence angle and polarization
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9.3 Absorption

In the absorption process, energy is transferred from the electromagnetic field
to the semiconductor. In the case of a linear absorption process, when the
probability of light absorption is proportional to the incoming intensity, the
decrease of intensity in the absorbing medium is exponential (Lambert–Beer’s
law [564, 565]),2

I(x) = I(0) exp−αx . (9.8)

The quantity α is the absorption coefficient, its reverse the absorption depth.
The spectral dependence α(E), the absorption spectrum, contains the infor-
mation of the possible absorption processes, their energy, momentum and
angular momentum selection rules, and their strength (oscillator strength).

In Fig. 9.3 a schematic absorption spectrum of a semiconductor is de-
picted. The transition of electrons from the valence to the conduction band
is at the band gap energy. The band gaps of Si, Ge, GaAs, InP, InAs, InSb
are in the IR, those of AlAs, GaP, AlP, InN in the VIS, those of GaN and
ZnO in the UV, MgO and AlN are in the deep UV. The Coulomb correlation
of electrons and holes leads to the formation of excitons that leads to absorp-
tion below the band gap. The typical exciton binding energy is in the range
of 1–100 meV (see Fig. 9.16). Optical transitions from valence-band electrons
into donors and from electrons on acceptors into the conduction band lead
to band–impurity absorption. In the region from 10–100 meV the interaction
with lattice vibrations (phonons) leads to absorption if the phonons are in-
frared active. Further in the FIR are transitions from impurities to the closest

Fig. 9.3. Schematic absorption spectrum of a typical semiconductor. From [566]

2In [565], the absorption coefficient μ was defined via I(d)/I(0) = μd, i.e. μ =
exp−α.
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band edge (donor to conduction and acceptor to valence band). A continuous
background is due to free-carrier absorption.

If absorption is considered, the reflectance (9.7) needs to be modified.
Using the complex index of refraction n∗ = nr + iκ, it is given as

R =
∣∣
∣∣
n∗ − 1
n∗ + 1

∣∣
∣∣

2

=
(nr − 1)2 + κ2

(nr + 1)2 + κ2
. (9.9)

The absorption constant κ is related to the absorption coefficient of the
plane wave (damping of E2) by

α = 2
ω

c
κ =

4π
λ
κ = 2 k κ . (9.10)

Here, k and λ denote the respective values in vacuum.

9.4 Electron–Photon Interaction

The absorption process is quantum mechanically described by the coupling
of electrons and photons. The process is described with time-dependent per-
turbation theory. If Hem is the perturbation operator (electromagnetic field),
the transition probability per time wfi for electrons from (unperturbed) state
‘i’ (initial) to state ‘f’ (final) is given (with certain approximations) by Fermi’s
golden rule

wfi(�ω) =
2π
�

|H ′
fi|2 δ(Ef − Ei − �ω) , (9.11)

where �ω is the photon energy, Ei (Ef) is the energy of the initial (final)
state. H ′

fi is the matrix element

H ′
fi = 〈Ψf |H′|Ψi〉 , (9.12)

where Ψi (Ψf) are the wavefunctions of the unperturbed initial (final) state.
A is the vector potential for the electromagnetic field, i.e. E = −Ȧ,

μH = ∇× A, ∇ · A = 0 (Coulomb gauge). The Hamiltonian of an electron
in the electromagnetic field is

H =
1

2m
(�k − qA)2 . (9.13)

When terms in A2 are neglected (i.e. two-photon processes), the pertur-
bation Hamiltonian is thus

Hem = − q

m
Ap =

iq�
m

A · ∇ ≈ q r · E . (9.14)

The latter approximation is valid for small wavevectors of the electromag-
netic wave and is termed the electric dipole approximation.
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In order to calculate the dielectric function of the semiconductor from
its band structure we assume that A is weak and we can apply (9.11). The
transition probability R for the photon absorption rate at photon energy �ω
is then given by3

R(�ω) =
2π
�

∫

kc

∫

kv

|〈c|Hem|v〉|2 δ (Ec(kc) − Ev(kv) − �ω) d3kc d3kv ,

(9.15)

with the Bloch functions |c〉 and |v〉 of the conduction and valence band,
respectively, as given in (6.39b).

The vector potential is written as A = Aê with a unit vector ê parallel
to A. The amplitude is connected to the electric-field amplitude E via

A = − E
2ω

[exp (i(qr − ωt)) + exp (−i(qr − ωt))] . (9.16)

In the electric-dipole approximation the momentum conservation q+kv =
kc, q being the momentum of the light wave is approximated by kv = kc.
The matrix element is then given by

|〈c|Hem|v〉|2 =
e2 |A|2
m2

|〈c|ê · p|v〉|2 , (9.17)

with
〈c |ê · p|v〉|2 =

1
3
|pcv|2 = M2

b , (9.18)

and the momentum matrix element pcv given in (6.38). A k-independent
matrix element |pcv|2 is often used as an approximation. In Fig. 9.4 the
matrix elements for valence to conduction band transitions in GaN are shown
as a function of k.

In terms of the electric-field amplitude E(ω) the transition probability is

R(�ω) =
2π
�

( e

mω

)2
∣∣∣∣
E(ω)

2

∣∣∣∣

2

|pcv|2
∫

k

δ (Ec(k) − Ev(k) − �ω) d3k . (9.19)

If the integration over k is restricted to those values allowed in unit vol-
ume, the power that is lost from the field in unit volume is given by R�ω.
The dielectric function ε = εr + iεi is given by

εi =
1

4πε0

(
2πe
mω

)2

|pcv|2
∫

k

δ (Ec(k) − Ev(k) − �ω) d3k (9.20a)

εr = 1 +
∫

k

e2

ε0mω2
cv

2|pcv|2
m�ωcv

1
1 − ω2/ω2

cv

d3k , (9.20b)

3Here we assume that the valence-band states are filled and the conduction-band
states are empty. If the conduction-band states are filled and the valence-band states
are empty, the rate is that of stimulated emission.
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Fig. 9.4. Theoretical momentum matrix elements |pcv|2 along high-symmetry di-
rections in the Brillouin zone (see Fig. 3.32d) for transitions between valence and
conduction bands in GaN and light polarized perpendicular (left panel) and parallel
(right panel) to the c-axis. The transitions are A: Γ9(A)→ Γ7c, B: Γ7(B)→ Γ7c, C:
Γ7(C)→ Γ7c (see Fig. 6.33). Adapted from [567]

with �ωcv = Ec(k) − Ev(k). The second equation has been obtained via the
Kramers–Kronig relations4 (see Appendix C).

Comparison with (D.7) yields that the oscillator strength of the band–
band absorption is given by

f =
e2

ε0mω2
cv

2|pcv|2
m�ωcv

, (9.21)

with

Ncv =
2|pcv|2
m�ωcv

(9.22)

being the classical ‘number’ of oscillators with the frequency ωcv.

9.5 Band–Band Transitions

9.5.1 Joint Density of States

The strength of an allowed optical transitions between valence and conduction
bands is proportional to the joint density of states (JDOS)Dj(Ecv) (cf. (6.66),
(6.67) and (9.20a))

Dj(Ecv) = 2
∫

S(Ẽ)

d2S

(2π/L)3
1

|∇kEcv| , (9.23)

4The real and imaginary parts of the dielectric function are generally related to
each other via the Kramers–Kronig relations.
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where Ecv is an abbreviation for Ec(k)−Ev(k) and d2S is a surface element
of the constant energy surface with Ẽ = Ecv. The spin is assumed to generate
doubly degenerate bands and accounts for the pre-factor 2. Singularities of
the JDOS (van-Hove singularities or critical points) appear where ∇kEcv

vanishes. This occurs when the gradient for both bands is zero or when both
bands are parallel. The latter generates particularly large JDOS because the
condition is valid at many points in k-space.

Generally, the (three-dimensional) energy dispersion E(k) around a three-
dimensional critical point (here developed at k = 0) can be written as

E(k) = E(0) +
�

2k2
x

2mx
+

�
2k2

y

2my
+

�
2k2

z

2mz
. (9.24)

The singularities are classified as M0, M1, M2 and M3 with the index be-
ing the number of masses mi in (9.24) that are negative. M0 (M3) describes a
minimum (maximum) of the band separation. M1 and M2 are saddle points.
For a two-dimensional k-space there exist M0, M1 and M2 points (mini-
mum, saddle point and maximum, respectively). For a one-dimensional k-
space there exist M0 and M1 points (minimum and maximum, respectively).
The functional dependence of the JDOS at the critical points is summarized
in Table 9.2. The resulting shape of the dielectric function is visualized in
Fig. 9.5.

9.5.2 Direct Transitions

Transitions between states at the band edges at the Γ point are possible
(Fig. 9.6). The k conservation requires (almost) vertical transitions in the
E(k) diagram because the length of the light k vector, k = 2π/λ, is much

Table 9.2. Functional dependence of the joint density of states for critical points in
3, 2 and 1 dimensions. E0 denotes the energy (band separation) at the critical point,
C stands for a constant value. The type of critical point is given (min.: minimum,
saddle: saddle point, max.: maximum)

Dim. label type Dj for E < E0 Dj for E > E0

3D

M0

M1

M2

M3

min.

saddle

saddle
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Fig. 9.5. Shape of the real (left panel) and imaginary (right panel) parts of the
dielectric function in the vicinity of critical points in 3, 2 and 1 dimensions (for
labels see Table 9.2). The dashed line in each graph indicates the energy position
of the critical point E0. Adapted from [568]
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Fig. 9.6. (a) Direct optical transition and (b) indirect optical transitions between
valence and conduction bands. The photon energy is �ω. The indirect transition
involves a phonon with energy �ωph (here: phonon absorption) and wavevector kph

smaller than the size of the Brillouin zone |k| ≤ π/a0. The ratio of the lengths
of the k vectors is ∼ 2a0/λ and typically about 10−3 for NIR wavelengths.

For parabolic bands, i.e. bands described with an energy-independent
effective mass, the absorption coefficient is (M0 critical point)

α ∝ √
E − Eg . (9.25)

The absorption spectrum of GaAs is shown in Fig. 9.7a for photon energies
close to the band gap. The rapid increase, typical for direct semiconductors,
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is obvious. At low temperatures, however, the absorption lineshape close to
the band gap is dominated by an excitonic feature, discussed in Sect. 9.5.7.

Due to the increasing density of states, the absorption increases with
the photon energy (Fig. 9.7c). At 1.85 eV there is a step in the absorption
spectrum of GaAs due to the beginning of the contribution of transitions
between the s-o hole band and the conduction band (see E0 +Δ0 transition
in Fig. 9.7e). When bands go parallel, i.e. with the same separation, in the
E(k) diagram, the absorption processes contribute at the same transition
energy. In this way higher peaks in the absorption spectrum due to the E1

or E′
0 transitions originate as indicated in the band structure in Fig. 9.7e.

The selection rules for transitions from valence to conduction band must
take into account the angular momentum and spin states of the wavefunc-
tions. The optical transitions are circularly polarized as shown in Fig. 9.8. A
lifting of the energetic degeneracies of these states occurs, e.g. by magnetic
fields or spatial confinement.

9.5.3 Indirect Transitions

In an indirect band structure the missing k difference (across the Brillouin
zone) between valence- and conduction-band state needs to be provided by
a second particle. A phonon can provide the momentum and additionally
contributes a small amount of energy �ωph. There are several steps in the
absorption spectrum due to various involved phonons (or combinations of
them). At low temperature (T = 1.6 K, Fig. 9.9) phonons can only be gen-
erated and the absorption starts at energies above the band gap. At higher
temperatures (typically above 40 K [569], Fig. 9.9), acoustical phonons assist-
ing the optical absorption transition can also be absorbed from the crystal;
in this case due to energy conservation the absorption starts already at an
energy Eg−�ωph below the band gap. At even higher temperatures (> 200 K,
Fig. 9.9), also optical phonons can be absorbed.

The two-particle process is less probable than the direct absorption that
only involves one photon. The perturbation calculation yields an absorption
coefficient with a quadratic dependence on energy (9.26) [570]. However, the
strength close to the band gap is about 10−3 smaller than for the direct
transition.

α ∝ (E −Eg ± �ωph)2 . (9.26)

An 11-parameter formula based on terms like (9.26) can describe the room
temperature absorption spectrum of silicon in the visible with a precision of
a few percent [573].

The absorption spectra close to the absorption edge are shown for GaP
(Fig. 9.9) and Si (Fig. 9.10a). According to (9.26), the plot of

√
α vs. energy

(Macfarlane-Roberts plot [574]) yields a straight line beyond the spectral
region of phonon effects. The complicated form close to the (indirect) gap
energy is due to the contribution of different phonons. The phonon energies
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Fig. 9.7. (a) Absorption of GaAs close to the band gap at different temperatures.
Adapted from [571]. (b) High-resolution absorption spectrum of highly pure GaAs
at T = 1.2 K in the exciton region. Dashed line is theory without excitonic corre-
lation. Adapted from [572]. (c) Absorption spectrum of GaAs at T = 21 K in the
vicinity of the band gap. Adapted from [571]. (d) Complex dielectric function of
GaAs at T = 300 K, dashed (solid) line: real (imaginary) part of dielectric constant.
Peak labels relate to transitions shown in part (e). (e) Band structure of GaAs with
band gap transition (E0) and higher transitions (E0 + Δ0, E1, E1 + Δ1, E′

0, and
E2) indicated
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Fig. 9.8. Optical selection rules for band–band transitions in bulk material

Fig. 9.9. Absorption edge of GaP at various temperatures. The index ‘e’ (‘a’)
indicates phonon emission (absorption) during the optical absorption process. The
theoretical excitonic gap (EgX) at T = 77 K is indicated Adapted from [569]

found to contribute to the silicon absorption edge [575] agree with the TA
and TO energy at the X minimum [576] (Fig. 9.10b). Also multiple phonons
can contribute (Fig. 9.9). The momentum conservation can also be achieved
by impurity scattering or electron-electron scattering [577].

We note also that the indirect semiconductors have an optical transition
between Γ valence- and conduction-band states. However, this transition is
at higher energies than the fundamental band gap, e.g. for Si (Eg = 1.12 eV)
at 3.4 eV (see Fig. 6.5a). In Fig. 9.11, the absorption scheme for indirect
and direct absorption processes starting with an electron at the top of the
valence band is shown together with an experimental absorption spectrum
for Ge with the direct transition (Γ8 → Γ7) at 0.89 eV, 0.136 eV above the
fundamental band gap.
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(a) (b)

Fig. 9.10. (a) Absorption edge of Si at two different temperatures. Adapted
from [575]. (b) Phonon energies in silicon along [001] obtained from neutron scat-
tering (black : unidentified, green: TA, purple: LA, blue: LO, red : TO). The vertical
grey bar indicates the position of the conduction band minimum, the horizontal
grey bars the energies of the phonons observed at the indirect optical absorption
edge. The dark grey overlap areas indicate that TO and TA phonons contribute.
Adapted from [576]
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Fig. 9.11. (a) Scheme of indirect and direct optical transitions starting at the top
of the valence band in Ge. Vertical solid lines represent the involved photon, the
horizontal dashed line the involved phonon. (b) Experimental absorption spectrum
of Ge (T = 20 K). Adapted from [575]

In Fig. 9.12, the absorption edge of BaTiO3 is shown. An indirect tran-
sition with an increase of (weak) absorption ∝ E2 and an indirect gap of
Ei = 2.66 eV and a direct transition with an increase of (strong) absorption
∝ E1/2 and a direct gap of Ed = 3.05 eV are observed. These transitions
could be due to holes at the M (indirect gap) and Γ (direct gap) points (cf.
Sect. 6.3.9), respectively.
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Fig. 9.12. Absorption of BaTiO3 at room temperature. Experimental data (circles)
from [578] with fits (dashed lines) ∝ E2 and ∝ E1/2, respectively

9.5.4 Urbach Tail

Instead of the ideal (E −Eg)1/2 dependence of the direct band-edge absorp-
tion, often an exponential tail is observed (see Fig. 9.13). This tail is called
the Urbach tail [579] and follows the functional dependence

α(E) = αg exp
(
E − Eg

E0

)
, (9.27)

where E0 is the characteristic width of the absorption edge, the so-called
Urbach parameter.

The Urbach tail is attributed to transitions between band tails below the
band edges. Such tails can originate from disorder of the perfect crystal, e.g.
from defects or doping, and the fluctuation of electronic energy bands due to
lattice vibrations. The temperature dependence of the Urbach parameter E0

is thus related to that of the band gap as discussed in [581, 582].

9.5.5 Intravalence-Band Absorption

Besides optical interband transitions between the valence and the conduction
band there are also optical transitions within the valence band. In p-type
material holes from the valence-band edge can undergo absorption and end
up in the split-off hole band (Fig. 9.14a). Such intravalence-band absorption
occurs at photon energies close to Δ0 as shown in Fig. 9.14b for p-type
GaAs:Zn. Also, hh → lh transitions are possible.
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Fig. 9.13. (a) Experimental absorption spectrum (circles) of GaAs at room tem-
perature on a semilogarithmic plot. The exponential tail below the band gap is
called the Urbach tail (the dash-dotted line corresponds to E0 = 10.3 meV in (9.27)).
The dashed line is the theoretical dependence from (9.25). Adapted from [580]. (b)
Temperature dependence of Urbach parameter E0 for two GaAs samples. Exper-
imental data for undoped (solid circles) and Si-doped (n = 2 × 1018 cm−3, empty
circles) GaAs and theoretical fits (solid lines) with one-phonon model. Adapted
from [581]
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Fig. 9.14. (a) Schematic optical transitions within the valence band. Holes (empty
circles) are shown to start at the hole quasi-Fermi level, transitions are from left to
right: ‘hh → s-o’, ‘lh → s-o’ and ‘hh → lh’. (b) Experimental absorption spectrum of
GaAs:Zn with p = 2.7× 1017 cm−3 at T = 84 K. The absorption above the split-off
energy Δ0 is due to the hh/lh → s-o process. Adapted from [583]

9.5.6 Amorphous Semiconductors

The sharp features in the dielectric function due to critical points in the band
structure of crystalline semiconductors are washed out in amorphous mate-
rial. As an example the spectra of the imaginary part of the dielectric function
for crystalline (trigonal) and amorphous selenium are shown in Fig. 9.15.
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Fig. 9.15. Imaginary part of the dielectric function of amorphous (solid line)
and crystalline (trigonal) selenium (dash-dotted lines for two different polarization
directions). From [584]

9.5.7 Excitons

An electron in the conduction band and a hole in the valence band form a
hydrogen-like state due to the mutual Coulomb interaction. Such a state is
called an exciton. The center-of-mass motion is separated and has a dispersion
E = �

2

2M K2, where M = me +mh is the total mass and �K is the center-of-
mass momentum

K = ke + kh . (9.28)

The relative motion yields hydrogen-like quantized states En ∝ n−2

(n≥1):

En
X = −m

∗
r

m0

1
ε2r

m0e
4

2(4πε0�)2
1
n2

, (9.29)

wherem∗
r denotes the reduced effective mass m∗−1

r = m∗−1
e +m∗−1

h . The third
factor is the atomic Rydberg energy (13.6 eV). The exciton binding energy
Eb

X = −E1
X is scaled by m∗

m0

1
ε2r

≈ 10−3. A more detailed theory of excitons
beyond the simple hydrogen model presented here, taking into account the
valence-band structure, can be found in [585] for direct and [586] for indirect
cubic and in [587] for wurtzite semiconductors. The exciton binding energies
for various semiconductors are listed in Table 9.3 and shown in Fig. 9.16a vs.
the band gap.

The radius of the exciton is

rn
X = n2 m0

m∗
r

εr aB , (9.30)
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Table 9.3. Exciton (Eb
X) and biexciton (Eb

XX, see Sect. 9.5.11) binding energies in
various bulk semiconductors. Values for 10 nm GaAs/15 nm Al0.3Ga0.7As quantum
well (QW) are taken from [588]

Material Eb
X (meV) Eb

XX (meV) Eb
XX/Eb

X

GaAs 4.2

GaAs QW 9.2 2.0 0.22

ZnSe 17 3.5 0.21

GaN 25 5,6 0.22

CdS 27 5.4 0.20

ZnS 37 8.0 0.22

ZnO 59 15 0.25

where aB = 0.053 nm denotes the hydrogen Bohr radius.5 The Bohr radius
of the exciton is aX = r1X (14.6 nm for GaAs, ∼ 2 nm for ZnO). The exciton
moves with the center-of-mass K-vector through the crystal. The complete
dispersion is (see Fig. 9.16b)

E = Eg + En
X +

�
2

2M
K2 . (9.31)

The oscillator strength of the exciton states decays ∝ n−3. The absorp-
tion due to excitons is visible in Fig. 9.7a for GaAs at low temperatures. If
inhomogeneities are present, typically only the n = 1 transition is seen. How-

(a) (b)

Fig. 9.16. (a) Exciton binding energy vs. band gap for various semiconductors. (b)
Schematic dispersion of excitonic levels. The K-vector refers to the center-of-mass
motion

5Cf. (7.25); an electron bound to a donor can be considered as an exciton with
an infinite hole mass.
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ever, under special conditions also higher transitions of the exciton Rydberg
series are seen (e.g. n = 2 and 3 in Fig. 9.7b).

The exciton concept was introduced first for absorption in Cu2O [589].
The J = 1/2 absorption spectrum (‘yellow series’) is shown in Fig. 9.17. In
this particular material both the valence and conduction bands have s char-
acter, thus the 1s transition of the exciton is forbidden and the np transitions
are observed in normal (one-photon) absorption. Only with two-photon ab-
sorption can the s (and d) transitions also be excited.

The scattering (unbound) states of the exciton [590] for E > Eg con-
tribute to absorption above the band gap. The factor by which the absorption
spectrum is changed is called the Sommerfeld factor. For bulk material it is

S(η) = η
exp(η)
sinh(η)

, (9.32)

with η = π
(

Eb
X

E−Eg

)1/2

. The change of the absorption spectrum due to the
Coulomb correlation is shown in Fig. 9.18. There is a continuous absorption
between the bound and unbound states. At the band gap there is a finite
absorption (S(E → Eg) → ∞). The detail to which exciton peaks can be
resolved depends on the spectral broadening.

In Fig. 9.19 the energy separations of the A-, B-, and C-excitons in GaN
are shown [365]. Thus, the ordering of the valence bands depends on the
strain state of the semiconductor.

2.142.035 2.15 2.16 2.17

4

(b)

Cu O2

2.030

1P
A

 (
a.

u.
)

(a)

green

Fig. 9.17. One-photon (top) and two-photon (bottom) absorption spectra of Cu2O
at T = 4.2 K. Arrows denote theoretical peak positions. Adapted from [592]
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(a) (b)

(c) (d)

Fig. 9.18. Modification of the absorption edge of a direct transition by excitonic
effects for different spectral (Lorentzian) broadening (∝ (E2 + Γ 2/4)−1), (a) Γ =
0.01Eb

X, (b) Γ = 0.1Eb
X, (c) Γ = Eb

X. (d) is (c) in linear scale. Dashed lines are
electron–hole plasma absorption according to (9.25)

9.5.8 Phonon Broadening

The scattering with phonons and the related dephasing leads to homogeneous
broadening Γhom of absorption (and recombination) lines. Acoustic and opti-
cal phonons contribute to the broadening according to the dependence [591]

Γhom(T ) = Γ0 + γAC T + γLO
1

exp(�ωLO/kT ) − 1
, (9.33)

where �ωLO is the optical phonon energy and the last factor is the Bose func-
tion (E.22). Γ0 is a temperature-independent contribution, Γ0 = Γ (T = 0).
The increasing broadening with increasing temperature is obvious, e.g., in
absorption spectra (Fig. 9.20a). In Fig. 9.20b experimental data for GaAs,
ZnSe and GaN are assembled. The data have been fitted with (9.33); the
resulting phonon broadening parameters are listed in Table 9.4.6 The optical

6Such parameter can be directly determined from spectroscopic broadening (as
in [594]) or a time-resolved measurement of the decay of the coherent polarization
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Fig. 9.19. Theoretical dependency (lines) for the the differences of the C-line and
A-line as well as B-line and A-line exciton transition energies in GaN as a function
of the c-axis strain. Symbols are experimental data from [598]. Adapted from [365]

(a) (b)

Fig. 9.20. (a) Absorption spectra of GaN bulk (0.38 μm thick epilayer on sapphire)
for various temperatures T = 100, 200, 300, 350, 400, 450, and 475 K. Adapted
from [594] (b) Homogeneous broadening as a function of temperature, symbols are
experimental data, solid lines are fits, rf. Table 9.4

(four-wave mixing) as in [595]. In the latter, the decay constant of the dephasing T2

is related to the decay constant τ of the FWM-signal by T2 = 2τ for homogeneous
broadening. The Fourier transform of exp−t/(2τ) is a Lorentzian of the type ∝
((E − E0)2 + Γ 2/4)−1 with Γ = 1/τ being the FWHM.
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Table 9.4. Phonon broadening parameters (FWHM) of various bulk semiconduc-
tors. Values from fits with (9.33) to experimental data for GaAs [596], ZnSe [595],
GaN [594], ZnO [597] (phonon energy fitted) as shown in Fig. 9.21b

Material �ωLO (meV) Γ0 (meV) γAC (μeV/K) γLO (meV)

GaAs 36.8 0 4 ± 2 16.8 ± 2

ZnSe 30.5 1.9 0 ± 7 84 ± 8

GaN 92 10 15 ± 4 408 ± 30

ZnO 33 1.2 32 ± 26 96 ± 24

transitions in polar semiconductors exhibit stronger coupling to optical
phonons. The phonon coupling parameters from different measurements on
GaN are discussed and compared in [593].

9.5.9 Exciton Polariton

Electrons and holes are particles with spin 1/2. Thus, the exciton can form
states with total spin S = 0 (para-exciton, singlet) and S = 1 (ortho-exciton,
triplet). The exchange interaction leads to a splitting of these states, the sin-
glet being the energetically higher. The singlet state splits into the longitudi-
nal and transverse exciton with respect to the orientation of the polarization
carried by the Bloch functions and the center-of-mass motion K of the exci-
ton. Dipole transitions are only possible for singlet excitons (bright excitons).
The triplet excitons couple only weakly to the electromagnetic field and are
thus also called dark excitons.

The coupling of these states to the electromagnetic field creates new quasi-
particles, the exciton polaritons [599, 600]. The dielectric function of the
exciton (with background dielectric constant εb) is

ε(ω) = εb

[
1 +

β

1 − (ω2/ωX)2

]
∼= εb

[
1 +

β

1 − (ω2/ωT)2 + �K2/(M ωT)

]
,

(9.34)

where β is the oscillator strength and the energy is �ωX = �ωT + �
2K2/2M .

�ωT is the energy of the transverse exciton at K = 0. With this dispersion
the wave dispersion must be fulfilled, i.e.

c2 k2 = ω2 ε(ω) , (9.35)

where k is the k vector of the light that needs to be k = K due to momentum
conservation. The dependence of the dielectric function on k is called spatial
dispersion [601]. Generally, up to terms in k2 it is written as

ε(ω) = εb

[
1 +

β

1 − (ω2/ω0)2 +Dk2

]
. (9.36)
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Fig. 9.21. (a) Schematic dispersion of exciton polaritons. The lower polariton
branch (‘LPB’) is at small k photon-like, at large k exciton-like. The upper branch
(‘UPB’) is exciton-like at small k and photon-like at larger k. The limit of the UPB
for k → 0 is the energy of the longitudinal exciton. The dashed lines represent
the pure exciton dispersions. (b) Theoretical effect of spatial dispersion on the
reflectance at the fundamental exciton resonance at normal incidence for ZnSe
material parameters (�ωT =2.8 eV, β = 1.0 × 10−3 and a background dielectric
constant of εb = 8.1, damping was set to Γ = 10−5ωT). The arrow denotes the
position of ωL. The solid (dashed) line is with (without) spatial dispersion for
D̂ = 0.6 × 10−5 (D̂ = 0). Data from [601]

The term k2 with curvature D (for the exciton polariton D = �/(M ωT))
plays a role in particular when ω2

T −ω2 = 0. For k �= 0 even a cubic material
is anisotropic. The dimensionless curvature D̂ = Dk

′2 should fulfill D̂ =
�/(Mc) � 1 in order to make k4 terms unimportant. For exciton polaritons7

typically D̂ = �ωT/(mc2) ≈ 2 × 10−5 for �ωT = 1 eV and m∗ = 0.1.
From (9.35) together with (9.36) two solutions result:

2ω2 = c2k2 + (1 + β +Dk2)ω2
0 (9.37)

± [−4c2k2(1 +Dk2)ω2
0 + (c2k2 + (1 + β +Dk2)ω2

0)2
]1/2

.

The two branches are shown schematically in Fig. 9.21a. Depending on
the k value they have a photonic (linear dispersion) or excitonic (quadratic

7The dependence of the optical-phonon energies on k is typically too
small to make spatial dispersion effects important. According to (5.19) D̂ =
− (a0ωTO/4c)2 ≈ 4 × 10−11 for typical material parameters (lattice constant
a0 = 0.5 nm, TO phonon frequency ωTO = 15 THz).
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dispersion) character. The anticrossing behavior at k′ ≈ ωT/c (for �ωT = 1 eV
k′ ≈ 0.5 × 10−5 cm−1) creates a bottleneck region in the lower polariton
branch. This name stems from the small emission rate of acoustic phonons
(i.e. cooling) in that region, as predicted in [602] and experimentally found,
e.g. in CdS [603]. The polaritons decay into a photon when they hit the
surface. The effect of the oscillator strength of the dispersion is shown in
Fig. 9.22 for two-exciton resonance. In the case of several excitons (9.36)
reads

ε(ω) = εb

[

1 +
n∑

i=1

βi

1 − (ω2/ω0,i)2 +Di k2

]

. (9.38)

For k = 0 either ω = 0 (lower polariton branch) or ε(ωL) = 0. For the
latter we find from (9.36)

ωL =
√

1 + β ωT . (9.39)

Therefore, the energy splitting ΔELT, mostly denoted as ΔLT, between the
L- and T-exciton energy given by

ΔELT = �(ωL − ωT) =
[√

1 + β − 1
]

�ωT ≈ 1
2
β �ωT (9.40)

is proportional to the exciton oscillator strength (for experimental values see
Table 9.5). We note that if (D.9) is used for the dielectric function, β in (9.40)
needs to be replaced by β/εb.

The effect of spatial dispersion on the reflection at the fundamental ex-
citon resonance is depicted in Fig. 9.21b. For non-normal incidence an addi-
tional feature due to the longitudinal wave is observed for p-polarization [601].
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Fig. 9.22. Schematic polariton dispersion for a two-exciton resonance (curvature
of exciton dispersion greatly exaggerated, D̂ = 10−2) at ωT,1 = 1 and ωT,2 = 1.5
for three different oscillator strengths (a) f = 10−3, (b) f = 10−2, (c) f = 10−1.
The dashed lines in (c) represent the pure exciton dispersions
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Table 9.5. Exciton energy (low temperature), LT splitting and exciton polariton
oscillator strength for various semiconductors. Values for ZnO from [606], values
for GaAs from [607], all other values from [608]

CdS A CdS B ZnO A ZnO B ZnSe GaN A GaN B GaAs

�ωT (eV) 2.5528 2.5681 3.3776 3.3856 2.8019 3.4771 3.4816 1.5153
ΔLT (meV) 2.2 1.4 1.45 5 1.45 1.06 0.94 0.08
β (10−3) 1.7 1.1 0.9 3.0 1.0 0.6 0.5 0.11
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Fig. 9.23. (a) Exciton polariton dispersion (k ⊥ c) of ZnO with experimental
data (T = 1.8 K). Solid (dotted) lines are for polaritons with E ‖ c (E ⊥ c). The
dashed lines refer to excitons. Adapted from [609]. (b) Exciton polariton dispersion
(T = 2 K) in GaN (on sapphire) for E ⊥ c. Reprinted from [610], c©1998, with
permission from Elsevier, originally in [611]

For a detailed discussion additional effects due to anisotropy in wurtzite crys-
tals, an exciton free layer at the semiconductor surface, additional boundary
conditions and damping need to be considered [604, 605]. The polariton dis-
persions of ZnO and GaN are shown in Fig. 9.23.

9.5.10 Bound-Exciton Absorption

Excitons can localize at impurities or inhomogeneities. Such excitons are
called bound excitons. Here, the absorption due to such complexes is dis-
cussed. The recombination is discussed in Sect. 10.3.2. In GaP:N excitons
are bound to isoelectronic N impurities (substituting P), resulting in the ‘A’
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Fig. 9.24. (a) Transmission spectrum of GaP:N with a nitrogen concentration
of about 1019 cm−3 at 1.6 K (thickness: 1.1 mm). n is indicated for the first eight
transitions due to excitons bound to nitrogen pairs. NNn’ indicate phonon replica.
The ‘A’ line denotes the position of the transition due to excitons bound to a single
nitrogen atom (observable for samples with low N doping). The ‘B’ line is forbidden
and due to the J = 2 exciton. Adapted from [490]. (b) Absorption spectra of
N-doped (NN = 7 × 1018 cm−3) and intrinsic GaP (T = 2 K). Adapted from [484]

line at 2.3171 eV (at T = 4.2 K). The absorption due to A excitons is well
resolved in the spectrum of Fig. 9.24b. At sufficiently high nitrogen doping,
there exist nitrogen pairs, i.e. a complex where a nitrogen impurity has a
second nitrogen impurity in the vicinity. The pairs are labeled NNn. It was
believed that the second nitrogen atom is in the n-th shell around the first
one. However, the proper level assignment is probably different in the view of
modern theory [369]. Also clusters with more than two nitrogen atoms may
exist. NN1 is a prominent level and relates to a N–Ga–N complex having 12
equivalent sites for the second N atom on the next neighbor anion site. The
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Table 9.6. Index of nitrogen pairs NNn and energy separation ΔE of bound-exciton
transitions from the free-exciton line for n = 1 . . . 10 and the ‘A’ line

n 1 2 3 4 5 6 7 8 9 10 ∞ (A)

ΔE (meV) 143 138 64 39 31 25 22 20 18 17 11

transitions due to excitons bound to NNn, as shown in Fig. 9.24a, give a se-
ries of lines (see Table 9.6) that fulfill limn→∞ NNn = A. Although GaP has
an indirect band structure, the absorption coefficient of N-related transitions
is large, about 105 cm−1 for a nitrogen doping level of 1019 cm−3.8 This is
due to the fact that the electron spatially localized at the nitrogen isoelec-
tronic trap (Sect. 7.7.9) has a sizeable k = 0-component of its wave-function
(Fig. 7.36), leading to a large transition probability with Γ -point holes with
an oscillator strength of 0.09 [612].

9.5.11 Biexcitons

Similar to two hydrogen atoms forming a hydrogen molecule, two excitons
can also form a bound complex, the biexciton involving two electrons and
two holes. The biexciton binding energy is defined as

Eb
XX = 2EX − EXX . (9.41)

Biexcitons are binding in bulk material. Accordingly, the biexciton recom-
bination or absorption occurs at lower energy than that of the exciton.
Values of the biexciton binding energy are listed in Table 9.3 for various
semiconductors. The ratio of biexciton and exciton binding energies is fairly
constant about 0.2. In semiconductors with small exciton binding energy,
such as GaAs, biexcitons are hard to observe in bulk material but show
up in heterostructures that provide additional carrier confinement (see also
Sect. 13.3.4). While the exciton density increases linearly with external exci-
tation, the density of biexcitons increases quadratically.

9.5.12 Trions

The complexes ‘eeh’ and ‘ehh’ are called trions. Also, the notation X− and
X+ is common. X− is typically stable in bulk material but hard to observe. In
quantum wells or dots, trions are easier to observe. In quantum dots excitons
with higher charge, e.g. X2−, have also been observed (see Fig. 13.34).

8Also the recombination (Sect. 10.3.2) is efficient and allows green GaP:N and
yellow GaAsP:N light emitting diodes.
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9.5.13 Burstein–Moss Shift

In the discussion so far it has been assumed that all target states in the
conduction band are empty. In the presence of free carriers the absorption is
modified by the

• change of the distribution function
• many-body effects (band gap renormalization)

The latter is discussed in the next section. For a degenerate electron
distribution all states close to the conduction-band edge are populated. Thus
a transition from the valence band cannot take place into such states. This
shift of the absorption edge to higher energies is called the Burstein–Moss
shift [613, 614].

k-conserving optical transitions between parabolic hole and electron
bands have the dependence

E = Eg +
�

2k2

2m∗
e

+
�

2k2

2m∗
h

= Eg +
�

2k2

2mr
, (9.42)

where mr is the reduced mass of electron and hole. About 4kT below the
Fermi level all levels in the conduction band are populated (Fig. 9.25). Thus
the k value at which the absorption starts is given as

k̂ =

√
2mr

�2
(EF − E − 4kT ) . (9.43)

EC

k

E

EV

fe

E

EF

EF -4kT

k

Fig. 9.25. Principle of Burstein–Moss shift. Left panel : Schematic band structure
with completely filled electron states shown in grey. The k-vector for the lowest
photon energy optical absorption process is indicated as k̂. Right panel : Electron
distribution function for a degenerate electron gas with Fermi level in the conduction
band
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Fig. 9.26. Burstein–Moss effect at InSb (Eg = 0.18 eV) at room temperature.
Theoretical dependence and data points for intrinsic InSb and 5 × 1018 cm−3

n-type. Data from [613]

Besides the energy shift in the conduction band, the corresponding energy
shift in the valence band �k2/(2mh) must be considered. Thus, the Burstein–
Moss shift of the absorption edge is

ΔE = �ω − Eg = (EF − 4kT − EC)
(

1 +
me

mh

)
. (9.44)

The relation between n and the Fermi level is given by (7.8). If EF−EC 
kT the Fermi integral can be approximated by 2√

π

(
EF−EC

kT

)3/2
. Using (7.10)

for NC, the Burstein–Moss shift can be written for this case as

ΔE = n2/3 h2

8me

(
3
π

)2/3 (
1 +

me

mh

)
≈ 0.97

h2

8mr
n2/3 . (9.45)

Originally, the Burstein–Moss shift was evoked to explain the absorption
shift in InSb with varying carrier concentration (Fig. 9.26).

9.5.14 Band Gap Renormalization

The band structure theory has been developed so far for small carrier den-
sities. If the carrier density is large the interaction of free carriers has to be
considered. The first step was exciton formation. However, at high tempera-
tures (ionization) and at large carrier density (screening) the exciton is not
stable. Exchange and correlation energy leads to a decrease of the optical
absorption edge that is called band gap renormalization (BGR).

An effect due to significant carrier density is to be expected when the den-
sity is of the order of the exciton volume, i.e. n ∼ a−3

B . For aB ∼ 15 nm (GaAs)
this means n ∼ 3 × 1017cm−3. The dimensionless radius rs is defined via
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Fig. 9.27. (a) Theoretical exchange and correlation energies in units of the exciton
Rydberg energy as a function of the dimensionless variable rs for Ge, Si and a model
system (with one isotropic conduction and valence band each). The solid line is a
fit according to (9.47). Adapted from [615]. (b) Band gap renormalization in terms
of the excitonic Rydberg for various II–VI semiconductors. Solid line is the relation
according to (9.47), dashed line is the dependence predicted in [619] for T = 30 K.
Data are compiled in [620]

4π
3
r3s =

1
na3

B

. (9.46)

The sum of exchange and correlation energies Exc is found to be mostly
independent of material parameters [615] (Fig. 9.27a) and follows the form

Exc =
a+ b rs

c+ d rs + r2s
, (9.47)

with a = −4.8316, b = −5.0879, c = 0.0152 and d = 3.0426. Thus the density
dependence of the band gap at small carrier density is ∝ n1/3. Experimental
data for a number of II–VI semiconductors roughly follow such a dependence
(Fig. 9.27b).

In Fig. 9.28, a theoretical calculation of the absorption spectrum of bulk
GaAs for various carrier densities (n=p) [616] is shown. With increasing den-
sity, the excitonic resonance broadens and vanishes. The shape approaches
the electron–hole plasma shape. The absorption edge shifts to smaller ener-
gies. At high carrier density, the absorption becomes negative in a spectral
range before absorption sets in. In this spectral region, the material exhibits
gain and an incoming light wave is amplified (cmp. Sect. 10.2.6).

9.5.15 Electron–Hole Droplets

At low temperature and high density, electron–hole pairs in Ge and Si can
undergo a phase transition into a liquid state. This electron–hole liquid (EHL)



294 9 Optical Properties

GaAs

n=0
n=5 10 cm
n=3 10 cm
n=8 10 cm16

15 –3

16 –3

–3

1.5001.4951.490

–1

0.0

0.2

0.4

0.6

0.8

1.0

–0.2

1.2

Fig. 9.28. Absorption of GaAs (low temperature, T = 10 K) as a function of the
electron–hole density n (theory). Adapted from [616]

was suggested in [617] and is a Fermi liquid exhibiting the high conductivity
of a metal and the surface and density of a liquid. The condensation is due to
exchange interaction and correlation. The formation is fostered by the band
structure of Ge [618] and the long lifetime of carriers in the indirect band
structure. In unstressed Ge typically a cloud of electron–hole droplets with
diameter in the μm range exists. The phase diagram is shown in Fig. 9.29a. In
suitably stressed Ge electron–hole droplets with several hundred μm diameter
form around the point of maximum shear strain in inhomogeneously strained
crystals, as shown in Fig. 9.29b. The pair density in such a liquid is of the
order of 1017 cm−3.

We note that the metallic EHL state hinders observation of the Bose–
Einstein condensation (BEC) of (bosonic) excitons. The light-exciton mass
offers a high condensation temperature in the 1 K range (compared to the
mK range for atoms). Recent experiments with spatially indirect excitons
in coupled quantum wells lead towards BEC [624, 625]. A sufficiently long
lifetime ensures cooling of the excitons close to the lattice temperature. An-
other potential candidate for BEC are long-living excitons (ms-range) in
Cu2O [626]. The condensation of polaritons (cf. Sect. 9.5.9) in microcavities
to well-defined regions of k-space has been discussed in [627] and compared
to bosonic condensation in bulk.

9.5.16 Two-Photon Absorption

So far, only absorption processes that involve one photon have been consid-
ered. The attenuation of the intensity I of a light beam (of frequency ω0)
along the z direction can be written as
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Fig. 9.29. (a) Temperature–density phase diagram of electrons and holes in Ge.
The regions of electron–hole gas (EHG) and liquid (EHL) and the droplet phase
are labeled. Solid line is theoretical calculation, symbols are experimental data
from [621]. The dash-dotted line denoted ρsp is the experimentally obtained tem-
perature dependence of the liquid density due to single-particle excitations. ρexp

c

and T exp
c denote the experimental critical density and temperature, respectively.

Adapted from [622]. (b) Photographic image of radiative recombination (at 1.75 μm
wavelength) from a 300-μm diameter droplet of electron–hole liquid (EHL) in a
stressed (001) Ge disk (diameter 4 mm, thickness 1.8 mm) at T = 2 K. The stress is
applied from the top by a nylon screw along a 〈110〉 direction. Adapted from [623],
reprinted with permission, c©1977 APS

dI
dz

= −α I − β I2 , (9.48)

where α is due to the (linear) absorption coefficient (and possibly scattering)
and β is the two-photon absorption coefficient. A two-photon process can
occur in two steps, e.g. via a midgap level, which is not considered any further
here. Here, we consider two-photon absorption (TPA) via the population of
a state at 2�ω0 higher energy than the initial state with a nonlinear optical
process. The TPA coefficient is related to the nonlinear third-order electric
dipole susceptibility tensor [629] χijkl. Within the two-band approximation
theory predicts [630]

β ∝ (2�ω0 − Eg)
3/2

. (9.49)

The exponent 3/2 is indeed found experimentally, as shown in Fig. 9.30
for GaAs. The strength of absorption depends on the relative orientation of
the light polarization with respect to the main crystallographic directions,
e.g. TPA for polarization along 〈110〉 is about 20% larger than for the 〈100〉
orientation.
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Fig. 9.30. Experimental (dots) two-photon absorption of GaAs (T = 4 K) as a
function of the difference of the double-photon energy 2�ω from the GaAs band
edge Eg. The solid line is a theoretical calculation, the dashed lines represent slopes
with exponent 1/2 and 3/2, respectively. Adapted from [628]

9.6 Impurity Absorption

Charge carriers bound to shallow impurities exhibit a hydrogen-like term
scheme

En =
m∗

m0

1
ε2r

1
n2

× 13.6 eV , (9.50)

with the ionization limit E∞ being the conduction (valence) band edge for
donors (acceptors), respectively. They can be excited by light to the nearest
band edge. Such absorption is typically in the FIR region and can be used
for photodetectors in this wavelength regime. The optical absorption cross
section of impurity absorption can be related to the carrier capture cross
section [395, 396].

The actual transition energies can deviate from (9.50) due to deviation of
the potential close to the impurity from the pure Coulomb potential. Such an
effect is known as the chemical shift or central cell correction (cf. Sect. 7.5.5)
and is characteristic of the particular impurity. In GaAs such shifts are small
(∼ 100 μeV) [632].

The term scheme for P in Si is shown in Fig. 9.31a. The ground state (1s)
is split because of a reduction of the tetrahedral symmetry due to intervalley
coupling. The anisotropic mass at the X-valley in Si causes the p states (and
states with higher orbital momentum) to split into p0 and p± states. Such
an effect is absent in a direct semiconductor with an isotropic conduction-
band minimum such as GaAs (Fig. 9.32). Optical transitions between the
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Fig. 9.31. (a) Term scheme of phosphorus donor in silicon, all energies in meV.
After [631]. (b) Schematic sequence for photothermal ionization, here absorption of
a photon with �ω = E3p −E1s and subsequent absorption of a phonon with energy
�ωph ≥ E∞ − E3p

1s and various p states can be directly observed in absorption, e.g. for Si:P
in [634]. These transitions are also observed in photoconductivity because
the missing energy to the ionization into the continuum is supplied by a
phonon at finite temperature (photothermal ionization) (Fig. 9.31b) [631].
The splitting of the 2p transition in Fig. 9.32a is the chemical shift due to
different donors incorporated in the GaAs (Si, Sn, and Pb). Peak broadening
is mostly due to Stark broadening due to neighboring charged impurities. The
application of a magnetic field induces Zeeman-like splittings and increases
the sharpness of the peaks. The peak width can be further increased by
illuminating the sample with light having a higher energy than the band gap.
The additional charge carriers neutralize charged impurities and allow higher
resolution (Fig. 9.32b).

In Fig. 9.33 absorption spectra of highly doped n-type GaAs are shown.
For doping concentrations larger than the critical concentration of ∼ 1 ×
1016 cm−3 (cf. Table 7.6) significant broadening is observed due to the for-
mation of an impurity band.
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Fig. 9.32. (a) Far-infrared photoconductivity response (Lyman-type s→p series)
of not intentionally doped GaAs with residual donors Pb, Sn, and Si, NA = 2.6 ×
1013 cm−3, ND − NA = 8 × 1012 cm−3. The upper (lower) curve is for a magnetic
field of 0 (1.9) T. Measurement temperature is 4.2 K. (b) Photoconductive response
of a (different) GaAs sample with the same impurities (ND = 1 × 1013 cm−3) with
(upper curve) and without (lower curve) illumination with above-bandgap light
(B = 1.9 T, T = 4.2 K). Adapted from [633]
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Fig. 9.33. Low-temperature (T = 1.35 K) absorption spectra of highly doped n-
type GaAs:Te with doping concentrations as labeled (circles: ND = 2.1×1016 cm−3,
stars: 6.7 × 1014, triangles: 1.0 × 1015). A sharp photoconductivity spectrum (in
arbitrary units) from low-doped GaAs:Te (crosses, ND = 1.0×1014 cm−3) is shown
for comparison (cf. Fig. 9.32a). The energy of the 1s→2p transition and the donor
binding energy (onset of continuum absorption) are indicated. Adapted from [636]
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Fig. 9.34. (a) Schematic band diagram of InP with levels of Fe impurities in the
3+ and 2+ charge states at low temperature. All energies are given in eV. The
arrows denote the optical transition of a valence-band electron to the Fe center,
Fe3+ + �ω → Fe2+ + h. (b) Calorimetric absorption spectra (at T = 1.3 K) of
InP:Fe, [Fe]=5 × 1016 cm−3. Part (b) adapted from [476]

The absorption of deep levels is typically in the infrared. In Fig. 9.34a
the possible optical absorption processes involving the Fe levels in InP (cf.
Sect 7.7.8) during the charge transfer Fe3+ → Fe2+ are shown. These transi-
tions and their fine structure (Fig. 9.34b) have been observed in calorimetric
absorption spectroscopy (CAS) experiments [476].

In Fig. 9.35 the photoconductivity of Si:Mg is shown. The sharp peaks
are due to transitions of interstitial, singly ionized Mg, Mg+

i [635]. Mg in
Si is a double donor [449] (see Sect. 7.7.2). Above the ionization limit of
about 256 meV, the peaks are replicated, shifted by the LO phonon energy
of 59.1 meV. However, now they rather appear as dips. This behavior is typ-
ical for a discrete state interacting with a continuum, also called Fano reso-
nance [637, 638] with its characteristic lineshape, going below the continuum
level.

9.7 Free-Carrier Absorption

A time-dependent electric field accelerates the charge carriers. The excess
energy is subsequently transferred to the lattice via scattering with phonons.
A review of the effect of free carriers on optical properties can be found
in [639]. In the relaxation-time approximation energy is relaxed with a time
constant τ . Thus energy is absorbed from the electromagnetic wave and dis-
sipated.

The complex conductivity (8.48) is given by

σ∗ = σr + iσi =
ne2τ

m∗

(
1

1 + ω2τ2
+ i

ωτ

1 + ω2τ2

)
. (9.51)
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Fig. 9.35. Photocurrent spectrum of Si:Mg. Transitions are due to Mg+
i from its

1s state to excited states as labeled and indicated by vertical lines. CB denotes
the conduction band edge (ionization limit). Above the CB edge (shaded area)
phonon-assisted absorption occurs (Fano resonances). For comparison the absorp-
tion spectrum below CB is shown shifted by the phonon energy (dashed line). Above
the plot, the transition mechanisms (photothermal ionization and Fano resonance)
are schematically shown. Adapted from [635]

We note that a static magnetic field introduces birefringence as discussed
in more detail in Sect. 12.2.1. The wave equation for the electric field is

∇2E = εμ0Ë + σμ0Ė . (9.52)

For a plane wave ∝ exp [i(kr − ωt)] the wavevector obeys

k =
ω

c

√
εr + i

σ∗

ε0ω
, (9.53)

where c = (ε0μ0)−1/2 is the velocity of light in vacuum, εr is the background
dielectric constant (for large ω).

The part εFC of the dielectric tensor due to free carriers is

εFC =
i
ε0ω

σ∗ . (9.54)
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The complex index of refraction is

n∗ = nr + iκ =
√
εr + i

σ∗

ε0ω
. (9.55)

Taking the square of this equation yields

n2
r − κ2 = εr + i

σi

ε0ω
= εr − ne2

ε0m∗
τ2

1 + ω2τ2
(9.56a)

2nr κ =
σr

ε0ω
=

ne2

ε0ωm∗
τ

1 + ω2τ2
. (9.56b)

The absorption coefficient is related to κ by (9.10). For the case of higher
frequencies, i.e. ωτ  1, the absorption is

α =
n e2

ε0cnrm∗τ
1
ω2

. (9.57)

The absorption decreases with increasing frequency. For semiconductors
it is particularly important in the mid- and far-infrared regions when carriers
are present due to doping or thermal excitation. In Fig. 9.36a absorption spec-
tra of n-type Ge for various doping concentrations are shown. The absorption
coefficient in the transparency regime varies proportionally to λ2 ∝ ω−2 as
predicted in (9.57). A more detailed discussion of the energy dependence of
free carrier absorption can be found in [640]. In Fig. 9.36b the absorption
coefficient due to free carrier absorption at fixed wavelength is shown as a
function of dopant concentration.9 The slope is slightly overlinear, indicating
a weak dependence τ(n).

The index of refraction is given by (also for ωτ  1)

n2
r = εr − ne2

ε0m∗ω2
+ κ2 = εr

[
1 −

(ωp

ω

)2
]

+
ε2r

4n2
r

(ωp

ω

)4 1
ω2τ2

(9.58)

≈ εr

[
1 −

(ωp

ω

)2
]
,

where

ωp =

√
ne2

εrε0m∗ (9.59)

is the plasma frequency. The approximation is valid for small absorption
and when (ωτ)−2 can be neglected. A graphical representation is given in
Fig. 9.37a. For coupling to electromagnetic waves (still ωτ  1)

9Even at low temperature, n ≈ ND since ND � Nc (cf. [421] and Sect. 7.5.6).
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Fig. 9.36. (a) Optical absorption spectra (at T = 4.2 K) of n-type Ge for various As
dopant concentrations as labeled. The arrow denotes the band edge of undoped Ge,
the vertical dashed line the energy for which the free carrier absorption is measured
in part (b). The inclined dashed line visualizes the slope ∝ λ2. Curved dashed lines
are guides to the eye. Adapted from [577]. (b) Free carrier absorption at λ = 2.4 μm
as determined from part (a) of the figure (bluesquares) as a function of As dopant
concentration. Additionally data at 300 K (redcircles) from the same samples are
included [577]. The dashed lines visualizes the slope ∝ N1.25

D

ε(ω) = εr

[
1 −

(ωp

ω

)2
]

=
c2 k2

ω2
(9.60)

must be fulfilled. It follows that the dispersion relation in the presence of free
carriers (Fig. 9.37b) is

ω2 = ω2
p +

c2 k2

ε2r
. (9.61)

For ω > ωp, ε > 0, thus waves can propagate. For ω < ωp, however,
the dielectric constant is negative, i.e. ε < 0. For such frequencies waves
are exponentially damped and cannot propagate or penetrate a layer. This
effect can be used in a plasmon waveguide. The expected dependence of the
plasmon wavelength on the carrier density λp = 2πc/ωp ∝ n−1/2 is depicted
in Fig. 9.38 for GaAs. For semiconductors the plasmon frequency is in the
mid-or far-infrared spectral region.10

10The much higher free-electron density in metals shifts the plasma frequency
to the UV, explaining the reflectivity of metals in the visible and their UV trans-
parency.
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Fig. 9.37. (a) Dielectric constant for plasmon oscillations. Shaded area represents
region of attenuation (negative ε). (b) Dispersion relation (k in units of ωp/c, ω in
units of ωp) in the presence of free carriers (9.61, for εr = 1). Shaded area repre-
sents forbidden frequency range for propagating solutions. Dashed line is photon
dispersion ω = ck
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Fig. 9.38. Plasma wavelength λp for n-type GaAs with various electron concentra-
tions due to different doping levels. Filled circles: experimental values, dashed line:
n−1/2 dependence; the deviation is due to nonparabolicity of the electron mass (cf.
Fig. 9.42b). Data from [641]

9.8 Lattice Absorption

While there is no interaction of optical phonons and (infrared) light in Si
and Ge due to crystal structure symmetry [642], strong effects are present
for compound semiconductors. A review can be found in [643].
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9.8.1 Dielectric Constant

The dielectric constant (with damping parameter Γ ) in the vicinity of the
optical phonon energies is given by (cf. (5.49))

ε(ω) = ε(∞)
(
ω2

LO − ω2 − iωΓ
ω2

TO − ω2 − iωΓ

)
. (9.62)

The dispersion relation (without damping) can be written as

ε(ω) = ε(∞) +
ε(0) − ε(∞)

1 − (ω/ωLO)2
= ε(∞)

[
1 +

f

1 − (ω/ωLO)2

]
. (9.63)

Thus the oscillator strength (compare with (D.10)) is f = ε(0)−ε(∞)
ε(∞) . With

the LST relation (5.48) the oscillator strength is

f =
ω2

LO − ω2
TO

ω2
TO

≈ 2
ωLO − ωTO

ωTO
, (9.64)

and thus proportional to the splitting ΔLT = ωLO−ωTO between the longitu-
dinal and transverse optical phonon frequency. The approximation in (9.64)
is valid for ΔLT � ωTO.

The oscillator strength increases with the ionicity, i.e. the electronegativ-
ity difference of the atoms in the base (Fig. 9.39). Additionally, the oscillator
strength depends on the reduced mass and the high-frequency polarizability;
this can be seen, e.g., for the series of the Zn compounds that all have sim-
ilar ionicity. For the series of the nitrides, the mass effect is small since the
reduced mass is dominated by the light N mass.

9.8.2 Reststrahlenbande

The absorption of electromagnetic radiation by optical phonons is governed
by the dielectric function that has been derived in (9.62). For small damp-
ing, i.e. Γ � ΔLT, the dielectric constant is negative between ωTO and ωLO.
From εr = n2

r − κ2 it follows that κ2 is much larger than n2
r . Therefore,

the reflectance (9.9) will be close to 1. This energy range is the so-called
reststrahlenbande. This term stems from multiple reflections in this wave-
length regime that suppresses neighboring spectral regions and thus achieves
a certain monochromatization in the far-infrared spectral region. Within the
semiconductor the absorption is large in the reststrahlenbande (Fig. 9.40).

9.8.3 Polaritons

The coupled propagation of phonons and electromagnetic radiation is related
to the equation (without phonon damping)
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Fig. 9.39. Lattice absorption oscillator strength f from (9.64) for various elemental,
III–V and II–VI semiconductors as a function of their ionicity fi (cf. Table 2.1).
Dashed line is linear dependence on ionicity for similar (reduced) mass, dash-dotted
lines are guides to the eye for similar ionicity and varying mass

050 25

GaAs

75

Fig. 9.40. Far-infrared absorption of GaAs. In the region around 35 meV is the
reststrahlenbande with high absorption due to optical phonons. Adapted from [192],
based on [644]

ε(ω) = ε(∞)
(
ω2

LO − ω2

ω2
TO − ω2

)
=
c2 k2

ω2
. (9.65)

There are two branches of propagating waves (real k):

ω2 =
1
2

(
ω2

LO +
c2k2

ε(∞)

)
±

√
1
4

(
ω2

LO +
c2k2

ε(∞)

)2

−
(
c2k2ω2

TO

ε(∞)

)2

. (9.66)

For k = 0 we find the solutions ω = ωLO and ω = kc/
√
ε(0). For large k we

find ω = ωTO and ω = kc/
√
ε(∞). These solutions are shown in Fig. 9.41.
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Fig. 9.41. Dispersion of the polariton. The dotted line displays the dispersion for
a purely imaginary wavevector with the absolute value k

(a) (b) –

–

Fig. 9.42. (a) Frequency of the coupled longitudinal-phonon plasmon (LPP) modes
(lower (upper) polariton branch in blue (red))as a function of the plasma frequency.
Dashed line shows uncoupled plasmon frequency (ω = ωp), grey area indicates
spectral region between TO and LO modes. (b) Experimental data on the polariton
energies in n-type GaAs with different carrier concentration ωp ∝ √

nm∗ (9.59).
Dashed (dash-dotted) line is plasmon frequency ωp without (with) consideration of
conduction band non-parabolicity (cf. Fig. 6.26b). Data from [641, 645]

Both branches have a phonon- and a photon-like part. The coupled state
between the phonon and the photon field is called the (phonon-) polariton.

In the interval [ωTO, ωLO] the wavevector is purely imaginary, i.e. k = ik̃
with real k̃. For this case there is only one solution that is also depicted in
Fig. 9.41,

ω2 =
1
2

(

ω2
LO +

c2k̃2

ε(∞)

)

+

√√
√√1

4

(

ω2
LO +

c2k̃2

ε(∞)

)2

+

(
c2k̃2ω2

TO

ε(∞)

)2

. (9.67)
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9.8.4 Phonon–Plasmon Coupling

The coupling of phonons and plasmons in the spectral region of the rest-
strahlenbande leads to the development of two new branches, the longitudi-
nal phonon plasmon modes (LPP+ and LPP−), in the common dispersion.
The dielectric function is

ε(ω) = ε(∞)

(

1 +
ω2

LO − ω2

ω2
TO − ω2

− ω2
p

ω2

)

. (9.68)

For ε(ω) = 0 for k = 0 (coupling to photons) the two solutions ωLPP+

and ωLPP− do not cross as a function of ωp (Fig. 9.42),

ωLPP± =
1
2

[
ω2

LO + ω2
p ±

√
(ω2

LO + ω2
p)2 − 4ω2

TOω
2
p

]
. (9.69)

For small plasma frequencies ωLPP+ = ωLO, i.e. the optical phonons couple to
the electromagnetic field without change. Also ωLPP− = ωp. For large carrier
density, i.e. ωp  ωLO, we find ωLPP− = ωTO and ωLPP+ = ωp. Thus, the
carriers have effectively screened the electric field of the phonon that had led
to the increase of the TO to the LO frequency.



10 Recombination

10.1 Introduction

In thermodynamic nonequilibrium excess charges can be present in the semi-
conductor. They can be created by carrier injection through contacts, an
electron beam or the absorption of light with wavelength smaller than the
band gap. After the external excitation is turned off, the semiconductor will
return to the equilibrium state. The relaxation of carriers into energetically
lower states (and energy release) is called recombination. The term stems
from the electron recombining with the hole created after absorption of a
photon. However, there are other recombination mechanisms. A dedicated
textbook is [646].

In the simplest picture an excitation generates carriers with a rate G
(carriers per unit volume and unit time). In the steady state (after all turn-
on effects) a constant excess charge n carrier density is present. Then the
generation exactly compensates the recombination processes. The principle
of detailed balance even says that each microscopic process is balanced by its
reverse process. If the time constant of the latter is τ , n is given by n = Gτ .
This follows from the steady-state solution ṅ = 0 of

dn
dt

= G− n

τ
. (10.1)

10.2 Band–Band Recombination

The band–band recombination is the relaxation from an electron in the con-
duction band into the valence (the empty state there is the hole). In a direct
semiconductor, electrons can make an optical transition between the bottom
of the conduction band to the top of the valence band. In an indirect semi-
conductor, this process is only possible with the assistance of a phonon and
is thus much less probable.

10.2.1 Spontaneous Emission

We consider the spontaneous recombination of an electron of energy Ee and
a hole of energy Eh (Fig. 10.1a). C(Ee, Eh) is a constant proportional to

M. Grundmann, The Physics of Semiconductors, 2nd ed., Graduate Texts 309
in Physics, DOI 10.1007/978-3-642-13884-3 10,
c© Springer-Verlag Berlin Heidelberg 2010
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E = hν E = hν
E = hν

E = hν
E = hν

Ec

Ev

Eg

(c)(b)(a)

Fig. 10.1. Processes of band–band recombination: (a) spontaneous emission, (b)
absorption and (c) stimulated emission. A full (empty) circle represents an occupied
(unoccupied) electron state

the matrix element of the optical transition (cf. Sect. 9.4). The spontaneous
recombination rate rsp at photon energy E ≥ EC − EV = Eg is (assuming
energy conservation, i.e. E = Ee −Eh, but without k-conservation in a dense
plasma [647]),

rsp(E) =
∫ ∞

EC

dEe

∫ EV

−∞
dEh C(Ee, Eh) (10.2)

×De(Ee) fe(Ee)Dh(Eh) fh(Eh) δ(E − Ee + Eh)

=
∫ E+EV

EC

dEe C(Ee, Ee − E)

×De(Ee) fe(Ee)Dh(Ee − E) fh(Ee − E) ,

where fh denotes the hole occupation fh = 1 − fe.
The lineshape of the band–band recombination with k-conservation1 is

proportional to the joint density of states (9.23) and the Fermi distribution
function. At small excitation and at low doping it can be approximated by
the Boltzmann distribution function and the lineshape is given as

I(E) ∝ √
E − Eg exp

(
− E

kT

)
. (10.3)

An experimental spectrum is shown in Fig. 10.2 together with a fit according
to (10.3). The expected FWHM of the peak is 1.7954 kT , which is about
46 meV at T = 300 K.

The recombination rate in indirect semiconductors is small since the tran-
sition is phonon-assisted. For silicon, an internal quantum efficiency in the
10−6-range has been reported [648]. For germanium, the direct transition is

1Excitonic effects are neglected here, e.g. for temperatures kT � Eb
X. Such

effects are discussed in Sect. 10.3.
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Fig. 10.2. (a) Photoluminescence spectrum of an undoped LPE-grown epitaxial
GaAs layer at room temperature and low cw (λ = 647 nm) excitation density
(10 W/cm2). The solid line is a lineshape fit with (10.3) and Eg =1.423 eV and
T = 293 K. (b) Room temperature, direct (eΓ –hΓ ) recombination from heavily
n-doped (1019 cm−3) germanium (1 μm thick Ge layer on silicon (001)) with biaxial
(thermal) tensile strain. The strain-split valence band edge (Fig. 6.38) causes the
e–hh and e–lh transitions (individual contributions with lineshape according to
(10.3) shown as dashed lines) to occur at different energies. Adapted from [649]

energetically fairly close to the fundamental, indirect L–Γ band edge transi-
tion (Fig. 9.11). The energy difference can be reduced from its bulk value of
136 meV by tensile strain. Additionally, the direct transition can be favored
by heavily n-doping and filling the L conduction band minimum states (see
Sect. 9.5.13). In this case, direct recombination from the conduction band Γ -
minimum can be observed [649] and the effective energy difference has been
lowered to about 100 meV.

10.2.2 Absorption

A similar consideration is made for the absorption process (Fig. 10.1b). An
electron is transferred upon light absorption from a valence-band state (oc-
cupied) to a conduction-band state that must be empty. The coefficient is
B1. Also, the process is proportional to the light intensity, represented by the
density of occupied photon states Nph(E),

rabs(E) =
∫ E+EV

EC

dEe B1(Ee, Ee − E) (10.4)

×De(Ee) (1 − fe(Ee))Dh(Ee − E) (1 − fh(Ee − E))Nph(E) .

10.2.3 Stimulated Emission

In this case, an incoming photon ‘triggers’ the transition of an electron in
the conduction band into an empty state in the valence band. The emitted



312 10 Recombination

photon is in phase with the initial photon (Fig. 10.1c). The rate is (with
coefficient B2):

rst(E) =
∫ E+EV

EC

dEe B2(Ee, Ee − E) (10.5)

×De(Ee) fn(Ee)Dh(Ee − E) fp(Ee − E)Nph(E) .

10.2.4 Net Recombination Rate

In thermodynamical equilibrium the rates fulfill

rsp(E) + rst(E) = rabs(E) . (10.6)

The population functions are Fermi functions with quasi-Fermi levels Fn

and Fp. The photon density is given by Planck’s law and the Bose–Einstein
distribution (Appendix D)

Nph = N0
1

exp (E/kT ) − 1
. (10.7)

The pre-factor is N0 = �ω3n2
r/(π

2c3). Since for absorption and stimu-
lated emission the same quantum-mechanical matrix element is responsible,
B1 = B2. The detailed balance (10.6) yields

C(E1, E2) = B1(E1, E2)Nph

[
exp

(
E − (Fn − Fp)

kT

)
− 1

]
. (10.8)

In thermodynamic equilibrium, i.e. Fn = Fp,

C(E1, E2) = N0B1(E1, E2) = B . (10.9)

If the constant B, the bimolecular recombination coefficient, is indepen-
dent of the energy E, the integration for the net recombination rate R can
be executed analytically and we find

rB =
∫ ∞

Eg

[rsp(E) + rst(E) − rabs(E)] dE (10.10)

= B np

[
1 − exp

(
−Fn − Fp

kT

)]
.

In thermodynamic equilibrium, of course, rB = 0. The recombination rate
Bnp is then equal to the thermal generation rate Gth

Gth = B n0p0 . (10.11)

The bimolecular recombination rate typically used in Shockley–Read–Hall
(SRH) [650, 651] kinetics is
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Table 10.1. Bimolecular recombination coefficient at room temperature for a num-
ber of semiconductors. Data for GaN from [653], Si from [654], SiC from [655], other
values from [656]

Material B (cm3/s)

GaN 1.1 ×10−8

GaAs 1.0 ×10−10

AlAs 7.5 ×10−11

InP 6.0 ×10−11

InAs 2.1 ×10−11

4H-SiC 1.5 ×10−12

Si 1.1 ×10−14

GaP 3.0 ×10−15

rB = B (np− n0p0) . (10.12)

Values for the coefficient B are given in Table 10.1. In the case of carrier injec-
tion, np is larger than in thermodynamical equilibrium, i.e. np > n0 p0, and
the recombination rate is positive, i.e. light is emitted. If the carrier density
is smaller than in thermodynamical equilibrium, e.g. in a depletion region,
absorption is larger than emission. This effect is also known as ‘negative lu-
minescence’ [652] and plays a role particularly at elevated temperatures and
in the infrared spectral region.

10.2.5 Recombination Dynamics

The carrier densities n and p, are decomposed into the densities n0 and p0

in thermodynamic equilibrium and the excess-carrier densities δn and δp,
respectively

n = n0 + δn (10.13a)
p = p0 + δp . (10.13b)

Here, only neutral excitations are considered, i.e. δn = δp. Obviously the
time derivative fulfills ∂n

∂t = ∂ δn
∂t , and correspondingly for the hole density.

The equation for the dynamics

ṅ = ṗ = −Bnp+Gth = −B(np− n0p0) = −B(np− n2
i ) (10.14)

can be written as

∂ δp

∂t
= −B (n0 δp+ p0 δn+ δn δp) . (10.15)

The general solution of (10.15) is given by
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δp(t) =
(n0 + p0) δp(0)

[n0 + p0 + δp(0)] exp [Bt(n0 + p0)] − δp(0)
. (10.16)

In the following, we discuss some approximate solutions of (10.15). First,
we treat the case of a small (neutral) excitation, i.e. δn = δp � n0, p0. The
dynamic equation is in this case

∂ δp

∂t
= −B (n0 + p0) δp . (10.17)

Then the decay of the excess-carrier density is exponential with a time con-
stant (lifetime) τ given by

τ =
1

B (n0 + p0)
. (10.18)

In an n-type semiconductor additionally n0  p0, and thus the minority
carrier lifetime τp is

τp =
1

B n0
. (10.19)

If the nonequilibrium carrier densities are large, i.e. n ≈ p  n0, p0, e.g.
for strong injection, the kinetics obeys

∂ δp

∂t
= −B (δp)2 , (10.20)

and the transient has the form

δp(t) =
δp(0)

1 +B t δp(0)
, (10.21)

where δp(0) is the excess hole density at time t = 0. Such a decay is called
hyperbolic and the recombination is bimolecular. The exponential decay time
is formally τ−1 = Bδp(t) and is thus time and density dependent. A detailed
discussion of minority carrier lifetime is given in [657].

10.2.6 Lasing

The net rate for stimulated emission and absorption is

rst(E) − rabs(E) =
[
1 − exp

(
E − (Fn − Fp)

kT

)]
(10.22)

×
∫ E+EV

EC

dEeBDe(Ee) fe(Ee)Dh(Ee − E) fh(Ee − E)Nph(E) .

The net rate at photon energy E = �ω is only larger than zero (i.e. dominat-
ing stimulated emission) when
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Ev
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Ec

Fig. 10.3. Charge-carrier distribution during inversion, necessary for lasing. Shaded
areas are populated with electrons. A stimulated transition between an electron and
a hole is indicated

Fn − Fp > E ≥ Eg . (10.23)

When the difference of the quasi-Fermi levels is larger than the band gap,
the carrier population is inverted, i.e. close to the band edges the conduction-
band states are more strongly populated with electrons than the valence-band
states, as shown in Fig. 10.3. An incoming optical wave of energy E will then
be net amplified by stimulated emission. Equation (10.23) is also called the
thermodynamic laser condition. We note that lasing requires further condi-
tions as discussed in Sect. 22.4.

10.3 Exciton Recombination

10.3.1 Free Excitons

The observation of free-excitons is limited for semiconductors with a small
exciton binding energies (such as in GaAs) to low temperatures. However,
for large exciton binding energy, recombination from free-excitons is observed
even at room temperature, as shown in Fig. 10.4 for ZnO.

A low temperature recombination spectrum of silicon is shown in Fig. 10.5.
In pure silicon, phonon-assisted exciton recombination (cmp. Sect. 10.4) is
observed involving acoustic (ITA) and optical (ITO) phonons. The weakly
observed no-phonon line (I0) is forbidden in perfect Si.
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Fig. 10.4. Temperature-dependent luminescence spectra of a ZnO thin film (on
sapphire). At low temperatures, the spectra are dominated by donor-bound exciton
transitions (Al0,X)). The vertical dashed line indicates the low-temperature position
of the donor-bound exciton transition (D0,X). The curved dashed line visualizes the
energy position of the free-exciton transition (XA) that becomes dominant at room
temperature

.

Fig. 10.5. Low temperature recombination spectra from silicon with low (solid
lines) and sizeable (dashed line) phosphorus dopant concentration. Spectrum for
NP = 2 × 1014 cm−3 (NP = 8 × 1016 cm−3) taken at 26 K (15 K). Transitions in
pure Si are label with ‘I’, transitions involving P donors are labeled with ‘P’. Q
indicates the dissociation energy of the bound exciton. Adapted from [658]
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10.3.2 Bound Excitons

Excitons can localize at impurities, defects or other potential fluctuations
and subsequently recombine [659, 660]. Excitons can be bound to neutral or
ionized donors and acceptors impurities. Also they can be bound to isoelec-
tronic impurities, the most prominent example being N in GaP [661] (cmp.
Sect. 9.5.10) or isoelectronic clusters [662]. The recombination of excitons
localized in quantum wells (Sect. 11.4) and quantum dots (Sect. 13.3.4) is
discussed later.

The transition energy �ω of an exciton bound to a neutral impurity is

�ω = Eg − EX
b −Q , (10.24)

where Q is the binding (or localization) energy of the exciton to the impu-
rity. A transition involving an exciton bound to a neutral donor is denoted
(D0,X); correspondingly (D+,X), also denoted as (h,D0), and (A0,X). Values
for donor-bound excitons in various semiconductors are listed in Table 10.2.
The (D0,X) complex is stable for 0 < σ = m∗

e/m
∗
h < 0.43 according to [663].

The (D+,X) peak can occur on the low- or high-energy side of the (D0,X)
recombination. Whether Q∗ < Q or Q∗ > Q depends on σ being smaller or
larger than 0.2, respectively [663], and is fulfilled for many semiconductors,
e.g. GaAs, GaN, CdS, and ZnSe.

Table 10.2. Localization energy Q (Q∗) of excitons on selected impurities (ionized
impurities, D+ or A−, respectively) in various semiconductors. σ is the ratio of
effective electron and hole (polaron) masses. EMD: effective mass donor.

host donor Q (meV) Q∗ (meV) Q∗/Q σ Ref.

GaAs
EMD

Zn

0.88

8.1

1.8

31.1

2.0

3.8
0.28

[668]

[669]

GaN
EMD

Mg

6.8

20

11.2 1.6
0.36

[670]

[671]

AlN
Si

Mg

16

40
[671]

CdS EMD 6.6 3.8 0.6 0.17 [672]

Al 4.9 5.4 1.1

ZnSe Ga 5.1 6.6 1.3 0.27 [673, 674]

In 5.4 7.5 1.4

Al 15.5 3.4 0.21

ZnO Ga 16.1 4.1 0.25 0.3 [675]

In 19.2 8.5 0.44
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Fig. 10.6. Energy Q required to remove an exciton from a neutral impurity (10.24)
as a function of the ionization energy Eb

D (open circles) or Eb
A (solid circles) of

the involved impurity in (a) silicon (experimental data from [664]) and (b) ZnO
(experimental data from [665])

Recombination in silicon due to excitons involving phosphorus donors
is depicted in Fig. 10.5. The (D0,X) transition in SI:P is labeled ‘P0’
(Q = 6 meV). Other P-related transitions are discussed in [658]. In Si, the
binding energy to the impurity is about one tenth of the binding energy
of the impurity (Haynes’s rule [659, 664]), i.e. Q/Eb

D and Q/Eb
A ≈ 0.1

(Fig. 10.6a). In GaP the approximate relations Q = 0.26Eb
D − 7meV and

Q = 0.056Eb
A +3meV have been found [661]. For donors in ZnO, the relation

Q = 0.365Eb
D −3.8meV holds (Fig. 10.6b) [665]. In Fig. 10.7, the recombina-

tion spectrum of GaAs:C is shown that exhibits recombination from excitons
bound to the acceptor (carbon) and shallow donors. The exciton is more
strongly bound to an ionized donor (D+) than to a neutral donor.

Varying the concentration of a specific impurity and observing the corre-
sponding change in the intensity of the (D0,X) transition allows to identify the
chemical species to which the exciton is bound. This can be achieved via the
comparison of different samples or more elegantly by introducing radioactive
isotopes. This is shown in Fig. 10.8 for In in ZnO; the (111In0,X) transition
disappears with the characteristic time constant close to that (97 h) of the
nuclear decay of 111In into stable 111Cd. However, in such experiments it
should be considered that the decay product and accompanying high-energy
radiation can create new electronic and structural defects, respectively.

The peak labeled (D0,X)2s in Fig. 10.7 is called a two-electron satellite
(TES) [666]. High-resolution spectra of the TES in GaAs [388, 667] are shown
in Fig. 10.9a. The TES recombination is a (D0,X) recombination that leaves
the donor in an excited state as schematically shown in Fig. 10.9b. Therefore
a hydrogen-like series with n = 2, 3, . . . is observed with energies
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Fig. 10.7. Photoluminescence spectrum (T = 2 K, D = 10 mW cm−2) of GaAs:CAs

(NA = 1014 cm−3) with donor- and acceptor-related bound-exciton recombination
around 1.512 eV, (e,A0), (h,D0) and (D0,A0) pair and free-exciton recombination.
Adapted from [668]

Fig. 10.8. (a) Low-temperature photoluminescence spectrum of ZnO implanted
with 111In featuring the so-called I9-line. Spectra are recorded at various times
after implantation as labeled. (b) Intensity of I9-line as a function of time. Adapted
from [678]

En
TES = E(D0,X) − Eb

D

(
1 − 1

n2

)
. (10.25)

The effect of isotope disorder on the sharpness and splitting of impu-
rity states has been investigated in [676, 677]. The recombination of excitons
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Fig. 10.9. (a) Photoluminescence spectrum (T = 1.5 K, D = 50 mW cm−2) of
high-purity GaAs with two donors (Ge and Se/Sn). The lower spectrum has been
excited 6 meV above the band gap, the upper spectrum has been resonantly excited
with the laser set to the (D0,X) transition and exhibits n = 2, 3, 4, and 5 TES
transitions. α,β,γ denote excited (hole rotational) states of the (D0,X) complex.
Adapted from [667]. (b) Schematic representation of the n = 2 TES process, left :
initial, right : final state

bound to Al, Ga and In in natural silicon (92.23% 28Si, 4.67% 29Si, 3.10%
30Si) is split into three lines due to the valley-orbit splitting [679] of electron
states at the band minimum (Fig. 10.10). Each of these (A0,X) lines is split
by 0.01 cm−1 for Si:Al due to a symmetry reduction of the 4-fold degenerate
A0 ground state, as observed in the presence of applied axial strain or an
electric field. The comparison to spectra from enriched 28Si shows that the
observed splitting without external perturbation is due to isotope disorder
that causes random strains and splits the A0 ground state into two dou-
blets [677] (Fig. 10.10). Similarly, the (unsplit) phosphorus-induced (D0,X)
transition in enriched Si is found to be much sharper (< 40 μeV) than in nat-
ural Si (330 μeV) [676]. At higher resolution, a hyperfine splitting of 485 neV
due to the 31P nuclear spin I = 1/2 (2 × 1012 cm−3) in isotopically pure
(99.991%) 28Si (I = 0) is observed for the (P0,X) recombination [680]. In a
magnetic field, the Zeeman-split lines have a FWHM of about 150 neV.

In Fig. 10.11 the recombination of excitons bound to the N isoelec-
tronic impurity in lowly doped GaP is shown. The efficient recombination
of nitrogen-bound electrons with holes at the Γ point is due to the wave-
function component of the localized electron at k = 0 [484] (Fig. 7.36). The
decay time of the A exciton is about 40 ns [681] and thus larger than the typ-
ical lifetime of excitons in direct semiconductors (ns-range). The forbidden
B exciton has a much longer lifetime of 4 μs [681].
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Fig. 10.10. High-resolution photoluminescence (PL) spectra of (A0,X) recombi-
nation in natural and 28Si-enriched silicon doped with aluminum (T = 1.8 K). The
28Si PL spectrum is shifted up in energy by 0.114 meV, as indicated by the arrow,
to compensate for the shift in band gap. The inset shows a level scheme for the
recombination in natural silicon. Adapted from [677], reprinted with permission,
c©2002 APS

Fig. 10.11. Photoluminescence spectrum (T = 4.2 K) of GaP:N (NN ≈ 5 ×
1016 cm−3). The A exciton is bound to an isolated nitrogen impurity, cmp. to
Fig. 9.24. Adapted from [484]

In the case of In in GaAs it has been found that down to the regime of
NIn < 1019 cm−3 the indium does not act as a substitutional isoelectronic
impurity but still fully participates in the composition of a pseudo-binary
system (Sect. 6.4). Recombination from excitons bound to single indium
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Fig. 10.12. Spectral position of neutral donor- and acceptor-bound exciton pho-
toluminescence transition (T = 2 K) in GaAs doped with different amounts of in-
dium relative to the donor-bound exciton luminescence in pure GaAs (1.5146 eV).
Adapted from [682]

atoms or In–In pairs could not be found. The energy shift of donor- and
acceptor-bound excitons in the dilute limit (Fig. 10.12) follows the band-gap
dependence established for larger indium concentrations. The non-occurrence
of localization effects is attributed to the small effective electron mass in
InAs [369].

The luminescence intensity I(T ) of bound exciton lines is quenched with
increasing temperature due to ionization of the excitons from the impurities.
The temperature dependence can be modeled using the relation [683]

I(T )
I(T = 0)

=
1

1 + C exp(−EA/kT )
, (10.26)

EA being the thermal activation energy and C a pre-factor. Often the acti-
vation energy is found equal to the localization energy, EA = Q (Fig. 10.13,
cmp. Table 10.2). If several processes contribute, additional exponential terms
can be added with further activation energies. For acceptor-bound exci-
tons in GaAs two processes are found to contribute, the ionization from
the impurity into a free exciton (E1

A ≈ Q) and into an electron-hole pair
(E2

A ≈ Q+ Eb
X) [683].

So far single excitons bound to a center have been discussed. Also bound
exciton complexes [684] containing up to six excitons have been observed at
sufficient excitation density, e.g. for substitutional boron [685] or phospho-
rus [686] and interstitial Li [687] in silicon. In a multi-valley semiconductor
several electrons are available to form bound excitons which follow approxi-
mately a shell model and exhibit further fine structure.
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Fig. 10.13. (Temperature dependent PL intensity of (D0,X) in GaN and (A0,X)
in AlN:Mg recombination. Solid lines are fits with (10.26). Data from [671, 688]

10.3.3 Alloy Broadening

The bound-exciton recombination peak in a binary compound is spec-
trally fairly sharp (Sect. 10.3.2), even in the presence of isotope disorder
(Fig. 10.10). In an alloy (see Sect. 3.7), the random distribution of atoms
(with different atomic order number Z) causes a significant broadening ef-
fect of the luminescence (and absorption) line, the so-called alloy broaden-
ing [689, 690]. As an example, we treat AlxGa1−xAs. The exciton samples, at
different positions of the lattice, different coordinations of Ga and Al atoms.
If the experiment averages over these configurations, an inhomogeneously
broadened line is observed.

The cation concentration cc for the zincblende lattice is given as cc = 4/a3
0,

for the wurtzite lattice as cc = 4/(
√

3 a2c). For example, cc = 2.2×1022 cm−3

for AlxGa1−xAs in the entire composition range 0 ≤ x ≤ 1 since the lattice
constant does not vary significantly, and cc = 4.2 × 1022 cm−3 for wurtzite
MgxZn1−xO [691]. In a random alloy, the probability p(N) to find exactly N
Ga atoms in a given volume V (with a total of ccV cations) is given by the
binomial distribution

p(N) =
(
ccV
N

)
xN (1 − x)ccV −N . (10.27)

The sampling volume for a luminescence event is the exciton volume (cf.
(9.30)) that is given for the free-exciton (in 1s hydrogen state) as [689, 692]

Vex = 10π a3
X = 10π

(
m0

m∗
r

εs aB

)3

. (10.28)
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One should note that due to the variation of the involved material parameters
Vex depends itself on x. In GaAs there are about 1.2 × 106 cations in the
exciton volume. In AlxGa1−xAs, there are on average xccVex Al atoms in the
exciton volume. The fluctuation is given by the standard deviation of the
binomial distribution [692]

σ2
x =

x (1 − x)
cc Vex

. (10.29)

The corresponding energetic broadening (full width at half-maximum) of
the spectral line is given by ΔE = 2.36σ with

σ =
∂Eg

∂x
σx =

∂Eg

∂x

√
x(1 − x)
ccVex

. (10.30)

We note that instead of the quantum mechanically correct factor 10π [689,
692], often the factor 4π/3 [690] is used, resulting in larger theoretical broad-
ening.

Experimental data for CdxSe1−x in Fig. 10.14a are consistent with
(10.30). The theoretical dependence (10.30) is shown in Fig. 10.14b also for
AlxGa1−xAs together with experimental data and found to disagree [693].
Since the exciton volume is much smaller (cf. Sect. 9.5.7) than in AlxGa1−xAs,
alloy broadening in MgxZn1−xO is much larger for a given for given x.

The spectral broadening due to alloy disorder masks the fine structure of
recombination lines near the band edge present for binary semiconductors.
Often for all temperatures only a single recombination line appears for alloys.
Spectra for three different MgxZn1−xO alloys are shown in Fig. 10.15(a).
The increasing inhomogeneous broadening is obvious, causing a single peak
for x > 0.03. The temperature dependence of the peak positions is shown

(a) (b)

Fig. 10.14. (a) Spectral width of the photoluminescence from CdSxSe1−x alloys.
Solid line is theory according to (10.30). Adapted from [689]. (b) Spectral width of
the bound exciton recombination in AlxGa1−xAs with various Al content within the
direct-bandgap regime. Solid line is (10.30) with (10.28), dashed line with pre-factor
4π/3 instead of 10 π. Adapted from [693].
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(a) (b)

Fig. 10.15. (a) Photoluminescence spectra (T = 80 K, scaled) of three MgxZn1−xO
alloy layers on sapphire with three different Mg-contents, x = 0.005, x = 0.03, and
x = 0.06 as labeled. The energy positions of (D0,X) and XA peaks are marked.
Adapted from [694]. (b) Peak energy of the photoluminescence spectrum (T = 2 K)
of ZnO (I6-line, star) and various MgxZn1−xO alloys (circles). For x ≤ 0.03 (filled
circles) the (D0,X) recombination peak (Al donor) can be spectrally separated
from the free exciton (XA) recombination. For the samples with higher Mg content
(empty circles) a single recombination peak is present at all temperatures. The
dashed line is a linear least square fit for the alloys with 0 ≤ x ≤ 0.03, showing that
also for x > 0.03 the low temperature recombination peak is due to donor-bound
excitons. Adapted from [695]

in Fig. 10.16 for the same samples. For x = 0.005 the bound exciton (Al-
donor) (D0,X) and free exciton (XA) recombination lines can still be resolved
despite the inhomogeneous broadening of σ = 2.6 meV. At low temperature
the luminescence intensity is dominated by (D0,X) recombination, at room
temperature by free exciton (XA) recombination. Both peaks are present at
low temperatures and exhibit a red-shift with increasing temperatures due to
the shrinking of the band gap (Fig. 10.16(a)). The (D0,X) peak vanishes at
about 180 K due to ionization of the excitons from the donors (Q ≈ 15 meV,
similar as in pure ZnO).

For larger Mg-content of x = 0.03 the two peaks can still mostly be sep-
arated (σ = 6.0 meV). The (D0,X) energy position shows a small dip (about
2 meV) due to exciton localization in the alloy disorder potential (arrow in
Fig. 10.16b). At low temperatures excitons are frozen in local potential min-
ima and have a non-thermal (non-Boltzmann) population. With increasing
temperature they can overcome energy barriers and thermalize, leading to a
shift of the recombination peak to lower energies. Further increase of temper-
ature populates higher levels and leads to a shift of the recombination peak to
higher energies. Superimposed is the red-shift due to the band gap shrinkage.
This so-called “S”-shape effect of E(T ) is discussed in Sect. 11.4 in detail
with regard to exciton localization in a quantum well disorder potential.

For x = 0.06 only a single photoluminescence peak is observed for the
alloy (σ = 8.5 meV). The (D0,X) peak is the dominant for the MgxZn1−xO
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Fig. 10.16. Temperature dependence of the shift of energy position of (D0,X) and
XA photoluminescence peak in MgxZn1−xO alloys with three different Mg-contents,
(a) x = 0.005, (b) x = 0.03, (c) x = 0.06. The energy positions are given relative to
the low temperature position of the respective (D0,X) peaks. Adapted from [694]

alloys at low temperatures even in the presence of large alloy broadening
(Fig. 10.15(b)). The peak changes its nature from (D0,X) at low temperatures
to XA at room temperature. In between, first exciton thermalization (red-
shift) in the disorder potential and subsequently exciton ionization from the
donors (blue-shift, arrow in Fig. 10.16(c)) are observed [694]. Such exciton
ionization from impurities has also been observed for AlGaN:Si [429, 696].

10.4 Phonon Replica

The momentum selection rule for free-exciton recombination allows only ex-
citons with K ≈ 0 (for K, cf. (9.28)) to recombine. The fine structure of
this recombination is connected to polariton effects (cf. Sect. 9.5.9). Excitons
with large K can recombine if a phonon or several phonons are involved [697]
that provide the necessary momentum q = K1−K2, with K1 (K2) being the
wavevector of the initial (intermediate) exciton state (Fig. 10.17). A so-called
zero-phonon line at energy E0 is then accompanied by phonon replica below
E0 at integer multiples (at low temperature) of the (LO) phonon energy �ωph

En = E0 − n �ωph . (10.31)
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Fig. 10.17. Schematic representation of 1 LO exciton scattering of an exciton at
K �= 0 to an intermediate state with K ≈ 0 and subsequent radiative decay. �ω
represents the phonon energy and E1 the energy of the emitted photon

Phonon replicas have been observed in many polar semiconductors such
as CdS [698] and ZnSe [699]. A sequence of such phonon replica, as observed
in GaN [700], is depicted in Fig. 10.18a.

The lineshape of the n-th phonon-assisted line is proportional to the exci-
ton population at a given excess energy, which is proportional to the density
of states and the Boltzmann distribution function [701]

1LO

3.1 3.2 3.43.3 3.5

100

10

10

10

–1

–2

–3

GaN

5LO

2LO

4LO 3LO

92meV

Fig. 10.18. (a) Photoluminescence spectrum of GaN (grown on SiC substrate) at
T = 50 K. In addition to emission from free (FE) and bound (BE) excitons several
phonon replica (labeled as 1LO–5LO) are observed. Vertical dashed lines indicate
energy positions of multiple LO-phonon energies (�ωLO = 92 meV) below the FE
peak. Adapted from [700]. (b) Photoluminescence spectrum of 1LO phonon-assisted
recombination peak at T = 103 K (from the data of Fig. 10.4). Data points (dots)
and lineshape fit (solid line) according to (10.32) with the parameters L1 = 0.9 and
E1 = 3.2955 eV (and background)
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In(Eex) ∝
√
Eex exp

(
−Eex

kT

)
wn(Eex) . (10.32)

Here, Eex represents the exciton kinetic energy. The factor wn(Eex) accounts
for the q-dependence of the matrix element. It is typically expressed as

wn(Eex) ∝ ELn
ex . (10.33)

Accordingly, the energy separation ΔEn of the energy of the peak maximum
of phonon replica from E0 is given by

ΔEn = En − E0 = n �ωph +
(
Ln +

1
2

)
kT . (10.34)

It is found theoretically that L1 = 1 and L2 =0 [718]. These relations are
approximately fulfilled for GaN [702]. A lineshape fit for the 1 LO phonon-
assisted transition in ZnO is shown in Fig. 10.18b.

In Fig. 10.19a the ‘green band’ emission of ZnO is shown as presented
in [703]. This band is mostly attributed to a Cu impurity; recently, evidence
has grown from isotope decay and annealing studies that it is related to the
zinc vacancy [704] (Fig. 10.19b). The zero phonon line is followed by many
replica with a maximum at about 6 LO phonons. The intensity IN of the
N -th replica is given by [705, 706]

IN ∝ exp(−S)
SN

N !
, (10.35)

where S is the so-called Huang–Rhys parameter. In [704], a coupling param-
eter of S = 6.9 has been determined.
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Fig. 10.19. (a) Luminescence spectrum of ZnO in the visible. The arrow denotes
the zero-phonon line at 2.8590 eV. The numbers of the phonon replica are labeled.
Adapted from [703]. (b) Luminescence spectra (solid lines) of a ZnO bulk crystal
before (‘untreated’) and after annealing in O2 atmosphere at T = 1073 K. After
annealing in Zn atmosphere at the same temperature, the green band disappears
again (dashed line). From [704]
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Fig. 10.20. (a) Configuration diagram of two states that differ in their configura-
tion coordinate by δq = q1 − q0. Both are coupled to phonons of energy �ω. The
absorption maximum (solid vertical line) and emission maximum (dashed vertical
line) are shifted with respect to the zero-phonon line (dotted vertical line) with
energy E1−E0. The Huang–Rhys parameter is S ∼ 4. (b) Intensity of zero-phonon
line (‘ZPL’) and phonon replica (10.35) for emission and absorption processes with
different values of the Huang–Rhys parameter S as labeled

Equation (10.35) is obtained from the consideration of transitions in the
configuration diagram [705, 707] (Fig. 10.20), using the Born–Oppenheimer
approximation. Here the electronic wavefunctions are separated from the vi-
brational wavefunctions, leading to the Franck–Condon principle, that optical
transitions occur with the positions of the nuclei fixed and thus vertical in
the configuration diagram Fig. 10.20. Assuming low temperatures, only the
lowest state is (partially) occupied. The Huang–Rhys parameter, the average
number of phonons involved in the transition, is related to the displacement
δq = q1 − q0 of the two configurations

S =
C δq2

2�ωph
, (10.36)

where C is the ‘spring constant’ of the parabola, C = d2E/dq2.
For small S � 1, we are in the weak coupling regime and the zero-phonon

line is the strongest. In the strong coupling regime, S > 1, the maximum is
(red-) shifted from the zero-phonon line. We note that in absorption, phonon
replica occur on the high-energy side of the zero-phonon absorption. For large
S the peak intensities are close to a Gaussian. The correspondence of emission
and absorption is nicely seen for excitons on isoelectronic oxygen traps in
ZnTe [708]. The oxygen is on substitutional Te site. Up to seven phonon
replica are visible in Fig. 10.21 around the zero-phonon or A-line with a
separation of about 26 meV, the optical phonon energy in ZnTe. The Huang-
Rhys parameter is about 3–4. Other peaks are due to acoustic phonons.
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Fig. 10.21. Photoluminescence (solid line) and absorption (dashed line) spectra of
excitons bound to substitutional oxygen in ZnTe at T = 20 K. The energy position
is relative to the A-line at 1.9860 eV. The vertical dashed lines have a separation of
25.9 meV. Adapted from [708]

10.5 Self-absorption

Luminescence that is emitted within the semiconductor can be (re-)absorbed
before it may reach the surface and can leave the crystal. This effect is called
self-absorption. It is particularly strong for radiation with an energy where
the absorption α(�ω) is high, i.e. above the band gap of a direct semiconduc-
tor. Similarly to the penetration depth 1/α for radiation entering the crystal,
emission approximately occurs only from a layer of such thickness. For typi-
cal values of α in the range of 105 cm−1, the ‘skin’ of the semiconductor that
emits light with energy above the band gap is 100 nm. For light at the low
energy side of the band gap or with energy within the band gap (deep levels),
the emission depth can be much larger.

After re-absorption, the energy has another chance to relax non-radiatively,
thus reducing the quantum efficiency. Alternatively it can be reemitted, ei-
ther at the same energy or at a lower energy. Possibly several re-absorption
processes occur before a photon eventually leaves the semiconductor (‘pho-
ton recycling’). Such processes are important in LED structures where pho-
ton extraction has to be optimized (Sect. 22.3.4). Emission on phonon replica
(Sect. 10.4) is red-shifted from the energy range of strong absorption and thus
suffers no (or only little) self-absorption. This can be seen from the spectrum
of a thick ZnO crystal excited homogeneously (via two-photon absorption
with a red Ruby laser), Fig. 10.22. The zero phonon line (at EX), originating
from the ≈ 100 nm skin of the samples and being by far the strongest in thin
films (Fig. 10.4), is practically absent and emission on the phonon replica
collected from the entire volume dominates the spectrum.
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Fig. 10.22. Photoluminescence spectrum (at T = 55 K) from bulk ZnO excited
homogeneously via two-photon excitation by a Q-switched ruby laser (pulse width
40 ns). Adapted from [709]

10.6 Donor–Acceptor Pair Transitions

Optical transitions can occur between neutral donors and acceptors. The
(spatially indirect) donor–acceptor pair (DAP) recombination is present in
(partially) compensated semiconductors and follows the scheme D0A0 →
D+A−eh → D+A− + γ, where γ is a photon with the energy �ω. The
energy of the emitted photon is given by

�ω = Eg − Eb
D − Eb

A +
1

4πε0
e2

εrR
, (10.37)

where R is the distance between the donor and the acceptor for a specific
pair. Since R is discrete, the DAP recombination spectrum consists of several
discrete lines. If the donor and acceptor occupy the same sublattice, e.g. O
and C both substituting P sites in GaP, the spatial distance of the donor
and acceptor is R(n) = a0

√
n/2, where a0 is the lattice constant and n is

an integer. However, for certain ‘magic’ numbers n = 14, 30, 46, . . . no lattice
points exist and therefore the corresponding lines are missing (labeled ‘G’
in Fig. 10.23). No such gaps exist in DA spectra where donors and accep-
tors occupy different sublattices, e.g. GaP:O,Zn (see also Fig. 10.23). In this
case, the spatial separation is given by R(n) = a0

√
n/2 − 5/16. If significant

broadening is present, the lines are washed out and a donor–acceptor pair
band forms.

10.7 Inner-Impurity Recombination

The transitions of electrons between different states of an impurity level can
be nonradiative or radiative. As an example, the radiative transition of elec-



332 10 Recombination

0 0.5 1.0 1.5 2.0 2.5 3.0

1.57
1.56
1.55
1.54
1.53
1.52
1.51
1.50
1.49
1.48
1.47
1.46
1.45
1.44
1.43
1.42
1.41
1.40

GaP
C O

Cd O

Zn O

15.5
meV

Fig. 10.23. Transition energies in GaP (T = 1.6 K) of the donor–acceptor recombi-
nation involving the deep oxygen donor and C, Zn, and Cd acceptors, respectively.
The lines follow (10.37) for EGaP

g =2.339 eV, εr = 11.1 and (Eb
D)O = 893 meV,

(Eb
A)C = 48.5 meV, (Eb

A)Zn = 64 meV, and (Eb
A)Cd = 96.5 meV. Predicted missing

modes for GaP:C,O are labeled with ‘G’. Adapted from [710]

trons in the Fe2+ state in InP 5T2 →5E (Fig. 10.24) and its fine structure
were observed first in [711] at around 0.35 eV.

(a) Fe3+
EV

1.34

Fe2+

InP:Fe
0.78

1.145T2

0

5E
5T2

5E

EC

0.25

(b)
0.340 0.345 0.350

InP:Fe

Fig. 10.24. (a) Schematic band diagram of InP with levels of Fe impurities in
the 3+ and 2+ charge states at low temperature. All energies are given in eV.
The arrow denotes the optical transition from an excited Fe2+ state to the Fe2+

ground state. (b) Photoluminescence spectrum (at T = 4.2 K) of InP:Fe sample
with [Fe]=5 × 1016 cm−3. Part (b) adapted from [712]
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10.8 Auger Recombination

In competition with the radiative, bimolecular recombination is the Auger
recombination (Fig. 10.25). In the Auger process, the energy that is released
during the recombination of an electron and hole is not emitted with a photon
but, instead, transferred to a third particle. This can be an electron (eeh,
Fig. 10.25a) or a hole (hhe, Fig. 10.25b). The energy is eventually transferred
nonradiatively from the hot third carrier via phonon emission to the lattice.
The probability for such process is ∝ n2p if two electrons are involved and
∝ np2 if two holes are involved. The Auger process is a three-particle process
and becomes likely for high carrier density, either through doping, in the
presence of many excess carriers, or in semiconductors with small band gap.
Auger recombination is the inverse of the impact ionization (cf. Sect. 8.5.4).
Phonon-assisted Auger recombination relaxes the momentum conservation
rule for the involved charge carriers at the cost of an additional particle
being involved in the scattering process. It has been pointed out that this
process is dominating in bulk material [713] and quantum wells [714].

In thermodynamic equilibrium the rates for Auger recombination and
thermal Auger generation must be equal, thus

Gth = Cn n
2
0 p0 + Cp n0 p

2
0 , (10.38)

(a)

e

hhlh

k  (b)
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k

E

Fig. 10.25. Schematic representation of Auger recombination. An electron recom-
bines with a hole and transfers the energy to (a) another electron in the conduction
band, (b) another electron in the valence band
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Table 10.3. Auger recombination coefficients for some semiconductors. Data for
InSb from [715], SiC from [655], others from [656]

material Cn (cm6/s) Cp (cm6/s)

4H-SiC 5 ×10−31 2 ×10−31

Si, Ge 2.8 ×10−31 9.9 ×10−32

GaAs, InP 5.0 ×10−30 3.0 ×10−30

InSb 1.2 × 10−26

where Cn and Cp denote the Auger recombination coefficients. The equation
for the dynamics in the presence of excess carriers (if solely Auger recombi-
nation is present) is given as

∂ δn

∂t
= Gth −R = −Cn (n2 p− n2

0 p0) − Cp (n p2 − n0 p
2
0) . (10.39)

The Auger recombination rate typically used in SRH kinetics is

rAuger = (Cn n+ Cp p) (np− n0p0) . (10.40)

Typical values for the Auger recombination coefficients are given in
Table 10.3.

In Fig. 10.26a the electron lifetime in heavily p-doped InGaAs (lattice
matched to InP) is shown [716]. It follows τ−1

n = CpN
2
A as expected from

(10.39) for p-type material. The Auger process in silicon has been discussed

(a) (b)

Fig. 10.26. (a) Experimental values of the electron lifetime in heavily p-doped
InGaAs on InP at room temperature. The dashed lines show dependencies of Auger
(∝ N−2

A , Cp = 8.1 × 10−29 cm−6 s−1) and band-band recombination (∝ N−1
A , B =

1.43 × 10−10 cm−3 s−1). Adapted from [716]. (b) Experimental Auger lifetimes in
p-type (squares) and n-type (circles) silicon at 300 K. The dashed (solid) line is
theory for p-type (n-type) material. Adapted from [717]
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in detail [711]. In Fig. 10.26b experimental data for n-type and p-type Si are
summarized. Auger theory can predict the lifetimes in n-type material. The
predicted rate in p-type material is too small, thus a phonon-assisted process
is evoked [711].

10.9 Band–Impurity Recombination

A very important recombination process is the capture of carriers by impuri-
ties. This process is in competition with all other recombination processes, e.g.
the radiative recombination and the Auger mechanism. The band–impurity
recombination is the inverse process to the carrier release from impurities
and intimately related to carriers statistics (Sect. 7). It is particularly impor-
tant at low carrier densities, for high dopant concentration and in indirect
semiconductors since for these the bimolecular recombination is slow. This
process is generally considered to be non-radiative since no photons close to
the band edge are emitted.2

10.9.1 Shockley-Read-Hall Kinetics

The theory of capture on and recombination involving impurities is called
Shockley–Read–Hall (SRH) kinetics [650, 651]. An example of radiative
band–impurity recombination (of the type shown in Fig. 10.27a) is shown
in Fig. 10.7 for the (e,A0) recombination at the carbon acceptor in GaAs.

(a) (b) (c) (d)

EC

EV

Et

Fig. 10.27. Band-to-impurity processes at an impurity with one level (left : initial,
right : final state in each part): (a) electron capture (from conduction band), (b)
electron emission (into conduction band), (c) hole capture (from valence band),
(d) hole emission (into valence band). The arrows indicate the transition of the
electron

2Depending on the energetic depth of the trap, mid or far infrared photons can
be emitted.
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We consider electron traps [718] (see Fig. 10.27) with a concentration Nt

with an energy level Et. In thermodynamic equilibrium they have an electron
population

f0
t =

1
exp

(
Et−EF

kT

)
+ 1

, (10.41)

where ft is the nonequilibrium population of the trap. Then the capture rate
rc is proportional to the unoccupied traps and the electron concentration,
rc ∝ nNt(1 − ft). The proportionality factor has the form vthσn, where vth
is the thermal velocity vth =

√
3kT/m∗ ≈ 107 cm/s and σn is the capture

cross section that is of atomic scale, typically ∼ 10−15cm2. The capture cross
section can be related to the optical absorption cross section [395, 396].

In order to make the following calculation more transparent, we put the
effective-mass ratio

√
m0/m∗ into σ in the following and thus have the same

thermal velocity vth =
√

3kT/m0 for electrons and holes. The capture rate
of electrons is

rc = vth σn nNt (1 − ft) . (10.42)

The emission rate from filled traps is

gc = enNt ft , (10.43)

where en denotes the emission probability. In a similar way, the emission and
capture rates for holes can be written:

rv = vth σp pNt ft (10.44)
gv = epNt (1 − ft) . (10.45)

In thermodynamical equilibrium, capture and generation rates are equal,
i.e. rc = gc and rv = gv. Thus, the emission probability is

en = vth σn n0
1 − f0

t

f0
t

. (10.46)

Using 1−f0
t

f0
t

= exp
(

Et−EF
kT

)
, (7.15) and (7.16) the emission probabilities

can be written as

en = vth σn nt (10.47)
ev = vth σp pt , (10.48)

with

nt = NC exp
(
Et − EC

kT

)
(10.49)

pt = NV exp
(
−Et − EV

kT

)
. (10.50)
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We note that (cf. (7.20)) nt pt = n0 p0.
The temperature dependence of the thermal velocity is ∝ T 1/2, the tem-

perature dependence of the band-edge density of states is ∝ T 3/2 (7.10) and
(7.13). Thus, the temperature dependence of the emission rate

rc = gc = vth σnNtNC exp
(
Et − EC

kT

)
ft (10.51)

is (apart from the exponential term) ∝ T 2 if σ is temperature independent.
Charge conservation requires rc − rv = gc − gv. From this we obtain the

population function in nonequilibrium:

ft =
σnn+ σpp

σn (n+ nt) + σp (p+ pt)
. (10.52)

The recombination rate rb−i of the band–impurity recombination is then

rb−i = −∂δn
∂t

= rc − gc (10.53)

=
σn σp vthNt

σn (n+ nt) + σp (p+ pt)
(np− n0p0) .

Using the ‘lifetimes’

τn0 = (σnvthNt)−1 (10.54)
τp0 = (σpvthNt)−1 , (10.55)

this is typically written as

rb−i =
1

τn0(n+ nt) + τp0(p+ pt)
(np− n0p0) . (10.56)

For an n-type semiconductor the Fermi level is above Et and the traps
are mostly full. Thus hole capture is the dominating process. The equation
for the dynamics simplifies to

∂δp

∂t
= −p− p0

τp0

. (10.57)

Thus, an exponential decay with minority-carrier lifetime τp0 (or τn0 for
p-type material) occurs.

A recombination center is most effective when it is close to the middle of
the band gap (midgap level). The condition ∂rb−i/∂Et = 0 leads to the trap
energy Emax

t with the maximum recombination rate being located at
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Emax
t =

EC + EV

2
− kT ln

(
σnNC

σpNV

)
. (10.58)

The curvature ∂2rb−i/∂E
2
t at Emax

t is proportional to −(np−n0p0) and thus
indeed is negative in the presence of excess carriers. However, the maximum
can be fairly broad.

The SRH kinetic presented here is valid for low densities of recombination
centers. A more detailed discussion and a more general model can be found
in [719].

A typical example for a recombination center is gold in silicon. The mi-
nority carrier lifetime decreases from 2 × 10−7 s to 2 × 10−10 s upon increase
of the Au concentration from 1014 to 1017 cm−3. The incorporation of recom-
bination centers is an important measure for the design of high-frequency
devices [720]. Due to importance in silicon technology the recombination
properties of many metals in silicon have been investigated, in particular
Fe-contamination and the role of FeB-complexes [721–723].

A reduction in minority-carrier lifetime can also be achieved by irradiation
with high-energy particles and the subsequent generation of point defects with
energy levels at midgap.

In Fig. 10.28 various data on minority carrier lifetime in silicon are com-
piled. Over some doping range, a dependence of the lifetime ∝ N−1 as in
(10.54) prevails. For doping beyond the 1019 cm−3 range, Auger recombina-
tion (Sect. 10.8) with τ ∝ N−2 is dominant. A more detailed discussion can be
found in [724, 725]. Generally the lifetimes are temperature dependent [726]
as expected from (10.54).

Fig. 10.28. Minority carrier lifetime at room temperature as a function of majority
carrier concentration in n-type and p-type silicon. The dashed lines have the slopes
N−1 and N−2. Data from [725]
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10.9.2 Multilevel Traps

Traps with multiple levels in the band gap have generally similar but more
complicated dynamics as compared to single-level traps. Lifetimes are an
average over negatively and positively charged states of the trap.

10.10 Field Effect

The emission of electrons from a trap is thermally activated with an ionization
energy Ei = EC − Et. If the trap is in a strong electric field E , the emission
probability can change. An acceptor-like trap after removal of the electron is
neutral and its potential is short range. A donor has a long-range Coulomb
potential after ionization. In an electric field, these potentials are modified
as visualized in Fig. 10.29. Various additional processes can now occur.

10.10.1 Thermally Activated Emission

For the δ-like potential the ionization energy remains unchanged. For the
Coulomb potential the barrier in the field direction is lowered by

ΔEi = e

√
eE
πε0εr

. (10.59)

The emission probability is increased in the field by exp (ΔEi/kT ). This
effect is called the Poole–Frenkel effect [727] and can be quite important.
For silicon and E = 2 × 105 V/cm and ΔEi = 100 meV a 50-fold increase of
emission rate results at room temperature.

Ei

Ei

(a) (b)

Fig. 10.29. Field effect at (a) a δ-like potential and (b) a Coulomb potential
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10.10.2 Direct Tunneling

Carriers can tunnel from the trap level through the barrier in the field direc-
tion into the conduction band. This process is temperature independent. The
transmission factor of a barrier is (in WKB approximation) proportional to
exp[−(2/�)

∫ √
2m[V (x) − E] dE]. The emission probability for a triangular

barrier is then

en =
eE

4
√

2m∗Ei

exp

(

−4
√

2m∗E3/2
i

3e� E

)

. (10.60)

In the case of a Coulomb-like potential the argument of the exponent in
(10.60) needs to be multiplied by a factor 1 − (ΔEi/Ei)5/3 with ΔEi from
(10.59).

10.10.3 Assisted Tunneling

In a thermally assisted tunneling process the electron on the trap level is first
excited to a virtual level Et+Eph by phonon absorption and then tunnels out
of the trap (photon-assisted tunneling). From the energetically higher level
the tunneling rate is higher. The probability is proportional to exp (Eph/kT ).
The additional energy can also be supplied by a photon (photon-assisted
tunneling).

10.11 Recombination at Extended Defects

10.11.1 Surfaces

A surface is typically a source of recombination, e.g. by midgap levels induced
by the break of crystal symmetry. The recombination at surfaces is modeled
as a recombination current

js = −e S (ns − n0) , (10.61)

where ns is the carrier density at the surface and S is the so-called surface
recombination velocity .

The surface recombination velocity for GaAs is shown in Fig. 10.30. For
InP, if the surface Fermi level is pinned close to midgap, the surface re-
combination velocity increases from ∼ 5 × 10−3 cm/s for a doping level of
n ∼ 3×1015 cm−3 to ∼ 106 cm/s for a doping level of n ∼ 3×1018 cm−3 [728].
For Si, the surface recombination rate depends on the treatment of the surface
and lies in the range between 10–104 cm/s [729, 730]. The Si-SiO2 interface
can exhibit S ≤ 0.5 cm/s. Time-resolved measurements and detailed model-
ing for Si have been reported in [731].
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Fig. 10.30. Surface recombination velocity for GaAs as a function of n-type doping
concentration. Different experimental points correspond to different surface treat-
ment methods. Dashed line is a guide to the eye. Experimental data from [732]

10.11.2 Grain Boundaries

Grain boundaries can be a source of non-radiative recombination. This is
technologically important for solar cells made from polycrystalline silicon (cf.
Sect. 21.4.6). The grain boundary can be understood as an inner surface in the
crystal. Modelling of recombination at a grain boundary can be done using
an interface recombination velocity [733, 734] or considering deep traps [735].
The minority carrier lifetime decreases with decreasing grain boundary area
A (Fig. 10.31a). The carrier loss at a grain boundary can be imaged directly
via the efficiency of the collection of an electron beam induced current (EBIC)
as shown in Fig. 10.31b. The minority carrier lifetime is only unaffected when
the average distance to a grain boundary is much larger than the minority
carrier diffusion length,

√
A  LD, otherwise the entire grain volume is

subject to non-radiative recombination.

10.11.3 Dislocations

Also dislocations typically act as recombination centers, sometimes called
carrier sinks. In Fig. 10.32 it can be seen that the minority carrier lifetime
depends on the dislocation density nd and follows a τ−1 ∝ nd law, as if each
dislocation is a recombination center [736]. The non-radiative recombination
makes dislocations appear as ‘dark line defects’ in luminescence imaging [737].
In [738] also the decrease of carrier lifetime around (misfit) dislocations has
been imaged. The effect of dislocations on the radiative recombination effi-
ciency depends on the diffusion length [738].
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Fig. 10.31. (a) Minority carrier lifetime in (p-type) silicon as a function of grain
boundary size. The dashed line has the slope ∝ A. Data from [739]. (b) Linescan of
the electron beam induced current (EBIC) perpendicular to a single grain bound-
ary in silicon. The arrow denotes the position of the grain boundary. Compiled
from [740]

Fig. 10.32. Inverse minority carrier lifetime in n-type silicon (40 Ω cm), low resis-
tivity Ge (3–5 Ω cm) and high resistivity Ge (30–40 Ω cm). Data from [736]

10.12 Excess-Carrier Profiles

In this section, some typical excess-carrier profiles (in one-dimensional geo-
metry) are discussed that arise from certain excitation conditions. The excess-
carrier density Δp (here holes in an n-type semiconductor, i.e. Δp = pn−pn0)
is determined by the diffusion equation (cf. (8.62a))

Dp
∂2Δp

∂x2
+
Δp

τp
= −G(x) . (10.62)
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10.12.1 Generation at Surface

First, the generation of excess carriers in a semi-infinite piece of semicon-
ductor shall occur only at the surface at x = 0. The generation is zero
everywhere else and the excitation is incorporated via the boundary con-
dition Δp(x = 0) = Δp0. The general solution for the homogeneous equation
(10.62), i.e. G = 0, is

Δp(x) = C1 exp
(
− x

Lp

)
+ C2 exp

(
x

Lp

)
, (10.63)

with the diffusion length Lp =
√
Dpτp. Taking the boundary condition

Δp(x→ ∞) = 0 the solution is

Δp(x) = Δp0 exp
(
− x

Lp

)
. (10.64)

In order to connect Δp0 with the total generation rate per unit area Gtot, we
calculate

Gtot =
∫ ∞

0

Δp(x)
τp

dx =
Δp0 Lp

τp
= Δp0

√
Dp

τp
. (10.65)

10.12.2 Generation in the Bulk

Now, a generation rate following (9.8), realistic for photodiodes and solar
cells, is considered,

G(x) = G0 exp (−αx) , (10.66)

i.e. due to light absorption with the (wavelength-dependent) absorption co-
efficient α. The total generation rate is

Gtot =
∫ ∞

0

G(x) dx =
G0

α
. (10.67)

The total generation rate is equal to the number of photons per second Φ0

that enter the semiconductor.
The solution of (10.62) is the sum of the homogeneous solution (10.63)

and a particular solution that is given by

Δp(x) = C exp (−αx) . (10.68)

The constant C is determined to be

C =
G0 τp

1 − α2L2
p

. (10.69)

Therefore, the solution is
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Δp(x) = C1 exp
(
− x

Lp

)
+ C2 exp

(
x

Lp

)
+

G0 τp
1 − α2L2

p

exp (−αx) . (10.70)

Using again Δp(x → ∞) = 0 (leading to C2 = 0) and a recombination
velocity S at the front surface, i.e.

−e S Δp0 = −eDp
∂Δp

∂x

∣∣∣
∣
x=0

. (10.71)

The solution is given as

Δp(x) =
G0 τp

1 − α2L2
p

[
exp (−αx) − S + αDp

S +Dp/Lp
exp

(
− x

Lp

)]
. (10.72)

For vanishing surface recombination, S = 0, the solution is (Fig. 10.33)

Δp(x) =
G0 τp

1 − α2L2
p

[
exp (−αx) − αLp exp

(
− x

Lp

)]
. (10.73)

For αLp  1, (10.64) is recovered. This dependence is the excess-carrier
profile if the absorption is strong, which is a tendency for short wavelengths.
The current at the surface, j(x = 0) ∝ ∇Δp, is zero.

In the case of very strong surface recombination, S → ∞, (10.72) becomes

Δp(x) =
G0 τp

1 − α2L2
p

[
exp (−αx) − exp

(
− x

Lp

)]
, (10.74)

with Δp(0) = 0 (Fig. 10.33). The current at the surface is (D τp = L2
p)

j(x = 0) = −eD ∂Δp

∂x

∣∣∣
∣
x=0

= −e G0 Lp

1 + αLp
= −eΦ0

αLp

1 + αLp
. (10.75)

(a) (b)

Fig. 10.33. Excess carrier density profile (10.72) in (a) linear and (b) semi-
logarithmic plot for S = 0 and S = ∞. Other parameters are given in panel (a)
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11 Heterostructures

11.1 Introduction

Heterostructures consist of (at least two) different materials. The geometry
of the interfaces between the two materials can be complicated. The simplest
case is a planar interface, i.e. a layered system. A metal–semiconductor junc-
tion is generally a heterostructure. However, we will use the term mostly for
structures of various semiconductors. Most of the heterostructures discussed
here are epitaxial, i.e. fabricated by the successive epitaxy of the various
layers on a substrate. Another method to fabricate heterostructures of dif-
ferent (and dissimilar) materials is wafer bonding that is briefly discussed in
Sect. 11.6.

Many modern semiconductor devices rely on heterostructures, such as
the heterobipolar transistor (HBT), the high electron mobility transistor
(HEMT), lasers and nowadays also light-emitting diodes. Shockley had al-
ready considered heterostructures in his 1951 patent for pn-junctions. For
the development and the realization of heterostructures H. Kroemer and
Zh.I. Alferov were awarded the 2000 Physics Nobel Prize. The properties
of charge carriers in layers that are part of heterostructures can be quite
different from those in bulk material, e.g. extremely high mobility, high ra-
diative recombination efficiency or novel states of matter, as revealed in the
quantum Hall effects.

11.2 Heteroepitaxy

11.2.1 Growth Methods

Since the thickness of layers in the active part of heterostructures has to be
controlled to monolayer precision and the thickness of layers can go down
to the single monolayer range, special growth methods have been developed.
Among these molecular beam epitaxy (MBE [741]), chemical vapor deposi-
tion (CVD [742, 743]) and metalorganic vapor phase epitaxy (MOVPE [744])
are the most common for Si, Ge, III–V and II–VI semiconductors. In partic-
ular, oxide semiconductors are also fabricated with pulsed laser deposition

M. Grundmann, The Physics of Semiconductors, 2nd ed., Graduate Texts 347
in Physics, DOI 10.1007/978-3-642-13884-3 11,
c© Springer-Verlag Berlin Heidelberg 2010
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(PLD [745]). Liquid phase epitaxy (LPE [746]) used to be very important for
the fabrication of LEDs but has lost its role largely to MOVPE.

MBE is performed in an ultrahigh vacuum (UHV) chamber, pumped by
getter pumps and cryo-shrouds. The source materials are evaporated from
effusion cells and directed towards the heated substrate. If the source ma-
terials are supplied as a gas stream, the method is called gas-source MBE
(GSMBE). If metalorganic compounds are used as precursors, the method
is denoted as MOMBE. The atoms impinge on the substrate with thermal
energy and are first physisorbed. After diffusion on the surface they either
desorb or they are chemisorbed, i.e. incorporated into the crystal. In order to
obtain high spatial homogeneity of material properties such as composition,
thickness and doping, the substrate is rotated during deposition.

During CVD and MOVPE the heated substrate is in a gaseous environ-
ment. The transport gas is typically H2, N2 or O2. Precursor materials are
hydrides such as silane, germane, arsine or phosphine (SiH4, GeH4, AsH3,
PH3) and (for MOVPE) metalorganic compounds, such as, e.g. trimethylgal-
lium (TMG). Due to the toxicity of the hydrides, alternative, i.e. less-toxic
and less-volatile compounds are used, such as TBAs ((CH3)3CAsH2). The
crystal growth occurs after pyrolysis and catalysis of the compounds close to
or on the substrate surface. All remaining C and H atoms (and whatever else
that is not incorporated into the crystal) leave the reactor and are neutralized
and stopped in a scrubber.

In-situ monitoring is of importance to obtain information about the
growth process while it is underway. Using the information in a feedback
loop it is possible to achieve in-situ control of the process, e.g. for precise
determination of growth rates or layer thickness. Techniques are RHEED (re-
flection high-energy electron diffraction) [747] (only for UHV systems) and
RAS (reflection anisotropy spectroscopy) [748, 749].

11.2.2 Substrates

Thin-film epitaxy is mostly performed on wafers, i.e. thin circular slices of
substrate material. The most common substrate materials are Si (currently
up to 400 mm diameter [750, 751]), Ge (also up to 300 mm [752]), GaAs
(up to 6 inch), InP (up to 4 inch) and sapphire (up to 6 inch). Typical wafer
thickness is 300–500 μm. Also, very thin, flexible Si wafers (8–10 μm) have
been developed [753]. A wafer is cut from a large single cylindrical crystal
that is fabricated with suitable growth techniques such as Czochralski (CZ)
growth (1918) modified by Teal and Little [754]. In CZ growth the crys-
tal is pulled from a seed crystal out of a melt of previously polycrystalline,
pure or doped material. All dislocations stop in the narrow neck between
the seed and the main body of the cylinder. The diameter of the crystal
is controlled by the pulling rate and the heating power. For the growth of
III–V compound semiconductors liquid encapsulated CZ (LEC) growth has
been developed to counteract the high volatility of the growth-V component.
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(a)

(b)

(c)

Fig. 11.1. (a) Silicon single crystal for 300-mm diameter wafers after opening of
the crucible. From [757] with permission. (b) Historic development (first year of
larger production) of silicon wafer diameter and ingot mass. Data from [751]. (c)
GaAs single crystal (boule) for 4-inch wafers and some cut and polished wafers

During LEC growth the melt is completely covered with molten boric oxide
(B2O3). The keys to optimization of the crystal growth process are numerical
modeling and computer control. In Fig. 11.1a,c a large CZ silicon crystal and
a smaller LEC GaAs crystal (boule) are shown. Over time wafer size and
ingot mass have increased remarkably (Fig. 11.1b). For details on other im-
portant fabrication methods for bulk crystals, including float-zone (FZ [755])
or vertical gradient freeze (VGF), we refer to the literature [756]. Significant
expertise is necessary for cutting, grinding and polishing (lapping) wafers for
epitaxy.

For semiconductors, the wafer is marked with flats to indicate orientation
and doping. In Fig. 11.2 the standard flats are shown for (100)- and (111)-
oriented material. The primary (major) flat (OF, orientation flat) defines the
crystallographic orientation1 is longer than the secondary (minor) flat which
defines the conductivity type (IF, identification flat). For a 4-inch (100 mm)
diameter wafer the OF is 32 and the IF 12 mm long. The front surface, on
which the epitaxy is performed, typically undergoes an elaborate cleaning

1In the ‘US’ flat definition, the primary flat is the (011) surface, in the ‘EJ’
definition, the primary flat is (011).
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Fig. 11.2. Schematic semiconductor wafer geometry for various orientations and
doping with the primary (P) and secondary (S) flats indicated

and polishing process. Silicon processes [758] are based on the RCA cleaning
procedure [759] and the related Shiraki etch [760] and can achieve clean, atom-
ically flat surfaces [761]. III-V semiconductors are typically prepared using
a polishing etch [762, 763], often solutions containing bromine. It is possi-
ble to create compound semiconductor surfaces that exhibit large, essentially
monoatomically flat terraces between individual surface steps. Polishing or
other surface damage can also be removed prior to epitaxy with thermal
(Fig. 11.3) or ion beam treatments.

One prerequisite for making high-quality heterostructures with thin layers
is a flat surface. Even if the polished substrate is not perfect, flat interfaces
can be achieved with the growth of appropriate superlattice buffer layers

Fig. 11.3. (a) AFM images of an as-received ZnO wafer, exhibiting small terraces
and nm deep scratches from polishing. (b, c) Two ZnO (0001̄) wafers with vicinal
surfaces after thermal treatment (1000 ◦C for 2 h in O2), exhibiting atomically flat
terraces with c/2 monoatomic step heights. Two different substrates with different
off-cut (misorientation direction and angle) are shown. Adapted from [764]
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(a) (b)

Fig. 11.4. Cross-sectional TEM of MBE-grown AlxGa1−xAs/GaAs heterostruc-
tures for (a) x = 0.41 and (b) x = 1.0. Using an AlAs/GaAs superlattice an
excellent flattening of substrate roughness is achieved. From [765]

(Fig. 11.4). Roughness can exist on all length scales and is typically investi-
gated using atomic force microscopy scans.

High throughput demands and the advent of multi-wafer reactors make
prior cleaning and etching procedures tedious. For this purpose, substrates
for well-developed material systems are offered ‘epiready’. Epiready wafers
are often covered with a very thin protective film that can be released using
a thermal treatment at or below typical growth temperature in the growth
reactor immediately prior to epitaxy. The protective film separates the pol-
ished semiconductor wafer from the ambient. Examples are a few monolayers
of arsenic on GaAs or two monolayers GaN on SiC. However, the suitability
of a purchased substrate may depend on the duration and conditions of its
storage.

11.2.3 Growth Modes

The growth of a material A on a material B can occur via three fundamental
growth modes (Fig. 11.5), the layer-by-layer or Frank-van der Merwe (FvdM)
growth mode [766], the island or Volmer-Weber (VW) growth mode [767] and
the Stranski-Krastanow (SK) growth mode [768]. In [768] the possibility of
island formation on an initially flat heteroepitaxial surface was proposed for
the growth of lattice-matched ionic crystals that have different charges. The
term SK growth is now typically used in lattice-mismatched heteroepitaxy for
the island formation (and related relaxation of strain energy, cmp. Fig. 13.26)

Fig. 11.5. Schematic of the three different fundamental epitaxial growth modes
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on an initially two-dimensional layer (wetting layer).2 Also growth of islands
relaxed by misfit dislocations in strained heteroepitaxy has been termed SK
growth [774].

The growth mode is determined by the relation of the free energies (per
area) of the surface σs, interface σi and film σf . Wetting of the substrate and
growth of a coherent film (FvdM-growth) occurs for

σs > σi + σf . (11.1)

If the inequality has the opposite sign, Volmer-Weber or Stranski-Krastanow
growth occurs. Additionally the strain energy of the film must be considered.
The SK growth generally occurs when there is wetting of the substrate but
layer strain is unfavorable and leads to islanding.

Layer-by-layer growth typically involves nucleation of two-dimensional is-
lands and ‘filling’ of the remaining monolayer before the next one is started.
Another growth mode resulting in smooth epitaxial layers is step-flow growth
where adatoms are incorporated mainly at step edges. A more detailed dis-
cussion can be found in [770]. Further details on crystal growth can be found
in [771].

11.2.4 Heterosubstrates

If homosubstrates are not available or very expensive, semiconductors are
grown on dissimilar substrates, e.g. GaN and ZnO on sapphire (Al2O3) or
SiC.3 In many cases, the integration of III–V- or II–VI-based semiconductors
for optoelectronic applications on silicon for electronic devices is desirable,
such as GaAs/Si, InP/Si, GaN/Si or ZnO/Si. For such combinations the epi-
taxial relationship, i.e. the alignment of the crystallographic directions of both
materials, which can have different space groups, has to be considered [773].
Some examples are given in Table 11.1. In Fig. 11.6, X-ray diffraction data
are shown from a ZnO layer on c-oriented sapphire. The hexagonal ZnO lat-
tice is rotated by 30◦ with respect to the trigonal sapphire lattice. In the case
of growth of ZnO on Si(111) an amorphous SiO2 layer forms at the interface
such that the crystallographic information of the substrate is lost. The ZnO
grains exhibit random in-plane orientation (Fig. 11.7).

The initial growth steps can determine the orientation in polar materials.
GaN directly grown on c-Al2O3 grows with N-face orientation (see Fig. 3.18).
The high surface mobility of Ga allows nitrogen to take its preferred position
in the first atomic layer. Even under Ga-rich conditions the N atoms can
kick-off the Ga from its favorite site on the surface. If an AlN buffer is used
the strong bond between Al and oxygen leads to an Al atomic layer at the

2This is the growth mode of self-assembled epitaxial quantum dots as discussed
in Sect. 13.3.3.

3For ZnO, homosubstrates have recently been produced with 3-inch diame-
ter [772].
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Table 11.1. Epitaxial relationship for various film/substrate combinations, ZnO
on c-, a- and r-sapphire and Si(111)

ZnO Al2O3 ZnO Al2O3 ZnO Al2O3 ZnO Si

[00.1] [11.0] [1̄0.2] [111]

[00.1] [00.1] [00.1] [11.0] [11.0] [10.2] [00.1] [111]

[11.0] [01.0] [11.0] [00.1] [00.1] [01.1] [21.0] [110]
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Fig. 11.6. X-ray diffraction intensity from the asymmetric ZnO (10.4) (upper
panel) and the sapphire (10.10) (lower panel) reflections as a function of the az-
imuthal sample orientation (rotation angle φ around the [00.1] axis). The peaks ap-
pear at different tilt angles ω due to an overall tilt of the mounted sample (dashed
sinusoidal lines). The ZnO [00.1] axis is not tilted with respect to the sapphire
[00.1] direction

interface and subsequent GaN grows with a Ga-face [774]. On a sapphire
substrate with lateral AlN patterns, laterally orientation-modulated GaN can
be grown (Fig. 11.8). At the juncture of the phases an inversion domain
boundary forms [775].

The nucleation and the initial film growth are important and determine
the film quality. Several techniques have been developed to overcome common
problems. A typical strategy is the growth of a low-temperature nucleation
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(a)

(b)
Si

ZnO

(c)

SiOxSi ZnO

Fig. 11.7. (a) Plan-view TEM image (inset : electron diffraction diagram averaged
over several grains) of ZnO on Si(111). (b) Cross-sectional TEM of the same sam-
ple. (c) High-resolution cross-sectional image of the ZnO/SiO2/Si interface region.
Adapted from [776]

layer. The defect density can be reduced in parts of the structure using epitax-
ial lateral overgrowth (ELO) [777]. The defects thread only from the limited
contact area of the layer with the substrate and the part of the layer away
from the mask (‘wing’) is free of defects (Fig. 11.9).

The cracking (Sect. 4.4.1) of thick films during cooling due to the mis-
match of the thermal expansion coefficients (Fig. 11.10) can be avoided by
the introduction of suitable stress-relaxing layers [779, 780].
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Fig. 11.8. Side view of the heterointerfaces between AlN and c-oriented sap-
phire with nitrogen (a) and Al (b) being the first layer. Adapted from [774]. (c)
Phase image of piezoresponse force microscopy (PFM) of lateral polarity GaN het-
erostructure and (d) linescan of phase signal along white line in part (c). Adapted
from [778], part (c) reprinted with permission, c©2002 AIP

Fig. 11.9. SEM cross-sectional image of GaN grown on a structured Si(111) sub-
strate. The laterally grown wings extend about 2.5 μm over the grooves. The thick-
ness of the GaN layer is 0.5 μm on the bottom of the grooves, while it is 1.4 μm on
top of the ridges. Reprinted with permission from [777], c©2001 AIP
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Fig. 11.10. 1 × 1 mm2 top view with a differential interference contrast micro-
scope of a 1.3-μm thick GaN layer grown on Si(111). Reproduced with permission
from [779], c©2000 IPAP

11.2.5 Pseudomorphic Structures

Heterostructures can generally be made from any sequence of materials. How-
ever a mismatch in lattice constant (or a different crystal structure) leads
to strains and stresses that are of the order of 103 atmos for strains of 1%
(σ ∼ Cε, C ≈ 5×1010 Pa) as discussed in Sect. 5.3.3. The total strain energy
is ∝ Cε2. Above a critical thickness hc ∝ ε−1 (cf. Sect. 5.3.7) defects, e.g. mis-
fit dislocations (relaxing strain with their edge components), are generated
(Sect. 11.2.6). There are a number of semiconductor combinations that are
lattice matched and thus can be grown with arbitrary thickness. AlxGa1−xAs
is closely lattice matched to GaAs for all Al concentrations. See Fig. 6.15 for
lattice-matched pairs, e.g. In0.53Ga0.47As/InP. Often, thin layers of lattice-
mismatched materials with thickness smaller than the critical thickness are
used.

For many device applications the ability to grow pseudomorphic layers
thicker than the critical layer thickness would be beneficial. The use of com-
pliant substrates was proposed in [781] to meet this demand. A recent review
on compliant substrate technologies can be found in [782]. Schemes to ac-
commodate part of the mismatch strain in the substrate include the use of
cantilevered membranes, silicon-on-insulator, twist bonding, glass bonding or
trenched substrates. In this sense also nanowhiskers (Sect. 13.2.3) represent
a compliant substrate, enabling the growth of coherent (laterally confined)
layers thicker than the critical thickness of a 2D layer (cmp. Fig. 13.9).

11.2.6 Plastic Relaxation

Above the critical thickness, a film will relax plastically by forming misfit
dislocations. The cross-hatch pattern at the surface due to misfit dislocations
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Fig. 11.11. Optical image of the surface of a supercritical, plastically relaxed
InxGa1−xAs film on GaAs. Image width is about 1 mm. The cross-hatch pattern
is due to misfit dislocations along [110] and [11̄0]. A pseudomorphic layer would
exhibit no contrast under the given conditions

is shown in Fig. 11.11. A TEM image of an array of misfit dislocations can
be found in Fig. 5.27b.

The strain relaxation in mismatched heteroepitaxy can be determined
experimentally via the wafer curvature of the heterostructure (Sect. 5.3.5).
Data for the thickness dependent relaxation ε(d) of In0.15Ga0.85As on GaAs
(mismatch ≈ 1%) are shown in Fig. 11.12. Growth interruptions lead to larger

Fig. 11.12. Average film strain (measured in-situ via substrate curvature) of
In0.15Ga0.85As/GaAs grown at 450◦C as a function of film thickness (determined
from growth time × deposition rate). Relaxation for three different growth modes
are shown (as labeled): continuous growth, employment of several growth interrup-
tions (GRI) and GRI with annealing step (to 550◦). Adapted from [783]
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relaxation at smaller thickness. Therefore relaxation at early times or small
thickness (above hc) is kinetically hindered, i.e., the available dislocation
density and glide velocity are not sufficient to relieve the strain. At large
thickness the strain does not go to zero (saturation regime) and the film
remains in a metastable, incompletely relaxed state as discussed in more
detail in [783].

11.2.7 Surfactants

The condition (11.1) allows layer-by-layer growth (cf. Sect. 11.2.3), i.e. the
substrate surface free energy is higher than the than the total of interface
and film surface free energy. This makes wetting energetically favorable. For
two elements A and B, one of them must have the lower surface free energy.
If A can be grown on B in Frank-van der Merwe (or Stranksi-Krastanow)
growth mode, then (11.1) does not hold for B on A and the growth will occur
in Volmer-Weber mode, i.e. with islands. This is a serious problem for the
growth of embedded layers of the type A–B–A. If the embedded film grows
well, the capping does not and vice versa.

In the case of Ge on Si, Ge has the lower surface free energy than Si. Ge
grows on Si in Stranski-Krastanow mode [784] (Fig. 11.13a). Si grows both
on Ge(001) and Ge/Si(001) in a Volmer-Weber mode [785] causing severe
problems for the fabrication of Si/Ge/Si quantum wells or superlattices. A
substantial modification of growth mode can be achieved by using a third
element C as a capping layer, saturating surface bonds. It lowers the surface
free energy of both materials A and B, thus favoring wetting of the substrate.
Such element C is called surfactant (surface-active species) [786, 787]. Typical
examples are As [786] or Sb [221] on Si and Ge (Fig. 11.13b). Also the sur-

Fig. 11.13. (a, b) 10 nm thick Ge layer on Si (100) deposited at room tempera-
ture with MBE and annealed up to 770◦C without (a) and with (b) Sb surfactant.
Adapted from [791]. (c) Cross-section TEM image of a heterostructure of 70 mono-
layers germanium on Si (111), grown by MBE with Sb surfactant. The horizontal
arrow labeled ‘I’ denotes the position of the interface. The arrows labeled ‘D1’
and ‘D2’ denote the positions of partial dislocations (cmp. Fig. 4.18). Adapted
from [221]
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factant modifies defect nucleation and can lead to defect-free epitaxial Ge/Si
layers (Fig. 11.13c). Surfactants have also been described for the growth of
compound semiconductors, e.g. In [788] or Sb [789, 790] for GaAs.

11.3 Energy Levels in Heterostructures

11.3.1 Band Lineup in Heterostructures

In heterostructures, semiconductors with different band gaps are combined.
The relative position of conduction and valence band (band alignment) is
determined by the electron affinities χ as shown in Fig. 11.14. For a semi-
conductor, the electron affinity is the (positive) energy difference between
vacuum level and conduction band edge. It can lead to different types of
heterostructures. In Fig. 11.15, the band alignment for type-I and type-II
heterostructures are shown. In the type-I structure (straddled band lineup)
the lower conduction-band edge and the higher valence-band edge are both
in the material with smaller band gap. Thus, electrons and holes will localize
there. In the type-II structure a staggered lineup is present and electrons and
holes will localize in different materials. The technologically most relevant
are type-I structures.

In a type-I heterostructure, the conduction- and valence-band discontinu-
ities are given, respectively, by

Fig. 11.14. Position of conduction and valence-band edges for a variety of semi-
conductors (relative to a common vacuum level at E = 0 eV). Based on values
from [792]. On the right hand side the work functions of several metals are shown
for comparison
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(a) (b)

Fig. 11.15. Position of band edges (band alignment) in (a) type-I and (b) type-II
heterostructure

ΔEC = χ1 − χ2 (11.2a)
ΔEV = (χ1 + Eg1) − (χ2 + Eg2) . (11.2b)

Depending on the layer sequence of high- and low-bandgap materials
various configurations, as shown in Fig. 11.16 have obtained special names,
such as single heterointerface, quantum well (QW), multiple quantum well
(MQW), superlattice (SL). In the extreme case the layer is only one mono-
layer thick (Fig. 11.17) and the concept of layer and interface blurs. Such
atomically precise layer sequences are mastered nowadays for a variety of ma-
terial systems such as AlGaAs/GaAs/InAs, InP/InGaAs, Si/SiGe and also
BaTiO3/SrTiO3.

The design of heterostructures to fulfill a certain device functionality or
to have certain physical properties is called ‘band gap engineering’.

(a) (b) (c)

(d) (e)

Fig. 11.16. Heterostructures with different layer sequences (band gap engineering).
(a) quantum well (QW), (b) multiple quantum well (MQW), (c) superlattice (SL),
(d) single-barrier tunneling structure, (e) double-barrier tunneling structure
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(a)

InAs

Fig. 11.17. Ultrathin heterostructures: (a) Cross-sectional TEM of a MOVPE-
grown short-period superlattice (SPS) of InAs layers in GaAs1−xNx). In high res-
olution (right image), the individual rows of atoms can be seen. From [793]. (b, c)
Cross-section STM image of 2 ML InAs on GaAs; the segregation of In into the top
layer is visible atom by atom. Adapted from [794]

11.3.2 Quantum Wells

The energy in a single quantum well of thickness Lz (along the growth di-
rection z) can be calculated with the quantum-mechanical particle-in-a-box
model. In the envelope function approximation (Appendix G) the wavefunc-
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tion is written as a product of the Bloch function and the envelope function
χ(z).

ΨA,B(r) = exp (ik⊥r) unk(r)χn(z) , (11.3)

where ‘A’ and ‘B’ denote the two different materials. The envelope function
χ fulfills, approximately, the one-dimensional Schrödinger-type equation,

(
− �

2

2m∗
∂2

∂z2
+ Vc(z)

)
χn(z) = En χn(z) , (11.4)

where m∗ denotes the effective mass. Vc is the confinement potential deter-
mined by the band discontinuities. Typically, Vc = 0 in the well and V0>0
outside in the barrier. En are the resulting energy values of the quantized
levels. In the case of infinite barriers (V0 → ∞, Fig. 11.18a) the boundary
conditions χ(0) = χ(Lz) = 0 yield

En =
�

2

2m∗

(
nπ

Lz

)2

(11.5)

χn(z) = An sin
(
nπ

Lz
z

)
, (11.6)

where En is called the confinement energy. For finite barrier height
(Fig. 11.18b) the calculation leads to a transcendental equation. The wave-
function tunnels into the barrier. While for infinite barrier height the lowest
level diverges for Lz → 0, for finite barrier height E1 → V0.

(a) Lz

n=1

n=2

n=3

(b) Lz

n=1

n=2

Fig. 11.18. Schematic energy levels and wavefunctions in (a) a potential well with
infinite barriers, and (b) for finite barrier height
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Fig. 11.19. Schematic representation of the development of hole levels in a quan-
tum well: (a) degenerate bulk levels at Γ , (b) splitting at the subband edge (due
to different quantized values of kz), (c) in-plane dispersion (mass reversal), (d)
anticrossing behavior. Based on [765]

In the plane the carriers are still free and have a two-dimensional disper-
sion. Thus, each quantized level contributes m∗/(π�

2) to the density of states
at each subband edge En.

For holes, the situation is a little more complicated than that for electrons
(Fig. 11.19). First, the degeneracy of heavy and light holes is lifted since their
mass enters the confinement energy. The effective hole masses along the z
direction, i.e. those that enter (11.4), are

1
mz

hh

= γ1 − 2γ2 (11.7a)

1
mz

lh

= γ1 + 2γ2 . (11.7b)

The light holes have the higher quantization energy. The angular mo-
mentum is quantized along the z direction. The transverse masses for the
dispersion in the interface plane are

1
mxy

hh

= γ1 + γ2 (11.8a)

1
mxy

lh

= γ1 − γ2 . (11.8b)

Now the heavy hole, i.e. the Jz = ± 3
2 state, has the smaller mass and the

light hole (Jz = ± 1
2 ) the larger (Fig. 11.19c). However, this consideration is

only an approximation since the lifting of degeneracy and the dispersion have
to be treated on the same level. Higher terms of the perturbation calculation
lead to band mixing and remove the band crossing that seems to originate
from the situation at the Γ point. In reality, the bands show anticrossing
behavior and are strongly deformed. The hole dispersion in a superlattice
and the anticrossing behavior is shown in Fig. 11.20.

Experimentally observed transition energies in quantum wells of varying
thickness are shown in Fig. 11.21 and are in good agreement with the theoret-
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Fig. 11.20. Hole dispersion in a 68-ML GaAs/71 ML Al0.25Ga0.75As superlattice
(numerical calculation). The double curves originate from a lifting of time-reversal
symmetry at k �= 0. Reprinted with permission from [796], c©1985 APS

Fig. 11.21. Observed electron–hole transitions (energy difference to the first e–h
transition from excitation spectroscopy) in GaAs/AlGaAs quantum wells of varying
thickness. Symbols are experimental data, solid lines are theoretical model. Data
from [797]

ical calculation. We note that for infinite barriers optical transitions are only
allowed between confined electron and hole states with the same quantum
number n. For finite barriers this selection rule becomes relaxed, and other
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(a)

TE

TE
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(b)
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3/23/2
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hh
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Fig. 11.22. (a) Directions of electric-field vector relative to the quantum-well plane
for TE and TM polarization. (b) Optical selection rules for band–band transitions
in a quantum well. If the (in-plane averaged) relative strength of the e–hh tran-
sitions (solid lines) is 1, the relative strength of the TE-polarized e–lh transitions
(dashed lines) is 1/3 and that of the TM-polarized e–lh transitions (dash-dotted
lines) is 4/3

transitions become partially allowed, e.g. e1–hh3. The optical matrix element
from the Bloch part of the wavefunction, which was isotropic for (cubic) bulk
material (9.18), is anisotropic for quantum wells. TE (TM) polarization is
defined with the electromagnetic field in (perpendicular to) the plane of the
quantum well (Fig. 11.22a). At the subband edge, i.e. for in-plane wavevec-
tor k|| = 0 the matrix elements for the various polarizations and propagation
directions are given in Table 11.2. The matrix elements averaged over all in-

Table 11.2. Squared momentum matrix elements |〈c|ê · p|v〉|2 in a quantum well
for various propagation directions in units of M2

b . The quantum-well normal is
along z

propagation êx (TE) êy (TE) êz (TM)

x – 1/2 0

e–hh y 1/2 – 0

z 1/2 1/2 –

x – 1/6 2/3

e–lh y 1/6 – 2/3

z 1/6 1/6 –

x – 1/3 1/3

e–so y 1/3 – 1/3

z 1/3 1/3 –
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Fig. 11.23. Experimental values for the acceptor binding energy in
GaAs/Al0.3Ga0.7As quantum wells (solid circles) from [798] as a function of well
width. Solid line is theory (variational calculation) for the well-center acceptor
including top four valence bands and finite barriers, dashed line is hydrogen-like
model with infinite barrier height. Adapted from [799]

plane directions for TE-polarization are 3/2M2
b (1/2M2

b ) for the electron to
heavy (light) hole transition. For TM polarization the values are 0 and 2M2

b ,
respectively [795]. The optical selection rules are shown in Fig. 11.22 (see
Fig. 9.8 for bulk material). For propagation along the quantum-well plane,
the ratio between the strength of the TE polarized e–hh and e–lh transitions
is 3:1.

The confinement potential squeezes charge carriers bound to impuri-
ties closer to the ion. Therefore, the binding energy increases as shown in
Fig. 11.23. This behavior can be modeled theoretically with good precision.
It makes a difference whether the impurity is located at the center or the
interface of the quantum well.

The confinement potential also squeezes electrons and holes in the exciton
closer together and thus increases their Coulomb interaction. The binding
energy of the quantum-well exciton is thus larger than in bulk material and
depends on the well width (Fig. 11.24). In the simple hydrogen-like model
with infinite barriers the exciton binding energy is 4 times the bulk binding
energy in the limit Lz → 0. In a realistic calculation the effect of different
dielectric constants in the well and barrier (image charge effect) need to be
considered.

11.3.3 Superlattices

In a superlattice, the barrier thickness is so small that carriers can tun-
nel in neighboring wells or, in other terms, that there exists a significant
wavefunction overlap between adjacent wells. This leads to a band struc-
ture (Fig. 11.25), similar to the Kronig–Penney model (Sect. 6.2.3). For the
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Fig. 11.25. Band structure of a superlattice with a potential depth of 0.4 eV and
well and barrier width w (LQW = Lbarr). Adapted from [803]

superlattice the bands are called minibands, the gaps are called minigaps.
The density of states does not make a step at the subband edge but fol-
lows an arccos function. The modification of the density of states, as seen
in the absorption spectrum, are shown in Fig. 11.26 for 1, 2, 3 and 10
coupled wells.
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Fig. 11.26. Absorption spectra of a single, double, triple and ten coupled quantum
wells. Theoretically predicted transitions with heavy (light) holes are labeled with
filled (empty) bars at their respective transition energies. Adapted from [804]

(a)

GaAsAlGaAs

Ec

(b)

Ev

Ev

Ec

Fig. 11.27. Schematic formation of a triangular potential well in a n-AlGaAs/n-
GaAs heterostructure, (a) before and (b) after equilibration of Fermi levels

11.3.4 Single Heterointerface Between Doped Materials

We consider a single heterointerface between n-doped materials. As an exam-
ple we take n-AlGaAs/n-GaAs (Fig. 11.27). First, we consider the materials
without contact, forming a type-I structure. In thermodynamic equilibrium
the system must have a constant Fermi level. Thus, charge is transferred
from the region close to the interface from AlGaAs to GaAs. This results
in the formation of a triangular potential well in the GaAs close to the in-
terface. A two-dimensional electron gas (2DEG) forms in this potential well
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Fig. 11.28. (a) Conduction-band edge at a GaAs/Al0.3Ga0.7As heterointerface
(T = 0 K) with two confined states at E0 and E1 marked with solid horizontal
lines. In the GaAs channel there are 5 × 1011 cm−2 electrons. The barrier height is
300 meV, NGaAs

D = 3 × 1014 cm−3. The position of the Fermi level EF is at E = 0
and indicated with a dash-dotted line. (b) Envelope wavefunctions φ0 and φ1 of the
two confined states, dash-dotted line: calculation without exchange and correlation
for state at E0. Adapted from [806]

(Fig. 11.28). The charge transfer in thermodynamic equilibrium adjusts the
band bending and the charge density (quantized levels in the well) in such a
way that they are self-consistent. The Poisson equation and the Schrödinger
equation are simultaneously fulfilled. Numerically, both equations are itera-
tively solved and the solution is altered until it is self-consistent, i.e. it fulfills
both equations.

If the region of the 2DEG is not doped, the electron gas exists without any
dopant atoms and ionized impurity scattering no longer exists. This concept is
called modulation doping . Mobilities up to 3.1×107 cm2/Vs have been realized
(Fig. 11.29). The theoretical limits of mobility in a 2DEG at modulation-
doped AlGaAs/GaAs heterointerfaces are discussed in detail in [805].

11.4 Recombination in Quantum Wells

11.4.1 Thickness Dependence

The energy of exciton recombination in quantum wells is blue-shifted with
respect to that in bulk material due to the quantum-confinement energies of
electrons and holes (Fig. 11.30). The electron–hole recombination lineshape
in quantum wells is given by the product of the joint density of states and the
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Fig. 11.29. Progress in the achievement of high electron mobility in GaAs, an-
notated with the technical innovation responsible for the improvement. Adapted
from [808]

Boltzmann function (when Boltzmann statistics apply). The JDOS is given
by a step function (Heavyside function H(E)).

I(E) ∝ H(E − E11) exp
(
− E

kT

)
, (11.9)

where E11 = Eg + Ee1 + Eh1 represents the energy of the E1–H1 subband
edge as shown in Fig. 11.30. An experimental spectrum (Fig. 11.31a) shows
that excitonic effects influence the recombination lineshape even at room
temperature [807].

11.4.2 Broadening Effects

Many-Body Effects

At high carrier densities when the electron (quasi-) Fermi level is above the
electron subband edge, the spectrum broadens and reflects the Fermi–Dirac
distribution (Fig. 11.31b). At low temperatures a many-body effect, multi-
ple electron–hole scattering with electrons at the Fermi edge, leads to an
additional peak, termed Fermi-edge singularity that is discussed in [809].
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Fig. 11.30. (a) Schematic energy diagram of a quantum well with confined electron
(e1, e2) and hole (h1, h2) states and recombination between them at energies E11

and E22. (b) Schematic sample structure with two GaAs/AlxGa1−xAs quantum
wells with thicknesses 3 nm and 6 nm. (c) Photoluminescence spectrum (T = 300 K)
of the structure from part (b). A small amount of barrier luminescence appears at
1.88 eV, according to x = 0.37 (cf. Fig. 6.13c)

Homogeneous Broadening

The temperature dependence of the homogeneous broadening of quantum
well luminescence has been investigated in [810]. It follows the dependence
of the broadening known from bulk material (Sect. 9.5.8) with similar values
for the LO broadening parameter. In Fig. 11.32a the reflectance spectra for
different temperatures of a 17 nm GaAs/Al0.3Ga0.7As QW are shown. The
optical phonon broadening parameter for various well widths is shown in
Fig. 11.32b and coincides with the bulk value.

Inhomogeneous Broadening

Inhomogeneous broadening affects the recombination lineshape. Since the in-
terfaces of the QW are not ideally flat, the exciton averages over different
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Fig. 11.31. (a) Photoluminescence spectrum of a 5-nm GaAs/AlGaAs quantum
well at T = 300 K. The solid (dashed) line is fit with (without) excitonic effects. The
two peaks are due to transitions involving heavy and light holes. Adapted from [808].
(b) Photoluminescence spectra at three different temperatures as labeled of a 10-
nm modulation-doped InGaAs/InP quantum well with an electron sheet density
ns = 9.1×1011 cm−2. The electron quasi-Fermi level is Fn− (EC +Ee1) = 44.1 meV
from the subband edge. The dashed line in the T = 80 K spectrum is the lineshape
from JDOS and a Fermi–Dirac distribution without enhancement at the Fermi edge.
Adapted from [809]

(a) (b)

Fig. 11.32. (a) Reflectance spectra at various temperatures from a 17 nm thick
GaAs/Al0.3Ga0.7As quantum well. The inset shows the temperature dependence
of the homogeneous linewidth. (b) LO phonon broadening parameter (FWHM) for
various quantum well widths. Adapted from [810]
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quantum-well thicknesses within its volume. Also, e.g. for the GaAs/AlGaAs
system, the wavefunction in the (binary) quantum well tunnels into the bar-
rier, the amount depending on the QW width, and there ‘sees’ the alloy
broadening (see Sect. 10.3.3). The problem of exciton dynamics in a poten-
tial with random fluctuations has been treated in detail [811, 812].

A simplified picture is as follows: At low temperatures the excitons pop-
ulate preferentially the potential minima. A simple lineshape4 of the QW
absorption or joint density of states is given by a step function (cf. Table 9.2)
at the QW band edge E0. The inhomogeneous broadening has a Gaussian
probability distribution p(δE) ∝ exp[−(δE)2/2σ2)] with δE being the de-
viation from the QW band edge δE = E − E0. The resulting lineshape is
given by the convolution of the Gaussian with the unperturbed absorption
spectrum yielding an error-function-like spectrum5 as shown in Fig. 11.33a.

For complete thermalization the level population is given by the Boltz-
mann function. The recombination spectrum is given by the product of the
absorption spectrum (or JDOS) and the Boltzmann function. It is (red-)
shifted with respect to E0 by about6

ΔE(T ) = − σ2

kT
= γ(T ) kT . (11.10)

This shift between emission and absorption is also called the Stokes shift.
Within their lifetime, limited at least by radiative recombination, the

excitons are typically unable to reach the energy position required by the
Boltzmann function, but only a local minimum. Thus, their thermalization
may be incomplete due to insufficient lateral diffusion. This effect is par-
ticularly important at low temperatures when thermal emission into ad-
jacent deeper potential minima is suppressed. In this case, the red-shift
is smaller than expected from (11.10). A numerical simulation [811] yields
such behavior of the energy position of the recombination line as shown in
Fig. 11.33b. Simultaneously, the width of the recombination spectrum also
exhibits a minimum (Fig. 11.33c). These findings are in agreement with ex-
periments [813, 814]. An analytical model for temperature dependent exciton
localization in the presence of disorder has been given in [815], yielding a value
0 ≤ γ ≤ γ0 = (σ/kT )2 in (11.10).

A potential fluctuation can localize an exciton laterally at low tempera-
tures [821] and behave like a quantum dot (cf. Sect. 13.3)). Localized and de-
localized excitons are separated by a boundary called the mobility edge [816].
The transition between the two regimes is a Mott transition [817].

4neglecting excitonic enhancement
5The error function is defined as erf(x) = (2/

√
π)

∫ z

0
exp−t2 dt.

6Formula (11.10) is exact for the product of a Gaussian and the Boltzmann
function.
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(a)

(b) (c)

Fig. 11.33. (a) Recombination spectra (solid lines, scaled to same height) of a
model quantum well for different temperatures as labeled and complete thermal-
ization, dashed (dash-dotted) line is unperturbed (inhomogeneously broadened by
σ = 20 meV) shape of the QW absorption edge. The energy scale is relative to the
energy position of the unperturbed QW absorption edge at E0. (b) Theoretical en-
ergy position and (c) linewidth of exciton recombination from a model disordered
quantum well. The high-temperature limits are marked by arrows. Parts (b, c)
adapted from [811]

Monolayer Growth Islands

Under certain growth conditions, quantum wells with piecewise very flat inter-
faces can be fabricated. The thickness difference between such regions (with
lateral extension in the μm range) is an integer monolayer. Accordingly, the
recombination spectrum yields several, typically two or three, discrete lines
(Fig. 11.34).

11.4.3 Quantum Confined Stark Effect

The quantum confined Stark effect (QCSE, Sect. 12.1.2) in quantum wells
shifts energy levels when electric fields are present along the width of
the quantum well. A strong effect exists for pyro- and piezoelectric mate-
rial combinations such as c-axis oriented (In,Ga)N/(Al,Ga)N [818, 819] or
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Fig. 11.34. Photoluminescence spectrum (T = 2 K) (dots) of GaAs/AlGaAs quan-
tum well grown by MBE with 120 s growth interruptions. Recombination is due to
excitons in islands of 19, 18, and 17 monolayers (a0/2) height. The solid line is a
lineshape fit including lifetime broadening (Γ = 1.34 meV) and residual inhomoge-
neous broadening (σ = 0.04 meV) due to AlGaAs barrier alloy fluctuations. Note
that the energy separation of the peaks is much larger than kT . The peak doublet
structure is discussed in [807]. Adapted from [807]

(Cd,Zn)O/(Mg,Zn)O [820, 821] quantum wells due to the built-in electric
field (cf. Sect. 14.2). The QCSE induced red-shift is larger in thicker quan-
tum wells and goes beyond the bulk band gap of the quantum well material
(Fig. 11.35b). Also the wavefunction overlap is reduced with increasing well
width, leading to an increase of the radiative recombination lifetime as shown
in Fig. 11.35. The pyroelectric field and the related modification of lifetime
are absent in quantum wells grown on non-polar directions such as [11.0]
(Fig. 11.35a).

11.5 Isotope Superlattices

A special type of heterostructure is the modulation of the isotope content.
The first kind of heterostructures made like this were 70Gen/74Gen symmet-
ric superlattices [822]. Figure 11.36 shows phonon energies determined from
Raman spectroscopy for various layer numbers n. The modes are classified by
70LOm and 74LOm denoting the material in which the amplitude is maximal
and m being the number of maxima in that medium.7 Such modes are visu-
alized in Fig. 11.37a for a 69GaP16/71GaP16 superlattice. Theoretical mode
energies as a function of the superlattice period are shown in Fig. 11.37b.

7Only modes with odd m are Raman-active.
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(a) (b)

Fig. 11.35. (a) Radiative lifetime of electron-hole pairs in polar [00.1]-
oriented In0.2Ga0.8N/GaN (circles) and non-polar [11.0]-oriented GaN/Al0.2Ga0.8N
(squares) quantum wells of varying thickness. Experimental data are shown in sym-
bols. The solid line is the (scaled) theoretical dependence of the electron-hole over-
lap for InGaN/GaN QWs. The dashed line is guide to the eyes. The arrow denotes
the recombination time constant in bulk GaN. Adapted from [823, 824]. (b) Low
temperature PL peak recombination energy (solid squares) for ZnO/Mg0.3Zn0.7O
quantum wells for various well widths Lz (barrier width LB = 5 nm). Dashed line in-
dicates dependence for internal field of 0.9 MV/cm, horizontal dashed line indicates
recombination energy in ZnO bulk. Carrier lifetime determined from PL (circles),
dashed line is guide to the eyes. Adapted from [821]
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Fig. 11.36. Measured (full circles) and theoretical (solid lines) confined LO phonon
energies in 70Gen/74Gen superlattices vs. the layer thickness (number of monolay-
ers) n. The dashed lines represent a calculation that considers intermixing at the
interfaces. On the right, the energies of bulk modes for isotopically pure 70Ge and
74Ge are shown together with that of an 70Ge0.5

70Ge0.5 alloy. Adapted from [822]
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(a) (b)
–1

Fig. 11.37. (a) Atomic displacements [Ga (filled dots) and P (open circles)] of odd-
index LO modes in a 69Ga16P/71Ga16P superlattice unit cell. These modes have
even parity with respect to midlayer planes, which are at atom numbers 16 and 48 in
this example. The labels on the left identify the predominant character of the mode,
those on the right give the relative Raman intensities with respect to that of the
69LO1 mode. The tick marks on the vertical axis indicate zero displacement of the
respective mode. (b) Upper panel : Energies and characters of odd-index LO phonon
modes in GaP isotope SLs as calculated within the planar bond charge model for the
case of ideal interfaces. 69LOm modes are shown as open symbols; 71LOm modes as
full symbols. The shaded area marks n = 16 for which the atomic displacements of
the modes are shown in part (a). Lower panel : Calculated intensities of the modes
relative to that of the 69LO1 phonon mode. Adapted from [259], reprinted with
permission, c©1999 APS

11.6 Wafer Bonding

Wafer bonding is a fairly recently developed method to join different and
dissimilar materials. Two wafers of the respective materials are put together
face to face and are adequately fused. The idea is to not only ‘glue’ the wafers
together with a sticky (and compliant) organic material, but to form strong
atomic bonds between the two materials with possibly a perfect interface. In
some cases, the interface needs to allow charge-carrier transport through it.
Less stringent conditions need to be met for photon transport.

Mechanical deficiencies such as surface roughness, dust particles and the
like must be avoided in the wafer-bonding process since they result in voids.
Several methods have been developed for bonding various materials [825, 826].
Such processes are successful for large substrate sizes. With proper process-



378 11 Heterostructures

Si

GaAs

Si

Si )b()a(

Fig. 11.38. High-resolution TEM images of wafer-bonded (a) Si-Si and (b) GaAs-
Si interfaces. White circles indicate the position of misfit dislocations. Part (a)
reprinted from [827], c©2003, with permission from Elsevier. Part (b) reprinted
with permission from [828], c©1998 AIP

ing, ideal interfaces can be created, as shown in Fig. 11.38. Such structures,
if made between a p-doped and a n-doped semiconductor, show diode char-
acteristics.



12 External Fields

The energy levels of the solid and its optical and electronic properties depend
on external electric and magnetic fields. In high magnetic fields and at low
temperatures the quantum Hall effects give evidence for new states of matter
in many-body systems.

12.1 Electric Fields

12.1.1 Bulk Material

The center-of-mass motion of the exciton is not influenced by an electric
field. The Hamilton operator for the relative motion of an electron–hole pair
of reduced mass μ along z in the presence of an electric field E along the z
direction is

Ĥ = − �
2

2μ
Δ− e E z . (12.1)

Here, the Coulomb interaction, leading to the formation of bound exci-
ton states, is neglected. In the plane perpendicular to the field (here the z
direction) the solutions for the relative motion are just plane waves.

In the electric field the bands are tilted (Fig. 12.1), i.e. there is no longer
an overall band gap. Accordingly, the wavefunctions are modified and have
exponential tails in the energy gap.

After separation of the motion in the (x,y) plane the Schrödinger equation
for the motion in the z direction is

(
− �

2

2μ
d2

dz2
− eEz − Ez

)
φ(z) = 0 , (12.2)

which is of the type
d2f(ξ)

dξ2
− ξ f(ξ) = 0 , (12.3)

with ξ = Ez

Θ − z
(

2μe
�2 E)1/3

and the optoelectronic energy Θ =
(

e2E2
�
2

2μ

)1/3

.
The solution of (12.3) is given by the Airy function Ai (cf. Fig. 12.2):

M. Grundmann, The Physics of Semiconductors, 2nd ed., Graduate Texts 379
in Physics, DOI 10.1007/978-3-642-13884-3 12,
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 12.1. Impact of an electric field on (a) bulk material (tilt of bands) and
(b) a quantum well (quantum confined Stark effect, QCSE)
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Fig. 12.2. (a) Airy function Ai(x), (b) Ai’(x)

φEz
(ξ) =

√
eE
Θ

Ai(ξ) . (12.4)

The pre-factor guaranties the orthonormality (with regard to the Ez).
The absorption spectrum is then given by

α(ω,E) ∝ 1
ω

√
Θπ

[
Ai

′2(η) − η Ai2(η)
]
, (12.5)

with η = (Eg − E)/Θ and Ai′(x) = dAi(x)/dx.
Optical transitions below the band gap become possible that are photon-

assisted tunneling processes. The below-bandgap transitions have the form
of an exponential tail. Additionally, oscillations develop above the band gap,
the so-called Franz–Keldysh oscillations (FKO) (Fig. 12.3a).

The absorption spectrum scales with the optoelectronic energy Θ. The
energy position of the FKO peaks En is periodic with (ν ∼ 0.5)
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Fig. 12.3. (a) Theoretical absorption (top panel) with (solid line) and without
(dash-dotted line) electric field for a volume semiconductor (without Coulomb in-
teraction) and theoretical change of absorption (bottom panel). (b) Experimental
absorption spectra of InGaAs on InP at T = 15 K for various applied voltages as
labeled. Adapted from [829]

(En − Eg)
3/2 ∝ (n− ν) E √

μ . (12.6)

A nonperiodicity can indicate a nonparabolicity of the mass. For a given
mass the electric field strength can be determined. Well-pronounced oscilla-
tions are only present for homogeneous fields.

Experimental spectra show additionally the peaks due to excitonic cor-
relation (Fig. 12.3b) at low field strength. At higher fields the FKO evolve
and the amplitude of the excitonic peaks decreases because the excitons are
ionized in the field.

12.1.2 Quantum Wells

In a quantum well an electric field along the confinement direction (z di-
rection) causes electrons and holes to shift their mean position to opposite
interfaces (Fig. 12.1b). However, excitons are not ionized due to the elec-
tric field. With increasing field (for both field directions) the energy position
of the absorption edge and the recombination energy is reduced. This is the
quantum confined Stark effect (QCSE). Corresponding experimental data are
shown in Fig. 12.4i–v. The shift depends quadratically on the electric field
since the exciton has no permanent dipole moment (mirror symmetry of the
quantum well). Thus, only the second-order Stark effect is present (as for
the hydrogen atom) in which the field first induces a dipole p = αE. This
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Fig. 12.4. Impact of electric fields on the absorption spectrum of n × (9.5 nm
GaAs/9.8 nm Al0.32Ga0.68As) multiple quantum well structures. (a): Electric field
along the [001] growth direction (n = 50), (i)–(v): E = 0, 0.6, 1.1, 1.5, and 2 ×
105 V/cm. (b): Electric field within the interface plane (n=60), (i,ii,iii): E = 0, 1.1,
and 2×105 V/cm. Adapted from [830]

dipole interacts with the field with an energy E = −p · E = −αE2. The
carrier separation in opposite sides of the quantum well (Fig. 12.4b) leads to
a reduced overlap of the electron and hole wavefunctions and subsequently
to an increased recombination lifetime (see Fig. 11.35).

If the field is within the quantum-well interface plane, the field leads to
the ionization of excitons without shift of the energy position. The loss of the
excitonic peak is visualized in the spectra in Fig. 12.4a–c.

12.2 Magnetic Fields

In magnetic fields, electrons (or holes) perform a cyclotron motion with fre-
quency ωc = eB/m∗, i.e. a motion perpendicular to the magnetic field on
a line of constant energy in k-space. This line is the intersection of a plane
perpendicular to the magnetic field and the respective isoenergy surface in
k-space. For semiconductors with anisotropic mass, such as Si and Ge, the
quantum theory of cyclotron resonance has been given in [831]. The physics
of semiconductors in magnetic fields is covered in detail in [832].

The ballistic cyclotron motion can only occur between two scattering
events. Thus, a significantly long path along the cyclotron trajectory (clas-
sically speaking) and the connected magnetotransport properties are only
possible when

– ωcτ  1, i.e. when the average scattering time τ is sufficiently large. This
requires high mobility.
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– the magnetic field is sufficiently strong and the temperature sufficiently
low, i.e. �ωc  kT , such that thermal excitations do not scatter electrons
between different Landau levels.

– the cyclotron path is free of geometric obstructions.

An external magnetic field also produces a splitting of the spin states. For
the electron, the energy splitting ΔE is given by

ΔE = g∗e μBB , (12.7)

where B is the magnetic-field amplitude and g∗e the (effective) electron
g-factor. This value differs from the free-electron value in vacuum of
ge = 2.0023 due to the presence of spin-orbit interaction (see Sect. 12.2.2).
Values for g∗e at low carrier density and low temperatures are 2 for Si,
1.2 for InP and ZnSe, −1.65 for CdTe, −0.44 for GaAs, −15 in InAs, and
−50 for InSb. In [833] the temperature dependence of g∗e in GaAs, InP and
CdTe is also measured and discussed. The electron g-factor increases in thin
GaAs/AlGaAs quantum wells [834].

12.2.1 Free-Carrier Absorption

The absorption of free carriers was treated in Sect. 9.7 without the presence
of a static magnetic field. Solving (8.25) for a static magnetic field B = μ0H
with H = H (hx, hy, hz) and a harmonic electric field E ∝ exp(−iωt) yields
for the dielectric tensor (cf. (9.54))

ε =
i
ε0ω

σ , (12.8)

by comparing j = σE = qNv

ε(ω) = −ω∗2
p

⎡

⎣(ω2 + iωγ)1 − iωc

⎛

⎝
0 −hz hy

hz 0 −hz

−hy hz 0

⎞

⎠

⎤

⎦

−1

, (12.9)

where 1 denotes the (3 by 3) unity matrix and γ = 1/τ = m∗μ/q is the
damping parameter with μ representing the optical carrier mobility. The
(unscreened) plasma frequency is given by

ω∗2
p = n

e2

ε0m∗ . (12.10)

The free-carrier cyclotron frequency is

ωc = e
μ0H

m∗ . (12.11)

If the effective mass is treated as a tensor, 1/m∗ is replaced by m∗−1 in
(12.10) and (12.11). For zero magnetic field the classical Drude theory for
one carrier species is recovered (cf. (9.56a))
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ε(ω) = − ω∗2
p

ω(ω + iγ)
. (12.12)

With the magnetic field perpendicular to the sample surface, i.e.
B = μ0(0, 0,H) the magneto-optic dielectric tensor simplifies to (cf. (8.26d))

ε(ω) =
−ω∗2

p

ω2

⎛

⎝
ε̃xx iε̃xy 0

−iε̃xy ε̃xx 0
0 0 ε̃zz

⎞

⎠ (12.13a)

ε̃xx =
1 + iγ/ω

(1 + iγ/ω)2 − (ωc/ω)2
(12.13b)

ε̃zz =
1

(1 + iγ/ω)
(12.13c)

ε̃xy =
ωc/ω

(1 + iγ/ω)2 − (ωc/ω)2
. (12.13d)

The in-plane component εxx provides information about ω∗
p and γ, i.e. n

and μ, the effective mass, are known. Additionally, the antisymmetric tensor
component εxy is linear in the cyclotron frequency and provides q/m. This
subtle but finite birefringence depends on the strength (and orientation) of
the magnetic field and can be experimentally determined in the infrared using
magneto-ellipsometry [835, 836]. Such ‘optical Hall effect’ experiment allows
the determination of the carrier density n, the mobility μ, the carrier mass1

m∗ and the sign of the carrier charge sgn(q) with optical means. The electrical
Hall effect (Sect. 8.4) can reveal n, μ and sgn(q) but cannot reveal the carrier
mass.

12.2.2 Energy Levels in Bulk Crystals

In a 3D electron gas (the magnetic field is along z, i.e. B = B[0, 0, 1]) the
motion in the (x, y) plane is described by Landau levels. Quantum mechan-
ically they correspond to levels of a harmonic oscillator. The magnetic field
has no impact on the motion of electrons along z, such that in this direction
a free dispersion relation ∝ k2

z is present. The energy levels are given as

Enkz
=

(
n+

1
2

)
�ωc +

�
2

2m
k2

z . (12.14)

Thus, the states are on concentric cylinders in k-space (Fig. 12.5a). The
populated states of the 3D electron gas (at 0 K) lie within the Fermi vector

1We note that mobility and effective mass defined and measured in this way
may be referred to as ‘optical’. Other definitions and approaches to the mobility or
effective mass may give different results.



12.2 Magnetic Fields 385

(a)

kx

EF

kz

B

n = n m

n = 0

n = ...
n = 1

ky

(b)
E

EF

h c

0 3/21/2 5/2 7/2

3D

Fig. 12.5. 3D electron gas in an external magnetic field. (a) Allowed states in
k-space for magnetic field along the z direction. (b) Density of states (DOS) ρ vs.
energy (in units of �ωc). Dashed line is three-dimensional DOS without magnetic
field. Based on [765]

of length kF. For the 3D system the density of states at the Fermi energy
is a square root function of the Fermi energy (6.74). In the presence of a
magnetic field the density of states diverges every time that a new cylinder
(with a one-dimensional density of states, (6.78)) touches the Fermi surface at
EF. In real systems, the divergence will be smoothed, however, a pronounced
peak or the periodic nature of the density of states is often preserved.

The period is given by the number nm of cyclotron orbits (Landau levels)
within the Fermi surface.

(
nm +

1
2

)
�ωc = EF . (12.15)

If the number of carriers is constant, the density of states at the Fermi
energy at varying magnetic field varies periodically with 1/B. From the condi-
tions

(
nm + 1

2

)
�

eB1
m = EF and

(
nm + 1 + 1

2

)
�

eB2
m = EF with 1

B2
= 1

B1
+ 1

ΔB
we find

1
ΔB

=
e�

m∗EF
. (12.16)

This periodicity is used to determine experimentally, e.g., the properties
of the Fermi surface in metals using the Shubnikov–de Haas oscillations (of
the magnetoresistance) or the de Haas–van Alphén effect (oscillation of the
magnetic susceptibility).

Equation (12.14) needs to be extended to account for the splitting (12.7)
of the Landau level due to the electron spin. According to [837] the electron
Landau level energy can be written as

En =
(
n+

1
2

)
�eB

m∗(E)
± g∗e (E)μBB , (12.17)

with energy dependent effective mass and g-factor
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1
m∗(E)

=
1

m∗(0)
Eg(Eg +Δ0)
3Eg + 2Δ0

(
2

E + Eg
+

1
E + Eg +Δ0

)
(12.18a)

g∗e (E) = g∗e (0)
Eg(Eg +Δ0)

Δ0

(
1

E + Eg
− 1
E + Eg +Δ0

)
(12.18b)

The band edge value m∗(0) of the effective mass is given by (6.42) and that
of the g-factor by

g∗e (0) = 2
[
1 − 2Δ0

3Eg(Eg +Δ0)
EP

]
. (12.19)

For large spin-orbit splitting, the value of the g-factor deviates strongly from
2 and becomes negative.

12.2.3 Energy Levels in a 2DEG

In a 2D electron gas (2DEG), e.g. in a quantum well or a potential well at
a modulation-doped heterointerface, a free motion in z is not possible and
kz is quantized. The energy levels (for each 2D subband) are only given by
the cyclotron energy (Fig. 12.6a). The density of states is a sequence of δ-like
peaks (Fig. 12.6b). Each peak contributes (degeneracy ĝ of a Landau level)
a total number of

ĝ =
eB

h
(12.20)

states (per unit area without spin degeneracy and without the degeneracy
of the band extremum). In reality, disorder effects lead to an inhomogeneous

(a)
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n = 0
n = 1

ky

E (0)
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E +h /21 c

h c

Fig. 12.6. 2D electron gas in an external magnetic field. (a) Allowed states in
k-space. (b) Density of states (DOS) ρ vs. energy. Dashed line is two-dimensional
DOS without magnetic field. Thick vertical lines: δ-like DOS without broadening,
curves: broadened DOS. Based on [765]
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Fig. 12.7. Oscillatory (theory, T = 6 K) behavior of a 2DEG (GaAs/AlGaAs)
in a magnetic field: (a) Fermi level, (b) magnetization, (c) specific heat, (d)
thermoelectric power. A Gaussian broadening of 0.5 meV was assumed. Adapted
from [765, 838]

broadening of these peaks. The states in the tails of the peaks correspond to
states that are localized in real space.

Also, in a 2D system several physical properties exhibit an oscillatory
behavior as a function of Fermi level, i.e. with varying electron number, and
as a function of the magnetic field at fixed Fermi energy, i.e. at fixed electron
number (Fig. 12.7).

12.2.4 Shubnikov–de Haas Oscillations

From the 2D density of states (per unit area including spin degeneracy)
D2D(E) = m∗/π�

2 the sheet density of electrons ns can be expressed as
a function of the Fermi level (at T = 0 K without spin degeneracy)

ns =
m∗

2π�2
EF . (12.21)
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Fig. 12.8. Shubnikov–de Haas oscillations at a modulation-doped AlGaAs/GaAs
heterostructure with a 2DEG, n = 1.7 × 1017 cm−2 and μ = 11 400 cm2/Vs. Data
from [839]
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Fig. 12.9. Shubnikov–de Haas oscillations of a 2DEG at the (100) surface of p-type
silicon (100 Ω cm) at a magnetic field of 33 kOe and T = 1.34 K. The inset shows
schematically the contact geometry. Data from [840]

Using (12.16) we thus find (without spin degeneracy, without valley de-
generacy), that the period of 1/B is ∝ ns:

1
ΔB

=
e

h

1
ns

. (12.22)

The carrier density of a 2DEG can therefore be determined from the os-
cillations of magnetoresistance, and is proportional to the density of states at
the Fermi level (Shubnikov–de Haas effect). A corresponding measurement
with varying field and fixed electron density is shown in Fig. 12.8. The peri-
odicity with 1/B is obvious. Since only the component of the magnetic field
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perpendicular to the layer affects the (x, y) motion of the carriers, no effect
is observed for the magnetic field parallel to the layer.

In another experiment the carrier density was varied at constant field
(Fig. 12.9). The electron density in an inversion layer in p-type silicon is (lin-
early) varied with the gate voltage of a MOS (metal–oxide–semiconductor)
structure (inset in Fig. 12.9, for MOS diodes cf. Sect. 23.5). In this experi-
ment, the Fermi level was shifted through the Landau levels. The equidistant
peaks show that indeed each Landau level contributes the same number of
states.

12.3 Quantum Hall Effect

In high magnetic fields, at low temperatures and for high-mobility, 2D elec-
tron gases exhibit a deviation from the classical behavior. We recall that
the classical Hall effect (i.e. considering the Lorentz force, classical Drude
theory), the generation of a field Ey perpendicular to a current flow jx
(cf. Sect. 8.4), was described with the conductivity tensor σ (here, for the
(x, y)-plane only)

σ =
σ0

1 + ω2
cτ

2

(
1 ωcτ

−ωcτ 1

)
(12.23a)

σxx = σ0
1

1 + ω2
cτ

2
→ 0 (12.23b)

σxy = σ0
ωcτ

1 + ω2
cτ

2
→ ne

B
, (12.23c)

where σ0 is the zero-field conductivity σ0 = ne2τ/m∗ (8.5). The arrows de-
note the limit for ωcτ → ∞, i.e. large fields. The resistivity tensor ρ = σ−1

is given by

ρ =
(
ρxx ρxy

−ρxy ρxx

)
(12.24a)

ρxx =
σxx

σ2
xx + σ2

xy

→ 0 (12.24b)

ρxy =
−σxy

σ2
xx + σ2

xy

→ − B

ne
. (12.24c)

12.3.1 Integral QHE

Experiments yield strong deviations from the linear behavior of the trans-
verse resistivity ρxy = Ey/jx = BRH with the Hall coefficient RH = −1/(ne)
with increasing magnetic field is observed at low temperatures for samples
with high carrier mobility, i.e. ωcτ  1 (Fig. 12.10). In Fig. 12.11a,b, Hall
bars are shown for 2DEGs in silicon metal–oxide–semiconductor field-effect
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Fig. 12.10. Hall resistivity ρxy and longitudinal resistivity ρxx for a modulation-
doped GaAs/AlGaAs heterostructure (n = 4 × 1011 cm−2, μ = 8.6 × 104 cm2/Vs)
at 50 mK as a function of magnetic field (10 kG=1 T). The numbers refer to the
quantum number and spin polarization of the Landau level involved. The inset
shows schematically the Hall bar geometry, VL (VH) denotes the longitudinal (Hall)
voltage drop. Reprinted with permission from [841], c©1982 APS

transistor (Si-MOSFET) electron inversion layers and at GaAs/AlGaAs het-
erostructures, respectively.

The Hall resistivity exhibits extended Hall plateaus with resistivity values
that are given by

ρxy =
1
i

h

e2
, (12.25)

i.e. integer fractions of the quantized resistance ρ0 = h/e2 =25812.807. . . Ω,
which is also called the von-Klitzing constant. In Fig. 12.10, a spin splitting
is seen for the n = 1 Landau level (and a small one for the n = 2). We note
that the topmost Hall plateau is due to the completely filled n = 0 Landau
level; the resistance is ρ0/2 due to the spin degeneracy of 2.

The integral quantum Hall effect, first reported in [843, 844], and the value
for ρ0 are found for a wide variety of samples and conditions regarding sample
temperature, electron density or mobility of the 2DEG and the materials of
the heterostructure.
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Fig. 12.11. (a) Silicon MOS (metal–oxide–semiconductor) structure of K. v. Klitz-
ing’s et al. original experiments. (b) GaAs/AlGaAs heterostructure sample grown
with molecular beam epitaxy for QHE measurements, chip carrier and bond wires.
Reprinted with permission from [842]

Within the plateau the resistivity is well defined within 10−7 or better
up to 4 × 10−9. A precise determination allows for a new normal for the
unit Ohm [845, 846], being two orders of magnitude more precise than the
realization in the SI system, and an independent value for the fine-structure
constant α = e2

�c
1

4πε0
. At the same time, the longitudinal resistivity, starting

from the classical value for small magnetic fields, exhibits oscillations and
eventually it is zero for the plateaus in ρxy. For ρxx values of 10−10 Ω/� have
been measured, which corresponds to 10−16 Ω/cm for bulk material, a value
three orders of magnitude smaller than for any nonsuperconductor.

The interpretation of the quantum Hall effect(s) is discussed in [847]
among many other treatises. The simplest explanation is that the conductiv-
ity is zero when a Landau level is completely filled and the next is completely
empty, i.e. the Fermi level lies between them. The temperature is small, i.e.
kT � �ωc, such that no scattering between Landau levels can occur. Thus
no current, similar to a completely filled valence band, can flow. The sheet
carrier density ns is given by counting the i filled Landau levels (degeneracy
according to (12.20)) as

ns = i
eB

h
. (12.26)

In the transverse direction energy dissipation takes place and the Hall
resistivity ρxy = B/(nse) takes the (scattering-free) values given in (12.25).

However, this argument is too simple as it will not explain the extension
of the plateaus. As soon as the system has one electron more or less, the
Fermi energy will (for a system with δ-like density of states) be located in the
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upper or lower Landau level, respectively. Then, the longitudinal conductivity
should no longer be zero and the Hall resistivity deviates from the integer
fraction of ρ0.

Therefore (in the localization model) an inhomogeneous (Gaussian) broad-
ening of the density of states is assumed. Additionally, the states in the tails
of the distribution are considered nonconducting, i.e. localized, while those
around the peak are considered conductive. This mobility edge is schemati-
cally shown in Fig. 12.12a–c.

When the Fermi level crosses the density of states of the broadened Lan-
dau level (upon increase of the magnetic field), it first populates localized
states and ρxx remains at zero. When the Fermi level crosses the delocalized,
conducting states, the longitudinal conductivity shows a peak and the Hall

0 1

xy
xx

)
E(

D

e /h2

(a)

(b)

(c)

(d)

Fig. 12.12. (a) Density of states D(E), (b) longitudinal conductivity σxx and (c)
Hall conductivity σxy for a Landau level as a function of the filling factor μ = n/d,
where n is the electron density and d the degeneracy of the level. In (a) the filling
factor relates via the position of the Fermi level to an energy scale. The grey areas
in (a) denote localized states. The slanted dashed line in (c) has a slope of ne/B.
Adapted from [850]. (d) Normalized Hall potential profile for different magnetic
fields around filling factor ν = 2. The overall voltage drop corresponds to 20 mV.
The insets show the sample geometry and transport data. The 2DEG is from a
GaAs/Al0.33Ga0.67As modulation-doped heterostructure, ns = 4.3 × 1011 cm−2,
μ = 5 × 105 cm2/Vs, T = 1.4 K. Adapted from [851]
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conductivity increases from the plateau value by e2/h to the next plateau.
When the Fermi level lies within the upper nonconducting states, the Hall
resistivity remains constant in the next plateau. For the sample in Fig. 12.10
it has been estimated that 95% of the Landau level states are localized [841].

In the localization model it is still astonishing that the samples exhibit
the step of e2/h in the conductivity as if all electrons on the Landau level
contribute to conduction, cf. (12.26). According to the calculations in [848]
the Hall current lost by the localized states is compensated by an extra
current by the extended states. The behavior of the electrons in the quantum
Hall regime (‘quantum Hall liquid’) can be considered similar to that of an
incompressible fluid where obstructions lead the fluid to move with increased
velocity. Nevertheless, the single particle picture seems to be insufficient to
model the IQHE.

Another model for the explanation of the QHE, supported now with
plenty of experimental evidence, is the edge state model where quantized
one-dimensional conductivity of edge channels, i.e. the presence of conduc-
tive channels along the sample boundaries, is evoked [849]. Due to depletion
at the boundary of the sample, the density of the 2DEG varies at the edge
of the sample and ‘incompressible’ stripes develop for which ∂μ/∂ns → ∞.
When the filling factor is far from an integer, the Hall voltage is found to vary
linearly across the conductive channel and the current is thus homogeneous
over the sample (Fig. 12.12d). In the Hall plateau, the Hall voltage is flat in
the center of the channel and exhibits drops at the edges, indicating that the
current flows along the boundary of the sample (edge current) [851] in agree-
ment with predictions from [852]. Although the current pattern changes with
varying magnetic field, the Hall resistivity remains at its quantized value.

The most fundamental arguments for the explanation of the IQHE come
from gauge invariance and the presence of a macroscopic quantum state of
electrons and magnetic flux quanta [853]. This model holds as long as there
are any extended states at all.

12.3.2 Fractional QHE

For very low temperatures and in the extreme quantum limit, novel effects
are observed when the kinetic energy of the electrons is smaller than their
Coulomb interaction. New quantum Hall plateaus are observed at various
fractional filling factors ν = p/q. We note that the effects of the fractional
quantum Hall effect (FQHE) in Fig. 12.13 mostly arise for magnetic fields
beyond the n = 1 IQHE plateau. The filling factor ν = n/(eB/h) is now
interpreted as the number of electrons per magnetic flux quantum φ0 = h/e.

The effects of the FQHE cannot be explained by single-electron physics.
The plateaus at fractional fillings ν occur when the Fermi energy lies within
a highly degenerate Landau (or spin) level and imply the presence of energy
gaps due to many-particle interaction and the result of correlated 2D electron
motion in the magnetic field.
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Fig. 12.13. Hall resistance Rxy and magnetoresistance Rxx of a two-dimensional
electron system (GaAs/AlGaAs heterostructure) of density n = 2.33 × 1011 cm−2

at a temperature of 85 mK, vs. magnetic field B. Numbers identify the filling factor
ν, which indicates the degree to which the sequence of Landau levels is filled with
electrons. Plateaus are due to the integral (ν = i) quantum Hall effect (IQHE) and
fractional (ν = p/q) quantum Hall effect (FQHE). Adapted from [854], reprinted
with permission, c©1990 AAAS

A decisive role is played by the magnetic flux quanta. The presence of the
magnetic field requires the many-electron wavefunction to assume as many
zeros per unit area as there are flux quanta penetrating it. The decay of the
wavefunction has a length scale of the magnetic length l0 =

√
�/(eB). Since

the magnetic field implies a 2π phase shift around the zero, such an object is
also termed a vortex, being the embodiment of the magnetic flux quanta in
the electron system. Such a vortex represents a charge deficit (compared to
a homogeneous charge distribution) and thus electrons and vortices attract
each other. If a vortex and an electron are placed onto each other, considerable
Coulomb energy is gained. At ν = 1/3, there are three times more vortices
than there are electrons, each vortex representing a charge deficit of 1/3 e.
Such a system is described with many-particle wavefunctions, such as the
Laughlin theory for ν = 1/q [853] and novel quasi-particles called composite
fermions [855, 856] for other fractional fillings. For further reading we refer
readers to [857] and references therein.

12.3.3 Weiss Oscillations

In Fig. 12.14, measurements are shown for a Hall bar in which an array of
antidots (in which no conduction is possible) has been introduced by dry
etching. The antidot size is 50 nm (plus depletion layer) and the period is
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Fig. 12.14. Weiss oscillations: (a) magnetoresistance and (b) Hall resistance of an
antidot lattice (inset in (a) with pattern (solid lines) and without pattern (dashed
lines) at T = 1.5 K. (b) Schematic of the different orbits: (‘p’: pinned, ‘d’: drifting,
‘s’: scattered). Reprinted with permission from [858], c©1991 APS

300 nm. These obstructions for the cyclotron motion lead to a modification
of the magnetotransport properties.

Before etching of the antidot array the 2DEG has a mean free path length
of 5–10 μm at 4 K for the mobility of ≈ 106 cm2/Vs. At low magnetic fields
there is a strong deviation of the Hall resistivity from the straight line to
which the QHE levels converge. Similarly, ρxx shows a strong effect as well.

These effects are related to commensurability effects between the antidot
lattice and the cyclotron resonance path. When the cyclotron orbit is equal
to the lattice period, electrons can fulfill a circular motion around one anti-
dot (pinned orbit, Fig. 12.14b) that leads to a reduction of conductivity. At
high fields, drifting orbits for which the cyclotron orbit is much smaller than
the lattice period occur. At small fields, scattering orbits also contribute for
which the cyclotron radius is large and the electron has antidots from time
to time. Resonances in the Hall resistivity have been found due to pinned
orbits enclosing 1, 2, 4, 9 or 21 antidots.
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The principles of physics,
as far as I can see,

do not speak against the possibility
of maneuvering things atom by atom.

R.P. Feynman, 1959 [859]

13.1 Introduction

When the structural size of functional elements enters the size range of the
de Broglie matter wavelength, the electronic and optical properties are dom-
inated by quantum-mechanical effects. The most drastic impact can be seen
from the density of states (Fig. 13.1).

The quantization in a potential is ruled by the Schrödinger equation with
appropriate boundary conditions. These are simplest if an infinite potential
is assumed. For finite potentials, the wavefunction leaks out into the barrier.
Besides making the calculation more complicated (and more realistic), this
allows electronic coupling of nanostructures. Via the Coulomb interaction, a
coupling is even given if there is no wavefunction overlap. In the following,
we will discuss some of the fabrication techniques and properties of quantum
wires (QWR) and quantum dots (QD). In particular for the latter, several
textbooks can also be consulted [860, 861].

13.2 Quantum Wires

13.2.1 V-Groove Quantum Wires

Quantum wires with high optical quality, i.e. high recombination efficiency
and well-defined spectra, can be obtained by employing epitaxial growth on
corrugated substrates. The technique is shown schematically in Fig. 13.2. A
V-groove is etched, using, e.g., an anisotropic wet chemical etch, into a GaAs
substrate. The groove direction is along [110]. Even when the etched pattern
is not very sharp on the bottom, subsequent growth of AlGaAs sharpens

M. Grundmann, The Physics of Semiconductors, 2nd ed., Graduate Texts 397
in Physics, DOI 10.1007/978-3-642-13884-3 13,
c© Springer-Verlag Berlin Heidelberg 2010



398 13 Nanostructures

Fig. 13.1. Schematic geometry and density of states for 3D, 2D, 1D and 0D elec-
tronic systems

the apex to a self-limited radius ρl of the order of 10 nm. The side facets
of the groove are {111}A. Subsequent deposition of GaAs leads to a larger
upper radius ρu > ρl of the heterostructure. The GaAs QWR formed in the
bottom of the groove is thus crescent-shaped as shown in Fig. 13.3. A thin
GaAs layer also forms on the side facets (sidewall quantum well) and on the
top of the ridges. Subsequent growth of AlGaAs leads to a resharpening of
the V-groove to the initial, self-limited value ρl. The complete resharpening
after a sufficiently thick AlGaAs layer allows vertical stacking of crescent-
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Fig. 13.2. Schematic cross section of a GaAs/AlGaAs heterostructure grown on a
channeled substrate, illustrating the concept of self-ordered quantum-wire fabrica-
tion. Adapted from [862]

Fig. 13.3. Transmission electron microscopy cross-sectional image of a crescent-
shaped single GaAs/AlGaAs quantum wire. From [863]

shaped QWRs of virtually identical size and shape, as shown in Fig. 13.4.
In this sense, the self-limiting reduction of the radius of curvature and its
recovery during barrier-layer growth leads to self-ordering of QWR arrays
whose structural parameters are determined solely by growth parameters.
The lateral pitch of such wires can be down to 240 nm.

To directly visualize the lateral modulation of the band gap, a lateral
cathodoluminescence (CL) linescan perpendicular across the wire is displayed
in Fig. 13.5. In Fig. 13.5a, the secondary electron (SE) image of the sample
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Fig. 13.4. TEM cross-sectional image of a vertical stack of identical GaAs/AlGaAs
crescent-shaped QWRs. From [862]

from Fig. 13.3 is shown in plan view. The top ridge is visible in the upper and
lower parts of the figure, while in the middle the sidewalls with the QWR
in the center are apparent. In Fig. 13.5b, the CL spectrum along a lines-
can perpendicular to the wire (as indicated by the white line in Fig. 13.5a)
is displayed. The x-axis is now the emission wavelength, while the y-axis
is the lateral position along the linescan. The CL intensity is given on a
logarithmic scale to display the full dynamic range. The top QW shows al-
most no variation in band gap energy (λ = 725 nm); only directly at the
edge close to the sidewall does a second peak at lower energy (λ = 745 nm)
appear, indicating a thicker region there. The sidewall QW exhibits a recom-
bination wavelength of 700 nm at the edge to the top QW, which gradually
increases to about 730 nm at the center of the V-groove. This directly visual-
izes a linear tapering of the sidewall QW from about 2.1 nm thickness at the
edge to 3 nm in the center. The QWR luminescence itself appears at about
800 nm.

After fast capture from the barrier into the QWs and, to a much smaller
extent corresponding to its smaller volume, into the QWR, excess carriers
will diffuse into the QWR via the adjacent sidewall QW and the vertical
QW. The tapering of the sidewall QW induces an additional drift current.
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Fig. 13.5. (a) Plan-view SE image of single QWR (sample A), showing top and
sidewall with QWR in the center. The white line indicates the position of the
linescan on which the CL spectra linescan (b) has been taken at T = 5 K. The CL
intensity is given on a logarithmic grey scale to display the full dynamic range as a
function of wavelength and position along the white line in (a). From [863]

13.2.2 Cleaved-Edge Overgrowth Quantum Wires

Another method to create quantum wires of high structural perfection is
cleaved-edge overgrowth (CEO) [864], shown schematically in Fig. 13.6. First,
a layered structure is grown (single or multiple quantum wells or superlattice).
Then, a {110} facet is fabricated by cleaving (in vacuum) and epitaxy is
continued on the cleaved facet. At the junctures of the {110} layer and the
original quantum wells QWRs form. Due to their cross-sectional form they
are also called T-shaped QWRs. A second cleave and another growth step
allow fabrication of CEO quantum dots [865, 866] (Fig. 13.6c).

13.2.3 Nanowhiskers

Whiskers are primarily known as thin metal spikes and have been investigated
in detail [867]. Semiconductor whiskers can be considered as (fairly short)
quantum wires. They have been reported for a number of materials, such as
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Fig. 13.6. Principle of CEO quantum wires and 2-fold CEO quantum dots. Part
(a) depicts a layered structure (quantum wells or superlattice, blue), (b) describes
the growth on the cleaved facet used for fabrication of quantum wires. In (c) a
second cleave and growth on top of the plane allows the fabrication of quantum
dots. From [865]. (d) Cross-sectional TEM image of CEO GaAs/AlGaAs quantum
wires. Two quantum wells (QW) and the QWR at their junction are labeled. The
first epitaxy was from left to right. The second epitaxy step was on top of the
cleavage plane (dashed line) in the upward direction. Adapted from [866], reprinted
with permission, c©1997 APS

Si, GaAs, InP and ZnO [868]. A field of ZnO whiskers is shown in Fig. 13.7.
If heterostructures are incorporated along the whisker axis [869], quantum
dots or tunneling barriers can be created (Fig. 13.8). The nanocrystal can
also act as a nanolaser [870, 871]. In ZnO nanowhiskers the conversion of
mechanical energy into electrical energy has been demonstrated [872] based
on the piezoelectric effect (Sect. 14.4).

The critical thickness hc in nanowire heterostructure is strongly modified
from the 2D situation (Sect. 5.3.7). Based on the strain distribution of a
misfitted slab in a cylindrical wire [875] the dependence of critical thickness
on the nanowhisker radius r was developed [876, 877]. For given misfit ε there
is a critical radius rc for which hc is infinite for r < rc (Fig. 13.9).
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(a) (b)

Fig. 13.7. (a) Array of ZnO nanowhiskers on sapphire, fabricated using thermal
evaporation. Adapted from [873]. (b) Single, free-standing ZnO nanowire fabricated
using PLD. Adapted from [874]
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Fig. 13.8. TEM image of a part of an InAs whisker 40 nm in diameter that contains
InP barriers. The zooms show sharp interfaces. On top of the whisker is a gold
droplet from the so-called vapor–liquid–solid growth mechanism. The whisker axis is
[001], the viewing direction is [110]. Adapted from [869], reprinted with permission,
c©2002 AIP

13.2.4 Nanobelts

A number of belt-shaped nanostructures has been reported [868]. These are
wire-like, i.e. very long in one dimension. The cross-section is rectangular with
a high aspect ratio. In Fig. 13.10a ZnO nanobelts are shown. The wire direc-
tion is [21̄.0]. The large surface is (00.1), the thickness of the belt extends in
[01.0]-direction. High resolution transmission microscopy (Fig. 13.10b) shows
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Fig. 13.9. Critical radius rc above which an infinitely thick layer with misfit ε grows
coherently on a cylindrical nanowire (relaxation by 60◦ dislocations, b = 0.4 nm,
ν = 1/3). Adapted from [877]

Fig. 13.10. (a) SEM image of an ensemble of ZnO nanobelts. (b) HRTEM image
of a single ZnO nanobelt, viewing direction is [00.1]. The inset shows the diffraction
pattern. Adapted from [878]

that these structures are defect-free. The pyroelectric charges on the ZnO
(0001) surfaces (Sect. 14.2) lead to the formation of open (Fig. 13.11c) spirals.
Closed spirals (Fig. 13.11a) occur if the short dimension is along [00.1] and
alternating charges become compensated in a ‘slinky’-like ring (Fig. 13.11b).

13.2.5 Quantization in Two-Dimensional Potential Wells

The motion of carriers along the quantum wire is free. In the cross-sectional
plane the wavefunction is confined in two dimensions. The simplest case is
for constant cross section along the wire. However, generally the cross section
along the wire may change and therefore induce a potential variation along
the wire. Such potential variation will impact the carrier motion along the
longitudinal direction. Also, a twist of the wire along its axis is possible.

In Fig. 13.12, the electron wavefunctions in a V-groove GaAs/AlGaAs
QWR are shown. Further properties of V-groove QWRs have been reviewed
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Fig. 13.11. (a) Bright field and (b) dark field TEM image of a ZnO nanoring
formed by the ‘slinky’-like growth of a nanobelt. (c) SEM image of an open ZnO
nanospiral. The insets in (a, c) show schematically the surface charge distribution.
Adapted from [879]

n=1

n=2

n=3

Fig. 13.12. Electron wavefunctions (|Ψ |2 on logarithmic grey scale) for the first
three confined levels for the QWR of Fig. 13.3. From [863]

in [880]. In Fig. 13.13, the excitonic electron and hole wavefunctions are shown
for a (strained) T-shaped QWR.

In Fig. 13.14a the atomic structure of a very thin ZnO nanowhisker with a
cross-section consisting of seven hexagonal unit cells is shown. The theoretical
one-dimensional band structure [881] is shown in Fig. 13.14b together with
the charge density of the lowest conduction band state (LUMO) and the
highest valence band state (HOMO). The band gap is generally too small
because of the LDA method used.1 In [881] also the properties of nanowires

1The LDA in [881] yields Eg = 0.63 eV for the bulk ZnO band gap; its experi-
mental value is 3.4 eV.
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Fig. 13.13. (a) Three-dimensional view of the electron and (heavy) hole part of
the excitonic wavefunction in a 4 nm × 5 nm T-shaped In0.2Ga0.8As/GaAs QWR.
The orbitals correspond to 70% probability inside. (b) Cross section through the
electron and hole orbitals in their center along the wire direction. Reprinted with
permission from [882], c©1998 APS

Fig. 13.14. (a) Atomic arrangement of a 1 nm wide ZnO nanowire. (b) Theoretical
band structure and charge density of the (c) lowest conduction band and (d) highest
valence band state. Adapted from [881]
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with various diameters are compared. The HOMO at Γ lies only 80 meV
above the top of valence band of bulk ZnO, and its position changes little with
the wire diameter. It is mainly composed by surface oxygen 2p like dangling
bonds (Fig. 13.14d). The LUMO ((Fig. 13.14c)) is delocalized in the whole
nanowire, indicating that it is a bulk state. The delocalized distribution is
also responsible for the large dispersion of the LUMO from Γ to A. The
energy of the LUMO increases substantially with decreasing diameter due to
the radial confinement.

13.3 Quantum Dots

13.3.1 Quantization in Three-Dimensional Potential Wells

The solutions for the d-dimensional (d = 1, 2, or 3) harmonic oscillator, i.e.
the eigenenergies for the Hamiltonian

Ĥ =
p2

2m
+

d∑

i=1

1
2
mω2

0 x
2
i (13.1)

are given by

En =
(
n+

d

2

)
�ω0 , (13.2)

with n = 0, 1, 2, . . .. More detailed treatments can be found in quantum-
mechanics textbooks.

Next, we discuss the problem of a particle in a centrosymmetric finite
potential well with different masses m1 in the dot and m2 in the barrier. The
Hamiltonian and the potential are given by

Ĥ = ∇ �
2

2m
∇ + V (r) (13.3)

V (r) =
{−V0 , r ≤ R0

0 , r > R0
. (13.4)

The wavefunction can be separated into radial and angular components
Ψ(r) = Rnlm(r) Ylm(θ, φ), where Ylm are the spherical harmonic functions.
For the ground state (n = 1) the angular momentum l is zero and the solution
for the wavefunction (being regular at r = 0) is given by

R(r) =

{
sin(kr)

kr , r ≤ R0
sin(kR0)

kR0
exp (−κ(r −R0)) , r > R0

(13.5a)

k2 =
2m1(V0 + E)

�2
(13.5b)

κ2 = −2m2E

�2
. (13.5c)
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From the boundary conditions that both R(r) and 1
m

∂R(r)
∂r are continuous

across the interface at r = R0, the transcendental equation

kR0 cot (kR0) = 1 − m1

m2
(1 + κR0) (13.6)

is obtained. From this formula the energy of the single particle ground state
in a spherical quantum dot can be determined. For a given radius, the poten-
tial needs a certain strength V0,min to confine at least one bound state; this
condition can be written as

V0,min <
π2

�
2

8m∗R2
0

(13.7)

for m1 = m2 = m∗. For a general angular momentum l, the wavefunctions
are given by spherical Bessel functions jl in the dot and spherical Hankel
functions hl in the barrier. Also, the transcendental equation for the energy
of the first excited level can be given:

kR0 cot (kR0) = 1 +
k2R2

0

m1
m2

2+2κR0+κ2R2
0

1+κR0
− 2

. (13.8)

In the case of infinite barriers (V0 → ∞), the wavefunction vanishes out-
side the dot and is given by (normalized)

Rnml(r) =

√
2
R3

0

jl(knlr)
jl+1(knlR0)

, (13.9)

where knl is the n-th zero of the Bessel function jl, e.g. kn0 = nπ. With
two-digit precision the lowest levels are determined by

knl l = 0 l = 1 l = 2 l = 3 l = 4 l = 5

n = 0 3.14 4.49 5.76 6.99 8.18 9.36
n = 1 6.28 7.73 9.10 10.42
n = 2 9.42

The (2l+1) degenerate energy levels Enl are (V0 = ∞, m = m1):

Enl =
�

2

2m
k2

nl

R2
0

. (13.10)

The 1s, 1p, and 1d states have smaller eigenenergies than the 2s state.
A particularly simple solution is given for a cubic quantum dot of side

length a0 and infinite potential barriers. One finds the levels Enxnynz
:
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Enxnynz
=

�
2

2m
π2

n2
x + n2

y + n2
z

a2
0

, (13.11)

with nx, ny, nz = 1, 2, . . . . For a sphere, the separation between the ground
and first excited state is E1−E0 ≈ E0, for a cube and a two-dimensional har-
monic oscillator it is exactly E0. For a three-dimensional harmonic oscillator
this quantity is E1 − E0 = 2E0/3.

For realistic quantum dots a full three-dimensional simulation of strain,
piezoelectric fields and the quantum-mechanical confinement must be per-
formed [883, 884]. In Fig. 13.15, the lowest four electron and hole wavefunc-
tions in a pyramidal InAs/GaAs quantum dot (for the strain distribution see
Fig. 5.22 and for the piezoelectric fields see Fig. 14.16) are shown. The fig-
ure shows that the lowest hole states have dominantly heavy-hole character
and contain admixtures of the other hole bands. The wavefunction in such
quantum dots can be imaged using scanning tunneling microscopy [885].

87.6% 81.8% 76.2% 74.6%

9.6% 13.7% 17.6% 21.0%

%0.3%3.5%6.3%3.2
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(c)

(d)

(e)

Fig. 13.15. Isosurface plots (25% of maximum value) of the total probability den-
sities (a,b) and valence-band projections (c)–(e) of bound electron (a) and hole
(b)–(e) states in a model pyramidal InAs/GaAs quantum dot with base length
b = 11.3 nm. The percentages are the integrals of the projections to the bulk heavy,
light and split-off hole bands, respectively, and the isosurfaces show the correspond-
ing projection shapes. For each valence-band state the difference from 100% is the
integral

∫ ∞
−∞ |ψs↑|2 + |ψs↓|2d3r of the s-type (conduction band) Bloch function pro-

jection (not shown). Reprinted with permission from [886]
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(a)

drain

gate

VG

source

VSD

(b)

Fig. 13.16. (a) Schematic drawing of a quantum dot with tunnel contacts and gate
electrode. (b) Realization with an in-plane gate structure. The distance between ‘F’
and ‘C’ (gate electrode) is 1 μm. Electron transport occurs from a 2DEG between
3/F to 4/F through the quantum points contacts 1/3 and 2/4. Part (b) reprinted
with permission from [887]

13.3.2 Electrical and Transport Properties

The classical electrostatic energy of a quantum dot with capacitance C that
is capacitively coupled to a gate (Fig. 13.16) at a bias voltage Vg is given by

E =
Q2

2C
−QαVg , (13.12)

where α is a dimensionless factor relating the gate voltage to the potential
of the island and Q is the charge of the island.

Mathematically, minimum energy is reached for a charge Qmin = αCVg.
However, the charge has to be an integer multiple of e, i.e. Q = Ne. If Vg has
a value, such that Qmin/e = Nmin is an integer, the charge cannot fluctuate
as long as the temperature is low enough, i.e.

kT � e2

2C
. (13.13)

Tunneling into or out of the dot is suppressed by the Coulomb barrier
e2/2C, and the conductance is very low. Analogously, the differential capaci-
tance is small. This effect is called Coulomb blockade. Peaks in the tunneling
current (Fig. 13.17b), conductivity (Fig. 13.17a) and the capacitance occur,
when the gate voltage is such that the energies for N and N + 1 electrons
are degenerate, i.e. Nmin = N + 1

2 . The expected level spacing is

e αΔVg =
e2

C
+ΔεN , (13.14)

where ΔεN denotes the change in lateral (kinetic) quantization energy for
the added electron. e2/C will be called the charging energy in the following.
A variation of the source–drain voltage (for a given gate voltage) leads to
a so-called Coulomb staircase since more and more channels of conductivity
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G (b)

Fig. 13.17. (a) Conductivity (Coulomb oscillations) and (b) current–voltage di-
agram at different gate voltages (Coulomb staircase, shifted vertically for better
readability) of a tunnel junction with a quantum dot as in Fig. 13.16. Adapted
from [887]

contribute to the current through the device (Fig. 13.18). Single electron
tunneling (SET) is investigated with respect to metrology for a novel ampere
standard [845].

A lot of research so far has been done on lithographically defined sys-
tems where the lateral quantization energies are small and smaller than the
Coulomb charging energy. In this case, periodic oscillations are observed, es-
pecially for large N . A deviation from periodic oscillations for small N and

Fig. 13.18. Chemical potentials of source and drain and of a quantum dot in
between them. (a), (b), and (c) show the sequence for a variation of the gate
voltage and visualize the origin of the Coulomb oscillations (see Fig. 13.17a). (d),
(e) and (f) visualize a variation of the source–drain voltage and the origin of the
Coulomb staircase (cf. Fig. 13.17b)



412 13 Nanostructures

a characteristic shell structure (at N = 2, 6, 12) consistent with a harmonic
oscillator model (�ω0 ≈ 3 meV) has been reported for ≈ 500-nm diameter
mesas (Fig. 13.19b,c). In this structure, a small mesa has been etched and
contacted (top contact, substrate back contact and side gate). The quan-
tum dot consists of a 12-nm In0.05Ga0.95As quantum well that is laterally
constricted by the 500-nm mesa and vertically confined due to 9- and 7.5-
nm thick Al0.22Ga0.68As barriers (Fig. 13.19a). By tuning the gate voltage,
the number of electrons can be varied within 0 and 40. Measurements are
typically carried out at a sample temperature of 50 mK.

In the sample shown in Fig. 13.20, self-assembled QDs are positioned in
the channel under a split-gate structure. In a suitable structure, tunneling
through a single QD is resolved.

In small self-assembled quantum dots single-particle level separations can
be larger than or similar to the Coulomb charging energy. Classically, the
capacitance for a metal sphere of radius R0 is given as

C0 = 4π ε0 εrR0 , (13.15)

Fig. 13.19. (a) Schematic sample geometry for side-gated In0.05Ga0.95

As/Al0.22Ga0.68As disk-shaped quantum dot. (b) Coulomb oscillations in the cur-
rent vs. gate voltage at B = 0 T observed for a D = 0.5 μm disk-shaped dot. (c)
Addition energy vs. electron number for two different dots with D = 0.50 and
0.44 μm. Adapted from [888]
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Fig. 13.20. (a) Schematic layer sequence of epitaxial structure comprising a n-
AlGaAs/GaAs heterointerface with a two-dimensional electron gas and a layer
of InAs/GaAs quantum dots. (b) and (c) are corresponding band diagrams with
no gate bias and gate voltage below the critical value, respectively. (d) Experi-
mental dependence of drain current on gate voltage in a split-gate structure at a
drain source voltage of 10 μV. Inset : Dependence of valley current on temperature
(squares) with theoretical fit. Reprinted with permission from [889], c©1997 AIP

e.g. C0 ≈ 6 aF for R0 = 4 nm in GaAs, resulting in a charging energy of
26 meV. Quantum mechanically, the charging energy is given in first-order
perturbation theory by

E21 = 〈00|Wee|00〉 =
∫∫

Ψ2
0 (r1

e)Wee(r1
e , r

2
e)Ψ

2
0 (r2

e) d3r1
e d3r2

e , (13.16)

where Wee denotes the Coulomb interaction of the two electrons and Ψ0

the ground state (single particle) electron wavefunction. The matrix element
gives an upper bound for the charging energy since the wavefunctions will
rearrange to lower their overlap and the repulsive Coulomb interaction. For
lens-shaped InAs/GaAs quantum dots with radius 25 nm a charging energy
of about 30 meV has been predicted.

13.3.3 Self-assembled Preparation

The preparation methods for QDs split into top-down (lithography and etch-
ing) and bottom-up (self-assembly) methods. The latter achieve typically
smaller sizes and require less effort (at least concerning the machinery).

Artificial Patterning

Using artificial patterning, based on lithography and etching (Fig. 13.21),
quantum dots of arbitrary shape can be made (Fig. 13.22). Due to defects
introduced by high-energy ions during reactive ion etching the quantum ef-
ficiency of such structures is very low when they are very small. Using wet-
chemical etching techniques the damage can be significantly lowered but not
completely avoided. Since the QDs have to compete with other structures
that can be made structurally perfect, this is not acceptable.



414 13 Nanostructures

Fig. 13.21. Lithography and etching techniques for the fabrication of semiconduc-
tor structures

Fig. 13.22. Quantum dots of various shapes created by lithography and etching
techniques. From [890]
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Fig. 13.23. (a) Schematic representation of growth on top of a predefined template,
(b) cross-sectional TEM of quantum dot formation at the apex. Reprinted with
permission from [891], c©1992 MRS

Template Growth

Template growth is another technique for the formation of nanostructures.
Here, a mesoscopic structure is fabricated by conventional means. The nanos-
tructure is created using size-reduction mechanisms, e.g. faceting, (Fig. 13.23).
This method can potentially suffer from low template density, irregularities
of the template, and problems of reproducibility.

Colloids

Another successful route to nanocrystals is the doping of glasses with subse-
quent annealing (color filters). When nanocrystals are prepared in a sol-gel
process, the nanoparticles are present as a colloid in wet solution (Fig. 13.24).
With the help of suitable stabilizing agents they are prevented from sticking
to each other and can be handled in ensembles and also individually.

Mismatched Epitaxy

The self-assembly (or self-organization) relies on strained heterostructures
that achieve energy minimization by island growth on a wetting layer (Stranski-
Krastanow growth mode, see Sect. 11.2.3 and [860]). Additional ordering

Fig. 13.24. CdSe colloidal nanoparticles. From [892]
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Fig. 13.25. Self-organized formation of InGaAs/GaAs quantum dots during epi-
taxy. Left : Plan-view and cross-sectional transmission electron micrographs. Right :
Histogram of vertical and lateral size of the quantum dots. Reprinted with permis-
sion from [897], c©1993 AIP

mechanisms [893, 894] lead to ensembles that are homogeneous in size2 [895]
and shape [896] (Fig. 13.25).

When a thin layer of a semiconductor is grown on top of a flat sub-
strate with different lattice constant, the layer suffers a tetragonal distortion
(Sect. 5.3.3). Strain can only relax along the growth direction (Fig. 13.26). If
the strain energy is too large (highly strained layer or large thickness), plastic
relaxation via dislocation formation occurs. If there is island geometry, strain
can relax in all three directions and about 50% more strain energy can relax,

0
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Barr QDQD 2D

vacuum

Estrain

GaAs GaAs
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InAs
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V
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m

3 )
embedded

Fig. 13.26. Distribution of strain energy for (left) uncapped island and (right)
island embedded in host matrix. Numerical values are for InAs/GaAs

2The ordering in size is remarkable. Typically Ostwald ripening (due to the
Gibbs-Thomson effect; smaller droplets have larger vapor pressure and dissolve,
larger droplets accordingly grow) occurs in an ensemble of droplets or nuclei. In the
case of strained QDs, surface energy terms stabilize a certain QD size.
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Fig. 13.27. Cross-sectional TEM image of a stack of five layers of quantum dots.
Due to strain effects, vertical arrangement is achieved

thus making this type of relaxation energetically favorable. When the island
is embedded in the host matrix, the strain energy is similar to the 2D case
and the matrix becomes strained (metastable state).

When such QD layers are vertically stacked, the individual quantum dots
grow on top of each other (Fig. 13.27) if the separation is not too large
(Fig. 13.29). This effect is due to the effect of the underlying QD. In the
case of InAs/GaAs (compressive strain), the buried QD stretches the surface
above it (tensile surface strain). Thus, atoms impinging in the next QD layer
find a smaller strain right on top of the buried QDs. In STM images of the
cross section through (XSTM) such a stack (Fig. 13.28) individual indium
atoms are visible and the shape can be analyzed in detail [898].

Fig. 13.28. Cross-sectional STM image of a stack of five InAs quantum dots in a
GaAs matrix. Individual In atoms can be observed in-between the wetting layers
and the quantum dots. Each quantum dot layer was formed by growing 2.4 ML of
InAs. The intended distance between the quantum dot layers was 10 nm. Image size
is 55 × 55 nm2. Reprinted with permission from [898], c©2003 AIP
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Fig. 13.29. Experimentally observed pairing probability in MBE-grown stacks of
InAs/GaAs quantum dots as a function of the spacer-layer thickness. Data are taken
from (a) (110) and (b) (1–10) cross-sectional TEM images. The filled circles are
fit to data from theory of correlated island formation under strain fields. Reprinted
with permission from [899], c©1995 APS

The vertical arrangement can lead to further ordering since a homoge-
nization in lateral position takes place. If two QDs in the first layers are very
close, their strain fields overlap and the second layer ‘sees’ only one QD.

The lateral (in-plane) ordering of the QDs with respect to each other
occurs in square or hexagonal patterns and is mediated via strain interaction
through the substrate. The interaction energy is fairly small, leading only to
short-range in-plane order [893] as shown in Fig. 13.30. The in-plane ordering
can be improved up to the point that regular one- or two-dimensional arrays
form or individual quantum dots are placed on designated positions using
directed self-assembly [860]. Among others, dislocation networks buried under
the growth surface of the nanostructure, surface patterning and modification
have been used to direct the QD positioning.

Ion-Beam Erosion

During the erosion of a surface with low-energy ion beam sputtering ordered
patterns of dots appear [900–903]. Isotropic [904] and hexagonal [900, 902]
(Fig. 13.31) near-range ordering has been observed. The pattern formation
mechanism is based on the morphology-dependent sputter yield and further
mechanisms of mass redistribution [905]. Also linear patterns have been re-
ported [906].
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Fig. 13.30. Lateral ordering of QD array. (d) Plan-view TEM of QD array on
which the statistical evaluation is based. (a) Two-dimensional histogram of QDs as
a function of the nearest-neighbor distance and direction, (b,c) projections of part
(a). Solid lines in (b) and (c) are theory for square array with σ = 20% deviation
from ideal position. Adapted from [860] and [894]

Fig. 13.31. (a) AFM image of a Si (001) substrate after 960 min of ion sputter-
ing (1.2 keV Ar+, normal incidence). (b) Two-dimensional autocorrelation function
from a 400 × 400 nm2 area of image in part (a). Adapted from [902]

13.3.4 Optical Properties

The optical properties of QDs are related to their electronic density of states.
In particular, optical transitions are allowed only at discrete energies due to
the zero-dimensional density of states.

Photoluminescence from a single QD is shown in Fig. 13.32. The δ-like
sharp transition is strictly true only in the limit of small carrier numbers (� 1
exciton per dot on average) since otherwise many-body effects come into play
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Fig. 13.32. Optical emission spectra (T = 2.3 K) of a single InGaAs/GaAs quan-
tum dot at different laser excitation levels P as labeled. The single exciton (X) and
biexciton (XX) lines are indicated. Adapted from [911]

that can encompass recombination from charged excitons or multiexcitons.
At very low excitation density the recombination spectrum consists only of
the one-exciton (X) line. With increasing excitation density small satellites
on either side of the X-line develop that are attributed to charged excitons
(trions) X+ and X−. On the low-energy side, the biexciton (XX) appears.
Eventually, the excited states are populated and a multitude of states con-
tribute with rich fine structure. In bulk material the biexciton (Sect. 9.5.11)
is typically a bound state, i.e. its recombination energy EXX is lower than
that of the exciton EX. A similar situation is present in Fig. 13.32. It was
pointed out in [907] that in QDs the biexciton recombination energy can also
be larger than the exciton recombination energy. In [908] the modification of
the QD confinement potential of InAs/GaAs QDs by annealing was reported.
The exciton binding energy (EX-EXX) is tuned from positive (‘normal’) to
negative values upon annealing (Fig. 13.33).

The charging state of the exciton can be controlled in a field-effect struc-
ture. The recombination energy is modified due to Coulomb and exchange
effects with the additional carriers. In charge-tunable quantum dots [909]
and rings [910] exciton emission has been observed in dependence of the
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Fig. 13.33. Biexciton binding energy determined for a single InAs/GaAs quantum
dot for various annealing times. Data from [908]

number of additional electrons. The electron population can be controlled in
a Schottky-diode-like structure through the manipulation of the Fermi level
with the bias voltage. At high negative bias all charge carriers tunnel out of
the ring and no exciton emission is observed. A variation of the bias then
leads to an average population with N = 1, 2, 3, . . . electrons. The recom-
bination of additional laser-excited excitons depends (due to the Coulomb
interaction) on the number of the electrons present (Fig. 13.34). The singly
negatively charged exciton X− is also called a trion.

The interaction of a spin with an exciton in a CdTe quantum dot has
been observed in [912]. If the CdTe quantum dot is pure, a single line arises.
If the dot contains a single Mn atom, the exchange interaction of the exciton

Fig. 13.34. Luminescence of charged excitons from a single quantum ring at T =
4.2 K vs. the bias voltage with which the number of electrons in the quantum dot
N is tuned from zero to N>3. Adapted from [910], reprinted with permission from
Nature, c©2000 Macmillan Magazines Limited
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Fig. 13.35. Photoluminescence spectrum of a single CdTe/ZnSe quantum dot
containing a single Mn atom (T = 5 K).

with the Mn S = 5/2 spin leads to a six-fold splitting of the exciton line
(Fig. 13.35. In an external magnetic field a splitting into a total of twelve
lines due to Zeeman effect at the Mn spin is observed.

In a QD ensemble, optical transitions are inhomogeneously broadened due
to fluctuations in the QD size and the size dependence of the confinement

Fig. 13.36. Ensemble photoluminescence spectrum (T = 293 K, excitation density
500 W/cm2) of InAs/GaAs QDs
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Fig. 13.37. Luminescence (under UV excitation) from flasks of colloidal CdTe
quantum dots with increasing size (from left to right). From [892]

energies (Fig. 13.36). Interband transitions involving electrons and holes suf-
fer from the variation of the electron and hole energies:

σE ∝
(∣∣
∣∣
∂Ee

∂L

∣∣
∣∣ +

∣∣
∣∣
∂Eh

∂L

∣∣
∣∣

)
δL . (13.17)

A typical relative size inhomogeneity of σL/L of 7% leads to several tens of
meV broadening. Additional to broadening due to different sizes fluctuations
of the quantum dot shape can also play a role. The confinement effect leads to
an increase of the recombination energy with decreasing quantum-dot size.
This effect is nicely demonstrated with colloidal quantum dots of different
size as shown in Fig. 13.37.



14 Polarized Semiconductors

14.1 Introduction

Semiconductors can have an electric polarization. Such polarization can be
induced by an external electric field (Fig. 14.1a). This phenomenon, i.e. that
the semiconductor is dielectric, has been discussed already in Sect. 9. In this
chapter, we discuss pyroelectricity, i.e. a spontaneous polarization without
an external field (Fig. 14.1b), ferroelectricity,1 i.e. pyroelectricity with a hys-
teresis (Fig. 14.1c) and piezoelectricity, i.e. a polarization due to external
stress.

(a)

P

Eext

Psp=0

(b)

P

Eext

Psp

(c)

P

Eext

Psp

Fig. 14.1. Schematic representation of the polarization vs. external electric field
dependence for (a) dielectric, (b) pyroelectric and (c) ferroelectric semiconductors

14.2 Spontaneous Polarization

The reason for a spontaneous polarization Psp (without external electric field)
is the static, relative shift of positive and negative charges in the unit cell.
For a slab of semiconductor material (thus ignoring depolarization effects
present in other geometries), the polarization causes polarization charges

1Ferromagnetic semiconductors are discussed in Sect. 15. We note that there
exist so called multiferroic materials that possess more than one ferroic prop-
erty [913, 914].

M. Grundmann, The Physics of Semiconductors, 2nd ed., Graduate Texts 425
in Physics, DOI 10.1007/978-3-642-13884-3 14,
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 14.2. (a) Surface polarization charges σP on a slab of semiconductor material
with polarization. The electric field is given by E = −P/ε0. (b) Polarization charge
σP at an interface between two semiconductors with different polarization. In the
depicted situation σ is negative

located at the upper and lower surfaces (Fig. 14.2a). The polarization vector
P points from the negative to the positive charge. The electric field due to
the polarization charges has the opposite direction. In the absence of free
charges, the Maxwell equation ∇ · D = 0 yields for piecewise constant fields
at a planar interface (Fig. 14.2b) (D2−D1) ·n12 = 0 where n12 is the surface
normal pointing from medium 1 to medium 2. Therefore, the polarization
charge σP = ε0∇ · E is given by

σP = −(P2 − P1) · n12 . (14.1)

Polarization charges develop at interfaces where the polarization is dis-
continuous, e.g. an interface between two semiconductors with different spon-
taneous polarization. Vacuum (at a surface) represents a special case with
P = 0.
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Fig. 14.3. Spontaneous polarization Psp for various semiconductors as a function
of the lattice constant a (left) and the cell-internal parameter u (right). Based
on [918]
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For cubic zincblende structure semiconductors, Psp is typically fairly
small. The anisotropy of the wurtzite structure allows for sizeable effects.
The main cause is the nonideality of the cell-internal parameter u (Fig. 14.3)
(cf. Sect. 3.4.5).

14.3 Ferroelectricity

Ferroelectric semiconductors exhibit a spontaneous polarization in the ferro-
electric phase and zero spontaneous polarization in the paraelectric phase.
As a function of temperature, the ferroelectric material undergoes a phase
transition from the high-temperature paraelectric phase into the ferroelectric
phase. There can be further phase transitions between different ferroelectric
phases that differ in the direction of the polarization. The literature until 1980
is summarized in [915]. A more recent treatment can be found in [916, 917].

PbTiO3 has perovskite structure (cf. Sect. 3.4.9). It exhibits a phase
transition at TC = 490 ◦C from the cubic into the (ferroelectric) tetragonal
phase as shown in Fig. 14.4a. Mostly the cell symmetry changes, while the
cell volume remains almost constant. A more complicated situation arises
for BaTiO3. At 120 ◦C the transition into the ferroelectric phase occurs
(Fig. 14.4b) that is tetragonal with the polarization in the [100] direction.
At −5 ◦C and −90 ◦C transitions occur into an orthorhombic and a rhom-
bohedral (trigonal) phase, respectively. The largest polarization is caused by
a displacement of the negatively (O) and positively (Ba, Ti) charged ions of
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Fig. 14.4. (a) Cell parameters of PbTiO3 as a function of temperature. Adapted
from [921]. (b) Phase transitions of BaTiO3 as a function of temperature. The
spontaneous polarization PS points along 〈100〉, 〈110〉 and 〈111〉 in the tetragonal
(C4v), orthorhombic (C2v) and trigonal (C3v, rhombohedral) phase, respectively.
Adapted from [922]
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Fig. 14.5. (a) Crystal structure of BaTiO3 (see Fig. 3.24). (b) Schematic tetragonal
deformation below the Curie temperature, generating a dipole moment

the unit cell by δ ≈ 0.02 nm (Fig. 14.5). Such an origin of the spontaneous
polarization is called a displacement transition.2

14.3.1 Materials

A large class of ferroelectric semiconductors are of the type ABO3, where
A stands for a cation with larger ionic radius and B for an anion with
smaller ionic radius. Many ferroelectrics have perovskite (CaTiO3) struc-
ture. They are A2+B4+O2−

3 , e.g. (Ba,Ca,Sr) (Zi,Zr)O3 or A1+B5+O2−
3 , e.g.

(Li,Na,K) (Nb,Ta)O3. Ferroelectrics can also be alloyed. Alloying in the B
component yields, e.g. PbTixZr1−xO3 also called PZT. PZT is widely used
for piezoelectric actuators. Also, alloying in the A component is possible, e.g.
BaxSr1−xTiO3.

Another class of ferroelectrics are AVBVICVII compounds, such as SbSI,
SbSBr, SbSeI, BiSBr. These materials have a width of the forbidden band in
the ∼ 2 eV range. A further class of ferroelectric semiconductors are AV

2 BVI
3

compounds, such as Sb2S3.

14.3.2 Soft Phonon Mode

The finite displacement of the sublattices in the ferroelectric means that the
related lattice vibration has no restoring force. The displacement is, however,
finite due to higher-order terms (anharmonicity). Thus, for T → TC ωTO → 0.

2The widely accepted model for such ferroelectric is that the basic displacement
occurs into the 〈111〉-direction at low temperature. The three higher symmetry
phases at higher temperature are the result of 2 (orthorhombic), 4 (tetragonal)
or 8 (cubic) allowed 〈111〉 orientations which make the macroscopically averaged
polarization appear in 〈110〉- or 〈100〉-direction or vanishing altogether, respec-
tively [919, 920].



14.3 Ferroelectricity 429

50

40

30

20

10

0

SbSI

TC

200 300

T
O

)
mc(

−1

0 100

CaTiO3

KTaO3

SrTiO3

Ca0.2Sr0.8TiO3

Ba0.5Sr0.5TiO3

BaTiO3

C

Fig. 14.6. (a) Decrease of the transverse phonon mode of SbSI close to the Curie
temperature of TC = 288 K. The dashed curved line represents a |T − TC|1/2 de-
pendence. Adapted from [923]. (b) Dielectric constant of various perovskites vs.
1/(T − TC) in the paraelectric phase (T > TC). Adapted from [924]

Such a mode is called a soft phonon mode. The decrease of the phonon fre-
quency is shown in Fig. 14.6a for SbSI.

From the LST relation (5.48), it follows that the static dielectric function
must increase strongly. The increase is ∝ (T − TC)−1 (Fig. 14.6b).

14.3.3 Phase Transition

In the case of ferroelectrics, the order parameter for the Ginzburg–Landau
theory of phase transitions is the spontaneous polarization P . The free energy
F of the ferroelectric crystal is written in terms of the free energy of the
paraelectric phase F0 and is expanded in powers of P (here up to P 6) as

F = F0 +
1
2
αP 2 +

1
4
β P 4 +

1
6
γ P 6 . (14.2)

In this equation, we have neglected effects due to charge carriers, an external
electric field or external stresses and we assume homogeneous polarization. In
order to obtain a phase transition, it has to be assumed that α has a zero at
a certain temperature TC and we assume (expanding only to the linear term)

α = α0 (T − TC) . (14.3)

Second-Order Phase Transition

For modeling a second-order phase transition, we set γ = 0. Thus, the free
energy has the form (Fig. 14.7a)

F = F0 +
1
2
αP 2 +

1
4
β P 4 . (14.4)
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Fig. 14.7. (a) Schematic plot of the free energy vs. spontaneous polarization for
a second-order phase transition. α > 0 (α < 0) corresponds to the paraelectric
(ferroelectric) phase. (b) Spontaneous polarization of LiTaO3 as a function of tem-
perature exhibiting a second-order phase transition. The dashed line is theory with
suitable parameters. Adapted from [925]

The equilibrium condition with regard to the free energy yields a minimum
for

∂F

∂P
= αP + β P 3 = 0 (14.5a)

∂2F

∂P 2
= α+ 3β P 2 > 0 . (14.5b)

Equation (14.5a) yields two solutions. P = 0 corresponds to the paraelec-
tric phase. P 2 = −α/β is the spontaneous polarization in the ferroelectric
phase. The condition from (14.5b) yields that α > 0 in the paraelectric phase,
while α < 0 in the ferroelectric phase. Also, β > 0 below the Curie temper-
ature (β is assumed to be temperature independent in the following). Using
(14.3), the polarization is given as (Fig. 14.7b)

P 2 =
α0

β
(T − TC) . (14.6)

Therefore, the entropy S = −∂F
∂T and the discontinuity ΔCp of the heat

capacity Cp = T
(

∂S
∂T

)
p

at the Curie point TC are given by

S = S0 +
α2

0

β
(T − TC) (14.7a)

ΔCp =
α2

0

β
TC , (14.7b)

with S0 = −∂F0
∂T being the entropy of the paraelectric phase. This behavior is

in accordance with a second-order phase transition with vanishing latent heat
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(continuous entropy) and a discontinuity of the heat capacity. The dielectric
function in the paraelectric phase is ∝ 1/α and in the ferroelectric phase
∝ −1/α. The latter relation is usually written as the Curie–Weiss law

ε =
C

T − TC
. (14.8)

First-Order Phase Transition

When the P 6 term is included in (14.2) (γ �= 0), a first-order phase transition
is modeled. However, in order to obtain something new, compared to the
previous consideration, now β < 0 (and γ > 0) is necessary. The dependence
of the free energy on P is schematically shown in Fig. 14.8a for various values
of α. The condition ∂F

∂P = 0 yields

αP + β P 3 + γ P 5 = 0 , (14.9)

with the solutions P = 0 and

P 2 = − β

2γ

(
1 +

√
1 − 4αγ

β2

)
. (14.10)

For a certain value of α, i.e. at a certain temperature T = T1, the free
energy is zero for P = 0 and also for another value P = P0 (second curve
from the top in Fig. 14.8a). From the condition

1
2
α(T1)P 2

0 +
1
4
βP 4

0 +
1
6
γ P 6

0 = 0 , (14.11)
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Fig. 14.8. (a) Schematic plot of the free energy vs. spontaneous polarization for a
first-order phase transition. The lowest curve is for α = 0, the others are for α > 0.
(b) Spontaneous polarization in BaTiO3 as a function of temperature exhibiting a
first-order phase transition. The dashed line is a guide to the eye. Adapted from [926]
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the values for P0 and α at the transition temperature T = T1 are given by

P 2
0 = = −3

4
β

γ
(14.12a)

α(T1) =
3
16

β2

γ
> 0 . (14.12b)

The schematic dependence of P at the phase transition temperature T1

is depicted in Fig. 14.8b.
For T ≤ T1 the absolute minimum of the free energy is reached for finite

polarization P>P0. However, between F (P = 0) and the minimum of the
free energy an energy barrier (second lowest curve in Fig. 14.8) is present for
T close to T1. The energy barrier disappears at the Curie–Weiss temperature
T0. At the phase transition temperature, the entropy has a discontinuity

ΔS = α0 P
2
0 , (14.13)

that corresponds to a latent heat ΔQ = TΔS. Another property of the
first-order phase transition is the occurrence of hysteresis in the temperature
interval between T1 and T0

ΔT ≈ T1 − T0 =
1

4α0

β2

γ
, (14.14)

in which an energy barrier is present to hinder the phase transition. For
decreasing temperature, the system tends to remain in the paraelectric phase.
For increasing temperature, the system tends to remain in the ferroelectric
phase. Such behavior is observed for BaTiO3, as shown in Fig. 14.4b.

14.3.4 Domains

Similar to ferromagnets, ferroelectrics form domains with different polariza-
tion directions in order to minimize the total energy by minimizing the field
energy outside the crystal. The polarization can have different orientations,
6 directions for P along 〈100〉 (tetragonal phase), 12 directions for P along
〈110〉 (orthorhombic phase) and 8 directions for P along 〈111〉 (rhombohe-
dral phase). In Fig. 14.9, such domains are visualized for BaTiO3. Due to the
restricted geometry, domain formation in thin films is different from that in
bulk material.

Domains can also be artificially created by so-called poling. The ferro-
electric semiconductor is heated to the paraelectric phase. With electrodes,
appropriate electric fields are applied and the material is cooled. The polar-
ization is then frozen in the ferroelectric phase. The domains of a periodically
poled structure in LiNbO3 (PPLN) are shown in Fig. 14.10b. The nonlinear
optical properties in such structures can be used for efficient second harmonic
generation (SHG).
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Fig. 14.9. Ferroelectric domains in a BaTiO3 single crystal visualized by birefrin-
gence contrast. Reprinted with permission from [927], c©1949 APS

PPLN

Fig. 14.10. (a) Scheme of PPLN (periodically poled lithium niobate), arrows de-
note the direction of spontaneous polarization. (b) Polarization microscopy image
(vertical stripes are domains, horizontal dark lines are scratches)

14.3.5 Optical Properties

The first-order phase transition of BaTiO3 manifests itself also in a disconti-
nuity of the band gap (Fig. 14.11). The coefficient ∂Eg/∂T for the tempera-
ture dependence of the band gap is also different in the para- and ferroelectric
phases.

14.4 Piezoelectricity

14.4.1 Piezoelectric Effect

External stress causes atoms in the unit cell to shift with respect to each
other. In certain directions, such a shift can lead to a polarization. Generally,
all ferroelectric materials are piezoelectric. However, there are piezoelectric
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Fig. 14.11. Temperature dependence of the band gap in BaTiO3 (for polarized
light with E ⊥ c). Experimental data from [928]

materials that are not ferroelectric, e.g. quartz, GaAs and GaN. Piezoelec-
tricity can occur only when no center of inversion is present. Thus, e.g., GaAs
is piezoelectric along 〈111〉, but Si is not. Also, the cubic perovskite structure
(in the paraelectric phase) is not piezoelectric. Generally, the piezoelectric
polarization is related to the strains via the tensor eijk of the piezoelectric
modules

Pi = eijk εjk . (14.15)

14.4.2 Zincblende Crystals

In zincblende semiconductors, the polarization (with respect to x = [100],
y = [010], z = [001]) is due to shear strains only and is given as

Ppe = 2e14

⎛

⎜
⎝
εyz

εxz

εxy

⎞

⎟
⎠ . (14.16)

The values of e14 for various zincblende compound semiconductors are
listed in Table 14.1. We note that the sign of e14 reverses from negative in
cubic III–V to positive in cubic II–VI semiconductors. This non-trivial be-
havior involves strain effects on ionic and electronic polarization and ionicity
as discussed in [110, 929]. The coefficient e33, the equivalent to e14 in wurtzite
semiconductors (see below), is positive for III–V and II-VI semiconductors.

The strain in pseudomorphic heterostructures (cf. Sect. 5.3.3) can cause
piezoelectric polarization in a piezoelectric semiconductor. In zincblende, the
main effect is expected when the growth direction is along [111] and the strain
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Table 14.1. Piezoelectric coefficients (in C m−2) for various zincblende and
wurtzite semiconductors. Data from [929], for GaN from [932] (theoretical value),
AlN [933]

zincblende wurtzite

A–B e14 A–B e14 A–B e33

InSb −0.123 CdTe 0.054 CdSe 0.35

InAs −0.078 ZnSe 0.049 CdS 0.44

GaSb −0.218 ZnS 0.254 ZnS 0.27

GaAs −0.277 ZnO 1.10

AlSb −0.118 BeO 0.092

GaN 0.58

AlN 1.55

has a purely shear character. In this case, the polarization is in the [111] direc-
tion, i.e. perpendicular to the interface (P⊥). For the [001] growth direction,
no piezoelectric polarization is expected. For the [110] growth direction, the
polarization is found to be parallel to the interface (P‖). The situation is
shown for various orientations of the growth direction in Fig. 14.12.

14.4.3 Wurtzite Crystals

In wurtzite crystals, the piezoelectric polarization (with respect to x =
[2–1.0], y = [01.0], z = [00.1]) is given by

Ppe =

⎛

⎜
⎝

2e15εyz

2e15εxz

e31(εxx + εyy) + e33εzz

⎞

⎟
⎠ . (14.17)

Values of e33 for several wurtzite semiconductors are listed in Table 14.1.
The polarization (along c) for biaxial strain in heteroepitaxy (5.70) on

the [00.1] surface is

PPE = 2ε‖

(
e31 − C13

C33
e33

)
, (14.18)

where ε‖ = (a − a0)/a0 is the in-plane strain. The dependence of the mag-
nitude for GaN on the in-plane strain is shown in Fig. 14.13 together with
the polarization for uniaxial stress along [00.1] and hydrostatic strain. In the
latter two cases, the polarization is smaller.

The difference of spontaneous polarization of the constituent materials in
heterostructures and piezoelectric effects in strained quantum wells lead to
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Fig. 14.12. Three-dimensional view of the (a) total, (b) longitudinal and (c)
transverse polarization in uniaxially compressed GaAs. Reprinted with permission
from [930], c©1994 APS. (d) Transverse polarization P‖ (parallel to the interface)
and (e) longitudinal electric field E⊥ (perpendicular to the interface) in the In-
GaAs layer of a GaAs/In0.2Ga0.8As superlattice with joint in-plane lattice constant
(obtained from energy minimization, 1.4% lattice mismatch, the InGaAs is under
compressive and the GaAs under tensile strain). The layer thicknesses of the GaAs
and InGaAs layers are identical. The quantities are shown for various orientations
of the growth direction. The vector of the growth direction varies in the (01–1)
plane (φ = π/4) with polar angle θ reaching from [100] (0◦) over [111] to [011]
(90◦). Image (f) depicts the transverse polarization P‖ (P⊥ = 0 in this geome-
try) for growth directions in the (001) plane (φ = 0). Parts (d,e,f) reprinted with
permission from [931], c©1988 AIP

quantum confined Stark effect (QCSE, Sect. 12.1.2). The spatial separation
of electrons and holes leads to a larger radiative lifetime (Fig. 11.35) and
thus reduced radiative recombination rate in the presence of nonradiative
channels, an effect unwanted in light emitting diodes. In particular nitride
based LEDs grown along the c-direction are prone to this effect. Therefore
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Psp

||

Fig. 14.13. Piezoelectric polarization Ppe in GaN (Ga-face) vs. in-plane strain
ε‖ = (a − a0)/a0 for biaxial, uniaxial and hydrostatic strain. The value of the spon-
taneous polarization Psp is indicated by an arrow. From [934]

Fig. 14.14. (a) Internal electric field and (b) transition probability for electron-
hole pairs in InxGa1−xN/GaN quantum well (Lw = 3 nm) for three different indium
contents x as labeled. θ denotes the angle between the c-axis and the normal of the
interface plane (see inset). Based on [938]
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growth on nonpolar surfaces such as (11̄00) (m-plane) and (112̄0) (a-plane)
has been investigated [935, 936]. However, crystal quality for these growth
planes seems limited.

An alternative route are ‘semipolar’ planes, e.g. (101̄1̄) or (112̄2) [937],
with at least reduced polarization effects. The (112̄2)-plane is tilted 56◦ from
the c-axis, close to the theoretically predicted zero of the internal electric field
for InGaN/GaN quantum wells [938] (Fig. 14.14). Promising experimental
results have been published on semipolar growth, especially for InGaN/GaN
on (112̄2)-oriented GaN substrates [939].

14.4.4 Piezoelectric Effects in Nanostructures

The strain distribution around zincblende strained quantum wires [930] and
quantum dots [288] contains shear components and thus generates piezoelec-
tric fields. In Fig. 14.15, the electric field and potential due to the piezoelec-
tric charges are shown for a strained In0.2Ga0.8As/GaAs quantum wire. In
Fig. 14.16, the piezoelectric charges and potential are shown for the quantum
dot from Fig. 5.22. The piezoelectric potential has quadrupole character and

Fig. 14.15. (a) Electric field and (b) additional confinement potential for elec-
trons due to piezoelectric charges for a strained In0.2Ga0.8As/GaAs quantum wire.
Reprinted with permission from [930], c©1994 APS
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Fig. 14.16. (a) Piezoelectric charges and (b)–(d) resulting Coulomb potential for
InAs/GaAs quantum dot with base length b = 12 nm. (a) Isosurfaces correspond-
ing to volume charges ±0.3 e nm−3. (b) Isosurfaces for the Coulomb potential at
±30 meV. (c,d) Cross section through the Coulomb potential somewhat above the
wetting layer in two different magnifications, (d) is a zoom into (c). The InAs/GaAs
interface is visible in (d) due to the image charge effect. Parts (a) and (b) reprinted
with permission from [288], c©1995 APS

thus reduces the symmetry of the QD (to C2v) [288].3 Piezoelectric effects
are particularly important in wurtzite nanostructures [940].

3The strain distribution has C2v symmetry for a square-based pyramid for
zincblende materials. The energy levels and wavefunctions are more strongly im-
pacted by the piezoelectric effects than by the strain asymmetry [883, 884].
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15.1 Introduction

Magnetic semiconductors exhibit spontaneous magnetic order. Even ferro-
magnetism, important for spin polarization, as needed in spinelectronics (also
called spintronics), can occur below the Curie temperature that is character-
istic of the material. Magnetic semiconductors can be binary compounds
such as EuTe (antiferromagnetic) or EuS (ferromagnetic). Another class of
magnetic semiconductors contains paramagnetic ions in doping concentration
(typically < 1021 cm−1) or alloy concentration x (typically x ≥ 0.1%). Such
materials are termed diluted magnetic semiconductors (DMS). The incorpo-
ration of the magnetic atoms leads first to conventional alloy effects, such
as the modification of the lattice constant, the carrier concentration or the
band gap. The status of the field up to the mid-1980s can be found in [941],
mostly focused on II–VI DMS. A review of work on III–V based materials for
spintronics, mostly GaAs:Mn, can be found in [942]. A 2003 review of wide
band gap ferromagnetic semiconductors is given in [943].

15.2 Magnetic Semiconductors

In a magnetic semiconductor, one sublattice is populated with paramagnetic
ions. The first two ferromagnetic semiconductors discovered were CrBr3 [944]
in 1960 and EuO [945] one year later. Europium monoxide has an ionic
Eu2+O2− character, such that the electronic configuration of europium is
[Xe]4f75d06s0 and that of oxygen is 1s22s22p6. Some properties of europium
chalcogenides [946] are summarized in Table 15.1.

EuO can be modeled as a Heisenberg ferromagnet with dominant nearest-
and next-nearest Eu–Eu interactions [947]. The Heisenberg exchange param-
eters J1 and J2 for these four compounds are shown in Fig. 15.1. In the
nearest-neighbor interaction J1 a 4f electron is excited to the 5d band, ex-
periences an exchange interaction with the 4f spin on a nearest neighbor
and returns to the initial state. This mechanism generally leads to ferromag-
netic exchange. The next-nearest-neighbor interaction J2 is weakly ferromag-
netic (EuO) or antiferromagnetic (EuS, EuSe, EuTe). In the superexchange

M. Grundmann, The Physics of Semiconductors, 2nd ed., Graduate Texts 441
in Physics, DOI 10.1007/978-3-642-13884-3 15,
c© Springer-Verlag Berlin Heidelberg 2010
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Table 15.1. Material properties of Eu chalcogenides. ‘F’ (‘AF’) denotes ferromag-
netic (antiferromagnetic) order. TN (TC) denotes the Néel (Curie) temperature.
Data collected in [948]

material Eg (eV) magnetic order TN, TC (K)

EuO 1.12 F 69.3

EuS 1.65 F 16.6

EuSe 1.8 AF 4.6

F 2.8

EuTe 2.00 AF 9.6

Fig. 15.1. Heisenberg nearest (J1, squares) and next-nearest (J2, circles) exchange
parameters (in units of J1,2/kB) for the Eu chalcogenides vs. the Eu–anion distance.
Dashed lines are guides to the eye. Experimental data from [948]

process, electrons are transferred from the anionic p states to the 5d states
of the Eu2+ cations, resulting in an antiferromagnetic coupling.

15.3 Diluted Magnetic Semiconductors

In Table 15.2, the transition metals and their electron configurations are sum-
marized. The 3d transition metals are typically used for magnetic impurities
in DMS due to their partially filled 3d shell. Due to Hund’s rule, the spins on
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Table 15.2. 3d, 4d and 5d transition metals and their electron configurations. Note
that Hf72 has an incompletely filled 4f-shell with 4f14

Sc21

3d

4s2

Ti22

3d2

4s2

V23

3d3

4s2

Cr24

3d5

4s

Mn25

3d5

4s2

Fe26

3d6

4s2

Co27

3d7

4s2

Ni28

3d8

4s2

Cu29

3d10

4s

Zn30

3d10

4s2

Y39

4d

5s2

Zr40

4d2

5s2

Nb41

4d4

5s

Mo42

4d5

5s

Tc43

4d6

5s

Ru44

4d7

5s

Rh45

4d8

5s

Pd46

4d10

−

Ag47

4d10

5s

Cd48

4d10

5s2

La57

5d

6s2

Hf72

5d2

6s2

Ta73

5d3

6s2

W74

5d4

6s2

Re75

5d5

6s2

Os76

5d6

6s2

Ir77

5d7

6s2

Pt78

5d9

6s

Au79

5d10

6s

Hg80

5d10

6s2

the 3d shell are filled in parallel for the first five electrons up to half filling
(in order to allow the electrons to get out of their way in real space). Thus,
the atoms have a sizeable spin and a magnetic moment. The spin of Mn is
S = 5/2. Most transition metals have a 4s2 configuration that makes them
isovalent in II–VI compounds. We note that Zn has a complete 3d shell and
thus no net spin. In Fig. 15.2, an overview of the crystallographic properties
is given for Mn-alloyed II–(Se,S,Te,O) based DMS [949] (DMS with Se, S,
and Te have been discussed in [950]).

Fig. 15.2. Diagrammatic overview of AII
1−xMnxBVI alloys and their crystal struc-

tures. The bold lines indicate ranges of the molar fraction x for which homogeneous
crystal phases form. ‘Hex’ and ‘Cub’ indicate wurtzite and zincblende, respectively.
From [949]
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As an example, the properties of Hg1−xMnxTe are discussed. This alloy is
semiconducting (positive band gap ε0) for x > 0.075 and a zero-gap material
(negative interaction gap ε0) for smaller Mn concentration (cf. Fig. 6.35).
The transitions between the Γ6 and Γ8 bands can be determined with mag-
netoabsorption spectra in the infrared [951]. In Fig. 15.3a, the magnetic field
dependence of transition energies between different Landau levels is shown
that can be extrapolated to yield the interaction gap. The interaction gap is
shown in Fig. 15.3b as a function of the Mn concentration.

For small Mn concentrations, the DMS behaves like a paramagnetic ma-
terial. For larger concentrations, the Mn atoms have increasing probability
to be directly neighbored by another Mn atom and suffer superexchange in-
teraction (cf. Eq. (3.19b)). At a certain critical concentration xc, the cluster
size becomes comparable with the size of the sample. If interaction up to
the first, second or third neighbor are taken into account for a fcc lattice,
the critical concentrations are given by xc =0.195, 0.136, and 0.061, respec-
tively [952]. The nearest-neighbor interaction between Mn atoms in such DMS
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Fig. 15.3. (a) Energies of Γ6 → Γ8 transitions vs. magnetic field for
Hg0.996Mn0.004Te at T = 2 K. Symbols are experimental values for two polariza-
tion directions as indicated. Numbers denote quantum numbers of transitions. Solid
lines are theoretical fits. (b) Interaction gap vs. Mn concentration for Hg1−xMnxTe
at T = 4.2 K. Various symbols represent data from different authors and methods.
Dashed line is a guide to the eye. Adapted from [951]
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as (Zn,Cd,Hg)Mn(S,Se,Te) was found to be antiferromagnetic,1 i.e. neigh-
boring spins are aligned antiparallel. Due to frustration of antiferromagnetic
long-range order on a fcc lattice, an antiferromagnetic spin glass forms. The
transition temperature TC between the paramagnetic and spin-glass phases
of Hg1−xMnxTe is shown in Fig. 15.4.

In III–V compounds, the 3d transition metals represent an acceptor if
incorporated on the site of the group-III element as, e.g., in the much inves-
tigated compound Ga1−xMnxAs. This material will be used in the following
to discuss some properties of magnetic semiconductors. It seems currently
well understood and has a fairly high Curie temperature of TC ≈ 160 K. Fer-
romagnetism in a diluted magnetic semiconductor is believed to be caused
by indirect exchange through itinerant charge carriers. The ferromagnetic
coupling can be invoked by the Ruderman–Kittel–Kasuya–Yoshida (RKKY)
interaction, i.e. the spins of the paramagnetic ions are aligned via interaction
with the free carriers in the semiconductor. A related concept is the double
exchange2 [953–955] in which carriers move in a narrow Mn-derived d-band
(for d-wave character see Fig. 7.16c). Such a mechanism was first invoked
for PbSnMnTe [956]. Later, ferromagnetism was discovered in InMnAs [957]
and GaMnAs [958]. In (In,Ga)MnAs a Mn ion (spin up) spin polarizes the
surrounding hole gas (spin down), which has been supplied from the Mn
acceptors. This mechanism lowers the energy of the coupled system. The
interaction

H = −β N0 xS s (15.1)
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Fig. 15.4. Magnetic phase diagram of Hg1−xMnxTe, ‘P’ (‘SG’) denotes the para-
magnetic (spin glass) phase. Various symbols represent data from different authors
and methods. Dashed line is a guide to the eye. Adapted from [951]

1Such superexchange leads to antiferromagnetic interaction if the bond angle is
‘close’ to 180◦.

2This model is also called the Zener model.
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between the Mn d-shell electrons (S = 5/2) and the p-like free holes (s = 1/2)
is facilitated by p–d hybridization of the Mn states. N0 denotes the concen-
tration of cation sites in the A1−xMnxB alloys. The coupling via electrons is
much weaker (coupling coefficient α). The holes interact with the next Mn
ion and polarize it (spin up), thus leading to ferromagnetic order. The fer-
romagnetic properties are evident from the hysteresis shown in Fig. 15.6a.
Without the carrier gas such interaction is not present and the material is
only paramagnetic. Theoretical results for the Curie temperature of various
p-type semiconductors are shown in Fig. 15.5. Generally, the quest for higher
Curie temperatures (well above room temperature) is underway and wide
band gap materials such as GaN or ZnO doped with transition metals have
shown some encouraging results. Mn-substituted chalcopyrite semiconductors
are analyzed theoretically in [959] and are predicted to exhibit less-stable fer-
romagnetism than III–V semiconductors of comparable band gap.

The carrier density and thus magnetic properties in a DMS can be con-
trolled in a space-charge region (cf. Sect. 20.2.2) as demonstrated in [960]. In
Fig. 15.6, results are shown for hydrogen- (deuterium-) passivated GaMnAs
that exhibits ferromagnetism as ‘as-grown’ thin film. The deuterium is incor-
porated in similar concentration as the Mn, assumes a back-bond position
(forming a H–As–Mn complex) and compensates the hole gas from the Mn
(cf. Sect. 7.8). The low-temperature conductivity drops nine orders of mag-
nitude [961]. Such material displays only paramagnetic behavior. An opti-
mal Mn concentration for ferromagnetic Ga1−xMnxAs is around x = 0.05.
For smaller Mn concentrations, the hole density is too small and the Curie

Fig. 15.5. Computed values of the Curie temperature TC for various p-type semi-
conductors plotted vs. the band gap (dashed lines are guides to the eye). All
materials contain 5% Mn on the cation sublattice and a hole concentration of
p = 3.5 × 1020 cm−3. Values for TC taken from [955]
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Fig. 15.6. Magnetization M vs. magnetic field H for Ga0.963Mn0.037As at low tem-
perature. (a) Comparison of as-grown (full squares) and deuterated (open circles)
thin film with magnetic field in the layer plane at T = 20 K. (b) Magnetization of
the deuterated sample at T = 2 K for larger magnetic fields. Solid line is Brillouin
function for g = 2 and S = 5/2. Adapted from [961]

temperature drops; for larger Mn concentrations, the structural properties of
the alloy degrade (phase separation into GaAs and MnAs.3)

Magnetic hysteresis has been found in nearly compensated Mn-doped
ZnO [962, 963] (Fig. 15.7). Such material is interesting due to its small spin-
orbit coupling. The exchange mechanism is under debate.

Zn0.935Mn0.065O
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Fig. 15.7. Magnetization M vs. magnetic field H for Zn0.935Mn0.065O thin film at
T = 10 and 300 K. A hysteresis is obvious for both temperatures

3MnAs is a ferromagnetic metal. MnAs clusters can be a problem since they
create ferromagnetic properties but not in the way the DMS is supposed to work.
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15.4 Spintronics

Spintronics (as opposed to electronics) is an emerging field that uses the
electron spin rather than its charge for transport, processing and storage
of information. Prototype devices are the spin transistor and the spin LED.
A crucial point is spin injection, i.e. the creation of (highly) spin-polarized
currents. It remains to be seen whether spintronics can be developed to its
theoretically envisioned potential and will play a commercially important role
in the course of microelectronics. The spin degree of freedom also promises
potential for quantum information processing due to its weak coupling to
charge and phonons and the resulting long dephasing time.

15.4.1 Spin Transistor

In this device (for regular transistors cf. Chap. 23), spin-polarized electrons
are injected from contact 1, transported through a channel and detected in
contact 2 (Fig. 15.8). During the transport, the spin rotates (optimally by π)
such that the electrons cannot enter contact 2 that has the same magnetiza-
tion as contact 1. The spin rotation is caused by spin-orbit interaction due
to the electric field under the gate contact. This effect is called the Rashba
effect and is purely relativistic [964]. As channel material, a semiconductor
with strong spin-orbit coupling such as InAs or (In,Ga)Sb is preferable. How-
ever, the use of narrow-gap semiconductors and the increase of spin scattering
at elevated temperatures [965] make the realization of such a transistor at
room temperature difficult.

15.4.2 Spin LED

In a spin LED (for LEDs see Sect. 22.3), the injection of spin-polarized car-
riers into the active layer leads to circularly polarized luminescence. The

source draingate

Fig. 15.8. Scheme of spin transistor after the proposal of [966]. Source and drain are
ferromagnets with their magnetization shown schematically as arrows. The channel
under the gate transports electrons whose spin rotates in the electric field under
the gate
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(a)

Fe

AlGaAs

[001](110) (b)

Fe/
AlGaAs/
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MFe

Fig. 15.9. (a) Transmission electron microscopy image of the (110) cross section
of the Fe/AlGaAs interface of a spin LED. The vertical lines in Fe are the (110)
planes with 0.203 nm distance. (b) Magnetic-field dependence of the circular polar-
ization ratio Pσ at T = 4.5 K (15.2) (filled and empty circles) and the out-of-plane
component of the Fe-film magnetization (dashed line, scaled to the maximum of
Pσ). Reproduced from [968] by permission of the MRS Bulletin

spin alignment can be achieved with semimagnetic semiconductors grown
on top of the active layer or via spin injection from a ferromagnetic metal
into the semiconductor (for metal–semiconductor junctions cf. Sect. 20.2). In
Fig. 15.9a, a Fe/AlGaAs interface is shown.

Ideally, the spin-polarized electrons from the ferromagnetic metal tun-
nel into the semiconductor and transfer to the recombination region. Sub-
sequently, the emission is circularly polarized (Fig. 11.22b). The degree of
circular polarization is

Pσ =
Iσ+ − Iσ−
Iσ+ + Iσ−

, (15.2)

with Iσ± being the intensity of the respective polarization. The degree of
polarization depends on the magnetization of the metal. For the saturation
magnetization of Fe, the maximum polarization is about 30% at T = 4.5 K
(Fig. 15.9b) [967]. The interface and its structural nonideality of the interface
presumably prevent the spin injection from being 100% efficient [968].
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Organic semiconductors are based on carbon compounds. The main struc-
tural difference from inorganic semiconductors is the bond based on sp2 hy-
bridization (cf. Sect. 2.2.3) as present in benzene (and graphite). Diamond,
although consisting of 100% carbon, is not considered an organic semicon-
ductor. We note that carbon can form further interesting structures based
on sp2 bonds, such as carbon nanotubes (Sect. 17.2), (single or few layer)
graphene sheets (Sect. 17.1) rolled up to form cylinders, or fullerenes, e.g.
soccer-ball-like molecules such as C60.

In the 1980 Handbook on Semiconductors only a good ten pages were
devoted to organic semiconductors [969]. Now several textbooks are avail-
able [970, 971] for a much more detailed treatment than given here.

16.1 Materials

16.1.1 Small Organic Molecules, Polymers

The prototype organic molecule is the benzene molecule with its ring-like
structure (Fig. 2.8).

There is a large number of organic, semiconducting molecules that differs
by the number of benzene rings (Fig. 16.1), the substitution of carbon atoms
by nitrogen or sulfur (Fig. 16.2a,b), the polymerization (Fig. 16.2c) or the
substitution of hydrogen atoms by side groups (Fig. 16.2d). Since PPV is
insoluble, typically derivatives such as MEH-PPV1 [972] that are soluble
in organic solvents are used. Compared to benzene, the substitution of one
carbon atom by nitrogen (pyridine) represents doping with one electron. In
Fig. 16.3, the most important building blocks of organic molecules are shown.

16.1.2 Organic Semiconductor Crystals

Small organic molecules can crystallize into solids, so-called organic molec-
ular crystals (OMC), due to van-der-Waals interaction. In Fig. 16.4a, the
monoclinic unit cell of an anthracene crystal [973] is shown as an example.

12-ethoxy,5-(2’-ethyl-hexyloxy)-1,4-phenylene vinylene

M. Grundmann, The Physics of Semiconductors, 2nd ed., Graduate Texts 451
in Physics, DOI 10.1007/978-3-642-13884-3 16,
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 16.1. Various organic compounds: 1: naphthalene, 2: anthracene, 3: tetracene,
4: pentacene, 5: pyrene, 6: perylene, 7: chrysene, 8: pyranthrene, 9: isoviolanthrene,
10: anthanthrene, 11: coronene, 12: ovalene, 13: violanthrene, 14: p-terphenyl, 15:
rubrene, 16: m-dinaphthanthrene, 17: anthanthrone, 18: m-dinaphthanthrone, 19:
violanthrone, 20: pyranthrone, 21: isoviolanthrone

Also tetracene and pentacene (Fig. 16.4b) have this layered ’herringbone‘
structure. A comparison of the unit cells of oligoacene crystals is given in
Table 16.1.

Crystal growth of single crystal OMC is achieved with a variety of
methods, among them sublimation, Bridgman- and Czochralski-type meth-
ods [974, 975], vapor phase growth [976, 977] or from solution [978, 979].
Single organic molecular crystals exhibit intrinsic material properties. The
practical use of organic semiconductors involves thin films, e.g. in LEDs
(OLED, Sect. 22.3.7) and transistors (OFET, Sect. 23.6.3). Thin films of
organic molecules are typically disordered and their performance parameters
are inferior to that of OMCs.
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Fig. 16.2. Organic compounds: (a) thiophene, (b) pyridine, (c) poly-(p-phenyl),
(d) poly-(p-phenylvinyl), (e) Alq3 (tris-(8-hydroxyquinolate)-aluminum) and (f) a
three-dimensional view of the Alq3 molecule. Part (f) reprinted with permission
from [980], c©1998 AIP
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(a) (b)

Fig. 16.4. (a) Monoclinic unit cell (for size see Table 16.1) of anthracene crystal.
(b) Two herringbone layers of pentacene in a projection onto the bc plane of the
triclinic unit cell. Adapted from [982]

Table 16.1. Properties of oligoacene crystals. Melting point and unit cell para-
meters. Data from [983]

property naphthalene anthracene tetracene pentacene

melting point (◦C) 80 217 357 > 300◦C

crystal system monoclinic monoclinic triclinic triclinic

a (nm) 0.824 0.856 0.798 0.793

b (nm) 0.600 0.604 0.614 0.614

c (nm) 0.866 1.116 1.357 1.603

α (◦) 90 90 101.3 101.9

β (◦) 122.9 124.7 113.2 112.6

γ (◦) 90 90 87.5 85.8

16.2 Electronic Structure

The pz orbitals in benzene are partially filled and there is an energy gap
between HOMO and LUMO (Fig. 2.11). A similar consideration is valid for
polymers. The coupling of orbitals along the polymer chain leads to broaden-
ing of the π and π∗ states into a (filled) valence and an (empty) conduction
band, respectively (Fig. 16.5). The HOMO and LUMO positions of various
organic semiconductors are shown in Fig. 16.6 relative to the vacuum level
(cmp. Fig. 11.14 for inorganic semiconductors). The HOMO is also known



16.2 Electronic Structure 455
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Fig. 16.5. Schematic band structure of a polymer originating from the states of
the benzene molecule (see Fig. 2.11)

as ionization energy (IE), the LUMO as electron affinity (EA). With layered
organic semiconductors heterostructures can be built, e.g. to design recom-
bination pathways (recombination layer, electron blocking layers (EBL) and
hole blocking layers (HBL)). For electron injection and electron extraction
(hole injection) contacts, metals with appropriate work function (in connec-
tion with a possible interface dipole layer) have to be used. More details on
injection and extraction contacts to organic semiconductors are discussed in
Sect. 20.2.7.

Fig. 16.6. Position of HOMO and LUMO for a variety of organic semiconductors
(relative to a common vacuum level at E = 0 eV). Based on values from [983]. On
the right hand side the work functions of several metals are shown for comparison
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16.3 Doping

The doping of organic semiconductors can be achieved by

– partial oxidation or reduction of the organic molecule,
– substitution of atoms in the organic molecule,
– mixing of the matrix with ‘dopant’ molecules.

The systematic shift of the Fermi level with dopant concentration has been
reported in [985]. Typically, the conductivity increases superlinearly with
the doping concentration (Fig. 16.7a), an effect discussed in detail in [986].
While the mobility remains constant, the thermal activation energy Ea for
carriers decreases with increasing doping (Fig. 16.7b) due to electrostatic
interaction [421, 987], an effect already discussed in Sect. 7.5.6. The activation
energy in the dilute limit Ea,0 is modified to (cmp. (7.58))

Ea = Ea,0 − β N
1/3
D . (16.1)

(a) (b)

Fig. 16.7. (a) Conductivity (at 0.9 V/μm) vs. dopant concentration ND for PPEEB
films. Experimental data (circles) and fit (solid line) according to (16.1) with acti-
vation energy Ea,0 = 0.23 eV and β = 6.5 × 10−8 eV cm (μ = 0.2 cm2/Vs). Dashed
line denotes linear relation between conductivity and ND. Adapted from [984]. (b)
Thermal activation energy Ea of carriers (holes) in ZnPc:F4-TCNQ as a function
of the molar dopant concentration. Adapted from [985]
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16.4 Transport Properties

Transport in organic semiconductors is characterized by

– strong polaronic effects,
– hopping conduction,
– low mobility, low drift saturation velocity.

The interaction of charges with lattice deformations leads to the forma-
tion of polarons [988]. In organic materials these are often ’small‘, i.e. the
extension of the deformation is on atomic scale. Such self-trapping of charges
reduces their mobility. Two charges can share the same deformation (bipo-
laron) or oppositely charged polarons can attract (similar to an exciton). If
these charges are on the same (neighboring) polymer chain, the polaron is
called intrachain (interchain).

The conductivity within a molecule, e.g. a long polymer chain, and the
conductivity between different molecules have to be distinguished. The con-
duction between different molecules occurs via hopping. Typically, the con-
ductivity is thermally activated according to

σ = σ0 exp
(
−Ea

kT

)
, (16.2)

where Ea is an energy of the order of 1 eV. Such activation also pertains to
the mobility alone, e.g. Ea = 0.48 eV for PPV [989].

The maximum low-field mobility of many crystalline organic semiconduc-
tors at room temperature is around 1 cm2/Vs with a weak temperature de-
pendence [990]. Such mobility is much smaller than that of crystalline silicon
AND rather comparable to that of amorphous silicon. Improved purity and
handling of organic semiconductors has allowed to achieve intrinsic material
properties (Fig. 16.8). The mobility increases at low temperatures, e.g. be-
low 100 K in naphthalene [991]. This has been attributed to the freeze-out of
phonons and the transition from hopping to band transport. The drift veloc-
ity at higher fields shows saturation but the values, even at low temperature,
are much smaller than in silicon (Fig. 16.9). An analytical model for the de-
scribed main features of transport in organic semiconductors has been given
in [992].

16.5 Optical Properties

Organic molecules can emit light efficiently and are thus useful for light emit-
ters. For the photo-physics of organic materials it is essential to recall the
molecular physics of singlet and triplet states. In the singlet (triplet) state,
the total spin quantum number of the unpaired electrons is S = 0 (S = 1).
A simple energy scheme includes a ground state S0 and excited singlet (S1)
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Fig. 16.8. Historic development of the experimentally achieved mobility of organic
semiconductors at room temperature

Fig. 16.9. Carrier velocity in ultrapure and highly perfect single crystals of (n-
conducting) perylene at T = 30 K and (p-conducting) naphthalene at T = 4.3 K.
For comparison electron (hole) velocity in silicon at room temperature is shown as
solid (dashed) line. Adapted from [975]

and triplet (T1) states. The recombination transition S1 → S0 is allowed and
its lifetime short. Such luminescence is termed ‘fluorescence’. Recombination
from the triplet state is forbidden or at least very slow (‘phosphorescence’).

As an example for a small organic molecule, the fluorescence lifetime of
Alq3 is about 12 ns [993]. The triplet lifetime is in the 10 μs range [994].
Luminescence and absorption spectra of Alq3 are shown in Fig. 16.10. The
luminescence peak is redshifted with respect to the absorption edge due to
the Frank-Condon principle (Fig. 10.20). The density of excited (empty)
states of the Alq3 molecule is shown in Fig. 16.11 together with the orbitals
associated with the four prominent states. The lowest orbital is the LUMO
and leads to the visible luminescence of the Alq3 in the red.
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Fig. 16.10. Luminescence and absorption spectra of Alq3 (vapor-deposited 150 nm
thin film on a quartz substrate) at room temperature. Adapted from [995]

In Fig. 16.12a, the photoluminescence (PL) and absorption of a poly-
mer, poly-thiophene are shown. The recombination is below the band gap of
2.1–2.3 eV on an excitonic level at 1.95 eV. There are several phonon replica
whose separation of 180 meV corresponds to the C–C stretching mode. The
PL excitation (PLE) spectrum of poly-thiophene demonstrates that the PL at
1.83 eV can be excited via the exciton level. The theoretical band structure of
poly-thiophene is shown in Fig. 16.13a. The Brillouin zone is one-dimensional.
The situation I corresponds to a single molecular chain, the situation II per-
tains to the chain embedded in a medium with a dielectric constant ε = 3.
The predicted band gaps are 3.6 eV and 2.5 eV, respectively. The exciton
binding energy is about 0.5 eV. The exciton is a Frenkel exciton that has

(a) (b)

Fig. 16.11. (a) Projected density of states (for C, N, and O) of excited states in
an Alq3 molecule. The origin of the energy axis is the HOMO level. (b) Orbitals for
the four states labeled I–IV in (a). Reprinted with permission from [980], c©1998
AIP
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a small extension and is localized. The high binding energy is favorable for
radiative recombination since the exciton is stable at room temperature. For
photovoltaic applications, it is unfavorable since it has to be overcome in or-
der to separate electrons and holes (after absorption). Generally, intrachain
excitons (as here) and interchain excitons, where electron and the hole are
localized on different chains, are distinguished.

(a)

Fig. 16.12. Photoluminescence (PL) spectra at T = 20 and 300 K and absorption
spectrum (green line) of poly-thiophene. The vertical dashed line denotes the de-
tection energy (Edet = 1.83 eV) of the PL excitation (PLE) spectrum (blue circles)
(T = 20 K). Adapted from [996]

(a) (b) (c)

Fig. 16.13. (a) Band structure of poly-thiophene (‘I’: naked chain, ‘II’: chain in a
dielectric medium (ε = 3)), (b) single-particle energies and band gap, (c) exciton
levels (‘E’: experimental values). Reprinted with permission from [997], c©2002 APS
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Collection of carriers in the ‘dark’ triplet state poses a problem limiting
the quantum efficiency to 25% in a simple model [998]. Harvesting lumines-
cence from all exciton states would yield significantly higher efficiencies than
is possible in purely fluorescent materials (or devices).

A successful route is the use of a phosphorescent guest material. Radia-
tive transitions from triplet states become partially allowed when the excited
singlet and triplet states are mixed. This is typically achieved in metalor-
ganic molecules with heavy metal atoms, providing large spin-orbit interac-
tion effects [1001, 1002]. Most prominently Ru-, Pt- and Ir-containing com-
pounds are used, e.g. fac tris(2-phenylpyridine) iridium [Ir(ppy)3] in 4,4’-
N,N’-dicarbazole-biphenyl [CBP] (Fig. 16.14a,b) [1000]. The luminescence
spectrum of Ir(ppy)3 is shown in Fig. 16.14d. The radiative decay constant
of the Ir(ppy)3 triplet state is about 800 ns and observable if energy trans-
fer from the host triplet state is exotherm (ΔG = GG − GH < 0 [994],
see Fig. 16.15a) and fast. This is the case for CBP:Ir(ppy)3 (Fig. 16.15b),
ΔG ≈ −0.2 eV. Actually, reverse transfer from Ir(ppy)3 to CBP seems re-
sponsible for some loss in luminescence efficiency and the decrease in phos-
phorescent lifetime from 800 ns to 400 ns. In the case of N,N’-diphenyl-N,N’-
bis(3-methylphenyl)-[1,1’-biphenyl]-4,4’-diamine [TDP] (Fig. 16.14c) host,
the triplet energy transfer to the phosphorent Ir(ppy)3 guest is endotherm
(ΔG ≈ +0.1 eV) and represents the rate limiting step [994]. In this case the

(a) (b) (c)

(d)

Fig. 16.14. Molecular structure of (a) Ir(ppy)3, (b) CBP and (c) TDP (see
text). (d) Electroluminescence spectra (at room temperature) of CBP:6% Ir(ppy)3,
CBP:10% Ir(ppy)3/1%DCM2 and CBP:2%DCM2. Based on data from [999, 1000]
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(a) (b)

Fig. 16.15. (a) Schematic term diagram of host (TH) and guest (TG) triplet states.
Straight arrows denote energy transfer between triplet states, wiggly arrows denote
radiative transitions to the (singlet) ground state. (b) Electroluminescence tran-
sients (at room temperature, detected in the range 500–560 nm [cmp. Fig. 16.14b])
of CBP:6% Ir(ppy)3 (τ ≈ 1 μs) and TDP:6% Ir(ppy)3 (τ ≈ 15 μs). Insets: term
schemes with arrow denoting the rate limiting step. Based on data from [994]

recombination of Ir(ppy)3 has a decay constant of about 15 μs (Fig. 16.15b).
The thermal activation character is confirmed by even longer decay times
at low temperatures (τ ≈ 80 μs at T = 200 K) [994]. Endothermic transfer
allows to pump a blue guest phosphor without a blue host material.

(a) (b)

Fig. 16.16. (a) Schematic term scheme of CBP:Ir(ppy)3/DCM2 and energy trans-
fer and recombination paths (cmp. spectrum in Fig. 16.14). The rate constants
are shown for various processes, the rate limiting step is shown with a bold ar-
row. (b) Electroluminescence transients after 100 ns excitation pulse (grey area)
of Ir(ppy)3 and DCM2 luminescence from CBP:10% Ir(ppy)3/1% DCM2. Based on
data from [999]
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Fig. 16.17. Photoconductivity and absorption spectrum of anthracene

Further, subsequent Förster energy transfer [1003] from the guest triplet
state to a fast and efficient singlet state (SD) of a fluorescent dye is possible,
e.g. from CBP:Ir(ppy)3 to DCM2 [999]. The transient lifetime of pure DCM2
is about 1 ns. In a mixture of CBP:10% Ir(ppy)3/1% DCM2 the luminescence
of DCM2 appears with the same 100 ns decay constant as that of Ir(ppy)3
(Fig. 16.16b). This decay constant (rate limiting step, see Fig. 16.16a) corre-
sponds to the energy transfer depleting the triplet state of Ir(ppy)3 to DCM2
and is much faster than the pure Ir(ppy)3 radiative lifetime.

The photoconductivity of organic semiconductors is typically related to
their absorption spectrum as shown for anthracene in Fig. 16.17.
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17.1 Graphene

17.1.1 Structure

Graphene is a single sheet of carbon atoms in hexagonal arrangement. The
carbon bond length is dC−C = 0.142 nm (Fig. 17.1). It can be prepared from
graphite via micromechanical cleavage, i.e. mechanical exfoliation (repeated
peeling) of small mesas of highly oriented pyrolytic graphite [1004, 1005].
Graphite is a stacked arrangement of such graphene sheets (Fig. 17.2a) held
together by van-der-Waals forces as shown in Fig. 17.2b. The carbon atoms
bond in-plane via sp2 hybridization. Organic molecules such as, e.g., an-
thracene or coronene (Fig. 16.1) can be understood as molecular-size pieces
of such two-dimensional graphene sheet with hydrogen saturating the outside,
broken bonds. In literature single layer graphene sheets (SLG) and few-layer
graphene (FLG) sheets are distinguished. Ideally such two-dimensional crys-
tal is infinitely extended, e.g. for band structure calculations. Real crystals
have a boundary (surface) which is topologically a line or very thin sidewall.
The mechanical properties of graphene are discussed in [1006].

The phonon dispersion of graphene is shown in Fig. 17.3. For the ZA and
ZO modes the displacement is perpendicular to the graphene plane (out-of
plane modes).

17.1.2 Band Structure

A single layer of graphene is a zero-gap semiconductor (cf. Fig. 6.35) which
shows a linear photon-like spectrum

E = � k c∗ (17.1)

around the Fermi energy at the K point (Fig. 17.4a). This point is also called
Dirac point. The important bands close to the Fermi level stem from the
π-orbitals. The linear dispersion around the K point is similar to that of rel-
ativistic particles without rest mass. The electrons in graphene are of course
not really massless, their velocity (6.34) being v = c∗ ≈ 106 m/s, about 300
times smaller than the speed of light [1007, 1008].

M. Grundmann, The Physics of Semiconductors, 2nd ed., Graduate Texts 465
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Fig. 17.1. Schematic atomic arrangement in graphene; the C–C bond length is
dC−C = 0.142 nm. Several vectors for making carbon nanotubes (cf. Sect. 17.2) are
shown

In the simplest tight-binding approximation, the band structure is given
as

E(k) = ±T
√√√√1 + 4 cos

(√
3aky

2

)

cos
(
akx

2

)
+ 4 cos2

(
akx

2

)
, (17.2)

where a is the lattice constant and T ≈ 3 eV is the next-neighbor hopping
energy [1010]. In the meantime more elaborate tight-binding schemes have

(a) (b)

Fig. 17.2. (a) Schematic layer structure of graphite with bond length and layer
distance labelled. (b) AFM image of graphene on oxidized silicon. The height of
two areas relative to the background is labelled. Adapted from [1009]
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Fig. 17.3. Phonon dispersion in graphene. Symbols are experimental data from
various methods. Dashed lines is DFT-LDA theory, solid lines GGA. Adapted
from [1013]

(a) (b)

(c)

Fig. 17.4. (a) Band structure of graphene from first principles. (b) Three-
dimensional representation E(kx, ky) of the π-bands of graphene. (c) Band structure
of graphene with only π-bands shown, solid lines are ab-initio calculation, dashed
lines are calculated with tight-binding approximation. Adapted from [1012]
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been reported [1011, 1012] as shown in Fig. 17.4b. The two-dimensional band
structure is visualized in Fig. 17.4c. Such band structure has been directly
confirmed experimentally [1014] as shown in Fig. 17.5a–e. The distortion
of the band structure with increasing electron concentration (Fig. 17.5e–h)
from the conical bands is due to strong electron-electron, electron-phonon,
and electron-plasmon coupling effects [1014].

The band structure of FLG has been theoretically analysed in [1015]. For
bilayers experimental data on the band structure can be found in [1016].
Subtle differences exist for different stacking orders of the graphene sheets.
Bulk graphite shows a semimetallic behavior with a band overlap of about
41 meV. For more than ten graphene layers the difference with the band
overlap in bulk graphite is less than 10%.

17.1.3 Electrical Properties

The Shubnikov-de Haas (SdH) oscillations from a graphene sheet exhibit a
behavior [1008]

1
ΔB

=
4e
h

1
nS

, (17.3)

which corresponds to (12.22) for a two-dimensional electron system and a
spin- and valley-degeneracy1 of two. The cyclotron mass has been determined
from the temperature dependence of the SdH oscillations to be proportional2

to
√
n (Fig. 17.6). The cyclotron mass is generally related [1017] to the area

S(E) = πk2 in k-space of the orbits at the Fermi energy via

mc =
�

2

2π
∂S(E)
∂E

(17.4)

With the linear dispersion (17.1) we can write (17.4) as

mc =
�

2

2π
2πE
�2c2∗

=
E

c2∗
. (17.5)

For the linear energy dispersion (17.1) the number of states up to energy
EF is (with a degeneracy of 4)

N(EF) = 4
πk2

F

(2π/L)2
= A

4πE2
F

h2c2∗
, (17.6)

where A is the system area. Therefore we have (at low temperature) with
(17.5)

nS =
4π
h2

E2
F

c2∗
∝ m2

c , (17.7)

1Each of the six valleys at the K points is shared by three Brillouin zones.
2In a parabolic dispersion as in (12.21), the cyclotron mass is independent of n.
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Fig. 17.5. Experimental bandstructure of graphene (on (0001) 6H-SiC) as deter-
mined from ARPES. (a) Energy distribution of states as a function of momentum
along principal directions in the Brillouin zone. The single-orbital tight-binding
model (17.2) with T = 2.82 eV is shown as solid lines. The Fermi level is shifted by
0.435 eV due to doping. (b) Constant energy map of the states at binding energy
corresponding to the Dirac energy ED; the boundary of the Brillouin Zone boundary
is superimposed as dashed line. The arrow at the K point indicates the directions
over which the data in (e–h) were acquired. (c, d) Constant energy maps at the
Fermi energy (EF = ED + 0.45 eV) and ED − 1.5 eV, respectively. (e–h) Experi-
mental energy bands along the line through the K point parallel to Γ–M direction
as indicated in (b). The dashed lines are an extrapolation of the lower bands below
the Dirac crossing energy, which are observed not to pass through the upper bands
(above ED), suggesting the kinked shape of the bands around ED. The sheet elec-
tron density is nS = 1.1, 1.5, 3.7, and 5.6× 1013 cm−2 for (e)–(h), respectively, due
to increased doping upon potassium adsorption. Adapted from [1014]
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Fig. 17.6. Cyclotron mass in graphene as a function of the sheet electron con-
centration nS (negative values relate to hole concentration, EF < ED). Adapted
from [1008]

as determined experimentally. Therefore the behavior of the SdH oscillations
confirms the linear dispersion relation. The experimental value for the velocity
is c∗ ≈ 106 m/s. From (17.7) the density of states (per area and energy)
around the Dirac point increases linearly with energy,

D(E) =
8π
h2 c2∗

E . (17.8)

The carrier density in a graphene sheet can be controlled via the field
effect. The graphene is positioned on an insulator/semiconductor structure,
typically SiO2/Si (cf. Sect. 20.3). The carrier density is then related to the
applied (gate) voltage Vg via (20.73) and (20.75), i.e.

nS =
εi Vg

e d
, (17.9)

where d is the thickness of the insulator and εi its dielectric constant. By
applying positive (negative) bias electron (holes) can be induced in the sheet.
The electron and hole densities depend on the Fermi energies3

nS =
8π
h2 c2∗

∫ ∞

ED

E − ED

1 + exp [(E − EF)/kT ]
dE (17.10a)

pS =
8π
h2 c2∗

∫ ED

−∞

−(E − ED)
1 + exp [−(E − EF)/kT ]

dE (17.10b)

as visualized in Fig. 17.7. These relations cannot be inverted to obtain
EF(n, p) analytically. The total charge carrier density is ρS = e(pS − nS).

The Hall effect (Fig. 17.8) shows the expected ambipolar dependence ac-
cording to (8.33) which takes the form

3Here we assume the linear dispersion for all thermally populated states.
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Fig. 17.7. Band structure of graphene with various positions of the Fermi energy
EF in relation to the Dirac energy ED. States occupied with electrons are shown
with in bold

RH =
1
e

pS − nS

(nS + pS)2
(17.11)

for equal electron and hole mobilities.4

From Hall effect measurements the mobility has been determined to be
about 104 cm2/Vs, independent of temperature between 10 and 100 K, and
the same for electrons and holes. This value, however, is much smaller than
the in-plane mobility of about 106 cm2/Vs at 4.2 K in high quality samples of

Fig. 17.8. Hall coefficient (T = 10 K) for a graphene sheet as a function of the free
carrier sheet density ρS/e = pS − nS (positive values indicate p-type). Data shown
as solid lines from [1008]

4Including sign, μh = −μe. For T = 0 and EF = ED, nS = pS = 0 and thus
1/RH should be zero. For finite temperatures there is always nS > 0 and pS > 0,
even for EF = ED. Thus 1/RH ∝ 1/(pS − nS) diverges at ρS = e(pS − nS) = 0 with
a change of sign.
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Fig. 17.9. (a) Crystal structure of BC2N. (b) Brillouin zone of BC2N (rectangle)
and C, BN (hexagon). (c) Phonon dispersion of graphene (C) and BN- and BC2N-
sheets. Adapted from [1024]

highly ordered pyrolithic graphite (HOPG) [1018]. In suspended graphene
a mobility of 2.3 × 105 cm2/Vs has been found, limited by finite sample
size [1019]. Thus in graphene layers on a solid surface extrinsic effects such as
charge traps, interfacial phonons, ripples or fabrication residue seem to limit
the carrier mobility.

The QHE has been observed in graphene [1008], reportedly up at room
temperature [1020]. The plateaus (4e2/h)(n + 1/2) correspond to unusual
half-integer filling, the first plateau occurring at 2e2/h, as has been also
suggested from theory, and related to the ‘pseudospin’. Another consequence
of the Dirac-like behavior of the fermions in graphene is the presence of finite
maximum resistivity ρmax = h/4e2 = 6.45 kΩ even at low temperature and
EF = ED. It is due to the fact that localization effects, leading to insulating
behavior, are strongly suppressed. Then each carrier keeps a mean free path
in the order of its Fermi wavelength.

The Klein paradox [1021, 1022], the efficient tunneling of Dirac particles
through high and thick barriers seems accessible in transport experiments
with graphene [1023].

17.1.4 Other Two-Dimensional Crystals

Two-dimensional crystals have been reported also for other materials such as
BN, MoS2, NbSe2, Bi2Sr2CaCu2Ox [1005]. The phonon spectra of graphene,
BN- and BC2N-sheets are compared in Fig. 17.9. The spectrum of BC2N is
similar to the superposition of the C and BN spectra [1024].
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Fig. 17.10. (a) TEM image of single-walled carbon nanotubes (SWNT). (b) TEM
images of various multi-walled carbon nanotubes (MWNT). Adapted from [1025].

17.2 Carbon Nanotubes

17.2.1 Structure

A carbon nanotube (CNT) is a part of a graphene sheet rolled up to
form a cylinder. They were first described as multi-walled nanotubes by
Iijima [1025] in 1991 (Fig. 17.10b) and in their single-walled form (Fig. 17.10a)
in 1993 [1026]. Reviews can be found in [1011, 1027].

The chirality and diameter of a nanotube are uniquely described by the
chiral vector

ch = n1 a1 + n2 a2 ≡ (n1, n2) , (17.12)

where a1 and a2 are the unit vectors of the graphene sheet. The chiral vec-
tor denotes two crystallographic equivalent sites which are brought together
along the circumference of the nanotube. The possible vectors are visualized
in Fig. 17.1 for −30◦ ≤ θ ≤ 0◦. The fiber diameter is given by

d =
|ch|
π

=
a

π

(
n2

1 + n1n2 + n2
2

)
, (17.13)

with the graphene lattice constant a =
√

3 dC−C = 0.246 nm. Ab-initio
calculations show that the diameter becomes a function of the chiral an-
gle below 0.8 nm; deviations from (17.13) are below 2% for tube diameters
d > 0.5 nm [1028]. The (n, 0) tubes (θ = 0) are termed ‘zig-zag’ and an ex-
ample is depicted in Fig. 17.11b. Nanotubes with θ = ±π/6, i.e. of the (n, n)
(and (2n,−n)) type, are called ‘armchair’. All others are termed ‘chiral’.

The extension along the wire axis is large compared to the diameter. The
tip of a nanotube is part of a buckminster-fullerene type molecule (Fig. 17.12).
When the nanotube if formed by rolling a single sheet of graphene (SLG),
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Fig. 17.11. Structure of different types of carbon nanotubes that have similar
diameter of 0.8 nm. (a) Armchair (6,6), (b) zigzag (8,0) and (c) chiral symmetry.
Adapted from [1027]

a single-walled nanotube (SWNT) is formed. A FLG sheet creates a multi-
walled nanotube (MWNT). For small number of layers they are called double-
walled, triple-walled and so forth.

Fig. 17.12. A chiral nanotube (chiral vector is (10,5), θ = −19.11◦) with hemi-
spherical caps at both ends based on an icosahedral C140 fullerene. The tube diam-
eter is 1.036 nm. Adapted from [1029]

The mechanical strength of carbon nanotubes is very large. For SWNT
Young’s moduli of 103 GPa have been found experimentally [1030] in agree-
ment with theoretical predictions [1031].

17.2.2 Band Structure

In carbon nanotubes there is some mixing of the π(2pz) and σ(2s and 2pz)
carbon orbitals due to the radial curvature. This mixing is, however, small and
can be neglected near the Fermi level [1032]. The band structure of a nanotube
is mainly determined by zone-folding of the graphene band structure. The
vector along the (infinitely extended) wire kz is continuous. The vector k⊥
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around the nanotube is discrete with the periodic boundary condition

ch · g⊥ = 2πm , (17.14)

where m is an integer. The distance of allowed k⊥-values is (5.5)

Δk⊥ =
2π
π d

=
2
d
. (17.15)

The character of the nanotube band structure depends on how the allowed
k-values lie relative to the graphene Brillouin zone and its band structure.
This is visualized in Fig. 17.13. For the case of an armchair tube (n, n), as
shown in Fig. 17.13a, the K-point of the graphene band structure always lies
on an allowed k-point. Therefore, the nanotube is metallic, i.e. zero-gap, as
seen in the bandstructure in Fig. 17.13b. The Dirac point is between Γ and
X. For a zig-zag nanotube, the k-space is shown in Fig. 17.13c for a (6,0)
nanotube. The corresponding band structure for a (6,0) nanotube is also
metallic (Fig. 17.13d) with the Dirac point at the Γ point.

In Fig. 17.14c the band structure of another metallic (12,0) zig-zag nan-
otube is shown. However, only for (3m,0) the K-point is on an allowed state
and thus the tube metallic. For the other cases, as shown for the k-space
of a (8,0) nanotube in Fig. 17.14b, this is not the case. The corresponding
band structure (Fig. 17.14c for (13,0)) has a gap and thus the nanotube is a
semiconductor. Generally, the condition for a nanotube to be metallic is with
an integer m

n1 − n2 = 3m . (17.16)

There are two semiconducting ‘branches’ with ν = (n1 − n2)mod 3 = ±1.
The tubes with ν = +1 have a small band gap, those with ν = −1 have a
larger band gap.

The density of states is a series of one-dimensional DOS, proportional to√
E (6.78). It is compared in Fig. 17.15 for a metallic and a semiconducting

nanotube. Within 1 eV from the Fermi energy the DOS can be expressed in
an universal term [1033].

17.2.3 Optical Properties

Optical transitions occur with high probability between the van-Hove singu-
larities of the DOS. The theoretical absorption spectrum of a (10,0) nanotube
is shown in Fig. 17.16.

In an ensemble of nanotubes various types and sizes occur. The transition
energies of all possible nanotubes sorted by diameter are assembled in the
Kataura plot (Fig. 17.17a). Experimental data are shwon in Fig. 17.17b. The
two branches of semiconducting nanotubes ν = ±1 yield different transition
energies. The overall dependence of the transition energy follows a 1/d-law.
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Fig. 17.13. (a) Brillouin zone of the graphene lattice (bold line) and allowed k-
values for a (6,6) armchair nanotube. (b) Band structure of a (6,6) carbon nanotube.
Adapted from [1034]. (c) Brillouin zone of the graphene lattice (bold line) and
allowed k-values for a (6,0) zig-zag carbon nanotube. In the lower part the real
space structure is visualized. (d) Band structure of graphene (left) and a (6,6)
nanotube (right). Adapted from [1035].

17.2.4 Other Anorganic Nanotubes

Structures similar to carbon nanotubes have been reported for BN [1036,
1037]. A boron nitride nanotube is a cylindrically rolled part of a BN sheet.
BN tubes are always semiconducting (Fig. 17.18) and have a band gap beyond
5 eV similar to hexagonal BN which is mostly independent on chirality and
diameter [1038]. Thus, while carbon nanotubes appear black since they absorb
within 0–4 eV, BN is transparent (or white if scattering). For high energies
larger than 10 eV C and BN tubes are quite similar since they are isoelectronic
and the high-lying unoccupied states are less sensitive to the difference in the
nuclear charges than the states at and below the Fermi energy [1039].
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Fig. 17.14. (a, b) Brillouin zone of the graphene lattice (bold line) and allowed
k-values for a (a) (6,0) and a (b) (8,0) zig-zag nanotube. (c) Band structures of
a (12,0) metallic and (13,0) semiconducting armchair carbon nanotube. Adapted
from [1034]

Fig. 17.15. Density of states for a (9,0) metallic and (10,0) semiconducting zig-zag
carbon nanotube within the tight-binding approximation (17.2). The energy scale
is given in units of the tight-binding parameter T ≈ 3 eV. The dashed lines are the
DOS of graphene. Adapted from [1029]
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Fig. 17.16. Calculated absorption spectra for a (semiconducting) (10,0) carbon
nanotube for parallel (solid line) and perpendicular (dotted line) polarization.
The thick (thin) lines are calculated with (without) the matrix element included.
Adapted from [1040]

Fig. 17.17. (a) Theoretical transition energies of semiconducting (filled sym-
bols) and metallic (open symbols) carbon nanotubes as a function of tube diam-
eter (Kataura plot). Energies are calculated from van-Hove singularities in the
JDOS within the third-order tight-binding approximation [1012]. (b) Experimen-
tal Kataura plot for the first two semiconducting (S, closed symbols) and the first
metallic (M, open symbols) transition. Dashed lines connect the (near-to) armchair
tubes; full lines connect tubes in a branch, ν = (n1 − n2) mod 3. Data from photo-
luminescence [1041] and resonant Raman scattering [1042]. Adapted from [1043]
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Fig. 17.18. Band structure and density of states (DOS) of C(3,3) and BN(3,3)
nanotubes, calculated with DFT-LDA. Adapted from [1039]



18 Dielectric Structures

18.1 Photonic Band Gap Materials

Layered structures of dielectric materials with different index of refraction
are used as optical elements such as filters or reflection and anti-reflection
coatings [1044]. In this section we discuss the use of such concepts in one-,
two- and three-dimensional photonic band gap materials.

18.1.1 Introduction

A structure with a so-called photonic band gap (PBG) exhibits an energy
range (color range) in which photons cannot propagate in any direction. In the
photonic band gap, there are no optical modes, no spontaneous emission and
no vacuum (zero-field) fluctuations. We recollect that spontaneous emission
is not a necessary occurrence: Looking at Fermi’s golden rule (9.11) for the
transition probability integrated over all final states

w(E) =
2π
�

|M |2 ρf(E) , (18.1)

we see that the decay rate depends on the density ρf of final states at energy
E. In the case of spontaneous emission, this is the (vacuum) density Dem of
electromagnetic modes (per energy per volume) that varies ∝ ω2:

Dem(E) =
8π

(hc)3
E2 . (18.2)

In a homogeneous optical medium c must be replaced with c/n.
If the band gap of a PBG is tuned to the electronic gap of a semiconductor,

the spontaneous emission, and also induced emission, can be suppressed.
Thus, one mode has to be left by ‘doping’ the structure. In this mode all
emission will disappear and an efficient single-mode (monochromatic) LED
or ‘zero-threshold’ laser could be built. A schematic comparison of the band
structure of electrons and photons is given in Fig. 18.1.

18.1.2 General 1D Scattering Theory

The formation of a photonic band gap in a one-dimensional dielectric can
be calculated to a large extent analytically and thus with direct insight. Let

M. Grundmann, The Physics of Semiconductors, 2nd ed., Graduate Texts 481
in Physics, DOI 10.1007/978-3-642-13884-3 18,
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 18.1. Right : electromagnetic dispersion with a forbidden gap at the wavevector
of the periodicity. Left : Electron-wave dispersion typical of a direct-gap semiconduc-
tor. When the photonic band gap straddles the electronic band gap, electron–hole
recombination into photons is inhibited since the photons have no place to go (zero
final density of states)

n(x) be the spatially varying index of refraction (no losses or nonlinear optical
effects). The one-dimensional wave equation (Helmholtz equation) reads for
the electric field E

∂2E(x)
∂x2

+ n2(x)
ω2

c2
E(x) = 0 . (18.3)

A comparison with a one-dimensional Schrödinger equation

∂2Ψ(x)
∂x2

− 2m
�2

[V (x) − E]Ψ(x) = 0 (18.4)

shows that the Helmholtz equation corresponds to the quantum-mechanical
wave equation of zero external potential V and a spatially modulated mass,
i.e. a case that is usually not considered.

Let us consider now the amplitude ak of the k eigenvector. The eigenvalue
is then ωk. The one-dimensional mode density ρ(ω) (per energy and per unit
length) is

ρ(ω) =
dk
dω

, (18.5)

which is the inverse of the group velocity.
We follow one-dimensional scattering theory as presented in [1045]. At this

point we do not rely on any specific form of n(x) (Fig. 18.2a). The (complex)
transmission coefficient t for any index structure is

t = x+ iy =
√
T exp(iφ) , (18.6)
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Fig. 18.2. 1D scattering problem: (a) General scattering of an index of refraction
distribution, (b) N -period stack, (c) two-layer (quarter-wave) stack

where tanφ = y/x. φ is the total phase accumulated during propagation
through the structure. It can be written as the product of the physical thick-
ness of the structure d and the effective wave number k. Hence we have the
dispersion relation

d
dω

tan(kd) =
d
dω

(y
x

)
. (18.7)

Evaluating the derivative we find

1
cos2(kd)

d
dk
dω

=
y′x− x′y

x2
, (18.8)

where the prime denotes derivation with respect to ω. Using the relation
cos2 θ = (1 + tan2 θ)−1, we obtain the general expression

ρ(ω) =
dk
dω

=
1
d

y′x− x′y
x2 + y2

. (18.9)

18.1.3 Transmission of an N-Period Potential

Now, the behavior of N periods of a given index distribution n(x) within a
thickness d of one period (Fig. 18.2b) is investigated. The scattering matrix
M connects the intensity at x = 0 with that at x = d. We use the column
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vector u =

(
u+

u−

)

containing the right- and left-going waves (labeled ‘+’

and ‘−’, respectively), u± = f± exp(±ikx),

u(0) = Mu(d) . (18.10)

Using the boundary conditions u(0) = (1, r) and u(d) = (t, 0), we find
that M has the structure

M =

(
1/t r∗/t∗

r/t 1/t∗

)

. (18.11)

The conservation of energy requires that detM = (1 − R)/T = 1. The
eigenvalue equation for M is

μ2 − 2μRe(1/t) + 1 = 0 . (18.12)

The two eigenvalues μ± are related by μ+ μ− = detM = 1. If we con-
sider an infinite, periodic structure, we know from Bloch’s theorem that the
eigenvector varies between unit cells only via a phase factor, i.e. |μ| = 1.
Therefore, the eigenvalues can be written as

μ± = exp(±iβ) , (18.13)

where β corresponds to the Bloch phase of a hypothetical infinite periodic
structure. This phase β should not be confused with φ defined earlier, which
is associated with the unit cell transmission. We find the condition

Re(1/t) = cosβ (18.14)

for the Bloch phase. Since every matrix obeys its own eigenvalue equation,
we have also (1 being the unity matrix)

M2 − 2M cosβ + 1 = 0 . (18.15)

By induction one can show that the N -period case has the scattering
matrix

MN = M
sin(Nβ)

sinβ
− 1

sin((N − 1)β)
sinβ

. (18.16)

The solution for the finite period case can be written in terms of the
Bloch phase of the infinite potential. The transmission and reflection of the
N -period system are given by

1
tn

=
1
t

sin(Nβ)
sinβ

− sin((N − 1)β)
sinβ

(18.17a)

rn
tn

=
r

t

sin(Nβ)
sinβ

. (18.17b)
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The transmission of intensity can be written as (T = t∗t)

1
TN

= 1 +
sin2(Nβ)

sin2 β

[
1
T

− 1
]
. (18.18)

Again, up to this point no specific distribution of the index of refraction
within the unit cell has been specified.

From (18.17a), a general formula for the mode density ρN (ω) of the N -
stack can be obtained as [1045]

ρN =
1
Nd

sin(2Nβ)
2 sin β

[
η′ + ηξξ′

1−ξ2

]
− Nηξ′

1−ξ2

cos2(Nβ) + η2
[

sin(Nβ)
sin β

]2 , (18.19)

where ξ = x/T = cosβ and η = y/T .

18.1.4 The Quarter-Wave Stack

A quarter-wave stack, also known as a Bragg mirror, exhibits a one-dimen-
sional photonic band gap. One period consists of two regions with thickness
and index of refraction (d1, n1) and (d2, n2), respectively (Fig. 18.2c). In the
quarter-wave stack each region has an optical thickness of λ/4 (the wave
accumulates in each region a phase of π/2) for a particular wavelength λ0 or
(midgap) frequency ω0. Thus, the condition reads

n1d1 = n2d2 =
λ0

4
=
π

2
c

ω0
. (18.20)

Using the Fresnel formulas, the transmission of an arbitrary two-layer cell
is

t =
T12 exp(i(p+ q))
1 +R12 exp(2iq)

, (18.21)

where p = n1d1ω/c and q = n2d2ω/c are the phases accumulated in the two
layers, respectively. The values of T12 and R12 are given as

T12 =
4n1n2

(n1 + n2)2
(18.22a)

R12 =
(n1 − n2)2

(n1 + n2)2
. (18.22b)

For the quarter-wave stack (p = q = π/2), we obtain for (18.21)

t =
T12 exp(iπω̃)

1 +R12 exp(iπω̃)
, (18.23)

where ω̃ = ω/ω0 is the frequency scaled to the midgap value.
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The transmission of a single two-layer cell is

T =
T 2

12

1 − 2R12 cos(πω̃) +R2
12

, (18.24)

and the Bloch phase is given by

cosβ = ξ =
cos(πω̃) −R12

T12
(18.25a)

η =
sin(πω̃)
T12

. (18.25b)

For the N -period quarter-wave stack the transmission is given by

TN =
1 + cosβ

1 + cosβ + 2(R12/T12) sin2(Nβ)
. (18.26)

A band gap forms. Within the band gap, the density of modes is lowered,
at the edges it is enhanced (Figs. 18.3 and 18.4). The transmission at midgap
decreases ∝ (ni/nj)

2N , where ni < nj .
In the limit of largeN the complete widthΔω̃ of the band gap is implicitly

given by

cos
(π

2
Δω̃

)
= 1 − 2

(
n1 − n2

n1 + n2

)2

. (18.27)

If |n1 − n2| � n1 + n2, we find

Δω̃ ≈ 4
π

|n1 − n2|
n1 + n2

. (18.28)

The principle of the quarter-wave stack is scalable to frequencies other
than visible light.1 In Fig. 18.5 the reflectance of various quarter-wave stacks
from yttria-stabilized zirconia (YSZ [1046], high index material, Fig. 18.6a)
and Al2O3 are shown [1047]. The different design wavelengths have been
achieved solely by varying the layer thicknesses.

In Fig. 18.6b the three Bragg mirrors from Fig. 18.5 with N = 15.5 pairs
are replotted in relative frequency units ω̃. The spectra look very similar;
subtle differences in the width of the reflectance band are due to slightly
larger index contrast at higher design energy (cmp. Fig. 18.6a). The width
of the gap is approximately Δω̃ ≈ 0.18 in agreement with (18.28).

As further example, a Mo/Si Bragg mirror with a period of 6.7 nm is
shown in Fig. 18.7. Such a mirror works in the extreme UV and is used for
soft X-ray optics, possibly in advanced lithography systems. Dielectric thin
films can also be designed for anti-reflection coatings, edge filters or pass and
stop band filters as detailed in [1044].

1This is a general property of Maxwell’s equations which do not contain a specific
length scale.
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(a)

(b)

Fig. 18.3. Quarter-wave stack with indices of refraction (a) n1, n2 = 1.0, 1.5 and
(b) 1.0, 3.0. Solid lines: dimensionless density of modes ρN (18.19), dashed lines:
transmission TN (18.26) for two different numbers of pairs N = 5 (left panels) and
10 (right panels) vs. the dimensionless frequency ω̃

(a) (b)

Fig. 18.4. Quarter-wave stack with indices of refraction n1, n2 = 1.0, 1.5: (a)
Transmission TN at midgap (ω̃ = 1, down triangles) and at the band edge (ω̃ =
1−Δω̃/2, up triangles) vs. number of pairs N . (b) Dimensionless density of modes
ρN at maximum near the band edge and at midgap vs. number of pairs N
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Fig. 18.5. Reflectance of various Bragg mirrors from YSZ/Al2O3 grown by pulsed
laser deposition on sapphire. The different layer thicknesses result in the design
energies 0.43 eV (N = 10.5, Rmax = 0.9812, red), 1.19 eV (N = 10.5, Rmax =
0.9779, orange), 2.11 eV (N = 15.5, Rmax = 0.99953, green), 3.39 eV (N = 15.5,
Rmax = 0.99946, blue) and 4.54 eV (N = 15.5, Rmax = 0.99989, purple)

(a) (b)

Fig. 18.6. (a) Index of refraction of YSZ and Al2O3 as a function of photon
energy. (b) Reflectance spectra of the 2.11 eV, 3.39 eV and 4.54 eV Bragg mirrors
of Fig. 18.5 replotted as a function of the scaled frequency ω̃ = ω/ω0

18.1.5 Formation of a 3D Band Structure

For other applications, e.g. waveguides with minimized footprint, 3D (or at
least 2D) photonic band gap structures are needed. Details can be found in
dedicated textbooks [1048–1050]. In [1051] planar, cylindrical and spherical
Bragg mirrors are discussed.

Since we want a photonic band gap that is present for all directions of
propagation, a Brillouin zone with a shape close to a sphere is preferable.
Then, the main directions are at similar k-values (Fig. 18.8). One of the best
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Fig. 18.7. (a) Cross-sectional TEM of Mo/Si superlattice with 2.7 nm Mo and
4.0 nm Si (period: 6.7 nm) on Si(001) substrate. From [1052]. (b) Reflection spec-
trum for a SL with period of 6.5 nm and 88.5◦ angle of incidence. Data points are
shown as circles, the solid line is a fit with a period of 6.45 nm. Adapted from [1053]

suited is the fcc lattice. Since the L point is centered at ≈14% lower frequency
than the X point, the forbidden gaps for different directions must be, however,
sufficiently wide to create a forbidden frequency band overlapping at all points
along the surface of the Brillouin zone. For example, the bcc lattice has a
Brillouin zone that is less symmetric than that of the fcc lattice (see Fig. 3.32)
and thus is less suited for the creation of an omnidirectional photonic band
gap. However, the photonic band gap must not arise above the first band,
relaxing problems due to asymmetry of the Brillouin zone (cf. Table 18.1).

Maxwell’s equations (zero charge density) for monochromatic waves ∝
exp(iωt)

ky

kz

kx

W

K

L

U

X

X

k
X

L

X

L(a) (b)

Fig. 18.8. The face-centered cubic Brillouin zone (a) in reciprocal space. Schematic
forbidden gaps (b) at the L and X points
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Table 18.1. Various photonic band gap structures and some of their properties.
The band gap is between the n-th and (n + 1)-th band, Δω̃ is given for air/silicon
(ε ≈ 12).

name crystal type n Δω̃ (%) Ref.

diamond diamond 2 29 [1054]

yablonovite fcc 2 19 [1058]

woodpile fc tetragonal 2 20 [1059]

spirals sc 4 17 [1060]

square-spirals tetragonal 4 24 [1055]

layered 3D bc orthorhombic 4 23 [1061]

inverted scaffold sc 5 7 [1062]

inverse opal fcc 8 4.25 [1063]

inverse hcp hcp 16 2.8 [1064]

∇ · D = 0 (18.29a)

∇× E = i
μω

c
H (18.29b)

∇× H = i
ω

c
D (18.29c)

∇(μH) = 0 , (18.29d)

together with D(r) = ε(r)E(r) and μ = 1 they are combined into the wave
equation

∇× [
ε−1(r)∇× H(r)

]
+
ω2

c2
H(r) = 0 . (18.30)

This equation is numerically solved for planar waves with wavevector k.
In the following, results are shown for various structures. In a fcc lattice

of air spheres in a dielectric medium with n = 3.6 (a typical semiconductor),
no band gap can be achieved (Fig. 18.9a), only a pseudogap (Fig. 18.9b)
appears.

In a diamond lattice (two fcc lattices shifted by 1/4 〈111〉), a complete
photonic band gap is possible [1054] (Fig. 18.10). Recently, a periodic ar-
ray of spirals (Fig. 18.11) has been predicted to exhibit a large photonic
band gap [1055]. Glancing-angle deposition [1056] (GLAD) is a way to re-
alize such structures. Another method to fabricate structures with arbitrary
geometry within a material is two-photon lithography or two-photon holog-
raphy. Another path to PBG structures are so-called inverted opals. First, a
close-packed structure of spheres, e.g. monodisperse silica spheres, is fabri-
cated by sedimentation or self-assembly. The gaps are filled with a high-index
medium and the template is subsequently removed, e.g. by etching or dissolv-
ing. The resulting structure is shown in Fig. 18.12a. Such a structure has a
photonic band gap (Fig. 18.12b) if the refractive index is sufficiently high
(> 2.85) [1057]. The band gap in this case is between the 4th and 5th band.
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(a) (b)

Fig. 18.9. (a) Calculated photonic band gap structure of a fcc dielectric structure
composed of air spheres in a dielectric background of refractive index n = 3.5. The
filling ratio is 86% air and 14% dielectric material. Dotted and solid lines repre-
sent coupling to s- and p-polarized light, respectively. Reprinted with permission
from [1054], c©1990 APS. (b) Density of states for the band structure of part (a)

(a) (b)

Fig. 18.10. (a) Calculated photonic band structure for a diamond dielectric struc-
ture consisting of overlapping air spheres in a dielectric material with n = 3.6.
Filling ratio of air is 81%. The frequency is given in units of c/a, a being the cubic
lattice constant of the diamond lattice and c being the velocity of light. (b) Gap-to-
midgap frequency ratio for the diamond structure as a function of filling ratio for
dielectric spheres n = 3.6 in air (solid circles) and air spheres in dielectric n. Opti-
mal case: air spheres with 82% filling ratio. Reprinted with permission from [1054],
c©1990 APS

Table 18.1 offers a compilation of various PBG structures and their proper-
ties.

18.1.6 Disorder

A real photonic band gap structure deviates from the ideal, perfectly periodic
system by slight variations of the position and possibly also the size of the
dielectric ‘atoms’. This is schematically shown in Fig. 18.13a. The difference
between the real and ideal structure is a (bipolar) spatial distribution ofΔε(r)
which acts as a source of scattering and hence exponential attenuation of
coherent beams propagating through photonic crystals over lengths l, named
the ‘(extinction) mean free path’. After propagating over such distance l, a
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(a)

(c)

(b)

Fig. 18.11. (a) Tetragonal square-spiral photonic crystal. The crystal shown here
has a solid filling fraction of 30%. For clarity, spirals at the corners of the crystal are
highlighted with a different shade and height. The tetragonal lattice is characterized
by lattice constants a and b. The geometry of the square spiral is illustrated in
the insets and is characterized by its width, L, cylinder radius, r, and pitch, c.
The top left inset shows a single spiral coiling around four unit cells. (b) Band
structure for the direct structure crystal characterized by [L,C,r]=[1.6,1.2,0.14]
and a spiral filling factor fspiral = 30%. The lengths are given in units of a, the
lattice constant. The width of the PBG is 15.2% relative to the center frequency
for background dielectric constant εb = 1 and spiral dielectric constant εs = 11.9.
The positions of high-symmetry points are illustrated in the inset. Reprinted with
permission from [1055], c©2001 AAAS. (c) Oblique and edge views of a tetragonal
square spiral structure grown using the GLAD (glancing-angle deposition) process.
Reprinted with permission from [1056], c©2002 ACS

light beam is converted to a diffuse glow that corrupts the functionality of
any photonic integrated circuit. Experimentally for opals a mean free path
consistent with 5% fabrication accuracy has been found (Fig. 18.13b). For
such disorder and a lattice constant a ≈ λ, the mean free path is about only
10 wavelengths, l ≈ 10λ.
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Fig. 18.12. (a) Cartoon showing, in five steps, the fabrication of an inverse di-
amond structure with a full photonic band gap. First, (i) a mixed body-centered
cubic lattice is assembled (ii) after which the latex sublattice is removed; (iii) then
the structure is sintered to a filling fraction of ∼50% after that (iv) silicon or ger-
manium infiltration takes place and finally (v) silica elimination. (b) Photonic band
diagrams of (upper panel) a silicon/silica composite diamond opal and (lower panel)
made of air spheres in silicon resulting from the removal of the silica spheres from
the former. The filling fraction for silicon is 50%. The inset shows the correspond-
ing real space structures. Reprinted with permission from [1065], c©2001 AIP. (c)
SEM images of internal facets of silicon inverse opal: (i) (110) facet, (ii) (111) facet.
Adapted from [1066], reprinted with permission from Nature, c©2000 Macmillan
Magazines Limited

18.1.7 Defect Modes

Similar to a perfect periodic atomic arrangement leading to the formation of
the electronic band structure, a perfectly periodic dielectric structure leads to
the photonic band structure. As we know from semiconductor physics, much
of the interesting physics and numerous applications lie in defect modes, i.e.
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(a) (b)

Fig. 18.13. (a) Schematic photonic band gap structure with perfect (upper left)
and disordered (upper right) periodicity. In the lower left panel the disordered
structure is overlayed with the ideal structure (red circles). In the lower right panel,
the difference between ideal and disordered structure is shown. (b) Optical mean
free path in an opal photonic band gap structure for various lattice constants. Solid
line is theory for 5% fabrication accuracy. Adapted from [1067]

localized electronic states due to doping and recombination at such centers.
The equivalent in PBG structures are point defects (one unit missing) or line
defects (a line of units, straight, bend or with sharp angles, missing). Such
defects create localized states, i.e. regions for light localization. In the case
of line defects we deal with waveguides that can be conveniently designed
and could help to reduce the size of photonic and optoelectronic integrated
circuits.

1D Model

We revisit our 1D scattering theory and create now a ‘defect’. A simple defect
is the change of the width of the center n2-region in a quarter-wave stack.
For the numerical example, we choose N = 11, n1 = 1, n2 = 2.

In Fig. 18.14, the transmission curves are shown for the undisturbed
quarter-wave stack and the microcavity with n2 d

center
2 = 2λ0/4 = λ0/2.

A highly transmissive mode at ω = ω0 arises that is quite sharp with
Δω = 3×10−4. Thus, the quality factor Q, also called the Q-factor or finesse,

Q =
ω0

Δω
, (18.31)

with ω0 being the resonance frequency andΔω being the linewidth, is 3.3×103

in this case.
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(a) (b)

Fig. 18.14. Defect mode in 1D photonic band gap: (a) Transmission of N = 11
quarter-wave stack exhibiting a photonic band gap (n1 = 1, n2 = 2) (dashed line)
and of microcavity (solid line) with center n2-region of width λ0/2 (instead of
λ0/4). (b) Relative width of mode is about 3 × 10−4

Fig. 18.15. Transmission of N = 11 quarter-wave stack (n1 = 1, n2 = 2) with
center n2-region of widths 1.8 λ0/4 (dashed line) and 2.2 λ0/4 (solid line)

If the thickness is varied (Fig. 18.15), the mode shifts away from the
center. A similar scenario arises for higher-order nl/2-cavities, e.g. n2d

center
2 =

4λ0/4 = λ0 (Fig. 18.16).

2D or 3D Defect Modes

An example of 2D waveguiding is shown in Fig. 18.17. Point defects can be
used for high-finesse wavelength filtering. Emitters surrounded by a photonic
band gap material with a defect mode can emit into the defect mode only,
leading to spectrally filtered, highly directional emission.



496 18 Dielectric Structures

Fig. 18.16. Transmission of N = 11 quarter-wave stack (n1 = 1, n2 = 2) with
center n2-regions of widths 3 λ0/4 (solid line), 3.5 λ0/4 (dash-dotted line) and 4 λ0/4
(dashed line)

(a) (b)

(c)

Fig. 18.17. 2D photonic band gap waveguide structure. (a) Fabrication principle,
(b) SEM image of the structure, (c) light guiding at a 90◦ bend. Reprinted with
permission from [1070], c©2000 AIP
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18.1.8 Coupling to an Electronic Resonance

In a vertical-cavity surface-emitting laser (cf. Sect. 22.4.14), an optical defect
mode in a 1D dielectric structure is coupled to an electronic excitation, such
as an exciton in a quantum well or dot. In the simplest picture, the oscillator
must emit its radiation into the cavity mode since other modes do not exist
in the Bragg band. Thus, the emission energy is given and fixed by the cavity
mode. However, the photon mode (field oscillator) and the electronic oscilla-
tor form a coupled system that generally must be described using quantum
electrodynamics. Energy is periodically exchanged between the two oscilla-
tors with the Rabi frequency. An analogous phenomenon is investigated in
the field of atom–cavity interactions. A necessary condition for the observa-
tion of such an oscillation is that the radiation energy remains long enough
in the cavity that can be expressed as [1068, 1069] (cf. (18.37))

αd 1 −R ≈ π/Q , (18.32)

where α is the absorption coefficient of the electronic transition, d is the length
of the absorbing medium, R is the reflectance of the cavity mirror and Q is
the finesse of the cavity given in (18.31). This situation is called the strong
coupling regime since it leads to anticrossing behavior of the cavity mode
and electronic resonance. In the weak coupling regime for small absorption,
the resonances cross (within their linewidth). For resonance, the emission
intensity of the oscillator into the cavity mode is enhanced and its lifetime is
reduced (Purcell effect), which is discussed in Sect. 18.2.2.

The transmission T of a Fabry–Perot cavity with two (equal and lossless)
mirrors of transmission Tm = 1 −Rm is given by

T (ω) =
T 2

m exp (−2Lα(ω))
|1 −Rm exp (i2n∗Lω/c)|2 , (18.33)

with the complex index of refraction n∗ = nr + iκ =
√
ε and α = 2ωκ/c (cf.

(9.10)). For an empty cavity, i.e. a (small) background absorption αB and
a background index of refraction nr = nB, the resonances occur when the
phase shift 2nBLω/c is an integer multiple of 2π, i.e. for

ωm = m
πc

nBL
, (18.34)

with m ≥ 1 being a natural number. In the vicinity of the resonance, i.e. for
ω = ωm + δω, we can expand exp (2nBLω/c) ≈ 1 + i2nBLδω/c and obtain
from (18.33) a Lorentzian for the transmission

T (ω) ≈ T 2
m exp (−2Lα(ω))

|1 −Rm(1 + i2nBLδω/c)|2
=

(Tm/Rm)2 exp (2Lα(ω))
(δω)2 + γ2

c

. (18.35)

The frequency width (HWHM) γc of the empty-cavity resonance is given by
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γc =
1 −R′

R′
c

2nBL
, (18.36)

where R′ = Rm exp (−2Lα). Thus, the decay rate (photon loss from the
cavity) is proportional to Tm + αBL if both terms are small. The quality
factor of the cavity resonance m is given by

Q =
ωm

2γc
≈ mπ

1 −R
. (18.37)

Now, the electronic resonance is put into the cavity leading to a change
in the dielectric function to (cf. (D.11))

ε = n2
B

[
1 +

f

1 − (ω2 + iωΓ )/ω2
0

]
, (18.38)

where the index of refraction due to the electronic resonance is given by
n(ω) =

√
ε and (D.13a,b). For resonance of the cavity mode and the elec-

tronic oscillator, i.e. ωm = ω0, the solution for the cavity resonance condition
2nrωL/c = m2π is obtained, using (18.34), from

nr(ω) = m
πc

ωL
= nB

ωm

ω
. (18.39)

A graphical solution (Fig. 18.18a) yields three intersections of the left
and right hands of (18.39). The very high absorption at the central solution
(ω = ω0) results in very low transmission. The other two solutions2 yield the
frequencies of the coupled normal mode peaks. For f � 1, we use (D.13a) in
(18.39) and find for the splitting ±Ω0/2 of the two modes

Ω2
0 = f ω2

0 − Γ 2 . (18.40)

This frequency is called the Rabi frequency. If the dielectric function of the
oscillator is put into (18.33), the splitting is found to be

Ω2
0 = f ω2

0 − (Γ − γc)2 . (18.41)

A splitting will only be observable if Ω0  Γ, γc. If the two resonances ωc

and ω0 are detuned by Δ = ωc−ω0, the splitting Ω of the transmission peaks
shows the typical anticrossing behavior of two coupled oscillators

Ω2 = Ω2
0 +Δ2 . (18.42)

In the experiment, typically the electronic resonance remains fixed at ω0

and the cavity resonance is detuned by variation of the cavity length across
the wafer (Fig. 18.18b).

2These solutions only occur for sufficient oscillator strength f > (Γ/ω0)2, i.e. in
the strong coupling regime where Ω2

0 > 0. The absorption coefficient at ω0 must be
larger than Γn∞/c.
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Fig. 18.18. (a) Graphical representation of (18.39) with the two solutions marked
with circles for n∞ = 1 (dashed line), f = 10−3, Γ/ω0 = 10−2 and ω0 = ωm.
(b) Reflectance peak positions (experimental data (circles) at T = 5 K) vs. cavity
detuning ωc − ω0 for a cavity with two GaAs/AlGaAs Bragg mirrors (24/33 pairs
for the front/bottom mirror) and five embedded quantum wells whose resonances
are closely matched. Solid lines are a theoretical fit according to (18.42) with Ω0 =
4.3 meV. The dashed lines show the electronic resonance ω0 and the cavity resonance
ωc. Part (b) adapted from [1069]

A detailed theory of cavity polaritons is given in [1071]. The nonlinear
optics of normal mode coupling in semiconductor microcavities is reviewed
in [1072].

The in-plane dispersion of the cavity polaritons depends on the coupling
strength. First, the photon dispersion is given by

Eph(k) = �ω = �ck = �c
(
k2
‖ + k2

z

)1/2

, (18.43)

where k‖ is the in-plane k-vector and kz is given by the resonance condition,
kz = ωm/c with (18.34),

kz = m
π

nBL
. (18.44)

Thus the dispersion relation is no longer linear as for freely propagating light.
For small k‖ this leads to an (in-plane) effective photon ‘rest mass’, ap-

plying (6.37),
1
m∗

ph

=
1
�2

∂2Eph

∂k2
. (18.45)

We find

m∗
ph =

�kz

c
=

�ω(k‖ = 0)
c2

. (18.46)

Now we assume the electronic oscillator to be in resonance with the pho-
ton dispersion at k‖ = 0, i.e. Eel = �ω(k‖ = 0). The electronic resonance
shall have vanishing dispersion for simplicity since the exciton mass is much
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Fig. 18.19. Dispersion of cavity photon mode and electronic resonance at Eel =
3.0 eV (dashed lines) and coupled modes (solid lines) for 2V = 40 meV

larger than (18.46). The eigenwert equation of the coupled system, resembling
(6.64), is ∣∣∣∣∣

E − Eph V

V E − Eel

∣∣∣∣∣
= 0 , (18.47)

with two solutions, called the upper and lower cavity polariton branch,
visualized in Fig. 18.19. Their splitting at k‖ = 0 is 2V . Thus the cou-
pling parameter V = �Ω0/2 corresponds [1071] to the Rabi frequency
(18.40). Experimental values for the splitting of 3–15meV in InAlGaAs
based [1069, 1073–1076], 17–44meV in CdZnTeSe based [1077], 6–60meV in
AlInGaN based [1078–1082] and 78 meV in ZnO based [1083] microcavities
were found. It is possible to condensate cavity polaritons in the minimum of
the dispersion around k‖ = 0 (Bose-Einstein condensation). In [1084] stimu-
lated scattering and gain from cavity polaritons have been reported.

18.2 Microscopic Resonators

18.2.1 Microdiscs

A microdisc is a cylindrical resonator with a thickness d that is small com-
pared to the radius R. It can be fabricated from semiconductors and semi-
conductor heterostructures using patterning and material-selective etching.
With underetching a mostly free-standing disc can be made that resides on
a post (Fig. 18.20).

The coordinate system is (ρ, φ, z) with the z direction being perpendic-
ular to the disc area. Typically, the disc is so thin that there is only one
node along z. Solving the wave equation in this geometry [1086], the modes
are characterized by two numbers (m, l). m describes the number of zeros
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Fig. 18.20. (a) Side view of a 3-μm diameter disc containing one 10-nm InGaAs
quantum well between 20-nm InGaAsP barriers standing on an InP pillar that
has been selectively underetched using HCl. (b) Top view SEM image of a 5-μm
diameter InGaAsP microdisc. The pedestal shape is a rhombus due to anisotropic
etching of the HCl. Adapted from [1085], reprinted with permission, c©1992 AIP
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Fig. 18.21. (a) Field intensity for whispering gallery mode (10, 0) (TM-polarized)
for a circle with 1 μm radius (shown as white line) and n = 1.5. The image size is
4 × 4 μm2. (b) Theoretical quality factor of a 2-μm InP microdisc as a function of
the deformation parameter (18.49). The insets show (8,0) whispering gallery modes
at a wavelength of 1.55 μm for n = 3.4. Part (b) adapted from [1088]

along the azimuthal direction φ with the field amplitude being proportional
to exp(±imφ). Thus, except for m = 0, the modes are simply degenerate.
Modes with Ez = 0 are called TE modes. This is the preferred polarization of
emission. The number l denotes the number of zeros in the radial direction.
Only for modes with |m| = 1, is the intensity nonzero on the axis, i.e. for
ρ = 0. All other modes have vanishing intensity in the disc center.

The light intensity in whispering gallery modes is preferentially concen-
trated along the circumference of the disc as shown in Fig. 18.21a. Since the
light can only escape via evanescent waves, the light is well ‘captured’ in such
a mode. The Q-factor (18.31) is extremely high and takes values of several
104. In order to couple light out of such a disc, deformed resonators, e.g. with
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Fig. 18.22. Strong coupling of a single QD exciton (due to monolayer fluctuation
in a 13 ML thick GaAs/Al0.33Ga0.67As QW) with a WGM in a microdisk of 2 μm di-
ameter (inset). (a) Anti-crossing of upper and lower peak for various temperatures.
Symbols are data points, solid lines are theory considering coupling. The dashed
(dash-dotted) line is the expected temperature shift of the WGM mode (exciton en-
ergy). (b) Photoluminescence spectrum at the anti-crossing point (T = 30 K). Ex-
perimental data (squares) and fit with two peaks (solid line). Adapted from [1089]

a defect in the form of protrusions [1087], were devised. Deformed resonators
are discussed in more detail in the next section.

The strong coupling of a QD exciton to a whispering gallery mode is shown
in Fig. 18.22 where anti-crossing behavior is observed at low temperatures.
Tuning is achieved by temperature variation. Behavior of a similar system in
the weak coupling regime is shown in Fig. 18.24.

18.2.2 Purcell Effect

According to Fermi’s golden rule (18.1), the probability of an optical transi-
tion depends on the density of available optical modes (final states). If the
density of modes is enhanced compared to its vacuum value (18.2) at a res-
onance of an optical cavity, the lifetime of the electronic state decreases by
the Purcell factor [1091]

FP =
3

4π2
Q

(λ/n)3

V
, (18.48)

where n is the refractive index of the medium, Q is the quality factor of
the cavity resonance and V is the effective mode volume.3 Experiments on
the emission of quantum dots (that generally provide small absorption and

3V is given by the spatial integral of the vacuum field intensity for the cavity
mode, divided by its maximum value.
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Fig. 18.23. (a) Micropillar with MBE-grown GaAs/AlAs DBRs and a cavity con-
taining five layers of InAs quantum dots as indicated. The pillar has been prepared
by reactive ion etching. Reprinted with permission from [1090], c©1998 APS. (b)
Experimental decay time τ of on-resonance quantum dot luminescence scaled by
off-resonance lifetime τ0 = 1.1 ns (close to lifetime in a QD in bulk) for a variety
of micropillars with different Purcell factors FP. The error bars correspond to the
measurement accuracy of the decay time (±70 ps), the dashed line is a guide to the
eye. Adapted from [1090]

thus allow for the weak coupling regime) in etched micropillars containing
a microcavity (Fig. 18.23a) have shown that indeed the luminescence decay
is faster for cavities with large Purcell factor (Fig. 18.23b) [1090]. The res-
onance of cavity mode and emitter leads to an enhanced emission intensity
as shown in Fig. 18.24 for the exciton emission of a single quantum dot in a
microdisc [1092].

18.2.3 Deformed Resonators

The whispering gallery modes in circular (or spherical) cavities are long-lived
and emission goes into all angles. Light escape is based only on the exponen-
tially slow process of evanescent leakage (neglecting disorder effects such as
surface roughness). In order to overcome the isotropic light emission, the res-
onator needs to be deformed. This can be accomplished with an ellipsoidal
shape, i.e.

r(φ) = R [1 + ε cosφ] , (18.49)

where 1 + 2ε is the aspect ratio of the ellipse. The increased radiation leads
to a decrease of the Q-factor as shown in Fig. 18.21b. Also, a new decay
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Fig. 18.24. (a) Temperature dependence of the energy positions of the whispering
gallery mode (WGM) of a 5-μm diameter AlGaAs/GaAs microdisc (Q = 6500) and
the single-exciton resonance of a single InAs quantum dot contained within the
disc. (b) Intensity of WGM mode as a function of the detuning EWGM − EQD−X

from the QD single exciton resonance. The excitation density was 15 Wcm−2 for
all data. Adapted from [1092]

process, refractive escape, becomes possible. A ray that is initially in a whis-
pering gallery trajectory diffuses in phase space until finally an angle smaller
than the critical angle for total reflection (9.3) is reached. The ray dynamics
becomes partially chaotic [1093].

One other possible deformation of the circular disc geometry is a ‘flattened
quadrupole’ as shown in Fig. 18.25a. This shape can be parameterized by a
deformation parameter ε and the angle-dependent radius r(φ) given by

r(φ) = R
[
1 + 2ε cos2 (2φ)

]1/2
. (18.50)

For small deformation, the whispering gallery modes become chaotic and
exhibit preferred emission along the long axis of the resonator (Fig. 18.25b).
For larger deformations (ε ≥ 0.14), a stronger and qualitatively different
directionality occurs in the shape of a bow-tie [1094] as shown in Fig. 18.25c.
The optical laser power extracted from deformed resonators was found to
increase exponentially with ε; for ε = 0.2 it was 50 times larger than for the
circular resonator.

Another modification that can be applied to the microdisc in order to
increase outcoupling of light, is the spiral resonator [1095] as shown in
Fig. 18.26a. The radius is parameterized by

r(φ) = R
[
1 +

ε

2π
φ
]
. (18.51)

The experimental emission pattern is displayed in Fig. 18.26b. It exhibits a
maximum along the direction of the tangent at the radius step. The simulated
near-field intensity of such an emission mode is shown in Fig. 18.26c. In a
spiral laser, ray dynamics is also chaotic [1096].
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(a)

(b) (c)

Fig. 18.25. (a) SEM image of a quadrupolar cylinder laser with deformation pa-
rameter ε ≈ 0.16 on a sloped InP pedestal. The light grey area in the top view is the
electrical contact. (b) Simulated near-field intensity pattern of a chaotic whispering
gallery mode for ε = 0.06 and n = 3.3. (c) Simulated near-field intensity pattern of
a bow-tie mode for ε = 0.15. The length of the minor axis for (b) and (c) is 50 μm.
Reprinted with permission from [1094], c©1998 AAAS

18.2.4 Hexagonal Cavities

Hexagonal cavities develop, e.g., in microcrystals of wurtzite semiconductors
(with the c-axis along the longitudinal axis of the pillar). In Fig. 18.27a,
a ZnO tapered hexagonal resonator (needle) is shown. Whispering gallery
modes modulate the intensity of the green ZnO luminescence [1098].4 In a
simple plane-wave model, the resonance condition is given by

4We note that besides the green luminescence as in Fig. 10.19, an unstructured
green band also occurs that is observed here. Its origin may be linked to the oxygen
vacancy [1099].
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(c)

(a) (b)

Fig. 18.26. (a) SEM image of a microcavity disc laser diode with a disc radius
of 50 μm. The p-contact ring electrode defines the areas through which carriers
are injected into the microdisc and where stimulated emission can take place. (b)
Radial distribution of the light output from the spiral-shaped microdisc laser diode
measured below and above threshold. The radius of the spiral microdisc was r0 =
250 μm and the deformation parameters were ε = 0.05 (grey) and ε = 0.10 (black).
An emission beam at an angle of α = 0◦ corresponds to a direction normal to the
notch surface as shown in the inset. Below the laser threshold, the emission pattern
is essentially isotropic and independent of the deformation parameter. Above the
threshold, directional emission is clearly observed with the emission direction at a
tilt angle α ≈ 25◦. The measured divergence angle of the far-field pattern is ∼ 75◦

for ε = 0.10 and ∼ 60◦ for ε = 0.05. Reprinted with permission from [1097], c©2004
AIP. (c) Simulated near-field intensity pattern of an emission mode with nkR ≈ 200
for deformation ε = 0.10. Reprinted with permission from [1095], c©2003 AIP

6Ri =
hc

nE

[
N +

6
π

arctan
(
β
√

3n2 − 4
)]

, (18.52)

where Ri is the radius of the inner circle (Fig. 18.27d), n is the index of
refraction, N is the mode number and β is given by βTM = 1/n (βTE = n)
for TM (TE) polarization, respectively. Due to birefringence, n|| (n⊥) has to
be used as the index of refraction for TM (TE) polarization.
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(e)

(d)

Fig. 18.27. (a)–(c) SEM images of ZnO nanoneedle fabricated by pulsed laser
deposition. (d) Schematic geometry of cross-sectional plane. Ri (R) is the radius
of the incircle (circumscribing circle). The circumference of the inscribed white
hexagon, representing the path of a whispering gallery mode, has a length of 6Ri.
(e) Two-dimensional plot of spectra recorded along a linescan along the needle’s
longitudinal axis. The left vertical axis shows the linescan position x, the right one
refers to the respective needle diameter D. The spectral maxima, i.e. the measured
WGM energies, appear as bright belts going from the bottom left corner to the
right upper one. With decreasing diameter, all resonances shift systematically to
higher energies. The white dots give theoretical TM-resonance energy positions
obtained from (18.52), white crosses give the same for TE-polarization. Reprinted
with permission from [1098], c©2004 APS

A N = 26 whispering gallery mode of a hexagonal resonator is shown
in Fig. 18.28c,d. The 6-fold symmetric emission stems from the edges of the
hexagon. While whispering gallery resonators have typically mode numbers
N  1, in such hexagonal resonators the whispering gallery modes could be
followed down to N = 1 [1098] as shown in Fig. 18.27a,b,e.

Under high optical pumping laser action occurs on the whispering gallery
modes. The peak positions, close to the band gap in the spectral region of the
electron-hole plasma, follow (18.52) [1101], as shown for various diameters in
Fig. 18.29.
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(a) (b)

(d)(c)

(e)

Fig. 18.28. Simulated near-field intensity pattern of modes in a cavity with hexag-
onal cross section (absolute value of electric field in linear grey scale): Modes
(N = 4) with (a) symmetry −a and (b) mode 4+ (nomenclature from [1100])
for n = 2.1 and kR = 3.1553 − i0.0748. Modes (c) 26− and (d) 26+ for n = 1.466
and kR = 22.8725 − i0.1064. The displayed modes have a chiral pattern. Emission
originates mostly from the corners. (e) Micro-photoluminescence spectra of a single
ZnO nanopillar. The three topmost curves are unpolarized. The curve labeled ‘bulk’
shows the unmodulated luminescence of the green luminescence in bulk. The line
labeled ‘exp.’ shows the experimental μ-PL spectrum of the investigated nanopillar.
The experimental spectra recorded for TM- and TE-polarization, respectively, are
shown in the lowest two curves. The curve labeled ‘theory’ displays the theoretical
luminescence spectra. Dashed vertical lines are guides to the eye referring to the
spectral position of the dominating WGMs. The inset shows a SEM image of the
investigated pillar, the scale bar has a length of 500 nm. The dotted lines show the
position of the edges of the hexagonal resonator obtained from topography contrast
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(a) (b) (c)

Fig. 18.29. (a) Photoluminescence spectra of a ZnO microwire with hexagonal
cross section for various pump power densities (lowest curve: D = 60 kW/cm2, top
curve: D = 250 kW/cm2) at T = 10 K. The inset shows the scanning electron mi-
croscopy image of a typical microwire (d = 6.40 μm). (b) Dependence of the emitted
PL intensity of a selected lasing peak (denoted by an arrow in the spectrum in part
(a)) on the excitation density D. Lines are guide to the eyes. (c) Dependence of
the resonant energies on the interference order N for wires with different diameters
as labeled on top of the graph. Lines are the predicted theoretical values calculated
from (18.52) using diameter values obtained from SEM measurements; the symbols
represent the experimentally observed peaks. Adapted from [1101]



19 Transparent Conductive Oxide
Semiconductors

Transparent conductive oxides (TCO) are semiconductors that are simulta-
neous transparent and highly conductive. Therefore they can serve as trans-
parent contacts, e.g. as a solar cell front contact or in display applications.
The materials are typically fabricated in the form of thin films on glass,
polymers or similar substrates and devices. The crystallographic structure is
polycrystalline or amorphous. The first TCO investigated was CdO in pressed
powder [1102] and thin film form [27]. The recent historic development of the
resistivity of the most important TCO materials in the last 30 years is shown
in Fig. 19.1. Further information on TCO films can be found in [1103–1105].

Fig. 19.1. Historical development of the resistivity of doped ZnO (circles), In2O3

(squares) and SnO2 (diamonds) TCO films. Adapted from [1105]

19.1 Materials

Any wide-gap (Eg > 3 eV) semiconductor that is conductive, e.g. due to in-
trinsic defects or by chemical impurities (doping), can be considered to be a
TCO. Pratically only a few, non-toxic materials that can be easily deposited
are of importance. The first TCO application was heating of air plane win-
dows. As always in semiconductor technology, price drives the suitability for

M. Grundmann, The Physics of Semiconductors, 2nd ed., Graduate Texts 511
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Fig. 19.2. Practical TCO materials

applications. This in particular true for TCO applications since they include
large area devices such as solar cells, displays and also large glass panes
for electromagnetic shielding and architectural heat and IR transparency
management. Therefore large quantities of TCO are needed. The popular
ITO (indium-tin-oxide) suffers from large indium price and potential indium
scarcity, opening the field for aluminum-doped ZnO (ZAO) which is abun-
dant. Possible other compounds including Cd are of no practical interest due
to toxicity. Conductive GaN has not been considered due to its large pro-
cessing temperatures. All practical TCO materials contain either Zn, Sn or
In (Fig. 19.2). A number of TCO materials is reviewed in [1106]. TCO are
mostly n-conducting. Also p-conducting TCOs have been reported [1107],
but there has been so far no report on a practical transparent electrode.

The term ITO stands for a variety of Sn-doped indium oxide (In2O3)
materials, the Sn content being typically in the 5–10% range but not strictly
defined. The crystal structure of In2O3 [1108] is shown in Fig. 19.3. The effect
of the replacement of indium by tin atoms in In2O3 on mechanical, electrical
and optical properties of ITO has been calculated in [1109] using DFT. In
Fig. 19.4 the band structures of pure In2O3 and (Sn0.065In0.935)2O3 (one out
of 16 indium atoms was replaced in the calculation) are compared [1110].
The fundamental band gap is slightly lowered, the high doping introduces a
gigantic Burstein-Moss shift. Additionally another band gap opens that splits
the lowest conduction band. Also the conduction mechanism in amorphous
oxides has been discussed [1111].

19.2 Properties

The best conductivity of TCOs is in the range of 10−4 Ω cm for the specific
resistivity. Such value is about three orders of magnitude smaller than that
of metals. However, the TCO meanwhile is highly transparent in the visible
region, while metals become transparent only in the UV region because of
their high plasma frequency (cf. Sect. 9.7).
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Fig. 19.3. The bixbyite crystal structure of indium oxide (In32O48) showing one
unit cell where the indium and oxygen atoms are represented by the full and empty
circles, respectively. Adapted from [1109]

Fig. 19.4. Comparison of the band structure of In2O3 (left) and (Sn0.065In0.935)2O3

(right). The position of the Fermi level is for both cases at E = 0. Adapted
from [1110]

The conduction mechanism in ZnO:Al is band transport in a highly doped
semiconductor. The carrier concentration is typically around 1021 cm−3. One
of the best results is a (Hall) mobility of 47.6 cm2/Vs, leading to a specific
resistivity of 8.5× 10−5 Ω cm [1112]. The mobility is limited by (doping level
dependent) ionized impurity scattering (Sect. 8.3.3) as shown in Fig. 19.5 for
various films. Also the mobility is correlated (Fig. 19.6) with scattering at
structural defects such as grain boundaries [1113] (cf. Fig. 8.4). We note that
the carrier mobility in a (polycrystalline) TCO is not very different from that
in highly doped (crystalline) silicon (Fig. 8.7).
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Fig. 19.5. Hall mobility for various ZnO:Al TCO thin films as a function of carrier
(electron) concentration. The dashed line is the Brooks–Hering theory of ionized
impurity scattering (taking into account non-parabolicity of the conduction band).
The dash-dotted line is mobility in the presence of grain boundaries, the solid line is
combined theory. Symbols are experimental data from two sets of samples. Adapted
from [1105]

Fig. 19.6. Hall mobility of ZnO:Al films (of varying thickness) vs. the crystallite
size. Experimental data (from [1105]) are shown as symbols. The dashed line is a
guide to the eyes

Conductivity and transparency are, however, linked. The high doping of
the TCO leads to shifts in the band gap (renormalization and Burstein-Moss
shift), band tails and the like that can introduce absorption in the visible spec-
tral region. Also the infrared transparency is related to the conductivity by
free carrier absorption and the plasma edge (Sect. 9.7). With increasing car-
rier density, the plasma edge shifts into the visible spectral range (Fig. 19.7a),
limiting the possible maximum carrier density to several 1021 cm−3, the exact
value depending on the carrier mass. In Fig. 19.7b the transparency spectra of
two SnO2 films with different conductivity are compared. The higher conduc-
tivity due to larger carrier concentration leads to reduced IR transparency.
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(b)(a)

Fig. 19.7. (a) Absorption coefficient of n-type ZnO for various electron concen-
trations as labeled. Spectra synthesized from ellipsometric data of thin films. The
visible spectral range is indicated. The contributing absorption processes are band-
band transitions (BB), free carrier absorption (FC) and phonon-related absorption
(Ph) as labeled. (b) Transparency vs. wavelength spectra of two SnO2 films with
different conductivity as labeled. Adapted from [1114]

Generally, the transmission of a TCO is limited by the band edge on the
high energy side of the spectrum and the plasma edge on the low energy side
of the spectrum. The limited carrier concentration due to the onset of free
carrier absorption in the visible spectral range (∼ 3 × 1021 cm−3) and the
limited mobility in the presence of such high impurity concentration (max.
50 cm2/Vs) restrict the minimum resistivity of a TCO (or any transparent
conductor) to about 4 × 10−5 Ω cm [1115].



Part III

Applications



20 Diodes

20.1 Introduction

One of the simplest1 semiconductor devices is the diode. It is a so-called
two-terminal device, i.e. a device with two leads. The most prominent prop-
erty of a diode is the rectifying current–voltage (I–V ) characteristic. This
function was initially realized with vacuum tubes (Fig. 20.1); a heated fila-
ment emits electrons that are transferred through vacuum to the anode if it is
on a positive potential. The semiconductor diode technology led to a tremen-
dous miniaturization, integration with other devices (in planar technology)
and cost reduction.

We distinguish2 unipolar diodes, for which the majority carriers cause
the effects (e.g. metal–semiconductor diodes), and bipolar diodes in which
minority carriers play the decisive role, e.g. in the pn-junction diode.

(a) (b)

Fig. 20.1. (a) Schematic image of a vacuum diode. The electron current flows from
the heated cathode to the anode when the latter is at a positive potential. (b) John
A. Fleming’s first diode ‘valve’, 1904

1The simplest device is a resistor made from a homogeneous piece of semicon-
ductor, used, e.g., as a part of an integrated circuit or as a photoresistor as discussed
in Sect. 21.2.

2This distinction is not only made for diodes but also for many other semicon-
ductor devices such as transistors, see Sect. 23.
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20.2 Metal–Semiconductor Contacts

The metal–semiconductor contact was investigated in 1874 by F. Braun
(see Sect. 1.1). For metal sulfides, e.g. CuFeS2, he found nonohmic be-
havior. We remark here that we treat first metal–semiconductor contacts
with rectifying properties. Later it becomes understandable that metal–
semiconductor contacts can also be used as ohmic contacts, i.e. contacts
with a very small contact resistance. Rectifying metal–semiconductor con-
tacts are also called Schottky diodes. A very important variation are metal–
insulator–semiconductor diodes for which an insulator, mostly an oxide,
is sandwiched between the metal and the semiconductor. Such diodes are
treated in Sect. 20.3. Reviews on Schottky diodes can be found in [1116–1120].

20.2.1 Band Diagram in Equilibrium

The metal and the semiconductor have generally different positions of the
Fermi levels relative to the vacuum level. When the metal is in contact with
the semiconductor, charges will flow in such a way that in thermodynamic
equilibrium the Fermi level is constant throughout the structure.3 In the fol-
lowing we treat two limiting cases: The contact of a metal with a semiconduc-
tor without any surface states (Schottky–Mott model) and a contact where
the semiconductor has a very high density of surface states (Bardeen model).

The position of the Fermi level in the metal is given by the work function
Wm that is shown in Fig. 20.2 for various metals (see also Table 20.1). The
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Fig. 20.2. Work function Wm of various metals

3This situation is similar to the heterostructure interface (Sect. 11.3.4), with
the metal, however, having a very short screening length.
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work function reflects the atomic shell structure; minima of the work function
exist for group-I elements. The work function is the energy difference between
the vacuum level (an electron is at rest in an infinite distance from the metal
surface) and the metal Fermi level (Wm > 0). Since the electron density in
the metal conduction band is very high, the position of the metal Fermi level
does not change considerably when charge is exchanged between the metal
and the semiconductor.

Since in a semiconductor the Fermi level depends strongly on the dop-
ing and temperature it is not useful to characterize the material itself. For
semiconductors the electron affinity χsc = Evac − EC > 0 is defined as the
energy difference between the vacuum level and the conduction-band edge
(see Fig. 11.14).

Ideal Band Structure

When the metal and the semiconductor are not in contact (Fig. 20.3a), the
metal is characterized by its work function Wm = Evac − EF and the semi-
conductor by its electron affinity χsc. First, we assume that Wm > χsc. For
an n-type semiconductor, the energy difference between the Fermi level and

Table 20.1. Values of the work function Wm of various metals

Z element Wm (eV) Z element Wm (eV) Z element Wm (eV)

3 Li 2.4 37 Rb 2.1 64 Gd 3.1
4 Be 3.4 38 Sr 2.59 65 Tb 3.0
5 B 4.5 39 Y 3.1 66 Dy –
6 C 4.8 40 Zr 3.8 67 Ho –
12 Mg 3.66 41 Nb 4.3 68 Er –
13 Al 4.2 42 Mo 4.2 69 Tm –
14 Si 4.2 44 Ru 4.71 70 Yb –
19 K 2.2 45 Rh 4.6 71 Lu 3.3
20 Ca 2.87 46 Pd 5.0 72 Hf 3.9
21 Sc 3.5 47 Ag 4.7 73 Ta 4.1
22 Ti 4.1 48 Cd 4.0 74 W 4.55
23 V 4.3 49 In 4.12 75 Re 5.0
24 Cr 4.4 50 Sn 4.3 76 Os 4.8
25 Mn 3.89 51 Sb 4.1 77 Ir 4.6
26 Fe 4.4 52 Te 4.8 78 Pt 5.3
27 Co 5.0 55 Cs 2.14 79 Au 4.8
28 Ni 4.9 56 Ba 2.5 80 Hg 4.49
29 Cu 4.5 57 La 3.5 81 Tl 3.8
30 Zn 4.3 58 Ce 2.9 82 Pb 4.0
31 Ga 4.2 59 Pr – 83 Bi 4.4
32 Ge 4.8 60 Nd 3.2 90 Th 3.5
33 As 5.1 62 Sm 2.7 92 U 3.6
34 Se 5.9 63 Eu 2.5
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(a) (b)

Fig. 20.3. Schematic band structure of a metal–semiconductor junction that is
dominated by bulk properties of the semiconductor. (a) no contact, (b) metal and
semiconductor in contact. w denotes the width of the depletion layer. Outside the
depletion layer the semiconductor is neutral. FB,n denotes the Schottky barrier
height, Vbi denotes the built-in voltage (here Vbi > 0)

the conduction band is denoted as −eVn = EC −EF (Vn < 0 for nondegener-
ate semiconductors). Thus, the position of the semiconductor Fermi level is
given as

EF = Evac − χsc + eVn . (20.1)

If the metal and semiconductor are brought into contact the Fermi levels
will equilibrate. For the case of Fig. 20.3 (EF,sc > EF,m) electrons will flow
from the semiconductor to the metal. The negative surface charge of the
metal is compensated by a positive charge (due to D+) in the semiconductor
in the vicinity of the surface. Eventually a (Schottky) barrier of height4 FBn

FBn = Wm − χsc (20.2)

forms at the interface. The subscript ‘n’ stands for the contact on an n-type
semiconductor. Surface/interface effects such as non-matching bonds, surface
states, etc. are neglected at this point. In the semiconductor there exists a
positively charged region that is called the depletion layer or space-charge
region. Its extension (w in Fig. 20.3b) and properties will be discussed in
Sect. 20.2.2. The space charge region in the metal is very thin due to the
small screening length.

For a contact on a p-type semiconductor the barrier FBp (to the valence
band) is (see Fig. 20.4d)

FBp = Eg − (Wm − χsc) . (20.3)

Between the surface of the metal and the bulk part of the semiconductor
there is a potential drop

4We denote the energy barrier height with FB = eφB.
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Fig. 20.4. Band structures of metal–semiconductor junctions for (a,b,c) an n-type
semiconductor and (d,e,f) a p-type semiconductor (here FBp > 0). (b,e) in ther-
modynamic equilibrium, (a,d) with forward bias (V > 0), (c,f) with reverse bias
(V < 0)

Vbi =
FBn

e
+ Vn =

Wm − χsc

e
+ Vn , (20.4)

which is termed the built-in potential (or diffusion voltage). The exact form of
the voltage drop, the so-called band bending, will be discussed in Sect. 20.2.2.

The surface index is defined as

S =
∂FBn

∂Wm
. (20.5)
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From the present consideration (20.2), the same semiconductor with metals
of varying work function should result in S = 1.

Band Structure in the Presence of Surface States

Experimental data shown in Fig. 20.5a, however, show a different behavior
with smaller slope. For GaAs, e.g., the barrier height is almost independent
of the metal work function. Thus, a different model is needed for realistic
Schottky diodes. A rule of thumb for the dominantly covalent semiconductors
is that for n-type material the barrier height is 2/3 of the band gap and for
p-type material 1/3 of the band gap, such that EC−EF ≈ 2Eg/3 (Fig. 20.5b).
Only for ionic semiconductors S ≈ 1 holds (Fig. 20.5c) [1125].
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Fig. 20.5. (a) Experimental Schottky barrier heights FBn vs. metal work func-
tion Wm for various metal–semiconductor junctions as labeled. Dashed lines are
guides to the eye, dash-dotted lines indicate dependencies for S = 1 and S = 0.
Data from [1121, 1122]. (b) EC − EF at the metal–semiconductor interface vs.
the band gap Eg for Au Schottky contacts on various semiconductors. The dashed
line represents EC − EF = 2Eg/3. Data from [1123]. (c) Surface index S vs. the
electronegativity difference ΔX between the species of compound semiconductors.
Dashed line is a guide to the eye. Data from [1122, 1124]
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(a) (b)

Fig. 20.6. Schematic band structure of a metal–semiconductor junction that is
dominated by surface properties of the semiconductor. (a) no contact; due to pin-
ning of the Fermi level at surface states of the semiconductor, a depletion-layer of
width w is already present. (b) Metal and semiconductor in contact

If the semiconductor has a large density of states at its surface (� 1012

cm−2), there is a space-charge region already without the metal [1126]. Sur-
face traps are filled up to the Fermi level (Fig. 20.6a). The size of the band
bending in the semiconductor will be denoted as FBn since it will turn out
below as the Schottky barrier height. If the density of surface states is very
high, the charge carriers moving from the semiconductor into the metal upon
contact formation are accommodated in the surface states and the position of
the Fermi level at the semiconductor surface changes only very little. Thus,
the space-charge region is not modified and it is identical to the surface de-
pletion region. The Schottky barrier height is then given by the band bending
at the (bare) semiconductor surface FBn (Fig. 20.6d) and does not depend
on the metal work function at all (Bardeen model)). For this limiting case
we find for the surface index S = ∂FBn/∂Wm = 0.

For actual metal–semiconductor contacts the surface index S takes values
between 0 and 1. A theory involving the semiconductor band structure and
midgap (surface) states (MIGS) is needed [488, 1127]. For Si, the experimental
result is S = 0.27; the corresponding density of surface states is Ds = 4 ×
1013 cm−2 eV−1.

20.2.2 Space-Charge Region

The width w of the space-charge region is calculated next. First, we make
the so-called abrupt approximation. In this approximation (Schottky–Mott
model), the charge density ρ in the space-charge region (0 ≤ x ≤ w) is given
by the doping, i.e. ρ = +eND. Outside the space-charge region the semicon-
ductor is neutral, i.e. ρ = 0 and the electric field is zero, i.e. dϕ/dx = 0. As
further boundary conditions the potential at the interface is ϕ(0) = −Vbi < 0.
The potential drop in the space-charge region is determined by the one-
dimensional Poisson equation
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d2ϕ

dx2
= − ρ

εs
, (20.6)

where εs = εr ε0 is the static dielectric constant of the semiconductor. Using
the ansatz ϕ(x) = ϕ0 + ϕ1x+ ϕ2x

2 we find

ϕ(x) = −Vbi +
eND

εs

(
w0 x− 1

2
x2

)
, (20.7)

w0 being the depletion layer width at zero bias.
The electric field strength is

E(x) = −eND

εs
(w0 − x) = Em +

eND

εs
x , (20.8)

with the maximum field strength Em = −eND w0/εs at x = 0. From the
condition ϕ(w0) = 0 we obtain w0 as

w0 =
√

2εs
eND

Vbi . (20.9)

The charge density and the potential in the abrupt approximation are shown
in Fig. 20.7 for GaAs material parameters.

Beyond the abrupt approximation, the thermal distribution of the major-
ity carriers must be treated with more care. The dependence of the charge
density ρ = e(N+

D − n) on the potential ϕ (within the Boltzmann approxi-
mation) is (β = e/kT )

ρ = eND [1 − exp (β ϕ)] . (20.10)

(a) (b)

Fig. 20.7. (a) Potential ϕ and (b) charge density ρ across the depletion layer of a
Schottky n-GaAs diode. Calculation parameters are εs = 12.5 ε0, Vbi − Vext = 2 V
(small reverse bias), ND = 1 × 1016 cm−3, T = 300 K. Abrupt approximation is
shown as solid lines, exact (numerical) calculation as dash-dotted line. Dashed line
in (a) indicates depletion layer width w0 in the abrupt approximation
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The actual charge density and the potential, obtained from a numerical solu-
tion of (20.6), are shown in Fig. 20.7 in comparison with the abrupt approx-
imation. Clearly, at the Schottky depletion layer width w0, the charge varies
continuously and the potential does not drop to zero.

We note that for the depletion layer ϕ ≤ 0 and n ≤ ND. The charge
difference Δρ (due to the tail of the thermal distribution of the majority
charge carriers in the depletion layer) between the real distribution (20.10)
to the abrupt approximation model with constant charge density (ρ0 = eND)
in the depletion layer is

Δρ(x) = ρ(x) − ρ0 = −eND exp (β ϕ(x)) . (20.11)

The integration of Δρ over the depletion layer yields that the voltage drop
Vbi across the depletion layer needs to be corrected by ΔV

Δϕ =
∫ w0

0

[∫ x

0

−Δρ(x′)
εs

dx′
]

dx =
1
β

[1 − exp(−β Vbi)] ≈ β−1 . (20.12)

The approximation is valid for βVbi  1. Therefore, (20.9) is corrected to

w0 =
√

2 εs
eND

(Vbi − β−1) . (20.13)

When a potential difference Vext is applied externally to the diode, (20.13)
is modified by the change in the interface boundary condition, ϕ(0) = −Vbi +
Vext. The band structure is shown schematically in Fig. 20.4a for a forward
bias and in Fig. 20.4c for a reverse bias. Therefore, we obtain for the depletion-
layer width (within the abrupt approximation)

w(Vext) =
√

2 εs
eND

(Vbi − Vext − β−1) . (20.14)

Now we can also give explicitly the value of the maximum electric field (at
x = 0)

Em = −
√

2 eND

εs
(Vbi − Vext − β−1) (20.15)

= − 2
w

(
Vbi − Vext − β−1

)
.

We note that so far the barrier height is independent of the applied bias
voltage. In the next section, it is shown that this is actually not the case.

20.2.3 Schottky Effect

The barrier height is reduced by the image-charge effect that has been ne-
glected so far. An electron (charge q = −e) at position x in the semiconductor
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Fig. 20.8. (a) Energy of a particle with respect to the metal surface (dashed line),
conduction band in semiconductor depletion layer (dash-dotted line) and combined
effect (solid line). The image charge energy lowers the potential barrier FB0 by the
amount ΔFB to FBn. (b) Conduction band on the semiconductor side of a metal–
semiconductor junction at various bias voltages (V = 0, V = +Vbi/2, and V = −Vbi

as labeled) taking into account the Schottky effect. The width of the depletion layer
is indicated with a short vertical dashed line. The barrier height without Schottky
effect is FB0. The dashed line is the situation without Schottky effect for zero bias

is facing a metal surface. The metal surface is at zero position (Fig. 20.8a).
The potential distribution of the free charge is modified since the metal sur-
face is an equipotential surface. The potential distribution outside the metal
is identical to that if an image charge −q were located at −x. This image
charge exerts a force (image force Fif) on the electron

Fif = − q2

16π εs x2
, (20.16)

where εs is the relative dielectric constant of the semiconductor. In order to
bring an electron to x from infinity the work Eif

Eif =
∫ x

∞
Fif dx = − q2

16π εs x
(20.17)

is needed. This image potential energy is shown in Fig. 20.8a. The total
energy Etot (solid line in Fig. 20.8a) of the electron in the presence of an
electric field E is given by

Etot = q Ex− q2

16π εsx
. (20.18)

The maximum of this function (dEtot/dx = 0) is at xm

xm =
√

e

16π εs E . (20.19)
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Fig. 20.9. Electric-field dependence of the image charge lowering of the Schottky
barrier. Dash-dotted line is for vacuum dielectric constant, dashed line is (20.20)
for εr = 12. Adapted from [1129]

The energy barrier (20.2) (without image charge effect now labeled as
FB0) is reduced by ΔFB given by

ΔF if
B = e

√
e E

4πεs
= 2 e E xm . (20.20)

With the field in the vicinity of the interface given by Em from (20.16), the
barrier reduction is5 [1128]

ΔF if
B = e

[
e3ND

8π2 ε30 ε
3
s

(
Vbi − Vext − β−1

)
]1/4

. (20.21)

For εs = ε0 (vacuum) and a field strength of 105 V/cm the maximum
position is at xm = 6 nm and the barrier reduction is ΔF if

B = 0.12 eV. For
107 V/cm xm = 1 nm and ΔF if

B = 1.2 eV. For semiconductors with εr ∼ 10
the effect is smaller (Fig. 20.9). The Schottky effect depends on the bias
voltage as visualized in Fig. 20.8b and therefore the barrier height depends
on the applied bias voltage.

20.2.4 Capacitance

The total space charge Q (per unit area) in the semiconductor is (V = Vext)

Q(V ) = eND w =
√

2 eND εs (Vbi − V − β−1) . (20.22)

and depends on the external voltage.
5The term ε3s is technically εsε

2
d where εd is the image-force dielectric constant.

εd is equal to εs if the transit time of an electron from the metal to the maximum
of the potential energy is sufficiently long to build up the dielectric polarization of
the semiconductor [1116].
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For measurement of the depletion layer capacitance first the external dc
bias voltage V is set which defines the extension of the depletion layer. The
(differential) capacitance is probed by an ac voltage with small amplitude
δV � V . First we assume that the ac frequency ω is small compared to
characteristic time constants of the electrically active impurities (quasi-static
capacitance) and discuss the bias dependence C(V ). Following we discuss the
frequency and temperature dependence of the capacitance6 C(ω, T ), in par-
ticular when the measurement frequency is in the range of the (temperature
dependent) electron capture or emission rate (10.51).

Bias Dependence

From (20.22) the capacitance C = |dQ/dV | (per unit area) of the space
charge region is given by

C =

√
eND εs

2 (Vbi − V − β−1)
=
εs
w
. (20.23)

Equation (20.23) can also be written as

1
C2

=
2
(
Vbi − V − β−1

)

eND εs
. (20.24)

If 1/C2 is measured as a function of the bias voltage (C–V spectroscopy),
it should be linearly dependent on the bias voltage if the doping concentration
is homogeneous (Fig. 20.10a). The doping concentration can be determined
from the slope via

ND = − 2
e εs

[
d

dV

(
1
C2

)]−1

, (20.25)

(see Fig. 20.10b) and the built-in voltage Vbi from the extrapolation to V = V ′

such that 1/C2 = 0, Vbi = V ′ + kT . Using (20.4) the Schottky barrier height
can be determined from this [1130] via

FBn
= e V ′ − e Vn + kT −ΔF if

B , (20.26)

where ΔF if
B is the barrier lowering (20.21) due to the image force effect be-

tween the flat-band and the zero-bias cases.
We note that for inhomogeneous doping the depth profile of the doping

can be determined by C–V spectroscopy. The 1/C2 vs. bias curve is then
no longer a straight line and exhibits a varying slope. ND(w) is evaluated
according to (20.25) using w = εs/C from (20.23) [1131],

6Probing the capacitance as a function of the ac frequency is called admittance
spectroscopy.
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(a) (b)

Fig. 20.10. (a) Capacitance C (dashed line) and 1/C2 (solid line) vs. bias voltage
dependence for an Au/GaAs Schottky diode (2-μm MOVPE-grown GaAs:Si on a
n-GaAs substrate) at room temperature. From the extrapolation to 1/C2 = 0 and
(20.24) we obtain Vbi = 804±3 mV. (b) Donor concentration (ND = 4.8×1016 cm−3)
determined via (20.25) from the 1/C2 plot vs. the depletion layer width (calculated
using (20.23))

ND

(
w =

εs
C

)
= − 2

eεs

[
d

dV

(
1
C2

)]−1

, (20.27)

Using functional integration, the capacitance of a depletion layer can be
expressed in terms of ϕ(0) = Vbi − V without explicit knowledge of the
potential ϕ(x) [1132].7 In the approximation eϕ(0)  kT we obtain for ho-
mogeneous doping as refinement of (20.23)

C =

√√√√
eND εs

2
(
Vbi − V − β−1

(
n0
ND

− ln n0
ND

)) , (20.28)

where n0 is the electron concentration in the neutral region. Within this
general treatment, the validity of (20.25) has been confirmed. Also, C does
not diverge in the flatband case, for V → Vbi, as for the abrupt approximation
but exhibits a maximum [1132].

At a given bias voltage, the charge (ionized donors or acceptors) at the
boundary of the space-charge region is tested by the capacitance measure-
ment. However, this principle works only if the depth of the space-charge
region actually changes with the bias voltage. The method can therefore not
be applied to such systems like δ-doped layers or quantum wells.

Frequency and Temperature Dependence

The release of carriers from (and capture on) a donor occurs with a char-
acteristic emission rate gc (10.51) (capture rate rc). This is true similarly

7This is valid as long as ϕ(x) is strictly monotonous.
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(a) (b)

Fig. 20.11. (a) Capacitance vs. probing frequency f for a Pd/ZnO Schottky diode
(zero bias) at T = 85 K. Theoretical dependence (solid line) and experimental data
(circles). (b) Capacitance of the same diode as a function of temperature (thermal
admittance spectroscopy, TAS) for four different probing frequencies f =10, 50,
100 and 316 kHz (ac amplitude 50 mV). Arrows denote the release of carriers from
four different defect levels, two shallow ones and the well-known defects E1 and
E3 [523, 1136]. The inset shows the contribution of the E1 defect, indicated by a
rectangle in the main graph, in more detail. Symbols are experimental data, lines
are fit with four-level model (E1: ED = 116 meV, E3: ED = 330 meV) [1137]

for acceptors. Therefore, the capacitance depends on the sampling frequency
(Fig. 20.11a). If the capacitance is probed with a frequency much smaller
than the release rate, the system appears to be in equilibrium and has the
(quasi-)static capacitance C0. If the probe frequency is much higher, the sys-
tem cannot follow and the donor does not contribute to the capacitance. The
characteristic frequency f̂ at the turning point of C(f) is [718]

2π f̂ = 2 gc , (20.29)

with corrections of the simple factor of 2 discussed in [1133]. Since the emis-
sion rate depends exponentially on temperature, for a given frequency the
capacitance depends on temperature [1134]. This is shown in Fig. 20.11b for
ZnO which exhibits several donor levels. At low temperature shallow levels
release their carriers, at higher temperature the deeper levels start to con-
tribute. The DX center in AlGaAs (see Sect. 7.7.6) has been investigated
in [1135] with this technique.

20.2.5 Current–Voltage Characteristic

The current transport through a metal–semiconductor junction is dominated
by the majority charge carriers, i.e. electrons (holes) in the case of an n-type
(p-type) semiconductor, respectively.
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Fig. 20.12. Transport mechanisms at metal–semiconductor junctions. (1)
Thermionic emission (‘above’ the barrier) (2) tunneling (‘through’ the barrier),
(3) recombination in the depletion layer, (4) hole injection from metal

In Fig. 20.12, the possible transport mechanisms are visualized for an
n-type semiconductor. Thermionic emission ‘above’ the barrier involves the
hot electrons from the thermal distribution and will be important at least
at high temperatures. Tunneling ‘through’ the barrier will be important for
thin barriers, i.e. at high doping (w ∝ N

−1/2
D , cf. (20.14)). ‘Pure’ tunneling

for electrons close to the (quasi-) Fermi level, also called field emission, and
thermionic field emission, i.e. tunneling of electrons with higher energies, are
distinguished. Also, recombination in the depletion layer and hole injection
from the metal are possible.

The transport of electrons above the barrier can be described with diffu-
sion theory [1138, 1139] or thermionic-emission theory [1140]. In both cases
the barrier height is large compared to kT . For thermionic emission (typically
relevant for semiconductors with high mobility) the current is limited by the
emission process and an equilibrium (constant electron quasi-Fermi level) is
established throughout the depletion layer and ballistic transport is consid-
ered. In diffusion theory (for low mobility) a thermal equilibrium between
metal and semiconductor electrons is established in the interface plane and
the current is limited by diffusion and drift in the depletion region.

Thermionic Emission

The current density per unit area js→m of electrons that flow from the semi-
conductor into the metal is due to the hot electrons from the thermal distri-
bution function

js→m =
∫ ∞

EF−e FBn

(−e) vx dn . (20.30)

The integral starts at the lowest possible energy, the top of the Schottky
barrier (no tunneling allowed in this model!). The electron density dn in a
small energy interval dE is
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dn = D(E) f(E) dE . (20.31)

The carrier velocity is obtained from

E = EC +
1
2
m∗ v2 . (20.32)

For a bulk semiconductor and the Boltzmann distribution (eFB  kT )

dn = 2
(
m∗

h

)
exp (βV ) exp

(
−m

∗v2

2 kT

)
4πv2 dv . (20.33)

Using 4πv2 dv = dvx dvy dvz and integrating over all velocities in y and
z directions and vx from the minimum velocity necessary to pass the barrier
vmin,x =

√
2e (Vbi − V )/m∗ to ∞, the current density is found to be

js→m = A∗ T 2 exp
(
−FBn

kT

)
exp (βV ) , (20.34)

with A∗ being the Richardson constant given by

A∗ =
4πem∗ k2

B

h3
=
eNC v̄

4T 2
, (20.35)

where v̄ is the average thermal velocity in the semiconductor. A∗ for electrons
in vacuum is 120 A cm−2 K−2. A similar result is obtained for the thermionic
emission of electrons from a metal into vacuum. Since FBn is positive, the
saturation current increases with increasing temperature.

If the bias is changed, the current from the semiconductor to the metal
increases in the forward direction because the energy difference between the
quasi-Fermi level and the top of the barrier is reduced. The current is reduced
for reverse bias. The barrier from the metal into the semiconductor remains
constant (except for the Schottky effect whose impact on the current–voltage
characteristic is discussed next). Therefore the current from the metal into
the semiconductor is constant and can be obtained from the condition j = 0
for zero bias. Therefore the current–voltage characteristic in the thermionic-
emission model is

j = A∗ T 2 exp
(
−FBn

kT

)
[exp (βV ) − 1] (20.36)

= js [exp (βV ) − 1] .

The pre-factor

js = A∗ T 2 exp
(
−FBn

kT

)
(20.37)

is called the saturation current density. This dependence is the ideal diode
characteristic and is shown in Fig. 20.13. The temperature dependence of the
saturation current js can be written as
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(a) (b)

Fig. 20.13. Ideal diode I–V characteristics I = Is (exp(eV/kT ) − 1) (a) in linear
plot and (b) semilogarithmic plot

ln
(
js
T 2

)
= lnA∗ − FBn

kT
(20.38)

by transforming (20.37). The plot of ln
(
js/T

2
)

to vs. 1/T is called a Richard-
son plot and allows the barrier height and the Richardson constant to be
determined from a linear fit.

Ideality Factor

If the Schottky (image force) effect, i.e. the change of barrier height with
bias voltage, is considered, the semilogarithmic slope of the forward I–V
characteristic is no longer V −1

0 = e/kT but can be expressed as V −1
0 =

e/nkT , n being a dimensionless parameter termed the ideality factor,8

j = js

[
exp

(
e V

n kT

)
− 1

]
. (20.39)

n is given by

n =
(

1 − 1
e

∂FB

∂V

)−1

≈ 1 +
1
e

∂FB

∂V
. (20.40)

Values for nif due to the image force effect [1128] (using (20.21) and the
image force barrier lowering ΔF if,0

B at zero bias),

nif = 1 +
ΔF if,0

B

4 e Vbi
, (20.41)

are smaller than 1.03. For GaAs and ND = 1017 cm−3, n = 1.02. With regard
to V0 and its temperature dependence, we refer also to Fig. 20.15 and the
related discussion.

8Obviously n = 1 for the ideal characteristic (20.36). Otherwise n ≥ 1.
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Laterally Inhomogeneous Barrier

In [1141] the effect of a spatial inhomogeneity of the diffusion voltage and
thus the barrier height is investigated. The barrier height FBn(x, y) across the
contact area is assumed to have a Gaussian probability distribution p(FBn)
with a mean value F̄Bn and a standard deviation σF , It turns out that the
barrier height FC

Bn responsible for the capacitance, and thus the diffusion
voltage determined by C–V spectroscopy, is given by the spatial average, i.e.
FC

Bn = F̄Bn. The barrier height F j
Bn determining the current–voltage charac-

teristics (cf. (20.36)) via

j = A∗ T 2 [exp (βV ) − 1]
∫

exp
(
−FBn

kT

)
p(FBn) dFBn (20.42)

= A∗ T 2 exp

(

−F
j
Bn

kT

)

[exp (βV ) − 1]

is given by

F j
Bn = F̄Bn − σ2

F

2 kT
. (20.43)

Thus, the barrier height determined from the current–voltage characteristic
underestimates the spatial average of the barrier height.9 The Richardson
plot (20.38) is now modified (and is nonlinear in 1/T ) to

ln
(
js
T 2

)
= lnA∗ − FBn

kT
+

σ2
F

2 k2 T 2
. (20.44)

Temperature Dependence

Figure 20.14a shows the temperature-dependent I–V characteristics of a
Pd/ZnO Schottky diode. A straightforward evaluation according to (20.36)
results in a barrier height of about 700 meV and a Richardson constant that is
orders of magnitude smaller than the theoretical value of 32 A K−2 cm−2 (for
m∗

e = 0.27). A fit of the temperature-dependent data with (20.43), as shown
in Fig. 20.14b, results in F̄Bn = 1.1 eV, in agreement with the (temperature-
independent) value obtained from CV spectroscopy, and σF = 0.13 eV [1142].

The temperature dependence of the ideality factor n is given by [1143]

n =
1

1 − ρ2 + ρ3/(2kT )
, (20.45)

where ρ2 (ρ3) is the (temperature-independent) proportionality coefficient of
the bias dependence of the mean barrier height (standard deviation), i.e.

9This phenomenon is similar to the red-shift of luminescence lines (Stokes shift)
due to thermalization in the presence of disorder, see Sect. 11.4.
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Fig. 20.14. (a) Forward I–V characteristic of Pd/ZnO Schottky diodes for various
temperatures. Diode temperatures are 210 K, 220 K, 230 K, 240 K, 250 K, 260 K,
270 K, and 293 K. The inset shows the current density vs. voltage for 293 K on a
semilogarithmic scale. (b) Effective barrier height F j

Bn vs. the inverse temperature.
The solid line is a linear fit according to (20.43) yielding the standard deviation
σF = 0.13 eV and the mean barrier height F̄Bn = 1.1 eV. (c) Plot of 1/n − 1
vs. the inverse temperature. The solid line is a linear fit of the data yielding the
voltage deformation coefficients ρ2 = −0.025 and ρ3 = −0.028 eV. The inset shows
the experimentally determined n factors and the n factors calculated from (20.45)
using the voltage-deformation coefficients obtained from the linear fit (dashed line).
Adapted from [1142]

ρ2 =
1
e

∂F̄Bn

∂V
(20.46a)

ρ3 =
1
e

∂ σ2
F

∂V
. (20.46b)

The fit of 1/n − 1 vs. 1/T in Fig. 20.14c yields ρ2 = −0.025 and ρ3 =
−0.028 eV for the ZnO diodes under investigation.
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Fig. 20.15. (a) Forward I–V characteristic of Au/GaAs diode for various temper-
atures. (b) Temperature dependence of the voltage V0. The experimental data are
fitted with T0 = 45 ±8 K. Adapted from [1144]

The forward I–V characteristic of an Au/GaAs Schottky diode reported
in [1144, 1145] is shown in Fig. 20.15a at various temperatures. The cur-
rent amplitude decreases with decreasing temperature due to the tempera-
ture dependence of the saturation current (20.36). Also, the slope V −1

0 of
the characteristic j = js exp(V/V0) varies with temperature. Looking at the
temperature dependence of V0, it is described as V0 = k(T + T0)/e rather
than with an ideality factor n in the form of V0 = nkT/e. In other words,
the ideality factor follows a temperature dependence n = 1 + T0/T . In view
of (20.45), such behavior means for small T0 that n ≈ 1/(1−T0/T ) and thus
ρ2 = 0 and ρ3 = 2kT0. For T0 = 45 K, ρ3 is 0.008 eV, which is a fairly small
value. Thus, the temperature behavior of the diode is due to the narrowing
of the Gaussian distribution of barrier height with bias voltage [1141].

Correlation of Barrier Height and Ideality Factor

In a set of similar diodes with varying magnitude of barrier inhomogeneities,
it is found that the effective barrier height and the ideality factor corre-
late [1146]. The extrapolation to n = nif yields the limit of the barrier height
for a homogeneous barrier (Fig. 20.16). For silicon, it is found that the surface
orientation has a minor influence on the Schottky barrier height (Fig. 20.16b)
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Fig. 20.16. (a) Effective barrier height vs. ideality factor for Ag/n-Si Schottky
diodes prepared on Si(111) surface with (7 × 7) reconstruction or unreconstructed
(1 × 1) as labeled. The more ideal (1 × 1) surface exhibits the higher barrier. The
dashed lines are linear fits. (b) Effective barrier height vs. ideality factor for Au/
n-Si Schottky diodes prepared on HF-dipped (1×1) unreconstructed (001) and (111)
surfaces. The dashed lines are linear fits and extrapolation to n = nif . Both surface
orientations exhibit the same extrapolated homogeneous barrier height. Based on
data compiled in [1146]

for an unreconstructed surface. The presence of a reconstruction lowers the
barrier height10 (Fig. 20.16a).

Diffusion Theory

In diffusion theory the current density is considered in the presence of a
carrier-density and electric-field gradient. In the Boltzmann approximation
the electron current is given by (8.57a). In stationary equilibrium the current
density is constant, i.e. independent of x. Assuming that the carrier density
has its equilibrium values at x = 0 and x = w, we find after integration and
using (20.7)

j = −e μnNC Em exp
(
−FBn

kT

)
[exp (βV ) − 1] (20.47)

= js [exp (βV ) − 1] .

10Reconstructions are accompanied by redistributions of the valence charge with
respect to the undisturbed bulk. The subsequent extra interface dipoles alter the
barrier heights of reconstructed interfaces [1146].
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Therefore, also in this case the ideal diode characteristic is obtained, however,
with a different saturation current. The ideality factor in diffusion theory is
n = 1.06 (for FBn � 15 kT ) [1118].

Combined Theory

A combination of both theories [1147] considers both mechanisms to be in
series. The current can then be expressed as

j =
eNCvr

1 + vr/vD
exp

(
−FBn

kT

)
[exp (βV ) − 1] (20.48a)

= A∗∗ T 2 [exp (βV ) − 1] (20.48b)
= js [exp (βV ) − 1] .

Here vr = v̄/4 is a ‘recombination velocity’ [1148] at the top of the barrier
according to j = vr(n−n0), n0 being the equilibrium electron density at the
top of the barrier and v̄ is the average thermal velocity in the semiconductor.
vD is an effective diffusion velocity describing the transport of electrons from
the edge of the depletion layer (x = w) to the top of the barrier (x = xm). It
is defined as

vD =
[∫ w

xm

−e
μnkT

exp
(
−FBn − EC(x)

kT

)
dx

]−1

. (20.49)

In [1147] μn has been assumed to be independent of the electric field. This
assumption is potentially not realistic. If vD  vr, thermionic theory applies
and we obtain (20.36). The case vr  vD ∼ μnEm relates to diffusion theory
and we recover (20.47).

The constant A∗∗ in (20.48b) is called the effective Richardson constant.
Its calculated dependence on the electric field is shown in Fig. 20.17 for Si. At
room temperature for most Ge, Si and GaAs Schottky diodes the thermionic
emission of majority carriers is the dominating process.

Tunneling Current

At high doping the width of the depletion layer becomes small and tunneling
processes become more probable. Also at low temperatures, when thermionic
emission is very small, tunneling processes can dominate the transport be-
tween metal and semiconductor. One process is tunneling of electrons close to
the Fermi level of the semiconductor. This process is called field emission (F)
and is at least important for degenerate semiconductors at very low temper-
atures. If the temperature is raised, electrons are excited to higher energies
where they encounter a thinner barrier. The tradeoff between thermal energy
and barrier width selects an electron energy Em above the conduction-band
edge for which the current is largest. This process is known as thermionic field
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Fig. 20.17. Calculated effective Richardson constant A∗∗ as a function of the
electric field for a metal–Si diode at T = 300 K for a (n-type or p-type) doping of
1016 cm−3. Adapted from [1149]

emission (TF). For very high temperatures enough carriers can overcome the
barrier completely and we are back in the thermionic emission regime. The
validity of the two regimes is shown in Fig. 20.18 for Au/GaAs Schottky
diodes as a function of doping concentration (n-type) and temperature.

In the field-emission regime the forward current is given by

j = js exp
(
eV

E00

)
, (20.50)
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Fig. 20.18. Calculated conditions for thermionic field (‘TF’) and field (‘F’) emis-
sion in a Au/GaAs Schottky diode as a function of temperature and doping con-
centration. Adapted from [1118]
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diode at 77 K. The doping concentration of the Si was ND = 8×1018 cm−3. Adapted
from [1118]

with the characteristic energy parameter E00 given by

E00 =
e�

2

√
ND

m∗εs
. (20.51)

The saturation current is

js ∝ exp (−FBn/E00) . (20.52)

In Fig. 20.19, the forward characteristic of a highly doped Au/Si is shown.
The experimental value of E00 = 29 meV agrees well with the theoretical
expectation of E00 = 29.5 meV.

In the reverse direction the I–V characteristic under field emission is given
by

j =
4eπm∗

h3
E2

00

e(Vbi − V )
FBn

exp

(

− 2F 3/2
Bn

3E00

√
e(Vbi − V )

)

. (20.53)

From Fig. 20.19b, a barrier height of 0.79 eV is deduced.
In the TF-emission regime the current–voltage characteristic is given by

j = js exp
(
eV

E0

)
, (20.54)
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Fig. 20.20. Temperature dependence of E0 of an Au/GaAs diode with ND =
5× 1017 cm−3. The solid line is the theoretical dependence for thermionic emission
according to (20.55) with ND = 6.5×1017 cm−3 and m∗ = 0.07. Adapted from [1118]

with

E0 = E00 coth
(
E00

kT

)
, (20.55)

where E00 is given by (20.51). The energy for maximum TF emission Em

is given by Em = e(Vbi − V )/ cosh2(E00/kT ). The coth-dependence of E0 is
shown in Fig. 20.20 for an Au/GaAs diode.

A Schottky diode can suffer from nonideality such as series and parallel
ohmic resistance [1143]. These effects are discussed in some detail below for
pn-diodes in Sect. 20.4.4 and apply similarly to Schottky diodes.

20.2.6 Ohmic Contacts

Although an ohmic contact does not have a diode characteristic, it can be
understood from the previous remarks. An ohmic contact will have a small
contact resistance for both current directions. The voltage drop across the
contact will be small compared to the voltage drop in the active layer (some-
where else). The contact resistance Rc is defined as the differential resistance
at V = 0

Rc =
(
∂I

∂V

)−1

V =0

. (20.56)

At low doping, the transport is dominated by thermionic emission (20.36).
In this case Rc is given by

Rc =
k

eA∗ T
exp

(
FBn

kT

)
. (20.57)
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Fig. 20.21. Schematic conditions for the formation of an Ohmic contact, (a) low
barrier height, (b) accumulation layer (c) high doping (thin depletion layer)

A small barrier height (Fig. 20.21a) will lead to small contact resistance.
A negative Schottky barrier height, i.e.Wm < Evac−EF for a n-type semicon-
ductor, leads to an accumulation layer without a barrier for carrier transport
(Fig. 20.21b).

For high doping Rc is determined by the tunneling current (Fig. 20.21c)
and is proportional to
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Fig. 20.22. Theoretical and experimental values of specific contact resistances at
T = 300 K for Al/n-Si [1152] and PtSi/n-Si [1153] contacts as a function of donor
concentration. Solid lines are theoretical dependencies for different values of the
barrier height as labeled. Adapted from [384]
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Rc ∝ exp
(
FBn

E00

)
. (20.58)

The contact resistance decreases exponentially with the doping. A theoretical
calculation and experimental data are compared in Fig. 20.22 for contacts on
Si.

The three mechanisms, low barrier height, accumulation layer and high
doping, for the formation of Ohmic contacts are summarized schematically
in Fig. 20.21. Ohmic contacts on wide band gap semiconductors are difficult,
since metals with sufficiently small (large) work function for contacting n-type
(p-type) material are mostly not available.

Although Schottky contact devices have their place in semiconductor tech-
nology, Ohmic contacts are indispensable for almost all devices.11 Ohmic con-
tacts are typically prepared by evaporating a contact metal containing the
doping material for the semiconductor, e.g. Au/Zn for a contact on p-type
GaAs [1150] and Au/Ge for a contact [1151] on n-type GaAs. The contact
is alloyed around 400–500 ◦C (see Fig. 20.23) above the eutectic temperature
of Teu = 360 ◦C (for Au/Ge) to form a eutectic liquid in which the dopant
can quickly diffuse. When the eutectic liquid cools it forms a solid, a highly
doped semiconductor layer underneath the metal. The liquid-phase reactions
can lead to inhomogeneous contacts. On n-type GaAs Pd/Ge/Au contacts

Fig. 20.23. Specific contact resistance for Ni/Au-Ge on n-type epitaxial GaAs for
varying alloying temperatures (2 min). Arrow at Teu denotes the eutectic tempera-
ture of Au-Ge. Adapted from [1157]

11Also a Schottky diode has an Ohmic back contact.
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have been reported to have superior structural quality [1154]. Ohmic contacts
for a number of different semiconductors are reviewed in [1155, 1156].

20.2.7 Metal Contacts to Organic Semiconductors

Also, for organic semiconductors the metal contact plays a vital role, either for
carrier injection or for manipulation of the space-charge region. The position
of the Fermi level has been determined for various organic semiconductors
as shown in Fig. 20.24. These data have been obtained from measurements
on metal–semiconductor–metal structures (MSM, see also Sect. 21.3.5) as
shown in Fig. 20.25a. The thin (50 nm) organic layer is fully depleted, thus
the built-in field inside the semiconductor is constant. The built-in field is
measured by applying an external dc bias and finding the external potential
at which the electroabsorption signal vanishes. Figure 20.25b shows the mea-
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Fig. 20.24. Measured Fermi energies EF (labeled data in eV) and the work functions
Wm of various metals contacting (a) pentacene, (b) Alq3 and (c) MEH-PPV. EC

(EV) denotes the energy position of the electron (hole) polaron. Measured data for
EF for MEH-PPV from [1159], other from [1160]. Data for Wm from Table 20.1
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sured electroabsorption signal ΔT/T (relative change of transmission T ) and
the optical density of an MEH-PPV film as a function of photon energy for an
Al/MEH-PPV/Al structure. The exciton absorption peak is found at 2.25 eV.
The bias at which the built-in field vanishes can then be determined for var-
ious other metals in metal/MEH-PPV/Al structures. Figure 20.24 summa-
rizes such results for various metals and three organic semiconductors. The
plot of the Fermi level position vs. the metal work function (Figs. 20.25d,e)
shows that the metals investigated do not introduce interface states in the
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Fig. 20.25. (a) Schematic MSM structure with organic semiconductor (sc.) on
transparent glass substrate. Metal 1 is thin and semitransparent. Thickness of or-
ganic semiconductor (polymer or small molecules) is about 50 nm. (b) Electroab-
sorption spectra of Al/MEH-PPV/Al structure at four dc bias voltages (solid lines)
and optical density spectrum (dashed line). (c) Magnitude of the electroabsorp-
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a function of the work-function difference of the contacts. Parts (b)–(e) adapted
from [1159]
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single-particle gap that pin the Schottky barrier (see Fig. 20.5 for inorganic
semiconductors). An electron trap, such as C60 in MEH-PPV, can pin the
Fermi level of the n-contact metal and leads to a change of the built-in po-
tential [1158].

20.3 Metal–Insulator–Semiconductor Diodes

In a metal–insulator–semiconductor (MIS) diode an insulator is sandwiched
between the metal and the semiconductor. Subsequently, a MIS contact has
zero dc conductance. The semiconductor typically has an ohmic back contact.
As insulator, often the oxide of the respective semiconductor, is used. In par-
ticular SiO2 on Si has been technologically advanced (Fig. 20.26). In the lat-
ter case, the diode is called a MOS (metal–oxide–semiconductor) diode. This
structure has great importance for the investigation of semiconductor surfaces
and overwhelming importance for semiconductor technology (planar integra-
tion of electronic circuits, CMOS technology). Also, CCDs (Sect. 21.3.8) are
based on MIS diodes.

20.3.1 Band Diagram for Ideal MIS Diode

An ideal MIS diode has to fulfill the following three conditions:

(i) (as shown in Fig. 20.27) without external bias the energy difference φms

between the work function of the metal and the semiconductor

φms = Wm −
(
χsc +

Eg

2
± eΨB

)
(20.59)

is zero (φms = 0). The ‘+’ (‘−’) sign in (20.59) applies to a p-type,
Fig. 20.27b (n-type, Fig. 20.27a) semiconductor. ΨB is the potential dif-
ference between the intrinsic and actual Fermi level, ΨB = |Ei−EF|/e > 0.

poly-Si

Si

gate oxide

Fig. 20.26. High-resolution transmission electron microscopy image of a 1.6-nm
thick gate oxide between poly-Si (cf. Sect. 23.5.4) and crystalline Si. From [1161]
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Fig. 20.27. Band diagram of an ideal MIS diode with (a) n- and (b) p-type
semiconductor at external bias V = 0. The insulator (‘i’) thickness is d as labeled.
The dash-dotted line represents the intrinsic Fermi level Ei

(ii) The only charges present are those in the semiconductor and the opposite
charge is on the metal surface close to the insulator.

(iii) There is no dc current between the metal and the semiconductor, i.e. the
conductivity of the insulator is zero.

When an ideal MIS diode is biased, three general cases – accumulation,
depletion and inversion – can occur (Fig. 20.28). We discuss these first for
the p-type semiconductor.

Figure 20.28d shows the accumulation case for a negative voltage at the
metal.12 Part of the voltage drops across the insulator, the rest across the
semiconductor. The valence band is bent upwards towards the Fermi level.
The quasi-Fermi level in the semiconductor, however, is constant since no dc
current flows.13

Since the charge-carrier (hole) density depends exponentially on the en-
ergy separation EF − EV, a charge accumulation (of holes) occurs in the
(p-type) semiconductor in the vicinity of the interface to the insulator.

In Fig. 20.28e the depletion case is shown. Now a moderate reverse voltage,
i.e. a positive bias to the metal, is applied. A depletion of majority charge
carriers occurs in the semiconductor close to the insulator. The quasi-Fermi
level in the semiconductor remains beneath the intrinsic level (Ei ≈ EC +
Eg/2), i.e. the semiconductor remains p-type everywhere. If the voltage is

12This poling is a forward bias of the respective Schottky diode since the positive
pole is at the p-type semiconductor.

13We note that in order to reach the situations shown in Fig. 20.28 from the
zero bias case of Fig. 20.27, a current must have flowed since charge carriers are
redistributed. Figure 20.28 depicts the stationary equilibrium after transient voltage
switch-on effects have subsided. The time, however, that is needed in order to reach
such stationary equilibrium from zero bias (thermal equilibrium) may be very long
(e.g. days, cf. Sect. 21.3.8).
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Fig. 20.28. Band diagram of ideal MIS diodes with (a,b,c) n-type and (d,e,f)
p-type semiconductors for V �= 0 in stationary equilibrium for the cases (a,d)
accumulation, (b,e) depletion and (c,f) inversion
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increased further to large values, the quasi-Fermi level intersects the intrinsic
level and lies above Ei close to the insulator (Fig. 20.28f). In this region, the
electron concentration becomes larger than the hole concentration and we
have the inversion case. The inversion is called ‘weak’ if the Fermi level is
still close to Ei. The inversion is called ‘strong’ when the Fermi level lies close
to the conduction-band edge.

The corresponding phenomena occur for n-type semiconductors for the
opposite signs of the voltage with electron accumulation and depletion. In
the inversion case, p > n close to the insulator (Figs. 20.28a–c).

20.3.2 Space-Charge Region

Now we calculate the charge and electric field distribution in an ideal MIS
diode, following the treatment in [1162]. We introduce the potential Ψ that
measures the separation of the intrinsic bulk Fermi level and the actual in-
trinsic level Ei, i.e. −eΨ(x) = Ei(x) − Ei(x → ∞) (see Fig. 20.29). Its value
at the surface is termed Ψs, the surface potential. The value is positive, i.e.
Ψs > 0, if the intrinsic Fermi level at the surface is below the bulk Fermi
level.

The electron and hole concentrations are given (for a p-type semiconduc-
tor) as

np = np0 exp(βΨ) (20.60a)
pp = pp0 exp(−βΨ) , (20.60b)

where np0 (pp0) are the bulk electron (hole) concentrations, respectively, and
β = e/kT > 0.

Therefore, the net free charge is given by

np − pp = np0 exp(βΨ) − pp0 exp(−βΨ) . (20.61)

EV

EF
e S

Ei

EC

e B

semiconductorinsulator

Fig. 20.29. Band diagram at the surface of a p-type semiconductor of a MIS diode.
Accumulation occurs for Ψs < 0, depletion for Ψs > 0 and inversion (as shown here)
for Ψs > ΨB > 0
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The electron and hole concentrations at the surface are denoted with an
index ‘s’ and are given by14

ns = np0 exp(βΨs) (20.62a)
ps = pp0 exp(−βΨs) . (20.62b)

We use the Poisson equation d2Ψ
dx2 = − ρ

εs
with the charge given by

ρ(x) = e
[
p(x) − n(x) +N+

D (x) −N−
A (x)

]
. (20.63)

As boundary condition we employ that far away from the surface (for
x→ ∞) there is charge neutrality (cf. (7.47)), i.e.

np0 − pp0 = N+
D −N−

A , (20.64)

and that Ψ = 0. We note that N+
D − N−

A must be constant throughout the
completely ionized, homogeneous semiconductor. Therefore (20.64) (but not
charge neutrality) holds everywhere in the semiconductor. Using (20.61) the
Poisson equation reads

∂2Ψ

∂x2
= − e

εs
{pp0 [exp(−βΨ) − 1] − np0 [exp(βΨ) − 1]} . (20.65)

The Poisson equation is integrated and with the notations

F(Ψ) =
[
(exp(−βΨ) + βΨ − 1) +

np0

pp0

(exp(βΨ) − βΨ − 1)
]1/2

(20.66a)

LD =

√
εskT

e2pp0

=
√

εs
eβpp0

, (20.66b)

with LD being the Debye length for holes, the electric field can be written as

E = −∂Ψ
∂x

= ±
√

2kT
eLD

F(Ψ) . (20.67)

The positive (negative) sign is for Ψ > 0 (Ψ < 0), respectively. At the surface,
Ψs will be taken as the value for Ψ . The total charge Qs per unit area creating
the surface field

Es = −∂Ψ
∂x

= ±
√

2kT
eLD

F(Ψs) (20.68)

is given by Gauss’s law as Qs = −εsEs.

14Ψs represents the voltage drop across the semiconductor that will be discussed
in more detail in Sect. 20.3.3. In this sense, Ψs for the MIS diode is related to Vbi−V
for the Schottky contact.
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Fig. 20.30. Dependence of the space charge on the surface potential Ψs for p-type
silicon with NA = 4 × 1015 cm−3 at T = 300 K. The flat-band condition is present
for Ψs = 0

The dependence of the space-charge density from the surface potential15

is depicted in Fig. 20.30. If Ψs is negative, F is dominated by the first term
in (20.66a) and the space charge is positive (accumulation) and proportional
to Qs ∝ exp(−β|Ψ |/2). For Ψs = 0 the (ideal) MIS diode has the flat-band
condition and the space charge is zero. For 0 ≤ Ψs ≤ ΨB the space charge is
negative (depletion) and F is dominated by the second term in (20.66a), i.e.
Ψs ∝

√
Ψs. For Ψs  ΨB we are in the (weak) inversion regime and the space

charge is dominated by the fourth term in (20.66a), Qs ∝ − exp(−βΨ/2).
Strong inversion starts at about Ψ inv

s ≈ 2ΨB = (2kT/e) ln(NA/ni).
For the case of strong inversion the band diagram is shown in Fig. 20.31

together with the charge, field and potential. The total voltage drop V across
the MIS diode is

V = Vi + Ψs , (20.69)

with Vi being the voltage drop across the insulator. In the case of inversion,
the charge (per unit area) in the space-charge region

Qs = Qd +Qn (20.70)

15We note that we discuss the space-charge region now only with regard to Ψs,
the voltage drop across the semiconductor, and the dependence of Ψs on the bias
of the diode will be discussed in the next section.
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Fig. 20.31. Ideal MIS diode at inversion: (a) band diagram, (b) charge distribution,
(c) electric field and (d) potential

is composed of the depletion charge (ionized acceptors)

Qd = −ewNA , (20.71)

with w being the width of the depletion region, and the inversion charge Qn,
which is present only close to the interface.

The metal surface carries the opposite charge

Qm = −Qs (20.72)

due to global charge neutrality. The insulator itself does not contribute
charges in the case of an ideal MIS diode.
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20.3.3 Capacitance

The insulator represents a capacitor with the dielectric constant εi and a
thickness d. Therefore, the capacitance is

Ci =
εi
d
. (20.73)

Between the charges −Qs and Qs the field strength Ei in the insulator is

Ei =
|Qs|
εi

. (20.74)

The voltage drop Vi across the insulator is given by

Vi = Ei d =
|Qs|
Ci

. (20.75)

The total capacitance C of the MIS diode is given by the insulator capac-
itance in series with the capacitance Cd of the depletion layer

C =
Ci Cd

Ci + Cd
. (20.76)

The capacitance of the space-charge region varies with the applied bias
(Fig. 20.32). For forward bias (accumulation), the capacitance of the space-
charge region is high. Therefore, the total capacitance of the MIS diode is
given by the insulator capacitance C ≈ Ci. When the voltage is reduced, the
capacitance of the space-charge region drops to Cd = εs/LD for the flat-band
case (Ψs = 0). For a high reverse voltage, the semiconductor is inverted at the
surface and the space-charge region capacitance is high again. In this case,
the total capacitance is given by C ≈ Ci again.
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Fig. 20.32. (a) Schematic dependence of the capacitance of a MIS diode on the
bias for (i) low frequencies, (ii) high frequencies and (iii) deep depletion. (b) High-
frequency capacitance of a Si/SiO2 diode. The inset shows the frequency depen-
dence. Adapted from [1163]
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for deep depletion for GaAs, Si and Ge diodes as a function of bulk doping level

The previous consideration assumes that the charge density in the semi-
conductor can follow changes of the bias sufficiently fast.16 The inversion
charge must disappear via recombination that is limited by the recombina-
tion time constant τ . For frequencies around τ−1 or faster, the charge in
the inversion layer cannot follow and the capacitance of the semiconductor is
given by the value Cd

∼= εs/wm. wm (Fig. 20.33) is the maximum depletion-
layer width present at the beginning of inversion (cf. (20.9))

wm
∼=

√
2εs
eNA

Ψ inv
s =

√
4εskT ln(NA/ni)

e2NA
. (20.77)

For further increased voltage (into the inversion regime), the electric field
is screened by the inversion charge and the width of the depletion layer re-
mains constant. Therefore, the total capacitance in the inversion regime is
given by

C ∼= εi
d+ wm εi/εs

. (20.78)

20.3.4 Nonideal MIS Diode

In a real, i.e. nonideal, MIS diode, the difference φms in the work functions
of the metal and semiconductor (cf. (20.59)) is no longer zero. Therefore, the
capacitance vs. voltage relation is shifted with respect to the ideal MIS diode
characteristic by the flat-band voltage shift VFB

16Typically, a dc bias voltage V is set and the capacitance is sampled with a
small ac voltage of amplitude ΔV , with δV � V .
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VFB = φms − Qox

Ci
. (20.79)

Additionally, the flat-band voltage can be shifted by charges Qox in the
oxide that have been neglected so far. Such charges can be trapped, i.e. fixed
with regard to their spatial position, or mobile, e.g. ionic charges such as
sodium.

For Al as metal (φm = 4.1 eV) and n-type Si (φs = 4.35 eV), the flat-band
voltage shift is φms = −0.25 V, as shown schematically in Fig. 20.34a for
zero bias. VFB is split into 0.2 eV and 0.05 eV for the oxide and the silicon,
respectively. In Fig. 20.34b, the dependence of φms on the doping, conductiv-
ity type and metal is shown for various SiO2–Si MIS diodes. An Au-SiO2–Si
diode with p-type Si and NA ≈ 1015 cm−3 fulfills the condition of an ideal
MIS diode with regard to φms = 0.
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Fig. 20.34. (a) Schematic band diagram of an Al–SiO2–Si (n-type) diode with
50 nm oxide thickness and ND = 1016 cm−3 for zero bias. Based on data from [1164].
(b) Difference of work functions φms for SiO2–Si MIS diodes and various doping
levels and electrode materials (Al, Au and polycrystalline Si). The square represents
the situation depicted in panel (a). Based on data from [1165]
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20.4 Bipolar Diodes

A large class of diodes is based on pn-junctions. In a homo pn-junction an
n-doped region is next to a p-doped region of the same semiconductor. Such
a device is called bipolar. At the junction a depletion region forms. The
transport properties are determined by the minority carriers. An important
variation is the pin-diode in which an intrinsic (or lowly doped) region is
between the doped region (Sect. 20.5.8). If the differently doped regions be-
long to different semiconductor materials, the diode is a heterostructure pn-
diode (Sect. 20.5.12). Various schemes have been used to fabricate pn diodes
(Fig. 20.35).

20.4.1 Band Diagram

If the doping profile is arbitrarily sharp, the junction is called abrupt (Fig.
20.36b). This geometry is the case for epitaxial pn-junctions where the dif-
ferently doped layers are grown on top of each other.17 For junctions that
are fabricated by diffusion, the abrupt approximation is suitable for alloyed,
ion-implanted and shallow-diffused junctions. For deep-diffused junctions a
linearly graded approximation is better (Fig. 20.36d), which is treated in
more detail in [384]. If one doping level is much higher that the other, the
junction is termed a one-sided (abrupt) junction. If n  p (p  n), the
junction is denoted as an n+p-diode (p+n-diode).

The thermodynamical equilibrium of a pn-diode is considered here only
for the electronic system. The thermodynamic stability of the atomic doping
distribution is discussed in [1166]. Typically, thermodynamics works to ran-
domize the chemical concentration gradient; the existence of a pn-junction is
due to the extremely low diffusion coefficient of dopants in the semiconduc-
tor lattice. Elevated temperatures can cause the destruction of the pn-diode
via enhanced dopant diffusion (Sect. 4.2.3). However, a thermodynamically
stable concentration gradient and thus a built-in field can exist in a multi-
component system [1166].

20.4.2 Space-Charge Region

In thermodynamical equilibrium, i.e. without external bias, no net current
flows. The electron current is given by (8.52a)

jn = −eμnnE − μnn∇EF , (20.80)

and therefore in the absence of external electric fields and zero net electron
and hole currents the Fermi energy is constant:

17The choices of dopant and the growth conditions, in particular the temperature,
need to be made such that no interdiffusion of the dopants takes place.
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Fig. 20.35. Schematic fabrication technologies for bipolar diodes: (a) Planar junc-
tion with local impurity incorporation (diffusion from gas phase or ion implantation)
through mask and contact metallization, (b) epitaxial junction

−w/2
w/2 xx

(a)

xn
−xp

−xp

xn xx

NB(b) (c) (d)

−w/2
w/2

NA-NDNA-ND

Fig. 20.36. Description of doping distribution with (a,b) abrupt approximation
and with (c,d) linearly graded junction. (a,c) show real impurity concentration,
(b,d) idealized doping profile

∇EF = 0 . (20.81)

The built-in voltage Vbi is given by (see Fig. 20.37c)

eVbi = Eg + eVn + eVp , (20.82)

where Vn is the difference between conduction band and Fermi level on the
n-side, −eVn = EC−EF. Vp is the difference between valence band and Fermi
level on the p-side, −eVp = EF − EV. For the nondegenerate semiconductor
Vn, Vp < 0 and (using (7.17), (7.15) and (7.16))
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eVbi = kT ln
(
NCNV

n2
i

)
−

[
kT ln

(
NC

nn0

)
+ kT ln

(
NV

pp0

)]

= kT ln
(
pp0nn0

n2
i

)
= kT ln

(
pp0

pn0

)
= kT ln

(
nn0

np0

)
(20.83a)

∼= kT ln
(
NAND

n2
i

)
. (20.83b)

The electron and hole densities on either side of the junction (np0 and pp0

at x = −xp and nn0 and pn0 at x = xn) are related to each other by (from
rewriting (20.83a))

np0 = nn0 exp (−βVbi) (20.84a)
pn0 = pp0 exp (−βVbi) . (20.84b)

Microscopically, the equilibration of the Fermi levels on the n- and p-side
occurs via the diffusion of electrons and holes to the p- and n-side, respec-
tively. The electrons and holes recombine in the depletion layer. Therefore,
on the n-side the ionized donors and on the p-side the ionized acceptors re-
main (Fig. 20.37a). These charges build up an electric field (Fig. 20.37d) that
works against the diffusion current. At thermal equilibrium the diffusion and
drift currents cancel and the Fermi level is constant.

Values for the built-in potential are depicted in Fig. 20.38 for Si and
GaAs diodes. The spatial dependence of the potential in the depletion layer
is determined by the Poisson equation.

We assume here the complete ionization of the donors and acceptors. Also,
we neglect at first majority carriers in the depletion layers on the n- and p-
sides.18 With these approximations, the Poisson equation in the depletion
layers on the n- and p-side reads

∂2V

∂x2
=
eND

εs
, 0 ≤ x ≤ xn (20.85a)

∂2V

∂x2
= −eNA

εs
, −xp ≤ x ≤ 0 . (20.85b)

One integration yields (together with the boundary conditions that the
field is zero at the boundaries of the depletion layer) the electric field in the
two regions

E(x) =
e

εs
ND (x− xn), 0 ≤ x ≤ xn (20.86a)

E(x) = − e

εs
NA (x+ xp), −xp ≤ x ≤ 0 . (20.86b)

18An abrupt decrease of the majority carrier density at the border of the space-
charge region corresponds to zero temperature.
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Fig. 20.38. Built-in voltage as a function of doping for one-sided Si and GaAs
pn-diodes

The maximum field strength Em is present at x = 0 and is given by

Em = −eNDxn

εs
= −eNAxp

εs
. (20.87)

The continuity of the field at x = 0 is equivalent to the overall charge
neutrality

ND xn = NA xp . (20.88)

Another integration yields the potential (setting V (x = 0) = 0)

V (x) = −Em

(
x− x2

2xn

)
, 0 ≤ x ≤ xn (20.89a)

V (x) = −Em

(
x+

x2

2xp

)
, −xp ≤ x ≤ 0 . (20.89b)

The built-in potential Vbi = V (xn) − V (−xp) > 0 is related to the maxi-
mum field via

Vbi = −1
2
Em w , (20.90)

where w = xn + xp is the total width of the depletion layer. The elimination
of Em from (20.87) and (20.90) yields

w =

√
2εs
e

(
NA +ND

NAND

)
Vbi . (20.91)

For p+n and n+p junctions, the width of the depletion layer is determined
by the lowly doped side of the junction
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w =
√

2εs
eNB

Vbi , (20.92)

where NB denotes the doping of the lowly doped side, i.e. NA for a n+p diode
and ND for a p+n diode.

If the spatial variation of the majority carrier density is considered in more
detail (and for finite temperature, cf. (20.12)), an additional term −2kT/e =
−2/β is added [1162] to Vbi

w =

√
2εs
e

(
NA +ND

NAND

) (
Vbi − V − 2kT

e

)
. (20.93)

Also, the external bias V has been included in the formula. If w0 denotes
the depletion layer width at zero bias, the depletion layer width for a given
voltage V can be written as

w(V ) = w0

√

1 − V

Vbi − 2/β
≈ w0

√

1 − V

Vbi
. (20.94)

Using the Debye length (cf. (20.66b))

LD =
√
εskT

e2NB
, (20.95)

the depletion layer width for a one-sided diode can be written as (with β =
e/kT )

w = LD

√
2(βVbi − βV − 2) . (20.96)

The Debye length is a function of the doping level and is shown for Si in
Fig. 20.39. For a doping level of 1016 cm−3 the Debye length in Si is 40 nm at
room temperature. For one-sided junctions the depletion layer width is about
6LD for Ge, 8LD for Si and 10LD for GaAs.

The external bias is counted positive if the ‘+’ (‘−’) pole is at the p-side
(n-side). The reverse voltage has opposite polarity. If a reverse bias is applied,
the depletion layer width is increased (Fig. 20.40).

20.4.3 Capacitance

The capacitance of the depletion layer is the charge change upon a change of
the external bias. It is given as

C =
∣∣
∣∣
dQ
dV

∣∣
∣∣ =

d(eNBw)
d(w2eNB/2εs)

=
εs
w

=
εs√
2LD

√
βVbi − βV − 2 . (20.97)

Therefore, the capacitance of the depletion layer is inversely proportional
to the depletion-layer width (see the two scales in Fig. 20.40). A detailed
treatment has been given in [1167]. 1/C2 is proportional to the external bias
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Fig. 20.39. Debye length in Si at room temperature as a function of the doping
level NB according to (20.95)
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Fig. 20.40. Width of the depletion layer and capacitance per area for one-sided,
abrupt Si junctions for various values of Vbi − V − 2kT/e as labeled. The dash-
dotted line is for zero bias, the dashed line is the limit due to avalanche breakdown.
Adapted from [384]

1
C2

=
2L2

D

ε2s
(βVbi − βV − 2) . (20.98)

From C–V spectroscopy the doping level can be obtained from the slope

d(1/C2)
dV

=
2βL2

D

ε2s
=

2
e εsNB

. (20.99)

From the extrapolation to the voltage for which 1/C2 = 0 the built-in voltage
can be obtained.
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20.4.4 Current–Voltage Characteristics

Ideal Current–Voltage Characteristics

Now, the currents in thermodynamical equilibrium (V = 0) and under bias
are discussed. A diode characteristic will be obtained. We work at first with
the following assumptions: abrupt junction, Boltzmann approximation, low
injection, i.e. the injected minority-carrier density is small compared to the
majority-carrier density, and zero generation current in the depletion layer,
i.e. the electron and hole currents are constant throughout the depletion layer.
In the presence of a bias, electrons and holes have quasi-Fermi levels and the
carrier densities are given by (cf. (7.61a and b))

n = NC exp
(
Fn − EC

kT

)
(20.100a)

p = NV exp
(
−Fp − EV

kT

)
. (20.100b)

Using the intrinsic carrier concentration, we can write

n = ni exp
(
Fn − Ei

kT

)
= ni exp [β(ψ − φn)] (20.101a)

p = ni exp
(
−Fp − Ei

kT

)
= ni exp [β(φp − ψ)] , (20.101b)

where φ and ψ are the potentials related to the (quasi-) Fermi level and the
intrinsic Fermi levels, −eφn,p = Fn,p and −eψ = Ei. The potentials φn and
φp can also be written as

φn = ψ − β−1 ln
(
n

ni

)
(20.102a)

φp = ψ + β−1 ln
(
p

pi

)
. (20.102b)

The product np is given by

np = n2
i exp [β(φp − φn)] . (20.103)

Of course, at thermodynamical equilibrium (zero bias) φp = φn and np =
n2

i . For forward bias φp − φn > 0 (Fig. 20.41a) and np > n2
i . For reverse bias

φp − φn < 0 (Fig. 20.41b) and np < n2
i .

The electron current density (per unit area) is given by (8.57a) that reads
here with E = ∇ψ and n given by (20.101a) as19

jn = −eμn

(
nE + β−1∇n) = enμn∇φn . (20.104)

19We remind the reader that μn was defined as a negative number.
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Fig. 20.41. (a) Diffusion potential, (b) band diagram, (c) electric field, (d) electron
and hole concentrations and (e) n + p under forward bias +0.4 V (left panel) and
reverse bias (right panel) −0.4 V for a silicon pn-diode at room temperature with
NA = ND = 1018 cm−3 (same as in Fig. 20.37). The dashed lines in (b) are the
electron and hole quasi-Fermi levels Fn and Fp. The depletion layer is shown as the
grey area. The diffusion length in the n- and p-type material is taken as 4 nm. This
value is much smaller than the actual diffusion length (μm-range) and is chosen
here only to show the carrier concentration in the depletion layer and the neutral
region in a single graph

Similarly, we obtain for the hole current density (using (8.57b) and
(20.101b))

jp = eμp

(
pE − β−1∇p) = −epμp∇φp . (20.105)

The current through the depletion layer is constant (since no recombina-
tion/generation was assumed). The gradient of the quasi-Fermi levels in the
depletion layer is very small and the quasi-Fermi levels φn,p are practically
constant. The electron and hole currents are shown in Fig. 20.42 together
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Fig. 20.42. Carrier densities (a,c) and current densities (b,d) (linear scales) in a
pn-diode under (a,b) forward bias and (c,d) reverse bias

with the carrier densities. The change of carrier density is mostly due to the
variation of ψ (or Ei).

Therefore, the voltage drop across the depletion layer is V = φp −φn and
(20.103) reads

np = n2
i exp (βV ) . (20.106)

The electron density at the boundary of the depletion layer on the p-side
(at x = −xp) is (using (20.106))

np =
n2

i

pp
exp (βV ) = np0 exp (βV ) . (20.107)

Similarly, the hole density on the n-side at x = xn is given by

pn = pn0 exp (βV ) . (20.108)

From the continuity equation and the boundary condition that far away
from the depletion layer the hole density is pn0 , the hole density on the n-side
is given by

pn(x) − pn0 = pn0 [exp (βV ) − 1] exp
(
−x− xn

Lp

)
, (20.109)

where Lp =
√
Dpτp is the hole (minority-carrier) diffusion length.
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The hole current density at the boundary of the depletion layer on the
n-side is

jp(xn) = −eDp
∂pn

∂x
|xn =

eDppn0

Lp
[exp (βV ) − 1] . (20.110)

Similarly, the electron current in the depletion layer is

jn(−xp) =
eDnnp0

Ln
[exp (βV ) − 1] . (20.111)

The total current due to diffusion is

jd = jp(xn) + jn(−xp) = js [exp (βV ) − 1] , (20.112)

with the saturation current given by

jds =
eDppn0

Lp
+
eDnnp0

Ln
. (20.113)

This dependence is an ideal diode characteristic and the famous result
from Shockley. For a one-sided (p+n-) diode, the saturation current is

jds
∼= eDppn0

Lp

∼= e

(
Dp

τp

)1/2
n2

i

NB
. (20.114)

The saturation depends via Dp/τp weakly on the temperature. The term
n2

i depends on T , proportional to T 3 exp(−Eg/kT ), which is dominated by
the exponential function.

If the minority carrier lifetime is given by the radiative recombination
(10.19), the hole diffusion length is

Lp =

√
Dp

Bnn0

. (20.115)

For GaAs (Tables 8.2 and 10.1) with ND = 1018 cm−3, we find τp =
10 ns and Lp ≈ 3 μm. For Ln we find 14 μm, however, the lifetime at room
temperature can be significantly shorter due to nonradiative recombination
and subsequently also the diffusion length will be shorter (by about a factor of
10). For L ∼ 1 μm, the diffusion saturation current is jds ∼ 4× 10−20 A/cm2.

The radiative recombination rate (band–band recombination, b–b) in the
neutral n-region (as relevant for LEDs, see Sect. 22.3) is B(np − n2

i ) ≈
Bnn0(pn(x) − pn0). Therefore, the recombination current jb−b

d,n in the neu-
tral n-region is (using (20.109))

jb−b
d,n = e

∫ ∞

xn

Bn2
i [exp (βV ) − 1] exp

(
−x− xn

Lp

)
dx

= eBLpn
2
i [exp (βV ) − 1] . (20.116)
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For the neutral region on the p-side a similar expression results. The total
radiative recombination current from the neutral regions is

jb−b
d = eB(Ln + Lp)n2

i [exp (βV ) − 1] . (20.117)

For GaAs, the saturation current for the radiative recombination in the
neutral region

jr,b−b
s = eB (Ln + Lp)n2

i (20.118)

is (Tables 7.1 and 10.1) for a diffusion length of 1 μm of jr,b−b
s ∼ 4 ×

10−21 A/cm2.
Since the (radiative) minority-carrier lifetime is inversely proportional to

the majority-carrier density, the relevant diffusion length is that of the side
with the lower doping level and is given by

L =
1
ni

√
DBNB

B
, (20.119)

where DB is the minority-carrier diffusion coefficient on the lowly doped side.
The radiative recombination current from the neutral region can be written
as

jb−b
d = e

√
BDBNB ni [exp (βV ) − 1] . (20.120)

The I–V characteristic for pn-diodes from two semiconductors with differ-
ent band gap are shown in Fig. 20.43 (for Ge and Si). Both forward character-
istics are exponential functions. The Si diode seems to have the steeper slope,
however, the difference is only the smaller saturation current. The saturation
current increases at higher temperature (Fig. 20.44).
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Fig. 20.43. Comparison of the characteristics of Ge and Si diodes at room tem-
perature. Note the different scales in the forward and reverse regime
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Fig. 20.44. Characteristics of a Si power diode at two temperatures, 25 ◦C and
100 ◦C

Real I–V Characteristics

The ideal I–V characteristics are not observed for real diodes due to several
reasons:

– besides the diffusion current, also a generation–recombination (G–R) cur-
rent is present

– already for fairly small forward voltages, high injection conditions are
present, i.e. pn � nn is no longer valid

– the series resistance Rs of the diode is finite (ideally Rs = 0)
– the diode has a finite parallel (shunt) resistance Rp (ideally Rp = ∞ )
– at high reverse voltage the junction breaks down; this phenomenon is

treated in Sect. 20.4.5

First, we consider the generation–recombination current due to band–
impurity (b–i) processes (see Sect. 10.9). Such recombination is nonradiative
or at least does not produce photons with an energy close to the band gap.
The net rate is given by (10.54). For reverse voltage, the generation dominates
the G–R current. For n < ni and p < ni, the net recombination rate r is

r ∼= σn σp vthNt

σn exp
(

Et−Ei
kT

)
+ σp exp

(
Ei−Et

kT

) ni ≡ ni

τe
, (20.121)

where τe is the effective electron lifetime. The generation current density is
given by

jg =
e ni w

τe
. (20.122)

Since the width of the depletion layer varies with the applied reverse bias V ,
we expect a dependence

jg ∝
√
Vbi + |V | . (20.123)
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The saturation current is given by the sum of the diffusion and generation
parts

js = e

√
Dp

τp

n2
i

ND
+
e ni w

τe
. (20.124)

In semiconductors with large ni (narrow band gap, e.g. Ge) the diffusion
current will dominate; in Si (larger band gap) the generation current can
dominate.

The maximum of the recombination rate is present for Et ≈ Ei (10.58).
Then nt = pt = ni in (10.54). Assuming σ = σn = σp, the recombination
rate is

rb−i = σ vthNt
np− n2

i

n+ p+ 2ni
. (20.125)

Using (20.103) we can write

rb−i = σ vthNt ni
ni

n+ p+ 2ni
[exp (βV ) − 1] . (20.126)

The term ζ = ni
n+p+2ni

is maximal for n = p, which is given (from (20.106))
by

nmr = pmr = ni exp (βV/2) . (20.127)

The function ζ(x) cannot be analytically integrated. In order to evaluate the
integral of ζ over the depletion layer

χ =
∫ xn

−xp

ζ dx , (20.128)

the maximum rate

ζmr =
ni

nmr + pmr + 2ni
=

1
2

1
1 + exp

(
eV
2kT

) (20.129)

can be integrated over the depletion layer as an approximation [384], χ ≈
ζmr w. This approach yields a recombination current

jmr =
eσvthNtwni

2
exp (βV ) − 1
exp

(
eV
2kT

)
+ 1

∼= jmr
s exp

(
eV

2kT

)
, (20.130)

with jmr
s = eσvthNtwni/2 and the approximation being valid for eV/kT  1.

Thus the nonradiative band–impurity recombination is often said to cause an
ideality factor of n = 2.

For a better approximation of χ, the dependence of the potential ϕ(x)
can be approximated as linear (constant-field approximation), i.e. using the
local field Emr at the position where n = p [1168]. For a symmetric diode
with nn0 = pp0 , this position is at x = 0; for a one-sided junction on the
lower-doped side. Emr is given for pp0 ≤ nn0 by
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Emr = − (Vbi − V )

√

1 +
1

β (Vbi − V )
ln
pp0

nn0

√
1 +

pp0

nn0

√
2
w

. (20.131)

For a symmetric diode (20.132a) holds, for a one-sided diode the approx-
imation in (20.132b) holds

Emr = − 2
w

(Vbi − V ) ∝
√
Vbi − V (20.132a)

Emr
∼= −

√
2
w

(Vbi − V ) ∝
√
Vbi − V . (20.132b)

We note that for zero bias (V = 0), (20.90) is recovered from (20.132a). Using
the above approximation ζ is given by

ζ(x) =
1
2

1
1 + exp (βV/2) cosh(βEmrx)

, (20.133)

with β = e/kT . Since ζ decreases sufficiently fast within the depletion layer,
the integration over the depletion layer can be extended to ±∞ and we obtain

χ =
2

βEmr

1
√

exp(βV ) − 1
arctan

[√
exp(βV/2) − 1
exp(βV/2) + 1

]

. (20.134)

We note that for V = 0, the integral takes the value χ = (βEmr)
−1. The

recombination current is now given by [1168]

jr,b−i =
2σvthNtnikT

Emr
arctan

[√
exp(βV/2) − 1
exp(βV/2) + 1

]
√

exp (βV ) − 1 .

(20.135)
For large voltage the arctan term becomes π/4. For eV/kT  1 the nonra-
diative recombination current can be written as

jr,b−i = jr,b−i
s exp

(
eV

nkT

)
, (20.136)

with jr,b−i
s = eσvthNtnikTπ/(2Emr). The voltage-dependent ideality factor n

(semilogarithmic slope n = βjr(V )/j′r(V )) is close but not identical to 2 and
is shown in Fig. 20.45 for various values of Vbi. The built-in voltage influences
the logarithmic slope via the factor 1/Emr in (20.135).

In the case of radiative band–band (b–b) recombination, the recombina-
tion rate is given by (10.14). Together with (20.106) and integrated over the
depletion layer, the recombination current in the depletion layer is given by
(cf. (20.117))

jr,b−b = eB w n2
i [exp (βV ) − 1] , (20.137)

and exhibits an ideality factor of n = 1. Comparing (20.117) and (20.137),
the dominating radiative-recombination current is determined by the ratio of
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(a) (b)

Fig. 20.45. (a) Integral χ (20.128) multiplied by exp(βV/2) in order to extract
the differences on a linear scale. Solid line: Exact numerical calculation, dash-dotted
line: standard approximation with constant maximum rate, dashed line: this work
(approximation with constant field). As material parameters we have used room
temperature and ni = 1010 cm−3 (Si), nn0 = 1018 cm−3 and pp0 = 1017 cm−3.
(b) Logarithmic slope of band–impurity recombination current in the forward bias
regime for various values of the built-in voltage Vbi = 0.6, 1.0, and 1.4 eV and in
the limit Vbi → ∞. Adapted from [1168]

w and Ln+Lp. Since in the forward direction, the depletion-layer width tends
towards zero (for flat-band conditions), the radiative-recombination current
is dominated by the recombination in the neutral region(s).

For high injection current (under forward bias), the injected minority-
carrier density can become comparable with the majority-carrier density. In
this case, diffusion and drift need to be considered. At large current density,
the voltage drop across the junction is small compared to the ohmic voltage
drop across the current path. In the simulation (Fig. 20.46), the high-injection
effects start on the n-doped side because it has been modeled with the lower
doping (ND < NA).

The series resistance Rs (typically a few Ohms) also effects the charac-
teristic at low injection. The voltage drop across the junction is reduced by
Rs I. Thus, the I–V characteristic taking into account the effect of the series
resistance is

I = Is exp
[
e(V −RsI)

nkT

]
. (20.138)

This equation is implicit with regard to I and can only be solved numer-
ically. At high current, the resistance of the junction becomes very small
(Fig. 20.47a) and the I–V characteristic is dominated by the series resistance
and becomes linear.

The diode can also exhibit a parallel (shunt) resistance Rp, e.g. due to
surface conduction between the contacts. Including the shunt resistance, the
diode characteristic is
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Fig. 20.46. Theoretical modeling of charge-carrier concentration, intrinsic Fermi
level (potential) ψ and quasi-Fermi levels (with arbitrary offset) for a Si p+n diode
for various current densities: (a) 10 A cm−2, (b) 103 A cm−2 and (c) 104 A cm−2.
NA = 1018 cm−3, ND = 1016 cm−3, τn = 0.3 ns, τp = 0.84 ns. Adapted from [1169]

Fig. 20.47. Theoretical I–V characteristic of a diode at room temperature with
saturation currents for the n = 1 and n = 2 processes of In=1

s = 10−12 A and
In=2
s = 10−9 A and resistances Rs = 10 Ω, Rp = 100 MΩ. Dashed line: Ideal diode

with n = 1 characteristic only, dash-dotted line: only n = 2 process, dotted line:
only parallel ohmic resistance, short dashed line: only series resistance, solid line:
all effects combined as in (20.140)
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I = Is exp
[
e(V −RsI)

nkT

]
+
V −RsI

Rp
. (20.139)

The shunt resistance can be evaluated best from the differential conductance
in the reverse-voltage regime [1143]. Due to a high surface-state density, the
passivation of GaAs diodes can be difficult. Si can be very well passivated
with low leakage current and high reliability.

Often, a clear distinction between the n = 1 and n = 2 regimes cannot
be made. In this case, an intermediate ideality factor 1 ≤ n ≤ 2 is fitted to
the I–V characteristic as in (20.139). If the current can be separated into
a n = 1 (diffusion) and a n = 2 (recombination–generation) process, the
characteristic is given by (see Fig. 20.47)

I = In=1
s exp

[
e(V −RsI)

kT

]
+In=2

s exp
[
e(V −RsI)

2kT

]
+
V −RsI

Rp
. (20.140)

In summary, the pn-diode has the equivalent circuit given in Fig. 20.48;
the photocurrent source Iph is discussed below in Sect. 21.3.

20.4.5 Breakdown

If a large voltage is applied in the reverse direction, the pn-junction breaks
down. At breakdown, a small voltage increase leads to a dramatic increase
of the current. There are three mechanisms that lead to breakdown: thermal
instability, tunneling, and avalanche multiplication [1170–1172]. Defects cause
localized pre-breakdown sites [1172, 1173].

Rp

Rs

Iph Id Ir
nr

Fig. 20.48. Equivalent circuit of a pn-diode. Serial (Rs) and parallel (Rp) resistance
and diode currents: Id (due to diffusion, n ≈ 1), Inr

r (nonradiative recombination
due to band–impurity recombination, n ≈ 2) and an ideal current source due to
photogeneration (as discussed in Sect. 21.3)
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Thermal Instability

The reverse current at large applied voltage leads to a power dissipation and
heating of the junction. This temperature increase leads to a further increase
of the saturation current (20.114). If the heat sink, e.g. the mounting of the
chip, is not able to transport the heat away from the device, the current
increases indefinitely. If not limited by a resistor, such a current can destroy
the device. The thermal instability is particularly important for diodes with
high saturation current, e.g. Ge at room temperature.

Tunneling

At large reverse bias, charge carriers can tunnel between conduction and
valence band through the junction. A more detailed discussion will be given
below in Sect. 20.5.9 about the tunneling diode. Since for the tunneling effect
a thin barrier is necessary, breakdown due to tunneling is important for diodes
where both sides are highly doped. For Si and Ge diodes, tunneling dominates
the breakdown if the breakdown voltage Vbr is Vbr < 4Eg/e. For Vbr > 6Eg/e
avalanche multiplication dominates. The intermediate regime is a mixed case.

With increasing temperature, the tunneling current can be achieved al-
ready with a smaller field (since the band gap decreases with increasing tem-
perature), thus the breakdown voltage decreases (negative temperature coef-
ficient).

Avalanche Multiplication

Avalanche multiplication due to impact ionization is the most important
mechanism for the breakdown of pn-diodes. It limits the maximum reverse
voltage for most diodes and also the collector voltage in a bipolar transistor
or the drain voltage in a field-effect transistor. Avalanche multiplication can
be used for the generation of microwave radiation or for photon counting (cf.
Sect. 21.3.6).

Impact ionization was discussed in Sect. 8.5.4. The most important pa-
rameters are the electron and hole ionization coefficients αn and αp. For
discussion of the diode breakdown, we assume that at x = 0 a hole current
Ip0 enters the depletion layer. This current is amplified by the field in the de-
pletion layer and impact ionization. At the end of the depletion layer (x = w),
it is MpIp0 , i.e. Mp = Ip(w)/Ip(0). Similarly, an electron current is increased
on its way from w to x = 0. The incremental change of the hole current due
to electron–hole pairs generated along a line element dx is

dIp = (Ipαp + Inαn) dx . (20.141)

The total current in the depletion layer is I = Ip + In and is constant in
stationary equilibrium. Therefore,
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dIp
dx

− (αp − αn) Ip = αn I . (20.142)

The solution is

Ip(x) = I

1
Mp

+
∫ x

0
αn exp

[− ∫ x

0
(αp − αn) dx′

]
dx

exp
[− ∫ x

0
(αp − αn) dx′

] . (20.143)

For x = w we find for the multiplication factor

1 − 1
Mp

=
∫ w

0

αn exp
[
−

∫ x

0

(αp − αn) dx′
]

dx . (20.144)

Avalanche breakdown is reached for Mp → ∞, i.e. when
∫ w

0

αn exp
[
−

∫ x

0

(αp − αn) dx′
]

dx = 1 . (20.145)

A corresponding and equivalent equation is obtained when the consider-
ation is started with the electron current. If αp = αn = α, (20.145) simplifies
to ∫ w

0

α dx = 1 . (20.146)

This means that per transit of one carrier through the depletion layer,
on average another carrier is created such that the process just starts to
diverge. The breakdown voltage for various semiconductor materials is shown
in Fig. 20.49a as a function of the doping level. The depletion-layer width w
at breakdown and the maximum electric field Em are depicted in Fig. 20.49b.
The average impact ionization coefficient α has been given as [1174]
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Fig. 20.49. (a) Avalanche breakdown voltage for one-sided abrupt junctions in
Ge, Si, (100)-GaAs and GaP at T = 300 K. The dashed line indicates the limit of
avalanche breakdown at high doping due to tunneling breakdown. (b) Depletion-
layer width w at breakdown and maximum electric field Em for the same junctions.
Adapted from [1175]



578 20 Diodes

α = A E7 . (20.147)

for silicon with A = 1.8×10−35 (cm/V)7 cm−1. For the breakdown condition
(20.146), using (20.8) and (20.147) the depletion layer width at breakdown
wB (wB in cm, ND in cm3) is found to be

wB = 2.67 × 1010N
−7/8
D . (20.148)

From this the breakdown voltage can be calculated with (20.14) (VB in V,
ND in cm3) [1176]

VB = 6.40 × 1013N
−3/4
D . (20.149)

In GaAs, the impact-ionization coefficients and therefore the breakdown
voltage are direction dependent. At a doping of NB = 1016 cm−3, the break-
down voltage is the same for (001) and (111) orientation; for smaller doping
the breakdown voltage of (001)-oriented GaAs is smaller, for larger doping
that of GaAs (111) [1177].

At higher temperatures, the charge carriers release their excess energy
faster to the lattice.20 Thus, less energy is available for impact ionization
and the required electric field is higher. Therefore, the breakdown voltage
increases with the temperature (Fig. 20.50). This behavior is opposite to
tunneling diodes and the two processes can be distinguished in this way.

In planar structures (Fig. 20.51a), high electric fields as present in high
power devices will occur at the parts with large curvature. At these sites
breakdown will occur first and at much lower voltages than expected for a
perfectly planar (infinite) structure [1179, 1180]. For devices that require

Fig. 20.50. Temperature dependence of a n+p Si-diode with NB = 2.5×1016 cm−3

and a guard-ring structure (see Fig. 20.51d). The temperature coefficient ∂Vbr/∂T
is 0.024 V/K. Adapted from [1178]

20The scattering rate becomes higher with increasing temperature and, e.g., the
mobility decreases, see Sect. 8.3.9, and the drift saturation velocity decreases, see
Sect. 8.5.1.
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Fig. 20.51. (a) Large electric fields at large curvatures in a shallow junction.
Avoidance of regions with large electric fields by (b) deep junction and (c) field-
ring structure. (d) shows a guard-ring structure with circular, low-doped n region.
Grey area denotes insulating material, arrows indicate field lines and the dashed
lines indicate the extension of the depletion layers

high breakdown voltage, design changes have to be made. These include
deep junctions (Fig. 20.51b) with a smaller curvature, a field-ring structure
(Fig. 20.51c) in which an additional depletion layer is used to smooth the
field lines and the often used guard ring (Fig. 20.51d) for which a circular
region of low doping (and thus high breakdown voltage) is incorporated.

The decrease of breakdown voltage in a junction with cylindrical and
spherical geometry has been numerically calculated as a function of curva-
ture [1181] (Fig. 20.52). Analytical formulas in terms of the ratio of radius

Fig. 20.52. Breakdown voltage (in units of the breakdown voltage VB of a plane
junction) for cylindrical and spherical junctions as a function of the curvature radius
(in units of the depletion layer width at breakdown WB for a plane junction). Data
from [1176]



580 20 Diodes

of curvature and the depletion layer width at breakdown for a plane junction
r/wB have been given later [1176].

Defects

In material with extended defects such as polycrystalline silicon breakdown
can occur locally at lower voltage than in the corresponding defect-free bulk
material (‘pre-breakdown’) [1173]. This effect typically occurs at certain grain
boundaries and probably involves mid-gap states. It is also accompanied with
electroluminescence by which it can be detected with high spatial resolution
(Fig. 20.53).

20.4.6 Organic Semiconductor Diodes

A bipolar diode from organic semiconductors consists of the p-conductive
hole transport layer (HTL) and the n-conductive electron transport layer
(ETL). The low conductivity of organic semiconductors causes the applied

Fig. 20.53. Microscopic (a) forward bias electroluminescence and (b) micro-
scopic reverse bias electroluminescence (μ-ReBEL) image of an alkaline textur-
ized solar cell (cmp. Fig. 21.57) in a region without specific surface features at
U = −17 V. The bulk defects at these positions are revealed topographically in
the neighboring acidic texturized solar cell in the microscopic (c) image. Their
ReBEL pattern appears similarly in the corresponding EL image (d). Adapted from
[1173]
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Fig. 20.54. Schematic sample geometry and charge distribution (left) and energy
diagram (right) for (a) an ideal insulator, (b) a typical inorganic semiconductor
pn-diode and (c) a double layer organic diode under forward bias V . Adapted
from [1184]

voltage to drop over the entire structure [1182–1184] (Fig. 20.54c) while
in a typical silicon diode for sufficient forward bias (and moderate injec-
tion, cmp. Fig. 20.46) flat-band conditions are present (Fig. 20.54b). The
first organic homodiode was reported only in 2005 for zinc-phthalocyanine
(ZnPc) doped with [Ru(terpy)2]0 (n-type) and F4-TCNQ (p-type, cmp.
Fig. 16.7b) [1185]. Deviation from ideal Shockley behavior is discussed in this
report.

The hole injecting contact is often made from ITO, the electron injection
contact from low work function metals such as Al, Mg or Ca. Specially de-
signed layers for efficient charge injection (HIL, hole injection layer [1186] and
EIL, electron injection layer [1187]) can be introduced between the contact
metal and the transport layers (Fig. 20.55c). The particular level lineup of the
HTL and HTL as shown in Fig. 20.54c (also Fig. 20.55a) leads to a barrier
for electrons and holes. The hole and/or electron blocking is beneficial for
recombination in the vicinity of the interface and prevents exciton diffusion
to the contacts. In organic light emitting diodes (Sect. 22.3.7) an additional
layer (EML, emission layer) designed for efficient radiative recombination
(Sect. 16.5) is introduced between HTL and ETL (Fig. 20.55b).
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Fig. 20.55. Schematic energy diagram for (a) dual layer organic diode (HTL,
ETL), (b) with additional emission layer (EML) and (c) with further hole and
electron injection layers (HIL, EIL)

20.5 Applications and Special Diode Devices

In the following, various electronic applications of diodes are discussed. The
most important special diode types are introduced. Optoelectronic appli-
cations (involving absorption and emission of photons) are treated below
(Sect. 21).

20.5.1 Rectification

In a rectifier, the diode has to supply a high resistivity for one polarity of
the bias and a low one to the other polarity. In Fig. 20.56a, a single-path
rectification method is shown. Only the positive half-wave can pass the load
resistor RL (Fig. 20.56b). In Fig. 20.56c, the characteristic of a Si diode is
shown. Of course, the voltage drop across the diode can only range in the
1-V regime. In order to make the setup work, the load resistor has to be
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Fig. 20.56. (a) Single-path mains rectifier, (b) characteristics of Si diode (BYD127,
Philips), (c) load characteristics of the mains rectifier (RL = 400 Ω), (d) voltage
output of single-path mains rectifier. (e) depicts the schematic circuit of a bridge
rectifier that works for both half-waves, (f) the resulting voltage output
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considered. The total current is given by I = Is [exp (eUd/nkT ) − 1]. The
total voltage U is split between the voltage drop across the diode Ud and
that over the load resistance UL = RLI. The current is therefore given by

I =
U − Ud

RL
. (20.150)

For sizeable currents the voltage drop across the diode Ud is between 0.7
and 1 V. The characteristic is linear between about 1 and 220 V (Fig. 20.56d).
Typically, the voltage UL is low-pass filtered with a capacitor parallel to the
load resistor. The effective voltage is the peak voltage divided by 2.

The drawback of the single diode rectifier is that only the positive half-
wave contributes to a dc signal. The setup in Fig. 20.56e (bridge rectifier)
allows both half-waves to contribute to the dc signal. The effective voltage in
this case is the peak voltage divided by

√
2.

The forward resistance in the static (Rf) and dynamic (rf) case are (for
βVf > 3)

Rf =
Vf

If
∼= Vf

Is
exp

(
− eVf

nkT

)
(20.151a)

rf =
∂Vf

∂If
=
nkT

eIs
exp

(
eVf

nkT

)
∼= nkT

eIf
. (20.151b)

For reverse bias we have (β|Vr| > 3)

Rr =
Vr

Ir
∼= Vr

Is
(20.152a)

rr =
∂Vr

∂Ir
=
nkT

eIs
exp

(
e|Vr|
nkT

)
. (20.152b)

Thus, the dc and ac rectifications ratios are given by

Rr

Rf
= exp

(
eVf

nkT

)
(20.153a)

rr
rf

=
If

Is exp
(

e|Vr|
nkT

) . (20.153b)

Rectifiers generally have slow switching speeds. A significant time de-
lay arises from the necessary charge-carrier recombination when the diode
switches from low (forward) to high (reverse) impedance. This poses typically
no problem for line-frequency (50–60 Hz) applications. For fast applications,
however, the minority-carrier lifetime needs to be reduced, e.g. by doping Si
with Au (see Sect. 10.9).

20.5.2 Frequency Mixing

The nonlinear characteristic of the diode allows the mixing of frequencies,
e.g. for second- (or higher-) harmonic generation, upconversion or demodu-
lating of radio-frequency (RF) signals. A single balanced mixer is shown in
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Fig. 20.57. (a) Schematic circuit of single balanced mixer with input (RF: ra-
dio frequency, LO: local oscillator) and output (IF: intermediate frequency). (b)
Optical plan-view image (300 × 125 μm2) of a high-speed single balanced mixer
with two GaAs Schottky diodes with opposite poling. The device properties are
Rs = 5 Ω, for I = 1 μA a forward and reverse voltage of 0.7 and 6 V, respectively;
the capacitance of each diode is 8 fF. Reprinted with permission from [1188]. (c)
Schematic circuit of a double balanced mixer. (d) Optical image (1.65 mm2) of 40–
45 GHz MMIC (Gilbert cell) mixer on GaAs basis using pHEMTs. Reprinted with
permission from [1189]

Figs. 20.57a and b. The RF signal consists of a RF carrier frequency f0 mod-
ulated with an intermediate frequency (IF) signal fIF(t). It is mixed with a
local oscillator (LO) that has a constant frequency fLO outside the RF mod-
ulation bandwidth f0 ± fIF. The IF signal can be detected from the setup in
Fig. 20.57a if filtered through a low-pass filter to avoid loss of power to the
IF amplifier. The temperature dependence of the diode characteristic (via js
and β) on mixing efficiency is typically less than 0.5 dB for a 100-K change
in temperature.

Problems of single-diode mixers are the radiation of local-oscillator power
from the RF input port,21 loss of sensitivity by absorption of input power in
the local oscillator circuit, loss of input power in the intermediate frequency

21that in military applications could make the mixer detectable by the enemy.
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amplifier, and the generation of spurious output frequencies by harmonic mix-
ing. Some of these problems can be solved by circuit techniques, but these
circuits often introduce new problems. Most mixers therefore use multiple-
diode techniques to provide a better solution of these problems. In Fig. 20.57c,
the circuit diagram of a double balance mixer is shown. Even-order harmon-
ics of both the LO and the signal frequency are rejected. This mixer does not
require a low-pass filter to isolate the IF circuit. The three ports are isolated
from each other by the symmetry of the circuit. These mixers usually cover
a broader frequency band than the others. Ratios as high as 1000:1 are avail-
able. Microwave equivalents (working at f  1 GHz) of such mixer circuits
are available. Bandwidth ratios as high as 40:1 are available at microwave
frequencies in MMICs (millimeter-wave integrated circuits).

The common drawback of MMIC diodes is that they are obtained from
the Schottky barriers used in field-effect transistors, that have inferior per-
formance compared to discrete diodes. The use of pHEMT technology22 for
millimeter-wave applications provides diodes that differently from regular
Schottky diodes, since they consist of a Schottky barrier in series with a
heterojunction. In Fig. 20.57d, a MMIC 45 GHz mixer is shown using fast
GaAs-based pHEMTs.

20.5.3 Voltage Regulator

In a voltage regulator, the large variation of resistance with applied bias is
used. This effect occurs in the forward direction and close to the breakdown
voltage.

In Fig. 20.58a, a simple circuit is shown. When the input voltage Vin

is increased, the current increases. The preresistor R1 = 5 kΩ and the load
resistor represent a voltage divider with Vin = IR1 + Vout. The total current
I is given by the two currents through the diode and the load resistor I =
Is [exp(βVout/n) − 1] + Vout/RL. Therefore, the output voltage is implicitly
given by

Vout

(
1 +

R1

RL

)
= Vin −R1 Is

[
exp

(
βVout

n

)
− 1

]
. (20.154)

A large current change is related to a fairly small change of the voltage
across the diode, which at the same time is the output voltage. Therefore, a
change in the input voltage causes only a small change in the output voltage.

We assume a diode with n = 1 and IS = 10−14 A with the characteristic
shown in Fig. 20.58a. The numerical example in Fig. 20.58c is calculated for
RL = 2 kΩ and 4 kΩ, respectively. The output voltage varies by about 0.02 V
if the input varies between 5 and 9 V. In Fig. 20.58d, the differential voltage
change α = Vin

Vout

∂Vout
∂Vin

is shown.

22pseudomorphic high electron mobility transistors, cf. Sect. 23.5.8.
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Fig. 20.58. (a) Circuit diagram of a voltage regulator, (b) diode characteristic
(n = 1). The vertical dashed lines show the operation conditions for RL = 2 kΩ and
UE = 5 and 9 V and thus the principle of voltage stabilization. (c) Output vs. input
voltage and (d) stability (differential voltage ratio α, see text) for input voltage
between 5 and 9 V

In this way, voltage peaks can be filtered from the input voltage. If two
antiparallel diodes are used, this principle works for both polarities. Instead
of a diode in the forward direction, the very steep slope of the diode I–V
characteristic at the breakdown can be used. Just before breakdown, the
diode has a high resistance and the voltage drops at the load resistor. If
the input voltage increases a little, the diode becomes conductive and shorts
the additional voltage (the maximum allowed breakdown current needs to
be observed!). Due to its small saturation current, typically Si diodes are
used. The breakdown voltage can be designed via the diode parameters. Such
diodes with defined breakdown voltage are called Z- or Zener diodes (see next
section).

If the breakdown is due to tunneling (avalanche multiplication), the break-
down voltage decreases (increases) with temperature. If two diodes with pos-
itive and negative temperature coefficient are put in series, a very good tem-
perature stability of the breakdown voltage of 0.002%/K can be achieved.
Such diodes can be used to realize a reference voltage.
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20.5.4 Zener Diodes

A Zener diode is designed to have a defined breakdown voltage. Zener diodes
are available with a number of different standard breakdown voltages. Their
characteristic is shown for reverse bias with the current shown positive. The
characteristics of various Zener diodes for different breakdown voltages are
shown in Fig. 20.59.

20.5.5 Varactors

A diode exhibits a voltage-dependent capacitance. This effect can be used to
tune an oscillator using the diode bias (voltage-controlled oscillator, VCO).
The equivalent circuit is shown in Fig. 20.60. The capacitance consists of a
parasitic capacitance Cp due to mounting and bonding. This effect also causes
a parasitic inductance. The series resistance due to mounting can typically
be neglected. The variable junction capacitance Cj and the ohmic resistance
Rs are bias dependent.

The C(V ) dependence has generally a power law with an exponent γ
(which itself may depend on the bias voltage)

C =
C0

(1 + V/Vbi)γ
, (20.155)

where C0 is the-zero bias capacitance. Since the frequency f of an LC oscil-
lator circuit depends on C−1/2 the frequency, f depends on the voltage as
f ∝ V γ/2. Therefore, a γ = 2 dependence is most desirable.

For uniformly doped profiles, the capacitance depends with an inverse
square root law on the applied voltage (20.98), i.e. γ = 0.5. Hyperabrupt junc-
tions are typically made by ion implantation or epitaxy with graded impurity
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Fig. 20.59. Characteristics of a field of Zener diodes (at room temperature)
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Rs

CjCp

Lp

Fig. 20.60. Equivalent circuit of a varactor diode with parasitic capacitance Cp

and inductance Lp and variable capacitance Cj and resistance Rs

incorporation to create a special nonuniform doping profile (Fig. 20.61a). For
a doping profile

NB(z) = N̂B

(
z

z0

)m

(20.156)

the capacitance is given as

C =

[
e N̂B ε

m+1
s

(m+ 2) zm
0 (Vbi − V )

] 1
m+2

=
C0

(1 + V/Vbi)
1/(m+2)

. (20.157)

Ideally, m = −3/2 results is a linear frequency vs. voltage relation. The
C–V characteristic of an implanted, hyperabrupt diode exhibits a part that
has an exponent γ = 2 (Fig. 20.61b). A γ = 2 C(V ) dependence and there-
fore a linear f(V ) curve can be achieved over more than one octave using
computer-controlled variable epitaxial-layer doping (Fig. 20.61c).

20.5.6 Fast-Recovery Diodes

Fast-recovery diodes are designed for high switching speeds. The switching
speed from the forward to the reverse regime is given by the time t0 = t1 + t2
with t1 being the time to reduce the minority carrier density to the equi-
librium value (e.g. pn → pn0) and t2 being the time in which the current
decreased exponentially (Fig. 20.62). The time t1 can be drastically reduced
by incorporation of deep levels that act as recombination centers. A promi-
nent example is Si:Au. However, this concept is limited since the reverse
generation current, e.g. (20.135), depends on the trap density. For direct
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Fig. 20.61. (a) Donor-doping profile according to (20.156) in p+n or Schottky
diodes for m = 0 (abrupt junction), m =1 (linearly graded junction) and two
values with m < 0 (hyperabrupt junctions). (b) Bias dependence of capacitance
for diodes with abrupt junction (‘A’, γ = 0.5), hyperabrupt junction (‘H’, γ > 0.5)
and ‘epilinear’ junction (‘L’, γ = 2). (c) Frequency–voltage tuning characteristics
(scaled to 1.0 for V = 0) for the three diode types. Parts (b) and (c) adapted
from [1190], reprinted with permission.

semiconductors, recombination times are short, e.g. 0.1 ns or less for GaAs.
In silicon, they can be extremely long (up to ms) or at least 1–5 ns. Schottky
diodes are suitable for high-speed applications since they are majority-carrier
devices and minority-charge carrier storage can be neglected.

20.5.7 Step-Recovery Diodes

This type of diode is designed to store charge in the forward direction. If
polarity is reversed, the charge will allow conductance for a short while,
ideally until a current peak is reached (Fig. 20.63a), and then cutoff the
current very rapidly during the so-called snapback time Ts (Fig. 20.63b).
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Fig. 20.62. Current vs. time trace for a (soft) fast-recovery diode. Reprinted with
permission from [1191]

Fig. 20.63. (a) Current vs. time trace for a step-recovery diode and sinusoidal volt-
age input. The lifetime must be sufficiently large such that a current peak is reached.
(b) Definition of the snapback time Ts. Reprinted with permission from [1192]

The cutoff can be quite rapid, in the ps regime. These properties are used
for pulse (comb) generation or as a gate in fast sampling oscilloscopes. In
Si, only 0.5–5 μs are reached (fast-recovery diode, see previous section) while
GaAs diodes can be used in the several tens of GHz regime.

Using a heterostructure GaAs/AlGaAs diode (cf. Sect. 20.5.12), as shown
schematically in Fig. 20.64a, a steepening of a 15-V, 70-ps (10% to 90%)
pulse to a fall time of 12 ps was observed (Fig. 20.64c). The forward current
of the diode was 40 mA, supplied via a bias tee.

20.5.8 pin-Diodes

In a pin-diode, an intrinsic (i), i.e. undoped region (with higher resistivity)
is located between the n- and the p-regions (Fig. 20.65). Often, also a region
with low n- or p-doping is used. In this case, the center region is denoted as a
ν- or π-region, respectively. The fabrication of arbitrary doping profiles and
an intrinsic region poses little problem for epitaxial diodes.
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Fig. 20.64. (a) Schematic layer sequence for fast GaAs/AlGaAs step-recovery
diode. (b) Circuit with input and output pulse. (c) Input (dashed line) and output
(solid line) waveforms. Vertical division is 2 V. Adapted from [1193]

Via the Poisson equation, the charge in the intrinsic layer is related to the
electric field. If no dopants are present, there is a constant (maximum) field
in the i-region at zero bias. If there is low doping, a field gradient exists.

The capacitance for reverse bias is εsA/w and is constant starting at fairly
small reverse bias (10 V). The series resistance is given by Rs = Ri +Rc. The
contact resistance Rc dominates the series resistance for large forward bias.

20.5.9 Tunneling Diodes

For the invention of the tunneling diode and the explanation of its mechanism
the 1973 Nobel Prize in Physics was awarded to L. Esaki. Eventually, the
tunneling diode did not make the commercial breakthrough due to its high
basis capacitance. It is used for special microwave applications with low power
consumption, for frequency stabilization and possibly in tunneling field-effect
transistors (Sect. 23.5.6).

First, the tunneling diode is a pn-diode. While the tunnel effect [1194] has
already been discussed for Schottky diodes, it has not yet been considered
by us for pn–diodes. We expect the tunnel effect to be important if the
depletion-layer is thin, i.e. when the doping of both sides is high.

The doping is so high that the quasi-Fermi levels lie within the respective
bands (Fig. 20.66). The degeneracy is typically several kT and the depletion
layer width is in the 10 nm range.
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Fig. 20.65. (a) Schematic layer sequence of pin-diode (‘i’: intrinsic, ‘π’: lowly p-
doped), (b) net impurity distribution NA − ND, (c) space charge and (d) electric
field in a pin (solid lines) and a p–π–n (dashed lines) diode
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Fig. 20.66. Band diagram of a tunneling diode in thermodynamic equilibrium
(V = 0). Vn and Vp characterize the degeneracies on the n- and p-side, respectively
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(a) (b)

Fig. 20.67. (a) Static current–voltage characteristics of a typical tunneling diode.
Peak and valley current and voltage are labeled. (b) The three components of the
current (short dashed : band-to-band tunnel current, dashed : excess current, dash-
dotted : thermal current) are shown separately. Adapted from [383], c©1981 Wiley

In the forward direction, the I–V characteristic of the tunneling diode
exhibits a maximum followed by a minimum and subsequently an exponential
increase (Fig. 20.67a). As shown in Fig. 20.67b, the total current consists of
three currents, the band-to-band tunneling current, the excess current and
the thermal (normal thermionic diode) current.

The V = 0 situation is again shown in Fig. 20.68b. Upon application of
a small forward bias, electrons can tunnel from populated conduction-band
states on the n-doped side into empty valence-band states (filled with holes)

−V

+V
+V

+V

I

(b) (e)(d)(c)(a)

V

Fig. 20.68. I–V characteristics (upper row) and simplified band structure (lower
row) of a tunneling diode at various bias voltages as indicated with a dot in the
I–V plot. (a) Reverse bias, (b) in thermodynamic equilibrium (V = 0), (c) in the
maximum of the tunneling current, (d) close to the valley and (e) forward bias
with dominating thermal current. The tunneling current is indicated with straight
arrows. In (e) the thermionic emission current (curved arrow) and the excess current
with inelastic tunneling (dotted arrow) are shown.
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(a) (b)

Fig. 20.69. (a) Current–voltage characteristic of silicon tunneling diode (model
1N4397 from American Microsemiconductor) at low temperature (T = 4.2 K).
(b) d2I/dV 2 for small forward voltages, exhibiting characteristic phonon energies.
Adapted from [1198]

on the p-doped side (Fig. 20.68c). We note that this tunneling process is
usually considered elastic. However, signatures at characteristic phonon and
multi-phonon energies are found (at low temperature) in the forward cur-
rent [1195, 1196] and are best seen in a d2I/dV 2-plot [1197, 1198] (Fig. 20.69).

A similar situation, now with electrons tunneling for the valence band
on the p-side into the conduction band on the n-side, is present for small
reverse bias (Fig. 20.68a). Thus the rectifying behavior of the diode is lost. For
larger forward bias, the bands are separated so far that the electrons coming
from the n-doped side do not find final states on the p-doped side. Thus the
tunneling current ceases (Fig. 20.68d). The current minimum is at a voltage
V = Vn + Vp > 0. The thermal current is the normal diode diffusion current
(Fig. 20.68e). Therefore, a minimum is present in the I–V characteristic. The
excess current is due to inelastic tunneling processes through states in the
band gap and causes the minimum to not drop down to almost zero current.

The peak (Vp, Ip) and valley (Vv, Iv) structure of the characteristic leads
to a region of negative differential resistance (NDR). Ip/Iv is termed the peak-
to-valley ratio (Fig. 20.70). Peak-to-valley ratios of 8 (Ge), 12 (GaSb, GaAs),
4 (Si), 5 (InP) or 2 (InAs) have been reported (all at room temperature).

20.5.10 Backward Diodes

When the doping in a tunneling diode is nearly or not quite degenerate,
the peak-to-valley ratio can be very small. Then the tunnel current flows
mostly in the reverse direction (low resistance) and the forward direction
has a higher resistance (with or without the NDR regime). Such diodes are
called backward diodes. Since there is no minority-charge carrier storage,
such diodes are useful for high-frequency applications.
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Fig. 20.70. Comparison of tunneling characteristic (room temperature) of diodes
based on Ge, GaSb and GaAs. Peak-to-valley ratios are 8 (Ge) and 12 (GaSb,
GaAs). Adapted from [384]

20.5.11 Gunn Diodes

The Gunn diode is not really a diode and thus more appropriately called
Gunn element. It allows to generate microwave radiation in the frequency
range of 1–100 GHz [1199] and beyond [1200] using GaAs and in the THz-
regime using GaN [1201]. Extracting higher harmonics, frequencies of several
100 GHz can be realized [1202, 1203].

The Gunn element relies on the negative differential resistance (NDR)
occurring in semiconductors with two valleys of different mobility such as
GaAs or InP (cmp. Sect. 8.5.2). At high fields, the electrons are scattered
from the Γ -valley into the upper valley (L for most materials). Accordingly,
the Gunn element is also called ‘transferred electron device’ (TED).

The Gunn effect was discovered by and named after J.B. Gunn [87]. The
spontaneous oscillation of current in a n-type semiconductor occurs when a
sufficiently large voltage (pulse) is applied that causes the electric field in the
semiconductor to reach the NDR regime (Fig. 20.71). The applied average
field of E = 16V/25 μm = 6.4 kV/cm [87] is larger than the threshold field of
ET = 3.2 kV/cm for NDR in GaAs (Table 8.4).

The self-started oscillations are due the inherent instability introduced
by NDR. A homogeneous (uniform) electric field and electron distribution
is unstable and a thin high-field domain with bipolar charge distribution
(Gunn domain, predicted in [541]) can develop and drift through the device.
After reaching the anode, another domain can form, causing a periodically
fluctuating current. The highest frequencies can be achieved with the so-
called limited-space-charge accumulation (LSA) mode which operates with-
out domains. Optical performance requires non-homogeneous doping profiles.
A detailed discussion of the various oscillation mechanisms can be found
in [542, 1199, 1204].
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Fig. 20.71. Current traces upon excitation of a 25 μm thick piece of n-type GaAs
with a voltage pulse (amplitude 16 V and duration 10 ns). The upper trace is an ex-
panded view of the lower trace. The oscillation period is 4.5 GHz. Adapted from [87]

20.5.12 Heterostructure Diodes

In a heterostructure diode, the n- and p-regions are made of different semi-
conductors. Such a diode is important in particular as an injection (emitter–
base) diode in transistors. In Fig. 20.72, the band diagram is shown for a
type-I heterostructure with the n (p) region having the larger (smaller) band
gap. Additionally to the built-in voltage, the barrier in the valence band is

Fig. 20.72. Schematic band diagram of a n-AlGaAs/p-GaAs diode (a) without
contact of the n- and p-materials, (b) in thermodynamic equilibrium, and (c) with
graded Al composition at the heterointerface
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increased. In this case, the (mostly undesired) hole current from the p- to
the n-side is reduced. The peak in the conduction band poses potentially a
greater barrier than the diffusion potential itself. The spike can be reduced by
grading the materials across the heterojunction and creating a smooth tran-
sition of Eg between the materials. The effect of grading on the properties of
the heterojunction is discussed in detail in [1205].



21 Light-to-Electricity Conversion

21.1 Photocatalysis

The absorption of light in a semiconductor across the band gap creates free
electrons and holes. In particular, for small particle size in powders1 these
charge carriers can reach the surface of the semiconductor. At the surface
they can react with chemicals. The hole can form •OH radicals from OH−

attached to the bead. The electron can form O2•−. These radicals can sub-
sequently attack and detoxify, e.g., noxious organic pollutants in the solution
surrounding the semiconductor. Such photocatalytic activity has been found,
e.g., for TiO2 and ZnO powders. A review of photocatalysis, in particular
with TiO2 particles and their surface modifications with metals and other
semiconductors, is found in [1206].

The efficiency of the photocatalytic activity depends on the efficiency of
the charge separation (Fig. 21.1). Any electron–hole pair that recombines
within the bulk or the surface of the particle is lost for the catalytic activity.
Thus, surfaces must exhibit a small density of recombination centers. Sur-
face traps, however, can be beneficial for charge-carrier separation when they
‘store’ the charge-carrier rather than letting it recombine. Small particles are
expected to exhibit more efficient charge-carrier separation than larger ones.
Electrons at the surface can be donated and reduce an electron acceptor,
typically oxygen, A → A−. A hole at the surface can oxidize a donor species,
D → D+.

An example of increased photocatalytic activity are TiO2 powders with
deposited metal particles (such as Pt) for H2 evolution and metal-oxide par-
ticles (such as RuO2) for O2 evolution. Such a system behaves as a short-
circuited microscopic photoelectrochemical cell in which Pt is the cathode
and RuO2 is the anode [1207]. Excitation with light energy above the band
gap in the TiO2 particle (3.2 eV) injects electrons into the Pt particles and
holes into the RuO2 particles. Trapped electrons in Pt reduce water to hy-
drogen and trapped holes in RuO2 oxidize water to oxygen.

The photocatalytic activity is also tied to the geometrical shape of the
semiconductor. Generally, powders with nanosized grains have much higher

1‘Small’ is here in relation to the diffusion length and does not need to be in
the range where quantization effects (quantum dots) are present.

M. Grundmann, The Physics of Semiconductors, 2nd ed., Graduate Texts 599
in Physics, DOI 10.1007/978-3-642-13884-3 21,
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 21.1. Principle of photocatalytic activity. Light absorption creates an
electron–hole pair. The electron and hole diffuse and can recombine in the bulk or
at the surface. Free carriers can react at the surface with species from the surround-
ing solution, reducing an electron acceptor or oxidizing a donor species. Adapted
from [1206]

activity than those with microsized particles [1208]. In Fig. 21.2 it is shown
that nanosized objects with high surface-to-volume ratio are more effective
catalysts than rather compact surfaces.

Fig. 21.2. SEM images of MOCVD-grown (a) ZnO thin film and (b) ZnO nanonee-
dle layer. (c) Comparison of the photocatalytic activity (decoloration of the dye
Orange II in aqueous solution) of the ZnO thin film (irradiation with a Hg lamp
for 5 h and 15 h) and the ZnO nanoneedles (irradiation 5 h). The sample labeled
‘control’ (scaled to 100%) is the start situation (absorption of the dye Orange II)
without photocatalytic process. Adapted from [1209], reprinted with permission
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In sun-protection cream only the UV absorption is wanted in UVA (330–
420 nm) and UVB (260–330 nm) ranges. Subsequent photocatalysis on the
skin and the presence of radicals are unwanted. Thus the semiconductor
particles (∼10–200 nm diameter) are encapsulated in microbeads (∼1–10 μm
diameter) of silica, PMMA or urethane, also improving ease of dispersion,
aggregation, stability and skin feel.

21.2 Photoconductors

21.2.1 Introduction

Charge carriers can be generated in the semiconductor through the absorp-
tion of light with a photon energy above or below the band gap (Fig. 21.3).
Absorption involving impurities occurs typically in the mid- and far-infrared
spectral regimes (cf. Sect. 9.6). The additional charge carriers cause an in-
crease in the conductivity (8.11).

(a) (b) (c)

Fig. 21.3. Absorption and charge-carrier generation in a photoconductor: (a)
band–band transition, (b) valence-band to acceptor and (c) donor to conduction-
band transition

21.2.2 Photoconductivity Detectors

In stationary equilibrium for constant illumination of power Popt and photon
energy E = hν the generation rate G is given by

G =
n

τ
= η

Popt/hν

V
, (21.1)

where V is the volume (V = wdL, see Fig. 21.4) and τ denotes the charge-
carrier lifetime. η is the quantum efficiency, i.e. the average number of
electron–hole pairs generated per incoming photon. The photocurrent be-
tween the electrodes is
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Fig. 21.4. (a) Scheme of photoconductor. (b) Equivalent circuit of photoconductor

Iph = σEwd ≈ eμnnEwd , (21.2)

assuming that μn  μp and with E = V/L denoting the electric field in
the photoconductor, V being the voltage across the photoconductor. We can
then also write

Iph = e

(
η
Popt

hν

)(
μnτE
L

)
. (21.3)

With the primary photocurrent Ip = e
(
η

Popt
hν

)
we deduce a gain

g =
μnτE
L

=
τ

tr
, (21.4)

where tr = L/vd is the transit time through the photoconductor.
Now we consider a modulated light intensity

P (ω) = Popt [1 +m exp(iωt)] , (21.5)

where m is between 0 and 1. For m = 0 it is a constant light power, for
m = 1 the intensity is sinusoidally modulated between 0 and Pmax = 2Popt.
The rms optical power2 is given by

√
2mPopt. In the case of m = 1 this is

equal to Pmax/
√

2.
The rms photocurrent is

iph ≈ e ηmPopt√
2hν

τ

tr

1√
1 + ω2τ2

. (21.6)

The thermal noise at a conductivity G is

i2G = 4kTGB , (21.7)

with B being the bandwidth over which the noise is integrated. The genera-
tion–recombination noise (shot noise) is

2The rms value is the square root of the time average of the square of the power,√〈P 2〉.
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i2GR =
τ

tr

4qI0
1 + ω2τ2

B (21.8)

for the modulation frequency ω and I0 being the current in stationary equi-
librium. The equivalent circuit with the ideal photocurrent source and the
noise currents is depicted in Fig. 21.4b.

The signal-to-noise ratio of the power is then given by

S/N =
i2ph

i2G + i2GR

=
ηm2(Popt/hν)

8B

[
1 + β−1 tr

τ
(1 + ω2τ2)

G

I0

]−1

. (21.9)

An important quantity is the noise equivalent power (NEP). This is the
light power (mPopt/

√
2) for which the S/N ratio is equal to 1 (for B = 1).

For infrared detectors the typical figure of merit is the detectivity D∗ that is
defined by

D∗ =

√
AB

NEP
. (21.10)

A denotes the area of the detector. The unit of D∗ is cm Hz1/2 W−1. It
should be given together with the modulation frequency. It can be given
for monochromatic radiation of a particular wavelength λ or a blackbody
spectrum of given temperature T0.

21.2.3 Electrophotography

The principle of the Xerox copy machine is based on a photoconductive layer
(Fig. 21.5). This layer is normally insulating such that both sides of the layer

substrate(g) (h)(f)

Fig. 21.5. Principle of xerography: (a) charging of the selenium-covered drum,
(b) (reflection) exposure of the Se, exposed areas become uncharged, (c) toner
addition, (d) toner transfer to paper for copy, and (e) fixation of the toner on the
copy and preparation of drum for the next cycle. (f) First xerox copy (Oct. 22nd
1938). (g) Schematic cross section of coating of photosensitive drum. The indicated
thicknesses are approximate. (h) Image of drum with photosensitive layer made
from amorphous silicon. Part (h) from [1210]
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can be oppositely charged. If light hits the layer it becomes photoconductive
and neutralizes locally. This requires a small lateral diffusion of charge carri-
ers. Initially amorphous selenium (Eg = 1.8 eV) was used. The conductivity
in the dark of a-Se is 1016 Ω/cm. Se was subsequently replaced by organic
material. The highest performance is currently achieved with amorphous sil-
icon.

On the charged areas of the photosensitive layer toner can be attached.
The toner pattern is subsequently transferred to the copy sheet and fixated.
A copy takes typically more than one rotation of the drum. The principle
was invented in 1938 by Chester F. Carlson (1906–1968) with sulfur as the
photoconductor.3

21.2.4 QWIPs

Quantum-well intersubband photodetectors (QWIPs) are based on the ab-
sorption of photons between two quantum well subbands (Fig. 21.6). A review
can be found in [1211]. Quantized electron or hole states can be used. Besides
an oscillator strength for this transition, the lower level must be populated
and the upper level must be empty in order to allow this process. The Fermi
level is typically chosen by appropriate doping such that the lower subband
is populated.

For infinite barrier height the energy separation between the first and
second quantized levels (in the effective-mass theory) is (cf. (11.5))

growth
direction

b-b

Lz0

b-c

E

Fig. 21.6. Schematic level diagram of a quantum well. Optical intersubband tran-
sitions between the first and second quantized level (b–b) and the ground state and
the continuum (b–c)

3In 1947 the Haloid company bought the rights to this process, renamed itself
XeroX and brought the first copy machine to the market in 1958 based on amor-
phous selenium. The word ‘xerography’ stems from the Greek word ξέρoς (dry).
The last ‘X’ in XeroX was added to mimic the name of the KodaK corporation.
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Fig. 21.7. (a) AlGaAs/GaAs QWIP absorption spectrum for multiple reflec-
tion geometry. Adapted from [1211]. (b) Transmission of AlGaAs/GaAs QWIP
(100 QWs) in double reflection geometry (45◦ angle of incidence). The well doping
is 1.0×1012 cm−2 (dashed line) and 1.5×1012 cm−2 (solid line). Adapted from [1212]

E2 − E1 = 3
�

2

2m∗
π2

L2
z

. (21.11)

For real materials the barrier height determines the maximum transition
energy. Typical absorption and transmission spectra of a QWIP structure are
shown in Fig. 21.7. The spectral response is in the mid- or far-infrared.

The dipole matrix element 〈z〉 = 〈Ψ2|z|Ψ1〉 can be easily calculated to be

〈z〉 =
16
9π2

Lz . (21.12)

The oscillator strength is about 0.96. The polarization selection rule
causes the absorption to vary ∝ cos2 φ, where φ is the angle between the
electric-field vector and the z direction (Fig. 21.8). This means that for ver-
tical incidence (φ = 90◦) the absorption vanishes. Thus schemes have been
developed to allow for skew entry of the radiation (Fig. 21.9a). The strict se-
lection rule can be relaxed by using asymmetric potential wells (breaking of
mirror symmetry/parity), strained materials (band mixing) or quantum dots
(lateral confinement). Also, a grating can be used to create a finite angle of
incidence (Fig. 21.9b).

Besides a useful detectivity (2 × 1010 cm Hz1/2/W at 77 K) QWIPs have
the advantage, e.g. against HgCdTe interband absorbers, that the highly de-
veloped GaAs planar technology is available for the fabrication of focal plane
arrays (FPA) as shown in Fig. 21.10. A FPA is an image sensor (in the focal
plane of an imaging infrared optics) and is used, e.g., for the detection of heat
leaks in buildings or night surveillance. In particular, night vision support in
cars may become a major market. A competing technology are bolometric
arrays with thermally insulated pixels based on MEMS technology.
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Fig. 21.8. Dependence of the QWIP response on (a) polarization and (b) angle of
incidence. Dashed lines are guides to the eye. Adapted from [1211]
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GaAs

AlAs

GaAs

Fig. 21.9. QWIP geometries: (a) 45◦ edge coupled with multiple quantum-well
(MQW) absorber and (b) grating coupled with GaAs substrate, AlAs reflector and
metal grating on top. Grey areas are highly n-doped contact layers

Fig. 21.10. Part of a 256×256 QWIP focal plane array (FPA) with grating coupler
(area of one pixel: 37 μm2). From [1213]



21.2 Photoconductors 607

The carriers that have been optically excited into the upper state leave the
QW by tunneling or thermionic emission. Also, a QWIP can be made based
on the direct transfer from the (populated) subband into the continuum.

The incoming infrared radiation creates a photocurrent density of

iph = e ηw Φ , (21.13)

where ηw is the quantum efficiency of a single quantum well (including the
escape rate) and Φ is the photon flux per time and unit area. During the
transport of the charge carriers through the barrier they can be (re-)captured
by the QW with the probability pc. The capture probability decreases expo-
nentially with the applied bias. The total photocurrent (including generation
and recapture) is

Iph = (1 − pc)Iph + iph =
iph

pc
. (21.14)

If the quantum efficiency is small, the efficiency of Nw quantum wells
η ≈ Nw×ηw. With this approximation the total photocurrent of Nw quantum
wells is given by

Iph = e η Φ g , (21.15)

where g is termed the gain of the structure and is given by

g =
1
pc

ηw
η

≈ 1
Nw pc

. (21.16)

The dark current can be calculated from thermionic emission and agrees
fairly well with experiment (Fig. 21.11a). When the voltage is increased fur-
ther, avalanche multiplication can occur while the carriers are transported
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Fig. 21.11. (a) Dark current of a QWIP at 10.7 μm, experimental (solid lines)
and theoretical (dashed lines) response. (b) QWIP responsivity as a function of
the applied voltage. The solid line (dashed line) is the theoretical dependence with
(without) the effect of avalanche multiplication. Adapted from [1211]
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through the barrier(s). This mechanism provides further gain as shown in
Fig. 21.11b.

21.2.5 Blocked Impurity-Band Detectors

Impurity absorption allows photoconductivity detectors in the mid- and far-
infrared regions to be made. In particular, for THz spectroscopy in medicine
and astronomy the extension to longer wavelengths is interesting. For con-
ventional photoconductors the impurity concentration is well below the crit-
ical dopant concentration (cf. Sect 7.5.6). Long-wavelength response can be
achieved by going to impurity/host systems with smaller ionization energy,
such as Si:B (45 meV) → Ge:As (12.7 meV) → GaAs:Te (5.7 meV). By ap-
plying stress to Ge the energy separation between impurity and conduction
bands can be lowered and subsequently the detector response is shifted to-
wards longer wavelengths.

For high doping the impurity level broadens to an impurity band and thus
allows smaller ionization energy and thus stronger long-wavelength detector
response. However, conduction in the impurity band leads to dark current
and makes such detectors unfeasible. In a blocked impurity band (BIB) de-
tector [1214, 1215] an additional intrinsic blocking layer is sandwiched be-
tween the absorption layer and the contact (Fig. 21.12a). Such a structure is

n+ n+

–w

i

h

n

0 b

Ec

Ev

(a)

(b)

0

(c)

i

Fig. 21.12. (a) Structure of BIB photodetectors. Highly doped contact layers
(black), doped semiconductor (white) and blocking (intrinsic) layer (grey). (b) Band
diagram under small forward bias. Shaded area represents the donor impurity band.
(c) Electric field in the structure
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similar to a MIS diode, the insulator being the intrinsic semiconductor. We
assume in the following an n-type semiconductor, such as Si:As or GaAs:Te,
but also p-type BIBs can be made, e.g., from Ge:Ga.

The semiconductor is highly doped (ND) and partly compensated (NA).
Typically, the acceptor concentration must be small, about 1012 cm−3, and
controls the formation of the electric field as shown below. The doping is
so high that the impurities form an impurity band. Some of the electrons
recombine with the acceptorsN−

A = NA and leave some donors chargedN+
D =

NA. For GaAs, e.g., the donor concentration in the doped semiconductor is
> 1016 cm−3 and ∼ 1013 cm−3 in the i-layer.

Under an external forward bias V , i.e. the positive pole is at the insulator,
part of the applied voltage drops over the blocking layer of thickness b. If
ideally no charges are present here, the electric field is constant. In the n-
doped material electrons move in the impurity band towards the insulator,
forming neutral donors in an electron accumulation layer of thickness w in
the presence of the charged acceptors N−

A . This layer is the absorption layer.
The mechanism can also be considered as if positive charge (the charged
donors, N+

D ) moves (via hopping conduction) towards the back contact. In
the literature the layer close to the insulator is thus also termed a ‘depletion
layer’. The band diagram and the electric field are shown in Fig. 21.12b,c.
Due to the blocking layer the carriers on the donors in the n-type material
cannot spill via the impurity band into the contact but must be lifted (by
photoabsorption) into the conduction band.

From the Poisson equation the electric field is given by

E(x) = − e

εs
NA (w + x) , −w ≤ x ≤ 0 (21.17a)

E(x) = − e

εs
NAw = Ei, 0 ≤ x ≤ b . (21.17b)

The voltage drops across the blocking layer Vb and the doped semicon-
ductor Vs fulfill

V = Vb + Vs . (21.18)

Integration of the fields yields

Vs =
e

εs
NA

w2

2
(21.19a)

Vb =
e

εs
NAwb . (21.19b)

Substituting (21.19a,b) into (21.18) results in the width of the ‘depletion
layer’

w =
√

2εsV
eNA

+ b2 − b . (21.20)

The high dopant concentration allows for much thinner absorption layers
than in a conventional photoconductivity detector, making it less susceptible
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to background high-energy cosmic radiation. The recombination in the
depletion layer is negligible. Detector performance is modeled in [1216].

21.3 Photodiodes

21.3.1 Introduction

The principle of the photodiode is the interband absorption of light in the
depletion layer of a diode (or the i-zone of a pin-diode) and the subsequent
separation of electrons and holes by the electric field. There are opposite
requirements for fast detectors (thin depletion layer) and efficient detectors

(a)

(b)

Fig. 21.13. Optical absorption coefficient of various semiconductor materials (as
labeled) used for photodetectors (a) in the UV, visible and near-infrared range (at
room temperature) and (b) in the mid-infrared spectral range at room temperature
(solid lines) and at 77 K (dashed lines). Based on [1217]
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(a) (b)

Fig. 21.14. (a) Quantum efficiency of various photodetectors. The dashed lines
depict lines of equal responsivity (Rλ in A/W) as labeled on top of the panel.
(b) Detectivity D∗ of various photoconductors and photodiodes (PD). The lighter
(darker) shaded area indicates the range unachievable at 300 K (77 K) due to back-
ground radiation. Adapted from [383]

(complete light absorption, sufficiently thick depletion layer). For this reason
generally semiconductors with high absorption coefficient are most suited
(Fig. 21.13). In Fig. 21.14 the quantum efficiency and detectivity D∗ of var-
ious semiconductor detectors are compared.

A diode can be operated without bias (photovoltaic mode) using the built-
in field. An improvement in the speed of a pn-diode is achieved with a reverse
bias since it increases the field strength in the depletion layer. However, the
reverse bias is below the breakdown voltage. Operation near breakdown is
exploited in the avalanche photodiode (APD). In the following we will discuss
pn-, pin-, MS- (Schottky-), MSM- and heterostructure-diodes and APDs.

21.3.2 pn Photodiodes

The most important figures of merit are the quantum efficiency, responsivity,
noise equivalent power (NEP) and the response speed.

If the depletion layer is hit by a photon flux with a generation rate G0

(i.e. electron–hole pairs per unit volume per unit time) the photogenerated
current is added to the diffusion current. The photocurrent density jp (per
unit area) is

jp = −eG0 Lp (21.21)
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Fig. 21.15. (a) Schematic dark and illuminated I–V -characteristics of a photodi-
ode (for the case jp = −2js). (b) Schematic representation of currents in a photo-
diode and equivalent circuit. Part (b) adapted from [1218]

for a p+n-diode. In order to obtain this result the diffusion and continuity
equations have to be solved for the depletion region4. Equation (21.21) means
that the dark I–V characteristic is shifted by jp as shown in Fig. 21.15a. The
number of electron–hole pairs that are generated per photon of energy hν by
the absorption of the (monochromatic) light power Popt is

η =
Iph/e

Popt/(hν)
, (21.22)

where Iph = Ajph is the photogenerated current over the surface A. The
responsivity Rλ of the photodiode (for monochromatic radiation) is defined
as

Rλ =
Iph

Popt
=

e

hν
η ≈ λ

1.24μm
η . (21.23)

For a modulated light intensity Popt must be replaced by mPopt/
√

2.
The equivalent circuit including noise sources for a photodiode is shown in
Fig. 21.15b.

Random processes lead to shot noise 〈i2S〉. Besides the photocurrent Iph

itself, the background radiation (IB, in particular for infrared detectors) and
the thermal generation (dark current, ID) of carriers contribute:

〈i2S〉 = 2e (Iph + IB + ID)B , (21.24)

with B being the bandwidth. Additionally, the parallel resistances cause ther-
mal noise

〈i2T〉 = 4 kT B/Req . (21.25)

The resistance Req is given by the resistance of the depletion layer
(junction) Rj, the load RL and the input of the amplifier Ri as R−1

eq =
R−1

j +R−1
L +R−1

i . The series resistance Rs of the photodiode can be usually
ignored in this context.

4This derivation is done in Sect. 21.3.3. Equation (21.21) is obtained
from (21.32) for vanishing thickness w and αLp � 1.



21.3 Photodiodes 613

Fig. 21.16. NEP as a function of the resistance Req for a Si photodiode. From [1218]

For a fully modulated signal the signal-to-noise ratio of the photodiode is
given by

S/N =
i2ph

〈i2S〉2 + 〈i2T〉2
=

(eηPopt/hν)
2
/2

2e (Iph + IB + ID)B + 4kTB/Req
. (21.26)

Therefore the NEP is given by

NEP =
2hνB
η

[

1 +

√

1 +
Ieq
eB

]

. (21.27)

The current Ieq is given by Ieq = IB + ID + 2kT/(eReq). If Ieq/eB � 1, the
NEP is determined by the shot noise of the signal itself. In the other limit
Ieq/eB  1 the detection is limited by the background radiation or thermal
noise. In this case, the NEP is (for B = 1 Hz, in W cm2 Hz1/2)

NEP =
√

2
hν

η

√
Ieq
e
. (21.28)

In Fig. 21.16 the situation is shown for a silicon photodiode as a function
of Req. The diode has a quantum efficiency of 75% at λ = 0.77 μm. A high
value of Req ∼ 1 GΩ is necessary to ensure detection limited by dark current.

21.3.3 pin Photodiodes

The depletion layer in pn-diodes is relatively thin such that the incident light
is not completely absorbed. An almost complete absorption of light can be
achieved by using a thick intrinsic absorption layer. The field in the intrinsic
region is constant or slowly varying linearly (Fig. 20.65). The generation rate
per unit area decreases exponentially following the Lambert–Beer law (9.8)
as shown in Fig. 21.17c:



614 21 Light-to-Electricity Conversion

Fig. 21.17. (a) Schematic cross section of pin-diode, (b) profile of carrier genera-
tion due to light absorption and (c) schematic band structure under reverse bias.
The generation of three electron-hole pairs is shown; subsequent drift (diffusive)
transport is indicated with solid (dashed) arrows

G(x) = G0 exp(−αx) . (21.29)

The initial generation rate G0 = Φ0α is given by the incident photon flux per
unit area Φ0 and the reflectance of the surface R as Φ0 = Popt(1−R)/(Ahν).

The drift current in the i-region collects all those carriers (if recombination
in the depletion layer is neglected). The electron drift current is given by

jdr = −e
∫ w

0

G(x) dx = eΦ0 [1 − exp(−αw)] , (21.30)

with w being the thickness of the depletion layer that is approximately the
same as the thickness of the i-region. In the bulk (neutral) region (x > w)
the minority-carrier density is determined by drift and diffusion5 (10.75). The
diffusion current density at x = w is thus given by

jdiff = eΦ0 exp(−αw)
αLp

1 + αLp
+ e pn0

Dp

Lp
. (21.31)

The first term is due to the diffusion current of photo-generated carriers
(10.75), the second term due to thermally generated carriers (20.114). The
total current jtot = jdiff + jdr is given by

5At the edge of the depletion layer, x = w, all photo-generated carriers are
transported away instantly, thus the excess carrier density from photo-generated
carriers is zero there and (10.75) applies.



21.3 Photodiodes 615

Fig. 21.18. Quantum efficiency and 3 dB cutoff frequency of a Si pin-diode at
T = 300 K for various wavelengths of input radiation. Adapted from [1218]

jtot = eΦ0

[
1 − exp(−αw)

1 + αLp

]
+ e pn0

Dp

Lp
. (21.32)

The first term is due to the photocurrent, the second term is due to the
diffusion current known from the p+n-diode. In normal operation, the second
can be neglected compared to the first. The quantum efficiency is

η =
jtot/e

Popt/hν
= (1 −R)

[
1 − exp(−αw)

1 + αLp

]
. (21.33)

For a high quantum efficiency, of course low reflectance and high absorption
coefficient, i.e. αw  1, are necessary.

However, for w  1/α the transit time through the depletion layer tr ≈
w/vs (at sufficiently high field, vs being the drift-saturation velocity) increases
too much. The 3 dB cutoff frequency f3 dB (Fig. 21.18) is

f3 dB
∼= 2.4

2πtr
∼= 0.4 vs

w
. (21.34)

Therefore a tradeoff exists between the quantum efficiency and the response
speed of the pin-photodiode (Fig. 21.18). Choosing w ∼= 1/α is a good com-
promise.

21.3.4 Position-Sensing Detector

In a position-sensing detector (PSD) two electrodes are placed at opposite
edges of a photodetector. The current output depends linearly on the beam
position in between the electrodes, similar to a voltage divider. If two pairs of
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(a) (b)

Fig. 21.19. (a) Scheme of two-dimensional position-sensing detector (PSD),
(b) image of PSD. From [1219]

electrodes, one on the front and one on the back of the detector, are fabricated
in orthogonal directions (Fig. 21.19a), the beam position can be measured in
both x and y directions.

21.3.5 MSM Photodiodes

A MSM photodiode consists of a piece of semiconductor between two Schot-
tky contacts (MS contacts). These are typically arranged laterally (as shown
in Fig. 21.24b) but will first be considered at the front and back of the semi-
conductor [1220]. The band structure in thermodynamic equilibrium is shown
in Fig. 21.20.

In the general case two different metals with two different barriers φn1,
φn2 and built-in voltage VD1, VD2 are considered. If a voltage is applied across
the MSM diode, one of the junctions is biased in the forward, the other in
the reverse direction. We assume in Fig. 21.21 that the voltage biases the
first contact in the reverse direction, i.e. the ‘+’ pole is on the left contact.
The applied voltage V is split between the two contacts, the larger voltage
will drop at the reverse-biased contact (here: V1 > V2)

V = V1 + V2 . (21.35)

The electron current arises from thermionic emission at contact 2. Due
to current continuity (without recombination since we inject majority charge
carriers) this is also the current through contact 1, i.e.

jn1 = jn2 . (21.36)
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Fig. 21.20. Band diagram of a MSM structure with an n-type semiconductor in
thermal equilibrium. In the general case, two different metals cause two different
Schottky barrier heights and related depletion layer widths. Adapted from [1220]

Fig. 21.21. (a) Band diagram for a MSM structure under bias (V < VRT), (b)
electric field distribution. Adapted from [1220]

The reverse current at contact 1 is

jn1 = A∗
nT

2 exp (−βφn1) exp (βΔφn1) [1 − exp (−βV1)] , (21.37)

where Δφn1 is the barrier reduction due to the Schottky effect (Sect. 20.2.3
and (20.21)). The forward current at contact 2 is

jn2 = −A∗
nT

2 exp (−βφn2) exp (βΔφn2) [1 − exp (βV2)] . (21.38)
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For a symmetric structure, i.e. φn1 = φn2 and VD1 = VD2 = VD, (21.36)–
(21.38) yield together with (20.21)

(
e3ND

8π2ε3s

)1/4 [
(VD + V1)1/4 − (VD − V2)1/4

]
=

1
β

ln
[

exp (βV2) − 1
1 − exp (−βV1)

]
.

(21.39)
Together with (21.35) a numerical or graphical solution can be found.

Initially (for small voltages) the injected hole current (from contact 2) is
much smaller than the electron current and diffusion occurs in the neutral
region.

The reach-through voltage VRT is reached when the width of the neutral
region is reduced to zero (Fig. 21.22a). At the juncture of the two depletion
regions inside the semiconductor material the electric field is zero and changes
sign. For a larger voltage VFB flat-band conditions are present at contact 2,
i.e. the electric field is zero at contact 2 (Fig. 21.22b). At even larger voltage
VB breakdown occurs.

At V = VRT we have

w1 =
[

2εs
eND

(V1 + VD1)
]1/2

(21.40a)

w2 =
[

2εs
eND

(VD2 − V2)
]1/2

(21.40b)

L = w1 + w2 , (21.40c)

and therefore (with (21.35))

Fig. 21.22. Band diagram (upper parts) and electric field distribution (lower parts)
in a MSM diode for various bias conditions: (a) at reach-through voltage VRT, (b)
at flat-band voltage VFB and (c) for V > VFB. Adapted from [1220]
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VRT =
eND

2εs
L2 − L

[
2eND

εs
(VD2 − V2)

]
−ΔVD , (21.41)

with ΔVD = (VD1 − VD2), vanishing for a symmetric MSM structure. At and
after reach-through the electric field varies linearly from 0 to L within the
semiconductor. The point of zero electric field shifts towards contact 2. At
the flat-band voltage this point has reached the contact 2 and the width of
the depletion layer at contact 2 is zero. This condition leads (as long as no
breakdown occurred) to

VFB =
eND

2εs
L2 −ΔVD . (21.42)

The maximum electric field is at contact 1 and is given (for V > VFB) by

Em1 =
V + VFB + 2ΔVD

L
. (21.43)

If in a part of the structure the critical field EB for impact ionization is
reached (this will be at contact 1, since the field is highest there), the diode
breaks down. Therefore the breakdown voltage is given by

VB ≈ EBL− VFB − 2ΔVD . (21.44)

The current–voltage characteristic for a Si-MSM structure is shown in
Fig. 21.23. At small voltages only small currents flow since one contact is
in reverse bias. The hole current is much smaller than the electron current.
Only those holes that diffuse through the neutral region contribute to the
hole current. After reach-through the barrier φp2 +VD2−V2 for hole injection
is strongly reduced that leads to strong hole injection. Beyond the flat-band
voltage the hole current increases only weakly since a lowering of the bar-
rier occurs only via the Schottky effect. For high fields (V > VFB, before
breakdown) the hole current is

jp1 = A∗
pT

2 exp (−βφp2) exp (βΔφp2) = jp,s exp (βΔφp2) , (21.45)

and the total current is

j = jn,s exp (βΔφn1) + jp,s exp (βΔφp2) , (21.46)

with jn,s = A∗
nT

2 exp (−βφn1) and jp,s = A∗
pT

2 exp (−βφp2).
In a MSM photodetector the metal contacts are typically formed in an

interdigitated structure on the semiconductor surface (Fig. 21.24). These con-
tacts shield some of the active area from photons. An increase in quantum
efficiency can be achieved with transparent contacts (e.g. ZnO or ITO) and
an antireflection (AR) coating.

The dark current is given by (21.46) and is minimal when electron and
hole saturation currents are identical. This conditions leads to the optimal
barrier height



620 21 Light-to-Electricity Conversion

105

100

10–5

10–10

105

100

10–5

10–10

10–3 10–2 10–1 100 101 102 103 10–3 10–2 10–1 100 101 102 103

2

VRT VFB VB

p2 =0.2V

p2=1.0V

n1=0.85V

jp

jn

j

2

A=5 10–4cm2

77K

193K
300K

T=350K

(a) (b)

Fig. 21.23. Current–voltage characteristics of a Si MSM structure, ND = 4 ×
1014 cm−3, L = 12 μm (thin, polished, 〈111〉-oriented wafer), T = 300 K. (a) The-
ory for two different values of φp2 , (b) experiment (for φp2 = 0.2 V). Adapted
from [1220]

(b) +V +V–V
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10μm
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Fig. 21.24. Scheme of MSM photodetector with interdigital contacts in (a) plan
view and (b) cross section. In part (b), the electric field lines are shown schemat-
ically together with an electron–hole pair ready to be separated. (c) Scheme of a
MSM mesa structure, (d) SEM image of an InGaAs/InP MSM mesa photodetector.
Parts (c) and (d) adapted from [1221]
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Fig. 21.25. dc I–V characteristic of an InGaAs/InP MSM photodetector
(InP:Fe/InGaAs:Fe/InP:Fe, finger separation 1 μm, λ = 1.3 μm) under illumination
for dark environment (0 μW) and various illumination levels as labeled. Adapted
from [1221]

φn = Eg − φph =
1
2
β−1 ln

(
me

mhh

)
+

1
2
Eg (21.47)

close to middle of the band gap. For InP and optimal barrier φn = 0.645 eV
a dark current of 0.36 pA/cm2 is expected for a field of 10 V/μm. For devi-
ating barrier height the current increases exponentially. The current–voltage
characteristic of an InGaAs:Fe MSM photodetector is shown in Fig. 21.25 for
a dark environment and various illumination levels.

The time-dependent response of a MSM photodetector depends on the
drift time of the carriers, i.e. the time that a created electron and hole need
to arrive at their respective contacts. In Fig. 21.26 a simulation is shown
for a MSM detector. The current has two components, a fast one due to

Fig. 21.26. Simulation of the time-dependent response of an InGaAs:Fe MSM
photodetector to a short light pulse. Adapted from [1221]
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the electrons and a slow one due to the holes that have the lower mobility
and smaller drift saturation velocity. A similar dependence is found in ex-
periment (Fig. 21.27a). For longer wavelengths the detector is slower since
they penetrate deeper into the material and thus the charge carriers have a
longer path to the contacts (cf. scheme in Fig. 21.24b). An important role
is played by the finger separation; smaller finger separation ensures a more
rapid carrier collection (Fig. 21.27b). In [1222] a bandwidth of 300 GHz was
demonstrated for 100 nm/100 nm finger width and separation for LT-GaAs6

and bulk GaAs, limited by the RC time constant. For 300 nm/300 nm fingers
and a LT-GaAs a bandwidth of 510 GHz (pulsewidth of 0.87 ps) was reported,
which is faster than the intrinsic transit time (1.1 ps) and not limited by the
RC time constant (expected pulse width 0.52 ps), due to the recombination
time (estimated to be 0.2 ps).

(a)

(b)

Fig. 21.27. (a) Experimental time-dependent response of an InGaAs:Fe MSM
photodetector to a short light pulse for three different wavelengths, inset shows the
frequency response from a Fourier transform. (b) Response of the MSM for two
different finger widths and separations (both 1 or 2 μm, respectively), InGaAs layer
thickness 2 μm, λ = 1.3 μm and bias voltage 10 V. Adapted from [1221]

6LT: grown at low temperature, i.e. containing many defects that reduce the
carrier lifetime.
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21.3.6 Avalanche Photodiodes

In an avalanche photodiode (APD) intrinsic amplification due to carrier mul-
tiplication (through impact ionization) in a region with high electric field is
used to increase the photocurrent. The field is generated by a high reverse
bias in the diode. In an ideal APD only one type of carrier is multiplied,
resulting in the lowest noise. If electrons are injected into the field region at
x = 0 (Fig. 21.28a), the multiplication factor for electrons is

Mn = exp(αnw) , (21.48)

for αp = 0. Typically, both carrier types suffer multiplication. If the electron
and hole impact ionization coefficients are the same (αn = αp = α), the
multiplication factor for electrons and holes M is given by

M =
1

1 − αw
. (21.49)

The rms value of the current noise is the same as in the case of the pn-
diode (21.24), only that now the gain M is added

〈i2S〉 = 2e (Iph + IB + ID) 〈M2〉B . (21.50)

The term 〈M2〉 is written as 〈M〉2 F (M) with F (M) = 〈M2〉/〈M〉2 being the
excess noise factor that describes the additional noise introduced by the ran-
dom nature of the impact ionization. For multiplication started with electron
injection, it is given by

F (M) = kM + (1 − k)
(

2 − 1
M

)
, (21.51)

with k = αp/αn. For hole injection starting the multiplication (21.51) holds
with k substituted by k′ = αn/αp. In Fig. 21.29a the excess noise factor is
shown vs. the average multiplication for various values of k and k′.
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Fig. 21.28. Schematic band structure (a) and schematic device setup (b) of an
avalanche photodiode (APD). From [795]
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Fig. 21.29. (a) Excess noise factor for various values of the ratio of ionization
coefficients k or k′. Adapted from [1223]. (b) Experimental results for F for a Si
APD with 0.1 μA primary current. The empty (full) symbols are for short (long)
wavelengths [primary hole (electron) current]. The inset shows the schematic band
diagram of the np-diode under reverse bias. Adapted from [1224]

Experimental data are shown in Fig. 21.29b for a Si APD. For short
wavelengths absorption is preferential at the surface (n-region) and we have
the case of hole injection. The data for the excess noise factor are fairly well
fit with k′ ≈ 5. For longer wavelengths, the data for electron injection are fit
by k ≈ 0.2 = 1/k′.

For a fully modulated signal the signal-to-noise ratio is given by

S/N =
(eηPopt/hν)2/2

2e (Iph + IB + ID)F (M)B + 4kTB/(ReqM2)
. (21.52)

If S/N is limited by thermal noise, the APD concept leads to a drastic im-
provement of noise.

A particular APD structure is known as a solid-state multiplier. It has
separate absorption and amplification regions (SAM structure). In the low-
field region the light is absorbed. One type of carrier is transported with the
drift field Ed to the multiplication region in which a large field Em is present
and multiplication occurs. In Fig. 21.30a a homo-APD with SAM structure
is shown. Regions with different electric field are created by a special doping
profile.7 A π-p-π structure leads to regions with homogeneous low and high
field strengths.

In the case of a heterostructure-APD with SAM structure (Fig. 21.30b)
absorption (of light with sufficiently long wavelength with an energy smaller
the the InP band gap) takes place only in the InGaAs layer. Since no light is

7Employing Poisson’s equation ∂(εs(x)E(x))/∂x = ρ(x).
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Fig. 21.30. (a) Homo-APD with SAM structure. (i) doping profile, (ii) electric
field, (iii) photon flux or electron–hole pair generation rate and (iv) schematic band
diagram under reverse voltage Vr with charge-carrier transport. The multiplication
is for αn � αp. Adapted from [384]. (b) (i) Scheme of an InP/InGaAs hetero-APD
with SAM structure, (ii) doping profile and (iii) electric field for small (dashed line)
and large (solid line) reverse bias Vr. Adapted from [795]

absorbed in the multiplication region, the device functions similarly for front
and back illumination.

21.3.7 Traveling-Wave Photodetectors

In a standard photodetector there was a tradeoff between the thickness of
the absorption layer and the speed of the detector. In a traveling-wave pho-
todetector the light absorption occurs in a waveguide such that for sufficient
length L all incident light is absorbed. Complete absorption is achieved (‘long’
waveguide) if L  (Γα)−1, α being the absorption coefficient and Γ ≤ 1
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Fig. 21.31. Scheme of a traveling-wave photodetector with pin structure and copla-
nar contacts

being the optical confinement factor, the geometrical overlap of the optical
mode with the cross section of the absorbing medium (cf. also Sect. 22.4.4).

The electrical connections are designed along this waveguide on the sides
(coplanar layout, Fig. 21.31). The bandwidth limitation due to a RC time
constant is now replaced by the velocity match of the light wave vopt = c/n

and the traveling electric wave in the contact lines vel ≈ 1/
√
LC. While the

two waves travel along the waveguide, energy is transferred from the light
wave to the electric wave. The 3 dB bandwidth due to velocity mismatch
Bvm (for impedance- matched, long waveguides) is given by

Bvm =
Γα

2π
vopt vel
vopt − vel

. (21.53)

For a MSM structure, whose electrode separation has been designed with a
self-aligned process (without extensive effort in lateral patterning) by an etch

(a) (b)

Fig. 21.32. Scheme of a MSM traveling-wave photodetector in (a) cross section
and (b) plan view. Adapted from [1227]
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Fig. 21.33. (a) Pulse response (FWHM=0.8 ps) and (b) frequency response
(Fourier transform of time response) of a MSM traveling-wave photodetector (bias
5 V) for various illumination intensities, A: 1 mW, B: 2.2 mW. Adapted from [1227]

depth of a few 100 nm (Fig. 21.32), 3 dB cutoff frequencies beyond 500 GHz
have been achieved (Fig. 21.33). The quantum efficiency of this detector was
still 8.1%.

21.3.8 Charge Coupled Devices

The concept of the charge coupled device (CCD), an array of connected
photodetectors serving as an image sensor, was devised by W.S. Boyle and
G.E. Smith [1225] (Fig. 21.34). As textbook for further details [1226] may
serve.

A MIS diode (mostly a silicon-based MOS diode) can be designed as a
light detector. The diode is operated in deep depletion. When a large reverse
voltage is applied, initially a depletion layer is formed and the bands are

Fig. 21.34. First 8-bit charge coupled device (1970). The chip (size: 1.5 × 2.5 mm2)
consists of 24 closely packed MOS capacitors (narrow rectangles in the center grid).
The thick rectangles at either end of the grid are input/output terminals
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strongly bent as shown in Fig. 21.35b. We note that in this situation the
semiconductor is not in thermodynamic equilibrium (as it is in Fig. 21.35d)
when the quasi-Fermi level is constant throughout the semiconductor. The
inversion charge has yet to build up.

There are three mechanisms to generate the inversion charge. (a) genera-
tion–recombination, (b) diffusion from the depletion-layer boundary and (c)
carrier generation by light absorption. Mechanisms (a) and (b) represent
dark currents for the photodetector. The conductivity due to these two pro-
cesses is shown in Fig. 21.36 and slowly builds up the inversion charge.
Two temperature regimes are obvious; at low temperatures the generation
dominates (∝ ni ∝ exp (−Eg/2kT )), at high temperatures the diffusion
(∝ n2

i ∝ exp (−Eg/kT )). The latter process can be strongly suppressed by
cooling the device.

The gate voltage VG and the surface potential Ψs are related to each other
via

VG − VFB = Vi + Ψs =
eNAw

Ci
+
eNAw

2

2εs
, (21.54)

where w is the width of the depletion layer. w will be larger than wm in
thermodynamic equilibrium. The first term in the sum is |Qs|/Ci and the
second is obtained by integrating the Poisson equation for the constant charge
density −eNA across the depletion layer. The elimination of w yields

VG − VFB = Ψs +
1
Ci

√
2eεsNAΨs . (21.55)

If light is absorbed in the depletion layer (process (c)), the hole (for p-Si)
drifts towards the bulk material. The electron is stored as part of the signal
charge Qsig close to the oxide semiconductor interface (Fig. 21.35b).

VG − VFB =
Qsig

Ci
+
eNAw

Ci
+ Ψs . (21.56)

As a consequence of the increase in signal charge the potential well be-
comes shallower (21.56). For each gate voltage there is a maximum charge
(well capacity). The maximum signal charge is reached for Ψs ≈ 2ΨB

(Fig. 21.37).
In a charge coupled device (CCD) many light-sensitive MIS diodes, as

described above, are fabricated in matrix form to create an image sensor.
Upon application of a gate voltage they accumulate charge depending on
the local exposure to light. The read out of this charge occurs by shifting the
charge through the array to a read-out circuit. Therefore charge is transferred
from one pixel to the next. Several schemes have been developed for this task.
The three-phase clocking is shown schematically in Fig. 21.38. Other clocking
schemes involve four, two or only one electrode per pixel [1230].

Since the CCD sensor has many pixels (e.g. up to 4096) along a line, the
charge transfer must be highly efficient. The transfer of charge carriers occurs
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Fig. 21.35. Ideal MIS-diode (with p-type semiconductor) as photodetector (prin-
ciple of a CCD pixel). (a) Without bias (see Fig. 20.27b). (b) Immediately after an
external (reversely poled) voltage V > 0 has been applied, the surface potential is
Ψs = V and no charges have moved yet. (c) Strong depletion (still not in thermo-
dynamic equilibrium) with signal charge and reduced surface potential Ψs < V . (d)
The semiconductor in equilibrium (EF is constant) with depletion and inversion
layer (see Fig. 20.31). For all diagrams, V = V − i + Ψs
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Fig. 21.36. Conductivity of a n-Si/SiO2-diode as a function of temperature (1/T ).
The slope of the dashed lines is (a) ∼ 0.56 eV (≈ Eg/2) and (b) ∼ 1.17 eV (≈ Eg).
Adapted from [1228]
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Fig. 21.37. Surface potential as a function of the signal charge Qsig for various
values of the bias VG − VFB as labeled for a SiO2/p-Si diode with NA = 1015 cm−3

and an oxide thickness of 100 nm. The dashed line represents the limit for inversion
given by Ψs = 2ΨB ≈0.6 V. Adapted from [1229]

via thermal (regular) diffusion, self-induced drift and the effect of the fringing
field (inset of Fig. 21.39). The time constant with which the charge carriers
move due to diffusion (in a p-type semiconductor) is

τth =
4L2

π2Dn
, (21.57)

where L is the length of the electrode. For a sufficiently large charge packet
the self-induced drift due to Coulomb repulsion is important. The decay of
charge is then given by
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 21.38. (a) Three-phase CCD. Each pixel has three electrodes that can be
switched independently (phases 1–3). (b,e,f) Schematic of CCDs with four, two
or one phase, respectively. (c) (t1) Charge accumulated after light exposure. A
lateral potential well is formed along the row of pixels by the voltages at the three
electrodes, e.g. P1 = P3 = 5 V, P2 = 10,V. (t2–t7) transfer of charge, (t7) has the
same voltages as (t1), the charge has been moved one pixel to the right. (d,g,h)
Timing schemes for 4-, 2- and 1-phase CCDs, respectively. From [1230]
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Fig. 21.39. (a) Efficiency of charge transfer with (solid line) and without (dashed
line) the effect of the fringing field. (b) Schematic plot of the CCD electrodes
and bias with the fringing field for a three-electrode CCD, oxide thickness 200 nm,
doping ND = 1015 cm−3. The electrode pitch is 4 μm and the gap between electrodes
is 200 nm wide. Adapted from [1231]

Q(t)
Q(0)

=
t0

t+ t0
, (21.58)

with t0 = πL3WeCi/(2μnQ(0)). We is the width of the electrode. This depen-
dence is shown as a dashed line in Fig. 21.39a. The last electrons are efficiently
transferred by the drift induced by the fringing field of the electrodes (solid
line in Fig. 21.39a). The origin of the fringing field is schematically shown
in Fig. 21.39b; the minimum fringing field shown is 2 × 103 V/cm. In about
1–2 ns practically all (1 − 10−5) charges are transferred. This enables clock
rates of several 10 MHz.

For the clocking of the CCD the lateral variation of potential depth with
the applied gate voltage is used. In Fig. 21.40 it is shown how a lateral

N'A>NA

V

s

NA

(a)

s

V

NA

(b)

metal
insulator

semiconductor

Fig. 21.40. Creation of a lateral potential well (barrier) in a MIS structure with
(a) varying doping via diffusion or implantation and (b) varying (stepped) oxide
thickness. Upper row shows schematic geometry, lower row depicts schematic lateral
variation of the surface potential
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Fig. 21.41. (a) Schematic image of channel isolation. Cross section for channel
isolation by (b) variation of oxide thickness, (c) highly doped region and (d) field
effect. Adapted from [1232]

variation of doping or oxide thickness creates a lateral potential well. Such
structures are used to confine the row of pixels against the neighboring rows
(channel stops, Fig. 21.41). In order to avoid carrier loss at the interface
between the oxide and the semiconductor a buried-channel structure is used
(Fig. 21.42).

For front illumination parts of the contact electrodes shield the active area
of the device. Higher sensitivity (in particular in the UV) is achieved for back
illumination. For this purpose the chip is thinned (polished). This process
is expensive and makes the chip mechanically less stable. For red/infrared
wavelengths typically interference fringes occur for such thinned chips due
to the small thickness. An increase in efficiency for front illumination can be
achieved with an onchip microlens (Fig. 21.43).

For color imaging the CCD is covered with a three-color Bayer mask [1235]
(Fig. 21.44a). On average there are one blue and one red pixel and two green
pixels since green is the most prominent color in typical lighting situations.
Thus each pixel delivers monochromatic information; RGB images are gener-
ated using suitable image software. Alternatives in high-end products are the
use of a beam splitter, static color filters and three CCD chips, one for each
color (Fig. 21.44b), or the time-sequential recording of three monochromatic
images using one CCD chip and a rotating color-filter wheel (Fig. 21.44c).

21.3.9 Photodiode Arrays

An array of photodiodes is also suitable to create an image sensor. During
illumination each diode charges a capacitor that is read out with suitable
electronics. Based on CMOS technology (cf. Sect. 23.5.4) cheap image sensors
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Fig. 21.42. (a) Schematic layers of MIS diode with buried-channel structure. Band
diagram (b) after application of reverse voltage VG and (c) with signal charge Qsig.
Adapted from [1233]

(a) (b)

Fig. 21.43. (a) Scheme for enhancement of CCD efficiency for front illumination by
application of an onchip microlens. (b) SEM image of an array of such microlenses.
From [1235]
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Fig. 21.44. (a) Arrangement of colors in a CCD Bayer [1235] color filter (‘R’: red,
‘G’: green, ‘B’: blue). Color splitting with (b) static color filters and (c) rotating
color wheel. Parts (b) and (c) from [1230]

(a) (b)

Fig. 21.45. (a) CMOS linear array sensor in a 8-pin package. (b) Block diagram,
the built-in timing generator allows operation only with start and clock pulse inputs.
Reprinted with permission from [1234]

can be made that show currently, however, inferior performance to CCDs. The
built-in electronics allows simple outward connections (Fig. 21.45).

The three-color CCD image sensor did not offer RGB color information
at each pixel. Therefore the spatial resolution of a color image is not di-
rectly given by the pixel distance. This is not a very dramatic drawback
since human vision is more sensitive to intensity contrast than color con-
trast. However, RGB color information for each pixel would be desirable,
giving higher resolution, in particular in professional photography. Such a
sensor has been fabricated employing the wavelength dependence of the sil-
icon absorption coefficient (Fig. 21.13). Blue light has the shortest and red
light the largest penetration depth. By stacking three photodiodes on top
of each other (Fig. 21.46) photocurrents at different penetration depth are
recorded that can be used to generate a RGB value for each pixel.

In Fig. 21.47a a 16-channel array of silicon avalanche photodiodes is
shown. It features a quantum efficiency of > 80% between 760 and 910 nm.
The pixel size is 648 × 208 μm2 on a 320 μm pitch. The gain is 100 and the
rise time 2 ns.

The InGaAs photodiode array in Fig. 21.47b is hybridized with CMOS
read-out integrated circuits. It is useful for detection in the spectral range
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(a) (b)

Fig. 21.46. (a) Scheme of image sensor with depth-dependent light detection.
From [1237]. (b) Schematic layer sequence for three-color pixel. ib, ig and ir denote
the photocurrents for blue, green and red light, respectively. Adapted from [1238]

(a) (b)

Fig. 21.47. (a) Array of 16 silicon APDs. From [1239]. (b) 1024-pixel InGaAs
photodiode array. From [1240]

0.8–1.7 μm. The asymmetric diode size of 25 × 500 μm is designed for use in
the focal plane of a monochromator.

Another special type of photodiode array is the four-quadrant detector. A
light beam generates four photocurrents Ia, Ib, Ic, Id of the respective parts
(Fig. 21.48a). A beam deviation in the horizontal or vertical direction can be

(a)

ba

cd
(b)

Fig. 21.48. (a) Scheme of four-quadrant photodetector with sections ‘a’, ‘b’, ‘c’
and ‘d’, (b) image of four-quadrant silicon photodetector with circuit board. Part
(b) from [1241]
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detected from the (signed) signals (Ia + Id)− (Ib + Ic) or (Ia + Ib)− (Ic + Id),
respectively. We note that these signals can also be normalized to the total
beam intensity Ia + Ib + Ic + Id.

21.4 Solar Cells

Solar cells are light detectors, mostly photodiodes, that are optimized for the
(large-area) conversion of solar radiation (light) into electrical energy. A 1993
review of the historic development of photovoltaics is given in [1242]. The
latest data on solar cell efficiencies are compiled in the Solar Cell Efficiency
Tables [1243].

21.4.1 Solar Radiation

The sun has three major zones, the core with a temperature of 1.56 × 107 K
and a density of 100 g/cm3 in which 40% of the mass is concentrated and 90%
of the energy is generated, the convective zone with a temperature of 1.3 ×
105 K and a density of 0.07 g/cm3, and the photosphere with a temperature
of 5800 K and low density (∼ 10−8 g/cm3). The radius is 6.96 × 108 m and
is about 100 times larger than that of the earth (6.38× 106 m). The distance
sun–earth is 1.496 × 1011 m. The angle under which the sun disk appears on
earth is 0.54◦. An energy density of 1367 ±7 W/m2 arrives at the earth in
front of its atmosphere.

This value and the according spectrum of the sun’s emission, which is
similar to a blackbody with temperature 5800 K (Fig. 21.49), is termed air
mass zero (AM0). The total energy that reaches the earth from the sun is
1.8 × 1017 W per year. This value is 104 times the world’s primary energy
need.

Air mass zero (AM0) is important for solar cells in satellites. When the
solar spectrum passes the earth’s atmosphere, it is changed with regard to
its shape and the total energy density due to gas absorption (ozone, water,
CO2, . . .). Depending on the meridian of the sun γ (Fig. 21.50), the spectrum
on the surface of the earth is termed AMx with x = 1/ sin γ. In spring and
fall (March 21st and September 21st), Leipzig (51◦42′N latitude) has about
AM1.61. At the summer (June 21st) and winter (December 21st) solstices
the air mass in Leipzig is AM1.13 (γ = 61.8◦) and AM3.91 (γ = 14.8◦),
respectively. Additionally, the duration of sunshine and thus the light power
density is regionally different across the earth due to climate and weather
(Fig. 21.51). For AM1.5, the incident power density is 844 W/m2.

The global radiation reaching a photovoltaic cell has three components:
(i) the direct radiation, (ii) diffuse radiation and (iii) reflected radiation. The
relative amounts and their spectra depend on details such as the climate (e.g.
humidity) or the environment (e.g. outdoors vs. urban).
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Fig. 21.49. Solar spectra (power per area and wavelength interval) for AM0 (black
line, extraterrestrial irradiance) and AM1.5 (sun at 41.8◦ elevation above horizon)
for direct normal irradiance (blue line) and global total irradiance (red line) on a
sun facing surface (tilted 37◦ towards the equator). Left (right) graph in log-log
(linear) scales
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Fig. 21.50. Schematic path of sunlight through the atmosphere and definition of
the air mass AMx

21.4.2 Ideal Solar Cells

When a solar cell made from a semiconductor with a band gap Eg is irradiated
by the sun, only photons with hν > Eg contribute to the photocurrent and
the output power. The I–V characteristic under illumination (Fig. 21.52) is
given by

I = Is [exp (βV ) − 1] − IL , (21.59)

with IL being the current due to generation of excess carriers by the ab-
sorption of the sunlight. Assuming a simple n+p-diode solar cell model, the
current consists of two components: the depletion layer current jDL from car-
riers absorbed in the depletion layer (field region) and the diffusion current
jD from absorption in the neutral region (j = I/A).
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(a)

(b)

Fig. 21.51. Global sunshine distribution in (a) January and (b) July. The sunshine
fraction is the actual number of bright sunshine hours over the potential number,
and is thus expressed as a percentage figure. The color scale reaches from 0 to 100%.
The sunshine data are in a 0.5 degree grid based on data from [1244]
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Fig. 21.52. Schematic I–V characteristics of a solar cell under illumination (left
scale) and extracted power (right scale). The grey area is the maximum power
rectangle with Pm = ImVm.
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For the drift current out of the depletion layer of width w it can be
assumed that it is collected fast and recombination plays no role. Thus (cmp.
(21.30))

jDL(λ) = e nph(λ) [1 −R(λ)] [1 − exp(−α(λ)w)] , (21.60)

where λ is the wavelength of the incident radiation, R the reflectance of the
surface, α the absorption coefficient and nph(λ) the photon flux (number of
photons per area and time) at the given wavelength. For a solar spectrum,
an integral needs to be performed over the spectral distribution:

jDL =
∫
jDL(λ) dλ , (21.61)

the total photon flux being nph =
∫
nph(λ) dλ.

The diffusion current collected at the back contact is obtained from solving
(10.70) (now for electrons in p-type material) with the appropriate boundary
conditions (reversely bias depletion layer, np(w) = 0, Δnp(∞) = np(∞) −
np0 = 0 [1245]):

jD(λ) = e nph(λ) [1 −R(λ)]
αLn

1 + αLn
exp(−αw) + e n0

Dn

Ln
, (21.62)

Dropping the wavelength dependence and neglecting the dark term, the
usual formula is obtained,

jL = e nph [1 −R]
[
1 − exp(−αw)

1 + αLn

]
, (21.63)

The last bracket represents the quantum efficiency [1246]. The model can be
extended for taking into account a non-zero surface recombination velocity
at the back contact at finite distance [1247].

Here a voltage independent photo-generated current IL is assumed. If the
diffusion length is small compared to the transport path, the carrier collection
efficiency ηc becomes voltage dependent [1246]. The reduction of the diffusion
potential for forward voltage decreases the carrier collection efficiency [1248],
possibly to zero close to the built-in voltage.

The saturation current density is given by (20.113) and (20.114)

js = Is/A = eNCNV

[
1
NA

√
Dn

τn
+

1
ND

√
Dp

τp

]

exp
(
−Eg

kT

)
, (21.64)

with A being the cell area.
The voltage at I = 0 is termed the open-circuit voltage Voc, the current

at V = 0 is termed the short-circuit current Isc = IL (Fig. 21.52). Only a
part of the rectangle Isc × Voc can be used for power conversion. By choice
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of the load resistance RL, the work point is set. At Im and Vm, the gener-
ated power Pm = ImVm is maximal. The filling factor F is defined as the
ratio

F =
ImVm

IscVoc
. (21.65)

The open-circuit voltage is given by

Voc = β−1 ln
(
IL
Is

+ 1
)

∼= β−1 ln
(
IL
Is

)
(21.66)

and increases with increasing light power and decreasing dark current. The
output power is

P = IV = IsV [exp (βV ) − 1] − ILV . (21.67)

The condition dP/dV = 0 yields the optimal voltage at which the solar
cell has to be operated and is given by the implicit equation

Vm =
1
β

ln
(
IL/Is + 1
1 + βVm

)
= Voc − 1

β
ln (1 + βVm) . (21.68)

The current at maximum power is

Im = IL

(
1 − 1 − βVmIs/IL

1 + βVm

)
∼= IL

(
1 − 1

βVm

)
. (21.69)

Em is the energy that is delivered per photon at the load resistor at the
power maximum. The maximum power is Pm = ILEm/e and Em is given by

Em
∼= e

[
Voc − 1

β
ln (1 + βVm) − 1

β

]
. (21.70)

The ideal solar cell has a (power) conversion efficiency η = Pm/Pin that can
be determined from Fig. 21.53a.

The right curve (1) in Fig. 21.53a shows the integral number nph of pho-
tons in the solar spectrum (per area and time) with an energy larger than
a given one (Eg). For a given value of nph, the left curve (2) represents the
value of Em. The efficiency is the ratio of Emnph and the area under curve
(1). The efficiency as a function of the band gap is shown in Fig. 21.54a. It
has a fairly broad maximum such that many semiconductors can be used for
solar cells, in principle. The maximum theoretical efficiency for a single junc-
tion is 31% for nonconcentrated sunlight (AM1.5). This limit corresponds to
the classic Shockley–Queisser limit [1250–1252], assuming radiative recom-
bination as the only charge-carrier recombination mechanism. In [1253], the
limit for a single material is found to be 43% for an optimally tailored band
structure that allows carrier multiplication by optically excited hot carriers.
The solar cell as a heat engine is discussed in [1254].
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Fig. 21.53. (a) Number of photons nph per area and time in the sun spectrum
(AM1.5, C = 1 sun) with an energy larger than a cutoff energy (curve 1) and
graphical method to determine the quantum efficiency (from curve 2). Adapted
from [1249]. (b) Number of photons in concentrated solar spectrum (AM1.5,
C =1000 sun) with an energy larger than a given energy and graphical method to
determine the quantum efficiency of multijunction solar cells. Adapted from [384]
after [1249]
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cell (water cooled) as a function of light concentration. Solid line is theoretically
projected efficiency, dashed lines are guides to the eye. Adapted from [384]
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When the sunlight is concentrated, e.g. by a lens, the efficiency increases
(Fig. 21.54b). The short-circuit current increases linearly. The effect is mostly
due to the increase of the open-circuit voltage. For C = 1000, the maximum
theoretical efficiency for a single-junction solar cell is 38%.

A further increase of efficiency can be achieved with multiple junctions
using various materials for absorption. In a tandem cell (two junctions), the
upper layer absorbs the higher-energy photons in a wide band gap material.
The material with the lower band gap makes use of the low-energy photons.
Thus, the cell works with two different values of Em (Fig. 21.53b). With band
gaps of 1.56 eV and 0.84 eV, an efficiency of 50% can be reached theoretically.
With three materials 56%, and for a large number of materials 72% is the
limit. Between the junctions, tunneling diodes (Sect. 20.5.9) must be used to
allow carrier transport through the entire structure. It is a nontrivial task
to fabricate multiple heterojunctions due to incompatibilities of the lattice
constants. Besides heteroepitaxy, wafer bonding can also be used for fabrica-
tion. A lattice-matched InGaP/GaAs/InGaAsN cell seems a viable solution
for high-efficiency solar cells.

21.4.3 Real Solar Cells

For a real solar cell, the effect of parallel resistance Rsh (shunt resistance due
to leakage current, e.g. by local shorts of the solar cell) and serial resistance
Rs (due to ohmic loss) must be considered. The I–V characteristic is then
(cf. (20.139))

ln
(
I + IL
Is

− V − IRs

IsRsh
+ 1

)
= β (V − IRs) . (21.71)

The serial resistance affects the efficiency more strongly than the shunt
resistance (Fig. 21.55). Therefore, it is frequently enough to consider Rs only
and use (cf. Fig. 20.138)

I = Is exp (β(V − IRs)) − IL . (21.72)

In the example of Fig. 21.55, a serial resistance of 5 Ω reduces the filling factor
by a factor of about four.

21.4.4 Design Refinements

In order to collect electrons most efficiently, a back surface field is used
(Fig. 21.56). A higher-doped region at the back contact creates a potential
barrier and reflects electrons back to the front contact.

An important point for optimization is the management of the reflection
at the solar cell surface. First, a dielectric antireflection (AR) layer (or multi-
layers) can be used. These layers should have a broad AR spectrum. Addi-
tionally, a textured surface reduces reflection (Fig. 21.57d), giving reflected
photons a second chance for penetration (Fig. 21.57c). The reflectance of
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Fig. 21.56. Increase of the carrier collection efficiency by a back surface field.
Adapted from [1257]

bare Si, 35%, can be reduced to 2%. An AM0 efficiency of over 15% was
reached using textured multi-crystalline cells. Alkaline KOH-based etches at-
tack Si (001) anisotropically and yield pyramidal structures (Fig. 21.57b)
with {111} facets. Recently an acidic HF/HNO3-based process has been es-
tablished [1255], resulting in a worm-like surface pattern on multi-crystalline
silicon wafers (Fig. 21.57a) with superior anti-reflection properties.
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Fig. 21.57. (a) SEM image of topology of acidically etched multi-crystalline sil-
icon wafer. (b) SEM image of alkaline etched mono-crystalline silicon wafer. (c)
Exemplary light path. (d) Reflectance of antireflection-coated flat (dashed line)
and textured (solid line) surface). Parts (a) and (b) adapted from [1260], part (d)
adapted from [1261]

During its course over the sky during the day, the sun changes its angle
towards a fixed solar cell.8 A tracking mechanism can optimize the angle of
incidence during the day and increase the overall efficiency of the solar cell
(Fig. 21.58).

21.4.5 Modules

In order to cover a large area and supply certain values of output voltage
and current, several solar cells are connected into modules. Arrays are built
up from several modules (Fig. 21.59). If solar cells are connected in parallel,
the total current increases; if they are connected in series, the output voltage
increases. We note that in partially shadowed modules the reverse character-
istics of solar cells are important [1258, 1259]; local breakdown can lead to
hot spots and irreversible degradation.

8We are of course aware that the earth rather rotates around the sun.
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Fig. 21.58. Annual average solar energy (in kWh/(m2 day)) for (a) an optimally
tilted south-facing fixed panel and (b) an optimally two-axis tracked panel (in
mainland US). Adapted from [1266]. (c) Power generation of a solar cell vs. time
(in daytime hours) for a stationary setup facing the sun at constant angle (solid
line) and mounting with tracking (dashed line) to optimize the angle towards the
sun. Adapted from [1267]

Fig. 21.59. Schematic drawing of a solar cell (with contact grid), a module (36
cells) and an array of ten modules

21.4.6 Solar-Cell Types

First Generation Photovoltaics

Silicon is the most frequently used material for solar cells. Cells based on
single-crystalline silicon (wafers) have the highest efficiency but are the most
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(a) (b)

(c)

Fig. 21.60. Various types of solar cells: (a) monocrystalline silicon solar cell, (b)
polycrystalline solar cell, (c) amorphous silicon solar cell. From [1267]

Table 21.1. Record efficiency of various solar cells (AM1.5, 1000W/cm2, 25◦ unless
noted otherwise). Most data from [1243], additional data for 3J (conc.) from [1268]

cell material/type efficiency Voc jsc FF date

(%) (V) (mA/cm2) (%) m/y

Si (crystalline) 24.7 ± 0.5 0.706 42.2 82.8 3/1999

Si (polycrystalline) 20.3 ± 0.5 0.664 37.7 80.9 5/2004

Si (amorphous) 9.3 ± 0.5 0.859 17.5 63.0 4/2003

GaAs (crystalline) 25.9 ± 0.8 1.038 29.4 84.7 12/2007

GaAs (thin film) 24.5 ± 0.5 1.029 28.8 82.5 5/2005

GaAs (polycrystalline) 18.2 ± 0.5 0.994 23.0 79.7 11/1995

2J (GaInP/GaAs) 30.3 2.488 14.22 85.6 4/1996

3J (GaInP/GaAs/Ge) 32.0 ± 1.5 2.622 14.4 85.0 1/2003

3J (conc., 240 suns) 40.7 ± 2.4 2.911 3832 87.5 9/2006

CIGS 19.2 ± 0.6 0.716 33.3 80.3 1/2008

CdTe 16.5 ± 0.5 0.845 25.9 75.5 9/2001

dye sensitized 10.4 ± 0.3 0.729 21.8 65.2 8/2005

organic polymer 5.15 ± 0.3 0.876 9.4 62.5 12/2006

expensive (Fig. 21.60a). The efficiencies of various solar cells are compiled in
Table 21.1. Polycrystalline (for large grains also called multi-crystalline) sil-
icon (Fig. 21.60b) is cheaper but offers less performance. Material design
is oriented towards increasing the grain size and/or reducing their elec-
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Fig. 21.61. Theoretical dependence of the effect of grain size on efficiency of poly-
crystalline solar cells (solid line) with experimental data points (circles). Adapted
from [1264]

trical activity. Grain boundaries act as recombination centers with a sur-
face (i.e. interface) recombination velocity of 102 cm/s [1262] for particular,
electrically fairly inactive grain boundaries, several 103 cm/s [1263], several
104 cm/s [1264] or even 105–107 cm/s [1265]. The grain boundaries reduce the
effective diffusion length and thus carriers recombine before they can reach
the contacts. A detailed theory of solar cell performance for polycrystalline
material has been worked out in [1264] and explains the reduction of efficiency
with decreasing grain size as shown in Fig. 21.61.

These solar cells are also called ‘first-generation’ photovoltaics. Thin
sheets of crystalline silicon drawn from a melt between two seed crystals in
a modified CZ growth (sheet silicon or ribbon silicon) allow cheaper produc-
tion compared to cells based on ‘traditional’ polished wafers cut from a large
silicon rod. Silicon made particularly for solar cell use is called ‘solar-grade’
silicon.

Second Generation Photovoltaics

Even cheaper are solar cells from amorphous silicon (Fig. 21.61c). Since silicon
is an indirect semiconductor, a fairly thick layer is needed for light absorp-
tion. If direct band gap semiconductors are used, a thin layer (d ≈ 1 μm) is
sufficient for complete light absorption. Such cells are called thin-film solar
cells. A typical material class used in this type of cell are chalcopyrites, such
as CuInSe2 (CIS). The band gap is around 1 eV, which is not optimal. An im-
provement can be achieved by adding Ga and/or S which increases the band
gap, Cu(In,Ga)(Se,S)2 (CIGS), to 1.2–1.6 eV. Using CIGS, an efficiency of
over 19% has been reported in laboratory samples; 12–13% seeming realistic
for production [1269]. Also CdTe is a viable absorber mostly sputtered on
glass with over 16% efficiency demonstrated and 9–10% realistic in produc-
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Fig. 21.62. (a) Schematic cross section of a polycrystalline thin-film solar cell. (b)
Rolled sheets of CIS thin film solar cell on flexible Kapton foil. (c) SEM cross section
of CIS thin-film solar cell. Parts (b) and (c) reprinted with permission from [1275]

tion. Thin-film solar cells can be fabricated on glass substrate or on flexible
polymer substrate such as Kapton9 (Fig. 21.62a,b). Also here, optimization
of the grain size is important (Fig. 21.62b). As the front contact, a trans-
parent conductive oxide (TCO), such as ITO (InSnO2) or ZnO:Al, is used.
If the front surface is given by the glass substrate, as can be the case for
CdTe/glass solar cells, the glass is actually termed ‘superstrate’. Thin-film
and amorphous silicon solar cells are also termed ‘second-generation’ photo-
voltaics. Also organic materials can be used for solar cells [1270], promising
low-cost production at acceptable performance, in 2004 2.5% [1271] and in
2006 about 4% maximum efficiency [1272].

Third Generation Photovoltaics

‘Third-generation’ photovoltaics attempt to go beyond the 30% limit and
comprise of multijunction solar cells, concentration of sunlight, use of hot-
carrier excess energy as discussed above and possibly other concepts including
photon conversion [1274, 1275], intermediate band absorption [1276, 1278],
multi-exciton generation [1279] or the use of quantum dots [1280].

In multijunction cells the different absorber layers are stacked on the sub-
strate with increasing band gap and connected via (highly doped) tunneling
junctions (Sect. 20.5.9). Under 500-fold AM1.5 illumination a three junction
(3J) cell (GaInP/GaInAs/Ge) is expected to exhibit up to 41% efficiency, for

9Kapton� is a polyimide and a product and registered trademark of DuPont.
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Fig. 21.63. Schematic layer stacking of multijunction solar cells and expected
efficiency. Adapted from [1281]

(a) (b)

Fig. 21.64. (a) Schematic layer stacking of three-junction (3J) solar cell. The
step-graded buffer (metamorphic buffer) changes the in-plane lattice constant for
the following layers. Adapted from [1284]. (b) Cross-section TEM image of meta-
morphic InGaAs buffer on Ge. Adapted from [1285]

5J 42% or up to 55% using GaInNAs and with 6J up to 59% [1281, 1282]
(Fig. 21.63). For a 3J cell the record efficiency is 40.7% (240 suns) using the
layer structure as shown in Fig. 21.64 [1268]. Details on modeling of III–V
multijunction solar cells can be found in [1283]. In a monolithic cell the ab-
sorbers must be tuned such that the same current (Kirchhoff’s law) can pass
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through all layers. Multijunction solar cells are heteroepitaxial devices and
thus expensive; the use of concentration is economically mandatory.

21.4.7 Commercial Issues

The cost10 of producing photovoltaic (PV) modules, in constant dollars, has
fallen from as much as $50 per peak watt in 1980 to as little as $3 per peak
watt in 2004. A projected cost of 0.2e/kWh in 2020, a third of the current
cost, is realistic and competitive in many applications. In 2002, photovoltaic
power of 560 MW was installed worldwide. By the end of 2003, a total pho-
tovoltaic power of about 350 MW was installed in Germany. Thus, the PV
power is 0.33% of the total installed electric power of 106 GW in Germany.
The current market growth of 30% (worldwide) is driven by crystalline silicon
cells (95% in 2002).

The energy payback period is also dropping rapidly. For example, it takes
today’s typical crystalline silicon module about 4 years to generate more en-
ergy than went into making the module in the first place. The next gener-
ation of silicon modules, which will employ a different grade of silicon and
use thinner layers of semiconductor material, will have an energy payback of
about 2 years. And thin-film modules will soon bring the payback down to
one year or less. However, market growth of thin-film modules is currently
slow. This means that these modules will produce ‘free’ and clean energy for
the remaining 29 years of their expected life.

PV technology can meet electricity demand on any scale. The solar en-
ergy resource in a 100 mile-square area of Nevada could supply the United
States with all its electricity (about 800 GW), using modestly efficient (10%)
commercial PV modules. A more realistic scenario involves distributing these
same PV systems throughout the 50 states. Currently available sites, such as
vacant land, parking lots, and rooftops, could be used. The land requirement
to produce 800 GW would average out to be about 17 × 17 miles per state.
Alternatively, PV systems built in the ‘brownfields’, the estimated 5 million
acres of abandoned industrial sites in the US, could supply 90% of Amer-
ica’s current electricity. Solar power is expected to contribute 10% of the US
energy need in 2030. For Germany, more than 2% in 2020 is probable.

In 2001, PV module shipments in the US approached the 400 MW mark,
representing a $2.5 to $3 billion market. The US-based industry itself is now
approaching $1 billion per year and provides 25,000 jobs. It is expected to
grow to the $10–$15 billion level in the next 20 years, providing 3,00,000 jobs
by 2025.

10The following information is taken from [1286] and [1287].
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22.1 Radiometric and Photometric Quantities

22.1.1 Radiometric Quantities

The radiometric quantities are derived from the radiant flux (power) Φe (or
usually simply Φ) that is the total power (energy per time) emitted by a
source, measured in Watts. The radiant intensity Ie is the radiant flux emitted
by a point source into a solid angle,1 measured in Watts per steradian (or
W/sr). The irradiance Ee is the radiant flux per area incident on a given
plane, measured in W/m2. The radiance Le is the radiant flux per area and
solid angle as, e.g., emitted by an extended source, measured in W/(m2 sr).

22.1.2 Photometric Quantities

The photometric quantities are related to the visual impression and are de-
rived from the radiometric quantities by weighting them with the V (λ) curve.

The luminous flux (luminosity or visible brightness) Φv of a source with
the radiant flux (spectral power distribution) Φ(λ) is given by

Φv = Km

∫ ∞

0

Φ(λ)V (λ)dλ , (22.1)

with Km = 683 lm/W. This formula is also the definition of the unit ‘lumen’.
In Fig. 22.1b, the conversion function2 V (λ) is shown for light and dark
adapted vision.3

1A solid angle Ω is the ratio of the spherical surface area A and the square of
the sphere’s radius r, i.e. Ω = A/r2.

2The V (λ) curve has been experimentally determined by letting several ob-
servers adjust (decrease) the perceived brightness of a monochromatic light source
at 555 nm to that of light sources of the same absolute radiation power at other
wavelengths with so-called heterochromatic flicker photometry. The ‘relative sensi-
tivity curve for the CIE Standard Observer’ was determined in 1924. The ‘standard
observer’ is neither a real observer nor an average human observer. The curve has
shortcomings, e.g., due to the used spectral band width (20–30 nm) of the light
sources and the comparison of spectral power instead of the photon flux.

3While photopic vision is due to cones, the scotopic (dark-adapted) vision is
due to rods. Rods are more than one thousand times as sensitive as the cones and

M. Grundmann, The Physics of Semiconductors, 2nd ed., Graduate Texts 653
in Physics, DOI 10.1007/978-3-642-13884-3 22,
c© Springer-Verlag Berlin Heidelberg 2010
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(a) (b)

Fig. 22.1. (a) Relative eye sensitivity curves for photopic (light adapted, solid
line) and (dark adapted, dashed line) vision. (b) Conversion of lumen to Watt for
light- and dark-adapted vision

Further derived photometric quantities are luminous intensity (luminous
flux per solid angle), measured in candela (cd), the illuminance (luminous
flux per area), measured in lux (lx), and the luminance (luminous flux per
area and solid angle). The latter is particularly important if the radiation
enters an optical system, e.g. for refocusing. The radiometric and photometric
quantities are summarized in Table 22.1.

Table 22.1. Radiometric and photometric quantities and units. The photometric
units are lumen (lm), lux (lx=lm/m2) and candela (cd=lm/sr)

Radiometric Photometric
quantity symbol unit quantity symbol unit

radiant flux Φe W luminous flux Φv lm
radiant intensity Ie W/sr luminous intensity Iv cd
irradiance Ee W/m2 illuminance Ev lx
radiance Le W/m2/sr luminance Lv lm/m2/sr

22.2 Scintillators

A scintillator (or phosphor) is a material that converts impacting high-energy
radiation into photons [1288]. Besides a high conversion efficiency, the spec-
trum and decay time constant of the scintillator are important for display
applications. For display purposes, the photons are directly used for forming

can reportedly be triggered by individual photons under optimal conditions. Rods
predominate in the peripheral vision and are not color sensitive.
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the image for the observer. For radiation detection, the photons are fed to a
photomultiplier tube and counted.

The most prominent applications, involving the conversion of electrons,
are the screens of cathode ray tubes (CRT) (acceleration voltage > 10 kV)
and of flat panel devices, such as field-effect displays (using a low voltage for
excitation, typically < 1 kV) or plasma displays (using the UV light from the
discharge of a plasma placed between two electrodes for excitation). Further
details on electroluminescent displays can be found in [1289]. Other forms of
radiation detected with scintillators are α-, β-, and γ-radiation, X-rays and
neutrons [1290]. Different excitation conditions require different phosphors
for optimal performance.

22.2.1 CIE Chromaticity Diagram

The CIE4 procedure converts the spectral power distribution (SPD) of light
from an object into a brightness parameter Y and two chromaticity coor-
dinates x and y. The chromaticity coordinates map the color5 with respect
to hue and saturation on the two-dimensional CIE chromaticity diagram.
The procedure for obtaining the chromaticity coordinates for a given col-
ored object involves determination of its spectral power distribution P (λ) at
each wavelength, multiplication by each of the three color-matching functions
x̄(λ), ȳ(λ), and z̄(λ) (Fig. 22.2a) and integration (or summation) of the three
tristimulus values X, Y , Z

X =
∫ 780 nm

380 nm

P (λ)x̄(λ)dλ (22.2a)

Y =
∫ 780 nm

380 nm

P (λ)ȳ(λ)dλ (22.2b)

Z =
∫ 780 nm

380 nm

P (λ)z̄(λ)dλ . (22.2c)

Y gives the brightness. The tristimulus values are normalized to yield the
chromaticity coordinates, e.g. x = X/(X + Y + Z). x and y obtained in this
way are the chromaticity coordinates. The third coordinate z = 1 − x − y

4Commission Internationale de l’Éclairage. The color space can be described by
different coordinate systems, and the three most widely used color systems, Munsell,
Ostwald, and CIE, describe the color space with different parameters. The Munsell
system uses hue, value, and chroma and the Ostwald system uses dominant wave-
length, purity, and luminance. The more precise CIE system uses a parameter Y to
measure brightness and parameters x and y to specify the chromaticity that covers
the properties hue and saturation on a two-dimensional chromaticity diagram.

5This definition is motivated by the color vision of the eye. Two light sources
will have the same color, even if they have different SPDs, when they evoke the
same color impression to the human eye.
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(a) (b)

Fig. 22.2. (a) Color-matching functions x̄, ȳ, and z̄ for the calculation of the CIE
chromaticity, (b) color-matching functions r̄, ḡ, and b̄ for the calculation of RGB
values

offers no additional information and is redundant. Therefore, the color is
represented in a two-dimensional diagram, the CIE chromaticity diagram6

as shown in Fig. 22.3a. White is represented by x = y = z = 1/3. In or-
der to relate the differences between colors as perceived by the human eye
more closely to the geometrical distance in the chart, a revision was made
(Fig. 22.3b) with new coordinates

u′ = 4x/(−2x+ 12y + 3) (22.3a)
v′ = 9y/(−2x+ 12y + 3) . (22.3b)

For CRTs the red-green-blue (RGB) color space is used.7 The color match-
ing functions for RGB values are shown in Fig. 22.2b. The RGB values are
related to the XYZ values according to

⎛

⎜
⎝
R

G

B

⎞

⎟
⎠ =

⎛
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⎝

2.36461 –0.89654 –0.46807
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0.00520 –0.01441 1.00920

⎞

⎟
⎠

⎛

⎜
⎝
X

Y

Z

⎞

⎟
⎠ . (22.4)

6The coloring of the chart is provided for an understanding of color relationships.
CRT monitors and printed materials cannot reproduce the full gamut of the color
spectrum as perceived in human vision. The color areas that are shown only depict
rough categories and are not precise statements of color.

7RGB is an additive color system. However, printing devices use a subtractive
color system. This means that the ink absorbs a particular color, and the visible
impression stems from what is reflected (not absorbed). When inks are combined,
they absorb a combination of colors, and hence the reflected colors are reduced, or
subtracted. The subtractive primaries are cyan, magenta and yellow (CMY) and
are related to RGB via (C,M, Y ) = (1 − R, 1 − G, 1 − B).
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(a) (b)

(c)

Fig. 22.3. CIE chromaticity diagram from 1931 (a) in the coordinates x and y and
from 1976 (b) in the coordinates u′ and v′ (22.3b). The curved upper boundary
is called the ‘spectrum locus’ and contains monochromatic colors, the straight line
at the lower left is termed the ‘purple boundary’. In the graph also the color of
blackbody radiation is given, T = 5440 K corresponds to x = y = 1/3. ‘A’, ‘B’, ‘C’,
and ‘E’ are standard illuminants, ‘D65’ denotes daylight with color temperature
T = 6500 K. (c) CIE chart with the color ranges of sRGB, CIE and NTSC. Part
(c) adapted from [1291]

The CIE RGB primaries from 1931 are at 700, 546.1, and 435.8 nm with
the relative intensities 1.0, 4.5907, and 0.0601. A display device using three
phosphors can only display colors in the triangular area of the CIE chart
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Table 22.2. Primaries and white points for sRGB, CIE and NTSC

primary red green blue white

CIE 0.73467 0.26533 0.27376 0.71741 0.16658 0.00886 0.33333 0.33333
NTSC 0.6700 0.3300 0.2100 0.7100 0.1400 0.0800 0.3100 0.3160
sRGB 0.6400 0.3300 0.3000 0.6000 0.1500 0.0600 0.3127 0.3290

between the three chromaticity coordinates. For sRGB8, the 1931 CIE pri-
maries and the NTSC9 norm the coordinates are given in Table 22.2 and visu-
alized in Fig. 22.3c. An optimal coverage of the CIE chart involves monochro-
matic sources (for laser TV or LED displays) at about 680, 520 and 440 nm.

22.2.2 Display Applications

The once ubiquitous amber-colored monochrome displays are mostly fab-
ricated using ZnS:Mn [1289], having broad emission (540–680 nm) with its
spectral peak at 585 nm (x = 0.50, y = 0.50) with an efficiency of 2–4 lm/W.
In color television (and similar applications such as color computer monitors,
tubes for aviation use, projection television) the image is reproduced by selec-
tive and time-multiplexed cathode excitation of three phosphors (blue, green
and red) deposited on the internal face of the screen. The chromaticity coor-
dinates of the standard CRT phosphors P-22B, P-22G and P-22R are given
in Table 22.3. They cover about the color range labeled ‘sRGB’ in Fig. 22.3c.
For blue and green ZnS:Ag (x = 0.157, y = 0.069), ZnS:Ag,Cl, ZnS:Ag,Al
and ZnS:Cu,Al (x = 0.312, y = 0.597), ZnS:Cu,Au,Al are used as phosphors,
respectively. Y2O2S:Eu (x = 0.624, y = 0.337) activated with trivalent eu-
ropium (Eu3+) facilitated such a gain in the brilliance of red over ZnS:Ag
(more than doubled it) that it has totally replaced it at about one fifth of the
cost. For reproducible image quality, precise grain-size control (median size
for CRT phosphors is about 8 μm), dispersion control and surface treatment

Table 22.3. CIE color coordinates, peak emission wavelength and decay time (10%)
of standard CRT phosphors

phosphor x y λp (nm) decay time

P-22B 0.148 0.062 440 ∼20 μs

P-22G 0.310 0.594 540 ∼60 μs

P-22R 0.661 0.332 625 1 ms

8Standard RGB color space as defined mainly by Hewlett-Packard and Mi-
crosoft, almost identical to PAL/SECAM European television phosphors.

9National television standard colors, US norm.
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are necessary. Flat-panel displays with their lower excitation voltage require
different phosphors for optimal efficiency.

22.2.3 Radiation Detection

The most commonly used scintillation detector for alpha measurements is
ZnS activated with silver, ZnS:Ag. This material is not very transparent to
light and is usually prepared as a large number of crystals with sub-mm size
attached with an adhesive to a flat piece of plastic or other material. The
flat screen is optically coupled to a photomultiplier tube that is attached
to associated electronics. The voltage and discriminator levels are selected so
that the detector is sensitive to the rather large pulses from alpha interactions
but insensitive to beta- or gamma-induced pulses. The alpha particles deposit
all of their energies in a small thickness of material compared to beta and
gamma radiations.

Scintillation detectors for beta radiation are often made from organic ma-
terials. In an organic scintillator, the light emission occurs as a result of flu-
orescence when a molecule relaxes from an excited level following excitation
by energy absorption from ionizing radiation. Molecules such as anthracene,
trans-stilbene, para-terphenyl, and phenyl oxazole derivatives are among the
many organic species that have useful scintillation properties. The organic
molecules are dissolved in organic solvents and used as liquid scintillators. A
classic application is in the measurement of low-energy beta radiation from,
e.g. tritium, 14C, or 35S. In such cases, the sample containing the radioactive
beta emitter is dissolved in, or in some cases suspended in, the liquid scin-
tillation solution. The emitted beta radiation transfers energy through the
solvent to the scintillator molecule that emits light, subsequently detected by
photomultiplier tubes. Organic scintillator molecules can also be dissolved
in an organic monomer that can then be polymerized to produce a plastic
scintillator in a wide variety of shapes and sizes. Very thin scintillators have
been used for alpha detection, somewhat thicker scintillators for beta detec-
tion. Large-volume plastic scintillators have been used in gamma detection,
particularly for dose-related measurements.

Other inorganic crystalline scintillators, especially sodium iodide acti-
vated with thallium, NaI:Tl, have been used for gamma-ray energy mea-
surements. Such detectors can be grown as large single crystals that have a
reasonably high efficiency for absorbing all of the energy from incident gamma
rays. There exists a rather large number of inorganic scintillators; some exam-
ples of these include cesium iodide activated with thallium, CsI:Tl, bismuth
germanate, Bi4Ge3O12, and barium fluoride, BaF2. These are mostly used
for gamma measurements but can also be prepared with thin windows and
have been used for charged particle (e.g. alpha and beta) counting. A number
of scintillator materials including tungstates like CdWO4 has been reviewed
in [1292].
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Table 22.4. Emission peak wavelength and decay time of various scintillator ma-
terials

material λp (nm) decay time

Zn2SiO4:Mn 525 24 ms

ZnS:Cu 543 35–100 μs

CdWO4 475 5 μs

CsI:Tl 540 1 μs

CsI:Na 425 630 ns

Y3Al5O12:Ce 550 65 ns

Lu2SiO5:Ce 400 40 ns

YAlO3:Ce 365 30 ns

ZnO:Ga 385 2 ns

In Table 22.4, the peak emission wavelength and the characteristic decay
time are listed for a variety of scintillator materials. Direct semiconductors,
although not offering the highest efficiency, are particularly useful for high
time resolution in, e.g., time-of-flight measurements or fast scanning electron
microscopy.

22.2.4 Luminescence Mechanisms

Self-trapped Excitons

In a strongly ionic crystal, such as NaI, a hole becomes localized to an atomic
site via the polaron effect. A spatially diffuse electron is attracted, and a self-
trapped exciton is formed that can recombine radiatively.

Self-activated Scintillator

In such material, the luminescent species is a constituent of the crystal. The
emission involves an intraionic transition, e.g. 6p→6s in Bi3+ of Bi4Ge3O12,
or a charge-transfer transition in the case of (WO4)2− in CaWO4. At room
temperature, nonradiative competing processes limit the efficiency.

Activator Ions

For dopant ions such as Eu2+ in YO2S:Eu, Ce3+ in YAlO3:Ce or Tl+ in
NaI:Tl, the hole and electron excited by the radiation are sequentially trapped
by the same ion that then undergoes a radiative transition, in the case of Eu
and Ce10 5d→4f, for Tl 3P0,1 →S0. CsI:Tl has one of the highest efficiencies
of 64.8 photons/keV [1293].

10This transition is dipole allowed for Ce and partially forbidden for Eu.
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Core–Valence Luminescence

In some materials, e.g., BaF2, CsF, BaLu2F8 the energy gap between the
valence band and the top core band is less than the fundamental band gap.
A radiative transition occurs when an electron from the valence band fills a
hole in the top core band that has been created by the radiation. The light
yield is limited to about 2 photons/keV.

Semiconductor Recombination Processes

Free excitons or excitons bound to impurities can recombine radiatively. This
process is most efficient at low temperatures. At room temperature, the emis-
sion is typically much weaker (�10×) since excitons become unbound or dis-
sociated. Highly doped n-type semiconductors, e.g. CdS:In, exhibit recombi-
nation between donor-band electrons and holes. ZnO:Ga has an efficiency of
about 15 photons/keV and a fast response (with 2.4 photons/keV emitted in
the first 100 ps). Luminescence can also stem from donor–acceptor pair tran-
sitions, e.g. in PbI2 with an efficiency of 3 photons/keV at 10 K. Isoelectronic
impurities such as nitrogen in GaP:N and tellurium in CdS:Te attract an
electron and subsequently a hole. In ZnS:Ag and ZnS:Cu (conduction) band
to trap recombination is dominant. In a codoping scheme like CdS:In,Te, In
supplies electrons in an impurity band that can recombine with holes trapped
at Te.

22.3 Light-Emitting Diodes

22.3.1 Introduction

Light-emitting diodes (LEDs) are semiconductor devices in which injected
carriers recombine radiatively. The recombination process leading to light
emission can be of intrinsic nature, i.e. band–band recombination, or extrin-
sic, e.g. impurity-bound excitons. Impurity-related luminescence can also be
excited via impact excitation. For an extensive treatment of LEDs see [1294],
for a review of the early field [1295] and for recent reviews [1296, 1297].
Mostly LEDs are pn-diodes although also some MIS-based devices have been
reported [1298, 1299].

22.3.2 Spectral Ranges

Applications for LEDs can be sorted by the color of emission. In Fig. 22.4,
the standard sensitivity V (λ) of the human eye is shown (see Fig. 22.1a).
In the visible spectral region (about 400–750 nm) the perceived brightness of
the LED depends on the eye sensitivity. It is largest in the green (at 555 nm)
and drops strongly towards the red and blue.
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Fig. 22.4. Spectral coverage by various semiconductor materials. Reprinted with
permission from [384], c©1981 Wiley

The most important spectral regions and applications are:

– infrared (λ > 800 nm): remote controls, optocouplers, low-cost data trans-
mission, IR interface

– visible: indicator LED, lighting11 (room, buildings, cars), white LED for
broad spectrum

– ultraviolet (λ < 400 nm): pumping of phosphors for white LEDs, biotech-
nology

In Fig. 22.4, potentially useful semiconductors for the various spectral
regions are shown. The semiconductors that are currently used for the various
colors of the visible spectrum are

– red–yellow: GaAsP/GaAs, now AlInGaP/GaP
– yellow–green: GaAsP:N, GaP:N
– green–blue: SiC, now GaN, InGaN
– violet: GaN
– ultraviolet: AlGaN

22.3.3 Quantum Efficiency

The external (or total) quantum efficiency ηext is the number of photons emit-
ted from the device per injected electron–hole pair. It is given by the product
of the internal quantum efficiency ηint and the light extraction efficiency χex:

11Penetration of white LEDs into the general lighting market could translate
(globally) into cost savings of $ 1011 or a reduction of power generation capacity of
120 GW.
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ηext = χex ηint . (22.5)

The internal quantum efficiency is the number of photons generated (in-
side the semiconductor) per injected electron–hole pair. High material quality,
low defect density and low trap concentration are important for a large value
of ηint. The recombination current in the pn-diode has been already given
in (20.117). The light extraction efficiency is ratio of the number of photons
leaving the device and the total number of generated photons. The geometry
of the LED is of prime importance to optimize χex.

Due to the large index of refraction of the semiconductors (ns ∼ 2.5–3.5),
light can leave the semiconductor only under a small angle θc from the surface
normal due to total reflection (cf. (9.3) and see right part of Fig. 9.2). Against
air (n1 ≈ 1) the critical angle is

θc = sin−1 (1/ns) . (22.6)

The critical angle for total reflection is 16◦ for GaAs and 17◦ for GaP.
Additionally, a portion of the photons that do not suffer total reflection is
reflected back from the surface with the reflectance R given by (cf. (9.7))

R =
(
ns − 1
ns + 1

)2

. (22.7)

We note that the above formula is valid strictly for vertical incidence. For
the GaAs/air interface, the surface reflectance (for normal incidence) is about
30%. Thus, the light extraction efficiency for a LED is given by (1–R) and
the critical angle by

χex
∼= 4n1ns

(n1 + ns)2
(1 − cos θc) ≈ 4ns

(ns + 1)2
(1 − cos θc) . (22.8)

The latter approximation is valid when the outer medium is air. For GaAs,
the light extraction efficiency is 0.7×4% ≈ 2.7%. Thus, typically only a small
fraction of generated photons can leave the device and contribute to the LED
emission.

22.3.4 Device Design

In the following subsections the strategies that have allowed significant im-
provement of the extraction efficiency (Fig. 22.5) and thus LED performance
are briefly discussed.

Nonplanar Surfaces

With curved surfaces, the problem of total reflection can be (partially) cir-
cumvented (Fig. 22.6). Spherically polished chips are feasible, but, very ex-
pensive. The epoxy seal of the standard LED case (Fig.22.7a) and its shape
play a similar role, however, with a smaller index of refraction than the semi-
conductor, and are important for the beam shape.



664 22 Electricity-to-Light Conversion

Fig. 22.5. Historic development of maximum light extraction efficiency for
AlGaInP (red circles) and InGaN (blue squares) LEDs. Adapted from [1297]

Fig. 22.6. Form of various LED casings with (a) hemispherical, (b) truncated
sphere and (c) parabolic geometry. Adapted from [1300]. (d) Emission character-
istics for rectangular (i), hemispheric (ii) and parabolic (iii) geometry. Adapted
from [1301]

(a)

bond

cup

(b)

+ –

lens

Fig. 22.7. (a) Standard LED casing (schematic drawing and macrophoto), (b)
high-power mounting (schematic drawing and image of Luxeon� LED)
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Fig. 22.8. (a) Standard LED layer sequence with opaque substrate (grey), active
layer (checkered) and transparent top, (b) thick window design with thick top layer
(50–70 μm). (c) Transparent substrate (by rebonding, see Fig. 22.9, (d) chip shaping
(cf. also Fig. 22.11). (e) Thin-film LED with metal mirror (black) and rebonding
(cf. also Fig. 22.12)

Thick-Window Chip Geometry

An increase in light extraction efficiency to about 10–12% can be achieved
if the top layer is fabricated with a much larger thickness (Fig. 22.8b) of
50–70 μm instead of a few μm. However, such approach is not scalable since
larger device area would demand even larger thickness.

Transparent Substrate

Reflection of photons is not so detrimental if they are not lost later due to
absorption in the substrate. In Fig. 22.8, the evolution of LED chip design is
shown schematically. In Fig. 22.9, the light path is compared for opaque and
transparent substrates. The latter provides higher light extraction efficiency
due to the ‘photon recycling’ effect. Efficiencies of 20–25% are possible. In
Fig. 22.10, the technological steps are shown to fabricate a GaP LED with
an AlGaInP active layer. The active layer is initially grown on GaAs due to
lattice-match conditions.

Fig. 22.9. Comparison of light paths in a GaAsP-based LED with (a) opaque
(GaAs) and (b) transparent (GaP) substrate (side facets roughened). Adapted
from [1302]
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GaPGaAs GaAs

GaP window
AlGaInP DH

(a)

substrate

(b) (c)

AlAs

Fig. 22.10. Scheme of fabrication for red high brightness LED: (a) AlGaInP double
heterostructure (DH) with GaP window on GaAs substrate (growth with MOCVD).
(b) Lift-off using HF etch of sacrificial AlAs layer. (c) Wafer bonding on GaP
(transparent for red light)

Nonrectangular Chip Geometry

If the chip is made with an inverted structure and mounted on a mirror, a
high light extraction efficiency (> 50%) can be achieved. Typical commercial
designs are shown in Fig. 22.11.

The increase in quantum efficiency allows the devices to run on much
higher output power. While initially LEDs delivered power only in the mW
regime, now output power in the ∼ 1 W regime is possible (high brightness
LEDs). The higher currents made a redesign of the LED mount towards better
heat sinks necessary (Fig. 22.7b). While the standard case has a thermal
resistance of 220 K/W (chip size (0.25 mm)2 for 0.05–0.1 W and 0.2–2 lm),
the high-power case has 15 K/W (chip size (0.5 mm)2 for 0.5–2 W and 10–
100 lm). An epoxy-free technique for encapsulation also enhances the color
uniformity and maintains the brightness.

Thin-Film LED

In the thin-film LED design [1303], as schematically shown in Fig. 22.12a, a
metal mirror is evaporated on the LED layers. Subsequently, the metal side
is wafer bonded to another metallized substrate and the original substrate is
removed. Additionally, the LED surface can be patterned (before bonding)
into an (hexagonal) array of (hexagonal) microprism mesas with an insulating
(e.g. silicon nitride) layer with openings in order to optimize the current path.
The microprisms are optimized to allow efficient reflection of light towards
the emitting surface. This technology is scalable to large areas without loss
in efficiency.
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Barracuda
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Transparent
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Fig. 22.11. Optimization of light exit by 3D design of the LED chip, (a) scheme,
(b) emission pattern comparison and (c) SEM image of the ATON chip. Reprinted
with permission from [1304]. (d) Development stages towards the truncated inverted
pyramid (Prometheus) chip. From [1305]

Historic Development

In Fig. 22.13, the historic development of the LED luminous efficacy (lumi-
nous flux per electrical input power) is shown for various material systems.
While the luminosity has increased by a factor of 20 per decade in the last
40 years, the price has decreased by a factor of ten per decade (Fig. 22.14).
Currently, there is a need for the development of efficient LEDs in the green
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(a) (b)

Fig. 22.12. (a) Scheme of thin-film LED with microprisms. (b) image and lumi-
nescence image of thin film AlInGaP LED (chip length: 320 μm). Reprinted with
permission from [1306]

Fig. 22.13. Historic development of the luminous efficacy of semiconductor LEDs
and OLEDs. Based on [1307] with the addition of data on OLEDs and recent data
on LEDs. The arrows on the right indicate efficacy of various other light sources

spectral range since their luminosity is small compared to devices for the blue
and red spectral regions (Fig. 22.15).

22.3.5 White LEDs

There are different possibilities to generate white light with an LED as
shown schematically in Fig. 22.16. The highest color gamut and a tunable
white point can be achieved by combining a red, a green and a blue LED
(Fig. 22.16a). Using a blue LED and a yellow phosphor (Figs. 22.16b and
22.17a,b), a white spectrum can be achieved that is, however, not very close
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Fig. 22.14. Historic development of the flux (in lumen) and cost (in $/lm) for
semiconductor LEDs. Data from [1305]

Fig. 22.15. Luminous performance of various LED materials in comparison with
other light sources. Adapted from [1307]

to a blackbody spectrum (Fig. 22.17c). A better color rendering can be ob-
tained with the combination of two phosphors [1308]. With an UV LED that
is itself invisible (and must be shielded so no UV radiation leaves the LED),
phosphors with various colors can be pumped (Fig. 22.16c). The mix of phos-
phors determines the white point.

Using a blue-emitting LED based on InGaN material, phosphors (similar
to those used in fluorescence lamps) can be pumped. Blue light is converted
into green, yellow or red light such that the resulting total spectrum appears
white to the human eye. Also, a broad range of other colors can be designed
(color on demand), e.g. pink or particular corporate colors.

The color of a white LED depends on the operation conditions. In
Fig. 22.18a the intensity vs. dc driving current characteristic of a white LED
is shown. In Fig. 22.18b the chromaticity coordinates are shown for various
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(a) (b) (c)

Fig. 22.16. Different strategies to generate white light with LEDs. (a) Addition
of R, G, and B LEDs, (b) blue LED and yellow phosphor, (c) UV LED (invisible)
and R, G, and B phosphors. From [1305]

(a) (b)

(c) 400 450 500 550 600 650 700

Fig. 22.17. (a) Scheme and (b) image of color conversion Luxeon� LED.
From [1305]. (c) Spectrum (solid line) of white LED with blue LED pumping a
yellow phosphor together with eye-sensitivity curve V (λ) (dashed line). Adapted
from [1306]

dc currents. In order to avoid this effect, the LED is driven with pulses of
a fixed amplitude and a repetition frequency that is high enough to provide
a flicker-free image to the human eye, e.g. 100 Hz. The intensity of the LED
is modulated via the pulse width, i.e. between 0–10 ms in this case (PWM,
pulsewidth modulation).

A major advantage of LEDs for display and lighting applications is their
long lifetime compared to halogen (about 2000 h), xenon (10,000 h) or fluores-
cent (6000–10,000 h) lights. Philips Lumileds projects (for white LUXEON R©

K2 LEDs) 70% lumen maintenance at given current (1 A) at 50,000 h for junc-
tion temperature Tj ≤ 120◦ [1309]. Similar values are given by OSRAM [1310]
for white high power LEDs (Fig. 22.19).
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Fig. 22.18. (a) Luminous intensity of white LED (NSCW215) vs. dc forward cur-
rent. (b) CIE chromaticity coordinates for various dc driving conditions as labeled.
Data taken from [1311]

Fig. 22.19. Lifetime for 70% lumen as a function of solder temperature Ts (for
white Diamond Dragon R© LED) for various driving currents (0.3, 0.7, 1.4 and 2.0 A,
solid lines from right to left). The dashed line is for low driving current and Ts = Tj.
Adapted from [1310]

22.3.6 Quantum Dot LED

Quantum dots are an interesting active medium for LEDs due to their spec-
troscopic properties (Sect. 13.3.4).

Ultranarrow Spectral Emission

A LED based on a single QD exhibits a rather unique spectrum consisting of
a single spectral line, at least at low temperatures [1312], due to exciton re-
combination as shown in Fig. 22.20. Such device can deliver single photons on
demand and be a photon source for quantum cryptographic communication.
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Fig. 22.20. (a) Schematic cross-section of QD LED. Current is fed to a single
QD via an oxide aperture. (b) Plan-view SEM image of QD LED. (c) Electro-
luminescence (EL) spectrum (T = 10 K, U = 1.65 V, I = 0.87 nA) of single In-
GaAs/GaAs QD LED (diameter of oxide aperture 0.85 μm, thickness 60 nm). The
single line is due to (neutral) exciton recombination. The inset shows dependence of
EL spectrum on injection current; at higher currents a second peak due to biexciton
recombination (XX→X) appears. Adapted from [1316]

At higher current also biexciton recombination appears. In [1313, 1314] the
triggered emission of photon pairs from cascade-like XX and X recombination
in a single dot and their polarization entanglement is reported. Entanglement
is related to degenerate X and XX emission energy [1315] (cmp. Fig. 13.33).

Ultrabroad Spectral Emission

An LED based on the emission from a quantum dot ensemble exhibits a fairly
broad spectrum because of inhomogeneous broadening due to size fluctuations
of the quantum dots (cmp. Fig. 13.36). Additionally several ensembles of QDs
with different mean emission wavelength can be incorporated in a device, e.g.
in stacked layers [1317]. This way ultrabroad electroluminescence spectra can
be realized (Fig. 22.21). Also emission on the ground and excited state can
be used for broad spectral emission.

22.3.7 Organic LED

An organic light emitting diode (OLED) is made from organic semiconduc-
tors. The pioneering work was made by Tang and Van Slyke [1186, 1318].
Typical layer sequences are depicted in Fig. 20.55. The light emission occurs
through the anode (and the transparent ITO layer) while the metal cath-
ode is opaque. Two major configurations are possible, emission through the
transparent substrate (glass) or top emission (Fig. 22.22).
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Fig. 22.21. Electroluminescence spectrum of a quantum dot LED designed for
broad spectral range (at 5 kA/cm2). Adapted from [1319]

Fig. 22.22. Typical OLED design for (a) bottom and (b) top emission

The optimization of materials for the various functional layers is ongo-
ing. The emission layer (EML) is optimized for efficient radiative recombi-
nation for the design wavelength or wavelength range. The highest efficacy
of over 100 lm/W (Fig. 22.13) is achieved using phosphorescent materials
(Sect. 16.5). The contacts are optimized for high carrier injection efficiency
and the transport layers are optimized for high conductivity.

End of 2007 a transparent white OLED panel was introduced [1320]
(Fig. 22.23a). Its transparency is 55% and shall be improved in the future. A
crucial point is the protection of the organic films against moisture and air.
The encapsulation by glass is very good. Flexible OLED panels with polymer
substrate and encapsulation have been demonstrated (Fig. 22.23b). OLED
technology is currently used for small displays in digital cameras and cellular
phones. It enables very thin TV panels, only a few mm thick (Fig. 22.23c)
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Fig. 22.23. (a) Transparent OLED panel. From [1320]. (b) Flexible OLED display.
From [1321]. (c) 3 mm thin, 11 inch diagonal OLED TV. From [1322]

entering the mass market in 2010. An increase of the lifetime from 30,000 to
beyond 50,000 hours is expected.

22.4 Lasers

22.4.1 Introduction

Semiconductor lasers12 [1323, 1324] contain a zone (mostly called the active
layer) that has gain if sufficiently pumped and that overlaps with an optical
wave. The wave bounces back and forth in an optical cavity that leads to
optical feedback. The part of the wave that exits the semiconductor forms
the laser beam. Some of the first semiconductor lasers and a mounting design
are shown in Fig. 22.24.

Generally, two main geometrical laser types, edge emitters (Fig. 22.25a)
and surface emitters (Fig. 22.25b), are distinguished. The emission of the
edge emitter exits through cleaved {110} side facets13 (≈ 30% reflectance),
of which an opposite pair acts as a Fabry–Perot optical cavity. The surface
emission is directed along (001), since this is the (standard) growth direction
of the heterostructure sequence making up the laser. The mirrors in a vertical-
cavity surface-emitting laser (VCSEL) are made from dielectric Bragg mirrors

12The term ‘laser’ is an acronym for ‘light amplification by stimulated emission of
radiation’. The amplification relies on stimulated emission, theoretically predicted
by Einstein in 1917. The laser concept was first explored in the microwave wave-
length region (1954, MASER using ammonia, Ch.H. Townes, Nobel prize 1964).
The first optical laser (1958, US patent No. 2,929,922 awarded 1960, A.L. Schawlow,
Ch.H. Townes) was the ruby laser developed in 1960 by Th. Maiman. A device is
a laser when it emits stimulated light. This light must neither be monochromatic
nor be emitted in a narrow, directed beam.

13Or etched facets in possibly any direction.
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(a) (b)

(c) (d)

Fig. 22.24. Images of the first semiconductor lasers, 1962: (a) GaAs laser, Lin-
coln Laboratories and (b) GaInP laser, N. Holonyak and S.F. Bevacqua, Urbana
Champaign. (c) Laser (at the end of gold bond wire) mounted on Peltier heat sink
and a TO chip, Universität Leipzig. (d) Size comparison of an ant with a laser chip
(underneath the bond wire)

(a)

p-type
active
layer

laser
radiation

n-type
cleaved
facet

(b)

n-type
DBR

p-type
DBR

insulator

n-type
substrate

Fig. 22.25. (a) Schematic drawing of edge-emitting semiconductor laser. (b)
Schematic drawings of vertical-cavity surface-emitting lasers with top emission
(left) and emission through the substrate (right). Black areas are metal contacts
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(cf. Sect. 18.1.4) with typically R > 99.6%. Using antireflection coating on
one facet, semiconductor lasers can be set up with an external cavity.14 If
both facets are antireflection coated, feedback is missing and the chip can be
used as an optical amplifier (cf. Sect. 22.5).

Most lasers are pn-diodes and are then called laser diodes. They rely on
the gain of interband transitions and the emission wavelength is determined
and (more or less) given by the band gap of the semiconductor. The cascade
laser [1325] (Sect. 22.4.16) is a unipolar structure with a superlattice as active
layer. Here, the intersubband transitions (mostly in the conduction band but
also in the valence band) carry the gain. The emission wavelength depends
on the subband separation and lies typically in the far- and mid-infrared.
Extensions to the THz regime and also to shorter wavelengths are possible.
A third type of laser is the ‘hot-hole’ laser (Sect. 22.4.17), typically fabricated
with p-doped Ge, which can be viewed as unipolar and functions only in a
magnetic field; its emission is in the THz regime.

22.4.2 Applications

In Fig. 22.26, the revenue in the worldwide diode laser market is shown. The
drop after 2000 is due to the burst of the ‘internet bubble’. Nondiode laser
(gas, ruby, excimer, . . . ) revenue is currently stable at around 2 billion US$,
thus semiconductor lasers account for the largest share of all laser types sold.

Fig. 22.26. Revenue in worldwide diode laser market. Based on numbers
from [1326]

14Such external cavities can be used for manipulation of the laser properties such
as wavelength tuning.
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The following applications rely on semiconductor lasers:

– optical communication, mostly optical fiber based (senders), typically at
10 GBit/s, in special situations also 40 GBit/s data rate.

– optical information storage and retrieval (CD, DVD, BD15) with as short
of a wavelength as possible, as shown in Fig. 22.27, currently 405 nm.

– pumping of solid-state lasers, typically 910 or 940 nm for pumping Nd:YAG
– portable projectors, laser TV, entertainment.
– laser pointers, see Fig. 22.28. A red laser pointer simply uses the colli-

mated red emission of a GaAs-based diode. In a green laser pointer, an
infrared diode pumps a Nd:YAG or Nd:YVO4 crystal. The emitted beam
is then frequency doubled, typically with a KTiOPO4 (KTP) crystal.

– medical instruments with a variety of wavelengths in ophthalmology, der-
matology, cosmetics (hair removal, tattoo removal).

– various other uses, such as remote control, position detection, distance
measurement, printing, scientific instrumentation.

The market for photonic devices is much more dynamic than the electron-
ics market. An example is the rapid change of dominating laser applications.
For diode lasers, the two most prominent applications are telecommunica-
tion (77% market share in 2000, 25% in 2003, 45% in 2008) and optical data
storage (17% market share in 2000, 60% in 2003, 44% in 2008).

Fig. 22.27. Evolution of optical data storage technology, ‘CD’: compact disk (laser:
780 nm, pitch: 1.6 μm, capacity: 0.7 GB), ‘DVD’: digital versatile disk (laser: 635–
650 nm, pitch: 0.74 μm, capacity: 4.7 GB for one layer), ‘BD’: ‘Blu-ray’ disk (laser:
405 nm, pitch: 0.32 μm, capacity: 27 GB for one layer)

15Sixteen million 405 nm laser diodes were shipped in 2006–2008. Eighty five
percent of those are built into SONY’s PS3, the rest into HD-DVD and other Blu-
rayTMdisc (BD) players.
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(a)

(b)

(c) (d) (e)

Fig. 22.28. (a) Scheme of red laser pointer, (b) scheme of green laser pointer.
Parts of a green laser pointer: (c) pump laser diode, (d) YVO4 crystal, (e) KTP
doubler

22.4.3 Gain

Due to current injection,16 a nonequilibrium carrier distribution is created.
After fast thermalization processes (phonon scattering), it can mostly de-
scribed by quasi-Fermi levels. Sufficiently strong pumping leads to inversion,
i.e. conduction-band states are more strongly populated with electrons than
valence-band states (Fig. 22.29). In this case, the stimulated emission rate
is stronger than the absorption rate (cf. Sect. 10.2.6). The thermodynamic
laser condition (cf. (10.23)) requires the difference of the quasi-Fermi levels
to be larger than the band gap.

Fn − Fp > Eg (22.9)

The gain is defined as the (frequency-dependent) coefficient g(�ω) that
describes the light intensity along a path L according to

I(L) = I(0) exp (gL) . (22.10)

The gain spectrum as a function of the photon energy �ω is given for non-k-
conserving recombination by (cf. (10.5) and (10.6))

g(�ω) =
∫

�ω−Eg

0

De(E)Dh(E′) [fe(E)fh(E′) − (1 − fe(E))(1 − fh(E′))] dE ,

(22.11)
16Or due to optical pumping. If electrical contacts are not available, the laser

action can be invoked by supplying a high-intensity light beam, possibly in a stripe-
like shape. For optically pumped semiconductor lasers see Sect. 22.4.15.
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Fig. 22.29. Population (a) in thermodynamic equilibrium T = 0 K, (b) under
inversion for T = 0 K, (c) under inversion for T > 0 K. Shaded areas are populated
with electrons

with E′ = �ω−Eg−E. The gain is positive for those photon energies for which
light is amplified and negative for those that are absorbed. In Fig. 22.30a,
the electron and hole concentrations are shown for GaAs as a function of
the quasi-Fermi energies. In Fig. 22.30b, the difference of the quasi-Fermi
energies is shown as a function of the carrier density (for neutrality n = p).
The gain spectrum is shown in Fig. 22.30c for a simple two-band model.17

For a more elaborate discussion of such matters we refer to [1327]. In the
case of inversion, the gain is positive for energies between Eg and Fn−Fp. At
�ω = Fn−Fp, the gain is zero (transparency) and for larger energies negative
(positive absorption coefficient). The agreement of experimental gain spectra
of quantum wells with theoretical considerations, including carrier collision
effects at the level of quantum kinetic theory in the Markovian limit, is very
good (Fig. 22.31a) [1328].

For a given fixed energy, the gain increases with increasing pumping and
increasing carrier density n (Fig. 22.30d). For very small density, it is given as
g(n → 0) = −α. The gain rises around transparency approximately linearly
with the pumping intensity. At transparency carrier density ntr, the gain is
zero. Therefore, the relation g(n) can be approximated as (linear gain model)

g(n) ∼= α̂
n− ntr

ntr
. (22.12)

For large carrier density, the gain saturates (at a value similar to α). The
onset of positive gain is related to the separation of the quasi-Fermi levels

17One electron and one hole band are considered; the heavy and light hole bands
are taken into account via the mass according to (7.14).
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Fig. 22.30. Gain in the two-band model for GaAs. (a) Electron and hole concen-
trations at T = 300 K as a function of the quasi-Fermi energies counted relative
to the band edges, i.e. Fn − EC and EV − Fp. (b) Difference of quasi-Fermi levels
as a function of carrier concentration (n = p) for GaAs at two different tempera-
tures. (c) Gain spectra according to (22.11) for n = 2 × 1018 and T = 300 K (solid
line), increased carrier density n = 2.1 × 1018 and T = 300 K (dashed line), higher
temperature n = 2 × 1018 and T = 314 K (dash-dotted line) and same difference of
the quasi-Fermi levels as for the solid line, n = 2.1 × 1018 and T = 314 K (dotted
line). (d) Maximum gain (solid line) and gain at a particular energy (dashed line,
for photon energy Eg + 26.2 meV for which the gain is maximal for n = 2 × 1018

and T = 300 K, see solid line in part (c))

being larger than the band gap (22.9), Fig. 22.31b. The gain in quantum dot
lasers [1329] has been discussed in [1330].

22.4.4 Optical Mode

The light wave that is amplified must be guided in the laser. An optical
cavity is needed to provide optical feedback such that the photons travel
several times through the gain medium and contribute to amplification. We
explain the light-wave management for the edge emitter first:
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Fig. 22.31. (a) Gain spectra of a 6.8 nm thick Ga0.41In0.59P/ (Al0.5 Ga0.5)

0.51In0.49P quantum well, experimental data (symbols) and theory (lines) for three
different sheet carrier densities n2D = 2.2, 2.7, and 3.2 × 1012 cm−2. (b) Maximum
gain as a function of the separation of the quasi-Fermi levels, experimental data
(symbols) and theory (lines). Adapted from [1328]

Vertical Mode Guiding

In the course of the historical development of the semiconductor laser,
the most significant improvements (reduction of lasing threshold current)
have been achieved through the improvement of the overlap of the optical
wave with the gain medium, as shown in Fig. 22.32. From homojunctions
over the single heterojunction, eventually the double heterostructure (DHS)
design could reduce the laser threshold current density to the 1 kA/cm2

level.
The band diagram of a double heterostructure is shown in Fig. 22.33

for zero and forward bias. In the DHS, the optical mode is guided by total
reflection within the low band gap center layer, which has a larger index of
refraction than the outer, large band gap layer.18 When the layer thickness is
in the range of λ/nr, the form of the optical mode must be determined from
the (one-dimensional) wave equation (Helmholtz equation)

∂2Ez

∂z2
+ ω2μ ε(z)Ez = 0 . (22.13)

In Fig. 22.34a, the shape of the optical mode for GaAs/Al0.3Ga0.7As DHS
with different GaAs thickness is shown.

The optical confinement factor Γ is the part of the wave that has geo-
metrical overlap with the gain medium, i.e. is subject to amplification. It is
shown for GaAs/AlxGa1−xAs DHS with different GaAs thickness and differ-
ent Al concentration in Fig. 22.34b. The modal gain gmod that is responsible

18A smaller band gap coincides for many cases with a larger index of refraction.
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Fig. 22.32. Laser with (a) homojunction, (b) single heterostructure (SHS),
(c) double heterostructure (‘DHS’), (d) reduction of threshold current with design
progress (‘SHS’: d =2 μm, ‘DHS’: d =0.5 μm). Adapted from [1331]

for light amplification in the cavity consists of the material gain gmat due to
inversion and the optical confinement factor.

gmod = Γgmat . (22.14)

In order to allow simultaneous optimization of the light mode and the car-
rier confinement, the separate confinement heterostructure (SCH) has been
designed. Here, a single or multiple quantum well of a third material with
even smaller band gap is the active medium (Fig. 22.35a,b,d). A single quan-
tum well has an optical confinement factor of a few per cent only. It offers,
however, efficient carrier capture and efficient radiative recombination. An in-
crease in the carrier capture efficiency can be achieved using a graded index
in the barrier (GRINSCH, Fig. 22.35c).



22.4 Lasers 683

Evac

EC

EV

EC

EV

EC

EV

EF

Fn

Fp

EC

EV

EF

EFEF

n p p

p-InP n-InPp-InGaAsP

Fp

Fn

(a)

(b)

(c)

Fig. 22.33. Schematic band diagram of a pn double heterostructure (DHS) diode
(InP/InGaAsP/InP) (a) before contact of the materials, (b) in thermodynamic
equilibrium (zero bias, dashed line is Fermi level EF = const.), (c) with forward
bias close to flat-band conditions, dashed lines are quasi-Fermi levels
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Fig. 22.34. (a) Optical mode (relative intensity) for various values of the thickness
d of the active layer as labeled of a GaAs/Al0.3Ga0.7As DHS laser, (b) Optical
confinement factor Γ as a function of the thickness of the active layer and the
Al concentration x of the barrier as labeled in a GaAs/AlxGa1−xAs DHS laser.
Adapted from [1323]

The thin wave-guiding layer leads to large divergence of the laser beam
along the vertical direction, typically about 90◦. The strong confinement of
light also limits the maximum achievable output power due to catastrophic
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Fig. 22.35. (a) Various geometries of the active layer of a DHS laser with quantum
wells as active medium, (i) single QW (separate confinement heterostructure, SCH),
(ii) multiple QW SCH, and (c) GRINSCH (graded-index SCH) structure. (b) Layer
sequence for a separate confinement heterostructure laser

optical damage (COD). Several ideas have been realized to overcome this
problem and achieve much smaller divergence of about 18◦. The waveguide
can be designed to be very thick (large optical cavity, LOC) that leads to an
increase of threshold. Other schemes are insertion of a low-index layer into
the confinement layer, insertion of a high-index layer into the cladding layer
or the use of high-index quarter-wavelength reflecting layers [1333].

Lateral Mode Guiding

Lateral waveguiding can be achieved with gain guiding and index guiding (or
a mixture of the two). In the gain-guiding scheme (Fig. 22.36), the current
path that is defined by the stripe contact and the current spreading under-
neath it, defines the gain region and therefore the volume of amplification
that guides the optical wave. Since a high carrier density reduces the index
of refraction, a competing antiguiding effect can occur. For index guiding,
the lateral light confinement is caused by a lateral increase of the index of re-
fraction. This index modulation can be achieved by using a mesa-like contact
stripe (Fig. 22.37a). A shallow mesa reaches down into the upper cladding,
a deep mesa reaches down into or through the active layer. Possible prob-
lems with surface recombination can be avoided by regrowth of the structure
(Fig. 22.37b) with a wide band gap material (compared to the active layer).
Optimization of regrowth is targeted to achieve a well-defined surface for
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Fig. 22.36. Scheme of gain-guided lasers with stripe contact: (a) oxide stripe,
(b) proton implanted with shadow mask from tungsten wire (∼ 10 μm). Adapted
from [1332]
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Fig. 22.37. Schematic cross section of index-guided lasers: (a) shallow ridge, (b)
deep etch and regrowth. Black areas are metal contacts

subsequent contact processing. A lateral pn-diode can be incorporated that
avoids current spreading in the upper part of the structure.

Depending on the width of the lateral mode, it can be monomode or
multimode (Fig. 22.38a). For laterally monomode lasers, the stripe width
may only be a few μm. In particular for such lasers, the current spreading
must be controlled. Problems can arise for wide stripe widths due to current
filamentation and inhomogeneous laser emission from the facet. Since the
optical mode is typically more confined in the growth direction than in the
lateral direction, the far field is asymmetric (Fig. 22.38c). The vertical axis
has the higher divergence and is called the fast axis. The lateral axis is called
the slow axis. The asymmetric beam shape is detrimental when the laser
needs to be coupled into an optical fiber or a symmetric beam profile is
needed for subsequent optics. The beam can be made symmetric using special
optic components such as anamorphic prisms (Fig. 22.38d) and graded-index
lenses. The beam from a laterally monomode laser is diffraction limited and
can therefore generally be refocused efficiently (beam quality M2 � 1).
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Fig. 22.38. Lateral near field (a) and far field (b) of lasers with various width S
of the injection stripe as labeled. Adapted from [1334]. (c) Typical asymmetric far
field of an edge emitter. Adapted from [384]. (d) Correction of asymmetric far field
with a pair of anamorphic prisms

Longitudinal Modes

The spectral positions of the laser modes for a cavity with length L is given
by the condition (cf. (18.34))

L =
mλ

2nr(λ)
, (22.15)

where m is a natural number and n(λ) is the dispersion of the index of
refraction. The distance of neighboring modes is given by (for large m)

Δλ =
λ2

2nrL
(
1 − λ

nr

dnr
dλ

) . (22.16)

The dispersion dnr/dλ can sometimes be neglected.
The facets of edge-emitting lasers are typically cleaved. Cleaving bears

the danger of mechanical breakage and tends to have poor reproducibility,
low yield and therefore high cost. Etched facets are another possibility to
form the cavity mirror. The etch process, typically reactive ion dry etching,
must yield sufficiently smooth surfaces to avoid scattering losses. A highly
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Fig. 22.39. SEM image of (a) an InP microlaser with third-order Bragg mirrors,
(b) magnified view of the front facet with three slabs, (c) a 12-μm long micro-
laser with five third-order mirrors on the rear side and three first-order mirrors on
the front side with top contact. From [1336]; part (b) reprinted with permission
from [1335], c©2001 AIP

efficient distributed Bragg mirror (cf. Sect. 18.1.4) with only a few periods
can be created by using the large index contrast between the semiconductor
and air. As shown in Fig. 22.39, slabs can be etched that make a Bragg mirror
with the air gaps [1335]. In this way, very short longitudinal cavities can be
made (≈ 10 μm).

22.4.5 Loss Mechanisms

While the light travels through the cavity, it is not only amplified but it also
suffers losses. The internal loss αi and the mirror loss αm contribute to the
total loss αtot

αtot = αi + αm . (22.17)

The internal loss is due to absorption in the cladding, scattering at wave-
guide inhomogeneities and possibly other processes. It can be written as

αi = α0Γ + αg(1 − Γ ) , (22.18)

where α0 is the loss coefficient in the active medium and αg is the loss coef-
ficient outside the active medium.

The mirror loss is due to the incomplete reflection of the optical wave
at the laser facets. This condition is necessary, however, to observe a laser
beam outside the cavity. R1 and R2 are the values of reflectance of the two
facets, respectively. An as-cleaved facet has a reflectance of about 30% (cf.
(22.7)). Using dielectric layers on the facets, the reflectance can be increased
(high reflection, HR-coating) or decreased (antireflection, AR-coating). One
round-trip through the cavity of length L has the length 2L. The intensity
loss due to reflection at the facets is expressed via exp (−2αmL) = R1R2
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αm =
1

2L
ln

(
1

R1R2

)
. (22.19)

If both mirrors have the same reflectance R, we have αm = −L−1 lnR. For
R = 0.3 a 1-mm cavity has a loss of 12 cm−1. For the internal loss a typical
value is 10 cm−1, very good waveguides go down to 1–2 cm−1.

Lasing is only possible if the gain overcomes all losses (at least for one
wavelength), i.e.

gmod = gmatΓ ≥ αtot . (22.20)

22.4.6 Threshold

When the laser reaches threshold, the (material) gain is pinned at the thresh-
old value

gthr =
αi + αm

Γ
. (22.21)

Since g ∝ n, the carrier density is also pinned at its threshold value
and does not increase further with increasing injection current. Instead, ad-
ditional carriers are quickly converted into photons by stimulated emission.
The threshold carrier density is (using the linear gain model, cf. (22.12))

nthr = ntr +
αi + αm

α̂Γ
. (22.22)

For an active layer of thickness d, the threshold current density is

jthr
∼= ednthr

τ(nthr)
, (22.23)

where τe(nthr) is the minority carrier lifetime at the threshold carrier density:

τ(nthr) =
1

A+Bnthr + Cn2
thr

. (22.24)

Using (22.22), we can write (for R = R1 = R2)

jthr = jtr +
ed

τα̂Γ

(
αi − lnR

1
L

)
, (22.25)

where the transparency current density is jtr = edntr/τ . Thus, the plot of
jthr vs. 1/L (or the optical loss) should be linear and can be extrapolated
towards the transparency current density (cf. Fig. 22.40a).

Any additional increase of the current j leads to stimulated emission with
the rate

rst = dvggthrNph , (22.26)

where vg is the group velocity (mostly c0/nr) and Nph is the photon density
(per length) in the cavity. The photon density increases linearly beyond the
threshold
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Fig. 22.40. (a) Threshold current density for (three-fold InGaAs/GaAs QD stack)
laser (λ = 1150 nm) at 10◦C with different cavity length vs. the optical loss (∝ 1/L).
The extrapolated transparency current density is 21.5 ±0.9 A/cm2. (b) Inverse ex-
ternal quantum efficiency vs. cavity length. The internal quantum efficiency deter-
mined from the plot is 91% and the internal loss is 1.4 cm−1

Nph =
1

edvggthr
(j − jthr) . (22.27)

The photon lifetime

1
τph

= vg (αi + αm) = vgΓgthr (22.28)

is introduced that describes the loss rate of photons. vgαm describes the
escape rate of photons from the cavity into the laser beam(s). Therefore,

Nph =
τphΓ

ed
(j − jthr) . (22.29)

Since the threshold depends on the carrier density, it is advantageous to
reduce the active volume further and further. In this way, the same amount
of injected carriers creates a larger carrier density. Figure 22.41 shows the
historic development of laser threshold due to design improvements.

22.4.7 Spontaneous Emission Factor

The spontaneous emission factor β is the fraction of spontaneous emission
(emitted into all angles) that is emitted into laser modes. For Fabry–Perot
lasers, β is typically in the order of 10−4–10−5. The design of a microcavity
can increase β drastically by several orders of magnitude to ≈ 0.1 [1337]
or above and thus reduce the threshold current. The photon number as a
function of the pump current can be calculated from the laser rate equations
and is depicted in Fig. 22.42. For β = 1, all emitted power goes into the
laser mode regardless of whether emission is spontaneous or stimulated. The
definition of threshold in such ‘nonclassical’ lasers with large β is discussed
in detail in [1338].
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Fig. 22.41. Historic development of threshold current density (at room tempera-
ture, extrapolated for infinite cavity length and injection stripe width) for various
laser designs, ‘DH’: double heterostructure, ‘SCH–QW’: separate confinement het-
erostructure with quantum wells. ‘QD’: quantum dots. Dashed lines are guides to
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Fig. 22.42. Photon number vs. pump current for a model laser. Adapted
from [1339]

22.4.8 Output Power

The output power is given by the product of photon energy, the photon
density in the cavity, the effective mode volume and the escape rate:

Pout = �ωNph
Lwd

Γ
vgαm . (22.30)

Thus, it is given by

Pout = �ωvgαm
τph

e
Lw (j − jthr) =

�ω

e

αm

αm + αi
(I − Ithr) . (22.31)
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To this equation, the factor ηint must be added. The internal quantum ef-
ficiency describes the efficiency of the conversion of electron–hole pairs into
photons:

ηint =
Bn2 + vggthrNph

An+Bn2 + Cn3 + vggthrNph
. (22.32)

All in all, now (see Fig. 22.43a)

Pout =
�ω

e

αm

αm + αi
ηint (I − Ithr) . (22.33)

The differential (or slope) quantum efficiency, also called the external
quantum efficiency ηext, is the slope of the Pout curve vs. the current in the
lasing regime. It is given by

ηext =
dPout/dI

�ω/e
= ηint

αm

αm + αi
. (22.34)

The external quantum efficiency can also be written as

1
ηext

=
1
ηint

(
1 +

αi

αm

)
=

1
ηint

[1 − 2αiL ln (R1R2)] . (22.35)

Therefore, if η−1
ext is plotted for similar lasers with different cavity length (see

Fig. 22.40b), a straight line should arise from which the internal quantum
efficiency (extrapolation to L → 0) and the internal loss (∝ slope) can be
determined experimentally.

The threshold current for a given laser is determined from the P–I charac-
teristic via extrapolation of the linear regime as shown in Fig. 22.43a. Record
values for the threshold current density are often given for the limit L→ ∞.

(a)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

I

InGaAs/
GaAs

(b)

Fig. 22.43. (a) Typical P–I characteristic of a semiconductor laser. Adapted
from [384]. (b) Output power and total quantum efficiency of a quantum dot laser
(3 stacks of InGaAs/GaAs QDs, L = 2 mm, w = 200 μm, λ = 1100 nm, T = 293 K)
vs. injection current
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Due to current spreading, the threshold current density also depends on the
width of the injection stripe. Record low thresholds are therefore often given
for the limit w → ∞.

The total quantum efficiency is given by

ηtot =
Pout/I

�ω/e
. (22.36)

This quantity is shown in Fig. 22.43b for a laser as a function of the current.
For a linear P–I lasing characteristic, the total quantum efficiency converges
towards the external quantum efficiency for high currents because the low
quantum efficiency subthreshold regime no longer plays any role. Another
important figure of merit is the wall-plug efficiency ηw that describes the
power conversion:

ηw =
Pout

U I
. (22.37)

Additionally to the current balance discussed so far, typically a leakage
current exists that flows without contributing to recombination or lasing.
Carriers not captured into or escaping from the active layers can contribute
to this current. The present record for wall-plug efficiency of high-power laser
diodes is above 70% [1340, 1341], employing careful control of band alignment
(graded junctions, avoiding voltage barriers), optical losses, Joule heating,
spontaneous emission and carrier leakage. It seems possible to achieve ηw of
80%.

The P–I characteristic is not linear to arbitrary high currents. Generally,
the output power will saturate or even decrease for increasing current. These
effects can be due to increasing leakage current, increasing internal loss at
high current or temperature effects, e.g. an increase of threshold with increas-
ing temperature (cf. Sect. 22.4.9) and therefore a reduction of total efficiency.
All nonradiative losses will eventually show up as heat in the laser that must
be managed with a heat sink.

A radical effect is catastrophical optical damage (COD) at which the
laser facet is irreversible (partially) destructed. Antioxidation or protective
layers can increase the damage threshold to > 20 MW/cm2. The record
power from a single edge emitter is ∼ 12 W (200 μm stripe width). For a
lateral monomode laser, cw power of about 1.2 W has been reached from a
1480-nm InGaAsP/InP double quantum-well lasers with 3–5 μm stripes and
3 mm cavity length [1342]. About 500 mW can be coupled into a single-mode
fiber [1343].

22.4.9 Temperature Dependence

The threshold of a laser typically increases with increasing temperature as
shown in Fig. 22.44a. Empirically, in the vicinity of a temperature T1 the
threshold follows an exponential law (see Fig. 22.44b)
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Fig. 22.44. (a) P–I characteristic (cw output power per mirror facet) of stripe-
buried heterostructure laser at various temperatures of the heat sink between 25 ◦C
and 115 ◦C in steps of 10 K. (b) Threshold current (in logarithmic scale) of this
laser as a function of heat-sink temperature and exponential fit (dashed line) with
T0 = 110 K. Parts (a) and (b) adapted from [1344]. (c) Temperature dependence
of the threshold current density of a quantum dot laser (3 stacks of InGaAs/GaAs
QDs, λ = 1150 nm) with T0 (solid lines are fits) given in the figure

jthr(T ) = jthr(T1) exp
(
T − T1

T0

)
∝ exp

(
T

T0

)
, (22.38)

with T0 being the so-called characteristic temperature.19 It is the inverse
logarithmic slope, T−1

0 = d ln jthr/dT .
T0 summarizes the temperature-dependent loss and the carrier redistri-

bution in k-space due to the change of the Fermi distribution with temper-
ature. With increasing temperature, populated states below the quasi-Fermi
level become unpopulated and nonlasing states become populated. Therefore,
the gain decreases with increasing temperature. This redistribution must be
compensated by an increase of the quasi-Fermi energy, i.e. stronger pumping.

19Since T0 has the dimension of a temperature difference, it can be expressed in
◦C or K. For the sake of unambiguity it should be given in K.
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This effect is present for (even ideal) bulk, quantum well and quantum wire
lasers. Only for quantum dots with a δ-like density of states is the change of
Fermi distribution irrelevant as long as excited states are energetically well
separated from the (lasing) ground state. In Fig. 22.44c, the threshold of a
quantum dot laser is indeed temperature independent (T0 = ∞) as long as
excited states are not thermally populated (for T < 170 K for the present
laser).

22.4.10 Mode Spectrum

In Fig. 22.45a, the mode spectrum of a typical edge-emitting laser is shown.
Below threshold, the amplified spontaneous emission (ASE) spectrum ex-
hibits a comb-like structure due to the Fabry–Perot modes. Above threshold,
some modes grow much faster than others, possibly resulting in single longitu-
dinal mode operation at high injection. The relative strength of the strongest
side mode is expressed through the side-mode suppression ratio (SSR)
in dB

(a)

1.44 1.46 1.48 1.50 1.52 1.54

th

th

th

th

(b)

Fig. 22.45. (a) Mode spectra of a Fabry–Perot laser, under, at and above thresh-
old (Ithr = 13.5 mA). Adapted from [795]. (b) Mode spectra of a cw DFB In-
GaAs/InP laser with 2 mm cavity length at various currents of 200, 400, . . .,
1400 mA (Ithr = 65 mA), SSR>40 dB at T = 293 K. Adapted from [1350], re-
produced with permission from SPIE
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SSR = 10 log
(
Imm

Ism

)
, (22.39)

where Imm (Ism) is the intensity of the maximum (strongest side) mode in
the lasing spectrum.

As a tendency a DHS or QW semiconductor laser above threshold de-
velops a narrow spectrum since the pump power is channeled into one or
few modes with large gain. A quantum dot laser behaves differently when
pumped largely above threshold. Since the gain of individual QDs in an in-
homogeneously broadened ensemble (due to different QD sizes) is indepen-
dent, a broad gain spectrum is present [1345]. The lasing spectrum takes
a hat-like shape when homogeneous broadening is small compared to the
inhomogeneous broadening [1346, 1347] (Fig. 22.46) as predicted theoreti-
cally [1345, 1348].

22.4.11 Longitudinal Single-Mode Lasers

In order to achieve a high SSR or single longitudinal mode lasing, the feedback
must offer a higher wavelength selectivity than a simple mirror. A preferen-
tial feedback for certain modes can be obtained using a periodic dielectric
structure that ‘fits’ to a particular wavelength, similar to a Bragg mirror.

–

–

–

–

–

Fig. 22.46. Lasing spectra of quantum dot laser (L = 1.2 mm, stripe width
w = 75 μm) at room temperature. The active medium is a three-fold stack of In-
GaAs/GaAs QDs. The current density as labeled is given in units of the threshold
current density (jthr = 230 A/cm2). Adapted from [1347]
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The periodic modulation of the refractive index can be made within the cav-
ity (distributed feedback, DFB, Fig. 22.47a) or at the mirror (distributed
reflection, DBR, Fig. 22.47b). In this way, monochromatic lasers with SSR
 30 dB are possible (Fig. 22.45b).

It is possible to couple several hundred mW optical power of a later-
ally and spectrally monomode laser into a monomode optical fiber [1349]
(Fig. 22.48).

(a)
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active
medium

(b)
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DBR
grating

pump
region

Fig. 22.47. Schematic drawing of (a) DFB (distributed feedback) and (b) DBR
(distributed Bragg reflection) lasers. The active medium is schematically shown as
a triple quantum well, the waveguide is shown as a grey area
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Fig. 22.48. (a) Output power of an InGaAsP/InP cw single-mode DFB laser at
1427 nm with 2 mm cavity length from the facet and coupled to a single-mode fiber
vs. driving current (T = 293 K). The dashed line represents the coupling efficiency
to the fiber (right scale). Adapted from [1349]. (b) Package with pigtail of fiber
coupled 1550 nm DFB laser with 40 mW output power in the fiber. From [1352]
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22.4.12 Tunability

The tunability of the emission wavelength [1351] is important for several
applications such as wavelength division multiplexing20 and spectroscopy.

The simplest possibility to tune a laser is to vary its temperature and
thus its band gap. This method is particularly used for lead salt lasers in the
mid-infrared region,21 as shown in Fig. 22.49.

For monomode lasers, mode hopping, i.e. the discontinuous shift of lasing
wavelength (or gain maximum) from one mode to the next, poses a problem
for continuous tuning, as shown in Fig. 22.50. The continuous shift of emission
wavelength is due to the temperature dependence of the index of refraction
and subsequently the longitudinal modes. The index of refraction increases
with increasing temperature at typically ∼ 3 × 10−4 K−1. Generally, a red-
shift is the consequence.

Another possibility to vary the index of refraction (and thus the optical
path length) is a variation of the carrier density. The coefficient dnr/dn is
about −10−20 cm3. In a two-section laser, separate regions (with separately
controlled currents) for gain and tuning are present. The regions are separated
with deep-etched trenches to avoid crosstalk. The tuning range is limited to
about 10 nm. For a mode-hopping free tuning, the control of the phase in the
cavity is important and requires an additional section for the phase control.

(a)

n-Pb0.88 Sn0.12 Te:Bi
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Fig. 22.49. (a) Schematic drawing of PbTe lead salt laser. (b) Tuning characteris-
tics of such laser: Emission wavelength (left scale, filled circles: emission wavelength
at cw threshold, empty circles: emission maximum under pulsed operation) and
cw threshold current density (right scale) as a function of the heat-sink tempera-
ture. Symbols are experimental data, dashed lines are guides to the eye. Adapted
from [1353]

20In order to make better use of the high bandwidth of the optical fiber several
information channels with closely lying wavelengths are transmitted.

21Note the anomalous positive coefficient dEg/dT as discussed in Sect. 6.7.
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Fig. 22.50. Wavelength as a function of temperature (with mode hopping) for a
GaAs-based DFB laser
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Fig. 22.51. (a) Schematic representation of SGDBR (sampled-grating DBR) laser
with four sections. Adapted from [1354]. (b) Reflectance of two sampled gratings
DBR mirrors

Such a three-section laser has separate regions (and current control) for the
reflection, phase and amplification (or gain) region.

Using sampled gratings, the tuning range can be strongly increased to
about 100 nm. A sampled grating is a nonperiodic lattice that has several
(∼ 10) reflection peaks. The laser structure has four sections (Fig. 22.51)
with two mirrors that have slightly different sampled gratings. Via the carrier
densities in the two mirror sections, different maxima can be brought to
overlap (Vernier effect) and the position of the selected maximum can be
tuned over a wide spectral range (Fig. 22.52).

22.4.13 Modulation

For transmission of information, the laser intensity must be modulated. This
can be accomplished by direct modulation, i.e. modulation of the injection
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Fig. 22.52. (a) Tuning curves of two sampled gratings DBR mirrors for the front
and back mirror current. (b) 27 wavelength channels (1531.12 to 1551.72 nm) with
a channel separation of 1 nm. Adapted from [1355]

current, or external modulators, e.g. using, e.g., the voltage-induced shift of
the absorption spectrum due to QCSE (cf. Sect. 12.1.2). For direct modula-
tion, small- and large-signal modulation are distinguished.

Large-Signal Modulation

If a current pulse is fed to the laser, the laser radiation is emitted with a short
time delay, the so-called turn-on delay (TOD) time. This time is needed to
build up the carrier density for inversion. The time dependence of the density
is (neglecting the density dependence of the lifetime)

n(t) =
Iτ

eAd

[
1 − exp

(
− t

τ

)]
. (22.40)

The TOD time to reach the threshold density (using (22.23)) is

τTOD = τ ln
(

I

I − Ithr

)
. (22.41)

We note that τTOD > 0 for I > Ithr. Such a dependence is found experi-
mentally (Fig. 22.53). The turn-on delay time decreases with increasing pump
current but typically is at least 1 ns. In order to circumvent this limitation
for more than about 1 GHz pulse repetition rate, the laser is biased slightly
below threshold.
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Fig. 22.53. Variation of turn-on delay time with the injected current for a laser at
room temperature. Adapted from [1356]
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Fig. 22.54. Schematic response of (a) LED to current pulse and (b) of laser to
current step

In Fig. 22.54a, the response (light emission) of a LED to a short current
pulse is shown schematically. The monotonously decreasing transient (that is
more or less exponential) corresponds to the carrier recombination dynamics.
When a laser is excited with a steep (long) current pulse, the response exhibits
so-called relaxation oscillations (RO) before the steady-state (cw) intensity
level is reached (Fig. 22.54b).

In the laser, first the carrier density is built up. It surpasses the threshold
density that leads to a build-up of the photon density. The laser pulse depletes
the carrier density faster below threshold than the current can supply further
carriers. Therefore, the laser intensity drops below the cw level. From the
coupled rate equations for the electron and photon densities n and Nph, the
relaxation oscillations have a frequency of

fRO =
1
2π

(
vgg

′S0

τph

)1/2

, (22.42)
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Fig. 22.55. Dependence of small-signal 3 dB cutoff frequency f3dB (filled symbols)
and relaxation oscillation frequency fRO (empty symbols) on the square root of the
output power P for a DFB-laser. Adapted from [1357]

where g′ is the differential gain g′ = dg/dn (g(n) = g0 + g′(n− n0)) and S0

is the photon density per volume that is proportional to the laser intensity.
The dependence fRO ∝ S

1/2
0 is also found experimentally (Fig. 22.55).

For digital data transmission, the laser is driven with pulse sequences. The
response to a random bit pattern is called an ‘eye pattern’ and is shown in
Fig. 22.56. The pattern consists of traces of the type shown in Fig. 22.54b. A
clear distinction with well-defined trigger thresholds between ‘on’- and ‘off’-
states can only be made if the eye formed by the overlay of all possible traces
remains open. From the eye patterns in Fig. 22.56, it can be seen that the
RO overshoot can be suppressed by driving the laser with a dc offset current
well above threshold.

Small-Signal Modulation

In small-signal modulation, the injection current I is varied periodically by
a small amount δI with δI � I in the lasing regime. The current modu-
lation leads to a corresponding variation of the output intensity. The fre-
quency response is limited by the differential gain and the gain compression
coefficient ε. The latter describes the saturation of gain with increasing pho-
ton density S0 according to

g(n) = g0 +
g′(n− n0)
1 + εS0

. (22.43)

The frequency response shifts to higher frequency with increasing laser power
as shown in Fig. 22.57b.
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Fig. 22.56. Eye pattern of a single-mode VCSEL in response to a 10 Gb/s ran-
dom bit pattern. The patterns are measured (a) with an offset current well above
threshold and (b) with an offset current above but close to threshold. Adapted
from [1358], reprinted with permission, c©2002 IEEE
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Fig. 22.57. Frequency response of a DFB-laser for various output powers as la-
beled. Adapted from [1357]

α factor

Another important quantity is the α factor, also called the linewidth en-
hancement factor [1359, 1360]. Due to the coupling of amplitude and phase
fluctuations in the laser, the linewidth Δf is larger than expected.
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Fig. 22.58. Linewidth Δf of a cw GaAs/AlGaAs semiconductor laser at various
temperatures as a function of the inverse output power P−1

out. At room temperature
α ≈ 5. Adapted from [1361]

Δf =
�ωvgRspont lnR

8πPoutL
(1 + α2) . (22.44)

The linewidth enhancement is described via (1 + α2) with

α =
dnr/dn
dκ/dn

= −4π
λ

dnr/dn
g′

, (22.45)

where κ denotes the imaginary part of the index of refraction (n∗ = nr +
iκ). Typical values for α are between 1 and 10. The linewidth is inversely
proportional to the output power (Fig. 22.58).

22.4.14 Surface-Emitting Lasers

Surface-emitting lasers emit their beam normal to the surface. They can
be fabricated from horizontal (edge-) emitters by reflecting the beam with
a suitable mirror into the surface direction. This technology requires tilted
facets or micro-optical components but allows for high power per area. In
Fig. 22.59, a schematic cross section of a horizontal-cavity surface-emitting
laser (HCSEL) and the light emission from an array of 220 such lasers are
shown. The laser contains a 45◦ mirror that steers the light through the
substrate and a Bragg mirror to provide the cavity mirror. The facet can
also be fabricated such that the emission is to the top surface (Fig. 22.60).
Another possibility to couple the beam out of a horizontal cavity is a surface
grating.

Now, surface-emitting lasers with vertical-cavity (VCSEL), as shown in
Fig. 22.25b, will be discussed. A detailed treatment can be found in [1363].
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Fig. 22.59. (a) Principle of a surface-emitting laser. Light generated in the active
region is internally reflected by the 45◦ angled mirror and directed through the
substrate; ‘AR’: antireflection coating, ‘DBR’: epitaxial Bragg mirror. (b) Light
emission from a 10 × 22 surface-emitting diode array. The light emission appears
as stripes due to the broad beam divergence in the vertical direction. Part (b)
reprinted with permission from [1362]

(a) (b) (c)

laser
ridge

Fig. 22.60. (a) Horizontal Fabry–Perot cavity InP-based laser with 1310 nm emis-
sion length and 10 mW output power for modulation at 2.5 GB/s. The right facet
is formed as DBR, emission is to the left. The trapezoid area in the center bottom
of the image is the bond pad for the top contact. (b) Horizontal-cavity surface-
emitting laser. Compared to (a), the right facet is replaced with a 45◦ mirror,
leading to surface emission. (c) Schematic drawing of the tilted facet. Parts (a) and
(b) from [1364]

VCSELs are of increasing importance after many issues regarding their tech-
nology and fabrication have been solved. VCSEL fabrication is essentially
a planar technology and VCSELs can be fabricated as arrays (Fig. 22.61).
An on-wafer test of their properties is possible. They offer a symmetrical (or
possibly a controlled asymmetrical) beam profile (Fig. 22.62) with possible
polarization control or fixation.

The cavity is formed by two highly reflecting Bragg mirrors with a dis-
tance of λ/2 or 3λ/2 forming a microcavity (see Sect. 18.1.7). A high index
contrast can be obtained from GaAs/AlAs Bragg mirrors in which the AlAs
layers have been selectively oxidized in a hot moist atmosphere. Pure semicon-
ductor Bragg mirrors suffer typically from small index contrast and require
many pairs. This poses a problem, e.g. for InP-based VCSELs. In Fig. 22.63,
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(a) (b)

Fig. 22.61. (a), (b) VCSEL arrays. Part (a) reprinted from [1365] with permission,
part (b) reprinted from [1366] with permission

Fig. 22.62. In-plane near field of a VCSEL with 6 μm oxide aperture at various
currents, (a) 3.0 mA, (b), 6.2 mA, (c) 14.7 mA, (d) 18 mA

Fig. 22.63. Simulation of the longitudinal distribution of the optical field in a VC-
SEL structure. The active medium are five quantum wells in the center. Reproduced
from [1368] by permission from the MRS Bulletin

the distribution of light intensity along a 3λ/2 cavity is shown. In the stop
band of the mirrors, there is only one optical mode, the cavity mode, that
can propagate along the vertical (z) direction.

The current path through the active layer can be defined with an oxide
aperture. This aperture is fabricated by selective oxidation of an AlAs layer,
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(a) (b)

Fig. 22.64. (a) Schematic cross section of VCSEL with oxide aperture, (b) TEM
image of cross section. Reproduced from [1368] by permission from the MRS Bul-
letin

leaving a circular opening in the center of the VCSEL pillar as shown in
Fig. 22.64. The current can be injected through the mirrors if they are doped.
Alternatively, the current can be directly fed to the active layer by so-called
intracavity contacts.

The emission wavelength of a VCSEL can be shifted via a variation of
temperature or pump power. Tuning of the VCSEL emission can also be
accomplished by leaving an air gap between the cavity and the upper mir-
ror [1367]. Applying a voltage to the lever arm with the top mirror, the width
of the air gap can be varied. This variation leads to a shift of the cavity mode

(a) (b)

(c)

Fig. 22.65. (a) Schematic setup and (b) SEM image of VCSEL with air gap be-
tween active layer and top Bragg mirror, (c) spectra for different tuning conditions
(width of air gap). From [1372]
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Fig. 22.66. (a) VCSEL with air gap and (b) Bragg mirror with high dielectric
contrast InP/air interfaces. Reprinted with permission from [1373], c©2002 IEEE

and therefore of the laser emission wavelength (Fig. 22.65). A VCSEL with
air gap and particularly a high contrast Bragg mirror is achieved with InP/air
as shown in Fig. 22.66.

22.4.15 Optically Pumped Semiconductor Lasers

An easy way to pump semiconductor lasers is optical pumping. This tech-
nique is similar to diode-pumped solid-state lasers (DPSS). A (semiconduc-
tor) pump diode illuminates a suitable semiconductor structure (Fig. 22.67).
The resonator is built between the bottom Bragg mirror of the semiconduc-
tor and the output coupler. The semiconductor structure contains suitable
absorption layers (barriers) that absorb the pump light and quantum wells
that emit laser radiation. This radiation is intracavity frequency doubled. In
order to reach, e.g., a 488-nm output laser beam, a standard 808-nm pump

(a)

hemispheric

focusing
optics

rotcudnoci
me s

intra-cavity

resonator (b)

Fig. 22.67. (a) Schematic setup of optically pumped semiconductor laser (OPSL).
The semiconductor chip consists of a Bragg mirror on the bottom, multiple quan-
tum wells and an antireflection coating on the top. Adapted from [1368]. (b)
OPSL source (488 nm, 20 mW, footprint: 125 × 70 mm2). Reprinted with permis-
sion from [1374]
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diode is employed. The InGaAs/GaAs quantum wells are designed to emit
at 976 nm. Other design wavelengths of the quantum wells allow for other
output wavelengths. This technology allows compact lasers with little heat
dissipation [1369]. The optically pumped semiconductor laser (OPSL) is also
known as a semiconductor disc laser.

22.4.16 Quantum Cascade Lasers

In a quantum cascade laser (QCL), the gain stems from an intersubband
transition. The concept was conceived in 1971 [1370, 1371] and realized in
1994 [1325]. In Fig. 22.68a, the schematic conduction-band structure at op-
eration is shown. The injector supplies electrons into the active region. The
electron is removed quickly from the lower level in order to allow inversion.
The electron is then extracted into the next injector. The laser medium con-
sists of several such units as shown in Fig. 22.68b. Since every unit can deliver
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Fig. 22.68. (a) Schematic band diagram of quantum cascade laser. (b) Cross sec-
tional TEM of cascade layer sequence. The periodicity of the vertical layer sequence
is 45 nm. From [1375]. (c) Laser emission wavelengths and operation temperatures
for various realized quantum cascade lasers (squares: cw, circles: pulsed operation,
solid symbols: InP-, empty symbols: GaAs-based). Data from [1376]. (d) SEM image
of a quantum cascade DFB laser (grating period: 1.6 μm). From [1376]
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a photon per electron (with efficiency η1), the total quantum efficiency of N
units η = N η1 can be larger than 1.

The emission wavelength is in the far- or mid-infrared, depending only
on the designed layer thicknesses and not on the band gap of the mate-
rial (Fig. 22.68d). In the mid-infrared, room-temperature operation has been
achieved while operation in the far-infrared requires cooling so far. Exten-
sions to the THz-range and the infrared spectral region (telecommunication
wavelengths of 1.3 and 1.55 μm) seem feasible. The cascade laser concept
can also be combined with the DFB technology to create single-mode laser
emission (Fig. 22.68d).

22.4.17 Hot-Hole Lasers

The hot-hole laser, which is mostly realized with p-doped Ge, is based on a
population inversion between the light- and heavy-hole valence subbands. The
laser operates with crossed electric and magnetic fields (Voigt configuration,
typically E = 0.5–3 kV/cm, B = 0.3–2 T) and at cryogenic temperatures
(T = 4–40 K) [1377–1379].

A significant scattering process of hot carriers is interaction with optical
phonons, mainly optical phonon emission. This process has a threshold in
carrier energy given by the optical phonon energy. For sufficiently high elec-
tric fields and at low temperature, hot carriers accelerate without acoustical
phonon interaction (ballistic transport) along the crystallographic direction in
which the electric field is applied. These hot carriers reach the optical phonon
energy and lose all their energy due to emission of an optical phonon. They
accelerate again, repeating this directional motion in momentum space. This
motion is called streaming motion.

For |E/B| ratios of about 1.5 kV/cmT, the heavy holes are accelerated
up to energies above the optical phonon energy (37 meV in germanium) and
consequently are scattered strongly by these phonons. Under these conditions,
a few per cent of the heavy holes are scattered into the light-hole band.
The light holes remain at much lower energies and are accumulated at the
bottom of the light-hole band below the optical phonon energy as sketched in
Fig. 22.69. The continuous pumping of heavy holes into the light-hole band
can lead to a population inversion. Consequently, laser radiation is emitted
from optical (radiative) intervalence-band transitions (cf. Sect. 9.5.5). The
emission wavelength is in the far-infrared around 100 μm. Typical p-Ge lasers
span the frequency range 1–4 THz (300–70 μm) [1380] and deliver 1–10 W
peak output power for 1 cm3 typical active volume.

Since the applied electric field causes considerable heating, the tempera-
ture of the laser crystal rises quickly, within a few μs, up to 40 K. Then the
laser action stops. Thus the duration of the electric-field excitation is lim-
ited to 1–5 μs (limiting the emission power) and the repetition frequency is
only a few Hertz due to the necessary cooling. Research is underway towards
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Fig. 22.69. Schematic cycle of hole motion in a hot-hole laser. Filled (empty) circles
represent populated (unpopulated) hole states. The solid lines represent streaming
motion of heavy hole, the dashed line represents scattering into the light hole band.
Arrows denote radiative intervalence-band transitions

high duty cycle (possibly cw) operation by using smaller volumes and planar
vertical-cavities [1381, 1382].

22.5 Semiconductor Optical Amplifiers

If the facets of a laser cavity are antireflection coated, a laser gain medium
can be used as a semiconductor optical amplifier (SOA). A textbook on this
subject is [1383]. Optical feedback from facets can also be avoided using tilted
facets [1384].

A tapered amplifier geometry, as shown in Fig. 22.70a, allows for laterally
monomode input and a preservation of the lateral beam quality during the
propagation of the optical wave through the gain medium. The active medium

(a) (b)
0.5 1.0 1.5 2.0

0
0.0

0.5

1.0

1.5

0.0 mW
0.6 mW
2.5 mW
4.3 mW
8.9 mW

Fig. 22.70. (a) Schematic geometry of tapered semiconductor amplifier. (b) Opti-
cal output power vs. amplifier current for various values of the optical input power,
taper angle was 5◦. For zero input power only spontaneous and amplified sponta-
neous emission is observed. Reprinted with permission from [1385]
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Fig. 22.71. Photographs of a MOPA arrangement of a laser (master oscillator,
‘MO’), glass lens and tapered amplifier (power amplifier, ‘PA’) on a silicon micro-
optical ‘bench’. Reprinted with permission from [1386]

is an 8-nm compressively strained InGaAs quantum well. A typical taper
angle is 5–10◦. The input aperture is between 5 and 7-μm. The amplifier
length is 2040 μm. More than 20 dB optical amplification can be obtained
(Fig. 22.70b). The self-oscillation is suppressed for currents up to 2 A by
AR facet coating of 10−4 in a 70-nm band. The wall-plug efficiency of the
discussed amplifier is up to over 40%. If such an amplifier is arranged together
with a seed laser diode (master oscillator), the setup is called MOPA (master
oscillator power amplifier), as shown in Fig. 22.71. A modulated input also
leads to a modulated output.

Quantum dot arrays can be a useful gain medium in a SOA [1387, 1388]
due to their fast gain dynamics [1389] and broad spectrum (Sect. 22.3.6).



23 Transistors

23.1 Introduction

Transistors1 are the key elements for electronic circuits such as amplifiers,
memories and microprocessors. Transistors can be realized in bipolar tech-
nology (Sect. 23.2) or as unipolar devices using the field effect (Sect. 23.3).
The equivalent in vacuum-tube technology to the transistor is the triode
(Fig. 23.1a). Transistors can be optimized for their properties in analog cir-
cuits such as linearity and frequency response or their properties in digital
circuits such as switching speed and power consumption. Early commercial
models are shown in Fig. 23.2.

(a) (b)

emitter

base

collector

Fig. 23.1. (a) Schematic image of a vacuum triode. The electron current flows
from the heated cathode to the anode when the latter is at a positive potential.
The flow of electrons is controlled with the grid voltage. (b) Bell Laboratories’ first
(experimental) transistor, 1947

1The term ‘transistor’ was coined from the combination of ‘transconductance’
or ‘transfer’ and ‘varistor’ after initially such devices were termed ‘semiconductor
triodes’. The major breakthrough was achieved in 1947 when the first transistor
was realized that showed gain (Figs. 1.6 and 23.1b).

M. Grundmann, The Physics of Semiconductors, 2nd ed., Graduate Texts 713
in Physics, DOI 10.1007/978-3-642-13884-3 23,
c© Springer-Verlag Berlin Heidelberg 2010
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(a) (b)

Fig. 23.2. (a) First commercial, developmental (point contact) transistor from
BTL (Bell Telephone Laboratories) with access holes for adjustment of the whiskers
pressing on a piece of Ge, diameter 7/32”=5 mm, 1948. (b) First high-performance
silicon transistor (npn mesa technology), model 2N697 from Fairchild Semicon-
ductor, 1958 (at $200, in 1960 $28.50). The product number is still in use
(now $0.95)

23.2 Bipolar Transistors

Bipolar transistors consist of a pnp or npn sequence (Fig. 23.3). The layers
(or parts) are named emitter (highly doped), base (thin, highly doped) and
collector (normal doping level). The transistor can be considered to consist
of two diodes (emitter–base and base–collector) back to back. However, the
important point is that the base is sufficiently thin (in relation to its minority
carrier diffusion length) and carriers from the emitter (which are minority
carriers in the base) can dominantly reach the collector by diffusion.

(a)

p++ n+ p
IE IC

IB

emitter collector
base

(b)

n++ p+ n
IE IC

IB

emitter collector
base

Fig. 23.3. Schematic structure and circuit symbol for (a) pnp and (b) npn tran-
sistors

In Fig. 23.4, the three basic circuits with a transistor are shown. They
are classified by the common contact for the input and output circuit. The
space charges and band diagram for a pnp transistor in the base circuit
configuration are depicted in Fig. 23.5. The emitter–base diode is switched
in the forward direction to inject electrons into the base. The base–collector
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(a)

VEB

IC

IB

IE

VCB

(b)

VEB

IC

IE

IB

VCE

(c)

VBC

IE

IC

IB

VCE

Fig. 23.4. Basic transistor circuits, named after the common contact: (a) Common
base circuit, (b) common emitter circuit and (c) common collector circuit

(a)

(b)

(c)

x
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IC

IB
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IEn

IEp

ICn

ICp

VCB

IE

VEB

E

x

EV

VEB

VCB

Fig. 23.5. pnp transistor in (a) base circuit. (b) Doping profile and space charges
(abrupt approximation) and (c) band diagram for typical operation conditions

diode is switched in the reverse direction. The electrons that diffuse through
the base and reach the neutral region of the collector are transported by the
high drift field away from the base.

23.2.1 Carrier Density and Currents

The modeling of transistors is a complex topic. We treat the transistor on the
level of the abrupt junction. As an approximation, we assume that all voltages
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drop at the junctions. Series resistances, capacities and stray capacities and
other parasitic impedances are neglected at this point.

The major result is that the emitter–base current from the forward-biased
emitter–base diode will be transferred to the collector. The current flowing
from the base contact is small compared to the collector current. This explains
the most prominent property of the transistor, the current amplification.

For the neutral part of the base region of a pnp transistor, the stationary
equations for diffusion and continuity are

0 = DB
∂2p

∂x2
− p− pB

τB
(23.1a)

jp = −eDB
∂p

∂x
(23.1b)

jtot = jn + jp , (23.1c)

where pB is the equilibrium minority carrier density in the base. From the
discussion of the pn-diode, we know that at the boundary of the depletion
layer the minority carrier density is increased by exp(eV/kT ) (cf. (20.84a,b)).
At the boundaries of the emitter–base diode (for geometry see Fig. 23.5a)

δp(0) = p(0) − pB = pB [exp (βVEB) − 1] (23.2a)
δn(−xE) = n(−xE) − nE = nE [exp (βVEB) − 1] , (23.2b)

where nE and pB are the equilibrium minority-carrier densities in the emitter
and base, respectively. Accordingly, at the boundaries of the base–collector
diode we have

δp(w) = p(w) − pB = pB [exp (βVCB) − 1] (23.3a)
δn(xC) = n(xC) − nC = nC [exp (βVCB) − 1] . (23.3b)

These are the boundary conditions for the diffusion equations in the p-
doped layers and in the neutral region of the n-doped base. For the p-layers
(with infinitely long contacts), the solution is (similar to (20.109)) for x <
−xE and x > −xC, respectively

n(x) = nE + δn(−xE) exp
(
x+ xE

LE

)
(23.4a)

n(x) = nC + δn(−xC) exp
(
−x− xC

LC

)
. (23.4b)

LE and LC are the minority carrier (electron) diffusion lengths in the emitter
and collector, respectively. The solution for the hole density in the neutral
region in the base (0 < x < w) is

p(x) = pB +
[
δp(w) − δp(0) exp (−w/LB)

2 sinh (w/LB)

]
exp

(
x

LB

)
(23.5)

−
[
δp(w) − δp(0) exp (w/LB)

2 sinh (w/LB)

]
exp

(
− x

LB

)
.
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We shall denote the excess hole density at x = 0 and x = w as δpE =
δp(0) and δpC = δp(w), respectively. Typical (‘normal’) operation condition
in the common base circuit is that δpC = 0 (Fig. 23.8a). In the ‘inverted’
configuration, the role of emitter and collector are reversed and δpE = 0. We
can write (23.5) also as

p(x) = pB + δpE
sinh [(w − x)/LB)]

sinh [w/LB]
+ δpC

sinh [x/LB)]
sinh [w/LB]

. (23.6)

If the base is thick, i.e. w → ∞, or at least large compared to the diffusion
length (w/LB  1), the carrier concentration is given by

p(x) = pB + δp(0) exp
(−x
LB

)
(23.7)

and does not depend on the collector. In this case there is no transistor
effect. A ‘coupling’ between emitter and collector currents that are given by
the derivative ∂p/∂x at 0 and w, respectively, is only present for a sufficiently
thin base.

From (23.6), the hole current densities at x = 0 and x = w are given
as2

jEp = jp(0) = e
DB

LB

[
δpE coth

(
w

LB

)
− δpC csch

(
w

LB

)]
(23.8a)

jCp = jp(w) = e
DB

LB

[
δpE csch

(
w

LB

)
− δpC coth

(
w

LB

)]
. (23.8b)

From (23.4a,b), the electron current densities at x = −xE and x = xC are
given (with δnE = δn(−xE) and δnC = δn(xC)) by

jEn = jn(−xE) = e
DE

LE
δnE (23.9a)

jCn = jn(xC) = −eDC

LC
δnC . (23.9b)

The emitter current density is (similar to (20.112))

jE = jp(0) + jn(−xE) = e
DB

LB

[
δpE coth

(
w

LB

)
− δpC csch

(
w

LB

)]

+e
DE

LE
δnE . (23.10)

The collector current density is given as

jC = jp(w) + jn(xC) = e
DB

LB

[
δpE csch

(
w

LB

)
− δpC coth

(
w

LB

)]

−eDC

LC
δnC . (23.11)

2coth x ≡ cosh x/ sinh x, cschx ≡ 1/ sinh x.
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In these equations, only the diffusion currents are considered. Addition-
ally, the recombination currents in the depletion layers must be considered,
in particular at small junction voltages.

23.2.2 Current Amplification

The emitter current consists of two parts, the hole current IpE injected from
the base and the electron current InE that flows from the emitter to the base
(Fig. 23.5a). Similarly, the collector current is made up from the hole and
electron currents IpC and IpC, respectively.

The total emitter current splits into the base and collector currents

IE = IB + IC . (23.12)

The amplification (gain) in common base circuits

α0 = hFB =
∂IC
∂IE

=
∂IpE

∂IE

∂IpC

∂IpE

∂IC
∂IpC

= γαTM , (23.13)

where γ is the emitter efficiency, αT the base transport factor and M the
collector multiplication factor. Since the collector is normally operated below
the threshold for avalanche multiplication, M = 1.

The current amplification in the common emitter circuit is

β0 = hFE =
∂IC
∂IB

. (23.14)

Using (23.12), we find

β0 =
∂IE
∂IB

− 1 =
∂IE
∂IC

∂IC
∂IB

− 1 =
1
α0
β0 − 1 =

α0

1 − α0
. (23.15)

Since α0 is close to 1 for a well-designed transistor, β0 is a large number,
e.g. β0 = 99 for α0 = 0.99.

The emitter efficiency is (A denotes the device area)

γ =
A∂jp
∂IE

|x=0 =
[
1 +

nE

pB

DE

DB

LB

LE
tanh

(
w

LB

)]−1

. (23.16)

The base transport factor, i.e. the ratio of minority carriers reaching the
collector and the total number of injected minority carriers, is

αT =
jp(w)
jp(0)

=
∂p/∂x|x=w

∂p/∂x|x=0
=

1
cosh (w/LB)

≈ 1 − w2

2L2
B

. (23.17)

The approximation is valid if αT is close to 1. If the base length is a tenth
of the diffusion length, the base transport factor is αT > 0.995. Then
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Fig. 23.6. Collector current IC and base current IB as a function of the emitter–
base voltage VEB. Adapted from [1390]

β0 = hFE
∼= γ

1 − γ
∝ NE

wNB
, (23.18)

with NE and NB being the doping levels in the emitter and base, respectively.
The base and collector current are shown in Fig. 23.6 as a function of the
emitter–base voltage, i.e. the voltage at the injection diode. The collector
current is close to the emitter–base diode current and displays a dependence
∝ exp(eVEB/kT ). The base current shows a similar slope but is orders of mag-
nitude smaller in amplitude. For small forward voltages of the emitter–base
diode, the current is typically dominated by a nonradiative recombination
current that flows through the base contact and has an ideality factor (m in
Fig. 23.6) close to 2.

23.2.3 Ebers–Moll Model

The Ebers–Moll model (Fig. 23.7) was developed in 1954 and is a relatively
simple transistor model that needs, at its simplest level (Fig. 23.7a) just three
parameters. It can (and must) be refined (Figs. 23.7b,c). The model considers
two ideal diodes (‘F’ (forward) and ‘R’ (reverse)) back to back, each feeding
a current source. The F diode represents the emitter–base diode and and the
R diode the collector–base diode. The currents are

IF = IF0 [exp (βVEB) − 1] (23.19a)
IR = IR0 [exp (βVCB) − 1] . (23.19b)
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Fig. 23.7. Ebers–Moll model of a transistor, ‘E’: emitter, ‘C’: collector and ‘B’:
base. Currents are shown for a pnp transistor. (a) Basic model (grey area in (b,c)),
(b) model with series resistances and depletion-layer capacitances, (c) model addi-
tionally including the Early effect (VA: Early voltage)

Using (23.8a,b)–(23.11), the emitter and collector currents are

IE = â11 [exp (βVEB) − 1] + â12 [exp (βVCB) − 1]
IC = â21 [exp (βVEB) − 1] + â22 [exp (βVCB) − 1] ,

with

â11 = eA

[
pB
DB

LB
coth

(
w

LB

)
+ nE

DE

LE

]
(23.21a)

â12 = −eApB
DB

LB
csch

(
w

LB

)
(23.21b)

â21 = eApB
DB

LB
csch

(
w

LB

)
= −â12 (23.21c)

â22 = −eA
[
pB
DB

LB
coth

(
w

LB

)
+ nC

DC

LC

]
. (23.21d)
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The currents at the three contacts are

IE = IF − αIIR (23.22a)
IC = αNIF − IR (23.22b)
IB = (1 − αN)IF + (1 − αI)IR . (23.22c)

The last equation is obtained from (23.22a,b) using (23.12). By comparison
with (23.19a,b) and (23.21a–d) we find

IF0 = â11 (23.23a)
IR0 = −â22 (23.23b)
αI = â12/IR0 (23.23c)
αN = â21/IF0 = −â12/IF0 = −αIIR0/IF0 . (23.23d)

The constants αN and αI are the forward (‘normal’) (αN = α0 from
(23.13)) and reverse (‘inverted’) gains in the common base circuit, respec-
tively. Both constants are larger than zero. Typically, αN ≈ 0.98 . . . 0.998 � 1
and αI ≈ 0.5 . . . 0.9 < αN. The model has three independent parameters, e.g.
αN, IF0 and IR0. Equations (23.22a,b) can be rewritten as

IE = αIIC + (1 − αIαN)IF (23.24a)
IC = αNIE − (1 − αIαN)IR . (23.24b)

Under normal operation we have

IE = IF (23.25a)
IC = αNIE . (23.25b)

The model can be refined and made more realistic by including the effect
of series resistances and depletion-layer capacitances, increasing the number
of parameters to eight. The Early effect (see p. 723) can be included by adding
a further current source. This level is the ‘standard’ Ebers–Moll model with
a total of nine parameters. Further parameters can be added. However, as is
always the case with simulations, there is a tradeoff between the simplicity
of the model and to what detail a real situation is approximated.

23.2.4 Current–Voltage Characteristics

In Fig. 23.8, the hole density in the base (of a pnp transistor) is shown for
various voltage conditions. In Fig. 23.9, the I–V characteristics of a bipolar
transistor in common base and common collector circuit are shown. In the
common base circuit (Fig. 23.9a), the collector current is practically equal to
the emitter current and is almost independent of the collector–base voltage.
From (23.24b), the dependence of the collector current on the collector–base
voltage is given (within the Ebers–Moll model) as
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Fig. 23.8. Hole density (linear scale) in the base region (the neutral part of the base
ranges from 0 to w) of a pnp transistor for various voltages. (a) normal voltages,
VCB = const. and various VEB (in forward direction). (b) VEB = const. and various
values of VCB. (c) Various values of VEB > 0, VCB = 0. (d) Both pn-junctions in
forward direction. (e) Conditions for IC0 and I ′

C0. (f) both junctions in reverse
direction. Adapted from [384]

IC = αNIE − (1 − αIαN)IR0 [exp (βVCB) − 1] . (23.26)

VCB is in the reverse direction. Therefore, the second term is zero for normal
operating conditions. Since αN � 1, the collector current is almost equal to
the emitter current.

Even at VCB = 0 (the case of (Fig. 23.8c), holes are extracted from the
base since ∂p/∂x|x=w > 0. A small forward voltage must be applied to the
collector–base diode in order to make the current zero, i.e. ∂p/∂x|x=w = 0
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Fig. 23.9. Characteristics (IC vs. VCB) of a pnp transistor in (a) common base (CB)
circuit (Fig. 23.4a) for various values of the emitter current as labeled. Adapted
from [1391]. (b) Characteristics in common emitter (CE) circuit (Fig. 23.4b).
Adapted from [1392]
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(Fig. 23.8d). The collector saturation current IC0 is measured with an open
emitter side. This current is smaller than the saturation current of the CB
diode, since at the emitter side of the basis a vanishing gradient of the hole
density is present (Fig. 23.8e). This reduces the gradient (and thus the cur-
rent) at the collector side. The current IC0 is therefore smaller than the
collector current for shorted emitter–base contact (VEB = 0). At high collec-
tor voltage, the current increases rapidly at BVCB0 due to breakdown of the
collector–base diode. It can also occur that the width of the neutral base re-
gion w becomes zero (punch-through). In this case, the emitter and collector
are short-circuited.

In the common emitter circuit (Fig. 23.9b), there is a high current am-
plification IC/IB. Note that the collector current is given in mA and the
base current in μA. The current increases with increasing VCE because the
base width w decreases and β0 increases. There is no saturation of the I–V
characteristics (Early effect). Instead, the I–V curves look as if they start at
a negative collector–emitter voltage, the so-called Early voltage VA. In the
linear regime, the characteristic can be approximated by

IC =
(

1 +
VCE

VA

)
β0IB . (23.27)

The physical reason for the increase of the collector current with increas-
ing VCE is the increasing reverse voltage at the collector–base diode that
causes a so-called ‘base-width modulation’, as shown in Fig. 23.8b. This
causes an expansion of the CB depletion layer and subsequently a reduc-
tion of the neutral base width w. w will be smaller and smaller compared to
the geometrical base width wB. When w is reduced, the base transfer factor
αT (23.17) becomes closer to 1 and the current gain β0 (23.15) increases.
Therefore, the collector current increases for a given (fixed) base current.
For transistors for which the geometrical base width is much larger than the
width of the depletion layers, the Early voltage is

VA ≈ e

εs
NBw

2
B . (23.28)

For small collector–emitter voltage, the current quickly drops to zero.
VCE is typically split in such a way that the emitter–base diode is well biased
forward and the CB diode has a high reverse voltage. If VCE drops below a
certain value (≈ 1 V for silicon transistors), there is no longer any bias at the
CB diode. A further reduction of VCE biases the CB diode in the forward
direction and quickly brings the collector current down to zero.

23.2.5 Basic Circuits

Common Base Circuit

In the common base configuration, there is no current amplification since the
currents flowing through emitter and base are almost the same. However,
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there is voltage gain since the collector current causes a large voltage drop
across the load resistor.

Common Emitter Circuit

The input resistance of the common emitter circuit (Fig. 23.10a) depends on
the emitter–base diode and varies between a value of the order of 100 kΩ at
small current and a few Ω at larger current and high VEB. The voltage gain
is

rV =
VCE

VEB
=

IC
VEB

RL , (23.29)

where RL is the load resistance in the output circuit (see Fig. 23.4b). The ratio
gm = IC/VEB is called the forward transconductance. Also, the differential
transconductance g′m = ∂IC/∂VEB is used. The voltage gain of the common
emitter circuit is typically 102–103. Since current and voltage are amplified,
this circuit has the highest power gain.

If the input voltage VEB (U1 in Fig. 23.10a) is increased, the collector
current rises. This increase causes an increase of the voltage drop across the
load resistance RL and a decrease of the output voltage U2. Therefore, the
phase of the input signal is reversed and the amplifier is inverting.

Common Collector Circuit

In Fig. 23.10c, the collector is connected to mass for alternating currents.
Input and output current flow through the load resistance at which part
of the input voltage drops. The input voltage is divided between the load
resistor RL and the emitter–base diode. At the transistor, the voltage VBE =
V1 −VRL is applied. If the input voltage is increased, I2 increases. This leads
to a larger voltage drop at the load resistor and therefore to a decrease
of VBE, working against the original increase. The input resistance R1 is
large despite a small load resistance, R1 ≈ β0RL. The input voltage is larger
than VRL, thus no voltage gain occurs (actually it is a little smaller than 1).
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(a) (c)(b)

Fig. 23.10. (a) Common base, (b) common emitter and (c) common collector
circuits with external loads
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The current amplification is (β+1). The output resistance R2 is small, R2 =
U2/I2 ≈ RL/β0. Therefore, this circuit is also called an impedance amplifier
that allows high-impedance sources to be connected low-impedance loads.
Since an increase of the input voltage leads to an increase of the output
voltage that is present at the emitter, this circuit is a direct amplifier and is
also called an emitter follower.

23.2.6 High-Frequency Properties

Transistors for amplification of high-frequency signals are typically chosen
as npn transistors since electrons, the minority carriers in the base, have
higher mobility than holes. The active area and parasitic capacitance must
be minimized. The emitter is formed in the shape of a stripe, nowadays in the
100 nm regime. The base width is in the 10 nm range. High p-doping of GaAs
with low diffusion of the dopant is accomplished with carbon. Defects that
would short emitter and collector at such thin base width must be avoided.

An important figure of merit is the cutoff frequency fT for which hFE is
unity in the common emitter configuration. The cutoff frequency is related
to the emitter–collector delay time τEC by

fT =
1

2πτEC
. (23.30)

The delay time is determined by the charging time of the emitter–base
depletion layer, the base capacitance, and the transport through the base–
collector depletion layer. It is favorable if all times are short and similar. It
does not help to minimize only one or two of the three processes since the
longest time determines the transistor performance.

Another important figure of merit is the maximum frequency with which
the transistor can oscillate in a feedback circuit with zero loss. This frequency
is denoted by fmax. Approximately,

fmax �
√

fT
8πRBCCB

, (23.31)

where RB is the base resistance and CCB is the collector–base capacitance.
fmax is larger than fT, by a factor of the order of three.

23.2.7 Heterobipolar Transistors

In a heterojunction bipolar transistor (HBT), the emitter–base diode is
formed with a heterostructure diode. The desired functionality is obtained
when the emitter is made from the higher-bandgap material and the base
from the lower-bandgap material. The schematic band diagram is shown in
Fig. 23.11 (see Fig. 20.72c for the emitter–base diode).
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Fig. 23.11. Schematic band diagram of a heterojunction bipolar transistor

The higher discontinuity in the valence band, compared to a homojunc-
tion with the base material, provides a higher barrier for hole transport from
the base to the emitter. Thus, the emitter efficiency is increased. Another ad-
vantage is the possibility for higher doping of the base without loss of emitter
efficiency. This reduces the base series resistance and leads to better high-
frequency behavior due to higher current gain and a smaller RC time con-
stant. Also, operation at higher temperature is possible when the emitter has
a larger band gap. Current InP/InGaAs-based HBTs have cutoff frequencies
beyond 30 GHz, SiGe-HBTs beyond 80 GHz. The high-frequency performance
is influenced by the velocity-overshoot effect (cf. Sect. 8.5.3) [1393].

In Fig. 23.12, an InAlAs/InGaAs HBT is shown [1394]. The cutoff fre-
quency is 90 GHz. For the layer design, a fairly thick collector with low doping
was chosen. This design allows a broad depletion layer with fairly small max-
imum electric field and thus a high breakdown voltage of BVCE0 > 8.5 V.
The base is not too thin (80 instead of maybe 60 nm) to reduce the series
resistance. A graded region between emitter and base was chosen to avoid a
spike occurring in the conduction band (Fig. 20.72b) and keep the turn-on
voltage low.

23.2.8 Light-Emitting Transistors

The base current has two components. One is the recombination current in
the neutral region of the emitter; this current can be suppressed in the HBT.
The other is the recombination in the base region itself.3 If quantum wells
are introduced into the base region, this recombination can occur radiatively
between electrons and holes captured into the quantum well (Fig. 23.13). The
spectrum exhibits two peaks from the QWs and the GaAs barrier.

3Also, a recombination current in the emitter–base depletion region is possible.
However, since in normal operating conditions this diode is forward biased, the
depletion layer is short and the associated recombination current is small, cf. p. 573.
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(a)

(b) (c)

(d) (e)

Fig. 23.12. (a) Schematic layout of a high-frequency HBT and SEM images (b)
without and (c) with contacts. (d) Epitaxial layer sequence and (e) static perfor-
mance data. Parts (a,b) from [1395], parts (d,e) from [1394]

23.3 Field-Effect Transistors

Next to the bipolar transistors, the field-effect transistors (FET) are another
large class of transistors. FETs were conceptualized first but due to techno-
logical difficulties with semiconductor surfaces, realized second. The principle
is fairly simple: A current flows through a channel from source to drain. The
current is varied via the channel conductivity upon the change of the gate
voltage. The gate needs to make a nonohmic contact to the semiconductor.
Since the conductivity in the channel is a property related to the majority
charge carriers, FETs are called unipolar transistors. FETs feature a higher
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Fig. 23.13. Microscopic image of an InGaP/GaAs HBT with two 5-nm In-
GaAs/GaAs QWs in the 30-nm wide base at (a) zero base current and (b) at
1 mA base current in the common emitter configuration with Si CCD image of
light emission. (c) Schematic band diagram of a HBT with a single InGaAs/GaAs
quantum well in the base. Parts (a,b) from [1396], part (c) adapted from [1396]

input impedance than bipolar transistors, a good linearity, and a negative
temperature coefficient and thus a more homogeneous temperature distri-
bution. According to the structure of the gate diode we distinguish JFETs,
MESFETs and MOSFETs, as discussed in the following:

In the junction FET (JFET), the variation of channel conductivity is ac-
complished via the extension of the depletion layer of the pn-junction formed
by the gate and the channel material (Fig. 23.14a). The JFET was analyzed
by Schottky in 1952 [69] and realized by Dacey and Ross in 1953 [70].

In a MESFET, a metal–semiconductor diode (Schottky diode) is used
as rectifying contact instead of a pn-diode. Otherwise, the principle is the
same as that of the JFET. After the proposal by Mead in 1966 [89], the first
(epitaxial) GaAs MESFET was realized by Hooper and Lehrer in 1967 [90].
The MESFET offers some advantages, such as the fabrication of the metal
gate at lower temperature than necessary for the (diffusion or epitaxy of the)
pn-diode, lower resistance, good thermal contact. The JFET can be made
with a heterostructure gate to improve the frequency response.

In a MISFET, the gate diode is a metal–insulator–semiconductor diode
(Fig. 23.14b). If the insulator is an oxide, the related FET is a MOSFET.
When the gate is put at a positive voltage (for a p-channel), an inversion
layer is formed close to the insulator–semiconductor interface. This layer
is an n-conducting channel allowing conduction between the two oppositely
biased pn-diodes. It can carry a high current. The MOSFET was theoretically
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Fig. 23.14. (a) Shockley’s model of a JFET. The dashed line represents the middle
of the symmetric channel of total thickness 2a. The light grey area is the depletion
layer with thickness h. The gate length is L. The dark grey areas are ohmic metal
contacts. Based on [70]. (b) Scheme of a MOSFET with channel length L and oxide
thickness d. The dark grey areas are ohmic metal contacts. Adapted from [384]

envisioned early by Lilienfeld in 1925 [34] and realized only in 1960 by Kahng
and Atalla [80].

FETs come in ‘n’ and ‘p’ flavors, depending on the conductivity type of
the channel. For high-frequency applications, typically an n-channel is used
due to the higher mobility or drift velocity. In CMOS (complementary MOS)
technology, both n-FETs and p-FETs are integrated in high density, allowing
the effective realization of logic gates with minimized power consumption.

23.4 JFET and MESFET

23.4.1 General Principle

The principal characteristic of a JFET is shown in Fig. 23.15. At VD = 0
and VG = 0, the transistor is in thermodynamic equilibrium and there are
no net currents. Underneath the gate diode, a depletion layer is present. If
for zero gate voltage the source–drain voltage is applied to the channel, the
current increases linearly. The positive voltage at the drain contact causes
the expansion of the depletion layer of the (reversely biased) gate–drain pn-
diode. When the two (the upper and the lower) depletion regions meet (pinch-
off), the current saturates. The respective source–drain voltage is denoted as
VD,sat. For high gate–drain (reverse) voltage VD, breakdown occurs with a
strong increase of the source–drain current. A variation of the gate voltage
VG leads to a variation of the source–drain current. A reverse voltage leads
to a reduction of the saturation current and saturation at lower source–drain
voltage. For a certain gate voltage VP, the pinch-off voltage, no current can
flow in the channel any longer since pinch-off exists even for VD = 0.
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Fig. 23.15. (a) Principal characteristics of a JFET. The channel current ID is
shown as a function of the source–drain voltage VD for three different values of
the (absolute value of the) gate voltage VG. The saturation values VD,sat and ID,sat

are indicated for one curve. The intersections with the dash-dotted line yield the
saturation voltage. Adapted from [384] (b) Transfer behavior of a JFET for two
different carrier distributions, homogeneous (solid line) and δ-like (dashed line).
Adapted from [384] after [1397, 1398]

23.4.2 Static Characteristics

Here, we will calculate the general static behavior outlined in the previous
section. We assume a long channel (L a), the abrupt approximation for the
depletion layer, the gradual channel approximation, i.e. the depletion layer
depth changes slowly along x, and a field-independent, constant mobility. In
this case, the two-dimensional Poisson equation for the potential distribution
V can be used by solving it along the y direction (channel depth) for all
x-positions (adiabatic approximation),

∂2V

∂y2
= −ρ(y)

εs
. (23.32)

The geometry is shown in the inset of Fig. 23.15b.
The depth h of the depletion layer in the abrupt approximation is given

by (cf. (20.92), reverse voltages are counted as positive here)

h =
[

2εs
eND

(Vbi + VG + V (x))
]1/2

. (23.33)

Here, we have assumed homogeneous doping, i.e.ND does not depend on y
(or x). The built-in voltage (for a p∗n gate diode) is given by
Vbi = β−1 ln

(
ND
ni

)
(20.83a). The voltage V is the applied source–drain volt-

age in relation to the source. The depth of the depletion layer at x = 0
(source) and x = L (drain) is given by
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y1 = h(0) =
[

2εs
eND

(Vbi + VG)
]1/2

(23.34a)

y2 = h(L) =
[

2εs
eND

(Vbi + VG + VD)
]1/2

. (23.34b)

The maximum value of h is a. Therefore, the pinch-off voltage VP, at
which VP = Vbi + VG + VD is such that h = a, is given by

VP =
ea2ND

2εs
. (23.35)

The (drift) current density along x is given by (cf. (8.51a))

jx = −eNDμnEx = eNDμn
∂V

∂x
(23.36)

for the neutral part of the semiconductor. Therefore, the current in the upper
half of the channel is given by

ID = eNDμn
∂V (x)
∂x

[a− h(x)]Z , (23.37)

where Z is the width of the channel (Fig. 23.14a). Although it seems that ID
depends on x, it is of course constant along the channel due to Kirchhoff’s
law.4 Using the triviality

∫ L

0
IDdx = LID and ∂V

∂x = ∂V
∂h

∂h
∂x with ∂V

∂h =
eNDh/εs from (23.33), we find from (23.37)

ID =
e2μnNDZa

3

6εsL

[
3
a2

(
y2
2 − y2

1

)− 2
a3

(
y3
1 − y3

2

)
]
. (23.38)

This equation can also be written, using (23.35) and

IP =
e2μnNDZa

3

6εsL
, (23.39)

as

ID = IP

[
3VD

VP
− 2

(Vbi + VG + VD)3/2 − (Vbi + VG)3/2

V
3/2
P

]

. (23.40)

The saturation current is reached for y2 = a or Vbi + VG + VD = VP and
is given by

ID,sat = IP

[

1 − 3
Vbi + VG

VP
+ 2

(
Vbi + VG

VP

)3/2
]

. (23.41)

4We neglect recombination, in particular since the current is a majority-carrier
current.
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The dependence of the saturation current on (VG +Vbi)/VP is depicted in
Fig. 23.15b. We note that for Vbi + VG = VP, the saturation current is zero
since then VD = 0. The gate voltage at which a certain saturation current is
reached can be determined graphically from Fig. 23.15b or numerically from
(23.41). Letting γ be the saturation current in units of IP, i.e. γ = ID,sat/IP,
the gate voltage at the saturation point VG,sat is given by5

VG,sat =VP

[
3
4
− 8−1i(

√
3 − i)(1 + 8γ)
γ̂

+8−1i(
√

3 + i)γ̂

]

−Vbi (23.42)

γ̂=
[
−1 + 8(γ − 1)3/2 + 20γ + 8γ2

]1/3

.

The source–drain voltage at the saturation point decreases with decreas-
ing saturation current as VD,sat = VP−Vbi−VG,sat (dashed parabola-like line
in Fig. 23.15a).

If the charge-carrier distribution differs from the homogeneous distribu-
tion assumed so far, a change of transistor properties arises, as shown in
Fig. 23.15b for a δ-like carrier distribution. The I–V characteristic is slightly
less curved, but not linear. A linear characteristic is only achievable in the
drift velocity saturation regime (cf. Sect. 23.4.4).

For high source–drain voltage VD > VP − Vbi − VG, the current remains
essentially at its saturation value. For very high source–drain voltage, break-
down in the gate–drain diode can occur, when the maximum voltage, which
is given by VG + VD at the end of the channel, is equal to the breakdown
voltage VB.

The forward transconductance gm and the drain transconductance gD are
given by

gm =
∂ID
∂VG

= gmax

[(
Vbi + VG

VP

)1/2

−
(
Vbi + VG + VD

VP

)1/2
]

(23.43)

gD =
∂ID
∂VD

= gmax

[

1 −
(
Vbi + VG + VD

VP

)1/2
]

, (23.44)

where
gmax =

3IP
VP

=
eNDaμZ

L
. (23.45)

The drain transconductance for VD → 0 (linear regime, dashed straight
lines in Fig. 23.15a) is given by

gD0 = gmax

[

1 −
(
Vbi + VG

VP

)1/2
]

= gm,sat , (23.46)

5Although the arguments are complex, the result is real for 0 ≤ γ ≤ 1.
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which is equal6 to the forward transconductance in the saturation regime
gm,sat = ∂ID,sat/∂VG.

23.4.3 Normally On and Normally Off FETs

The JFET discussed so far had an n-conductive channel and was conductive
at VG = 0. It is termed an ‘n-type, normally on’ (or depletion) FET. If
the channel is p-conductive, the FET is called ‘p-type’. A FET that has a
nonconductive channel at VG = 0 is called ‘normally off’ (or accumulation)
FET. In this case, the built-in voltage must be large enough to cause pinch-off.
For a positive gate voltage (in the forward direction of the gate–drain diode),
current begins to flow. The I–V characteristics of the four FET-types are
depicted in Fig. 23.16. The circuit symbols for the four different FET types
are shown in Fig. 23.17.
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Fig. 23.16. Scheme (top), ID vs. VD (center) and I
1/2
D vs. VG (bottom) I–V charac-

teristics for (a) normally on (depletion) and (b) normally off (accumulation) n-type
JFET. Adapted from [384]

6Technically, here gD0 = −gm,sat, however, we had counted VG positive for the
reverse direction.
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Fig. 23.17. Circuit symbols for various types of FETs

23.4.4 Field-Dependent Mobility

So far, we have considered FETs with long channels (L a). This situation
is often not the case, in particular for high-integration or high-frequency
applications. For short channels, the I–V characteristics exhibit changes. The
theory needs to be modified to take into account, among other effects, the
electric-field dependence of the mobility (Fig. 8.12) that was discussed in
Sect. 8.5.1.

Drift-Velocity Saturation

A material without negative differential mobility, such as Si or Ge, can be
described with a drift-velocity model

vd = μE 1
1 + μE/μs

. (23.47)

In this model, μ denotes the low-field (ohmic) mobility and vs the drift-
saturation velocity reached for E  vs/μ. The fraction in (23.47) describes
the drift-velocity saturation.

By inserting (23.47) into (23.37), we obtain

ID = eNDμE(x)
1

1 + μE(x)/μs
[a− h(x)]Z , (23.48)

and after a short calculation the drain current is given by (cf. (23.40))

ID = IP

(
1 +

μVG

vsL

)−1
[

3VD

VP
− 2

(Vbi + VG + VD)3/2 − (Vbi + VG)3/2

V
3/2
P

]

.

(23.49)
The factor 1/(1 + z) with z = μVG/vsL reduces the channel current due

to the drift saturation effect. The effect of the parameter z is depicted in
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Fig. 23.18. I–V characteristic (a) without consideration of drift saturation (z = 0)
and (b) with drift saturation (z = 3) for various values of (VG+Vbi)/VP =0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.8 as indicated at the right side. The intersections of the dashed
line and the solid lines indicate the beginning of saturation. Adapted from [1399]
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Fig. 23.19. Decrease of (saturated) forward conductance with gate voltage
(according to (23.46)) and parametric dependence on z for z = 0, 0.5, 1, 2, 3,
5 and 10. Adapted from [1399]

Fig. 23.18 in comparison to z = 0, i.e. without the drift saturation effect (or
vs → ∞). The forward conductance gm,sat decreases with increasing z, as
shown in Fig. 23.19.

Two-Region Model

In order to model the GaAs drift velocity vs. field characteristic, a two-region
model is used. In the front region of the channel (region I), the field is small
enough and a constant mobility μ is used. In the back region of the channel
(region II) is the high-field region where a constant drift velocity vs is used.
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With increasing source–drain voltage, the region II (I) increases (decreases)
in length. The relative width of region II is also increased with decreasing
channel length.

Saturated-Drift Model

Here, the drift velocity is taken everywhere as vs, i.e. complete drift satura-
tion. This is a good approximation for short channels (high fields) that are
in current saturation. In this case, the current is given by

ID = eNDvs [a− h(x)]Z . (23.50)

Equation (23.50) is valid for homogeneous doping. For other doping pro-
files, the current is given by

ID = vsZ

∫ a

h

ρ(y)dy . (23.51)

The forward conductance is given by

gm =
vsZεs
h(VG)

. (23.52)

The transistor is more linear if the depletion-layer depth only weakly
depends on the gate voltage. This can be accomplished with a doping profile
with increasing doping with depth. An increase with a power law and a step-
wise or exponential increase lead to a more linear I(V )-dependence. In the
limit of δ-like doping, a linear ID,sat vs. VG relation develops. Indeed, FETs
with graded or stepped doping profiles exhibit improved linearity and are
used for analog circuits.

Nonequilibrium Velocity

Below the electric field for which the drift velocity in GaAs peaks, the carriers
can be considered to be in equilibrium. If the field is higher, velocity overshoot
(Sect. 23.4.4 and Fig. 8.15) occurs. The carriers have a higher velocity (and
ballistic transport) before they relax to the lower equilibrium (or steady-
state) velocity after intervalley scattering. This effect will shorten the transit
time in short-channel FETs.

23.4.5 High-Frequency Properties

Two factors limit the high-frequency performance of a FET: The transit time
and the RC time constant. The transit time tr is the time that the carrier
needs to go from source to drain. For the case of constant mobility (long
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channel) and constant drift velocity (short channel), the transit time is given
by (23.53a and b), respectively.

tr =
L

μE ≈ L2

μVG
(23.53a)

tr =
L

vs
. (23.53b)

For a 1-μm long gate in a GaAs FET, the transit time is of the order of
10 ps. This time is typically small compared to the RC time constant due to
the capacitance CGS and transconductance. The cutoff frequency is given by

fT =
gm

2πCGS
. (23.54)

23.5 MOSFETs

The MOSFET has four terminals. In Fig. 23.14b, two n-type regions (source
and drain) are within a p-type substrate. The n-type channel (length L) forms
underneath a MIS diode. A forth electrode sets the substrate bias. The source
electrode is considered to be at zero potential. The important parameters are
the substrate doping NA, the insulator thickness d and the depth rj of the
n-type regions. Around the MOSFET structure is an oxide to insulate the
transistor from neighboring devices.

23.5.1 Operation Principle

When there is no applied gate voltage, only the saturation current of the
pn-diode(s) between source and drain flows. In thermodynamic equilibrium
(Fig. 23.20c), the necessary surface potential for inversion at the MIS diode
is Ψ inv

s ≈ 2ΨB. If there is a finite drain voltage, a current flows and there
is no longer equilibrium. In this case, the quasi-Fermi level of the electrons
(or generally of the minority carriers) is lowered and a higher gate voltage is
needed to create inversion. The situation at the drain is depicted in Fig. 23.21.

In nonequilibrium, the depletion layer width is a function of the drain
voltage VD. In order to reach strong inversion at the drain, the surface po-
tential must be at least Ψ inv

s ≈ VD + 2ΨB.
If the gate voltage is such that an inversion channel is present from source

to drain, a current will flow for a small drain voltage (Fig. 23.22a). Initially,
the current will increase linearly with VD, depending on the conductivity
of the channel. With increasing drain voltage, the quasi-Fermi level of the
electrons is lowered until, finally at VD = VD,sat, the inversion channel depth
becomes zero (pinch-off at the point denoted with an arrow in Fig. 23.22b).
The current at this condition is denoted as ID,sat. For a further increase of
VD, the pinch-off point moves closer to the source contact and the channel
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Fig. 23.20. (a) Schematic geometry of a MOSFET and its band diagram for
(b) flat-band conditions for zero gate voltage (and VD = 0), (c) thermodynamic
equilibrium with reverse gate voltage (weak inversion, still VD = 0) and (d) nonequi-
librium with nonzero drain voltage and gate voltages (with most of the channel
being inverted, the depletion region is indicated). Adapted from [1400]

length (inverted region) is shortened (arrow in Fig. 23.22c). The voltage at
the pinch-off point remains VD,sat and thus the current in the channel remains
constant at ID,sat.

23.5.2 Current–Voltage Characteristics

We assume now that the potential V (y) varies along the channel from V = 0
at y = 0 to V = VD at y = L. In the gradual-channel approximation, the
voltage drop Vi across the oxide is

Vi(y) = VG − Ψs(y) , (23.55)
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inverted p-region of a MOSFET for (a) thermodynamic equilibrium (VD = 0) and
(b) nonequilibrium at drain

where Ψs is the surface potential in the semiconductor (see Fig. 20.31). The
total charge induced in the semiconductor (per unit area) is, using (20.72),
given by

Qs(y) = − [VG − Ψs(y)]Ci , (23.56)

with Ci being the insulator capacitance (per unit area), as given in (20.73).
The inversion surface potential can be approximated by Ψs(y)≈ 2ΨB+V (y)

(see Fig. 23.21). Using (20.71) and (20.77), the depletion-layer charge is

Qd(y) = −eNAwm = − (2εseNA [2ΨB + V (y)])1/2
, (23.57)

such that, using (23.56), the inversion layer charge is

Qn(y) = Qs(y) −Qd(y) (23.58)

= − [VG − V (y) − 2ΨB]Ci + (2εseNA [2ΨB + V (y)])1/2
.

For the calculation of the drain current, we consider the increase of chan-
nel resistance dR(y) along a line element dy of the channel. The integral of
the conductivity over the cross section A of the channel (width Z) is

∫∫

A

σ(x, z)dxdz = −eμn

∫∫

A

n(x, z)dxdz = Zμn|Qn(y)| . (23.59)

Therefore,

dR(y) = dy
1

Zμn|Qn(y)| . (23.60)

Here we have assumed that the mobility is constant along the channel, i.e.
not field dependent. The change of voltage across the line element dx is
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Fig. 23.22. (a) MOSFET with inverted channel (dark grey) of length L for small
source–drain voltage VD in linear regime, (b) at the start of saturation at pinch-off,
(c) in the saturation regime with reduced channel length L′. The pinch-off point is
denoted by an arrow in (b) and (c). The dashed lines denote the extension of the
depletion region. Adapted from [384]

dV (y) = ID dR =
ID dy

Zμn|Qn(y)| . (23.61)

We note the drain current is independent of x. Using (23.58) and per-
forming the integral of (23.61) from V (y = 0) = 0 to V (y = L) = VD, we
find

ID = μnCi
Z

L

{(
VG − 2ΨB − VD

2

)
− 2

3
(2eεsNA)1/2

Ci

[
(VD + 2ΨB)3/2

− (2ΨB)3/2
]}

. (23.62)

This characteristic is depicted in Fig. 23.23a. In the linear regime (small
drain voltage, VD � (VG − VT)), the drain current is given by

ID ∼= μnCi
Z

L
(VG − VT) VD . (23.63)
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The threshold voltage VT, i.e. the gate voltage for which the channel is
opened and a current can flow, is given for small drain voltage (linear regime)
by

VT = 2ΨB +
(4eεsNAΨB)1/2

Ci
. (23.64)

The transconductances in the linear regime are easily obtained as

gm = μnCi
Z

L
VD (23.65a)

gD = μnCi
Z

L
(VG − VT) . (23.65b)

The saturation current (for constant mobility) is approximately

ID,sat
∼= μnCi

mZ

L
(VG − VT)2 , (23.66)

wherem depends on the doping concentration and is about 0.5 for low doping.
For low p-doping of the substrate, the threshold voltage in (23.66) for the
saturation regime is also given by (23.64). At higher doping, the threshold
voltage becomes dependent on the gate voltage. Ci denotes the insulator
capacitance

Ci = εi/di . (23.67)

The forward transconductance in the saturation regime is

gm,sat = μnCi
2mZ
L

(VG − VT) . (23.68)

For constant drift velocity (Fig. 23.23b for field-dependent mobility), the
saturation current is given by

ID,sat = ZCivs (VG − VT) , (23.69)

and the forward transconductance in the saturation regime is

gm,sat = ZCivs . (23.70)

We note that the transistor properties depend on and can be separated
into the geometry factor (Z/L) and the material properties (μCi = μ εi/di).

The threshold voltage can be changed by the substrate bias VBS as
(β = e/kT )

ΔVT =
a√
β

[
(2ΨB + VBS)1/2 − (2ΨB)1/2

]
, (23.71)

with (LD being the Debye length (cf. 20.66b))

a = 2
εs
εi

d

LD
. (23.72)
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Fig. 23.23. (a) Idealized I–V characteristics for a MOSFET with constant
mobility. The dashed line visualizes the drain (saturation) voltage for which the
current is equal to ID,sat. The solid lines are for various values of the gate volt-
age VG − VT =1–10 V. Adapted from [384] (b) I–V characteristics taking into
account the effect of field-dependent mobility (solid lines) in comparison to the
constant-mobility model (dashed lines) for various gate voltages as labeled. Adapted
from [1401]

Experimental data are shown in Fig. 23.24. For a Si/SiO2 gate diode,
a = 1 for, e.g., di = 10 nm and NA = 1016 cm−3. For gate voltages below VT,
the current is given by the diffusion current, similar to a npn transistor. This
regime is important for low-voltage, low-power conditions. The related drain
current is termed the subthreshold current and is given by

31 2

VG (V)
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10–9

10–10

10–11

I D
   
(A

)

VBS = 0V

VD = 0.1V

VD = 10V

3V 10V

VT VTVT

Fig. 23.24. Experimental subthreshold I–V characteristic of a MOSFET device
with long channel (15.5 μm). Solid lines for VD = 10 V, dashed lines for VD = 0.1 V.
Adapted from [1402]
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ID = μn
ZaCin

2
i

2Lβ2N2
A

[1 − exp (−βVD)] exp (−βΨs) (βΨs)
−1/2

. (23.73)

The drain current therefore increases exponentially with VG, as shown in
Fig. 23.24. VG is roughly proportional to ΨB:

Ψs = (VG − VFB) − a2

2β

{[
1 +

4
a2

(βVG − βVFB − 1)
]1/2

− 1

}

, (23.74)

where VFB is the flat-band voltage of the gate MIS diode. The drain current
is independent of VD for VD � 3kT/e.

23.5.3 MOSFET Types

MOSFETs can have an n-type channel (on a p-substrate) or a p-channel (on
an n-type substrate). So far, we have discussed the normally off MOSFET.
If there is a conductive channel even without a gate voltage, the MOSFET
is normally on. Here, a negative gate voltage must be applied to close the
channel. Therefore, similar to the JFET, a total of four different types of
MOSFET exist, see Fig. 23.25.

23.5.4 Complementary MOS

Complementary metal–oxide–semiconductor technology (CMOS) is the dom-
inating technology for highly integrated circuits. In such devices, MOSFETs
with n-channel (NMOS) and p-channel (PMOS) are used on the same chip.
The basic structure of logic circuits, the inverter, can be realized with a pair
of NMOS and PMOS transistors, as shown in Fig. 23.26a with two normally
off transistors. The load capacitor represents the capacitance of the following
elements.

(a)

S G D

n+

p

n+

S G D

n+

p

n+
n-channel

n-channel

(b)

Fig. 23.25. The four MOSFET types. (a) Enhancement and (b) depletion type
with n-channel (top row) and p-channel (bottom row)
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Fig. 23.26. Circuit diagram of (a) inverter with n-type (bottom) and p-type (nor-
mally off, enhancement mode) FETs and (b) inverter with p-type (bottom) and
n-type (normally on, depletion mode) FETs. (c) Inverter characteristic with the
transistor thresholds indicated, (d) inverter characteristic with middle voltage VM

indicated. NML,H denotes the low- and high-noise margins, respectively, i.e. the
voltage by which the input voltage can fluctuate without leading to switching. (e)
Composite layout (left panel) and cross-sectional view (right panel) of CMOS in-
verter. Part (e) adapted from [1403]

If the input voltage is Vin = 0, the NMOS transistor is nonconductive
(‘off’). The (positive) voltage VDD is at the PMOS transistor source, thus the
gate is negative in relation to the source and the transistor is conductive (‘on’)
since −VDD = VGp < VTp < 0 (see Fig. 23.25). The current flows through the
capacitor that becomes charged to Vout = VDD. The current then subsides,
since VD at the PMOS becomes zero. If the input voltage is set to VDD, the
NMOS transistor has a positive gate–source voltage larger than the threshold
VTn < VGn = VDD and becomes conductive. The charge from the capacitor
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flows over the NMOS to ground. The PMOS transistor has zero gate–source
voltage and is in the ‘off’ state. In this case, the voltage VDD drops entirely
across the PMOS and the capacitor is uncharged with Vout = 0.

In both its logic states, the CMOS inverter does not consume power. No
current7 flows in either of the two steady states since one of the two transistors
is in both cases in the ‘off’ state. Current flows only during the switching
operation. Therefore, the CMOS scheme allows for low power consumption.

The middle voltage for which Vin = Vout can be calculated from the
MOSFET characteristics. Both are, for this condition, in saturation and the
currents are given by (cf. (23.66))

IDn = μnCox
Zn

2Ln
(VM − VTn)2 (23.75a)

IDp = μpCox
Zp

2Lp
(VDD − VM − VTp)2 . (23.75b)

With γ = Zp
Zn

Ln
Lp

μp
(−μn) , we find from IDn = −IDp,

VM =
VTn + γ (VDD + VTp)

1 + γ
. (23.76)

As gate material, often polycrystalline silicon (poly-Si) is used (cf.
Fig. 20.26). It is used instead of metals because its work function matches
that of silicon closely. Also, poly-Si is more resistant to temperature. Despite
its high doping, the resistance of poly-Si is two orders of magnitude larger
than that of metals. Since it is easily oxidized, it cannot be used with high-k
oxide dielectrics.8

For optimized ohmic contacts on the n- and p-Si, different metals are
used to create a small barrier height (Fig. 20.21a) and low contact resistance
(cf. Sect. 20.2.6). Figure 23.27 visualizes the band edges of silicon in rela-
tion to the work functions of various metals (see Table 20.1). For example,
the work function of titanium matches the electron affinity of n-Si closely.
However, a direct deposition of Ti on Si results in a Schottky barrier of
0.5 eV [1121]. A surface passivation with a group-VI element such as Se can
help reduce this value to 0.19 eV [1404].

In the latest generation of CMOS ICs the PMOS (NMOS) device has a
built-in compressive (tensile) channel strain for modifying the effective mass
(cf. Sect. 6.10.2), both allowing higher drive current due to higher mobility.

7Except for the subthreshold current and other leakage currents. These need to
be reduced further since the dissipated power limits chip performance (speed and
device density) and battery lifetime in handheld applications.

8The term ‘high-k dielectric’ means a dielectric material with large dielectric
constant ε.
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Fig. 23.27. Silicon band edges in relation to different metals and their work func-
tions

23.5.5 Large-Scale Integration

Historic Development

Compared to the first computers on the basis of vacuum tubes (triodes), e.g.
ENIAC (Fig. 23.28), today’s devices are extremely miniaturized and need
many orders of magnitude less power per operation. ENIAC needed 174 kW of
power. A comparable computing power was reached in 1971 with the few cm2

large Intel 4004 microprocessor (Fig. 23.29b) consuming only several Watts
with 2300 transistors. In 2004 about 42 million transistors were integrated
in the Pentium 4 microprocessor (Fig. 23.30). Also, memory chips started to
become highly integrated (Fig. 23.29a).

The development of electronic circuit integration is empirically described
by Moore’s ‘law’ [1405] that has been valid since the 1970s. According to this
law, the number of transistors doubles every 20 months (Fig. 23.31a). At the

Fig. 23.28. ENIAC, the first electronic computer (J.P. Eckert, J.W. Mauchly,
1944/5). The images show only a small part of the 18,000 vacuum tubes
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(a) (b)

Fig. 23.29. (a) IntelTM 1103 1 KByte (1024 memory cells) dynamic random access
memory (RAM), arranged in four grids with 32 rows and columns (1970), chip size:
2.9 × 3.5 mm2. (b) IntelTM 4004 microprocessor (1971), chip size: 2.8 × 3.8 mm2,
circuit lines: 10 μm, 2, 300 MOS transistors, clock speed: 108 kHz

same time, the performance has been improved by an increase of the clock
speed (Fig. 23.31b).9

Interconnects

Moore’s second law says that the cost of production also doubles for each new
chip generation and is currently (2004) in the multi-billion US$ range. Most
of the cost saved by integration is due to efficient wiring (interconnects) of the
components, in 2004 (65 nm node) in eight layers above the active elements
(transistors and capacitors) (Fig. 23.32), in 2008 (45 nm node) in eleven lay-
ers. Plane-view images of the first three layers of the interconnects are shown
in Fig. 23.33. The Cu interconnects are fabricated with the so-called dama-
scene process [1406–1408]. Barrier layers (e.g. TaN or TiN) are required to
avoid out-diffusion of Cu into the silicon or other parts of the circuit. Three
effects limit the conductivity: The interconnect metal line width and height
approaches the mean free path of carriers (dCu ≈ 40 nm) [503, 1409], grain
boundary scattering can limit mobility since grain size is reduced for thin-
ner lines, and the (high resistivity) barrier reduces space for the conductive
part of the metal line. In Fig. 23.34 the increase of the resistivity of copper
with reduced dimension is shown as a function of film thickness t and for a
100 nm-film as a function of line width w. In a simplified approach, the line
resistivity ρline is given as [1409]

ρline

ρ0
= 1 +

3
8

(1 − p)
(
d

t
+
d

w

)
, (23.77)

9After year 2003 data for maximum clock rate are not for highest integration
density processors.
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Fig. 23.30. The IntelTM Pentium 4 microprocessor (2000), circuit lines: 0.18 μm,
42 million transistors, clock speed: 1.5 GHz

ρ0 denoting the bulk resistivity (1.7 μΩ cm for Cu), d being the mean free
path (8.6) and p being the electron scattering parameter (p = 0 for diffuse
scattering).

In order to achieve the best high frequency performance the material be-
tween the metal interconnects should have low dielectric constant (‘low-k’
dielectric). Alternative materials to the standard SiO2 (εr ≈ 4.1) are inves-
tigated such as SiOF (≈ 3.8), SiCOH (≈ 3.0), porous materials (≈ 2.5) and
air gaps [1410].
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(a) (b)

Fig. 23.31. (a) Moore’s law on the exponential increase of transistors per chip
(for IntelTM processor chips). Dashed line corresponds to doubling in 20 months.
(b) Historical increase of maximum clock speed, dashed line is guide to the eye.
Note the almost constant rate of 10 MHz from the mid-1970s to the mid-1980s and
another plateau developing after 2000

Fig. 23.32. Cross section through a logic chip (65 nm technology, 35 nm gate
length) with eight layers of dual damascene Cu interconnects (M1–M8) with low-k
carbon-doped oxide (εr = 2.9) inter-level dielectric above the active elements.
Adapted from [1411]

CMOS Scaling

Using planar technologies, LSI (large-scale integration), VLSI (very large-
scale integration), ULSI (ultra large-scale integration) and further genera-
tions of devices have been conceived, driven by high-density electronic mem-
ory devices. Subsequently also logic devices are produced with reduced device
size.
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Fig. 23.33. Plane-view of the first three interconnect layers of a 45 nm node SRAM
array (Intel R© Xeon R©). In the image of the M1 layer the gate layer metal connects
are shown in the inset, framed with a white dashed line. Adapted from [1412]

The increase of the number of transistors per area requires the scaling
of their geometrical properties. This impacts many other properties of the
transistor and their scaling needs to be considered as well. From a general
perspective, the physical properties scale while the thermal energy kT re-
mains constant for room-temperature electronics.

If channel width Z and channel length L of a transistor are scaled down
by a factor of s > 1, Z ′ = Z/s and L′ = L/s, the area obviously scales as
A′ = A/s2. In subsequent transistor generations s =

√
2, i.e. doubling of

the number of devices per area. In order to maintain the aspect ratio of the
device also the oxide thickness (di) is scaled, t′ox = tox/s (‘classical scaling’).

Fig. 23.34. Resistivity of copper at room temperature for various film thickness
(solid circles), and for a 100 nm-film as a function of line width w (empty circles).
Solid lines are theoretical dependence according to (23.77). The dashed lines indi-
cate the limits for bulk material (t → ∞) and for large line thickness (d = 100 nm,
w → ∞). Adapted from [1409]
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The ultimate design criteria are maximum temperature and maximum
power loss. The maximum temperature needs to be obeyed, the worst case
usually taken as 100◦C. The power loss per area, e.g. heating, needs to stay
constant at an appropriate maximum level around 200 kW/m2 (Fig. 23.35b)
unless higher (and more expensive) efforts on cooling are made. At the same
time the device performance needs to be maintained if not improved, e.g. for
lower power dissipation in battery operated devices. Very important is the
reduction of operation voltage VDD in order to keep electric fields and power
consumption small enough (Fig. 23.35). The power consumption in stand-by
mode Poff depends on VDD and the subthreshold (off) current

Poff = Wtot VDD Ioff , (23.78)

where Wtot is the total width of the turned-off devices and Ioff is the aver-
age off-current per device per width. The latter increases exponentially with
reduced threshold voltage VT,

Ioff = I0 exp
(
− eVT

nkT

)
, (23.79)

with ideality factor n ≈ 1.2 and I0 ≈ 1–10 μA/μm [1413]. A well-functioning
MOSFET requires a ratio of VT/VDD of < 0.3.

The power consumption in active mode Pac depends also on the clock
speed (frequency f) that increases with higher integration due to shorter
gate length,

Pac = Csw V
2
DD f , (23.80)

where Csw is the total node capacitance being charged and decharged in a
clock cycle.

Historically the oxide thickness has been reduced less than the channel
length [1413] (Fig. 23.35a) leading to increased local fields. The reduction
of the physical gate oxide thickness is limited due to gate leakage through
tunneling [1415]. While for a gate voltage of 1.5 V and oxide thickness
tox = 3.6 nm the leakage current is only about 10−8 A/cm2, it is about
1 A/cm2 for tox = 2.0 nm and about 104 A/cm2 for tox = 1.0 nm. Obviously
variations of oxide thickness are more harmful at small average thickness.
1.2 nm physical SiO2 thickness has been used in the 90 nm (gate length) logic
node.

The technological solution for further reduction of oxide thickness is the
use of geometrically thicker layers, to suppress tunneling, with higher dielec-
tric constant (‘high-k dielectrics’), e.g. HfO2 [1416], to maintain reasonable
gate capacitance per gate width

CG =
εox
tox

L , (23.81)

(cmp. (23.67)) at a value of about 1.0–1.5 fF/μm (Fig. 23.35)b. For the 45 nm
technology node a 0.7-fold reduction in electrical oxide thickness was achieved
while reducing gate leakage 1000× for the PMOS and 25× for the NMOS
transistors [1417].
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(a) (b)

Fig. 23.35. Scaling of MOSFET parameters gate oxide thickness tox, power supply
voltage VDD (across source–drain), threshold voltage VT, total power loss per area
P , gate capacitance per channel width CG and inverter delay τ , the time required to
propagate a transition through a single inverter driving a second, identical inverter,
commonly used as a means of gauging the speed of CMOS transistors. Data for (a)
from [1413] and for (b) selected from [1414]

Materials

The electronics industry is based on silicon as the material for transistors.
However, many other materials are incorporated in the technology. Tradition-
ally silicon dioxide gate oxide is used, silicon nitride for insulation layers and
polysilicon for gate contacts. For wiring aluminum has been used. Silicides
were introduced as contact materials around 1986.

Progress was made with copper interconnects (IBM, 1997), replacing alu-
minum. The better electrical and heat conductivity could previously not be
used since Cu is a deep level in Si (cf. Fig. 7.6). The key to success was an
improved barrier technology based on amorphous TaN- or TiN-based bar-
rier layers to prevent the diffusion of Cu into the silicon and dielectric lay-
ers. The first chip from series production, incorporating the Cu technology,
was the PowerPC 750 (400 MHz) in 1998. Since 2000 high-k, i.e. large εr,
Hf-containing gate dielectrics are used (Fig. 23.36). HfO2 has a dielectric
constant of 25–30. 45 nm node technology probably uses HfZrO, HfSiO or
HfSiON [1418] gate dielectrics with k ∼ 12 and an electrical thickness of
tox εSiO2/εox = 1.0 nm.

Germanium is reintroduced into mainstream semiconductor technology
via SiGe stressors in the source and drain for PMOS. Uniaxial compressive
strain in the channel region leads to 30% increased saturation current [1420]
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Fig. 23.36. Cross-section TEM image of 45 nm node PMOS transistor with high-k
Hf-containing gate oxide (dark) above a thin SiO2 layer (white). The role of the
stressor SiGe pockets is explained in Fig. 23.35. Adapted from [1419]

mostly due to reduced effective masses [526, 1421, 1422] (Sect. 8.3.11) for
90 nm transistors. Similarly, uniaxial tensile strain in NMOS, introduced by
SiN caps or more recently tensile trench contacts [1417], allows for 10% higher
saturation current [1420] (Fig. 23.37). The enhanced electron mobility is due
to strain-induced splitting of the X-valley and change of electron mass [1423].
Further improvement to 18% (NMOS) and 50% (PMOS) increase in ID,sat

compared to unstrained Si have been made in 65 nm transistors [1411].
The end of the miniaturization has been theoretically predicted many

times and for various feature sizes. Today, only fundamental limits such as
the size of an atom seems to limit circuit design.10 Such limits (and the ef-
fects in nanostructures in the few-nm regime) will be reached beyond 2010,
projected at about 2020. Up to then, it is probable that at least a few com-
panies will follow the road map for further miniaturization, as laid out by
the Semiconductor Industry Association11 (SIA).

23.5.6 Tunneling FETs

A decisive parameter for FET performance is low leakage current. With
shrinking device dimensions it increases rapidly for conventional FET de-
sign. A novel type of FET has thus been conceptualized, the tunneling FET
(TFET) [1426]. It is a lateral p-i-n diode with a MOS gate (Fig. 23.38).
The leakage current is minimized due to the reverse biased p-i-n structure.

10Only commercial profit, rather than testing physical limits, drives the minia-
turization. Insufficient economic advantages or low yield of further chip generations
possibly can limit or slow down large-scale integration.

11www.semichips.org
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++

Fig. 23.37. Cross-section TEM images of strained (a) PMOS and (b) NMOS
transistors. Adapted from [1424]. (c–f) Modelling of strain distribution: PMOS
without (c) and with (e) Si0.83Ge0.17 pockets, NMOS without (d) and with (f)
tensile cap layer. Adapted from [1425]

A low leakage current (per gate width) of less than 10−14 A/μm has been
realized [1427, 1428]. The channel current is due to band-to-band tunneling
as in an Esaki diode (Sect. 20.5.9) and can be controlled by the gate volt-
age [1429]. The surface tunneling junction is close to the source electrode.
The use of germanium instead of silicon allows further performance enhance-
ments [1430].
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Fig. 23.38. Schematic of a (a) n-type and (b) p-type tunneling FET (TFET). D is
reversely biased, i.e. positive for NTFET and negative for PTFET. The grey areas
represent the gate oxide, the arrows denote the spatial position of tunneling (surface
tunneling junction) for sufficient (NTFET: positive, PTFET: negative) gate voltage

23.5.7 Nonvolatile Memories

Floating Gate Memories

When the gate electrode of a MOSFET is modified in such a way that a
(semi-)permanent charge can be stored in the gate, a nonvolatile electronic
memory can be fabricated. In the floating-gate structure (Fig. 23.39a), an
insulator–metal–insulator structure is used where charge is stored in the
metal and cannot escape through the insulating barriers. The ‘metal’ is of-
ten realized by poly-Si. In the MIOS structure (Fig. 23.39b), the insulator–
oxide interface is charged. The charge can be removed by UV light (EPROM,
erasable programmable read-only memory) or by a sufficient voltage across
the oxide at which the charge carriers can tunnel out (Fowler–Nordheim tun-
neling) (EEPROM, E2PROM, electrically erasable programmable read-only
memory).
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VBS

n-Si

p+

VG
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VBS

n-Si

p+

(b)(a)

floating
gate

(oxide)

Fig. 23.39. MOSFET with (a) floating gate and (b) MIOS structure

Nowadays, a special type of EEPROM is used for the so-called flash mem-
ories. The stored gate charge causes a change in the MOSFET threshold volt-
age and is designed to switch between the on and off state. The storage time of
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the charge can be of the order of 100 years. Since tunneling limits the charge
retention, the oxide must be sufficiently thick. In Fig. 23.40 a cross section
of a 4 Gb, 73 nm SLC (single-level cell) flash memory is shown. The lower
insulator (tunneling oxide at the channel) consist of 7.2 nm SiO2, the upper
insulator (insulator 1 in Fig. 23.39a) is a 18 nm thick oxide/nitride/oxide
(ONO) stack. The floating gate has a 90 × 90 nm2 footprint, is about 86 nm
high and consists of two polysilicon layers.

In a SLC memory the floating gate has two states, a certain charge value
and the erased state. In a MLC (multi-level cell) the gate can store several
charge states which can be sensed as different logic states, e.g. 22 = 4 states.
This increases the storage density, lowering cost per bit, but also increases
the complexity. SLC cells so far have the higher endurance (possible num-
ber of read–write cycles) and lower power consumption. Generally SLC flash
memory is considered industrial grade and MLC flash is considered consumer
grade.

Typical endurance is at least 106 program–erase cycles. The ultimate
limit, explored currently, is to use a single electron charge to cause such
an effect in the single-electron transistor (SET).

Future Concepts

Memory concepts beyond the storage of free charges include information stor-
age via

• the static polarization in a ferroelectric material (either crystalline or poly-
mer) (FeRAM [1431], Fig. 23.41a) which can be switched by an electric
field.

Fig. 23.40. Cross sections (a) perpendicular and (b) parallel to the control gate
line of a 4 Gb, 73 nm SLC flash memory (Samsung K9F4G08U0M). ‘CG’ denotes
the control gate, ‘FG’ the floating gate, ‘TO’ the tunneling oxide, ‘ONO’ the ox-
ide/nitride/oxide insulator stack, and ‘STI’ the shallow trench insulation. Adapted
from [1412]
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• the phase change between amorphous and polycrystalline phases in a
chalcogenide layer (typically GeSb [1432] or Ge2Sb2Te5, GST [1433, 1434]
with an α ↔ c transition, Fig. 23.42) upon local heating (similar to
a rewritable DVD) and the related change is resistivity (PCM, phase
change memory).

• the storage of magnetization direction (MRAM [1435, 1436]) and subse-
quent resistance change of a magneto-tunneling junction (MTJ) whose
resistance depends on the relative magnetization (parallel or perpendic-
ular) of two magnetic layers separated by a thin tunneling insulator
(Fig. 23.41b). The largest TMR (tunnel-magnetoresistance) effect has
been achieved with MgO as insulator [1436]. The magnetization of the
bottom magnetic layer of the MTJ is fixed. The magnetization directions
±45◦ are written into the free layer with the magnetic fields of two per-
pendicular high current wires in two subsequent back-end interconnect
layers sandwiching the MTJ.

• resistance change based on solid electrolytes (PMC, programmable metal-
lization cell memory). The lowering of the resistance is attained by the
reduction of ions in a fairly high resistivity electrolyte (e.g. from the sys-
tem Cu,Ag–Ge–Se,S,O [1437, 1438] or oxides [1439]) to form a conducting
bridge between the electrodes. The resistance is returned to the high value
via the application of a reverse bias that results in the breaking of the
conducting pathway.

• resistance change in transition metal oxides such as perovskites, e.g.
SrTiO3:Cr [1440, 1441] or NiO:Ti (RRAM). Electrical pulses of op-
posite polarity switch the resistance reversibly between a high- and a
low-resistance state. Oxygen-vacancy drift modulates the valence of the
mixed-valence transition-metal ion (e.g. Ti3+–Ti4+) and thus the con-
ducting state [1442].

• a molecular configuration change (e.g. redox reaction) between crossed wire
lines (molecular electronics [1443–1445].

23.5.8 Heterojunction FETs

Several types of field-effect transistors have been devised that use heterojunc-
tions (HJFET).

HIGFET

As conducting channel, the two-dimensional electron gas at an undoped
heterointerface is used. Such a transistor is called a heterojunction insulat-
ing gate FET (HIGFET). With forward or backward gate voltage, an elec-
tron or hole gas can be created (channel enhancement mode), as visualized
in Fig. 23.43. Thus, a complementary logic can be realized. However, the
p-channel suffers from low hole mobility.
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(a) (b)

Fig. 23.41. (a) Cross-section TEM image of a cell from a Ramtron 4 Mb
FeRAM. The information is stored in the electric polarization of a polycrystalline
Pb(TixZr1−x)O3 (PZT) island, contacted on the bottom and top with platinum
and iridium oxide, respectively. Adapted from [1412]. (b) Cross-section TEM of
the magnetic tunneling junction from a Freescale 4.2 Mb MRAM, located between
the M4 and M5 interconnect layers. The magnetization of the free layer can be
switched, that of the fixed layer remains constant. Adapted from [1412]

(a) (b)

Fig. 23.42. (a) Radial distribution function of ions in Ge2Sb2Te5 (GST) for various
temperatures (cmp. Fig. 3.14b). Adapted from [1433]. (b) Atom arrangement in the
amorphous phase of GST with square units highlighted that nucleate crystallization.
Adapted from [1434]

HEMT

If the top wide-bandgap layer is n-doped, a modulation-doped FET (MOD-
FET) is made (see Sect. 11.3.4). This structure is also called a HEMT (high
electron mobility transistor) or TEGFET (two-dimensional electron gas FET)
(Fig. 23.44). A thin undoped AlGaAs spacer layer is introduced between the
doped AlGaAs and the undoped GaAs to reduce impurity scattering from
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+

(b)
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Fig. 23.43. (a) Scheme of a HIGFET structure with metal gate and undoped
AlGaAs/GaAs heterointerface on semi-insulating GaAs. The source and drain con-
tacts are n-doped such that this structure can be used as an n-HIGFET (see part
(c)). (b) Band diagram for zero gate voltage. (c) Band diagram for positive gate
voltage and n-channel, (d) for negative gate voltage and p-channel

carriers that tunnel into the barrier. With increasing gate voltage, a par-
allel conduction channel in the AlGaAs is opened. The natural idea would
be to increase the Al fraction in the AlGaAs to increase the quantum-well
barrier height. Unfortunately, the barrier height is limited to 160 meV for
an aluminum concentration of about 20%. For Al content higher than about
22%, the DX center (cf. Sect. 7.7.6) forms a deep level such that the ap-
parent ionization energy increases drastically and no shallow donors can
be used for modulation doping. An improvement for the barrier conduc-
tion problem is the use of δ-doping [1446], i.e. the introduction of a highly
doped thin (mono-)layer (Fig. 23.45), which results in higher channel carrier
concentration.

Pseudomorphic HEMTs

Instead of increasing the height of the barrier, the depth of the well can
be increased by using a low-bandgap material. On GaAs substrate, InGaAs
is used (Fig. 23.46). However, strain is introduced in this case and the In-
GaAs layer thickness is limited by the onset of dislocation formation (cf.
Sect. 5.3.7) (which reduces the channel mobility and the device reliability).
For In0.15Ga0.85As (thickness about 10–20 nm), a total barrier height of about
400 meV can be obtained. A barrier height of 500 meV can be reached with
an InAlAs/InGaAs structure on InP (Fig. 23.47). The InAlAs does not suffer
from the problem related to DX centers. The channel indium concentration is
typically 50%. The mobility increases with increasing indium concentration.
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(a)

S G D

n+

n-AlGaAs

si-GaAs

undoped
AlGaAsn+

(b) (c) (d)

V >0G

V >0G

+ +
++

Fig. 23.44. (a) Scheme of a HEMT structure with n-AlGaAs/GaAs heterointerface
on semi-insulating GaAs. The source and drain contacts are n-doped such that this
structure can be used as an n-channel (normally-on) HEMT. The horizontal dashed
line represents schematically the position of the 2DEG at the heterointerface on the
GaAs side. (b) Band diagram at zero gate voltage. (c) Band diagram at positive
gate voltage, increase of channel carrier concentration. (d) Band diagram at even
larger positive gate voltage, formation of conducting channel in the AlGaAs layer

This InP-based HEMT structure is widely used in satellite receivers for its
excellent high-speed and low-noise properties in the 100–500 GHz range and
beyond.

However, the InP technology is economically less favorable than GaAs due
to smaller available substrate size and higher cost (2001: 4” InP substrate:
$1000, 6” GaAs substrate: $450).

(a)

S G D

n+

undoped AlGaAs

si-GaAs

dopant
sheet

n+

(b)

+

Fig. 23.45. (a) Scheme of a δ-doped HEMT structure with AlGaAs/GaAs het-
erointerface on semi-insulating GaAs. The source and drain contacts are n-doped
such that this structure can be used as an n-channel HEMT. The horizontal dashed
line represents schematically the position of the 2DEG in the GaAs layer. (b) Band
diagram at zero gate voltage
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(a)
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n-AlGaAs

si-GaAs

undoped
AlGaAs
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++

Fig. 23.46. (a) Scheme of a PHEMT structure with n-AlGaAs/InGaAs heteroin-
terface on semi-insulating GaAs. The source and drain contacts are n-doped such
that this structure can be used as an n-channel HEMT. The horizontal dashed line
represents schematically the position of the 2DEG in the InGaAs layer. (b) Band
diagram at zero gate voltage

S G D

n-InAlAs

si-InP

undoped
InAlAs

n+ n+ undoped
InGaAs

n InGaAs+

Fig. 23.47. Scheme of a PHEMT structure with n-AlInAs/InGaAs/InAlAs struc-
ture on semi-insulating InP. The source and drain contacts (with a highly doped
InGaAs contact layer) are an n-doped such that this structure can be used as an
n-channel HEMT. The horizontal dashed line represents schematically the position
of the 2DEG in the InGaAs layer.

Metamorphic HEMTs

A unification of the InAlAs/InGaAs structure with the best figure of merit
and the GaAs substrate is achieved with the metamorphic HEMT (MHEMT).
Here, a relaxed buffer is used to bring the in-plane lattice constant from
that of GaAs to about that of InP. It is key that the defects occurring are
confined to the relaxed buffer and do not enter the active device structure
(see Fig. 23.48). The relaxed buffer is typically about 1 μm thick. It can be
grown, e.g., with a graded Inx(Ga,Al)1−xAs layer with x =0–42% or with a
stepped structure with piecewise constant indium concentration in each layer.
It is important that a smooth interface of the channel is achieved inorder to
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Fig. 23.48. Cross-sectional TEM image of an InAlAs/InGaAs MHEMT: (a) Active
layer with rms surface roughness of 2.0 nm (from AFM), (b) graded InGaAlAs buffer
layer (1.5 μm) on GaAs substrate. Adapted from [1453]

avoid additional scattering mechanisms. For high-frequency operation, the
fabrication of a small gate length is important, as shown in Fig. 23.49 for
a 70-nm gate of a fT =293 GHz, fmax = 337 GHz transistor [1447]. SiGe

Fig. 23.49. Cross-sectional TEM image of the 70-nm gate of an InAlAs MHEMT
on GaAs substrate. From [1447]
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channels, providing higher mobility than pure Si, can be fabricated using
graded or stepped SiGe buffer layers on Si substrate. With such Si-based
MHEMTs frequencies up to 100 GHz can be achieved.

23.6 Thin-Film Transistors

Thin-film transistors (TFTs) are field-effect transistors typically fabricated
as large-area arrays from thin layers of polycrystalline or amorphous sili-
con [1448] or organic semiconductors [1449–1452] on cheap substrates such
as glass. Their most prominent use is driving pixels in active-matrix displays
such as electroluminescence (EL) displays or twisted nematic liquid crystal
displays (LCD) [1454]. Various gates and gate geometries have been reported
as depicted in Fig. 23.50.

23.6.1 Annealing of Amorphous Silicon

Since the mobility in polycrystalline silicon is much higher (up to several hun-
dred cm2/Vs depending on grain size, see Sect. 8.3.8) than in amorphous sili-
con (< 1 cm2/Vs), such material is much more desirable as channel in TFTs.
However, it requires high deposition temperatures. In order to achieve poly-
crystalline silicon with large grain size from amorphous silicon films that can
be deposited at low temperature (down to room temperature) several schemes
have been developed, the most important being thermal annealing and
(excimer) laser annealing (ELA). Crystallization occurs by thermally acti-
vated nucleation and growth processes [1455]. Polycrystalline layers will small
grain size can be made amorphous with implantation of Si (self-implantation)
and a subsequent optimized (re-)crystallization processes.

In laser annealing energy is locally introduced during short pulses (sev-
eral 10 ns or even fs); subsequent material change occurs on a sub-μs time
scale [1456]. Laser induced crystallization enables the use of inexpensive low-
temperature substrates, such as plastic or glass, since it involves the ultra-
fast melting and resolidification of the near-surface region of the sample, and

Fig. 23.50. Schematic geometries of TFTs: (a-c) MISFETs, (d) MESFET with
(a, b) bottom gate and (c, d) top gate. Semiconductor channel layer (light grey),
insulating dielectric (dark grey) and metals (black)
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minimal heating of the substrate. Local processing is also possible using laser
crystallization.

In Fig. 23.51 the effect of thermal annealing of amorphous silicon is shown.
The annealing time necessary to convert the amorphous phase completely to
polycrystalline, e.g. 10 h at 640◦C, depends largely on temperature as detailed
in [1457, 1458] (Fig. 23.51a) with a large activation energy of 3.9 eV. Also
the final grain size is temperature dependent (Fig. 23.51b).

(d) (e)

Fig. 23.51. Thermal annealing of 100 nm thick film of amorphous silicon (fabri-
cated from LPCVD and amorphized by 100 keV Si+ implantation with a dose of
5 × 1015 cm−2). TEM images and diffraction patterns (insets) for amorphized Si
after (a) 4 h, (b) 5.25 h and (c) 7.1 h annealing at T = 630◦C. The crystalline frac-
tions are 2%, 28% and 87%, respectively. (d) Crystalline fraction as a function of
annealing time for various annealing temperatures as labeled. Symbols are experi-
mental data, solid lines depict theory considering grain nucleation and growth. (e)
Final grain size for various annealing temperature. Dashed line is exponential with
a slope of 0.6 eV. Adapted from [1457]
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The introduction of certain metals like Pd [1459], Al [1460], Au [1461] or
Ni [1462] induces crystallization and allows for much lower annealing temper-
atures. Pd and Ni create silicides that play an important role for the grain
nucleation or growth front. Au and Al are solved in the bulk but have a sim-
ilar effect. For example, using Pd complete crystallization of a 150 nm thick
a-Si film deposited at 480◦C can be achieved by thermal annealing after 10 h
at only 500◦C [1463] (using metal-induced lateral crystallization, MILC).

23.6.2 TFT Devices

A schematic cross section of an amorphous silicon-based TFT is shown in
Fig. 23.52a. Carriers in amorphous silicon have a low mobility typically less
than 1 cm2/Vs [1464, 1465]. As-grown polycrystalline silicon has a mobility
of typically less than 10 cm2/Vs. With the use of laser irradiation or ther-
mal annealing, amorphous or small-grain polycrystalline silicon layers can be
recrystallized, increasing the mobility up to several 100 cm2/Vs, improving
transistor performance [1464, 1466, 1467]. However, for display applications
a mobility of 10 cm2/Vs is large enough.

The main optimization criteria for thin-film transistors are high on-off ra-
tio, long-term stability, good uniformity and reproducibility, and low cost.
Recently, flexible (on polymer substrate) and transparent TFTs (TFET,
transparent FET), e.g. with polycrystalline ZnO or GaInZnO (GIZO) chan-
nel (Fig. 23.52b), are being investigated for advanced applications such as
all-transparent electronics and displays [1111, 1468–1471]. A compilation of
recent results on transparent semiconducting oxide (TSO) channel FETs can
be found in [1472]. In Fig. 23.53 performance data for various TSO channel
FETs are visualized. In Fig. 23.54 a transparent inverter based on ZnO-
MESFETs is depicted [1473].

23.6.3 OFETs

Organic field effect transistors (OFETs) [1474–1477] are transistors for which
at least the channel consists of an organic material. Most work is done on thin

(a) (b)

Fig. 23.52. (a) Schematic cross section of a top-gate amorphous silicon (a-Si)
thin-film transistor (MISFET) on glass substrate. (b) Schematic cross section of a
transparent ZnO thin-film transistor (MESFET)
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(a) (b)

–

–

Fig. 23.53. (a) Field effect mobility and on/off current ratio for oxide chan-
nel transistors. Filled squares represent MISFET transistors; open squares are for
MESFETs from Ref. [1471]. The shaded area indicates best performance. (b) Volt-
age swing for MISFETs (filled squares, subthreshold voltage swing) and MESFET
(empty square, above turn-on voltage from Ref. [1471]) with TSO channels. The
dashed line is guide to the eyes for the trend of best performance. The dash-
dotted line indicates the thermodynamic limit of about 60 meV/decade for the
swing [1480]. Adapted from [1472]

(a) (b)
– –

Fig. 23.54. (a) Optical image of transparent MESFET inverter based on ZnO.
The two rectangles indicate the two gates. (b) Transfer characteristic for supply
voltage VDD=4 V

film transistors, although some work on OFETs using bulk organic semicon-
ductors has been reported [1478, 1479]. Organic materials are also used for
the insulator and the contact materials. Often organic and flexible substrates
are used. Applications are in low cost electronics, e.g. for driving display pix-
els or RFID tags (typically operating at 13.56 MHz or 900 MHz). Processes
like spin-on and printing can be used. Due to their larger chemical stability
against oxidation, mostly p-type channel materials are used. The highest mo-
bilities are reached for pentacene (6 cm2/Vs) and sexithiophene (1 cm2/Vs);
n-type organic semiconductors exhibit field mobility below 0.1 cm2/Vs [1475].
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Appendices



A Tensors

Introduction

A physical quantity Tij...m with a total of k indices that is independent of
translations of the coordinate system and transforms with respect to all in-
dices like a vector is called a tensor of rank k.

Often, Einstein’s sum convention is used; a sum is built over indices with
the same symbol. For example, x′i = Dijxj shall be read as x′i =

∑3
j=1Dijxj .

Rotation of Coordinate System

A rotation of the coordinate system is a transformation x → x′ that is written
in components as

x′i = Dijxj . (A.1)

D is called the rotation matrix. The inverse of the rotation matrix is D−1

with
D−1

kl = Dlk , (A.2)

i.e. it is the transposed matrix D. The inverse transformation is xj = Dijx
′
i.

Thus,
DijDkj = δij . (A.3)

A simple example is the azimuthal rotation around the z-axis by an angle
φ (in the mathematically positive direction)

D =

⎛

⎜
⎝

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

⎞

⎟
⎠ . (A.4)

For the description of a general rotation (x, y, z) → (X,Y,Z), gener-
ally three angles are necessary. Typically, the Euler angles (φ, θ, ψ) are used
(Fig. A.1). First, the system is rotated by φ around the z-axis. The y-axis
becomes the u-axis. Then, the system is tilted by θ around the u-axis and
the z-axis becomes the Z-axis. Finally, the system is rotated by ψ around
the Z-axis.

M. Grundmann, The Physics of Semiconductors, 2nd ed., Graduate Texts 769
in Physics, DOI 10.1007/978-3-642-13884-3 24,
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Y
Z

X

z

x

y

Fig. A.1. Rotation of a coordinate system (x, y, z) by the Euler angles (φ, θ, ψ)
into the system (X,Y, Z)

The matrix for the general rotation by the Euler angles is
⎛

⎜
⎝

cosψ cos θ cosφ− sinψ sinφ − sinψ cos θ cosφ− cosψ sinφ sin θ cosφ
cosψ cos θ sinφ+ sinψ cosφ − sinψ cos θ sinφ+ cosψ cosφ sin θ sinφ

− cosψ sin θ sinψ sin θ cos θ

⎞

⎟
⎠ .

(A.5)

Rank-n Tensors

Rank-0 Tensors

A tensor of rank 0 is also called a scalar. For example, the length v2
1 +v2

2 +v2
3

of the vector v = (v1, v2, v3) is a scalar since it is invariant under rotation of
the coordinate system. However, ‘scalar’ is not equivalent to ‘number’ since,
e.g. the number v2

1 + v2
2 is not rotationally invariant.

Rank-1 Tensors

A tensor of rank 1 is a vector. It transforms under coordinate rotation D as

v′i = Dijvj . (A.6)

Rank-2 Tensors

A tensor of rank 2 is also called a dyade and is a 3×3 matrix T that transforms
under coordinate rotation as

T ′
ij = DikDjlTkl . (A.7)
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The physical meaning is the following: Two vectors s and r shall be related
to each other via si = Tijrj . This could be, e.g., the current j and the electric
field E that are connected via the tensor of conductivity σ, i.e. ji = σijEj .

Such an equation only makes physical sense if it is also valid in a
(any) rotated coordination system. The tensor T′ in the rotated coordi-
nate system must fulfill s′i = T ′

ijr
′
j . This implies the transformation law

(A.7). s′k = Dkisi = DkiTijrj and also s′k = T ′
kmr

′
m = T ′

kmDmjrj . Thus,
T ′

kmDmj = DkiTij since the previous relations are valid for arbitrary r. Mul-
tiplication by Dlj yields T ′

kmDmjDlj = T ′
kmδml = T ′

kl = DkiDljTij .
The trace of a rank-2 tensor is defined as trT = Tii = T11 + T22 +T33. It

is a scalar, i.e. invariant under coordinate rotation, since T ′
kk = DkiDkjTij =

δijTij = Tii.
A rank-2 tensor can be separated into a symmetric part TS and an anti-

symmetric part TA, i.e. TS
ji = TS

ij and TA
ji = −TA

ij with

T = TS + TA (A.8a)

TS
ij =

Tij + Tji

2
(A.8b)

TA
ij =

Tij − Tji

2
. (A.8c)

A rank-2 tensor can be separated into an isotropic (spherical) part TI

and a deviatoric part TD. The isotropic part is invariant under coordinate
rotation.

T = TI + TD (A.9a)

T I
ij = δij

trT
3

(A.9b)

TD
ij = Tij − δij

trT
3

. (A.9c)

The trace of T is the same as that of TI . The trace of TD is zero.

Rank-3 Tensors

A tensor of rank 3 transforms according to

T ′
ijk = DilDjmDknTlmn . (A.10)

An example is the tensor e of piezoelectric constants that relates the rank-
2 tensor of the strains ε with the polarization vector P, i.e. Pi = eijkεjk.

Rank-4 Tensors

A tensor of rank 4 transforms according to

T ′
ijkl = DimDjnDkoDlpTmnop . (A.11)

An example is the tensor C of elastic constants that relates the rank 2
tensors ε and σ of the elastic strains and stresses, i.e. σij = Cijklεkl.



B Space Groups

The space groups of crystallography have been introduced in Sect. 3.3.3.
Here, a complete list of all 230 space groups and their standard international
notation is given.
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Table B.1. Space group numbers and corresponding space group symbols

1 P1 2 P1̄ 3 P2 4 P21 5 C2
6 Pm 7 Pc 8 Cm 9 Cc 10 P2/m
11 P21/m 12 C2/m 13 P2/c 14 P21/c 15 C2/c
16 P222 17 P2221 18 P21212 19 P212121 20 C2221

21 C222 22 F222 23 I222 24 I212121 25 Pmm2
26 Pmc21 27 Pcc2 28 Pma2 29 Pca21 30 Pnc2
31 Pmn21 32 Pba2 33 Pna21 34 Pnn2 35 Cmm2
36 Cmc21 37 Ccc2 38 Amm2 39 Abm2 40 Ama2
41 Aba2 42 Fmm2 43 Fdd2 44 Imm2 45 Iba2
46 Ima2 47 Pmmm 48 Pnnn 49 Pccm 50 Pban
51 Pmma 52 Pnna 53 Pmna 54 Pcca 55 Pbam
56 Pccn 57 Pbcm 58 Pnnm 59 Pmmn 60 Pbcn
61 Pbca 62 Pnma 63 Cmcm 64 Cmca 65 Cmmm
66 Cccm 67 Cmma 68 Ccca 69 Fmmm 70 Fddd
71 Immm 72 Ibam 73 Ibca 74 Imma 75 P4
76 P41 77 P42 78 P43 79 I4 80 I41

81 P4̄ 82 I4̄ 83 P4/m 84 P42/m 85 P4/n
86 P42/n 87 I4/m 88 I41/a 89 P422 90 P4212
91 P4122 92 P41212 93 P4222 94 P42212 95 P4322
96 P43212 97 I422 98 I4122 99 P4mm 100 P4bm
101 P42cm 102 P42nm 103 P4cc 104 P4nc 105 P42mc
106 P42bc 107 I4mm 108 I4cm 109 I41md 110 I41cd
111 P4̄2m 112 P4̄2c 113 P4̄21m 114 P 4̄21c 115 P4̄m2
116 P4̄c2 117 P4̄b2 118 P4̄n2 119 I4̄m2 120 I4̄c2
121 I4̄2m 122 I4̄2d 123 P4/mmm 124 P4/mcc 125 P4/nbm
126 P4/nnc 127 P4/mbm 128 P4/mnc 129 P4/nmm 130 P4/ncc
131 P42/mmc 132 P42/mcm 133 P42/nbc 134 P42/nnm 135 P42/mbc
136 P42/mnm 137 P42/nmc 138 P42/ncm 139 I4/mmm 140 I4/mcm
141 I41/amd 142 I41/acd 143 P3 144 P31 145 P32

146 R3 147 P3̄ 148 R3̄ 149 P312 150 P321
151 P3112 152 P3121 153 P3212 154 P3221 155 R32
156 P3m1 157 P31m 158 P3c1 159 P31c 160 R3m
161 R3c 162 P3̄1m 163 P3̄1c 164 P3̄m1 165 P3̄c1
166 R3̄m 167 R3̄c 168 P6 169 P61 170 P65

171 P62 172 P64 173 P63 174 P6̄ 175 P6/m
176 P63/m 177 P622 178 P6122 179 P6522 180 P6222
181 P6422 182 P6322 183 P6mm 184 P6cc 185 P63cm
186 P63mc 187 P6̄m2 188 P6̄c2 189 P6̄2m 190 P6̄2c
191 P6/mmm 192 P6/mcc 193 P63/mcm 194 P63/mmc 195 P23
196 F23 197 I23 198 P213 199 I213 200 Pm3̄
201 Pn3̄ 202 Fm3̄ 203 Fd3̄ 204 Im3̄ 205 Pa3̄
206 Ia3̄ 207 P432 208 P4232 209 F432 210 F4132
211 I432 212 P4332 213 P4132 214 I4132 215 P4̄3m
216 F4̄3m 217 I4̄3m 218 P4̄3n 219 F4̄ 3c 220 I4̄3d
221 Pm3̄m 222 Pn3̄n 223 Pm3̄n 224 Pn3̄m 225 Fm3̄m
226 Fm3̄c 227 Fd3̄m 228 Fd3̄c 229 Im3̄m 230 Ia3̄d



C Kramers–Kronig Relations

The Kramers–Kronig relations (KKR) are relations between the real and
imaginary part of the dielectric function. They are of a general nature
and are based on the properties of a complex, analytical response function
f(ω) = f1(ω) + if2(ω) fulfilling the following conditions:1

· The poles of f(ω) are below the real axis.
· The integral of f(ω)/ω along a semicircle with infinite radius in the upper

half of the complex plane vanishes.
· The function f1(ω) is even and the function f2(ω) is odd for real values

of the argument.

The integral of f(s)/(s−ω)ds along the real axis and an infinite semicircle
in the upper half of the complex plane is zero because the path is a closed
line. The integral along a semicircle above the pole at s = ω yields −πif(ω),
the integral over the infinite semicircle is zero. Therefore the value of f(ω) is
given by2

f(ω) =
1
πi

Pr
∫ ∞

−∞

f(s)
s− ω

ds . (C.1)

Equating the real and imaginary parts of (C.1) yields for the real part

f1(ω) =
1
π

Pr
∫ ∞

−∞

f2(s)
s− ω

ds . (C.2)

Splitting the integral into two parts
∫ ∞
0

and
∫ 0

−∞, going from s to −s
in the latter and using f2(−ω) = −f2(ω) and 1

s−ω + 1
s+ω = 2s

s2−ω2 yields
(C.3a)

f1(ω) =
2
π

Pr
∫ ∞

0

sf2(s)
s2 − ω2

ds (C.3a)

f2(ω) = − 2
π

Pr
∫ ∞

0

f1(s)
s2 − ω2

ds . (C.3b)

1The requirements for the function f to which the KKR apply can be interpreted
as that the function must represent the Fourier transform of a linear and causal
physical process.

2The Cauchy principal value Pr of the integral is the limit for δ → 0 of the sum
of the integrals over −∞ < s < ω − δ and ω + δ < s < ∞.
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In a similar way, (C.3b) is obtained. These two relations are the Kramers–
Kronig relations [1481, 1482]. They are most often applied to the dielectric
function ε. In this case, they apply to the susceptibility, i.e. f(ω) = χ(ω) =
ε(ω)/ε0 − 1. The susceptibility can be interpreted as the Fourier transform
of the time-dependent polarization in the semiconductor after an infinitely
short pulsed electric field, i.e. the impulse response of the polarization. For
the dielectric function ε = ε1 + iε2, the following KKR relations hold:

ε1(ω) = ε0 +
2
π

Pr
∫ ∞

0

sε2(s)
s2 − ω2

ds (C.4a)

ε2(ω) = −2ω
π

Pr
∫ ∞

0

ε1(s) − ε0
s2 − ω2

ds . (C.4b)

The static dielectric constant is thus given by

ε(0) = ε0 +
2
π

Pr
∫ ∞

0

ε2(s)
s

ds . (C.5)

The integral does not diverge since ε2 is an odd function and zero at ω = 0.
Generally the j–th momentum Mj of the imaginary part of the dielectric
function is

Mj =
∫ ∞

0

ε2(ω)ωjdω . (C.6)

Thus, M−1 = π[ε(0) − ε0]/2.
Other KKRs are, e.g., the relation between the index of refraction nr and

the absorption coefficient α:

nr(λ) =
1
π

Pr
∫ ∞

0

α(s)
1 − s2/λ2

ds . (C.7)

If the imaginary (real) part of the dielectric function is known (for all
frequencies), the real (imaginary) part can be calculated via the KKR. If the
dependence is not known for the entire frequency range, assumptions about
the dielectric function in the unknown spectral regions must be made that
limits the reliability of the transformation.



D Oscillator Strength

The response of an oscillator to an electric field E is formulated with the
dielectric function. The resulting polarization P is related to the electric field
via

P = ε0χE , (D.1)

with χ being the electric susceptibility, and the displacement field D is given
by

D = ε0E + P = ε0εE . (D.2)

Thus the (relative) dielectric constant is

ε = 1 + χ . (D.3)

We assume a harmonic oscillator model for an electron, i.e. an equation
of motion for the amplitude x = x0 exp(iωt)

mẍ = −Cx . (D.4)

The resonance frequency is ω2
0 = C/m. The presence of a harmonic electric

field E of frequency ω and amplitude E0 adds a force eE. Thus,

−mω2x = −mω2
0x+ eE . (D.5)

The polarization ex0 is given by

ex0 =
e2

m

1
ω2

0 − ω2
E0 =

e2

mω2
0

1
1 − ω2

ω2
0

E0 . (D.6)

The pre-factor is called the (dimensionless) oscillator strength and will be
denoted as

f =
e2

ε0mω2
0

(D.7)

in the following. The frequency-dependent dielectric function of the resonance
is thus

ε(ω) = 1 +
f

1 − ω2

ω2
0

. (D.8)
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In the low-frequency limit, the dielectric function is ε(0) = 1 + f , in the
high-frequency limit ε(∞) = 1. The oscillator strength is the difference of ε
for frequencies below and above the resonance.

For all systems, the high-frequency limit of ε is 1. This means that χ = 0,
i.e. there are no more oscillators to be polarized. The low-frequency limit in-
cludes all possible oscillators. If there are further oscillators between frequen-
cies well above ω0 and ω → ∞, these are summarized as the high-frequency
dielectric constant ε∞ > 1. Equation (D.8) then reads

ε(ω) = ε(∞) +
f̂

1 − ω2

ω2
0

. (D.9)

The limit ε → ε(∞) is only valid for frequencies above ω0 but smaller
than the next resonance(s) at higher frequencies.1 Another common form is
to include the background dielectric constant via

ε(ω) = ε(∞)

[

1 +
f

1 − ω2

ω2
0

]

. (D.10)

Obviously, f = f̂/ε(∞), making the two forms equivalent.
In order to discuss the lineshape, not only for ε but also for the index of

refraction n∗ = nr + iκ =
√
ε, we introduce damping to our calculation by

adding a term −mΓẋ to the left side of (D.5). This term is something like
a ‘friction’ and would cause the oscillation amplitude to decay exponentially
with a time constant τ = 2/Γ without external stimulus. The dielectric
constant is

ε(ω) = ε(∞)

[

1 +
f

1 − ω2+iωΓ
ω2

0

]

= ε′ + iε′′ . (D.11)

The real and imaginary part fulfill the Kramers–Kronig relations (C.3a)
and (C.3b). For the oscillator strength, the regimes of large oscillator strength
(f ∼ 1) and small oscillator strength (f � 1) are distinguished. For the
damping, two regimes should be distinguished: Small damping (Γ � ω0) and
strong damping (Γ � ω0). Typical lineshapes are shown in Figs. D.1 and D.2.

For small oscillator strength, i.e. f � 1, the index of refraction n∗ =
√
ε =

nr + iκ is given by (n∞ =
√
ε(∞))

nr = n∞

[
1 +

f

2
ω2

0(ω2
0 − ω2)

(ω2
0 − ω2)2 + Γ 2ω2

]
(D.12a)

κ = n∞
f

2
Γω0(ω2

0 − ω2)
(ω2

0 − ω2)2 + Γ 2ω2
. (D.12b)

1For ω going to infinite values (beyond the X-ray regime), ε always goes towards
one.
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(a) (b)

(c) (d)

(e) (f)

Fig. D.1. Real (solid lines) and imaginary (dashed lines) parts of the dielectric
constant (a,c,e) and index of refraction (b,d,f) (D.11) for oscillator strength f = 1
and various values of damping: (a,b) Γ = 10−2ω0, (c,d) Γ = 10−1ω0, and (e,f)
Γ = ω0

For small detuning from the resonance frequency, i.e. ω = ω0 + δω with
|δω|/ω0 � 1, the index of refraction is given by

nr = n∞

[
1 − f

4
ω0 δω

(δω)2 + Γ 2/4

]
(D.13a)

κ = n∞
f

4
ω0 Γ/2

(δω)2 + Γ 2/4
. (D.13b)

The maximum absorption is given as
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(b)

(c)

(a)

(d)

(e) (f)

Fig. D.2. Real (solid lines) and imaginary (dashed lines) parts of the dielectric
constant (a,c,e) and index of refraction (b,d,f) (D.11) for oscillator strength f =
10−1 and various values of damping: (a,b) Γ = 10−2ω0, (c,d) Γ = 10−1ω0, and
(e,f) Γ = ω0

αm = 2
ω0

c
κ(ω0) = f

ω2
0

Γ

n∞
c

. (D.14)

For zero damping, the dielectric function has a zero at

ω′
0 =

√
1 + f ω0 ≈ ω0

(
1 +

f

2

)
. (D.15)

The latter approximation is valid for f � 1. In the region between ω0 and
ω′

0, the real part of the index of refraction is very small (for the physically
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unrealistic case of Γ ≡ 0 it is exactly zero since ε < 0). The reflectance (for
vertical incidence R = [(1 − n∗)/(1 + n∗)]2) in this region (width: fω0/2) is
thus very high. For larger damping (and small oscillator strength), this effect
is washed out.

The frequency ωε′′,max of the maximum of the imaginary part of ε′′ of the
dielectric function (Γ̂ = Γ/ω0) is

ω2
ε′′,max =

2 − Γ̂ 2 +
√

16 − 4Γ̂ 2 + Γ̂ 4

6
ω2

0 ≈ ω2
0

[

1 −
(
Γ

2ω0

)2
]

. (D.16)

The approximation is valid for small damping Γ � ω0. In this case, the
detuned frequency of the maximum is close to ω0 (Fig. D.3). The frequency
position of the maximum of tan δ = ε′′/ε′ is

ω2
tan δ,max =

2 + f − Γ̂ 2 + Λ2

6
ω2

0 (D.17)

Λ2 =

√

12 (1 + f) +
(
2 + f − Γ̂ 2

)2

.

The value of tan δ at its maximum is (Λ has the same meaning as in
(D.17))

(tan δ)max =
−3

√
3
2 f Γ̂

√
2 + f − Γ̂ 2 + Λ2

−8 − 8 f + f2 − 4 Γ̂ 2 − 2 f Γ̂ 2 + Γ̂ 4 +
(
2 + f − Γ̂ 2

)
Λ2

.

(D.18)

Fig. D.3. Frequency position of the maximum of ε′′ as a function of the damping



E Quantum Statistics

Introduction

Bosons are particles with integer spin s = n, fermions are particles with
spin s = n + 1/2 with n being an integer including zero. The fundamental
quantum-mechanical property of the wavefunction of a system with N such
particles is that under exchange of any two particles, the wavefunction is
symmetric in the case of bosons and antisymmetric in the case of fermions.
For two particles, these conditions read

Ψ(q1, q2) = Ψ(q2, q1) (E.1a)
Ψ(q1, q2) = −Ψ(q2, q1) , (E.1b)

where (E.1a) holds for bosons and (E.1b) holds for fermions. The variables
qi denote the coordinates and spin of the i-th particle. The Pauli principle
allows bosons to populate the same single particle state with an arbitrary
number of particles (at least more than one). For fermions, the exclusion
principle holds that each single particle state can only be populated once.

Partition Sum

We consider a gas of N identical particles in a volume V in equilibrium at
a temperature T . The possible quantum-mechanical states of a particle is
denoted as r. The energy of a particle in the state r is εr, the number of
particles in the state r is nr.

For vanishing interaction of the particles, the total energy of the gas in
the state R (with nr particles in the state r) is

ER =
∑

r

nrεr . (E.2)

The sum runs over all possible states r. The total number of particles imposes
the condition

N =
∑

r

nr . (E.3)
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In order to calculate the thermodynamic potentials, the partition sum Z
needs to be calculated

Z =
∑

R

exp(−βER) , (E.4)

with β = 1/(kT ). The sum runs over all possible microscopic states R of the
gas, i.e. all combinations of the nr that fulfill (E.3). The probability PS to
find the system in a particular state S is given by (canonical ensemble)

PS =
exp(−βES)

Z
. (E.5)

The average number n̄s of particles in a state s is given by

n̄s =
∑

R ns exp(−βER)
Z

= − 1
βZ

∂Z

∂εs
= − 1

β

∂ lnZ
∂εs

. (E.6)

We note that the average deviation (Δns)2 = n2
s − n̄2

s = n2
s − n̄2

s is given by

(Δns)2 =
1
β2

∂2 lnZ
∂ε2s

= − 1
β

∂n̄s

∂εs
. (E.7)

In the Bose–Einstein statistics (for bosons), the particles are fundamen-
tally indistinguishable. Thus, a set of (n1, n2, . . .) uniquely describes the sys-
tem. In the case of fermions, for each state nr is either 0 or 1. In both cases,
(E.3) needs to be fulfilled.

Photon Statistics

This case is the Bose–Einstein statistics (cf. (E.22)) with undefined particle
number. We rewrite (E.6) as

n̄s =

∑
ns
ns exp(−βnsεs)

∑(s)
n1,n2,... exp(−β(n1ε1 + n2ε2 + . . .))

∑
ns

exp(−βnsεs)
∑(s)

n1,n2,... exp(−β(n1ε1 + n2ε2 + . . .))
, (E.8)

where
∑(s) denotes a summation that does not include the index s. In the

case of photons, the values nr can take any value (integers including zero)
without restriction and therefore the sums

∑(s) in the numerator and de-
nominator of (E.8) are identical. After some calculation we find

n̄s = − 1
β

∂

∂εs
ln

( ∞∑

ns=0

exp(−βnsεs)

)

. (E.9)

The argument of the logarithm is a geometrical series with the limit
[1− exp(−βεs)]−1. This leads to the so-called Planck distribution

n̄s =
1

exp(βεs) − 1
. (E.10)
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Fermi–Dirac Statistics

Now, the particle number is fixed to N . For the sum
∑(s) from (E.6), we

introduce the term ZS(M)

Zs(M) =
∑

n1,n2,...

(s) exp(−β(n1ε1 + n2ε2 + . . .)) , (E.11)

whenM particles are to be distributed over all states except s (
∑(s)

r nr = M).
M is either N − 1 if ns = 1 and N if ns = 0. Using Zs, we can write

n̄s =
1

Zs(N)
Zs(N−1) exp(βεs) + 1

. (E.12)

We evaluate Zs(N − 1)

lnZs(N −ΔN) = lnZs(N) − ∂ lnZs

∂N
|N ΔN , (E.13)

or
Zs(N −ΔN) = Zs(N) exp(−γsΔN) , (E.14)

with
γs =

∂ lnZs

∂N
. (E.15)

Since Zs runs over many states, the derivative is approximately equal to

γ =
∂ lnZ
∂N

, (E.16)

as will be shown below. Thus, we obtained so far

n̄s =
1

exp(γ + βεs) + 1
. (E.17)

Equation (E.3) holds also for the average values n̄s, i.e.

N =
∑

r

n̄r =
∑

r

1
exp(γ + βεs) + 1

, (E.18)

from which the value of γ can be calculated. Given that the free energy is
given as F = −kT lnZ, we find that

γ = − 1
kT

∂F

∂N
= −βμ , (E.19)

where μ is the chemical potential by definition. Therefore, the distribution
function for the Fermi–Dirac statistics (also called the Fermi function) is

n̄s =
1

exp(β(εs − μ)) + 1
. (E.20)
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Now, we briefly revisit the approximation γ = γs. Exactly, γ fulfills

γ = γs − ns
∂γ

∂N
. (E.21)

Thus, the approximation is valid if ns
∂γ
∂N � γ. Since ns < 1, this means that

the chemical potential does not change significantly upon addition of another
particle.

Bose–Einstein Distribution

Executing (E.8) with the approximation γ = γs, the Bose–Einstein distribution
is found to be

n̄s =
1

exp(β(εs − μ)) − 1
. (E.22)



F The k · p Perturbation Theory

The solutions of the Schrödinger equation (cf. Sect. 6.2.1)

HΨnk(r) =
(
− �

2

2m
∇2 + U(r)

)
Ψnk(r) = En(k)Ψnk(r) , (F.1)

with a lattice periodic potential U , i.e. U(r) = U(r + R) for direct lattice
vectors R, are Bloch waves of the form

Ψnk(r) = eikrunk(r) , (F.2)

with the lattice periodic Bloch function unk(r) = unk(r + R).
Inserting the Bloch wave into (F.1), the following equation is obtained for

the periodic Bloch function:
(
− �

2

2m
∇2 + U(r) +

�

m
k · p

)
unk(r) =

(
En(k) − �

2k2

2m

)
unk(r) . (F.3)

For simplicity, we assume a band edge En(0) at k = 0. In its vicinity, the
k·p term can be treated as a perturbation. The dispersion for a nondegenerate
band1 is given up to second order in k

En(k) = En(0) +
3∑

i,j=1

⎛

⎝ �
2

2m
δij +

�
2

m

∑

l =n

pi
nl p

j
ln

En(0) −El(0)

⎞

⎠ ki kj , (F.4)

with l running over other, so-called remote bands. The momentum matrix
element is given by pi

nl = 〈un0|pi|ul0〉 (cf. (6.38)). The coefficients in front of
the quadratic terms are the components of the dimensionless inverse effective-
mass tensor (cf. (6.42))

( m

m∗
)

ij
= δij +

2
m

∑

l =n

pi
nl p

j
ln

En(0) − El(0)
. (F.5)

For degenerate bands, the pi
nn′ vanish when n and n′ belong to the degen-

erate set and also the first-order correction is zero. In the Löwdin perturbation
1apart from the spin degeneracy
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theory [1483], the bands are separated into the close-by degenerate or nearly
degenerate bands and the remote bands. The effect of the remote bands is
taken into account by an effective perturbation

k · p + k · p
∑

l =n

|l〉〈l|
En(0) − El(0)

k · p , (F.6)

with the index l running over all bands not being in the degenerate set. The
dispersion relation is obtained by diagonalization of the Hamiltonian (F.3)
in the degenerate basis but with the perturbation given by (F.6).

The spin-orbit interaction [964] adds an additional term

Hso =
�

4m2c2
(σ ×∇U)p (F.7)

to the Hamiltonian, where σ are the Pauli spin matrices and c the vacuum
speed of light. In the Schrödinger equation for the Bloch functions two new
terms arise:

(
− �

2

2m
∇2 + U(r) +

�

4m2c2
(σ ×∇U)p+

�

m
k
[
p +

�

4m2c2
(σ ×∇U)

])
unk(r) =

(
En(k) − �

2k2

2m

)
unk(r) . (F.8)

The linear term in k is again treated as a perturbation. The first spin-orbit
term in (F.8) is lattice periodic, thus the solutions at k = 0 are still periodic
Bloch functions, however, different ones from previously. If the band edge is
not degenerate, the momentum operator in (F.3) is simply replaced by

π = p +
�

4m2c2
(σ ×∇U) , (F.9)

and the band edge is still parabolic. For a degenerate band edge, the effect
can be more profound, in particular it can lead to the lifting of a degeneracy.

In the 8-band Kane model [335], four bands (lowest conduction band,
heavy, light and split-off hole band) are treated explicitly and the others
through Löwdin perturbation theory. The basis is chosen to be diagonal in the
spin-orbit interaction leaving the spin-orbit interaction Δ0 as parameter. The
band- edge Bloch functions are denoted as |i ↑〉, where the index i = s, x, y, z
labels the symmetry of the different bands. The linear combinations that
diagonalize the spin-orbit interaction are given in Table F.1. The band gap
and the spin-orbit interaction are given by

Eg = EΓ6 − EΓ8 (F.10a)
Δ0 = EΓ8 − EΓ7 . (F.10b)

The Hamiltonian in the basis states of Table F.1 is given by
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Table F.1. Basis set that diagonalizes the spin-orbit interaction

|J,mj〉 wavefunction symmetry

| 1
2
, 1

2
〉 i|s ↑〉 Γ6

| 1
2
,− 1

2
〉 i|s ↓〉 Γ6

| 3
2
, 3

2
〉 1√

2
|(x + iy) ↑〉 Γ8

| 3
2
, 1

2
〉 1√

6
|(x + iy) ↓〉 −

√
2
3
|z ↑〉 Γ8

| 3
2
,− 1

2
〉 − 1√

6
|(x − iy) ↑〉 −

√
2
3
|z ↓〉 Γ8

| 3
2
,− 3

2
〉 1√

2
|(x − iy) ↑〉 Γ8

| 1
2
, 1

2
〉 1√

3
|(x + iy) ↓〉 +

√
1
3
|z ↑〉 Γ7

| 1
2
,− 1

2
〉 − 1√

3
|(x − iy) ↑〉 +

√
1
3
|z ↓〉 Γ7

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

k2 + Eg 0
√

2Pk+ −
√

2
3Pkz −

√
2
3Pk− 0

√
1
3Pkz −

√
4
3Pk−

0 k2 + Eg 0
√

2
3Pk+ −

√
2
3Pkz

√
2Pk−

√
4
3Pk+

√
1
3Pkz√

2Pk− 0 k2 0 0 0 0 0

−
√

2
3Pkz

√
2
3Pk− 0 k2 0 0 0 0

−
√

2
3Pk+ −

√
2
3Pkz 0 0 k2 0 0 0

0
√

2Pk+ 0 0 0 k2 0 0√
1
3Pkz

√
4
3Pk− 0 0 0 0 k2 −Δ0 0

−
√

4
3Pk+

√
1
3Pkz 0 0 0 0 0 k2 −Δ0

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

(F.11)

with the energy measured from the valence-band edge in units of �
2/(2m)

and
1
2
i�P = 〈s|πx|x〉 = 〈s|πy|y〉 = 〈s|πz|z〉 (F.12a)

k± = kx ± iky . (F.12b)

The inclusion of remote bands renormalizes the above Hamiltonian to
⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

Dk2 + Eg 0
√

2Pk+ −
√

2
3Pkz −

√
2
3Pk− 0

√
1
3Pkz −

√
4
3Pk−

0 Dk2 + Eg 0
√

2
3Pk+ −

√
2
3Pkz

√
2Pk−

√
4
3Pk+

√
1
3Pkz√

2Pk− 0 Hh R S 0 i√
2
R −i

√
2S

−
√

2
3Pkz

√
2
3Pk− R∗ Hl 0 S Hh−Hl√

2i
i
√

3
2R

−
√

2
3Pk+ −

√
2
3Pkz S∗ 0 Hl −R −i

√
3
2R

∗ Hh−Hl√
2i

0
√

2Pk+ 0 S∗ −R∗ Hh −i
√

2S∗ − i√
2
R∗

√
1
3Pkz

√
4
3Pk− − i√

2
R∗ −Hh−Hl√

2i
i
√

3
2R i

√
2S Hh+Hl√

2
−Δ0 0

−
√

4
3Pk+

√
1
3Pkz i

√
2S∗ −i

√
3
2R

∗ −Hh−Hl√
2i

i√
2
R 0 Hh+Hl√

2
−Δ0

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

(F.13)
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with

D = 1 +
2
m

∑

l =n

|〈s|πx|l〉|2
Eg − El(0)

(F.14a)

γ′1 =

⎡

⎣1 +
2
m

∑

l =n

|px
xl|2

En(0) − El(0)

⎤

⎦− 2P 2

3Eg
(F.14b)

γ′2 =

⎡

⎣1 +
2
m

∑

l =n

|py
xl|2

En(0) − El(0)

⎤

⎦− P 2

3Eg
(F.14c)

γ′3 =

⎡

⎣ 2
m

∑

l =n

px
xlp

y
ly + py

xlp
x
ly

En(0) − El(0)

⎤

⎦− P 2

3Eg
(F.14d)

Hh = (γ′1 + γ′2)(k
2
x + k2

y) + (γ′1 − 2γ′2)k
2
z (F.14e)

Hl = (γ′1 − γ′2)(k
2
x + k2

y) + (γ′1 + 2γ′2)k
2
z (F.14f)

R = −2
√

3γ′3k−kz (F.14g)

S =
√

3γ′2(k
2
x − k2

y) + 2
√

3γ′3ikxky . (F.14h)

The Hamiltonian in the presence of inhomogeneous strain is given in
Ref. [361]. The hole bands decouple from the conduction band for Eg → ∞
(six-band model [831]). The heavy and light holes can be treated separately
for Δ0 → ∞ (Luttinger Hamiltonian). For the Γ8 states, the Hamiltonian is
then given by ⎡

⎢
⎢⎢
⎣

Hh R S 0
R∗ Hl 0 S

S∗ 0 Hl −R
0 S∗ −R∗ Hh

⎤

⎥
⎥⎥
⎦
. (F.15)



G Effective-Mass Theory

The effective-mass theory or approximation (EMA), also termed the envelope
function approximation, is widely used for calculating the electronic proper-
ties of carriers in potentials in an otherwise periodic crystal. The strength of
the method is that the complexities of the periodic potential are hidden in
the effective-mass tensor m∗

ij . The effective-mass theory is a useful approxi-
mation for the treatment of shallow impurities (Sect. 7.5) or quantum wells
(Sect. 11.3.2) with a potential that is slowly varying with respect to the scale
of the lattice constant.

For the lattice-periodic potential, the Schrödinger equation

H0Ψnk = En(k)Ψnk (G.1)

is solved by the Bloch wave Ψnk. With a perturbing potential V , the
Schrödinger equation reads

(H0 + V )Ψnk = En(k)Ψnk . (G.2)

According to Wannier’s theorem [1484], the solution is approximated by
the solution of the equation

[En(−i∇) + V ]Φn = E Φn . (G.3)

The dispersion relation is expanded to second order as described in
Appendix F. The function Φn is termed the envelope function since it
varies slowly compared to the lattice constant and the exact wavefunction is
approximated (in lowest order) by

Ψ(r) = Φn(r) exp (ikr)un0(r) . (G.4)

M. Grundmann, The Physics of Semiconductors, 2nd ed., Graduate Texts 791
in Physics, DOI 10.1007/978-3-642-13884-3 30,
c© Springer-Verlag Berlin Heidelberg 2010
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690 (1983)
172. S. Dannefaer, P. Mascher, D. Kerr, Phys. Rev. Lett. 56, 2195 (1986)
173. P.M. Fahey, P.B. Griffin, J.D. Plummer, Rev. Mod. Phys. 61, 289–384 (1989)
174. P. Pichler, Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon

(Springer, Berlin, 2004)
175. G.D. Watkins, J. Appl. Phys. 103, 106106 (2008)
176. Y. Shimizu, M. Uematsu, K.M. Itoh, Phys. Rev. Lett. 98, 095901 (2007)
177. C.S. Nichols, C.G. Van der Walle, S.T. Pantelides, Phys. Rev. B 40, 5484

(1989)
178. A. Ural, P.B. Griffin, J.D. Plummer, J. Appl. Phys. 85, 6440 (1999)
179. J.-W. Jeong, A. Oshiyama, Phys. Rev. B 64, 235204 (2001)
180. W. Windl, Appl. Phys. Lett. 92, 202104 (2008)
181. K.-S. Yoon, C.-O. Wang, J.-H. Yoo, T. Won, J. Korean Phys. Soc. 48, 535

(2006)
182. X.-Y. Liu, W. Windl, K.M. Beardmore, M.P. Masquelier, Appl. Phys. Lett.

82, 1839 (2003)
183. L. Rayleigh, Philos. Mag. 4, 521 (1902)
184. C.H. Li, J. Phys. D: Appl. Phys. 7, 155 (1974)
185. W. Zulehner, Metrologia 31, 255 (1994)
186. I. Yonenaga, T. Ayuzawa, J. Cryst. Growth 297, 14 (2006)
187. W.G. Pfann, Techniques of zone melting and crystal growing. Solid State

Phys. 4, 423 (1957)
188. W.C. O’Mara, R.B. Herring, L.P. Hunt (eds.), Handbook of Semiconductor

Silicon Technology (Noyes, Berkshire, 1990)
189. J.J. Dowd, R.L. Rouse, Proc. Phys. Soc. B 66, 60 (1953)
190. W.W. Tyler, R. Newman, H.H. Woodbury, Phys. Rev. 98, 461 (1955)
191. W.C. Dunlap, Jr., Phys. Rev. 97, 614 (1955)
192. Landolt-Börnstein, in New Series, Semiconductors, ed. by O. Madelung,

M. Schulz, H. Weiss. Numerical Data and Functional Relationships in Sci-
ence and Technology, vol. 17 (Springer, Berlin, 1982)

193. M. Nastasi, J.W. Mayer, Ion Implantation and Synthesis of Materials
(Springer, Berlin, 2006)

194. A. Benninghoven, F.G. Rudenauer, H.W. Werner (eds.), Secondary Ion Mass
Spectrometry (John Wiley & Sons, New York, 1987)

195. S. Uppal, A.F.W. Willoughby, J.M. Bonar, A.G.R. Evans, N.E.B Cowern,
R. Morris, M.G. Dowsett, J. Appl. Phys. 90, 4293 (2001)

196. R.F. Lever, K.W. Brannon, J. Appl. Phys. 69, 6369 (1991)



800 References

197. www.srim.org
198. J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM – The Stopping and Range

of Ions in Matter (Lulu Press, Morrisville, 2006)
199. K. Kimura, Y. Oota, K. Nakajima, T.H. Büyüklimanli, Curr. Appl. Phys.
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Phys. Rev. B 55, 11167 (1997)

266. F. Thompson, R.C. Newman, J. Phys. C: Solid State Phys. 4, 3249 (1971)

267. M. Vandevyver, D.N. Talwar, Phys. Rev. B 21, 3405 (1980)

268. I.F. Chang, S.S. Mitra, Phys. Rev. 172, 924 (1968)

269. L.I. Deych, A. Yamilov, A.A. Lisyansky, Phys. Rev. B 62, 6301 (2000)

270. M. Born, I. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press,
Oxford, 1960)

271. H.M. Kayaga, T. Soma, Phys. Stat. Sol. (B) 129, K5 (1985)

272. A.S. Saada, Elasticity, Theory and Applications (Pergamon, New York,
1974)

273. P.N. Keating, Phys. Rev. 145, 637 (1966)

274. A.-B. Chen, A. Sher, W.T. Yost, Semicond. Semimet. 37, 1 (1992)

275. R.S. Lakes, Science 235, 1038 (1987)

276. K.E. Evans, M.A. Nkansah, I.J. Hutchinson, S.C. Rogers, Nature 353, 124
(1991)

277. R.H. Baughman, Nature 425, 667 (2003)

278. R. Gatt, J.N. Grima, Phys. Stat. Sol. RRL 2, 236 (2008)

279. R.M. Martin, Phys. Rev. B 6, 4546 (1972)

280. K. Kim, W.R.L. Lambrecht, B. Segall, Phys. Rev. B 53, 16310 (1996)

281. R.M. Martin, Phys. Rev. B 1, 4005 (1970)

282. Ch.G. Van de Walle, Phys. Rev. B 39, 1871 (1989)

283. J.D. Eshelby, Proc. Roy. Soc. London A 241, 376 (1957)

284. A. Polian, M. Grimsditch, I. Grzegory, J. Appl. Phys. 79, 3343 (1996)

285. L.E. McNeil, M. Grimsditch, R.H. French, J. Am. Ceram. Soc. 76, 1132
(1993)

286. C.F. Cline, H.L. Dunegan, G.W. Henderson, J. Appl. Phys. 38, 1944 (1967)

287. G. Carlotti, D. Fioretto, G. Socino, E. Verona, J. Phys.: Condens. Matter
7, 9147 (1995)

288. M. Grundmann, O. Stier, D. Bimberg, Phys. Rev. B 52, 11969 (1995)

289. L.B. Freund, J.A. Floro, E. Chason, Appl. Phys. Lett. 74, 1987 (1999)

290. M. Grundmann, Appl. Phys. Lett. 83, 2444 (2003)

291. G.G. Stoney, Proc. R. Soc. London, Ser. A 82, 172 (1909)

292. R. Beresford, J. Yin, K. Tetz, E. Chason, J. Vac. Sci. Technol. B 18, 1431
(2000)

293. V.Y. Prinz, V.A. Seleznev, A.K. Gutakovsky, Proc. 24th Int. Conf. Semi-
cond. Physics, Jerusalem, Israel, World Scientific, Singapore, 1998, Th3-D5

294. B. Schmidt, Calc. Var. 30, 477 (2007)

295. J. Zang, F. Liu, Appl. Phys. Lett. 92, 021905 (2008)

296. O.G. Schmidt, N. Schmarje, C. Deneke, C. Müller, N.-Y. Jin-Phillipp, Adv.
Mater. 13, 756 (2001)

297. S. Mendach, University of Hamburg, private communication (2006)

298. J.C. Bean, L.C. Feldman, A.T. Fiory, S. Nakahara, I.K. Robinson, J. Vac.
Sci. Technol. A 2, 436 (1984)

299. R. Hull, J.C. Bean, J. Vac. Sci. Technol. A 7, 2580 (1989)

300. J.W. Matthews, A.E. Blakeslee, J. Cryst. Growth 27, 118 (1974)

301. R. People, J.C. Bean, Appl. Phys. Lett. 47, 322 (1985)



References 803

302. F.C. Frank, J. van der Merwe, Proc. R. Soc. A 198, 216 (1949); ibid 198,
2205

303. J.H. van der Merwe, J. Appl. Phys. 34, 123 (1962)
304. J.R. Willis, S.C. Jain, R. Bullough, Philos. Mag. A 62, 115 (1990)
305. B.W. Dodson, J.Y. Tsao, Appl. Phys. Lett. 51, 1325 (1987)
306. E. Kasper, H.J. Herzog, H. Kibbel, Appl. Phys. 8, 199 (1975)
307. K.L. Kavanagh, M.A. Capano, L.W. Hobbs, J.C. Barbour, P.M.J. Marée,

W. Schaff, J.W. Mayer, D. Pettit, J.M. Woodall, J.A. Stroscio, R.M. Feen-
stra, J. Appl. Phys. 64, 4843 (1988)

308. M. Grundmann, U. Lienert, D. Bimberg, A. Fischer-Colbrie, J.N. Miller,
Appl. Phys. Lett. 55, 1765 (1989)

309. P. Quadbeck, Ph. Ebert, K. Urban, J. Gebauer, R. Krause-Rehberg, Appl.
Phys. Lett. 76, 300 (2000)

310. Ch. Kittel, Quantum Theory of Solids (John Wiley & Sons, New York, 1963)
311. J.R. Chelikowsky, M.L. Cohen, Phys. Rev. B 14, 556 (1976)
312. R. Dalven, Electronic structure of PbS, PbSe, and PbTe. Solid State Phys.

28, 179 (1973)
313. J.E. Jaffe, A. Zunger, Phys. Rev. B 28, 5822 (1983)
314. S. Limpijumnong, S.N. Raskkeev, W.R.L. Lambrecht, MRS Internet J. Ni-

tride Semicond. Res. 4S1, G6.11 (1999)
315. R. Ahuja, O. Eriksson, B. Johansson, J. Appl. Phys. 90, 1854 (2001)
316. J.E. Bernard, A. Zunger, Phys. Rev. B 26, 3199 (1987)
317. E.W. Williams, V. Rehn, Phys. Rev. 172, 798 (1968)
318. K.-R. Schulze, H. Neumann, K. Unger, Phys. Stat. Sol. (B) 75, 493 (1976)
319. B. Kramer, Phys. Stat. Sol. 41, 649 (1970)
320. R. Braunstein, A.R. Moore, F. Herman, Phys. Rev. 109, 695 (1958)
321. D.J. Wolford, W.Y. Hsu, J.D. Dow, B.G. Streetman, J. Lumin. 18/19, 863

(1978)
322. R. Schmidt, B. Rheinländer, M. Schubert, D. Spemann, T. Butz, J. Lenzner,

E.M. Kaidashev, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 82, 2260
(2003)

323. R. Schmidt-Grund, A. Carstens, B. Rheinländer, D. Spemann, H. Hochmut,
G. Zimmermann, M. Lorenz, M. Grundmann, C.M. Herzinger, M. Schubert,
J. Appl. Phys. 99, 123701 (2006)

324. S. Larach, R.E. Shrader, C.F. Stocker, Phys. Rev. 108, 587 (1957)
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räumlich dispersiver Medien, PhD Thesis, Technische Universität Berlin,
1982

606. B. Gil, Phys. Rev. B 64, 201310 (2001)

607. T. Soma, H.-M. Kagaya, Phys. Stat. Sol. (B) 118, 245 (1983)



812 References
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meier, T. Riemann, J. Christen, A. Krost, Appl. Phys. Lett. 78, 727 (2001)

778. B.J. Rodriguez, A. Gruveman, A.I. Kingon, R.J. Nemanich, O. Ambacher,
Appl. Phys. Lett. 80, 4166 (2002)
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1245. W.W. Gärtner, Phys. Rev. 116, 84 (1959)
1246. X. Liu, J. Sites, J. Appl. Phys. 75, 577 (1994)
1247. H.H. Hovel, Semicond. Semimet. 11, 8 (1975)
1248. S. Hegedus, D. Desai, C. Thompson, Prog. Photovolt: Res. Appl. 15, 587–

602 (2007)
1249. C.H. Henry, J. Appl. Phys. 51, 4494 (1980)
1250. W. Shockley, H.-J. Queisser, J. Appl. Phys. 32, 510 (1961)
1251. H.-J. Queisser, Mat. Sci Engin. B 159, 322 (2008)
1252. Th. Kirchartz, U. Rau, Phys. Stat. Sol. (A) 205, 2737 (2008)
1253. J.H. Werner, S. Kolodinski, H.-J. Queisser, Phys. Rev. Lett. 72, 3851 (1994)
1254. T. Markvart, Phys. Stat. Sol. (A) 205, 2752 (2008)
1255. A. Hauser, I. Melnyk, P. Fath, S. Narayanan, S. Roberts, T.M. Bruton, Proc.

of 3rd World Conference on Photovoltaic Energy Conversion, vol. 2, 1447
(2003)

1256. M.B. Prince, J. Appl. Phys. 26, 534 (1955)
1257. J. Mandelkorn, J.H. Lamneck, Conf. Rec. 9th IEEE Photovoltaic Spec. Conf.

(IEEE, New York, 1972), p. 83
1258. A. Woyte, J. Nijs, R. Belmans, Sol. Energy 74, 217 (2003)
1259. J. W. Bishop, Solar Cells 25, 73 (1988)
1260. K. Wambach, S. Schlenker, I. Röver, Deutsche Solar AG, Freiberg
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Absorption, 265, 311, 314, 585, 605,
610, 628

atmospheric, 637
band–band, 271
bleaching, 226
bound exciton, 288
free-carrier, 269, 299, 383
impurity, 296
intravalence-band, 278
lattice, 303
negative, 293
optical, 225
schematic spectrum, 268
selfabsorption, 330
spectrum, 273, 373, 380
two-photon, 282, 294

Absorption edge, 277
optical, 151
shift, 293

Acceleration, 161
Acceptor, 193, 200, 202

binding energy, 203
charged, 202
double, 219
energy, 203
neutral, 204, 331

Accumulation, 549
Admittance spectroscopy, 530
Air gap, 706
Air mass, 637
Alkali halogenides, 167
Alloy, 63, 102, 231, 441, 545

quaternary, 65
random, 63, 323
ternary, 57, 65, 153

Amplification, 315, 680, 698, 711
light, 674
region, 624

Amplifier
optical, 676, 710
power, 711

Angle
Brewster, 267
critical, 266, 663
Euler, 769
taper, 711

Anharmonicity, 428
Annealing, 73

laser, 763
thermal, 763

Anode, 519
Anticrossing, 287, 363, 497, 498
Antidot, 394
Approximation

abrupt, 525, 558, 730
adiabatic, 33, 730
Boltzmann, 186, 187, 199, 539
Born–Oppenheimer, 33, 329
electric dipole, 269
envelope function, 361
gradual channel, 730
harmonic, 103
quasi-cubic, 174
relaxation time, 236, 257, 299
two-band, 295
virtual crystal, 68, 153
WKB, 340

Atmosphere, 637
Auger process, 333
Autocompensation, 208
Avalanche multiplication, 576, 607, 718

Background radiation, 612
Band

alignment, 359
bending, 369, 523, 525, 549
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conduction, 22, 147, 340
minimum, 147, 153

diagram, 714
diode, 520, 548

discontinuity, 359, 362
edge, 296
filled, 168, 190
gap, 22, 144, 147, 152, 156, 162, 191,

399, 433
engineering, 360
fundamental, 276
negative, 175
photonic, 481–499
renormalization, 292
temperature dependence, 158
zero, 444

impurity, 211
lineup, 359
mixing, 176, 363, 409, 605
parabolic, 273
remote, 787
splitting, 28
staggered lineup, 359
straddled lineup, 359
tail, 278
tilted, 379
valence, 22, 147, 709

fine structure, 173
Band structure, 139–179, 270, 459

chalcopyrites, 149
delafossites, 151
direct, 148, 153
extrema, 180
indirect, 147, 153, 294
lead salt, 149
multivalley, 253
perovskites, 152
photonic, 488
strained, 176
theory, 5

Bandwidth, 602, 612, 626
Bardeen model, 520, 525
Barrier, 339, 362, 366

Coulomb, 410
finite, 364
height, 362, 536
reduction, 529
Schottky, 522
triangular, 340

Base, 36, 714
diatomic, 36, 120
monoatomic, 36
width, 723

Beam profile, 685, 704
Benzene, 23, 451
Biexciton, 290, 420
Binodal, 66
Birefringence, 300, 384
Blackbody, 603
Bloch’s theorem, 140
Bohr radius, 193
Bond

angle, 45
breaking, 138
covalent, 19
dangling, 47
elastic, 103
electron pair, 19
homopolar, 27
ionic, 25
length, 27, 45, 68, 74, 126, 153
metallic, 30
mixed, 27
partially ionic, 119
sp2, 23
sp3, 19
strength, 156
strong, 352
tetrahedral, 22, 193
van-der-Waals, 30

Bose–Einstein
statistics, 784

Boson, 783
Bottleneck, 287
Boule, 349
Boundary

additional ∼ condition, 288
antiphase domain, 101
condition, 104, 142, 343, 362, 397,

408, 484, 525, 552, 560, 716
depletion layer, 628, 716
inversion domain, 101, 353
periodic ∼ condition, 104
sample, 393

Bow-tie, 204, 504
Bowing, 69

parameter, 153
Bragg mirror, 485, 674, 687, 704
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Breakdown, 575, 611, 618, 723
Brightness, 655

high, 666
perceived, 661
visible, 653

Brillouin zone, 62, 103, 105, 141, 459
cubic

body-centered, 63
face centered, 63
simple, 63

hexagonally close packed, 63
orthorhombic, 63, 150
paths, 62
size, 273

Broadening
alloy, 323
inhomogeneous, 371, 392, 422
phonon, 283
Stark, 297

Buffer, 352
graded, 762
metamorphic, 650
relaxed, 761

Burger’s vector, 87, 135
Burstein–Moss shift, 291

Capacitance, 530, 536, 555, 563
parasitic, 725

Capture, 400
barrier, 225
cross section, 336

Carrier
capture, 217, 335
concentration, 187

intrinsic, 191
density, 309, 384

equilibrium, 313
excess, 313, 342
nonequilibrium, 314

excess, 334, 400
excess ∼ profile, 342
free, 300
freeze-out, 198
hot, 641
injection, 215, 309
itinerant charge, 445
majority, 519, 532
minority, 519, 558
release, 335

threshold ∼ density, 688
Catalysis, 348
Catastrophical optical damage, 684,

692
Cathodoluminescence, 399
Cavity

empty, 497
external, 676
Fabry–Perot, 497, 674
hexagonal, 505
mirror, 497
mode, 497
optical, 674
resonance, 502
short, 687

Cell
central ∼ correction, 211, 296
elementary, 36
internal parameter, 50, 69, 427
photoelectrochemical, 599
primitive elementary, 36
primitive unit, 57
tandem, 643
unit, 36, 425
Wigner–Seitz, 36, 62

Chalcogenide, 51, 757
atoms, 219
europium, 441
glass, 221
impurity, 220
lead, 149

Channel, 448, 727
buried, 633
depth, 730
edge, 393
inversion, 737
isolation, 633
length, 729, 750
long, 737
short, 736
stop, 633
strain, 745
n-type, 743
p-type, 743
width, 731, 750

Charge
conservation, 337
deficit, 394
density, 369
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effective, 28
elementary, 217
excess, 309
fixed, 193
image, 366, 527
inversion, 554, 628
ionic, 557
maximum, 628
neutrality, 552
packet, 630
polarization, 425
relative shift, 425
retention, 756
sign, 384
signal, 628
state, 217
storage, 590
surface, 522
transfer, 368

Charge coupled device, 11, 627–635
Chemical shift, 296
Chromaticity, 655
Circuit

common base, 714, 721, 723
common collector, 721, 724
common emitter, 718, 723, 724
equivalent, 575, 588, 603, 612
feedback, 725
integrated, 8, 11, 743

millimeter-wave, 586
open, 261, 640
optoelectronic integrated, 494
read-out, 628, 635
short, 262, 640

Cleaving, 137, 401, 686
Clock speed, 751
Cluster, 63

size, 444
Clustering, 64, 102
CMOS technology, 633, 743–753
Coating

antireflection, 619, 687, 710
high-reflection, 687

Coefficient
absorption, 268, 273, 274, 301, 343,

635, 776
Auger recombination, 334
bimolecular recombination, 312
diffusion, 228, 257

distribution, 81, 86
elastic, 122
electron ionization, 256
gain compression, 701
hole ionization, 256
impact ionization, 623
negative temperature, 728
Peltier, 261

sign, 262
segregation, 81
stiffness, 123
temperature, 576, 578, 587
thermal expansion, 122, 130, 159, 354
transmission, 482
two-photon absorption, 295

Collector, 714
Colloid, 415, 423
Commensurability, 395
Compensation, 206, 227, 331
Composite fermion, 394
Compound

binary, 28
carbon, 23, 451
I–VII, 25
II–VI, 27
ionic, 27

Condensation, 294
Bose–Einstein, 294
bosonic, 294

Conduction
heat, 259–260
hole, 204
intrinsic, 190, 200
ohmic, 191
n-type, 204
p-type, 204

Conductivity, 185, 236–238, 457, 601,
628

channel, 410, 727
complex, 257, 299
heat, 259
longitudinal, 392
metal, 237
one-dimensional, 393
type, 211
zero-field, 389

Configuration
atomic, 217
coordinate, 222
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Confinement
spatial, 274

Constant
Boltzmann, 186
damping, 257
dielectric, 120, 193, 304, 366

high frequency, 120
negative, 302
static, 120

effective Richardson, 540
elastic, 104, 124
fine-structure, 391
force, 106, 109, 114, 116, 221
Fröhlich coupling, 166
normalization, 140
Poisson, 131
Richardson, 534, 536
spring, 104
static dielectric, 526
stiffness, 125
von-Klitzing, 390

Contact
back, 643
base, 716
intracavity, 706
lines, 626
metal–semiconductor, 5, 520–547
nonohmic, 727
Ohmic, 520, 543–545, 745
resistance, 520, 543
Schottky, 5, 56, 616
transparent, 619

Continuity equation, 259
Convolution, 373
Coordination number, 36
Coulomb

blockade, 410
charging energy, 411
correlation, 282
staircase, 410

Coupling, 717
antiferromagnetic, 442
capacitive, 410
ferromagnetic, 445
intervalley, 296
nanostructures, 397
phonon–plasmon, 307
strong, 497
weak, 497

Crack, 95, 354
Crescent, 398
Crystal

class, 40
nobel gas, 30
structure, 10

Curie–Weiss law, 431
Current

amplification, 718
dark, 607, 612, 619, 628, 641
diffusion, 257, 611
divergence, 259
excess, 594, 595
gain, 723
leakage, 643
particle, 257
photo-, 601, 638
photogenerated, 611
saturation, 534, 542, 732
short-circuit, 640
spreading, 692
transparency, 688
tunneling, 205, 540, 594

Curvature, 130, 146, 161, 167, 286, 338,
399, 578, 663

C–V spectroscopy, 530, 536
Cyclotron

frequency, 248, 383
motion, 236, 382, 395
orbit, 385, 395
resonance, 164

De Broglie wavelength, 397
De Haas–van Alphén effect, 385
Debye length, 552, 563, 741
Decay

hyperbolic, 314
time, 314

Defect, 63, 73–102, 134
acceptor, 202
annihilation, 95
antisite, 74, 219, 226
area, 73
density, 354
diffusion, 79
donor, 193
double acceptor, 219
double donor, 218
EL2, 226
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electronic states, 185–233
etching induced, 413
Frenkel, 73
interstitial, 73, 211, 218, 226, 232
isoelectronic, 228
line, 73, 87, 494
metastable, 73
nucleation, 359
pair, 85, 206
passivation, 231
point, 73, 211, 338, 494
symmetry, 221
thermodynamics, 74
vacancy, 74

Deformation
volume, 153

Degeneracy, 77, 108, 202, 223, 386, 410
holes, 363
Kramer’s, 147
spin, 180, 197, 204, 390, 468
valley, 188, 197, 388, 468

Demodulation, 584
Density of modes, 486, 487, 502
Density of states, 179–183, 187, 363,

367, 385, 386, 397, 458
band-edge, 337
conduction-band edge, 188
joint, 271, 373
δ-like, 391
surface, 520, 525
two-dimensional, 182
valence-band edge, 188

Depletion, 549
deep, 627

Depletion layer, 191, 522, 610
width, 527, 562

Depolarization, 425
Deposition

chemical vapor, 347
pulsed laser, 348

Detailed balance, 309, 312
Detectivity, 603, 605, 611
Deuterium, 446
Device

cooling, 235
high-power, 235
high-speed, 227
optoelectronic, 265
performance, 191

photonic, 265
reliability, 759
two-terminal, 519

Diffraction, 266–269
reflection high energy electron, 348

Diffusion, 235, 257–258, 400, 533, 539,
560, 628, 630, 714

equation, 342
lateral, 373, 604
length, 343
pair ∼ mechanism, 79
point defects, 78
surface, 348

Diode, 235, 519–597
backward, 595
bipolar, 519, 558–579
I–V characteristics, 565–575

fast-recovery, 589
Gunn, 253, 596
heterostructure, 558, 591, 597, 725
ideal characteristic, 534
light-emitting, 347, 661–669

application, 662
white, 668

metal–insulator–semiconductor, 520,
548–557

metal–oxide–semiconductor, 389, 548
metal–semiconductor, 519
nonideal MIS, 556
pin, 591
pn-junction, 519
Schottky, 421, 520
I–V characteristics, 532–543

step-recovery, 590
tunneling, 592
unipolar, 519
Zener, 587, 588

Dipole moment, 381
Dirac particle, 472
Direction

growth ∼, 674
polar, 99
surface ∼, 703

Dislocation, 87, 348
60◦, 89
α, β, 90
core, 87, 136
density, 136
edge, 89
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half-loop, 135
line, 87
misfit, 90, 134, 356
partial, 90, 95
screw, 89
spacing, 97
threading, 135

Disorder, 45, 68, 102, 153, 180, 278,
386, 536

cation, 53
configurational, 76
isotope, 319, 323

Dispersion
free electron, 161
linear, 286
quadratic, 287
spatial, 285

Dispersion relation, 144, 161, 302, 363,
483

branch, 106, 110, 306
free electron, 141
hole, 169
lattice vibration, 103
linear chain, 105, 108
parabolic, 146

Displacement, 87, 103, 129, 226, 241,
427

atomic, 221
ion, 165
parameter, 51

Display, 654
application, 658
electroluminescence, 763
field-effect, 655
liquid crystal, 763
plasma, 655

Distortion
tetragonal, 133, 416

Distribution
binomial, 323
Boltzmann, 186
Bose–Einstein, 240, 312, 786
degenerate, 187, 291
Fermi–Dirac, 185, 370, 785
Gaussian, 373, 536
nondegenerate, 186
Planck, 784
spectral power, 655

Domain

antiphase, 99
inversion, 99
polarization, 432

Donor, 193
–acceptor pair, 331
binding energy, 193
deep, 226
double, 218
empty, 197
fine structure, 198
ionization energy, 193, 199
ionized, 196
neutral, 196, 331
populated, 197
shallow, 193

Dopant, 335, 369
Doping, 74, 193–215, 301, 633

concentration, 530
depth profile, 530
glass, 415
modulation, 243, 369, 386, 759
profile, 589, 736

Drain, 727
Drift, 235, 533, 614, 628

self-induced, 630
time, 621

Droplet, 416
Drude theory, 383, 389
DX center, 224, 759

Early effect, 721, 723
Ebers–Moll model, 719, 721
Effect

field, 339
polaronic, 165
thermoelectric, 261

Effective-mass
impurity, 195, 216
theory, 193, 791

Efficiency
conversion, 641, 654
differential, 691
emitter, 718
external, 691
external quantum, 662
internal quantum, 662, 691
light extraction, 662
maximum solar cell, 641
quantum, 413, 601, 611
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total quantum, 662, 692
wall-plug, 692, 711

Einstein relation, 258
Elasticity, 122–137
Electroabsorption, 546
Electroluminescence, 3, 763
Electromagnetic spectrum, 265
Electron

affinity, 521
conduction, 30
configuration, 19, 441
density, 187
dispersion, 161
distribution function, 185
equation of motion, 161
trap, 336
valence, 30, 139
wave packet, 161

Electron gas
free, 180
one-dimensional, 183
three-dimensional, 182, 384
two-dimensional, 182, 239, 368, 386,

395
Electron–hole droplet, 293
Electronegativity, 27, 304
Electrophotography, 603
Ellipsometry, 384
Emission

amplified spontaneous, 694
directional, 495
field, 533, 540
pattern, 504
probability, 339
spontaneous, 309, 481
stimulated, 270, 311, 314
thermally activated, 339
thermionic, 533, 607
thermionic field, 541

Emitter, 714
follower, 725

Energy
activation, 79, 232
barrier, 221
capture, 224
charging, 224
confinement, 362
conservation, 274
correlation, 293

Coulomb, 222
defect formation, 73
density, 235
Dirac, 469, 471
dissipation, 391
elastic, 122
electrostatic, 410
exchange, 293
free, 217, 430
gap, 22, 24, 145
ionization, 193, 339
kinetic, 145
loss, 252
Madelung, 26
optoelectronic, 380
parameter, 163
radiation, 497
Rydberg, 194, 280
surface, 416
thermal, 241
zero-point, 31

Enthalpy, 76
formation, 76, 78, 218
free, 74, 218
migration, 78
mixing, 66

Entropy, 76, 223, 430
configurational, 66
disorder, 77
formation, 76

Epitaxial relationship, 352
Epitaxy

liquid phase, 348
metalorganic vapor phase, 347
molecular beam, 347
thin film, 348

Equilibrium
state, 309
stationary, 539
thermodynamic, 185, 186, 191, 215,

216, 312, 313, 333, 336, 368, 520
Etch, 92, 350

pit, 93
RCA, 350
Shiraki, 350

Etching, 413
anisotropic, 101, 397
plasma, 94
reactive ion, 94, 413, 686
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thermal, 350
wet chemical, 413

Euler angles, 125
Excitation

external, 309
neutral, 314
optical, 225

Exciton, 5, 268, 280–284, 459
binding energy, 280, 366
bound, 288
bright, 285
charged, 290, 420
correlation, 381
dark, 285
delocalized, 373
dynamics, 373
free, 315, 323
Frenkel, 459
interchain, 460
intrachain, 460
ionization, 381, 382
localized, 373
longitudinal, 285
ortho-, 285
oscillator strength, 281
para-, 285
polariton, 285
radius, 280
recombination, 315
scattering states, 282
self-trapped, 660
transverse, 285
volume, 323

Exclusion principle, 783
Exhaustion, 200

regime, 208
Eye pattern, 701

Facet
cleaved, 401, 674
etched, 686
laser, 687
side, 398
tilted, 703

Factor
base transport, 718
collector multiplication, 718
fractional filling, 393
ideality, 535, 536, 719

linewidth enhancement, 702

optical confinement, 626

quality, 494, 502

Sommerfeld, 282

spontaneous emission, 689

Fano resonance, 299

Far field, 685

Feedback

distributed, 696

loop, 348

optical, 674

Fermi

energy, 385

integral, 187, 188, 258

intrinsic ∼ level, 192, 204, 551

level, 186, 198, 200, 204, 207, 291,
337, 368, 389, 421, 520, 547

gradient, 258

liquid, 294

local quasi ∼ level, 216

quasi ∼ level, 215, 312, 315, 533, 628,
737

sphere, 236

surface, 385

vector, 384

Fermi’s golden rule, 269, 481, 502

Fermi–Dirac statistics, 217, 218, 785

Fermion, 783

Ferroelectricity, 425, 427

Ferromagnet

Heisenberg, 441

Fick’s law, 257

Field

built-in, 546

crossed electric and magnetic, 709

crystal, 227

displacement, 777

displacment, 120

drift, 715

electric, 161, 166, 235, 256, 257, 300,
379, 526

electromagnetic, 269

external, 379

fringing, 630

high magnetic, 389

homogeneous, 381

internal electric, 235

macroscopic electric, 119
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magnetic, 161, 164, 236, 247, 274,
297, 382

static, 300
piezoelectric, 241, 409
ring, 579
strength, 624
strong electric, 339
surface, 552
time dependent electric, 299
transverse electric, 247

Filling factor, 44, 641
Finesse, 494
Flip-flop, 8
Flow

heat, 259
Fluctuation, 67, 324, 373

amplitude, 702
phase, 702
quantum dot size, 422
vacuum, 481

Fluorescence, 458
Flux

luminous, 653
radiant, 653

Focal plane array, 605
Force, 161

dissipative, 257
image, 528
Lorentz, 247, 389
restoring, 122, 428
van-der-Waals, 26

Fourier
coefficient, 144, 145
series, 144
transform, 775
transformation, 57

Franck–Condon principle, 329
Freeze-out

regime, 200
Frequency

cutoff, 725
high, 725, 736, 762
mixing, 584

Fresnel formulas, 267, 485
Friction, 236
Function

Bessel, 408
Bloch, 140, 163, 216, 270, 285, 362,

365, 787

Boltzmann, 373
color matching, 655
dielectric, 120, 121, 270, 300, 498,

775
envelope, 362, 791
error-, 373
Fermi, 185, 312, 785
Hankel, 408
spherical harmonic, 407
static dielectric, 429

Gain, 607, 674, 693
differential, 701
maximum, 697

Gate, 410, 727
charge, 755
contact, 448
voltage, 389, 410, 628

Gauge invariance, 393
Generation–recombination, 628
g-factor, 383
Gibbs-Thomson effect, 416
Ginzburg–Landau theory, 429
Glide plane, 87
Glide reflection, 40
Grain

boundary, 35, 97, 231
boundary, small-angle, 97
size, 649, 658, 763

Graphene, 465
Grating, 605

sampled, 698
Group

point, 37
space, 39, 352
theory, 35

Growth
Czochralski, 348
Frank-van der Merwe, 351
kinetics, 210
methods, 347
mode, 351
pseudomorphic, 130
spiral, 89
Stranski-Krastanow, 351, 415
template, 415
Volmer-Weber, 351

Guard ring, 579
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Halbleiter, 4
Hall

bar, 389, 394
coefficient, 248, 389

sign, 250
constant, 249
current, 393
effect, 225, 247–251

electrical, 384
fractional quantum, 393
integral quantized, 389
optical, 384
quantized, 10, 11, 389
quantum, 347

factor, 251
plateau, 390, 393
quantum ∼ liquid, 393
resistivity, 392, 395

Hayne’s rule, 318
Heat

capacity, 430
latent, 430
sink, 263, 666, 675, 692

Helmholtz equation, 482
Heteroepitaxy, 122, 127, 435
Heterointerface, 386

graded, 598
Heterojunction, 643, 757
Heterostructure, 11, 347–378, 390, 415,

500
type-I, 359
type-II, 359

Hexagonality index, 57
Hole, 168–175

capture, 337
concept, 168
density, 187, 204
dispersion, 168, 363
effective mass, 169
gas, 445
heavy, 169, 363
light, 169, 363
split-off, 169, 254, 274, 278

HOMO, 24
Hopping, 167
Hund’s rule, 442
Hybridization

p–d, 446
sp2, 23, 451, 465

sp3, 20
Hydrogen, 193, 231, 318, 446

atom, 381
model, 280
molecule, 19, 290
problem, 195

Hydrogenation, 47
Hysteresis, 425, 432, 446

Illuminance, 654
Illumination, 601, 621, 625, 633, 638
Image sensor, 605, 628, 633
Impact ionization, 254, 333, 576, 623
Impedance, 584, 626

amplifier, 725
input, 728

Impurity, 73, 94, 185, 231, 296, 317, 335
amphoteric, 210
background, 206
binding energy, 366
charged, 297
concentration, 185
hardening, 94
incorporation, 210
isoelectronic, 288, 661
isovalent, 73
magnetic, 442
shallow, 193

In-situ
control, 348
monitoring, 348

Incompressible, 393
Index of refraction, 266, 301, 776
Interaction

antiferromagnetic, 445
atom–cavity, 497
Coulomb, 26, 193, 280, 366, 393, 397
dipole–dipole, 30
double exchange, 445
electron–phonon, 33, 158, 166,

269–271
electrostatic, 26, 32
exchange, 285, 294
gap, 444
hyperfine, 195, 217, 222
indirect exchange, 445
London, 30
many-body, 393
nearest-neighbor, 441
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parameter, 66
Ruderman–Kittel–Kasuya–Yoshida,

445
spin-orbit, 169, 383, 448, 461, 788
superexchange, 441, 444
van-der-Waals, 30, 451

Interconnect, 747
Interface, 134, 366, 426, 435, 549, 628

flat, 374
geometry, 347
heterostructure, 520
planar, 266, 347
plane, 363, 533
single hetero-, 360, 368
state, 547

Inversion, 38, 101, 147, 549, 709
center, 434
strong, 553
weak, 553

Inverted opal, 490
Inverter, 745
Ionicity, 28, 126, 156, 304
Ionization, 297, 560

photothermal, 297
Iron, 87, 101, 218, 228
Irradiance, 653
Irradiation, 338
Island growth, 415
Isomer shift, 210
Isotope, 102, 210, 260, 319

effect on phonon, 111

Jahn–Teller effect, 74, 221, 222
dynamic, 221

Joule heating, 261, 262
Junction

deep, 579
graded, 692
hyperabrupt, 588
multiple, 643
one-sided, 558

Kane model, 788
Keating criterion, 125
Kick-out mechanism, 79
Kirchhoff’s law, 731
Klein paradox, 472
k · p theory, 162, 787–790

Kramers–Kronig relation, 271, 775–776,
778

Kronig–Penney model, 142, 157, 366

Lambert–Beer’s law, 268, 613
Lamé’s constant, 126
Large scale integration, 746
Laser, 9, 235, 347, 674–710

cascade, 676
condition

thermodynamic, 315
diode, 676
double heterostructure, 9
edge emitting, 674
horizontal cavity surface-emitting,

703
hot hole, 709
lead salt, 697
modulation, 698
monochromatic, 696
monomode, 696
multisection, 698
optically pumped, 707
output power, 690
quantum cascade, 708
surface-emitting, 674, 703
tunable, 697, 706
two-section, 697
vertical-cavity surface-emitting, 497,

703
zero-threshold, 481

Lasing, 314
Lattice

body-centered cubic, 42
Bravais, 35, 40
constant, 68, 103, 109, 130, 157
1D Bravais, 103
2D Bravais, 40
3D Bravais, 40
empty, 141
expansion, 158
face-centered cubic, 42
hexagonally close packed, 44
ionic, 165
match, 153
mismatch, 122, 130, 356
period, 395
point, 36, 105
reciprocal, 57–63, 140
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relaxation, 74, 221, 225
simple cubic, 41

site, 210
temperature, 252, 294

vibration, 103–122
Lattice matched, 356
Laughlin theory, 394

Layer
active, 674
amorphous, 352

inversion, 389, 390, 728
nucleation, 354
semi-insulating, 217

sequence, 360
space-charge, 522
spacer, 758

wetting, 352
Level

deep, 193, 216, 299, 589

Landau, 384, 386, 389, 390, 393, 444
midgap, 338, 340
occupancy, 222

quantized, 362
Lifetime, 314, 339, 373

carrier, 601

minority carrier, 314, 337
minority-carrier, 584
photon, 689

Lift-off, 132
Linear chain

diatomic, 106
monoatomic, 103

Lithography, 413

Localization, 393
light, 494

Löwdin perturbation theory, 787

Loss, 687
internal, 687
mirror, 687

Luminance, 654
Luminescence, 323, 458

decay, 503

impurity, 661
mechanism, 660
negative, 313

Luminosity, 653
LUMO, 24
Luttinger Hamiltonian, 790

Lyddane–Sachs–Teller relation, 121,
304

Madelung constant, 26, 27
Magnetic moment, 443
Magnetoresistance, 385, 388
Magnetotransport, 382, 395
Mask, 354
Mass, 103, 109

anisotropic, 296, 382
carrier, 384
density of states, 188
effective, 147, 161, 168, 193, 239, 336,

362, 363
electron, 163
hole, 171
isotropic, 164
longitudinal, 164
nonparabolicity, 167
polaron, 165
reduced, 304, 379
strain effect, 179
transverse, 164, 363

Mass-action law, 190
Matrix element, 269, 270, 312, 365, 413

bulk momentum, 163
dipole, 605
k-dependence, 163
momentum, 162, 270, 787

Matthiesen rule, 239
Maxwell’s equations, 266, 489
Mean free path, 237, 395
Memory, 713, 746

flash, 755
nonvolatile, 755

Metalorganic, 348, 461
Microcavity, 294, 494, 503, 689, 704
Microdisc, 500
Micropillar, 503
Microscopy

scanning tunneling, 201, 204
secondary electron, 399

Midgap level, 295
Miller indices, 60

wurtzite, 62
Miniband, 367
Minigap, 367
Mirror operation, 37
Miscibility gap, 63
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Mobility, 238, 369, 384, 395, 533, 725,
763

channel, 759

edge, 373, 392

extremely high, 347

high, 389

high electron, 239

hole, 238

metal, 239

negative differential, 734

optical carrier, 383

surface, 352

temperature dependence, 243

Mode

chaotic, 504

defect, 493, 495

evanescent, 503

gap, 118

hopping, 697

localized vibrational, 76, 114–117,
232

longitudinal phonon plasmon, 307

normal, 31

optical, 108, 481

out of plane, 465

single longitudinal, 694

soft phonon, 428

spectrum, 694

stretching, 459

volume, 502

whispering gallery, 501, 503, 505

Modulation

large-signal, 699

pulsewidth, 670

small-signal, 701

Momentum

angular, 274, 363, 407

conservation, 270

cyrstal, 161

orbital, 296

orbital angular, 169

total angular, 169

Monolayer, 347, 360, 374

Moore’s law, 746

Multiexciton, 420

Multiferroics, 425

Multiplication

region, 625

Nanobelt, 403
Nanolaser, 402
Nanoscroll, 132, 133
Nanostructure, 397–423, 753
Nanotube, 132

BN, 476
carbon, 473
metallic, 475

Nanowhisker, 401, 405
negative-U center, 221
Neutrality, 190

condition, 191, 200, 206
constraint, 217

Newton’s law, 161
Nobel Prize, 10, 12, 347, 592
Noise

equivalent power, 603, 611
excess, 623
generation–recombination, 602
shot, 602, 612
source, 612
thermal, 602, 612, 624

Nonequilibrium, 215, 309
thermodynamic, 216

Nonlinear optics, 295, 432, 482
Nonparabolicity, 381
Nonpolar, 240, 438
Nucleation, 352, 353, 763

dislocation, 135
Number

atomic order, 73, 323
complexion, 77
order number, 48

Ohm’s law, 237
Orbital, 21

antibinding, 22
antisymmetric, 19
bonding, 22
highest populated, 24
lowest unoccupied, 24
overlap, 103
symmetric, 19

Order
antiferromagnetic long-range, 445
long-range, 45
spontaneous magnetic, 441
stacking, 49, 57

Ordering, 69
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CuAu, 69
CuPt, 69
in-plane, 418

Orientation, 232
random in-plane, 352

Oscillation
Bloch, 236
Franz–Keldysh, 380
Shubnikov–de Haas, 385, 387
Weiss, 394

Oscillator, 8, 253
harmonic, 32, 103, 384, 407, 412, 777
local, 585
master, 711
strength, 118, 271, 285, 304, 604,

777–781
voltage-controlled, 588

Ostwald ripening, 416
Overgrowth

cleaved-edge, 401
epitaxial lateral, 354

Overlap
geometrical, 626

Oxide
aperture, 705
high-k dielectrics, 745
transparent conductive, 4, 511–515

Parabola, 167
Paramagnetic ion, 441
Parameter

s, 28, 97
Heisenberg exchange, 441
Huang–Rhys, 328
Luttinger, 171

Partition sum, 783
Peak-to-valley ratio, 595
Peltier effect, 235, 262
Periodic system, 11, 19, 193
Phase, 87, 101, 109, 698

Bloch, 484
change, 757
cubic, 427
diagram, 66, 294
factor, 142, 484
ferroelectric, 427, 430
metastable, 57, 149
opposite, 119
ordered, 102

orthorhombic, 427, 432
paraelectric, 427, 429
paramagnetic, 445
rhombohedral, 432
separation, 66
shift, 394
spin glass, 445
tetragonal, 152, 427, 432
transition, 45, 50, 153, 293, 427, 429

first-order, 431
second-order, 429

trigonal, 427
Phonon, 33, 103, 114, 274

absorption, 340
acoustic, 109, 240, 287
alloy, 116

one-mode, 118
two-mode, 118

average temperature, 160
Bose–Einstein model, 160
broadening, 283
dispersion, 110, 160
emission, 333
energy, 375
infrared active, 268
LA, 108
LO, 108, 122, 166, 241
long wavelength, 121
optical, 109, 160, 304, 307

emission, 252
replica, 459
soft, 428
TA, 108
TO, 121

Phosphor, 654, 669
Phosphorescence, 458
Photocatalysis, 599
Photoconductivity

persistent, 225
Photoconductor, 601, 604
Photodetector, 217, 235

FIR, 296
quantum well intersubband, 604
traveling wave, 625

Photodiode, 610–637
array, 633
avalanche, 611, 623–625, 635
bipolar, 611
metal–semiconductor–metal, 616
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pin, 613
stacking, 635

Photometry, 653
Photon

counting, 576
Photoresistor, 519
Piezoelectricity, 425, 433
Pinch-off, 729, 731, 733, 737, 740
Planar technology, 8, 519, 605, 704, 749
Planck’s law, 312
Plasma, 655

frequency, 301, 307, 383
Plasmon, 302
Plastic flow, 135
Pnictide, 51
Point

critical, 272
crossover, 224
Dirac, 465, 470, 475
F, 151
Γ , 62, 105, 108, 109, 147, 152, 276
K, 62
L, 62, 147–149, 153
M, 152
saddle, 272
X, 62, 108, 147, 153

Poisson equation, 369, 525, 552, 560,
730

Poisson ratio, 125
Polariton, 294, 304

lower branch, 287
Polarizability, 304
Polarization, 120, 267, 285, 365, 605,

776
circular, 274, 448
electric, 241, 425
ferroelectric, 55
light, 295
p, 266
s, 266
spin, 445
spontaneous, 69, 425
TE, 366
time-dependent, 119
TM, 366

Polaron, 165, 457, 660
Poling, 432, 549

periodic, 432
Polyhedra, 37

Polymer, 23
chain, 454

Polytypism, 57
Poole–Frenkel effect, 339
Population, 336

inverted, 315
Position sensing detector, 615
Potential

asymmetric, 103, 605
atomic interaction, 103
built-in, 523
chemical, 218, 785
confinement, 362
Coulomb, 144
crystal, 144
distribution, 528
double well, 157
external, 527
fluctuation, 373
hard wall, 142
harmonic, 103
hydrostatic deformation, 176, 240
inversion surface, 739
ion core, 193
lateral ∼ well, 633
Lennard–Jones, 30
long-range Coulomb, 339
minimum, 373
optical deformation, 176
periodic, 5, 139, 193
piezoelectric, 438
pure Coulomb, 296
screened Coulomb, 239
short range, 193
triangular, 368
two-dimensional well, 404
well

three-dimensional, 407
Power

maximum, 641
output, 641
thermoelectric, 261
total, 653

Pre-breakdown, 575
Precipitate, 208
Precursor, 348
Pressure, 76, 122

high, 10
hydrostatic, 50
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partial, 210
vapor, 416

Process
activation, 221
causal, 775

Processing temperature, 512
Propagation

direction, 365
Punch-through, 723
Purcell effect, 497, 502
Purity, 185
Pyroelectricity, 425
Pyrolysis, 348

Quadrupole, 438, 504
Quantum

dot, 128, 183, 373, 397, 407–423, 502,
605

charge tunable, 420
cleaved-edge overgrowth, 401
cubic, 408
lens-shape, 413
pyramidal, 409
self-assembled, 412, 413
spherical, 408
stack, 417

electrodynamics, 497
magnetic flux, 393
well, 182, 294, 360, 381, 726

coupled, 367
energy level, 361
multiple, 360
sidewall, 398
vertical, 400

wire, 128, 183, 397–406
cleaved-edge overgrowth, 401
T-shaped, 401
V-groove, 397

Quantum statistics, 783–786
Quarter-wave stack, 485

Rabi frequency, 497, 498
Radiance, 653
Radiometry, 653
Radius

self-limited, 398
Random bit pattern, 701
Random walk, 257
Rashba effect, 448

Rate
Auger recombination, 333
capture, 336
emission, 336, 339
escape, 607, 689
generation, 259, 309, 601
growth, 348
net recombination, 312
pulling, 348
recombination, 259, 312
thermal Auger generation, 333
thermal generation, 312
tunneling, 340

Recombination, 206, 309–344, 449, 459,
533, 556, 584, 599, 726

Auger, 333
band–band, 309
band–impurity, 335
bimolecular, 312
bound-exciton, 317
center, 338, 589
current, 340, 663
donor–acceptor pair, 331
dynamics, 313
excitons, 315
free-exciton, 315
lineshape, 371
nonradiative, 217, 719
quantum well, 369
radiative, 347, 661
spectrum, 420
spontaneous, 309
surface, 340–341
velocity, 540

Rectification, 2, 5, 582
Rectifier

metal–semiconductor, 5
point contact, 5

Reflectance, 267, 304
Reflection, 265–269, 698

anisotropy spectroscopy, 348
distributed, 696
low, 615
total, 266, 504, 663

Region
space-charge, 522

Relaxation
carrier, 309
plastic, 134, 416
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Resharpening, 398
Resistance

negative differential, 595
serial, 643
shunt, 643

Resistivity, 237
high, 227
negative differential, 252
transverse, 389

Resonator
deformed, 502, 503
microscopic, 500–508
spiral, 504

Responsivity, 612
Reststrahlenbande, 304, 307
Rotation, 37, 101, 240

general, 769
improper, 38

Roughness, 351, 503

Saturation
electron density, 199

Scattering, 382, 391
deformation potential, 240
elastic ∼ process, 240
grain boundary, 243
hot-carrier, 709
impurity, 758
inelastic, 241
intervalley, 736
ionized impurity, 239, 369
matrix, 483
microscopic process, 239
orbit, 395
phonon, 299
piezoelectric potential, 241
polar optical, 241
process, 236
Rutherford, 239
spin, 448
theory, 481
time, 250

Schönfließ notation, 37
Schottky effect, 527
Schottky–Mott model, 520
Schrödinger equation, 139, 145, 362,

369, 379, 397, 482, 787
Scintillation detector, 659
Scintillator, 654

Scrolling, 132
direction, 133

Second harmonic generation, 432
Second-harmonic generation, 584
Seebeck effect, 235, 261
Selection rule, 274, 364

optical, 366
polarization, 605

Self-assembly, 415
Self-consistent, 369
Semiconductor, 4

alloy, 153
amorphous, 35, 45–46, 180, 231, 279,

763
compound, 7, 49, 148
diluted magnetic, 441–447
doped, 191
elemental, 147, 156
ferroelectric, 428
history, 1
II–VI, 156, 241
III–V, 156
indirect, 276, 335
inhomogeneous, 235
intrinsic, 190
lead salts, 159
magnetic, 56, 441–449
nonpolar, 240
organic, 23, 451–460, 546
oxide, 347
polarized, 425–439
polycrystalline, 35, 45–46
properties, 14
semi-insulating, 227
small band gap, 239
small-gap, 191
wide band gap, 191, 441, 446, 545
wide-gap, 191

Semipolar, 438
Shockley-Read-Hall kinetics, 312, 335
Shubnikov–de Haas effect, 388
Side-mode suppression ratio, 694
Signal-to-noise ratio, 603, 613, 624
Singularity, 130, 180, 272

Fermi-edge, 370
van-Hove, 180, 272

Snapback time, 590
Snellius’ law, 266
Sol-gel process, 415
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Solar
cell, 235, 637–651
spectrum, 637

Solid-state multiplier, 624
Solubility, 67, 85, 86, 214, 228
Source, 727
Space-charge region, 525, 551, 558

capacitance, 530, 555
Spectroscopy

deep level transient, 226
Mössbauer, 210
Raman, 375

Spin, 147, 169, 274, 443
alignment, 449
glass, 445
LED, 448
nuclear, 195, 320
rotation, 448
total, 285
transistor, 448

Spinodal, 66
decomposition, 66

Spintronics, 441, 448
Splitting, 221, 320

crystal field, 174
Rabi, 498
spin, 383, 390
valley-orbit, 320
Zeeman, 297, 320

Stacking, 44
vertical, 398, 417

Stacking fault, 90, 95
energy, 97
extrinsic, 95
intrinsic, 95

Stark effect
quantum confined, 381, 436, 699
second-order, 381

State
edge, 393
extended, 393
localized, 393
macroscopic quantum, 393
midgap surface, 525

Step
monoatomic, 101
surface, 350

Stirling’s formula, 77
Stoichiometry, 64, 211

Stokes shift, 373, 536
Stoney’s formula, 132
Strain, 123, 241, 356, 605

bending, 132
biaxial, 127, 130, 176
compressive, 127, 176
distribution, 129, 409
energy, 122, 133, 137, 416
homogeneous, 176
hydrostatic, 176, 179
in-plane, 435
inhomogeneous, 176, 294, 790
large, 176
management, 132
microscopic, 53
misfit, 136
plastic relaxation, 90
random, 320
relaxation, 356, 416
shear, 127, 176, 434
small, 176
tensile, 127, 176
tensile surface, 417
tensor, 240
three-dimensional, 128, 409

Streaming motion, 709
Stress, 123, 232, 356

–strain relation, 126
external, 425
superposition, 129
uniaxial, 435

Structure
chalcopyrite, 51
CsCl, 48
delafossite, 54
diamond, 48, 137, 153
dielectric, 481–508
field-ring, 579
fluorite, 53
interdigitated, 619
NiAs, 56
orthorhombic, 27
periodically poled, 432
perovskite, 55, 427
pseudomorphic, 356
rocksalt, 27, 47, 56, 153
shell, 412, 521
tetragonal, 27
wurtzite, 50, 153
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zincblende, 27, 49, 101, 138, 153, 157
Subband, 182, 386, 604

edge, 363, 365, 367
Sublattice, 49, 331, 441

anion, 49
cation, 49

Substrate
bending, 127, 130
compliant, 356
hetero-, 352
homo-, 352
polished, 350
rotation, 348
transparent, 665

Sun, 637
Superconductivity, 33
Superlattice, 63, 236, 360, 363, 366–368,

676
buffer layer, 350
isotope, 375

Surface
index, 525

Susceptibility
electric, 777
magnetic, 385
nonlinear third-order electric dipole,

295
Switch, 217
Symmetry

inversion, 147
mirror, 381
reduction, 221
tetrahedral, 296
time reversal, 147
trigonal, 224

Tail
carrier distribution, 527
exponential, 379
states, 387, 392

Taylor series, 258
Temperature

blackbody, 603
characteristic, 693
Curie, 429, 441, 446
Curie–Weiss, 432
Debye, 241
gradient, 235, 259
local, 216

Tensor, 771
conductivity, 389
dielectric

magneto-optic, 384
dielectric function, 300
effective-mass, 161, 195
nonlinear third-order electric dipole

susceptibility, 295
resistivity, 389

Theory
perturbation, 221
time-dependent perturbation, 269

Thermal instability, 576
Thermalization, 373, 536

incomplete, 373
Thickness

barrier, 144, 366
critical, 133–137, 356, 402
film, 136
oxide, 633
quantum well, 361, 373

Thomson heating, 262
Threshold, 688
Tilt, 97
Time constant, 309, 314, 530, 556, 630,

726
decay, 654
LO phonon emission, 252
RC, 626
relaxation, 236, 239
reorientation, 221

Transconductance, 724, 732, 741
differential, 724

Transistor, 6, 235, 713–766
bipolar, 8, 714–727
effect, 10
field effect, 5
field-effect, 4, 727
heterobipolar, 347, 725
high electron mobility, 347, 758
JFET, 8
junction field effect, 729
junction field-effect, 5
light-emitting, 726
MESFET, 5, 9, 729
MOSFET, 4, 9, 390, 737
organic, 765
planar, 9
point contact, 6
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thin film, 765
Transit time, 615, 736
Transition

band–band, 271
dipole, 285
direct, 272
displacement, 428
donor–acceptor pair, 331, 661
forbidden, 282
indirect, 274
intersubband, 708
metal, 442
metal–insulator, 212
Mott, 373
optical, 163, 174, 268, 296, 309, 419,

502
probability, 269

Transmission, 265
Transparency, 688
Transport, 235–263, 410

ballistic, 236, 533, 709
charge, 235
coupled heat and charge, 261
diode current, 532
heat, 259
heat energy, 235
high frequency, 257
high-field, 251
hopping, 457
low-field, 238

Trap, 339
filled, 336
multilevel, 339
surface, 525

Trion, 290, 420, 421
Tuning range, 698
Tunneling, 10, 362, 366, 373, 533, 540,

576, 580, 607
assisted, 340
current, 410
direct, 340
Fowler–Nordheim, 755
inelastic, 595
phonon-assisted, 340
photon-assisted, 340, 380
Zener, 5

Turn-on delay time, 699
Twin, 95

boundary, 95

lamella, 95
Twist, 97, 404
Two-electron satellite, 318
Two-photon process, 269

Umklapp process, 114
Unit cell

volume, 163
Urbach tail, 278

Vacancy, 73, 211, 217, 223, 226
Vacuum, 401

level, 521
tube, 2, 4, 519, 713, 746
ultrahigh, 348

Valley
current, 413, 594
L, 253
X, 296

Van-der-Pauw geometry, 247
Varactor, 588
Varshi’s formula, 159
Vector

antiphase, 99
displacment, 122
in-plane wave, 365
line, 87
potential, 129, 269
reciprocal lattice, 141
translation, 35
wave, 145

Vegard’s law, 68
Velocity, 393

average carrier, 236
drift saturation, 251, 615, 732
effective diffusion, 540
group, 105, 161, 482
light, 300
match, 626
maximum, 236
maximum drift, 252
mismatch, 626
overshoot, 254
phase, 105
sound, 105, 240
surface recombination, 340, 344
thermal, 336, 534

Vernier effect, 698
Void, 74
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Voltage
bias, 529
breakdown, 577, 586, 619, 726
built-in, 530, 559
diffusion, 523

inhomogeneity, 536
Early, 723
flat-band, 556, 619
gain, 724
maximum reverse, 576
open-circuit, 640
pinch-off, 729
reach-through, 618
reference, 587
regulator, 586
threshold, 741
turn-on, 726

Vortex, 394

Wafer, 348
bonding, 377, 643, 666
diameter, 349
epiready, 351
flat, 349

Wannier’s theorem, 791
Warping, 169, 202
Wave

acoustic, 105
compression, 240

electromagnetic, 299
equation, 144, 300, 482
longitudinal, 104
plane, 105, 140, 379
shear, 240, 241
sound, 105
standing, 106, 145
transverse, 104
traveling, 625
vector, 300

Wavefunction
d, 205
many-electron, 394
overlap, 366, 397, 413
strongly localized, 216

Waveguide, 488, 494, 495, 625, 684,
688, 696

plasmon, 302
Well capacity, 628
Wiedemann–Franz law, 259
Work function, 520, 524, 547, 548

Young’s modulus, 125, 126

Zone
boundary, 108, 144, 145, 236

vicinity, 146
reduced scheme, 140
scheme, 140
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